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Pérola Milman
Directrice de recherches, CNRS Co-directrice de thèse
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Résumé

La détection de l’intrication est une étape indispensable dans le contexte de l’information
et du calcul quantique. Cette tâche importante est difficile pour les systèmes quantiques
de dimensions supérieures à 2 × 3. En effet, contrairement aux cas 2 × 3 et 2 × 2
où il existe des conditions nécessaires et suffisantes bien établies comme le critère de
Peres-Horodecki, pour le cas de dimensions plus grandes, il n’existe que des conditions
suffisantes à l’intrication. Par grandes dimensions, on entend soit un système bi-partite
où chacune des parties a une dimension supérieure à 3, ou un système multipartite
composé d’un grand nombre de particules.

On s’intéresse à développer de nouveaux critères pour détecter l’intrication dans
de tels systèmes en utilisant des grandeurs mesurables sans avoir besoin de faire une
tomographie complète de l’état quantique considéré. Notre approche consiste à réduire
la dimension du problème, pour avoir un système plus simple à étudier. Pour ce faire, on
transforme localement chaque sous-système en un qubit sans créer de l’intrication.
Nous montrons que cette transformation est caractérisée par les valeurs moyennes de
trois opérateurs arbitraires, prises dans l’état quantique du système. Nous donnons, dans
le second chapitre, des conditions nécessaires et suffisantes pour que cette transformation
soit valide du point de vue physique, fournissant ainsi un outil simple et puissant pour le
problème de la réduction des dimensions.

Nous exploitons ce formalisme pour dériver des critères d’intrication pour des sys-
tèmes bipartites ou multipartites qui découlent des critères existants pour les qubits.
En transformant localement chaque sous-système dans le paradigme des LOCC sans
communications classiques, tel que la séparabilité est conservée, l’application de critères
d’intrication connus pour les qubits induit automatiquement des critères d’intrication en
fonction des 3 opérateurs utilisés pour réaliser la transformation. Nous prenons l’exemple
où les observables choisis sont les 3 composantes du moment angulaire et on obtient
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ainsi un critère simple dont on étudie la performance en le comparant au critère de
Peres-Horodecki pour une famille d’états de qudits.

Dans le troisième chapitre, on s’intéresse aux critères d’intrication, pour des systèmes
multipartites, basés sur des mesures d’observables collectives. Après avoir transformé
l’état du système en un état multipartite de qubits, on applique les inégalités de com-
pression de spin pour des qubits. Cependant, lorsqu’on applique notre formalisme à ce
cas, il est possible d’obtenir une superposition cohérente d’états avec des nombres de
particules différentes. Par conséquent, nous avons dû prendre en compte les fluctuations
quantiques et/ou classiques que l’opérateur du nombre de particules peut présenter.
Nous avons obtenu une forme généralisée des inégalités de compression de spin pour un
nombre de particules fluctuant et pour des observables collectifs arbitraires. Nous avons
appliqué nos résultats à un système d’atomes de chrome ultrafroids piégés dans un réseau
optique, en collaboration avec l’équipe Gazes Dipolaires Quantiques du laboratoire LPL
de l’université Paris 13. Nous avons montré, à l’aide d’une simulation numérique, que
nos inégalités généralisées sont capables de détecter l’intrication à l’aide d’opérateurs
collectifs mesurables en utilisant des techniques accessibles dans ce type de dispositif.

Dans le quatrième chapitre, Nous généralisons le formalisme du second chapitre pour
transformer un système bi-partite en deux qubits. Nous donnons une caractérisation
mathématique pour les opérations LOCC avec un tour de communication classique en
fonction des observables locaux des deux parties. Nous donnons aussi une stratégie pour
mesurer les quantités nécessaires pour les inégalités de compression de spin généralisé dans
des expériences semblables à celles mentionné dans le troisième chapitre. Finalement, on
généralise un critère de compression de spin capable de détecter la profondeur d’intrication
d’un ensemble de spins dont le nombre fluctue, pour des observables arbitraires.
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General introduction and layout

When reading almost any paper on the subject of quantum information, quantum commu-
nication and many other areas involving quantum theory, one can skip the first couple of
lines because it would be something like, "[...] entanglement lies at the heart of quantum
[...]". This is not lack of creativity but rather people acknowledging the importance of
quantum entanglement.
Indeed, entanglement and coherence are the defining features of quantum mechanics.
They open up a plethora of applications not allowed for in classical mechanics. From
the early days these weird features, allowing for things like Schrodinger’s cat or EPR
paradox, were debated but nowadays have become an experimental reality and a basis
for numerous applications.
Since entanglement is an important resource, it needs to be measured and quantified.
A lot of effort has been spent in order to develop criteria able to certify its presence
in a given state. However, beyond bipartite systems of dimensions 2 × 3, there are
no known operational necessary and sufficient conditions for separability, rendering
entanglement characterization quite hard. It is, therefore, a necessity to develop criteria
for high dimensional systems that do not require full tomography nor excessive number
of measurements which is the main focus of this thesis.

In chapter 1, I start by a small introduction to motivate the importance of entan-
glement in different areas and the need to characterize it, or better quantify it, for
fundamental and experimental applications. Then, I move on to recall very briefly some
of the most important tools to infer entanglement in the bipartite case, like reduction
and PPT criteria, to end with entanglement witnesses and entanglement measures. For
the multipartite case, a special attention is drawn to spin squeezing inequalities which
are of big importance for systems with a very large number of particles. I first recall the
concept of squeezing in bosonic systems and then introduce the different known squeezing
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parameters for spins including spin squeezing inequalities.

Chapter 2 is concerned with the problem of entanglement detection in high dimen-
sional bipartite systems. Our main idea is to perform a dimensionality reduction of the
bipartite system by mapping it into a two-qubit system such that separability is conserved.
Since separability is conserved, entanglement presence in the resulting two-qubit state
implies entanglement in the original state to which the mapping is applied.
The chapter starts with introducing the physical idea behind the mapping for a single
system which consists in letting the original system interact with a qubit, initialized in
some reference state, then discarding the original system and keeping the qubit in its
new state acquired due to the interaction. Next, we give a complete characterization of
all such maps in terms of expectation values of three operators acting on the original
Hilbert space. We also draw an explicit connection between different representations of a
quantum channel that maps a state of an arbitrary system into a qubit state.
Once the mapping for a single particle is introduced, we carry on to describe a mapping of
a two-particle system into two qubits. We restrict our analysis to mappings implemented
by Local operations with no classical communications. In other words we apply the
introduced formalism to each subsystem independently where no entanglement can be
created such that entanglement of the two qubit system witnesses entanglement of the
original one. Then we study in detail a straight forward example of a mapping using
the operators of angular momentum and compare the resulting criterion for a family of
two qudit states. Finally, we apply the same mapping for N spin-j system to obtain a
system of N spin-1

2 where one can show a connection between spin squeezing inequalities
for spin-j particles and those for spin-1

2 ones.

Chapter 3 is concerned with entanglement detection in many-particle systems using
spin squeezing inequalities. More precisely, it concerned with spin squeezing inequalities
for systems where the particle number may present classical or quantum fluctuations.
The former occurs commonly in experiments where one has to repeat measurement many
times in order to get a meaningful quantity and account for systematic errors. The
latter, however, is more exotic and occurs in systems where a super-selection rule on
particle number does not apply. This situation appears naturally in our formalism when
we map each particle into a fictitious spin-1

2 particle. Depending on the state of the
N -particle system, we can end up with a coherent superposition of qubits’ state with
different particle number.
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The chapter starts by recalling the spin squeezing inequalities and the basic steps to prove
them. We next introduce our main result to generalize these inequalities to arbitrary
operators and adequate particle number operators. We then study the case for a special
class of operators that allow for inequalities analogous to spin squeezing inequalities that
are independent of choice of the coordinate system. We also generalize the Sørensen-
Mølmer criterion for extreme spin squeezing to the mentioned general frame work for
arbitrary operators and fluctuating particle number.
Finally, we study an experimental case that inspired our work thanks to the collaboration
with the experimental group "Quantum Dipolar Gazes" at "LPL" lab in Villetaneuse,
France. We first show, using a numerical simulation, that spin squeezing inequalities are
unlikely to detect entanglement in their experiment. We also show that our generalized
inequalities are very good candidates to detect entanglement in their particular setup
using their available measurement scheme, a point we elaborate more in the next chapter.

In the last chapter, chapter 4, we present some partial results and possible directions
to improve and build upon the results presented in the previous chapters.
In the first part, using the formalism introduced in chapter 2, we extend the mapping for
bipartite systems beyond local operations without any communication. We present an
operational form and characterize all maps to two qubits implemented via local operations
and one way classical communications.
In the second part, we visit the problem of measurability of the collective operators
needed for our inequalities defined in chapter 3. We provide a possible scheme based
on measurements commonly accessible in cold atoms experiments. Finally, we discuss
generalizing squeezing parameters, in the way done in chapter 3, to detect entanglement
depth which is of greater interest than simple entanglement detection for quantum
information and quantum metrology applications.

Chapters 2, 3 and 4 constitute the original work of this thesis. Part of the results
presented in Chapter 2 were published in [1]. The main result of chapter 3 was published
in [2].
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Introduction: Entanglement criteria
and spin squeezing

In this chapter, I will recall some useful notions about entanglement theory, and some
of the tools to detect it in different systems. However, I will assume the reader to be
familiar with the basic notions of quantum mechanics like Hilbert spaces, observables,
density matrices, Heisenberg uncertainty principle,· · · etc that can be found in numerous
standard textbooks about the subject. A very brief reminder is presented here as an
introduction to entanglement, the main focus of this thesis and this chapter. Hence, the
first half of this chapter is dedicated to recalling some of the basic results in entanglement
theory and its different detection criteria. For the next half, special attention is drawn
to entanglement detection in systems consisting of large number of spins using spin
squeezing inequalities that I will make use of for the remainder of this thesis.

1.1 Introduction

After quantum superposition, quantum entanglement is arguably one of the weirdest and
headache provoking features of quantum mechanics. So much so, that it spooked Erwin
Schrödinger1, one of the fathers of quantum mechanics and Albert Einstein himself along
with Podolsky and Prosen. The later three went on and claimed in their famous paper [4]
that quantum mechanics theory is incomplete. They inferred the existence of some Local
Hidden Variables (LHV), unaccounted for by quantum theory, to solve what has become

1"It is rather discomforting that the theory should allow a system to be steered or piloted into one or
the other type of state at the experimenter’s mercy in spite of his having no access to it." [3]
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to be known as the EPR paradox.
At the heart of this paradox was entanglement, named by Schrödinger, which describes
the inability to describe subsystems individually despite the ability to describe the system
as a whole for some states [5]. There is no classical analogy to such type of correlations
and it represented a theoretical contradictory aspect of quantum mechanics.
This was the case until the EPR paradox was reformulated by Bohm and Aharanov [6] in
terms of spin variables which led to John Bell’s famous inequality [7]. These inequalities
opened the way to experimental tests and verification of non-locality of entanglement,
long after being a theoretical and philosophical controversy, "simply" by looking at
coincidence statistics of measurements performed by two parties.
The most famous test proposal was due to John Clauser, Michael Horne, Abner Shimony,
and Richard Holt, who derived in their famous paper [8] the CHSH inequality. Both
mentioned inequalities will hold true assuming the existence of some local hidden variables
model but are expected to be violated for some quantum states. However, the most
convincing experimental proof that closed the locality loophole was performed by Alain
Aspect and his colleagues in [9, 10]. this experiment is considered a big triumph of quan-
tum theory and has inspired later efforts [11–14] to tackle the remaining loopholes [15–17]
and put local realism2 to rest.

Entanglement is now accepted as a reality of quantum mechanics, but still ,like
quantum mechanics 3, not fully understood at a fundamental level. It is quite a rare
occurrence in science where a theory is very successful in predicting the outcome of
experiments and has a lot of applications yet, there is still an active research and so
much debate going on about its foundations [19]. Since there are many interpretations
for quantum mechanics [20], each of which describes the same mathematical formulation,
entanglement is far from understood from a pure physics’ angle. All we can do, for now,
is try to understand it as a mathematical property of multi-partite systems.

From a mathematical point of view, it is easy to define separable states, or states
that are not entangled. A separable state of a multi-partite system is simply a convex
combination of some product states;i.e.

ρ =
∑
k

λkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k : λk ≥ 0,

∑
k

λk = 1.

2The ability to predict with certainty the value of a physical quantity without disturbing the system[4].
3"I think I can safely say that nobody understands quantum mechanics", Richard Feynman [18].
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This convex sum represents a statistical superposition of product states ρ(1)
k ⊗ ρ

(2)
k ⊗

· · · ⊗ ρ
(N)
k , where each one of them occurs with probability λk. The product state

ρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k represents the simplest separable state and describes a state in

which the different parties are completely independent. The above convex combination
of product states gives rise to classical correlations among the different parties and is
rather difficult to characterize for an unknown state before hand.
However, from a geometric perspective, one can see that separable states are a convex
subset of the set of all states. Inside this subset lie all separable states while entangled
states reside outside it, see figure 1.4 for a pictorial representation. It is therefore quite
important to understand the geometry of quantum states [21–36] in order to gain more
insight into the distinction between separable and entangled states and understand their
evolution under transformations.
While a qubit; i.e. a two-level system, enjoys the simplest geometric representation [37],
Fig. 1.1, a two qubit system is the simplest setup for which entanglement appears.
Algebraically, a 2-qubit state is represented by a 4 × 4 Hermitian matrice. Then the set
of states is a submanifold embedded in a 16 dimensional linear space, which makes it
extremely difficult to visualize geometrically. In order to circumvent this difficulty we
define classes of equivalent states with respect to some property. As far as entanglement
is concerned, one should consider local operations that does not create entanglement,
preferably operations that does not destroy it either. The paradigm of operations that
do not create entanglement is known as LOCC (Local Operations and Classical commu-
nications)where each party can apply, locally to its share of the state, the most general
transformation allowed by the laws of quantum mechanics (a trace-preserving completely
positive map) which can be conditioned on the other parties’ outcomes through successive
rounds of classical communication [38–40]. LOCC and SLOCC(Stochastic LOCC) [41]
do not lead to equivalence relation but rather to partial ordering as one can define classes
of states where a state can only be transformed to another such that entanglement is not
increased [21, 42–44].
A smaller class of Local Operations LO⊂ LOCC [45] with invertible matrices [30] can be
used to define equivalence classes of states. If state normalization is ignored, one is able
to describe two-qubit states in three dimensional space [30, 27]. The same representation
in Fig. 1.2 was first obtained by Horodecki et al. [22] when considering 2-qubit states
with maximally mixed subsystems.
In analogy to the 2-qubit case, one can construct a "magic simplex" of 2-qutrit states with
maximally mixed subsystems [34, 33, 35] and later generalized to 2-qudit states [46, 47].
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x
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Figure 1.1: The Bloch sphere with antipodal points corresponding to a pair of mutually
orthogonal qubit states. The north and south poles of the Bloch sphere are chosen to be
|0⟩ and |1⟩. The points on the surface of the sphere correspond to the pure states of the
qubit, whereas the interior points correspond to the mixed states.

Despite it not containing all states with maximally mixed reduced density matrices, the
magic simplex has high symmetry and offers a simple geometric representation of an
interesting class of states. This in turn, allows to define and parametrize families of
the illusive bound entangled states, not distillable by SLOCC operations [48–52], and
construct geometrical entanglement witnesses [53, 47, 54, 35].

Another fundamental reason to study entanglement than geometry of quantum states,
is its role as one of the main tools to determine quantumness or non-classicality of
a multi-partite state. This notion of non-classicality differs from context to another
and from system to another. For example, in optics, such states are squeezed single
mode states [55, 56] and superposition of coherent states4 like cat states [57, 58]. Also,
while Fock states are considered to be non-classical states in optics, since they give a
non-positive P-representation [59] (Glauber-Sudarshan P representation [60, 61]), they
are considered as classical states in the context of ressource theories of coherence, where
coherent superpostion of Fock states5 are non-classical [62–64]. In the multi-partite
scenario, entangled states represent a subset of a bigger family of non-classical states

4Classical states analoguous to those of a classical harmonic oscillator as we will see later in 1.5.1.
5like coherent states
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Figure 1.2: The octahedron (in blue) represents the equivalence class of separable states.
The set of points that lie outside the octahedron but inside the tetrahedron (in red) are
entangled states. The vertices of the tetrahedron represent the four Bell states [22].

which present correlations with no classical counterpart. These correlations are called
quantum discord and are sometimes present even in separable states [65–67].
Despite this variety of non-classicality concepts, entanglement remains the corner stone
and the most important among them. To begin with, it was shown that entanglement is
a necessary feature for any physical theory that has a classical limit like decoherence [68].
Moreover, non-classicality can be interchangeably transformed into entanglement even for
single-partite systems using ancillary systems [69]. In [70], a non-classicality measure for
quantum states of a single-mode electromagnetic field was proposed and called entangle-
ment potential (EP). This measure is based upon the amount of two-mode entanglement
that can be generated from the state using linear optics and auxilliary clasical states. It
was shown that indeed the notion of non-clasicality for single mode optics and two-mode
entanglement are closely related and can be transformed into one another [71, 62] and
later was generalized to different contexts other than optics [69].

The most non-classical feature about entangled states is the possibility to have non-
local correlations[16], i.e. correlations that cannot be explained by local models. In other
words, one is unable to construct local theories with some hidden random variable shared
among the different parties, or shared randomness, to explain the joint measurements’
statistics as mentioned earlier in the introduction.
While it is known that any state exhibiting non-locality must be entangled, the relation-
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ship between entanglement and non-locality is rather rich and far more complex. To
begin with, all pure entangled states, bi-partite or multi-partite, violate some form of
Bell inequalities6 [74, 75, 73], and are, hence, non-local. The same cannot be said about
mixed entangled states as some of them admit a local model for all local measurements
and, therefore, cannot violate any Bell inequality [76–80].
However, mixed entangled states may have what is called hidden locality that cannot
be revealed by direct measurements, involved in Bell inequalities, but may be revealed
with some pre-processing and local filtering of the state [81–85]. Moreover, it was shown
in [86, 87] that all bi-partite states have hidden non-locality that can be activated when
local filtering them jointly with other states that do not show non-locality neither. An-
other phenomenon is the super activation of non-locality, where a state not showing
non-locality before hand, becomes non-local when performing joint measurements on
multiple copies of the same state [88–90]. Finally, it was shown that using semi-quantum
games [91], a variant of the Bell tests where the input states are quantum, all entangled
states can be witnessed and reveal non-locality by a class of non-local games. This
shows how intricate the relationship between entanglement and non-locality is and how
non-locality might be a generic feature of entanglement.
The mentioned non-classical features exhibited by entangled states inspired and lead to a
large variety of applications that have been demonstrated experimentally. Many of these
applications take advantage of non-locality of entangled states like quantum cryptog-
raphy [92–98] ,quantum teleportation [99–104], and entanglement swapping [105–107].
More importantly, entanglement is a valuable resource for quantum information and
quantum computation. This resource [108] cannot be created for free by the means of
LOCC operations [39] but can be broadcasted [109, 110] and controlled [111]. Moreover,
entanglement is an essential ingredient in many quantum algorithms that allow a big
advantage over the existent classical ones [112–114]. At last, but not least, entanglement
is essential to enhance precision of measurements in linear metrology applications. In
such applications, non-classical correlations in certain entangled states can help improve
sensitivity and beat the standard quantum limit of classical states [115–118].

The above mentioned applications of entanglement are nothing but a tiny sample of
a huge list beyond the scope of this small introduction [52]. It is no wonder that a big
effort has been spent to find methods and criteria to quantify and detect this precious

6More precisely, a CHSH inequality [72] or an extension of it in the multi-partite case [73].
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and fragile resource. The aim of this chapter is to recall only a few of these criteria that
will be useful for the following chapters.

1.2 States in quantum mechanics

For the sake of completeness, I will try to recall the bare minimum necessary to introduce
the notion of entangled states. For that, I will introduce what is a state in quantum
mechanics from a mathematical point of view then the notion of purity which lead us
to the introduction of density matrices. Once these basics are recalled, we can move on
to describe the state of a multi-partite system and distinguish between separable and
entangled states.

The mathematical foundations of quantum mechanics are due to Von Neumann [119].
As a starting point, any physical system may be represented via a Hilbert space represent-
ing all the possible states the system may be in for some degree of freedom. These degrees
of freedom might be quantized; as for spin systems or energy levels for a particle in a box,
or continuous like position or moment of a particle. This vectorial representation allows
for one of the most interesting features of quantum theory, quantum superposition.

In what follows, I will only consider the case of finite dimensional Hilbert spaces.
This case captures the basic mathematical and more importantly physical concepts of
quantum mechanics. The generalization to infinite dimensions can be done with extra
care taken to account for the various mathematical subtleties related to infinite Hilbert
spaces.

1.2.1 Pure states

Let us start by describing a system in pure state in the statistical sense. Statistical
physics deals with ensembles of systems, where the system is replicated a big number of
times. Hence, a system is in a pure state iff any replica is in the exact same state.

Let S be a system and let H(d) be a Hilbert space spanned by the orthonormal
basis {|ei⟩}di=1 where the vector is written in Dirac’s notation. This basis is an abstract
representation of the different distinguishable outcomes of a measurement of the considered
degrees of freedom. Upon performing a measurement, the system will be in one of those
outcomes and never in a superposition. However, repeating the measurement might give
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Figure 1.3: Sketch of Stern-Gerlach experiment: A beam of silver atoms is sent through
an inhomogeneous magnetic field with a constant gradiant along the z axis. The silver
atoms come out of the magnetic field and hit a screen perpendicular to their initial
path. On the right, the intensity distribution is observed on the screen; in blue classical
expectation versus quantum result in red. An atom after the measurement can only be
in one of the two spin states | + 1

2⟩ or | − 1
2⟩.

different outcome to the previous measurements with a probability depending on the
state of the system beforehand.

As one of the most famous and important examples is the experiment of Stern-Gerlach
[120–123]. This experiment, first performed in 1922, has long been considered as the
quintessential experiment to illustrate the electronic intrinsic angular momentum; spin.
Another important aspect of it, is the simplicity of the results of the experiment, only two
outcomes, making it the perfect tool to illustrate and gain direct access to the priciples
of quantum mechanics, as was done in [120].

The experiment is summarized in Fig.1.3 where a collimated beam of silver atoms
is sent, in the x direction for example, through a magnetic field before hitting a screen
to measure the spatial distribution of silver atoms. The magnetic field pointing in the
z direction has a gradient which, for simplicity sake, is assumed to be a constant; i.e.
∂Bz

∂z
= cte ̸= 0. Without the magnetic field gradient, the silver atoms with magnetic

moment µ⃗ each will precess around the z-axis. This precession will have no influence on
the spatial distribution of silver atoms, which will be a Gaussian centered around (0, 0, 0)
with a spread depending on how good beam collimation is and time of flight of silver
atoms. On the other hand, with the presence of magnetic field gradient, each atom will
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feel a force in the z-direction: Fz = −∂U

∂z
, where U = −µ⃗ · B⃗ = −µzBz the potential

energy of a silver atom in a magnetic field,thus:

Fz = µz
∂Bz

∂z

Since the orientation of the magnetic moment of a silver atom µ⃗ at the exit of the oven,
source of the beam, is random, a classical mindset would expect its projection on the
z-axis to be a uniform distribution µz ∈ [− |µ⃗| , |µ⃗|]. Hence, the original spot at the origin
of the screen with no magnetic field gradient will be stretched in the z-direction with
borders corresponding to atoms having µz = ± |µ⃗| before entering the magnetic field re-
gion. Instead, two spots were observed corresponding to two values of µz = ±µB = ± |µ⃗|,
where µB = eℏ

2me

is Bohr magneton and me is the mass of an electron. Since, for silver

atoms, µ⃗ = gµB
ℏ
S⃗, where g7 is Landé g-factor and S⃗ is the spin vector, this experiment

offers a direct measurement of spin component along the z-axis. In other words, what
this experiment showed clearly is that there are only two possible values for Sz:+

ℏ
2 and

−ℏ
2 as predicted by quantum mechanics.

After the measurement, all the atoms are in a pure state being either | + 1
2⟩ or | − 1

2⟩;
taking ℏ = 1. Since states live in a Hilbert space, linear superposition can arise and a
general pure state of a spin-1

2 can be written as a complex combination of the form:

|ψ⟩ = α| + 1
2⟩ + β| − 1

2⟩ : |α|2 + |β|2 = 1

where |α|2
(
|β|2

)
represent the probability to find the spin-1

2 in the pure state | +
1
2⟩
(

| − 1
2⟩
)

after performing the measurement. Despite having two different outcomes

for measurement in the {| + 1
2⟩, | − 1

2⟩}, the state |ψ⟩ is pure since there exists a
projective measurement, in the basis {|ψ⟩, |ψ⊥⟩}8, that leaves it unchanged. It is called a
projective measurement since the states after the measurement {|ψ⟩, |ψ⊥⟩} are orthogonal,
i.e. ⟨ψ|ψ⊥⟩ = 0. Note that the atoms before the measurement in the experiment above
were not in a pure state, but rather we have an ensemble of states {| + 1

2⟩, | − 1
2⟩} with

probabilities {1
2 ,

1
2}. We say that each atom is in a mixed state. To describe such states,

7g = 2 for free electrons
8|ψ⊥⟩ = β| + 1

2 ⟩ − α| − 1
2 ⟩
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we use a density matrix formulation which is a very powerful and useful tool to describe
the state of a quantum system in general whether pure or mixed.

1.2.2 mixed states

Mixed states describe an ensemble of states {|ψi⟩} with probabilities {pi} where in a
large number of copies of the considered system, each copy will be found in the state
|ψi⟩ with probability pi. A more compact way of describing such situations is to use a
density matrix to describe the state.

A density matrix ρ is a bound operator acting on the Hilbert space of the considered
system with the following conditions:

• ρ is hermitian, ρ† = ρ

• ρ is positive ρ ≥ 0 and normalized Tr [ρ] = 1.

Being a hermitian operator, ρ will always be diagonalizable ρ = ∑
i λi|ψi⟩⟨ψi|. Posi-

tivity and normalization will ensure that {λi}i is a probability distribution. Hence ρ is a
representation of the ensemble {λi, |ψi⟩}.
A special case is when ρ = |ψ⟩⟨ψ| which represents a pure state since ρ2 = ρ. In other
words, ρ is a projector onto the state |ψ⟩. Conversely, a mixture of states {pi, |ϕi⟩}, with
pi ≥ 0 and ∑i pi = 1, can be represented by the density matrix ρ = ∑

i pi|ϕi⟩⟨ϕi|.

In fact, the density matrix formalism is the most general way of describing a quantum
system as was proven by Gleason in Ref. [124]. It is also worth noting that a given
density matrix does not represent a unique ensemble of states. The simplest example is
to take an ensemble of non orthogonal states {pi, |ϕi⟩}. Clearly, ρ = ∑

i pi|ϕi⟩⟨ϕi| has a
spectral decomposition ρ = ∑

i λi|ψi⟩⟨ψi|, where the states {|ψi⟩} are orthogonal.

In general [37], two ensembles {λi, |ψi⟩}, {pi, |ϕi⟩} will give rise to the same density
matrix;i.e. ρ = ∑

i λi|ψi⟩⟨ψi| = ∑
i pi|ϕi⟩⟨ϕi| iff there exists a unitary matrix U such that:

√
λi|ψi⟩ =

∑
j

Uij
√
pi|ϕi⟩.
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1.2.3 Many-body states

So far, we have the mathematical representation of a single particle state. While, one

can always treat a many-body system as a whole, it is more interesting to have a more

detailed description with respect to its one-body components.

Let us consider a system S composed of n subsystems {S(i)}i∈Nn . Each subsystem S(i)

is described by a Hilbert space H(i). Then we can describe the system S by the tensor

product ⊗i H(i) = H. Moreover, any pure state |Ψ⟩ ∈ H can be written as:

|Ψ⟩ =
∑
k⃗

αk⃗
⊗
i

|ψ(i)
ki

⟩ (1.1)

where k⃗ = (k1, · · · , kn) is a vector of indices, and the index ki labels the elements of the

basis {|ψ(i)
ki

⟩}ki
of H(i). An interesting point here is that despite S is in a pure state |Ψ⟩,

the subsystem S(i) is not necessarily in a pure state and that depends on the coefficients

αk⃗ (1.1). The purity of the state of S(i) will mean that it is separable of the rest of the

subsystems of S as we will see later when we study entanglement. Once pure many-body

states are defined, their extension to mixed states is straightforward.

We also can extend an operator A(i) acting on H(i) into an operator acting on the whole

Hilbert space H, simply, by taking its tensor product with the identity over the other

Hilbert space, i.e. A(i) ⊗⊗
j ̸=i 1

(j). These operators are called local operators since they

only act on a local part of the system. By abuse of notation, we will drop the identity

over other subsystems and we will, henceforth, use A(i) to represent an operator acting

on H(i) or H depending on the context. We will also be referring to operators of the form

A =
n∑
i=1

A(i) (1.2)

as collective operators. For example the operator:

Jx =
n∑
i=1

J (i)
x

is the x-component of the collective spin operator of an ensemble of n j-spins.
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Partial trace

Given the state ρ of the many-body system S, we can obtain the state ρA of its subsystem
A as:

ρ(A) = TrB [ρ] , (1.3)

where B = S\A and TrB [.] represents the partial trace over B, the remaining part of
the system.
This can be justified by the fact that ρ(A) gives the correct expectation value of any local
operator D(A):

⟨D(A)⟩ = Tr
[
ρ1(B) ⊗ D(A)

]
= TrA

[
ρ(A)D(A)

]
(1.4)

Now we are in position to discuss one of the most interesting features of quantum
mechanics related to multi-partite systems, entanglement.

1.3 Bipartite entanglement

In this section, we recall the definition of bipartite entanglement and some of the most
important criteria to detect it. Let ρ(AB) be a state of bipartite system AB. ρ(AB) is said
to be a product state iff it can be written as a product ρ(A)⊗ρ(B), where ρ(A) = TrB

[
ρ(AB)

]
and ρ(B) = TrA

[
ρ(AB)

]
. More generally, ρ(AB) is said to be a separable state iff it can be

written as a convex sum of product states; i.e.

ρ(AB) =
∑
k

pkρ
(A)
k ⊗ ρ

(B)
k : pk ≥ 0,

∑
k

pk = 1. (1.5)

Once separable states are defined, we are able to define entangled states as the states
that cannot be written in the above form. In other words, ρ(AB) is said to be entangled
iff it cannot be written as a convex sum of product states. This definition, albeit clear, is
useless in practice. As we have seen, a mixed state represents many ensembles as long as
they verify the condition introduced in 1.2.2. Testing for all possible ensembles is quite
complex and prohibitive especially when the dimension of the Hilbert space gets bigger.
That is why a lot of effort has been and still being spent to find efficient entanglement
criteria [52, 125]. Next, we will start by criteria for pure bi-partite state and then we
will move on to some of the criteria for mixed states. I will only mention criteria relevant
to this thesis for finite dimensional systems and skip over criteria for continuous variable
systems [126].
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1.3.1 Entanglement of pure bipartite states

Characterizing entanglement for bipartite pure state can be achieved rather easily. We
say that a pure bipartite state |Ψ⟩ ∈ H(A) ⊗ H(B) is entangled iff it cannot be written as
a product state:

|Ψ⟩ =
∣∣∣ϕA〉⊗

∣∣∣ϕB〉 :
(∣∣∣ϕA〉 , ∣∣∣ϕB〉) ∈ H(A) × H(B)

In general, we can write any state |Ψ⟩ using the orthonormal basis
{∣∣∣ψAi 〉⊗

∣∣∣ψBj 〉}dA,dB

i,j=1
,

where dim(H(A)) = dA, dim(H(B)) = dB as:

|Ψ⟩ =
dA,dB∑
i,j

αij
∣∣∣ψAi 〉⊗

∣∣∣ψBj 〉 (1.6)

Using Schmidt decomposition[37], we can find an orthonormal basis {
∣∣∣eAi 〉 ⊗

∣∣∣eBi 〉}ki=1

and coefficients {βi ≥ 0}ki=1 : k ≤ min{dA, dB} such that:

|Ψ⟩ =
k∑
i=1

βi
∣∣∣eAi 〉⊗

∣∣∣eBi 〉, (1.7)

where βi = √
si, and si are the singular values of the matrix α whose elements are

αij defined in (1.6). k is called the Schmidt rank. Hence, according to the previous
separability condition for pure states, a state is separable iff it has a Schmidt rank equal to
1. It is worth noting that the Schmidt rank k is equal to the rank of either of the reduced
density matrices ρ(A) = TrB [|Ψ⟩⟨Ψ|] or ρ(B) = TrA [|Ψ⟩⟨Ψ|]. In fact, one can easily
see that they share the same eigenvalues si. Thus, it is quite simple to fully character-
ize entanglement for pure states by calculating the spectrum of the reduced density matrix.

From experimental point of view, having a pure state and conserving its purity is
almost an impossibility due to systematic errors (small errors in the system preparation,
noise ... ). One has to deal with mixed states for which separability is quite hard to
characterize. Next, I will recall some of the most important criteria that I will make use
of through this work.

1.3.2 Entanglement of mixed bipartite states

We have seen that it is quite easy to distinguish pure separable states. Mixed states, on
the other hand, are harder to be judged entangled or not. It is still an open question to
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find necessary and sufficient conditions for separability for arbitrary bipartite state. All
the criteria that we are going to cite here, are necessary conditions for separability but
not sufficient.

Majorization criterion and entropic inequalities

Let x, y be two vectors in Rn and let x↓, y↓ be the two vectors obtained from x, y by
ordering their components in descending order. We say that x is majorized by y [127]
and we write x ≺ y if:

∀k ∈ {1, · · · , n};
k∑
i=1

x↓
i ≤

k∑
i=1

y↓
i ,

n∑
i=1

x↓
i =

n∑
i=1

y↓
i (1.8)

If the last equaltiy does not hold, then we say that x is weakly majorized by y and we
write x ≺w y. Once this notion is introduced, we can look at an important separability
criterion introduced bu Nielsen and Kempe [128] for bipartite state of arbitrary dimension
ρ(AB) :
If ρ(AB) is separable then

Λ
(
ρ(AB)

)
≺ Λ

(
ρ(A)

)
, Λ

(
ρ(AB)

)
≺ Λ

(
ρ(B)

)
(1.9)

where ρ(A), ρ(B) are the reduced density matrices and Λ (ρ) is the dA × dB eigenvalues
vector of ρ in descending order - padded with zeros for the eigenvalues’ vector of the
reduced density matrices.

From the above inequality, follows a weaker inequality in terms of Von Neumann
entropy defined for a given density matrix ρ as:

S (ρ) = −Tr [ρ log (ρ)] . (1.10)

Since S(ρ) is Schur concave [129] and from the previous criterion, one can obtain the
following separability criterion:

S
(
ρ(AB)

)
≥ S

(
ρ(A)

)
, S

(
ρ(AB)

)
≥ S

(
ρ(B)

)
(1.11)

S(ρ) can be thought of as a measure of the lack of information about the state of a
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system. If the system is in a pure state, hence, as we discussed above, is in a particular
state with certainty, then the von Neumann entropy is 0. On the other hand, if the
system is in a mixed state, then the corresponding von Neumann entropy is strictly
positive. The maximally mixed state of a, say, d-level system, ρ = 1

d
1 represents the

complete absence of information about the state of the system and has the maximal
value of the von Neumann entropy S(ρ) = log(d). In other words, the higher the entropy
is, the less we know about the system.
Then we see that the above criterion (1.11) tells us that, for separable states, the global
system is more disordered than either of its subsystems. In other words, for some entangled
states, we have more information about the global system than about its components.
This is never the case for classical variables, where the Shannon entropy [130] for a single
random variable is always smaller than the joint entropy [131] for two random variables:

H(X, Y ) ≥ H(X) , H(X, Y ) ≥ H(Y ) (1.12)

where H(X) = −∑
x P (X = x) log (P (X = x)) is the classical counter part for the von

Neumann entropy.

The Von Neumann entropy is a limit case for a whole family of entropy called Rényi
entropy defined [132] for a parameter α ≥ 0 as:

Sα(ρ) = log (Tr [ρα])
1 − α

(1.13)

where Von Neumann entropy is obtained as limα→1+ Sα(ρ). Then [22, 133, 134], For any
separable state ρ(AB) the following inequalities are verified

Sα
(
ρ(AB)

)
≥ Sα

(
ρ(A)

)
, Sα

(
ρ(AB)

)
≥ Sα

(
ρ(B)

)
(1.14)

for all α ≥ 0.

Finally, one can write an equivalent separability criterion to (1.14) in terms of Tsallis
entropy [135–137] as:

Tα
(
ρ(AB)

)
≥ Tα

(
ρ(A)

)
, Tα

(
ρ(AB)

)
≥ Tα

(
ρ(B)

)
(1.15)
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where Tα(ρ) is Tsallis entropy defined for α ≥ 0 as

Tα(ρ) = Tr [ρα] − 1
1 − α

. (1.16)

Inseparability with positive maps

A linear map M from B
(
H(1)

)
to B

(
H(2)

)
, with B (H) being the bounded operator

space acting on H, is said to be positive iff for all positive ρ ∈ B
(
H(1)

)
, M (ρ) is positive.

On the other hand, M is said to be completely positive [138] iff the linear map 1(n) ⊗ M
is positive for all n, where 1(n) is the identity map from B

(
H(n)

)
,where H(n) is any

Hilbert space of dimension n, to itself.
From the above two definitions, one can see that a complete positive map is not useful
to detect entanglement since it maps any density matrix into a positive one. However, a
positive but not completely positive map can map some bipartite density matrices into
non positive ones. In other words, for a positive but not completely positive M, there
exists n or a Hilbert space H(A), such that 1(A) ⊗ M is not positive. Hence the following
separability criterion [139]:
A state ρ(AB) is separable iff for all positive but not completely positive maps M from
B
(
H(B)

)
to B

(
H(A)

)
, 1(A) ⊗ M

(
ρ(AB)

)
is positive.

It is easy to see why the above requirement is a necessary condition for separability. Say
ρ(AB) is a separable state and M is a positive map. Then, we can write ρ(AB) in the
following form:

ρ(AB) =
∑
k

pkρ
(A)
k ⊗ ρ

(B)
k : pk ≥ 0,

∑
k

pk = 1. (1.17)

From which follows that

1(A) ⊗ M
(
ρ(AB)

)
=
∑
k

pkρ
(A)
k ⊗ M

(
ρ

(B)
k

)
(1.18)

is positive since M is positive. As for the sufficiency part see [139].

While testing for all positive maps is quite prohibitive, one can use certain maps as
a sufficient condition for entanglement. The most important ones among these are the
reduction criterion and PPT criterion.
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Reduction criterion

The positive map to consider for the reduction criterion is defined as:

M (ρ) = Tr [ρ] 1 − ρ (1.19)

which gives the following criterion [140, 141]:
For all separable states ρ(AB), the following inequalities hold

ρ(A) ⊗ 1 − ρ(AB) ≥ 0 , 1 ⊗ ρ(B) − ρ(AB) ≥ 0. (1.20)

One corollary of the above inequalities are the entropic inequalities (1.14) seen in the
previous section [141]. Another corollary is the majorization criterion [128]. This follows
from the implication [142],

A ≤ B ⇒ λ(A) ≺w λ(B)

for any Hermitian operators A and B. Hence, the reduction criterion is stronger than
both the mojorization and entropic criteria [143].
It is also equivalent to the PPT criterion for the case of two qubits, hence it constitutes
a necessary and sufficient condition for entanglement, as we will see in the next section.
It is however, weaker than the PPT criterion for higher dimensions. Moreover, reduction
criterion is closely related to entanglement distillability, defined hereafter, where it was
shown in [141] that any state that violates (1.20) is distillable.

Entanglemnt distillation The notion of entanglement distillation was introduced
in [39] as a way to concentrate and purify entanglement to allow for quantum communi-
cation protocols in the presence of noise [39, 144].
Entanglement distillation, when two parties share n copy of some entangled bipartite
state, consists in performing some LOCC operations to obtain the maximal number,
k(n) ≤ n, possible of pairs of maximally entangled states [145]9. The asymptotic ratio k

n
in the limit of large number of copies n is called entanglement of distillation [144] which
quantifies how much pure state entanglement we can extract from a given state ρ.
The task of deciding whether a bipartite state ρ is distillable or not was significantly
reduced in [49] to the following condition,

9We call ρ a maximally entangled state of an M ×N dimensional bipartite system iff the reduced
density matrix for any subsytem is of the form P (k)/k with k = min (M,N) and P (k) is a projector of
rank k.
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A bipartite state ρ ∈ B
(
H(A) ⊗ H(B)

)
is distillable iff there exists a number n and rank-2

projectors P and Q such that the unnormalized state ρ′ = P ⊗Qρ⊗nP ⊗Q is entangled.
In other words, ρ′ is a state acting on a 2 × 2 subspace of H(A) ⊗ H(B). Hence, distillable
entanglement can be seen as a form of two-qubit entanglement.
As I have just mentioned earlier, any state violating the reduction criterion is distillable.
Since, reduction criterion is a necessary and sufficient condition for entanglement in the
2-qubit case, it follows that all 2-qubit states are distillable. However, not all states can
be distilled and the question of distillability of a given state has been linked [49] to the
PPT criterion mentioned herafter.

PPT criterion

Positive Partial Transpose (PPT) criterion or Peres-Horodecki criterion[146, 139] is one of
the most important separability criterion out there for bipartite systems. Its importance
is specially appreciated for providing a necessary and sufficient condition for entanglement
of bipartite systems with dimensions 2 × 2 and 2 × 3.
As can be inferred from the name Partial Transpose, it is the transpose map to be
considered M = T , and it was shown that [146, 139]:

For all separable states ρ(AB), ρ(AB)TB = 1 ⊗ T
(
ρ(AB)

)
is a density matrix.

where the symbol .TB means that the partial transpose is taken with respect to the
subsystem B. One can see that taking the partial transpose does not matter whether it
is with respect to A or to B. that is because

ρTA =
(
ρTB

)T
.

and the transpose is positive but not completely positive map.
Despite it being only a sufficient criterion for entanglement, the PPT was shown [146, 139]
to be a necessary and sufficient for the case of 2 × 2 and 2 × 3 systems. Hence a full
characterization of the separable states for these cases. This is because there exists a
decomposition of positive maps in terms of completely positive maps as shown by Størmer
and Woronowicz [147, 148] for systems of dimensions 2 × 2 and 2 × 3. For these systems,
the positivity of 1 ⊗ M (ρ) for any positive map M becomes equivalent to the positivity
of 1 ⊗ MCP

1 (ρ) + 1 ⊗ MCP
2

(
ρTB

)
, where MCP

1 and MCP
2 are completely positive, which,

in turn, is related to the positivity of ρTB .
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This decomposition, however, does not exist for higher dimensional systems, hence the
existence of states that are entangled with positive partial transpose [48]. These states
are called PPT entangled states and they are bound entangled since they cannot be
distilled by means of LOCC operations [49]. In contrast, the states that are not positive
under partial transpose are called NPT entangled states. It is still an open question
whether all NPT states are distillable or not. As mentioned earlier, all NPT states that
violate the reduction criterion are distillable. It is also known that all NPT 2 ×N states
are distillable [149]. However, the existence of NPT bound entanglement does not have a
definite answer yet [150–153].

Finally, let us give an example of states that violates PPT criterion but satisfies the
reduction criterion. One family of such d× d states was introduced by Werner [76]:

ρβ = 1
d2 + dβ

(1 + βV ) , −1 ≤ β ≤ 1 (1.21)

where V = ∑
i,j |i, j⟩⟨j, i| is the flip operator. These states were introduced as states

that do admit a hidden variable model but exhibit non-classical correlations. Another
property of these states that they are the only states that are invariant under local
unitary transformations of the form

ρ −→ U ⊗ UρU † ⊗ U †. (1.22)

Consequently, any state ρ can be transformed into a Werner state via a twirl operation
∫
dUU ⊗ UρU † ⊗ U † (1.23)

where the integral is carried out with respect to Haar measure on the unitary group U(d).
Werner showed that ρβ is separable iff Tr [ρβV ] ≥ 0. The condition Tr [ρβV ] ≥ 0 is
equivalent to β ≥ −1

d
or having a positive partial transpose. Hence, PPT criterion

detetcts all entangled Werner states whereas the reduction criterion fails to detect any
state for d ≥ 3 [141].
These states (1.21) are highly symmetric and are of great importance in the context
of entanglement distillation. As we mentioned earlier, the existence of NPT bound
entanglement is still an open question but it can be reduced to the study of entanglement
distillation of Werner states. Indeed, it was shown in [141] that distillability of all NPT
states is equivalent to distillability of all NPT Werner states.
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Range criterion

This criterion was introduced by Horodecki [48] as a way to construct and detect the
entangled states that are undetectable via the PPT criterion. It is called the range10

criterion and it is stated as follows:

Let us consider a bipartite state ρ ∈ B
(
H(A) ⊗ H(B)

)
. If ρ(AB) is separable, then there

exists a set of product states {|ψi⟩ ⊗ |ϕk⟩}, |ψi⟩ ∈ H(A), |ϕk⟩ ∈ H(B), and (i, k) ∈ I where
I is a finite set of indices with cardinal number m ≤ d(A) × d(B), such that:

• the set {|ψi⟩ ⊗ |ϕk⟩} span the range of ρ

• the set {|ψi⟩ ⊗ |ϕ∗
k⟩} span the range of ρTB ,

where |ϕ∗
i ⟩ is obtained by taking the complex conjugate of |ϕi⟩ in the basis in which the

partial transpose was performed.
As mentioned in [48], this criterion is useful when the range of ρ does not span the entire
Hilbert space. Another point to mention, is that this criterion is not stronger than PPT
in general. For example, it fails to detect 2 × 2 entangled Werner states which violate the
PPT criterion. Finally, an example of states satisfying both the PPT and range criteria
was provided in [48].

CCNR criterion

Another simple and powerful criterion is the computable cross norm or realignment
(CCNR) criterion. The name CCNR comes from the fact that this criterion has been
discovered in two different forms, namely, by cross norms [154, 155] and by realignment
of density matrices [156].
Let us start with the CCN norm that is defined for an operator C ∈ L

(
H(A)

)
⊗

L
(
H(B)

)
as [155, 157]:

∥C∥CCN = inf{
n∑
i=1

∥Ai∥2 ∥Bi∥2 : C =
n∑
i=1

Ai ⊗Bi} (1.24)

where the infimum runs over all finite decompositions of C into elementary tensor
product [154] and ∥.∥2 is Hilbert-Schmidt norm. While this does not seem so computable,

10The range of an operator A acting on a Hilbert space H is given by R(A) = {A|ψ⟩ : |ψ⟩ ∈ H}.
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it can be shown for a density matrix ρ(AB) to be:
∥∥∥ρ(AB)

∥∥∥
CCN

=
∑
i

Γi (1.25)

where Γi are the Schmidt coefficients obtained from the Schmidt decomposition of ρ(AB).
Like we have seen for pure states (1.7), we can carry out Schmidt decomposition in the
operator linear space and find orthonormal basis {E(A)

k } and {E(B)
k } such that

ρ(AB) =
∑
k

ΓkE(A)
k ⊗ E

(B)
k . (1.26)

Moreover, it can be shown that [158]:
∥∥∥ρ(AB)

∥∥∥
CCN

= ∥ρ̃∥1 (1.27)

where ∥.∥1 is the trace norm and ρ̃ is the realigned matrix [156] defined as:

⟨m|⟨n|ρ̃|m′⟩|n′⟩ = ⟨m|⟨m′|ρ(AB)|n′⟩|n⟩. (1.28)

Then, we can state the CCNR criterion as follows:
For a separable state ρ ∈ B

(
H(A) ⊗ H(B)

)
, the following inequality holds

∥ρ∥CCN = ∥ρ̃∥1 ≤ 1. (1.29)

Finally, one can generalize the realignment criterion to any contraction linear map-
ping Λ that does not increase the trace norm for product states [159]. That is, if∥∥∥Λ (|ψ(A)⟩⟨ψ(A)| ⊗ |ϕ(B)⟩⟨ϕ(B)|

)∥∥∥
1

≤ 1, then
for any separable state ρ ∈ B

(
H(A) ⊗ H(B)

)
we have

∥Γ (ρ)∥1 ≤ 1. (1.30)

The CCNR criterion as well is complementary to the PPT criterion where it was shown
to detect some PPT entangled states and fail to detect some entangled 2 × 2 states [160].

Entanglement witness

All the above mentioned criteria require full knowledge of the state, which is hard to do
in practice for high dimensional systems, hence the idea of entanglement witness [161].
As depicted in Fig 1.4, an entanglement witness is an observable whose expectation
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value is positive for all separable states, but negative for some entangled states. This
considerably simplifies the task if the objective is to only testify entanglement rather
than full knowledge of the state.

Figure 1.4: Pictorial view of the set of all bipartite states. Separable states form a convex
subset depicted in red. The blue line represents an entanglement witness W . The states,
that lie in the area with blue stripes, give rise to positive expectation value of W . Thus,
only the entangled states in the area with red stripes, for which ⟨W ⟩ < 0, are detected
by W .

The origin of the idea is geometric [139]. Since the set of separable states is convex
and compact, one can separate any entangled state from the set of separable states by a
hyper-plane characterized by a Hermitian W 11 orthogonal to it. All the points of this
hyper-plane correspond to states ρ such that Tr [ρW ] = 0. Thus, one can choose W
such that its expectation value is positive for all separable states and negative for the
considered entangled state. This point was introduced in [139] as follows:

For every entangled state ρ ∈ B
(
H(A) ⊗ H(B)

)
, there exists a Hermitian operator

W ∈ B
(
H(A) ⊗ H(B)

)
such that

• For any separable state σ; Tr [σW ] ≥ 0

• Tr [ρW ] < 0.
11W is a vector in the operator vector space.
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As stated by the above theorem, every entangled state can be detected via a measur-
able observable. However, constructing such an observable for every state is equivalent to
solving the separability problem which has been shown to be an NP-hard problem [162–
164]. Constructing entanglement witnesses in general, and finding the minimal set of
them that allows for the detection of all entangled states is one of the most challenging
open questions [165].

Entanglement witnesses W can be constructed from positive but not completely
positive maps M : B

(
H(A)

)
→ B

(
H(B)

)
via Choi-Jamiolkowski isomorphism [166, 167]:

W = (1 ⊗ M) (|Ψ+⟩⟨Ψ+|) : |Ψ+⟩ = 1√
dA

dA∑
k=1

|k, k⟩, (1.31)

where |Ψ+⟩ is a maximally entangled state in H(A) ⊗ H(A). This follows from the proper-
ties of the above isomorphism where a map M is positive iff the corresponding operator
W via (1.31) has positive expectation value for all product states. Moreover, a map M
is completely positive iff the corresponding operator W via (1.31) is positive, see lemma
in the appendix of [168]. Hence, a map M is positive but not completely positive iff the
corresponding operator W is an entanglement witness. Despite this one to one corre-
spondence, the separability criterion based on a positive but not completely positive map
M, mentioned previously 1.3.2, is stronger than the corresponding witness constructed
via (1.31) [169]. However, the point of entanglement witnesses is its measurability in
experiments, where, ideally, one is able to infer entanglement from a minimum number
of measurements.
Often, in experiments, the target entangled state |Ψ⟩ is known beforehand. In this case,
on can construct the following entanglement witness

W = α1 − |Ψ⟩⟨Ψ| (1.32)

which depicts how "similar" a state is to the entangled state |Ψ⟩. α is taken to be the
maximum overlap of product states with |Ψ⟩ [170]:

α = max
|ϕ⟩product

|⟨ϕ|Ψ⟩|2 (1.33)
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Hence, any state ρ with fidelity12 ⟨Ψ|ρ|Ψ⟩ exceeding α is entangled. This kind of witnesses,
despite being unable to detect PPT entangled states, has the advantage of being easy to
generalize for multipartite cases.
Another important way of constructing witnesses that can be generalized for the multi-
partite case was provided in [172] as follows: Given an observable H, one can construct
the following entanglement witness

WH = H − inf
|ϕ⟩product

⟨ϕ|H|ϕ⟩ (1.34)

where the infimum is taken for all pure product states. The above witness can be useful
for a spin system whose hamiltonian has an entangled ground state [172].

Finally, we mention Bell inequalities which was firstly considered as entanglement
witness by Terhal [161]. The simplest and most famous form is the CHSH inequality [72]
which can be put into witness form as:

WCHSH = 21 − ACHSH (1.35)

where ACHSH is the CHSH operator defined as:

ACHSH = A1 ⊗B1 + A2 ⊗B1 + A1 ⊗B2 − A2 ⊗B2 (1.36)

and Ai and Bi are the dichotomic measurements performed by the first and second party
with eigenvalues {−1,+1}. For the 2-qubit state, the maximum negative value for the
above witness is 2 − 2

√
2 that can be achieved with the singlet state 13

|Ψ−⟩ = |0, 1⟩ − |1, 0⟩√
2

(1.37)

and the following operators:

A1 = σx , A2 = σy , B1 = −σx + σy√
2

, B2 = σy − σx√
2

(1.38)

12Fidelity of two quantum states ρ and σ is defined as F (σ, ρ) =
(

Tr
[√√

σρ
√
σ
])2

[171]. If σ = |Ψ⟩,
we get F (|Ψ⟩⟨Ψ|, ρ) = ⟨Ψ|ρ|Ψ⟩.

13or any maximally entangled state with the application of proper local unitaries to CHSH operator.
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2
√

2 represents the maximum achievable value for ACHSH in quantum mechanics and is
called the Tsirelson bound [173] which can be exceeded when considering some non-local
models other than quantum mechanics [174].
It is important to emphasize that the above witness rather witnesses non-locality which
implies entanglement. In other words, WCHSH is a non optimal witness that detects only
entangled states that do not admit LHVM models. For example, Werner states (1.21)
for the 2-qubit case, which can be written in this equivalent form:

ρW = (1 − p) 1
4 + p|Ψ−⟩⟨Ψ−| (1.39)

is entangled for p > 1
3 and have been shown to admit a local hidden variable model for

p ≤ 0.66 [78]. The entangled Werner states are only detected by the CHSH witness for
p >

1√
2

.

Entanglement measures

So far we have presented some of the criteria to certify the presence of entanglement in a
state. However, if someone is interested in quantifying entanglement, which is useful, for
example, in quantum communication and distillation protocols [175, 144, 176], one may
use what is called an entanglement measure.
An entanglement measure is a function that maps any bipartite state ρ into a positive
number E(ρ) ∈ R+ with the following axiomatic properties [177, 176]:

• For any separable state σ, E(σ) = 0 meaning that the state contains no entangle-
ment.

• E(ρ) should remain invariant under local unitary transformations; i.e. E(ρ) =
E
(
U ⊗ V ρU † ⊗ V †

)
, where U and V are unitaries on the first and second subsystem

respectively. That is because the mentioned transformation represents a simple
change of basis that is incapable of changing the present correlations in a state.

• Since manipulating entanglement in quantum information and communication
protocols is usually done within the paradigm of LOCC operations, where entangle-
ment is a resource and LOCC do not create entanglement, E(.) should not increase
on average under such transformations.

Any function verifying the above requirements is called an entanglement monotone. One
may require additional properties [125, 176] like convexity and additivity, however these
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may be relaxed since they are not verified by some entanglement measures [178, 179].
As an example of an entanglement measure for pure states is the Von-Neumann entropy
of any of the two subsystems. We can check easily that it verifies the above three
conditions. To begin with, If the state is separable, i.e. of the form |Ψ⟩ = |ψ(A)⟩ ⊗ |ψ(B)⟩,
then S

(
ρ(A)

)
= 0. A local unitary would not change the eigenvalues of ρ(A), thus

S
(
ρ(A)

)
is unchanged. Finally, it was shown by Nielsen [42] that a state |Ψ⟩ can be

transformed into another |Φ⟩ via LOCC operations iff λΨ ≺ λΦ where λΨ and λΦ are the
eigenvalues of the reduced density matrices of |Ψ⟩ and |Φ⟩ respectively. This implies that
S
(
ρ

(A)
Ψ

)
≥ S

(
ρ

(A)
Φ

)
since S(.) is Schur concave. However, this measure is only defined

for pure states and it fails for mixed states, which can be checked taking the completely
mixed state as a counterexample. It was extended in [39] to mixed states by taking the
convex roof of the Von neumann entropy:

EF (ρ) = inf
pk,|Ψk⟩

∑
k

pkS
(
ρ

(A)
k

)
(1.40)

where ρ(A)
k is the reduced density matrix of the pure state |Ψk⟩ and the infimum is taken

over all pure states such that ρ = ∑
k |Ψk⟩⟨Ψk|. This measure is called entanglement

of formation and can be efficiently computed for 2 × 2 states [180]. It is, however,
quite challenging to compute for higher dimensions because of the optimizations over all
possible decomposition of a given density matrix.
Another famous entanglement measure is concurrence [181–183] defined for pure states
as:

C (ρ) =
√

2
(
1 − Tr

[
ρ(A)2]) (1.41)

Then the above measure can be extended to mixed states by taking the convex roof of
the concurrence for mixed states. For the 2 × 2 case, concurrence has a simple form:

C (ρ) = max (0, λ1 − λ2 − λ3 − λ4) (1.42)

where {λi}4
i=1 are the eigenvalues of

M =
√√

ρρ̃
√
ρ : ρ̃ = σy ⊗ σyρ

∗σy ⊗ σy (1.43)

in descending order.
Finally, a very simple entanglement measure that can be calculated easily for mixed
states is negativity [184] ,which is connected to the violation of the PPT criterion via
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the relation:

N (ρ) =

∥∥∥ρTB

∥∥∥
1

− 1
2 (1.44)

Another equivalent measure is the logarithmic negativity [184]

EN (ρ) = log2

∥∥∥ρTB

∥∥∥
1

(1.45)

where both of these measures is useful for NPT states only.
There are other measures based on geometrical considerations, distance, entanglement
distillability and entanglement cost that I will skip here and leave it to the interested
reader to look it up in these reviews for example [125, 176, 52].

1.4 Multipartite entanglement

If dealing with two systems introduced a very complex and rich features to the states,
one should expect the same as one adds more systems where the dimension grows expo-
nentially larger.
The notion of entanglement, in which we are interested, can be generalized relatively
easily. However, we can distinguish different degrees of separability that are not possible
with two systems only.

Full separability: We say that a state ρ ∈ B
(
H(1) ⊗ H(2) ⊗ · · · ⊗ H(N)

)
to be fully

separable iff it can be written in the form:

ρ =
∑
k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(N)
k : pk ≥ 0 ,

∑
k

pk = 1 (1.46)

On the other hand, one may divide the N -partite systems into different partitions,i.e.
grouping some of the subsystems into one subsystem for example, which leads to the
following notion of separability with respect to the new partition despite the presence or
not of entanglement in the newly formed subsystems.

k-producibility [185]: We say that a state ρ ∈ B
(
H(1) ⊗ H(2) ⊗ · · · ⊗ H(N)

)
is k-

producible iff it can be written in the form:

ρ =
∑
k

pkρ
(1)
k ⊗ ρ

(2)
k ⊗ · · · ⊗ ρ

(n)
k : pk ≥ 0 ,

∑
k

pk = 1 (1.47)
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where the number of parties is n ≥ N

k
and ρ(i) is a state of ki particles such that ki ≤ k.

If we denote the convex set of k-producible states by S∥, then one can have the following
hierarchy S1 ⊂ S2 ⊂ · · · ⊂ SN−1 ⊂ SN where S1 is the set of fully separable states and
SN corresponds to the set of all states of the N -partite system, see Fig. 1.5.

Figure 1.5: Schematic view of the hierarchy of the convex set Sk containing k-producible
states for 1 ≤ k ≤ N .

Entanglement depth: We say that a state ρ ∈ B
(
H(1) ⊗ H(2) ⊗ · · · ⊗ H(N)

)
has

entanglement depth k iff ρ ∈ Sk \ Sk−1. This means that one is unable to find a
decomposition of the form (1.47) with parties containing less than k particles. Hence,
states with entanglement depth k are called genuine k-entangled states [185]. In particular,
states in the set SN \ SN−1 are called genuine multipartite entangled states.
At this point, mentioning the Greenberger-Horne-Zeilinger (GHZ) states is a must [186,
187]. This state can be defined for N -qubits as:

|GHZ⟩ = |0⟩⊗N + |1⟩⊗N
√

2
(1.48)

and can be generalized for N -qudits:as:

|GHZd⟩ = 1√
d

d−1∑
k=0

|k⟩⊗N (1.49)

These states can be considered as maximally entangled states for N -partite systems
analogous to those for 2-qudits. These states were initially proposed to refute Einstein-
Podolsky-Rosen (EPR) ideas on the relation between locality and elements of reality with
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quantum mechanics, but they proved to be extremely useful for many applications like
metrology [188] and quantum computation [189]. However, despite it being maximally
entangled, it is extremely sensitive to particle loss where the loss of one particle will give
a completely separable state.
Another class of genuine multipartite entangled states are the W states defined for
3-qubits as [149]:

|W3⟩ = 1
3 (|0, 0, 1⟩ + |0, 1, 0⟩ + |1, 0, 0⟩) (1.50)

They can be written for N -qubits in the form [149]:

|WN⟩ = 1√
N

|N − 1, 1⟩ (1.51)

where |N − 1, 1⟩ is the completely symmetric state with N − 1 zeros and 1 ones. Unlike,
the GHZ states, the W -states have entangled reduced density matrices for any pair of
particles [149].

Entanglement detection in multi-partite systems

Since entanglement structure of multipartite systems is richer than the bi-partite case,
entanglement criteria are not always a simple generalization of the bi-partite case even in
the pure case. For instance, Schmidt decomposition exists for all pure bi-partite states,
but not all pure entangled states admit a generalized Schmidt decomposition [190]. An
example of states admitting a generalized Schmidt decomposition would be the GHZ
states (1.49) and one that does not admit one is the W state (1.50).
However, many of the bi-partite entanglement criteria may prove useful for the multi-
partite case. If one splits the total system into two subsystems, one can apply the bipartite
criteria. For example, for pure states of spin systems, the Von-neumann entropy of a bi-
partition is studied to understand how entanglement is spreading for large systems [191].
Other bi-partite criteria can be extended as well, like the range criterion [52] and the
realignment criterion [192]. Moreover, there are many extensions of Bell inequalities to
the multi-partite case like Mermin inequalities [193] ans Svetlichny inequality [194]. For
more details on the different multi-partite entanglement criteria, the reader might check
these reviews [52, 125] and the references there in. As for the rest of this chapter, we
will only focus on entanglement detection using collective operators, especially with spin
squeezing inequalities.
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1.5 Spin squeezing inequalities

In this section, I will try to recall, very briefly, the theory of squeezd spin states. The most
famous definition of spin squeezing is due to Kitagawa and Ueda [195] which naturally
attracted a lot of attention later on. The notion of squeezed light had already been
introduced as a handy way of reducing quantum fluctuations of a light quadrature below
the Heisenberg limit. The definition of squeezing for spin systems, like in optical systems,
is therefore an essential tool for achieving measurement precision beyond the standard
quantum limit SQL in many metrology protocols [196]. SQL or shot-noise limit, in atomic
interferometry experiments, is the limit of precision when we use uncorrelated atoms and
is given by 1√

N
for N uncorrelated particles. However, the ultimate limit allowed by

quantum mechanics, for linear metrology, is the Heisenberg limit with scaling 1
N

[197].
Moreover, spin squeezing in multipartite systems can be a sign of entanglement. In

fact, for a system of N spin-1
2 , no spin squeezing can be achieved without entanglement.

In that regard, a spin squeezing criteria can be used as entanglement witness [198–201].
This is not surprising, taking the previous point into consideration. It is well known that
entanglement is required to beat the shot noise limit in linear metrology ignoring, for
the moment, the discussion on the required type and scaling of entanglement [202–204].
Hence, squeezed states, that give a better scaling than the shot noise limit, are entangled.

1.5.1 The concept of squeezing

Coherent states were introduced as early as 1926 by Schrödinger [205], where he introduced
them as quantum states of a harmonic oscillator that behave classically; i.e. they give
rise to expectation values that follow equations of classical mechanics. Then, it was
Glauber [60] who coined the name for these semi-classical states for quantum optics.
The concept of squeezing was firstly introduced in bosonic systems [59, 206, 207, 55]. In
such systems we can define a position operator X and a momentum operator P in terms
of the bosonic mode creation and annihilation operators, a† and a:

X = a+ a†
√

2
, P = a− a†

i
√

2
. (1.52)

a and a† verify the bosonic commutation relation:

[
a, a†

]
= 1 (1.53)
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where 1 is the identity over the infinte dimensional Hilbert space spanned by Fock
states [208] |n⟩ which are defined as the eigenstates of the number operator N = a†a and
verify the following relations:

a|n⟩ =
√
n|n− 1⟩ , a†|n⟩ =

√
n+ 1|n+ 1⟩ , N |n⟩ = n|n⟩ (1.54)

From Eq. (1.53), we find that X and P (1.52) verify the following commutation relation:

[X,P ] = i 14 (1.55)

Putting the above relation into the Heisenberg uncertainty inequality [209–211] for two
operators A and B:

(∆A)2 (∆B)2 ≥ |[A,B]|2

4 , (1.56)

where (∆A)2 = ⟨A2⟩ − ⟨A⟩2 is the variance of A, we get:

(∆X)2 (∆P )2 ≥ 1
4 . (1.57)

There are no states that violate the above inequality. However, there are states that do
saturate it and these states are coherent states and squeezed states.

Coherent states

Coherent states can be defined as the states that saturate the Heisenberg uncertainty
relation (1.57) with the additional property:

∆X = ∆P = 1√
2

(1.58)

These states can also be defined as the eigenstates of the annihilation operator a as:

a|α⟩ = α|α⟩ (1.59)

When written in Fock basis, it gives the following expression:

|α⟩ = e− |α|2
2

∞∑
n=0

αn√
n!

|n⟩ (1.60)

14i here stands for i1.
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From the above relation, one can easily see that coherent states are not orthogonal, since
for any coherent states, say |α⟩ and |β⟩, we have:

|⟨α|β⟩|2 = e−|α−β|2 . (1.61)

Hence, the set of coherent states is over-complete since they also verify

1
π

∫
|α⟩⟨α|d2α = 1. (1.62)

A special case of these coherent states is the vacuum state |0⟩ which allows to obtain all
other coherent states via the application of the displacement operator D(α) [60]:

|α⟩ = D(α)|0⟩ ,D(α) = eαa
†−α∗a (1.63)

which is a transformation that belongs to the group generated by the Heisenberg-Weyl
algebra given by the three commutation relation [212]:

[
a, a†

]
= 1, [a, 1] = 0,

[
a†, 1

]
= 0 (1.64)

This method of applying a displacement operator on a reference state can be generalized
to construct generalized coherent states for different algebras and can be used to construct
coherent spin states [212], which will be introduced later on.

Squeezed states

Squeezed states, like coherent states, saturate the Heisenberg uncertainty relation (1.57)
with the exception that

∆X ̸= ∆P. (1.65)

Squeezed states can be obtained by applying the squeezing operator [213, 214]

S(ζ) = e
1
2(ζa2−ζ∗a†2) ; ζ = reiθ (1.66)

to a coherent state |α⟩ to obtain the squeezed state

|ζ;α⟩ = S(ζ)|α⟩. (1.67)
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If we define a rotated quadratures Xθ and Pθ in the X-P plane:

Xθ = ei
θ
2a

†aXe−i θ
2a

†a = ae−i θ
2 + a†ei

θ
2

√
2

(1.68)

Pθ = ei
θ
2a

†aPe−i θ
2a

†a = ae−i θ
2 − a†ei

θ
2

i
√

2
(1.69)

Then the variances of Xθ and Pθ in the squeezed state |ζ;α⟩, where ζ = reiθ, is found to
be[59]:

(∆Xθ)2 = e−2r

2 , , (∆Pθ)2 = e2r

2 , (1.70)

where we can see the effect of the squeezing operator on the coherent state is to reduce
the variance along the quadrature Xθ by a factor e

−2r

2 . This will result in increasing

the orthogonal quadrature Pθ by a factor e
2r

2 so that the quantity (∆Xθ)2 (∆Pθ)2 = 1
4

remains unchanged. r, hence, determines the squeezing and is called squeezing parameter.
A nice illustration for coherent and squeezd states can be found at [215].

1.5.2 Coherent spin states

In a similar way to bosonic coherent states, one can define coherent spin states for
[216, 212, 217] based on the action of of SU(2) rotations on a finite dimensional Hilbert
space, namely the space of a spin-j particle. In this case the algebra that generates
the group is 3-dimensional, the basis (Jz, J+, J−) ,where J± = Jx ± iJy, satisfying the
commutation relations:

[Jz, J±] = ±J± , [J+, J−] = 2Jz (1.71)

Noticing that J−|j,−j⟩ = 0 15, one can define coherent spin states by applying the
Wigner rotation matrix D(θ, ϕ) to the reference state |j,−j⟩;

|θ, ϕ⟩ = D(θ, ϕ)|j,−j⟩ (1.72)

where
D(θ, ϕ) = eξJ+−ξ∗J− = eiθ(sinϕJx−cosϕJy) (1.73)

15|j,m⟩ with m ∈ {−j, · · · , j} are simultaneous eigen-states of Jz and the Casimir operator J2 =
J2

x + J2
y + J2

z with eigenvalues m and j(j + 1) respectively.
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and ξ = θ

2e
−iϕ. In other words, D(θ, ϕ) represents a rotation by an angle θ around the

axis y′, obtained by a rotation of the axis y by an angle ϕ around the z-axis. The analogy
with bosonic coherent states is quite remarkable, mainly if we replace the annihilation
and creation operators, a and a†, with the ladder operators J− and J+. Also the state
|j,−j⟩ plays the role of the vacuum state |0⟩ of the bosonic systems.
The analogy becomes even clearer in the high spin number limit j → ∞. First we
consider an equivalent form of the Wigner matrix [217]:

D(θ, ϕ) = eξJ+−ξ∗J− = eτJ+eln(1+|τ |2)Jze−τ∗J− (1.74)

where as mentioned above ξ = θ

2e
−iϕ and τ = tan θ2e

−iϕ. From this, we can get an
equivalent definition of coherent spin states (1.72)

|θ, ϕ⟩ = 1(
1 + |τ |2

)j eτJ+|j,−j⟩ (1.75)

Now performing the following substitutions

J+ =
√

2ja† , τ = α√
2j , (1.76)

we can see that the spin coherent state approaches a bosonic coherent state |α⟩ for
j → ∞.
Coherent spin states defined in Eq. (1.72) are completely polarized along the direction
n⃗ = (cosϕ sin θ, sinϕ sin θ, cos θ); i.e. if we define the spin component along the direction
n⃗, Jn⃗ = D(θ, ϕ)JzD(θ, ϕ)†, we have:

Jn⃗|θ, ϕ⟩ = −j|θ, ϕ⟩ (1.77)

Like bosonic coherent states, coherent spin states form an over complete basis with the
following resolution of the identity:

2j + 1
4π

∫
sin θdθdϕ|θ, ϕ⟩⟨θ, ϕ| = 1 (1.78)

And they can be expanded in terms of the orthogonal basis {|j,m⟩}m:

|θ, ϕ⟩ = 1(
1 + |τ |2

)j j∑
m=−j

√
Cj+m

2j τ j+m|j,m⟩ (1.79)
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More importantly, coherent spin states saturate the Heisenberg uncertainty inequal-
ity (1.56):

(∆J ′
x)

2 (∆J ′
y

)2
≥ ⟨J ′

z⟩2

4 (1.80)

where J ′
k, k = x, y, z, are rotated Jk in certain directions, like J ′

k = D(θ, ϕ)JkD(θ, ϕ)†

for example. However, an important distinction with the bosonic case (1.57) is that the
right hand side of the above inequality is not a constant and does change with the state
in question. This is why there is no unique definition of squeezed spin states like it is the
case for bosonic squeezed states, as will be explained in the next section.

1.5.3 Squeezed spin states and spin squeezing parameters

In similar way to squeezed bosonic states, and since coherent spin states verify:

(∆J ′
x)

2 =
(
∆J ′

y

)2
= |⟨J ′

z⟩|
2 (1.81)

where J ′
k = D(θ, ϕ)JkD(θ, ϕ)† and k = x, y, z for some θ and ϕ, we are tempted to define

squeezed states to be the states that verify [218]:

(∆J ′
x)

2
<

|⟨J ′
z⟩|

2 . (1.82)

Or equivalently, define a squeezing parameter

ζ2 = 2 (∆J ′
k)

2

|⟨J ′
l⟩|

, (1.83)

where k ̸= l stand for two directions among x, y, z, such that whenever we have ζ < 1,
we conclude that the state is squeezed.
However, the above definition fails as it classifies some of the coherent spin states as
squeezed states. To see this, when considering coherent spin states (1.72), one should keep
in mind that the parameter (1.83) has two coordinate dependencies: firstly, the coherent
state (1.72) depends on (θ, ϕ). Secondly, the rotated operator J ′

k = D(θ′, ϕ′)JkD(θ′, ϕ′)†,
with k = x, y, z, depends on the coordinates (θ′, ϕ′). In the case where (θ, ϕ) and (θ′, ϕ′)
are the same, we get ζ = 1 as we have seen before. Yet, when for some different
directions; i.e. (θ, ϕ) ̸= (θ′, ϕ′), we have ζ < 1 inferring squeezing of these coherent
states[195, 216]. In other words, a simple coordinate change can provide squeezing!
This is useless squeezing since coordinate change in the sense defined above provides



40 Introduction: Entanglement criteria and spin squeezing

no quantum correlations among particles, in the multi-partite case, and , hence, cannot
provide better precision in metrology applications, as expected from squeezed states.
The definition (1.83) needs modification to obtain a meaningful squeezing parameter. It
was first done by Kitagawa and Ueda [195] where they defined the following squeezing
parameter:

ζ2 = 2 minn⃗1 (∆Jn⃗1)2∣∣∣⟨J⃗⟩
∣∣∣ = 2 minn⃗1 (∆Jn⃗1)2

j
. (1.84)

The minimum is taken over all directions n⃗1 in the plane orthogonal to n⃗0, the mean spin
direction for which ⟨Jn⃗0⟩ =

∣∣∣⟨J⃗⟩
∣∣∣.

Comparing (1.83) with (1.84), we can see two differences between them. The first one is
that we are taking the minimum variance of the spin component in the plane orthogonal
to n⃗0. Secondly, and more importantly, n⃗0 is taken to be along the mean spin direction.
Since coherent spin states are completely polarized (1.77), we have |⟨Jn⃗0⟩| = j, hence, the
second equality in (1.84). With these modifications, all coherent states yield ζ = 1, and
simple coordinate change cannot produce spin squeezing. Kitagawa and Ueda studied
the case where the spin j is composed of 2j spin 1

2 particles and argued that any spin
squeezing is due to inter-particle quantum correlations [195].

Later on, Wineland et al. [196] defined a slightly modified version of the squeezing
parameter (1.84):

ζ2
R = 2jminn⃗1 (∆Jn⃗1)2

⟨Jn⃗0⟩2 , (1.85)

where n⃗0 and n⃗1 are the same as explained above. They showed that this squeezing
parameter is connected to the sensitivity of spin to rotation. In fact, they have defined
the squeezing parameter (1.85) as

ζ2
R = (∆θ)2

(∆θCSS)2 (1.86)

where θ is the angle of rotation that we would like to measure when rotating Jy, for
example [196], around Jx;

J ′
y = eiθJxJye

−iθJx = cos θJy − sin θJz. (1.87)

(∆θCSS)2 represents the best precision that can be achieved in measuring θ using coherent
spin states. For the multi-partite case, for N = 2j spin-1

2 particles, that Wineland et al.
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considered in [196], (∆θCSS)2 is the best precision achievable using uncorrelated particles.
In this case, it can be easily shown that

(∆θCSS)2 = 1
N

= 1
2j (1.88)

which accounts for the factor 2j in the nominator in (1.85) and is known to be the SQL
for N particles.
To see where the rest comes from, we may assume, without loss of generality, the state
to be polarized along the z-direction;i.e.

⟨Jn⃗0⟩ = ⟨Jz⟩ and ⟨Jx⟩ = ⟨Jy⟩ = 0.

Then, using the relation, verified by a function f(θ),

∆f(θ) =
∣∣∣∣∣∂f(θ)
∂θ

∣∣∣∣∣∆θ (1.89)

we find that:

(∆θ)2 =

(
∆J ′

y

)2

∣∣∣∣∣∂⟨J ′
y⟩

∂θ

∣∣∣∣∣
2 =

(
∆J ′

y

)2

cos2 θ |⟨Jz⟩|2
. (1.90)

For small angles of rotation, the above equation is minimized for θ = 0 which results
in (1.85).
This clearly shows the connection between spin squeezing and the improved sensitivity
to rotations beyond the standard quantum limit. Such improvement cannot be achieved,
for most metrology protocols, without inter-particle correlations.
Even for the case of single spin j, with j >

1
2, we can see it as if it was a collection of

spin-1
2 particles, where any state of the spin-j can be represented as a symmetric Dicke

state [219] of 2j spin-1
2 particles. Hence, spin squeezing in the single particle case can be

seen as entanglement of 2j fictitious particles.
One might be tempted to use this argument to understand why there are no spin squeezed
states for a spin-1

2 . However, this is not rigorous since entanglement and spin squeezing
are not equivalent. For example, the state |1

2 ,+
1
2⟩ can be seen as an entangled state of

two spins, say j and j + 1
2, with j being an integer or half-integer:

|12 ,+
1
2⟩ =

∑
m1,m2

|j,m1; j + 1
2 ,m2⟩⟨j,m1; j + 1

2 ,m2|
1
2 ,+

1
2⟩ (1.91)
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where ⟨j1,m1; j2,m2|J,M⟩ is the Clebsch-Gordan coefficient. This state, despite being
entangled, is not squeezed as all spin-1

2 states are obtained by a rotation from the state
|1

2 ,−
1
2⟩ and, thus, they are coherent states according to the definition (1.72).

1.5.4 Spin squeezing and entanglement

So far, we have seen the connection of the squeezing parameter (1.85) to improved
precision in metrology when using squeezed states. This improvement, for multi-parite
case is attributed to entanglement. Nonetheless, the way (1.85) is defined does not
distinguish single particle from multi-particle case. As we discussed above, squeezing
in the single particle case can be attributed to entanglement among fictitious spin-1

2

particles. In other words, Definition (1.85) does not distinguish between physical and
fictitious entanglement. The former being the most interesting for most applications,
it is important to define a squeezing parameter, that we want to use as entanglement
witness, for the multi-particle case explicitly.

As we have discussed above, a spin-j can be seen as a collection of N spin-1
2 particles

such that N = 2j. Hence, we may simply replace j by N

2 in (1.85) to get the following
squeezing parameter for N spin-1

2 particles:

ζ2 = N minn⃗1 (∆Jn⃗1)2

⟨Jn⃗0⟩2 . (1.92)

Sørensen et al. showed in [220] that ζ ≥ 1 for all separable states. In other words,
squeezed states, for which ζ < 1, are entangled.
The appealing feature about the above entanglement witness is that it uses only the
expectation values and variance of global or collective operators. This is very appealing
from experimental point of view where measuring individual particles might be a daunting
task. This might be even more difficult when considering two-particle correlations,
essential for witnessing entanglement. Whereas the variance in (1.92) encompasses an
average over all two-particle correlations since:

〈
J2
k

〉
=
〈(

1
2

N∑
n=1

σ
(n)
k

)2〉
= N

4 + 1
4

N∑
n ̸=m

〈
σ

(n)
k σ

(m)
k

〉
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where k is x, y or z and σk are Pauli operators16.

At this point, multiple questions come to mind. In no particular order, the first
questions is how small ζ2 can get and what is the ultimate squeezing limit achievable for
spin systems. The second question is whether it is possible to generalize and elaborate
other squeezing parameters to use as entanglement witness. If there are, how many are
needed to detect as many entangled states as possible. Last question, but not the least,
is what kind of entanglement can be detected using these squeezing parameters which
uses only the variance of collective spin operators to capture two-particle correlations.
While it is obvious that no entanglement can be detected using one-particle moments, the
same cannot be said about the entanglement depth of states detected using two particle
correlations. Next, we will go over the first two questions in detail and briefly over the
last one.

Extreme spin squeezing

Let us begin with the first question, which was answered by Sørensen and Mølmer in
their famous paper [220]. They have looked at the squeezing parameter Eq. 1.85:

ζ2
R = 2j (∆Jx)2

⟨Jz⟩
(1.93)

where the x-axis is the direction that minimizes the variance, n⃗1 for a state completely
polarized along the z-direction. They have set out to find out the states that the smallest
ζ2
R possible for a given ⟨Jz⟩ which , in turn, will have less noise for a given value of

signal in spectroscopy. They have shown that, for integer values of j, these states are
eigenstates corresponding to the minimum eigenvalue of the Hamiltonian:

H = J2
x + µJz (1.94)

where the parameter µ is a Lagrange multiplier to ensure the value of ⟨Jz⟩. By varying µ
over a wide range, one is able to numerically determine the minimum eigenvalue and
calculate the corresponding (∆Jx)2 and ⟨Jz⟩. Then, one is able to find the state that
verifies (∆Jx)2 = ⟨J2

x⟩ 17 for the given value of ⟨Jz⟩. However, for half-integer values
of j, states that minimize ⟨J2

x⟩ do not minimize (∆Jx)2 for a given value of ⟨Jz⟩. This
16We have used the following relation for Pauli operators: {σi, σj} = 2δi,j1, with { . , . } being the

anti-commutator.
17⟨Jx⟩ = 0 since the state is polrized along the z- direction.
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is because the minimum eigenvalue of J2
z is 1

4 and states with ⟨Jx⟩ = ⟨Jy⟩ = 0 do not
minimize the variance (∆Jx)2 for a given ⟨Jz⟩, hence, not the most squeezed according
to (1.93). The above method can be extended, for half-integer j, by considering the
Hamiltonian J2

x+µJz+νJx with two Lagrange multipliers µ and ν, see ref [221] for details.

Consequently, with the above numerical procedure in mind, one is able to calculate
the function [220]:

Fj(X) = 1
j

min
⟨Jz⟩/j=X

(∆Jx)2 (1.95)

which is the minimum variance of Jx divided by j for a given value of ⟨Jz⟩. As shown
in [220], Fj(X) is convex and monotonically increasing with values in the interval [0, 0.5],
where Fj(0) = 0 and Fj(1) = 0.5. Finally, for j1 ≥ j2, we have Fj1(X) ≤ Fj2(X).
Once Fj(X) is defined, Sørensen and Mølmer [220] showed that for all separable N j-spin
states, the following inequality is verified:

(∆Jx)2 ≥ NjFj

(
⟨Jz⟩
Nj

)
(1.96)

As a result, any state violating the above inequality is entangled. They even showed the
amount of violation of the above inequality can be used to detect entanglement depth
where we may replace Fj(.) by Fkj(.) in the above inequality. Hence, we can write a set
of inequalities as follows:

Extreme spin squeezing inequalities: All k-producible states of N spin-j particles
verify the following inequality:

(∆Jx)2 ≥ NjFkj

(
⟨Jz⟩
Nj

)
(1.97)

Hence, any state that violates the above inequality is entangled and has k+1 entanglement
depth. In what follows, I will recall the proof for these inequalities, presented in [220,
222, 223], which will be used later in chapter 3. We start by proving the inequalities for
product k-producible states of the form

ρ = ρ(1) ⊗ · · · ⊗ ρ(m) : m ≥ N

k

where each state ρ(i) is a state of ki ≤ k particles such that ∑m
i=1 ki = N . If we define

the operators J (i)
α , with α = x, y, z, to be the operators of a spin-(kij) particle such that
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Jα = ∑m
i=1 J

(i)
α , we can write

(∆Jx)2 =
m∑
i=1

(
∆J (i)

x

)2
≥

m∑
i=1

kijFkij

(
⟨J (i)

z ⟩
kij

)
≥

m∑
i=1

Nj
ki
N
Fkj

(
⟨J (i)

z ⟩
kij

)

where the first equality follows from the fact we have a product state ρ, and the last
inequality follows from the fact that ki ≤ k and the properties of the function Fj(.).
Finally, from the convexity of the function Fj(.), we get:

(∆Jx)2 ≥ NjFkj

(
m∑
i=1

ki
N

⟨J (i)
z ⟩
kij

)
= NjFkj

(
⟨Jz⟩
Nj

)
(1.98)

This finishes the proof for product states. For mixed states, inequalities (1.97) follow
from the concavity of the variance and the convexity of the function Fkj(.).

Optimal spin squeezing inequalities

Now, we move on to the next question about generalizing spin squeezing parameters
which is discussed in great detail in [223]. As a starter point, we see that that the
squeezing parameter (1.92) can be put into an equivalent inequality for separable states
as:

N min
n⃗1

(∆Jn⃗1)2 ≥ ⟨Jn⃗0⟩2

Other squeezing parameters were proposed to detect entanglement in N spin-1
2 particles.

Raghavan et al. proposed the following squeezing parameter

ζ2
D = N (∆Jn⃗)2

N2/4 − ⟨Jn⃗⟩2 (1.99)

to detect entanglement in Dicke states [224], which can be turned into the following
inequality

N (∆Jn⃗)2 ≥ N2/4 − ⟨Jn⃗⟩2 (1.100)

for separable states. Another spin squeezing inequality

(∆Jn⃗1)2 + (∆Jn⃗2)2 ≥ NCj (1.101)

was proposed by He et al. [225] to detect entanglement of planar squeezed states; i.e.
states where the direction of minimum variance and the mean spin direction lie in the
same plane. The above inequality is defined for N spin-j particles where n⃗1 and n⃗2 define
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the plane of squeezing and Cj represent the lower bound of the sum of two variances(
∆J (i)

n⃗1

)2
+
(
∆JJ (i)

n⃗2

)2
for a single spin-j.

All the different spin squeezing inequalities mentioned above are linear combinations
with respect to the quantities {⟨J2

x⟩, ⟨J2
y ⟩, ⟨J2

z ⟩} and {⟨Jx⟩2, ⟨Jy⟩2, ⟨Jz⟩2}. While certain
combinations detects certain entangled states better than others , it is interesting to ask
what is the maximum amount of entangled states detected using these quantities only.
Tóth et al. [201, 226] introduced a complete set of generalized spin squeezing inequalities
for N spin-1

2 particles and later were generalized to the following inequalities for arbitrary
spin [227, 228]:

∆̃2Jx + ∆̃2Jy + ∆̃2Jz ≥ −Nj2 (1.102a)

(N − 1)
[
∆̃2Jk + ∆̃2Jl

]
≥ ⟨J̃2

m⟩ −N(N − 1)j2 (1.102b)

⟨J̃2
l + J̃2

m⟩ −N(N − 1)j2 ≤ (N − 1)∆̃2Jk (1.102c)

⟨J̃2
x + J̃2

y + J̃2
z ⟩ ≤ N(N − 1)j2, (1.102d)

where ⟨J̃2
k ⟩ = ⟨J2

k ⟩ − ∑N
i=1⟨

(
J

(i)
k

)
⟩, and ∆̃2Jk = ⟨J̃2

k ⟩ − ⟨Jk⟩2 are the modified second
moment and the modified variance of the spin component k ∈ {x, y, z}.
It was shown that these inequalities are complete if one considers the quantities {⟨J̃2

x⟩, ⟨J̃2
y ⟩, ⟨J̃2

z ⟩}
and {⟨Jx⟩2, ⟨Jy⟩2, ⟨Jz⟩2}. For fixed values {⟨Jx⟩2, ⟨Jy⟩2, ⟨Jz⟩2}, the above inequalities (1.102)
define a polytope in the space {⟨J̃2

x⟩, ⟨J̃2
y ⟩, ⟨J̃2

z ⟩}. For the limit of large N , all states
corresponding to points inside the polytope are separable [228]. Hence, the optimality of
these inequalities in the limit of very large N where any entangled state, detected by
some combination of the first and second spin moments, is going to be detected by one of
the inequalities (1.102a)-(1.102c). The last inequality (1.102d) is verified for all states.

In order to prove the above inequalities, one may start by rewriting the four inequalities
into one compact inequality [227, 228]:

(N − 1)
∑
k/∈I

∆̃2Jk −
∑
k∈I

⟨J̃2
k ⟩ ≥ −N(N − 1)j2, (1.103)

where I can be any subset of {x, y, z} (including the empty set). Each inequality in
Eqs. (1.102) is obtained by increasing the number of elements in I by one, starting from
the empty set. Next, we may proceed to prove this inequality for product states like we
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did before. for product states, we have the following facts:

⟨J̃2
k ⟩ := ∑

i ̸=j⟨J
(i)
k J

(j)
k ⟩ = ∑

i ̸=j⟨J
(i)
k ⟩⟨J (j)

k ⟩ = ⟨Jk⟩2 −∑
i⟨J

(i)
k ⟩2 (1.104)

∆̃2Jk := ⟨J̃2
k ⟩ − ⟨Jk⟩2 = −∑

i⟨J
(i)
k ⟩2 (1.105)

Now we make use of the following two inequalities: Cauchy-Schwartz inequality

⟨Jk⟩2 ≤ N
N∑
i=1

⟨J (i)
k ⟩2 (1.106)

and the inequality of angular momentum j:

⟨J (i)
x ⟩2 + ⟨J (i)

y ⟩2 + ⟨J (i)
z ⟩2 ≤ j2 (1.107)

Putting (1.106) and (1.104) into the left hand side of inequality (1.103), we find:

(N − 1)
∑
k/∈I

∆̃2Jk −
∑
k∈I

⟨J̃2
k ⟩ ≥ − (N − 1)

∑
i

∑
k∈{x,y,z}

⟨J (i)
k ⟩2 (1.108)

Finally, plugging (1.107) into the above inequality completes the proof of (1.103) for
product states. Finally, using the concavity of the variance, one is able to prove (1.103)
for all separable states.
It is important to note that Cauchy-Schwartz inequality is the main ingredient to proving
the above inequality along side with the inequality (1.107). Both of these are not
restrictive to spin operators. As it has been shown in Ref. [227], a set of M collective
observables Ak = ∑N

i=1 A
(i)
k , where k = 1, · · · ,M , can be used instead. To be able to

derive inequalities as Eq. (1.103), it is only required that there exists a positive number
α such that

M∑
k=1

⟨A(i)
k ⟩2 ≤ α2; ∀i = 1, 2, · · · , N, (1.109)

which is satisfied by the spin operators J (i)
k with α = j. Then, using Cauchy-Schwartz

inequality, one is able to get the inequality

(N − 1)
∑
k/∈I

∆̃2Ak −
∑
k∈I

⟨Ã2
k⟩ ≥ −N(N − 1)α2, (1.110)

which is the same as concavity of the variance, we obtain the inequalities (1.103) with Jk
replaced by Ak, j replaced by α and I being any subset of {1, · · · ,M}, including the
empty set. This gives a huge freedom and opens the door for many choices to construct
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new entanglement witnesses which we will use in chapter 3. One such choice was given
in [227] using the Su(d) generators for a system of N d-dimensional systems.

The above inequalities can be rearranged and put into the form of a squeezing
parameter with some extra care taken to avoid negative values [228]. For example,
eq. (1.102c) can be put into the following generalized spin squeezing parameter

ζ2
os = (N − 1)Nj

2 + ∆̃2Jk

⟨J̃2
l + J̃2

m⟩
(1.111)

defined for ⟨J̃2
l + J̃2

m⟩ > 0, where if not verified, the corresponding state is separable.
Squeezing in the sense of the above inequalities implies entanglement, hence it repre-
sents a generalized form of squeezing that ignores squeezing of individual spins. It was
shown [226] that, for spin-1

2 systems, ζ2
os detects a wider class of entangled states than the

squeezing parameter (1.92). The same observation holds for higher spin systems [228].
Moreover, Spin squeezing inequalities (1.102) can detect some PPT entangled states, that
cannot be distilled with respect to any bi-partition of the multipartite spin system [226].

Finally, many generalizations to the spin squeezing inequalities [223] have been made
such as coordinate system independent spin squeezing inequalities [226–228], which we
will recall in the third chapter. Another generalization was made to the extreme spin
squeezing inequalities (1.97) in [221]. Furthermore , the above results were extended to
a classical fluctuations of particles’ number N [229, 221]. Our main contribution was
to generalize spin squeezing inequalities for particles presenting general fluctuations,
quantum and/or classical [2], as we will see in chapter 3.



2

Mapping to two-dimensional
systems: formalism and applications

In many situations where non classicality of a physical system is under investigation, the
first attempt it to dichotomize the measurement outcomes, to finally obtain a yes/no
or 0/1 answer. In most of the experiments, the physical system under consideration
posses several degrees of freedoms, which measurements can give many outputs even
continuous ones. Classifying the outcomes of the measurements into two categories such
that standard test of non-classicality (like entanglement, non-locality, non contextuality
or Legget-Garg) is a common practice in quantum information science. In each specific
experimental situation a recipe is developed to perform this dichotomization.

The main objective of this chapter is to set-up a theoretical framework that allows
a general description of this dichotomization procedure of a quantum system. To this
end, I will first introduce how to map any system of arbitrary dimensions to a two level
system. A general 2-level system is fully characterized by the 3 components of the Bloch
vectors that are equal to the expectation value of the 3 Pauli operators. This is why the
mapping introduced in this chapter is characterized by the expectation values of three
observables, which are mapped to the expectation of the 3 Pauli operators of the 2-level
system.

In a second step I will address bi-partite systems, by using the same mapping locally
in each of the parts. In this way 2-qudit systems can be mapped to 2-qubit. Because the
mapping acts locally it can not create entanglement, and map two separable qudits to two
separable qubits. Hence, entanglement of the mapped 2-qubit state reveal entanglement
of the original 2-qudits state.
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A part of this work was published as an article in Physical Review A: "General
dichotomization procedure to provide qudit entanglement criteria". Phys. Rev. A 92,
052334 (2015).

2.1 General framework

Let consider a state ρ in a d dimensional Hilbert space H(d), we would like to define a
mapping ρ → M (ρ), such that M (ρ) represent a qubit state in H(2). To realize this
mapping, we consider the combined system formed by the original system in state ρ
and an ancillary qubit initially in an arbitrary reference state |0⟩⟨0|. The mapping is
obtained by switching on an interaction between both subsystems and then by discarding
the original system and keeping the ancillary qubit. This very general procedure ensure
that the final operator describing the qubit state is a physical state, that is a positive,
hermitian, normalized 2 × 2 matrix.

The interaction between both subsystems can represented by an Hamiltonian H

acting on the global system, original one plus the ancilla, for a specific amount of time
∆t necessary for the change of the qubit state to take place. The resulting state of the
global system at ∆t will be e−i∆tHρ⊗ |0⟩⟨0|ei∆tH , hence the state of the qubit will be:

M (ρ) = TrH(d),

[
e−i∆tHρ⊗ |0⟩⟨0|ei∆tH

]
where TrH(d) [·] denote the partial trace with respect to the original system H(d).

The above procedure can be summarized as

U : H(d) ⊗ H(2) → H(d) ⊗ H(2); where U = e−i∆tH

that entangles the original system with the ancillary qubit, then tracing out the original
system. Applying only unitary operations to the global system is rather restrictive, and
can be generalized by applying an isometry to a larger system composed of the original
system and the ancillary qubit plus an arbitrary ancillary qudit. Equivalently, one may
apply an isometry:

U : H(d) ⊗ H(2) → H(D) ⊗ H(2);U †U = 12d
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Where D > d and where the restriction UU † = 12d for unitary operator U is relaxed.
Thanks to the property U †U = 12d, the desired mapping

M (ρ) = TrH(D)

[
Uρ⊗ |0⟩⟨0|U †

]

is positive and trace preserving. By changing the isometry, one might get a different
dichotomization scheme. At this stage, the relationship between the chosen isometry
and the dichotomisation form is unclear and complicated. In the next section I give an
operational form of the mapping where one chooses the mapping form through a more
convenient choice of three operators which expectations are the expectation if the σx,σy
and σz components of the resulting qubit state.

2.1.1 General formalism: mapping to qubit

We start by noticing that the isometry U , from H(d) ⊗ H(2) to H(D) ⊗ H(2), which
characterizes the mapping MU can be parametrized by four linear operators Ai (i =
0, 1, 2, 3) from H(d) to H(D) as follows:

U =
3∑
i=0

Ai ⊗ σi, (2.1)

where σi’s, for i = 1, 2, 3, are the Pauli matrices and σ0 = 1 is the identity operator
in H(2) and where Ai (i = 1, · · · , 4) are operators from H(d) to H(D). The isometric
property U †U = 1 implies that:

A⃗† · A⃗+ A0
†A0 = 1,

A⃗†A0 + A0
†A⃗+ iA⃗† ∧ A⃗ = 0⃗, (2.2)

where A⃗ = (A1, A2, A3)T . The vectorial form is simply a compact way of writing three
equations, and unlike outer product of real vectors, the order of operators should be
respected, e.g.,

(
A⃗† ∧ A⃗

)
1

= A2
†A3 − A3

†A2. In addition, in the special case where the
operators Ai are Hermitian, one has A⃗† = A⃗ but not A⃗† ∧ A⃗ = 0⃗ necessarily. Actually
this is only true when the different operators Ai for i = 1, 2, 3 mutually commute.
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With the parametrization Eq. (2.1) the mapping defined in the previous section can

be written as:

M : B
(
H(d)

)
→ B

(
H(2)

)
:

ρ → M (ρ) = TrH(D)

[
Uρ⊗ |0⟩⟨0|U †

]
=

3∑
i,j=0

〈
Aj

†Ai
〉
ρ
σi|0⟩⟨0|σj.(2.3)

It is worth noting that the explicit reference to H(D) in the first line of (2.3) has become

implicit in the product Aj†Ai, which is an operator in B
(
H(d)

)
1. Inserting the relations

fulfilled by the Pauli matrices:

σiσj = iϵijkσk + δij1 (2.4)

σiσjσk = iϵijk1 + δjkσi − δikσj + δijσk (2.5)

where ϵijk is the Levi-Civita tensor, and |0⟩⟨0| = 1 + σ3

2 into (2.3), we get:

M (ρ) =1
2

3∑
i,j=1

〈
Aj

†Ai
〉
ρ

(iϵijkσk + (δij + iϵi3j) 1 − δijσ3 + δi3σj + δj3σi)

+
〈
A0

†A0
〉
ρ

1 + σ3

2 +
〈
A3

†A0 + A0
†A3

〉
ρ

1
2 + 1

2
〈
A⃗†A0 + A0

†A⃗
〉
ρ
.σ⃗

+ i

2
〈
A0

†A2 − A2
†A0

〉
ρ
σ1 − i

2
〈
A0

†A1 − A1
†A0

〉
ρ
σ2.

We can simplify the above equation further by using Eq. (2.2) into the following compact

form:

M (ρ) = 1
2 +

〈
−iA⃗† ∧ A⃗+ 1

2A⃗
†A3 + 1

2A3
†A⃗
〉
ρ
.σ⃗

+
〈
A0

†A0 − 1
2

〉
ρ
σ3 + i

2

[〈
A⃗†A0 − A0

†A⃗
〉
ρ

∧ σ⃗
]

3
(2.6)

which can be written as:

M (ρ) = 1
2 +

〈
B⃗
〉
ρ
.
σ⃗

2 (2.7)

1Where we have used the identity Tr [AB] = Tr [BA], which holds for compact operators of trace
class [230].
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where we have defined

Bx

2 = −iA2
†A3 + iA3

†A2 + A1
†A3 + A3

†A1

2 + iA0
†A2 − iA2

†A0

2 , (2.8)

By

2 = iA1
†A3 − iA3

†A1 + A2
†A3 + A3

†A2

2 + −iA0
†A1 + iA1

†A0

2 , (2.9)
Bz

2 = −iA1
†A2 + iA2

†A1 + A3
†A3 + A0

†A0 − 1
2 . (2.10)

The form (2.7) is the operational form we desire and equations (2.8, 2.9, 2.10) set the
connection between this form and the isometry U used to implement it.

In order for this mapping to be operational, one has to ask the inverse question:
given a set of three operators Bx, By, Bz, what are the conditions on these operators
such that there exists an isometry U that implement the mapping of the form (2.7)? In
the next section I will give a first answer this question.

2.1.2 Existence of the mapping

In order for the previous mapping (2.7) to exist, we clearly need to find proper operators
Ais that verify Eqs. (2.2) and (2.8, 2.9, 2.10). Next we simplify these equations by writing
the set of conditions Eqs. (2.2) explicitly:

A1
†A0 + A0

†A1 + iA2
†A3 − iA3

†A2 = 0 (2.11)

A2
†A0 + A0

†A2 − iA1
†A3 + iA3

†A1 = 0 (2.12)

A3
†A0 + A0

†A3 + iA1
†A2 − iA2

†A1 = 0 (2.13)

From (2.10) and (2.13), we can eliminate A1, A2 and get:

(
A3

† + A0
†
)

(A3 + A0) = 1 +Bz

2

Which motivates the definition of K0 = A3 + A0, so that:

K0
†K0 = 1 +Bz

2 (2.14)

Doing the same thing for equations (2.8), (2.9), and using (2.11) (2.12), we get:

A1
†K0 +K0

†A1 − iA2
†K0 + iK0

†A2 = Bx

A2
†K0 +K0

†A2 + iA1
†K0 − iK0

†A1 = By
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We also define K1 = A1 + iA2, then the above equations would simplify into:

K1
†K0 +K0

†K1 = Bx

iK1
†K0 − iK0

†K1 = By

We can regroup the equations verified by K0 ,K1 as:

K0
†K0 = 1 +Bz

2 , K1
†K1 = 1 −Bz

2
K0

†K0 +K1
†K1 = 1, K0

†K1 = Bx + iBy

2 (2.15)

Hence, in order for the mapping Eq. (2.7) to exist, we should be able to find two operators
K0 and K1 such that the set of equations Eqs. (2.15) is verified.

To show that the two operators K0 and K1 that verifies the conditions (2.15) are
sufficient to find an isometry U such that the mapping (2.7) exists, we can use the fact
that U is an isometry and define its image to be in a larger Hilbert space. Once the
operators K0 and K1 are found, such that conditions (2.15) are verified, one can also
define the following operators

K̃0 = 1√
2

K0

K0

 , K̃1 = 1√
2

K1

K1

 (2.16)

acting on the hilbert space H(d) with codmain H(D) ⊕ H(D), where H(D) is the codomain
of K0 and K1. These operators also verify the conditions (2.15), i.e. we have:

K̃†
0K̃0 = K0

†K0 = 1 +Bz

2 , K̃†
1K̃1 = K1

†K1 = 1 −Bz

2 , K̃†
0K̃1 = K0

†K1 = B+

2 (2.17)

where we have defined B+ = Bx + iBy. Then we can simply define the operators:

Ã0 = 1√
2

K0

0

 , Ã3 = 1√
2

 0
K0


Ã1 = 1√

2

K1

0

 , Ã2 = −i√
2

 0
K1

 (2.18)

which verify
Ã0 + Ã3 = K̃0 , Ã1 + iÃ2 = K̃1 (2.19)
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and they also verify the conditions (2.2). Hence, there exists an isometry

Ũ =
3∑
i=0

Ãi ⊗ σi (2.20)

that implements the mapping (2.7)

M (ρ) = 1
2 +

〈
B⃗
〉
ρ
.
σ⃗

2

Next, I give an example of a mapping where these conditions (2.15) can be explicitly
calculated. For a specific choice of Bis. namely the angular momentum components, we
can write explicitly the form of the isometry needed to implement the mapping.

2.1.3 Dichotomization using angular momentum operators

An important example, that will become very handy for spin squeezing inequalities and
dichotomic observables, is the following mapping:

M (ρ) = 1
2 +

〈
J⃗
〉
ρ

j
.
σ⃗

2 (2.21)

Where we have made the choice Bi = Ji/j, i = x, y, z. The three operators Ji are the
components of the angular momentum operator that has the advantage of being easily
accessible from experimental point of view. We have also introduced the normalization
constant j, where the eigenvalue of the total angular J2 is given by j(j + 1)2. What this
mapping does, is to consider a spin-j as a spin-1/2 such that

〈
J⃗
〉
ρ

j
=

⟨σ⃗⟩M(ρ)

2

The above equality, motivates our normalization factor j of the angular momentum
operators.

All left is to show that the mapping (2.21) can be implemented via an isometry
as in (2.3). In other words, we will try to find the operators K0, K1 such that the
conditions (2.15) are verified.

We note that the equations (2.15) can be expressed in a simple form with the
help of the two bosonic annihilation operators a and b corresponding to the Schwinger

2We set ℏ=1.
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representation of spin-j [231]3:

J3 = 1
2(a†a− b†b) , J− = b†a , J+ = a†b (2.22)

where J± = J1 ± iJ2 with the restriction a†a+ b†b = 2j. Rewriting conditions (2.15) in
terms of bosonic operators a(b) and a†(b†), one gets:

K0
†K0 = a†a

2j , K1
†K1 = b†b

2j , K0
†K1 = a†b

2j (2.23)

Which suggests the choice

K0 = a√
2j , K1 = b√

2j (2.24)

Now, one should find operators Ai, i = 0, 1, 2, 3 such that:

A0 + A3 = K0 , A1 + iA2 = K1

and such that the conditions (2.2) are verified. One possible choice of such operators [1]
Ai realizing the isometry U through Eqs. (2.1) and Eqs. (2.2) can be shown to be (see
Appendix A.3)

A0 = 1
2
√

2

(
a√
j

+ a†
√
j + 1

)
, A3 = 1

2
√

2

(
a√
j

− a†
√
j + 1

)
,

A1 = 1
2
√

2

(
b√
j

− b†
√
j + 1

)
, iA2 = 1

2
√

2

(
b√
j

+ b†
√
j + 1

)
. (2.25)

Please note that despite involving bosonic operators a and b in (2.25) acting on infinite
dimensional Hilbert space, they are acting on a restricted sub-space a†a+ b†b = 2j.

Although the set of equations (2.15) minimizes the task of verifying the validity of the
mapping (2.7), it is still a hard problem to solve and it is not always as straightforward
as we have seen from this example. We can actually simplify the problem by using the
property of completely positive maps (CP), which will give us a very simple condition as
we will see next.

3Each spin-j can be seen as 2j spin-1/2 particles. Each level can be seen as a bosonic mode, say a for
spin up and b for spin down where a, b are the annihilation operators for each mode respectively. They
verify the commutation relation

[
a†, a

]
= 1,

[
b†, b

]
= 1 and

[
b†, a

]
= 0. Since the number of spin-1/2

particles representing a spin-j is 2j, the total number of particles in the two modes is a†a+ b†b = 2j.
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2.1.4 Necessary and sufficient conditions

The form (2.3) is known as the Stinespring representation of the trace preserving chan-
nel M [232, 233]. Stinespring representation in the open system representation states
that [234]:

Stinespring representation For a completely positive and trace preserving (CPTP)
linear mapping M : B

(
H(d)

)
→ B

(
H(2)

)
, there exists an isometry V from H(d) to

H(D) ⊗ H(2) such that M (ρ) = TrE
[
V ρV †

]
where E is the environment represented by

the Hilbert space H(D).
A comparison with the form of our mapping (2.3) gives that V : H(d) → H(D) ⊗ H(2)

can be seen as a simple restriction of the isometry U : H(d) ⊗ H(2) → H(D) ⊗ H(2).

Kraus representation The mapping defined in (2.3) is trace preserving completely
positive map and one can easily write its Kraus representation [235, 21] as (see ap-
pendix A.1):

M (ρ) =
D∑
i=1

KiρKi
† (2.26)

where
Ki = |0⟩⟨ei|K0 + |1⟩⟨ei|K1 : 1 ≤ i ≤ D, (2.27)

K0 and K1 verify the conditions (2.15) and {|ei⟩ : 1 ≤ i ≤ D} is an orthonormal basis of
H(D) the Hilbert space over which the trace is taken in (2.3). The above property holds
even for infinite Hilbert spaces where one finds a countable set of Kraus operators [236].
This will become helpful to extend Theorem 1, we will introduce hereafter, for bound
operators of trace class.

In the finite dimensional case, we can make use of the property of CP maps proved
in [168]:

Lemma I A linear mapping M : B
(
H(d)

)
→ B

(
H(2)

)
is completely positive iff the

operator D = I ⊗ M (P+) is positive, where I is the identity map from B
(
H(d)

)
to itself

and P+ = 1
d

∑d
i,j=1 |i, i⟩⟨j, j| a maximally entangled state in B

(
H(d) ⊗ H(d)

)
.
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Now let us calculate the operator D explicitly for the mapping (2.7):

D = 1
d

d∑
i,j=1

|i⟩⟨j| ⊗ M (|i⟩⟨j|) = 1
2d

d∑
i,j=1

|i⟩⟨j| ⊗
(
δi,jσ0 + ⟨j|B⃗|i⟩.σ⃗

)

Finally, we get a very simple form of D as:

D = 1(d)

2 ⊗ σ0 + BT
x

2 ⊗ σ1 +
BT
y

2 ⊗ σ2 + BT
z

2 ⊗ σ3 (2.28)

Since the positivity of D is equivalent to the positivity of its transpose DT we finally get
our necessary and sufficient condition for the mapping (2.7) to be completely positive
that we state in the following theorem:

Theorem 1 The mapping M : (ρ) = 1
2 +

〈
B⃗
〉
ρ
.
σ⃗

2 is CP iff

D =
1(d) +Bz Bx + iBy

Bx − iBy 1(d) −Bz

 ⪰ 0 (2.29)

For the proof of this theorem, see appendix A.2, the intermediate step [168] which
helped find the condition, is discarded, thus, the above theorem is not restricted to finite
dimensions and can be generalized to compact operators of trace class [230].

The appealing feature about the above criterion, is that any three operators, Bx, By

and Bz can be used for the mapping with some normalization factor β, such that the
mapping

M (ρ) = 1
2 +

〈
B⃗
〉
ρ

β
.
σ⃗

2 (2.30)

is completely positive. Where β can be chosen to be the minimum value for which the
matrix

D =
β1(d) +Bz Bx + iBy

Bx − iBy β1(d) −Bz

 (2.31)

is positive semi-definite. This can be determined with a simple diagonalization of the
matrix

B =
 Bz Bx + iBy

Bx − iBy −Bz

 (2.32)

as
β = −λmin (B) (2.33)
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where λmin (B) is the smallest eigenvalue of B. Please note that β cannot be zero except
for the trivial choice Bi = 0, i = x, y, z. That is because one should have

β2 ≥ sup{⟨Bx⟩2
ρ + ⟨By⟩2

ρ + ⟨Bz⟩2
ρ | ρ ∈ B (H)}

at least to ensure positivity of the qubit state M (ρ). Usually, one would like to choose
the minimum value of β, such that the condition (2.31) is verified, to approach a pure
state as much as possible.

Hence complete positivity of the mapping (2.30) is finally determined via the condi-
tion (2.31), that depends only on the chosen observables and avoids any reference to the
isometry U used to perform this mapping (2.3).

Next, we will study two examples of operators Bi for which one can determine β
explicitly. These choices will appear frequently throughout the remainder of the thesis.
The first example will be the angular momentum operators, whereas the next example is
concerned with Pauli like operators that we will define here after.

2.1.5 Dichotomization using angular momentum operators: re-
visited

In the light of this preceding result, we revisit the case where the mapping is defined
through angular momentum operators that we have already discussed in section 2.1.3
(see page 55). That is the mapping:

M (ρ) = 1
2 +

〈
J⃗
〉
ρ

β
.
σ⃗

2 , (2.34)

where Ji, i = x, y, z are the components of angular momentum.
Now, we set out to determine the best value of β such that the mapping (2.34) is

completely positive. Previously (see section 2.1.3), we have set β = j. Here we will show,
using our simplified criterion (2.31) that the corresponding mapping is indeed CP.

To show that, we borrow a theorem for positivity of block matrices [237, 238]

Theorem 2 A block matrix

M =
A B

B† C


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is positive semi-definite iff:

A ⪰ 0 and
(
1 − AA−1

)
B = 0 andC −B†A−1B ⪰ 0

where A−1 is the pseudo inverse of the matrix A [239–242].

Since D should be positive semi-definite, theorem 2 [237, 238] tells us that A =

j1 + Jz ⪰ 0. This is indeed the case since:

j1 + Jz =
j∑

m=−j
(j +m)|m⟩⟨m| =

2j∑
m=0

m|m− j⟩⟨m− j| (2.35)

The pseudo inverse of A can be calculated easily, since it is diagonal, to be:

A−1 = (j1 + Jz)−1 =
2j∑
m=1

1
m

|m− j⟩⟨m− j| (2.36)

Thus, we have the following relation:

1 − AA−1 =
2j∑
m=0

|m− j⟩⟨m− j| −
2j∑
m=1

|m− j⟩⟨m− j| = | − j⟩⟨−j| (2.37)

Since ⟨−j|B = ⟨−j|J+ = 0, we find that the condition (1 − AA−1)B = 0 is verified. All

left is to check the last condition

C −B†A−1B = j1 − Jz − J− (j1 + Jz)−1 J+ ⪰ 0

We have:
J− (j1 + Jz)−1 J+ =

2j∑
m=1

1
m
J−|m− j⟩⟨m− j|J+

We also have [120]:

J+|m⟩ =
√
j (j + 1) −m (m+ 1)|m+ 1⟩

J−|m⟩ =
√
j (j + 1) −m (m− 1)|m− 1⟩
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Then we get:

J− (j1 + Jz)−1 J+ = ∑2j
m=1

j(j + 1) − (m− j)(m− j − 1)
m

|m− j − 1⟩⟨m− j − 1|

= ∑2j
m=1

m(2j + 1) −m2

m
|m− j − 1⟩⟨m− j − 1| = ∑2j−1

m=0(2j −m)|m− j⟩⟨m− j|

= ∑j
m=−j(j −m)|m⟩⟨m| = j1 − Jz (2.38)

Hence, we finally get that C − B†A−1B = 0 ⪰ 0 is verified as well. As a result, the
matrix D is positive semi-definite and we can conclude that the mapping (2.34) is CP.

We emphasize that this mapping is practical, as the 3 expectation values ⟨Ji⟩ρ can
be easily measured. In addition, it conserves the rotational invariance. Indeed, suppose
that we perform a rotation Rn⃗(α) by an angle α around a given vector n⃗. Then, ρ is
transformed as ρ′ = e−iαJ⃗ ·n⃗ρeiαJ⃗ ·n⃗. It is not difficult to show that ρ′ is mapped to the
rotated qubit :

MU(e−iαJ⃗ ·n⃗ρeiαJ⃗ ·n⃗) = e−iασ⃗·n⃗/2MU(ρ)eiασ⃗·n⃗/2. (2.39)

The invariance displayed in Eq. (2.39) is a consequence of the simple vectorial relations:

〈
R−1
n⃗ (α)

[
J⃗
]〉
ρ

· σ⃗ =
〈
J⃗
〉
ρ′

· σ =
〈
J⃗
〉
ρ

· Rn⃗(α) [σ⃗] , (2.40)

where J⃗ is the vector whose 3 components are the 3 operators Ji, for i = 1, 2, 3, and
R−1
n⃗ (α)

[
J⃗
]

is the corresponding vector in the rotated frame. Since SO(3) and SU(2)
are isomorphic, we can apply all possible unitaries to the mapped qubit by rotating the
original angular momentum correspondingly.

2.1.6 Dichotomization using Pauli like operators

A more general and popular choice is that of dichotomic Pauli operators. In many
situations, it is very convenient to consider only a bi-dimensional subspace of the total
Hilbert space on which we define Pauli operators and study the system as a two-level
system. Here we will introduce a very general class of Pauli like operators for any system
and we will discuss some applications later on. I will give examples of such operators for
discrete and continuous variable systems as well.
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Introduction

Let us start by defining the Pauli-like operators. First let us recall the definition of Pauli
operators for spin-1/2 where the Hilbert space is spanned by the two vectors {|0⟩, |1⟩}:

σx = σ+ + σ− , σy = −i (σ+ − σ−) , σz = |0⟩⟨0| − |1⟩⟨1| (2.41)

σ− = |1⟩⟨0| , σ+ = σ−
†

One can write σz as P0 − P1 where P0, P1 are projectors in H0 spanned by {|0⟩} and H1

spanned by {|1⟩} respectively.
Inspired from the above observations, we can generalize and extend the definition

of Pauli operators for any system of arbitrary dimensions. First, we define two Hilbert
spaces H0 and H1 such that:

H0 ⊕ H1 ⊆ H (2.42)

Where H is the Hilbert space of the considered system. Next, we define projectors P0(P1)
onto H0(H1) which will be used to define the generalized Sz operator as:

Sz = P0 − P1 (2.43)

The generalized Sz, like the qubit σz, can be seen as the difference of population between
the 0 and 1 subspaces, i.e. P0 − P1.

Now, let us take a look at a generalization of the σ+ operator. It will be denoted as
S+, and it can be defined as:

S+ = P0ΛP1,

where we have introduced Λ a linear mapping from H1 to H0 with singular value 1. The
generalization of σ−, denoted S−, can be simply defined from S+ as:

S− = S+
† = P1Λ†P0

Mapping with Pauli like operators

We thus have the ingredients to map any state ρ in the Hilbert space H = H0 ⊕ H1 to a
qubit M(ρ), using these Pauli like operators. Indeed, we define the mapping as:

ρ → M(ρ) = 1
2 +

〈
S⃗
〉
ρ
.σ⃗

2 (2.44)
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where the x, y, z components of the vector S⃗ are defined as:

Sz = P0 − P1, Sx = P0ΛP1 + P1Λ†P0, Sy = P0ΛP1 − P1Λ†P0

i
. (2.45)

We impose the requirement that ∥Λ∥2 ≡
√
λmax (Λ†Λ) = 1 to ensure the positivity of

the mapping. Indeed, we show in appendix A.4 that this requirement implies:

Tr
[
M(ρ)2

]
=

1 + ⟨Sx⟩2
ρ + ⟨Sy⟩2

ρ + ⟨Sz⟩2
ρ

2 ≤ 1

ensuring that the mapped state M(ρ) is positive. We defer to appendix A.5 the proof
that the above mapping is completely positive.

Commutation relations of the Pauli-like operators

At this stage, it is interesting to check out the commutation relations of the Pauli like
operators defined in Eq. (2.45). Since the projectors P0 and P1 are orthogonal, it is
trivial to check that:

[Sz, Sx] = 2iSy , [Sy, Sz] = 2iSx (2.46)

However [Sx, Sy] = 2iSz is not true in general. In fact, we find that:

[Sx, Sy] = 2i
(
P0ΛP1Λ†P0 − P1Λ†P0ΛP1

)

In order for the right hand side of the above equality to be equal to Sz = P0 − P1, we
should have:

ΛP1Λ† = P0 , Λ†P0Λ = P1 (2.47)

Now let us recall the singular value decomposition of Λ

Λ =
∑
n

√
λn|en⟩⟨fn|

{λn}n∈N is a sequence of positive numbers such that

max{λn}n∈N = 1
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because of the condition ∥Λ∥2 = 1. {|en⟩}n∈N and {|fn⟩}n∈N are orthonormal basis of H0

and H1 respectively. From the SVD decomposition of Λ it immediately follows:

ΛP1Λ† =
∑
n

λn|en⟩⟨en| , Λ†P0Λ =
∑
n

λn|fn⟩⟨fn|

Comparing with (2.47), we see that in order for the commutation relation [Sx, Sy] = 2iSz
to be fulfilled, we need to set all the singular values of Λ to 1. In other words, Λ should
be of the following form:

Λ =
∑
n

|en⟩⟨fn|

which in turn implies that there is one to one correspondence between {|en⟩}n and
{|fn⟩}n. For finite dimensional Hilbert spaces, this means H0 and H1 should have the
same dimension. In general, Λ should be an isomorphism from H1 to H0 of the above
form.

The commutation relations [Si, Sj] = 2iϵijkSk, ensure that the Pauli like operators
are the generators of SU(2) in H0 ⊕ H1, and as a consequence, the components of S⃗
transform as a vector under rotations. This is very useful to generate all the rotations
in the mapped state (2.44) via rotations on the original state as we did see in the last
example with angular momentum operators. This feature will become very useful, as
we will see in the next chapter, to derive a direction independent form of spin squeezing
inequalities.

However, when the commutation relations are not needed, and the Pauli like oper-
ators are only needed to perform the mapping (2.44), the above requirements for the
commutation relation [Sx, Sy] = 2iSz can be relaxed. The choice depends on what are
we looking for when performing the mapping (2.44).

Examples

One of the major interests of the Pauli-like operators is to test for non-locality [4, 7]
in high dimensional systems as we will see in the next section. More precisely, define
spin-1/2 like operators to test Clauser-Horne-Shimony-Holt (CHSH) inequalities [8] for
discrete variable systems [243] and continuous variable systems [244]. Here, however, I
will only give examples that are known and discussed in the literature to get a taste of
such Pauli-like operators that will be useful for later discussion.
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Finite dimensional systems
Let us consider the simplest choice possible considered in [243] of an even dimensional

Hilbert space H(2n), where the case n = 1 corresponds to the case of a 2-level system.
Now let us define H0 to be the even Hilbert space spanned by the vectors {|2i⟩ : 0 ≤

i < n}, and H1 to be the odd Hilbert space spanned by the vectors {|2i+ 1⟩ : 0 ≤ i < n}.
Then, we define P0ΛP1 to be

P0ΛP1 =
n−1∑
i=0

|2i⟩⟨2i+ 1|.

Then recalling the definition of Pauli-like operators (2.45), we get:

Sz = ∑n−1
i=0 |2i⟩⟨2i| − |2i+ 1⟩⟨2i+ 1|

Sx = ∑n−1
i=0 |2i⟩⟨2i+ 1| + |2i+ 1⟩⟨2i|

Sy = −i∑n−1
i=0 |2i⟩⟨2i+ 1| − |2i+ 1⟩⟨2i| (2.48)

At this point, it is instructive to see that any pure even state |ψ0⟩ ∈ H0 would be
mapped via the mapping (2.44) into the pure qubit state |0⟩, since

⟨ψ0|Sz|ψ0⟩ = 1 , ⟨ψ0|Sx|ψ0⟩ = ⟨ψ0|Sy|ψ0⟩ = 0

with the same reasoning, any pure odd state |ψ1⟩ ∈ H1 would be mapped into the qubit
state |1⟩. Thus, the role of the mapping (2.44) is to replace any state from H0 (H1) by
the qubit state |0⟩ (|1⟩) .

Since our formalism and definition of Pauli-like operators is versatile and allows for
two unitary degrees of freedom in H0 and H1 separately, we can choose the desired final
qubit state, by choosing H0 and H1 properly. For example, let us look at the state in
H(d) with d > 2, for the sake of illustration:

|Ψ+⟩ = |1⟩ + |2⟩√
2

If we take H0 to be the Hilbert space spanned by {|2⟩} and H1 to be the Hilbert space
spanned by {|1⟩}, and use the same Pauli-like operators defined above, the above state
will be mapped via (2.44) into the following qubit state

|ψ⟩ = |1⟩ + |0⟩√
2
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However, if we choose H0 to be the Hilbert space spanned by {|Ψ+⟩} and H1 to be the
Hilbert space spanned by {|Ψ−⟩}, where

|Ψ−⟩ = |1⟩ − |2⟩√
2

,

and if we define P0ΛP1 = |Ψ+⟩⟨Ψ−| in the Pauli-like operator definition (2.45), the state
of interest |Ψ+⟩ will be mapped into the qubit state |0⟩.
Finally, for any of the previous choices, the qudit state |0⟩ will be mapped into the qubit
mixed state 1

2 .
The above discussion can be seen as an easy recipe to map any system into a qubit

state, at least for the cases where the studied state is known or can be predicted. All the
mathematical tools that we provided boil down, for this special choice of operators, to
labelling some states 0 and others 1 depending on one’s needs.

Continuous variable systems
Here, we will consider the example introduced by Chen et al. [244] for a single-mode

light field. They have introduced the following Pauli like operators "pseudospin" for
photons:

Sz = ∑∞
i=0 |2i⟩⟨2i| − |2i+ 1⟩⟨2i+ 1|

Sx = ∑∞
i=0 |2i⟩⟨2i+ 1| + |2i+ 1⟩⟨2i|

Sy = −i∑∞
i=0 |2i⟩⟨2i+ 1| − |2i+ 1⟩⟨2i| (2.49)

where |i⟩ represents the Fock state with i photons. Like the previous case, Sz represents
the parity of photon number and Sx and Sy are parity flip operators.

We can see like the previous case, that any state with even photon number will be
mapped via (2.44) into the qubit state |0⟩, whereas, states with odd photon number will
be mapped to |1⟩. Perhaps, a more famous example, is the even(odd) cat state:

|cat±⟩ ∝ |α⟩ ± | − α⟩ (2.50)

where |α⟩ is the coherent state defined for any complex α as:

|α⟩ = e− |α|2
2

∞∑
n=0

αn√
n!

|n⟩. (2.51)
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We can easily see that the even (odd) cat state is written as a superposition of even(odd)
Fock states, thus will be mapped via (2.44) into the qubit state |0⟩ (|1⟩), for all values of
α. Since coherent states are a superposition of even and odd cat states, more precisely:

|α⟩ =

√√√√1 + e−2|α|2

2 |cat⟩+ +

√√√√1 − e−2|α|2

2 |cat⟩− (2.52)

it will be mapped into the qubit state√√√√1 + e−2|α|2

2 |0⟩ +

√√√√1 − e−2|α|2

2 |1⟩

We have thus far studied the mapping of any system into a qubit, the main step for
the next section. The next step naturally, will be the mapping of a bipartite system into
two qubits to, as mentioned in the introduction, study the entanglement properties of
the system based on the entanglement properties of the resulting qubit.

2.2 Mapping bipartite system to two qubits

As we have already mentioned, the main objective of this mapping is to simplify the
study of entanglement by reducing the dimensions. Indeed, entanglement detection
can be a daunting task in systems of dimensions larger than 2 × 3, since there are no
known necessary and sufficient conditions for entanglement in such systems. Whereas for
systems with dimensions 2 × 2 and 2 × 3, there exists necessary and sufficient conditions,
especially, the Peres-Horodecki criterion or PPT criterion [83, 139]. Hence, by mapping
each of the subsystems into a qubit as we have introduced in the previous section, we
get a 2 × 2 system for which PPT criterion can be easily applied. If the mapping is
done properly, such that no entanglement is created in the process, entanglement in the
resulting 2 × 2 system is a sufficient condition for entanglement in the original system.
Such mappings that does not create entanglement can be performed using what is known
as Local Operations and Classical Communication (LOCC) operations [45, 40, 38].

Description of LOCC operations is hard and there is no known mathematical form
to describe all possible operations. However, one can define different subclasses of such
operations. It is worth mentioning that there exits a class called the separable operations
class that has an elegant simple mathematical form. However, it was shown that separable
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operations are different from LOCC ones [45], and that the name separable is somewhat
deceptive.

For this work, we will restrict our attention to a specific class of Local Operations
with no classical communication that can be described quite easily using Kraus operators.
I will give the description in the next section for this class, but we can have an intuitive
picture of it. The two parties, usually called Alice and Bob, apply local operations
to their part of the shared state with no possibility to communicate or receive any
information from the other party. In other words, they blindly apply their operation
irrespective of what the other party does. One can naturally expand this class by adding
one way communication where only Alice can tell Bob, classically, what operation to
apply depending on the results of her local operations. This class, in turn, can be
expanded by having two rounds of classical communication and so on.

2.3 Mapping bipartite system to two qubits: Local
mapping with no communication

In this paradigm, as introduced earlier, Alice and Bob apply their mapping locally to
their part of the state they share with no knowledge or information conveyed from one
party to another. This is the most straightforward way to map a bipartite system into
2-qubit system. Let us call Ma and Mb, the mapping Alice and Bob apply to their share
of the state respectively, then the overall mapping applied to the bipartite state ρAB will
simply be Ma ⊗ Mb and we will end up with a 2 × 2 state Ma ⊗ Mb (ρAB).

As we have seen before, any trace preserving CP map can be implemented with an
isometry U and an ancillary qubit (2.3). Hence, if we note by Ua the isometry Alice uses,
|0⟩a the state of the ancilla and the same for Bob but with the subscript b instead, then
the total bipartite mapping Ma ⊗ Mb:

Ma ⊗ Mb : B
(
H(da) ⊗ H(db)

)
→ B

(
H(2a) ⊗ H(2b)

)
:

ρ → Ma ⊗ Mb (ρ)

with

Ma ⊗ Mb (ρ) = TrH(Da)⊗H(Db)
[
Ua ⊗ Ubρ⊗ |0⟩a⟨0| ⊗ |0⟩b⟨0|U †

a ⊗ U †
b

]
. (2.53)
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is trace preserving CP mapping implemented via the isometry Ua ⊗ Ub and the two
ancillary qubits of Alice and Bob. The tensor product reflects the obvious fact that there
is no communication between Alice and Bob.

Next, our goal is to write the previous mapping as a function of local operators acting
on each party. Similar to the steps followed in Sec. 2.1.1, we write the isometries Ua and
Ub in the form (2.1):

Ua =
3∑
i=0

A
(d1)
i ⊗ σ

(1)
i , Ub =

3∑
i=0

A
(d2)
i ⊗ σ

(2)
i (2.54)

where σ(1)
i and σ

(2)
i are Pauli operators acting on Alice’s qubit and Bob’s respectively.4

Substituting Ua and Ub in (2.53) by their expressions (2.54) and simplifying using the
same steps in Sec.2.1.1 for each party, we can write the mapping in the desired form:

Ma ⊗ Mb (ρ) = 1
4

[
1(4) +∑3

i=1

〈
B

(d1)
i

〉
ρ
σ

(1)
i +∑3

i=1

〈
B

(d2)
i

〉
ρ
σ

(2)
i

+ ∑3
i,j=1

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ
σ

(1)
i ⊗ σ

(2)
j

]
(2.55)

Where the operators B(dk)
i , k = 1, 2 and i = 1, 2, 3, are defined as a function of the

operators A(dk)
j as in Sec.2.1.1, Eqs.(2.8). The above equation is the desired form of

the mapping where we have written the mapping as a function of 6 mean values and 9
correlations of local operators calculated in the original state. We can rewrite the last
equation in a more compact form by defining

B
(dk)
0 = 1(dk) : k = 1, 2

to finally get:

Ma ⊗ Mb (ρ) = 1
4

3∑
i,j=0

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ
σ

(1)
i ⊗ σ

(2)
j (2.56)

This form, like in the case of mapping to a single qubit, expresses the 2-qubit state as a
function of correlations of local operators, three for each party that can be measured
easily. More importantly, it does not contain any indication to the isometries used to
implement the mapping.

4From this point on, we will refer to operators acting on Alice(Bob) Hilbert space H(d1)(H(d2)) with
the superscript (d1)((d2)) instead of the subscript a(b), to point out that the Hilbert spaces are of different
dimensions in general and will be dropped for the infinite dimensional case.
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As we have seen before, we pick six operators, three for each party B(dk)
i , where to

ensure complete positivity of the mapping, we should normalize them by a factor β(dk):
k = 1, 2 determined by theorem (1), so we can write explicitly the mapping (2.56):

Ma ⊗ Mb (ρ) = 1
4

1(4) +∑3
i=1

〈
B

(d1)
i

〉
ρ

β(d1) σ
(1)
i +∑3

i=1

〈
B

(d2)
i

〉
ρ

β(d2) σ
(2)
i

+ ∑3
i,j=1

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ

β(d1)β(d2) σ
(1)
i ⊗ σ

(2)
j

 (2.57)

Which represents the practical form of the mapping. Complete positivity of the
mapping, ensures the physicality, ability to implement, of the mapping. In other words,
applying this mapping to any state of the system will give always a state (positive,
hermitian and trace one) no matter how large the environment the system might be
interacting with. However, for this work, we do not care how the mapping is implemented
and that is why we expressed the mapping as a function of correlations and mean values
of local observables and some normalization factor that can be calculated as a function of
the chosen observables. Here, we are rather interested to test if a given bipartite state ρ
is entangled or not. Complete positivity, on the other hand, is not needed as we will see
in later discussion where we will relax the condition of complete positivity to positivity
only.

Next, I will show two important properties of the above mapping that are useful from
entanglement detection perspective. Then I will show how this mapping can provide
entanglement criteria with focus on criteria based on angular momentum and Pauli like
operators that we introduced previously.

2.3.1 Properties of Mapping (2.57)

Preserves separability

Preserving separability is an obvious property of this mapping since LOCC operations
do not increase entanglement. One can directly prove it using the form (2.57). For a
product state ρ = ρ1 ⊗ ρ2 we have

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ

=
〈
B

(d1)
i

〉
ρ1

〈
B

(d2)
i

〉
ρ2
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which simplifies the expression of Eq.(2.57) to:

Ma ⊗ Mb (ρ) = 1
4

1(4) +
3∑
i=1

〈
B

(d1)
i

〉
ρ

β(d1) σ
(1)
i +

3∑
i=1

〈
B

(d2)
i

〉
ρ

β(d2) σ
(2)
i +

3∑
i,j=1

〈
B

(d1)
i

〉
ρ1

〈
B

(d2)
i

〉
ρ2

β(d1)β(d2) σ
(1)
i ⊗ σ

(2)
j


=

1
2 + 1

2

3∑
i=1

〈
B

(d1)
i

〉
ρ

β(d1) σ
(1)
i

⊗

1
2 + 1

2

3∑
i=1

〈
B

(d2)
i

〉
ρ

β(d2) σ
(2)
i

 = Ma (ρ1) ⊗ Mb (ρ2)

(2.58)

Hence, any product state is mapped into a product state. By linearity of the mapping,
any convex combination of product states will be mapped via (2.57) into the same convex
combination of product 2-qubit states.

Separability conservation is a key point to witness entanglement and it is an essential
requirement for any entanglement measure. Since the mapping preserves separability, any
entanglement in the resulting 2-qubit state, for which entanglement is easily characterized,
implies entanglement in the original bipartite state which is usually hard to detect.

Maps PPT states into PPT states

PPT states stand for states with positive partial transpose of the density matrix. A
state with a non positive partial transpose or NPT is entangled. This is the so called
Peres-Horodecki criterion or PPT criterion [83, 139]. For systems of dimensions larger
than 2 × 3, this criterion is sufficient, i.e. there exists entangled states that are PPT [49].
Which leads to an interesting question: can we, via our mapping (2.54), do better than
the PPT criterion? In other words, can we map a PPT state into an NPT 2-qubit state?

The answer to this question is no for the case of mapping (2.54), i.e. a mapping via LO
operations with no communication. For the general case with a mapping implemented by
LOCC operations, the above questions is related to entanglement distillabilty [245, 145]
of the state5 to which the answer is also no.

The answer to the question in the special case can be shown explicitly within the
framework introduced in this chapter. From equations (2.15), we can see that the

5ability to obtain a maximally entangled 2-qubit state using LOCC operations
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operators that define the mapping can be written in the form:

B
(dk)
1

β(dk) = K
(dk)
1

†
K

(dk)
0 +K

(dk)
0

†
K

(dk)
1

B
(dk)
2

β(dk) = i
(
K

(dk)
1

†
K

(dk)
0 −K

(dk)
0

†
K

(dk)
1

)
B

(dk)
3

β(dk) = K
(dk)
0

†
K

(dk)
0 −K

(dk)
1

†
K

(dk)
1 (2.59)

with k = 1, 2. If we take the transpose of the above observables we find that

[
B

(dk)
1

]T
= B

(dk)
1 ,

[
B

(dk)
2

]T
= −B(dk)

2 ,
[
B

(dk)
3

]T
= B

(dk)
3 (2.60)

where the transpose accounts for a minus sign in the case of B(dk)
2 only. The same is

also true for angular momentum operators, Pauli operators in particular. Now, let us
calculate the mapping of the partial transpose of a state ρ, Ma ⊗ Mb

(
ρ(T2)

)
where T2

stands for partial transpose with respect to the second party:

Ma ⊗ Mb

(
ρT2
)

= 1
4

1(4) +
3∑
i=1

〈
B

(d1)
i

〉
ρ

β(d1) σ
(1)
i +

3∑
i=1

〈[
B

(d2)
i

]T2
〉
ρ

β(d2) σ
(2)
i +

3∑
i,j=1

〈
B

(d1)
i ⊗

[
B

(d2)
j

]T2
〉
ρ

β(d1)β(d2) σ
(1)
i ⊗ σ

(2)
j

 (2.61)

where we have used the fact Tr
[
AT2B

]
= Tr

[
ABT2

]
to do the following substitution:

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρT2

=
〈
B

(d1)
i ⊗

[
B

(d2)
j

]T2
〉
ρ
.

Taking eqs.(2.59) and the fact that Pauli operators verify the same equations, we find
easily that:

〈
B

(d1)
i ⊗

[
B

(d2)
j

]T2
〉
ρ
σ

(1)
i ⊗ σ

(2)
j =

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ
σ

(1)
i ⊗

[
σ

(2)
j

]T2

which leads us to the conclusion that:

Ma ⊗ Mb

(
ρT2
)

= [Ma ⊗ Mb (ρ)]T2 (2.62)
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Which means that the PT (Partial Transpose) of a bipartite state ρ is mapped into the
PT of its image Ma ⊗ Mb (ρ). Now, since our mapping preserves positivity, we can
conclude that if ρT2 ⪰ 0, ρ is PPT, then

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ
σ

(1)
i ⊗

[
σ

(2)
j

]T2 ⪰ 0. Thus, we
have proved that a PPT state is mapped into a PPT state.

In the general case of implementing the bipartite mapping via LOCC operations, it
can be shown that PPT states are mapped into PPT states. For that we borrow two
theorems form Ref.[145]:

• Any entangled (NPT) 2-qubit state is distillable

• PPT d1 × d2 states with d1 ≥ d2 > 2 cannot be distilled

If the mapping implemented by LOCC operations were able to map a PPT state into an
NPT 2-qubit state, then the latter could be distilled implying the distillability of our
PPT states contradicting the second theorem. Hence, any mapping implemented via
LOCC operations should preserve PPT.

2.3.2 Positivity versus complete positivity

Here we will discuss briefly the utility of having a complete positive map versus a positive
one. A positive map M will map any state into a state up to some normalization factor
when considering that the system is isolated. However, when considering the system as a
part of a bigger world, applying the mapping M to the system would mean applying
I ⊗ M to the state of the system + environment where I accounts for the identity over
the environment Hilbert space. Unless, M is completely positive, the mapping I ⊗ M is
not guaranteed to be positive. Since quantum channels are implemented by applying
some unitary to the system plus some environment and then tracing out the environment,
complete positivity ensures the physicality of the mapped state.

An interesting observation is that the mapping I ⊗ M is positive for separable states
if M is positive. Hence, if M is positive but not completely positive then, I ⊗ M can
detect entanglement by mappping an entangled state to a non positive operator. This is
a principle idea for entanglement criteria like PPT [83, 139].

Thus, for the entanglement detection, our mapping Ma ⊗ Mb (2.57) is required to be
positive over the set of separable states only. This can be achieved iff Ma and Mb are
positive. However, the normalization factor we have introduced in 2.1.4 β(dk) guarantees



74 Mapping to two-dimensional systems: formalism and applications

complete positivity. To ensure positivity, we can choose the normalization factor, as we
discussed in Sec. 2.1.4, to be:

α(dk) = sup{
〈
B

(dk)
1

〉2

ρ
+
〈
B

(dk)
2

〉2

ρ
+
〈
B

(dk)
3

〉2

ρ
| ρ ∈ B

(
H(dk)

)
} (2.63)

where α(dk) ≤ β(dk). With this, we can finally write the desired mapping in the form:

Ma⊗Mb (ρ) = 1
4

1(4) +
3∑
i=1

〈
B

(d1)
i

〉
ρ

α(d1) σ
(1)
i +

3∑
i=1

〈
B

(d2)
i

〉
ρ

α(d2) σ
(2)
i +

3∑
i,j=1

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ

α(d1)α(d2) σ
(1)
i ⊗ σ

(2)
j


(2.64)

The above mapping preserves separability and positivity of separable states. Hence,
non positivity or entanglement in the image of some state ρ is an indication of entan-
glement of this state. Moreover, in the case where α(dk) ̸= β(dk), PPT conservation is
not guaranteed since such mapping is not guaranteed to be implementable with LOCC.
Hence, in principle, this might be an advantage to detect PPT entangled states.

2.3.3 Sufficient entanglement criteria

We have thus far introduced the mapping from an arbitrary bipartite system into a
2-qubit system as a function of correlations of six observables, three for each party (2.64).
From our previous discussion, since entanglement of the resulting 2-qubit state is sufficient
for entanglement in the original state, it is sufficient to apply PPT criterion to the state
Ma ⊗ Mb (ρ) (2.64). One can change the criterion simply by changing the choice of
observables for each party.

An interesting question at this stage arises whether it is better to map into a 2 × 3
system where PPT, albeit complicated, is also a necessary and sufficient condition for
entanglement. For this mapping to be done, we need three operators to map to a qubit
and eight operators to map into a qutrit. One expects with the additional correlations
needed for the mapping compared to mapping into a 2 qubits, more information is gained
end better entanglement detection can be achieved. However, it can be shown that any
NPT d× 2 state can be mapped into an NPT 2 × 2 state. Hence all entangled states
that can be detected via a mapping into a d× 2 state, can be detected with a mapping
into a 2 × 2 states.

As a choice of operators, we will use the example we introduced, for mapping a
system into a single qubit using angular momentum operators (see section 2.1.5), to
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derive entanglement criteria. The choice of angular momenta operators is justified by
the simplicity of measuring their moments experimentally. However, as we will see their
is a trade off between simplicity and efficiency to detect different entangled states. The
last statement is expected for systems of large dimensionality as we will see next.

2.3.4 Entanglement criteria with angular momentum operators

Now, we consider the case of a 2-qudit state ρ in B(H(d1) ⊗ H(d2)) and use the mapping
Ma ⊗ Mb, where each Ui(i = 1, 2) implements a mapping as the one given by Eq. (2.34).
The resulting mapping Ma ⊗ Mb can then be written explicitly as follows:

Ma ⊗ Mb(ρ) = 1
4

[
1 + 1

j(d1)

3∑
i=1

⟨J (d1)
i ⊗ 1⟩ρσi ⊗ 1

+ 1
j(d2)

3∑
i=1

⟨1 ⊗ J
(d2)
i ⟩ρ1 ⊗ σi+

+ 1
j(d1)j(d2)

3∑
i,j=1

⟨J (d1)
i ⊗ J

(d2)
j ⟩ρσi ⊗ σj

 ,
(2.65)

where J (dk)
i is the i-th (i = 1, 2, 3) angular momentum component on the dk-dimensional

Hilbert space H(dk) (k = 1, 2), with dk = 2j(dk) + 1.

The mapping defined in Eq. (2.65) allows to obtain an operationally easy to implement
entanglement witness based on second order correlations. This is achieved by using the
following substitutions:

⟨σi ⊗ 1⟩Ma⊗Mb(ρ) = ⟨J (d1)
i ⊗ 1⟩ρ
j(d1) ≡ r1

i ,

⟨1 ⊗ σi⟩Ma⊗Mb(ρ) = ⟨1 ⊗ J
(d2)
i ⟩ρ

j(d2) ≡ r2
i ,

⟨σi ⊗ σj⟩Ma⊗Mb(ρ) =
⟨J (d1)

i ⊗ J
(d2)
j ⟩ρ

j(d1)j(d2) ≡ Tij,

(2.66)

which are direct consequences of Eq. (2.65). Therefore we consider the following form for
the general mapped state:

Ma ⊗ Mb(ρ) = 1
4

[
1 + r⃗1.σ⃗ ⊗ 1 + r⃗2.1 ⊗ σ⃗ +

3∑
i=1

Tiiσi ⊗ σi

]
, (2.67)
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where we assume that the rotations needed to diagonalize Tij have been performed. We
have introduced the vectors r⃗j (j = 1, 2), which have as components the rji (i = 1, 2, 3)
defined in Eq. (2.66), after the mentioned needed rotations.

Once we have the form of Eq. (2.65) or Eq. (2.67), the best entanglement witness
that we can use is the Peres-Horodecki criterion [246] relying on the positiveness of
the partial transpose. This criterion can be simplified by considering the geometric
picture which was developed in Ref. [139]. In this paper, it was shown that for the states
of the form given by Eq. (2.67), the vector T⃗ = {T11, T22, T33} ∈ R3 must lie within
a tetrahedron with vertices {(−1,−1,−1), (−1, 1, 1), (1,−1, 1), (1, 1,−1)}, to fulfill the
positiveness requirement. Each of the 4 vertices of this tetrahedron is reached when
the 2-qubit state is one of the four Bell-states |Φ±⟩ = |00⟩±|11⟩√

2 , |Ψ±⟩ = |01⟩±|10⟩√
2 . In this

picture, the separable states are those for which the vector T⃗ = {T11, T22, T33} ∈ R3 lies
within the octahedron with vertices {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. This last property
can be put in the following more compact form: for any separable state of the form given
by Eq. (2.67), T⃗ verifies the inequality:

|T11| + |T22| + |T33| ≤ 1. (2.68)

Using the definitions given by Eq. (2.66), Eq. (2.68) can be re-expressed as a 2-qudit
entanglement criterion:
For any separable state ρ acting on H(d1) ⊗ H(d2), the vector {⟨J (d1)

i ⊗ J
(d2)
i ⟩ρ : i = 1, 2, 3}

verifies the following inequality:
∣∣∣⟨J (d1)

1 ⊗ J
(d2)
1 ⟩ρ

∣∣∣+ ∣∣∣⟨J (d1)
2 ⊗ J

(d2)
2 ⟩ρ

∣∣∣+
+
∣∣∣⟨J (d1)

3 ⊗ J
(d2)
3 ⟩ρ

∣∣∣ ≤ j(d1)j(d2). (2.69)

Therefore, all states that violate inequality (2.69) lie outside the octahedron and are thus
entangled. This 2-qudit entanglement criterion has the advantage of being very simple to
test experimentally. One can notice that there are no 2-qudit states that are mapped to
any of the 2-qubit Bell states. Therefore, the vertices of the tetrahedron do not belong
to the image of our mapping. This can be proved by contradiction: consider that there
exists a state ρ such that Ma ⊗ Mb(ρ) is one of the Bell states, say |Ψ+⟩⟨Ψ+|. For this
state we have:

Tr
[
|Ψ+⟩⟨Ψ+|σ3

]
= 1,

Tr
[
|Ψ+⟩⟨Ψ+|σ2

]
= −1, Tr

[
|Ψ+⟩⟨Ψ+|σ1

]
= 1. (2.70)
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From Eq. (2.70) and Eq. (2.65), we find ⟨J (d1)
3 ⊗ J

(d2)
3 ⟩ρ = j(d1)j(d2) which in turn implies

that the state ρ must be a pure state of the form α|j(d1), j(d2)⟩ + β| − j(d1),−j(d2)⟩ with
|α|2 + |β|2 = 1. For such states the other values of ⟨σi⟩Ma⊗Mb(ρ) for i = 1 or i = 2 are
zero and not 1 or -1, indeed ⟨J (d1)

1 ⊗ J
(d2)
1 ⟩ρ = ⟨J (d1)

2 ⊗ J
(d2)
2 ⟩ρ = 0 for d1 > 2 or d2 > 2.

The same reasoning can be made for each Bell state.
To have an insight about the efficiency of our criterion to detect entanglement, we

apply it to two known families of qudit states that have been extensively studied in
Refs. [34, 47, 247, 36]. From now on, we suppose that the two qudits are of the same
dimension, that is d1 = d2 ≡ d = 2j + 1. First, we recall the family of d2 maximally
entangled 2-qudit states |Ωkl⟩(k, l = 0, 1, · · · , d− 1) that generalize the four 2-qubit Bell
states [34, 47, 247, 36]:

|Ωkl⟩ = Wkl ⊗ 1|Ω00⟩, with |Ω00⟩ = 1√
d

d−1∑
m=0

|m,m⟩, (2.71)

where the d2 Wkl operators acting on the first qudit are the Weyl operators defined as

Wkl|m⟩ = e
i2πk(m−l)

d |(m− l)mod d⟩. (2.72)

These 2-qudit Bell states Pkl = |Ωkl⟩⟨Ωkl| are locally maximally mixed states, that is, by
taking their partial trace one obtains the maximally mixed state 1

d
. It is interesting to

notice that they are mapped by Eq. (2.67) to a locally maximally mixed 2-qubit state.
Indeed, we have:

r⃗1
kl = ⟨J⃗ ⊗ 1⟩Pkl

j
= 0⃗ and r⃗2

kl = ⟨1 ⊗ J⃗⟩Pkl

j
= 0⃗.

For such states, our simple criterion Eq. (2.69) is as strong as the PPT criterion applied
to states given by Eq. (2.67) and detects all entangled locally maximally mixed states that
are detected by the latter. We can thus say that every maximally entangled 2-qudit state
|Ωkl⟩ is detected by our criterion Eq. (2.69), even though these states are not mapped to
2-qubit Bell states. Instead, they are mapped to mixed states that are locally maximally
mixed, that is, a convex sum (statistical mixture) of 2-qubit Bell states.

Examples

We proceed by exploring the statistical mixtures of maximally entangled 2-qudit pure
states that can be detected by our criterion Eq. (2.69). We start by applying our criterion
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to the so called Werner states which provide a good description of the effects of phase
and depolarizing noise in maximally entangled states [141, 47]:

ρα = α|Ω00⟩⟨Ω00| + 1 − α

d2 1, with −1
d2 − 1 ≤ α ≤ 1. (2.73)

The bounds for the parameter α are such that ρα is positive. It is known [141] that ρα is
entangled iff 1

d+1 < α ≤ 1. A straightforward application of our criterion Eq. (2.69) to
ρα gives that if αj (j + 1) > j2 then ρα is entangled. Therefore, our criterion can detect
all the entangled states ρα for α ∈ [ j

(j+1) , 1]. Recalling that d = 2j + 1, we realize that
entangled states with 1

2(j+1) < α ≤ j
(j+1) are not detected.

As a more specific example, we now consider the 3-parameter family of 2-qudit states:

ρα,β,γ = 1 − α− β − γ

(2j + 1)2 1 + αP00

+ β

2j

2j∑
i=1

Pi0 + γ

2j + 1

2j∑
i=0

Pi1, (2.74)

where the Pkl are the projectors on the |Ωkl⟩ states. This family of states is a generalization
to arbitrary dimensional qudits of the 2-qutrit states originally introduced in Refs. [47,
247, 36] to study bound entanglement. Density matrices as given in Eq. (2.74) are
interesting because their eigenvalues and those of their partial transpose can be explicitly
expressed as a function of the parameters α, β and γ (see Appendix A.6). This allows to
locate the set of PPT ρα,β,γ in the space spanned by α, β, and γ. To ensure positivity,
the parameters α, β, and γ must verify the following inequalities (see Appendix A.6):

1 − α− β − γ

(2j + 1)2 ≥ 0 , α+ 1 − α− β − γ

(2j + 1)2 ≥ 0

β

2j + 1 − α− β − γ

(2j + 1)2 ≥ 0 ,
1 − α− β + 2jγ

(2j + 1)2 ≥ 0.

These inequalities define the interior of a tetrahedron. Now, applying our criterion
Eq. (2.69), we obtain that all separable states ρα,β,γ given by Eq. (19) are such that:

|(j + 1)(α + β) + (j − 2)γ| + (j + 1) |2α− β/j|
3j ≤ 1. (2.75)

All states ρα,β,γ for which the inequality Eq (2.75) is violated are therefore entangled.
In order to have an idea about the efficiency of criterion Eq. (2.69), we have calculated

the eigenvalues of the PT of ρα,β,γ and thus obtained explicit conditions on α, β, and γ
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for ρT2
α,β,γ to be positive (see Appendix A.6). In Fig. 2.1, we present the tetrahedron of

(a)

−1.0

1.0

0.0γ

−0.51.0 0.00.5
β

0.0

1.0

0.5

α

(b)

0.0

1.0
0.5
γ

1.0
0.00.5

β

0.0

1.0

0.5
α

Figure 2.1: Geometrical representation of states ρα,β,γ [Eq. (2.74)] in parameter space for
(a) 2j + 1 = 3 and (b) 2j + 1 = 5. All physical states lie inside the tetrahedron whereas
the PPT states lie inside the blue region [a cone for the 2-qutrit case (a)]. Red regions
depict entangled states detected using our criterion Eq. (2.69), whereas the yellow region
hosts the non detected entangled states by this criterion.

positive states ρα,β,γ given by Eq. (2.74) in parameter space for the cases j = 1 (Fig. 2.1.a)
and j = 2 (Fig. 2.1.b). The set of PPT states are depicted in blue, so the remaining
volume of the tetrahedron corresponds to entangled states. We have represented in red
the states that are detected by our criterion Eq. (2.69). We see clearly that it detects
a significative part of the entangled states parametrized by Eq. (2.74). Nevertheless,
comparing Fig. 2.1.a and Fig. 2.1.b, we note that this volume decreases when j increases
from j = 1 to j = 2. However, different criteria which present a better scaling with
dimension for this particular family of states can be found by changing the isometry U
in Eq. (2.1) (or equivalently changing the corresponding Ai operators in Eq. (2.25), used
to map each qudit to a qubit).

2.3.5 Mapping for N qudits and spin squeezing inequalities

Until now, we only have considered the entanglement of two qudits. Now, we adress
the problem of detecting entanglement in a large N qudits system. An interesting
consequence of our mapping is that it can be easily extended to map a system of N
qudits to a system of N qubits. Indeed, by applying Eq. (2.34) individually to each qudit,
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the separability among the parties is preserved. If we denote Lα = Jα

j
(α = 1, 2, 3) and

L0 = 1, then the N -qubit mapped state corresponding to the N -qudit state ρ can be

written as

M⊗NU(ρ) = 1
2N

∑
k⃗∈{0,1,2,3}N

⟨⊗N
i=1Lki

⟩ρ ⊗N
i=1 σki

. (2.76)

An immediate consequence is that for any k⃗ ∈ {0, 1, 2, 3}N , we have

⟨⊗N
i=1Lki

⟩ρ = ⟨⊗N
i=1σki

⟩M⊗N U
(ρ). (2.77)

By using this property to compute first and second order correlations, we can provide an

alternative derivation of the spin squeezing inequalities detecting N -qudit entanglement

from the N -qubit ones introduced in Ref. [248]. It was shown in Ref. [201] that all

separable N -qubit states satisfy the following inequalities:

⟨Ŝ2
1⟩ + ⟨Ŝ2

2⟩ + ⟨Ŝ2
3⟩ ≤ N (N + 2)

4 ,

(∆Ŝ1)2 + (∆Ŝ2)2 + (∆Ŝ3)2 ≥ N

2 ,

⟨Ŝ lsq
α ⟩ + ⟨Ŝ lsq

β ⟩ − (N − 1)(∆̃Ŝγ)2 ≤ N(N − 1)
4 ,

⟨Ŝ lsq
α ⟩ − (N − 1)[(∆̃Ŝβ)2 + (∆̃Ŝγ)2] ≤ N(N − 1)

4 .

(2.78)

where Ŝα = 1
2
∑N
i=1 σ

i
α is the collective spin operator in direction α. The indexes (α, β, γ)

may assume any permutation of (1, 2, 3) and the following definitions have been used:

(∆Ŝα)2 ≡ ⟨Ŝ2
α⟩ − ⟨Ŝα⟩2,

⟨Ŝ lsq
α ⟩ ≡ ⟨1

4
∑N
i ̸=j=1 σ

i
α ⊗ σjα⟩,

(∆̃Ŝα)2 ≡ ⟨Ŝ lsq
α ⟩ − ⟨Ŝα⟩2.

(2.79)

Using Eq. (2.77), we obtain, starting from the N -qubit inequalities Eqs. (2.78), the

inequalities satisfied by all separable N -qudit states (N spins j). This is achieved with

the following substitutions [248]:

Ŝα → 1
2j Ĵα, Ŝ lsq

α → 1
4j2 Ĵ lsq

α (2.80)
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where Ĵα = ∑N
i=1 J

i
α and Ĵ lsq

α = 1
4
∑N
i ̸=j=1 J

i
α ⊗ J jα. Therefore, the relation between the

entanglement criterion for N -qubit and N -qudit systems, which was already considered
in Ref. [248], can be thought as a simple consequence of the particular mapping explicitly
given by Eqs. (2.25) or equivalently by Eq. (2.34). As a consequence, we have shown that
the qudit entanglement revealed by the qudit spin squeezing inequalities can always be
recast as qubit-like, or dichotomic, spin squeezing. Thus, qudit spin squeezing inequalities
do not evidence entanglement of higher dimension than the qubit squeezing ones. Finally,
we notice that by choosing different Ai operators in Eq. (2.1) we can expect to find new
multipartite qudits entanglement criteria.

2.4 Conclusion

In conclusion, we have presented a general scheme to map qudits to qubits that can
be used to define criteria to detect entanglement between qudits. We have applied this
general scheme to provide a specific entanglement criterion based on the measurement of
qudit–qudit correlations.

In addition, our results provide a way to classify multi-partite qudit entanglement
according to its detectability through dichotomization. Finally, it opens the interest-
ing question of what are the specific entanglement types, if any other than bound
entanglement, that fail to be detected by our method.





3

Generalized spin squeezing
inequalities for fluctuating particle
number

In this chapter, we will focus in the detection of entanglement in multi-partite systems
consisting of high number of particles. For such systems accessing and measuring
individual is a prohibitive task and executing full state tomography is out of question.
The entanglement criteria should be based on possible collective measurements and
preferably ones that do not require high correlations that might prove impractical. We
will focus on spin squeezing inequalities for a system of N spins. These inequalities are
verified for separable states and only require measurement of first and second moments
of collective spin components along three different directions. These inequalities can be
further generalized to arbitrary collective operators by mapping each particle into a qubit
as we have introduced in the previous chapter. This increases the possibilities to detect
more entangled states than the squeezed states detected by spin squeezing inequalities. I
will then introduce our main result which enables the detection of entanglement when
the number of particles is not fixed, but can fluctuate. Particles number fluctuations are
bound to occur in experiments and they can be put into two categories: classical and
quantum fluctuations. Classical fluctuations can be related to experimental inaccuracies,
where the number of particles varies from one state preparation to another. On the
other hand, quantum fluctuations may appear when the state is not an eigenstate of the
number operator. Accounting for such fluctuations will allow us to improve the bounds
of spin squeezing inequalities and detect entangled states that are not detected with the
original spin squeezing inequalities. This result has been recently published as an article
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in Physical Review A:
“Generalized spin-squeezing inequalities for particle number with quantum fluctuations”.
I. Saideh, S. Felicetti, T. Coudreau, P. Milman, and Arne Keller
Phys. Rev. A 94, 032312.

In the last part of this chapter, I present the work that I have performed in the
framework of an ongoing collaboration with the "Quantum Dipolar Gazes" team at
“Laboratoire de Physique de Laser” laboratory (Université Paris Nord). The main goal
of this work was to bring entanglement criteria that could be implemented in their
experiment. After a brief description of the experimental setup, which consists in a latice
of optically trapped chromium atoms, I will present the results of numerical simulations
aimed to model their experiment. These simulations are our first attempt to detect
entanglement in such dipolar gazes. While these numerical results are not yet conclusive,
they nevertheless show how entanglement can be difficult to detect, and can be considered
as a starting point for future developpement.

3.1 Introduction

In the quest for quantum computers and quantum simulators, the ability to create, detect
and characterize large scale entanglement in many body systems is one of the key points
that has attracted a lot of interest in the last decade [249–251]. From a more fundamental
perspective, the understanding of the entanglement properties and their manipulation
at the macroscopic level is also of importance to understand the quantum to classical
transition [252, 253]. It is worth noticing that due to the exponential growth of the
Hilbert space dimension with the number of parties N , an exact numerical simulation
of such systems with classical computer is not possible when N becomes of the order
of some tens. In this context, providing theoretical tools for the experimental detection
of entanglement is a necessity. Typically, such experiments involve interacting many
body systems as cold atoms [254, 251], trapped ions [255–257] or photons [258, 259], and
individual addressing or accessing each body individually is not possible. Accessible
observables consist more often of collectives ones, expressed as the sum of local observ-
ables that in most cases are one body operators. The spatial component of a collective
spin, sum of local spins, is such an instance of a global observable. If the global spin
state is squeezed, that is, if the fluctuation of one of its component is sufficiently small
compared to the expectation of the other components, then it can be shown that the
N -spin systems is entangled [195, 198]. Tóth and collaborators [200, 201, 227, 228] have
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generalized such an approach providing a set of inequalities that are fulfilled for all sep-
arable state of the N spins system and thus are able to detect entanglement when violated.

The original spin-squeezing inequalities [200, 201, 227] consider the number of particles
N as a constant. In fact, N may undergo classical and/or quantum fluctuations. Classical
fluctuations are due the presence of statistical mixtures of states with different N . In
contrast, quantum fluctuations are given by coherent superposition of states corresponding
to different number of particles. It is often argued, in the context of Bose-Einstein
condensation [260], that coherent superposition of states corresponding to different number
of particles are not allowed or can not give observable consequences. The proscription of
such coherent superposition is often justified by an axiomatic superselection rule (SSR)
which should be applied to massive particles but not to massless ones. Actually, this SSR is
a consequence of the lack of a fixed absolute phase reference [261]. It has been pointed-out
that such phase reference can be established allowing for instance the coherent quantum
superposition of an atom and a molecule [262]. Quantum and classical particles number
fluctuations have been considered in the context of quantum metrology [229], where the
relation of quantum-enhanced parameter estimation and entanglement is investigated
when the particles number is only known on average. Spin squeezing inequalities for
fluctuating N have been considered in Ref [222] but the fluctuations of the total number
of particles considered in that work were only classical (statistical) fluctuations and
quantum fluctuations were not investigated.

In this work we generalize the original spin squeezing inequality of Ref. [228], by
considering the situation of arbitrary particle number fluctuations, including quantum
and/or classical ones. This generalization is important and necessary in many experi-
mental situations even where the SSR applies. Such an interesting example can be found
in Ref. [251] where a system of N spin 1 is considered as a systems of N spin-1/2 by
projecting each spin 1 on the subspace spanned by two magnetic sub-levels. In this
subspace, quantum fluctuations (and not only statistical ones) of the particle number are
expected, and the validity of the original spin squeezing inequalities is not granted.

We first recall the original spin inequalities [228], and how they can be generalized
using 3 collective operators A1, A2 and A3, instead of the 3 components Jx, Jy and
Jz of a collective spin. Finally, we present our new inequalities where particle number
fluctuations are considered.
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3.2 Original spin squeezing inequalities

Let us recall the original inequalities derived in Ref. [228] that are fulfilled by all separable

states:

∆̃2Jx + ∆̃2Jy + ∆̃2Jz ≥ −Nj2 (3.1a)

(N − 1)
[
∆̃2Jk + ∆̃2Jl

]
≥ ⟨J̃2

m⟩ −N(N − 1)j2 (3.1b)

⟨J̃2
l + J̃2

m⟩ −N(N − 1)j2 ≤ (N − 1)∆̃2Jk (3.1c)

⟨J̃2
x + J̃2

y + J̃2
z ⟩ ≤ N(N − 1)j2, (3.1d)

where l,m end k refer to different x, y or z component of the total spin operator

Jl = ∑N
i=1 J

(i)
l , sum of the local spins operators J (i)

l = ⊗N
i′=1;i ̸=i′ 1(i′) ⊗ j

(i)
k , where 1(i′)

denotes the identity operator and j
(i)
k the k component of the spin in the one particle

Hilbert space. The eigenvalues of (⃗j(i))2 are j(j + 1). As in Ref. [228], the notation J̃2
k

means :
J̃2
k = J2

k −
N∑
i=1

(J (i)
k )2 =

N∑
i ̸=j=1

J
(i)
k J

(j)
k (3.2)

and the modified variance is defined as ∆̃2Jk = ⟨J̃2
k ⟩ − ⟨Jk⟩2. The 4 inequalities Eqs. (3.1)

can be written in the following compact form [227]:

(N − 1)
∑
k/∈I

∆̃2Jk −
∑
k∈I

⟨J̃2
k ⟩ ≥ −N(N − 1)j2, (3.3)

where I can be any subset of {x, y, z} (including the empty set). Each inequality in

Eqs. (3.1) is obtained by increasing the number of elements in I by one, starting from

the empty set.

As it has been shown in Ref. [227], the vectorial character of the spin is not needed

to obtain Eq. (3.3). Indeed, a set of 3 collective observables Ak where k = 1, 2, 3 can be

used instead, each of them obtained as a sum of local observable as Ak = ∑N
i=1 A

(i)
k . To

be able to derive inequalities as Eq. (3.3), it is only required that

3∑
k=1

⟨A(i)
k ⟩2 ≤ α2; ∀i = 1, 2, · · · , N, (3.4)
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which is satisfied by the spin operators J (i)
k with α = j. Then, as it has been shown in

Ref. [227], using the Cauchy-Schwartz inequality

⟨Ak⟩2 ≤ N
N∑
i=1

⟨A(i)
k ⟩2 (3.5)

and the concavity of the variance, we obtain the inequalities (3.3) where Jk is replaced
by Ak, j is replaced by α and where I is any subset of {1, 2, 3}, including the empty set.

3.3 Fluctuations of particles number

Note that Eqs. (3.3) are derived for a fixed number of particles N . To generalize these
equations to include quantum fluctuations of the particle number, we consider that we
have N sites (i = 1, 2, · · · , N), and that in each site there is one or zero particles. We
define the local positive operator N̂ (i) giving the number of particle in site i; it has only
two eigenvalues 0 or 1 corresponding to the absence or the presence of a particle. Hence,
the collective operator N̂ = ∑N

i=1 N̂
(i) represents the total number of particles. Our main

result is that all separable states fulfil the following inequalities:

(
⟨N̂⟩ − 1

)∑
k/∈I

∆̃2Ak −
∑
k∈I

⟨Ã2
k⟩ ≥ −⟨N̂⟩

(
⟨N̂⟩ − 1

)
α2 − δ, (3.6)

where δ is defined as
δ = ∆̃2A1 + ∆̃2A2 + ∆̃2A3 + α2⟨N̂⟩ (3.7)

and corresponds to the term added to Eq. (3.3) when N is replaced by ⟨N̂⟩. That is,
setting δ = 0 and replacing ⟨N⟩ by the constant N in Eq. (3.6) give us Eq. (3.3). These
inequalities are very convenient since they are as simple as the original ones. Indeed, to
test their violation, the same type of measurements realized in the original inequalities
for fixed particle number must be performed. Eq. (3.6) can also be written explicitly, by
increasing the cardinality of I :

∆̃2A1 + ∆̃2A2 + ∆̃2A3 ≥ −α2⟨N̂⟩ (3.8a)(
⟨N̂⟩ − 1

) (
∆̃2Ai + ∆̃2Aj

)
− ⟨Ã2

k⟩ ≥ −α2⟨N̂⟩
(
⟨N̂⟩ − 1

)
− δ (3.8b)(

⟨N̂⟩ − 1
)

∆̃2Ai − ⟨Ã2
j⟩ − ⟨Ã2

k⟩ ≥ −α2⟨N̂⟩
(
⟨N̂⟩ − 1

)
− δ (3.8c)

⟨Ã2
1⟩ + ⟨Ã2

2⟩ + ⟨Ã2
3⟩ ≤ α2⟨N̂⟩

(
⟨N̂⟩ − 1

)
+ δ (3.8d)
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We note that the first inequality is exactly the same as Eq. (3.1a) but with N replaced
by ⟨N⟩. That is, we can replace N by ⟨N⟩ in Eq. (3.1a) and it remains a valid equation
fulfilled by all separable states when N is not a constant. We also note that Eq. (3.8a)
can be written as δ ≥ 0.

Now, if in a given experiment δ is found to be positive, then inequalities Eqs. (3.8b-d)
are less tight than the original inequalities Eqs. (3.1b-d). Hence, a violation of Eqs. (3.1b-
d) can appear without violating Eqs. (3.8b-d). In other words, The simple substitution
of N by ⟨N⟩ in the original inequalities Eqs. (1b-d) can give false positive. This is why it
is crucial to consider the term δ before to affirming entanglement detection. In the other
case, when δ < 0, both inequalities, Eq. (3.1a) or Eq. (3.8a), detect entanglement, but
Eqs. (3.8b-d) becomes tighter than than the original ones, Eqs. (3.1b-d). Hence, in this
case, the visibility of the violation is higher, which can represent an important advantage
from the experimental point of view.

3.4 Proof

We give a sketch of the proof leaving the technical details in appendix A and B. The
proof is done in two steps. In the first step, inequalities fulfilled by all product states
ρ = ⊗N

i=1 ρ
(i) are obtained, then in a second step we generalize them to all separable

states using convexity arguments.

3.4.1 Inequalities for product states

For the first step, the main objective is to obtain a tighter inequality than the one
obtained in Eq. (3.5) through the Cauchy-Schwartz inequality. For this, the main idea is
to map each local state ρ(i), in the site i, to a spin 1, or a 3-level state R(i) in an auxiliary
Hilbert space spanned by |0(i)⟩, |1(i)⟩, |2(i)⟩ states as follows :

R(i) = ni

σ0
(i)

2 +

〈
A

(i)
1

〉
ρ

2ηi
σx

(i) +

〈
A

(i)
2

〉
ρ

2ηi
σy

(i) +

〈
A

(i)
3

〉
ρ

2ηi
σz

+ (1 − ni) |2(i)⟩⟨2(i)| (3.9)

where σ0 = |0(i)⟩⟨0(i)| + |1(i)⟩⟨1(i)| is the projection operator on the qubit subspace
spanned by the state |0(i)⟩ and |1(i)⟩ and σ

(i)
k (k = x, y, z) are the Pauli matrices in the

same subspace. The constant ηi is chosen as ηi =
√〈

A
(i)
1

〉2

ρ
+
〈
A

(i)
2

〉2

ρ
+
〈
A

(i)
3

〉2

ρ
, such

that the term inside the braket in Eq. (3.9) is a pure state |Ψ(i)⟩. Therefore the state
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R(i) can also be written as

R(i) = ni|Ψ(i)⟩⟨Ψ(i)| + (1 − ni)|2(i)⟩⟨2(i)|, (3.10)

where ni represents the average occupation number of the particle in site i, that is
ni =

〈
N (i)

〉
ρ
. The mapping ρ(i) → R(i) can be interpreted in the following way: when

there is a particle in site i, we map its state to a pure state |Ψ(i)⟩ such that ⟨Ψ(i)|σk|Ψ(i)⟩ =
1
ηi

〈
A

(i)
k

〉
ρ

and when there is no particle we attribute this event to state |2(i)⟩. Averaging
over the occupation of the site i gives us the state R(i). Using techniques similar to those
developed in Ref. [1] we can prove (see appendix B) that this mapping is completely
positive and thus R(i) is indeed a state, that is a positive hermitian operator. Note

that ⟨σx⟩R(i) = ni

〈
A

(i)
1

〉
ρ

ηi
. This relation is not exactly what we need. Indeed, if we sum

over all sites i, ⟨∑N
i=1 σ

(i)⟩R(i) will not be simply related to the expectation of original
collective operator A1 = ∑N

i=1 A
(i)
1 , because the pre-factor ni

ηi
depends on the site i. It can

be shown (see appendix A) that applying a rotation in the qubit subspace, we can obtain

a new state R(i)′ such that ⟨σx⟩R(i)′ =

〈
A

(i)
1

〉
ρ

α
, where the factor α does not depends on

the site i and is defined as α2 = supρ(i)

[∑3
k=1

〈
A

(i)
k

〉2

ρ(i)

]
.

Now, we can consider the product state R′ = ⊗N
i=1 R

(i)′ in the qutrit Hilbert space,
and define collective spin operators: Sk = ∑N

i=1 σk, which verify the commutation relation
[Sk, Sl] = 2iϵklmSm. Using the Heisenberg inequality 1

4 |⟨[A,B]⟩R′ |2 ≤ (∆A)2 (∆B)2 with
A = Sy and B = Sz, we can write

|⟨Sx⟩R′ |2 =

∣∣∣∣∣∣∣
N∑
i=1

〈
A

(i)
1

〉
ρ

α

∣∣∣∣∣∣∣
2

=
⟨A1⟩2

ρ

α2 ≤ (∆Sy)2 (∆Sz)2 . (3.11)

In that way, we can obtain a tighter inequality for ⟨Ak⟩2
ρ

⟨Ak⟩2
ρ ≤ ⟨N⟩ρ

(
N∑
i=1

〈
A

(i)
k

〉2

ρ

)
+ α2 ⟨N⟩ρ

(
⟨N⟩ρ −

N∑
i=1

〈
N (i)

〉2

ρ

)
. (3.12)

Using similar techniques (see appendix A for more details), we obtain general inequalities
fulfilled by all product states:

(⟨N̂⟩ − 1)
∑
k/∈I

∆̃2Ak −
∑
k∈I

⟨Ã2
k⟩ ≥ −⟨N̂⟩(⟨N̂⟩ − 1)α2 − δ′, (3.13)
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where δ′ is given by

δ′ = α2⟨N̂⟩ −
N∑
i=1

∑
k∈I;k/∈I

⟨A(i)
k ⟩2

+ ⟨N̂⟩
N∑
i=1

 ∑
k∈I;k/∈I

⟨A(i)
k ⟩2 − α2⟨N̂ (i)⟩2

 . (3.14)

Eq. (3.3) is recovered when we replace Ak by Jk and ⟨N̂⟩ by N , in this case α = j,
N̂ (i) = 1(i) and ∑

k∈I;k/∈I⟨A(i)
k ⟩2 = j2, therefore δ′ = 0. The set of inequalities given by

Eq. (3.13) are valid for any product state. The goal now is to generalize them for any
separable state which can be written as a convex sum of product states.

3.4.2 Generalization to all separable states

The generalization of inequalities given by Eq. (3.13) to all separable states is not
straightforward. To work around this difficulty, we look for an upper bound δ to δ′, such
that when δ′ is replaced by δ in Eq. (3.13), the resulting inequalities are easily generalized
to all separable states by convexity arguments.

In fact, the last term inside the brackets in Eq. (3.14) is negative, therefore δ′ ≤
α2⟨N̂⟩ −∑N

i=1
∑
k∈I;k/∈I⟨A(i)

k ⟩2. In addition, from the definition of the modified variance
∆̃2 given by Eq. (3.2), it is not difficult to show that for product states we have

∆̃2Ak = −
N∑
i=1

⟨A(i)
k ⟩2

ρprod
, ρprod a product state. (3.15)

We thus obtain the following upper bound for δ′:

δ′ ≤ α2⟨N̂⟩ + ∆̃2A1 + ∆̃2A2 + ∆̃2A3 = δ, (3.16)

which is the expression for δ, we have given previously in Eq. (3.7).
Finally, with this new upper bound, Eq. (3.13) becomes:

(⟨N̂⟩ − 1)
∑
k/∈I

∆̃2Ak −
∑
k∈I

⟨Ã2
k⟩ ≥ −⟨N̂⟩(⟨N̂⟩ − 1)α2 − δ. (3.17)

It turns out, that these inequalities which are valid for all product states can be generalized
to all separable states by convexity (see appendix A).
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3.5 Coordinate system independent form for dichotomic
observables

Due to Heisenberg uncertainty principle, spin squeezing can not be achieved in all

directions. The coordinate independent form of the spin squeezing inequalities [201, 228]

allows to detect entanglement without knowing a-priori the direction where the squeezing

is maximal.

To illustrate this point, let us recall the squeezing Hamiltonian [195] (see Ref. [216]

for a review and the references therein):

H = χJ2
x = χ

N∑
i,j=1

J (i)
x J (j)

x (3.18)

with χ being some coupling constant. The above squeezing Hamiltonian has been very

well studied, both theoretically and experimentally, for a system of N spins 1/2 and is

called one axis twisting Hamiltonian [195, 216]. The state |ψ(t)⟩ = e−iJ2
xθ/2⊗N

i=1 |1
2

(i)⟩,

where θ = 2χt, is optimally squeezed along the direction lying in the x-y plane making

an angle ϕ ≈ 1
2 arctan

(
N−1/3

)
with the x-axis, for large N [195, 216]. This would

suggest that in order to better detect the squeezing in such a state, using spin squeezing

inequalities (3.1a-3.1d)[228], one needs to measure first and second moments of the rotated

spin components Jx′ = cos(ϕ)Jx + sin(ϕ)Jy, Jy′ = cos(ϕ)Jy − sin(ϕ)Jx, and Jz′ = Jz. The

purpose of coordinate independent spin squeezing inequalities is to precisely optimally

detect squeezing without knowing a-priori the optimal direction ϕ.

3.5.1 Coordinate system independent form of the spin-squeezing
inequalities

In this section we recall the coordinate independent form of spin squeezing inequali-

ties (3.1a-3.1d) [228] introduced in [201] for spin-1/2 and in [228] for general spin j. First,
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one needs to define the following matrices [228]:

Cij = 1
2 ⟨JiJj + JjJi⟩ (3.19)

γij = Cij − ⟨Ji⟩ ⟨Jj⟩ (3.20)

Qij = 1
N

N∑
k=1


〈
J

(k)
i J

(k)
j + J

(k)
j J

(k)
i

〉
2 − j(j + 1)δij

3

 (3.21)

X = (N − 1)γ + C −N2Q (3.22)

with δij being the Kronecker delta function. Then, the inequalities inequalities (3.1a-3.1d)
can be written in the following form [228]:

Tr [γ] −Nj ≥ 0 (3.23a)

(N − 1)Tr [γ] −N(N − 1)j +N2 j(j + 1)
3 − λmax (X) ≥ 0 (3.23b)

− Tr [C] +Nj(Nj + 1) −N2 j(j + 1)
3 + λmin (X) ≥ 0 (3.23c)

− Tr [C] +Nj(Nj + 1) ≥ 0 (3.23d)

where λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A respec-
tively. The key idea for the above inequalities is that X is diagonalized via an orthogonal
matrix O ∈ O(3), i.e., X = OΛOT with Λ a diagonal matrix. Hence, diagonalizing X is
equivalent to applying the following transformation: J⃗ ′ = OTJ, C ′ = OTCO, γ′ = OTγO,
and Q′ = OTQO. Finally, we have Tr [C ′] = Tr [C] and Tr [γ′] = Tr [γ] which represents
the invariance of the quantities ⟨J2

x⟩ +
〈
J2
y

〉
+ ⟨J2

z ⟩ and (∆Jx)2 + (∆Jy)2 + (∆Jz)2, re-
spectively, under rotations. Comparing the inequalities (3.23) with (3.1), one can show
that there exists a direction for which some of the inequalities (3.1) is violated iff the
corresponding inequalities (3.23) are violated [201, 228].

A natural question arises whether we could define our generalized inequalities (3.8)
in a coordinate independent manner to simplify the task of finding operators Ai such
that entanglement is detected. It turns out that we are able to define a coordinate
independent version inequalities of (3.8) for a general class of dichotomic operators which
we define now.
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3.5.2 Dichotomic observables

A very important and popular choice of the operators Ai for the inequalities (3.8) are
the dichotomic observables or spin-1/2 like operators. In this case, the Hilbert space of
the single particle states is usually restricted to a 2-dimensional subspace of a two levels
system. This restriction to a bi-dimensional subspace has been performed in Ref. [251]
where a system of N spin-1 is considered as N spin-1/2 particles. The appeal of this
choice is due to the fact that most of the entanglement criteria were originally derived
for spin 1/2 systems. Notorious examples are CHSH inequalities [72] for the non-locality
of a two spins-1/2 state and spin squeezing inequalities for N spin-1/2 [201].

Specifically, for each particle (i), consider only two magnetic levels states |m(i)
0 ⟩ and

|m(i)
1 ⟩, among all the eigenstates |m(i)⟩(

∣∣∣m(i)
∣∣∣ ≤ j) of j(i)

z . In the subspace spanned by
these two states, we can define the Pauli operators as:

σ(i)
x = |m(i)

0 ⟩⟨m(i)
1 | + |m(i)

1 ⟩⟨m(i)
0 | (3.24)

σ(i)
y = −i

(
|m(i)

0 ⟩⟨m(i)
1 | − |m(i)

1 ⟩⟨m(i)
0 |
)

(3.25)

σ(i)
z = |m(i)

0 ⟩⟨m(i)
0 | − |m(i)

1 ⟩⟨m(i)
1 | (3.26)

and let us call N (i) the projector into this subspace spanned by |m(i)
0 ⟩, |m(i)

1 ⟩, that is:

N (i) = |m(i)
0 ⟩⟨m(i)

0 | + |m(i)
1 ⟩⟨m(i)

1 |. (3.27)

An elementary calculation shows that for any state ρ(i) acting on the single particle
Hilbert space, we have:

〈
σ(i)
x

〉2

ρ(i)
+
〈
σ(i)
y

〉2

ρ(i)
+
〈
σ(i)
z

〉2

ρ(i)
≤
〈
N (i)

〉2

ρ(i)
. (3.28)

Since N (i) is a projector, it is positive and has two eigenvalues 0 and 1. Hence, from
Eq. (3.28), if we choose the state ρ(i) to be a pure state in the subspace |m(i)

0 ⟩, |m(i)
1 ⟩, we

find that
α2 = supρ(i)

[ 3∑
k=1

〈
σ

(i)
k

〉2

ρ(i)

]
= 1. (3.29)

We now define the collective operators Ai to be:

Ai = 1
2

N∑
k=1

σ
(k)
i . (3.30)
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These three collectives observables Ai fulfill all the requirements to write the generalized
spin squeezing inequalities (3.8).

The class of dichtotomic observables (3.30) can be extended in slightly more general
manner. Instead of the two states |m(i)

0 ⟩, |m(i)
1 ⟩, we can consider two orthogonal projectors

P
(i)
0 and P

(i)
1 such that

rank
(
P

(i)
0

)
= rank

(
P

(i)
1

)
= r. (3.31)

Let us define H(i)
0 , H(i)

1 to be the range of P (i)
0 and P (i)

1 respectively. Let S(i) be a linear
map from H(i)

1 to H(i)
0 with singular values equal to 1, i.e. it can be written as

S(i) = U (i)†
1(r)V (i), (3.32)

with U (i)†
U (i) = 1(r) and V (i)†

V (i) = 1(r).

Finally, let us define

S
(i)
− = P

(i)
0 S(i)P

(i)
1 , S

(i)
+ = S

(i)
−

†
. (3.33)

Now, we can generalize the operators Ai defined in Eq.(3.30) by defining the Pauli-like
operators for each particle as:

σ(i)
z = P

(i)
0 − P

(i)
1 (3.34)

σ(i)
x = S

(i)
− + S

(i)
+ (3.35)

σ(i)
y = −i

(
S

(i)
− − S

(i)
+

)
(3.36)

N (i) = P
(i)
0 + P

(i)
1 . (3.37)

With the above definitions, Eqs. (3.28, 3.29) are valid. Moreover, the commutation
relations

[
σ

(l)
i , σ

()
j

]
= 2iϵijkσ(l)

k still hold. Consequently, the operators defined in Eqs.(3.34)
are the generators of SU(2) in the subspace H(i)

0 ⊕H(i)
1 , i.e. any rotation can be applied via

the unitary ei
⃗̂
A.n⃗θ, for some normalized vector n⃗ and real θ. In addition, since

[
N̂ , Ai

]
= 0,〈

N̂
〉

is invariant under such rotations and behaves simply as a scalar as in the usual
spin squeezing inequalities. Hence, the additional quantity δ in our inequalities (3.8),
that takes into account the fluctuations in particle number in the subspace of interest, is
also invariant under SU(2) transformations. Which allows us to follow the same steps as
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Figure 3.1: L (3.46), in solid blue line, and G (3.47), in dashed green line, calculated in
the state ρ(p) (3.44) as a function of p. The highlighted area represents the instances of
p for which the inequality L(p) ≥ 0 is violated.

in [201, 228] to define coordinate system independent inequalities:

δ =Tr [γ] −
〈
N̂
〉
/2 ≥ 0 (3.38a)

δ+
(〈
N̂
〉

− 1
)

Tr [γ] −
〈
N̂
〉 (〈

N̂
〉

− 2
)
/2 − λmax (X) ≥ 0 (3.38b)

δ−Tr [C] −
〈
N̂
〉
/2 + λmin (X) ≥ 0 (3.38c)

δ−Tr [C] +
〈
N̂
〉 (〈

N̂
〉

+ 2
)
/4 ≥ 0, (3.38d)

where we have defined:

Cij = 1
2 ⟨AiAj + AjAi⟩ ,

γij = Cij − ⟨Ai⟩ ⟨Aj⟩ (3.39)

X = (N − 1)γ + C.

As expected, comparing our inequalities (3.38) with the coordinate independent spin

squeezing inequalities for j = 1/2 in Refs. [201, 228], they are quite similar except for

replacing N with
〈
N̂
〉

and the additional term δ. Simply replacing N with
〈
N̂
〉

is not

enough to obtain our inequalities as we will show later.
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3.6 Generalized Sørensen-Mølmer criterion

As we mentioned in Chapter 1, Sørensen and Mølmer [220] showed that for all separable

N j-spin states, the following inequality is verified:

(∆Jx)2 ≥ NjFj

(
⟨Jz⟩
Nj

)
(3.40)

where

Fj(X) = 1
j

min
⟨Jz⟩/j=X

(∆Jx)2 (3.41)

which is the minimum variance of Jx divided by j for a given value of ⟨Jz⟩. The function

Fj(X) can be computed numerically quite efficiently even for large spin-j.

The fact that this criterion requires only two operators is quite appealing, and we can

generalize it in a similar fashion to what we did above. We can show that, see proof in

appendix B.4:

α2
〈
N̂
〉

+ ∆̃2A1 ≥ 2α2
〈
N̂
〉
F 1

2

 ⟨A2⟩
α
〈
N̂
〉
 = ⟨A2⟩2〈

N̂
〉 (3.42)

where wa have used the fact F 1
2
(X) = X2

2 . The reason we use the function F 1
2

is because

we map into a qubit system in order to derive these criteria.

Comparing the above criterion with our main result (3.6), we can see that they are

completely equivalent for the case where we choose two operators A1 and A2 only. This

can be spotted more easily if we rewrite (3.6) in the following form:

⟨N̂⟩

α2⟨N̂⟩ +
∑
k/∈I

∆̃2Ak

−
∑
k∈I

⟨Ak⟩2 ≥ 0. (3.43)

It is interesting to note that we have derived the same criteria (3.42) and (3.6) using two

different methods. While we used a mapping to a qubit system for both, we did not use

our improved bound (3.12) to derive (3.42). The improved bound (3.12) gave rise to the

additional term δ in (3.6). This gives us confidence that the term δ is good upper bound

of the term δ′ defined in (3.14). Nevertheless, numerical investigation is needed to show

if this is indeed the case.
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3.7 Examples

In this section we compare, for two specific cases, the standard spin squeezing inequalities
where N is replaced by its expectation ⟨N⟩ with our new inequalities. The first case
illustrates the importance of the term δ in our inequalities. Indeed, we exhibit a separable
mixed state that violates the original inequality, showing that the simple replacement of
N by ⟨N⟩ can lead to false positive. In the second example, we study the detection of
entanglement generated by the one axis twisting Hamiltonian (3.18) for N = 5 spin 1
system. We find that, when restricting to a subspace, our inequalities (3.38) show a
clear advantage over spin squeezing inequalities (3.1). The latter show no violation at
all, whereas, one of the inequalities (3.38) is violated indicating entanglement almost for
all times of the evolution of the N = 5 spin 1 system.

3.7.1 Example I

We have shown, that through our special choice of operators Ai given by Eq. (3.30),
our inequalities (3.8) and (3.38) can be obtained from spin squeezing inequalities for
j = 1/2 [201, 228] by replacing N with

〈
N̂
〉

and adding δ. In the following, we give a
simple example to highlight the importance of the additional term δ. Let us consider the
following separable mixed states for N = 2 spin j = 1:

ρ(p) = pρ′ + (1 − p)|0(1)⟩⟨0(1)| ⊗ |0(2)⟩⟨0(2)| 0 ≤ p ≤ 1 (3.44)

where:

ρ′ = 1
2
(
| − 1(1)⟩⟨−1(1)| ⊗ | − 1(2)⟩⟨−1(2)|

+ |1(1)⟩⟨1(1)| ⊗ |1(2)⟩⟨1(2)|
)

(3.45)

This state is clearly separable for any value of 0 ≤ p ≤ 1. Now let us consider the
inequality given by Eq. (3.1b) and let us replace N by

〈
N̂
〉

where N̂ is defined in
Eq. (3.27) for the subspace | − 1(i)⟩, |1(i)⟩. Then, it takes the following form: L(p) ≥ 0,
where

L(p) =
(〈
N̂
〉
ρ(p)

− 1
) (

∆̃2Ax + ∆̃2Ay
)

−
〈
Ã2
z

〉
ρ(p)

+ 1
4
〈
N̂
〉
ρ(p)

(〈
N̂
〉
ρ(p)

− 1
)

(3.46)
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Figure 3.2: (a) to (d): left hand side of inequalities G1 (3.38a) to G4 (3.38d), respectively,
calculated in the state |ψ(θ)⟩, defined in Eq. (3.48), as a function of θ for N = 5 spin-1
particles. Highlighted region shows the instances of θ for which inequality (3.38c) is
violated.

Next, let us consider the correct form, i.e. Eq. (3.8b): G(p) ≥ 0, where

G(p) = L(p) + δ(p) (3.47)

In figure Fig. 3.1, we plot both quantities G(p) and L(p) as a function of p. Inequality
L(p) ≥ 0 is violated for all p, but it is completely wrong to infer that the state is
entangled. In contrast, our inequality G(p) = L(p)+ δ(p) ≥ 0 is not violated, as expected.
This example shows clearly the importance of the additional term δ when the number of
particles is not constant.

3.7.2 Example II

As an illustrative example, we consider a system of N spin-j = 1 initialized in the product
state |ψ0⟩ = ⊗N

i=1 |0(i)⟩. Now let us calculate the left hand side of the inequalities (3.23)
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for the state
|ψ(θ)⟩ = e−iJ2

xθ/2
N⊗
i=1

|0(i)⟩ (3.48)

of N spins j = 1. Let us call F1(θ), F2(θ), F3(θ), and F4(θ) to be the left hand
side of inequalities (3.23a-3.23d) respectively. Numerical calculations show that these
quantities are constant and positive. More precisely, one can verify that F1(θ) = N and
Fi(θ) = N(N − 1) for i = 2, 3, 4, thus, spin squeezing inequalities (3.23) fail to detect
entanglement in the state |ψ(θ)⟩. The constancy of the quantities Fl(θ), with l = 1, · · · , 4,
is due to the choice of the initial state |ψ(0)⟩ = ⊗N

i=1 |0(i)⟩ and the fact we have chosen
j = 1. Non trivial evolution of the quantities Fl(θ) will occur for different initial states
and different integer spin values j = 2, 3, · · · .

However, if we choose different observables than the collective spin components, our
generalized inequalities (3.8) can be violated inferring entanglement of the state |ψ(θ)⟩ for
some θ. In particular, we will define dichotomic observables in the subspace |−1(i)⟩, |1(i)⟩,
by setting |m(i)

0 ⟩ = | − 1(i)⟩ and |m(i)
1 ⟩ = |1(i)⟩ in Eqs.(3.30, 3.24, 3.27), so that the N

spin-1 particles can be seen as
〈
N̂
〉

spin-1/2 particles.
Now, let us call Gi (θ) : i = 1, 2, 3, 4 to be the left hand side of inequalities (3.38a-

3.38d), respectively, calculated for the state |ψ(θ)⟩ (3.48). In Fig. 3.2, we plot Gi (θ)
for N = 5, and we can see that G3 (θ) violates the inequality (3.38c), Fig. 3.2(c).
Consequently, we show that the state |ψ(θ)⟩ is entangled, at least, when inequality (3.38c)
is violated.

3.8 Entanglement detection in cold atom gaz

This work is the result of an ongoing collaboration with an experimental group "Quantum
Dipolar Gazes" at "LPL" lab in Villetaneuse, France. The aim of this work is to find an
experimental witness of entanglement which can be implemented in one of their systems.
I will start by briefly describing their experimental setup and the different constraints.
next, I will describe the model used for the numerical simulations and the different
criteria applied using the simulation to certify presence of entanglement or to test the
detection efficiency if it were to be tested experimentally.

3.8.1 Experimental setup

The experiment is described in [263], a chromium 52Cr Bose Einstein condensate (BEC),
of about 104 atoms, is created in a crossed-beam optical dipole trap as described in [264].
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Figure 3.3: Schematic diagram of the experimental setup for Stern-Gerlach analysis,
taken from Ref. [266].

Each atom possesses a spin s = 3 and is in the ground Zeeman state ms = −3 when
created in the BEC. The BEC is then loaded adiabatically into a 3D optical lattice with
periodicity λ

2 × (1, 1/ sin(π/8), 1/ cos(π/8)) along x, y, z directions respectively, where
λ = 532nm is the wavelength of the single mode laser used to generate the lattice [265].
The lattice energy band gaps are much larger than any other energy scales in the system
(interactions, temperature, Zeeman shifts), and hence the atoms remain confined in the
lowest energy band of the lattice. To achieve a regime of single atom per site, atoms
sharing the same site are removed by dipolar relaxation at high magnetic field in the
following way: atoms are first transferred to the highest energy Zeeman state ms = 3,
which induces losses selectively for doubly occupied sites as the released energy is larger
than the lattice depth [263]. At the end, the magnetic field is lowered and the remaining
atoms are transferred back to the lowest energy Zeeman level ms = −3. After this
preparation the system consists of a shell of about 4000 singly occupied sites close to
unit filling. This allows to study dynamics related to Dipole Dipole Interactions DDI
only and to ignore possible on site interactions. Moreover, the atoms have spin s = 3
which leads to rich physics expected for high spin lattice.
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In order to initiate the dynamics due to DDI, the atoms in the ms = −3 ground
state are transferred to the excited Zeeman state ms = −2 through an adiabatic Raman
transfer. This transfer is performed by ramping up a quadratic light shift which leads to
a level crossing between states ms = −3 and ms = −2, above which ms = −2 becomes
the Zeeman ground state. A weak two photon coupling between ms = −3 and ms = −2
ensures the transfer with efficiency of 80%.

Once the atoms are prepared in the ms = −2 state, they will begin to interact
through inter-site DDI. To follow the dynamics induced by this interaction, a snap shot
of the different Zeeman ms = −3, · · · , 3 populations is obtained after a given time via a
Stern-Gerlach measurement [266]. To perform this populations measurement, the atoms
are released from the lattice and fall freely under gravity. During their free fall, they will
pass through a region where a vertical magnetic gradient is applied and where atoms in
different Zeeman state will experience different forces. Hence, the atoms will separate
vertically according to their Zeeman state into distinct clouds. Finally, an horizontal
laser beam measures the Zeeman levels populations via absorption imaging (see Fig. 3.3).

Hence, population measurements at different times of the evolution can be measured
but no individual addressing of a single atom is possible for this experiment. Population
analysis are the only collective measurements that we should rely on to calculate mean
values and second moments of different collective observables.

3.8.2 Hamiltonian and model for numerical simulation

The dynamics we are interested in is due to Dipole Dipole interaction. DDI between two
spins J⃗ (1) and J⃗ (2) separated by distance r⃗ is given by (see Fig 3.4)

V⃗dd (r⃗) = d2 Ĵ
(1).Ĵ (2) − 3

(
Ĵ (1).u⃗r

) (
Ĵ (2).u⃗r

)
r3 (3.49)

where d2 = µ0(gjµB)2

4π , u⃗r = r⃗

r
the unit vector along the inter-spin axis, µ0 is the

magnetic permeability of the vacuum, µB the Bohr magneton and g the Lande factor.
The above equation contain terms that conserve the total magnetization along the
direction of the magnetic field, namely the terms J (1)

z J (2)
z , J (1)

+ J
(2)
− and J (1)

− J
(2)
+ . Whereas

the remaining terms do not and it was shown in Ref. [265] that these terms have a
resonant character in a 3D lattice, and therefore are strongly suppressed at a low enough
magnetic field B⃗ considered in the experiment of interest [263]. Hence, we can ignore the



102 Generalized spin squeezing inequalities for fluctuating particle number

Figure 3.4: Two spins J⃗ (1) and J⃗ (2) interact due to DDI.

terms that do not conserve the total spin projection along the direction of the magnetic
field. So the Hamiltonian is reduced to:

V⃗ eff
dd (r⃗) = d2

r3

(
1 − 3z

2

r2

)(
Ĵ (1)
z Ĵ (2)

z − 1
4
(
Ĵ

(1)
+ Ĵ

(2)
− + Ĵ

(1)
− Ĵ

(2)
+

))
(3.50)

which is a Heisenberg like Hamiltonian with z being the direction of the magnetic field.

Since the dependence of the DDI is 1
r3 , and due to anisotropy of the lattice where the

spacing between sites along y direction is almost 3 times that of the x and z direction,
one could simplify the study of the above Hamiltonian of a 3D lattice into the study of
2D lattice.

So we finally write the desired Hamiltonian of 2D spin lattice to simulate as:

H =
N∑

i ̸=j=1
Vij

(
J (i)
z J (j)

z − 1
4J

(i)
+ J

(j)
− − 1

4J
(i)
− J

(j)
+

)
(3.51)

where N is the total number of spins and Vij represent the interaction between spins on
sites i and j and has a dependence on 1

r3 for the DDI. For our simulation we choose a
uniform lattice with inter-site distance λ/2, where λ = 532nm is the wavelength of the
single mode laser used to generate the lattice in [265], and we take Vij to be

Vij = d2

r3
ij

,

where d is defined in (3.49) and rij is the distance between the sites i and j of the lattice.
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The form of the Hamiltonian (3.51) is not restrictive to a 2D lattice. However, due
to the complexity and the exponential growth of the Hilbert space when increasing the
number of spins N , we restrict the simulation to a 2D 3 × 3 lattice, where the state of
the lattice is initialized in:

|ψ(0)⟩ =
N⊗
i=1

| − 2⟩

and then the exact dynamic is calculated, i.e.

|ψ(t)⟩ = e−itH |ψ(0)⟩ (3.52)

A direct calculation shows that [H, Jz] = 0 and that indeed the above Hamiltonian
conserves the total magnetization along the z direction, where Jz = ∑N

i J
(i)
z is the total

spin along the z direction.
Although 3 × 3 might seem insufficient, we see a general trend for the different

quantities plotted as a function of time, as we will see later. when increasing the number
from 2 × 2 to 2 × 3, fluctuations around a mean curve become smoother and almost
disappear. When increasing the number from 2 × 3 to 3 × 3, fluctuations become even
smaller. Which justifies that a 3 × 3 simulation captures the interesting features of that
of the experiment.

The simulations are performed with a Python code I have written inspired by a code
written in Mathematica by Paolo PEDRI a theoretician at "LPL" lab. The code is written
with the help of the QuTiP (Quantum Toolbox in Python) library. I have optimized the
generation of the basis states which is one of the more numerical demanding step.

3.8.3 Evidence for entanglement, Entropy of entanglement

Since the sate we are considering is a pure state, many entanglement criteria are easy to
calculate numerically like entropy of entanglement. To apply this criterion, we need to
partition the lattice into two parties A and B. For a separable state ρAB, one should
have:

Sv (ρAB) ≥ Sv (ρA) (3.53)

where Sv(ρ) = −Tr [ρ ln (ρ)] is the Von-Neumann entropy and ρA = TrB [ρAB] is the state
of the subsystem A given as the partial trace of ρAB over B.
For a pure state ρAB, the above separability criterion simplifies to :

Sv (ρA) = 0 (3.54)
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Figure 3.5: Entropy of subsystem A versus time for a 2 × 3 lattice where the subsystem A
represents different lattice where the subsystem A represents different bipartitions. Case
(a) Entropy for one site. (b) Entropy for sites two sites of the lattice, and (c) Entropy
for 3 sites.
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Figure 3.6: Entropy of subsystem A versus time for a 3 × 3 lattice where the subsystem
A represents different bipartitions. Case (a) Entropy for one site. (b) Entropy for sites
two sites of the lattice, and (c) Entropy for 3 sites.

which implies entanglement whenever Sv (ρA) > 0.
In figure 3.5 and figure 3.6, the entropy of subsystem A is plotted as a function of

time for a 2 × 3 and 3 × 3 respectively. We see that Sv (ρA) > 0 regardless of the size of
the bipartition and hence the state |ψ(t)⟩ = e−itH |ψ(0)⟩ is entangled.
We also can see the similarities between the two cases 2 × 3 and 3 × 3, where entropy
Sv (ρA) approaches the same values depending on the size of the partition A. In both
cases the entropy seems to increase until it reaches some kind of thermalization even for
a small system. A more thorough analysis that takes into account the constancy of the
total magnetization is lacking for the moment however the trend is pretty clear.

Finally, In figure 3.7, I plot entropy of site 1 and the evolution of the population
of each zeeman level ms = −3,−2, · · · , 3 to for different lattice sizes 2 × 2, 2 × 3 and
3 × 3. As we have outlined earlier, the entropy of entanglement shows that the state
is entangled for any time t > 0. We also notice the similarity for different lattice sizes
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Figure 3.7: Entropy of site 1 and population of the different Zeeman levels versus time
for a lattice of size:(a) 2 × 2 (b) 2 × 3 (c) 3 × 3.

where the fluctuations become smoother when increasing the lattice size.

These numerical shows that indeed, the state of the atome is entangled. However we
recall that our goal is to bring a test that can be experimentally realized. Measuring
the entropy of the a subsystem is challenging especially for the case of the present
experiment [263]. That is why we study spin squeezing inequalities as a simple accessible
alternative for entanglement detection.

3.8.4 Testing spin squeezing inequalities

Testing spin squeezing inequalities (3.1) for a spin-3 calculated for the entangled state
|ψ(t)⟩ showed no violation. Hence, these inequalities are blind to this entangled state. A
similar result is obtained with Coordinate independent spin squeezing inequalities (3.23)
which excludes the possibility to detect squeezing for different directions.

One might attempt to use a simpler criteria that does not involve all the first and
second moments of total spin operators at once. for example, one can easily derive the
following criterion (see appendix B.3):

∆̃2Jx + 4j2 (∆Jz)2 ≥ 0 (3.55)

which only involves two modified moments. The advantage of the above inequality is
that it takes into account the fact that |ψ(t)⟩ is an eigenstate of Jz; i.e (∆Jz)2 = 0. If we
plot the left hand side of the above inequality as a function of time Fig. 3.8, we clearly
see a violation of the above inequality for different lattice sizes and it scales roughly like
0.2N . However, it seems to be decreasing with increased lattice size.
However, this might seem contradictory that we are observing violation for our criterion,
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Figure 3.8: The blue curve shows the evolution of the quantity (∆̃Jx)2 + 4j2(∆Jz)2

N
as a

function of time, while the red area shows where the inequality (∆̃Jx)2 + 4j2(∆Jz)2

N
≥ 0

is violated starting with an initial state | − 2,−2, · · · ,−2⟩ for a lattice of size :(a) 2 × 2
(b) 2 × 3 (c) 3 × 3 and (d) 3 × 4.

which uses first and second moments, while spin squeezing inequlaities are satisfied 3.1.

Although these inequalities do not guarantee optimality for finite number of spins N ,

they are optimal in the limit N → ∞ [201, 228], in the sense that they cannot be

outperformed by criteria based on first and second moments of spin operators. Thus,

since no violation of inequalities (3.23) is observed, and we expect that to hold when

N becomes larger than 3 × 4, we should expect that the above criterion, which detects

entanglement for small N , will not give significant violation for very large N . Besides,

the above simulation does not take into account experimental errors because of which

(∆Jz)2 will not be strictly zero but rather would scale like aN for some small a. In that

case the above criterion would only detect entanglement for a < 0.5
4j2 ≈ 0.0015.
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3.8.5 Testing with generalized spin squeezing inequalities

The general form of the new spin squeezing inequalities, gives it versatility. However, one
is faced with a huge choice and we do not have, for the moment, a procedure to hone in
on the perfect choice. Here, I provide one choice, inspired by the Hamiltonian and the
initial state, that succeeds to detect entanglement for short times only.
We use dichotomic operators defined in (3.24), where we choose

|m(i)
0 ⟩ = | − 2(i)⟩, |m(i)

1 ⟩ = | − 3(i)⟩ + | − 1(i)⟩√
2

. (3.56)

We can see why this is a relevant choice for short times if we look at the state

|ψ(t)⟩ = e−itH |ψ(0)⟩ ≈ (1 − itH) |ψ(0)⟩.

We can see that applying H on the separable state |ψ(0)⟩ = | − 2⟩⊗N will give us an
entangled state of the form

α| − 2⟩⊗N +
∑
i ̸=j

βi,j
⊗
k ̸=i,j

| − 2(k)⟩ ⊗ | − 3(i)⟩ ⊗ | − 1(j)⟩ (3.57)

such that the total magnetization is constant −2N .

In figure (3.9), we can see that indeed our generalized inequality (3.38c) is able to
detect entanglement for short time in a window between 0 and 0.7 ms. Outside this
window no violation is observed using this dichotomic operators we defined (3.56). To get
a quantitative idea about the violation of inequality (3.38c), we rewrite in the equivalent
form:

δ −
〈
N̂
〉
/2 + λmin (X)
Tr [C] ≥ 1 (3.58)

and then we plot for different lattice sizes. A very important observation can be seen
in figure 3.9, is that the maximum violation is increasing when lattice size is increased,
while the window of time, during which a violation can be observed, decreases.
Hence, we have a very good candidate for entanglement detection for short times. A
better understanding of the state evolution over time might prove crucial for defining
other entanglement witnesses for later times. Also, a method for measuring the involved
quantities based on what can be done in the experiment is important and will be discussed
in the next chapter.
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Figure 3.9: The blue curve shows the evolution of the quantity
δ −

〈
N̂
〉
/2 + λmin (X)
Tr [C] as a

function of time, while the red area shows where the inequality
δ −

〈
N̂
〉
/2 + λmin (X)
Tr [C] ≥ 1

is violated starting with an initial state | − 2,−2, · · · ,−2⟩ for a lattice of size :(a) 2 × 2
(b) 2 × 3 (c) 3 × 3 and (d) 3 × 4.

3.9 Conclusion

We have generalized the spin squeezing inequalities in order to consider quantum fluctua-
tions of the number of particles N . Our generalized inequalities can be obtained from
the original ones by replacing N with its expectation value ⟨N⟩ and by adding a new
term δ which is not more difficult to measure than the other terms forming the original
inequalities. In the case where the measured observables are dichotomic, we have shown
that we can define coordinates independent spin squeezing inequalities in the same way
it had been defined previously for the original inequalities. The non conservation of the
number of particles allows more flexibility in the set of observables to be used to test
the inequalities. We have presented an example where such flexibility allows for the
detection of an entangled state which was not detected by the original inequalities. We
also warn that using the original inequalities, in a context where the number of particles



3.9 Conclusion 109

N fluctuates, by replacing N by its expectation value ⟨N⟩ can result in a violation for
separable states, hence giving false positive.

We have also studied an experimental case where entanglement is present but un-
detected with the usual spin squeezing inequalities. The generalized spin squeezing
inequalities detect entanglement for the short time scale. However, the thermalization
of the state present a challenge which is to choose the proper operators for which we
have no systematic way to choose. Another question one should keep in mind, is the
ability to measure the chosen collective operators and their second moments necessary
for the generalized spin squeezing inequalities. We will tackle this question in the next
chapter where we will show that from population measurements along several directions
one is able to calculate the mean value and second moments of any collective observable.
Finally, despite the versatility the new inequalities present, choosing the best collective
observables to detect entanglement compatible with experimental requirements is still a
goal to aim for.





4

Perspectives and conclusion

In this chapter I will discuss some of the open questions and perspectives of the work
presented in chapter 2 regarding the formalism introduced to map any system into a
qubit and in chapter 3 regarding multipartite-entanglement detection and spin squeezing
inequalities. The study presented in chapter 2 for mapping any system into a qubit and
using this technique for entanglement detection is far from complete and still lacking in
both theory and applications. For the bipartite mapping, we only studied the simplest
case where the the mapping is implemented via LOCC with no classical communication.
Despite its usefulness, one should explore all possible implementations with LOCC to
derive entanglement criteria to succefully achieve all the goals of chapter 2. Whereas in
chapter 3, with the generalization we introduced came a huge choice of operators. Such
liberty is not useful if it does not give rise to observables that can be measured with
relative ease. It is also interesting to explore other multipartite criteria in the context of
particle number fluctuation. Here, we dig a little bit into these questions and possible
directions.

4.1 Going beyond local operations with no commu-
nications

An immediate follow up to the mapping scheme introduced in chapter 2, is to try and
study the structure of the mapping when rounds of classical communications can be
performed. LOCC operations are difficult to describe mathematically in general, but one
may expect to have a simplified description for LOCC operations in our specific case
where the output is a 2-qubit state.
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LOCC operations with no classical communications can be characterized using Kraus
operators as follows

M (ρ) =
∑
i,j

Ki ⊗ LjρK
†
i ⊗ L†

j (4.1)

with ∑iK
†
iKi = 1(d1) and ∑i L

†
iLi = 1(d2). we have shown in chapter 2 Eq.2.56 that it

simplifies, when mapping to 2-qubits, to the following form:

M (ρ) = 1
4

3∑
i,j=0

〈
B

(d1)
i ⊗B

(d2)
j

〉
ρ
σ

(1)
i ⊗ σ

(2)
j (4.2)

where the observables B(dk)
i , i = 1, 2, 3 and k = 1, 2, are properly normalized to ensure

complete positivity as mentioned in chapter 2 Eq. 2.57. Moreover, we have also shown
Kraus operators in this case can be chosen of the following form (2.27), (A.12):

Ki = |0⟩⟨ei|K0 + |1⟩⟨ei|K1 for 0 ≤ i ≤ 2d1 − 1 (4.3)

where {|ei⟩ : 0 ≤ i ≤ 2d1 − 1} is an orthonormal basis of H(d1) ⊕ H(d1) the codomain of
K0 and K∞,

K0 =
√

A

0

 , K1 =
 √

A
−1
B√

C −B†A−1B

 (4.4)

and

A = 1(d1) +B
(d1)
3

2 , C = 1(d1) −B
(d1)
3

2 , B = B
(d1)
1 + iB

(d1)
2

2 (4.5)

and the same can be done for the second party with the operators Lj.
Using this simple form, I will try to simplify the LOCC with one way classical communi-
cations for the case of mapping into two qubits.

4.1.1 Local operations with one way communication

Any CPTP map implemented with LOCC with one way communication can be written
in the following form [40, 52]:

MA→B (ρ) =
∑
i,j

K ′
i

[
1(A) ⊗ Λ(i) (ρ)

]
K ′
i
† (4.6)

where Λi(·) = ∑
j L

i
j · Lij

† and Ki(Li) are Kraus operators implemented by Alice(Bob)
such that∑iK

′
i
†K ′

i = 1(d1) and ∑j L
i
j
†
Lij = 1(d2). The subscript A → B means that the

classical communication is made from Alice (the first party) to Bob (the second party).
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From the above form, we can see that Alice performs her local operation K ′
i · K ′

i
† first and

sends a classical message to Bob to instruct him to apply the channel Λi(·) = ∑
j L

i
j · Lij

†

on his share of the state.
The set of operators representing a CPTP map is not unique. However, as Bob must wait
for all operations made by Alice, before performing his own map, we have the freedom to
choose the Kraus operators representing his map in the form given by Eq. (4.3):

Lij = |0⟩⟨fj|Li
0 + |1⟩⟨fj|Li

1 for 0 ≤ j ≤ 2d2 − 1 (4.7)

On the contrary, we have not this freedom for Alice’s Kraus operators. Alice needs to
stick to her choice of Kraus operators K ′

i in order to successfully achieve the overall
mapping (4.6). In general, K ′

i are not necessarily of the form (4.3), but rather some
operations upon which depends the choice for the map implemented by Bob. However, if
two sets of Kraus operators {Ki} and {K ′

i} represent the same quantum channel, then
there exists a unitary U , or an isometry when the number of Kraus operators of the two
sets is not equal, such that [234]

K ′
i =

∑
j

Ui,jKj (4.8)

Let us call D1 = max (2d1, k1) where d1 is the dimension of the Hilbert space H(d1) and
k1 is the number of Kraus operators K ′

i. Then, we can find Kraus operators of the
form (4.3) that represent the same channel as K ′

i:

Ki = |0⟩⟨ei|K0 + |1⟩⟨ei|K1 for 0 ≤ i ≤ D1 − 1 (4.9)

where the operators K0 and K1 in (4.3) are extended to D1 × d1 operators by padding
them with zeros.The mapping (4.6) becomes:

MA→B (ρ) =
∑
i,j,k,l

Ui,kU
†
l,iKk ⊗ LijρK

†
l ⊗ Lij

† (4.10)

with some simple manipulations, we can put the mapping into the following form:

MA→B (ρ) =
∑

m,m′,n,n′=0,1
Am,m′,n,n′ (ρ) |m,n⟩⟨m′, n′| (4.11)
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where
Am,m′,n,n′ (ρ) =

〈
K†
m′

∑
i

|gi⟩⟨gi|Km ⊗Bi
n,n′

〉
ρ

(4.12)

Bi
n,n′ = Li

n′
†Li

n, and {|gi⟩} is a set of vectors defined as:

|gi⟩ =
D1∑
k=1

U †
k,i|ek⟩ (4.13)

where U is the same unitary in (4.8). We show in App C.1 that for any basis {|g′
i⟩}

D1
i=1,

we can write:
Am,m′,n,n′ (ρ) =

〈
K†
m′

∑
i

|g′
i⟩⟨g′

i|Km ⊗B′i
n,n′

〉
ρ

(4.14)

where B′i
n,n′ is a new set of operators obtained from Bi

n,n′ by the relation:

B′i
n,n′ =

∑
k

|Vk,i|2 Bk
n,n′ (4.15)

and V is the unitary operators such that:

|gi⟩ =
∑
k

Vk,i|g′
k⟩. (4.16)

With this freedom in mind, we proceed by writing the singular value decomposition of

the operators Km:

Km =
d1∑
k=1

λmk |ζmk ⟩⟨ηk| (4.17)

where |ζmk ⟩ is an eigenvector of KmK†
m in the Hilbert space H(d1) ⊕ H(d1), {|ηk⟩}k are the

mutual eigenvectors of K†
0K0 = 1(d1) + A

(d1)
3

2 and K†
1K1 = 1(d1) − A

(d1)
3

2 , see (4.3). Now,

if we call W 01 the unitary matrix that verifies

|ζ1
i ⟩ =

∑
k

W 01
k,i|ζ0

k⟩, (4.18)

and write its spectral decomposition as:

W 01 = W†eiDW , (4.19)
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where W is a unitary matrix and D is a real diagonal one, we can choose the basis
{|g′

i⟩}
D1
i=1 such that:

|g′
i⟩ =

∑
k

eiDk,kWk,i|ζ0
k⟩. (4.20)

Hence, we have
|g′
i⟩ =

∑
k

Wk,i|ζ1
k⟩. (4.21)

From (4.20), (4.21) and (4.14) and the fact that |Wk,i| =
∣∣∣eiDk,kWk,i

∣∣∣, we find that:

Am,m′,n,n′ (ρ) =
〈

K†
m′

∑
i

|ζmi ⟩⟨ζmi |Km ⊗B′′i
n,n′

〉
ρ

, (4.22)

where, from (4.15),
B′′i
n,n′ =

∑
k

|Wk,i|2 B′k
n,n′ (4.23)

Finally, we use the fact

K†
m′|ζmi ⟩⟨ζmi |Km = K†

m′Km|ηi⟩⟨ηi| (4.24)

to derive the desired simple form of the LOCC mapping with one way communication:

M (ρ) = 1
4

3∑
i,j=0

〈∑
k

B
(d1)
i |ηk⟩⟨ηk| ⊗B

(d2,k)
j

〉
ρ

σ
(1)
i ⊗ σ

(2)
j (4.25)

where the observables B(d1)
i , B(d2,k)

i for each k = 1, · · · , d1 where i = 1, 2, 3, are properly
normalized to ensure complete positivity as mentioned in chapter 2. |ηk⟩ are the eigenvec-
tors of the operator B(d1)

3 . We have thus far shown that any mapping to two qubits of the
form (4.6) can be written in the above form (4.25). The converse is also true, hence we
have characterized all possible LOCC with one way communication that maps to 2 qubits.

It is interesting to see that if we choose the same operators B(d2,k)
i = B

(d2)
i , for every

k, one recovers the mapping 4.2. This is a manifestation of the fact that the set of
LOCC with no classical communication is contained in the set of LOCC with one way
communication.

Going beyond one round of communication is difficult. However, as we have seen
when one considers mapping to two qubits, it is a possibility that they would simplify.
It would be very interesting to check if there is any collapse between the sets of LOCC
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with n-rounds of classical communication because of this simplification.

As far as entanglement detection is concerned, we can check how separable operations
are implemented via our formalism. These operations have the advantage of containing
all LOCC operations and being simple to describe. Moreover, they are strictly contained
in PPT preserving operations. Hence, they conserve separability since two qubit PPT
states are separable. This might prove useful to provide stronger entanglement criteria
than our current formalism for LOCC with no classical communication and is left for
future investigations.

4.2 Generalized spin squeezing inequalities: entan-
glement depth and Measurability

4.2.1 Measurability of first and second moments of an arbitrary
operator

In chapter 3 we have introduced the generalized spin squeezing inequalities for arbitrary
operators Ai; i = 1, · · · ,M and generalized number operator N̂ . In order for the
arbitrary choice of operators to be of any use and represent a real freedom of choice,
from an application point of view, one should ask the question whether such a quantity
is measurable or not. One should keep in mind that the most appealing feature of spin
squeezing inequalities is that they are based on easy to measure collective quantities.
Moreover, the starting point of my study for these inequalities was the experimental
constraints that prevents from using witnesses based on measurements of individual
observables or collective observables that are not accessible with their present arsenal of
experimental techniques.

I will be attempting to answer this question assuming the limitations, on what ob-
servables can be measured, of the experimental setup of [263] where the experimental
techniques are typical for experiments involving BECs and cold atoms. In such experi-
ments, we have a set of N atoms, each of which has spin-j. Population of each Zeeman
level

Pm =
N∑
i=1

|m(i)⟩⟨m(i)|, m = −j, · · · , j (4.26)

can be measured in the z direction of the external magnetic field. In principle, the
population measurement can also be performed in any other direction Θ⃗ = (α, β, γ),
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characterized by the three Euler angles, by rotating the state of the system from |ψ⟩ to
e−iJzαe−iJyβe−iJzγ|ψ⟩. From such measurements only, we would like to deduce the mean
value and the second moment of an arbitrary collective operator

X =
j∑

m1,m2=−j
cm1,m2Cm1,m2 (4.27)

where we have defined the collective operators

Cmr,ms =
N∑
i=1

|m(i)
r ⟩⟨m(i)

s | mr,ms = −j, · · · , j (4.28)

where the superscript i = 1, · · · , N labels the particles and mr(ms) labels the Zeeman
levels of a single particle.

Measuring expectation value of arbitrary observable

In what follows I will show that it is possible to measure correlations between different
Zeeman levels; i.e. mean value of operators of the form (4.28) from measuring population
in different directions; i.e. measuring operators of the form:

Pms(Θ⃗) =
⊗
i

Ui(Θ⃗)†
(∑

i

|m(i)
s ⟩⟨m(i)

s |
)⊗

i

Ui(Θ⃗)

=
∑
i

∑
mk,ml

U †
mk,ms

(Θ⃗)Ums,ml
(Θ⃗)|m(i)

k ⟩⟨m(i)
l |

(4.29)

Where U †
ms,ml

(Θ⃗) is the (ms,ml) element of the unitary matrix corresponding to the
rotation parametrized by the Euler angles Θ⃗ = (α, β, γ); more explicitly we write:

Ui(Θ⃗) = e−iγJ(i)
z e−iβJ(i)

y e−iαJ(i)
z

which is the same for every particle (i). Taking the expectation value of the above
expression, we get:

⟨Pms(Θ⃗)⟩ =
∑
mk,ml

U †
mk,ms

(Θ⃗)Ums,ml
(Θ⃗)⟨Cmk,ml

⟩ (4.30)

Which can be rewritten in the equivalent form:

⟨Pms(Θ⃗)⟩ =
∑

mk≤ml

2Re
(
U †
mk,ms

(Θ⃗)Ums,ml
(Θ⃗)⟨Cmk,ml

⟩
)

(4.31)
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Now we see that equation (4.31) is a system of 2j+1 equations with (2j+1)2 variables
xmk,ml

= Re (⟨Cmk,ml
⟩) and ymk,ml

= Im (⟨Cmk,ml
⟩) with mk ≤ ml. Thus, we only need

2j + 1 rotations Θ⃗0, · · · , Θ⃗2j to determine all correlations (4.28).
In the next step, we write the rotation matrix elements explicitly as a function of

Euler angles:

Ums,ml
(Θ⃗) = e−imsαdms,ml

(β)e−imlγ , U †
mk,ms

(Θ⃗) = eimsαdms,mk
(β)eimkγ (4.32)

so we get :

U †
mk,ms

(Θ⃗)Ums,ml
(Θ⃗) = ei(mk−ml)γdms,ml

(β)dms,mk
(β) (4.33)

And we can see that the first rotation around the Z axis with angle α is not relevant
in the equation (4.31), so we can set α = 0. Choosing the γ angles of the 2j+ 1 rotations
to be

γn = 2πn
2j + 1 : n = 0, 1, · · · , 2j (4.34)

So the total rotation is θ⃗n = (0, β, γn) and the idea is to optimize the inverse matrix
as a function of β, the rotation angle around the y-axis.

This particular choice of angles (4.34), probably not the only choice, can simplify the
system of equations (4.31). First, let us rewrite Eq (4.30) in the following form:

⟨Pms(Θ⃗n)⟩ =
2j∑

m=−2j

∑
mk

e−iγnmdms,mk+m(β)dms,mk
(β)⟨Cmk,mk+m⟩ (4.35)

Where the subscript n represents the rotation θ⃗n.
Making use of the identity

2j∑
n=0

e−iγn(k−l) = (2j + 1)δk,l, (4.36)

we can separate the above system of equations to smaller sets as a function of
m = −2j, · · · , 2j. More explicitly, multiplying both sides of the above equation by eiγnm

and summing over n we get:

1
2j + 1

2j∑
n=0

eiγnm⟨Pms(Θ⃗n)⟩ =
∑
mk

dms,mk+m(β)dms,mk
(β)⟨Cmk,mk+m⟩ (4.37)
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Now, for fixed m, we see that it is a system of 2j + 1 equations (corresponding to
different values of ms with 2j + 1 − |m| variables ⟨Cmk,mk+m⟩. We want to choose an
angle β such that the matrices

V (m)ms,mk
= dms,mk

(β)dms,mk+m(β) (4.38)

which are of dimension (2j + 1) × (2j + 1 − |m|) have left inverse and such that the
experimental errors are not amplified (at least not to infinity). The above matrix has
a left inverse; i.e.V (m)−1V (m) = I and of dimension (2j + 1 − |m|) × (2j + 1), of the
following form:

V (m)−1
mk,ms

= (−1)mk−ms
∑
J

⟨j −ms j ms|J 0⟩⟨j −mk j mk +m|J m⟩
d

(J)
0,m(β)

, (4.39)

where one can easily verify that,see App C.2,

P = V (m)−1V (m) = I. (4.40)

The relevant quantity to minimise is
∥∥∥V (m)−1

∥∥∥
∞

= Maxi
∑
j

∣∣∣V (m)−1
i,j

∣∣∣ . (4.41)

That is because the error in measuring a quantity of the form xm = ∑
nAm,nbn is

proportional to
∆xm =

∑
n

|Am,n| ∆bn ≤ ∥A∥∞ ∆b; (4.42)

where ∆b represents the error in population measurement.
Next, set out to minimize ∥V (m)−1∥∞ as a function of β and we choose a value such

that
D(β) =

2j∑
m=1

∥∥∥V (m)−1
∥∥∥

∞
(4.43)

is at its minimum. From Eq. (4.39),it is clear that such a value exists and verifies the
following condition:

d
(J)
0,m(β) ̸= 0 ,∀J ∈ {0, · · · , 2j}∀m ∈ {−2j, · · · , 2j} (4.44)

This concludes the proof for the possibility to extract correlations by measuring popula-
tions in 2j + 1 directions!
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Please note that ⟨Cmk,mk+m⟩ = ⟨Cmk+m,mk
⟩∗, so we can get all correlations corre-

sponding to −m once correlations corresponding to m are calculated. That is why we do
not need to include ∥V (−m)−1∥∞ with m > 0 in our study.

We can calculate an upper bound of D(β) (4.43):

D(β) =
2j∑
m=1

∥∥∥V (m)−1
∥∥∥

∞
≤
√

2j + 1
2j∑
m=1

∥∥∥V (m)−1
∥∥∥
F

= G(β)

where ∥A∥F =
√

tr (A†A) is the Frobenius norm. From Eq. (4.39) and the identity:

∑
m

⟨j1 mj2 M −m|J1 M⟩⟨j1 mj2 M −m|J2 M⟩ = δJ1,J2

we can calculate the upper bound G(β) to be:

G(β) =
√

2j + 1
2j∑
m=1

√√√√√ 2j∑
J=|m|

1(
d

(J)
0,m(β)

)2 (4.45)

Finally we plot D(β) for spin j = 3 and we see that it reaches a minimum at β ≈ 1.4 rad,
see figure 4.1.

Measuring second moments of arbitrary observable

In this case we are looking to measure correlations of the form:

Cmp,mqCmr,ms =
∑
i

δmq ,mr |m(i)
p ⟩⟨m(i)

s | +
∑
i ̸=j

|m(i)
p ⟩⟨m(i)

q | ⊗ |m(j)
r ⟩⟨m(j)

s | (4.46)

from measuring second-order correlations of population in different directions; i.e.
measuring operators of the form Pmr(Θ⃗)Pms(Θ⃗). Note that the correlations should be
measured in the same direction Θ⃗ and there are no correlations among different directions.
This is because it is impossible to measure two directions simultaneously.

In a similar way to Eq. (4.30), we can write:

⟨Pmr(Θ⃗)Pms(Θ⃗)⟩ =
∑

mk,ml,mp,mq

U †
mk,mr

(Θ⃗)Umr,ml
(Θ⃗)

U †
mp,ms

(Θ⃗)Ums,mq(Θ⃗)⟨Cmk,ml
Cmp,mq⟩

(4.47)

Which can be rewritten in the equivalent form:
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Figure 4.1: D(β) (4.43) in blue and its upper bound G(β) (4.45) in red as a function of
β.

⟨Pmr(Θ⃗)Pms(Θ⃗)⟩ =
∑

mk≤mq ,ml,mp

2Re
(
U †
mk,mr

(Θ⃗)Umr,ml
(Θ⃗)

U †
mp,ms

(Θ⃗)Ums,mq(Θ⃗)⟨Cmk,ml
Cmp,mq⟩

) (4.48)

Now we see that equation (4.48) is a system of (2j + 1)2 equations with (2j + 1)4

variables xmk,ml,mp,mq = Re
(
⟨Cmk,ml

Cmp,mq⟩
)

and ymk,ml,mp,mq = Im
(
⟨Cmk,ml

Cmp,mq⟩
)

with mk ≤ mq.
Hence, we need (2j + 1)2 rotations Θ⃗0, · · · , Θ⃗(2j+1)2−1, at least, to determine all

correlations (4.46). Following the same steps as before, we choose the angle α = 0.
However, we choose γ angles of the (2j + 1)2 rotations to be:

γn = 2πn
(2j + 1)2 : n = 0, 1, · · · , (2j + 1)2 − 1 (4.49)

So the total rotation is θ⃗n = (0, β, γn) and the idea is to optimize the inverse matrix
as a function of β.

We proceed by writing:
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⟨Pmr(Θ⃗n)Pms(Θ⃗n)⟩ =
2j∑

m1,m2=−2j

∑
mk,ml

e−iγn(m1+m2)dmr,mk+m1(β)dmr,mk
(β)

dms,ml+m2(β)dms,ml
(β)⟨Cmk,mk+m1Cml,ml+m2⟩

(4.50)

Where the subscript n represents the rotation θ⃗n. Next, we separate the above system
of equations to smaller sets as a function of m = m1 +m2 = −4j, · · · , 4j:

1
(2j + 1)2

(2j+1)2−1∑
n=0

eiγnm⟨Pmr(Θ⃗n)Pms(Θ⃗n)⟩ =
∑
m1

∑
mk,ml

dmr,mk+m1(β)dmr,mk
(β)dms,ml+m−m1(β)

dms,ml
(β)⟨Cmk,mk+m1Cml,ml+m−m1⟩

(4.51)

Now,for fixed m, we see it is a system of (2j+1)2 equations (corresponding to different
values of mr,ms) with

max(2j,2j+m)∑
m1=min(−2j,−2j+m)

(2j + 1 − |m1|) (2j + 1 − |m−m1|)

variables ⟨Cmk,mk+m1Cml,ml+m2⟩. A comparison with Eq. (4.38), we see that:the matrix
we want to find its left inverse is of the form:

V(m) =
max(2j,2j+m)⊕

m1=min(−2j,−2j+m)
V (m1) ⊗ V (m−m1) (4.52)

Since each of the matrices V (m1) has left inverse V −1(m1) according to last section (4.39),
we can easily find the left inverse of V(m) to be:

V−1(m) =
max(2j,2j+m)⊕

m1=min(−2j,−2j+m)
V −1(m1) ⊗ V −1(m−m1) (4.53)

which concludes the proof.
We have thus far shown the possibility to measure second-order correlations (4.46) by

measuring second order moments of operators of the form (4.47) in (2j + 1)2 directions.
In fact,the above proof can be generalized to access n-order correlations from population
n-order correlation measurements in (2j + 1)n directions. Which, in turn, will allow the
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measurement of moments up to the nth moment of an arbitrary collective operator of the
form:

X =
∑
mk,ml

cmk,ml
Cmk,ml

(4.54)

where cmk,ml
∈ C and Cmk,ml

is defined in Eq. (4.28).

At this point, it is important to note that the provided scheme becomes more
unrealistic the higher spin-j is. For spin j = 3, measuring the second moments would
require (2j+1)2 = 49 rotations and hence a resolution better than 2π

2 × 49 ≈ 0.06 rad ≈ 3◦.
However, the above presented strategy is not optimal but rather shows that it is indeed
possible, at least in theory, to extract the correlations. Different choices for γ and β

might prove more advantageous. Another interesting question to look into is whether it
is possible to extract a subset of the correlations (4.46) with less measurements.

4.2.2 Criteria for entanglement depth detection

The criteria we generalized in chapter 3 were true for fully separable states. When
they detect a state as entangled, they are blind to what kind of entanglement we are
dealing with. The way we did this generalization was to take entanglement criteria for
N spin-1

2 and replace the particle number N by the expectation of the particle number
operator

〈
N̂
〉
, the expectation of the collective spin component along the k-axis, ⟨Sk⟩,

by ⟨Ak⟩ and the modified second moments
〈
S̃2
k

〉
by

〈
Ã2
k

〉
. In addition, we had to add an

additional term δ in order to generalize the spin squeezing inequalities (3.6). However,
when generalizing Sørensen-Mølmer’s criterion for N spin-1

2 particles, we did not need
the additional term δ and it was sufficient to do the above mentioned substitutions. Next,
we generalize Sørensen-Mølmer’s criterion for k-producible states.

Sørensen-Mølmer criterion

As it turns out, we are able to generalize Sørensen-Mølmer’s criterion for k-producible
states of N spin-j particles:

(∆Jx)2 ≥ NjFkj

(
⟨Jz⟩
Nj

)
(4.55)
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in the following way:

β2
〈
N̂
〉

+ ∆̃2A1 ≥ 2β2
〈
N̂
〉
F k

2

 ⟨A2⟩
β
〈
N̂
〉
 (4.56)

For the proof, see appendix C.3. Unlike the case k = 1, the normalization factor β is
chosen to be

√
2α rather than α where α2 = supρ(i)

[∑2
k=1

〈
A

(i)
k

〉2

ρ(i)

]
. This is because

of the way we mapped the original system into an N -qubits system, the main step of
the proof presented in appendix.C.3. Our choice is in no way unique nor optimal and
it is quite plausible to find a better mapping that sharpens the normalization factor β
in (4.56).
Another interesting point to investigate is when one has single particle operators A(i)

k

with more than two eigenvectors. In this case, one should consider mapping to higher
spin than 1

2 to obtain a sharper inequality. One can conjecture that in this case one
should obtain the function Fkj rather than F k

2
in the right hand side of eq.(4.56). A

rigorous way to do a mapping properly in the sense of chapter 2 to help prove it is a
goal to aim for.
An interesting workaround though can be found in the case where the single particle
operators have 2m eigenvectors. In that case, one can consider each particle as a collection
of m two-level systems so one can directly replace F k

2
by Fkm in (4.56).

Finally, there exists other criteria that detect entanglement depth in terms of first
and second moments of collective spin operators. For example, Duan [267] showed that
for k-producible states of N qubits the following inequality

⟨J2
x + J2

y ⟩

N
(1

4 + (∆Jz)2
) ≤ k + 1 (4.57)

is verified. In [221], a generalization of Sørensen-Mølmer criterion [220] was presented in
the following way:

(∆Jx)2 ≥ NjFkj


√√√√⟨J2

y + J2
z ⟩ −Nj(kj + 1)

N(N − k)j2

 (4.58)

that holds for k-producible states of N spin-j particles. Along side with the above
criterion Vitagliano et al. provided a stronger version of Duan’s criterion (4.57) via a
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series expansion of the function F
(√

.
)
. They also generalized (4.58) to the case where

N presents a statistical fluctuations. However, in that case, higher moments are required.

An immediate follow up to our work will be to generalize these criteria in the sense of
chapter 3. A heavier question to tackle would be finding the best operators to detect a
specific kind of entanglement or finding a single criterion that detects as many entangled
states as possible.

4.3 Conclusion

We conclude this chapter and the thesis by giving a brief summary of what has been
presented in the previous chapters. The main objective of this thesis revolved around
entanglement detection in high dimensional systems. This high dimensionality comes in
two ways: bipartite systems with dimension higher than 2 × 3 or multipartite systems
with high number of particles.
Chapter 2 was devoted to the problem of entanglement detection in bi-partite systems
with high dimension. The main idea is to reduce the dimension by mapping each party
to a 2-level system such that separability is conserved. Doing so, reduces the problem
into studying entanglement of a 2 × 2 system for which PPT criterion is a necessary and
sufficient condition that is easy to compute. We presented a general way of mapping
any d-level system into a qubit states such that the Bloch vector of the resulting qubit
is expressed in terms of the expectation value of three arbitrary operators Ak. We
introduced a very simple way to normalize these operators to ensure complete positivity
of the mapping. Hence, the convenience of our formalism.
Once mapping of a single particle into a qubit is defined, we introduced a very intuitive
way of mapping a bipartite system into two qubits by applying a mapping to each
subsystem. This way, separability is conserved and the resulting two qubit states can be
written in terms of expectation values of the form

〈
A

(d1)
k B

(d2)
l

〉
. Thus, applying the PPT

criterion to this two qubit state give us an entanglement criterion in terms of
〈
A

(d1)
k B

(d2)
l

〉
calculated in the original state. Changing the two sets of operators A(d1)

k and B(d2)
l gives

us different criteria. We studied a very simple case where we chose the sets of operators
to be the spin operators and we showed that, in the multi-partite case, spin squeezing
inequalities for N spin-j particles can be deduced from spin squeezing inequalities for N
spin-1

2 particles using this mapping for each particle.
The simplicity of the way we map into two-qubit system follows from the simplicity of
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LOCC operations with no classical communication. However, the formalism developed
in chapter 2 allowed us to get a very simple description of LOCC with one-way classicla
communication as a function of expectation values of simple bipartite observables rather
than Kraus operators. This simplification was possible because we are considering the
case of mapping into two-qubits rather than the general case. We expect this relative sim-
plicity to carry over to describe LOCC with multiple round of communication to map into
two qubits. However, the Kraus representation of such operations is more complex and a
lot more involved. Obtaining a simple description of mapping any bipartite state into two
qubit state via LOCC operations is quite important and can prove very important to the
study of distillability. A major handicap in the study of distillability of NPT states is the
absence of a simple mathematical description of LOCC operations with multiple-rounds
of classical communication. Our formalism might give a fresh perspective to these studies.

Our use of the mapping in the multipartite case, where one uses operators defined on a
subspace of the Hilbert space of a single particle, has led us to consider a unique situation
where one has quantum fluctuations of particle number. Unlike the common experimental
case where one has classical fluctuations of particle number among different realizations
of a given experiment, using our mapping can give rise to coherent superposition among
states with different particle number.
Dealing with this problem was the main objective of chapter 3, where we have gen-
eralized spin squeezing inequalities for arbitrary operators with a fluctuating particle
number. While, spin squeezing inequalities have been generalized for the case of classical
fluctuations of particles, these generalized inequalities involve higher moments and are
no longer in terms of spin operators only. Our generalization is both simple and is in
terms of the first and second moments of collective operators.
We have applied these inequalities to the experimental case of a Chromium lattice which
can be seen as a system of spin-3 particles. We have shown, with a simulation, that
our inequalities succeed to infer entanglement at short times. We have also shown that,
in principle, it is possible to measure the involved collective operators to show this
entanglement. Our method can be used for similar systems since it does not require
complex manipulation of the system, but rather uses simple collective measurements and
rotations.
Finally, we have shown that our arsenal of techniques used in this work are capable of
generalizing some criteria of entanglement depth detection. Such criteria are extremely
useful to systems with large number of particles and with proper choice of operators, one
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might be able to witness better what kind of entanglement present in the system.

In our work, we have provided tools and criteria that give a lot of freedom . This
freedom does not provide a satisfying answer on how to choose properly when faced with
some kind of entanglement. We also still have no optimal set of criteria, for which is
guaranteed to witness as much as possible of entangled states, yet. Dealing with these
kind of questions, whilst very hard, is quite important and interesting at the same time
to characterize large systems’ entanglement.





Appendix A

Appendices of Chapter 2

A.1 Kraus representation of mapping (2.3)

Let us define {|ei⟩ : 1 ≤ i ≤ D} to be an orthonormal basis of H(D). In order to find the
Kraus representation of the mapping (2.7), we will make use of the conditions (2.15) and
write the operators Bis as a function of the operators K0 and K1:

Bz = K0
†K0 −K1

†K1 , 1 = K0
†K0 +K1

†K1 , B+ = 2K0
†K1 (A.1)

Where we have defined:

B+ = Bx + iBy , B+ = Bx − iBy (A.2)

Now let us rewrite the mapping of the state ρ in the following equivalent form:

M (ρ) =
⟨1 +Bz⟩ρ

2 |0⟩⟨0| +
⟨1 −Bz⟩ρ

2 |1⟩⟨1| +
⟨B+⟩ρ

2 |1⟩⟨0| +
⟨B−⟩ρ

2 |0⟩⟨1| (A.3)

Now making use of the equations (A.1), we can write:

M (ρ) = Tr
[
K0ρK0

†
]

|0⟩⟨0| + Tr
[
K1ρK1

†
]

|1⟩⟨1|

+Tr
[
K1ρK0

†
]

|1⟩⟨0| + Tr
[
K0ρK1

†
]

|0⟩⟨1| (A.4)

The above form, suggests the definition of the following Kraus operators:

Ki = |0⟩⟨ei|K0 + |1⟩⟨ei|K1 : 1 ≤ i ≤ D (A.5)
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Now it is simple verification that ∑D
i=1 K

†
iKi = 1(d) and that:

M (ρ) =
D∑
i=1

KiρK
†
i (A.6)

which is the Kraus representation of the CP mapping (2.7).

A.2 Proof of theorem I 1

Let start proving that if the mapping M (ρ) = 1
2 +

〈
B⃗
〉
ρ
.
σ⃗

2 is CP, then the condition 2.29
is verified. Since M is completely positive, we can write its Kraus representation [235,
230, 236]:

M (ρ) =
∑
i∈I

KiρKi
† (A.7)

Where I is a countable set and Ki are linear operators from H the Hilbert space of the
system in question to H(2). Let us write the matrix elements of M (ρ) explicitly:

⟨0|M (ρ) |0⟩ = ∑
i⟨0|KiρKi

†|0⟩ = ∑
i

〈
Ki

†|0⟩⟨0|Ki

〉
ρ

⟨1|M (ρ) |1⟩ = ∑
i⟨1|KiρKi

†|1⟩ = ∑
i

〈
Ki

†|1⟩⟨1|Ki

〉
ρ

⟨0|M (ρ) |1⟩ = ∑
i⟨0|KiρKi

†|1⟩ = ∑
i

〈
Ki

†|1⟩⟨0|Ki

〉
ρ

⟨1|M (ρ) |0⟩ = ∑
i⟨1|KiρKi

†|0⟩ = ∑
i

〈
Ki

†|0⟩⟨1|Ki

〉
ρ

(A.8)

comparing the above terms with the form of the mapping:

M (ρ) = 1
2 +

〈
B⃗
〉
ρ
.
σ⃗

2

we can identify that:

1 +Bz

2 =
∑
i∈I

Ki
†|0⟩⟨0|Ki ,

1 −Bz

2 =
∑
i∈I

Ki
†|1⟩⟨1|Ki

Bx + iBy

2 =
∑
i∈I

Ki
†|0⟩⟨1|Ki ,

Bx − iBy

2 =
∑
i∈I

Ki
†|1⟩⟨0|Ki

Now proving that the matrix

D =
1 +Bz B+

B− 1 −Bz

 (A.9)
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is positive semi-definite is straightforward. For any |ψ⟩ = |ψ0⟩ ⊕ |ψ1⟩ ∈ H ⊕ H, we have:

⟨ψ|D|ψ⟩ = ⟨ψ0|1 +Bz|ψ0⟩ + ⟨ψ1|1 −Bz|ψ1⟩ + ⟨ψ0|B+|ψ1⟩ + ⟨ψ1|B−|ψ0⟩

= ∑
i

∣∣∣⟨ψ0|Ki
†|0⟩

∣∣∣2 +
∣∣∣⟨ψ1|Ki

†|1⟩
∣∣∣2 + 2ℜ

[
⟨ψ0|Ki

†|0⟩⟨1|Ki|ψ1⟩
]

= ∑
i

∣∣∣⟨ψ0|Ki
†|0⟩ + ⟨ψ1|Ki

†|1⟩
∣∣∣2 ≥ 0

Hence, we have proved the positivity semi-definiteness of (A.9).

Now let us assume that D is positive semi-definite and let us prove that the mapping
M (ρ) = 1

2 +
〈
B⃗
〉
ρ
.
σ⃗

2 is CP. Using the generalized Schur complements [268, 269], one

can write the decomposition of the matrix D as [237, 238]:

D =
 1 0
B†A−1 1

A 0
0 C −B†A−1B

1 A−1B

0 1

 (A.10)

Where

A = 1 +Bz

2 , C = 1 −Bz

2 , B = B+

and A−1 is the pseudo-inverse of A [239–242]. Since D ⪰ 0, theorem 2 implies that A ⪰ 0

and Q = C − B†A−1B ⪰ 0 [237, 238]. Hence, we can
√
A and

√
Q exist and we can

write:

D =
 √

A 0
B†

√
A

−1 √
Q

√
A

√
A

−1
B

0
√
Q

 =
K0

†

K1
†

(K0 K1

)
(A.11)

Where we have defined

K0 =
√

A

0

 , K1 =
√

A
−1
B

√
Q

 (A.12)

Thus, we have found operators K0 and K1 such that the conditions (2.15) are verified.

Then, there exists an isometry U such that our mapping can be written as:

M (ρ) = TrH(D)

[
Uρ⊗ |0⟩⟨0|U †

]

which is CP, completing the proof.
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A.3 Proof of Eq. (2.25)

After we have set K0 = a√
2j and K1 = b√

2j , we need to find Ais such that the following
equations are verified:

√
j (A0 + A3) = a√

2
,
√
j (A1 + iA2) = b√

2
(A.13)

A⃗†A0 + A0
†A⃗ + iA⃗† ∧ A⃗ = 0 (A.14)

We can already see that the conditions (A.13) are verified by the solutionj (2.25). One
also could notice that conditions (A.13) and (A.14) actually imply the normalization
condition (2.2). We can see that from the relation:

1 = a†a+ b†b

2j = (A0 + A3)† (A0 + A3) + (A1 + iA2)† (A1 + iA2) (A.15)

if (A.14) - especially
(
A⃗†A0 + A0

†A⃗+ iA⃗† ∧ A⃗
)

3
= 0 - is verified, then we find the

normalization condition. Then All left is to verify the conditions (A.14).

Verifying the conditions (A.14) :

Verifying (2.11) We have :

A1
†A0 + A0

†A1 = b†a† − ba

4
√

4j(j + 1)
+ b†a

8j − ba†

8(j + 1) +H.C. = b†a+ a†b

8j(j + 1)

iA2
†A3 − iA3

†A2 = b†a† − ba

4
√

4j(j + 1)
− b†a

8j + ba†

8(j + 1) +H.C. = − b†a+ a†b

8j(j + 1)

And thus we have:

(
A⃗†A0 + A0

†A⃗+ iA⃗† ∧ A⃗
)

1
= A1

†A0 + A0
†A1 + iA2

†A3 − iA3
†A2 = 0

Verifying (2.12) We have :

A2
†A0 + A0

†A2 = i

 b†a† + ba

4
√

4j(j + 1)
+ b†a

8j + ba†

8(j + 1)

+H.C. = i
b†a− a†b

8j(j + 1)
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− iA1
†A3 + iA3

†A1 = −i

− b†a† + ba

4
√

4j(j + 1)
+ b†a

8j + ba†

8(j + 1)

+H.C. = −i b
†a− a†b

8j(j + 1)

And thus we have:

(
A⃗†A0 + A0

†A⃗+ iA⃗† ∧ A⃗
)

2
= A2

†A0 + A0
†A2 − iA1

†A3 + iA3
†A1 = 0

Verifying (2.13) We have :

A3
†A0+A0

†A3 = a†a† − aa

4
√

4j(j + 1)
+a

†a

8j − aa†

8(j + 1)+H.C. = a†a

4j − aa†

4(j + 1) = a†a

4j − a†a+ 1
4(j + 1) = a†a− j

4j(j + 1)

iA1
†A2−iA2

†A1 = b†b† − bb

4
√

4j(j + 1)
+b

†b

8j − bb†

8(j + 1)+H.C. = b†b

4j − bb†

4(j + 1) = b†b

4j − b†b+ 1
4(j + 1) = b†b− j

4j(j + 1)

Where we have used
[
a, a†

]
= 1,

[
b, b†

]
= 1,and so we have:

(
A⃗†A0 + A0

†A⃗+ iA⃗† ∧ A⃗
)

3
= A3

†A0 + A0
†A3 + iA1

†A2 − iA2
†A1 = a†a+ b†b− 2j

4j(j + 1)

Where we have used a†a+ b†b = 2j.

A.4 Proof of: ∥Λ∥2 = 1 ⇒ Tr [M(ρ)2] ≤ 1

We start by proving ⟨Sx⟩2
|ψ⟩ + ⟨Sy⟩2

|ψ⟩ + ⟨Sz⟩2
|ψ⟩ ≤ 1 for any pure state |ψ⟩ ∈ H0 ⊕ H1.

We can write any normalized state as |ψ⟩ = |ψ0⟩ + |ψ1⟩ with |ψ⟩0(1) ∈ H0(1) such that
:⟨ψ0|ψ0⟩ + ⟨ψ1|ψ1⟩ = 1. Now calculating ⟨Sx⟩|ψ⟩ and ⟨Sy⟩|ψ⟩, we find:

⟨Sx⟩|ψ⟩ = ⟨ψ0|Λ|ψ1⟩ + ⟨ψ1|Λ†|ψ0⟩ = 2Re [⟨ψ0|Λ|ψ1⟩]

⟨Sy⟩|ψ⟩ = −i⟨ψ0|Λ|ψ1⟩ + i⟨ψ1|Λ†|ψ0⟩ = 2Im [⟨ψ0|Λ|ψ1⟩]

As a result we get :

⟨Sx⟩2
|ψ⟩ + ⟨Sy⟩2

|ψ⟩ = 4 |⟨ψ0|Λ|ψ1⟩|2 ≤ 4⟨ψ0|ψ0⟩⟨ψ1|Λ†Λ|ψ1⟩ ≤ 4⟨ψ0|ψ0⟩⟨ψ1|ψ1⟩ (A.16)

Where we have used Cauchy-Schwartz inequality and the fact that the largest eigenvalue
of Λ†Λ is λmax = ∥Λ∥2

2 = 1.
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we also have:

⟨Sz⟩2
|ψ⟩ = (⟨ψ0|P0|ψ0⟩ − ⟨ψ1|P1|ψ1⟩)2 = ⟨ψ0|ψ0⟩2 + ⟨ψ1|ψ1⟩2 − 2⟨ψ0|ψ0⟩⟨ψ1|ψ1⟩ (A.17)

Combining (A.16) and (A.17) we finally get:

⟨Sx⟩2
|ψ⟩+⟨Sy⟩2

|ψ⟩+⟨Sz⟩2
|ψ⟩ ≤ ⟨ψ0|ψ0⟩2+⟨ψ1|ψ1⟩2+2⟨ψ0|ψ0⟩⟨ψ1|ψ1⟩ ≤ (⟨ψ0|ψ0⟩+⟨ψ1|ψ1⟩)2 ≤ 1

(A.18)
Taking the special case where ⟨ψ0|ψ0⟩ = 1 and ⟨ψ1|ψ1⟩ = 0 we get the equality ⟨Sx⟩2

|ψ⟩ +
⟨Sy⟩2

|ψ⟩ + ⟨Sz⟩2
|ψ⟩ = 1. Thus we conclude that :

β2 = sup {⟨Sx⟩2
|ψ⟩ + ⟨Sy⟩2

|ψ⟩ + ⟨Sz⟩2
|ψ⟩ : (|ψ⟩ ∈ H) ∧ (⟨ψ|ψ⟩ = 1)} = 1 (A.19)

Now we have established that the minimum value of β, such that the mapping (2.44)
is CP, is 1. Now let use Theorem I 1 to prove it. In other words, let us prove that the
matrix 2.31 is positive semi-definite.

A.5 Proof of complete positivity of the mapping (2.44)

We start by writing the singular value decomposition of the linear operator P0ΛP1 [270,
271]:

P0ΛP1 =
∑
n

√
λn|en⟩⟨fn| (A.20)

where {λn}n∈N is a sequence of positive numbers such that

max{λn}n∈N = 1

because of the condition ∥Λ∥2 = 1. {|en⟩}n∈N and {|fn⟩}n∈N are orthonormal basis of H0

and H1 respectively. Then, we have:

∑
n

|en⟩⟨en| = P0 ,
∑
n

|fn⟩⟨fn| = P1 (A.21)

Now let us prove that the matrix 2.31

D =
 1 + Sz 2P0ΛP1

2P1Λ†P0 1 − Sz

 (A.22)
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is positive semi-definite. For that we use again Theorem 2. Let us define

Q = 1 − P0 − P1.

It is straightforward to show that

A = 1 + Sz = Q+ 2P0 ⪰ 0

and that:
1 − AA−1 = 1 − (Q+ 2P0)

(
Q+ 1

2P0

)
= P1

Hence the second condition (1 − AA−1)B+ = 0 is verified. Now let us check the final
condition C −B+

†A−1B+ ⪰ 0. To do so, let us calculate the quantity:

B+
†A−1B+ = 4P1Λ†P0

(
Q+ 1

2P0

)
P0ΛP1 = 2P1Λ†P0ΛP1 = 2

∑
n

λn|fn⟩⟨fn|

From which we find:

C −B+
†A−1B+ = 1 − Sz − 2

∑
n

λn|fn⟩⟨fn| = Q+ 2
∑
n

(1 − λn) |fn⟩⟨fn| ⪰ 0

since 0 ≤ λn ≤ 1. With this, we conclude the proof for positivity semi-definiteness
of (A.22) which implies that the mapping Eq. (2.44) is C.P.

A.6 3-parameter family of 2-qudit states

A.6.1 Preliminaries

First, we recall the family of d2 maximally entangled 2-qudit states |Ωkl⟩(k, l = 0, 1, · · · d−
1) that generalizes the four 2-qubit Bell states as introduced in Ref. [46]:

|Ωkl⟩ = Wkl ⊗ 1|Ω00⟩ with |Ω00⟩ = 1√
d

d−1∑
m=0

|m,m⟩, (A.23)

where the d2 Wkl operators acting on the first qudit are the Weyl operators defined as:

Wkl|m⟩ = wk(m−l)|(m− l)mod d⟩, where w = e2πi/d. (A.24)



136 Appendices of Chapter 2

These operators verify the following orthogonality relation in the Hilbert-Schmidt norm:

Tr
[
W †
klWmn

]
= d δkmδln. (A.25)

These 2-qudit Bell states Pkl = |Ωkl⟩⟨Ωkl| are locally maximally mixed state, that is,

their partial trace gives the maximally mixed state 1
d
. Using the following relation [46]:

|j⟩⟨k| = 1
d

d−1∑
l=0

wljWj(k−j), (A.26)

each state Pkl can be written in the basis Wkl ⊗Wmn as follows [272, 46]:

Pkl = 1
d2

d−1∑
m,n=0

wml−knW †
−m−n ⊗W †

m−n. (A.27)

The operators J3, J+, J− can also be written in the Weyl basis:

J3 =
2j∑
l=0

ηlzWl0,

J+ =
2j∑
l=0

ηlpw
−lWl,−1 , J− =

2j∑
l=0

ηlpWl,1, (A.28)

where we have defined

ηlz =
2j∑
m=0

m− j

2j + 1w
−ml,

ηlp =
2j∑
m=0

√
j(j + 1) − (m− j)(m− j + 1)

2j + 1 w−ml.

From Eqs. (A.27), (A.28), and (A.25), we get

⟨J3 ⊗ J3⟩|Ωkl⟩ = Tr [PklJ3 ⊗ J3] =
2j∑
m=0

ηmz η
−m
z wml,

⟨J+ ⊗ J+⟩|Ωkl⟩ = Tr [PklJ+ ⊗ J+] = w−k
2j∑
m=0

ηmp η
−m
p wml,

⟨J+ ⊗ J−⟩|Ωkl⟩ = Tr [PklJ+ ⊗ J−] = 0.
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Now, we have the tools that enable us to study the three-parameter family of 2-qudit
states with d = 2j + 1 defined in Sec. 2.3.4:

ρα,β,γ = 1 − α− β − γ

(2j + 1)2 1 + αP00

+ β

2j

2j∑
i=1

Pi0 + γ

2j + 1

2j∑
i=0

Pi1. (A.29)

For these states we have

⟨J3 ⊗ J3⟩ρα,β,γ
= j(j + 1) (α + β) + j(j − 2)γ

3 ,

⟨J1 ⊗ J1⟩ρα,β,γ
= j(j + 1) (α− β/2j)

3 ,

⟨J2 ⊗ J2⟩ρα,β,γ
= −j(j + 1) (α− β/2j)

3 ,

so that the criterion
∣∣∣⟨J (d1)

1 ⊗ J
(d2)
1 ⟩ρ

∣∣∣ +
∣∣∣⟨J (d1)

2 ⊗ J
(d2)
2 ⟩ρ

∣∣∣
+

∣∣∣⟨J (d1)
3 ⊗ J

(d2)
3 ⟩ρ

∣∣∣ ≤ j(d1)j(d2)

introduced in the main text for separable states ρα,β,γ can be brought to the following
form:

|(j + 1)(α + β) + (j − 2)γ| + (j + 1) |2α− β/j|
3j ≤ 1. (A.30)

A.6.2 Positivity and partial transpose of ρα,β,γ
From the definition in Eq. (A.29), ρα,β,γ is already in its diagonal form and we can easily
identify its eigenvalues and eigenvectors. The eigenvalues are:1 − α− β − γ

(2j + 1)2 + γ

2j + 1
with degeneracy 2j + 1, 1 − α− β − γ

(2j + 1)2 + β

2j with degeneracy 2j, 1 − α− β − γ

(2j + 1)2 + α

with degeneracy 1, and 1 − α− β − γ

(2j + 1)2 with degeneracy (2j + 1)(2j − 1). To ensure
the positivity of ρα,β,γ, each of these eigenvalues must be positive, hence we obtain the
positivity conditions stated in Sec. 2.3.4:

1 − α− β − γ

(2j + 1)2 ≥ 0, α+ 1 − α− β − γ

(2j + 1)2 ≥ 0,

β

2j + 1 − α− β − γ

(2j + 1)2 ≥ 0, 1 − α− β + 2jγ
(2j + 1)2 ≥ 0.
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As for the partial transpose (PT) of ρα,β,γ , it was shown in Ref. [272] that for a state of
the form ρ = ∑2j

k,l=0 CklPkl, its partial transpose can be written as:

ρTB =
⊕2j

m=0Bm : B†
m = Bm, (A.31)

where, the matrix elements of Bm are defined as [272]:

⟨s|Bm|t⟩ = 1
2j + 1

2j∑
k=0

Cs,s+t−mw
k(s−t) : s, t = 0, · · · , 2j. (A.32)

It was also shown [272] that for integer values of j, all matrices Bm are unitarily equivalent,
while for j half-integer, there are two classes of unitarily equivalent matrices, the class of
Bm for even m and the class for odd m.

In what follows, we will restrict ourselves to the case of j integer and we will calculate
the elements of the matrix B0. The case of half-integer j can be easily obtained based
on the calculation of the matrix B0.

From Eqs. (2.74) and (A.32), we find that the matrix B0 has the following form:

B0 =



b00 0 · · · · · · · · · 0
0 b11 0 · · · 0 κ
... 0 . . . ... 0
... ... . . . ...
0 0 ... b2j−1,2j−1 0
0 κ 0 · · · 0 b2j,2j


, (A.33)

with

b00 = ⟨0|B0|0⟩ = 1 − α− β − γ

(2j + 1)2 + α + β

2j + 1 ,

bj+1,j+1 = ⟨j + 1|B0|j + 1⟩ = 1 − α− β − γ

(2j + 1)2 + γ

2j + 1 ,

bk,k = ⟨k|B0|k⟩ = 1 − α− β − γ

(2j + 1)2

: k ∈ {0, · · · , 2j} \ {0, j + 1},

κ = ⟨s|B0|t⟩ = α− β/2j
2j + 1 : s+ t = 0 and s ̸= t,

⟨s|B0|t⟩ = 0 : s ̸= t ands+ t ̸= 0.
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The characteristic polynomial of B0 can be easily computed which allows to calculate the
eigenvalues of B0. As ρTB

α,β,γ is the direct sum of matrices Bm that are unitarily equivalent
to B0, then the eigenvalues of B0 are also those of ρTB

α,β,γ . We distinguish 2 cases: for
j = 1 and j > 1. For j = 1, the 3 eigenvalues λi(i = 1, 2, 3) are:

λ1 = 1 + 2j(α + β) − γ

(1 + 2j)2 ,

λ2 = 1
2

(
γ

1 + 2j − 2(−1 + α + β + γ)
(1 + 2j)2

−

√√√√(−2jα + β)2 + j2γ2

j2(1 + 2j)2

 ,
λ3 = 1

2

(
γ

1 + 2j − 2(−1 + α + β + γ)
(1 + 2j)2 +√√√√(−2jα + β)2 + j2γ2

j2(1 + 2j)2

 ,
with degeneracy 3 each. Whereas for j > 1, the 4 eigenvalues λ+

i (i = 1, 2, · · · , 5) are:

λ+
1 = 1 + 2j(α + β) − γ

(1 + 2j)2 ,

λ+
2 = −β − 2j(−1 − 2jα + 2β + γ)

2j(1 + 2j)2 ,

λ+
3 = β − 2j(−1 + 2(1 + j)α + γ)

2j(1 + 2j)2 ,

λ+
4 = 1

2

 γ

1 + 2j − 2(−1 + α + β + γ)
(1 + 2j)2 −

√√√√(−2jα + β)2 + j2γ2

j2(1 + 2j)2

 ,
λ+

5 = 1
2

 γ

1 + 2j − 2(−1 + α + β + γ)
(1 + 2j)2 +

√√√√(−2jα + β)2 + j2γ2

j2(1 + 2j)2


with degeneracy 2j+1, (2j+1)(j−1), (2j+1)(j−1), (2j+1), and (2j+1) correspondingly.
Thus by imposing positivity on the above eigenvalues, we get the set of conditions for the
state ρα,β,γ to be PPT. This is how we compute the blue region on Fig. 2.1 (a) and (b).





Appendix B

Appendices of chapter 3

B.1 Proof of Eq. (3.6)

In this appendix, we present in detail the different steps to derive our main inequality (3.6).
As mentioned in the main text, we proceed to the proof in two steps. Firstly, we start by
proving the inequality (3.6) for product states. Next, we generalize the inequality for
mixed state by convexity argument. Before proceeding to the two parts of the proof, let
us rewrite the inequality (3.6) and its different ingredients:

(
⟨N̂⟩ − 1

)∑
k/∈I

∆̃2Ak −
∑
k∈I

⟨Ã2
k⟩ ≥ −⟨N̂⟩

(
⟨N̂⟩ − 1

)
α2 − δ, (B.1)

with α2 = supρ(i)

[∑3
k=1

〈
A

(i)
k

〉2

ρ(i)

]
and N̂ = ∑N

i=1 N
(i) represents the particle number

operator as explained in the main text. We choose the operator N (i) to be positive and
to verify the following inequality:

∑3
k=1

〈
A

(i)
k

〉2

ρ(i)

α2 ≤
〈
N (i)

〉2

ρ(i)
≤ 1 (B.2)

for any state ρ(i) acting on the single particle Hilbert space. One can always find a
positive operator N (i) such that Eq. (B.2) is verified, since one can always choose N (i) to
be the identity in the single particle Hilbert space. Finally, we recall the expression for
δ (3.16):

δ = α2⟨N̂⟩ + ∆̃2A1 + ∆̃2A2 + ∆̃2A3 (B.3)
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B.1.1 Proof of Eq. (3.6) for product states

As we have outlined in the main text, our main improvement comes from deriving a new

bound for ⟨Ai⟩2 better than the standard one

⟨Ai⟩2 ≤ N
N∑
k=1

〈
A

(k)
i

〉2
. (B.4)

The previous inequality can be obtained directly from Cauchy-Schwartz inequality.

However, it can also be obtained in a different way using the Heisenberg uncertainty

inequality as follows. First, for the sake of illustration, consider that Ai = Sx = ∑N
i=1 σ

(i)
x

and let |ψ⟩, the product state |ψ⟩ = ⊗N
i=1 |ψ(i)⟩ of N spin-1/2. Starting from the

Heisenberg uncertainty inequality:

⟨Sx⟩2 ≤ (∆Sy)2 (∆Sz)2 , (B.5)

we can apply a rotation U (i) = ei
σ

(i)
x θi

2 to each spin such that

〈
σ(i)
y

〉
U(i)|ψ(i)⟩

= 0,
〈
σ(i)
x

〉
U(i)|ψ(i)⟩

=
〈
σ(i)
x

〉
|ψ(i)⟩

.

Since |ψ⟩ is a pure product state, we have:

〈
σ(i)
z

〉2

U(i)|ψ(i)⟩
= 1 −

〈
σ(i)
x

〉2

|ψ(i)⟩
.

Then, a straightforward calculation, in the rotated state, would yield (∆Sy)2 = N and

(∆Sz)2 = ∑N
i=1

〈
σ(i)
x

〉2

|ψ(i)⟩
, hence:

⟨Sx⟩2
|ψ⟩ ≤ N

N∑
i=1

〈
σ(i)
x

〉2

|ψ(i)⟩
(B.6)

which is the same inequality than Eq. (B.4).

It is the above reasoning that motivates the mapping of the original product state

ρ = ⊗
ρ(i) to the the product state of N spin 1, R = ⊗N

i=1 R
(i), where:

R(i) = ni|Ψ(i)⟩⟨Ψ(i)| + (1 − ni)|2(i)⟩⟨2(i)|, (B.7)
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ni =
〈
N (i)

〉
ρ(i)

, and |Ψ(i)⟩ is a pure state defined, in the subspace spanned by |0(i)⟩, |1(i)⟩,
as:

|Ψ(i)⟩⟨Ψ(i)| = σ0
(i)

2 +

〈
A

(i)
1

〉
ρ

2ηi
σx

(i) +

〈
A

(i)
2

〉
ρ

2ηi
σy

(i) +

〈
A

(i)
3

〉
ρ

2ηi
σz (B.8)

where σ0 = |0(i)⟩⟨0(i)| + |1(i)⟩⟨1(i)| and σ
(i)
k (k = x, y, z) are the Pauli matrices in the

same subspace. The constant ηi is chosen as ηi =
√〈

A
(i)
1

〉2

ρ
+
〈
A

(i)
2

〉2

ρ
+
〈
A

(i)
3

〉2

ρ
, to ensure

the purity of the state |Ψ(i)⟩.

Inequality for ⟨Ai⟩2

Following the same reasoning as above, We first apply the following unitary |2(i)⟩⟨2(i)| +
e−iθiσ

(i)
x /2 to the state R(i) Eq. (B.7). After applying the unitary, we get the following

state:
r(i) = ni|Φ(i)⟩⟨Φ(i)| + (1 − ni) |2(i)⟩⟨2(i)|, (B.9)

where |Φ(i)⟩ = e−iθiσ
(i)
x /2|Ψ(i)⟩. We choose θi such that:

⟨Φ(i)|σ(i)
y |Φ(i)⟩ ≡ cos θi⟨Ψ(i)|σ(i)

y |Ψ(i)⟩

− sin θi⟨Ψ(i)|σ(i)
z |Ψ(i)⟩ = 0 (B.10)

which can be achieved with the choice

cos θi = ⟨Ψ(i)|σ(i)
z |Ψ(i)⟩√

⟨Ψ(i)|σ(i)
z |Ψ(i)⟩2 + ⟨Ψ(i)|σ(i)

y |Ψ(i)⟩2
,

sin θi =
⟨Ψ(i)|σ(i)

y |Ψ(i)⟩√
⟨Ψ(i)|σ(i)

z |Ψ(i)⟩2 + ⟨Ψ(i)|σ(i)
y |Ψ(i)⟩2

Since
[
σ(i)
x , e

−iθiσ
(i)
x /2

]
= 0, we have:

⟨Φ(i)|σ(i)
x |Φ(i)⟩ = ⟨Ψ(i)|σ(i)

x |Ψ(i)⟩. (B.11)

Now, because ηi
αni

≤ 1 (B.2), there exists an angle ξi such that:

⟨Φ(i)|eiξiσ
(i)
y /2σ(i)

x e
−iξiσ

(i)
y /2|Φ(i)⟩ = ηi

αni
⟨Ψ(i)|σ(i)

x |Ψ(i)⟩. (B.12)
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Applying the unitary |2(i)⟩⟨2(i)| + e−iξiσ
(i)
y /2 to the state r(i), it becomes:

R′(i) = ni|Ψ′(i)⟩⟨Ψ′(i)| + (1 − ni) |2(i)⟩⟨2(i)|, (B.13)

where |Ψ′(i)⟩ = e−iξiσ
(i)
y /2|Φ(i)⟩. Since

[
σ(i)
y , e

−iξiσ
(i)
y /2

]
= 0, we have:

⟨Ψ′(i)|σ(i)
y |Ψ′(i)⟩ = ⟨Φ(i)|σ(i)

y |Φ(i)⟩ = 0. (B.14)

And because the state |Ψ′(i)⟩ is pure we have:

⟨Ψ′(i)|σ(i)
x |Ψ′(i)⟩2 + ⟨Ψ′(i)|σ(i)

y |Ψ′(i)⟩2 + ⟨Ψ′(i)|σ(i)
z |Ψ′(i)⟩2 = 1

i.e.,
⟨Ψ′(i)|σ(i)

z |Ψ′(i)⟩2 = 1 − η2
i

α2n2
i

⟨Ψ(i)|σ(i)
x |Ψ(i)⟩2 (B.15)

Finally we are in position to apply the Heisenberg uncertainty principle for the
operators Sx, Sy, Sz in the state R′ = ⊗

R′(i):

|⟨Sx⟩R′ |2 ≤ (∆Sy)2 (∆Sz)2 . (B.16)

For product states R′ = ⊗N
i=1 R

′(i), we have:

(∆Sy)2 =
N∑
i=1

(
∆σ(i)

y

)2
=

N∑
i=1

〈(
σ(i)
y

)2
〉
R′(i)

−
〈
σ(i)
y

〉2

R′(i)

=
N∑
i=1

ni −
N∑
i=1

n2
i ⟨Ψ′(i)|σ(i)

y |Ψ′(i)⟩2

=
N∑
i=1

ni. (B.17)

The same calculation for Sz will give:

(∆Sz)2 =
N∑
i=1

ni −
N∑
i=1

n2
i ⟨Ψ′(i)|σ(i)

z |Ψ′(i)⟩2

=
N∑
i=1

ni − n2
i + η2

i

α2 ⟨Ψ(i)|σ(i)
x |Ψ(i)⟩2. (B.18)

We also have:
⟨Sx⟩R′ =

N∑
i=1

ηi
α

⟨Ψ(i)|σ(i)
x |Ψ(i)⟩, (B.19)
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but from Eq. (B.7), we have:

⟨Ψ(i)|σ(i)
x |Ψ(i)⟩ =

〈
A(i)
x

〉
ρ

ηi
. (B.20)

Using all the above the inequality (B.16), can be simplified to obtain the desired form:

⟨Ax⟩2
ρ ≤

N∑
i=1

ni

(
N∑
i=1

〈
A(i)
x

〉2

ρ

)
+ α2

N∑
i=1

ni

(
N∑
i=1

ni −
N∑
i=1

n2
i

)
, (B.21)

which is exactly the inequality Eq. (3.12), since
〈
N̂
〉

= ∑N
i=1 ni.

Inequality for ⟨Ai⟩2
ρ + ⟨Aj⟩2

ρ

One might suggest adding the two inequalities (3.12) for the quantities ⟨Ai⟩2
ρ and ⟨Aj⟩2

ρ.

But we can derive a tigther inequality by considering the following mapping of the

form (B.7):

R(i) = ni

σ0
(i)

2 +

〈
A′(i)
x

〉
ρ

2ηi
σx

(i) +

〈
A′(i)
y

〉
ρ

2ηi
σy

(i) +

〈
A′(i)
z

〉
ρ

2ηi
σz


+ (1 − ni) |2(i)⟩⟨2(i)| (B.22)

where we have chosen:
〈
A′(i)
x

〉
ρ

=
√〈

A
(i)
x

〉2

ρ
+
〈
A

(i)
y

〉2

ρ
,
〈
A′(i)
y

〉
ρ

= 0 and
〈
A′(i)
z

〉
ρ

=
〈
A(i)
z

〉
ρ
.

Then we apply the inequality (3.12) for
〈
A′(i)
x

〉
ρ

and we get:

⟨A′
x⟩

2
ρ =

(∑N
i=1

√〈
A

(i)
x

〉2

ρ
+
〈
A

(i)
y

〉2

ρ

)2

≤ ⟨N⟩ρ
(∑N

i=1

〈
A(i)
x

〉2

ρ
+
〈
A(i)
y

〉2

ρ

)
+α2 ⟨N⟩ρ

(
⟨N⟩ρ −∑N

i=1

〈
N (i)

〉2

ρ

)
. (B.23)

Using Cauchy-Schwartz inequality

xixj + yiyj ≤
√
x2
i + y2

i

√
x2
j + y2

j
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we obtain:
(

N∑
i=1

〈
A(i)
x

〉
ρ

)2

+
(

N∑
i=1

〈
A(i)
y

〉
ρ

)2

≤
(

N∑
i=1

√〈
A

(i)
x

〉2

ρ
+
〈
A

(i)
y

〉2

ρ

)2

(B.24)

and we finally get:

⟨Ai⟩2
ρ + ⟨Aj⟩2

ρ ≤ ⟨N⟩ρ
(∑N

i=1

〈
A

(i)
i

〉2

ρ
+
〈
A

(i)
j

〉2

ρ

)
+α2 ⟨N⟩ρ

(
⟨N⟩ρ −∑N

i=1

〈
N (i)

〉2

ρ

)
. (B.25)

Following the same steps, we can prove in general that:

∑
k∈I

⟨Ak⟩2
ρ ≤ ⟨N⟩ρ

N∑
i=1

∑
k∈I

〈
A

(i)
k

〉2

ρ

+ α2 ⟨N⟩ρ

(
⟨N⟩ρ −

N∑
i=1

〈
N (i)

〉2

ρ

)
(B.26)

Where I is any subset of {1, 2, · · · ,M}, and

∑M
k=1

〈
A

(i)
k

〉2

ρ(i)

α2 ≤
〈
n(i)

〉2

ρ(i)
≤ 1 (B.27)

α2 = supρ(i)

[
M∑
k=1

〈
A

(i)
k

〉2

ρ(i)

]
. (B.28)

Notice that in the case of angular momentum operators M = 3, as in the main text. With
inequality Eq.(B.26), we have all the ingredients needed to derive inequality Eq.(3.6).

Proof of Eq. (3.6) for product states

Let I ⊆ {1, · · · ,M} including the empty set ϕ. We have the following equalities for
product states:

〈
Ã2
k

〉
≡

〈
A2
k

〉
−
∑
i

〈
A

(i)
k

2
〉

=
∑
i ̸=j

〈
A

(i)
k A

(j)
k

〉

=
∑
i ̸=j

〈
A

(i)
k

〉 〈
A

(j)
k

〉
= ⟨Ak⟩2 −

N∑
i=1

〈
A

(i)
k

〉2
(B.29)

∆̃2Ak ≡
〈
Ã2
k

〉
− ⟨Ak⟩2 = −

N∑
i=1

〈
A

(i)
k

〉2
. (B.30)
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From Eq. (B.29) and Eq. (B.26), we get:

∑
k∈I

〈
Ã2
k

〉
ρ

≤
(
⟨N⟩ρ − 1

) (∑N
i=1

∑
k∈I

〈
A

(i)
k

〉2

ρ

)

+α2 ⟨N⟩ρ
(

⟨N⟩ρ −∑N
i=1

〈
N (i)

〉2

ρ

)
. (B.31)

Now we have all the ingredients to derive the desired inequality. From (B.31) and (B.30)
we get:

(
〈
N̂
〉
ρ

− 1)
∑
k/∈I

∆̃2Ak −
∑
k∈I

〈
Ã2
k

〉
≥ −α2 ⟨N⟩ρ

(
⟨N⟩ρ −∑N

i=1

〈
N (i)

〉2

ρ

)

−
(〈
N̂
〉
ρ

− 1
)(∑N

i=1

〈
A(i)
x

〉2

ρ
+
〈
A(i)
y

〉2

ρ
+
〈
A(i)
z

〉2

ρ

)
.(B.32)

The above inequality is hard to extend for mixed states, that’s why we put it in a more
convenient form and we simplify it further using

〈
A(i)
x

〉2

ρ
+
〈
A(i)
y

〉2

ρ
+
〈
A(i)
z

〉2

ρ
≤ α2

〈
N (i)

〉2

ρ

to finally get:

〈
N̂
〉
ρ

∑
k/∈I

∆̃2Ak +
∑
k∈I

∆̃2Ak −
∑
k∈I

〈
Ã2
k

〉
≥ −α2 ⟨N⟩2

ρ . (B.33)

Proof of Eq. (3.6) for mixed separable states

Let us consider the most general separable state as a convex mixture of pure product
states:

ρ =
∑
l

λlρl : λl ≥ 0,
∑
l

λl = 1, ρ2
l = ρl (B.34)

Then we have the following inequality :

∑
k/∈I

∆̃2Ak + α2 ⟨N⟩ρ ≥
concavity of variance

∑
l λl

(∑
k/∈I ∆̃2

lAk + α2 ⟨N⟩ρl

)

≥
Eq. (B.33)

∑
l λl

∑
k∈I

⟨Ak⟩2
ρl

⟨N⟩ρl

, (B.35)

where we have used the definition of the modified moments ∆̃2Ak =
〈
Ã2
k

〉
− ⟨Ak⟩2 for

the right hand side. Next, we use the convexity of the function f (x, y) = x2

y
over

R × (0,∞]. The convexity of f(x, y) can be shown by considering its Hessian matrix
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Hi,j = ∂2f (x1, x2)
∂xi∂xj

:

H =


2
y

−2x
y2

−2x
y2

2x2

y3

 (B.36)

which eigenvalues are {0, 2(x2 + y2)
y3 }. Both eigenvalues being positive for any (x, y) ∈

R × (0,∞], we can conclude f (x, y) = x2

y
is convex. From the convexity of f (x, y), we

obtain a lower bound of Eq. (B.35):

∑
l

λl
∑
k∈I

⟨Ak⟩2
ρl

⟨N⟩ρl

≥
∑
k∈I

⟨Ak⟩2
ρ

⟨N⟩ρ
=
∑
k∈I

〈
Ã2
k

〉
ρ

−∑
k∈I ∆̃2Ak

⟨N⟩ρ
(B.37)

completing the proof of inequality Eq. (3.6) for any separable state.

B.2 Mapping to a qutrit Eq (3.9)

Here we will consider only a special case of mappings to a qutrit, where the image is
a mixed state of a spin-1/2 like state, in the subspace |0⟩, |1⟩, and the state |2⟩ as in
Eq (3.9). The starting point is the mapping that maps every spin-j state to the following
spin-1/2 state:

M (ρ) = 1
2 +

⟨Ax⟩ρ
2η σx +

⟨Ay⟩ρ
2η σy +

⟨Az⟩ρ
2η σz, (B.38)

where η =
√

⟨Ax⟩2
ρ + ⟨Ay⟩2

ρ + ⟨Az⟩2
ρ. The above mapping is a completely positive mapping

that can be written as [1]

M (ρ) = TrHD

[
Uρ⊗ |0⟩⟨0|U †

]
, (B.39)

where |0⟩ is a reference state in the qubit subspace and U is an isometry that can always
be written as:

U : H2s+1 ⊗ H2 → HD ⊗ H2 : U =
4∑
i=0

Ai ⊗ σi ; σ0 = 1, (B.40)

where the dimension of HD satisfies D ≥ 2s + 1. Since the three Gell-Mann matrices
Λs

1,2, Λa
1,2 and Λ1 [273] are the Pauli operators in the subspace {|0⟩, |1⟩} of the qutrit, we
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can define the following mapping:

M (ρ) = TrHD

[
Uρ⊗ (β|0⟩⟨0| + (1 − β) |2⟩⟨2|) U †

]
, (B.41)

where
U : H2s+1 ⊗ H3 → HD ⊗ H3 : U =

4∑
i=0

Ai ⊗ σi + I ⊗ |2⟩⟨2|, (B.42)

σ0 = |0⟩⟨0| + |1⟩⟨1| , σ1 = Λs
1,2 , σ2 = Λa

1,2 , σ3 = Λ1

I : H2s+1 → HD : I†I = 12s+1 (B.43)

an arbitrary isometry from H2s+1 to HD, and 0 < β < 1 is some positive number which,
in the mapping of interest (3.9), was set to be βi = ni =

〈
N (i)

〉
ρ
. One can easily verify

that U is an isometry, i.e., U †U = 12s+1 ⊗ 13 and that the resulting mapping can be
written as:

M (ρ) = β

(
σ0

2 +
⟨Ax⟩ρ

2η σx +
⟨Ay⟩ρ

2η σy +
⟨Az⟩ρ

2η σz

)
+ (1 − β) |2⟩⟨2|. (B.44)

Hence we have proven that the mapping (3.9) is completely positive.

B.3 Simplified squeezing criterion

Here we present a simple proof of the following inequality valid for all separable states:

∆̃2Jx + 4j2 (∆Jz)2 ≥ 0 (B.45)

Let us assume that the state is pure and separable;i.e. it can be written as:|ψ⟩ =
|ϕ1⟩ ⊗ · · · ⊗ |ϕN⟩. then we have the following:

〈
J̃2
k

〉
≡
∑
m ̸=n

〈
J

(m)
k j

(n)
k

〉
=

separability

∑
m ̸=n

〈
J

(m)
k

〉 〈
J

(n)
k

〉
= ⟨Jk⟩2 −

∑
n

〈
J

(n)
k

〉2
(B.46)

We also have:
(∆Jk)2 =

∑
n

(∆J (n)
k )2 (B.47)
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Now, let us consider the quantity ∑n

〈
J (n)
x

〉2
. From Heisenberg uncertainty principle:

〈
J (n)
x

〉2

4 ≤ (∆j(n)
y )2(∆j(n)

z )2 ≤ j2(∆j(n)
z )2 (B.48)

where I have used (∆j(n)
y )2 =

〈
(J (n)
y )2

〉
−
〈
J (n)
y

〉2
≤
〈
(J (n)
y )2

〉
≤ j2. From (B.48) and

(B.47), we get the upper bound:

∑
n

〈
J (n)
x

〉2
≤ 4j2∑

n

(∆J (n)
z )2 ≤ 4j2(∆Jz)2 (B.49)

And for the lower bound, we minimize the function ∑
n

〈
J (n)
x

〉2
with the condition∑

n

〈
J (n)
x

〉
= ⟨Jx⟩. Then, we find that ∑n

〈
j(n)
x

〉2
reaches its minimal value when〈

J (n)
x

〉
= ⟨Jx⟩

N
and thus we find that:

∑
n

〈
j(n)
x

〉2
≥ ⟨Jx⟩2

N
(B.50)

From (B.46), (B.49) and (B.50), we finally have:

⟨Jx⟩2 − 4j2(∆Jz)2 ≤
〈
J̃2
x

〉
≤ (N − 1)

N
⟨Jx⟩2 (B.51)

where the left hand side inequality gives us the desired form

∆̃2Jx + 4j2 (∆Jz)2 ≥ 0 (B.52)

which can be generalized by concavity of variance to any separable state.

B.4 Generalized Sørensen-Mølmer criterion

We proceed in a similar fashion to proving the generalized spin squeezing inequalities.
For product state of the form ⊗

i ρ
(i), we map each state ρ(i) into the following qubit

state:

|Ψ(i)⟩⟨Ψ(i)| = σ0
(i)

2 +

〈
A

(i)
1

〉
ρ

2ηi
σ1

(i) +

〈
A

(i)
2

〉
ρ

2ηi
σ2

(i) +

〈
A

(i)
3

〉
ρ

2ηi
σ3 (B.53)
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with ηi =
√〈

A
(i)
1

〉2

ρ
+
〈
A

(i)
2

〉2

ρ
+
〈
A

(i)
3

〉2

ρ
. Next, we perform rotations around the y axis

and then around the x axis to obtain the state r(i) = |Φ(i)⟩⟨Φ(i)| such that:

〈
σ

(i)
1

〉
r(i)

=

〈
A

(i)
1

〉
ρ(i)

α
√
ni

,
〈
σ

(i)
2

〉
r(i)

=

〈
A

(i)
2

〉
ρ(i)

αni
, (B.54)

where, ni =
〈
n(i)

〉
ρ
. Finally, we recall that for product states we have:

∆̃2Ak = −
∑
i

〈
A(i)

〉2

ρ(i)
. (B.55)

Now, we can proceed to prove the inequality (3.42):

〈
N̂
〉

+ ∆̃2Ak
α2 =

∑
i

ni∆2
r(i)σ

(i)
1 ≥

∑
i

2niF 1
2

(〈
σ

(i)
2

〉
r(i)

)
(B.56)

where we have used the relation verified by spin-1
2 operators

∆2
r(i)σ

(i)
1

4 ≥ 1
2F

1
2

(〈
σ

(i)
2

〉
r(i)

)
.

Since the function F 1
2

(.) is convex, we find that:

〈
N̂
〉

+ ∆̃2Ak
α2 ≥ 2

〈
N̂
〉∑

i

ni〈
N̂
〉F 1

2


〈
A

(i)
2

〉
ρ(i)

niα

 ≥ 2
〈
N̂
〉
F 1

2

 ⟨A2⟩
α
〈
N̂
〉
 (B.57)

completing the proof of (3.42) for product states. It is then straightforward to prove for
mixed separable states using the concavity of the variance and convexity of the function
F 1

2
(.).
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Appendices of chapter 4

C.1 Proof of equation (4.14)

We start by calculating the quantities Am,m′,0 (ρ) and Am,m′,1 (ρ) defined as:

Am,m′,0 (ρ) =
〈
K†
m′
∑
i |gi⟩⟨gi|Km ⊗Bi

0

〉
ρ

Am,m′,1 (ρ) =
〈
K†
m′
∑
i |gi⟩⟨gi|Km ⊗B′i

1

〉
ρ

where we have defined :

Bi
0 =

Bi
n,n′ +Bi

n,n′
†

2 , Bi
1 =

Bi
n,n′ −Bi

n,n′
†

2i (C.1)

such that we have
Am,m′,n,n′ (ρ) = Am,m′,0 (ρ) + iAm,m′,1 (ρ) . (C.2)

Next, we define the operators X i
n and Y i

n, for n = 0, 1, such that:

Bi
n = X i

n

†
X i
n − Y i

n

†
Y i
n, (C.3)

where X i
n

†
X i
n(−Y i

n
†
Y i
n) represents the positive(negative) part of the hermitian operator

Bi
n. This allows us to introduce the following:

Am,m′,n,x (ρ) =
〈
K†
m′
∑
i |gi⟩⟨gi|Km ⊗X i

n
†
X i
n

〉
ρ

Am,m′,n,y (ρ) =
〈
K†
m′
∑
i |gi⟩⟨gi|Km ⊗ Y i

n
†
Y i
n

〉
ρ
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so that :

Am,m′,n (ρ) = Am,m′,n,x (ρ) − Am,m′,n,y (ρ) . (C.4)

Now, we focus on the quantity Am,m′,n,x (ρ) which we rewrite in an equivalent way as:

Am,m′,n,x (ρ) =
∑
i

Tr
[(

1(d1) ⊗ X i
n

)
ρ
(
K†
m′ |gi⟩⟨gi|Km ⊗ X i

n

†)] (C.5)

where we have introduced the operators

X i
n =

(
0, · · · , X i

n, · · · , 0
)T

(C.6)

which are of dimension d2 ×D1d2. such that:

X i
n

†X j
n = δi,jX i

n

†X i
n = X i

n

†
X i
n (C.7)

The above property allows us to write:

Am,m′,n,x (ρ) =
∑
i,j

Tr
[(

1(d1) ⊗ X i
n

)
ρ
(
K†
m′ |gi⟩⟨gj|Km ⊗ X j

n

†)] (C.8)

Next, let us define the operators X ′i
n as:

X ′
n
i =

D1∑
k=1

Vi,kX k
n (C.9)

where V is the unitary such that:

|gi⟩ =
∑
k

Vk,i|g′
k⟩ (C.10)

Consequently, we have the following equality:

∑
i

|gi⟩ ⊗ Xn
i =

∑
i

|g′
i⟩ ⊗ X ′i

n (C.11)

which gives us:

Am,m′,n,x (ρ) =
∑
i,j

Tr
[(

1(d1) ⊗ X ′i
n

)
ρ
(
K†
m′ |g′

i⟩⟨g′
j|Km ⊗ X ′j

n

†)] (C.12)
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All left is to show that:

Tr
[(

1(d1) ⊗ X ′i
n

)
ρ
(
K†
m′ |g′

i⟩⟨g′
j|Km ⊗ X ′j

n
†)] =

δi,jTr
[(

1(d1) ⊗ X ′i
n

)
ρ
(
K†
m′|g′

i⟩⟨g′
i|Km ⊗ X ′i

n
†)] (C.13)

To do so, we calculate the trace explicitly:

Tr
[(

1(d1) ⊗ X ′i
n

)
ρ
(
K†
m′ |g′

i⟩⟨g′
j|Km ⊗ X ′j

n

†)] =
d1∑
i1=1

D1∑
i2=1

d2∑
j1=1

⟨ei1 , χi2,j1|
(
1(d1) ⊗ X ′i

n

)
ρ
(
K†
m′|g′

i⟩⟨g′
i|Km ⊗ X ′i

n

†) |ei1 , χi2,j1⟩
(C.14)

where we have defined the basis |χj,j1⟩ as:

|χj,j1⟩ = 1
αj,j1

D1∑
k=1

Vk,j|ek⟩ ⊗
(
Xk
n

)−1†
|fj1⟩ (C.15)

with the basis |ei2 , fj1⟩ chosen such that:

X i
n

†|ei2 , fj1⟩ = δi,i2X
i
n

†|fj1⟩ (C.16)

and
(
Xk
n

)−1
being the pseudo inverse of Xk

n. If |fj1⟩ is in the kernel of Xk
n, then we

simply replace
(
Xk
n

)−1†
|fj1⟩ by |fj1⟩ in (C.15). Now, from eqs. (C.15), (C.16) and (C.9),

we find:
X ′i
n

†|χi2,j1⟩ = 1
αi2,j1

D1∑
k=1

Vk,i2Vk,i
∗|fj1⟩ = δi,i2X ′i

n

†|χi2,j1⟩ (C.17)

Plugging this relation into (C.14), we find the relation (C.13). and

X ′i
n

†X ′i
n =

∑
k

|Vk,i|2 Xk
n

†
Xk
n (C.18)

we finally reach the conclusion that

Am,m′,n,x (ρ) =
∑
i

〈
K†
m′|g′

i⟩⟨g′
i|Km ⊗

∑
k

|Vk,i|2 Xk
n

†
Xk
n

〉
ρ

. (C.19)

The same calculations can be made for Am,m′,n,y which in turn , along side with rela-

tions (C.2) and (C.4), gives us Eq. (4.14).
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C.2 Proof of equation (4.40)

First, we use the property of Wigner d-mtrix d(J)
p,q (β) = (−1)p−qd

(J)
−p,−q(β) and the following

identity:

d(j1)
mr,mk

(β)d(j2)
ms,ml

(β) =
j1+j2∑

J=|j1−j2|
⟨j1 mr j2 ms|J mr +ms⟩

⟨j1 mk j2 ml|J mk +ml⟩d(J)
mr+ms,mk+ml

(β),

to write (4.38) as:

V (m)ms,mk
=(−1)ms−mk

∑
J

⟨j −ms j ms|J 0⟩⟨j −mk j mk +m|J m⟩dJ0,m(β) (C.20)

Using Eqs.(C.20),(4.39), we see that

Pmk,ml
= (−1)mk−ml

∑
ms,J1,J2

⟨j −ms j ms|J1 0⟩⟨j −ms j ms|J2 0⟩

⟨j −mk j mk +m|J1 m⟩⟨j −ml j ml +m|J2 m⟩
d

(J2)
0,m (β)
d

(J1)
0,m (β)

and using the identity:

∑
ms

⟨j ms j −ms|J1 0⟩⟨j ms j −ms|J2 0⟩ = δJ1,J2 ,

the above equation simplifies into:

Pmk,ml
= (−1)mk−ml

∑
J

⟨j −mk j mk +m|J m⟩⟨j −ml j ml +m|J m⟩ = δmk,ml

Where we have used the following Clebsch-Gordan identity:

∑
J

⟨j1 m1 j2 n1|J m1 + n1⟩⟨j1 m2 j2 n2|J m2 + n2⟩ = δm1,m2δn1,n2 .

C.3 Proof of inequality (4.56)

We start the proof for product k-producible states; i.e. states of the form:

ρ = ρ(k1) ⊗ ρ(k2) ⊗ · · · ⊗ ρ(km) : N
k

≤ m ≤ N (C.21)
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with ρ(ki) being a state of ki ≤ k particles such that ∑m
i=1 ki = N . Next, we map each

state ρ(ki) into the ki qubits state ζ(ki) where the single particle mapping is defined:

M (η) = 1
2 +

〈
A

(i)
1

〉
2
√

2α
σ1 + c

2
√

2
σ2. (C.22)

where c is a real number such that c ≤ 1 and α2 = supρ(i)

[∑2
k=1

〈
A

(i)
k

〉2

ρ(i)

]
. One can

check easily that the above mapping is CPTP. As we have shown in Chapter 2, complete

positivity of (C.22) is equivalent to the positivity of the following matrix:


1(i) A
(i)
1√
2α

+ i
c1(i)
√

2
A

(i)
1√
2α

− i
c1(i)
√

2
1(i)

 (C.23)

which is equivalent to the positivity of

1(i) −

(
A

(i)
1

)2

2α2 − c2

2 1(i). (C.24)

From the min-max theorem, the maximum eigenvalue of
(
A

(i)
1

)2
,λM , verifies

λM = supρ(i)

[〈
A

(i)
1

〉2

ρ(i)

]
≤ α2 (C.25)

And since c ≤ 1 we conclude that the matrix (C.24) is positive semi-definite and that

indeed the mapping (C.22) is CPTP. Now, we choose c to be the following convenient

value:

c(ki) =

〈
A

(ki)
2

〉
ρ(ki)

αni
(C.26)

where we have introduced ni =
〈
N̂ (ki)

〉
ρ(ki) such that

〈
N̂
〉
ρ

= ∑m
i=1 ni and we have used

the fact 〈
A

(ki)
l

〉
α

≤ ni ≤ ki

to ensure that c(ki) ≤ 1. The resulting N -qubits’ state is a k-producible state of the form:

ζ = ζ(k1) ⊗ ζ(k2) ⊗ · · · ⊗ ζ(km) (C.27)
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Next, we consider the collective spin operators:

Ŝk
2 = 1

2

N∑
i=1

σ
(i)
k . (C.28)

From the form of the mapping (C.22), one can easily verify the following relations:

〈
Ŝ2

(ki)
〉
ζ(ki)

= ki
c(ki)
√

2
=
ki
〈
A

(ki)
2

〉
ρ(ki)

ni
√

2α
,
〈
∆̃2Ŝ

(ki)
1

〉
ζ(ki) =

〈
∆̃2A

(ki)
1

〉
ρ(ki)

2α2 (C.29)

Let us call β =
√

2α, so that we have:

∆̃2A1

β2 =
∑
i

∆̃2A
(ki)
l

β2 =
∑
i

∆̃2Ŝ ′(ki)
1 ≥

∑
i

ni
ki

(
∆Ŝ ′(ki)

1

)2
−
∑
i

ni (C.30)

where we have used ∑ki
l=1

〈(
σ

(ki)
1

)2
〉
ζ(ki)

= ki. Thus we have,

〈
N̂
〉

+ ∆̃2A1

β2 ≥ 2
〈
N̂
〉∑

i

ni〈
N̂
〉F k

2


〈
Ŝ ′(ki)

2

〉
ζ(ki)

ki

 (C.31)

where we have introduced the relation:

(
∆Ŝ ′(ki)

1

)2
≥ 2kiF ki

2


〈
Ŝ ′(ki)

2

〉
ζ(ki)

ki

 ≥ 2kiF k
2


〈
Ŝ ′(ki)

2

〉
ζ(ki)

ki

 (C.32)

At last, from the convexity of the function F k
2

(.), on gets:

〈
N̂
〉

+ ∆̃2A1

β2 ≥ 2
〈
N̂
〉
F k

2

∑
i

ni

ki
〈
N̂
〉 〈Ŝ ′(ki)

2

〉
ζ(ki)

 = 2
〈
N̂
〉
F k

2

 ⟨A2⟩
β
〈
N̂
〉
 (C.33)

completing the proof for product k-producible states. This can be easily extended to
mixed k-producible states using the concavity of the variance and the convexity of F k

2
(.).
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Titre : Intrication dans des systèmes quantiques de grandes dimensions

Mots clés : Intrication, information quantique, témoin d’intrication, états comprimés

Résumé : La détection de l’intrication est une étape
indispensable dans le contexte de l’information et du
calcul quantique. Cette tâche importante s’est avérée
difficile pour les systèmes quantiques de grandes di-
mensions supérieures à 2×3, auquel cas il existe des
conditions nécessaires et suffisantes bien établies.
Notre approche consiste à réduire la dimensionna-
lité du problème. Pour ce faire, on transforme, lo-
calement, chaque sous-système en un qubit sans
créer de l’intrication. Le mapping est exprimé en fonc-
tion des valeurs moyennes de trois opérateurs arbi-
traires dans l’état original. Nous donnons des condi-
tions nécessaires et suffisantes pour que cette trans-
formation soit valide du point de vue physique.Nous
exploitons ce formalisme pour dériver des critères
d’intrication pour des systèmes bipartites ou multipar-
tites sur la base des critères existants pour les qubits.
En transformant localement chaque sous-système,
tel que la séparabilité est conservée, l’application de
critères d’intrication connus pour les qubits à l’état
résultant induit automatiquement des critères d’intri-
cation en fonction d’opérateurs utilisés pour réaliser
la transformation.

Pour le cas multipartite, on s’intéresse aux critères
d’intrication basés sur des mesures d’observables
collectives. Après avoir transformé l’état du système
en un état multipartite de qubits, on applique les
inégalités de compression de spin. Cependant, lors-
qu’on applique notre formalisme à ce cas, il est pos-
sible d’obtenir une superposition cohérente d’états
avec des nombres de particules différentes. Par
conséquent, nous avons dû prendre en compte
les fluctuations quantiques et/ou classiques que
l’opérateur du nombre de particules peut présenter.
Nous avons obtenu une forme généralisée des
inégalités de compression de spin pour un nombre de
particules fluctuant et pour des observables collectifs
arbitraires. Nous avons appliqué nos résultats à un
système d’atomes de chrome ultrafroids piégés dans
un réseau optique, en collaboration avec l’équipe
Gazes Dipolaires Quantiques du laboratoire LPL de
l’université Paris 13. Nous avons montré, à l’aide
d’une simulation numérique, que nos inégalités sont
capables de détecter l’intrication à l’aide d’opérateurs
collectifs mesurables en utilisant des techniques ac-
cessibles dans ce type de dispositif.

Title : Entanglement in high dimensional quantum systems

Keywords : Entanglement, entanglement witness, spin squeezing, quantum information

Abstract : Entanglement detection is crucial and a
necessity in the context of quantum information and
quantum computation. This important task has proven
to be quite hard for quantum systems of dimensions
higher than 2×3, in which case, there exists well esta-
blished necessary and sufficient conditions like Peres-
Horodecki criterion.
To tackle this challenge, we introduce a mathematical
framework to reduce the problem to entanglement in a
two qubit system. This is done by mapping each sub-
system locally into a qubit without increasing entan-
glement. The mapping is expressed in terms of expec-
tation values of three arbitrary operators in the original
state. We give necessary and sufficient conditions for
such mapping to be valid from a physical point of view,
providing thence a versatile tool for dimension reduc-
tion in various applications.
Our main use of this formalism is as a gateway to de-
rive entanglement criteria for bipartite or multi-partite
systemas based on existing ones derived for qubit
systems. By mapping each subsystem locally into a
qubit, such that seprability is preserved, applying en-
tanglement criteria known for qubits on the resulting
state automatically gives us entanglement criteria in

terms of the chosen operators used to implement the
mapping.
For the multi-partite case, we focus on spin squee-
zing inequalities for qubits to derive entanglement cri-
teria for general systems based on collective obser-
vables. However, when applying our formalism to this
case, an interesting situation arises where one is able
to obtain coherent superposition of multi-partite qubit
states with different particle number. Hence, to derive
better entanglement criteria, we had to consider quan-
tum and/or classical fluctuations that may be exhibited
by the particle number operator. We derive a generali-
zed form of spin squeezing inequalities for fluctuating
particle number in terms of arbitrary collective opera-
tors. We applied our results to study entanglement in
a system of ultra-cold Chromium atoms trapped in a
bi-dimensional optical lattice in collaboration with the
Quantum Dipolar Gazes team in LPL at Paris 13 uni-
versity. We showed, in a numerical simulation, that our
generalized inequalities are able to detect entangle-
ment in their system using collective operators. Mo-
reover, we show that such observables can be mea-
sured using available techniques.
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