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An optical communication link performance between the ground and a geostationary satellite can be impaired by scintillation, beam wandering, and beam spreading due to its propagation through atmospheric turbulence. These effects on the link performance can be mitigated by tracking and error correction codes coupled with interleaving. Precise numerical tools capable of describing the irradiance fluctuations statistically and of creating an irradiance time series are needed to characterize the benefits of these techniques and optimize them. The wave optics propagation methods have proven their capability of modeling the effects of atmospheric turbulence on a beam, but these are known to be computationally intensive. We present an analytical-numerical model which provides good results on the probability density functions of irradiance fluctuations as well as a time series with an important saving of time and computational resources.
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Introduction

In order to face the ever growing needs for higher data rates and because of the saturation of the radio frequency (RF) bands, a multiplex of wavelengths around the 1.55 µm spectral band is being investigated for the next generation of high throughput satellite system aiming at a 1 Terabits/s capacity.

In addition to cloud coverage, one of the major limitations for the use of optical wavelengths is atmospheric turbulence, which induces local fluctuations of the refractive index which deteriorate the optical quality of a laser beam during its propagation within the atmosphere and lead to fluctuations of the detected telecommunication signal. In the case of an uplink (a link going from the ground to a geostationary satellite), the optical beam is deflected (a phenomenon called 'beam wandering') and distorted ('beam spreading') by atmospheric turbulence. These effects lead to irradiance fluctuations which can result, in the worst case, in a loss of detected signal. These effects also have an important temporal variability and therefore increase the error rate as well as prevent the system from working at the desired capacity. Propagation of ground phase perturbations induced tracking errors which cannot be compensated at satellite level. The solution is therefore to compensate these effects at emission. For this, different systems are envisioned such as compensating the phase with an adaptive optics system or using a diversity of emitters.

Adaptive optics (AO) systems for correcting the effects of atmospheric turbulence were first envisioned for astronomy in 1953 [1]. The idea is to improve the performance of optical systems by reducing the effect of wave front distortions. The phase perturbations are measured with a wave front sensor and compensated with a deformable mirror. This leads to better quality images with bigger telescopes. At the time, adaptive optics systems were limited due to the requirements in computational power. However, since the 1990s, adaptive optics systems equip the world's leading telescopes. In the case of satellites for telecommunications, using AO systems should permit to concentrate and stabilize the energy on the satellite's detection pupil, thus reducing the error rates. This idea was first introduced in the 1970s by Fried [2], relying on the reciprocity of propagation through atmosphere. In the case of a ground to satellite propagation, such an approach makes sense because the atmospheric perturbations are close to the ground station telescope, mostly modifying the phase of the electromagnetic field and can therefore be compensated by using a deformable mirror. In such a system, a beam coming from the satellite will be used to measure and estimate the perturbations that need to be applied to the emitted 1 LIST OF TABLES wavefront. Because of point-ahead angle between the downlink and the uplink (due to the Earth's rotation), of the optical ground station (OGS) architecture and of the delay between the measurement and the correction, the turbulence effects experienced by the downlink and the uplink are slightly different, leading to partial compensation only.

The knowledge, characterization and modeling of the effects of turbulence, and their correction, on an optical link are essential for the optimization of a ground station. My thesis focused on this subject, in the particular context of a grounf to satellite feeder link, capable of providing the targeted capacity (1 Terabit/s by 2025). To achieve this goal, most of the effort will be focused on developing a model describing the effects of turbulence on the optical uplink in the presence of adaptive optics pre-compensation.

In Part I of this thesis, the aim is to introduce optical satellite communications. In Chapter 1, I will introduce the link budget performance criteria which we will use throughout this manuscript. It gives an estimation of the received power as a function of the propagation channel losses and emitted power, and estimates the link's performance. Within the link budget, I will focus on the losses due to turbulence as a function of the emitting architecture. In order to estimate the losses due to turbulence, I will need a model which describes accurately irradiance fluctuations, particularly in the lower irradiances. In Chapter 2, I am going to describe irradiance fluctuations using results from the literature in order to comprehend how turbulence affects irradiance fluctuations. Chapter 3 will be focused on presenting turbulence effects mitigation techniques, such as adaptive optics.

In Part II, I will present the simplified model for describing irradiance fluctuations that we have developed. In Chapter 5, we will compare the models described in Chapter 2 with TURANDOT (a wave optics simulation tool developed by ONERA also presented in Chapter 2) and highlight that the presented models are insufficient to model irradiance fluctuations, particularly in a tilt tracked case. I will present in Chapter 6 a model found in the literature [3] which we have improved. I will compare this new model to TURANDOT in order to validate its range of validity but also demonstrate its limits.

Finally, the objective of Part III is to do a system sizing using the link budget from Chapter 1 and the irradiance fluctuations model from Chapter 6. The objective will be to evaluate the impact of the optical ground station parameters and of the propagation channel on the link budget and converge with an optical ground station capable of fulfilling the link budget. Finally, in Chapter 8, I will present the temporal statistics of irradiance times series obtained with the model and their impact on the error correcting codes performance in turbulence. page 2

Part I

Context

Chapter 1

Optical communications for high throughput satellite feeder links

After a brief introduction of the history, context and actual state of the art of optical freespace communications, we will focus on satellite optical communications, more specifically on ground-to-space links.

The second part of this chapter will present the link parameters (wavelength, modulation scheme, etc.). We will briefly present the detection architecture which will result in a performance criteria that will be used throughout the manuscript. Finally, we will introduce the link budget. 

Geostationary satellite system for broadband internet

In order to benefit from global links without the limitations from heavy and vulnerable terrestrial structures, satellites appeared to be a promising solution. In 1962, Telstar 1 was the first true communications satellite. Equipped with a receiver and a very powerful transmitter, it transmitted live in the United States the first television shows broadcasted in Europe. The next year, NASA sent the first satellite on the geostationary orbit, Syncom 1, with a capacity equivalent to one television channel or 50 phone calls at the same time. In 1965, the launch of the first telecommunications geostationary satellite, Intelsat 1, marked the true beginning of the telecommunications by satellites era which allowed a total coverage of the globe.

Space, ground and user segments

The architecture of geostationary satellite systems for broadband can be divided in three segments: the space segment, the ground segment and the user segment. Figure 1.1 provides an illustration of the different segments.

The ground segment consists in one or several gateways, which comprise of large antenna dishes, modems and the Internet service provider equipment. The gateway is at the interface between the Internet and the satellite link.

The user segment uses small antenna dishes and a modem to interface between the satellite system and the end-user's network.

Finally, the space segment comprises of two parts: the platform and the payload. For geostationary communications satellites, the payload is usually transparent, meaning that it will only amplify the received signal before transmitting it to the following segment. The signal is therefore modified without any impact on the satellite during its lifetime. The platform defines the mass, consumption and energy dissipation of the satellite.

Feeder link

The feeder link transmits the data between the ground segment and the spatial segment and the links between the space segment and the user segment are called user links. Both links are bidirectional. The links going from the ground to the satellite are called uplinks while those going in the other direction are called downlinks.

Limitations to the use of radio frequencies

The next generation of high throughput satellite system is expected to reach 1 Terabits/s, in order to meet the data rate requirements for mobile telephony and Internet.

Nowadays, there are two principal limitations to the use of radio frequencies (RF). The first is the saturation of the RF bands. Many satellites use the Ka band today, which has a bandwidth of 3.5GHz for both the downlink and the uplink around their central frequencies respectively at 20GHz and 30GHz. The second limitation is the need for a higher capacity, which the RF can't deliver.

In order to deal with these limitations, the satellite industry pushes towards the higher frequencies, as the available bandwidth increases with the frequency. The Q/V band (which page 6

1.1 Geostationary satellite system for broadband internet Figure 1.1: Description of the architecture for a geostationary satellite for broadband internet. [4] has a bandwidth of 5GHz at each polarization for both the downlink and the uplink around their central frequencies respectively at 40GHz and 50GHz) is currently in development. Using this band will liberate the Ka band which may then be fully allocated to the user links. However, using this frequency band would lead to using over 30 gateways, because of diversity techniques to mitigate the rain attenuation, in order to satisfy an availability over 99.9%.

Optical links permit to deal with the problem of the saturation of the RF bands as well as significantly increase the bandwidth, with a central frequency around 200THz.

Advantages and challenges of free-space optical communications

The laser beam has a low divergence (typically around 10 to 100 µrad) in contrast to RF waves for which the divergence is at least 1000 times bigger. The flux budget is thus more favorable with a gain of the order of 60 dB reducing the source's required power. By its directivity, the beam is difficult to intercept and thus allows inherently secured communications. Interference problems between channels are also resolved and the spectrum regulation becomes unnecessary. The mass, space and electrical power required are much lower as well as the overall cost of the system. Antennas embedded on satellite have dimensions of a few tens of centimeters and emit the order of the watt for the optical links; they are rather of the order of the meter and several tens of watt for RF links.

However, the low divergence of the beam presents a technological challenge, as it requires a very precise pointing system of the beam towards the receiver. The pointing may be disturbed by atmospheric turbulence close to the ground. Another technological difficulty is the stabilization of the optical axes of the pointing systems at emission and at reception due to possible mechanical drifts or vibrations. page 7 Chapter 1. Optical communications for high throughput satellite feeder links Another limitation is the absorption by clouds at optical wavelengths. This means that a feeder link can not function if there is a cloud above the ground station. The solution is to use a diversity of ground stations so that at least one station is not under a cloud. This will not be treated in this thesis.

History of optical communications

Brief history of optical communications

The first real communication network appeared at the end of the French Revolution: in 1794, Chappe's optical telegraph connected Paris to Lille via a network of semaphores conveying step by step coded messages. Its effective propagation speed was 35 km/h. However, optics were quickly abandoned at the benefit of electronics whose mastery progressed more rapidly.

In 1880, Graham Bell developed his photophone [5]. It worked using light modulation induced by the deformation of a mirror under the effect of voice and a selenium receiver whose resistance varied according to the light intensity received, which enabled information recovery.

It was the arrival of lasers, in 1960, that revived interest in optical transmissions by establishing an optical transmission link in direct line of sight. But they were limited by their lifespans, their bulk and their insufficient luminous power.

In the 1980s, the arrival of semiconductor lasers made it possible to meet these limitations thanks to a longer lifespan, reduced bulk and high efficiency. Thanks to the directivity and their high power, they allowed to work with high signal-to-noise ratios.

It was in the 1990s that fiber lasers appeared, bringing technological maturity and a response to increasing bandwidth demand. They had very low attenuation which allowed the creation of high-speed long-range line such as submarine cables, therefore in guided propagation. The large variations in transmission induced by atmospheric conditions (precipitation, aerosols, etc.) in free space propagation as well as the need for high availability for the targeted applications initially led to the development of short-range systems.

Ground-to-space optical links

For the time being, optical free-space telecommunications through space are still at the stage of demonstration.

Initial searches for ground-to-space link applications started in the late 1970s. In 1992, the Galileo probe received the first optical link while being 6 million km away from Earth [6]. In 1995, the first bidirectional link was made between the Japanese geostationary ETS-VI satellite and the ground during the Ground/Orbiter Lasercomm Demonstration (GOLD) program [7,8].

In 2001, a two-way link was made between a LEO satellite (SPOT-4) and a GEO satellite (Artemis) as part of the SILEX program [9]. The link delivered 50 Mbps. The system was made by Astrium (now Airbus Defence & Space) and was embedded on both satellites. It used a GaAlAs laser diode, emitting 60 mW at 800 nm, an avalanche photodiode for detection as well as a tracking system comprising of a tilting mirror and CCD matrices. It page 8

1.1 Geostationary satellite system for broadband internet used a "pulse position modulation" (PPM) (cf Section 1.2.3). The Artemis satellite was also used to make two-way links with the ground from November 2001 [10].

In 2006, the LOLA experiment was a two-way link between the GEO satellite Artemis and an airplane. The uplink had a 2 Mbps capacity modulated by a BPPM while the downlink had a 50 Mbps with an OOK modulation.

In 2008, the first bi-directional optical telecommunications link between the LEO satellite OICETS/Kirari and a ground station in Tokyo (uplink with a 2 Mbps capacity and BPPM while downlink had a 50 Mbps OOK modulation) was achieved. The connection was maintained during 6 minutes during the satellite's passage in clear weather. The achieved bit error rates were 10 -7 on the uplink and 10 -4 on the downlink.

In 2011, a bi-directional broadband link was achieved between the LEO satellite NFIRE from NASA to an OGS in Tenerife (part of the TERRASAR project [11]). This link was achieved by the European Space Agency (ESA), the German space agency (DLR) and TESAT (German company specialized in satellite telecommunications). It had a 5.6 Gbps capacity using a BPSK modulation with a homodyne detection. It used a YAG laser source (at a 1, 06 µm wavelength) which delivered 0.7 W. During this demonstration, there were long periods of error less telecommunications intersected with peaks of error due to the scintillation of the laser beam in the turbulent atmosphere.

In 2014, the GEO satellite Alphasat [12] was sent into orbit with a laser terminal developed by the TESAT and provided by the DLR, with a capacitu of the order of 1.8 Gbps and a ground station in Tenerife. It used a laser source at 1.06 µm with a BPSK modulation.

Also in 2014, a broadband link between the ground and the Moon was achieved with the Lunar Laser Communication Demonstrator (LLCD) [13].Three stations were used : the OGS in Tenerife, the Optical Comm Telescope Lab of the JPL at Table Mountain and a specific terminal at White Sands with 4 emitters with a 15 cm diameter and 4 receivers with a 40 cm diameter (cf. The SOTA (SmallOpticalTrAnsponder) terminal, part of the SOCRATES (Space Optical Communications Research Advanced Technology Satellite) has been used to establish link with an optical ground station at the Observatoire de la Côte d'Azur (OCA) in France [14]. This was a project financed by CNES (the french space agency) with the participation of Airbus Defence & Space, Thales Alenia Space and ONERA.

Finally, Opals (Optical PAyload Lasercomm Science) on the International Space Station (ISS) has been used for a downlink transmission at 50 Mbps [15], with the aim to prove the feasibility of satellite to ground links.

Throughout these examples, we can see that the question of optical links, and particularly of uplinks, is gaining in maturity. All these demonstrations characteristics are summarized in Table 1.1. These results show that, while the first demonstration of a ground to satellite link dates from 1995, there has recently page 9 Chapter 1. Optical communications for high throughput satellite feeder links been an acceleration in the field with multiple demonstrations in 2014. We can observe that the wavelength has increased over the demonstrations, as it started around a 0.8 µm wavelength whereas the most recent experiments all used a 1.55 µm wavelength. Most demonstrations used a NRZ OOK modulation or PPM modulation, even though Europeans also seem to be interested in the BPSK modulation. Finally, adaptive optics are beginning to be tested in the very recent demonstrations on downlinks whereas beam diversity is still most commonly used for uplinks. There has not yet been any demonstrations of ground to satellite uplinks using adaptive optics. This is the next step toward the use of bidirectional optical feeder links. page 10 1.1 Geostationary satellite system for broadband internet The optical feeder link may be decomposed in multiple parts. On the ground segment, there is the laser source, the modulator (a Mach-Zender interferometer for example) as well as the optical architecture of the emitting telescope, which may comprise adaptive optics. On the space segment, there is the receiving telescope and the detection architecture. A simple schematic diagram of an optical feeder link is presented in Figure 1.3. 

Wavelength

Because of the absorption at certain wavelengths by molecules present in the atmosphere, there is a limited number of windows of emission. A longer wavelength leads to improved transmission through the atmosphere and a weaker degradation due to atmospheric turbulence. From Figure 1.4, three wavelengths have been envisioned: 0.8, 1.06 and 1.55 µm.

To make a telecommunications transmission, it is necessary to have the optical and electronic equipment. The optical components were developed for fiber-based terrestrial networks at 1.55 µm in the 90s with the Erbium-Doped Fiber Amplifier (EDFA) . The limits of electronics are day by day pushed back with smaller electronic circuits, dedicated and operating at frequencies far superior to the ten Gbps. 

Optical receiver -direct detection

Two detection means can be envisaged:

• Direct detection, which is only sensitive to the intensity of the received field.

• Coherent detection, which detects the phase and the intensity of the received signal, which interferes with a local oscillator.

Coherent detection has the advantage of being more sensitive than direct detection by 3 dB in the signal-to-noise ratio and therefore of having a lower photon / bit ratio. However, since the invention of EDFA, the gap between the two solutions has narrowed as can be seen in Table 1.2. Moreover, coherent detection is more complex and therefore costly to implement, as it needs a local oscillator controlled by a phase locked loop. We will consider only a direct detection receiver in this thesis. Due to the choice of the direct detection, only a modulation of the amplitude field is possible. We will consider a Non Return to Zero On-Off-Keying (NRZ OOK) modulation, which is robust and simple, presented in Figure 1.5.

Detection architecture

The architecture used to detect an OOK signal is presented in Figure 1.6. In this Figure, P R is the received optical power. G is the gain of the EDFA and N F is its noise factor. B O and B E are, respectively, the bandwidths of the optical and electrical filters.

is the responsiveness of the photodiode (in ampere per watt) and I E is the electrical current after detection.

After propagation through the atmosphere, the optical signal P R is received by the EDFA, which will amplify it. It will then be detected by a PIN photodiode. The EDFA page 13 Chapter 1. Optical communications for high throughput satellite feeder links will be a source of significant noise due to the spontaneous emission that takes place within it. Indeed, this spontaneous emission will be amplified in the same way as the signal received (this is called the amplified spontaneous emission or ASE ). To limit the impact of noise during detection, an optical bandpass filter is added between the EDFA and the photodiode as well as an electrical lowpass filter after the photodiode. This system leads to noise variance of the current fluctuations σ 2 [17]:

σ 2 = σ 2 shot + σ 2 S×ASE + σ 2 ASE×ASE + σ 2 T , (1.1) 
where σ 2 T is the variance resulting from the thermal noise and σ 2 S is the variance from the shot noise. The shot noise has a component resulting from the detected signal and one component resulting from the ASE of the EDFA. It is defined:

σ 2 shot = 2q (GP R + P ASE ) B E = σ 2 shot,signal + σ 2 shot,ASE , (1.2) 
where q is the electric charge. σ 2 S×ASE and σ 2 ASE×ASE are the variances resulting of the beating noise of the signal with the spontaneous emission and, respectively, of the spontaneous emission with itself (cf. Appendix A). They are equal to [17]:

σ 2 S×ASE = 4 2 GP R S ASE B E , (1.3) 
σ 2 ASE×ASE = 2 2 S 2 ASE B E (2B O -B E ) , (1.4) 
where S ASE = n sp (G -1).h.ν c is the spectrum of the amplified spontaneous emission and n sp is the spontaneous emission factor. Modeling the detector noise sources will allow to identify the minimum required power to achieve the targeted capacity.

Link Budget

The link budget (or flux budget) is a tool that gives an indication of the overall performance of the link. It estimates the received optical power by the satellite P R as a function of the page 14

1.3 Link Budget emitted optical power P E , taking into account the losses in the propagation channel:

P R = G R T R X L margin L clouds L ab L OT HERS L F S L T U RB T T X G E P E . (1.5) 
The gains G R and G E are usually used to model the link in the case of RF communications. They are dimensionless quantities. The initial assumption is that the transmitters (and receivers) are isotropic and the gains permit to take into account the directivity of the transmission (and reception). They can easily be adapted to model the propagation of a Gaussian beam and are determined from [18]. The gain at emission G E is:

G E (ξ, D T X ) = πD T X λ 2 × 2α 2 0 1 0 e -α 2 0 J 0 kD T X 2 sin (ξ) u 1 2 du 2 , (1.6) 
where D T X is the diameter of the transmitting telescope, λ is the wavelength, α 0 = D T X 2w 0

(with w 0 the waist size of the beam at emission) and ξ is an angular offset due to the ground station. We will not consider any obscuration, because covering the Gaussian beam at its peak would reduce the transmitted power excessively. The gain on reception without obscuration is equal to [19]:

G R = πD R X λ 2 , (1.7) 
where D R X is the receiving telescope diameter. It assumes that the beam arriving on the satellite's telescope is a plane wave. Its expression is simpler than G E because we assume that the satellite terminal perfectly points towards the ground. In the case of an unperturbed propagation, the received power is given by:

P R = G R L F S G E P E (1.8)
where

L F S = λ 4πL 2
, in which L is the propagation distance, are the free-space loss that take into account the power attenuation due to diffraction during the propagation. L OT HERS corresponds to other losses on the link budget: losses due to transmission through emission and reception optics, taking into account fiber injection losses, (T T X and T R X ), atmospheric absorption (L ab ) and transmission through thin clouds (L clouds ). We also take a margin L margin . As the gains G E and G R , they are dimensionless quantities. The contributors on the link budget are summarized in Table 1.3.

NRZ-OOK: power detection threshold -P R

Because of the detection architecture's inherent current noises and the small envisioned received power at satellite level (magnitude of a few nW), errors will occur in the detection, which means that some of the transmitted signal will be lost.

When the sent bit is 1, the resulting current variance is 1 : and when the sent bit is 0, the resulting current variance becomes:

σ 2 1 = σ 2 shot + σ 2 S×ASE + σ 2 ASE×ASE , (1.9 
σ 2 0 = σ 2 shot,ASE + σ . ASE×ASE (1.10)
Assuming the current fluctuations are Gaussian, Figure 1.7 presents bit errors sources. The probability of a no-detected bit is:

P (0|1) = 1 σ 1 √ 2π I D -∞ exp - (I -I 1 ) 2 2σ 2 1 dI = 1 2 erf c I 1 -I D σ 1 √ 2 , (1.11) 
and the probability of a false alarm is:

P (1|0) = 1 σ 0 √ 2π ∞ I D exp - (I -I 0 ) 2 2σ 2 0 dI = 1 2 erf c I D -I 0 σ 0 √ 2 , (1.12) 
where I 0 is the mean intensity after detection when a 0 is sent, I 1 is the mean intensity after detection when a 1 is sent and I D is the detection threshold for the intensity. I 0 , I 1 and I D are all given in Amperes. The complementary error function is defined:

erf c(x) = 2 √ π ∞ x exp -y 2 dy. (1.13)
The performance criteria that we will use is the Bit Error Rate (BER), which is the ratio between the incorrect detected bits (errors) on the number of transmitted bits: BER = N umber of errors N umber of transmitted bits .

(1.14) 1 We have neglected the thermal noise.
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Link Budget

It is equal to: BER = p(0)P (1|0) + p(1)P (0|1), (1.15) where p(0) and p(1) are respectively the probabilities to obtain a bit equal to 0 or 1. As p(0) = p(1) = 1/2, the BER is equal to:

BER = 1 2 [P (0|1) + P (1|0)] = 1 4 erf c I 1 -I D σ 1 √ 2 + erf c I D -I 0 σ 0 √ 2 . (1.16)
Usually, I D is chosen so as to minimize the BER ( d(BER) dI D = 0). It can be shown that a minimum is obtained for [17]:

I D = σ 0 I 1 + σ 1 I 0 σ 0 + σ 1 .
(1.17)

Using this detection threshold leads to the BER:

BER = 1 2 erf c Q √ 2 ≈ exp -Q 2 2 Q √ 2π , (1.18) 
with:

Q = I 1 -I 0 σ 1 + σ 0 (1.19)
To simplify, we will assume that the currents i S×ASE and i ASE×ASE (resulting from the spontaneous emission beating with the signal and with itself) are negligible compared to the signal current i sig . This means that I 1 will correspond to the current of the signal:

I 1 = i sig = GP R , (1.20) 
where P R = |E R | 2 corresponds to the power of the signal when the bit sent is 1. And I 0 will be negligible compared to I 1 .

Assuming that the gain G of the amplifier is high and that the optical filter is chosen so as to limit the ASE × ASE beat noise, then only the beat noise S × ASE remains and dominates the other noises (shot noise in particular). As a result, the electrical signal-tonoise ratio is [17]:

SN R = I 2 σ 2 = ( .G.P R ) 2 4. 2 .G.P R .S ASE .B E = G.P R 4.S ASE .B E ≈ P R 4.n sp .h.ν c .B E = Q 2 , (1.21)
where h is the Planck constant and ν c is the carrier frequency (ν c = 193.1 × 10 12 Hz for λ = 1.55 µm).

Numerical application

The objective we set on the BER is to have BER = 10 -3 before using the forward error correcting codes, which leads to:

Q > 3.0902. (1.22)
Assuming the amplifier is ideal, n sp = 1. The targeted data throughput is D throughput = 10×10 9 bits/s (the targeted capacity of 1Tbps from a multiplexing at different wavelengths) and the bandwidth of the electric filter is B E = 0. Interleaving and error correcting codes The error correction codes enable to go from BER = 10 -3 to BER = 10 -9 . We will not describe precisely the working of error correction codes, as it is not the objective of this thesis. The idea is that bits of information are grouped into packages and that if one of the bits in the package is detected as an error, the overall code is still capable of extracting the right information from the package.

Atmospheric turbulence is a random phenomenon and thus implies that detected irradiance fluctuations are random as well. There can be times during which, despite our best efforts, the detected power becomes lower than the necessary threshold power P R . These moments are called fades. During these moments, the BER of the uncorrected signal becomes higher than 10 -3 , which means that the targeted performance can not be met. It is at these times that the interleaving will come into play to distribute the losses on all the data and allow a better performance of the error correcting codes. An example is given in Figure 1.8, in which the error correcting codes are assumed to be able to recover the information of 1 bit lost within a 4 bit package. We observe that, without interleaving, the error correcting codes will not be able to recover the 3 bits contained in the package under the fade whereas with interleaving, forward error correcting codes are able to recover the each bit of data lost in the 3 packages.

In this thesis, we will assume that if the total of the fade durations (during which the detected power falls below the required power threshold) represent less than 5% of the time, the interleaving coupled with the error correcting codes will mitigate the losses and make it possible to obtain a BER equal to 10 -9 . To estimate the performance of interleaving, there is a need for temporal simulations which will permit to estimation fade durations. Indeed, longer fade durations lead to bigger buffers used for interleaving and therefore to additional complexity.

L T U RB estimation The loss term L T U RB which is integrated in the link budget is:

L T U RB = 10 log 10 I R I 0 (1.24)
where I 0 is the irradiance (in W/m 2 ) in the satellite plane in a no turbulence case:

P 0 = I 0 × π D R X 2 2 = G R L OT HERS G E P E , (1.25) 
And the irradiance threshold I R is defined by estimating the probability P (I > I R ) = 0.95, where I is the instantaneous detected irradiance. page 18
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Figure 1.8: Presentation of the benefits of interleaving. In this example, the signal sent is comprised of packets of 4 bits. Without interleaving, 3 of the 4 bits of a packet are lost and the error correcting codes will not be able to recover the information. With interleaving, 3 packets have lost only one bit and the error correcting codes will be able to recover the information.

Conclusion

In this first chapter, we have started by presenting the context and the recent demonstrations of free-space optical telecommunications satellites. This technology seems to be very promising but limitations regarding clouds and atmospheric turbulence have to be dealt with. In particular, there has yet to have demonstrations of optical uplinks using adaptive optics. The impact of atmospheric turbulence and its mitigation on a ground-to-space link will be the subject of this thesis. We have presented in the second part of this chapter a performance budget taking into account all the assumptions on the emitted power, modulation, wavelength, propagation channel losses, etc. Presenting the state of the art in direct detection architectures and the BER as our performance criteria, we have identified the necessary optical power in order achieve the targeted capacity (10 Gbps per channel). The performance budget is summarized in Table 1.3.

The impact of the losses due to turbulence on the link budget are characterized by the L T U RB parameter. Moreover, using irradiance fluctuations time series will permit to test error correcting codes and interleaving.

There is now a need for accurate models describing irradiance fluctuations resulting from atmospheric turbulence. This will be the aim of the following chapter. Chapter 2

Optical Beam Propagation in Turbulent Media

In the previous chapter, we described the the overall link and targeted performance. We also arrived at the conclusion that a description of the irradiance fluctuations resulting from atmospheric turbulence was necessary. In this chapter, the objective is to introduce the necessary mathematical formalism and results on the irradiance fluctuations from propagation of optical beams through turbulent media.

We will first start by describing atmospheric turbulence. Then, we will present the equations of an electromagnetic beam propagation through turbulent media, and results in the case of "weak" perturbations. We will focus on the specific case of a Gaussian beam propagation from the ground to a satellite and present results from the literature describing the irradiance in different atmospheric regimes. We will also use this chapter to present the Zernike polynomials as a way to describe the phase perturbations of the beam. Finally, we will present the principle of wave optics using Fresnel propagation. 

Atmospheric turbulence

Physical phenomenon

Earth's atmosphere is a mixture of gas subject to solar radiation as well as radiative transfer from the ground. The shearing due to the wind produces turbulent air movements. A flow is turbulent when it becomes chaotic, particularly when eddies appear. This situation leads to the swirling of the physical quantities that characterize the fluid, such as temperature, speed, refractive index and so forth. The complexity of this phenomena has led scientists to adopt a phenomenological approach of turbulence and try to describe it statistically.

The first theoretical works of importance related to the statistic description of atmospheric turbulence were those of Kolmogorov [20]. He developed a theory in which he predicted that some initial energy was injected within large eddies and that this kinetic energy was transmitted to smaller eddies until the energy is dissipated by friction. It is called the theory of energy cascades. One way to understand this theory is through 

Outer scale, inner scale and inertial range

In Figure 2.1, we see a range appearing between the spatial frequencies 1/L 0 and 1/l 0 : this is the inertial range. It defines the range of spatial frequencies in which the atmospheric turbulence can be statistically modeled. The lengths l 0 and L 0 associated to these frequencies are respectively called the inner and outer scales.

The inner scale l 0 ( r, t), where r is a position in a tridimensional space and t is time, is an estimation of the smallest distances over which fluctuations in the atmosphere are correlated. Below this length, we consider that the kinetic energy is dissipated in heat because of friction. The length l 0 can go from a few millimeters near the ground to a few centimeters at the tropopause (atmospheric layer at a 10 km altitude).

The outer scale L 0 ( r, t) on the other hand is an estimation of the largest distances over which fluctuations in the atmosphere are correlated. It results from macroscopic phenomena such as the movement of the atmospheric layers, wind or meteorological perturbations. When working in the optical range, the outer scale is not precisely known. It may range anywhere from 1 to 100 meters, with great spatial and temporal variability.

N.B.: In literature, it is also possible to find scales defined as L 0 = L 0 /2π which considers that the scales are 2π times smaller to describe the same effects. It is therefore important to verify the definition of the scale to prevent differences due to the 2π factor.

Structure function and spectral density of the fluctuations of the refractive index

In Optics and to characterize the atmospheric turbulence, we study the fluctuations of the refractive index. Within the inertial range, we will study the correlation between the refractive indexes n( r) and n( r + ρ), where ρ is a distance in a tridimensional space and l 0 < | ρ| < L 0 . We consider that the turbulent regime is both temporally and spatially stationary. Kolmogorov and Obukhov have shown that the variance of the difference in refractive indexes between two points of space, also called structure function, is given by [20,21]:

D n ( ρ) = |n( r) -n( r + ρ)| 2 = C 2 n ρ 2 3 , (2.1) 
where . represents the statistical average over time. D n ( ρ) is the refractive index structure function. C 2 n , the index-of-refraction structure parameter, represents a measure of the magnitude of the fluctuations in the refractive index and is expressed in m -2 3 . Another way to statistically characterize the refractive index fluctuations is to consider the power spectral density. It has been shown that the spectral density of the refractive index fluctuations may be expressed as [22,21]:

W n ( f ) = 0.033(2π) -2 3 C 2 n f -11 3 . (2.
2)

The spectrum defined in Equation (2.2) is known as the Kolmogorov spectrum. This expression is only valid within the inertial range. In order to take into account these parameters, the spectrum was modified into the modified von Kármán spectrum presented in Equation (2.3) [23]: Applying the Wiener-Kinchine theorem, the covariance function B n of a n quantity is:

W n ( f ) = 0.033(2π) -2 3 C 2 n (f 2 + 1 L 2 0 ) -11 6 e - 2πl 0 5.91f 2 , 0 ≤ f < ∞. ( 2 
B n ( ρ) = n ( r) n ( r + ρ) = d f W n f e -2iπ f . ρ . (2.4)
Note that B n (0) is infinite when considering the Kolmogorov spectrum. The structure function defined in Equation (2.1) can then be rewritten as dependent on the covariance function:

D n ( ρ) = 2 [B n (0) -B n ( ρ)] (2.5)

C 2 n vertical profiles

Throughout this thesis, we will use the Hufnagel-Valley profile as vertical C 2 n profile [24]. It is defined by: 

C 2 n (h) = 0.00594 v 27 2 (10 -5 h)

Optical Propagation in Turbulent Media

Propagation equations of an electromagnetic wave

While propagating through a turbulent medium, an electromagnetic wave at a visible or infrared wavelength will fluctuate in amplitude and phase because of the refractive index variations. The description of these fluctuations relies on the analytic resolution of the Helmholtz propagation equation, which can't be analytically resolved unless the weak atmospheric turbulence assumption is made.

Helmholtz equation

The propagation of an electromagnetic beam in a random dielectric medium is governed by Maxwell's laws. Considering the propagation of a narrow-band, in which the signal frequency is significantly higher than the frequency of the refractive index fluctuations, the electric field E ( r) obeys the Helmholtz propagation equation [23]:

∇ 2 E ( r) + k 2 0 n 2 ( r) E ( r) + 2∇ E( r).∇ (ln (n( r))) = 0, (2.7) 
where k 0 = 2π/λ is the wave number of the beam propagating through vacuum and

∇ 2 = ∆ = ∂ ∂x 2 + ∂ ∂y 2 + ∂ ∂z 2 denotes the Laplacian.
It can be shown that the last term in Equation (2.7), which represents coupling produced between the different polarization components of the electric field, is negligible if λ is lower than the inner scale l 0 , which is the case for a wavelength of 1.55 µm compared to the typical inner scale size of a millimiter [25]. Equation (2.7) can therefore be simplified:

∇ 2 E( r) + k 2 0 n 2 ( r) E ( r) = 0 (2.8)

Paraxial approximation

We consider that the beam is propagating along the e z axis. The amplitude of the scalar field E( r) can be written 1 :

E( r) = Ψ( r)e ikz , (2.9) 
where Ψ( r) is the complex amplitude of the wave. By injecting Equation (2.9) in Equation (2.8), we obtain an equation on Ψ:

∇ 2 Ψ( r) + 2i n k 0 ∂Ψ( r) ∂z + k 0 n 2 -n 2 Ψ( r) = 0. (2.10)
According to the paraxial approximation, the scale of the spatial fluctuations of Ψ is small compared to the wavelength. We can therefore consider:

∂ 2 Ψ ∂z 2 k ∂Ψ ∂z . (2.11)
We can also approximate the refractive index. Indeed, the refractive index can be written n = n + N , where N are the fluctuations of the refractive index around the mean value. 1 We will not consider a spherical wave here.
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The square of the refractive index while considering that N 1 gives, according to Taylor: n 2 ≈ n 2 + 2 n N . Then Equation (2.10) becomes the paraxial equation:

∂ 2 Ψ ( r) ∂x 2 + ∂ 2 Ψ ( r) ∂y 2 + 2i n k 0 ∂Ψ ( r) ∂z + 2k 0 n N Ψ ( r) = 0. (2.
12)

The solution of this equation in a homogeneous media (N = 0) is given:

Ψ (x, y, z + d) = Ψ (x, y, z) * e ikd iλd e ik x 2 +y 2 2d = Ψ (x, y, z) * F d (x, y) .
(2.13) knowing the initial field of the beam Ψ ((x, y, z). This solution will be particularly important later (in Section 2.5.1)when we explain the use of phase screens to simulate the propagation of an optical beam within a turbulent media.

F d (x,

Spatial beam coherence

At this point in our resolution of the propagation, we will take a small pause and focus on the notion of spatial coherence of a propagated in a turbulent media. The Fried parameter r 0 is defined from the wave structure function, in the case of a Kolmogorov spectrum [26,27]:

D φ,z ( r) = 2.91k 2 0 C 2 n (z)dzr 5 3 , (2.14) 
and rewritten:

D φ,z ( r) = 6.88 r r 0 5 3 , (2.15) 
with

r 0 = 0, 423k 2 0 P ath dzC 2 n (z) - 3 5 
.

(2.16)

The spatial coherence function B Ψ of the complex field Ψ quantifies the loss in spatial coherence and is defined by:

B Ψ = Ψ ( r) Ψ * ( r + ρ) (2.17)
Yura has shown that [28]:

B Ψ = e -ρ ρ 0 5 3 , (2.18) 
where ρ = |ρ| and:

ρ 0 = 1.46k 2 0 P ath dzC 2 n (z) -3 5 (2.19)
ρ 0 is called the coherence length of the field. It is the length between two points in the field for which the spatial correlation is equal to 1/e. Both r 0 and ρ 0 are linked by the relation.

r 0 ≈ 2, 11ρ 0 (2.20) page 26 
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The Rytov approximation: an analytical solution to Helmholtz equation

For the analytic resolution of the Helmholtz propagation equation, simplifying assumptions are necessary. The weak atmospheric turbulence assumption allows for a perturbative type resolution which has been developed using two different methods: the Rytov approximation [23] and the Born approximation. The Rytov approximation considers that the perturbation is multiplicative to the unperturbed field while the Born approximation [START_REF] Sf | The classical theory of wave propagation in a turbulent medium[END_REF] considers it as additive. In scientific literature, the Rytov approximation is the most commonly used one as it gives closer results to the experimental data and is therefore the one we will explain hereafter.

The complex amplitude can be written Ψ = exp(ψ). When substituting this field in the propagation Equation (2.8), one obtains:

∇ 2 ψ + (∇ψ) 2 + k 2 0 n 2 = 0. (2.21)
ψ can be developed

ψ = ψ 0 + ψ 1 + ψ 2 + ..., (2.22) 
where Ψ 0 ( r) = e ψ 0 ( r) is a complex amplitude, solution of Equation (2.10) in an homogenous medium with refractive index n . In the Rytov method, only the first order is taken into account and the higher orders are neglected, which means that we consider:

ψ = ψ 0 + ψ 1 .
To simplify, we consider n ≈ 1 + N , i.e. the mean value of n is equal to 1. At first order,

n 2 ≈ 1 + 2N .
The unperturbed field is solution of the propagation in vacuum:

∇ 2 (ψ 0 ) + (∇ (ψ 0 )) 2 + k 2 0 n 2 = 0. (2.23) Equation (2.21) leads to ∇ 2 (ψ 1 ) + ∇(ψ 1 ) (∇(ψ 1 ) + 2∇(ψ 0 )) + 2N k 2 0 = 0. (2.24)
In the weak turbulence assumption, the Rytov approximation assumes |∇ψ 1 | |∇ψ 0 |. Equation (2.24) becomes:

∇ 2 (ψ 1 ) + 2∇(ψ 1 )∇(ψ 0 ) + 2N k 2 0 = 0, (2.25) 
which has a solution [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF]:

ψ 1 ( r) = k 2 2πΨ 0 ( r) d r N r Ψ 0 ( r ) e ik| r-r | r -r , (2.26) 
where Ψ 0 ( r) = exp(ψ 0 ).

Statistical properties of the irradiance of the propagated beam in the Rytov regime

ψ 1 can be decomposed ψ 1 = χ + iφ, where χ is the log-amplitude and φ is the phase of the field ψ 1 .
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Empirically, it has been shown that the Rytov approximation was valid as long as the log-amplitude variance σ 2 χ was inferior to 0.3 [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF]. Indeed, with the Rytov approximation, the variance of the log-amplitude, σ 2 χ , or of the irradiance, σ 2 I , are supposed to increase without limits but experimentation shows a saturation [START_REF] Sf Clifford | Saturation of optical scintillation by strong turbulence[END_REF].

In the case of weak atmospheric turbulence, χ (and φ) is the sum of random independent Gaussian variables. Therefore, the probability density of χ is a centered Gaussian function. The irradiance I is equal to : I = ΨΨ * = I 0 e 2χ . As χ is a normally distributed random variable, the probability density of I is log-normal:

P (I) = 1 √ 2πIσ χ exp - (ln(I) -χ ) 2 2σ 2 χ , I > 0.
(2.27)

A very useful variable is the scintillation index, or normalized variance of the intensity. It is linked to the log-amplitude variance [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF]:

σ 2 I = I 2 I 2 -1 = exp 4σ 2 χ -1 (2.28)
In weak turbulence, considering that σ 2 χ is small enough, it can be simplified:

σ 2 I = 4σ 2 χ (2.29)

Power spectral densities in weak perturbations for plane wave

The power spectral densities of χ and φ in weak perturbations can be deduced from Equation (2.26):

W χ f = k 2 0 L 0 W n f , z sin 2 πzλf 2 dz (2.30) W φ f = k 2 0 L 0 W n f , z cos 2 πzλf 2 dz (2.31)
Where L is the propagation distance and W n f , z is the index fluctuations spectrum at the distance z given in Equation (2.3). We have presented the results for a plane wave but results can also be obtained in spherical and even Gaussian waves [START_REF] Richard | Electromagnetic wave propagation in turbulence: evaluation and application of Mellin transforms[END_REF].

Modal analysis of turbulent phase

Within the Rytov approximation, turbulence effects on phase perturbation can be described using a modal description, such as Zernike polynomials, when experienced on a circular aperture.

Zernike polynomials

The Zernike polynomials are a sequence of polynomials that are orthonormal on the unit disk. They are described in Appendix B, according to Noll's definition [START_REF] Robert | Zernike polynomials and atmospheric turbulence[END_REF]. page 28
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Statistical properties

The turbulence phase φ( r) can be expressed with the Zernike polynomials:

φ (r) = ∞ (i=1) a i Z i (r) .
(2.32)

Noll provides the results of the variances for the coefficients of each Zernike coefficients, for a Kolmogorov spectrum. The total phase variance (without piston) is equal to

σ 2 φ = ∞ i=2 a 2 i = 1.03 D r 0 5 3 . (2.33)
Because, we prefer using a Von Karman spectrum in order to take into account the effects of the outer scale L 0 , we will use Chassat's results presented in Appendix C in Equations (C.18), (C. 19) and (C.20).

Temporal properties

Conan has shown that for a plane wave experienced on a circular aperture, the temporal power spectral densities of the Zernike coefficient a i are given by [START_REF] Conan | Wave-front temporal spectra in high-resolution imaging through turbulence[END_REF]:

W a i (ν) = L 0 ∞ -∞ 1 V (z) M a i ν V (z) , f y 2 W φ ν V (z) , f y dzdf y , (2.34) 
where W φ is the phase spatial power spectrum and M (a i )

2

, the Fourier transform of the Zernike polynomial:

Ma i f = √ n + 1 2 |J n+1 (πd 0 f )| πd 0 f ×    √ 2 |cos (mθ)| f or m = 0 & j even √ 2 |sin (mθ)| f or m = 0 & j odd 1 f or m = 0 (2.35)

Atmospheric turbulence effects on Gaussian beams

Gaussian beam properties

The fundamental mode Gaussian laser beam, equivalent to a T EM 00 electromagnetic wave, propagating in vacuum along the z direction is:

E 0 (r, z) = w 0 w (z) exp - ρ 2 w (z) 2 exp - ik 0 ρ 2 2R (z) × exp ikz -i tan -1 z Z R (2.36) Z R = πw 2 0
λ is called the Rayleigh distance, w(z) is the radius of the beam at 1/e in amplitude:

w (z) = w 2 0 1 + z -z 0 Z R 2 .
(2.37) page 29
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R (z) = (z -z 0 ) 1 + Z R z -z 0 2 .
(2.38) w 0 , its minimal radius size is called the waist size. At z = z 0 , the wavefront is plane. w(Z R ) = √ 2w 0 for z 0 = 0. We will consider that the beam is collimated, i.e. close to a plane wave, for z between z 0 and Z R . For very long propagation distances (z Z R ), the approximation w(z) θ 0 z with the angle θ 0 = λ πw 0 is used. This is illustrated in Figure 2.4.

Figure 2.3 shows the convention used in this document. This convention also corresponds to a reduction by a factor of 1/e from their maximum values of the amplitude distributions (which leads to a value of 1/e 2 for irradiance distributions). 

Irradiance fluctuations and scintillation

Statistical properties

Atmospheric turbulence introduces variations of the refractive index along the propagation path and these variations have a significant impact on the detected irradiance. We will focus particularly on the effects observed on a ground-to-satellite path. Depending on the 2 Another convention, for example Fante [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF], defines the radius at 1/e of the irradiance distribution. The radius size value using this convention is smaller than the radius size value in the case defined above by a factor √ 2 in amplitude and 2 in intensity. It is therefore key to verify which convention is being used when studying beam radii. size of the turbulent eddies and on the beam radius, the effects on the beam will differ. Two major effects can be observed.

One of the effects is called beam spreading. It corresponds to a widening of the beam size larger than natural diffraction due to turbulent eddies being smaller than the beam. It doesn't have an effect on the beam's direction. However, it corresponds to an energy spreading. The diffraction due to the smaller eddies also leads to interference and therefore irradiance fluctuations and scintillation.

The other effect consists in the beam deviating from its original direction. This effect is called "Beam Wander". It results from turbulent eddies larger than the beam radius, which will refract the beam, thus deviating it. This can add important irradiance variations on the optical link and increases the BER. Beam wander becomes significant for very long propagation paths, as the one between the ground and a geostationary satellite. This phenomenon is illustrated in Figure 2. 5 In this manuscript, the term "scintillation" will be used to describe all irradiance fluctuations including those resulting from beam wander.

Following Fante, we introduce 3 variables to describe these effects [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF]. The first one is the short-term beam radius r s . It corresponds to the radius of the broadened laser spot (due to the small eddies) observed with a very short exposure. The beam is deflected by a distance r c . It is a measure of the beam displacement at satellite altitude due to beam wander effects (from the large eddies). The last variable is the long-term beam radius r L . It is a measure of the beam radius with an exposure much longer than the time intervals ∆t = D/|V ⊥ | between two deflections of the beam, where D is the beam diameter and V ⊥ is the transverse flow velocity of the turbulent eddies. Figure 2.6 illustrates the physical meaning of these three parameters. Fante has shown that these variables are linked by the formula [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF]: page 32

r 2 L = r 2 s + r 2 c . ( 2 

Atmospheric turbulence effects on Gaussian beams

Fante has given analytical expressions for the mean square of these variables. r 2 L and r 2 s are defined as the radii at which the long and short-term averaged intensity distributions are reduced by a factor of e -2 . We will first present the results for r 2 L3 :

r 2 L = Lλ πw 0 2 + w 2 0 + 8.8 * Lλ πr 0 2 .
(2.40)

The first two terms represent the beam propagating through vacuum. The term on the right takes into account all of the turbulence and is the term describing both the beam wander and the beam spreading.

The beam wander is given by:

r 2 c = 18.2L 2 k 2 0 r 5 3 0 w 1 3 0 (2.41)
The short-term beam spread r 2 s is given by subtracting r 2 c from r 2 L . The long-term beam divergence takes into account beam wander whereas the short-term beam divergence doesn't. Depending on the size of the waist at the emission, the effects of atmospheric turbulence on the beam will differ and lead to three distinct irradiance fluctuations regimes. This is illustrated in Figure 2.7 for a ground to satellite propagation. When the waist size at emission is much lower than the coherence diameter described by the Fried parameter r 0 , the effects of atmospheric turbulence are limited. Usually, the Rayleigh distance is small and the beam diffracts rapidly. At satellite level, the beam size is therefore very large, which means that beam wander is negligible compared to the size of the beam. In this case, the irradiance fluctuations can usually be modeled by using the Rytov approximation. Using a very diffracted beam means that much of the power is lost at satellite level. Due to the limited powers of the envisioned laser sources, there is therefore a need to focus the energy on the satellite by increasing the waist size at emission.

When increasing the waist size at emission, the beam divergence is reduced and beam pointing becomes a key issue when w 0 ≈ r 0 , i.e. the major impact of atmospheric turbulence on the beam becomes beam wander. This regime is particularly interesting because Chapter 2. Optical Beam Propagation in Turbulent Media beam wander may be compensated using a tilt tracking mirror, which immediately leads to important mitigation of irradiance fluctuations. Moreover, in this regime, the beam maintains its coherence and the impact of higher orders is negligible compared to beam wander.

When the waist size at emission becomes significantly larger than r 0 , we see in Equation (2.40) that the beam spread is primarily due to the Fried parameter r 0 . Moreover, Equation (2.41) shows that the larger the waist size, the lower the impact of beam wander. In this regime, beam coherence is lost and beam breakup occurs. The beam is consists of several hot "spots" and the center of the beam is difficult to position. Beam wander does not have any significance in this case. Mitigation of atmospheric effects becomes more difficult.

Weak perturbation casew 0 r 0

The first studies that dealt with scintillation in Gaussian laser beams are those of Schmeltzer [START_REF] Robert | Means, variances, and covariances for laser beam propagation through a random medium[END_REF] and Ishimaru [START_REF] Ishimaru | Fluctuations of a beam wave propagating through a locally homogeneous medium[END_REF]. In this thesis, we will use the expressions derived later by Andrews [START_REF] Andrews | Optical scintillations and fade statistics for a satellite-communication system[END_REF], presented in Appendix D.

The scintillation index for a laser beam at a certain distance L may be divided into two terms: the first is the on axis scintillation, measured on the optical axis, and the second takes into account the dependence of the scintillation to the distance from the optical axis. This gives4 :

σ 2 I (r, L) = σ 2 I (0, L) + σ 2 I,r (r, L) . (2.42) 
We have seen that in the Rytov approximation, the irradiance fluctuations due to the scintillation phenomenon follows a log-normal probability density function, given in Equation (2.27). The log-amplitude is therefore a normal variable, and these relations are approximately satisfied:

χ = -σ 2 χ (2.43) σ 2 χ = 1 4 ln 1 + σ 2 I (0, L) . (2.44) 
We can therefore obtain an irradiance PDF in the weak perturbation case.

Beam wander regimew 0 ≈ r 0

When the beam size at emission increases, discrepancies appear between the scintillation theory developed from the Rytov perturbation method and numerical wave optics simulations. For these beams, the scintillation is dominated by turbulence-induced beam wander at the target. Many studies argue that the beam wander phenomenon has to be added to the Rytov phenomenon [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF][START_REF] Gary | Gaussian beam scintillation on ground-tospace paths: the importance of beam wander[END_REF]. Considering the log-amplitude fluctuations I S and beam wander I BW , the normalized on axis instantaneous irradiance is given by:

I (0, 0, L) = I S × I BW .
(2.45) page 34
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There are two approaches in the literature describing how to take into account the scintillation with beam wander. The first considers that only the on-axis scintillation σ 2 I (0, L) should be taken into account [START_REF] Larry | Strehl ratio and scintillation theory for uplink Gaussianbeam waves: beam wander effects[END_REF]: .46) where (δx, δy) are the position of the centroid of the beam resulting from beam wander,

I (0, 0, L) = exp [2χ (0, 0)] exp -2 δx 2 + δy 2 w 2 ST (L) . ( 2 
w 2 ST (L) is the short term beam waist w 2 ST (L) = r 2 s .
The decorrelation between I S and I BW leads to the following scintillation index:

σ 2 I = σ 2 I,S (0, 0, L) + σ 2 I,BW (L) , (2.47) 
with σ 2 I,S is given from Equation (D.1), and σ 2 I,BW (L) is equal to [START_REF] Paul | Power Reduction and Fluctuations Caused by Narrow Laser Beam Motion in the Far Field[END_REF]:

σ 2 I,BW (L) = 4α 2 1 + 4α , (2.48) 
where α = r 2 c /w 2 ST (L). The probability density function of the irradiance fluctuations from beam wander is a modified beta distribution [START_REF] Kiasaleh | On the probability density function of signal intensity in freespace optical communications systems impaired by pointing jitter and turbulence[END_REF]3]:

P I Bw (I) = 1 2α (I) 1 2α -1 . (2.49) 
Kiasaleh proposes analytical expressions of both the PDF and CDF of the irradiance I taking into account both scintillation and beam wander [START_REF] Kiasaleh | On the probability density function of signal intensity in freespace optical communications systems impaired by pointing jitter and turbulence[END_REF].

The second method, proposed by Dios, considers that the log-amplitude scintillation is determined as a function of beam wander, as it shifts the Gaussian beam in the satellite plane [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF]. The normalized on-axis instantaneous irradiance is given by:

I (0, 0, L) = exp [2χ (δx, δy)] exp -2 δx 2 + δy 2 w 2 ST (L)
.

(2.50)

Compared to the case without beam wander, this means that χ now has to be estimated at (δx, δy). This means that Equation (2.44) becomes:

σ 2 χ = 1 4 ln 1 + σ 2 I,Gb (δx, δy, L) , (2.51) 
in which σ 2 I,Gb (δx, δy, L) is given by:

σ 2 I,Gb = σ 2 I (0, L) + σ 2 I,r (δx, δy, L) I (δx, δy, L) 2 , (2.52) 
where

I (δx, δy, L) 2 = exp -2 δx 2 +δy 2 w 2 LT (L)
. This means that a log-amplitude value is obtained as a function of the centroid displacement (δx, δy).

In the regime where beam wander is predominant, the results of the Rytov approximation are sometimes neglected because of their poor fit to experimental data. page 35
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The Low-Order of Turbulence solution Another approach is to consider that the irradiance fluctuations result from beam wander as well as beam deformations, while neglecting scintillation from the Rytov approximation. Baker proposes to describe the irradiance fluctuations by the deformations of a Gaussian beam propagating through the atmosphere only using the first and second order Zernike polynomials: tip/tilt, defocus and astigmatism [3]. This model is called the Low-Order of Turbulence model. In the case of a ground to satellite propagation, the turbulence is in the near field while the satellite is in the far field. According to Baker, this means that the turbulence can be integrated in a single phase screen placed at the transmitter prior to propagation. The phase screen at the transmitter has the phase value:

φ LOT (x, y) = k 0 θ x x + θ y y + ∆κ 1 2 (x 2 + y 2 ) 1 2 w 2 0 + c 5 1 2 (x 2 -y 2 ) + c 6 xy , (2.53) 
where θ {x,y} corresponds to the angular tip/tilt in radians. ∆κ corresponds to the defocus curvature and c {5,6} to the astigmatism curvature (given in m -1 ). Baker has shown that the resulting normalized irradiance of a Gaussian beam propagating through atmospheric turbulence up to a satellite at a distance L with the phase screen φ LOT placed at the transmitter is expressed [3]:

I (x, y, L) = 2 π 1 w x w y × exp - 2 w 2 x [(x -δ x ) cos (ω) + (y -δ y ) sin (ω)] 2 × exp - 2 w 2 y [(x -δ x ) sin (ω) -(y -δ y ) cos (ω)] 2 , (2.54)
where the beam wander, partial beam radii, and astigmatism parameters in Equation (2.54) are given by, respectively:

δ {x,y} = Lθ {x,y} (2.55) 
w {x,y} = w 0 1 + L ∆κ ± c 2 5 + c 2 6 2 + 2L kw 2 0 2 (2.56) ω = 1 2 arg(c 5 + jc 6 ) (2.57)
In Equation (2.56), the first term under the root square expresses the beam broadening induced by defocus and astigmatism and the second term is the broadening induced by diffraction. Using Noll's phase variance [START_REF] Robert | Zernike polynomials and atmospheric turbulence[END_REF], the model omits the following phase variance:

σ δφ (j > 6) = 0.065 d 0 r 0 5 3 , (2.58) 
where d 0 = 2w 0 and j is the number of the considered Zernike polynomial (in our case, all the polynomials of higher order than astigmatism). We will assume that statistical equivalence between the LOT model and a case where the whole phase is taken into account page 36

2.4 Atmospheric turbulence effects on Gaussian beams is achieved when there is less than 0.1 wave squared difference (within a circle of radius w 0 ) between the two:

σ δφ (j > 6) ≤ 2π 10 2 . (2.59)
This adds a constraint on the maximum waist size of the beam:

w 0 ≤ 1.5r 0 . (2.60)
In order to determine the range of validity, Baker [3] proposes two dimensionless parameters to define the region of interest in which turbulence is located in the near-field while the satellite is in the far-field. These parameters are:

N L = πw 2 0 λL , (2.61) 
and

N τ = πw 2 0 λz τ , (2.62) 
with z τ defined by:

z τ = L 0 zC 2 n (z)dz L 0 C 2 n (z)dz . (2.63) 
z τ gives an estimation of the centroid of the turbulence strength on the path. The parameters N L and N τ correspond to Fresnel numbers of the initial beam observed at, respectively, distance L and z τ . They compare the Rayleigh range Z R of the beam to, respectively, the distances L and z τ . According to Baker, the bounds of this region are given by two conditions. The satellite being in the far field leads to a hypothesis on N L :

N L < 1. (2.64)
Assuming the turbulence is located near the emitter leads to the resulting hypothesis:

N 2 τ 1 (2.65)
These hypotheses impose a minimum waist for the validity of the LOT model. Because the satellite is so far away, the condition N L < 1 will always be true. This means that it is the condition N 2 τ 1 that will set the minimum waist.

Strong perturbations regimew 0 r 0

Habash have proposed a distribution called the Gamma-Gamma distribution to describe the irradiance fluctuations for strong turbulence [START_REF] Ma Al-Habash | Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[END_REF]. In this manuscript, we will usually consider that strong turbulence correspond to cases where the emitted waist size w 0 is larger than the Fried parameter r 0 , which therefore corresponds to a loss of spatial coherence of the beam during its propagation through the atmosphere. The model assumes that the irradiance fluctuations resulting from small eddies (diffractive phenomenon) are modulated multiplicatively by the irradiance fluctuations resulting from large eddies (refractive page 37

Chapter 2. Optical Beam Propagation in Turbulent Media phenomenon). Mathematically put: I = I x I y where I x and I y represent the irradiance fluctuations after propagation resulting from small and large eddies5 , respectively. I x and I y are assumed statistically independent and described by a Gamma distribution. I therefore has a Gamma-Gamma probability density function:

p (I) = 2 (αβ) α+β 2 Γ (α) Γ (β) I α+β 2 -1 K α-β 2 αβI , I > 0, (2.66) 
where K p is a modified Bessel function of p order. α and β represent the number of small and large eddies. Γ represents the "Euler gamma" function defined by:

Γ (s) = ∞ 0 dxe -x x s-1 .
(2.67)

The parameters α and β are defined by [START_REF] Larry | PDF models for uplink to space in the presence of beam wander[END_REF]:

1 α = 34.29 ΛL k 0 r 2 0 5 6 σ pe w(L) 2 + exp      0.49σ 2 Bu 1 + (1 + Θ) 0.56σ 12 5
Bu

7 6      -1, (2.68 
)

1 β = exp      0.51σ 2 Bu 1 + 0.69σ 12 5
Bu

5 6      -1, (2.69) 
where σ 2 Bu = σ 2 I (0, L), as defined in Equation (D.1) and

σ 2 pe = r 2 c 1 - π 2 w 2 0 /r 2 0 1 + π 2 w 2 0 /r 2 0 1 6 . (2.70)
This distribution is very interesting because its behavior in weak turbulence are close to the log-normal distribution and fits well with the experimental results when the turbulence's strength increases, as it becomes closer to a negative exponential which is the assumed probability density function for strong turbulence. However, it results from an empiric fitting and not from any analytic description and its domain of validity remains to be confirmed. In order to be able to model the irradiance fluctuations more physically with less assumptions, wave optics simulations have to be considered.

Fade statistics

There are not any analytical models in the literature that provide irradiance time series. The usual approach in the literature to describe irradiance statistics is through the expected number of fades per second (for example in [START_REF] Vetelino | Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence[END_REF]), which is equal to the number of negative crossings below a specified threshold level, and the mean fade time, which represents the page 38 2.5 Propagation simulation with phase screens average time during which the irradiance stays below the prescribed threshold level of irradiance. The mean fade time is calculated by taking the ratio of the probability of fade and the expected number of fades per second [START_REF] Larry C Andrews | Laser beam scintillation with applications[END_REF]. These parameters have been obtained for Log-normal and Gamma-Gamma irradiance PDFs (summarized in [START_REF] Vetelino | Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence[END_REF]), for cases where w 0 r 0 and w 0 r 0 .

Temporal power spectral density of beam wander In the literature, the temporal power spectral density for the case w 0 ≈ r 0 is treated using only irradiance fluctuations resulting from beam wander. Yura [START_REF] Yura | Level crossing statistics for optical beam wander in a turbulent atmosphere with applications to ground-to-space laser communications[END_REF] provides level crossing statistics in such as case. A comprehensive estimate of the single-axis wander angle temporal autocorrelation function and the corresponding power spectrum is used to develop analytic expressions for the mean angular level crossing rate and the mean duration of such crossings. However, the higher orders are not considered. This means that when we will consider tip/tilt precompensation, we will not be able to model the residual irradiance fluctuations.

Propagation simulation with phase screens

The Helmholtz equation does not have a solution in the general case and the Rytov approximation only permits to obtain results for weak turbulence. The Markov approximation yields rigorous yet intractable results for a turbulence domain. Numerical simulation of wave propagation enables tho overcoming of the analytical models which are limited to weak perturbations [START_REF] Martin | Intensity images and statistics from numerical simulation of wave propagation in 3-D random media[END_REF]. Using a Monte-Carlo approach permits to estimate the statistical properties of the propagated field through strong perturbations.

Principle of phase screen propagation

Numerical wave optics simulations rely on the separation of the propagation and turbulence effects on phase. It consists in discretizing the turbulent volume in multiple turbulent layers. These layers are simulated using thin phase screens. Between the phase screens, the propagation occurs in the vacuum. The thickness of the layers (or the distance between the phase screens) has to be small enough so that the diffraction effects within the layer can be neglected and big enough so that two successive phase screens are decorrelated.

Within the paraxial approximation, the propagation in vacuum of a field Ψ(x, y, z) can be described with Equation (2.13) [START_REF] Martin | Intensity images and statistics from numerical simulation of wave propagation in 3-D random media[END_REF]. Figure 2.8 presents the principle of using phase screens to model propagation through a turbulent volume. Each turbulent layer is assimilated to a phase screen that adds the perturbation to the field. Mathematically, the propagation is modeled:

Ψ (x, y, z) = A 0 (x, y, z) .e iφ 0 (x,y,z) Ψ (x, y, z) = Ψ (x, y, z) .e iφ 1 (x,y,z) Ψ (x, y, z + d) = Ψ (x, y, z) * F d Ψ (x, y, z + d) = Ψ (x, y, z + d) .e iφ 2 (x,y,z+d) Ψ (x, y, z + 2d) = Ψ (x, y, z + d) * F d (2.71)
The propagated field is the result of the succession of phase perturbations introduced by the phase screens and of phase and amplitude variations due to the propagation of the page 39 Chapter 2. Optical Beam Propagation in Turbulent Media Figure 2.8: Phase screens propagation principle. [START_REF] Schwartz | Précompensation des effets de la turbulence par optique adaptative: application aux liaisons optiques en espace libre[END_REF] phase errors between the screens (diffraction). This method (called wave optics) is used by ONERA in their code TURANDOT (TUrbulence simulator for SpAce-grouND Optical Telecommunication [START_REF] Védrenne | Turbulence effects on bi-directional ground-to-satellite laser communication systems[END_REF]).

Temporal effects simulation

The time scales during which the turbulence moves in front of the beam ∆t = D/|V ⊥ |, where D is the beam diameter and V ⊥ is the transverse wind speed, are considered to be sufficiently small in comparison to the temporal evolution of turbulence to satisfy Taylor's hypothesis, also known as the hypothesis of "frozen turbulence". This hypothesis assumes that the only modification of the turbulent layers between two instants is a translation whose amplitude depends on V ⊥ . The refractive index at time t can therefore be calculated by : n ≈ n ( r -V ⊥ ( r) t). The modeling of the temporal evolution will therefore be done by shifting the phase screens orthogonally to the direction of propagation.

Wind profile

Throughout this thesis, the wind will be modeled by a Bufton wind profile [24], described in Equation (2.72), in which the atmospheric layers move with a 5 m/s speed at ground level and with a 30 m/s speed at an altitude around 12.5 km: In Part II, we will only present the case in which the wind moves in the x direction for all layers. Extension to the wind moving in multiple direction is straightforward ( [27,[START_REF] Conan | Wave-front temporal spectra in high-resolution imaging through turbulence[END_REF]). page 40
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Conclusion

TURANDOT

The French aerospace laboratory ONERA has developed for more than a decade a computer code, called PILOT (Propagation and Imaging, Laser and Optics, through Turbulence), based on the split step method previously to simulate the propagation of an optical beam through random media. TURANDOT is an automatically parametrized version of PILOT. It relaxes the issues of spatial and temporal sampling of the physical phenomena, using dimensioning tools to optimize the computation time while ensuring reliable simulation results. It has been validated in a downlink case with the experimental data from Optical Inter-orbit Communications Engineering Test Satellite [START_REF] Sechaud | High resolution imaging through atmospheric turbulence: Link between anisoplanatism and intensity fluctuations[END_REF]. For the uplink, statistical spatial characteristics of the beam irradiance profile were compared to expected beam profile [START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF].

TURANDOT is particularly useful for studying situations which cannot be described satisfactorily with analytic methods. It is able to consider all type of wave-forms (spherical, plane or truncated Gaussian beams) and deal with high turbulence strength. It is also able to simulate temporal evolution of the perturbations. The latest version of TURANDOT is able to produce end-to-end simulations with tilt tracking using the information coming from the downlink to pre-compensate the uplink and taking into account point-ahead angle and aperture mismatch. While we will consider TURANDOT as our reference, it is important to note that its results rely on a Monte-Carlo approach, meaning that the precision of its results will depend on the number of considered draws.

However, while TURANDOT is capable of giving very precise results, it is very computationally intensive. This means that the study of a single case can require up to a day of simulations. During our sizing study, many cases will have to be considered, as we will be studying different waist sizes, for different telescope truncations and different ground architectures (cf. Chapter 7)... This means that TURANDOT is too slow to be used for the sizing study. This why we need to use analytic models. These models' validity range are usually much shorter but permit to obtain results much faster. The results obtained with these models can than be validated for selected operating points using TURANDOT.

Conclusion

In this chapter, we have presented the different mathematical descriptions of irradiance fluctuations resulting from atmospheric turbulence, the analytic descriptions as well as wave optics simulations. We will consider in this manuscript that the wave optics simulations as the reference. However, they have very long simulation times which means that they can not be used to do a sizing. This is why we are also interested in analytic descriptions which generally have smaller ranges of validity. The validity of these analytic descriptions compared to wave optics simulations (i.e. TURANDOT) will be presented in Chapter 5. 

Mitigation techniques for link budget improvement

After having presented the effects of atmospheric turbulence on irradiance fluctuations in the previous chapter, we will present different mitigation techniques for improving the link budget. There are two major mitigation techniques. The first is using diversity, which corresponds to an averaging of the irradiance fluctuations. The second is adaptive optics, in which a servo system modifies in real time the emitted wavefront in order to make it recover an unperturbed waveform when reaching the satellite. 

Diversity techniques

The idea behind beam diversity is to average the effects of atmospheric turbulence on several uncorrelated and statistically independent beams. Mathematically, the laser beam intensity distribution of a beam (i) is described as:

I i (x, y) = s(x, u) + n i (x, y), (3.1) 
where s(x, y) is the signal component without the noise component and n i (x, y) is the noise component due to turbulence. At the receiver, the effects of all the beams will sum up to average the effects of turbulence [START_REF] Nakayama | Application of Compact Optical Duplicate System as a Multi-beam Generation Device for Satellite-Ground Laser Communications[END_REF]:

I(x, y) = s(x, u) + 1 N N i=1 n i (x, y), (3.2) 
where N is the number of beams used. This means that the scintillation σ 2 I by N . Methods relying on diversity necessitate a synchronization process between each beam, in terms of data transmission. This solution is therefore not optimal for a telecommunication application.

Wavelength diversity

Wavelength diversity is the idea of simultaneously using multiple beams having different wavelengths and each carrying the same information. Unfortunately, the dependence of the atmospheric turbulence to the wavelength is weak and so the different beams are only weakly decorrelated. Therefore, only a small reduction of the scintillation index is expected with this method (around 10% according to Kiasaleh [START_REF] Kiasaleh | On the scintillation index of a multiwavelength Gaussian beam in a turbulent free-space optical communications channel[END_REF]). The reduction is improved with the increase in difference between the wavelengths but the optics are harder to make. Wavelength diversity will therefore not be considered to mitigate irradiance fluctuations effects.

Moreover, in practice, a multiplexing of wavelengths around 1.55 µm will be used to achieve the targeted capacity. Each link associated with each wavelength targeting a 10 Gbps capacity. The weak dependence of atmospheric turbulence to wavelength will be considered as negligible.

Temporal diversity

The coherence time of the link channel (i.e. the atmosphere) is long compared to the time necessary to emit a bit (1 millisecond compared to 1 nanosecond). The idea is therefore to emit the data multiple times relying on the temporal decorrelation of the atmosphere. The correlation time is around 10 ms. Moreover, the bigger the aperture, the longer the correlation time. A long coherence time implies having big buffers. This solution is therefore not applicable as it generates system complexity.

Multiple emitters

Finally, the most interesting idea for reducing the atmospheric turbulence influence is to use an emitter diversity. Emitter diversity is based on a spatial decorrelation of the effects of turbulence, which means using different beams which do not go through the same optical paths. Each laser beam should be incoherent with one another in order to reduce any chance of interference at the receiver plane and thus reduce speckle effects and the scintillation index. Moreover, in order for a very good spatial decorrelation, each beam should be separated by a distance superior than ρ 0 . This is the technique used in 2014 by page [START_REF] Kiasaleh | On the probability density function of signal intensity in freespace optical communications systems impaired by pointing jitter and turbulence[END_REF] 3.2 Adaptive optics pre-compensation NASA for the Lunar LaserComm Demonstration [13]. Liu proposes an estimation of the scintillation index in case the decorrelation between each beam isn't perfect [START_REF] Liu | Influence of space between atmospheric channels and beams' number on scintillation[END_REF][START_REF] Wu | Scintillation analysis for multiple uplink Gaussian beams in the presence of beam wander[END_REF]:

σ 2 I,n = 1 n (1 -η) σ 2 I (0) + ησ 2 I (0) , (3.3) 
where η is the average spatial correlation between the beams. Between 2012 and 2013, transmitter diversity has been tested with two measurement campaigns between the ESA Optical Ground Station (OGS) on Canary Islands and the geostationary satellite ARTEMIS [START_REF] Mata | Transmitter diversity verification on ARTEMIS geostationary satellite[END_REF]. The main scope of those campaigns was to analyze transmitter diversity mitigation (using 2 beams) effect on the uplink scintillation. In these campaigns, downlink tracking was used to compensate beam wander but due to the fact that the point-ahead angle is larger than the isoplanatic and tilt-anisoplanatic angle, the compensation was not perfect, resulting in fades deeper than 20dB. They showed that with transmitter diversity, the fades become shorter in time.

The problem with using diversity techniques is the necessary synchronization at the receiver. This is due to the fact that, since the beams do not go through the same atmospheric paths, they each arrive with a slightly different phase. From a telecommunications point of view, this mitigation technique leads there to complexity at reception and in terms of coding.

Adaptive optics pre-compensation

Reciprocity principle

The idea of pre-compensating the beam results from Fermat's principle which states that the path taken between two points by a ray of light is the one that can be traversed in the least time and particularly independently of the direction of the beam. Using this principle and thinking in terms of geometrical optics with plane waves, if one adds the conjugate of the downlink's phase to the uplink's at emission and if the uplink propagates through the medium along the same path as the downlink, a plane wavefront at the output of the medium should be obtained. This is illustrated in Figure 3.1. Being able to control the wave front's shape at the atmospheric output means that it is easier to predict the wavefront in the receiver plane.

Shapiro [START_REF] Jeffrey | Reciprocity of the turbulent atmosphere[END_REF] and Fried&Yura [2] have been the first to propose the use of reciprocity for beam pre-compensation. The envisioned technique is adaptive optics (AO) in which a servo system modifies in real time the emitted wavefront (with a deformable mirror) in order to make it recover a plane waveform when reaching the satellite. To do so, the beam coming from the satellite will be used to estimate the perturbations that need to be applied to the emitted wavefront. This is illustrated in Figure 3.2.

In the case of a ground to satellite feeder link: two effects prevent us from strictly applying the reciprocity principle. The first results from the point-ahead angle (developed in Section 3.2.2) which induce that the downlink and the uplink do not propagate through exactly the same atmospheric turbulence. The second is the fact that the uplink as a Gaussian amplitude while the downlink is homogeneous in the receiver pupil. 

Correlation between downlink and uplink

In practice, the downlink and the uplink do not go through the atmosphere on the exact same path. It will therefore be essential to characterize the correlation between the uplink and the downlink. It will be a parameter to describe what pre-compensation will be able to achieve.The correlation between the Zernike coefficients of the downlink and the uplink can be estimated using Chassat's correlation functions presented in Appendix C.

Point-ahead angle

As we work with geostationary satellites, they are always directly above the same location on Earth. The point-ahead angle is the result of the Earth's rotation during the beam's propagation from the satellite to the ground and then from the ground to the satellite because the time taken by the beam to travel such distances is no longer negligible (magnitude of 2.4ms). This is illustrated in Figure 3. The point-ahead angle can be calculated from [START_REF] Bischl | ORELIA -Feasibility Assessment of Optical Technologies & Techniques for Reliable High Capacity Feeder Links[END_REF]:

θ P AA ≈ 2 V sat,⊥ -V OGS,⊥ c , (3.4) 
Chapter 3. Mitigation techniques for link budget improvement where c is the speed of light, V sat,⊥ and V OGS,⊥ are the satellite and OGS speeds transverse to the link. For a GEO satellite, we have:

V sat,⊥ = ω Earth (R E + H GEO ) , (3.5) 
with ω Earth = 2π/86400s = 73µrad/s, R E = 6400km and H GEO = 36, 000km. When the OGS sees the satellite at zenith (OGS is then on equator), we have

V OGS,⊥ = ω Earth R E .
For the transverse OGS speed, we can then consider the range:

0 < V OGS,⊥ ≤ ω Earth R E . (3.6)
Finally, we obtain:

2 ω Earth H GEO c ≤ θ P AA < 2 ω Earth (R E + H GEO ) c , (3.7) 
or:

17.5µrad ≤ θ P AA < 20.6µrad. (3.8)
In this document, we will take θ P AA = 18.5µrad, usually considered for European latitudes. The resulting envisioned system is illustrated in Figure 3 

Adaptive optics pre-compensation

Anisoplanatism

The notion of point-ahead angle leads to introduce the notion of isoplanatism. Isoplanatism is the angular zone over which optical phase distortion due to turbulence is nearly the same (the criteria used is the to have phase structure function D φ (θ, L) = 1rad 2 ). As defined by Fried, the isoplanatic angle θ IP A is [START_REF] David | Anisoplanatism in adaptive optics[END_REF]:

θ IP A = 2.91k 2 sec 8 3 (ζ) L 0 C 2 n (h) h 5 3 dh -3 5 . (3.9)
Using a classical Hufnagel-Valley 5/7 profile with φ elev = 0 (described in Chapter 2.1.4), the isoplanatic angle is estimated at 13 µrad for λ = 1.55 µm. Therefore, the point-ahead angle being bigger than the isoplanatic angle means that the downlink and the uplink do not see exactly the same atmospheric turbulence and an adaptive optics correction will be imperfect. This is illustrated in Figure 3.5. 

Study of the correlation with altitude

The aim of this Section is to help comprehend how anisoplanatism from the point-ahead angle will deteriorate the correction quality and to underscore the origin of the residual tilt after pre-compensation.

Residual Zernike coefficients estimation

The variance of the residual Zernike coefficient after precompensation σ 2 is estimated for each layer and is given by:

σ 2 = (a j,U -a j,D ) 2 . (3.10)
where a j,U is the coefficient associated with the j th Zernike polynomial estimated on the uplink a j,D is the coefficient associated with the j th Zernike polynomial estimated on the downlink (cf. Figure 3.6). This leads to

σ 2 = a 2 j,U + a 2 j,U -2 a j,U a j,D . (3.11) 
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Chapter 3. Mitigation techniques for link budget improvement a j,U a j,D is the covariance between the j th Zernike coefficients of the uplink and the downlink.

Propagation geometry analysis

Atmospheric turbulence is usually very strong at ground level, and decreases rapidly with altitude. However, assuming an architecture for which the only source of error on the tracking comes from the point-ahead angle, it is intuitive that the residual errors will result from atmospheric turbulence in altitude. To prove this, we will discretize the atmosphere into multiple layers (arbitrarily chose at 10). We will present the results on the estimation of the residual tilt and study the impact of each layer on the strength of the residual tilt. Fusco [START_REF] Fusco | Correction partielle et anisoplanetisme en Optique Adaptative: traitements a posteriori et Optique Adaptative Multiconjuguée[END_REF] introduces the notion of equivalent layer (EL) in order to discretize the atmospheric profile for good approximation of the angular correlations between the Zernike polynomials coefficients. The equivalent layers are defined as follows by their respective altitude h i and turbulence strength C 2 n (h i ) :

h i = hmax h min C 2 n (h)h 5 3 dh hmax h min C 2 n (h)dh 3 5 
(3.12)

Where h min and h max are the lower and outer limit of the discretized area of the atmospheric profile. The equivalent strength of the turbulence is given by: page 50
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δh i C 2 n (h i ) = hmax h min C 2 n (h)dh (3.13)
The equivalent wind speed is obtained with the same method: In Table 3.2, we present the results of the estimation of the residual tilt after tracking for each layer for a 10 layer discretization of the atmospheric profile. We observe that most of the residual tilt results from the atmospheric layers around a 10km altitude. The residual tilt results from both the quality of the correction and the strength of the turbulence within the considered layer. With our assumptions, the quality of the correction depends primarily from the distance between the two beams d 1→2 and on the strength of each atmospheric layer. We observe that for a height of 9 km, the distance between the two beams is equal to 17 cm, which is already bigger than twice the radius of each beam (for simplicity, we consider a plane wave). This means that the beams no longer overlap and the decorrelation is already very important. We observe that in the layers above 9 km, the residual tilt is stronger than the initial uncorrected tilt. This is verified in Figure 3.7, in which we plot the tilt variances with and without tracking.

V i = hmax h min C 2 n (h)V (h) 5 3 dh hmax h min C 2 n (h)dh
It will be interesting to study the evolution of these results as a function of the atmospheric profile. In particular, for a day atmospheric profile with much stronger turbulence near the ground. 

Residual scintillation

Tyson [START_REF] Robert K Tyson | Adaptive optics and ground-to-space laser communications[END_REF][START_REF] Tyson | Bit-error rate for free-space adaptive optics laser communications[END_REF] uses Sasiela's formalism [START_REF] Richard | A unified approach to electromagnetic wave propagation in turbulence and the evaluation of multiparameter integrals[END_REF] to take into account adaptive optics in the scintillation variance. In a perfect correction case, the residual phase spectrum is filtered by the Zernike polynomials spectrum. This means that the residual phase spectrum is, in the case of a plane wave:

W φ = k 2 dzW n ( f ) 1 - N i=2 Ma j f 2 (3.15)
with Ma j f defined in Equation (2.35). In terms of Zernike mode correction, the mismatch due to point-ahead angle translates into a performance reduction that can be approximated by the following expression [START_REF] Robert K Tyson | Adaptive optics and ground-to-space laser communications[END_REF]:

N ef f ≈ N exp - θ P AA θ IP A 5 3 , (3.16) 
where . is the floor operator, theta P AA is the point-ahead angle, theta IP A is the isoplanatic angle, N is the number of Zernike modes that the AO system is trying to correct, and N ef f is the effective number of Zernike modes that AO system can actually correct because of the mismatch between the downlink and uplink. After correction of the first N ef f Zernike modes, the residual phase variance is reduced [START_REF] Robert | Zernike polynomials and atmospheric turbulence[END_REF].

Regarding the possible scintillation index improvement when applying pre-distortion AO in an optical GEO uplink, Tyson [START_REF] Robert K Tyson | Adaptive optics and ground-to-space laser communications[END_REF] proposes the relation:

σ 2 I,N ef f = σ 2 I N ef f , (3.17) 
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Conclusion

where σ 2 I,N ef f is the scintillation index after correction of N ef f Zernike modes, and σ 2 I is the scintillation index without any adaptive optics mode correction.

The AO modeling is based on simplified error terms that are not sufficient for a precise system analysis. However, this way of taking into account adaptive optics, while imperfect for modeling irradiance fluctuation of an AO pre-compensated uplink is still the one usually used (for example in [START_REF] Dimitrov | Digital modulation and coding for satellite optical feeder links with pre-distortion adaptive optics[END_REF]).

Conclusion

In conclusion, we have presented in this chapter the two major techniques for mitigating atmospheric turbulence irradiance fluctuations : adaptive optics and diversity.

We have briefly presented the idea behind diversity mitigation. However, diversity, while being efficient in terms of irradiance mitigation, requires that the data of each beam is synchronized at reception. It therefore adds complexity. For this reason, we will focus the majority of our efforts on the second mitigation technique, adaptive optics.

We have seen the adaptive optics was limited due to the fact that the downlink and the uplink did not follow the exact same paths through atmospheric turbulence (because of the point-ahead angle particularly). We have also presented the effects of anisoplanatism due to the point-ahead angle on the residual tilt. 

Thesis objectives

To achieve optical uplinks between the ground and geostationary satellites, enough power must be detected by the satellite terminal. This is the link budget. Through clear skies conditions, the major effect which reduces the link budget is atmopsheric turbulence. Its impact depends on the optical architecture of the optical ground station (i.e. size of the beam at emission) as well as turbulence conditions. Most of the time, the link budget is not fulfilled and pre-compensation must be applied. The knowledge, characterization and modeling of the effects of turbulence, and their correction, on an optical link are essential for the optimization of a ground station. My thesis focused on this subject, in the particular context of a ground to satellite feeder link, capable of providing the targeted capacity (1 Terabit/s by 2025).

This work was done within the context of the ALBS (Accès Large Bande pour Satellite -Broadband Satellite Access) project within the IRT Antoine de Saint Exupéry. The purpose of the ALBS project is to mature technologies that increase the efficiency of satellite transmissions or increase systems' capacity.

In order to optimize the OGS, a sensitivity study of its main parameters is performed ans requires a lot of simulations. The parameters of interest are, on the one hand, the parameters of the OGS (i.e. the waist size at emission, the telescope truncation, and the adaptive optics architecture) and, on the other hand, the turbulence strength of the propagation channel to study the sensitivity of the optimization. The criteria of performance is the minimum detectable irradiance I R defined at 5% of the CDF. It will lead to whether or not the link budget is fulfilled.

The TURANDOT simulation, available at ONERA, models the propagation of a laser beam through atmospheric turbulence accurately. It could be used to determine the above criteria. However, it requires a lot of computations and is therefore not adapted for performing an important number of simulations.

I have developed a fast model derived from the LOT model proposed by Baker and have adapted it to my needs with a sufficient accuracy. I have validated this model by comparing it with TURANDOT in a few cases on the criteria of interest. It takes into account the first orders of aberration. It also takes into account tilt tracking, taking into account the error induced by point-ahead and compensation delay. It is called the WPLOT model.

Chapter 5

Validity of existing models

The objective of this chapter is to present a discussion on the literature models presented in Chapter 2. We will consider the advantages of each model, their capacity to be adapted in order to model residual irradiance fluctuations after using mitigation techniques (adaptive optics in particular, tilt tracking at the very least).

We are going to focus on the models for the case in which w 0 ≈ r 0 . We will see in Part III that for w 0 r 0 , the link budget can't be fulfilled and that considering cases where w 0 r 0 may not be necessary. This will also allow to compare the results from the literature models to our chosen model presented in Chapter 6 and compared with TURANDOT in Chapter 6.2.

The literature models we will consider are

• the model which takes into account beam wander with decorrelated on-axis only Rytov scintillation presented in Equation (2.46) of Chapter 2, which we will refer to as the "Beam wander with on-axis scintillation" model.

• the model presented by Dios&al. [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF] in Equation (2.50), which we will refer to as the "Dios model".

For this study, we will compare the probability density functions obtained with the literature models and TURANDOT. We will also focus on the lower irradiances, i.e. the CDFs around the 5% threshold, in order to estimate the errors on the loss term L T U RB obtained with the analytic models compared to TURANDOT. 

Comparison of literature models with TURANDOT

The comparison between the literature models and TURANDOT will be done for a Hufnagel-Valley 5/7 atmospheric profile, described in Section 2.1.4. The elevation angle is taken 59 Chapter 5. Validity of existing models equal to φ elev = 40 • , making the effective r 0 equal to 15 cm at a 1.55 µm wavelength. The outer scale L 0 is fixed by the wave optics simulations: we have taken the outer scale to be equal to TURANDOT's phase screens' sizes, which gives L 0 = 2.5 m.

Beam wander with on-axis scintillation

The comparison of the probability density functions obtained with TURANDOT and with the beam wander with on-axis scintillation model are presented in Figure 5.1. In this Figure , we have also added a case considering a perfect Gaussian beam moving because of beam wander. We will refer to it as the beam wander only case.

We observe that the the beam wander with on-axis scintillation model allows for a better fit of the irradiance fluctuations for a waist size of 5 cm compared to beam wander only case. However, for the other considered waists, the differences between the beam wander with on-axis scintillation model and the beam wander only case are negligible.

The PDFs' shapes are close to TURANDOT's results as well as the estimation of the mean irradiance and irradiance variance. Particularly, for all the considered wait sizes, the lower irradiances are nearly perfectly superimposed. In Figure 5.2, the CDFs comparison between TURANDOT with the beam wander with on-axis scintillation model and a beam wander only case shows that the lowest irradiances obtained with TURANDOT can be well modeled with beam wander only. Indeed, in this case the error obtained for estimating the turbulence term L T U RB is low for all the considered cases and reaches a maximum of approximately 1 dB for w 0 = 14 cm.

Dios Model

The comparison of the probability density functions obtained with TURANDOT and Dios' model is presented in Figure 5.3 for different waist sizes. We observe that, for a 5 cm waist size, the mean irradiances around which are centered the PDFs is higher with the Dios model than with TURANDOT. However, the respective mean irradiances decrease much faster with the Dios model than with TURANDOT. Moreover, the PDFs obtained with the Dios model are much wider than those obtained with TURANDOT, leading to irradiance variance being much higher. This signifies that irradiance fluctuations resulting from the Dios model are overestimated. In their article, Dios&al. [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF] question whether the beam wander effect is actually considered in the Rytov method. These results seem to show that taking into account both the irradiance fluctuations from the off-axis scintillation (from Equation (D. 

Conclusion

The presented results show that both the considered models do not give perfect irradiance fluctuations estimation compared to TURANDOT. The Dios model clearly overestimates the irradiance fluctuations while the beam wander with on-axis scintillation model slightly underestimates them. However, the lower irradiances are well modeled by beam wander.

From this study, we conclude that the Dios model can't be used in our considered cases to model irradiance fluctuations of uplinks. However, it would probably give better results for much smaller waist sizes (cf [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF]). We have also shown that considering only beam wander allows for a good estimation of the irradiance fluctuations in the lower irradiances. mismatch and delay from the servo system). He provides information on the probability of fade, mean time of fade and mean number of fade over one second, by using the beam wander with on-axis scintillation technique. However, he considers that the beam wander is modeled by a negative exponential instead of the modified beta distribution usually used in the literature [START_REF] Kiasaleh | On the probability density function of signal intensity in freespace optical communications systems impaired by pointing jitter and turbulence[END_REF]3]. We are going to compare the results of the beam wander with on axis scintillation model with tilt tracking taken into account to TURANDOT. The tracking is considered perfect with only the point-ahead angle as a decorrelation source. We present the PDFs for waist sizes at emission of 5, 8, 11 and 14 cm in a case with tracking for the same atmospheric profile as previously in Figure 5.5. For a 5 cm waist size at emission, taking into account the on-axis scintillation permits to significantly improve the resemblance of the PDF obtained with the residual beam wander with on-axis scintillation compared to the PDF obtained with TURANDOT. We see in this case that the error on the estimation of the turbulence loss term L T U RB at 5% of the CDF is of the order of 1 dB. For the bigger waist sizes, the impact of scintillation becomes negligible and on top of that, the errors on the estimation of the turbulence loss term L T U RB become of the order of 3 to 4 dB (cf. page 62 Figures 5.5b, 5.5c and 5.5d). These results show that the residual beam wander is not sufficient to irradiance fluctuations when tilt tracking is considered, even when taking into account the on-axis scintillation.

Taking into account the tracking

Conclusion

Conclusion

In this chapter, we have compared irradiance fluctuations obtained with TURANDOT to the analytic descriptions found in the literature in a regime in which w 0 ≈ r 0 . The two models from the literature we have considered are the beam wander with on-axis scintillation model presented in Chapter 2 and the model presented by Dios&al. [START_REF] Dios | Scintillation and beam-wander analysis in an optical ground station-satellite uplink[END_REF] in Equation (2.50). They both rely on the Rytov approximation coupled with beam wander.

We have shown that the Dios model does not give an accurate description of the effective irradiance fluctuations as it overestimates them, even in a case without tracking. We have also shown that the model considering a Gaussian beam displaced by beam wander perfectly modeled the lower irradiances in a no tracking case. On the other hand, we have seen that, when taking into account tilt tracking, the beam wander with on-axis scintillation did not model the residual irradiance fluctuations and greatly underestimated them.

From these results, we can confirm that, in a case with no tilt tracking, the lower irradiances (< 20%) are perfectly modeled by a Gaussian beam being displaced by beam wander. We are in a region in which the literature often states that Rytov does not give an accurate description of the irradiance fluctuations. This is confirmed with the presented results, particularly in a case with tilt tracking. This means that the residual irradiance fluctuations are the results of other phenomenons as, for example, the Gaussian beam deformations presented in the LOT solution (cf Chapter 2). This method will be the subject of the following chapter. page 64 Chapter 6

Conclusion

Irradiance fluctuations modeling for ground-to-satellite geostationary satellite optical links

In the previous chapter, we have presented a comparison of models from the literature with TURANDOT. We have observed that these models do not give an accurate description of irradiance fluctuations. In this chapter, we are going to improve the Low-Order of Turbulence (LOT) model, which was first introduced by Baker [3] and presented in Chapter 2, by taking into account effects of the propagation. The final model will be called WPLOT (With Propagation Low-Order of Turbulence) model.

In the first part of this Chapter, we will present the LOT model's limitations regarding propagation through multiple layers and explain how we have come to develop the WPLOT model. In the second part of this Chapter, we will compare and validate the WPLOT model with TURANDOT's results for different atmospheric turbulence conditions. The LOT solution assumes that the turbulence can be integrated in a single phase screen placed at the transmitter prior to propagation. This assumes that the effects of the propagation through multiple atmospheric layers are negligible inside the turbulence volume.

In order to validate this assumption, we have compared the detected irradiance results obtained with the LOT solution with results obtained after wave optics propagation through phase screens evenly distributed along the propagation path. The phase screens are constructed as a linear combination of tip/tilt, defocus and astigmatism. They are the same phase screens as in the LOT solution φ LOT , i.e.:

φ i = φ LOT (x, y) = k 0 θ x x + θ y y + ∆κ 1 2 (x 2 + y 2 ) 1 2 w 2 0 + c 5 1 2 (x 2 -y 2 ) + c 6 xy , (6.1)
The difference is in the estimation of the Zernike coefficients: in the LOT solution, they are estimated over the whole turbulence volume whereas, here, they are estimated for each atmospheric layer. To illustrate the effects of the propagation through multiple phase screens, we will consider only a two layer atmosphere. This will be referred to as the 2L-WO simulation (for 2-Layer Wave Optics simulation). The objective of the 2L-WO simulation is to highlight the effects of the propagation through multiple atmospheric layers using the hypothesis of the LOT model that tip/tilt, defocus and astigmatism are sufficient to describe the beam deformations resulting from atmospheric turbulence in the D1 region.

Using only two layers is sufficient to make these effects appear.

In this study, we will use the Hufnagel-Valley 5/7 atmospheric profile with a 8 cm waist size at emission. In the case of the 2L-WO simulation, we will consider one ground layer and on layer at a 10 km altitude. This leads to N L = 3.6 × 10 -4 and N τ = 9.4, well within the D1 region of validity of the LOT solution. We observe, in Figure 6.1, a good correlation of the results even though some differences appear. Studying the effects of each optical aberration separately, we can see that for page 68 6.1 A multi-layer model -the WPLOT model tip/tilt and astigmatism, the effects of propagation through multiple layers are negligible on the irradiance estimation, as can be seen in Figure 6.2 and 6.4. However, when considering only the defocus aberration, the effects of taking into account the propagation through multiple phase screens are clearly visible as can be seen in Figure 6.3. An irradiance threshold appears for the LOT model compared to the 2L-W0 model. This irradiance threshold results from diffraction and is equal to (in the case of a normalized irradiance): narrower than for multiple layers. However, the differences between 2 or 10 layers are not significant. On the other hand, Figure 6.6 shows that the impact of taking into account multiple layers does not significantly impact the lower irradiances. This means that for more realistic irradiance fluctuations modeling (for example, better modeling of mean irradiance), at least two layers should be used. In order to take into account the propagation through multiple phase screens, we propose to use the ABCD matrix propagation method [START_REF] Larry | Laser beam propagation through random media[END_REF], where the ABCD matrix is obtained from: where ∆κ i is the curvature (in meters -1 ) resulting from defocus at the i th layer, ∆z i is the distance between two successive phase screens i and i + 1 and N is the total number of considered layers.L prop is the remaining distance to the satellite: L prop = L -N i ∆z i , where L is the distance between the ground and the satellite (L = 36000 km). Usually N i ∆z i is of the order of 20 km. This permits to obtain the same irradiance estimation as wave optics propagation when only defocus is considered, as can be seen in Figure 6.7. Considering the following initial complex radius of curvatures:

I threshold (0, L) = 2 πw(L) 2 ≈ 2π w 0 λL 2 . ( 6 
A B C D = 1 L prop 0 1 N i 1 0 ∆κ i 1 1 ∆z i 0 1 , (6.3 
1 q x0 = (c 2 5 + c 2 6 ) 1 2 + λi πw 2 0 , (6.4 
)

1 q y0 = -(c 2 5 + c 2 6 ) 1 2 + λi πw 2 0 . (6.5) 
Using the ABCD matrix, the complex radius curvatures after propagation are 1 :

q x = Aq x0 + B Cq x0 + D . (6.6) 
This leads to a modified estimation of the beam radii w x and w y compared to Baker's approach [3]:

w (x) = λ π 1/q (x) , (6.7) 
where means the imaginary part. These beam radii are implemented in the LOT solution presented in Equation (2.54). This permits to obtain the same irradiance estimation as wave optics propagation through multiple screens when only defocus is considered. We call this model WPLOT (for With Propagation Low-Order of Turbulence).

A comparison between the WPLOT model and the 2L-WO simulation is given in Figure 6.8. We observe that the higher irradiances are much better modeled. For lower 1 We present the results in the x direction but the method is exactly the same in the y direction. irradiances, the results were already convincing. It is because these lower irradiances are principally due to beam wandering. The remaining errors are due to neglecting the effects of propagation through multiple phase screens for astigmatism. This approach taking into account the propagation through multiple phase screens does not significantly change the estimation of the irradiance threshold at 5% of the CDF in the case without tracking.

Taking into account the beam truncation by the telescope

The model needs to take into account the parameters of the optical ground station. In particular, one of those parameters is the truncation of the infinite Gaussian beam by the telescope. The truncation will have two effects. The first one is that it will reduce the transmitted power by the telescope [18]. The second one is that it will add a diffraction effect in the far-field. The effects of the diffraction of a Gaussian beam by a circular aperture leads to a convolution in the case of propagation without turbulence, whose result is not easy to use. Yura has proposed an effective beam diameter at 1/e 2 in irradiance at the emission when the beam is weakly diffracted by a circular aperture. It is estimated in the case of a propagation without turbulence, but Yura has assumed that it can be applied to a case with turbulence. This effective beam diameter is given by [START_REF] Ht Yura | Optimum truncation of a Gaussian beam for propagation through atmospheric turbulence[END_REF]:

D ef f = d 0 [tanh D 2 T X /2d 2 0 ] 1 2 . (6.8)
This effective beam diameter yields accurate results well as long as d 0 < D T X . It is valid only within the main central lobe of the beam 2 . The encircled power distributions are valid to better than approximately 2%.

The effects of taking into account the truncation of the beam by the telescope in the WPLOT model can be observed in the CDFs in Figure 6.9. We observe that taking into account the truncation does not have a significant impact on the lower irradiances. 2 The other lobes resulting from the circular aperture are therefore neglected. page 72 6.2 Discussion and validity of the WPLOT model However, it greatly reduces the higher irradiances. This has the effect of improving the estimation of the mean irradiance and therefore improving the physical representativeness of the WPLOT model. Figure 6.9: Cumulative density functions of irradiance fluctuations obtained with the 2L-WO simulation taking into account the truncation and the WPLOT model with 2 layers taking into account, or not the truncation. In this case, D T X = 2 3/2 w 0 , which is a value usually found in the literature [START_REF] Larry | Strehl ratio and scintillation theory for uplink Gaussianbeam waves: beam wander effects[END_REF].

Conclusion

In this chapter, we have presented a model which is equivalent to using a wave-optics propagation in which the phase screens are obtained from tip/tilt, defocus and astigmatism. This model also takes into account the effects resulting from the truncation of the beam with the telescope. In the next section, we will compare the WPLOT model's results with TURANDOT simulations in order to validate the model's irradiance description.

Discussion and validity of the WPLOT model

The objective of this section is to compare the results from the WPLOT model with TURANDOT model, dedicated to ground to space optical communications, which we will consider as our reference. In the WPLOT model, we will consider two atmospheric layers : one at ground level and one at a 10km altitude. From this comparison, we will be able to estimate the performance of the WPLOT model by assessing the errors between the model and TURANDOT.

Criteria for validation

The criteria we will consider to validate the WPLOT model are: the mean irradiance, the probability density functions, the cumulative density functions, the losses L T U RB at 5% of the cumulative density function, and the temporal power spectral densities. Looking page 73 Chapter 6. Irradiance fluctuations modeling for ground-to-satellite geostationary satellite optical links at the mean irradiance and the probability density functions enable to validate the representativity of the irradiance fluctuations obtained with the WPLOT model. From the perspective of the link budget, however, the main parameter of interest is the irradiance at 5% of the cumulative density functions I R , which leads to losses due to turbulence term in the link budget: L T U RB = 10 log 10 (I R /I 0 ), where I 0 is the irradiance in a case of propagation without turbulence 3 . Validating the CDFs, especially in the lower irradiances, and the temporal power spectral densities will confirm that the WPLOT model will enable the study of the fade statistics.

If the errors on the estimation of L turb are less than 1 dB, the results are satisfying. If the errors are between 1 and 3 dB, a margin will have to be taking into account in the link budget. Finally, if the errors are higher than 3 dB, the model's results can not be used.

Propagation channel used for validation

C 2
n vertical profiles We will consider two atmopsheric profiles. The first case we will consider is the common Hufnagel-Valley 5/7, described in Section 2.1.4. The elevation angle will be considered equal to 40 • , making the effective r 0 equal to 15 cm. The outer scale L 0 is fixed by the wave optics simulations: we have taken the outer scale to be equal to TURANDOT's phase screens' sizes, which gives L 0 = 2.5 m. This case corresponds to a low turbulence day.

The second case we will consider is for stronger turbulence conditions at ground level. The atmospheric profile is still the Hufnagel-Valley but the ground level is C g = 5.4 × 10 -14 m -2 3 and v = 21 m/s, which results in a r 0 calculated at zenith equal to 11 cm for a 1.55 µm wavelength. At an elevation angle of 40 • , the effective r 0 is equal to 8 cm. In mid latitudes near ground level, the ground C 2 n (0) < 5.4 × 10 -14 60% of the time [START_REF] Weiss-Wrana | Statistical analysis of measurements of atmospheric turbulence in different climates[END_REF]. This case corresponds to a strong turbulence day. For this atmospheric profile, the sampling forced TURANDOT to use larger phase screens, inducing an outer scale L 0 = 5 m 4 .

Without tracking

We start the validation by comparing the results from the WPLOT model and TURAN-DOT in a no tracking case. A no tracking case is interesting because it takes into account beam wander effects resulting from tilt which, according to Noll's results [START_REF] Robert | Zernike polynomials and atmospheric turbulence[END_REF], represent around 90% of the turbulent phase variance. We have also seen in Chapter 5 that beam wander provided a good estimation of the irradiance fluctuations.

Hufnagel-Valley 5/7

The condition from Equation (2.65) imposes a minimum waist size of 8 cm and the condition from Equation (2.60) imposes a maximum waist size of 22.5 cm. Despite this validity range, we will present results for lower waists (5 cm) because we can assume that the lower 3 All the irradiances presented in this Chapter are normalized.

This means that I0 exp(-r 2 /w 2 )rdrdθ = 1. 4 I have verified that the size of the phase screens acted as an outer scale in TURANDOT by comparing a tilt estimation obtained from measuring the beam displacement in TURANDOT and Chassat's analytical expressions for a von Kármán spectrum. The results fit well but are not presented in this manuscript. page 74 6.2 Discussion and validity of the WPLOT model irradiances fluctuations are solely due to strong beam wander, even though scintillation will have an impact on the irradiance fluctuations closer to the mean irradiance.

The maximum diameter envisioned for the emitting telescope is 40 cm. Taking a telescope diameter to waist size ratio of 2 3 2 (a usual value in the literature [START_REF] Larry | Strehl ratio and scintillation theory for uplink Gaussianbeam waves: beam wander effects[END_REF] which optimizes the transmitted energy) leads to a maximum waist size of 14 cm in this study. 

Mean irradiance

The mean irradiances obtained with TURANDOT and the WPLOT model are compared in Figure 6.10. The WPLOT model almost perfectly estimates the mean irradiances for the considered waists, as Figure 6.11 shows that the difference between TURANDOT and the WPLOT model is less than 0.5 dB.

Probability Density Functions

The PDFs for waists of 5, 8, 11 and 14 cm are given in Figure 6.12. The PDFs obtained with the WPLOT model are very close to TURANDOT. This confirms the physical representativeness of the irradiance fluctuations obtained with the WPLOT model in this particular case.

In all the Figures, the normalized irradiance, expressed in dB, is defined : 10 log 10 (I/I 0 ).

Cumulative Density Functions

The CDFs for waists of 5, 8, 11 and 14 cm are given in Figure 6.12. These CDFs focus on the lower irradiances. There is a very good fit for waists of 5, 8 and 11 cm, as the differences are below 1 dB. For a 14 cm waist, a gap slightly larger than 1 dB starts to appear. We can therefore consider that the WPLOT model is valid when considering this particular case.

Losses due to turbulence estimation We start by estimating the irradiance threshold at 5% of the cumulative density function. It is given in Figure 6.14. We observe that an optimum appears for a waist size at emission of 8 cm. Obtaining the threshold leads to the estimation of L T U RB with TURANDOT and the WPLOT model in Figure 6.15. The fit between the two is overall very good, even though gaps bigger than 1 dB appear for waist sizes bigger than 13 cm. In the Hufnagel-Valley 5/7 atmopsheric profile, is precise within the 1 dB range. Temporal Power Spectral Density The temporal power spectral densities (PSD) of the irradiance fluctuations are compared in Figure 6.16. They are estimated from 4s time series with a 2kHz sampling. The fit between the results from TURANDOT and the WPLOT model are overall very good, as there is a good estimation of the cutoff frequency and asymptotic power laws 5 .

Stronger turbulence profile

In the stronger atmospheric conditions, Equation (2.65) imposes a minimum waist size of 4 cm and the condition from Equation (2.60) imposes a maximum waist size of 12 cm. We have considered waists slightly outside the validity range of the model, in order to determine the behavior of the model even outside the validity range.

Mean irradiance

The mean irradiances obtained with TURANDOT and the WPLOT model are compared in Figure 6.17. The mean irradiance obtained with the WPLOT model as a function of the waist size at emission increases much faster than with TURANDOT. For a 14 cm waist at emission, the difference between the two is of the order of 2 dB. The difference is less than 1 dB for waist sizes lower than 10 cm. These results induce that the long-term beam radius at satellite level is larger with TURANDOT than it is with the WPLOT model. 

Probability Density Functions

The PDFs for waists of 5, 8, 11 and 14 cm are given in Figure 6.19. We observe satisfying results for waists sizes of 5 and 8 cm. However, major differences appear for the larger waist sizes. We assume that these differences result from the higher Zernike orders which are not considered in the WPLOT model and whose effects are no longer negligible.

Cumulative Density Functions

The results for the CDFs are presented in Figure 6.20. The results from Figures 6.20c and 6.20d seem to indicate that, assuming tilt is well modeled, the short-term waist sizes are larger with TURANDOT than with the WPLOT model.

Losses due to turbulence estimation

We start by comparing the irradiance threshold at 5% of the cumulative density function. It is given in Figure 6.21. We observe that the threshold I R obtained with the WPLOT model decreases while TURANDOT's estimation seems to reach minimum and then stays approximately constant.

We compare the estimation of L T U RB with TURANDOT and the WPLOT model in Figure 6.22. The error between the two is of the order of 1 dB for waist sizes at emission lower than 8 cm. However, for larger waist sizes, we observe that TURANDOT's results change slopes and decrease more slowly. It is interesting to notice that the Fried parameter r 0 is equal to 8 cm in the considered profile for stronger conditions. This means that the beam diameter at emission becomes significantly bigger than the atmospheric turbulence coherence length. This means that speckles will start to appear and that the short term beam spread will be larger than what the WPLOT model takes into account. Higher orders should be taken into account in this case. In a case without tracking, the WPLOT model can not be used for waist sizes larger than 8 cm for the stronger atmospheric turbulence conditions. Temporal Power Spectral Density The temporal PSDs are compared in Figure 6.23. The fit between the results from TURANDOT and the WPLOT model are good for a 8 cm waist size. However, for a 14 cm waist size, a gap appears in the higher frequencies, probably due to the fact that some speckle effects resulting from higher order Zernike polynomials are not taken into account.

With tracking

We now consider cases with tracking taken into account. Tracking is considered perfect. We consider that the apertures of the uplink and the downlink are merged and aligned and there is no delay before the pre-compensation. Only the point-ahead angle θ P AA = 18.5 µm is taken into account.

Hufnagel-Valley 5/7

Mean irradiance The mean irradiances obtained with TURANDOT and the WPLOT model are compared in Figure 6.24. Even though Figure 6.24 shows an increasing error on the estimation of the mean irradiances as the waist size increases, Figure 6.25 shows that the difference between TURANDOT and the WPLOT model is less than 1 dB.

Probability Density Functions

The PDFs for waists of 5, 8, 11 and 14 cm with a Hufnagel-Valley 5/7 atmospheric profile and tilt tracking taken into account are given in Figure 6.26. There are also some differences between the results from TURANDOT and the WPLOT model. These differences are due to the fact that we neglect the impact of the higher orders of Zernike polynomials on the irradiance fluctuations.

Cumulative Density Functions

The CDFs for waists of 5, 8, 11 and 14 cm with tracking taken into account are given in Figure 6.27. From these CDFs, we observe that page 83 Chapter 6. Irradiance fluctuations modeling for ground-to-satellite geostationary satellite optical links the differences between TURANDOT and the WPLOT model are of the order of 1 dB. This means that the modeling with the WPLOT model is valid.

Losses due to turbulence estimation The estimation of the irradiance threshold at 5% of the cumulative density function is given in Figure 6.28. We observe that the irradiance threshold increases with the waist size. Due to the model's validity range, we can not observe an optimum that appears for the bigger waists. We also observe a slight overestimation of the threshold I R .

We can then obtain the estimation of L T U RB with TURANDOT and the WPLOT model in Figure 6.29. We observe that there is less a 1 dB difference between the results from TURANDOT and the WPLOT model, which validates the model's precision in the studied range.

Temporal Power Spectral Density The temporal PSDs are compared in Figure 6.30.

The fit between the results from TURANDOT and the WPLOT model are very good overall, as there is a good estimation of the cutoff frequency and asymptotic power laws. For a 5 cm waist size at emission, we see a small error appear around the 100Hz frequency. We attribute this error to the fact that a 5 cm waist is at the limit of the WPLOT model validity range and that, for lower waists, the on-axis scintillation from the Rytov perturbation method (cf. Figure 5.5a and Equation 2.46) is not negligible compared to beam wander and beam deformations in terms of impact on the irradiance fluctuations. 

Stronger atmospheric profile

We now compare the results from the WPLOT model and TURANDOT for stronger atmospheric conditions, with tracking. Mean irradiance The mean irradiances obtained with TURANDOT and the WPLOT model are compared in Figure 6.31. The mean irradiance obtained with the WPLOT model as a function of the waist size at emission increases much faster than with TURANDOT. For a 14 cm waist at emission, the difference between the two is of the order of 2.5 dB. As in the no tracking case, this can be interpreted as the long-term beam waist at satellite level increasing much faster for TURANDOT than in the WPLOT model. Because tilt is well tracked, these results are due to the beam spreading from the higher order Zernike polynomials.

Probability Density Functions Figure 6.33d presents a comparison of the PDFs for waists sizes of 5, 8, 11 and 14 cm in the case of stronger atmospheric conditions and tracking. We indeed observe that the mean irradiance is higher for the WPLOT model than for TURANDOT. However, the variance of the irradiance fluctuations seems to be close for waists sizes of 8 and 11 cm.

Cumulative Density Functions Figure 6.34d presents a comparison of the CDFs for waists sizes of 5, 8, 11 and 14 cm in the case of stronger atmospheric conditions and tracking. The gap between TURANDOT and the WPLOT model increases with the waist size. Except for a 5 cm (which could be improved by taking into account irradiance fluctuations from the Rytov perturbation method), the curves seem to have the same shape with only an offset as difference. This offset increases with the waist size. Losses due to turbulence estimation The estimation of the irradiance threshold at 5% of the cumulative density function in the case of stronger atmospheric conditions and tilt tracking is given in Figure 6. [START_REF] Védrenne | Turbulence effects on bi-directional ground-to-satellite laser communication systems[END_REF]. We observe that the irradiance threshold increases with the waist size. Due to the model's validity range, we can not observe an optimum that appears for the bigger waists. We also observe an overestimation of the threshold I R . The estimation of L turb at 5% of the normalized CDFs is given in given in Figure 6.36. The error between TURANDOT and the WPLOT is of the order of 1.5 -2 dB for waist sizes w 0 < 1.5r 0 . The underestimation is of the order of 3 dB for waist sizes bigger than 1.5r 0 , outside the assumed validity range of the WPLOT model. Because of these errors on the estimation, we will have to take a margin when using the WPLOT model to do a sizing in Part III. Temporal Power Spectral Density The temporal PSDs in the case of stronger atmospheric conditions and tracking are compared in Figure 6.37. The fit between the results from TURANDOT and the WPLOT model are good. For the 5 cm waist size at emission, there is again a gap around the 100 Hz frequency. We attribute it to the scintillation from the Rytov Perturbation method for the same reason as for the Hufnagel-Valley 5/7 profile case.

Conclusion

We have compared the results of the WPLOT model with results from TURANDOT for two cases: one modeling classic daytime atmospheric conditions (the Hufnagel-Valley 5/7) and one modeling stronger atmospheric conditions at ground level.

We have observed very good fit between the WPLOT model's and TURANDOT's results in the case of the Hufnagel-Valley 5/7 atmospheric profile without tracking. When we considered tracking, the results were still good as the mean error for estimating L turb was of the order of 1 dB. However, we start to notice irradiance fluctuations resulting from the higher Zernike polynomials order, which are not taken into account in the WPLOT model.

In the case of stronger atmospheric conditions, the results between TURANDOT and the WPLOT model were not as good. We attribute these differences to the higher orders whose effects are no longer negligible. In the case without tracking in the stronger turbulence conditions, the results incite us to modify the range of validity of the model from w 0 < 1.5r 0 to w 0 < r 0 . Moreover, the gaps between the LOT and TURANDOT's estimations incite us to consider a 3 dB margin in the link budget. 

Geometry

Because the envisioned optical ground stations (OGS) will be located in Europe, we need to consider the fact that the propagation distance from the OGS to the satellite will not be exactly 36000 km but a slightly longer distance due to the latitudes of the OGS. This is illustrated in Figure 7.1. L is the overall link distance, R E = 6378 km is the Earth's mean radius, H sat = 35786 km is the geostationary satellite's altitude, α is the latitude, φ elev is the elevation angle and ψ zen is the zenith angle. It can be shown that L and φ elev (and therefore ψ zen as well) can be expressed as a function of α. The results are:

L = H sat 1 + 2 R E (R E + H sat ) H 2 sat (1 -cos(α)), (7.1) 
and

φ elev = arctan   cos(α) - R E R E +Hsat sin(α)   . (7.2)
In this approach, we have assumed that the OGS and the satellite were at the same longitude (i.e. same plane), but these results can easily be generalized [START_REF] Soler | Determination of look angles to geostationary communication satellites[END_REF]. Using these equations, it can be shown that at latitude α = 43 • , the zenith angle is φ elev = 40 • . This leads to the link distance L = 37750 km.

Turbulence

The station characteristics are optimized by considering daytime conditions, i.e. the stronger turbulence profile presented in Section 6.2.2. Section 6.2 has shown that the WPLOT model leads to an underestimation of around 1 to 2 dB of the losses due to the turbulence at 5% of the normalized CDF, in a case with tracking.

It is important to note that these conditions are not a worst case scenario, as cases where C 2 n (0) = 1 × 10 -13 m -2 3 can occur, for which r 0 = 6 cm. However, in mid latitudes near ground level, the ground C 2 n (0) < 5.4 × 10 -14 60% of the time [START_REF] Weiss-Wrana | Statistical analysis of measurements of atmospheric turbulence in different climates[END_REF]. The considered atmospheric profile is therefore representative of a majority of cases.

In these atmospheric conditions, the Fried parameter is equal to 8 cm. We will consider an outer scale of 5 m. The bigger the outer scale, the stronger the tip/tilt variances. However, its effect on the higher Zernike orders is negligible, as can be seen in Figure C.3 (in Appendix C). The inner scale, on the other hand, has a small influence in the case of Rytov scintillation, which is negligible in the considered regime where w 0 ≈ r 0 . The inner scale will therefore be neglected.

The considered wind profile is still the Bufton profile described in Section 2.5.2. We will consider that the wind is in the same direction as the point-ahead angle (i.e. worst case scenario). 

Optical ground station parameters

The foreseen optical ground station will comprise a Gaussian laser beam of waist size w 0 (and of diameter d 0 = 2w 0 ) emitted through a pupil of diameter D T X , which truncates the beam. Figure 7.2 describes the different parameters of the emitted beam.

The emitted Gaussian beam is considered collimated, i.e. that the position of the waist w 0 is in the exit pupil of the emitter. Obstructions were not considered because adding one will modify the shape of the beam propagating through the atmosphere [START_REF] Virendra N Mahajan | Uniform versus Gaussian beams: a comparison of the effects of diffraction, obscuration, and aberrations[END_REF] as well as significantly reduce the transmitted power of the Gaussian beam.

The dimension of the beam waist w 0 is the first parameter that will be studied. A small waist at the emission (w 0 << r 0 ) is less susceptible to the atmospheric turbulence effects but, due to the limited power of lasers envisioned for feeder links, the beam divergence has to be dramatically reduced, leading to larger waist sizes, making the beam pointing a key issue. A trade-off will therefore have to be achieved, using a pointing error correction system, necessary to achieve the targeted power detected by the satellite.

Another parameter regarding the optical ground station that needs to be optimized is the diameter of the emission telescope D T X . The constraints of realizing an actual optical ground station impose a maximum size for the emission telescope. The maximum diameter D T X considered for the telescope T X is 40 cm.

Finally, the optical ground station will comprise an emitting telescope T X and a receiving telescope R X of diameter D R X . We assume that the phase measurement on the downlink will be made using a wavefront sensor of pupil diameter D T T S which is part of R X . R X and T X may or may not be merged, depending on whether the possible stray light problems can be delt with (the idea is to use two different circular polarization between the downlink which receives a power of a few nW and the uplink which emits a power of page 99 Chapter 7. Optical ground station sizing Figure 7.2: Description of the Gaussian beam parameters 50 W). Unless stated otherwise, we will consider that the pupil of the wavefront sensor is merged with the emitted beam.

Throughout the study, we assume that the measurement of the Zernike coefficients on the downwards propagating beam by the wavefront sensor is perfect and that the correction is perfectly applied by the pointing mirror to the upwards propagating beam.

Link budget parameters

We will assume that 50 W in continuous power will be emitted by the ground station, i.e.:

P E = 50 W = 17 dBW. (7.3)
We assume also that the receiving pupil on the satellite has a diameter D R X = 20 cm. This leads to G R = 112.2 dB.

The other contributors taken into account in the link budget in L OT HERS are summarized with their numerical values for this study in Table 7.1. In order to take into account the differences between the WPLOT model and TURANDOT (our reference) observed in Chapter 6.2, we will add in the link budget a system margin loss term equal to L margin = -3 dB.

Maximum acceptable residual tilt

We present in this section a rough estimation of the maximum acceptable tilt after precompensation. For simplification, in this Section we are going to consider two main parameters: the waist size at emission and residual tilt as the only aberration. With these parameters, we are able to evaluate the link budget. page 100 The on axis irradiance is:

Maximum acceptable residual tilt

I(x, y, L) = 2 π 1 w(L) 2 exp -2 (x -δx) 2 + (y -δy) 2 w(L) 2 , (7.4)
where w is the beam radius at a distance L and δ = (δx, δy) the displacement of the beam due to tilt. The on-axis irradiance probability distribution is the modified beta distribution [3]:

P I (I, 0) = 1 2αI 0 I I 0 1 2α -1 , (7.5) 
where I 0 = 2 πw 2 and α = δ 2 w 2 . The cumulative distribution function at a threshold irradiance I S is therefore:

CDF I (I ≤ I S ) = I S I 0 1 2α . (7.6)
From the link budget in Table 7.1, we can determine the maximum acceptable turbulence loss L T U RB,m (w 0 ) = 104.3 -G E , in which G E is the emitter gain defined in Equation This result therefore gives the maximum acceptable displacement resulting from as a function of the waist size at emission and wavelength in a simplified case with no truncature from the telescope and no beam deformation resulting from turbulence. It leads to the maximum Zernike coefficients variance, assuming w(L) ≈ Lλ πw 0 : 10) log (0.05) . (7.10)

σ 2 a 2 ,max + σ 2 a 3 ,max = L T U RB,m (w 0 ) 20 log (
In uncompensated cases, σ 2 a 2 = σ 2 a 3 . However, in tracked cases, the anisoplanatism effects mean that the correlation for tip and tilt are not equal. Therefore, we will introduce the variable σ 2 T T = σ 2 a 2 +σ 2 a 3 . Figure 7.3 illustrates the maximum allowable variance for the tip/tilt coefficients, calculated using Equation (7.10), over uncompensated tilt variances ratio as a function of the waist size at emission.

The WPLOT model is much more precise than this rough approach. However, in the case of a sizing considering the quality of tilt tracking, this analytical approach gives a first estimation of whether or not the link budget is fulfilled. 

Sizing using the WPLOT model

In the sizing, we will want to study the impact of many parameters. These parameters and their range of study are presented in Table 7 The effects of the truncature by the telescope and of the station's vibrations are not considered for now. The link budget is never fulfilled, as there is, in the best case for w 0 = 4 cm, a 10dB gap between the link budget and the detection threshold. An optimum appears for the lower waist sizes. This optimum stays below the detection threshold as the detected power is limited by the beam divergence for lower waist sizes. This therefore indicates that adding tilt correction is necessary. In the rest of the study, tilt tracking will always be considered.

Perfect tilt tracking

Figure 7.5 presents the evolution of the optical link budget as a function of the emitted waist size with perfect tracking, i.e. we do not into account decorrelation from the pointahead angle, aperture mismatch or delay between measurement and pre-compensation. The effects of the truncature by the telescope and of the station's vibrations are not considered for now. A 4.5 cm waist size appears to be the minimum waist size that fulfills the link budget. Increasing the waist size at emission improves the link budget. This is logical because increasing the waist size at emission focuses the energy in the far field. However, the gains on the link budget are not as important between two successive relatively big waist sizes page 103 Chapter 7. Optical ground station sizing 

e. > 10 cm).

There is a 1 dB difference on the link budget between w 0 = 8 cm and w 0 = 12 cm while there is almost a 3 dB difference between w 0 = 4 cm and w 0 = 8 cm.

Choice of the architecture for tilt tracking

There are two considered cases; mono-static and bi-static configurations. Mono-static configurations refer to cases where the emitting pupil and Tilt Tracking Sensor (TTS) pupil are merged while bi-static configurations refer to cases where the pupils are separated. The most intuitive configuration is the mono-static where the measurement of the phase aberration on the downlink is done on the same pupil as the one considered for the emitting beam (of diameter d 0 = 2w 0 ). However, such configurations might be difficult to implement due to possible stray light problems and the receiving and emitting pupils may have to be separated, i.e. bi-static configurations may have to be envisioned. In this subsection we will evaluate the performances of these configurations. We will assume in this study that the measurement on the downlink is directly applied to pre-compensate the uplink.

Mono-static configuration

In the case of a mono-static configuration, we will consider the possibility that the TTS pupil does not have a diameter equal to d 0 . However, it is still assumed that their respective centers are merged. The results on the link budget of considering TTS pupil diameters in the range 0.5w 0 ≤ D T T S ≤ 4w 0 are presented in Figure 7.7, for a waist size at emission w 0 = 8 cm. These results show that the optimal solution is obtained for D T T S = 2w 0 . The link budget is fulfilled for the range 1.1w 0 < D T T S < 3w 0 . Moreover, there is less than 1 dB loss from the maximum for the range 1.3w 0 < D T T S < 2.7w 0 .

Figure 7.6 shows the results on the evolution of the residual tilt to initial tilt variance ratio as a function of the wave-front pupil diameter to waist size ratio, for a waist size at emission w 0 = 8 cm. Particularly, we observe the range of D T T S for which the link budget is fulfilled corresponds to residual tilt being less than 22% of the initial tilt. This value is slightly less than the result given in Figure 7.3 which allowed for a residual tilt up to 26% of the initial tilt. This is because we take into account the effects of defocus and astigmatism in the WPLOT model whereas they were neglected in Section 7.2.

Bi-static configurations Two cases of bi-static configurations will be envisioned for our study : off-axis and annular configurations. They are recalled in Figure 7.8.

Off-axis configuration Off-axis configurations are presented in Figure 7.8a and Figure 7.8b. They correspond to cases where the emitting pupil and the TTS pupil are next to each other but do not overlap. Figure 7.10 presents the results of the link budget assuming that D T T S = 2w 0 and the distance between the center of the beam and the center of the TTS is d = w 0 + 2 1 2 w0 (as we consider that the diameter of the emitting telescope is D T X = 2 3 2 w 0 ). This corresponds in the case described in Figure 7.8a. This result shows that an off-axis configuration does not permit to fulfill the link budget. This can be easily justified by looking at the residual tilt variance compared to the initial uncompensated tilt in Figure 7.9. We observe that the residual tilt is actually stronger than the uncompenpage 105 Chapter 7. Optical ground station sizing sated tilt. This means that the tracking does not compensate at all the tilt and even adds errors.

In the case described in Figure 7.8b, the idea was to try to use the off-axis configuration and the PAA to improve the correlation between the uplink and the downlink in the higher layers. In this configuration, the tip/tilt correlation is slightly improved but still does not correct the tilt and still results in a stronger residual tilt than uncompensated tilt. This is due to the fact that the ground layers are much stronger than altitude layers.

Finally, increasing the size of the wavefront sensor pupil diameter D T T S increases the residual tilt and therefore does not improve the performance of the system.

Annular configuration

The annular configuration is presented in Figure 7.8c. It corresponds to a case where the wavefront sensor has an annular pupil around the emitting telescope. Greenwood [START_REF] Greenwood | Tracking turbulence-induced tilt errors with shared and adjacent apertures[END_REF] gives a result for tilt estimation on an annulus:

a 2,annulus = πD A 2 D -A 2 d A 2 D . 1 πD .a 2,D -A 2 d . 1 πd .a 2,d . (7.11)
This result is interesting because it means that we will be able to express tilt on an annulus as a function of tilts estimated on plain disks of diameters D and d (cf. Figure 7.8c). Even though some work has been done to define a polynomial base close to Zernike polynomials on an annulus [START_REF] Virendra | Zernike annular polynomials for imaging systems with annular pupils[END_REF], these polynomials are no longer valid with Chassat's correlation functions. Therefore, we will only be able to consider tilt tracking when studying the annular page 107 In Figure 7.12 is illustrated the link budget for a 8 cm waist size at emission as a function of the D T T S to D T X ratio in Figure 7.8c. The annular configuration does not permit to fulfill the link budget. Moreover, the link budget decreases very fast. The tilt improvement for D T T S ≤ 1.6D T X showed in Figure 7.11 is insufficient. The link budget is closed to being fulfilled for D T T S ≈ D T X . However, such a system is practically impossible because not enough light would reach the wave-front sensor. In conclusion, neither of the considered bi-static configurations permit to fulfill the link budget. This means that a mono-static configuration is mandatory. Moreover, the page 109 Chapter 7. Optical ground station sizing most effective mono-static configuration is for D T T S = 2w 0 , which will be the considered configuration in the rest of the study.

Effects of the beam truncation

We study here the effects of beam truncation. First, in Figure 7.13, the effects of beam truncature by the telescope on the link budget are shown in a case without turbulence. These results highlight the fact that a telescope diameter D T X = 2w 0 induces an almost 4 dB loss on the link budget compared to cases where the telescope diameter is significantly larger than the waist size (i.e. D T X = 5w 0 in Figure 7.13). Moreover, as could intuitively be suspected, an asymptote appears. Indeed there is only approximately a 0.5 to 1 dB difference between D T X = 3w 0 and D T X = 5w 0 , for the different considered waist sizes. This justifies the value usually taken in the literature: D T X = 2 When we add atmospheric turbulence while considering perfect tracking, the results are different, as can be seen in Figure 7.14. It appears that there is an optimum truncature for page 110 7.4 Sensitivity study each considered waist size. Moreover, the difference between D T X = 2w 0 and D T X = 5w 0 is much smaller as there is only a 2 dB difference for a 4 cm waist size and for a 12 cm waist size. D T X = 2w 0 even gives a slightly better results on the link budget than D T X = 5w 0 for a 12 cm waist size. We attribute this to the fact that, while a smaller truncature decreases the mean irradiance (as can be seen in Figure 7.13), the fact that is leads to a bigger beam radius in the far field which decreases the impact of atmospheric turbulence on irradiance fluctuations.

Despite the fact that there is an optimum diameter for each waist, we will consider D T X = 2 3 2 w 0 in the rest of the sizing.

Initial sizing conclusion

From this initial sizing study, we can conclude that tilt tracking is mandatory and enables to fulfill the link budget. The configuration architecture needs to be mono-static with the tip/tilt measured over a pupil D T T S = 2w 0 and bi-static configurations may not be envisioned as they do not permit to fulfill the link budget. Finally, we have chosen a reasonable beam truncation D T X = 2 3/2 w 0 which does not significantly reduce the performance compared to a no truncation case.

Sensitivity study

Anisoplanatism induced by the point-ahead angle

We now add point-ahead angle in the simulation. This means that tip/tilt precompensation is no longer perfect but residual tip/tilt will appear due to the anisoplanatism effects from the point-ahead angle. Figure 7.15 presents the residual tilt in the presence of point-ahead angle. The residual tilt is much lower than our reference in Figure 7.3. Figure 7. 16 shows the results on the link budget. The impact of point-head angle on the link budget is small, as it is less than 0.5 dB. In the rest of the study, the point-ahead angle will always be taken into account in the tracking.

Delay before correction

There will be a delay between the measurement of the wavefront distortion on the downlink and the application of the precompensation on the uplink. Figure 7.18 shows the evolution of the link budget as a function of the delay between the wavefront distortion measurement and the correction for waists of 5, 8 and 12 cm and Figure 7.17 shows the evolution of the residual tilt variance compared to the initial uncompensated tilt. These Figures show that the delay between the wavefront measurement and the correction should be of the order of the millisecond.

While the limitations on the quality of the correction due to the point-ahead angle will always be present, the limitations due to the delay can easily be dealt with by increasing the bandwidth of the correction loop. In the case of a 8 cm waist size at emission with a 4 ms delay, the tilt correlation obtained from Chassat's functions is equal to 0.86. This leads to a residual tilt variance of 0.03 rad -2 , which then leads to a standard deviation of the displacement in the satellite plane of 38 m. If the delay before the correction is zero, page 111 Chapter 7. Optical ground station sizing page 113 Chapter 7. Optical ground station sizing then the tilt correlation becomes 0.9, the residual tilt variance becomes 0.02 rad -2 and the standard deviation of the displacement is 33 m. Compared to the beam radius in the satellite plane, equal to 254 m, this 5 m displacement error is negligible, which means that there is no need for a lower delay time.

Sensitivity of the sizing to atmospheric turbulence conditions

We have seen how the OGS architecture parameters impact the link budget. In this section, we study how propagation channel variations impact the link budget. Tip/tilt tracking with a 18.5 µrad point-ahead angle is taken into account. The OGS is in a monostatic configuration (D T T S = d 0 ) and a 4 ms delay is considered.

Ground layer impact

We start by studying the influence of the turbulence strength near the ground, which can greatly fluctuate depending on the time of the day, on the season or on the localization of the station. We compare the conditions from the Hufnagel-Valley 5/7 profile, in which C 2 n (0) = 1.7 × 10 -14 m -2 3 , from the stronger atmospheric profile presented in Section 6. 

(0) = 1.7 × 10 -14 m -2 3 , C 2 n (0) = 5.4 × 10 -14 m -2 3 and C 2 n (0) = 1 × 10 -13 m -2 3 .
The impact of the ground layer on the system link budget is quite important. Considering an elevation angle φ elev = 40 • , the Fried parameter is equal to r 0 = 15 cm for C 2 n (0) = 1.7 × 10 -14 m -2 3 , to r 0 = 8 cm for C 2 n (0) = 5.4 × 10 -14 m -2 3 and to r 0 = 6 cm for C 2 n (0) = 1 × 10 -13 m -2 3 . For the strongest atmospheric profile, we are therefore outside the validity range of WPLOT for waist sizes w 0 > 9 cm. In terms of link budget, the gap is of the order of 2 to 3 dB between the weakest and strongest ground turbulent layer. In order to fulfill the link budget, even in the strongest cast, a waist size bigger than 7 cm must be considered, leading to a telescope diameter D T X = 20 cm. page 114

Sensitivity study

Altitude layers impact

We are going to consider different atmospheric profiles, adding stronger turbulence around the 5 km and 10 km altitude layers to the reference profile (Figure 7.20a). These profiles are presented in Figure 7.20. In Table 7.3, we present the impact of taking into account more turbulent layers at high altitude on the isoplanatic angle and the Fried parameter. The link budgets are obtained for each of these atmospheric profiles and are presented in Figure 7.21. We observe from these results that the loss of performance is more strongly correlated with the additional turbulence strength (i.e.the lower Fried parameters). In that regard, the worst result is obtained for the atmospheric profile with the higher peak at a 5 km altitude with a loss of around 1 dB on the link budget.

Comparing the results for the atmospheric profile with a peak at C 2 n (5 km) = 1 × 10 -16 m 2/3 with the atmospheric profile with a peak at C 2 n (10 km) = 1 × 10 -16 m 2/3 (both resulting with the same r 0 ), we can observe that the influence of the impact of the height of the stronger atmospheric layer is negligible, as there is a maximum difference of 0.1 dB between the two. This means that the correlation at the 5 km altitude is slightly stronger than at the 10 km altitude, but this effect is not significant. Table 7.4 gives an estimation of the strongest layers (following the same approach as in Chapter 3.2.4). It shows that the relative impact of each added layer is quite important on the residual tilt. It also shows how the added layers impact the total residual tilt variance, which is what translates into the link budget.

Outer scale impact

Finally, the effects of the outer scale on the optical link budget are evaluated. Without any correction, the outer scale plays a very important role on the pointing errors and a larger outer scale induces bigger pointing errors.

However, after correction, we see that the influence of the outer scale is very small, as can be seen in Figure 7.22. For small outer scales such as 1 m, there is a small improvement on the uplink optical budget. However, there is almost no difference for outer scales bigger than 3 m. The criteria that can be used is the d 0 /L 0 ratio. The outer scale has no influence when it is inferior to 0. 

Conclusion on the sizing of the optical ground station

Using the WPLOT model for obtaining irradiance as a function of the optical ground station architecture and propagation channel, we have been able to identify important results for the optimization of a ground to space telescope. Tip/tilt correction using a fine pointing mirror has been confirmed as mandatory in order to reach the necessary powers for a functioning system.The telescope's truncature ratio induces some loss on the optical link budgets but with a sufficiently big telescope (D T X = 2 3/2 w 0 seems to provide a good trade-off between compactness and performance), the losses become negligible. With good tip/tilt correction, increasing the waist at the emission leads to better performance as long as the beam isn't too deformed by atmospheric turbulence. The most significant result is that the tip/tilt correction is not efficient enough with bi-statics optical ground station architecture (annular and off-axis configurations). On the other hand, tip/tilt correction with a monostatic configuration brings a gain compatible with the considered laser power. This is very important because it will have great impact on the OGS architecture. Using the same pupil for both emission and reception can lead to difficulties due to stray light problems (even though the emitted beam will not have the same polarization as the received one).

Turbulence profiles with stronger turbulence layers in altitude result in an increase of the BER and impossibility to reach the desired capacity due to anisoplanatism from the point-ahead angle. These effects lead to larger waist sizes to fulfill the link budget. Finally, after correction, we've shown that the outer scale does not have any impact on our system performance.

The sizing's optimization leads to a Gaussian beam of waist size equal to 8 cm. The telescope diameter will have a diameter equal to D T X = 2 3 2 w 0 = 22.6 cm. Only tilt tracking will be considered in a mono-static configuration. This is summarized in Table 7 Chapter 8

Model application to error correcting codes and interleaving sizing : time series creation

The objective of this Chapter is to provide a study of the temporal irradiance fluctuations in a tracking case. In the second part of this Chapter, we will present with an example the major advantage of using the WPLOT comparing to other works (such as those from Basu [START_REF] Basu | Fade statistics of a ground-tosatellite optical link in the presence of lead-ahead and aperture mismatch[END_REF] for example) in that its ability to create time series permits to test the performance of interleaving coupled with error correcting codes. 

Obtaining irradiance time series

The WPLOT model relies on estimating Zernike coefficient time series, which can be obtained from Eq.8.1:

a i (t) = W a i (f )e iφn e 2iπfn.t df n , (8.1) 
where φ n is the phase randomly attributed to the spectral component at the frequency f n and W a i (f ) is the temporal PSD of the a i coefficient, estimated in Equation (2.34). If we wan to consider a tracking, we need to estimate the residual tilt temporal Power Spectral Density. The following phase-related quantity can be used [START_REF] Conan | Wave-front temporal spectra in high-resolution imaging through turbulence[END_REF]:

G j = [φ (r + d, t) -φ (r, t)] * Z j (r) (8.

2) series creation

If the distance d between the two beams is along the x axis, and if the diameter of the beams are the same, the spectrum of G j is:

M G j (f, h) 2 = 4sin 2 πd ν V (h) × M a j (f ) 2 (8.3) 
M a j (f ) 2 is obtained from Chapter 2.3.1. Time series of the residual tilt coefficient may then be obtained.

Once the irradiance time series are estimated, they can directly serve as inputs in the WPLOT model.

Fade statistics description

For describing the fade duration the ITU gives the following two measures based on the CDF of the fade duration (see [START_REF] Epple | Simplified channel model for simulation of free-space optical communications[END_REF][START_REF]Prediction method of fade dynamics on Earth-space paths[END_REF]):

1. Fade duration occurrence probability, that is, the probability of occurrence of fades of duration d F , defined as the time interval between two crossings (down and up) of a threshold level, longer than a given duration threshold D:

P (d F > D) = N (d F |d F > D) N (d F ) (8.4) 
where N (x) denotes the number of occurrences of x.

2. Cumulative fade duration exceedance probability, that is, the probability that, if a fade occurs, it has a duration d F > D:

F (d F > D) = i (d F,i |d F,i > D) i d F,i (8.5) 
The two given measures can be used to describe the distribution of the fade durations, but they do not describe the occurrence of the fades. This is described by the probability of fade.

Using the WPLOT model, we can obtain time series for the final architecture from Table 7.5 for a Hufnagel-Valley atmospheric profile with C 2 n (0) = 5.4 × 10 -14 m -2/3 and an elevation angle φ elev = 40 • . A time series is presente in Figure 8.1 in which we can observe the improvement of taking into account the tip/tilt tracking. Using very long time series, i.e. having access to a high number of fade occurrences, we can obtain the fade statistics results presented in Figure 8.2 in a tracking case.

From the irradiance time series obtained in Figure 8.1, the evolution of the BER is obtained. The BER is estimated for each sample over a duration of 500 µs, assuming that the irradiance is constant over this time period. The BER as a function of time for the same irradiance time series as Figure 8.1 is presented in Figure 8.3. We observe that, as intended, periods during which the received power is below -43 dBm correspond to a BER higher than 10 -3 . This is obtained from the BER curve in Figure 8. 

WPLOT to test error correcting codes and interleaving

At the satellite receiver side, the electrical signal y k after photo detection at the input of the receiver decoder is:

y k (n) = h(n) × x k (n) + n k (n) (8.6) 
Where:

• h is the channel power attenuation

• x is the mean electrical power function of the emitted bit k and the optical link budget

• n is a random value representing the noise power. It is function of the emitted bit k, the channel power attenuation, the optical transmission chain.

As the free space optical channel is a slow fading channel (compared to optical symbols duration), interleaving is interesting to spread over time the bad channel conditions.

End-to-end simulations have been performed for a 10Gbit/s optical uplink between the Earth and a geostationary satellite. The ground emitter is based on a 22 cm diameter with on-axis tracking (D T T S = 2w 0 ) and a 50 W optical amplifier. The satellite receiver is 20 cm large with a pre-amplified optical receiver and NRZ-OOK demodulator.

First results have highlighted the required trade-off between physical layer channel code ratio and the interleaver size (and latency associated). With physical layer channel code ratio of 0.5, limited interleaver size of 100-500 Mbit seems to be accessible. Greater interleaver will imply greater latency that could be detrimental to the service.

Conclusion

The WPLOT model is able to provide time series of irradiance fluctuations. This means that we are able to describe the irradiance fluctuations through the fade duration occurrence probability and the cumulative fade duration exceedance probability. Finally, end-to-end simulations have been performed for a 10Gbit/s optical uplink between the Earth and a geostationary satellite, and have permitted to obtain primary results on the sizing of interleaving and error correcting codes. The most suitable error correcting code (interleaver included) schemes will be the next hot topic of the optical communication community. WPLOT should be an interesting model for such an activity. page 125 Chapter 8. Model application to error correcting codes and interleaving sizing : time series creation page 126

Conclusion

Summary

The work presented in this manuscript has focused on the atmospheric turbulence effects and mitigation techniques on ground to space optical links performance.

In the Chapter 1 of this thesis, after a brief presentation of past optical links demonstrations, I have presented our description of the optical link through the link budget. This description has led to the definition of the loss term relating to the impact of atmospheric turbulence L T U RB . In particular, I have shown that in order to determine this loss term, a precise knowledge of the irradiance fluctuations, especially in the lowest percents of the cumulative density functions (CDF), is required. The link budget enables the sizing of an optical ground station architecture. However, in order to test the performances of forward error correcting codes, I need to obtain time series of irradiance fluctuations.

In Chapter 2, I presented the state of the art of optical propagation through turbulent media. I distinguished three regimes: the weak turbulence regime in which irradiance fluctuations are modeled from scintillation resulting from the Rytov approximation, the beam wander regime in which beam deflection from the optical axis due to beam wander accounts for the majority of irradiance fluctuations and finally the strong fluctuations regime in which the beam losses its coherence and breaks into multiple speckles. I also introduced the Zernike polynomials to describe the phase perturbations. Finally, I presented wave optics simulations (such as TURANDOT), which allow for precise estimation of irradiance fluctuations at the expanse of computation time and which I have considered as our reference for estimating the precision of analytic models. In Chapter 3, I introduced the different envisioned mitigation techniques, such as diversity techniques and adaptive optics, and how they are modeled in the literature.

The objective of Chapter 5 was to compare the irradiance fluctuations obtained with TURANDOT and with the analytic models proposed in the literature and listed in Chapter 2. I have observed that the analytic models presented did not allow for a good estimation of atmospheric turbulence particularly on the lower irradiances when tip/tilt tracking is considered.

This has led us to consider, in Chapter 6, another approach which assumes that the irradiance fluctuations resulted from beam wandering as well as from beam deformations such as defocus and astigmatism, as suggested by Baker [3]. Particularly, I have improved Chapter 8. Model application to error correcting codes and interleaving sizing : time series creation the modeling of the impact of defocus by taking into account the propagation through multiple atmospheric layers and not using only a single layer at ground level. Additionally, in order to be able to model an optical ground station, I have presented how to model the impact of the telescope truncation on the Gaussian beam. I have named this model the With Propagation Low Order of Turbulence model (WPLOT). I have compared the irradiance fluctuations obtained with the WPLOT model with those obtained with TURANDOT. For a weak turbulence case, modeled by an Hufnagel-Valley 5/7 C 2 n profile, the precision of the WPLOT model were convincing as there was less than 1 dB difference for the estimation of the turbulence losses on the link budget. For a stronger atmospheric profile near ground, the error was of the order of 1 to 2 dB in the case with tracking, which is sufficient even though the model limitations started to appear. In particular, the effects of beam spreading are not well taken into account, despite our modeling of defocus, which leads to the mean irradiances obtained with the WPLOT model being usually higher than with TURANDOT.

The WPLOT model has enabled us to do a sizing of an optical ground station architecture (OGS) in Chapter 7. In particular, I have been able to study the impact of numerous parameters of the OGS on the link budget (such as the waist, telescope truncation, pointahead angle, delay between measure and correction application, aperture mismatch,etc) as well as the impact of the propagation channel (impact of a stronger ground C 2 n , stronger atmospheric layers at different altitudes and outer scale). This has led to the definition of an optimal OGS providing a trade-off between size/complexity and performance. The final architecture is reminded in Table 8.1.

Waist size

8 cm Telescope diameter D T X = 2 Finally, tests on the performance of interleaving coupled with forward error correcting codes have been performed in Chapter 8 in order to estimate the capacity achievable with the chosen architecture.

Perspectives

The WPLOT model provides a description of irradiance fluctuations resulting from beam propagation through atmospheric turbulence. This description can be either statistical, through the PDFs and CDFs, as well as temporal, by providing irradiance time series.

However, the model relies on assumptions which lead to an underestimation of the impact of atmospheric turbulence effects on irradiance fluctuations. In particular, the WPLOT model only relies on tilt, defocus and astigmatism (i.e. the 5 first Zernike polynomials, neglecting piston). Because tilt accounts for approximately 90% of the phase variance [START_REF] Robert | Zernike polynomials and atmospheric turbulence[END_REF], the irradiance fluctuations are usually well modeled in a case without tilt page 128 8.4 Conclusion tracking (cf Section 6.2.3) for w 0 < r 0 . However, I have observed an underestimation of irradiance fluctuations in a tracked case. It can be assumed that this is the result of neglecting the higher orders of Zernike polynomials which will have an impact on beam deformations at satellite level.

Another limitation of the WPLOT model is that, while it has showed that tilt tracking was necessary but also sufficient in order to obtain the targeted performance in the considered cases, it does not allow the estimation of gains of using adaptive optics and correcting the higher orders of Zernike polynomials. Correcting higher orders of Zernike polynomials can be envisioned to further reduce irradiance fluctuations and their impact on the sizing of error correcting codes and interleaving. Moreover, in the stronger atmospheric turbulence conditions profile I have considered, the ground C 2 n (0) = 5.4 × 10 -14 m -2/3 is at 60% of the CDF of the ground C 2 n (0) (i.e. P(C 2 n (0) < 5.4 × 10 -14 m -2/3 )=0.6) [START_REF] Weiss-Wrana | Statistical analysis of measurements of atmospheric turbulence in different climates[END_REF]. The objective for the availability of the feeder link is 99.9%. For possible stronger ground C 2 n (0), adaptive optics can be envisioned to reduce irradiance fluctuations. Indeed, using the chosen architecture after the sizing presented in Table 8.1 with a point-ahead angle of 18.5 µrad and the stronger ground atmopsheric profile presented in Section 6.2.2 (leading to r 0 = 8 cm) with a Bufton wind profile, Chassat's correlation functions from Equation (C.10) in Appendix C show that the Zernike polynomials with a radial degree n ≤ 6 can be precompensated in order to mitigate the impact of irradiance fluctuations in Figure 8.6 (adaptive optics lead to an improvement as long as the correlation of the considered Zernike polynomials is above 50%), except for the 16 th Zernike polynomial (cf. Figure 8.5). The study of the impact of adaptive optics correction will have to be done with other tools than the WPLOT model, such as TURANDOT or through lab demonstrations (this will be the objective of the FEEDELIO project done at ONERA for the European Space Agency). In terms of sizing the optical ground station, I have considered that the wave front sensor perfectly measured the wave front arriving from the downlink and that the deformable mirror perfectly pre-compensated the uplink. However, because of the very low powers of page 129 Chapter 8. Model application to error correcting codes and interleaving sizing : time series creation the received downlink (of the order of a few nW), there can be errors on the measurement of the wave front sensor. Moreover, because we have showed that a mono-static configuration was mandatory, there can be problems due to stray light despite the fact that downlink and the uplink will have opposite circular polarizations. Finally, finding the most suitable error correcting codes (interleaving included) will be the next hot topic in the optical communication community. In order to size and test these, the IRT Saint Exupéry has developed an optical link communication testbed named ELLA. It emulates the propagation through atmospheric turbulence channel by using a variable attenuation emulator. The irradiance time series obtained with the WPLOT model will be used to pilot the variable attenuator. Later, the objective will be to substitute the variable attenuator with a true free-space optical testbed also being developed at the IRT. This testbed will be using a Digital Micromirror Device (DMD) to code the effects of atmospheric turbulence. Representativeness with respects to GEO feeder links will be key, taking into account the effects of anisoplanatism from the point-ahead angle, compared to other existing lab and terrain demonstrations [START_REF] Leonhard | Real-time adaptive optics testbed to investigate point-ahead angle in pre-compensation of Earth-to-GEO optical communication[END_REF][START_REF] Brady | Experimental validation of phase-only pre-compensation over 494 m free-space propagation[END_REF]. page 130 

φ (i) (R i ρ) = ∞ j=2 a (i) j Z j (ρ) , i = 1, 2 (C.1)
Where i describes the considered beam, a j is the coefficient associated to the Zernike polynomial Z j . Each wavefront (from beam (1) and (2)) is therefore described by all the coefficients a (1)

j 1 j 1 =2,∞ and a (2) j 2 j 2 =2,∞
. R i describes the radius of the i beam at the ground. For two of these coefficients (not belonging to the decomposition of the same wavefront), their covariance will be mathematically noted C j 1 j 2 and defined as:

C j 1 j 2 = a (1) j 1 -a (1) j 1 a j 2 -a (2) j 2 (C.2)
The functions φ (i) (Rρ) represent the differences to an unperturbed wavefront and thus their means is equal to zero because the turbulence is supposed stationary. Therefore, we can deduce that a (i) j = 0 and thus:

C j 1 j 2 = a (1) j 1 .a (2) j 2 (C.3)
Chassat has shown that the covariance between the Zernike coefficients between two beams C j 1 j 2 is equal to:

C j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) = D 1 r (1) 0 5 3 L 0 dhC 2 n (h) R 5 3 1 σ j 1 j 2 d 1→2 (h) R 1 (h) , ω 2,1 (h) , R 1 (h) L 0 (h) L 0 dhC 2 n (h) R
Where:

d 1→2 (h) = d 1→2 (h) + v (h) τ 1→2 (C.5) ω 2,1 (h) = R 2 (h) R 1 (h) (C.6) σ j 1 j 2 (ξ, ζ, Λ) = 3.895 (-1) (n 1 +n 2 -m 1 -m 2 )/2 (n 1 + 1) (n 2 + 1) ×   K 1 j 1 j 2 (Θ) ζ ∞ 0 dx.x -14 3 J n 1 +1 (x) J n 2 +1 (ζx) J m 1 +m 2 (ξx) 1 + Λ x 2 -11 6 
+ K 2 j 1 j 2 (Θ) ζ ∞ 0 dx.x -14 3 J n 1 +1 (x) J n 2 +1 (ζx) J m 1 +m 2 (ξx) 1 + Λ x 2 -11 6   (C.7) D 1 = 2 * R 1 (0) (C.8)
Where n i and m i are respectively the radial degree and the azimuthal frequency. J k is the Bessel function of the k th order. Θ is the angle defined in each of pupils P (i) between the line resulting from the intersection of the pupil and the plane defined by the two optical axes and the axis taken as origin of θ in the coordinate system (ρ, θ) defined for the Zernike polynomials (usually, it is possible to have Θ = 0). The term K 1 j 1 j 2 and K 2 j 1 j 2 are given by Table C.1 and Table C.2: Table C.1: Definition of K 1 j 1 j 2 as a function of j 1 and j 2 .

K 1 j 1 j 2 m 1 = 0 m 1 = 0 j 1 even j 1 odd m 2 = 0 1 √ 2 cos m 1 Θ √ 2 sin m 1 Θ m 2 = 0 j 2 even (-1) m 2 √ 2 × cos m 2 Θ (-1) m 2 × cos (m 1 + m 2 ) Θ (-1) m 2 × sin (m 1 + m 2 ) Θ j 2 odd (-1) m 2 √ 2 × sin m 2 Θ (-1) m 2 × sin (m 1 + m 2 ) Θ (-1) m 2 × cos (m 1 + m 2 ) Θ
To compute the covariance C j 1 j 2 , it is usually discretized along the propagation path and the function σ j 1 j 2 is computed at each considered altitude. The value d 1→2 (h) is defined in Figure 3.4: page 140 Table C.2: Definition of K 2 j 1 j 2 as a function of j 1 and j 2 . (s Finally, v (h) is the wind profile and τ 1→2 is the time between when the instant the downlink crosses the layer and the instant the uplink crosses the layer back.

j 1 j 2 = sign (m 1 -m 2 ) if m 1 -m 2 is odd, else s j 1 j 2 = 1.) K 2 j 1 j 2 m 1 = 0 m 1 = 0 j 1 even j 1 odd m 2 = 0 0 0 0 m 2 = 0 j 2 even 0 s j 1 j 2 cos ((m 1 -m 2 ) Θ) s j 1 j 2 sin ((m 1 -m 2 ) Θ) j 2 odd 0 -s j 1 j 2 sin ((m 1 -m 2 ) Θ) s j 1 j 2 cos ((m 1 -m 2 ) Θ)
The ponderation functions σ j 1 j 2 (ξ, ζ, Λ) are key to compute the covariance functions. The parameters are equal to:

ξ = d 1→2 (h) R 1 , ζ = ω 2,1 (h) = R 2 (h) R 1 (h) and Λ = R 1 (h) L 0 (h) (C.9)
ξ represents the spatial deviation between the two beam paths, ζ the geometrical differences between the two beams and Λ the effects of the outer scale.

Sensibility to the atmospheric profile As seen in Equation (C.4), the turbulence profile is normalized. This means that the influence of each layer in the computation of C j 1 j 2 doesn't depend on the absolute value C 2 n (h) but on its relative value compared to the value of the other layers. Therefore, it depends solely on the atmospheric profile. The intensity of the total turbulence intervenes in the factor r (1) 0 -5 3 and affects evenly the covariance values. Moreover, this ponderation is independent of the point-ahead angle. This leads Chassat to introduce the correlation function Γ j 1 j 2 which is independent from r 0 and defined by: page 141

Γ j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) = C j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) C j 1 j 2 (0, R 1 (h) , R 2 (h) = R 1 (h) , C n (h) , L 0 (h)) (C.10)
Which can therefore be written:

Γ j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) = L 0 dhC 2 n (h) R 5 3 1 σ j 1 j 2 d 1→2 (h) R 1 (h) , ω 2,1 (h) , R 1 (h) L 0 (h) L 0 dhC 2 n (h) R 5 3 1 σ j 1 j 2 0, 1, R 1 (h) L 0 (h) (C.11)
Equations (C.10) and (C.11) are in the case of merged apertures of same diameter at ground level. In the case of separate apertures, the correlation function is:

Γ j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) = C j 1 j 2 d 1→2 (h) , R 1 (h) , R 2 (h) , C n (h) , L 0 (h) C j 1 j 2 (0, R 1 (h) , R 1 (h) , C n (h) , L 0 (h)) × C j 1 j 2 (0, R 2 (h) , R 2 (h) , C n (h) , L 0 (h)) (C.12)
Sensibility to Zernike modes Chassat computes the variance of the Zernike coefficients in the case of a single aperture and no point-ahead angle by taking ξ = 0 and ζ = 1. From Equation (C.7) and taking into account that J k =0 (0) = 0, it is possible to deduce that the covariance will be different from 0 only for coefficients for which m 1 -m 2 = 0. Knowing that J 0 (0) = 1, it is possible to obtain:

σ j 1 j 2 (0, 1, Λ) = 3, 895 (-1) (n 1 +n 2 -2m)/2 (n 1 + 1) (n 2 + 1) ×   ∞ 0 dx.x -14 3 J n 1 +1 (x) J n 2 +1 (x) 1 + Λ x 2 -11 6   (C.13)
The outer scale will not be taken into account and will be considered infinite. Thus, Λ = 0 and: Where Γ here represents the "Euler gamma" function and the notation used is equivalent to: Next are approximations:

σ j 1 j 2 (0, 1, 0) = 2, 256 (-1) (n 1 +n 2 -2m)/2 (n 1 + 1) (n 2 + 1) × Γ n 1 +n 2 2 -5 6 n 1 +n 2 2 + 23 6 , n 2 -n 1 2 + 17 6 , n 1 -n 2
• For Zernike polynomials with a radial degree n = 1 (tip/tilt):

σ jj 0, 1, D 2L 0 = 0.451 × 1 -0, 77 D L 0 1 3 + 0, 09 D L 0 2 -0.054 D L 0 7 3 (C.18)
• For Zernike polynomials with a radial degree n = 2:

σ jj 0, 1, D 2L 0 = 2.34 × 10 -2 1 -0, 39 D L 0 2 + 0.27 D L 0 7 3 (C.19)
• For Zernike polynomials with a radial degree n ≥ 3: 2L 0 for the polynomials j with a radial degree n ≤ 4 in function of D/L 0 . When decreasing the outer scale L 0 , the variances of the Zernike coefficient also decrease. This decrease is particularly important for the tip/tilt. This therefore means that a smaller outer scale is equivalent to a lower tip/tilt variance and thus reduces the impact of beam wander. Appendix E

σ jj 0, 1, D 2L 0 = 0.756 (n + 1) × Γ n -5 6 n + 23

Résumé en Français

Les travaux présentés dans ce manuscrit ont porté sur la compensation des effets de la turbulence atmosphérique sur un lien allant du sol vers un satellite géostationnaire.

Dans le Chapitre 1, après une brève présentation des démonstrations de liens optiques réalisées, j'ai présenté une description du lien optique à partir du bilan de liaison. Le critère de performance de la liaison est la puissance minimale détectable 95% du temps. Cette description m'a amené à définir le terme de pertes dû à la turbulence atmosphérique L T U RB . Pour déterminer ce terme, une connaissance précise de des basses puissances est nécessaire, en particulier dans les bas pourcentages de la fonction de répartition (ou CDF, pour Cumulative Density Function). Le bilan de liaison sera utile pour réaliser le dimensionnement d'une station sol. De plus, pour être capables de tester les performances des codes correcteurs d'erreurs, l'obtention de séries temporelles se montre indispensable.

Dans le Chapitre 2, j'ai présenté l'état de l'art de la propagation d'un faisceau optique à travers un milieu turbulent. J'ai distingué trois régimes : celui de la faible turbulence où les fluctuations de puissances détectées sont modélisées à partir de la scintillation résultant de l'approximation de Rytov, le régime dit « beam wander » où les déviations du faisceau de l'axe optique à cause de la réfraction du faisceau dans la turbulence entrainent la majeur partie des fluctuations de la puissance détectée et enfin, le régime de forte turbulence où le faisceau perd sa cohérence spatiale et se casse en de multiples speckles. J'y ai également introduit les polynômes de Zernike pour décrire les perturbations de phase. Enfin, j'ai présenté la méthode de propagation de Fresnel, utilisée dans des logiciels de simulation tels que TURANDOT (développé par l'ONERA). Cette méthode permet une estimation précise des fluctuations de la puissance détectée au prix de longs temps de calculs. J'ai considéré cette méthode comme la référence lorsque j'ai voulu valider les modèles analytiques. Dans le Chapitre 3, j'ai introduit les différents moyens de compensation envisagés, comme les techniques de diversité et l'optique adaptative.

L'objectif du Chapitre 5 a été de comparer les fluctuations de puissance obtenues avec TURANDOT et le modèle analytiques existants dans la littérature présentés dans le Chapitre 2. Cela m'a permis de montrer que ces modèles analytiques n'estimaient pas les effets de la turbulence atmosphérique sur la puissance détectée avec une précision suffisante, particulièrement dans des cas avec prise en compte de la pré-compensation du tip/tilt. Cela nous a conduit à considérer, au Chapitre 6, à utiliser une méthode qui prend en compte à la fois des déviations du faisceau ainsi que des déformations du faisceau sous l'effet du defocus et de l'astigmatisme, comme suggérer par Baker [3]. J'ai amélioré l'estimation de l'impact du terme de defocus en prenant en compte la propagation à travers de multiples couches et non pas seulement une seule couche au sol. J'ai également pris en compte les effets liés à la troncature du faisceau par le télescope de la station sol. J'ai nommé ce modèle WPLOT (pour With Propagation Low Order of Turbulence).

Ce modèle a été validé en le comparant avec TURANDOT. Dans un cas de turbulence jour faible, modélisé par un profil de C 2 n Hufnagel-Valley 5/7, nous avons observé moins de 1dB d'écart pour l'estimation de la puissance minimale détectable 95% du temps, que ce soit avec ou sans prise en compte de la pré-compensation du tip/tilt. Pour un profil atmosphérique avec une couche au sol plus forte, l'erreur était de l'ordre de 1 à 2 dB dans le cas avec pré-compensation du tip/tilt, ce qui suffit malgré le fait que les limitations du modèle commencent à apparaitre. Les effets de l'étalement de la tâche, malgré notre prise en compte du defocus, sont sous-estimés, ce qui signifie que les puissances moyennes obtenues avec WPLOT sont souvent supérieures à celles obtenues avec TURANDOT.

WPLOT nous a permis de réaliser une étude de dimensionnement de l'architecture dans le Chapitre 7. Cela m'a permis d'étudier l'impact de nombreux paramètres de la station sol optique sur le bilan de liaison (comme le waist du faisceau, la troncature du faisceau, la configuration de la compensation, etc) ainsi que l'impact du canal de propagation (en fonction de la force du C 2 n au sol, des couches plus fortes en altitude et de l'échelle externe). Cela nous a conduit à la définition de l'architecture d'une station sol optimale issue d'un compromis entre la taille/complexité et la performance. L'architecture finale retenue est présentée dans le Tableau E.1.

Taille du waist

w 0 = 8 cm Diamètre du télescope D T X = 2 An optical link based on a multiplex of wavelengths around the 1.55-μm spectral band is foreseen to be a valuable alternative to the conventional radio-frequencies feeder links for nextgeneration broadband geostationary satellites, targeting a capacity of around 1 Tbps. In addition to cloud obstruction, one of the major limitations to optical links is the presence of atmospheric turbulence during the first 20 km of the propagation. In this paper, we will focus on the ground-to-satellite link, or uplink.

During its propagation from a ground station to a geostationary satellite, the optical beam is deflected (beam wandering) and possibly distorted (beam spreading) by atmospheric turbulence. It induces strong fluctuations of the detected telecommunication signal, thus increasing the bit error rate (BER). To correct these effects, the beam characteristics need to be modified at the emission (pre-compensation). The envisaged technique is adaptive optics (AO) in which a servo system modifies in real time the emitted wavefront in order to make it recover a plane waveform when reaching the satellite, using the reciprocity principle as envisioned by Fried and Yura [1]. To do so, the beam coming from the satellite will be used to estimate the perturbations that need to be applied to the emitted wavefront.

However, there is a point-ahead angle between the downlink and the uplink in order for the uplink to intercept the moving satellite at the position where it will be when the pulse arrives. This means that the turbulence effects experienced by the downlink and the uplink are slightly different, leading to only partial compensation. Other effects also have an impact on the quality of the compensation, such as the optical ground station architecture through the beam size and aperture mismatch.

Because of the turbulence-induced irradiance fluctuations (the power detected by the satellite's terminal), the signal modulation detection and the link budget are disturbed. To evaluate the degradation, we need to estimate the probability density function and time series of the received signal. Wave optics simulations (in this paper, we will use TURANDOT [2]) permit us to obtain very precise results for the irradiance fluctuations statistics as well as time series. However, they require a lot of computational power due to the requirements on the phase screens' sampling and sizing in the case of a time series [3]. This leads to long-duration simulations. Wave optics simulations are therefore not practical for realizing sensitivity studies with many parameters of the optical ground station and propagation channel or a long time series. Hence, there is a need to obtain similar results to wave optics simulations while requiring less computational power.

There have been many studies aiming to give a thorough description of the irradiance fluctuations on a ground-tosatellite propagation. These studies' objectives are usually to present analytical expressions for the scintillation index (the normalized irradiance variance), the irradiance probability density functions, and even for the probability of fades ( [4,5]). These studies usually rely on the Rytov perturbation method (RPM) [6]. However, discrepancies appear for ground-to-space paths that are usually attributed to beam wander [7,8]. Moreover, the temporal aspects of the irradiance fluctuations are usually described by the number of fades per second and the mean fade time. With these analytical approaches, it is not possible to create irradiance series and test the performance of error correcting codes. In order to obtain irradiance time series, we have relied on the existing work regarding the impact of the temporal effects of atmospheric turbulence on beam propagation ( [9]).

The objective of this paper is to present a model that performs time series of irradiance fluctuations as detected by the satellite, with and without the tracking system. In order to do so, we will base our work on an existing model from the literature that gives statistical results of irradiance fluctuations in the case of a beam propagating from the ground to a geostationary satellite [10]. This model is called the low order of turbulence (LOT) model. We have compared the LOT model's results (cumulative density functions and temporal power spectral density functions) with wave optics simulations to discuss its validity. We have demonstrated that the LOT model is not as accurate as we need due to its lack of modeling the propagation of a beam through multiple phase screens. We propose a method to improve and expand it in order to take into account the tracking and obtain time series of irradiance fluctuations. The final model is called the WPLOT model (with propagation low order of turbulence model). All the models to which we will refer throughout the paper are described in Appendix A.

The WPLOT model will depend on the parameters of the optical ground station and of the propagation channel and will take into account the inherent errors within tracking. It should permit us to optimize many parameters of an optical ground station architecture. The parameters required to evaluate the turbulence effect on the link performance are introduced in Section 2. In Section 3, the developed model is described. Results obtained with this model are compared with those obtained with wave optics simulations in Section 4. Finally, in Section 5, we present results when tracking is taken into account.

MODEL REQUIREMENTS

Thanks to the optical link budget, an estimation of the general performance of the system can be assessed by estimating the received power detected by the satellite. On the other hand, knowledge of the temporal irradiance fluctuations will permit us to study the viability of envisioned error correction codes coupled with interleaving.

A. Optical Link Budget

The optical link budget gives an estimation of the received power P R as a function of the emitted power P E , taking into account all losses during the beam propagation: P R G R L TURB L OTHERS G E P E . L TURB are the losses induced by the irradiance fluctuations due to turbulence. L OTHERS are those induced by other contributors such as transmission losses through the emitter and receiver, atmospheric absorption and scattering losses, cloud margin, fiber injection, and the free-space losses. G E and G R are the gains at the emission and reception, respectively, taking into account the diameters of the telescopes at the emission and on the satellite (and the waist size at the emission).

Atmospheric turbulence is a random phenomenon and thus implies that detected irradiance fluctuations are random as well. A statistical approach is therefore considered, focusing on one quantity: the irradiance threshold I T defined by estimating the probability PI > I T 0.95, where I is the instantaneous detected irradiance. Finding I T provides the loss term L TURB due to atmospheric turbulence at a 5% probability of the cumulative distribution function. The other losses (L OTHERS , L FS ) in the optical link budget are set and static. The gains G E and G R can be easily determined [11].

In order to find the irradiance threshold I T , we need to have access to the irradiance cumulative density function and thus to the irradiance probability function.

B. Temporal Fluctuations

The irradiance threshold is defined at a 5% probability of the cumulative distribution function. This means that the instantaneous irradiance will spend 5% of the time below the threshold. During these periods, interleaving (coupled with the error correction codes) will permit us to mitigate the losses and significantly improve the BER. In order to optimize the codes, there is a need for realistic irradiance time series in order to estimate the probability density functions of the fading times, the number of fadings per second, etc. These statistics will be obtained with long time series of irradiance.

In conclusion, the model we aim to develop must be able to provide not only the cumulative density functions of the irradiance fluctuations but also be able to generate irradiance time series.

MODEL DESCRIPTION

We will consider a ground-to-satellite optical link that corresponds to a weak turbulence regime, for which the scintillation index (σ 2 I hI 2 i-hIi 2 hIi 2 ) is lower than 1. Baker describes different regions of distinct behavior for Gaussian beam on-axis weak scintillation [10]. In one region, named D 1 , the Rytov perturbation method (RPM) fails to give an accurate description of the beam-wave scintillation [12]. Baker proposes to bound this region using Eq. (B4) with the metrics N L and N τ defined, respectively, in Eqs. (B1) and (B2) in Appendix B. These bounds imply that the majority of the turbulence is in the near field of the beam while the satellite is in the far field. Due to the distance between the ground and the geostationary satellite (36,000 km), the bound on N L is never predominant over the bound on N τ , which therefore bounds the minimum waist size w 0 at the emission as a function of the turbulence strength distribution along the path.

A. Low-Order Turbulence Solution

Baker proposes to describe the irradiance fluctuations by estimating the deformations of a Gaussian beam propagating through the atmosphere with the first-and second-order Zernike polynomials [13,14]: tip/tilt, defocus, and astigmatism. This is the LOT solution. The LOT's major results are recalled in Appendix B. This solution is equivalent to integrating the refractive index fluctuations present along the path into a single phase screen placed at the transmitter (Fig. 1).

Effects of Propagation and LOT Solution

The LOT solution assumes that the turbulence can be integrated in a single phase screen placed at the transmitter prior to propagation. This assumes that the effects of the propagation through multiple atmospheric layers are negligible inside the turbulence volume. In order to validate this assumption, we have compared in Fig. 2 the detected irradiance results obtained with the LOT solution with results obtained after Fresnel propagation through phase screens evenly distributed along the propagation path. The phase screens are constructed as a linear combination of tip, tilt, defocus, and astigmatism. The Zernike coefficients are obtained from the Noll variances in Eqs. (C1) and (C2) for the atmospheric parameters presented in Section 4. For this study, we will consider a Gaussian beam with a waist size w 0 8 cm. This leads to the metrics N L 3.6 × 10 -4 < 1 and N tau 9.4N 2 tau ≫ 1 being well within the D 1 region.

To illustrate the effects of the propagation through multiple phase screens, we will consider only a two-layer atmosphere. The first layer is placed at the transmitter while the second layer is at a 10-km altitude. This will be called the two-layer wave optics (2L-WO) simulation. The objective of the 2L-WO simulation is to highlight the effects of the propagation through multiple atmospheric layers using the hypothesis of the LOT model that tip/tilt, defocus, and astigmatism are sufficient to describe the beam deformations resulting from atmospheric turbulence in the D 1 region. Using only two layers is sufficient to make these effects appear.

In order to keep with the different used models in this paper, Table 1 summarizes them with their specificities in Appendix A.

We observe, in Fig. 2, a good correlation of the results even though some differences appear. Studying the effects of each optical aberration separately, we can see that for tip/tilt and astigmatism there is a near-perfect fit whether one or more layers are used. However, differences appear for the defocus aberration, as can be seen in Fig. 3.

An irradiance threshold appears for the LOT model compared to the 2L-WO simulation. This is because the focusing effects are limited by diffraction when using only one phase screen. The volume effects from propagating through multiple phase screens lead to a more focused beam than when using only one phase screen.

Figure 4 compares the probability density functions (PDF) of irradiance for cases where only defocus is applied at 1, 2, or 10 layers. It shows that using only one layer greatly reduces the dynamic of irradiance fluctuations: the PDF for only one layer is narrower than for multiple layers. However, the differences between 2 or 10 layers are not significant. This means that at least two atmospheric layers should be used.

In order to take into account the propagation through multiple phase screens, we propose to use the ABCD matrix propagation method [4], where the ABCD matrix is obtained from

A B C D 1 L prop 0 1 Y N i 1 0 Δκ i 1 1 Δz i 0 1 ; (1) 
where Δκ i is the curvature (in meters -1 ) resulting from defocus at the i th layer, Δz i is the distance between two successive phase screens i and i 1, and N is the total number of considered layers. L prop is the remaining distance to the satellite: L prop L -P N i Δz i , where L is the distance between the ground and the satellite (L 36; 000 km). Usually P N i Δz i is of the order of 20 km.

Consider the following initial complex radius of curvatures: where w 0 is the waist size at emission, λ is the wavelength, and c 5;6 are the curvatures resulting from astigmatism [10].

1 q x0 c 2 5 c 2 6 1 2 λi πw 2 0 ; (2) 1 q y0 -c 2 5 c 2 6 1 2 λi πw 2 0 ; (3) 
Using the ABCD matrix, the complex radius curvatures after propagation through multiple phase screens are

q x Aq x0 B Cq x0 D : (4) 
We present the results in the x direction, but the method is exactly the same in the y direction. This leads to a modified estimation of the beam radii w x and w y compared to Baker's approach [10],

w x ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi λ πI1∕q x s ; ( 5 
)
where I means the imaginary part. These beam radii are implemented in the LOT solution presented in Eq. (B5). This permits us to obtain the same irradiance estimation as wave optics propagation through multiple screens when only defocus is considered. We call this model WPLOT (for with propagation low order of turbulence).

A comparison between the WPLOT model and the 2L-WO simulation is given in Fig. 5. The WPLOT model considers the same two layers as the 2L-WO simulation. We observe that the higher irradiances are much better modeled. For lower irradiances-which are the most interesting ones-the results were already convincing. It is because these lower irradiances are principally due to beam wandering. The remaining errors are due to neglecting the effects of propagation through multiple phase screens for astigmatism. For tilt, the contributions of each layer can be summed while keeping a perfect fit in the far field regardless of the number of atmospheric layers. This approach taking into account the propagation through multiple phase screens does not significantly change the estimation of the irradiance threshold at 5% of the cumulative density functions (CDFs) in the case without tracking. However, it will significantly improve the validity of the results when tracking is taken into account.

LOT Applicability

The LOT solution does not take into account Zernike polynomials higher than astigmatism. Using Noll's results for phase variance [15] for a plane wave, the phase variance corresponding to higher orders is Analytic propagation of Gaussian beam (w x and w y estimation). WPLOT Multiple phase screens obtained from the linear combination of tip/tilt, defocus, and astigmatism. They are distributed along the propagation path.

Analytic propagation of defocus leading to another estimation of w x and w y .

L-WO Two phase screens obtained from the linear combination of tip/tilt, defocus, and astigmatism (one at ground layer and one at a 10 km altitude).

Fresnel propagation between the phase screens and up to the satellite. TURANDOT Multiple phase screens obtained from a von Kármán spectrum and distributed along the propagation path.

Fresnel propagation between the phase screens and up to the satellite. 

where r 0 is the Fried parameter [16], d 0 2w 0 , and j is the number of the considered Zernike polynomial (in our case, all the polynomials of higher order than astigmatism). Statistical equivalence between the model and a case where the whole phase is taken into account is achieved when there is less than 0.1 wave squared difference (within a circle of radius w 0 ) between the two [10]:

σ δϕ j > 6 ≤ 2π 10 2 : (7) 
This adds a constraint on the maximum waist size of the beam:

w 0 ≤ 1.5r 0 : (8) 
This condition ensures that the higher-order ( j > 6) Zernike coefficients' impact on the beam are negligible.

B. Telescope Truncation-Far-Field Angle

The model takes into account the parameters of the optical ground station. In particular, one of those parameters is the truncation of the infinite Gaussian beam by the telescope. The truncation will have two effects. The first one is that it will reduce the transmitted power by the telescope [11]. The second one is that it will add a diffraction effect in the far field. The effects of the diffraction of a Gaussian beam by a circular aperture usually lead to a convolution whose result is not easy to use. Because we consider telescope sizes that will always be larger than the Gaussian beam diameter at emission (2 × w 0 ), it is usually considered that the effects of the diffraction of the beam by the aperture will only slightly modify the shape of the beam, and, in particular, it will become wider while keeping its Gaussian shape. We can use the results from Belland and Crenn [17], acquired using energy conservation, to obtain a simple expression of the size of the diffracted waist by the telescope in the case of a propagation without atmospheric turbulence:

w L λL πw 0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ffi 1 -exp - 2R 2 Tel w 2 0 r 1 -exp - R 2 Tel w 2 0 ; (9) 
where R Tel is the radius of the telescope. To take into account the truncation effect of the emitter on the beam size, the farfield diffraction expression in Eq. (B7) is replaced by the waist expression of Eq. ( 9). This leads to a modified expression of the waist in the satellite plane, in the case of Baker's LOT approach, w fx;yg w 0 × 

This result can lead to an alternate effective beam waist D eff at 1∕e 2 in irradiance at the emission in order to take into account the effects of the diffraction of the Gaussian beam by a circular aperture. In this paper, we will use Yura's result [18] for the effective beam diameter at 1∕e 2 in irradiance at the emission, which is given by

D eff d 0 tanhD 2 Tel ∕2d 2 0 1 2 : (11) 
This effective beam diameter yields accurate results as long as d 0 < D Tel (where d 0 2w 0 ). The encircled power distributions are valid to better than approximately 2%.

However, the strength of the Zernike polynomials' coefficients still has to be estimated for a beam of diameter size d 0 at the emission. Both the methodologies from Yura and Belland et al. yield similar results. In the rest of the paper, we will consider only the methodology from Yura, which is simpler to implement.

The improvement of taking into account the truncation of the beam by the telescope in the WPLOT model can be observed in Fig. 6. The results are compared to the result from a 2L-WO simulation taking into account a truncation.

Taking into account the truncation of the Gaussian beam reduces the maximum irradiance that can be reached (at the center of the Gaussian beam) while increasing the width of the beam. This means that at the extremities of the Gaussian beam, when beam wander shifts the Gaussian by a distance equivalent to the beam size, the detected irradiance with a truncated Gaussian beam will be slightly higher than in a no-truncation case. The results show that assuming that the shape of the beam is still Gaussian is relevant.

C. Presentation of the Model Process

There are two aspects to the process of the WPLOT model: the estimation of the Zernike coefficients and the propagation through multiple phase screens. We have shown in Section 3.A.1 that propagation through multiple phase screens essentially impacts defocus, and we have proposed a solution to model these effects. For tilt and astigmatism, the turbulence can be integrated and placed at the transmitter prior to propagation.

In a no-tracking case, the random draws for tilt and astigmatism can be obtained using the variances given in Eqs. (C1) and (C2) in Appendix C. These variances are estimated over the whole turbulence volume and assume the beam can be modeled as a plane wave. This results from our assumption that the majority of the turbulence is located close to the emitter, where the beam is collimated. If tracking is taken into account, then the estimation of the correlation has to be done over the whole turbulence volume, using multiple layers, because the decorrelation between the downlink and the uplink is usually a function of the altitude. Chassat's correlation functions [19] provide an analytic estimation of the correlation between two beams calculated over the whole turbulence volume and can permit us to estimate the tilt contribution of each layer. These contribution can than be integrated and placed at the transmitter prior to propagation.

For defocus, Zernike polynomials have to be estimated for each atmospheric layer. The turbulence strength division between these layers is made to keep the same overall phase variance. In Eq. (C2), this implies a change in the estimation of the Fried parameter r 0 , which is now estimated for turbulence volume corresponding to each layer. In our analysis, we will assume that the beam is collimated during its propagation through atmospheric turbulence. This means that we will consider the initial beam diameter d 0 for each atmospheric layer.

We assume that the Zernike coefficients are Gaussian random variables with zero mean [15] and that they are decorrelated [20].

Times series of each Zernike coefficient can be obtained from their respective temporal PSDs. Their PSDs are wellknown in the literature, especially in the case of plane waves [9] when using Taylor's hypothesis of frozen turbulence, and are given in Eq. (C3). The time series of the different Zernike coefficients can be obtained from Eq. ( 12):

a i t Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi W a j f n q e iϕ n e 2iπf n :t df n ; (12) 
where ϕ n is the phase attributed to the spectral component at the frequency f n , and W a j f is the temporal PSD of the a j coefficient.

The tilt Zernike coefficients a f2;3g are transformed into an angular deviation θ fx;yg using Eq. (C5), the defocus Zernike coefficient a 4 into the defocus curvature Δκ using Eq. (C6), and the Zernike astigmatism coefficients a f5;6g into the astigmatism curvatures c f5;6g using Eq. (C7). The final step is to insert the obtained Zernike coefficients described in Appendix B with the waist solution from Eq. (10).

MODEL VALIDATION

We have validated our model by comparing its results to wave optics simulations (TURANDOT model [2], dedicated to ground-to-space optical communications). TURANDOT models the propagation of a beam through a realistic atmospheric turbulence. The phase screens are obtained from a von Kármán spectrum and the sampling of the atmospheric turbulence is done using 24 atmospheric layers nonuniformly distributed with their locations optimized. For the WPLOT model, we are going to consider the same atmospheric profile as TURANDOT, i.e., 24 layers with the same distribution. Because we focus on the lower irradiances, we need an important number of samples in order to obtain a sufficiently precise estimation of the lower percentages of the irradiance CDFs. However, with TURANDOT, we are limited by the computation time. In our study, we have taken 2000 samples for each case considered with TURANDOT, and this led to a computation time of approximately 5 h each time. On the other hand, with the WPLOT model, we are able to consider a very large number of draws (chosen arbitrarily at 250,000 samples) in approximately 1 min. 

In this paper, we consider C g 1.7 × 10 -14 m -2 3 and v 21 m∕s, which results in a r 0 calculated at zenith equal to 19 cm for a 1.55-μm wavelength. The elevation angle will be considered equal to 45°, making the effective r 0 equal to 15 cm. The outer scale L 0 is fixed by the wave optics simulations; we have taken the outer scale to be equal to TURANDOT's phase screens' sizes, which gives L 0 2.5 m in our case.

The temporal effects are modeled using Taylor's hypothesis of frozen turbulence and a Bufton wind profile [21], described in Eq. ( 14), in which the atmospheric layers move with a 5 m/s speed at ground level and with a 30 m/s speed at an altitude around 12.5 km,

V h S G S P e - À h-H P W P Á 2 ; ( 14 
)
in which we have taken S G 5 m∕s, S P 25 m∕s, H P 12448 m, and W P 4800 m. We will consider only the case in which the wind moves in the x direction for all layers. Extension to the wind moving in multiple direction is straightforward ( [9,19]).

Using these atmospheric conditions and Baker's conditions on N L and N tau presented in Eq. (B4) to define the D 1 region lead to a minimum waist size of 4.9 cm [and a maximum waist size of 4.2 m, but our assumptions on phase variance already impose the maximum bound w 0 ≤ 1.5r 0 22.5 cm presented in Eq. ( 8)].

B. Average Irradiance and Scintillation Index

In this example, we will consider the telescope diameter D T X 2 3 2 w 0 , which is a value often proposed in the literature [22]. It optimizes the losses due to beam truncation and beam diffraction. We have compared the mean detected on-axis irradiance (Fig. 7) and on-axis scintillation index σ 2 I (Fig. 8) obtained with wave optics simulations and our model as a function of the waist size at emission.

There is good agreement between both TURANDOT and WPLOT model, which tends to validate the WPLOT model.

C. Cumulative Density Function

We also compare the Cumulative Density Functions (CDF) obtained with TURANDOT simulations and WPLOT model. Some examples are given in Figs. 9-12 for waist sizes of 5, 8, 11, and 14 cm.

There are some differences between our model and the results coming from TURANDOT. However, there is a good fit for the lower irradiances, which are the interesting parameter for our study. The threshold at 5% of the CDF for different waist sizes at the emission is given in Fig. 13.

We observe a very good fit for the smaller waists, but a gap starts to appear for waist sizes bigger than 9 cm. The error on the estimation of the threshold starts to be bigger than 1 dB for waists bigger than 12 cm. There can be multiple reasons for this gap. It might mean that the impact of higher-order phase effects, such as spherical aberration or coma for example, which are not taken into account, are no longer negligible. This would mean that the condition from Eq. (8) may not be sufficiently strong.

N.B.: The envisioned diameters for the emitting telescopes will probably not be bigger than 40 cm. Therefore, a waist size of 14 cm is the maximum that needs to be considered in a case where the emitting telescope diameter D T X is equal to 2 3 2 w 0 .

D. Temporal Power Spectral Density

We have also compared the on-axis irradiance temporal PSD obtained with TURANDOT and the WPLOT model. These temporal PSDs are obtained from time series estimated over a duration of 4s with a 2500 Hz sampling. Some examples are given in Figs. 14 and 15 for waist sizes of 8 and 14 cm.

Both figures show good agreement between the WPLOT model and TURANDOT. We observe a floor on the temporal PSD obtained with TURANDOT that resembles aliasing effects. It would mean that the phase screen sampling of TURANDOT is insufficient. However, since these effects appear after the cutoff frequency, we have not looked further into this subject. As the WPLOT model is much faster than TURANDOT, it is able to create much longer time series in reasonable time. For example, the 4-s time series with 2500 Hz samplings considered were obtained in a few seconds with the WPLOT model, whereas it took around a day with TURANDOT. Because we have shown that we have a precise estimation of the irradiance threshold at 5% of the irradiance CDF (cf. Fig. 13), the fact that we can obtain very long time series means that the WPLOT model can be used to study the fade statistics. Most models found in the literature do not take into account the impact of the beam truncation ( [5,8,22]). However, we show that its influence is not always negligible, and it is therefore an important parameter to take into account if the objective is to optimize the architecture of an optical ground station. In Fig. 16, we use the scintillation index as an indicator of the influence of the beam truncation as a function of the emitting waist size. The beam truncation is D T X 2 3 2 w 0 . We therefore observe that if the beam truncation is not taken into account, there is an overestimation of the scintillation index. This is because the waist size at satellite level is smaller. Therefore, beam wander induces more important irradiance fluctuations.

Comparison of the WPLOT Model to the Rytov Perturbation Method

We justify here our choice of Baker's model [10] as the base for our model by comparing it with other usual models in the literature where the defocus and the astigmatism are not taken into account and rely for the higher orders on the Rytov approximation ( [5,8,22]). In Fig. 17 scintillation results from the LOT model to results obtained from Dios's methodology [8]. In order to take into account the truncation, we have taken the waists obtained from Yura [see Eq. ( 11)].

We observe that results from Dios slightly overestimate the scintillation index compared to TURANDOT and the WPLOT model. This proves that the effects of defocus and astigmatism cannot be neglected. Moreover, using the Rytov perturbation method does not permit us to compensate for the effects of defocus and astigmatism on irradiance fluctuations.

MODEL APPLICATION TO TRACKING

Taking into account tracking within the model is pretty straightforward using the literature ( [9,19]). The important results are presented in Appendix D.

It is now possible to compare the statistical results as well as the time series when tracking is added. We present in this section the results obtained for a specific example in which the point-ahead angle is considered equal to 18.5 μrad. The delay between the measurement on the downlink and the pre-compensation of the uplink is considered equal to 4 ms. Therefore, tracking will not be perfect. The pupils of downlink and uplink are merged at ground level. The atmospheric parameters are the same as in Section 4.

While the limitations on the quality of the correction due to the point-ahead angle will always be present, the limitations due to the delay can easily be dealt with by increasing the bandwidth of the correction loop. In the considered case, the tilt correlation obtained from Chassat's functions is equal to 0.86 for a waist size of 8 cm. This leads to a residual tilt variance of 0.03 rad -2 , which then leads to a standard deviation of the displacement in the satellite plane of 38 m. If the delay before the correction is zero, then the tilt correlation becomes 0.9, the residual tilt variance becomes 0.02 rad -2 , and the standard deviation of the displacement is 33 m. Compared to the beam radius in the satellite plane, equal to 254 m, this 5-m displacement error is negligible, which means that there is no need for a lower delay time.

A. Validation

We have compared the results obtained with the WPLOT model and TURANDOT when taking into account tracking.

Figure 18 shows the estimation of the threshold at 5% of the CDF between TURANDOT and the WPLOT model for different waist sizes at emission. This shows that the estimation of the threshold is with a precision lower than 1 dB. Figure 19 shows the temporal PSDs of irradiance fluctuations for the specific case of an 8-cm waist size at emission obtained with TURANDOT and the WPLOT model. We observe that there is a good match. 

B. Improvement on Link Budget

We have compared the mean detected irradiance (Fig. 20) and scintillation index σ 2 I (Fig. 21) with and without tracking as a function of the waist size at emission using the WPLOT model. In this section, we will consider two layers.

The results are consistent with what one would expect: tracking the tip/tilt significantly reduces the scintillation and increases the mean irradiance. These effects are stronger for the larger waist sizes at the emission than for the lower waist sizes.

We can also observe the evolution of time series with and without tracking in Fig. 22. With tracking, we observe the disappearance of the very low irradiance fadings. This means that, if we keep the irradiance threshold at 5% of the CDF, the fading times are going to be shorter but more numerous. It also shows the significant increase of the irradiance threshold at 5% of the cumulative density function and therefore the important decrease of the losses due to turbulence L TURB , as can be seen in Fig. 23.

CONCLUSION

We have presented that which performs time series of the irradiance fluctuations induced by the atmospheric turbulence on the axis in the satellite plane in the case of uplink. Moreover, this model is directly linked to the optical ground station characteristics and turbulence profile. Compared to wave optics simulation (TURANDOT), the computation time is considerably reduced (approximately 5 h to obtain 2000 samples using TURANDOT while the WPLOT model provides the results for 250,000 samples in less than a minute). This allows sensitivity studies and longer time series generation.

Because we focus on a ground-to-satellite propagation case, we have been able to make justified hypotheses that significantly simplify our model by restricting its range of validity to telescope diameters between 10 cm and 40 cm. This model has been validated by comparing it to wave optics simulations.

The model takes into account the different parameters of the optical ground station architecture. So we are able to evaluate the optical link budget as a function of them and optimize the performance of the ground station. Besides, different errors can be considered for the correction (point-ahead, angle, servo-loop delay, and even pupil misalignment between the measuring pupil of the downlink and the emitting pupil of the uplink) as well as effects due to the finite telescope diameter on the infinite Gaussian beam. These effects are not usually taken into account in the literature [8,22].

Contrary to many works in the literature ( [4,5,23]), which focus on the mean fade duration and mean number of fades per second, our model can create time series of the irradiance fluctuations. This approach will be useful to work on the contributions of interleaving and on the error correction codes. Despite some discrepancies that appear for the greater irradiances, the time series obtained with the WPLOT model enable a precise study of the fades as they occur in the lower irradiances, which are well modeled. The WPLOT model therefore provides the possibility to estimate the fade duration occurrence probability and the cumulative fade duration exceedance probability as defined in [24] from the International Telecommunication Union (ITU) recommendations [25]. Some work has already been done on the optimization of an optical ground station using this model [26]. The time series provided will be useful for future work, notably the optimization of interleaving and error correction codes in the presence of turbulence.

APPENDIX A: DESCRIPTION OF THE MODELS

Throughout this paper, we use multiple models, which are presented in Table 1 for improved clarity. In order to determine the range of validity, Baker [10] proposes two dimensionless parameters to define the region of interest in which beam wander becomes predominant. These parameters are with z τ defined by

z τ R L 0 zC 2 n zdz R L 0 C 2 n zdz : (B3)
w 0 is the waist radius at 1∕e of the amplitude, λ is the wavelength, L is the distance between the ground and the satellite, and C 2 n is the refractive index structure constant corresponding to the variance of the refractive index between two points separated between 1 m. z τ gives an estimation of the centroid of the turbulence strength on the path. The shorter it is, the stronger is the turbulence near the emitter. The parameters N L and N τ correspond to Fresnel numbers of the initial beam observed at, respectively, distances L and z τ . They compare the Rayleigh range of the beam to, respectively, the distances L and z τ . According to Baker, the bounds of this region are given by N L < 1 and N 2 τ ≫ 1: (B4)

Low-Order Turbulence Solution

Baker [10] proposes a solution to describe the irradiance fluctuations relying on an approach that describes the deformations of a Gaussian beam propagating through the atmosphere as dependent on the first-and second-order Zernike polynomials [13,14]: tip/tilt, defocus, and astigmatism. He has shown that the resulting irradiance of a Gaussian beam, of wavelength λ (and wavenumber k 2π λ ) and of waist size w 0 (at 1∕e 2 of the Gaussian irradiance) at the emission, propagating through atmospheric turbulence up to a satellite at a distance L, is expressed:

Ix; y; L 2 π 1 w x w y × exp - 2 w 2 x x -δ x cosω y -δ y sinω 2 × exp - 2 w 2 y
x -δ x sinω -y -δ y cosω 2 ;

(B5)

where the beam wander, partial beam radii, and astigmatism parameters in Eq. (B5) are given by, respectively, θ fx;yg corresponds to the angular tip/tilt in radians. Δκ corresponds to the defocus curvature, and c f5;6g to the astigmatism curvature (given in m -1 ). In Eq. (B7), the first term under the root square expresses the broadening of the beam induced by defocus and astigmatism, and the second term is the broadening induced by diffraction.

APPENDIX C: ZERNIKE COEFFICIENTS 1. Variances

The variances of the Zernike coefficients are very well known in the literature [19] in the case of a von Kármán spectrum for atmospheric turbulence. The variance for tip and tilt, of radial order n 1, is σ 2 a 2;3 0.451 d 0 r 0 N.B.: In the case of the WPLOT model, σ 2 a 4 has to be estimated for each layer. This means that the Fried parameter r 0 in Eq. (C2) has to be calculated between the bounds of each atmospheric layer.

Power Spectral Densities

The PSDs for each Zernike coefficient are [9] W a j ν

Z L 0 Z ∞ -∞ 1 V z M a j ν V z ; f y 2 × W ϕ ν V z ; f y dzdf y ; (C3)
where W ϕ is the phase spatial power spectrum and j M a j f j is the Fourier transform of the Zernike polynomial, j M a j f j ffiffiffiffiffiffiffiffiffiffiffi n 1 p 2jJ n1 πd 0 f j πd 0 f × 8 < : ffiffi ffi 2 p j cosmθj for m ≠ 0 and j even ffiffi ffi 2 p j sinmθj for m ≠ 0 and j odd 1 for m 0 ;

(C4) where f f x ; f y when the frequency vector is described in Cartesian coordinates or f f ; θ when it is described in polar coordinates, n is the radial degree, and m is the azimuthal frequency of the j th Zernike polynomial. These results are for a plane wave. Title : Mitigation of turbulence effects on ground-to-geostationary link: impact on ground terminal architecture Keywords : adaptive optics; propagation; optical free-space communications Abstract : An optical link based on a multiplex of wavelengths at 1.55µm is foreseen to be a valuable alternative to the conventional radiofrequencies for the feeder link of the nextgeneration of high throughput geostationary satellite. Considering the limited power of lasers envisioned for feeder links, the beam divergence has to be dramatically reduced. Consequently, the beam pointing becomes a key issue. During its propagation between the ground station and a geostationary satellite, the optical beam is deflected and possibly distorted by atmospheric turbulence. It induces strong fluctuations of the detected telecom signal, thus reducing the capacity. A steering mirror using a measurement from a beam coming from the satellite is used to pre-compensate the deflection. Because of the point-ahead angle between the downlink and the uplink, the turbulence effects experienced by both beams are slightly different, inducing an error in the correction. The performance criteria is the minimum detectable irradiance 95% of the time. A fast model, named WPLOT, taking into account pointing errors and their temporal evolution, is proposed to evaluate the minimum irradiance as a function of the ground station parameters and quality of the correction. The model's results are compared to those obtained with a more physical but requiring more computation power: TURANDOT. A sensitivity study has been realized and led to a sizing of a ground station. The model also enables the generation of time series in order to optimize the forward error correction codes in order to be compliant with the targeted capacity (1Terabit/s by 2025).
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 14 Figure 1.4: Atmospheric transmission through the atmosphere as a function of the wavelength.[16] 
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 31225 Figure 2.5: Effects of beam wander on irradiance fluctuations[35].
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 701 multi-layer model -the WPLOT model

Figure 6 . 7 :

 67 Figure 6.7: Comparison between random irradiance draws obtained with the 2L-WO model and the WPLOT model with defocus as the only considered aberration.
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 71668 Figure 6.8: Comparison between random irradiance draws obtained with the 2L-WO model and the WPLOT model.

Figure 6 . 10 :

 610 Figure 6.10: Mean irradiance as a function of the emitted waist. Comparison between the TURANDOT simulation and the WPLOT model for 2000 draws, with a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case.

Figure 6 . 11 :

 611 Figure 6.11: Difference in dB between the estimation of the mean irradiance as a function of the waist with the TU-RANDOT simulation and the WPLOT model, for a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case.
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 756612762613 Figure 6.12: Probability density function comparison between TURANDOT and the WPLOT model for 2000 draws, using a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case.
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 614776 Figure 6.14: Comparison of the estimation of the irradiance threshold 5% of the normalized CDF as a function of the waist size at emission between TURANDOT and the WPLOT model, with a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case.

Figure 6 . 15 :

 615 Figure 6.15: Comparison of the estimation of the losses due to turbulence at 5% of the normalized CDF as a function of the waist size at emission between TURANDOT and the WPLOT model, with a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case.

page 78 6 . 2 Figure 6 . 16 : 79 Chapter 6 .Figure 6 . 17 :

 62616796617 Figure 6.16: Temporal power spectral density comparison between TURANDOT and the WPLOT model obtained from 4 s times series with a 2 kHz sampling, using a Hufnagel-Valley 5/7 atmospheric profile in a no tracking case. For a waist size of 5 cm, TURANDOT returned a numerical error probably due to sampling.

Figure 6 . 18 :

 618 Figure 6.18: Difference in dB between the estimation of the mean irradiance as a function of the waist with the TU-RANDOT simulation and the WPLOT model.
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 626196620 Figure 6.19: Probability density function comparison between TURANDOT and the WPLOT model for 2000 draws, using the stronger atmospheric profile in a no tracking case.
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 62162622 Figure 6.21: Comparison of the estimation of the irradiance threshold 5% of the normalized CDF as a function of the waist size at emission between TURANDOT and the WPLOT model, with the stronger atmospheric profile in a no tracking case.
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 62362624 Figure 6.23: Temporal power spectral density comparison between TURANDOT and the WPLOT model obtained from 4 s times series with a 2 kHz sampling, using a stronger atmospheric profile in a no tracking case. For a waist size of 5 cm, TURANDOT returned a numerical error probably due to sampling.

Figure 6 . 25 :

 625 Figure 6.25: Difference in dB between the estimation of the mean irradiance as a function of the waist with the TU-RANDOT simulation and the WPLOT model.
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 85662662627 Figure 6.26: Probability density function comparison between TURANDOT and the WPLOT model for 2000 draws, using a Hufnagel-Valley 5/7 atmospheric profile and tracking.
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 6286629 Figure 6.28: Comparison of the estimation of the irradiance threshold 5% of the normalized CDF as a function of the waist size at emission between TURANDOT and the WPLOT model, with a Hufnagel-Valley 5/7 atmospheric profile and tilt tracking.
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 63062 Figure 6.30: Temporal power spectral density comparison between TURANDOT and the WPLOT model calculated from a 1 s times series with a 2 kHz sampling, using a Hufnagel-Valley 5/7 atmospheric profile and tracking.

Figure 6 . 31 :

 631 Figure 6.31: Mean irradiance as a function of the emitted waist. Comparison between the TURANDOT simulation and the WPLOT model for 2000 draws, with stronger conditions and tracking.

Figure 6 . 32 :

 632 Figure 6.32: Difference in dB between the estimation of the mean irradiance as a function of the waist with the TU-RANDOT simulation and the WPLOT model, with stronger conditions and tracking.
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 896633626346 Figure 6.33: Probability density function comparison between TURANDOT and the WPLOT model for 2000 draws, using the stronger atmospheric profile and tracking.

Figure 6 . 35 :

 635 Figure 6.35: Comparison of the estimation of the irradiance threshold 5% of the normalized CDF as a function of the waist size at emission between TURANDOT and the WPLOT model, using the stronger atmospheric profile and tracking.

Figure 6 . 36 :

 636 Figure 6.36: Estimation of the losses due to turbulence at 5% of the normalized CDF as a function of the waist size at emission, using the stronger atmospheric profile and tracking.
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 626376 Figure 6.37: Temporal power spectral density comparison between TURANDOT and the WPLOT model calculated from a 1 s times series with a 2 kHz sampling, using a stronger atmospheric profile and tracking.
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 71 Figure 7.1: Link distance and elevation angle as a function of the latitude.

( 1 . 6 ) 10 8π 2 w 2 0 λ 2 . 10 L T U RB 10 . ( 7 . 7 )δ 2 = w 2 L

 1610210107722 . In our simplified case, G E = 10 log Using L T U RB 's definition (L T U RB = 10 log 10 I R I 0 ) leads to I R = I 0 × Assuming CDF I (I ≤ I R ) = 0.05 and inserting Equation (7.7) in Equation (7.6) leads to: α = L T U RB,m (w 0 ) 20 log (10) log (0.05) . T U RB,m (w 0

Figure 7 . 3 : 3 2

 733 Figure 7.3: Maximum allowable variance for the tip/tilt coefficients over uncompensated tilt variances ratio as a function of the waist size at emission, taking into account a telescope truncature of diameter D T X = 2 3 2 w 0 in order to compare with the results in the rest of the study.
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 374 Figure 7.4 shows the results of the link budget as a function of the emitted waist size in a no tracking case. Due to the model's validity regime, the waist sizes range from 4 to 12 cm. The effects of the truncature by the telescope and of the station's vibrations are not considered for now. The link budget is never fulfilled, as there is, in the best case for w 0 = 4 cm, a 10dB gap between the link budget and the detection threshold. An optimum appears for the lower waist sizes. This optimum stays below the detection threshold as the detected power is limited by the beam divergence for lower waist sizes. This therefore indicates that adding tilt correction is necessary. In the rest of the study, tilt tracking will always be considered.
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 74 Figure 7.4: Evolution of the optical link budget as a function of the waist in a no tracking case.
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 75 Figure 7.5: Evolution of the optical link budget as a function of the waist with perfect tracking.
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 76 Figure 7.6: Residual tilt variance compared to the initial uncompensated tilt as a function of the wave-front pupil diameter to waist size ratio, considering w 0 = 8 cm.

Figure 7 . 7 :

 77 Figure 7.7: Evolution of the link budget as a function of the wave-front pupil diameter to waist size ratio, considering w 0 = 8 cm.
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 78 Figure 7.8: Examples of bi-static configurations.
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 779 Figure 7.9: Residual tilt variance compared to the initial uncompensated tilt as a function of the waist size in the case of an off-axis configuration.
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 710732 Figure 7.10: Evolution of the link budget as a function of the waist size in the case of an off-axis configuration.
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 711 Figure 7.11: Residual tilt variance compared to the initial uncompensated tilt for a 8 cm waist size at emission as a function of the D T T S to D T X ratio.

Figure 7 . 12 :

 712 Figure 7.12: Link budget for a 8 cm waist size at emission as a function of the D T T S to D T X ratio.
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 3 w 0 ≈ 2.8w 0[START_REF] Larry | Strehl ratio and scintillation theory for uplink Gaussianbeam waves: beam wander effects[END_REF].

Figure 7 . 13 :

 713 Figure 7.13: Effect of the emitter truncature on the optical link budget for different waist sizes without atmospheric turbulence.

Figure 7 . 14 :

 714 Figure 7.14: Effect of the emitter truncature on the optical link budget for different waist sizes with atmospheric turbulence.

Figure 7 . 15 :

 715 Figure 7.15: Residual tilt variance over the uncompensated tilt variance as a function of the beam waist size at emission when taking into account the point-ahead angle in the tracking.

Figure 7 . 16 :

 716 Figure 7.16: Evolution of the optical link budget as a function of the emitted waist sizes, either considering a point-ahead angle or not.

Figure 7 . 18 :

 718 Figure 7.18: Link budget evolution as a function of the delay between the wavefront distortion measurement and the correction for waists of 5, 8 and 12 cm.

  2.2, in which C 2 n (0) = 5.4 × 10 -14 m -2 3 , and from an even stronger atmospheric profile, in which C 2 n (0) = 5.4 × 10 -14 m -2 3 . The results are presented in Figure 7.19:

Figure 7 . 19 :

 719 Figure 7.19: Comparison of the link budget evolution as a function of the emitted waist in a case with tracking considering a ground turbulence strength C 2 n (0) = 1.7 × 10 -14 m -2 3 , C 2 n (0) = 5.4 × 10 -14 m -2 3 and C 2 n (0) = 1 × 10 -13 m -2 3 .

Peak at C 2 n

 2 Atmospheric profile IPA (µrad) r 0 (cm) Hufnagel-Valley profile with C 2 n (0) = 5.4 × 10 -14 m 2/3 (10 km) = 1 × 10 -16 m 2/3 (Figure 7.20b) 10 8.2 Peak at C 2 n (5 km) = 1 × 10 -16 m 2/3 (Figure 7.20c) 12 8.2 Peak at C 2 n (5 km) = 3 × 10 -16 m 2/3 (Figure 7.20d) 10 8 Peaks at C 2 n (5 km) = 1 × 10 -16 m 2/3 and C 2 n (10 km) = 1 × 10 -16 m 2/3 (Figure 7.20e)
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 11157 Optical ground station sizing (a) Hufnagel-Valley profile with C 2 n (0) = 5.4 × 10 -14 m 2/3 (b) C 2 n (10 km) = 1 × 10 -16 m 2/3 (c) C 2 n (5 km) = 1 × 10 -16 m 2/3 (d) C 2 n (5 km) = 3 × 10 -16 m 2/3 (e) C 2 n (5 km) = 1×10 -16 m 2/3 and C 2 n (10 km) = 1 × 10 -16 m 2/3
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 720 Figure 7.20: Considered atmospheric profiles for study of the impact of the high altitude layers on the link budget.
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 3757 configuration: tip/tilt measured over D T T S = 16cm (2w 0 ) Delay before correction 4 ms Link Budget -P R @5% CDF -40.7 dBm > -43 dBm for the stronger atmospheric profile with C 2 n (0) = 5.4 × 10 -14 m -2 Final architecture characteristics. page 119 Optical ground station sizing page 120
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 1181 Figure 8.1: Irradiance time series over 1 s with a 2000 Hz sampling using the final architecture from Table 7.5 in Chapter 7 for a Hufnagel-Valley atmospheric profile with C 2 n (0) = 5.4 × 10 -14 m -2/3 and an elevation φ elev = 40 • .
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 82883 Figure 8.2: Fade duration occurrence and exceedance probability plots for the final architecture from Table 7.5 in Chapter 7 for a Hufnagel-Valley atmospheric profile with C 2 n (0) = 5.4 × 10 -14 m -2/3 and an elevation φ elev = 40 • in a tracking case.
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 84 Figure 8.4: BER curve for the detection architecture presented in Chapter 1 and Appendix A.
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 2 0 = 22.6 cm Architecture configuration Mono-static configuration: TTS pupil merged with beam with D T T S = d 0 Delay before correction ≤ 4 msTable 8.1: Final architecture characteristics.

Figure 8 . 5 :

 85 Figure 8.5: Correlation of the 45 first Zernike coefficients for the stronger atmospheric profile and the architecture from Table 8.1.

Figure 8 . 6 :

 86 Figure 8.6: Correlation presented as a function of the radial degree for the stronger atmospheric profile and the architecture from Table 8.1.

Figure B. 1 :

 1 Figure B.1: The first 15 Zernike polynomials, ordered vertically by radial degree and horizontally by azimuthal degree.

Figure C. 1 :

 1 Figure C.1: Definition of d 1→2 (h), the distance between the centers of the two considered beams at an altitude h[27].

Γ x 1

 1 , x 2 , ..., x m y 1 , y 2 , ..., y n = Γ (x 1 ) × Γ (x 2 ) × ... × Γ (x m ) Γ (y 1 ) × Γ (y 2 ) × ... × Γ (y n ) (C.16) In Figure C.2 are plotted the Zernike coefficients variance. It shows that the lower Zernike coefficients have a much bigger variance and are therefore more interesting to compensate.

Figure C. 2 : 3 Γ p + n + 3 2 ,

 232 Figure C.2: Zernike coefficients variance for a wavefront perturbed by a Kolmogorov Turbulence (infinite outer scale)[27].

  Figure C.3 presents the dependence of σ jj 0, 1, D2L 0 for the polynomials j with a radial degree n ≤ 4 in function of D/L 0 . When decreasing the outer scale L 0 , the variances of the Zernike coefficient also decrease. This decrease is particularly important for the tip/tilt. This therefore means that a smaller outer scale is equivalent to a lower tip/tilt variance and thus reduces the impact of beam wander.
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 1443 Figure C.3: Dependence of σ jj 0, 1, D 2L 0 for the polynomials j with a radial degree n ≤ 4 in function of D/L 0 [27].
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 2 0 = 22.6 cm Configuration de la correction Configuration mono-statique : la pupille de l'analyseur de front d'onde TTS est confondue D T T S = 2w 0 Délai avant la correction ≤ 4 ms Table E.1: Caractéristiques de l'architecture retenue. Enfin, des séries temporelles ont étés obtenues pour cette configuration dans le Chapitre 8, ce qui a permis de faire des tests de performances des codes correcteurs d'erreur couplés à un entrelaceur. Cette thématique sera le prochain sujet d'intérêt dans la communauté des télécommunications optiques. Le modèle WPLOT devrait être un outil très intéressant dans ce cadre. page 150 Statistical and temporal irradiance fluctuations modeling for a ground-to-geostationary satellite optical link 1. INTRODUCTION

Fig. 1 .

 1 Fig. 1. Presentation of the LOT model. This model is equivalent to a single phase screen resulting from tilt, defocus, and astigmatism placed in the emission plane of the beam.

Fig. 2 .

 2 Fig. 2. Random draws of irradiance statistics between LOT model (one layer) and the 2L-WO model for an emitted waist of 8 cm. In this case, N L 3.6 × 10 -4 and N tau 9.4, well within the D 1 region.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Random draws of irradiance statistics between LOT solution and 2L-WO model when considering only defocus for an emitted waist of 8 cm. In this case, N L 3.6 × 10 -4 and N tau 9.4, well within the D 1 region.

Fig. 5 .

 5 Fig. 5. Random draws of irradiance statistics between WPLOT model (for two layers) and the 2L-WO model for an emitted waist of 8 cm.
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 6 

Fig. 6 .

 6 Fig. 6. Random draws of irradiance statistics between WPLOT solution taking into account, or not, the truncation of the Gaussian beam by the telescope compared with 2L-WO simulation taking into account a truncation.
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Fig. 7 .Fig. 8 .Fig. 9 .Fig. 10 .Fig. 11 .

 7891011 Fig.7. Mean detected on-axis irradiance as a function of the emitted waist size. The mean on-axis irradiance has been calculated over 2000 samples for the TURANDOT simulations and over 250,000 samples for the WPLOT model for waist sizes ranging from 5 to 14 cm.

E. Justification of Model Particularities 1 .

 1 Impact of Taking into Account the Beam Truncation

Fig. 12 .Fig. 13 .

 1213 Fig.12. CDF of the detected on-axis irradiance comparison between the TURANDOT simulation and the WPLOT model for a waist size of 14 cm. The CDFs have been calculated for over 2000 samples for the TURANDOT simulation and over 250,000 samples for the WPLOT model.

Fig. 14 .

 14 Fig. 14. Temporal power spectral density of on-axis irradiance comparison for a waist size of 8 cm calculated for an irradiance time series of 4 s with 2500-Hz sampling.

Fig. 15 .Fig. 16 .

 1516 Fig. 15. Temporal power spectral density of on-axis irradiance comparison for a waist size of 14 cm calculated for an irradiance time series of 4 s with 2500-Hz sampling.
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Fig. 17 .Fig. 18 .

 1718 Fig.17. Impact of not taking into account the defocus and astigmatism on the on-axis scintillation index and estimated over 250,000 samples.

Fig. 19 .Fig. 20 .

 1920 Fig.19. Comparison of the on-axis irradiance temporal PSD between the TURANDOT simulation and the WPLOT model with tracking taken into account for NA 8-cm waist size at emission calculated for an irradiance time series of 4 s with 10,000 samples.
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Fig. 21 .

 21 Fig.21. Comparison of the on-axis scintillation index as a function of the emitted waist size calculated over 250,000 samples with and without tracking using the WPLOT model with two layers.

Fig. 22 .

 22 Fig. 22. 2-s on-axis irradiance time series with a 2500-Hz sampling for a waist size of 8 cm obtained with the WPLOT model with and without tracking.

Fig. 23 .

 23 Fig.23. L TURB estimation with and without tracking for different emitted waist sizes obtained using the WPLOT model using 250,000 samples.
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  where L 0 is the outer scale. The defocus and astigmatism Zernike coefficients variances, of radial order n 2,

3 .

 3 From Zernike Coefficients to Phase CoefficientsOnce the Zernike coefficients are obtained, they can easily be converted into the corresponding phase coefficients in order to insert them in the model. The angular deviation due to tip/tilt is θ Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Titre : Compensation des effets de la turbulence atmosphérique sur un lien optique montant solsatellite géostationnaire : impact sur l'architecture du terminal sol Mots clés : optique adaptative ; propagation ; communications optiques en espace libre Résumé : Un lien optique basé sur un multiplex de longueurs d'onde autour de 1,55µm est une alternative intéressante pour pallier la saturation des bandes radio-fréquences classiquement utilisées et pour répondre aux besoins de liens haut débit par satellite géostationnaire de la prochaine génération de télécommunication. Compte-tenu de la puissance limitée des lasers envisagés, la divergence du faisceau doit être considérablement réduite. Par conséquent, le pointage du faisceau devient un paramètre critique. Au cours de sa propagation entre la station sol et un satellite géostationnaire, le faisceau optique est dévié et éventuellement déformé par la turbulence atmosphérique. Cela induit de fortes fluctuations du signal de télécommunication détecté, réduisant le débit disponible. Un miroir de basculement est utilisé pour pré-compenser la déviation mesurée à partir d'un faisceau provenant du satellite. Du fait de l'angle de pointage en avant entre la liaison des-cendante et la liaison montante, les effets de turbulence subis par les deux faisceaux sont légèrement différents, ce qui induit une erreur dans la correction. Le critère de performance de la liaison est l'intensité minimale détectable 95% du temps. Un modèle rapide, nommé WPLOT, prenant en compte les erreurs de pointage et leur évolution temporelle, est proposé pour évaluer cette intensité minimale en fonction des paramètres de la station sol et de la qualité de la correction. Les résultats obtenus avec ce modèle sont comparés avec ceux obtenus par un modèle physique mais plus couteux en temps de calcul ; le code TURANDOT. Grâce à ce modèle, une étude de sensibilité a été réalisée et a permis de proposer un dimensionnement de la station sol. Ce modèle permet également de générer des séries temporelles afin d'optimiser les codes de correction d'erreur et optimiser le débit (1Terabit/s d'ici 2025).
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 11 Past optical link demonstrations between ground and space.

	SOCRATES		2014	Japan	to LEO	ground			Downlink			
					to							
	OPALS		2014	USA	ISS	ground			Downlink			
	TERRASAR ALPHASAT LLCD		2011 2014 2014	Europe/USA Europe USA	Ground to Ground to Ground-to-	LEO GEO Moon			Bi-Bi-Bi-	directional directional directional	45.000 38.000 385.000	
	LUCE		2008	Japan	Ground to	LEO satel-	lite		Bi-	directional	2.640	
	Name of GOLD SILEX	program	Year 1995 2001	Region USA/Japan Europe	Application Ground to Inter-	GEO satel-satellite	lite link communi-	cation	Link direc-Bi-Bi-	tion directional directional	Link range 38.000 38.000	(km)

Table 1 .

 1 

	2: Average photon/bit required depending on optical receiver design (values ob-
	tained from [17]).		
	Direct detection Direct detection with EDFA Coherent Detection
	500	30	18
	1.2.3 Modulation -NRZ OOK		

  8 × D throughput .

	Chapter 1. Optical communications for high throughput satellite feeder links
	Equation (1.21) using the result from Equation (1.22) leads to the result on the mini-
	mum power needed in order to have a BER lower than 10 -3 :	
	P R ≥ -44 dBm ≈ 40 nW.	(1.23)
	This leads to approximately 30 photons per bit for a 10Gbps capacity channel. If we do
	not neglect the other sources of noise, we obtain P R ≥ -43dBm.	
		page 17
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 13 Contributors to the optical link budget.
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Table 3 .

 3 

	Waist	8 cm
	Pointing telescope diameter	16 cm
	Tracking telescope diameter	16 cm
	Point-ahead angle	18.5 µrad
	Delay before correction	0.004 s
	Configuration	Merged pupils
	Elevation angle	90 •
	Atmospheric profile	Hufnagel-Valley 5/7
	Wind profile	Bufton

1: Parameters for the study Wave length λ 1.55 µm

Table 3 .

 3 2: Table describing the impact of each layer on the overall residual tilt after compensation

	Layer num-	Layer alti-	C 2 n (m -2 3 )	Residual tilt	Residual	Distance
	ber	tude (m)		variance at	tilt/total	between the
				each layer	tilt [%]	two beams
				[rad 2 ]		(m)
	1	326.24	9.99e-16	1.10e-03	4.5	0.01
	2	2824.04	3.95e-17	2.76e-03	11.26	0.05
	3	4911.04	1.30e-17	2.07e-03	8.43	0.09
	4	7073.87	1.20e-17	2.74e-03	11.2	0.13
	5	9037.98	1.59e-17	4.25e-03	17.34	0.17
	6	10978.27	1.56e-17	4.54e-03	18.54	0.2
	7	12932.06	1.12e-17	3.48e-03	14.22	0.24
	8	14897.57	6.42E-18	2.08e-03	8.5	0.28
	9	16871.26	3.07E-18	1.03e-03	4.21	0.31
	10	18850.64	1.28E-18	4.41e-04	1.8	0.35
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 71 Contributors to the optical link budget.

	Contributors Description	Value in link budget
	P E	Optical power booster amplifier	50 W = 17 dBW
	T T X	Transmission loss inside optical	-3 dB (Independent of the size of
		terminal in T X	the telescope)	
	G E	Emitter gain with pointing error	Equation (1.6)	
	L F S	Free-space loss	10 log 10	λ 4πL	2 = -290 dB
	L ab	Absorption and scattering loss	10 log 10 exp log(Tzen) sin(E deg )	, with
			T zen = 0.9 the atmospheric trans-
			mission and E deg the elevation an-
			gle [71]		
	L T U RB	Atmospheric turbulence loss	Thesis objective
	L clouds	Cloud loss	-5 dB		
	G R	Receiver gain	112.2 dB, for D R X = 20 cm
	T R X	Transmission and injection loss in-	-5 dB		
		side optical terminal in R X			
	L margin	System margin	-3 dB		
	P R	Injected optical power	P		

R > -43 dBm

Table 7 .

 7 3: Table of the isoplanatic angle and Fried parameter obtained with each atmospheric profile.

Table B .

 B 1: The first15 Zernike polynomials, their Noll index, radial degree, azimuthal degree and classical name.One of the most interesting works to characterize correlation between two beams has been made by F. Chassat during his PhD[27]. Chassat's idea was to calculate the covariance functions between the coefficients of Zernike polynomials describing two different wavefronts:

	Appendix C		
	Chassat's correlation functions
	Noll in-	Radial	Azimuthal	Z j	Classical name
	dex (j)	degree(n)	degree		
			(m)		
	1	0	0		1	Piston
	2	1	1		2ρ cos θ	Tip (X-Tilt)
	3 4 5 6 7 8 9 10 11 12 13 14 15	1 2 2 2 3 3 3 3 4 4 4 4 4	-1 0 -2 2 -1 1 -3 3 0 2 -2 4 -4	2ρ sin θ 3 2ρ 2 -1 √ √ 6ρ 2 sin 2θ √ 6ρ 2 cos 2θ 8 3ρ 3 -2ρ sin θ 8 3ρ 3 -2ρ cos θ √ √ √ 8ρ 3 sin 3θ √ 8ρ 3 cos 3θ √ 5 6ρ 4 -6ρ 2 + 1 √ 10 4ρ 4 -2ρ 2 cos 2θ Vertical secondary astigmatism Tilt (Y-Tilt) Defocus Oblique astigmatism Vertical astigmatism Vertical coma Horizontal coma Vertical trefoil Oblique trefoil Primary spherical √ 10 4ρ 4 -2ρ 2 sin 2θ Oblique secondary astigmatism √ 10ρ 4 cos 4θ Vertical quadrafoil √ 10ρ 4 sin 4θ Oblique quadrafoil
					page 137 page 138

Table 1 .

 1 Description of the ModelsLOTOne phase screen obtained from the linear combination of tip/tilt, defocus, and astigmatism. It is placed at transmitter.

	Model	Phase Screens Distribution	Propagation Method

The results are slightly modified compared to the initial formula from[START_REF] Ronald L Fante | Electromagnetic beam propagation in turbulent media[END_REF] due to the difference in waist definition

It is important to keep in mind that the scintillation index is normalized. Moreover, in this subsection, the irradiances are normalized, i.e. I = 1.

Note that this is the same assumption as considering that beam wander results from refraction through large eddies while beam spread results from small eddies.

We observe on TURANDOT's PSDs a spectrum folding which we attribute to the sampling of the phase screens.

3 1 (h) (C.4)
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Chapter 4. Thesis objectives

The main activities in this thesis have been:

• Development of a model for fast estimation of the impact of atmospheric turbulence on irradiance fluctuations (Chapter 6.1).

• Validation by comparing it with TURANDOT (Chapter 6.2).

• Sensitivity study leading to an OGS sizing (Chapter 7).

• Study of the temporal fluctuations and their impact on error correction codes (Chapter 8).
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Part II

Irradiance fluctuations modeling for ground-to-satellite geostationary satellite optical links Chapter 7

Optical ground station sizing

The objective of this chapter is to present an application of the WPLOT model to do a sensitivity study resulting in the sizing of an optical ground station. The approach is as follows: firstly, the characteristics of the ground station, such as the waist size at emission, the beam truncation and architecture configuration, are chosen for representative atmospheric conditions. Subsequently, the performances of the ground station are estimated by varying the atmospheric conditions, such as the ground layer strength, the C 2 n profile and the outer scale.

The first part of this Chapter describes the parameters for the study, i.e. the channel, atmospheric conditions, ground station and link budget parameters. The second part of this Chapter consists in the sensitivity study.

Contents

Detection architecture noise estimation

The following results are a summary of [START_REF] Stephen | Optical communication receiver design[END_REF].

The electric current is given by

where E sig is the field of the detected optical signal, E ASE is the field due to the ASE (Amplified Spontaneous Emission).cp indicates that the ASE field is polarized in the same direction as the signal field and op means that the polarization is orthogonal. i s and i T are the current fluctuations induced by the shot noise and the thermal noise of the photodiode. The shot and thermal noise are neglected for the moment. Equation (A.1) becomes:

is the current resulting from the optical signal, and

The photodetector being essentially a square-law detector of electric fields, the received signal field will mix, leading to a beating phenomenon, with the components of the ASE noise field that are polarized in the same detection as the signal, this is i S×ASE (signal-cross-ASE-noise). The various components in the ASE noise field will also mix with themselves, giving i ASE×ASE (ASE-cross-ASE-noise). The powers |E ASE,op | 2 and |E ASE,cp | 2 are given using the power spectral density of the ASE S ASE .

S ASE is considered constant (as it is assumed to be a white noise) and depends on the gain and the spontaneous emission factor n sp :

Where h is the Planck constant and ν c is the carrier frequency (ν c = 193.1T Hz for a 1.55 µm wavelength). n sp is the spontaneous emission factor defined by

Where N 1 and N 2 are the atomic populations at the low and excited states, respectively. The spontaneous emission factor is related to the amplifier's noise figure: 
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These results are given with the frequency f > 0. These above spectral densities are considered just before the electrical low-pass filter. By integrating on the passband of the electric filter and assuming B E < B 0 (which is generally the case), we obtain:

Appendix B

Zernike polynomials

Zernike polynomials [START_REF] Zernike | Diffraction theory of the knife-edge test and its improved form, the phasecontrast method[END_REF] define an orthonormal basis on the unit circle and are generally used to describe the wavefront in terms of optical aberrations. In the coordinate system (r, θ), these polynomials are the result of the product of functions of ρ with functions of θ :

Where 2 n+1 1+δ m,0 and -2 (n + 1) are normalization constants and the polynomials R m n (r), n is an integer and m ∈ Z, are given by: 

Scintillation index formulas

We present here the expressions derived by Andrews [START_REF] Andrews | Optical scintillations and fade statistics for a satellite-communication system[END_REF]. The expression for the on-axis scintillation is:

where Λ and Θ are parameters of the laser beam:

assuming that the beam is initially collimated.

The scintillation term that depends on the distance from the optical axis in the horizontal plane of the satellite, r, is:

where I 0 is, here, a modified Bessel function of the first class and zero order.
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