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Abstract

Ptychography is a coherent diffraction imaging technique which aims in retrieving the lost phase
from intensity-only far-field measurements. The possibility of solving the phase problem relies
on the acquisition of redundant information from successive, partially overlapping illumination
areas. During the past ten years, there has been a growing interest in X-ray ptychographic
imaging, where lenses with typical numerical apertures in the order of 10

´2 cannot provide a
resolved image of the sample. The versatility of the approach has proved an important asset
for 3D mapping of different physical quantities, like the electron density of micrometer-sized
specimens with resolution in the 10 - 100nm range.

In the case of periodic crystals, ptychography performed in Bragg geometry is expected to
reveal the inner structure of specimens which show interest for microelectronics applications and
telecommunications. More specifically, the displacement field of periodic crystals is obtained from
the 3D intensity distribution acquired in the vicinity of a Bragg peak with sub-beam resolution.

In this work, we explored the possibility to push further the current limits of 3D Bragg
ptychography, by addressing the case of an extended InP/InGaAs nanostructured thin film,
bonded on a silicon wafer. The experiment was performed at the ID13 beamline at ESRF, with
a monochromatic beam focused down to 100nm. 2D intensity patterns were acquired at several
incidence angles in the vicinity of the InP (004) Bragg peak, stacking up a three dimensional
dataset. Numerical analysis of the given problem was performed beforehand in order to optimize
the inversion strategy and study the possibility of introducing additional physical constraints
through regularization approaches. Inversions of the dataset were done using a ptychographical
gradient-based optimization phase retrieval algorithm.

The developed strategy was applied on the experimental data which led to the retrieval of
a complex-valued 3D image. The result exhibits the high crystallinity quality of the sample
with the expected values of thickness and lattice mismatch, nevertheless, small local lattice tilts
have been observed - in the order of 0.02°- and confirmed by numerical modeling. This result
demonstrates the high sensitivity of the technique, as well as its exciting perspectives for imaging
complex organic and inorganic nanostructured materials.
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Résumé

La ptychographie est une technique d’imagerie par diffraction cohérente qui vise à récupérer
la phase perdue, uniquement par des mesures d’intensité en champ lointain. La possibilité de
récupérer la phase est basé sur l’acquisition d’information redondant par des regions successives
illuminées qui se recouvrent partiellement. Au cours des dix dernières années, il y a eu un intérêt
croissant pour l’imagerie ptychographique. Surtout pour les rayons X ou les lentilles présentent
des ouvertures numériques de l’ordre de 10

´2 et ne peuvent pas fournir une image résolue de
l’echantillon. La polyvalence de l’approche est prouvé un atout important pour la cartographie 3D
de différentes quantités physiques, comme la densité électronique d’un échantillon micrometrique
avec une resolution entre 10 et 100nm.

Dans le cas des cristaux périodiques, la ptychographie réalisée en géométrie de Bragg est
capable de révéler la structure interne des échantillons notamment intérêssants pour des applica-
tions de la microélectronique et des télécommunications. Cette technique permet l’imagerie des
champs de deformation dans des cristeaux périodiques avec des résolutions sous-faisceau.

Dans ce travail, la ptychographie de Bragg en 3D est utilisée pour étudier les propriétés d’une
couche crystalline nanostructurée de InP/InGaAs collé sur un substrat de silicium. L’expérience
a été réalisée sur la ligne ID13 de l’ESRF, avec un faisceau monochromatique concentré à 100nm.
Les intensités 2D ont été acquises avec plusieurs angles d’incidence dans le voisinage du pic de
Bragg InP (004), empilant un jeu de données tridimensionnel. L’analyse numérique du problème
donné a été effectuée à l’avance afin d’optimiser la stratégie d’inversion et d’étudier la possibilité
d’introduire des contraintes physiques supplémentaires basé sur des approches de régularisation.
L’inversion de l’ensemble des données a été effectuée en utilisant un algorithm ptychographique
de reconstruction de phase.

L’image 3D récupéré représente la haute qualité cristalline de l’échantillon, avec les valeurs de
l’épaisseur et du désaccord de maille attendues en moyenne. Néanmoins, de petites inclinaisons
locales de maille ont été observées - de l’ordre de 0.02°- et confirmées par modélisation numérique.
Les résultats démontrent la sensibilité de la technique, ainsi que ses perspectives passionnantes
pour l’imagerie des matériaux organiques et inorganiques nanostructurés complexes.
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Chapter 1
Introduction

K nowledge of the materials structure and composition at the nanoscale is essential for un-
derstanding their physical, chemical, or electronic properties. Being able of manipulating

these properties holds an immense interest in modern microelectronics and telecommunication
applications. For example, adjusting the strain levels of III-V semiconductor layers bonded on
silicon, can lead to the precise design of the energy band structure of photo-emitting diodes [2].
Thus, measurement and visualization of strain fields inside such devices is of great importance
for nanoelectronics [3].

The need of visualizing strain or defects inside crystal nanostructures, has led to the develop-
ment of different microscopy techniques based on the diffraction of periodic objects by electrons or
X-rays for decades [4, 5, 6, 7]. In the past few years, lensless Coherent Diffraction Imaging (CDI)
techniques like ptychography have gained in popularity thanks to their comparative advantages
with respect to other approaches, like their sensitivity to density contrast, unprecedented spatial
resolutions even for radiation sensitive biological specimen [8], extended field of view (especially
valid for ptychography) and their non-invasive nature - e. g. TEM demands sample thinning.

Nevertheless, lensless X-ray strain microscopy remains a challenging technique to probe mat-
ter at the nanoscale, and although that everyday more synchrotron sources are acquiring the
capacity to perform, it hasn’t yet become a routinely applied imaging technique. In this scope,
this work is concentrated on the application of 3D X-ray Bragg ptychography for the characteri-
zation of an InP/InGaAs semiconducting layer, used for the design of integrated devices emitting
at the 1.55µm wavelength domain [9].

In this chapter, we will briefly discuss the general principles of Bragg CDI, starting from the
elemental phenomena that occur when X-rays interact with periodic objects - at wavelengths
comparable to the interatomic distances as dictated by the Bragg law - and form peaks of
constructive interference (Bragg peaks). We will see the basic concepts in reconstructing the lost
phase from intensity-only measurements using a Phase Retrieval Algorithm (PRA) and close
with a summary of the milestones achieved by CDI during the past fifteen years.

1.1 From XRD to Bragg CDI

1.1.1 X-ray Bragg diffraction

The principle effects occurring when X-ray radiation interacts with matter are absorption and
scattering. The probability (cross-section) that a photon is absorbed by a material becomes im-
portant when the photon energy is equivalent to the quantum energy of an electronic transition
(resonance scattering). When the photon energy approaches or exceeds the ionization threshold,
absorption maximizes (absorption edge) and we have the photoelectric effect. X-ray scattering
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Chapter 1. Introduction

happens when photons hit electrons and change their velocity while conserving their kinetic en-
ergy (elastic or Thompson scattering) or not (inelastic or Compton scattering). We are interested
only in the elastic scattering of X-rays, since that is responsible for the constructive interference
of the scattered X-rays and formation of bright spots in the far-field, known as Bragg peaks. The
atomic level structure of the material can then be determined by analyzing the Bragg peaks.1

There are different models that describe the relationship between the Bragg peak and the
materials structure, the first and simplest proposed by the Braggs in 1913 is called the Bragg’s
Law. For a crystalline solid, the incident at angle ✓ X-rays are scattered from lattice planes which
are separated by the interplanar distance d [See d-spacing in Fig. 1.1a]. When the scattered rays
interfere constructively, they remain in phase since the path-length-difference (PLD) is equal to
an integer multiple of the wavelength �, which leads to the next formula:

2d sin ✓ “ n� (1.1.1)

The d-spacing that one can measure using Bragg’s law is related to the lattice parameter ↵ of
a particular crystallographic system (Bravais lattice) according to specific formulas [10]. For the
simple cubic system is given by

1

d2
“ 1

d2
hk`

“ h2 ` k2 ` `2

↵2

(1.1.2)

where phk`q are the Miller indices that define the crystallographic planes. The (001) direction of
Figure 1.1b for example, is corresponding to all the perpendicular to that direction planes and
the (110) is shown with gray. There are 14 different crystal systems in three-dimensional space
known as Bravais lattices, so one has to know the crystallographic group of the material in order
to relate the distance of two lattice points with its real lattice parameter ↵. The importance of
all that knowledge has to do with the fact that through Bragg diffraction one can finally measure
the displacement and ultimately the strain inside crystals.

(a) (b)

Figure 1.1: (a) X-rays interacting with a crystal lattice at Bragg condition. Scattering only from the
(001) planes. (b) Graphical representation of the (110) crystallographic planes in a cubic crystal.

1Diffraction can also be perceived using the wave-like nature of light. Since X-rays have wavelengths which
are comparable to the inter-atomic distances they will give rise to diffraction phenomena. When passing through
a crystal they will force the electronic cloud of atoms to vibrate with their frequency and according to Maxwell’s
equations, the accelerating electrons located in the vicinity of atoms act as scatterers, re-emitting spherical waves
of radiation that finally interfere in the far-field. There are also other effects of secondary radiation emission like
fluorescence which happens in the ionized atoms when electrons re-occupy empty orbitals and Auger electrons.
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1.1. From XRD to Bragg CDI

Macroscopically, strain p✏q can be expressed for an elemental volume under various stresses
�
ij

as schematically shown on Fig. 1.2. The axial strain is directly proportional to the applied
stress in the elastic deformation area of the medium as described by Hooke’s law and can also be
calculated from the change in the length of the volume along the direction of the applied stress
(�`

zz

) [11]. If we take the direction of �
zz

for example, the strain component will be:

✏
zz

“ �
zz

E
“ `

zz

´ `0
zz

`0
zz

“ �`
zz

`0
zz

“ u
zz

`0
zz

(1.1.3)

where `
zz

is the length of the volume in the given direction under applied stress, `0
zz

the physical
length of the volume when no external loads are applied and u

zz

the displacement. Having all

Figure 1.2: General state of stress.

three orthogonal components of the three-dimensional displacement vector u one can construct
the generalized tensor which contains the axial pi “ jq and shearing pi ‰ jq strain components
(✏

ij

) given by the following formula [12]:

✏
ij

“ 1

2

ˆBu
j

Bi
` Bu

i

Bj

˙
, where i, j “ x, y, z, ñ ✏

ij

“
¨

˝
✏
xx

✏
xy

✏
xz

✏
yx

✏
yy

✏
yz

✏
zx

✏
zy

✏
zz

˛

‚ (1.1.4)

Similarly to the macroscopic definition of strain we can define the deformation inside a periodic
crystal, and as we can see, from the knowledge of u one can access the relevant parameters for
the characterization of the sample mechanical behavior under stress. In the case of crystalline
structures, atoms are distributed in a periodic lattice described by a vector basis pa,b, cq which
is able to reproduce the entity of the crystal structure starting from the unit cell. If r1

n is the
position vector of an atom in the deformed lattice, then crystal strain can be seen as the relative
displacement amount of each atom with respect to its expected position in the perfect lattice.

u “ r1
n ´ rn “ r1

n ´ pn
1

a ` n
2

b ` n
3

cq (1.1.5)

The way the crystal displacement is measured, is usually described using the diffraction
vector q “ k

f

´k
i

, which at Bragg condition corresponds to probing only one set of phk`q planes
pq “ G

hk`

q, with k
i

the incident wave propagation vector, � its wavelength and k
f

the scattered
wave propagation vector and |k

i

| “ |k
f

| “ 2⇡{�. The schematic representation of Fig. 1.1a,
describes the geometry of a Bragg diffraction experiment.

With traditional X-ray diffraction (XRD) techniques (✓ ´ 2✓ scan, rocking curve [13]) one
can obtain the average value of the lattice displacement in an area of the crystal defined by the
size of the beam. But in order to obtain the spatially dependent strain field in direct space - the
entire information about the atomic arrangements as a function of the three-dimensional space
- other approaches are needed.
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Chapter 1. Introduction

1.1.2 Coherent X-ray Bragg diffraction imaging

T he technological advent of microelectronics and nano-engineering necessitated over the years
the development of new characterization techniques, whose materialization became feasible

with the advent of highly brilliant and coherent third generation synchrotron sources. Now
the needs of modern nanotechnology for manufacturing materials with specific characteristics
(e.g. tailoring the structure of electronic energy bands for semiconducting photo-emission diodes
and optical amplifiers [14]) have driven the development of non-destructive, quantitative, three-
dimensional XRD imaging techniques. In this section, we will develop the main principles of CDI
which was first demonstrated in non-periodic objects [15] and later for crystals [16] (Bragg CDI).

As briefly discussed in the previous section, when a crystal is illuminated by X-rays in Bragg
condition - at a specific incident ✓ angle which can be calculated by Eqns.(1.1.1) and (1.1.2)
- a Bragg peak is formed in the far-field. The logical question that arises here, is how can we
make use of the measured intensity information of the Bragg peak in reciprocal space (RC) to
reconstruct the image of the object in direct space (DS)?

Let ⇢prq be the complex-valued object function that describes the crystal, known as the
crystal electron density [17]. For an unstrained crystal, the atomic arrangement is periodic, thus
the electron density can be expressed as a discrete summation of Dirac � functions

⇢prq “ sprq
Nÿ

n“1

�pr ´ rnq (1.1.6)

where sprq is a binary function that describes the volume occupied by the N cells of the crystal
[18]. For a strained crystal, if we consider Eqn.(1.1.5) the density becomes

⇢1prq “ sprq
Nÿ

n“1

�pr ´ rn ´ uprnqq (1.1.7)

which assumes that the shape of the crystal sprq is not affected by the displacements. In the
kinematical limit and under the Born approximation, the scattered exit-field  prq is the product
of the object function times the incident beam pprq, which in the case of Bragg CDI is considered
to be a plane wave, thus pprq “ 1. In a distance adequately far from the object where a photon
detector is placed, in the frame of Fraunhofer diffraction, the scattered far-field from a strained
crystal can be written as the Fourier transform of the exit-field.

 pqq “
ª `8

´8
⇢1prqeiqrdr “

ª `8

´8
sprq

Nÿ

n“1

�pr ´ rn ´ uprnqqeiqrdr

Having in mind the sifting (or sampling) property of the Delta function
≥`8

´8 fprq�pr ´ rnqdr “
fprnq for every f continuous at r “ rn, we can write

ñ  pqq “
Nÿ

n“1

sprn ` uprnqq eiqprn`uprnqq (1.1.8)
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1.1. From XRD to Bragg CDI

If we additionally consider the exploration of the RS in the vicinity of the Bragg peak as q “
G

hk`

` q1 with q1 so small that q1uprnq « 0, while G
hk`

rn “ n ˆ 2⇡ we have

 pq1q “
Nÿ

n“1

sprn ` uprnqq eipGhk`

`q1qprn`uprnqq

“
Nÿ

n“1

sprn ` uprnqq eir⇠⇠⇠⇠: 2⇡
G

hk`

rn`G
hk`

uprnq`q1rn`⇠⇠⇠⇠: 0
q1uprnqs

“
Nÿ

n“1

sprn ` uprnqq eiGhk`

uprnq eiq
1rn (1.1.9)

Thus, the expected photon counts on a diffraction pattern are given by the square modulus of
the far-field  pq1q, related with the effective electron density ⇢

L

prq “ |⇢prq| eiGhk`

uprnq by

Ipq1q “ | pq1q|2 ” |Ft|⇢prq| eiGhk`

uprnqu|2 (1.1.10)

As the previous formula suggests, since only magnitudes are available from the diffraction ex-
periment, the phase components of  pq1q and in particular the information of the strain which
is contained in the first phase component of Eqn.(1.1.9) as the displacement projection uprnq
on the scattering vector G

hk`

cannot be recovered. This pathological problem can be expressed
mathematically by Eqn.(1.1.10), and it is known as the phase problem [19].

Unfortunately there’s no analytical solution to the phase problem, but thanks to a series of
revolutionary ideas published from 1952 to 1972 by D. Sayre [20], W. Hoppe [21], Gerchberg and
Saxton [1], it has been shown that the lost phase components of the scattered illumination are
encoded in the diffraction pattern and can be retrieved numerically using iterative phase-retrieval
algorithms that include the application of a constraint in the object size (support constraint), if
the scattering process is coherent [See Appendix A] and if sampling the diffracted signal with at
least twice the Nyquist frequency, so that the Shannon theorem is satisfied [20, 22].

In the case of coherent scattering, the numerical approaches that have been developed, are
based in the idea of reconstructing the original complex function ⇢prq by fitting the measured
intensity pattern, according to the model we have described above [23]. One of the proposed
algorithms is presented in Fig. 1.3. An initial estimate of ⇢prq, namely g

0

prq is given as input to

Figure 1.3: Schematic of the Gerchberg-Saxton algorithm [1].

the algorithm, which calculates its Fourier transform G
0

pqq. Then, after replacing the amplitude
of G

0

pqq with the square root of the measured intensity p
?

Iq, the inverse Fourier transform will
give a new estimate, namely g1

1

prq, which after the application of the support constraint will give
g
1

prq. After k iterations, the updated g
k

prq is expected to converge to ⇢prq. The process was first
described and numerically demonstrated by Gerchberg and Saxton in 1972 [1], and since then
has been significantly improved and extended by J. Fienup [24].
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Phase retrieval algorithms first appeared in studying non-periodic micrometer-sized specimen
using synchrotron radiation in 1999, when demonstrated experimentally by Miao et al. [15] in
two dimensions. In 2002, the first 3D experimental reconstruction was obtained with a 50nm
resolution [25], and it was based on the tomographic approach. [See Subsection 2.2.2 for more
information]

In Bragg geometry, the procedure for accessing the three-dimensional information of a crystal
is based on acquiring several diffraction patterns at different incident angles in the vicinity of
a Bragg reflection [17], allowing multiple slices to be obtained. The entire stack of the two-
dimensional acquisitions is then inverted with an iterative algorithm based on the use of the 3D
inverse Fourier transform. The measured stack of data forms the RS constraining information
for the algorithm, and by knowing the dimensions of the DS object, a good initial estimate can
be constructed.

In 2001, CDI was demonstrated in Bragg geometry, on Au nanocrystals in 2D [16] and two
more years later in 3D [17]. In each case, only the amplitude of the electron density was evaluated,
with no clear notion about the retrieved phase profile and thus, the displacement field. In 2006,
one deformation component of a Pb nanocrystal is successfully reconstructed for the first time
in three dimensions [26], and in 2010 the full strain tensor of a ZnO nanorod is reconstructed by
measuring diffraction patterns of six different Bragg reflections [12].

Other remarkable results have been the 3D reconstruction of strain evolution in a single crystal
under applied pressures up to 6.4GPa [27] with 30nm resolution, and the in-situ strain evolution
of a single LiNi

0.5

Mn
1.5

O
4

nanoparticle in a coin cell battery during charge/discharge cycles
[28]. Finally, the reconstruction of displacement fields induced by coherent lattice vibrations
(phonons) of a single Au nanocrystal in three dimensions by X-ray free-electron laser pulses
[29], has been maybe one of the most impressive accomplishments of Bragg CDI until today. An
optical laser was used as a pump of the sample, generating the phonons, while the X-ray pulses
were illuminating the nanocrystal and diffraction pattens were recorded.

One of the first limitations of CDI though, is the fact that it restricts the size of the object.
For an extended sample CDI becomes inadequate, and for the study of nanocrystals, focused
beams have to be used in order to obtain an exploitable signal (patterns with a sufficient number
of measured photons). In addition to that, very strong strain fields usually cannot be resolved by
the PRA due to stagnation issues [23]. In several attempts tight constraints on the retrieved phase
profile are imposed [30, 31, 32], but even then, the presence of local minima lead to ambiguous
solutions [33]. In order to overcome the above limitations, coherent X-ray Bragg ptychography
has been proposed.
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A s it was previously discussed, CDI for non-periodic and periodic objects that emerged during
the past fifteen years thanks to the technological progress of third generation coherent light

sources, the evolution of microelectronics and the implementation of the fast Fourier transform
(FFT) algorithm for the computation of the discrete Fourier transform (DFT) which considerably
accelerated the speed of numerical calculations1, provided solutions to many nanoscience imaging
problems [35, 36]. Though, the restrictions that CDI posed to the sample size, to the complexity of
the crystal deformation fields and the ultimate achievable resolution, requested the development
of new approaches.

The new technique that was used in order to overcome the previous limitations, named
ptychography, was based on scanning an extended sample with a much smaller illumination at
different, but overlapping areas and collecting the far-field diffraction patterns [37]. The ensemble
of the individual intensity patterns is going to contain redundant information, which is considered
as the key-point for successfully retrieving the lost phase components of the scattered field [38].
This new approach allows increasing the field of view and investigating objects that are much
larger than the beam size. Especially in the case of periodic objects, the redundant information in
Bragg ptychography could allow the study of highly-complex strain fields which were not possible
to retrieve with the CDI approach.

In this chapter, we will develop the analytical formalism of Bragg ptychography. We will
start with the ideal case of studying a 2D object and see the forward-problem model and the
discretization process for obtaining its numerical solution using two different classes of PRAs. We

1In 1994, Gilbert Strang described the fast Fourier transform as “the most important numerical algorithm of
our lifetime.” [34]
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Chapter 2. 3D Bragg ptychography

will describe some of the main concepts of modeling and reconstructing objects (with aperiodic
and periodic structures) with 3D ptychographic imaging approaches and discuss in short their
most recent progress, especially for the measurement of three-dimensional crystal strain fields,
along with their current experimental limitations and future perspectives.

2.1 Principles of 2D ptychographic imaging

2.1.1 Direct problem modeling and numerical discretization

In the case of an amorphous, infinitely thin specimen, we can see the geometry of the experiment
on Figure 2.1b. The sample is illuminated in transmission and the detector is located downstream
the sample. On Fig.2.1a, the dashed circles represent the illuminated regions of the sample (a
Fresnel zone plate) that are illuminated by the beam. For one given position of the scan, we can
see the detected far-field intensity pattern when using a completely homogeneous circular beam.

(a)

(b)

Figure 2.1: (a) The beam imprints on the FZP at every position of the ptychography scan. (b) Trans-
mission geometry X-ray imaging experiment of a two-dimensional FZP. We can see the far-field intensity
pattern for position B of the ptychography scan.

Again, the model that describes the scattering from the object is the same as in CDI, but
now the exit-field is also dependent of the probe position vector r

j

, since the sample is scanned
at multiple positions j. Then the exit-field  

j

: R2 Ñ C can be defined as follows:

 
j

prq “ ppr ´ r
j

q⇢prq “ pp
j

⇢qprq (2.1.1)

where
r “ r

x

e
x

` r
y

e
y

(2.1.2)

with (e
x

, e
y

) the DS unitary vectors of the laboratory frame, which can be seen on Fig.2.1b. For
the j-th position of the scan, the far-field is the Fourier transform of the exit-field  

j

and the
expected intensity h

j

: R2 Ñ R` at a RS point q reads

h
j

pqq “ |F 
j

|2pqq ` b
j

pqq “ | 
j

pqq|2 ` b
j

pqq (2.1.3)

where
q “ q

x

q
x

` q
y

q
y

(2.1.4)
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2.1. Principles of 2D ptychographic imaging

with (q
x

,q
y

) the RS orthonormal vectors on the detection plane, which can be also seen on
Fig.2.1b. The quantity b

j

pqq represents the intensity generated by the background events at each
of the scan positions j § J . One notes that the far-field of Eqn.(2.1.3) is a function of continuous
values, which is going to be measured by a pixel array detector2 with M

2

rows and M
1

columns.
Thus, one has to take into account the discretization of the far-field, as well as of the exit-field
and ultimately of the reconstructed object in DS, as we will see later. The discretization of the
far-field leads to the construction of the matrix  

j

P CM2ˆM1 which is defined below:

 
j

“̂ t 
j

pm
1

�q
x

, m
2

�q
y

qu (2.1.5)

with pm
1

, m
2

q P Z2 such that ´M
1

{2 § m
1

§ M
1

{2 ´ 1 and ´M
2

{2 § m
2

§ M
2

{2 ´ 1 and
(�q

x

, �q
y

) the discretization step along q
x

and q
y

respectively. The discretized expected intensity
on the detector array h

j

P NM2ˆM1 is readily deduced

h
j

“̂
 

| 
j

pm
1

�q
x

, m
2

�q
y

q|2 ` b
j

pm
1

�q
x

, m
2

�q
y

q
(

. (2.1.6)

The link between the above quantity and the object is given by Eqn.(2.1.3), but in order to
materialize it in a reconstruction algorithm, the exit-field has to be discretized accordingly. For
that reason we introduce a new set of indices pn

x

, n
y

q that correspond to the DS discretized
object and probe [See Fig.2.2b]. For each of the individual scan positions, we also define an area
centered around the scan position vector r

j

, to which we will refer as the beam support S
j

.

(a)

(b)

Figure 2.2: Schematic of the problem discretization. (a) The M2 ˆ M1 detector pixel array used for the
measurement of the RS intensity patterns. (b) Representation of the DS grid where the object is contained.
The beam support S

j

can be only defined inside this area, thus 1 § M1 § N
y

and 1 § M2 § N
x

.

Using the pn
x

, n
y

q indices we have defined above and the pixel size in DS (�x, �y), we consider
the probe, the object and the exit-field in a discretized form as respectively:

p
j

“̂ tp
j

pn
x

�x, n
y

�yqu P CN

y

ˆN

x , (2.1.7)

⇢ “̂ t⇢pn
x

�x, n
y

�yqu P CN

y

ˆN

x (2.1.8)

and
 

j

“̂ tp
j

pn
x

�x, n
y

�yq⇢pn
x

�x, n
y

�yq : pn
y

, n
x

q P S
j

u P CM2ˆM1 (2.1.9)

2With no loss of generality, we will consider hereafter that the number of pixels (in DS and RS) is an even
number.
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Chapter 2. 3D Bragg ptychography

with pn
x

, n
y

q P Z2 such that2 ´N
x

{2 § n
x

§ N
x

{2 ´ 1 and ´N
y

{2 § n
y

§ N
y

{2 ´ 1. The final
step before going into details about the ptychographic algorithms that we used for the image
reconstruction is to define the operation that allows the numerical calculation of the far-field
from the exit-field via a discrete Fourier transform (DFT):

 
j

“ DFT2Dp 
j

q. (2.1.10)

We note that this equation demands that the sampling between DS and RS satisfies

�q
x

“ 1

M
1

�x
and �q

y

“ 1

M
2

�y
(2.1.11)

which relate the intensity pattern sampling in RS, defined by the detector pixel dimensions
�q

x

, �q
y

, with their reciprocal quantities �x, �y. On the next subsection, we will see how we
proceed to the estimation of the unknown object ⇢ from a noisy dataset.

2.1.2 Phase-retrieval algorithms for ptychographic datasets

The previous subsection describes the forward modeling, i.e. given the object ⇢, Eqn. (2.1.6)
gives the expected intensity on the camera for the jth position. In practice, however, one deals
with the inverse problem of retrieving the object consistent with the measurement for all the
considered positions. Hence, in the following, let Y

j

P RM2ˆM1` denote the noisy dataset provided
by the camera for the jth position. Then, following standard statistical estimation techniques
(See for instance [39, 40]), the object is estimated through the following optimization problem:

p⇢ “ arg min

⇢
Lp⇢q (2.1.12)

where the fitting function which we will refer to as the criterion, reads:

Lp⇢q “
ÿ

j

L
j

p⇢q with L
j

p⇢q :“
ÿ

m

”
Y1{2

j;m ´ h1{2
j;mp⇢q

ı
2

(2.1.13)

where h
j;m (resp. Y

j;m) stands for the element with coordinate m :“ pm
1

, m
2

q in the matrix
h
j

(resp. Y
j

). In Eq. (2.1.13), we made explicit the formal dependency of h
j;m with respect

to the object to retrieve ⇢. From a practical viewpoint, however, a closed-form expression of a
minimizer p⇢ is not available and the minimization of the criterion L should be performed by
numerical means. Gradient-based algorithms are widely used for this task, in particular because
of their relatively low computational burden. As a result, the gradient of Equation (2.1.13) is of
interest and reads

BLp⇢q “
ÿ

j

BL
j

p⇢q (2.1.14)

where the gradient associated to the j-th probe is

BL
j;np⇢q “

$
&

%
2p˚

j;n ˆ
”
DFT´1

2D

´
 

j

p⇢q ´ ˆ 
j

p⇢q
¯ı

n
@n P S

j

0 otherwise
(2.1.15)

where rAsn (resp. p
j;n and BL

j;n) stands for the element with coordinate n :“ pn
x

, n
y

q in
the matrix A P CN

y

ˆN

x (resp. p
j;n and BL

j

), and “˚” is the complex conjugate. The matrix
ˆ 
j

P CM2ˆM1 that appears in this expression is the corrected far-field defined by

ˆ 
j;m “̂  

j;m

ˆ
Y

j;m

h
j;m

˙
1{2

(2.1.16)
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2.1. Principles of 2D ptychographic imaging

where  
j;m (resp. ˆ 

j;m) stands for the element with coordinate m :“ pm
1

, m
2

q in the matrix
 

j

(resp.  ̂
j

). Below, we consider two different classes of algorithms, depending on the way the
optimization process takes place.

A direct extension of the ptychographical iterative engine

In this first approach, the object is successively updated using the measured intensity pattern
from the current position of the ptychography scan. As a result, the algorithm consists in a
two loops numerical scheme, one for the positions of the ptychography scan (index j) and one
for the number of iterations (index k). More precisely, we consider the following conventions:
let ⇢

0,0

” ⇢
0

with ⇢
0

the initial estimate, ⇢
k,0

” ⇢
k,J

and ⇢
k,J`1

” ⇢
k`1,1

. Then, the object
updating strategy for k “ 0, 1 ¨ ¨ ¨ is defined by

j “ 1 ¨ ¨ ¨ J ` 1, ⇢
k,j

“ ⇢
k,j´1

´ � pBL
k,j´1

q ´⇤ (2.1.17)

with BL
k,j

“̂ BL
j

p⇢
k,j

q and where e. g. “A´B” stands for the component-wise division of matrix
A by matrix B. The constant step-length � ° 0 should be adjusted so that the criterion Eq.
(2.1.13) decreases to reach a minimum. Finally, the matrix ⇤ is defined by

⇤ “ ↵ `
ÿ

j

`
p˚
j

ˆ p
j

˘
↵ ° 0 (2.1.18)

with “ˆ” the component-wise multiplication.

With the gradient expression (2.1.15) in mind, the algorithm Eq. (2.1.17) can be recognized
as a direct generalization of the ptychographical iterative engine (PIE), the first algorithm to
be used for ptychographic imaging [38]. Indeed, the main difference between Eq. (2.1.17) and
the standard PIE is the matrix ⇤ that “scales”3 the gradient so that the convergence rate is
homogeneous over the whole object. Without this preconditioning (i.e., with the standard PIE),
the areas with the highest photon counts would converge much faster during the inversion process
[40].

From an optimization perspective, though, such an iterative scheme can be recognized as an
ordered-subset (OS) strategy [40]. All the OS iteration share the salient feature that the update
stems from a natural splitting in the dataset. In the case of the PIE-like iteration (2.1.17), this
splitting is dictated by the spatial positioning of the probe function. These strategies usually
converge much faster in the early iterations than the standard gradient or conjugate gradient al-
gorithm. Nevertheless, with noisy datasets, after a certain number of iterations the OS algorithm
becomes unable to improve the updated object, because the diffraction patterns of adjacent posi-
tions are inconsistent due to the presence of noise. Hence, strictly speaking, all the PIE strategies,
including Eqn. (2.1.17) should not be considered as convergent algorithm in the long-run [40].
In the next subsection, we will present the conjugate gradient strategy that is proven to be
convergent for noisy datasets.

The nonlinear conjugate-gradient algorithm

The second class of algorithms is the nonlinear conjugate-gradient (NCG) for the minimization of
general nonlinear functions [41]. It was introduced by Fletcher and Reeves in the 1960s and it is
one of the earliest known techniques for solving large-scale nonlinear optimization problems [42].

3In the optimization literature, this scaling strategy is a known preconditioning, see for instance [41] for more
details.
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Chapter 2. 3D Bragg ptychography

Contrary to the PIE, the NCG algorithm requires the complete gradient of the fitting function
L for the current iteration k. This gradient reads

BL
k

“
ÿ

j

BL
k,j

. (2.1.19)

Beginning with an initial estimate ⇢
0

, the NCG algorithm generates a sequence of iterates
t⇢

k

u8
k“0

decreasing the criterion Lp⇢q in a monotonic fashion, and which is stopped when the
iterate is sufficiently close to a minimizer. This sequence can be expressed as a function of the
previous iterate, plus a correction term:

⇢
k`1

“ ⇢
k

` �
k

d
k

(2.1.20)

The correction term is the product of the step-length �
k

with a direction d
k

, which is a
strictly decreasing direction for the cost-function L:

d
k

“
#

´BL
k

´⇤ for k “ 0

´BL
k

´⇤` �d
k´1

otherwise
(2.1.21)

The scalar parameter � is given by the Fletcher-Reeves formula

� “
∞

n BL˚
k;n ˆ d

k;n∞
n BL˚

k´1;n ˆ d
k´1;n

(2.1.22)

where d
k;n stands for the scalar element with coordinate n :“ pn

x

, n
y

q in the matrix d
k

. It is also
worth mentioning that the step-length �

k

is iteration-dependent so that the criterion decreases
significantly for the current step. While the exact calculation of a minimizer in � value would
be extremely computationally costly, an inexact line-search routine can be implemented so that
the step-length allows a sufficient decrease of the criterion along the chosen direction with a very
small cost. More precisely, � is chosen for the current iteration k so that the Armijo condition
holds [40, 41]:

�L ` c�
k

ÿ

n

BL˚
k;n ˆ d

k;n • 0 (2.1.23)

with c P p0, 1q and �L “̂ Lp⇢
k

` �
k

d
k

q ´ Lp⇢
k

q. In practice, a �
k

meeting the condition (2.1.23)
is found with a standard backtracking technique4.

Contrary to the PIE/OS strategy, the NCG algorithm is proven to converge to a minimizer
of the criterion in the asymptotic limit. However, its convergence is slower in the early iterations
in comparison to the PIE/OS iteration. Hence, NCG can be used as a complementary strategy
to refine the inversion result of the OS algorithm, when the OS algorithm is unable to improve
the object any further.

4Let ↵ be a positive constant such that ↵ † 1: the backtracking technique is the successive test of the relation
(2.1.23) with � P t↵�,↵2�,↵3�, ¨ ¨ ¨ u, the first integer l leading to Eq. (2.1.23) is then selected as �

k

“ ↵l�.
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2.2. Principles of 3D ptychographic imaging

2.2 Principles of 3D ptychographic imaging

In the previous section, we talked about the physical model that describes the acquired intensity
data at each scan position, in the notional case of a two-dimensional object. We talked as well,
about how the reconstructed image is obtained with the use of phase-retrieval gradient-based
optimization algorithms. Imaging of a three-dimensional object though, demands a different
modeling and data acquisition in order to retrieve the complete 3D electron density. There are
mainly two different approaches that can be used, depending on the structural features that one
aims to study:

• Ptychographic X-ray computed tomography (CT) for phase-contrast imaging [43]

• 3D X-Ray Bragg ptychography for strain imaging [44]

The first technique allows the reconstruction of the object’s complex-valued transmission
function, which is then converted to electron density. The retrieved phase represents the refractive
index of the object [43, 45]. It exploits the fact that different materials have different refractive
indices, in order to distinguish complex structures. On the other hand in Bragg ptychography, the
retrieved phase corresponds to the projection of the crystal lattice displacement on the scattering
vector as derived from Eqn.(1.1.9).

In this section, we will discuss about modeling the forward problem in the practical case of a
three-dimensional object and retrieving of 3D samples. We are going to address the problem of
imaging different properties and structural features in two contexts. Namely the case of phase-
contrast imaging that can be applied on both periodic and non-periodic specimen, and the case
of 3D strain imaging which has sense only on crystalline objects with a periodic lattice.

2.2.1 3D ptycho-tomography: The forward modeling

The basic problem of tomography is how to reconstruct the electron density of a 3D object, given
a set of 2D projections originating from various angles. The mathematical basis for tomographic
imaging was developed by Johann Radon [46]. The next figure illustrates the problem, not in the
case of traditional CT where the complete object is illuminated for different values of the angle
�, but in the particular case of ptychographic CT.

In ptychographic CT the object is laterally scanned as it is depicted on Fig.2.1a, but addi-
tionally for several angles of incidence, as seen on Fig.2.3. As a result, the forward modeling for
that modality requires that we consider the probe p

j;�

shifted in r
j

with angle of incidence �, so
that the exit-field  

j;�

: R3 Ñ C now reads

 
j;�

“̂ p
j;�

⇢. (2.2.1)

The tomographic experiment implies that a projection of the 3D exit-field is performed along
the direction x1 (i.e. with angle �). This results in a projected exit-field ⇠

j;�

: R2 Ñ C that reads

⇠
j;�

“̂ P
�

n

 
j;�

(2.2.2)

with P
�

the projection operator along x1 [47]. Hence, the corresponding (bi-dimensional) diffracted
far-field  

j;�

: R2 Ñ C reads

 

j,�

pq1q “ pF
2D

⇠
j;�

qpq1q (2.2.3)

with F
2D

the 2D Fourier transform operator. The expected intensity on the detection plane is
then deduced:

h
j;�

pq1q “ | 
j,�

|2pq1q ` b
j;�

pq1q (2.2.4)

13



Chapter 2. 3D Bragg ptychography

where b
j;�

is the expected background intensity and q1 is the vector on the detection plane —i.e.,
the reciprocal frame associated to the y1Oz plane, as seen on Fig.2.3

q1 “ q
y

1 q
y

1 ` q
z

q
z

. (2.2.5)

The above relation (2.2.4) gives the formal dependency between the expected intensity on the
detection plane and the sample to retrieve.

Figure 2.3: Two-dimensional slices of an homogeneous in the direction of z object and the far-field of the
projections of the object to the beam. With the white dashed lines we see the intersections of the object
with the beam. (a) For an angle of incidence � “ 0

˝ (b) For � “ 30

˝ and (c) For � “ 30

˝ but in another
lateral position of the scan on the y1Oz plane.

2.2.2 3D ptycho-tomography: The reconstruction strategy

The reconstruction of a non-periodic 3D object is done in two steps [43]. In the first step, the
2D projections of the entire object in DS are retrieved using phase-retrieval algorithms (See Sec.
2.1.2 for an infinitely thin FZP object) for every angle of incidence � spanning r0 ⇡s. In the
second step, using the set of phased 2D projections, a 3D reconstruction is performed by the
standard filtered back-projection tomographic algorithm [48, 49].

Indeed, the validity of such a two-step strategy relies on a few assumptions concerning the
probe that are rarely discussed in the literature. Let us express the probe p

j;�

and the object ⇢
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2.2. Principles of 3D ptychographic imaging

in the rotated coordinate system r1 ” px1, y1, z1qt, both these quantities being denoted hereafter
p1
j;�

and ⇢1. The projection (2.2.2) within this new system is easily obtained by

⇠1
j;�

py1, z1q “
ª

x

1
p1
j;�

px1, y1, z1q ⇢px1, y1, z1qdx1. (2.2.6)

Now, let us consider the following simplifications: p1
j;�

is invariant of (i) the angle �, and (ii) the
propagation direction, i.e. along x1. These two assumptions are mathematically equivalent to

p1
j;�

px1, y1, zq ” p1
j

py1, zq, @x1,� (2.2.7)

and lead to a simplification of the integral (2.2.6)

⇠1
j,�

py1, z1q “ p1
j

py1, z1q ˆ ⇠1
�

py1, z1q (2.2.8)

with

⇠1
�

py1, z1q “̂
ª

x

1
⇢1pr1qdx1.

the 2D projection of the entire object for the angle �. This projection ⇠1
�

is precisely the quantity
that one aims at retrieving in the “first step” of the standard approach described in the literature
[49]. In the X-ray regime, the above assumptions (i) and (ii) are met, provided that the temporal
stability of the probe is granted, and the PLD of the incident beam inside the object, not larger
than the coherence lengths of the beam.

In order to retrieve the 2D projection of the object ⇠
�

using a ptychographic inversion
algorithm (PIE, Difference-Map [50] etc.), is important having good knowledge of the probe,
which can be reconstructed independently either using the inversion approaches demonstrated
in Refs.[51, 52], or by performing a ptychography experiment of a perfectly known sample and
inverting the diffraction data with output the illumination function [53].

2.2.3 3D ptycho-tomography: Comments

Ptychography was numerically shown in 2004 [54] and experimentally demonstrated in 2007 in
two dimensions, using coherent X-rays [55] and visible laser light [56]. Soon after, many research
groups around the world turned over the development of ptychographical lensless imaging. The
following efforts, concentrated in the improvement of the technique’s resolution by treating dif-
ferent issues as the presence of noise, the need of having good knowledge of the illumination
function, improving algorithms convergence by adding extra a priori information with the form
of different constraints etc.

In 2009, the implementation for the additional parallel refinement of the probe, showed that
the reconstructed image quality could be further improved [57, 58]. In addition to that, the real-
ization that the beam and sample position uncertainties due to experimental setup instabilities
during a ptychography experiment, could be corrected, gave birth to new algorithmic processes
that aimed to correct the illumination positions errors [59, 60].

In 2010, the development of 3D ptychographic computed tomographic imaging in transmission
geometry has been shown, with the reconstruction of a micrometer-sized bone specimen along
with its lacuno-canalicular network with a resolution of about 150 nm [43]. In this approach, a
ptychography scan is performed and coherent diffraction patterns are collected from the sample
at each of the scan positions.
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2.2.4 X-ray 3D Bragg ptychography: The forward modeling

For strain imaging, the experimental geometry makes the 3D sampling process different, com-
pared to the tomographic approach. Instead of the 0-⇡ angular scanning of the sample for the
collection of different projections, the sample is “rocked” in the vicinity of a Bragg reflection.
This is usually done by rotating the sample in very small angular steps, changing the angle of
incidence ✓

B

in the vicinity of the Bragg peak, with range of 0.5°and results in a translation of
the detection frame through the diffraction peak. The modeling that links the unknown object
to this measurement in the Bragg geometry is now stated.

Figure 2.4: Intensity patterns measured during a Bragg ptychography experiment, along the rocking

curve direction. Slices of the 3D Fourier transform in the vicinity of the Bragg peak at (a) ✓
n

“ ✓
B

´ �✓,
(b) ✓

n

“ ✓
B

and (c) ✓
n

“ ✓
B

` �✓. The dashed red lines represent the relative positions of the k
f

vectors
for each value of ✓

n

.

The reciprocal space sustained by the measurement. Let 
j

pqq be the far-field expressed
in the RS orthonormal basis (q

x

,q
y

,q
z

) which is conjugate of the DS “laboratory” orthonormal
basis (e

x

, e
y

, e
z

). As usual5, we consider the relation

 

j

pqq “ pF3D j

qpqq with  
j

prq “̂ pp
j

⇢qprq

where F3D is the 3D Fourier transform. In Bragg geometry, the diffraction pattern is detected
along the pq1

y

,q1
z

q plane, whereas the rocking-curve consists in shifting this inclined detection
along q1

x

[See Fig. 2.4], thus, it is more convenient to derive the relevant quantities in the
nonorthogonal, natural system (q1

x

,q1
y

,q1
z

).

5The use of the 3D Fourier transform is based on the concept of the Fourier synthesis of a signal. Since
assembling all the 2D intensity measurements will lead to a 3D numerical window in RS as depicted in Fig. 2.4 by
the sampling process, the inverse Fourier transform will relate the 3D RS natural frame with the 3D DS natural
frame [17, 26].
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Hereafter, the frame (q
x

,q
y

,q
z

) is called the “RS laboratory system” since it is conjugated to
the laboratory frame (e

x

, e
y

, e
z

). In contrast, (q1
x

,q1
y

,q1
z

) is adapted to the representation of the
measurement: it is called hereafter the “RS natural system”.

Obviously, any RS function can be represented in both coordinate systems according to the
following relation

q “ Bq1, with B “
¨

˝
1 0 ´ sin ✓

B

0 1 0

0 0 cos ✓
B

˛

‚ (2.2.9)

where q “ pq
x

, q
y

, q
z

qt and q1 “ pq1
x

, q1
y

, q1
z

qt represent the same RS point in the (q
x

,q
y

,q
z

) and
(q1

x

,q1
y

,q1
z

) frames. In particular, the far-field  
j

pqq also reads

 

j

pBq1q “̂  

1
j

pq1q (2.2.10)

hence expressing the far-field in the new coordinate system. The detected intensity on the detector
plane y1

j

pq1q is then related to the expected intensity by the usual model

h1
j

pq1q “̂ | 1
j

|2pq1q ` b
j

pq1q (2.2.11)

where b
j

is the expected intensity of the background component. It should be stressed, however,
that working within this “natural” system implicitly defines the exit-field in a new (DS) coordinate
system.

The direct-space system: “natural” vs. “laboratory”. An important point to keep in mind
is that the inverse Fourier transform of a function in pq1

x

,q1
y

,q1
z

q is consistent with a DS system
that is no longer the original laboratory frame (e

x

, e
y

, e
z

). For instance, the inverse Fourier
transform of the far-field  1

j

(2.2.10) defines the exit-field

 1
j

pr1q “
`
F´1

3D 
1
j

˘
pr1q

with r1 “ pr1
x

, r1
y

, r1
z

q a point in a coordinate system (e1
x

, e1
y

, e1
z

) conjugated to the one spanned by
the measurement. In opposition to the “laboratory” coordinate system, this new system is called
hereafter “DS natural system”. Both these DS systems are related by [See appendix B]

r “ Ar1 with A ” pB´1qt (2.2.12)

with r “ pr
x

, r
y

, r
z

q a point in the (e
x

, e
y

, e
z

) DS laboratory system. In addition, we still have

 1
j

“̂ p1
j

ˆ ⇢1

with the DS quantities

$
&

%

p1
j

pr1q “ detpAq ˆ p
j

pAr1q

⇢1pr1q “ ⇢pAr1q.
(2.2.13)

Finally, before we proceed to the definition of the reconstruction algorithm, the RS and DS
quantities need to be sampled within their natural coordinate systems.
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Chapter 2. 3D Bragg ptychography

Sampling with “natural” coordinates in the reciprocal and direct spaces. The nat-
ural coordinate system in RS was introduced so that the sampling in this space follows the
detection scheme. More specifically, for a fixed q1

x

, the measured intensity on the detection plane
corresponds to a point of the rocking curve. The sampling in the detector plane is regular and
reads

q1
y

“ m1
2

�q1
y

with ´ M
2

2

§ m1
2

§ `M
2

2

´ 1 (2.2.14)

q1
z

“ m1
3

�q1
z

with ´ M
3

2

§ m1
3

§ `M
3

2

´ 1 (2.2.15)

where �q1
y

and �q1
z

are the discretization step along q1
y

and q1
z

, respectively. Along the rocking-
curve, one usually proceeds to regular angular step �

✓

leading to the following sampling along q1
x

[See Appendix B]
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which, thanks to the very small angular excursion m1
1

�
✓

about ✓
B

, is equivalent within a good
approximation to the regular sampling
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�
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B

.

As a result, the sampling in RS can be considered as regular6 along all three directions pq1
x

, q1
y

, q1
z

q,
and we define the discretized measurements
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related to the discretized version of the far-field and the expected intensity (respectively)
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(2.2.19)

The DS quantities needs also to be discretized in their natural (i.e., not laboratory) coordinate
system. Let us consider a voxel in this DS space (�x1, �y1, �z1). The discretized form of the object
and the probe reads

⇢1 “̂
 
⇢1pn1

x

�x1, n1
y

�y1, n1
z

�z1q
(

(2.2.20)
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(2.2.21)

with n1 ” pn1
x

, n1
y

, n1
z

q P Z3 the index triplet such that

´N
x

{2 § n1
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x

{2 ´ 1,

´N
y

{2 § n1
y

§ `N
y

{2 ´ 1

´N
z

{2 § n1
z

§ `N
z

{2 ´ 1.

6The regular sampling allows the direct computation of the exit-field from the far-field (and vice versa) with
the DFT. On the contrary, an irregular sampling would have required either the interpolation of the dataset or
the interpolation of the far-field.
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2.2. Principles of 3D ptychographic imaging

Let us also introduce S 1
j

the support of the beam in the natural DS, i.e., S 1
j

gathers the index
triplets where the probe p1

j

is not uniformly zero. The discretized exit-field is then defined by
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(
. (2.2.22)

The numerical calculation of the far-field from the exit-field is then obtained via a discrete Fourier
transform (DFT):

 
j

“ DFT3Dp 
j

q. (2.2.23)

We note that this equation demands that the sampling between DS and RS satisfies the next
relations

�q1
x

“ 1

M
1

�x1 , �q1
y

“ 1

M
2

�y1 , and �q1
z

“ 1

M
3

�z1 . (2.2.24)

All the key ingredients are now available to derive the reconstruction algorithm.

2.2.5 X-ray 3D Bragg ptychography: The reconstruction strategy

We now can consider the reconstruction strategy following a similar line to the one adopted
in Sec. 2.1.2. It will be instructing, though, to derive first some expressions in the continuous
domain. So let us define the reconstructed object as a minimizer of the following least-square
criterion

L1p⇢1q “̂
ÿ

j

}y1{2
j

pq1q ´ h
11{2
j

pq1q}2 (2.2.25)

where y
j

pq1q the intensity at q1 on the detection plane and || ¨ || is the Euclidian distance in the
measurement space. From this expression, a gradient-based algorithm can be built by iteratively
updating the object in the basis (e1

x

, e1
y

, e1
z

): for the j-th probe position, this gradient reads

BL1
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ı
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with
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˙
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. (2.2.28)

If the probe was beforehand provided in the DS laboratory system, p1
j

(2.2.13) needs to be com-
puted only once via an interpolation step, then it can be used in Eqn. (2.2.26) during the whole
iterative minimization process. When the iterative minimization is completed, an additional in-
terpolation step is needed to bring back the reconstruction ⇢̂1 in the laboratory frame. Therefore,
updating the object in the “natural” (e1

x

, e1
y

, e1
z

) DS basis [i.e., with Eqn. (2.2.26)] requires only
two interpolation steps. In comparison, an iterative minimization designed in the original labo-
ratory system (e

x

, e
y

, e
z

) would be much more expensive. For that purpose, let us express the
gradient (2.2.26) in the original basis thanks to the relation (2.2.12)

BL
j

prq “ 2 p˚
j

prq
”
 1
j

pA´1rq ´ ˆ 1
j

pA´1rq
ı
. (2.2.29)

19



Chapter 2. 3D Bragg ptychography

Clearly, this expression can be used to devise an iterative algorithm working in the original
system. However, the computation of  1

j

pA´1rq and ˆ 1
j

pA´1rq would require an interpolation
step each time the object is updated, hence increasing significantly the computational burden in
each iteration.

The numerical implementation of the 3D Bragg ptychographic reconstruction algorithm re-
quires the discretized version of both the criterion (2.2.25) and the gradient (2.2.26). The least-
square criterion reads

L1p⇢1q “
ÿ

j

ÿ

m1

”
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j;m1q1{2 ´ ph1
j;m1q1{2

ı
2
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where the triplet m1“̂pm1
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2
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3

q locates an element in the matrices Y 1
j

and h1
j

according to
the definitions (2.2.18) and (2.2.19). For the j-th probe position, the gradient with respect to
the unknown object ⇢1 reads
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0 otherwise
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with  ̂1
j

the discrete versions of the corrected far-field (2.2.28). With this later relation, gradient-
based 3D Bragg reconstruction algorithms are obtained straightforwardly from the 2D case pre-
sented in Sec. 2.1.2.

2.3 Developments of 3D Bragg X-ray ptychography

The feasibility of Bragg ptychography was numerically investigated [61], implemented and ex-
perimentally demonstrated in 3D on a test object composed by two (110) oriented Si lines etched
on top of a SOI line [44]. Multiple 2D diffraction patterns were recorded at different incident ✓
angles in the vicinity of the (220) Bragg reflection, and assembled as a 3D volume in RS for each
of the scan positions. The entire dataset was then inverted using the PIE algorithm along with a
regularized support constraint, and the probe was retrieved as well. The numerical demonstration
of regularization in 2D Bragg ptychography was shown from Godard et al. [61] in 2011.

Another noteworthy achievement which allowed the considerable decrease of the exposure
time for a crystal in Bragg geometry was shown by Berenguer et al. [62], using an undersampled
ptychographical dataset. The development of different criteria for the evaluation of the recon-
struction quality and the incorporation of Bayesian statistics in gradient optimization algorithms
[40] can be considered as the finest “paint strokes” for the state of the art of Bragg ptychographical
imaging.

Nevertheless, despite the above advancements there are important experimental difficulties
that hinder the broad and successful application of the technique. For example, the needed
deconvolution of the illumination in order to retrieve the crystal electron density, requires the
good knowledge of the illumination function. In addition to that, redundancy in the encoded
information of the diffraction patterns is the key element for the success of the ptychographic
approach [38]. So, in order to achieve data redundancy, an important amount of overlapping
at each of the scan positions is needed. That means, diffraction patterns have to be recorded
at several positions and for several incident angles, something which makes the total time of
the measurement and the difficulty to achieve good sample stability important. The need for
very local measurements, demands the use of a beam with diameter of the order of a few tens
of nanometers, and in order to achieve a sufficient overlapping amount, one needs to move the
piezostage where the sample is placed, by a few nanometers, reaching the limits of the device’s
capabilities.
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Another issue is radiation damage. As the technique demands multiple exposures of the sam-
ple to hard X-rays repeatedly, it makes difficult the study of radiation-sensitive or weakly scatter-
ing specimen. Finally, photon shot noise is an everlasting problem generally in CDI techniques,
since its presence deteriorates the quality of the reconstructed image [40]. Thus, depending on
the sample, the exposure times have to be optimized in order to collect a sufficient number of
photons, without tampering the sample’s structure [63].

Due to the experimental difficulties that we discussed previously (radiation damage, experi-
mental setup stability, presence of noise), and the inversion related issues, there exist only few
successful applications of 3D Bragg ptychography, with the most recent being Ref. [64]. We
could not omit though, significant achievements of 2D Bragg ptychography (or Bragg Projection
Ptychography), in imaging the strain of a multilayer semiconductor prototype device with an
unprecedented resolution of 7nm [3], or the visualization of a dislocation strain field inside a Si
crystal at a region of approximately 10 ˆ 10µm2 [65].

Nevertheless, until today, all experimental demonstrations of 3D strain imaging have been
applied on finite-size periodic objects, resistant to radiation damage, with important scattering
powers like Au, and with quite mere deformation fields. Thus, the successful demonstration
of the technique on more complex systems that present actual interest for materials science,
microelectronics devices or biology is still pending.
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3.1 Motivations and strategies

A s it was stated in the description of the state of the art for 3D strain imaging of crystalline
objects in Section 2.3, studies of micrometer and nanometer-sized crystals have started since

the beginning of the past decade [16, 17]. These studies were performed on highly scattering
objects with finite-size and intermediate strain values using the CDI approach of Section 1.1.2.
In order to overcome the restrictions that CDI imposed, 3D Bragg ptychography was proposed
and demonstrated [44]. It has allowed the 3D imaging of strain in an extended object, whose size
can be larger than the X-rays transverse coherence lengths. However, it is interesting to note
that a support constraint along the thickness direction was still needed, introduced through a
regularization approach.

The aim of this PhD thesis is to further extend this technique, in order to apply it on a
highly strained and extended nanostructured thin film. In other words, we would like to image
the crystalline displacements inside a multilayer thin film and ideally achieve nanometer spatial
resolution. This step is mandatory to demonstrate the potential applications of Bragg ptychog-
raphy, as many structures of this kind are encountered in material science. To this aim, we have
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applied Bragg ptychography on a well calibrated though complex sample, an InP/InGaAs nanos-
tructured thin film bonded on a Si substrate. This chapter presents the experimental elements
needed for this work.

In Section 3.2, we will present the sample, including the interest it presents for microelectron-
ics applications, the fabrication process, the structure design and a set of preliminary structural
characterizations.

In Section 3.3, we will describe the Bragg ptychography experimental setup and the Bragg
ptychography scan modality.

In the last section, we will detail the main features exhibited by the Bragg ptychography
experimental data.

3.2 The InP/InGaAs thin film

3.2.1 III-V semiconductor compound integration on Si

The constant need for fast data transmission demands fast telecommunications and has resulted
in an extremely active research field. The versatility of Si, as well as its abundance and low
production costs, have made it the dominant material for many electronic and optical devices [66].
However, there are other semiconductors that have certain advantages over silicon. For example,
III-V semiconductor compounds, such as gallium arsenide (GaAs) and indium phosphide (InP),
have a direct bandgap, allowing them to efficiently emit and absorb photons with energies in their
respective bandgaps. Furthermore, they have a much higher electron mobility than silicon and
have been used to make high-power and high-frequency electronics [67]. These are the principal
reasons why GaAs-, InP- and GaN-based materials have been the dominant material systems for
semiconductor diode lasers [68] since their first demonstration in 1962.

In order to benefit from their properties, these materials need to be integrated on Si-based
circuits, something which is usually not done with epitaxial growth techniques. The reason is
that the lattice deviation between Si and III-V semiconductor compounds is large enough to
induce important stresses, which in turn lead to the generation of several defects at the interface,
like dislocations that can spread through the layer and make the material unsuitable for device
fabrication [69]. Numerous approaches have been used to reduce the dislocation density to around
105-106 cm´2 [70, 71, 72, 73, 74, 75, 76], but this is still around two orders of magnitude higher
than in InP- or GaAs-based epitaxial wafers for room-temperature lasers.

The solution to this problem was given by growing independently the III-V compound, and
then bonding it onto a Si substrate using an intermediate layer of oxide [68, 77]. 1 This approach
allows the fabrication of almost defect-free, high-speed, low-power-consumption and low-cost
photonic devices like photo-emission diodes [79]. In this context, one of the key questions is the
preservation of the III-V compound structure through the bonding process.

3.2.2 Sample structure design and fabrication

For this thesis, which aimed at testing the limits of Bragg ptychography, a specific sample had
to be designed. Ideally, the sample fabrication had to satisfy two main conditions: (i) the sample
fabrication had to be versatile enough in order to allow for the design of accurately chosen
structural parameters and (ii) had to be highly controlled in order to guarantee that the desired
structural features were still present in the final sample structure. These two conditions were
met in the elaboration process developed by A. Talneau and co-workers at the Laboratory for
Photonics and Nanostructures (LPN) of the Centre National de la Recherche Scientifique (CNRS)

1It is shown that direct-fusion bonding without the intermediation of a metal or oxide layer (oxide-free bonding)
leads to the fabrication of highly-conductive heterojunctions [78], and thus, it is preferable.
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in Marcoussis, Paris. The lab is composed of several scientific teams, developing fundamental and
applied research in the fields of photonics, nano-electronics, materials, microfluidics and nano-
biotechnology. It is specialized in the integration of III-V semiconductors for optoelectronics on
Si, fabrication of III-V nanowires, planar heterostructures for wave engineering. Their expertise
go along with highly developed competences in the analysis, characterization and modeling of
semiconducting nanostructures.

The fabrication involves first the growth of the desired III-V structure by metal-organic
vapor phase epitaxy onto an InP substrate. The material which presents the zinc-blende crystal
structure [80] can be used as a substrate for the epitaxial growth of other III-V semiconductors.
[81]. All the grown layers are lattice-matched on the InP substrate. The grown structure includes
a 300nm thick InGaAs sacrificial layer, which will be chemically remove to separate the structured
layer from the InP substrate by selective etching. Then, the Si substrate and the grown structure
surfaces are both cleaned and desoxidized and both re-oxidized, with a dedicated and controlled
process: the Si surface is thermally oxidized at 1050°C during 20s, while the InP surface is oxidized
during a 4min inductive coupled plasma reactive ion etching operated at zero bias. Both oxides
are then activated by ozone during 30s, put in contact and annealed at 300°C during 3h [82].
The InP substrate is then chemically removed, followed by the InGaAs selective layer removal.
The nanostructured InP stack is then adhesively bonded on Si.2 The thickness of the Si oxide
bonding layer is „ 5nm.
For our study, the final structure had to verify a few conditions.

• The thickness of the total layer has to be large enough in order to ensure that our Bragg
diffraction intensity will present a large signal-to-noise ratio during the ptychography scan,
but small enough in order to guarantee that the beam path length difference will remain
smaller than the longitudinal coherence length of the beam. This upper thickness limit is
estimated to about 370nm [See Appendix A]. According to previous measurements [64] and
taking into account that InP is a strong scattering material with respect to Si, values of
thickness in the 300-350nm range are found to fully satisfy these conditions.

• All the Bragg diffraction peaks produced by the structured InP layer have to be reachable
during the so-called rocking curve measurement, i. e., which is obtained while keeping the
detector fixed in one single position [More details in Section 3.3]. This restricts the angular
distance between the InP and other compounds Bragg peaks and hence the maximum value
of the lattice mismatch. The typical numerical aperture of the detector, which results from
the detector dimension and the detector-to-sample distance, leads to lattice mismatches
that have to be smaller than 3%.

• Symmetry is often a problem in a CDI experiment. Indeed, an object and its complex-
conjugate centro-symmetric one are ambiguous solutions of the inverse problem because
they produce the same diffraction intensity distributions. Hence, the design of the struc-
tured InP was made in order to avoid any vertical symmetry in the stack.

All those conditions drove the design of the ideal sample structure. We choose a stack structure
composed by three (001) epitaxially grown layers, as schematically shown on Figure 3.1. The
bottom InP layer is 100 nm thick and is in contact with the Si substrate. Just above, there is
a 40 nm-thick In

0.57

Ga
0.43

As layer, lattice-matched to InP. On top of them, there is a 200 nm
thick InP layer. As bulk materials, the lattice parameters of the InP and InGaAs compound
are 5.8687Å and 5.8858Å respectively. It corresponds to a lattice mismatch of about 0.29%.
However, the InGaAs being lattice-matched to the InP layer, the accumulated strain in the

2Adhesive bonding (also referred to as gluing or glue bonding) is a wafer bonding technology which consists
in applying an intermediate layer of metal or oxide to connect substrates of different materials.
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InGaAs develops solely along the vertical axis, resulting in a vertical lattice mismatch of 0.56%,
as measured with high-resolution X-ray diffraction using a laboratory source.

Figure 3.1: Oxide-bonding of the InP multilayer on Si and final structure of the thin film.

3.2.3 Preliminary characterization

The preliminary characterization aims at verifying the structural properties after the oxide-
bonding procedure. High-resolution X-ray diffraction (XRD), scanning electron microscopy (SEM),
atomic force microscopy (AFM), and transmission electron microscopy (TEM) investigations
were performed to provide as much structural information as possible.

XRD measurements using a laboratory source

After its fabrication, the sample was characterized by X-ray diffraction using a laboratory source
at the Cu K

↵

-edge and a Rigaku Smartlab diffractometer, delivering a beam size of 1.5 ˆ 3mm2.
On Fig. 3.2 we can see the intensity distributions of the (004) Bragg reflection of the InP thin film,
from an experimental (blue) and a distorted wave Born approximation model [83, 84] simulated
(red) ✓ ´ 2✓ scan. The superposition of the two curves is showing the good agreement between
the theoretical and measured values of the thickness and strain profile. Additionally, we can see
that the removal of the indium phosphide substrate [See Fig. 3.1] didn’t cause the relaxation of
the strained InGaAs layer, which has maintained the deformation after the oxide-bonding - the
peak positions along the ✓{2✓ direction shows that the lattice parameters of the two layers did
not change. It is given by

lattice mismatch ” ✏
zz

“ a
InGaAs

´ a
InP

a
InP

(3.2.1)

where a
InGaAs

and a
InP

are the lattice parameters along the 001 direction, extracted from the
measurement and corresponding to the InGaAs and InP peak positions respectively.

Two dimensional cartographies of the reciprocal space in the vicinity of the (004) InP and
Si Bragg reflections can be seen on Figs. 3.3a-3.3b on the next page. The small spreadings of
the InP and InGaAs peaks with respect to the (004) Si peak, which as it can be seen on Fig.
3.4 (the two figures aren’t scaled), are twice the value of spreading for Si in the ✓ direction - the
perpendicular to the (004) crystal direction - reveal that the bonded layers are of relatively good
quality, meaning that only a few defects or dislocations are expected in the InP/InGaAs stack.

Additional measurements allowed to measure the misorientation between the InP and InGaAs
layers and the Si substrate which is expressed by the twist (�) and tilt (�) angles [See Fig. 3.4].The
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Figure 3.2: High-resolution X-ray diffraction measurement (✓ ´ 2✓ scan) obtained at the (004) InP
reflection.

tilt angle between the (004) latices planes of the film and the substrate, was found to be � “ 0.07°,
indicating that there is a very small inhomogeneity in the distribution of the SiO

x

thin oxide
layer, while the twist angle between the (220) planes was determined at � “ 2.54°.

SEM and AFM measurements

Further studying of the sample with SEM and AFM, supports some of the conclusions of the
preliminary XRD analysis results. We can see on Fig 3.5a a SEM image of the sample surface
in an area of 100ˆ130µm2, which contains four emerging dislocations, giving us an estimation
of their density. It is believed that the dislocations start to appear inside the InP substrate and
continue propagating into the InP and InGaAs layers until they reach the surface. After bonding
the InP superlattice along with its substrate on silicon, remainders of the chemical removal of
the InP substrate and InGaAs etch stop are left on the top of the 200nm-thick layer, forming
a surface defect with the shape of a “chimney”. That is what we see on the AFM image of Fig.
3.5b, taken around the emerging dislocation, which bulges approximately 230nm over the sample
surface. In practice, these emerging dislocations will be encountered by a nano-sized beam quite
rarely.

Figure 3.5: (a) Emerging dislocations on the surface of the thin film (SEM image). (b) One of the
“chimey” shaped dislocations. We can see that the defect reaches 230 nm over the surface of the sample
(AFM image).
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Chapter 3. InP/InGaAs system and experimental setup

Figure 3.3: Two dimensional maps (a) In the vicinity of the (004) InP (right) and (004) InGaAs (left)
Bragg reflections. The map is centered at zero with respect to the InP peak (logarithmic scale). (b) The
Si substrate (004) Bragg reflection. The horizontal axis corresponds to the ✓{2✓ direction and the vertical
axis to the angle of incidence ✓. The intensity scale is logarithmic in arbitrary units.

�

�

Figure 3.4: Representation of the misorientation angles (� and �) of the oxide-bonded layer with respect
to the Si substrate.

TEM-HAADF

Scanning TEM measurements were performed using a TEM/STEM FEI Titan Themis device
in the HAADF mode. This mode allows to get sensitivity to the chemistry of the imaged crys-
talline material. For the TEM investigation, one requires the thinning down of the sample to a
few hundreds of nanometers. Hence, this destructive characterization was performed after the
Bragg ptychography experiment, on the sample part corresponding to the one investigated with
Bragg ptychography. The InP/InGaAs interface, as well as the InP/Si interface can be seen on
Figures 3.6b and 3.6c respectively, and they demonstrate a certain degree of roughness. (0.03Å of
displacement over a period of 5nm-10nm). Some chemical inhomogeneities are observed in the
oxide layer (Fig. 3.6c).

In TEM, the electron beam undergoes Bragg scattering in the case of crystalline materials,
therefore TEM is sensitive to the structural properties of crystals and can be used as a relevant
comparison tool to Bragg ptychography. For this purpose, the sensitivity of this TEM measure-
ment with respect to the crystalline properties has to be carefully evaluated. We are particularly
interested by lattice mismatch and tilts, physical parameters that can be obtained with geometric
phase analysis [85].

With this approach, the tilt map r
xz

is extracted (Fig. 3.7b). It presents visible undulations,
mainly induced by the movements during the STEM scan. From the amplitude of the undula-
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tions, the sensitivity of the STEM-HAADF experiment to the lattice tilts was estimated to be
approximately ˘0.5°. Thus, any inferior value cannot be detected with the current setup.

In Fig. 3.7a, the lattice mismatch ✏
zz

at the InP/Si interface is shown. It demonstrates the
complete relaxation of the bonded layer with respect to Si, which is supported by the fact that
there is no gradient appearing close to the bonding interface. The expected lattice-mismatch
value of 8.1% along the (001) direction is found, together with some fluctuations. These latter
ones allow to estimate the lattice mismatch uncertainty to about ˘0.3%.

In conclusion, the oxide-bonded InP/InGaAs thin film shows the expected crystalline quality
in terms of structure, thickness and lattice mismatch values. Moreover, small inhomogeneities
in the distribution of the Si oxide layer were observed while the entire film does not contain
many defects or dislocations. Furthermore, the uncertainty of the preliminary characterization
experiments was carefully evaluated, in order to allow for a relevant comparison between the
features, the Bragg ptychography measurements and the obtained reconstructions.
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Figure 3.6: (a) Cross-section along the thickness direction, which coincides with the (001) crystal growth direction. (STEM/HAADF image, chemical
contrast) (b) The top InP/InGaAs interface layers as seen with TEM. (c) The 100nm-thick InP bonding interface with Si (TEM). The dark intermediate
area corresponds to the amorphous Si oxide.

Figure 3.7: Quantifying STEM sensitivity. (a) HAADF mode view of the InP/Si interface. (b) Rotation r
xz

and (c) strain ✏
zz

maps obtained from (a) using
geometrical phase analysis. The color scale in (b) goes from ´0.5˝ to `0.5˝, while in the inset of (c), the 1D cross section of ✏

zz

along z exhibits fluctuations
of about ˘0.3 %.
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3.3. Bragg ptychography experiment

3.3 Bragg ptychography experiment

3.3.1 Experimental setup

The coherent X-ray diffraction experiment was performed at the ID13 beamline of the European
Synchrotron Radiation Facility (ESRF). The hard X-ray undulator beam is monochromatized by
a channel-cut Si (111) monochromator to a photon energy of 14.9keV (�=0.83Å, ��{� « 10

´4).
The beam is pre-focused by a set of refractive Be lenses. The experimental setup geometry is
schematically represented on Figure 3.8. For the characterization, the beam is focused down
to a sub-micrometric size with dedicated focusing optics placed on the same granite table as
the sample stage. The detector is on a separate stage, decoupled from the sample motions for
maximal stability. More details about the experimental setup can be found in Ref. [86]. The
details of the Bragg ptychography experimental setup elements are described below.

Figure 3.8: Experimental setup, focusing optics, sample holder and positioning, 2D detection.

The sub-micrometric beam: the finite beam-sized is produced by a set of focusing refrac-
tive Si lenses, with a focal length of about 1cm. The entrance aperture was reduced with a set
of slits to 60x64µm2 in the vertical (V) and horizontal (H) directions, so that the illumination
area matched approximately the beam transverse coherence lengths.

Prior to the Bragg ptychography experiment, a detailed characterization of the beam profile
was performed. In order to obtain the complex-valued illumination function at the focal plane, a
lensless microscopy method was used inspired by Ref. [51] and discussed in Ref. [64]. It is based
on the simple and fast measurement of the over-focused direct beam intensity pattern performed
with a high resolution camera. This allows a high oversampling of the diffraction pattern, which
exhibits fine features such as interference fringes resulting from the Fresnel propagation of the
coherent wavefront truncated by the slits defining the lens aperture (Fig. 3.9a). To this aim, a
PCO camera with pixel size of approximately 1.9µm was used, located at a distance of 1.81m from
the focal plane. The measured intensity data was inverted with our phasing routine before the
beam was back-propagated down to the plane corresponding to the sample position. As expected
from the Gaussian absorption profile of the refractive lenses, the beam profile behaves closely to
a Gaussian function with however some weak secondary maxima visible on both horizontal and
vertical sides of the central spot (Fig. 3.9b).
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Chapter 3. InP/InGaAs system and experimental setup

The size of the amplitude main lobe was estimated to be 270 ˆ 240nm2 (VxH) for a corre-
sponding full-width-at-half max (FWHM) of the spot intensity of 60 ˆ 55nm2 (VxH). However,
in the Bragg diffraction geometry the sample is inclined with respect to the incoming beam
direction, leading to a beam footprint of about 950 ˆ 270 nm2 along the projection and perpen-
dicular directions, respectively. It corresponds to a FWHM spot intensity of 220 ˆ 60nm2. The
knowledge of those values is of major importance for defining the ptychography step-size.

a 

2.10-2 nm-1 

100 

10-2 

10-1 

qy 

ki 

100 nm 

b y 

ki 

 

Figure 3.9: Retrieved beam profile. (a) Coherent intensity pattern of the overfocused beam (arbitrary
units) measured with a Frelon camera. (b) Color rendition of the complex-valued beam profile, retrieved
from the inversion of (a) and shown in the plane corresponding to the sample position. The brightness
and color correspond to the beam linear scale amplitude and to its phase � respectively.

The sample stage: the sample stage has to be stable at the nanometer scale and over the
duration of the data acquisition and has to allow for the investigation of both reciprocal and
direct spaces. The ID13 stage is composed by a three-axis piezoelectric nanostage, allowing for
the translations along the x, y and z directions as seen on Figs. 3.8 and 3.11. It is mounted on the
top of an hexapod, which ensures the rotation of the sample with accuracy in the 10

´3 degree
range. The center of rotation of the stage is first aligned with the focal plane using a gold cross
pattern. Once it is found, the sample is brought to that position with the help of of an optical
microscope, whose focal depth is about 1µm.

For our experiment, which involves a planar sample to be placed vertically with respect to
the diffraction horizontal scattering plane, a specific glass-made sample holder was made. It has
to fit in the given space dimensions and was fixed on the piezostage with wax. This sample holder
was found to present excellent stability.

The detection stage: In the ID13 beamline the detector is placed in the horizontal plane
onto a homemade rotation-translation trail [See Fig. 3.10]. This original setup allows to investi-
gate a large range of diffraction angles (between « 15° and 50°), for a detector-to-sample distance
varying from 1 to 3.5m. The coherently scattered far-field intensity patterns are collected with a
Maxipix pixel array of 516 ˆ 516 pixels, with pixel size of 55 ˆ 55µm2 [87].

3.3.2 Data acquisition

For the acquisition of the Bragg ptychography dataset, the sample was oriented so that the InP
(004) Bragg condition was met (Bragg angle ✓

B

= 16.38°), successive acquisitions of 2D intensity
patterns were measured by scanning the sample over an 11 ˆ 9 position grid along x and y, and
repeating this raster scan at each angle along the rocking curve (180 frames with angular step
of �✓ “ 0.003°). The desired redundancy in the dataset was obtained thanks to the important
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3.3. Bragg ptychography experiment

Figure 3.10: Experimental setup at the ID13 beamline. Photograph of the sample on the glass holder,
fixed on the piezostage on the top of the hexapod.

overlapping amount of the successive beam positions (« 80%), which was ensured by using step
sizes of 150nm and 50nm along the x and y directions respectively.

The detector was located 1.38m away from the sample to ensure the oversampling of the
signal. In order to avoid saturation of the detector at the highly intense InP Bragg peak, the
exposure time was set to 0.2 s per frame, taking three frames at each position for increasing the
intensity dynamical range.

As derived in Chapter 2, the detection modality results in a nonorthogonal measurement
reference frame [See Fig. 3.11], which is kept in order to preserve the photon shot noise statistics.
With the given scanning parameters, the following elemental reciprocal space values are found:
�q1

x

“ 2.2293 ˆ 10

6m´1, �q1
y

“ 2.9300 ˆ 10

6m´1, �q1
z

“ 3.0538 ˆ 10

6m´1. While the detector
frame corresponds to a 516 ˆ 516 ˆ 180 matrix, the relevant volume, into which we observe a
useful signal, can be restricted to a 516ˆ100ˆ180 matrix. According to the Fourier conjugation
relations, this reciprocal space volume corresponds to a certain DS pixel size. However, as the
corresponding pixel size is not commensurable with the illumination function scanning steps, we
encountered visible artifacts on the amplitude of the reconstructed object, which we managed
to considerably reduce by appropriately adjusting the size of the illumination matrix. The latter
was chosen so that the illumination function scanning steps correspond to an integer number
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Chapter 3. InP/InGaAs system and experimental setup

Figure 3.11: Sample and data collection geometry. The different DS and RS reference frames are depicted
as well.

of pixels in DS. The smallest matrix volume that meets this requirement has size of 542 ˆ
130 ˆ 190 pixels. It leads to a tilted associated conjugate direct space, which is considered
for the inversion [“natural” and “laboratory” frame as explained in Subsection 2.2.4]. Here the
sampling in reciprocal space yields to an non-orthogonal direct space, whose pixel size is �x1 “
1.5462 ˆ 10

´8m, �y1 “ 1.6496 ˆ 10

´8m, �z1 “ 3.9566 ˆ 10

´9m, resulting to an orthonormal space
pixel size of �x “ 1.5462 ˆ 10

´8m, �y “ 1.6496 ˆ 10

´8m, �z “ 8.6673 ˆ 10

´9m.

After the measurement the data was manually imported. The background was quantified
after acquiring several measurements of the dark, but not subtracted from the raw data, and the
hot or damaged pixels of the CCD detector were masked [See Fig. 3.12].

(a) (b)

Figure 3.12: (a) Raw data from the Maxipix CCD. (b) The masked data. The black cross is a result of
the distance between adjacent chips (4 in total) and which contains no pixels. The black colored pixels
correspond to hot pixels and have been manually removed. The captured frame corresponds to the (004)
InP peak measured the rocking curve for the 3D spanning of RS.
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3.3. Bragg ptychography experiment

3.3.3 Experimental set-up stability

As previously discussed, the quality of the ptychography dataset highly depends on the stability
of the experimental setup, which directly affects the beam-to-sample positioning accuracy. For
this reason, we have carefully checked the stability of the setup on short and long time scales.
Figures 3.13a to 3.13c correspond to three frames acquired at the very same sample position and
for the same incidence angle, corresponding to the InP (004) peak. The only visible differences
are limited to the low count intensity pixels, as expected from the photon shot noise process, and
even if we calculate the centroids of the intensity distribution (x

c

, y
c

), we can see that all three
values correspond to the exact same pixel on the detector [See Table 3.1].

Figure 3.13: Diffraction patterns at two adjacent scan positions. From A to C, three acquisitions at a
fixed beam-to-sample and incident angle position. From D to F, same measurements performed at the
next beam-to-sample position. The incident angle corresponds to the Bragg condition for the (004) InP
planes.

The frames 3.13d to 3.13f which are again very similar one to the other, correspond to the
next scan position. They have been measured right after the three ones above. Clear differences
between these two data groups are observed, even in the high count intensity pixels. The same
information is valid when examining the InGaAs peak at the same positions [See Figs. 3.14a-
3.14f]. The comparison of these diffraction patterns gives us two major pieces of information:
the stability of the setup and the existence of structural fluctuations within the sample from one
beam position to the other. Finally, the smooth evolution of the 3D diffraction patterns, which
is observed as a function of the beam-to-sample position while the 3D patterns result from the
stacking of 2D data obtained at very different times, demonstrate the high stability of the setup
during the total time of the experiment. [See Fig. 3.18]
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Figure 3.14: Diffraction patterns at two adjacent scan positions. From A to C, three acquisitions at a fixed
beam-to-sample and incident angle position. From D to F, same measurements performed at the next
beam-to-sample position. The incident angle corresponds to the Bragg condition for the (004) InGaAs
planes.

Position #2 Position #3

Frame x
c

y
c

Frame x
c

y
c

InP peak

A 49.63 59.95 D 49.60 58.66

B 49.63 59.96 E 49.61 58.57

C 49.64 59.88 F 49.59 58.55

InGaAs peak

A 50.67 59.60 D 50.65 58.25

B 50.75 59.39 E 50.61 58.15

C 50.66 59.56 F 50.64 58.21

Table 3.1: Centroids (coordinates x
c

, y
c

) of the diffraction patterns at two adjacent scan positions [See
Fig. 3.18], extracted for the InP and InGaAs peaks.

3.3.4 Radiation damage

The onset of eventual radiation damage was tracked by monitoring the diffraction signal at a
fixed illumination position for a total acquisition time of 50 min. This duration corresponds
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3.4. Bragg ptychography data analysis

approximately to the total illumination time of a single position in the Bragg ptychography
experiment. To this aim, a Frelon camera was used, located at a few 0.1 m from the sample. In
Fig. 3.15a, we can see the integrated intensity over the different angles of incidence of the X-ray
beam. Whenever the Bragg condition is met a peak appears on the detector, and summing up
all the collected frames results to the final image.

The detection frame exhibits some of the neighboring (004) Bragg peaks for the InP and
InGaAs layers, as well as the Si substrate. The first order harmonics of the forward beam are
also visible, while the central spot is blocked by a beam stop, to avoid signal saturation. The
intensity corresponding to the InP and InGaAs Bragg peak (red rectangle in Fig. 3.15a) was
integrated and plotted as a function of time in Fig. 3.15b while we rotate the sample for each
1sec-frame along the rocking curve. We can see that except from the fluctuations of the Bragg
peak maximum, there is no visible decrease of the signal, and thus radiation damage can be
considered negligible.

(a) (b)

Figure 3.15: (a) Intensity pattern resulting from the integration of the large and small angle scattering
signals observed during successive scans of the incident angle [log scale]. (b) Evolution of the intensity
during the same scan, integrated inside the red dashed area of the detector (both InP and InGaAs peaks).
We can see that the intensity has the shape of a ✓´2✓ scan, since we rotate the sample for each 1sec-frame.

3.4 Bragg ptychography data analysis

Before attempting the inversion of the data for the 3D imaging of the sample crystalline structure,
a careful analysis of the collected data is performed. As we will see, this step already allows to
evidence some structural features, that are contained in the dataset.

3.4.1 The measured diffraction pattern at a fixed illumination position

Figure 3.16a presents the 3D intensity distribution corresponding to the signal acquired along the
rocking curve for a fixed beam-to-sample position. This is represented in an orthogonal space for
sake of clarity, the q

x

axis being parallel to the sample surface, q
y

being on the surface plane as
well but perpendicular to q

x

, and q
z

being parallel to the sample’s (001) crystalographic direction
[See Fig. 3.11]. Both InP and InGaAs peaks are well visible with their reciprocal space separation
corresponding to the expected 0.56 % of lattice mismatch. Along q

z

, thickness oscillation fringes
are observed related to the different layer thicknesses. The high-frequency fringes are associated
to the InP layers while the low-frequency ones are associated to the much thinner InGaAs layer.
Along the thickness direction q

z

, the InGaAs peak is broader than the InP peak as an expression
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of the expected peak broadening resulting from size effects. We point out that all reciprocal
space features look tilted in the (q

x

, q
z

) plane. This shape is a consequence of the shape of the
illuminated volume which contributes to the diffraction pattern and is inclined by ✓

B

with respect
to the laboratory frame.

On the 2D cut shown in Fig. 3.16b, we can see the intensity distribution in the vicinity of
the InP and InGaAs Bragg peaks. This representation confirms that all features are sufficiently
oversampled, as the high-frequency interference fringes can be clearly separated. At the maximum
intensity level, which is at the InP Bragg peak, the intensity reaches „ 10

4 photons/pixels.
Finally, it is interesting to note that the shown 3D and 2D patterns present a regular behavior,
underlining once more the good quality of the data with respect to experimental instabilities.

Figure 3.16: (a) Measured 3D pattern of the (004) Bragg reflection. (b) Slice of the 3D pattern. (�q
x

“
0.1022nm´1, �q

y

“ 0.0120nm´1, �q
z

“ 0.1055nm´1)

3.4.2 Comparison with the expected structural model

As a first step in our analysis, we compare this experimental 3D pattern with the expected one.
The 3D intensity calculation is performed using structural parameters according to the nominal
values of the sample structure. The 3D illumination function is derived from the experimentally
retrieved one, presented previously in Fig. 3.9b. The physical models used for the describing the
sample/beam interaction and the propagation of the resulting wavefront up to the detector plane
were already described in Subsection 2.2.4. As a result, the measured diffraction pattern is the
square modulus of the Fourier transform of the product of the crystal electron density and the
illumination function. As this calculation is straightforward to perform, we decided to give all the
related details in the next chapter, along with the description of the numerical analysis works.

38



3.4. Bragg ptychography data analysis

However, we like to underline that the comparison between the experimental intensity patterns
and the expected ones is of great importance for understanding the nature of the observed
features on the diffraction patterns. This should be systematically attempted, when a relevant
structural model exists.

The result of this simulation is shown in Fig. 3.17. On the whole, the obtained intensity
distribution agrees well with the previously shown experimental measurements. The two Bragg
peaks are obtained at their expected relative positions, the thickness fringes and the inclined
shape of the patterns are reproduced as well. However, while the simulated InGaAs peak shape
agrees well with its experimental counterpart, strong discrepancies are observed on the InP peak
extent. They necessarily arise from structural distortions whose presence is further confirmed.

Figure 3.17: (a) Simulated 3D pattern of the (004) Bragg reflection. (b) Slice of the 3D pattern. (�q
x

“
0.1022nm´1, �q

y

“ 0.0120nm´1, �q
z

“ 0.1055nm´1)
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3.4.3 Spatial fluctuations in the structural properties

Figure 3.18: Measured diffraction patterns at Bragg condition for the (004) InP crystallographic planes.
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Figure 3.19: Measured diffraction patterns at Bragg condition for the (004) InGaAs crystallographic
planes.
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We now look at the spatial dependency of the intensity patterns. Fig.3.18 and Fig.3.19 present the
intensity distributions measured in the vicinity of the InP and InGaAs Bragg peaks respectively,
shown in the detector plane and as a function of the beam-to-sample positions. The horizontal
axis corresponds to scanning the sample along x, that is on the plane of incidence, while the
vertical axis corresponds to the direction parallel to y that is perpendicular to the plane of
incidence. As we can see, the shape, position and main characteristics seen on the diffraction
patterns, change smoothly along the line of the scan, as the sample is moved in the direction of
the beam footprint. The vertical position of the peak is visibly changing as we scan the sample
with respect to the beam. The calculation of the centroid for each of the diffraction patterns
clearly emphasizes those fluctuations [Figs. 3.20].

(a) (b)

(c) (d)

Figure 3.20: Diagrams of the relative distance of the InGaAs and InP diffraction patterns centroids,
with respect to the centroid of the first diffraction pattern. (a) �y

c

for the InP diffraction patterns as a
function of the column number of the ptychography scan. (b) �y

c

for the InP diffraction patterns as a
function of the line number of the ptychography scan. (c) �y

c

for the InGaAs diffraction patterns as a
function of the column number of the ptychography scan. (d) �y

c

for the InGaAs diffraction patterns as
a function of the line number of the ptychography scan.

In addition to the changing position and extension of the diffraction patterns as a function of
the beam positions, we can also observe a splitting of the InP peak along q

x

for several diffraction
patterns, as the one located in the top-right part of the ptychography XRD maps. This splitting
is even more readily seen on the InGaAs Bragg peaks, resulting in an separation of the peak along
the q

x

direction. It is shown on Fig. 3.21b, indicated by the black lines. Along this direction, the
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splitting suggests the presence of tilted crystallographic planes, whose tilt value can be calculated
according to:

�q
x

2

“ |G
004

| tanp�{2q ñ � “ 2 tan

´1

ˆ
�q

x

2|G
004

|

˙
(3.4.1)

where �q
x

“ p9.5 ˘ 1.7q ˆ 10

6m´1, and |G
004

| “ 4.2578 ˆ 10

10m´1. Hence, the value of � is
estimated to be between 1.2 ˆ 10

´2 and 1.8 ˆ 10

´2 degrees, among the different positions of the
ptychography scan.3

Figure 3.21: Intensity patterns represented on the orthogonal RS frame of the (004) Bragg reflection at
(a) position 5 and (b) position 31 of the ptychography scan. (�q

x

“ 0.1022nm´1, �q
y

“ 0.0120nm´1, �q
z

“
0.1055nm´1)

Another presentation of the dataset allows to bring interesting comparison elements. Figure
3.22 shows q

z

scans extracted from the 3D diffraction patterns at the center of the Bragg peaks,
for 6 beam-to-sample positions corresponding to the numbers shown on Figs. 3.18-3.19. These
cuts allow to estimate the variations of the InP/InGaAs lattice mismatch, which are found to be
negligible: the Bragg peak positions are not changing when different sample regions are probed.
However, strong intensity variations can be seen between different positions. Interestingly, those
fluctuations do not follow the same trends at the InP and InGaAs peaks (see for instance positions
5 and 9). Hence, the origin of the fluctuations on the intensity level can not be attributed to
some regular decay in the measured intensity (like the one induced by the intensity current in
the synchrotron ring). It is a consequence of the spreading of the InGaAs Bragg peak observed
on some specific locations along the sample, due to the presence of structural inhomogeneities in
the sample. Finally, we show in Fig.3.23 some 3D representations of the experimental intensity
patterns measured at three different positions of the ptychography scan. Here again, we observe
that the main distortions observed from one pattern to the other, appear as a spreading of the
InGaAs peak mainly along the q

x

and q
y

directions.

3The tilt value presents fluctuations which have to do with the fact that at different scanning positions around
the irregular phase feature, we see different amounts of the peak splitting. In addition, by geometrically estimating
the distance we can assume some uncertainty of one or two pixels for every calculation.
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Figure 3.22: ✓{2✓ scans extracted from the ptychographic data at 6 different positions of the scan.
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Figure 3.23: Three-dimensional intensities at three different positions of the scan, plotted from different viewing angles. (a)-(b) Position 3 (c)-(d) Position 9
(e)-(f) Position 75.
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3.5 Conclusions

In this chapter, we have presented all the experimental details related to this work. Although
great care was taken in the sample structure design whose main characteristics were confirmed by
complementary detailed post-fabrication structural characterizations, our Bragg ptychography
dataset unambiguously shows that structural spatially-dependent fluctuations are present in the
sample.
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O ne of the first necessary inputs for the experimental data inversion, is to provide an initial
estimate of the object to the PRA. Although that in general, random estimates can ini-

tialize the algorithm, the development of a spare but accurate model of the sample is of major
importance for the evaluation of the experimental reconstruction and the more in-depth under-
standing of the material behavior. Thus, the a priori information that is possessed thanks to
the preliminary high-resolution XRD results, as well as the composition and growth knowledge
allowed us to build a simple model for the numerical study of the problem.

Nevertheless, the modeling for ptychographic imaging also involves the illumination function
which in the majority of the literature is obtained using ptychography with a perfectly known
sample and solving the optimization problem with respect to the unknown probe profile [53],
or simultaneously updating object and probe during the inversion with a more sophisticated
algorithmic process [88, 58]. In Section 4.1, we will briefly describe the technique we employed in
order to obtain the probe profile and how from that we constructed the three-dimensional probe.

The sample and probe modeling permitted the study of multiple parameters related with
the ptychographic experiment and the inversion strategy, like the overlapping and oversampling
conditions, the exposure time per frame (which defines the SNR), or the choice of the inversion
algorithm. More specifically, in Section 4.2 we will investigate the role that the initial guess, the
choice of the support thickness and the regularization parameter µ play in the data inversion and
final reconstruction quality by comparing inversions of synthetic, noise-free and noise-corrupted
data. Finally, we will see how we optimized the relevant parameters and discuss the reasons why
we chose an OS-NCG hybrid inversion strategy for the experimental reconstruction.
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Chapter 4. Data inversion

4.1 The forward numerical modeling

In this section we will develop the physical model that describes the crystal structure of an
ideal InP/InGaAs semiconducting thin film, and employ this model in order to simulate the
measured intensity patterns according to the already described theory of the forward modeling
[See Chapter 2].

4.1.1 Strain and lattice tilt modeling in a numerical sample

As we saw in Section 3.2, our thin film consists of two layers of InP, and between them, a layer
of InGaAs which is lattice-matched with respect to InP. Suppose that the InP and InGaAs
layers have exactly the same lattice parameters on the planes which are parallel to the (001)
crystallographic planes (ak “ a

c

) after deposition (perfect lattice match). As a result, the unit-
cell will elongate in the perpendicular to the (001) planes direction as seen on Fig. 4.1b, thus
aK “ a1

L

.

Figure 4.1: (a) A cross-section of the InP/InGaAs thin film. Zero is located in the bottom interface of
the sample (InP/SiO

x

interface). (b) The atomic arrangement before and after the deposition process
(MOVPE). For ideal lattice-matching, the aK will adjust to the value of a

c

which corresponds to the InP
lattice parameter.

The strain component along the (001) direction will be now given by the following equation:

✏K ” ✏
zz

“ a1
L

´ a
c

a
c

“ a
InGaAs

´ a
InP

a
InP

“ �a

a
(4.1.1)

If we consider the displacement along the (001) direction u
zz

“ �a “ �d, constant inside the
InGaAs layer, then the total phase shift between the two InP/InGaAs interfaces will be an
integer multiple of the strained unit-cell which fits in the 40nm-thick InGaAs layer, times the
absolute value of the chosen diffraction vector G

004

.

(1.1.2) ñ 1

d

2
hkl

“ h

2`k

2`l

2

a

2

(1.1.8) ñ � “ u ¨ G
hk`

,
/.

/-
ñ �pzq “ u

zz

pzq ¨ G
004

“ npzq ¨ �d ¨ |G
004

|

ñ �pzq “ �d

d
004

¨ |G
004

| ¨ z “ ✏
zz

¨ |G
004

| ¨ z, @z P r100, 140s rnms (4.1.2)

As we can see from Eqn. (4.1.2), the phase will have a linear dependence on the z coordinate
inside the InGaAs layer, while in the two InP layers is expected to be constant, since the InP
lattice parameter is ideally considered to be constant. Thus, we can write the phase function
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4.1. The forward numerical modeling

inside the entire sample as a function, independent of the x and y coordinates:

�pzq “

$
’’’’&

’’’’%

0, @z P r0, 100q rnms

✏
zz

¨ |G
004

| ¨ z, @z P r100, 140s rnms

0, @z P p140, 340s rnms

(4.1.3)

That is the quantity we are aiming to retrieve, which is contained in the electron density as we
explained in Section 1 [See Eq. (1.1.9)]. We can see the phase profile in a cross-section along the
thickness of the object on Fig. 4.2 below.

Figure 4.2: (a) Cross-section of the phase profile for an ideal InP/InGaAs thin film. The phase is constant
inside the two InP layers depicted with blue and dark red, while it has a chromatic gradient inside the
strained intermediate layer. (b) Plot of the phase along z, taken at the blue dashed line of the left figure.

From the physical point of view, it is worth understanding the influence of the derived model
on the diffraction pattern. For this, we will calculate the Fourier transform of the exit-field as we
have defined it in Section 2.1, for an illumination function p

j

prq and the derived object function
⇢prq “ |⇢prq| ei� for each of the two materials.
For the two InP layers, since the phase is zero we will have:

 pqq “
ª `8

´8
 
j

prq e´2⇡irqdr “
ª `8

´8
p
j

prq|⇢prq|e´2⇡irqdr (4.1.4)

While for the strained InGaAs layer we get:

 

1pqq “
ª `8

´8
 1
j

prq e´2⇡irqdr

“
ª `8

´8
p
j

prq|⇢prq| ei� e´2⇡irqdr

“
ª `8

´8
 
j

prq ei�rG004´2⇡irqdr

“
ª `8

´8
 
j

prq e´2⇡iprq´|�r|ˆr G004
2⇡ qdr

“
ª `8

´8
 
j

prq e
´2⇡irpq´ |�r|

|r|
G004
2⇡ qdr

“  pq ´ ✏
zz

2⇡
G

004

q (4.1.5)
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Chapter 4. Data inversion

We can see that the presence of a linear phase profile inside the InGaAs layer, will displace its
far-field diffraction peak with respect to the InP peak and the displacement amount depends
only on the strain value ✏

zz

and the energy of the X-ray beam. This equation directly relates
every gradient in the phase of the object function to the diffraction pattern .

Figure 4.3: Atomic arrangement inside the ideal (black dots) and tilted (white dots) lattices.

Here, we will focus on investigating the phase behavior when the crystal lattice is tilted with
respect to the y axis (tilt axis), which is normal to the rotation plane xz. For this we will use the
method of mathematical induction for deriving the phase profile of a tilted lattice. Suppose � is
the tilt angle with respect to the ideal lattice, the displacement amount which will be “seen” by
the diffraction vector can be calculated as follows. We start with calculating the accumulative
displacement along z as we move in the direction of the x-axis.

�z
11

“ 0

�z
12

“ �x sin �

�z
13

“ 2�x sin �
...

�z
1n

“ pn ´ 1q�x sin �

And now we continue with calculating the total displacement along z as we move along z, and
finally for an arbitrary atom located at position m, n of the lattice.

�z
21

“ �z ´ �z cos � “ �zp1 ´ cos �q
�z

31

“ 2�z ´ 2�z cos � “ 2�zp1 ´ cos �q
...

�z
m1

“ pm ´ 1q�zp1 ´ cos �q
�z

22

“ �z ` �x sin � ´ �z cos � “ �x sin � ` �zp1 ´ cos �q

ñ �z
mn

“ pm ´ 1q�x sin � ` pn ´ 1q�zp1 ´ cos �q (4.1.6)
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4.1. The forward numerical modeling

Thus, the additional phase that will correspond to the tilted lattice will be:

�px, y, z, �q “ u ¨ G
004

“ �z
mn

¨ |G
004

| “ rpm ´ 1q�x sin � ` pn ´ 1q�zp1 ´ cos �qs ¨ |G
004

|

ñ �px, y, z, �q “ rx sin � ` zp1 ´ cos �qs ¨ |G
004

| (4.1.7)

with � “ �px, y, z, �q in continuous form. For small values of � we can make the following
approximations of sin � « � and p1 ´ cos �q « 0. Thus, we obtain

ñ �px, y, z, �q “ x�|G
004

| (4.1.8)

Which means that any phase gradient in a given direction of DS, will displace the diffraction
pattern mainly along its corresponding reciprocal direction (x Ñ q

x

), but also in the direction
of the diffraction vector G

004

.
Now, in order to extract the tilt angle � from the reconstructed phase, one has to calculate

the first derivative of the phase with respect to x.

B�
Bx

“ sin � ¨ G
004

ñ � “ sin

´1

˜ B�
Bx

G
004

¸
(4.1.9)

That is an interesting outcome, because it shows that the distortion of the Bragg peak is encoded,
and very small lattice tilts are going to be visible in the retrieved phase as gradients.

4.1.2 Construction of the 3D illumination

The 3D modeling of the intensity which we described in Section 2.2.4, necessitates the construc-
tion of a 3D object and a 3D illumination function (⇢, p

j

: R3 Ñ C). The construction of the 3D
illumination function is done in two steps. First, we reconstruct the complex X-ray field at the
point of focus using an adapted algorithm [51], and then we propagate and incline this field in
order to produce a 3D beam in angle to 2✓ with respect to the laboratory frame.

For the first step, the inversion approach necessitates the knowledge of the beam at differ-
ent planes along the propagation axis x

i

. The concept of the technique is to reconstruct the
planar wavefield of the beam at the focal point [See Chapter 3.3, Fig. 3.9], using the relevant
propagation relations from/to the slits and to/from the detector plane in the far field [51]. The
knowledge of the slits opening and the measured intensity of the over-focused beam can then be
used as constraints for the inversion algorithm, in order to iteratively retrieve the 2D complex
illumination profile [See Refs. [44, 64] for more details].

Having this information, the 3D illumination along the propagation direction can be easily
constructed under the assumption that the beam is constant inside the sample. A consideration
which is valid in the case of X-rays, since the focal depth is a few hundreds of micrometers, while
the beam path inside the sample only a few hundreds of nanometers, and absorption is negligible.

We schematically show the assembling of separate frames of the propagating beam in the
vicinity of the focal point, for the development of a 3D illumination volume. While in Fig. 3.9b
we can see the complex-valued representation of the beam on the normal plane to its propagation
(k

i

), on Figs. 4.4a-4.4c we can see the amplitude of the beam on the yz plane, being translated
in the direction of z in order to reproduce the beam positioning at 2✓ in the laboratory frame
(x, y, z). The translation is done by Fourier transforming the wavefront and then multiplying
with an appropriate linear phase - using the shifts property of the Fourier transform.

On Figs. 4.4d-4.4f we can see different sections of the 3D exit-field inside the numerical sample.
We remind the reader that the exit-field is nothing else but the product of the illumination times
the object. The height difference of the three cross-sections is due to the Bragg geometry. More
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Chapter 4. Data inversion

specifically, in order to simulate the Bragg condition for the (004) reflections of the InP/InGaAs
thin film, the sample has to be oriented in ✓ « 16° in the laboratory frame, while the probe in
2✓. Finally, on Figs. 4.5a-4.5c we can see the illumination function on the xz plane of incidence,
at different positions along y, and on Figs. 4.5d-4.5f the cross-section of the thin film with the
illumination.
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Figure 4.4: Cross-sections of (a)-(c) the 3D illumination and (d)-(f) exit-field amplitude at different yz planes in the laboratory reference system. (logarithmic
scale, the arrows are scaled to „150 nm along y and 170 nm along z)
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Figure 4.5: Cross-sections of (a)-(c) the 3D illumination and (d)-(f) exit-field amplitude at different xz planes in the laboratory reference system. (logarithmic
scale, the arrows are scaled to „200 nm along x and 170 nm along z)
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4.1. The forward numerical modeling

4.1.3 From a numerical sample to a noisy mock dataset

From Eqn. (2.2.11) and (2.2.19), the expected (i.e., average) intensity detected during a Bragg
ptychographic experiment is defined by the following relation1,2

h
j

p⇢q “ | 
j

p⇢q|2 ` b
j

(4.1.10)

where b
j

P CM1ˆM2ˆM3 is the expected background event component and  
j

P CM1ˆM2ˆM3 is
the 3D Fourier transform of the exit-field [See Subsection 2.2.4]

 
j

p⇢q “ DFT3D pp
j

ˆ ⇢q (4.1.11)

with ⇢ and p
j

, respectively the sample and the j-th probe function expressed in the DS natural
system. Because the sample ⇢ is the quantity of interest, the formal dependency with respect to
⇢ is made explicit in the modeling relations (4.1.10) and (4.1.11).

In this chapter, our aim is to investigate, through numerical means, if the sample can be
retrieved from the inversion of a noisy ptychographical dataset. From that perspective, the ex-
pected intensity (4.1.10) is a pivotal quantity. Firstly, this relation is used for simulation purposes
when one aims at generating a numerical (mock) Bragg ptychography diffraction dataset, when
both probe and sample are given. More precisely, according to Subsection 2.2.4, for each probe
position j “ 1 ¨ ¨ ¨ J , the recorded intensities are gathered in a matrix Y

j

with size M
1

ˆM
2

ˆM
3

,
where M

1

ˆ M
2

is the number of pixels on the camera and M
3

is the number of points extracted
in the rocking-curve. For a more realistic simulation, photon shot-noise is considered: each ele-
ment in Y

j

is a pseudo-random integer drawn from a Poisson law via the following probability
distribution function3

P pY
j;mq “ e´h

j;mp⇢q ˆ h
j;mp⇢qYj;m

Y
j;m!

(4.1.12)

where m “ pm
1

, m
2

, m
3

q stands for a triplet locating a scalar in the 3D matrices Y
j

or h
j

p⇢q.
This results in a synthetic dataset tY

j

uJ
j“1

mimicking the diffracted intensity expected during
the Bragg diffraction experiment presented in Section 3.3. Let us stress that such a mock data-set
can be generated with an arbitrary signal-to-noise ratio. For that purpose, the expected intensity
(4.1.10) considered in (4.1.12) is slightly modified and reads

h
j

p⇢ ; I
0

q “ I
0

ˆ | 
j

p⇢q|2 ` b
j

(4.1.13)

where the parameter I
0

P R` scales the averaged intensity of the probe function, hence allowing
to adjust the global photon counting rate that would be detected by the camera.

On Figure 4.6 we show the expected (noise-free) diffraction pattern generated from the nu-
merical sample, presented in the beginning of the chapter for two angles of incidence: one that
satisfies the Bragg condition for the InP (004) crystallographic planes, and the other one for the
InGaAs. On the same figure [Figs. 4.6d,g] we can also see the noise-corrupted diffraction patterns
for two different values of SNR. The reason for I

0

“ 10

4 was dictated by the actual counting
rate of the ptychography experiment, as depicted in Fig. 3.16, where the maximum intensity is
13000 photons. This value of I

0

produces counting rates similar to the ones observed in the real
experiment.

1In the relation (4.1.10) and (4.1.11) above, | ¨ |2 and ˆ stand for component-wise squared modulus and
multiplication operations.

2Let us stress that, according to Sec. 2.2.4, the relation (4.1.10) should read h1
j

“ | 1
j

|2 ` b1
j

where the "1"
mark denotes the sampling of the reciprocal-space along the natural coordinate system. However, for notational
convenience, the the “ 1” mark will be dropped in the sequel, and the notations h1

j

,  1
j

, p1
j

and ⇢1 are replaced
hereafter by h

j

,  
j

, p
j

and ⇢, respectively.
3The random outcome is generated with the poissrnd function from the Matlab Statistics Toolbox.
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Chapter 4. Data inversion

Figure 4.6: (a) The noise-free InP and InGaAs (004) Bragg peaks superimposed (13000 photons at
max). (b) Zoom on the red rectangle area of the InP peak (noise-free). Same frame as before for (c)
noise-corrupted data with 13000 photons at max and (d) 1300 photons at max. (e) Zoom on the green
rectangle area of the InGaAs peak (noise-free). Same frame as before for (f) noise-corrupted data with
13000 photons at max and (g) 1300 photons at max.

Finally, as explained in Sec. 2, relation (4.1.10) is also a pivotal quantity involved in the phase
retrieval algorithm, i.e., when one aims at retrieving the sample with both the knowledge of
the probe and the ptychographical dataset. Since mock datasets can be generated with arbitrary
SNRs, we now aim at investigating the ability of the inversion algorithms presented in Subsection
2.1.2 to retrieve the numerical sample defined above from a set of diffracted intensities.

4.2 Inversion strategy

The algorithms presented in Section 2 make rather straightforward to investigate if the numerical
sample (or at least a good estimate of it) can be retrieved from a simulated noisy dataset: given
an initial-guess (or initial estimate) ⇢

k“0

, either the OS-PIE (2.1.17) or the nonlinear conjugate-
gradient (2.1.20) generates a sequence t⇢

k

u
k“1¨¨¨8 aiming at iteratively minimizing the (least-

square) criterion that reads

Lp⇢q “
ÿ

j

L
j

p⇢q with L
j

p⇢q :“
ÿ

m

”
Y 1{2
j;m ´ h1{2

j;mp⇢q
ı
2

. (4.2.1)

As explained in Section 2.1.2, the quantity (4.2.1) is also known as the data fidelity term since
it is a distance between the recorded intensities tY

j

uJ
j“1

and the expected intensities thp⇢quJ
j“1

generated from the proposed sample ⇢. As a result, this quantity vanishes if one considers in
(4.2.1) the noise-free dataset and the true object —i.e., the sample used to generate the intensity
patterns. If the initial-guess is not the true object (but it is not “too far” from it either) we do
expect that the true object will be retrieved, leading to a criterion decreasing toward zero as the
iteration number grows. As an illustration, 300 iterations of the OS algorithm were performed
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4.2. Inversion strategy

with an initial-guess that is a slightly perturbed4 version of the true object. The evolution of the
criterion is shown in Fig. 4.9, and a cross-section5 through the initial/retrieved objects is shown
in Fig. 4.10a-4.10d and in Figs. 4.11a-4.11d for a zoomed version.

Obviously, noisy data should be considered in a real experiment and, in this case, the criterion
does not decrease toward zero with the iteration number. In this case, if one uses an initial-
guess that is the true object, the algorithm converges to a “perturbed” version of this object;
this retrieved object is however the one that is consistent with the data. These assertions are
illustrated in Fig. 4.9, and in Figs. 4.10e-4.10h and Fig. 4.11e-4.11h.

Figure 4.7: 3D representation of the InP/InGaAs thin film. We can see the inclined illuminated volume,
the incident and diffracted beam (k

i

and k
f

), as well as the yz and xz planes (denoted by their normal
n1 and n2 vectors respectively).

(a) (b)

Figure 4.8: Slice of the true object object on the central yz plane of the 3D numerical object. We can
see its (a) amplitude and (b) phase.

From the computational side, it should be stressed that we have to deal with a very large-scale
optimization problem. For instance, the number of unknown parameters that are updated in each
iteration is N

x

ˆ N
y

ˆ N
z

“ 276 ˆ 120 ˆ 622 “ 20.600.640 — i.e., the size of the 3D numerical
4The initial estimate is related with the true object by the following equation, which points out the relative

amplitude and phase fluctuations with an adequate degree of randomness.

⇢
k“0;n “ ⇢˚

n ` X ¨ ei⇡Y , @n P S (4.2.2)

where ⇢˚ is the true object, and X, Y are two random variables with uniform distribution in r0, 1s.
5For the examination of the retrieved objects, we will make use of 2D slices taken from the 3D volume, as

seen in Fig. 4.7. Having in mind the inclined by ✓
B

“ 16.38° incident beam, denoted by the k
f

vector, and the
fact that the algorithm is going to reliably reconstruct the amplitude and phase only in the well lighten part of
the sample, one needs to define a reasonable way to examine and compare the reconstructions. For this reason
we take 2D slices at the center of the reconstructed volume on the yz plane, defined by the normal to its surface
vector n1. [See Figs. 4.7, 4.8].
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sample. In addition, each one of the J “ 99 probe positions give birth to M
3

“ 180 diffraction
patterns, each one being composed with M

1

ˆ M
2

“ 516 ˆ 100 pixels. The sample estimate
and the dataset are bulky quantities requiring several GBs of RAM for the storage. Hence, the
algorithms have to deal with a considerable computational burden: one single iteration of the
OS-PIE or the NCG requires typically6 3 minutes, leading to around 15 hours of run-time for
300 iterations. With such running times, it turns out that the choice of the initial guess is a
critical issue. This is the put forward in the next subsection.

(a) (b)

Figure 4.9: (a) The criterion of Eqn. 4.2.1 as a function of the number of iterations for the two inversions,
with their results shown on Fig. 4.10. (b) Zoom at the criterion of the second inversion (2). We can see
that in the case of noise-corrupted data the criterion doesn’t decrease below 10

6, while for noise-free data
it converges to zero.

6For the phase retrieval we used a workstation with 2 Quad Core Intel Xeon X5690 CPUs @ 3.47GHz and
94GB of DDR3 RAM @ 1333MHz.
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4.2. Inversion strategy

(a) Initial amplitude (1) (b) Retrieved amplitude (1)

(c) Initial phase (1) (d) Retrieved phase (1)

(e) Initial amplitude (2) (f) Retrieved amplitude (2)

(g) Initial phase (2) (h) Retrieved phase (2)

Figure 4.10: In the left column, cross-sections of the initial estimate are shown: (a, c) are from an object
“close” to the true object (see text for details) while (e, g) correspond to the true object. The retrieved
object is shown in the right column: (b, d) were obtained from noise-free data while (f, h) were obtained
with noisy data.
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(a) Initial amplitude (1) (b) Retrieved amplitude (1)

(c) Initial phase (1) (d) Retrieved phase (1)

(e) Initial amplitude (2) (f) Retrieved amplitude (2)

(g) Initial phase (2) (h) Retrieved phase (2)

Figure 4.11: Zooms of the previous page cross-sections. Again, we can see the retrieved amplitude and
phase for two different initial estimates using noise-free (b, d) and noise-corrupted data (f, h). The initial
estimate in (a, c) is ‰ true object but sufficiently close to the true object, while in (e, g) is the true
object.
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4.2.1 A reconstruction (very) sensitive to the initial-guess

The sample retrieved from noisy data in Figs. 4.10f and 4.10h can somehow be considered as the
“best” reconstruction one can achieve since it was obtained with the true numerical sample as an
initial-guess. In practice though, the true object is unknown or never known precisely and it is
legitimate to investigate how the reconstruction is sensitive to the initial-guess.

As shown in Figs. 4.14a and 4.14d, a poor initial estimate clearly prevents the algorithm to
reach a valuable reconstruction of the sample. Furthermore, we note that the final value reached
by the criterion decreases when some relevant features about the sample are introduced in the
initial-guess. However, this numerical experiment clearly suggests that this initial guess needs to
be really “close” to the minimizer of the least-square criterion if one hopes that it is reached (at
least in a realistic amount of time) by the algorithm. For instance, while the initial guess shown
in Fig. 4.13c and 4.14c is almost identical to the true object (they share the same modulus and
the phases are only slightly different in the InGAS layer: the phase slope in the initial guess
is 70 % the slope in the true object), the retrieved object seems rather deteriorated. In other
words, the spatial diversity in 3D Bragg ptychography is not sufficient to avoid a stagnation of
the iteration and/or the convergence to an irrelevant local minimum.

These pathological behaviors are long known in the standard (2D) CDI community [23, 89]
and we wish now to explore these issues with this comparison in mind. For instance, the solution
unicity for the 2D phase problem7 [20] assumes the knowledge of the support of the unknown
object [24, 89] and, as shown by several numerical analysis [90], the robustness with respect to
this support constraint is rather poor. In the ’90s, this issue was circumvented with a scanning
probe extracting, in each position, a local information about the phase of the sample: it is
exactly the 2D ptychographic experiment that is much more robust to the initial guess. In a 3D
Bragg ptychographic experiment, because the probe is invariant along the propagation direction,
this information about the sample is not extracted locally along that direction. As a result, the
reconstruction is poorly constrained along that direction, resulting in “echoes” which prevent the
algorithm to converge efficiently, see for instance Fig. 4.10f.

In conclusion, these convergence issues stem from the inherent ambiguities of the 3D phase
retrieval problem that we aim at solving by the iterative minimization of Equation (4.2.1).
Nevertheless, some additional constraints can solve (at least partially) these issues. This is the
topic of the next section.

7In addition, this unicity result still hold if the diffraction pattern is sampled at twice the Nyquist sampling
rate [22].
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(a) (b)

Figure 4.12: (a) The criterion of Eqn. 4.2.1 as a function of the number of iterations for three inversions, with their results shown in Figs. 4.13-4.14. The
bottom curve corresponding to the inversion using the true object as initial estimate, can be considered as a lower limit for the values of the criterion, and
represents ultimately the ideal reconstruction one can obtain using noise-corrupted data. (b) Zoom at the criterion of the three inversions during the first
twenty iterations. We can see that as we provide an initial estimate which is closer to the true object, the value of the criterion starts from lower values.
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(a) Initial estimate (1) (Amplitude) (b) Initial estimate (2) (Amplitude) (c) Initial estimate (3) (Amplitude)

(d) Retrieved object (1) (Amplitude) (e) Retrieved object (2) (Amplitude) (f) Retrieved object (3) (Amplitude)

Figure 4.13: Cross-sections of the retrieved amplitude for three different initial estimates using noisy data. The initial estimates amplitude can be seen in
(a)-(c), and the retrieved object in (d)-(f). For comparison with the inversion result when providing as initial estimate the true object we refer to Fig. 4.11f.
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(a) Initial estimate (1) (Phase) (b) Initial estimate (2) (Phase) (c) Initial estimate (3) (Phase)

(d) Retrieved object (1) (Phase) (e) Retrieved object (2) (Phase) (f) Retrieved object (3) (Phase)

Figure 4.14: Cross-sections of the retrieved phase for three different initial estimates using noisy data. The initial estimates phase can be seen in (a)-(c), and
the retrieved object in (d)-(f). For comparison with the inversion result when providing as initial estimate the true object we refer to Fig. 4.11h.
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4.2. Inversion strategy

4.2.2 A penalization acting as a “soft” support-constraint

From a methodological (i.e., inverse problem theory) perspective, the robustness problems re-
ported above should be solved via the introduction of a priori structural constraints about the
expected solution. These constraints act as additional information about the true sample. This
strategy (also known as regularization) is a quite common process in the field of inverse problems
[61, 91, 92].

From a practical viewpoint, this regularization usually takes the form of a penalty function
P added to the data-fidelity term (4.2.1). Obviously, this penalty is chosen so that it enforces
some expected features in the retrieved sample. In our case, following Berenguer et al. [62], this
penalty simply enforces the retrieved sample to be a thin film (i.e., it should act as a support
constraint). More precisely, let us introduce the sets

⌦ :“ tn |n does belong to the support of the thin filmu

and
⌦ :“ tn |n does not belong to the support of the thin filmu ,

then, the penalized criterion that the algorithm aims at minimizing now reads

J p⇢ ; µq “ Lp⇢q ` µPp⇢q with Pp⇢q :“ ∞
nP⌦ |⇢n|2 (4.2.3)

where ⇢n P C stands for the scalar element with coordinate n :“ pn
x

, n
y

, n
z

q in the 3D matrix
⇢. Because the penalty P is a summation over the set ⌦, any non-zero value outside the support
of the retrieved sample is penalized (but not prohibited). The regularization parameter µ • 0

tunes how this support constraint should be enforced in the final solution. While the traditional
support constraint in CDI is a “hard” constraint (0 or 1), this “soft” support constraint does not
set the voxel outside the support to be exactly zero, hence allowing non-zero values to emerge
if the dataset is strongly informative. In the sequel, we will assume that the geometry of the
thin film consists in a rectangular slab that is only parametrized by its thickness denoted by !.
Obviously, with experimental datasets, both the thickness ! and the regularization parameter µ
need to be adjusted. Before we detail the tuning of these parameters, we need to explain how
the algorithms in Section 2.1 should be modified so that the penalized criterion (4.2.3) can be
minimized.

Some implementations details. Let us consider the following equivalent formulation for the
criterion of Eqn. (4.2.3)

J p⇢ ; µq “
Jÿ

j“1

J
j

p⇢ ; µq with J
j

p⇢ ; µq :“ L
j

p⇢q ` µ

J

ÿ

nP⌦
|⇢n|2. (4.2.4)

According to the presentation of the OS-PIE and the nonlinear conjugate-gradient algorithm
[See Subsection 2.1.2], the gradient of J

j

is needed for the construction of these algorithms. It is
easy to obtain that this gradient reads

BJ
j;np⇢q “

$
’’’’&

’’’’%

BL
j;np⇢q ` 2µ

J
⇢n @n P ⌦X S

j

BL
j;np⇢q @n P ⌦X S

j

0 otherwise

(4.2.5)

where BL
j;n was defined in (2.2.31).
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Chapter 4. Data inversion

Finally, the preconditioning matrix that was previously defined in (2.1.18) should also be
modified according to

⇤ “ ↵ `
ÿ

j

`
p˚
j

ˆ p
j

˘
` µ I

!

↵ ° 0 (4.2.6)

where I
!

is a 3D matrix of the size of the sample with only zeros and ones, the entry is one if
n P ⌦ and zero if n P ⌦.

The tuning of the regularization parameter µ. Although the addition of an extra param-
eter µ is not a wishful thinking for optimization processes, it permits a more elaborate use of the
inversion strategy while generalizing the support constraint. Now we can consider for µ Ñ 0 the
absence of any support, while for µ Ñ 8 the use of a traditionally abrupt support constraint. As
an illustrative example, Figs. 4.16 shows the impact of this regularization parameter for a noisy
dataset and the true object as an initial guesses. Clearly, a rational mean to find an “optimal”
value of the regularization parameter is needed. In an attempt to define what “optimal” means,
let us first note that the minimizer of the criterion (4.2.3) is a trade-off between two sources of
information: the one coming from the data-fidelity part and the one coming from the a priori
(penalty) part. The L-curve strategy [93, 94] aims at finding a value for µ resulting in a balanced
trade-off between both these sources of information. In practice, this strategy consists in mini-
mizing the criterion (4.2.3) for various values µ P tµ

1

, µ
2

, ¨ ¨ ¨ , µ
L

u, hence providing a set of 3D
retrieved samples tp⇢

l

u
l“1¨¨¨L.

Figure 4.15: The L-curve for the optimization of the regularization parameter µ.

The plotting of the data-fidelity term tLpp⇢
l

qu
l“1¨¨¨ versus the “penalization term” tPpp⇢

l

qu
l“1¨¨¨

usually shows a “L shape”. The lower (horizontal) part of the “L” shape defines the solution set
that are mostly driven by the prior information. Conversely, the upper (vertical) part of the “L”
shape defines the solution set that are mostly driven by the data-fidelity information. Between
these two regimes lies the corner of the “L” that defines the solution that is usually selected, i.e.,
a solution driven by a balanced contribution of both the sources of information, see Fig. 4.15 for
an illustration.

66



4.2. Inversion strategy

(a) Retrieved amplitude (µ “ 0) (b) Retrieved phase (µ “ 0)

(c) Retrieved amplitude (µ “ 10

2) (d) Retrieved phase (µ “ 10

2)

(e) Retrieved amplitude (µ “ 10

7) (f) Retrieved phase (µ “ 10

7)

(g) Retrieved amplitude (µ “ 10

90) (h) Retrieved phase (µ “ 10

90)

Figure 4.16: Cross-sections of the retrieved amplitude and phase when providing as initial estimate the
true object and noisy data. We can see that for low values of µ, a large number of pixels outside of the
support shows nonzero values.
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Chapter 4. Data inversion

It should be noted, however, that this prior information is mostly enforced outside of the
support of the sample. This is not the situation originally considered for the L-curve since in [93]
the regularity constraint is enforced in the whole reconstruction domain. In our case, we expect
that this “outside” constraint will help in the reconstruction of the sample, and an arbitrary high
value for µ may be also appropriate. In practice, we found that a finite value for µ was most
appropriate and, by a trial and error exploration, we chose the value µ “ 10

7. This value was
considered in the sequel as the “optimal” value for our problem.

The tuning of the support of the thin film. In practice, the exact geometry of the thin
film is not precisely known and the support S needs also to be adjusted when one deals with
experimental data. For sake of simplicity, we do assume that the thin film is a rectangular object
only parametrized by its unknown thickness noted by !. A strategy for the estimation of this
thickness is now developed, mostly inspired by the “L-Curve” technique.

Let us consider a set of retrieved samples obtained with increasing thickness8 of the thin
film. Clearly, we do expect that the data-fidelity term L is very large when the thickness of
the film is underestimated. Obviously, this data-fidelity term should get lower and lower as the
thickness ! is increased and, we do also expect that this rate of decreasing will be different if !
is underestimated or overestimated. Here again, the plotting of the data-fidelity term versus the
width of the film should exhibit L-shape and the “corner” should locate the width of the film, see
Fig. 4.17 for an illustrative example. Interestingly, this strategy seems rather efficient in selecting
an appropriate width for the sample.

Figure 4.17: A selection of the support thickness value (regularization parameter) by means of the
“L-curve”. On the curve, we can distinguish two regions of different descent rates.

Still looking for a good initial-guess. With noisy data, even if the retrieved phase matches
well the true phase when the inversion is initiated with the true numerical object (which is
expected to be very close to the minimizer), we fail to obtain a satisfactory reconstruction when
the initial estimate is only slightly different, even with the regularization term properly tuned.
This situation is illustrated in Fig. 4.18 where the reconstruction obtained from an initial-guess
that exhibits a slope of the phase in the nominal InGaAs layer that is 70% the one of the true
object is shown. Clearly, we still need a strategy to providing a very good initial guess. In the

8In this experiment, the initial-guess and the regularization parameter µ are unchanged, the thickness ! being
the only parameter under investigation.
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4.2. Inversion strategy

next section, we will use the ingredient presented so far for the design of an ad hoc strategy
providing such an initial guess.

(a) Retrieved amplitude (µ “ 0) (b) Retrieved phase (µ “ 0)

(c) Retrieved amplitude (µ “ 10

7) (d) Retrieved phase (µ “ 10

7)

Figure 4.18: Cross-sections of the retrieved amplitude and phase when providing as initial estimate an
object with 0.70f1 of the nominal InGaAs phase slope and noisy data, for µ “ 0 and µ “ 10

7.

4.2.3 Towards a good initial-guess built from the dataset.

One of the salient features of the reconstruction artifacts is that the phase oscillations are related
to the amplitude inhomogeneity, and vice versa. As a result, we do expect that making the
amplitude smoother during the inversion will reduce the phase oscillations. This strategy seems
appropriate for our problem since we gathered from Sec. 3.2 that the modulus within the InGaAs
layer is only 20% higher than the one in the InP layers — in other words, the modulus within the
thin film is almost constant.

An homogeneous modulus is a rather strong (real-space) constraint for our reconstruction
problem. This constraint is indeed too strong since we would like to retrieve in the end the
small modulus variations within the thin-film. However, this constraint can help, as a first step
for building a “good” initial-guess that will be further improved, in a second step, by either the
OS-PIE or the NCG algorithm.

Because we would like to build this initial-guess from the dataset, this first step is indeed
also an iterative process relying on the OS update, given by relation (2.1.17). Since this update
r⇢
k`1

is subject to modulus inhomogeneity, it is corrected so that the modulus is homogenized in
each update: the next constrained update is defined by
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⇢
k`1;n “

$
’&

’%

⇢
k`1

ˆ r⇢
k`1;n

|r⇢
k`1;n| n P ⌦

r⇢
k`1;n otherwise

(4.2.7)

where ⇢
k`1

is the homogenized modulus within the thin-film9

⇢
k`1

:“
ÿ

nP⌦
r⇢
k`1;n.

Hereafter, the update (4.2.7) will be called a modulus homogenization step (MH step). Obviously,
we note that the iteration (2.1.17)-(4.2.7) has to be initiated with a first estimate. We do expect,
however, that the final result (i.e. the provided initial-guess) will be rather robust with respect
to this first estimate, see below.

The strategy described above is clearly inspired from CDI in that a real-space constraint is
added on the modulus of the retrieved object during the inversion step. However, this constraint
is rather “crude” and whereas the constraining step (4.2.7) could be enforced repeatedly in each
iteration, we also give the opportunity to relax this constraint for a few tens of iterations —in
this case, the update k Ñ k ` 1 is just a conjugate gradient step given by ⇢

k`1

“ r⇢
k`1

. Fig. 4.19
present the resulting initial guess obtained with 80 MH iterations followed by 20 unconstrained
updates ; in this case, a synthetic dataset corrupted by noise (with a maximum counts „ 10

4)
was used. The retrieved amplitude (and phase as well) approach more the profile of the limiting
case of starting with the true object as initial estimate, noisy data and letting the inversion
unconstrained (UN*). That means the object that minimizes the criterion is closer to the true
object than before.

This is better illustrated on Fig. 4.20a where we can see the behavior of the criterion as a
function of the number of iterations, for each of the three inversions respectively. The first curve
corresponds to one hundred iterations without application of the modulus constraint (UN). On
the top curve, the first eighty iterations are constrained and thus, the criterion values are elevated.
As soon as the MH constraint is removed, the values directly go down, reaches the UN curve
and decrease even further as it can be evidenced on Fig. 4.20d (zoomed region of the criterion
for the last five iterations).

9Instead of providing an averaged modulus value ⇢
k`1 to all the pixels in ⌦, one can provide precisely the

expected modulus profile we have developed in Subsection 4.1.1. However, it should be underlined that this more
“subtle” strategy results in artifacts if the position of the buried layer is mis-located.
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4.2. Inversion strategy

(a) Amplitude (0MH) (b) Amplitude (5MH)

(c) Amplitude (UN*) (d) Amplitude (True object)

(e) Phase (0MH) (f) Phase (5MH)

(g) Phase (UN*) (h) Phase (True object)

Figure 4.19: The retrieved amplitude and phase for unconstrained and MH constrained iterations. The
first three figures show the inversion results when using as initial estimate for the PRA a rough guess of
the true object (slope=0.70f1). The UN* result corresponds to the completely unconstrained inversion
when using the true object as initial estimate. For all the inversions we have used noise-corrupted data.
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(a) (b)

(c) (d)

Figure 4.20: (a) Retrieved amplitude of the final reconstruction for the unconstrained and MH constrained
inversion scheme, when using a rough initial estimate. Comparison with the completely unconstrained
case when providing the true object as initial estimate and the amplitude of the true object. (b) Retrieved
phase (idem). (c) The criterion as a function of the number of iterations for the three inversions. (d) Idem

zoomed on the last five iterations.

4.3 As a conclusion: an optimized inversion strategy

After the development of a physical and numerical model for the InP/InGaAs crystal thin film,
we described as well the physical process of measuring a 3D ptychographic dataset assembled by
2D Fraunhofer diffraction patterns in Bragg geometry. The description of this process contains
the assumption of certain noise statistics, which is used in the inversion scheme when minimizing
the data fidelity term. We saw that only minimizing the data fidelity term is not a simple task
since the inversion results have been unsatisfactory and for this reason we incorporated the widely
used approach of regularizing the obtained solution. The incorporation of regularization slightly
improved the quality of the retrieved object, while the optimization of its parameters (support
thickness and µ-value) turned out to be a matter of finding an empirical solution, rather than
obeying the L-curve rule.

Nevertheless, even the addition of regularization was not sufficient for retrieving a satisfactory
image, and for this reason we had to work in developing a suitable initial guess. This process we
referred to as modulus homogenization, aimed in accelerating the OS convergence by providing
extra a priori information concerning the modulus distribution (MH constraint). The outcome of
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4.3. As a conclusion: an optimized inversion strategy

the MH process was then provided to the NCG algorithm as initial estimate, for a final stage of
unconstrained iterations, where is going to hopefully gain by the small refinements of the NCG
update. This optimized strategy is illustrated in Fig 4.21 where the 100 first iterations aim at
constructing the initial-guess while the 100 following NCG iterations provide some additional
refinements.

(a) The criterion of the complete inversion scheme. During the first eighty iterations we apply
the MH constraint using the OS algorithm, the constraint is removed for the last twenty
iterations and the outcome is then provided for one hundred more iterations to the NCG (no
constraint applied).

(b) Amplitude of the final reconstruction. (c) Phase of the final reconstruction.

Figure 4.21: The optimized scheme proposed as the final inversion strategy of the experimental data [See
for comparison Fig. 4.19].

In conclusion, we have shown that this strategy scheme is robust enough and can significantly
overcome the stagnation problems that are encountered when starting the inversion with an initial
guess which is far away from the true object. In the next chapter we will see that the additional
implementation of the MH constraint (inside the OS routine) as a preparatory step for building
a good initial estimate, in combination with the empirical optimization of the inversion process
and a final amount of unconstrained cycles using the NCG algorithm, consist a good choice of
inversion strategy for the given problem, and was indeed an appropriate methodology to tackle
the inversion issues and achieve a satisfactory reconstruction result.
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I n this chapter, we present and examine the results that are obtained using the optimized
inversion strategy we presented in Chapter 4. The 3D reconstruction, obtained by the Bragg

ptychography experimental dataset is first shown in the Fourier and in sample spaces. This
aims at evaluating the overall quality of the obtained reconstructions. In the second section we
have a more detailed description of the sample retrieved image. The observation of structural
features that were not expected on this high-quality sample are shown to be linked to specific
characteristics of the intensity patterns. Their relation with the retrieved structural features is
investigated with the help of a numerical model, presented in Section 5.3. In the last section we
discuss the impact of the obtained experimental results.

5.1 3D reconstruction on experimental data

In this section, we present the details of the inversion strategy together with an overall description
of the 3D reconstruction.

5.1.1 Inversion strategy

In the previous chapter, we presented the results of an extended study performed on synthetic,
noise-corrupted data, aiming at validating the inversion strategy. We saw that the unconstrained
use of the OS algorithm gave dissatisfying results, with noisy reconstructions both in terms of
retrieved amplitude and phase, as well as high values of the criterion [Section 4.2]. This led

75



Chapter 5. Bragg ptychography on experimental data

us to the additional implementation of a regularization approach, which favors solutions inside
a reconstruction volume of a planar film, and the incorporation of a “weighting” penalization
parameter (µ). After the optimization of the two regularization parameters, the addition of
an extra amplitude constraint dramatically improved the quality of the reconstruction [Section
4.2.3].

Having that in mind, we chose for the inversion of the experimental data, a hybrid strategy
which consisted in 1000 iterations using the OS algorithm, for which the amplitude constraint
was applied during the first 800 iterations, while for the remaining 200 iterations the constraint
was removed. The result of this process provided a high-quality estimate as input to the NCG
algorithm, which ran for 1000 additional iterations [See Fig. 5.1]. During both inversion steps
(OS and NCG) regularization was applied, penalizing the reconstruction for every pixel outside
the planar support. The thickness of the support was fixed at a slightly larger value than the
actual film thickness at 353nm (along z), and the regularization parameter was µ “ 10

7. For the
amplitude constraint, we used a

h

« 1 and applied it as described in Chapter 4. The computing
time for the entire inversion was 117h (around 3mins/iteration for the OS and 4mins/iteration
for the NCG).

Figure 5.1: Evolution of the criterion during the reconstruction based on the experimental data. The
different steps used in the optimized inversion procedure are indicated on the graph.

5.1.2 Retrieved data fidelity

The inversion process aims at finding a 3D complex-valued object that satisfies the reciprocal
space constraints, i. e. the data. Hence, a direct index for the evaluation of the data fidelity term
seems naturally to be the criterion of Eqn. (2.1.13) shown above. However it is not an absolute
reference index. In addition to that, since it is a quantity summed over the entire number of
illuminated positions, it provides an average value for the complete reconstruction despite the
deviation of its values from one position to another.

For those reasons, visually comparing the measured experimental intensity patterns with
the ones produced by the retrieved object at each scan position, is a good way to evaluate the
reconstruction. For sake of simplicity, six specific beam-to-sample positions have been chosen,
which are considered as our reference positions all along this chapter. On Figs. 5.2, 5.3, 5.4 and
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5.1. 3D reconstruction on experimental data

5.5, the proposed intensity patterns are compared to the experimental intensities. The two first
figures show the retrieved intensity in the detector plane, taken at two different points of the
rocking curve, corresponding to the InP and the InGaAs peaks respectively, while the third one
shows the retrieved intensity in the (q

x

, q
z

) plane.
In Fig. 5.2, which presents the obtained results in the vicinity of the intense InP peak, we can

see that the proposed diffraction patterns are well reproduced with respect to the experimental
data, especially in the positions which demonstrate the expected phase profile (away from the
tilted area of the crystal film). Nevertheless, the fitting is surprisingly good even for some among
the tilted crystal positions, like position 9 [See Fig. 5.2b]. In particular, the overall shape, position
and internal intensity distributions of the InP peak are well reproduced by the found solution,
especially in the high photon counts. This is no more the case at the less intense InGaAs peak,
where the shape and position are well reproduced by the solution, while the structural details
of the intensity pattern are most of the time missing [Fig. 5.3]. This behavior suggests that a
satisfying convergence of the inversion procedure was achieved in the InP layer, while the fine
structural details related to the InGaAs peak could not always be retrieved. Finally, the views
shown in Figs. 5.4 and 5.5 allow to confirm the good agreement between the shapes, positions,
spreading of the Bragg peaks produced by the found solution and the measured ones.
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(a) Position 4 (b) Position 9 (c) Position 38

(d) Position 53 (e) Position 70 (f) Position 77

Figure 5.2: InP Bragg peak: on the left of every figure, we can see the proposed intensity patterns by the PRA compared to the corresponding measurement
on the right, at different positions of the ptychography scan.
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(a) Position 4 (b) Position 9 (c) Position 38
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Figure 5.3: InGaAs Bragg peak: on the left of every figure, we can see the proposed intensity patterns by the PRA compared to the corresponding measurement
on the right, at different positions of the ptychography scan.
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(a) Proposed #4 (b) Proposed #9 (c) Proposed #38

(d) Measured #4 (e) Measured #9 (f) Measured #38

Figure 5.4: Intensity patterns shown on the q
x

q
z

plane, taken at different positions of the ptychography scan (�q
x

“ 0.1022nm´1, �q
z

“ 0.1055nm´1).

80



5
.
1
.

3
D

r
e
c
o
n
s
t
r
u
c
t
i
o
n

o
n

e
x
p
e
r
i
m

e
n
t
a
l
d
a
t
a

(a) Proposed #53 (b) Proposed #70 (c) Proposed #77

(d) Measured #53 (e) Measured #70 (f) Measured #77

Figure 5.5: Intensity patterns shown on the q
x

q
z

plane, taken at different positions of the ptychography scan (�q
x

“ 0.1022nm´1, �q
z

“ 0.1055nm´1).
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5.1.3 3D retrieved image

The inversion of the Bragg ptychography dataset allows to retrieve the complex-valued electron
density, as described in Chapter 2. The retrieved 3D sample structure is now presented in Fig. 5.6,
where the 3D amplitude and phase are shown. The found solution obtained in the nonorthogonal
space (the conjugate to the detector space) is transformed so that it can be plotted into the
laboratory frame. The ptychography scan, performed on a restricted area of the whole continuous
film, allows to image only a small volume of the film, presenting a parallelepiped shape. Due to
the shallow angle of incidence (✓

B

“ 16.38

˝), the volume is elongated along the beam-footprint
direction. Moreover, on the border of the scan, the total impinging intensity is smaller than in
the center, and as a result those regions are more noisy. For this reason, we kept only the part
of the reconstruction which contains the most reliable phase information and which corresponds
to the parallelepiped volume of Figure 5.6. The internal distribution of amplitude and phase are
shown on two 2D cross-sections, one along the parallel and one along the perpendicular to the
beam-footprint direction.

The retrieved amplitude presents important fluctuations - much more important for the re-
trieved amplitude than the phase - a common issue in phase retrieval problems [61, 40] which has
often been solved using uniformity constraints on the retrieved amplitude [30]. On the opposite,
the retrieved phase of the 3D reconstruction shown in Fig. 5.6b, is in good agreement with the
expected physical model we have derived in Section 4.1. In particular, the thickness values of the
three layers are retrieved with a good agreement with respect to their nominal structural values.
The position of the InGaAs layer within the InP material is correct as well.

f004 (rad) 
-p p 

x [110] 
y[110] 

z [001] 

Amplitude (a. u. ) 
0 1.5 

a 

b 

x [110] 
y[110] 

z [001] 

Figure 5.6: 3D representation of the reconstruction. The isosurface corresponds to isovalue=0.6. The
shape of the volume is inclined due to the Bragg geometry, where the incidence angle is „ 16

˝.
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5.2. Detailed analysis of the 3D retrieved image

This is further emphasized with the extraction of the strain component ✏
zz

, obtained from the
3D phase map. After unwrapping the phase, a task usually performed by dedicated algorithms
[95] and which provides the retrieved phase in its actual range and not multiple times wrapped
in r´⇡, ⇡s, we apply Eqn. (4.1.2) in its differentiated form, that is

(4.1.2) ñ B�
Bz

“ ✏
zz

|G
004

| ñ ✏
zz

“
B�
Bz

|G
004

| (5.1.1)

The result is presented in Fig. 5.7, where we can see the calculated strain map for the same
region as in the figure above. Although we can see some fluctuations on the ✏

zz

maps, the general
profile is quantitatively in agreement with our expectations regarding the strained InGaAs layer.
The 1D profile extracted from the 3D volume shows that the strain value is retrieved with a
good accuracy with respect to the nominal value. Moreover, the full width of the InGaAs layer,
slightly larger than the nominal one, allows to evaluate the vertical resolution, which is estimated
to about 7 nm.

Figure 5.7: 3D representation of the reconstruction with plotted the retrieved ✏
zz

strain component.

5.2 Detailed analysis of the 3D retrieved image

5.2.1 Phase maps

In order to perform a more extensive examination of the retrieved solution, we now proceed with
the investigation of 2D cross-sections taken across the 3D reconstruction. The axis orientation
together with the illumination positions are defined in Fig. 5.8. The wrapped phases are plotted
onto 2D planes either parallel to the yz plane, taken along x (Fig. 5.9), or on xz planes, taken
along the y axis (Fig. 5.10).

On most of the retrieved volume, the phase profile is behaving as expected: the phase values
are quite constant on the two InP layers and the InGaAs layer presents a constant phase gradient.
However, a strong modification of the phase profile is evidenced in an area around x “ 1500 nm
and y “ 400 nm. This phase feature can be roughly described as a gradual increase of the phase
along the y axis and as positive phase bump along the x axis. This additional phase profile leads
to the bent appearance of the InGaAs layer. Note that this sample part was investigated with
illumination position 9 and its neighboring positions, as indicated in Figs. 5.8 and 5.11. In this
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Figure 5.8: Transparent isosurface of the reconstructed amplitude (isovalue=0.6). The sample volume is
represented in the orthogonal px, y, zq reference frame. With yellow we can see the “effective” footprint
(in scale) of the beam and with blue dots the scan positions taken in the center of the illumination and
the middle of the sample depth, with k

i

,k
f

the incident and diffracted beam.

region, the diffraction patterns present a splitting of the InGaAs Bragg peak together with an
important elongation of the InP and InGaAs peaks [See Fig. 5.4 and 5.5].

5.2.2 Tilts of crystal planes

The features observed in the reciprocal space and along the retrieved phase map are indicating
the presence of crystalline plane rotations. The rotation angles can be easily extracted from
the 3D phase, using Equation 4.1.9. In a more general notation which includes tilt components
around two different axes of rotation, it writes:

�
i`1

“ sin

´1

ˆ B
i

�

G
004

˙
, with B

i

“ B
Bi

, i “ x, y (5.2.1)

Thus, by calculating the partial derivatives B�
Bx , B�

By of the 3D phase map, we can estimate the tilt
maps, �

y

or �
x

, that correspond to rotations around the y and x axis, respectively. The detailed
behavior of the �

x

distribution is shown in Figs. 5.12,5.13 and 5.14, while similar plots obtained
for �

y

are presented in Figs. 5.15, 5.16 and 5.17.
As seen with the analysis of the dataset, their behavior is not homogeneous but presents

spatial variations. For both �
x

and �
y

, we observe that the volume can be divided in two regions.
On the larger x side, the tilts are rather constant, taken as an orientation reference and therefore
being equal to 0 in average. On the other region corresponding to the lower values of x, the �

x

tilt value increases to about 0.02

˝. For �
y

, the tilt is first decreasing down to « ´0.02

˝ before
increasing up to about 0.02

˝, from the right to the left of the retrieved areas along x. Those
behaviors are in agreement with the angular motion of the Bragg peaks observed in the data set,
as detailed below. Interestingly, the typical tilt values obtained from the inversion process are in
good agreement with the tilt value estimated from the splitting of the Bragg peak.
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5.3 Introducing a crystal plane tilt model

In order to go deeper in the understanding of the features observed in the retrieved phase map
and in the corresponding tilt map, we now introduce a numerical model taking into account a
local rotation of the probed crystalline plane.

5.3.1 The crystal plane tilt model

The discrepancies observed between the defect-free model and the experimental data invoke the
presence of spatially localized rotations of the crystalline planes. In chapter 4, we introduced
a model that we used to account for those tilts. We showed that a local tilt expresses itself
as an additional displacement field component u

t

, varying linearly with the spatial coordinates
perpendicular to the tilt axis. For a tilt corresponding to the rotation of the crystal planes around
the y axis, u

t

writes
u
t,001

px, z, �q “ x sin � ´ z p1 ´ cos �q (5.3.1)

from which we can derive the phase offset �
t,004

associated to the G
004

Bragg vector

�
t,004

px, z, �q “ |G
004

| ˆ
`
x sin � ´ z p1 ´ cos �q

˘
. (5.3.2)

This model was used to introduce a local tilt in the numerical mode initially built on the nom-
inal structural parameters of the InP nanostructured layer. Several configurations were tested,
where one or two tilts were introduced, with different values for �, tilt width along x and vertical
extension limited to some or all the InP and InGaAs layers. On Fig. 5.18, we present a series of
phase profiles, where a crystalline plane rotation has been introduced. It consists in a positive
and then negative rotation of the plane, extending along x over a distance L, for 2 values of �.
The intensity profiles have been calculated for different positions of the incoming beam, whose
centers are schematically represented by the colored circles.

85



Chapter 5. Bragg ptychography on experimental data

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.9: Plots of the retrieved wrapped phase on successive yz planes, taken along the x ° 0 axis.
On the two InP layers (top and bottom) the retrieved phase is expected to be constant, while inside the
InGaAs layer a linear phase is expected. Due to the total angle difference of �� « 9.5rad in the entire
thickness of the InGaAs layer the phase is wrapped in the value space of r´⇡,⇡s.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.10: Plots of the retrieved wrapped phase taken on successive xz planes, along the y ° 0 axis.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.11: Plots of the retrieved wrapped phase taken on successive xz planes, along the y ° 0 axis. The
rectangles correspond to the diffracting volume which mainly contributes to the formation of the measured
intensity patterns (at positions 4,9,38,53,70,77). The dots indicate the centers of the ptychography scan
- beam positions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.12: Crystal tilt �
x

correponding to the crystal plane rotation around the x axis, shown at
different yz planes (B�{By). The shown quantity is calculated using Equation (5.2.1), with i “ y.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.13: Crystal tilt �
x

correponding to the crystal plane rotation around the x axis, shown at
different xz planes (B�{By).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.14: Crystal tilt �
x

correponding to the crystal plane rotation around the x axis, shown at
different xz planes. The rectangles correspond to the diffracting volume which mainly contributes to the
formation of the measured intensity patterns (at positions 4,9,38,53,70,77). The dots indicate the centers
of the ptychography scan - beam positions.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.15: Crystal tilt �
y

correponding to the crystal plane rotation around the y axis, shown at
different yz planes (B�{Bx).The shown quantity is calculated using Equation (5.2.1), with i “ y.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.16: Crystal tilt �
y

correponding to the crystal plane rotation around the y axis, shown at
different xz planes (B�{Bx).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i)

Figure 5.17: Crystal tilt �
y

correponding to the crystal plane rotation around the y axis, shown at differ-
ent xz. The rectangles correspond to the diffracting volume which mainly contributes to the formation
of the measured intensity patterns (at positions 4,9,38,53,70,77). The dots indicate the centers of the
ptychography scan - beam positions.

94



5
.
3
.

I
n
t
r
o
d
u
c
i
n
g

a
c
r
y
s
t
a
l
p
l
a
n
e

t
i
l
t

m
o
d
e
l

Figure 5.18: Phase profile resulting from the introduction of a local tilt in the numerical model of the nanstructured sample. The tilt extent and values
are respectively noted L and �. A series of 6 combinations was studied, for which the resulting diffraction patterns were calculated as a function of the
beam-to-sample position (see Fig. 5.18).

95



Chapter 5. Bragg ptychography on experimental data

5.3.2 The intensity patterns

The resulting diffraction patterns are presented in Fig. 5.19 for each structural configuration (tilt
value, spatial extension and beam position) presented in Fig. 5.18. The intensity modifications
induced by the presence of the tilts are evident: distortion and elongation of the Bragg peaks,
shifts and/or splitting of the InGaAs peak along q

x

. Directly linking the phase behavior to
the intensity distribution is not straightforward because the phase profile into the elongated
illuminated volume is rather complex and because the whole intensity pattern is produced by
the interferences between the fields arising from the InP and InGaAs layers. However one can
conclude that a negative phase gradient produces a shift of the associated signal towards q

x

° 0.
The opposite behavior is observed for a positive phase gradient. This is especially verified in the
case of the InGaAs peak, which has visibly moved down on the fifth position of the scan. When
the illuminated volume includes regions of both negative and positive phase gradients, then the
peak splitting is more pronounced, as evidenced for the fourth beam position.

When compared to the experimental data, we can see that this model reproduces some of the
specific features experimentally observed while scanning the beam. For those regions, we can also
observe that the retrieved phase field, presents strong similarities with the numerical model. All
these indicate the compatibility of this hypothesis with the experimental observations. Note that
the qualitative agreement between the simulated and experimental data, was achieved although
we restricted the model to a minimum number of fitting parameters.

Reproducing the observed phase feature was important for deciphering the information that
appears on the measured diffraction patterns. It verifies the claim for lattice tilts inside the thin
film, but most of all, demonstrates the sensitivity of 3D Bragg ptychography to small crystalline
rotations.
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Figure 5.19: Simulated diffraction patterns corresponding to the six different configurations that produced the phase profile of Fig. 5.18.

97



Chapter 5. Bragg ptychography on experimental data

5.4 Discussion, conclusion

The inversion of the Bragg ptychography data set has allowed to retrieve the crystalline properties
of the InP stack. The obtained image shows the presence of the expected InGaAs embedded layer
with a good accuracy (thickness, position, strain). However, additional structural features are
observed in a locally restricted region of the retrieved volume. Those features agree well with the
introduced physical model of local crystalline tilts, as shown with the numerical analysis above.
However, the presence of those tilts was not confirmed by TEM investigation. Apart from the
chemical fluctuations observed at the InP/Si interface, none of the structural inhomogeneities
observed in the ptychographic data and reconstruction, were observed with electron microscopy.

However, if one wants to compare these two microscopy approaches, it is of major importance
to have in mind their respective specificities. STEM provides crystal images with an extremely
high spatial resolution, restricted to a field of view of about 0.1 µm. The sensitivity of the setup
was estimated from the measurements (Fig. 5.20) with geometrical phase analysis [85, 96, 97]
allowing to extract the r

xz

rotation (around the y axis) and the ✏
zz

strain (along the z (001)
direction). The presence of fluctuations on the images shown in Figs. 5.20b and c, allows to quan-
tify the sensitivity to crystal rotations to about 0.5˝ and the accuracy on ✏

zz

to about ˘3ˆ10

´3.
On the contrary, our 3D Bragg ptychography reconstruction is extremely sensitive to the crys-
talline distortions (a lower bound of about 0.005

˝ is estimated from Fig. 3.20d) and carries long
length-scale information over a large volume (here about 2 ˆ 0.4 ˆ 0.34 µm3). Similar difficulties
in comparing Bragg ptychography and electron microscopy results have been reported in Ref. [64].

Figure 5.20: Quantifying STEM sensitivity. (a) HAADF mode view of the InP/Si interface. (b) Rotation
r
xz

and (c) strain ✏
zz

maps obtained from (a) using geometrical phase analysis. The color scale in (b) goes
from ´0.5˝ to `0.5˝, while in the inset of (c), the 1D cross section of ✏

zz

along z exhibits fluctuations of
about ˘0.3 %.

Finally, we would like to underline that understanding the origin of the observed features is
beyond the scope of this work. For sure, it is possible to address this question with additional anal-
ysis tools, such as finite element modeling, in order to calculate the displacement field according
to the crystal elastic constants and test different structural conditions (inhomogeneous chemical
composition or pressure during the bonding process, presence of dislocations etc). However, a
deep understanding of the origin of the local tilts in the crystal thin film requires validating the
proposed model with dedicated experiments. This is beyond the scope of this work.
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Conclusions and outlook

T he goal of modern nanoscience for strain imaging of crystalline objects led to the devel-
opment of X-ray Bragg CDI techniques, which computationally reconstruct the lost phase

information from intensity-only measurements with the use of PRAs. The latest and one of the
most promising imaging approaches, 3D X-ray Bragg ptychography, aims in becoming a routine
X-ray imaging tool that can provide new insights to the investigation of crystals. Here we will
summarize the contributions of this work in successfully realizing 3D Bragg ptychography and
better understanding the particularities of thin film strain imaging, as well as testing the limits
of the technique.

In Chapter 2 we presented the formalism of 3D strain imaging using the ptychographic
approach, and developed the principles related to the forward problem and the inverse of the 3D
ptychographic reconstruction of the crystal electron density by phase retrieval algorithms (OS,
NCG). We discussed the natural and laboratory reference frames which we had to work with due
to the particularity of the Bragg geometry, and saw the most recent developments in the field of
Bragg ptychography until today.

In Chapter 3 we have presented the experimental needs of this work, like the sample design
and X-ray experimental setup. We saw some of the properties of the InP/InGaAs crystal thin
film and had a detailed look on the measured diffraction data from ID13 (evaluation of the data
quality, experimental setup stability and investigation for radiation damage). The comparison of
the post-fabrication HR-XRD with a laboratory source with the ptychographic dataset revealed
the local inhomogeneities of the lattice structure, which were hidden behind the statistical mea-
surements of HR-XRD. It showed the comparative advantages of nanodiffraction with a coherent
light source in terms of probing materials at the nanoscale and with extreme sensitivity.

In Chapter 4 we developed a physical (and numerical) model for our system and described the
physical process of measuring a 3D ptychographic dataset assembled by 2D Fraunhofer diffraction
patterns in Bragg geometry. We saw that minimizing the data fidelity term is not a simple task
for the PRA since the inversion results were unsatisfactory when starting the inversion with an
initial estimate not close enough to the true object. The incorporation of regularization slightly
improved the quality of the retrieved object, while the optimization of its parameters was empir-
ically done. Nevertheless, even the addition of regularization was not sufficient for retrieving an
image of good quality, and for this reason we had to work in developing a suitable initial guess
by means of the MH constraint and finally reach a successful inversion scheme. We have shown
that this strategy is robust enough and can significantly overcome the stagnation problems that
are encountered when starting the inversion with an initial guess which is considerably far away
from the true object.

99



Chapter 6. Conclusions and outlook

The developed strategy for inverting the Bragg ptychography dataset has allowed retrieving
the crystalline properties of the InP stack. The obtained image showed the presence of the
expected InGaAs layer with good accuracy. Its thickness, position inside the slab and strain levels
are in agreement in average with the nominal values. However, additional structural features are
observed at a locally restricted region of the retrieved volume - also evidenced in the measured
diffraction data. Those features agree well with the introduced modeling for local crystal tilts, as
demonstrated with numerical analysis. However, apart from the chemical fluctuations observed
at the InP/Si interface, none of the structural inhomogeneities observed during the ptychography
experiments (data and reconstruction) were observed with TEM. The latter can be understood
if considering the respective sensitivity and resolution of these two approaches. Furthermore it
underlines the particularity of the 3D Bragg ptychography method.

Concerning the understanding of the observed features origin, it is possible to address this
question with additional analysis tools such as finite element modeling. That would allow calcu-
lating the displacement field according the crystal elastic constants and test different structural
conditions (inhomogeneous chemical composition or pressure during the bonding process, pres-
ence of dislocations in the wider area of the thin film etc.). However, a deep understanding of the
origin of the local tilts in the crystal, requires at the end to validate the proposed model during
dedicated experiments, something which was beyond the scope of this PhD project.

At this point, it is worth discussing some of the things that could be done in the future for
improving the experimental conditions and the quality of the reconstruction, as well as, some of
the potential opportunities for future research. In a ptychographic experiment in Bragg geometry,
we often reach the limits of the developed beamline setups. The need for nanometer-accurate
piezostages but most importantly the drifts or the small, negligible but inevitable misalignments
with respect to the center of rotation, introduce and accumulate errors. The innovative approach
of displacing the illumination instead of the sample [3] can be a potential way to considerably
decrease the drifts during the experiment, and although the fact that the illumination profile will
change at every scan position is not wishful, it is something that can be cured by additionally
updating the probe [57, 88]. Even if that cannot be easily done due to experimental limitations,
the positioning errors correction algorithms can be an alternative that has to be tested in the
future [59]. In addition to that, an interesting method to enhance the resolution could be found
in using randomly structured illuminations [98].

The need to perform rocking scans at every position, could in principle be substituted by using
beams at different energies [99], and even if that is experimentally hard to achieve, the brand new
approach of 3D Bragg Projection Ptychography [100] which can provide 3D images only from
2D acquisitions, could solve most of the stability issues currently encountered. Another problem
that needs to be addressed is the fundamental limitation of the sample’s thickness, as we have
shown in Appendix A, which is imposed by the longitudinal coherence length of the illumination.
Finally, there are always lots of things to be done concerning the algorithms for reducing the
computational burden or accelerating the time-costly inversion strategies, like parallelization of
the inversion processes or implementation of the existing codes in C++. In terms of theory as
well, the field of numerical optimization will hopefully provide new heuristic approaches in the
future.
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Appendix A
Coherence properties of third-generation

synchrotron X-ray sources

T he term of coherence refers to the degree of correlation between two waves. In order to
quantify the coherence of a beam on a plane perpendicular to its propagation, we consider

the horizontal and vertical transverse coherence length pL
T

“ L
h

, L
v

q [101]. It is defined as the
lateral distance along a wavefront over which there is a complete dephasing between two waves
of the same wavelength, which originate from two separate points in space. The visible outcome
of the fact that the radiation source is not point-like but has some lateral extension p�sq, is the
degradation of the interference fringes visibility.

�

� � ��

2L
L

(b)(a)

�✓

�
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T

�s

`
�✓

Figure A.1: (a) Transverse coherence length pL
T

q (b) Longitudinal coherence length pL
L

q

If we assume that two waves originate from points with a small angular separation �✓, ` the
distance from the source and � the radiation wavelength, then the transverse coherence lengths
are given by:

�

2L
T

“ tan�✓,
�s

`
“ tan�✓ ñ L

T

“ �`

2�s
(A.0.1)

The degree of coherence of the radiation along its propagation direction, is described by the
longitudinal coherence length [101]. It is defined as the distance over which two waves that simul-
taneously depart from the same source point with slightly different wavelengths will completely
dephase [102]. It can be easily calculated by studying Figure A.1b

N� “ pN ` 1qp�´��q “ N�´ N��` �´��

ñ � “ pN ` 1q�� ñ �

��
“ N ` 1 ñ �

��
“ 2L

L

�
` 1

ñ L
L

« �2

2��
(A.0.2)
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Third generation synchrotron radiation sources produce highly coherent beams with typical
transverse and longitudinal coherence lengths of several micrometers [103] (e.g. at the ESRF
ID13 beam-line where the size opening of the slits is distance from the undulator is 92m, the
working energy 14.9keV and the monochromaticity �E{E “ 10

´4, the coherence lengths are:
L
h

“ 60µm,L
v

“ 64µm and L
L

« 210nm).
In particular in the case of Bragg geometry, the longitudinal coherence length has been shown

to be limiting the maximum thickness s of a crystalline sample [104].

L
L

• pPLDq ñ �2

2��
• 2s sin ✓ ñ s § 1

4 sin ✓

�2

��
(A.0.3)

Thus for an angle of incidence of around 16o, the maximum thickness of the sample is « 370nm.
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Detection-space vs. direct-space in Bragg

geometry

This appendix derives the relation between the laboratory DS coordinate systems and the natural
DS coordinate system, relation that stems from the one that links their RS counterparts. Let q1 “
pq1

x

, q1
y

, q1
z

qt and q “ pq
x

, q
y

, q
z

qt be two equivalent representations in (q1
x

,q1
y

,q1
z

) and (q
x

,q
y

,q
z

),
respectively. Because the former system is orthonormal, we get

q “ Bq1, with B “̂
¨

˝
| | |
q1
x

q1
y

q1
z

| | |

˛

‚ (B.0.1)

and we deduce from Fig. 2.4 that

B “
¨

˝
1 0 ´ sin ✓

B

0 1 0

0 0 cos ✓
B

˛

‚. (B.0.2)

As a result, the far-field reads equivalently

 

j

pqq “  

j

pBq1q “̂  

1
j

pq1q

and, by definition, the exit-field expressed in the natural DS system (e1
x

, e1
y

, e1
z

) is

 1
j

“̂F´1

3D

 

1
j

(B.0.3)

From this relation, we can write

 1
j

pr1q “̂
ª `8

´8
 

1
j

pq1q e2⇡iq
1tr1

dq1

“
ª `8

´8
 

j

pBq1q e2⇡i pB´1qqtr1
dpB´1qq

“
ª `8

´8
 

j

pqq e2⇡iq
tpAr1qdq ˆ 1

detpBq with A ” pB´1qt

which is related to the exit-field (in the DS laboratory system)  
j

by1

 1
j

pr1q “  
j

pAr1q ˆ detpAq. (B.0.4)
1Let us note that detpAq ” detpB´1qt “ detpB´1q “ 1{ detpBq.
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Because we have  
j

“̂ p
j

ˆ ⇢, the relation above also reads

 1
j

pr1q “
“
p
j

pAr1q ˆ detpAq
‰

ˆ ⇢pAr1q ” p1
j

pr1q ˆ ⇢1pr1q (B.0.5)

with

p1
j

pr1q “̂ detpAq ˆ p
j

pAr1q and ⇢1pr1q “̂ ⇢pAr1q. (B.0.6)

Conversely, if we let

r “ Ar1 ô r1 “ A´1r (B.0.7)

the relation (B.0.4) above leads to

 
j

prq “  1
j

pA´1rq ˆ 1

detpAq . (B.0.8)

Eqn. (B.0.7) is the central relationship between the natural and laboratory DS systems2 and the
matrices A and A´1 are now explicitly given for the special case (B.0.2)

A “
¨

˝
1 0 0

0 1 0

tan ✓
B

0

1

cos ✓

B

˛

‚ and A´1 “
¨

˝
1 0 0

0 1 0

´ tan ✓
B

ˆ cos ✓
B

0 cos ✓
B

˛

‚ (B.0.9)

2For instance, these relations are used for the two interpolation steps that are discussed in Sec. 2.2.5: the
relation r1 “ A´1r is used for the computation of the probe function in the DS natural system, while r “ Ar1

is used for the representation of the final estimate in the DS laboratory system.
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