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Titre Combler l’écart entre H-Matrices et méthodes directes creuses pour la résolution
de systèmes linéaires de grandes tailles

Résumé De nombreux phénomènes physiques peuvent être étudiés au moyen de
modélisations et de simulations numériques, courantes dans les applications scientifiques.
Pour être calculable sur un ordinateur, des techniques de discrétisation appropriées
doivent être considérées, conduisant souvent à un ensemble d’équations linéaires dont
les caractéristiques dépendent des techniques de discrétisation. D’un côté, la méthode
des éléments finis conduit généralement à des systèmes linéaires creux, tandis que les
méthodes des éléments finis de frontière conduisent à des systèmes linéaires denses. La
taille des systèmes linéaires en découlant dépend du domaine où le phénomène physique
étudié se produit et tend à devenir de plus en plus grand à mesure que les performances
des infrastructures informatiques augmentent. Pour des raisons de robustesse numérique,
les techniques de solution basées sur la factorisation de la matrice associée au système
linéaire sont la méthode de choix utilisée lorsqu’elle est abordable. A cet égard, les
méthodes hiérarchiques basées sur de la compression de rang faible ont permis une
importante réduction des ressources de calcul nécessaires pour la résolution de systèmes
linéaires denses au cours des deux dernières décennies. Pour les systèmes linéaires creux,
leur utilisation reste un défi qui a été étudié à la fois par la communauté des matrices
hiérarchiques et la communauté des matrices creuses. D’une part, la communauté des
matrices hiérarchiques a d’abord exploité la structure creuse du problème via l’utilisation
de la dissection emboitée. Bien que cette approche bénéficie de la structure hiérarchique
qui en résulte, elle n’est pas aussi efficace que les solveurs creux en ce qui concerne
l’exploitation des zéros et la séparation structurelle des zéros et des non-zéros. D’autre
part, la factorisation creuse est accomplie de telle sorte qu’elle aboutit à une séquence
d’opérations plus petites et denses, ce qui incite les solveurs à utiliser cette propriété
et à exploiter les techniques de compression des méthodes hiérarchiques afin de réduire
le coût de calcul de ces opérations élémentaires. Néanmoins, la structure hiérarchique
globale peut être perdue si la compression des méthodes hiérarchiques n’est utilisée
que localement sur des sous-matrices denses. Nous passons en revue ici les principales
techniques employées par ces deux communautés, en essayant de mettre en évidence leurs
propriétés communes et leurs limites respectives, en mettant l’accent sur les études qui
visent à combler l’écart qui les séparent. Partant de ces observations, nous proposons
une classe d’algorithmes hiérarchiques basés sur l’analyse symbolique de la structure des
facteurs d’une matrice creuse. Ces algorithmes s’appuient sur une information symbolique
pour grouper les inconnues entre elles et construire une structure hiérarchique cohérente
avec la disposition des non-zéros de la matrice. Nos méthodes s’appuient également sur la
compression de rang faible pour réduire la consommation mémoire des sous-matrices les
plus grandes ainsi que le temps que met le solveur à trouver une solution. Nous comparons
également des techniques de renumérotation se fondant sur des propriétés géométriques
ou topologiques. Enfin, nous ouvrons la discussion à un couplage entre la méthode des
éléments finis et la méthode des éléments finis de frontière dans un cadre logiciel unique.

Bridging the gap between H-Matrices and sparse direct methods i



Abstract Many physical phenomena may be studied through modeling and numerical
simulations, commonplace in scientific applications. To be tractable on a computer,
appropriated discretization techniques must be considered, which often lead to a set of
linear equations whose features depend on the discretization techniques. Among them,
the Finite Element Method usually leads to sparse linear systems whereas the Boundary
Element Method leads to dense linear systems. The size of the resulting linear systems
depends on the domain where the studied physical phenomenon develops and tends to
become larger and larger as the performance of the computer facilities increases. For the
sake of numerical robustness, the solution techniques based on the factorization of the
matrix associated with the linear system are the methods of choice when affordable. In
that respect, hierarchical methods based on low-rank compression have allowed a drastic
reduction of the computational requirements for the solution of dense linear systems over
the last two decades. For sparse linear systems, their application remains a challenge which
has been studied by both the community of hierarchical matrices and the community of
sparse matrices. On the one hand, the first step taken by the community of hierarchical
matrices most often takes advantage of the sparsity of the problem through the use of
nested dissection. While this approach benefits from the hierarchical structure, it is not,
however, as efficient as sparse solvers regarding the exploitation of zeros and the structural
separation of zeros from non-zeros. On the other hand, sparse factorization is organized
so as to lead to a sequence of smaller dense operations, enticing sparse solvers to use
this property and exploit compression techniques from hierarchical methods in order to
reduce the computational cost of these elementary operations. Nonetheless, the globally
hierarchical structure may be lost if the compression of hierarchical methods is used
only locally on dense submatrices. We here review the main techniques that have been
employed by both those communities, trying to highlight their common properties and
their respective limits with a special emphasis on studies that have aimed to bridge the
gap between them. With these observations in mind, we propose a class of hierarchical
algorithms based on the symbolic analysis of the structure of the factors of a sparse
matrix. These algorithms rely on a symbolic information to cluster and construct a
hierarchical structure coherent with the non-zero pattern of the matrix. Moreover, the
resulting hierarchical matrix relies on low-rank compression for the reduction of the
memory consumption of large submatrices as well as the time to solution of the solver. We
also compare multiple ordering techniques based on geometrical or topological properties.
Finally, we open the discussion to a coupling between the Finite Element Method and the
Boundary Element Method in a unified computational framework.

Keywords Sparse Matrices, H-Matrices, Low-Rank Compression, Linear Algebra,
Finite Elements, FEM/BEM Coupling

Mots-clés Matrices Creuses, H-Matrices, Compression de Rang Faible, Algèbre
Linéaire, Éléments Finis, Couplage FEM/BEM
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Laboratoire d’accueil HiePACS team, Inria Bordeaux Sud-ouest, 200, avenue de la
Vieille Tour, 33405 TALENCE

Résumé long L’utilisation de simulations numériques permet l’étude de phénomènes
complexes en limitant, voire en évitant, le recours à l’expérimentation réelle souvent
coûteuse. De telles simulations sont utilisées depuis des décennies dans de nombreux
domaines scientifiques. Dans l’industrie aéronautique, elles sont par exemple utilisées afin
d’étudier des phénomènes physiques tels que la propagation d’ondes électromagnétiques ou
acoustiques. Un exemple de ce dernier domaine est l’étude du bruit généré par les moteurs
d’un avion au décollage. Certains aéroports périurbains sont aujourd’hui sujets à des
réglementations de plus en plus strictes visant à réduire les nuisances sonores autour des
pistes de décollage pour le bien-être des personnes résidant dans la proximité immédiate
de l’aéroport. Les constructeurs sont donc obligés de réduire le bruit généré par leurs
avions et exploitent intensivement des simulations numériques pour améliorer le design
des aéronefs afin d’atteindre cet objectif. Le bruit peut être représenté par une onde
acoustique se propageant autour de l’appareil. Un modèle numérique peut être utilisé
pour étudier sa propagation et son interaction avec l’écoulement généré par le moteur.

Un phénomène physique tel ce problème d’aéroacoustique mentionné ci-dessus
peut-être modélisé par des équations aux dérivées partielles linéaires (EDP) définies dans
un domaine englobant l’espace d’étude de la propagation de l’onde. Cette EDP, dont
la solution est une fonction souvent continue, est transformée en un problème discret
calculable sur un ordinateur via des techniques de discrétisation, telles que la méthode
des éléments finis (FEM : Finite Element Method) ou la méthode des éléments finis de
frontière (BEM : Boundary Element Method). Dans ce cas, le problème discret prend
la forme d’un système linéaire. Dans cette thèse, nous nous intéressons à la résolution
de problèmes discrétisés par une technique qui couple la FEM et la BEM. La FEM est
utilisée sur un maillage volumique qui discrétise l’espace 3D, la BEM est utilisée sur un
maillage surfacique. Le système linéaire associé peut être écrit sous la forme Ax = b, où
la matrice A possède naturellement une structure bloc 2× 2 :

A =

[
Avv Avs
Asv Ass

]
.

Le bloc (1,1) Avv est une matrice de grande taille, car définie sur un maillage volumique
3D, et creuse (très peu de coefficients non-nuls), de par la formulation FEM, alors que
le bloc (2,2) Ass est une matrice de plus petite dimension, car définie sur un maillage
surfacique, et pleine (très peu de coefficients nuls), de par la formulation BEM. Les
matrices extra-diagonales Avs et Asv ont une structure creuse. La résolution efficace du
problème complet nécessite donc l’utilisation de techniques adaptées aux caractéristiques
très différentes des blocs constituant la matrice complète.

Deux grandes classes de méthodes peuvent être utilisées pour la résolution de systèmes
linéaires, les méthodes directes et les méthodes itératives. Nous nous concentrons dans
cette thèse sur les méthodes dites directes qui s’appuient sur l’écriture de la matrice A sous
la forme d’un produit de matrices ayant des structures simples autorisant des résolutions
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aisées de systèmes linéaires associés à chacune d’elles. La plus connue et générale des
factorisations est la factorisation A = LU , où L une matrice triangulaire inférieure
et U une matrice triangulaire supérieure. Le système linéaire peut alors être résolu
en calculant successivement une solution pour les deux systèmes linéaires triangulaires
associés à la matrice L pour le premier et U pour le second. Leurs propriétés de robustesse
et de précision combinées à leur comportement prédictibles rendent ces méthodes très
populaires et usitées dans les codes de simulations.

En aéroacoustique, la taille des matrices croît en fonction de la fréquence des ondes
étudiées ou de la taille du domaine par rapport à la longueur d’onde ; ce qui nécessite le
développement de solveurs linéaires efficaces et adaptés à la taille toujours croissante des
problèmes à résoudre avec des moyens de calcul limité.

Dans ce contexte, les matrices hiérarchiques (H-Matrices) [112] ont permis de réduire
significativement les contraintes calculatoires (mémoire et temps de calcul) pour des
classes de matrices pleines qui peuvent être approchées par des matrices de rang faible.
Cette représentation sous forme de rang faible permet d’exprimer les calculs matriciels
élémentaires et rendent en particulier possible le calcul des factorisations à moindre coût.

En ce qui concerne les matrices creuses, la procédure de factorisation d’une telle
matrice introduit de nouveaux coefficients. Ce phénomène est appelé remplissage
(fill-in en anglais). Les solveurs directs creux utilisent généralement des techniques de
renumérotation d’inconnues (reordering) telles que la dissection emboitée [90] pour réduire
ce remplissage. Ils s’appuient également sur la notion de factorisation symbolique afin de
déterminer la structure de la matrice factorisée avant le calcul effectif de la factorisation
numérique.

Alors que les H-Matrices étaient à l’origine utilisées pour résoudre des problèmes
pleins, leur utilisation a été étudiée pour des systèmes linéaires creux par l’introduction
de la dissection emboitée dans l’arithmétique H [143] (remplaçant la bissection récursive
utilisée sur des problèmes pleins). D’autre part, la compression de rang faible a également
été introduite dans les solveurs directs creux [191] pour la compression des sous-matrices
pleines qui interviennent dans la factorisation de matrices creuses. Nous nous posons
donc ici la question de l’utilisation efficace des techniques de compression de rang faible
et des techniques creuses (renumérotation, factorisation symbolique) pour la résolution
d’un système linéaire creux.

Dans le contexte de la résolution d’un couplage FEM-BEM en utilisant desH-Matrices,
nous nous concentrons principalement sur l’exploitation du caractère creux de la structure
des non-zéros et du remplissage pour la factorisation du bloc Avv (FEM-FEM). Nous avons
ainsi étudié l’intégration de la dissection emboitée au sein des H-Matrices, se reposant
sur des informations géométriques ou topologiques, et confirmé les précédentes tendances
observées par la communauté H. Nous avons aussi introduit de nouvelles techniques
permettant d’éviter l’apparition de blocs longs et fins lors de l’utilisation de la dissection
emboitée dans la construction d’une H-Matrice. Les principales contributions de cette
thèse concernent l’introduction de nouveaux algorithmes permettant l’utilisation d’une
information symbolique dans la hiérarchie d’une H-Matrice. Pour cela, les algorithmes
développés approchent le problème de deux façons. Dans un premier temps, nous
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introduisons des méthodes qui permettent de localiser le remplissage dû à la factorisation
numérique et d’éviter le stockage de coefficients nuls dans la H-Matrice. Nous avons
regroupé ces méthodes sous le nom de Factorisations Symboliques Hiérarchiques. Nous
discutons de plusieurs possibilités afin d’accomplir une telle factorisation symbolique et
quantifions leur impact sur la mémoire et le temps requis pour effectuer une factorisation
numérique. Dans un deuxième temps, nous introduisons aussi des méthodes permettant
un meilleur groupement d’inconnues situées au sein des séparateurs calculés par la
dissection emboitée en utilisant l’information symbolique de leurs interactions avec
d’autres inconnues.

Dans le chapitre 1, nous présentons le contexte théorique et industriel de cette thèse.
Nous développons d’abord le contexte industriel et la transformation d’un problème
physique d’aéroacoustique en un système linéaire utilisant la FEM et la BEM. Nous
discutons ensuite de la solution des systèmes linéaires pleins utilisant des techniques de
compression telles que les H-Matrices. La solution des systèmes linéaires creux est ensuite
discutée à travers le prisme des techniques de renumérotation, des structures supernodales
(ou quotientes) et de la factorisation symbolique. La solution de l’ensemble du couplage
FEM/BEM est finalement traitée en présentant les différentes méthodes sur lesquelles
nous nous concentrerons dans le reste de ce document.

Dans le chapitre 2, nous discutons de la factorisation du sous-système creux par
l’utilisation de la compression de rang faible. Un état de l’art est d’abord établi, en
énumérant les travaux de la communauté H, qui a étendu les H-Matrices en utilisant la
technique de dissection emboitée, et les travaux de la communauté creuse, qui a introduit
des techniques de compression de rang faible pour les sous-matrices pleines résultant de
la factorisation d’une matrice creuse. Nous présentons ensuite les diverses techniques
de renumérotation sur lesquelles nous nous appuyons et que nous comparons dans cette
thèse ; c’est-à-dire des dissections emboitées basées sur des informations géométriques
et d’autres utilisant des informations topologiques. Nous discutons aussi de comment
adapter efficacement les dissections emboitées pour les H-Matrices, par exemple par
la prévention de l’apparition des blocs longs et fins qui résultent naturellement de la
combinaison entre ces deux méthodes. Le critère d’admissibilité lié à la décision de quels
blocs d’une H-Matrice seront stockés dans un format de rang faible est également discuté
dans un contexte creux. L’utilisation des informations symboliques est discutée en § 2.4.
Nous détaillons diverses méthodes pour tirer parti du caractère creux de la répartition
des non-zéros dans cette section. Le premier ensemble de méthodes repose sur différentes
façons de calculer une information symbolique utilisable dans un contexte hiérarchique,
c’est-à-dire effectuer une Factorisation Symbolique Hiérarchique. Le second ensemble de
méthodes considère la division des séparateurs issus de la dissection emboitée, parmi
lesquelles nous proposons des méthodes conscientes des interactions (interactions-aware)
entre supernœuds reposant sur des informations symboliques. La discussion est ouverte
au couplage FEM/BEM dans la dernière section de ce chapitre.

Enfin, les expériences et les résultats liées aux méthodes présentées auparavant sont
discutés dans le chapitre 3. Nous nous concentrons d’abord sur l’efficacité des étapes
d’analyse symbolique hiérarchique (de prétraitement) que nous avons proposées. Nous
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montrons ainsi qu’une approche ascendante (bottom-up) calculant des informations vers la
droite (right-looking) permet de déterminer plus rapidement les informations symboliques
de toute la hiérarchie d’une H-Matrice. Leur impact sur la factorisation numérique de la
matrice creuse Avv est ensuite discuté. Nous montrons que l’utilisation de techniques de
factorisation symbolique réduit la consommation mémoire et de temps de notre solveur
hiérarchique par rapport à sa version sans factorisation symbolique. Nous confirmons
aussi que l’utilisation de la dissection emboitée au sein desH-Matrices permet des gains de
performance par rapport à la bissection récursive usuellement employée pour des matrices
pleines. L’efficacité parallèle de la factorisation numérique est ensuite validée, afin de
pouvoir effectuer des tests sur des problèmes plus grands, avec plus de cent millions
d’inconnues sur une machine ayant une plus grande capacité mémoire. Nous observons
ainsi une stabilité et la complexité de nos algorithmes à plus large échelle. Les meilleures
méthodes que nous avons développées sont ensuite mises en perspective avec un solveur
direct creux de référence, solveur utilisant aussi de la compression de rang faible. Nous
montrons que nous avons une consommation mémoire théorique et pratique proche de ce
solveur référence lors de la désactivation de la compression, validant notre implémentation
de techniques creuses telles que la factorisation symbolique ou la dissection emboitée.
L’emploi de la compression de rang faible permet ensuite de réduire la consommation
mémoire du solveur hiérarchique. Cependant nous exhibons des problèmes de performance
en terme de nombre d’opérations et de temps de calcul, qui ne semblent pas correspondre à
la complexité promise par lesH-Matrices, certainement dûs à un défaut d’implémentation.
Enfin, nous montrons des résultats préliminaires concernant l’impact de nos méthodes
sur le couplage FEM/BEM. Nos méthodes parviennent ainsi à réduire le coût d’une
partie du calcul global, plus particulièrement impliquant la sous-matrice Avv, et permet
ainsi une solution plus rapide du couplage. De futures travaux concernant l’utilisation
de l’information symbolique non limitée à la sous-matrice Avv mais aussi étendue à la
sous-matrice Asv devrait de même permettre un large gain de performance quant à la
résolution du couplage FEM/BEM.
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Introduction

The use of numerical simulations in the industry grants scientists the ability to study
complex phenomena by reducing, or even removing, the need for physical, and often
costly, experiments. Such simulations have been used for decades in many scientific fields.
In the aircraft industry, they are for instance used to study physical phenomena such as
the propagation of electromagnetic or acoustic waves. An example of this last field is
the study of the noise generated by the engines of an aircraft at takeoff. Some suburban
airports are nowadays ensuing strict regulations intended to reduce the noise in the area
surrounding the runways used by airplanes for the welfare of the inhabitants living in the
immediate vicinity of the airport. Aircraft manufacturers are thus enticed to reduce the
noise generated by an aircraft and heavily rely on numerical simulations to enhance their
aircrafts for this purpose. The noise may be represented by an acoustic wave propagating
around the plane. To study its propagation, a numerical model may be used.

A physical phenomenon such as the aeroacoustic problem mentioned just above is
expressed under the form of Partial Differential Equations (PDE) over a domain covering
the propagation space. For a solution on a computer, the continuous formulation of PDEs
is transformed into a discrete problem through discretization techniques, such as the Finite
Element Method (FEM) or the Boundary Element Method (BEM). This discrete problem
is written under the form of a linear system. We study in this thesis the solution of a
coupling between the FEM and the BEM. The FEM is used on a volume mesh to discretize
a 3D space whereas the BEM is used on a surface mesh. The associated linear system
may be formulated as Ax = b, where the 2× 2 matrix A may be decomposed into:

A =

[
Avv Avs
Asv Ass

]
.

The (1,1) block Avv is a large matrix due to the 3D volume mesh, which is also sparse
(with few non-zero entries), due to the FEM formulation, whereas the (2,2) block Ass is a
smaller matrix as it corresponds to a surface mesh, and is dense (with few zeros entries)
due to the BEM formulation. The efficient solution of the overall system therefore must
rely on different techniques suited for the very different characteristics of these subsystems.

Two main classes of methods may be used for the solution of linear systems, the
direct methods and the iterative methods. We focus in this thesis on direct solutions
relying on factorization methods decomposing a matrix A into a product of matrices with
simpler structures leading to an easier solution. The most common factorization of a
matrix A is the decomposition into an LU form, with L a lower triangular matrix and
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U an upper triangular matrix. The solution of the linear system associated with A can
then be decomposed into the solution of two triangular linear systems associated with the
matrix L, firstly, and U , secondly. The robustness, numerical stability and accuracy of
direct methods have led them to be very popular and common in numerical simulation
softwares.

In the aeroacoustic field, the size of the studied matrices grows with the frequency of
the problem or the size of the domain compared to the wavelength. Large-scale solvers
must consequently be implemented to manage an increase in terms of computational
requirements with a limited amount of computational resources. Hierarchical matrices
(H-Matrices) [112] have drastically reduced the (time and memory) requirements of the
computation of solutions involving dense matrices with low-rank characteristics. The
representation of a matrix using a low-rank format relies on an approximation of this
matrix with a controlled accuracy leading to a smaller arithmetic and memory complexity
of the factorization.

Regarding the case of the factorization of a sparse matrix, new entries are generated
by the procedure. This phenomenon is referred to as fill-in. Sparse direct solvers usually
rely on reordering techniques such as the nested dissection [90] to reduce this fill-in. They
also rely on symbolic factorization to determine the structure of the factorized matrix
before the actual numerical factorization.

WhileH-Matrices were originally used for the solution of dense problems, their use has
been studied for sparse linear systems by the introduction of nested dissection in the H
framework [143] (replacing the recursive bisection usually used in the case of dense linear
systems). On the other hand, low-rank compression has also been introduced in sparse
direct solvers [191] for the compression of dense submatrices that arise in the factorization
of sparse matrices. We therefore investigate here the efficient use of techniques arising
from the H-Matrix community (hierarchical low-rank compression) as well as from the
Sparse-Direct community (reordering, symbolic factorization) for the solution of large
sparse linear systems.

In the context of the computation of the solution of a FEM/BEM coupling using
H-Matrices, we mainly focus on exploiting the sparsity of the pattern of non-zeros and
fill-in for the factorization of the (FEM-FEM) block Avv. We have indeed studied the
introduction of the nested dissection in the H arithmetic, using geometric of topological
information, and confirmed previous trends shown by the H-Matrix community. We have
also introduced new techniques to prevent the formation of tall & skinny blocks when
nested dissection is used in the construction of a H-Matrix. The main contributions of
this thesis are the introduction of novel algorithms for the symbolic analysis of the sparsity
of a matrix that may be used in the hierarchy of a H-Matrix. These algorithms may be
divided in two main categories. The first category of methods aim to locate the fill-in
generated by the numerical factorization and avoiding the storage of zero coefficients in
the H-Matrix. We name these methods Hierarchical Symbolic Factorizations (HSF). We
discuss several possibilities for achieving such a symbolic factorization and quantify their
impact on memory and the time required to perform a numerical factorization. The second
category of methods aim to cluster unknowns located within the separators calculated by
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the nested dissection by using the symbolic information of their interactions with other
unknowns. We name them Interactions-Aware (IA) separator clusterings.

In Chapter 1, we present the theoretical and industrial background of this thesis.
We first develop the industrial context and the transformation of a physical aeroacoustic
problem into a linear system using the FEM and the BEM. We then discuss the solution of
dense linear systems using techniques of compression such as theH-Matrices. The solution
of sparse linear systems is then discussed through the prism of reordering techniques,
supernodal (or quotient) structures and symbolic factorization. The solution of the overall
FEM/BEM coupling is finally addressed by presenting the methods we will focus on in
the rest of this document.

In Chapter 2, we discuss the solution of the sparse subsystem using low-rank
compression. A state of the art is first provided, listing works of the H-Matrix
community, which has extended H-Matrices using nested dissection, and works from
the Sparse-Direct community, which has introduced low-rank techniques of compression
for dense submatrices arising in the sparse factorization. We then present the multiple
reordering techniques we rely on and compare in this thesis, i.e., a nested dissection based
on geometric information and nested dissections based on topological information. We
also discuss how to efficiently adapt the nested dissection for H-Matrices, for example by
the prevention of tall & skinny blocks that naturally arise from the combination of these
two methods. The admissibility condition involved in the decision of which blocks of a
H-Matrix will be stored in a low-rank format is also briefly discussed in a sparse context,
of which preliminary results raise questions about its formulation. The use of symbolic
information is discussed in § 2.4. We detail multiple methods to take advantage of the
sparsity pattern of non-zeros in this section. The first set of methods relies on different
ways of computing the symbolic information and using it in a hierarchical context, i.e.,
computing a HSF. The second set of methods considers the division of separators arising
from nested dissection, among which we propose Interactions-Aware methods relying on
symbolic information. The discussion is open to the FEM/BEM coupling in the last
section of this chapter.

Finally, experiments and results are discussed in Chapter 3. We first focus on the
efficiency of the (pre-processing) hierarchical symbolic analysis steps we have proposed.
Their impact on the numerical factorization of the sparse matrix Avv is then discussed,
as well as the parallel efficiency of the factorization. Once the parallel efficiency has
been validated, we have run tests on larger problems with more than one hundred million
unknowns on a machine with a larger memory capacity, in an effort to understand the
behavior of our methods on large-scale problems. The best methods we have developed
are then put in perspective with a reference sparse direct solver, also relying on low-rank
compression. Finally, we show preliminary results of the impact of our methods on the
FEM/BEM coupling.
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Chapter 1

General Introduction

In this chapter, we present the general context of this thesis by explaining the phenomena
we want to examine, their implications and their mathematical formulations. We first
cover the physical and mathematical context in § 1.1, explaining why and how we
need to study wave propagation via simulations in § 1.1.1 and what are the numerical
computational methods used for the discretization of this type of physical systems, i.e.,
Finite Element Method (FEM) and Boundary Element Method (BEM), in § 1.1.2. Then
we detail the solution of the linear systems arising from these discretization schemes in
§§ 1.2 and 1.3. Finally, the global coupled system, its formulation and its solution, are
further discussed in § 1.4.

1.1 General Framework
Numerical simulations have been used for decades in industry to safely design new
products. They can be used for a great range of problems: testing, safety engineering,
quality measurements, and more generally for model validation. Motivated by the
industrial context of this thesis, involving a partnership with Airbus, we are more
interested in the design of aircrafts and the physical problems involved, such as
electromagnetic and aeroacoustic. Designing based on a numerical prototype has many
advantages, as it can be less expensive, easier, safer, and faster than creating and testing
a physical one. For example, in the framework we are interested in, it can be used to
study the performance and efficiency of an airplane before its effective assembly. In order
to perform such simulations, several steps are required. The problem is first modeled
into a system of Partial Differential Equations (PDE) such as for example the Helmholtz
equation for acoustic problems or Maxwell equations for electromagnetic problems. When
analytical solution cannot be exhibited, the continuous quantities involved in the PDEs
have to be represented by discrete values that can further be handled on a computer.
Moving from continuous to discrete representation is referred to as discretization. The
FEM [50, 82, 168, 201] and the BEM [33, 167, 175, 187] are two techniques involving
the discretization of the space variable. It should be noted that BEM can be categorized
as a special case of FEM. They differ in their mathematical formulation of a physical
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1. General Introduction

problem and, due to this formulation, in the properties the studied medium is required
to possess for the method to be applicable. A medium represents the characteristics
of the space domain in which the problem is set. The resulting formulation is a linear
system of n algebraic equations with different properties depending on the method used.
The associated matrix is either sparse for a FEM discretization or dense for a BEM
discretization. The adjective “sparse” means a matrix is filled with a lot of zero coefficients
whereas “dense” means it is filled with only very few zeros. The system can thus be
formulated in the matrix form Ax = b, where A is a matrix of size n× n and the vectors
x and b are of size n. Such a system can be solved using direct methods, based on a
factorization of A, or iterative methods, in which matrix-vector products are used to build
a series of iterates that should converge to the solution [146].

We consider here three-dimensional electromagnetic and aeroacoustic problems, or, for
simpler test cases, simpler objects such as cubes or spheres, with a 7-point stencil for a
3D Laplace’s equation for example. In the latter case, if N is the number of discretization
points on each edge of the cube, then the matrix A has N3 rows and N3 columns with
about 7N3 nonzero coefficients; even a sparse-optimized factorization would lead toO(N6)
floating-point operations [146]. One of the challenges of numerical simulations is therefore
to make the large computational costs of such problems match modern architectures,
either by reducing the amount of computation or by exploiting the hardware architectures
to parallelize them.

In the context of this work, various methods may be used for the solution of a linear
system arising from a discretization using the FEM and the BEM of an electromagnetic
or aeroacoustic problem. We focus in this thesis on algorithmic optimizations for these
methods, and more specifically, we will be interested in the solution of the overall system
using H-Matrices [112]. This hierarchical format is introduced in § 1.2.3 and will be the
main subject of Chapter 2.

After a presentation of the application context of this work in § 1.1.1, we introduce
the reader in § 1.1.2 to the numerical approximation methods used in this thesis, i.e., the
FEM and the BEM. Finally, we discuss the linear systems arising from these methods,
their characteristics and their solutions in § 1.1.3.

1.1.1 Industrial Context

Numerical simulations can be used to study many physical problems, such as
electromagnetic [139, 144] or aeroacoustic [32, 49, 160, 185] problems, which are the
categories of problems we focus on, in the context of the industrial partnership of this
thesis. Accurately analyzing electromagnetic and aeroacoustic waves is a major challenge
for aeronautics and implies a need for precise simulations. Related applications include
the conception and installation of antenna for the electromagnetic case, as well as the
study of the noise generated by an airplane engine for aeroacoustic problems. This may
be studied for an airplane during takeoff, landing, cruise or taxi (movement of the aircraft
on the ground).
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1. General Introduction

Let us focus on one example of aeroacoustic problem. Why do we need to study the
noise generated at takeoff? The answer lies in the effect of noise pollution on health and
behavior of human beings, to the point where categorizing airplanes according to the noise
they produce is a part of regulations issued by governments or airports. Possible effects of
exposure to chronic environmental noise have been reported through a number of studies
[51, 83], more particularly on children, and especially on cognition, motivation or the
cardiovascular system. But mainly, noise exposure causes annoyance [182], for example
through sleep disturbance. Therefore, measuring and classifying airplanes according to
the amount of noise they produce is important, especially for airports, as they must carry
out special operations and issue regulations for aircraft engines to address this problem.
Heathrow Airport for example, being the busiest airport of Europe, has issued a report
named “A quieter Heathrow” presenting the operations conducted to “tackle aircraft noise”.
Special restrictions 1 like the “Quota Count” (QC) system have been implemented. The
QC system has been introduced in 1993 and is now used in London’s Heathrow, Gatwick
and Stansted airports. In this system, each aircraft is awarded a quota count value
depending on the amount of noise it generated under controlled certification conditions
both at takeoff and landing; airports have a fixed quota to observe. For example, the
Airbus A380 uses no more than half of the quota of a Boeing 747, while being larger 2 3,
therefore providing airlines with an incentive to operate quieter aircrafts like the A380.
It seems the QC system is somewhat efficient to provide a measure on the harm caused
by the noise generated by an aircraft [123]. However, later studies regarding the London
Heathrow airport still suggest that “high levels of aircraft noise are associated with an
increased risk of stroke, coronary heart disease, and cardiovascular disease” [118], while
recommending more work to be done on this field of research to avoid statistical bias due
to the uncertainty of some data “such as ethnicity and smoking”. All of this leads to the
conclusion that categorizing airplanes according to the noise generated should not to be
taken lightly and is a necessity for airports and thus aeronautics companies.

In our Airbus framework, the software used to solve aeroacoustic problems is named
Actipole and its counterpart for electromagnetism is named Elfipole. For the rest of this
document, an aeroacoustic study case which can be solved using Actipole is considered
as being the main objective to achieve. Let us consider this situation: we want to
analyze the propagation of an acoustic wave emitted by the engine of a plane during
takeoff (Fig. 1.1a). We are not interested here in how the noise is generated inside the
engine (modeled as an acoustic waveguide) but only in how it propagates outside of it.
Should we measure the noise emitted by an airplane in another context, at landing for
example, other sources of noise might appear, like the landing gear, typically wheels, as
they produce noise mainly due to turbulences around the tires (and possibly the flaps,
when extended). While the problem setting is slightly changed, the need for simulation
still holds: the system would simply be more complex.

1http://www.heathrow.com/noise/heathrow-operations/night-flights
2http://www.globalaircraft.org/planes/airbus_a380.pl
3http://www.planenation.com/2007/11/28/airbus/airbus-a380.htm
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1. General Introduction

(a) When a plane takes off, a propelling jet of hot and cold air is produced by the engine in
the opposite direction of the movement of the plane. Noise is also produced by the engines and
emitted in all directions. a

aPicture By Sebaso (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or
CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wikimedia Commons

(b) Example of an acoustic wave (one sound ray is here highlighted in blue) emitted from
the jet engine and running through the jet. The colors indicate here the domain where BEM
discretization is applied (red surface) and the domain where FEM discretization is applied (green
volume). BEM is also used on the outer surface of the FEM domain.

Figure 1.1: Modeling of a plane with the BEM-FEM coupling.
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1. General Introduction

Figure 1.2: Engine based on the
turbofan model. Part of the flow of
air passes through the core of the
engine while another part is bypassed
into a ducted fan. The bypass stream
creates differences of velocity and
temperature in the jet. The jet
coming from the bypass stream is cold
and fast while the jet coming from the
core stream is hot and a bit slower.

Figure 1.3: Example of an acoustic wave that
propagates through multiple media. FEM is used
between the dashes, i.e., on the green area (hot
air), the dark blue area (cold air) and part of
the light blue area (in order to obtain a simple
cylinder form in a 3D context). BEM is used on
the boundary of the red striped domain and the
outer surface of the FEM domain.

On the study case of Fig. 1.1b, the sound wave is illustrated by a group of sound
rays emitted in all directions, one of which is heading for the wing (blue ray on Fig. 1.1b
and 1.3). Some rays run only through the ambient air outside the jet of exhaust gas,
approximated as a homogeneous (uniform) medium, while others, like the blue ray of our
study case, run, after a reflection under the wing, through the jet, consequently being
deviated of their courses towards the ground. This setup is slightly more complex due
to the non-homogeneous flow of hot and cold air constituting the jet, such as depicted
in Fig. 1.2. Indeed, when the medium of propagation is not at rest, the convected
Helmholtz equation is the simplest model for the study of trajectories of sound rays.
However, two distinct domains can be identified in our setup: the interior of the jet,
which is non-uniform, and the exterior medium, which is assumed to be uniform far
from the jet. The convected Helmholtz equation has been reformulated in [58] to match
these conditions: the classical Helmholtz equation is used in the uniform domain and an
anisotropic second-order PDE in the non-uniform domain. One of the advantages of this
formulation is the possibility to use the BEM which only involves integral operators for
the classical Helmholtz equation on the uniform domain. On the non-uniform (interior)
medium, the FEM is used to discretize the anisotropic second-order PDE. It should be
noted that electromagnetic waves, governed by Maxwell’s equations [131], can lead to
similar systems using BEM and FEM.
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These numerical methods are introduced in § 1.1.2, followed by the FEM/BEM
coupling developed by Fabien Casenave [58] within the Airbus framework.

1.1.2 Numerical Approximations and Linear Systems

Numerical methods rely on the notion of discretization of a domain into smaller elements,
Finite Elements in the case of the FEM, and Boundary Elements in the case of the
BEM.

The FEM is a numerical discretization technique usually involved in the modeling
of a three-dimensional space and used for solving engineering problems such as those
described in the previous sections. Applications of the FEM in electromagnetics are
detailed for instance in [129]. The invention of the method cannot exactly be dated (papers
as early as the 1940s [124] were published on such methods), though it has originated
from problems encountered in civil and aeronautics engineering. Since then, it has been
studied, developed and/or extended by many researchers [50, 82, 168, 201] to provide
different methods with the same core idea: a mesh discretization of the domain of interest
into small cells. The space is discretized, i.e., subdivided into smaller parts called finite
elements. In the case of the Airbus Actipole solver, the elements used to discretize a
three-dimensional space are tetrahedrons. To each element is associated a local equation
that approximates the original PDE, so that the method leads to a linear system of
differential equations which represents the original mathematical problem. Such linear
systems can be characterized by the number of unknowns they possess, which is related
to the number of elements of the discretized mesh. Fig. 1.4b is an example of a cylinder
mesh that may be used to discretize the jet of exhaust gas.

The BEM [33, 167, 175, 187] is closely related to the FEM, though these methods
are not usually used on the same problems. BEM is applied on homogeneous media
while FEM is preferred for heterogeneous media. Indeed, BEM is used when PDEs are
formulated as integral equations, i.e., in boundary integral equation forms. It aims to
solve a problem using only the boundary values of the physical domain, thus avoiding the
need of a mesh over the entire domain. In order for this approximation to be applicable,
the medium in the domain must be homogeneous. This translates as defining a mesh only
over the boundaries of the considered domain and the discretization of a 3D problem using
the BEM is therefore 2D. An example of such a mesh is shown in Fig. 1.4a. The linear
systems arising from BEM (2D) are smaller than those arising from FEM (3D) because
of the surface characteristic of their mesh. The mathematical formulation of BEM used
here is further detailed in [155, 184].

In the case of Actipole, FEM is used inside the jet (green and dark blue areas in
Fig. 1.1b and 1.3, with the addition of the light blue areas between the dashes to form a
cylinder) because of the non-uniformity of the medium. The ambient air is approximated
as being a uniform medium. Discretization in the BEM may therefore be computed over
the surface of the plane. The two methods can effectively be connected using a coupling
technique [56, 58], granted that the mathematical formulation of the two problems satisfy
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1. General Introduction

(a) 2D surface mesh (BEM). (b) 3D volume mesh
(FEM).

Figure 1.4: Meshes on on an aircraft and a cylinder (representing the jet of exhaust gas),
respectively.

the same properties on the interface between the BEM and FEM domains. In that
case, the unknowns located on the boundaries of the domain discretized with the FEM
are linked to the unknowns from the domain discretized using the BEM. This way, it
is possible to benefit from both the volume (FEM) solution and the integral equation
formulation from the BEM. As stated earlier, the classical Helmholtz equation is used in
the uniform domain (discretized using the BEM) and an anisotropic second-order PDE is
used in the non-uniform domain (discretized using the FEM). The transmission condition
at the coupling boundary then naturally fits the boundary condition from the classical
Helmholtz equation (here, a Neumann boundary condition). Dirichlet-to-Neumann maps
are used for the coupling. The flow inside the jet is considered constant through time and
is not disrupted by acoustic waves propagation whereas the flow in the uniform domain
is discretized using larger elements and a modified frequency to adapt for the possible
changes in the flow via a Lorentz transformation. For more details about this coupling
and its applications to aeroacoustics, we refer the reader to [57].

Finally, the unknowns may be grouped in three main categories: (1) the unknowns
associated with the formulation of FEM on the interior of the jet (heterogeneous); (2)
a coupling where unknowns are shared between the BEM discretization and the FEM
discretization on the outer surface of the jet; and (3) the unknowns associated with the
use of BEM on the surface of the plane (Fig. 1.4a). The global algebraic system may thus
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be formulated as:  A11 A12 0
A21 A22 A23

0 A32 A33

×
 x1
x2
x3

 =

 b1
b2
b3

 . (1.1)

In practice, the unknowns from (2) and (3) are grouped together into the same surface
mesh s associated with the BEM while the unknowns from (1) are grouped together into
a volume mesh v associated with the FEM.

Therefore the entire system can be formulated using a 2× 2 block matrix, as follows:[
Avv Avs
Asv Ass

]
×
[
xv
xs

]
=

[
bv
bs

]
. (1.2)

The matrix system is composed of the four following blocks:
• Avv is the action of the volume part on itself. This matrix is symmetric.
• Asv represents the action of the volume part on the exterior surface. This action is

calculated in the elements (tetrahedrons) in contact with the exterior surface.
• Avs represents the exterior surface action on the volume part, it is the transpose of
Asv.
• Ass is the matrix containing the action of the exterior surface on itself. This action is

calculated in the outer domain (usual interactions) and in the inner domain (through
the tetrahedrons).

Moreover, we define the sizes of each mesh as follows:

Definition 1.1. nFEM is the number of elements in the mesh discretized with FEM.
nBEM is the number of elements in the mesh discretized with BEM.

We use here a frequency-domain BEM and FEM which lead to a linear system with
complex entries.

1.1.3 Linear System Solution

We have presented the different linear systems arising from FEM, BEM and the
FEM/BEM coupling and shown how they can be arranged into the global system of
Eq. (1.2). We now discuss how this linear system is solved in the framework of this thesis.
The 2× 2 block system can be synthesized as a global one:

Ax = b.

The dimensions of the matrix A are chosen as n × n for this work and consequently x
and b are vectors of size n. Moreover, the matrix is complex in our application, that is,
A ∈ Cn×n.

Linear systems can be classified in two classes: sparse linear systems are mainly
constituted of null coefficients, and dense linear systems are the opposite, meaning no,
or hardly any, null coefficient. A dense matrix is sometimes called full or fully populated.
Sparse matrices are often categorized according to the involved number of non-zeros,
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noted nnz, and where nnz � n2, whereas dense matrices are often qualified with their
order n (nnz then satisfying nnz = O(n2)). Regarding the linear systems arising from
the discretization techniques introduced above, each method leads to problems with very
distinct properties. In particular they can lead to either sparse linear systems or dense
linear systems. Linear systems arising from FEM in our application are categorized as
sparse: each element mainly interacts with its close neighbors. On the contrary, linear
systems arising from BEM are categorized as dense because of the integral formulation of
the problem. Finally, the coupling leads to sparse matrices. To summarize, in the 2 × 2
block matrix from Eq. (1.2), Avv, Asv and Avs are sparse matrices whereas Ass is dense.

In this thesis, we consider the whole coupling system (1.2) and we study the impact
of H-Matrices on the computation of its solution. To understand the problematics of
computing a solution in the case of dense and sparse problems, we discuss in this chapter
methods that may be used in each case. We will detail in the following sections the
methods used to find a solution for the dense problem arising from BEM in § 1.2, then
their counterparts for the sparse problem arising from FEM in § 1.3, and finally, the
solution of the entire system in § 1.4.

The methods used to find a solution for linear systems, whether they are sparse or
dense, can be categorized in two main classes, as mentioned earlier: direct methods often
based on a factorization of A into a product of matrices; and iterative methods that
usually resort to matrix-vector multiplications to iterate over a sequence of approximation
converging to the solution.

Before getting into more details on these methods, we first define some key terms we
will rely on in the rest of this document. When solving Ax = b, the condition number
κ(A) = σmax(A)

σmin(A)
[8], where σmax(A) and σmin(A) are the maximum and minimum singular

values (further detailed p. 23 in Theorem 1.1) of A, indicates how much a perturbation
in A or b can be amplified in the solution x, regardless of the possible error because of
the finite precision calculation performed by the algorithm chosen to solve the problem.
When a condition number is large (κ(A) >> 1), the solution may therefore be inaccurate
and the problem is said to be ill-conditioned. On the contrary, if the condition number is
small (κ(A) = O(1)), the problem is said well-conditioned.

1.1.3.1 Direct Methods

Direct methods factorize the initial matrix A into a product of matrices so that the
transformed system of equations is then simpler to solve. They generally follow three main
steps. Firstly, the problem is analyzed and assembled into an acceptable computational
(matrix-like) form. Secondly, the matrix is factorized under the form LU , LDLH or LLH ,
depending on the properties of the matrix, where L and U are lower and upper triangular
matrices, respectively, and D diagonal. Thirdly, the solution is found through a sequence
of triangular or diagonal system solve steps. The use of direct methods for the solution of
dense and sparse problems is detailed in § 1.2.1 and § 1.3.1, respectively. One difference
between the two is an additional step (reordering) during the sparse solution to take
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advantage of the sparsity of the structure, to attempt preserving sparsity in the matrix
factors.

Direct methods have several advantages: they are deterministic, as we usually know
exactly how much calculations and memory we need in order to compute the solution;
accurate in the backward error sense [122]; and, once a matrix is factorized, it can be
used to efficiently solve multiple right-hand sides at a relatively low cost. If the matrix
is well-conditioned, the accuracy of the solution is only limited by the accuracy of the
machine, often referred to as machine epsilon, which is the distance εM from 1.0 to the
next larger floating point number [122]. For example, if the solution was computed on a
machine with double precision (64 bits), the machine epsilon is εM ≈ 2−53 ≈ 1.11× 10−16

[26, 99]. However, a drawback of direct methods is their large computational requirements
to compute the factors, which, may be problematic for large matrices (see complexities
in § 1.2.1.1). Iterative methods can alleviate this problem. Some direct methods such
as the H-Matrices [112] compute an approximate solution and thus require less memory
and time. Such methods take advantage of the low-rank properties of some matrices or
matrix blocks to find an approximation of a solution with a tolerated error. The H-Matrix
technique, on which we will rely on in Chapter 2 is detailed in § 1.2.3.

1.1.3.2 Iterative Methods

The second class of methods, iterative methods, aims to find a good approximation of the
solution x, using a sequence of approximates closer and closer to x at each step of the
iterative process. We focus here on iterative procedures where each step mainly involves
a matrix-vector multiplication, which is much less costly than a matrix-matrix operation:
for a matrix of size n × n, a matrix-vector operation has an arithmetic complexity of
O(n2), while the matrix-matrix operation costs O(n3) for dense problems. A sparse
matrix-vector operation can be computed in O(nnz). Therefore, one might rather use
an iterative method than a direct one if it takes only a few steps before convergence.
However, one cannot predict a priori the number of steps required to reach convergence
and for many problems the sequence may not converge at all [172]. Many of the following
explanations come from [172]. More specifically, an iterative method is a procedure used
to find an approximate solution of a system by generating a sequence of which the k-th
term is calculated from the previous terms. In other words, to solve Ax = b, iterative
methods rely on matrix-vector operations to construct a sequence xk that converges to x.
The iterative process computes niter steps with matrix-vector operations before finally be
close enough to the solution and stop. To check the quality of the approximate solution,
the backward error [189] is commonly used:

‖Axk − b‖
‖b‖

or
‖Axk − b‖

‖A‖ · ‖xk‖+ ‖b‖
.

The number niter is in general not known a priori. If this number is lower than n, the
iterative solution is more efficient than a direct solution (otherwise they both have an
arithmetic complexity of O(n3)).
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Iterative methods can be categorized in two main classes : stationary methods and
Krylov subspace methods. The modern iterative principle has been introduced by Gauss
in the early 19th century and has later been formally expressed in the mid-20th century
[28, 121, 142, 197]. Since then, they have been extensively used for the solution of linear
systems [88, 174].

Stationary methods are also called relaxation or fixed-point methods. Using the initial
approximate solution x0, they modify slightly the approximation until convergence is
reached, based on a measurement of the error in the result (the residual). For the system
Ax = b, the residual vector at step k is rk = b − Axk. Then xk+1 is computed from xk
by xk+1 = xk + f(rk), with f a linear function. Main stationary methods are the Jacobi
method, the Gauss-Seidel method and Sucessive Over-Relaxation (SOR) method [197].
However these methods are not very popular anymore, at least when used alone. They
are more often combined with other more efficient methods.

Krylov subspace methods form a basis of the sequence of vectors of the form p(A)r0,
where p is polynomial, aiming to approximate e0 = x−x0 = A−1r0 by p(A)r0 with a good
polynomial p, where r0 is the residual vector equal to b− Ax0. Therefore the solution is
approximated by

xk = x0 + pk−1(A)r0,

where pk−1 is a polynomial of degree k − 1 [172]. At each step of the iterative process,
a Krylov subspace method computes xk+1 based on all the elements of the sequence
(xj)j∈[0,k]: xk+1 = f(xk, xk−1, ..., x0) by means of projection. Krylov subspace methods
include the Lanczos algorithm [142], the Arnoldi iteration [28], Conjugate Gradient (CG)
[121], GMRES [173], GCR [80], or QMR [89]. Krylov subspace methods may be used
on either dense or sparse problems [172]. Within the Airbus framework, we will rely on
GMRES and Block GCR.

Yet, while they need less memory than their direct method counterpart, a drawback
of these methods is the possible slow convergence rate. To prevent a slow convergence
rate (or divergence), preconditioners may be used to lower the number of iterative steps
(niter), meaning a faster convergence for an iterative method. The quality of an iterative
solver is often determined by its preconditioner.

In the iterative procedure, linear systems involving the preconditioner P will need to
be solved at each step. Hence, the properties of a good preconditioner can be summarized
by:
• P is a good approximation of A;
• The cost of the construction of P is small;
• Pz = r is easier to solve than the original system.
When P has been computed, it can be applied either on the right or on the left side

of the original matrix A. A left preconditioner leads to the preconditioned system:

P−1Ax = P−1b.

A right preconditioner leads to the system:

AP−1u = b, x ≡ P−1u.

Bridging the gap between H-Matrices and sparse direct methods 14



1. General Introduction

Finally, it is possible to precondition the system from both the left and the right. If the
preconditioner is of the factored form

P = PLPR,

where PL and PR are for example triangular matrices, then the system can be formulated
as:

P−1L AP−1R u = P−1L b, x ≡ P−1R u.

In the case of Actipole, a right preconditioner is used [12, § 5.1.5]. The technique
used to find a preconditioner is the SPAI (SParse Approximate Inverse) [13, 55, 54, 184].
H-Matrices can be used as preconditioners [35, 107]; however they are currently used only
as direct solvers within the Airbus framework.

1.2 Dense Linear Systems
As discussed above, in the case of BEM, the plane surface is discretized based on the
surface mesh shown in Fig. 1.4a (see § 1.1.2). We consider exclusively this mesh in
this section, disregarding the mesh associated with the FEM. From the global linear
system described in Eq. (1.2), we thus focus here on the subsystem associated with Ass,
which corresponds to the interactions of the surface unknowns from the surface mesh with
themselves. Consequently, the linear system considered in this section is of the form

Assxs = b′s. (1.3)

The exact formulation of b′s will be detailed in § 1.4. For now, we assume it is a given
right-hand side. BEM leads to dense linear systems (see § 1.1.3). The focus of this section
is therefore the solution of a dense linear system such as Eq. (1.3) , formulated as

Ax = b

in the rest of this section for the sake of convenience. Such a system is characterized by
the order n of the dense matrix A. The usual storage for such a dense matrix corresponds
to n2 coefficients.

For dense linear operations, we usually rely on the BLAS (Basic Linear Algebra
Subprograms) interface [74], which has become a standard for dense linear algebra. The
first version of BLAS is dated of 1979. This specification prescribes many low-level
routines for vector-vector (level 1), matrix-vector (level 2) and matrix-matrix (level 3)
operations. LAPACK (Linear Algebra PACK) 4 [26, 41] is mostly based on BLAS-3 and
provides routines of a higher level such as LU factorization. Larger blocks may provide
more efficient operations through the use of BLAS 3 [74] and may therefore be preferred.
This will have consequences on the discussion in Chapter 2.

4LAPACK has been introduced in 1992
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Let us now recall there are two classes of methods to solve linear systems: direct
methods and iterative methods. We give an overview of the algorithms involved in direct
methods applied on dense problems in § 1.2.1. Regarding iterative methods, the involved
principles aforementioned remain essentially the same for a dense solution or a sparse
solution. However, the matrix-vector product is quite costly for dense problems and a
method called the Fast Multipole Method (FMM) may be used to speed up this product.
The FMM is briefly introduced in § 1.2.2 for completeness but is not central in this thesis.
Eventually, H-Matrices rely on local compression of submatrices to lower direct methods
computational requirements. They are introduced in § 1.2.3.

1.2.1 Direct Methods

For a dense problem with n unknowns, the cost of computing the LU factorization of
a dense matrix A is O(n3). Though it has been shown that this complexity can be
lowered to O(nγ), with γ < 2.376 [63, 183], we consider the complexity of a dense LU
factorization to be O(n3) in this thesis for the sake of clarity. As explained in § 1.1.3.1,
direct methods are based on the factorization of a matrix to transform the system solution
into two triangular system solutions that are easier to solve. For example with the LU
factorization, the system Ax = b becomes LUx = b, whose solution can be decomposed
as follows:

Ly = b ; Ux = y.

The solutions of these triangular systems are then largely less costly than the factorization,
the complexity of a triangular solutions being O(n2) compared to the complexity of O(n3)
of the factorization. Some factorization algorithms will be detailed in § 1.2.1.1 (for instance
the LU factorization), followed by the solution of the resulting triangular systems, detailed
in § 1.2.1.2.

1.2.1.1 Factorization Techniques

The factorization of a matrix A into a product of matrices having a desired structure
(e.g., LU decomposition) or numerical properties (e.g., QR decomposition) is often
called decomposition. An example of such a decomposition is the Cholesky or LLH
decomposition, applicable to symmetric matrices. This decomposition is based on the
works of André-Louis Cholesky published posthumously (as he was killed on the battlefield
in the first World War) by a fellow officer in 1924 [178]. This procedure can be viewed
as the matrix form of Gaussian elimination, said to be the most natural way for solving
simultaneous linear equations, and of which an example may be found in an over-2000
years old source [108]. The generalization of the algorithm to unsymmetrical matrices,
the LU factorization, was introduced by Banachiewicz in 1938. Many variants have
since then appeared, like the LDLH decomposition for complex Hermitian matrices or
LDLT (usually) for real symmetric matrices [52] or the QR decomposition. An example
of an implementation of the LU , QR and Cholesky factorizations can be found in the
LAPACK library [26]. Even though MH reduces to MT if M is real, our application
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may involve symmetric complex matrices (not necessarily Hermitian) so we can use the
LDLT decomposition on complex matrices. Factorization methods may lead to products
of different forms and are to be used on matrices with specific properties. Some of them
are listed below, followed by the required specifications of the matrix for the method to
be applicable:
• LLH (or Cholesky) decomposition: this method decomposes a matrix A ∈ Cn×n

that is Hermitian (A = AH) positive definite into a product of the form LLH ;
• LLT decomposition: related to the Cholesky decomposition, it may be applied on

a symmetric matrix A ∈ Cn×n;
• LDLH decomposition: applicable to any Hermitian matrix A ∈ Cn×n. The matrix is

decomposed as the product of three matrices, L a lower unit triangular matrix, D a
diagonal matrix, and LH the conjugate transpose of L. The Cholesky decomposition
can be seen as a special case of this decomposition, where D is the identity matrix;
• LDLT decomposition: applicable to any symmetric matrix A ∈ Cn×n. This is the

same algorithm as LDLH , except the conjugate transpose is replaced by a transpose;
• LU factorization: a general matrix A ∈ Cn×n is decomposed into a product of

two triangular matrices L and U . L is a lower triangular matrix and U an upper
triangular matrix;
• QR decomposition: with this method, any non-square matrix A ∈ Cm×n (with
m ≥ n) can be decomposed intro a product of Q, an orthonormal matrix, and R,
an upper triangular matrix.

Depending on the properties of the matrix and the problem under consideration,
the factorization will be computed using one or the other decomposition. For example,
any matrix of dimensions m × n can be factorized using QR decomposition. However,
the cost of this method is greater than the cost of LU factorization so the latter
may be preferred for acceptable problems like square matrices. Table 1.1 gives a
quick overview of the complexities of each decomposition for square matrices. The
QR decomposition would however require 4(m2n − mn2 + n3/3) flops on a rectangular
matrix A ∈ Cm×n [100]. In this work, we focus on the LU factorization, which can

Method Flop Storage
Cholesky 1

3
n3 n(n+1)

2

LDLH 1
3
n3 n(n+1)

2
+ n

LU 2
3
n3 n2

QR 4
3
n3 3

2
n2

Table 1.1: Theoretical complexity of factorizations for square dense problems (m = n).
The complexity of the solution step depends on the storage of the factorization considered.

be computed for the square matrices arising from BEM. The algorithm of the LU
factorization is given in Algorithm 1. The notation aij is used to describe a scalar entry
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(i,j) of the matrix A to avoid confusion with future notations Aij for block algorithms.
Algorithm 1: LU decomposition of a matrix A of size n× n.
Function LuFactorization(A, n)

1 for k = 1 to n− 1 do
2 `kk ← 1
3 for i = k + 1 to n do
4 `ik ← aik

akk

5 uki ← aki
6 for j = k + 1 to n do
7 aij ← aij − `ikakj

In fact, this algorithm can be computed in-place when the matrix A is no longer used
by the calling algorithm: we do not need to store two extra matrices L and U , as the
values of A can be overwritten by those of L and U , which leads us to Algorithm 2.
Algorithm 2: LU decomposition of a matrix A of size n × n overwritten by L
and U .
Function LuFactorization(A, n)

1 for k = 1 to n− 1 do
2 for i = k + 1 to n do
3 aik ← aik

akk

4 for j = k + 1 to n do
5 aij ← aij − aikakj

Factorizations have first been computed in a scalar manner, entry by entry, as in the
algorithms above, and later been expressed in a vectorized form, column by column or
block columns by block columns. A matrix may be also decomposed into a block matrix,
meaning a matrix decomposed into a list of blocks (also called tiles) as illustrated in
Fig. 1.5. The matrix is decomposed into nblocks × nblocks blocks, each of size nb × nb,

n

n

nb

nb

Figure 1.5: Matrix subdivided into blocks (or tiles).
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so that nblocks × nb = n. Factorizations can use this representation and be expressed
as block algorithms and especially the LU factorization can be formulated as a block
LU decomposition [71, 72]. At first, it seems n could be substituted with nblocks in the
original algorithm. However, replacing n by nblocks is not sufficient: the scalar and block

Algorithm 3: Block LU decomposition of a matrix A with nblocks×nblocks blocks.
Function BlockLuFactorization(A, nblocks)

1 for k = 1 to nblocks − 1 do
2 LuFactorization(Akk)
3 for i = k + 1 to nblocks do
4 SolveLowerTriangular(Akk, Aki)
5 SolveUpperTriangular(Akk, Aik)
6 for j = k + 1 to nblocks do
7 Aij ← Aij − AikAkj

operations are different. Akk will need to be factorized to proceed with the subsequent
solutions. Therefore, the slightly different algorithm of block LU factorization is detailed
in Algorithm 3, where SolveLowerTriangular and SolveUpperTriangular are methods
to solve triangular systems, about which more details can be found in § 1.2.1.2. One could
see the original algorithm (Algorithm 1) as a special case of the block algorithm, where
each block consists in one entry only, as the LU factorization of a one-entry matrix would
remain the same matrix. This block algorithm is the basis that will allow us to better
understand the modified algorithm H-LU presented in § 2.1.2.

1.2.1.2 Solution of Triangular Systems

Once the LU factorization is completed, we have two triangular systems to solve, L being
a lower triangular matrix and U an upper triangular matrix; the system LUx = b can be
decomposed into two equations:

Ly = b ; Ux = y.

The solution is found using the process of forward substitution (for the solution of the
first equation) and backward substitution (for the second equation) in O(n2). Indeed, for
a lower triangular matrix of this form:

`11 0 ... 0
`21 `22 ... 0
...

...
...

`n1 `n2 ... `nn

×

y1
y2
...
yn

 =


b1
b2
...
bn

 ,

we substitute the solution y1 of the first equation (y1 = b1
`11

) forward into the next equation
(`21y1 + `22y2 = b2) to find y2, and so on until we have found the solution of all yi
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for i = 1, ..., n. Therefore, the solution can be found via Algorithm 4, with a complexity
of O(n2).

Algorithm 4: In-place solution of a lower triangular system. b, of size n, is
overwritten by the solution.
Function SolveLowerTriangular(L, b, n)

1 for i = 1 to n do
2 for k = 1 to i− 1 do
3 bi ← bi − `ikbk
4 bi ← bi

`ii

For upper triangular systems, substitutions are performed in a similar fashion, but this
time they are done backwards, as the first equation solved is the last one (unnxn = yn),
giving us xn, and each solution is substituted into the previous equation. Finally, after
the forward and backward solves, the solution x is computed.

In Algorithm 3, SolveLowerTriangular(Akk, Aki) finds the solution of the lower
triangular system AkkX = Aki (only the lower triangular part of Akk is considered),
while SolveUpperTriangular(Akk, Aik) finds the solution of the upper triangular system
XAkk = Aik (only the upper triangular part of Akk is considered) using the method we
have just detailed. In both cases, X replaces the value of either Aik or Aki.

The arithmetic and memory complexities of the solution step are equal to O(n2),
regardless of the factorization technique. In fact the number of operations of the solution
step increases linearly with the number of entries in the factorized matrix and may, as
such, be deduced from Table 1.1.

1.2.2 Fast Multipole Method (FMM)

We have seen that direct methods and iterative methods may be used to solve dense
problems. While direct methods have an arithmetic complexity of O(n3) for a problem
with n unknowns, one might prefer to use iterative methods if the successful convergence
of the algorithm leads to a lower complexity. However, the complexity of each step
of the iterative method relies heavily on the matrix-vector operation. It is possible to
accelerate this operation by means of the FMM. With this method, the complexity of
each matrix-vector product can be reduced from O(n2) to O(n log(n)) operations for
problems arising from the BEM.

The FMM is a hierarchical method based on the approximation of distant interactions.
Introduced by Rokhlin and Greengard for n-body problems [109], it has later been
adapted for electromagnetism by Rokhlin [169] and Chew [181]. Details about a numerical
implementation of FMM for electromagnetic problems can be found in [64, 65, 66]. In the
first years of the 21st century, FMM has also been optimized and parallelized, allowing for
larger problems arising from BEM to be solved using this technique. An effective survey
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of its implementation and parallelization within the Airbus framework can be found in
[184].

A lot of similitudes can be found between the FMM technique and the H-Matrix
technique detailed in the following section. The main difference between both formats
is that H-Matrices rely on an algebraic construction while the FMM relies on analytic
arguments. This property allows a greater flexibility among the problems solvable using
this technique. This is interesting for our application due to the plurality of the problems
encountered in aeronautics.

1.2.3 Hierarchical Matrices for Dense Problems

Hierarchical matrices, most commonly referred to as H-Matrices, have been introduced
by Hackbusch in 1999 [112]. They were initially introduced in the context of integral
equations arising from elliptic PDEs [112, 195] and have since then been further developed
through many studies [34, 39, 40, 47, 48, 114], parallelized [137, 136] and can be used
either as direct solvers or as preconditioners [35, 107] for iterative methods. They have
later been extended to numerous formats such as H2 [43, 116], HSS [60, 87], HODLR
[135, 141]. While all these formats have the common property of being hierarchical, they
have very different structures that will be discussed in § 1.2.3.4. Later developments
include directional H2-Matrices [42], which try to solve the problem of the growth of the
ranks of submatrices for high-frequency problems using a decomposition based on plane
waves, and butterfly factorizations [148], which factorize a N ×N matrix into a product
of O(log(N)) sparse matrices, each with O(N) non-zeros. They have also been extended
to neural network structures for nonlinear problems [85] though this is out of the scope
of this thesis due to the linear characteristics of the problems we are interested in. In
the rest of this section, we mainly focus on the original format introduced by Hackbusch,
which is also the one implemented by Benoit Lizé for Airbus [155]. The present work is
based on this implementation, of which an open-source sequential version is available in
[3], and many elements of this section come from [155]. For other implementations, we
refer the reader to H-Libpro [4], AHMED [1], H2Lib [5].

In the scope of solving very large dense systems of equations, one can rely on High
Performance Computing (HPC) to speed-up calculations. However, the large number of
operations necessary for such computations (multiplying two dense matrices of order n
has a complexity of O(n3)) may be too large so that one has to consider H-Matrices to
speed up calculations. While an exact computation of a dense matrix-matrix product
cannot be linear in the general case, with the use of H-Matrices and its use of data
compression (that may be with accuracy loss but nevertheless acceptable), the complexity
can effectively be lowered to O(n log(n)) for those classes of matrices. This is not true
for all matrices but is valid for matrices arising from standard discretizations of elliptic
partial differential equations or related integral equations [114] such as the BEM. In fact,
H-Matrices provide several matrix operations with the same almost linear complexity:
matrix addition and multiplication, LU factorization, or even matrix inversion. To do so,
it must yield approximations through compression. Indeed, an H-Matrix is an algebraic

Bridging the gap between H-Matrices and sparse direct methods 21



1. General Introduction

hierarchical structure composed of submatrices (also called blocks) that can be stored in
a low-rank or full-rank format.

We detail here the basic concepts involved in the construction of such a structure.
They can be categorized in two main components:
• Low-rank matrices;
• Structured hierarchy.
Low-rank matrices imply the possibility of data compression. One of the main reasons

H-Matrices are so efficient is that some submatrices of an H-Matrix are stored in a
low-rank format. The second component, the structured hierarchy, is the skeleton over
which is built the H-Matrix. We will later see that this list can be extended in Chapter 2.

To better understand the construction of an H-Matrix, we first detail how a low-rank
matrix can be approximated in § 1.2.3.1. Then, the partition of the matrix through
a hierarchy is explained in § 1.2.3.2, starting with the cluster tree structure, detailed in
§ 1.2.3.2.1, using the domain division explained in § 1.2.3.2.2, followed by the admissibility
condition in § 1.2.3.2.3, which is used to decide whether a submatrix should be subdivided.
An admissible submatrix not based on leaves of the cluster tree is stored in a low-rank
format; the other leaves are stored in a dense format (see § 1.2.3.1.2). With the help of
this cluster tree, a block cluster tree (§ 1.2.3.2.4) can finally be constructed. From this
block cluster tree, the H-Matrix format finally emerges. Basic hierarchical operations are
also presented in § 1.2.3.3.

1.2.3.1 Low-Rank Matrices

Low-rank matrices are one of the major key ingredients of H-Matrices as they allow
information compression reducing the memory footprint and the number of computations
necessary to compute operations on this class of matrices. They will be represented here
with the Rank-k (Rk)-Matrix format, a format that will be available for the storage of
the submatrices of the global H-Matrix. In this work, we consider only two formats for
submatrices: the Rk -Matrix format and the usual dense entry-wise format, named here
Full-Matrix (short for Fully-Populated Matrix). We now detail what are the Rk -Matrices
in § 1.2.3.1.2, format used to represent low-rank matrices through the use of data
compression algorithms such as SVD (Singular Value Decomposition) [100] or Adaptive
Cross Approximation (ACA) [101], discussed in § 1.2.3.1.1.

1.2.3.1.1 Compression

As stated earlier, compression is essential to the almost linear complexity in time
and memory of H-Matrices. It is also the tool that controls the precision obtained after
the computation of a solution. We are interested here in the compression of a matrix
M ∈ Cm×n. Several methods [134] can be used to find the Rk -Matrix representation of a
matrix, with a suitable rank k satisfying the “error” specified by the user.

The best numerical approximation in 2-norm of a general matrix by a Rk -Matrix
is found using the Singular Values Decomposition (SVD) [79], which is the most
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reliable algorithm to find an approximation for a precision specified by the user. The
SVD is a factorization applicable to any matrix M ∈ Cm×n defined by:

Theorem 1.1. Singular Values Decomposition. Let M ∈ Cm×n, there exists a
factorization of M under the form

M = UΣV H

where U ∈ Cm×m is a unitary matrix, Σ ∈ Rm×n
+ is a matrix rectangular diagonal matrix

with non-negative real numbers on the diagonal, and V ∈ Cn×n is a unitary matrix.

The diagonal entries Σii are known as the singular values of the matrix M , which are
also the square roots of the eigenvalues of MHM . The corresponding columns of U and
V , respectively Ui and Vi, are called left-singular and right-singular vectors of M . When
Σ is ordered according to its singular values, arranged in decreasing order, it is possible
to approximate M by a new matrix called the truncated SVD, which corresponds to
the matrix M but without the smallest singular values and the associated left and right
singular vectors. Only the k largest singular values are kept:

Mk = ŨΣ̃ ˜V H =
k∑
i=1

UiΣiiV
H
i . (1.4)

The SVD necessitates however to factorize the whole matrix, in addition to its high
complexity (equal to O(mn2 +nm2)), enticing us to resort to heuristics. Whereas SVD is
deterministic, heuristics are however not always ensured to find a solution. An important
class of heuristic methods is known as the Adaptive Cross Approximation (ACA).
This class of method is based on the theory developed in [101], referred to as a
(pseudo-)skeleton approximation or decomposition [134]. An adaptive version of these
methods has later been included into the H-Matrix framework in [38] and further
developed in [37] under the name of ACA. Since then, variants and extensions of the
ACA methods, such as the total/full or partial pivoting variants or the ACA+ method,
have been studied [36, 103]. The common principle of these methods is to find three
matrices U , S and V so that

M̃ = USV T ,
∥∥∥M̃ −M∥∥∥

2
≤ ε, (1.5)

with a chosen threshold ε > 0 and U ∈ Cm×k, S ∈ Ck×k, V ∈ Cn×k, where k ≤ min (m,n).
The format is in practice reduced to

M̃ = BCT , (1.6)
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where B ∈ Cm×k, C ∈ Cn×k, such as given in the example of Algorithm 5.
Algorithm 5: Adaptive Cross Approximation (with total pivoting) of a matrix
M ∈ Cm×n.
Function ACA(M ∈ Cm×n)

1 k ← 1
2 while ¬ Criterion do
3 (ip, jp)← arg max

i,j
|Mij|

4 δ ←Mipjp

5 if δ = 0 then
6 B ←

[
b1 b2 ... bk−1

]
7 C ←

[
c1 c2 ... ck−1

]
8 return BCT . The rank if equal to k − 1

9 else
10 bk ←M∗jp
11 ck ←Mip∗/δ
12 M ←M − bkcTk
13 k ← k + 1

14 B ←
[
b1 b2 ... bk

]
15 C ←

[
c1 c2 ... ck

]
16 return BCT . The rank if equal to k

This algorithm details the total pivoting variant, which searches for pivot rows and
columns (line 3) and constructs the solution one pivot at a time. At each iteration, the
algorithm will take the row ip and column jp corresponding to the entry which has the
maximum absolute value in the matrix M and use this row and column as the pivot to
insert in the low-rank representation of the matrix BCT . The stopping Criterion may
be chosen either as:
• M̃ approximates M within the required threshold ε;
• a fixed rank k = kmax has been reached.

Assuming we focus on the second criterion, the arithmetic complexity of this algorithm is
then O(mn+ k2mn+ kmn). The partial pivoting method aims to reduce this complexity
to O(k2(m+n)). However this method is unstable and does not succeed for some specific
situations [155] so it has been adapted and transformed into another variant named ACA+
(with the same complexity) to overcome such difficulties. For more information about the
ACA techniques, we refer the reader to [36, 37, 38, 155].

Another method is used in the literature for finding such an approximation: the
Hybrid Cross Approximation (HCA), a non-heuristic method that has been proven
to converge [46]. However, this method necessitates to be able to evaluate the analytical
function involved in BEM (the kernel function), while the other methods introduced above
are fully algebraic and do not explicitly depend on the kernel. From the industrial use
meant for this application, some versatility is needed; the approach may indeed be used
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in an electromagnetic as well as an aeroacoustic context, thus modifying the physics and
the kernel properties. Due to these considerations, either the SVD or the ACA with Full
Pivoting will be used in this thesis.

1.2.3.1.2 Rk-Matrices

This format uses compression to reduce the memory cost of storage of a matrix,
as well as reducing the number of operations necessary to compute matrix operations
like addition, multiplication. However, any matrix may not necessarily be represented
by this format, which is one of the reasons it is used only on submatrices, as the
matrix approximated using this technique must match specific criteria. Therefore a good
admissibility condition is needed to determine if a submatrix matches those criteria and
such a function is defined in § 1.2.3.2.3.

Let us consider a mesh of points scattered in a three-dimensional space. The concept
of Rk -Matrices is based on the compression of the interactions between two clusters of
points. The interactions between two clusters of size m and n are represented by m × n
coefficients in the matrix arising from this problem, each coefficient (i, j) being a non-zero
if there is an existing interaction between i and j. To compress this information, it is
possible to reduce all the interactions of a cluster to a limited number of variables, and
propagate the gathered information through a transfer function in the same manner as
it is done in the case of FMM (§ 1.2.2). This is illustrated in Fig. 1.6, where all the
interactions information is gathered to one point only and transferred towards the other
cluster. In the formulation of the SVD in Eq. (1.4), we may identify Σ as the transfer

Figure 1.6: Compressed information between two clusters.

matrix as well as U and V as the gather and scatter matrices.
From the algebraic point of view, Rk -Matrices are a format using two matrix blocks

to represent the original matrix. This representation of a Rk -Matrix is illustrated in
Fig. 1.7.
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Figure 1.7: Low-rank format (Rk -Matrix). We approximate a dense matrix (red) of
dimension m × n by a multiplication of two smaller matrices (green) of size m × k and
k × n, where k is called the rank of the Rk -Matrix.

Letm,n ∈ N andM ∈ Cm×n be a matrix and let us suppose an admissibility condition
is well defined. M can then be approximated with a multiplication of B ∈ Cm×k and
BT ∈ Ck×n:

M → BCT .

This format is interesting only if k is small compared tom and n. k is referred to as the
rank of the Rk -Matrix. Therefore, if k is small, the Rk -Matrix is defined as a low-rank
matrix. The decomposition of M under a Rk -Matrix form BCT may be computed from
the SVD form in Eq. (1.4) with:

B = ŨΣ̃ , C = Ṽ ,

with Ṽ the conjugate of Ṽ , or, for numerical considerations [155, § 2.4.1] :

B = Ũ
√

Σ̃ , C =
√

Σ̃Ṽ ,

where
√

Σ̃ is the diagonal matrix of which the diagonal entries are the square roots of
each singular value of σ̃. Using the ACA procedure, we may use Eq. (1.6) directly, for
example through Algorithm 5.

1.2.3.1.3 Operations on Rk-Matrices

Let us make a quick note on the operations on such matrices. Indeed, operations on
Rk -Matrices cannot be computed through usual dense calculations. We will show a brief
example regarding the addition of two Rk -Matrices. For the other operations, we refer
the reader to [155]. The addition of two m× n Rk -Matrices R1 = B1C

T
1 and R2 = B2C

T
2

consist in concatenating B1 and B2 together and C1 and C2 together:

B3 = [B1B2] , C3 = [C1C2].

However, this might mean an increase in the rank ofRk -Matrices. A recompression suited
for low-rank matrices can then be computed. To this end, we use two QR decompositions
and a SVD [100, 155] to compute a recompression that can be decomposed into four steps.
For a Rk -Matrix R = BCT of rank k, B ∈ Cm×k,C ∈ Cn×k, we get the recompressed
Rk -Matrix R′ using Algorithm 6.
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Algorithm 6: Recompression of a Rk -Matrix R = BCT .
Function Recompression(R = BCT)

1 B → QBRB . Reduced QR decomposition (Definition 1.2) of B
2 C → QCRC . Reduced QR decomposition of C
3 X ← RBR

T
C

4 X → X̃ = ŨΣ̃Ṽ H . Truncated SVD of X (Eq. (1.4))

5 B′ ← QBŨ
√

Σ̃

6 C ′ ← QC Ṽ
H
√

Σ̃
7 return B′C ′T . Final recompressed Rk -Matrix R′ of rank k′

Definition 1.2. Reduced QR decomposition. A matrix M ∈ Cm×n, with m ≥ n, can be
decomposed as a product QR, with Q ∈ Cm×m a unitary matrix and R ∈ Cm×n upper
triangular, i.e., a QR decomposition. Moreover, Q and R can also be partitioned:

M = QR = Q

(
R1

0

)
=
(
Q1Q2

)( R1

0

)
= Q1R1,

where Q1 ∈ Cm×n has orthonormal columns and R1 ∈ Cn×n is upper triangular with
positive diagonal entries. The decomposition Q1R1 is unique and is called the reduced
QR decomposition or thin QR factorization [100, Theorem 5.2.3].

The final rank of R′ is equal to k′. The (re)compression is ensured by step 4 (truncated
SVD) and is done with respect to a chosen precision ε′ > 0 that can be different from the
ε chosen for the initial compression. In practice, we consider for this work ε = ε′. The
overall cost of this recompression algorithm is non-negligible : O((m + n)k2 + k3) but is
reasonable for our application due to the low value of k.

1.2.3.2 Hierarchical Matrix Partition

To create an H-Matrix, we need to partition a matrix into a list of blocks by following
a block cluster tree. The first step in the construction of a block cluster tree is to order
the unknowns of the problem, the initial index set. Each index (or variable or unknown)
is associated with a physical vertex (also called point) of the initial mesh associated with
the BEM. An example of a very simple mesh is shown in Fig. 1.8a. We consider here
the sets I, representing the row indices of the considered matrix, and J , representing the
column indices. The ordering may be organized in a tree called cluster tree. A cluster
tree T (I) provides blocks of vectors for RI , so that a block cluster tree T (I ×J) relies on
two cluster trees, a row cluster tree T (I) and a column cluster tree T (J) that order the
index sets I and J . The construction of a cluster tree is detailed in § 1.2.3.2.1. We then
introduce the concept of admissibility condition in § 1.2.3.2.3, necessary to finally obtain
a block cluster tree, discussed in § 1.2.3.2.4.
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I

(a) Whole mesh I.

I1
I2

(b) Subdivision of a mesh into two parts I1 and
I2 (the edge separator is indicated by dashed
edges).

Figure 1.8: Example of a two-dimensional mesh being subdivided using bisection.

1.2.3.2.1 Cluster Tree

For the construction of the cluster tree T (I), we restrict ourselves to the index set I.
We define a cluster tree as a (most often binary but not necessarily) tree whose nodes
are associated with a subset of I. The nodes of a cluster tree are often referred to as
“clusters”.

Each level of the cluster tree forms a partition of the index set I. For example, the
root cluster contains all the indices of the set: τ = I. Then, recursively, a bisection is
used to find a new partition of the index set. An example of one bisection of the mesh in
Fig. 1.8a is shown in Fig. 1.8b, leading to the division of the set I into I1 and I2. Each
new index subset arising from this partition is assigned to one child of the current cluster:
while there are more elements in the current set τ than a fixed threshold Nleaf , a domain
division method is performed to create a list of children, dividing τ into subsets (two in
the case of BEM).

Definition 1.3. Nleaf is the maximum number of elements in a leaf cluster.

As further discussed in § 1.2.3.2.2, the two main division techniques considered are
the median bisection, dividing a domain into two subdomains with the same cardinality,
and the geometric bisection, based on the geometry of the problem and dividing a domain
into two subdomains with the same physical size and shape. The first method therefore
preserves an algebraic balance between the clusters, i.e., the number of unknowns they
contain, whereas the second preserves a geometric balance between the size of the clusters.
The creation of a cluster tree is formally expressed in Algorithm 7, where the list of children
of τ , expressed as Children(τ), is recursively constructed. With this construction, each
leaf is ensured to contain no more than Nleaf elements. In the case of median bisection,
leaves have furthermore necessarily more than Nleaf

2
elements. Typically, Nleaf is generally

set to values between 20 and 100, which is empirically a fine range in our experiments.
However, the value of this variable may be discussed: for example, Nleaf is set to 32 in
[47, 106], while it is set to 20 in [138].
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Algorithm 7: Construction of a cluster tree.
Function CreateClusterTree(τ)

1 if |τ | ≤ Nleaf then
2 Children(τ)← ∅ . The cluster τ will be a leaf

3 else
4 (τ1, τ2)← Divide(τ) . One of the domain division method
5 CreateClusterTree(τ1)
6 CreateClusterTree(τ2)
7 Children(τ)← {τ1, τ2}

In practice, instead of copying the information about each index in every cluster it is
associated with, it is stored only once, as a list of all indices i ∈ I. This is due to the
fact that a parent cluster contains the union of all indices of its children. Consequently,
assuming a continuous ordering of the indices in the leaves, only two informations need to
be stored for each cluster: the offset of the first index of its corresponding index subset,
and the size of the subset.

The exact computation of geometry properties like the diameter of a cluster of point
diam(σ), or the distance between two clusters dist(σ, τ) would be rather costly so that one
may prefer to use an approximation of the cluster’s dimensions [114, § 5.2.1]. A cluster
of points is then approximated by its bounding box.

Bounding Box

A bounding box Qσ is defined as an axis-aligned bounding box that contains all the points
in the cluster σ. This box can be characterized using its two extrema points xmax and
xmin. As Qσ contains all points of the cluster σ, the diameter of the bounding box is
larger than the diameter of σ and the distance between two clusters is longer than the
distance between the two corresponding bounding boxes. These dimensions are indicated
in Fig. 1.14 for the bounding boxes of two clusters σ and τ . The diameter of Qσ is far
much simpler to compute than the diameter of a general polyhedron associated with the
points contained in the cluster σ. The dimensions can be computed in constant time [155,
3.1.4.2.3]. This is very useful for the calculations of the admissibility condition introduced
in § 1.2.3.2.3. The bounding box also changes the way domain division techniques are
computed, as they can consequently rely on the simplifications derived from the usage of
a bounding box. This will be further developed in the following section.

1.2.3.2.2 Domain Division

The procedure of domain division is also referred to as clustering. In the case of a
binary cluster tree, the axis along which is done the division is chosen as the longest
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dimension of the bounding box, that is, for x = (x1, x2, x3) ∈ R3, where xd is the
coordinate of x in the dimension d,

i∗ ← arg max
i=1,2,3

(ximax − ximin).

The unknowns are then ordered following this axis. This ensures an efficient separation
into smaller cuboids, closer to cubes.

There are usually two types of domain division used in H-Matrices: median bisection
and geometric bisection. The purpose of these methods is to split a set of points into
two subsets, based either on the number of points in each subset or on the geometry of
the problem. Each of these methods uses the same spatial axis defined above to split a
domain.

Median Bisection This method consists in dividing a set of points into two
partitions with an equal cardinality, i.e., an equal number of points, (with a difference
of at most one point) and is therefore also referred to as cardinality-based bisection. In
particular, this will lead to two clusters σ and τ such that −1 ≤ |σ| − |τ | ≤ 1. Following
the ordering along the axis i∗ previously chosen, a plane is chosen as the median of the
initial set so that the number of points on each side of the division are equal:

xi
∗

sep ← median
(
(xi
∗

i )i=1,...,|τ |
)
.

This method results in a balanced, uniform tree (Fig. 1.10). Particularly, the height of
the tree is bounded above by:

h(n) ≤ blog2(n)c+ 2, (1.7)

where n is the cardinality of I. As there are n operations at each level of recursion in the
tree to find the position of the division axis, the cost of its construction is O(n log2(n)).
Fig. 1.9 illustrates an example of median bisection, applied on a plane.

This partitioning method also ensures for each leaf of the cluster tree a maximum size
of Nleaf , and, in addition, a minimum size of Nleaf

2
elements (the latter is not guaranteed

by geometric bisection). However, a downside of this method is the possibility of leaves
having a very large diameter if they are sparsely populated compared to other denser
clusters.

Geometric Bisection This method consists in dividing a domain in two partitions
with the same diameter, the cut made along the direction i∗ (the same as for median
bisection), halving the bounding box in the direction of the longest dimension:

xi
∗

sep ←
1

2

(
max

j=1,...,|τ |
xi
∗

j − min
j=1,...,|τ |

xi
∗

j

)
,

This method results in an unbalanced, possible non uniform tree (Fig. 1.11). The
construction of a tree through this method can be compared to the construction of FMM,
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Figure 1.9: Median bisection applied on a plane mesh.
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Figure 1.10: Tree based on median
bisection.

Figure 1.11: Tree based on geometric
bisection.

as FMM geometrically divides a space using the middle of each dimension of a problem,
leading to a quadtree (each vertex has four children) in a two-dimensional space and
to an octree (each vertex has eight children) in a three-dimensional space, the general
structure of a FMM tree being 2d for d dimensions. A possible problem is the creation
of clusters containing only one point if there are only one point located in one half of
the physical domain (potentially located at the extreme border of the bounding box used
in the formula so that no optimization is possible) and all the other points are located
in the other half. The worst case scenario happens if each division leads to such two
disproportionate subdomains, one of which contains only one point, thus leading to an
extremely unbalanced tree. Then the height of the tree is n and the cost of its construction
cannot be bounded above by anything less than O(n2), with however an average case of
O(n log2(n)).

However, this method ensures for the clusters to have an equivalent volume, contrary
to median bisection. Fig. 1.12 illustrates an example of geometric bisection, applied on a
plane.

Other Domain Divisions Other algorithms can be used to partition the mesh.
An example could be a hybrid version, implemented in the Airbus framework, that uses
median bisection but switches to geometric bisection if the volume of one of the two
subsets is too large compared to the other one (Fig. 1.13). The recursion could divide
each set into more than two subsets, for instance leading to octrees as for the FMM.
Finally, one could use topological tools like SCOTCH [62] or METIS [132], which are
programs for partitioning graphs. These tools are mainly used on sparse graphs and we
will see how to use them in Chapter 2. An algebraic clustering method has also been
introduced in [107] for sparse matrices, based on a notion of algebraic distance relying on
the length of the shortest path between two nodes.

1.2.3.2.3 Admissibility Condition

The admissibility condition is defined as a binary function that decides the storage of
a submatrix block (σ, τ). Either we recurse on its children (Admissible(σ, τ) = False) or
we stop the recursion and assemble the block (Admissible(σ, τ) = True). If the block is
assembled, it will also determine the format chosen for a submatrix, i.e., Rk -Matrix or
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Figure 1.12: Geometric bisection applied on a plane mesh.
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Figure 1.13: Hybrid bisection applied on a plane mesh.
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Full-Matrix. The first proposed admissibility condition is based on the formulation of the
integral equations of BEM [38, 45, 113].

Figure 1.14: Dimensions used for the admissibility condition. If this condition is true, the
interactions between σ and τ will be compressed. We can see here the diameters of each
cluster and the distance between them.

Let σ and τ be two clusters and let us consider the submatrix M |σ×τ . Then the
admissibility condition of the submatrix M |σ×τ is defined by the function formulated in
(1.8).

Admissible(σ, τ) =

{
True if min(diam(σ), diam(τ)) ≤ η · dist(σ, τ),

False otherwise.
(1.8)

The parameter η is often set to 1 or 2 in the literature. In the rest of this document,
we do not investigate the impact of its value and set it to 2.

We have seen that the diameter of the bounding box (defined in § 1.2.3.2.1) is larger
than the true diameter of a cluster, whereas the distance between two bounding boxes
is shorter than the distance between their corresponding clusters. Therefore, if the
admissibility condition applied on the bounding boxes is true, then the admissibility
condition actually applied on the clusters is also true. We can thus benefit from a fast
approximation of the dimensions of a cluster and compute a valid admissibility condition.
Nonetheless, this also means that the condition applied on bounding boxes will ignore
some admissible submatrices. The criterion we have just detailed (defined by Eq. (1.8))
is called strong [114, § 9.3] admissibility in opposition to the simpler weak admissibility
defined by Eq. (1.9).

Admissible(σ, τ) =

{
True if σ ∩ τ = ∅,
False otherwise.

(1.9)
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This weak admissibility condition is the basis for the Hierarchical Off-Diagonal Low-Rank
(HODLR) format (discussed in § 1.2.3.4) and represents the fact that every off-diagonal
block is compressed.

It should be noted that other functions could be chosen as an admissibility condition
for specific problems and that this is still an on-going investigation [199, III.C].

1.2.3.2.4 Block Cluster Tree

From the previous components we can now deduce the block cluster tree structure.
The block cluster tree T (I×J) is computed from the cluster trees T (I) and T (J). In the
usual BEM and “level-conserving” [114] case, it may simply be expressed as the product,
level by level, of cluster trees T (I) and T (J), i.e.,

∀(σ × τ) ∈ T (I × J)⇒
σ ∈ T (I) ∧ τ ∈ T (J) ∧ Depth(σ × τ) = Depth(σ) = Depth(τ). (1.10)

The resulting tree is a 2 × 2 tree (a quadtree). Therefore, each vertex of the block
cluster tree represents a pair (σ, τ) of vertices of the original cluster trees and represents
a submatrix of the global matrix. For each block we have a set of rows and columns
respectively defined by σ and τ . For now, each leaf block of this structure is left empty. It
will be filled with an appropriate format like a Rk -Matrix or a Full-Matrix when creating
the final H-Matrix. Algorithm 8 describes the procedure to create a block cluster tree.

Algorithm 8: Construction of a block cluster tree.
Function CreateBlockClusterTree(σ × τ)

1 if IsLeaf(σ) ∨ IsLeaf(τ) ∨ Admissible(σ, τ) then
2 Children(σ × τ)← ∅ . is a leaf (σ × τ)

3 else
4 Children(σ × τ)← {(σ′, τ ′) | σ′ ∈ Children(σ), τ ′ ∈ Children(τ)} .

One of the domain division method
5 for (σ′, τ ′) ∈ Children(σ × τ) do
6 CreateBlockClusterTree(σ′, τ ′)

1.2.3.3 H-Matrix & Hierarchical Operations

Now that we have defined all the components of the hierarchical framework, we can
define an H-Matrix using the block cluster tree. This step is called assembly. It can be
considered as the first hierarchical operation and is presented in § 1.2.3.3.1. Usual dense
operations are not directly applicable to this framework. Operations like the addition,
multiplication or the LU factorization must be rewritten to follow the hierarchy of the
structure and are consequently recursive. The same and simple principle is used for
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each operation: the algorithms are recursive until we find a satisfying condition (such as
working on leaves), then, following the nature of the format used on the current block
(“H-Matrix” for non-leaves nodes, Rk -Matrix or Full-Matrix), operations of a lower level
are computed, such as the addition of two dense blocks or the addition of a compressed
block and a dense block.

The set of hierarchical operations constituting the H-Matrix arithmetic can be
compared to the set of operations defined by BLAS and LAPACK so that theH-arithmetic
may be referred to as H-BLAS or H-LAPACK. Numerous studies have been conducted
to optimize this arithmetic [104, 114, 155]. We therefore detail here only two routines of
both H-BLAS and H-LAPACK and refer an interested reader to these studies for more
information on the H-arithmetic.

1.2.3.3.1 Creation of an H-Matrix

We mentioned earlier that the creation of an H-Matrix could be considered as a
hierarchical operation. Indeed, this function is recursive like all the other hierarchical
operations, and applies a specific operation on the leaves of the block cluster tree. In the

Algorithm 9: Creation (or assembly) of an H-Matrix.
Function CreateHMatrix(σ × τ)

1 if IsLeaf(σ × τ) then
2 if Admissible(σ, τ) then
3 Compress(σ × τ) . Creation of a Rk -Matrix

4 else
5 CreateFullBlock(σ × τ) . Creation of a Full-Matrix

6 else
7 for (σ′, τ ′) ∈ Children(σ × τ) do
8 CreateHMatrix(σ′, τ ′)

case of assembly, the operation on each leaf is the assembly of this block, i.e., the creation
of either a Full-Matrix (the usual entrywise format for dense matrices) or a Rk -Matrix
(the compressed format of a low-rank matrix). Algorithm 9 shows the steps required
to create an H-Matrix. It should be noted that the decision of creating a Rk -Matrix
or a Full-Matrix depends on the admissibility condition. An example of an H-Matrix,
constructed using two cluster trees based on median bisection, is shown in Fig. 1.15.
Also, the H-Matrices resulting from Fig. 1.9, 1.12 and 1.13 are shown in Fig. 1.16.

With the H-Matrix defined, we focus now on the definition of hierarchical algorithms
used to compute some of the standard operations like the addition, multiplication or
factorization.
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Figure 1.15: An H-Matrix with the corresponding row and column cluster trees. On each
intersection of clusters we can decide if we want to (1) recurse on both the row cluster
tree and the column cluster tree, (2) compress (for example the clusters in blue rectangles
that intersect to form the compressed top right block), or (3) store the block as dense
if the row or column cluster tree is a leaf. Red blocks are Full-Matrices whereas green
blocks are Rk -Matrices, in which the number indicates the rank.

(a) Median bisection. (b) Geometric bisection. (c) Hybrid bisection.

Figure 1.16: Examples of symmetric H-Matrices resulting from median, geometric and
hybrid clusterings.
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1.2.3.3.2 Hierarchical Addition

The addition of two matrices is usually done by the routine called AXPY from BLAS.
Therefore, the addition of two H-Matrices are computed through a H-AXPY routine,
defined in Algorithm 10. This routine computes the operation H1 ← αH2 +H1, where H1

Algorithm 10: Addition of two H-Matrices.
Function H-AXPY(H1, H2, α, σ × τ)

1 if IsLeaf(σ × τ) then
2 if IsCompressed(σ × τ) then
3 Rk -AXPY(H1, H2, α, σ × τ)
4 else
5 AXPY(H1, H2, α, σ × τ)

6 else
7 for (σ′, τ ′) ∈ Children(σ × τ) do
8 H-AXPY(H1, H2, α, σ

′, τ ′)

and H2 must be based on compatible cluster trees both on rows and columns. Note that
the algorithm induces that H1 and H2 have the same format at each step of the recursion.
This is due to the fact that they share the same partition and represent the same subsystem
of the overall matrix. This simplifies the algorithm to three main operations: either (1)
recurse on children, (2) add two Rk -Matrices (§ 1.2.3.1.3), or (3) add two dense matrices,
in which case the AXPY routine from regular dense BLAS is used.

1.2.3.3.3 Hierarchical Multiplication

The goal of the GEMM routine is to perform the multiplication of two matrices A
and B and store the result into a third matrix C. This operation is more complex
to handle due to the large number of cases arising from the different formats of each
involved matrix (low-rank format, dense format, hierarchical format). Considering only
three formats, the number of different cases to implement is already equal to 33 = 27
[155]. Algorithm 11 illustrates the recursion of the operation. T I represents the row
cluster tree shared by A and C, T J the column cluster tree shared by B and C and T K
the common-dimension cluster tree between A and B. σ is the current node of recursion
in the cluster tree T I , τ the current node of recursion in the cluster tree T J and ρ the
current node of recursion in the cluster tree T K . All other 26 cases must be handled
in Leaf-GEMM(C, α,A,B, β, σ′, τ ′, ρ′), including multiplication of low-rank matrices with
dense matrices, hierarchical matrices with non-hierarchical matrices for example. This
operation may need to be adapted to different techniques, such as discussed in [114,
§7.8.3] in the case of “non-conserving level” block cluster trees. Other details will be
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Algorithm 11: Multiplication of two H-Matrices A and B into C.
Function H-GEMM(C, α,A,B, β, σ ∈ T I , τ ∈ T J , ρ ∈ T K)

1 if IsRoot(C) then
2 C ← βC

3 if ¬IsLeaf(σ × τ) ∧ ¬IsLeaf(σ × ρ) ∧ ¬IsLeaf(ρ× τ) then
4 for σ′ ∈ Children(σ) do
5 for τ ′ ∈ Children(τ) do
6 for ρ′ ∈ Children(ρ) do
7 H-GEMM(C, α,A,B, 1, σ′, τ ′, ρ′)

8 else
9 Leaf-GEMM(C, α,A,B, β, σ, τ, ρ)

provided in § 2.4.3.4 in the case of hierarchical constructions that do not exclusively rely
on cluster trees.

1.2.3.3.4 Hierarchical LU Factorization (H-LU)

As for usual matrices, the solution of Ax = b, with A being an H-Matrix, is not
usually computed through the inversion of the matrix A. The LU factorization may be
used (introduced in § 1.2.1.1) to express A under the form of a product of matrices
(here LU), leading to the solution of triangular systems (§ 1.2.1.2). It is computed
hierarchically for the specific case of H-Matrices. The modified algorithm is detailed
in Algorithm 12 for dense problems (with the specificity of being a quadtree). The other

Algorithm 12: In-place H-LU factorization or H-GETRF (A is overwitten by
L and U).
Function H-LU(A)

1 if IsLeaf (A) then
2 LuFactorization(A)

3 else

4 A =

(
A11 A12

A21 A22

)
5 H-LU(A11)
6 H-SolveLowerTriangular(A11,A12)
7 H-SolveUpperTriangular(A11,A21)
8 A22 ← A22 − A21A12 . Schur complement (H-GEMM)
9 H-LU(A22)

Bridging the gap between H-Matrices and sparse direct methods 40



1. General Introduction

hierarchical operations involved in this algorithm (H-GEMM, H-SolveLowerTriangular)
are not detailed here as they are based on the same principles. We refer the reader
to [112, 114, 155] for more information on these operations, and to [137, 155] for the
parallelization of these algorithms. The H-GEMM operation corresponds to the hierarchical
multiplication of two H-Matrices. H-SolveLowerTriangular solves the lower triangular
system A11X = A12, where only the lower part of A11 is considered and A12 is replaced
by the new value X. This also applies to H-SolveUpperTriangular which solves the
upper triangular system XA11 = A21 (only the upper part of A11 is considered) and A21

is replaced by the new value X. We will see a generalization of the H-LU algorithm to
any number of children in Chapter 2.

1.2.3.4 Other Formats related to the H-Matrices

A lot of derived types of H-Matrices have appeared since the first introduction of
H-Matrices in 1999. They are often categorized by their construction [14], which may
use nested basis or not, a weak or a strong admissibility (leading to strong and weak
hierarchies, respectively).

One of the first format to have emerged from H-Matrices is H2-Matrices introduced
in [117] and later extended in [43, 116]. H2-Matrices can also be related to the FMM as
H2-Matrices can be seen as an algebraic version of the matrices encountered in the FMM
[16]. The difference between H2-Matrices and H-Matrices is their use of nested bases.
The principle of nested bases methods is to add a hierarchy constraint over the computed
Rk -Matrices. A matrix block is then approximated under the following form:

Mσ×τ ≈ VσSσ×τV
H
τ ,

where Sσ×τ is called a coupling matrix, Vσ only depends upon σ and Vτ only upon τ .
Vσ and Vτ matrices are called cluster bases of σ and τ , respectively. Let σ′ and σ′′ be
the children of σ. Then, Vσ can be described by the basis vector of Vσ′ and Vσ′′ and the
corresponding transfer matrices Tσ′σ and Tσ′′σ:

Vσ =

[
Vσ′Tσ′σ
Vσ′′Tσ′′σ

]
= Vσ′Tσ′σ + Vσ′′Tσ′′σ.

This can be extended for more than two children. Therefore we can store cluster bases
matrices V on the leaf clusters only and the transfer matrices T for all upper clusters,
thus reducing even more the memory consumption of the algorithm. The double hierarchy
of this format (hierarchical partition and hierarchical bases) gives the exponent 2 to the
name H2-Matrices.

Both H and H2 matrices use the strong admissibility defined in § 1.2.3.2.3. Other
formats use what is called the weak admissibility, which, paradoxically, leads to what
is called a strong hierarchy or a strong low-rank structure. Among those formats the
Hierarchically Semi-Separable (HSS) matrices [60, 87] are the equivalent of H2-Matrices:
they have the same properties, except HSS-Matrices are constructed using a weak
admissibility whereas H2-Matrices use the strong admissibility condition. This also
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applies to Hierarchically Off-Diagonal Low-Rank (HODLR) matrices [10, 25, 135, 141],
which are the equivalent of H-Matrices with a weak admissibility. In those cases, further
optimizations can be performed, but this is orthogonal to this thesis and we refer the
reader to [15, 192] for further details.

Finally, a non-hierarchical (or single-level) format has also been introduced, namely
the Block Low Rank (BLR) format [17, 18, 27, 179]. This format is based on the same
principle of compression as H-Matrices. However, the partition of the matrix is not
hierarchical. This leads to simpler implementation and operations, traded for a loss in
terms of complexity. When using this technique, a matrix is divided into smaller blocks of
the same size, some of which are chosen as acceptable for being low-rank. [18, 157] show a
comparison between complexities for a BLR approach and for hierarchical techniques, in
which it appears the lower complexity ofH-Matrices may not be so significant. Especially,
[188, 2.3.1] shows a lower storage and a lower number of operations for BLR compared toH
and HSS in the case of two dense matrices arising from Poisson and Helmholtz equations.
This format has also been extended in [19] to a multilevel format in an attempt to bridge
the gap between the flat (BLR) and hierarchical (H) formats. However, it should be noted
that BLR has been introduced in the context of sparse matrices. Though it could be used
on dense matrices, it remains essentially used to compress dense submatrices during the
factorization of large sparse matrices.

Table 1.2, inspired from [14, 16, 25], lists the formats discussed above according to
their characteristics. While some of these formats are simpler in terms of implementation

BLR FMM H H2 HODLR HSS
Hierarchical X X X X X
Algebraic X X X X X

Nested Basis X X X
Weak Admissibility X X

Table 1.2: Comparison of the characteristics of formats related to theH-Matrix taxonomy.

and development than the originalH-Matrix, this latter format is still very much used due
to its genericity and reliability, and is the format considered in the rest of this document.

1.3 Sparse Linear Systems
This section presents classic methods for the solution of sparse linear systems. It is
motivated by the fact that the linear system that arises from the FEM on the jet illustrated
in Fig. 1.1b, 1.3 and 1.4b is sparse. However, we must emphasize that this presentation
is generic and not specific to this particular context.

Let us remind the reader that the underlying mesh is three-dimensional and each
element interacts with its neighbors. Two remote unknowns are therefore usually not
interacting with each other and thus the coefficient of the matrix representing this
interaction is equal to zero. For this section, we take the example of a cube (Fig. 1.17)
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Figure 1.17: Cubic mesh over which is applied Laplace’s equation with a 7-point stencil
of 8000 unknowns.

with a 7-point stencil for a 3D Laplace’s equation. Each unknown only interacts with its
six direct neighbors. All other interactions are null.

The matrix block Avv from the global system of Eq. (1.2) has already been defined
as the interaction of the volume unknowns from the FEM discretization with each other.
In this section, we abstract the original system of equations to a simpler form and give
ourselves a new goal, which is to solve a sparse system formulated as

Ax = b,

where, consequently, A ∈ Cn×n is sparse and b is a right-hand side. This matrix can thus
be characterized by the number of non-zero entries it contains, denoted nnz, and x and
b are both complex vectors of size n: x, b ∈ Cn.

Because of the sparsity of such problems, they are not usually solved using the same
techniques previously introduced in § 1.2. This section is dedicated to the presentation of
sparse methods optimized to efficiently process sparse problems. For our problem Ax = b,
we consider the number of non-zeros nnz to be sufficiently low (nnz � n2) to seek an
efficient storage in O(nnz) (rather than O(n2)). Primarily, sparse methods aim to avoid
any unnecessary storage of zeros. Just as for dense problems, there are two main classes
of methods to solve sparse problems: direct methods based on the factorization of A into
a product of matrices; and iterative methods that resort to matrix-vector products to
iterate over a sequence of approximation converging to the solution. We first present the
sparse direct methods and techniques in § 1.3.1 and then clarify the iterative methods for
the solution of sparse systems in § 1.3.2.

1.3.1 Sparse Direct Methods

We have discussed direct solvers in § 1.1.3.1 and how they are to be used for dense
problems in § 1.2.1. However, to take the sparsity of the problem into consideration, we
must rely on somewhat different algorithms. We give here an overview of techniques used
to optimize computations for direct methods applied on sparse linear systems, based on
[68, 69, 75, 76, 140]. For sparse systems, direct methods usually follow the four following
steps:
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1. Reordering the unknowns to reduce the phenomenon called fill-in that occurs during
a factorization;

2. Computing a symbolic factorization that analyzes the structure of the matrix and
predicts the number and the location of non-zeros in the factors;

3. Computing the numerical factorization that effectively calculates the values of the
factors (LU, Cholesky, ...);

4. Computing forward/backward substitutions to finally find the solution of the initial
system.

The first two steps are specific to sparse methods whereas the two others are also involved
in dense methods. We consider a symmetric matrix A and therefore only the lower factor
L is computed during its factorization. Nonetheless, if we want to apply a similar process
for unsymmetric matrices, as, in our case, the values of L and U may be different, we may
use a symmetric pattern for unsymmetric matrices. The matrix is symmetrized using
the structure of A + AT , i.e., zeros in A that correspond to non-zeros in A + AT are
replaced by numerical zeros [23, 68]. For example, this approach is used in [23, 146].
This is the approach followed in this thesis. The reader interested in unsymmetric
elimination structures can consult [81] and [97] and the references therein. All the
following paragraphs may be applicable to all factorization procedures (§ 1.2.1.1) such
as the Cholesky factorization, the LDLT or the LU factorization, though the problem is
considered symmetric and thus more adapted to the Cholesky or LDLT factorizations.

We first cover the notion of fill-in and reorderings in § 1.3.1.1, followed by a brief
introduction to symbolic factorizations in § 1.3.1.2. Finally, we present two classes of
methods for the factorization of a sparse matrix, i.e., supernodal and multifrontal methods
in § 1.3.1.3.1 and § 1.3.1.3.2, respectively.

1.3.1.1 Fill-in & Orderings

When computing the factorization of a sparse matrix, a phenomenon called fill-in occurs
[91]. Fill-in is directly due to the computations involved in a factorization: in Algorithm 2,
aik is divided by akk. This is the step of elimination of unknown k, related to the process
of Gaussian elimination. The rest of the matrix then needs to be updated accordingly.
This is done through the following operation:

aij ← aij − aikakj, (1.11)

If aij is zero before this operation, and if entries aik and akj are not zero, k being ordered
before i and j, aij will be transformed into a non-zero in the factorized matrix, i.e.,
filled-in. This update is often referred to as a contribution. Fill-in can be calculated for
a specific entry via a simple function that provides a boolean decision, derived from the
update of Eq. (1.11):

Fill(aij) = (aij 6= 0 ∨ (∃ k < min(i, j) , (Fill(aik) ∧ Fill(akj))). (1.12)

If the value of Eq. (1.12) is true, the entry aij receives contributions from the other entries
aik and akj. Therefore, if this entry was a zero and is transformed by the contribution
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into a non-zero, it is filled-in. Besides, if aik or akj were zero at the beginning of the
factorization and were filled-in at an earlier stage of the factorization, they are therefore
not zero anymore at the time of the update of aij. If such is the case, the fill-in of aik or
akj is propagated to aij. And so forth, this fill-in can induce other fill-in for larger indices.
If Fill(aij) computes the fill-in for a scalar entry, it can also be generalized as Fill(Aij)
for block matrices, as well as for other scalar concepts developed here.

§ 1.3.1.1.1 details graph structures related to the process of elimination such as the
elimination tree. In order to minimize this fill-in, we also introduce reordering techniques
in § 1.3.1.1.2.

1.3.1.1.1 Elimination structures

To better apprehend the notion of fill-in and elimination, one may relate the matrix
to its corresponding adjacency graph or linear graph G [161].

Theorem 1.2. A matrix A ∈ Cn×n with symmetric pattern can be associated with a graph
G = (V,E) with V a set of n vertices connected through edges in the set E representing
the non-zero entries of matrix A. Each vertex i corresponds to an index, row or column,
i of the matrix. There is an edge between i and j, noted (i, j) if, and only if, aij is not
zero.

For unsymmetric matrices, edges may be oriented and noted i→ j. Fig. 1.18 illustrates
an example of an adjacency graph (Fig. 1.18a) and the corresponding matrix (Fig. 1.18b).
Furthermore, we rely on the following definition of AdjG(i) to describe the list of nodes
connected to vertex i ∈ V of a graph G = (V,E).

AdjG(i) = {j | ∃ (i, j) ∈ E}. (1.13)

It should be noted that the structure of the graph G is closely related to the underlying
PDE initial mesh; for instance mesh and graph connectivity are identical for the particular
case of linear finite element discretizations we are interested in (see Fig. 1.19 and 1.20).

When we eliminate an unknown from the graph (at each step of the recursion in the
LU factorization), its neighbor unknowns are connected together by a new edge. This is
due to the update operation from Eq. (1.11). In terms of graph, the update translates as
such: when we eliminate a vertex k, we check all its neighbors i and we must update or
create the edge (i, j) if there is also an edge (k, j) in the graph, where k is ordered before i
and j. This is illustrated by Fig. 1.21, where the new edges at each elimination represent
fill-in. Here, Gi corresponds to the graph where the unknown i has been eliminated (G0

being the original state of the graph).
The graph associated with the factorized matrix LU is called the elimination graph

[161] and noted G∗. The graph G∗ has the same edges as G, with extra edges representing
the fill-in. It is equivalent to the union of all graphs Gi, for 1 ≤ i ≤ n. Therefore, the
graph G∗ = (V,E∗) is associated with the factor L using Eq. (1.14).

∀i, j ∈ V, (i, j) ∈ E∗ ⇔ `ij 6= 0. (1.14)
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(b) Matrix (A).

Figure 1.18: Lexical ordering of the adjacency graph (a) and the corresponding matrix
pattern (b).

(a) Mesh. (b) Graph.

Figure 1.19: Example of a graph with the same structure as the mesh (e.g., P1 element
in 2D).

Very simple examples of such graphs and their corresponding matrices are shown in
Fig. 1.22 before and after factorization. The worst and best case scenarios illustrate
how the ordering of the unknowns can impact the extent of fill-in. The factorization of
the matrix and graph example in Fig. 1.18 results in the fill-in depicted in Fig. 1.23. We
can see new (brown) edges in the graph (Fig. 1.23a) corresponding to the new (also brown)
entries in the matrix (Fig. 1.23b). A larger case scenario, arising from the discretization
of the cube example (Fig. 1.17), is illustrated in Fig. 1.24. On the left is shown the initial
sparse matrix data. This is a blocked matrix. Each red block is therefore a matrix block,
of which the shade is related to the percentage of non-zeros it contains (darker means
more non-zeros). On the right can be noticed the fill-in that occurred in the matrix after

Bridging the gap between H-Matrices and sparse direct methods 46



1. General Introduction

(a) Mesh. (b) Graph.

Figure 1.20: Example of a graph with a different structure than the mesh (e.g., P2 element
in 2D).
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Figure 1.21: Example of eliminations of nodes of a graph and the corresponding fill-in
induced, represented by the edges newly formed at each step. For example the elimination
of 1 induces the fill-in between 2 and 3, 3 and 4, 4 and 5, 5 and 2, as well as 3 and 5, and
2 and 4.

factorization, which is illustrated by new red blocks or by the darker tone of existing
blocks (meaning there are more non-zero entries in the block than initially).

From the elimination graph can be deduced the notion of elimination tree, detailed in
[152, 177], by replacing the undirected edges (i,j) of the graph by directing edges i → j
following the order of the elimination of each unknown and by omitting redundant edges
(transitive reduction). For example, if an edge 1 → 4 and an edge 4 → 5 exist, the
edge 1 → 5 is omitted. This tree can be represented by the structure [152] defined in
Eq. (1.15). This structure essentially determines the parent of each node j of the original
graph G in the elimination tree. It is noted here EParent(j) (“Elimination Parent”) to
differentiate it from the notion of parent used in the context of H-Matrices.

EParent(j) = min{i | i > j ∧ `ij 6= 0}. (1.15)

From the formulation of Eq. (1.15), we can directly deduce that this elimination tree
describes the dependencies in the matrix computations. For example, if k is the parent
of i and j in the elimination tree, then columns i and j must be computed before column
k (due to i → k and j → k edges and the presence of k in both columns i and j) while
columns i and j can be computed independently from each other (they belong to different
subtrees).
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(a) Worst case scenario: the first column,
the first row and the diagonal are non-zeros
(red blocks). The matrix is entirely filled-in
(brown blocks in LU associated with the
brown edges of G∗).
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(b) Best case scenario: this ordering induces
no fill-in at all.

Figure 1.22: Small example of ordering impact on fill-in. The initial matrix A is factorized
into LU . G is the (adjacency) graph associated with A and G∗ the (elimination) graph
associated with LU .

The elimination trees corresponding to Fig. 1.22a and Fig. 1.22b are depicted in
Fig. 1.25a and Fig. 1.25b, respectively. There is a relation between the height/broadness
of a tree and the parallelization of the computations. The first elimination tree is the
highest, each node depending on the preceding one. No parallelism is therefore possible.
The other elimination tree is quite short and broad. Parallelism is exhibited for nodes 1
to 4.

1.3.1.1.2 Ordering

The ordering of the unknowns is crucial both in terms of fill-in and parallelism
(indicated by a short and broad elimination tree as stated earlier). We have seen that a
specific ordering of the unknowns can change a system from the worst case scenario to
Fig. 1.22a, in which the fill-in is maximized, to the best case scenario to Fig. 1.22b, where
no fill-in occurs at all. The objective of reordering algorithms is to find an optimal ordering
for any input matrix A that minimizes fill-in in its factorized form. This problem can be
formulated as finding a permutation matrix P that induces less fill-in in the factorization
of the system PAP T than the factorization of the original input matrix A. For a matrix
A, we may denote by GA = (V A, EA) the ordered graph following the ordering of the
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(b) Factorized matrix (LU).

Figure 1.23: Fill-in generated by the factorization of the initial example displayed in
Fig. 1.18.

(a) Sparse matrix before factorization. (b) Matrix after factorization.

Figure 1.24: Block LU decomposition on a cube test case (Fig. 1.17) that results in
fill-in: zeros were turned into non-zeros after factorization. The shade of red of a block
indicates the percentage of non-zeros it contains. The darker blocks are the most filled
with non-zero entries.

unknowns of the matrix A [93]. For simplification, we will simply refer to the reordered
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(a) Elimination tree of Fig. 1.22a.
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4 3 2 1

(b) Elimination tree of Fig. 1.22b.

Figure 1.25: Example of elimination trees corresponding to the matrix examples of
Fig. 1.22.

graph as G = (V,E). In the general case, minimizing fill-in is NP-complete [194], so
heuristics are employed in practice. We introduce the two most broadly used classes of
heuristics: local heuristics and global recursive approaches.

The general principle of local heuristics consist in selecting a vertex to be eliminated
first and iterate on the resulting graph. The minimum degree algorithm is based on
the choice of elimination of the unknown with the smallest degree (number of neighbors
in the current adjacency graph at each step of the symbolic factorization) first. The
minimum degree ordering algorithm has since then evolved [92] into computationally
efficient variants, as the Approximate Minimum Degree (AMD) [20] or the Multiple
Minimum Degree (MMD) [151]. The Minimum Fill algorithm [111, 159, 171] is another
local approach based on the elimination first of the unknown leading to the smallest fill-in.

For large matrices, other orderings are usually preferred. Notably, nested dissections
[90] usually provide better reorderings because they have a more global view of the graph.
Nested dissection is a divide-and-conquer heuristic algorithm introduced by Alan George
in 1973 in [90] based on recursive bipartitioning. We consider here the nested dissection
method based on separators theorems [61, 98], of which we recall the fundamental
definitions.

Definition 1.4. The class S of graphs satisfies the nσ-separator theorem for constants
α < 1 and β > 0 if every n-vertex graph in S has a vertex partition A∪B ∪S such that:
• no edge has one endpoint in A and the other in B,
• |A| 5 αn, |B| 5 αn,
• |S| 5 βnσ.

The set S is called a separator and eliminated last.

Definition 1.5. Let G = (V,E) be a graph in S . G is said to admit a partition P of
V in a separator tree A if the following property are satisfied: if G is partitioned into
A ∪B ∪ S,
• S is the root of A ,
• the two subtrees of A under S are separator trees corresponding to the partitions

of the sets of vertices of the subgraphs A and B.
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Definition 1.6. Let G be a graph in S partitioned into A ∪ B ∪ S and A a separator
tree of which the separator S is the root. An ordering following the nested dissection
method based on the separator theorem must assign the larger indices to the vertices of
S and the ordering of each subtrees of A must recursively follow the same principle.

The separators resulting from nested dissection (example in Fig. 1.26a) can be arranged
into a separator tree A following the recursion of the algorithm, as defined by Fig. 1.26b.
Fig. 1.26c shows the corresponding elimination graph and Fig. 1.26d the corresponding
factorized matrix. The algorithm computes a vertex set S that separates the graph into
two disconnected subsets (or subdomains) A and B, and S is ordered after A and B.
Then the algorithm recursively proceeds in the same manner on both subdomains A and
B until their sizes have reached a size smaller than a threshold value nleaf . As the two
subsets are ordered before the separator (see Definition 1.6) and are independent from
each other, they are eliminated during the factorization independently from each other
and the only contributions arising from their elimination are located on the separator.
Therefore, an important property of nested dissection is the absence of fill-in between A
and B. It should be noted that separators are preferred to be smaller in order for the
size of A to be relatively close to that of B. This leads to a more balanced, broader and
shorter elimination tree. The size of each leaf is smaller than nleaf .

On the cube example of Fig. 1.17, the reordering computed through nested dissection,
displayed in Fig. 1.27, leads to less fill-in than the lexical ordering in Fig. 1.24. One can
readily see the much more located and reduced fill-in induced by the factorization in a
LU form (Fig. 1.27b) of the reordered matrix of Fig. 1.27a, whereas the fill-in was much
more significant in the factorized form in Fig. 1.24b of the initial matrix of Fig. 1.24a.
Fig. 1.28 also shows the link between the separators found with nested dissection in the
graph and the matrix. On the left, the computed separator at each step of the recursion
of the algorithm is highlighted in the mesh using a new color that matches the color of
the corresponding rows and columns in the matrix on the right. Only the first three
levels of separators are shown. The first separator in Fig. 1.28a is colored in red and the
corresponding rows and columns (Fig. 1.28b) are thus highlighted in red. The second
level separators are colored in green (Fig. 1.28c) and the third level separators are shown
in blue (Fig. 1.28e). The separators are on this example computed based on geometric
considerations, and therefore the separators are optimal.

Finally, global orderings are often combined with local orderings [163], the coupling
benefiting from the advantages of both techniques: a broader and shorter elimination
tree computed with a nested dissection and a fast computation of local reordering using
a minimum degree (or minimum fill) algorithm. A coupling of nested dissection and
minimum fill is used for example in [119].

Applications do not necessarily have access to information on the geometric structure
of the problem. Therefore, many topological tools have been developed to support these
applications. SCOTCH [62] or METIS [132] are examples of such topological graph
partitioning tools.
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(c) Elimination graph (G∗).
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(d) Factorized matrix (LU).

Figure 1.26: Nested dissection applied on the (2D) adjacency graph example from
Fig. 1.18a.
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(a) Sparse matrix before factorization, with
nested dissection reordering.

(b) Sparse matrix after factorization, with
nested dissection reordering.

Figure 1.27: Using nested dissection, fill-in induced by a LU factorization is reduced and
located exclusively in the separators (either the rows or the columns must be indices inside
a separator). This is to be compared to Fig. 1.24.

1.3.1.1.3 Supernodal Structures

For symmetric matrices, a supernode is usually defined as a range of columns of A
with the same non-zeros structure [70] below the diagonal. All nodes from a supernode
are eliminated together and therefore lead to a clique in the graph associated with the
factors (they are all connected together). We may thus use dense submatrices to store
the interactions of these supernodes. For example, if we focus on Fig. 1.23b, we can
observe that columns 4 and 5 have the same pattern of non-zeros below the diagonal, as
do columns 9 and 10, or columns 14 and 15, as well as columns 19 and 20. Each of these
supernodes consist of two nodes. The other supernodes consist of only one node.

In the context of a reference sparse solver, SparseLU [70], supernodes are defined for
unsymmetric matrices. We will use these unsymmetric supernodes to define symmetric
supernodes. [70] introduces five types of supernodes.
• T1: Same row structure in U and same column structure in L;
• T2: Same column structure in L and full triangular diagonal block;
• T3: Same column structure in L and full diagonal block;
• T4: Same column structure in L and U ;
• T5: Supernodes of ATA.

T5 supernodes are sparse in the unsymmetric case. They are therefore not considered in
[70]. Fig. 1.29 is an illustration of unsymmetric T1 to T4 supernodes. As we consider
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(a) Mesh. (b) Matrix.

(c) Mesh. (d) Matrix.

(e) Mesh. (f) Matrix.

Figure 1.28: 3D Laplacian equation (cube) example case showing the first three levels of
separators of a geometric nested dissection algorithm.
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(a) T1.
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(d) T4.

Figure 1.29: Possible types of unsymmetric supernodes.

matrices with a symmetric pattern, we may retain T2 and T4 supernodes, which are then
re-defined as the following on the factor L:
• T2: Same column structure and full triangular diagonal block;
• T4: Same column and row structure and full triangular diagonal block.

One may indeed observe that T1 and T3 supernodes have the same structure as T2
supernodes in a symmetric paradigm. Following [70], we do not consider T5 supernodes
either. The column structure in U for T4 supernodes corresponds to the row structure
in L for a symmetric matrix and therefore T4 supernodes are redefined using the row
structure in L. Fig. 1.30b provides a visual representation of such symmetric supernodes.
In this thesis, we will primarily rely on T2 supernodes. We will consider T4 supernodes for
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(b) T4.

Figure 1.30: Possible types of symmetric supernodes.

the concept they represent, i.e., rows with a similar pattern, as we will more extensively
discuss in § 2.4.3.

Once these supernodes are defined, the matrix is partitioned in columns following the
list of supernodes, noted P . Therefore, if we have N supernodes, the matrix has N block
columns. The partition of the rows may be different according to the method involved.
This is discussed in § 1.3.1.2 and in § 2.4.3.

The transformation of nodes into supernodes is however open to discussion. Other
types of supernodes are listed in [70]. As the average size of supernodes such as defined
previously is only two to three columns [70], we may compute larger artificial supernodes,
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or relaxed supernodes [29, 70], to benefit from larger and more efficient matrix-matrix
operations. However, this relaxation leads to extra memory usage, as zeros are thus
introduced into the structure of each column block, and less parallelism. Examples of
(relaxed) supernodes based on a nested dissection are shown in the adjacency graph in
Fig. 1.26a and the corresponding matrix (partitioned in block columns) in Fig. 1.31c. The
first separator is highlighted in red while the second levels separators are shown in green.
Non-subdivided subdomains are colored blue.

The associated graph corresponding to the interactions between supernodes is called
quotient graph [61], and noted G/P (notation used in this thesis) or, sometimes, Q(G,P ).
It is computed through the partition of supernodes P of the initial adjacency graph G. In
other words, it is an adjacency graph applied on supernodes. Therefore, each supernode
K is connected to other supernodes and its adjacency is defined as AdjG/P(K), using the
quotient graph G/P = (P,E/P ).

AdjG/P(K) = {J | ∃ (K, J) ∈ E/P}. (1.16)

The quotient elimination graph (G∗/P ) can be distinguished from the elimination
quotient graph (G/P )∗. In the first case, we first compute the elimination of the unknowns,
i.e., the operation ∗, and then compute the quotient graph, i.e., the operation /P . In the
second case, we first compute the quotient graph using the list of supernodes, i.e., the
operation /P , and then the elimination of the unknowns, i.e., the operation ∗. For a
general matrix (and the associated graph G) and the set P of supernodes, there is no
guarantee that these two processes (G∗/P ) and (G/P )∗ lead to the same quotient graph.
However, in the particular case of a nested dissection, under the connexion hypothesis
formulated in Theorem 1.3 usually satisfied in practice, both processes do lead to the
same result.

Theorem 1.3. Let G be a reordered graph in S . If for all i = 1, N the separator
Si is contained into a single connected component of the subgraph Gi it separates, then
(G/P )∗ = (G∗/P ) [61].

We refer to [61] for the proof. For cases satisfying Theorem 1.3 such as nested
dissection, the graph (G/P )∗ is thus preferably computed [86, 140] in practice due to
its far lower complexity. This is discussed more at length in § 1.3.1.2.3.

These notions may be defined differently in other contexts. For example, the quotient
graph model presented in [93] consists in a list of quotient graphs after each elimination.
Instead of deleting the eliminated node in the graph as depicted in Fig. 1.21, the eliminated
nodes are grouped together. These are also called supernodes. But they must be
distinguished from our previous definition of supernodes. In this representation, nodes
may also be grouped if they are uneliminated and indistinguishable. Using this technique,
the supernodes are therefore computed on-the-fly, instead of prior to the elimination.

In (G/P )∗, the unknowns of a supernode are eliminated at the same time, so the
elimination tree associated with A can be reduced to a simpler form. The transitive
reduction of the elimination graph G∗ leads to the elimination tree T . We can therefore
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(c) Factorized matrix (LU).

Figure 1.31: Structures based on the adjacency graph and the separators (supernodes)
computed in Fig. 1.26a. With these supernodes, the quotient elimination graph is
computed, as illustrated in (a). The elimination (or assembly) tree (in (b)) is computed
by transitive reduction. Finally, (c) shows the factorized matrix and the block column
structure computed the symbolic factorization discussed in § 1.3.1.2.3. The supernodes
are indicated by the braces over the lines and columns and displayed as colored numbers.
Supernode 7 for example (here a separator) consists of nodes 21 to 25.

apply the same procedure on the elimination quotient graph (G∗/P ) to obtain a new
elimination tree (T/P ). The tree that arises from this reduction is also referred to as an
assembly tree [146], a blocked elimination tree [140], or a quotient tree [76]. It describes
the dependencies between the solver’s supernodes computations or contributions. This
quotient tree is equal to the separator tree A (Fig. 1.26b) in the case of a nested dissection.
An example of such a quotient tree is shown in Fig. 1.31b. However these two structures
may differ when other reordering techniques are used.

1.3.1.2 Symbolic Factorization

Before computing the numerical factorization (the effective factorization), a symbolic
analysis step is performed. Depending on the sparse direct method, the numerical
objectives, the solver design, etc., this analysis step may have different objectives (cf.
[68, § 4.6] for instance). In this manuscript, we focus on the computation of a symbolic
factorization [94]. A symbolic factorization computes an explicit structure based on the
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non-zero pattern of the factorized matrix. Note that a symbolic factorization has no effect
on the extent of fill-in (which is governed by the ordering only) but locates where fill-in
is produced. The objective of symbolic factorization, according to [146], is to simulate
the actual factorization in order to estimate the memory that has to be allocated for the
factorization phase.

To compute a symbolic factorization, we rely here on the notion of reachable sets
[68, 69, 93].

Reachable sets

Consider the graph G = (V,E). The structure Reach(i, S) [68, 93] computes the set of
nodes reachable from i through S, where i ∈ V and S ⊂ V .

Definition 1.7. A node j is said to be reachable from i through S, i.e., j ∈ Reach(i, S),
if there exists a path (i, s1, s2, ..., sk, j) in G from i to j such that s` ∈ S for 1 ≤ ` ≤ k.

With the notation Sk = {1, 2, ..., k} ⊂ V , we define Reach+G(i) = Reach(i, Si−1) the
reachable set from i through all nodes ordered before i, following notations from [69].
It is also referred to as Struct(L∗i) in [97] or Str(A(i : n, i)) in [110]. From the graph
point of view, at the step of elimination of i, the structure Reach+G(i) represents all nodes
reachable from i through the eliminated nodes in G. Reach+G(i) also represents the edges
of the elimination graph G∗ starting from i and oriented following the ordering of the
unknowns. From a matrix perspective, it represents all the row indices corresponding to
non-zeros below the diagonal of the column i after factorization. From Eq. (1.14), we may
now formulate Eq. (1.17).

i ∈ Reach+G(j)⇔ `ij 6= 0. (1.17)

In Fig. 1.32 for example, AdjG(4) = [1, 2, 8] and Reach+G(4) = [5, 6, 8]. The state of the
structure at the elimination of node 4 is depicted in Fig. 1.33.

1.3.1.2.1 Scalar Symbolic Factorization

To simulate the behavior of a numerical factorization, one may rely on Algorithm 13,
following the spirit of [93, p.167]. However, this algorithm has the same complexity as
the numerical factorization. A possible way to improve this algorithm is to avoid some
unnecessary computations that are redundant here. When an unknown k is eliminated, we
can compute the fill-in induced for the unknown mk, where mk is defined as the minimum
index in Reach+G(k) (which is also the minimum row index of the non-zero blocks in the
column k below the diagonal from a matrix point of view), instead of computing this
for all row indices in Reach+G(k). The proof is given in [93, p.168] or in the transition
between Theorem 4.3 to 4.5 in [97]. As an example, using the matrix from Fig. 1.32c,
Fig. 1.34a shows how the elimination of column k = 1 impacts column mk = 4. Fig. 1.34b
shows how the elimination of column k = 2 impacts column mk = 4. 4 is the minimum
row index corresponding to a non-zero in columns 1 and 2. The fill-in for larger indices
in Reach+G(1) can be computed later, at the stage of k = 4. Indeed, after the merging
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(a) Adjacency graph G and elimination graph
G∗ with 8 nodes corresponding to Fig. 1.32c.
Initial edges are colored red and fill-in edges
colored brown.
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(c) Symbolic factorization structure of a 8×8
matrix. Initial non-zeros are colored red and
fill-in entries colored brown. Only the lower
part of the matrix is considered in the future
as the matrix is symmetric.

Figure 1.32: Example of the resulting structure of a symbolic factorization.
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Figure 1.33: The nodes reachable from 4 through the eliminated nodes (ordered before 4
and colored gray) are 5, 6 and 8.
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4.
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(b) Merging column k = 2 onto column mk =
4.

Figure 1.34: Right-looking contributions of column 1 and 2 on column 4 from example
Fig. 1.32c.

of Reach+G(1) and Reach+G(4), all indices in Reach+G(1) will also be in Reach+G(4). The
information of Reach+G(1) is contained in Reach+G(4) and can be transmitted to these
larger indices. We must emphasize that we consider here a right-looking algorithm. A
left-looking variant is discussed in § 1.3.1.2.4.

As mentioned earlier, this elimination can also be expressed by the elimination graph
G∗ (Fig. 1.32a) or the elimination tree introduced in § 1.3.1.1. When a node k (associated
with the unknown k) is eliminated, it contributes to all its ascendants in the elimination
tree. However, we may propagate this contribution only to its parent, i.e., the minimum
adjacent node mk ordered after k. Eq. (1.15) can also be written using the structure

Algorithm 13: Naive Scalar Symbolic Factorization of a n× n matrix A based
on its adjacency graph G.
Function ScalarSymbolicFactorization(G, n)

1 for k = 1 to n− 1 do
2 Reach+G(k)← {j | j > k ∧ j ∈ AdjG(k)} . Initial non-zeros

3 for k = 1 to n− 1 do
4 for j ∈ Reach+G(k) do
5 Reach+G(j)← Reach+G(j) ∪ (Reach+G(k)\{j}) . Fill-in
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Reach+G(K) under the form of Eq. (1.18).

EParent(k) = min(Reach+G(k)). (1.18)

Therefore, the algorithm follows the edges of the elimination tree to propagate fill-in.
Algorithm 14 describes a scalar (it operates on the graph G but not on the quotient

graph (G/P )) symbolic factorization that computes a sorted column structure Reach+G(k)
consisting of a list of non-zeros for that column and propagates fill-in on the following
impacted columns. We begin by computing the non-zero pattern for each column of A
below the diagonal, except for the last column as it has no entry below the diagonal. This
corresponds to lines 1 & 2 in the algorithm and to the red blocks (non-zeros) in Fig. 1.34a
and 1.34b. For example, the structure of k = 1 has two non-zeros. The diagonal is
excluded as it is always non-zero in the considered problems. Fill-in is then computed by
lines 3 to 5 in the algorithm for column mk, where mk is the index that corresponds to
the first non-zero of column k, i.e., the minimum index in the structure Reach+G(k). This
computes the new column structure ofmk by merging the structures ofmk and k together.
The column structure of mk = 4 has one non-zero in the example figure and one (colored
brown) entry will be filled by the contribution of 1. Later, other fill-in may appear from
the contribution of other nodes. An example of a structure computed through a scalar
symbolic factorization is depicted in Fig. 1.26 in the case of a nested dissection. Fig. 1.26d
shows the initial non-zeros in red and the fill-in in brown.

Such a scalar symbolic factorization involves an arithmetic complexity as large as the
fill-in produced. This complexity is equal to O(n log n) for two-dimensional planar graphs
with n vertices [150]. It is equal to O(n2σ) for σ > 1

2
, in the case of graphs verifying the

nσ-separator theorem (see Definition 1.4) [150]. For graphs associated with 3D meshes,
as the size of the separator is

nsep = n
2
3 , (1.19)

and σ = 2
3
> 1

2
, the number of non-zeros in the factors, as well as the arithmetic

complexity, is equal to
nnz(LU) = O(n2σ) = O(n

4
3 ). (1.20)

As a consequence of this still consequent complexity, modern solvers [70, 119] instead
compute a block (or block column) symbolic factorization.

Algorithm 14: Scalar Symbolic Factorization of a n× n matrix A based on its
adjacency graph G.
Function ScalarSymbolicFactorization(G, n)

1 for k = 1 to n− 1 do
2 Reach+G(k)← {j | j > k ∧ j ∈ AdjG(k)} . Initial non-zeros

3 for k = 1 to n− 1 do
4 mk ← EParent(k) . First non-zero below diagonal
5 Reach+G(mk)← Reach+G(mk) ∪ (Reach+G(k)\{mk}) . Fill-in
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1.3.1.2.2 Block Symbolic Factorization

The block symbolic factorization computes a block sparse structure of the factorized
matrix based on the initial matrix A (considered symmetric so that only the factor L
is computed). In order to find this structure, we need to perform two tasks: (1) the
elimination of the unknowns and (2) the partition of the unknowns.

We first recall some notations. We denote by G the adjacency graph of the matrix
A, i.e., the corresponding non-zero pattern. The elimination of G is noted G∗. This
elimination graph represents the non-zero pattern of the factorized matrix. G may be
partitioned using a partition P of supernodes. The partition of G into a quotient graph is
noted (G/P ). We recall that these two tasks can be swapped only if (G/P )∗ = (G∗/P ),
which is true in the case of Theorem 1.3.

The objective of the block symbolic factorization is to compute the final block structure
of L. Extra-diagonal blocks in L are related to the edges in the quotient elimination
graph (G∗/P ) [61]. Constructing (G∗/P ) amounts to compute the quotient graph of the
elimination graph G∗ over P , meaning the eliminations have been calculated (through
the computation of G∗) before the quotient operation. The scalar algorithm discussed in
§ 1.3.1.2.1 is used for the elimination of G into G∗. Then the quotient graph of G∗ is
computed, leading to the quotient elimination graph (G∗/P ). However the complexity
of this algorithm is greater than or equal to the complexity of the scalar symbolic
factorization.

A faster way to compute the block symbolic factorization is to compute first the
quotient operation over the supernodes (G/P ) and then compute the eliminations over
the quotient graph: (G/P )∗. This is far less costly, as we have less interactions due to
the quotient property of the graph. As we have seen in § 1.3.1.1.3, for admissible cases
such as the nested dissection, the graph (G/P )∗ is preferably computed [86, 140] due to
its lower complexity.

The algorithm proceeds in the same manner as the scalar symbolic factorization, but
searches through supernodes instead of nodes. The algorithm of this method is therefore
identical to that of Algorithm 14, with the only difference that each element is not a
node but a supernode, as illustrated by Algorithm 15. Reach+G/P(K) lists the supernodes
updated by supernode K. It is referred to as BStruct(L∗K) in [119]. Algorithm 15
details how the block symbolic factorization is computed, using this structure. Note that
the parent of K in the quotient elimination tree T/P is therefore computed using the
quotient structure (Eq. (1.21)).

EParentT/P(K) = min(Reach+G/P(K)). (1.21)

The union (line 5) now operates on lists of supernodes instead of lists of nodes. The
graph G/P is used instead of the graph G so that the function AdjG/P(I) is used.
However, note that with the type of supernodes chosen (see §§ 1.3.1.1.2 and 1.3.1.1.3),
zeros may exist within each matrix block. Indeed, in a nested dissection-based symbolic
factorization, each supernode may have the same lower column structure and yet have
different interactions with supernodes ordered before. For example, if we take a look
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Algorithm 15: Block Symbolic Factorization of a matrix A based on its
adjacency graph G partitioned into a list P of N supernodes.
Function BlockSymbolicFactorization(G, P , N)

1 for K = P [1] to P [N − 1] do
2 Reach+G/P(K)← {J | J > K ∧ J ∈ AdjG/P(K)}
3 for K = P [1] to P [N − 1] do
4 MK ← EParentT/P(K)
5 Reach+G/P(MK)← Reach+G/P(MK) ∪ (Reach+G/P(K)\{MK})

at Supernode 7 in Fig. 1.31c we can see that its interactions with previous supernodes
does not match exactly the range of its rows. Some rows are filled with zeros for a
specific supernode. This is due to the fact that supernodes are chosen as having the
same lower column structure and not the same rows. By using these column supernodes,
or T2 supernodes (Fig. 1.30a), we may not have sufficient information as depicted in
Fig. 1.35a. This figure displays the structure computed by a block symbolic factorization
using a partition of T2, column-based, supernodes. Using column and row information
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(b) Partition of T4 supernodes.

Figure 1.35: Block Symbolic Factorization using different types of supernodes on a nested
dissection-based partitioning. We can see here how relaxation introduces a few zeros in
the final structure by comparing these structures to the scalar structure in Fig. 1.26d.

leads to T4 supernodes (Fig. 1.30b) and to the structure shown in Fig. 1.35b. However,
choosing supernodes with this condition also leads to smaller supernodes. As discussed
in [70], T2 supernodes, relying only on the lower structure of a column instead of their
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entirety, are larger and are thus preferred. On the contrary, T4 supernodes, relying on
rows and columns, are too rare and therefore rejected [70]. To fully take advantage of
T2 supernodes, one must use a block column symbolic factorization instead of a block
symbolic factorization.

1.3.1.2.3 Block Column Symbolic Factorization

The block column symbolic factorization is a method discussed in [61, 86, 140, 164]
under the name of block symbolic factorization or blocked symbolic factorization. However
we have preferred to name it here “block column symbolic factorization” to differentiate
it from the “block symbolic factorization”, which operates on block matrices instead of
block columns in our context. Instead of relying on the interactions between supernodes,
we can refine the definition of the adjacency of each supernode to capture more precisely
the pattern of non-zeros associated with the original graph G = (V,E):

Adj(G/P )→G(I) = {j | ∃i ∈ I ∧ (i, j) ∈ E}. (1.22)

This structure, introduced in [61], lists all the nodes which interact with at least one node
of the supernode I. There is no conflict here between notations, Adj(G/P )→G(I) is thus
noted AdjG(I). We extend this notation to Reach+(G/P )→G(I), referring to the structure
after factorization of each supernode. The set Reach+(G/P )→G(I) is consequently also noted
Reach+G(I) for the sake of compactness. They indeed consist in lists of nodes in G, no
matter the input considered entry.

The block column symbolic factorization partitions the matrix into block-columns
based on supernodes. It computes the rows that should be stored for each supernode
due to fill-in. This is illustrated in Fig. 1.36. Fig. 1.36a indicates the initial non-zero
rows by the green blocks for the supernode K or by the red blocks for the supernode
MK . The filled-in rows arising from the update operation, for example the brown blocks
in Fig. 1.36b in the supernode MK , are then merged with the existing red blocks into
new larger blocks, as shown in Fig. 1.36c. MK is the supernode corresponding to the first
off-diagonal block of K. It does not mean it necessarily matches the same range of indices,
as shown in Fig. 1.36, where the column block MK is as large as the red blocks and is
therefore larger than the first off-diagonal transposed (light green) block. Algorithm 16
details how the block symbolic factorization is computed. The set Reach+G(K) lists all
the nodes in G reachable from the supernode K. The structure is implemented as a list of
intervals for the sake of efficiency. The parent of K in the elimination tree is consequently
computed using Eq. (1.23).

EParent(K) = {J | min(Reach+G(K)) ∈ J}. (1.23)

Note that the structure EParent(K) contains only one element (the parent supernode J).
The first non-zero row in K corresponds to an index in J . Moreover, the union (line 5)
operates on lists of intervals instead of lists of elements. Contrary to the block symbolic
factorization previously defined (§ 1.3.1.2.2), the computed structures are not supernodes
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K

MK

MK

(a) Supernodes K and MK . (b) The elimination of K fills
MK .

(c) Final storage.

Figure 1.36: Block Column Symbolic Factorization. The green blocks from supernode
k impact the (red) supernode MK due to the update operation during factorization.
Therefore, for the supernode MK , we must store all the rows corresponding to the rows
of supernode k and MK merged together.

but nodes. The initial non-zero pattern for all supernodes K is computed (lines 1,2); then
it computes the new block column structure for the first supernode impacted by each
K, denoted by MK here, by merging the two structures of K and MK (lines 3-5). This
creates fill-in, as illustrated by the brown blocks in Fig. 1.36b. An example of such a
block column symbolic factorization using nested dissection is depicted in Fig. 1.31.

The complexity in time and space of this algorithm [61] is related to the number of
off-diagonal blocks in the final structure of the factorized matrix. This number is usually
lower than the complexity of the factorization algorithm but depends on the ordering of
A and the partition P . For cases satisfying Theorem 1.3, the complexity of the symbolic

Algorithm 16: Block Column Symbolic Factorization of a matrix A based on
its adjacency graph G partitioned into a list P of N supernodes.
Function BlockColumnSymbolicFactorization(G, P , N)

1 for K = P [1] to P [N − 1] do
2 Reach+G(K)← {j | j > K ∧ j ∈ AdjG(K)} . List of intervals

3 for K = P [1] to P [N − 1] do
4 MK ← EParent(K)
5 Reach+G(MK)← Reach+G(MK) ∪ (Reach+G(K)\MK) . Exclusions of nodes

in MK
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Figure 1.37: Left-looking symbolic
factorization at the stage of iteration on
column 4. 1 and 2 are children of 4 in the
elimination tree (highlighted by the arrow
pointing to the left on row 4).
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Figure 1.38: Left-looking and right-looking
structures of 4. The left-looking structure
contains 1 and 2. The right-looking
structure contains 5,6 and 8.

factorization is linear with the number of off-diagonal blocks [61]. Furthermore, the
number of off-diagonal blocks increases linearly with n [61].

1.3.1.2.4 Discussion on a Left-Looking Symbolic Factorization

Instead of applying the contribution to mk, we could store the information that mk

receives contributions from k. Later on, the union of all the nodes contributing to mk

(of which mk is the first non-zero row, or the parent in the elimination tree), can be
computed. All these nodes are children of mk in the elimination tree and are therefore
stored in a structure named EChildren(mk). EChildren(k) is defined as:

EChildren(k) = {j | EParent(j) = k}. (1.24)

This can be seen as a left-looking algorithm in the sense that contributions are applied
from the left, i.e., the union is performed on the receiving node. This can be compared
to the right and left-looking methods discussed in § 1.3.1.3.1. For the example from
Fig. 1.32c, instead of applying the contribution 1 → 4 and 2 → 4 independently, as
illustrated in Fig. 1.34a and 1.34b, we can apply both contributions together, as depicted
in Fig. 1.37.

Algorithm 17, based on [93, 97, 110], computes this left-looking symbolic factorization.
This algorithm can be generalized for the block and block column versions. However, we
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Algorithm 17: Left-Looking Symbolic Factorization of a matrix A associated
with a graph G with n nodes.
Function LeftSymbolicFactorization(G, n)

1 for k = 1 to n− 1 do
2 Reach+G(k)← {j | j > k ∧ j ∈ AdjG(k)}
3 for k = 1 to n− 1 do
4 Reach+G(k)← Reach+G(k) ∪

⋃
j∈EChildren(k)

Reach+G(j)\{k}

5 mk ← EParent(k)
6 EChildren(mk)← EChildren(mk) ∪ k

will need a construction using the information of all the contributing columns in § 2.4.
This information, which is the reverse from Reach+G(k) can be noted Reach−G(k). This
structure corresponds to the interactions of row k before the diagonal. We can now
distinguish the right-looking interactions Reach+G(k) from the left-looking interactions
Reach−G(k), as depicted in Fig. 1.38. Also, EChildren(k) must not be confused with
Reach−G(k). Indeed, Reach−G(4) = EChildren(4) = [1, 2], but Reach−G(6) = [2, 4, 5] in
Fig. 1.32c, and EChildren(6) = [5]. A naive algorithm would consist of computing each
Reach−G(k) using the previous structure Reach−G(i), i < k, as detailed in Algorithm 18.
However, this algorithm has a complexity higher than the usual symbolic factorization,
as another ‘for’ loop is inserted at line 4. Therefore we introduce Algorithm 19
Algorithm 18: Left-Looking Symbolic Factorization of a matrix A associated
with a graph G with n nodes and computing a left-looking interactions structure.
Function LeftSymbolicFactorization(G, n)

1 for k = 1 to n− 1 do
2 Reach−G(k)← {j | j < k ∧ j ∈ AdjG(k)} . Left-looking

3 for k = 1 to n− 1 do
4 for j = 1 to k − 1 do
5 if Reach−G(j) ∩ Reach

−
G(k) 6= ∅ then

6 Reach−G(k)← Reach−G(k) ∪ j . fill-in between j and k

which computes such a left-looking structure with an arithmetic complexity close to
Algorithm 17, traded for a slightly higher memory usage. We must emphasize that the
algorithm is categorized as left-looking due to the fact that the updates are applied on
the receiving node, even though it relies on right and left-looking structures.
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Algorithm 19: Efficient Left-Looking Symbolic Factorization of a matrix A
associated with a graph G with n nodes and computing both the right and
left-looking interactions structures.
Function LeftSymbolicFactorization(G, n)

1 for k = 1 to n− 1 do
2 Reach+G(k)← {j | j > k ∧ j ∈ AdjG(k)} . Right-looking
3 Reach−G(k)← {j | j < k ∧ j ∈ AdjG(k)} . Left-looking

4 for k = 1 to n− 1 do
5 Reach+G(k)← Reach+G(k) ∪

⋃
j∈EChildren(k)

Reach+G(j)\{k}

6 mk ← EParent(k)
7 EChildren(mk)← EChildren(mk) ∪ k
8 for j = Reach+G(k) do
9 Reach−G(j)← Reach−G(j) ∪ k

1.3.1.2.5 Symbolic Factorization with Different Partitions

In the case of matrices with different row and column partitions, we may re-write all
right-looking algorithms 14 to 16 into the same general form, as shown in Algorithm 20.
To avoid confusion, we focus here on right-looking algorithms but this discussion may be
translated for left-looking algorithms.

Algorithm 20: Generalized Symbolic Factorization of a matrix A associated
with a graph G with n nodes following a column partition Pcol over a row partition
Prow.
Function SymbolicFactorization(G,Prow, Pcol, N)

1 for K = Pcol[1] to Pcol[N − 1] do
2 Reach(K)← {J | J > K ∧ J ∈ Adj(G/Pcol)→(G/Prow)(K)}
3 for K = Pcol[1] to Pcol[N − 1] do
4 MK ← EParent(K)
5 Reach(MK)← Reach(MK) ∪ (Reach(K)\{MK})

The row partition Prow may be different from the column partition Pcol by its size
as well as by the unknowns it covers. The two partitions may therefore be (1) equal,
(2) overlapping, (3) disjoint. The first case corresponds to most cases, including the
sparse linear system arising from the FEM considered in this thesis. The second case may
correspond to a symbolic factorization applied on the sparse submatrices of the overall
FEM/BEM coupling, just as the subsystem in Eq. (1.25).[

Avv
Asv

]
. (1.25)
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Here, Pcol partitions the unknowns from the FEM exclusively, while Prow partitions the
whole set of unknowns of the overall problem. The notion of symbolic factorization is
therefore extended to non-square matrices m × n, with m ≥ n, and may be adapted
to QR factorization. An example of the third case could simply be the computation
of the symbolic factorization of the matrix Asv alone. In this last case, without any
extra information from Avv, as the information of the whole column is not available, the
symbolic factorization may not be entirely computed, as fill-in may not be propagated
properly.

This is further discussed in the context of the FEM/BEM coupling in § 2.5.

Eventually, the symbolic factorization computes the final pattern of non-zeros in the
factors. The symbolic factorization must trade-off between efficiency of the computations
and memory usage. This step is necessary to avoid efficiency issues due to on-the-fly fill-in
management during numerical factorization, introduced in the following section.

1.3.1.3 Numerical Factorization

We now discuss two different classes of methods used to factorize the matrix A:
multifrontal methods and supernodal methods. In the LU factorization, the contributions
(or updates), i.e., the operations Aij ← Aij −AikAkj, can be computed in different ways.
The multifrontal and supernodal methods differ in the way these contributions are applied.

1.3.1.3.1 Supernodal Methods

Supernodal methods apply contributions directly on the targeted supernode as soon
as they appear. Within the class of supernodal methods, there are two classical variants:
the left-looking and the right-looking algorithms. The difference lies in the order the
operations are carried out: in the right-looking approach, a supernode is factorized and
then applies all the contributions on the right, whereas in the left-looking approach, all
contributions to a panel are accumulated from the left until the algorithm arrives at
the factorization of the destination panel, meaning each supernode is read once when
factorized and later once again to apply the contributions. The right-looking algorithm

Algorithm 21: Simplified left-looking algorithm factorization.
1 for j = 1 to n do
2 forall i contributing to j do
3 Update(A∗i, A∗j)

4 Factorize(A∗j)

needs less read operations but writes several times on the destination supernode while
the left-looking algorithm reads multiple times the (contributions) data but writes only
once on the destination supernode. The left-looking and right-looking algorithms are
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Algorithm 22: Simplified right-looking algorithm factorization.
1 for i = 1 to n do
2 Factorize(A∗i)
3 forall j depending on i do
4 Update(A∗i, A∗j)

respectively described in Algorithm 21 and Algorithm 22. It should be noted that the
right-looking algorithm has already been introduced in § 1.2.1.1 for dense matrices. The
cost of the update matrix-vector operations may be quite high. To find a compromise
between performance and memory consumption, a variant has been developed, which
groups updates by supernodes and scatters the results of the updates onto the destination
panels. This method is referred to as gather/scatter [145].

The right-looking supernodal solver PaStiX [119] can be used in Actipole to handle
sparse operations (LU factorization for example). Other supernodal solvers include
SuperLU [70], PARDISO [176] or symPACK [127]. We refer the interested reader to
[69, 73, 76] for more informations.

1.3.1.3.2 Multifrontal Methods

Multifrontal methods [77, 78, 146, 153, 177] apply contributions through dense
submatrices, called frontal matrices, that hold all the contributions from one subtree of
the elimination (or assembly) tree to its ascendants. The first frontal matrix (associated
with supernode 1) of the example matrix of Fig. 1.31c is shown in Fig. 1.39. All
elimination operations are performed through these frontal matrices. A frontal matrix
can be formulated as four matrix blocks, arranged as in Eq. (1.26):

F =

[
F11 F12

F21 F22

]
. (1.26)

The first block column and row are called fully-summed, because all possible updates have
been computed for the corresponding supernodes. The second block column and row are
partly summed. The Schur complement matrix, equal to F22−F21F

−1
11 F12, is also referred

to as the contribution block as it will be used to update rows and columns from ancestor
frontal matrices (upper in the assembly tree). The operations and frontal matrices
involved in the example matrix of Fig. 1.31c are shown in Fig. 1.40. This assembly tree,
based on the elimination tree in Fig. 1.31b, shows the dependencies between computations
involving frontal matrices. The memory consumption of a multifrontal method varies over
time as each frontal matrix is assembled and then processed and contribution blocks are
stacked, waiting to be consumed by another front. This active memory increases and
decreases each time a front or contribution block is assembled and freed, respectively, while
the memory consumed by the factors L and U , the fully-summed variables, constantly
increases during the factorization. Multifrontal methods therefore operate with a larger
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Figure 1.39: Construction of a frontal matrix for the first supernode.

granularity than supernodal methods (which may be used to design efficient blocked
algorithms) but consume extra memory for storing the contribution blocks.

The multifrontal solver MUMPS [23, 24] is available in Actipole for performing
various sparse operations, including LU factorization or computing a Schur complement.
Other examples of multifrontal implementations may include UMFPACK [67] or the
Harwell Subroutine Library (HSL) code MA415 [21] . TAUCS [186] gathers multiple
implementations, including a multifrontal factorization and a left-looking factorization.

1.3.2 Sparse Iterative Methods

The main principles of iterative methods are the same, regardless of the characteristics
of the matrices (sparse or dense). We present here some of the elements that show in
what respect they differ. We have seen in § 1.1.3.2 that iterative methods compute a
matrix-vector product at each iteration of the process. This matrix-vector is usually
computed in O(n2) for dense problems (or O(n log n) when using the FMM). Yet, when
applied on a sparse matrix, the matrix-vector product can be computed in only O(nnz).
Moreover, there are specific preconditioners that exploit the sparsity of the structure,
as for example the ILU method [156], which computes an Incomplete LU factorization,
ignoring some of the fill-in that occurs. The SPAI [13, 55, 54] is also a sparse (approximate

5http://www.hsl.rl.ac.uk/catalogue/ma41.html
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Figure 1.40: Assembly tree with the frontal matrices involved.

inverse) preconditioner, used for example in the Airbus framework [184]. We refer to [172]
for an overview of modern iterative methods.

1.4 Solution of a FEM/BEM system
We have presented the linear system we are interested in solving in Eq. (1.2). We have
then discussed the difference between dense solutions in § 1.2 and sparse solutions in
§ 1.3. We now detail how the solution of the coupled system is computed in the industrial
framework of this thesis. Let us remind the reader we are interested in solving a linear
system Ax = b, where A ∈ Cn×n is decomposed into a 2×2 block matrix with the following
form:

A =

[
Avv Avs
Asv Ass

]
. (1.27)

where Avv, Avs, Asv are sparse matrices and Ass is dense. We first discuss architecture
and efficiency considerations for the coupling in § 1.4.1, then give references to related
works on FEM/BEM couplings in the literature in § 1.4.2 and then introduce the methods
considered for the solution of the coupling in § 1.4.3.
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1.4.1 Efficiency and Architecture Considered

In the context of this thesis, we heavily rely on parallel linear solvers, necessary for the
study of wave propagation. Indeed, when a mesh is computed, the size of each element
needs to be consistent with the physical problem considered. For an acoustic problem, the
range of frequencies studied correspond to the human hearing, i.e., 20 to 20,000 Hz, which
corresponds to wavelengths of 17 meters to 1.7 cm. In order for the calculations to be
sufficiently precise, the mesh element size needs to match those wavelengths. Typically,
the mesh element size would be around λ/10 or λ/15. But we can calculate that a mesh
of 1m3 discretized using elements of 1mm3 would already mean 1 billion elements for a
mesh computed using the FEM. Consequently, the increasing number of elements required
for such simulations if the mesh covers objects as large as aircraft engines leads to very
large systems of equations, therefore implying the need for efficient computations in both
time and memory. Even though the number of elements to store and the number of
calculations are reduced due to the sparsity of the problem arising from FEM, they are
still quite large. Thus, the use of HPC platforms is often mandatory to reduce the time
to solution of such computations. The same is true for problems arising from the BEM:
the two-dimensional characteristics of the meshes computed using this method lead to
problems of smaller size. However, they also lead to dense linear systems, meaning more
intensive calculations and more memory requirements than for a mesh computed with the
FEM that would have the same number of elements, thus necessitating the use of HPC.

HPC is a large domain whose main goal is to process calculations faster and/or being
able to use more memory. It can be seen as a means to reach the ability to solve larger
problems or to solve faster problems. There can be two ways to achieve this goal: either
optimize the algorithm or improve the performance of the hardware. HPC relies heavily
on parallel computing. In this work, we do not investigate this field but rather try to
design novel algorithms, first studying their sequential behavior and then their parallel
efficiency. We consider in this thesis mainly multicore parallelism with shared memory,
though distributed parallelism remains a long-term objective. A parallel algorithm should
be aware of the memory and cache characteristics to be efficient [147] . To avoid a difficult
management of parallelism, a runtime system such as StarPU [30, 31] may be used. In
the context of the H-Matrix solver, a runtime system has also been implemented as an
alternative, named toyRT, of which a version may be found at [7].

1.4.2 Related Work

The coupling between BEM and FEM have been discussed in numerous studies since
at least the 1970s [158, 200, 130]. Also, more recently, [196] introduced a coupling
between a stochastic method using decomposition to exploit the block structure of a
matrix for FEM-FEM simulations and an H-Matrix to compress the integral domain
from the BEM. In [128], the authors describe the solution of a FEM-BEM system using
a Domain Decomposition Method (DDM) relying on an H-Matrix multiplicative Schwarz
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preconditioner. The authors of [120] introduce a solution of a FEM/BEM system using
H2-Matrices.

1.4.3 Airbus Solver

Two methods can be used in the solver considered [12] to solve the global linear system.
Either the volume unknowns are reduced on the boundary using a Schur complement,
or the system is solved as is. Depending on this choice, we must also choose if direct
methods or iterative methods will be used. We first detail how the system is solved when
using a Schur complement, and later explain how it is solved without.

With a Schur complement

The Schur complement method [198] consists in reducing the whole problem on the
boundary. To solve the system, we can first state xv based on the first equation in
the 2× 2 system (1.2), which can be formulated as in Eq. (1.28).

xv = A−1vv (bv − Avsxs). (1.28)

When inserting this term in the second equation of the system, we obtain Eq. (1.29), in
which we can identify a new matrix, called the Schur complement and denoted S here,
which is more precisely expressed by the formula of Eq. (1.30).

(Ass − AsvA−1vv Avs)xs = bs − AsvA−1vv bv, (1.29)

S = Ass − AsvA−1vv Avs. (1.30)

The system (1.29) has only one vector unknown left to be calculated (xs). When using
a direct solver, the Schur complement S is explicitly computed and factorized in order
to solve the system, whereas for iterative solvers the matrix is not necessarily computed
and successive implicit matrix-vector products are used on each term of the formula, i.e.,
Ass − AsvA

−1
vv Avs [12]. In the case of an iterative solution, the system (1.30) can be

preconditioned using a SPAI, which approximates the inverse of Ass.

Without a Schur complement

In the case of a solution without a Schur complement, the only option available in the
solver is to use an iterative solver. In this case, a block diagonal preconditioner is used to
improve convergence, as formulated in Eq. (1.31).[

Avv Avs
Asv Ass

]
×
[
Pvv 0
0 Pss

]
×
[
xv
xs

]
=

[
bv
bs

]
. (1.31)

We may observe that the matrix-vector products involve here a vector of size nFEM+nBEM
which may prove to be quite large. In this solver, Pvv is either a SPAI, or A−1vv (which the
ideal local preconditioner), or the identity and Pss can be either the identity or a SPAI.
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Available options

To solve the global system (1.2), several options are available in the context of the
considered Airbus’ solver. For a direct solution of the system, we may rely on a sparse
direct solver (MUMPS or PaStiX) in combination with a dense direct solver (SPIDO, an
in-house dense direct solver) or theH-Matrices for all operations. For an iterative solution
of the system, Block GCR or GMRES [173] may be used coupled with the FMM to speed
up calculations and a sparse solver (MUMPS, PaStiX) to handle sparse operations that
may arise, as in the computation of the Schur complement (Eq. (1.28) and (1.30)).

1.4.4 Considered Methods

We propose here to compare two approaches for the direct solution of Eq. (1.2):
1. a method based on MUMPS as a sparse direct solver for the elimination of the FEM

unknowns and the in-house dense direct solver SPIDO for the factorization of the
BEM-BEM subsystem, discussed in § 1.4.4.1;

2. a method based on H-Matrices, described in § 1.4.4.2.

1.4.4.1 Solution Combining MUMPS and SPIDO

This approach relies on the computation of a Schur complement via MUMPS and the dense
factorization being handled by SPIDO (see § 1.4.4.1.1). Due to the nature of the dense
matrix Ass, two algorithms may compute the Schur complement of the FEM unknowns
over the BEM unknowns. The original Multi-Solve variant is explained in § 1.4.4.1.2 while
its modified algorithm, the Multi-Factorization, is detailed in § 1.4.4.1.3.

1.4.4.1.1 SPIDO

SPIDO is a direct solver from Airbus that may factorize a matrix either using the
LU factorization or the LDLT decomposition. This parallel and out-of-core solver was
implemented in the 1990s, since then updated in order to remain robust and reliable [154].
When physical memory is not sufficient for the required computations, it is possible to use
an out-of-core approach to avoid running out-of-memory. Out-of-core blocks will be stored
on disk when not needed, thus saving physical memory. Disks can logically be seen as a
way to store data as much as physical memory and memory can therefore be compared
to a cache for the disks. However, using the disks as a means to store data usually leads
to a strong decline in performance, as disks have a greater latency and lower bandwidth
when accessing and moving data. In order to process very large and dense systems,
SPIDO must rely on the out-of-core technique and parallelism to efficiently reduce the
computation timespan and the memory allocated at a specific time. Therefore, SPIDO
works with two levels of matrix division:
• Out-of-core blocks;
• Processor blocks.
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Definition 1.8 lists the different dimensions used in this section, following the notations
used in Fig. 1.5.

Definition 1.8. For a matrix Ass = CnBEM×nBEM , nblocks is defined as the number of
out-of-core blocks in one column of the division, i.e., the number of rows. It is equal to
the number of out-of-core blocks in one row of the division, i.e., the number of columns.
nb is the row or column size of each out-of-core block. We have nb×nblocks = nBEM . Also,
nooc = nblocks × nblocks is the total number of out-of-core blocks in the matrix.

Avv

Ass

Avs

Asv

Figure 1.41: Subdivision of Ass into nine out-of-core blocks.

Fig. 1.41 illustrates the division of Ass into out-of-core blocks. When an out-of-core
block is in use, each of its underlying processor blocks are distributed on the nodes selected
for the experiment so that we can use distributed parallelism to speed up calculations.
Naturally, multi-threading computations can also be used here in order to further improve
performance within each node.

We now discuss two techniques used for the solution of the system (1.2) by the
computation of a Schur complement, i.e., Eq. (1.30). To that end, these two methods
rely on different techniques: the first one, the Multi-Solve method, computes many solves
involving Avv while the second, the Multi-Factorization method, will directly compute
parts of the Schur complement on the destination submatrix (an out-of-core block) of the
matrix Ass.

1.4.4.1.2 Multi-Solve

The solution of the coupling system (1.2) through the Multi-Solve technique
relies on the computation of the Schur complement by block columns. This
is detailed in Algorithm 23. The algorithm loops on block columns of size
32 and therefore uses a subset of Avs such as shown in Fig. 1.42. At line
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4 in the algorithm, the matrix Avs[i] is a subset of Avs with 32 columns.
Algorithm 23: Solution of Ax = b using Multi-Solve.
Function MultiSolve(A, b)

1 A =

[
Avv Avs
Asv Ass

]
2 Factorization(Avv)
3 for i = 1 to nBEM/32 do
4 Y ← A−1vv Avs[i] . Solve using i-th column of Avs
5 Z ← AsvY . GEMM
6 Ass ← Ass − Z . AXPY

7 Solve(Avv, bv) . In-place solution
8 Factorization(Ass) . SPIDO
9 Solve(Ass, bs − Asvbv)

(a) First iteration. (b) Second iteration. (c) Last iteration.

Figure 1.42: Iterations of the Multi-Solve algorithm.

Operation Iterations Flop Storage

Total nBEM nnz(Avv) + nnz(Avs) + nBEM
O(nFEM)

4
3 + |Asv|+ |Avs|+
n2
BEM

Solve nBEM nnz(Avv)
GEMM nBEM nnz(Avs)
AXPY nBEM nBEM

Table 1.3: Multi-Solve Schur complement detailed arithmetic and memory complexities.

Using Definition 1.1, the theoretical complexity of the computation of the Schur
complement (the main loop) is therefore given in Table 1.3. The complexity is given
for each column instead of 32 block columns for the sake of simplicity.
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(a) First iteration. (b) Second iteration. (c) Third iteration.

Figure 1.43: Three iterations of the Multi-Factorization loop on the first column.

1.4.4.1.3 Multi-Factorization

To find the solution of the problem (1.2), the Multi-Factorization method iterates over
the out-of-core blocks of Ass (an example of three steps for the first column are shown
in Fig. 1.43). It constructs a new matrix Y composed of the submatrix Avv and the
submatrices of Asv, Avs and an empty block corresponding to the current block of Ass
(Fig. 1.44). The Schur complement of Y is computed and added to Ass. This Schur
complement includes the factorization of the matrix Y , hence the name of the method.
This is formally expressed in Algorithm 24.
Algorithm 24: Solution of Ax = b using Multi-Factorization.
Function MultiFactorization(A, b)

1 A =

[
Avv Avs
Asv Ass

]
2 for i = 1 to nblocks do
3 for j = 1 to nblocks do

4 Y ←
[

Avv Avs[j]
Asv[i] 0

]
5 Ass[i][j]← Ass[i][j] + SchurComplement(Y )

6 Factorization(Avv)
7 Solve(Avv, bv) . In-place solution
8 Factorization(Ass) . SPIDO
9 Solve(Ass, bs − Asvbv)

This algorithm allows the solver to handle less calls to the external MUMPS library,
but performs more factorizations instead of solves. In theory, this algorithm should
therefore lead to a higher complexity (see Table 1.4) that the Multi-Solve technique.
Indeed, if we subtract the total arithmetic complexity of Table 1.3 to that of Table 1.4,
multiplied by the number of iterations of the loop, and replace nooc using Definition 1.8,
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Avv

Figure 1.44: Structure of the assembled matrix Y used to compute each Schur complement
in the Multi-Factorization routine.

Iterations Flop Storage
nooc O(nFEM + nb)

2 O(nFEM + nb)
4
3

Table 1.4: Multi-Factorization Schur complement detailed arithmetic and memory
complexities.

we obtain:

nooc × (nFEM + nb)
2 − nBEM × (nnz(Avv) + nnz(Avs) + nBEM) =

n2
BEM

n2
b

× (nFEM + nb)
2 − nBEM × (nnz(Avv) + nnz(Avs) + nBEM). (1.32)

By dividing the equation by nBEM , and simplifying the terms, we obtain:
nBEM
n2
b

× (nFEM + nb)
2 − nnz(Avv)− nnz(Avs)− nBEM =

nBEM × n2
FEM

n2
b

+ 2
nBEM × nFEM × nb

n2
b

+
nBEM × n2

b

n2
b

− nnz(Avv)− nnz(Avs)− nBEM =

nBEM × n2
FEM

n2
b

+ 2
nBEM × nFEM

nb
− nnz(Avv)− nnz(Avs). (1.33)

We know that nb < nBEM and Eq. (1.33) decreases when nb increases. To study the best
theoretical performance of the Multi-Factorization, we may thus replace nb = nBEM in
Eq. (1.33). We obtain:

n2
FEM

nBEM
+ 2× nFEM − nnz(Avv)− nnz(Avs). (1.34)

If we consider that nFEM increases with N3 and nBEM with N2 due the volume and
surface characteristics of the discretizations, and that nnz(Avv) = O(n

4
3
FEM) following

Eq. (1.20), we may perform a change of variable in Eq. (1.34) and write:

N6

N2
+ 2×N3 −N4 − nnz(Avs) =

2×N3 − nnz(Avs). (1.35)
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Also, by definition of sparse matrices, nnz(Avs) � nFEM × nBEM = O(N5). Therefore,
Eq. (1.35) may be positive or negative following the number of non-zeros of Avs, implying
that the difference between the theoretical complexities of the Multi-Factorization and the
Multi-Solve methods depends on the structure of this matrix. However, for smaller values
of nb, the complexity of the Multi-Factorization should be larger than the complexity of
the Multi-Solve technique. The Multi-Factorization may nonetheless have an advantage
over the Multi-Solve technique for considerations of BLAS-3 efficiency and management
of external libraries.

1.4.4.2 Solution Using H-Matrices

To find a solution of the global linear system (1.2) using H-Matrix techniques, we have
two options. An H-Matrix may be constructed over the combined surface and volume
mesh such as displayed in Fig. 1.45, however we do not benefit from the sparsity of
the volume mesh in this case. Alternatively, the H-Matrix may be divided into four
submatrices (three in the symmetric case) corresponding to the 2 × 2 matrix given in
Eq. (1.27). An example of the matrices involved in the solution of a symmetric linear
system using H-Matrices based on recursive bisection is shown in Fig. 1.46. A large part
of the off-diagonal submatrices in Fig. 1.46a are in fact low-rank matrices with a null rank
(light green matrices without numbers) and represent as such effective zero blocks.

The main operation benefiting from the use of H-Matrices is the dense factorization
of the matrix block Ass arising from the interaction of the unknowns located in the
mesh discretized using BEM with themselves. However, the factorization of the sparse
system Avv does not benefit from the sparse techniques introduced in § 1.3. Chapter 2
therefore discusses the introduction of such techniques for the solution of a sparse system
(involving for example Avv) through a sparse hierarchical factorization, involved in the
overall process of the overall hierarchical factorization. In particular, the incorporation of
these techniques for the FEM/BEM coupling is discussed in § 2.5.
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Figure 1.45: One symmetric H-Matrix using recursive bisection constructed on the overall
FEM/BEM coupling. Red blocks are Full-Matrices whereas green blocks areRk -Matrices,
in which the number indicates the rank.
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Figure 1.46: Coupling system split into three H-Matrices (four in asymmetric case) using
recursive bisection. Red blocks are Full-Matrices whereas green blocks are Rk -Matrices,
in which the number indicates the rank.
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Chapter 2

Low-Rank Compression in Sparse
Linear Systems

In § 1.4, we have presented multiple numerical methods to compute the solution of the
linear systems introduced in § 1.1.2. In particular, § 1.3 introduced the specificities and
optimization techniques used for sparse systems arising from FEM discretizations. The
sparse system is therefore characterized in this chapter with the equation

Ax = b, (2.1)

where A ∈ Cn×n is sparse and contains nnz(A) non-zero entries before factorization. We
denote by nnz(LU) the number of non-zeros after the factorization. Sparse methods
usually aim for a storage in O(nnz(LU)). On the other hand, hierarchical matrices
(H-Matrices) were introduced to the reader in § 1.2.3 as a direct method for the solution of
dense linear systems using compression to reduce the arithmetic and memory complexities
of the solver. Let us remind the reader that a dense problem is usually stored in O(n2)
and factorized in O(n3) operations. Hierarchical matrices reduce these complexities
to O(n log n) for valid classes of matrices, including for example matrices arising from
standard discretizations such as the BEM [114]. From these considerations, we might
consider H-Matrices capable of reducing the storage of sparse methods below nnz(LU).
This chapter hence focuses on the efficient solution of sparse systems using hierarchical
methods. The hierarchical framework of this chapter relies on the H-Matrices defined by
Hackbusch [114] and introduced to the reader in § 1.2.3.

Over recent years, there have been several attempts to use (hierarchical) compression
techniques for the factorization of sparse matrices. In this thesis, we distinguish two main
communities aiming at this common objective, combining strategies arising from both
communities.

On the one hand, the H-Matrix community, which developed the hierarchical tools
discussed in § 1.2.3, has introduced sparse techniques such as the nested dissection in
hierarchical solvers, as we will see in § 2.1. For H-Matrices to reach the promised
near-linear complexity, the considered linear systems must have suited numerical
characteristics leading to a data-sparse representation. Problems arising from BEM
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2. Low-Rank Compression in Sparse Linear Systems

and FEM lead to such matrices (of which some submatrices have low-rank properties).
Consequently, H-Matrices are applicable to such linear systems. Yet, for sparse matrices
arising from FEM, we have seen that fill-in can be reduced through various algorithms,
of which we have introduced heuristics such as the nested dissection, AMF or AMD in
§ 1.3.1.1. Historically, H-Matrices have been created in the context of discrete integral
operators [112] and therefore did not initially rely on such techniques. Nonetheless, it has
later been suggested to apply nested dissection for the clustering of H-Matrices in [143].
Since then, many articles have shown a significant gain due to the inclusion of the nested
dissection method in the construction of H-Matrices [102, 105, 107, 126, 138, 193].

On the other hand, the Sparse-Direct community, from which originate many solvers
and techniques optimized for sparse linear systems as discussed in § 1.3, have recently
introduced compression in sparse solvers, as we will detail in § 2.2. The methods differ in
their usage of hierarchical formats, relying for example on BLR, HSS or HODLR formats
[17, 18, 25, 59, 95, 157, 164, 165, 188, 190, 191].

Fundamental Components

We first discuss concepts involved in the creation of an H-Matrix that can be adjusted to
fit more adequately the solution of sparse linear systems. They also can be compared to
concepts used by the Sparse-Direct community. As an example, the division techniques
used to create a cluster tree (§ 1.2.3.2) can be related to some reordering techniques
(§ 1.3.1.1) such as the nested dissection and the corresponding separator tree. This tree
is also related to the notion of quotient elimination tree. Nested dissection leads to a
separation between subsets and this can effectively be represented as a tree. Using the
H-Matrix community vocabulary, the construction of a cluster tree using nested dissection
leads to a ternary tree, of which each two first children are independent from one another.
Using the Sparse-Direct community vocabulary, a separator tree based exclusively on
nested dissection is binary and exhibits the non-dependence between computations of
sibling nodes. In fact, the separator tree is also related to the separation tree structure
presented in [170, Fig. 2.1]. The separation tree and the cluster tree associated with a
nested dissection are indeed equivalent and represent the same structure, with the minor
difference of children being ordered in a different manner. This is illustrated by Fig. 2.1.
While the nested dissection leads to a partition noted (I1, I2, S) usually in graphs and
examples in this thesis, the corresponding clusters are noted (τ1, τ2, τS) to highlight their
hierarchical characteristics.

The ordering of unknowns is critical to limit the fill-in of sparse direct methods.
Sparse direct solvers therefore perform a reordering step to reduce the fill-in. Multiple
strategies may be employed to do so. They usually consist of a graph partitioning
technique, such as the nested dissection, possibly refined with a local heuristic such as
AMF or AMF. In the H-Matrix community, the partitioning of the unknowns is referred
to as the clustering. Different algorithmic procedures can be considered to perform this
partitioning. The domain division techniques presented in § 1.2.3.2.2 as bisections can
be related to the ordering or partitioning techniques such as nested dissection presented
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(a) Cluster tree.
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(b) Separation tree [170, Fig. 2.1].
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4 5

(c) Separator
tree.

Figure 2.1: Classical tree structures used in the H-Matrix community (a) and the
Sparse-Direct community (c), respectively. The intermediate (b) is an alternative tree
to (c), as discussed in [170, Fig. 2.1].

in § 1.3.1.1. Bisections compute an edge separator to bisect a graph in two subsets
of unknowns. Nested dissections compute a vertex separator in order for the two
subgraphs to be independent from each other and thus avoid fill-in between them. Other
algorithms such as AMF or AMD may also be used to reduce fill-in; they are however
preferred as local heuristics for local subdomains, i.e., sets too small so that they are
not divided using nested dissection. Therefore, we may use nested dissection as a global
heuristic to find a good separator (or cluster) tree, i.e., sufficiently broad and short.
Then a local heuristic such as AMF or AMD can be used to efficiently compute a local
ordering. Bisection also leads to a good matrix partition in terms of compression for dense
matrices. It is consequently used on the separators, as the interactions of a separator with
another (or itself) generally lead to dense submatrices in the factors. The overall ordering
should eventually consist in a list of supernodes or clusters which partition the whole
mesh/graph.

The matrix can then be assembled following this ordering or cluster tree. Sparse
matrices usually rely on a symbolic factorization to create matrix blocks fitting the
sparse pattern inherent to the problem. Based on the supernodes previously mentioned,
the symbolic factorization must provide a way to locate permanent zeros (that will remain
so until the end of the computations) so that we may avoid their storage, or, from another
perspective, it must locate the fill-in generated by factorization. Compression can
greatly influence the efficiency of the solver through the representation of large matrix
blocks into a product of matrices in a low-rank format such as the Rk -Matrices.

In the case of H-Matrices, the ordering is based on a hierarchy, in a structure named
cluster tree, to be able to benefit from large compressions as well as from a fine granularity
when suited. The matrix is therefore constructed following the hierarchy of a row cluster
tree and column cluster tree. An admissibility condition decides then the format of a
submatrix, which can be either an H-Matrix, a Rk -Matrix or a Full-Matrix.

All these components may have an influence on the efficiency of the solution of
Eq. (2.1). In this chapter, we first review the contributions of the H-Matrix community in
§ 2.1 and the Sparse-Direct community in § 2.2 to design efficient sparse solvers enhanced
with low-rank compression. We then investigate how to find a sparser structure adequate
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for the storage of non-zeros in § 2.3. The use of a symbolic factorization is then discussed
in § 2.4. Finally we open the discussion to the FEM/BEM coupling in § 2.5.

2.1 Hierarchical Low-Rank Algorithms Extended to
Sparse Matrices

H-Matrices can reduce the memory consumption and computation time by means of
compression if the physical problem has low rank properties. More precisely, it can reduce
memory storage from n × n to O(n log n) for dense linear systems of n unknowns [114].
However it may prove inefficient on sparse linear systems. Indeed, an efficient sparse solver
has a low memory consumption due to the usage of symbolic factorization: O(nnz(LU)),
where nnz(LU)� n2 is the number of non-zeros in the factorized matrix (reduced by the
usage of nested dissection).

Literature on this subject shows that H-Matrices can also take advantage of the
characteristics of a sparse problem. [149] first exploited the sparsity of a problem in
the context of H-Matrices. Later, H-Matrices combined with nested dissection showed
a significant advantage over usual bisection-based H-Matrices [102]. We review here the
characteristics of the methods developed by the H-Matrix community that may be used
on sparse linear systems.

2.1.1 H-Matrices Based on Bisection

H-Matrices have originally been designed to be used on dense linear systems, as mentioned
in § 1.2.3. Therefore their construction is based on a pure bisection approach, following
the principles of divide and conquer algorithms. At each step of the domain division
method used to create a cluster tree (on which will be based an H-Matrix), the two newly
found subsets are separated by an edge separator. This is illustrated in Fig. 2.2 on a
square mesh. The cluster tree that arises from the bisections in Fig. 2.2b and 2.2c is
shown in Fig. 2.2d. This cluster tree leads to the block cluster tree depicted in Fig. 2.2e.
An example of an H-Matrix constructed with bisection applied on the Laplacian cube
from Fig. 1.17 is shown in Fig. 2.3. The initial H-Matrix, before factorization, is shown
in Fig. 2.3a, and the factorized H-Matrix is shown in Fig. 2.3b. We can see in this last
figure that fill-in is largely compressed (compressed blocks are colored green). Moreover,
the vast majority of the matrix is still filled with zeros indicated by the Rk -Matrices of
rank 0 (colored light green and without numbers), representing for example nearly 80%
of the 8000-unknowns Laplacian cube problem. Therefore, we must wonder how this
compression compares with reordering techniques such as the nested dissection.

2.1.2 H-Matrices Combined with Nested Dissection

We have seen in § 1.3.1.1.2 a method named nested dissection that recursively partitions
a graph in two independent clusters using a vertex separator, with the aim of minimizing
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(a) Perfect bisection of an
adjacency graph associated
with a 8× 8 mesh.

(b) Perfect Bisection without
the graph.

(c) Bisection resulting in an
unbalanced partitioning.
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(d) Binary cluster tree based on the
hierarchical bisection of (c).
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(e) Two binary cluster trees lead to a block cluster
quadtree.

Figure 2.2: Bisection would lead to a perfect partitioning on a cube, as illustrated in (a),
and, for visual reasons without the mesh, to the edge separators shown in (b). However,
in the general case, for irregular shapes such as those used in an industrial environment,
bisection could lead to an irregular partitioning as illustrated in (c). The first separator
is colored red, the two separators of the following level are colored green, and those of
the third level are colored blue. In following figures representing meshes, the mesh will
usually be hidden.
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(a) Sparse matrix before factorization, with
a bisection clustering.
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(b) Matrix after factorization, with a
bisection clustering.

Figure 2.3: We can see the fill-in induced by factorization is compressed (green blocks).
See legend in Fig. 2.4 for more details.

Rk-Matrix (darker = larger rank)

Void

Rk-Matrix with rank k =0

Full-Matrix (darker = less zeros)

Full-Matrix filled with zeros

Full-Matrix that would benefit 
from compression

Figure 2.4: Legend indicating the signification of colors for submatrices in all following
H-Matrices. Each submatrix may be stored either as a Full-Matrix (dense format), as
a Rk -Matrix (compressed format) or not be stored at all (void). The blue color is used
only in Fig. 2.20.

the fill-in generated by the factorization. Thus, instead of the classical recursive
bisection, nested dissection can be applied in order to find a ternary cluster tree and
causes large blocks of zeros to appear inside the resulting H-Matrix as well as in its
factors. The H-Matrix community used this approach under the denomination of Domain
Decomposition or Nested Dissection. To give an overview of the progresses made in this
area of research, we base ourselves on the last survey of Hackbusch first published in
2015 [115, § 5.8] listing various studies carried out in this field [102, 126, 138, 143]. In [107],
the authors propose a hierarchical solver relying on a black-box partitioning for methods
unaware of the geometry of the problem, which is able to compute a nested dissection.
Comparisons of H-Matrix solvers using this technique are performed in [105, 193] using
reference sparse solvers such as PARDISO or MUMPS.
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The clustering of separators is discussed in the literature (see § 2.1.3); we will discuss
this clustering more extensively in § 2.4.3. However, in the literature, the most frequently
used method is the recursive bisection [138, § 3.3].

Let us give an example of such a construction. We start from a configuration similar
to Fig. 1.26, i.e., a mesh divided using nested dissection. The first step of the division
of the mesh I is shown in Fig. 2.5, leading to the red separator S between I1 and I2

(a) First level of a recursive
domain division using nested
dissection over a 11× 11 mesh.

(b) Domains (separator S
and subdomains I1 and I2)
found using nested dissection,
without the mesh.

(c) Ternary cluster tree based
on a nested dissection.

Figure 2.5: One step of nested dissection.

(Fig. 2.5a shows a 11 × 11 mesh, but it can be generalized to larger meshes, and the
mesh is thus disregarded in Fig. 2.5b). This leads us to a ternary-based cluster tree as
shown in Fig. 2.5c. After this first division, I1 and I2 are recursively divided using nested
dissection, while the separator S is divided into {a, b} and {c, d}, and then {a, b} divided
into {a} and {b} as illustrated in the graph (Fig. 2.6a) and the cluster tree (Fig. 2.6b),
leading to the block cluster tree in Fig. 2.6c. The interaction between I1 and I2 is null.
Eventually, this leads to a sparse H-Matrix such as depicted in Fig. 2.6d.

More generally, we start from the initial cluster τ = I. Then τ is divided by
nested dissection into subdomains τ1 and τ2, and a separator τS, via the function
NestedDissection(τ). Each subdomain cluster is then divided using nested dissection
whereas all separators are divided using bisection via the method Bisection(τ) until we
reach the size limit NND.

Definition 2.1. NND is the minimum size of a cluster on which the nested dissection is
performed. Below that threshold, other strategies may be applied.

Furthermore, τ1 and τ2 are arranged in arbitrary order but τS must be ordered after
them. The corresponding recursive algorithm is shown in Algorithm 25, where the function
IsSparse(τ) is defined to return True if a cluster is not a separator (or one of its
descendant). The size Nleaf of the leaf clusters is not a priori equal to the size NND

determining when to stop the nested dissection algorithm. Below the threshold NND,
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(a) Adjacency graph.
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of the tree is 9.

78

175

157
175

78

157

175

386

253

350

333
350

253

333

350

386

175

350

386

862

468

564

550
564

468

550

564

772

647

743

731
743

647

731

743

772

564

743

772

862

386

772

862

1810

940

1036

1019
1036

940

1019

1036

1247

1114

1211

1194
1211

1114

1194

1211

1247

1036

1211

1247

1724

1328

1425

1410
1425

1328

1410

1425

1633

1507

1603

1589
1603

1507

1589

1603

1633

1425

1603

1633

1724

1247

1633

1724

1810

862

1724

1810

3710

3800

3710

3800

3710

3800

1889

1985

1969
1985

1889

1969

1985

2197

2063

2161

2142
2161

2063

2142

2161

2197

1985

2161

2197

2672

2277

2370

2359
2370

2277

2359

2370

2584

2449

2544

2529
2544

2449

2529

2544

2584

2370

2544

2584

2672

2197

2584

2672

3620

2750

2847

2830
2847

2750

2830

2847

3058

2925

3023

3004
3023

2925

3004

3023

3058

2847

3023

3058

3534

3136

3231

3216
3231

3136

3216

3231

3444

3309

3404

3389
3404

3309

3389

3404

3444

3231

3404

3444

3534

3058

3444

3534

3620

2672

3534

3620

3710

3800

3710

3800

3710

3800

862

1724

1810

862

1724

1810

2672

3534

3620

2672

3534

3620

3710

3800

3710

3800

7700

7800

7700

7800

7700

7800

7900

8000

7900

8000

7900

8000

7700

7800

7700

7800

7700

7800

7900

8000

7900

8000

7900

8000

7700

7800

7700

7800

7900

8000

7900

8000

3881

3977

3963
3977

3881

3963

3977

4186

4059

4155

4141
4155

4059

4141

4155

4186

3977

4155

4186

4662

4264

4360

4342
4360

4264

4342

4360

4573

4439

4536

4519
4536

4439

4519

4536

4573

4360

4536

4573

4662

4186

4573

4662

5610

4742

4838

4823
4838

4742

4823

4838

5049

4919

5016

5000
5016

4919

5000

5016

5049

4838

5016

5049

5524

5127

5224

5206
5224

5127

5206

5224

5436

5303

5400

5382
5400

5303

5382

5400

5436

5224

5400

5436

5524

5049

5436

5524

5610

4662

5524

5610

7510

7600

7510

7600

7510

7600

5692

5788

5775
5788

5692

5775

5788

5997

5868

5967

5950
5967

5868

5950

5967

5997

5788

5967

5997

6472

6076

6173

6156
6173

6076

6156

6173

6385

6251

6350

6331
6350

6251

6331

6350

6385

6173

6350

6385

6472

5997

6385

6472

7420

6554

6649

6637
6649

6554

6637

6649

6859

6730

6828

6813
6828

6730

6813

6828

6859

6649

6828

6859

7334

6938

7035

7018
7035

6938

7018

7035

7246

7114

7212

7195
7212

7114

7195

7212

7246

7035

7212

7246

7334

6859

7246

7334

7420

6472

7334

7420

7510

7600

7510

7600

7510

7600

4662

5524

5610

4662

5524

5610

6472

7334

7420

6472

7334

7420

7510

7600

7510

7600

7700

7800

7700

7800

7700

7800

7900

8000

7900

8000

7900

8000

7700

7800

7700

7800

7700

7800

7900

8000

7900

8000

7900

8000

7700

7800

7700

7800

7900

8000

7900

8000

862

1724

1810

862

1724

1810

2672

3534

3620

2672

3534

3620

3710

3800

3710

3800

862

1724

1810

862

1724

1810

2672

3534

3620

2672

3534

3620

3710

3800

3710

3800

4662

5524

5610

4662

5524

5610

6472

7334

7420

6472

7334

7420

7510

7600

7510

7600

4662

5524

5610

4662

5524

5610

6472

7334

7420

6472

7334

7420

7510

7600

7510

7600

7700

7800

7700

7800

7900

8000

7900

8000

7700

7800

7700

7800

7900

8000

7900

8000

(d) H-Matrix applied on the Laplacian cube
(Fig. 1.17). One tall & skinny block is highlighted
in blue. See legend in Fig. 2.4.

Figure 2.6: Construction of an H-Matrix using nested dissection with bisection applied
on separators.
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Algorithm 25: Construction of a cluster tree based on nested dissection, coupled
with bisection applied on separators.
Function CreateClusterTree(τ)

1 if |τ | ≤ Nleaf then
2 Children(τ) = ∅ . The cluster τ will be a leaf

3 else
4 if IsSparse(τ) ∧ |τ | ≥ NND then
5 (τ1, τ2, τS)← NestedDissection(τ)
6 CreateClusterTree(τ1)
7 CreateClusterTree(τ2)
8 CreateClusterTree(τS)
9 Children(τ) = {τ1, τ2, τS}

10 else
11 (τ1, τ2)← Bisection(τ)
12 CreateClusterTree(τ1)
13 CreateClusterTree(τ2)
14 Children(τ) = {τ1, τ2}

reordering algorithms may be used, such as the recursive bisection or a local heuristic
such as AMF or AMD, until a smaller size Nleaf is reached. However, in the literature,
NND is equal to Nleaf as far as we know, due to the fact that no local heuristic is used.
The functions NestedDissection(τ) and Bisection(τ) may be either geometrical or
topological, as we will see in § 2.3.1.

2.1.3 Separator Clustering in the H-Matrix Literature

As we have mentioned earlier, in order to benefit from an efficient compression, recursive
bisection is usually preferred for the clustering of separators in the literature [138, § 3.3],
possibly modified following the rules detailed in § 2.1.5.

However, in [53], the authors investigate a way to avoid the computation of weak
interactions between a separator and its neighbors. They subdivide the separators in
order to be able to better separate these interactions, in a way similar to the algorithms
discussed in § 2.4.3.3.

2.1.4 Using Symbolic Information in Combination with a
H-Matrix Structure

In [126], the authors study the computation of an approximate Cholesky decomposition
of a sparse matrix using H-Matrices. They propose to rely on the elimination graph to
compute a sparse block structure that will be used in the construction of an H-Matrix
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used for the decomposition. The computation of this sparse structure is similar to what is
done by the Sparse-Direct community and presented in § 1.3.1.2. A block column symbolic
factorization is used, under the name of “cluster-wise elimination” instead of a “vertex-wise
elimination” (a scalar symbolic factorization), resulting in a block column structure. The
“sparsity pattern” discussed in that paper relies on the “complete connection graph”
associated with the problem. This structure is closely related to the notion of quotient
elimination graph previously mentioned, or symbolic information. Based on this sparsity
pattern, it can then be decided which blocks should be stored. In the paper, the authors
propose to modify the construction of the block cluster tree in the following way. A block
(σ, τ) is admissible and stored as a “Null”-type (zero) matrix if no edge connects σ and τ
in the connection graph. The diagonal blocks are stored as Full-Matrices. The remaining
non-zero off-diagonal blocks in the hierarchy of the H-Matrix are stored in a low-rank
format based on a QR decomposition. Also, the H-Matrix seems to be initialized with
Full-Matrices and low-rank matrices are only used during the Cholesky decomposition.
Yet, this method is strongly related to the algorithms we discuss in § 2.4.2.

Not satisfied with the number of re-compression performed by this algorithm, another
proposition of this paper is to use a method similar to multifrontal methods (§ 1.3.1.3.2).
If we consider the dense frontal matrix represented as the 2 × 2 matrix F in Eq. (1.26),
the authors then propose to use a low-rank representation to compress the matrix F21.

2.1.5 Geometric Prevention of the Occurrence of Tall & Skinny
Blocks

Let us consider a division of a cluster τ ∈ I using nested dissection, as detailed in
Algorithm 25. When applying bisection to create a separator subtree, another problem
arises from the difference between the sizes of each subdomain τ1 and τ2 and the
separator τS. τ1 and τ2 are usually far larger than τS, as, for three-dimensional linear
systems, they are also three-dimensional domains whereas τS is two-dimensional. For
two-dimensional linear systems, the same applies, with I1 and I2 being two-dimensional
and τS one-dimensional. In later divisions, τ1 and τ2 are subdivided nearly in two, and τS
is divided in exactly two subsets at each recursion, thus propagating the difference of size
between the descendants of τS and their counterparts of the same level. This gives rise to
“tall & skinny” blocks in the resulting matrix, as illustrated in Fig. 2.6d. A large number
of off-diagonal blocks are very flat (bottom-left) or tall (top-right) due to this difference
in size. The unknowns located under the separator τS are very few in comparison to the
number of their siblings τ1 and τ2.

[114, §9.2.4] details a different construction of the cluster tree to avoid this distortion
by dividing separators subtrees in a new way, based on the geometrical dimensions of
these clusters. The notation Td(I) is used to refer to cluster trees in d dimensions,
i.e., non-separator subdomains. Td−1(I) refers to cluster trees in d − 1 dimension, i.e.,
separators. Then, following this notation, a cluster τ ∈ Td(I) is divided using nested
dissection into τ1 ∈ Td(I) τ2 ∈ Td(I) and τS ∈ Td−1(I). For d = 2, a cluster τ ∈ Td−1(I) is
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then divided using bisection only one every two levels, following the value of the function

κ(τ) = min{level(τ)− level(τ ′) / τ ′ ∈ Td(I) ancestor of τ}.

If κ(τ) is odd, τ remains unchanged, else it is divided using bisection. Indeed,
bisection divides the diameter of clusters by about

√
2 each level for a dimension d = 2

(consequently, by 2 every two levels) and by 2 each level for d = 1, so using κ to decide to
divide or not clusters ensures the same division ratio applies on both clusters from Td(I)
and Td−1(I), i.e., a division by 2 every two levels. For three-dimensional linear systems,
this formula can then be changed accordingly. The diameter of a cluster τ ∈ T3(I)
is divided by (approximately) 2 every three levels whereas the diameter of a cluster
τ ′ ∈ T2(I) is divided by 2 every two levels. Therefore one should arrange the clusters
division of T2(I) to take place two out of three times using this technique. The first levels
of this method for two-dimensional linear systems are shown in Fig. 2.7. This can be

SI1 I2

I

S1 S2

 

 

Figure 2.7: Cluster tree skipping the separator S division every one level out of two.

seen as a geometry-preserving method in that the matrix blocks constituting the final
H-Matrix will therefore have row and column clusters with closer geometric dimensions.

2.2 Sparse Direct Solvers Using Compression
Techniques

In the same manner the H-Matrix community has introduced sparse-specific techniques
into the H-Matrix arithmetic for the solution of sparse linear systems, the Sparse-Direct
community has been conducting research on the introduction of low-rank compression and
hierarchical techniques to lower the computational requirements of sparse direct solvers.

2.2.1 Compression Formats in Sparse Solvers

Low-rank compression techniques have successfully been introduced in multifrontal and
supernodal solvers. The compression is applied differently depending on the factorization
method employed.

Multifrontal methods focus on the compression of frontal matrices and Schur
complements involved in the updates of the assembly tree. Multiple hierarchical formats
(§ 1.2.3.4) have been studied for such a compression. For example, HSS-Matrices have
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been incorporated inside multifrontal methods [190, 191] for the compression of frontal
matrices. They have also been introduced in the STRUMPACK software package [95]. In
[25], the HODLR format is used instead of the HSS format. Likewise, researchers from
the MUMPS [17, 18, 157, 188] solver have studied the impact of single-level hierarchical
matrices (referred to as BLR) to compress frontal matrices. We will refer to this solver
as BLR-MUMPS in this thesis. A simplified example illustrates the use of BLR for the
compression of frontal matrices in Fig. 2.8a.
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(a) Simplified representation of frontal matrices
compressed using BLR format with a 4 × 4
partitioning. Every off-diagonal block is here
stored in a low-rank representation (in green).
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(b) Simplified representation of a supernodal
storage of which some submatrices are stored
into a low-rank format and diagonal blocks are
compressed using BLR.

Figure 2.8: Example of low-rank matrices usage in sparse direct methods.

Supernodal methods instead focus on the compression of separator diagonal blocks or
off-diagonal blocks that are sufficiently large to benefit from compression. The authors of
[59] introduce the use of off-diagonal compression (HODLR format) on diagonal blocks and
use low-rank compression on submatrices arising from the interactions of two separators.
The use of single-level hierarchical matrices (BLR) has also been introduced in the
supernodal context [164, 165] for the PaStiX solver, where separator diagonal blocks,
as well as off-diagonal blocks considered large enough, are compressed using this format.

Once submatrices are stored in a low-rank format, one may also discuss the possibility
of relying on low-rank arithmetic. This is the subject of [164, § 3.2] or the LUAR variant
developed in BLR-MUMPS [157].

Furthermore, modifications have been proposed regarding the order of the operations
involving compressed submatrices. For example, in the context of multifrontal methods,
the authors in [17] introduced a variant called FSCU, for Factor, Solve, Compress and
Update, which performs a right-looking factorization where each submatrix impacted by
the contribution of the elimination of a supernode may be compressed before applying
the updates (see Eq. (1.11) in § 1.3.1.1 based on Algorithm 2). In [157], a variant called
UFSC is discussed, the corresponding left-looking variant of FSCU, as well as variants
UFCS, UCFS and CUFS, which, as their names suggest, compress at different times of the
algorithm. In the context of supernodal solvers, [164] studies the impact of compressing
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all matrix blocks at the start of the factorization (the Minimal Memory strategy) or
compressing blocks after all contributions have been applied to it (the Just-In-Time
strategy).

With respect to these methods, the compression scheme employed in the hierarchical
solver considered in this thesis relies on the admissibility condition described earlier in
§ 1.2.3.2.3 and therefore compresses each submatrix satisfying the admissibility condition
before factorization. Each block remains compressed until the end of the factorization or
if its storage surpasses that of the dense format.

Other elements of comparison may include the hierarchical format involved. Indeed,
we have seen that HSS or BLR or H-Matrices are used in sparse solvers for example.
While BLR offers an easier implementation (by tile), the lower complexity of H-Matrices
is more interesting for larger matrices. However, linear systems with more than two
million unknowns may not be large enough for the low exponent ofH-Matrices complexity
to compensate its larger constant, as shown by [188, § 2.3.1]. For a problem with n
unknowns, the authors write the H-Matrix arithmetic complexity under the form αHn

βH

and the BLR complexity under the form αBn
βB and show examples where αH > αB while

βH < βB. Therefore, H-Matrices may necessitate even larger linear systems for their
near-linear complexity to counterbalance this constant. That study also shows examples
where HSS-Matrices are more interesting than H-Matrices for low precision requirements,
while the reverse is true for higher precisions.

2.2.2 Separator Clustering in the Sparse-Direct Literature

As we have mentioned earlier, in order to benefit from an efficient compression, the
H-Matrix community rely on a separator clustering based on recursive bisection [138,
§ 3.3]).

In the Sparse-Direct community, the ordering of separators is often discussed with the
goal of minimizing communications or the number of off-diagonal blocks. For example,
the authors of [180, chapter 7] introduced strategies reducing the communications in
the MUMPS solver. In [166], the authors discuss methods minimizing the number of
blocks based on TSP (Traveling Salesman Problem) heuristics. SCOTCH [162] proposes
strategies of which we give example in § 2.4.4.2 that will later be used in our experiments.
In [188], the block clustering for the BLR-MUMPS solver is discussed. Two strategies
are proposed. The explicit clustering, which clusters each front independently, leads
to good blocking sizes but each variable is assigned to a different reordering in each
front. The inherited clustering, which assigns the same clustering for each front based
on the previously computed separator clustering, leads to irregular blocking sizes. This
inherited clustering has then been developed using the algebraic concepts from the black
box partitioning introduced in [107].

The Sparse-Direct community has also investigated separator orderings based on
the rest of the nested dissection in an effort to produce blocks satisfying low-rank
characteristics. In [164, chapter 5] for example, a clustering based on the interactions
with separators from close levels in the separator tree is investigated. If we focus on the
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first separator for example, the idea is to first select the vertices corresponding to the
traces of the second and third separator, i.e., the vertices connected to these separators.
If some vertices are then isolated between these traces, they are aggregated together
within the traces until a specified size threshold has been reached. Once this pre-selection
has been made, the rest of the vertices is clustered using a K-way partitioning, i.e.,
an equivalent to recursive bisection. This method therefore uses the same approach as
described in § 2.4.3.3 in the top-down approach (see Fig. 2.43, a method introduced first
in [11] and also presented in [84]) for the first levels of recursion and then switches to
recursive bisection for the rest of the recursion.

2.3 Investigation of a Sparser Structure for H-Matrices
We now discuss how to exploit sparse techniques within a hierarchical solver, starting
from nested dissection. Sparse solvers indeed exploit the sparsity of sparse linear systems
to reduce their memory usage and reach a complexity of O(nnz(LU)), as mentioned
previously in § 2.1, where nnz(LU) is the number of non-zeros in the factors. We thus
intend to give an overview of the problems and possible solutions for the adaptation of
hierarchical methods to sparse problems.

2.3.1 Global Clustering Based on Nested Dissection

We distinguish three types of clusterings resulting from nested dissection methods. The

 Global

Local Subdomain

SeparatorSeparator

Local Subdomain

Figure 2.9: Categories of clusterings used on a cluster τ following the position of τ in the
cluster tree. The global clustering corresponds to the computation of the nested dissection
here, while a local subdomain strategy may be used to cluster subdomain leaves and a
local separator strategy to cluster separators.

global clustering is the computation of the nested dissection in itself. The local
subdomain clustering is the possible clustering used on the subdomain leaves of the
nested dissection (leaves in Fig. 1.26b). With the notations used in § 2.1.2, it corresponds
to applying a new clustering strategy on sparse-labeled clusters if their size is under the
threshold NND (Definition 2.1). The local separator clustering is the clustering used in
the separators. These categories are shown in Fig. 2.9 with respect to their location in the
cluster tree arising from nested dissection. We here discuss global and local subdomain
clusterings. The local separator clustering is discussed in § 2.4.3. The global clustering
(computing a nested dissection) may be performed either in a “geometrical” fashion, based
on the space coordinate of the unknowns in the physical mesh of the problem, or in a
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“topological” fashion, using graph partitioning tools such as SCOTCH [62] applied to the
adjacency graph of the sparse matrix.

2.3.1.1 Geometric Nested Dissection (BBox ND)

As the geometry of the problem is known, we can perform the domain division
into separators and subdomains using the same procedures as the bisection methods
(§ 1.2.3.2.2) slightly adapted to compute not an edge separator but a vertex separator.
These bisections rely on bounding boxes and therefore the space coordinates of the
unknowns. The bisection method may be median, geometric or hybrid, though we
have focused on the median bisection in this thesis. The algorithm used in our
application to compute such a geometry-based separation is detailed in Algorithm 26.
A bounding box bisection is first applied to decompose τ into two subdomains τ1 and

Algorithm 26: Division of a cluster into three subdomains (two non-separators
and one separator) based on a prior bisection.
Function GeometricSeparation(τ)

1 (τ1, τ2)← Bisection(τ) . Bounding-box based
2 τS ← ∅
3 traversingEdges ← ∅
4 for (i ∈ τ1) ∧ (j ∈ AdjG(i)) ∧ (j ∈ τ2) do
5 traversingEdges ← traversingEdges ∪ (i, j)

6 for (i, j) ∈ traversingEdges do
7 if pickFromLeft() then
8 τS ← τS ∪ i
9 τ1 ← τ1 \ i

10 traversingEdges ←traversingEdges \ {(k, `) | k = i}
11 else
12 τS ← τS ∪ j
13 τ2 ← τ2 \ j
14 traversingEdges ←traversingEdges \ {(k, `) | ` = j}

15 return (τ1, τ2, τS)

τ2, which can also be formulated as the computation of an edge separator between
the two subdomains. Once the edges traversing between τ1 and τ2 are computed
(Algorithm 26 lines 4-5), we may pick endpoints from this edge separator and thus
create a vertex separator. There are multiple ways to decide which endpoint to
pick from each edge, which is the purpose of the function pickFromLeft() here.
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Among the considered implementations of this function, we may decide to keep:
1. approximately an equivalent number of unknowns from the two subdomains τ1 and
τ2 by alternatively picking one vertex from one cluster and the following from the
other cluster;

2. the first half vertices from τ1 and the second half from τ2;
3. only the vertices from τ1, thus creating an imbalance between the left and right

subdomains but leading to a perfectly planar separator (if the edge separator is
planar);

4. both endpoints for each edge, leading to a double separator, in the sense that two
layers of vertices separate the left subdomain from the right one.

An example of geometric nested dissection using the first method is given in Fig. 2.10a.
For the experiments, we retain the last two methods (3 and 4). The third method is
simply referred to as BBox ND while the last method is referred to as BBox ND 2.

2.3.1.2 Topological Nested Dissection (Scotch ND)

Topological tools such as SCOTCH [62] or METIS [132] are often used for graph
partitioning and a fortiori for nested dissection. This usually applies to solvers that
do not have the geometric information necessary to compute a geometric-based nested
dissection such as discussed in the previous paragraph. However, due to the quality of
performance in time computation as well as in the resulting separator tree, we will also
use these tools as a control over the quality of the computed geometric nested dissection.
In this thesis, the strategy given to SCOTCH to compute a nested dissection is given in
Algorithm A.1 (see appendix A). An example of topological nested dissection using this
SCOTCH strategy is given in Fig. 2.10b.

2.3.1.3 Hybrid Clustering Combining Nested Dissection and Minimum Fill
(Scotch ND+)

Using nested dissection as a global clustering to partition a domain into smaller
independent subdomains is only one of the many existing clusterings used in sparse solvers
which we have introduced in § 1.3.1.1.2. To further reduce fill-in in the local subdomains
of the separator tree resulting from nested dissection, one may rely on the use of local
orderings, preferred for smaller matrices. Therefore, we consider in this thesis the coupling
between a nested dissection as a global clustering and the Minimum Fill method as a local
clustering on local subdomains. To compute the global and local clustering, we rely on
SCOTCH [62]. The strategy given to SCOTCH to compute this coupling is given in
Algorithm A.2 (see appendix A).

2.3.2 Preventing the Occurrence of Tall & Skinny Blocks

Following the discussion of § 2.1.5 on the literature’s approach to minimize tall & skinny
blocks, we introduce here some alternative ways to prevent tall & skinny blocks. The usual
approach relies on skipping divisions in the separator subtree to maintain a geometric
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(a) Nested dissection using Bounding-Boxes (BBox ND).

(b) Nested dissection using SCOTCH (Scotch ND).

Figure 2.10: Three levels of nested dissection using Bounding-Boxes and using SCOTCH.

balance between clusters from the separator and the ones associated with subdomains
(non-separator clusters). We discuss here a similar approach aiming at preserving an
algebraic balance between the size of each cluster, i.e., their cardinality, instead of their
geometric diameter. To this end, let us consider the situation of Fig. 2.5b and 2.5c.
The separator S is of a lesser dimension than I1 and I2 (one-dimensional if the problem
is two-dimensional) and its cardinality is therefore smaller. We will use the notation
Desc`(τ) to indicate the descendants of τ at a specific level `. We will also use the
notation SparseDesck(τ1) indicating the subdomain (non-separator) descendants of τ1.
The problem is formulated as follows:

Problem 1. Let (τ1, τ2, τS) be a partition computed through nested dissection with
|τS| � min(|τ1|, |τ2|). Find k such that skipping k divisions in the separator τS
subtree leads to its cardinality and that of its descendants matching approximately the
cardinalities of the descendants of τ1 and τ2. This may be formulated as:
∀σS ∈ Desc`(τS), ∀σ1 ∈ Desc`(τ1),∀σ2 ∈ Desc`(τ2), |σS| ∼ |σ1| ∼ |σ2|.

The dimensions of the problem are shown in Fig. 2.11.
We proceed in two steps.
The first step consists in establishing a relation between the mean cardinality of

the descendants of the separator τS and the mean cardinality of non-separator clusters
descendants of τ1 and τ2, i.e., the other separators are put aside for now. We suppose first
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Figure 2.11: Cluster tree skipping the division of separator S for k levels in order for the
cardinality of S to be equivalent to those of the descendants of I1 or I2.

that
|τ1| ∼ |τ2|. (2.2)

The cardinality of the clusters in branches of the cluster tree are approximated to be
divided by two at each level. Indeed, a two-dimensional cluster of cardinality n × n
is approximately divided into two clusters of cardinality n(n−1)

2
and a separator of

cardinality n. A three-dimensional cluster of cardinality n3 leads to two clusters of
cardinality n2(n−1)

2
and a separator of cardinality n2. Keeping only the highest term

leads to the aforementioned approximation. The descendants of τ1 (or τ2) have a
cardinality approximately equal to |τ1|

2k
after k divisions (except for the separators and

their descendants):

∀σ1 ∈ SparseDesck(τ1), |σ1| ∼
|τ1|
2k
. (2.3)

The mean cardinality of the descendants of the separator τS should be equal to that term.
Thus, by choosing

k = log2

(
|τ1|
|τS|

)
(2.4)

the number of levels to skip before dividing the separator leads to its cardinality being
equivalent to the mean cardinality of the subdomain clusters of the same level,

∀σS ∈ Desck(τS),∀σ1 ∈ SparseDesck(τ1), |σS| ∼ |σ1|. (2.5)

The next divisions are then also equivalent if bisection is used on the descendants
of separators: both nested dissection and bisection leads to a division by two of the
cardinality of clusters at each level using Eq. (2.3). Note that in both two-dimensional
and three-dimensional contexts, we obtain approximately k = log2

(
n−1
2

)
.

We have studied this equivalence for only one separator and the rest of the tree,
excluding other separators. Let us now produce an equivalence between separators. This
is the second step of our reasoning. The application of formula (2.4) to skip the division
of other separators divisions induces this equivalence. Indeed, if a second separator τR is
also divided using this technique, then the mean cardinality of its descendants is equivalent
to the mean cardinality of subdomain clusters of the same level, i.e.,

∀σR ∈ Desck(τR),∀σ1 ∈ SparseDesck(τ1), |σR| ∼ |σ1|. (2.6)
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From (2.5) and (2.6), by transitive relation between the equivalence ∼ of the descendants
of τS and of τR with the rest of the subdomain clusters of the same level, Problem 1 has
been solved.

This policy leads to a more balanced cluster tree: the leaves of separator subtrees (with
approximately the same cardinality as the other leaves by definition) are also located at
the same depth as the other leaves. An H-Matrix constructed with this technique is
illustrated in Fig. 2.12. We must however point out that even if this technique is used
on all separators, skipping levels when possible, another problem remains. If a separator
τ is coincidentally a leaf (or too low in the cluster tree) and its cardinality is too small
compared to the other leaves of the global cluster tree, meaning for example that the other
branches are shorter than that of τ , it will not benefit from this technique. Skipping levels
of division will not be useful as other branches will not be further divided. An example
of remaining tall & skinny blocks is shown in Fig. 2.12 in orange.

Another issue is the inexactitude of the computations. We rely on approximations
made before the actual divisions of the subsequent clustering of lower levels. If Eq. (2.2)
or Eq. (2.3) are not satisfied, then the solution does not answer Problem 1.

Algorithm 27: Construction of a block cluster tree, preventing tall & skinny
blocks with an abstract size-preserving approach.
Function CreateBlockClusterTree(σ × τ)

1 if IsLeaf(σ) ∧ IsLeaf(τ) ∨ Admissible(σ, τ) then
2 Children(σ × τ)← ∅ . Cluster Leaf

3 else
4 if IsLarger(σ, τ, R) then
5 for σ′ ∈ Children(σ) do
6 Children(σ × τ)← Children(σ × τ) ∪ (σ′, τ)
7 CreateBlockClusterTree(σ′, τ) . τ is not divided

8 if IsLarger(τ, σ, R) then
9 for τ ′ ∈ Children(τ) do

10 Children(σ × τ)← Children(σ × τ) ∪ (σ, τ ′)
11 CreateBlockClusterTree(σ, τ ′) . σ is not divided

12 else
13 for (σ′, τ ′) | σ′ ∈ Children(σ), τ ′ ∈ Children(τ) do
14 Children(σ × τ)← Children(σ × τ) ∪ (σ′, τ ′)
15 CreateBlockClusterTree(σ′, τ ′) . Division of σ and τ

These issues led us to another method to tackle this problem: a modified algorithm
for the creation of block cluster trees, detailed in Algorithm 27, relying on the division
of the largest dimension of the current block. With this modified algorithm, clusters
do not need to have equivalent cardinalities or geometric diameters among the same
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Figure 2.12: Tall & skinny blocks are avoided (example in blue) by skipping levels in the
cluster tree. We can still see tall & skinny blocks (example in orange) when separators
are leaves and are therefore not subdivided. See legend in Fig. 2.4.
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level of clustering. The function IsLarger(σ, τ, R) used in the algorithm is either an
algebraic comparison of the cardinality of the clusters or a geometric comparison of their
diameter. The algebraic version, comparing the cardinalities of σ and τ , is defined in
Algorithm 28. To preserve a geometric balance between the cluster diameters, the function

Algorithm 28: Algebraic comparison of the cardinality of σ and τ using a
ratio R.
Function IsAlgebraicLarger(σ, τ, R)

1 return |σ| > R · |τ |

IsGeometricLarger(σ, τ, R) is defined in Algorithm 29.

Algorithm 29: Geometric comparison of the diameters of σ and τ using a
ratio R.
Function IsGeometricLarger(σ, τ, R)

1 return Diameter(σ) > R · Diameter(τ)

Using Algorithm 27, when a block Mσ×τ is created, the dimensions of τ and σ are
used to determine if the algorithm should recurse on their respective children to create
the children of Mσ×τ . If τ is too large compared to σ by a chosen ratio R, we create
a block using σ and the children of τ . This is depicted in Fig. 2.13. As depicted in
Fig. 2.13b, the algorithm may either use the comparison IsLarger(τ, σ) on all clusters
matrix blocks Mσ×τ or it can be performed only if one of the two clusters is a leaf. The
latter has been implemented due to its easier implementation. An example of a matrix
constructed using this technique relying on algebraic comparison is shown in Fig. 2.14.
One can see the shape of the blocks are more square than blocks resulting from previous
algorithms. For this example, and in the rest of this document, the ratio has been set to

R =
√

2. (2.7)

Matrix blocks tend towards a shape closer to a square for a ratio close to
√

2. Choosing
a ratio between σ and τ lower than

√
2 would be meaningless, as the children of a cluster

τ are usually around two times smaller than τ and the ratio between the children blocks
and σ would then be lower than

√
2
2

= 1√
2
, meaning the reversed ratio (τ compared to σ

instead of σ compared to τ) would only be greater.
Table 2.1 summarizes the methods introduced in this discussion (of which the primary

goal is to minimize the distortion of tall & skinny blocks) based on either a geometric
or an algebraic balance, and a modification of either the cluster tree or the block cluster
tree. We refer the interested reader to [114, § 5.5.3] for a discussion on alternative block
cluster tree construction leading to a binary block cluster tree instead of a quadtree.
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τ

τ1 τ2

σ

 

σ

σ2

σ1

(a) Example of a rectangular hierarchical block such as constructed initially. The recursion stops
after the first (red) step because σ1 and σ2 are leaves.

τ 
τ1 τ2

σ

σ2

σ1

 τ 
τ1 τ2

σ

 

σ

σ2

σ1

(b) The size of τ is too large so we do not recurse on the children of σ and create blocks using
σ and the children of τ . This is done until the size of the rows and the columns are sufficiently
close. The left example shows a division using this difference in size at the creation of Mσ×τ .
The right example depicts a division using this difference on leaves only (see Fig. 2.13a). The
latter is used in practice due to implementation consideration.

Figure 2.13: Tall & skinny example of a matrix block Mσ×τ . The first level of hierarchy
is colored red while the second level is colored green.

2.3.3 Example of a Sparse Format on the H-Matrix Leaves

To further exploit the sparsity pattern of a matrix, another (sparser) format could
be used on the leaves of the H-Matrix, along with the preexisting leaf formats, i.e.,
Rk -Matrices and Full-Matrices. We present here a format discarding the empty rows
and columns of a submatrix and grouping the remaining non-empty rows and columns
together via a permutation into a single, smaller storage. The format may be applied on
either Rk -Matrices or Full-Matrices. This format matches more precisely the pattern of
non-zeros of the matrix but the local permutation means an extra step of verification of
the ordering at each performed operation. Fig. 2.15 shows an example of a m×n matrix
block with nnz non-zeros. For such a block, we consider:
• the Admissibility format, leading to the Full-Matrix in Fig. 2.16 and the Rk -Matrix

in Fig. 2.17;
• the Fit format, leading to the restricted Full-Matrix in Fig. 2.18 and the Rk -Matrix

in Fig. 2.19;
However this also implies a reordering local to each submatrix. We will see in § 2.4.3.4

another way to benefit from this sparsity without requiring such a constraint.
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Figure 2.14: Tall & skinny blocks are avoided by using an algebraic balance when
constructing a block cluster tree (Algorithm 27). Here, the ratio R has been set to√

2. The tall & skinny blocks in orange in Fig. 2.12 are not present anymore. See legend
in Fig. 2.4.

Figure 2.15: Non-zero pattern (black rectangles) of a m× n matrix block. There are nnz
non-zeros.
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Cluster tree Block cluster tree Balance
[114, §9.2.4], Fig. 2.7 Modified Canonical Geometric
Fig. 2.11 and 2.12 Modified Canonical Algebraic

algorithms 27 and 29 Canonical Modified Geometric
algorithms 27 and 28 and Fig. 2.14 Canonical Modified Algebraic

Table 2.1: Methods to prevent tall & skinny blocks, preserving a geometric or an algebraic
balance, and based on the modification of the cluster tree or the block cluster tree.

Figure 2.16: Admissibility Full format. Figure 2.17: Admissibility Rk format.

m

n

mb

nb

Figure 2.18: Fit Full format: a
permutation that leads to a better
locality of non-zeros.

kb

m

n

mb

nb

Figure 2.19: Fit Rk format: Rk
compression on a Fit Full block.

2.3.4 Towards a Sparse Admissibility Condition

Another approach to further reduce the memory consumption of H-Matrices is to
elaborate a new admissibility condition to compress more submatrices. Indeed, Fig. 2.20
shows that a lot of blocks are mistakingly stored as Full-Matrices while they would benefit
from compression. The original admissibility condition described in Eq. (1.8) for dense
linear systems seems to fail categorizing some blocks as admissible even though they should
have been. In order to avoid confusion, we refer to this original admissibility condition as
strong. We may now wonder what a sparse-specific admissibility condition should rely on.
In fact, if we take a closer look at Fig. 2.20, we may observe that almost every block that
constitutes an interaction between a separator and a local subdomain is colored blue, i.e.,
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Figure 2.20: A lot of dense blocks would
benefit from compression. Blue blocks
represent such blocks while, as for the
other figures, red blocks are Full-Matrices
and green blocks are Rk -Matrices. The
parameter ε is here equal to 10−10. See
legend in Fig. 2.4.
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Figure 2.21: Non-separator compression for
ε = 10−10. Some separator/separator blocks
are still stored as Full-Matrices while being
empty. See legend in Fig. 2.4.

should have been compressed. This is due to the fact that separators receive contributions
mainly from other separators they are connected to. Other off-diagonal blocks are very few
and sparse. We may choose a smaller threshold for the size of these blocks, as discussed in
the previous section, or a sparse format (for example the Fit format) to reach the fineness
of these non-zeros. But we focus here on an alternative solution: using compression for
blocks that represent an interaction with one non-separator local subdomain, in addition
to the blocks decided admissible by the strong criterion. We refer to this admissibility
condition as non-separator. Instead of creating a lot of small blocks to handle, as a sparse
solver would usually resort to, we keep larger off-diagonal blocks but compressed them.
This is not as optimal as a sparse format in terms of memory consumption but has the
advantage of running faster due to the operations involving larger blocks. An example of
an H-Matrix using this criterion may be seen in Fig. 2.21.

To measure the effectiveness of each criterion, we also implemented an oracle
admissibility condition. After having computed the LU factorization, we determine the
most effective storage format (being either a Rk -Matrix or a Full-Matrix) for each block
of the H-Matrix. We also compute a coarsening method similar to [199, III.C]. The
coarsening method studies for eachH-Matrix node τ of which all children areRk -Matrices,
and compares the storage of the node τ as a Rk -Matrix to that of the sum of its children.
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Figure 2.22: Optimal compression for ε = 10−10 leading to the minimum storage that can
be achieved using this matrix partition (using an oracle). See legend in Fig. 2.4.
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Figure 2.23: Impact of non-separator admissibility condition on numerical factorization
memory and time consumption, with the optimal scenario as a reference. Laplacian cube
test case (Fig. 1.17). Sequential run on miriel (see § 3.2.1).
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If the storage of τ as a Rk -Matrix is smaller than the sum of its children, then τ is kept
as admissible and its children are discarded. Otherwise, its children are kept admissible.
We can then recompute the factorization to effectively measure its time and memory
consumption. We must emphasize that this oracle computes two LU factorizations and
is therefore most ineffective in practice and serves only as a reference. An example of this
optimized storage (in terms of compression) can be seen in Fig. 2.22. The effectiveness
of the non-separator admissibility condition is studied in Fig. 2.23 compared to the
original strong criterion and the oracle. It successfully reduces both the time and the
memory consumption of the solver, while not reaching the optimal scenario. The oracle
performance suggests that the admissibility condition may be further improved in the
case of the problems investigated in this thesis. This should therefore be studied in future
works.

In the following section, we do not rely on the compression of sparse or zero off-diagonal
submatrices, but instead rely on the notion of symbolic factorization to further exploit
the non-zero structure inherent to a sparse matrix.

2.4 H-Matrices & Symbolic Factorization
Sparse solvers are able to precisely locate off-diagonal non-zeros in the factors due to
filled-in entries through the means of a symbolic factorization (as defined in § 1.3.1.2), and
use this information to compute an efficient block and sparse structure (a method not used
in nested dissection-based H-Matrices discussed in [102, 107, 138]). These sparse methods
do not rely on a global hierarchy (though they may rely on a local hierarchy, as discussed
in § 2.2), but have the advantage of using symbolic factorization to create matrix blocks
matching the pattern of non-zeros. Therefore we may wonder how a symbolic factorization
may be computed in a hierarchical context and what fundamental differences would there
be between: (1) a sparse solver using H-Matrices (or BLR) on local submatrices, and
(2) a hierarchical solver using symbolic factorization to create a hierarchy aware of the
non-zero and fill-in pattern.

2.4.1 Symbolic Factorization in a Hierarchical Context

Sparse solvers relying on a symbolic factorization usually compute a block structure
deduced from the non-zero pattern of the original matrix. The introduction of low-rank
compression methods in sparse solvers was performed through a compression method
applied locally on submatrices dense and large enough for the compression to be effective.
For example, we have presented in § 2.2 a sparse supernodal solver using a BLR approach
for the compression of off-diagonal blocks larger than a minimal size [165] and multifrontal
methods relying on a BLR compression [157] or on HSS-Matrices [95] applied on frontal
matrices or Schur complements. These sparse low-rank methods already show effective
gains in terms of time and/or memory consumption compared to their respective full-rank
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versions. We will now discuss the differences between these methods and a hierarchical
method using symbolic factorization, to give the reader a perspective of the impact of
each technique.

In many respects, some of the sparse techniques introduced in § 1.3 and hierarchical
techniques introduced in § 1.2.3 correspond to each other. For example, cluster trees
and elimination trees are very close in what they represent, as already discussed in
the introduction of this chapter. Moreover, while an H-Matrix arises from two cluster
trees, as depicted in Fig. 2.24, we can also see the storage of sparse supernodal solvers
as a construction based on one column partitioning (defined by the elimination tree)
which is the equivalent of the column cluster tree for H-Matrices. Then, each supernode
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Figure 2.24: Nested dissection row and
column cluster trees resulting in a sparse
matrix.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

I

a+b

3

1

(a) Supernode 1.

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

I

b+c

3

2
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Figure 2.25: List of blocks for two
supernodes, arranged as cluster trees.

(equivalent of a leaf of the column cluster tree) is partitioned, as illustrated in Fig. 2.25,
using a structure which we introduced in § 1.3.1.2.2 as a list of intervals of rows. A cluster
is also represented by an interval of indices (see § 1.2.3.2.1). Consequently, instead of
using a global row cluster tree as the H-Matrices do, a supernodal method may be seen
as a construction with one single-level cluster tree for each supernode. This enhances
how fine a solver is by locating more precisely blocks of zeros, independently of the block
columns they are located in. But this is also a source of “incompatible” operations, in that
blocks will contribute to blocks with different ranges of rows, as we will discuss further
later (Fig. 2.27).

On the other hand, if hierarchical methods tend towards a symbolic factorization by
using a global cluster tree grouping nodes by their pattern of interactions, even in a
separator, each separator would be divided into a list of smaller clusters (which can be
related to supernodes). In the example of Fig. 2.24, there are only three clusters, a, b, and
c in the largest separator (numbered 7 here and colored red). Large matrices however lead
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to a separation into many clusters, which can rapidly deteriorate the performance. This
gives us an incentive to resort to relaxation, such as briefly introduced for supernodes in
§ 1.3.1.1.3. We focus in Fig. 2.26 on the interactions of the first two supernodes with
separator 7, i.e., the bottom left of the matrix. The supernode 1 contains unknowns 1 to
4, supernode 2 contains unknowns 5 to 8 and separator 7 the unknowns 21 to 25, as shown
in Fig. 1.31c (corresponding to Fig. 2.24). From the partition of separator 7 based on its
interactions with the first two supernodes into a, b and c, we would have six submatrices
as depicted in Fig. 2.26a. The equivalent of the sparse supernodal method would lead to
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Figure 2.26: Possible hierarchical partitions and relaxations of clusters for separator 7,
based on its interactions with supernode 1 and 2. Light-red colored blocks represent zeros
storage.

a different cluster tree on each supernode, and here, the separator 7 would be divided into
two sets a+b and c for supernode 1 while it would be divided into a and b+c for supernode
2, as illustrated in Fig. 2.26b. But if we intend to keep a single global cluster tree, we may
use an amalgamation of a and b together as a+b (Fig. 2.26c). However, this would mean
that the block resulting from the interactions of a + b and the supernode 2, which could
be denoted by Ma+b,2, would store the interactions of the supernode 2 with unknowns 21
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(a) In a sparse matrix, blocks are not usually aligned on a given range of rows.
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(b) Compatibility of operations in an H-Matrix: all rows and all columns are aligned on the grid
defined by the product of the row cluster tree and the column cluster tree, i.e., the block cluster
tree. The row highlighted in pink for example consists exclusively in blocks with the same range
of rows.

Figure 2.27: Compatibility of operations & alignment of blocks.

and 22, while they are, in fact, null. This is represented by the light-red-colored blocks. A
similar version would amalgamate blocks together beginning by the last ordered blocks,
here for example b and c, as shown in Fig. 2.26d. Finally, a better version could be
achieved by inserting a+ b as an intermediate step between the partition of 7 into a and
b. This is illustrated in Fig. 2.26e. However, this version would stop the recursion at the
block Ma+b,1 (in the first supernode) while Ma+b,2 would be divided into Ma,2 and Mb,2

(in the second supernode), which may not correspond to the initial implementation of a
hierarchical solver. Indeed, Ma+b,1 would only be considered a leaf if it is admissible. The
same partition may be computed for its equivalent b+ c (Fig. 2.26f). This would lead to
operations between misaligned blocks to be performed, in a way similar to the partition
by supernodes performed in a sparse solver. One could argue that subdividingMa+b,1 into
two smaller matrices Ma,1 and Mb,1 would not have a significant impact on performance
and would avoid this problem of compatibility.

We have therefore several choices of possible amalgamations which would lead to
larger blocks and reduce the number of blocks to store. This impacts the performance
due to the fact that large operations are more efficient but also due to compression, as
compression is usually more efficient for larger blocks. Contrary to the partition of a
sparse solver, operations are most often compatible in a hierarchical solver (see Fig. 2.27),
in that rows and columns of the submatrices involved usually match (if one has not been
judged admissible at a higher level in the hierarchy). Indeed, we can for example see in
Fig. 2.27a that the blocks involved in the operations of the highlighted block row tend to
have different row sizes. In Fig. 2.27b, the highlighted blocks all share the same set of
rows. To conclude, a globally hierarchical-based method may have an advantage in terms
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of compression while a globally sparse-based method may have an advantage in terms of
storage.

In the following paragraphs, we give an overview of methods to compute a symbolic
factorization in a hierarchical context, which may be put in perspective with § 2.1.4. In
§ 2.4.2, we further investigate the idea of detecting fill-in at each level of recursion of the
block cluster tree by applying a hierarchical algorithm to avoid storage of zeros at the
highest possible level in the tree. These symbolic factorizations rely on the interactions
between clusters from a quotient graph (introduced in § 1.3.1.1.3) and lead therefore
to a block symbolic factorization. We rely on the structure Reach(K), which may be
decomposed into the right-looking interactions Reach+(K) and left-looking interactions
Reach−(K) of the cluster/supernode K. It may be either computed for a quotient
graph G/P under the form Reach+G/P(K) or Reach+(G/P )→G(K), leading to algorithms 15
and 16, p. 63 and p. 65, for the right-looking algorithms, respectively. It may also be
computed under the left-looking form Reach−G/P(K), leading to Algorithm 19. In fact, we
will use Reach(K) as a generic notation for any of these in the following algorithms,
meaning it may be replaced by any of the right-looking/left-looking, quotient/scalar
forms (if not specified). The hierarchical algorithms described here are based on the
aforementioned algorithms (for example algorithms 15 and 16 for the right-looking
variants).

We then discuss in § 2.4.3 the notion of separator clustering based on left-looking
interactions, i.e., the structure Reach−(x) that represents the set of elements that reach
x, introduced in § 1.3.1.2.4. Reach−(x) describe the interactions of an entity x (unknown
or cluster) with the rest of the elements constituting the considered adjacency graph,
with the specificity of being ordered before x (hence its “left-looking” attribute). Here,
we will focus on interactions with quotient graphs, i.e., on the computation of the
structure Reach−G/P(x) for the quotient graph (G/P ). While Reach+G/P(K), referred
to as BStruct(L∗K) in [119], corresponds to the list of supernodes that supernode K can
reach (or update), Reach−G/P(K) is the reverse list, i.e., the list of supernodes by which
K is reached (or updated), also referred to as BStruct(LK∗) in [119]. It is also related
to the structure Key(K) introduced in [125]. Using this structure, we can then divide
a separator S following their interactions with other clusters to create a new partition
of smaller supernodes inside the separator. In other words, the node from the quotient
graph corresponding to S is split between smaller clusters with the same outgoing edges
in the quotient graph. This algorithm has first been applied in a “flat” format (presented
in § 2.4.3.2), meaning each separator is divided into one list of smaller supernodes, each
corresponding to a list of indices that have the same interactions with other leaf clusters.
Therefore, by construction, the hierarchy inside separators is lost. This is why a second
variant has been developed to apply the symbolic factorization in a hierarchical way
(§ 2.4.3.3).
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2.4.2 Hierarchical Symbolic Factorization (HSF)

The techniques discussed in this section may be put in perspective with the sparsity
pattern described in § 2.1.4. Fill-in is computed for each matrix block in order to predict
before the numerical factorization if the block should be stored, to avoid on-the-fly
management of fill-in. We heavily rely on the notion of quotient graph introduced in
§ 1.3.1.1.3 and the block symbolic factorization introduced in § 1.3.1.2.2. The symbolic
factorization is not limited to the leaf clusters here as we examine the propagation of
fill-in also higher in the cluster tree hierarchy. This enables the combination of symbolic
factorization and compression at higher levels in the hierarchy. Compression is not limited
to each individual block column such as in a supernodal solver.

To detect non-zero blocks and fill-in, the function defined in Eq. (1.12), based on
left-looking information, may be used. However, this function induces the not-so efficient
left-looking Algorithm 18 if all the fill-in is to be taken into account. Therefore,
the efficient algorithms introduced in § 1.3.1.2 are here re-adapted for a hierarchical
construction such as the H-Matrices. In terms of graphs, this hierarchical symbolic
factorization may be described as the computation of the elimination of a quotient graph
at each level of the hierarchy of the cluster tree.

2.4.2.1 Definition of Cluster Symbolic Information

For the algorithm to be able to determine if a submatrix Mσ×τ is null (and will be null
in the factors) or if it must be stored, the symbolic information we will compute and
associated with each cluster τ (or σ) has to be sufficient. For efficiency consideration,
it should also be the minimal information necessary for this task. In order to store
this information, we have identified two suitable data structures. Either the symbolic
information associated with τ contains exactly the list of clusters with which it interacts
or the list of scalar vertices with which it interacts. Therefore we differentiate here two
methods, the Cluster-Cluster Hierarchical Symbolic Factorization (CC-HSF)
and the Cluster-Vertex Hierarchical Symbolic Factorization (CV-HSF),
depending on the information stored on each cluster. We have named the two methods
following the computed row and column partition used for the symbolic factorization.
Let us remind the reader that H-Matrices are based on a row cluster tree and a column
cluster tree. We rely on the column cluster tree for the column partition (further discussed
in § 2.4.2.1.3). The row partition is then chosen as either the row cluster tree, leading
to the Cluster-Cluster (CC) algorithm, or a vertex-wise information from the adjacency
graph, leading to the Cluster-Vertex (CV) algorithm. In the CC-HSF approach, we may
construct a structure leading to Fig. 2.26a, 2.26c and 2.26e, in which we may avoid the
storage of zeros, due to the fact that we have the symbolic information of which cluster
interacts with which cluster. This method is to be compared to the method discussed
in § 1.3.1.2.2 under the name of Block Symbolic Factorization, adapted for a hierarchical
framework. In our context, the (flat) Block Symbolic Factorization method could be
called Cluster-Cluster Flat Symbolic Factorization (CC-FSF) due to the computed block
(Cluster-Cluster) information. In the CV-HSF approach, we will rely on a subdivision
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discussed in § 2.4.3.4 to obtain a partition closer to a supernodal approach, such as
illustrated by Fig. 2.26b, in an effort to reach the fine granularity of a sparse solver.
With this latter method, a local clustering is used on each column cluster. It may
be compared to the method discussed in § 1.3.1.2.3 under the name of Block Column
Symbolic Factorization, also adapted for a hierarchical framework. In our context, this
(flat) Block Column Symbolic Factorization might be named Cluster-Vertex Flat Symbolic
Factorization (CV-FSF) due to the computed block column (Column-Vertex) information.

2.4.2.1.1 Cluster-Cluster Symbolic Information (CC-HSF)

The goal of the CC-HSF method, as mentioned above, is to extend the Block Symbolic
Factorization (or CC-FSF) algorithm introduced in § 1.3.1.2.2 to a hierarchical framework.
It computes symbolic information between two clusters of the row and column cluster trees
that will later be used in the construction of the corresponding H-Matrix to avoid the
storage of zeros.

Using the notion of adjacency introduced in § 1.3.1.1.1 extended to supernodes in
§ 1.3.1.2.2, we can define the symbolic information of a cluster using its adjacency with
clusters from the same depth in the overall cluster tree. For a cluster τ , with the scalar
graph G = (V,E) and a partition P to be determined satisfying τ ∈ P , this cluster
adjacency is defined as:

AdjG/P(τ) = {σ | (∃ i ∈ τ) ∧ (∃ j ∈ σ) ∧ ((i, j) ∈ E) ∧ (σ ∈ P )}. (2.8)

In other words, the adjacency AdjG/P(τ) of the cluster τ in the scalar graph G associated
with the partition P (containing τ) is thus the set of clusters σ of which some unknowns
are adjacent (in G) to unknowns contained in τ . For the purpose of computing a symbolic
factorization, we only need to compute that information for one and only one partition for
each τ . The union of all clusters inside the partition should match the set I of unknowns
of the root of the cluster tree, i.e., all the unknowns of the problem:⋃

σ∈P

σ = I. (2.9)

In the context of usual H-Matrices, the block cluster tree is considered to be a
level-conserving product of two cluster trees, i.e., satisfying Eq. (1.10). Each submatrix
Mσ×τ in such an H-Matrix corresponds therefore to the clusters σ and τ at the same
depth, i.e., Depth(σ) = Depth(τ). The partition P may then simply be defined as one
level of the cluster tree, i.e.,

P = {σ | Depth(σ) = Depth(τ)}. (2.10)

The only exception to this rule in the context of this thesis is the construction presented
in § 2.3.2. Therefore, we here consider clusters σ and τ to be at the same depth if they
lead to a submatrix Mσ×τ , except if either one of the clusters is a leaf. In that case, it is
possible for σ and τ to be at different depths. The simplest way to handle this type of
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Pi Pi

τ

τ

τ

Figure 2.28: Unbalanced cluster tree (left) and reuse of leaves from shorter branches
in deeper levels (right), represented by the dashed lines. Partitions at each level are
highlighted in blue and an example of an extended partition Pi is colored red.

construction is to use the partition of leaf clusters if τ is a leaf. Also, if a branch of the
cluster tree is shorter than the branch of τ , the leaf of that branch should be included
in the partition, to ensure Eq. (2.9) is satisfied. In that case, the partition P may be
redefined as either leaves if τ is a leaf, or the clusters σ at the same depth as τ or that
are leaves if σ is higher in the tree than τ . Formally, we have:

P = {σ | (IsLeaf(τ) ∧ IsLeaf(σ))

∨(¬IsLeaf(τ) ∧ (Depth(σ) = Depth(τ)
∨ (Depth(σ) < Depth(τ) ∧ IsLeaf(σ))))}.

(2.11)

For a matter of simplicity, we will rely on the notation P or sometimes Pi if the
considered depth i of the cluster tree has to be specified. Some clusters may be included
in multiple partitions if they are leaves. This representation is depicted in Fig. 2.28. An
example of a leaf τ shared by multiple partitions is shown in this figure. The left part
of the cluster tree is deeper than the right, so the elements on the right are reused in
the lower levels in which they do not exist. However, we must emphasize that the leaves
only store the interactions with other leaves and not the upper partitions they may be
included in, as formally expressed in Eq. (2.11).

To compute the fill-in generated by the factorization, we rely on the computation of the
set ReachG/Pi

(τ). As mentioned earlier, this structure may be right or left-looking. For a
matter of conciseness, when there is no ambiguity, we may omit the index i (and the G/P
reference) and note Reach(τ). Computing this structure for all clusters in the cluster tree
therefore corresponds to the computation of the elimination of a quotient graph for each
partition Pi. We consider the necessary conditions (§ 1.3.1.1.3) for (G∗/P ) = (G/P )∗

to be satisfied. Instead of a simple block column symbolic factorization, as classically
done for non-hierarchical solvers [61, 93], we aim at applying a symbolic factorization (see
§ 1.3.1.2.2) at each level of the H-Matrix, in order to detect blocks of zeros at the highest
possible level in the hierarchy. As an example, we focus on the two layers of graphs
depicted in Fig. 2.29. An example of the construction of the corresponding hierarchical
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σ τ

σ1

σ2

τ1

τ2

Figure 2.29: Two levels of hierarchy of an adjacency graph example associated with
Fig. 2.30, leading to two quotient graphs.

structure is shown in Fig. 2.30. Here, we have two clusters σ and τ that interact
with each other, forming the quotient graph of Fig. 2.30a. Their sub-clusters, σ1 and σ2
children of σ, as well as τ1 and τ2 children of τ , interact only partially with each other:
σ1 interacts with τ1 and σ2 interacts with τ2. This may be represented by the second
(lower) quotient graph shown in Fig. 2.30b. The corresponding two levels of hierarchy
in the block cluster tree (Fig. 2.30c and 2.30d, respectively) show how these interactions
correspond to non-zero blocks in the matrix.

It should be noted that only the clusters ordered after the cluster τ are necessary for
the algorithm presented in § 1.3.1.2.2, due to its right-looking characteristic. Therefore,
using Eq. (2.8), Reach+G/P(τ) is initialized as the set of clusters σ that are ordered after
τ (σ > τ) and that are adjacent to τ (σ ∈ AdjG/P(τ)):

Reach+G/P(τ)← {σ | (σ > τ) ∧ (σ ∈ AdjG/P(τ))}. (2.12)

Conversely, if the algorithm were to be written in a left-looking fashion (see § 1.3.1.2.4),
we would need to store the information from the clusters ordered before τ (σ < τ), for
example in a structure named Reach−G/P(τ):

Reach−G/P(τ)← {σ | (σ < τ) ∧ (σ ∈ AdjG/P(τ))}. (2.13)

These right and left-looking structures are depicted in Fig. 2.31a and Fig. 2.31b,
respectively. The algorithm for the creation of an H-Matrix (originally, Algorithm 9,
p. 37) becomes Algorithm 30 (in its right-looking form), with the simple addition of line
8, which checks whether σ′ interacts with τ ′. For a left-looking variant, the structure
Reach+G/P(τ) may simply be replaced with Reach−G/P(τ). This additional check ensures
to only store blocks that will have at least one non-zero in the factorized H-Matrix.

2.4.2.1.2 Cluster-Vertex Symbolic Information (CV-HSF)

The proposed CC-HSF algorithm ensures to hierarchically store non-null blocks, i.e.,
blocks that contain at least one non-zero. However, the resulting hierarchical structure will
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σ τ

(a) Upper quotient graph.

σ1

σ2

τ1

τ2

(b) Lower quotient graph.
τσ

τ

σ

(c) Upper block matrix considered.

τ1 τ2σ2σ1

τσ

τ1

τ2

σ2

σ1

τ

σ

(d) Lower block matrix considered.

Figure 2.30: Two levels of hierarchy with the corresponding structures. The first level
is colored red while the second is colored green. White matrix blocks represent null
interactions.

Pi
τ

Pi

(a) Reach+G/P(τ) stores the interactions of τ
with clusters of larger indices.

Pi
σ Pi

(b) Reach−G/P(σ) stores the interactions of τ
with clusters of lower indices.

Figure 2.31: Partition Pi in a cluster tree, of which we have highlighted the different levels
by blue horizontal lines. The partition is highlighted in red. This representation assumes
that clusters are ordered from left to right.
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Algorithm 30: Creation of an H-Matrix with detection of fill-in using
right-looking symbolic information.
Function CreateHMatrix(σ × τ)

1 if IsLeaf(σ × τ) then
2 if Admissible(σ, τ) then
3 Compress(σ × τ) . Creation of a Rk -Matrix

4 else
5 CreateFullBlock(σ × τ) . Creation of a Full-Matrix

6 else
7 for (σ′, τ ′) ∈ Children(σ × τ) do
8 if σ′ ∈ Reach+G/P(τ

′) ∨ τ ′ ∈ Reach+G/P(σ
′) then

9 CreateHMatrix(σ′, τ ′) . Create (σ′ × τ ′) only if σ′ and τ ′ interact

have a coarser grain than the symbolic structure usually computed by a sparse direct solver
(using for example the Block Column Symbolic Factorization presented in § 1.3.1.2.3) and
may thus contain more zeros. As previously discussed in § 2.4.1, and especially supported
by Fig. 2.26 (p. 112), the hierarchy must be constructed to an extremely fine grain (see
Fig. 2.26a for example) to be capable of reaching the same granularity as a sparse direct
solver (Fig. 2.26b). The practical interest of the hierarchical method is then lost and we
therefore propose another solution to this problem by the computation of a row vertex
symbolic information for column clusters, i.e., a Cluster-Vertex symbolic information.
This symbolic information is computed using the CV-HSF method we now present.

This method relies on the same definition as the one introduced for the scalar adjacency
of supernodes in § 1.3.1.2.3. The scalar (or vertex) adjacency of a cluster τ , using the
adjacency graph G = (V,E), is defined as the union of the adjacency of the unknowns it
contains. In other words, it is composed of all the unknowns j with which at least one
unknown i in τ is adjacent to:

AdjG(τ) = {j | (∃ i ∈ τ) ∧ (∃ (i, j) ∈ E)}.

This structure describes the unknowns that interact with at least one unknown of the
cluster τ . In other words, it corresponds to the non-zero rows in the block column
corresponding to τ . To compute the symbolic factorization in this scenario, we rely
on the structure Reach+G(τ). It is initialized as

Reach+G(τ)← {j | (j > τ) ∧ (j ∈ AdjG(τ))}.

To compare the Cluster-Vertex information and the Cluster-Cluster information, one can
compare the green and the light blue information in Fig. 2.35a, respectively. Such as
discussed in § 1.3.1.2.3, the Cluster-Vertex information may be implemented as a list
of intervals for efficiency considerations. The implementation of clusters also relies on
intervals and the two structures are therefore implemented in the same manner.
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2.4.2.1.3 Column Partition

In the case of a nested dissection, the partition of supernodes used for the symbolic
factorization arises from the separators computed by the dissection. If local orderings are
applied, such as a specific separator clustering (more extensively discussed in § 2.4.3) or the
Minimum Fill heuristics for example on the local subdomains, the partition of supernodes
is finer. However, these supernodes do not match the definition of exact supernodes
given § 1.3.1.1.3 (T2 supernodes [70]). A block column associated with a separator may
have different patterns of non-zeros among its columns (see “relaxed supernodes” p. 55).
These supernodes correspond to the leaves of the (column) cluster tree in a hierarchical
environment.

We do not investigate here the re-computation of supernodes after the initial ordering
and clustering. Therefore, the symbolic factorization may be computed at multiple steps
of the clustering. We may use the partition arising from (1) the nested dissection, (2)
the nested dissection coupled with a local clustering of local subdomains (based on AMF
in this thesis), or (3) the nested dissection and local clusterings in local subdomains
and separators. By using local clusterings, the cost of computing a symbolic factorization
increases, while the symbolic information computed matches more precisely the underlying
pattern of non-zeros. In practice, a better symbolic information will be preferred as it
leads to a reduction of the cost of the numerical factorization, even though the symbolic
factorization may be slightly costlier. The cost of the symbolic factorization is indeed low
compared to the numerical step, as it will be shown in the experiments in Chapter 3.

2.4.2.2 Hierarchical Symbolic Elimination

Now we focus on the calculation of the fill-in generated by the factorization and the
corresponding symbolic information. This step must be performed before the creation of
theH-Matrix (Algorithm 30). The order of the computation of each symbolic factorization
can be questioned. The differences between a top-down and bottom-up computation of
quotient graph eliminations are first introduced in § 2.4.2.2.1. The optimization of the
bottom-up algorithm is then discussed in § 2.4.2.2.2.

2.4.2.2.1 Naive Hierarchical Quotient Graph Eliminations

H-Matrices are usually constructed in a top-down fashion. Therefore we first focus on
a top-down elimination of quotient graphs, based on the partitions of the cluster tree Pi
(with i the depth of the partition). This top-down algorithm is described in Algorithm 31
and illustrated in Fig. 2.32a. The function SymbolicFactorization(G,P,N) is a
black-box wrapper for any symbolic factorization presented in § 1.3.1.2 (right/left-looking
and computing a Cluster-Cluster or Cluster-Vertex information, such as discussed in the
previous section). Children(P) and Parents(P) compute the lists of children and
parents of clusters in P , respectively. Such a top-down elimination must recalculate
each quotient graph G/Pi based on the interactions in G, as the information of the
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P1
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Pi+1

G/P1

G/Pi

G/Pi+1

G/PN

Pi

(a) Top-down algorithm. Each quotient
graph G/P must be recalculated from G.

Pi

P1

PN

Pi-1

Pi

G/P1

G/Pi

G/Pi-1

G/PN

G/Pi/Pi-1 =

(b) Bottom-up algorithm. Each quotient
graph G/P can be aggregated from the one
below.

Figure 2.32: The order of the computation of partitions for the Hierarchical Symbolic
Factorization is given by the direction of the arrow.

upper quotient graph does not a priori provide the required information to distinguish the
interactions of lower clusters. The information of the upper level is less precise in terms of
location of non-zeros than the lower level. Indeed, in the example in Fig. 2.30, we can see
that we cannot determine if τ1 interacts with σ1 (and/or with σ2) if we only know that τ
interacts with σ. We only have a partial information of which cluster it interacts with. To
compute this information, we have to re-use the scalar edges and see which ones have an
endpoint in τ1 and another in σ1. If σ does not interact with τ , we know however that σ1
does not interact with τ1. What we are interested in is a tool able to find the most precise
pattern of non-zeros at each level. On the contrary, a bottom-up algorithm can simply
aggregate the information of a quotient graph based on the partition Pi+1 to form the
quotient graph on the upper level Pi. The knowledge of the interaction between τ1 and
σ1 is sufficient to deduce the interactions between τ and σ. First, for the sake of clarity,

Algorithm 31: Top-Down Hierarchical Symbolic Factorization based on the
scalar adjacency graph G partitioned into a list P of supernodes. P is initialized
as the topmost level of the cluster tree.
Function TD-HSF(G,P)

1 SymbolicFactorization(G,P, |P |)
2 if Children(P) 6= ∅ then
3 P ← Children(P)
4 TD-HSF(G,P)

a naive version of the bottom-up algorithm is detailed in Algorithm 32 and illustrated
in Fig. 2.32b. The possibility of using the symbolic information of lower levels is further
discussed in § 2.4.2.2.2. Note that the top-down and the naive bottom-up algorithms
first compute the symbolic factorization (either block or block column) of the upper and
lower partitions, respectively. They then compute a symbolic factorization on the next
partition (lower or upper, respectively), and iterate in the same manner until they have
covered the whole cluster tree.
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Algorithm 32: Bottom-up Hierarchical Symbolic Factorization based on the
scalar adjacency graph G partitioned into a list P of supernodes. P is initialized
as the list of leaves of the cluster tree.
Function BU-HSF(G,P)

1 if |P | > 1 then
2 SymbolicFactorization(G,P, |P |)
3 G← G/P
4 P ← Parents(P)
5 BU-HSF(G,P)

However, in the context of unbalanced cluster trees, we must take into account
the shorter branches for the lower levels in which they do not exist (see Fig. 2.28).
Algorithm 31 becomes Algorithm 33, in which the function Children(P) becomes a
function Lower(P), which computes the lower quotient graph to be used. The function

Algorithm 33: Top-Down Hierarchical Symbolic Factorization for unbalanced
cluster trees. P is initialized as the topmost level of the cluster tree.
Function TD-HSF(G,P)

1 SymbolicFactorization(G,P, |P |)
2 if Children(P) 6= ∅ then
3 P ← Lower(P)
4 TD-HSF(G,P)

Lower(P) (Algorithm 34) computes the children of each element in P , except if the
element does not have any child, in which case the element is kept in the partition.

Algorithm 34: Function to compute the lower quotient graph to be used in the
top-down Algorithm 33.
Function Lower(P)

1 P ′ ← ∅
2 for τ ∈ P do
3 if IsLeaf(τ) then
4 P ′ ← P ′ ∪ τ . re-use same cluster

5 else
6 P ′ ← P ′ ∪ Children(τ)

Regarding the bottom-up algorithm, Algorithm 32 becomes Algorithm 35, in which
the function Parents(P) becomes a function Upper(P), which computes the upper
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quotient graph to be eliminated next (Algorithm 36). The function Upper(P) may
be limited to the computation of the parents of P in the case of a balanced tree.
But if the cluster tree is unbalanced, we must use the parents of the elements
in P except those highest in the hierarchy if they are not on the same level.
Algorithm 35: Bottom-up Hierarchical Symbolic Factorization for unbalanced
cluster trees. P is initialized as the list of leaves of the cluster tree.
Function BU-HSF(G,P)

1 if |P | > 1 then
2 SymbolicFactorization(G,P, |P |)
3 G← G/P
4 P ← Upper(P)
5 BU-HSF(G,P)

Algorithm 36: Function to compute the upper quotient graph to be used in the
bottom-up Algorithm 35.
Function Upper(P)

1 P ′ ← ∅
2 if ∀σ, τ ∈ P, Depth(σ) = Depth(τ) then
3 . all clusters are on the same level
4 return Parents(P)

5 else
6 for τ ∈ P do
7 if Depth(τ) > min

σ∈P
(Depth(σ)) then

8 P ′ ← P ′ ∪ Parent(τ)
9 else

10 P ′ ← P ′ ∪ τ . re-use same cluster

With the functions Upper(P) and Lower(P), some clusters may be included in
multiple layers of quotient graphs. Thus, to satisfy the definitions introduced in § 2.4.2.1,
a cluster τ must simply keep either the information of (1) the leaf clusters if τ is a leaf or
(2) the clusters at the same depth as τ (including the leaves of shorter branches) .

2.4.2.2.2 Bottom-Up Transmission of Elimination

As mentioned earlier, some computations in the previous naive bottom-up (and a
fortiori top-down) algorithms are redundant. Indeed, the edges computed through each
symbolic factorization are computed in the lower levels too. Instead of computing the
elimination of the quotient graph of each level, we can use the information of the symbolic
factorizations of the lower levels to compute that of an upper level. In other words, we
can transfer the information of the edges of a quotient elimination graph (G/Pi+1)

∗ to the
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Figure 2.33: Aggregation of the edges of the lower elimination quotient graph (G/Pi−1)
∗

to form the upper quotient graph (G/Pi)
∗/Pi+1 = (G/Pi+1)

∗.

parents of the nodes of this graph, instead of re-computing the edges of the upper quotient
graph (G/Pi)

∗. Therefore, with the elimination graph G′ = (G/Pi+1)
∗, the upper quotient

elimination graph can be computed through G′/Pi . We provide a more efficient way to
compute the upper symbolic factorizations directly by using the parents of each cluster
listed in the interaction structures Reach+(τ) or Reach−(τ) to match the interactions
of the parent of τ . This leads to Algorithm 37, illustrated by Fig. 2.33. In this

Algorithm 37: Simplified Bottom-Up Hierarchical Symbolic Factorization. P
is still initialized as the list of leaves of the cluster tree τ .
Function HSF(G, τ)

1 P ← Leaves(τ)
2 SymbolicFactorization(G,P, |P |) . Elimination of the leaves
3 computeInteractions(τ) . Recursive elimination of the upper levels

algorithm, we compute a symbolic factorization once on the leaves of the cluster tree with
the root τ (line 2). This symbolic factorization does not need to be any specific algorithm
(scalar, block, block column, left-looking,...), although we focus in this thesis on the use
of a block symbolic factorization or block column symbolic factorization, leading to the
Cluster-Cluster and Cluster-Vertex variants. In fact, in considerations of the left-looking
structure needed in § 2.4.3, we may prefer to use a left-looking cluster-vertex symbolic
factorization.

After this first symbolic factorization, we hierarchically compute the interactions of
each sub-cluster in τ by aggregating the interactions of its children. Therefore, the
information of the leaves is transmitted to their parents and so on. Algorithm 38 describes
the recursion to compute the interactions on all clusters. The recursion is done on
line 2 and the transmission to the parents on line 3. Algorithm 39 describes how the
symbolic information of the children of τ is used for the computation of the symbolic
information of τ in the case of CC-HSF. Algorithm 38 assumes that the initial Reach(τ)
(initialized as Adj(τ)) is already consistent with the block cluster tree (see Eq. (1.10)),
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Algorithm 38: Bottom-up hierarchical computation of interactions of a cluster
tree τ using the interactions of its children.
Function computeInteractions(τ)

1 for τ ′ ∈ Children(τ) do
2 computeInteractions(τ ′) . Recursion
3 Reach(τ)← Reach(τ) ∪ Upper(τ, Reach(τ ′)) . Transmission to upper

Algorithm 39: Function to compute the interactions of τ based on its children
to be used in Algorithm 38.
Function Upper(τ, P)

1 P ′ ← ∅
2 for σ ∈ P do
3 while Depth(σ) > Depth(τ) do
4 σ ← Parent(σ) . Get ancestor until we reach desired depth

5 P ′ ← P ′ ∪ σ . σ and τ on the same level

i.e., σ ∈ Reach(τ) ⇒ Depth(σ) = Depth(τ). If Reach(τ) is not initialized as such, we
can use Algorithm 39, which computes Upper(τ, Reach(τ)), to level the structure to the
same level as τ . It relies on computing, for each element of this structure, the ancestor at
the same depth as τ .

2.4.2.2.3 Specificities of the CV-HSF Bottom-Up Elimination

In the case of CV-HSF, the transmission of information to the upper levels of the
cluster tree may be computed in two ways. The first way is to simply implement the
function Upper(τ, P) to return P . In that case, a row vertex information is transmitted
to each cluster belonging to the column cluster tree and therefore the Cluster-Vertex
characteristic is maintained in the whole hierarchy. The second way is to transform the
row vertex information into a cluster row information, leading to a hybrid structure with
Cluster-Vertex information on the leaves of the column cluster tree and Cluster-Cluster
information on the upper levels. The two ways are illustrated in Fig. 2.34 and Fig. 2.35,
respectively. In this thesis, only the first one has been implemented. Thereby, CV-HSF
only uses Cluster-Vertex information and we may fully study its differences with CC-HSF
and the advantages of both methods.

An H-Matrix constructed using CC-HSF is shown in Fig. 2.36. The exploitation of
the information of CV-HSF (hence with a finer grain) is further discussed in § 2.4.3.4.
The advantage of using a symbolic factorization may be observed through the reduction
of the number of dense empty submatrices (colored yellow) here. With this Hierarchical
Symbolic Factorization, we are thus able to detect filled entries and submatrices, and
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τ1 τ2

(a) Row vertex information on
leaves of the cluster tree.

τ

τ1 τ2

(b) Merging this information
on the upper level.

τ

(c) Upper level information.

Figure 2.34: Transmission and merging of Cluster-Vertex information. Green blocks
represent the vertex information of each leaf cluster (τ1 and τ2 here). The red blocks
represent the vertex information of the upper level (merged together) cluster (τ). The
actual storage of the H-Matrices is located only on the leaves of the H-Matrix so
ultimately, only the green blocks may be stored. Red blocks only give the information to
the algorithm that non-zeros exist in this branch of the hierarchy and that it must recurse
on lower levels to find more precise information.

τ1 τ2

(a) Row vertex information
transformed into cluster
information on leaves of the
cluster tree.

τ

τ1 τ2

(b) Merging this information
on the upper level.

τ

(c) Upper level information.

Figure 2.35: Transmission and merging of block information. Green blocks represent
the Cluster-Vertex information. Light blue blocks represent the information of each leaf
cluster (τ1 and τ2 here) and stored by the actual H-Matrix in a Cluster-Cluster manner.
Red blocks represent the information of the upper cluster (τ).
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Figure 2.36: An H-Matrix constructed using nested dissection and detection of the
location of zeros (using CC-HSF). We can see that zero blocks (full of zeros until the
very end of the computations) previously stored as dense (yellow) or Rk -Matrix (gray)
in Fig. 2.14 are no longer stored here. See legend in Fig. 2.4.

avoid the storage of exclusively zero-filled blocks, even at higher levels in the hierarchy.
In a usual H-Matrix, a zero block is often stored as a Rk -Matrix, and more rarely, as a
Full-Matrix. This method avoids the heavy cost of dense storage of some null matrices as
a Full-Matrix, but also the computation involving a Rk -Matrix with a rank equal to 0.
As our solver relies on task-based parallelism, this also implies that no task is required to
be executed by the runtime system in charge of managing the tasks.

2.4.2.3 Complexity of the Hierarchical Symbolic Factorization

The arithmetic complexity of the simplified bottom-up algorithm presented in § 2.4.2.2.2
is therefore equal to the sum of (1) the complexity of the symbolic factorization computed
on the quotient graph G/P = (P,E/P ), with P the leaves of the cluster tree, and (2)
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the aggregation of the edges of this quotient graph to the upper levels. The aggregation
complexity can be bounded by O(|E/P |) for each level, even though the actual complexity
should be lower for higher levels in the hierarchy. The complexity of the (block) symbolic
factorization is also O(|E/P |). Therefore the total complexity can be bounded by
O(|E/P | × log2 n), with n the number of unknowns and Eq. (1.7). It is therefore more
costly than a simple (flat) symbolic factorization. This complexity also ensures that it is
not more costly than the numerical factorization though in practice its cost is much less
than that of the numerical factorization. If we make the assumption that the number of
edges |E/P | is divided by at least two at each level, then the complexity may even be
reduced to

O

(
|E/P | ×

k=log2 n∑
k=0

2−k

)
= O

(
|E/P | × 1− 2−(log2 n+1)

1− 2−1

)
= O

(
|E/P | × 2(1− 1

2n
)

)
≤ O (2|E/P |) . (2.14)

In that case, the hierarchical symbolic factorization has a much lower arithmetic
complexity than the numerical factorization. A similar reasoning can be applied for
the bottom-up elimination in the case of the CV-HSF variant presented in § 2.4.2.2.3,
where the number of edges |E/P | is transformed into an asymmetric structure indicating
interactions between clusters and vertices, i.e., edges in V/P → V .

Furthermore, if we take into account the assumption that the number of off-diagonal
blocks grows with the number of unknowns n associated with the matrix, following
Theorem 2.1 from [61], the algorithm has a linear complexity, i.e., in O(n). This
assumption is verified at least in the CV-HSF algorithm using a column partition arising
from the nested dissection (see § 2.4.2.1.3).

2.4.3 Separator Clustering

Let us consider a cluster tree constructed using a global clustering method computing
a nested dissection (coupled or not with a local subdomain clustering such as AMF) as
discussed in § 2.3.1. We now discuss separator clustering methods.

The interaction of a separator with itself is considered dense. Consequently, the
approach of the H-Matrix community divides the separators using recursive bisection,
in the same manner as domains are divided for dense applications (§ 1.2.3.2.2). In an
effort to compute a structure matching the underlying pattern of non-zeros, we also
consider the clustering of the separator based on the interactions of other clusters, i.e.,
the information computed by symbolic factorization, in a flat manner § 2.4.3.2 and in a
hierarchical manner § 2.4.3.3. It should be noted that the ordering inside separators does
not impact the fill-in generated by factorization. Therefore the considerations we have to
take into account here rely on matching the pattern of non-zeros to reduce storage, and
compression and cache efficiencies. To better understand the effect of each method, only
a subpart of the whole matrix is displayed in this section, indicated in red in Fig. 2.37,
along with the corresponding sub-cluster tree.
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Figure 2.37: Subparts of the matrix considered in red and yellow, as well as the considered
subpart of the cluster tree, also in red.

2.4.3.1 Interactions Oblivious (IO) Separator Clustering

Geometric approach In an effort to lead to an efficient compression in separators,
H-Matrices relying on nested dissection (§ 2.1.2) apply a recursive bisection to divide the
separator and create a binary subtree [138, § 3.3]. An example is given in Fig. 2.38.

a

b

c

d

S
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2 1 10 4 10
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Figure 2.38: Separator clustering based on recursive bisection. Right (red) subpart of
Fig. 2.37.
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Figure 2.39: Adjacency graph of a nested
dissection with recursive bisection applied on
separators.

a [I112, I211, S21]
b [I112, I121, S1, I212, S2]
c [I121, I122, S12, I221, S2]
d [I122, I222, S22]
{a, b} [I112, I121, S1, I211, I212, S21, S2]
{c, d} [I121, I122, S12, I221, I222, S22, S2]

Table 2.2: Examples of left-looking
interactions for sub-clusters of S in
Fig. 2.39, i.e., the list of leaf clusters
that reaches them.

This differs from the usual sparse methods based on nested dissection. However, it
is related to the notion of K-way partitioning discussed in [133] for example and used
in [164] on separators. Recursive bisection is applied due to the consideration that
diagonal blocks resulting from the interactions of a separator with itself lead to dense
submatrices after factorization. Therefore the standard division of H-Matrices may be
used to get large compression blocks and efficient parallelism such as may arise in a dense
application. However, this does not take into account the off-diagonal blocks formed with
this construction. Indeed, recursive bisection may lead to a possible overlap between a
separator’s subclusters interactions and neighboring clusters due to an irregular division
such as shown in Fig. 2.39. We want to minimize the number of neighbor clusters
contributing to one separator subcluster. Note that such neighbor clusters are always
ordered before the separator. Examples of lists of such left-looking (or row) interactions
Reach−(τ) of a cluster τ are listed in Table 2.2, among a partition P chosen as the leaf
clusters.

For example, in Fig. 2.39, d does not interact with I221. But we can see here that the
cluster named c, computed through the recursive bisection, does not match exactly its
neighbor I121 and I221: it is also connected to the cluster I122 (among others) even though
they have only little interactions. This is a factor of unnecessary zero storage, that will
lead us to use a partitioning aware of the outer interactions of a cluster as detailed in
§§ 2.4.3.2 to 2.4.3.4.

Topological approach In the topological SCOTCH variants discussed in §§ 2.3.1.2
and 2.3.1.3, we may apply different strategies for the local separator clustering. As
discussed in appendix A, the strategies considered for separators are here either the
‘simple’ strategy, which orders the unknowns in the separator in their natural order
(such as given by the user), or the ‘Gibbs-Poole-Stockmeyer’ method [96], which tries
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to minimize the number of off-diagonal blocks. The algorithm relies on the ordering
computed by SCOTCH and applies a recursive bisection to cluster the unknowns in a
hierarchical manner. Note that this recursive bisection does not reorder the unknowns.
Example of these clusterings are shown in § 2.4.4.2. We may also try to combine
the methods included in this approach with the Interactions-Aware clustering methods
discussed in §§ 2.4.3.2 to 2.4.3.4.

2.4.3.2 Interactions Aware Flat Separator Clustering (IA-FSC)

With the hierarchical symbolic analysis described in § 2.4.2, we lack the possibility to
create a structure fitting the pattern of non-zeros. We therefore investigate here the
possibility to divide separators to match more precisely this pattern, based on the symbolic
information of the interactions between clusters. As these clusters rely on the interactions
with their predecessor, i.e., rows in the (lower) factor L of the LU factorization, they are
essentially T4 symmetric supernodes such as presented in [70]. However, we first compute
supernodes using nested dissection, leading to supernodes matching the definition of
(relaxed) T2 supernodes. Then we use the (left-looking) information of each row to
compute the T4 supernodes. This means that these supernodes depend on the computed
T2 supernodes, and especially relaxation will play an important part in their structure.

We have mentioned earlier that the block c, a descendant of the first separator S, is
linked not only to its adjacent neighbor I121 and I221 but to I122 as well, as shown in
Fig. 2.39 and Table 2.2. In order to minimize the overlap between separator clusters and
adjacent clusters, the separator is divided according to the interactions of its unknowns:
the unknowns with the same interactions (Fig. 2.40a) are grouped together to form a
unique child of the separator in the cluster tree (Fig. 2.40b and 2.40c). Algorithm 40
shows the procedure used to divide each separator following the interactions of each
unknown with other leaf clusters.

Algorithm 40: Interactions Aware Flat Separator Clustering.
Function IA-FSC(τ)

1 if IsSparse(τ) then
2 for τ ′ ∈ Children(τ) do
3 IA-FSC(τ ′)

4 else
5 P ← InitialPartition() . Leaves
6 ComputeInteractionsWithQuotientGraph(τ, P) . Reach−G/P(i), ∀i ∈ τ
7 Children(τ)← SplitByInteractions(τ) .

∀i, j ∈ Child, Reach−G/P(i) = Reach−G/P(j)

The function ComputeInteractionsWithQuotientGraph(τ, P) assigns a list of
interactions to each unknown in τ based on their (left) interactions through the quotient
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(a) Separator subdivided following its
interactions with the whole domain division.

AdjG-(i)

S

 

I

I1 I2

 

(b) Clustering of the separator according to
its interactions with the cluster tree leaves.
The quotient adjacency (green arrows) of an
unknown i (red arrow) is first computed.
The list of clusters with which i interacts
is highlighted in blue. The segment under
the cluster tree represents the scalar list of
unknowns. The same principle is applied to
the other separators.

(c) Subtree under the first separator.

Figure 2.40: Interactions Aware Flat Separator Clustering. Following a global clustering
(such as nested dissection), separators are divided using symbolic information.

graph. In other words, for a quotient graph G/P = (P,E/P ) an unknown i is attributed
the structure Reach−G→G/P(i), or Reach−G/P(i) for convenience, consisting in a list of
clusters of P , ordered before i. The partition P is chosen as the leaves of the cluster tree
in order to have the best precision on the location of non-zeros in the resulting matrix.
Each step of the computation of the structure Reach−G→G/P(i) is shown in Fig. 2.40b.
The computation of the quotient interactions based on the scalar interactions may be
performed in two ways. We can either (1) search for the cluster containing all the elements
in the scalar list among the whole partition P or (2) use a pointer for each unknown to
the leaf cluster containing this unknown. As the memory used by pointers may be freed
once the construction of the H-Matrix is finished, we rely on the second option, of which
the search can be computed in constant time.

Then, τ is divided into a list of smaller clusters by SplitByInteractions(τ), grouping
the unknowns by their list of interactions. In order to do that, we must first sort the
unknowns by their interactions, either using a lexicographic order or a shortlex order.
The latter first orders elements by their length and then follows a lexicographic order.
Let a, b and c be clusters from a partition P , and unknowns i, j and k have the following
lists of interactions:
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• Reach(i) = [a, b];
• Reach(j) = [a, b, c];
• Reach(k) = [a, c].

In a lexicographic order, we have [a, b] < [a, b, c] < [a, c] while the shortlex order leads to
[a, b] < [a, c] < [a, b, c]. The lexicographic order thus leads to the ordering i < j < k while
the shortlex order leads to i < k < j.
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Figure 2.41: Separator clustering based Interactions-Aware Flat Separator Clustering.
Right (red) subpart of Fig. 2.37. Legend in Fig. 2.4.

As the separator is not hierarchically divided with this method (its children being the
finest possible straightaway), we refer to this clustering as an Interactions Aware Flat
Separator Clustering (IA-FSC). This method may be compared to sparse direct solvers
relying on BLR compression, as there is only one level of recursion in separators. It should
be noted that our implementation of this approach can be categorized as a right-looking
method: updates are applied directly on the destination panel, without any accumulation
such as presented in [44]. Fig. 2.41 shows a part of the H-Matrix constructed using
IA-FSC (including the first separator).

There are two downsides relative to this method: the separator is divided into too
many and too small parts; and each of them is at the same level as the other ones in the
hierarchy. The loss of hierarchy in the separators leads to a poor compression ratio. We
will discuss below (in § 2.4.3.3) a hierarchical variant of this algorithm. Regarding the
other problem, we may resort to relaxation to amalgamate blocks together to reduce the
number of parts in the clustering. Some clusters typically consist of only two to three
unknowns (similar to what has been observed in § 1.3.1.1.3). A threshold is set by the
user, for example to a value Nrelax = 20, under which we merge some of the computed
clusters together until we reach this threshold. Another solution could be an aggregation
computed when creating the block cluster tree instead of the cluster tree. For example,
we could merge some row children clusters together to form one larger row cluster if there
are too many on a specific submatrix. This is close to what is discussed in § 2.4.3.4, with
the difference that the aggregation discussed there is performed on a scalar level, instead
of on clusters. To achieve an amalgamation consistent with the hierarchy, the partition
P of clusters used to calculate Reach−G/P(i) could also be chosen as being higher in the
hierarchy. A higher partition induces larger clusters to be formed. Indeed, the higher
the partition is, the fewer elements the partition consists of. From a mathematical point
of view, there are fewer possible combinations of elements from a small set than from a
larger set. So if P is smaller, there are more unknowns i with an identical Reach−G/P(i).
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(a) Partition (level) of the cluster tree
considered.

 

AdjG-(i)

S

 

I

I1 I2

 

(b) Clustering of the separator according to its
interactions with the upper partition.

(c) Subtree under the separator S.

Figure 2.42: Higher partition chosen to create larger blocks.

However, this has not been further investigated in this thesis. We rather focus on a
hierarchical clustering such as discussed in the following paragraph.

2.4.3.3 Interactions Aware Hierarchical Separator Clustering (IA-HSC)

To benefit from the hierarchical properties of H-Matrices using nested dissection without
any introduction of extra zeros (using symbolic information), we introduce a new
algorithm: an Interactions-Aware Hierarchical Separator Clustering (IA-HSC). Starting
from the partition of IA-FSC into well-separated clusters (using their interactions), the
objective is to create a hierarchy between this partition and the separator cluster, i.e.,
introduce intermediate levels of hierarchy in Fig. 2.40c. There are two ways to achieve
this: a bottom-up algorithm relying on aggregation, and a top-down algorithm relying
on recomputation. Both algorithms are closely related to the top-down and bottom-up
hierarchical block symbolic factorizations presented in § 2.4.2.

We start from a nested dissection resulting into a partition (τ1, τ2, τS). To perform a
top-down clustering, we recursively divide each cluster under the separator τS (starting
with τS) according to the interactions of its unknowns with the descendants of the cluster
siblings of τS, i.e., of τ1 and τ2 (Fig. 2.43b and 2.43c). We can see on these figures the
first two levels of hierarchy of this algorithm, thus reaching the same level of granularity
(yellow clusters) as for IA-FSC. The procedure is defined in Algorithm 41. It mainly relies
on the same recursion as IA-FSC, i.e., searching the cluster tree to find separators (which
are considered as not sparse-labeled clusters), but relies on another recursive function on
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(a) The first level of hierarchical domain
division based on symbolic factorization.

(b) The second level of hierarchical domain
division based on symbolic factorization.

(c) Subtree under the first separator. The
same principle is applied to the other
separators. Clusters are ordered from left to
right following their geometric position.

(d) Shortlex (and lexicographic here
due to the representation) order of (c).
Theoretically, there could be a small cluster
in the middle (second children of S). In
practice, as separators are often aligned, the
shortlex order accumulates small clusters
towards the end, while the lexicographic
order accumulates them between the two
large clusters.

Figure 2.43: Interactions Aware Hierarchical Separator Clustering. Following nested
dissection (resulting in a ternary cluster tree where the leaves are separators and the
independent subdomains), we divide the separators using a symbolic factorization.

each separator: DivideSeparator(τS), defined in Algorithm 42. This function divides
a cluster into a list of sub-clusters depending on the interactions of its unknowns with a
partition P (a list of clusters) given by the user. This partition is essentially a quotient
graph, as discussed previously in § 2.4.2. Here, the initial partition P is set as the nephews
of the separator τS, i.e., the children of τ1 and τ2. Then, at each new level of recursion,
a new partition is computed. Note that this initial partition ensures the clusters are all
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Algorithm 41: Top-Down Interactions Aware Hierarchical Separator Clustering.
Function TD-IA-HSC(τ)

1 if IsSparse(τ) then
2 for τ ′ ∈ Children(τ) do
3 TD-IA-HSC(τ ′)

4 else
5 P ← InitialPartition() . Nephew clusters
6 DivideSeparator(τ, P)

Algorithm 42: The top-down recursive clustering of a separator τ used in the
Interactions-Aware Hierarchical Separator Clustering, based on the interaction
of τ with a partition P of clusters.
Function DivideSeparator(τ, P)

1 if |τ | > Nleaf then
2 ComputeInteractionsWithQuotientGraph(τ, P) . Compute unknowns

interactions based on P
3 Children(τ)← SplitByInteractions(τ) . Split τ into a list of children

clusters with the same interactions with P
4 P ′ ← Children(P) . list of children of P
5 for τ ′ ∈ Children(τ) do
6 DivideSeparator(τ ′, P ′)
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ordered before τS. Therefore the interactions are all left interactions, i.e., we compute
Reach−G/P(i) for each i ∈ τS, and group all unknowns i into one child cluster if they have
the same structure of interactions. This top-down algorithm and partition is illustrated
in Fig. 2.44a. The entire hierarchy is constructed from the top towards the bottom.
This is the classical way to construct a hierarchy in the H-arithmetic. Though, we may

Initial partition

Second partition

S

 

I

I1 I2

 

(a) Top-down algorithm: descendants
of separators are created following the
interactions of the partition from the same
level.

Initial partition

Second partition

S

 

I

I1 I2

 

(b) Bottom-up algorithm: children are
grouped together to form one parent with the
same upper interactions.

Figure 2.44: Initial and following partition used on the cluster tree in the Hierarchical
Separator Clustering method. The interactions of a cluster are composed of clusters from
the same partition.

prefer to use a bottom-up algorithm to optimize computations. Indeed, merging lists
of interactions together is far less costly than having to recompute the interactions of
lower levels, as it means we have to recompute the list Reach−G/P(i) of each unknown i
to be able to group them into a cluster for each partition P . As mentioned in § 2.4.2,
this would mean searching through the scalar edges of the adjacency graph G and look
which endpoints are in the clusters in P . The general algorithm (without relaxation)
is given in Algorithm 43. For the function defined in Algorithm 44 and used in the

Algorithm 43: Bottom-Up Interactions-Aware Hierarchical Separator
Clustering.
Function BU-IA-HSC(τ)

1 if IsSparse(τ) then
2 for τ ′ ∈ Children(τ) do
3 BU-IA-HSC(τ ′)

4 else
5 . τ is a separator
6 P ← InitialPartition() . Leaf clusters
7 ComputeInteractionsWithQuotientGraph(τ, P)
8 children ← SplitByInteractions(τ)
9 BottomUpSeparatorClustering(τ , children)
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Algorithm 44: The bottom-up recursive clustering of a separator τ used in the
Hierarchical Separator Clustering, based on the parent interactions of each set in
S. Each cluster is assumed to be implemented as a non-ordered set of indices.
Function BottomUpSeparatorClustering(τ, S)

1 if |S| < 2 then
2 Children(τ)← S . Complete hierarchy between τ and S

3 else
4 Parents ← ∅
5 while S 6= ∅ do
6 σ ← S[1] . Iterate over S
7 R← Upper(Reach−(σ)) . Upper interactions R
8 Set ← {ρ | Upper(Reach−(ρ)) = R} . Clusters with the same parent
9 σ′ ←

⋃
ρ∈Set

ρ . Create parent with interactions R

10 Reach−(σ′)← R
11 Children(σ′)← Set . Connect children with their parent
12 S ← S\Set . Remove children from S
13 Parents ← Parents ∪ σ′

14 BottomUpSeparatorClustering(τ , Parents)

bottom-up Algorithm 43, we have an issue of implementation to consider. Once a cluster
is created, its offset and size are usually fixed. All indices included in a cluster should
match the indices of the cluster’s children indices (the indices of one cluster correspond
to the union of the indices of its children). A cluster’s size is therefore the sum of the
size of its children. If clusters are implemented as intervals of indices, i.e., an offset and
the size of the cluster, we cannot rely solely on Algorithm 44. This algorithm makes the
assumption that the clusters are implemented as sets of indices. This issue with intervals
is depicted in Fig. 2.45. We assume here that clusters are ordered from left to right.
The problem arises from the fact that we order the clusters from the (yellow) sub-level
before their parents. These clusters are ordered following their interactions. Following
the lexicographic or the shortlex order, we may have an order for a level (here σ1, τ1, σ2,
τ2) that does not match the order of their parents (σ and τ). For example, let us assume
that we have a1 < a2 < a3 < b1 < b2 < b3. We also define Children(a) = (a1, a2, a3) and
Children(b) = (b1, b2, b3), so that a < b. If we have:

Reach(σ1) = [a1, a2], Reach(σ2) = [a1, a2, a3],

Reach(τ1) = [b1, b2], Reach(τ2) = [b1, b2, b3], (2.15)

the shortlex order leads to σ1 < τ1 < σ2 < τ2. However, we would have:

Reach(σ) = [a], Reach(τ) = [b]. (2.16)
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σ τ
σ1 σ2 τ1 τ2

(a) Clusters from the sub-level are ordered in
the same order as their parents.

σ τ
σ1 σ2τ1 τ2

(b) Clusters from the sub-level are not aligned
with their parents.

Figure 2.45: This representation assumes that clusters are ordered from left to right.
Using intervals, the order of the yellow blocks in (b) is problematic. Indeed, σ1 and σ2
have the same parent σ but are not ordered one after another. The offset of σ should be
that of σ1 and its size the sum of σ1 plus σ2. However, with τ1 in the middle, the interval
is disrupted. In (a), the order of the yellow blocks follows the order of the upper (orange)
partition and clusters may therefore be represented as intervals.

The shortlex order leads to σ < τ . An interval could therefore not represent σ as the
union of its children. We need more information to know which unknowns are associated
with σ. Sets do not require the unknowns to be contiguous and could therefore be used
to implement this algorithm. All of this relies on the assumption that we cannot reorder
clusters once they have been created. If we abandon this principle, we may simply create
temporary clusters of which we know only the size and not the offset. Once we have
created a whole level, we simply create parent clusters of which the size is the sum of
the sizes of its children. The parents list is sorted again by their interactions. This is
described in Algorithm 45. Once the whole hierarchy has been constructed, a reordering
step is performed by computing the offsets of each cluster, in a top-down fashion following
the order of each list of children. Algorithm 46 describes the order of operations of this
reordering. The indices are moved only when we reach a leaf, i.e., once the leaf cluster is
at the right place. The function MoveIndices(Offset(τ ′), Size(τ ′), offset) moves all
indices (and the corresponding reverse indices) from Offset(τ ′) to Offset(τ ′)+Size(τ ′)
towards their new location, which starts at offset. For example, let us assume the
algorithm computed a hierarchy with the order of Fig. 2.45b, it will be able to move σ2
from its original position in this example to its new and rightful position in Fig. 2.45a.

With this bottom-up or top-down method, each level of the subtree consists of clusters
built according to their interactions with a partition of clusters, usually of the same level
(see § 2.3.2 for an example of irregular recursion). An example of anH-Matrix constructed
using the top-down algorithm is depicted in Fig. 2.46. An example is given in Fig. 2.38. It
benefits from both the hierarchy of an H-Matrix inside separators and having a coherent
clustering of separators based on the interactions of its unknowns, contrary to the IA-FSC
method which would rely only on the quality of the domain division and lost the hierarchy
characteristics of H-Matrices inside separators. Moreover, numerous zeros are separated
from the rest higher in the hierarchy, allowing us to avoid unnecessary hierarchy over
zeros.
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Algorithm 45: The bottom-up recursive clustering of a separator τ used in
the Hierarchical Separator Clustering, based on the common parent interactions
of elements in S. Clusters are assumed to be implemented as a continuous set of
indices. Clusters have no offset following this algorithm. The offsets are therefore
recomputed afterwards in a top-down fashion using their position in the tree (see
Algorithm 46).
Function BottomUpSeparatorClustering(τ, S)

1 if |S| < 2 then
2 Children(τ)← S . Link hierarchy with τ

3 else
4 Parents ← ∅
5 while S 6= ∅ do
6 σ ← S[1] . Iterate over S
7 R← Upper(Reach−(σ)) . Upper interactions R
8 List ← {ρ | Upper(Reach−(ρ)) = R} . Clusters with the same parent
9 σ′ ← Cluster(0,

∑
ρ∈List

(Size(ρ))) . Create parent with no offset

10 Reach−(σ′)← R
11 Children(σ′)← List
12 . Connect children with their parent
13 S ← S\List
14 . Remove children from S
15 Parents ← Parents ∪ σ′
16 SortByInteractions(Parents)

17 BottomUpSeparatorClustering(τ , Parents)

Algorithm 46: Reordering step. Recompute the offsets of the whole hierarchy
under a separator τ and reorder the unknowns once we reach the leaves following
this new offset.
Function ReorderClusters(τ)

1 offset ← Offset(τ) . We will update the offset of each child of τ
2 for τ ′ ∈ Children(τ) do
3 if IsLeaf(τ ′) then
4 MoveIndices(Offset(τ ′), Size(τ ′), offset) . Reorder indices

following the new clustering
5 Offset(τ ′)← offset
6 offset ← offset + Size(τ ′) . Update the offset of the following child
7 ReorderClusters(τ ′)
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Figure 2.46: Separator clustering based Interactions-Aware Hierarchical Separator
Clustering. Right (red) subpart of Fig. 2.37. Legend in Fig. 2.4.

Another advantage of the hierarchical clustering compared to the flat clustering is the
ability to order the unknowns in an adequate pattern. Indeed, each clustering (in the
Interactions-Aware flat or hierarchical method) orders unknowns using the lexicographic
or shortlex order. We show the resulting structure of a subpart of a H-Matrix in Fig. 2.47
following the separator clustering method. Using a lexicographic order, the unknowns
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(a) IA-FSC with lexicographic order. The first non-zero blocks are ordered in a “staircase” shape.
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(b) IA-HSC with shortlex order. The same staircase shape occurs at each iteration of the
algorithm, but located on the subpart of the considered unknowns.

Figure 2.47: Left (yellow) subpart of Fig. 2.37 for IA-FSC (a) or IA-HSC (b).

are well ordered within the first clusters of the global (column) clustering (the nested
dissection partition). In Fig. 2.40b and 2.44, it corresponds to the left-most clusters of
each partition. Therefore, the flat clustering will cluster the unknowns in an appropriate
manner for the leaf clusters ordered first and will tend to ignore largest-ordered leaf
clusters. The hierarchical variant will cluster the unknowns in an appropriate manner
for each level of recursion. On the higher partition, it will divide the separator into a
small list of clusters. Once this largest clustering is computed, each following division
will benefit from this higher clustering and refine the clustering of the unknowns of one
sub-cluster. However, each new clustering will also order the unknowns better for the
first-ordered column clusters (the left-most clusters in our example figures). This also
means that the largest-ordered clusters tend to be ignored in the lower clusterings. But
this will have less impact due to the higher clusterings better taking the largest-ordered
clusters into account.

Another way to “simply” explain this difference is to consider the ordering of a
dictionary. A list of interactions Reach(i) can indeed be identified as a word. The
problem of ordering these words is therefore related to the usage of the lexicographic or
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the shortlex order. The lexicographic order leads to a good ordering of the first letters of
each word. The shortlex order will have the same property but will also well separate words
of different lengths. In the Interactions-Aware flat clustering, therefore, the flat clustering
will have a nice incremental ordering of the first non-zero block in each separator. This
may be identified as a staircase/triangular shape of the first rows of each separator in
Fig. 2.47a. The lexicographic order has been used here to highlight this effect. In the
Interactions-Aware hierarchical clustering, the same shape may be identified in a nested
manner in Fig. 2.47b. In this example, a shortlex order is used, leading to the last
rows being grouped together due to their largest number of interactions. These last rows
correspond to the unknowns located in the center of the separator, usually connected to
more clusters than other unknowns (after factorization). This will be discussed more at
length in § 2.4.4.2, supported more specifically by Fig. 2.51e.

As mentioned earlier, these clusterings may be compared to the computation of T4
supernodes. In the same manner as we have previously discussed the relaxation of
T2 supernodes in § 1.3.1.1.3, we now discuss the relaxation of clusters computed with
Interactions-Aware methods.

In both the top-down and bottom-up algorithms, some computed clusters may be
too small and have a negative impact on the efficiency of the solver. Therefore, we may
have to resort to relaxation, such as depicted in Fig. 2.48. We consider the relaxation, or

(a) Unordered amalgamation. (b) Desired output with shortlex order.

Figure 2.48: Relaxation or amalgamation of Fig. 2.43c with the minimum size Nrelax

(width) highlighted in green.

amalgamation, of each partition independently (yellow and orange levels in the figure).
We may amalgamate leaf clusters together quite easily. If a list of k clusters (τi)1<i<k with
children are to be amalgamated into a new cluster τ , we may either merge the clusters τi
together and delete their children, or merge the different branches of the subtrees of each
τi together into one branch under τ . We rely on the second technique in this work. In the
case of a shortlex order (see p. 134), this relaxation, is computed starting from the end of
the list of the ordered clusters. As long as a cluster τ is not sufficiently large (larger than
a chosen minimum size Nrelax), it is extended using the following cluster in the list, i.e.,
ordered before τ .

Definition 2.2. Nrelax is the threshold used for relaxation using naive amalgamation of
clusters.
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The relaxation is performed starting from the end of the list. Small clusters indeed
tend to have either longer lists (because they are at the intersection of multiple clusters)
or lists containing separators and therefore ordered last (following Definition 1.6). Using
a lexicographic order, only the small clusters interacting with separators are ordered last.
The other clusters interact with non-separator subdomains and are therefore larger and
ordered before. We do not want to amalgamate large clusters. To achieve this relaxation
without introducing zeros in large clusters, we must amalgamate clusters only if the total
size of the resulting cluster is under a specified threshold. The top-down algorithm can
simply be stopped for a fixed limit size Nrelax during the recursion.

However, in the bottom-up algorithm, we need to be able to choose an adequate initial
partition P (in Algorithm 43) to avoid the computation of unnecessary lower levels. The
same problem is discussed at the end of § 2.4.3.2. We would need to be able to relate the
size of all the clusters computed by SplitByInteractions(τ, P) to the size of the clusters
from the input partition P . In other words, if a partition Pi leads to a clustering of the
separator into clusters of size smaller than Nrelax, we may want to skip the computation of
the lower partitions Pj, j > i. Yet, the computation of lower levels may have an impact on
the reordering of the unknowns and therefore on the number of off-diagonal blocks. To use
the same relaxation as the top-down algorithm, the simplest method may be to explore
the cluster tree again, once the whole clustering has been computed, and detach from
the tree all clusters (and their descendants) with a size smaller than Nrelax. It should be
noted that this relaxation does not change the reordering of the unknowns and therefore
the bottom-up reordering of lower levels has an impact even though they are deleted. In
particular, this feature may impact the local clustering discussed in § 2.4.3.4.

The algorithms discussed here may be put in perspective with the nested dissection
method. Indeed, the hierarchical ordering of a separator τ usually leads to a good
separation of two large sub-clusters with a sub-separator with a smaller dimension (it
will be one-dimensional if the separator is two-dimensional). This sub-separator will
match the projection of external separators.

The Interactions-Aware hierarchical separator clustering may also be compared to the
methods discussed in § 2.1.3. More precisely the top-down algorithm shown in Fig. 2.43
may be compared to [53, Fig. 2.7]. However, while the strategy of [53] is to use this kind
of clustering to eliminate a specific level of nested dissection, the approach discussed in
§ 2.4.3.3 also takes into account local orderings such as the Minimum Fill method. As
mentioned in § 2.2.2, separator clusterings based on a similar idea have also been discussed
in [164, chapter 5].

2.4.3.4 Interactions-Aware Local Separator Clustering (IA-LSC)

In an effort to further take advantage of the sparsity of the symbolic information computed
by CV-HSF (see § 2.4.2.1.2), we discuss here the notion of a local row clustering specific
to each leaf column cluster. This may also be seen as the continuation of the search for
a sparse format discussed in § 2.3.3 and the search for a sparse admissibility condition
(the non-separator admissibility condition) discussed in § 2.3.4. This is very different
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from the IA-FSC and IA-HSC methods (§§ 2.4.3.2 and 2.4.3.3) as the granularity of the
local row clustering may be very small without impacting the other column clusters, as
it is not shared by the rest of the column clusters. However, the IA-LSC method is
complementary of the IA-FSC and IA-HSC methods and may be combined with them.
In this case, IA-FSC or IA-HSC is used at a coarse granularity whereas IA-LSC handles
a finer granularity.

The symbolic information of Reach+G(τ) computed by CV-HSF may be used to
subdivide the matrix block Mσ×τ along the rows, if σ is ordered after τ , i.e., σ > τ .
The matrix is considered to have a symmetric symbolic structure. Therefore the symbolic
information may be exploited in asymmetric matrices and the structure Reach+G(σ) may
be used to subdivideMσ×τ along the columns if σ < τ . Here, this symbolic information is
used only on leaf clusters, thus reproducing a format close to a sparse supernodal solver
such as [119]. From the point of view of a sparse symmetric solver, this corresponds to
using a different row partition for each block column independently from one another.
However, we lose the clustering compatibility between block columns when using this
method. Instead of implementing a new format for the solver to handle, we simply insert
children in the leaves of the H-Matrix based on the information listed in Reach+G(τ) or
Reach+G(σ). This is an extension of the hierarchical format: once an H-Matrix has been
constructed with other clustering methods, we may post-process this H-Matrix using
this IA-LSC technique to possibly reduce the storage of off-diagonal leaves. Algorithm 47
describes how the creation of an H-Matrix may be adapted (lines 5,6) for this subdivision.
Algorithm 48 creates a list of local row (or column) clusters based on the intervals of

Algorithm 47: Creation of an H-Matrix with subdivision of leaves using
Cluster-Vertex symbolic information. Adaptation of Algorithm 9, p. 37.
Function CreateHMatrix(σ × τ)

1 if IsLeaf(σ × τ) then
2 if Admissible(σ, τ) then
3 Compress(σ × τ) . Creation of a Rk -Matrix

4 else
5 if IsSparse(σ) ∨ IsSparse(τ) then
6 LocalInteractionsDivision(σ × τ)
7 else
8 CreateFullBlock(σ × τ) . Creation of a Full-Matrix

9 else
10 for (σ′, τ ′) ∈ Children(σ × τ) do
11 if σ′ ∈ Reach(τ ′) ∨ τ ′ ∈ Reach(σ′) then
12 CreateHMatrix(σ′, τ ′)

Reach+G(τ) (or Reach+G(σ)). The blocks resulting from the interactions of these local row
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Algorithm 48: Division of σ according to the symbolic information of τ (or
division of τ using the symbolic information of σ) and creation of multiple dense
blocks based on that division.
Function LocalInteractionsDivision(σ × τ)

1 if σ > τ then
2 Rows ← SplitByReach(σ, τ) . Split σ using Reach+G(τ)
3 for σ′ ∈ Rows do
4 Children(σ × τ)← Children(σ × τ) ∪ (σ′ × τ)
5 CreateFullBlock(σ′ × τ)

6 else
7 Cols ← SplitByReach(τ, σ)
8 for τ ′ ∈ Cols do
9 Children(σ × τ)← Children(σ × τ) ∪ (σ × τ ′)

10 CreateFullBlock(σ × τ ′)

clusters and τ (or σ and local column clusters) are inserted as children of the node σ × τ
in the H-Matrix. The function SplitByReach(σ, τ) simply returns the intersection of the
indices of σ and the structure Reach+G(τ) under the form of a list of clusters. An example
of such a construction is shown in Fig. 2.49. This figure is to be compared with Fig. 2.38.
One can see that the submatrices in Fig. 2.38 have been subdivided in Fig. 2.49 following
the information computed by symbolic factorization.

This technique drastically changes the recursion of some operations. For example, the
recursive GEMM operation must be rewritten in order to take into account the various
potential situations that may arise, some of which are illustrated in Fig. 2.50. This
leads to new hierarchical operations to be implemented in the hierarchical solver, such as
the situation depicted in Fig. 2.50b. In order to compute a H-GEMM on non-standard
H-Matrices A, B and C, we must recurse on all children of each row or column cluster
of the involved matrices that will result in actual fill-in. For example, we need to find
clusters for the row clusters of A and C that intersect one another. To simplify the
reading of the algorithm, the matrices are assumed to be leaves in Algorithm 49. Also,
the common dimension between A and B is assumed to be equal. However, the procedure
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Figure 2.49: Interactions-Aware Local Separator Clustering used on non-separators
off-diagonal submatrices. We can see that each column cluster has a different, independent
row clustering. Right (red) subpart of Fig. 2.37. Legend in Fig. 2.4.
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A BC

×←

(a) The destination matrix C is compressed.
The children of A and B are smaller than C,
therefore we need to compute the subset of
a compressed matrix. This is not a trivial
operation if it must be performed efficiently.

A BC

×←

(b) The destination matrix C does not have the
same rows as A and the same columns as B.

Figure 2.50: Example of unusual operations arising from the subdivision of leaves using
symbolic information.

may also be written to handle unusual cases where these conditions do not apply. These
cases will not be addressed here. To also make the algorithm more readable, we rely on
the function rowChild(A, i), which returns the i-th child of the row cluster of A. The
function Leaf-GEMM(C, α,A,B, β) handles the other cases of multiplication (with at least
one leaf among A, B or C), as discussed in § 1.2.3.3.3.

The function UpdateIndices(σ, τ, i, j) used at the end of the algorithm updates the
indices for both loops. If the clusters intersect, we should indeed continue to use the one
ordered first, in case it overlaps a second cluster of the other list of children. For example,
if the row cluster of A has children equal to [0, 5][5, 10] and the row cluster of C has
children equal to [0, 1][4, 7][15, 20], the first multiplication will operate on σ = [0, 5] and
τ = [0, 1]. We must keep σ = [0, 5] for the second loop and use the next τ = [4, 7] as they
intersect and the associated multiplication will result in fill-in.

The ordering of the separator is closely related to the efficiency of this format. The
new problematics arising from this local clustering are now closer to the question of the
reduction of the number of off-diagonal blocks, such as discussed in § 2.2.2. We are
now faced with two main categories of efficiency linked to the separator clustering: (1)
the low-rank interactions between clusters, and (2) the minimization of the number of
off-diagonal blocks. This topic has for example been discussed with both aspects in mind
in [164]. The separator clusterings presented in this section are mainly designed for the
first point. We have not investigated the second point in this thesis.

2.4.4 General Remarks

2.4.4.1 Order of Computations

The symbolic factorization is usually computed once the whole cluster tree has been
constructed. Therefore, the separator clustering should be computed before the symbolic
factorization. However, the interactions-aware separator clusterings heavily rely on the
use of symbolic information and the quotient graph G/P . This means that the symbolic
information of the interactions between clusters (before factorization) is computed twice.
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Algorithm 49: Recursive GEMM operation multiplying matrices A and B and
adding them to C. Adaptation of Algorithm 11, p. 40.
Function H-GEMM(C, α,A,B, β)

1 if IsRoot(C) then
2 C ← βC

3 if ¬IsLeaf(σ × τ) ∧ ¬IsLeaf(σ × ρ) ∧ ¬IsLeaf(ρ× τ) then
4 iA ← 1, iC ← 1
5 while iA ≤ nrRow(A) ∧ iC ≤ nrRow(C) do
6 while rowChild(A, iA) < rowChild(C, iC) do
7 iA ← iA + 1
8 if iA > nrRow(A) then
9 return

10 while rowChild(C, iC) < rowChild(A, iA) do
11 iC ← iC + 1
12 if iC > nrRow(C) then
13 return

14 jB ← 1, jC ← 1
15 while jB ≤ nrCol(B) ∧ jC ≤ nrCol(C) do
16 while colChild(B, jB) < colChild(C, jC) do
17 jB ← jB + 1
18 if jB > nrCol(B) then
19 return

20 while colChild(C, jC) < colChild(B, jB) do
21 jC ← jC + 1
22 if jC > nrCol(C) then
23 return

24 k ← 1
25 while k ≤ nrCol(A) do
26 if (rowChild(A, iA) ∩ rowChild(C, iC)) ∧ (colChild(B, jB) ∩

colChild(C, jC)) then
27 H-GEMM(Child(C, iCjC), α, Child(A, iA, k), Child(B, k, jB), 1)

28 UpdateIndices(colChild(B, jB), colChild(C, jC), jB, jC)

29 UpdateIndices(rowChild(A, iA), rowChild(C, iC), iA, iC)

30 else
31 Leaf-GEMM(C, α,A,B, β)
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Algorithm 50: Function to update indices i and j according to the mutual
positions of σ and τ .
Function UpdateIndices(σ, τ, i, j)

1 if σ ≤ τ then
2 i← i+ 1

3 else
4 if σ ≥ τ then
5 j ← j + 1

6 else
7 i← i+ 1
8 j ← j + 1

Consequently, we may wonder if the separator clustering may be computed after the
symbolic factorization. To do this, for each row index in the separators, we need a
left-looking information of which column it interacts with. This is exactly the reverse
information of the structure computed by CV-HSF. This method computes the structure
Reach+G(τ) for each column cluster τ . This structure lists all unknowns connected to τ ,
i.e., all unknowns i for which τ ∈ Reach−G/P(i). This may be formulated as

Reach+G(τ) =
⋃

τ ∈ Reach−
G/P

(i)

i. (2.17)

And vice versa,
Reach−G/P(τ) =

⋃
i ∈ Reach+G(τ)∧τ∈P

τ. (2.18)

where the partition P may vary following the algorithm chosen for the separator
clustering, i.e., IA-HSC or IA-FSC. In the case of a flat separator clustering, only one
partition P is needed and the right-looking symbolic information Reach+G(τ) of τ ∈ P may
be therefore stored in a unique container Reach(τ) and transformed into the left-looking
structure Reach−G/P(i). In the case of a hierarchical separator clustering, multiple
partitions Pi will be involved. We would therefore need to store multiple pointers for each
partition during the symbolic factorization before computing the separator clustering or
mix the two algorithms to create the separator clustering while computing the symbolic
factorization. This order of operations has not been investigated yet.

2.4.4.2 Examples of Separator Clustering

In the context of this thesis, we consider two variants of the nested dissection: a
geometric-based nested dissection and a nested dissection based on SCOTCH. We can
use a local ordering for the local subdomains of the nested dissection computed through
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(a) IO-HSC strategy ‘s’ used
in Scotch ND.

(b) IO-HSC strategy ‘g’ used
in Scotch ND+.

(c) IA-HSC applied on a
SCOTCH nested dissection.

(d) IO-HSC geometric recursive bisection used
in BBox ND.

(e) IA-HSC applied on a geometric nested
dissection (BBox ND).

Figure 2.51: Examples of various separator clusterings applied on the first separator of
a nested dissection computed on the cube example of Fig. 1.17. Different colors indicate
leaf sub-clusters inside this separator.

SCOTCH such as the AMF method, as discussed in § 2.3.1.3. Once the nested dissection
has been computed, one of the previous clustering methods may be applied on each
separator. Relying again on SCOTCH strategies, we can for example compute Fig. 2.51a
or Fig. 2.51b. The first one is used here with a standalone nested dissection while the
second one is applied in combination with the AMF method. We refer the reader to
appendix A for more details on the strategies involved. Instead of relying on SCOTCH
local ordering strategies, the IA-HSC variant may be used, of which an example is shown
in Fig. 2.51c. The classical clustering used in the H-Matrix community, the recursive
bisection, can also be applied on the separators, as shown in Fig. 2.51d. Instead of
applying this algorithm, we may also use the IA-HSC variant on the separators, resulting
in Fig. 2.51e. In this last (geometric) example, we can see the isolated unknowns in
the middle of the separator (forming one-dimensional clusters), corresponding to the
interactions with other separators. This is also visible in the topological approach
(Fig. 2.51c), though the shape of separators being not as regular as in the geometric nested
dissection, it leads to less regular sub-clusters. we can see that, generally, the geometric
nested dissection leads to more regular-shaped clusters, favorable to compression. Finally,
the IA-HSC method seems to have only little differences from its IO-HSC counterpart in
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the geometric approach while there are more differences between IA-HSC and IO-HSC
methods in the topological approach.

2.5 Solution of the FEM/BEM Coupling using
H-Matrices

For the more general question of this thesis, we discuss here the solution of a FEM/BEM
coupling (Eq. (1.2)) using the elements discussed in this chapter.

First of all, the nested dissection may be applied on the volume mesh and the recursive
bisection on the surface mesh. This leads us to the overall system presented in Fig. 2.52.
In this symmetric linear system, the unknowns associated with the volume mesh impact
the matrix Avv (Fig. 2.52a) and the matrix Asv (Fig. 2.52b). While we have already
discussed tall & skinny blocks in § 2.3.2, it must be noted that this problem is also
present in the blocks of the matrix Asv, due in part to the fact that the surface (row)
mesh has less unknowns than the volume (column) mesh. However, this problem was
already present in the original recursive bisection method (see Fig. 1.46b). But we may
observe new rectangular (tall & skinny) blocks: the blocks arising from the interaction
between separators from the volume mesh and regular clusters from the surface mesh (for
example, the blocks at the far right of the matrix Asv). The first (and higher) separator
is here smaller than the surface mesh, creating a reversed imbalance in the hierarchy (the
rectangular blocks have a longer dimension in the surface dimension). In the case of a
nested dissection, the approach discussed in § 2.3.2 to prevent tall & skinny blocks may be
applied on Fig. 2.52b to produce Fig. 2.53b. The discussion may be transposed to Avs for
asymmetric linear systems. In fact, while all the modifications introduced in this chapter
have been discussed for a square sparse matrix A ∈ Cn×n, they may also be translated to
the off-diagonal rectangle sparse matrices Asv and Avs.

The symbolic factorization may also be used in this context but the subsystem on which
it is performed may be discussed. In particular, following the discussion of § 1.3.1.2.5, a
symbolic factorization may be applied on either:

1. the sparse matrix Avv, the FEM-FEM submatrix;

2. the sparse matrix
[
Avv
Asv

]
, with the off-diagonal BEM-FEM submatrix;

3. the overall matrix A of the FEM/BEM coupling.
To avoid unnecessary computation, the symbolic factorization should not be computed
on the whole system (case n◦3), as the symbolic information is useless on the dense
matrix Ass. An example of the use of a symbolic factorization for the first case (on Avv)
is displayed in Fig. 2.53. Usual recursive bisection is used as a separator clustering in
this example. Regarding case n◦2, following the discussion in § 1.3.1.2.5, we may apply
a symbolic factorization on a rectangular system by using Algorithm 20. However, for
implementation consideration, this has not been investigated yet.
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Figure 2.52: H-Matrices involved in the solution of a symmetric linear system arising
from a FEM/BEM coupling using nested dissection.

Bridging the gap between H-Matrices and sparse direct methods 152



2. Low-Rank Compression in Sparse Linear Systems
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Figure 2.53: H-Matrices involved in the solution of a symmetric linear system arising
from a FEM/BEM coupling using nested dissection and symbolic factorization on Avv.
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Chapter 3

Numerical Experiments

We have presented in Chapter 2 a set of methods based on the combination of hierarchical
techniques with sparse techniques. The use of nested dissection (§ 2.3.1) and symbolic
factorization (§ 2.4) in a hierarchical framework were discussed for the solution of sparse
matrices. In this chapter, we consider these algorithms and study their computational
efficiency and their impact on the performance of the hierarchical solver. We consider
only one admissibility condition (the strong criterion) in this study and leave for future
work the search of other criteria such as discussed in § 2.3.4 (shown to greatly impact
the low-rank compression and thus the performance of the solver). We also rely on the
algebraic modification of the construction of the block cluster tree of a H-Matrix to
prevent tall & skinny blocks, such as discussed in § 2.3.2.

For the purpose of the study we intend to lead here, we detail the test cases chosen for
our experiments in § 3.1. The experimental environment (hardware configuration, solvers
parameters) is detailed in § 3.2. The efficiencies of the proposed methods for the clustering
and analysis (symbolic factorization) steps are discussed in §§ 3.3 and 3.4, respectively.
The numerical factorization of a sparse matrix is then studied in § 3.5. We first examine
the effect of clustering and symbolic factorization on the numerical factorization in
a hierarchical solver. We study the behavior of the CC-HSF and CV-HSF methods
compared to methods not relying on symbolic factorization, as well as the behavior of the
Interactions-Aware separator clusterings compared to the Interactions-Oblivious separator
clusterings. We then establish a comparison between these hierarchical methods and a
reference sparse direct solver (here, MUMPS). We study the full-rank and the low-rank
versions of the H-Matrix solver and the MUMPS solver. Eventually, a study of the
FEM/BEM coupling is presented in § 3.6.

3.1 Test Cases
The test cases for these experiments have been chosen as a pipe such as displayed in
Fig. 3.1, in an effort to coincide with the realistic application presented in Fig. 1.4 while
providing reproducible examples for the community. The dimensions of a pipe may be
changed by setting its radius (R) and its length (L) to different values. Studies have been
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(a) Short pipe (L/R = 2). (b) Long pipe (L/R = 20).

Figure 3.1: Examples of pipes with different lengths (L). The radius (R) is set to 2 m.

led on short pipes (with a ratio L/R = 2) or long pipes (L/R = 40). The latter test
case would be more realistic for an aeroacoustic problem such as the one considered here
(Fig. 1.4b).

The unknowns of the matrix associated with the problem are located on the vertices
of the mesh. In the FEM discretization, the unknowns interact with their immediate
neighbors (connected by one edge). The BEM is applied on the outer surface of the
pipe. The unknowns associated with the BEM discretization rely on the same mesh as
the FEM. However, their interaction is based on the wavelength λ varying with respect
to the number of unknowns of the problem. We set λ such that there will be 10 points
per wavelength. For two points i and j, with k = 2π/λ and r the distance between these
points, the interaction aij between these two unknowns is given by Eq. (3.1).

aij =
eikr

r
. (3.1)

For studies on sparse matrices (§§ 3.3 to 3.5), the short pipe test case has been
used. Test cases vary from one million (1.106) complex unknowns and doubled up to
16 million (16.106) for sequential numerical factorizations. The tests on pure symbolic
factorization (without computing the numerical factorization) may be performed on larger
cases than for the numerical factorization, they have been therefore studied for test
cases doubled up to 64 millions unknowns in sequential. If no numerical factorization
is computed, the result may not be validated via a forward or backward error. The
hierarchical symbolic factorization is then validated using a scalar symbolic factorization.
Above 16 million unknowns, we have also studied the parallel numerical factorization of
matrices by steps of 16 million up to 128 million unknowns.

For studies on the FEM/BEM coupling (§ 3.6), the long pipe test case has been used.
The dimensions of the study cases for these preliminary experiments are described more
precisely in § 3.6.
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3.2 Experimental Environment
All solvers have been compiled with Intel compiler and linked with the Intel R©Math Kernel
Library (MKL) library for processing dense linear algebra (LAPACK/BLAS) operations.
The version of Intel compiler and libraries used here is 17.0.4 (20170411). We also rely
on the sequential version of SCOTCH 5.1.11. Table 3.1 attempts to succinctly describe
the specificities of each considered approach. We consider for example multiple global
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SF

H-Bisection [34, 39,
40, 47, 48, 112, 114] ∅ X X - - - X X X - H ∅

Supernodal solver
(PaStiX) [119] X ∅ X AMF RB,g Local X X ∅ ∅ BLR X

Multifrontal solver
(MUMPS) [157] X ∅ X s RB,s Local X X ∅ ∅ BLR X

H-ND [102, 107, 126,
138, 143] (§ 2.3.1) X X X ∅ RB Shared X X X X H ∅

CC-HSF (§ 2.4.2.1.1) X X X AMF,∅ * * X ∅ X X H X
CV-HSF (§ 2.4.2.1.2) X X X AMF,∅ * * X ∅ X X H X
IO-HSC (§ 2.4.3.1) X X X AMF,∅ RB,s,g Shared X ∅ X X H X
IA-FSC (§ 2.4.3.2) X X X AMF,∅ IA Shared X ∅ X X H \{S} X
IA-HSC (§ 2.4.3.3) X X X AMF,∅ IA Shared X ∅ X X H X
IA-LSC (§ 2.4.3.4) X X X AMF,∅ * Local X ∅ X X H X

Table 3.1: List of approaches and their respective relevant characteristics. − means
the characteristic is irrelevant for this method. ∗ means any of the parameters may be
applied. ∅ means that the parameter is not used/is ignored. RB: Recursive Bisection
(or K-way). ND: Nested Dissection. Local/Shared: Separator Clustering is either specific
to each block column or shared between all. AMF: Approximate Minimum Fill. ‘g’,
‘s’: SCOTCH strategies (see appendix A). IA: Interactions-Aware. H \{S} means the
structure is hierarchical except in separators. SF: Symbolic Factorization.

partitioning (or clustering), either relying on recursive bisection (first line) or nested
dissection (the rest). The clustering may rely on geometric or topological information,
such as discussed in § 2.3.1. The local partitioning/clustering of subdomains may rely on
AMF for some of the considered approaches. To cluster the separator, multiple strategies
may be used, among the Interactions-Oblivious (geometric recursive bisection or SCOTCH
strategies) and Interactions-Aware methods. The separator clustering may be shared by
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all column clusters/supernodes or specific (local) to one column cluster. The compression
techniques that may be used include: ∅, when no compression is used; an algebraic
approach, where information from the matrix is used to decide whether to compress or
not; an admissibility condition based on bounding boxes; an admissibility condition based
on the Non-Separator criterion, discussed in § 2.3.4. The hierarchical format column lists
methods based on the H-Matrix format or the BLR format. One of the method is listed
as H \{S} to emphasize the fact that no hierarchy is used in separators. The SF column
indicated which method rely on symbolic factorization. The methods listed in the last
rows of this table (CC-HSF, CV-HSF, ..., IA-LSC) may be applied on the H-ND method.

The memory consumption of the solver has been studied through the hardware
information measured in the file /proc/self/status. The real memory usage of the
solver, i.e., the “resident set size”, the memory held in the Random-Access Memory
(RAM), corresponds to the field VmRSS and its peak to VmHWM. The virtual memory usage
corresponds to the field VmSize and its peak to VmPeak. We here usually display the real
and virtual memory peaks. Memory profiles (displaying the memory usage of the solver
all along the execution of the program) show the real memory.

3.2.1 Hardware Configuration

Experiments have been run on machines from both GENCI [2] and PlaFRIM [6] computing
facilities. Table 3.2 details the characteristics of the machines.

Facility Machine Processor Nb Cores Frequency RAM
GENCI occigen Intel R© Xeon R© E5-2690 v3 24 = 2 × 12 2.6 GHz 128GB
PlaFRIM miriel Intel R© Xeon R© E5-2680 v3 24 = 2 × 12 2.5 GHz 128GB
PlaFRIM brise Intel R© Xeon R© E7-8890 v4 96 = 4 × 24 2.2 GHz 1TB
PlaFRIM souris Intel R© Xeon R© E5-4620 v2 96 = 12 × 8 2.6 GHz 3TB

Table 3.2: Machine specifications.

For each set of experiments, the name of the machine used will be mentioned. The
machine occigen is a cluster composed of nodes with 64GB of RAM by default, or
optionally 128GB if the user requires so. There are two physical sockets (Haswell Intel
Xeon processors) on these nodes (two NUMA nodes per socket), each socket containing
12 cores for a total of 24 cores running at a frequency of 2.6 GHz. The second type of
machines used, miriel, is part of the PlaFRIM cluster. These nodes have 128GB of RAM
and also two (Haswell Intel Xeon) sockets (two NUMA nodes per socket) containing 12
cores each for a total of 24 cores running at a frequency of 2.5 GHz. The brise machine
is a node part of the PlaFRIM cluster with 1TB of RAM and four (Broadwell Intel Xeon)
sockets (two NUMA nodes per socket) containing 24 cores each for a total of 96 cores
running at a frequency of 2.2 GHz. Finally, souris is a node part of the PlaFRIM cluster
and has 3TB of RAM as well as 12 (Ivy Bridge EP) sockets (one NUMA node per socket)
containing 8 cores each for a total of 96 cores running at a frequency of 2.6 GHz. Note
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that this last machine also has the option of activating hyper-threading though we have
not used this feature in this thesis.

3.2.2 H-Matrix Configuration

This subsection gives some information on the parameters and environment used in our
experiments in the H-Matrix Airbus solver. This solver is referred to as HMAT when
there is no ambiguity on which method is used. Table 3.3 lists the possible values for
each parameter considered in this set of experiments. For instance, we rely on the ACA+

Parameter Possible values
Symbolic Factorization {Left, Right} × {Bottom-Up, Top-Down} × {Cluster-Cluster,

Cluster-Vertex, Vertex-Vertex (Scalar)} × {True, False}
Separator Clustering {Interactions-Aware, Interactions-Oblivious} ×

{Hierarchical, Flat}
Local Separator Clustering {True, False}
Admissibility Condition {Bounding Box, Non-separator, Optimal, Topological, No

compression}
Tall & Skinny (§ 2.3.2) {Algebraic, Geometric} × {Cluster tree, Block cluster tree}
Compression Method {SVD, ACA Full, ACA Partial, ACA+}

Re-Compression Method SVD
Compression Threshold ε [10−16, 1[

# Unknowns (N) N

NND (Definition 2.1) N

Nleaf (Definition 1.3) N

Nrelax (Definition 2.2) N

Table 3.3: Possible values for hierarchical method parameters. Methods in red are not
studied here.

variant for compression and do not study the use of SVD or ACA with full or partial
pivoting. Table 3.4 describes the steps studied in this chapter that may need some
clarification.

The matrices involved in our experiments are complex symmetric, therefore the LLT
decomposition is used for their factorization. The solver does not rely on pivoting. The
compression method (§ 1.2.3.1.1) is set to ACA+. The accuracy parameter of the solver
is usually set to ε = 104 when using compression, though it will be specified for each
experiment. No iterative refinement is used here, though the use of H-Matrices as
preconditioners may be the object of future research.

For the numerical factorization step, the IA-LSC feature is always activated. Indeed,
in the cases when no symbolic factorization is computed or when CC-HSF is used,
IA-LSC simply does lead to the same hierarchical format as without IA-LSC. Therefore,
the subdivision of leaves occurs only when CV-HSF is computed. To distinguish the
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Step Description

Clustering
Computation of the cluster tree, mainly relying on domain
division such as nested dissection, recursive bisection or

SCOTCH (§ 1.2.3.2.1 and § 2.3.1)

Scalar Adjacency Computation of the structure AdjG(i) for each i ∈ V ,
effectively building the graph G = (V,E) (§ 1.3.1.1.1)

Quotient Adjacency Computation of the structure AdjG/P(K) for each K ∈ P ,
effectively building the graph G/P (§ 1.3.1.1.3)

Fill-in Computation of the fillin, i.e., the ∗ operation (§ 1.3.1.1)

Transmission to Hierarchy Transmission of the symbolic information to all clusters in the
hierarchy, for bottom-up algorithms (§ 2.4.2.2.2)

SF Symbolic factorization (§ 1.3.1.2)
Schur Computation of the Schur complement S (Eq. (1.30))

FEM elimination Elimination of the volume unknowns, prior to the
factorization of S in the final solution in Eq. (1.29)

Table 3.4: Description of the routines studied in this chapter.

differences between the various symbolic factorizations, we therefore put the No SF (for
“No Symbolic Factorization”) algorithm in perspective with CC-HSF and CV-HSF.

In the experiments contained in this chapter, we limit the blocking sizes to the same
values NND = Nleaf = Nrelax = 100. In preliminary experiments, we have observed that
this size leads to an ideal trade-off between the storage and the time required to compute
a factorization due to low-rank compression. Yet, other blocking sizes could be studied
to further investigate their effect on each of the methods presented here.

In the case of the H-Matrix solver, the number of floating-point operations (Flop)
displayed in these experiments are counted manually through the number of BLAS
operations performed on leaves of the H-Matrix.

3.2.3 MUMPS Configuration

As we intend to establish a comparison with a reference sparse direct solver, we give
compilation and parametrization details on the MUMPS sparse direct solver used in our
experiments. MUMPS [22] has been run with version 5.1.2 (2017/11/2), with or without
BLR [157]. According to the documentation, the BLR method used in this release follows
the FSCU strategy (see § 2.2.1). The low-rank (BLR) variant is expected to have better
results in terms of factorization time but not in memory consumption nor the solve time in
this version, compared to the full-rank solver. The research work [157] enabling memory
compression has indeed only been released on 2019/04/18 while finalizing the submitted
version of this manuscript. The strategy used by MUMPS for SCOTCH is also noted
Scotch ND+ in the experiments. It is slightly different (see Algorithm A.3, p. 206),
mainly affecting the local ordering, but results in a very similar number of non-zeros. As
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OMP_NUM_THREADS MKL_NUM_THREADS Factorization Time (s)
1 24 177.929
24 1 104.116
24 24 78.803

Table 3.5: Factorization time of a 1M-unknowns short pipe (Fig. 3.1a) for multiple
configurations on 24 cores on miriel using BLR-MUMPS.

the considered matrices are complex symmetric, the factorization method used in MUMPS
is the LDLT decomposition by default. For multi-threading computations, the software is
compiled with the flags -openmp and -DBLR_MT (following suggestions in §5.15 of MUMPS
5.1.2 user manual, and the advice of the MUMPS development team). To run on 24 cores,
due to the results displayed in Table 3.5, we have chosen to set both OMP_NUM_THREADS
and MKL_NUM_THREADS to 24 in our experiments.

In some experiments, we have displayed the real memory peak along with the virtual
memory peak due to the optimizations performed by MUMPS. Indeed, MUMPS first
performs an allocation larger than necessary in order for the computations to be more
efficient. This translates into a larger virtual memory consumption though the real
memory consumption of the solver is lower. This explains the behavior of the solver
on larger cases where the virtual memory may exceed the RAM available on the machine
but the real memory usage does not. When using MUMPS, the number of Flop are
computed internally by the solver. We rely on the field RINFOG(3) for counting Flop in
the information structure of MUMPS after factorization. In the case of BLR-MUMPS,
the field RINFOG(14) is used, following the manual instruction and preliminary feedback
of the MUMPS development team.

3.3 Clustering Methods
We first establish the efficiency of clustering (see Table 3.4) methods, later used as a
reference for the variants of symbolic factorization studied in § 3.4. The methods compared
here are the BBox ND 2, the Scotch ND and Scotch ND+ methods, detailed in § 2.3.1.
The cost of computing a nested dissection using geometric (BBox ND 2 or BBox ND)
or topological (Scotch ND) information is approximately similar as shown in Fig. 3.2.
However, our strategy Scotch ND+ computing a local ordering (AMF here) takes twice
as much time as the simple nested dissection.

3.4 Hierarchical Symbolic Factorizations
We now intend to compare the variants of the hierarchical symbolic factorization discussed
in the previous chapter to be able to set one variant for the rest of the experiments (on the
numerical factorization and on the FEM/BEM coupling). Our parameter space for the
computation of an efficient hierarchical symbolic factorization has many dimensions. We
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Figure 3.2: Time consumption of clustering methods. The addition of a local ordering
(here AMF) doubles the time of the overall clustering in this example. Short pipe test
case (Fig. 3.1a) from 1M to 16M unknowns. Sequential run on occigen.

investigate here each dimension independently. In the following sections, we investigate
the impact of computing a top-down hierarchical symbolic factorization compared to a
bottom-up version of the algorithm (§ 3.4.1), the cost of using a left-looking algorithm
compared to a right-looking variant (§ 3.4.2), and finally the differences between the
Cluster-Cluster Hierarchical Symbolic Factorization, or CC-HSF, and the Cluster-Vertex
Hierarchical Symbolic Factorization, or CV-HSF (§ 3.4.3). The comparisons are detailed
here for test cases of short pipes (Fig. 3.1a) from 1 to 64 million unknowns, displayed as
the x-axis of each graph. We also provide memory and time details of the 64M-unknowns
problem in Table 3.6 at p. 167, in which some differences are more noticeable. In this
table, both the Scotch ND+ and BBox ND are displayed. The symbolic factorization is
not really affected by the clustering method (as we can see in Table 3.6). Therefore the
discussion in this section is restricted to the BBox ND, though it may be extended to
Scotch ND+.

3.4.1 Top-Down and Bottom-Up Hierarchical Symbolic
Factorizations

First, we lead a study on the differences between the top-down and the bottom-up
variants of the hierarchical symbolic factorization, discussed in § 2.4.2.2. Both variants are
here based on a right-looking variant computing cluster-cluster information (CC-HSF).
The top-down hierarchical symbolic factorization (TD CC-HSF) is computed using
Algorithm 33, p. 123. It computes the elimination of a quotient graph on each level
of the cluster tree. The bottom-up hierarchical symbolic factorization (BU CC-HSF)
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Figure 3.3: Comparison of Top-Down vs Bottom-Up Hierarchical Symbolic Factorizations
using Cluster-Cluster right-looking information (CC-HSF). Short pipe test case
(Fig. 3.1a). Sequential run on miriel.
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is computed using Algorithm 37, p. 125. It computes one elimination of the quotient
graph associated with the leaves of the cluster tree and propagates the result to the upper
clusters. On Fig. 3.3a, we can see that the cost of computing a top-down hierarchical
symbolic factorization is larger than the cost of computation of the clustering step. By
using a bottom-up algorithm, we are able to drastically reduce the cost of computing such
a hierarchical symbolic factorization so that it takes only a fraction of the clustering step.

Details of the symbolic factorization step (see Table 3.4 for a description of these
steps) are displayed in Fig. 3.4b. In addition, Table 3.6 gives the memory necessary
for performing the symbolic factorization as well as the detailed times of each step for
a 64M-unknowns problem. The top-down algorithm re-computes here at each level the
scalar adjacency graph of the problem and transforms it into a quotient graph, thus
explaining the major cost of these two particular steps in the algorithm. It should
be noted that it is possible to store the scalar information in order to speed-up the
algorithm with an extra cost of memory. The computation of the elimination quotient
graph would then become the most time-consuming step of the algorithm. For each layer
Pi, this symbolic elimination is not computed on the scalar graph and transformed into a
quotient graph (G∗/Pi) but on each quotient graph instead ((G/Pi)∗). The cost of such a
computation is already a large part of the cost of the overall symbolic factorization, and
is larger than the cost of the whole bottom-up algorithm. To reduce this cost, one may
think of computing the symbolic elimination only on the lowest quotient graph G/PN .
However, this leads us to essentially the same algorithm as the bottom-up algorithm,
except that, for the computation of the symbolic information of an upper level Pi, we
do not use the symbolic information of the nearest lower level Pi+1 but instead use the
lowest level PN . The symbolic information on level PN is by definition a much more
precise symbolic information than that of the level Pi+1 but this extra information is not
useful for the level Pi and only leads to a larger complexity. Therefore, even with this
possible improvement, the top-down algorithm would remain more time-consuming than
the bottom-up algorithm.

Finally, Fig. 3.3c shows the difference of memory consumption of the solver before and
after the symbolic factorization. We can see here that the memory usage of the bottom-up
algorithm is also smaller than the memory usage of the top-down algorithm. Theoretically,
the two algorithms should be able to consume the same amount of memory, at least in
terms of the size of the computed symbolic information. Yet, the difference in memory
consumption may be explained by our implementation: the top-down algorithm may store
temporary data that will accumulate until the bottom of the tree is reached, while this
temporary data may be freed in the bottom-up algorithm. We have not investigate this
further, as this memory may be freed once the symbolic factorization has been computed
and therefore should not impact the peak reached during the numerical factorization,
studied in § 3.5.

Due to the results of this section, we focus on the bottom-up algorithm in the remaining
of this thesis.
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3.4.2 Left and Right-Looking (Bottom-Up) Hierarchical
Symbolic Factorizations

We now study the right-looking and left-looking variants of the hierarchical symbolic
factorization, i.e., the computation of the right-looking Reach+G/P(τ) and left-looking
Reach−G/P(τ) structures defined in Eq. (2.12) and Eq. (2.13), p. 118, respectively. Both
variants rely on Algorithm 37, p. 125, in which we may simply compute either a
right-looking or left-looking symbolic factorization on the leaves of the cluster tree. We
can observe that both the right-looking and left-looking variants are faster than the
clustering step according to Fig. 3.4a and seem to follow a linear complexity. However,
the left-looking variant is slower than the right-looking version of the algorithm. The
left-looking variant relies on Algorithm 19, p. 68, for the symbolic elimination of the
leaves: the right-looking information is first computed to reduce the arithmetic complexity
of the overall algorithm. The algorithm computes both right-looking and left-looking
information (scalar and quotient adjacency steps are therefore multiplied by a factor
of approximately two) and is inevitably slower than the algorithm that computes only
right-looking information. The right-looking variant relies on Algorithm 15, p. 63, for
this leaf symbolic factorization. This may be observed in Fig. 3.4b. Moreover, due to
the storage of this extra right-looking structure, the left-looking algorithm consequently
consumes more memory as shown in Fig. 3.4c. As mentioned earlier, these results are also
displayed in Table 3.6. The pure left-looking algorithm (with no usage of right-looking
data) presented in Algorithm 17, p. 67, was not used as the time consumption of this
method increases too rapidly.

One advantage of a left-looking algorithm is that the left-looking information from the
scalar edges of the adjacency graph may be used in the separator clustering algorithms
presented in § 2.4.3 and studied in § 3.4.4. Indeed, these edges are the basis used for the
clustering of each separator, and using this left-looking scalar information towards clusters
would therefore avoid duplications of the computation of this information, as discussed
in § 2.4.4.1.

For the rest of this manuscript, we restrict the discussion to bottom-up algorithms
using a right-looking variant due to the results of this section.

3.4.3 Cluster-Cluster and Cluster-Vertex Hierarchical Symbolic
Factorizations

We now study the variants of hierarchical symbolic factorization computing either a
Cluster-Vertex or a Cluster-Cluster symbolic information. The Cluster-Vertex approach
is very similar to the Cluster-Cluster approach in terms of time consumption, as shown
in Fig. 3.5a. An interesting difference between the two methods can be observed in
Fig. 3.5b: the Cluster-Cluster algorithm takes more time computing quotient adjacency
of clusters but spends less time in the transmission of the symbolic information to the
upper levels, while the Cluster-Vertex variant follows the reverse trend. This observation
may be confirmed by the results in Table 3.6 for a 64M-unknowns problem. In this
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Figure 3.4: Comparison of Left-Looking vs Right-Looking (Bottom-Up) Hierarchical
Symbolic Factorizations. Short pipe test case (Fig. 3.1a). Sequential run on miriel.
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Figure 3.5: Comparison of Cluster-Cluster vs Cluster-Vertex Hierarchical Symbolic
Factorizations. Short pipe test case (Fig. 3.1a). Sequential run on miriel.
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example, the Cluster-Vertex approach computes the quotient adjacency in less than 11
seconds while the Cluster-Cluster approach takes more than 166. But the Cluster-Vertex
approach takes more than 187 seconds to transmit the symbolic information to the
hierarchy while it takes only around 128 seconds in the Cluster-Cluster approach. This
difference comes from how these steps are computed. In the BU-CC-HSF approach, the
scalar information is first transformed from a list of indices into a list of pointers towards
clusters containing these points. This list is then sorted and duplicates are removed for
later efficiency of searches in this list. The Quotient Adjacency step may therefore be
faster but would later result in a slower computation of fill-in and a slower creation of the
H-Matrix that uses this information to decide to store a block or not (see Algorithm 30).
Finally, the Cluster-Vertex algorithm appears to consume a little bit less memory than
the Cluster-Cluster algorithm. As mentioned before, this excess of memory used by the
symbolic factorization may be released once the H-Matrix has been constructed and
therefore should not impact the peak of memory reached during numerical factorization.

3.4.4 Separator Clustering

We now focus on the efficiency of the computation of the Interactions-Aware separator
clustering methods. The top-down separator clustering approach does not scale for large
matrices, as can be observed in Fig. 3.6a. Furthermore, the bottom-up hierarchical
algorithm has a quite large overhead compared to the flat algorithm as one can see in
Fig. 3.6b. In this figure, the methods are compared to the Scotch ND+ clustering and the
CV-HSF time consumption, taken as a reference. Both methods require less time than
the clustering step while requiring more time than the symbolic factorization. This is also
noticeable in Fig. 3.6c, which shows the memory profile of the pre-processing computations
before the actual creation of the H-Matrix. The creation of the test case (the pipe) is not
included. We can also see in this figure that both the flat and the hierarchical separator
clustering have a similar memory usage.

In conclusion of this section, we have compared the cost of pre-processing analysis
methods developed in this thesis and established that:

- bottom-up and right-looking algorithms are faster;
- the CC-HSF and CV-HSF methods have a similar cost;
- the IA-FSC method is a bit faster than its counterpart (BU-)IA-HSC;
- efficient symbolic analysis and separator clustering cost less than the clustering step.

Now that we have concluded which analysis methods should be used, we must study their
effect on the numerical factorization, as discussed in the following section.
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Figure 3.6: Performance of separator clustering (using relaxation) SCOTCH nested
dissection coupled with AMF. Short pipe test case (Fig. 3.1a). Sequential run on occigen.
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3.5 Symbolic Factorization Influence over Numerical
Factorization

For this set of experiments, we rely on the most efficient symbolic factorizations (in
the analysis step) and compare their impact on the numerical factorization. Therefore,
the symbolic methods selected for this comparison are CC-HSF and CV-HSF, with a
bottom-up right-looking implementation. The separator clustering is set as IO-HSC
(recursive bisection in the case of BBox ND, and strategies ‘s’ or ‘g’ in Scotch ND and
Scotch ND+ variants, respectively), IA-FSC and BU-IA-HSC (abbreviated IA-HSC).

3.5.1 Sequential Study of Middle-Range Test Cases

In order to validate the usage of a symbolic factorization, we must prove that:
1. the cost of its computation is low and therefore does not have a large impact on the

overall computation,
2. it benefits the memory and time consumption of the numerical factorization, so that

the overall memory and time consumption of the solver should be reduced,
3. the accuracy of the solution is not changed.
Regarding the first point, the symbolic factorization step computed here takes only a

small fraction of the computation with respect to the numerical factorization step. This
fraction also gets smaller and smaller when the size of the problem grows. This is shown
in Fig. 3.7a.

For the memory and time consumption, we study the impact of the symbolic
factorizations, the separator clusterings and the global clusterings in Fig. 3.7. Fig. 3.7b
displays the time required for the computation of the numerical factorization. Fig. 3.7c
displays the memory consumption of the factorized matrix. The facet columns indicate
the global clustering methods used, but also the local clusterings. As discussed in
§ 2.4.4.2, the Scotch ND separator clustering (IO-HSC) relies on SCOTCH ‘s’ strategy.
The Scotch ND+ separator clustering (also IO-HSC) relies on SCOTCH ‘g’ strategy,
meant to reduce the number of off-diagonal blocks. The points that are not present in
these results have either run out-of-memory or reached a wall-time (they would be out
of the frame of these graphs). The Interactions-Aware methods used for the clustering
of separators rely on relaxation to avoid too small supernodes. If no relaxation is used,
the factorization time has been observed to drastically increase. Therefore, if the method
would theoretically reduce the number of zero storage with no relaxation, we investigate
here its practical efficiency for a relaxation Nrelax = Nsparse = 100.

The first observation we can make is that, with relaxation, the IA-FSC method does
not perform well both in terms of memory and time consumption compared to the other
methods.

The second observation is that the performance of IO-HSC and IA-HSC depend greatly
on the global clustering used. For example, in the geometric nested dissections (the first
two columns), the IO-HSC method performs better than the IA-HSC method, both in
terms of time consumption (Fig. 3.7b) and in terms of memory consumption (Fig. 3.7c).
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Figure 3.7: Impact of each method on numerical factorization. The X-axis indicates the
number of unknowns. Separator clusterings (using relaxation) are indicated by the colors.
Symbolic factorizations are displayed on facet rows. Global clusterings are displayed on
facet columns. Short pipe test case (Fig. 3.1a). Sequential run on miriel.

Bridging the gap between H-Matrices and sparse direct methods 171



3. Numerical Experiments

In the case of topological nested dissections, the IA-HSC method performs better than the
IO-HSC strategies ‘s’ and ‘g’ (third and fourth column, respectively). It should be noted
that using a geometric recursive bisection in the case of a topological nested dissection
has not been studied here though performance should not reach that of the geometric
nested dissection as the separator clustering will not match the rest of the clustering.
The performance of the geometric recursive bisection (in the case of geometric nested
dissection, first and second column of the figures) is in a large part due to the fact that
this local clustering follows the same strategy as the global clustering (the geometric
nested dissection) and separator sub-clusters interactions match external clusters well.

Another observation we can make on these graphs is the effect of using CV-HSF against
CC-HSF (the lower row against the upper row in the figures). We may observe that there
is no difference in terms of time consumption between the two methods (Fig. 3.7b). This
is most certainly due to the current implementation of the operations handling subdivided
H-Matrix leaves using IA-LSC, as briefly discussed in § 2.4.3.4. We may however notice
a slightly lower memory consumption of the CV-HSF methods compared to the CC-HSF
(Fig. 3.7c).

To better understand the effects involved here, we focus now on the IO-HSC methods.
Fig. 3.8a displays the theoretical number of entries computed by the symbolic factorization
(in blue) and the effective number of entries in the compressed matrix (in green). The
blue curve indicates that the Cluster-Vertex information distinctly reduces the theoretical
bound of the solver storage compared to the Cluster-Cluster information. However, the
effective storage of the solver remains more or less the same due to at least two factors:
the current implementation of the solver between the two methods (the format ignores
symbolic information in the separator-separator blocks for example) and the ignored zeros
due to the admissibility condition. Indeed, if we consider a non-leaf admissible (therefore
compressed) block, the underlying symbolic information is ignored in favor of compression.
Yet, the Cluster-Vertex approach has a slight advantage over the Cluster-Cluster method,
due to the remaining non-admissible leaf blocks that have benefited from this sparser
storage.

Finally, we can also observe that compression is far more effective in the case of
geometric nested dissections. The compression ratio is defined here as the ratio between
the effective number of entries and the estimated number of non-zeros computed by
symbolic factorization. The compression ratio is better in the case of BBox ND or
BBox ND 2 than for the Scotch ND+ method, as shown in Table 3.7. The effective storage
is at around one third of the number of non-zeros computed by symbolic factorization for
the BBox ND method. This number drops to one fifth for BBox ND 2 while it reaches 80%
for Scotch ND+. This difference in compression comes from the fact that Scotch ND+
computes better suited separators in the nested dissection and thus leads to less fill-in.
The geometric nested dissection seems to compress better but the reader should be aware
that this may purely come from the fact that a geometric recursive bisection is applied
for the clustering of separators. In this thesis we compare a purely geometric approach
(discussed in § 2.3.1.1) and a purely topological approach (see §§ 2.3.1.2 and 2.3.1.3) for
the overall clustering step. As mentioned earlier, we do not study here the combination
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(b) Forward error. The threshold parameter is set to ε = 10−4.

Figure 3.8: Comparison between theoretical and effective number of entries in the
factorized matrix, as well as the forward error of the solution. The column facets indicate
which symbolic factorization is used while the row facets indicate the clustering. The
separator clustering method is set to IO-HSC. Short pipe test case (Fig. 3.1a). Sequential
run on miriel.
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of a topological approach for the global clustering (nested dissection) with a geometric
recursive bisection for the separator clustering, though this should be further investigated
in future research. Note that the geometric approach could theoretically also be optimized
to lead to less fill-in. In addition to this, BBox ND and BBox ND 2 are also better suited
for the strong admissibility condition relying on bounding boxes in our implementation.

Method Clustering Estimated nnz Effective storage Compression
Ratio

CV-HSF Scotch ND+ 1.42 · 1010 1.13 · 1010 0.80
CC-HSF Scotch ND+ 2.17 · 1010 1.38 · 1010 0.63
CV-HSF BBox ND 2.16 · 1010 7.65 · 109 0.35
CC-HSF BBox ND 2.63 · 1010 8.93 · 109 0.34
CV-HSF Scotch ND 1.90 · 1010 − −
CC-HSF Scotch ND 3.21 · 1010 − −
CV-HSF BBox ND 2 4.18 · 1010 1.08 · 1010 0.26
CC-HSF BBox ND 2 5.80 · 1010 1.23 · 1010 0.21

Table 3.7: Estimated and effective number of entries in the factors for multiple clusterings
and symbolic factorizations. The empty cells correspond to experiments running out of
memory. The compression ratio is the ratio between the effective number of entries and the
estimated number of non-zeros computed by symbolic factorization. Short pipe (Fig. 3.1a)
with 8M unknowns. Sequential runs on miriel.

As a validation of the results, the forward error of each run is shown in Fig. 3.8b. The
forward error is below the desired threshold accuracy parameter ε = 10−4. In Fig. 3.9,
one can also see the effect of different values of the threshold compression parameter ε on
the numerical factorization (for CC-HSF and CV-HSF methods, using geometric IO-HSC
and BBox ND). The larger the threshold is, the lower the computational requirements
are. The forward error displayed in Fig. 3.9c seems to indicate that the solver current
implementation may sometimes have a larger forward error than the desired threshold.
This is not an expected behavior and should be further investigated.

3.5.2 Comparison to H-Matrices without Symbolic Information

One of the main goals of this thesis is to understand the effect of symbolic factorization
applied in a hierarchical framework using compression. We intend to demonstrate that
using symbolic factorization, while reducing the number of zeros that may be stored by a
full-rank solver, also successfully reduces the compressed storage of a hierarchical solver.
To that end, Fig. 3.10 shows a comparison of CV-HSF using IO-HSC or IA-HSC separator
clusterings to methods that do not use any symbolic factorization.

Let us first focus on the methods not using symbolic factorizations (i.e., the first row
“No SF” in the graphs). Fig. 3.10a presents the time required to compute a factorization
when different global clustering (columns) and separator clustering (colors) methods are
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Figure 3.9: Impact of threshold parameter ε on numerical factorization time and memory
consumption. Short pipe test case (Fig. 3.1a). Sequential run on occigen.
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Figure 3.10: Comparison of hierarchical factorizations with or without symbolic
factorization. No separator clusters are computed in the recursive bisection, it is therefore
noted “Ø”. Short pipe test case (Fig. 3.1a). Sequential run on occigen.
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used. One can see in this figure that clusterings based on nested dissection (second to
last columns) are generally able to reduce the factorization time compared to the original
clustering relying on recursive bisection (first column). Some clusterings do not reduce
this time due to the fact that more zeros may be stored if no symbolic factorization is used,
even though the actual number of non-zeros is lower. The impact of a nested dissection on
factorization time may also greatly vary following its construction. The balance between
the left and right domain or the size of the computed separator are thus a factor possibly
increasing or reducing the fill-in generated by the factorization. The strong admissibility
condition relying on bounding boxes may also not be suited for the nested dissection, as
discussed in § 2.3.4, and a better admissibility condition may reduce the complexity of
these methods, as proven by the “oracle” mentioned in that previous section. Fig. 3.10b
shows the memory profile of the computation, with the numerical factorization highlighted
using a continuous line. We can therefore better understand the effects of the methods.
In the recursive bisection method, a great part of the computations is taken by the
assembly procedure creating the H-Matrix. This assembly step is greatly reduced by the
use of nested dissection and the usage of the information that two domains separated in
the algorithm do not interact anymore, as discussed in § 1.3.1.1.2. One can also see that
efficient variants of the nested dissection (BBox ND, Scotch ND+ for example) reduce both
the time and memory consumption of the overall solver. The methods relying on nested
dissection use the knowledge that the two subdomains created by the nested dissection are
independent to avoid the storage of their interactions, since this computation is trivial.
This is observable in Fig. 3.10c, which presents storage measurements of the solver (colors)
with different separator clusterings (point shapes/line types). In this figure, we can see
that the effective storage of the solver, once uncompressed, is larger in the case of recursive
bisection (which is then equal to the storage of the whole dense matrix). The difference
is less significant in the compressed storage due to the efficient compression of the extra
fill-in in the recursive bisection method.

Note that the methods not relying on symbolic factorization have a partial knowledge
on the location of zeros (no interactions between the two independent subdomains). Thus,
the effect of symbolic factorization is reduced to the fill-in generated in the separators.
The effect is most noticeable in Fig. 3.10c on the uncompressed storage of the solver (in
red). However, the usage of compression reduces this advantage as may be observed for
example in Fig. 3.10a and 3.10b.

The impact of IA-HSC in the case of the topological nested dissection without symbolic
factorization is also more clear in Fig. 3.10b, and especially in the Scotch ND strategy,
as it more than halves the memory consumption of the IO-HSC method. This figure also
confirms the trend discussed before: the IA-HSC method is not as efficient as IO-HSC in
the case of the geometric nested dissection.

All of these informations are also summarized in Table 3.8 for a 2M-unknowns problem.
In conclusion of this table and subsection, the methods with the lowest computational
requirements are here relying on the geometric nested dissection, namely BBox ND,
without Interactions-Aware clustering. The method using the hierarchical symbolic
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Symbolic
Fact.

Clustering Separator
Clustering

Estimated
nnz

Effective
storage

Uncompressed
storage

Factorization
time (s)

CV-HSF Scotch ND+ IO-HSC 2.11 · 109 1.85 · 109 2.83 · 109 6,038.09
CV-HSF Scotch ND+ IA-HSC 2.12 · 109 1.48 · 109 2.43 · 109 5,808.03
CV-HSF BBox ND IO-HSC 3.21 · 109 1.61 · 109 4.15 · 109 4,633.58
CV-HSF BBox ND IA-HSC 3.17 · 109 1.92 · 109 3.66 · 109 8,274.26
CV-HSF Scotch ND IO-HSC 2.72 · 109 3.72 · 109 4.80 · 109 15,288.08
CV-HSF Scotch ND IA-HSC 2.55 · 109 1.79 · 109 2.98 · 109 7,095.46
CV-HSF BBox ND 2 IO-HSC 5.79 · 109 2.29 · 109 8.91 · 109 7,202.59
No SF Scotch ND+ IO-HSC − 3.57 · 109 4.96 · 1010 7,798.21
No SF Scotch ND+ IA-HSC − 2.26 · 109 4.96 · 1010 6,289.82
No SF BBox ND IO-HSC − 2.17 · 109 5.95 · 1010 4,929.20
No SF BBox ND IA-HSC − 2.63 · 109 5.95 · 1010 9,521.46
No SF Scotch ND IO-HSC − 6.48 · 109 5.43 · 1010 22,841.85
No SF Scotch ND IA-HSC − 2.84 · 109 5.43 · 1010 8,383.83
No SF BBox ND 2 IO-HSC − 3.14 · 109 1.02 · 1011 7,650.25
No SF BBox ND 2 IA-HSC − 4.66 · 109 1.02 · 1011 20,774.85
No SF Bisection Ø − 5.36 · 109 2.00 · 1012 17,792.52

Table 3.8: Number of entries in the factors and time required to compute the factorization
for multiple clusterings with or without symbolic factorization. The “estimated” column
corresponds to the storage computed by symbolic factorization. The last line corresponds
to the recursive bisection original H-Matrices. Short pipe (Fig. 3.1a) with 2M unknowns.
Sequential runs on miriel.

factorization named CV-HSF also has a lower time consumption and more specifically
memory consumption.

3.5.3 Multi-core Efficiency

The framework of this thesis has allowed us to study the parallel behavior of
the hierarchical methods presented in the previous (sequential) experiments. Only
little development has been necessary to adapt the existing (task-based) parallel
implementation of the solver [155] to the new algorithms discussed in this thesis, mainly
residing in avoiding calling tasks on null submatrices. We therefore study here the
scalability of the H-Matrix solver relying on the main algorithms developed in this thesis.
In Fig. 3.11, one may observe the factorization time and efficiency of the two symbolic
factorizations, namely CC-HSF and CV-HSF scale well on 24 cores with the BBox ND
and Scotch ND+ clustering methods. The runtime used in these experiments is toyRT
(see § 1.4.1, p. 73). The forward error is constant when the number of threads is changed,
thus validating the parallelization.
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Figure 3.11: Parallel scaling (up to 24 threads) of a problem with 1M = 106 unknowns
using toyRT on occigen.
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3.5.4 Parallel Study of Larger Test Cases

The complexity of hierarchical methods should prove to be more effective for very large
linear systems. With this fact in mind, we lead this study a step further. Parallel
experiments were run on brise and souris. These machines have a larger RAM capacity
and more cores. We are thus able to study the behavior of theH-Matrix methods proposed
in this thesis on tens to hundreds of millions of unknowns.

Larger cases run on brise (Fig. 3.12) confirm the trends discussed in § 3.5.1. For
example, Fig. 3.12c shows the number of entries of the factorized matrix for the BBox ND
and Scotch ND+ clusterings with IO-HSC methods. We can see that the theoretical
number of entries stored using CV-HSF with Scotch ND+ would be very low compared
to that of BBox ND. However, the compression ratio of this method being inferior, the
compressed storage of BBox ND is eventually lower than its counterpart. The difference
between CC-HSF and CV-HSF is also very distinct in the theoretical analysis while being
fainter in the effective storage of the solver. We can also see how that impacts the real
memory usage of the solver in Fig. 3.12b. The clustering method has also a strong effect on
factorization time, as shown in Fig. 3.12a. The time required to compute the factorization
is approximately equivalent for both CV-HSF and CC-HSF methods, which may be due
to the current implementation, as mentioned earlier.

On souris, one can see the stability of the trends between CC-HSF and CV-HSF in
Fig. 3.13b and 3.13c, CV-HSF consuming less memory than CC-HSF. However it appears
that the time required to compute a factorization at this scale is lower for CC-HSF than
CV-HSF, as shown in Fig. 3.13a. Unfortunately, it appears the Scotch ND+ method
has implementation issues at this scale. Nonetheless, the symbolic factorization of this
method may be computed and the number of estimated non-zeros is therefore shown in
Fig. 3.13c.

3.5.5 Comparison to a Sparse Direct Solver

In § 3.5.2, we have studied the influence of symbolic factorization on H-Matrices. We
have concluded that it is possible and beneficial to use sparse techniques such as the
nested dissection and symbolic factorization to reduce the computational complexity
of a hierarchical solver. Yet, sparse direct methods have also proposed to introduce
hierarchical techniques of compression to the compression of dense submatrices arising
in the factorization of sparse matrices. Comparisons have been performed between
hierarchical solvers and sparse solvers in the past, for example in [105], using an
implementation of H-Matrices combined with nested dissection and several sparse solvers
(MUMPS, PARDISO, SuperLU, UMFPACK, ...). In [193], the authors also perform a
comparison of aH-Matrix solver based on nested dissection with MUMPS and PARDISO.
However, we here position the hierarchical methods proposed in this thesis to a reference
sparse solver (MUMPS) also relying on low-rank compression.

We first compare sequential runs of the best method (the CV-HSF variant with
IO-HSC) of our implementation of a H-Matrix solver, namely HMAT (implementation
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Figure 3.12: Performance for larger test cases with IO-HSC methods. Short pipe test
case (Fig. 3.1a). Parallel run (96 threads) using the toyRT runtime (see § 1.4.1, p. 73) on
brise.
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Figure 3.13: Performance for larger test cases of BBox ND methods. Partial results for
Scotch ND methods (c). Short pipe test case (Fig. 3.1a). Parallel run (96 threads) using
toyRT on souris.
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details given in § 3.2.3), to the MUMPS solver (details of the configuration given in § 3.2.3),
the low-rank version of MUMPS usually being referred to as BLR-MUMPS. Fig. 3.14a
and 3.14b show the virtual and real memory usage of both solvers. Note that MUMPS
consumes more virtual memory than the available RAM at 4M unknowns, but the real
memory usage of the solver is lower. To run the HMAT solver without compression, i.e.,
full-rank, we simply rely on a admissibility condition that is always false, leading to the
H-Matrix leaves being Full-Matrices. The full-rank BBox ND variant consumes more
memory than its Scotch ND+ counterpart, while the low-rank versions follow the reverse
trend. The explanation comes from the fact that Scotch ND+ computes better suited
separators in the nested dissection, leading to less fill-in, as discussed in the previous
paragraph. The effects discussed above may also be observed in Fig. 3.14c. In the latter
figure, the number of entries of a compressed storage for the BLR-MUMPS variant returns
the same number of entries as the full-rank variant, with the version 5.1.2 of MUMPS used
here (see § 3.2.3). Therefore, MUMPS results are indistinguishable from one another and
are also close to the number of entries estimated by HMAT in the Scotch ND+ variant
(in blue). These results are also presented in Table 3.9 for a 2M-unknowns problem. One
can readily see the Scotch ND+ does not lead to the same estimated number of entries
from a run to another (for example we could expect the same number for a low-rank and
a full-rank variant of the same method), due to the heuristic characteristic of the method.

Solver Precision Clustering Estimated
nnz

Effective
storage

Factorization
time (s)

HMAT Low-rank Scotch ND+ 2.11 · 109 1.85 · 109 6,038.09
HMAT Low-rank BBox ND 3.21 · 109 1.61 · 109 4,633.58
HMAT Full-rank BBox ND 3.21 · 109 3.84 · 109 7,463.92
HMAT Full-rank Scotch ND+ 2.05 · 109 2.65 · 109 3,959.58
MUMPS Low-rank Scotch ND+ 2.19 · 109 2.19 · 109 459.19
MUMPS Full-rank Scotch ND+ 2.15 · 109 2.15 · 109 1,667.20

Table 3.9: Storage and factorization time for HMAT and MUMPS solvers. HMAT is run
with CV-HSF. The “estimated” column corresponds to the storage computed by symbolic
factorization. Short pipe (Fig. 3.1a) with 2M unknowns. Sequential runs on miriel.

The number of floating-point operations of each method is shown Fig. 3.15a. We
may see that the full-rank HMAT solver using Scotch ND+ seems to be able to reach
a number of Flop similar to the sparse direct MUMPS solver. This result means that
we have successfully implemented a hierarchical solver leading to the same (full-rank)
computations as the reference sparse solver. The full-rank BBox ND variant leads to more
Flop than the Scotch ND+ variant (for the same reasons as discussed above regarding
fill-in). Let us now discuss the results involving low-rank operations. The low-rank variant
of Scotch ND+ leads to more Flop than its full-rank counterpart. Yet, the low-rank
variant of BBox ND leads to less Flop, and is also able to reach a number of Flop similar
to MUMPS. The slope of this latter method is also flatter. This seems to indicate that the
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Figure 3.14: Performance for middle-range test cases of full-rank and low-rank MUMPS
and HMAT solvers. HMAT is run with the CV-HSF variant. Short pipe test case
(Fig. 3.1a). Sequential run on miriel.
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HMAT solver implementation, at this early stage of development towards sparse-oriented
structures, is more suited for low-rank operations based on geometric clustering than based
on topological information. Fig. 3.15b shows the time required to compute a factorization
for each method. The sequential HMAT solver is slower than the reference MUMPS
solver, indicating that the HMAT solver is not currently as efficient as MUMPS in terms
of Flop/s. The low-rank version of MUMPS is faster than its full-rank counterpart and,
consequently, than the HMAT solver.

Fig. 3.15c validates the solution of each method by confirming that the full-rank
forward error is close to the machine precision while the low-rank forward error is close
to the threshold ε, here equal to 10−4.

Fig. 3.16 shows the scalability of each solver on occigen for a 2M-unknowns problem.
First, as we can see, the full-rank version of HMAT using Scotch ND+ computes a
factorization faster than its low-rank version, meaning some low-rank operations may be
more time-consuming in our implementation than their full-rank counterpart. However,
the size of this problem is still quite small and the low-rank solver is expected to fare better
on larger problems. As discussed in § 3.5.3, the HMAT solver seems to scale well on 24
cores, with a parallel efficiency around 0.9 on 24 cores for all the methods presented here.
The efficiency degrades more rapidly for MUMPS. In a purely multi-thread approach, the
HMAT solver still scales on 96 cores, as shown in Fig. 3.17, whereas MUMPS must resort
to distributed parallelism. Using 8 MPI processes, MUMPS seems to be able to scale
better. The results on 96 cores are also shown for larger problems in Fig. 3.18a. However,
when using MPI processes, the tree parallelism of the multifrontal method implies that
more fronts may be eliminated at the same time and the memory space dedicated to these
fronts is therefore held in the RAM at the same time, as shown in Fig. 3.18b. In fact, the
16M unknowns problem cannot fit into memory using the MPI + threads combination.
The version of MUMPS used here does not include memory-aware strategies avoiding this
sort of problematics such as discussed in [9]. The memory displayed here is calculated
by the solver as we have not been able to retrieve the real memory peak across multiple
processors at the time of these experiments. The number of entries stored for each solver
is also shown in Fig. 3.18c. The storage of MUMPS is indistinguishable from the HMAT
with Scotch ND+ estimated curve (in blue). The factorization using MUMPS fits into
the RAM until 16M unknowns on brise (for the multi-thread version), though we may
speculate how much it will take by following the blue curve of Scotch ND+ method. These
results are also shown in Table 3.10 for a problem with 8M unknowns.
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Figure 3.15: Performance for middle-range test cases of full-rank and low-rank MUMPS
and HMAT solvers. HMAT is run with the CV-HSF variant. Short pipe test case
(Fig. 3.1a). Sequential run on miriel.
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Figure 3.16: Multi-thread parallel scaling on 24 cores of a problem with 2M unknowns on
occigen.
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Figure 3.17: Parallel scaling on 96 cores of a problem with 4M unknowns on brise.
HMAT and MUMPS are run with 1 MPI process with 1 to 96 threads (•). MUMPS is
also run with 8 MPI processes, with 1 to 12 threads (N).
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Figure 3.18: Performance for larger test cases. HMAT is run with CV-HSF. Parallel runs
(96 cores) on brise.

Bridging the gap between H-Matrices and sparse direct methods 189



3. Numerical Experiments

Solver Precision Clustering #p #t Estimated
nnz

Effective
storage

Factorization
time (s)

HMAT Low-rank Scotch ND+ 1 96 1.42 · 1010 1.13 · 1010 1,761.20
HMAT Low-rank BBox ND 1 96 2.16 · 1010 7.65 · 109 696.99
HMAT Full-rank Scotch ND+ 1 96 1.42 · 1010 1.90 · 1010 1,620.39
HMAT Full-rank BBox ND 1 96 2.16 · 1010 2.50 · 1010 2,998.37
MUMPS Low-rank Scotch ND+ 1 96 1.46 · 1010 1.46 · 1010 6,431.88
MUMPS Full-rank Scotch ND+ 1 96 1.48 · 1010 1.48 · 1010 7,500.00
MUMPS Low-rank Scotch ND+ 8 12 1.44 · 1010 1.48 · 1010 431.86
MUMPS Full-rank Scotch ND+ 8 12 1.43 · 1010 1.47 · 1010 1,136.77

Table 3.10: Number of entries and factorization time for HMAT and MUMPS solvers.
HMAT is run with CV-HSF. The “estimated” column corresponds to the storage computed
by symbolic factorization. Short pipe (Fig. 3.1a) with 8M unknowns. Parallel runs on 96
cores on brise. #p is the number of MPI processes. #t is the number of threads per
MPI process.
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In this section, we have found that:
- using a clustering based on nested dissection instead of recursive bisection is indeed
beneficial for H-Matrices (confirmation of results from the community);

- our geometric nested dissection leads to better performance on the short pipe test
case than the topological approach, due to a more efficient compression;

- H-Matrices relying on nested dissection may be improved by the use of symbolic
factorization, in particular by the CV-HSF method, which leads to less storage than
the CC-HSF method;

- the CV-HSF method leads to a number of non-zeros close to that of a sparse direct
solver, and the storage of the H-Matrix without compression is also similar to that
of a sparse direct solver, validating the implementation of the symbolic factorization
in a hierarchical environment;

- low-rank compression successfully reduces even further the memory consumption of
the hierarchical solver;

- however, low-rank operations are as costly as full-rank operations in the Scotch ND+
approach in our implementation, which is not the expected behavior of a low-rank
solver;

- the hierarchical solver with or without our methods scales well on many cores in a
multithreaded parallel task-based environment.
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3.6 FEM/BEM coupling
The larger goal of this thesis is to reduce the (arithmetic and memory) complexity of the
solution of the FEM/BEM coupling, such as discussed in Chapter 1. To this end, we lead
here studies on the long pipe (Fig. 3.1b, p. 155), closer to real-life applications. Table 3.11
lists the respective sizes of the FEM mesh and the BEM mesh for a given number of
unknowns corresponding to the studied test case. The number of FEM unknowns is
largely dominant. The efficient usage of the sparsity of the FEM-FEM matrix Avv is
therefore critical to the overall solver memory consumption. The displayed length L of

# Unknowns nFEM nBEM L/λ
250,000 218,300 31,700 31.7
500,000 449,600 50,400 40.0

1,000,000 919,864 80,136 50.4
2,000,000 1,873,200 126,800 63.4

Table 3.11: Respective sizes of the FEM mesh and the BEM mesh for a given overall
number of unknowns of the long pipe test case (Fig. 3.1b), as well as the length L of the
object divided by the wavelength λ.

the object is divided by the wavelength λ to give a general idea of the physical dimensions
of the considered object. Following § 1.4.4, we study the HMAT approach in § 3.6.1, i.e.,
the solution of the coupling using H-Matrices only, and compare the MUMPS+SPIDO
approaches in § 3.6.2, i.e., the Multi-Solve and Multi-Factorization techniques. We also
show preliminary results comparing the best variants of the HMAT approaches and the
MUMPS+SPIDO approaches in § 3.6.3.

3.6.1 Comparison of H-Matrix Methods

The solution of the FEM/BEM coupling using H-Matrix, as mentioned in § 1.4.4.2
and § 2.5, follows the decomposition of the overall matrix A into:

A =

[
Avv Avs
Asv Ass

]
. (3.2)

To cluster the partition of unknowns corresponding to the FEM-associated mesh v, we
either rely on recursive bisection (original H-Matrix clustering) or nested dissection.
These global clustering methods (Bisection, BBox ND, Scotch ND+) are given in the
columns of the following figures. Furthermore, we also study the use of symbolic
factorization on the submatrix Avv. Fig. 3.19a shows the time consumption of the
overall hierarchical factorization procedure, therefore including the elimination of FEM
unknowns, the computation of the Schur complement (see § 1.4.3, Eq. (1.29) and (1.30))
as well as the factorization of the Schur complement matrix. The BBox ND methods
effectively reduce the time required to compute this factorization with respect to the
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Figure 3.19: FEM/BEM coupling solution using H-Matrices. Long pipe test
case (Fig. 3.1b). Sequential runs on miriel.
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FEM/BEM coupling solution.

Figure 3.20: FEM/BEM coupling solution using H-Matrices. Long pipe test
case (Fig. 3.1b). Sequential runs on miriel.
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recursive bisection, although the Scotch ND+ methods seem not to be able to reduce the
overall factorization time. We will give hints concerning the causes of this larger time
requirement of Scotch ND+ later in the discussion. The symbolic factorization also helps
reducing the factorization time of the nested dissection methods.

Fig. 3.19b show the overall real memory peak reached by the solver during the
computations. Both nested dissections are able to lower the memory consumption of
the solver compared to the recursive bisection method. Symbolic factorizations are also
able to further lower the memory requirements of the solver.

Finally, Fig. 3.20a shows the memory consumption of each submatrix of Eq. (3.2),
i.e., Avv, the FEM-FEM subsystem, Asv, representing BEM-FEM interactions, and Ass,
corresponding to the BEM-BEM subsystem. We display the information of the matrices
once assembled as well as the factorized memory consumption of the matrices Avv and
Ass. The matrix Ass, before and after factorization, represents only a small fraction of
the overall memory consumption of the solver. While the factorized Avv represents the
largest part of the memory consumption of the solver in the recursive bisection strategy,
the matrix Asv takes a larger part in the other methods, due to the reduction of the
memory consumption of the matrix Avv using nested dissection and symbolic factorization.
However, the memory consumption of Asv grows more slowly than Avv with respect to the
total number of unknowns. Therefore Avv becomes once more the bottleneck of the solver
for larger problems, even for the most efficient of the symbolic factorizations, the CV-HSF
method for a problem with 2M unknowns. The matrix associated with the long pipe test
case is sparser than with the short pipe. This gives an advantage to the Scotch ND+
method against the BBox ND method in terms of the storage of the (factorized) Avv
matrix when a symbolic factorization (CV-HSF) is computed. Note that the computation
of the 2M-unknowns problem is only partial and has not finished (reaching the walltime
fixed before execution), as one may notice in Fig. 3.20b. In this figure, we can see how
the factorization of the sparse matrix Avv requires less time to be computed in the case of
nested dissections. However, we have not studied here the reduction of the time required
to computed the Schur complement. In particular, if the BBox ND method coupled
with symbolic factorization (of the matrix Avv) seems to be able to reduce a little the
computation time of this step, the computation of the Schur complement is much longer in
the case of Scotch ND+. Multiple factors may explain this problem. Firstly, the Minimum
Fill method leads to very small column clusters associated with the FEM mesh, impacting
the matrix Asv storage. Smaller clusters lead to less compression and the non-geometrical
clustering also leads to more scattered non-zeros. An example of such a matrix Asv in
a FEM/BEM coupling is shown in Fig. B.6 in appendix B. The absence of symbolic
factorization over this matrix allows for the storage of a large number of zeros. In fact,
this may be observed in Fig. 3.20a, which shows the larger amount of memory of the
matrix Asv in the case of Scotch ND+. Secondly, the presence of a large number of
smaller blocks to handle is not an expected scenario for H-Matrices, leading to a strong
decline in performance.
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3.6.2 Comparison of Multi-Solve and Multi-Factorization
Methods

The solution of the FEM/BEM coupling using either the Multi-Solve and
Multi-Factorization techniques relies on the decomposition of the overall matrix A into
the same 2 × 2 matrix from Eq. (3.2). On the one hand, the solution of the FEM/BEM
coupling using Multi-Solve (introduced in § 1.4.4.1.2) relies on the decomposition of the
computation of the Schur complement S = Ass − AsvA−1vv Avs (see Eq. (1.30), p. 74) into
several solves over groups of 32 columns of the matrix Avs. On the other hand, the solution
of the FEM/BEM coupling using Multi-Factorization (introduced in § 1.4.4.1.3) directly
computes blocks of the Schur complement following the out-of-core division of the Ass
submatrix (see § 1.4.4.1.1). The factorization of the sparse matrix Avv is computed by the
sparse direct MUMPS with or without low-rank compression, whereas the factorization
of the dense Schur complement is computed by the out-of-core dense direct solver SPIDO
(without compression). Fig. 3.21 shows a comparison of the Multi-Factorization and
Multi-Solve methods. The Multi-Solve technique requires less time and memory for the
computation of the overall solution of the FEM/BEM coupling. However, the blocking
size nb of the out-of-core partition has not been changed here and is chosen automatically
between 200 and 800 by the solver. This size impacts a lot the Multi-Factorization
arithmetic complexity as demonstrated in § 1.4.4.1. On other problems with different
characteristics, for example a different ratio between the number of unknowns in the
FEM mesh nFEM and the BEM mesh nBEM , the trend could change.

3.6.3 Comparison of H-Matrix and Multi-Solve Methods

We focus on the comparison of the Multi-Solve technique on one side, using MUMPS
with or without the BLR feature, and the HMAT solver with variants using recursive
bisection, using BBox ND, and using BBox ND and CV-HSF. Due to implementation
issues, we are unable to produce results for the HMAT solver with nested dissection (and
symbolic factorization) run in parallel for large problems (above 1M unknowns). We
also obtain a numerical error (a forward error too large) when running the Multi-Solve
technique sequentially. With these considerations in mind, we establish here a parallel
comparison between the Multi-Solve technique and the HMAT solver on a small problem
of 500000 unknowns in Table 3.12. The total factorization time presented here is the
overall time necessary for the computation of the factorized coupling matrix A. As we
have already established previously, the purely multi-threaded scalability of H-Matrices
is better here than for MUMPS (e.g., with only one MPI process). Therefore, the trends
that we observe here may be different in a sequential context or using multiple MPI
processes. A first observation we can make is the larger forward error obtained with
HMAT compared to the low-rank version of MUMPS, i.e., BLR-MUMPS (with the same
value for the compression threshold parameter ε). Also, the factorization of the FEM-FEM
matrix Avv is faster with MUMPS than with HMAT using nested dissection, with here a
factor of about 2, confirming the trends observed in § 3.5.5. However, the computation
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Figure 3.21: FEM/BEM coupling solution using MUMPS combined with SPIDO. Long
pipe test case (Fig. 3.1b). Parallel runs with 24 threads on miriel.
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of the Schur complement and the factorization of the resulting BEM-BEM matrix are
both faster using HMAT (with or without nested dissection) than using the Multi-Solve
technique. This leads to an overall lower factorization time for HMAT compared to the
Multi-Solve technique. Finally, the solution using H-Matrices with recursive bisection is
also slower than the one using nested dissection, mainly due to the reduction of the time
required for the factorization of the matrix Avv.

Method Sparse
Technique

Clustering Total
Factor.

Avv
Factor.

Schur
Comput.

Schur
Factor.

Forward
Error

HMAT No SF Bisection 903.33 284.46 452.29 33.51 9.33 · 10−4

HMAT CV-HSF BBox ND 542.11 52.42 410.88 33.15 1.12 · 10−3

Multi-Solve MUMPS Scotch ND+ 3,879.28 20.81 2,937.73 919.09 3.26 · 10−14

Multi-Solve BLR-MUMPS Scotch ND+ 3,894.23 21.20 2,954.11 917.41 1.83 · 10−6

Table 3.12: Time (s) required for the computation of major steps in the solution of
a FEM/BEM coupling using HMAT and Multi-Solve methods and forward error as a
control of the solution. The compression threshold is set to ε = 10−4. The Multi-Solve
technique relies on the out-of-core solver SPIDO (§ 1.4.4.1.1) for the Ass factorization.
Long pipe (Fig. 3.1b) with 500000 unknowns. Parallel runs using 24 threads on miriel.

We also compare the sequential versions of the HMAT solver against parallel executions
with 24 threads of the Multi-Solve technique in Table 3.13 for a problem with 1
million unknowns. At this scale, the HMAT solver still largely benefits from the usage

Method Sparse
Technique

Clustering #t Total
Factor.

Avv
Factor.

Schur
Comput.

Schur
Factor.

Forward
Error

HMAT No SF Bisection 1 13,354.11 3,694.44 9,235.46 395.02 7.40 · 10−4

HMAT No SF BBox ND 1 11,067.36 1,059.70 9,599.45 394.01 7.40 · 10−4

HMAT CV-HSF BBox ND 1 9,959.82 988.74 8,564.37 392.62 4.73 · 10−3

Multi-Solve MUMPS Scotch ND+ 24 15,553.47 61.21 11,203.32 4,285.24 3.61 · 10−14

Multi-Solve BLR-MUMPS Scotch ND+ 24 14,110.15 56.10 9,599.62 4,451.03 2.09 · 10−8

Table 3.13: Time (s) required for the computation of major steps in the solution of
a FEM/BEM coupling using HMAT and Multi-Solve methods and forward error as a
control of the solution. The compression threshold is set to ε = 10−4. The Multi-Solve
technique relies on the out-of-core solver SPIDO (§ 1.4.4.1.1) for the Ass factorization.
Long pipe (Fig. 3.1b) with 1M unknowns. Multi-thread and sequential runs on 24 cores
on miriel. #t is the number of threads.

of compression for the factorization of the BEM-BEM matrix Ass compared to the
factorization computed by SPIDO in the Multi-Solve technique, by a factor of 10. The
computation of the Schur complement seems to require a time fairly equivalent among
all the methods, though the Multi-Solve technique using MUMPS without compression
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takes a little more time than the other methods, and the HMAT solution using CV-HSF
takes a little less time. The computation of the factorization of the sparse matrix Avv is
a lot faster using MUMPS though we have to keep in mind that the HMAT solver is here
sequential. Among the HMAT variants, we can see that the usage of nested dissection
reduces the time required for the factorization of Avv by a factor of 3, while the usage
of symbolic factorization reduces a bit more this factorization time. Overall, the HMAT
solver is less costly than the Multi-Solve variant. Among the HMAT variants, the usage
of nested dissection leads to a lower time requirement for the global factorization of A
and symbolic factorization reduces furthermore this requirement.

Concerning comparisons of the memory of the HMAT solver with the Multi-Solve
technique, SPIDO relying on out-of-core techniques, we cannot equitably measure memory
consumption of the RAM.

The accuracy of the HMAT solver is sufficient for our application and no iterative
refinement is therefore used, as mentioned earlier, though the use of H-Matrices as
preconditioners may be investigated in the future.

There are multiple conclusions to this section.
- We confirm here that the solution using H-Matrix (based on recursive bisection)
drastically reduces the factorization time of the dense submatrix Ass compared to
a dense direct solver.

- The hierarchical factorization of the sparse matrix Avv has been proven to be faster
using nested dissection and symbolic factorization (compared to recursive bisection
and no symbolic factorization), though it does not quite reach the performance of
a sparse solver.

- The usage of nested dissection in the H-Matrix solver lowers only the factorization
time of the sparse subsystem involved in the coupling, whereas the symbolic
factorization reduces the time required to compute the sparse factorization as well
as the computation of the Schur complement.

- Finally, the overall solution using H-Matrices is faster than using the Multi-Solve
technique (relying on sparse and dense direct solvers MUMPS and SPIDO).
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In this thesis, we have studied the combination of hierarchical methods of compression
(H-Matrices) with reordering techniques (nested dissection, AMF) and symbolic analysis
for the computation of sparse linear systems arising in the coupling between the Finite
Element Method (FEM) and the Boundary Element Method (BEM). To this end, we
have studied the introduction of the nested dissection for the clustering of unknowns used
in the construction of H-Matrices, either using geometric or topological information, and
confirmed previous results from the H-Matrix community. We have also proposed new
ways of preventing the tall & skinny blocks arising from the use of nested dissection in a
H-Matrix. The main contributions of this thesis are the introduction of new algorithms
based on the use of symbolic analysis in a hierarchical framework. We group these
methods into two classes. The first class of methods performs a Hierarchical Symbolic
Factorization with the aim of providing a way to use the sparsity of the structure of
non-zeros in a sparse matrix to avoid the storage of zeros in a H-Matrix. The second class
of methods aims at clustering the separators computed by the nested dissection following
an Interactions-Aware strategy relying on the symbolic information of the interactions
between the unknowns.

We have first provided a background of this thesis in Chapter 1 by detailing the
industrial context in which it took place as well as the linear systems arising from this
context. We have then discussed the solution of these linear systems following their dense
or sparse characteristics and proposed to study the solution of the FEM/BEM coupling
using two methods, one relying on direct solvers MUMPS and SPIDO and the other
relying on H-Matrices. We have primarily focused on the optimization of the second
method (based on H-Matrices) and used the first one (based on MUMPS and SPIDO)
mainly as a reference.

The first method is based on the solution of the FEM/BEM coupling using a Schur
complement and relying on the MUMPS and SPIDO solvers to handle sparse and dense
factorizations, respectively. We rely on the Multi-Solve technique to compute the Schur
complement (performing a Gaussian elimination of the unknowns associated with the
FEM mesh and updating the corresponding unknowns associated with the BEM) by
computing multiple solves to construct the Schur complement by block columns.

The other method is based on H-Matrices. We have studied variants of this method
relying on geometric nested dissection or topological nested dissection, as well as variants
using symbolic factorization. The nested dissection is a heuristic reordering procedure
aiming at the reduction of fill-in. It is essential for the solution of sparse matrices by sparse
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direct full-rank solvers. On the other hand, the hierarchical compression of H-Matrices
also reduces the impact of fill-in of a sparse matrix ordered with recursive bisection. We
have presented in § 2.3.1 different clusterings based on the nested dissection method and
have confirmed results of previous studies led on the subject [102, 105, 107, 126, 138, 193]
concluding that H-Matrices relying on efficient reordering techniques (such as the nested
dissection) require less time and memory for the computation of a factorization of a sparse
matrix. In the test cases used in this thesis, our geometric implementation of a nested
dissection seems to lead to a better compression than our topological approach when
using the standard strong admissibility condition used in the literature, with the possible
drawback of leading to an unbalanced cluster tree. Also, nested dissection leads to the
formation of tall & skinny blocks of which we have presented multiple ways of prevention
in § 2.3.2.

Once the nested dissection has been validated in the hierarchical framework, we have
focused on the efficiency of the compression of the submatrices of a sparse matrix. We
have therefore presented in § 2.3.4 another admissibility condition for the factorization
of sparse matrices as well as an oracle determining the optimal compression to use on
a pre-computed hierarchical structure. Results show that other admissibility conditions
better suited for sparse problems should be investigated in the future.

The search for a new admissibility condition also revealed that a lot of zeros were
still present in the hierarchical structure of the solver and that we could simply avoid
the storage of null submatrices (filled with only zeros) by performing a symbolic analysis
of the matrix before numerical factorization. We have thus presented in § 2.4.2 ways to
compute a symbolic factorization in a hierarchical context, i.e., performing a Hierarchical
Symbolic Factorization, and shown in § 3.5.2 the beneficial effect of its computation on the
numerical factorization of a sparse matrix using H-Matrices relying on a nested dissection
clustering.

In a parallel development of the hierarchical symbolic factorization, we have also
investigated the clustering of separators arising from the nested dissection, in an effort to
maximize the effectiveness of the symbolic factorization and correctly identify the location
of the non-zeros and the fill-in and be able to separate zeros from non-zeros properly. To
this end, we have provided in § 2.4.3 multiple leads to the computation of an appropriate
separator clustering. We have shown in § 3.5.1 that an Interactions-Aware separator
clustering may benefit to topological nested dissections. However we have also shown
in this section that the geometric separator clustering does not need to rely on such a
Interactions-Aware technique. Indeed, its geometric clustering matches the clustering of
the (geometric) nested dissection and already provide an efficient block structure in the
resulting H-Matrix.

In addition the techniques discussed above, another method has been developed that
was meant to take advantage of both the hierarchical symbolic factorization and the
interactions-aware techniques. We have indeed introduced a way to use vertex-wise
symbolic information on column clusters to subdivide the leaves of a H-Matrix matching
the underlying non-zero pattern of the sparse matrix. Experiments show promising results
leading to a storage closer to the one of a sparse direct solver, such as presented in § 3.5.5.

Bridging the gap between H-Matrices and sparse direct methods 201



Conclusion

H-Matrices have a complexity that should become more and more beneficial as the
size of problem gets larger. To be able to observe large-scale behavior of this hierarchical
solver, we have discussed in §§ 3.5.3 and 3.5.4 the parallelization of the solver and its
scalability on larger sparse problems.

Finally, we have presented methods to efficiently solve a FEM/BEM coupling in § 1.4,
which is the broader (and long-term) goal of this work. Preliminary results of the solution
of the FEM/BEM coupling are shown in § 3.6. The effects of reordering techniques and
symbolic factorization also impact the solution of the FEM/BEM coupling though the
benefits are less perceptible due to the lower cost of the sparse factorization compared
to other parts of the computations (mainly the computation of the Schur complement).
To position the hierarchical solver to a solution using direct solvers MUMPS (sparse)
and SPIDO (dense), we have compared the H-Matrices and the Multi-Solve technique
and shown that H-Matrices require less time for the computation of the solution of the
FEM/BEM coupling. More specifically, the solution using H-Matrices is faster when
relying on both the nested dissection and the symbolic factorization.

Perspectives
In this manuscript, we have studied many leads on the solution of sparse linear systems
and the FEM/BEM coupling, mainly relying on H-Matrices and sparse techniques such
as the nested dissection and symbolic factorization. However, many other challenges are
yet to be tackled and we now discuss some developments that may be investigated in the
future.

Symbolic factorization on a unique H-Matrix for the FEM/BEM coupling
Due to the current implementation of the H-Matrix solver, the overall matrix involved
in the FEM/BEM coupling has a 2 × 2 block structure and is therefore subdivided into
four independent submatrices. To be able to use the whole graph associated with the
coupling, one could think of constructing a unique H-Matrix of which the first stage
of clustering would separate the unknowns associated with the FEM and the unknowns
associated with the BEM. This would lead to the possibility of using symbolic information
associated with the off-diagonal BEM-FEM matrix (the (2,1) block) in the coupling and
use the same methods used on the sparse FEM-FEM matrix (the (1,1) block) to exploit
the underlying sparsity pattern of the matrix to reduce memory and time consumption.

Optimization of the ordering of off-diagonal blocks The local clustering based
on vertex-wise symbolic information leads to the same kind of problems studied by the
Sparse-Direct community. The reduction of off-diagonal blocks via other orderings should
therefore be investigated. The current implementation also does not yet support the
usage of vertex-wise symbolic information on separator-separator blocks. Implementing
and optimizing the corresponding operations would lead to a reduction of the memory
consumption of the solver (better matching the underlying non-zero pattern of the sparse
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matrix) but should also lead to a reduction of the number of operations computed by the
solver.

Investigation of the Flop and time performances The hierarchical solver currently
has a moderated efficiency in terms of the number of computed floating-point operations
per second, i.e., the flop rate (Flop/s). It is lower than the usual flop rate of a sparse
direct solver in our experiments. This may come from a cache inefficiency due to the order
of the performed operations. The written and read data constantly changes positions,
following a z-curve (Morton order). To avoid this issue, accumulating updates [44] may
be a solution, though the hierarchical and low-rank framework, as well as the task-based
implementation, could complicate the situations that need to be taken into account.

Admissibility condition suited for sparse linear systems As we have mentioned
in the second chapter and earlier in this conclusion, our experiments have shown that the
current strong admissibility condition we have relied upon in this thesis leads to more
memory and time consumption of the hierarchical factorization compared to the optimal
compression computed by an oracle. Other criteria should be studied to determine what
are the characteristics specific to sparse linear systems that may be used for low-rank
compression.

Other clustering approaches Finally, we have not investigated hybrid clusterings
relying on topological information at a global level to reduce the fill-in generated by the
factorization of a sparse matrix, and geometric information in separators to take advantage
of a better compression efficiency. The computation of an efficient nested dissection based
on geometric information, leading to a reduced fill-in equivalent to that generated in
a topological nested dissection, should also be studied. Regarding the solution of the
FEM/BEM coupling, one could also investigate a clustering for the BEM aware of the
(nested dissection) clustering of the FEM.
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SCOTCH Ordering Strategies

The strategy used in this thesis for computing a nested dissection only (meaning no local
ordering, neither in separators nor local subdomains) is defined in Algorithm A.1.

Regarding the specifics of this strategy, we detail here the main parameters useful
to the comprehension of the strategy and refer the interested reader to SCOTCH User’s
Guide [162]. Following this manual, the function n computes a nested dissection, here
using the separation strategy defined by the function sep for leaves with more than 120
vertices, as defined by the (first) vert parameter. It will try to coarsen (“multilevel”
method m) the two subdomains of the nested dissection until they reach a size of 100
vertices, as defined by the (other) vert parameter.

Under this threshold, a local ordering may be used. The strategy used on each
separator is defined in the parameter ose. In Algorithm A.1, it is defined as the method s,
short for ‘simple’, which orders the unknowns in their natural order. In Algorithm A.2, it is
defined as the method g, short for the Gibbs-Poole-Stockmeyer method [96]. This method
is a greedy bipartitioning approach that aims at reducing the number of off-diagonal
blocks. The strategy used on local subdomains smaller than the threshold is defined
in ole as f, designating the Block Halo Approximate Minimum Fill method. Other
parameters include cmin and cmax respectively setting a minimum or maximum number
of columns for each column block/supernode.

Algorithm A.1: SCOTCH Nested Dissection strategy
n{ sep=/(( ve r t )>120)?m{ rat =0.7 ,

ve r t =100 ,
low=h{pass=10} ,
asc=b{width=3,

bnd=f { bal =0.01} ,
org =(|h{ pass=10}) f { bal =0.01}}

} ; ,
o l e=s , ose=s }
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Algorithm A.2: SCOTCH Nested Dissection + AMF strategy
c{ ra t =0.7 ,
cpr=n{ sep=/(vert >120)?m{ rat =0.8 ,"

" ve r t =100 ,"
" low=h{pass=10} ,"
" asc=f { bal =0.2}}|"

"m{ rat =0.8 ,"
" ve r t =100 ,"
" low=h{pass=10} ,"
" asc=f { bal =0.2}} ; ,"

" o l e=f {cmin=20,cmax=100000 , f r a t =0.08} ,"
" ose=g} ,"

unc=n{ sep=/(vert >120)?(m{ rat =0.8 ,"
" ve r t =100 ,"
" low=h{pass=10} ,"
" asc=f { bal =0.2}}) |"

"m{ rat =0.8 ,"
" ve r t =100 ,"
" low=h{pass=10} ,"
" asc=f { bal =0.2}} ; ,"

" o l e=f {cmin=20,cmax=100000 , f r a t =0.08} ,"
" ose=g}}"
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Algorithm A.3: SCOTCH Nested Dissection strategy used in MUMPS
"n{ sep=m{asc=b{width=3, s t r a t=q{ s t r a t=f }} ,"

" low=q{ s t r a t=h} , ve r t =1000 , dvert =100 , d l e v l =0,"
"proc=1, seq=q{ s t r a t=m{type=h , ve r t =100 ,"
" low=h{pass=10} , asc=b{width=3,bnd=f { bal =0.2} ,"
" org=h{pass=10} f { bal =0.2}}}}} , o l e=s , ose=s , osq=s }"

The strategy used in the MUMPS solver is defined Algorithm A.3.
Finally, the transformation of SCOTCH’s output elimination tree (describing the

dependencies between clusters) into a cluster tree may be computed by copying each
node i into one of its children (ordered last, i.e., the separator) and extending i as the
union of its children (separator included). This is further discussed in Chapter 2, p. 84,
supported by Fig. 2.1, p. 85.
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Examples of Matrices using Different
Orderings

We give here examples of symmetric H-Matrices obtained on a 2000-unknowns problem
relying on the CV-HSF strategy to subdivide off-diagonal blocks resulting from
non-separator subdomains with separators. The clusterings presented in § 2.3.1 are used.
An example with the geometric nested dissection (the BBox ND method) is shown in
Fig. B.1. Examples with the two topological nested dissections, i.e., the Scotch ND and
Scotch ND+methods, are shown in Fig. B.3 and B.5, respectively. Note that the Minimum
Fill method (Scotch ND+) subdivides diagonal blocks in multiple smaller blocks. We have
not investigated the usage of a smaller threshold value for NND for the BBox ND method
though this should be investigated in the future. In terms of compression, BBox ND is
already exhibiting signs of compression at this relatively small scale, while Scotch ND+
shows less compression and Scotch ND seems to not compress at all. Fig. B.2, B.4
and B.6 also show the impact of the ordering on the assembled matrix Asv in a FEM/BEM
coupling with 8000 unknowns (6482 FEM unknowns and 1518 BEM unknowns). The sizes
used here are different for visibility considerations.
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Figure B.1: Example of CV-HSF applied on BBox ND for a purely FEM problem with
2000 unknowns.
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Figure B.2: Example of BEM-FEM matrix Asv storage using BBox ND for the FEM mesh
in a FEM/BEM coupling with 8000 unknowns.

Bridging the gap between H-Matrices and sparse direct methods 208



B. Examples of Matrices using Different Orderings

26

75

25
62 52

87

69

73

44

61

32

80

79

49

30

100

24

66

24
72 52

68 100 52

96

84

59

31

22

100

90

68

5

2

3

3

3

52 100

23

68

25
56 53

99

93

98

71

58

4

33

99

53

94

2

74

2

50

100

24

65

24
70 53

75

53

71

54

56

30

5

80

81

48

28

100 51
75

4

4

4

83

77

51

29

100 100 51

90

84

55

30

47 19

87

78

52

28

19

90

82

50

28

2

12 58 100

25

59

24
79 53

83

70

50

24

89

83

57

38

100

26

73

25
57 53

95

84

62

37

91

91

49

29

100 52

96

90

67
62

41

54

98

97

65

42

19 98

25

76

25
61 52

97

90

65

36

92

74

47

33

100

24

64

22
66 52

61 100 52

85

81

63

56

21

54

80

74

49

5

76

65

29

36

20

29

46 97 51
86

84
74

53

32

92

84

60

34

66 67

93

83

62

37

27

38 38 100 51

100

100

94

86

78

100

84

94

86

100

100

100

89

89

50

87

100

96

89

26 26

100

100

95

77

100

95

87

9

100

96

96

91

86

82

77

96

91

86

82

58

77

72

17 24 50

2

78

59

68

43

27

52

33

43

17

2

61

74

68

61

36

2

37

49

43

36

33 33

52

77

70

62

25

52

45

18 10

68

63

58

33

52

48

43

38

33

10

29

13 20 51

96

96

90

83

83

71

96

90

83

59

94

94

85

85

78

66

94

89

85

65

47

26 26

79

79

79

64

64

79

68

30

95

95

88

77

75

73

73

95

95

88

77

75

74

73

66

66

29 29 51

45

71

65

59

52

19

45

39

33

28

66

32

47

52

23

2

32

23

2

25 25

45

45

64

56

31

30

2

20

45

38

31

30

3

1

53

50

49

49

18

35

28

26

25

30 30 50

100

100

24

62

26
67 54

67 13

25

70

23
55 53

70 12 54

100

99

100

90

61

63

37

40

26

2

98

3

93

4

72

5

38

100

98

94

88

86

82

53

63

59

29

38

29

80 100

27

74

26
59 52

65 27

24

59

25
69 53

98

92

67

39

100

93

4

4

100 52
89

83

77

76

70

67

64

46

42
40

23

5

81

77

3

67

71

3

41

45

46

18

19

100 33 51

96

100

90

91

97

96

52 52

58

18

29

70

44

46 47

90

79

3

75

32

91

81 20 50

56

30

49

23

34

59

29 20 50

96

95

24

79

27
61 52

79 100

23

61

24
69 53

76

77

57

28

80

76

52

5

100 52

87

81

53

25

92

82

55

32

67

88

78

55

31

25

37 100

23

65

23
70 53

3

4

4

4

80

76

52

5

100

24

67

23
66 52

3

4

65

5

99

4

4

4

100 52
90

84

60

37

5

45

90

84

59

37

60 100 51
86

76

90

79 59

87

75

27 85

52

27

51

33 64

53

29

24 87

76

65

3

4

17 17

2

2

4

3

16 17

100

100

51

100 51

92

92

92

83

92

92

58

10

100

100

100

98

95

90

82

100

100

98

95

90

86

82

18 28

98

88

88

75

81

88

65

100

96

89

89

82

76

80

89

82

56

51

51

24

100

100

100

95

100

100

95

89 11 32 57

67

58

49

10

33

24

8

29

61

54

75

72

67

63

39

1

41

54

52

48

44

39

12

25 32

50

50

65

39

23

50

39

12

63

56

29

51

44

36

29

18

49

74

70

64

40

25

49

45

2

13 30 55

97

97

88

83

78

97

97

88

83

78

55

50

69

16

98

98

93

88

88

84

79

79

76

73

98

93

90

88

84

79

68

76

54

27

28 42 42
64

59

55

31

26

45

40

36

31

8

2

13

49

73

68

56

52

59

56

32

42

28

2

22

49

44

30

26

35

32

31

30

27

2

36 46 46

88 91

90 93

26

50 26

Figure B.3: Example of CV-HSF applied on Scotch ND for a purely FEM problem with
2000 unknowns.
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Figure B.4: Example of BEM-FEM matrix Asv storage using Scotch ND for the FEM
mesh in a FEM/BEM coupling with 8000 unknowns.
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Figure B.5: Example of CV-HSF applied on Scotch ND+ for a purely FEM problem with
2000 unknowns.
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Figure B.6: Example of BEM-FEM matrix Asv storage using Scotch ND+ for the FEM
mesh in a FEM/BEM coupling with 8000 unknowns.
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