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Abstract

Comprendre est le commencement
d’approuver.

Bachus Spinoza

Linear dynamical models play an important role in many engineering fields, including simulation, anal-
ysis, optimization and control of complex systems and processes. This role is emphasized when critical
systems are under consideration, and for which a deep attention and understanding are needed. Among
others, this attention may be motivated by industrial, economical, societal and strategical reasons. Indeed,
for these cases, digital-based solutions involving dedicated computer-based softwares are being developed
and largely preferred by engineers and researchers to reduce development costs and time, to improve and to
better understand the systems under consideration. These systems being largely grounded on accurate com-
plex and large-scale dynamical models, not well adapted to standard numerical tool and computationally
demanding, their approximation by an (accurate) low complexity dynamical model is then a cornerstone
for further advanced developments.

This manuscript addresses this last point, namely, the linear large-scale (and infinite dimensional) dy-
namical model approximation. Moreover, many research and industrial applications are detailed, illustrat-
ing the wide application spectrum of this research field. More specifically, the interpolatory framework,
tailored to a large variety of dynamical model structures and classes, is the main tool invoked. Moreover,
as side effect of the main purpose of dynamical model approximation, extensions to the approximation of
the input-output stability regions of a class of meromorphic functions is also presented, highlighting the
effectiveness and versatility of the methods developed within this research field.
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Manuscript reading guidelines

The present manuscript is composed of seven chapters. It aims at presenting some of the contributions
within the linear large-scale dynamical model approximation and its applications. Attention is given
to present these results in a hopefully didactical manner, with as much as possible Examples (illustra-
tions of principles on academic problems) and Use-cases (illustrations of principles involving industrial
applications, usually treated within projects). More specifically, the following chapters are detailed:

Chapter 1 introduces the linear dynamical systems definitions and notations involved along the manuscript.
Moreover, computational aspects related to linear algebra operations, largely used in model approx-
imation, are discussed.

Chapter 2 gives a glimpse of the model reduction problem and state of the art. It allows also introducing some
notations. As this subject is largely treated in the literature, author do not claim at being exhaustive.
Still, it may provide a compact view and potential first access to beginners.

Chapter 3 details the first contribution of my activities in model approximation: the frequency-limited model
approximation (this chapter is mainly inspired from Vuillemin, 2014).

Chapter 4 details the second contribution of my activities in model approximation: the approximation by an
input-output delay structured model (this chapter is mainly inspired from Pontes, 2017).

Chapter 5 is attached to present a new result, aiming at estimating the stability of a finite energy meromorphic
function, by mean of rational approximation. This chapter presents an early stage result where proofs
are still incomplete. However, through numerical examples and some conjectures, author believes
that it still might be relevant for future researches.

Chapter 6 summarises the manuscript main results, both from the theoretical part and applicative one. More-
over, a brief description of the MOR Toolbox, a software dedicated to large-scale problems, is given.

Chapter 7 finally provides some ideas for further research activities in the forthcoming years, within the con-
tinuation of dynamical model approximation and its applications.

Obviously, expert reader in linear systems theory may skip Chapter 1, and those expert in linear model
reduction may also skip Chapter 2.
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Chapter 1

Generalities in linear dynamical models

The truth is out there.

X-files.

Contents
1.1 Preliminary in signals, systems and norms . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Finite dimensional linear time invariant systems . . . . . . . . . . . . . . . . . . . . 14
1.3 Some linear algebra and computational issues . . . . . . . . . . . . . . . . . . . . . 21
1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

This chapter provides generalities and notations on linear dynamical systems. We start in Section 1.1,
with the signals and dynamical systems definitions. Then, in Section 1.2, we provide details about the
specific case of finite dimensional models and introduce the state-space form, as well as some associated
tools largely used to analyse dynamical systems. Then, as it is an underlying (hidden) theme in the model
approximation field, some discussions on linear algebra and computational aspects are given in Section
1.3. The chapter is closed in Section 1.4, opening the path to model approximation and its applications.

1.1 Preliminary in signals, systems and norms
A quick reminder about LTI models theory is given here mainly to introduce the basic notions and nota-
tions. More specifically, (i) the representation of a LTI model as a convolution with the impulse response,
(ii) theH2,H∞, L2 and L∞ spaces and norms, and finally, (iii) the inequalities involving systems and sig-
nals are recalled. More detailed definitions can be found in many complete monographs such as Zhou and
Doyle (1997); Gu et al. (2003); Antoulas (2005); Michiels and Niculescu (2007), which provide a much
more precise definition set for linear dynamical systems.

1.1.1 Signals and norms
We define a signal as a Lebesgue measurable function f that maps the real numbers R to Cn. The set of
signals is defined as

Sn = {f : R→ Cn | f measurable} .

Let us denote Ln2 (−∞,∞), a subspace of Sn, as the set of functions with finite energy given as:

Ln2 (−∞,∞) =

{
f ∈ Sn |

∫ ∞
−∞
||f(t)||22dt <∞

}
.
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CHAPTER 1. GENERALITIES IN LINEAR DYNAMICAL MODELS

The Ln2 (−∞,∞) is a Hilbert space equipped with the inner product and norm respectively defined as:

〈f ,g〉L2
=

∫ ∞
−∞

gH(t)f(t)dt and 〈f , f〉
1
2

L2
=

(∫ ∞
−∞
||f(t)||22dt

) 1
2

.

In many engineering applications, the signal L2-norm is often known as its energy, or the RMS for Root
Mean Square.

1.1.2 Systems and norms
A dynamical model (or system) is a mathematical equation representing a physical process that evolves in
time. In this monograph, we are particularly interested in continuous LTI models1. Hereafter, we provide
some definitions, but for a more general axiomatic description of system / model, reader can refer to the
first chapters of the books of Zhou and Doyle (1997) or Antoulas (2005).

Time-domain LTI models representation

A continuous LTI model H is an “input-output” map associating to an input signal u ∈ D(Snu), a subset
of Snu , an output one y ∈ Sny by means of the convolution operation, defined as

H : D(Snu) 7→ Sny
u(t) 7→ y(t) =

∫ ∞
−∞

h(t− τ)u(τ)dτ = h(t) ∗ u(t),

where h(t) is the impulse response of the system. If nu > 1 or ny > 1, the system is said to be MIMO and
SISO if nu = ny = 1. It is (strictly) causal if and only if h(t) = 0 for (t ≤ 0) t < 0. In these cases, its
convolution thus reads:

y(t) =

∫ ∞
0

h(t− τ)u(τ)dτ =

∫ ∞
0

h(τ)u(t− τ)dτ.

In this work, causal models will be mainly considered2.

Frequency-domain LTI models representation

The unilateral Laplace transform L(·) of the impulse response h of a LTI model is defined as:

H(s) = L(h) =

∫ ∞
0

h(τ)e−sτdτ,

where s ∈ C denotes the Laplace variable. Then, by taking the Laplace transform of the causal convolution
product above defined, one obtains

y(s) = H(s)u(s),

where u(s) and y(s) are the Laplace transform of u(t) and y(t). The ny × nu complex-valued matrix
function H(s) is the transfer function of the LTI model. A model is said to be real (as treated in this work)
if its impulse response matrix h(t) is a real-valued matrix function. As a consequence, the complex-valued
transfer function H(s) satisfies H(s) = H(s), for all s ∈ C. Moreover, a transfer function is said to be
proper if H(∞) <∞ and strictly proper if H(∞) = 0. An LTI system H is said to be stable if and only if
its transfer function is bounded and analytic on C+, i.e. it has no singularities on the closed right half-plane.
Conversely, it is said to be anti-stable if and only if its transfer function is bounded and analytic on C−.
The family of stable models can be regarded as a functional space of analytic meromorphic functions3 on
the right half-plane and is therefore a Hardy space. These specific spaces are slightly more detailed in what
follows (see also Hoffman (1962) or Chapter 2 of Pontes (2017) for more details).

1Parametric LTI models, or p-LTI models, will also be addressed in this manuscript through specific examples and use-cases, and
thus more specifically presented there.

2Some non-causal models can be considered, but mainly for some theoretical illustrations rather than practical applications.
3A function is a holomorphic function over domain D\A where A is a denumerable set of isolated points, being the poles.
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CHAPTER 1. GENERALITIES IN LINEAR DYNAMICAL MODELS

Remark 1.1 (Meromorphic functions) The complex-valued transfer function H is a meromorphic func-
tion. Given two meromorphic functions H1 and H2, their sum and product remains meromorphic.

1.1.3 The (complex domain)Hp Hardy spaces and norms

Hardy spaces are generally referred to as spaces of functions of a complex variable H : C → Cny×nu ,
analytic over a given region (i.e. complex differentiable at every point of this region) and on which a
measure ||H||Hp is finite (i.e. ||H||Hp < ∞). As the complex variable can be interpreted as a frequency
one in many engineering fields (e.g. mechanical, electrical, . . . ), they are considered as frequency-domain
spaces. In control theory, these spaces are of particular interest for many reasons: (i) stability properties
of LTI dynamical systems are related to the fact that the transfer function belongs to some Hardy spaces
(e.g. for continuous time systems, the Hardy space is defined in the open right half complex plane), (ii)
performance characteristics of LTI systems are defined through Hardy space norms and (iii) the distance
between two LTI models H1 and H2 can be measured by considering the norm of the difference of their
transfer function, i.e. ||H1 −H2||Hp . The latter item is of particular interest in the model approximation
field since it provides a way to quantify the error between two dynamical models, which can then turn to be
an optimisation criteria (see Chapter 2). After providing general definitions of Hardy spaces, two specific
control-oriented ones are recalled (see also Hoffman (1962); Partington (1997, 2004); Antoulas (2005)).

Definition 1.1:Hp spaces

Let C+ = {x, y ∈ R : x + ıy ∈ C, x > 0}, C− = {x, y ∈ R : x + ıy ∈ C, x < 0} and
∂C = {x, y ∈ R : x+ ıy ∈ C, x = 0}. TheHp spaces are defined as

Hny×nup , Hny×nup (C+) =
{
H : C→ Cny×nu | ||H||Hp <∞

}
,

where H denotes the ny × nu complex-valued functions analytic in C+ and for which the p-norm
is defined as

||H||Hp , sup
x>0

(∫ +∞

−∞
||H(x+ ıy)||pS,pdy

) 1
p

for p ∈ [1∞)

, sup
x>0
||H(x+ ıy)||S,p for p =∞,

(1.1)

where ||H(s0)||S,p is the Schatten p-norm of H evaluated at s = s0. TheHny×nup (C−) is similarly
defined.

Before presenting special cases on Hardy spaces, let us remind the following maximum modulus prin-
ciple, which provides a way to simplify the search space of the norm formula (1.1).

Theorem 1.1: Maximum modulus principle

Given X ⊆ C be a bounded domain, and let H : X → Cny×nu be a function continuous on the
closed set X and analytic (holomorphic) on X. Then, the maximum value of H on X (which always
exists) occurs on the boundary ∂X : X\X. In other words,

max
X
||H|| = max

∂X
||H||.

Then, the search of the suprema in the above formulas (1.1), can be simplified by making use of the
Maximum modulus principle, stated in Theorem 1.1, which states that a complex function H : C →
Cny×nu continuous inside a domain X ∈ C and on its boundary ∂X (e.g. ∂C), and analytic inside X

9



CHAPTER 1. GENERALITIES IN LINEAR DYNAMICAL MODELS

(e.g. C+), attains its maximum on the boundary ∂X (e.g. ∂C) of X. Thus, (1.1) becomes

||H||Hp =

(∫ +∞

−∞
||H(ıy)||pS,pdy

) 1
p

for p ∈ [1∞)

= sup
y∈R
||H(ıy)||S,p for p =∞.

(1.2)

Following (1.2), two special cases can be derived4:

||H||H2 =

(∫ +∞

−∞
||H(ıy)||2S,2dy

) 1
2

=

(∫ +∞

−∞
||H(ıy)||2F dy

) 1
2

=

(∫ +∞

−∞
tr
(
H(ıy)HT (ıy)

)
dy

) 1
2

,

where ||H(s)||2F = tr
(
H(−s)HT (s)

)
denotes the Frobenius norm of a complex matrix H(s), and

||H||H∞ = sup
y∈R
||H(ıy)||S,∞ = sup

y∈R
||H(ıy)||2 = sup

y∈R
σmax

(
H(ıy)

)
,

where σmax(·) denotes the maximum singular value operator of a complex matrix.
Note that the H2-norm, as treated in the control literature is often weighted by the scaling factor 1/2π

in order to link the original Hardy H2-norm with the impulse response of a dynamical transfer function,
through the Parseval’s Theorem. NowHp spaces have been recalled, let us move to the Lp ones which will
have an importance in the stability definition and characterisation in the rest of the monograph.

1.1.4 The Lp spaces
If H : C → Cny×nu has no singularities on the imaginary axis but is not necessarily analytic neither on
the right nor left half of the complex plane, Hp-norms are not defined any more. Instead, the frequency
domain Lp spaces are used.

Definition 1.2: Lp spaces

Let ıR = {x, y ∈ R : x+ ıy ∈ C, x = 0}. The Lp spaces are defined as

Lny×nup , Lny×nup (ıR) =
{
H : C→ Cny×nu | ||H||Lp <∞

}
,

where H denotes the ny × nu complex-valued functions which has no singularities on the imag-
inary axis but is not necessarily analytic either on the right or left half of the complex plane. The
frequency domain Lp-norms of H are defined as follows:

||H||Lp , sup
x 6=0

(∫ +∞

−∞
||H(ıy)||pS,pdy

) 1
p

for p ∈ [1∞)

, sup
x 6=0
||H(ıy)||S,p for p =∞,

where ||H(s0)||S,p is the Schatten p-norm of H evaluated at s = s0.

As for the Hardy spaces, following Definition 1.2 and Theorem 1.1, two special norms can be derived:

||H||L2
=

(∫ +∞

−∞
||H(ıy)||2S,2dy

) 1
2

=

(∫ +∞

−∞
||H(ıy)||2F dy

) 1
2

=

(∫ +∞

−∞
tr
(
H(ıy)HT (ıy)

)
dy

) 1
2

,

and
||H||L∞ = sup

y∈R
||H(ıy)||S,∞ = sup

y∈R
||H(ıy)||2 = sup

y∈R
σmax

(
H(ıy)

)
.

Note that Hp may be viewed as a subspace of Lp. Indeed, the limit (x → 0) of a Hp function is in
Lp. Moreover, H2 is the image of L2([0,∞)) through the Laplace transform, which implies causality and
L2 − L∞ stability.

4And by noticing that the Schatten 2-norm and∞-norm are the Frobenius and Spectral norms, respectively.
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CHAPTER 1. GENERALITIES IN LINEAR DYNAMICAL MODELS

1.1.5 The (complex domain) Hardy spaces and norms in control theory

Given the above general formulations of the Lp and Hp spaces, let us now define more formally the L2,
H2, L∞ andH∞ spaces which play a central role in many control engineering problems, and especially in
the linear model approximation problem.

Definition 1.3: L2(ıR) space

The L2(ıR) (or shortly L2) space is the vector-space of matrix-valued functions H : C→ Cny×nu
defined on the imaginary axis and which satisfies∫

R
tr
(
H(ıω)H(ıω)T

)
dω =

∫
R
||H(ıω)||2F dω <∞.

This space is a Hilbert space equipped with the inner product defined as

〈H,G〉L2
,

1

2π

∫ +∞

−∞
tr
(
H(ıω)G(ıω)T

)
dω =

1

2π

∫ +∞

−∞
〈H(ıω),G(ıω)〉F dω,

with corresponding norm ||H||L2 , 〈H,H〉
1
2

L2
.

Definition 1.4:H2(C+) space

The H2(C+) (or shortly H2) space is the vector-space of matrix-valued functions H : C →
Cny×nu analytic in the open right half plane C+ and which satisfies∫

R
tr
(
H(ıω)H(ıω)T

)
dω =

∫
R
||H(ıω)||2F dω <∞.

This space is an Hardy space equipped with the inner product defined as

〈H,G〉H2 ,
1

2π

∫ +∞

−∞
tr
(
H(ıω)G(ıω)T

)
dω =

1

2π

∫ +∞

−∞
〈H(ıω),G(ıω)〉F dω,

with corresponding norm ||H||H2
, 〈H,H〉

1
2

H2
.

The H2(C+) space is the vector-space of transfer functions whose impulse responses h(t) are stable
and have finite energy. By analogously denoting H2(C−), the space where H ∈ H2(C−) if and only
if H(−s) ∈ H2(C+)). For rational functions, one can say that this space is the function-space of the
LTI models H whose all the singularities are in C+, i.e. are all unstable. Therefore, the H2(C−) space
corresponds to the space of the anti-stable models. TheL2(ıR) space is the function-space of models whose
transfer functions are square-integrable over the imaginary axis. In addition, it is the Laplace transform
image of the signal space Ln2 (−∞,∞), i.e. L

(
Ln2 (−∞,∞)

)
= L2(ıR). Finally, it is interesting to note

the following direct relation:

L2(ıR) = H2(C+)⊕H2(C−).

Consequently, given H ∈ L2(ıR) and its decomposition into stable Hs ∈ H2(C+) and anti-stable Ha ∈
H2(C−) transfers such that H = Hs + Ha, the following holds true:

〈Hs,Ha〉L2(ıR) = 0.

Now, let us move to the L∞ andH∞ spaces and its well knownH∞-norm, largely used in the context
of robust control (see e.g. Francis and Doyle (1987); Doyle et al. (1989); Gahinet and Apkarian (1994);
Chilali and Gahinet (1996); Scherer et al. (1997); Zhou and Doyle (1997); Apkarian and Noll (2006)).
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Definition 1.5: L∞(C+) space

The L∞(C+) (or shortly L∞) space is the vector-space of matrix-valued functions H : C →
Cny×nu defined over C+ and which satisfies

sup
ω
||H(ıω)||2 <∞.

This space is a Hilbert space equipped with the induced-norm

||H||L∞ = max
ω∈R

σ (H(ıω)) .

Definition 1.6:H∞(C+) space

The H∞(C+) (or shortly H∞) space is the vector-space of matrix-valued functions H : C →
Cny×nu analytic over the right half plane C+ and which satisfies

sup
<(s)>0

||H(s)||2 <∞.

This space is an Hardy space equipped with the induced-norm

||H||H∞ = max
ω∈R

σ (H(ıω)) . (1.3)

Based on the above definitions, one may note that both L∞ and H∞-norms are similarly defined,
although theH∞ one assumes that the transfer function H is bounded and analytic over C+, meaning that
the model does not have any singularity on the right hand side. It is to be noticed that a slight abuse of
language is usually done in the control community since one usually computes theH∞-norm of an unstable
systems.

Based on the definitions of the H2 and H∞-norms, some inequalities hold. Indeed, system norms can
be used to measure how "large" an output y(t) will be if an LTI model is subjected to an input u(t). In
others words, they can be used to estimate of an upper bound of the output y(t), given an input u(t). Two
of these bounds that are useful to motivate the model reduction problem.

• Let H ∈ H2 and u ∈ L2, then

||y||L∞ = sup
t≥0
||y(t)||2 ≤ ||H||H2 ||u||L2 . (1.4)

Thus, a model H possessing a "small" H2-norm will produce output signals whose peak amplitude
is also "small". TheH2-norm is also known as the L2-L∞ norm.

• Let H ∈ H∞ and u ∈ L2, then
||y||L2

≤ ||H||H∞ ||u||L2
. (1.5)

Hence, a model H possessing "small" H∞ norm will produce output signals with "small" energy.
TheH∞-norm is also known as the L2-L2 (induced) norm.

Remark 1.2 (H2 andH∞ input-output stability) A system is considered to be stable if small inputs lead
to responses that do not diverge. Different input-output norms can lead to different notions of stability. In
this work we considered the following two notions:

• H2 stability: a system is H2 stable if its transfer function H lies in H2. In this case the inequality
(1.4) holds, and L2 bounded inputs produces L∞ bounded outputs.

• H∞ stability: a system isH∞ stable if its transfer function H lies inH∞. In this case, the inequality
(1.5) holds, and L2 bounded inputs produces L2 bounded outputs

12
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Remark 1.3 (H2 andH∞ physical interpretation) From a physical view point, for SISO systems, the
H2-norm represents the integral of the frequency response absolute value. In the MIMO case, the H2

norm is the impulse-to-energy gain of y(t) in response to a white noise input u(t) with uniform spectral
density. Similarly, theH∞-norm represents the maximal gain of the frequency response of the system. It is
also called the worst case attenuation level in the sense that it measures the maximum amplification that
the system can deliver on the whole frequency set. For SISO (resp. MIMO ) systems, it represents the
maximal peak value on the frequency response magnitude (resp. singular value) plot of H(ıω), in other
words, it is the largest gain if the system is fed by harmonic input signal. TheH∞-norm is one of the main
ingredients in robust control, but more rarely in model approximation due to its computational complexity
(see later in this chapter). Indeed, in finite dimension, an iterative bisection algorithm it usually needed,
clearly inappropriate in the large-scale settings (see Boyd et al. (1988); Bruinsma and Steinbuch (1990)).

Remark 1.4 (About the rationalRLp andRHp spaces) So far, all the Lp and Hp spaces defined did
not mention any structure of the complex functions describing the transfer functions, but simply the fact
that they are bounded on a part of the complex plane. In control theory, as in many engineering fields, most
of the transfer functions are rational functions, i.e. a numerator and denominator which are polynomial
with real coefficients. In this case, e.g. instead of H2, one talks about RH2. The real rational subspace
of H2, which consists of all strictly proper and real rational stable transfer matrices, is denoted by RH2.
Similarly, the real rational subspace of H∞, which consists of all proper and real rational stable transfer
matrices, is denoted byRH∞ (same comment hold for L2 and L∞). These latter are of particular interest
since they are directly connected to model realisations, as clarified in the following Section 1.2.

Example 1 - Some functions and spaces
Let us consider the following transfer function which all singularities lie in the left half plane, but which
is unbounded

1

1 + s+ se−s
6∈ L2 and ∈ L∞

More classically, the following rational and irrational functions can be considered:

s+ 1

(s+ 10)(s+ 6)
∈ RH2

s+ 1

(s− 10)(s+ 6)
6∈ RH2 andRH∞ but ∈ RL2 andRL∞

s+ 1

(s+ 10)
6∈ RH2 and ∈ RH∞

1

1 + s+ e−s
∈ H2

Without lack of generalities, the R, denoting the rational set, term will be often omitted for simplicity
and we will only denote H as a function belonging inH2, L2, etc.

13
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1.2 Finite dimensional linear time invariant systems
Now some general notations and properties of dynamical systems and their norms have been briefly re-
called, let us move to the more specific case of rational finite dimensional models, accompanied with a
realisation5. Attention is first given on models realisation, then stable realisation, and finally the poles
residues representation, standing as an important tool within model approximation. Finally, the notion of
gramian will be introduced as a standard tool in linear models analysis.

1.2.1 LTI models realisation
In the case where a MIMO LTI continuous-time dynamical system H can be represented by a first order
descriptor realisation S : (E,A,B,C,D) with nu inputs, ny outputs and n internal variables, the model is
given by a set of differential and algebraic equations (DAE):

S :

{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)
or S :

[
E,A B
C D

]
∈ R(n+ny)×(n+nu), (1.6)

where, x(t) ∈ Rn denotes the internal variables (the state variables if E is invertible), and u(t) ∈ Rnu and
y(t) ∈ Rny are the input, output functions, respectively, while

E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu ,

are constant matrices. Then, by denoting Sn,ny,nu , (Rn×n,Rn×n,Rn×nu ,Rny×n,Rny×nu), the set of
all ny × nu realisations of dimension n, if the matrix pencil (E,A) is regular, i.e. is non-singular for some
finite λ ∈ C,

H(S) : ρ(E,A) 7→ Cny×nu
s 7→ C(sE −A)−1B +D,

(1.7)

is called the transfer function associated to S : (E,A,B,C,D) ∈ Sn,ny,nu and ρ(E,A) is the resolvant of
the matrix pencil (E,A), as defined in Definition 1.7. Then, the set of all realisations of H(S) is denoted
S(H(S)) and the evaluation of the transfer function obtained from the realisation S is H(S)(s), but for
brevity, simply H(s). Moreover, for n, nu, ny ∈ N, one can define the following sets:

S0
n,ny,nu , {(E,A,B,C,D) ∈ Sn,ny,nu | ıR ⊂ ρ(E,A)},

S+
n,ny,nu , {(E,A,B,C,D) ∈ Sn,ny,nu | C≥0 ⊂ ρ(E,A)},

Sαn,ny,nu , {(E,A,B,C,D) ∈ Sn,ny,nu | C≥α ⊂ ρ(E,A) ∀ α > 0},
S−n,ny,nu , {(E,A,B,C,D) ∈ Sn,ny,nu | C≤0 ⊂ ρ(E,A), E regular},

(1.8)

where S+
n,ny,nu , S−n,ny,nu and Sαn,ny,nu are sets of stable, anti-stable and α-stable systems, respectively.

One may also note that these spaces are linked to the Hardy ones presented before. Indeed, S0
n,ny,nu is

the realisation version of RL∞(ıR), S+
n,ny,nu of RH∞(C+) and S−n,ny,nu of RH∞(C−). By realisation

version, one intends the finite order version of these spaces. Therefore, they are subspaces of the Hardy
spaces presented before.

5The term "finite order" realisation of TDS will also be treated in this work, but later and as an application of infinite dimensional
model approximation rather than a system theoretical viewpoint. For this class of systems, reader is invited to refer to Briat (2015)
and Michiels and Niculescu (2014) books providing a complete insight of the theoretical background.
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Definition 1.7: (E,A) matrix pencil, eigenvalues and resolvent

We call (E,A) ∈ (Rn×n ×Rn×n) a matrix pair or pencil. A scalar λ ∈ C is called a (generalised)
eigenvalue of (E,A) if det(λE − A) = 0. If there exist x 6= 0 such that Ex = 0 and Ay 6= 0,
then ∞ is called a (generalised) eigenvalue of (E,A), otherwise every λ ∈ C is an eigenvalue.
We denote the set of all eigenvalues of (E,A) by Λ(E,A) ⊆ C ∪ {∞} and the resolvent set by
ρ(E,A) = C\Λ(E,A). If ρ(E,A) = ∅, the (E,A) is called singular, otherwise regular. If the
matrix pair is regular, then the set of eigenvalues is finite. In this case, the generalised right and left
eigenvalues problem consists in finding, for {λi}ni=1 ∈ C and non-trivial xi,yi ∈ Cn, such as

Axi = λiExi and yHi A = λiy
H
i E.

All together, {λi,xi,yi}ni=1 is the eigen-triplet of the pair (E,A). We call (E,A) regular, if there
are n linearly independent right and left eigenvectors xi and yi, then the pair (E,A) is called
diagonalisable or non defective and the following holds true, for i, j = 1, . . . , n:

yHi Axi = λi and yHi Exj = δij .

The singularities of H are the poles of the realisation S and the eigenvalues of the matrix pencil (E,A).
S is stable if all its finite poles are in the left-half of the complex plane (in this case, H(s) ∈ RH∞ and
S ∈ S+

n,ny,nu ). Moreover, it is proper if its value at infinity is finite (and D is constant) and strictly proper
if that value is zero (in this case, D = 0, H(s) ∈ RH2 and S ∈ Sεn,ny,nu , where ε > 0). Reader can refer
to G.W.Stewart (1972), Kurschner (2010) and Kohler (2014) for comprehensive details on eigenvalues.

The quintuple (E,A,B,C,D) is called a descriptor realisation of H. Importantly, realisations are not
unique with respect to any projector6 V ∈ Rn×n, and those with the smallest possible dimension n are
called minimal realisations. Furthermore rank(E) is the McMillan degree of S. A realisation is minimal
if it is completely controllable and observable. A descriptor system with (E,A) regular is completely
controllable if rank(λE − A,B) = n, for all finite λ ∈ C, and rank(E,B) = n. If E = I , S is a
standard model, and descriptor otherwise.

Remark 1.5 (About dimensionality, dim(H) vs. dim(S)) With the above formulation and with a slight
abuse of language, let us denote as dim(H) = n, the dimension of the model H corresponding to its num-
ber of singularities. When rational meromorphic functions are considered (belonging toRL2 orRL∞), a
minimal realisation can be obtained, the dimension n is finite and is then the dimension of the associated
state-vector x(t). When non-rational meromorphic functions are considered (e.g. functions belonging to
L2 or L∞), the dimension value n is the number of roots or singularities of the function. We denote by
dim(S) = n the dimension of the state-space vector of the model equipped with a realisation, even if it
describes an infinite dimensional model. As an illustration, given a TDS H and realisation S, with delays
affecting the state vector x(t), one have dim(H) = ∞ because the transfer has an infinite number of
eigenvalues and dim(S) = n finite, since the realisation can be finite (see e.g. Michiels and Niculescu
(2014)).

The above linear system model relations (1.6)-(1.7) are the most widely used in this manuscript and,
to the author’s experience, clearly are the most largely used in both engineering and research applications
(from automotive to aerospace, through hydroelectric etc. ). The main reason is that they offer a compliant
framework for simulation, analysis, optimisation etc. From a practitioner viewpoint, S generally results
from linearisation around some equilibrium point of the nonlinear dynamical and algebraic equations gov-
erning any system, which can be given as, ẋ(t) = f(x,u, t)

0 = g(x,u, t)
y(t) = h(x,u, t)

6V ∈ Rn×n is said to be a projector if V TV = In and V 2 = V .
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where f , g and h refer to the ordinary differential, algebraic and output equations, respectively. Obvi-
ously, many other LTI representations can be considered, such as the bilinear (Breiten and Damm (2010);
Benner and Breiten (2012)), the bilinear stochastic (Benner and Damm (2011)), the quadratic (Kurschner
(2010); Benner and Breiten (2015)), the delayed (Briat (2015)), multi-agent systems Jongsma et al. (2018)
etc. Since these descriptions are not in the scope of the core work performed in my research activities, they
will not be addressed in this manuscript. Interested reader may refer to the previous references for more
details.

Remark 1.6 (About linear and nonlinear models) Note that in many applications, f , g and h are not
always “known” functions and realisation can be constructed from discretisation schemes, finite element
approximation, etc. Indeed, in many industrial applications such as the aeronautics, space, building, biol-
ogy, etc. linearised models are generated by dedicated tools.

1.2.2 Controllability and observability concepts and gramians
Based on the realisation given in (1.6), let us now pay attention to the notion of gramians, playing an impor-
tant role in the model approximation, as well as in many control engineering problems (norm computation,
stability, sensors-actuators placements etc. ). Additional details can be found in e.g. in the works of Moore
(1981); Safonov and Chiang (1989); Antoulas et al. (2001) and more recently in the Ph.D. thesis of Himpe
(2017).

Infinite gramians

Controllability (or reachability) P and observability (or detectability) Q gramians are useful matrices in
system theory because they are related to physical system properties, independently to its realisation. The
minimal energy εr required to drive a system from the state 0 to x0 is given by εr = xT0 P−1x0. The larger
εr is, the harder it is to reach. Similarly, the maximal observation energy εo obtained by releasing a system
from an initial state x0 without input feeding, is given by εo = xT0Qx0. A small εo means that the state
is hard to observe. Based on the transfer function (1.7) and its realization (1.6), the controllability and
observability infinite time-domain gramians are defined as

P =

∫ ∞
0

eE
−1AtE−1BBTE−T eA

TE−T tdt and Q =

∫ ∞
0

eA
TE−T tCTCeE

−1Atdt

or in the frequency-domain, with T (ν) = (ıνE −A)−1,

P =
1

2π

∫ ∞
−∞

T (ν)BBTT (ν)Hdν and Q =
1

2π

∫ ∞
−∞

ETT (ν)HCTCT (ν)Edν. (1.9)

An important gramian property is that their computation can be obtained by solving of the following Lya-
punov equations:

APET + EPAT +BBT = 0 and ATQE + ETQA+ CTC = 0. (1.10)

Frequency-limited gramians

If instead of infinite gramians, i.e. the one with infinite integral bounds in (1.9), one is interested in the
frequency-limited ones, following Gawronski (2004), the frequency-limited reachability and observability
Pω and Qω gramians can be defined as,

Pω =
1

2π

∫ ω

−ω
T (ν)BBTTH(ν)dν and Qω =

1

2π

∫ ω

−ω
ETTH(ν)CTCT (ν)Edν,

where T (ν) = (ıνE − A)−1. Similarly to the infinite case, they may alternatively be obtained by solving
the following two Lyapunov equations,

APωET + EPωAT +Wc(ω) = 0 and ATQωE + ETQωA+Wo(ω) = 0,
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where
Wc(ω) = S(ω)BBT +BBTSH(ω) and Wo(ω) = SH(ω)CTC + CTCS(ω)

and

S(ω) =
1

2π

∫ ω

−ω
T (ν)dν =

ı

2π
logm

(
(A+ ıωE)(A− ıωE)−1

)
,

where logm(·) denotes the matrix logarithm operator. By denoting Ω = [ω1, ω2] and Wc(Ω) = Wc(ω2)−
Wc(ω1) and Wo(Ω) = Wo(ω2) − Wo(ω1), the Ω frequency-limited gramians are the solutions of the
Lyapunov equations

APΩE
T + EPΩA

T +Wc(Ω) = 0 and ATQΩE + ETQΩA+Wo(Ω) = 0. (1.11)

The case where a DAE is deflective is treated in Imran and Ghafoor (2015), with application to model
reduction. In Chapter 3, these gramians will play an important role for approximating a model over a
bounded frequency support.

1.2.3 Closest stable descriptor model in theRH2 andRH∞ spaces

Before detailing an other linear frequency-domain model representation, let us provide two main results
based on the realisation form of dynamical systems. In Kohler (2014), the best approximation of an unstable
descriptor model equipped with a realisation, by a stable one in the respective RH2 and RH∞ spaces, is
defined. Mathematically, following notations of (1.8), given p = {2,∞} and a realisation S ∈ S0

n,ny,nu

i.e. H ∈ RL∞ orRL2, one aims at finding S̃ ∈ S+
ñ,ny,nu

(0 < n ≤ ñ) such that,

||H(S)−H(S̃)||Hp = inf
G∈

⋃
ñ∈N S+

ñ,ny,nu

||H(S)−H(G)||Lp . (1.12)

For p =∞, this problem is known as the Nehari one (see e.g. Francis and Doyle, 1987). In Kohler (2014),
the following two main results are stated (note that in both cases we do not consider any eigenvalue on the
imaginary axis). By reminding that L2(ıR) = H2(C+)⊕H2(C−), one may write

S = S+ ⊕ S−,

where S ∈ S0
n,ny,nu , S+ = (E+, A+, B+, C+, D+) ∈ S+

n+,ny,nu and S− = (E−, A−, B−, C−, D−) ∈
S−n−,ny,nu , n = n− + n+. Therefore, the following theorem holds true.

Theorem 1.2: OptimalRH2 approximation

Given S ∈ S0
n,ny,nu (i.e. H ∈ L2), then S+ solves the problem (1.12) for p = 2 and we have

inf
G∈

⋃
ñ∈N S+

ñ,ny,nu

||H(S)−H(G)||L2 = ||H(S)−H(S+)||H2 = ||H(S−)||H2(C−).

The above theorem states that the best stable rational approximant of an unstable model in the RH2

sense, is the stable part of the original model. Similarly, the following theorem holds true for the RH∞
case.

Theorem 1.3: OptimalRH∞ approximation

Given S ∈ S0
n,ny,nu (i.e. H ∈ RL∞), S+ and S−, then problem (1.12) for p =∞ is solved by

S+ ⊕ PSS−,σ1
Q

17



CHAPTER 1. GENERALITIES IN LINEAR DYNAMICAL MODELS

where SS−,σ1
is given as

SS−,σ1
= (ET−RS−,γ︸ ︷︷ ︸

Ẽ

,−AT−RS−,γ − CT−CS−,γ︸ ︷︷ ︸
Ã

, ET−Q−B−︸ ︷︷ ︸
B̃

, C−P−ET−︸ ︷︷ ︸
C̃

, D−︸︷︷︸
D̃

)

∣∣∣∣∣∣∣
γ=σ1

,

whereRS−,γ = Q−E−P−ET−γ2I andP− andQ− are the solutions of the generalised Lyapunov
equations (where σ1 is the largest singular value of the unstable part),

A−PET− + E−PAT− +B−B
T
− = 0 and AT−QE− + ET−QA− + CT−C− = 0.

Moreover, if r = rank(Ã), the projection matrices P,QT ∈ Rr×n− exist, such that PÃQ is
regular. In this case,

inf
G∈

⋃
n̂∈N S+

ñ,ny,nu

||H(S)−H(G)||L∞ =
√

maxσ
(
ET−Q−E−P−

)
= σ1.

The above two theorems thus provide a powerful method to approximate any unstable model by a
stable one. These theorems will be very important in the model-based and data-driven approximation by
a realisation-based model since they allow enforcing the RH2 and RH∞ stability property, also known
as H∞ and H2 stability. This property is obviously of great importance in the perspective of simulation,
control design and performance measurement and analysis.

1.2.4 LTI models pole residue representation
The state-space realisation S provides a time-domain representation of a finite dimensional model. It is
quite largely used in control theory since it embeds an internal knowledge of the state variation (repre-
senting the energy storage of the system), while the transfer function H stands as a frequency-domain
“input-output” relation. Here, let us go back to the “input-output” representation given in (1.7)

H(S) : ρ(E,A) 7→ Cny×nu
s 7→ C(sE −A)−1B +D.

Based on this frequency(complex)-domain representation, and considering that all singularities are simple,
the i-th residue of H(s) with respect to λi is given as

Φi = lim
s→λi

(s− λi)H(s).

In addition, if matrices are real, then any complex eigenvalue λi of the pencil (E,A) is accompanied
with its conjugate λi and Φi is the residue associated to λi. Then, depending on the poles (eigenvalues)
multiplicity, and considering that E is non-singular and (E,A) diagonalisable, one can then write the
so-called poles - residues decomposition, or spectral representation, as

H(S) : ρ(E,A) 7→ Cny×nu

s 7→
n∑
i=1

Φi
s− λi

+R∞,

where R∞ is the constant contribution at s→∞ and Φi is obtained from right X = [x1, . . . ,xn] and left
Y = [y1, . . . ,yn] eigenvectors as,

Φi = cTi bi = (CXei)(e
T
i Y B) ∈ Cny×nu ,

where ei ∈ Rn denotes the vector with all entry equal to 0 but the i-th equal to 1 and where rank(Φi) = 1.
In the case where (E,A) is deflective, Jordan block might appear in the diagonalisation process and a

particular attention should be taken in the decomposition (see Vuillemin et al. (2014b) or Vuillemin (2014)
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for details). Moreover, when the DAE has an infinite eigenvalue, then the system contains a polynomial
part that may grow unboundedly as s → ∞. This is a difference between a DAE system and ODE one,
rendering many analysis tools inappropriate. In this case, the transfer function reads

H(s) = C(sE −A)−1B +D =

n∑
i=1

Φi
s− λi

+ P(s) = G(s) + P(s),

where G(s) is the strictly proper part and P(s), the polynomial one. Consequently, the associatedH2 and
H∞ norms are unbounded and it is then standard to treat P a part. This case, treated e.g. in Beattie and
Gugercin (2016) in the context of model approximation, is not covered in this manuscript. However, this
remark should be kept in mind when choosing the parametrisation of the approximated model (see Chapter
2). From now on, we get rig of the polynomial part and will consider realisations and transfer functions
where the (E,A) pencil is regular.

Example 2 - Finite vs. infinite meromorphic functions
In this example, two meromorphic functions are considered. First, (i) from the COMPleib Leibfritz
(2003) library, the Los Angeles Hospital building, mapping the ground excitation to the top lateral
acceleration, described by a finite order/dimension realisation (n = 48) and a meromorphic function
defined as H1(z) = C(zI −A)−1B. Second, (ii) the following trigonometric meromorphic function

H2(z) =
cos(z/10)

cosh(1 + z)− z/10
.

In both cases, z = a+ ıb is a complex number. In this academic example, both functions have been cho-
sen for illustration purpose, however, in Chapter 4 an irrational trigonometric function will be involved
for the dynamical characterisation of an open-channel (it is regularly the case when solving a PDE by
Laplace transform). Both Figures 1.1 and 1.2 illustrate the evaluation of |H1| and |H2| (in dB) along the
imaginary axis (red lines) and over a part of the complex space (coloured surface). In addition, Figure
1.1 also shows green dots, representing the stable poles and zeros of H1, respectively (poles tends to∞,
while zeros tends to 0).

Figure 1.1: 3D meromorphic function visualisation of H1.
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H2 clearly shows to have an infinite number of the singularities (illustrated by the pics). These later
should be analytically computed rather than numerically. With reference to these two figures, one can
see that every singularities are represented by an infinite value and zeros with a zero of the function.
This representation also shows the stability property of the function. Traditionally, in the control theory,
the cut section at <(z) = 0 i.e. the evaluation of the transfer function along the complex vertical axis
ıω (for ω > 0), is achieved by the well known Bode diagram. This "3D Bode" response still provides
additional interesting informations.

Figure 1.2: 3D meromorphic function visualisation of H2.
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1.3 Some linear algebra and computational issues
So far, a bundle of results and definitions attached to linear systems have been recalled. Most of them are
well known and, since they are grounded on linear algebra manipulations, they offer an apparently sim-
ple framework. However, despite this very appealing context, reader should keep in mind the fact that in
model approximation (or reduction), all the above mentioned formula should be considered in a very large
quantity. As a consequence, within the model approximation community, attention to the numerical as-
pects must be paid to ensure the scalability of developed approaches. This is indeed a specificity of model
approximation which strongly links the theoretical aspects with the computational ones, bridging the gap
between theory and practice. To the author’s point of view, computational aspects are somehow the cor-
nerstone in model approximation, and theoretical advances require numerical ones to become effective and
attractive for practitioners. In this section we try to give a preview of theses practical aspects by describing
some underlying issues in computational arithmetic of some important operations in linear model approx-
imation and control engineering. We start with the eigenvalue problem, then, the linear equation and sum
computation ones. Finally, a glimpse on the Lyapunov equations solvers is given. Then, some considera-
tion regarding theH2,H2,Ω andH∞-norm computations will be given. For complete and very interesting
references in linear algebra, reader may refer to Saad (2000); Antoulas (2005); Van der Vorst (2010); Bai
et al. (2010) books or interesting works in the computer and computational scientific communities such as
the book of Higham (2002) or papers from Stewart (2000) or Nguyen and Revol (2011)7.

1.3.1 The eigenvalues problem computation
For both practitioners and researchers, the generalised eigenvalues problem is a pivotal tool in many ap-
plications such mechanical, electrical, vibration, acoustics, control theory etc. (see Saad, 2000, Chapter
10). Its efficient resolution is thus crucial for many system manipulations, resolution and understanding.
Obviously, so it is in the large-scale model approximation context. The standard problem consists in find-
ing the non-trivial right and left eigenvalues/vectors xi,yi ∈ Cn and eigenvalues λi ∈ C, of the pair
(E,A) ∈ Cn×n × Cn×n, for i = 1, . . . , n, such that

Axi = λiExi and yHi A = λiy
H
i E.

Let us give a brief overview of some of the methods solving this problem. For more detailed descrip-
tions we refer to the books of Bai et al. (2010); Van der Vorst (2010) and the very comprehensive report
of Kurschner (2010). Eigenvalues computation are usually distinguished between full space methods for
dense matrices of moderate size (e.g. n < 5, 000) and iterative subspace methods for very large and sparse
matrices (e.g. n up to 109 . . . ).

Direct (dense) approaches

Full space methods compute the complete eigenvalues set and, if necessary, the eigenvectors (xi,yi). They
are referred to as direct methods, even if in practice they also embed an iterative scheme. Usually, they
transform the original matrices to diagonal or triangular ones. For the standard eigen-problem (E = In) the
QR method can be used to compute a Schur decomposition. The QZ method computes a generalised Schur
decomposition of a pair (E,A). Full space methods usually have a complexity of O(n3). As a matter of
consequence, they are largely used in control engineering but have a limited applications physics, such as
in fluid mechanics applications, where dimension rapidly explodes.

Indirect (sparse) approaches

For large-scale sparse matrices (here we assumeE = In for simplicity), largely used in scientific computa-
tions, iterative subspace methods come into the picture. In this case, one usually focuses on a fraction of the
spectrum, only. The underlying idea is to project the original matrix A onto a lower dimensional subspace

7Moreover, interested reader may refer to the Matrix Market webpage to measure the importance of the related problems
http://math.nist.gov/MatrixMarket/
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imposing some Ritz-Galerkin condition on the approximate eigen-pair (λ̂, x̂) obtained from the resolution
of the lower dimensional problem with dense methods. The basic procedure consists in computing the
approximated eigenvector x̂ as

x̂ = Vkx̂k ∈ Cn,

where x̂k ∈ Ck and Vk ∈ Cn×k is a k-th order orthonormal basis spanning the search space Vk ⊂ Cn
(k � n). The residual value r of the approximated eigen-pair should ensure

r = Ax̂− λ̂x̂ ⊥ Vk or V Hk AVkx̂k − λ̂x̂k = 0.

Then, (λ̂, x̂k) is an eigen-pair of the reduced matrix V Hk AVk ∈ Ck×k which can easily be computed using
dense approaches. The approximated eigenvector x̂k is simply lifted up by Vk to obtain (λ̂, x̂), also known
as the Ritz pair of A. This process is generally repeated by adding a new basis vector until accuracy is
reached. In the Petrov-Galerkin approach, a second basis Wk spanning Wk ⊂ Cn enters in the process
(instead of Vk only). This subspaceWk allows ensuring

r = AVkx̂k − λ̂Vkx̂k ⊥ Wk or WH
k AVkx̂k − λ̂WH

k Vkx̂k = 0.

The Vk space is the projection space and theWk one is known as the test space. A well known and used
class of iterative methods are the Krylov ones where the subspace Vk is spanned by the following Krylov
subspace, for some initial vector v1 ∈ Cn:

Vk = K(A,v1, k) , span
(
v1, Av1, . . . , A

k−1v1

)
. (1.13)

This subspace can be constructed using the modified Lanczos or Arnoldi procedures. The latter one pro-
duces a sequence of orthonormal vectors v1, . . . ,vk ∈ Cn spanning the Krylov subspace K(A,v1, k) and
an upper Hessenberg matrix Hk = V Hk AVk. The Arnoldi iteration ensures at the k-th iteration

AVk = Vk+1Hk = VkHk + hk+1,ke
T
k ,

where Hk ∈ Ck×k and hk+1,k ∈ Cn is the k + 1-th column of Hk = [Hk; hk+1,k] ∈ C(k+1)×k.
As the iteration k increases, eigenvalues of Hk tend to those of A. More specifically, when spanning
K(A,v1, k), the largest magnitude eigenvalues are firstly obtained, K(A−1,v1, k) leads to the smallest
magnitude ones and K((σI − A)−1,v1, k) the ones closest to σ ∈ C (see also Simoncini, 2010). This
remark will play an important role in some iterative model approximation schemes, and more specifically,
the interpolatory ones. In the eigenvalues problem, the (σI − A)−1 operation is also known as a pre-
conditioning method, aiming at accelerating the convergence of the procedure, i.e. by using (σI −A)−1v1

instead of v1. Other pre-conditioner, like them-th order polynomial Chebyschev one Tm(A−σI) can also
be employed. Basically, a pre-conditioned problem consists in constructing

Vk = K(TA, Tv1, k) = span
(
Tv1, TAv1, . . . , (TA)k−1v1

)
.

Remark 1.7 (A "control-systems" view) Interestingly, if considering a SISO LTI model, K(A,B, n) is
spanned by the reachability matrix R = [B,AB, . . . , An−1B] ∈ Rn×n, largely used in control theory.
Then, by noting that AR = RHn, where Hn is the controlability canonical form with upper Hessenberg
structure, and by applying a QR factorisationR = V U (where V is an orthonormal basis and U an upper
triangular matrix), one obtains AV = V UHU−1. Since Hn is upper Hessenberg, so it is for UHU−1.
Therefore, the Krylov subspace can be viewed as a generalisation of the controllability matrix (obviously,
similar results stand for the observability one).
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Example 3 - Eigenvalues via Krylov
In this example we aim at illustrating some of the numerical issues that can be encountered when solving
the eigenvalue problem and the importance of a reliable numerical approach versus an intuitive one. In
this example we construct the toy dynamical model which eigenvalues of the A matrix are logarithmi-
cally spaced as λi = 10−1, . . . , 102 × (−1 ± ı), for n = 50 and for B = CT = 1n (the example can
easily be scaled-up e.g. to n = 109). Then, eigenvalues approximation is obtained through the projection
of the A matrix through projector Vk, obtained by three different methods. First, the "naive" approach
involving the reachability matrix, second, a projection based on the Krylov K(A,B, k) subspace, and
finally a projection onto a the pre-conditioned Krylov K(TρA, TρB, k) subspace, with Tρ = A − ρI
(ρ ∈ R+). Both Krylov spaces are constructed with an Arnoldi procedure, embedded in the MOR tool-
box. The following MATLAB code illustrates the procedure and Figure 1.3 shows the convergence
results after k = 10 iterations, for ρ = 0.
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Figure 1.3: Eigenvalues estimation using different algorithms.

c l e a r a l l , c l o s e a l l , c l c
%% System d e f i n i t i o n
n = 5 0 ;
c p l x I = l o g s p a c e (−1 ,2 , n / 2 ) ;
cplxR = −l o g s p a c e (−1 ,2 , n / 2 ) ;
lambda = s o r t ( complex ( [ cplxR cplxR ] , [ c p l x I −c p l x I ] ) ) ; % E i g e n v a l u e s o f A
A = diag ( lambda ) ;
[V,D] = e i g (A) ;
[V,A] = c d f 2 r d f (V,D) ;
B = ones ( n , 1 ) ;
C = ones ( 1 , n ) ;
s y s = s s (A, B , C , 0 ) ; % C o n s t r u c t i o n o f t h e LTI model
sysTF = t f ( s y s ) ; % T r a n s f e r f u n c t i o n
eigA = e i g (A) ; % E i g e n v a l u e s
n = l e n g t h (A) ;
%% " C o n t r o l " a p p r o a c h u s i n g t h e r e a c h a b i l i t y m a t r i x
R = c t r b (A, B) ; %[B A∗B A^2∗B . . . A^nB ]
% C a n o n i c a l dynamica l m a t r i x form of t h e sys tem
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H = t r i u ( ones ( n , n ) ,−1)−t r i u ( ones ( n , n ) ) ;
H ( : , n ) = f l i p (−sysTF . den { 1 } ( 2 : n +1) ’ ) ;
% A∗R = R∗H check
norm (A∗R − R∗H) % = 6 .4728 e +86 , i n s t e a d o f 0 ( works b e t t e r f o r n =10)
% QR d e c o m p o s i t i o n o f t h e r e a c h a b i l i t y m a t r i x
[V,U] = qr (R) ; % V’∗V = I
% A∗V = V∗U∗H∗U^{−1} check
norm (A∗V − V∗U∗H/U) % 5.0933 e +05 ( i n s t e a d o f 0 )
Hbar = U∗H/U; % P r o j e c t e d m a t r i x
%% " Numer ica l " Krylov s u b s p a c e a p p r o a c h
% Krylov s p a c e g e n e r a t i o n
s i g = i n f ;
Vk = mor . a l g . ba se . Krylov (A, eye ( n ) , s i g , B , n ) ;
% Krylov wi th p r e c o n d i o n n e r
rho = 1e−3; % Try a l s o wi th 1 e2 . . . 1 e5
T = A−rho∗ eye ( n ) ;
Vk2 = mor . a l g . ba se . Krylov ( T∗A, eye ( n ) , s i g , T∗B , n ) ;
% For k−e i g e n v a l u e s , p l o t t h e a p p r o x i m a t e d ones
k = 1 0 ;
e i g 1 = e i g ( Hbar ( 1 : k , 1 : k ) ) ;
e i g 2 = e i g ( Vk ( : , 1 : k ) ’ ∗ A ∗ Vk ( : , 1 : k ) ) ;
e i g 3 = e i g ( Vk2 ( : , 1 : k ) ’∗ A ∗ Vk2 ( : , 1 : k ) ) ;

Listing 1.1: demo_Chap1_Arnoldi script: illustration of eigenvalue approximation.

Clearly, the reachability matrix-based approach makes difficulties in finding the eigenvalues and numer-
ical issues already appear at the matrix construction step (note that for n = 10, no numerical problem
appear). Then, both Krylov-based methods tend to first approximate the eigenvalues of largest mag-
nitude, and interestingly, the pre-conditioned one with ρ = 0, clearly converges faster. Indeed, after
10 iterations, the pre-conditioned version already exactly catches 8 eigenvalues while the standard one
only 4 (plus 2 approximately). In addition, at iteration k = 10, when comparing the V Tk AVk (resp.
V Tk TρAVk) matrices obtained without (resp. with) pre-conditioners, one obtains the Figures 1.4 and 1.5.
Both exhibit an upper Hessenberg form which is even more a tridiagonal one for the pre-conditioned
version with T = A, standing as a perfect pre-conditioner in the case where eigenvalues at∞ are ex-
pected. In addition, as illustrated on Figure 1.6 (resp. 1.7), an interesting numerical property appears
when increasing ρ, with ρ = 10−3 (resp. ρ = 103): the Hessenberg form tends to converge to the non
pre-condioned one.
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Figure 1.4: Matrix coefficients magnitude. Hes-
senberg form for K(A,B, k).
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Figure 1.5: Matrix coefficients magnitude. Hes-
senberg form for K(TρA, TρB, k) and ρ = 0.
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Figure 1.6: Matrix coefficients magnitude. Hes-
senberg form for K(TρA, TρB, k) and ρ = 10−3.
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Figure 1.7: Matrix coefficients magnitude. Hes-
senberg form for K(TρA, TρB, k) and ρ = 103.

Arnoldi (or Lanczos) however, exhibit slow convergence and tend to have difficulties finding interior
eigenvalues. Another important class of subspace methods are the Jacobi-Davidson ones. Initially proposed
by Sleijpen and Van der Vorst (1996) for the standard linear eigenvalues problem, is has been improved
and generalised in several ways to handle various problems, for instance generalised eigenvalues problem
by Rommes (2008), quadratic and polynomial eigenvalues problem in Hochstenbach and Sleijpen (2008),
singular values problem in Hochstenbachi (2001), and even nonlinear eigenvalues problem in Schreiber
(2008). Without entering into details, the Jacobi-Davidson method is grounded on two main important
phases: (i) the Davidson principle where a Galerkin projection is applied as previously, but where the
subspace Vk is not necessarily a Krylov one (known as the subspace extraction) and (ii) a correction for
the Ritz vector in which the search space Vk is enlarged by adding a new basis vector to it, hopefully
leading to better approximate eigen-pairs in the next extraction phase (known as the expansion phase).
In many cases, the subspace projection, unlike the Arnoldi or Lanczos processes, does not generate a
Hessenberg approximated matrix. The Ritz correction uses a Newton scheme and the correction term
added in the orthogonal complement of Vk. Additional details are given in Kurschner (2010) and in the
reference handbook of Saad (2000).

From a practitioner point of view, keeping the above simple considerations is important before solving
any eigenvalues problem. The MATLAB software embeds some eigenvalue solvers: the eig for dense
problems and the eigs for sparse ones. While the former is traditionally used by engineers and provides
all the eigenvalues, the second, instead, allows approximating a subset of the eigenvalues with large/small
magnitude/real part/imaginary part etc. Refer to Lehoucq and Sorensen (1996); Stewart (2000) for details.

1.3.2 The Ax = b linear equation computation

An other approximation-related problem is, given A ∈ Cn×n and b ∈ Cn, to find x ∈ Cn such that

Ax = b. (1.14)

This problem is embedded in many engineering applications, e.g. identification, least square regression,
Krylov subspace generation etc. As for the eigenvalues problem, direct and iterative methods co-exist.
The former have a finite number of steps and ends with the exact solution x, provided that all arithmetic
operations are exact, while the latter is adapted to sparse matrices.

Direct (dense) approaches

The most used of these methods is Gaussian elimination which is basically an elimination method trans-
forming theAmatrix into an upper or lower triangular matrix (typically applying a LU decomposition) and
then apply a backward substitution.
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Indirect (sparse) approaches

Among the existing iterative methods, by denoting x = [x1, . . . , xn]T , the Jacobi one aims at solving the
first line of Ax = b with x1 ∈ C, the first element of x, then the second line with x2 and so on. Then
one makes an initial guess x(0) on x and substitutes these values into the right-hand side of the rewritten
equations to obtain the first approximation. After this procedure has been completed, one iteration has been
performed. In the same way, the second approximation is formed by substituting the first approximation
x(1) values into the right-hand side of the rewritten equations. Repeating these iterations will form a se-
quence of approximations x(k) that often converges to the actual solution. A stopping criteria can be when
x(k+1) ≈ x(k). Obviously, as many iterative methods, greater accuracy would require more iterations.

Similarly to Jacobi’s approach, in the Gauss-Seidel method, one uses the new values of each i-th el-
ement of x as soon as they are known. That is, once x1 has been determined from the first equation, its
value is then injected in the second one to obtain the new x2. Similarly, the new x1 and x2 are used in the
third equation to obtain the new x3 and so on.

However, it is possible to apply the Jacobi method or the Gauss-Seidel method to a system of linear
equations and obtain a divergent sequence of approximations. Still, for a special type of coefficient matrix
A, called strictly diagonally dominant matrix, a convergence result can be stated as in Theorem 1.4. A
matrix A is strictly diagonally dominant if the absolute value of each entry on the main diagonal is greater
than the sum of the absolute values of the other entries in the same row. For this class of matrices, the
following holds true.

Theorem 1.4: Convergence of the Jacobi and Gauss-Seidel methods

GivenA ∈ Cn×n, strictly diagonally dominant, then the system of linear equations given by (1.14),
has a unique solution to which the Jacobi method and the Gauss-Seidel method will converge for
any initial approximation.

The above theorem states that before performing any linear system resolution, a column / row permuta-
tion and scaling is generally needed to ensure numerical stability of the initial problem. In addition, as in the
eigenvalues problem, pre-conditioning is usually performed, i.e. replace Ax = b with T−1Ax = T−1b
with T a matrix "close" to A. Many numerical efficient tools, involving pre-conditioners, such as CG,
BiCG or GMRES implement these methods with varying specificity, depending on the structure of the
A matrix (e.g. sparsity, symmetric structure, etc. ). Finally, one should also note that the associated com-
plexity of linear equation is O(n3). The MATLAB software embeds some interface with the LAPACK
solvers: the code x=A\b performs the resolution for both dense and sparse problems and provides the “ex-
act” solution. Moreover, an approximation x̂ is also possible using the gmres function implementing the
GMRES method with or without pre-conditioner, see e.g. Saad and Schultz (1986) or recent developments
in Sonneveld and Van Gijzen (2008).

More recently, interval-based methods ensuring a bounded error, are also largely being investigated, as
e.g. in Nguyen and Revol (2011). This class of method is attached to the numerical issues accompanied by
the limited arithmetic floating precision and take it into consideration when solving the problem to contain
the error propagation.

1.3.3 About the vector x = [x1, . . . , xn] sum operation

In this section, we will not detail the many summation methodologies. Indeed, this problematic is close to
the numerical research field and interested reader should e.g. refer to the work from Demmel and Nguyen
(2014) and references therein. Still, from a didactical viewpoint, author believes that it is interesting to
point out this operation in order to emphasise the importance of the numerical impact when dealing with
a large number of data. Let us present a simple MATLAB based example to illustrate the loss of accuracy
when summing values in a vector.
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Example 4 - Simple sum operation loss of accuracy
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Figure 1.8: Error comparison of two implementations of the sum computation: MATLAB sum vs.
mor.linalg.safeSum safe (but also very greedy) implementation used in the MOR toolbox.

Let us consider the three following examples through the following MATLAB code.

c l e a r a l l , c l o s e a l l , c l c
%% Example 1 : Exac t s o l u t i o n = 0
x = [1 e12 −1e−5 −1e12 1e−5];
% C l a s s i c sum
sum ( x )
% 1 .0000 e−05 ( a b s o l u t e e r r o r 1e−5)
% Now o r d e r e d sum
x = s o r t ( x ) ;
sum ( x ) % 0 ( e x a c t )
%% Example 2 : Exac t s o l u t i o n = 0 . 1
x = [1 e12 1e−1 −1e−5 −1e12 1e−5];
% C l a s s i c sum
sum ( x ) % 9 .9986 e−02 ( r e l . e r r . 0 .014%)
% Now o r d e r e d sum
x = s o r t ( x ) ;
sum ( x ) % 9 .9976 e−02 ( r e l . e r r . 0 .024%)
% Now o r d e r e d sum by a m p l i t u d e
[ ~ , i d x ] = s o r t ( abs ( x ) ) ;
x = f l i p ( x ( i d x ) ) ;
sum ( x ) % 1 .0000 e−01 ( e x a c t )
%% Example 3 : Exac t s o l u t i o n = 0
f o r i = 1 : 2 e1

x = [100 −1e−2∗ones ( 1 , 1 e4 ) ] ;
P = randperm ( numel ( x ) ) ;
x = x ( P ) ;
e r r 1 ( i ) = sum ( x ) ;
e r r 2 ( i ) = mor . l i n a l g . safeSum ( x ) ;

end

Listing 1.2: demo_Chap1_Sum script: simple illustration of the vector sum accuracy.
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This example considers first x = [1012,−10−5,−1012, 10−5] which sum is obviously equal to 0, then,
x = [1012, 10−1,−10−5,−1012, 10−5] which sum is equal to 10−1 and finally x = [100 −10−2×1104 ]
(randomly permuted 20 times).
With reference to the above code, the errors of examples 1 and 2 are shown as comments, illustrating
that even on small vectors, errors can occur. Moreover, considering example 3, where computation
is performed 20 times for different permutation of x, the obtained errors are reported on Figure 1.8,
showing that, depending on the ordering of vector x, the error from the sum implementation vary in a
quite important manner while the mor.linalg.safeSum always provides the exact solution.
The mor.linalg.safeSum implementation is obviously way more time and computationally de-
manding since values ordering is performed at every iteration in order to sum the smallest values first.
Nevertheless, this algorithmic trick ensures a good accuracy, at the price of a computational effort.

Interestingly, according to the ordering sequence of the vector, the result vary in a relavitely important
manner. When dealing with complex numbers, this effect might be even more amplified. It is obvious
that the rounding error and propagation strongly depends on the variability of the values embedded in the
vector and/or matrix. This effect can have some importance, as highlighted in the rest of the manuscript
where matrix vector multiplication, sums and complex arithmetic are present at many steps of the proposed
algorithms. As in the linear equation resolution, research in numerical computation are still investigating
methods to perform a (simple) stable sum computation, as in Demmel and Nguyen (2014) using the Rump’s
algorithm.

After this brief insight on some classical issues on computational methods, let us now turn back our
attention to more model reduction and control-oriented computational considerations.

1.3.4 Lyapunov equation computational considerations
As previously mentioned, the Lyapunov equations plays an important role in the gramian definition, model
approximation andH2-norm computation, therefore, numerical scheme solving (for E = In)

AP + PAT +BBT = 0,

are of particular importance. Without entering to much in details, methods can be classified in two broad
categories, the (i) dense (exact) approaches including the vectorisation of the Lyapunov equation, the
Bartels-Stewart method (for Sylvester and Lyapunov equations) or the Hammarling’s method, for stable
Lyapunov equations, and (ii) the iterative approximate ones, including the so-called ADI methods for Al-
ternating Direction Implicit or Krylov-like approaches etc. Let us now briefly present three direct methods
schemes and some of their limitations.

The vectorisation (naive) method

By transforming AP + PAT +BBT = 0, into(
In ⊗A+A⊗ In

)︸ ︷︷ ︸
A

vect(P)︸ ︷︷ ︸
x

= vect(−BBT )︸ ︷︷ ︸
b

,

then solving Ax = b, where A ∈ Rn2×n2

, b ∈ Rn2

, leads to the solution by solving a linear equation
problem. The complexity of the original n×n problem is thenO

(
(n2)3

)
. Interestingly, even if theoretically

this approach seems appealing and simple, in practice it is to be avoided (obviously) due to numerical
limitations.

The Bartels-Stewart method

By applying a Schur factorisation (in real arithmetic) A = QTQT and left right multiplying by Q (or-
thonormal) and QT leads to QTAPQ + QTPATQ + QTBBTQ = 0. Noticing that QQT = I , the
Lyapunov equation becomes

QTAQ︸ ︷︷ ︸
T

QTPT︸ ︷︷ ︸
Y

+QTPQ︸ ︷︷ ︸
Y

QTATQ︸ ︷︷ ︸
TT

+QTBBTQ = 0
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where

T =

[
T11 T12

0 T22

]
, Y =

[
Y11 Y12

Y T12 Y22

]
, QTBBTQ =

[
C11 C12

C21 C22

]
,

where the last block of T , T22 ∈ Rnr×nr is of dimension nr = {1, 2}. By separating the four blocks
in the projected equation, we have four equations which can be solved by backward substitution (like the
Gaussian elimination),

C11 = T11Y11 + T12Y21 + Y11T
T
11 + Y12T

T
12

C12 = T11Y12 + T12Y22 + Y12T
T
22

C21 = T22Y21 + T21Y
T
11 + Y22T

T
12

C22 = T22Y22 + T22Y22

An iterative algorithm can then be stated by solving the three last equations explicitly and by inserting
the solution in the first one. Then, repeat the procedure on the reduced Lyapunov equation in Y11 ∈
R(n−nr)×(n−nr) (first equation). After iterations, the solution is finally given by

P = QTY Q.

This algorithm has a complexity of O
(
n3
)
, e.g. similar to an eigenvalues or linear equation problem. The

MATLAB software embeds the function lyap performing the exact resolution for dense matrices, involving
a version of the Bartels-Stewart method.

The Hammarling’s method

By noticing that if A is stable, then P > 0 and we can write P = UUT , where U is upper triangular
(Schur basis). Hammarling (1982) observed that U can be computed without explicitly computing P . By
denoting

P = UUT =

[
P1/2

11 P12P−1/2
22

0 P1/2
22

][
P1/2

11 0

P12P−1/2
22 P1/2

22

]
,

the problem now consists in computing the smaller part of P , i.e. P22 ∈ R(n−r)×(n−r), P12 ∈ Rr×(n−r)

and finally, P̂11 ∈ Rr×r, where r � n. To that effect, three equations have to be solved:

A22P22 + P22A
T
22 +B2B

T
2 = 0,

A11P12 + P12

(
P−1

22 A22P22 + P−1
22 B2B

T
2

)
+A12P22 +B1B

T
2 = 0,

A11P̂11 + P̂11A
T
11 +B1B

T
1 = 0.

We can thus solve the first low order Lyapunov equation for P22. Then, we solve the second equation
which is a Sylvester equation for P12. Finally, since (A11, B1) is reachable, the problem of solving a
Lyapunov equation of size n is reduced to that of solving a Lyapunov equation of smaller size r � n. The
MATLAB software embeds the function lyapchol performing the exact resolution for dense matrices,
using the Hammarling’s method.

Lyapunov solvers for large and sparse problems

Even if the Bartels-Stewart is both efficient and robust for large dense problems, when matrices are sparse,
dedicated methods may also be constructed. Among them, the low-rank methods and the Krylov ones
are still being investigated from the numerical community (see e.g. Simoncini (2007); Shank et al. (2016);
Hached and Jbilou (2017)). The latter is concerned in computing directly a low-rank solution of the Lya-
punov equation by determining V ∈ Rn×r and P ∈ Rr×r such that

P̃ = V PV T ,

where V is an orthogonal matrix. By this transformation, it is expected that AP̃ + P̃AT + BBT ≈ 0. A
common approach aims at computing an approximation by the application of a Galerkin condition. More
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precisely, given V , one may compute P by imposing the Galerkin condition and simplifying (W = BBT )

V T (AP̃ + P̃AT +WT )V = 0,

V TAV PV TV + V TV PV TATV + V TWTV = 0,

ÃP + PÃT + W̃ = 0,

where Ã = V TAV . Then the Lyapunov equation to solve is now of dimension r � n and can be solved
using a dense approach. Obviously, the matrix V corresponds to a basis of a search subspace (or projection
space). The success of the approach highly depends on the choice of V and many different search sub-
spaces have been proposed in the literature (see e.g. Simoncini (2007) for the case of Krylov subspace).

1.3.5 H2-norm computation
So far, very generic linear algebra and computational methods were pointed to highlight the numerical
issues that researchers and engineer are faced to. Now, following the norm definitions given in Section 1.1
while focussing on the finite dimensional framework defined in Section 1.2, let us derive some methods to
efficiently compute them.

The gramian-based method

As rooted on the Lyapunov equations, when H ∈ H2 and equipped with a realisation S (1.6), then ||H||H2

is finite and can be computed as

||H||2H2
= tr

(
BTQB

)
= tr

(
CPCT

)
,

where P and Q are the controllability and observability gramians solution of the Lyapunov equations
(1.10). Clearly the H2-norm computation is recast as a Lyapunov equation resolution. The MATLAB soft-
ware embeds the function normwhich allows theH2-norm computation using dedicated Lyapunov solvers
and pre-conditioning methods (such as QR decomposition, etc. ).

Remark 1.8 (About inner product and Sylvester equations) Being given H and Ĥ (and their realisa-
tion S and Ŝ as in (1.6)), one can compute the H2 inner product of the two models through the use of the
so-called cross-gramians, as follows

〈H, Ĥ〉2H2
= tr(BTYB̂) = tr(CX ĈT ) = tr(CTZB̂),

where X , Y and Z are the solution of the Sylvester equations,

AX ÊT + EX ÂT +BB̂T = 0 , ATYÊ + ETYÂ+ CT Ĉ = 0 and AZÊT + EZÂT +BĈT = 0.

This last inner product is of importance in the context ofH2 model approximation, as detailed in Chapters
2 and 4.

The spectral-based method

Moreover, if S has simple poles λi (i = 1, . . . , n), theH2-norm can also be computed as (Antoulas, 2005,
Chapter 5)

||H||2H2
=

1

2π

∮
Γ

tr
(
H(ıν)HT (ıν)

)
dν =

n∑
i=1

tr
(
ΦiH

T (−λi)
)

=

n∑
i=1

n∑
j=1

tr

(
ΦiΦ

T
j

λi + λj

)
, (1.15)

where λi, Φi are the poles and residues of H, respectively, and Γ denotes the integral contour of all stable
poles of H. To the authors’ knowledge, within the control community, this residue-based formulation is
mainly used in H2 optimal model reduction since it allows one to derive first-order optimality conditions
directly in term of interpolation conditions. Indeed, this formulation is largely used later in this manuscript
in Chapter 2, 3 and 4, as well as in Van Dooren et al. (2008) and Gugercin et al. (2008). Obviously,
here, the norm computation is recast as an eigenvalues one. From a pure computational point of view,
both gramian and spectral-based methods are of the same complexity. Nevertheless, depending on the
framework (control, model approximation, etc. ), one may be preferred with respect to the other.
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1.3.6 (L2,Ω and)H2,Ω-norm computation
Similarly to theH2-norm, it might be interesting computing the norm over a limited frequency range only.
This is achieved by the H2,Ω-norm, where Ω = [0, ω], ω > 0. As in the infinite case, both gramian
(Lyapunov) and spectral formulation exist (see also Petersson (2013); Garulli et al. (2013); Petersson and
Lofberg (2014) for applications).

The gramian-based method

As rooted on the frequency-limited Lyapunov equations, for a stable and strictly proper system S ∈ H2,
the resulting frequency-limitedH2-norm can be defined as

||H||2H2,Ω
= tr(BTQΩB) = tr(CPΩC

T ),

where PΩ and QΩ are the frequency-limited reachability and observability gramians given in (1.11) (see
also Gawronski (2004) for details).

The spectral-based method

As in the infinite case, a new expression of theH2,Ω-norm based on the spectral information of the system,
i.e. the residues and eigenvalues and of the transfer function H(s), has been proposed in Vuillemin et al.
(2013a, 2014b) and extended for model approximation purpose in Vuillemin et al. (2019). Before detailing
this result, let us note that this norm is actually defined for finite order models H ∈ L∞, thus, the results
are first given for this class of functions, and then reduced to the specific case of models H ∈ H∞. First,
let us defining the complex inverse tangent function atan(z) as suggested in Kahan (1987), which states
that for z ∈ C \ {±ı}

atan(z) ,
1

2ı
(log(1 + ız)− log(1− ız)) ,

where log(z) , ln(|z|) + ıarg(z) is the principal value of the logarithm of z, defined for z 6= 0 with
−π < arg(z) ≤ π. Besides, to simplify the notations as it will be a recurrent term in Chapter 3, let us
define the function aω(s) as

aω(s) ,
2

π
atan

(ω
s

)
.

As rooted on the arctangent definition, let us now formulate of the L2,Ω-norm as in Theorem 1.5.

Theorem 1.5: Spectral expression of the L2,Ω-norm

Given a continuous MIMO LTI dynamical system H ∈ L∞ and equipped with a realization S
of degree n with simple poles λi and Φi ∈ Cny×nu the corresponding residues of H(s) at λi, for
i = 1, . . . , n. Suppose that the purely imaginary poles λimk , k = 1, . . . , nim (0 ≤ nim ≤ n) of
H(s) are such that ω < min

(
|λimk |

)
. Then, the frequency-limited L2-norm can be written as

||H||2L2,Ω
,

n∑
i=1

n∑
j=1

ai,j +
ω

π
tr(DDT )− 2

π

n∑
i=1

tr(ΦiD
T )atan

(
ω

λi

)
(1.16)

where

ai,j ,


2

π
tr

(
ΦiΦ

T
j

λi + λj

)
atan

(
ω

λi

)
if λi + λk 6= 0

− 1

π
tr

(
ωΦiΦ

T
j

ω2 + λiλi

)
otherwise.

In the above formulation, the system belongs to L∞. If instead, one considers the case where H ∈ H∞,
relation (1.16) becomes:

||H||2H2,Ω
=

n∑
i=1

− 2

π
tr
(
ΦiH(−λi)T

)
atan

(
ω

λi

)
+
ω

π
tr
(
DDT

)
. (1.17)
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and if H ∈ H2, then (1.17) becomes

||H||2H2,Ω
=

2

π

n∑
i=1

−tr
(
ΦiH(−λi)T

)
atan

(
ω

λi

)
. (1.18)

By comparing (1.18) with (1.15), its is interesting noticing that the main difference comes from the
(2/π)atan(ω/λi) term, playing the role of weight on each modal contribution. This new simple, yet
efficient formulation, allows new perspectives from a control, observer, filter design or model reduction
point of view and provides an alternative to the gramian-based approach for the frequency limited H2-
norm computation of large-scale models.

Example 5 - Illustration of theH2 andH2,Ω-norm behaviour
To illustrate the H2,Ω-norm, one evaluates it over the range Ω = [0, ω], where ω ∈ R+, as a function
of the ω value, let us consider the example of the Los Angeles Hospital from the COMPleib Leibfritz
(2003) which frequency response is given in Figure 1.9 (up). The following code is executed and the
resulting frequency-limitedH2-norm is shown on Figure 1.9 (bottom).

c l e a r a l l , c l o s e a l l , c l c
%% Load COMPleib model and c o n s t r u c t t h e s t a t e s p a c e model
name = ’LAH’ ;
[A, B1 , B , C1 , C , D11 , D12 , D21 , nx , nw , nu , nz , ny ] = COMPleib ( name ) ;
s y s = s s (A, B , C , 0 ) ;
%% H2 norm c o m p u t a t i o n
H2 = norm ( sys , 2 ) ;
%% H2w norm
wSpace = l o g s p a c e ( 0 , 2 . 5 , 3 0 0 ) ;
f o r i = 1 : numel ( wSpace )

H2w( i ) = mor . norm ( sys , 2 , [ 0 wSpace ( i ) ] , [ ] ) ;
end

Listing 1.3: demo_Chap1_H2norm script: illustration of the H2,Ω-norm value as a function of the
upper bound ω ∈ R+.
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Figure 1.9: Top: frequency response of the LAH model. Bottom: ω upper bound frequency-dependent
H2,Ω-norm.

With reference to Figure (1.9), one should first note that when ω → ∞, the H2,Ω-norm tends to the
H2 one. In addition, as an interesting property, at each pic of the frequency response, the H2,Ω-norm
strongly increases. Moreover, the higher the pic is, the higher the derivative of theH2,Ω-norm is.

Due to the analytic solutions provided for the H2 and H2,Ω-norms, these latter are clearly the most
largely used in the model reduction field. Yet, in the control design and analysis fields, due to its nice
robustness properties, the H∞ one is still largely used in many academic researches, as well as industrial
applications including automotive, aerospace, biology etc. (see e.g. Zhou and Doyle (1997); Apkarian and
Noll (2006); Burke et al. (2006)). This norm computational aspects is briefly discussed now.

1.3.7 H∞-norm computation
TheH∞-norm of transfer H ∈ H∞ is given as in (1.3), and recalled as

||H||H∞ = max
ω∈R

σ (H(ıω)) = sup
ω∈R

σ (H(ıω)) = max
w∈L2

||z||2
||w||2

,

where σ(·) and σ(·) are the singular and maximal singular value operators, respectively. The computation
of this norm still is a quite active field where dedicated eigen-solvers are constructed (see e.g. Benner and
Mitchell (2017) for recent advances and relevant references).

The bisection procedure

To the author best of knowledge, the main model realisation-based method allowing to compute this norm,
is based on the eigenvalues problem applied on the Hamiltonian matrix H. For a given γ ∈ R+ (with
E = In and D = 0), one defines

H(A,B,C, γ) =

[
A γBBT

−γCTC −AT
]
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which should not have any eigenvalue along the imaginary axis. In practice, this is obtained by using a
bisection procedure, as suggested in Boyd et al. (1988). The MATLAB software embeds the function norm
which allows the H∞-norm computation for dense models. Practitioners might also note also that the
MATLAB function norm(H,inf) applied on an unstable model H, gives the L∞-norm (see also Boyd
et al., 1988; Boyd and Balakrishnan, 1989; Gahinet and Apkarian, 1992).

H2,Ω-basedH∞-norm approximation and inequalities

As the computational cost of the H2,Ω-norm is much lower than the H∞ one, Vuillemin et al. (2014c)
did exploit it to approximate theH∞ worst-case pulsations values without computing theH∞-norm itself.
In addition, in the same paper, Vuillemin et al. (2014c) did compute two upper bounds of the H∞-norm.
These latter offer a limited computational cost, and can then be applied to large-scale models. These two
bounds are recalled in what follows.

Theorem 1.6: Upper bounds of theH∞-norm

Given H ∈ H∞ and ω ∈ R+, itsH∞-norm is upper bounded as

||H||H∞ ≤ max
ω∈R+

||H(ıω)||F = max
ω∈R

√
π
∂||H||H2,[0 ω]

∂ω
.

Then, based on the poles-residues expression of theH2,Ω-norm given in (1.18), the following holds
true:

∂||H||H2,[0 ω]

∂ω
= − 2

π

n∑
i=1

tr
(
ΦiH(−λi)T

) λi
λ2
i + ω2

=

n∑
i=1

fi(ω).

By denoting gi(ω) = <(fi(ω)), it comes that

||H||H∞ ≤

(
max
ω∈R

π

n∑
i=1

gi(ω)

) 1
2

︸ ︷︷ ︸
Γ(H)

≤

(
π

n∑
i=1

max
ω∈R

gi(ω)

) 1
2

︸ ︷︷ ︸
Γ̄(H)

.

Interestingly, in the SISO case, Γ(H) = ||H||H∞ and in the MIMO case, one can expect the bound to
be more or less conservative depending on the singular values of the transfer function. Moreover, as in the
H2,Ω case, one can also bound the maximum singular value over some frequency interval Ω, by restricting
the search domain, i.e.

max
ω∈Ω

σmax(H) ≤

(
max
ω∈Ω

π

n∑
i=1

gi(ω)

) 1
2

︸ ︷︷ ︸
ΓΩ(H)

≤

(
π

n∑
i=1

max
ω∈Ω

gi(ω)

) 1
2

︸ ︷︷ ︸
Γ̄Ω(H)

Computing Γ̄(H) (or Γ̄Ω(H)) requires to find the maximums of n simple rational functions, which can be
achieved analytically. Computing Γ(H) (or ΓΩ(H)) consists in finding the maximum of a sum of rational
functions of ω, which requires an optimisation procedure. See Vuillemin et al. (2014c) for details on the
computation and statistical examples.
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1.4 Conclusions
In this chapter, a brief overview of the linear system spaces, norms and representations, has been done.
Starting from the quite general Hardy spaces definitions and properties, the "control-oriented" L2, H2,
L∞ and H∞ spaces were detailed. Then, based on the description of the complex-valued meromorphic
functions belonging to these spaces, their associated norms were defined in a general manner. The specific
case of rational complex valued functions, which is of specific interest in the control community, was em-
phasised together with the (stable) realisation representation and the pole residue one. Finally, discussions
on linear algebra operations and norms computational aspects were drawn. Indeed, when dealing with
large-scale systems, these issues become crucial in the control engineering practice as they can render a
theoretical result inoperable in practice if not numerically carefully handled. Moreover, author truly be-
lieves that these considerations should always be kept in mind even for operations and small-scale systems.
Obviously, this chapter lacks from many details, but still provides a quick overview accompanied by some
very complete references, and specifies the basic definitions employed in the rest of the manuscript.

By keeping in mind the elements provided in this chapter, the next chapter will try to give a picture
of the model approximation methods, as treated in this work. More than a collection of mathematical
theorems and lemmas, in the rest of the manuscript will try to illustrate though examples and use cases,
the theoretical and numerical difficulties (and sometime solutions), and results within model reduction and
approximation, as well as some related applications.
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Introduction to linear large-scale
dynamical model approximation
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After the first chapter dedicated to preliminary definitions on linear dynamical systems, this chapter,
without being exhaustive, provides a brief overview of the linear large-scale model approximation prob-
lem, framework and main results. For a more complete overview, reader is invited to refer to the book
of Antoulas (2005) and survey papers of Benner et al. (2015); Benner and Stykel (2016). Section 2.1
both provides the context and motivations for model approximation as well as a classification of the linear
approximation problems as treated in this work. Then, Sections 2.2 and 2.3 define, similarly to an opti-
misation problem, the approximation criteria and parametrisation of the solution set. Finally, Section 2.4
gives a lecture grid (as well as a brief overview) of the approximation methods in the linear framework
(most of the details will be omitted for brevity and let to the reader’s curiosity through relevant references).
Conclusions are given in Section 2.5 which closes this chapter.

2.1 Motivations and context
Due to the ever increasing need to enhance system’s performances, reliability and safety while reducing
development time, costs and experimental phases, dedicated numerical softwares and digital-based tools
are being more and more used to accurately catch and restitute any physical phenomena. These softwares
(generic or dedicated to a specific application) generally embed mathematical dynamical models. For many
practitioners, these numerical models and softwares are the starting point to simulate, optimise, control,
analyse and more generally, to understand different phenomena and systems. Depending on the nature and
desired accuracy of the physical system or phenomena to represent, or the approach used to construct such
a model, this latter can become more or less complex and representative of the reality.
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Obviously, very accurate models are usually preferred. However, in practice, such accuracy is accom-
panied with a high complexity, making models manipulation complicated and sometimes inappropriate for
engineers. Indeed, due to computers limited computational burden, storage capacity and floating point
arithmetic, simulation and optimisation of these complex models might become un-tractable or ineffective
and disturb theoretical results. In addition, as the complexity growth (e.g. number or nature of the equa-
tions), the time cost to obtain a simulation and/or optimisation result might growth, which is a slowing
factor when developing digital-based solutions, where simulation plays a central role.

As a mater of consequence, it seems appropriate to restrain the complexity of dynamical models before
deploying the numerical bundle of algorithm exploiting them. This complexity reduction should probably
be performed during the construction of the model. Nevertheless, this is not always possible nor suitable
for many theoretical (e.g. methodology ensuring optimality is missing) or practical reasons (e.g. physicians
construct models that will be used for different purpose, and the multiplication of models would lead to
a waste of time). Indeed, on one hand, numerical modelling tools (such as identification, finite elements,
...) do not enable to limit the complexity without loosing informations. On the other hand, dynamical
models are usually constructed for different purpose (e.g. simulation, control, analysis, inverse problem
...), and their complexity usually vary in consequence. In practice and in many industrial applications, it is
preferred to construct a single high fidelity model and to simplify it afterward depending on the application
and utilisation. Seeking for efficient methods allowing constructing a simpler low complexity dynamical
model tailored to its utilisation, that well restitutes the original input-output model transfer and its main
characteristics, is the purpose of model approximation.

In this work, dynamical models approximation is mainly considered. More specifically, among the dif-
ferent dynamical model representations, the linear ones as described in Chapter 1, are considered only. The
approximated or reduced order models considered in this work are obtained from the following different
type of inputs that be classified in three folds:

(#1) the linear first order state-space models S, defined by a set of algebraic-differential equations (realisation-
based framework),

(#2) the complex-valued meromorphic functions H (realisation-free framework) and

(#3) the frequency-domain discrete input-output data set {ωi,Φi}Ni=1 (data-driven framework).

For each cases, the common objective is to find a reduced-order linear dynamical model. These three cases
are illustrated on Figure 2.1, and detailed and illustrated in what follows:

(#1) Realization-based
large-scale linear model

(#2) Realization-free
linear model

(#3) Data-driven
frequency data

Model approximation A reduced-order
linear dynamical system

Figure 2.1: Three problem classes treated in this manuscript.
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(#1) Realisation-based framework

This framework includes the linear nu inputs ny outputs finite n-th order (typically, n ≈ 10 . . . 109) state-
space models governed by a set of differential-algebraic equations S : (E,A,B,C,D), defined as

Eẋ(t) = Ax(t) +Bu(t) and y(t) = Cx(t) +Du(t),

where E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n and D ∈ Rny×nu . Since in the control community many
tools are based on this model class, it is one of the most largely studied. Models of this form typically
result from discretisation of PDE or from linearisation of physical equations. In this configuration, the
model approximation goal - generally - consists in constructing Ĥ, a linear reduced-order models equipped
with a realisation of the form Ŝ : (Ê, Â, B̂, Ĉ, D̂) and a reduced state-space vector x̂(t) ∈ Rr of dimension
r � n, which catches the original input-output behaviour and preserves some properties of the original
model. Obviously, as pointed along the chapter, approximation involving other realisation structures can
be used, but these latter will be marginally treated in this manuscript.

Example 6 - A finite element model approximation
This example comes from the discretisation of a Timoshenko clamped beam described in a technical
note by Panzer et al. (2009), providing a fast and easy way to produce an ODE LTI model H with
a realisation S, of a 3D cantilever Timoshenko beam using finite element approximation, with a user-
defined discretisation N step.
To illustrate the benefit of model approximation, we construct an original accurate model by discretising
the beam with N = 75, leading to Model 1 with dimensions n = 900, nu = 1 (vertical acceleration
at the beam extremity), ny = 150 (vertical displacements along the beam), then with N = 2, leading
to Model 2 with dimensions n = 24, nu = 1, ny = 4. Then, Model 1 is approximated with an order
r = 24, nu = 1, ny = 150, using the MOR Toolbox, leading to Model 3. Figures 2.2-2.3 illustrates the
results.

0
10

-3

-2

-1

0

1

Model 1
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Figure 2.2: Snapshot of the impulse response of the Timoshenko beam. 3D representation of the beam
Models 1, 2 and 3 at t = 0.05.

Clearly, one obtains better simulation results by performing an accurate model followed by a model
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approximation, rather than a low dimensional model directly. Indeed, the integral error between the
original Model 1 and Model 2, and Model 1 and Model 3, in response to an impulse at the extremity
leads to 5.2107 for Model 2 and 0.088015 with Model 3. Moreover the simulation computational time
for one second simulation is of 0.2967s for Model 1 and 0.0015s for Model 2 and Model 3. Finally,
applying the reduction with the MATLAB Toolbox leads to an H2 mismatch error of 1.630411 × 10−3

and a solution obtained in 7.3424s, while the MOR Toolbox reaches a mismatch of 1.200435 × 10−3

in 6.1899s, only.
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Figure 2.3: Impulse response of the Timoshenko beam. Error at the extremity of the beam between
Model 1 and Model 2 (dashed blue) / Model 3 (solid red), as a function of time.

(#2) Realisation-free framework

This framework concerns any nu inputs ny outputs complex-valued meromorphic functions, not necessar-
ily rational, described as

y(s) = H(s)u(s),

where H ∈ H2 or H∞. Such a model can be obtained after Laplace transform of linear partial differential
equations (see e.g. Curtain and Morris (2010) for examples). As in case #1, in this configuration, the
objective is to approximate the complex-valued meromorphic function by Ĥ a finite order linear model,
usually equipped with a realisation Ŝ with a state-space vector x̂(t) of dimension r.

The main difference with the previous framework #1 stands is the fact that here, neither internal repre-
sentation nor state-space vector is a-priori known. Therefore, we clearly talk here of model approximation
rather than model reduction.
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Example 7 - Linear PDE solution approximation
When linear PDE with constant coefficients are considered, the Laplace transform can be used to solve
them (sometimes leading to irrational transfer functions). Let us be given the following PDE

∂ỹ(x, t)

∂x
+ 2x

∂ỹ(x, t)

∂t
= 0

ỹ(x, 0) = 0

ỹ(0, t) =
1√
t
∗ ũf (0, t)

ω2
0

s2 +mω0s+ ω2
0

u(0, s) = uf (0, s),

where x ∈ [0 L], L = 3 is the space variable and ω0 = 3 and m = 0.5 are the input filter parameters.
The scalar input of the model is ũ(0, t) (or u(0, s) in the Laplace domain), the vertical force applying at
the left boundary. By applying the Laplace transform, one obtains

∂y(x, s)

∂x
+ 2x (sy(x, s)− ỹ(x, 0)) = 0,

which solution can be given as y(x, s) = a(s)e
∫
−2xsdx = a(s)e−x

2s. Due to boundary condition
ỹ(0, t) = 1√

t
∗ ũf (t), we have y(0, s) =

√
π√
s
uf (s), and consequently a(s) =

√
π√
s
uf (s). Therefore,

y(x, s) =

√
π√
s
e−x

2s ω2
0

s2 +mω0s+ ω2
0

u(s) = H(x, s)u(s),

which links the input to the output through an irrational transfer function H. Figure 2.4 then illustrates
the irrational model frequency response at point x = L, and Figure 2.5, the time responses along x for
the exact and rational approximation (note that for this toy example, the exact time-domain solution is
given by ỹ(x, t) = ũf (t− x2)/

√
t).
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Figure 2.4: Frequency response of the PDE at x = L and its rational approximation with r = 50.
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Interestingly, the rational approximation model well restitutes the response, and even in a more numeri-
cally accurate way. Indeed, due to the singularity of the exact solution, some unexpected values occurs.
Then, based on the rational model Ĥ equipped with Ŝ, it is now easy to design a linear control law to
damp and stabilise the system with any standard tools. This is illustrated on Figure 2.5, with a snapshot
of the impulse response. With reference to Figure 2.5, where the considered measure is materialised by
the vertical line, the system is looped at the left boundary with a PI controller given by this realisation
ẋc = y(xmeas, t)−r(t) and u(t) = 0.0283xc+0.2284(ỹ(xmeas, t)−r(t)), where r(t) is the reference
signal. The control scheme is not described, but simply consists in a tracking performance objectivea.
The controller gains are obtained through H∞ norm minimisation using the hinfstruct function
from Apkarian and Noll (2006) (see also Gahinet and Apkarian (2011); P. Gahinet (2013)).
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Figure 2.5: Snapshot of impulse response of the uncontrolled (rounded red line and blue solid line) and
controlled (stared green line) at t = 6.6s, when looped with the PI control designed based on the rational
finite order model Ĥ.

aDetails are given in the attached script files.

(#3) Data-driven framework

Within this framework, instead of an analytical description of the model such as the descriptor form of
(#1) or any meromorphic transfer function form (#2), we are given a set of frequency-domain (or complex-
domain) nu inputs ny outputs data obtained from experimental measurements or from any numerical sim-
ulation, as

y(si) = Φiu(si),

where {si}Ni=1 ∈ C and {Φi}Ni=1 ∈ Cny×nu . In this configuration, at the boundaries with the traditional
model identification problem (see overview paper of Ljung (2013)), the objective is to find Ĥ a model
usually equipped with a realisation Ŝ with a given complexity, that well reproduces the data. Note that
when the data {Φi}Ni=1 are collected from experimental test, usually one have si = ıωi, where ωi ∈ R+ is
the pulsation of the experiment.
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Example 8 - Aero-structural aircraft model approximation
This use-case is extracted from the MOR Wiki webpagea and represents a flexible aircraft model in
response to discrete gust disturbances. Its primal description is detailed in Quero (2017) and its formali-
sation for the data-driven model approximation, described in Poussot-Vassal et al. (2018). Such a model
is used by aero-structural engineers to understand the physics of the aircraft and to perform simulations
for authorities in order to assess gust load alleviation functions (see also Moulin and Karpel (2007);
Wang and Chen (2017)).
Usually, the simulator allowing to calculate the response to gust disturbances requires many time to com-
pute the output responses (e.g. effort along the wing). By an adequate data-driven model approximation,
this computational time has been divided by hundred, as exposed in Poussot-Vassal et al. (2018). Figure
2.6 illustrates the frequency response of the GLRA (Generic Long Range Aircraft) along the right wing
span for the exact model and its rational reduced order approximation with r = 100.
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Figure 2.6: Frequency response of the GLRA efforts along the right wing. Red dots are the original
model responses (from the HiFi simulator) and the surface stands for the approximation Ĥ with r = 100.

As the Loewner framework has been employed, the Loewner matrix L normalised singular values decay
is also shown on Figure 2.7, exhibiting that from r = 100, the dynamic is already well caught (see later
in this chapter for details).
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Figure 2.7: Loewner matrix L singular values decay.

ahttps://morwiki.mpi-magdeburg.mpg.de/morwiki/index.php/Flexible_Aircraft

Now the main use cases considered in this work have been introduced and exemplified, illustrating
some of the many model approximation interests, let us now mathematically define the most standard
approximation objectives in Section 2.2, and then, some of the most standard parametrisation of the solution
in Section 2.3.

2.2 Approximation criteria
Following the three model input types presented above, let us now formulate the approximation objectives
(or criteria), which will then determine the methodology and numerical scheme to deploy.

2.2.1 General problem setting and objective
Given the meromorphic complex-valued transfer function matrix H equipped or not with a realisation,
mapping the nu inputs u to the ny outputs y such that

y(s) = H(s)u(s), (2.1)

or the input-output data collection {si,Φi}Ni=1 = {si,H(si)}Ni=1 and with H(·) unknown, such that

y(si) = Φiu(si), (2.2)

the approximation problem aims at producing the approximate meromorphic (rational) transfer function
matrix Ĥ mapping the nu inputs u to the ny approximate outputs ŷ such that

ŷ(s) = Ĥ(s)u(s).

Some general goals for reduced order model are:
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(i) the reduced inputs to outputs map should be uniformly "close" to the original, i.e. for the same u,
y − ŷ, should be "small" in an appropriate sense,

(ii) the critical system features and structure should be preserved, e.g. stability, passivity, real bounded-
ness, eigenvalues, subsystem interconnectivity, first / second / delayed order structure etc. and,

(iii) the strategies for computing the reduced system should lead to robust and numerically stable algo-
rithms, and require minimal user tuning parameters.

Before detailing the main algorithms, reader should note the difference nature between use-case (#1)-
(#2) and (#3). Indeed, while the two first cases embed a mathematical dynamical model description as
(2.1), they belong to the so-called model-based category. On the contrary, the latter case, which only
provides discrete inputs to outputs informations as in (2.2), belongs to the data-based one. Following this
classification, both problems formulations and resolutions will be different and objectives will be defined
accordingly (even if, as illustrated later on in this chapter, some elegant bridges exist).

2.2.2 Model-based approximation

Let us first describe the model-based model approximation criteria related to (#1)-(#2). The specificity
of this class is that a model description as in (2.1) exist and can be exploited. Then, dynamical models
norms can enter into the picture. Within this class, one of the most standard and appreciated problem is the
so-calledH2 one, recalled hereafter.

Problem 2.1:H2 model approximation

Given H ∈ H2, the H2 model approximation problem consists of seeking an approximation Ĥ ∈
H2 of H, such that

Ĥ := arg min
G ∈ H2

dim(G) = r � n

||H−G||H2 . (2.3)

Interestingly, although the H2-norm is smooth and differentiable, it is worth noticing that (2.3) is non-
linear and exhibits multiple local minima, as illustrated in Vuillemin (2014). Keeping in mind that this
problem should be solved in a very large-scale context, it is particularly challenging to solve it in practice.
However, this problem received many attentions in the literature and first order optimality conditions have
been derived through different approaches and for different parametrisation of the solution, i.e. different
structure of G (e.g. rational, state / inputs / outputs delayed, etc. ). Later in this chapter, we will come
back to the existing solutions but it can already be mentioned that Wilson (1974) did provide the theoret-
ical solution using a state-space form and Lyapunov and Sylvester equations, and Gallivan et al. (2004a)
then Gugercin et al. (2008) solve it using a pole-residue form and using the tangential framework and con-
nection with generalised Krylov subspace, embedding a numerically efficient procedure. Reader should
remind that the importance of optimising the H2 mismatch error when performing model approximation
can be motivated by connecting the norm of the models mismatch and the signals as follows:

||y − ŷ||L∞ ≤ ||H− Ĥ||H2 ||u||L2 ,

This last expression directly links the mismatch error with the output signals. Indeed, minimising the H2

mismatch directly provides a bound on the worst case output signal error, which is usually expected by the
practitioners specifications.

As a direct extension of the H2 approximation problem, the frequency-limited H2 one, also called
H2,Ω, being the frequency band restriction of theH2 one, can be formulated as follows.
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Problem 2.2:H2,Ω model approximation

Given H ∈ H∞, the H2,Ω model approximation problem consists of seeking an approximation
Ĥ ∈ H∞ of H, such that

Ĥ := arg min
G ∈ H∞

dim(G) = r � n

||H−G||H2,Ω . (2.4)

Similarly to the H2 one, (2.4) is nonlinear and multiple local minima exist. This problem will be
specifically treated in Chapter 3. However, as for Problem 2.1, Problem 2.2 can be solved by involving
Lyapunov and Sylvester equations and using a state-space form as proposed by Petersson and Lofberg
(2014) or an interpolatory ones with the pole-residue one, as done by Vuillemin et al. (2013a); Vuillemin
(2014); Vuillemin et al. (2019).

Remark 2.1 (Existence and unicity) With reference to Problems 2.1 and 2.2, one question before enter-
ing into methodological or practical considerations, is to consider the existence (and unicity) of a solution,
especially when no specific structure of H and Ĥ are given. This problem clearly is at the frontier of my
expertise and is closer to the complex functional analysis. Still, interested reader may refer to the article
of Baratchart (1986), in which the existence of the best approximation of a given stable dynamical model
H by a finite order one Ĥ, is done (in the discrete-time domain). The paper first proves the existence, and
then its unicity (in the case of discrete-time model, this unicity is in fact cyclic).

As previously mentioned, both H2 and H2,Ω problems are linked to the interpolatory problem which
play a pivotal role in many model approximation methods. This latter is exposed hereafter.

Problem 2.3: Model-based interpolation

Given H, left interpolation points {µj}qj=1 ∈ C with left tangential directions {lj}qj=1 ∈ Cny and
right interpolation points {λi}ki=1 ∈ C with right tangential directions {ri}ki=1 ∈ Cnu , find a (low
order) transfer function Ĥ that is a tangential interpolant to H, i.e. satisfies the following left and
right interpolation conditions (let us assume that µj and λi are distinct):

lHj Ĥ(µj) = lHj H(µj)
for j = 1, . . . , q

}
and

{
Ĥ(λi)ri = H(λi)ri

for i = 1, . . . , k
. (2.5)

As made cleared in the rest of this chapter and along this manuscript, this problem will enter into
consideration for many models structures and for different approximation objectives.

Obviously, instead of the H2 and H2,Ω norms, other systems-oriented norms might be considered.
Among them, the same optimization problems using the H∞-norm is explored in Flagg et al. (2013) and
involving the ν-gap metrics in Sootla et al. (2009). However, they both suffer for high numerical cost due
to the iterative nature of their computation which render complicated deriving analytical solutions, as in
the H2 case. In this manuscript, these metrics are not directly treated, and interested reader is invited to
refer to the above mentioned references.
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2.2.3 Data-based approximation

By now considering the class of frequency domain data-driven input type (#3), the approximation problem
turns to be defined in a different way. Here, continuous complex functions-oriented metrics as presented
in Chapter 1 and in the previous section, do not apply anymore. Instead, discrete metrics may be defined
before performing any optimisation or interpolation. Thus, the following problems describe two angles of
attack: first the interpolatory framework (similar to the model-based one) and then the least square one1.

Problem 2.4: Data-driven interpolation

Given left interpolation driving frequencies {µj}qj=1 ∈ C with left output or tangential directions
{lj}qj=1 ∈ Cny , producing the left responses {vj}qj=1 ∈ Cnu and right interpolation driving
frequencies {λi}ki=1 ∈ C with right input or tangential directions {ri}ki=1 ∈ Cnu , producing
the right responses {wi}ki=1 ∈ Cny (where q + k = N ), find a (low order) transfer function Ĥ
that is a tangential (approximate) interpolant of the data, i.e. satisfies the following left and right
interpolation conditions (let us assume that µj and λi are distinct):

lHj Ĥ(µj) = vHj
for j = 1, . . . , q

}
and

{
Ĥ(λi)ri = wi

for i = 1, . . . , k
. (2.6)

Through the use of Loewner matrices, this problem have been solved by Mayo and Antoulas (2007).
It provides an analytical solution to the interpolatory problem for approximated model Ĥ rational and of
finite order, equipped with a realisation Ŝ. In addition, Mayo and Antoulas (2007) also provide the minimal
dimension and McMillian degree of this interpolating model, when described by a first order ODE as in
(1.6). Extensions to more complex structures have also been obtained by Schulze et al. (2018). We will
come back to these points later in Section 2.3, dedicated to the parametrisation of the solutions.

The least square problem is also largely addressed in many engineering fields as well as its declination
in the model approximation. Contrary to the interpolatory problem presented above, this one then involves
an optimisation framework, rather than an analytical resolution one. This problem can be presented as a
least square (see Gugercin and Antoulas (2006); Demourant and Poussot-Vassal (2017)) or vector fitting
problem (see also Lefteriu and Antoulas (2013); Drmac et al. (2015b,a).

Problem 2.5: Least square model approximation

Given driving frequencies {si}Ni=1 ∈ C, producing the responses {Φi}Nj=1 ∈ Cny×nu , find a (low
order) transfer function Ĥ which (approximately) matches the data at the driving frequencies si,
i.e. minimises the following criteria, where p is any matrix / vector norm:

Ĥ := arg min
G ∈ H∞

rank(G) = r

||Φi −G(si)||p. (2.7)

Obviously, it is nothing to mention that so many attempts to solve this problem have been suggested
involving approaches such as nonlinear optimisation, genetic algorithm, sub-space etc. In my activities, I
have marginally addressed this problem through the sub-space angle.

Now the objective criteria and different frameworks have been presented, let us move to the parametri-
sation of the solutions of the research space, denoted G in the above problems. As presented in Chapter
1, this transfer is a meromorphic function and might thus take multiple mathematical forms. Still, we will
focus on some of them, more tailored to the control, simulation and optimisation communities and, we
believe to practitioners needs2.

1Other approaches based on discrete data exist in the identification domain, but are out of the scope of this manuscript. Author
suggests to refer to Brunot (2017), Janot (2017) or Ljung (2013), for some details.

2However, author believes that there always is space for extending the models structure to address dedicated applications exhibiting
specific needs (e.g. electronics, mechanical systems, fluid flow etc. ).
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2.3 Parametrization of the solutions
By either considering the H2 (2.3), H2,Ω (2.4), interpolation (2.6) or least square (2.7) problem described
above, one may define different parametrisation of the solutions spaces G. Obviously, there exists an in-
finite number of possibilities requiring a dedicated attention. However, in this manuscript we will more
specifically target some traditional linear transfer functions, equipped with a realisation. Indeed, for simu-
lation, analysis or control issues relevant in physics and control communities, they are of particular interest
and are widely used. We start with the (delayed, parametric) first order form, then briefly introduce some
other ones (second order, generalised coprime etc. ).

2.3.1 First order LTI ODE and DAE models
The most commonly developed structure of the solution Ĥ in the control literature is the first order model
one, equipped with the following realisation,

Ŝ :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx(t) + D̂u(t)
,

where x̂(t) ∈ Rr, u(t) ∈ Rnu , ŷ(t) ∈ Rny are the reduced state, input and approximated output vectors,
respectively, and Ê, Â ∈ Rr×r, B̂ ∈ Rr×nu , Ĉ ∈ Rny×r and D̂ ∈ Rny×nu . Its associated transfer
function is,

Ĥ(s) = Ĉ(sÊ − Â)−1B̂ + D̂.

Remark 2.2 (About the direct feed-through) As model approximation is concerned to match the transfer
behaviour, a reduced order model usually features an equal feed-through term, i.e.D = D̂ ∈ Rny×nu . One
should note that ifD 6= D̂, then (H−Ĥ)(ı∞) = D−D̂ 6= 0 and, hence, ||H−Ĥ||H2

=∞. Consequently,
if one requires a good approximation in the sense of the H2-norm, then D = D̂. Still, the feed-through D̂
term may be used as an additional degree of freedom in order to improve the approximation. For example,
the work of Flagg et al. (2013) presents a framework which uses this parameter in order to improve the
approximation in theH∞-norm sense. In addition, the weighted (see Anic et al. (2013)) and the frequency
limited (see Vuillemin et al. (2014b) and Petersson and Lofberg (2014)) model approximation might provide
reduced order models having the feed-through D̂ 6= D.

Remark 2.3 (About DAE index) The index (or differential index) is usually considered as a measure of
the DAE singularity. By differentiating as many time as needed the equations, one can eliminate algebraic
variables until obtaining an explicit ODE set. The index of a DAE is the number of derivative actions
needed. Thus, ODE have an index of 0. Mathematically, it is always possible to take derivatives and
rewrite DAE as ODE but algebraic equations replaced by their derivatives might no longer include the
original constraints, then the numerical solution can drift and fail in reproducing the correct system’s
behaviour. Some research teams do develop specific work in this field (see e.g. Imran and Ghafoor (2015);
Benner and Stykel (2016)). In this work, we will often consider that E and Ê are full row rank.

As it is the main model structure employed in many control problems, this parametrisation has received
a deep attention from the model approximation community and is thus the mostly employed one in many
works such as in the reference book of Antoulas (2005) or survey papers Antoulas et al. (2001, 2016).

Details on some of the (many) proposed solutions will be given in the bibliographical Section 2.4. Still,
some results addressing the H2 optimal objective (2.3), are relevant to notice now. Among them, one can
mention the Gramian-based exposed by Wilson (1974) and the Krylov-based by Gugercin et al. (2008).
Even if in the original work of Wilson (1974) it was not clearly shown, as highlighted in Gallivan et al.
(2004a); Van Dooren et al. (2008); Gugercin et al. (2008), both solve a tangential interpolation problem
as given in expression (2.5). In Gugercin et al. (2008), authors also have accompanied their developments
with an iterative algorithm. The IRKA (Iterative Rational Krylov Algorithm), initially set for SISO sys-
tems in Gugercin et al. (2008), allows satisfying the H2 first-order optimality conditions but did not a
priori preserves stability. Later, in Beattie and Gugercin (2009a), authors extended it to MIMO systems,
with a complex Trust Region algorithm, guaranteeing H2 mismatch error monotonic descent and stability
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preservation. Nowadays, IRKA is incontestably one of the most successful procedure to approximate very
large-scale models. Almost at the same period, the works of Van Dooren et al. (2008); Van Dooren et al.
(2010) has provided substantial results in the MIMO case, and especially, a connection between gramian
and interpolatory conditions. Later, the Two-Sided Iterative Algorithm, TSIA by Xu and Zeng (2010),
which iteratively solves two Sylvester equations, is shown to be equivalent to the tangential interpolations
(see also Benner et al. (2011) for extensions and analysis of the potential stopping criteria). Around the
same period, it can be noticed that rational approximation by using a Schur form by Marmorat et al. (2002)
has also been exploited, allowing ensuring the model stability through a dedicated model structure. In
this case, the process is achieved by an optimisation procedure. A side from these works, Vuillemin et al.
(2014a) also addressed the H2 problem through an optimisation framework and using a pole residue rep-
resentation of H and Ĥ, and using complex descent algorithm instead of projection approaches. This last
formalisation has also led to solution of theH2,Ω optimal problem (2.4). In addition, the following related
works may be considered Willcox and Megretski (2005); Gugercin and Willcox (2008), involving Fourier
series. As for the model-based methods, in the context where no model exist but where frequency-domain
data are available, Mayo and Antoulas (2007) did present a methodology based on the Loewner matrices,
allowing constructing first order DAE models that interpolate these data, as targeted in Problem 2.3 (see
also Antoulas et al. (2016) for a more detailed description). Note that most of these approaches consider
that the E matrix is full rank and that the original model does not have any polynomial part. The case of
rank defective E matrix is treated in Antoulas et al. (2010); Borggaard and Gugercin (2014); Imran and
Ghafoor (2015); Benner and Stykel (2016). It is to be stressed that in the control community, DAE models
are often neglected. We will come back to this case later in the chapter.

2.3.2 First order p-LTI ODE and DAE models
By continuing within the first order ODE and DAE models, and following the same notations, one can also
consider the parametric ones, defined as follows:

Ŝp :

{
Ê(p) ˙̂x(t) = Â(p)x̂(t) + B̂(p)u(t)

ŷ(t) = Ĉ(p)x(t)
,

where p ∈ Rnp , Ê(p) ∈ Rr×r, Â(p) ∈ Rr×r, B̂(p) ∈ Rr×nu and Ĉ(p) ∈ Rny×r are operators
parametrised by vector p. At a given parametric value, the associated transfer function is given as:

Ĥ(s,p) = Ĉ(p)
(
sÊ(p)− Â(p)

)−1
B̂(p).

Remark 2.4 (About the parameter p and its (non) variations) In the control community, LPV (Linear
Parameter Varying) systems are largely used to extend the linear modeling, control design and analysis
tools to a class of nonlinear models. In this case, the parameter p is actually a time-varying one and reads
p(t). The associated "transfer function" cannot be written as it, since H(s) is no longer meromorphic. As
a matter of consequence, the system’s norm (such as the H2 of the H∞ ones) are no longer applicable as
it, and one talks e.g. about L2-L2 induced norm, instead of the H∞. Still, many works in this area have
been carried out since the 80’s for control design, analysis, filtering design etc. Reader should refer e.g. to
Arzelier (2014); Balas et al. (2003); Bruzelius et al. (2004); Biannic (2010); Toth et al. (2008); Alkhoury
et al. (2018); Ghosh et al. (2018) for references and basics.

Within the model approximation field, the works of Theis et al. (2015); Gozse et al. (2016) address this
specific class of model using both Lyapunov equations and heuristic approaches, but results are contained
to restricted model complexity. In this work, parameter dependent but time independent are considered
instead. From the iterative approach family including the Krylov ones, the works by Eid et al. (2009);
Lohmann and Eid (2009a,b) provide a methodology to construct parametric models from a set of local
LTI ones. This approach has been re-used and extended by Poussot-Vassal and Roos (2012) in the case
where the LTI set is sparse and specific adjustment have to be done for accurate interpolation of modes (see
e.g. Chapter 3 for application on the long range parametric model construction). Moreover, from the data-
driven side, the Loewner approach, initially settled in Mayo and Antoulas (2007) has also been extended
for parametric models by Ionita and Antoulas (2014); Ionita (2013). It can be noticed that in this last work,
the parametric model has a specific state-space structure, different from the one presented above.
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2.3.3 Second order LTI ODE models
Back to non parametric models, the second order ones, well appreciated by practitioners in e.g. the me-
chanical, aero-elastic communities, etc. are given by the following form:

Ŝ2 :

{
M̂ ¨̂x(t) + L̂ ˙̂x(t) + K̂x̂(t) = B̂u(t)

ŷ(t) = Ĉx̂(t)
,

where M̂ ∈ Rr×r, L̂ ∈ Rr×r, K̂ ∈ Rr×r, B̂ ∈ Rr×nu and Ĉ ∈ Rny×r. The corresponding transfer
functions reads

Ĥ2(s) = Ĉ(s2M̂ + L̂s+ K̂)−1B̂.

One interest in the second order formulation lies in the physical meaning of the matrices (e.g. M̂ is a
mass matrix, L̂ and K̂ are damping and stiffness ones, respectively). This model structure is relevant for
engineers in order to understand and optimise the physical elements. Clearly this parametrisation embeds
an interest for specific applications. An illustration of model approximation and optimisation, the tuning of
the damping parameters is explored in Tomljanovic et al. (2018). Still, from a mathematical point of view,
any second order model can be recast as a first order one as

Ŝ2∗ :


[
I 0

0 M̂

] [
˙̂x(t)
¨̂x(t)

]
=

[
0 I

−K̂ −L̂

] [
x̂(t)
˙̂x(t)

]
+

[
0

B̂

]
u(t)

y(t) =
[
Ĉ 0

] [ x̂(t)
˙̂x(t)

] .

Thus, all first order ODE methods can apply to this class, obviously at the price of twice the original
dimension.

2.3.4 First order input-output delayed LTI ODE and DAE models
Following the same notations, the input-output delayed model structure stands as a natural extension of the
DAE LTI model one, and is defined as follows, with {τi}nui=1 ∈ R+ and {γo}

ny
o=1 ∈ R+:

Ŝd :

{
Ê ˙̂x(t) = Âx̂(t) + ∆̂i

(
B̂u(t)

)
ŷ(t) = ∆̂o

(
Ĉx̂(t)

) ,

where ∆̂i(·) and ∆̂o(·) are the linear input and output fixed delayed operators, respectively defined as:{
∆̂i

(
u(t)

)
=

[
u(t− τ1) . . . u(t− τnu)

]T ∈ Rnu

∆̂o

(
ŷ(t)

)
=

[
ŷ(t− γ1) . . . ŷ(t− γny )

]T ∈ Rny
.

By keeping the notations, the associated transfer function is,

Ĥd(s) = ∆̂o(s)Ĉ(sÊ − Â)−1B̂∆̂i(s) = ∆̂o(s)Ĥ(s)∆̂i(s),

where ∆̂i(s) and ∆̂o(s) are the input and output fixed delayed operators, defined as:{
∆̂i(s) = diag(e−τ1s, . . . , e−τnus) ∈ Hnu×nu∞
∆̂o(s) = diag(e−γ1s, . . . , e−γny s) ∈ Hny×ny∞

.

This parametrisation naturally extends the delay-free LTI one. In the model approximation context, such
a parametrisation has been first considered in the work of Halevi (1992), providing an H2 optimal con-
dition set through Lyapunov and gramian equations. Later, Pontes Duff et al. (2018) provide optimality
conditions in term of interpolatory equations as well as an approach, similar to the IRKA one (dedicated
to delay-free reduced order models), called IO-dITIA for Inputs-Outputs delayed Iterative Tangential In-
terpolation Algorithm. Note that although no gain variations are observed when adding input-output delay,
the mismatch between a delayed and a delay-free model affects the norm computation through the phase
shift embedded in the delay term3.

3We will come back to this parametrization in Chapter 4, but interested reader can refer to Briat (2015); Seuret (2017) for good
references and details on time delayed systems.
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2.3.5 Generalized coprime LTI models
Until now, both the full and the reduced-order models were assumed to describe a finite dimensional trans-
fer function Ĥ, and described by a realisation Ŝ representing an ODE and DAE set. In what follows, we
consider a transfer function having the following generalised coprime and parametric coprime representa-
tion:

Ĥ(s) = Ĉ(s)K̂(s)−1B̂(s) and Ĥ(s,p) = Ĉ(s,p)K̂(s,p)−1B̂(s,p),

where both Ĉ(s), Ĉ(s,p) ∈ Cny×r and B̂(s), B̂(s,p) ∈ Cr×nu are analytic in the right half plane, and
K̂(s), K̂(s,p) ∈ Cr×r is analytic and full rank over the right half plane. Obviously, this coprime represen-
tation encapsulates all the above listed models (first, second order, input-output delayed), and even more,
such as the (state) time-delayed systems given as

Ĥ(s) = Ĉ

(
sÊ −

nd∑
k

Âke
τks

)−1

B̂,

where Âk ∈ Rr×r and τk ∈ R+, for k = 1, . . . , nd. In Beattie and Gugercin (2009b); Gugercin et al.
(2012) authors present an interpolatory method to construct a reduced orde model that preserve the system’s
original structure through the generalised coprime form. However, it is to be noticed that in these work,
the proposed procedures do not solve any H2 (or other norm) optimal problem, but rather take inspiration
from mechanisms used in the classical ODE case for this extended form.

2.3.6 Schur form
In Fulcheri and Olivi (1998) and in Marmorat et al. (2002), authors use a parametrisation of the reduced-
order model state-space representation based on its Douglas-Shapiro-Shield factorisation (see for instance
Fuhrmann, 1994). Such a parametrisation enables to have a minimal (in terms of the number of parameters)
and smooth representation that directly embeds some properties such as the stability. This last form is
known as the Schur form and is also largely used in identification.

In the works of Baratchart et al. (1991); Fulcheri and Olivi (1998); Marmorat et al. (2002), authors
also use a parametrisation in the disk rather than in the complex plane. This latter shows nice numerical
properties4. In the context of discrete-time models (Baratchart, 1986, see) has presented some theoretical
results including the minimum existence. In the articles of Baratchart et al. (1991); Fulcheri and Olivi
(1998); Marmorat et al. (2002) different algorithms to solve the problem using a dedicated parametrization,
are presented. It should be noticed that there is an isometry from H2(C+) to the orthogonal of H2(D)
(Hardy space for discrete-time systems) so that methods used for discrete-time systems can also be used
for continuous-time and vice versa (see Olivi et al., 2013).

Still, in practice few algorithm are deployed in the discrete time version while the unit disk provides
very interesting properties for analysis, numerical issues, etc.

4The method is also made available in the software RARL2 by Marmorat and Olivi (2002) at http://www-sop.inria.fr/
apics/RARL2/rarl2.html.

51

http://www-sop.inria.fr/apics/RARL2/rarl2.html
http://www-sop.inria.fr/apics/RARL2/rarl2.html


CHAPTER 2. INTRODUCTION TO LINEAR LARGE-SCALE DYNAMICAL MODEL
APPROXIMATION

2.4 Overview of existing methods and bibliographical notes

2.4.1 Forewords
Based on the approximation objectives described in Section 2.2 and on the parametrisation of the solution
in Section 2.3, we will now give some of the important literature results. However, before reading the
following pages, author stresses that many results exist, and this monograph does not pretend giving an
exhaustive view, but rather a view of the references and methods which drove my research activities. The
following pages can be viewed as the necessary background before reading Chapters 3, 4 and 5. Indeed,
the approximation problem has a long lasting history and has been addressed by both the numerical and
control communities. Both angles of attack are interesting and lead to a wide variety of approaches. To the
author’s point of view, a very good starting point are the books of Antoulas (2005) and Saad (2000)5. The
former addressing the theoretical and methodological aspects on approximation of dynamical systems, and
the latter, the numerical and linear algebra computational considerations.

This research filed is, to the author’s point of view, deeply connected to dynamical system’s theory, lin-
ear algebra and complex functions analysis. Therefore, it is fair considering that model approximation is
somehow at the intersections of these research fields and it is thus possible to find relevant contributions
in all these domains.

Providing an overview and a classification of the linear model approximation methods is quite compli-
cated and many patterns can be used. One can either subdivide them by original model class (finite order
vs. infinite order, model-based vs. data-based), by methods family (projection vs. non-projection, direct
vs. iterative) or even by objective / target (H2, H∞, interpolatory) etc. In what follows, we chose to keep
the path described by the workflow illustrated on Figure 2.1, by first presenting the model-based approxi-
mation methods, firstly based on a realisation as in #1 (by projection) and then, based on a realisation-free
models as in #2. Then, the data-driven framework #3 is finally presented. According to the author, such
an organisation allows non-familiar reader to select the approximation method according to its starting
problematic, but also to make some bridges between the methods.

Remark 2.5 (Original and reduced models structures) In general, and it is the case in most model ap-
proximation results, the goal is to construct a reduced-order model Ĥ, keeping the same structure as the
original one H. Indeed, practitioners usually chose a mathematical representation of their model and
then, aim at simplifying it. As a matter of consequence, most of the results presented hereafter will con-
sider state-space representations of first order ODE structures. A different structure of the reduced model
is considered in Pontes Duff et al. (2018) and exposed in Chapter 4.

Before detailing some approximation methods, author stresses that even if most of them are based on
LTI models H equipped with a realisation S : (E,A,B,C,D), extensions to more complex structure ma
exist. Approximation involving some more general representations will be exposed, however, attention
is mainly given on models with realisation as presented in Section 2.3 and involving the criteria given in
Section 2.2.

2.4.2 Model-based approximation by projection and Petrov-Galerkin framework
One of the most efficient medium and large-scale dynamical model approximation techniques, are the
projection-based ones. These latter are based on the Petrov-Galerkin projection problem. Given a linear
dynamical system Eẋ(t) = Ax(t)+Bu(t)) (x(t) ∈ Rn and u(t) ∈ Rnu ), this problem consists in finding
projectors (i) V ∈ Rn×r (r � n) forming a basis of subspace V , and (ii) W = (W

T
EV )−1W (where

W ∈ Rn×r is a basis of subspaceW), such that WTV is invertible and

x̂(t) ∈ V and WT (EV x̂(t)−AV x̂(t)−Bu(t)) = 0

5People with a mathematical background may also be interested in having close-by the book of Partington (2004).
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Here x(t) ≈ V x̂(t) and x̂(t) ≈ WTx(t) are the full original and reduced order state-space vectors,
respectively. The projection-based model approximation is then given as follows.

Problem 2.6: Projection-based linear model approximation

Given H, a nu inputs ny outputs LTI dynamical model with realisation S : (E,A,B,C, 0) of
order n, defined as

S :

{
Eẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t)

where E,A ∈ Rn×n, B ∈ Rn×nu and C ∈ Rny×n. The projection-based approximation problem
consists of finding a projector ΠV,W = VWT ∈ Rn×n (with V,W ∈ Rn×r, WTV = Ir), such
that Ŝ : (Ê, Â, B̂, Ĉ, 0), a reduced model of order r � n, defined as

Ŝ :

{
Ê ˙̂x(t) = Âx̂(t) + B̂u(t)

ŷ(t) = Ĉx̂(t)

where Â = WTAV , B̂ = WTB and Ĉ = CV , well approximates H in the sense of a given
measure.

In this specific case, research can be divided in two mainstreams: (i) the theoretical one, where attention
is devoted to the development of new methods guaranteeing some approximation properties (e.g. stability,
structure, passivity, H2 optimality. . . ), and, (ii) the numerical one, which focusses on the development of
numerically robust and fast procedures implementing the aforementioned theoretical methods. A projection
framework for model approximation was introduced by Villemagne and Skelton (1987). In this regard,
matrices V and W are called projection matrices since they are the fundamental blocks to generate the
reduced order model. Indeed, given a large-scale model represented by its realisation S, a reduced order
model Ŝ can be constructed by a pair of V and W projection matrices. These matrices V and W span the
subspaces V andW , respectively. If subspaces V andW are equal, one talks about orthogonal projection.
Otherwise, one talks about oblique projection. In this framework, finding a good approximation Ŝ is
equivalent in finding matrices V,W such that Ŝ, the reduced order model constructed by projection, has a
similar behaviour as S. In the reasoning, only the subspaces V = span (V ) andW = span (W ) play an
important role in the projection framework and the projection matrices are not important in this regard (see
Gallivan et al. (2004a)). This statement is summarised as follows.

Choosing two different bases V ′ and W ′ that respectively span the same subspaces V and W result
in the same reconstructed solution x(t). Thus, subspaces are relevant, not basis. One can say that a
reduced order model is uniquely defined by its projector ΠV,W which are defined by the two subspaces

V = span (V ) and W = span (W ) ,

where V andW belong to the Grassmann manifold G(r, n), known as the set of all subspaces of dimen-
sion r in Rn. More specifically, within model reduction, for numerical reasons, one is often seeking for
orthonormal vectors V and W . One talk of Stiefiel manifolds S(r, n)

An important number of model approximation techniques can be clipped to this projection-based frame-
work. This chapter does not intend providing an exhaustive review of all of them, however, in what follows,
a list of famous model approximation techniques is given, involving some well known projection subspaces
V andW .
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2.4.3 Model-based approximation by projection and truncation
General idea

The underlying framework of truncation consists in dividing the state-space vector x(t) in two subsets

x(t) =

[
x1(t)
x2(t)

]
,

where x1(t) ∈ Rr and x2(t) ∈ Rn−r and by applying the orthogonal projection matrices

V =

[
Ir

0n−r

]
∈ Rn×r and W = V.

In the general case, the truncation does not have any particular property from the original model H. How-
ever, if the original model is pre-processed in a certain way, this projection (truncation) is meaningful. In
what follows, as they are clearly the most largely used in the literature and industry, two approaches based
on this idea are briefly presented: the modal and balanced truncations.

Modal truncation

This method basically consists in truncating the original realisation S in its modal basis. It thus requires
first a preliminary transformation of the original system into its modal form. This is usually done by
computing of the (A,E) pencil, followed by the truncation. Because it perfectly reproduces a subset of
the original model modal content, this methods is particularly appreciated by practitioners. Moreover, it
is accompanied with an error bound on the approximation error. Still, the way to choose the eigenvalues
to preserve, requires an expert eye. However, it can be mentioned that dedicated algorithms have been
developed to efficiently compute iteratively the dominant poles of a large-scale model. In Martins et al.
(1996), the so-called dominant pole algorithm is presented. This algorithm uses the Newton’s method to
compute a dominant pole of a SISO model. Later, this algorithm is improved and extended to a robust
and efficient method for MIMO ones in Rommes and Martin (2006) and for second order models in
Rommes and Martins (2008). Then, Rommes and Sleijpen (2008) and Rommes et al. (2010) present some
convergence properties, theoretical results and some comparisons with the Rayleigh quotient iteration.
Additionally, passivity preserving methods were also proposed by Ionutiu et al. (2008). We encourage
the reader to refer to these articles and references theirein for more details. The MATLAB Robust Control
Toolbox embeds routines allowing this truncation, with the possibility to simply discard fast dynamics
(i.e. truncating according to the magnitude of the eigenvalues).

Balanced truncation

Similarly to the modal one, the balanced truncation consists in first balancing the original model realisation
S, then in truncating (see Moore (1981); Safonov and Chiang (1989); Zhou and Doyle (1997); Xu and
Zeng (2010); Benner et al. (2011)). Without entering into details, a system is said to be balanced if and
only if

P = Q = Σ = diag(σ1, . . . , σn)

where P and Q are the solution of the Lyapunov equations (1.10) and {σi}ni=1 are the singular values of
them. The balanced form is obtained by applying the following projection matrices:

V = UZΣ−1/2 and W = LY Σ−1/2,

where P = UUT and Q = LLT (Cholesky factorisation) and UTL = ZΣY T (SVD factorisation).
Applying the truncation, usually by watching the singular values decay leads to the approximated model
Ŝ. The resulting reduced order system H, is asymptotically stable (if H is stable), Ĥ(∞) = H(∞), and
the mismatch error between original and reduced systems is bounded by the following relation,

σr ≤ ||H− Ĥ||H∞ ≤ 2(σr+1 + · · ·+ σn).
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Although it is the only method (with the eigenvalue one) to embed an a-priori mismatch upper bound, this
latter is really pessimistic and is not really useful in practice (see Vuillemin, 2014).

Once the original realisation is in the balanced form, after some simple algebraic manipulation, it
also possible to compute the so-called balanced singular perturbation model, allowing ensuring that Ŝ is
asymptotically stable and Ĥ(0) = H(0), ensuring static gain matching.

The MATLAB Robust Control Toolbox (see Glover, 1984; Safonov and Chiang, 1989) also imple-
ments the balanced truncation methods. In addition, the SLICOT interface by Varga (1999), which is a
MATLAB Toolbox, implements numerically reliable and efficient techniques, including balanced and trun-
cated singular perturbation approximation, balanced stochastic truncation, frequency-weighting balancing,
etc. Very recently, the MORLAB Toolbox by P. Benner’s research group, encapsulating modal truncation,
balanced truncation, bounded-real balanced truncation, positive-real balanced truncation, balanced stochas-
tic truncation, linear-quadratic-Gaussian balanced truncation, H∞ balanced truncation and Hankel-norm
approximation, for dense problems, has been released (see Benner and Werner, 2017).

Some truncation-based extensions

For a general overview, the interested reader can refer to the books Antoulas (2005) and Schilders et al.
(2008), the classical survey papers by Antoulas et al. (2001); Gugercin and Antoulas (2004); Benner et al.
(2005); Antoulas (2009); Baur et al. (2009, 2011), and the recent survey papers by Antoulas et al. (2010,
2016); Beattie and Gugercin (2016). In addition, for model approximation of parametric dynamical sys-
tems, see the recent survey of Benner et al. (2015). For differential algebraic systems see also Benner and
Stykel (2016). The following lists some of the specific model classes methods:

• Second-order systems: both papers by Meyer and Srinivasan (1996) and Chahlaoui et al. (2006)
develop different structures preserving model reduction methods for second-order systems.

• Unstable systems: an algorithm was first developed in Therapos (1989) for unstable non-minimal
systems and then generalised in Zhou et al. (1999).

• Inhomogeneous initial conditions: Heinkenschloss et al. (2011) did present a new method allowing
model approximation for systems with inhomogeneous initial conditions, by adding auxiliary inputs
derived from the initial conditions.

• Infinite dimensional systems: Glover et al. (1988) extends the balanced truncation to the class of
infinite-dimensional continuous-time systems. More recently, papers by Reis and Selig (2014);
Guiver and Opmeer (2014) generalise those results.

• Time-varying systems: one extension of balanced truncation for time-varying systems is developed in
Sandberg and Murray (2008); Siahaan (2008). Applications using a projection method are presented
in Sandberg (2006)6.

• Uncertain systems: approximation of parametric and uncertain systems are also addressed in Benner
and Grundel (2015).

• Nonlinear systems: balanced truncation for nonlinear systems is introduced in Scherpen (1993).
A form of truncation based on the system’s trajectory is done in the so-called Proper Orthogonal
Decomposition (see Antoulas (2005); Peherstorfer and Willcox (2018) and the references therein for
further information). Moreover, Himpe and Ohlberger (2013); Himpe et al. (2013); Benner et al.
(2018) did extends the gramian notion to the empirical gramian, allowing to deal with nonlinear
systems. Interestingly, C. Himpe also provides a numerical interface through a MATLAB software
called emgr 7.

Let us now give some attention to the so-called H2 approximation problem. The solution to this prob-
lem is first given in the gramian fashion, then in the interpolatory one.

6One may note that in Melchior et al. (2012), an interpolatory framework applied to periodic discrete-time models is presented.
7See www.gramian.de and Himpe (2016)
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2.4.4 Model-based approximation by projection andH2-optimality
Up to author’s knowledge, within the projection framework involving system’s realisation, Wilson (1974)
was the first to derive the so-called first order H2 optimality conditions. Interestingly, these conditions
were described in a theoretical manner in the 70’s, while a connection with the interpolatory Problem 2.3,
performed only in the late 2000, and quite recently, embedded in an efficient numerical iterative scheme.
The main results of Wilson (1974) are recalled hereafter.

Theorem 2.1: State-space first-orderH2 optimality conditions

Given H ∈ H2 equipped with realisation S : (In, A,B,C, 0) and Ĥ ∈ H2 equipped with re-
alisation Ŝ : (Ir, Â, B̂, Ĉ, 0), the following controllability and observability gramian of the error
system Ẽ = H− Ĥ can be computed

P̃ =

[
P X

XT P̂

]
and Q̃ =

[
Q Y

Y T Q̂

]
,

If,
Q̂P̂ + Y TX = 0, Q̂B̂ + Y TB = 0, and ĈP̂ − CX = 0. (2.8)

then, by denoting with JH2
(Ĥ) = ||H− Ĥ||H2

, shortly JH2
, one have

∂JH2

∂Â
= 0,

∂JH2

∂B̂
= 0 and

∂JH2

∂Ĉ
= 0.

Following Theorem 2.1 and optimality conditions as a set of equations depending on the gramian of
the system’s error Ẽ, the reduced model is then obtained by linking (2.8) with the projectors as follows.

Corollary 2.1: State-space first-orderH2 optimality conditions

Following notations of Theorem 2.1, at every stationary point of functional JH2(Ĥ),
i.e. ∇JH2(Ĥ) = 0, where P̂ and Q̂ are invertible, we have the following identities: Â = WTAV ,
B̂ = WTB and Ĉ = CV with

WTV = Ir, W = −Y Q̂−1 and V = XP̂−1

where X , Y , P̂ and Q̂ satisfy the following Sylvester and Lyapunov equations,

AP + PAT +BBT = 0 , QA+ATQ+ CTC = 0

ÂXT +XTAT + B̂BT = 0 , ATY + Y Â− CT Ĉ = 0

ÂP̂ + P̂ ÂT + B̂B̂T = 0 , Q̂Â+ ÂT Q̂+ ĈT Ĉ = 0.

Corollary 2.1 determines the projectors V and W as functions of the mismatch model gramians. This
observation was exploited later by Van Dooren et al. (2008) to suggest and iterative procedure to construct
the projectors. In Xu and Zeng (2010), authors derived an iterative procedure, called TSIA for Two-
Sided Iterative Algorithm. This latter iteratively solves two Sylvester equations in order to compute the
quadruplet {P̂ , Q̂, Y,X}, defining the projectors V and W . The procedure proposed by Xu and Zeng
(2010) preserves stability of the original model but suffers of two main drawbacks: first, it requires a good
projector initialisation to converge, and secondly, no stopping criterion is given. Later, Benner et al. (2011)
explored three different stopping criteria that can be connected to this algorithm. Moreover, as exposed
in the following section and in Gallivan et al. (2004a); Van Dooren et al. (2008), these conditions have
been shown to be equivalent to the tangential interpolation ones. During my research activities, I have
been mostly using the interpolatory techniques, rather than Lyapunov ones. Some reasons are its numerical
efficiency, its flexibility and variety of extended possibilities. Indeed, as clarified later along the manuscript,
this class of method are well appropriate for sparse and very large-scale models and shows an impressive
versatility. Let us now move to this interpolatory framework.
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2.4.5 The model-based approximation by interpolations
Forewords interpolation

Interpolation, as described in Problem 2.3, is a simple and yet effective approach that is used for the general
approximation of complex functions using simpler ones. The accuracy of the resulting approximations and
the connections with strategic placement of interpolating points λi and µj has been studied in many broad
context. Indeed, in the case of interpolation of meromorphic functions by polynomials or rational functions,
one can also associate it with classical complex mathematical analysis. Before getting into Problem 2.3, let
us first define the moment matching problem and its links with the projection framework (author believes
that this concept is quite didactic before going to multi-point and rational interpolation). Then, we will
show how the interpolatory conditions can be achieved by appropriate projection. Finally, the tangential
interpolatory problem will be stated.

As in the previous subsections, this one is also concerned with case #1 of Figure 2.1. In addition, and
it’s quite strong advantage of this method family, we will show that the interpolatory framework also fits
the use-case #2 of Figure 2.1, for which no realisation is available. This framework embeds then a wider
class of transfer functions.

Approximation by moment matching and connection with projectors

Let us be given two LTI models H and Ĥ, which can be expanded at σ ∈ C as

H(s)|σ =

∞∑
i=0

ηi(σ)(s− σ)i and Ĥ(s)
∣∣∣
σ

=

∞∑
i=0

η̂i(σ)(s− σ)i,

the moment matching problem consists in ensuring that ∀i ∈ 1, . . . , r, ηi(σ) = η̂i(σ). This condition can
easily be explicitly obtained in a pure mathematical reasoning. However, moments computation is known
to be numerically ill-conditioned, especially in the large-scale context (as illustrated for the special case of
single-input single-output dynamical systems in Feldman and Freund (1995)). Still, the moment matching
property may be achieved through projection, by carefully choosing test and trial subspaces V and W ,
without computing them explicitly.

Moment matching and interpolatory projections for model reduction were introduced by Yousouff and
Skelton (1985); Yousouff et al. (1985); Villemagne and Skelton (1987). Later, Grimme et al. (1996);
Grimme (1997) embed this approach into a numerically efficient framework by using the rational Krylov
subspace method of Ruhe (1984), defined in (1.13). The projection framework for the problem setting we
are interested in, that is, for rational tangential interpolation of MIMO dynamical systems, has been then
developed by Gallivan et al. (2004a) for the case of Problem 2.3 and by Mayo and Antoulas (2007) for the
case of Problem 2.4. Let us first provide what one can consider as a pivotal result for moment matching at
one single point σ, also called interpolation point, in the following theorem.

Theorem 2.2: Single point two-sided interpolatory conditions

Given an LTI dynamical model S : (E,A,B,C,D) and σ ∈ C s.t. (σE − A) is full rank. If
V,W ∈ Cn×r are full column rank matrices such that

K
(
(σE −A)−1, (σE −A)−1B, r

)
⊆ V = span (V )

K
(
(σE −A)−H , (σE −A)−HCT , r

)
⊆ W = span (W )

(2.9)

then, the 2r first moments of the reduced-order model Ĥ, obtained by projection, matches the 2r
first moments of H at σ, i.e.

ηi(σ) = η̂i(σ), i = 1, . . . , 2r.

According to Theorem 2.2, it is possible to match moments without explicitly computing them. More-
over, it states that it is possible to reach this property by a Krylov subspace (2.9) construction, which can be
done in a very efficient numerical way by mean of Arnoldi or Lanczos procedures, as illustrated in Chap-
ter 1. Practically, constructing K

(
E−1A,E−1B, r

)
allows matching moments in σ = ∞, known as the
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Markov coefficients, K
(
EA−1, B

)
matches in σ = 0, known as the Padé ones, and K

(
(σE −A)

−1
, B
)

at any σ ∈ C. Then, the straightforward extension of Theorem 2.2 is the multi-point moment matching,
given in Theorem 2.3.

Theorem 2.3: Multi-points point two-sided interpolatory conditions

Given an LTI dynamical model S : (E,A,B,C,D) and {σk}nσk=1 ∈ Cnσ , {rk}nσk=1 ∈ N s.t.
∀k = 1, . . . nσ, (σkE −A) is full rank. If V,W ∈ Cn×r are full column rank matrices such that

nσ⋃
k=1

K
(
(σkE −A)−1, (σkE −A)−1B, rk

)
⊆ V = span (V )

nσ⋃
k=1

K
(
(σkE −A)−H , (σkE −A)−HCT , rk

)
⊆ W = span (W )

(2.10)

then, the 2rk first moments of the reduced-order model Ĥ, obtained by projection, matches the 2rk
first moments of H at each σk, i.e. for k = 1, . . . , nσ ,

ηi(σk) = η̂i(σk), i = 0, . . . , 2rk − 1.

Theorem 2.3 provides a way to interpolate H (here equipped with a DAE realisation S) at any inter-
polation points {σk}nσk=1 by constructing projectors V and W through appropriate Krylov subspaces, and,
as consequence, to ensure moment matching of H and its projected (reduced) version Ĥ. Still, attentive
reader should notice that if a MIMO model is considered, the dimension of (2.10) will with the number
of inputs and outputs. This constatation is one of the justifications for interest in the so-called tangential
interpolation, exposed in Problem 2.3.

Remark 2.6 (About block Arnoldi and "tangential" Arnoldi) When referring to (2.10), it is clear that
for SISO models, a standard Arnoldi procedure allows constructing V,W ∈ Cn×r. However, applying
such a process on a MIMO case will lead to larger projectors V ∈ Cn×rnu and W ∈ Cn×rny , which
may present rank losses and a projected model with dimension rny × rnu Willcox et al. (2002). To avoid
this, block Arnoldi or deflating Arnoldi techniques may be involved. This mechanism aims at detecting
rank deflection (see e.g. Lehoucq and Sorensen (1996); Yin and Lu (2006); Heyouni and Jbilou (2009)).
More recently, Abidi et al. (2017) did suggest a procedure involving a new global rational Arnoldi for
model reduction. Still, as it will be made clearer though the manuscript, the tangential Arnoldi framework
proposed by Gallivan et al. (2004a) offers an appealing solution to avoid these mechanisms and is thus
preferred here (see also Bentbib and Jbilou, 2018).

Interpolatory conditions and link with projectors

Now, let us come back to the interpolation framework described in Problem 2.3, and provide the main
solution to construct V and W , as a bi-tangential Hermite interpolation condition set rather than simple
moment matching. First, we consider that the original model H can be described as a realisation S.

Theorem 2.4: Multi-points bi-tangential Hermite interpolatory conditions

Given an LTI dynamical model S : (E,A,B,C,D) and let {µj}qj=1, {λi}ki=1 ∈ C be such that
(sE − A) and (sÊ − Â) are invertible for s = µj , λi, and {lj}qj=1 ∈ Cny and {ri}ki=1 ∈ Cnu be
fixed nontrivial vectors. Let V,W ∈ Cn×r have full-rank, then,

(i) if (λiE −A)−1Bri ∈ span (V ) , then H(λi)ri = Ĥ(λi)ri,

(ii) if (lHC(µjE −A)−1)H ∈ span (W ) , then lHj H(µj) = lHj Ĥ(µj),

(iii) if both (i) and (ii) hold, r = q = k then lHl H′(σl)rl = lHl Ĥ′(σl)rl,

{σl}rl=1 = {λi}ki=1 = {µj}qj=1
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Before getting to the key elements of this model-based interpolatory theorem, let us derive its gener-
alised version, when the original model H has a generalised coprime form as H(s) = C(s)K(s)−1B(s).

Theorem 2.5: Multi-points bi-tangential Hermite interpolatory conditions for coprime forms

Given an LTI dynamical model with coprime form H(s) = C(s)K(s)−1B(s) and let
{µj}qj=1, {λi}ki=1 ∈ C be such that B(s) K(s) and C(s) are analytic for s = µj , λi, and
{lj}qj=1 ∈ Cny and {ri}ki=1 ∈ Cnu be fixed nontrivial vectors. Let K(λi), K(µj), WTK(λi)V

and WTK(µj)V have full-rank, then,

(i) if Dλi

(
K−1(s)B(s)

)
ri ∈ span (V ) , then H(λi)ri = Ĥ(λi)ri,

(ii) if
(
lHj Dµj

(
B(s)K−1(s)

))H ∈ span (W ) , then lHj H(µj) = lHj Ĥ(µj),

(iii) if both (i) and (ii) hold, r = q = k then lHl H′(σl)rl = lHl Ĥ′(σl)rl,

{σl}rl=1 = {λi}ki=1 = {µj}qj=1

where Dσ(f) denotes the 0 derivative of the univariate function f(s), evaluated at s = σ.

By using the above theorem, one can easily construct a reduced-model satisfying the desired interpola-
tion conditions. For example, for H(s) = C(s)K(s)−1B(s) and given r interpolation points and tangential
directions {σl, ll, rl}rl=1, by constructing,[

K(σ1)−1B(σ1)r1, . . . ,K(σr)
−1B(σr)rr

]
⊆ V = span (V )[

K(σ1)−HC(σ1)H l1, . . . ,K(σr)
−HC(σr)H lr

]H ⊆ W = span (V ) ,

leads to the reduced transfer function with the same coprime structure Ĥ(s) = Ĉ(s)K̂(s)−1B̂(s), which
satisfies the bi-tangential Hermite interpolation conditions given in (2.5) and solving Problem 2.3.

Now, by observing the above results, the only remaining questions is the appropriate choice of the
{σl, ll, rl}rl=1 triplet. This is the reason why theH2 optimal Problem 2.1 now enters into the picture.

2.4.6 Model-based approximationH2-optimal interpolatory framework
H2 approximation error and interpolatory conditions

Let us write theH2 mismatch error as follows,

J 2
H2

(Ĥ) = ||H− Ĥ||2H2
= ||H||2H2

+ ||Ĥ||2H2
− 2〈H, Ĥ〉H2 (2.11)

Based on Theorems 2.4 and 2.5, and following the contributive works of Gallivan et al. (2004a); Van
Dooren et al. (2008); Gugercin et al. (2008), similarly to the Lyapunov and Sylester approach of Wilson
(1974), the following theorem and corollary hold.

Theorem 2.6: First-orderH2 optimality conditions

Let Ĥ be a r-th order asymptotically stable model with semi-simple poles only, equipped with
Ŝ : (Ê, Â, B̂, Ĉ, D̂). If Ĥ is solution of theH2 approximation problem, then

H(−λ̂l)b̂l = Ĥ(−λ̂l)b̂l
ĉHl H(−λ̂l) = ĉHl Ĥ(−λ̂l)

ĉHi H′(−λ̂l)b̂l = ĉHl Ĥ′(−λ̂l)b̂l
(2.12)

where [b̂1, . . . , b̂r]
H = RB̂ and [ĉ1, . . . , ĉr] = ĈL and where L and R are the left and right

eigenvectors associated to λ̂l, the eigenvalues of (Ê, Â).

First, note that unlike in Theorem 2.1, no structure on H are required in these optimality conditions.
Then, similarly to Wilson (1974)’s approach, Corollary 2.2 shows how constructing the projectors V and
W to fulfil any tangential interpolations (see Gugercin et al. (2008); Van Dooren et al. (2008)).
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Corollary 2.2: First-orderH2 optimality conditions

Let V ∈ Cn×r and W ∈ Cn×r be full column rank matrices such that WTV = Ir. Let {λ̂l}rl=1 ∈
C, {b̂l}rl=1 ∈ Cnu and {ĉl}rl=1 ∈ Cny be given sets of interpolation points and left and right
tangential directions, respectively. Assume that points λ̂l are selected such that (λ̂lE − A) are
invertible. If,[

(−λ̂1E −A)−1Bb̂1, . . . , (−λ̂rE −A)−1Bb̂r
]

⊆ V = span (V )[
(−λ̂1E −A)−HCT ĉ1, . . . , (−λ̂rE −A)−HCT ĉr

]
⊆ W = span (W )

(2.13)

then, the projected model Ĥ, satisfies the tangential interpolation conditions given in (2.12).

Theorem 2.6 provides the first orderH2 optimality conditions and Corollary 2.2, the connection of these
latter with the V,W projection matrices (2.13). Note that Corollary 2.2 assumes a first order DAE repre-
sentation.

An algorithm forH2 approximation

Since these theorems only provide a characterisation and an equivalence of the first-order optimality con-
ditions from a tangential point of view, the challenge consists in creating procedures achieving these con-
ditions. More specifically, based on Corollary 2.2, the H2 optimal problem consists of finding the triplet
{σl, rl, ll, }rl=1 = {λ̂l, b̂l, ĉl}rl=1 satisfying Theorem 2.6. The most important result and well known al-
gorithm to determine {λ̂l, b̂l, ĉl}rl=1, is the IRKA for Iterative Rational Krylov Algorithm, presented by
Gugercin et al. (2008) and recalled in Algorithm 1.

Algorithm 1 MIMO IRKA - MIMO Iterative Rational Krylov Algorithm

Require: E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,
{
σ

(0)
l , r

(0)
l , l

(0)
l

}r
l=1
∈ {C× Cnu × Cny}

1: Build V,W ∈ Rn×r s.t.[
(σ

(0)
1 E −A)−1Br

(0)
1 , . . . , (σ(0)

r E −A)−1Br(0)
r

]
= span (V )[

(σ
(0)
1 E −A)−HCT l

(0)
1 , . . . , (σ(0)

r E −A)−HCT l(0)
r

]
= span (W )

2: Ensure bi-orthogonality: W ←W (WTEV )−T

3: Set i = 0
4: while not converged do
5: Set i← i+ 1
6: Project the model: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
7: Solve the eigenvalue problem (Ê, Â) and obtain eigenvalues {λ̂l}rl=1 and left L ∈ Cr×r and right

R ∈ Cr×r eigenvectors
8: Set {λ̂l, b̂l, ĉl}rl=1 = {λ̂l, (RB̂)Hel, ĈLel}rl=1

9: Set {σ(i)
l , r

(i)
l , l

(i)
l }rl=1 = {−λ̂l, b̂l, ĉl}rl=1

10: Build V,W ∈ Rn×r s.t.[
(σ

(i)
1 E −A)−1Br

(i)
1 , . . . , (σ(i)

r E −A)−1Br(i)
r

]
= span (V )[

(σ
(i)
1 E −A)−HCT l

(i)
1 , . . . , (σ(i)

r E −A)−HCT l(i)r
]

= span (W )

11: Ensure bi-orthogonality: W ←W (WTEV )−T

12: end while
13: Apply projectors V and W and obtain Ĥ
Ensure: V,W ∈ Rn×r and (2.12) are satisfied
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The IRKA is a fixed point optimisation algorithm which convergence has been proved in some specific
cases, only. However, having successfully used it in many academic and industrial applications, it generally
converges in few iterations, and is, to author’s viewpoint very efficient in practice (see e.g. example #1
at the beginning of this chapter). If the algorithm converges, it is not guaranteed to be a local minimum
(theoretically it can be a local maxima), but in practice, theH2-norm of the error generally decreases during
the iterations and maximum have been shown to be rejective. Consequently, we can honestly consider that
IRKA leads to a stationary point of the H2 approximation problem which is a local minima. Moreover, it
is numerically very efficient thanks to Krylov spaces8 and quite simple to implement, but neither control on
the approximation error nor stability preservation are guaranteed. In the following use-case, we illustrates
the effectiveness of the IRKA procedure, applied on a very-large scale (and unstable) model.

Use-case 1 - Unstable parametric fluid-flow model
This use-case illustrates a very-large scale unstable model approximation of a fluid-flow configuration
(see Poussot-Vassal and Sipp, 2015, INTACOO project). We consider a two-dimensional open square
cavity flow problem described in Barbagallo et al. (2008), which is used by engineers in aeronautics to
study some configurations e.g. in flight landing (left frame of Figure 2.8). For simulation, the mesh used
is composed of 193, 874 triangles, corresponding to n = 680, 974 degrees of freedom for the velocity
variables along the x and y axis. After linearisation around five fixed points for varying Reynolds
numbers Re = {4000, 5250, 6000, 7500, 10000}, and discretisation along the flow axis, five dynamical
models {Hi}5i=1 can be described as a state-space realisation of order n = 680, 974 where input u(t)
is the vertical pressure actuator located upstream of the cavity and the output y(t) is a shear stress
sensor, located downstream of the cavity. By approximating each model with an order r = 18, using
IRKA from Gugercin et al. (2008) at the different Re values, one obtains the following frequency
responses (right frame of Figure 2.8)a.
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Figure 2.8: Left: Navier-Stokes based fluid flow open cavity setting. Right: frequency responses of the
open cavity model and its approximation at varying Reynolds number configurations. Original large-
scale model with n = 680, 974 (solid coloured lines), reduced order with r = 18 (black dashed).

Figure 2.9 illustrates the eigenvalues of the reduced order models {Ĥi}5i=1. Interestingly, the unstable
configurations are restituted by the reduced models obtained with IRKA although it is an H2-oriented
algorithm. Indeed, the cases where the reduced order models are unstable is coherent with what fluid
mechanics experts were expecting. This property has also been exploited later in Pontes Duff et al.
(2015b), to analyse the stability of a large-scale model and is the ground idea exposed in Chapter 5.

8See also Poussot-Vassal and Sipp (2015) for application of IRKA on an (unstable) model of dimension n = 650, 000.
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Figure 2.9: Eigenvalues of the reduced order model for varying Reynolds number configurations.
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Figure 2.10: Frequency responses of the open cavity model at Reynolds number 5250. Original large-
scale model with n = 680, 974 (solid coloured line), reduced order with r = 18 (black dashed line) and
evaluation of Ĥ(|σl|) the reduced order model at the optimal interpolatory points (red crosses).
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Then, in Poussot-Vassal and Sipp (2015), these reduced models are used to generate a parametric re-
duced order model by interpolating the realisations coefficients (in the canonical bais). Finally, an other
interesting point is illustrated on Figure 2.10: the red crosses represents the frequency responses of H
are the optimal shift points {σl}r=18

l=1 absolute values. One may observe that these shift points are rep-
resentative of the frequencies where the largest pick values appear. This might also be a nice angle of
attack for treating H∞-norm computation of large-scale systems (see also Vuillemin et al. (2014c) and
perspectives in Chapter 7).

aNote that for each model, the approximated model has been obtained in only 1h on a standard laptop.

Later in Beattie and Gugercin (2009a), authors extended it to MIMO systems, associated with a
complex-domain trust region algorithm guaranteeing H2 mismatch error monotonic descent and stability
preservation. Still author believe that this improvement is more methodological rather that practical since,
at the price of some numerical manipulation, it is always possible to preserve stability (see e.g. Kohler
(2014), which provides a way to find an optimal RH∞ approximant). Moreover, in Gugercin (2008) then
Poussot-Vassal (2011), the stability preservation can be guaranteed in exchange for a loss of accuracy, or at
least a loss of optimality conditions, by involving a single gramian computation in the process instead of a
Krylov subspace. This slight modification is gathered in the following theorem for the case of the observ-
ability gramian. Note that, similarly to the IRKA procedure, an algorithm denoted as ISTIA for Iterative
SVD tangential Interpolation Algorithm is defined first in Gugercin (2008) in the SIMO and MISO case,
and in Poussot-Vassal (2011) in the MIMO one, involving tangential interpolatory directions.

Theorem 2.7: SVD-Tangential interpolation

Let V ∈ Cn×r andW ∈ Cn×r be full rank matrices such thatWTV = Ir. Let {σl, rl}rl=1 ∈ {C×
Cnu} be a given set of interpolation points and right tangential directions, respectively. Assume
that points σl are selected such that (σlE −A) are invertible. If,[

(σ1E −A)−1Br1, . . . , (σrE −A)−1Brr
]
⊆ V = span (V )

ATQ+QA+ CTC = 0

QV (V TEQV )−1 ⊆ W = span (W )

then, the reduced order system Ĥ, satisfies the following conditions, for l = 1, . . . r,

H(σl)rl = Ĥ(σl)rl
(Ê, Â) pencil is stable

.

The above theorem then simply provides a framework that trades optimality with stability preservation.
Note that this theorem will be the basis for the first frequency-limited procedure proposed in Chapter 3.

Back to Theorem 2.6, it is now clear that the interpolatory conditions are suitable for any original model
H. As a consequence, Beattie and Gugercin (2012) did extend it to the realisation-free case, leading to the
Algorithm 2. This latter now involves the Loewner and shifted Loewner matrices L and Lσ given in (2.15)
and detailed in the next subsection, instead of the Krylov subspaces.

To the author’s knowledge, it is the first method allowing approximating any meromorphic transfer H
with a finite order model Ĥ equipped with a realisation Ŝ while ensuring first order H2 optimality condi-
tions. This algorithm has been exploited in the example for use-case #2 at the beginning of this chapter.
Author also believes that, from a didactical viewpoint, it is also a fancy way to link Loewner matrices, gen-
eralised observability and controllability gramians and generalised rational Krylov subspaces. Therefore,
it can clearly be used by an unfamiliar reader before getting into data-driven model approximation.
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Algorithm 2 MIMO TF-IRKA - MIMO Transfer Function Iterative Rational Krylov Algorithm

Require: Transfer function H(s) and its derivative H′(s), an objective order r,
{
σ

(0)
l , r

(0)
l , l

(0)
l

}r
l=1
∈

{C× Cnu × Cny}
1: Set i = 0
2: while not convergence do
3: Set i← i+ 1
4: Build Ê, Â, B̂ and Ĉ matrices using the L and Lσ Loewner matrices as in (2.15)
5: Solve the eigenvalue problem (Ê, Â) and obtain eigenvalues {λ̂l}rl=1 and left L ∈ Cr×r and right

R ∈ Cr×r eigenvectors
6: Set {λ̂l, b̂l, ĉl}rl=1 = {λ̂l, (RB̂)Hel, ĈLel}rl=1

7: Set {σ(i)
l , r

(i)
l , l

(i)
l }rl=1 = {−λ̂l, b̂l, ĉl}rl=1

8: end while
9: Build Ê, Â, B̂, Ĉ and obtain Ĥ.

Ensure: (2.12) are satisfied

H2 optimality conditions with respect to general parametrisation

Before closing the model-based interpolatory conditions section, in Pontes (2017), author also extended
these optimality conditions to a more general parametrisation of the solution Ĥ. Indeed, in the above
theorem, both the original and reduced-order model share the same pole residues structure given as

H(s) =

n∑
j=1

cjb
T
j

s− λj
and Ĥ(s) =

r∑
k=1

ĉkb̂
T
k

s− λ̂k
.

Instead of this assumption, let us now suppose that Ĥ depends on a vector of parameters p̂ = {p̂l}ql=1 ∈ C.
Then, the gradient of JH2

(Ĥ) with respect to p̂ (or J 2
H2

(
Ĥ(p̂)

)
) is given by,

∇p̂||H− Ĥ||2H2
= ∇p̂〈H− Ĥ,H− Ĥ〉H2

= 2〈H− Ĥ,∇p̂(H− Ĥ)〉H2

= −2〈H− Ĥ,∇p̂Ĥ〉H2

where 〈H− Ĥ,∇p̂Ĥ〉H2
stands for

〈H− Ĥ,∇p̂Ĥ〉H2
=

[
〈H− Ĥ,

∂

∂p̂1
Ĥ〉H2

〈H− Ĥ,
∂

∂p̂2
Ĥ〉H2

. . . 〈H− Ĥ,
∂

∂p̂q
Ĥ〉H2

]
.

Thus, the local necessary optimisation conditions with respect to p̂ = [p̂1 p̂2 . . . p̂q] are given by

∇p̂||H− Ĥ||2H2
= 0,

and the following result holds.

Theorem 2.8:H2 necessary optimality condition with respect to a parameter

Given H ∈ H2 and let us consider for each parameter p̂ = {p̂l}ql=1 ∈ C a model Ĥ(p̂) and
the function that associates p̂ → Ĥ(p̂) is differentiable. Then, if p? is the minimiser of ||H −
Ĥ(p̂)||H2

, it satisfies 〈
H,∇p̂ Ĥ

∣∣∣
p̂=p?

〉
H2

=

〈
Ĥ(p?),∇p̂ Ĥ

∣∣∣
p̂=p?

〉
H2

.

Theorem 2.8 enables deriving the optimality conditions for a general parameter p̂. Notice that here,
no structure was pre-supposed on H. Thus, it enables obtaining the H2 optimality conditions in a simpler
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way. As an illustration, let us assume that (q = 3r) and

Ĥ(s) =

r∑
l=1

ĉlb̂
T
l

s− λ̂l
and p̂ = [b̂1 . . . b̂r ĉ1 . . . ĉr λ̂1 . . . λ̂r].

Thus, if one computes the gradient of Ĥ with respect to b̂l, we have

∇b̂l
Ĥ = ∇b̂l

(
ĉlb̂

T
l

s− λ̂l

)
=

[
ĉle

T
1

s− λ̂l
ĉle

T
2

s− λ̂l
. . .

ĉle
T
nu

s− λ̂l

]
Hence, by writing the first order optimality conditions with respect to b̂l by invoking Theorem 2.8, one
obtains 〈

H,∇b̂l
Ĥ
〉
H2

=
〈
Ĥ,∇b̂l

Ĥ
〉
H2

⇔
〈
H,

ĉle
T
i

s− λ̂l

〉
H2

=
〈
Ĥ,

ĉle
T
i

s− λ̂l

〉
H2

for i = 1, . . . , nu

⇔ cTl H(−λ̂l)ei = cTl Ĥ(−λ̂l)ei for i = 1, . . . , nu
⇔ cTl H(−λ̂l) = cTl Ĥ(−λ̂l).

This last term recovers the second equation of the first order H2 interpolation conditions of Theorem
2.6, and given by (2.12). In the Ph.D. manuscript of Pontes (2017), author derived the same expression
with respect to ĉl and λ̂l, recovering all the three expressions of (2.12). Interestingly, this formulation then
opens to new extendedH2 interpolatory conditions.

Before moving the data-driven case concerning the use-case #3, let us close this part with an illustration
of the application of interpolatory techniques to construct a parametric model, applied on an industrial use-
case provided by Airbus and exposed hereafter. This use-case also illustrates the flexibility embedded in
the interpolatory framework, thanks to the smart shift points σl selection.
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Use-case 2 - Airbus long range aircraft
This use-case comes from an Airbus long range aircraft model set, for which a parametric reduced-order
model construction was intended (see Poussot-Vassal and Roos, 2012, Clean Sky 1 - SFWA project).
Here {Hi}ns=9

i=1 , a family of nine models have been considered. Each of these models represent a long
range aircraft model linearised at three given center tank CT and outer tank OT filling configurations
(ns = 3 × 3). Each of them resulting in a medium scale model of order around ni ≈ 500. The
objective, in view of robust and parametric controller design, was to construct a reduced order model
Ĥ(s,OT,CT), where OT and CT stand as the outer and center tank filling coefficient. In Poussot-
Vassal and Roos (2012), authors propose a simple approach based on reduction using ISTIA followed
by a common base change (here the eigenvector one) and interpolation of the realisation’s coefficients.
One difficulty on the interpolation in the eigenvalue basis is that the eigen-modes should be "close" to
each other to simplify the rational interpolation. To do so authors did compare the balanced truncation
BT with the ISTIA and multi-ISTIA interpolation methods. The latter trades the H2 partial interpo-
latory conditions with a modal content "easy" to interpolate. This is illustrated on Figure 2.11 where
eigenvalues of the approximated models using different methods is shown.
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Figure 2.11: Eigenvalues of the approximated models using balanced truncation (left), ISTIA (middle)
and multi-ISTIA (right).

In this example, the interest of the interpolatory methods with respect to the balanced ones is that it
enables to fix some shift points locations and tangential directions to enforce the eigenvalues of the
reduced order models {Ĥi}ns=9

i=1 to be close to each other, simplifying then the generation of the para-
metric model Ĥ(s,OT,CT) (see Poussot-Vassal and Roos, 2012, for details).

This last observation and use-case closes the brief overview of the model-based model approximation,
viewed from the interpolatory framework angle. Let us now move to the data-driven approximation by
interpolation.
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2.4.7 The data-driven approximation method by interpolation

Forewords on the tangential interpolatory framework

It is now clear that tangential interpolation is a flexible framework for model reduction. Indeed, with
reference to Problem 2.3, note that if wi = H(λi)ri, then eλitwi is precisely the response of the full
order model to a pure input given by u(t) = eλitri, then the tangential interpolation conditions that
characterise Ĥ could (at least in principle) be obtained from measured input-output data drawn directly
from observations on the original system. For example, if λi = ıω0, one is observing in wi the sinusoidal
response of the system to a pure tone input of pulsation ω0. Similarly, the dual dynamical model also holds
true. Then, the alternative Problem 2.4 that we consider is entirely based on observed input-output response
data, and no other a priori information about the system (as defined in previous sub-sections through H),
is required. Note that a tutorial on this data-driven method is given in Antoulas et al. (2016).

The main ingredient of the data-driven interpolation approach is the Loewner matrix, which was de-
veloped in a series of papers (see e.g. Mayo and Antoulas (2007) for its first application the derivation
of a state-space model). In the sequel, we provide a quick overview of the Loewner framework, in the
MIMO case. Author is convinced that this framework stands as a very strong and powerful one for
many applications. This assertion is specifically illustrated in Chapters 5 and 7.

The Loewner framework

Following the same notations as before, let us be given respectively, the left or row data and the right or
column data:

(µj , l
T
j ,v

T
j )

for j = 1, . . . , q

}
and

{
(λi, ri,wi)

for i = 1, . . . , k

Let us assume that λi and µj are distinct and that the left and right interpolation data are organised as:

M = diag(µ1, . . . , µq) ∈ Cq×q
LT = [l1 . . . lq] ∈ Cny×q
VT = [v1 . . . vq] ∈ Cnu×q

 and


Λ = diag(λ1, . . . , λk) ∈ Ck×k
R = [r1 . . . rk] ∈ Cnu×k

W = [w1 . . . wk] ∈ Cny×k
(2.14)

The associated Loewner L ∈ Cq×k and shifted Loewner Lσ ∈ Cq×k matrices, also referred to as the
Loewner pencil, are constructed as follows, for i = 1, . . . , k and j = 1, . . . , q:

[L]j,i =
vTj ri − lTj wi

µj − λi
=

lTj
(
H(µj)−H(λi)

)
ri

µj − λi

[Lσ]j,i =
µjv

T
j ri − λilTj wi

µj − λi
=

lTj
(
µjH(µj)− λiH(λi)

)
ri

µj − λi

. (2.15)

Interestingly, the above Loewner L and shifted Loewner Lσ matrices satisfy the following Sylvester equa-
tions:

LΛ−ML = LW −VR,

and

LσΛ−MLσ = LWΛ−MVR.

Then, the following lemma, which proof is given in Mayo and Antoulas (2007), provides one of the most
important property of the Loewner matrices.
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Lemma 2.1: Loewner matrix McMillian degree and rank

Given (tangential) samples of a rational function defined in terms of a minimal descriptor realisation
through its transfer function Hδ(s) = Cδ(sEδ − Aδ)−1Bδ , construct the associated Loewner L
and shifted Loewner Lσ matrices. Assuming that we have enough samples, and that the left, right
tangential directions lj and ri are chosen so that no rank loss is observed, the following holds:

rankL = rankEδ = n

where n is the McMillian degree of the underlying rational function Hδ(s). Moreover,

rankLσ = rankAδ

where Eδ, Aδ ∈ Rn×n.

As rooted on the Lemma 2.1, one is now ready to state the main result concerning the construction
of interpolants using the Loewner pencil. The following theorem summaries the interpolatory model con-
struction from data.

Theorem 2.9: Data-driven interpolation though the Loewner framework

Given right and left interpolation data as in (2.14), and assume that k = q and let (L,Lσ) be
a regular pencil where λi or µj are not eigenvalues. The rational transfer function Hδ(s) =
Cδ(sEδ −Aδ)−1Bδ , with realisation S : (Eδ, Aδ, Bδ, Cδ, 0) constructed as

Eδ = −L, Aδ = −Lσ, Bδ = V and Cδ = W,

is a minimal descriptor realisation of an interpolant of the data, i.e.

Hδ(s) = W(Lσ − sL)−1V

satisfies the left and right interpolation constraints (2.6).

If now we consider the case where more data than absolutely necessary is provided, which is realistic
and indeed practically the case in many applications9. In this case, the problem has a solution provided
that, for all α ∈ {λi} ∪ {µj},

rank(αL− Lσ) = rank
[
L Lσ

]
= rank

[
L

Lσ

]
= n?

A minimal realisation of an interpolant of the data is given by the system:

S :

{
−YTLXẋ(t) = −YTLσXx(t) + YTVu(t)

y(t) = WXx(t) +Du(t)

where X ∈ Ck×n? and Y ∈ Ck×n? are the orthogonal factors of the short SVD factorisation of (where
Σ ∈ Cn?×n? ):

αL− Lσ = YΣXT .

In brief, the rank of the Loewner matrices encodes the McMillian degree of a realisation. From the
author’s feeling, this last property is actually a one, in control theory, but also in complex functions analysis.
It will be extensively invoked in Chapter 5, for the analysis of meromorphic functions.

9Note that in this case we do not intend the noisy data one, which is treated in an other way (see e.g. Kergus et al. (2018))
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Theorem 2.10: Data-driven approximation though the Loewner framework

The quintuple (E,A,B,C, 0), given by:

E = −YTLX, A = −YTLσX, B = YTV and C = WX,

is a descriptor realization of an (approximate) interpolant of the data with McMillan degree n? =
rankL.

Now the interpolatory framework, connected to the Loewner one has been clarified, it is obvious that,
starting from data either obtained from experiments or simulations, it is simple to construct a rational inter-
polant Ŝ and its associated (approximate) transfer function Ĥ(s) with a user defined complexity. Starting
from the left and right interpolation data (2.14) organised as:

M = diag(µ1, . . . , µq) ∈ Cq×q
LT = [l1 . . . lq] ∈ Cny×q
VT = [v1 . . . vq] ∈ Cnu×q

 and


Λ = diag(λ1, . . . , λk) ∈ Ck×k
R = [r1 . . . rk] ∈ Cnu×k

W = [w1 . . . wk] ∈ Cny×k

and by applying a rank revealing factorisation (such as the SVD):

L =
[

Y1 Y2

] [ Σ1

Σ2

] [
XT

1

XT
2

]
,

where Σ1 ∈ Rr×r, Σ2 ∈ R(n−r)×(n−r) and Y1, Y2, X1, X2 are of appropriate dimensions, the reduced
order model Ĥ with realisation Ŝ is simply obtained by the Petrov-Galerkin projection:

Ŝ : (Ê, Â, B̂, Ĉ, 0)

: (−YT
1 LX1,−YT

1 LσX1,Y
T
1 V,WX1, 0).

(2.16)

Consequently, one can construct a model Ŝ : (Ê, Â, B̂, Ĉ, 0) with transfer function Ĥ(s) that has any
degree of r ≤ n?, the minimal McMillian degree of the data-based linear model, and which tangentially
interpolates the data with a given error level (see more in detailed survey by Antoulas et al., 2016).

Remark 2.7 (About optimality conditions) The truncation step performed when applying the SVD in
(2.16) does not guarantee the so-calledH2-optimality conditions of the projected model as in e.g. Gugercin
et al. (2008). These conditions can be achieved through an adequate interpolation data µj and λi selection,
as explained in Drmac et al. (2015b,a).

Some extensions of this framework were developed in he recent research works. Here is a non-
exhaustive list of extensions and relative works:

• Parametric systems: in Ionita (2013); Ionita and Antoulas (2014), authors extend the Loewner frame-
work to parametric systems. This framework then allows treating parametrised data and transfer
functions.

• Time-delay systems: in Pontes Duff et al. (2015a, 2016a) and Schulze and Unger (2016), the
Loewner framework for a special class of time-delay systems is presented. See also the Ph.D.
manuscript of Pontes (2017) for an insight on approximation with time delayed structures.

• Structured realisations: in Schulze et al. (2018), authors extend the Loewner framework to the gen-
eral transfer with coprime structure, illustrated on time-delayed systems, but which provides a very
exciting perspectives for this method class.

Before closing the data-driven part, let us provide a use-case extracted from a project conducted in
collaboration with Dassault-Aviation and which considered the aircraft anti-vibration control validation
on a ground test setup. It illustrates the efficiency of the Loewner framework in an experimental industrial
context.
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Use-case 3 - Dassault-Aviation business jet ground test
This use-case illustrates the Dassault-Aviation business jet ground vibration tests, performed at Istres,
France (see Meyer et al., 2016, 2017, Clean Sky 1 - SFWA project). After having designed an anti-
vibration controllera aiming at attenuating the amplifications at the cabin and passenger levels in re-
sponse to aerodynamics turbulences occurring within 7 and 10Hz, Dassault-Aviation engineers did
implement the control law on the real Business Jet aircraft, as shown on Figure 2.12 (left). Then, us-
ing shakers on the horizontal tail of the aircraft, it is possible to excite the structure, which simulates
some aerodynamical disturbances. Using the kinematic effects of the movable control surfaces only, the
objective was to validate the control design methodology on the Falcon 7X. To this end, sensors were
installed over the aircraft (right frame of Figure 2.12) and data collected for a sine chirp excitation.

Figure 2.12: Left: Ground vibration experimental test-bed. Right: illustration of the sensors location.

In practice, Dassault-Aviation aeroelastic and tests engineers did collect the frequency-domain data
(along among 100 sensors) and fed the MOR Toolbox as follows:

optLoe = [ ] ;
r e d = 3 0 ;
optLoe . v e r b o s e = t r u e ;
optLoe . e x t r a I n f o = t r u e ;
optLoe . e n s u r e S t a b = t r u e ; % Ensure s t a b i l i t y o f t h e r e d u c e d o r d e r model
optLoe . i o N o r m a l i z e = t r u e ; % Normal i ze i n p u t−o u t p u t t r a n s f e r t o c a t c h a l l dynamics
optLoe . f r eqBand = [0 i n f ] ; % Focus on a s p e c i f i c banwid th
optLoe . f i l t e r = 5 ; % Savinsky−Sogolev d i g i t a l f i l t e r window s i z e
[ sysLoe , i n f o ] = mor . l t i ( { d a t a .W, d a t a .H} , red , optLoe ) ;

Listing 2.1: Call of the mor.lti function, for data-driven model approximation using Loewner
framework with stability enforcement.

With reference to the above code, one seeks for a model of dimension r = 30, with the optional argu-
ments ensuring first the stability of the reduced order model, second, by applying input-output normali-
sation (to equally match the transfer whatever the gain are), third, to match data over the entire spectrum
and by finally applying a pre-filter (non causal zeros phase digital filter) to smooth the data.
Then, the following Figure 2.13 is obtained, showing the data collected (dotted blue) on the aircraft and
its approximation (solid red), as well as the modal content. This plot clearly shows a very good matching.
Thanks to the MOR Toolbox software, engineers are now able to evaluate their model with respect to
the real aircraft data and to double check the modal information, crucial in aero-elastic engineering.
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Figure 2.13: Approximated model of order n = 30, without anti-vibration control law. Top frame:
comparison of the frequency response obtained during the GVT (blue dots) and the approximated model
(solid red line). Bottom frame: damping map with varying colour as a function of the residue magnitude.

aThe anti-vibration controller is designed thanks to a model-based techniques, involving an aero-servoelastic aircraft model
of the Dassault-Aviation Falcon 7X (which have been approximated), followed by anH∞-norm minimisation controller design
done with hinfstruct by Apkarian and Noll (2006). See the connected papers from Poussot-Vassal et al. (2013); Meyer et al.
(2016).

2.5 Conclusions
In this chapter we tried to present some of the most relevant results for linear large-scale dynamical model
approximation. By relevant, one intends from the author’s point of view and in resonance with the re-
search activities presented along the manuscript. Obviously, it is clear that this chapter is absolutely not
representative of all the numerous works and results available neither in the approximation community
nor in the numerical and linear algebra approximation fields. Still, relevant frameworks have been given
and suggested to the reader. In addition, the interest of model approximation has been illustrated through
exotic academic and industrial applications. The main tool emphasised in this chapter, shared by models
and data-based approximation, is the interpolatory one. This framework is actually the basis of the results
presented in the coming Chapters 3, 4 and 5, constituting the main contributions of my research activities.

In the following chapters, we will now focus on the main contributions I have been developing in
collaboration with colleagues along my research activities. All these results are rooted on the model ap-
proximation tools and framework presented in this chapter
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Chapter 3

Model approximation over
frequency-limited support

Choisir c’est renoncer.

André Gide
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So far and in Chapter 2, unbounded frequency support model approximation was mainly addressed.
In this chapter, two methods and procedures to approximate a dynamical model over a limited frequency
range, are presented. After a quick introduction, motivation and problem formulation in Section 3.1, Sec-
tion 3.2 introduces FL-ISTIA as a first approach to perform model approximation over a limited frequency
band (i.e. as an H2,Ω-norm oriented method). Then, Section 3.3 actually considers the frequency-limited
problem directly and both describes the L2,Ω and H2,Ω-norm model approximation optimality conditions.
Then, DARPO is introduced as a practical and numerical way to reach these conditions. Section 3.4 links
this last result with the interpolatory framework, connecting and extending this new solution to the stan-
dard interpolatory setup described in Chapter 2, in an un-standard fashion. Conclusions are reported in
Section 3.5. This chapter is largely based on the Ph.D. thesis of Vuillemin (2014) and on the contribu-
tive papers of Vuillemin et al. (2013a, 2019) (note also that the original idea was already published in
arXiv:1211.1858 on November 8th, 2012 by the same authors).

3.1 Motivating example and problem formulation

3.1.1 Forewords
Depending on their complexity and of the desired representativeness, physical dynamical systems are rep-
resented by complex mathematical models. Generally these latter are defined over the entire frequency
range since the effects and physical informations can hardly be a priori decoupled or isolated without af-
fecting the rest of the phenomena and dynamics of interest. As presented in Chapter 2 and more deeply
in Antoulas (2005), various approaches exist for the approximation of large-scale LTI models. Classically
the model approximation problem is recast as an optimisation one in which the objective is to minimise
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the H2-norm. Yet in many cases, focusing on a bounded frequency interval only may be more relevant.
Indeed, the large-scale model might be less representative of the underlying physical system in some fre-
quency domains and discarding them enables to increase the approximation accuracy where the initial
model is actually representative. Also, control laws are generally designed to act over a limited frequency
interval, due to actuators bandwidth or to prevent them from disturbing (high frequency) badly modelled
dynamics. Optimal bounded frequency interval approximation elegantly enables translating these practical
considerations and is addressed in this chapter.

3.1.2 Motivating example
A practical case encountered in collaboration with Dassault-Aviation engineers, is first given to illustrate
the importance and potential gain earned when using frequency-limited model approximation.

Use-case 4 - Dassault-Aviation vibration control
This use-case illustrates the benefit in frequency-limited model ap-
proximation on a Dassault-Aviation generic business jet, in view of
active vibration control (see Poussot-Vassal et al., 2013, Clean Sky
1 - SFWA project). We consider dynamical models describing the
aircraft behaviour, linearised around ns = 48 different flight and
mass configurations. The control by feedback of the movable surfaces
(e.g. ailerons, elevators) is generally used to enhance the aircraft per-
formances and efficiency. Among the different phenomena to control,
one can mention, the flight mechanics, the loads, the vibrations and the
fluttera. For practical and safety reasons, all these phenomena appearing at varying frequency ranges,
are treated separately (and often by different teams), based on the same original - large-scale - model.
Consequently, approximating such a model over some frequency ranges may be interesting to focus on
the phenomena of interest while approximating with a much lower order model.

Figure 3.1: Sigma plot of different models obtained at varying flight configurations using FL-
ISTIA where Ω = [0, 15]Hz. Original model (solid blue) and reduced one (dashed red).
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During the collaboration with Dassault-Aviation within the Clean Sky 1 - SFWA European project,
an objective was to perform vibration attenuation over the frequency range [7, 10]Hz, without affecting
low frequencies [0, 3]Hz, tuned by experts for flight performances. To this aim, both H2 and H2,Ω

approximation of the ns large-scale models representing a business jet aircraft at varying configurations,
has been done. On Figure 3.1, the singular values plot of the original (with dimension ni ≈ 700,i =
1, . . . , ns) and reduced (with r = 16) models obtained with frequency-limited model approximation,
are shown.

10 15 20 25 30

5

10

15

20

25

30

35

40

45

50

Figure 3.2: Mean relative mismatch H2,Ω-norm applied on a Dassault-Aviation use-cases when the ns
reduced model are obtained with the BT , ISTIA and FL-ISTIA where Ω = [0, 15]Hz.

Reader may note that an approximation over the entire frequency range would have required an order
r = 40 to achieve the same accuracy level over Ω = [0, 15]Hz. As a more measurable illustration,
assertion of the relevance of the approach, one can observe on Figure 3.2, the good relative mismatch
H2,Ω-norm decay when using FL-ISTIA instead of the standard ISTIA rocedure.
One direct benefit of the frequency-limited model approximation is that the ns multiple models involved
in the anti-vibration control design can now be even more reduced. As a direct consequence, when the
robust control law is designed and robustness is analysed, this complexity simplification directly leads
to an easier problem to manipulate, especially in an iterative industrial context.
In Poussot-Vassal et al. (2015), this frequency limited approximation has been used to approximate a set
of multiple models and transform them into a parametric form. Then, in Meyer et al. (2016) and Meyer
et al. (2017), these approximations have been used for controller design and validation in GVT then in
real flight on a Falcon 7X. The obtained measurements lead to a vibration attenuation around 40% in the
frequency domain of interest.

aWhich represent behaviours identified and appearing at increasing frequencies. Aerodynamical engineers usually consider
them separately.

This use-case provides a fancy justification for frequency-limited model approximation, by directly
linking the approximation to a control and physical engineers needs (details on the control tuning are given
in Poussot-Vassal et al. (2015)). Now, let us describe the problem mathematical formulation.

75



CHAPTER 3. MODEL APPROXIMATION OVER FREQUENCY-LIMITED SUPPORT

3.1.3 Frequency-limitedH2 model approximation
Let be given H ∈ H∞ equipped with the n-th order realisation S : (E,A,B,C,D). The frequency-limited
model approximation problem considered here consists in finding a LTI model Ĥ ∈ H∞ of smaller order
r that solves the following problem.

Problem 3.1:H2,Ω model approximation

Given H ∈ H∞, the H2,Ω model approximation problem consists of seeking an approximation
Ĥ ∈ H∞ of H, such that

Ĥ := arg min
G ∈ H∞

dim(G) = r � n

||H−G||H2,Ω . (3.1)

As the frequency-limited norm is also defined for unstable models, similarly to theH2,Ω, the L2,Ω one
can be defined as follows.

Problem 3.2: L2,Ω model approximation

Given H ∈ L∞, the L2,Ω model approximation problem consists of seeking an approximation
Ĥ ∈ L∞ of H, such that

Ĥ := arg min
G ∈ L∞

dim(G) = r � n

||H−G||L2,Ω .

In Problem 3.2, || · ||L2,Ω
stands as the L2-norm restriction over the frequency-interval Ω = [0, ω], i.e.

||H||L2,Ω
,

(
1

2π

∫ ω

−ω
‖H(ıν)‖2F dν

) 1
2

. (3.2)

In the sequel, we denote byL2,Ω the set of analytic functions for which the integral in (3.2) is finite. Clearly,
elements of H2 and H∞ are also in L2,Ω. In what follows, the frequency-limited approximation Problem
3.1 is addressed in two different ways: (i) first, indirectly, using the frequency-limited ISTIA approach of
Vuillemin et al. (2013b), involving QΩ (or PΩ), a frequency limited gramian instead of the infinite one Q
(or P), then (ii) through DARPO , a dedicated descent method for the L2-norm minimisation (3.2), applied
to the mismatch error (3.1), initially presented in Vuillemin et al. (2014a).

It should be noted that Problem 3.1 has also been considered in Petersson and Lofberg (2014). The
difference lies in the framework used to express the approximation error and the first-order optimality
conditions. In Petersson and Lofberg (2014), an approach based on the state-space representation is used
while here, both in Sections 3.2 and 3.3, the partial fraction decomposition of the transfer function is
exploited. We will see how this formulation may provide some advantages.

Remark 3.1 (WeightedH2 model approximation) Instead of frequency-limited model approximation,
as it is done the robust control community with the generalised plant and H2/H∞-norm control-oriented
synthesis, weighted model approximation has also been considered, instead of the frequency-limited one.
The problem then turns to find Ĥ such that,

Ĥ := arg min
G ∈ H2

dim(G) = r � n

||WoHWi −G||H2
.

In practice this approach is quite efficient, but suffers from different elements. First, one has to design the
weighting filters Wo and Wi, which might be tedious for practitioners, second, once the reduced order
model found, inversion of the filters is mathematically necessary to come back to the actual solution.
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As introduced above, two dedicated methods and algorithm have been developed for approximating a
dynamical model over a finite frequency range. The first one, presented in Vuillemin et al. (2013b), is a
modification of the ISTIA procedure orientating the objective toward Problem 3.1, while the second one,
the DARPO procedure, which directly treats Problems 3.1 and 3.2, is described in Vuillemin et al. (2019).

3.2 H2,Ω oriented model approximation

3.2.1 General idea
As proposed by Gawronski (2004), the frequency-limited gramians, denoted PΩ and QΩ in equations
(1.11), can directly be used for model reduction through the FL-BT method. It consists in using frequency-
limited gramians instead of classical ones to perform a balanced truncation (see Antoulas (2005) for more
details). As shown in Gugercin and Antoulas (2004), using this approach is equivalent to apply a frequency-
weighted balanced truncation with perfect filters. However, unlike the classical (infinite) balanced trunca-
tion, it does not guarantee the stability preservation any longer. Moreover, computing the frequency-limited
gramians require solving two large-scale Lyapunov equations and to evaluate the logarithm of a large-scale
matrix, making this approach numerically more complex to achieve than its standard unbounded version.
The FL-ISTIA procedure trades a part of the numerical burden with Krylov subspaces.

3.2.2 The FL-ISTIA procedure
The frequency-limited gramians are implicitly playing the role of filters in the frequency-limited balanced
truncation. In a similar way, using one frequency-limited gramian in the ISTIA procedure instead of one
infinite ones, make the algorithm more efficient in terms of H2,Ω-norm. This effect can be accentuated by
choosing the initial interpolation points {σl}rl=1 so that their modulus remain in the concerned frequency
interval. The Frequency-Limited ISTIA or FL-ISTIA is presented in Algorithm 3.

Algorithm 3 FL-ISTIA - Frequency-Limited Iterative SVD-Tangential Interpolation Algorithm

Require: E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,
{
σ

(0)
l , r

(0)
l

}r
l=1
∈ {C× Cnu}

1: Construct V ∈ Rn×r,[
(σ

(0)
1 E −A)−1Br

(0)
1 , . . . , (σ(0)

r E −A)−1Br(0)
r

]
= span (V )

2: Compute OΩ, the frequency-limited observability Gramian solving (1.11)
3: Compute W = OΩV (V TOΩV )−1 ∈ Rn×r
4: while not converged do
5: Set i← i+ 1
6: Project the model: Ê = WTEV , Â = WTAV , B̂ = WTB, Ĉ = CV
7: Solve the eigenvalue problem (Ê, Â) and obtain eigenvalues {λ̂l}rl=1 and right R eigenvectors
8: Set {λ̂l, b̂l}rl=1 = {λ̂l, (RB̂)Hel}rl=1

9: Set {σ(i)
l , r

(i)
l }rl=1 = {−λ̂l, b̂l}rl=1

10: Construct V ∈ Rn×r s.t.[
(σ

(i)
1 E −A)−1Br

(i)
1 , . . . , (σ(i)

r E −A)−1Br(i)
r

]
= span (V )

11: Compute W = OΩV (V TOΩV )−1 ∈ Rn×r
12: end while
13: Apply projectors V and W
Ensure: V,W ∈ Rn×r and part of the interpolatory conditions (2.12) are satisfied
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With reference to Algorithm 3, the following comments can be formulated:

• The frequency-limited controllability gramian PΩ can be indifferently used instead of the observ-
ability oneQΩ (1.11), in Algorithm 3. In that case, the left projectorW is built as a basis of a Krylov
subspace, i.e. [

(σ
(i)
1 E −A)−HCl

(i)
1 , . . . , (σ(i)

r E −A)−HCl(i)r
]

= span (W )

where {ll}rl=1 = {ĉl}rl=1 = {ĈLel}rl=1. The controllability gramian is then involved in the con-
struction of the right projector V = PΩ

(
WTPΩW

)−1
.

• The main numerical cost of this algorithm comes from the computation of the frequency-limited
gramian and the resolution of r linear systems at each iterations. As computing a frequency-limited
gramian requires, in addition of solving a Lyapunov equation, to evaluate the matrix logarithm, the
FL-ISTIA is much more complex than the ISTIA and for the same reasons as those presented in
Gugercin (2008), it is cheaper than the FL-BT (depending, of course, on the number of iterations).

• The algorithm stops when the interpolation points σl do not evolve anymore. Other stopping criteria
could be considered. One could for instance stops when the H2,Ω-norm of the error does not evolve
anymore (see Vuillemin, 2014, for details and illustrations).

• To alleviate the computational complexity of the algorithm in the very large-scale settings, a low-
rank approximation of the gramian may be used. For instance, one can refer to (Antoulas, 2005,
Chap. 12) and references therein. This kind of Lyapunov approximation approach is also widely
explored in the works of Simoncini (2007); Shank et al. (2016).

• Note that as in other Krylov subspaces-based methods, to obtain real valued projectors V and/or
W , the interpolation points must either be real or closed under complex conjugation. Indeed, in the
latter case, if two vectors are complex conjugate v2 = v∗1 , then they span the same subspace as their
real and imaginary part, i.e. span (v1,v2) = span (<(v1),=(v1)). This also implies that only one
single linear system has to be solved for each pair of complex conjugate interpolation points, which
also reduces the computational complexity.

• Since it is based on a projection framework, direct feedthrough are not taken into account in this
algorithm. A simple way to handle non strictly proper models is to set D̂ = D. However, as exposed
later in Section 3.3, this is not the optimal choice considering the gradient of the approximation error
with respect to D̂.

3.2.3 Model stability issues
The properties of the FL-ISTIA concerning stability preservation and interpolation of the large-scale model
are discussed below. To prove the stability of the reduced-order models built by ISTIA (see Gugercin and
Antoulas, 2006), the Lyapunov equation of the initial large-scale model is projected thus leading to the
reduced-order model Lyapunov equation. And, due to inertia results, the reduced-order model is proved
to be stable. Here however, following the same reasoning as in Gugercin and Antoulas (2006) is not
applicable any longer. Indeed, let us assume that the basis is such that QΩ = In, then, the large-scale
Lyapunov equation is

AT +A+Wo (Ω) = 0.

By applying the projectors WT = V T and V to the equation, it comes that

ÂT + Â+ V TWo (Ω)V = 0.

The last term of the reduced-order Lyapunov equation is not necessarily positive semi-definite, hence sta-
bility cannot be proved. In order to do so, the same modification that has been developed to ensure the
stability with the FL-BT could be applied (see Gugercin and Antoulas, 2004). However, in the case of
FL-BT one observes that this modification also leads to a loss of performances in terms of approximation
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error in the considered frequency interval. Since instability has rarely been observed in the reduced-order
model built by FL-ISTIA , this modification is not applied to the algorithm above presented. Moreover,
in that case, the rational RH∞ projection presented in Chapter 1 may be applied instead. To the author’s
experience and feeling, this is usually the best way to take.

3.2.4 About the interpolatory conditions
The Krylov subspace used in FL-ISTIA is similar to the one used in IRKA or ISTIA procedures. It implies
that at convergence, the reduced-order model tangentially interpolates at {−λ̂l}rl=1 the initial large-scale
one H, from either the left or the right (depending on the Krylov subspace that has been chosen). For
instance, if at convergence,

[
(σ

(i)
1 E − A)−1Br

(i)
1 , . . . , (σ

(i)
r E − A)−1Br

(i)
r

]
= span (V ), then for all

l = 1, . . . , r,
H(−λ̂l)b̂l = Ĥ(−λ̂l)b̂l. (3.3)

Note that equation (3.3) is one of the first-order optimality conditions for the optimalH2 case, as given
in Theorem 2.6. For SISO models, just like ISTIA this implies that the reduced-order model built by
FL-ISTIA is the best (in the H2-sense) among all the models which share the same eigenvalues. The
same property holds in SIMO and MISO cases as well (depending on which side the Krylov subspace
is built). In the MIMO case however, the optimality property is weaker since only one part of the first-
order optimality conditions is fulfilled. In all cases, fulfilling this optimality condition implies that at
convergence, the H2-norm of the approximation error between the large-scale and reduced-order models
is equal to the difference of theirH2-norm, i.e.

||H− Ĥ||2H2
= ||H||2H2

− ||Ĥ||2H2
.

Still, fulfilling the H2 optimality conditions is not really relevant in the case of model approximation
over a bounded frequency range and the choice of the Krylov subspace could be improved. This stands
true also for the shifts point selection strategy which is a relaxation of a Newton’s scheme based on the
optimality conditions of theH2 problem. However, as it will appear later in this chapter, even if tangential
interpolatory optimality conditions of the H2,Ω problem can be written, their expression as practical and
Krylov-like subspace seems far to be trivial, and no solution is known, yet. Therefore, FL-ISTIA remains
a relevant approach for frequency-limited model reduction.

Remark 3.2 (Link with TSIA procedure) Similarly to the FL-ISTIA procedure, one can follow the ap-
proach of Xu and Zeng (2010) and design the FL-TSIA approach involving Sylvester equations instead of
Krylov subspaces (see Vuillemin et al. (2013b) for details).

3.3 H2,Ω model approximation
Approximation of LTI models over a finite frequency interval is now addressed in a more direct way,
through the restriction of theH2-norm to a bounded interval, called L2,Ω-norm (and with a slight language
abuse, H2,Ω-norm). A framework for optimal L2,Ω model approximation relying on the partial fraction
decomposition of the transfer function Ĥ, is presented. It enables deriving a spectral expression for the
L2,Ω-norm of LTI models that can be used to express the norm of the approximation error which can in
turn be differentiated to formulate the first-order optimality conditions with respect to the variables. These
optimality conditions are then analysed to simplify the optimisation problem and are finally rewritten as
interpolation conditions, similar to those existing in the H2 case. In addition, a procedure treating the
problem using a dedicated descent scheme, called DARPO (see e.g. Vuillemin et al., 2014a, 2019), is
given.

3.3.1 Spectral formulation of the approximation error
The spectral formulation of the L2,Ω-norm presented in Chapter 1 and in Theorem 1.5 is now used to
express the L2,Ω-norm of the approximation error JL2,Ω(Ĥ) = ||H− Ĥ||2L2,Ω

. Indeed, let us consider two
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LTI models H, Ĥ ∈ L∞ of order n and r, respectively, that can be written as,

H(s) =

n∑
j=1

cjb
T
j

s− λj
+D

=

n∑
j=1

Φj
s− λj

+D

and

Ĥ(s) =

r∑
k=1

ĉkb̂
T
k

s− λ̂k
+ D̂

=

r∑
k=1

Φ̂k

s− λ̂k
+ D̂,

(3.4)

then JL2,Ω
(Ĥ) = ||H − Ĥ||2L2,Ω

can be expressed with respect to the poles and residues of both models
as shown in Theorem 3.1. Note that this expression is fully expanded to ease the differentiation process in
the next section. Yet, a more condensed expression can also be written as presented in Corollary 3.1.

Theorem 3.1: L2,Ω mismatch error

Given H, Ĥ ∈ L∞ of order n and r, respectively, that can be written as in (3.4). By denoting

aω(s) ,
2

π
atan

(ω
s

)
,

the L2,Ω-norm of the approximation error between H and Ĥ can be expressed as

JL2,Ω
(Ĥ) =

n∑
j,k=1

tr
(
ΦjΦ

T
k

)
λj + λk

aω(λj) +

r∑
j,k=1

tr
(

Φ̂jΦ̂
T
k

)
λ̂j + λ̂k

aω(λ̂j)

−
n∑
j=1

r∑
k=1

tr
(

ΦjΦ̂
T
k

)
λj + λ̂k

(
aω(λj) + aω(λ̂k)

)
+

r∑
k=1

tr
(

Φ̂kD̃
T
)
aω(λ̂k)−

n∑
j=1

tr
(

ΦjD̃
T
)
aω(λj) +

ω

π
tr
(
D̃D̃T

)
(3.5)

where Φj = cjb
T
j (j = 1, . . . , n), Φ̂k = ĉkb̂

T
k (k = 1, . . . , r) and D̃ = D − D̂.

Proof 3.1 (of Theorem 3.1) is available in the Ph.D. manuscript of Vuillemin (2014), Chapter 7.

One may notice that when the optimalH2 approximation problem is considered, theH2 approximation
error is given as (see also Chapter 2 and relation (2.11))

JH2(Ĥ) = ||H||2H2
+ ||Ĥ||2H2

− 2

r∑
k=1

tr
(
H(−λ̂k)Φ̂Tk

)
.

Here, a similar expression can be obtained for the L2,Ω case, by reformulating (3.5) as presented in
Corollary 3.1.

Corollary 3.1: L2,Ω mismatch error

Given H, Ĥ ∈ H∞ of order n and r, respectively, that can be written as in (3.4). Relation (3.5)
can be factored as

JL2,Ω(Ĥ) = ||H||2L2,Ω
+ ||Ĥ||2L2,Ω

+

r∑
k=1

tr
(

Φ̂kH(−λ̂k)T
)
aω(λ̂k) +

n∑
j=1

tr
(

ΦjĤ(−λj)T
)
aω(λj)

−2
ω

π
tr
(
DD̂T

)
.

(3.6)
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In an optimisation context, the objective is to characterise the stationary points of Problem 3.2. For that
purpose, the spectral formulation of the approximation error JL2,Ω

(Ĥ) presented in Theorem 3.1 must be
differentiated with respect to {λ̂l, b̂l, ĉl}rl=1, the poles and residues of the reduced-order model. Later, in
Section 3.4, these first-order optimality conditions are reformulated as interpolatory ones.

3.3.2 JL2,Ω
(Ĥ) first-order optimality conditions

The approximation error JL2,Ω(Ĥ) is a real scalar function of the complex variables {λ̂l, b̂l, ĉl}rl=1 and of
the real variable D̂. The corresponding derivatives are obtained by differentiating the expression (3.6) and
are presented in Result 3.1.

Note that as JL2,Ω
(Ĥ) involves both complex variables and their conjugates, it does not satisfy the

Cauchy-Riemann conditions and is therefore not analytic. Hence, differentiation must be performed in a
specific framework, known as the Wirtinger calculus (see e.g. Brandwood (1983); Remmert (1991)). From
a practical point of view, the latter consists in treating two conjugate complex variables, e.g. λ̂l and λ̂∗l , as
independent.

Result 3.1: Gradient computation of JL2,Ω
(Ĥ)

Let H, Ĥ ∈ L∞ be systems with transfer functions as in (3.4). The gradients of the L2,Ω gap
JL2,Ω

(Ĥ) = JL2,Ω
(λ̂k, b̂k, ĉk), shortly denoted JL2,Ω

with respect to {λ̂l, b̂l, ĉl, D̂}rl=1 are given
by the equations (3.7) below,

∂JL2,Ω

∂λ̂l
=

n∑
j=1

ĉTl cjb
T
j b̂l

aω(λj) + aω(λ̂l)(
λj + λ̂l

)2 +
2ω

π
(
λ̂2
l + ω2

)(
λj + λ̂l

)


−
r∑

k=1

ĉTl ĉkb̂
T
k b̂l

aω(λ̂k) + aω(λ̂l)(
λ̂k + λ̂l

)2 +
2ω

π
(
λ̂2
l + ω2

)(
λ̂k + λ̂l

)


− 2ω

π
(
λ̂2
l + ω2

) ĉTl

(
D − D̂

)
b̂l

∂JL2,Ω

∂b̂l
= −

n∑
j=1

bjc
T
j ĉl

λ̂l + λj

(
aω(λj) + aω(λ̂l)

)
+

r∑
k=1

b̂kĉ
T
k ĉl

λ̂l + λ̂k

(
aω(λ̂k) + aω(λ̂l)

)
+ (D − D̂)T ĉlaω(λ̂l)

∂JL2,Ω

∂ĉl
= −

n∑
j=1

cjb
T
j b̂l

λ̂l + λj

(
aω(λj) + aω(λ̂l)

)
+

r∑
k=1

ĉkb̂
T
k b̂l

λ̂l + λ̂k

(
aω(λ̂k) + aω(λ̂l)

)
+ (D − D̂)b̂laω(λ̂l)

∂JL2,Ω

∂D̂
=

n∑
j=1

cjb
T
j aω(λj)−

r∑
k=1

ĉkb̂
T
k aω(λ̂k)− 2

π
ω
(
D − D̂

)

(3.7)

This result is the main basis for the derivation of a descent algorithm and may now be exploited in the
DARPO procedure.
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3.3.3 The DARPO procedure

Now one has the expression of JL2,Ω
(Ĥ) and its derivative with respect to the {λ̂l, b̂l, ĉl, D̂}rl=1 param-

eters as given in Result 3.1, it is possible to derive a descent algorithm with objective of minimizing the
mismatch error. This decent scheme has been proposed by Vuillemin et al. (2014a) and is known as the
DARPO algorithm. The procedure is recalled in Algorithm 4.

Algorithm 4 DARPO - Descent Algorithm for Residues and Poles Optimization

Require: E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n, Ω = [0, ω] with ω > 0 and r ∈ N∗
1: Compute the eigenvalues and associated eigenvectors of (E,A) to determine {λj , cj ,bj}nj=1

2: Choose an initial (stable) point z0 composed of {λ̂(0)
l , b̂

(0)
l , ĉ

(0)
l , D̂(0)}rl=1

3: Set k = 0.
4: while not converged do
5: Set

zk =
[
λ̂

(k)
1 . . . λ̂(k)

r b̂
(k)
1 . . . b̂(k)

r ĉ
(k)
1 . . . ĉ(k)

r D̂(k)
]

6: Compute the error JL2,Ω
(zk) and the associated gradient following equations (3.7)

∂JL2,Ω

∂z∗

∣∣∣∣
z=zk

.

7: Choose the descent direction (BFGS in practice)

pk = −2
∂JL2,Ω

∂z∗

∣∣∣∣
z=zk

.

8: Choose the step length αk such that JL2,Ω(zk + αkpk) satisfies the strong Wolfe conditions (and
such that the poles do not cross the imaginary axis)

9: Set zk+1 = zk + αkpk
10: Set k ← k + 1
11: end while
12: Use {λ̂(k)

l , b̂
(k)
l , ĉ

(k)
l , D̂(k)}rl=1 to construct Ê, Â, B̂, Ĉ and D̂.

DARPO is a descent method performing in the complex domain. It is based on specific parametrisation,
the pole residue one. Obviously other parametrisation may be chosen such as the Schur one.

3.4 Connection with interpolatory conditions

As exposed in Chapter 2, in the specific case where Ĥ ∈ H2 is an optimal H2 approximant of H ∈ H2,
then the following tangential interpolation conditions are satisfied (see e.g. Gugercin et al. (2008); Van
Dooren et al. (2008))

H(−λ̂l)b̂l = Ĥ(−λ̂l)b̂l
ĉTl H(−λ̂l) = ĉTl Ĥ(−λ̂l)

ĉTl H′(−λ̂l)b̂l = ĉTl Ĥ′(−λ̂l)b̂l.
(3.8)

In the frequency-limited support L2,Ω case, similar interpolatory conditions as (3.8) may actually be
obtained, as presented in Theorem 3.2.
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Theorem 3.2: L2,Ω first order tangential optimality conditions

Let us define the following Tω and T̂ω irrational functions,

Tω(s) =

n∑
j=1

cjb
T
j

(
aω(λj)− aω(s)

s− λj
,

)
−Daω(s)

and

T̂ω(s) =

r∑
k=1

ĉkb̂
T
k

(
aω(λ̂k)− aω(s)

s− λ̂k

)
− D̂aω(s)

Then the three first equations of (3.7) are equivalent to

Tω(−λ̂l)b̂l = T̂ω(−λ̂l)b̂l
ĉTl Tω(−λ̂l) = ĉTl T̂ω(−λ̂l)

ĉTl T′ω(−λ̂l)b̂l = ĉTl T̂′ω(−λ̂l)b̂l
(3.9)

and last equation of (3.7) is equivalent to (for j = 1, . . . , ny and k = 1, . . . , nu)∫ ω

−ω
Hj,k(jν)dν =

∫ ω

−ω
Ĥj,k(jν)dν.

Unlike the H2 interpolation conditions, the frequency-limited ones (3.9) do not involve directly the
transfer functions H and Ĥ but irrational functions Tω(H) and T̂ω(Ĥ), parametrised by of H and Ĥ
defined as

Tω(s) = Hω(s) + H(s)aω(−s)

and
T̂ω(s) = Ĥω(s) + Ĥ(s)aω(−s),

where

Hω(s) =

n∑
j=1

cjb
T
j

s− λj
aω(λj) and Ĥω(s) =

r∑
k=1

ckb
T
k

s− λ̂k
aω(λk).

Here again, these function should match at the opposite of the poles of the reduced-order model. Beside,
these conditions are completed with an integral condition due to the optimality condition on the direct
feedthrough D̂. Note that if one assumes that

∂JL2,Ω

∂D̂
= 0, then the interpolation conditions (3.9) still holds

but the expression of Tω(s) and T̂ω(s) are modified as given in Remark 3.3.

Remark 3.3 (Specific case of gradient in D̂) Assuming that
∂JL2,Ω

∂D̂
= 0 then (3.9) holds true but Tω(s)

and T̂ω(s) are simplified with functions of the form,

Tω(s) =

n∑
j=1

cjb
T
j

(
−aω(λj)− aω(s)

s− λj
+

π

2ω
aω(λj)aω(s)

)
and

T̂ω(s) =

r∑
k=1

ĉkb̂
T
k

(
−aω(λ̂k)− aω(s)

s− λ̂k
+

π

2ω
aω(λ̂k)aω(s)

)
.

As the reduced-order model does not appear explicitly in (3.9), a fixed-point scheme as the one devel-
oped for the H2 case Beattie and Gugercin (2012) does not clearly appear here. Moreover, connections
with any Krylov-like subspace, which is the justification for fast and scalable algorithm, is not accessible
anymore. Still, the idea of mixing Loewner, Krylov and optimisation leaves space for perspectives.
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3.5 Conclusions
In this chapter, the frequency limited model approximation problem is addressed through two numeri-
cal optimisation procedures. First, the FL-ISTIA as a direct extension of the ISTIA from Gugercin and
Antoulas (2006) is presented. This latter reaches a subset of the H2 interpolatory conditions, losses the
stability preservation, but, to the author’s best of knowledge, provides very good performances in practice
when shift points are well initialised. Indeed, its efficiency has been highlighted in many industrial appli-
cations encountered in the aeronautical domain (see e.g. Poussot-Vassal et al., 2013; Meyer et al., 2017).
Secondly, the DARPO procedure, a real H2,Ω (indeed L2,Ω) oriented model reduction algorithm, is also
presented. This latter is described as a descent procedure which converges to theH2,Ω first order optimality
conditions. These last conditions have been shown to be equivalent to some interpolatory ones, as in the
unbounded H2 case, but including more complex (actually irrational) transfer functions. This last point
is, to the author’s feeling, a nice and interesting research topic for further developments in order to link Ĥ
with T̂ω in a practical manner, and, if possible, involving Krylov-like subspaces in order to scale-up this
method to very large-scale and to close the theoretical contribution.
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Chapter 4

Model approximation by input-output
delay structured reduced order model

La chose la plus difficile est de n’accorder
aucune importance aux choses qui n’ont
aucune importance.

Charles De Gaulle
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Up to now, the approximated model Ĥ we were looking for shared the same structure as H, the origi-
nal one, i.e. starting from an ODE set given by S, one was looking for a reduced ODE set with the same
structure and realisation Ŝ. In this chapter instead, one aims at constructing a reduced order model Ĥd

(equipped with a realisation Ŝd) potentially embedding input-output delays, extending the standard frame-
work. After an introduction and motivation illustrated with an applicative example in Section 4.1, Section
4.2 derives the mismatch error in the specific input-output delay case, putting in evidence an alternate H2

inner product for delayed models. The fundamental aspect of this new expression of the H2-inner product
in the presence of input and output delays is derived in Section 4.3. Section 4.4 then establishes the H2

optimality conditions as interpolatory ones, solving the so-called input-output delay dynamical model ap-
proximation problem. Section 4.5 suggests an iterative algorithm permitting to practically compute such an
approximation. Section 4.6 gives some hints to connect these extended tangential interpolatory conditions
to Sylvester equations. Conclusions are discussed in Section 4.7. This chapter is largely based on the Ph.D.
thesis of Pontes (2017) and the contributive paper of Pontes Duff et al. (2018) (note also that the original
idea was already published in arXiv:1511.05252, on November 17th, 2015 by the same authors).
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4.1 Motivating example and problem formulation

4.1.1 Forewords
For linear time invariant systems, a standard model order reduction approach is to approximate the transfer
function of the system under investigation with a rational function. In general, a reduced-order approxima-
tion is considered to be a finite dimensional model. This representation is quite general and a wide range of
linear dynamical systems can be converted in this form. However, in some cases, it may be more relevant
to find reduced-order models having some more complex structures, such as input and output delay ones.
Approximating a large-scale dynamical model by a low order one including (a priori unknown) input-
output delays is of particular interest when the original full order model represents a transport phenomenon
where the information needs a finite amount of time to be transmitted from a point to another. Examples
of this kind of models are present in the domains of fluid mechanics, electronics, thermodynamics, etc. For
these cases, a reduced model containing an input-output delay structure should well capture the transport
behaviour and thus allow finding less complex and more accurate reduced models.

The presence of input-output delays in the approximation model was tackled in Halevi (1996), ex-
ploiting both Sylvester and Lyapunov equations and gramians properties (derived in Hyland and Bernstein
(1995) for the case without delay). The bottleneck of this approach is that it requires solving Lyapunov
equations which might be costly in the large-scale context. From the moment matching side, Scarciotti and
Astolfi (2014) proposed a problem formulation that enables the construction of an approximation which
contains very rich delay structure, including state delay (see also Remark 4.1 below), but where the delays
and the interpolation points are supposed to be a priori known. From the Loewner framework viewpoint,
Pontes Duff et al. (2015a); Schulze and Unger (2016) generalise the principle of Mayo and Antoulas (2007)
to the state delay case enabling data-driven interpolation. However, as for the moment matching case, the
delays and the interpolation points are also assumed to be a priori fixed.

It is why an alternative pole / residue-based approach has been developed, which enables to derive
firstly, the H2-inner product expression in the presence of input and output delays, and then, the H2 opti-
mality conditions, treated as interpolation ones.

As it will appear more clearly in the rest of the chapter, the results presented here and based on Pontes
Duff et al. (2018), consist in extending the interpolation results of Gugercin et al. (2008) to the case of
approximate models with an extended structure, namely, including non-zero input-output delays.

Remark 4.1 (State delayed models) The state delay structured reduced order model is a direct extension
of the standard delay-free case and of the input-output delay one. This problem is largely more complex
than the one treated in this chapter. As an illustration, the case of H2-optimal approximation of a model
H with a first order reduced-order model Ĥ and single internal delay, leads to interpolatory conditions
expressed as a interpolation conditions of system series, as show in Pontes Duff et al. (2016a).

4.1.2 Motivating example
Let us provide as motivation, an industrial use-case from EDF (French electricity provider) hydro-electrical
engineers, illustrating the impact of a delay-based reduced modelling rather than a pure rational one.

Use-case 5 - EDF hydroelectric open-channel model
In Dalmas et al. (2016), an hydro-electrical open-channel model has been described through an irrational
model linking the inflow (qe) and outflow (qs) to the measured output of the water’s height (h). This
model is given by the following irrational transfer function

h(x, s) = Ge(x, s)qe(s)−Gs(x, s)qs(s)

Ge(x, s) =
λ1(s)eλ2(s)L+λ1(s)x − λ2(s)eλ1(s)L+λ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

Gs(x, s) =
λ1(s)eλ1(s)x − λ2(s)eλ2(s)x

B0s(eλ1(s)L − eλ2(s)L)

(4.1)
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where x stands as the position of the water height measurement and where constant values and λ(·)
functions are extracted from a section of the Rhin’s river and are given in Dalmas et al. (2016). After ap-
plying the Loewner interpolation (from samples of the model (4.1)) or using the TF-IRKA framework,
it is possible to obtain H, a finite-order model that well reproduces the behaviour of (4.1). Obviously,
according to the water height sensor location, delays naturally appears in the inputs qe and qs. It is
then natural trying including it in a reduced order model to catch this delay behaviour. By applying the
IO-dITIA (described later in this chapter), the following results can be obtained.
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Figure 4.1: Impulse responses of the original model of order n = 55 and its approximation using
IRKA and IO-dITIA with an order r = 6.

Figure 4.1 clearly shows the benefits of a τ̂ delay structured model compared to the standard one in the
time-domain response.

This delay-based model structure has a great importance in many research fields, including modeling
of networks, diseases (see e.g. Briat and Verriest, 2009), flow transfer (see e.g. Shaabani-Ardali et al.,
2017) etc. Interested reader may also refer to the complete book of Briat (2015), the manuscript of Seuret
(2017). Let us now formalise the problem considered in this chapter.

4.1.3 Input-output delayed structured reduced order problem
In what follows, let us consider H ∈ H2, the delay-free original model

H(s) = Ĉ(sÊ − Â)−1B̂, (4.2)

which realisation can be written as S : (E,A,B,C, 0, Inu , Iny )1, and the input-output delay reduced order
model,

Ĥd(s) = ∆̂o(s)Ĉ(sÊ − Â)−1B̂∆̂i(s) = ∆̂o(s)Ĥ(s)∆̂i(s), (4.3)

1This notation stands as the classical realization one S : (E,A,B,C, 0), extended with the matrices defining the input and output
delays. Last terms given as Inu , Iny means that no input-output delay are considered.

87



CHAPTER 4. MODEL APPROXIMATION BY INPUT-OUTPUT DELAY STRUCTURED REDUCED
ORDER MODEL

where ∆i(s) and ∆o(s) are the input and output fixed delayed operators, defined as:{
∆̂i(s) = diag(e−τ̂1s, . . . , e−τ̂nus) ∈ Hnu×nu∞
∆̂o(s) = diag(e−γ̂1s, . . . , e−γ̂ny s) ∈ Hny×ny∞

, (4.4)

where {τ̂i}nui=1 ∈ R+ and {γ̂o}
ny
o=1 ∈ R+. The associated realisation is written as Ŝd : (Ê, Â, B̂, Ĉ, 0, ∆̂i, ∆̂o).

Then, the considered input-output delayH2 model approximation problem is recalled hereafter.

Problem 4.1: Input-output delayH2-optimal model approximation

Given H ∈ H2 with realization S, a n-th order system without input-output delays S :
(E,A,B,C, 0, Inu , Iny ) as in (4.2), find a reduced r-th order (with r � n) multiple input-output
delays model Ĥ with realisation Ŝd : (Ê, Â, B̂, Ĉ, ∆̂i, ∆̂o) as in (4.3) such that

Ĥd = argmin
Gd ∈ H2

dim(Gd) ≤ r

||H−Gd||H2
.

This search for an optimal solution is carried out assuming that both H and Ĥ from (4.2) and (4.3)
are real systems and have semi-simple poles i.e. such that their respective transfer function matrix can be
decomposed as

H(s) =

n∑
j=1

cjb
T
j

s− λj
and Ĥ(s) =

r∑
k=1

ĉkb̂
T
k

s− λ̂k
, (4.5)

where {bj}nj=1, {b̂k}rk=1 ∈ Cnu and {cj}nj=1, {ĉk}rk=1 ∈ Cny . The poles {λj}nj=1, {λ̂k}rk=1 are elements
of C− so that H and Ĥ belong toH2 and dim(H) = n, dim(Ĥ) = r.

Remark 4.2 (Redundancy of the delays) In (4.3), the number of delay parameters is nu + ny , and the
number of SISO sub-transfer functions defining the MIMO system is nu × ny . If nu × ny < nu + ny ,
i.e. the number of delay parameters is larger than the number of SISO subsystems, Problem 4.1 is over-
parametrised with respect to the number of delays. This leads to a non-uniqueness of the optimal delay
parameters. To resolve this issue, one may restrict the number of delay parameters in the reduced order
model. This topic is discussed later in Remark 4.9.

4.2 Mismatch error formulation

To treat Problem 4.1, let us derive the mismatch error. First, let us remind the following proposition.

Proposition 4.1:H2-norm invariance

Let Ĥ ∈ H2 be a stable dynamical system and M,N be two elements of Hnu×nu∞ and Hny×ny∞
respectively such that,

∀ω ∈ R, M(ıω)MT (ıω) = Inu , N(ıω)NT (ıω) = Iny . (4.6)

It follows that, if Ĥd = NĤM , then ||Ĥd||H2 = ||Ĥ||H2 .

One can easily check that condition (4.6) appearing in Proposition 4.1 is satisfied by the delay matrices
of (4.4) when M = ∆̂i and N = ∆̂o. In other words, the H2-norm does not depend neither on the input,
nor the output delays. The following result makes now explicit the calculation of the H2-norm associated
with the dynamical mismatch gap ||H − Ĥd||H2 , which conditions Problem 4.1. Let H, Ĥ ∈ H2 be real
systems such that Ĥ is given by (4.5). TheH2-norm of the approximation gap (or mismatch error), denoted
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by JH2(Ĥd), can be expressed as

JH2(Ĥd) = ||H− Ĥd||2H2

= ||H− ∆̂oĤ∆̂i||2H2

= ||H||2H2
− 2〈H, ∆̂oĤ∆̂i〉H2

+ ||∆̂oĤ∆̂i||2H2

= ||H||2H2
− 2〈H, ∆̂oĤ∆̂i〉H2

+ ||Ĥ||2H2
.

With reference to the above criteria, one can consider that theH2-norm mismatch computation in presence
of delays is available as in the H2 case. However, the H2 inner product, involving H∞ operators (∆̂i and
∆̂o) still must be carefully computed. This is the purpose of the following section.

4.3 Input-output delayedH2 inner product
For a didactical understanding, let us compute the input-output delayed H2 inner product first in the
SISO case, then in the MIMO one.

Proposition 4.2: Single input delayH2 inner product

Let H, Ĥ ∈ H2 be two SISO real systems with transfer functions as

H(s) =

n∑
j=1

Φj
s− λj

and Ĥ(s) =

r∑
k=1

Φ̂k

s− λ̂k
,

and let τ ∈ R+, Ĥd = Ĥe−τ̂s. The inner product is given as

〈H, Ĥd〉H2
=

n∑
j=1

ΦjĤ(−λj)eτ̂λj .

The inner product evaluation is then obtained as the evaluation of the reduced order model at the
mirror images of the poles of the original one, weighted by the exponential (delay) operator. Similarly,
the MIMO case can be formulated as follows.

Proposition 4.3: Multiple input-output delaysH2 inner product

Let H, Ĥ ∈ H2 be two real systems with transfer functions as in (4.5). More-
over, let ∆̂i ∈ Hny×ny∞ and ∆̂o ∈ Hny×ny∞ be real transfer functions satisfying
sups∈C+

{||∆̂o(s)||F , ||∆̂i(s)||F } = c < +∞. By denoting Ĥd = ∆̂oĤ∆̂i, the inner prod-
uct 〈Ĥd,H〉H2 is expressed as

〈H, Ĥd〉H2
=

n∑
j=1

tr
(
res
[
Ĥd(−s)HT (s), λj

])
=

n∑
j=1

cTj ∆̂o(−λj)Ĥ(−λj)∆̂i(−λj)bj .

Proof 4.1 (of Proposition 4.3) is detailled in Pontes Duff et al. (2018).

One may note that Proposition 4.3 is a generalisation of (Gugercin et al., 2008, Lemma 3.5) in the case
of MIMO systems with multiple-input-output delays.

Remark 4.3 (Rational functions case symmetry) An equivalent proposition was derived in the rational
function case in the seminal paper of Gugercin et al. (2008). Obviously, it can be recovered from Propo-
sition 4.3 by taking ∆i = Inu and ∆o = Iny . The result corresponds to the symmetric expression of the
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inner product i.e. the evaluation of H in the poles of Ĥ and its associated residues ĉk and b̂k such that,

〈H, Ĥ〉H2
=

r∑
k=1

ĉTkH(−λ̂k)b̂k =

n∑
j=1

cTj Ĥ(−λj)bj = 〈Ĥ,H〉H2
.

In the presence of input-output delays, as the H2-norm cannot be approximated using one contour con-
taining the poles of Ĥd only, this result is no longer true. Indeed, it can be easily shown that in this case,
the integral over ΓR

2 will depend on a positive exponential argument which will not converge to 0+ when
R→ +∞. This justifies the assumption sups∈C+

{||∆̂o(s)||F , ||∆̂i(s)||F } = c < +∞ and importance of
Proposition 4.3.

This non-symmetric expression of the H2-inner product in the presence of input-output delays is the
crucial point in the derivation of the optimality conditions3. Indeed, in the rational function case described
by Gugercin et al. (2008), this symmetry exists and is used to derive the optimality conditions (see also
Chapter 2). That is why Proposition 4.3 has to be invoked when deriving the optimality conditions for
Problem 4.1. Now, let us recall the pole / residue H2-norm formula from Gugercin et al. (2008) and its
immediate extension to the delayed case.

Corollary 4.1: Pole / residueH2-norm

Given Ĥ ∈ H2, expressed as

Ĥ(s) =

r∑
k=1

ĉkb̂
T
k

s− λ̂k
then,

||Ĥ||2H2
=

r∑
k=1

ĉTk Ĥ(−λ̂k)b̂k.

Using Proposition 4.1, for the delay operators ∆̂i and ∆̂o as in (4.4), we immediately establish

||∆̂oĤ∆̂i||2H2
=

r∑
k=1

ĉTk Ĥ(−λ̂k)b̂k.

Proof 4.2 (of Corollary 4.1) is immediate from Gugercin et al. (2008).

Now the H2 inner-product in the input-output delays context has been settled, let us state the H2

optimality conditions related to Problem 4.1, as an interpolation one.

4.4 H2 optimality conditions as interpolatory conditions

Considering the mathematical formulation of Problem 4.1 and the reduced order system structure Ĥd =
∆̂oĤ∆̂i, where Ĥ is given as in (4.5), the underlying optimisation issue to be solved is parameterised by:

{λ̂k}rk=1 ∈ C− the r poles(
{b̂k}rk=1, {ĉk}rk=1

)
∈ (Cnu × Cny ) the r bi-tangential directions(

{τ̂i}nui=1, {γ̂o}
ny
o=1

)
∈
(
Rnu+ × Rny+

)
the nu + ny delay values.

Consequently, similarly to the H2 case presented in Chapter 2, or the H2,Ω (or L2,Ω) case described in
Chapter 3, our primary objective consists in rewriting the expression of theH2 gap JH2

(Ĥd) as a function
of these parameters, i.e. as JH2(λ̂k, b̂k, ĉk, τ̂i, γ̂o), which will subsequently facilitate the derivation of the

2ΓR denotes the contour of the right complex plane, invoked when the residue Theorem is applied (see Pontes, 2017, Chapter 5).
3Note that the term "non-symmetric" is not dedicated to theH2 inner product, but rather to its expression.
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H2 optimality conditions for Problem 4.1. From the preliminary results, JH2(Ĥd) can be equivalently
rewritten as

JH2
(Ĥd) = ||H||2H2

+ ||Ĥ||2H2
− 2〈H, ∆̂oĤ∆̂i〉H2

= ||H||2H2
+

r∑
k=1

ĉTk Ĥ(−λ̂k)b̂k − 2

n∑
j=1

cTj ∆̂o(−λj)Ĥ(−λj)∆̂i(−λj)bj

= JH2
(λ̂k, b̂k, ĉk, τ̂i, γ̂o).

(4.7)

From equation (4.7), the first-order optimality conditions related to JH2(λ̂k, b̂k, ĉk, τ̂i, γ̂o) minimisa-
tion, can be analytically computed. The gradient expressions of theH2 gap with respect to each parameters
(delays, tangential directions and poles) are presented in what follows.

Result 4.1: Gradient computation of JH2
(Ĥd)

Let H, Ĥ ∈ H2 be systems with transfer functions as in (4.5) and ∆̂i ∈ Hnu×nu∞ and
∆̂o ∈ H

ny×ny
∞ be the delay operators defined in (4.4). The gradients of the H2 gap JH2(Ĥ) =

JH2
(λ̂k, b̂k, ĉk, τ̂i, γ̂o), shortly denoted JH2

with respect to the delays τ̂i and γ̂o are expressed as

∂JH2

∂τ̂i
= −2

∂〈Ĥd,H〉H2

∂τ̂i

= −2

n∑
j=1

λjc
T
j ∆̂o(−λj)Ĥ(−λj)Di∆̂i(−λj)bj ,

∂JH2

∂γ̂o
= −2

∂〈Ĥd,H〉H2

∂γ̂m

= −2

n∑
j=1

λjc
T
j Do∆̂o(−λj)Ĥ(−λj)∆̂i(−λj)bj ,

for i = 1, . . . , nu and o = 1, . . . , ny , where elements of Di ∈ Rnu×nu , Do ∈ Rny×ny , are defined
as

[Dk]ij = δijk =

{
1 if i = j = k
0 otherwise .

The gradients of JH2
(Ĥd) with respect to parameters {λ̂k, b̂k, ĉk}rk=1, are expressed as

∂JH2

∂λ̂k
= 2ĉTk

(
T′d(−λ̂k)− Ĥ′(−λ̂k)

)
b̂k

∂JH2

∂b̂k
= −2ĉTk

(
Td(−λ̂k)− Ĥ(−λ̂k)

)
∂JH2

∂ĉk
= −2b̂Tk

(
Td(−λ̂k)− Ĥ(−λ̂k)

)T
,

where

Td(s) =

n∑
j=1

∆̂o(−λj)
cTj bj

s− λj
∆̂i(−λj), (4.8)

and where T′d and Ĥ′ are the derivative of Td and Ĥ, respectively.

Proof 4.3 (of Result 4.1) see Pontes Duff et al. (2018).

In the SISO case, as the tangential directions vanishes, all conditions provided in Result 4.1 appear
much simpler. Then, the following main result for SISO systems is given.
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Theorem 4.1: Single input delay structuredH2 optimality conditions

Given H, Ĥ ∈ H2 as,

H(s) =

n∑
j=1

Φj
s− λj

and Ĥ(s) =

r∑
k=1

Φ̂k

s− λ̂k
,

such that Ĥd = Ĥe−τ̂s is a local optimum of Problem 4.1, then the following interpolatory and
delay conditions, for all l = 1, . . . , r, hold true:{

Ĥ(−λ̂l) = Td(−λ̂l),
Ĥ′(−λ̂l) = T′d(−λ̂l),

n∑
j=1

λjΦj

(
r∑

k=1

Φ̂k

λj + λ̂k

)
eτ̂λj = 0,

and where

Td(s) =

n∑
j=1

Φj
s− λj

eτ̂λj .

Then, Theorem 4.2 gathers all the first-order optimality conditions related to Problem 4.1 for the
MIMO case.

Theorem 4.2: Multiple input-output delays structuredH2 optimality conditions

Let us consider H ∈ H2 whose transfer function is given by (4.5). Let Ĥd = ∆̂oĤ∆̂i be a local
optimum of Problem 4.1. It is assumed that Ĥ ∈ H2 is given by (4.5). Let ∆̂i and ∆̂o be elements
of Hnu×nu∞ and Hny×ny∞ , respectively, such that Propositions 4.1 and 4.3 are verified. Then, the
following equalities hold: 

Ĥ(−λ̂l)b̂l = Td(−λ̂l)b̂l
ĉTl Ĥ(−λ̂l) = ĉTl Td(−λ̂l)

ĉTl Ĥ′(−λ̂l)bl = ĉTl T′d(−λ̂l)b̂l,
(4.9)



n∑
j=1

λjc
T
j ∆̂o(−λj)Ĥ(−λj)Di∆̂i(−λj)bj = 0

n∑
j=1

λjc
T
j Do∆̂o(−λj)Ĥ(−λj)∆̂i(−λj)bj = 0,

(4.10)

for all l = 1, . . . , r, i = 1, . . . , nu and o = 1, . . . , ny and where Td(s) is given by (4.8).

Proof 4.4 (of Theorem 4.2) is immediate from Result 4.1 (see also Pontes Duff et al., 2018).

Theorem 4.2 asserts that any solution of the H2 model approximation Problem 4.1, denoted as Ĥd =
∆̂oĤ∆̂i is such that Ĥ satisfies, at the same time, a set of 3r bi-tangential interpolation conditions detailed
in (4.9) and another set of nu + ny relations on the delays contained in the ∆̂i and ∆̂o diagonal matrices
given by (4.10). Note that the interpolation conditions (4.9) are very similar to the optimality conditions
for the H2 approximation with rational functions presented in Chapter 2. However, in the case with input-
output delays, the new model Td defined in (4.8) enters in the game, instead of H. This new system
possesses the same poles as H, but differs from H by its residues, computed as (4.8), where delays play
the role of weights in their impact. One should note, this new model is intrinsically related to the non-
symmetric expression of theH2-inner product (see Remark 4.3).
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Remark 4.4 (Optimality conditions equivalence) By considering Td as in (4.8) and the following ratio-
nal function problem: find Ĥ ∈ H2 a reduced r-th order (without delay) approximation which minimises
||Td − Ĥ||H2

, then, if Ĥ is a local minimum of this problem, then it satisfies the interpolation condi-
tions (4.9). Thus, for fixed input and output delays, this problem and Problem 4.1 both lead to the same
optimality conditions and have the same stationary points.

Based on the above conditions and remark, let us now derive the IO-dITIA (for Input-Output delay Iter-
ative Tangential Interpolation Algorithm), an interpolation-based algorithm, similar to the MIMO IRKA one,
to numerically compute the approximation Ĥd.

4.5 The IO-dITIA procedure and computational considerations

4.5.1 Some computational considerations

Let us assume that Ĥd = ∆̂oĤ∆̂i is a local minimum of Problem 4.1, satisfying assumptions of Theorem
4.2. Then the following observations can be made.

Remark 4.5 (Fixed poles and delay values) If the matrices ∆̂o, ∆̂i and the reduced order model poles
λ̂1, . . . , λ̂r are assumed to be known, Problem 4.1 is reduced to a much simpler problem that can be solved,
for example, by using the Loewner framework (e.g. using Mayo and Antoulas, 2007).

Remark 4.6 (Fixed delay values) If the delay matrices ∆̂o, ∆̂i are known, then Problem 4.2 can be
solved by finding a model realization Ĥ, which satisfies the interpolation conditions (4.9) of Theorem 4.2,
only. This can be done using the MIMO IRKA (see Gugercin et al., 2008).

Remark 4.7 (Fixed realisation) Assume that the system realisation Ŝ has already been determined, it fol-
lows that Problem 4.2 is equivalent to look for optimal delays matrices (∆̂o, ∆̂i) ∈ (Hny×ny∞ ×Hnu×nu∞ )
such that

(∆̂o, ∆̂i) = argmax
(∆̃o,∆̃i)

〈∆̃oĤ∆̃i,H〉H2 . (4.11)

Interestingly, since 〈∆̂oĤ∆̂o,H〉H2 → 0 when the delays go to infinity, this problem can be restricted
to a compact set and thus a global solution exists. The delay optimisation will be illustrated later in the
chapter.

4.5.2 The IO-dITIA procedure

Now all the necessary theoretical results and computational remarks have been made, an algorithm allow-
ing to numerically compute a model Ĥd satisfying the previous H2 optimality conditions is proposed in
this subsection. It relies on Remarks 4.4, 4.5, 4.6 and 4.7 and the optimality conditions defined above.
Therefore, the proposed approach corresponds to an iterative algorithm in which each iteration can be de-
composed in two steps. The first one aims at computing a realisation Ĥ which satisfies the interpolation
conditions (4.9) while fixing the matrices (∆̂o, ∆̂i) at their values obtained from the previous iteration.
This can be done using, for instance, an implementation of the original MIMO IRKA of Gugercin et al.
(2008) (step 4). In the second step, Ĥ is therefore fixed and the optimal values for the (∆̂o, ∆̂i) matrices
elements are determined (step 5). This sequential procedure can be summarised in Algorithm 5.

This iterative algorithm is inspired from Gugercin et al. (2008); Van Dooren et al. (2008) and, upon
convergence, the first-order necessary conditions of Theorem 4.2 will be satisfied. In practice, one can stop

the while loop when the relative changes of the poles of Ĥ(i) and the delay blocks ∆̂i
(i)

and ∆̂o
(i)

are
smaller than a given tolerance.

Remark 4.8 (Delay optimization) In Algorithm 5, one needs to solve an optimisation problem involving
the delay parameters. To this aim, two approaches can be considered:
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Algorithm 5 IO-dITIA - Input-Output delay Iterative Tangential Interpolation Algorithm

Require: E,A ∈ Rn×n, B ∈ Rn×nu , C ∈ Rny×n,
{
σ

(0)
l , r

(0)
l , l

(0)
l

}r
l=1
∈ {C× Cnu × Cny} and initial

guesses for both ∆̂i
(0)
, ∆̂o

(0)
.

1: Set i = 0
2: while not converged do
3: Build T

(i)
d as in (4.8)

4: Build Ĥ(i) satisfying the bi-tangential interpolation conditions (4.9) using MIMO IRKA (see
e.g. Gugercin et al., 2008) with T

(i)
d and {σ(i)

l , r
(i)
l , l

(i)
l }rl=1

5: Compute (∆̂i
(i)
, ∆̂o

(i)
) which solves (4.11) using Ĥ(i)

6: Set ∆̂i
(i+1)

← ∆̂i
(i)

and ∆̂o
(i+1)

← ∆̂o
(i)

7: Set {σ(i+1)
l , r

(i+1)
l , l

(i+1)
l }rl=1 ← {σ

(i+1)
l , r

(i+1)
l , l

(i+1)
l }rl=1

8: Set i← i+ 1
9: end while

10: Construct Ĥd = ∆̂o
(i)

H(i)∆̂i
(i)

Ensure: Ĥd satisfies the interpolation conditions of Theorem 4.9.

• One may implement a branch and bound algorithm to search the global optimum in a given interval.
Although this approach provides accurate results, it has a high numerical cost and it might be not
suitable in large-scale settings.

• Otherwise, one should provide a good initialisation of the delay parameters. This initialisation might
come from some physical knowledge or by a simple time-domain simulation of the impulse response
of H, obviously, if this latter is not too large.

Remark 4.9 (Structured input-output delays) If one wants to restrict the input and output delays to act
only on part of the input and output, one may set some of the τ̂ (i)

i and γ̂(i)
o to zero and optimise only with

respect to the remaining variables. For these variables, the gradients derived in derived in Result 4.1 are
still valid and hence Algorithm 5 can be employed also for this case.

Before closing this chapter, let us now illustrate some of the properties and results presented so far
using an academic example which mimics a delay behaviour.
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Example 9 - Artificial delay
Let us consider a model H of order n = 20, given by the following transfer function

H(s) =

n∏
j=1

λj
s− λj

,

where λj ∈ R− (j = 1, . . . , n) are linearly spaced between [−2,−1]. The impulse response of H is
given by the solid blue line in Figure 4.2. Interestingly, it naturally behaves as an input delay system. In
order to fit the framework proposed in this chapter, input-delay H2 optimal model Ĥd = ∆̂oĤ∆̂i of
order r = 4 (dashed red) was obtained by applying Theorem 4.2 and IO-dITIA procedure. This model
is compared with a pure rational function-based approximation of the same order r = 4 obtained with
the IRKA procedure (green dash dotted). The resulting impulse responses are reported on Figure 4.2.
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Figure 4.2: Impulse response of the original model H of order n = 20 (solid blue line), the input-delay
H2-optimal model Ĥd of order r = 4 (dashed red line) and the rational H2-optimal model Ĥ of order
r = 4 obtained with IRKA (dash dotted green line).
As clearly shown in Figure 4.2, the proposed methodology allows obtaining an input-delay H2 approx-
imation of model H that clearly provides a better matching than the rational case. Note that even for
higher orders (here, IRKA with n = 6 still has a bad matching and exhibits difficulties in accurately
catching the delay and main dynamics). Indeed, the rational cases exhibits an oscillatory behaviour dur-
ing the first seconds while the input-delay model Ĥd takes benefit of the delay structure to focus on the
main dynamical effect. The approximating model Ĥd satisfies the conditions given in Theorem 4.2.
Then, Figure 4.3 shows the impulse response mismatch errors for these different configurations. For
each reduced order models, the mean square absolute error ε of the impulse responses are also computed.
The main observation that can be made is that the mismatch error obtained for Ĥd is lower than the one
obtained by a rational model Ĥ, motivating the use of the specific approximation model delay structure.
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Figure 4.3: Impulse response error between the original model H of order n = 20 and the input-delay
H2-optimal model Ĥd of order r = 4 (dashed red line) and the rational H2-optimal models Ĥ of order
r = 4 obtained with IRKA (dash dotted green line).
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Figure 4.4: H2 mismatch error as a function of the input delay value.
Finally, as an interesting - still not yet well understood - property, the following Figure 4.4 illustrates
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the H2 mismatch error as a function of the input delay value τ̂ . Although the overall behaviour seems
predictable with a decreasing error from delay 0 up to the optimal one (τ̂ ≈ 6.4) and an increase when
the optimal one is overpassed, some non monotonic behaviour is also observed in between points, as
illustrated on Figure 4.5, highlighting a periodical behaviour, e.g. between 4.01 and 4.05 seconds.
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Figure 4.5: H2 mismatch error as a function of the input delay value for the academic model (zoom on
a section).

4.6 Toward connections with the Lyapunov equations
The input-output delays structure in the approximation model was also presented in Halevi (1996) exploit-
ing both Lyapunov equations and gramians properties. In this paper, author did provide the following
relevant results.

Theorem 4.3: Gramian-based SISOH2 optimality conditions

Given H, Ĥ ∈ H2 respectively equipped with realisation S a n-th order system without input-
output delays S : (In, A,B,C, 0, Inu , Iny ) and Ŝ a r-th order system with input-output delays
Ŝ : (Ir, Â, B̂, Ĉ, 0, Inu , τ̂), where τ̂ ∈ R+. Then, Ŝ solves the approximation problem if it
satisfies:

(Â, B̂, Ĉ) = (WT
τ̂ AVτ̂ ,W

T
τ̂ B,CVτ̂ ),

where Wτ̂ , Vτ̂ ∈ Rn×r and Πτ̂ ∈ Rn×n are defined as,

WT
τ̂ Vτ̂ = Ir , Πτ̂ = Vτ̂W

T
τ̂ and P̂τ̂ Q̂τ̂ = VMWT ,

where M ∈ Rr×r and the non-negative matrices P̂τ̂ and Q̂τ̂ satisfy

AP̂τ̂ + P̂τ̂ Â
T +BBT = 0

Q̂τ̂A+ ÂT Q̂τ̂ + eA
T τ̂CTCeAτ̂ = 0

rank(Pτ̂ ) = rank(Qτ̂ ) = rank(Pτ̂Qτ̂ ) = r

.
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Interestingly, these conditions are not that far to the one presented by Wilson (1974) and reminded in
Corollary 2.1. Then, as in the delay-free case presented in Gallivan et al. (2004a,b), where some links
between Lyapunov and Sylvester equations with tangential interpolatory conditions were exposed, using
the Loewner matrix framework, a similar extension to the delay case may be done in the close future. This
last connection has not been derived yet, but may be an interesting issue to elegantly close the result and
make the connection between interpolation and Sylvester-like equations.

4.7 Conclusions
In this chapter, the approximation by an input-output delay structured reduced order model has been ad-
dressed through the versatile interpolatory framework. The main result is presented in Theorem 4.2 (see
also Pontes Duff et al., 2018). This latter involves a new formulation of the H2 inner product in presence
of input and output delays. Besides this extension, one may notice that this result nicely extends the H2

optimality conditions obtained by Gugercin et al. (2008) for the delay-free case, to the input-output delay
reduced order models. Interestingly, the optimal interpolatory conditions now involve a "shifted" transfer
function Td (weighted by the delay). Attentive reader may remember that T̂ω was entering in the inter-
polatory frame for the H2,Ω case (presented in the precedent Chapter 3) and H in the H2 case without
delay (recalled in Chapter 2) which points very nice connections, encouraging for future researches. Then,
author proposed the IO-dITIA inspired from the MIMO IRKA and which, as a matter of consequence,
shares barely the same strengths and weaknesses. The IO-dITIA has been successfully applied to a large
number of examples including academic and industrial ones. Besides the algorithmic issues revealed in the
present chapter and in Chapter 7, author believes that such result stand as a seminal one in the structured
model approximation within the interpolatory framework.
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Chapter 5

Model approximation for L2 functions
input-output stability estimation

La difficulté n’est pas de comprendre les idées
nouvelles, mais d’échapper aux idées
anciennes.

John Maynard Keynes

Contents
5.1 Motivating example and problem formulation . . . . . . . . . . . . . . . . . . . . . 100
5.2 Stability estimation of L2 meromorphic functions . . . . . . . . . . . . . . . . . . . 103
5.3 Numerical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Up to this chapter, model reduction and approximation was used in its original purpose, i.e. to find a
low complexity rational (input-output delayed) model Ĥ(d) which reproduces the behaviour of the (very)
large-scale original one H over (a part of) the frequency space. In this chapter, the concept of rational
interpolation induced by the model approximation framework (in Chapters 2, 3 and 4) is used in a totally
different objective. Instead, now one aims at establishing the (in)stability of any dynamical system de-
scribed by a L2 meromorphic function, through model interpolation-based algorithms. We first motivate
the purpose and illustrate the solution proposed on a time-delayed system in Section 5.1. Section 5.2 then
both provides the proposed numerical procedures accompanied by theoretical arguments for assessing the
stability of any L2 meromorphic functions. Section 5.3 provides a set of illustrative examples of different
nature, and Section 5.4 closes the chapter with conclusions and discussions. Reader should consider this
chapter as an opening one and preliminary result description rather than a fully complete result. The contri-
bution still is on-process (on going result by Poussot-Vassal and Vuillemin, 2019). The aim of the chapter
is rather to show how versatile and powerful model approximation tools methods can be for a large variety
of problems "resolutions".
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5.1 Motivating example and problem formulation

5.1.1 Forewords
Stability of a dynamical systems is clearly one of the main property to assess in control theory, numerical
simulation, optimisation etc. Without loss of generalities, in the case of "classical"1 LTI models either
described by a set of ODE or DAE (including second order ones), the stability problem is recast as the
eigenvalues one. In this specific case, the number of eigenvalues is finite and its computational complexity
is only related to the (E,A) pencil calculation2. If instead, the LTI model H has an infinite number of
singularities3 or its realisation is not necessarily available, the stability assessment becomes much more
tedious. As an illustration, one can mention delay invariant TDS models or linear PDE models (see later in
Section 5.3, for a bundle of examples). In these cases, tailored solutions are usually invented to deal with
these specificities (e.g. the time-delay stability analysis literature is very important and one may refer to
Richard (2003); Sipahi et al. (2011); Seuret and Gouaisbaut (2015); Briat (2015)). Still, all these use-cases
share a common point: they all are defined by a meromorphic (real-valued) complex function given as

H : C 7→ Cny×nu .

Moreover, if H ensures ∫ ∞
−∞
||H(ıω)||2F dω <∞,

then the meromorphic function is said to be of finite energy and H ∈ L2. If instead H ensures

max
ω∈R
||H(ıω)||2 <∞,

then the meromorphic function is said to be of finite energy and H ∈ L∞. Based on the above considera-
tions and with reference to Chapter 1, let us define the following two input-output stability notions.

Definition 5.1: Input-output L∞ − L2 stability

A system represented by the transfer function H(s) is said to be input-output L∞ − L2 stable, if
there exists a c > 0 such that:

||Hu||L∞ = ||y||L∞ ≤ c||u||L2 .

In this case, the system is said L2 stable (orH2).

Definition 5.2: Input-output L2 − L2 stability

A system represented by the transfer function H(s) is said to be input-output L2 − L2 stable, if
there exists a c > 0 such that:

||Hu||L2
= ||y||L2

≤ c||u||L2
.

In this case, the system is said L∞ stable (orH∞).

Here, one proposes to attack the L2 stability evaluation of meromorphic functions with finite energy,
problem from a new angle. Mathematically, the considered problem is given as follows.

Problem 5.1: L2 meromorphic function stability

Given a meromorphic function H ∈ L2, determine if H is input-output stable, i.e. if, H ∈ H2.

1By "classical", ones means equipped with the (E,A,B,C,D) realisation, classically presented in class-room.
2In this case, very efficient tools already exist such as LAPACK (see also Chapter 1).
3In the finite dimensional case, singularities are finite and are the eigenvalues.
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Note that this problem formulation is quite large, and as mentioned before, this chapter does not claim
at completely solving it. The purpose of the chapter is rather to illustrate the potential of the interpola-
tory framework to go toward a potentially satisfactory solution. So far, the proposed framework appears
promising but would require additional work. It is nothing to say that this problem is indeed quite an active
one, and many works from both control and mathematics communities are considering it (see e.g. Jacob
et al. (2016); Dashkovskiy and Mironchenko (2018)).

5.1.2 A motivating example
Let us motivate the problem and proposed solution through the following time-delay dynamical model,
which stability is usually quite complicated to prove for non experts.

Example 10 - TDS stability chart approximation
In this use-case, we consider an example provided in Sipahi et al. (2011), representing a dynamical
system highlighting the stabilising effect of delays. The model is described by the following delay
dependent dynamical representation (where w0 = 3, τ ∈ [0, 10] and k ∈ [0, 4]):

H(s, k, τ) =
ke−τs

s2 + w2
0 − ke−τs

.

By applying the L2-MFSA procedure later described, over a 100×100 uniformly spaced grid of delay τ
and feedback gain k, one obtains the stability index S ∈ R100×100 which values are reported on Figures
5.1 and 5.2.

Figure 5.1: 3D representation of the stability index log(S)/max(S) as a function of τ and k.

These latter have been obtained in approximatively 1063 seconds using a standard laptop (representing
then 0.1s per point), which is quite reasonable. Besides, it is noteworthy that comparing Figure 5.1 with
(Sipahi et al., 2011, Figure 10) shows a very accurate restitution of the stability regions. In practice, the
above results has been obtained using the following script, involving the mor.stability interface.
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% S i p a h i e t a l . , IEEE c o n t r o l sys tem magazine , 2011
% S t a b i l i z i n g e f f e c t o f d e l a y s ( p48 and F i g u r e 10)
c l e a r J
kSpace = l i n s p a c e ( 0 , 9 , dx ) ; % dx =100
t a u S p a c e = l i n s p a c e ( 0 , 1 0 , dx ) ; % dx =100

W = l o g s p a c e (−2 .5 ,1 ,200 ) ; % f r e q u e n c y g r i d o f e v a l u a t i o n
w0 = 3 ;
H = @( s , p ) 1 / ( s ^2 + w0^2 − p ( 1 ) ∗exp(−p ( 2 ) ∗ s ) ) ; % L2 meromorphic f u n c t i o n
kk = 0 ;
t i c
f o r i i = 1 : l e n g t h ( kSpace )

f o r j j = 1 : l e n g t h ( t a u S p a c e )
kk = kk + 1 ;
f p r i n t f ( ’ %0.3 f %% \ n ’ ,100∗ kk / ( l e n g t h ( kSpace ) ∗ l e n g t h ( t a u S p a c e ) ) )
p _ i j = [ kSpace ( i i ) t a u S p a c e ( j j ) ] ;
H_ i j = @( s ) H( s , p _ i j ) ; % meromorphic f u n c t i o n e v a l u a t i o n a t p =[ k \ t a u ]
J ( i i , j j ) = mor . s t a b i l i t y ( H_i j ,W) ; % L2−MFSA p r o c e d u r e

end
end
cpuTime = t o c ;

Listing 5.1: demo_Chap5_startEvalBench script: illustration of L2-MFSA procedure.
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Figure 5.2: Projection of the stability index log(S)/max(S) as a function of τ and k.

At this point, it can be pointed that in comparison with the LMI-based techniques or bifurcation tools
developed in the time-delay literature, the velocity and relative simplicity of the proposed scheme seems
appealing. Moreover, the accuracy of the algorithm seems good with respect to the exact solution. How-
ever, to be fair, it is important to keep in mind that LMI-based methods allow treating varying delay, while
the one presented here, as well as the spectral methods (see e.g. Jarlebring et al., 2010) are restricted to
fixed ones. Let us now describe the L2-MFSA procedure and provide some mathematical arguments.
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5.2 Stability estimation of L2 meromorphic functions
Let us describe the proposed approach. We start with the derivation of the proposed numerical procedure
(Algorithm 6). This algorithm is then justified in the following sub-sections, with some reminders, then,
theoretical arguments to justify such a procedure, and finally, the steps for the construction of Algorithm 6.

5.2.1 The proposed L2-MFSA procedure
The proposed procedure is summed up as in Algorithm 6.

Algorithm 6 L2-MFSA - L2 Meromorphic Function Stability Approximation

Require: H ∈ L2, {ωi}Ni=1 ∈ R+, N ∈ N and ε ∈ R+ (typically twice machine precision)
1: Sample H and obtain {ωi,Φi}Ni=1

2: Perform an exact Loewner interpolation (as described in Chapter 2) and obtain Ĥ equipped with Ŝ ∈
S0
n,ny,nu which ensures interpolatory conditions

3: Compute Ĥs with realisation Ŝ+ ∈ S+
n,ny,nu , the best stable approximation of Ĥ

4: Compute the stability index as S = ||Ĥs − Ĥ||L2

5: if S < ε then
6: H is stable
7: else
8: H is unstable
9: end if

At this point, Algorithm 6 embeds a relative simple procedure, which will be show to be actually quite
effective, fast and reliable in multiple cases. In few words, the idea consists in exactly matching the original
input-output model by a rational model Ĥ, by guaranteeing interpolatory conditions. Then, to seek for the
best stable approximation Ĥs of the obtained model Ĥ. The L2 distance between the interpolated Ĥ and
stable Ĥs models is then computed. If this latter is smaller than a given threshold, then we conclude that
H is stable, and unstable otherwise. Obviously, such a simple procedure deserves some arguments to be
fully satisfactory. In the following some arguments to justify such an approach are given. Still author
stresses that all the necessary ones are not given, yet. In what follows we start by reminding standard
results mentioned in Chapter 1.

5.2.2 Reminding remarks on stability by L2 inner product
Let us consider a MIMO linear dynamical system, denoted by H with nu (resp. ny) ∈ N∗ inputs (resp.
outputs), represented by its transfer function H(s) ∈ Cny×nu . Let L2(ıR) be the Hilbert space of holo-
morphic functions F : C→ Cny×nu which are analytic in the complex plane except on the imaginary axis
and for which ∫ +∞

−∞
tr
(
F(ıω)FT (ıω)

)
dω < +∞.

For given G,H ∈ L2(ıR), the associated inner-product reads:

〈G,H〉L2 =
1

2π

∫ +∞

−∞
tr
(
G(ıω)HT (ıω)

)
dω,

and the L2(ıR) norm can be explained:

||G||L2
=

(
1

2π

∫ +∞

−∞
‖G(ıω)‖2F dω

)1/2

= 〈G,G〉H2
,

where ||G||2F = 〈G,G〉F and 〈G,H〉F = tr(GHT ) are the Frobenius norm and inner-product, respec-
tively. Since real dynamical systems are considered only, it is noteworthy that if G,H ∈ L2 are real, then
〈G,H〉L2 = 〈H,G〉L2 ∈ R+.
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According to definitions given in Chapter 1, one notices that H2(C−) is the left half-plane analog
of H2(C+), e.g. , G ∈ H2(C−) if and only if G(−s) ∈ H2(C+). Then H2(C−) stands as the space
of transfer function H(s) whose all poles lies in C+, i.e. the poles of H(s) are all unstable. The space
H2(C−) is called the space of anti-stable models. Now, let us remind the following important proposition,
standing as the basis of the result derivation. The H2(C−) and H2(C+) spaces are closed subspaces of
L2(ıR) and

L2(ıR) = H2(C−)
⊕
H2(C+).

In addition, one can remind that by applying the Laplace transform, denoted as L(·), over these two
spaces, the following bijections are obtained:

L(·) : Ln2 [0,∞)→ H2(C+) and L(·) : Ln2 (−∞, 0]→ H2(C−), (5.1)

which map the causal and anti-causal time-domain functions. Obviously, (5.1) shows that every element
H ∈ H2(C+) (respectively G ∈ H2(C−)) can be uniquely associated to an element h ∈ Ln2 [0,∞)
(respectively g ∈ Ln2 (−∞, 0]). In addition, the following functional analysis theorem shows that the
Laplace transform preserves inner product and orthogonality.

Theorem 5.1: Plancherel

Let us consider h1,h2 ∈ Ln2 (−∞,∞), one has

〈H1,H2〉L2(ıR) = 〈L(h1),L(h2)〉L2(ıR) = 〈h1,h2〉L2
.

Moreover, since H2(C−) is orthogonal to H2(C+) with respect to the L2(ıR)-inner product, if
Hs ∈ H2(C+) and Ha = H2(C−), then

〈Hs,Ha〉L2(ıR) = 0.

In other words, the above decomposition and Theorem 5.1 state that given a model H ∈ L2(ıR), there
is a stable model Hs ∈ H2(C+) and an anti-stable model Ha = H2(C−) such that H = Hs + Ha and
〈Hs,Ha〉L2(ıR) = 0. Then the following proposition holds.

Proposition 5.1: Input-output L∞ − L2 stability

A system H ∈ L2(ıR) is input-output L∞ − L2 stable if and only if H ∈ H2(C+).

Theorem 5.1 and the L2(ıR) space decomposition are the main ingredient arguing for the proposed
L2-MFSA procedure. These arguments are now provided in the following subsection.

5.2.3 Arguments for the L2-MFSA
Let us now provide some justifications for the use of interpolation methods in order to estimate the
(in)stability of a given system H ∈ L2(ıR). These arguments are based on the following results, stated
in Pontes Duff et al. (2015b) and recalled in Propositions 5.2, 5.3 and 5.4, and finally in Theorem 5.2,
providing the main argument for stability.

First of all, let us assume that the global minimiser Ĥ of the H2(C+) and H2(C−) approximation
problems exist4. Then, the following first result holds true.

Proposition 5.2: L2 orthogonality

If H ∈ H2(C+) and there exists a global minimizer Ĥ ∈ L2(ıR) of theL2 approximation problem,
then Ĥ ∈ H2(C+). Similarly, if H ∈ H2(C−) and there exists a global minimizer Ĥ ∈ L2(ıR) of
the L2 approximation problem, then Ĥ ∈ H2(C−).

4TheH2(C+) approximation problem is simply Problem 2.1 while theH2(C−) stand as the same one but for H(−s).
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Proof 5.1 (of Proposition 5.2) is given in Pontes Duff et al. (2015b).

In other words, the following statements holds true,

• if a system H is stable, then the global minimiser Ĥ of the L2 approximation problem is stable too.

• if a system H is anti-stable, i.e. all its eigenvalues are unstable, then the global minimiser Ĥ of the
L2 problem is anti-stable as well.

This result directly comes from the orthogonality property ofH2(C−) andH2(C+) spaces.
Let us now denote by Ĥk, the sequence of models of order k ∈ N∗ and consider the case where the

initial model H is stable, then the following proposition holds.

Proposition 5.3: Unstable approximate sequence of stable model

Given a stable model H ∈ H2(C+), there exists a sequence of k-th order unstable models Ĥk ∈
L2(ıR)\H2(C+), k ∈ N∗, such that, when k →∞, ||H− Ĥk||L2 → 0.

Proof 5.2 (of Proposition 5.3) is given in Pontes Duff et al. (2015b).

In other words, the set H2(C+) is not an open set of L2(ıR). As a consequence, it is always possible
to approximate a stable model H by an unstable one of order k while decreasing the L2 mismatch error
||H − Ĥk||L2 . Similarly, let us now consider the case where the initial model H both has stable and
unstable modes.

Proposition 5.4: Unstable approximate of unstable model

Given an unstable model H ∈ L2(ıR)\H2(C+), there exists ε > 0 such that the ball Bε(H)
defined as

Bε(H) =
{

Ĥk ∈ L2(ıR)
∣∣ ||H− Ĥk||L2

< ε
}
,

satisfies Bε(H) ⊂ L2(ıR)\H2(C+).

Proof 5.3 (of Proposition 5.4) is given in Pontes Duff et al. (2015b).

In other words, the set of unstable systems L2(ıR)\H2(C+) is an open set of L2(ıR). Moreover, by
fixing an arbitrarily small ε, it is always possible to find a Ĥk that is unstable too. Based on the above
three propositions, let us now formulate the following stability argument, which will be invoked in order to
derive the proposed numerical procedure.

Theorem 5.2: Main stability argument

Given an unstable system H ∈ L2(ıR)\H2(C+), there exists r ∈ N∗ for which the minimizer Ĥk

of order k ∈ N∗, k ≥ r, obtained from the L2-approximation problem is also unstable.

Since Proposition 5.4 states that if a system Ĥk is sufficiently close to an unstable system in the L2-
norm, it is also unstable. Since, the subspace of rational finite LTI systems function is dense in L2, for
a given LTI unstable system H ∈ L2(ıR)\H2(C+), a sequence Ĥk of systems of order k ∈ N which
satisfies the L2 approximation problem, will converge to H. Thus, due to Theorem 5.2, there exists an
order r ∈ N∗ such that if k ≥ r, Ĥk will be unstable as well.

In other words there exists an approximation order k ≥ r such that if the original system H is unstable,
the approximated one Ĥ is unstable too. Moreover, if one has found the global L2 minimiser of the
approximation problem of order r, it will be stable if the original model is stable, due to Proposition 5.2,
and it will be unstable if the original model is unstable, due to Theorem 5.2.

105



CHAPTER 5. MODEL APPROXIMATION FOR L2 FUNCTIONS INPUT-OUTPUT STABILITY
ESTIMATION

5.2.4 Toward the derivation of the L2-MFSA
In Pontes Duff et al. (2015b), these arguments were used to derive a procedure based on the TF-IRKA al-
gorithm, combined with a greedy search of the approximation order r. This last procedure did provide
quite good results but the search procedure for an adequate order r was complex and led to a time consum-
ing procedure. Moreover, the TF-IRKA is an H2(C+)-oriented procedure and its validity in the L2(ıR)
function space is limited to models where the stable and anti-stable part is known (see Magruder et al.,
2010).

Consequently, in this chapter and in Poussot-Vassal and Vuillemin (2019), the H2-optimal interpola-
tory conditions are released and one now considers the interpolatory conditions embedded in the Loewner
framework instead. One major benefit of such a trade stands in the selection of the approximating order r,
which may be automatically done, thanks to Lemma 2.1. By coming back to the L2-MFSA procedure de-
fined in Algorithm 6, step 2 provides a simple solution, where the dimension r is automatically determined
by the rank of the Loewner matrices. Then, Ĥ tangentially interpolates the data (without bi-tangential
interpolation). Then, following Propositions 5.3 and 5.4, it appears quite naturally that, approximating
the interpolated model Ĥ with Ĥs using the methodology given in Theorem 1.3 and proposed by Kohler
(2014), followed by the L2 distance evaluation is appealing. Indeed, as

• From a stable model H, it is always possible to find an unstable one which minimises the L2 mis-
match problem, if, based on an unstable approximation a same complexity (order) stable model may
be obtained, without affecting the L2 norm, then the interpolated model is stable, as the original one.

• From an unstable model H, its global minimiser in the L2 sense should be unstable as well, then,
applying a stable approximation will lead to a large L2 mismatch. Then, one may confirm that the
original model is unstable, as its rational approximant.

The conjecture we claim is in twofolds:

1. One is always able to find a rational model Ĥ ∈ RL2 that well reproduces H ∈ L2, whatever the
complexity of H is, if we can arbitrarily increase r, the dimension of Ĥ.
This can be achieved by increasing the Loewner matrix up to a numerical rank loss.

2. If, based on an unstable realisation of Ĥ ∈ RL2, the optimal stable approximant Ĥs ∈ H2 is
close enough to Ĥ ∈ RL2, in the sense of the L2-norm, then Ĥ is stable and, following previous
statement (1.), H is stable too.
This step can be achieved by a rational stable approximation followed by a norm computation
which threshold is fixed to machine precision.

Remark 5.1 (About rational approximation of a meromorphic function) In all the above considera-
tions, the starting point aims at approximating any meromorphic function H by Ĥ (equipped with Ŝ),
a rational meromorphic model satisfying interpolatory conditions. One (huge?) underlying question is,
how accurately a rational form can reproduce an irrational one? This is not clearly stated so far. With
reference to Algorithm 6, this point may be by-passed by selecting a wide enough frequency range ωi and
enough points N (note that N may be increased up to the moment where the rank revealing factorisation
reaches machine precisions).
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5.3 Numerical illustrations
Now the main idea and some theoretical arguments for the proposed L2-MFSA approach have been de-
rived, let us illustrate it on some different problems. Indeed, as theoretical results are clearly missing to be
fully mathematically complete, with this section, author aims at motivating and promoting the feature of
this approach, which he believes is promising. First, let us start with a finite dimensional dynamical model.

Example 11 - Ordinary differential equation model
On this example, we consider the stable Clamped beam model provided in Leibfritz (2003), equipped
with a state-space vector of order n = 348. Then, we consider the same system with an additional
unstable pole in +1. To illustrate the process, the following code is executed and results obtained:

[A, B1 , B , C1 , C , D11 , D12 , D21 , nx , nw , nu , nz , ny ] = COMPleib ( ’CBM’ ) ;
W = l o g s p a c e (−3 ,2 ,500) ;
H = s s (A, B , C , 0 ) ;
mor . s t a b i l i t y (H,W)
i s s t a b l e (H)

H = s e r i e s (H, t f ( 1 , [ 1 −1]) ) ; % add an u n s t a b l e p o l e i n 1 r a d / s
mor . s t a b i l i t y (H,W)
i s s t a b l e (H)

Listing 5.2: demo_Chap5_ode_dae script: illustration of L2-MFSA procedure.

The above code leads to the following results:

ans =
1 .6017 e−15 % s t a b i l i t y i n d e x by mor . s t a b i l i t y , c l o s e t o machine p r e c i s i o n => s t a b l e

ans =
l o g i c a l
1 % => s t a b l e a c c o r d i n g t o Mat lab

ans =
61 .0948 % s t a b i l i t y i n d e x by mor . s t a b i l i t y , g r e a t e r t h a n machine p r e c i s i o n =>

u n s t a b l e
ans =

l o g i c a l
0 % => u n s t a b l e a c c o r d i n g t o Mat lab

Listing 5.3: Results of the above script.

By analysing the above numerical values, the first one, representing the stability index provides an
index close to machine precision (≈ 10−15 ≈ 0) meaning that the model is stable (MATLAB issable
function confirms this conclusion). In the second result set, the stability index is far from machine
precision (≈ 61) therefore, following the above arguments and conjecture, the model is assumed to
be unstable (MATLAB issable function confirms it). One can repeat the experiment with different
unstable pole values, i.e. 0, 1e-6 or 1e2 and the process keep working. Still, to be completely fair,
if the unstable eigenvalue is "too far" from the bounds of W, the frequency support provided as input
and which will dictate the ability of the Loewner interpolation step to reproduce the behaviour in this
frequency range (especially if the function rolls-off), the result may fail. Indeed, executing the following
code:

[A, B1 , B , C1 , C , D11 , D12 , D21 , nx , nw , nu , nz , ny ] = COMPleib ( ’CBM’ ) ;
W = l o g s p a c e (−3 ,2 ,500) ; % t r y a l s o W = l o g s p a c e (−3 ,3 ,500) ;
H = s s (A, B , C , 0 ) ;
mor . s t a b i l i t y (H,W)
i s s t a b l e (H)

H = s e r i e s (H, t f ( 1 , [ 1 / 1 e6 −2∗ .1/1 e3 1 ] ) ) ; % add an u n s t a b l e p o l e i n 1 e3 r a d / s
mor . s t a b i l i t y (H,W)
i s s t a b l e (H)

Listing 5.4: demo_Chap5_ode_dae script: illustration of L2-MFSA procedure.

Here, we clearly exhibit a limitation...
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ans =
1 .6017 e−15 % s t a b i l i t y i n d e x by mor . s t a b i l i t y , c l o s e t o machine p r e c i s i o n => s t a b l e

ans =
l o g i c a l
1 % => s t a b l e a c c o r d i n g t o Mat lab

ans =
1 .2172 e−15 % s t a b i l i t y i n d e x by mor . s t a b i l i t y , c l o s e t o machine p r e c i s i o n => s t a b l e

! ! !
ans =

l o g i c a l
0 % => u n s t a b l e a c c o r d i n g t o Mat lab

Listing 5.5: Results.

Here, the third number, 1.2172e-15, indicates that according to the L2-MFSA the model is stable,
which is obviously not true at all. By replacing the frequency grid W by W = logspace(-3,3,500)
the problem is almost solved. Indeed it leads to a stability index of 2.0394e-05, now closed to zero
even if still far from machine precision.

Now, as it is of great interest for control practitioners (e.g. control engineers implementing control
laws on target including networks and computational delay), let us now apply the proposed procedure, to a
TDS dynamical model embedding multiple delays.

Example 12 - High speed network TDS model
Let us consider a congestion system of a high speed network, originally derived from Izmailov (1996)
and analyzed in Niculescu (2002) and Sipahi et al. (2011). Its behaviour is driven by the following
time-delayed dynamical equations:{

ẋ(t) = A0x(t) +A1x(t− τ) +A2x(t− τ − r) + bu(t)

y(t) = cTx(t)
,

where

A0 =

[
0 0
1 0

]
, A1 =

[
0 −a
0 0

]
, A2

[
0 −b
0 0

]
, b =

[
1
0

]
and c =

[
0
1

]
,

and where a = 2, b = −1.75 and τ, r ∈ R+ are the fixed delays. One is interested in deriving the so-
called stability chart as a function of the {τ, r} couple delay values. More specifically, we are interested
in the stability conditions for τ ∈ [0, 1.4]s and r ∈ [0, 1.8]s for which the system is stable or not.
This specific problem has been theoretically solved by Niculescu (2002), using complete analysis of its
characteristic transcendaental equation leading to the exact stability chart as a function of {τ, r}.
When comparing the solution obtained in (Niculescu, 2002, Figure 1) to the one based on the L2-
MFSA procedure reported on Figure 5.3, the stable area (white area on Figure 5.3) almost perfectly
coincide. More specifically, Figure 5.3 reports the stability index (which amplitude is in log-scale) as
a function of τ and r, obtained by the L2-MFSA over a finite grid set of frozen {τ, r} values (here
50 × 50 grid points). The proposed algorithm well catches the (in)stability property while being quite
fast (result obtained in 930s, only) and without any a-priori knowledge. Note also that this process may
be connected to a boundary search process, to accelerate it even more, as done in Pontes Duff et al.
(2015b).
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Figure 5.3: Stability index chart as a function of the delay values {τ, r} (values are in logarithmic scale).

User may consider that the above figure is simply obtained with following code, calling the
mor.stability routine of the MOR Toolbox.

% C o n g e s t i o n e r r o r ( p58 and F i g u r e 20 , v a l u e s from [ 7 4 ] )
t a u 1 S p a c e = l i n s p a c e ( 0 , 1 . 8 , dx ) ; % dx =100
t a u 2 S p a c e = l i n s p a c e ( 0 , 1 . 4 , dx ) ; % dx =100

W = l o g s p a c e (−2 ,1 ,200) ;
a = 2 ;
b = −1.75;
A0 = [0 0 ; 1 0 ] ;
A1 = [0 −a ; 0 0 ] ;
A2 = [0 −b ; 0 0 ] ;
B = [ 1 ; 0 ] ;
C = [0 1 ] ;
Id = eye ( l e n g t h ( A0 ) ) ;
H = @( s , p ) C∗ ( Id / ( s∗ Id − A0 − A1∗exp(−p ( 2 ) ∗ s ) − A2∗exp (−(p ( 2 ) +p ( 1 ) ) ∗ s ) ) ) ∗B ;
kk = 0 ;
t i c
f o r i i = 1 : l e n g t h ( t a u 1 S p a c e )

f o r j j = 1 : l e n g t h ( t a u 2 S p a c e )
kk = kk + 1 ;
f p r i n t f ( ’ %0.3 f %% \ n ’ ,100∗ kk / ( l e n g t h ( t a u 1 S p a c e ) ∗ l e n g t h ( t a u 2 S p a c e ) ) )
p _ i j = [ t a u 1 S p a c e ( i i ) t a u 2 S p a c e ( j j ) ] ;
H_ i j = @( s ) H( s , p _ i j ) ;
J ( i i , j j ) = mor . s t a b i l i t y ( H_i j ,W) ;

end
end
cpuTime = t o c ;

Listing 5.6: demo_Chap5_startEvalBench script: illustration of L2-MFSA procedure.

As for the previous case, the function call is also made simple and few parameters are required by the
user.
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Moving to an other class of infinite dimensional systems, let us now consider linear PDE which may
lead to irrational transfer functions (as illustrated in Chapter 2). The following one falls to be also a
TDS model but with an additional complexity related to the descriptor form with a strong rank loss.

Example 13 - Linear PDE
In Pilbauer et al. (2018), authors did present a study involving a drilling system. This later is controlled
by PI-structured controller and authors investigate the impact of an input shaping on the performances.
In the context of this chapter, it is interesting to notice that such system (parametrised by the controller
gain kp and integral gain ki), may be represented by linear PDE which can be turned into a delayed-
descriptor form as follows:

H(s, kp, ki) = C
(
sE −A0(kp, ki)−A1e

−τ1s −A2e
−τ2s

)−1
B(kp),

where matrices and delays are defined in the code given as follows:

%% #6
% D. P i l b a u e r e t a l . , ECC 2018
% O i l d r i l l i n g sys tem
c0 = 2 ;
c1 = c0 ;
q0 = − .9;
q1 = q0 ;
a0 = . 1 7 ;
a1 = 1 . 8 ;
b0 = a0 ;
b1 = a1 ;
lambda = 1 ;
mu_ = lambda ;
t a u 1 = 1 / lambda ;
t a u 2 = 1 / mu_ ;
t a u 3 = 1 / lambda + 1 / mu_ ;

% R a t i o n a l a p p r o x i m a t i o n
W = l o g s p a c e (−2 ,2 ,100) ∗2∗ pi ;
nW = numel (W) ;
kpSpace = l i n s p a c e (−5 ,5 ,71) ;
k i S p a c e = l i n s p a c e (−10 ,10 ,70) ;
kk = 0 ;
t i c
f o r i i = 1 : l e n g t h ( kpSpace )

kp = kpSpace ( i i ) ;
f o r j j = 1 : l e n g t h ( k i S p a c e )

k i = k i S p a c e ( j j ) ;
kk = kk + 1 ;
f p r i n t f ( ’%d%%\n ’ ,100∗ kk / ( l e n g t h ( kpSpace ) ∗ l e n g t h ( k i S p a c e ) ) )
nx = 7 ;
E = diag ( [ 1 0 0 0 0 1 1 ] ) ;
A0 = z e r o s ( nx , nx ) ;
A0 ( 1 , 1 ) = −a0−kp ;
A0 ( 1 , 3 ) = b0 ;
A0 ( 1 , 7 ) = k i ;
A0 ( 2 , 1 ) = c0 ;
A0 ( 2 , 2 ) = −1;
A0 ( 2 , 3 ) = q0 ;
A0 ( 3 , 3 ) = −1;
A0 ( 4 , 4 ) = −1;
A0 ( 5 , 4 ) = q1 ;
A0 ( 5 , 5 ) = −1;
A0 ( 5 , 6 ) = c1 ;
A0 ( 6 , 4 ) = b1 ;
A0 ( 6 , 6 ) = −a1 ;
A0 ( 7 , 1 ) = −1;
A1 = z e r o s ( nx , nx ) ;
A1 ( 3 , 5 ) = 1 ;
A2 = z e r o s ( nx , nx ) ;
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A2 ( 4 , 2 ) = 1 ;
B = [ kp 0 0 0 0 0 1 ] ’ ;
C = ones ( 1 , nx ) ;
H = @( s ) C∗ ( ( s∗E−A0−A1∗exp(− t a u 1 ∗ s )−A2∗exp(− t a u 2 ∗ s ) ) \ B) ;
t r y

J ( i i , j j ) = mor . s t a b i l i t y (H,W) ;
c a t c h

J ( i i , j j ) = i n f ;
end

end
end
cpuTime = t o c ;

Listing 5.7: demo_Chap5_startEvalBench script: illustration of L2-MFSA procedure.

On the above model one may notice that the E matrix is strongly rank deflective. Indeed, for delays
{τ1, τ2} = {0, 0}, the (E,A) pencil shows four infinite eigenvalues, making the problem even more
(numerically) complex. Still, Figure 5.4 shows the stability index values as function of the PI gains.
When plugging the gains couple in the white area in a time-domain simulation leads to an input-output
stable behaviour.
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Figure 5.4: Stability index chart as a function of the PI gains {kp, ki} (values are in logarithmic scale).

Still, attentive reader may notice some white areas for slightly negative ki values. Here again, these
latter are probably more related to numerical issues rather than realistic stabilising gain values, showing
that the solution still require some additional developments.
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5.4 Conclusions
In this chapter, a new paradigm for stability estimation, accompanied by the L2-MFSA procedure, a nu-
merically simple but yet effective algorithm, has been presented. At this point, author must stress out that
the chapter presents an embryonic idea. Indeed, despite the preliminary theoretical arguments and proce-
dure, reader should be aware that a complete proof is still missing. However, author is convinced that such
framework may represent a notable advance in the stability analysis of any L2 functions. So far, to the
author’s best efforts, such approach did fail in a very few cases, and seems to be quite robust with respect
to the model nature. Clearly, if additional theoretical arguments can be stated, such a procedure may be
a nice way to attack the complex function stability question, at least as an initial guess. To this aim, the
works of Prokhorov (1994); Gonchard (2003) seem to be an interesting starting point.

As a direct continuation and following the PDE example given above, such a procedure may also be
embedded in a structured controller design procedure e.g. by linking with norm estimation techniques,
boundary search algorithms etc. (see e.g. Pontes Duff et al., 2015c, 2016b).

To the author viewpoint, one of the main interests of this approach stand in (i) its versatility and appli-
cability to many models structures, including multiple input-output gain dependent, delays, irrational form
etc. and (ii) in its scalability to large-scale dynamical models equipped with a large state-space vector.
Without entering into details, such a scalability has already been observed when applying the methods to
industrial aircraft dynamical models (see e.g. Ossmann and Poussot-Vassal, 2019).
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Chapter 6

Conclusions and discussions

Voici venu le temps d’affirmer, contre les
économistes, que l’inutile crée de l’utilité, que
la gratuité crée de la richesse, que l’intérêt ne
peut exister sans le désintéressement.

Bernard Maris
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In this manuscript, author aimed at describing the large-scale linear dynamical model approximation
problem and (some of) its many applications and implications. First, its "classical" functionality as a
model simplifier was done, then, some un-standard side applications were illustrated. Here, we summarise
the two main theoretical and methodological advances within the model reduction and approximation field,
in Section 6.1. Then, Section 6.2 points the main successful industrial applications within the aeronautical
field. Section 6.3 recalls the more exotic and strange side effects of model approximation, specifically for
dynamical systems stability analysis. Then, Section 6.4 presents the MOR Toolbox, embedding some of
the numerical tools and methods presented in this manuscript within a single easy-to-use engineer-oriented
interface. Section 6.5 finally closes the chapter and opens the door to Chapter 7 for further developments
and researches, from either the theoretical, methodological, numerical and applicative angles.

6.1 Highlights of the methodological contributions
The main methodological contributions and innovations within the model approximation field concern
(i) the frequency-limited H2 approximation (Chapter 3), and (ii) the H2 approximation using structured
delayed input-output reduced order models (Chapter 4). Both results, proof and detailed reasoning are
embedded in the Ph.D. manuscript of Vuillemin (2014) (Chapters 7, 8 and 9) and Pontes (2017) (Chapter 5),
respectively. Interestingly and almost casually, as in the seminal works of Gallivan et al. (2004a); Gugercin
et al. (2008); Van Dooren et al. (2008); Van Dooren et al. (2010), both solutions share the interpolatory
framework as a common basis. With reference to (i), the first set of interpolatory condition boils down as
follows.
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H2,Ω frequency-limited model approximation interpolarory conditions
In the case of H2,Ω model approximation (or approximation over a frequency limited range), and fol-
lowing the notations adopted along this manuscript, the interpolatory conditions described in Chapter 3
can be written as (l = 1, . . . , r):

Tω(−λ̂l)b̂l = T̂ω(−λ̂l)b̂l
ĉHl Tω(−λ̂l) = ĉHl T̂ω(−λ̂l)

ĉHl T′ω(−λ̂l)b̂l = ĉHl T̂′ω(−λ̂l)b̂l

where

Tω(s) =

n∑
j=1

cjb
H
j

(
aω(λj)− aω(s)

s− λj
,

)
−Daω(s)

T̂ω(s) =

r∑
k=1

ĉkb̂
H
k

(
aω(λ̂k)− aω(s)

s− λ̂k

)
− D̂aω(s),

involving Tω and T̂ω instead of H and Ĥ in theH2 case.

As it, these interpolatory conditions are difficult to practically exploit. Indeed, no Krylov-like subspace
have been clearly identified yet. Consequently, an IRKA like procedure as in Gugercin et al. (2008) is
not straightforward to develop. So far, this H2,Ω problem has been attacked using the DARPO proce-
dure Vuillemin et al. (2014a), a descent algorithm, without taking advantage of the interpolation frame-
work. Therefore, improvements may consider developing a manner to exploit these conditions directly
by e.g. mixing the Loewner framework (allowing approximating any irrational transfer function as Tω(s)
by a rational one) with an iterative procedure (such as the IRKA one). As a hint, the interpolation step
of Tω may consider an approximation by a function embedding a rational structure and possibly a richer
structure, as proposed by Schulze et al. (2018), more adapted and tailored to the frequency limited specific
one.

Similarly, following the delay structured approximation (ii), the second interpolatory conditions set can
be formulated as follows.

H2 structured input-output model approximation interpolatory conditions
In the case of H2 model approximation by an input-output delay structured reduced order model, and
following the notations adopted along this manuscript, the interpolatory conditions described in Chapter
4 can be written as (l = 1, . . . , r):

Td(−λ̂l)b̂l = Ĥ(−λ̂l)b̂l
ĉTl Td(−λ̂l) = ĉHl Ĥ(−λ̂l)

ĉHl T′d(−λ̂l)b̂l = ĉHl Ĥ′(−λ̂k)bl

where

Td(s) =

n∑
j=1

∆̂o(−µj)
cHj bj

s− µj
∆̂i(−µj)

involving Td instead of H in the unstructuredH2 case. The additional constrain on the delay values are
given in (4.10).

Here again, as in the H2 and H2,Ω cases, interpolarory conditions hold. Nevertheless in contrast with
the H2,Ω context recalled above, an iterative procedure similar to the IRKA one, denoted IO-dITIA has
been proposed. This latter allows tacking benefit of the Krylov subspaces and thus makes the approach
scalable. Still, from an algorithmic point of view, the IO-dITIA suffers from two main limitations: first,
the pole residue decomposition of the original model is required to construct Td (which is rarely accessi-
ble in very large-scale context), and second, the delay optimisation is done for a fixed poles-residue set.
Therefore, future developments may consider the algorithmic issues rather than theoretical one. Although,
as pointed in Chapter 4, a link between the work of Halevi (1996) and Pontes Duff et al. (2018) would be
interesting to elegantly close the theoretical aspects of this problem.
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6.2 Approximation as pivot in civilian aircraft engineering

Along the manuscript, attention has been given to illustrate the applicability of the proposed methods both
in the academic and industrial worlds. Indeed, multiple use-cases were used to either illustrate state of
the art or new model approximation methods. Most of these use-cases were provided in the context of
collaborative projects, by industrial partners within the aeronautical domain. More specifically these use-
cases have been carried out in strong collaborations with Dassault-Aviation and Airbus engineers1. It is
important to stress out that in most collaborative projects, model approximation is rarely the single objec-
tive. Still, it is undoubtedly a very important step which serves other purposes e.g. the control design, the
simulation or the analysis and norm estimations. In all projects the author have been involved in, the model
approximation step did stand as an unlocking tool, allowing improving control design and performance
analysis, alleviating numerical limitations and providing accuracy and efficiency in an industrial iterative
process. As a major highlight, the following recalls three successful aeronautical applications illustrating
the key role of model approximation for control and analysis, in both industrial and research environments.

Model-based approximation for Dassault-Aviation Falcon 7X vibration control design
During the collaboration with Dassault-Aviation control engineers, the vibration attenuation around
[7, 10]Hz for all flight and mass configurations and using movable surfaces, was targeted. To this aim,
48 dynamical models, representing the aircraft at different configurations were used. The selected
approach to design such a control law was the H∞-norm attenuation framework offered by the recent
development of Apkarian and Noll (2006) and the MATLAB powered hinfstruct function.

Frequency  (Hz)

Frequency  (Hz)

Figure 6.1: Vibration attenuation of some of the Dassault-Aviation models. Top: comfort criteria.
Bottom: handling quality criteria. Right: controller characteristics and performances.

Still, as each single state-space model embeds a dimension close to 700 states, the model approxima-
tion over a finite frequency range using the MOR Toolbox (both mor.lti and mor.norm interfaces),
played a crucial role in the success of the control design. Indeed, it allows strongly reducing the com-
plexity, rending the design step almost easy. Figure 6.1 illustrates some of the obtained performances at
a frozen flight altitude (here almost 50% of vibration attenuation were observed).

1Author also points out the huge efforts and confidence shown by these industrial partners. Indeed these models have a strategical
importance in the competitive industrial world. Using these models also clearly help me so greatly improving the methods numerical
reliability, and enhancing the user experience.
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Following the obtained promising results, a similar control strategy has been propagated by Dassault-
Aviation control expert on a model family describing the same aircraft, but stuck on ground (i.e. without
flight mechanical equations). Then, the obtained controller were validated during ground vibration tests.

Data-driven approximation for Dassault-Aviation Falcon 7X aeroelastic model generation
On September 14th, 2015, ground test for vibration control demonstration has been applied on a real
Dassault-Aviation Business Jet Falcon 7X test aircraft, excited by shakers at the aircraft rear (see Figure
6.2). During this work, Dassault-Aviation did illustrate the effective vibration attenuation achieved.

Figure 6.2: Falcon 7X s/n 001 during ground vibration test (with some Dassault-Aviation colleagues).

Figure 6.3: Parametric model construction from data. Collected data (blue dotted), normalized para-
metric model evaluated at frozen mass (red) and mean behaviour (dashed green).

118



CHAPTER 6. CONCLUSIONS AND DISCUSSIONS

During this phase, Dassault-Aviation aeroelastic, control and test engineers measured the acceler-
ation, velocities and displacements at hundred points of the aircraft in response to shakers excitation.
All the collected data are very precious in order to double check the control performances, but also to
validate the original aircraft (finite-element) models.

During this test phase, in which I had the chance to participate, the Loewner framework, through
the mor.lti interface, has been used to both recover the model and control characteristics (i.e. open-
and closed-loop transfers). This method showed impressive results in its ability to recover the aircraft
modal content as well as all the hundred transfers. As an extension, since experiments were performed
at varying mass (tank filling) configurations, the parametric Loewner method was also successfully
applied. An illustration is given on Figure 6.3, illustrating the ability to construct a parametric model
from real data.

Let us now change topic and give an illustration of a research project obtained at Onera on the load
control aspects. Within the aeronautical domain, minimisation of load envelope in response to discrete-
time gusts is a challenging objective to reduce aircraft mass, and thus, consumption. To this aim, a wind
tunnel experiment has been carried out at Onera to illustrate the gain brought by an active feedback control
to limit the wing bending moments and vertical accelerations in response to generated gusts, from trans- to
sub-sonic MACH numbers.

Data and model-based approximation for sub/transsonic gust load control in wind tunnel
On May 26th, 2015, a press article did spot the results obtained in Onera wind tunnel facility for both
trans- and sub-sonic configurations to attenuate gust load. This result has been rendered possible thanks
to the conjugation of many competences, including aeroelasticity, mechanics, fluid etc. and control.
Figure 6.4 shows an artistic view of the experimental setup within the Onera S3Ch wind tunnel facility.

Figure 6.4: Experimental set-up in the Onera S3Ch wind tunnel: aeroelastic airfoil (foreground) and
gust generator (background). Sensors on the wing are materialised by white dots.

After a calibration campaign for the gust generator, open-loop experiments were performed. As
rooted on these experiments, sweeping the frequencies, a data-driven method (i.e. Loewner) using the
mor.lti interface of the MOR Toolbox has been used to construct a dynamical model at varying
wing angles and wind velocities.

Then, as rooted on these simple but representative models, an active closed-loop control has been de-
signed using the model-based structuredH∞-norm oriented minimisation framework (hinfstruct).
Interestingly, the experimental results obtained and reported on Figure 6.5, showed a huge reduction of
the load gust impact on the wing loads. More interestingly and impressively, the experimental results
were very close to the simulation ones, which claim in favour of this model-based approach and shows
the effectiveness of the data-driven approximation methods, even in a very challenging problem (at the
limit of the nonlinearity).
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Figure 6.5: Experimental open-loop vs. closed-loop performances obtained in the S3Ch Onera wind
tunnel facility.

120



CHAPTER 6. CONCLUSIONS AND DISCUSSIONS

6.3 Approximation as pivot for L2 systems analysis
The L2 meromorphic functions stability approximation, exposed in Chapter 5, is to the author’s feeling,
the most promising and exciting topic for future developments. Indeed, the proposed stability estimation
process, even if mathematically not well closed, seems giving interesting preliminary results both in term
of accuracy and scalability. The L2 meromorphic functions approximation by rational ones provides a
powerful tool to attack multiple complex problems such as the stability (Chapter 5), the H∞-, H2-norm
estimation, and may be used as a controller tuning method for this larger model class. The following recalls
the main idea.

Finite energy meromorphic function stability approximation
We show in Chapter 5 that it is possible to assess (or at least to estimate) the stability of any L2 mero-
morphic function. This includes among others the TDS systems on which many attention is given by
the control community. As an example, assessing the stability of the following model as a function of
gain k and delay τ ,

H(s, k, τ) =
1

s+ ke−τs
,

may be done using the mor.stability interface. Figure 6.6 illustrates the result obtained when
evaluating this problem for multiple frozen {k, τ} couples (the white area stands as the stable part).
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Figure 6.6: Stability estimation of a time-delay model (colours are in logarithmic scale).

Although the procedures shows a coloured area for τ -values close to 0, while the model is mathe-
matically stable for any k > 0 (and τ = 0), the overall stability chart is really close to the theoretical
one described in Sipahi et al. (2011). By remembering that the main ingredients of the L2-MFSA is the
interpolatory framework, connected with the RH∞ approximation framework and to norm measures,
it is quite impressive to figure out the possibilities of such a framework for systems analysis. To the
author’s point of view, there is no doubt that model approximation, for finite and infinite order models,
may play a strategical role in either approximating some control engineers and practitioners metric, or
even in initialising more "guaranteed" methods, in the context of large-scale complex problems.
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6.4 Approximation and numerical tools

We saw along the manuscript that dealing with dynamical model approximation is strongly connected to
complex functional analysis. Furthermore, when (very) large-scale or industrial model are used (potentially
badly conditioned and obtained by complex processes), the numerical and computational considerations
enter into the picture and probably become the most important barriers to cross. This last point is obvi-
ously linked with advances in linear algebra and implications in the construction of an efficient and robust
algorithms, at the limit of the dynamical systems frame.

Consequently, last but not least, one important result presented in this manuscript, is the co-development,
together with P. Vuillemin, of the MATLAB based MOR Toolbox which aims at implementing most of the
methods gathered in this manuscript through an easy interface, tailored to both unfamiliar and expert users
needs.

MOR Toolbox and its features (a MOR Digital Systems product)
The MOR Toolbox, now distributed by the MOR Digital Systems company (http://
mordigitalsystems.fr/), embeds numerical tools for reduction and approximation of large-
scale dynamical models and input-output data sets, as shown in Figure 2.1. In addition, the toolbox also
provides tools for norm measurements and stability estimation. The following gives a glimpse of the
content.

>> help mor
MOR TOOLBOX
R e d u c t i o n and a p p r o x i m a t i o n o f l a r g e−s c a l e dynamica l s y s t e m s . See t h e
d o c u m e n t a t i o n .

Model a p p r o x i m a t i o n
mor . l t i − main i n t e r f a c e f o r LTI model a p p r o x i m a t i o n
mor . g u e s s O r d e r − main i n t e r f a c e f o r e s t i m a t i n g t h e a p p r o x i m a t i o n

o r d e r o f an LTI dynamica l model

A n a l y s i s
mor . bode − main i n t e r f a c e f o r d i s p l a y i n g Bode diagram of l a r g e

( s p a r s e ) LTI models , h a n d l e f u n c t i o n s and i n p u t / o u t p u t
d a t a

mor . bodeDamp − main i n t e r f a c e f o r d i s p l a y i n g SISO bode diagram and
damping map of l a r g e ( s p a r s e ) LTI models

mor . norm − main i n t e r f a c e f o r c o m p u t a t i o n o f norms
mor . s igma − main i n t e r f a c e f o r d i s p l a y i n g Sigma diagram of l a r g e

( s p a r s e ) LTI models , h a n d l e f u n c t i o n s and i n p u t / o u t p u t
d a t a

mor . s t a b i l i t y − main i n t e r f a c e f o r s t a b i l i t y e s t i m a t i o n o f any
meromorphic model a s a h a n d l e o r ( d ) s s t y p e

M i s c a l l e n e o u s
mor . demo − l o a d t h e demo f i l e a s s o c i a t e d wi th t h e d e m o n s t r a t i o n s i n

t h e d o c u m e n t a t i o n
mor . a b o u t − d i s p l a y i n f o r m a t i o n a b o u t t h e t o o l b o x
mor . doc − d i s p l a y t h e h tml d o c u m e n t a t i o n

Listing 6.1: MOR Toolbox MATLAB interface.

Moreover, by clicking on the documentation link, the window as the one given in Figure 6.7, is
obtained. Then, by following the function link, leads to the function list as shown on Figure 6.8.

Without entering too much into details, the mor.lti function is the main interface for dynamical
model and data-driven approximation. It gathers some of the algorithm presented in Chapters 2, 3 and 4.
Then, mor.norm implements different model and data-driven norms presented in Chapter 1. Finally,
mor.stability implements the stability estimation function exposed in Chapter 5. Some additional
plotting functions tailored to the large-scale setting are also given. Additional functions such as the
mor.guessOrder, a function suggesting an approximation order for a given dynamical model, are
also embedded.
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Figure 6.7: MOR Toolbox documentation.

Figure 6.8: MOR Toolbox functions MATLAB documentation.

6.5 And now...
In this chapter we briefly remind the most important highlights and results described in the manuscript,
without being too technical and avoiding mathematical details. In the next and final Chapter 7, we will give
some hints for further developments in both short and long term.
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Chapter 7

Future works and outlook

Don’t be afraid of failure. This is the way to
succeed.

(King) LeBron James
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Following the conclusions presented in Chapter 6 and the overall manuscript philosophy and title1, the
perspectives can be considered along two major axis: first, (i) the dynamical model approximation and sec-
ond, (ii) its application on real complex systems as well as on original mathematical problems. The former
item, described in Section 7.1, concerns the extensions of the proposed methods and further developments
within model approximation. The latter item, instead, focuses on the adaptation and application of these
methods for the control and the analysis of large-scale models, and is detailed in Section 7.2. Moreover,
as an other side effect of model approximation, discretisation of continuous-time dynamical systems is
also an on-going project and is briefly pointed in Section 7.3. On top of these problems and objectives,
the numerical considerations and technical (e.g. computational) limitations always need to be handled with
careful attention. Indeed, numerical and linear algebra community development may be a game changer in
the next years for model approximation.

7.1 Model approximation
Within the "classical" model approximation field, it is now clear that from a purely theoretical point of
view, the LTI ODE approximation by an LTI ODE reduced model is well understood and mastered. In-
deed,H2 optimality conditions have been derived using different approaches (tangential, gramian, complex
optimisation, . . . ). The main remaining aspect concerns the treatment of even larger dimensional models,
e.g. n � 109, which is more a problem for numerical researchers rather than control ones. Still, so many
other problems may be investigated (some are already being studied by the community). Among them, the
following may be mentioned:

• When considering the LTI ODE approximation by an LTI ODE reduced model, other criteria than
the H2 one may be considered. As an example, in Chapter 3, the H2,Ω one is used, showing some

1"Large-scale dynamical model approximation and its applications".
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interpolatory condition that would be interesting to develop in order to take advantage of these con-
ditions to derive an IRKA like procedure for frequency limited model reduction. Similarly, even
if the computational complexity nature the H∞ and ν-gap metric may be binding, of the works on
the approximation using these norms may also be investigated (Flagg et al., 2013; Sootla, 2014, see
e.g. ).

• When considering the finite order LTI ODE large-scale model case, as done with the H2 opti-
mal input-output delay structured model approximation in Chapter 4, an interesting problem would
be to generalise the approximation by structured reduced order model embedding a more complex
structures (e.g. including internal delays, second order, . . . ). Up to the author’s knowledge, so far,
structured approximation exists but without H2 optimality conditions. In addition to Pontes Duff
et al. (2018), an attempt has been done in Pontes Duff et al. (2016a) to approximate models by a
reduced order one embedding one single internal delay and of dimension one, leading to a set of
interpolatory constraints series. However, this latter result is far to be satisfactory for a practitioner
and leaves room for further theoretical developments on the best way to exploit them in practice.

• Additionally, as pointed in Chapter 4, connections between the tangential interpolatory conditions
and the Lyapunov, Sylvester and Loewner matrices should be done in the presence of input-output
delays in the reduced order model. Indeed, although it might not be a primal objective from a
practical point of view, it is, to the author’s feeling, a nice way to close this result and a relevant
theoretical interesting exercise.

• As for the for the LTI ODE cases, future work may consider bilinear (see e.g. Lin et al., 2009)
or quadratic models H2 approximation. Indeed, as an illustration, bilinear models may be used
to treat parametric models. For this model class, even if quite complicated, an H2-norm may be
computed and used for model approximation. Interestingly, bilinear model also naturally appear
in some applicative problems coming from the aerodynamic, aeroelasticity and in fluid mechanics
domains, justifying an increasing interest.

• As an extension, approximation of p-LTI ODE parametric models (see e.g. Eid et al., 2009; Benner
et al., 2015; Benner and Grundel, 2015) are also of great interest. The Loewner framework seems
allowing it in an almost straightforward manner (see e.g. Ionita and Antoulas, 2014), but still, L2-L2

or L∞-L2 optimality conditions are missing. And, in addition, a framework to link the parameter
and its - potential - variation velocity is not clear yet (see e.g. nd G. Mercère, 2014). This last point
is of great importance in many control-oriented problem, where the LPV community did already
developed a bundle of methods for analysis, estimation, control, but quite a few for approximation
(see Lovera et al., 1998; Previdi and Lovera, 2003; Toth, 2010)). This point is quite active since
some years and may be investigated even more. Obviously, this is also a way to attack the nonlinear
approximation in a fancy framework.

• From a more practical viewpoint, investigations of on-line model approximation methods may also
be done Amsallem and Farhat (2011). Indeed, for complex and industrial applications, this may be
relevant to limit the experimental phases and tot deploy model approximation mechanism directly-on
line. Within the aeronautical field, such a mechanism may used for the so-called modal monitoring,
useful for flutter detection, predictive maintenance, etc. Moreover, by linking the model approxima-
tion with model-based control strategies such as Model Predictive Control (or MPC), it might be
interesting approximating on-line a model and updating the model constraint in the MPC process.

• Finally, and more directly connected to the analysis issues, as shown along the manuscript, shift
points of IRKA like methods seem to embed informations which can be relevant for e.g. H∞-norm
estimation (shift usually glue to the pick values) or be used for optimal signals generation in view of
complex systems simulations (shift may be connected to pulsation and phase signals where energy
is more relevant)etc.
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7.2 Model approximation for control
As one of my research activity, some links between model approximation and controller design are of great
interest for (on-going and) future developments. Among them, model approximation may serve control...

7.2.1 ... forH∞ robust control
As shown at multiple occurrences along the manuscript and in Chapter 6 through the industrial applications,
model approximation and robust control are well connected. Indeed, in the robust framework the mismatch
error modelling may be encapsulated in an uncertain block and included in the robust control synthesis
problem, ensuring that the performances and stability are maintained on the original model, while synthesis
done on the reduced one (see e.g. Vuillemin et al., 2017). This point raises multiple questions such as the
mismatch error estimation (accuracy vs. numerical cost), the trade-off between a (too) simple model and
the controller obtained by the optimiser (being non-convex)...

On top of these points, we saw on many applications that interpolation point mostly converge to high
energy frequencies. As a direct consequence, an interesting point may to use these interpolation points to
initialise anH∞ norm estimation and eventually controller optimisation. The symbioses of model approx-
imation with H∞ controller synthesis may then open the road to large-scale, low complexity controller
design in a numerically tractable way. To the experience of the author, it is no doubt that this strong
connection may lead to fasten controller design developments phases.

7.2.2 ... for ILC control
The ILC for Iterative Learning Control is basically an open-loop control method allowing to tune a ref-
erence signal according to a criteria evaluated on the basis of the previous actions. The main purpose of
ILC is to construct control signals that are tuned to the repeated process under consideration. To deploy
this technique, on the basis of experiment, a model needs to be identified to adjust the signal following a
descent method. In Kocan et al. (2018), the data-driven approximation methods were investigated to obtain
such a model. The outlooks attached to this control family are twofolds: first the model approximation
may be embedded in the process (e.g. in an on-line framework), second, when the optimal control signal is
reached, a controller identification, or data-driven and meromorphic functions approximation may be per-
formed to obtain a rational function and recover a standard closed-loop framework (see e.g. the preliminary
result in Kocan et al., 2019).

7.2.3 ... for PDE control
Model approximation of infinite dimensional models is rendered possible thanks to the versatile interpo-
latory framework. As a consequence, as soon as a finite (low) order model has been obtained, one mays
attack the infinite dynamical model control through the classical finite order angle. In addition, as exposed
in Chapter 5, interpolation may be a reliable tool to estimate stability and norms (Pontes Duff et al., 2016b)
and may then be embedded in an optimisation framework to directly synthesise a control law, based on the
PDE models or any meromorphic L2 functions. Some preliminary results are under investigation using
the benchmarks proposed by Curtain and Morris (2010), Caldeira et al. (2018) and Pilbauer et al. (2018).
The latter considers the control of a drilling system which stability as a function of controller gains of a
PI structure is illustrated in Figure 7.1. Similar work may be done by involving some tracking, norms,
disturbance rejection performances etc. but this would require a dedicated attention.

7.2.4 ... for data driven-control
In Campi et al. (2002), authors did present a method for data-driven controller synthesis. This method
basically recasts the control design problem as an identification one. One great advantage of such an
approach is that it provides a controller tailored to the actual system or model. In its initial version, time-
domain methods were used, but did consider a set of predefined poles for the controller. This approach has
been also largely extended and improved in recent paper from e.g. Formentin et al. (2013, 2014). Recently,
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Figure 7.1: Drilling system stability area as a function of the PI controller parameters.

Kergus et al. (2017) pushed the interpolatory framework, and especially the Loewner one, into the process,
enabling designing MIMO controllers without a-priori pole selection. As a perspective, such an approach
may be enriched to handle noise (see Kergus et al., 2018), structural constraints, etc.

7.3 Model approximation for models discretisation
Very recently, Vuillemin and Poussot-Vassal (2019) did exploit the interpolation framework in order to
discretise a dynamical system or a controller. Indeed, the idea is based on the fact that discrete-time
models uses the z-transform, where

z = esh then z =
1

h
log(z),

where h is the constant sampling time. Usually, when discretisation is performed, special Mobius transfor-
mation (with {a, b, c, d} ∈ R) as follows is used:

s =
az + b

cz + d
.

The main benefit of using specific Mobius transform stands in the stability or instability preservation,
and in the preservation of the rational degree of the underlying transfer function. One of the most famous
one is the so-called Tustin transform where a = −b = 2 and c = d = h. It’s quite largely used since it has
the specificity of mapping the complex left hand plane with the unit circle centred in zero. However, such
a transformation may lead to signal distortion, while an other one (e.g. with different {a, b, c, d} coefficient
set) may be better in term of input-output matching. As a direct extension, the same comment may be done
by approximating the Laplace variable, instead of the Mobius transform, by a m-th order rational function
as:

s =

∑m
i=1 biz

i∑m
i=1 aiz

i
,
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Figure 7.2: Bode responses of H(s) (solid blue) and its different discretisation. Exact (solid black), Tustin
(dashed red), optimised Mobius form (dashed green) and rational form of order 12 (dashed pink).

where ai ∈ R and bi ∈ R are the tuning variable. In Vuillemin and Poussot-Vassal (2019), authors
exploit the interpolatory versatility to construct such a (perfect) discretised model, with a potentially higher
dimension. As an illustration of this idea, one may consider the following simple LTI continuous-time
dynamical model:

H(s) =
Kw2

0

s+mw0s+ w2
0

,

where K = −1, w0 = 3 and m = 0.15. Let us now consider that one aims at sampling such a system,
for simulation, control, etc. with a constant time period h = 0.5s. According to the discretisation method,
one obtains the Bode responses shown on Figure 7.2 and the impulse response mismatch error reported on
Figure 7.3.

By inspecting these figures, the following remarks may be done: first, the Tustin method yeld to
G(a, b, c, d) with a = −b = 2 and c = d = h, provides a larger mismatch than the modified trans-
formation obtained by a Mobius transform G(a, b, c, d) with a = 2.0135, b = −2.0271, c = 0.63176 and
d = 0.6233. This means that the Tustin method is not necessary the most appropriate transformation to
apply. Still one may consider pre-wrapping to improve the Tustin form. Second, the rational approxima-
tion G(rat) (here with a rational function of dimension 12) leads to even better results, with a substantially
lower impulse response error. This is of course obtained as the price of a more complex model of order 12
instead of 2.

Without entering into the details, to the author’s feeling, the potential effects of such approach are very
large (preliminary results are under process in Vuillemin and Poussot-Vassal (2019)):

• for controller, the discretisation may be lossless, at the price of an increased controller complexity,

• for fixed-time simulation (employing simple integration schemes), it may then be possible to reduce
the sampling time, and then to increase the simulation time, while keeping the model accuracy.
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Figure 7.3: Impulse responses error between H(s) and its different discretisation. Exact (solid black),
Tustin (dashed red), optimised Mobius form (dashed green) and rational form of order 12 (dashed pink).

7.4 Conclusions
In this last chapter, some of the relevant outlooks and possible perspectives to be studied in the forthcoming
years have been briefly gathered. Obviously, these perspectives may be taken as a snapshot of the actual
feeling of the author since breaking methods should be discovered and reconfigure the perspectives. More-
over, some of them may be theoretically trivial to deploy but rather complicated in a stable numerical way.
Indeed, the model approximation research field composes an active and large community covering fields
from control theory, functional analysis and numerical analysis. To the author’s feeling and as pointed
along this manuscript and along the sections of this final chapter, the data-driven methods linked with the
interpolatory framework, clearly appear as good candidates for further interesting developments within the
dynamical model approximation, control, analysis domains.
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