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Abstract

Network Functions Virtualization (NFV), along with Software Defined Networking (SDN),
drives a new change in networking infrastructure with respect to designing, deploying, and
managing various network services. Both of them essentially rely on software based ap-
proaches, while operating at different levels of the network. In particular, NFV has potential
to significantly reduce the hardware cost, greatly improve operational efficiency, and dramat-
ically shorten the development lifecycle of network services. It also makes network services
and functions much more adaptive and scalable to meet the rapid growth and change of user
requirements. As a two-sided coin, despite these well-recognized advantages, security remains
to be one of the vital concerns and potential hurdle. On one hand, it is unclear how NFV and
SDN would fundamentally impact the landscape of cyber defense, and how it can help to im-
prove security management. On the other hand, novel security threats and vulnerabilities will
be inevitably introduced, potentially resulting in broader attack surface and blurred defense
lines in the virtualization environment.

This thesis is intended to explore security issues in the virtualized and software-defined
world, and starts with two important hypotheses: (1) SDN and NFV offer plenty of opportuni-
ties for us to rethink security management in the new networking paradigms; (2) both legacy
and new security threats and vulnerabilities in NFV/SDN enabled environments need to be
sufficiently addressed in order to pave the way for their further development and deployment.
To validate the hypotheses, we carry out an in-depth study on NFV/SDN from security per-
spective, including its architecture, management and orchestration (MANO) framework, and
use cases, leading to two major contributions, (1) a security management and orchestration
framework (called SecMANO) based on NFV MANO, which has the potential to manage a
set of policy-driven security mechanisms, such as access control, IDS/IPS, network isolation,
data protection; (2) a comprehensive threat analysis on five NFV use cases and the state-of-
the-art security countermeasures, resulting in a NFV layer-specific threat taxonomy and a set
of security recommendations on securing NFV based services.

We believe that both of the two contributions lay down a foundation for security research in
NFV/SDN domain. In particular, based on the two contributions, we further develop a security
orchestrator as an extension of available NFV orchestrator, with an objective to enabling the
basic security functions to be effectively orchestrated and provided as on-demand services to
the customers, meanwhile allowing high-level security policies to be specified and enforced
in a dynamic and flexible way. Specifically, a software-defined access control paradigm is
implemented and prototyped with Tacker (an OpenStack service for NFV orchestration using
TOSCA model), which allows the security administrators to dynamically customize the access
control models and policies for different tenant domains, eventually achieving flexible and
scalable protection across different layers and multiple cloud data centers. Both prototype of
concept and real-life experiments on testbed have been carried out, clearly demonstrating the
feasibility and effectiveness of our security orchestrator.
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In addition, as our NFV cross-layer threat taxonomy indicates, a large set of novel threats
will be introduced, among which VNF (Virtualized Network Function) is a unique and im-
portant asset that deserves careful protection. The fourth contribution of this thesis is therefore
devoted to achieving secure and dependable SFC (Service Function Chaining) in NFV and SDN
environment. Specifically, an identity-based ordered multisignature scheme called SecSFC is
designed and applied to ensure that, (1) each service function involved in a particular service
chain is authenticated and legitimate; (2) all the service functions are chained in a consistent,
optimal, and reliable way, meeting with the pre-defined high-level policy specifications like
VNF Forwarding Graph. Both theoretical security analysis and experimental results demon-
strate that our scheme can effectively defend against a large set of destructive attacks like rule
modification and topology tempering, moving an important step towards secure and dependable
SFC. Importantly, the signature construction and validation process is lightweight, generating
compact and constant-size keys and signatures, thereby only incurring minimal computational
overhead and latency.
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Résumé

Les réseaux programmables (SDN) associés à la virtualisation des fonctions réseaux (NFV),
conduisent à de nouveaux paradigmes réseaux, en particulier dans le domaine de la concep-
tion, du déploiement et de la gestion de services réseaux. Les réseaux SDN et NFV s’appuient
essentiellement sur des technologies orientées logicielles et opèrent sur différents niveaux ou
couches réseaux. La virtualisation réseaux, permet de réduire de manière significative les coûts
liés au matériel, d’améliorer les opérations de maintenance, mais aussi de réduire le cycle de
développement et de déploiement des services réseau. Le caractère dynamique des fonctions
réseaux, offert par la virtualisation, conduit à une meilleure adaptation et évolution des ser-
vices réseaux déployés et par conséquent, une plus grande réactivité de la part des opérateurs,
pour répondre à la croissance et à l’évolution rapide des besoins des utilisateurs. Les réseaux
SDN/NFV contribuent ainsi à une plus grande automatisation du réseau. Néanmoins, dans les
environnements SDN, NFV, l’aspect sécurité constitue un défi et un enjeu majeurs, qu’il est pri-
mordial de prendre en compte et d’étudier à tous les niveaux, de la conception au déploiement
à grande échelle de ces réseaux. Dans ce contexte, il est nécessaire de mesurer l’impact des
technologies NFV et SDN, sur la sécurité, dans le paysage des menaces cyber, mais aussi leur
capacité à garantir et gérer la sécurité, dans des environnements essentiellement logiciels. De
plus, dans ces environnements virtualisés, de nouveaux types de menaces et vulnérabilités sont
inévitablement introduites, ce qui conduit potentiellement à une surface d’attaque plus large et
à des contre-mesures associées plus délicates à mettre en œuvre.

Ce travail de thèse, vise à étudier les vulnérabilités en termes de sécurité dans les envi-
ronnements réseaux logiciels et virtualisés, pour proposer des modèles et des mécanismes
spécifiques, afin d’améliorer la sécurité dans ces environnements critiques. Nous considérons
les deux hypothèses suivantes: (1) Les changements de paradigmes introduits par les réseaux
SDN et NFV permettent de développer de nouvelles approches en matière de gestion de la
sécurité; (2) L’ensemble des menaces et vulnérabilités dans les environnements NFV/SDN
doivent être intégralement pris en compte, en particulier pour un développement et déploiement
à grande échelle. Pour cela, dans une première partie, nous proposons une étude détaillée
et complète, du point de vue de la sécurité, des architectures et protocoles SDN/NFV, mais
aussi de la gestion et de l’orchestration des fonctions réseaux dans ces environnements (ar-
chitecture MANO). Plusieurs cas d’usage ou scénarios sont spécifiés et proposés, en guise
d’illustrations. Cette première étude a conduit à deux contributions majeures: (1) une archi-
tecture complète pour la gestion et l’orchestration de la sécurité (appelé SecMANO) basé sur
NFV MANO. SecMANO permet de gérer un ensemble de fonctions service, de mécanismes
de sécurité (contrôle d’accès, IDS/IPS, isolation, protection) basées sur un ensemble de règles;
(2) une analyse complète des menaces et vulnérabilités dans le contexte NFV, à partir de cinq
cas d’usage spécifiques, et des contre-mesures associées. Cette analyse a permis de proposer,
une classification (taxonomie) complète et détaillée, des différents types de menace spécifique,
associés à un ensemble de recommandations, pour une meilleure sécurité des services NFV.
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Nous estimons que ces deux premières contributions ouvrent des perspectives de recherche
intéressantes, dans le domaine de la sécurité des réseaux NFV/ SDN.

Cette première étude, nous a amenés à proposer en guise de troisième contribution, une
nouvelle architecture pour l’orchestration de fonctions de sécurité dans les environnements vir-
tualisés. Cet orchestrateur de sécurité a été spécifié et développé comme un module d’extension
pour les orchestrateurs existants. L’objectif est d’assurer un déploiement dynamique, flexible,
à la demande, ainsi qu’une orchestration efficace des différents services de sécurité de base.
De plus, l’architecture prend en compte et applique de manière dynamique, la stratégie de
sécurité, spécifiée par l’utilisateur à un haut niveau (politique de sécurité) à travers un modèle
de données spécifique. Plus précisément, un mécanisme de contrôle d’accès, défini et ap-
pliqué à partir d’un langage de haut niveau, basé sur les piles “Tacker” (un service OpenStack
pour orchestrateur NFV utilisant le modèle de donnés TOSCA), a été prototypé, implanté et
testé. Ce prototype, permet de personnaliser et d’adapter dynamiquement, le modèle et la
stratégie de contrôle d’accès, pour différents domaines utilisateurs concurrents. Ces domaines
de sécurité indépendants, restent potentiellement protégés et isolés, dans les environnements à
grande échelle, multi-opérateurs et multi-clouds. Le prototype et les expérimentations menées
dans des conditions pratiques, montrent la faisabilité et l’efficacité de l’approche proposée.

L’étude et la classification proposées dans la première partie, à partir d’une approche ”cross-
layer”, mettent en évidence de nouveaux types de menaces et vulnérabilités et démontrent
que dans ces environnements logiciels, virtualisés, la sécurité est l’élément critique. La qua-
trième contribution (SecureSFC ou SecSFC) vise à sécuriser et à fiabiliser, la composition et
le chaı̂nage de fonctions service (Service Function Chaining – SFC) dans les environnements
NFV/SDN. SecureSFC s’appuie sur un mécanisme de type ”identity-based ordered multisigna-
ture” pour garantir les propriétés suivantes: (1) L’authentification de chaque fonction service,
associée à une chaı̂ne de fonctions service particulière; (2) La cohérence et le séquencement
de l’ensemble des fonctions service associées à une composition ou à un chaı̂nage partic-
ulier de fonctions service (“VNF forwarding graph”). L’analyse théorique du modèle proposé
“SecSFC” et les résultats expérimentaux, montrent le caractère résilient de l’approche, en par-
ticulier face à un certain nombre d’attaques spécifiques (ex. modification des règles ou de la
topologie) avec un temps de traitement et une latence, limités. Dans le domaine de la sécurité
SFC, “SecSFC” constitue une étape majeure.
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1 Introduction 1
1.1 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline of dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Security Management and Orchestration in NFV 7
2.1 SDN and NFV Driven New Networking Paradigms . . . . . . . . . . . . . . . 7

2.1.1 Issues with traditional networking model . . . . . . . . . . . . . . . . 8
2.1.2 Principles of NFV and SDN . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Major advantages of NFV and SDN . . . . . . . . . . . . . . . . . . . 11
2.1.4 The role of SDN in NFV . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 NFV Architectural Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 NFV Infrastructure (NFVI) . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Virtual Network Functions (VNFs) . . . . . . . . . . . . . . . . . . . 15
2.2.3 NFV Management and Orchestration (NFV MANO) . . . . . . . . . . 16

2.3 Analysis on the Existing NFV MANO Frameworks . . . . . . . . . . . . . . . 16
2.3.1 OpenMANO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Cloudify orchestration . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Tacker - OpenStack NFV Orchestration . . . . . . . . . . . . . . . . . 21
2.3.4 OpenBaton orchestration . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.5 Comparative studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 SecMANO: An Extension of NFV MANO for Security Management . . . . . . 26
2.4.1 High-level features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 The conceptual design framework of SecMANO . . . . . . . . . . . . 28
2.4.3 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

vii



3 Security in NFV 35
3.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Use Case Driven Threat Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Use case 1: NFV Infrastructure as a Service (NFVIaaS) . . . . . . . . 37
3.3.2 Use case 2: Virtual Network Platform as a Service (VNPaaS) . . . . . . 42
3.3.3 Use case 3: Virtual Network Function as a Service (VNFaaS) . . . . . 44
3.3.4 Use case 4: Virtualization of Mobile Core Network and Mobile Base

Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.5 Use case 5: Fixed Access Network Functions Virtualization . . . . . . 49

3.4 NFV Layer Specific Threat Taxonomy . . . . . . . . . . . . . . . . . . . . . . 51
3.5 Security Mechanisms: Comparative Studies . . . . . . . . . . . . . . . . . . . 52

3.5.1 Identity and Access Management (IAM) . . . . . . . . . . . . . . . . . 53
3.5.2 Intrusion Detection and Prevention (IDS/IPS) . . . . . . . . . . . . . . 57
3.5.3 Network isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.5.4 Data protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.6 State-of-the-art Security Countermeasures . . . . . . . . . . . . . . . . . . . . 71
3.6.1 NFV Infrastructure layer . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.6.2 Virtualized Network Functions (VNF) layer . . . . . . . . . . . . . . . 74
3.6.3 NFV MANO layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Security Orchestrator for Achieving Software-Defined Access Control 81
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Design Motivation and Challenges . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Security Orchestrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.5.1 TOSCA model and its extension . . . . . . . . . . . . . . . . . . . . . 86
4.5.2 Design architecture and major components . . . . . . . . . . . . . . . 88

4.6 Access Control Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.1 Access control framework . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6.2 Tenant-specific access control paradigm . . . . . . . . . . . . . . . . . 91
4.6.3 Use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 Proof of Concept Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.7.1 Prototype development and implementation . . . . . . . . . . . . . . . 94
4.7.2 Feasibility studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.8 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.8.1 Experiment settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.8.2 Results and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5 Towards Secure and Dependable Service Function Chaining (SFC) 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 SFC working principles . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



5.4.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Threat model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.2 Design properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.5.3 Construction methodology . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.4 Theoretic proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Security Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Implementation and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.1 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 124
5.7.2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.8 Conclusion and Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Conclusion and Future Work 131
6.1 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A List of publications 135
A.1 International journals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.2 International conferences and workshops . . . . . . . . . . . . . . . . . . . . . 135
A.3 Technical reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



x



List of Figures

1.1 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 High-level NFV framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 A graphical representation of SDN architecture . . . . . . . . . . . . . . . . . 11
2.3 Possible locations of SDN controller and SDN applications in the NFV archi-

tectural framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 High level architecture of NFV aligned with ETSI NFV framework . . . . . . . 15
2.5 OpenMANO relation to ETSI NFV architecture [223] . . . . . . . . . . . . . . 17
2.6 Cloudify architecture aligning to ETSI NFV MANO standard [47] . . . . . . . 19
2.7 The relevant components and services in Cloudify [47] . . . . . . . . . . . . . 20
2.8 Tacker related to ETSI MANO architectural framework [219] . . . . . . . . . . 22
2.9 Tacker architecture with its main components - NFV catalog, VNFM, and

NFVO [219] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.10 OpenBaton architecture based on ETSI NFV MANO specification [168] . . . . 24
2.11 The overview of OpenBaton, (a) OpenBaton architecture, (b) the sub-components

within OpenBaton architecture [168] . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 High level architecture of security orchestrator which works together with NFV

orchestrator and aligned with ETSI NFV MANO . . . . . . . . . . . . . . . . 29
2.13 The operational workflow of NFVO and security orchestrator for service de-

ployment use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 The overview of NFV architectural framework and attack models . . . . . . . . 38
3.2 Man-in-the-middle attack scenario against a live VM migration . . . . . . . . . 39
3.3 VM escape scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Hyperjacking attacking models . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 VNPaaS use case: an example of sharing network resources, together with

attack models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 The overview of VNFaaS and its attack models . . . . . . . . . . . . . . . . . 45
3.7 An example of DNS amplification attack . . . . . . . . . . . . . . . . . . . . . 46
3.8 The virtualization of mobile core network and mobile based station with attack

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.9 The virtualization of access network functions with attack models . . . . . . . 50
3.10 NFV layer specific threat taxonomy based on the ETSI NFV reference archi-

tectural framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xi



3.11 A high level of NFV security framework which covers both specific-layer and
cross-layer security recommendations . . . . . . . . . . . . . . . . . . . . . . 78

4.1 The mapping of security orchestrator in ETSI NFV MANO architectural frame-
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 An example of extended TOSCA template for VM description (the extended
security attributes are in bold) . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 An example of extended TOSCA template for VNF description (the extended
security attributes are in bold) . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4 Design architecture of security orchestrator . . . . . . . . . . . . . . . . . . . 89
4.5 Design framework and operational workflow of access control engine . . . . . 90
4.6 The operational flow of security orchestrator . . . . . . . . . . . . . . . . . . . 96
4.7 The result of testing network connection with Telnet . . . . . . . . . . . . . . . 96
4.8 The deployment of access control engine: one master and two slave nodes . . . 97
4.9 Throughput on handling the number of authorization requests . . . . . . . . . . 98
4.10 Average throughput with varying number of RAM and CPU cores . . . . . . . 99
4.11 Average throughput with the varying number of users and tenants . . . . . . . . 100
4.12 Time taken for the slave nodes to update SMPolicy from the master node . . . . 101
4.13 Adaptation period when the number of slave nodes is increased . . . . . . . . . 101

5.1 Intra-domain orchestrated architecture with the corresponding SFC workflow
from high-level business specification to actual SFC deployment enabled by
NFV and SDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Motivating examples of SFCs . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3 Illustration of rule installation in SFF and its attack model . . . . . . . . . . . . 111
5.4 Forms of anomalous flow redirection and path deviation . . . . . . . . . . . . . 112
5.5 Deployment scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 The relationships between number of VNF nodes in a service chain and latency 126
5.7 Two different types of packet transmission (i.e., ICMP-ping and HTTP-ping

packets) with and without signature construction. Percent such as 10% means
that for each received packet, first VNF signs it with probability 10%. . . . . . 127

xii



List of Tables

2.1 A summary of comparative analysis between traditional network model and
NFV model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 The main difference between four NFV service orchestration platforms . . . . 25

3.1 The key differences between typical and NFV based implementations of IAM . 56
3.2 The key differences between typical and NFV based implementations of IDS/IPS 60
3.3 The key differences between typical and NFV based implementations of net-

work isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.4 The key differences between typical and NFV based implementations of data

protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5 A summary of NFV threats and vulnerabilities with the corresponding security

countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Basic sets and functions of access control model and policy . . . . . . . . . . . 92
4.2 Use case: generating tenant-specific access control policies . . . . . . . . . . . 93
4.3 An example of change requirement of security policy rule sets . . . . . . . . . 94
4.4 Hardware specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.5 Hardware specifications for master and slave platforms . . . . . . . . . . . . . 97

5.1 Notations used in Lite identity-based ordered multisignature formulation . . . . 117

xiii



xiv



1
Introduction

Over the past decades, enterprise networks have undergone increasing diversity of network
services and functions. The tremendous growth in vertical and horizontal deployment of pro-
prietary network appliances makes network architectures extremely complicated and difficult
to manage [213, 32]. In particular, typical network appliances always incur high costs of invest-
ment (Capital Expenditure (CapEx)) and maintenance (Operation Expenditure (OpEx)) [210],
as they are usually expensive, vendor specific, and complicated to manage, creating numerous
pain points to network administrators [88, 207]. Also, a new form of typical network appliance
is usually treated as one-off solution to support a specific function [12], making it hard to de-
ploy new service or customize the existing network appliances for fulfilling different customer
requirements. An example in the deployment of today’s network services, such as firewall,
Intrusion Detection and Prevention System (IDS/IPS), is that the network functions are often
hardware-dedicated and placed at fixed network spots, and the capacity of handling traffic is
limited. For example, traditional hardware-based firewall fails to support dynamic provisioning
to deal with frequent and highly variation of traffic load [58]. Also, it is a difficult and complex
task to monitor the malicious processes of VMs running inside the host by using traditional
IDS/IPS, since the traditional IDS/IPS only provides fixed functionality to deal with specific
types of attacks, and has fixed capacity in handling network traffic [82].

To address the aforementioned issues, many enterprises and service providers are seeking
for more effective techniques to improve operational efficiency, reduce power usages, and speed
up their service deployments. Network Function Virtualization (NFV), along with Software-
Defined Networking (SDN), has emerged as promising solutions in recent years. In particular,
the concept of NFV was firstly proposed by the European Telecommunication Standard (ETSI)
with the purpose to reduce hardware investment cost, enhance capacity of resource utilization,
and accelerate service deployment of new network services to support business revenue and fu-
ture growth objectives. The key idea of NFV is to decouple network functions from dedicated
hardware devices and implement them using software-based approaches. That says, instead
of installing, configuring, and operating a dedicated appliance to perform a network functions,
NFV allows network operators to use standard hardware platform to simply load the software
image into a virtual machine, and launch the desired network service on demand. As such,
the network functions can be implemented and deployed on a range of commodity hardware
located at different geographical locations, avoiding the needs of installing new equipments.
Thanks to these characteristics, NFV-based implementations can significantly reduce capital
and operational expenditures (CapEx and OpEx), increase network efficiency and agility, pro-
vide a shorter time to market deployment of network services, and improve the scalability of
resource utilization [117, 98, 191]. Another silent feature of NFV is that a regular service
function (a.k.a, Virtual Network Function (VNF)) can be broken down and decomposed into
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smaller functional modules to accelerate the processing time, improving a better scalability and
reusability (e.g., [246, 58]). More interestingly, a diverse set of VNF instances can be chained
together, so-called Service Function Chaining (SFC), to create on-demand network services in
accordance with the particular needs of the users specification (e.g., [186, 142, 146]).

In particular, NFV and SDN are two closely related technologies that use the network ab-
straction model but operate at different layers of NFV architectural framework. NFV aims to
virtualize all network functions from the hardware on which it runs, allowing the network to
grow without the addition of more devices. While SDN aims to separate control plane from
forwarding plane, and moves decision making to the control plane. For example, it decides how
to handle traffic at the data plane. This make it easier to configure, program and manage the
networks. In other words, SDN is considered highly complementary to NFV, which is practi-
cally used as a part of SFC creation to provide the full network control capabilities and manage
traffic steering at the data plane. They often exist together.

A typical use case illustrating the usage of NFV and SDN is service function chaining (SFC)
or VNF chaining1, as shown in the lower part of Figure 1.1. Specifically, a set of VNF instances
are created, which are then stitched together in a logical ordered-fashion for creating a service
chain or an end-to-end network service. In this use case, two essential functional blocks play
the major role.

• management and orchestration module (a.k.a, NFV MANO [74]) of NFV, which main-
tains the full lifecycle management of infrastructure resources, VNFs, and network ser-
vices. This include service initiation, configuration, update and termination, resource
and service orchestration, scaling in/out, policy management and performance measure-
ment. To date, many NFV MANO frameworks have become available, most of which
are built according to ETSI NFV MANO specification. For example, CloudNFV [48]
and CloudBand [6] are developed as non-model driven based approach, while the others
have been developed under open-source platforms as model-driven NFV orchestration by
using Topology and Orchestration Specification for Cloud Applications (TOSCA) stan-
dard [227], e.g., OpenStack Tacker [219], Cloudify [47], and ONAP [163].

• SDN controller [70, 165], which can be leveraged by NFV orchestrator to provide full
network control capabilities, including traffic steering and forwarding, routing decision
based on the global view of network status, and path provisioning between the instanti-
ated VNFs. By leveraging such capabilities, a network operator can reconstruct a service
chain and steer the traffic in a flexible and automated way. The available SDN con-
trollers can be classified into two categories: (1) logically centralized controllers that
maintain a global view of the network using a single controller, such as Floodlight [19],
OpenDaylight [225], NOX [94], POX [183], RYU [159]; (2) Distributed controllers like
ONOS [224], which aims to mitigate the limitations of the centralized controllers by de-
ploying and synchronizing multiple controllers to share the communication and computa-
tion load.

1.1 Background and Challenges

Despite the promising advantages of NFV and SDN, security concerns remain to be significant
barrier to their wide-spread adoption [179, 128, 84]. As new networking technologies, they are
essentially two-sided sword from security perspective. On the one hand, novel security threats
and vulnerabilities will be inevitably introduced. The resulting attack surface for NFV based

1In this thesis, VNF and Service Function (SF) are used interchangeably. VNF is defined by ETSI, while SF is specified by Internet
Engineering Task Force (IETF).
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network services could be even larger than its traditional counterpart, spanning from hardware
vulnerabilities to the vulnerability of Virtual Network Functions (VNFs), orchestration, or even
policy violation due to non-trivial service complexities and administrative errors. Especially,
when the large scale deployment of NFV goes across a wide range of cloud data-centers and
security domains, the frequent migration can bring a large set of challenges to threat landscape
identification and security policies enforcement. On the other hand, the novel features and ca-
pabilities of NFV and SDN provide unprecedented opportunities to reshape the landscape of
today’s cyberdefense, potentially making significant progress towards next generation security
architecture. For instance, the agility of NFV allows different security functions to be imple-
mented as VNFs and deployed on demand. Also, the programmability of SDN may enable
security functions to be implemented as network apps and customized via SDN controllers. To
date, we have seen tremendous efforts paid to security research in both NFV and SDN, and two
representative surveys are [206, 179]. However, in this thesis, we generally treat SDN as part
of NFV, so SDN will not be explicitly mentioned unless it’s particularly needed.

As a matter of fact, a majority of NFV MANO frameworks (e.g., [219, 47, 223, 238, 6, 48])
is focused on the migration of network functions from dedicated hardware appliances to virtu-
alization environment, as well as the effective management and orchestration of the virtualized
network services. For example, the way to allocate virtualized resources, deploy and con-
figure VNF instances, and create a service chain for delivering end-to-end network service.
Although NFV offer many potential benefits, it is still at an early stage of development and
deployment, security and regulatory concerns are comparatively overlooked. In particular, it
remains unclear how NFV would fundamentally impact the landscape of cyber defense, how it
can help to improve overall security posture, or even what kinds of security challenges as well
as critical threats they may presented. For example, the authors of [116, 7] have raised some
security concerns and proposed a security orchestrator to manage security mechanisms, while
the detailed data models and the related use cases were not sufficiently addressed. Therefore,
it is interesting and important to develop a novel security orchestration that can be seamlessly
integrated with the existing NFV orchestrators, enabling the basic security functions to be or-
chestrated and provided as on-demand services to the customer, and high-level security policies
to be specified and enforced in a dynamic and flexible way. In doing so, security-by-design and
security-as-a-service have potential to be mostly, if not completely, achieved.

By design, NFV-enabled service deployment relies on multiple control layers, such as infras-
tructure layer which allocates physical and virtual resources, VNF layer which implements, de-
ploys and manages the virtualization of network functions, and orchestration layer which man-
ages and orchestrates network elements and services. Clearly, the open layered structure opens
a door to a large set of novel security threats and vulnerabilities, significantly enlarging the
attack surface of NFV. For instance, those attacks occurring at VMs (e.g., [128, 181, 217, 109])
still exist and play a key role in triggering the so-called cross-layer attacks, which happen at
different NFV layers. In order to help the service providers and network operators to gain a
holistic understanding on the attack surface when implementing or deploying their network
services in NFV environment, so as to deploy cost-effective security hardening based on their
particular needs, it is very meaningful and important to establish a comprehensive threat tax-
onomy to systematically identify the threats and vulnerabilities in NFV.

In addition, as a unique feature of NFV and SDN, service function chaining (SFC) plays a
key role in implementing and delivering end-to-end network services, which involves several
steps from defining high-level network service description to resource allocation, VNF instan-
tiation and placement, to VNF selection and composition, to traffic steering and forwarding.
According to NFV reference architectural framework, NFV MANO stack lays a foundation
to maintain the entire lifecycle of VNFs and network services, and SDN controller is mainly
in charge of management of network connectivity and traffic flows in data plane. Although
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there are several ongoing research work attempting to address the unique and unprecedented
challenges imposed by SFC, we observe that the security and dependability problems in SFC
are comparatively overlooked by the research community. One challenging issue, for example,
is that once the high-level SFC policy is specified, how can we make sure that a service chain
specification is correctly translated into network flow classification with accurate packet for-
warding rules, or how to ensure and prove that the packet flows of a particular service chain are
traversed correctly through all appropriate and legitimate VNFs in the right order with respect
to the predefined policy. Anomalous flow redirection and path deviation [205, 247] are poten-
tial attack models that can be used by attackers to compromise the original service function
path and further violate SFC policies. As a result, the attackers can bypass or evade from secu-
rity functions in the service chain like firewall, IDS/IPS. Therefore, it is important to achieve
both security (e.g., authenticity, integrity of VNFs) and dependability (e.g., ordering property),
in addition to optimality, of the service chain in NFV environment.

1.2 Contributions

To address the aforementioned challenges, this thesis delivers the following contributions,

• A conceptual design framework about NFV based Security Management and Orchestra-
tion (called SecMANO), which aims to facilitate the basic security functions to be au-
tomatically and intelligently deployed, so as to protect the NFV assets according to the
predefined security policies. The design of such a framework has two purposes: imple-
menting the concept of security by design by formally specifying the security attributes
of interest at the early stage of deployment; achieving security as a service by providing
a basic set of security functions or their combinations on demand, e.g., access control,
IDS/IPS, network isolation, data protection. The existing NFV orchestration platforms
have been studied from security perspective, with an objective to understanding their ca-
pabilities of managing security mechanisms, which finally lead to a comparative analy-
sis on the existing NFV orchestration platforms in terms of the criteria for developing
software-defined security framework.

• An in-depth analysis about NFV security. Starting with the analysis on the well-defined
NFV uses cases documented by ETSI, we examined their potential threats and vulner-
abilities, and established a comprehensive NFV layer-specific threat taxonomy, finally
provided a suite of security recommendations based on the gap analysis with the available
countermeasures.

• A security orchestrator, which can be treated as an implementation of the proposed con-
ceptual framework SecMANO. Specifically, the security orchestrator is expected to work
as an extension of the existing NFV orchestrator, which can deploy the basic security func-
tions in NFV environments and optimally customize and orchestrate them as on-demand
services to the customers, according to the high-level security policies. In particular, a
software-defined access control paradigm has been developed, which allows access con-
trol models and policies to be specified and enforced in a dynamic and flexible way, pro-
viding tenant-specific cross-layer protection in the distributed clouds.

• A lightweight authentication scheme that achieves secure and dependable VNF chaining.
This security scheme can be implemented and naturally integrated into SecMANO by in-
teracting with VNF forwarding graph module and SDN controller. The design foundation
of this scheme is aggregated ordering digital signature crypto primitive, which allows a
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Figure 1.1: Organization of the thesis

group of VNFs involved in a particular service chain to attest their signatures on the pack-
ets received, and a verifier to later verify that all the packets traversed correctly w.r.t the
specified SFC policy.

1.3 Outline of dissertation

The organization of this dissertation is given as follows, and the relationship between the sec-
tions is illustrated in Figure 1.1.

• Chapter 2 – Security Management and Orchestration in NFV. This chapter is dedi-
cated to the first contribution about conceptual framework SecMANO. It firstly analyzes
the issues in the traditional networking model, and highlights the significant advantages
that can be achieved by NFV and SDN. Then NFV architectural framework and its rela-
tionship with SDN are discussed. Also, the existing frameworks related to NFV MANO
are intensively studied in order to analyze their architectures, data models, and features.
Our study reveals that the existing frameworks lack a dedicate module or component that
can provide holistic security management. Therefore, a conceptual design framework of
Security management and Orchestration (SecMANO) is proposed to help improve secu-
rity management in NFV environment.

• Chapter 3 – Security in NFV. This chapter is focused on the second contribution, and
its aim is three-fold. First, we conduct a comprehensive study on several NFV-based
use cases that are documented by ETSI, and each of them is analyzed with their spe-
cific threats and vulnerabilities, with an ultimate goal to establishing a NFV layer-specific
threat taxonomy. Such a taxonomy allows service providers and network operators to gain
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a holistic understanding on the attack surface introduced by NFV. Second, we conduct a
set of comparative studies on the typical security mechanisms (e.g., Identity and Access
Management (IAM), IDS/IPS, network isolation, and data protection) between their im-
plementations and deployments in traditional scenarios and in NFV environments. Third,
based on the established threat taxonomy and the comparative studies of security mecha-
nism, we give a set of recommendations on securing different NFV layers. This may help
network operators to understand to what extent the available security best practices for
NFV can fulfill the security requirements.

• Chapter 4 – A security orchestrator and its implementation for achieving software-
defined access control. This chapter specifically reports the third contribution, i.e., se-
curity orchestrator that can be integrated seamlessly with the existing NFV orchestrators.
One of the major motivations is to improve agility and flexibility of security functions,
providing autonomic multi-layered defense mechanisms and fine-grained security control,
while allowing security administrators to freely configure security services based on their
particular contexts and needs. A software-defined access control paradigm is developed to
illustrate the usage of our proposed security orchestrator. With such a novel access control
paradigm, different tenants of the cloud can specify their own access control models and
polices, and update them on the fly.

• Chapter 5 – Towards Secure and Dependable Service Function Chaining (SFC). This
chapter reports the fourth contribution, a scheme dealing with the consistency and relia-
bility challenges in SFC. Specifically, a new cryptography primitive, called Lite identity-
based ordered multisignature scheme is proposed to examine the behavior of packet traver-
sal and verify the consistency of service chain. The scheme impels each VNF instance in
the specified service chain to attest its signature in the packets received. While, the egress
node (SFC boundary node that handles traffic leaving the SFC-enabled domain) plays a
role as verifier to examine the consistency of service chain by verifying the aggregated
signatures, so as to validate the authenticity of the VNFs and their ordering properties
(positions) in the service chain.

• Chapter 6 – Conclusion. This chapter concludes the dissertation with a summary of
contributions and presents the perspective for future work.
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2
Security Management and Orchestration in NFV

In this Chapter, we firstly address the long-standing issues of the traditional networking model,
then illustrate how NFV/SDN provides promising opportunities to overcome those issues. A
set of evaluation metrics is proposed in order to make a comparison between the traditional net-
working model and NFV/SDN model. The key findings are summarized in Table 2.1. Second,
the NFV architecture and its key functional components including SDN are presented, illus-
trating the key concepts of NFV. For example, how network functions can be migrated from
dedicated hardware appliances to the virtual machines, how they are deployed and orchestrated,
and how they can be chained together for achieving end-to-end network services. Third, a com-
parative study on the existing NFV management and orchestration (NFV MANO) frameworks
is conducted. The objective is to identify whether the existing frameworks provide the capa-
bility of achieving autonomic security management, is there any security APIs available, and
how they are defined and specified. Fourth, a conceptual design framework of Security Man-
agement and Orchestration (SecMANO) is proposed to improve security management in NFV
environment. The chapter is concluded with some remarks.

2.1 SDN and NFV Driven New Networking Paradigms

Network Function Virtualization (NFV) and Software Defined Networking (SDN) are two
closely related technologies that dominate the evolution towards next generation networks.
Both of them essentially rely on software based approaches, while operating at different levels
of the network. SDN allows programmable networks by decoupling the control plane from the
data plane, enabling network providers to have a better control and faster configuration. Mean-
while, the objective of NFV is to consolidate multiple network functions onto software, which
run on a range of industry-standard hardware. As such, they can be easily migrated to various
locations within the network on demand, greatly eliminating the needs to purchase and install
new equipments. It can help to manage rapid demand growth, while reducing Capital Expendi-
ture (CapEx) and Operational Expenditure (OpEx) in terms of hardware acquisition and capital
investment. Also, time to market can be significantly shorten for new service deployment, with
enhanced flexibility, agility, and scalability. Moreover, the network operators, who maintain
the operations of network services, are allowed to dynamically deploy new resources, making
network functions scale on demands, and providing opportunities to test services of interest
with lower risks [117, 98, 191]. Thanks to these promising benefits, the global NFV and SDN
markets will grow from $2.7 billion to $15.5 billion in 2020, at a robust Compound Annual
Growth Rate (CAGR) of 42% [113]. In addition, it is foreseen that by 2020, 80% of overall
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networking equipments will be transitioned to virtualization, while 10% of all service providers
will invest on orchestration platforms, leading over $1.6 billion in revenue [215].

2.1.1 Issues with traditional networking model

As a matter of fact, adding a new service into today’s network is an extremely complex and
tedious process. Due to the proprietary nature of existing hardware appliances (fixed functions),
service agility and scalability are serious issues. Thus, high cost of operations and maintenance
are commonly expected, making the configuration of network services increasingly difficult
and cumbersome, especially when the size of network increases. The challenges about the
deployment of network function in traditional networking model are discussed as follows.

• Large capital expenditure: Sherry et al. [210] pointed out that today’s network infrastruc-
ture is expensive, complex to manage, and creates the pain points of network administra-
tors in terms of difficulty. Even though the number of network devices is not very large,
their deployment can be costly and require high up front investment in hardware. For ex-
ample, the medium networks with 1k to 10k hosts may cost around 50K to 500k dollars,
while a very large network with more than 100k hosts can cost over million dollars of
hardware investment.

• High management complexity and operational expenses: Clearly, handling a large set of
heterogeneous devices requires broad expertise and a large management team. As reported
in [210], even a small network composing of only ten network devices may require a
management team of 6-25 persons. Most administrators have to spend 1-5 hours per week
to deal with device failures. It has been recognized that the top three most common issues
are misconfiguration, overload, and physical/electrical failures. Also, as stated in [186],
ensuring the traffic to be directed through the desired sequence of network devices require
significant manual effort and operator expertise. This complexity stems from the need to
carefully plan the network topology, manually set up rules to route the traffic across the
desired network devices, and implement safeguards to guarantee correct operations in the
presence of any failure and overload.

• Non-optimal deployment of security functions: Considering the aforementioned issues, it
is important to determine where the network devices have to be installed to achieve ex-
pected security with minimum cost. In other words, the network operators have to choose
reasonable security functions and deploy them into appropriate locations to achieve the
best protection coverage. However, in practice, Shin et al. [213] argued that it is diffi-
cult to place security functions and network devices with unpredictable threats coming
from different network’s tenants. It is also a challenging task for network operators to
configure network devices without introducing any errors. In multi-tenancy environment,
these installed security functions may not lie in the best location to offer the best security
service.

• Lack of fine-grained control: Gember et al. [88] mentioned abouts today’s network de-
vices have very limited configuration policies and narrow range in parameter manipula-
tion. Also, the internal algorithms and operational states are completely inaccessible and
unmodifiable. Apparently, it lacks fine-grained control (e.g., capability to re-route traf-
fic flows or understanding the behavior of network devices), scalability, flexibility, and
reliability.

• Lack of efficiency for usage and management: As stated in [207], today’s network infras-
tructure has been developed in a largely uncoordinated manner. A new form of network
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devices typically emerge as an one-off solution to meet specific needs, then it is patched
into infrastructure through ad-hoc and manual technique. This leads to serious inefficiency
on two aspects.

– Inefficiency in the use of hardware resources: Network devices are typically resource
intensive, each of them is usually deployed as stand alone device and independently
provisioned for peak load. These resources are hard to be amortized across applica-
tions even though their workloads offer natural opportunities to do so.

– Inefficiency in management: Each type of today’s network devices has its own cus-
tomized configuration interfaces, without providing a common standard or tool to
offer network administrators a unified view for managing and controlling these net-
work devices across the networks.

Clearly, it can be observed that the aforementioned issues will be increasingly problem-
atic for the deployment and management of network services, considering the fact that these
services are continuously growing both scale and variety, while a large set of diverse service
components and heterogeneous elements are incorporated at multiple layers.

2.1.2 Principles of NFV and SDN

Network Function Virtualization (NFV). As aforementioned, the emergence of NFV [67]
drives massive changes in networking paradigm, thereby significantly changing the way that
network services are deployed, managed, and operated. In particular, the NFV concept was
first proposed by the European Telecommunication Standard Institute (ETSI) with the purpose
to reduce hardware investment cost, enhance capacity of resource utilization, and accelerate
service deployment of new network services to support business revenue and future growth
objectives. As shown in Fig. 2.1, NFV aims to decouple network functions (e.g., firewall, proxy,
IDS/IPS) from dedicated hardware devices using virtualization and cloud technologies, and
abstracting them into softwares known as Virtual Network Function (VNFs) running over the
virtual machines (VM). There is a possibility that a single VNF can either run on a VM as a 1 : 1
mapping model, or decomposing into smaller components as a 1 : N mapping model with the
goal to improve a better scalability, reusability, and faster response time (e.g., [246, 58]). Also,
a diverse set of VNF instances can be chained together, so-called Service Function Chaining
(SFC) to create on-demand network services with regards to the particular needs of the users
specification (e.g., [186, 142, 146]). Thanks to these features, network services can be created,
configured, scaled, and terminated quickly to accommodate with the dynamic changes in user
requirements [191, 98].

Among a variety of NFV use cases documented in [72], virtualizing the functionalities of
Customer Premises Equipments (CPE) (e.g., routing, firewall, VPN termination, IDS/IPS, DPI)
and Evolve Packet Core (EPC) (e.g., Mobility Management Entity (MME), Serving/Packet
Gateway (S/P GW), Home Subscriber Server (HSS)) are the most important use cases that have
attracted a lot of attention from both academic and industry communities. Network operators
have seen the potential benefits brought by NFV including reduction of their CapEx and OpEx
costs, better flexibility of management, dynamic scaling of resources, services agility, which
hence increase their revenue.

Software Defined Networking (SDN). It is considered as a new networking paradigm that
promises to transform typical enterprise networks (which have static, hardware-centric, and
device-specific network) into programmable, software-defined, and centralized control net-
works, allowing network operators to adjust and program network resources dynamically to
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Figure 2.1: High-level NFV framework

meet the changing needs of today’s business-driven networks [237]. SDN makes easier to cre-
ate new abstractions in networking, simplifying network management and facilitating network
evolution [126]. In particular, SDN was devised by researchers who were frustrated by the need
to upgrade or change out software in network hardware devices every time they wanted to try
something new. As such they introduced the idea of SDN to break down the vertical integration,
by detaching the control plane from the underlying forwarding plane and using well-defines in-
terfaces to enable programmable behavior of the network and its elements. Additionally, the
concept of centralized controller is promoted with the purpose to maintain the global view of
network status and operations. The controller can query all the flow entries across the network
to identify individual traffic paths, request per-switch statistics of the ports as well as flow uti-
lization. Also, it can build a full topological representation of the network, allowing re-routing
decision to be made on the fly. Combining all the data available at the controller, it is possible
to have a fine-grained view and control of the network utilization. To elaborate the functionality
of SDN architecture, it can be simply divided into three main layers/planes as represented in
Fig. 2.2:

• Application layer: which contains various SDN applications for various functionalities
such as routing, load balancing, and security services. It communicates with the SDN
controller through northbound interface, e.g., RESTCONF [3].

• Control layer: make decisions about where traffic is sent. It consists of one or more SDN
controllers. It is responsible for logically maintaining a global view of network, provid-
ing hardware abstraction to SDN applications, and performing control tasks to manage
the networking devices in the infrastructure layer via southbound interfaces (e.g., Open-
Flow [164]1) according to the requests from the applications. Some examples of active
and open-source SDN controllers are OpenDaylight [225], Floodlight [19], ONOS [224],
RYU [159].

1 In particular, ONF [166] defines the OpenFlow as the first standard communication and the most widely-used protocol defined between
the control and data planes of an SDN architecture.
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Figure 2.2: A graphical representation of SDN architecture

• Infrastructure layer: is composed of networking elements such as virtual/physical switches
and routers that used to forward traffic flows based on rules installed by the controllers.
It enables data transfer to/from the end hosts and manages conversations with the re-
mote peers. Examples of SDN enabled OpenFlow switch implementations are Open
vSwtich [134] and Pica8 [182].

2.1.3 Major advantages of NFV and SDN

It has been widely recognized that the new networking technologies like NFV and SDN bring
many advantages such as reducing the cost of hardware investment, optimizing resource con-
sumption, and improving the operational efficiency and the quality of service deployment.
Therefore, the aforementioned issues in the traditional networking model can be potentially
overcome. The improvements made by NFV/SDN2 are discussed as follows.

• Reduced CapEx and OpEx: One of the major advantages of NFV is to reduce CapEx
and OpEx, by decoupling network functions (e.g., firewall, load balancing, IDS/IPS) from
the proprietary hardware appliances to virtualized network services [98, 191]. As such,
network functions will no longer be tied to a particular hardware platform, allowing them
to be controlled centrally, and dynamically deployed on demand. Meanwhile, SDN [237,
206] which is recognized as the complimentary technology to NFV helps in overcoming
the limitations associated with traditional network infrastructure playing an important role
in managing and controlling the network connectivity. These advantages significantly
contribute to the simplified and automated operation, eventually leading to the reduced
capital investment costs and enhanced capacity utilization.

• Shorten time to market: Time to revenue is another key aspect provided by NFV and
SDN [107, 114, 110]. It enables to deploy new services more quickly and easily (i.e.,

2 NFV and SDN are two closely related technologies that operate at different layers of NFV architectural framework. SDN is considered
highly complementary to NFV, which is practically used as a part of SFC creation to provide the full network control capabilities and manage
traffic steering at the data plane. They usually come together. Therefore, in this thesis, we generally threat SDN as part of NFV, so that SDN
will not be explicitly mentioned unless it is particular needed.

11



from months to minutes), while providing more scalable service creation, rapid proto-
typing and testing, remote and automated software update, flexible and adaptive network
design tailored to particular business needs. These properties reduce the time required for
instantiation, configuration, and deployment of new services, resulting in shorter service
deployment time.

• Reduced complexity of deployment and management: Thanks to NFV management and
orchestration [74, 152], network operators can remotely configure, automatically provi-
sion, and easily update policy rules of deployed network services on the fly. It offers
simplified policy enforcement by eliminating the need of manually planning on device
placement or pre-configure route to enforce policies. Also, with the help of centralized
SDN controller [237], it provides network engineers and administrator to have a global
view of network status, enabling them to directly and programmatically configure the un-
derlying forwarding plane like switches on how to efficiently handle the network traffic. It
brings efficient management of network resources by reducing overall management time
and the chance for human error.

• Dynamic and elastic scaling of services: NFV/SDN brings significant advantages that al-
low service providers to scale up or down network service’s capability on demands. For
example, the network operators may leverage NFV/SDN to scale additional resources for
particular service instance when the number of users increases, and this service instance
will be removed if it is no longer used. As such, service request response time can be sig-
nificantly improved, and the service configuration and updates can be handled in a faster
manner. Some existing examples of NFV/SDN based network service implementations
which provide dynamic scaling are discussed in [248, 58, 57].

• Efficiency improvement for usage and management: As aforementioned, today’s network
devices are developed in a largely uncoordinated manner, and it is difficult to properly
operate among each other to meet the exact user requirements. To tackle this inefficiency
problem of managing and deploying network services, Sekar et al. [207] exemplified two
potential benefits. First, NFV allows network operators to consolidate network applica-
tions from different vendors to run on a consolidated hardware platform, and manage them
in a centralized manner. Second, NFV together with SDN provide centralized manage-
ment with an unified and network-wide view to quickly configure and monitor network
services, and update the policy rules. For examples, the use of centralization to simplify
network management has already been introduced in [248, 212].

2.1.4 The role of SDN in NFV

Being born at different times and promoted by different communities and organizations, SDN
and NFV share many properties and are highly complementary to each other. These two tech-
nologies have the same objective to help accelerate service agility and drive new service inno-
vation towards a software-driven networked ecosystem [167, 69]. On the one hand, NFV can
serve SDN by virtualizing SDN elements including SDN controller and SDN data forwarding
entities (which can be seen as VNFs) to run in the cloud, thus allowing the optimal provision
and dynamic migration of these components with respect to their locations and business needs.
On the other hand, SDN can be a part of NFV by providing programmable network connec-
tivity between instantiated VNFs, enabling optimized traffic steering and intelligent service
chaining [?, 158].

To have a better understanding about the SDN usage in the NFV architectural framework,
Fig. 2.3 shown mapping position/location in which SDN elements can be deployed in the frame-
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Table 2.1: A summary of comparative analysis between traditional network model and NFV model

Metrics Characteristics of traditional network model Characteristics of NFV and SDN
Cost • Specific hardware equipments perform specific

network functions
• The amount of hardwares are increased when net-
work infrastructure get large

• Minimize hardware expenditure, and software devel-
opment cost
• Save money on electricity consumption, hardware
maintenance, and operational expenses
• Space saving in datacenter

Network
function

deployment

• Legacy networks become difficult to be auto-
mated, provisioned, and orchestrated
• Traditional networking model introduces complex
configuration
• Require significant manual effort and operator ex-
pertise
• Longer time for service deployment

• Migrate network functions from dedicated hardware
to virtual machines, and move them to software-based
approach
• Shorten time in service deployment
• New services can be added, deployed, installed, and
provisioned more quickly

Scalability • Limited capacities scaling • Flexible scaling up/down network services and re-
sources as on demands
• Agile service creation and rapid provisioning to im-
prove customer satisfaction

Capability of
management

and
orchestration

• Lack of effective automated resource allocation
and configuration
• Each network device has individual setting and
configuration
• Closed and proprietary setup, making network de-
vices complex and difficult to manage
• Lack of fine grained control, flexibility, and inter-
operability
• Requires dedicated administrators to maintain net-
work traffic load balancing
• All requests are passed through a single piece of
hardware, any failures will cause collapse of the en-
tire services

• Provide resource optimization and load balancing
• Handle virtualized resources through appropriate ab-
stracted services, known as NFV MANO
• Rapid scaling and efficient allocation of physical and
virtual resources on the fly
• Provide automate orchestration in action, and reduce
operational cost without downgrading reliability
• Simplify service chain provisioning, making it easier
and cheaper to spin up applications in enterprises across
service provider’s networks

Built-in
security

mechanisms

• Specific security devices are used to prevent spe-
cific attacks
• Difficult in testing, monitoring, and troubleshoot-
ing a service across multiple vendor’s hardware
platforms

• Allow the additional layer of security with lower cost
• Rapid deployment of software-based virtual security
appliances
• It is easier to create, manage, and adjust security zones
• Quickly automated virtualized security functions as on
demand, while security policy can be updated remotely

work. In the figure, SDN elements like SDN controller and SDN application can be positioned
in different locations within the NFV framework. For example, the SDN controller can be ei-
ther merged with the VIM functionality (case 1), serves as a part of NFVI and is not a VNF
(case 3), part of OSS/BSS (case 4), or it is virtualized as a VNF (case 2) or PNF (case 5).
Similarly, the SDN application can interface with SDN controller in multiple scenarios. For
example,

• Case 1: SDN application resides within NFVI layer and directly interfacing with SDN
controller, i.e., OpenStack Neutron [157].

• Case 2: The SDN application is virtualized as VNF and communicated directly to SDN
controller. For instance, a Policy & Charging Rules Function (PCRF) may communicate
to the SDN controller for policy management and traffic steering [69].

• Case 3: The SDN application can be an element manager that interfaces with SDN con-
troller to collect some metrics or configure some parameters.

• Case 4: The SDN application might be an OSS/BSS application interfacing with SDN
controller, e.g., tenant specification purpose.
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Figure 2.3: Possible locations of SDN controller and SDN applications in the NFV architectural framework

• Case 5: A complete SDN solution including SDN controller and SDN application are
integrated in the dedicated hardware devices.

It has been revealed that the combination of SDN and NFV enables dynamic, flexible de-
ployment and on-demand scaling of network functions which are necessary for upcoming 5G
systems such as mobile core network, home environment and content delivery network. These
characteristics have also encouraged and gained a promising development of network slicing
and service function chaining (SFC). From a user endpoint perspective, the term of network
slicing is to group physical/virtual resources into a slice to achieve performance requirements
(transmission rate, delay, throughput, etc.) [158]. From network perspective, slicing a network
is to divide the underlying infrastructure resources into a set of logically isolated virtual net-
works. This concept is considered as an important feature of a 5G network, and also being
standardized by 3GPP [1]. Meanwhile, SFC [96] allows traffic flows to be routed through an
ordered list of network functions (firewall, load balancers, etc.). Some example use cases of
SFC are given in [95, 127, 233].

2.2 NFV Architectural Framework

In NFV, software-based VNFs are instantiated across a diverse range of VMs, connected and
chained together in a certain way to create an end-to-end network services. According to the
ETSI reference model [73], the NFV architecture is mainly composed of three main functional
blocks: NFV Infrastructure (NFVI), Virtual Network Functions (VNFs), and NFV Manage-
ment and Orchestration (NFV MANO), as illustrated in Fig 2.4. The additional module like
Operating Support System/Business Support System (OSS/BSS), which provides management
and orchestration of legacy systems, can be considered as independent module which is practi-
cally managed by NFV MANO.
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Figure 2.4: High level architecture of NFV aligned with ETSI NFV framework

2.2.1 NFV Infrastructure (NFVI)

NFVI aims at providing basic storage and computing capabilities for building an environment,
in which network functions can be executed. The capabilities provided by NFVI are the pro-
cessing, storage, networks, and other fundamental computing resources, which are pooled and
made available to the customers. Thus, the customers are able to deploy and run arbitrary
network services without too much concern about managing or controlling the underlying in-
frastructure. On the one hand, the concept of NFVI can greatly expand a carrier’s coverage
in terms of locations for providing and maintaining network services at a large scale. This
brings significant advantages on reducing the cost and complexity of deploying new hardware
or leasing fixed services. On the other hand, service providers can either use their own NFVI
or leverage other service provider’s infrastructure to deploy their own network services. This
makes the implementations of network services more flexible and efficient in resource utiliza-
tion.

2.2.2 Virtual Network Functions (VNFs)

This layer provides the implementations of network functions, e.g., firewall, load balancing,
IDS/IPS, using software based approaches. It moves network service functionality from pur-
pose built platform to commodity hardware environment, and capable of running over the
NFVI, rather than investing its own capital on purchasing specific hardware equipments and
deploying network infrastructure. On the one hand, one network service can be composed
by a number of VNFs that are running on several VMs, being linked and chained together to
create an end-to-end network service, so-called Service Function Chaining (SFC). On the an-
other hand, a single VNF can be shared and leveraged by a number of distinct service chain
to further met application-specific requirements. To date, the most prevalent transition models
of VNFs, include virtual Evolved Packet Core (vEPC), virtual Customer Premises Equipment
(vCPE), virtual Radio Access Network (vRAN), virtual Content Delivery Network (vCDN),
virtual Set-top Box (vSTB), and virtual Residential Gateway (vRGW).
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2.2.3 NFV Management and Orchestration (NFV MANO)

The nature of NFV determines that new network services can be dynamically and quickly cre-
ated, deployed, and removed. However, it requires management and orchestration module to be
added for managing and orchestrating all the resources needed by the VNF instances. In par-
ticular, NFV MANO has been proposed by ETSI [74], which is used for lifecycle management
of physical/virtual resources, VNFs, and network services. As shown in Fig 2.4, NFV MANO
can be categorized into three functional blocks as follows.

• Virtualized Infrastructure Manager (VIM): which manages and controls NFVI physical
and virtual resources including computing, storage, and network in a single domain. In
particular, the tasks related to VIM are: (1) orchestrating the allocation/request of NFVI
resources; (2) performing root cause analysis of performance issues arising from NFVI;
(3) collecting infrastructure fault information; (4) collecting information related to capac-
ity planning, monitoring, and optimization; and (5) managing software images (e.g., add,
delete, update, copy) as requested by other NFV MANO module like NFVO.

• VNF Manager (VNFM): it is responsible for deployment, configuration, lifecycle man-
agement, healing, upgrading, and other element management of VNFs. The VNFM can
be deployed for each VNF or multiple VNFs. The major functions of VNFM include:
(1) VNF instantiation; (2) configuration; (3) modification; (4) scaling in/out; (5) termina-
tion; (6) VNF instance software upgrade; and (7) management of the integrity of the VNF
instances through their lifecycle.

• NFV Orchestration (NFVO): which provides orchestration of NFVI resources across mul-
tiple VIMs and lifecycle management of network services. In particular, the NFVO func-
tionality can be divided into two broad categories: resource orchestration, and service
orchestration. The resource orchestration manages and coordinates the resources under
the management of different VIMs. The service orchestration manages and coordinates
the creation of an end-to-end service that involves VNFs from different VNFMs domains.
The major functionalities of NFVO include; (1) providing topology management of net-
work service instances (a.k.a, VNF forwarding graphs); (2) validating and authorizing
NFVI resources requested by VNFMs; (3) managing VNF instantiation in coordination
with VNFMs; and (4) providing network service instantiation and lifecycle management
(e.g., create, update, scale, and terminate).

2.3 Analysis on the Existing NFV MANO Frameworks

In the previous section, we have learned that NFV MANO module is considered as a core part
of NFV architectural framework which plays an important role in automated arrangement, co-
ordination, and management of complex network services. Specifically, it takes in charge of
providing centralized management of resource pool, provisioning network services, maintain-
ing the full lifecycle of VNFs and network services, with the objective to reducing the time
and effort for deploying multiple network service instances on the cloud. This section is in-
tended to conduct comparative analysis of the existing NFV MANO frameworks from security
perspective, especially the open-source onces, by analyzing their architectures, data models,
salient features and capabilities of managing security mechanisms, which ultimately lead to a
foundation for the development of software-defined security framework.
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Figure 2.5: OpenMANO relation to ETSI NFV architecture [223]

2.3.1 OpenMANO

OpenMANO [223] is an open source project, which aims to provide a practical implementa-
tion of management and orchestration under ETSI standard. It has been released by Telefon-
ica to address the main aspects of easy creations and configurations, support network service
deployment in complex scenarios, and provide high performance capability aligning with En-
hanced Platform Awareness (EPA) principles [68]. In addition, OpenMANO is designed to help
partners and network equipment vendors to easily test and develop VNFs with vendor-neutral
orchestration. As the ultimate goal of OpenMANO is to provide interoperability for service
orchestration, it allows providers to adapt and expand their network service more easily.

2.3.1.1 Architecture

The OpenMANO architecture consists of three main components as presented in Fig. 2.5.

• Openmano: It is treated as a key component for NFV orchestrator, that supports the cre-
ation of complex virtual network scenarios. It interfaces with an Openvim through its API
and offers a northbound interface based on RESTful API. The main functions of Open-
mano include: (1) tenant and datacenter management; (2) VNF and network scenarios
catalog management; (3) VNF and Network Service (NS) deployment; and (4) VNF and
NS lifecycle management.

• Openvim: It is considered as virtualized infrastructure manager with support high and
predictable performance. It directly interfaces with the compute and storage nodes in the
NFV infrastructure to deploy VMs and provide computing/network capabilities, and inter-
acts with openflow controller to create infrastructure network topology. It offers a REST-
based northbound interface (Openvim API) to communicate with Openmano for service
orchestration. The main functions of Openvim include: (1) NFVI tenant management; (2)
compute node, network, and port management; (3) image and flavor management; (4) VM
deployment with EPA support; and (5) native and bridged layer 2 networks. In addition,
the implementation of Openvim has been followed the recommendations in ETSI NFV
Performance and Portability Best Practices [68].
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• Openmano-gui: It is a web GUI, which interacts with Openmano server through its north-
bound API. It provides a graphical and user-friendly interface, making it easy and efficient
to operate on a machine. The main characteristics of Openmano-gui include: (1) accessing
to network scenario definitions and instances; (2) dragging and dropping scenario builder
with access to the VNF catalog; and (3) allowing actions, e.g., stop, shutdown, delete,
deploy, over network service and VNF instances.

2.3.1.2 Salient Features

• Friendly network engineer: OpenMANO allows options to access and create network
scenarios and instance lists (e.g., NSs, VNFs, links) by easily dragging or dropping the
NS/VNF items from catalog. The link connection among VNF instances can be created
with one mouse-click. Also, network operators can freely identify options over network
scenarios such as stop, shutdown, delete, and deploy NSs/VNFs. The status of all related
VNF instances are available through the openmano-gui.

• Abstraction model: The main point of OpenMANO focuses on industry-specific orches-
tration challenges, by proposing an abstraction model to make network design more sim-
ple, while hiding low-level complexity of network engineer. Also, it ensures consistent
deployment in which NS/VNF instances can be quickly created, configured, deployed,
and terminated by referencing standard NS/VNF descriptors. In addition, network op-
erators can utilize openmano-gui to create new network scenarios, deploy several set of
VNFs and network connections, and further interact with external networks (e.g., legacy
nodes) to accomplish their desired tasks.

• Enhance Performance Awareness (EPA): One of the challenges introduced by NFV is
that the virtual network functions must achieve the service capabilities and performance,
as equivalent to the native network functions that have already been provided. To help
address this challenge, many developers are developed their applications with specific
drivers such as cryptographic or hardware accelerators [39, 29] for further improving their
service performance. The concept of EPA is consistent with the objectives identified in
OpenMANO, in which virtual compute nodes can be supported high performance as re-
quired. For example, OpenMANO provides properties to discover, track, report the CPU
and memory usage. Also, the underlying virtual resources like vCPUs can be arbitrary
allocated, intelligently deployed, and dynamically shared among VNF instances in an ap-
propriate manner. Resulting to resource utilization and performance improvement in the
available VMs.

• REST-based APIs, and multiple VIM supporting: OpenMANO architecture provides a
REST-based northbound interface, so that Openmano module can be interacted with Open-
vim module for resource allocation. The use of RESTful API is a light weight commu-
nication and does not leverage much bandwidth, hence it uses a small message format
for transferring. Resulting in a popular building style for cloud based APIs. Also, the
concept of OpenMANO supports interoperability, as it aims to help figure out vendor
lock-in. Thus, multiple VIMs such as OpenStack, VMware, OpenDaylight, OPNFV can
be co-existed in Openmano layer to serve hight service performance.

2.3.2 Cloudify orchestration

Cloudify orchestration platform [47] has been proposed to help contribute open source NFV
MANO adoption. It is an open source cloud orchestrator which focuses on optimizing or-
chestration and management of NFV based network services. The ultimate goal is to provide
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Figure 2.6: Cloudify architecture aligning to ETSI NFV MANO standard [47]

seamlessly integration with a wide range of industry standard protocols and modeling lan-
guages such as ETSI NFV MANO [74], YANG [20], NETCONF [190], RESTCONF [2], and
TOSCA [227]. Thus, different workloads on the different cloud platforms can be intercon-
nected to deliver end-to-end network services, regardless of vendor or technology stack.

2.3.2.1 Architecture

As shown in Fig. 2.6, Cloudify has been built and aligned with ETSI NFV MANO to man-
age and orchestrate the cloud infrastructure and resources. However, Cloudify orchestration
platform is mainly focused on two modules: NFV Orchestrator (NFVO), and VNF Man-
ager (VNFM). Meanwhile it relies on existing Virtualized Infrastructure Manager (VIM) like
VMware, OpenStack, and OPNFV for handling NFVI resources.

• NFV Orchestrator (NFVO): as its name implies, NFVO is responsible for orchestration
and management of end-to-end network services, including integration with SDN con-
trollers and Operations Support Systems and Business Support Systems (OSS/BSS). As
shown in Fig 2.7, NFVO can be composed by several modules such as, (1) REST-based
northbound interface, to interact with Service portal and OSS/BSS systems; (2) Service
catalog, which contains a set of blueprints for network service’s execution; (3) Service
orchestrator, which orchestrates and manages end-to-end network services; (4) Intelligent
policy manager, provides custom policies for automated triggering, healing, and scaling
capabilities; and (5) Application and network controller, provides plugins to interface with
third party VNFM and other peripheral controllers such as WAN, SDN, DNS, and LDAP
controllers.

• VNF Manager (VNFM): as similar to other orchestration platforms, the VNFM is respon-
sible for lifecycle management of VNFs. For example, it takes action on VNF instan-
tiation, configuration, scaling in/out, updating, and termination. Fig 2.7 illustrates that
Cloudify serves as a generic VNF manager (G-VNFM) which maintain three main mod-
ules: (1) VNF catelog, which stores a set of VNF’s blueprints; (2) Lifecycle management,
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Figure 2.7: The relevant components and services in Cloudify [47]

which orchestrates and maintains the lifecycle management of VNFs; and (3) Enhanced
monitoring, with an objective to provide health and performance monitoring of deployed
VNFs.

In addition, Cloudify architecture is built based on TOSCA data model, which creates con-
figuration files, called Blueprints, to be used for further execution of network services and VNF
instances. The concept behind the blueprints aims to define the application’s configuration, ser-
vices, and their tier dependencies. It describes the execution plans for the lifcycle of network
services. For examples, allocating the virtual resources and executing necessary middleware
services needed to run network service, spinning up more instances or terminating existing
ones, and performing health monitoring. Cloudify uses the blueprint as input for describing the
deployment plan, making it possible to manage the infrastructure as code. As the result, it can
support any cloud infrastructures, because the abstraction layer of MANO is isolated from the
underlying infrastructure.

2.3.2.2 Salient Features

• TOSCA data model: TOSCA allows operators to arbitrary describe the deployment, op-
erational behavior requirements, and link connection for each network service as on de-
mands. It provides a simple way to express application topologies, VNF dependencies,
and workloads in YAML syntax with a human readable fashion. More importantly, it
enables portable deployment and management of applications across different cloud plat-
forms. Resulting in service no lock-in, while providing seamlessly integration with indus-
try networking standards and other modeling languages.

• Native integration with OpenStack and other cloud infrastructures: Cloudify provides an
option to seamlessly integrate with OpenStack infrastructure and core services like Key-
Stone [171], Neutron [157], Nova [172], and Heat [104]. To do that, Cloudify re-designs
its underlying architecture to match the design principle of OpenStack services. For exam-
ple, rewriting the core services and leveraging the common infrastructure building blocks
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such as RabbitMQ [192]. Furthermore, it provides plugin for other cloud infrastructures
like VMware vSphere, Apache CloudStack, vCloud, and SoftLayer. Thus operators can
deploy their services across multiple cloud environments without concerning a complex
setup for particular cloud platform.

• Multiple application supporting: Cloudify allows operators to manage, orchestrate, and
monitor a large set of applications (up to thousands of nodes). By using a message bro-
ker to manage the communication among the deployed VNF instances, while employing
logging/analysis engine to monitor and keep track of that deployed VNF instances.

• Topology-driven monitoring: Cloudify introduces a new concept of topology driven mon-
itoring, in which the entire application management and tracking system are centralized
around the application topology. The operators can keep track at any state of applications
including status of deployed network services and VNFs. Specifically, the monitoring
system is integrated with the orchestration engine, making the two systems are always
synchronized and up to date, so that no need to utilize or rely on the external discover
services.

2.3.3 Tacker - OpenStack NFV Orchestration

Tacker [219] has been emerged as an official OpenStack project with a mission to build NFV
orchestration software supporting both VNFMs and NFVO, with an ultimate goal to achieve
end-to-end lifecycle management of network service and VNFs. The Tacker is designed to be
compatible with the ETSI MANO architectural framework as shown in Fig 2.8.

2.3.3.0.1 Architecture: Tacker architecture consists of three major components: NFV catalog,
VNFMs, and NFVO, as illustrated in Fig 2.9.

• NFV catalog: maintains Network Service Descriptors (NSDs), VNF Descriptors (VNFDs),
and VNF Forwarding Graph Descriptors (VNFFD). All related NFV workflows and VNF
descriptors are defined based on TOSCA (Topology and Orchestration Specification for
Cloud Applications) templates. As a matter of fact, TOSCA is a new open cloud stan-
dard that describe software applications (including nodes and relationships) running in
the cloud. In addition, the Tacker project is working closely with the OASIS TOSCA
NFV subgroup [227], with the purpose to drive the evolution of its simple profile for
NFV.

• VNFM: handles the basic lifecycle management of VNFs (e.g., create, update, delete),
health monitoring of deployed VNFs, auto scaling based on policy, VNF configuration
using Element Management System (EMS), VNF image update management, and facili-
tating initial configuration of VNFs. When VNF is initiated, a TOSCA template related
to VNFD is executed. In fact, a VNF can be considered as a single VM, or a complex
interconnected multiple VNFs. Tacker can facilitate configuration, monitoring, healing,
and scaling of VMs as described in the TOSCA template. Additionally, Tacker uses many
existing OpenStack services like Heat [104] to realize these features.

• NFVO: provides end-to-end network service orchestration using a collection of VNFs,
ensures efficient placement of VNFs based on policy, maintains VNFFD, manages re-
source allocation, and orchestrates VNFs across multiple VIMs spanning across different
geographical sites. When network service is initiated, a TOSCA template of NSD is exe-
cuted. NFVO may interact with VNFM to deploy VNF instances for a particular network
service. Also, it may interact with Service Function Chaining (SFC) to further create VNF
Forwarding Graphs (VNFFG).
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Figure 2.8: Tacker related to ETSI MANO architectural framework [219]

Figure 2.9: Tacker architecture with its main components - NFV catalog, VNFM, and NFVO [219]

2.3.3.1 Salient Features

• Tacker monitoring framework: it allows NFV operators and VNF vendors to write a plug-
gable driver for further monitoring status of deployed VNF instances. A monitor driver
can be written using TOSCA template. For example, each VM or Virtualization Deploy-
ment Unit (VDU), which is considered as a compute node in VNF, can specify the monitor
details with corresponding actions and parameters when monitoring conditions are met.

• VNFD template parameterization: the concept of parameterization provides ability to de-
fine a VNFD onces and used it several time for deploying multiple VNFs with different
value of VM parameters providing at deployment time. Clearly, the same template can
be reused several times for deploying multiple VNFs. Unlike a non-parameterized tem-
plate that has static values for that parameters, this might limit the number of concurrent
deployment of VNFs when using a single VNFD.

• Enhanced Perfornace Awareness (EPA): the main idea behinds the EPA is to improve
overall service performance. According to Tacker architecture, it has been relied on
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VNFD templates for describing a VNF in terms of its deployment and operational be-
havior requirements. This template allows operators to define specific requirements for
particular VNF instance. It leverages features of a compute node such as Non-Uniform
Memory Access (NUMA) topology, Single Root I/O Virtualization (SR-IOV), huge pages,
and CPU pinning to achieve EPA’s objectives (e.g., high performance and low latency re-
quirements).

• Multi-site VIM usage: a Tacker orchestrator can be used to control and manage multiple
VIMs spanning across different OpenStack sites, without having the need to deploy a
dedicated Tacker server for each OpenStack site. This allows operators to arbitrary deploy
VNFs across multiple OpenStack sites using the multi-site VIM features. For example,
once the operators are successfully registered on some specific OpenStack site, they can
deploy VNFs globally across multiple VIMs belonging to this Tacker orchestrator.

2.3.4 OpenBaton orchestration

OpenBaton [168] project aims to provide several components for building a complete envi-
ronment fully compliant with the ETSI NFV MANO specification. The main scope of Open-
Baton is similar to orther NFV orchestration frameworks including OpenMANO, Tacker, and
Cloudify, which particularly focuses on the basic orchestration of NFVO and VNFM, enabling
VNF deployment on top of multiple cloud infrastructures. It provides a NFV Orchestrator
(NFVO) to expose a dashboard for managing network services, supports a generic VNFM and
a lightweight Element Management System (EMS). Also, it can integrate with a multi-site NFV
infrastructure based on OpenStack [170] and Docker [61].

2.3.4.1 Architecture

Open Baton provides a reference implementation of NFVO and VNFM based on ETSI NFV
MANO specification, implemented in java using the spring.io framework, as represented in
Fig. 2.10. It consists of two main components, a NFVO and a generic VNFM. More specific
details of Open Baton architecture can be illustrated in Fig. 2.11.

• NFV Orchestrator (NFVO): The main responsibilities of NFVO is to provide end-to-end
network service orchestration and maintain its lifecycle. For examples, service initiation,
configuration, termination, global resource and policy management, validation and au-
thorization of requests for NFVI. The NFVO supports two different mechanisms when
interacting with generic VNFM, by using a message broker as an intermediary for mes-
saging, or exposing JSON-based RESTFul API.

• Generic VNFM (together with the Generic EMS): It has been designed to take care of
VNF lifecycle management such as instantiating VNFs, interacting with NFVO for re-
source allocation, providing VNFD and virtual machine images, instructing OpenBaton
EMS to execute specific configuration scripts on particular virtual machines (VNFs). It
works as intermediate component between the NFVO and the VNFs (the VM that in-
stalling VNF software on top of its). To complete the lifecycle of VNFs, the Generic
VNFM interoperates with the EMS (which acts as an agent located inside the VMs), with
the purpose to perform executing scripts contained in the VNF’s package. In addition,
the Generic VNFM can be assigned to support a single VNF, or multiple VNFs simulta-
neously. Meanwhile, the communications between NFVO, VNFM, and EMS have been
relied on AMQP (Advanced Message Queuing Protocol) based standard messaging sys-
tem - RabbitMQ [192], which is standard interface for communication.
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Figure 2.10: OpenBaton architecture based on ETSI NFV MANO specification [168]

Figure 2.11: The overview of OpenBaton, (a) OpenBaton architecture, (b) the sub-components within OpenBaton
architecture [168]

2.3.4.2 Salient Features

• Openness: To date, the works related to NFV MANO is under implementation and devel-
opment, while NFV standard processes are in process and not yet mature. Interoperability
among different NFV vendors is one of the key challenges that OpenBaton is trying to
solve. Therefore, one of the main objectives of OpenBaton is to provide open source im-
plementation of NFV orchestration platform, as the developers believe that this solution
can help to support and improve the development of a standardized NFV environment.

• Interoperability: OpenBaton supports interoperability between NFVO, Generic VNFM,
EMS, and other external components. As a matter of fact, OpenBaton architecture has
been designed to support different mechanisms for exchanging communication between
them, either over a message bus using standard messaging system (RabbitMQ), or using
a RESTFul interface.
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• Easy extensibility: OpenBaton offers easy integration and extensibility with a multi-site
OpenStack environment. It uses the OpenStack APIs to initiate VM and deploy net-
working resources. These plugin mechanisms have been developed under OpenBaton
framework to provide interface between NFVO and OpenStack VIM, and further support
multiple cloud systems.

• A set of libraries: Open Baton offers a set of libraries, called openbaton-libs, that can
be used to create customized VNFMs. The openbaton-libs contains several modules,
sharing among different components inside the OpenBaton framework. For example, (1)
NFVO uses openbaton-libs to facilitate library preparation needed for setting, installing,
and instantiating different objects; (2) a generic VNFM uses openbaton-libs to deploy
VMs, execute script, and perform VM’s termination; and (3) Openbaton client implies
openbaton-libs for further creation of NSD, VNFD, and VIM instance.

• Dashboard: The OpenBaton’s dashboard allows the users to easily manage the lifecycle
of different objects, e.g., number of network service records, VNF instances, VMs, VNFD
and NSD.

2.3.5 Comparative studies

Table 2.2 highlights a high level comparison between four different types of existing frame-
works related to NFV MANO, especially the open-source software development.

Table 2.2: The main difference between four NFV service orchestration platforms

Characteristic
analysis

OpenMANO [223] Cloudify [47] Tacker [219] OpenBaton [168]

Data model Python-based TOSCA TOSCA Java based SDK
Architecture Openmano is respon-

sible for VNF/NS life-
cycle management, it
interacts with Open-
vim for VMs deploy-
ment, and provides
computing and net-
work capabilities

Cloudify manager acts
as orchestrator which
creates multiple deploy-
ments, support different
plugins (e.g., Docker,
Chef, Puppet), execute
healing and scaling,
view metrics and ap-
plication’s topology
through web UI

Tacker uses TOSCA
templates to describe
VNF meta-data defi-
nition. When VNF
is initiated, a TOSCA
template of VNFD is
executed

OpenBaton provides
NFVO to maintain
end-to-end network
service orchestration,
and generic VNFM
(together with generic
EMS) for taking
in charge of VNF
lifecycle management

Centralized point of
control

Yes, via Openmano Yes, via Cloudify man-
ager

Yes, via NFVO Yes, via NFVO

Support OpenStack OpenMano pro-
vides an OpenStack
northbound interface
(openvim API) to
support OpenStack
infrastructure

Cloudify works natively
with OpenStack, but it is
considered as an exter-
nal component

Tacker is an official
OpenStack project
building NFV orches-
tration to support both
NFVO and VNFMs

OpenBaton provides
openstack-plugin to
allows NFVO allo-
cates resources on
OpenStack

Data model based
security efforts

No No* Policy-based VNF
monitoring

No

Script terminology Python scripts Blueprints TOSCA templates Java scripts
* Cloudify uses SSL to create secure communication between users and Cloudify manger, while relying on RabbitMQ TLS feature to create
secure communication between the different components within the Cloudify.

Specifically, two important conclusions are drawn as follows,

• TOSCA data model based implementation. It is worth noting that only two existing
frameworks (i.e., Tacker and Cloudify) define their data models based on model-driven
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structure using TOSCA standard3. One of the reasons is that other existing frameworks
were already developed and implemented before OASIS released the TOSCA data model
standard for NFV (version 1.0 on Mar 2016). This constraint inevitably affects their
typical data structures, pressing them to be transformed from non-model driven-based
approach to model driven structure using TOSCA standard, leading to error prone and
cumbersome processes. An alternative solution implementing by underlying OpenStack
infrastructure platform is that it developed TOSCA parser for interpreting TOSCA data
model to native data structure which can be understand and recognize by the native or-
chestrator like Heat [104]. However, to achieve a fully model driven-based approach
especially for NFV orchestration, it requires a period of time for improving maturity of
NFV functional modules in terms of implementation, development, service deployment
and orchestration, interfaces and standardization.

• Security perspective. After a careful study about the data model of these existing frame-
works with respect to several core functions, e.g., network topology, node specification,
service deployment, we found that they lack a dedicated module or component which can
provide holistic security management, especially in the NFV orchestrator. For example,
the service templates defined in the given frameworks generally describe network topol-
ogy, node specification, and link relationships between the nodes.
One of the key observations is that these typical TOSCA based service templates do not
provide well-defined data models for security management purpose, nor clearly specify
security attributes for each VM/VNF in advance. For instance, Tacker only defines the
template for VNF monitoring, e.g., the utilization of VNF’s CPU. However, this allows
unauthorized requests to gain access to the resources and is eligible to use the services.
As a result, the operators may lose control over the deployed VMs/VNFs. More seriously,
it may allow attackers to control the infrastructure resources and compromised VNFs,
leading to unauthorized configuration and theft of services.
Despite the fact that most existing frameworks are interoperated and dependent on the
underlying OpenStack infrastructure orchestration service (Heat), and it is possible to de-
fine security group in Heat, there still lacks dynamic and centralized control with high
level security policy specification. Therefore, it is extremely important and meaningful to
develop such a dedicated module for security management and orchestration, and further
explore the potential to manage a set of policy-driven security mechanisms for achiev-
ing autonomic security management (e.g., self-protection, self-configuration, self-healing,
self-optimization) in NFV environments.

2.4 SecMANO: An Extension of NFV MANO for Security Management

Traditionally, security management is a tedious and manual process that involves the imple-
mentation, deployment, operation, and maintenance of diverse security functions. The security
administrators have to rely on dedicated software or applications to handle security events for
particular operating environments. However, as NFV is based on software-driven approach,
service providers can achieve much higher degree of automated network operations, indepen-
dent generic hardware layer, agile application development and deployment model. Especially,
thanks to NFV, operational processes such as service deployment, on demand resource allo-
cation, on-time recovery, failure detection, and software upgrades, can be programmed and

3 Generally, TOSCA (Topology and Orchestration Specification for Cloud Application) is considered as an OASIS (Organization for the
Advancement of Structured Information Standards) open standard, which describes the structure of composite applications as topology, ser-
vices, relationships, components, requirements, capabilities, and processes. The objective is to provide portability and automated management
across different cloud providers.
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executed with minimal time or no human intervention (zero-touch). All of these benefits pro-
vide an opportunity to reduce the complexity of configuration and maintenance. In this section,
we mainly discuss security management and orchestration in NFV.

2.4.1 High-level features

The design purpose of SecMANO is four-fold,

• First, it provides the capability of integrating security functions into NFV orchestrator for
improving security in network services. The dedicated hardware based security functions,
e.g., firewall, access control, IDS/IPS, DPI, can be migrated to NFV, so that they can be
dynamically configured and automatically deployed according to the particular security
requirements and user demands.

• Second, it potentially provides automated security orchestration for the entire network,
making complex security solutions easier to be performed.

• Third, it allows service providers to incrementally add new functions, providing them the
openness and flexibility to operate with the existing security tools via management and
orchestration.

• Finally, it enables seamless automation and orchestration across multiple cloud platforms,
leveraging potential security functions to improve overall security performance of net-
work services and VNF appliances, while allowing dynamic scaling (in/out) based on the
network load to serve multi-tenancy demands.

Our analysis clearly indicate that developing such a dedicated security management and
orchestration module needs non-trivial efforts. The desirable features include, but not limited
to, the following,

• Advanced security service deployment: Migrating network services like security functions
from dedicated hardware devices to software-based environment allows network operators
to achieve high-level agility and efficient service deployment. As reported in [64, 130],
SecMANO provides different types of security as a service, so that service providers are
offered with powerful forensic analysis capabilities and fast disaster recovery solutions,
enabling them to launch security service (e.g., intrusion detection tools) on demands.
Specifically, the scope of service covers fine-grained access control to resources, global
visibility on the information flows, automated security assessment and remediation, easier
network isolation that isolates unstable or compromised elements from other appliances
through network security zones. More interestingly, empowered by automation and cen-
tral management, a set of diverse security functions can be encapsulated as on demand
security services, and further be holistically integrated or orchestrated, achieving dynamic
and flexible multi-layered defense mechanisms.

• Simplifying service architecture: As network functions have been implemented via soft-
ware and migrated to virtualization environment, so that the number of hardware devices
can be reduced, naturally improving physical security since there are fewer devices and
fewer data centers for taking control.

• Interoperability: The use of NFV infrastructure, the development of virtualized interfaces,
and the common protocols will allow to integrate multiple virtual appliances from various
vendors with different hardwares and hypervisors, thus a large set of security functions
is allowed to be virtualized and provided as agile security services by different service
providers.
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• Improving capability of defending against massive attacks: One of the most significant
advantages offered by NFV is the capability to help improve DDoS mitigation, thanks
to the dynamically provision based software, intelligent configuration in the system, and
well-defined optimization detection. In fact, NFV enables network operators to specify
bandwidth threshold and flow information for each virtual router, while the meta data
associated with a particular flow can be used to analyze DDoS attack. The related example
has been given in [82], by monitoring virtual routers whether there is any large amount of
traffic load hitting a victim nodes that exceed the threshold value, thus DDoS attacks can
be detected.

• Automation and central management: The architecture may facilitate consistent policy
configuration and easier regulatory compliance, thanks to the automation and central man-
agement of security functions. In particular, centralized security management allows se-
curity functions to be configured according to the common policies, rather than configur-
ing them based on a collection of network-specific security function procedures that may
not be consistent and up to date. For example, patch management and incident response
can be implemented in an automated and centralized fashion [130], significantly reduc-
ing operational complexities and costs. An upgraded version of network functions can be
launched and tested, while the original instance remains active until the upgraded version
is deployed. Also, automated incident response can be achieved, because of the inherent
flexibility of NFV, enabling rapid and flexible re-configuration of virtual resources. For
example, if one network function component is compromised, a cleaned version can be
automatically instantiated to replace them, while the compromised version can be revoked
and used for further forensic analysis.

2.4.2 The conceptual design framework of SecMANO

As NFV is still in the early stage of development and deployment, most of the existing frame-
works (as discussed in the previous section) are mainly focused on the migration of network
functions from dedicated hardware appliances to virtualization environment, and the effective
solution in management and orchestration of the virtualized network functions. For example,
the way to allocate virtualized resources, deploy and configure VNF instances, and create a
service chain to deliver end-to-end network services. However, our studies reveal that security
concerns are comparatively overlooked by the research communities and have not been taken
into account in their development lifecycle. Although the authors of [116, 7] have already
raised the security concerns in NFV orchestration and purposed security orchestrator to carry
out security tasks, e.g., managing security mechanisms, the detailed data models and the related
use cases were not sufficiently conducted.

We therefore proposed a conceptual design framework of SecMANO, as shown in Fig. 2.12.
The objective is to empower the current NFV orchestrators to manage security mechanisms, so
that the most appropriate security functions can be dynamically and optimally deployed. In par-
ticular, there are two possibilities of developing and implementing SecMANO; either built-in or
add-on module. However, to make it compatibility with the existing frameworks and alignment
to ETSI NFV reference architecture, we propose to expand the scope of NFV MANO [74], by
adding an additional module of security extension, called as security orchestrator to provide
dynamic security management and orchestration. It works together with the NFV orchestrator
to manage security functions and provide policy enforcement. In particular, security orchestra-
tor is responsible for managing security as a service and validating security characteristics of
network services and resources. Meanwhile, policy enforcement plays a significant role in con-
trolling and managing the behavior of various VNF instances. Specifically, SecMANO have
been designed with two main aspects.
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Figure 2.12: High level architecture of security orchestrator which works together with NFV orchestrator and
aligned with ETSI NFV MANO

• Security by design: aims at formally specifying security attributes of interest at the early
stage of deployment to ensure that all the deployed VM/VNF nodes in NFV environment
are associated with certain security attributes. To do that, we extend TOSCA data model
standard (simply known as service template) [227] and use it for specifying high-level
security policy and achieving fine-grained security control.

• Security as a service: which aims at providing a set of security functions (e.g., access
control, IDS/IPS, network isolation, and data protection) on demand, ensuring that the
deployed resources and services are well protected based on the specified security policy.
Security orchestrator uses a set of APIs to integrate several set of security functions, and
then selects the most appropriate ones for handling the user requests.

The operational workflow incooperating between NFVO and security orchestration are illus-
trated in Fig. 2.13. As for the processes of security management and orchestration, when NFV
orchestrator receives service requests from customers, it firstly decomposes the request and
retrieves the necessary recipes (e.g., VNF descriptor, network service descriptor, virtual link
descriptor) for execution. The NFV orchestrator may interact with various functional blocks,
such as VIM to allocate virtual resources, VNFM to instantiate VNF instances, and the secu-
rity orchestrator to perform security operations. Especially, this security orchestrator may use
a set of security APIs to interact with a set of several security functions (e.g., access control,
IDS/IPS, network isolation, and data protection), and then select the most appropriate ones
for handling the user requests. For example, virtual access control can be considered as the
first security function to be launched by security orchestrator to examine user permission and
privilege whether his/her requests are granted to access the resources/services.
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Figure 2.13: The operational workflow of NFVO and security orchestrator for service deployment use case

2.4.3 Discussions

2.4.3.1 Orchestration challenge in NFV

When network services are transitioned to NFV environment, service providers of NFV infras-
tructure have to deal with complexity. The challenges include a myriad of business processes
and operational complexities, spanning from configuration and maintenance to management
and orchestration. Recent research challenge concerns the level of intelligence that must be
achieved in NFV MANO. For example, (1) it should be accomplished an acceptable level of
orchestration and ensure that all the required functions are instantiated in a coherent and on-
demand basis, meanwhile the solution remains manageable [191, 27]. (2) It should provide
automation and self-allocation capabilities to dynamically increase/reduce the amount of re-
source allocation in intelligent manner [152, 18, 31]. Also, (3) the configurations should be
intelligently automated at a large scale, especially those of network services that react in run
time environment across heterogeneous cloud platforms [123]. As a result, the development of
implementation NFV MANO framework should be smart enough to meet the above require-
ments, towards supporting service dynamism, flexibility, and scalability.

More importantly, a basic set of security functions should be automatically orchestrated and
intelligently deployed to the appropriate NFV Infrastructure Point of Presence (NFVI-PoP) for
protecting network assets based on the predefined policies. As a result, security management
and orchestration need to be presented, to provide security countermeasures and offer security
as a service for serving both service quality and security guarantee. In addition, it must be
closely operated with NFV orchestrator to accomplish security tasks, such as providing security
assessments to authenticate user requests and validating network services/resources, whether
they meet certain security properties based on the predefined security policies. Furthermore,
the tasks related to this security management and orchestration should be extended to provide
monitoring service with the purpose to keep track of malicious events during network service
and VNFs lifecycle, and towards deploying appropriate security functions in the presence of
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potential threats and vulnerabilities. Nevertheless, performance impact of security management
and orchestration is not yet evaluated, which would be one of the major challenges that needs
further consideration and exploration.

2.4.3.2 NFV based security functions: from design to deployment

Security by design. On one hand, NFV offers promising benefits to help service providers
reduce capital and operational expenses, and accelerate time-to-market be reducing the time
requires to deploy new networking services for supporting dynamic changes in business re-
quirements. On the other hand, NFV introduces a very large, comprehensive and dynamic
attack surface (more details about the NFV threat surface are presented in Chapter 3). The
security challenges with NFV are that: (1) there are new malwares (up to 30,000) have been
occurred each day; (2) error prone processes from manual deployments and distributed policy
configuration are significantly multiplied; and (3) dynamic remediation and security service
assessment are not sufficiently addressed [144]. Also, Hamed et al. [97] concluded that manual
configuration of network security technologies, such as firewall and IPsec on the extended sets
of devices are prone to have configuration errors, intra and inter policy conflicts. This configu-
ration complexity is one of the main reasons which generates serious vulnerabilities and threats
in the network. Similarly, the authors of [40] pointed out that the challenging in configura-
tion of distributed policies over NFV environment can be a significant administrative burden,
and error prone. For instance, any update in policies can potentially lead to widespread impact.
Overall, current research activities are not sufficiently addressed and taken into account of these
security challenges.

Therefore, the implementation and deployment of virtual network services should be ini-
tially started from security by design, complemented with security as a service. It is generally
a more realistic solution to ensure confidentiality, controllability of all the access to the underly-
ing infrastructure assets, and ultimately improving the security as a whole. In [144], the authors
discussed about security by design, mentioning that that the design process should start with en-
forcing zero-trust model by blocking all the network traffics until security policies are applied.
For example, authenticating tenant requests, verifying certificate from VM deployment based
on the requested services, and applying policy according to the tenant requirements. Also, the
authors of [156] discussed four phases involving in security by design: (1) asset identification
– by identifying users, service providers, and hardware assets running in NFV environment;
(2) adversaries identification – identifies all the possibilities of attacks; (3) layers of defense
– which provides security solutions that can be used to mitigate and defend against security
threats and vulnerabilities; (4) review phase – all processes and procedures must be periodi-
cally and frequently rechecked, whether they have sufficient security protection when there are
changed in user requirements or when security services are out of date.

Security as a service. As a matter of fact, many users are seriously concerned about security,
privacy, and trust issues introduced by the novel networking technologies like NFV. The most
common reasons are as follows. First, they are not able to monitor all the data transaction pro-
cessing in the cloud environment, especially when the underlying infrastructure owned by the
third party service providers. Second, they have no idea where data is, who has access to their
data, how data is performed, or even how the data is transferred over the network links. Third,
they are not fully trust the cloud service providers. Hence, the sensitive data of users can be
presented in unencrypted form owned and operated by the third party service providers. The
risks of unauthorized disclosure of their data performing by untrusted service providers could
be high. The challenge is that users have to ensure the service providers do not break down
their privacy and confidential data. Although ETSI has published the document related with
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NFV security [76, 79], which aims at providing general guideline on how to establish a secured
baseline for NFV operations (e.g., security within VNFs, between VNFs, external to VNFs, and
secured interfaces), it does not cover prescriptive requirements or specific implementation de-
tails. So far, several solutions have been proposed, such as the ones reported in [220, 240, 62],
which aim at protecting data confidentiality and user privacy when their data is operated in the
cloud. However, the management complexity and communication overhead cannot be avoided.
Practically, network operators have to deal with complex tasks of operations, e.g., orchestrating,
managing, configuring, and maintaining the network services. Especially, when the network
size gets large, containing a diverse set of network services interoperated and implemented by
different NFV vendors, and spanning across multiple platforms at different geographical loca-
tions. Therefore, it is important to obtain the optimal balance between network performance
goals and essential security requirements. This is in fact a long-standing challenge for any other
ICT scenarios.

2.5 Concluding Remarks

This Chapter is devoted to developing a conceptual framework SecMANO for security man-
agement and orchestration in NFV environment. First of all, a broad overview about NFV and
SDN technologies was presented, with a focus on addressing how SDN and NFV can overcome
the issues in the traditional networking model, showing that the combined advantages of these
two technologies are the driving force behind the transformation of networking architecture and
various industrial products. By introducing a software-based approach and moving towards a
virtualization environment, NFV/SDN makes network services become easy to deploy, allow-
ing them to be more powerful and flexible, while enabling to create such a complex network
topology and feature-rich network functions to meet specific business requirements.

Then the NFV architectural framework was introduced. The usage of SDN and its role in
NFV was specifically discussed. Although NFV and SDN are two technologies that can work
independently because they perform two separate tasks at different layers of network infrastruc-
ture, they complement each other which offer a new way to design, deploy, and management
the network resources and services. In particular, NFV focuses on optimizing the actual net-
work service deployment, and accelerating service innovation and provisioning, while SDN
primarily focuses on the control plane to provide the full network capabilities and improve the
agility of controlling the generic forwarding devices.

To develop SecMANO, we conducted a comprehensive study on the existing frameworks
of NFV MANO. We deeply studied how the available frameworks (especially the open-source
ones) have been developed, what features they provided, and whether they take into account
security issues to improve their frameworks. Unfortunately, our studies indicate that most
of them have the same objective, i.e., providing a practical implementation management and
orchestration to fully comply with ETSI standard. None of them is tailored for security ser-
vice orchestration, and there is no such a dedicate security orchestrator available, even though
some of them take into account security functions and provide certain interfaces for managing
pre-deployed security functions. Therefore, a conceptual design framework of security man-
agement and orchestration (SecMANO) was proposed, which manages security functions as a
whole, allowing dynamic and adaptive configurations based on high-level security policies. As
show in Fig. 2.12, it is expected to operate in parallel with a NFV orchestrator, managing the
basic security functions in a holistic way.

To implement the proposed conceptual framework SecMANO and validate its feasibility
and performance in real NFV scenarios, we will present a prototype development in Chapter 4.
However, before doing that, we will report a comprehensive threat analysis in the NFV envi-
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ronment in Chapter 3. Because we believe this will help to better identify what kind of security
threats and vulnerabilities in NFV deserve to be carefully addressed, and what/how the security
countermeasures can be managed by SecMANO.
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3
Security in NFV

As what we have discussed in the Chapter 2, NFV and SDN provide a large pool of techno-
logical benefits, significantly reshaping legacy ICT infrastructure and pushing the evolution
towards next generation network. However, one fact can never be neglected is that security
remains to be one of the vital concerns and potential hurdle, as attack surface becomes unclear
and defense line turns to be blurred in the virtualization environment. This Chapter is therefore
devoted to investigating and exploring the potential security issues in NFV. First, we aim to
analyze security threats of well-defined NFV use cases that are documented by ETSI [72], with
an objective to establishing a comprehensive layer-specific threat taxonomy. Second, we con-
duct in-depth comparative studies on several security mechanisms that are applied in traditional
scenarios and in NFV environments. The purpose is to analyze their implicit relationships with
NFV performance objectives in terms of feasibility, agility, effectiveness, and so on. Third,
based on the established threat taxonomy and the analyzed security mechanisms, we provide a
set of recommendations on securing NFV based services, along with the analysis on the state-
of-the-art security countermeasures. A resulting holistic security framework is intended to lay
a foundation for NFV service providers to deploy adaptive, scalable, and cost-effective security
hardening based on their particular needs.

3.1 Background

Despite NFV brings many promising advantages (as discussed in the previous section), secu-
rity concerns remain to be a significant barrier to the wide adoption of NFV [178, 64, 76, 77]:
novel security threats and vulnerabilities will be inevitably introduced. The resulting attack
surface for NFV based network services could be even larger than its traditional counterpart,
spanning from hardware vulnerabilities to the vulnerability of VNFs, orchestration, or even
policy violation due to non-trivial service complexities and administrative errors. Specifically,
when the large scale deployment of NFV goes across a wide range of cloud datacenters and
security domains, the frequent migration can bring a large set of challenges to threat landscape
identification and security policies enforcement. More importantly, as the development and
deployment of network services in NFV are still in the early stage, while the technology and
products related to NFV are not yet mature. As a result, it remains unclear how NFV would
fundamentally impact the landscape of cyber defense, how it can help to improve security man-
agement, and what kind of specific security risks it may introduce. We envision that the attack
surface of NFV could be significantly enlarged and multiplied due to the frequent migration of
VMs and network service instances, dynamic formation of virtual network zones, autonomic
provisioning of network services, on-demand orchestration, and so on. These factors make
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NFV extremely difficult to establish in-depth defense security, requiring the critical security
issues to be addressed in a holistic way.

• From a vertical (north-south) perspective, VNFs based NFV scenarios are diversely incor-
porated with several types of network components, ranging from infrastructure layer (e.g.,
high volume servers, switches, and storages) to application layer (e.g., VNF appliances,
orchestrated modules, and service compositions). Thus, any misconfiguration of a VM
instance or hypervisor could eventually allow attackers to penetrate into the whole virtual
network zones.

• From a horizontal (west-east) perspective, as each layer is composed of heterogeneous
elements and involved with multiple players, the trust relationship between the service
components, either hardware or software, is hard to be established. It is therefore challeng-
ing to securely and seamlessly incorporate those service components from heterogeneous
platforms and different vendors. More seriously, the complicated service dependencies
make security policies difficult to be efficiently enforced at the most appropriate points in
the fine-grained manner.

Nowadays, many academia researchers and industry practitioners have started to explore
potential benefits of NFV to obtain a clear vision, e.g., why they need to deploy NFV, and how
it can help to reshape network infrastructure. Hence, some survey papers can be found in the
literature. These existing works mainly cover the following aspects: the evolution history of
NFV [133], relationship between NFV, SDN and cloud computing promising [191], implemen-
tation of each layer in NFV [230], current efforts about NFV management and orchestration
(NFV MANO) [152] and research challenges related to NFV [191], etc. However, as discussed
earlier, novel security threats and vulnerabilities introduced by NFV become one of the major
concerns. To the best of our studies, an in-depth investigation on NFV threat surface has not
been sufficiently conducted, the effective security solutions and countermeasures have not been
systematically studied. Therefore, closing this gap is the main motivation of this chapter. We
believe that this outcome can help service providers to gain a holistic understanding on the
NFV’s attack surface, the state-of-the-art security countermeasures, as well as a set of recom-
mendations on securing different NFV layers from low layer (e.g., NFV infrastructure) to the
upper layers (e.g., virtual network appliances, and business applications).

3.2 Contributions

As any other networking paradigms and services, an ideal solution is that NFV service providers
and network operators have to ensure that all the processes related to network service initia-
tion, configuration, implementation, and deployment are secure. However, this is a mission
impossible in practice. Due to the intrinsic characteristics of NFV making such a mission even
more challenging. A more traditional yet realistic methodology is to conduct threat analysis for
specific NFV scenarios, and then identify their specific threats and vulnerabilities. The ultimate
goal is to establish a comprehensive NFV layer-specific threat taxonomy. In addition, the cor-
responding security hardening solutions can be studied, compared and deployed for achieving
cost-effective, cross-layer, and in-depth defensive line. Throughout this chapter, we intend to
deliver three following contributions.

• First, we intend to conduct a comprehensive study on several NFV based use cases that
are documented by ETSI [72], with the objective to analyze their specific threats and
vulnerabilities. The ultimate goal is to establish an NFV layer-specific threat taxonomy.
We believe that this threat taxonomy allowing service providers and network operators to
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gain a holistic understanding on the NFV’s attack surface, while helping them to deploy
cost-effective security hardening measures according to their particular needs.

• Second, we conduct a set of comparative studies on several typical security mechanisms
by comparing their implementations and deployments in traditional scenarios and in NFV
environments. The considered security mechanisms are: Identity and Access Management
(IAM), Intrusion Detection and Intrusion Prevention (IDS/IPS), network isolation, and
data protection. Thus, the result from comparative analysis can help us to identify how
does NFV impact the traditional security mechanisms in terms of feasibility, agility, and
effectiveness, and how these security functions explore any potential challenges when
they are migrated to NFV environment.

• Third, from the established threat taxonomy and comparative studies of the security mech-
anisms, we give a set of recommendations on securing different NFV layers and analyze
the state-of-the-art security countermeasures. This outcome ultimately provides a clear
understanding to what extent the available NFV security best practices can fulfill the se-
curity recommendations. An NFV-based holistic security framework is finally proposed.

3.3 Use Case Driven Threat Analysis

Nowadays, novel security threats and vulnerabilities introduced by NFV become one of the
major concerns. To the best of our studies, an in-depth investigation on NFV threat surface has
not been sufficiently conducted, meanwhile the effective security solutions and countermea-
sures have not been systematically studied. The service providers are expected to take extra
precautions to ensure that all the processes related to their deployments of network resources
and services meet sufficient security guarantee when they are migrated to virtualization envi-
ronment, which is however believed to be mission impossible in practice. Alternatively, we
start with an in-depth threat analysis of specific NFV scenarios, by referring the well-defined
use cased documented by ETSI [72] and reorganizing them into five specific NFV based use
cases, with an emphasis on examining their architectures and analyzing their security threats.
The ultimate goal here is to establish a layer-specific threat taxonomy. To reduce the volume
of this survey, it should be noted that we intensively discuss more detailed threat analysis for
the first three use cases. For the other two use cases are quite similar to the third use case, but
differ in the context they are applied (e.g., mobile network or fixed access network scenarios).
Each use case is based on the same analysis methodology, making the use case driven threat
analysis is relatively simplified.

3.3.1 Use case 1: NFV Infrastructure as a Service (NFVIaaS)

This use case is about providing basic storage, network, processing capabilities, and other fun-
damental computing resources, which are pooled together and made as transparent services, to
the customers, who then deploy and run arbitrary network services without managing or con-
trolling the underlying infrastructure. In particular, the service providers can either use their
own infrastructure or leverage other service provider’s infrastructure to deploy their own net-
work services. The architecture of NFVI is shown in Fig 3.1, in which one service provider
(e.g., SP2) can run VNF instances on the NFVI of another service provider (e.g., SP1) to im-
prove service resiliency and customer experience. In addition, SP2 is able to integrate its VNF
instances running across its own infrastructure and NFVI of SP1 for creating an end-to-end
network service. As the two service providers are independent from each other, the failure of
one NFVI will not affect the other.
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Figure 3.1: The overview of NFV architectural framework and attack models

From security perspective, the lack of security protection at NFVI layer will affect other lay-
ers and other related components including VNF instances, simply because these components
run upon NFVI layer. Pek et al. [181] have identified a number of security issues in hardware
virtualization, examined the potential adversaries (network adversary, local adversary) of com-
promising the guest VMs, host OS, hypervisor, management interface, and virtual networks. In
addition to the threats of VMs or hypervisors which apparently occur in this use case, we also
examine the threats that are specific to this use case.

• Security issues in guest VMs: As a matter of fact, the design of VMs are not concep-
tually different from traditional implementation of physical machines. They rely on the
operating systems and provide users with virtual resources such as virtual memory and
storages for further executing their desired applications. Consequently, the ability to ex-
ploit vulnerabilities in a physical environment presents a significant threat to virtualization
environment as well. In the following, we exemplify threats and vulnerabilities targeting
to the VMs.

– Infected VM images: In particular, the VM image is a pre-packaged software tem-
plate containing the configuration files which are used to launch the VM instances on
demand. The network operators can either create their own VM images from scratch,
or downloading VM images stored in the public provider’s repository. For example,
Amazon offers a public image repository where legitimate users can download or up-
load a VM image. However, Hashizume et al. [102] pointed out that this opportunity
gives the malicious users to upload the VM images which may contain malicious
code such as a Trojan horse into public repositories. In the worse case scenario, if
there is any users uses this image, their VMs will be infected with the hidden mal-
ware. Also, unintentionally data leakage (e.g., password, cryptographic keys) can be
exposed when the malicious VM image is being created by the victim users [4].

– Compromising VM migration: VM migration allows network operators to relocate or
transfer any VMs from one physical machine to another. The benefit of migration
significantly improve the performance of workload balancing and system manage-
ment. In other words, this useful feature might be susceptible to many kind of attacks
such as man-in-the-middle attack risen by sniffing the traffic, and DDoS flooding

38



Figure 3.2: Man-in-the-middle attack scenario against a live VM migration

attack [85, 55, 181]. Due to the fact that the migration data is naturally presented
in plaintext as unencrypted mode. This makes sensitive data like guest VMs can be
sniffed, tampered, or manipulated easily when it has been transfered through unse-
cure communication channel (e.g., LAN or VLAN). In [162], the authors developed
a tool Xensploit to exemplify man-in-the-middle attack against a live VM migration.
As presented in Fig. 3.2, when the Host #1 performs VM migration to Host #2, the
memory pages about guest VM have been transmitted over the network and passed
through the malicious node which run Xenploit tool. This tool allows attacker to
perform illegal manipulation on the memory pages of the victim VM.

– VM hopping: an adversary has already gained access to a guest VM either by compro-
mising it or hiring one in a cloud infrastructure. From a guest environment, he then
compromise other guests through privileged access to the host. In [181, 217], the au-
thors pointed out that one of the main issue leading to VM hopping is that the perfect
isolations between guest VMs are violated. This could be due to an unresolved issue
in the Memory Management Module (MMU) of the hypervisor that allows adversary
to gain access and perform illegal manipulation on the memory pages of other guest
VM in accordance with his access rights (read, write, execute).

– VM escape: an adversary can run malicious code on a VM, so as to gain access
to the host OS and further get into other VMs running on the same host. Fig. 3.3,
illustrated the attack model about VM escape. First, the adversary may compromise
an application running inside a VM to gain access to its operating system. Second,
using tools, e.g., Cloudburst VM escape (CVE-2009-1244), he gains access to the
hypervisor management interface, and then break down into the hypervisor to gain
the root privilege. For example, Lal et al. [128] exemplified a practical use case of
VM escape by sending crafted network packets to exploit heap buffer overflow with
compromised virtualization process, resulting in the execution of arbitrary code on
the hypervisor. Another practical example has been reported in [187], by exploiting
a hardware simulation bug within VMware to escape from the guest OS to the host.

– VM DoS: As virtualization lets multiple VMs share physical resources (e.g., CPU,
memory disk, and network bandwidth) among each other on the same host machine
to improve the utilization of physical resources. In this attack, an attacker may launch
a DoS attack in one VM and try to exhaust all available resources [109, 102], or by
exploiting hypervisor’s misconfiguration [181]. This result leads to the situation that
the hypervisor can not support more VMs, making the VMs running on the same host
machine are starved for the resources.
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Figure 3.3: VM escape scenario

• Security issues in hypervisor: the Virtual Machine Monitor (VMM) or hypervisor plays
a vital role for VM isolation. If the hypervisor is compromised, any attached VMs will
be potentially compromised as well. In the following, we discuss two possible ways to
compromise the hypervisor.

– Hyperjacking: which subverts the existing hypervisor or injects a rogue hypervisor
into the system, so that all the components connected to the compromised hypervisor
can be manipulated [109]. As illustrated in Fig. 3.4, there are three possible methods
to perform a hyperjacking attack: (1) injecting a rogue hypervisor beneath the original
hypervisor, (2) running a rogue hypervisor on top of an existing hypervisor, and (3)
directly obtaining control over the original hypervisor. Regular security measures are
ineffective, because the host OS may not even be aware about this compromise. In
fact, the hyperjacking specially operated in stealth mode and run beneath the machine,
making more difficult to detect it. Although hyperjacking is rare occurrence due to
the difficulty of directly accessing hypervisors, it is considered a real world threat that
administrators should take into account [145].

– Breach of isolation: One of the main goals provided by the hypervisor is to ensure
that the hosted VMs are isolated, which means that one guest VM is not able to reach
more resources than it has been granted. However, bad configuration or design flaws
within the hypervisor can allow an attacker to break out of isolation, resulting in DoS
attack over guest VMs, VM escape, or system halt [128, 217].

• Insecure management interfaces: In NFV, the management interfaces can be classified
into several types, each of which may perform different functions (e.g., interfaces between
VIMs, or between VIMs and VNFMs). Although ETSI has published a document about
NFV MANO to describe an architecture framework for management and orchestration of
NFV and its interfaces [74], the specific details about interface design and implementa-
tion are not provided. Lal et al. [128] stated that an attackers may exploit the insecure
interface to dump the records of user’s data such as management password. Also, they
may embed malicious code into the interface in order to gain the illegal access to the
victim’s system [75]. For example, if the management interface provides Web surfaces
(e.g., vSphere/VI client - central management interface for VMware ESXi [181]), a re-
mote attacker can possibly inject arbitrary script or HTML code into it by exploring XSS
vulnerabilities.

• Compromising virtual network components: First of all, the virtualized networking com-
ponents such as routers can suffer from any software vulnerabilities, leading the whole
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Figure 3.4: Hyperjacking attacking models

network to be compromised, e.g., DoS, traffic redirection and dropping. Second, in the
virtualized networks, the traditional attacks such as e.g., IP spoofing, ARP spoofing, DoS
attacks can still occur [55, 75], due to the misconfiguration of hypervisor, inappropriate
network isolation, and the virtualized networking devices like L2 switches. For exam-
ple, DoS traffic can be redirected to both virtual networks and VNF’s public interfaces to
exhaust network resources and impact service availability [128].

• Security pitfalls of OpenStack: In NFV, a majority of network service deployment and im-
plementation rely on OpenStack platform [170]. It provides a set of software tools which
are grouped together for building and managing cloud services. However, OpenStack is a
relative new comer in the IaaS space (the first released in late 2010), it definitely remains
many software vulnerabilities and security breaches. Hala et al. [5] investigated security
issues in Openstack. For example, OpenStack utilizes the concept of projects and tenants
to group users into logical units. Using administrative privilege, the user can grant access
to all projects. In the worse case scenario, if the administrative password has been inter-
cepted, then the malicious users can perform any illegal operations, e.g., create new users,
remove existing projects. Another security concern is that the authentication and autho-
rization are achieved through Keystone service [171], however the current protocol still
pose vulnerabilities [51]. For example, Keystone uses username and password to authen-
ticate client. This information is sent to Keystone server in clear text using http protocol.
There is a high chance of having information disclosure, an attacker can intercept user-
name and password during the authentication process. After successful authentication, the
Keystone backend generates a token and send it back to the client. This token is applied
when the client need to use other OpenStack services. However, the way of sending token
back to the client is not completely secure. If attacker obtains the token, he will get the
client’s whole privileges which would cause unimaginable disaster to the system.
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• Inadequate enforcement of security policies: In the context of NFV, security policies spec-
ify the important components of the contractual relationship between service providers
and customers, which are applied to the infrastructure as well. In particular, security poli-
cies define roles and responsibilities of all the parties (e.g., administrators, end users),
level of services (e.g., high, medium, low), and security performance requirements (e.g.,
clearly define the access rights of the service providers, who can access to the data, and
how to mitigate data breach when it occurs). Clearly, cloud services and deployment
models differ in security policies, so any misinterpretation, inappropriate enforcement, or
loosely configuration of security policies will lead to security threats [55]. DoS attack is
an example from in inappropriate security policy enforcement [177]. If service providers
do not strictly concern about the maximum bandwidth-ceiling, attackers can take this op-
portunity to launch DoS attack for overwhelming the target system resources and network
connections.

• Shared physical and virtual resources: NFV enables ubiquitous, convenient and on de-
mand access to a shared pool of computing resources across multi-tenancy through vir-
tualization. However, sharing the physical resources such as hard disks, RAM, CPUs,
GPUs, and other elements, are not naturally well-designed to support multi-tenancy re-
quirements. For example, sharing resources between VMs can allow malicious VM to
access other victim VMs through shared memory, network connections, and other shared
resources without compromising the hypervisor layer. As the work reported in [236, 45,
128], one vulnerability in sharing resource like hypervisor can eventually lead to the com-
promise of the entire cloud infrastructure and services. For example, a malicious VM
can infer some information about other VMs through shared memory [102]. Using covert
channels, two VMs can communicate bypassing all the rules defined by the security mod-
ule of the hypervisor [197].

• Malicious insiders: According to the report of Symantec [236], 8% of the reported data
breaches in 2014 were the result of insider theft. Also, [141] reports that 70% of attacks
on organization sensitive data and resources can be caused by insider attack. Thus it is
not surprising to see malicious insiders in the NFV environment as well. A practical
example about malicious insiders has been discussed in [128], in which the malicious
administrators can take the memory dump of a user’s VM. Because they have the root
privilege to access the hypervisor, and by using search operation they can extract the user
ID, password, and SSH keys from the memory dump. This leads to the violation of user
privacy and data confidentiality exposure.

• Untrustworthy service composition: One of the salient features of NFV is dynamic service
composition, which means the service components provided by different service providers
can be composed on demand. However, those service components must be authenticated
and the trust relationship between them should be established beforehand. Any vulnera-
bility of service component can ultimately put the whole service at risk. Moreover, the
dependencies between different service components are extremely complicated, making
the trust relationship twisted [55]. Such complexity holds true for the heterogeneous hard-
ware, software, and the tenants [221].

3.3.2 Use case 2: Virtual Network Platform as a Service (VNPaaS)

Thanks to NFV, the service providers can provide a suite of infrastructure and applications as a
platform, on which the enterprises can develop and deploy their own network services and ap-
plications that are customized to meet their business purposes. Basically, it allows enterprises
to have full administrative control, and can apply all configurations based on their needs with
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Figure 3.5: VNPaaS use case: an example of sharing network resources, together with attack models

potential support from the hosting service providers. The architecture of VNPaaS with sharing
network resources is shown in Fig 3.5, in which the hosting service providers own the infras-
tructure and rent the shared infrastructure resources to the third parties. Enterprises can deploy
either a stand-alone VNF instance that does not have any connection with other VNF instances
in the hosting service provider’s network, or several VNF instances can be connected to a VNF
instance in the hosting service provider’s network. To do that, there is an orchestration interface
for each entity which is used to specify policy rules and communicate between the VNF and
service providers.

However, VNPaaS model gives most of resources and security control to the consumers,
while the service providers only preserve the fundamental security of underlying infrastructure.
The threat vectors of VNPaaS are therefore significantly multiplied, and some of them are
explained as follows.

• Exploiting default application configurations: In a VNPaaS scenario, the enterprises usu-
ally run their applications and services upon the service provider’s infrastructure, which
normally rely on a basic set of configurations [49] . This, however, could lead to backdoor
attacks. For example, the firewall usually manufactured with default administrator login
credential can be easily hacked. If attacker successfully gets in to the firewall, he can
modify the configuration rules and let malicious traffic go through.

• Implementation flaws of SSL/TLS: In VNPaaS scenario, the authors of [49] pointed out
that if SSL/TLS protocol has been selected and used by the hosting service providers to
create secure communication between two parties, the flaws and security vulnerabilities
resulting from misconfigurations of SSL/TLS have become an attractive target in the hack-
ing community. For example, attacking on Public Key Infrastructure (PKI), handshaking
protocol [151, 30]. Also, the pseudo random numbers (nonce) used by SSL/TLS can pos-
sibly be predicted and compromised, because it relies on the predicable values such as
current time and process id which are vulnerable to get brute force attacks.
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• Security breaches resulting from lack of interoperability: VNPaaS provides a large set of
services and powerful control, allowing enterprises to manage and orchestrate their ser-
vices on demand. However, the diverse computational resources, multi-vendor software
stacks, and the sophisticated isolation of the workloads generated by different enterprises
and operators may lead to security breaches, e.g., isolation failure risk, vendor lock-in, and
incompatibility with other components. As pointed out in [241], if the platform resources
are not accessed and managed with standard solutions, or security mechanisms are not
applied to separate workloads in an appropriate way, the quality of service could seriously
downgrade even leading to malicious attacks. Also, Takabi et al. [221] indicated that
the root causes of interoperability issue is the lack of well-defined standard. Apparently,
security threats can potentially result from such standard inconsistency.

• Security flaw in development life cycle: One of the major benefits of PaaS is that it pro-
vides a platform allowing enterprises to develop, run, and manage their applications with-
out the complexity of building and maintaining the underlying infrastructure resources.
However, from the perspective of application development lifecycle, the developers can
be faced with the complexity and inconsistency of building and maintaining secure ap-
plications [102, 155]. For example, the frequent updating security patches in the central
hosting cloud are definitely affected both system development lifecycle and security flaws
in enterprise’s applications, if the developer does not take into account about software
updates and changes. In other words, the developers have to understand that any changes
in PaaS components can compromise the security of their applications.

• Malicious insiders: The threat of malicious insiders has been previously identified [128],
showing that the lack of transparency of operational processes and procedures in VNPaaS
model make malicious insiders difficult to prevent. For example, a malicious system
administrator working for hosting service provider can use his authorized user rights to
gain access and collect confidential data from his enterprise assets without permission.

Generally, it is worth noting that since VNPaaS use case is based on virtualization layer,
security threats and vulnerabilities occurred at virtualization layer (e.g., hyperjacking, VM es-
cape, VM hoping, and VM DoS) could also impact business operations and security posture of
VNPaaS use case as well.

3.3.3 Use case 3: Virtual Network Function as a Service (VNFaaS)

In this use case, the enterprise is defined as consumer of the services who is able to configure
the applications, without being able to control and manage the underlying infrastructure. The
service provider can scale the NFVI resources for specific VNF instances to increase their
capabilities, making network services and VNF functionalities available to the enterprises as
a service. In fact, the concept of VNFaaS is similar to VNPaaS, but different in the scale of
service and programmability, and the scope of control provided to the consumers. Additionally,
VNFaaS is only limited to configure the set of VNF instances, so the threats occur in VNFaaS
can also appear in VNPaaS. Fig. 3.6, exemplifies the most prevalent transition models of VNFs
such as routing, firewall, IDS/IPS, DNS, NAT, and Content Delivery Network (CDN).

As the service providers do not expose internal structures, the users may have limited visibil-
ity and controllability over the network resources. These intrinsic limitations lead to significant
security threats, which are analyzed as follows.

• Vulnerabilities in VNF softwares: In particular, VNF softwares have been used by the
network operators for deploying and launching network functions on demand. However,
they are likely to be vulnerable for various types of software flaws [199]. For example, the
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Figure 3.6: The overview of VNFaaS and its attack models

remote attackers can leverage this software flaw to bypass intended firewall restrictions via
crafted packets (CVE-2012-2663), or taking advantage of stack-based buffer overflow for
allowing them to execute arbitrary code within the victim VNFs like Snort (CVE-2006-
5276). Despite these types of software flaw have already been patched, they give a first
insight on the possibilities of security issues that threaten network functions when they
are deployed in NFV environment.

• DoS attack: This kind of attack can either directly target to the VNF instances or VNF’s
public interface by flooding all available resources with heavy amounts of unreal traffics.
The objective of DoS attack is to consume resources such as memory, CPU, and network
bandwidth, in an attempt to make them unreachable to the end users or other VNF re-
quests. For example, an attacker may compromise one VNF, by simply generating a large
amount of network traffics, then sending out to other VNFs which either running on the
same hypervisor or on the different hypervisor. The ultimate goal is to exhaust network
resources and impact service availability. Lal et al. [128] depicted one practical scenario
of DNS amplification attack which is originally inspired by DoS attack. As shown in
Fig 3.7, the service provider’s infrastructure hosts a virtual DNS server as a component of
a virtual Evolved Packet Core (vEPC). The deployed DNS is dynamically scaled-out when
the traffic load increases. The attacker sends IP packets from a false (or spoofed) source
IP addresses of victim hosts to launch a large number of malicious queries. Thus the NFV
orchestrator will instantiate new VMs to scale-out the vDNS functions to accommodate
more queries. In the worse case scenario, if the service provider’s infrastructure cannot
instantiate more vDNS functions to support dramatic amplification of DNS queries, this
situation can lead to service disruption or unavailability. Another example of DoS attack
has been discussed in [37]. According to the report, Bitbucket - a web based hosting ser-
vice company hosted by Amanzon, was attached by massive-scale DDoS attacks used by
two flooding techniques, a flood of UDP packets and a flood of TCP SYN connection re-
quests. The attacks caused company’s service unavailable, making many developers lost
access to the projects hosted on Bitbucket. In addition, the availability of VNFs especially
due to attacks like DoS/DDoS needs to be carefully guaranteed in order to ensure the
overall quality of NFV service [33].

45



Figure 3.7: An example of DNS amplification attack

• Attacks to management and control plane: Basically VNFaaS moves network services and
VNF instances to the virtualized environment, so as to allow network operators to manage
network assets from a central control point. On this aspect, NFV management and control
plane is considered as the brain of all operations, including VNF creation, configuration,
management, provision, and monitoring network services. However, the management and
control plane could become the single point of failure and attractive attack target, so any
compromised operations may lead to the failure of the entire system [254] or getting a
wider network impact [52]. For example, if the attackers can gain access to the control
point, the entire network services will be under their control. They can freely reconfig-
ure network services, disrupt data path, monitor data transaction, and further acquire the
confidential and sensitive information of the victims.

• Failure of troubleshooting: NFV management and orchestration needs to correlate infor-
mation across heterogeneous entities, potentially increasing operational complexity de-
spite the friendly interfaces. Clearly, this makes determining the root causes of service
failures challenging. For example, the end-to-end latency of network service could be
caused by network service itself, the platform which host virtualized network functions,
or any other components across the network. Thus, the interleaved dependency between
those functional components makes it extremely difficult to infer the root causes of fail-
ures. Chayapathi et al. [34] pointed out that fault detection and troubleshooting in NFV
environment are challenging. As a matter of fact, any troubleshooting processes require
debugging at multiple levels. A problem arises in one level can impact other levels as well.
For example, when a failure of fault occurs at a lower level such as hypervisor crashes,
it might generate failures to all VNFs deployed on the top of that hypervisor. Thus de-
bugging at the VNF level alone is not sufficient enough to figure out the root cause of the
problem. Also, Lal et al. [128] investigated troubleshooting failure, in which the compro-
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mised VNFs can generate a large amount of logs on the hypervisor, making it difficult to
analyze the logs from other VNFs.

• Security policy and regular compliance failure: In general, the management and orches-
tration module is used to control the connectivity between VNFs, create relationships
between VNFs and virtual infrastructure resources, maintain a sequence of network for-
warding path, and address the entire service function chaining processes. However, the
lack of consistency on how to orchestrate, manage and operate the network services can
incur security threats. Due to the fact that many NFV vendors independently implement
VNFs without sufficient collaboration between each other, thus multi-vendor integration
make it difficult to coordinate global security policies [52]. Also, the different tenants re-
quires specific security protection and system requirements, this can generate difficulties
and create complex trust issues [241]. In addition, Lal et al. [128] exemplified an attack
model based on violation of regulatory policies, by moving one VNF from a legal loca-
tion to another illegal location. The consequences of violating regulatory policies can be
in the form a complete banning of service or exerting a financial penalty, which may be
the original intension of the attacker to harm the service provider.

• Insecure interfaces: The interfaces are widely used by applications to execute network
services on virtual infrastructure, or communicate to VNF manager and orchestration sys-
tem. Considering the prevalence and significance of these interfaces, adequate knowledge
about their implementations, deployments, and operations are necessary. Yang et al. [241]
pointed out that defining standard interfaces for various security functions is a big chal-
lenge when implementing security services in a virtualized network platform. Also, the
authors of [236, 45, 128] mentioned that the security and trust concerns must be carefully
taken into account in their entire lifecycle, as any implementation errors or misconfigura-
tion can expose the interface to attacks. For example, attackers may exploit the insecure
VNF API to dump the records of personal data from the database to violate user privacy,
or they may embed malicious codes into the compromised interfaces to escalate their priv-
ilege and access to network assets.

3.3.4 Use case 4: Virtualization of Mobile Core Network and Mobile Base Station

As today’s mobile networks are populated with a large variety of proprietary hardware ap-
pliances, NFV has significant potential to reduce network complexity and cost of ownership,
improve QoS, increase data rates and processing capability. Thanks to NFV, it is possible to
create innovative implementations of the third party network applications by unlocking the
proprietary boundaries of current mobile core network, IP Multimedia Subsystem (IMS), and
mobile based station, further consolidating them into virtualization environment. Specifically,
virtualization of mobile core network can be applied to Evolve Packet Core (EPC) domain that
encompasses all network functions of the mobile packet core, such as Mobility Management
Entity (MME), Serving/Packet Gateway (S/P GW), Home Subscriber Server (HSS). For vir-
tualization of mobile based station, it aims at leveraging IT virtualization technology, at least
a part of Radio Access Network (RAN) node and Based Station (BS) to standard IT servers
and storage. Example functionalities include baseband radio processing unit, Radio Resource
Control (RRC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP).
Fig 3.8, presents a conceptual idea of virtualizing mobile core network and mobile base sta-
tion. The benefit of virtualization of mobile network gives operators the ability to seamlessly
interoperate the vEPC, vRAN, and vBS with the physical packet core network functions, en-
abling multiple operators to share the same infrastructure and allowing different operators to
control their own network functions. In addition, it is possible to virtualize only a fraction
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Figure 3.8: The virtualization of mobile core network and mobile based station with attack models

of the components or network functions in the mobile core network and mobile base station,
thereby allowing the mobile network operators to deploy a set of virtualized network functions
together with the non-virtualized ones.

However, the large increasing deployment of mobile broadband IP networks, resulting in
a large variety of security threats and vulnerabilities, which could appear at different levels,
e.g., service component level, administration or operation boundaries, between VNF compo-
nents and NFV infrastructure. The specific threats with regards to virtualization of mobile core
network and mobile based station are shown in Fig 3.8.

• DoS attack to mobile network: As similar to other use cases, attackers can exploit mobile
devices to launch DoS/DDoS attacks to make network services unavailable. Mavoungou
et al. [143] pointed out that mobile devices are crucial elements in mobile network secu-
rity, since they can be targeted and used by the attackers for launching DoS attack towards
mobile network. For example, using mobile malware like Trojan horse, a mobile device
can turn into a botclient, thus enabling it to receive commands from remote attacker to
control or corrupt the victim server. Lal et al. [128] exemplified a practical DoS attack
on mobile core network like Mobility Management Entity (MME). To do that, attackers
create a botnet army by infecting many mobile devices with a remote-reboot malware, in
order to enable them to instruct the malware to reboot all mobile devices at the same time.
The simultaneous rebooting of all devices causes excessive malicious attach requests and
results in a signaling storm, putting vMME under DDoS attack.

• Traffic interception: In general, network traffic between mobile devices are based on IP,
and most of mobile devices are still relatively unprotected. Attackers can take this op-
portunity to sniff and capture legitimate traffic, similar as what they do in the traditional
mobile networks. Also, a compromised mobile device can extensively scan other locally
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adjacent peers for consuming the limited spectrum [139]. As identified in [143], many
types of traffic can be intercepted, including the edge cache traffic and voice calls. For
example, the attackers can manipulate the frequently requested content that is stored at
the edge of the mobile core network, they can also track and intercept VoLTE traffics or
data communication incoming to and outgoing from the Internet.

• Attacks to mobile based station (e.g., eNodeB, Femtocell, Microcell): To achieve resource
utilization and reduce the operational cost, mobile network operators are adopting virtu-
alization technology for mobile core network and mobile base station. However, some
security vulnerabilities still exist. As discussed in [139, 143], a common eNodeB (or 4G
based station) uses a virtualized Linux operating system instead of a custom operating
system (that has been explicitly hardened and made more secure during thier develop-
ment lifecycle). If a virtualized eNodeB is successfully attacked through a security flaw
in the commercial hypervisor or operating system of application, e.g., radio application
software, then the entire processes will get affected. Similarly, if virtual radio access
network nodes are compromised, the overall network management infrastructure can be
easily controlled by the attackers. Regardless of specific strategies, the attackers can even-
tually manage to disrupt network services, or cause outages once they have penetrated into
the mobile network infrastructure.

• Lack of interoperability: Current mobile core network and mobile base station are mainly
deployed with physical network functions and purpose-built hardware devices. Not all
of them can adapt to virtualization environment, due to the built-in proprietary protocols.
As pointed out in [139], RAN nodes are usually implemented on purpose-built hardware,
because the baseband processing function can not be efficiently implemented on software.
Considering this fact, an alternative solution is to make virtualized and non-virtualized
network functions co-exist in the network. However, such heterogeneous mobile network
environments can create sophisticated management tasks, and lead to challenging security
issues.

• Insecure content and media delivery: The number of users of mobile devices continues
to grow sharply, unavoidably leading to the increase of mobile attacks in term of number
and sophistication. Despite the diversity of attack variants, attackers are always motivated
to steal data and user identities. Especially in the virtualization environment, the data is
stored in the public cloud infrastructure and frequently accessed by multiple consumers,
a variety of threats and attacks including the zero-day ones could possibly occur. Without
sufficient data protection mechanisms, user’s data can be at risk. As reported in [139],
unauthorized access and DoS/DDoS attack on content and media delivery can impact
business revenue and degrade the quality of service delivery. Also, Mavoungou et al. [143]
pointed out that the emergence of mobile network virtualization has opened a large scale
deployment for mobile applications and services, while bringing many security issues
such as unauthorized data access, traffic eavesdropping, data modification, and theft of
services.

3.3.5 Use case 5: Fixed Access Network Functions Virtualization

It is well known that the major performance bottleneck generally occurs at the network access
node. Thanks to NFV, the fixed access network functions can be migrated to virtualization
environment, so that multiple organizations can share the resources with a dedicated partition
of a virtual access network. Basically, the virtual access network functions are applied initially
to hybrid fiber Digital Subscriber Line (DSL) nodes, such as fiber to the cabinet (FTTcab)
and fiber to the distribution point (FTTdp). Fig 3.9, illustrates the idea of access network
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Figure 3.9: The virtualization of access network functions with attack models

virtualization, in which the forwarding plane is separated from the control plane, while the
control plane runs in central point and managed by the NFV abstraction layer. The target
network functions that can be virtualized, such as Optical Line Termination (OLT), Optical
Network Terminal (ONT), Optical Network Unit (ONU), Multi Dwelling Unit (MDU), and
Digital Subscriber Line Access Multiplexer (DSLAM).

Although the virtualization of fixed access network functions provide additional benefits
to support multi-tenancy environment in term of low cost, power consumption saving, and
automated provisioning, security threats and vulnerabilities are potentially introduced, which
are discussed as follows.

• DoS/DDoS attacks: These attacks are very common threats to cloud and NFV environ-
ment including the virtualization of access network functions. It aims at causing reduction
or disruption of network services. DoS/DDoS attacks can happen at any layer. For exam-
ple, at the forwarding plane, attackers may expose a target system to a large number of
requests (e.g., a flood of UDP packets or TCP SYN connection requests) in order to over-
load the available resources, bandwidth, and link capacity, resulting the access nodes are
not able to serve other user’s requests any longer [199]. At the control plane, DoS/DDoS
attacks can be caused by congesting controllers through a large number of forged flow
arrivals, causing network performance degradation and interruption [66].

• Control plane attacks: The purpose of access network functions virtualization is to share
the fiber backhaul, power connection, and associated centralized computational resources
by moving control plane to operate and manage at the central point. As such, network
operators can easily and remotely configure access network nodes, reducing time and
making it flexible to add new network services at a large scale. However, controlling
and managing all services at one point in the central office may raise the single point of
failure and control plane attacks [52, 254]. Any vulnerabilities and attacks occur at the
control plane can affect the entire network services. For example, if the control plane is
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compromised, attackers can perform illegal operations, such as disrupting the data path,
altering the traffic, reconfiguring the fixed access nodes, or re-updating policy rules.

• Exploitation of management interfaces: In general, management interfaces are used by
the network operators to remotely interact with access network nodes that are deployed in
different geographic locations. However, the way on how to standard interfaces for various
security functions and management purposes is a big challenge [241]. It is reasonable to
assume that if the management interfaces are not designed with standardization or securely
implemented, adversaries can gain unauthorized access to the access network nodes and
perform harmful actions, such as shutdown, reboot, or reconfigure the traffic paths [52].

• Traffic diversion: This threat aims to compromise a network element by diverting traffic
flows in the data plane for eavesdropping purpose. The European Union Agency for
Network and Information Security (ENISA) [66] pointed out that traffic diversion occurs
when the mandatory isolation between slices (a dedicated partition of a virtual access
network for multiple tenants) is compromised, or when the enforcing access control policy
for a particular slice has been misconfigured.

• Hardware attacks: Generally, hardware design and manufacturing occur prior to soft-
ware development, so it is extremely important to address hardware security in product
lifecycle. Because once the attackers compromise hardware module, software security
mechanisms running on this devices will be compromised as well. In [176, 66], the most
common types of hardware attacks have been discussed. For example, manufacturing
backdoors eavesdropping, inducing faults, and hardware modification tampering through
jailbroken software.

3.4 NFV Layer Specific Threat Taxonomy

The finding obtained in the use case driven threat analysis (Section 3.3) allows us to establish
a comprehensive threat taxonomy, further providing essential information to help the service
providers to gain a holistic understanding on the attack surface, ultimately laying down a foun-
dation to develop and deploy NFV based effective security mechanisms. For better illustration,
we refer to the ETSI NFV reference architecture in Fig 2.4, and further conduct NFV layer-
specific threat taxonomy. The key results are summarized in Fig 3.10.

As shown in Fig 3.10, the attack surface of NFV is significantly broaden, covering from
infrastructure layer (e.g., hypervisor, VM, and hardware vulnerabilities) to VNF and NFV
MANO layers (e.g., VNFs and network services vulnerabilities, orchestration and control plane
attacks, isolation failures, policy violation, and lack of interoperability). Thanks to the NFV
layer-specific threat taxonomy, we observed that a large set of vulnerabilities, especially the
ones in NFV infrastructure like VMs and hypervisors are critical, because they are commonly
shared by more than one layer. Therefore, we believe that the security threats in NFVI layer,
e.g., those identified in use case 1 and use case 2 (Section 3.3), deserve more attention and
careful studies than the ones in the upper layers. In other words, the lower layer of security
vulnerabilities may affect the upper layers, incurring so-called cross-layer attacks. It is worth
noting that, however, some threats such as malicious insiders, insecure interfaces, data leak-
age, DoS/DDoS attacks, and security policy violations, may occur in several layers, but their
impacts are not necessarily cross-layered. Meanwhile, some threats such as hypervisor attacks
and shared virtual resources, are caused by virtualization layer, due to NFV inherits common
attributes and characteristics from virtualization concept, so that many security issues occurred
in virtualization can possibly occur in NFV environment as well.
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Figure 3.10: NFV layer specific threat taxonomy based on the ETSI NFV reference architectural framework

Another concern is that when considering the large-scale deployment of NFV across dif-
ferent cloud datacenter and security domains, the frequent migration brings a large set of
challenges to specify and enforce appropriate security mechanisms and policies. It can be
concluded that the basic countermeasures and fundamental security solutions for reducing the
amount of attack vectors in NFV environment heavily depend on the sufficient protection of
NFVI layer including VMs and hypervisors. Also, the interfaces between VNF instances, the
management and orchestration platforms, as well as their service dependencies and consis-
tencies, should be carefully scrutinized to achieve secure and dependable end-to-end service
delivery. As a result, the developed comprehensive threat taxonomy serves for two purposes:
(1) helping service providers to deploy cost-effective security mechanisms according to their
particular contexts or business needs; and (2) potential countermeasures for attack prevention,
detection, mitigation, and reaction can be holistically established.

3.5 Security Mechanisms: Comparative Studies

To date, many types of security mechanisms have been applied in practice, such as Identify and
Access Management (IAM), Intrusion Detection and Prevention (IDS/IPS), network isolation,
and data protection. Although we have seen their successful applications in the traditional
network scenarios, it is unclear whether they can be effectively implemented and deployed in
the given NFV use cases. Therefore, this section is intended to provide a set of comparative
studies on several typical security mechanisms, by firstly analyzing their implementations in IT,
telco, and public cloud scenarios, then specifically addressing NFV based implementations. For
each security mechanism, a comparative analysis is discussed. Our objective here is to analyze
their implicit relationships with NFV performance in terms of feasibility, agility, effectiveness,
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and so on. The findings can help the service providers to get a clear understanding about a set
of concern metrics when implementing or deploying them in NFV environment.

3.5.1 Identity and Access Management (IAM)

The purpose of IAM is to enable individuals to access the right resources at the right time
with the right privileges. It is used to initiate, capture, record, and manage user identities and
their related access permissions to information assets in an automated fashion. Thus the ac-
cess privileges are granted to the users according to the interpretation of policy rules, which
are then enforced by a sequence of authentication, authorization, and auditing functions. In
addition, the implication of IAM has two independent elements: identity management, and
access management. Identity management describes the process of authentication, authoriza-
tion, and user privileges across system boundaries. Access management is more focused on
access control which verifies whether the users are granted privileges to access the requested
services/resources. The decision result is evaluated based on policy rules, user’s roles, and
other elements that are predefined by the administrators.

3.5.1.1 Typical implementations

This section exemplifies the applications of IAM in several typical scenarios to illustrate their
implementation and deployment, further analyzing this function based NFV implementation.

• IT scenario: One of the typical scenarios of IAM has been discussed in [196], the authors
proposed an IAM architecture which relies on two major processes: registration process,
and authentication process. In the registration process, all the recipients must be registered
to the payment system. Specifically, four good fingerprints from the recipient and recip-
ient’s information must be stored in the database. These personal information are also
replicated and encoded into the smart cards before issuing them to the recipients. The
authentication process is activated when the recipients are required to receive the grant,
their smart cards are swiped and the beneficiary place their fingers onto a biometric reader.
Then the fingerprints are verified with the fingerprint’s information stored in the database
and those encoded on the smart card. If the authentication is successful, the recipients can
receive the financial grant.

• Telco scenario: Location-based access control policies for telco scenario was proposed
in [8], by considering both user’s location and their privacy. Compared with the con-
ventional access control system, more parties are involved: (1) requesters: whose access
requests to a service must be authorized by a Location-Based Access Control (LBAC) sys-
tem; (2) Access Control Engine (ACE): if the evaluation result of access requests match
the LBAC policies then the ACE enforces access control to the available services; and
(3) location service, which provides the location information to the ACE by measuring
position and environmental condition of requester.

However, user privacy in location based service remains to be an important issue [38].
With untrustworthy location service provider, the revealed private location information of
requester could be abused by the adversaries. Therefore, location privacy based anonymity
solution for the purpose of blinding user’s requests and queries was proposed in [222].
The proposed framework is classified into two major parts: (1) authentication process, in
which one-way hash function has been applied to provide a better privacy authentication;
and (2) querying process, time-fuzzy logic is used to examine the degree of confidence
whether the requester is requesting the service under the right privileges, thus both pro-
cesses are done via anonymity (trusted third party).
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• Public cloud scenario: As cloud service providers may have different owners and users,
this paradigm makes access control and user identity privacy protection is highly complex.
Xiong et al. [239] proposed a privacy preserving access management (PRAM) scheme to
address identity privacy and access control concerns in cloud services. The PRAM applies
both blind signature and hash chains to protect identity privacy and secure authentication,
and integrates the demand of access control with SLA to provide flexible fine-grained
access management. It adopts attribute-based access control mechanism for authentication
process, while the verification is carried out based on the description of user’s attributes
and SLA. If the authentication is successful, the users are allowed to access the service of
interest.

Another approach proposed in [242], which aims at providing strong and flexible au-
thentication, and data loss prevention. The architecture contains four main components:
cloud resource provider, Identity Management (IdM), Policy Management (PM), and Re-
source Engine and Policy Decision-making (REPD). When the REPD receives the re-
quests, it submits the requests to the IdM to check whether the user is authenticated. If
the condition is true, the REPD submits a query to PM to verify whether the user’s re-
quests match with the policy rules. Once authorized, the user can access to the requested
resources.

3.5.1.2 NFV based implementations

To date, some efforts on virtualizing IAM mechanisms have been proposed, with the purpose
to supporting a large number of VNFs running in NFV environment. Some examples are given
as follows.

• Access Control Virtualized Network Function – AC-VNF: Jacob et al. [115] proposed
AC-VNF to control a large number of VNF appliances and authenticate the end users.
In particular, the authentication and authorization mechanisms are required to verify the
VNF appliances, whether they are eligible to access the requested resources. Also, the
service providers who owned the network infrastructure and shared resources can define
arbitrary security policies based on their needs, so that each VNF appliance is controlled
independently according to those predefined policy rules. The core concept of AC-VNF
is implemented based on IEEE 802.1X standard (which is IEEE standard for port-based
Network Access Control (PNAC)), and a modified version of the standard to implement
the access control per service (instead of per port). More specifically, the AC-VNF archi-
tecture consists of four major elements.

– End user: who requests for the services. The machine running the user’s request is
directly connected to one of physical port of any OpenFlow switches.

– SDN/NFV controller: maintains the state of user traffic. It performs two tasks: (1)
redirects user’s requests to access control VNF box for authentication; and (2) redi-
rects end users to the requested resources/services, after they are successfully authen-
ticated.

– Access control VNF: which is built on a VM with a Linux distribution, and employs
the modified versions of HostAP [106] and WPA supplicant [234]. It acts as software
authenticator, implemented based on IEEE 802.1X authentication and authorization
(AA). Once the AA procedure succeeds, then the access control VNF box transmits
the evaluation result to the SDN/NFV controller.

– Service: which is a specified type of resources provided by cloud service providers.
The owner of resources can control them independently using different security pro-
cedures.
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• Virtualized access control based on federated identity: An approach of virtualizing access
control based on a federated identity was proposed in [194], with the objective to pro-
vide flexible management, increase security, and enable end users to experience seamless
single sign-on service. There are two parties involved.

– Service provider (SP): provides the functionality of the application, and controls the
access to the resources. It delegates authentication and attribution management to a
trusted external identity source.

– Identity provider (IdP): manages the user’s identities and their profiles. It adopts a
common authentication method and federation standards such as SAML 2.0 [161],
OpenID Connect [169], and OAuth 2.0 [100], to manage security and address the
complexity.

• Virtaulization of content-aware identity and access control management: Another ex-
ample of virtualizing IAM has been proposed in [235]. The authors aims to build access
control system to cover all necessary requirements including privileged user management,
fine-grained access control, enhancement of user activity and compliance reporting, sensi-
tive data discovery and information protection. Specifically, three modules are developed:

– Role and access policy management: which pre-specifies a set of different roles of
users who want to access the network services, e.g., VMs. The access privileges
are granted according to the user’s role. In addition, the definition of content-aware
identity here is more related to role-based access control.

– Virtual systems and applications: consists of three sub-modules: (1) privilege user
management, which controls privileged users using fine-grained access control; (2)
compliance reporting, collects user’s activities from all event logs; and (3) informa-
tion protection, facilitates the management of sensitive data.

– System and application access: these applications are running on the VMs, e.g.,
databases, that have been monitored by security apps.

3.5.1.3 Comparative analysis

To understand the differences between the typical implementations of IAM mechanism and
their counterparts tailored to NFV, we take the designs reported in [115, 194, 235] as references
for a comparative study. The key findings are summarized in Table 3.1.

• Flexibility: In [115], AC-VNF is implemented based on the IEEE 802.1X standard for
PNAC, which is a basic NAC solution for enforcing the access control at port level. It
is designed to maintain the whole authentication and authorization (AA) processes in the
data plane for avoiding overloaded traffic on the control plane. When end user requests to
access the services/resources, the requested traffic will be redirected to the access control
VNF box, which then authenticates the request based on user authorization rules. The
outcome of AA procedure is then transmitted to the SDN/NFV controller. Once the user
is authorized, the flow based port entry is generated, thus she/he is allowed to access the
requested services. To achieve flexibility, the AC-VNF applied VLAN technique [41] to
share one physical port with multiple users. Despite it provides many advantages (e.g.,
flexibility, cost, and physical layer independence), the scheme has limitations on capacity,
security, and overhead. It is worth nothing that VLANs can possibly create 4094 different
VLANs for the same network [41]. If a network spans more than one geographical loca-
tion, the traffic needs to go through the third parties, exposing the traffic to the potential
sniffing and man-in-the-middle attack, which are hard to deal with unless higher layers
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Table 3.1: The key differences between typical and NFV based implementations of IAM

Scenarios Example designs Flexibility Cost Complexity
of lifecycle

management

Effectiveness Dependability Scalability

Typical imple-
mentations

IAM for social grants in South
Africa [196]

3 7 7 3 7 7

Location based access control
policies [8]

7 7 7 7 7 7

Access control based anonymous
location [222]

3 7 7 3 7 7

Privacy pReserving Access
Management for cloud –
PRAM [239]

3 7 7 3 7 X

IAM solution for cloud [242] 3 3 7 3 7 3

NFV based im-
plementations

Access Control Virtualized
Network Function –
AC-VNF [115]

7 3 3 7 7 3

Virtualized IAM solution based on
federated identity service [194]

7 3 3 3 7 3

Identity and access management in
virtualization environment [235]

– 3 3 3 7 3

Notations: ‘3’ and ‘7’ denote that NFV characteristics are satisfied and NOT satisfied respectively, ‘–’ means no solid references are
available.

offer additional security mechanisms. More importantly, if the VLANs relies on the port
based or MAC based configuration, non-trivial effort and time are required to manage the
network. An alternative solution is to use VXLAN technology [44], which can be im-
plemented to support flexible and large scale virtualized multi-tenant environment over a
shared common physical infrastructure like cloud.

• Cost: It is well recognized that NFV can reduce the total cost of hardware acquisition and
capital investment through the use of commodity hardware platforms. The report [107]
showed that the cost for a small scale NFV deployment can be reduced from $34,015 to
$27,828 (about 18%), while a large scale deployment can be reduced from $18,935 to
$14,435 (about 24%). From the given examples [115, 194, 235], it clearly identified the
advantages of NFV based virtualized IAM solution. The costs from hardware investment
and management complexity can be significantly reduced. The access control policy rules
are allowed to be redefined and reconfigured remotely in real time. It is worth mention-
ing that although the cost for hardware investment, installation, configuration, and power
consumption decrease, the software cost could increase.

• Complexity of lifecycle management: Instead of deploying network equipments at cus-
tomer sites and using them to provide a set of predefined services, NFV makes it possible
to deploy hardware at provider sites and provision services dynamically using centralized
management tools. As a result, both cost and complexity with respect to service deploy-
ment and configuration can be reduced. Thus security functions like virtualized IAM can
be quickly deployed and easily managed through a centralized management platform. As
shown in the given examples [115, 194, 235], the virtualized IAM allows network oper-
ators to flexibly deploy access control VNF box, define security policies, assign specific
actions according to user’s attributes and role based access control on the fly. Also, it al-
lows network operators to keep better control over the upcoming user’s requests and offer
efficient fine-grained policy enforcement.

• Effectiveness: If there is a large number of independent VNFs deployed in the NFV in-
frastructure, the effectiveness of management and communication overhead has become
a significant concern. A simple question would be on which location an access control
VNF box should be installed, and how many of them should be deployed to achieve the
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best performance. Let’s consider the AC-VNF architecture in [115], if the end users lo-
cate closely to the requesting resources, while the access control VNF box is deployed on
a VM which is far from that, then the SDN/NFV controller redirects the network traffic
to the access control VNF box regardless considering physical location of the end users.
As such, a very large number of traffic over virtual network switches and routers would
occur, consuming lots of bandwidth. This clearly indicates that it is necessary to take into
account the trade-off between security objective and performance efficiency during the
deployment of access control VNF box.

• Dependability – single point of failure in a centralized controller: Considering the exam-
ple design in [115], a controller is deployed to redirect all network traffics to an access
control VNF box, and the centralized management can obtain a global view of the net-
work. However, the controller itself could be overloaded, failed, or possibly attacked,
resulting in significant performance degradation of the entire network. To solve this issue,
a distributed control scheme was proposed in virtualized networks to share the process-
ing load [254]. Thus multiple controller instances are created and organized in a cluster,
while the centralized network control is remained. As such, a better trade-off between
scalability and dependability can be achieved, as the network control workloads can be
distributed across the cluster by deploying each instance of SDN/NFV controller on the
dedicated VMs.

• Scalability: Theoretically, NFV can make network services agile, cost effective, and scal-
able. It allows network operators to scale in/out network services on demand, while pro-
viding elastic resources management to manage and orchestrate a particular VNF instance
when there is a peak traffic load. From the given examples of NFV based implemen-
tation [115, 235, 194], scalability is validated. For examples, an access control VNF
box can by dynamically activated or deactivated in real time based on the traffic load
conditions[115]. The access control policy rules of specific access control box can be
dynamically created and modified [235]. The virtual resources such as storages can be
elastically provisioned to support a large amount of metadata [194]. As a matter of fact,
the access control VNF box usually contains a large number of databases and directories,
which are used to store user’s identities, attributes, policy rules, and so on. Thanks to NFV,
the identities across heterogeneous sources can be easily orchestrated, while providing a
logical view, no matter where or how they are stored.

3.5.2 Intrusion Detection and Prevention (IDS/IPS)

In general, IDS/IPS has been designed to protect critical assets against cyber threats by ex-
amining system events and network traffic flow of interest. Specifically, IDS is designed to
detect vulnerability exploits against a target application or service, so it needs to monitor all
the inbound and outbound network activities, and identify whether there are any suspicious
patterns or anomalous behaviors existed. The main function of IDS is to warn administrators
of suspicious activities rather than taking immediate actions to prevent any malicious activities.
Meanwhile, IPS is used to monitor network traffics and identify anomalous activities. It is con-
sidered as an inline security component that is able to actively prevent attacks from happening,
while IDS is considered as a passive monitoring.

3.5.2.1 Typical implementations

Despite the similar design principles, the design architecture of IDS/IPS vary significantly. In
the following, we exemplify the design of IDS/IPS in several typical scenarios.
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• IT scenario: Jamshed et al. [119] proposed a highly scalable software IDS architecture,
called Kargus, to detect malicious attack patterns with high speed performance. The
core part of Kargus uses modern hardware innovation (e.g., multiple CPU cores), Non
Uniform Memory Access (NUMA) architecture, multi-queue 10 Gbps Network Interface
Cards (NICs), and heterogeneous processors like Graphic Processing Units (GPUs). Ar-
chitecturally, Kargus contains three modules: (1) preprocessing, which captures incoming
packages, reassembles IP package fragments, verifies the checksum of TCP packets, and
manages the flow content for each TCP connection; (2) multi-string pattern matching,
which performs pattern matching by scanning the entire payloads; and (3) rule option
evaluation, if the signature is matched, the packets are evaluated against a full attack sig-
nature relevant to the matched string rules, and ultimately produce the evaluation output.

Another long standing issue in IDS/IPS domain is to run the system over encrypted
traffic like HTTPS. Sherry et al. [211] proposed a Deep Packet Inspection (DPI) middle-
boxes, called BlindBox, to perform packet inspection directly on the encrypted payload
without decrypting them. The BlindBox architecture comprises three major components:
(1) DPIEnc and BlindBox Detect, which use searchable encryption scheme and fast de-
tection protocol to inspect encrypted traffics for certain keywords; (2) obfuscated rule
encryption, essentially relies on the techniques proposed in [243, 193] to enable the mid-
dleboxes to obtain the encrypted rules based on the rules from middleboxes and the private
key of endpoints, however neither the endpoint nor the middleboxes can learn the rules or
the private key; and (3) probable cause decryption, which allows flow decryption when a
suspicious keyword is observed in the flow.

• Telco scenario: As mobile ad hoc networks (MANETs) represent a large class of telecom-
munication networks, where the nodes share the same physical medium, network topology
is dynamic, centralized monitoring and management points are unavailable. These charac-
teristics lead to broad attack surface, ranging from passive eavesdropping to active signal
interfering. Therefore, an intrusion detection and response system was then proposed
in [250], in which individual IDS agents are placed on each node to monitor malicious
activities, and they cooperatively participate in global intrusion detection. Specifically,
each IDS agent comprises six modules: local data collection, local detection engine, co-
operative detection engine, local response, global response, and secure communication.

However, the IDS architecture mentioned above does not provide detailed design of
cooperation detection algorithms. Thus, Morais et al. [154] proposed a new distributed
IDS to exchange events and cooperation between the nodes. The proposed system is based
on a popular IDS tool, namely Bro [26], which runs on each node to passively monitor
the traffics and towards detect attacks in collaboration with its neighbors in real time.
Specifically, the proposed architecture is divided into two layers: (1) event engine layer,
which transforms a stream of filtered packets into a stream of higher level network events;
and (2) policy script interpreter layer, which executes security policy scripts and specifies
event handlers.

• Public cloud scenario: With the rapid development and deployment of cloud computing,
security service vendors are migrating their services to the public clouds, making them as
on demand service. Some advantages of cloud based IDS/IPS were discussed in [162],
which provides better detection of malicious software, enhances forensic capabilities and
retrospective detection, improves deployability and management.

An alternative approach of cloud based security monitoring was proposed in [153].
This framework integrates a Network Intrusion Detection System (NIDS) in the cloud in-
frastructure, and uses snort [200] and Decision Tree (DT) classifier [99] to detect network
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attacks. It consists of four main components: packet processing, intrusion detection, stor-
age, and alert system. More specifically, the storage component has been designed with
three databases: (1) knowledge database, stores known attack signatures; (2) behavior
database, stores network behaviors having both malicious and normal packets; and (3)
central-log database is used to record malicious event’s log that reported by Snort or DT
classifier.

Despite the widespread adoption of security monitoring like Snort and Bro, their tech-
nical limitations always remain in the typical application scenarios. For example, setting
up a small scale Snort instance is a well documented activity, but it quickly becomes a sig-
nificant engineering challenge when network size gets large. Security monitoring tool like
Bro may provide flexibility, customization, and analysis capabilities, but setting up Bro is
a complex process that requires domain expertise. To tackle these problems, Shanmugam
et al. [209] proposed a distributed elastic intrusion detection architecture, called DEIDtect,
to provide distributed framework for cross-site intrusion detection. In particular, the DEI-
Dtect exploits cloud computing to consolidate resources to handle the computing need
by IDS/IPS tools. It applies SDN/NFV technology to allow administrators to monitor
network traffic at any point in the network, and send traffic stream of interest for further
anomaly detection.

3.5.2.2 NFV based implementations

This section exemplifies several NFV based IDS/IPS implementations.

• Security monitoring appliance – CloudSec: Ibrahim et al. [112] proposed a monitoring ap-
pliance, called CloudSec, to provide active, transparent, and real time security monitoring.
Thanks to Virtual Machine Introspection (VMI) technique [87] that offers fine-grained in-
spection of VM’s physical memory. Thus multiple VMs hosted on a cloud platform can
be concurrently monitored without installing any monitoring code inside the hosted VMs.
There are two main components at the VMI layer, which serve as the core of CloudSec
architecture: (1) Back-end component, which enables the hypervisor to gain control over
the hosted VM to suspend any access to physical memory and CPU. It performs neces-
sary security checks and alerts the front-end when malicious attacks occur. (2) Front-end
component, is a set of APIs that obtain information about the monitored VMs, and control
access to physical memory and CPU register. It is considered as an external extension
of hypervisor that enables transparent access to physical memory without installing any
additional security code.

• Encrypted virtual machine introspection – CryptVMI: Yao et al. [244] proposed an en-
crypted VMI system, called CryptVMI, to provide users a complete status of their virtual
instances, while keeping confidentiality of user’s data by using encryption technique. The
designed architecture of CryptVMI consists of three modules: users, query handler, and
introspection application. At the first time of user registration, the user is assigned a
unique ID and a random symmetric key. These two parameters are then passed as in-
puts in encryption process for securing communication between the user and query han-
dler. When the query handler receives user request for anomaly detection, it firstly checks
whether the user is associated with any VMs. If so, it uses the cloud service API to locate
IP address of the compute node holding that VMs, and then uses introspection application
to inspect malicious attacks.

• Security health monitoring – CloudMonatt: Another security monitoring solution was
proposed in [248], called CloudMonatt, which provides a flexible distributed cloud ar-
chitecture to detect and monitor the security health of customer’s VMs based on a rich
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set of security properties for VM attestation. It built upon the property based attesta-
tion model, and provided several novel features including monitoring different aspects
of security health, mapping actual measurement that can be exploited by customers, and
taking countermeasures based on the monitored results. Specifically, four modules are
developed:

– Customer: CloudMonatt gives the customers two modes of operation: (1) one time
attestation, which allows customers to request attestation at any time; and (2) periodic
attestation, which allows customers to ask for periodic attestation.

– Cloud controller: acts as the cloud manager for receiving VM requests and serving
them for each customer. Three modules are involved: (1) policy validation module
is used to collect the monitored security measurements from the VMs of concern
in response to the requests of customers; (2) deployment module, which allocates
each VM on the selected attestation server, the measured result is then report back
to the controller; and (3) response module, provides appropriate countermeasures if
potential vulnerabilities are occurred in the VMs.

– Attestation server: is responsible for validating security measurements, interpreting
properties, making attestation decisions, and issuing an attestation certificate for the
VMs that are monitored. In fact, attestation server is used to monitor malicious at-
tacks on the customer’s VMs, while the cloud controller is responsible for manage-
ment.

– Cloud server: the computer that runs multiple VMs.

3.5.2.3 Comparative analysis

It is clear that NFV based IDS/IPS implementations have certain advantages over the typical
implementations. This Section is intended to provide in-depth comparison between the typ-
ical implementations of IDS/IPS and their NFV based implementations. The key results are
summarized in Table 3.2.

Table 3.2: The key differences between typical and NFV based implementations of IDS/IPS

Scenarios Example designs Flexibility Centralized
control and

management

Complexity
of lifecycle

management

Specific
function

Scalability Cost

Typical imple-
mentations

Highly scalable IDS – Kargus [119] 7 7 7 7 3 7

Deep packet introspection –
BlindBox [211]

7 7 7 7 7 7

IDS for mobile network [250] 3 7 7 7 3 7
Distributed IDS for mobile
network [154]

7 7 7 7 3 7

Malware detection – CloudAV [162] 3 7 7 7 3 3
NIDS for cloud [153] 7 7 7 7 3 3
Distributed elastic IDS –
DEIDtect [209]

3 3 3 3 3 3

NFV based im-
plementations

Security monitoring appliance –
CloudSec [112]

3 3 7 7 3 3

Encrypted virtual machine
introspection – CryptVMI [244]

3 3 7 7 3 3

Security health monitoring –
CloudMonatt [248]

3 3 3 3 3 3

Notations: ‘3’ and ‘7’ denote that NFV characteristics are satisfied and NOT satisfied respectively.

• Flexibility: It has been observed that many high performance of IDS/IPS based imple-
mentations rely on dedicated network processor and RAM, this increases the cost and
makes operation lack of flexibility. In contrast, NFV based implementations consolidate
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security functions onto industry standard platforms located in distribution center. Thanks
to the capability of NFV automation and orchestration, the cost and operational complex-
ity can be reduced. Also, NFV aims to increase compatibility with existing deployment
and facilitate interoperability. These properties are more or less validated in the afore-
mentioned references. For example, the basic idea of CloudSec monitoring [112] utilizes
VMI technique to provide monitoring capability of inspecting security threats over virtual
infrastructure, without installing any security code inside the VMs.

• Centralized control and management: Traditionally, network operators need to set up
and configure dedicated IDS/IPS boxes directly, which usually makes configuration and
management process highly complicated and time consuming. The given example like
CloudMonatt [248] shown that NFV has potential to reduce the complexities. Thanks to a
controller module, a simplify management can be achieved. Based on the design principle
of CloudMonatt, the controller firstly accepts the requests from customers to monitor
security health of their VMs. It then assigns attestation server to inspect customer’s VMs
whether there is any potential vulnerabilities occurred. The attestation server sends the
result back to the customers after successful verification. In addition, the controller carries
out appropriate response once vulnerabilities are found.

• Complexity of lifecycle management: Today’s IDS/IPS are usually deployed and operated
behind the firewall to provide a complementary layer of detecting malicious contents. It is
placed in-line (in the direct communication path between source and destination), actively
analyzing and taking automated action on all incoming traffic flows. They have been con-
figured and controlled by network operators. When transitioning to virtual IDS/IPS appli-
ances, service providers who provided underlying infrastructure and security services have
to deal with a lot of complexity, spanning from installation, configuration, to management
and maintenance. Additionally, the complexity of network management on independent
security monitoring could make it more complicated to handle and potentially produce
communication overhead. These results bring negative impacts to system performance.
For examples,

– Operational complexity: The given example like CloudSec [112] utilizes VMI tech-
nique to monitor volatile memory for further detecting kernel rootkits. The challenge
of implementing CloudSec is how to map the introspected low-level raw bytes of
memory into high-level OS data structure instances. To do this, it contains several
sequential steps of detecting threats in VM’s physical memory. Unavoidably, this
process introduces operational complexity in terms of communication overhead and
process synchronization.

– Management complexity: In CryptVMI [244], every communication between users
and management node need to be encrypted using a random symmetric key, which
is initially provided by its management node. When query handler module (in man-
agement node) receives user request, it firstly checks whether there is any associated
VMs belonging to this users. If the condition is true, the query handler uses cloud ser-
vice API to locate the IP address of the compute node that holds the designated VMs,
and sends inspection request to introspection application to monitor malicious events.
In case, there is a large number of users that are concurrently requesting the services,
management node could be faced with management complexity and communication
overhead, and could lead to single point of failure.

• Specific functions: Traditional IDS/IPS is often placed directly behind the firewall to pro-
vide a complementary layer for monitoring, identifying, and blocking malicious events.
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Having an IDS/IPS in-line means that all the incoming and outgoing traffics of a corpo-
ration network will be captured and analyzed. However, the capabilities of IDS/IPS are
limited to support monitoring VMs running inside the host, and it is difficult to monitor
malicious processes and activities, as the nature of virtualization makes cloud environment
complicated. These facts lead to the development of VMI technique [87]. Nevertheless,
embedded VMI normally requires customized settings that fit into specific environment,
making VMI hard to be integrated with the existing security monitoring tool such as Bro.
Moreover, applying VMI technique may break down the boundaries of segregation be-
tween multiple tenants, leading in exposure or leakage of data privacy. Although Yao
et al. [244] proposed an encrypted virtual machine introspection system – CryptVMI, to
maintain user confidentiality, the extra cost of encryption and computation on encrypted
data is still incurred.

• Scalability: NFV allows service providers to scale up/down network services on demand,
significantly improving service request and response time, making them react faster to
update configurations, e.g., reconfigure forwarding paths, resetting policy rules. This
property has been validated in the aforementioned references. For example, in Cloud-
Monatt [248], the network operators can dynamically add or remove new cloud servers,
and reconfigure the desirable security properties in security policies in real time without
affecting the overall system performance.

• Cost: If an enterprise network gets larger, then hardware investments on IDS/IPS are def-
initely increased, along with the increasing efforts on configuration and operation. By
using NFV based IDS/IPS solution, such as the one reported in [248], the cost and man-
agement complexity can be reduced. The customers can leverage a centralized security
monitoring to perform checking processes, and inspect suspicious events at the end node
without incurring additional capital expenditure and installation cost.

3.5.3 Network isolation

Network isolation is considered as an essential building block for improving security level and
ensuring security control in resource sharing and data communication over the cloud environ-
ment. The first aspect of network isolation is to physically or logically segment networks to
provide secure communication and offer higher bandwidth for specific users. The second as-
pect is resource control or QoS management, which relies on efficient traffic monitoring and
management to ensure that users only consume their share of network bandwidth. Additional
mechanisms are also required to improve network traffic isolation, such as SLAs establishment
to meet QoS requirement, bottleneck identification to prevent network congestion, and security
information gathering to prevent attacks.

3.5.3.1 Typical implementations

The applications of network isolation are exemplified as follows.

• IT scenario: Juba et al. [121] proposed security control, called POSTER, to keep an intra-
LAN in a secure state by isolating those network devices, e.g., computers, network print-
ers. The proposed architecture consists of three components: IDS, OpenFlow switch, and
OpenFlow controller. At first, the IDS monitors all the communication inside the LAN
to detect attacks or preliminary attacks from LAN, and then the detected information is
sent to OpenFlow controller. This controller analyzes the detected information to perceive
the current LAN situation, and examines the device where the anomalous communication
come from. Flow control is then applied to this device using OpenFlow switch.
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Another example of network isolation was discussed in [218]. The authors proposed
Quarantine model to resolve the problem of network separation deployed across IPv6
applications and services. The network nodes are accommodated to separate network
segments according to their security level, while different security policies are applied
for specific network segments. Based on the Quarantine model, there are the Quarantine
server acting as a monitoring server to monitor security level of node, and policy enforcer
which accommodates the node to a network segment based on its security level.

• Telco scenario: Baliga et al. [11] proposed a Virtual Private Mobile Network (VPMN) to
improve network isolation over a mobile wireless network. The idea of VPMN is aimed
to leverage virtualization benefits in order to dynamically create private network and pro-
vide resource isolation on a shared mobile infrastructure. Especially, there is a VPMN
controller which is responsible for accepting user requests, creating, and manipulating
infrastructure for that user. Thanks to the benefits of virtualization and partition mech-
anisms provided by VPMN, so that each user equipment has its own mobility elements
(e.g., virtual network service instances for RAN/eNodeB, S/P GW), instead of sharing
network elements like traditional model.

Another example is TrustDroid framework - a practical and lightweight domain iso-
lation on Android [28]. It aims to mitigate unauthorized data access and provide secure
communication between applications using different trust levels. The basic idea of Trust-
Droid is to group applications in isolated domains, while the applications belong to dif-
ferent domains are not permitted to communicate among each other. Specifically, the
isolation is applied for three layers of the Android software stack: (1) at the middleware
layer, which prevents inter-domain application and data access; (2) at the kernel layer, by
enforcing mandatory access control; and (3) at the network layer, which mediates network
traffics based on policy setting.

• Public cloud scenario: Brassil et al. [25] proposed to use Coarse Wavelength Division
Multiplexing (CWDM) optical network technology to explore the strategic use of hetero-
geneous physical network hardware for isolating different tenants in the clouds. The main
idea of CWDM is to multiplex multiple independent communication channels on a single
optical fiber using passive optical devices. As a result, one single fiber can carry multiple
sub-channels which are segregated based on wavelength and the associated color-coding.

Other techniques of network isolation in the cloud has been discussed in [44, 43].
Traditional mechanism like VLANs suffer from limited scalability and inefficient use of
available network links (with a maximum 4094 VLANs) [41]. As a result, Virtual Extensi-
ble LAN (VXLAN) solution was proposed to provide elastic workload placement, higher
scalability of layer 2 segmentation, and large scale flexibility to support multi-tenant cloud
over a shared physical infrastructure. In fact, the original objective of VXLAN is to pro-
vide the same Ethernet layer 2 network services as VLAN does, but with greater extensi-
bility and flexibility.

In [231], the vShield solution was proposed to have a more efficient security model.
It offers customers with different trust levels through the use of complete network isola-
tion, so that all the application deployments are enforced using the proper segmentation
and trust zones. Several key services are provided by vShield. For examples; (1) vShield
App, which creates application boundaries based on policy enforcement; (2) vShield Edge,
which maintains secure multi-tenancy by employing load balancing and isolation services,
e.g., firewall, VPN, NAT; (3) vShield Endpoint, providing on-host anti-virus and malware
protection; (4) vShield Manager, a central point of control is introduced to manage, de-
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ploy, and orchestrate third party security services; and (5) vShield Zones, which provides
basic protection in virtual network such as traffic analysis.

3.5.3.2 NFV based implementation

As previously discussed, a large variety of isolation techniques were proposed in the past
decades. However, when the size of cloud network gets large, virtualizing network isolation
become a promising approach. This Section is intended to exemplify how network isolation
can be virtualized in the context of NFV.

• Virtualized network isolation – DCPortals: Nunes et al. [160] proposed a virtual net-
work abstraction, called DCPortals, to provide traffic isolation in a virtualized datacenter
environment. It offers logical isolation among multiple tenants that share the same in-
frastructure, without requiring any additional hardware. Thus each tenant’s resource is
isolated from others, and the tenant can see his VMs as connected to a single virtual
switch. The core concept of DCPortals was implemented as a network hypervisor module
built on top of POX controller [183]. It interacts with OpenStack for querying tenant’s
information, and interacts with Open vSwitch (OVS) to identify network isolation based
on OpenStack’s RSA access key. The DCPortals assume that all VMs that shared the
same RSA key belong to the same isolated network. If two VMs are found in separated
networks, a packet sending from one VM to another VM is dropped by the first OVS to
avoid extra processing in the network. Otherwise, both VMs are considered to be in the
same virtual network, thus the traffic from one can reach the another.

• Trusted Virtual Domains – TVDs: Berger et al. [17] proposed Trusted Virtual Datacenter
(TVDc) to provide strong resource isolation and integrity guarantee. In TVDc, a group
of VMs and resources that collaborate among each other, called Trusted Virtual Domains
(TVDs). The TVDs maintain strong isolation between workloads by enforcing a Manda-
tory Access Control (MAC) policy throughout the datacenter. This policy defines which
VMs can access to which resources, and which VMs can communicate with each other.
It ensures that resources allocated to one TVDs can not be made accessible to VMs of
another TVDs. According to the design principle, the isolation is performed at two levels.

– Hypervisor based isolation: The TVDc is implemented based on hypervisor security
architecture, called sHype [203], with the purpose to enforce information flow, and
control access to VMs and resources based on security policy. It used MAC to pro-
vide access control, thus the requested communication to the VMs and resources is
permitted or denied according to the access control policy rules.

– Network based isolation: The TVDc applied VLANs to create isolated network, in
which a single physical LAN is segmented with appropriate VLAN ID. Thus all VMs
in TVDc are allowed to connect with other VMs when they are holding the same
VLAN ID. In other words, two VMs with the same VLAN ID can communicate
freely through VLAN, while the communication is denied if their VLAN ID are not
matched.

• Logical isolated network partitions: The authors of [40] proposed path isolation mech-
anism to maintain end-to-end isolated network virtualization. Thanks to virtualization,
logical isolated network partitions can be created on the top of physical network infras-
tructure of an enterprise, while providing the same services as those in traditional enter-
prise networks. The concept of path isolation can be classified into two categories.
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– Policy based path isolation: which restricts the forwarding traffic to a specific des-
tination based on a policy and additional information provided by the forwarding
control plane.

– Control plane based path isolation: which limits the propagation of routing infor-
mation – only the node that belongs to the same subnet can communicate among
each other. Virtual Routing and Forwarding (VRF) [42] can be used to achieve this
approach, which allows customers to virtualize a network device from a layer 3 stand-
point and further creates different virtual routers in the shared physical device.

3.5.3.3 Comparative analysis

In this Section, we give a comparative analysis, mainly addressing the gap between typical
based and NFV based implementations of network isolation. To do that, we refer to the afore-
mentioned examples as references [160, 17, 40]. Finally, the key results are highlighted in
Table 3.3.

Table 3.3: The key differences between typical and NFV based implementations of network isolation

Scenarios Example designs Cost
and effi-
ciency

Scalability Effectiveness Centralized
control and

management

Complexity
of lifecycle

management

Security
enhance-

ment
Typical imple-

mentations
Secure intra-LAN with isolation
– POSTER [121]

3 3 7 7 3 –

Separated network segmentation
– Quarantine [218]

7 7 7 7 7 –

Virtual private mobile network –
VPMN [11]

3 3 3 3 3 3

Lightweight domain isolation –
TrustDroid [28]

7 7 3 7 7 3

Coarse Wavelength Division
Multiplexing – CWDM [25]

3 3 3 7 7 3

Virtual Extensible LAN –
VXLAN [44, 43]

3 3 3 7 7 3

vShield solution [231] 3 3 3 3 3 3

NFV based im-
plementations

Virtualized network isolation –
DCPortals [160]

3 3 3 3 3 3

Trusted Virtual Domains –
TVDs [17]

3 3 3 3 3 7

Logical isolated network
partitions [40]

3 3 3 3 3 3

Notations: ‘3’ and ‘7’ denote that NFV characteristics are satisfied and NOT satisfied respectively, ‘–’ no solid references are available.

• Cost and efficiency: Traditional management model of network services always cause in-
efficient resource utilization, as specific hardware is assigned for specific function, and re-
source pools are customized per application usage. By using NFV, capital and operational
costs can greatly reduce, as network service delivery is removed from a physical device
to a virtual context, without the need to deploy specialized hardware for every network
service instances. Also, it can reduce the total cost of ownership by simply sharing each
hardware platform among multiple network services. These benefits have already been
validated in [160, 17, 40]. For examples, network isolation technique [160] uses virtual
switch to isolate tenant’s network traffic from others, path isolation [40] employs Virtual
Routing and Forwarding (VRF) to create different virtual routers in the same physical
devices, and Trusted Virtual Datacenter (TVDc) [17] applies policy rule setting to isolate
tenant’s workloads from other tenants.

• Scalability: Scalability is another important feature offered by NFV. As previously dis-
cussed, network service instances and virtual resources can dynamically scaled on the
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fly to support the growing demands and dynamically changes according to customer re-
quirements. The following examples have illustrated how scalability and flexibility can
be achieved through the virtualized network isolation.

– Scalability in service deployment: According to [40], virtualized network isolation al-
lows network operators to quickly create independent logical traffic paths in a shared
physical network infrastructure. As a result, the traffic of one tenant is isolated and
invisible to other tenants that do not belong to the same domain.

– Scalability in service management: In TVDs [17], moving from managing the clas-
sical individual VM isolation to workload isolation substantially simplifies security
management. One major advantage is that network operators no longer need to mon-
itor individual VMs and resources but they can focus on workloads as a whole. Each
workload is enforced based on specific access control policy rules. This allows net-
work operators to have a greater flexibility to define the policy rules for specific work-
loads in a virtualized datacenter. More importantly, network operators can simply
create, deploy, and update security policies at the central point in real time without
affecting the overall service performance.

• Effectiveness: Referring to [17], the concept of TVDc has been proposed for both hyper-
visor based isolation and network based isolation. Especially network based isolation, the
TVDc isolates VMs that contain the common security policies into the same group, then
each VM can only access to the resources of other VMs within a group with regards to the
predefined security policy rules. Technically, VLANs technique is applied to achieve this
goal, by using the VLAN ID to isolate the VM’s traffic in the network, limiting one VM
to only communicate with other VMs that belong to the same VLAN ID (TVDc group).
As such, network isolation can significantly increase the levels of trust, yielding stronger
security protection over the shared physical and virtual resources, e.g., VMs.

• Centralized control and management: There is no centralized control and management
available in traditional network isolation, so that network operators are required to take
several steps to configure network isolation (e.g., configuring network interface and other
parameters with respect to network isolation), resulting in non-trivial administrative bur-
den. On the contrary, NFV offers centralized control and management to mitigate the
complexity of device configuration, while providing an easier way to update policy rules
in real time. This benefit has been validated in [160], thereby utilizing a centralized con-
troller the network operators can quickly isolate network traffic flow of interest based on
the predefined security policy rules.

• Complexity of lifecycle management: Commonly, the configuration of network isolation
can be simplified by assigning a dedicated (and possibly overlapped) IP address space, and
then segment them into specific subnet associated to the different user groups. However,
this approach does not work well for large network environments like cloud and NFV, due
to sophisticated routing management. In [160, 17, 40], the authors proposed to leverage
virtualization to simplify network isolation. The major idea is that each partition is logi-
cally isolated from others by defining a set of policies. This allows the network operators
to easily create and modify the isolated virtual networks, while supporting a large number
of user groups that have different user requirements. Because security policies are cen-
trally enforced, adding or removing users and services to/from virtual network does not
require significant policy reconfiguration.

• Security enhancement: VLANs have been widely applied to create logical isolated net-
work partitions over a shared physical network infrastructure. The related example can
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be seen in [17]. However, S. Rouiller [201] pointed out that although VLANs make it
possible to isolate traffic at layer 2 that share the same switch, the heavy dependence on
software configuration makes it vulnerable. In fact, VLANs mainly use to separate sub-
nets and implement security zones. The possibility of sending packets across different
zones would make such separation useless, as a compromised machine in a lower security
zone could initiate DoS/DDoS attacks against machines in a higher security zone. An-
other threat is to destroy virtual architecture by launching DoS/DDoS attacks against the
whole network architecture, which can significantly impact the business operations.

3.5.4 Data protection

It is widely accepted that data protection plays a vital role in preserving the privacy of personal
sensitive information. It gives users with more security and provides a greater control over their
data. Fundamentally, data protection involves several types of security functions including data
encryption, data isolation, data leakage prevention, and key management.

3.5.4.1 Typical implementations

The applications related to a set of data protection are exemplified as follows.

• IT scenario: Chiang et al. [36] proposed secure key exchange protocol, called a Three-
Way Key Exchange and Agreement Protocol (TW-KEAP), which enables two commu-
nication parties to share a session key for establishing secure communication over an
insecure network. It is based on the concept of Diffie-Hellman key exchange protocol
that allows the key exchange without session key appearing in the message. There are
three parties involved in the TW-KEAP architecture: (1) SIP proxy servers perform key
exchange process to derive the session key; (2) gateway is used to forward data stream
and assisted the service provider to collect the monitored data stream for lawful intercep-
tion; and (3) clients who registered under the SIP proxy server intending to create secure
communication based on TW-KEAP protocol.

Other examples of data protection are typically applied in the cloud environment to sup-
port secure resource sharing. To do this, there are two feasible solutions of data protection:
data isolation at application level and at hardware level. The related example of data iso-
lation at application level was discussed in [118]. The authors proposed isolation system,
called Solitude, to limit the effects of attacks and simplify the post-intrusion recovery pro-
cesses. Solitude leverages fine-grained access control for those untrusted applications, and
uses isolation to separate each application from others. Also, to restrict attack propaga-
tion, it limits system capabilities with least privilege principle when untrusted applications
is attempted to request access to the file. For data isolation at hardware level, Strongly Iso-
lated Computing Environment (SICE) was proposed in [10], which is a framework that
provides a hardware level isolated execution environment for x86 hardware platforms. In
particular, SICE uses security manager to prevent the isolated workloads from accessing
memory of the legacy host. Even a malicious workload in one isolated environment can
compromise its own security manager, it is not be able to compromise any other isolated
environments running on the same platform.

• Telco scenario: Zhong et al. [252] proposed a distributed k-anonymity protocol to tackle
the problem of user privacy in mobile Location-Based Services (LBS) from revealing their
location or credential to the untrusted service providers. The distributed k-anonymity pro-
tocol is based on homomorphic encryption and k-anonymity technique, which allows users
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to remain anonymous within a set of k users under a coverage area. The architecture con-
sists of four components: (1) location broker, which keeps track of user’s current location
in the coverage area; (2) user, who carries mobile devices for getting the current location;
(3) secure comparison server, which interacts with the users and let them learn whether
there are at least k users who registered to the same coverage area; and (4) directory server,
which publishes contact information to both location broker and the secure comparison
servers.

Another example was proposed in [89], with the objective to tackle the challenge of
key management in mobile network, where the user’s locations are frequently changed.
The authors proposed a decentralized architecture for group key management to support
secure communication among members in the mobile network. Specifically, it provides
key generation, dynamically updating the keys (when members move, join, and leave the
group), and distributing the keys to the group members. The main idea of this protocol
is that multicast traffic is encrypted by the source and decrypted by valid receiver using
Traffic Encryption Key (TEK). The TEK is automatically updated when a new member
joins the group, or when an existing member leaves the group. The design architecture of
decentralized key management is organized into multiple areas. Each of which is managed
by the Area Key Distributor (AKD) which shares with its area members a Key Encryption
Key (KEK). Such multiple areas that belong to the same cluster are controlled by one
Domain Key Distributor (DKD), as its role aims to create a new TEK and distribute this
TEK to all the members within its cluster.

• Public cloud scenario: Takabi et al. [220] proposed a privacy aware access control system
to support secure data sharing in the cloud. It provides two levels of data protection when
user’s data is stored in the cloud service provider (CSP). At the first level, the CSP applies
access control mechanism to protect user’s data from unauthorized access. At the second
level, it relies on trusted third party service provider to prevent against colluding CSP. To
do that, it applies multiple layers of commutative encryption technique [53], so that the
users are not required to trust neither the CSP nor the third party service provider. The
data owners can protect their resources from untrusted CSP using encryption, and from
unauthorized users using fine-grained access control policies.

Another approach of data protection in cloud has been proposed in [240]. The authors
applied Ciphertext Policy Attribute-based Encryption (CP-ABE) to achieve fine-grained
access control. In particular, the owner firstly divides his/her data into several components,
and then encrypts each component with different keys by using symmetric key encryption.
Consequently, the owner applies CP-ABE to encrypt each symmetric key, such that only
the user whose attributes satisfy the access policy in the ciphertext can decrypt the keys.

3.5.4.2 NFV based implementation

In this Section, we exemplify several NFV based data protection mechanisms.

• Data leakage detection – CloudSafetyNet: Priebe et al. [184] proposed a monitoring data
leakage system, called CloudSafetyNet, to examine the data flow of tenant applications
in the cloud platform whether there is any data leakage. It adds security tags to a subset
of all tenant HTTP request fields, and uses socket-level tag monitoring to observe the
propagation of tags. Each monitor maintains a tag log which is periodically retrieved by
the tenant. If the tags that belong to other tenants are observed in the tag log, it indicates
that there is inter-tenant data leakage.

• Data confidentiality protection: In [245], the authors attempt to address the same security
issue of protecting data confidentiality when they are stored and processed in the cloud.
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A new architecture was proposed to protect user privacy and ensure that service providers
are not able to collect any user’s data, while the data is processed and stored in the cloud.
In particular, three major operations are involved: (1) separating software service provider
from infrastructure service provider, so as to ensure that the software layer and infrastruc-
ture layer are not managed by the same party; (2) hiding information about the owner’s
data by using identity anonymization function; and (3) performing data obfuscation when
data is stored in the cloud.

• Key-insulated symmetric key cryptography: Dodis et al. [62] proposed key-insulated sym-
metric key cryptography to tackle a problem of cryptographic key compromise. This
scheme aims to mitigate the repeated exposure of secret keys, in which the keys need to
be updated frequently. The design is based on key-insulated public key cryptography, and
integrated into Trusted Virtual Domains (TVDs). In particular, TVDs allow customers
to use multiple VMs, only applications in the same TVDs can communicate with each
other using key-insulated symmetric key cryptography. Assuming that there are two VMs
intend to communicate with each other, they initially need to establish a shared key. The
process of generating the shared key is based on key-insulated symmetric key cryptog-
raphy. As both VMs receive partial secret key from its device master key, so that each
VM takes its device master key together with its computer master key as inputs, in order
to generate a period-secret key as a shared key. This key is then used to establish secure
communication between the two VMs that belong to the same TVDs.

• Key management in the clouds – EnCloud: Song et al. [216] proposed encrypted cloud
system, called EnCloud, to handle the challenge of key management in the cloud, in which
a large number of keys need to be properly managed to support multi-tenant requests,
and providing end-to-end encryption between multiple cloud applications. The design
solves a set of problems of insecure key creation, key management, and key renewal. In
EnCloud, all encryption and decryption keys are located at the client site rather that the
server site, enabling users to have full control over the use of keys and their personal data
management. Specifically, EnCloud consists of two functional components: (1) Domain
Manager (DM), which is responsible for managing its members (e.g., domain clients),
and issues the domain key; and (2) Domain Client (DC), which is responsible for data
encryption and decryption.

3.5.4.3 Comparative analysis

This Section is intended to examine NFV based implementations of data protection mecha-
nisms. We analyze their performance and compare with their traditional counterparts. The
findings are summarized in Table 3.4.

• Cost saving: One of the major drawbacks caused by traditional data protection is that
many enterprises need to rely on dedicated encryption and key management systems to
protect their data. However, these types of equipments are very expensive, complex to
configure and manage. With NFV based implementation, security services like data pro-
tection can be quickly deployed and managed by using software based approaches, avoid-
ing significant investment on hardware. In fact, the aforementioned references [184, 245,
62, 216] have clearly indicated that end users and enterprises can dynamically deploy vir-
tual appliance of data protection service on the fly, without too much concern about costs
in hardware investment, configuration, and maintenance.

• Communication overhead: Many researchers have pointed out that conventional encryp-
tion model may not be sufficient enough and no longer suitable to fulfill the security
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Table 3.4: The key differences between typical and NFV based implementations of data protection

Scenarios Example designs Cost
saving

Communication
overhead

Complexity
of lifecycle
manage-

ment

Easy
deployment (no
specific function

required)

Effectiveness Scalability

Typical imple-
mentations

Secure key exchange protocol
– TW-KEAP [36]

7 7 7 7 3 7

Data protection at application
level – Solitude [118]

7 3 7 7 3 7

Data protection at hardware
level – SICE [10]

7 3 7 7 3 7

Homomorphic encryption for
location privacy [252]

7 7 7 7 3 7

Decentralized group key
management [89]

7 7 7 3 3 3

Secure data sharing in
cloud [220]

3 7 7 3 3 3

Data protection in cloud using
CP-ABE [240]

7 7 7 3 3 3

NFV based im-
plementations

Data leakage detection –
CloudSafetyNet [184]

3 7 7 7 3 3

Data confidentiality
protection [245]

3 7 7 7 3 3

Key-insulated symmetric key
cryptography [62]

3 7 7 3 3 3

Key management–
EnCloud [216]

3 7 7 3 3 3

Notations: ‘3’ and ‘7’ denote that NFV characteristics are satisfied and NOT satisfied respectively.

requirements in the cloud. For example, users traditionally encrypt their data with se-
cret keys, and then deliver these keys to the authorized user for decryption purpose. This
approach makes users a cumbersome process and creates high risk of key exposure. Al-
though the authors of [62, 216] proposed a new model of encryption and key management
for cloud environment, in which the end users do no need to manage the keys by them-
selves, the communication overhead is unavoidably incurred from key exchange. The
major reason is that the secret keys need to be updated frequently at boosting period, e.g.,
when time expired, when the number of communication users changed, or when a device
that stored the secret key is lost or stolen. All these cases consume non-trivial computa-
tional time, memory, bandwidth, and other resources.

• Complexity of lifecycle management: One of the major advantages of NFV is to provide
network functions with automatic provision and orchestration to reduce the complexity of
VNF lifecycle. However, implementation of data protection in NFV can potentially incur
some complexities.

– Management complexity: Unlike the conventional data protection, when data is mi-
grated and processed in the cloud, the users may lose control over their data. Also,
service providers may pose a risk to their users by performing unauthorized disclosure
of user’s data and violating their privacy. As a result, the complexity of data protec-
tion could be high, as it requires a complex level of protection to ensure that at every
stages of data processing are not disclosed to any untrusted third party except the au-
thorized ones. These goals are partially achieved by the design reported in [62, 216].
Despite the related examples improve robustness of security protection and key man-
agement, the management complexities are unavoidable. Especially when consider-
ing the processes of key generation, management, and distribution across multiple
parties in the large scale networks that having a huge number of users who are simul-
taneously requesting the keys.
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– Operational complexity: Although the design architecture proposed in [184] en-
hances the confidence of tenants because the data is well isolated and protected, the
operations of CloudSafetyNet could increase data traffic in the network, unavoid-
ably producing operational overhead and latency. The reasons is that each HTTP
request’s packet needs to add security tag, perform encryption, and record log events,
as the tenants need to periodically check for data leakage from their log information.
Similarly, data protection framework proposed in [245] introduces non-trivial opera-
tional complexity. Especially, the separation between software layer and infrastruc-
ture layer incur extra communication traffic and data processing overhead between
the components belonging to different service providers. The out-of-band operation
and synchronization is also necessary.

• Specific designs: As previously analyzed, the traditional model of data protection has lim-
ited capability to protect data in the virtualized environment like cloud and NFV environ-
ments. One of the fundamental weaknesses is that most of them target at preventing data
leakage against outsider attacks, while the attacks caused by the insiders such as untrusted
cloud service providers can be hardly prevented. Therefore, data protection schemes for
virtualization environment are significantly different from the traditional counterparts, as
they need to consider the intrinsic characteristics, and the fundamental security require-
ments of different users. With the objectives in mind, the authors of [245] proposed that
service layer and infrastructure layer should not be managed by the same party. Also, the
design proposed in [184], every HTTP request needs to add a security tag for observing
data propagation and further detecting data leakage.

• Effectiveness: In traditional models, the functions of data protection are implemented
on specific equipments. For example, enterprise usually relies on a key management
device to generate secret keys, and uses an encryption device to encrypt data with those
keys derived from the key management device. However, this approach is not effective
for virtualization environment that involves multiple networking functions provided by
different service providers, while all of them cannot be trusted. A single malicious party
can lead to failure of the whole data protection scheme. To deal with these challenges, an
alternative solution is to design architecture as discussed in [245, 216], in which users are
not required to trust or relied on the service providers.

• Scalability: As previously mentioned, NFV provides good scalability to allows service
providers to quickly scale in/out network services according to the user demands. One
good example is demonstrated in [245], in which service providers can dynamically initi-
ate and deploy software services upon user requests, rapidly interacting with infrastructure
layer to allocate virtualized resources, and freely adding or modifying security policy and
attestation rules in real time.

3.6 State-of-the-art Security Countermeasures

In this section, we intend to analyze the stat-of-the-art security countermeasures and then pro-
pose a set of security recommendations that should take into account to accomplish higher
levels of security protection. Thanks to NFV layer-specific threat taxonomy (Section 3.4) and
comparative analysis of security function (Section 3.5), giving us a clear understanding to what
extent the available NFV security best practices can fulfills these security recommendations.
Finally, a summary of NFV’s threats and vulnerabilities with the corresponding recommenda-
tions is given in Table 3.5.
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3.6.1 NFV Infrastructure layer

To defense and mitigate against security threats in NFVI layer, a list of corresponding security
recommendations is given as follows. The available security best practices that are tailored to
secure NFV infrastructure are also exemplified.

• Defense in depth with well defined policy enforcement: To ensure that NFVI layer is prop-
erly operated without any attack interruption while maintaining security, defense in depth
solution is required. An alternative solution is proposed in [156], the authors classified
threat defense solution into four phases of the lifecycle: (1) asset identification phase,
which is about identifying users, cloud providers, data, and hardware assets running in
NFV environment; (2) adversaries identification phase, by identifying the possibilities
of adversaries that could be occurred; (3) layers of defense phase, with an objective to
provide security solutions that can be used to tackle the different attacks; and (4) review
phase, periodically and frequently rechecking the procedure when user requirements are
changed or when security services are out of date.

• Establishing trust domain: The concept of trust domain is widely applied in NFV envi-
ronment to provide confinement boundaries, create secure communication, and maintain
security among group’s members. One of the basic design assumptions is that each VM
needs to trust each other based on a common security policy before starting their commu-
nications. In other words, establishing trust between the virtual components is considered
as a promising concept to improve security in virtualization platforms. It also helps to
maintain the integrity of network. Some examples with regards to trust domain implemen-
tations were discussed in [17, 16, 229, 198]. Specifically, several security mechanisms are
involved for trust establishment. For example, in the VMM layer, Sailer et al. [203] pro-
posed hypervisor security architecture - sHype, to controls resource sharing among VMs
based on the formal security policies. In network layer, VLANs [41] and VXLAN [44]
are the most widely used techniques for separating VM traffics and isolating them into
specific security zone. Thus one VM can only communicate with other VMs that belong
to the same security zone. Lal et al. [128] stated out that security zoning can help network
operators to prevent a VM from impacting other VMs or host. It is an effective strategy
for reducing many types of risks, especially when considering the permeability of existing
networks.

• Dynamic and adaptive access control: Data stored in datacenter storage across NFVI layer
is considered as confidential data and needs to be closely monitored. Like the purpose of
traditional access control, access control is used to verify whether the data is accessed by
authorized users and know who access the data. As a result, access control models and
policy management must be carefully designed in fine-grained, dynamic, and adaptive
fashion. For example, the authors of [178, 180] proposed security extension based on ac-
cess control model, with the objective to provide monitoring, control resource access, and
enforce access control policies to protect the deployed resources at NFV infrastructure.

• Hypervisor introspection: One solution to defend against attack in VMs is to deploy IDS
on the host OS in order to monitor and intercept events from the VMs. This solution is
known as hypervisor introspection or Virtual Machine Introspection (VMI) [128]. The
concept behind the VIM is used to scrutinize software running inside the VMs, and then
analyze suspicious events and anomalous activities. This technique is widely accepted as
a secure model for monitoring the system. It acts as a host-based IDS to monitor network
traffics and access to the states of all VMs, such as access files in storage, and read mem-
ory execution. Hypervisor introspection can be considered as a powerful tool to perform
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deep VM analysis and increase VM security. Also, it can be used as an exploit which
make it possible to break down the boundaries of isolation between VMs and hypervi-
sor. A practical example of hypervisor introspection was discussed in [87]. The authors
developed Livewire prototype to explore potential attacks including kernel-and-user-level
rootkits and backdoors, Trojan horses, packet sniffers, and worms.

• Separation of administrative duties: When the network functions are migrated to the vir-
tualization environment, the entire network services are controlled and managed directly
by the administrators. Assuming that administrators are malicious, the network services
can be completely taken over. Therefore, it is important to identify the administrative roles
based on their functionalities, duties, and their access rights. Pék et al. [181] identified
that administrative roles should be separated, as best practices suggest. As a large virtual
environment is supervised by multiple administrators with different roles and duties, so
that their access rights should be restricted. For example, a storage administrator should
not get access to firewall or monitoring services, and vice versa. Multi-authentication and
split-control administrative passwords for various administrators should be used in order
to reduce the risks from malicious supervisor.

• Security service chaining: In general, the virtual infrastructure should be protected as a
whole. As it still needs to maintain open connections for serving network services to exter-
nal users, additional security services are required, e.g., firewalls, Intrusion Detection and
Prevention (IDP), Data Distribution Service (DDS). However, some security services have
to work with others to maintain closed-loop security protection or to achieve autonomic
controllability. Thanks to NFV MANO, various security services can be initiated on de-
mand. The deployed security appliances can be spun up automatically and chained to-
gether for a particular purpose. For example, to defense against DDoS attack, the authors
of [46] exemplified a simple model of security service chaining. In this scenario, three
types of security services (DDS, firewall, and DPI) are deployed in the different VMs.
Based on centralized control and dynamic reconfiguration provided by NFV MANO, all
inbound traffics destined for the network service is firstly redirected to DDS, firewall, and
DPI, respectively. The goal is to provide optimal efficacy of security service chaining by
filtering out malicious DDoS traffic before reaching the targeted network node.

• Regular VM updates and patches: To reduce vulnerabilities and mitigate security risks
from VM attacks (e.g., hyperjacking, VM escape, VM hopping, VM DoS, VM based
rootkits), it is important to keep regular VM updates and patches. As identified in [181,
128], one of the security best practices is to keep the hypervisor up to date by regularly
applying the released security patches. The latest security patches should be applied not
only to hypervisor and the hosted VMs, but also all the relevant softwares and workloads
that are deployed under the NFVI layer.

• Remote attestation: Remote attestation is a procedure by which the user is able to verify
whether a queried cloud platform is booted in a trusted manner [78]. Also, it can be used
to remotely verify the trust status of an NFV platform [128]. The main concept is based
on boot integrity measurement by leveraging Trusted Platform Module (TPM). The TPM
is used as hardware root of trust for providing trust on a hosting service platform. It is
considered as a micro-controller that is often embedded onto the motherboard of services
or PCs. This module is capable of storing confidential data (e.g., keys, certificates) and
verifying the integrity of system. In fact, TPM is often used during the platform boot time
to achieve platform trust. However, remote attestation can be provided as a service at run
time before launching other VNF instances [198]. In this scenario, external attestation
server is needed to prove the trust status of a remote platform. A practical implementation
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of remote attestation service (in form of remote attestation server) is known as open Cloud
Integrity Technology (openCIT)1.

• Design of trustworthy hardware and platform: As previously mentioned, hardware de-
sign and manufacture always occur before software development, so that the compro-
mised hardware module can make software security mechanisms running upon it become
in vain. Therefore, it is important to consider hardware security in the early stage of life-
cycle management. For example, Bloom et al. [21] proposed security solution to improve
trustworthiness and defend against hardware attacks. The idea is to provide a secure ex-
ecution environment in the processor supply chain and the hardware mechanism. Also,
Lal et al. [128] discussed about Linux kernel security to improve security in virtualization
(sVirt). The core concept is based on Security-Enhanced Linux (SELinux). It integrates
mandatory access control security with Linux based hypervisor to provide system resource
isolation. Thus, data files, network resources, memory, processes, and applications of each
VM are isolated.

3.6.2 Virtualized Network Functions (VNF) layer

The threat analysis of VNFs implies that the following security recommendations must be
carefully considered. Despite the fact that some security recommendations may also hold true
for NFVI, the security countermeasures might be different.

• Defining standards to support service interoperability: As a general trend, today’s enter-
prises are migrating their services to the cloud infrastructure. However, without industry-
wide cloud standards, vendors tend to create proprietary cloud service based on their
unique software stacks. This result leads to service lock-in and incompatibility with that
of others. It is therefore important to define standard to support interoperability between
the various NFV elements, covering both standalone VNF instances, NFVI platforms,
and network functions. In fact, a well recognized community such as OPNFV [174], and
OpenStack [170], are some ongoing projects which attempt to achieve this goal.

• Ensuring secure and dependable of service function chaining: An end-to-end service de-
livery in NFV context can be constituted/composed by a series of independent service
functions (Firewall, NAT, TCP optimizer, etc.) and this is called Service Function Chain-
ing (SFC) in NFV’s terminology. Thus, the compromise of any involved network func-
tions in the service chain can definitely break down the consistency of the whole chain.
Therefore, it is important to ensure that all specified service functions are chained in a
consistent and reliable way, meeting with the predefined high-level SFC specifications.
Recently, the authors of [149] proposed a SFC orchestrator to enhance resilience in NFV.
The proposed orchestrator activates a standby VNF to replace the failed one, and then
employ the SDN controller to redirect the network traffic to the new service function path.
However, there are still many open research issues related to SFC that need to be addressed
urgently. The most important issue is how to ensure that the consistency of a particular
service chain is well protected.

• Establishing trust relationships between intra, inter, and extra domains: As mentioned
in [76], all parties in the same trust domain can securely communicate with each other.
To do that, all VNF instances need to be evaluated for the trust relationship. The evalu-
ation process are based on the contracts, policy rules, and guidelines. However, the trust
relationship is broken if one of the VNF instances is not trustworthy. In general, the trust
relationship can be defined for three levels: (1) intra-VNF trust, the trust within VNFs; (2)

1https://github.com/opencit/opencit
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inter-VNF trust, the trust between VNFs; and (3) extra-VNF trust, the trust with external
VNFs.

• Security monitoring: As in the cloud, the status of infrastructure resources, network ser-
vices, VNF instances, and other related events are hardly observable. Therefore, the ef-
fective security monitoring is needed, that can help to provide visibility into the network
events and activities of interest, while enabling the advance logging and accounting func-
tion for further forensics and anomaly detection. For example, Zhang et al. [248] proposed
CloudMonatt architecture to monitor different aspects of VM’s security health. In [150],
Monitoring-as-a-Service (MaaS) was developed. The idea is to deploy network state mon-
itoring at different levels in the cloud. Also, Zou et al. [253] proposed a trusted monitoring
framework for cloud platforms, to provide a chain of trust by deploying independent guest
domain for monitoring purpose, and utilizing the trusted computing technology to ensure
integrity of the monitoring environment.

• Data encryption and leakage prevention: In order to protect data in transit, at rest, and in
use, appropriate encryption mechanisms should be applied. For example, Lat el al. [128]
identified that virtual volume disks and VM swapping areas associated with VNFs may
contain sensitive data, and they need to be protected. One of the best practices to secure
the VNF volumes is to encrypt them and store the cryptographic keys at a safe location
like TPM module. Also, TLS and IPsec with the latest approved version are recommended
for improving secure communication between VNF components [79]. In addition, more
advanced encryption mechanisms such as homomorphic encryption [129] can be consid-
ered, especially in NFV environment that supports both multi-tenant software applications
and service orchestration.

• VNF image signing and software integrity protection: VNF software images are used as
reference to initiate the VNF instances, so it can be tampered easily by the attackers, e.g.,
infecting a VNF image file using malware. An alternative countermeasure that was pro-
posed in [128] is to cryptographically sign VNF images, which are then verified when
they are launched. However, a signing authority needs to be set up, and the hypervisor
configuration needs to be modified in order to verify an image’s signature before its exe-
cution. Also, as ETSI suggested [79], all VNF instances and related versions of software
components must be verified before their execution, in order to enhance software integrity
protection. If the VNFs and software components comply with the specified policies, then
they are allowed to install. Otherwise, the installation is rejected.

3.6.3 NFV MANO layer

NFV MANO layer plays a vital role in the whole NFV architecture. It acts as a brain of man-
aging and orchestrating virtual resources and network services. The threat analysis has clearly
indicated in the previous section. In this section, we intend to identify security recommenda-
tions to defend and mitigate against the potential security threats in NFV MANO layer.

• Security management, orchestration, and automation: Thanks to NFV that provides ad-
ditional set of management and orchestration functions, various VNF instances can be in-
stantiated, connected, and chained together to create an end-to-end network service. How-
ever, these VNFs require appropriate security mechanisms to be automated, on demand,
agile, and friendly interfaced, so that they can be quickly deployed at various security Pol-
icy Enforcement Points (PEPs), either across platforms or in the same NFV environment.
In particular, the major purpose of security management, orchestration, and automation is
to ensure secure and fast service delivery, while improving end user experience. Jaeger
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et al. [116] proposed a security orchestrator to manage security functions (e.g., firewall,
security zone, etc.). However, no concrete use case and implementation are given. A con-
ceptual design framework of security management and orchestration, called SecMANO,
was proposed [178]. The key idea of SecMANO is to introduce a security orchestrator
alongside with the conventional NFV orchestrator. These two components thus constitute
a new secured NFV orchestrator. A use case of access control is exemplified to illustrate
how SecMANO works. Also, reference [180] proposed a TOSCA based security exten-
sion for NFV orchestrator by employing a well-developed security policy engine (Moon
framework that is developed for access control) [173]. The proposed security extension
can automatically verify security attributes specified in the extended TOSCA data model,
generate corresponding access control policies, and enforce them to protect the resources
in NFV infrastructure.

• Transparency to network control and management: Like any other layers, NFV MANO
requires confidentiality assurance when data is processed over untrusted cloud infrastruc-
ture. In other words, the data should remain confidential and can only operate with the
user permission. Since the users differ in privileges, data access must be individualized
and restricted to those authorized users. In particular, data protection in untrusted envi-
ronment normally can be achieved through the following schemes.

– Security policy enforcement: One of NFV benefits is to enable the service providers
to enforce centralized policies, to improve control over traffic flow, network pro-
grammability, and payload elasticity. Examples associated with policy enforcement
were discussed [92, 140], mainly focusing on defining policies to control and manage
the behavior of diverse VNF instances.

– Authentication and authorization: Basically, authentication and authorization are
widely used to verify the user’s identity, prove their privileges before gaining access
to the target resources, and then their permissions are granted accordingly. For exam-
ple, role-based access control [124], attribute-based access control [240], or federated
access control [202], can be candidate mechanisms.

– End-to-end Encryption: To protect data confidentiality and integrity, encryption mech-
anism is always applied to the data that are outsourced to the untrusted network.
However, in multi-tenant environment like NFV, an additional key management layer
is always necessary for generating, managing, distributing, and revoking the crypto-
graphic keys. For example, a key-insulated symmetric key cryptography scheme was
proposed [62], to resistant operations from compromising the cryptographic keys in
cloud environment. Song et al. [216] proposed Encrypted Cloud framework (En-
Cloud), to protect user’s privacy and provide end-to-end encryption between cloud
applications. Also, to ensure that only authorized applications/devices can decrypt
the data on the cloud storage.

– Security monitoring and forensics: According to ESTI standard [80, 78], security
monitoring is one of the basic requirements of the network service management sys-
tems. The monitoring scope covers network traffics, VNFs, resource usage, sys-
tem integrity, logs, and other activities which pose security threats. The information
gathered from the monitoring can be used for forensics For example, ANASTACIA
project [81, 60] developed security monitoring module as a part of security orchestra-
tor plane for collecting security-focused real-time information related to the system
behavior from physical/virtual appliances. In this activity, the monitoring data is fil-
tered and aggregated in order to carry out its analysis and the detection of anomalies.
It sends alerts to the reaction module in case something is misbehaving.
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• Ensuring controller availability: As discussed in [52], the controller is considered as the
centralized decision point, attacking to the controller would have broad impact on the
entire network. Therefore, accessing to the controller should be tightly controlled and
monitored. To do that, authentication, authorization, and accounting (AAA) mechanisms
are required, and they should be applied at least two layers: the network infrastructure to
identify the service providers and the network function layer to identify the actual con-
sumers. As such, only authorized VNF instances provided by the authenticated service
providers are allowed to be executed.

Table 3.5: A summary of NFV threats and vulnerabilities with the corresponding security countermeasures

NFV specific layers Threats and vulnerabilities Security countermeasures
IAM IDS&IPS Network

isola-
tion

Data
protec-

tion

Security
management

and
orchestration

Policy
enforce-

ment

NFVI Security issues in guest VMs X X X X X
Security issues in hypervisor X X X
Insecure management interfaces X
Compromising virtual network components X X X
Security pitfalls of OpenStack X X X X
Inadequate enforcement of security policies X
Shared physical and virtual resources X X
Malicious insiders X X X
Untrustworthy service composition X X X
Hardware attacks X X

VNFs Vulnerabilities in VNF softwares X X X
Security breaches resulting from lack of
interoperability

X X X X X X

Security flaw in development life cycle X X
Security policy and regular compliance failure X
Insecure interfaces X
Data loss and information leakage X X X
Malicious insiders X X X
DoS/DDoS attacks X X

NFV MANO Attack to management and control plane X X X
Failure of troubleshooting X
Security policy and regular compliance failure X
Insecure interfaces X
Malicious insiders X X X
DoS/DDoS attacks X X

To summarize, although a large set of security mechanisms are readily available, the intrinsic
characteristics of NFV bring several challenges to vendors and network operators in terms of
design, implementation, and deployment. For example, the design of security functions, the
guarantee of network performance, dynamic instantiation and migration, and their efficient
placement. Despite the current efforts that address NFV security, a gap with the given security
recommendations clearly remains. As a result, we end up proposing a generic framework
of security and trust for NFV architecture. As shown in Fig. 3.11, the proposed framework
aims to highlight all of the possible security recommendations, expanding both the vertical and
horizontal axis, to achieve cost-effective, cross-layer, and in-depth defensive line. It should
be noted that some of them are operated in a specific layer, so-called specific-layer security
recommendations. For example, to defense and mitigate against the security threats at NFVI
layer, trustworthy hardwares and platforms, security zoning, hypervisor introspection, regular
VM updates and patches, need to be applied. While, some of them are expected to be lunched
more than one layers, so-called cross-layer security recommendations. These recommendations
include security monitoring, identity and access management, trust relationship establishment,
policy enforcement, and data protection. However, we admit that, apparently, the framework
needs to be significantly enriched with the continuous efforts from the community.
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Figure 3.11: A high level of NFV security framework which covers both specific-layer and cross-layer security
recommendations

3.7 Conclusion

Recent years have seen the rapid development and deployment of NFV in both enterprise net-
works and cloud environments. One of the major reasons for this technological trend is that
NFV has potential capability of reducing capital and operational expenditures, greatly improv-
ing network service agility, flexibility and scalability, as well as resource utilization. As said,
any new technologies are essentially two-side sword, while NFV and SDN are not exceptions.
Their benefits do not naturally exclude security concerns, which impede the further develop-
ment and deployment of network services in NFV environment. We are therefore motivated to
investigate and explore all potential threat sources associated to NFV.

In this Chapter, we firstly conducted a use case driven threat analysis, in order to establish
a NFV layer specific threat taxonomy. In use case-specific analysis, we found that a large set
of vulnerabilities, especially the one in NFVI is commonly shared by more than one use cases.
For example, if the NFVI layer fails to provide sufficient security protection, those associated
network service components in the upper layer would be vulnerable to attacks. This deserves
a holistic and systematic analysis of security threats and vulnerabilities across different layers.
We assume that the amount of attack vectors can be significantly reduced if the core functional
modules of NFV such as VMs, hypervisors, orchestration platforms, and VNF instances are
sufficiently protected.

Second, a suit of security mechanisms were analyzed, primarily focusing the feasibility,
agility and effectiveness of implementing security functions (e.g., IAM, IDS/IPS, network iso-
lation, and data protection) in the context of NFV. Specifically, we selected five basic security
mechanisms and investigated their feasibilities and effectivenesses of NFV based implementa-
tions. We found that migrating these basic security mechanisms to the NFV environments can
help service providers to save cost, greatly improving flexibility and agility to scale network
services up or down to meet dynamically business changing demands. Thanks to the central-
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ized management and orchestration, both operational cost and complexity resulting from ser-
vice deployment, configuration and management can be significantly reduced, making security
functions deployed quickly and managed easily. However, we also observed that not all of them
can be simply implemented in the context of NFV. For example, as discussed in Section 3.5,
evaluating or measuring the performance impact of data protection in terms of communication
overhead and complexity of lifecycle management on VNF instances and network services is a
non-trivial issue.

Third, based on the established threat taxonomy and the analysis of traditional security
mechanisms, the state-of-the-art security countermeasures have been extensively studied. Our
objective was to provide a set of recommendations with cost-effective security mechanisms for
NFV specific layer, highlighting what threats can be effectively mitigated or prevented by what
countermeasures. As a result, we could establish a holistic NFV security framework to present
all the possible security recommendations for service providers to achieve cost-effective, cross-
layer, and in-depth defensive line. In state-of-the-art security countermeasures, we provided
security recommendations for NFV specific layer. We found that an independent security func-
tion can not fulfil all the security requirements. In other words, to address a single security
recommendation, several types of security functions could be required. Thanks to state-of-
the-art NFV security countermeasure, a holistic NFV security framework with cost-effective
security mechanisms can be potentially established.

The key observations of this Chapter and those of Chapter 2 lay down a solid foundation for
us to develop a security orchestrator, as a natural extension of existing NFV MANO framework,
to achieve the capability of managing security functions. More details will be reported in next
Chapter.
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4
Security Orchestrator for Achieving Software-Defined Access

Control

In Chapter 2, we have analyzed NFV architecture and several NFV MANO frameworks (e.g.,
OpenMANO, Cloudify, Tacker, OpenBaton), and proposed a conceptual framework SecMANO
for managing and orchestrating security functions, ensuring all the desirable security properties
of network services to be satisfied in their entire lifecycles. This Chapter will be focused on
the development of a security orchestrator, which can be viewed as an actual implementation
of SecMANO. Specifically, we extend TOSCA data model (our analysis indicates that it has
potential to be widely used for today’s NFV orchestrators) to incorporate security attributes of
interest, and leverage the extended model to create access control policies. Then the design
architecture of security orchestrator will be discussed, which contains a TOSCA-parser and a
novel tenant-specific access control paradigm. We will demonstrate that our security orches-
trator allows to dynamically generate access control models and policies for different tenant
domains, ultimately resulting in a flexible and scalable protection across different layers and
multiple cloud data centers. Both Proof of Concept (PoC) validation and real-life experiments
will be reported for performance evaluation purpose.

4.1 Introduction

Naturally, in order to coordinate the underlying NFV infrastructure resources, initiate a set of
VNF instances, and chain them together for delivering end-to-end network service, a functional
block of management and orchestration must be put in place. For example, in the ETSI NFV
reference architectural framework [73], the core part is NFV management and orchestration
(NFV MANO) [74] which plays a significant role in maintaining the full lifecycle manage-
ment of infrastructure resources, VNFs and network services, ranging from service initiation
and configuration, resource orchestration, scaling in/out, to update and termination, to policy
management and performance measurement.

Although a number of NFV MANO frameworks appeared and are under development (
OpenMANO [223], OpenBaton [168], Cloudify [47], Tacker [219], etc.), a majority of them
is focused on the basic NFV orchestration and the lifecycle management of infrastructure re-
sources, VNFs, and network services, while security concerns are comparatively overlooked
which can be a significant barrier to the wide adoption of NFV [178, 179, 84, 75, 93]. In par-
ticular, it remains unclear how the capability of managing security functions can be attained in
those NFV MANO frameworks, ensuring that all the NFV-based objects or assets can be pro-
tected with the most appropriate security mechanisms in the course of their entire lifecycles,
from creation and deployment to the termination.
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One of the ideal solutions is to develop a security orchestrator, which can be seamlessly
integrated with the NFV orchestrator, enabling the basic security functions to be effectively or-
chestrated and provided as on-demand services to the customers, and high-level security poli-
cies to be specified and enforced in a dynamic and flexible way. Thus, the so called security by
design has potential to be extensively, if not completely, achieved. To do that, the initial yet es-
sential step is to study the design principle, built-in functional components, and data models of
the NFV orchestrators. In particular, a common data model (service template) plays a vital role
in managing and orchestrating end-to-end network services by maintaining a consistent view
of application topology, network connection, and workloads. TOSCA (Topology and Orches-
tration Specification for Cloud Applications) [227], for instance, has been widely recognized
as a standard approach to defining NFV specific data models and service templates, which are
stored in on-boarding catalog and used by the orchestrator for network service instantiation at
runtime. To the best of our knowledge, however, the specification of security attributes with
regards to virtual components (e.g., VMs, VNFs) remain difficult in the deployment phase,
making it extremely challenging to accurately enforce high-level security policies and achieve
fine-grained security control in the rest of their lifecycles. Thus, a security orchestrator serves
for two functional purposes: (1) closely interacting with the NFV orchestrator to extract secu-
rity attributes of interest and generate security policies based on the holistic overview of the
infrastructure; (2) allowing to dynamically specify high-level security policies and make them
enforced in real time to protect NFV resources at both infrastructure and NFV layers, e.g., iso-
lating VNF instances based on tenant-specific domain. In this chapter, we need to achieve the
two objectives, so as to eventually develop and implement a TOSCA-based security orchestra-
tor.

Other challenges arise in the NFV infrastructure deployed in the multi-cloud environments,
which are essentially multiple tenancy and geographically distributed. In particular, the pro-
cesses of NFV enabled service compositions may involve different layers (e.g., NFV infrastruc-
ture, VNF, and NFV MANO), making service dependency extremely complicated [55, 221].
The security mechanisms deployed in such environments therefore must be sufficiently auto-
mated, flexible, adaptive, and scalable. For instance, the access control model and policy need
to be tenant-specific, considering the facts that the tenants may vary in security requirements
and they may dynamically provision the resources from different cloud infrastructures. In other
words, the scope of an access control model and its associated policies should be limited to an
individual tenant, while the tenant user is given the privilege to customize the most appropri-
ate access control model and specify the corresponding policies. To do that, we envision that
the security orchestrator has a distributed access control framework, which further allows the
policy of the tenant to be enforced at the multiple cloud infrastructures.

4.2 Contributions

To address the aforementioned challenges, we have made the following contributions.

• First, we conduct a comparative analysis on the existing NFV orchestration frameworks,
especially the open-source ones, with an objective to analyzing (1) whether or not the
existing frameworks of NFV orchestration allow to specify, define and manage security
attributes in the entire lifecycle of the NFV services; (2) how the security attributes are
leveraged and formally specified and modeled as security policies that can be effectively
enforced.

• Second, We develop a security orchestrator, which consists of a TOSCA-parser and a
software-defined tenant-specific access control engine. The access control engine enables
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Figure 4.1: The mapping of security orchestrator in ETSI NFV MANO architectural framework

the access control model and policy to be dynamically generated for different tenant do-
mains, which may use virtual resources (e.g., VMs, VNFs) in different geographically
distributed data centers.

• Third, We develop a prototype and run a set of experiments in real-world platform and
evaluate its performance in terms of throughput, scalability, and adaptability. The exper-
imental results demonstrate that all the desirable properties can be achieved at a satisfac-
tory level regardless of the varying number of tenants, users, or objects that are deployed
in the cloud. More importantly, we demonstrate that the security administrators can en-
force tenant-specific and fine-grained access control to protect cloud infrastructure assets,
significantly improving multi-layer and multi-domain security protection, and achieving
security by design.

4.3 Related work

According to the ETSI reference model [73] (the left part of Fig. 4.1), the NFV architecture
is conceptually divided into three different layers: (1) NFV Infrastructure (NFVI) provides
fundamental computing resources in which network service can be executed; (2) VNFs layer
maintains a collection of network functions implemented in software; and (3) NFV MANO
is responsible for managing the full lifecylce of infrastructure resources, VNFs, and network
services.

As NFV MANO plays a significant role in NFV environment, many research efforts have
been paid to develop and implement NFV orchestration framework. As a result, many NFV
orchestration frameworks have become available, most of which are built according to the
ETSI NFV MANO specification [74]. Some existing frameworks have been developed by
the industrial sector like [48, 6], which are implemented as a non-model driven-based ap-
proach. Also, some are developed as open-source platforms, e.g., OpenMANO [223], Open-
Baton [168], ONAP [163]. In particular, OpenMANO aims to provide a practical implemen-
tation of management and orchestration based on ETSI standard. OpenBaton is focused on
the basic orchestration of NFVO and VNFM, enabling VNF deployment on the top of mul-
tiple cloud infrastructures, such as OpenStack [170] and Docker [61]. Also, ONAP (Open
Network Automation Platform) has been recently launched by combining two orchestration
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projects (open source ECOMP [9] and Open-O [56]) together to build a software platform for
delivering service automation and policy-driven orchestration. Specifically, ONAP architecture
contains several software subsystems that are part of two major architectural frameworks: (1)
design-time framework, which provides development environment for defining and describing
deployable assets; and (2) execution-time framework, which executes the rules and policies
defined within the design-time framework. It is worth noting that, although these aforemen-
tioned platforms have been implemented under open-source license and compliant with ETSI
NFV MANO specification, the current version of their data models are not fully developed in
a model-driven manner using TOSCA standard.

Our work is focused on the open-source NFV orchestration platforms, in which their data
models are defined based on model-driven structure using TOSCA standard. For instance,
Tacker [219], a TOSCA-based NFV orchestrator, has emerged as official OpenStack project to
build NFV orchestration software supporting both NFVO and VNFM. In VIM module, Tacker
uses Heat [104], a core part of OpenStack platforms, as a service orchestrator to deploy virtual
resources over OpenStack infrastructure. It also maintains all the related NFV workflows and
descriptors within the NFV catalog. These descriptors are defined according to TOSCA data
model, and used by NFVO and VNFM for network service and VNF execution. Cloudify is
another open-source TOSCA-based NFV orchestration framework [47], which aims at devel-
oping NFVO and VNFM to manage and orchestrate cloud infrastructure resources, VNFs, and
network services. In Cloudify, the service templates and all the related configuration files are
created based on TOSCA data model, called Blueprints, which are used for describing topol-
ogy, components, relationships, and deployment plan, thereby making it possible to manage
infrastructure as code.

After a careful study on the representative NFV orchestration frameworks, especially the
open-source ones based on TOSCA data model (e.g., Tacker, Cloudify), we observe that the
given data models are mainly used to describe service orchestration plans, resource allocation,
and basic lifecycle management of each network service. For example, it defines how the node
is deployed, how the link relationships between the nodes are created, and how the workload is
made up. The case study and comparative analysis of the NFV orchestrators indicate that,

1. The existing NFV orchestrators lack a dedicated module or component that can provide
holistic security management, and support dynamic and centralized security control with
high-level security policy specification. For example, Tacker itself does not have the ca-
pability of managing security mechanisms. Instead, it relies on the underlying Open-
Stack services such as Keystone [171] to manage its identity and authentication, and uses
Newtron [157] to maintain its security group. Also, Cloudify creates secure communica-
tion by simply using TLS/SSL, allowing the clients to validate the authenticity of Cloudify
Manager and ensuring that the data is sent in an encrypted mode.

2. Although the authors of [116, 7, 81] have already raised the security concerns in NFV
orchestration and proposed security orchestrator for managing security mechanisms in
the cloud-, IoT- and NFV-based architectures, the detailed data models and related use
cases were not sufficiently conducted. Also, a software-defined security orchestration was
proposed in [135], which aims at managing virtualized network security functions (e.g.,
virtual firewall). However, their data models are not defined in a model-driven approach
using TOSCA template.

3. To the best of our knowledge, TOSCA-based security model has not yet been formally de-
fined in the existing NFV orchestration platforms which use TOSCA data models. Mean-
while, security attributes of interest cannot be explicitly defined for each virtual compo-
nent (e.g., VM, VNF), and there is no such a formal way to leverage the defined security
attributes for achieving high-level security management.

84



Considering the potential widespread adoption of NFV in the clouds, the identified issues
would eventually lead to the complete loss of the control over the deployed resources and
NFV-based network services. It is therefore extremely significant and urgent to develop a
dedicated security orchestrator to improve the existing NFV orchestrators with flexible security
management, providing multi-layered security protection. In particular, we envision that such a
security orchestrator can dynamically manage and orchestrate different security functions (e.g.,
access control, data protection) in a holistic way, based on the particular needs of the tenants
and users. In the following section, we will showcase how a tenant-specific access control with
the proposed security orchestrator can be implemented in multi-cloud environment.

4.4 Design Motivation and Challenges

The previous discussion clearly indicate that the existing NFV orchestration frameworks mainly
focus on maintaining the basic operations of service orchestration, as well as the lifecycle man-
agement of underlying infrastructure resources, VNFs, and network services, while the capabil-
ity of providing holistic security management is limited. One interesting use case that motivates
us to develop a dedicated security orchestrator is network slicing in 5G – a novel NFV-based
approach to allowing network operators to provide dedicated virtual networks with function-
ality specific to the service or customer (called network slice) over a common shared network
infrastructure. Examples of resources to be partitioned or shared would be bandwidth on a
virtual network link, processing capacity of network elements (e.g., VMs, VNFs) and storages.
In such a scenario, multiple virtual networks or network slices are created and customized to
meet the particular needs of different applications, services, devices, customers or operators.
Within each slice, the resources are segmented and isolated into micro-segments (also called
tenant domain) for realizing different network functions. To securely manage the network,
each micro-segment needs to specify its own access control model and policies by taking into
account its particular role. Unfortunately, due to the lack of holistic and flexible security man-
agement capability, the typical NFV orchestrators are not able to do this. With the objectives
in mind, the following challenges need to be addressed in order to develop a dedicated security
orchestrator.

• Formally specifying security attributes of interest. As aforementioned, NFV MANO
plays a vital role in automatically deploying infrastructure resources (e.g., VMs) and dy-
namically initiating VNF instances. This module usually uses service model templates
like TOSCA to describe resource deployment and operational workflows for launching
network service instances. However, the typical model templates including TOSCA nei-
ther specifies fine-grained security attributes for each virtual component (e.g., VM, VNF)
nor defines service templates with coarse-grained security policies. It is therefore nec-
essary to formally extend the data models, ensuring that all the nodes presented in the
template are associated with certain security attributes, thereby allowing high-level access
control policies to be specified. It is worth noting, however, that such an extension should
not incur any conflict or inconsistency with the original service template.

• Multi-layer and multi-domain protection. As shown in Fig. 4.1, NFV architectural
framework contains three layers: NFVI, VNFs, and NFV MANO. The access to the as-
sets at all these three layers must be well controlled. From north-south perspective, the
implementation of one network service may rely on a pool of resources spanning from
NFV infrastructure, platform, and VNFs. From west-east perspective, the resources used
by a tenant can be distributed across different data centers and domains. Clearly, spotting
the most appropriate granularities to enforce access control policies is a challenging is-
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sue. Although this challenge also exists in the cloud environments, the extremely dynamic
nature of NFV makes it more difficult.

• Tenant-specific and on-demand specification of access control model and policies.
Cost-saving and flexibility make NFV a promising approach to implementing cloud-based
systems, which are usually across multiple data centers. The NFV resources and network
services (e.g., VMs, VNFs) deployed for one tenant may be different from those of other
tenants, resulting in the need that an access control model and the associated policies must
be specific to the individual tenant. Unfortunately, the existing access control models, such
as Mandatory Access Control (MAC) [120], Role-based Access Control (RBAC) [83, 204,
131], and Organization-based Access Control (ORBAC) [122], cannot meet such design
requirements. By leveraging NFV orchestrator, we propose a software-defined access
control paradigm which consists of an access control meta-model and policies, to achieve
tenant-specific access control. More importantly, such an access control paradigm allows
the customers to specify their own access control models and policies at the NFV service
deployment stage via TOSCA templates.

• Dynamic policy updates and fine-grained policy enforcement. In the cloud, as one
tenant can be created and removed on the fly, the corresponding access control model
and policies need to be dynamically specified. That says, the access control policies that
are initially generated from the extended TOSCA templates can be further dynamically
updated or modified in the execution time. The challenge arising here is that, first, the
security orchestrator must provide a friendly interface to re-specify and update access
control policies. Second, the access control paradigm needs to support all the related op-
erations, e.g., update, modify, insert, delete. In addition, the access control policies need
to be enforced at the appropriate PEPs (Policy Enforcement Points), e.g., NFV infras-
tructure, VNFs. To do that, the access control paradigm needs to allow the fine-grained
specification of policy rules. It is also necessary to have ”hook” built in the PEPs, so their
behavior can be controlled by the policy rules, e.g., which port of one VM can be opened,
which VMs are allowed to communicate between each other.

4.5 Security Orchestrator

This section reports the design of our security orchestrator in detail. First of all, we describe
the TOSCA data model and its extension for incorporating security attributes. We then present
the design architecture and major components of our security orchestrator.

4.5.1 TOSCA model and its extension

In the cloud, data model (service template) plays a vital role in improving service automation
during the process of installation, deployment, and management of cloud applications. Simi-
larly, TOSCA data model plays such a role in NFV management and orchestration. Generally,
a TOSCA file defines the building blocks of nodes and links (e.g., types, properties, operations)
that are used for constructing end-to-end network services. But the security attributes of each
VM/VNF are either missing or not being presented in a desirable way, making it hard to specify
access control policies. Therefore, we propose to extend the typical TOSCA data model with
the security attributes of interest. In the current extension, two basic types of service template
are mainly considered, while more service types can be incorporated in future extensions.

• VM description, which is used to deploy, configure, and manage the VM resources; and

• VNF description, which is used to initiate the VNF instances over the deployed VMs.
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Figure 4.2: An example of extended TOSCA template for VM description (the extended security attributes are in
bold)

Usually a TOSCA specification for VM covers the type (e.g., compute service (Nova), stor-
age (Swift), networking (Neutron)), capability (e.g., sizes of CPU, disk, and memory), and
properties (e.g., image, flavor). A set of security related attributes are then defined, including
security level, tenant domain, members, and security group, as shown in Fig. 4.2. They are
used to generate access control policies via security orchestrator. For example, referring to the
security level and a group of security policy defined in the VM description, the security orches-
trator can generate the access control rules specifying whether the request to access to some
particular resources are allowed or not. In the given example, VM1 (which has ‘low’ security
level) is not allowed to access VM2 (which has ‘medium’ security level). Also, the attributes
with respect to tenant domain allow the security orchestrator to identify in which tenant the
VMs are deployed, so as to generate corresponding access control rules.

Another TOSCA example is about VNF, as shown in Fig. 4.3. Specifically, ten different
types of VNFs are defined, and they are deployed and configured in different VMs. Also, each
VNF is defined with a set of security attributes and a group of security policy with respect to
tenant domain. In particular, five VNFs (from VNF1 to VNF5) are initiated in tenant1, while
another five (from VNF6 to VNF10) are initiated in tenant2. As such, the security orchestrator
will generate the access control rules that allow VNF2 to access to the resources of VNF1,
because (1) the two VNFs are in the same tenant security domain, and (2) the security level of
subject VNF2 (medium) is higher than that of object VNF1 (low).
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Figure 4.3: An example of extended TOSCA template for VNF description (the extended security attributes are in
bold)

4.5.2 Design architecture and major components

As aforementioned, the purpose of our security orchestrator is to improve the capability of
security management in NFV. Thus the security orchestrator is developed as an extension of the
NFV orchestrator, and needs to comply with the ETSI NFV MANO architectural framework (as
shown in Fig. 4.1). Specifically, its major operations include verifying and extracting security
attributes from TOSCA file, generating access control policies by an access control engine,
and finally enforcing the created policy rules at the appropriate enforcement points, e.g., VMs,
VNFs. The design architecture of our security orchestrator is illustrated in Fig. 4.4, and the
major functional components are described in the following.

• NFV orchestrator: which maintains the lifecycle management of infrastructure resources
and network services. It takes the standard TOSCA template as an input and constructs
application topology by allocating virtual resources, creating the corresponding data cen-
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Figure 4.4: Design architecture of security orchestrator

ter and network connection, spinning up the VMs, loading the appropriate VNF software
images, and finally connecting them together based on network forwarding graph for de-
livering end-to-end network services. As indicated in Fig. 4.4, the NFV orchestrator in-
teracts with Virtualized Infrastructure Manager (VIM) to allocate VMs, and interacts with
VNF Manager (VNFM) to instantiate the VNFs1.

• Security orchestrator: which works together with the NFV orchestrator to provide mon-
itoring, resource access control, and security policy enforcement to the deployed com-
ponents, e.g., VMs, VNFs. Specifically, it extracts the security attributes of each virtual
component from the extended TOSCA data model and creates the corresponding secu-
rity policies based on the tenant-specific access control model, and further enforces these
policies to control resource access at infrastructure and VNF layers, e.g., VMs, VNFs. In
particular, the security orchestrator is composed of two modules:

1. TOSCA-parser: which transforms high-level configuration (e.g., abstract flow, ser-
vice definition) that operators architect the networks into specific configuration pa-
rameters for initiating network services. Specifically, it firstly extracts the security
attributes of VM/VNF nodes from a given TOSCA file, then parses them to the ac-
cess control engine in order to generate access control policies based on the tenant-
specific access control model. Such a translation example is given in Section 4.5.1.
Meanwhile, the necessary information other than security attributes are input to the
NFV orchestrator.

2. Access control engine: which allows for specifying tenant-specific access control
model, and generating the corresponding access control policies by taking into ac-
count the security attributes extracted from the TOSCA file. More details about the
access control engine is given in section 4.6.

1For simplicity in explanation, VIM and VNFM have been implicitly hidden within the infrastructure and VNF layers, respectively.
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4.6 Access Control Engine

This section is devoted to presenting the central part of our security orchestrator, i.e., access
control engine. A design framework is firstly given, followed by the design principles.

4.6.1 Access control framework

Our security orchestrator employs an access control engine [173, 103] to specify high-level se-
curity policies, which are used to control the access to the resources of particular cloud tenants.
As illustrated in Fig. 4.5, the TOSCA-parser extracts security attributes of each VM/VNF from
the extended TOSCA file, and parses these parameters to access control engine for further gen-
erating access control rules. Specifically, the predefined security attributes of each VM/VNF
are assigned to subject and object according to attribute-based policy specification. Then the
requests are granted to access the resources if the attributes of subject and object match with
the rules defined in the access control policy. In particular, the access control framework can
be classified into three levels which are described as follows.

Figure 4.5: Design framework and operational workflow of access control engine

• Global level: which maintains two main components, Policy Administration Point (PAP)
and global-level security policy. The PAP provides security policy specification interface,
allowing security administrators to create, update, modify or reconfigure the global secu-
rity policies or the tenant-specific security policies at execution time. For example, when
security requirements are changed with respect to the security attributes of VM/VNF.
Meanwhile, the global-level security policy contains multiple access control models and
policies, each one is dedicated to one tenant domain. It holds a global view of all the
tenant information related to authorization policies and rules. Thus, the changes operated
on the global security policy must be distributed to all tenant-level security policies.

• Tenant level: there is a tenant-level security policy which contains a specific set of ac-
cess control policies and all the related information about the local resources usage of
one tenant. Each tenant has it own Policy Decision Point (PDP) which is considered as
the main decision point for access requests. Once the PDP receives the requests from
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its local PEPs (Policy Enforcement Points), it validates these requests based on informa-
tion gathering from the tenant-level security policy, and finally conclude the authorization
decisions.

• Enforcement level: each instantiated resource in the cloud infrastructure (e.g., VM, VNF),
embeds a dedicated PEP. The PEP is in charge of sending authorization requests to the
corresponding PDP and protecting the tenant’s resources by enforcing appropriated access
control rules based on the authorization decisions.

4.6.2 Tenant-specific access control paradigm

The access control engine provides a tenant-specific access control paradigm, which allows the
security administrators to dynamically customize the access control models (e.g., DAC, MAC,
RBAC [120]) and policies based on the specific tenant requirements in the cloud. To present
such a paradigm, two notations are given as follows.

• Entity: which refers to the users or cloud resources with respect to the cloud tenant, and
they can be represented as subject or object in the access control model. In any access
control model, subjects refer to the entities that can perform actions on the system, and
objects refer to the resources and network services to which access need to be controlled.
In the cloud environment, subjects can be automatically generated (e.g., VM and VNF
instances), which are possibly chained together for creating end-to-end network services.

• Attribute: which is considered as meta-data, representing entity specification such as prop-
erties, capabilities, and relationships. In particular, one entity can be assigned with several
types of attributes. Based on our contribution, the attributes here are those security-related
properties, such as security level, tenant domain, a group of security policy, and the type of
resources/services. We can denoteAttribute = Category×CatV alue; where Category
is a set of security-related properties (e.g., security-level), and CatV alue is a set of po-
tential values of each related category (e.g., security-level

[
low, medium, high

]
). These

attributes are eventually used to create the corresponding access control policy rules.

Our motivation to develop a tenant-specific access control paradigm is that, although many
access control models are currently available (e.g., DAC, MAC, RBAC [120]), they are funda-
mentally lack of flexibility on specifying different models and policies. For example, RBAC
can be applied to one tenant, but it cannot be used to multiple tenants which may be var-
ied in access control requirements. Therefore, we propose a software-defined access control
paradigm, which consists of an access control model (ACM) and its corresponding access
control policies (ACP), as illustrated in Table 4.1. Specifically, the ACM contains meta-data
(MD) and meta-rule (MR), to enable different tenants to arbitrary specify their own access
control models and policies based on the specific needs. The MD defines a schema to in-
stantiate an access control model and the MR defines a schema to create the rules. Then the
corresponding ACP is created based on a tenant-specific access control model. In particu-
lar, the ACP specifies a set of entities, i.e., subject, object, and action. For simplicity of use
here we called it as data (D). It then assigns the entity-data assignment values to each entity
(EDAss), which can further obtain from category value CatV alue. According to Table 4.1,
SubjectDataAss,ObjectDataAss,ActionDataAss are respectively represented the entity-
data assignment values of each subject, object, and action. Next, it identifies the perimeter (P)
in which a set of entities needs to be protected, and finally establishes the rules (R). Formally,
it takes subject, object, and action to evaluate an authorization decision (grant or deny). Thus,
the requests are granted to access the resources if attributes of subject and object match with
the created rules.
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Table 4.1: Basic sets and functions of access control model and policy

Definition:
Meta-data (MD): defines a schema to instantiate an access control model.
Meta-rule (MR): defines a schema to create the rules.
Data (D): contains a set of entities, i.e., subject, object, and action.
Entity-data assignment (EDAss): assigns entity-data assignment values to each entity
Perimeter (P): specifies a set of entities to be protected
Rule (R): establishes access control rules based on attributes, i.e., security-related properties of

subject, object, and action
Category: maintains a set of security-related properties, e.g., security-level
CatValue: defines a set of values of each category, e.g., security-level

[
low, medium, high

]
(1) Access control model (ACM) = (MD, MR)
•MD : {SubjectMD,ObjectMD,ActionMD}

where; SubjectMD,OjectMD,ActionMD ⊆ Category

•MR : {SubjectCategory ×ObjectCategory ×ActionCategory} → Instruction
where; SubjectCategory ⊆ SubjectMD

ObjectCategory ⊆ ObjectMD
ActionCategory ⊆ ActionMD
Instruction : {AuthzDecision}

(2) Access control policy (ACP) = (D, EDAss, P, R)
• D : {SubjectD,ObjectD,ActionD}

where; SubjectD ⊆ {SubjectMD}
ObjectD ⊆ {ObjectMD}
ActionD ⊆ {ActionMD}

• EDAss : {SubjectDataAss,ObjectDataAss,ActionDataAss}
where; SubjectDataAss ⊆ {SubjectD × CatV alue}

ObjectDataAss ⊆ {ObjectD × CatV alue}
ActionDataAss ⊆ {ActionD × CatV alue}

• P : {S,O,A}
where; S ⊆ {SubjectD}

O ⊆ {ObjectD}
A ⊆ {ActionD}

• R : {S×SubjectDataAss,O×ObjectDataAss,A×ActionDataAss} → {Instruction,
[
grant, deny

]
}

4.6.3 Use case

In this section, we develop a use case to illustrate the use of an extended TOSCA file to generate
tenant-specific access control policies using our proposed access control paradigm.

TOSCA-based policy specification. Referring to the TOSCA files shown in Fig. 4.2 and
Fig. 4.3, ten users and ten different types of VMs and VNFs, as well as two groups of security
policy are specified. The defined security attributes are then extracted and populated into the
parameters of our proposed access control paradigm, as shown in Table 4.2. In particular,
perimeter P is used to identify the scope of protection, isolating a set of entities from one
tenant to other tenants. For example, perimeter P1 contains the entities lying in tenant1, e.g.,
{VM1, VM2, ..., VM5}, {VNF1, VNF2, ..., VNF5}, and {user1, user2, ..., user5}. Similarly,
perimeter P2 contains the entities of tenant2, e.g., {VM6, VM7, ..., VM10}, {VNF6, VNF7, ...,
VNF10}, and {user6, user7, ..., user10}. A set of access control rules (Rt) are then created based
on these perimeters, security-related properties (i.e., security-level of subject and object), and
the entity-data assignment values (i.e.,

[
high, medium, low

]
). Regarding to the given example,

t = {1, 2} denoting as tenant1 and tenant2 respectively. As shown in Table 4.2, each rule set
contains multiple rules which can be represented in the form of Rt = {r1, r2, r3, ..., rn}; where
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Table 4.2: Use case: generating tenant-specific access control policies

Data (D):
SubjectD = {(user1, user2, ..., user10), (VM1, VM2, ..., VM10), (VNF1, VNF2, ..., VNF10) }
ObjectD = {(VM1, VM2, ..., VM10), (VNF1, VNF2, ..., VNF10)}
ActionD = {action-type, (vm-action, vnf-action)}

Entity-data assignment (EDAss):
SubjectDataAss = {(user1, high), (user2, medium), ..., (user10, low), (VM1, low), (VM2, medium),

..., (VM10, high), (VNF1, low), (VNF2, medium), ..., (VNF10, high)}
ObjectDataAss = {(VM1, low), (VM2, medium), ..., (VM10, high), (VNF1, low), (VNF2, medium), ...,

(VNF10, high)}
ActionDataAss = {(vm-action, access-vm), (vnf-action, access-vnf)}

Perimeter (P1): for tenant1
S1 = {user1, user2, ..., user5, VM1, VM2, ..., VM5, VNF1, VNF2, ..., VNF5}
O1 = {VM1, VM2, ..., VM5, VNF1, VNF2, ..., VNF5}
A1 = {(access-vm), (access-vnf)}

Rule set (R1): for tenant1
r1 = {(useri, high), (VMj ,

[
high, medium, low

]
), (access-vm)} → {(instruction, grant)}

r2 = {(useri, medium), (VMj ,
[
medium, low

]
), (access-vm)} → {(instruction, grant)}

r3 = {(useri, medium), (VNFj ,
[
medium, low

]
), (access-vnf)} → {(instruction, grant)}

r4 = {(useri, low), (VNFj , low), (access-vnf)} → {(instruction, grant)}
r5 = {(VMi, high), (VMj ,

[
high, medium, low

]
), (access-vm)} → {(instruction, grant)}

r6 = {(VMi, medium), (VMj ,
[
medium, low

]
), (access-vm)} → {(instruction, grant)}

r7 = {(VNFi, medium), (VNFj ,
[
medium, low

]
), (access-vnf)} → {(instruction, grant)}

r8 = {(VNFi, low), (VNFj , low), (access-vnf)} → {(instruction, grant)}

n indicates a number of rules. For all rn ⊆ Rt, the rules are created as;

{St×SubjectDataAss,Ot×ObjectDataAss,At×ActionDataAss} → {(instruction, grant)}.

The subject can be either users, VMs or VNF instances, and the object refers to the VMs
and VNFs to which access need to be controlled. For example, r1 = {(useri, high), (VMj ,[
high, medium, low

]
), (access-vm)} → {(instruction, grant)}. Thus the request is granted if

the security-level of subject (e.g., useri) is equivalent or higher than the security-level of object
(e.g., VMj), otherwise the access is denied. As shown in table 4.2, thanks to tenant-specific
access control paradigm, multi-layer and multi-domain protection can be achieved.

This use case clearly indicates that the requests to access the resources are granted if and
only if one of the created policy rules is matched. In another word, only legitimate requests
in the same perimeter (or the same tenant domain), where their entity-data assignment values
match with some given rules, are granted. Otherwise, the access will be denied.

Dynamic policy update. In addition to generating access control policies based on the
security attributes defined in the TOSCA data model, the tenants and security administrators
should be able to dynamically configure the access control models and update the access control
policies. Relying on the static configuration of security attributes in the extended TOSCA files
at the deployment phase may not achieve the objectives, as frequently modifying the TOSCA
files and load them into the orchestrator is not an effective solution. The access control engine
is therefore expected to integrate the advanced control features to allow the administrators to
dynamically update or reconfigure the security policies during their execution times.

In Fig. 4.5, two different access control models are specified, respectively containing a set
of access control policy rules to be enforced in the corresponding tenant domain. During the
management lifecycle of VMs and VNFs, a security administrator can update the policy rules
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through the PAP. For example, if the security administrators intend to change security require-
ments thereby: (1) adding a new entry in the global-level security policy to allow incoming SSH
connections (port 22) regardless of the tenant domains; and (2) modifying the existing rules in
the tenant-level security policy to allow specific incoming connections such as HTTP (port 80),
while rejecting the request that does not match the condition even though it is generated within
the same tenant domain (as shown in Table 4.3).

Table 4.3: An example of change requirement of security policy rule sets

Type Protocol Src IP Src Port Dest IP Dest Port Action
Global-level security policy SSH Any * Any 22 accept

Tenant-level security policy (Tenant1) TCP 10.0.0.* * 10.0.0.* 80 accept
Tenant-level security policy (Tenant2) TCP 10.0.1.* * 10.0.1.* 80 accept

Based on tenant-specific access control paradigm, these defined policies are assigned to
subject, object, and action, in order to create the access control policy rules. For example, the
rule w.r.t SSH connection is created as;

ri = {SubjectD, (ObjectD, (port, 22)), ActionD} → {(instruction, grant)};

in which SubjectD and ObjectD covers all the subjects and objects in the two tenant domains.
Such a rule will be enforced to all the tenants, so each tenant needs to update the new rule in its
tenant-level security policy. Similarly, the access control rules regarding to HTTP connection
are defined in the following way,

rj = {S, (O, (port, 80)), A} → {(instruction, grant)};

which means that only HTTP connection requests coming from the same tenant are granted.
This rule is enforced as tenant-level security policies for both tenant1 and tenant2.

4.7 Proof of Concept Validation

This section presents the implementation details of a prototype of our proposed security orches-
trator, demonstrating its operation, together with NFV orchestrator to extract security attributes
from TOSCA file, generate tenant-specific access control policies, and further enforce them to
the cloud infrastructure.

4.7.1 Prototype development and implementation

To develop our security orchestrator prototype, we choose Tacker [219], an official Openstack
project, as NFV orchestrator to manage infrastructure resources and maintain the lifecycle man-
agement of network services and VNF instances over the OpenStack infrastructure. Another
important reason for using Tacker is that it supports TOSCA files. For security orchestrator, we
integrate access control engine [173] to provide centralized security management, e.g., create,
update, and reconfigure tenant-specific security policies. Specifically, our security orchestrator
contains three functional modules briefly described below. The hardware specification is given
in Table 4.4.

• Client-interface: which is used to interact with access control engine via CLI. The com-
munication with Client-interface is done via Python subprocess module.

• TOSCA-parser: which is designed for two purposes. First, it extracts the description of
VM/VNF nodes, translates the security attributes defined in the extended TOSCA file, and
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Table 4.4: Hardware specification

Role Number of deployment Hardware specification
NFV orchestrator 1 Intel(R) Core(TM) i5, 2.40 GHz CPU, 8 GB RAM
Security orchestrator 1 Intel(R) Core(TM) i7, 2.50 GHz CPU, 16 GB RAM
OpenStack server for running
10 VMs and initiating 10 VNFs

1 Intel(R) Core(TM) i5, 2.40 GHz CPU, 8 GB RAM

parses these parameters to access control engine for generating security policies. Second,
it fills all information about the node-template part defined in the extended TOSCA file,
translates them into standard TOSCA form and input to the existing NFV orchestrator.

• Network hook: which works as Policy Enforcement Point (PEP). It is installed in each
VM/VNF, and sends authorization request to the access control engine. It is written in
Python and maintained the connections between subject and object. By default, it disables
all the accesses to the object by setting the rule in its iptables as iptables -A INPUT
-j DROP. It continues listening to the assigned port, and checks the permission based on
the source IP with access control engine when it receives the connection request. If the
request is authorized, this network hook inserts a temporary rule with specific source IP
in the iptables, e.g., iptables -I INPUT -s 10.0.0.116 -j Accept, so that
the subject whose IP address is 10.0.0.116 starts communication with the requested
object.

4.7.2 Feasibility studies

The operational flow of our security orchestrator is illustrated in Fig. 4.6. The current proto-
type implements a software-defined tenant-specific access control paradigm that was presented
in section 4.6. The figure shows that, once an access request is received at the object, the cor-
responding network hook sends an authorization request to the access control engine for vali-
dation. If the request is authorized, the network hook will add a new rule into its iptables
to allow this connection. During a predefined period of time, if the network hook does not
receive any request then the corresponding rule will be removed from its iptables, and the
connection between subject and object will be disconnected.

The testing result from implementation is presented in Fig. 4.7. As shown in the two telnet
consoles, VNF2 successfully establishes network connection with VNF1, as they are in the
same tenant domain, while the security level of VNF2 (medium) is higher than the security
level of VNF1 (low). In another word, the cross group request, e.g., the connection request
from VNF6 to VNF1, is totally denied. This well illustrates that the network connection can be
established only if the subject and object are matched with the access control rules defined in
the security policy.

4.8 Performance Evaluation

In this section, we reports the experiments on running our security orchestrator on a practical
testbed, with a purpose to evaluate its performance in terms of three primary metrics, i.e.,
throughput, scalability, and adaptability.

4.8.1 Experiment settings

As the core component of our current security orchestrator is tenant-specific access control
paradigm, we particularly carried out a set of experiments to evaluate the performance of the
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Figure 4.6: The operational flow of security orchestrator

Figure 4.7: The result of testing network connection with Telnet

access control engine. In particular, the experimental testbed set up for the experiment contains
three HA (High-Availability) OpenStack clusters, among which one serves as a master platform
and two run as slave platforms. As shown in Fig 4.8, each slave platform is equipped with 5
VMs. The hardware configuration is listed in Table 4.5, where one master platform and two
slave platforms were constructed using Dell R730 servers.

4.8.2 Results and analysis

As shown in Table 4.1, we used the meta-model to initiate different access control models
(ACM) and policies (ACP). For brevity, SMPolicy is used here to compactly represent the access
control model and its policies. We carried out the experiments on the established testbed and
averaged the experimental results from multiple trials or iterations. In the following, we report
our observations and findings in terms of three performance metrics that are essential to the
access control engine of our security orchestrator.
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Figure 4.8: The deployment of access control engine: one master and two slave nodes

Table 4.5: Hardware specifications for master and slave platforms

Node Number of deployment Hardware specification
Master platform 1 Intel E5-2680 (48 cores/ 256GB RAM)
Slave platform 2 Intel E5-2630 (36 cores/ 128GB RAM)

4.8.2.1 Throughput

One of the key metrics for evaluating the capability of access control engine is throughput
(transaction rate), namely the number of authorization requests per second that it can handle.

In the first experiment, we specified the SMPolicy as a basic Role Based Access Control
(RBAC) model, which has 10 users, 5 roles, and 10 objects. All those security attributes were
firstly defined in the extended TOSCA file at deployment time. We then gradually increased
the number of requests to observe the throughput of the access control engine. As shown in
Fig. 4.9, the throughput reached to the average rate 4.1 requests per second when the request
frequency was increased from 1 to 20 requests per second. It is worth noting that, thanks to the
micro-service architecture developed in the access control framework, one identical SMPolicy
container can be automatically launched when the number of request is beyond the throughput
of access control engine.

One of our hypotheses is that the throughput of access control engine could be potentially
impacted by RAM and CPU. Therefore, in the second experiment, we varied the RAM capacity
of the SMPolicy container and observed how the throughput of the access control engine could
be impacted. Same as the previous experiment, we configured one tenant, and set SMPolicy
as the basic RBAC with 10 users, 5 roles, and 10 objects, running with one CPU core. The
result is depicted in Fig. 4.10a, which clearly indicates that the throughput remains stable at 2
requests per second even though if the size of RAM is increased.

Similarly, we evaluated the impact of CPU on the throughput by changing the number of
cores. To conduct this experiment, we fixed the memory size as 4GB and used the same tenant
configuration. We continually increased the number of CPU cores used by the SMPolicy con-
tainer, and observed that the throughput always remained at 3 requests per second even when
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Figure 4.9: Throughput on handling the number of authorization requests

the number of CPU cores exceeds 2. The results are shown in Fig. 4.10b. The experiments
clearly demonstrated that RAM and CPU have slight impacts on the throughput of access con-
trol engine.

4.8.2.2 Scalability

Another important concern about our security orchestrator is that whether or not it can maintain
the satisfactory throughput with the increasing number of users and tenants. This can be viewed
as scalability, which has been tested with two experiments.

Scalability with the increasing number of users. As the previous experiments, we initially set
SMPolicy with the same configuration for one tenant (RBAC, 10 users, 5 roles, and 10 objects).
We then increased the number of users and observed the throughput (transaction rate). As
shown in Fig. 4.11a, the throughput remains stable as 5.9 requests per second when the number
of users is less than 50. It then dramatically decreased when the number of users exceeds 50.
The worst case is 0.5 requests per second when the number of users reaches to 1500. The main
cause of sharp decreasing is that we developed the access control framework as the micro-
service architecture which implemented through a set of containers. That’s means, a single
SMPolicy container is initially instantiated for handling the certain number of user requests.
One identical SMPolicy container can be automatically launched when the number of requests
go beyond the throughput of access control engine. However, our experimental result (as shown
in Fig. 4.11a) is specifically evaluated based on a single SMPolicy container.

Scalability with the increasing number of tenants. As aforementioned, one of the salient
features of our novel tenant-specific access control paradigm is that it allows to create and cus-
tomize the access control policies for the newly generated tenants on the fly. To evaluate the
throughput of access control engine with the varying number of tenants, we configured each
tenant with the same SMPolicy. Fig. 4.11b shows that the throughput of access control engine
varies from 5.7 requests per second (one tenant) to 4.5 requests per second (10 tenants), demon-
strating slight degradation. The main reason is that our access control engine is implemented
using the micro-service architecture, in which SMPolicy of each tenant run in the dedicated and
independent containers, enabling it to scale freely to support multi-tenancy environment.
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(a) Varying in size of RAM

(b) Varying in number of CPU cores

Figure 4.10: Average throughput with varying number of RAM and CPU cores

4.8.2.3 Adaptability

Our proposed access control meta-model decomposes a security policy into a set of compo-
nents, which can be updated and synchronized independently instead of being handled as a
whole. Thanks to this property, any update of global-level security policy (via a centralized
PDP) can be effectively and timely achieved in the tenant-level security policy (via local PDPs)
residing in different access control agents running in the distributed data centers. To evaluate
this property, we set up the experimental environment with one server acting as master node
and two servers running as slave nodes (as shown in Fig. 4.8), we then ran the experiments as
follows.

We firstly set up two SMPolicy containers, which reside in the master node and one slave
node respectively. We then modified the SMPolicy on the master node, and measured the du-
ration for the slave node to completely update its local SMPolicy and return to the maximum
throughput. The results are presented in Fig. 4.12, which shows that it took around 17 seconds
on average for the slave node to return to its maximum throughput.

We are also curious how many slave nodes at most that one master node can handle. To
answer this question, we had to measure the average latency that all the slave nodes can suc-
cessfully update their local SMPolicy from the master node. Specifically, we still configured a
tenant with the same SMPolicy which has 10 users, 5 roles, and 10 objects. We then gradually
increased the number of slaves. As shown in Fig. 4.13, the master node could support 10 slaves
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(a) Varying in number of users (from 10 to 1500)

(b) Varying in number of tenants (from 1 to 10)

Figure 4.11: Average throughput with the varying number of users and tenants

with very slight performance degradation, i.e., the average adaptation latency varies from 17
seconds (one slave) to 19.8 seconds (10 slaves). Note that these numbers of slave are good
enough to be considered when setting up a practical testbed. Because one slave node contains
a local PDP which provides the access control decision regarding to one data center, so that 10
slaves can be equivalent of managing the access control over 10 distributed data centers.

4.9 Conclusion and Future Work

Although it is clear that NFV MANO can enable network resources and services to be managed
and provided in agile, dynamic, scalable and adaptive ways, it remains unclear how it benefits
security management, ensuring that all the desirable security properties of network services can
be preserved in their entire lifecycles. In Chapter 2, we have proposed a conceptual framework
SecMANO, but there are still many challenges to be tackled to have it implemented in real
world. This Chapter is therefore devoted to implementing the idea exploring the feasibility and
effectiveness of leveraging NFV orchestrator to develop a security orchestrator – as an actual
implementation of SecMANO.

Our case studies on the existing NFV orchestration frameworks already showed that none
of them provide dedicated modules or components for security management purpose, but they
are open to be extended thanks to the structured data model like TOSCA (which has potential
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Figure 4.12: Time taken for the slave nodes to update SMPolicy from the master node

Figure 4.13: Adaptation period when the number of slave nodes is increased

to be widely used by today’s NFV orchestrators). Thus, we extended the TOSCA data model
to define security attributes of interest, which were then parsed to our security orchestrator to
generate the corresponding security policies. The core component of our security orchestrator
is a novel access control paradigm, which mainly contains an access control meta model that
can be used to specify different access control models like RBAC and their policies, according
to the needs of particular tenants.

For validation and evaluation purpose, we developed a prototype to demonstrate that the
network connections between the VMs/VNFs residing in different security domains can be
dynamically controlled. We then emulated three data centers and deployed our security orches-
trator in this testbed to test its performance in terms of throughput, scalability, and adaptabil-
ity. The experimental results indicated that creating on-demand, tenant-specific, and dynamic
access control policy in a fine-grained manner in the clouds became possible, thanks to our
software-defined access control engine. Interestingly, the throughput of our security orches-
trator has always maintained at a satisfactory level, despite the increasing number of tenants,
users, or objects that are deployed in the cloud.

However, the current version of security orchestrator only a particular access control model
RBAC was evaluated. In the future work, we will further study more access control models
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and their coexistence. We will also extend the capability of our security orchestrator to sup-
port other security functions, such as network isolation, data protection, IDS/IPS, to achieve a
holistic security management orchestration. Meanwhile, as the community of NFV and SDN
are very dynamic and keep evolving, we will keep eyes on the development of NFV MAMO
framework, so as to leverage and integrate the key functional blocks, such as monitoring, policy
engine, into our security orchestrator. From a long-run perspective, our security orchestration
is expected to accommodate various security functions simultaneously, dynamically and op-
timally configuring and deploying security services on demand, in accordance with the high-
level security policies. This will make significant progress towards software-defined security,
and policy-driven autonomic cyberdefense.
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5
Towards Secure and Dependable Service Function Chaining

(SFC)

Our threat taxonomy established in Chapter 3 clearly indicates that a large set of novel threats
will be introduced in NFV environment, among which the ones targeting at VNF layer are
particularly destructive. In particular, one of the promising advantages offered by NFV and
SDN is Service Function Chaining (SFC), which provides the network operators with the abil-
ity to integrates an ordered list of desired VNFs together for implementing a particular service
to suite their specific needs. Although NFV/SDN based SFC brings significant agility, adapt-
ability and flexibility, meanwhile reducing the hardware cost and operational complexity, its
security and dependability issues have not been sufficiently studied. One significant issue that
has been overlooked is the gap between high-level SFC specification and its enforcement at
data plane. Once the high-level SFC policy is specified, there is no way to ensure that the
VNFs are always chained in an expected manner, while the packet flows related to that service
chain are forwarded correctly to the VNFs of concern in a predefined order. An attacker can
manage to bypass or evade the security VNFs (e.g., firewall, virus scanner, DPI) and deviate
the packet flows from the pre-specified path. It is thus a significant need to have an efficient
self-checking mechanism in place, ensuring the SFC to be implemented in a secure and correct
way. As a result, this Chapter aims at developing a scheme based on an improved crypto primi-
tive, called lite identity-based ordered multisignature, which enforces all the VNFs in the same
service chain to sequentially sign the packets received. Then a verifier at the end of the chain
will verify the aggregate signatures, so as to validate the authenticity of VNFs, as well as their
orders in the chains.

5.1 Introduction

Service Function Chaining (SFC) [96, 148] (also known as VNF forwarding graph) refers to
the capability of defining a set of service functions (e.g., firewall, NAT, DPI), which are then
stitched together in the network to create a service chain. The SFC capability can be used
by network operators to set up arbitrary service chains from the instantiated VNFs to meet
their application-specific requirements, while allowing to use a single network connectivity to
chain many virtualized network functions as needed. Each service chain may serve specific
functionalities that different from other service chains. For example, in data center use case, a
service chain can be specified as SFCi : NAT→ firewall→ virus scan→ DPI, while video-
based application use case the service chain can be defined as SFCj : parental control →
firewall→ video optimizer (see Fig. 5.2 for more details). In practice, in order to steer traffic
flows through an ordered list of service functions, SFC can leverage the capabilities of SDN
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to obtain information gathering from network connection topology, service requirements, the
availability of resources, and the current network status to determine the best forwarding path.

In order to orchestrate the underlying NFV infrastructure resources, initiate a set of VNF
instances1, and stitch them together in a logical ordered-fashion to create a service chain, two
essential functional blocks must be put in place.

• First, NFV relies on orchestration module (a.k.a NFV MANO [74]), which plays a signif-
icant role in maintaining the full lifecycle management of network resources and services.
Its functionalities include: (1) management of virtualized resource availability/allocation;
(2) initiating, scaling or terminating the VNFs using the VNF on-boarding artifacts; (3)
on-board network service, i.e., register a network service in the catalog and ensure that
all templates describing the network service are on-boarded; (4) creating, updating and
deleting network servic and the VNF forwarding graph associated to the network service.

• Second, it leverages SDN controller module [70, 165] to provide the full network control
capabilities such as traffic steering and forwarding, routing decision based on the global
view of network status, and path provisioning between the instantiated VNFs. In partic-
ular, SDN is recognized as the complimentary technology to NFV, and it has been prac-
tically used as a part of SFC. Thanks to the SDN controller’s capabilities to dynamically
manage VNFs virtual connections and underlying data plane flows, the network operators
can reconstruct and update a particular service chain and steer the traffic in a flexible and
automated way.

Recently, there are several ongoing research efforts which attempt to address the unique and
unprecedented challenges imposed by SFC. However, we observe that consistency problem
in SFC is one of the major concerns and remains comparatively overlooked by the research
community. The challenge arising here is that once the high-level SFC policy is specified,
how we can make sure that it is correctly translated into the network flow classification with
accurate packet forwarding rules, or how to ensure and prove that the packet flows associated
to a particular service chain are traversed correctly to appropriate and legitimate VNFs with
respect to the predefined policy, achieving both security (e.g., authenticity, integrity of VNFs)
and dependability (ordering property) of the service chain in NFV environment. Anomalous
flow redirection and path deviation [205, 247] are good examples of attack model that can be
used by the attackers to deviate the original service function path. Their objective is to bypass
or evade from security functions in the service chain, ultimately leading to the violation of SFC
policy. In other words, to achieve the goal, they can either launch rule modification attack [247,
132, 35] against victim switches at SDN data plane or topology tampering attack [105, 59, 214]
at SDN control plane.

• Considering the data plane, assume that if the SFC policy defined the packet flows must
go through a firewall, and if the attackers have successfully performed rule modification
attack [247, 132, 35] on the victim switch to subvert or modify the original rules installed
by the SDN controller. Thus, all packets belonging to this flow will bypass or evade from
the firewall (i.e., security function in a service chain). Note that the use of SDN by itself
provides no means to detect path forwarding anomalies. In fact, the controller only installs
a set of forwarding rules on the data plane switches, but it cannot ensure that whether the
installed rules are correctly enforced with the benign forwarding behaviors.

• At the control plane, the attackers may launch topology tampering attack [105, 59, 214]
to poison the controller’s view of the network topology information, and deceive the con-
troller to trust a spoofed topology. To do that, they may perform DDoS attack on the victim

1In the paper, VNFs and service functions (SF) are two interchangeable word. The VNF’s terminology is defined by ETSI, while service
functions specified by IETF.
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host/virtual machine/VNF to make it unavailable and try to impersonate this victim node
claiming that it has already migrated and moved to the new location. This situation creates
a new update/change in the network connectivity, and causes a mismatched location in-
formation between the Host Profile2 and Packet-In message received from the data plane
switch. As a result, the controller assumes that the host has moved to a new location, it
then updates the location information inside the corresponding Host Profile. Ultimately
leading to the false in flow rule installation over the switches, and resulting in deviating
the traffic flow from victim’s actual location to the attacker’s location. However, such
update mechanism is vulnerable due to the ignorance of host authenticity.

Since SFC is still in its early stage, from security point of view, it is significant and urgent to
develop a new security primitive to achieve both security (i.e., authenticity, integrity of VNFs)
and dependability (i.e.ordering property), in addition to optimality, of the service chain.

5.2 Related Work

SFC is not an entirely new concept but is has become an active research domain since the emer-
gence of NFV and SDN. Although the concept of ”service function chain” has been proposed
long time ago, it is very difficult to be implemented due to the limitations of traditional net-
work. Thanks to the promising benefits of NFV and SDN, SFC finds its interesting use case,
and becomes an active research direction. Nevertheless, the initial concept of SFC was raised
by IETF SFC working group to develop its architecture and define how network flow classi-
fication can be used to route traffic between service functions [96]. However, this traditional
model does not explicitly commit to support SDN and NFV [69]. As a result, ETSI NFV work-
ing group has been motivated to integrate this SFC functionalities (as defined by IETF) into
ETSI NFV architectural framework [69], and give a new terminology called VNF forwarding
graph (VNFFG)3. Nowadays, there are several ongoing research works attempting to address
the unique and unprecedented challenges imposed by SFC. Some of them are focused on im-
plementation aspects (e.g., [186, 249, 50, 148, 232, 54]), while others focus on optimization
theory, models and provable analysis of algorithms to achieve an optimal deployment of SFC
(e.g., [12, 137, 63, 208, 90, 91, 147, 108, 14]). Nevertheless, there are very few studies ded-
icated towards security and dependability concerns related to SFC. The closely related work
falls into two general categories,

1. Static verification: There are only a few proposals targeting static based verification,
some examples are [86, 228, 251]. Overall objective is to provide a static verification
mechanism for checking the correctness of forwarding behaviors in SFC. ChainGuard [86]
makes use of SFC-related rules that are stored within the flow tables of virtual switches
to gather the actual SFC Overlay and Traffic Steering (SOTS) snapshot and model it as
property-based graphs. These graphs are then used to examine whether the actual SOTS
is conformed to the required SFC specification. SFC-Checker [228], which contains a
Stateful Forwarding Graph (SFG) representing how packets are forwarded, how the states
of service function are changed, and how the state changes affect the forwarding path.
Next, a graph traversal algorithm is applied to identify the paths that satisfy the queries
(e.g., under what scenarios, can all A’s packets reach B?), and aided network operators in
their SFC diagnosis. A Quantitive Forwarding Graph (QFG) has been proposed in [251],

2 Inside the SDN controller, the Host Profile is maintained to track the location of a host.
3 Indeed, VNFFG and SFC provide the same definition. It describes the order of VNFs in a service chain. The single VNFFG contains

one or more Network Forwarding Paths (NFPs). In the SFC terminology, the VNFFG is considered as the SFC, VNFs are equivalent to SFs,
NFPs are SFPs, policies defined by network service provider are the rules used for the SFC classifier, and Virtual Links (VLs) are implemented
by one or various SF Forwarders.
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which built on top of exiting work on the SFG [228] to extend the capability of SLA
verification, i.e., whether the network in a given configuration can deliver the performance
within the SLA bounds.

After a careful study on their approaches, we observed that they introduce two major
drawbacks. First, it is a static verification. The verification has been examined based on
the forwarding graph that indeed generated according to the network information such as
topology, flow tables, service states, etc.. According to this approach, it incurs a large
number of overhead hence a verifier must periodically pull the underlying information
from the data plane devices (e.g., the flow tables from the virtual switches), and regularly
regenerate the forwarding graph when a change occurs. Second, it is not trivial to extract
the right information from a large number of flow tables entries which are relevant for
SFC verification. However, the aforementioned works do not provide a clear explanation
how the relevant parts of SFC verification are gathered and transferred into the verification
model.

2. Active verification: SFC Path Tracer [65] is a tool for troubleshooting SFC. Initially,
the controller artificially injects probe packet in the chain input to generate the trace.
The probe packet is flagged by Explicit Congestion Notification (ECN) field in the IP
header [195] with two bits. Once the probe packet traverses the network elements in
the target chain (i.e., when it leaves a forwarder switch to its next hop), it is mirrored
by the trace tool to discover which forwarder handled the packet. SDNsec [205] and
REV [247] are other two active verification mechanisms, in which each switch along
the forwarding path computes a Message Authentication Code (MAC) and attaches as a
tag to each packet. In SDNsec, MAC is computed with the shared key sharing between
the controller and the corresponding switches on the path. The controller can instruct
any switches to provide feedback/information and thus inspect the path that was taken
through analyzing the tag. Similarly to SDNsec, the REV relies on the same idea of
using a symmetric key to compute MAC. At the end, a destination switch leverages a
public/private key to generate signature, attaches its with a verification report and sends
back to the controller for further examination. One problem of REV is that it comes
at the cost of complicated key management and has a high packet overhead, because
it implemented based on RSA primitive. Although SDNsec is attempted to reduce the
key management cost thereby lightening security property to use only symmetric key for
MAC computation (i.e., 128-bits AES), it still incurs engineering complexity to modify
and eventually add specific forwarding information (such as forwarding entry field, path
validation field, egress switch ID, flow ID, etc.) into the packet header fields. The same
complexity issue also occurs in SFC Path Tracer, hence it required to set ECN bits in the
IP header to trigger OpenFlow rules and installed the related trace rules in switch tables,
such instructing the switches to copy those mirrored packets to the trace tool. It is worth
nothing that, this approach generates heavy traffic overhead between the controller and
switches.

5.3 Background and Challenges

In this Section, we firstly explain the background of SFC, its relationships with SDN and NFV
MANO functional block in ETSI NFV architectural framework, highlight some opportunities
offered by SFC, and then identify the potential challenges.
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5.3.1 SFC working principles

5.3.1.1 Architectural description

The implement of SFC involves several steps, from defining high-level network service de-
scription to resource allocation, VNF instantiation and placement, to VNF selection, SFC com-
position, traffic steering and forwarding. For a better understanding about SFC architecture
and its relationship with SDN and NFV, we start with explaining the architecture model from
high-level business description to low-level service deployment.

As presented in Fig. 5.1, the network operators specify high-level description about network
service, such as application topology, network policy, and SFC policy, which instruct the traffic
flows of a particular user or tenant to go through an appropriate set of ordered service functions
from a given source to destination. Nowadays, different data modeling languages have been
used to describe the deployment and operational behavior requirement towards constructing
an end-to-end network service (a.k.a, a service chain). Some are de-facto standards and well-
known, while others are developed from scratch. The most notable language and widely used
in today’s NFV orchestration is TOSCA (Topology and Orchestration Specification for Cloud
Application) language [227]. It is introduced as a standard approach to defining NFV specific
data models and deployment templates which contain necessary information used by the NFV
orchestrator for life cycle management of network services. In a nutshell, the TOSCA-based
service descriptions have been shared by several components in NFV architecture. NFV or-
chestrator parses the information related to VNF descriptions to Virtualized Network Function
Manager (VNFM) for instantiating specific VNF instances (e.g., virus scan, firewall, DPI), and
the corresponding information to VIM for allocating NFVI resources (e.g., compute, storage,
and network). The SDN controller is used to receive all necessary instructions from the VIM,
managed the underlying networks and configured the flow rules. The main functionalities in-
clude: (1) managing a data-plane elements including classifier, Service Function Forwarder
(SFF), VNFs, and proxy devices; (2) providing the SFC data path programmability, and (3)
instructing flow rules to the classifier, SFF and proxy devices to direct the flows to VNFs based
on the specified SFC request.

Specifically, classifier4 acts as entry and exit points for SFC-based traffic steering. It per-
forms packet classification, provides SFC encapsulation, and directs the matched traffic to ap-
propriate service function paths. To encapsulate the packets, it adds SFC-header which contains
Service Path Identifier (SPI) and Service Index (SI) to each packet. Specifically, the SPI repre-
sents the service path for a particular SFC and identifies the ordering (position) of VNFs that
must be performed, while SI is used to determine the next VNF to be traversed [188]. Once the
packet reaches the SFF, it removes the outer encapsulation and trigger a lookup based on SPI
and SI to identify the outgoing encapsulation. For example, the packets are either forwarded to
SFFs or VNFs. Meanwhile, VNF is responsible for specific treatment of the received packets. It
can be either NSH-aware (Network Service Header) or NSH-unaware VNFs. In case of NSH-
unaware VNF, an additional proxy function is added and interfaced with this NSH-unaware
VNF, with the objective to perform SFC-deencapsulation before forwarding the packet to the
NSH-unaware VNFs. Then it performs SFC-reencapsulation before sending the packet to the
SFF. For simplicity of use, we assume that those deployed VNF instances are NSH-aware.

5.3.1.2 Salient features and major advantages

In the following, we briefly highlight the major advantages introduced by SFC.

4 In SFC-enabled domain, classifier can be classified into two types: ingress classifier (or SFC ingress node) and egress classifier (or SFC
egress node). Both ingress and egress classifiers denote as the SFC boundary nodes. The ingress node aims at handling traffic entering the
SFC-enabled domain, which responsible for performing the SFC-encapsulation to the packet. While, the egress node handles traffic leaving
the SFC-enabled domain. It is required to remove any information specific to SFC domain (a.k.a, SFC-deencapsulation).
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Figure 5.1: Intra-domain orchestrated architecture with the corresponding SFC workflow from high-level business
specification to actual SFC deployment enabled by NFV and SDN

Figure 5.2: Motivating examples of SFCs

• On-demand VNF chaining. With the quickly growing demand for cloud services and
the numerous business-specific requirements, different service providers tend to have the
capabilities of customizing their own network services to meet the particular needs of
users and tenants. In traditional networking model, it appears technical difficulties for
network operators to create such a service chain of composing different types of VNFs.
Also, it is hard to steer the traffic flows to go through the sequences of designated service
functions at a granularity level. For example, the traffic flows coming from the different
subscribers may enforce by specific service chains (e.g., video streaming, security control,
or monitoring purposes) which depend on their behaviors and characteristics. Thanks to
NFV and SDN, network operators can arbitrary create different service chains to meet user
specific requirements. For example, to provide security control, the network operators can
customize a service chain as SFCx: firewall→ virus scan→ DPI. Similarly, to improve
the performance of website, they can define the service chain as SFCy: web proxy →
load balancing, and so on.
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• Simplified SFC provisioning. In the past, building a service chain of composing differ-
ent service functions to meet user specific needs tend to be a complex task, non-trivial
administrative burden, error prone and time consuming effort. Due to the fact that net-
work elements are developed based on specialized hardware devices, each of them had
to be individually configured with its own command syntax. They are linked together
by a complex and rigid set of configuration to create a service chain as well as a ser-
vice function path. Thus, the result of static chain configuration cannot flexibly cope
with dynamic changes in user requirements, and rapid service migration and provision-
ing in the clouds. For example, dynamic insertion of new service functions, scaling out
the number of services for load balancing. However, this limitation can be overcome by
leveraging NFV/SDN. As a matter of fact, the benefits of SFC brings more flexible and
elastic solutions, while providing network operators the capability to customize their own
software-based service chain on the fly with no longer requiring specialized hardwares
and manual intervention to configure the network.

• Resource sharing across multiple service chains. As aforementioned, with the complex
configuration, physical hardware constraints and vendor specific properties, the network
operators are lock-in with the management capabilities in providing efficient SFC de-
ployment. For example, suppose vendor X is better at serving application layer firewall
(firewall-L7), but vendor Y is doing good for network layer firewall (firewall-L3-L4).
Due to the proprietary nature of service components, un-unified standard or even phys-
ical constraints, this may force network operators to pick only one hardware appliance.
In contrast, with the NFV/SDN-based SFC capabilities, vendor locked-in problem can
be tackled. We can avoid the undesirable situation of choosing from one vendor. Hence
the service functions are virtualized running in a virtual machine as a VNF instance, so
that network operators can quickly instantiate various service functions and dynamically
insert them into a specific SFC to meet their particular needs, i.e., security, load balanc-
ing, or QoS/flow control purposes. Another benefit is that a common and widely used
service functions such as firewall, DPI, etc., can be shared and leveraged by multiple ser-
vice chains. The motivating examples are given in Fig. 5.2, in which a particular SFC
is applied based on different traffic flows depending on the source, destination or type of
traffic. In addition, the common and the most widely used service functions can be shared
between them.

5.3.2 Challenges

Although SFC brings significant advantages to service providers and network operators (as
aforementioned), it is currently still a concept-level technology and many challenges need to
be tackled before moving towards practical and commercial uses. Below we intend to articulate
some security challenges associated with SFCs.

• Reliable and consistent VNF chaining: The ability to build a complex or a specific ser-
vice chain by composing several types of service functions and stitching them together
in the network is one of the key features offered by SFC. However, a newly proposed
NFV/SDN-enabled SFC can be vulnerable to new pitfalls which can be exploited by the
attackers. For example, they may target individual SFF using rule modification attack to
tamper the flow rules [247, 132, 35]. As a result, packets can deviate from their orig-
inal service function path, ultimately violating original SFC policies. The main reason
that make this issue very important, considering to the fact that if a rule has already been
defined traffic flow to go through some specific service functions. Let’s say it must respec-
tively pass through firewall and intrusion detection services. Imagine that if the attacker
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can modify/delete this rule, thus all packet belonging to this flow will bypass or evade
from these specified security functions without being detected. However, our study re-
veals that there is a great challenge to examine the actual SFC deployment at the data
plane whether it is secure, reliable and consistent chaining with a specified set of VNFs
and truly conformed to the predefined SFC policy. While, the packet associated to that
service chain is absolutely traversed to all intended service functions.

• Ordering property preservation. In particular, end-to-end application traffic flows are
often required to traverse various VNF instances in a sequence manner as specified in
SFC policy. For example, a user flow accessing an application server at a remote site may
need to go through (1) WAN optimizer to accelerate application delivery, (2) firewall and
DPI for security control, (3) load balancing to maximize speed and ensuring optimum
utilization of available resources, and (4) a VPN server before reaching the application
server. One of the key observations is that these VNF instances involved in a particular
service chain have been deployed independently. Each VNF is responsible for specific
treatment of received packets, and totally unrelated to other service functions [189]. That
says, V NF1, V NF2, ..., V NFn are unrelated, and there is no notion or representation at
service layer that V NF1 should occur before V NF2, and so on. Although many service
functions in a service chain are clearly defined in a strict order, the challenge arising here
is that network operators have no consistent way on how to verify or validate the ordering
property of VNFs in their actual SFC deployment. For example, whether they have been
chained correctly in a sequence manner. Out-of-order traversal attack [247, 125] is a
good example of attack that can substantially disrupt the ordering (position) of VNFs in
the service chain, ultimately resulting in undependability and inconsistency. To do that,
attacker may deviate traffic flow to not traverse on the intended forwarding path with the
right order. Clearly, assume that a SFC policy has been defined a particular flow to go
through firewall and later encryption. If the attacker can modify the rules by deviating
the flow to firstly pass through encryption before firewall. This makes the hidden threats
in the encrypted traffic can be evaded and incapable of detecting by the firewall. So far,
our study reveals that the verification mechanism for examining the correct sequence of
service functions (or correct packet traversal) in a service chain has not been extensively
studied.

• VNF authenticity. Verifying the authenticity of service functions has not yet been ad-
dressed in much detail so far, especially in the context of SFC. One of the great challenges
is that the network operators may not even notice and having the right to examine whether
a set of VNFs involved in their service chains is compromised, or whether there exist any
malicious service function instances. An example attack scenario is that the adversaries
may launch topology tampering hijacking attack [105, 59] or DDoS attack [214] in order
to make the legitimate VNFs unavailable and then try to impersonate these victim nodes
thereby receiving and responding the packets destined to them. This situation leads to the
network nodes including controller and other VNF instances could be communicated and
synchronized with the adversary instead of the legitimate ones. As a result, without suffi-
cient knowledge and adequate authenticity protection, this can potentially break down the
integrity of individual service function towards impacting the reliability, consistency and
dependability of the whole service chain.

5.3.3 Contributions

To tackle the above challenges, we have made the following contributions in this Chapter,
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Figure 5.3: Illustration of rule installation in SFF and its attack model

• We propose a new security primitive, called Lite identity-based ordered multisignature
which provides efficient verification mechanism to examine the behavior of packet traver-
sal and verify whether all the packet flows associated with a particular service chain have
been handled correctly as specified in SFC policy.

• We give security analysis on our scheme and demonstrate that it preserves five properties
simultaneously, (1) Unforgeability, which is computationally infeasible for any adversary
to produce an aggregate forgery implicating honest identities; (2) Authenticity, ensures
that only honest VNFs can produce a valid signature; (3) Re-order protection, it is not
possible to re-oder the positions of honest VNF involved in a service chain; (4) Constant-
sizes in keys and aggregate signature; and (5) Signature and verification acceleration using
three-pairing computations in bilinear maps. We provide sound theoretical proof and
show that the scheme can prevent many attacks like anomalous flow redirection and path
deviation.

• A real-world platform and experimental testbed is established for implementing our scheme
and examine its feasibility in real-life settings. The implementation codes will be shared
with the NSH community and contribute to its further development. We then develop
a prototype of our scheme and evaluate the performance of Lite identity-based ordered
multisignature.

5.4 Problem Statement

As aforementioned, SFC provides the ability to define an ordered list of network functions (e.g.,
firewall→ virus scan→ DPI), creates the desired service chain, and steers traffic flows through
the predefined service function path. Although SFC offers significant benefits, it inevitably
comes together with the new threat vectors, i.e., reliability and consistency problems, which
have not been extensively addressed. Therefore, this section aims at describing system model,
identifying the threat models and finally highlighting our key ideas to address these threats.
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Figure 5.4: Forms of anomalous flow redirection and path deviation

5.4.1 System model

For concreteness, we give more attention to the underlying data plane operations for setting up
traffic steering and constructing service function paths. Typically, in each intra-domain orches-
trated architecture, there is a centralized controller which manages and controls a set of data-
plane elements (e.g., classifier, SFFS). Network operators can either specify high-level SFC
policies using Network Service Descriptor (NSD)5, or directly interact with SDN controller
through the provided SFC API. The controller translates SFC policies into a specific service
function path, adjusts the path based on VNF status and overlay links, installs and governs a
set of forwarding rules on the data-plane elements accordingly.

To steer the traffic flows, the data-plane elements like SFF utilizes the flow rules installed
in its flow tables to determine the network forwarding path and decide which action needs to
be performed. In particular, the flow rules consist of two parts: (1) match fields which filters
packet headers; and (2) instructions indicating what actions need to be taken when the matched
packets are found, e.g., drop packet, forwarding to the port. Upon arrival of new packet, SFF
checks if the packet matches any existing flow rules. If so, it processes the packet based on the
matching rule with the highest priority. Otherwise, the SFF sends a Packet-In message to the
controller to ask for proper actions. The controller decides on the route of packet and sends
the corresponding rules to the SFF through a standard control channel like OpenFlow [164].
This event is known as Flow-Mod messages. Fig. 5.3 illustrates an example where a routing
action is taken once a matched packet with destination Y (e.g., Apache web server) and source
X (e.g., client) arrived at SFF1.

5.4.2 Threat model

This Section presents several important threat models that potentially lead to anomalous flow
redirection or path deviation. Specifically, those attack models can compromise both security
(e.g., authenticity, integrity of VNFs) and dependability (e.g., ordering property of the service
chain) of SFC.

5According to ETSI NFV document [71], NFV orchestrator uses NSD (which is a deployment template) to represent high-level logical
network construction. In particular, NSD consists of information used by NFV orchestrator for lifecycle management of a network service
including defining the service chain, deploying VNF instances, creating virtual links and service function path accordingly.
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The basic idea of anomalous flow redirection and path deviation is to deviate the packet
flows from their intended forwarding paths that may violate SFC policies. We generally con-
sider two families of attacks,

• Rule modification attack [247, 132, 35], which target at the victim SFFs in order to de-
viate the original service function path. Once it succeeds, they can further manipulate or
modify the SFF’s resident flow rules to enforce anomalous packet redirection. Specifi-
cally, it can be further classified into three different forms (as shown in Fig. 5.4):

– Bypass elements, in which one or more VNF appliances on the intended service func-
tion path have actually been bypassed or skipped;

– Path detour, the path deviates from the original path but later the packets will return
to the correct next-hop downstream VNFs; and

– Out-of-order traversal, an adversary deviates the intended service function path to
not traverse in the right order as specified in the SFC requirement.

To achieve these goals, adversaries can compromise the SFF by exploiting vulnerabilities
to SFF’s OS and install backdoor applications on it for allowing them to arbitrary perform
malicious operations such as install, delete, or modify the flow tables. As exemplified in
Fig. 5.3, they may modify output port of forwarding rule installed at the flow table of the
compromised SFF1 in order to evade from security functions (such as firewall and DPI)
involved in a particular service chain.

• Topology tampering attack [105, 59, 214], in which attackers intend to spoof the con-
troller’s view of the network topology, and deceive it to believe in a spurious topology.
This causes the false in flow rule installation over the SFFs, resulting in redirecting the
traffic flow from victim’s actual location to the attacker’s location. As inside the con-
troller, a global view of network topology including hosts/virtual machines/VNFs, SFFs,
and the details of link connections have been maintained by the Host Tracking Service
(HTS) and the Link Discovery Service (LDS) respectively. The controller reactively lis-
tens to Packet-In messages coming from SFFs to maintain the Host Profile. In this attack
scenario, we assume the attacker can launch host location hijacking to corrupt HTS mod-
ule by spoofing the victim’s address information (e.g., VNF’s IP address). This leads to
the mismatched result of location information between the existing Host Profile and the
information received from incoming Packet-In messages. According to this event, the
HTS makes an assumption that the host has been migrated and moved to a new location
(it is, however, not true), and sequentially updates the new location information inside
the corresponding Host Profile. This attack is due to the ignorance of host authenticity
checks.

In addition, we assume the controller itself is trustworthy (which required for the correct
functioning of the network) and the transmission of message via control channel can be prop-
erly protected using SSL/TLS. However, the inverse message transmission from SFFs to the
controller is untrusted and could be forged by malicious SFFs.

5.5 Proposed Solution

To achieve secure, consistent and dependable SFC against anomalous flow redirection and path
deviation, we propose a new security primitive, namely Lite identity-based ordered multisig-
nature scheme. The objective is to enforce each VNF involved in a service chain to attest its
signature on the packet received, so that a verifier can verify whether the service chain has met
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certain criteria, i.e., VNF chaining/composition, ordering and authenticity properties, by vali-
dating the received signature. Specifically, our proposed scheme is motivated and derived from
a combination of two signature schemes (ordered multisignatures and identity-based sequential
aggregate signatures) proposed in [22]. Therefore, we begin the section by describing the basic
ideas of these two schemes, followed by deficiencies analysis in terms of signature construction
and verification. Finally, we highlight how our proposed scheme of Lite identity-based ordered
multisignature can deal with these deficiencies.

5.5.1 Preliminaries

As aforementioned, Lite identity-based ordered multisignatures scheme is underpinned and
motivated by two key principles: (1) Ordered multisignatures which allow signers i.e., VNF
appliances, to attest their aggregated signatures in which they signed (along the service function
path) by respecting the ordering of signers; (2) Identity-based sequential aggregate signatures,
instead of relying on a public-key primitive, i.e., RSA cryptosystem, each signer can use an
arbitrary string (e.g., an IP address) to act as a user’s public key and thus verifying signature
needs only knowledge of a sender’s identity, without requiring knowledge of traditional public
keys. As a result, the setup and storage overhead of obtaining and storing these public keys can
be reduced.

To have a better understanding, Algorithm 1 describes step-by-step procedure of creating
ordered multisignatures. It typically relies on four algorithms.

• Global parameter generation (OP): that outputs some global information I for the scheme.
This algorithm can be run by a trusted third party or standard bodies.

• Key generation (KeyGen): run by a user on the inputs I , the algorithm returns a public-
secret key-pair (pk, sk).

• Signing (Sign): the algorithm first asks for help from verification algorithm Vf(m,σi, Li)
to verify the consistency of an aggregate signature received from the previous participants.
If it is valid, then it takes inputs (ski,m, σi, Li) and returns a new aggregate signature
σi′ . Here, ski is a valid secret key, m ∈ {0, 1}∗ is a message, σi indicates an aggre-
gate signature obtained from the previous participants, and Li = (pk1, ..., pki) is a list of
corresponding public keys.

• Verification (Vf): which takes as input a tuple (m,σj, Lj), and returns a bit 1 if the con-
sistency of aggregate signature is retained, otherwise returns 0.

Algorithm 1 Ordered multisignatures algorithm

1: I
$← OP . $ means uniformly selected at random

2: (pk1, sk1), ..., (pkn, skn)
$← KeyGen(I)

3: σ0, L0 ← ε . ε indicates empty string
4: for i = 1, ..., n do
5: σi

$← Sign(ski,m, σi−1, Li−1)
6: Li ← (pk1, ..., pki)
7: end for

Algorithm 2 is more closely related to identity-based sequential aggregate signatures scheme.
Particularly, it has been designed with the purpose to reduce setup and storage overhead occur
in the above ordered multisignature scheme with associated to distributing public keys and
corresponding certificates, and having participants to store the keys indefinitely. Similar to
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the above algorithm, identity-based sequential aggregate signatures scheme contains four algo-
rithms. There are a few differences on key derivation and signing processes as discussed in the
following.

Algorithm 2 Identity-based sequential aggregate signatures algorithm

1: (mpk,msk)
$← Setup

2: for i = 1, ..., n do
3: skidi

$← KeyDer(msk, idi)
4: end for
5: σ0, L0 ← ε
6: for i = 1, ..., n do
7: σi

$← Sign(skidi ,mi, σi−1, Li−1)
8: Li ← ((id1,m1), ..., (idi,mi))
9: end for

• Setup algorithm (Setup): initially runs by the trusted Private Key Generator (PKG) to
generate its master public key (mpk) and the corresponding master secret key (msk).

• User’s secret key derivation (KeyDer): run by the PKG on inputs (msk, id), the algorithm
generates the corresponding user’s secret key skid for any user identity id ∈ {0, 1}∗.

• Signing algorithm (Sign): before signing, the algorithm first checks the consistency of
received aggregate signature using the help from verification algorithm Vf(mpk, σj, Lj).
If the condition is met, it continuously computes a new aggregate signature on inputs
(skidi ,m, σi, Li); where Li = ((ID1,m1), ..., (IDi,mi)) is a list of identity-message
pairs.

• Verification algorithm (Vf): that takes inputs (mpk, σj, Lj) and returns a bit 1 if the ag-
gregate signature is valid, otherwise returns 0.

Discussion. The above schemes bring two significant enhancements in terms of constant
sizes (in that both secret keys and aggregate signatures) and signing order preservation. Thus,
it is not surprising to see that several network routing applications are widely applied these
schemes to secure route attestation. That’s means, a data packet should be signed in sequence
manner by egress routers, allowing ingress routers to accept and forward only packet that fol-
lowed an authenticated path, and finally the originating source can later verify whether the
packet actually took an authenticated path to reach its destination [22]. However, the verifica-
tion process in the above schemes inevitably introduces high computational overhead. Due to
the fact that each intermediate node needs to firstly verify the validity of aggregate signature re-
ceived from the previous nodes on the path before starting the signature construction. Imagine
that if the number of nodes on the path increase linearly, this would significantly impact the per-
formance of signature verification. Another security concern is that the authors of [111] found
that the signature construction in the above schemes are insecure and universally forgeable, that
is anyone can generate forged signatures on any messages of its choice.

5.5.2 Design properties

Although the above schemes seem to be suitable for use in SFC domain over the NFV en-
vironment and can be applied to tackle the SFC consistency challenges, i.e., VNF chain-
ing/composition, ordering and authenticity properties (as discussed in Section 5.3.2), their
models still vulnerable to forgery attack while the computational overhead from signature ver-
ification is very high. Therefore, Lite identity-based ordered multisignature is proposed with
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the objective to (1) improve security in signature construction to prevent against forgery at-
tack, (2) accelerate computation times by using three pairing computations, and (3) eliminate
the verification process in the intermediate nodes. Meanwhile, other common key features de-
rived from the above schemes have also retained. For concreteness, Lite identity-based ordered
multisignature is encompassed by the following properties.

• Unforgeability: by adapting security model for aggregate signatures [23, 15], it should
be computationally infeasible for any adversary to produce a forged aggregate signature
implicating an honest identity, even when the adversary can control all other identities
involved in the aggregate signature and can mount a chosen-message attack on the honest
identity.

• Authenticity: signer’s authenticity should be preserved. Given a message, the correspond-
ing aggregate signature does not only provide the knowledge indicating that some specific
group of signers (e.g., VNF appliances) signed it, but also to the order in which they
signed. So that a verifier can later verify the authenticity upon receiving the aggregate
signature.

• Re-order protection: it must enforce an additional unforgeability with respect to the or-
dering of the signers. In other words, it should not be possible to re-order the positions of
honest signers, even if all other signers are malicious.

• Constant size: the sizes of aggregate signature at any stage should be constant regardless
the number of signers and messages.

• Signature and verification accelerations: an alternative solution to minimize overall com-
putational overhead is to ignore verification call at intermediate nodes and accelerate the
construction time using three pairing computations. Unlike the network routing applica-
tions which require more secure route attestation, our objective aims to verify the depend-
ability and consistency for the entire SFC, so that there is no need to perform intensive
verification before signing. While three pairing computations in the terms of (X, Y, Z)
can help to accelerate the construction times in both signature and verification. Such each
term is executed in parallel, resulting in a much faster computation time when compared
to a typical model-based one-time processing. See section 5.5.3 for more construction
details.

5.5.3 Construction methodology

Our construction uses bilinear maps (a.k.a, pairings) on groups of prime order. Let G,GT be
the groups of the same prime order p. Based on a bilinear map e : G × G → GT , it holds
two following properties [23]. All the notations used in our formulation are summarized in
Table 5.1.

• Bilinearity: for all (u, v) ∈ G and (a, b) ∈ Z, we have e(ua, vb) = e(u, v)ab.

• Non-degeneracy: if g ∈ G∗ is a generator of G, then e(g, g) is a generator of GT .

Definition 5.5.1. We call an algorithm G as a bilinear-group generation algorithm that returns
outputs (p,G,GT , e).

To construct the Lite identity-based ordered multisignature, there are four steps involved.
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Table 5.1: Notations used in Lite identity-based ordered multisignature formulation

Notations Description
e(., .) A symmetric bilinear form. For example, e(ga, gb) = e(g, g)ab = e(gb, ga)
Z A set of integers
N The positive integers
Zp The integers modulo p ≥ 2
Z∗
p The multiplicative group modulo p

G,GT Groups of prime-order p on rational points of an elliptic curve over a finite field
1G, 1GT

The identity elements of G,GT respectively
G∗ A set of generators of G, i.e., G∗ = G− 1G
{0, 1}∗ A set of all binary strings of finite length
ε An empty string
|x| If x is a string then |x| is its length in bits
x||y If x, y are strings then x||y denotes an encoding from which x and y are uniquely recoverable

s
$← S If S is a finite set then s $← S means that s is selected uniformly at random from S. For

example, s1, s2, ..., sl
$← S as shorthand for s1

$← S; s2
$← S; ..., sl

$← S; for any l ∈ N
x

$← A(y, z) If A is a randomized algorithm then x $← A(y, z) means that x is the output after being run
A on inputs y, z. If A is deterministic then we drop $ sign above the arrow.

5.5.3.1 Setup

The algorithm first run G to obtain outputs (p,G,GT , e). It then chooses a random generator
g ∈ G∗, a random number α ∈ Zp, and two cryptographic hash functions H1 : {0, 1}∗ → G
and H2 : {0, 1}∗ → Z∗p as random oracles. It returns (p,G,GT , e, g, g

α, H1, H2) as the public
parameters (PP ), and α as the master secret key (msk); where gα is the master public key
(mpk). Please note that the PP andmpk have no much difference in essential. Both parameters
are shared by all users in the system, so that we can view mpk as PP and vice versa.

Definition 5.5.2. We define G,GT are groups of prime-order p, and 1G, 1GT
denote the identity

elements of G,GT respectively. By G∗ = G− 1G indicates the set of generators of G.

5.5.3.2 Key derivation

On inputs msk and user’s identity id ∈ {0, 1}∗ (say IP address, etc.), the algorithm computes
and returns the corresponding user’s secret key skid.

skid = H1(id)
α (5.5.1)

5.5.3.3 Signing

On inputs his/her own secret key skidi , a messagem, and the corresponding signature σ from an
intended path L = (id1, ..., idi−1), the algorithm first parses σ as a three pairing computations
(X, Y, Z)6. Then, the signer with identity idi continues to performs the following steps:

• Pre-computation7:

s(i) = s1s2 · · · si (5.5.2)

Where sj = H2(id1||id2|| · · · ||idj) for j = 1, 2, · · · , i.

• Choosing random number by the ith signer: r(i) ∈ Z∗p.
6 For a first signer (i = 1), σ is defined as (1G, 1G, 1G).
7 If the intended signing order fixed, then s needs be computed only once; otherwise, whenever the intended signing sequence change,

this pre-computation step needs to be re-executed.
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• Computation:

X ′ ← H1(m)r
(i)·s(i) · skidi (5.5.3)

Y ′ ← H1(H1(m))r
(i) · skidi (5.5.4)

• Finally, the algorithm returns

(X ·X ′, Y 1/si · Y ′, Z1/si · gr(i)) (5.5.5)

Where 1/si means s−1
i mod p.

Remark 5.5.3. To avoid potential forgery attacks, the online randomness r and the product
s = s1...si are simultaneously involved in the computation X ′. As a matter of fact, the use of
r is necessary to protect or hide the information associated with the signing keys. While, the
use of s helps to preserve the consistency and dependability of SFC (e.g., a group of signer’s
identity on the intended path and the ordering in which they signed).

Remark 5.5.4. To make signature construction suitable for use in SFC domain, we consider
multiple signers (e.g., VNF appliances) sign each message/packet individually. Unlike the typ-
ically identity-based sequential aggregate signature which consider the situation that multiple
signers can sign different messages simultaneously. Thus, the product s is mainly generated
based on a hash function of a group of signers in accordance with their ordering (positions) on
the intended path (Equation 5.5.2).

Iterative procedures in signing. In the following, we briefly explain step-by-step of gen-
erating aggregate signature when there are n-signers (i.e., VNFs) involved in the service chain.
For example,

• When the 1st signer receives message or packet, he/she performs the signing process. To
do that, let’s initially define σ = (X, Y, Z) = (1G, 1G, 1G) for the first signer, so that the
first aggregate signature is generated as

X =X ·X ′

=1G ·H1(m)r
(1)·s(1) · skid1

=H1(m)r
(1)·s(1) · skid1

Y =H1(H1(m))r
(1) · skid1

Z =gr(1)

(5.5.6)

Please note that since 1G is the identity element of G, so that any multiplication of its
identity elements do not affect the original value. That’s say X = 1G ·X ′ = X ′, and the
processing of Y and Z are performed similarly.

• The 2nd signer performs the same signing process using his/her secret key skid and the
aggregate signature of the first signer, so that the newly aggregate signature is
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X =X ·X ′

=H1(m)r
(1)·s(1) · skid1 ·H1(m)r

(2)·s(2) · skid2
=H1(m)r

(1)·s(1)+r(2)·s(2) · skid1 · skid2
Y =Y

1
s2 · Y ′

=H1(H1(m))
r(1) 1

s2 · sk
1
s2
id1
·H1(H1(m))r

(2) · skid2

=H1(H1(m))
r(1) 1

s2
+r(2) · sk

1
s2
id1
· skid2

Z =Z
1
s2 · gr(2)

=g
r(1) 1

s2
+r(2)

(5.5.7)

• Similarly, the aggregate signature of the 3rd signer is generated as

X =X ·X ′

=H1(m)r
(1)·s(1)+r(2)·s(2) · skid1 · skid2 ·H1(m)r

(3)·s(3) · skid3
=H1(m)r

(1)·s(1)+r(2)·s(2)+r(3)·s(3) · skid1 · skid2 · skid3
Y =Y

1
s3 · Y ′

=H1(H1(m))
(r(1) 1

s2
)+ 1

s3 · sk
1

s2·23
id1
· sk

1
s3
id2
·H1(H1(m))r

(3) · skid3

=H1(H1(m))
(r(1) 1

s2
+r(2)) 1

s3
+r(3) · sk

1
s2·s3
id1
· sk

1
s3
id2
· skid3

Z =Z
1
s2 · gr(2)

=g
(r(1) 1

s2
+r(2)) 1

s3
+r(3)

(5.5.8)

• Therefore, the aggregate signature of the nth signer can be generated based on the follow-
ing forms

X =H1(m)r
(1)·s(1)+r(2)·s(2)+···+r(n)·s(n) · skid1 · skid2 · · · skidn

=H1(m)
∑n

i=1 r
(i)s(i)

n∏
i=1

skidi

Y =H1(H1(m))
(···((r(1) 1

s2
+r(2)) 1

s3
+r(3)) 1

s4
+··· ) 1

sn
+r(n)

· sk
1

s2·s3···sn
id1

· · · sk
1
sn
idn−1

· skidn

Let w ∆
= (· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · · ) 1
sn

+ r(n)

=H1(H1(m))w
n∏
i=1

sk
1∏n

j=i+1
sj

idi

Z =g
(···((r(1) 1

s2
+r(2)) 1

s3
+r(3))+ 1

s4
+··· ) 1

sn
+r(n)

=gw

(5.5.9)
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5.5.3.4 Verification

On inputs mpk, a message m, and the corresponding signature σ from the intended path L =
(id1, .., idn), the algorithm first returns 0 if all of id1, ..., idn are not distinct. This check is
needed to ensure that there are no signers repetition occurred during an aggregate signature
construction. As a matter of fact, this event can constitute a security vulnerability and should
not be allowed anyway. If the above condition is met then it parses σ as (X, Y, Z), and a verifier
continues to proceed the following steps:

• Pre-computation8:

S =
n∏
i=1

H1(idi)
1∏n

j=i+1
sj (5.5.10)

T =
n∏
i=1

H1(idi) (5.5.11)

s = s(n) = s1s2 · · · sn (5.5.12)

where sj = H2(id1||id2|| · · · ||idj).

• Verification: the algorithm checks whether the following two equations hold true simulta-
neously.

e(Y, g)
?
= e(H1(H1(m)), Z) · e(S, gα) (5.5.13)

e(X, g)
?
= e(H1(m), Zs) · e(T, gα) (5.5.14)

If not, the algorithm returns 0. Otherwise, it returns 1 indicating that an aggregate signa-
ture σ is valid on the message m with respect to the intended path, authenticated signers
and their ordering properties id1, · · · , idn.
Remark 5.5.5. As we discussed earlier, in order to accelerate the construction time, our
scheme does not verify the validity of aggregate signature during its signing algorithm.
The verification process only performs once by the verifier.

5.5.4 Theoretic proofs

In this Section, we provide a mathematical proof to illustrate how our proposed scheme of Lite
identity-based ordered multisignature can help to fully preserve both security (e.g., authen-
ticity, integrity of VNF), dependability (e.g., ordering property) and consistency (e.g., VNF
chaining/composition) in service chain. Suppose that the aggregate signature of the n-th signer
is σ = (X, Y, Z) in which

X = H1(m)
∑n

i=1 r
(i)s(i)

n∏
i=1

skidi (5.5.15)

Y = H1(H1(m))w
n∏
i=1

sk
1∏n

j=i+1
sj

idi
(5.5.16)

8 If the intended signing order fixed, then S, T and s needs be computed only once; otherwise, whenever the intended signing sequence
change, this pre-computation step needs to be re-executed.
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Z = gw (5.5.17)

Where w is defined by an Equation 5.5.18.

w
∆
= (· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · ·+ r(n−1))
1

sn
+ r(n) (5.5.18)

Now, we need to prove that whether the Equation 5.5.13 and Equation 5.5.14 hold true
simultaneously. Let’s first calculate the left-hand side of an Equation 5.5.13 using substitution
method derived from Equation 5.5.16, finally we get Equation 5.5.19.

e(Y, g) =e(H1(H1(m))w
n∏
i=1

sk
1∏n

j=i+1
sj

idi
, g)

=e(H1(H1(m))w, g) · e(
n∏
i=1

sk
1∏n

j=i+1
sj

idi
, g)

=e(H1(H1(m)), g)w · e(
n∏
i=1

H1(idi)
1∏n

j=i+1
sj , g)α

(5.5.19)

Similarly, on the right-hand side of the Equation 5.5.13, we substitute it using Equation 5.5.17
and Equation 5.5.10 respectively. Finally, we get the Equation 5.5.20.

e(H1(H1(m)), Z) · e(S, gα) =e(H1(H1(m)), gw) · e(
n∏
i=1

H1(idi)
1∏n

j=i+1
sj , gα)

=e(H1(H1(m)), g)w · e(
n∏
i=1

H1(idi)
1∏n

j=i+1
sj , g)α

(5.5.20)

Based on the results obtained from Equation 5.5.19 and Equation 5.5.20, we can conclude
the received aggregate signature holds true for Equation 5.5.13.

Furthermore, according to Equation 5.5.14, we perform the same way as described above,
to further calculate the results on both sides of the equals sign. Thus, using substitution method
of X (Equation 5.5.15), Z (Equation 5.5.17) and T (Equation 5.5.11), we finally obtain Equa-
tion 5.5.21 and Equation 5.5.22 respectively.

e(X, g) =e(H1(m)
∑n

i=1 r
(i)s(i)

n∏
i=1

skidi , g)

=e(H1(m)
∑n

i=1 r
(i)s(i) , g) · e(

n∏
i=1

skidi , g)

=e(H1(m), g)
∑n

i=1 r
(i)s(i) · e(

n∏
i=1

H1(idi), g)
α

(5.5.21)

e(H1(m), Zs) · e(T, gα) =e(H1(m), gw·s) · e(
n∏
i=1

H1(idi), g
α)

=e(H1(m), g)
∑n

i=1 r
(i)s(i) · e(

n∏
i=1

H1(idi), g)
α

(5.5.22)
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Where w can be derived from the Equation 5.5.18, and we found that w · s is equivalent to∑n
i=1 r

(i) · s(i) with regards to Equation 5.5.23.

w · s =((· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · ·+ r(n−1))
1

sn
+ r(n)) · s

=(· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · ·+ r(n−1))
1

sn
· s+ r(n) · s

=(· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · ·+ r(n−1))
1

sn
· s(n) + r(n) · s(n)

=(· · · ((r(1) 1

s2

+ r(2))
1

s3

+ r(3))
1

s4

+ · · ·+ r(n−1)) · s(n−1) + r(n) · s(n)

=
n∑
i=1

r(i) · s(i)

(5.5.23)

Observing the results obtained from both Equations (Equation 5.5.21 and Equation 5.5.22),
we can conclude that the received aggregate signature holds true for Equation 5.5.14. Thus, the
security, dependability and consistency can be preserved if the two above bilinearity conditions
of pairing are satisfied.

To summarize, Lite identity-based ordered multisignature is proposed which aims at ex-
amining the behavior of packet traversal. Let’s say whether the messages/packets associated to
a particular service chain have indeed traversed through all intended VNF appliances as spec-
ified in the SFC policy. Thanks to the verifiability properties of signing order and ordinary
signature which provide a verifier the ability to examine the consistency of service chain and
to ensure that only the honest participants are able to produce a valid aggregate signature on
that message. Since the verifier knows a certain number of signer’s identity (say a set of IP
addresses of VNF appliances involved in a particular service chain) and their sequences, so
that it can straightforwardly verify its consistency from the bilinearity condition of a pairing.
As a result, any missing, detouring, bypassing one or more VNF nodes along the intended path,
out-of-order traversal, or the occurrence of impersonating the target VNF nodes can lead to
unsatisfied condition under bilinear maps.

5.6 Security Analysis

In this section, we analyze the security and justify how our proposed scheme of Lite identity-
based ordered multisignature can be used to preserve security, dependability and consistency
in SFC, further protecting against security threats described in Section 5.4.2.

On the length of keys and aggregate signature. The proposed scheme is considered as an
extension of two combination schemes (ordered multisignatures and identity-based sequential
aggregate signatures), so that the key features of constant-sizes in signature and keys having
in the two above schemes are also inherited to our proposal. However, it appears that the pro-
posed scheme is substantially more efficient, providing lightweight and cost-effective signature
construction when compared to all existing aggregate signature alternatives including the two
above-mentioned schemes [22]. It yields constant-size aggregate signature of three group el-
ements. For example, it requires about |msk| = log p, |skid| = log p, and |σ| = 3 log p,
for the sizes of master public key msk, user’s secret key skid, and the aggregate signature σ,
respectively.

Bypass elements. Suppose that a packet Pkt is received by a compromised switch which
then forwards Pkt directly to V NFi+1, thereby bypassing the original next hop V NFi. Ac-
cording to the proposed scheme and its verifiable properties, if one of the signers (i.e., VNF
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nodes) involved in the service chain have been bypassed, it can be easily detected by the verifier.
Recall the signature construction, to compute an aggregate signature the product s needs to be
involved, where s implicitly related to the signers’ identities and their ordering properties. The
signing processes are iteratively repeated by all authenticated members along the intended ser-
vice function path. At the end, the verifier can examine the behavior of packet traversal whether
Pkt is indeed traversed through all authenticated VNFs according to the specified SFC policy,
thereby performing a similar operation of reconstructing the signature and further comparing
the result with the received one using bilinearity condition mapping (Equation 5.5.13 and Equa-
tion 5.5.14). Thus, the occurrence of bypassing can ultimately lead to unsatisfied conditions in
a bilinear map.

Path detour. Similar to the above case, but little difference in which the packet has been by-
passed the original intended VNFs, and unlawfully performing by anonymous service functions
which are not actually specified in the SFC policy. Suppose a packet Pkt is intended to tra-
versed along the service function path as SFCi : {V NF1 → · · · → V NFi → · · · → V NFn}.
However, when a compromised switch received Pkt, it deviates Pkt to the anonymous V NF ′′i
node instead of the original service function V NFi. In this case, the aggregate signature σ′

would be different from the σ generated by the original path and will not pass the verification
with high probability. Thanks to its verifiable property, path detour can be detected. Recall the
signature construction, a newly aggregate signature of the current hop is actually based on the
result of aggregate signature from the previous hops. This ensures that only the honest partic-
ipants are able to reconstruct the valid aggregate signature. Although Pkt has been deviated
to anonymous V NF ′′i node, it does not possess the key share (msk) which is considered as
essential input for further generating the corresponding user’s secret key skid and producing an
aggregate signature σ. As a result, it cannot generate a valid σ. In other words, even Pkt has
been detoured, it can still be detected by the verifier using bilinear maps.

Out-of-order traversal. Regarding the verifiable properties of Lite identity-based ordered
multisignature, even the out-of-order traversal occurs, this kind of attack can easily be detected
by the verifier. As aforementioned, hence the verifier knows well about the list of VNFs and
their positions on the intended path, so that it can reconstruct sequential aggregate signature
using the corresponding master public key share mpk (the right-hand sides of Equation 5.5.13
and Equation 5.5.14) and comparing the result with the received value (the left-hand sides of
Equation 5.5.13 and Equation 5.5.14). In case of out-of-order traversal, the two values would
be different, leading to failed verification with 0 bit returned. Even the same VNF node and the
same packet, if its position has been modified, the final result of aggregate signature is totally
different from what would be generated when Pkt traversed through the original path in the
correct order.

Packet replay. In which a passive attacker record previous packet flows and replays them
into the network. The objective here is to let these replayed flows successfully pass the veri-
fier’s check. To do that, he may act as a man-in-the-middle to intercept the intermediate aggre-
gate signature σ̂ and reusing them for future verification. However, according to our proposed
scheme, it is impractical to pass this verification with high probability. Despite he can intercept
σ̂ from the previous hops, the way of reconstructing aggregate signature at the next-hop down-
stream VNFs are not only based on σ̂, but also the master secret key msk and user’s secret key
skid as well. Unfortunately, the passive attacker does not know these keys, so that he cannot
produce a valid σ. As a result, the replayed packet can be detected.
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5.7 Implementation and Evaluation

In this Section, we present the proof of concept (PoC) implementation of our proposal over
NFV/SDN environment, and evaluate the performance of our proposed scheme in terms of
end-to end latency.

5.7.1 Implementation details

The correctness of our digital signature scheme can be theoretically proved, but its implementa-
tion in real environment is non-trivial, and we need to solve the following technical challenges,
(1) generate and distribute the cryptography parameters to each involved VNF node, (2) add
signature generation into VNF nodes and, (3) transmit packets with signature. To address these
challenges, we propose the following solutions.

A trusted Private Key Generator (PKG). The first challenge requires a PKG to generate
its master public key mpk and the corresponding master secret key msk. Such a PKG server
is developed and run alongside the ODL SFC controller. To create a service chain, a SFC
description file including information identities of each service function, the SPI associated
with a particular service chain and SI which is used to determine the next VNF to be traversed,
is simultaneously sent to PKG and ODL controller. With these information, PKG generates
cryptography parameter settings (elliptic curve type, key size, user’s secret key skid, etc.),
and distribute them to each involved VNF through REST API. The implementation of PKG is
built on top of PBC (Pairing-Based Cryptography) library [138], PyPBC (Python binding for
PCB) [185] and Python Flask web framework.

NSH and OMS aware VNF. In our implementation, the first VNF on a given chain is in
charge of generating and inserting the aggregate signature. Then the next hop downstream
VNFs should be able to retrieve the signature from the received packet and update it with the
new one generated based on the construction method described in Section 5.5.3. Thus, we
developed some NSH and OMS (Ordered Multisignature) aware VNF. An instance of this kind
VNF is able to parse the NSH header and choose the appropriate actions, e.g., generating,
inserting or updating the aggregate signature. The signature verification is done at the last
classifier on a chain, namely just before leaving SFC domain. In our implementation, a new
verification service is developed as an extended function and deployed alongside of the egress
classifier to take charge of signature validation. In the presence of attacks, an alert message
w.r.t the failed signature validation should be displayed. In addition, a message m which is
used as input in signing process can be any given value if it is known by all the VNF nodes
on a particular chain. The NSH payload is not suggested to be used as the input of signing
process, because the content of playload may be modified by some VNFs (for example, NAT)
along service path. This can lead to the failure of signature verification.

Extended NSH type 1 metadata. To use our proposed scheme, the signature should be
inserted into the packets. In the current implementation, we leverage the metadata field of
NSH header (as shown in the right below corner of Fig. 5.5), which has two types according to
the specification of RFC8300, (1) NSH MD type-1, which has fixed 16 bytes length; (2) NSH
MD type-2, which has a variable length. However, Type-1 has no sufficient room to occupy
the signature, while Type-2 has not been implemented so far. Therefore, we extend NSH MD
type-1 with an extra variable signature field. Also, we use one non-reserved bit in the NSH
base header as signature bit, indicating whether the packet carries the signature (value 1) or
not (value 0). If a packet with signature is received by a VNF, the signature will be extracted
from the NSH header and updated with the newly generated one using the VNF’s secret key
skid shared by the PKG at the SFC initialization stage.
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Figure 5.5: Deployment scenario

5.7.2 Performance evaluation

To present our prototype implementation, we build a testbed as shown in Fig 5.5. It is developed
based on the VirtualBox virtualization environment [175] and the Vagrant tool [101]. The
hardware specification of the host system that runs the testbed is based on Linux desktop with
2.5GHz Intel Core i7 CPU and 16G RAM. All the deployed network nodes including controller,
VNFs, classifiers and SFFs9, are implemented as docker containers running inside Vagrant VM
with Ubuntu/xenial 64, each node has been customized with 2 CPU cores and 4G RAM. Our
motivation to use OpenDaylight (version Fluorine) [226] as a ODL SFC controller is that it is
developed with fully NSH encapsulation support, which allows us to use it for developing a
prototype that carries an aggregated signature generated from our proposed approach.

5.7.2.1 Computational overhead.

To evaluate the performance of our proposed scheme, we ran a set of experiments and examined
the relationship between the processing capacity of our proposed scheme and the number of
VNF nodes involved in a service chain. In practice, we used PBC library with Type A pairings
to create a group of G and GT on the rational points of a elliptic curve y2 = x3 +x over a finite
filed. Using embedding degree (the degree of certain extension of the ground filed), which
is k = 2, thus the elements in G can be respectively represented using about 512, 256, and
160 bits to achieve the equivalent of standard security level, 256, 128, and 80 bits security [13].
Please note that by reducing the bit-length of elements in G the pairing computation complexity
can be reduced and of cause further reducing the security level as well. However, to meet the
lower bound of security strength, a minimum of 80 bits security are required, equivalent to the
size of elliptic curve keys of 160 bits.

We ran the experiment 50 epochs with different key sizes10 and calculate the 95% confi-
dence interval. As shown in Fig. 5.6, we observed that the lower bound latency goes linearly.
It strongly depends on three major factors: (1) the employed cryptography parameter settings

9 Classifiers and SFFs are used to install Open vSwitch (OVS). Please note that NSH – service chaining encapsulation protocol for SFC,
is supported in OVS 2.9 and higher.

10 Both elements in G and keys contains the same bit length.
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Figure 5.6: The relationships between number of VNF nodes in a service chain and latency

which include the type of pairing operations over the specified elliptic curve, the length of ele-
ments in G and keys, as well as signing and verification algorithms; (2) the total number of VNF
nodes involved in a service chain; and (3) the processing delays caused by signing operations
conducted by each VNF node and also the verification operation at the last egress classifier.
For example, if we only consider the processing delay related to signature and verification con-
structions, without taking into account other parameters such as the parameter settings, times
for packet manipulation (e.g., inserting, parsing or updating the aggregate signature into NSH
header) and transmission, the overall processing delays for a particular service chainDSFCi

can
be obtained in the following form,

DSFCi
=

N∑
i=1

dsi + dv

where dsi is the delay time takes by each VNF node to complete signing operation, and dv is
the delay time to perform verification at the last verifier node, e.g., validating the aggregate
signature.

In practice, the number of VNFs nodes involved in a service chain is normally less than 10
(the exemplified SFC use cases are given in Section 5.3 and in [95, 127, 233]). For example,
to achieve the lowest bound of security level (80 bits), it took around 34.76 ms to successfully
validate an aggregated signature when 10 VNF nodes were involved in the service chain. This
latency is minimal and acceptable for most of network services.

5.7.2.2 Latency.

To evaluate the end-to-end packet transmission latency brought by the proposed scheme. We
run 6 groups of experiments, in which the number of VNF nodes involved in a service chain
is varied from 2 to 7. Initially, we used network topology illustrated in Fig. 5.5 as a starting
point in order to create a simple service chain of connecting 2 VNF nodes, and consequently
increased the number of VNFs to 7. Not that these numbers of VNFs in a service chain are rea-
sonable value when considering several typical SFC deployment use cases discussed in [136].
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Within each group experiment, the case without signature scheme is used as comparison ref-
erence. We consider two OMS enabled cases with different elliptic curve key sizes (i.e., 160
bits and 256 bits). It should also be noted that the proposed scheme enforces all the involved
VNFs to sign the received packets. However, there is no need to let the instantiated VNFs al-
ways sign every processed packets. Recall our main objective of the proposed scheme, which
aims to provide secure, consistent and dependable SFC against anomalous flow redirection and
path deviation (as discussed in Section 5.4.2). With the presence of attack, the packets with
signatures are detected due to the failed signature validation. As a result, there is no need to
sign and verify every packets over the given service function path. In other words, one of the
main reason of discussing such this aspect is because we need to reduce as much as possible
the end-to-end latency related to the service chain, we then apply a probabilistic method into
our scheme. At the initialization stage, the first VNF is configured to sign a received packet
based on a given probability. That says, in our experiment, we consider the cases of signing
probability 10%, 50% and 100% respectively.

(a) Transmission of ICMP-ping packets

(b) Transmission of HTTP-ping packets

Figure 5.7: Two different types of packet transmission (i.e., ICMP-ping and HTTP-ping packets) with and without
signature construction. Percent such as 10% means that for each received packet, first VNF signs it with probability
10%.
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To evaluate the performance, we launch two different tests based on two types of transmis-
sion protocols: (1) ICMP-ping test, and (2) HTTP-ping test. For each test, we continuously
sent 100 ping messages from client to server and measured the end-to-end packet transmission
latency. The results are illustrated in Fig. 5.7a and Fig. 5.7b, respectively. To achieve the lower
bound of security level (160 bits elliptic key), if signing probability is set as 100%, 50%, and
10% respectively11, on average the latency of ICMP-ping respectively increased around 5.80,
3.25, and 1.52 times when compared to a conventional packet transmission without signature.
Similarity, it respectively increased about 5.89, 3.63, and 1.62 times for HTTP-ping. The exper-
imental results showed that the overall latency has been significantly reduced, especially with
10% signing probability, the resulting latency can be almost ignored. In addition, the average
latencies between two types of packet transmission were not much different. The probability of
signing operation depends on its setting (e.g., 10%). Thus, no matter the type of packet trans-
mission is, the signing process is randomly performed based on the total number of packets.
For example, if 10% signing probability is set, then on average only 10 out of 100 packets will
be signed.

The setting of 10% or 50% signing probability is our preliminary exploitation about how
to efficiently integrate our proposed scheme into the real world SFC deployment. However,
the setting of signing probability value depends on type of SFC use cases. For example, if
it is video-based application use case, this value should be set as small as 0.1%. In case of
smart metering use case that may upload a message per hour even per day, this value can be
set as 100%. In the future work, we plan to improve our proposed scheme with a probabilistic
model in order to find the optimal tradeoff between the transmission overhead and detection
performance.

5.8 Conclusion and Open Issues

In this Chapter, we proposed a solution to solve a specific problem in Service Function Chain-
ing, which means a secure, consistent and dependable SFC. In ideal case, a number of VNFs
(belonging to different service providers in different administrative domains) can be chained
together for implementing a particular network service. One of the key challenges is to ensure
that only the authentic VNFs are put together in a correct and optimal order. In another word,
the packet flows sequencing, associated with a particular service should be preserved, accord-
ing to the pre-specified SFC policy. However, an attacker can redirect the malicious flows and
change the defined path in order to evade some security functions, e.g., firewall, DPI, IDS, or
for any other malicious purpose. We therefore presented and described a scheme based on Lite
identity-based ordered multisignature cryptographic primitive. That says, all the VNFs in the
service chain need to generate and attach the signature into the packets they receive. The signa-
ture is kept with a compact and constant size, and can be inserted into NSH header. The last hop
NFV serves as a verifier verifying the signature, while any anomalous flow redirection or path
deviation can lead to unsatisfied conditions and ultimately failed verification. The scheme is
essentially distributed, bringing no burden to PKI and key management. More importantly, as
the computational overhead w.r.t signature generation and verification is minimal, the resulting
latency is limited for most of typical network services.

It is worth noting, however, NSH is still under development and standardization, so the
implementation aspects of our scheme need to be developed and improved. With the support of
NSH, developing different use cases for deploying and testing our scheme will be next research
objective. In addition, optimal SFC is an active, important and interesting research topic. How

11 Note that, if the signing probability is set as 100%, means every packets have to be signed, while 10% and 50% indicate that on average
only 10 and 50 out of every 100 packets will be signed.
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to integrate our scheme with optimal SFC chaining algorithms is still an open issue that we will
study in future works.
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6
Conclusion and Future Work

This Chapter summarizes the major research contributions of this thesis and further discusses
about future research directions.

6.1 Research Contributions

The emergence of NFV and SDN yields numerous benefits. One of the most salient features
is the cost-efficient transition from dedicated hardware appliances to software based approach,
which greatly reduces the total cost of ownership by having the potential to break vendor lock-
in, while improving service agility and scalability to meet dynamic changes in business require-
ments. As a two-sided coin, despite these well-recognized benefits, security remains to be one
of the vital concerns and potential impediments in development and deployment of network
services over the NFV environment. Therefore, this thesis is dedicated to exploring the pros
and cons of NFV/SDN from security perspective. On the one hand, we explored the potential
security issues in NFV, established a cross-layer threat taxonomy, along with a set of security
hardening recommendations resulting from a gap analysis between the desirable security re-
quirements and available security mechanisms. On the other hand, we developed a conceptual
framework SecMANO, as a natural extension of TOSCA based NFV MANO frameworks, to
manage and orchestrate those security functions. Based on SecMANO, a security orchestrator
has been further developed and implemented, having a novel access control paradigm at its
core. In addition, a security scheme based on ordered aggregated signature was developed to
ensure secure and dependable Service Function Chaining (SFC). Generally, the contributions
can be organized in the following way,

• Security in NFV. Considering the fact that NFV and SDN have drawn significant attention
from both industry and academia as next generation network architecture that facilitate the
deployment of numerous network applications with high flexibility, scalability, manage-
ability, and agility, it is urgent and important to identify the potential security threats and
vulnerabilities that will be introduced. It is also important to have a clear understanding
about the NFV attack surface and to what extent the available NFV security best practices
can fulfil the security recommendations. To achieve the objectives, we have investigated
all the nine use cases specified by ETSI and deeply studied five of them for identifying
their vulnerabilities. Then a NFV layer specific threat taxonomy was established, to-
gether with the corresponding security recommendations. Meanwhile, the state-of-the-art
security mechanisms have been analyzed in terms of their potential usability in NFV en-
vironments. We believe this is one of the first contributions in this domain, and it mainly
serves for three primary purposes: (1) to help service providers and network operators

131



to gain a holistic understanding on the attack surface of NFV; (2) to allow them to de-
ploy cost-effective security hardening according to their particular business needs; and (3)
to develop novel security countermeasures tailored to NFV services and integrate them
together for achieving multi-layered, optimal, flexible, and adaptive defense.

• NFV based Security Management and Orchestration. We assume that NFV and SDN
will gain popularity in the next few years and have potent to significantly reshape today’s
ICT infrastructure. In the new networking infrastructure, security management must be
reconsidered. As NFV MANO is the core part of NFV architecture, which plays an impor-
tant role in orchestrating the underlying infrastructure resources, and maintaining the full
lifecycle management of VNFs and network services to achieve on-demand service de-
livery, we started with the analysis and comparative studies on the existing NFV MANO
frameworks in terms of architecture, data model, and functional components, and we
found that none of the existing NFV orchestrator that can provide holistic and dedicated
security management. We then leveraged the capabilities of NFV (e.g., flexibility, scal-
ability, adaptability) and SDN (e.g., programmability, global visibility, centralized con-
trol) to develop a novel security management framework called SecMANO, which can
be treated as a natural extension of the existing NFV orchestrators working with TOSCA
model (one of the popular data models for cloud orchestrators). One of the expected roles
of SecMANO is empower the NFV orchestrator to have the capability of security manage-
ment, so that the most appropriate security functions can be dynamically orchestrated and
deployed in NFV environment. We did not assume any specific threat models or attack
models for SecMANO, because it’s a general purpose design and intended to achieve two
desirable properties, (1) security by design by formally specifying security attributes of
interest a the early stage of service deployment, ensuring that all the deployed assets (e.g.,
VMs, VNFs) are associated with certain security attributes; and (2) security as a service
which aims at providing a set of well-defined security functions on demand to help protect
the network resources and services based on particular security requirements and threat
models.

• Security orchestrator for achieving software-defined access control. This part of work
essentially contains two contributions: a TOSCA model compliant security orchestrator,
and a novel access control paradigm. Specifically, to implement our conceptual frame-
work SecMANO, we developed a security orchestrator that contains two major compo-
nents: (1) a TOSCA-parser, which aims at extracting the security attributes of VM/VNF
nodes from the given TOSCA files and parsing them to an access control engine to fur-
ther generate the corresponding access control policies based on tenant-specific access
control model, meanwhile the necessary information other than security attributes are in-
put to NFV orchestrator; and (2) a novel software-defined tenant-specific access control
paradigm, which allows security administrators to dynamically customize the access con-
trol models and policies for different tenant domains, ultimately achieving flexible and
scalable protection across different NFV layers and multiple cloud data centers. In par-
ticular, the first component is now limited to TOSCA data models, while we expect to
have such a component in future orchestrators. The second component, i.e., a new ac-
cess control paradigm, is adapted to our security orchestrator. Access control models and
policies can be specified according to the particular needs of the customers. The security
orchestrator was then prototyped with Tacker (an OpenStack service for NFV orchestra-
tion using TOSCA model), and its performance was evaluated in terms of three primary
metrics, i.e., throughput, scalability, and adaptability. The experiments demonstrated that
the security orchestrator could maintain a satisfactory level performance regardless of the
varying number of tenants, users and objects in the cloud.
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• Towards secure and dependable Service Function Chaining (SFC). Our NFV cross-
layer threat taxonomy indicates that a large set of novel threats can be potentially intro-
duced to NFV environment, among which VNFs and their chaining properties (in other
terms, it known as service function chaining or VNF forwarding graph) attract special
interests and attentions. A natural question, for example, is that once the high-level SFC
policy is specified, how can we make sure that the packet flows of a particular service
chain are indeed traversed through all the specified VNFs in the right order. To violate
such a policy, the attackers can manage to redirect the packet flows and lead to path devia-
tion. To address the issue, we proposed a new security primitive, called Lite identity-based
ordered multisignature scheme to provide secure, consistent and dependable SFC in NFV
and SDN environment. The objective is to ensure that each service function involved in
a particular service chain is authenticated and legitimate, and all service functions are
chained in a consistent and reliable way. The design foundation of the proposed scheme
aimed at enforcing a group of service functions involved in a service chain to attest their
signatures on the packets received. At the end, a verifier can later verify whether the
packets are traversed correctly with regard to the specified SFC policy. In addition, the
proposed scheme was developed to achieve five key properties: (1) unforgeability, which
is computationally infeasible for any adversary to produce a forgery; (2) authenticity of
service functions involved in a particular service chain; (3) re-order protection, it is not
possible to re-order the position of the legitimate signers, e.g., VNFs; (4) compact and
constant-size keys and aggregate signatures; and (5) signature and verification accelera-
tion using three pairing computations in bilinear maps. The experimental results show that
the proposed scheme can achieve a satisfactory level of security with small computational
overheads on both signature and verification regardless of the path length.

6.2 Perspectives

With the technological trend of software-defined everything, software-defined security has
emerged as a new concept attracting increasing efforts from both industry and academia. Se-
curity controllers in SDN and security orchestrators in NFV can be both treated as stepping
stones towards software-defined security. However, Roma is not built in one day. Much more
efforts are desperately expected. As the subsequent work to the contributions reported in this
thesis, the following topics have been identified and will be further studied.

• Towards trustworthy SFC. In Chapter 5, we proposed a new security primitive, called
Lite identity-based ordered multisignature scheme to provide secure, consistent and de-
pendable SFC. We implemented the proposed scheme in NFV and SDN environments us-
ing OpenDaylight Service Function Chaining (ODL SFC) that supports Network Service
Header (NSH) protocol [188], which is used to carry the aggregate signature generated by
those service functions involved in a particular service chain. It is worth nothing, however,
the current ODL SFC framework is still under development, it provides limited feature and
only supports a fixed length metadata with 16 bytes (NSH MD type 1). As such, the gen-
erated signature has larger size that the metadata field1. An alternative solution that we
presented in the preliminary implementation is to extend NSH MD type 1 with an extra
variable signature field and used one non-reserved bit in the NSH base header as signa-
ture bit. In the future, we expect to leverage NSH MD type 2 to implement our scheme
and evaluate its performance in several different use cases, e.g., web service, email, video

1According to NIST standard [13], in order to achieve the lower bound of security level, a minimum of 80 bits is required, leading to the
size of ECC key 160 bits and around 480 bits in signature. Please note that based on the proposed scheme, the signature is combined from the
three elements (X,Y, Z), each element occupied 160 bits.
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service. We also expect to improve our proposal with an efficient probabilistic model to
find the optimal tradeoff between the transmission overhead and detection performance.

• Enriching the capability of our security orchestrator. (1) In the current version se-
curity orchestrator, we have only evaluated the performance based on an access control
model RBAC. We intend to further study and evaluate more access control models for
providing greater flexibility protecting NFV assets in the distributed clouds. (2) In addi-
tion to access control, other security functions like security monitoring, IDS/IPS, network
isolation, firewall, and data protection are expected to be implemented and deployed in
our security orchestrator. For example, a security orchestrator can implement and deploy
a number of different sniffers or monitoring functions to monitor the events related to the
system behavior of physical/virtual appliances. Then the events can be filtered and ag-
gregated for further forensic analysis and anomaly detection. Similarly, a set of diverse
anomaly detectors can be deployed at different NFV layers (e.g., infrastructure, VNF).
The detection alerts can be optimally correlated for achieving broader detection coverage
and lower false positive rate. As a result, if any anomalous event is detected, an appropri-
ate security countermeasure will be automatically initiated, according to the pre-defined
security policies, to defend against and mitigate it.

• Development of interesting use cases for our security orchestrator. In Chapter 4, we
have reported the implementation and deployment of our security orchestrator in the dis-
tributed cloud data centers. Considering the fact that NFV and SDN have become driving
forces for other emerging networking technologies such as 5G, it would be very inter-
esting to deploy our security orchestrator in 5G related use cases. For example, network
slices or micro segments are empowered by 5G, which share the same network infras-
tructure but provide different network services, e.g., VANETs, IoT, multimedia. Those
network slices may vary in security requirement and security policies, while our security
orchestrator can adapt itself to provide tenant-specific configurations. In particular, the
novel access control paradigm allows different access control models and policies to be
specified and enforced according to the particular needs. This use case deserves to further
studied.

• Achieving policy-driven autonomic cyberdefense. An autonomic cyberdefense system
should be able to work seamlessly with the protected assets, achieving self-configuration,
self-protection, self-healing, and self-optimiztaion. This is particularly interesting for to-
day’s networking infrastructure, which tends to be distributed, large-scale, and intelligent.
The design of our security orchestrator demonstrates that a large set of security functions
has potential to be implemented and deployed in software-based approaches, significantly
improving flexibility and adaptability of security management. We believe this can be
treated as an attempt to achieve autonomic cyberdefense, because the key security func-
tions, including monitoring, anomaly detection, and reaction can be systematically inte-
grated together through the specification and enforcement of high-level security policies.
However, it is worth pointing out that, the specification, translation, and enforcement of
security policies remain as grand challenges in NFV and SDN environments. This chal-
lenge holds for both security and networking community, and deserves much more effort
from both industry and academia. For example, P4 [24] can be seen as one of the ongoing
efforts and promising approaches.
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