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Résumé

Dans cette these, les jeux a 2 joueurs dans les graphes et leurs aspects algorithmiques
et structurels sont étudiés. Nous explorons tout d’abord le jeu de domination éternelle
ainsi que sa généralisation, le jeu de l’espion, deux jeux qui reposent sur les en-
sembles dominants dynamiques. Dans ces deux jeux, une équipe de gardes poursuit
un attaquant ou espion rapide dans un graphe, avec 'objectif de rester pres de lui
éternellement. Le but est de calculer le nombre de domination éternelle (nombre de
gardes pour le jeu de I'espion) qui est le nombre minimum de gardes nécessaires pour
réaliser l'objectif. La dimension métrique des digraphes et une version séquentielle de
la dimension métrique des graphes sont aussi étudiées. Ces deux problemes ont pour
objectif de trouver un sous-ensemble de sommets de taille minimum tel que tous les
sommets du graphe sont identifiés uniquement par leurs distances aux sommets du
sous-ensemble. En particulier, dans ce dernier probléeme, on peut “interroger” un cer-
tain nombre de sommets par tour. Les sommets interrogés retournent leurs distances a
une cible cachée. Le but est de minimiser le nombre de tours nécessaires pour localiser
la cible. Ces jeux et problemes sont étudiés pour des classes de graphe particulieres et
leurs complexités temporelles sont aussi étudiées.

Précisément, dans le Chapitre 3, il est démontré que le jeu de l'espion est NP-
difficile et les nombres de gardes des chemins et des cycles sont présentés. Ensuite,
des résultats sur le jeu de I'espion dans les arbres et les grilles sont présentés. Notam-
ment, nous démontrons une équivalence entre la variante fractionnaire et la variante
“intégrale” du jeu de I'espion dans les arbres qui nous a permise d’utiliser la program-
mation linéaire pour concevoir ce que nous pensons étre le premier algorithme exact qui
utilise la variante fractionnaire d'un jeu pour résoudre sa variante “intégrale”. Dans le
Chapitre 4, des bornes asymptotiques sur le nombre de domination éternelle de la grille
du roi sont présentées. Dans le Chapitre 5, des résultats sur la NP-complétude du jeu
de Localisation sous différentes conditions (et une variante de ce jeu) sont présentés.
Notamment, nous démontrons que le probleme est NP-complet dans les arbres. Malgré
cela, nous concevons un (+1)-algorithme d’approximation qui résout le probleme en
temps polynomial. Autant que nous sachions, il n’existe pas d’autres telles approxima-
tions pour les jeux dans les graphes. Finalement, dans le Chapitre 6, des résultats sur la
dimension métrique des graphes orientés sont présentés. En particulier, les orientations
qui maximisent la dimension métrique sont explorées pour les graphes de degré borné,
les tores et les grilles.
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Abstract

In this thesis, 2-player games on graphs and their algorithmic and structural aspects
are studied. First, we investigate two dynamic dominating set games: the eternal
domination game and its generalization, the spy game. In these two games, a team of
guards pursue a fast attacker or spy in a graph with the objective of staying close to
him eternally and one wants to calculate the eternal domination number (guard number
in the spy game) which is the minimum number of guards needed to do this. Secondly,
the metric dimension of digraphs and a sequential version of the metric dimension of
graphs are then studied. These two problems are those of finding a minimum subset
of vertices that uniquely identify all the vertices of the graph by their distances from
the vertices in the subset. In particular, in the latter, one can probe a certain number
of vertices per turn which return their distances to a hidden target and the goal is to
minimize the number of turns in order to ensure locating the target. These games and
problems are studied in particular graph classes and their computational complexities
are also studied.

Precisely, in Chapter 3, the NP-hardness of the spy game and the guard numbers
of paths and cycles are first presented. Then, results for the spy game on trees and
grids are presented. Notably, we show an equivalence between the fractional variant
and the “integral” version of the spy game in trees which allowed us to use Linear
Programming to come up with what we believe to be the first exact algorithm using
the fractional variant of a game to solve the “integral” version. In Chapter 4, asymptotic
bounds on the eternal domination number of strong grids are presented. In Chapter 5,
results on the NP-completeness of the Localization game under different conditions
(and a variant of it) and the game in trees are presented. Notably, we show that the
problem is NP-complete in trees, but despite this, we come up with a polynomial-time
(4+1)-approximation algorithm in trees. We consider such an approximation to be rare
as we are not aware of any other such approximation in games on graphs. Lastly,
in Chapter 6, results on the metric dimension of oriented graphs are presented. In
particular, the orientations which maximize the metric dimension are investigated for
graphs of bounded degree, tori, and grids.
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Chapter 1

Introduction

1.1 2-Player Combinatorial Games

Games in general have been vastly studied for their applications, entertainment factor,
and because the problems therein are usually intriguing and easy to state. The field
of the study of games is very large. In this section, I will try to give an overview of
the different areas in games and where the results of this thesis fit into this scheme.
Before doing so, a general definition of a game must be given. A game is a form of play
in which the players take turns changing the position of the game in order to achieve
some winning condition with the rules of the game defining how the game proceeds,
the capabilities of the players, and the winning conditions. Games with more than two
players have been studied (see, e.g., [86, 103, 122]), but seeing as the field of 2-player
games is already large enough and has been much more extensively studied, I will only
focus on 2-player games.

There are two main strands of the study of 2-player games: combinatorial game
theory and economic game theory. Combinatorial game theory typically deals with
games of no chance that are sequential in nature (the players take turns) and where
all players have perfect information (both the state of the game and what both players
can do is known to all players). Economic game theory typically deals with games of
chance that may or may not involve simultaneous play (sequential games also exist)
and where some or all players may have imperfect information (e.g., the moves of one
player may not be known to the other). I will again focus on games that fall within
combinatorial game theory but note that a gray area exists between both these strands
(there are games that can be considered in both strands) since the definitions of both
strands are not stringent.

Combinatorial games can be broken down into many subclasses of games and here
I will discuss some of these. Impartial games are sequential perfect information games
in which a play or move available to one player is always available to the other player
(they both have the same capabilities of moving on their respective turns). An example
of such a game is Nim, first studied in [33], in which both players take turns removing
objects from piles and the first player who cannot remove an object loses. Other
examples of impartial games are Sprouts [66], Kayles [56], Cram [67], etc. In Cram, for
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example, the two players take turns placing dominoes vertically or horizontally on a
rectangular board (although it is not limited to these boards), and the first player who
cannot place a domino, loses. Partisan games are like impartial games except a play
or move available to one player is not available to the other player. Examples include
chess and Go since each player can only play with their tokens or pieces. This thesis
will focus on partisan games.

Games can also be played on different surfaces such as boards or graphs. This thesis
will focus on partisan games played on graphs. In the next paragraph, we still mention
games like Nim, which are not played on graphs.

Partisan games (and impartial ones in most cases) can be broken down into sub-
classes based on their winning conditions. Five of these subclasses will be defined in
this section. The first one is games played under the normal play convention. In these
games, the first player who cannot move, loses. Examples include Nim, Cram, and
Domineering [67]. Domineering, for example, is the same game as Cram, except that
one of the players can only place their dominoes vertically and the other, only horizon-
tally. The second subclass is Misere play, which has the opposite winning condition of
normal play, which is that the first player who cannot move, wins. Recently, there has
been the development of a theory of scoring games, where the winner is the one with
the greater score [95, 96, 97]. The fourth one is maker-breaker games, where one player
wants to maximize a score (often the number of turns that occur) and the other wants
to minimize it. Examples include the Domination game [38] and the graph colouring
game [26]. For example, in the first, two players take turns adding vertices to a set such
that each new vertex added dominates at least one new vertex, and one player wants
to maximize the size of this set while the other wants to minimize it. This game has
been vastly studied, see, e.g., [37, 39, 52]. Finally, pursuit-evasion games can be seen
as a special type of maker-breaker games. Pursuit-evasion games are played on graphs,
in which a team of agents (pursuers) collaborate to accomplish a specified task while
the evader tries to stop the pursuers achieving their goal.

The principal games in this thesis fit into the category of pursuit-evasion games. The
three games that are studied are the eternal domination game [72], the spy game [j-3],
and the localization game [c-5]. In the first two, a team of guards pursue a fast attacker
or spy in a graph with the objective of staying close to him eternally and the goal
is to calculate the eternal domination number (guard number in the spy game) which
is the minimum number of guards needed to do this. In the latter, one can probe a
certain number of vertices per turn which return their distances to a hidden immobile
target and the goal is to minimize the number of turns in order to ensure locating
the target. The latter is more of a 1-player game as the second player (the one that
places the target) only has one move at the beginning of the game. The first two games
fall into the following categories of games. They are both pursuit-evasion, partisan,
sequential, perfect information, and combinatorial games of no chance. The localization
game is, roughly, a pursuit-evasion, partisan, sequential, imperfect information, and
combinatorial game of no chance.



1.2 Related Work: Pursuit-Evasion Games in Graphs

1.2.1 Games in Graphs & Cops and Robbers

We now focus on games in graphs and specifically, pursuit-evasion games. The full state
of the art of the games studied in this thesis as well a lighter state of the art of the
problems that motivate the study of these games is given in this chapter. The reader
is referred to Chapter 2 for graph theoretic notation and definitions if needed.

Games in graphs have been vastly studied due to their various applications and
because the problems therein are usually intriguing and easy to state. This has attracted
a lot of interest to the field. In particular, the main focus has been the study of
two-player games in which the objective is to minimize the “resources” (e.g., number
of agents) of one player while ensuring they can always “win” or achieve their goal
regardless of their opponent’s strategy. For such games where one player controls a team
of agents with the goal of accomplishing a specified task, the combinatorial problem of
minimizing the number of agents (resources) to accomplish the task and the algorithmic
problem of computing a “winning” strategy for the agents to accomplish the task, have
applications in robotics, network security, artificial intelligence, graph theory, logic,
routing, telecommunications, etc. (e.g., see [60, 81, 92]).

Game of cops and robbers. The most well-known two-player games of this type
are the pursuit-evasion games. In particular, the game of cops and robbers [104, 106]
has been extensively studied and most of the other pursuit-evasion games have been
derived from or have been created as a consequence of this game. In cops and robbers,
a team of cops place themselves on the vertices of a graph. Then, a single robber
places himself on a vertex. Turn-by-turn, first each of the cops may move to one of
their neighbours or stay put, and then the robber may do the same. The cops win if,
after a finite number of turns, a cop captures the robber, i.e., moves to the vertex the
robber currently occupies. Otherwise, if, for an infinite number of turns, the robber
can evade capture, then the robber wins. The objective of the game is to determine
the cop number, denoted by ¢(G), of a graph G, which is the minimum number of cops
necessary to ensure capturing the robber in G. For example, for any tree T, ¢(T) = 1.
Indeed, in any tree T', there is one unique shortest path between any two vertices and
if the cop follows the shortest path between himself and the robber at each turn, he
will eventually capture the robber as the robber cannot move past or around the cop.
Another easy example is the case of cycles of size at least 4, it is easy to see that one
cop is not enough but also that 2 are always enough, so ¢(C,,) = 2.

Complexity of cops and robbers. Typically, the method of research for such a
game is to first determine its computational complexity and then to solve the game for
particular classes of graphs. Deciding whether ¢(G) < k when a graph G is part of
the input but k is fixed, is polynomial-time solvable [25]. Deciding whether ¢(G) < k
when a graph G and an integer k are part of the input, is NP-hard and W[2]-hard [61].
There is also no polynomial-time algorithm to approximate the cop number to within a
multiplicative factor clogn, where ¢ > 0 is a constant and n is the size of the graph [61].
It was then proven that cops and robbers is PSPACE-hard [101]. Finally, it was proven
that cops and robbers is EXPTIME-complete [87]. As can be seen in the following para-
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graph, a typical approach when a problem is shown to be at least NP-hard in general,
is to determine under what conditions the problem is computationally tractable. There
are many approaches such as designing better exponential-time algorithms, studying
approximation algorithms, considering further the parameterized complexity, etc. The
common approach, which is the one taken in this thesis, however, is to restrict the prob-
lem to particular classes of graphs. The hope being to show that the problem is in P
for such classes or, even better, that a closed formula exists to calculate the parameters
that we seek in such classes.

With this in mind, the common approach to tackle these games is to try and solve

them for particular graph classes by using their structural properties, which is why
pursuit-evasion games are often considered to give a better understanding of structural
properties of graphs.
Particular graph classes. In cops and robbers, most of the work has been dedicated
to particular graph classes. Graphs with cop number equal to one were characterized
in [104]. Three cops are sufficient in planar graphs and this bound is sharp [16]. Two
cops are sufficient in outerplanar graphs and this bound is sharp [48]. The cop number
of intersection graphs was studied in [70] where, among other things, they showed that
the cop number of interval filament graphs is at most 2, the cop number of outer-string
graphs is at most 4, and the cop number of string graphs is at most 15. For graphs G
with genus g, ¢(G) < [%] + 3 and in the same paper, one of the two main conjectures
for cops and robbers was given and that is that ¢(G) < g + 3 [112]. The other main
conjecture is that of Meyniel, which asks whether ¢(G) = O(y/n) for any connected
graph G on n vertices. This conjecture is considered the biggest conjecture (since many
strong researchers have worked on it) in cops and robbers and is mentioned in [65]
as a personal communication between Frankl and Meyniel in 1985. For the bipartite
graph G(P) formed from the points and the lines of a projective plane, where the
points and the lines are the two partitions, ¢(G(P)) = y/n, where n is the number of
vertices in G(P). Therefore, if Meyniel’s conjecture is true, then the bounds on the cop
number (for connected graphs) are asymptotically tight. Several works have been done
in regards to Meyniel’s conjecture (see, e.g., [46, 65, 99, 113]), yet no one has managed
to even prove that ¢(G) = O(n'~¢) for any € > 0. For more on cops and robbers, see
the book [29].

In this thesis, the intersection of pursuit-evasion games in graphs and domination
and identification in graphs is studied. Once introduced, it will be clear that all these
problems are related to distances in graphs. The study of which, from different angles,
allows for a better understanding of distance properties of graphs. In the next subsec-
tions, some background on domination and identification in graphs is given to provide
a basis for the study of the games.

1.2.2 Domination in Graphs

A subset of vertices S C V' is a dominating set of G = (V, E) if, for every vertex v € V|
either v € S or wv € E and u € S. The domination number of a graph G, denoted
by 7(G), is the size of a minimum dominating set of G. Domination in graphs has
found its applications in, e.g., facility location problems, designing electrical networks,
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and land surveying [55, 80]. Much like games in graphs, the approach to studying
domination in graphs has been the same. The problem of deciding whether v(G) < k
when G and k are part of the input is NP-complete [84]. Moreover, the problem is
W[2]-complete [54]. The problem is also a Inn-inapproximable [17]. The fastest exact
algorithm (to the best of our knowledge) for finding a minimum dominating set runs
in time O(1.4969") [121]. Seeing as the problem was most likely not computationally
tractable in general graphs, it was studied in particular graph classes. For example, the
domination number of planar graphs with diameter at most two (three respectively) is
at most 3 (10 respectively) [100]. Goddard and Henning showed that the bound is tight
for planar graphs with diameter two and showed that the graph they constructed is the
unique graph of diameter two with domination number equal to 3 [73]. MacGillivray and
Seyffarth also gave an example of a planar graph with diameter three with domination
number equal to 6 [100]. The exact domination number of Cartesian grids was only
recently determined in 2011 [75]. The domination number has also been investigated,
e.g., for series-parallel graphs [82], the cross product of paths [45], and the cross products
of graphs in general [76]. A big conjecture concerning domination in graphs is due
to Vizing and it dates back to 1968. It states that, for all finite graphs G and H,
v(GOH) > v(G)v(H) [123]. Significant progress was made by Clark and Suen when
they proved that v(GOH) > 1v(G)v(H) [47]. For more on progress made on the
conjecture, the interested reader is referred to the survey [36]. For more on domination
in graphs and its variants see [80].

Domination in graphs is clearly related to the distance properties of a graph. For
example, the results on planar graphs with diameters at most 2 and 3 above show that
the domination number of a graph depends on the diameter of the graph.

1.2.2.1 Eternal Domination Game

In terms of dominating games, the all-guards-move model of the eternal domination
game [72] and its generalization, the spy game [j-3|, will be considered in this thesis.
The eternal domination game was introduced by Burger et al. [40] in 2004. The game
is played on a simple undirected graph G. There is a team of guards playing against an
attacker. The guards place themselves on the vertices of G and then, at each turn, the
attacker first attacks a vertex v € V and then only one guard may move to a vertex
adjacent to his current position (vertex) and one guard must move to v, otherwise, the
attacker wins. If a guard moves to v, then the guards are said to have defended against
the attack. If the guards can defend against an infinite sequence of attacks, then the
guards win. Hence, the guards must always maintain a dominating set. The objective
of the game is to determine the eternal domination number of G, denoted by v°(G),
which is the minimum number of guards necessary in order to ensure winning against
the attacker.

Goddard et al. [72] introduced the all-guards-move model of the eternal domination
game in 2005. In this variant, each guard may move to a neighbour on their turn, with
at least one guard having to move to the attacked vertex v after each attack. Such a
problem found its applications in the study of military strategies that date back to the
Roman Empire where armies needed to be mobilized to defend the empire but there
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were only a limited number of armies [18, 108, 109, 119]. There are two variants of
this model, one in which multiple guards may occupy a vertex at any time, and one in
which at most one guard may occupy a vertex at any time. Both associated parameters
are defined analogously to 7>°(G), with the former, which will be mainly considered
in this thesis, being denoted by 25, (G), and the latter being denoted by ~°(G). The
constraint that at most one guard may occupy a vertex is not a stringent one for the
original eternal domination game since it is easy to see that the guards do not gain any
advantage from this as only one guard may move at each turn [40]. However, there
exist graphs in which this constraint is important for the all-guards-move model, i.e.,
Yo (G) < i (G) for any of these graphs G [91].

It is clear that 72(G) < v5°(G) < v*°(G), however these parameters can also
be bounded by well-known graph parameters such as the domination number, indepen-
dence number, and clique cover number, denoted by v(G), a(G), and §(G) respectively.
In particular, the following chain of inequalities holds, v(G) < 735(G) < 1P (G) <
a(G@) <4>*(G) < 0(G) [40, 72].

From the variants of the eternal domination game mentioned thus far, seeing as
this thesis focuses on the study of 7, only the state of the art of this variant will be
presented. Again, the complexity of the game was studied and the game in particular
graph classes. Deciding whether 755(G) < k is NP-hard when G and k are part of
the input and this holds for split graphs [21]. While it is not explicitly stated, it can
be seen that the problem is also W[2]-hard through the reductions given in [21]. Note
that it is not known whether the problem is in NP or in PSPACE and so this leaves
the very interesting open problem of determining the exact complexity class, i.e., is
it NP-complete? PSPACE-complete? EXPTIME-complete? In the case of particular
graph classes, paths and cycles are trivial with 755(P,) = [§] and v5;(Cy) = [%] [72].
A linear-time algorithm to calculate 72(7) for any tree T' was conceived in [89]. In
terms of interval graphs, first it was shown that, for any proper interval graph G,
v2(G) = a(G) [34]. Recently, this result was improved, that is, it was shown that, for
any interval graph G, 7%7(G) = a(G) [110], with the proof being much shorter as well.
There are many papers that have focused on determining 72y, (G) for Cartesian grids.
Exact values have been determined for 2 x n grids [74] and 4 x n grids [22]. It proved
to be more difficult for 3 x n grids with asymptotically tight bounds being given in [59]
and improved in [49]. Finally, the best upper bound for Cartesian grids in general is
v (P,OP,,) = v(P,0PF,,) + O(n+m) [94]. Note that all the results mentioned in this
paragraph also hold for 7°.

There are other variants of the eternal domination game but they are just mentioned
in passing as they are outside the scope of this thesis. In the eternal total domination
game, a total dominating set must be maintained at each turn, that is, a dominating
set in which every vertex in the dominating set is also dominated by another vertex
(adjacent to another vertex) in the dominating set [90]. In the eviction model of the
eternal domination game, a vertex containing a guard is attacked at each turn, and
the guard at that vertex must move to an adjacent vertex with the condition that the
guards maintain a dominating set each turn [88]. The eternal domination game has
also been studied on digraphs [19]. The interested reader is referred to the survey [91]
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for more information and results on the eternal domination game and its variants.
Another way of better understanding distances in graphs and how they can be used
leads to the study of identification problems in graphs.

1.2.3 Identification in Graphs

Problems where one wants to distinguish the vertices of a graph by their distances
from a smallest subset of its vertices are commonly referred to as identifying problems.
Many of these problems exist, with identifying codes [85], adaptive identifying codes [24],
and locating dominating sets [118] asking for the vertices to be distinguished by their
neighbourhood in the subset chosen. Resolving sets, in which one wants to distinguish
the vertices of a graph by their distances to the vertices in such a set, have been
extensively studied [77, 117]. Formally, for a graph G, an ordered subset of vertices
S ={v1,...,v0} CV(G), and a vertex u € V(G), let the distance vector between S and
u be D(S,u) = (dist(u,vy),dist(u,ve),...,dist(u,vy)). The set S is a resolving set, if,
for any two vertices u, w € V(G), the distance vectors D(S,u) and D(S, w) are distinct.
The size of a minimum resolving set of a graph G is called the metric dimension of G
and is denoted by M D(G). This problem models, e.g., the detection of an intruder in
a facility [62]. Sensors that can detect an intruder at a certain distance can be placed
in and around the facility and security wants to be able to know the exact location of
the intruder given the distance information provided by the sensors. The sensors may
be expensive however, and so one wants to minimize the number of sensors they have
to install for the security of their facility.

The associated decision problem, i.e., deciding whether M D(G) < k when G and
k are part of the input, was first shown to be NP-complete in general graphs in [68].
Thus, this motivated studying the problem in restricted graph classes. The problem
was further shown to be NP-complete in planar graphs [50] and in graphs of diameter
2 [64], and W|[2]-hard (parameterized by the solution’s size) [78]. On the positive side,
the problem is FPT when parameterized by the treelength of the graph [23]. The metric
dimension of trees can be computed as follows [77, 117]. Contract all vertices of degree
2 and let L be the set of leaves in the remaining tree 7" and let S be the set of vertices
of degree greater than 1 that are adjacent to at least one leaf in 7”. Then, for each
vertex in S, taking all adjacent vertices but one that are in L is a resolving set. Bounds
on the metric dimension were also shown for interval and permutation graphs [63].
For more on the metric dimension of graphs, the interested reader is referred to the
surveys [20, 42].

A variant of resolving sets, called centroidal bases, where the vertices of a graph
must be distinguished by their relative distances to the probed vertices was introduced
n [62]. A formal definition is given later in Chapter 5. However, intuitively, when a
set of vertices are probed, it results in the knowledge of which vertex is the closest to
the target, second closest, etc., without indicating the exact distances between these
vertices and the target. It is also known if two vertices probed are at the same distance
from the target. The size of a minimum centroidal basis of a graph G is called the
centroidal dimension of G and is denoted by C'D(G). The associated decision problem,
i.e., deciding whether CD(G) < k when G and k are part of the input, was shown to
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be NP-complete, and almost tight bounds on the centroidal dimension of paths were
given in [62].

1.2.3.1 Sequential Identifying Games in Graphs

In terms of identifying games, the LOCALIZATION problem and the RELATIVE-
LOCALIZATION problem, introduced in [c-5] are considered in this thesis. In [115],
Seager initiated the study of the following sequential locating game: an invisible and
immobile target is hidden at some vertex ¢, and, at every step, one vertex can be probed
to retrieve its distance to ¢, and the objective is to locate ¢t using the minimum number
of steps. Seager gave bounds and exact values on this minimum number of steps in par-
ticular subclasses of trees (e.g., subdivisions of caterpillars) [115] but left the problem
open in trees in general. The LOCALIZATION problem is essentially a generalization of
the metric dimension of a graph and this sequential locating game (multiple vertices
may be probed each turn instead of just one). Indeed, instead of all the information
from probings being given at once, they are given sequentially. This is natural since
maybe it is not possible to probe enough sensors all at once in order to ensure locat-
ing an intruder in a facility or network, but of course one still wants to locate the
intruder. So, one might want to know the minimum number of sequential probings that
are necessary to ensure locating an intruder. That is, in the LOCALIZATION problem,
an immobile target is hidden at a vertex and one probes the vertices of the graph over
multiple turns in order to locate the target. For a target hidden at a vertex u € V(G),
probing a vertex v € V(G) results in the knowledge of the distance between u and v,
i.e., dist(u,v). Precisely, given a graph G and two integers k, ¢ > 1, the LOCALIZATION
problem asks whether an immobile target hidden at a vertex of G' can be located in at
most ¢ turns by probing at most k vertices per step.

The first of such sequential localization games studied the case of a moving target,
with the first one being proposed by Seager in 2012 [114]. In these games, after each
probing, the target may move to one of its neighbours. Sometimes an extra condition
on the movement of the target, known as “backtracking”, is not allowed, i.e., the target
may not move to a neighbour that has just been probed. The goal in these games is to
locate the target in a finite number of turns while minimizing the number of vertices
that can be probed at each turn.

As with the other related problems and games, the complexity of such games was
studied as well as such games in particular graph classes. The number of times all of
the edges of a graph must be subdivided in order to guarantee locating a moving target
by probing one vertex (k vertices respectively) per step was investigated in [41] ([79]
respectively). A locatable graph is one in which there exists a strategy, that probes
one vertex per step, that locates, in a finite number of steps, a target that may not
backtrack. All trees were shown to be locatable and bounds on the number of steps
it takes to locate the target in trees were exhibited in [114]. This upper bound was
improved in [35]. The case of a target that may backtrack was considered in trees
in [116]. Let ¢(G) be the minimum integer k& such that there exists a strategy, that
probes k