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Abstract v

Abstract

Cette thèse est consacrée à l’étude de la méthode PAW (projector augmented-wave) et d’une de ses modifi-
cations, baptisée méthode PAW variationnelle (VPAW), pour le calcul de l’état fondamental d’Hamiltoniens
en géométrie périodique. Ces méthodes visent à améliorer la vitesse de convergence des méthodes d’ondes
planes (ou méthodes de Fourier) en appliquant une transformation inversible au problème aux valeurs
propres initial agissant au voisinage de chaque site atomique. Cette transformation permet de capter
une partie des difficultés dues aux singularités coulombiennes. La méthode VPAW est analysée pour un
opérateur de Schrödinger unidimensionnel avec des potentiels de Dirac. Les fonctions propres de ce modèle
comprennent des sauts de dérivées similaires aux cusps électroniques. Le saut de dérivée des fonctions
propres du problème aux valeurs propres issu de la méthode VPAW est réduit de façon importante. Cela
entraîne une accélération de convergence en ondes planes du calcul des valeurs propres corroborée par une
étude numérique. Une étude de la méthode VPAW est conduite pour des Hamiltoniens 3D périodiques
avec des singularités coulombiennes, parvenant à des conclusions similaires. Pour la méthode PAW, la
transformation inversible comporte des sommes infinies qui sont tronquées en pratique. Ceci introduit une
erreur, qui est rarement quantifiée en pratique. Elle est analysée dans le cas de l’opérateur de Schrödinger
unidimensionnel avec des potentiels de Dirac. Des bornes sur la plus basse valeur propre en fonction des
paramètres PAW sont prouvées conformes aux tests numériques.

Keywords: quantum chemistry, eigenvalue problems, plane-waves discretization, projector augmented-
wave method

Abstract

This thesis is devoted to the study of the PAW method (projector augmented-wave) and of a variant called
the variational PAW method (VPAW). These methods aim to accelerate the convergence of plane-wave
methods in electronic structure calculations. They rely on an invertible transformation applied to the
eigenvalue problem, which acts in a neighborhood of each atomic site. The transformation captures some
difficulties caused by the Coulomb singularities. The VPAW method is applied to a periodic one-dimensional
Schrödinger operator with Dirac potentials and analyzed in this setting. Eigenfunctions of this model have
derivative jumps similar to the electronic cusps. The derivative jumps of eigenfunctions of the VPAW
eigenvalue problem are significantly reduced. Hence, a smaller plane-wave cut-off is required for a given
accuracy level. The study of the VPAW method is also carried out for 3D periodic Hamiltonians with
Coulomb singularities yielding similar results. In the PAW method, the invertible transformation has
infinite sums that are truncated in practice. The induced error is analyzed in the case of the periodic
one-dimensional Schrödinger operator with Dirac potentials. Error bounds on the lowest eigenvalue are
proved depending on the PAW parameters.

Keywords: quantum chemistry, eigenvalue problems, plane-waves discretization, projector augmented-
wave method

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie – Boîte Courrier 187 – 75252 Paris Cedex 05
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Préambule
Dans cette thèse, une modification de la méthode PAW (projector augmented-wave), baptisée

méthode PAW variationnelle (VPAW), est proposée et analysée dans différents cadres. Les méth-
odes PAW et VPAW visent à réduire l’erreur de discrétisation en ondes planes dans les calculs de
structure électronique.

Le premier chapitre est une introduction à l’approximation du cœur gelé et à la théorie des
pseudopotentiels. Dans l’approximation du cœur gelé, les électrons sont séparés en électrons de cœur
et de valence. Les électrons de cœur interagissent peu avec leur environnement. Leur comportement
peut être décrit, en première approximation, par une fonction d’onde solution d’un Hamiltonien
atomique. Les potentiels de Coulomb ainsi que les interactions avec les électrons de cœur sont alors
remplacés par un potentiel régulier: le pseudopotentiel. De nombreux types de pseudopotentiels ont
été proposés, reposant sur des motivations différentes. Les principales familles de pseudopotentiels
sont exposées dans ce chapitre.

La méthode VPAW est présentée au Chapitre 2 dans le cadre d’Hamiltoniens de Kohn-Sham
périodiques. Elle repose sur une transformation inversible du problème aux valeurs propres initial.
La méthode VPAW est donc exacte puisqu’aucune approximation du problème aux valeurs propres
initial n’est introduite, contrairement à la méthode PAW où les sommes infinies apparaissant dans
les équations PAW doivent être tronquées en pratique. Un résumé des différentes contributions de
cette thèse à l’analyse des méthodes PAW et VPAW est regroupé dans ce chapitre.

Le Chapitre 3 est consacré à l’étude de la méthode VPAW appliquée à un opérateur de
Schrödinger périodique unidimensionnel avec des potentiels de Dirac. Les fonctions propres de ce
modèle ont des sauts de dérivée similaires aux conditions de cusp de Kato de fonctions d’ondes
électroniques. Le saut de dérivée des fonctions propres du problème aux valeurs propres issu de la
méthode VPAW est réduit de façon importante. Cela entraîne une accélération de convergence des
méthodes d’ondes planes, dont les estimations théoriques concordent avec les résultats numériques.

Au Chapitre 4, une analyse de l’erreur de troncature de la méthode PAW est fournie, pour la
plus basse valeur propre du modèle unidimensionnel du chapitre précédent. Pour cela, la méthode
PAW est interprétée comme une perturbation de la méthode VPAW qui est exacte. Les bornes
obtenues sur la plus basse valeur propre PAW sont confirmées par les tests numériques.

Le dernier chapitre est dédié à l’étude de la méthode VPAW appliquée à des Hamiltoniens 3D
périodiques. Les singularités des fonctions propres de ces Hamiltoniens sont connues précisément
dans le cadre des espaces de Sobolev à poids. Grâce à cette caractérisation, il est possible de
reproduire l’analyse faite pour le modèle unidimensionnel et montrer que les cusps des fonctions
propres de la méthode VPAW sont réduits. Une estimation de l’accélération de convergence en
ondes planes s’en suit, corroborée par des simulations numériques dans un modèle simple.
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Preamble
In this thesis, a modification of the projector augmented-wave (PAW) method is proposed. It is

called the variational PAW (VPAW) method and is studied in different settings. The PAW and
VPAW methods aim to accelerate the convergence of plane-wave methods in electronic structure
simulations.

The first chapter is an introduction to the frozen-core approximation and the pseudopotential
theory. In the frozen-core approximation, the electrons are partitioned into core and valence
electrons. The core electrons are not expected to be affected by the environment, therefore
as a first approximation they can be described by an eigenfunction of an atomic Hamiltonian.
Coulomb potentials and nonlinear interactions with core electrons are then replaced by a regular
potential: the pseudopotential. A wide range of pseudopotentials has been proposed based on
different motivations. Description of the main families of pseudopotentials is gathered in this chapter.

In Chapter 2, the VPAW method for periodic Kohn-Sham Hamiltonians is presented. It relies
on an invertible transformation of the original eigenvalue problem. The VPAW method is an exact
method, as no approximation of the original eigenvalue problem is introduced. This is not the case
of the PAW method, where infinite sums appearing in the PAW equations need to be truncated in
practice. A summary of the different contributions of this thesis on the PAW and VPAW method
is regrouped in this chapter.

Chapter 3 is devoted to the analysis of the VPAW method applied to a periodic one-dimensional
Schrödinger operator with Dirac potentials. The eigenfunctions of this operator have cusps that
are similar to the Kato cusp of electronic wave functions. The study of the VPAW method shows
that cusps of the eigenfunctions of the VPAW eigenvalue problem are significantly reduced. Esti-
mates of the plane-wave convergence of the eigenvalues using the VPAW method are proved, fully
corroborated by numerical simulations.

In Chapter 4, the PAW truncation error is analyzed by reinterpreting the PAW method as a
perturbation of the VPAW method, which is exact. The analysis is restricted to the lowest eigenvalue
of the one-dimensional Schrödinger operator considered in the previous chapter. Numerical tests
are provided confirming the error bounds on the lowest PAW eigenvalue.

The last chapter is dedicated to the study of the VPAW method for periodic linear 3D
Hamiltonians. Singularities of the molecular wave functions are accurately characterized using
weighted Sobolev space. Using this characterization, as in the one-dimensional setting, it is possible
to show that the eigenfunctions of the VPAW eigenvalue problem have reduced cusps resulting
in an acceleration of convergence of plane-wave methods. The efficiency of the VPAW method is
confirmed by numerical tests on a simple model.
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CHAPTER 1

PSEUDOPOTENTIAL THEORY

For simplicity, the presentation is restricted to finite molecular systems, described by a non-
relativistic Schrödinger equation.

1.1 The N-body Schrödinger equation and its one-body ap-
proximations

All the equations will be presented using atomic units, where the following physical constants
are all set equal to 1: the electron mass me, the elementary charge e, the reduced Planck constant
~ and the Coulomb’s constant ke = 1

4πε0
.

The molecular system considered contains

• Nat nuclei of charge Z1, . . . , ZNat > 0 at positions R1, . . . ,RNat ∈ R3;
• N electrons of charge −1 at positions r1, . . . , rN .

Spins of electrons are neglected.

Since a proton is roughly 1836 times heavier than an electron, in a first approximation, we can
consider that electrons relax instantaneously to small variations of the positions of nuclei. Nuclei
can thus be treated classically and their position will be a parameter in the stationary Schrödinger
equation satisfied by the electronic wave function. This approximation is commonly called the
Born-Oppenheimer approximation.

The electronic wave function is described by a function Ψ belonging to
N⊗
i=1

L2(R3,C) where
⊗

denotes the tensor product. By the Pauli exclusion principle, since electrons are fermions, the
electronic wave function Ψ is antisymmetric, i.e. for any permutations σ ∈ SN ,

Ψ(rσ(1), . . . , rσ(N)) = (−1)σΨ(r1, . . . , rN).

Therefore, Ψ in fact belongs to the space
N∧
i=1

L2(R3,C) which is the antisymmetrized product space

1



2 CHAPTER 1. Pseudopotential theory

of L2(R3). This space is endowed with the inner product

∀Φ,Ψ ∈
N∧
i=1

L2(R3,C), 〈Φ|Ψ〉 =

∫
R3N

Φ(r1, . . . , rN)∗Ψ(r1, . . . , rN) dr1 . . . drN ,

where Φ∗ denotes the complex conjugate of Φ. The corresponding norm is denoted by ‖ · ‖. The
quantity |Ψ(r1, . . . , rN)|2 is interpreted as the probability of finding the N electrons at positions
(r1, . . . , rN). Hence the norm of the electronic wave function is equal to 1:

‖Ψ‖2 =

∫
R3N

|Ψ(r1, . . . , rN)|2 dr1 . . . drN = 1.

Since the electrons in a molecular system are indistinguishable, it is often more interesting to study
the electronic density ρ of a molecular system which represents the distribution of the N electrons:

ρ(r) = N

∫
R3(N−1)

|Ψ(r, r2, . . . , rN)|2 dr2 . . . drN . (1.1.1)

1.1.1 The Schrödinger model

The time-independent ground-state problem corresponds to the energy minimization

EN
0 (R1, . . . ,RNat) = inf

Ψ∈
N∧
i=1

L2(R3,C),‖Ψ‖=1

〈Ψ|HN
(R1,...,RNat )|Ψ〉, (1.1.2)

where HN
(R1,...,RNat ) is the N -body Hamiltonian of the molecular system

HN
(R1,...,RNat ) =

N∑
i=1

(
−1

2
∆i −

Nat∑
I=1

ZI
|ri −RI |

)
+

N∑
i,j=1
i<j

1

|ri − rj|
. (1.1.3)

The terms appearing in HN
(R1,...,RNat ) have the following physical meaning

•

−1

2

N∑
i=1

∆i

models the kinetic energy of the electrons;

•

−
Nat∑
I=1

ZI
|ri −RI |

models the Coulomb interaction between the electron i and the nuclei;
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•
N∑

i,j=1
i<j

1

|ri − rj|

models the Coulomb interaction between the electrons.

The operator HN
(R1,...,RNat ) acting on

N∧
i=1

L2(R3,C) is a self-adjoint operator with domain

N∧
i=1

H2(R3,C).

The ground-state can be identified with the bottom of the spectrum of HN

EN
0 (R1, . . . ,RNat) = inf σ(HN

(R1,...,RNat )).

The theoretical properties of the spectrum of HN
(R1,...,RNat ) are well-understood. Before stating the

main theorems on the essential and discrete spectrum of HN
(R1,...,RNat ), we define ΣN the bottom of

the essential spectrum
ΣN(R1, . . . ,RNat) = inf σess(H

N
(R1,...,RNat )).

Theorem 1.1 (HVZ Theorem [Žis60, vW64, Hun66]). We have

σess(H
N) = [ΣN(R1, . . . ,RNat),+∞),

where
ΣN(R1, . . . ,RNat) = EN−1

0 (R1, . . . ,RNat).

By this theorem, the essential spectrum of HN
(R1,...,RNat ) is an interval. To reach the energy

ΣN(R1, . . . ,RNat), an electron escapes at infinity and is removed from the molecular system. The
conditions to have a well-defined ground-state are given by the following theorem.

Theorem 1.2 (Discrete spectrum of HN
(R1,...,RNat )). Let Z =

Nat∑
I=1

ZI be the total charge of the system.

1. (Existence of a ground-state [Žis60, ŽS65]) If N < Z + 1, HN
(R1,...,RNat ) has an infinite number

of eigenvalues EN
k of finite multiplicity such that EN

k −→
k→∞

ΣN(R1, . . . ,RNat).

2. (Spectrum of negatively charged systems [Jaf76, VŽ77, Sig82]) If N ≥ Z + 1, HN
(R1,...,RNat )

has at most a finite number of eigenvalues below its essential spectrum.
3. (Non-existence when N is large [Rus82, Sig82, Sig84]) There is Nc such that if N ≥ Nc

HN
(R1,...,RNat ) has no eigenvalues below its essential spectrum.

Theorem 1.2 states that for positively charged or neutral systems, the ground-state of the
molecular system is well-defined. For too negatively charged systems, the molecule cannot bind
all the electrons of the system. For the remainder of the section, we will consider only neutral or
positively charged systems for which there is a ground-state. The wave function associated to this
ground-state satisfies the Schrödinger equation

HN
(R1,...,RNat )Ψ = EN

0 Ψ. (1.1.4)
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The properties of the electronic ground-state wave function are well-known. The first work on
the behavior of the electronic wave function close to a nucleus has been done by Kato in [Kat57].
He showed that the eigenfunctions of HN

(R1,...,RNat ) satisfy for k = 1, . . . , Nat:

∀r2, . . . , rN ,
∂Ψ

∂r

∣∣∣∣
r=0

= −ZkΨ(Rk, r2, . . . , rN), (1.1.5)

where
Ψ(r, r2, . . . , rN) =

∫
S(0,1)

Ψ(rr̂ + Rk, r2, . . . , rN) dr̂.

This is the so-called Kato cusp condition. When there is no ambiguity, for r ∈ R3 we denote by
(r, r̂), r ≥ 0, r̂ ∈ S(0, 1) its spherical coordinates.

Generalizations of the Kato cusp conditions have been studied in [HOHOS94, FHOHOS05,
FHOHOS09]. More precisely, in [FHOHOS05], it is shown that the eigenfunctions of HN

(R1,...,RNat )

can be written as a product of an explicit function, depending on the positions and the charge of
the nuclei, and a smoother function.

Theorem 1.3 (Theorem 1.1 of [FHOHOS05]). Let Ψ be an eigenfunction of HN
(R1,...,RNat ). Define

yi,α = ri −Rα, i = 1, . . . , N , α = 1, . . . ,M . Let

F = eF2+F3 , (1.1.6)

with

F2(r1, . . . , rN) = −
Nat∑
α=1

N∑
i=1

Zα|yi,α|+
1

2

∑
1≤i<j≤N

|ri − rj|,

and

F3(r1, . . . , rN) =
2− π

6

Nat∑
α=1

∑
1≤i<j≤N

Zαy
T
i,αyj,α log

(
|yi,α|2 + |yj,α|2

)
.

Then
Ψ = FΦ,

and the function Φ is locally C1,1(R3N).

In computational chemistry, the factor F is usually called a Jastrow factor and is commonly
used in trial functions for quantum Monte-Carlo simulations [FMNR01, LRT02].

1.1.2 One-body approximations

The N -body Schrödinger equation (1.1.4) is numerically solvable only for small molecular
systems. For example, for a system with N electrons and 10 discretization points per direction, the
number of degrees of freedom is 103N which rapidly becomes unbearable even for supercomputers.

Different strategies have to be developed to reduce the cost of computing the ground-state.
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The Hartree-Fock model

To reduce the dimension of the minimization space, the minimization problem (1.1.2) can be
restricted to functions of the form

Ψ(r1, . . . , rN) =
N∏
i=1

ψi(ri).

However, such functions do not satisfy the Pauli exclusion principle, hence we are lead to consider
an antisymmetric linear combination of such functions. This is the so-called Slater determinants

Ψ(r1, . . . , rN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(r1) . . . ψN(r1)
ψ1(r2) . . . ψN(r2)

... . . . ...
ψ1(rN) . . . ψN(rN)

∣∣∣∣∣∣∣∣∣
which are usually denoted by Ψ = |ψ1 . . . ψN〉. The functions ψi ∈ L2(R3,R) are called orbitals and
can be chosen orthonormal. The factor 1√

N !
is a normalization factor. The energy minimization

problem can be written as
E0

HF = inf
Ψ∈VHF

〈
Ψ|HN |Ψ

〉
,

where HN is the electronic Hamiltonian (1.1.3) and VHF is the set of Slater determinants

VHF =
{

Ψ = |ψ1 . . . ψN〉, ψi ∈ H1(R3), 〈ψi|ψj〉 = δij
}
. (1.1.7)

Since VHF ⊂
∧N
i=1 L

2(R3,C), the Hartree-Fock minimum energy E0
HF is always higher than the

exact ground state EN
0 .

For Ψ = |ψ1 . . . ψN〉, the Hartree-Fock energy functional can be written as

EHF(Ψ) = 〈Ψ|HN |Ψ〉 =
N∑
i=1

1

2

∫
R3

|∇ψi|2 +

∫
R3

V ρΨ +
1

2

∫
R3

∫
R3

ρΨ(r)ρΨ(r′)

|r− r′|
dr dr′

− 1

2

∫
R3

∫
R3

∣∣∣∑N
j=1 ψj(r)ψj(r

′)
∣∣∣2

|r− r′|
dr dr′, (1.1.8)

where ρΨ is the electronic density

ρΨ(r) =
N∑
i=1

|ψj(r)|2,

and V is the nuclear potential

V (r) = −
Nat∑
I=1

ZI
|r−RI |

.

For neutral or positively charged systems EHF has a minimizer which satisfies the Euler-Lagrange
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equations [Lio87]
F [Ψ]ψj = εjψj, 〈ψi|ψj〉 = δij, (1.1.9)

where the eigenvalues ε1 < ε2 ≤ · · · ≤ εN are the lowest eigenvalues of the Fock operator F [Ψ]
defined by

F [Ψ]g = −1

2
∆g(r) + V (r)g(r) +

N∑
i=1

∫
R3

|ψi(r′)|2

|r− r′|
dr′ g(r)−

N∑
i=1

∫
R3

ψi(r
′)g(r′)

|r− r′|
dr′ ψi(r). (1.1.10)

The Fock operator F [Ψ] depends on the orbitals ψ1, . . . , ψN : the eigenvalue problem (1.1.9) is
nonlinear. However, in practice, it is easier to deal with a system of N nonlinear three dimensional
eigenvalue problems than a linear eigenvalue problem in R3N .

Although the Hartree-Fock model captures 90% to 99% of the total ground-state energy (1.1.2)
[Bac92], the missing energy, called the correlation energy, may hide important physical phenomena.
Refinements of the Hartree-Fock theory have been developed to recover this missing correlation
energy, relying on a converged Hartree-Fock calculation. Some of these methods are based on
perturbation theory (Møller-Plesset perturbation theory). Other use an increased variational space
VHF, incorporating Slater-determinants with Hartree-Fock excited states orbitals (Configuration
Interaction method) or using a different anzatz for the wave function (Coupled-Cluster method).
These methods are usually very expensive and only affordable for small molecular systems. The
interested reader may refer to [Dus17] for more information.

Density functional theory

The idea of the density functional theory is to express the minimization problem (1.1.2) using
the electronic density ρ defined in (1.1.1) rather the full-electronic wave function Ψ. This theory
has been first developed by Hohenberg-Kohn [HK64] and later on by Levy and Lieb [Lie83]. Let
HN

0 be

HN
0 = −1

2

N∑
i=1

∆i +
∑

1≤i<j≤N

1

|ri − rj|
,

and V the nucleus-electron Coulomb potential

V (r) = −
N∑
i=1

Nat∑
I=1

ZI
|ri −RI |

. (1.1.11)

Hence, we have

HN
(R1,...,RNat ) = HN

0 −
N∑
i=1

Nat∑
I=1

ZI
|ri −RI |

.

In [Lie83], it is shown that the minimization problem (1.1.2) is equivalent to

EN
0 (R1, . . . ,RNat) = inf

ρ∈IN

(
FLL(ρ) +

∫
R3

V (r)ρ(r) dr

)
. (1.1.12)
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where

IN =

{
ρ | ∃Ψ ∈

N∧
i=1

L2(R3), ρΨ = ρ

}
.

The universal Levy-Lieb functional FLL is defined by

FLL(ρ) = inf

{
〈Ψ|HN

0 |Ψ〉,Ψ ∈
N∧
i=1

L2(R3), ‖Ψ‖ = 1, ρΨ = ρ

}
. (1.1.13)

In [Lie83], the following characterization of IN is proved

IN =

{
ρ ≥ 0,

√
ρ ∈ H1(R3),

∫
R3

ρ(r) dr = N

}
.

The density functional theory seems to be a very promising practical approach since it is easier to

approximate functions in IN than in
N∧
i=1

L2(R3). However, the analytic expression of the Levy-Lieb

functional FLL is unknown. Only qualitative criteria satisfied by FLL are available. Approximations
of the Levy-Lieb functional have been proposed, using exact formulas in very specific settings that
are “close” to the molecular system under consideration. For Kohn-Sham models, the reference
system is a system with N non-interacting electrons. The Kohn-Sham functional TKS is obtained
by replacing HN

0 in the definition of the Levy-Lieb functional (1.1.13) by the Hamiltonian

TN = −1

2

N∑
i=1

∆i.

The Kohn-Sham functional TKS has a simple expression when ρ belongs to the space

RN =

{
ρ, ∃V ∈ L3/2 + L∞ such that inf

{
〈Ψ| − 1

2

N∑
i=1

∆i + V (ri)|Ψ〉,Ψ ∈
N∧
i=1

L2(R3), ‖Ψ‖ = 1

}

is reached for some Ψ of density ρ

}
.

In that case, the expression of TKS becomes

TKS(ρ) = inf

{
1

2

N∑
i=1

∫
R3

|∇φi|2, φi ∈ H1(R3),

∫
R3

φiφj = δij,
N∑
i=1

|φi|2 = ρ

}
. (1.1.14)

Introducing the Coulomb energy which represents the electrostatic energy of density ρ given by

J(ρ) =
1

2

∫
R3

∫
R3

ρ(r)ρ(r′)

|r− r′|
dr′ dr,
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and the exchange-correlation functional Exc

Exc(ρ) = FLL(ρ)− TKS(ρ)− J(ρ),

the Kohn-Sham minimization problem can be written as

inf

{
EKS(Ψ), Ψ = (ψi)1≤i≤N ∈ (H1(R3))N ,

∫
R3

ψiψj = δij

}
, (1.1.15)

with

EKS(Ψ) =
N∑
i=1

1

2

∫
R3

|∇ψi|2 +

∫
R3

V ρΨ +
1

2

∫
R3

∫
R3

ρΨ(x)ρΨ(y)

|x− y|
dx dy + Exc(ρΨ).

Assuming the differentiabiliy of the exchange-correlation functional Exc, the (ψi)1≤i≤N minimizing
(1.1.15) satisfy the Kohn-Sham equations{

−1
2
∆ψi + V ψi + ρ ? 1

|·|ψi + Vxc[ρ]ψi = εiψi∫
R3 ψiψj = δij.

(1.1.16)

where ε1 < ε2 ≤ · · · ≤ εN are the lowest eigenvalues of the Kohn-Sham operator.

Although solving (1.1.16) is more convenient than solving the N -body eigenvalue problem
(1.1.4), minimizers of (1.1.12) do not necessarily belong to RN (see [Lie83]) and the Kohn-Sham
problem (1.1.15) is different from (1.1.12). This difficulty can be circumvented if mixed states are
allowed and the Lieb functional is used (see [Lie83] for more details). An extended Kohn-Sham
model arises using the Janak kinetic functional instead of the Kohn-Sham functional TKS (see
[CDK+03] Section 15).

The lack of knowledge of the Levy-Lieb functional FLL is moved to the exchange-correlation
functional Exc which usually accounts for 10% of the total energy of the molecular system. Approx-
imations of Exc have been proposed among which the local density approximation (LDA):

Exc[ρ] =

∫
R3

g(ρ(r)) dr,

or the generalized gradient approximation (GGA):

Exc[ρ] =

∫
R3

h(ρ(r),∇ρ(r)) dr.

Existence of minimizers of extended Kohn-Sham model for these exchange-correlation functionals
is proved in [AC09].

Some functionals mixing the Hartree-Fock exchange functional to the LDA exchange-correlation
functional seem to be very efficient in practice (the B3LYP functional [Bec93] for example).
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Numerical strategies to solve the Hartree-Fock or Kohn-Sham energy minimization

The Hartree-Fock or Kohn-Sham energy functionals are not convex, hence deterministic algo-
rithms to find global minimium of (1.1.8) or (1.1.12) may not converge. In practice, the codes
aim to solve the nonlinear eigenvalue problems (1.1.9) or (1.1.16) where the electronic density is
obtained by taking the eigenfunctions associated to the lowest eigenvalues of the Fock or Kohn-Sham
operator: this is the so-called Aufbau principle.

For the Hartree-Fock eigenvalue problem, usually one starts with an initial guess of the form
Ψ0 = |ψ(0)

1 , . . . , ψ
(0)
n 〉 and compute the N lowest eigenvalue of the Fock operator F [Ψ0] . The

associated eigenfunctions form the new set of orbitals and this step is repeated until self-consistency
is reached, i.e. when ‖Ψn+1 −Ψn‖ is below a given tolerance. This fixed-point iteration is known
as the Roothaan algorithm but sometimes fails even for basic molecular systems. A mathematical
analysis of the behavior of the Roothaan algorithm is provided in [CLB00b]. New strategies
have been proposed to solve (1.1.9), the level-shifting algorithm, which has also been analyzed in
[CLB00b], the optimal damping algorithm [CLB00a] or the DIIS algorithm [Pul82].

1.2 General principle of pseudopotentials

The resolution of the Hartree-Fock or Kohn-Sham equations, although much simpler than
the N -body Schrödinger eigenvalue problem, can still be too expensive especially in solid-state
simulations. The difficulties are two-fold: first the Coulomb interaction with the nuclei gives rise to
cusps that considerably impede the Fourier convergence rate, second, because of the orthogonality
of the electronic wave functions, the valence electron wave functions have to oscillate near an atomic
site. This behavior is hard to grasp with small plane-wave bases.

It is possible to simplify a bit more the setting. It is a common observation that only valence
electrons are affected by the environment. Thus we can treat the core electrons as fixed in a first
approximation. This approach reduces the number of electrons to consider. This is highly beneficial
as the computational cost of standard methods in electronic structure calculations increases rapidly
with the number of electrons. This approximation is the so-called frozen-core approximation.

In pseudopotential methods, also referred as effective-core potentials, the Coulomb interaction
and the exchange-correlation potential generated by the core electrons are replaced by a smoother
potential that approximates the original operator. The idea was first proposed by Hellmann [Hel35]
as early as 1935 and since then a wide range of pseudopotentials have been designed: Troullier-
Martins [TM91] and Kleinman-Bylander [KB82] norm conserving pseudopotentials, Vanderbilt
[Van90] ultrasoft pseudopotentials and Goedecker [GTH96] pseudopotentials to name but a few.

Finally, pseudopotentials also enable one to include relativistic effects in the electronic Hamil-
tonian. Since the core electrons are localized close to the nucleus, their velocity compared to
the light speed may not be negligible. The valence electrons are further away from the nucleus,
thus a non-relativistic treatment is enough to compute their properties. However, since core
electrons interact with the valence ones, it can be important to include some relativistic effects
of the core electron wave functions in the Hamiltonian. This aspect will not be covered in this thesis.

A brief historical overview of the pseudopotentials is given below. For simplicity, the presentation
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of the pseudopotential method is restricted to finite molecular systems. A detailed exposition of
the pseudopotential theory for solid-state physics can be found in [Pic89].

1.2.1 Atomic Hamiltonian

Pseudopotentials begin with the design of regular eigenfunctions associated to the eigenfunctions
of an atomic Hamiltonian. The pseudopotential is then obtained by calculating the potential of
the atomic Schrödinger equation satisfied by the regular eigenfunction. In the quantum chemistry
litterature, this is called inverting the atomic Schrödinger equation. Hence, it is important to state
the properties of eigenfunctions of an atomic Hamiltonian.

The atomic Hamiltonian HAE is an operator acting on L2(R3) with domain H2(R3) modeling a
single atom in vacuum:

HAE := −1

2
∆− Z

r
+ V (r), (1.2.1)

where V is a multiplicative potential which at first, will be considered smooth and bounded. The
case where V is a Kohn-Sham potential will be covered later.

Since the atomic Hamiltonian is rotationally invariant, HAE is block-diagonal in the decom-
position of L2(R3) associated with the eigenspaces of the operator L2 (the square of the angular
momentum L = r× p = r× (−i∇)).

The eigenfunctions φn`m can be decomposed into a radial function Rn`(r)
r

and a real spherical
harmonics Y`m (see [RS78] Section XIII.3.B for further details):

φn`m(r) =
Rn`(r)

r
Y`m (r̂) . (1.2.2)

The radial functions Rn` satisfies a radial Schrödinger equation on the half-line (0,+∞):

hAE
` Rn` := −1

2
R′′n`(r) +

(
`(`+ 1)

2r2
− Z

r
+ V (r)

)
Rn`(r) = εn`Rn`(r). (1.2.3)

The number of square integrable eigenfunctions of hAE
` is closely linked to the number of zeros of

the eigenfunction Rn`. More precisely, denoting N`(εn`) the number of zeros of Rn` different from
r = 0, we have the following property ([RS78] Theorem XIII.8): if εn` ≤ 0, then hAE` has exactly
N`(εn`) eigenvalues below εn`.

This property is central in the design of pseudopotential. In the pseudopotential theory, we are
interested in defining a pseudopotential only giving valence states of the atomic operator. Indeed the
pseudopotential already includes the effect of core states. Hence, the valence eigenvalue εn` should
become the lowest eigenvalue of the atomic Hamiltonian with the pseudopotential. Hamiltonians
with pseudopotentials are called pseudo or pseudized Hamiltonians.

Pseudopotentials are usually defined by inverting a radial Schrödinger equation satisfied by
a chosen regular eigenfunction R̃n`. If this radial pseudo wave function R̃n` is nodeless, by the
previous characterization, εn` is indeed the ground-state of the radial pseudo Hamiltonian.
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Figure 1.2.1 – Radial eigenfunctions Rn0 of the hydrogenoid atom (i.e. V = 0 in (1.2.1)). The first
eigenfunction R10 is nodeless, R20 has one node and R30 has two nodes.

When V = ρ ? 1
|·| + Vxc[ρ] is a Kohn-Sham potential, the all-electron operator HAE is invariant

under rotations around the atom if the electronc density ρ is radial. In the reduced Hartree-Fock
model (i.e. Vxc = 0), if the system is neutral or positively charged, it has been proved in [Sol91]
that the electronic density ρ is radial. Thus, the eigenfunctions of the all-electrons operator HAE

satisfy a decomposition of the type (1.2.2).
For Kohn-Sham LDA models, there exists no result on the uniqueness of the atomic ground

state. To the best of our knowledge, no numerical evidence has been published so far that the
radial LDA ground state might not be unique.

In the remainder of this presentation, we will suppose that the LDA ground state is radial,
hence that the eigenfunctions of the all-electron Hamiltonian satisfy a decomposition (1.2.2).

In the following, eigenfunctions of atomic Kohn-Sham LDA Hamiltonian are denoted by φn`m,
n ∈ N∗, ` ∈ N, |m| ≤ `. εn` is the eigenvalue associated to the eigenfunction φn`m. Rn` defined by
the decomposition (1.2.2) will be called the radial wave function. The electronic density generated by
the eigenfunctions associated to the lowest eigenvalues of the atomic Kohn-Sham LDA Hamiltonian
is 1

ρ(r) =
2`+ 1

4πr2

`max∑
`=0

n∑̀
n=1

|Rn`(r)|2,

where `max is the maximal angular momentum for which there is a wave function appearing in
the electronic density. For simplicity, we have supposed that all the shells 0 ≤ ` ≤ `max are fully
occupied. This requirement can be lifted by introducing occupation numbers for each quantum
state (see [CM14]).

For each angular momentum 0 ≤ ` ≤ `max and |m| ≤ `, (φn`m)1≤n≤n`−1 is the family of core
wave functions for the angular momentum `,m and φn``m is the valence wave function.

This yields a decomposition of the electronic density into:

1. the spherical harmonics satisfy for all ` ∈ N and r̂ ∈ S(0, 1),
∑̀

m=−`
|Y`m(r̂)|2 = 2`+1

4π .
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• ρc the core electronic density

ρc(r) =
`max∑
`=0

2`+ 1

4πr2

n`−1∑
n=1

|Rn`(r)|2, (1.2.4)

• ρv the valence electronic density

ρv(r) =
`max∑
`=0

2`+ 1

4πr2
|Rn``(r)|2. (1.2.5)

1.2.2 Frozen-core approximation

In the frozen-core approximation, a partition of the electrons between core and valence states is
chosen. Although there is no rigorous definition of the partition between core and valence electrons,
in practice, it is not hard to make such a decision. Proof of the assertions in this subsection are
given in Appendix A.

In the following, the N electrons are split into nc core electrons and nv valence electrons:

Ψ(r1, . . . , rN) =
1√

N !nc!nv!

∑
σ∈SN

Φc(rσ(1), . . . , rσ(nc))Φv(rσ(nc+1), . . . , rσ(N)),

where Φc ∈
nc∧
i=1

L2(R3) is a normalized wave function of the core electrons and Φv ∈
nv∧
i=1

L2(R3) is a

normalized wave function of the valence electrons. The core and valence wave functions satisfy the
orthogonality condition:

∀x2, . . . ,xnc ,y2, . . . ,ynv ∈ R3,

∫
R3

Φc(r,x2, . . . ,xnc)Φv(r,y2, . . . ,ynv) dr = 0.

The core electrons are generally close to atomic core states. We thus suppose that the core electron
wave function Φc is given by a Slater determinant

Φc(r1, . . . , rnc) = |φ1 . . . φnc〉,

with normalized φi ∈ L2(R3) for i = 1, . . . , nc. The functions (φi)1≤i≤nc are orbitals of the atomic
core states. The orthogonality condition between the core and valence electrons becomes

∀r2, . . . , rnv ∈ R3,

∫
R3

φi(r1)Φv(r1, . . . , rnv) dr1 = 0, ∀ 1 ≤ i ≤ nc, (1.2.6)

The form of the total wave function is then:

Ψ(r1, . . . , rN) =
1√
N !nv!

∑
σ∈SN

(−1)σφ1(rσ(1)) . . . φnc(rσ(nc))Φv(rσ(nc+1), . . . , rσ(N)), (1.2.7)
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The core electronic density ρc is given by

ρc(r) =
nc∑
i=1

|φi(r)|2 .

The frozen core energy functional is given by

EFC(Ψ) = 〈Ψ|HN
(R1,...,RNat )|Ψ〉, (1.2.8)

where Ψ is normalized and given by (1.2.7). The orthogonality between the core and valence
electrons yields a new partition of the energy:

EFC(Ψ) = ECORE(φ1, . . . , φnc) + EFC
v (φ1, . . . , φnc ,Φv), (1.2.9)

where the core energy ECORE is the Hartree-Fock energy of the core electrons

ECORE(φ1, . . . , φnc) =
nc∑
i=1

1

2

∫
R3

|∇φi|2 −
∫
R3

Nat∑
I=1

ZI
|r−RI |

ρc(r) dr +
1

2

∫
R3

∫
R3

ρc(r)ρc(r
′)

|r− r′|
dr dr′

− 1

2

∫
R3

∫
R3

∣∣∣∑nc
j=1 φj(r)φj(r

′)
∣∣∣2

|r− r′|
dr dr′.

and the valence energy functional EFC
v is

EFC
v (φ1, . . . , φnc ,Φv) =

1

2

∫
R3nv

|∇Φv|2 −
nv∑
i=1

∫
R3nv

Nat∑
I=1

ZI
|ri −RI |

|Φv(r1, . . . , rnv)|2 dr1 . . . drnv

+
∑

1≤i<j≤nv

∫
R3nv

|Φv(r1, . . . , rnv)|2

|ri − rj|
dr1 . . . drnv +

nv∑
i=1

∫
R3nv+3

ρc(r0)|Φv(r1, . . . , rnv)|2

|r0 − ri|
dr0dr1 . . . drnv

−
nc∑
i=1

nv∑
j=1

∫
R3nv+3

φi(r0)Φv(r1, . . . , rnv)φi(rj)Φv(r1, . . . , rj−1, r0, rj+1, . . . , rnv)

|r0 − rj|
dr0dr1 . . . drnv .

In the frozen core approximation, the core wave functions (φi)1≤i≤nc are fixed and the energy
is minimized over the set of the valence wave functions orthogonal to the core wave functions
(φi)1≤i≤nc :

EFC
v = min

Φv∈Vfc
EFC
v (φ1, . . . , φc,Φv), (1.2.10)

where Vfc is

Vfc =

{
Φv ∈

nv∧
i=1

L2(R3), ‖Φv‖L2(R3nv ) = 1,

∫
R3

φi(r1)Φv(r1, . . . , rnv) dr1 = 0, ∀ 1 ≤ i ≤ nc

}
.

If the minimization problem (1.2.10) admits a minimizer, then the minimizing valence wave



14 CHAPTER 1. Pseudopotential theory

function Φv satisfies the Euler-Lagrange equation

HvΦv = EFC
v Φv, (1.2.11)

where Φv ∈ Vfc and the valence Hamiltonian Hv is given by

Hv =
nv∑
j=1

(
−1

2
∆j −

Nat∑
I=1

ZI
|RI − rj|

+ Jc(j)−Kc(j)

)
+

∑
1≤i<j≤nv

1

|ri − rj|
. (1.2.12)

Jc(j) is the Coulomb operator with the core electrons

Jc(j)Φv(r1, r2, . . . , rnv) =
nc∑
i=1

∫
R3

|φi(r′)|2

|rj − r′|
dr′ Φv(r1, r2, . . . , rnv), (1.2.13)

and Kc(j) the exchange operator with the core electrons

Kc(j)Φv(r1, r2, . . . , rnv) =
nc∑
i=1

∫
R3

φi(r
′)Φv(r1, r2, . . . , rj−1, r

′, rj+1, . . . , rnv)

|rj − r′|
dr′φi(rj). (1.2.14)

The validity of the frozen-core approximation is now well accepted in the theoretical chemistry
community (see [VBG80] where it is shown with a bit of hand waving that the frozen-core
approximation in a molecular system is correct up to second order in the difference between the
exact electron core density and the approximated core density).

1.2.3 Phillips-Kleinman pseudopotentials

Generalized Phillips-Kleinman pseudopotentials

In solving the frozen-core minimization problem (1.2.10), the valence wave function Φv has
to be explicitly orthogonalized to the core wave functions. This means that all the integrals of
Equation (1.2.6) have to computed. It is possible to circumvent this difficulty by removing the

constraint. Let P (i) be the orthogonal projection onto the core space: for f ∈
nv⊗
i=1

L2(R3)

P (i)f(r1, . . . , rnv) =
nc∑
j=1

φj(ri)

∫
R3

φj(ri)f(r1, . . . , rnv) dri, i = 1, . . . , nv. (1.2.15)

The minimization problem (1.2.10) can be recasted as

EFC
v = inf

Φ∈
nv∧
i=1

L2(R3)


〈Φ|

nv∏
i=1

(Id− P (i))Hv

nv∏
i=1

(Id− P (i))|Φ〉

〈Φ|
nv∏
i=1

(Id− P (i))|Φ〉

 , (1.2.16)

where Hv is defined in (1.2.12).
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The wave function reaching EFC
v written in this form satisfies the Euler-Lagrange equation

nv∏
i=1

(Id− P (i))Hv

nv∏
i=1

(Id− P (i))Φ = EFC
v

nv∏
i=1

(Id− P (i))Φ,

or written differently:
H̃Φ = EFC

v Φ,

with

H̃ =
nv∏
i=1

(Id − P (i))Hv

nv∏
i=1

(Id − P (i)) + EFC
v

(
nv∑
i=1

P (i)−
∑

1≤i<j≤nv

P (i)P (j) + . . .

)
. (1.2.17)

Unfortunately, expanding Equation (1.2.17) introduces many-electrons operators, hence it seems
that no advantage is taken by this approach. Motivated by the desire to retain a Hamiltonian
operator where at least the two-electron operators remain in standard form, one is led to consider
an approximation of Equation (1.2.17) of the form:

HPK =
nv∑
i=1

(
(Id− P (i))h′(i)(Id− P (i)) + EFC

v P (i)
)

+
∑

1≤i<j≤nv

1

|ri − rj|
,

=
nv∑
i=1

(h′(i) + UPK
i ) +

∑
1≤i<j≤nv

1

|ri − rj|
, (1.2.18)

where h′(i) is given by

h′(i) = −1

2
∆i −

Nat∑
I=1

ZI
|RI − ri|

+ Jc(i)−Kc(i)

with Jc(i) and Kc(i) respectively defined in (1.2.13) and (1.2.14) and

UPK
i = P (i)h′(i)P (i)− P (i)h′(i)− h′(i)P (i) + EFC

v P (i). (1.2.19)

Potentials of this form are called generalized Phillips-Kleinman (PK) pseudopotentials [KBT76].

Suppose that there is a unique valence electron (nv = 1). In that case, HPK = h′ + UPK
i and h′

is a Fock operator of nc wave functions (φj)1≤j≤nc . Let (φj)1≤j≤nc be the eigenfunctions associated
to the lowest eigenvalues (Ej)1≤j≤nc of the Fock operator h′ with nc electrons

h′φj = Ejφj, j = 1, . . . , nc.

These eigenfunctions exist since in that case, the system is positively charged [Lio87]. It is easy to
see that the PK pseudopotential (1.2.19) can be simplified to (the index i is dropped since there is
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only one valence wave function):

∀ r ∈ R3, (UPKf)(r) =
nc∑
j=1

(EFC
v − Ej)φj(r)

∫
R3

φjf. (1.2.20)

This is the original form derived by Phillips and Kleinman in [PK59].
Let φv be a valence wave function minimizing the frozen core energy functional (1.2.10). Since

there is only one valence electron, φv satisfies

Hvφv = EFC
v φv ⇐⇒ h′φv = EFC

v φv,

∫
R3

φiφv = 0.

Thus

HPKφv = h′φv + UPKφv = EFC
v φv +

nc∑
j=1

(EFC
v − Ej)φj(r)

∫
R3

φjφv = EFC
v φv.

By choice of the core wave functions (φi)1≤i≤nc , we have

HPKφi = h′φi + UPKφi = Eiφi +
nc∑
j=1

(EFC
v − Ej)φj(r)

∫
R3

φjφi = EFC
v φv.

Hence any linear combinations of the form

χv = Cvφv +
nv∑
i=1

aivφi, Cv, aiv ∈ R, (1.2.21)

are eigenfunctions of the PK Hamiltonian (1.2.18)

HPKχv = h′χv + UPKχv = Evχv.

The lowest eigenvalue of the operator HPK is the valence eigenvalue that we want to compute.
Although this property is interesting from a computational point of view, construction of the
PK pseudopotential (1.2.19) requires the knowledge of the valence eigenvalue EFC

v . Hence, the
generation of the PK pseudopotential is a nonlinear procedure.

Generation of PK pseudopotentials

In practice, the PK pseudopotentials are generated for atomic Hamiltonians and replace the
interactions with the core electron wave function in molecular settings.

Consider the atomic Hamiltonian operator

HAE = −1

2
∆− Z

r
+ ρ ?

1

| · |
− Vxc[ρ]. (1.2.22)

Using the partition of core and valence states introduced in Section 1.2.1, for each angular momentum
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` ∈ [[0, `max]], a radial pseudo wave function χn`` is defined such that

χn``(r) = C`Rn``(r) +

n`−1∑
n=1

an`Rn`(r), C`, an` ∈ R.

The radial functions Rn`, n = 1, . . . , n` are the radial wave functions of the eigenfunctions of (1.2.22)
given by the decomposition (1.2.2). The coefficients are chosen to satisfy the following properties

i) χn`` is normalized thus |C`| < 1 2;

ii) χn`` has no radial node (except at 0);

iii) χn`` should have a minimal number of oscillations.

The pseudo valence density ρ̃v is given by

ρ̃v(r) =
`max∑
`=0

2`+ 1

4πr2
|χn``(r)|2.

The radial PK pseudopotential UPK
` for the angular momentum ` is obtained by

UPK
` = εn`` +

1

2

∆χn``
χn``

+
Z

r
− ρ̃v ?

1

| · |
− Vxc[ρ̃v]. (1.2.23)

The full PK pseudopotential is the operator

UPK =
`max∑
`=0

UPK
` (r)Y`m(r̂)〈Y`m, ·〉. (1.2.24)

A pseudopotential of the form (1.2.24) is called semilocal because it is a multiplicative operator for
the radial coordinate but an integral operator of the spherical coordinates.

For ` ∈ [[0, `max]], the functions r 7→ χn``(r)

r
Y`m(r̂) are eigenfunctions for the eigenvalue εn`` of

the pseudo Hamiltonian

HPK = −1

2
∆− Z

r
+ UPK + ρ̃v ?

1

| · |
− Vxc[ρ̃v].

Remark 1.4. The pseudopotential UPK can also be written

UPK = UPK
`max

(r) +
`max−1∑
`=0

(UPK
` (r)− UPK

`max
(r))Y`m(r̂)〈Y`m, ·〉,

since r 7→ χn``(r)

r
Y`m(r̂) are still eigenfunctions of HPK for the eigenvalue εn``. Pseudopotentials are

usually given in this form.

2. If |C`| = 1 the radial pseudo wave function χn`` is simply the radial valence wave function Rn`` that we wish
to “regularize”. This case should be avoided in the pseudopotential construction
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The PK pseudopotential, however, does not have the good long-range behaviour as pointed out
in [CLP79]. Indeed, suppose that Vxc = 0. For large r, the radial PK pseudopotential UPK

` should
reproduce the Coulomb tail of the frozen core density

U`(r) ≈
nc
r
, r � 1.

The radial wave functions Rn`` are eigenfunctions of a radial Schrödinger operator

∀ r > 0, hAE
` Rn`` = −1

2
R′′n``(r) +

(
`(`+ 1)

2r2
+−Z

r
+ ρ ?

1

| · |

)
Rn``(r) = εn``Rn``(r). (1.2.25)

They decay exponentially fast as r goes to infinity. More precisely [BM77, HOHOS85], we know
that for all ε, δ > 0, there exists a positive constant C such that for 1 ≤ n ≤ n` and r sufficiently
large

C exp
(
−(
√
−|εn`|+ ε)r

)
≤ Rn`(r) ≤ C exp

(
−(
√
−|εn`| − δ)r

)
.

Thus, the core electrons wave functions decay much faster than the valence wave function, hence
for sufficiently large r, we have

χn``(r) ≈ C`Rn``(r).

Hence, using (1.2.25),
1

2

∆χn``
χn``

≈ −Z
r

+ (ρc + ρv) ?
1

| · |
+ εn``.

Substituting this in Equation (1.2.23), we obtain

UPK
` ≈ ρc ?

1

| · |
+ ρv ?

1

| · |
− ρ̃v ?

1

| · |
.

At first order in 1
r
, we can establish that

ρv ?
1

| · |
(r) =

1

r
+

1

r

`max∑
`=0

∫
y>r

|Rn``(y)|2
(
r

y
− 1

)
dy +O

(
1

r2

)
,

and

ρ̃v ?
1

| · |
(r) =

1

r
+

1

r

`max∑
`=0

C2
`

∫
y>r

|Rn``(y)|2
(
r

y
− 1

)
dy +O

(
1

r2

)
.

By the normalization condition i) on χn``, we necessarily have |C`| < 1, hence UPK
` introduces a

spurious negative contribution. This problem can be solved if χn``(r) = Rn``(r) for r ≥ rc is imposed
for some cut-off radius rc. This paved the way to the theory of norm-conserving pseudopotentials.

1.2.4 Norm-conserving pseudopotentials

The norm-conserving pseudopotentials (NC pseudopotentials) have been introduced by Topp
and Hopfield [TH73] in the context of empirical pseudopotentials. They have become a central
feature in the generation of pseudopotential since the seminal paper by Hamann, Schlüter and
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Chiang [HSC79] and later with the BHS pseudopotentials [BHS82].

Generation of the NC pseudopotentials

The generation of NC pseudopotentials is similar to the generation of the PK pseudopotentials.
As in the PK pseudopotential generation, core electrons are frozen and for each angular momentum
` with a valence electron, we build a pseudopotential V` by inverting a radial Schrödinger equation.

For each ` ∈ [[0, `max]], a radial NC pseudo wave function R̃n`` corresponding to the valence state
of energy εn`` is defined. R̃n`` satisfies the following essential conditions:

1. the radial pseudo wave function satisfies a radial Schrödinger equation with the same eigenvalue
εn`` as the radial wave function Rn``:

∀ r ∈ (0,+∞), −1

2
R̃′′n``(r) +

`(`+ 1)

2r2
R̃n``(r) + V`(r)R̃n``(r) = εn``R̃n``(r). (1.2.26)

The eigenvalue εn`` is usually called the atomic reference level or atomic reference energy.

2. norm-conservation: ∫ +∞

0

|R̃n``(r)|2 dr = 1, (1.2.27)

3. for a previously chosen cut-off radius rc,`,

R̃n`` = Rn`` on (rc,`,+∞) for some 0 < rc,` < rc (1.2.28)

4. the radial pseudo wave function has to be nodeless

R̃n`` > 0, on (0,+∞). (1.2.29)

By the Sturm oscillation theorem, if R̃n`` is nodeless and V` is a regular enough multiplicative
potential, R̃n`` is an eigenfunction associated to the lowest eigenvalue of (1.2.26).

Existence of such pseudopotentials and topological properties of the set of NC pseudopotentials
can be found in [CM15]. In particular, existence of optimal pseudopotentials i.e. with minimal
oscillations is precisely stated.

There are many different ways to generate NC pseudopotentials satisfying (1.2.26) to (1.2.29)
[HSC79, Ker80, BHS82, TM91] usually by specifying the shape of the radial NC pseudo wave
function R̃n``. The screened potential V` is deduced by inverting the radial Schrödinger equation
(1.2.26)

∀ r ∈ (0, rc), V`(r) = εn`` +
1

2

R̃′′n``(r)

R̃n``(r)
− `(`+ 1)

2r2
.

The local ionic pseudopotential is obtained by subtracting the Hartree and exchange-correlation
potentials calculated from the valence pseudo wave functions. This step is called the unscreening
of the pseudopotential:

Vion,`(r) = V`(r)− ρ̃v ?
1

| · |
− Vxc[ρ̃v], (1.2.30)
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with ρ̃v the pseudo valence electronic density

ρ̃(r) =
`max∑
`=0

2`+ 1

4πr2
|R̃n``(r)|2.

The ionic pseudopotential is the semilocal operator V NC
ion given by

V NC
ion = Vion,`max(r) +

`max−1∑
`=0

∑̀
m=−`

Y`m(r̂)(Vion,`(r)− Vion,`max(r))〈Y`m, ·〉. (1.2.31)

By definition of the radial pseudo wave functions (R̃n``)0≤`≤`max and of the NC pseudopotential

V NC
ion , it is easy to check that r 7→ R̃n``(r)

r
Y`m(r̂) is an eigenfunction of the operator

−1

2
∆ + V NC

ion + ρ̃v ?
1

| · |
+ Vxc[ρ̃v],

for the eigenvalue εn``.

If the exchange-correlation energy Exc is not a linear functional with respect to the density ρ
(which is usually the case for Kohn-Sham LDA models), the ionization step (1.2.30) involves an
approximation. Indeed the radial wave function R̃n` satisfies the following radial equation

−1

2
R̃′′n`(r) +

`(`+ 1)

2r2
R̃n`(r) +

(
V NC

ion,`(r) + ρ̃v ?
1

| · |
+ Vxc[ρ̃v]

)
R̃n`(r) = εn`R̃n`(r),

hence the total energy of the system is given by

ENC
0 [ρ] = T [ρc + ρ̃v] + EH [ρc + ρ̃v] + Exc[ρc] + Exc[ρ̃v].

This approximation can be significant if the difference between Exc[ρc] +Exc[ρ̃v] and Exc[ρc + ρ̃v] is
important. This happens for example when the core density ρc and the pseudo valence density ρ̃v
overlap significantly. A proposed solution by Louie et al. [LFC82] (see also [FS99]) is to introduce
a partial core density ρ̃core

0 in the unscreening step (1.2.30):

Vion,`(r) = V`(r)− ρ̃v ?
1

| · |
− Vxc[ρ̃v + ρ̃core

0 ], (1.2.32)

where

ρ̃core
0 (r) =

{
ρc(r) for r ≥ rnlc

a sin(br)
r

for r < rnlc
.

The coefficients a and b are determined so that ρ̃core
0 is C1 at rnlc. This procedure is called the

nonlinear core correction and has to be used for atoms with few valence electrons (the alkali atoms).
The core cut-off radius rnlc is usually chosen such that the core density ρc drops below the pseudo
valence density ρ̃v.
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Troullier-Martins pseudopotentials

The Troulliers-Martins pseudopotentials [TM91] have become the most popular NC pseudopo-
tential and are widely used in solid-state simulation codes. The exposition follows the usual
notations introduced in [TM91]. For simplicity, the index ` on n` is dropped.

The Troullier-Martins radial pseudo wave functions are given by

R̃n`(r) =

{
Rn`(r) if r > rc

Cn`r
`+1ep(r) if r ≤ rc

(1.2.33)

where p is an even polynomial of degree 12:

p(r) =
6∑

k=0

c2kr
2k. (1.2.34)

Inverting the radial Schrödinger equation (1.2.26), the pseudopotential V TM
` is defined by:

V TM
` = εn` +

(`+ 1)p′(r)

r
+
p′(r)2 + p′′(r)

2
. (1.2.35)

The seven conditions to determine the coefficients (c2k)0≤k≤6 are:
1. Norm conservation ∫ rc

0

|R̃n`(r)|2 dr =

∫ rc

0

|Rn`(r)|2 dr. (1.2.36)

2. continuity conditions
R̃

(k)
n` (r) = R

(k)
n` (r), for 0 ≤ k ≤ 4. (1.2.37)

3. Smoothness of the pseudopotential By construction, we already have (V TM
scr,`)

′(0) = 0.
We can enforce (V TM

scr,`)
′′(0) = 0 with

(2`+ 5)c4 + c2
2 = 0. (1.2.38)

It is easy to see that the five equations imposed by the continuity conditions of the radial pseudo
wave function are linear, then plugging (1.2.38) into (1.2.36) yield a non-linear equation of one
variable which can be solved using a Newton method.

Kleynman-Bylander form of the pseudopotentials

So far the presentation of pseudopotentials has been restricted to finite molecular systems. They
are however primarily used for solid-state calculations where plane-waves methods are the method
of choice.

When solving numerically the eigenvalue problem of the pseudized Hamiltonian, it is not advised
to store the whole Hamiltonian matrix. Instead, the eigenvalues are computed using iterative
methods, for which, it is crucial to reduce the matrix-vector computational complexity.

In a basis of Npw plane-waves, evaluating V ψ̃ in the reciprocal space where V is a multiplicative
potential costs O(Npw logNpw) operations (apply an inverse FFT to ψ̃ to have its real space
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representation, multiply pointwise by V and apply a FFT to the whole result).

The semilocal part associated to the angular momentum ` in (1.2.31)

δVsl,` :=
∑̀
m=−`

Y`m(r̂)(Vion,`(r)− Vion,`max(r))〈Y`m, ·〉

is however more expensive to compute. Let (ψ̃G) be the Fourier coefficients of ψ̃. Using the
scattering expansion

eiG·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(Gr)Y`,m(Ĝ)Y`,m(r̂),

where j` is the spherical Bessel function, the real space representation of δVsl,`ψ̃ is given by

(δVsl,`ψ̃)(r) = 4πi`
∑̀
m=−`

Y`m(r̂)(Vion,`(r)− Vion,`max(r))
∑
G

ψ̃Gj`(Gr)Y`,m(Ĝ).

Evaluating this expression in real space costs O(Npw) operations, hence obtaining the reciprocal
space representation of δVsl,`ψ̃ with a FFT costs O(N2

pw log(Npw)) operations.

In [KB82], Kleinman and Bylander introduced a new way to write the semilocal part δVsl,` to
reduce to O(Npw) the cost of applying the semilocal part of the pseudopotential in reciprocal space.
Let

δV`(r) = Vion,`(r)− Vion,`max(r).

They defined the truly non-local potential δVtnl,` by (here again, the index ` on n` is dropped)

δVtnl,` =
1

〈δV`〉
∑̀
m=−`

δV`(r)
R̃n`(r)

r
Y`m(r̂)

〈
Y`m(r̂′)

R̃n`(r
′)

r′
δV`(r

′), ·
〉
, (1.2.39)

where
〈δV`〉 =

∫ rc

0

|R̃n`(r)|2δV`(r) dr.

It is easy to check that the truly non-local potential satisfies

δVtnl,`

(
R̃n`(r)

r
Y`m(r̂)

)
=

1

〈δV`〉
∑̀
m′=−`

δV`(r)
R̃n`(r)

r
Y`m′(r̂)

〈
Y`m′(r̂′)

R̃n`(r
′)

r′
δV`(r

′),
R̃n`(r

′)

r′
Y`m(r̂′)

〉

= δV`(r)
R̃n`(r)

r
Y`m(r̂).

The condition (1.2.26) is therefore satisfied but with a nonlocal radial potential

∀ r ∈ (0, rc), −
1

2
R̃′′n,`(r) +

`(`+ 1)

2r2
R̃n,`(r) + V`max(r)R̃n,`(r) + δVtnl,`

R̃n`(r)

r
Y`m(r̂) = εn`R̃n,`(r).
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The truly nonlocal form (1.2.39) is convenient for calculations in the reciprocal space. Indeed,
denoting by (TG) the Fourier coefficients of r 7→ δV`(r)

R̃n`(r)
r

Y`m(r̂) and (ψ̃G) the Fourier coefficients
of the test function ψ̃, the Fourier coefficient of δVtnl,`ψ̃ is simply

(δVtnl,` ψ̃)G =
TG
〈δV`〉

∑
G′

TG′ψ̃G′ .

First, the sum
∑
G′
TG′ψ̃G′ is computed and this costs O(Npw) operations. Then for each G, the

result of this sum is multiplied by TG
〈δV`〉

. The computation hence scales as Npw for a basis of
Npw plane-waves. Because of this special form, pseudopotentials given by (1.2.39) are called fully
separable.

On the NC pseudopotential approximation

The great question with the pseudopotential approximation is the validity of the pseudopoten-
tials generated above in a different molecular environment. To put it in other words, is it sufficient
to reproduce the exact spectrum of atomic Hamiltonian to get accurate results in other calculations?
This question is commonly referred to as the transferability of pseudopotentials. In practice, the
answer to this question is positive in most of the situations encountered, however there are few
theoretical justifications of the pseudopotential approach.

Formally the NC pseudopotential approach has been justified because the norm-conservation
of the pseudo wave function preserves the scattering properties [SJH67, TH73]. Let R(·, ε) be the
solution of

∀ r ∈ (0, rc), −
1

2
R(r, ε)′′ +

`(`+ 1)

2r2
R(r, ε) + V (r)R(r, ε) = εR(r, ε), (1.2.40)

where R(·, ε) is square integrable, normalized to 1 and satisfies R(0, ε) = 0. Assuming the
differentiability with respect to ε, we have

− |R(rc, ε)|2
∂

∂ε

∂

∂r
logR(rc, ε) = 2

∫ rc

0

|R(r, ε)|2 dr. (1.2.41)

The radial pseudo wave function R̃n` and the radial atomic wave function Rn` satisfy an equation
of the type (1.2.40). Notice that (1.2.41) does not depend on the potential V . Since R̃n` is chosen
such that R̃n`(rc) = Rn`(rc), R̃′n`(rc) = R′n`(rc) and

∫ rc
0
|Rn`|2 =

∫ rc
0
|R̃n`|2, at first order in ε, the

radial wave function Rn` and the radial pseudo wave function R̃n` behave the same way.
Suppose that the pseudopotential computed from the pseudo wave function is used for the

calculation of a molecular energy E close to ε. It seems reasonable to expect that the computation
with the pseudopotential would yield results close to an all-electron computation for this targeted
eigenvalue E.

Another criterion has later been found explaining the good results given by the most popular
NC pseudopotentials (see [Tet93, FVZ+95]).

In practice, the transferability of the pseupotential is checked by computing the excited states of
the atomic configuration with a pseudopotential and comparing them with an all-electron calculation
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[FS99]. If the results match up to some previously fixed tolerance, the generated pseudopotential
can be considered satisfactory.

A first limitation of the NC pseudopotential has been identified for fully separable pseudopo-
tential. When performing these tests for atomic configurations, by the Sturm oscillation theorem,
the lowest eigenvalue of the radial pseudized Hamiltonian should be nodeless and therefore match
the all-electron eigenvalue εn`. In [GKS90], the authors identified systems for which a non-physical
eigenvalue appears in the spectrum of the pseudized Hamiltonian below the reference value εn`.
These are called ghost states. The violation of the Sturm oscillation theorem can be explained
by the fact that the radial pseudized Hamiltonian is an integro-differential equation. The Sturm
oscillation theorem does not hold for such equations. Later a more thoroughful analysis of separable
potentials have been produced in [GSS91] (see also [Khe95]), giving guidelines on the design of
separable pseudopotentials preventing the apparition of ghost states.

They introduced EKB
` , the Kleinman-Bylander energy

EKB
` =

∫ rc
0
|R̃n`(r)δVsl,`(r)|2 dr∫ rc

0
|R̃n`(r)|2δVsl,`(r) dr

.

Using the definition of the truly non-local form (1.2.39), it is easy to check that we have

δVtnl,`

(
δVsl,`φ̃n`m

)
= EKB

` δVsl,`(r)φ̃n`m(r),

where φ̃n`m(r) = R̃n`(r)
r

Y`m(r̂). Let φKB` and RKB
` be respectively the normalized eigenvector and

its radial part

φKB` (r) =
δVsl,`(r)φ̃n`m(r)

‖δVsl,`φ̃n`m‖
, φKB` (r) =

RKB
` (r)

r
Y`m(r̂),

then the truly non-local potential can be written

〈δVtnl,`(r, ·) , ·〉 = EKB
` φKB` (r)

〈
φKB` , ·

〉
.

The parametric atomic radial pseudized operator is given by

h`(λ) = −1

2

d2

dr2
+
`(`+ 1)

2r2
+ V`max(r) + ρ̃v ?

1

| · |
+ Vxc[ρ̃v] + λRKB

`

∫ rc

0

RKB
` (r′)· dr′.

Hence λRKB
`

∫ rc
0
RKB
` (r′)· dr′ is a rank-one perturbation of h`(0). A rigorous analysis of finite rank

pertubation can be found in [Ste69].
Let ε1(λ) ≤ ε2(λ) ≤ . . . be the eigenvalues of h`(λ). For simplicity, we denote by

ε1 < ε2 < . . . the eigenvalues of h`(0). If λ > 0, the eigenvalues (εk(λ))k of h`(λ) satisfy for
k ≥ 1, εk ≤ εk(λ) < εk+1 [Ste69] (see Figure 1.2.2). If λ < 0, the inequalities are reversed: for
k ≥ 1, εk(λ) < εk ≤ εk+1(λ). For λ = EKB

` , we know that by construction of the pseudopotential,
the atomic reference energy εn` is an eigenvalue of h`(EKB

` ). Hence it is the lowest eigenvalue of
h`(E

KB
` ):
• if EKB

` < 0 and εn` < ε1;
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• or if EKB
` > 0 and εn` < ε2.

Figure 1.2.2 – The eigenvalues of the perturbed operator h`(λ) satisfy the equation 1 +
λ〈RεR

KB
` , RKB

` 〉 = 0 where ε /∈ σ(h`(0)) and Rε is the resolvent of the operator h`(0) [Ste69].
In finite dimension, denoting (ψk, εk) the eigenpairs of a symmetric matrix A and vvT the one-
dimensional perturbation, with vTψk 6= 0, the equation becomes

∑n
k=1

|ψTk v|
2

ε−εk
= 1

λ
. Intersections of

both curves give the eigenvalues εk(λ) of A+ λvvT .

1.3 Vanderbilt ultrasoft pseudopotentials

The norm-conservation constraint (1.2.27) can be relaxed as shown by Vanderbilt [Van90],
however in doing so a generalized eigenvalue problem is introduced. The presentation of the
Vanderbilt pseudopotentials mostly follows [LPC+93] with a slight change of notation.

1.3.1 Pseudopotential generation

Like the previous pseudopotentials, the Vanderbilt pseudopotentials are generated from atomic
Hamiltonians. For each angular momentum ` ∈ [[0, `max]], let εn` be a valence eigenvalue of the
atomic Kohn-Sham Hamiltonian. Contrary to NC pseudopotentials, several radial pseudo wave
functions can be defined for the same angular momentum.

Let

K = {(n, `,m) | ` ∈ [[0, `max]], |m| ≤ `, n is a valence state for the angular momentum `} .

For k, k′ ∈ K, we denote by k = (n, `,m) and k′ = (n′, `′,m′) the associated quantum numbers.
For k ∈ K, let φ̃k(r) = R̃n`(r)

r
Y`m(r̂) be the pseudo wave function such that

1. ∀ r ≥ rc, R̃n`(r) = Rn`(r) where Rn` is a radial eigenfunction of (1.2.3) associated to εn`;

2. R̃n` matches Rn` and at least its first derivative at rc.
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Notice that contrary to the norm-conserving pseudopotential, no norm conservation constraint is
imposed on the pseudo wave function φ̃k. In practice, this allows one to choose smooth and slowly
varying pseudo wave functions φ̃k, which is why the Vanderbilt pseudopotentials are also called
ultrasoft.

Let Vloc be a smooth potential such that Vloc = −Z
r

+ ρ ? 1
|·| + Vxc[ρ] for r ≥ rc. We define the

functions χk by

χk =

(
εn` +

1

2
∆− Vloc

)
φ̃k.

Since Vloc = −Z
r

+ ρ ? 1
|·| + Vxc[ρ] and φ̃k(r) = φk(r) for r ≥ rc, the functions χk are supported in

B(0, rc). Let B the matrix of coefficients Bkk′ = 〈φk|χk′〉, for k, k′ ∈ K. We now form the quantities
V ion

loc , D
(0)
kk′ , Qkk′ and βk needed to specify the pseudopotential. Qkk′ and βk are functions given by

∀ r ∈ B(0, rc), Qkk′(r) = φk(r)φk′(r)− φ̃k(r)φ̃k′(r),

and assuming that B is invertible

∀ r ∈ B(0, rc), βk(r) =
∑
k′∈K

(B−1)k′kχk′(r).

The functions (βk)k are duals to the (φk)k: 〈βk|φk′〉 = δkk′ . Let qkk′ = 〈φk|φk′〉B(0,rc)−〈φ̃k|φ̃k′〉B(0,rc).
With all these definitions, we can check that the pseudo wave functions φ̃k, k ∈ K satisfy(

−1

2
∆ + Vloc +

∑
k,k′∈K

Dkk′βk〈β′k|·〉
)
φ̃k = εn`

(
Id +

∑
k,k′∈K

qkk′βk〈β′k|·〉
)
φ̃k,

where we have for k, k′ ∈ K
Dkk′ = Bkk′ + εn′`′qkk′ .

The function V ion
loc and the scalar D(0)

kk′ are obtained by an unscreening procedure

V ion
loc = Vloc −

∫
R3

ρ̃(r′)

|r− r′|
dr′ − Vxc[ρ̃], (1.3.1)

D
(0)
kk′ = Dkk′ −

∫
R3

Vloc(r)Qkk′(r) dr, (1.3.2)

where
ρ̃(r) =

∑
k∈K

|φ̃k(r)|2 +
∑

k,k′,k′′∈K

Qkk′(r)〈φk′′ |βk〉〈βk′ |φk′′〉.

The formula for D(0)
kk′ is different from [LPC+93], however it is easy to check in the atomic case that

(1.3.2) is correct. The mistake is also confirmed in [KJ99] (Equation (34)).
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1.3.2 Ultrasoft pseudopotential for a molecular system

For nv valence electrons, the total energy of the molecular system is given by

E0 = inf

{
nv∑
i=1

1

2

∫
R3

|∇ψ̃i|2 + 〈ψ̃i|VNL|ψ̃i〉+
Nat∑
I=1

∫
R3

V ion,I
loc ρ̃+

1

2

∫∫
R3×R3

ρ̃(r)ρ̃(r′)

|r− r′|
drdr′ + Exc[ρ̃],

∀ 1 ≤ i ≤ nv, ψ̃i ∈ L2(R3), ∀ 1 ≤ i, j ≤ nv, 〈ψ̃i|SUS|ψ̃j〉 = δij

}
, (1.3.3)

where the superscript I denotes the translation byRI (V ion,I
loc (r) = V ion,I

loc (r−RI),βIk(r) = βk(r−RI)).
ρ̃ is the pseudo density given by

ρ̃(r) =
nv∑
i=1

|ψ̃i(r)|2 +
nv∑
i=1

Nat∑
I=1

∑
k,k′∈K

QI
kk′(r)〈ψ̃i|βIk〉〈βIk′|ψ̃i〉, (1.3.4)

VNL is the nonlocal potential

VNL =
Nat∑
I=1

∑
k,k′∈K

D
(0)
kk′β

I
k〈βIk′ |·〉,

and SUS the overlap operator

SUS = Id +
Nat∑
I=1

∑
k,k′∈K

qIkk′β
I
k〈βIk′ |·〉. (1.3.5)

The Euler-Lagrange equations associated to the minimization problem (1.3.3) are given by

HUSψ̃i = λiS
USψ̃i, λ1 ≤ · · · ≤ λnv , (1.3.6)

where

HUS = −1

2
∆ + Veff +

Nat∑
I=1

∑
k,k′∈K

DI
kk′β

I
k〈βIk′|·〉.

The potential Veff is the effective potential

Veff =
Nat∑
I=1

V ion,I
loc +

∫
R3

ρ̃(r′)

|r− r′|
dr′ + Vxc[ρ̃],

and for k, k′ ∈ K,

DI
kk′ = D

(0)
kk′ +

∫
R3

Veff(r)QI
kk′(r) dr.

Vanderbilt pseudopotentials perform very well in practice yielding accurate results for small
plane-wave energy cut-offs compared to norm-conserving pseudopotentials [FKBK00]. This good
performance can be explained by the freedom in the choice of the cut-off radius rc. For norm-
conserving pseudopotentials, the cut-off radius is determined to guarantee the transferability of the
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pseudopotential. In doing so, a low cut-off radius may have to be fixed. The corresponding pseudo
wave function can be more peaked yielding a “harder” potential. For ultrasoft pseudopotentials,
the cut-off radius can generally be set to half of the minimal interatomic distance, which is the
largest cut-off radius available (otherwise, the balls where the pseudopotentials act would be
overlapping). The corresponding pseudo wave functions are smooth and slowly varying, giving very
soft pseudopotentials.

1.4 The PAW method

The PAW method [Blo94] introduced by Blöchl has become a popular method to compute
accurately the electronic properties of crystals. It relies on an invertible transformation of the
eigenvalue problem enabling one to incorporate pseudopotentials in a consistent way. In practice,
infinite sums appearing in the PAW equations have to be truncated, introducing an error. However,
contrary to NC pseudopotential theory, we have a systematic way to reduce this error by keeping
more terms of the PAW equations. The exposition follows the original presentation by Blöchl in
[Blo94].

1.4.1 General setting

The PAW method consists in replacing the original molecular eigenvalue problem Hψ = Eψ
where H = −1

2
∆ + V is a Kohn-Sham Hamiltonian, by the generalized eigenvalue problem

(Id + T ∗)H(Id + T )ψ̃ = E(Id + T ∗)(Id + T )ψ̃, (1.4.1)

where Id + T is an invertible operator. It is clear that (1.4.1) is equivalent to Hψ = Eψ where
ψ = (Id +T )ψ̃. The transformation T is the sum of operators TI acting locally around each nucleus.
For each operator TI , a cut-off radius rIc needs to be fixed such that the balls B(RI , r

I
c ) do not

overlap.

rc
Tf = 0

Tf 6= 0

Figure 1.4.1 – Unit cell with PAW balls in blue
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They are given by:

TI =
∞∑
k=1

(φIk − φ̃Ik)
〈
p̃Ik , ·

〉
, (1.4.2)

where the functions φIk, φ̃Ik and p̃Ik are functions in L2(R3). The PAW functions (φIk)k∈N∗ , (φ̃Ik)k∈N∗
and (p̃Ik)k∈N∗ must satisfy the following essential properties:

1. supp (φIk − φ̃Ik) ⊂ B(RI , r
I
c );

2. φ̃Ik restricted to B(RI , r
I
c ) is smooth and (φ̃Ik)k∈N∗ form a Riesz basis of H1(B(RI , r

I
c ));

3. p̃Ik are supported in B(RI , r
I
c ) and ∀ i, j ∈ N∗,

〈
p̃Ii , φ̃

I
j

〉
= δij (that is (p̃Ij)j∈N∗ is dual to

(φ̃Ij )j∈N∗), hence for every f ∈ H1(B(RI , r
I
c )), we have

f =
∞∑
k=1

〈
p̃Ik , f

〉
φ̃Ik (1.4.3)

This way, the operators TI satisfy

• for all f ∈ L2(R3), supp(TIf) ⊂ B(RI , r
I
c ),

• if supp(f)
⋂
B(RI , r

I
c ) = ∅, then TIf = 0.

The relation (1.4.3) enables one to write the expression of (Id + T ∗)H(Id + T ) and
(Id + T ∗)(Id + T ) (see Appendix B) as

(Id + T ∗)H(Id + T ) = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (1.4.4)

and

(Id + T ∗)(Id + T ) = Id +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (1.4.5)

For the sake of clarity, we suppose that the cut-off radii rIc do not depend on the atomic site I
and denote rc the common cut-off radius.

Introduction of a pseudopotential

A further modification is possible. As the pseudo wave functions φ̃Ik are equal to φIk outside
B(0, rc), the integrals appearing in (1.4.4) can be truncated to the ball B(RI , rc). Doing so, another
expression of (Id + T ∗)H(Id + T ) can be obtained :

(Id + T ∗)H(Id + T ) = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
I,rc
−
〈
φ̃Ii , Hφ̃

I
j

〉
I,rc

)〈
p̃Ij , ·

〉
,

where
〈f ,Hg〉I,rc =

∫
B(RI ,rc)

1

2
∇f · ∇g + V fg.
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Using this expression of the operator (Id + T ∗)H(Id + T ), it is possible to introduce a regular

pseudopotential V PP such that for each I, V PP(r) = V (r) for r /∈
M⋃
I=1

B(RI , rc).

The expression of (Id + T ∗)H(Id + T ) becomes

(Id + T ∗)H(Id + T ) = Hps +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
I,rc
−
〈
φ̃Ii , Hpsφ̃

I
j

〉
I,rc

)〈
p̃Ij , ·

〉
, (1.4.6)

with
Hps = −1

2
∆ + V PP.

1.4.2 The PAW method in practice

The infinite sums appearing in (1.4.5) and (1.4.6) have to be truncated to some level NI which
can depend on the atomic site:

HPAW := Hps +
Nat∑
I=1

NI∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
I,rc
−
〈
φ̃Ii , Hpsφ̃

I
j

〉
I,rc

)〈
p̃Ij , ·

〉
, (1.4.7)

and

SPAW := Id +
Nat∑
I=1

NI∑
i,j=1

p̃Ii

(〈
φIi , φ

I
j

〉
I,rc
−
〈
φ̃Ii , φ̃

I
j

〉
I,rc

)〈
p̃Ij , ·

〉
. (1.4.8)

The PAW eigenvalue problem becomes

HPAW ψ̃ = EPAWSPAW ψ̃. (1.4.9)

Since the Coulomb potentials have been replaced by regular pseudopotentials, the eigenfunctions
of (1.4.9) are more regular than the eigenfunctions of the original eigenvalue problem. However,
because the sums in (1.4.6) and (1.4.5) have been truncated, the sought eigenvalue is unlikely to
be equal the original one. In practice, the PAW method has become one of the most efficient tools
to compute energies of crystals and has been implemented in several popular electronic structure
codes (AbInit [TJB+08], VASP [KF96, KJ99]).

1.4.3 Treatment of the nonlinearities

For linear Hamiltonians, application of the PAW method is quite straightforward:

1. PAW functions (φIk)k≥1, (φ̃Ik)k≥1 and (p̃Ik)k≥1 are constructed at each atomic site,

2. a smooth pseudopotential V PP replaces the Coulomb interaction to get smooth eigenfunctions,

3. the generalized eigenvalue problem (1.4.9) is solved using a plane-wave basis.

For Kohn-Sham Hamiltonians, the PAW transformation is less clear since the Hartree and
exchange-correlation potentials depend on the eigenfunctions of the Kohn-Sham equations. Hence,
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the original electronic density ρ should be expressed in terms of the eigenfunctions of the PAW
eigenvalue problem. Formally, since (Id + T ) is invertible and (φ̃Ik)k≥1 and (p̃Ik)k≥1 form a dual and
complete basis of L2(B(RI , rc)), the electronic density ρ is given by:

ρ(r) =
nv∑
n=1

(
|ψ̃n(r)|2 +

Nat∑
I=1

∞∑
i,j=1

〈p̃Ii , ψ̃n〉〈ψ̃n, p̃Ij〉
(
φIi (r)φ

I
j (r)− φ̃Ii (r)φ̃Ij (r)

))
, (1.4.10)

where ψ̃n = (Id + T )−1ψn and ψn are the eigenfunctions associated to the lowest eigenvalue of the
Hamiltonian H.

The expression of the electronic density can then be reinserted in the Hartree and exchange
correlation potentials but the ensuing formulas are much more complicated.

Another way to treat the nonlinearity is to use the expression of the electronic density (1.4.10)
directly in the energy functional and write the Euler-Lagrange equations associated to the new
functional. The expression of the energy is however not very convenient when (1.4.10) is directly
applied. Let

ρI(r) =
nv∑
n=1

∞∑
i,j=1

〈p̃Ii , ψ̃n〉〈ψ̃n, p̃Ij〉φIi (r)φIj (r),

and

ρ̃I(r) =
nv∑
n=1

∞∑
i,j=1

〈p̃Ii , ψ̃n〉〈ψ̃n, p̃Ij〉φ̃Ii (r)φ̃Ij (r).

The total electrostatic energy ES[ρ] is given by

ES[ρ] :=−
∫
R3

Nat∑
I=1

ZI
|r−RI |

ρ(r) dr +
1

2

∫∫
R3×R3

ρ(r)ρ(r′)

|r− r′|
drdr′

=−
∫
R3

Nat∑
I=1

ZI
|r−RI |

(
ρ̃(r) +

Nat∑
I′=1

(ρI′ − ρ̃I′)(r)

)
dr

+
1

2

∫∫
R3×R3

(
ρ̃(r) +

Nat∑
I=1

(ρI(r)− ρ̃I(r))
)(

ρ̃(r′) +
Nat∑
I=1

(ρI(r
′)− ρ̃I(r′))

)
|r− r′|

drdr′

(1.4.11)

Because of the double sum on the atomic sites, the first term on the RHS of (1.4.11) scales as
Nat

2 thus badly with the size of the system. The second term is also problematic. By expanding
this term, we have integrals involving the product of ρ̃, which is represented with a plane-wave
functions, and ρI − ρ̃I which are represented on radial grids. Evaluating accurately and efficiently
such terms is therefore not easy.

To solve this issue, which is already present in the initial derivation of the PAW equations,
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Blöchl introduced compensation charges Z̃I supported in B(RI , rc) satisfying

∀|m| ≤ `,

∫
B(RI ,rc)

(ρI(r)− ρ̃I(r)− Z̃I(r))|r−RI |`Y`m(r̂−RI) dr = −ZIδ0`. (1.4.12)

The exact definition of the compensation charge may differ in the different presentations of the
PAW method, see [KJ99, Ros09].

The expression of the electrostatic energy can be rewritten:

ES[ρ] =

∫∫
R3×R3

Nat∑
I=1

Z̃I(r)ρ̃(r′) drdr′ +
1

2

∫∫
R3×R3

ρ̃(r)ρ̃(r′)

|r− r′|
drdr′

+
Nat∑
I=1

(
−
∫
R3

ZI
|r−RI |

ρI(r) +
1

2

∫∫
R3×R3

ρI(r)ρI(r
′)

|r− r′|
drdr′

−
∫∫

R3×R3

Z̃I(r)ρ̃I(r
′) drdr′ − 1

2

∫∫
R3×R3

ρ̃I(r)ρ̃I(r
′)

|r− r′|
drdr′

)
(1.4.13)

The electrostatic energy in the PAW method is the sum of a new electrostatic functional with
smoothed Coulomb potential and atom-centered corrections.

Note that this expression is valid only if the compensation charge property (1.4.12) holds for
any angular momentum `,m. In practice, the compensation charge is defined as a finite linear
combination of smooth functions which satisfies (1.4.12) up to an angular momentum `max. This
introduces a further approximation in the PAW treatment.

For the exchange-correlation energy, there are different ways to get an expression similar to
(1.4.13), in the sense that the exchange-correlation energy is corrected by atom-centered terms:

Exc[ρ] = Exc[ρ̃] +
Nat∑
I=1

(Exc[ρI ]− Exc[ρ̃I ]).

The interested reader may refer to [HMD+97, KJ99, THM01] for more details.

1.4.4 Generation of the PAW functions

In practice, there are two main ways to generate the pseudo wave functions φ̃k and the projectors
p̃k introduced by Blöchl [Blo94] and Vanderbilt [LPC+93].

To generate the PAW functions, a range of angular momentum ` ∈ [[0, `max]] is selected and for
each angular momentum `, n` PAW functions are defined. The total number of PAW functions is

then equal to NI =
`max∑̀

=0

(2`+ 1)n`. Generally, `max is limited to the p or d orbitals (i.e. `max ≤ 1 or

2) and one or two PAW functions for each orbital are sufficient.
Usually PAW functions are first defined in the ball B(0, rc) and translated to RI .
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Vanderbilt scheme

Atomic wave function The functions φk are simply the atomic wave functions defined earlier
i.e. solutions to the atomic eigenvalue problem

HIφ
I
k = εkφ

I
k, εI1 ≤ εI2 ≤ εI3 ≤ . . . ,

∫
R3

φIjφ
I
k = δjk,

with
HI = −1

2
∆− ZI

|r|
+W (|r|).

The eigenfunctions φk can be decomposed into a spherical part Y`m and a radial part Rn`

φk(r) =
Rn`(r)

r
Y`m(r̂),

where k stands for the multiple indices (n, `,m).

Pseudo wave function The pseudo wave functions φ̃k are given by:

∀r ∈ R3, φ̃k(r) =
R̃n`(r)

r
Y`m(r̂).

Various choices of R̃n` are possible, for example, in [LPC+93], R̃n` is a polynomial inside the
augmentation region B(0, rc) :

R̃n`(r) =

r`+1
p∑

k=0

c2kr
2k for 0 ≤ r ≤ rc,

Rn`(r) for r > rc,

or in [KJ99], a sum of spherical Bessel functions j` :

R̃n`(r) =

r
p∑

k=1

αkj`(qkr) , for 0 ≤ r ≤ rc,

Rn`(r) for r > rc,

and the coefficients are chosen to match as many derivatives of Rn` as possible at rc.

Projector function First, define :

χn`(r) =
1

2
R̃′′n`(r) +

(
En −

`(`+ 1)

2r2
− V PP

` (r)

)
R̃n`(r),
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where V PP
` (r) is usually the Troullier-Martins pseudopotential [TM91] although other choices are

possible. By construction, supp(χn`) ⊂ [0, rc]. Let B be the matrix

Bn,n′ =

∫ rc

0

R̃n`(r)χn′`(r) dr.

The radial parts of the projector functions are given by

pn`(r) =

NI∑
n′=1

χn′`(r)
(
B−1

)
n′n

.

This ensures that
∫ rc

0
pn`(r)R̃n′`′(r) dr = δnn′δ``′ . The projector functions are defined by

p̃n`(r) =
pn`(r)

r
Y`m(r̂).

Blöchl scheme

The PAW functions are generated in two steps. For each angular momentum `, we define
auxiliary functions R̃0

n` and p0
n`:

Auxiliary functions Let χ(r) be the cut-off function

χ(r) =

{
sin(πr/rc)

(πr/rc)
for r ≤ rc,

0 for r > rc,

and let (Cn`, R̃
0
n`)n∈N∗ be the unique solution to:

−1
2
(R̃0

n`)
′′(r) + `(`+1)

2r2
R̃0
n` + (V PP

` − En)R̃0
n` = Cn`χ(r)R̃0

n`, 0 ≤ r ≤ rc

R̃0
n`(0) = 0

R̃0
n`(rc) = R0

n`(rc), (R̃0
n`)
′(rc) = (R0

n`)
′(rc).

(1.4.14)

Let p0
n` be the auxiliary functions:

p0
n`(r) =

χ(r)R̃0
n`(r)(

R̃0
n`(r)|χ(r)R̃0

n`(r)
) ,

where
(f |g) =

∫ rc

0

f(r)g(r) dr.

PAW functions The radial part of all the PAW functions are constructed with a Gram-Schmidt
process. We describe it here assuming that only two quantum numbers n1 < n2 are needed for the
computation. However, one should bear in mind that, on the one hand, usually, n2 = n1 + 1, and
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on the other hand, although limiting the procedure to two quantum numbers is in general sufficient
for practical purposes, it is straightforward to generalize the following orthogonalization procedure
to an arbitrary number of quantum numbers.

1. Basis: the first set of functions R̃n1`, pn1` and Rn1`, corresponding to the lowest principal
quantum number n used, are defined by

R̃n1` = R̃0
n1`
, pn1` = p0

n1`
, Rn1` = R0

n1`
.

2. Inductive step: if there is a second radial basis function for n2 > n1,
• first, the function R̃0

n2`
is orthogonalized against pn1`:

R̃n2`(r) = Fn2`

(
R̃0
n2`

(r)− R̃n1`(r)
(
pn1`|R̃0

n2`

))
, (1.4.15)

where the factor
Fn2` =

1(
1−

(
R̃0
n2`
|pn1`

)(
R̃0
n1`
|pn2`

))1/2

is a normalization constant;
• similarly, the function p0

n2`
is orthogonalized against R̃n1` by noticing that(

R̃0
n2`
|pn1`

)
=
(
R̃0
n1`
|p0
n2`

)
:

pn2`(r) = Fn2`

(
p0
n2`
− pn1`

(
R̃0
n2`
|pn1`

))
;

• finally, to ensure the continuity between the radial functions Rn2` and R̃n2`, we apply to
R0
n2`

the same linear combination in Equation (1.4.15)

Rn2`(r) = Fn2`

(
R0
n2`

(r)−Rn1`(r)
(
pn1`|R̃0

n2`

))
.

The PAW functions are given by

φn`m(r) =
Rn`(r)

r
Y`m(θ, ϕ), φ̃n`m(r) =

R̃n`(r)

r
Y`m(θ, ϕ),

p̃n`m(r) =
pn`(r)

r
Y`m(θ, ϕ).

1.4.5 Relationship with the Vanderbilt ultrasoft pseudopotentials

The Vanderbilt ultrasoft pseudopotentials and the PAW method are closely related as first
pointed out in [KJ99].

Indeed if in both methods, the same atomic wave functions (φi), pseudo wave functions (φ̃i) are
used and if the projector functions (p̃k) of the PAW method are generated using the Vanderbilt
scheme, it is easy to see that the overlap operators SUS (1.3.5) and SPAW (1.4.8) are equal and the
expression of the electron densities (1.3.4) and (1.4.10) are the same.
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For the ultrasoft and PAW Hamiltonians HUS and HPAW , the comparison is harder to make
because of the treatment of the exchange-correlation terms (see [KJ99]).

In practice, both methods yield similar results in most situations, however the PAW method
seems superior in some specific settings, where the PAW predictions are closer to experiments
[KJ99].

1.5 The APW method and its variants: a full-potential ap-
proach

Some methods have been developed aiming to solve directly the electronic eigenvalue problems
of periodic Hamiltonians.

The augmented plane-wave (APW) method [Sla37] and its variants (linearized APW method
[KA75], full-linearized APW method [WWF82]) are attempts in this direction. Instead of using
plane-waves to solve the eigenvalue problem, a different basis set more adapted to the problem
is used. The basis functions used in these methods are plane-waves that are modified in balls
centered at each nucleus in order to capture the cusp behavior of the electronic wave function. A
nonconforming method close to the APW method and the APW method applied to Kohn-Sham
Hamiltonians have been analyzed in [CS15].

The VPAW method presented in Chapter 2 and analyzed in different settings in Chapters 3
and 5 relies on the same principles. It is thus interesting to compare both methods and present the
results obtained in [CS15].

In this section, we consider a R-periodic linear Hamiltonian

H = −1

2
∆ + Vper +Wper, (1.5.1)

acting on L2
per(Γ) with domain H2

per(Γ) where Γ = [−L
2
, L

2
)3 is a unit cell repeated over a lattice

R := L
2
Ze1 + L

2
Ze2 + L

2
Ze3. Wper is a smooth R-periodic function and Vper is given by−∆Vper = 4π

( ∑
T∈R

Nat∑
I=1

ZI

(
δRI

(· + T)− 1
|Γ|

))
Vper is R-periodic.

We denote by V the potential Vper +Wper for the remainder of this section.

1.5.1 Basic theory

In this setting, the operator H is a self-adjoint operator, bounded below with a compact
resolvent, hence, its spectrum is purely discrete. To take advantage of the periodicity, Fourier
method is the method of choice. However, because of the lack of regularity of Vper, the plane-wave
expansions of the eigenfunctions of H are slowly converging, which is why pseudopotential methods
are used.
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In the augmented plane-wave (APW) method, instead of modifying the Hamiltonian, a different
basis set is used which is not sensitive to the cusps resulting from the Coulomb interaction with
the nuclei. The new basis set is defined by partitioning the unit cell Γ into two types of regions
(the so-called muffin-tin division):

i) balls B(RI , rc), I = 1, . . . ,M ;
ii) the remaining interstitial region D.

The basis functions consist of augmentations of plane-waves:

ωK(r) =


eiK·r in D
`max∑̀

=0

∑̀
m=−`

αK
`mχ`(rI)Y`m(r̂I) in each B(RI , rc)

(1.5.2)

where rI = r − RI . The coefficients (αK
`m)|m|≤`≤`max are set to match the spherical harmonics

expansion of eiK·r at the boundaries of the balls B(RI , rc). More precisely, using the scattering
expansion

eiK·r = 4π
∞∑
`=0

∑̀
m=−`

i`j`(Kr)Y`m(K̂)Y`m(r̂),

where j` is the spherical Bessel function of the first kind, the coefficients αK
`m are given by

αK
`m = eiK·RI

4πi`

χ`(rc)
j`(Krc)Y`m(K̂),

provided that χ`(rc) 6= 0. The functions χ` will be made explicit in the description of the different
types of APW methods.

The eigenvalue problem associated to the linear Hamiltonian H (1.5.1) is solved using the basis
functions ωK. These basis functions are however not continuous at the boundary of the balls
B(RI , rc), hence they do not belong to H1(Γ): the APW method is a nonconforming method.

A mathematical analysis of this nonconforming method has been presented in [CS15]. The
finite dimensional approximation space VM,`max,N is given by the span of the functions of the form:

ωK(r) =


eiK·r in D
`max∑̀

=0

∑̀
m=−`

N∑
n=0

cn`mχn(rI)Y`m(r̂I) in each B(RI , rc)
,

where |K| ≤ M , (χn)0≤n≤N is a basis of the polynomials on [0, rc] of degree at most N and cn`m
are any coefficients satisfying:

N∑
n=0

cn`mχn(rc) = 4πi`j`(Krc)Y`m(K̂)e−iK·RI .

They proved the following convergence theorem for this nonconforming method.
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Theorem 1.5 (Theorem 3.4 in [CS15]). Let η = min(M, `max, N) where (M, `max, N) are the
parameters of the nonconforming method. Let Eη be an eigenvalue computed using the variational
space VM,`max,N and E the corresponding exact eigenvalue of H (1.5.1). Then for η large enough
and for any s > 0,

|Eη − E| ≤
Cs

ηs−
3
2

,

where Cs depends on s.

The proof of Theorem 1.5 relies on the good behavior of the eigenfunctions of H in the interstitial
region D, where they are smooth, and a precise characterization of the singularities close to the
nuclei given by the theory of weighted Sobolev space for Schrödinger type eigenvalue problem
[HNS08, FSS08]. This characterization is also used in the analysis of the VPAW method for this
type of eigenvalue problem (Chapter 5).

1.5.2 The APW method

For the classical APW method originally formulated by Slater [Sla37], the basis functions are of
the form (1.5.2) where the functions χ` are nontrivial solutions of the radial Schrödinger equation

∀ r ∈ (0, rc), −
1

r2

d

dr

(
r2 dχ`

dr

)
+

(
`(`+ 1)

r2
+ V (r)− ε

)
χ`(r) = 0, (1.5.3)

where V (r) = 1
4π

∫
S(0,1)

V (r) dr̂ and V is the potential appearing in H (1.5.1).
The approximation space is V ε

M`max
= span(ωεK`max

, |K| ≤M) with

ωεK`max
(r) =


eiK·r in D,
`max∑̀

=0

∑̀
m=−`

αK
`mχ`(rI)Y`m(r̂I) in each B(RI , rc).

If the potential V is radial and if the parameter ε is equal to the exact eigenvalue, then χ` solves
the eigenvalue problem inside the sphere. By the APW method, a nonlinear eigenvalue problem
has to be solved: the eigenpair (EM`max , vM`max) ∈ R× V EM`max

M`max
is sought solving

∀ v ∈ V EM`max
M`max

, 〈vM`max , Hv〉 = EM`max〈vM`max , v〉.

This method is thus computationally expensive and is restricted to simple systems with few
eigenvalues.

The APW method has been analyzed in [CS15] under the assumption that the potential V is
supposed radial in the augmentation balls B(RI , rc). The authors showed a convergence rate of
the computed eigenvalue similar to the noncorforming method presented previously (Theorem 3.5
[CS15]).

A solution to the nonlinearity introduced by the APW method has been proposed in [KA75].
The authors suggested to add energy derivatives of the functions χ`. These energy derivatives are
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defined by

χ̇`(r, E) =
∂

∂ε
χ`(r, ε)|ε=E,

where χ` is kept normalized in the ball. This leads to the LAPW (Linearized APW) method. The
approximation space is Ṽ E

M`max
= span(ω̃εK,`max

, |K| ≤M) with

ω̃εK`max
(r) =


eiK·r in D,
`max∑̀

=0

∑̀
m=−`

[αK
`mχ`(rI) + βK

`mχ̇`(rI)]Y`m(r̂I) in each B(RI , rc).

The coefficients αK
`m and βK

`m are determined to match the coefficients of the scattering expansion
of eiK·r and its derivative at the sphere.

Heuristic arguments of the convergence properties of the LAPW have been given in [KA75, CS15].
Namely if the parameter ε appearing in (1.5.3) is chosen close to the exact eigenvalue E and under
the assumption that the logarithmic derivatives of χ`(·, ε) and χ`(·, E) match on the sphere i.e.

χ′`(rc, ε)

χ`(rc, ε)
=
χ′`(rc, E)

χ`(rc, E)
,

then the error on the eigenvalues computed with the LAPW method are controlled by:

∀ s > 1, |ELAPW − E| ≤ Cs(M
1−s + `max

1−s + |E − ε|4).

The assumption on the logarithmic derivatives has not been proved, hence the convergence rate is
only conjectured.
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CHAPTER 2

THE VPAW METHOD AND ITS ANALYSIS

The PAW method presented in Section 1 introduces an approximation by truncating the PAW
generalized eigenvalue problem. It is possible to avoid this by truncating the operator TI acting
locally around the nucleus I right at the beginning.

This new method, called variational PAW (VPAW) method [BCD17a], has been analyzed in
a one-dimensional periodic Schrödinger operator with Dirac potentials [BCD17b]. It is shown
that the VPAW method drastically improves the plane-wave convergence of the eigenvalues of this
model. The VPAW method also helped to analyze the approximation induced by the PAW method
[Dup17]. Finally, the plane-wave convergence of the VPAW method has also been analyzed when
applied to periodic 3D Hamiltonians [Dup18].

In Section 2.1, the VPAW method is presented for eigenvalue problems arising from solid-state
physics. In Section 2.2, the VPAW formalism is applied to the periodic one-dimensional Schrödinger
operator with Dirac potentials. Estimates on the eigenvalues of the plane-wave discretization using
the VPAW method are given. A summary of the analysis of the truncation error introduced by the
PAW method is also exposed. Section 2.3 is devoted to the plane-wave discretization of eigenvalue
problems of periodic 3D linear Hamiltonians with Coulomb potentials using the VPAW method.

2.1 The VPAW method

2.1.1 General setting

The crystal is modeled as an infinite periodic motif of Nat point charges at positions RI in the
unit cell

Γ =
{
α1a1 + α2a2 + α3a3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
,

and repeated over the periodic lattice

R = Za1 + Za2 + Za3,

where a1, a2, a3 are linearly independent vectors of R3.

41
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In the linear model under consideration, the electronic properties of the crystal are encoded in
the spectral properties of the periodic Hamiltonian Hper acting on L2(R3):

Hper = −1

2
∆ + Vper +Wper,

where Vper is the R-periodic potential defined (up to an irrelevant addition constant) by−∆Vper = 4π

(∑
T∈R

Nat∑
I=1

ZI

(
δRI

(·+ T)− 1

|Γ|

))
Vper is R-periodic.

(2.1.1)

For simplicity, Wper is a regular enough R-periodic potential. In practice, Wper is a nonlinear
potential depending on the model chosen to describe the Hartree and exchange-correlation terms
(typically a Kohn-Sham LDA potential).

The standard way to study the spectral properties of Hper is through Bloch theory ([RS78],
Chapter XIII) which will be outlined in the next few lines. Let R∗ be the dual lattice

R∗ = Za∗1 + Za∗2 + Za∗3,

where (a∗1, a
∗
2, a
∗
3) satisfies ai · a∗j = 2πδij. The reciprocal unit cell is defined by

Γ∗ =
{
α1a

∗
1 + α2a

∗
2 + α3a

∗
3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

As Hper commutes with R-translations, Hper admits a Bloch decomposition [RS78] in operators Hq

acting on
L2

per(Γ) = {f ∈ L2
loc(R3) | f is R-periodic},

with domain
H2

per(Γ) = {f ∈ H2
loc(R3) | f is R-periodic}.

The operator Hq is given by:

Hq =
1

2
| − i∇+ q|2 + Vper +Wper, q ∈ Γ∗.

For each q ∈ Γ∗, the operator Hq is self-adjoint, bounded below and with compact resolvent. It
thus has a discrete spectrum. Denoting by E1,q ≤ E2,q ≤ . . . , with En,q −→

n→+∞
+∞, its eigenvalues

counted with multiplicities, there exists an orthonormal basis of L2
per(Γ) consisting of eigenfunctions

(ψn,q)n∈N∗
Hqψn,q = En,qψn,q. (2.1.2)

The spectrum of Hper is purely continuous and can be recovered from the discrete spectra of all the
operators Hq, q ∈ Γ∗

σ(Hper) =
⋃
q∈Γ∗

σ(Hq).
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The PAW and VPAW methods aim to ease the numerical approximation of the eigenvalue
problem (2.1.2). For clarity, we will only present the case q = 0 and denote H0 by H as this special
case encloses all the main difficulties encountered in numerically solving (2.1.2). Transposition to
q 6= 0 can be done without problem.

2.1.2 The VPAW method for solids

Following the idea of the PAW method, an invertible transformation (Id + T ) is applied to
the eigenvalue problem (2.1.2), where T is the sum of operators TI , each TI acting locally around
nucleus I. For each operator TI , two parameters NI and rc need to be fixed:

1. the number NI of PAW functions used to build TI ,
2. a cut-off rc radius which set the acting domain of TI , more precisely:

• for all f ∈ L2
per(Γ), supp(TIf) ⊂

⋃
T∈R

B(RI + T, rc),

• if supp(f)
⋂ ⋃

T∈R
B(RI + T, rc) = ∅, then TIf = 0.

The cut-off radius rc must be chosen small enough to avoid pairwise overlaps of the balls
(B(RI + T, rc))1≤I≤Nat,T∈R.

The operator TI is given by:

TI =

NI∑
k=1

(φIk(r−RI)− φ̃Ik(r−RI))
〈
p̃Ik(· −RI) , ·

〉
, (2.1.3)

where 〈· , ·〉 is the usual L2
per-scalar product and the functions φIk, φ̃Ik and p̃Ik are functions in L2

per(Γ).
Compared to the PAW method, the sum appearing in (2.1.3) is finite.

rc
Tf = 0

Tf 6= 0

Figure 2.1.1 – Unit cell with PAW balls in blue

These functions, which will be referred to as the PAW functions in the sequel, are chosen as
follows:

1. first, let (ϕIk)1≤k≤NI ∈ (L2(R3))NI be eigenfunctions of an atomic non-periodic Hamiltonian

HIϕ
I
k = εkϕ

I
k, εI1 ≤ εI2 ≤ εI3 ≤ . . . ,

∫
R3

ϕIkϕ
I
k′ = δkk′ ,
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with HI defined by

HI = −1

2
∆− ZI

|r|
+W (|r|), (2.1.4)

where W is a regular enough bounded potential. The operator HI is self-adjoint on L2(R3)
with domain H2(R3). Again, in practice, W is a nonlinear potential (assumed radial see the
discussion Section 1.2.1) belonging to the same family of models as Wper in Equation (2.1.1).
The PAW atomic wave functions (φIk)1≤k≤NI ∈ (L2

per(Γ))NI satisfy:
— for 1 ≤ k ≤ NI and r ∈ B(0, rc), φIk(r) = ϕIk(r),
— φIk is smoothly extended outside the ball, such that φIk is R-periodic.

The way φIk is extended does not really matter since in the following, only the difference
φIk − φ̃Ik -which vanishes outside the balls

⋃
T∈R

B(T, rc)- appears in the VPAW equations.

2. the pseudo wave functions (φ̃Ik)1≤k≤NI , with NI ≤ ZI , are determined by the next conditions:

(a) inside the ball B(0, rc), φ̃Ik is smooth and matches φIk and several of its derivatives on
the sphere {|r| = rc},

(b) φ̃Ik is R-periodic,
(c) for r ∈ R3 \

⋃
T∈R

B(T, rc), φ̃Ik(r) = φIk(r);

3. the projector functions (p̃Ik)1≤k≤NI are defined such that:
(a) each projector function p̃Ik is supported in

⋃
T∈R

B(T, rc),

(b) they form a dual family to the pseudo wave functions (φ̃Ik)1≤k≤NI :
〈
p̃Ik , φ̃

I
k′

〉
= δkk′ .

By our choice of the pseudo wave functions φ̃Ik and the projectors p̃Ik, TI acts in⋃
T∈R

B(RI + T, rc). Since the atomic Hamiltonian (2.1.4) is spherically symmetric, the PAW

functions can be written as a product of radial function and a spherical harmonic. Examples of the
radial parts is plotted in Figure 2.1.2.

The VPAW equations to solve are then:

H̃ψ̃ = ES̃ψ̃, (2.1.5)

where
H̃ = (Id + T )∗H(Id + T ), S̃ = (Id + T )∗(Id + T ), (2.1.6)

and

T =
Nat∑
I=1

TI .

Thus if (Id + T ) is invertible, it is easy to recover the eigenfunctions of H by the formula

ψ = (Id + T )ψ̃, (2.1.7)

and the eigenvalues of H coincide with the generalized eigenvalues of (2.1.5).
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Figure 2.1.2 – Plot of the radial part of some PAW functions for rc = 1.5.

By construction, the operator (Id + TI) maps the pseudo wave functions φ̃ to the atomic
eigenfunctions φ:

(Id + TI)φ̃
I
k(· −RI) = φIk(· −RI),

so if locally around each nucleus, the function ψ "behaves" like the atomic wave functions φk, we
can expect that the cusp behavior of ψ is captured by the operator T , thus ψ̃ is smoother than ψ
and the plane-wave expansion of ψ̃ converges faster than the expansion of ψ.

Remark 2.1. The VPAW method, compared to the PAW method presented in Chapter 1, is exact,
in the sense that no approximation is needed to get the VPAW equation (2.1.5).

Since no pseudopotential is used to replace the Coulomb potentials, the discretized eigenfunction
ψ̃ may have cusps at the positions of the nuclei. However, the analysis of the VPAW method for a
one-dimensional toy model and 3D linear Hamiltonian shows that the cusp is reduced significantly.
Hence, the eigenvalues are accurately computed using small plane-wave cut-offs.

2.1.3 Computational complexity

A detailed analysis of the computational cost of the PAW method can be found in [LT15]: the
cost scales like O(NM + M logM) where N =

∑
I NI is the total number of projectors and M

the number of plane-waves. Usually, N is chosen relatively small, but M may be large, so it is
important to avoid a computational cost of order M2.

In practice, we are interested in the cost of the computation of H̃ψ̃ and S̃ψ̃ where ψ̃ is expanded
in M plane-waves as the generalized eigenvalue problem is solved by a conjugate gradient algorithm.
We will only focus on H̃ψ̃ since the analysis S̃ψ̃ is similar. Let us split H̃ into four terms:

H̃ψ̃ = Hψ̃ + PDHP
T ψ̃ +H

(
Φ− Φ̃

)
P T ψ̃ + PH

(
Φ− Φ̃

)T
ψ̃,
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where P is the M ×N matrix of the projector functions, H(Φ− Φ̃) the M ×N matrix of the Fourier
representation of the N functions H(φi − φ̃i), and DH is the N ×N matrix

〈
φi − φ̃i , H(φj − φ̃j)

〉
.

The computational cost can be estimated as follows (the cost at each step is given in brackets):

1. Hψ̃ is assembled in two steps. First, −1
2
∆ψ̃ is computed in O(M) since the operator 1

2
∆ is

diagonal in Fourier representation. For the potential V , apply an inverse FFT to ψ̃ to have
the real space representation of ψ̃, multiply pointwise by V and apply a FFT to the whole
result (O(M logM));

2. for PDHP
T ψ̃, compute the N projections P T ψ̃ (O(MN)), then successively apply the

matrices DH (O(N2)) and P (O(MN));

3. for PH(Φ−Φ̃)T ψ̃, similarly apply successivelyH(Φ−Φ̃)T to ψ̃ (O(MN)) and P toH(Φ−Φ̃)T ψ̃
(O(MN));

4. for H(Φ− Φ̃)P T ψ̃, we proceed as in step 3.

Thus, the total numerical cost is of order O(MN +M logM) which is the same as for the PAW
method.

The matrix H(Φ − Φ̃) is approximated by a plane-wave expansion, which may be a poor
approximation because of the singularities of Φ. However, it should be noticed that this is only an
intermediary in the computation of ψ̃, which is well approximated by plane-waves. Hence it is not
clear that a poor approximation of H(Φ− Φ̃) should imply a poor approximation of ψ̃. Numerical
tests seem to confirm this statement (see Sections 3.5 and 5.4).

2.2 Analysis in a one-dimensional setting

2.2.1 The one-dimensional model

The 1-D periodic Schrödinger operator selected to study the efficiency of the VPAW method
is the following operator H acting on L2

per(0, 1) := {φ ∈ L2
loc(R) | φ 1-periodic} with form domain

H1
per(0, 1) := {φ ∈ L2

per(R) | φ′ ∈ L2
loc(R)}:

H = − d2

dx2
− Z0

∑
k∈Z

δk − Za
∑
k∈Z

δk+a, (2.2.1)

where 0 < a < 1, Z0, Za > 0. A mathematical analysis of this model has been carried out in [CD17]
where it is shown that the spectrum of H is purely discrete. The eigenfunctions of H have cusps at
the location of the Dirac potentials that are reminiscent of the Kato cusp condition:

[ψ′]0 := ψ′(0+)− ψ′(0−) = −Z0ψ(0).

There are two negative eigenvalues E0 = −ω2
0 and E1 = −ω2

1 which are given by the zeros of
the function

f(ω) = 2ω2(1− cosh(ω)) + (Z0 + Za)ω sinh(ω)− Z0Za sinh(aω) sinh((1− a)ω).
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Figure 2.2.1 – Ground-state of the one-dimensional operator H defined in (2.2.1) for Z0 = Za = 10

The corresponding eigenfunctions are

ψk(x) =

{
A1,k cosh(ωkx) +B1,k sinh(ωkx) , 0 ≤ x ≤ a,

A2,k cosh(ωkx) +B2,k sinh(ωkx) , a ≤ x ≤ 1,

where the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions and the
derivative jumps at 0 and a.

There is infinitely many positive eigenvalues Ek+2 = ω2
k+2 which are given by the k-th zero of

the function:

f(ω) = 2ω2(1− cos(ω)) + (Z0 + Za)ω sin(ω) + Z0Za sin(aω) sin((1− a)ω),

and the corresponding eigenfunctions Hψk = ω2
kψk are

ψk(x) =

{
A1,k cos(ωkx) +B1,k sin(ωkx) , 0 ≤ x ≤ a,

A2,k cos(ωkx) +B2,k sin(ωkx) , a ≤ x ≤ 1,

where again the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions
and the derivative jumps at 0 and a.

2.2.2 Acceleration of convergence for the VPAW method

To transpose the VPAW method, an invertible operator (Id + T ) is applied to the original
eigenvalue problem

(Id + T ∗)H(Id + T )ψ̃ = E(Id + T ∗)(Id + T )ψ̃, (2.2.2)

where T = T0 + Ta and

T0 =
N∑
i=1

(φi − φ̃i) 〈p̃i , ·〉 , Ta =
N∑
i=1

(φai − φ̃ai ) 〈p̃ai , ·〉 ,
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where T0 (respectively Ta) acts in
⋃
k∈Z

[−rc + k, rc + k] (resp. Ta acts in
⋃
k∈Z

[a− rc + k, a+ rc + k])

For T0, the PAW functions are defined by
1. the atomic wave functions (φk)1≤k≤N are the even and nonsmooth solutions of the atomic

operator

H0 = − d2

dx2
− Z0

∑
k∈Z

δk

2. the pseudo wave functions (φ̃k)1≤k≤N are the one-periodic functions satisfying

— for |x| ≤ rc, φ̃k is an even polynomial,

— for x /∈
⋃
k∈Z

[−rc + k, rc + k], φ̃k(x) = φk(x) and matches φk and its derivatives up to the

d− 1 order at rc.
3. the projector functions are obtained by orthogonalizing the pseudo-wave functions (φ̃k)1≤k≤N

on the interval [−rc, rc] against a nonnegative cut-off function ρ supported in⋃
k∈Z

[−rc + k, rc + k].

The detailed definition of these functions can be found in Chapter 3. Examples of PAW functions
are plotted in Figure 2.2.2. Notice that plots in Figure 2.1.2 and Figure 2.2.2 are very similar. In
this regard, the analysis of the VPAW method in this one-dimensional setting as a preliminary step
for a three-dimensional study seems relevant.

Figure 2.2.2 – Some PAW functions for the one-dimensional toy model (Z0 = 10, a = 0.4, rc = 0.1)

We are going to use the following assumptions.

Assumption 2.1. 1. The cut-off radius rc is smaller than some rmin > 0;
2. The matrix (〈p̃k , φ`〉)1≤k,`≤N is invertible for all 0 < rc ≤ rmin.

Under Assumption 2.1, a simple argument proves that the VPAW method gives a well-posed
problem, i.e. (Id + T ) is invertible and the projector functions (p̃k)1≤k≤N are well-defined.
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Cusp reduction and acceleration of convergence

The Fourier convergence of the eigenvalues is driven by the singularities of the pseudo-wave
function ψ̃, hence we need to study the cusp reduction of the pseudo-wave function ψ̃.

From the invertibility of the operator (Id + T ) and the duality of the families (φ̃j)1≤j≤N and
(p̃k)1≤k≤N , we can show (see Lemma 3.11 in Chapter 3) that for any (ck)1≤k≤N , the cusp of the
pseudo wave function ψ̃ is given by

[ψ̃′]0 = −Z0

(
ψ(0)−

N∑
k=1

ckφk(0)− A−1〈p̃, ψ −
N∑
k=1

ckφk〉 · Φ(0)

)
(2.2.3)

where p̃ = (p̃1, . . . , p̃N)T , Φ = (φ1, . . . , φN)T and A the N × N matrix of coefficients
Ajk =

〈
p̃j , φ̃k

〉
.

Since this holds for any set of coefficients (ck)1≤k≤N , the best approximation of ψ by a linear
combination of φk on the interval [−rc, rc] gives the order of the cusp reduction. As the atomic
functions φk and the molecular wave function ψ behave similarly near a Dirac potential, the best
approximation of ψ by φk should be very good. For this particular model, we are able to show
there exists (ck)1≤k≤N ∈ RN and a constant C independent of rc such that the best approximation
of the even part ψe of ψ satisfies∥∥∥∥∥ψe −

N∑
k=1

ckφk

∥∥∥∥∥
L∞(−rc,rc)

≤ Crc
2N . (2.2.4)

The matrix A also depends on the cut-off radius rc and becomes more and more ill-conditioned as rc
goes to 0. The previous estimate does not necessarily guarantee a cusp reduction of order rc2N . Using
the behavior of the atomic wave function near a Dirac potential, we can show that there exists a
constant C independent of rc such that for any f ∈ L∞(−rc, rc), |A−1〈p̃, f〉 · Φ(0)| ≤ C‖f‖L∞(−rc,rc)
(see Lemmas 3.13 and 3.14). Hence, using (2.2.3) and (2.2.4), the cusp of the VPAW eigenfunction
ψ̃ is reduced by a factor rc2N , i.e. there exists a constant C independent of rc such that∣∣∣[ψ̃′]0∣∣∣ ≤ Crc

2N .

The cusp reduction comes at the expense of a d-th derivative blow-up where the pseudo atomic
wave function φ̃i matches φi. This blow-up can be estimated and we can show that there exists a
positive constant C independent of rc such that∣∣∣[ψ̃(d)]rc

∣∣∣ ≤ C

rcd−1
.

This estimate mostly stems from the fact that the pseudo wave functions (φ̃i)1≤i≤N can be rewritten
as even polynomials of the form P ( ·

rc
), hence differentiating d times a factor 1

rcd
comes. By a careful

analysis, it is possible to save a factor rc in full agreement with the numerical tests (see Chapter 3).
Using classical estimates on variational approximation of eigenvalue problems [Wei74], the

following bounds are obtained on the convergence of the VPAW method.
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Figure 2.2.3 – VPAW error Eη
M − E

Theorem 2.2 (Estimates on the eigenvalues). Let N ∈ N∗ be the number of PAW functions of
smoothness d ≥ N used at each nucleus. Let Erc

M be an eigenvalue of the variational approximation
of (2.2.2) in a basis of M plane-waves and for a cut-off radius 0 < rc ≤ rmin (rmin given by
Assumption 2.1). Let E be the corresponding exact eigenvalue of (2.2.1). Under Assumption 2.1,
there exists a constant C > 0 independent of rc and M such that for all 0 < rc ≤ rmin and M ≥ 1

rc

0 < Erc
M − E ≤ C

(
rc

4N

M
+

1

rc2d−2

1

M2d−1

)
. (2.2.5)

Since the cusp is only reduced and not completely erased, for large M the VPAW method does
not converge faster than the direct method applied to the original eigenvalue problem. However, in
a pre-asymptotic regime, for small values of the cut-off radius rc and/or large N , the prefactor rc4N
can be made small. For low values of the cut-off radius rc, the prefactor rc2−2d of the second term
which become dominant in the eigenvalue error. Thus a natural strategy consists in balancing both
errors.

Numerical tests show that the estimate (2.2.5) is optimal (see Section 3.5). Plots on the
dependence on the cut-off radius (see Figure 2.2.3 and other examples in Section 3.5) suggest that
a numerical study of the dependence on the other PAW parameters N, d of the prefactor in the
estimate (2.2.5) is possible. Intercepts of the lines appearing in Figure 2.2.3 can be computed. It
would be interesting to investigate the sensitivity of the prefactor with respect to the choice of
these other PAW parameters.

2.2.3 Analysis of the PAW method

An analysis of the truncation error induced by the PAW method (i.e. before the plane-wave
discretization) has been carried out for the lowest eigenvalue of the one-dimensional Schrödinger
operator (2.2.1). This error is estimated for both PAW methods with and without pseudopotentials.
Full proofs of the upcoming results are regrouped in Chapter 4.



2.2. Analysis in a one-dimensional setting 51

PAW method without pseudopotentials

The eigenvalue problem for the PAW method without pseudopotential is

HNf = E(rc)SNf, (2.2.6)

where the operators HN and SN are given by

HN = H +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (2.2.7)

and

SN = Id +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
. (2.2.8)

The PAW functions (φi)1≤i≤N , (φ̃i)1≤i≤N and (p̃i)1≤i≤N are the same as for the VPAW method.

Theorem 2.3. Let N ∈ N∗ be the number of PAW functions used at each nucleus. Let E(rc) be the
lowest eigenvalue of the generalized eigenvalue problem (2.2.6). Let E0 be the lowest eigenvalue of
H (2.2.1). Under Assumption 2.1, there exists a positive constant C independent of rc such that
for all 0 < rc ≤ rmin

− Crc ≤ E(rc) − E0 ≤ Crc
2N . (2.2.9)

The bounds (2.2.9) on the PAW error are proved by noticing that the PAW eigenvalue problem
(2.2.6) can be written as a perturbation of the VPAW eigenvalue problem (2.2.2), which has the
same eigenvalues as the original problem. The good upper bound is a consequence of the good
approximation (2.2.4) of the eigenfunction ψ of the one-dimensional Schrödinger operator H by N
atomic wave functions (φk)1≤k≤N .

As N goes to ∞, the PAW and VPAW methods yield the same equations. Hence E(rc) should
converge to E0, which is not obvious from (2.2.9). However the prefactor appearing in (2.2.9)
depends on N and we expect this prefactor to go to 0 as N goes to ∞. The dependence on this
parameter has however not been tracked in the proof of Theorem 2.3.

Since the Dirac potentials are not removed in the PAW eigenvalue problem (2.2.6), Fourier
methods are expected to converge slowly, which makes this problem of little interest in practice.

PAW method with pseudopotentials

Introducing a smooth pseudopotential in the PAW eigenvalue problem is essential to solve the
eigenvalue problem efficiently. In this one-dimensional setting, the Dirac potentials are replaced by
a smooth 1-periodic potential χε =

∑
k∈Z

1
ε
χ
( ·−k

ε

)
with ε ≤ rc, such that

1. χ is a smooth nonnegative function with support [−1, 1] and
∫ 1

−1
χ(x) dx = 1;

2. χε −→
ε→0

∑
k∈Z

δk in H−1
per(0, 1).
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The PAW eigenvalue problem becomes

HPAWf = EPAW
(rc) SPAWf, (2.2.10)

where

HPAW = Hps +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hpsφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (2.2.11)

with Hps = − d2

dx2
− Z0χε − Zaχε(· − a) and

SPAW = SN = Id +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
. (2.2.12)

Using the same PAW functions as for the VPAW method, the following estimates can be proved
on the lowest eigenvalue of (2.2.10).

Theorem 2.4. Let N ∈ N∗ be the number of PAW functions used at each nucleus. Let EPAW
(rc)

be
the lowest eigenvalue of the generalized eigenvalue problem (2.2.10). Let E0 be the lowest eigenvalue
of H (2.2.1). Under Assumption 2.1, there exists a positive constant C independent of rc such that
for all 0 < rc ≤ rmin

− Crc ≤ EPAW
(rc) − E0 ≤ Crc

2. (2.2.13)

The PAW error estimates are again proved by considering the PAWmethod with pseudopotentials
as a perturbation of the VPAW method. However, because of the introduction of pseudopotentials,
the good upper bound in (2.2.9) of the PAW method without pseudopotentials is lost. This is
due to the fact that the best approximation estimate (2.2.4) holds only for the even part of the
molecular wave function ψ and that for a smooth odd function g,

∫ rc
−rc χrc(x)|g(x)|2 dx = O(rc

2).
By introducing odd PAW functions, the good upper bound of Theorem 2.3 can be recovered.

Theorem 2.5. Let N ∈ N∗ be the number of even and odd PAW functions used at each nucleus. Let
EPAW

(rc)
be the lowest eigenvalue of the generalized eigenvalue problem (2.2.10). Let E0 be the lowest

eigenvalue of H (2.2.1). Under Assumption 2.1, there exists a positive constant C independent of
rc such that for all 0 < rc ≤ rmin

−Crc ≤ EPAW
(rc) − E0 ≤ Crc

2N .

Since the eigenfunctions of (2.2.10) are smooth, Fourier methods converge fast to the PAW
eigenvalue. More precisely, the following bound can be proved.

Theorem 2.6. Let N ∈ N∗ be the number of PAW functions used at each nucleus. Let EPAW
M be

the lowest eigenvalue of the variational approximation of (2.2.10), with HPAW given by (2.2.11)
in a basis of M plane waves. Let E0 be the lowest eigenvalue of H (2.2.1). There exists a positive
constant C independent of rc and M such that for all 0 < rc < rmin and for all n ∈ N∗

∣∣EPAW
M − E0

∣∣ ≤ C

(
rc +

rc
2

(rcM)n

)
.
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To compute the lowest eigenvalue of the one-dimensional Schrödinger operator H (2.2.1) up to
a tolerance ε, the cut-off radius should be set at rc = ε

C
and the generalized eigenvalue problem

(2.2.10) should be solved using M = d 1
rc
e plane-waves.

The prefactor appearing in Theorems 2.3 to 2.6 depends on the other PAW parameters N and
d. It would be interesting to investigate numerically the sensitivity to these parameters.

2.3 Analysis of the VPAW method for 3D Hamiltonians

An analysis of the VPAW method for the plane-wave discretization of the 3D eigenvalue problem
(2.1.2) has been achieved and can be found in Chapter 5. In the VPAW method, the eigenvalue
problem Hψ = Eψ is replaced by:

(Id + T )∗H(Id + T )ψ̃ = E(Id + T )∗(Id + T )ψ̃. (2.3.1)

The construction of the operator T has already been explained in Section 2.1.2. The atomic wave
function (φIk)1≤k≤NI are the eigenfunctions of the atomic Hamiltonian (2.1.4). When W is a smooth
bounded function (this requirement can be weakened see Theorem XIII.8 in [RS78] or [Sol91]), the
eigenfunctions (φIk)1≤k≤NI can be written for some ` ∈ N, |m| ≤ `, n ∈ N:

φIk(r) = r`Rn`(r)Y`m(r̂).

Since the definition of the pseudo-wave function (φIk)1≤k≤NI depends on the form of the atomic
wave functions, these can also be written in that form. This also applies to the projector functions
(p̃k)1≤k≤NI . Hence the PAW functions can be written

φIk(r) = r`Rn`(r)Y`m(r̂), φ̃Ik(r) = r`R̃n`(r)Y`m(r̂),

pIk(r) = r`pn`(r)Y`m(r̂).

The PAW functions are chosen from a range (0, . . . , `max) of angular momentum and for each
angular momentum `, n` PAW functions are defined. The total number of PAW functions is then

NI =
`max∑̀

=0

(2`+ 1)n`.

Because the PAW functions have some radial symmetry, conditions for the well-posedness of
the VPAW method are very similar to the one-dimensional case.

Assumption 2.2. 1. (Existence of the projector functions (p̃k)1≤k≤NI) For all 0 < rc < rmin

and each 0 ≤ ` ≤ `max, (R(k)(rc))0≤k≤n`−1 is a linearly independent family, where R is the
vector of the functions (R1`, . . . , Rn``).

2. (Invertibility of Id+T ) For all 0 < rc < rmin and any 0 ≤ ` ≤ `max, the matrix (〈pn` , Rn′`〉)1≤n,n′≤n`
is invertible.

The plane-wave convergence rate of the computed eigenvalues depends on the singularities of
the associated eigenfunction. The proper way to characterize their singularities is through weighted
Sobolev spaces [ES12].
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2.3.1 Weighted Sobolev space

We denote by S the set of the position of the nuclei

S = {RI + T, I = 1, . . . , Nat, T ∈ R}.

Let χ be a R-periodic continuous function such that χ(RI + r) = r for small r, χ ∈ C∞loc(R3 \S).

Definition 2.7 ([ES12]). Let k ∈ N and γ ∈ R. We define the k-th weighted Sobolev space with
index γ by:

Kk,γ(Γ) =
{
u ∈ L2

per(Γ) : χ|α|−γ∂αu ∈ L2
per(Γ) ∀ |α| ≤ k

}
. (2.3.2)

Consider a subspace of functions with the asymptotic expansions

u(RI + r) ∼
∑
j∈N

cj(r̂)r
j as r → 0, I ∈ [[1, Nat]] (2.3.3)

where cj belongs to the finite dimensional subspace Mj = span{Y`m, 0 ≤ ` ≤ j, |m| ≤ `}.

Definition 2.8. For k ∈ N, γ ∈ R, we define the weighted Sobolev spaces with asymptotic type
(2.3.3):

K k,γ(Γ) =

{
u ∈ Kk,γ(Γ)

∣∣∣∣ ηN ∈ Kk,γ+N+1(Γ) where ηN is the Γ-periodic function defined in Γ by

∀N ∈ N, ∀r ∈ Γ, ηN(r) = u(r)−
Nat∑
I=1

ω(|r −RI |)
N∑
j=0

cj(r̂−RI)|r−RI |j
}
,

(2.3.4)

where ω is a smooth positive cutoff function, i.e. ω = 1 near 0 and ω = 0 outside some neighbourhood
of 0.

The expansion (2.3.3) can be viewed as a “regularity expansion”. Let us suppose that the
functions cj in the singular expansion are constant. Then all the even terms appearing in (2.3.4) are
smooth since for any k ∈ N, r 7→ r2k is smooth. For the odd terms in the expansion, the function
r 7→ r is continuous but not differentiable at the origin, the function r 7→ r3 is C2 but not C3 and
so on. Since the decay of the Fourier coefficients depends on the regularity of the function, this
expansion enables one to characterize precisely this decay.

Definition 2.9. A function u is asymptotically well-behaved if u ∈ K ∞,γ(Γ) for γ < 3/2.

Remark 2.10. It is easy to see that if u is asymptotically well-behaved then by the definition of the
weighted Sobolev space with asymptotic type (2.3.3), the remainder

η(r) = u(r)− ω(r)
N∑
j=0

cj(r̂)r
j is in the classical Sobolev space H5/2+N−ε

per (Γ).

The following result, stated in [HNS08, CS15] (see also [FSS08] for similar results for Hartree-
Fock models), gives the regularity of the eigenfunction of (2.1.2) in terms of the previously defined
weighted Sobolev space.



2.3. Analysis of the VPAW method for 3D Hamiltonians 55

Theorem 2.11. Let ψ be an eigenfunction of Hψ = Eψ where H is defined in (2.1.2). Then ψ is
asymptotically well-behaved.

Theorem 2.11 enables to characterize precisely the singularity of the Hamiltonian wave function
and generalizes the Kato cusp condition for eigenfunctions of 3D-Hamiltonians (see Theorem 5.5 in
Chapter 5).

2.3.2 Acceleration of convergence

From Definition 2.8 and the asymptotic expansion of the molecular wave function ψ, it is
possible to identify the origin of the slow decay of the Fourier coefficients of ψ, which is the cusps
at each nucleus. Similarly to the study in the one-dimensional model, we can show that the cusp of
the pseudo wave function ψ̃ is significantly reduced. More precisely, if n0 PAW functions associated
to the angular momentum ` = m = 0 are used, then there is a constant C independent of rc such
that for any 0 < rc ≤ rmin and for all ε > 0:∣∣∣∣ ∂∂r

∣∣∣∣
r=0

∫
S(0,1)

ψ̃(r) dr̂

∣∣∣∣ ≤ Crc
min(2n0,5)−ε.

The reduction factor is less impressive than in the one-dimensional case because the structure of
the singularity is not as simple.

The blow-up of the d-th derivative is controlled similarly. It is possible to show that there exists
a constant C independent of rc such that for any 0 < rc ≤ rmin and for all ε > 0:∣∣∣∣∣

[∫
S(0,1)

ψ̃(d)(r) dr̂

]
rc

∣∣∣∣∣ ≤ C

rcd−1
.

From both estimates, the following plane-wave convergence for the computation of the eigenvalues
with the VPAW method can be proved.

Theorem 2.12. Let EM be an eigenvalue of the variational approximation of (2.1.6) in a plane-
wave basis with wavenumber |K| ≤M , with n0 PAW functions associated to the angular momentum
` = 0,m = 0 with smoothness d ≥ n0 and cut-off radius rc. Let E be the corresponding exact
eigenvalue. Under Assumption 2.2, there exists a constant C > 0 independent of rc and M such
that for all ε > 0, and for all 1

M
< rc < rmin

0 < EM − E ≤ C

(
rc

2 min(2n0,5)−2ε

M3
+
rc

min(2n0,5)−ε

M4−ε +
1

rc2d−2

1

M2d−1
+ o

(
1

M5−ε

))
. (2.3.5)

The VPAW method does not erase the cusps appearing in the molecular wave function ψ,
hence in the asymptotic regime, the plane-wave convergence rate is the same as the brute force
discretization of the original eigenvalue problem. The prefactor rc2 min(2n0,5)−2ε can be made small
by taking rc small, however, if it is too small, the second prefactor 1

rc2d−2 can become dominant
in the eigenvalue error. Balancing both error terms gives an optimal cut-off radius equal to
ropt = 1

M
2d−4

4n0+2d−2

. For n0 = 2 and d = 6 (which are typical for PAW simulations) and rc = ropt,
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both error terms behave like 1
M41/9 . This is much better than the convergence of the brute force

discretization which is of order 1
M3 .

As for the one-dimensional toy model in Section 2.2.2, the prefactor in (2.3.5) depends on the
other VPAW parameters n0 and d.

It is interesting to compare the VPAW method convergence with other full-potential approaches
like the APW method.

In [CS15], a nonforming method for the resolution of the eigenvalue problem (2.1.2) close to
the APW method is analyzed. The basis functions for this method are given by

ωK(r) =


eiK·r in Γ \

⋃
I=1,...,Nat

B(RI , rc)

`max∑̀
=0

∑̀
m=−`

N∑
n=0

cn`mχn(|r−RI |)Y`m(r̂−RI) in each B(RI , rc),

with |K| ≤M , (χn)0≤n≤N a basis of the polynomials of degree at most N .
The authors showed [CS15] that the error on the computed eigenvalues is bounded by

∀s > 3

2
, |EAPW

η − E| ≤ Cs

ηs−
3
2

,

where η = min(M, `max, N).
Although this bound holds for any s > 3

2
, the prefactor depends on s and this dependency is not

explicit in the paper. Moreover, in most situations, η is equal to the maximal angular momentum
`max. Hence, increasing this parameter is more and more costly since it introduces (2`+ 1)(N + 1)
terms in the nonconforming method basis function. The convergence of the VPAW method is
already very good for n0 ≤ 2 PAW functions for ` = 0.



CHAPTER 3

THE VPAW METHOD IN A ONE-DIMENSIONAL MODEL

Introduction

In this chapter, mostly based on [BCD17b], we apply the VPAW formalism to the double Dirac
potential with periodic boundary conditions in one dimension. The eigenfunctions of this model
have a derivative jump at the positions of the Dirac potentials which is similar to the electronic
wave function cusp. Furthermore, the eigenvalues and eigenfunctions being known analytically, it is
possible to confront our theoretical results to very accurate numerical tests.

In Section 3.1, we carefully present the VPAW method in our framework. In Section 3.2, Fourier
decay estimates of the pseudo wave functions are given as well as estimates on the computed
eigenvalues. Proofs of these results are gathered in Section 3.3. In Section 3.4, we discuss the effect
of the addition of a smooth potential to the double Dirac model. Numerical simulations which
confirm the obtained theoretical results are provided in Section 3.5.

Notation

From now on, 〈· , ·〉 denotes the usual inner product in L2
per(0, 1).

Let f be a piecewise continuous function. We denote by:

[f ]x := f(x+)− f(x−),

where f(x+) and f(x−) are respectively the right-sided and left-sided limits of f at x.
Let f be a continuous function. We denote by

∫
· · ·
∫

︸ ︷︷ ︸
2j+2

f(x) =

x∫
0

t1∫
0

. . .

t2j+1∫
0

f(t2j+2) dt2j+2 . . . dt1

the (2j + 2)-primitive function of f vanishing at 0 as well as its first (2j + 1)-st derivatives.
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For a and b in RN , a · b is the Euclidean inner product. ek is the k-th canonical vector of Rd or
RN . IN is the identity matrix of size N .

3.1 The VPAW method for a one-dimensional model

3.1.1 The double Dirac potential

We are interested in the lowest eigenvalues of the 1-D periodic Schrödinger operator H on
L2

per(0, 1) := {φ ∈ L2
loc(R) | φ 1-periodic} with form domain H1

per(0, 1) := {φ ∈ L2
loc(R) | φ′ ∈

L2
loc(R)} :

H = − d2

dx2
− Z0

∑
k∈Z

δk − Za
∑
k∈Z

δk+a, (3.1.1)

where 0 < a < 1, Z0, Za > 0.
A mathematical analysis of this model has been carried out in [CD17]. There are two negative

eigenvalues E0 = −ω2
0 and E1 = −ω2

1 which are given by the zeros of the function

f(ω) = 2ω2(1− cosh(ω)) + (Z0 + Za)ω sinh(ω)− Z0Za sinh(aω) sinh((1− a)ω).

The corresponding eigenfunctions are

ψk(x) =

{
A1,k cosh(ωkx) +B1,k sinh(ωkx) , 0 ≤ x ≤ a,

A2,k cosh(ωkx) +B2,k sinh(ωkx) , a ≤ x ≤ 1,

where the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions and the
derivative jumps at 0 and a.

There is an infinity of positive eigenvalues Ek+2 = ω2
k+2 which are given by the k-th zero of the

function :

f(ω) = 2ω2(1− cos(ω)) + (Z0 + Za)ω sin(ω) + Z0Za sin(aω) sin((1− a)ω),

and the corresponding eigenfunctions Hψk = ω2
kψk are

ψk(x) =

{
A1,k cos(ωkx) +B1,k sin(ωkx) , 0 ≤ x ≤ a,

A2,k cos(ωkx) +B2,k sin(ωkx) , a ≤ x ≤ 1,

where again the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions
and the derivative jumps at 0 and a.

3.1.2 The VPAW method

The principle of the VPAW method consists in replacing the original eigenvalue problem

Hψ = Eψ,
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by the generalized eigenvalue problem:

(Id + T )∗H(Id + T )ψ̃ = E(Id + T )∗(Id + T )ψ̃, (3.1.2)

where Id + T is an invertible bounded linear operator on L2
per(0, 1). Thus both problems have the

same eigenvalues and it is straightforward to recover the eigenfunctions of the former from the
generalized eigenfunctions of the latter:

ψ = (Id + T )ψ̃. (3.1.3)

T is the sum of two operators acting near the atomic sites

T = T0 + Ta.

To define T0, we fix an integer N and a radius 0 < η < min(a
2
, 1−a

2
) so that T0 and Ta act on two

disjoint regions
⋃
k∈Z

[−η + k, η + k] and
⋃
k∈Z

[a− η + k, a+ η + k] respectively.

Atomic wave function φk Let H0 be the operator defined by :

H0 = − d2

dx2
− Z0

∑
k∈Z

δk.

By parity, the eigenfunctions of this operator are even or odd. The odd eigenfunctions are in fact
x 7→ sin(2πkx) and the even ones are the 1-periodic functions such that{

φ0(x) := cosh(ω0(x− 1
2
)), for x ∈ [0, 1],

φk(x) := cos(ωk(x− 1
2
)), for x ∈ [0, 1], k ∈ N∗.

To construct T0, we will only select the non-smooth thus even eigenfunctions (φk)1≤k≤N and denote
by (εk)1≤k≤N the corresponding eigenvalue:

H0φk = εkφk.

Pseudo wave function φ̃i The pseudo wave functions (φ̃i)1≤i≤N ∈
(
H1

per(0, 1)
)N are defined as

follows:

1. for |x| /∈
⋃
k∈Z

[−η + k, η + k], φ̃i(x) = φi(x).

2. for |x| ∈
⋃
k∈Z

[−η + k, η + k], φ̃i is an even polynomial of degree at most 2d− 2, d ≥ N .

3. φ̃i is Cd−1 at η i.e. φ̃(k)
i (η) = φ

(k)
i (η) for 0 ≤ k ≤ d− 1.

Projector functions p̃i Let ρ be a positive, continuous function with support [−1, 1] and
ρη(t) =

∑
k∈Z

ρ( t−k
η

). The projector functions (p̃i)1≤i≤N are obtained by an orthonormalization
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procedure from the functions pi(t) = ρη(t)φ̃i(t) in order to satisfy the duality condition :〈
p̃i , φ̃j

〉
= δij.

More precisely, we compute the matrix Bij :=
〈
pi , φ̃j

〉
and invert it to obtain the projector

functions

p̃k =
N∑
j=1

(B−1)kjpj.

The matrix B is the Gram matrix of the functions φ̃j for the weight ρη. The orthogonalization is
possible only if the family (φ̃i)1≤i≤N is independent - thus necessarily d ≥ N .

T0 and Ta are given by :

T0 =
N∑
i=1

(φi − φ̃i) 〈p̃i , ·〉 , Ta =
N∑
i=1

(φai − φ̃ai ) 〈p̃ai , ·〉 , (3.1.4)

where φai are singular eigenfunctions of the operator Ha = − d2

dx2
−Za

∑
k∈Z

δa+k and φ̃ai , p̃ai are defined

as before.
In the VPAW method, the generalized eigenvalue problem (3.1.2) is solved by expanding ψ̃ in

plane-waves.

Remark 3.1. Here we have followed the Vanderbilt scheme to generate the pseudo wave functions
and the projector functions with the difference that the orthogonalized functions p are taken from
the Blöchl construction (see Section 1.4.4).

3.1.3 Well-posedness of the VPAW method

To be well-posed the VPAW method requires
1. the family of pseudo wave functions (φ̃i)1≤i≤N to be independent on [−η, η], so that the

projector functions (p̃k)1≤k≤N are well defined,
2. (Id + T ) to be invertible.
The conditions on the VPAW functions and parameters are given by the following propositions.

Proofs can be found in Section 3.3.

Proposition 3.2 (Linear independence of the pseudo wave functions). Let N ∈ N∗ and d ≥ N .
There exists η0 > 0 such that for all 0 < η ≤ η0, the family (φ̃i|[−η,η])1≤i≤N is linearly independent.

Proposition 3.3 (Invertibility of Id + T ). The operator Id + T is invertible in L2
per(0, 1) if and

only if the matrix (〈p̃k , φ`〉)1≤k,`≤N is invertible.

From now on, we will establish our results under the following

Assumption : the matrix (〈p̃k , φ`〉)1≤k,`≤N is invertible for all 0 < η ≤ η0.
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3.2 Main results
We know from (3.1.3) that

ψ̃ = ψ −
N∑
i=1

(φi − φ̃i)
〈
p̃i , ψ̃

〉
−

N∑
i=1

(φai − φ̃ai )
〈
p̃ai , ψ̃

〉
.

In addition, ψ̃ is a piecewise smooth function with first derivative jumps (due to ψ and the atomic
wave function φk) at points of Z, Z+a and d-th derivative jumps (due to the pseudo wave functions
φ̃k) at points of Z± η and Z+ a± η. These singularities drive the decays of the Fourier coefficients.
Thus to study the Fourier convergence rate, it suffices to study the dependency of the different
singularities with respect to N -the number of PAW functions used-, d -the smoothness of the
pseudo wave functions φ̃k- and η -the cut-off radius.

Proposition 3.4 (Derivative jumps at 0). Let N ∈ N∗ and d ≥ N . Then, there exists a positive
constant C independent of η such that for 0 ≤ j ≤ N − 1

∀ 0 < η ≤ η0,
∣∣∣[ψ̃(2j+1)

]
0

∣∣∣ ≤ Cη2N−2j , (3.2.1)

and for j ≥ N

∀ 0 < η ≤ η0,
∣∣∣[ψ̃(2j+1)

]
0

∣∣∣ ≤ C. (3.2.2)

The proof of Proposition 3.4 relies on the particular structure induced by the equations satisfied
by ψ and φi. Locally around a Dirac potential, their singularities have the same behavior. More
precisely, if we consider the even part ψe of ψ, the best approximation of ψe by N eigenfunctions
φi is of order 2N . It is then possible to rewrite the singularity at 0 of ψ̃ to make use of this
approximation.

Proposition 3.5 (d-th derivative jump at η). Let N ∈ N∗ and d ≥ N . There exists a constant C
independent of η such that for d ≤ k ≤ 2d− 2

∀ 0 < η ≤ η0,

∣∣∣∣[ψ̃(k)
]
η

∣∣∣∣ ≤ C

ηk−1
.

The derivative jump of ψ̃ at η is due to the lack of regularity of the pseudo wave functions
φ̃j at η. The latter can be written as rescaled polynomials P2d−2(

x
η
) where P2d−2 is of degree at

most 2d − 2. If we suppose that the coefficients of P2d−2 are uniformly bounded in η and if the
dependence on η of the projector functions p̃k is neglected, by deriving k times the polynomials
P2d−2(x

η
), k ≥ d, we can see why the derivative jump of ψ̃ at η is expected to grow as η−k. Tracking

all the dependencies on η, we can in fact show that a factor η can be gained, which is in full
agreement with Figure 3.5.2.

Using Proposition 3.8 and classical estimates on eigenvalue approximations [Wei74], we have
the following theorems.

Theorem 3.6 (Estimates on the Fourier coefficients). Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be the m-th
Fourier coefficient of ψ̃. There exists a constant C > 0 independent of η and m such that for all
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0 < η ≤ η0 and m ≥ 1
η ∣∣∣̂̃ψm∣∣∣ ≤ C

(
η2N

m2
+

1

ηd−1md+1

)
.

Theorem 3.7 (Estimates on the eigenvalues). Let N ∈ N∗ and d ≥ N . Let Eη
M be an eigenvalue

of the variational approximation of (3.1.2) in a basis of M plane-waves and for a cut-off radius
0 < η ≤ η0, and let E be the corresponding exact eigenvalue. There exists a constant C > 0
independent of η and M such that for all 0 < η ≤ η0 and M ≥ 1

η

0 < Eη
M − E ≤ C

(
η4N

M
+

1

η2d−2

1

M2d−1

)
. (3.2.3)

The first term has the same asymptotic decay in M as the brute force discretization of the
problem with the original Dirac potential. However the prefactor η4N can be made small by using
a small cut-off radius η and/or a large N . Doing so, we introduce another error term which decays
as M1−2d, with a prefactor of order η2−2d. A natural strategy would thus be to balance these two
error terms. This allows one to choose the numerical parameters in a consistent way. The numerical
tests in Section 3.5 suggest that the estimate (3.2.3) is optimal.

3.3 Proofs

This section is organized as follows. First, we prove that the VPAW method is well defined. The
remainder of the section is then devoted to the proofs of Theorems 3.6 and 3.7. After estimating
the decay of the Fourier coefficients of the pseudo wave function ψ̃, we will precisely characterize
the singularities of the functions ψ and φk in order to estimate the derivative jumps of ψ̃.

3.3.1 Well-posedness of the VPAW method

Proof of Proposition 3.2. To prove the linear independence of the pseudo wave functions is equiva-
lent to show that the matrix (φ

(k)
j+1(η))0≤j≤N−1,0≤k≤d−1 is full rank. In fact, we will show that the

submatrix (φ
(k)
j+1(η))0≤j,k≤N−1 is invertible. Using the expression of φj+1, we have for 0 ≤ j, k ≤ N−1,

φkj+1(η) =

{
(−1)k/2ωkj+1 cos(ωj+1(η − 1

2
)) if k is even,

(−1)(k+1)/2ωkj+1 sin(ωj+1(η − 1
2
)) if k is odd

Let A(η) the matrix defined by

A(η) :=

cos(ωj+1(η − 1
2
)) −ωj+1 sin(ωj+1(η − 1

2
)) −ω2

j+1 cos(ωj+1(η − 1
2
)) · · ·

 .

The function η 7→ detA(η) is complex analytic, thus if it is not identically equal to 0, there exists
an interval (0, η0) with η0 > 0 such that the matrix A(η) is invertible. It suffices to show that
there exists η ∈ C such that A(η) is invertible. Let η = −ix+ 1

2
, x > 0. Then for x large, we have



3.3. Proofs 63

cos(ωj+1x) ∼ 1
2
eωj+1x and sin(ωj+1x) ∼ 1

2
eωj+1x, thus

A(−ix+ 1
2
) =

1

2

eωj+1x −ωj+1e
ωj+1x −ω2

j+1e
ωj+1x · · ·

+ ε(x),

where

‖ε(x)‖ �

∥∥∥∥∥∥
eωj+1x −ωj+1e

ωj+1x −ω2
j+1e

ωj+1x · · ·

∥∥∥∥∥∥ .
We haveeωj+1x −ωj+1e

ωj+1x −ω2
j+1e

ωj+1x · · ·

 =

e
ω1x 0

. . .
0 eωNx


1 ω1 ωN−1

1
...

... · · · ...
1 ωN ωN−1

N


which is invertible because the phases (ωj)1≤j≤N are pairwise distinct. Hence A(−ix+ 1

2
) is invertible

for x large enough.

Proof of Proposition 3.3. As T is a finite rank and thus compact operator, proving the statement is
equivalent to show that Ker(Id + T ) = {0}. First, suppose that the matrix (〈p̃k , φi〉)k,i is invertible
and let f ∈ Ker(Id + T ). We have

N∑
i=1

〈p̃i , f〉 (φi − φ̃i) + f = 0 (3.3.1)

Since φi − φ̃i is supported in [−η, η] we also have supp(f) ⊂ [−η, η].
By multiplying each side of Equation (3.3.1) by p̃k, 1 ≤ k ≤ N and integrating on [−1

2
, 1

2
], we

obtain:

0 =
N∑
i=1

〈p̃i , f〉
〈
p̃k , φi − φ̃i

〉
+ 〈p̃k , f〉 =

N∑
i=1

〈p̃i , f〉 (〈p̃k , φi〉 −
〈
p̃k , φ̃i

〉
︸ ︷︷ ︸

=δki

) + 〈p̃k , f〉 ,

so that

∀1 ≤ k ≤ N, 0 =
N∑
i=1

〈p̃i , f〉 〈p̃k , φi〉 .

Since we assumed that the matrix (〈p̃k , φi〉)k,i is invertible,

∀ 1 ≤ i ≤ N, 〈p̃i , f〉 = 0 .

Going back to (3.3.1), this implies f = 0 and Id + T is invertible.
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Now we suppose that the matrix (〈p̃k , φi〉)k,i is not invertible. Thus there is (αi)1≤i≤N such that

∀1 ≤ i ≤ N,
N∑
j=1

αj 〈p̃i , φj〉 = 0.

Let f(x) =
N∑
j=1

αj(φj − φ̃j). Then

(Id + T )f =
N∑
j=1

αj(φj − φ̃j) +
N∑
i=1

N∑
j=1

αj

〈
p̃i , φj − φ̃j

〉
(φj − φ̃j)

=
N∑
i=1

N∑
j=1

αj 〈p̃i , φj〉 (φj − φ̃j)

= 0

Thus Ker(I + T ) 6= {0} and (I + T ) is not invertible.

3.3.2 Structure and approximation lemmas

A key intermediate result in our study is the estimation of the decay of the Fourier coefficients
of ψ̃ as a function of its derivative jumps.

Proposition 3.8. Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be the m-th Fourier coefficient of ψ̃. Then

̂̃ψm =

b d
2
c−1∑
j=0

1

(2iπm)2+2j

[
ψ̃(2j+1)

]
0

+
2d−2∑
k=d

e∓2iπmη

(2iπm)k+1

[
ψ̃(k)

]
±η

+ e−2iπma

b d2 c−1∑
j=0

1

(2iπm)2+2j

[
ψ̃(2j+1)

]
a

+
2d−2∑
k=d

e∓2iπmη

(2iπm)k+1

[
ψ̃(k)

]
a±η


+

1

(2iπm)2d−1

∫ 1

0

ψ̃(2d−1)(x)e−2iπmx dx.

Proof. This result follows from the definition of the Fourier coefficients and integration by parts.

In view of the Proposition 3.8, the decay of the Fourier coefficients can be inferred from the
derivative jumps of ψ̃ according to the VPAW parameters. The singularities of ψ̃ at integer values
are caused by the singularity of the functions ψ and φk. Thus, to get an accurate characterization
of the singularities of ψ̃, we need to precisely know how the functions ψ and φk behave in a
neighborhood of their singularities.

Lemma 3.9 (Structure lemma). Let ψ be an eigenfunction (3.1.1) associated to the eigenvalue E.
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Then in a neighborhood of 0, we have the following expansion :

ψ(x) = ψ(0)

(
k∑
j=0

(−E)j

(2j)!
x2j − Z0

2

k∑
j=0

(−E)j

(2j + 1)!
|x|2j+1

)

+
ψ′(0+) + ψ′(0−)

2

k∑
j=0

(−E)j

(2j + 1)!
x2j+1 + ψ2k+2(x), (3.3.2)

where ψ2k+2 is a C2k+2 function satisfying in a neighbourhood of 0,{
ψ

(2k+2)
2k+2 = (−E)k+1ψ,

|ψ2k+2(x)| ≤ C |−E|
k+1

(2k+2)!
|x|2k+2.

Proof. This lemma is proved by induction.

Initialization For k = 0, let

θ2(x) = ψ(x) + Z0
|x|
2
ψ(0).

We differentiate θ2 twice:

θ′′2(x) = ψ′′(x)− [ψ′]0δ0 = −Eψ(x), on (−1
2
, 1

2
). (3.3.3)

The function ψ being continuous, θ2 is C2 in a neighborhood of 0. Moreover,

θ2(0) = ψ(0),

and
θ′2(x) = ψ′(x)− sign(x)

2
[ψ′]0.

When x tends to 0+ or 0−, we obtain the same expression:

θ′2(0) =
ψ′(0+) + ψ′(0−)

2
.

Setting

ψ2(x) = θ2(x)− ψ(0)− ψ′(0+) + ψ′(0−)

2
x,

the statement is true for k = 0.

Inductive step Suppose the statement is true for k− 1. Then, we have in a neighbourhood of 0,

ψ
(2k)
2k (x) = (−E)kψ(x).

Let

θ2k+2(x) = ψ2k(x)− (−E)k
|x|
2

[ψ′]0
x2k

(2k + 1)!
.
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Then
θ

(2k)
2k+2(x) = (−E)k

(
ψ(x)− |x|

2
[ψ′]0

)
,

so that in view of (3.3.3),

θ
(2k+2)
2k+2 (x) = (−E)k (ψ′′(x)− [ψ′]0δ0) = (−E)k+1ψ(x),

in the neighbourhood of 0.
So θ2k+2 is a C2k+2 function in a neighbourhood of 0 and we have:

ψ(x) = ψ(0)

(
k−1∑
j=0

(−E)j

(2j)!
x2j − Z0

k∑
j=0

(−E)j

(2j + 1)!

|x|2j+1

2

)

+
k−1∑
j=0

(−E)j

(2j + 1)!

ψ′(0+) + ψ′(0−)

2
x2j+1 + θ2k+2(x).

Il suffices to evaluate θ(2k)
2k+2(0) and θ(2k+1)

2k+2 (0) to conclude the proof. We have

θ
(2k)
2k+2(0) = (−E)kψ(0) ,

and
θ

(2k+1)
2k+2 (x) = (−E)k

(
ψ′(x)− sign(x)

2
[ψ′]0

)
,

so if x tends to 0, we have :

θ
(2k+1)
2k+2 (0) =

ψ′(0+) + ψ′(0−)

2
(−E)k.

Define

ψ2k+2(x) = θ2k+2(x)− ψ(0)
x2k

(2k)!
− ψ′(0+) + ψ′(0−)

2

x2k+1

(2k + 1)!
,

and the induction is proved.

Let ψe be the even part of ψ. We have in a neighbourhood of 0

ψe(x) = ψ(0)
N−1∑
k=0

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)
(−E)k +

1

2
(ψ2N(x) + ψ2N(−x)). (3.3.4)

Lemma 3.10 (Approximation). There exist constants (cj)1≤j≤N ∈ RN satisfying

ψe(x) =
N∑
j=1

cjφj(x) +O
(
x2N

)
, as x→ 0.
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Proof. By Lemma 3.9 applied to φj, we have

φj(x) = φj(0)

(
N−1∑
k=0

(−εj)k

(2k)!
x2k − Z0

2

N−1∑
k=0

(−εj)k

(2k + 1)!
|x|2k+1

)
+ φj,2N(x) ,

where
φj,2N(x) = O(x2N).

So

ψe(x)−
N∑
j=1

cjφj(x) =
N−1∑
k=0

(
ψ(0)(−E)k −

N∑
j=1

(−εj)kcjφj(0)

)
x2k

(2k)!

− Z0

2

N−1∑
k=0

(
ψ(0)(−E)k −

N∑
j=1

(−εj)kcjφj(0)

)
|x|2k+1

(2k + 1)!
+ ψ2N(x)−

N∑
j=1

cjφj,2N(x).

To prove the lemma, it remains to show that there exist coefficients (cj) such that :

∀ 0 ≤ k ≤ N − 1,
N∑
j=1

(−εj)kcjφj(0) = ψ(0)(−E)k .

We have chosen the functions φj so that φj(0) 6= 0. By defining αj = cjφj(0), we recognize a
Vandermonde linear system. The eigenvalues εj are all different so the system is invertible and the
lemma is proved.

3.3.3 Derivative jumps at 0

Recall pi(t) = ρη(t)φ̃i(t). We will introduce some notation used in the next proofs:

p(t) := (p1(t), . . . , pN(t))T ∈ RN ,〈
p̃ , ψ̃

〉
:=
(〈
p̃1 , ψ̃

〉
, . . . ,

〈
p̃N , ψ̃

〉)T
∈ RN ,

〈p̃ , ψ〉 := (〈p̃1 , ψ〉 , . . . , 〈p̃N , ψ〉)T ∈ RN ,

Φ(t) := (φ1(t), . . . , φN(t))T ∈ RN ,

Φ̃(t) := (φ̃1(t), . . . , φ̃N(t))T ∈ RN ,

B := (〈pi, φ̃j〉)1≤i,j≤N ∈ RN×N ,

Ã := (〈p̃i, φj〉)1≤i,j≤N ∈ RN×N ,

A := (〈pi, φj〉)1≤i,j≤N = BÃ ∈ RN×N .
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Lemma 3.11. Let (ck)1≤k≤N be any vector of RN and j ∈ N. Then,

[ψ̃(2j+1)]0 = −Z0

(
(−E)jψ(0)−

N∑
k=1

ck(−εk)jφk(0)−

〈
A−1p , ψ −

N∑
k=1

ckφk

〉
· E jΦ(0)

)
.

where E is the diagonal matrix

E =


−ε1 0 . . . 0

0 −ε2 . . .
...

...
... . . . 0

0 . . . 0 −εN

 .

Proof. We first prove the statement for j = 0. In a neighbourhood of 0, we have:

ψ̃ = ψ −
N∑
i=1

〈
p̃i , ψ̃

〉
(φi − φ̃i). (3.3.5)

Using the equations satisfied by ψ and φi gives for the first derivative jump at 0 of ψ̃ :

[ψ̃′]0 = [ψ′]0 −
N∑
i=1

〈
p̃i , ψ̃

〉
[φ′i]0

= −Z0

(
ψ(0)−

N∑
i=1

〈
p̃i , ψ̃

〉
φi(0)

)
. (3.3.6)

Multiplying equation (3.3.5) by p̃k and integrating on [−1/2, 1/2],

〈p̃k , ψ〉 −
N∑
i=1

〈
p̃i , ψ̃

〉
〈p̃k , φi〉 =

〈
p̃k , ψ̃

〉
−

N∑
i=1

〈
p̃i , ψ̃

〉〈
p̃k , φ̃i

〉
︸ ︷︷ ︸

=δki

= 0 ,

〈p̃k , ψ〉 =
N∑
i=1

〈
p̃i , ψ̃

〉
〈p̃k , φi〉 .

Therefore
Ã
〈
p̃ , ψ̃

〉
= 〈p̃ , ψ〉 (3.3.7)

Likewise
B 〈p̃ , ψ〉 = 〈p , ψ〉 ,
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since for 1 ≤ i ≤ N :

N∑
j=1

Bij 〈p̃j , ψ〉 =
N∑
j=1

〈
pi , φ̃j

〉
〈p̃j , ψ〉

= 〈pi , ψ〉

According to Proposition 3.3, the matrix Ã is invertible and so is B since B = AÃ, with A invertible
by assumption. We therefore have

N∑
i=1

〈
p̃i , ψ̃

〉
φi(0) =

〈
p̃ , ψ̃

〉
· Φ(0)

= Ã−1 〈p̃ , ψ〉 · Φ(0)

= (BÃ)−1 〈p , ψ〉 · Φ(0)

=
〈
A−1p , ψ

〉
· Φ(0).

We thus obtain the more compact form:

[ψ̃′]0 = −Z0

(
ψ(0)−

〈
A−1p , ψ

〉
· Φ(0)

)
.

To complete the proof the lemma, it suffices to show that〈
A−1p , φi+1

〉
= ei,

where ei is the i-th vector of the canonical basis of RN . This is straightforward since 〈p , φi+1〉 is
simply the i-th column of the matrix A.

For j ≥ 1, we proceed in the same way using{
[ψ(2j+1)]0 = −Z0(−E)jψ(0),

[φ
(2j+1)
k ]0 = −Z0(−εk)jφk(0).

Remark 3.12. Notice that we showed〈
p̃ , ψ̃

〉
=
〈
A−1p , ψ

〉
. (3.3.8)

This equality will be used later in the estimation of the d-th derivative jump.

To prove Lemma 3.4, it remains to study the behavior of A−TE jΦ(0) as η goes to 0. By
assumption, A is invertible for all η > 0 but when η = 0, A is a rank 1 matrix. Actually, in the
special case of the 1D Schrödinger operator with Dirac potentials, we have a precise characterization
of the behavior of A−TE jΦ(0) as η goes to 0.

Lemma 3.13. Let f be a function in L2
per(0, 1) and Q(t) = (Q0(t), . . . , Qd−1(t))

T be a vector of
even polynomials which forms a basis of the space of even polynomials of degree at most 2d− 2. Let
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Gη be the d×N matrix and Cη the N × d matrix defined by:

Gη =

∫ 1

−1

ρ(t)Q(t)Φ(ηt)T dt,

Φ̃(t) = CηQ(t/η), ∀t ∈ (−η, η).

Then we have 〈
A−1p , f

〉
=

∫ 1

−1

ρ(t)(CηGη)
−1CηQ(t)f(ηt) dt. (3.3.9)

Proof. We have

Aij = 〈pi+1 , φj+1〉

=

∫ η

−η
ρ(t/η)φ̃i+1(t)φj+1(t) dt

= η

∫ 1

−1

ρ(t)φ̃i+1(ηt)φj+1(ηt) dt.

Therefore,

A = η

∫ 1

−1

ρ(t)Φ̃(ηt)Φ(ηt)T dt

= η Cη

∫ 1

−1

ρ(t)Q(t)Φ(ηt)T dt

= η CηGη.

Since (φ̃i)1≤i≤N is free, the matrix Cη is invertible :

A−1p =
1

η
ρ(t/η)(CηGη)

−1CηQ(t/η).

Thus 〈
A−1p , f

〉
=

1

η

∫ η

−η
ρ(t/η)(CηGη)

−1CηQ(t/η)f(t) dt

=

∫ 1

−1

ρ(t)(CηGη)
−1CηQ(t)f(ηt) dt.

Before moving to the next lemma, we introduce the following notation. Let Qk be the even
polynomials of degrees at most 2d− 2 defined by∫ 1

−1

ρ(t)Qk(t)t
2j dt = δkj, 0 ≤ k, j ≤ d− 1 ,
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and let Pk, 0 ≤ k ≤ d− 1 and P be defined by

Pk(t) =
1

2kk!
(t2 − 1)k ,

P (t) = (P0(t), . . . , Pd−1(t))T .

It is easy to see that Pk satisfies{
P

(j)
k (1) = 0, 0 ≤ j ≤ k − 1 ,

P
(k)
k (1) = 1.

Let Π be the transition matrix from Q to P :

ΠQ = P.

Finally we denote by Cη the matrix of the expansion of Φ̃ in the basis Q and C(P )
η the matrix of

the expansion of Φ̃ in the basis P : {
Φ̃(t) = CηQ(t/η) ,

Φ̃(t) = C
(P )
η P (t/η).

It is easy to see that
Cη = C(P )

η Π.

Lemma 3.14. For 0 ≤ j ≤ N − 1, we have

η2j

(2j)!
(E jΦ(0))T (CηGη)

−1Cη −→
η→0

eTj
(
IN Mπ

)
, (3.3.10)

where Mπ is a (d−N)×N matrix.
Furthermore

‖(CηGη)
−1Cη‖ = O

(
1

η2N−2

)
.

Remark 3.15. The main idea of the proof is to use the particular structures of the matrices Cη
and Gη. We denote by C1, C2, G1 and G2 the matrices defined by

Cη =
(
C1

∣∣∣C2

)
,

Gη =

(
G1

G2

)
.

Suppose that C1 is invertible and such that ‖C−1
1 C2‖ = O(1) as η → 0, and there exists an

invertible matrix H1 such that 
G1H1 = IN +O(η) ,

G2H1 = O(η) ,

eT0H
−1
1 = Φ(0)T .
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Then it is easy to see that

Φ(0)T (CηGη)
−1Cη = eT0

(
IN

∣∣∣ C−1
1 C2

)
+O(η).

Using Lemma 3.9 applied to Φ, it is easy to unveil the dependence in η of the matrix Gη

but we have no hint on the structure of Cη. Likewise, C(P )
η is easy to study but the matrix∫ 1

−1
ρ(t)P (t)Φ(ηt)T dt is not. So we have to work with both bases P and Q, exhibit the structures of

the matrices C(P )
η and Gη and recombine everything with the transition matrix Π.

Before proving Lemma 3.14, we state some properties of the matrix C(P )
η and its submatrices

C1, C2.

Lemma 3.16. Let N ∈ N∗ and d ≥ N . Let C1 ∈ RN×N and C2 ∈ RN×(d−N) be the matrices such
that:

C(P )
η =

(
C1

∣∣∣C2

)
. (3.3.11)

Let (gk)0≤k≤N−1 be the dual family of the vectors (ηkΦ(k)(η))0≤k≤N−1 and K1 be the matrix

K1 =

 gT0
...

gTN−1

 ∈ RN×N .

Then, there exists an upper triangular matrix P independent of η of the form

P =


1 0 . . . 0

0
. . . ∗ ∗

... 0
. . . ∗

0 . . . 0 1

 ∈ RN×N

such that {
C−1

1 = PK1,

C−1
1 C2 = M +O(η),

where M ∈ RN×(d−N) is a matrix independent of η.

Remark 3.17. The particular form of the matrix P will be used in the estimation of the d-th
derivative jump of ψ̃ at η (Lemma 3.5) and of Tf(x) (Lemmas 3.20 and 3.21).

Proof. Let (ck)0≤k≤d−1 be the columns of C(P )
η . By the continuity conditions at η and our choice of

the polynomials Pk, we have

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck. (3.3.12)

Thus cj is a linear combination of the vectors ηkΦ(k)(η) for k ≤ j whose coefficients are independent
of η. Moreover as P0 = 1, we have P (j)

0 = 0 for j ≥ 1. So in fact, for j ≥ 1, cj is spanned by the
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vectors ηkΦ(k)(η) for 1 ≤ k ≤ j. Then, by definition of K1 and the vectors gk,

K1C1 =


1 0 . . . 0

0
. . . ∗ ∗

... 0
. . . ∗

0 . . . 0 1

 . (3.3.13)

Note that this matrix is independent of η. Let us denote it by P−1. Then the inverse of C1 is
PK1 and P has the same structure as P−1. Recall that for k ≥ N , ck is a linear combination
of the vectors ηjΦ(j)(η) for j ≤ k. As gj is the dual family of the vectors (ηlΦ(l)(η))0≤l≤N−1 and
‖gj‖ = O(η1−N), we have

C−1
1 C2 = M +O(η), (3.3.14)

where M is a N × (d−N) matrix independent of η.

Proof of Lemma 3.14. Let G1 ∈ RN×N and G2 ∈ R(d−N)×N be the unique matrices such that

Gη =

(
G1

G2

)
∈ Rd×N .

By definition

Gη =

∫ 1

−1

ρ(t)Q(t)Φ(ηt)T dt.

By Lemma 3.9 applied to each φj,

Φ(ηt) =
N−1∑
k=0

(
t2j − ηZ0

2

|t|2j+1

2j + 1

)
η2j

(2j)!
E jΦ(0) +O(η2N).

Let aj ∈ Rd, aNj ∈ RN , ad−Nj ∈ Rd−N be defined by

aj := −
∫ 1

−1

ρ(t)
Z0

2

|t|2j+1

2j + 1
Q(t) dt =:

(
aNj
ad−Nj

)
.

Then by definition of the polynomials Q we have
G1 =

N−1∑
j=0

(ej + ηaNj ) η2j

(2j)!
(E jΦ(0))T +O(η2N),

G2 =
N−1∑
j=0

ηad−Nj
η2j

(2j)!
(E jΦ(0))T +O(η2N).

Let (f0, . . . , fN−1) be the dual basis of
(
E jΦ(0) η2j

(2j)!

)
0≤j≤N−1

in RN and H1 be the matrix

H1 :=
(
f0 · · · fN−1

)
∈ RN×N .
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It is straightforward to see that ‖H1‖ = O(η2−2N) and{
G1H1 = IN +O(η) ,

G2H1 = O(η).

The matrix H1 is invertible and its inverse is

H−1
1 =

N−1∑
j=0

ej
η2j

(2j)!
(E jΦ(0))T .

Let us now prove (3.3.10) for j = 0. We have

Φ(0)T (CηGη)
−1Cη = eT0H

−1
1

(
C(P )
η ΠGη

)−1
C(P )
η Π

= eT0
(
C−1

1 C(P )
η ΠGηH1

)−1
Π
(
IN

∣∣∣ C−1
1 C2

)
= eT0

((
IN

∣∣∣ M +O(η)
)

Π
(
IN

∣∣∣ O(η)
)T)−1 (

IN

∣∣∣ M +O(η)
)

Π.

Decomposing Π into four blocks

Π =

(
Π1 Π2

Π3 Π4

)
, with Π1 ∈ RN×N ,

we obtain

Φ(0)T (CηGη)
−1Cη = eT0 (Π1 +MΠ3 +O(η))−1

(
Π1 +MΠ3 +O(η)

∣∣∣ Π2 +MΠ4 +O(η)
)

= eT0

(
IN

∣∣∣ Mπ

)
+O(η).

For 1 ≤ j ≤ N − 1 we proceed in the same way, using eTj H
−1
1 = η2j

(2j)!
(E jΦ(0))T .

Proof of Proposition 3.4. Let 0 ≤ j ≤ N − 1 and let (ck)1≤k≤N be as in Lemma 3.10. Then by
Lemma 3.11 we have :

[ψ̃(2j+1)]0 = (−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0)︸ ︷︷ ︸
=0

+

〈
A−1p , ψ −

N∑
k=1

ckφk

〉
· E jΦ(0)

=

〈
A−1p , ψ −

N∑
k=1

ckφk

〉
· E jΦ(0)

=

〈
A−1p , ψe −

N∑
k=1

ckφk

〉
· E jΦ(0) ,

as p is even.
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Combining Lemmas 3.13 and 3.14, we get

(E jΦ(0))TA−1p = ρ(t/η)(E jΦ(0))T (CηGη)
−1CηQ(t/η) = ρ(t/η)xTηQ(t/η) ,

where ‖xη‖ = O(η−2j).
Using again Lemma 3.10, we obtain∣∣∣∣∣
〈
A−1p , ψ −

N∑
k=1

ckφk

〉
· E jΦ(0)

∣∣∣∣∣ ≤ C‖xη‖

∥∥∥∥∥ρ(t)
N−1∑
`=0

|Q`(t)|

∥∥∥∥∥
L1[−1,1]

∥∥∥∥∥ψ −
N∑
k=1

ckφk

∥∥∥∥∥
L∞[−η,η]

≤ Cη2N−2j.

We therefore obtain
|[ψ̃(2j+1)]0| ≤ Cη2N−2j.

For j ≥ N , we then have

(−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0) 6= 0,

and by Lemmas 3.10 and 3.14,∣∣∣∣∣
〈
A−1p , ψ −

N∑
j=1

cjφj

〉
· E jΦ(0)

∣∣∣∣∣ ≤ C ‖(CηGη)
−1Cη‖︸ ︷︷ ︸

=O(η2−2N )

∥∥∥∥∥ψ −
N∑
k=1

ckφk

∥∥∥∥∥
L∞[−η,η]︸ ︷︷ ︸

=O(η2N )

≤ Cη2.

We therefore have

[ψ̃(2j+1)]0 = (−E)jψ(0)−
N∑
k=1

ck(−εk)jφk(0)︸ ︷︷ ︸
6=0

+

〈
A−1p , ψ −

N∑
k=1

ckφk

〉
· E jΦ(0)︸ ︷︷ ︸

=O(η2)

.

Thus,
|[ψ̃(2j+1)]0| ≤ C,

which completes the proof.

3.3.4 d-th derivative jump

We use the notation introduced in the previous section.

Proof of Proposition 3.5. We give the proof only for k = d as the proof for d+ 1 ≤ k ≤ 2d− 2 is
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very similar. By definition of ψ̃ and Φ̃,

[ψ̃(d)]η =
〈
p̃ , ψ̃

〉
· [Φ̃(d)]η

=
1

ηd

〈
p̃ , ψ̃

〉
· (C(P )

η P (d)(1)− ηdΦ(d)(η))

=
1

ηd
〈
A−1p , ψ

〉
· (C(P )

η P (d)(1)− ηdΦ(d)(η)) (by Equation (3.3.8)),

=
1

ηd

∫ 1

−1

ρ(t)ψ(ηt)Q(t) dt · CT
η (GT

ηC
T
η )−1(C(P )

η P (d)(1)− ηdΦ(d)(η)) (by Lemma 3.13).

We know from (3.3.12) that the columns of C(P )
η are linear combinations of ηkΦ(k)(η). Let us

apply Lemma 3.9 to Φ. As the remainder is C2d−2, for k ≤ d− 1, we can differentiate k times and
we have for k even :

ηkΦ(k)(η) =
N−1∑
j= k

2

(
η2j

(2j − k)!
− Z0

2

η2j+1

(2j + 1− k)!

)
E jΦ(0) +O(η2N),

and for k odd, we have

ηkΦ(k)(η) = −Z0

2
ηkD

k−1
2 Φ(0) +

N−1∑
j= k+1

2

(
η2j

(2j − k)!
− Z0

2

η2j+1

(2j + 1− k)!

)
E jΦ(0) +O(η2N).

But by Lemma 3.14, for 0 ≤ k ≤ 2N − 2, k even, we have :

CT
η (GT

ηC
T
η )−1ηkΦ(k)(η) =

N−1∑
j= k

2

(
η2j

(2j − k)!
− Z0

2

η2j+1

(2j + 1− k)!

)
CT
η (GT

ηC
T
η )−1E jΦ(0) +O(η2)

=
N−1∑
j= k

2

(2j)!

(2j − k)!

(
IN
MT

π

)
ej +O(η). (3.3.15)

Similarly for 0 ≤ k ≤ 2N − 1, k odd :

CT
η (GT

ηC
T
η )−1ηkΦ(k)(η) = −Z0

2
CT
η (GT

ηC
T
η )−1ηkD

k−1
2 Φ(0)

+
N−1∑
j= k+1

2

(
η2j

(2j − k)!
− Z0

2

η2j+1

(2j + 1− k)!

)
CT
η (GT

ηC
T
η )−1E jΦ(0) +O(η2)

=
N−1∑
j= k+1

2

(2j)!

(2j − k)!

(
IN
MT

π

)
ej +O(η) , (3.3.16)
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and for k ≥ 2N , using ‖CT
η (GT

ηC
T
η )−1‖ = O(η2−2N) we have

CT
η (GT

ηC
T
η )−1ηkΦ(k)(η) = O(η).

We have proved that [ψ̃(d)]η = O(η−d) but it is possible to have a slightly better estimate.
Observing that ψ is in fact a Lipschitz function and not only a continuous function, we have for

|t| ≤ 1 :
ψ(ηt) = ψ(0) +O(η).

By definition of the polynomials Qk, we have∫ 1

−1

ρ(t)Q(t)ψ(ηt) dt = ψ(0)

∫ 1

−1

ρ(t)Q(t) dt+O(η)

= ψ(0)e0 +O(η).

To complete the proof of the proposition, it remains to show

e0 · CT
η (GT

ηC
T
η )−1(C(P )

η P (d)(1)− ηdΦ(d)(η)) = O(η).

As we have for j ≥ 1

eT0

(
IN
MT

π

)
ej = 0,

then for d ≥ 2, equations (3.3.15) and (3.3.16) lead to

e0 · CT
η (GT

ηC
T
η )−1ηdΦ(d)(η) = O(η).

Recall that the columns of C(P )
η satisfy the relation

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck.

But P (j)
0 (1) = 0 for j ≥ 1 so in fact, for all k ≥ 1, ck is a linear combination of the vectors ηjΦ(j)(η)

for 1 ≤ j ≤ k. Moreover by definition, we have

P (d)(1) = (0, . . . , 0︸ ︷︷ ︸
b d
2
c

, ∗, . . . , ∗)T ,

so C(P )
η P (d)(1) is a linear combination of the last dd

2
e columns of C(P )

η . Thus C(P )
η P (d)(1) is a linear

combination of the vectors ηjΦ(j)(η) for 1 ≤ j ≤ d− 1 and therefore in view of (3.3.15) and (3.3.16),
we have

eT0C
T
η (GT

ηC
T
η )−1C(P )

η P (d)(1) = O(η).

Proof of Theorem 3.6. First, we need to bound the remainder
∫ 1

0
ψ̃(2d−1)(x)e−2iπmx dx with respect
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to η. Φ̃ is a vector of polynomials of degree at most 2d− 2, thus Φ̃(2d−1) = 0. Thus∣∣∣∣∫ 1

0

ψ̃(2d−1)(x)e−2iπmx dx

∣∣∣∣ ≤ ∫ 1

0

|ψ(2d−1)(x)| dx+

∫ η

−η
|
〈
p̃ , ψ̃

〉
· Φ(2d−1)(x)| dx

+

∫ a+η

a−η

∣∣∣〈p̃a , ψ̃〉 · Φ(2d−1)(x− a)
∣∣∣ dx.

We have
〈
p̃ , ψ̃

〉
= 〈A−1p , ψ〉 by (3.3.8) and by Lemmas 3.13 and 3.14,

∣∣〈A−1p , ψ
〉∣∣ ≤ C

η2N−2
,

where C is a positive constant independent of η. Thus∫ η

−η
|
〈
p̃ , ψ̃

〉
· Φ(2d−1)(x)| dx ≤ C

η2N−3
.

Then by Proposition 3.8, using the estimates (3.2.1) and (3.2.2) on the derivative jumps

|̂̃ψm| ≤ C

b d2 c−1∑
j=0

1

(2πm)2+2j

∣∣∣[ψ̃(2j+1)
]

0

∣∣∣+
2d−2∑
k=d

1

(2πm)k+1

∣∣∣∣[ψ̃(k)
]
±η

∣∣∣∣
+

b d
2
c−1∑
j=0

1

(2πm)2+2j

∣∣∣[ψ̃(2j+1)
]

0

∣∣∣+
2d−2∑
k=d

1

(2πm)k+1

∣∣∣∣[ψ̃(k)
]
a±η

∣∣∣∣
+

1

(2πm)2d−1

∣∣∣∣∫ 1

0

ψ̃(2d−1)(x)e−2iπmx dx

∣∣∣∣
)

≤ C

b d2 c−1∑
j=0

η2N−2j

m2+2j
+

2d−2∑
k=d

1

ηk−1mk+1
+

1

η2N−3m2d−1

 .

Since N ≤ d and m ≥ 1
η
, we have the result.

3.3.5 Error bound on the eigenvalues

To derive the estimate on the eigenvalues, we would like to use the following classical result
([Wei74], p. 68).

Proposition 3.18. Let H be a self-adjoint coercive H1-bounded operator, E1 ≤ · · · ≤ En be the low-
est eigenvalues of H and ψ1, . . . , ψn be L2-normalized associated eigenfunctions.
Let E(M)

1 ≤ · · · ≤ E
(M)
n be the lowest eigenvalues of the Rayleigh quotient of H restricted to

the subspace VM of dimension M .
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Let wk ∈ VM for 1 ≤ k ≤ n be such that

n∑
k=1

‖wk − ψk‖2
H1 < 1.

Then there exists a positive constant C which depends on the H1 norm of H and the coercivity
constant such that for all 1 ≤ k ≤ n∣∣∣E(M)

k − Ek
∣∣∣ ≤ C

n∑
k=1

‖wk − ψk‖2
H1 .

We would like to apply this result to ψM = (Id + T )ψ̃M where ψ̃M is the truncation of ψ̃ to the
first M plane-waves but we need to bound the H1 norm of T with respect to η. Coercivity for our
one-dimensional model has been proved in [CD17]. To find this bound, we will need to rewrite Tf
in a convenient way.

Lemma 3.19. For f ∈ H1
per(0, 1), we have for |x| ≤ η:

Tf(x) = 〈p̃ , f〉 ·
(

Φ(x)− Φ̃(x)
)

=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

∫ 1

−1

ρ(t)f(ηt)P (t) dt ·
((

C−1
1

0

)
Φ(x)− P (x/η)

)
,

where G(P ) is the following Gram matrix :

G(P ) =

∫ 1

−1

ρ(t)P (t)P (t)T dt,

and C1 ∈ RN×N is the square matrix defined in Lemma 3.16.

Proof. For |x| ≤ η, we have :

(Tf)(x) = 〈p̃ , f〉 · (Φ(x)− Φ̃(x))

=
〈
B−1p , f

〉
· (Φ(x)− Φ̃(x)).

Recall that

B =
〈
p , Φ̃T

〉
=
〈
ρ(t/η)Φ̃ , Φ̃T

〉
= η

∫ 1

−1

ρ(t)C(P )
η P (t)P (t)T

(
C(P )
η

)T
dt

= ηC(P )
η G(P )

(
C(P )
η

)T
.
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Thus,

〈
B−1p , f

〉
· Φ̃(x) =

(
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

∫ 1

−1

ρ(t)f(ηt)P (t) dt · C(P )
η P (x/η)

=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

∫ 1

−1

ρ(t)f(ηt)P (t) dt · P (x/η).

Using the identity

C(P )
η

(
C−1

1

0

)
=
(
C1 | C2

)( C−1
1

0

)
= IN ,

we can formally rewrite 〈B−1p , f〉 as

〈
B−1p , f

〉
· Φ(x) =

(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

∫ 1

−1

ρ(t)f(ηt)P (t) dt ·
(
C−1

1

0

)
Φ(x),

(3.3.17)
and the result follows.

Lemma 3.20. There exists a positive constant C independent of η such that for all
f ∈ H1

per(0, 1) and for all x ∈ R, we have

∀ 0 < η ≤ η0,
∣∣∣〈p̃ , f〉 · (Φ(x)− Φ̃(x)

)∣∣∣ ≤ Cη‖f‖H1
per
.

Proof. In this proof, C denotes a generic constant that does not depend on η or f . Let f ∈ H1
per(0, 1).

On |x| ≥ η, we have by definition of Φ̃

〈p̃ , f〉 ·
(

Φ(x)− Φ̃(x)
)

= 0.

We deduce from Lemma 3.19 that for |x| ≤ η we have

〈p̃ , f〉 ·
(

Φ(x)− Φ̃(x)
)

=
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

∫ 1

−1

ρ(t)f(ηt)P (t) dt

·
((

C−1
1

0

)
Φ(x)− P (x/η)

)
.

The proof of the lemma consists of four steps. We will successively show that

1.
(
C−1

1

0

)
Φ(x)− P (x/η) =

(
0
∗

)
+O(η), where

(
0
∗

)
is uniformly bounded in η and x;

2.
∫ 1

−1
ρ(t)f(ηt)P (t) dt = f(0)G(P )e0 +O(η)‖f‖H1

per
;

3. the norm of
(
C

(P )
η

)T (
C

(P )
η G(P )

(
C

(P )
η

)T)−1

C
(P )
η is uniformly bounded in η;

4. for j ≥ 1, eTj
(
C

(P )
η

)T (
C

(P )
η G(P )

(
C

(P )
η

)T)−1

C
(P )
η G(P )e0 is of order O(η).
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Indeed, assuming these statements hold, we can infer from statement 2 that∣∣∣〈p̃ , f〉 · (Φ(x)− Φ̃(x)
)∣∣∣

≤ |f(0)|
∣∣∣∣(C(P )

η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η G(P )e0 ·

((
C−1

1

0

)
Φ(x)− P (x/η)

)∣∣∣∣
+O(η)‖f‖H1

per

∣∣∣∣(C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

((
C−1

1

0

)
Φ(x)− P (x/η)

)∣∣∣∣ .
We treat both terms separately. For the second term, by statements 1 and 3, we have∣∣∣∣(C(P )

η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η

((
C−1

1

0

)
Φ(x)− P (x/η)

)∣∣∣∣ ≤ C.

For the first one, by statement 1, we only have to check that for j ≥ 1, we have∣∣∣∣(C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η G(P )e0 · ej

∣∣∣∣ ≤ Cη,

which is exactly statement 4. The lemma is then proved using the Sobolev embedding
‖f‖L∞per ≤ C‖f‖H1

per
.

Step 1 Writing down the Taylor expansion of Φ at η, we obtain

Φ(x) =
N−1∑
k=0

(x− η)k

k!
Φ(k)(η) +O((x− η)N)

=
N−1∑
k=0

1

k!

(
x

η
− 1

)k
ηkΦ(k)(η) +O((x− η)N).

By Lemma 3.16, we have
C−1

1 ηkΦ(k)(η) = PK1η
kΦ(k)(η) = Pek,

and for k 6= 0, Pek · e0 = 0. We also know that ‖C−1
1 ‖ = O(η1−N), so that

C−1
1 Φ(x) =

(
1
∗

)
+O(η).

By definition P0 = 1, and therefore(
C−1

1

0

)
Φ(x)− P (x/η) =

(
0
∗

)
+O(η).
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Step 2 Since f ∈ H1
per(0, 1), by the Sobolev embedding theorem, f is continuous and f(0) exists.

Thus we can write∫ 1

−1

ρ(t)f(ηt)P (t) dt = f(0)

∫ 1

−1

ρ(t)P (t) dt+

∫ 1

−1

ρ(t)(f(ηt)− f(0))P (t) dt

= f(0)G(P )e0 +

∫ 1

−1

ρ(t)(f(ηt)− f(0))P (t) dt,

since P0 = 1. Using

f(ηt) = f(0) +

∫ ηt

0

f ′(x) dx,

and Cauchy-Schwarz inequality, we obtain∣∣∣∣∫ 1

−1

ρ(t)(f(ηt)− f(0))P (t) dt

∣∣∣∣ ≤
(∫ 1

−1

ρ(t)2P 2(t) dt

∫ 1

−1

(∫ ηt

0

f ′(x) dx

)2

dt

)1/2

≤ C

(∫ 1

−1

(∫ ηt

0

f ′(x)2 dx

)
η2t2 dt

)1/2

≤ Cη‖f‖H1
per
.

Step 3 We want to bound the norm of the matrix(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η .

Since G(P ) is the Gram matrix of the polynomials Pk for the weight ρ, G(P ) is a symmetric positive
definite matrix and thus admits a square root. It is easy to check that

G(P )1/2
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η G(P )1/2

is an orthogonal projector. Its norm is therefore uniformly bounded in η.

Step 4 Let G1 ∈ RN×N , G2 ∈ RN×(d−N) and G3 ∈ R(d−N)×(d−N) be the matrices respectively
defined by

G(P ) =

(
G1 G2

GT
2 G3

)
.

Let Mη be the matrix
C−1

1 C2 = Mη.

Recall that by Lemma 3.16, ‖Mη‖ ≤ C. With this notation, we have

C(P )
η G(P )

(
C(P )
η

)T
= C1

(
G1 +MηG

T
2 +G2M

T
η +MηG3M

T
η

)
CT

1 ,
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and therefore,

(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η G(P )e0

=

(
IN
MT

η

)(
G1 +MηG

T
2 +G2M

T
η +MηG3M

T
η

)−1 (
G1 +MηG

T
2

)
e0. (3.3.18)

We will now show that MT
η e0 = O(η). By definition,

eT0Mη = eT0C
−1
1 C2 = eT0PK1C2.

By Lemma 3.16, eT0P = e0 and by definition of K1, eT0K1 = gT0 where g0 is the vector satisfying
gT0 η

kΦ(k)(η) = δ0k for k ≤ N − 1. Again by Lemma 3.16, the columns of C(P )
η satisfy :

∀0 ≤ j ≤ d− 1, cj = ηjΦ(j)(η)−
j−1∑
k=0

P
(j)
k (1)ck,

with P (j)
0 (1) = 0 for j ≥ 1. Consequently cj is a linear combination of the vectors ηkΦ(k)(η) for

1 ≤ k ≤ j. Since ‖g0‖ = O(η1−N), we get gT0 C2 = O(η). Coming back to Equation (3.3.18), we
have (

C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η e0 =

(
IN
MT

η

)
e0 +O(η).

Consequently,

eTj
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η e0 = eTj

(
IN
MT

η

)
e0 +O(η)

=

{
O(η), 0 ≤ j ≤ N − 1,

eTj−NM
T
η e0 = O(η), N ≤ j ≤ d− 1.

We can establish a similar result for 〈p̃ , f〉 ·
(

Φ′(x)− Φ̃′(x)
)
.

Lemma 3.21. There exists a positive constant C independent of η such that for all
f ∈ H1

per(0, 1) and for all x ∈ R, we have

∀ 0 < η ≤ η0,
∣∣∣〈p̃ , f〉 · (Φ′(x)− Φ̃′(x)

)∣∣∣ ≤ C‖f‖H1
per
,

Proof. It is a transposition of the proof of the previous lemma. The first step is simply replaced by

1.
(
C−1

1

0

)
Φ′(x)− 1

η
P ′(x/η) = 1

η

(
0
∗

)
+O(1), where

(
0
∗

)
is uniformly bounded in η and x.
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To prove the latter statement, we observe that P ′0 = 0 and by a Taylor expansion of Φ′, we obtain

Φ′(x) =
1

η

N−1∑
k=1

1

(k − 1)!

(
x

η
− 1

)k−1

ηkΦ(k)(η) +O(ηN−1),

hence
C−1

1 Φ′(x) =
1

η

(
0
∗

)
+O(1).

Lemma 3.22. There exists a positive constant C independent of η such that for all f ∈ H1
per(0, 1),

we have
∀ 0 < η ≤ η0, ‖Tf‖H1

per
≤ Cη

1
2‖f‖H1

per

Proof. This is a straightforward consequence of Lemmas 3.20 and 3.21.

Proof of Theorem 3.7. Applying Proposition 3.18 to ψM = (Id + T )ΠM ψ̃, where ΠM is the trunca-
tion to the first M plane-waves, we have

|Eη
M − E| ≤ C‖(Id + T )(ΠM ψ̃ − ψ̃)‖2

H1
per

≤ C(‖ΠM ψ̃ − ψ̃‖2
H1

per
+ ‖T (ΠM ψ̃ − ψ̃)‖2

H1
per

).

By Lemma 3.22,

‖T (ΠM ψ̃ − ψ̃)‖2
H1

per
≤ C‖ΠM ψ̃ − ψ̃‖2

H1
per

,

and we deduce from Theorem 3.6 that

|Eη
M − E| ≤ C‖ΠM ψ̃ − ψ̃‖2

H1
per

≤ C

∞∑
j=M+1

(1 + j2)|̂̃ψj|2
≤ C

∞∑
j=M+1

(
η4N

j2
+

1

η2d−2j2d

)
≤ C

(
η4N

M
+

1

η2d−2M2d−1

)
.

3.4 Perturbation by a continuous potential

In standard electronic structure calculations, the Hartree and exchange-correlation terms are
modelled by a potential that is smoother than the Coulomb potential. To reproduce this setting in
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our one-dimensional toy model, a smoother potential W is added to the Hamiltonian (3.1.1). In
the following, we examine how the VPAW method accelerates the computation of eigenvalues.

Consider the Hamiltonian

H = − d2

dx2
− Z0

∑
k∈Z

δk − Za
∑
k∈Z

δa+k +W , (3.4.1)

where W is 1-periodic, continuous, 0 < a < 1, Z0, Za > 0.

With the VPAW method, the generalized eigenvalue problem

(Id + T ∗)H(Id + T )ψ̃ = E(Id + T ∗)(Id + T )ψ̃, (3.4.2)

is solved by expanding ψ̃ in plane-waves. Like in Section 3.1.2, T = T0 + Ta, where T0 and Ta act
on two disjoint regions

⋃
k∈Z

[−η + k, η + k] and
⋃
k∈Z

[a− η + k, a + η + k] respectively. The atomic

wave functions (φk)0≤k≤N−1 are the non-smooth solutions of the atomic Hamiltonian

H0 = − d2

dx2
− Z0

∑
k∈Z

δk + V ,

where V can be different from W . The eigenvalues associated to (φk)0≤k≤N−1 are denoted by εk.
To define the pseudo wave functions (φ̃k)0≤k≤N−1 and the projectors (p̃k)0≤k≤N−1, we proceed as in
Section 3.1.2.

It follows from the study of the double Dirac delta potential Hamiltonian that the key lemma
of the analysis is the structure Lemma 3.9, which describes the behavior of eigenfunctions near the
singularities. It is possible to establish a similar result for the eigenfunctions of the Hamiltonian
(3.4.1).

Lemma 3.23. Let ψ be an eigenfunction of the Hamiltonian H given by (3.4.1) for the eigenvalue
E. Then in a neighborhood of 0, we have the following expansion :

ψ(x) = ψ(0)

(
k∑
j=0

(−E)j

(2j)!
x2j − Z0

2

(−E)j

(2j + 1)!
|x|2j+1

)

+
ψ′(0+) + ψ′(0−)

2

k∑
j=0

(−E)j

(2j + 1)!
x2j+1 +

k∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
2j+2

Wψ(x) + ψ2k+2(x),

where ψ2k+2 is a C2k+2 function satisfying in a neighbourhood of 0{
ψ

(2k+2)
2k+2 = (−E)k+1ψ,

ψ2k+2(x) = O(x2k+2).
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Proof. This lemma can be proved by induction. For k = 0, we set

θ2(x) = ψ(x) +
Z0

2
|x|ψ(0)−

x∫
0

t∫
0

W (s)ψ(s)dsdt

and then proceed as in the proof of Lemma 3.9.

We will now make some assumptions on the potentials V and W :

1. V and W are smooth and 1-periodic;

2. V is even. This property would indeed be satisfied by potentials that does not break the
crystal symmetry;

Lemma 3.24. For N ≥ 2:∫∫
V Φ(x) =

N−1∑
k=1

(V Φ)k

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)
+O

(
x2N

)
,

where (V Φ)k is in span(E jΦ(0), j ≤ N − 2).

Proof. This lemma is proved by induction.

Initialization Applying Lemma 3.23 with Za = 0 and W = V to each function φk, we obtain
expansions of the atomic PAW functions φk in the vicinity of 0:

Φ(x) = Φ(0)

(
1− Z0

2
|x|
)

+O(x2).

Deriving twice
∫∫

V Φ gives(∫∫
V Φ(x)

)′′
= V (x)Φ(x)

= V (0)Φ(0)

(
1− Z0

2
|x|
)

+O(x2).

Therefore ∫∫
V Φ(x) = V (0)Φ(0)

(
x2

2
− Z0

2

|x|3

6

)
+O(x4).



3.4. Perturbation by a continuous potential 87

Inductive step Let us derive twice
∫∫

V Φ:(∫∫
V Φ(x)

)′′
= V (x)Φ(x)

=

(
2N−2∑
k=0

V (2k)(0)
x2k

(2k)!

)(
N−1∑
k=0

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)
DkΦ(0)

+
N−2∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x)

)
+O(x2N). (3.4.3)

By the induction hypothesis,∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x) =
N−1∑
k=j+1

(V Φ)k−j

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)
+O(x2N).

Thus,

N−1∑
j=0

∫
· · ·
∫

︸ ︷︷ ︸
(2j+2)

V Φ(x) =
N−2∑
j=0

N−1∑
k=j+1

(V Φ)k−j

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)

=
N−1∑
k=1

k−1∑
j=0

(V Φ)k−j

(
x2k

(2k)!
− Z0

2

|x|2k+1

(2k + 1)!

)
.

Going back to (3.4.3), expanding the equation and using the last equation, we obtain the result.

Lemma 3.25. In a neighbourhood of 0, the vector Φ has the following expansion :

Φ(x) =
k∑
j=0

(
x2j

(2j)!
− Z0

2

|x|2j+1

(2j + 1)!

)
Xj + Φ2k+2(x) ,

where the function Φ2k+2 is C2k+2 at 0 and Xj are vectors satisfying{
Xj ∈ span(E `Φ(0), ` ≤ j),

Xj − E jΦ(0) ∈ span(E `Φ(0), ` ≤ j − 1),
(3.4.4)

where E is the diagonal matrix with entries −ε0, . . . ,−εN−1.

Proof. We apply Lemmas 3.23 and 3.24 and notice that the vectors (V Φ)k are spanned by
(E jΦ(0), j ≤ k − 1).
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Lemma 3.26. The even part of ψ satisfies

ψe(x) =
1∑
j=0

(
(−E)j

(2j)!
x2j − Z0

2

(−E)j

(2j + 1)!
|x|2j+1

)
+W (0)ψ(0)

(
x2

2
− Z0

2

|x|3

3!

)
+

(
W ′(0)ψ′s(0)− E

2
W (0)ψ(0)

)
x4

4!
− Z0

2

(
W ′′(0)

2
ψ(0)− EW (0)ψ(0)

)
|x|5

5!

+W (0)ψ(0)

(
x4

4!
− Z0

2

x5

5!

)
+O

(
x6
)
,

where
ψ′s(0) =

ψ′(0+) + ψ′(0−)

2
.

Proof. The proof follows from Lemma 3.23 and a careful estimation of the terms
∫∫

Wψ and∫∫∫∫
Wψ.

Since W is not even, ψ does not have the same structure as for the double delta potential.
More precisely, we can show that because of the term

∫∫
Wψ the singularity of the fifth order term

cannot be removed by the VPAW approach.

Lemma 3.27. For N = 2 there exist coefficients c0 and c1 such that:

ψe(x)− c0φ0(x)− c1φ1(x) = O
(
x4
)
.

For N ≥ 3, there exists a family of coefficients (ck)0≤k≤N−1 such that:

ψe(x)−
N−1∑
k=0

ckφk(x) = O
(
x5
)
.

Following the same steps as in Section 3.3, we can establish the following theorems.

Theorem 3.28 (Estimates on the Fourier coefficients). Let N ∈ N∗ and d ≥ N . Let ̂̃ψm be the
m-th Fourier coefficient of ψ̃. Then, there exists a positive constant C such that for all 0 < η ≤ η0

and m ≥ 1
η ∣∣∣̂̃ψm∣∣∣ ≤ C

(
η2N∧5

m2
+

1

ηd−1md+1

)
,

where a ∧ b = min(a, b).

Theorem 3.29 (Estimates on the eigenvalues). Let N ∈ N∗ and d ≥ N . Let Eη
M be an eigenvalue

of the variational approximation of (3.4.2) in a basis of M plane-waves and for a cut-off radius
0 < η ≤ η0, and let E be the corresponding exact eigenvalue. There exists a constant C > 0
independent of η and M such that for all 0 < η ≤ η0 and M ≥ 1

η

|Eη
M − E| ≤ C

(
η4N∧10

M
+

1

η2d−2

1

M2d−1

)
. (3.4.5)
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Remark 3.30. The estimate (3.4.5) does not seem optimal as shown in Figure 3.5.6. It seems
that singularities of any order can be removed by the VPAW method.

3.5 Numerical tests
The goal of this section is to compare the theoretical estimates determined in Sections 3.2 and

3.3 to numerical simulations and show that they are optimal.
All numerical simulations are carried out with Z0 = Za = 10 and a = 0.4. The Fourier

coefficients are evaluated by a very accurate numerical integration.
It is interesting to compare the results (Figure 3.5.1) obtained by a direct expansion of the

wave function ψ (here displayed by the points N = 0) and the VPAW method. Recall that N is
the number of pseudo wave functions used to build the operator T . The smoothness of the pseudo
wave functions is set to d = N .

(a) Error on the 8-th eigenvalue forM = 64 basis
functions

(b) Error on the 8-th eigenvalue for M = 256
basis functions

Figure 3.5.1 – The VPAW method compared to a direct calculation for the 8-th eigenvalue

Given a number M of basis functions, the VPAW method is much more accurate than the direct
method although it is quite sensitive to the choice of η. More comments on this behavior will be
made in Section 3.5.3. We do not report the computing times for the VPAW method because in
this study, each time a simulation is run, we generate all the pseudo wave functions φ̃, the projector
functions p̃ and compute their Fourier coefficients. In practice, these data are precomputed and
stored in a file. Thus, the only additional cost compared to the direct method comes from the
assembly of the matrices (Id + T )∗H(Id + T ) and (Id + T )∗(Id + T ).

3.5.1 Derivative jumps

Since ψ and the functions φi are known analytically, it is possible to evaluate the derivative
jumps of ψ̃ at 0 and ±η (Figure 3.5.2 and Table 3.5.1). The plots are given for the eigenfunction
associated to the lowest eigenvalue of H. The behavior is similar for other eigenfunctions.

These numerical results are in remarkable agreement with Propositions 3.4 and 3.5.
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(a) First derivative jump at 0 as
a function of η in log-log scale
(d = N).

(b) d-th derivative jump at ±η as
a function of η in log-log scale
(N = 2).

Figure 3.5.2 – Derivative jumps of the pseudo wave function ψ̃

N Numerics Theory

2 3.90 4
3 5.94 6
4 7.85 8
5 9.85 10

(a) Numerical and theoretical slopes for the first
derivative jump at 0.

d Numerics Theory

2 -1.005 -1
3 -2.000 -2
4 -3.000 -3
5 -4.000 -4

(b) Numerical and theoretical slopes for
the d-th derivative jump at ±η.

Table 3.5.1 – Comparison of the theoretical and numerical results for the derivative jumps

3.5.2 Comparison of the PAW and VPAW methods in pre-asymptotic
regime

The simulations are run for a fixed value of d = 6 and two different values of η (η = 0.1 and
η = 0.2). In Figure 3.5.3, E is the lowest eigenvalue of the 1D-Schrödinger operator H given by
(3.1.1).

Recall that our theoretical estimate on the eigenvalue given by the VPAW method is :

|Eη
M − E| ≤ C

(
η4N

M
+

1

η2d−2

1

M2d−1

)
. (3.5.1)

To transpose the PAW method to our one-dimensional setting, we need to account for the use of
a pseudo-potential. For this purpose, we replace the Dirac delta potential by some smooth function
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in Equation (3.1.1). We choose the 1-periodic function χε such that

χε(x) =

C
ε

exp

(
− 1

1−(xε )
2

)
, x ∈ [−ε, ε],

0, x ∈ [−1/2, 1/2] \ [−ε, ε].

where C ensures that
∫ ε
−ε χε = 1. As ε goes to 0, χε converges to the 1-periodized Dirac potential

in H−1
per(0, 1).
As expected, the PAW method quickly converges to a wrong value of E. It is interesting to

notice that asymptotically, the VPAW convergence is of order O
(

1
M

)
but for small enough values

of M and η, the second term in the RHS of (3.5.1) dominates.

Figure 3.5.3 – Comparison between the PAW and VPAW methods for the lowest eigenvalue

3.5.3 Asymptotic regime

Behavior in the plane-wave cut-off M

The next numerical tests (Figure 3.5.4 and Table 3.5.2) are run with d = N and N = 2, N = 3.
The pseudo wave function ψ̃ is expanded in M = 2m plane-waves, m = 7 to 9.

Here, we can clearly see two regimes : for η small (resp. η large), the leading term in the error
is dominated by the d-th derivative jumps at k ± η and k + a± η, k ∈ Z (resp. the first derivative
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(a) Error on the 9-th eigenvalue with N = 2 (b) Error on the 9-th eigenvalue with N = 3

Figure 3.5.4 – Error on the eigenvalue for different values of M

jump at k and k+ a, k ∈ Z). In each regime, the gaps between the decreasing and increasing slopes
seem constant and their evaluation gives the correct orders of convergence in M (see Table 3.5.2).

Numerics Theory

Decreasing lines 0.30 log(2) ' 0.30
Increasing lines 0.90 3 log(2) ' 0.90

(a) Gaps for N = 2

Numerics Theory

Decreasing lines 0.32 log(2) ' 0.30
Increasing lines 1.50 5 log(2) ' 1.50

(b) Gaps for N = 3

Table 3.5.2 – Estimation of the order of convergence in M

Dependence of the convergence rate in η on N and d

In each graph of Figure 3.5.5, we have kept M constant to track the dependence of the
convergence rate in η. By Theorem 3.7, the logarithm of error on the eigenvalue is given by

log(Eη
M − E) = log(C) + log

(
η4N

M
+

1

η2d−2M2d−1

)
.

Hence, when η is large, we have

log(Eη
M − E) ' log(C) + 4N log η − log(M),

and when η is small, we have

log(Eη
M − E) ' log(C)− (2d− 2) log η − (2d− 1) logM.

Notice that in each graph, for η large, the parameter d has a negligible effect on the error on
the eigenvalues, in agreement with our theoretical estimates.
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(a) Error on the 8-th eigenvalue with N = 2,
M = 256

(b) Error on the 8-th eigenvalue with N = 3,
M = 128

Figure 3.5.5 – Error on the eigenvalue for different values of d

d Numerics Theory

2 6.5 8
3 6.9 8
4 7.2 8

(a) N = 2

d Numerics Theory

3 10.6 12
4 10.7 12
5 10.9 12

(b) N = 3

Table 3.5.3 – Estimation of the increasing slopes in Figure 3.5.5

There is a small discrepancy between the theoretical and numerical values of the increasing
slope. A possible explanation could be that the estimates we have given for the first derivative
jumps are valid asymptotically as η goes to 0, but the increasing slopes are observed for relatively
large values of η.

d Numerics Theory

2 -1.6 -2
3 -3.6 -4
4 -6.0 -6

(a) N = 2

d Numerics Theory

3 -3.8 -4
4 -5.4 -6
5 -7.8 -8

(b) N = 3

Table 3.5.4 – Estimation of the decreasing slopes in Figure 3.5.5

For the decreasing slopes, our estimate is in very good agreement with the numerical simulations.



94 CHAPTER 3. The VPAW method in a one-dimensional model

3.5.4 Perturbation by a continuous potential

In this subsection, we study the VPAW method applied to the Hamiltonian (3.4.1) with
W (x) = 10 sin(2πx + 0.2). Since this model is not exactly solvable, we use a P2 finite elements
method to compute very accurately the eigenvalues (the relative error on the computed eigenvalue
is less than 10−10).

Figure 3.5.6 – Error on the first eigenvalue as a function of η (M = 128, d = 4)

N Numerics Theory

2 8.2 8
3 12 10

(a) Increasing slopes

Numerics Theory

N = 2 and N = 3 -5.7 -6

(b) Decreasing slopes

Table 3.5.5 – Estimation of the slopes in Figure 3.5.6

For N = 3, the increasing part of the curve has a slope which is very close to the theoretical
estimation of Theorem 3.7 (that is with W = 0). This seems to indicate that the VPAW method
removes the singularity at the nucleus up to the fifth order, but we are unable to support this
observation with rigorous numerical analysis arguments.



CHAPTER 4

PROJECTOR AUGMENTED-WAVE IN A ONE-DIMENSIONAL
SETTING

In this chapter, based on [Dup17], the PAW method is applied to the one-dimensional double
Dirac potential Hamiltonian. The eigenfunctions of this model display a cusp at the location of the
Dirac potentials that is reminiscent of the Kato cusp condition [Kat57]. Error estimates on the
lowest PAW eigenvalue are proved for several choices of PAW parameters. The present analysis
relies on some results on the variational PAW method (VPAW method) [BCD17a, BCD17b] which
is a slight modification of the original PAW method. Contrary to the PAW method, the VPAW
generalized eigenvalue problem is in one-to-one correspondence with the original eigenvalue problem.
By estimating the difference between the PAW and VPAW generalized eigenvalue problems, error
estimates on the lowest PAW generalized eigenvalue are found.

This chapter is organized as follows. The PAW formalism applied to the one-dimensional
periodic Schrödinger operator is presented in Section 4.1. Estimates on the PAW truncation error
for the lowest eigenvalue of this model can be found in Section 4.2. Proofs are gathered in Section
4.3 and numerical tests are given in Section 4.4.

4.1 The PAW method in a one-dimensional setting

A general overview of the VPAW and PAW methods for 3-D electronic Hamiltonians may be
found in [BCD17a] for the molecular setting and in [BCD17b] for crystals. Here, the presentation
of the VPAW and PAW methods is limited to the application to the 1-D periodic Schrödinger
operator with double Dirac potentials.

95
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4.1.1 The double Dirac potential Schrödinger operator

We are interested in the lowest eigenvalue of the 1-D periodic Schrödinger operator H on
L2

per(0, 1) := {f ∈ L2
loc(R) | f 1-periodic} with form domainH1

per(0, 1) := {f ∈ H1
loc(R) | f 1-periodic}:

H = − d2

dx2
− Z0

∑
k∈Z

δk − Za
∑
k∈Z

δk+a, (4.1.1)

where 0 < a < 1, Z0, Za > 0.
A mathematical analysis has been carried out in [CD17]. There are two negative eigenvalues

E0 = −ω2
0 and E1 = −ω2

1 which are given by the zeros of the function

f(ω) = 2ω2(1− cosh(ω)) + (Z0 + Za)ω sinh(ω)− Z0Za sinh(aω) sinh((1− a)ω).

The corresponding eigenfunctions are

ψk(x) =

{
A1,k cosh(ωkx) +B1,k sinh(ωkx) , 0 ≤ x ≤ a,

A2,k cosh(ωkx) +B2,k sinh(ωkx) , a ≤ x ≤ 1,

where the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions and the
derivative jumps at 0 and a.

There is an infinity of positive eigenvalues Ek+2 = ω2
k+2 which are given by the k-th zero of the

function :

f(ω) = 2ω2(1− cos(ω)) + (Z0 + Za)ω sin(ω) + Z0Za sin(aω) sin((1− a)ω),

and the corresponding eigenfunctions Hψk = ω2
kψk are

ψk(x) =

{
A1,k cos(ωkx) +B1,k sin(ωkx) , 0 ≤ x ≤ a,

A2,k cos(ωkx) +B2,k sin(ωkx) , a ≤ x ≤ 1,
(4.1.2)

where again the coefficients A1,k, A2,k, B1,k and B2,k are determined by the continuity conditions
and the derivative jumps at 0 and a. Notice that the eigenfunctions of H have a first derivative jump
that is similar to the Kato cusp condition satisfied by the solutions of 3D electronic Hamiltonian
[Kat57]:

ψ′k(0+)− ψ′k(0−) = −Z0ψk(0).

4.1.2 The PAW method

General principle

The PAW method consists in replacing the original eigenvalue problem Hψ = Eψ by the
generalized eigenvalue problem

(Id + T ∗)H(Id + T )ψ̃ = E(Id + T ∗)(Id + T )ψ̃, (4.1.3)
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where Id + T is an invertible operator. It is clear that (4.1.3) is equivalent to Hψ = Eψ where
ψ = (Id + T )ψ̃.

The transformation T is the sum of two operators acting in regions near the atomic sites that
do not overlap (i.e. T0Ta = TaT0 = 0)

T = T0 + Ta, T0 =
∞∑
i=0

(φ0
i − φ̃0

i )
〈
p̃0
i , ·
〉
, Ta =

∞∑
i=0

(φai − φ̃ai ) 〈p̃ai , ·〉 ,

where 〈· , ·〉 denotes the L2
per(0, 1) scalar product.

The atomic wave functions (φ0
j)j∈N are solutions of an atomic eigenvalue problem

H0φ
0
j := −

d2φ0
j

dx2
− Z0

∑
k∈Z

δkφ
0
j = ε0jφ

0
j ,

and the pseudo wave functions (φ̃0
j)j∈N and the projector functions (p̃0

j)j∈N satisfy the following
conditions :

1. for each j ∈ N,

— for x ∈ R \
⋃
k∈Z

[−η + k, η + k], φ̃0
j(x) = φ0

j(x);

— φ̃0
j restricted to

⋃
k∈Z

[−η + k, η + k] is a smooth function;

2. for each j ∈ N, supp p̃0
j ⊂

⋃
k∈Z

[−η + k, η + k];

3. the families (φ̃0
j |[−η,η])j∈N and (p̃0

j |[−η,η])j∈N form a Riesz basis of L2(−η, η), i.e.

∀ j, k ∈ N,
∫ η

−η
p̃0
k(x)φ̃0

j(x) dx = δkj,

and for any f ∈ L2(−η, η), we have

∞∑
k=0

〈
p̃0
k , f

〉
φ̃0
k(x) = f(x), for a.a. x ∈

⋃
k∈Z

[−η + k, η + k]. (4.1.4)

Similarly, (φai )i∈N∗ are eigenfunctions of the operator Ha = − d2

dx2
− Z0

∑
k∈Z

δa+k, the pseudo wave

functions (φ̃aj )j∈N∗ and the projector functions (p̃aj )j∈N∗ are defined as above.

The relation (4.1.4) enables one to write the expression of (Id + T ∗)H(Id + T ) and
(Id + T ∗)(Id + T ) as

(Id + T ∗)H(Id + T ) = H +
∞∑

i,j=0
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (4.1.5)
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and

(Id + T ∗)(Id + T ) = Id +
∞∑

i,j=0
I={0,a}

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
. (4.1.6)

Introduction of a pseudopotential

A further modification is possible. As the pseudo wave functions φ̃0
i (resp. φ̃ai ) are equal to φ0

i

(resp. φai ) outside
⋃
k∈Z

[−η + k, η + k] (resp.
⋃
k∈Z

[a − η + k, a + η + k]), the integrals appearing in

(4.1.5) can be truncated to the interval (−η, η) (resp. (a− η, a+ η)). Doing so, another expression
of (Id + T ∗)H(Id + T ) can be obtained :

(Id + T ∗)H(Id + T ) = H +
∞∑

i,j=0
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
I,η
−
〈
φ̃Ii , Hφ̃

I
j

〉
I,η

)〈
p̃Ij , ·

〉
,

where

〈f , g〉I,η =

{∫ η
−η f(x)g(x) dx, when I = 0,∫ a+η

a−η f(x)g(x) dx, when I = a.

Using this expression of the operator HPAW , it is possible to introduce a smooth 1-periodic potential
χε =

∑
k∈Z

1
ε
χ
( ·−k

ε

)
with ε ≤ η, such that

1. χ is a smooth nonnegative function with support [−1, 1] and
∫ 1

−1
χ(x) dx = 1;

2. χε −→
ε→0

∑
k∈Z

δk in H−1
per(0, 1).

The potential χε will be called a pseudopotential in the following.

The expression of (Id + T ∗)H(Id + T ) becomes

(Id + T ∗)H(Id + T ) = Hps +
∞∑

i,j=0
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
I,η
−
〈
φ̃Ii , Hpsφ̃

I
j

〉
I,η

)〈
p̃Ij , ·

〉
, (4.1.7)

with
Hps =

d2

dx2
− Z0χε − Zaχε(· − a).

4.1.3 The PAW method in practice

In practice, the double sums appearing in the operators (4.1.5), (4.1.6) and (4.1.7) have to be
truncated to some level N . Doing so, the identity ψ = (Id + T )ψ̃ is lost and the eigenvalues of the
truncated equations are not equal to those of the original operator H (4.1.1). The PAW method
introduces an error that will be estimated in the rest of chapter. First, we define the PAW functions
appearing in (4.1.5), (4.1.6) and (4.1.7).
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Generation of the PAW functions

For the double Dirac potential Hamiltonian, the PAW functions are defined as follows.

Atomic wave functions φ0
k As mentioned earlier, the atomic wave functions (φ0

k)1≤k≤N are
eigenfunctions of the Hamiltonian H0

H0 = − d2

dx2
− Z0

∑
k∈Z

δk.

By parity, each eigenfunction of this operator is either even or odd. The odd eigenfunctions are in
fact x 7→ sin(2πkx) and the even ones are the 1-periodic functions such that{

φ0
0(x) := cosh(ω0(x− 1

2
)) for x ∈ [0, 1],

φ0
k(x) := cos(ωk(x− 1

2
)) for x ∈ [0, 1], k ∈ N∗,

In the sequel (and in particular in (4.1.9) and (4.1.12) below), only the non-smooth thus even
eigenfunctions (φ0

i )1≤i≤N are selected. The corresponding eigenvalues are denoted by (ε0i )1≤i≤N :

H0φ
0
i = ε0iφ

0
i .

Pseudo wave function φ̃0
i The pseudo wave functions (φ̃0

i )1≤i≤N ∈
(
H1

per(0, 1)
)N are defined as

follows:

1. for x /∈
⋃
k∈Z

[−η + k, η + k], φ̃0
i (x) = φ0

i (x).

2. for x ∈
⋃
k∈Z

[−η + k, η + k], φ̃0
i is an even polynomial of degree at most 2d− 2, d ≥ N .

3. φ̃0
i is Cd−1 at η i.e. (φ̃0

i )
(k)(η) = (φ0

i )
(k)(η) for 0 ≤ k ≤ d− 1.

Projector functions p̃0
i Let ρ be a positive, smooth function with support included in [−1, 1]

and ρη(t) =
∑
k∈Z

ρ
(
t−k
η

)
. The projector functions (p̃0

i )1≤i≤N are obtained by an orthogonalization

procedure from the functions p0
i (t) = ρη(t)φ̃

0
i (t) in order to satisfy the duality condition :〈
p̃0
i , φ̃

0
j

〉
= δij.

More precisely, the matrix Bij :=
〈
p0
i , φ̃

0
j

〉
is computed and inverted to obtain the projector

functions

p̃0
k =

N∑
j=1

(B−1)kjp
0
j .

The matrix B is the Gram matrix of the functions (φ̃0
j)1≤j≤N for the weight ρη. The orthogonalization

is possible only if the family (φ̃0
i )1≤i≤N is linearly independent - thus necessarily d ≥ N .
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The eigenvalue problems

For the case without pseudopotentials, the PAW eigenvalue problem is given by

HNf = E(η)SNf, (4.1.8)

where

HN = H +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (4.1.9)

and

SN = Id +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
. (4.1.10)

The practical interest in solving the eigenvalue problem (4.1.8) is very limited since this version
of the PAW method does not remove the singularity caused by the Dirac potentials. The next
eigenvalue problem where the Dirac potentials are replaced by smoother potentials is closer to the
implementation of the PAW method in practice.

For the case with pseudopotentials, the PAW eigenvalue problem becomes

HPAWf = EPAWSPAWf, (4.1.11)

where

HPAW = Hps +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hpsφ̃

I
j

〉) 〈
p̃Ij , ·

〉
, (4.1.12)

and

SPAW = SN = Id +
N∑

i,j=1
I={0,a}

p̃Ii

(〈
φIi , φ

I
j

〉
−
〈
φ̃Ii , φ̃

I
j

〉) 〈
p̃Ij , ·

〉
. (4.1.13)

If the projector functions (p̃i)1≤i≤N are smooth, then the eigenfunctions f in (4.1.11) are smooth
as well, and their plane-wave expansions converge very quickly. Thus, if the difference |EPAW − E|
is smaller than a desired accuracy, it is more interesting to solve (4.1.11) than the original eigenvalue
problem. However, an estimate on the difference |EPAW − E| is needed in order to justify the use
of the PAW method.

To the best of our knowledge, there exists no estimation of this error except a heuristic analysis
in the seminal work of Blöchl ([Blo94], Sections VII.B and VII.C). However, his analysis relies

on an expansion of the eigenvalue in f −
N∑
i=1

〈p̃i , f〉 φ̃i which goes to 0 if the families (p̃i)i∈N∗ and

(φ̃i)i∈N∗ form a Riesz basis, but a convergence rate of the expansion of f in this Riesz basis is not
given. Moreover the inclusion of a pseudopotential in the PAW treatment is not taken into account.
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The goal of this chapter is to provide error estimates on the lowest PAW eigenvalue of problems
(4.1.8) and (4.1.11). To prove this result, the PAW method is interpreted as a perturbation of the
VPAW method introduced in [BCD17a, BCD17b] which has the same eigenvalues as the original
problem. In the following, when we refer to the PAW method, it will be to the truncated equations
(4.1.8) or (4.1.11).

4.1.4 The VPAW method

The analysis of the PAW method relies on the connexion between the VPAW and the PAW
methods. A brief description of the VPAW method is given in this subsection.

Like the PAW method, the principle of the VPAW method consists in replacing the original
eigenvalue problem

Hψ = Eψ,

by the generalized eigenvalue problem:

(Id + T ∗N)H(Id + TN)ψ̃ = E(Id + TN)(Id + TN)ψ̃, (4.1.14)

where Id + TN is an invertible operator. Thus both problems have the same eigenvalues and it is
straightforward to recover the eigenfunctions of the former from the generalized eigenfunctions of
the latter:

ψ = (Id + TN)ψ̃.

Again, TN is the sum of two operators acting near the atomic sites

TN = T0,N + Ta,N . (4.1.15)

To define T0,N , we fix an integer N and a radius 0 < η < min(a
2
, 1−a

2
) so that T0,N and Ta,N act on

two disjoint regions
⋃
k∈Z

[−η + k, η + k] and
⋃
k∈Z

[a− η + k, a+ η + k] respectively.

The operators T0,N and Ta,N are given by

T0,N =
N∑
i=1

(φ0
i − φ̃0

i )
〈
p̃0
i , ·
〉
, Ta,N =

N∑
i=1

(φai − φ̃ai ) 〈p̃ai , ·〉 , (4.1.16)

with the same functions φIi , φ̃Ii and p̃Ii , I = 0, a as in Section 4.1.2. The only difference with the
PAW method is that the sums appearing in (4.1.16) are finite, thereby avoiding a truncation error.

In the following, the VPAW operators are denoted by

H̃ = (Id + T ∗N)H(Id + TN), (4.1.17)

and
S̃ = (Id + T ∗N)(Id + TN), (4.1.18)

The full analysis of the VPAW method can be found in Chapter 3. We proved that the cusps



102 CHAPTER 4. Projector augmented-wave in a one-dimensional setting

at 0 and a of the eigenfunctions ψ̃ are reduced by a factor η2N but the d-th derivative jumps
introduced by the pseudo wave functions φ̃k blow up as η goes to 0 at the rate η1−d. Using Fourier
methods to solve (4.1.14), we observe an acceleration of convergence that can be tuned by the
VPAW parameters η -the cut-off radius- N -the number of PAW functions used at each site- and d
-the smoothness of the PAW pseudo wave functions.

4.2 Main results

The PAW method is well-posed if the projector functions (p̃Ii )1≤i≤N are well-defined. This
question has already been addressed in Chapter 3 where it is shown that we simply need to take
η < η0 for some positive η0.

Assumption 4.1. Let η0 > 0 such that for all 0 < η < η0, the projector functions (p̃i)1≤i≤N in
Section 4.1.3 are well-defined.

Moreover since the analysis of the PAW error requires the VPAW method to be well-posed, the
matrix

(〈
p̃Ij , φ

I
k

〉)
1≤j,k≤N is assumed to be invertible for 0 < η ≤ η0.

Assumption 4.2. For all 0 < η < η0, the matrix
(〈
p̃Ij , φ

I
k

〉)
1≤j,k≤N is invertible.

Under these assumptions, the following theorems are established. Proofs are gathered in Section
4.3.

4.2.1 PAW method without pseudopotentials

Theorem 4.1. Let φIi , φ̃Ii and p̃Ii , for i = 1, . . . , N and I = 0, a be the functions defined in
Section 4.1.3. Suppose η0 > 0 satisfies Assumption 4.1 and Assumption 4.2. Let E(η) be the lowest
eigenvalue of the generalized eigenvalue problem (4.1.8). Let E0 be the lowest eigenvalue of H
(4.1.1). Then there exists a positive constant C independent of η such that for all 0 < η ≤ η0

− Cη ≤ E(η) − E0 ≤ Cη2N . (4.2.1)

The constant C appearing in (4.2.1) (and in the theorems that will follow) depends on the
other PAW parameters N and d in a nontrivial way. The upper bound is proved by using the
VPAW eigenfunction ψ̃ associated to the lowest eigenvalue E0 for which we have precise estimates
of the difference between the operators HPAW and H̃. As expected (and confirmed by numerical
simulations in Section 4.4.1) the PAW method without pseudopotentials is not variational. Moreover
as the Dirac delta potentials are not removed, Fourier methods applied to the eigenvalue problem
(4.1.8) converge slowly.

4.2.2 PAW method with pseudopotentials

The following theorems are stated for ε = η, i.e. when the support of the pseudopotential is
equal to the acting region of the PAW method. Indeed, in the proof of Theorem 4.2, it appears
that worse estimates are obtained when a pseudopotential χε with ε < η is used.
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Theorem 4.2. Let φIi , φ̃Ii and p̃Ii , for i = 1, . . . , N and I = 0, a be the functions defined in Section
4.1.3. Suppose η0 > 0 satisfies Assumption 4.1 and Assumption 4.2. Let EPAW the lowest eigenvalue
of the generalized eigenvalue problem (4.1.11). Let E0 be the lowest eigenvalue of H (4.1.1). Then
there exists a positive constant C independent of η such that for all 0 < η ≤ η0

− Cη ≤ EPAW − E0 ≤ Cη2. (4.2.2)

Introducing a pseudopotential in HPAW worsens the upper bound on the PAW eigenvalue. This
is due to our construction of the PAW method in Section 4.1.2 where only even PAW functions are
considered. Incorporating odd PAW functions in the PAW treatment, it is possible to improve the
upper bound on the PAW eigenvalue and recover the bound in Theorem 4.1 (see Section 4.3.3).

As the cut-off radius η goes to 0, the lowest eigenvalue of the truncated PAW equations is closer
to the exact eigenvalue. This is also observed in different implementations of the PAW method and
is in fact one of the main guidelines: a small cutoff radius yields more accurate results [JTH14, ?].

Theorem 4.3. Let φIi , φ̃Ii and p̃Ii , for i = 1, . . . , N and I = 0, a be the functions defined in Section
4.1.3. Suppose η0 > 0 satisfies Assumption 4.1 and Assumption 4.2. Let EPAW

M be the lowest
eigenvalue of the variational approximation of (4.1.11), with HPAW given by (4.1.12) in a basis of
M plane waves. Let E0 be the lowest eigenvalue of H (4.1.1). There exists a positive constant C
independent of η and M such that for all 0 < η < η0 and for all n ∈ N∗

∣∣EPAW
M − E0

∣∣ ≤ C

(
η +

η2

(ηM)n

)
.

According to Theorem 4.3, if we want to compute E0 up to a desired accuracy ε, then it suffices
to choose the PAW cut-off radius η equal to 1

Cε
and solve the PAW eigenvalue problem (4.1.11)

with M ≥ 1
η
plane-waves.

Remark 4.4. Using more PAW functions does not improve the bound on the computed eigenvalue.
It is due to the poor lower bound in Theorems 4.2 and 4.20. Should the PAW method with odd
functions (Section 4.3.3) be variational, we would know a priori that EPAW ≥ E0. Therefore, we
could prove the estimate

0 < EPAW
M − E0 ≤ C

(
η2N +

η2

(ηM)n

)
.

Hence taking a plane wave cut-off M ≥ 1
η
would ensure that the eigenvalue E0 is computed up to

an error of order O(η2N).
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4.3 Proofs

4.3.1 Useful lemmas

We introduce some notation used in the below proofs. Let I ∈ {0, a} and

pI(t) := (pI1(t), . . . , pIN(t))T ∈ RN ,

p̃I(t) := (p̃I1(t), . . . , p̃IN(t))T ∈ RN ,〈
p̃I , f

〉
:=
(〈
p̃I1 , f

〉
, . . . ,

〈
p̃IN , f

〉)T ∈ RN ,∀ f ∈ L2
per(0, 1),

ΦI(t) := (φI1(t), . . . , φIN(t))T ∈ RN ,

Φ̃I(t) := (φ̃I1(t), . . . , φ̃IN(t))T ∈ RN ,

AI := (〈pIi , φIj〉)1≤i,j≤N ∈ RN×N .

For p ∈ [1,∞], we denote by

‖f‖p,η,I =

{
‖f‖Lp(−η,η), if I = 0

‖f‖Lp(a−η,a+η), if I = a
.

First, we recall some results of [BCD17b] that are useful for the proofs of Theorems 4.1 to 4.3.

Lemma 4.5. Let ψ̃ be an eigenfunction of (4.1.1) associated to the lowest eigenvalue E0 and ψ̃e
be its even part. Let ψ = (Id + TN)ψ̃ where TN is the operator (4.1.15) and ψe be the even part of
ψ. Suppose η0 > 0 satisfies Assumption 4.1 and Assumption 4.2. Then there exists a constant C
independent of η such that for any 0 < η ≤ η0 we have∥∥∥∥ψ̃e − 〈p̃I , ψ̃〉T Φ̃I

∥∥∥∥
∞,η,I

≤ Cη2N ,

and ∥∥E0ψe −
〈
A−1
I pI , ψ

〉
· EIΦI

∥∥
∞,η,I ≤ Cη2N−2,

where EI is the N ×N diagonal matrix with entries (−εI1, . . . ,−εIN).

Proof. We have

ψ̃ −
〈
p̃I , ψ̃

〉T
Φ̃I = ψ −

〈
A−1
I p , ψ

〉
· ΦI , (4.3.1)

and in combination with Lemmas 4.2 and 4.6 in [BCD17b], we obtain∥∥∥∥ψ̃e − 〈p̃I , ψ̃〉T Φ̃I

∥∥∥∥
∞,η,I

≤ Cη2N ,

where C > 0 is independent of η.
The second estimate is proved the same way.
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Lemma 4.6. Let Pk(t) = 1
2kk!

(t2 − 1)k and P (t) = (P0(t), . . . , Pd−1(t))
T . Let C(P )

η ∈ RN×d be the
matrix such that for t ∈ (−η, η),

Φ̃I(t) = C(P )
η P ( t

η
).

Let C1 ∈ RN×N and C2 ∈ RN×(d−N) be the matrices such that

C(P )
η =

(
C1

∣∣∣ C2

)
.

Let Mη be the matrix

Mη =
(
C(P )
η

)T (
C(P )
η G(P )

(
C(P )
η

)T)−1

C(P )
η ,

where G(P ) is the matrix
∫ 1

−1
ρ(t)P (t)P (t)T dt.

Then the following statements hold.

1. the norm of the matrix Mη is uniformly bounded in η.

2. for all x ∈ (−η, η)

〈
p̃I , f

〉T
ΦI(x) =

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T (
C−1

1

0

)
ΦI(x),

and 〈
p̃I , f

〉T
Φ̃I(x) =

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T
P (x/η).

3. for all 0 < η ≤ η0 and x ∈ (−η, η)

C−1
1 ΦI(x) =

(
1
∗

)
+O(η) and C−1

1 Φ′I(x) =
1

η

(
0
∗

)
+O(1),

where
(

1
∗

)
and

(
0
∗

)
are uniformly bounded in η and x.

Proof. Proofs of these statements can be found in the proof of Lemma 4.13 and 4.14 in [BCD17b].

Lemma 4.7. There exists a positive constant C independent of f and η such that we have the
following estimates

1. for all f ∈ H1
per(0, 1), 0 < η ≤ η0 and x ∈ (−1

2
, 1

2
), we have∣∣∣〈p̃I , f〉T (ΦI(x)− Φ̃I(x))

∣∣∣ ≤ Cη‖f‖H1
per

and
∣∣∣〈p̃I , f〉T (Φ′I(x)− Φ̃′I(x))

∣∣∣ ≤ C‖f‖H1
per

;

2. for all f ∈ L2
per(0, 1), 0 < η ≤ η0 and x ∈ (−1

2
, 1

2
), we have∣∣∣〈p̃I , f〉T (ΦI(x)− Φ̃I(x))
∣∣∣ ≤ C

η1/2
‖f‖L2

per
;
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3. for all f ∈ H1
per(0, 1), 0 < η ≤ η0 and x ∈ (−η, η), we have∣∣∣〈p̃I , f〉T Φ̃I(x)

∣∣∣ ≤ C‖f‖L∞ and
∣∣∣〈p̃I , f〉T ΦI(x)

∣∣∣ ≤ C‖f‖L∞ ;

4. for all f ∈ H1
per(0, 1), 0 < η ≤ η0 and x ∈ (−η, η), we have∣∣∣〈p̃I , f〉T Φ̃′I(x)

∣∣∣ ≤ C‖f‖H1
per

and
∣∣∣〈p̃I , f〉T Φ′I(x)

∣∣∣ ≤ C‖f‖H1
per
.

Proof. 1. Proof of this statement can be found in [BCD17b] (Lemmas 4.12 and 4.14).

2. By Lemma 4.6,

〈
p̃I , f

〉T (
ΦI(x)− Φ̃I(x)

)
=

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T ((
C−1

1

0

)
ΦI(x)− P (x/η)

)
.

Applying the Cauchy-Schwarz inequality to
∫ 1

−1
ρ(t)f(ηt)P (t) dt suffices to prove the estimate.

3. By item 2 of Lemma 4.6,

〈
p̃I , f

〉T
Φ̃I(x) =

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T
P (x/η).

Thus the first inequality follows from the uniform boundedness of Mη with respect to η (item
1 of Lemma 4.6). For the second inequality, we proceed the same way and conclude using
item 3 of Lemma 4.6.

4. For the first inequality, we simply replace Step 1 in the proof of Lemma 4.12 in [BCD17b] by

(a) 1
η
P ′(x/η) = 1

η

(
0
∗

)
+O(1)

and keep on the proof. For the second inequality, we replace Step 1 in the proof of Lemma
4.12 in [BCD17b] by item 3 of Lemma 4.6.

4.3.2 PAW method without pseudopotentials

The main idea of the proof is to use that the PAW operator HN (4.1.9) (respectively SN

(4.1.10)) is close to the VPAW operator H̃ (4.1.17) (resp. S̃ (4.1.18)), in a sense that will be clearly
stated. Then it is possible to use this connexion and bound the error on the PAW eigenvalue E(η),
since the VPAW generalized eigenvalue problem (4.1.14) has the same eigenvalues as (4.1.1).

Proposition 4.8. Let HN , SN , H̃ and S̃ be defined by Equations (4.1.9), (4.1.10), (4.1.17) and
(4.1.18) respectively. Then we have for f ∈ H1

per(0, 1)〈
f , H̃f

〉
=
〈
f ,HNf

〉
+ 2

∑
I={0,a}

〈〈
p̃I , f

〉T
(ΦI − Φ̃I) , H

(
f −

〈
p̃I , f

〉T
Φ̃I

)〉
, (4.3.2)
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and 〈
f , S̃f

〉
=
〈
f , SNf

〉
+ 2

∑
I={0,a}

〈〈
p̃I , f

〉T
(ΦI − Φ̃I) , f −

〈
p̃I , f

〉T
Φ̃I

〉
. (4.3.3)

Proof. Using that T0,N and Ta,N act on strictly distinct region, we have for f ∈ H1
per(0, 1)

〈
f , H̃f

〉
=

〈
f +

∑
I={0,a}

〈
p̃I , f

〉T
(ΦI − Φ̃I) , H

(
f +

∑
I={0,a}

〈
p̃I , f

〉T
(ΦI − Φ̃I)

)〉

= 〈f ,Hf〉+
∑

I={0,a}

2
〈
f ,H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
+
∑

I={0,a}

〈〈
p̃I , f

〉T
(ΦI − Φ̃I) , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
= 〈f ,Hf〉+

∑
I={0,a}

2
〈
f ,H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
+
〈〈
p̃I , f

〉T
ΦI , H

〈
p̃I , f

〉T
ΦI

〉
− 2

〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
ΦI

〉
+
〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
Φ̃I

〉
.

Notice that for each I, we have〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
ΦI

〉
=
〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
+
〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
Φ̃I

〉
.

Hence〈
f , H̃f

〉
= 〈f ,Hf〉+

∑
I={0,a}

〈〈
p̃I , f

〉T
ΦI , H

〈
p̃I , f

〉T
ΦI

〉
−
〈〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
Φ̃I

〉
+ 2

〈
f −

〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
=
〈
f ,HNf

〉
+
∑

I={0,a}

2
〈
f −

〈
p̃I , f

〉T
Φ̃I , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
.

The second identity is proved the same way.

Before proving Theorem 4.2, we will state some properties of the operators S̃ and SN .

Lemma 4.9. The operators S̃ and SN satisfies the following properties
1. there exists a constant C independent of η such that for all f ∈ H1

per(0, 1);∣∣∣〈f , S̃f〉∣∣∣ ≤ C‖f‖2
L2
per
.

2. there exists a constant C independent of η such that for all f ∈ H1
per(0, 1);

|
〈
f , SNf

〉
| ≤ C‖f‖2

L2
per
.
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3. there exists a constant C independent of η such that for all f ∈ H1
per(0, 1);∣∣∣〈f , S̃f〉− 〈f , SNf〉∣∣∣ ≤ Cη2‖f‖2

H1
per
.

4. let ψ̃ be a generalized eigenfunction of (4.1.14), then there exists a positive constant C
independent of η such that∣∣∣〈ψ̃ , S̃ψ̃〉− 〈ψ̃ , SN ψ̃〉∣∣∣ ≤ Cη2N+2‖ψ̃‖H1

per
.

5. there exists a constant C independent of η such that for all f ∈ H1
per(0, 1);∣∣〈f , SNf〉− 〈f , f〉∣∣ ≤ Cη‖f‖2

H1
per
.

Proof. 1. By item 2 of Lemma 4.7, there exists a constant C independent of η and x such that
for all x ∈ (−1

2
, 1

2
) and for all 0 < η ≤ η0∣∣∣〈p̃I , f〉T (ΦI(x)− Φ̃I(x))

∣∣∣ ≤ C

η1/2
‖f‖L2

per
.

Then, we have

‖T0,Nf‖2
L2
per

=

∫ 1

0

∣∣∣〈p̃ , f〉T (Φ(x)− Φ̃(x))
∣∣∣2 dx

≤
∫ η

−η

∣∣∣〈p̃ , f〉T (Φ(x)− Φ̃(x))
∣∣∣2 dx

≤ C‖f‖2
L2
per
.

Similarly, ‖Ta,Nf‖L2
per
≤ C‖f‖L2

per
and the result follows.

2. By Proposition 4.8, for all f ∈ H1
per(0, 1)

〈
f , SNf

〉
=
〈
f , S̃f

〉
− 2

∑
I={0,a}

〈〈
p̃I , f

〉T
(ΦI − Φ̃I) , f −

〈
p̃I , f

〉T
Φ̃I

〉
.

From items 1 and 2 of Lemma 4.6, it is easy to show that there exists a constant C independent
of η and x such that for all x ∈ (−η, η), 0 < η ≤ η0 and f ∈ H1

per(0, 1)∣∣∣〈p̃I , f〉T Φ̃I(x)
∣∣∣ ≤ C

η1/2
‖f‖L2

per
.
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Hence∣∣〈f , SNf〉∣∣ ≤ ∣∣∣〈f , S̃f〉∣∣∣+ 2
∑

I∈{0,a}

∣∣∣〈〈p̃I , f〉T (ΦI − Φ̃I) , f −
〈
p̃I , f

〉T
Φ̃I

〉∣∣∣
≤ C‖f‖2

L2
per

+
∑

I∈{0,a}

∥∥∥〈p̃I , f〉T (ΦI − Φ̃I)
∥∥∥
L2
per

(‖f‖L2
per

+
∥∥∥〈p̃I , f〉T Φ̃I

∥∥∥
2,η,I

)

≤ C‖f‖2
L2
per
.

3. This is an easy consequence of Proposition 4.8 and items 2 and 3 of Lemma 4.7.
4. By Proposition 4.8〈

ψ̃ , SN ψ̃
〉

=
〈
ψ̃ , S̃ψ̃

〉
− 2

∑
I∈{0,a}

〈〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I) , ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I

〉
.

By Lemma 4.5, we have for each I ∈ {0, a}∥∥∥∥ψ̃ − 〈p̃I , ψ̃〉T Φ̃I

∥∥∥∥
∞,η,I

≤ Cη2N ,

where C > 0 is independent of η. Hence, using item 1 of Lemma 4.7,∣∣∣∣〈〈p̃I , ψ̃〉T (ΦI − Φ̃I) , ψ̃ −
〈
p̃I , ψ̃

〉T
Φ̃I

〉∣∣∣∣ ≤ ∥∥∥∥〈p̃I , ψ̃〉T (ΦI − Φ̃I)

∥∥∥∥
1,η,I

∥∥∥∥ψ̃ − 〈p̃I , ψ̃〉T Φ̃I

∥∥∥∥
∞,η,I

≤ Cη2N+2‖ψ̃‖H1
per
.

and the result follows.
5. By item 3 of Lemma 4.9, we have for all f ∈ H1

per(0, 1)∣∣∣〈f , S̃f〉− 〈f , SNf〉∣∣∣ ≤ Cη2‖f‖2
H1

per
,

where C is a constant independent of η and f .
By item 1 of Lemma 4.7, we can easily show that∣∣∣〈f , S̃f〉− 〈f , f〉∣∣∣ ≤ Cη‖f‖2

H1
per
,

with a constant C independent of η and f . By a triangular inequality, the result follows.

Before moving to the proof of the upper bound on the PAW eigenvalue (4.1.8), we show that
there exists a constant independent of η that bounds the H1

per-norm of L2
per-normalized generalized

eigenfunctions ψ̃ associated to the first generalized eigenvalue of H̃ for all 0 < η ≤ η0.

Lemma 4.10. Let ψ̃ be an L2
per-normalized generalized eigenfunction associated to the lowest

eigenvalue of (4.1.14). Then there exists a positive constant C independent of η such that for all
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0 < η ≤ η0

‖ψ̃‖H1
per
≤ C.

Proof. The operator H defined in (4.1.1) is coercive. A proof of this statement can be found in
[CD17]. Let α > 0 be such that for all f ∈ H1

per(0, 1)

〈f ,Hf〉+ α 〈f , f〉 ≥ 1

2
‖f‖2

H1
per
.

Then 〈
ψ̃ , H̃ψ̃

〉
+ α

〈
ψ̃ , S̃ψ̃

〉
≥ 1

2
‖(Id + T )ψ̃‖2

H1
per
.

By item 1 of Lemma 4.7, we have

‖T ψ̃‖H1
per
≤ Cη1/2‖ψ̃‖H1

per
,

for some positive constant C independent of η. Hence, for η sufficiently small, there exists a positive
constant C independent of η such that

(E0 + α)
〈
ψ̃ , S̃ψ̃

〉
≥ C‖ψ̃‖2

H1
per
.

Using item 1 of Lemma 4.9, we obtain

C‖ψ̃‖2
L2
per
≥ ‖ψ̃‖2

H1
per
,

and the result follows from the normalization of the eigenfunctions ψ̃.

We now have all the necessary tools to prove the upper bound of Theorem 4.2.

Proof of the upper bound of Theorem 4.2. Let ψ̃ be an L2
per-normalized eigenvector of the lowest

eigenvalue of H̃ψ̃ = E0S̃ψ̃. Then by Proposition 4.8,〈
ψ̃ , H̃ψ̃

〉
=
〈
ψ̃ , HN ψ̃

〉
+ 2

∑
I={0,a}

〈
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I ,

〈
p̃I , ψ̃

〉T
H(ΦI − Φ̃I)

〉
.

Recall that
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I = ψ −

〈
p̃I , ψ̃

〉T
ΦI ,

which with Equation (4.3.1) yields

ψ̃ −
〈
p̃I , ψ̃

〉T
Φ̃I = ψ −

〈
A−1
I pI , ψ

〉T
ΦI
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Thus we have :〈
ψ̃ , H̃ψ̃

〉
=
〈
ψ̃ , HN ψ̃

〉
+ 2

∑
I={0,a}

〈
ψ −

〈
A−1
I pI , ψ

〉T
ΦI , H

〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉

=
〈
ψ̃ , HN ψ̃

〉
+ 2

∑
I={0,a}

〈
E0ψ −

〈
A−1
I pI , ψ

〉T EIΦI ,
〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉
, (4.3.4)

where we used HΦI = EIΦI in (I − η, I + η) for I ∈ {0, a}. By Lemma 4.5,∥∥∥E0ψe −
〈
A−1
I pI , ψ

〉T EIΦI

∥∥∥
∞,η,I

≤ Cη2N−2.

So for each I,∣∣∣∣〈E0ψe −
〈
A−1
I pI , ψ

〉T EIΦI ,
〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉∣∣∣∣
≤
∥∥∥E0ψe −

〈
A−1
I pI , ψ

〉T EIΦI

∥∥∥
∞,η,I

∥∥∥∥〈p̃I , ψ̃〉T (ΦI − Φ̃I)

∥∥∥∥
1,η,I

.

By item 1 of Lemma 4.7, we have∥∥∥∥〈p̃I , ψ̃〉T (ΦI − Φ̃I)

∥∥∥∥
1,η,I

≤ Cη2‖ψ̃‖H1
per
≤ Cη2.

where we bound ‖ψ̃‖H1
per

by means of Lemma 4.10. Hence, using Lemma 4.5, we obtain∣∣∣∣〈E0ψ −
〈
A−1
I pI , ψ

〉T EIΦI ,
〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉∣∣∣∣ ≤ Cη2N .

Going back to Equation (4.3.4),

E0

〈
ψ̃ , S̃ψ̃

〉
+ Cη2N ≥

〈
ψ̃ , HN ψ̃

〉
≥ E(η)

〈
ψ̃ , SN ψ̃

〉
By Lemmas 4.9 and 4.10, we have∣∣∣〈ψ̃ , S̃ψ̃〉− 〈ψ̃ , SN ψ̃〉∣∣∣ ≤ Cη2N+2,

which finishes the proof.

Lemma 4.11. Let f be an L2
per-normalized generalized eigenfunction associated to the lowest

generalized eigenvalue of (4.1.8). Then there exists a positive constant C independent of η such
that for all 0 < η ≤ η0

‖f‖H1
per
≤ C.
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Proof. We proceed as in the proof of Lemma 4.10. Let α be the coercivity constant of H and f be
an L2

per-normalized eigenfunction associated to the lowest eigenvalue of (4.1.8). Then we have

α 〈f , f〉+ 〈f ,Hf〉 ≥ 1

2
‖f‖2

H1
per
.

From Equation (4.1.9), it easy to see that we have

〈
f ,HNf

〉
= 〈f ,Hf〉+

∑
I∈{0,a}

〈〈
p̃I , f

〉T
(ΦI + Φ̃I) , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
.

Hence, we have

α 〈f , f〉+
〈
f ,HNf

〉
−
∑

I∈{0,a}

〈〈
p̃I , f

〉T
(ΦI + Φ̃I) , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
≥ 1

2
‖f‖2

H1
per

α 〈f , f〉+
〈
f ,HNf

〉
≥ 1

2
‖f‖2

H1
per
− C

∑
I∈{0,a}

‖
〈
p̃I , f

〉T
(ΦI + Φ̃I)‖H1,η,I‖

〈
p̃I , f

〉T
(ΦI − Φ̃I)‖H1,η,I .

From items 1, 3 and 4 of Lemma 4.7, it is easy to show that∥∥∥〈p̃I , f〉T (ΦI + Φ̃I)
∥∥∥
H1,η,I

∥∥∥〈p̃I , f〉T (ΦI − Φ̃I)
∥∥∥
H1,η,I

≤ Cη‖f‖2
H1

per
. (4.3.5)

Thus, for η sufficiently small, we have for a positive constant C independent of η,

α 〈f , f〉+
〈
f ,HNf

〉
≥ C‖f‖2

H1
per
. (4.3.6)

Since f is a generalized eigenfunction of HN , we have

α 〈f , f〉+ E(η)
〈
f , SNf

〉
≥ C‖f‖2

H1
per
.

By item 5 of Lemma 4.9, we have

(E(η) + α) 〈f , f〉 ≥ C‖f‖2
H1

per
,

which completes the proof.

Proof of the lower bound of Theorem 4.2. Let f be an L2
per-normalized eigenfunction associated to

the lowest eigenvalue of HNf = E(η)SNf . Then we have :〈
f ,HNf

〉
= 〈f ,Hf〉+

∑
I={0,a}

〈〈
p̃I , f

〉T
(ΦI + Φ̃I) , H

〈
p̃I , f

〉T
(ΦI − Φ̃I)

〉
≥ E0 〈f , f〉 − C

∑
I={0,a}

‖
〈
p̃I , f

〉T
(ΦI + Φ̃I)‖H1,η,I‖

〈
p̃I , f

〉T
(ΦI − Φ̃I)‖H1,η,I

≥ E0 〈f , f〉 − Cη‖f‖H1
per
,
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where we used (4.3.5) in the last inequality.
It remains to show that |

〈
f , SNf

〉
− 〈f , f〉 | ≤ Cη‖f‖2

H1
per

which is precisely item 5 of Lemma
4.9. We then conclude the proof by Lemma 4.11.

4.3.3 PAW method with pseudopotentials

In this section, we focus on the truncated equations (4.1.11) where a pseudopotential is used.
First, we see how HPAW and H̃ are related.

Lemma 4.12. If ε ≤ η, then

HPAW = HN + δV −
∑

I∈{0,a}

(p̃I)T
〈

Φ̃I , δV Φ̃T
I

〉
I,η

〈
p̃I , ·

〉
. (4.3.7)

where δV = −Z0χε − Zaχaε + Z0

∑
k∈Z

δk + Za
∑
k∈Z

δk+a.

Proof. By definition of the pseudo wave functions φ̃i, we have〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉
=
〈
φIi , Hφ

I
j

〉
I,η
−
〈
φ̃Ii , Hφ̃

I
j

〉
I,η
. (4.3.8)

By definition of δV , Hps = H + δV thus we have the result.

Proposition 4.13. Let g ∈ H1
per(0, 1). Then

〈
g ,HPAWg

〉
=
〈
g , H̃g

〉
− 2

∑
I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I ,

〈
p̃I , g

〉T (
HΦI − (H + δV )Φ̃I

)〉
+
∑

I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I , δV

(
g −

〈
p̃I , g

〉T
Φ̃I

)〉
I,η

(4.3.9)

Proof. By Lemma 4.12, we have〈
g ,HPAWg

〉
=
〈
g ,HNg

〉
+ 〈g , δV g〉 −

∑
I∈{0,a}

〈〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
I,η
.

Applying Proposition 4.8, we obtain

〈
g ,HPAWg

〉
=
〈
g , H̃g

〉
− 2

∑
I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I ,

〈
p̃I , g

〉T
H(ΦI − Φ̃I)

〉
+ 〈g , δV g〉 −

∑
I∈{0,a}

〈〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
.
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Now, using Hps = H + δV , we get

〈
g ,HPAWg

〉
=
〈
g , H̃g

〉
− 2

∑
I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I ,

〈
p̃I , g

〉T
(HΦI −HpsΦ̃I)

〉
−2

∑
I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
I,η

+〈g , δV g〉−
∑

I∈{0,a}

〈〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
.

(4.3.10)

Notice that for each I,

−2
〈
g −

〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
I,η

+ 〈g , δV g〉I,η −
〈〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
= 〈g , δV g〉I,η − 2

〈
g , δV

〈
p̃I , g

〉T
Φ̃I)
〉
I,η

+
〈〈
p̃I , g

〉T
Φ̃I , δV

〈
p̃I , g

〉T
Φ̃I

〉
I,η

=
〈
g −

〈
p̃I , g

〉T
Φ̃I , δV

(
g −

〈
p̃I , g

〉T
Φ̃I

)〉
I,η
.

Injecting this expression in (4.3.10), we have the result.

Proof of the upper of Theorem 4.2

Proof of the upper bound of Theorem 4.2. We start by estimating
〈
ψ̃ , HPAW ψ̃

〉
where ψ̃ is the

generalized eigenfunction associated to the lowest eigenvalue: H̃ψ̃ = E0S̃ψ̃. Thus we have :〈
ψ̃ , HPAW ψ̃

〉
=
〈
ψ̃ , H̃ψ̃

〉
− 2

∑
I∈{0,a}

〈
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I ,

〈
p̃I , ψ̃

〉T (
HΦI − (H + δV )Φ̃I

)〉

+
∑

I∈{0,a}

〈
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I , δV

(
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I

)〉
I,η

.

By Equation (4.3.1), we have for each I

ψ̃ −
〈
p̃I , ψ̃

〉T
Φ̃I = ψ −

〈
A−1
I pI , ψ

〉T
ΦI ,
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so for each I〈
ψ̃ −

〈
p̃I , ψ̃

〉
·Φ̃I ,

〈
p̃I , ψ̃

〉T (
HΦI − (H + δV )Φ̃I

)〉
=

〈
ψ −

〈
A−1
I pI , ψ

〉T
ΦI ,

〈
p̃I , ψ̃

〉T (
HΦI − (H + δV )Φ̃I

)〉
=

〈
E0ψ −

〈
A−1
I pI , ψ

〉T EIΦI ,
〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉
+

〈
ψ −

〈
A−1
I pI , ψ

〉T
ΦI ,
〈
p̃I , ψ̃

〉T
δV Φ̃I

〉
I,η

.

We have already proved in the proof of the upper bound of Theorem 4.1 that∣∣∣∣〈E0ψ −
〈
A−1
I pI , ψ

〉T EIΦI ,
〈
p̃I , ψ̃

〉T
(ΦI − Φ̃I)

〉∣∣∣∣ ≤ Cη2N .

Moreover by Lemma 4.5 and item 3 of Lemma 4.7, we have∣∣∣∣∣
〈
ψ −

〈
A−1
I pI , ψ

〉T
ΦI ,

〈
p̃I , ψ̃

〉T
δV Φ̃I

〉
I,η

∣∣∣∣∣ ≤ C‖ψe −
〈
A−1
I pI , ψ

〉
· ΦI‖∞,η,I‖

〈
p̃I , ψ̃

〉T
Φ̃I‖∞,η,I

≤ Cη2N .

Again using Lemma 4.5, we obtain∣∣∣∣∣
〈
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I , δV

(
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I

)〉
I,η

∣∣∣∣∣ ≤ Cη2N +

∫ η

−η
χε(x)|ψo(x)|2 dx, (4.3.11)

where ψo is the odd part of ψ. By Lemma 4.2 in [BCD17b], we know that for |x| ≤ η, there exists
a constant independent of η such that:

|ψo(x)|2 ≤ Cη2,

hence ∣∣∣∣∣
〈
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I , δV

(
ψ̃ −

〈
p̃I , ψ̃

〉T
Φ̃I

)〉
I,η

∣∣∣∣∣ ≤ Cη2.

Thus
EPAW

〈
ψ̃ , SPAW ψ̃

〉
≤ E0

〈
ψ̃ , S̃ψ̃

〉
+ Cη2,

and we conclude using item 4 of Lemma 4.9 (recall that SPAW = SN).
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Proof of the lower bound of Theorem 4.2

The core of the proof of the error on the lowest PAW eigenvalue lies on the estimation of

f −
N∑
i=1

〈p̃i , f〉 φ̃i, which is of the order of the best approximation of f by the family of pseudo wave

functions (φ̃i)1≤i≤N . In order to give estimates of the best approximation, we analyze the behavior
of the PAW eigenfunction f , but first, we need an estimate on the PAW eigenvalue.

Lemma 4.14. Let EPAW be the lowest generalized eigenvalue of (4.1.11). Then as η goes to 0,
EPAW is bounded by below.

Proof. Let f be an L2
per-normalized generalized eigenfunction of (4.1.11) associated to EPAW . By

(4.3.6), we have
α 〈f , f〉+

〈
f ,HNf

〉
≥ C‖f‖2

H1
per
,

where C is some positive constant, α the coercivity constant of H (4.1.1) and HN the truncated
PAW operator (4.1.9). By Lemma 4.12, we have

α 〈f , f〉+
〈
f ,HPAWf

〉
≥ C‖f‖H1

per
− 〈f , δV f〉+

∑
I∈{0,a}

〈〈
p̃I , f

〉T
Φ̃I , δV

〈
p̃I , f

〉T
Φ̃I

〉
. (4.3.12)

We have ∣∣∣〈f , δV f〉0,η∣∣∣ ≤ Z0

∣∣∣∣∫ ε

−ε
χε(x)(|f(x)|2 − |f(0)|2) dx

∣∣∣∣
≤ C

∫ ε

−ε
χε(x)|f(x) + f(0)||f(x)− f(0)| dx

≤ C‖f‖∞,η‖f − f(0)‖∞,η
≤ Cη1/2‖f‖2

H1
per
, (4.3.13)

where in the second inequality, we used
∫ ε
−ε χε(x) dx = 1 and ε ≤ η and in the last inequality,

‖f − f(0)‖∞,η ≤ Cη1/2‖f‖H1
per

and the Sobolev embedding ‖f‖L∞ ≤ C‖f‖H1
per
.

Similarly, we have∣∣∣〈〈p̃I , f〉T Φ̃I , δV
〈
p̃I , f

〉T
Φ̃I

〉∣∣∣ ≤ Cη1/2‖
〈
p̃I , f

〉T
Φ̃I‖2

H1
per
,

thus by items 3 and 4 of Lemma 4.7, we obtain∣∣∣〈〈p̃I , f〉T Φ̃I , δV
〈
p̃I , f

〉T
Φ̃I

〉∣∣∣ ≤ Cη‖f‖2
H1

per
. (4.3.14)

Thus injecting (4.3.13) and (4.3.14) in (4.3.12), we get for η sufficiently small and a positive
constant C,

α 〈f , f〉+
〈
f ,HPAWf

〉
≥ C‖f‖2

H1
per
.

Thus
α 〈f , f〉+ EPAW

〈
f , SPAWf

〉
≥ C‖f‖2

H1
per
, (4.3.15)
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and we conclude the proof using item 5 of Lemma 4.9.

Lemma 4.15. Let f be a generalized eigenfunction of (4.1.11) and k ∈ N∗. Then there exists a
constant C independent of η, ε and f such that

‖f (k)‖∞,η,I ≤ C

(
1

ηk−1
+

1

εk−1

)
‖f‖∞,η,I (4.3.16)

Proof. This lemma is proved by iteration. We show the lemma for I = 0 and drop the index I.

Initialization To get the desired estimate for f ′, we integrate (4.1.11) on (−η, x) where x ∈
(−η, η):

− f ′′(x) +
1

ε
χ
(
x
ε

)
f(x) + 〈p̃ , f〉T

(〈
Φ , HΦT

〉
η
−
〈

Φ̃ , HpsΦ̃
T
〉
η

)
p̃I(x)

= EPAW

(
f(x) + 〈p̃ , f〉T

(〈
Φ ,ΦT

〉
η
−
〈

Φ̃ , Φ̃T
〉
η

)
p̃(x)

)
. (4.3.17)

First, we bound f ′(±η) and f ′(a±η). For x ∈
⋃
k∈Z

(η+k, a−η+k) and x ∈
⋃
k∈Z

(a+η+k, 1−η+k),

f satisfies
−f ′′(x) = EPAWf(x).

From Section 4.3.3, we already know that

EPAW ≤ E0 + Cη2.

Since E0 < 0, then for η sufficiently small, EPAW < 0. Thus, outside the intervals (−η, η) and
(a− η, a+ η), f can be written as

f(x) = a1 cosh
(√
−EPAWx

)
+ a2 sinh

(√
−EPAWx

)
.

The coefficients a1 and a2 are determined by the continuity of f at ±η and a± η. By Lemma 4.14,
EPAW is bounded from below as η goes to 0, hence |f ′(±η)| and f ′(a± η) are uniformly bounded
with respect to η as η goes to 0.

We now prove that f ′(x) is uniformly bounded with respect to η and ε as η, ε → 0 for
x ∈

⋃
k∈Z

(−η + k, η + k) and x ∈
⋃
k∈Z

(a− η + k, a+ η + k). χ
( ·
ε

)
is a bounded function supported in

(−ε, ε), we have ∣∣∣∣1ε
∫ x

−η
χ
(
t
ε

)
f(t) dt

∣∣∣∣ ≤ C‖f‖∞,η.

To finish the proof, it suffices to show that the remaining terms are at most of order O
(
‖f‖∞,η

η

)
with respect to the ∞-norm. These terms will be treated separately.
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1. For 〈p̃ , f〉T
〈
Φ ,ΦT

〉
η
p̃(x), by item 2 of Lemma 4.6, we have

〈p̃ , f〉T
〈
Φ ,ΦT

〉
η
p̃(x) =

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T
〈(

C−1
1

0

)
Φ ,ΦT

(
C−T1

∣∣∣ 0)〉
η

Mηρ
(
x
η

)
P
(
x
η

)
.

According to item 3 of Lemma 4.6, we already know that∥∥∥∥( C−1
1

0

)
Φ

∥∥∥∥
∞,η
≤ C,

thus ∣∣∣〈p̃ , f〉T 〈Φ ,ΦT
〉
η
p̃(x)

∣∣∣ ≤ C‖f‖∞,η
∣∣∣ρ(xη)P (xη)∣∣∣ .

2. Using item 2 of Lemma 4.6, the term 〈p̃ , f〉T
〈

Φ̃ , Φ̃T
〉
η
p̃(x) can be written as

〈p̃ , f〉T
〈

Φ̃ , Φ̃T
〉
η
p̃(x) =

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T 〈
P
(
·
η

)
, P T

(
·
η

)〉
η
Mηρ

(
x
η

)
P
(
x
η

)
.

Hence, we obtain ∣∣∣∣〈p̃ , f〉T 〈Φ̃ , Φ̃T
〉
η
p̃I(x)

∣∣∣∣ ≤ C‖f‖∞,η
∣∣∣ρ(xη)P (xη)∣∣∣ .

3. On the LHS of (4.3.17), the term 〈p̃ , f〉T
〈
Φ , HΦT

〉
η
p̃(x) is given by

〈p̃ , f〉T
〈
Φ , HΦT

〉
η
p̃(x) = 〈p̃ , f〉T

〈
Φ′ ,Φ′

T
〉
η
p̃(x)− Z0 〈p̃ , f〉T Φ(0)Φ(0)T p̃(x).

Like in item 1 above, we can show that∣∣∣〈p̃ , f〉T Φ(0)Φ(0)T p̃(x)
∣∣∣ ≤ C‖f‖∞,η

∣∣∣ρ(xη)P (xη)∣∣∣ . (4.3.18)

Using item 3 of Lemma 4.6, ∥∥∥∥( C−1
1

0

)
Φ′
∥∥∥∥
∞,η
≤ C

η
,

we get ∣∣∣∣〈p̃ , f〉T 〈Φ′ ,Φ′
T
〉
η
p̃(x)

∣∣∣∣ ≤ C

η
‖f‖∞,η

∣∣∣ρ(xη)P (xη)∣∣∣ . (4.3.19)
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4. Finally, for 〈p̃ , f〉T
〈

Φ̃ , HpsΦ̃
T
〉
η
p̃(x), we have

〈p̃ , f〉T
〈

Φ̃ , HpsΦ̃
T
〉
η
p̃(x) = 〈p̃ , f〉T

〈
Φ̃′ , Φ̃′T

〉
η
p̃(x)−Z0

ε
〈p̃ , f〉T

∫ ε

−ε
χ
(
t
ε

)
P ( t

η
)P ( t

η
)T dt p̃(x).

Since ε ≤ η,
∣∣∣∫ ε−ε χ ( tε)P ( t

η
)P ( t

η
)T dt

∣∣∣ ≤ Cε where C is independent of η and ε. Moreover,

〈p̃ , f〉T
〈

Φ̃′ , Φ̃′T
〉
η
p̃(x) =

1

η2

(
Mη

∫ 1

−1

ρ(t)f(ηt)P (t) dt

)T 〈
P ′( ·

η
) , P ′( ·

η
)T
〉
η
Mηρ

(
x
η

)
P
(
x
η

)
,

hence ∣∣∣∣〈p̃ , f〉T 〈Φ̃′ , Φ̃′T
〉
η
p̃(x)

∣∣∣∣ ≤ C

η
‖f‖∞,η

∣∣∣ρ(xη)P (xη)∣∣∣ .
Iteration Suppose the statement is true for any k ≤ n. We derivate (4.3.17) (n− 1) times

− f (n+1)(x) +
1

ε

(
χ
( ·
ε

)
f
)(n−1)

(x) + 〈p̃ , f〉T
(〈

Φ , HΦT
〉
η
−
〈

Φ̃ , HpsΦ̃
T
〉
η

)
p̃(n−1)(x)

= EPAW

(
f (n−1)(x) + 〈p̃ , f〉T

(〈
Φ ,ΦT

〉
η
−
〈

Φ̃ , Φ̃T
〉
η

)
p̃(n−1)(x)

)
. (4.3.20)

By the induction hypothesis and since ε ≤ η, we have∣∣∣∣1ε (χ ( ·ε) f)(n−1)
(x)

∣∣∣∣ ≤ C

(
‖f‖∞,η
εn

+
n−1∑
k=1

‖f (k)‖∞,η
εn−k

)
≤ C
‖f‖∞,η
εn

. (4.3.21)

We simply give an estimate of the term

〈p̃ , f〉T
〈
Φ , HΦT

〉
η
p̃(n−1)(x),

since the other terms appearing in (4.3.20) can be treated the same way. By (4.3.18), we already
know that ∣∣∣〈p̃ , f〉T Φ(0)Φ(0)T p̃(n−1)(x)

∣∣∣ ≤ C

ηn−1
‖f‖∞,η

∣∣∣(ρP )(n−1)(x
η
)
∣∣∣ ≤ C

ηn−1
‖f‖∞,η.

By (4.3.19), we have∣∣∣∣〈p̃ , f〉T 〈Φ′ ,Φ′
T
〉
η
p̃(n−1)(x)

∣∣∣∣ ≤ C

ηn
‖f‖∞,η

∣∣∣(ρP )(n−1)(x
η
)
∣∣∣ ≤ C

ηn
‖f‖∞,η. (4.3.22)

Injecting (4.3.21) and (4.3.22) in (4.3.20) finishes the proof.

First, an estimation of the best approximation by (φ̃i)1≤i≤N of the even part fe of the PAW
eigenfunction f is proved.
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Lemma 4.16. Let f be an eigenfunction associated to the lowest eigenvalue of (4.1.11) and let fe
be the even part of f . Suppose that ε ≤ η. Then there exists a family of coefficients (αi)1≤i≤N and
C independent of η and ε such that∥∥∥∥∥fe −

N∑
i=1

αiφ̃
I
i

∥∥∥∥∥
∞,η,I

≤ Cη
(η
ε

)2N−1

‖f‖∞,η,I ,

and for the same family of coefficients∥∥∥∥∥f ′e −
N∑
i=1

αiφ̃
I
i
′

∥∥∥∥∥
∞,η,I

≤ C
(η
ε

)2N

‖f‖∞,η,I .

Proof. For clarity, we will drop the index I in this proof. First we write the Taylor expansion of f
around 0, for |x| ≤ η :

fe(x) =
N−1∑
k=0

f (2k)(0)

(2k)!
x2k +R2N(f)(x),

where R2N(f) is the integral form of the remainder

R2N(f)(x) =

∫ x

0

f (2N)(t)

(2N − 1)!
(x− t)2N−1 dt.

The remainder R2N(f) satisfies

|R2N(f)(x)| ≤ Cη2N
∥∥f (2N)

∥∥
∞,η

≤ Cη
(
η
ε

)2N−1 ‖f‖∞,η,

where, in the second inequality, we used Lemma 4.15. Thus, the best approximation of f by a
linear combination of (φ̃k)1≤k≤N is at most of order η. In the remainder of the proof, we will show
that this order is attainable. Setting t = x

η
, we obtain

fe(x)−
N∑
i=1

αiφ̃i(x) =
N−1∑
k=0

f (2k)(0)

(2k)!
η2kt2k −

N∑
i=1

αiφ̃i(ηt) +R2N(f)(ηt).

By Lemma 4.15, we have for all 1 ≤ k ≤ N − 1:∣∣∣∣f (2k)(0)

(2k)!
η2k

∣∣∣∣ ≤ Cη
(η
ε

)2k−1

.

The family (φ̃j)1≤j≤N satisfies
Φ̃(x) = C(P )

η P (x
η
),

where P (t) is the vector of polynomials Pk(t) = 1
2kk!

(t2− 1)k. By Lemma 4.9 in [BCD17b], we know
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that C(P )
η can be written:

C(P )
η = Φ(η)eT0 + ηΦ′(η)βT1 +O(η2), (4.3.23)

where β1 is a vector of Rd uniformly bounded in η. Thus we have

N−1∑
k=0

f (2k)(0)

(2k)!
η2kt2k −

N∑
i=1

αiφ̃i(ηt) = f(0)− αTΦ(η) +O
(
η
(η
ε

)2N−1
)
.

To get the result, α has to be chosen such that αTΦ(η) = f(0), which is possible because Φ(η) 6= 0.
For f ′e, we proceed the same way. However, by Lemma 4.15, the remainder of the Taylor

expansion of f ′e satisfies

|R2N(f ′)(x)| ≤ Cη2N
∥∥f (2N+1)

∥∥
∞,η ≤ C

(
η
ε

)2N ‖f‖∞,η.

We simply have to check that ‖Φ̃′‖∞,η is bounded when η goes to 0. By (4.3.23) and because
P ′0 = 0,

Φ̃′(x) = Φ′(η)βT1 P
′(x
η
) +O(η),

hence ‖Φ̃′‖∞,η is bounded when η goes to 0.

We can now give an estimate for fe −
N∑
i=1

〈p̃ , f〉φi.

Lemma 4.17. Assume that f is the generalized eigenfunction of (4.1.11) associated the lowest
generalized eigenvalue. Let fe be the even part of f . Then∥∥∥fe − 〈p̃I , f〉T Φ̃I

∥∥∥
∞,η,I

≤ Cη
(η
ε

)2N−1

‖f‖∞,η,I ,

and ∥∥∥f ′e − 〈p̃I , f〉T Φ̃′I

∥∥∥
∞,η,I

≤ C
(η
ε

)2N−1

‖f‖∞,η,I .

Proof. For clarity, we will drop the index I. For any family (αj)1≤j≤N , we have for x ∈ (−η, η)

fe(x)− 〈p̃ , f〉T Φ̃(x) = fe(x)−

〈
p̃ , fe −

N∑
j=1

αjφ̃j +
N∑
j=1

αjφ̃j

〉T

Φ̃(x)

= fe(x)−
N∑
j=1

αjφ̃j −

〈
p̃ , fe −

N∑
j=1

αjφ̃j

〉T

Φ̃(x).

By Lemma 4.16, (αj)1≤j≤N can be chosen such that for any x ∈ (−η, η)∣∣∣∣∣fe(x)−
N∑
j=1

αjφ̃j(x)

∣∣∣∣∣ ≤ Cη
(η
ε

)2N−1

‖f‖∞,η.
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Thus by item 3 of Lemma 4.7,∥∥∥fe − 〈p̃ , f〉T Φ̃
∥∥∥
∞,η
≤ Cη

(η
ε

)2N−1

‖f‖∞,η.

Similarly, we have by item4 of Lemma 4.7 for any function g ∈ H1
per(0, 1) with g′ ∈ L∞(−η, η),∣∣∣〈p̃ , g〉T Φ̃′(x)

∣∣∣ ≤ C‖g‖H1,η ≤ Cη1/2(‖g‖∞,η + ‖g′‖∞,η), (4.3.24)

and with the same coefficients (αj),∣∣∣∣∣f ′e(x)−
N∑
j=1

αjφ̃
′
j

∣∣∣∣∣ ≤ C
(η
ε

)2N−1

‖f‖∞,η.

So,

∥∥∥f ′e − 〈p̃ , f〉T Φ̃′
∥∥∥
∞,η
≤

∥∥∥∥∥f ′e −
N∑
j=1

αjφ̃
′
j

∥∥∥∥∥
∞,η

+

∥∥∥∥∥∥
〈
p̃ , fe −

N∑
j=1

αjφ̃j

〉T

Φ̃′

∥∥∥∥∥∥
∞,η

≤ C
(η
ε

)2N−1

‖f‖∞,η,

where in the last inequality, we used (4.3.24) with Lemma 4.16.

In the proof of the lower bound of Theorem 4.2, we will need to bound terms of the form∥∥∥fe − 〈p̃I , f〉T Φ̃I

∥∥∥
∞,η,I

. If ε < η, we will get worse bounds than by setting ε = η. Hence, from now

on, we fix ε = η.
To estimate the term

〈
f −

〈
p̃I , f

〉T
Φ̃I , δV

(
f −

〈
p̃I , f

〉T
Φ̃I

)〉
I,η
, we will need the following

estimates.

Lemma 4.18. Let f be an eigenfunction associated to the lowest generalized eigenvalue of (4.1.11).
Then ∥∥∥f − 〈p̃I , f〉T Φ̃I

∥∥∥
∞,η,I

≤ Cη‖f‖∞,η,I ,

and ∥∥∥f ′ − 〈p̃I , f〉T Φ̃′I

∥∥∥
∞,η,I

≤ C‖f‖∞,η,I ,

Proof. This follows from Lemma 4.17 and that the odd part of f is bounded in (−η, η) by
η‖f ′‖L∞(−η,η), which is itself bounded by Cη‖f‖L∞(−η,η) according to Lemma 4.15.

We need a uniform bound in η on the PAW eigenfunction f , in order to prove Theorem 4.2.

Lemma 4.19. Let f be an L2
per-normalized eigenfunctions associated to the first eigenvalue of

(4.1.11). Then there exists a positive constant C independent of η such that for all 0 < η ≤ η0

‖f‖H1
per
≤ C.



4.3. Proofs 123

Proof. This is a direct consequence of Equation (4.3.15).

We now have all the elements to complete the proof of Theorem 4.2.

Proof of the lower bound in Theorem 4.2. Let f be an L2
per-normalized generalized eigenfunction

of the PAW eigenvalue problem (4.1.11). By Proposition 4.13, we have

〈
f ,HPAWf

〉
=
〈
f , H̃f

〉
− 2

∑
I∈{0,a}

〈
f −

〈
p̃I , f

〉T
Φ̃I ,

〈
p̃I , f

〉T (
HΦI − (H + δV )Φ̃I

)〉
+
∑

I∈{0,a}

〈
f −

〈
p̃I , f

〉T
Φ̃I , δV

(
f −

〈
p̃I , f

〉T
Φ̃I

)〉
η,I
. (4.3.25)

We simply bound terms with I = 0 as the terms with I = a are treated exactly the same way. First,
we estimate

〈
f − 〈p̃ , f〉T Φ̃ , δV

(
f − 〈p̃ , f〉T Φ̃

)〉
I,η
. By Lemma 4.17, we have:

∣∣∣∣〈f − 〈p̃ , f〉T Φ̃ , δV
(
f − 〈p̃ , f〉T Φ̃

)〉
η

∣∣∣∣
= Z0

∣∣∣∣(f(0)− 〈p̃ , f〉T Φ̃(0)
)2

−
∫ η

−η
χη(x)

(
f(x)− 〈p̃ , f〉T Φ̃(x)

)2

dx

∣∣∣∣
= Z0

∣∣∣∣∫ η

−η
χη(x)

((
f(x)− 〈p̃ , f〉T Φ̃(x)

)2

−
(
f(0)− 〈p̃ , f〉T Φ̃(0)

)2
)

dx

∣∣∣∣
≤ Cη

∥∥∥f ′ − 〈p̃ , f〉T Φ̃′
∥∥∥
∞,η

∥∥∥f − 〈p̃ , f〉T Φ̃
∥∥∥
∞,η

≤ Cη2‖f‖2
∞,η, (4.3.26)

where in the last inequality, we applied Lemma 4.18.

We then estimate
〈
f ′ − 〈p̃ , f〉T Φ̃′ , 〈p̃ , f〉T (Φ′ − Φ̃′)

〉
:∣∣∣〈f ′ − 〈p̃ , f〉T Φ̃′ , 〈p̃ , f〉T (Φ′ − Φ̃′)

〉∣∣∣
=

∣∣∣∣∫ η

−η

(
f ′e(x)− 〈p̃ , f〉T Φ̃′(x)

)
〈p̃ , f〉T (Φ′ − Φ̃′)(x) dx

∣∣∣∣
≤ Cη

∥∥∥f ′e − 〈p̃ , f〉T Φ̃′
∥∥∥
∞,η
‖f‖H1

per

≤ Cη‖f‖∞,η‖f‖H1
per
, (4.3.27)

where in the first inequality, we used item 1 of Lemma 4.7 and in the second, Lemma 4.17. Finally,
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it remains to estimate
〈
f − 〈p̃ , f〉T Φ̃ , 〈p̃ , f〉T (δ0Φ− χηΦ̃)

〉
:∣∣∣〈f − 〈p̃ , f〉T Φ̃ , 〈p̃ , f〉T (δ0Φ− χηΦ̃)

〉∣∣∣
≤
∣∣∣(f(0)− 〈p̃ , f〉T Φ̃(0)

)
〈p̃ , f〉T (Φ(0)− Φ̃(0))

∣∣∣
+

∣∣∣∣∫ η

−η
χη(x)

((
fe(x)− 〈p̃ , f〉T Φ̃(x)

)
〈p̃ , f〉T Φ̃(x)−

(
fe(0)− 〈p̃ , f〉T Φ̃(0)

)
〈p̃ , f〉T Φ̃(0)

)
dx

∣∣∣∣
≤ Cη2‖f‖∞,η‖f‖H1

per
+ Cη

∥∥∥∥((fe − 〈p̃ , f〉T Φ̃
)
〈p̃ , f〉T Φ̃

)′∥∥∥∥
∞,η

.

We have ∥∥∥∥((fe − 〈p̃ , f〉T Φ̃
)
〈p̃ , f〉T Φ̃

)′∥∥∥∥
∞,η

≤
∥∥∥(fe − 〈p̃ , f〉T Φ̃

)
〈p̃ , f〉T Φ̃′

∥∥∥
∞,η

+
∥∥∥(f ′e − 〈p̃ , f〉T Φ̃′

)
〈p̃ , f〉T Φ̃

∥∥∥
∞,η

≤ Cη‖f‖∞,η‖f‖H1
per

+ C‖f‖∞,η‖f‖H1
per
,

where we applied Lemma 4.17 and items 3 and 4 of Lemma 4.7. Thus,∣∣∣〈f − 〈p̃ , f〉T Φ̃ , 〈p̃ , f〉T (δ0Φ− χηΦ̃)
〉∣∣∣ ≤ Cη‖f‖∞,η‖f‖H1

per
. (4.3.28)

Injecting (4.3.26), (4.3.27) and (4.3.28), in (4.3.25), we obtain〈
f ,HPAWf

〉
≥
〈
f , H̃f

〉
− Cη2‖f‖2

L∞ − Cη‖f‖∞,η‖f‖H1
per

≥ E0

〈
f , S̃f

〉
− Cη2‖f‖2

L∞ − Cη‖f‖∞,η‖f‖H1
per
.

Using item 3 of Lemma 4.9, we obtain

E0

〈
f , SPAWf

〉
− Cη2‖f‖2

L∞ − Cη‖f‖∞,η‖f‖H1
per
≤
〈
f ,HPAWf

〉
≤ EPAW

〈
f , SPAWf

〉
,

and the result follows from Lemma 4.19 and the Sobolev embedding ‖f‖L∞ ≤ C‖f‖H1
per
.

Improvement of the model

The critical term yielding the upper bound of Theorem 4.2 is due to the poor approximation of
f by the pseudo wave functions φ̃k. The latter are only even polynomials inside the cut-off region,
hence incorporating odd functions to the PAW treatment should improve the upper bound on the
PAW eigenvalue EPAW .
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The odd atomic wave functions are the functions

θ̃k(x) = sin(2πkx), k ∈ N∗, (4.3.29)

which are eigenfunctions of the atomic Hamiltonian − d2

dx2
−Z0

∑
k∈Z

δk. As these functions are already

smooth, there is no need to take pseudo wave functions different from the atomic wave functions.
To define the corresponding projector functions q̃k, first we denote by

G =

(∫ η

−η
ρη(t) sin(2πjt) sin(2πkt) dt

)
1≤j,k≤N

, (4.3.30)

where ρη is the smooth cut-off function defined in Section 4.1.4. G is an invertible matrix since it is
the Gram matrix of the linearly independent family of functions (sin(2πkx))1≤k≤N . Now let q̃k be
defined by

q̃k(x) = ρη(x)
N∑
j=1

(G−1)jkθ̃j(x), (4.3.31)

so the functions (θ̃k)1≤k≤N and (q̃k)1≤k≤N satisfy〈
q̃j , θ̃k

〉
= δjk.

The functions (θ̃ak)1≤k≤N are equal to (θ̃k(·−a))1≤k≤N and the projector functions (q̃ak)1≤k≤N denotes
the shifted projector functions (q̃k(· − a))1≤k≤N .

Since θ̃k is an eigenfunction of − d2

dx2
− Z0

∑
k∈Z

δk, for all 1 ≤ i, j ≤ N and I = 0, a,

〈
θ̃Ii , Hθ̃

I
i

〉
−
〈
θ̃Ii , Hpsθ̃

I
i

〉
= −

〈
θ̃Ii ,−ZIχηθ̃Ii

〉
.

Hence, the new expression of HPAW is given by

HPAW = Hps +
N∑

i,j=1
I∈{0,a}

p̃Ii

(〈
φIi , Hφj

〉
I,η
−
〈
φ̃Ii , Hpsφ̃

I
j

〉
I,η

)〈
p̃Ij , ·

〉

−
N∑

i,j=1
I∈{0,a}

q̃Ii

〈
θ̃Ii ,−ZIχηθ̃j

〉
I,η

〈
q̃Ij , ·

〉
,

(4.3.32)

and SPAW remains unchanged.
We denote by q̃I the vector of functions (q̃I1 , . . . , q̃

I
N )T and Θ̃I the vector of functions (θ̃I1, . . . , θ̃

I
N )T .

Using the functions (θ̃Ik)1≤k≤N and (q̃Ik)1≤k≤N in the PAW treatment, we have the following
theorem on the lowest PAW eigenvalue.

Theorem 4.20. Let φIi , φ̃Ii and p̃Ii , for i = 1, . . . , N and I = 0, a be the functions defined in Section
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4.1.3. Suppose η0 > 0 satisfies Assumption 4.1 and Assumption 4.2. Let (θ̃Ik)1≤k≤N be the functions
given by (4.3.29) and (q̃Ik)1≤k≤N be the functions given by (4.3.31). Let EPAW the lowest eigenvalue
of the generalized eigenvalue problem HPAWf = EPAWSPAWf with HPAW defined in (4.3.32). Let
E0 be the lowest eigenvalue of H (4.1.1). Then there exists a positive constant C independent of η
such that for all 0 < η ≤ η0

− Cη ≤ EPAW − E0 ≤ Cη2N . (4.3.33)

The proof of Theorem 4.20 follows the same steps of the proof of Theorem 4.2. First, we
prove that for g ∈ H1

per, the quantity
〈
g ,HPAWg

〉
is equal to

〈
g , H̃g

〉
and error terms of the form

g −
〈
p̃I , g

〉T
Φ̃I −

〈
q̃I , g

〉T
Θ̃I that needs to be estimated.

Proposition 4.21. Let g ∈ H1
per(0, 1). Then

〈
g ,HPAWg

〉
=
〈
g , H̃g

〉
− 2

∑
I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I ,

〈
p̃I , g

〉T (
HΦI − (H + δV )Φ̃I

)〉
+ 2

∑
I∈{0,a}

〈
g −

〈
q̃I , g

〉T
Θ̃I ,

〈
q̃I , g

〉T
δV Θ̃I

〉
I,η

+
∑

I∈{0,a}

〈
g −

〈
p̃I , g

〉T
Φ̃I −

〈
q̃I , g

〉T
Θ̃I , δV

(
g −

〈
p̃I , g

〉T
Φ̃I −

〈
q̃I , g

〉T
Θ̃I

)〉
I,η
.

Proof. The proof is similar to the proof of Proposition 4.13.

Lemma 4.22. There exists a constant C independent of η such that for all f ∈ H1
per(0, 1) for x in

(−η, η), ∣∣∣〈q̃I , f〉T Θ̃I(x)
∣∣∣ ≤ C‖f‖∞,η,I .

Proof. For clarity, we will drop the index I. For 0 ≤ j ≤ N − 1, let

vj = (2πη)2j+1


1

22j+1

...
N2j+1

 , v̂j =
1

η2j+1
vj.

Let (ŵj)0≤j≤N−1 be the dual basis of (v̂j)0≤j≤N−1 and wj = 1
η2j+1 ŵj. Let M be the matrix such

that for all 0 ≤ j, k ≤ N − 1,

Mjk =
(−1)j+k

(2j + 1)!(2k + 1)!

∫ 1

−1

ρ(t)t2j+2k+2 dt.

By a Taylor expansion, we obtain for t ∈ (−1, 1),

Θ̃(ηt) =

 sin(2πηt)
...

sin(2πηNt)

 =
N−1∑
k=0

(−1)k(2πηt)2k+1

(2k + 1)!


1

22j+1

...
N2j+1

+RΘ̃(ηt),
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where |RΘ̃(ηt)| ≤ Cη2N+1. Then, we can rewrite the matrix G given by (4.3.30)

G = η

∫ 1

−1

ρ(t)

(
N−1∑
j=0

(−1)jη2j+1

(2j + 1)!
v̂jt

2j+1 +RΘ̃(ηt)

)(
N−1∑
k=0

(−1)kη2k+1

(2k + 1)!
v̂kt

2k+1 +RΘ̃(ηt)

)T

dt

= η

N−1∑
j,k=0

Mjkvjv
T
k + η

∫ 1

−1

N−1∑
j=0

(−1)j

(2j + 1)!
t2j+1

(
vjRΘ̃(ηt)T +RΘ̃(ηt)vTj

)
dt+O(η4N+3).

Hence, we have for 0 ≤ j, k ≤ N − 1,

wTj Gwk = ηMjk + ηwTj Rk + ηRT
j wk +O(η5),

where

Rk =

∫ 1

−1

ρ(t)
(−1)k

(2k + 1)!
t2k+1RΘ̃(ηt) dt.

But ‖wk‖ = O(η−2k−1) and |RΘ̃(ηt)| ≤ Cη2N+1, hence RT
j wk = O(η2). Thus, if we denote by

W =

 wT0
...

wTN−1

 , V =

 vT0
...

vTN−1

 ,

we obtain
WGW T = ηM +O(η3),

and
W−TG−1W−1 = V G−1V T =

1

η
M−1 +O (η) . (4.3.34)

Thus, we have for f ∈ L∞(−η, η) and x ∈ (−η, η)

〈q̃ , f〉T Θ̃(x) = η

(∫ 1

−1

ρ(t)f(ηt)G−1

(
N−1∑
j=0

(−1)j

(2j + 1)!
t2j+1vj +RΘ̃(ηt)T

)
dt

)T

(
N−1∑
j=0

(−1)j

(2j + 1)!

(
x

η

)2j+1

vj +RΘ̃(x)

)
. (4.3.35)

By expanding (4.3.35), three types of terms arise involving

1. vTj G−1vk: by (4.3.34), we have |vTj G−1vk| = O
(

1
η

)
;

2. vTj G−1RΘ̃(x): by (4.3.34), ‖vjG−1‖ = O
(

1
η2N−1

)
and because RΘ̃(x) = O(η2N+1), we have

|vTj G−1RΘ̃(x)| = O (η2);

3. RΘ̃(ηt)TG−1RΘ̃(x): by (4.3.34), we deduce that ‖G−1‖ = O
(

1
η4N−1

)
, but RΘ̃(x) = O(η2N+1),

hence |RΘ̃(ηt)TG−1RΘ̃(x)| = O (η3).
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Thus,
| 〈q̃ , f〉T Θ̃(x)| ≤ C‖f‖∞,η.

Lemma 4.23. Let f be a smooth and odd function. Then we have∥∥∥f − 〈q̃I , f〉T Θ̃I

∥∥∥
∞,η,I

≤ Cη2N+3‖f (2N+3)‖∞,η,I ,

Proof. We simply write the Taylor expansion of f around 0. Then by expanding the functions θk
around 0, it is easy to show that the difference between f and the best approximation in (−η, η) of
f by a linear combination of θk is bounded by the Taylor remainder of f and terms arising from
the truncation of the expansions of the functions θk which are both of order O(η2N+3). We then
conclude using Lemma 4.22.

The presence of θ̃j and q̃j (see (4.3.32) above) does not change the lower bound of the PAW
eigenvalue as it does not improve the estimate of critical terms in the proof of lower bound in
Theorem 4.2. However, we get a much better upper bound as it is the odd part of the wave function
ψ which prevents to have a better bound. Thus introducing these odd functions in the PAW
treatment, we have Theorem 4.20.

4.4 Numerical tests

In this section, some numerical tests are provided to confirm the bounds obtained in Theorems
4.1, 4.2 and 4.20. The simulations of the different PAW versions are done with a = 0.4 and
Z0 = Za = 10.

4.4.1 The PAW equations

Without pseudopotentials

We solve the generalized eigenvalue problem

HNf = E(η)SNf,

where HN and SN are defined by Equations (4.1.9) and (4.1.10), by expanding f in 512 plane-waves.
We study how E(η) behaves as a function of η. In our case, the PAW eigenvalue E(η) is smaller
than E0. For this regime, Theorem 4.1 states that E(η) converges at least linearly to E0, which is
what we observe in Figure 4.4.1.

With pseudopotentials

The eigenfunction f is expanded in 1000 plane waves for which convergence is reached. The
integrals of plane-waves against PAW functions are computed with an accurate numerical integral
scheme.
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Figure 4.4.1 – Error on the lowest eigenvalue of the truncated PAW equations (4.1.8)

In view of Figure 4.4.2, the lower bound in Theorem 4.2 seems sharp. The use of odd PAW
functions improves the error on the PAW eigenvalue (Figure 4.4.3) for a range of moderate values
of the cut-off radius η. However, the use of odd PAW functions does not give a better lower bound.

Finally, the upper bound in Theorem 4.20 seems optimal (see Figure 4.4.3). For N = 2, we
have a slope close to the theoretical value (2N = 4).

Figure 4.4.2 – Error on the lowest eigenvalue of the PAW equations (4.1.11) with pseudopotentials

4.4.2 Comparison between the PAW and VPAW methods in pre-asymptotic
regime

The simulations are run for a fixed value of d = 6 and different values of η = 0.1 and η = 0.2.
In Figure 4.4.4, E0 is the lowest eigenvalue of the 1D-Schrödinger operator H. The PAW method
considered in Figure 4.4.4 is the generalized eigenvalue problem (4.1.11).

Using Fourier methods to solve the VPAW eigenvalue problem (4.1.14), we have the following
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Figure 4.4.3 – Error on the lowest eigenvalue of the PAW equations with pseudopotentials including
odd PAW functions

bound on the computed eigenvalue EVPAW
M [BCD17b]:

0 < EVPAW

M − E0 ≤ C

(
η4N

M
+

1

η2d−2

1

M2d−1

)
, (4.4.1)

where M is the number of plane-waves, N the number of PAW functions and d the regularity of
the PAW pseudo wave functions φ̃k.

As expected, the PAW method quickly converges to EPAW which, according to Theorem 4.2, is
close but not equal to E0. Although the VPAW method does not remove the Dirac singularities
-which is why, asymptotically, the VPAW method convergence rate is of order O

(
1
M

)
-, it converges

faster to E0 than the PAW method with pseudopotentials.
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Figure 4.4.4 – Comparison between the PAW and VPAW methods
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CHAPTER 5

THE VPAW METHOD FOR 3D HAMILTONIANS

In this chapter, we expose the results on the VPAW method applied to eigenvalue problems of
periodic 3D linear Hamiltonians with Coulomb potentials [Dup18].

Similarly to the study of the VPAW method applied to the one-dimensional model with Dirac
potentials, the cusp of the eigenfunction of the VPAW eigenvalue problem is significantly reduced.
Hence, estimates on the eigenvalues obtained by a plane-wave discretization of the VPAW equations
are similar to the estimates obtained in the one-dimensional model studied in Chapter 3.

This chapter is organized as follows. The VPAW method applied to periodic 3D linear Hamilto-
nians is presented in Section 5.1. Estimates on the eigenvalues of the plane-wave discretization of
the VPAW equations are given in Section 5.2. Proofs of these results are gathered in Section 5.3.
Numerical tests confirming the efficiency of the VPAW method can be found in Section 5.4.

5.1 VPAW method applied to linear 3D Hamiltonians

5.1.1 General setting

For simplicity, we restrict ourselves to the linear model. A quick overview of the spectral theory
of periodic Hamiltonians can be found in [Gon15]. More thoroughful expositions of this theory are
presented in [Eas73, Kuc12]. For extensions to nonlinear equations, the interested reader is referred
to [CLBL02] for the Hartree model and to [CLBL01] for the Hartree-Fock model.

The crystal is modeled as an infinite periodic motif of Nat point charges at positions RI in the
unit cell

Γ =
{
α1a1 + α2a2 + α3a3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

and repeated over a periodic lattice

R = Za1 + Za2 + Za3.

where a1, a2, a3 are linearly independent vectors of R3.
The electronic properties of the crystal are determined by the spectrum of the periodic Hamil-

133



134 CHAPTER 5. The VPAW method for 3D Hamiltonians

tonian Hper acting on L2(R3):

Hper = −1

2
∆ + Vper +Wper, (5.1.1)

where Vper is an R-periodic potential defined by−∆Vper = 4π

( ∑
T∈R

Nat∑
I=1

ZI

(
δRI

(·+ T)− 1
|Γ|

))
Vper is R-periodic.

(5.1.2)

In this paper, Wper is a smooth R-periodic potential so that Equation (5.1.2) has a solution. In
practice, Wper is a nonlinear potential depending on the model chosen to describe the electronic
self-interaction (typically a Kohn-Sham potential).

The standard way to study the spectrum of Hper is through Bloch theory which will be outlined
in the next few lines. Let R∗ be the dual lattice

R∗ = Za∗1 + Za∗2 + Za∗3,

where (a∗1, a
∗
2, a
∗
3) satisfies ai · a∗j = 2πδij. The reciprocal unit cell is defined by

Γ∗ =
{
α1a

∗
1 + α2a

∗
2 + α3a

∗
3, (α1, α2, α3) ∈ [−1/2, 1/2)3

}
.

As Hper commutes with R-translations, Hper admits a Bloch decomposition in operators Hq acting
on

L2
per(Γ) = {f ∈ L2

loc(R3) | f is R-periodic},

with domain
H2

per(Γ) = {f ∈ H2
loc(R3) | f is R-periodic}.

The operator Hq is given by:

Hq =
1

2
| − i∇+ q|2 + Vper +Wper, q ∈ Γ∗.

For each q ∈ Γ∗, the operator Hq is self-adjoint, bounded below and with compact resolvent.
Thus it has a discrete spectrum of infinite eigenvalues E1,q ≤ E2,q ≤ . . . , En,q →∞, counted with
multiplicities, and the associated eigenfunctions (ψn,q)n∈N∗ form an orthonormal basis of L2

per(Γ):

Hqψn,q = En,qψn,q. (5.1.3)

By Bloch theorem ([RS78], Chapter XIII), the spectrum of Hper is given by the union of
the discrete spectra of an infinite number of eigenvalue problems parameterized by the vector q
belonging to the reciprocal unit cell Γ∗:

σ(Hper;L
2(R3)) =

⋃
q∈Γ∗

σ(Hq;L2
per(Γ)). (5.1.4)
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The VPAW method aims to ease the resolution of the eigenvalue problem (5.1.3). For clarity,
we will only present the case q = 0 and denote H0 by H as this example contains all the main
difficulties encountered in the numerical resolution of Equation (5.1.3). Transposition to q 6= 0 can
be done without problem.

5.1.2 The VPAW method for solids

Following the idea of the PAW method, an invertible transformation (Id + T ) is applied to the
eigenvalue problem (5.1.3), where T is the sum of operators TI acting locally around each nucleus.
For each operator TI , two parameters Npaw and rc need to be fixed (rc and Npaw may depend on
the atomic site I):

1. Npaw is the number of PAW functions used to build TI ,

2. rc is a cut-off radius which will set the acting domain of TI , more precisely:

— for all f ∈ L2
per(Γ), supp(TIf) ⊂

⋃
T∈R

B(RI + T, rc), where B(R, r) is the closed ball of

R3 with center R and radius r,

— if supp(f)
⋂ ⋃

T∈R
B(RI + T, rc) = ∅, then TIf = 0.

The operator TI is given by:

TI =
∑
T∈R

Npaw∑
k=1

(φIk(r−RI)− φ̃Ik(r−RI))
〈
p̃Ik(· −RI) , •

〉
, (5.1.5)

where 〈• , •〉 is the L2-scalar product on the unit cell Γ and the functions φIk, φ̃Ik and p̃Ik are
functions in L2

per(Γ). The PAW functions (φIk)1≤k≤Npaw , (φ̃Ik)1≤k≤Npaw and (p̃Ik)1≤k≤Npaw must satisfy
the following essential properties:

1. supp (φIk − φ̃Ik) ⊂
⋃

T∈R
B(T, rc);

2. φ̃Ik restricted to B(0, rc) is smooth;

3. p̃Ik are supported in
⋃

T∈R
B(T, rc) and ∀ 1 ≤ i, j ≤ Npaw,

〈
p̃i , φ̃j

〉
= δij (that is (p̃j)1≤j≤Npaw

is dual to (φ̃j)1≤j≤Npaw).

The operators TI act locally in
⋃

T∈R
B(RI + T, rc).

Several schemes exist in the literature to generate the PAW functions. In this paper, the PAW
functions are close to the Vanderbilt scheme [KJ99] where only the projector functions differ from
ours. Numerical tests in Section 5.4 suggest that the Vanderbilt scheme is also efficient to compute
the eigenvalues of (5.1.14). The Blöchl scheme [Blo94] is another popular way to generate PAW
functions although the first seems to be preferred [JTH14]. See [BCD17b, JTH14] for more details
on the generation of the PAW functions.



136 CHAPTER 5. The VPAW method for 3D Hamiltonians

Atomic wave function Let (ϕIk)1≤k≤Npaw ∈ (L2(R3))Npaw be eigenfunctions of an atomic non-
periodic Hamiltonian

HIϕ
I
k = εkϕ

I
k, εI1 ≤ εI2 ≤ εI3 ≤ . . . ,

∫
R3

ϕIkϕ
I
k′ = δkk′ ,

with HI defined by

HI = −1

2
∆− ZI

|r|
+W (|r|), (5.1.6)

where W is a smooth bounded potential. The operator HI is self-adjoint on L2(R3) with domain
H2(R3). Again, in practice, W is a radial nonlinear potential belonging to the same family of
models as Wper in Equation (5.1.2). Since the atomic Hamiltonian is rotationnaly invariant, HI

is block-diagonal in the decomposition of L2(R3) associated with the eigenspaces of the operator
L2 (the square of the angular momentum L = r × p = r × (−i∇)). The eigenfunctions ϕIk can
be decomposed into a radial function and a spherical harmonics (see [RS78] XIII.3.B for further
details):

ϕIk(r) = r`Rn`(r)Y`m(r̂), (5.1.7)

where Y`m is the real spherical harmonics andRn` is a continuous function such that lim
r→0
|Rn`(r)| <∞.

For r ∈ R3, we define r̂ := r
|r| and when there is no ambiguity we will denote by r the euclidean

norm of r. The decomposition (5.1.7) also holds for some nonlinear models, see [Sol91, CM14]. The
functions Rn` satisfies the following radial Schrödinger equation

h`Rn`(r) = −1

2
R′′n`(r)−

`+ 1

r
R′n`(r)−

ZI
r
Rn`(r) +W (r)Rn`(r) = εn`Rn`(r). (5.1.8)

The eigenvalues of h`, if they exist, are all simple. The discrete spectrum of HI is then the collection
of all the eigenvalues of h`.

The PAW atomic wave functions (φIk)1≤k≤Npaw ∈ (L2
per(Γ))Npaw are then defined by

— for 1 ≤ k ≤ Npaw and r ∈ Γ, φIk(r) = ϕIk(r),

— φIk is R-periodic.

If W 6= 0, there is a minimal angular momentum `adm for which h` for all ` ≥ `adm has no eigenvalue
(see Theorem XIII.8 in [RS78], [Sol91]). As an immediate consequence, PAW functions can only be
selected for a finite range of angular momentum ` ≤ `adm.

We denote by (n0, n1, . . . , n`max) the number of PAW functions for each admissible angular
momentum, i.e. there are n0 PAW functions for the angular momentum ` = 0,m = 0, n1 PAW
functions for ` = 1, |m| ≤ 1, . . . The total number of PAW functions for one atomic site is thus

given by Npaw =
`max∑̀

=0

(2`+ 1)n`.

Pseudo wave function The pseudo wave functions φ̃Ik are the R-periodic functions given in the
unit cell Γ by:

∀ r ∈ Γ, φ̃Ik(r) = r`R̃n`(r)Y`m(r̂). (5.1.9)
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where k stands for the multiple index (n, `,m). The radial functions R̃n`, 1 ≤ n ≤ n`, 0 ≤ ` ≤ `max

are polynomial inside the augmentation region B(0, rc):

R̃n`(r) =


d∑

k=0

c2kr
2k for 0 ≤ r ≤ rc

Rn`(r) for r > rc

(5.1.10)

and the coefficients are chosen to match Rn` and its first (d− 1) derivatives of Rn` at rc.

Projector functions The projector functions (p̃Ik)1≤k≤Npaw chosen here are the R-periodic func-
tions given in the unit cell Γ by:

∀ r ∈ Γ, p̃In`m(r) = r`pn`(r)Y`m(r̂). (5.1.11)

The functions pn` for 0 ≤ ` ≤ `max, 1 ≤ n ≤ n` are defined by

pn`(r) =

n∑̀
n′=1

(
B−1
`

)
nn′

χ(r)R̃n′`(r), (5.1.12)

with χ a smooth positive cut-off function supported in (0, rc) and

B` =

(∫ rc

0

χ(r)R̃n`(r)R̃n′`(r)r
2+2` dr

)
1≤n,n′≤n`

. (5.1.13)

By definition, the projector functions (p̃Ik)1≤k≤Npaw are supported in
⋃

T∈R
B(T, rc) and form a dual

family to the pseudo wave functions (φ̃Ik)1≤k≤Npaw :
〈
p̃Ik , φ̃

I
k′

〉
= δkk′ .

The VPAW equations to solve are then:

H̃ψ̃ = ES̃ψ̃,

where
H̃ = (Id + T )∗H(Id + T ), S̃ = (Id + T )∗(Id + T ), (5.1.14)

and

T =
Nat∑
I=1

TI . (5.1.15)

Thus if (Id + T ) is invertible, it is easy to recover the eigenfunctions of H by the formula

ψ = (Id + T )ψ̃, (5.1.16)

and the eigenvalues are identical to the original eigenvalue problem (5.1.3).
By construction, the operator (Id + TI) maps the pseudo wave functions φ̃ to the atomic



138 CHAPTER 5. The VPAW method for 3D Hamiltonians

eigenfunctions φ:
(Id + TI)φ̃

I
k(· −RI) = φIk(· −RI), (5.1.17)

so if locally around each nucleus, the function ψ "behaves" like the atomic wave functions φk, we
can hope that the cusp behavior of ψ is captured by the operator T . ψ̃ is therefore smoother than
ψ and the plane-wave expansion of ψ̃ converges faster than the expansion of ψ.

5.1.3 Well-posedness of the VPAW method

To be well-posed the VPAW method requires
1. for each 0 ≤ ` ≤ `max, the family of pseudo wave functions (R̃n`)1≤n≤n` to be linearly

independent in [0, rc], so that the projector functions (pn`)1≤n≤n` are well defined;
2. (Id + T ) to be invertible.
To fulfill the first condition, the following assertion is assumed.

Assumption 5.1. For all 0 < rc < rmin and each 0 ≤ ` ≤ `max, (R(k)(rc))0≤k≤n`−1 is a linearly
independent family, where R is the vector of the functions (R1`, . . . , Rn``).

It is easy to check that this condition ensures that the family of pseudo-wave functions(
R̃n`

)
1≤n≤n`

is linearly independent. This holds in the particular case of the hydrogenoid atom

(see Lemma 5.22 in the appendix).

It can be shown that the second condition is equivalent to the invertibility of the matrix(〈
pj , r

`Rk

〉)
1≤j,k≤n`

for all 0 ≤ ` ≤ `max. Since the proof of this statement is very close to the proof
of Proposition 2.3 in [BCD17b], we will not reproduce it here. For the rest of the paper, we make
the following assumption.

Assumption 5.2. For all 0 < rc < rmin and any 0 ≤ ` ≤ `max, the matrix (〈pn` , Rn′`〉)1≤n,n′≤n` is
invertible.

5.1.4 Singular expansion

It appears that the theory of weighted Sobolev spaces and the singular expansion of eigenfunc-
tions of Hamiltonians with Coulomb potentials provides a nice framework to study the Fourier
decay of the VPAW pseudo wave functions ψ̃. The singular expansion gives a generalization of
the Kato cusp condition [Kat57] to any order. This theory is closely linked to the b-calculus of
pseudodifferential operators developed by Melrose [Mel93]. It has been applied successfully to
characterize precisely the behaviour of the electronic wave function close the nucleus [FSS08, HNS08]
and used in the analysis of the muffin-tin and LAPW methods [CS15]. The interested reader may
refer to [KMR97, ES12] for a detailed exposition of this theory.

For simplicity, Γ denotes the cube [−1
2
, 1

2
]3. Let S be the set of the position of the nuclei:

S = {RI + T, I = 1, . . . , Nat, T ∈ R}.
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Let % be a R-periodic continuous function such that %(RI + r) = r for small r, % ∈ C∞loc(R3 \ S).

Definition 5.1. Let k ∈ N and γ ∈ R. We define the k-th weighted Sobolev space with index γ by:

Kk,γ(Γ) =
{
u ∈ L2

per(Γ) : %|α|−γ∂αu ∈ L2
per(Γ) ∀ |α| ≤ k

}
. (5.1.18)

Consider a subspace of functions with the asymptotic expansions

∀ I = 1, . . . , Nat, u(RI + r) ∼
∑
j∈N

cj(r̂)r
j as r → 0, (5.1.19)

where cj belongs to the finite dimensional subspace Mj = span{Y`m, 0 ≤ ` ≤ j, |m| ≤ `}.
We define the weighted Sobolev spaces with asymptotic type (5.1.19):

K k,γ(Γ) =

{
u ∈ Kk,γ(Γ)

∣∣∣∣ ηN ∈ Kk,γ+N+1(Γ) where ηN is the Γ-periodic function defined in Γ by

∀N ∈ N, ∀r ∈ Γ, ηN(r) = u(r)−
Nat∑
I=1

ω(|r−RI |)
N∑
j=0

cj(r̂−RI)|r−RI |j
}
,

(5.1.20)

where ω is a smooth positive cutoff function, i.e. ω = 1 near 0 and ω = 0 outside some neighbourhood
of 0.

The definition (5.1.20) slightly differs from the definition of the weighted Sobolev space given in
[CS15] (Equation (2.6)). However, our definition is consistent with the results that can be found
in [HNS08] (see Theorem I.1) and the original paper [FSS08] (see Proposition 1) from which the
definition appearing in [CS15] is taken.

The expansion (5.1.19) can be viewed as a “regularity expansion”. Let us suppose that the
functions cj in the singular expansion are constant. Then all the even terms appearing in (5.1.20)
are smooth since for any k ∈ N, r 7→ r2k is smooth. For the odd terms in the expansion, the
function r 7→ r is continuous but not differentiable at the origin, the function r 7→ r3 is C2 but not
C3 and so on. Since the decay of the Fourier coefficients depends on the regularity of the function,
this expansion enables one to characterize precisely this decay. A precise estimation of this decay
for all the terms appearing in (5.1.20) is given in Lemma 5.11 below.

Definition 5.2. A function u is asymptotically well-behaved if u ∈ K ∞,γ(Γ) for γ < 3/2.

Remark 5.3. It is easy to see that if u is asymptotically well-behaved then by the definition of the
weighted Sobolev space with asymptotic type (5.1.19), the remainder ηN is in the classical Sobolev
space H5/2+N−ε

per (Γ).

The following result, stated in [HNS08, CS15], gives the regularity of the eigenfunction of (5.1.3)
in terms of the previously defined weighted Sobolev space.

Theorem 5.4. Let ψ be an eigenfunction of Hψ = Eψ where H is defined in (5.1.3). Then ψ is
asymptotically well-behaved.
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Theorem 5.4 enables to characterize precisely the singularity of the Hamiltonian wave function
and generalizes the Kato cusp condition for eigenfunctions of 3D-Hamiltonians. Let V be the
smooth potential such that in a neighborhood of RI ,

Vper(r) = − Z

|r−RI |
+ V (r−RI), (5.1.21)

and denote by (vk)k≥` the coefficients of the Taylor expansion of

V`m(r) =

∫
S(0,1)

V (r)Y`m(r̂) dr̂. (5.1.22)

Theorem 5.5. Let ` ∈ N and |m| ≤ `. Let ψ be an eigenfunction of Hψ = Eψ where H is defined
in (5.1.3) and (ψj`m)j,`≤j,|m|≤` be the coefficients of the singular expansion of ψ, i.e. for all ε > 0,

ψ(r)−
N∑
j=0

∑
|m|≤`≤j

cj`mr
jY`m(r̂) ∈ K∞,

5
2

+N−ε.

Let (vk)k≥` be the coefficients of the function V`m defined in (5.1.22). Then the sequence (cj`m)j≥`
satisfies

∀ j ≥ `,
(j + 1)(j + 2 + 2`)

2
ψj+1,`m = −Zψj`m + (v ∗ c)j−1 − Eψj−1,`m, (5.1.23)

where v ∗ c denotes the convolution

(v ∗ c)k =
k∑
j=`

vk−jψk,`m.

For ` = 0, the Kato cusp condition is recovered since ψ000 = ψ(0) and
ψ100 = ∂

∂r

∣∣
r=0

∫
S(0,1)

ψ(r)Y00(r̂) dr̂.

5.2 Main results
We focus on the analysis of the VPAW method restricted to a set of PAW functions associated

to the lowest angular momentum ` = m = 0, i.e. `max = 0. In this setting, we can prove the
following theorem.

Theorem 5.6. Let EM be an eigenvalue of the variational approximation of (5.1.14) in a plane-
wave basis with wavenumber |K| ≤M , with n0 PAW functions associated to the angular momentum
` = 0,m = 0 with smoothness d ≥ n and cut-off radius rc. Let E be the corresponding exact
eigenvalue. Under Assumptions 5.1, 5.2, there exists a constant C > 0 independent of rc and M
such that for all ε > 0, and for all 1

M
< rc < rmin

0 < EM − E ≤ C

(
rc

2 min(2n0,5)−2ε

M3
+
rc

min(2n0,5)−ε

M4−ε +
1

M5
+

1

rc2d−2

1

M2d−1
+ o

(
1

M7−ε

))
. (5.2.1)
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Theorem 5.6 holds for any eigenvalue of H given in (5.1.3), however numerical tests provided in
Section 5.4 are restricted to the ground-state eigenvalue. They suggest that the VPAW method can
be an efficient strategy to solve accurately the eigenvalue problem (5.1.3) (see Figures 5.4.1, 5.4.3).

Asymptotically, the same order of convergence as the direct plane-wave discretization of (5.1.3)
is obtained, however, the prefactor is reduced by rc2 min(2n0,5)−ε, improving the convergence for low
plane-wave cut-offs. However, the VPAW method introduces a d-th order derivative jump which is
reflected by the prefactor 1

rc2d−2 . This prevents one to choose a too low cut-off radius since this
error can become predominant as rc goes to 0 (see Figure 5.4.2).

Remark 5.7. By incorporating n1 functions for each angular momentum ` = 1 and m = −1, 0, 1,
we can improve the convergence estimate (5.2.1) to

∀ 1
M
< rc < rmin, 0 < EM − E ≤ C

(
rc

2 min(2n0,5)−2ε

M3
+
rc

min(2n0,5)−ε

M4−ε

+
rc

2 min(2n1,5)−ε

M5
+

1

M7
+

1

rc2d−2

1

M2d−1
+ o

(
1

M9−ε

))
. (5.2.2)

The only difference between (5.2.1) and (5.2.2) is the prefactor of 1
M5 . In our example (Section ??),

improvements for the computation of ground-state are barely noticeable (see Figure 5.4.1 and 5.4.3).
However, introducing PAW functions for ` = 1 might be beneficial for higher eigenvalues where in a
pre-asymtotic regime, the prefactor of 1

M5 may be preponderant.

5.3 Proofs

A proof of Theorem 5.6 is given in this section with n PAW functions for the angular momentum
` = 0 and m = 0. These functions are generated following the scheme presented in Section 5.1.2.
Since only PAW functions for the angular momentum ` = 0, m = 0 are considered, the 00 index in
the PAW functions is dropped. The following notation is introduced

p(r) := (p1(r), . . . , pn(r))T ∈ Rn,

p̃(r) := (p̃1(r), . . . , p̃n(r))T ∈ Rn,

〈p̃ , f〉 := (〈p̃1 , f〉 , . . . , 〈p̃n , f〉)T ∈ Rn,∀ f ∈ L2
per(Γ),

Φ(r) := (φ1(r), . . . , φn(r))T ∈ Rn,

Φ̃(r) := (φ̃1(r), . . . , φ̃n(r))T ∈ Rn,

R(r) := (R1(r), . . . , Rn(r))T ∈ Rn,

R̃(r) := (R̃1(r), . . . , R̃n(r))T ∈ Rn.

For a function f ∈ L2([−1
2
, 1

2
]3), we denote by f`m the averaged function

f`m(r) =

∫
S(0,1)

f(r)Y`m(r̂) dr̂. (5.3.1)
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Let ω be a smooth nonnegative cut-off function such that ω(r) = g( r
rc

) where g satisfies

— g is equal to 1 in B(0, 1/4),

— supp(g) ⊂ B(0, 1/2).

Therefore, ω satisfies supp(ω) ⊂ B(0, rc/2), supp(1− ω)c ⊂ B(0, rc/4) and ‖ω(k)‖L∞(0,rc) ≤ C
rck

.
Since the proof of Theorem 5.6 relies on the estimation of the singularities around each nucleus,

we restrict the setting to a single atom of cahrge Z located at the origin in the unit cell Γ. Extension
to the general case is straightforward.

The general idea of the proof is to isolate the main convergence difficulty which is the cusp
located at each nucleus and see how the VPAW method reduces it. Although the VPAW method
reduces the cusps of the pseudo wave function, it introduces a derivative jump on the augmentation
spheres that blows up as the cut-off radius shrinks. As in [BCD17b], we split the pseudo wave
function ψ̃ into three parts using the singular expansion (5.1.20). Let η ∈ K∞, 52+N−ε(Γ) be the
remainder of the singular expansion (5.1.20) applied to ψ:

η(r) = ψ(r)− ω(r)
N∑
j=0

cj(r̂)r
j.

Then we have:

ψ̃(r) = ψ(r)−
〈
p̃ , ψ̃

〉T
(Φ(r)− Φ̃(r)),

= ω(r)
N∑
j=0

cj(r̂)r
j + η(r)−

〈
p̃ , ψ̃

〉T
(Φ(r)− Φ̃(r)),

= ω(r)

(
N∑
j=0

cj(r̂)r
j −

〈
p̃ , ψ̃

〉T
(Φ(r)− Φ̃(r))

)
+ (1− ω(r))

(〈
p̃ , ψ̃

〉T
(Φ(r)− Φ̃(r))

)
+ η(r).

(5.3.2)

The first part corresponds to the cusp of the pseudo wave function in a neighborhood of a
nucleus. The second part is the d-th derivative jump caused by the lack of regularity at the
augmentation sphere. The last part is the remainder appearing in the singular expansion of the
original wave function ψ. In this section, we analyze the decay of the Fourier coefficients of three
parts separately and prove the following results. Since the proof is restricted to the case `max = 0,
N can be set to 1.

Proposition 5.8. Let cj be the functions of the singular expansion (5.1.20) of ψ. Let n ≥ 1 be the
number of PAW functions associated to the angular momentum ` = 0,m = 0. Then there exists a
positive constant C independent of rc and K such that for all ε > 0 and as K goes to ∞,

∀ 0 < rc < rmin,

∣∣∣∣∣
∫

Γ

ω(r)

(
1∑
j=0

cj(r̂)r
j −

〈
p̃ , ψ̃

〉T
(Φ− Φ̃)(r)

)
e−iK·r dr

∣∣∣∣∣ ≤ Crc
min(2n,5)−ε

K4
. (5.3.3)
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This proposition states that, asymptotically, no regularity is gained, however, a prefactor of
order rcmin(2n,5)−ε is obtained.

Proposition 5.9. There exists a positive constant C independent of rc such that

∀ 0 < rc < rmin,

∣∣∣∣∫
Γ

(1− ω(r))
〈
p̃ , ψ̃

〉T
(Φ− Φ̃)e−iK·r dr

∣∣∣∣ ≤ C

rcd−1Kd+2
, as K →∞. (5.3.4)

By reducing the cusp at a nucleus, the VPAW method introduces a derivative jump but for a
higher order derivative.

Proposition 5.10. Let η be the remainder of the expansion (5.1.20) for N = 1. Let ηM be the
truncation to the wavenumber M of the plane-wave expansion of η. Then for all ε > 0, we have

‖ηM − η‖H1
per
≤ 1

M5/2−ε‖η‖H7/2−ε
per

. (5.3.5)

This is a direct consequence of the regularity of the remainder of the expansion (5.1.20) given
by Theorem 5.4.

5.3.1 Cusp reduction

We recall the following identity that will be extensively used in the rest of the paper:

e−iK·r = 4π
∑
|m|≤`

i`Y`m(−K̂)Y`m(r̂)j`(Kr), (5.3.6)

where j` is the spherical Bessel function of the first kind.
To prove Proposition 5.8, we start with a lemma that identifies the main issues in the plane-wave

convergence of the molecular wave function.

Lemma 5.11. Let ` and j be integers such that ` ≤ j. Let K > 0. Then, as K goes to ∞, if j + `
is even, we have for any positive integer n ≥ j + 3,∫ rc

2

0

ω(r)rj+2j`(Kr) dr =
βj,`
Kj+3

+ o

(
1

Kn

)
, (5.3.7)

where

βj,` = (−1)(j+`)/2(j − `+ 1)!
∏̀
k=0

(j − `+ 1 + 2k),

and if j + ` is odd, for any positive integer n ≥ j + 3,∫ rc
2

0

ω(r)rj+2j`(Kr) dr = o

(
1

Kn

)
. (5.3.8)
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Proof. We prove the lemma by induction on `. Let aj+2,` be defined by

aj+2,` =

∫ rc
2

0

ω(r)rj+2j`(Kr) dr. (5.3.9)

Initialization For ` = 0, we have

j0(x) =
sin(x)

x
,

hence for any j ∈ N,

aj+2,0 =
1

K
Im

(∫ rc
2

0

ω(r)rj+1eiKr dr

)
. (5.3.10)

By integration by parts, we have∫ rc
2

0

ω(r)rj+1eiKr dr =
1

iK

[
−ω(r)rj+1eiKr

] rc
2

0︸ ︷︷ ︸
=0

− 1

iK

∫ rc
2

0

(ω(r)rj+1)′eiKr dr

= − 1

iK

∫ rc
2

0

ω′(r)rj+1eiKr dr − j + 1

iK

∫ rc
2

0

ω(r)rjeiKr dr.

The function r 7→ rj+1ω′(r) belongs to C∞c (0, rc
2

) hence we have for any n > j + 2∫ rc
2

0

ω(r)rj+1eiKr dr = −(j + 1)

iK

∫ rc
2

0

ω(r)rjeiKr dr + o

(
1

Kn

)
(5.3.11)

By integrating by parts j times and noticing that the functions r 7→ rkω′(r), k ∈ N are in C∞c (0, rc
2

),
we obtain ∫ rc

2

0

ω(r)rj+1eiKr dr = (−1)j+1 (j + 1)!

(iK)j+2
+ o

(
1

Kn

)
. (5.3.12)

Hence using (5.3.10), if j is even, aj+2,0 = o
(

1
Kn

)
for all positive integer n, otherwise aj+2,0 =

(−1)j/2 (j+1)!
Kj+3 .

Iteration Using the recurrence relation

j`+1(x) = −j′`(x) +
`j`(x)

x
, (5.3.13)
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we have the following recurrence relation on (aj,`):

aj+2,`+1 =

∫ rc
2

0

ω(r)rj+2j`+1(Kr) dr (5.3.14)

=

∫ rc
2

0

ω(r)rj+2

(
−j′`(Kr) +

`j`(Kr)

Kr

)
dr (5.3.15)

=
`

K

∫ rc
2

0

ω(r)rj+1j`(Kr) dr −
∫ rc

2

0

ω(r)rj+2j′`(Kr) dr. (5.3.16)

By integration by parts, using that r 7→ rj+2ω′(r) ∈ C∞c (0, rc
2

), we have∫ rc
2

0

ω(r)rj+2j′`(Kr) dr = −j + 2

K

∫ rc
2

0

ω(r)rj+1j`(Kr) dr + o

(
1

Kn

)
.

Thus, we have by iteration,

aj+2,`+1 =
j + `+ 2

K

∫ rc
2

0

ω(r)rj+1j`(Kr) dr + o

(
1

Kn

)
=
j + `+ 2

K
aj+1,` + o

(
1

Kn

)
=

∏`+1
k=0(j − `+ 2k)

K`+1
aj−`+1,0 + o

(
1

Kn

)
.

Hence if j + `+ 1 is odd, aj+2,`+1 = o
(

1
Kn

)
for all positive integer n, else if j + `+ 1 is even, for

any n ≥ j + 3,

aj+2,`+1 = (−1)(j−`+1)/2(j − `)!
∏`+1

k=0(j − `+ 2k)

Kj+3
+ o

(
1

Kn

)
.

Lemma 5.12. Let N ∈ N∗. Let cj be the functions of the singular expansion (5.1.20) of ψ. Let
cj`m be the coefficients such that

cj(r̂) =

j∑
`=0

∑
|m|≤`

cj`mY`m(r̂).

Then, we have as K goes to ∞ and for any positive integer n,∫
[− 1

2
, 1
2

]3
ω(r)

N∑
j=0

cj(r̂)r
je−iK·r dr = 4π

N∑
j=0

j∑
`=0

j+` odd

∑
|m|≤`

i`Y`m(−K̂)
βj,`cj`m
Kj+3

+ o

(
1

Kn

)
. (5.3.17)
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Proof. We have since supp(ω) ⊂ (0, rc
2

)

∫
[− 1

2
, 1
2

]3
ω(r)

N∑
j=0

cj(r̂)r
je−iK·r dr =

∫ rc
2

0

r2ω(r)
N∑
j=0

rj
j∑
`=0

∑
|m|≤`

cj`m

∫
S(0,1)

Y`m(r̂)e−iK·r dr̂ dr.

(5.3.18)

Using the scattering expansion (5.3.6) and applying Lemma 5.11, we get∫
[− 1

2
, 1
2

]3
ω(r)

N∑
j=0

cj(r̂)r
je−iK·r dr = 4π

N∑
j=0

j∑
`=0

∑
|m|≤`

i`Y ∗`m(−K̂)

∫ rc
2

0

ω(r)rj+2cj`mj`(Kr) dr (5.3.19)

= 4π
N∑
j=0

j∑
`=0

j+` odd

∑
|m|≤`

i`Y`m(−K̂)
βj,`cj`m
Kj+3

+ o

(
1

Kn

)
. (5.3.20)

j ` 1
K

1 0 1
K4

2 1 1
K5

3 0 1
K6

3 2

Table 5.3.1 – Lowest decaying terms

According to Lemma 5.12, the slowest decaying term is the term associated to j = 1 and ` = 0.
Thus we need to analyze how the VPAW method reduces the coefficient c100 which is simply the
cusp at 0 of the pseudo wave function ψ̃.

Lemma 5.13. Let ψ be an eigenfunction of Hψ = Eψ, with H defined in (5.1.3). Let n be the
number of PAW functions associated to the angular momentum ` = 0,m = 0.

There exist coefficients (αk)1≤k≤n and a positive constant C independent of rc such that

‖ψ00 − αTR‖L2(0,rc) ≤ Crc
1/2−ε+min(2n,5),

where ψ00 denotes the averaged function ψ according to (5.3.1). Moreover for these coefficients, we
have

ψ00(0)− αTR(0) = 0.

Before proving this lemma, we start with a few intermediary results and introduce some notation.
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Let ψk ∈ R and ζk ∈ Rn be, respectively, the coefficients of the singular expansion of ψ00 and R:

ψ00(r) =
N∑
j=0

ψjr
j + ηN+1(r), ηN+1 ∈ K∞,

5
2

+N−ε(Γ) (5.3.21)

R(r) =
N∑
j=0

ζjr
j + ξN+1(r), ξN+1 ∈ K∞,

5
2

+N−ε(Γ). (5.3.22)

The external potentials V (5.1.21) and W (5.1.8) are smooth in a neighborhood of a nucleus, hence
we have

V (r) =
N∑
k=0

v2kr
2k +O(r2N+2), (5.3.23)

W (r) =
N∑
k=0

w2kr
2k +O(r2N+2). (5.3.24)

Finally, we denote E the diagonal matrix with entries (ε1, . . . , εn).

Lemma 5.14. Let R = (R1, . . . , Rn)T where Rk is defined in (5.1.7).

There exists (µ
(k)
j )0≤j≤k≤n−1 and (ν

(k)
j )0≤j≤k≤n−1 such that

ζ2k =
k∑
j=0

µ
(k)
j E jζ0 (5.3.25)

ζ2k+1 =
k∑
j=0

ν
(k)
j E jζ0, (5.3.26)

with µ(k)
k 6= 0 for any 0 ≤ k ≤ n− 1.

Moreover, ζ0 has no null entry and the vectors (ζk)1≤k≤5 satisfies

ζ1 = −Zζ0

ζ2 = −1

3
Eζ0 +

1

3
(Z2 + w0)ζ0

ζ3 =
2

9
ZEζ0 −

(
Z3

18
+

2

9
Zw0

)
ζ0

ζ4 =
1

30
E2ζ0 −

(
Z2

18
+
w0

15

)
Eζ0 +

(
Z4

180
+
Z2w0

18
+
w2

0

30
+
w2

10

)
ζ0

ζ5 = − 23

1350
ZE2ζ0 +

(
Z3

135
+

23

675
w0Z

)
Eζ0 −

(
Z5

2700
+
Z3w0

135
+

23

1350
Zw2

0 +
11

150
Zw2

)
ζ0.
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Proof. This lemma is proved by iteration using Equation (5.1.23) applied to each Rk, k = 1, . . . , n

∀N ≥ 1,
(N + 1)(N + 2)

2
ζN+1 = −ZζN + (w ∗ ζ)N−1 − EζN−1.

Here (wk)k≥0 and (ζk)k≥0 are defined respectively by (5.3.22) and (5.3.24). Noticing that since W
is smooth, we have

(w ∗ ζ)2k =
k∑
j=0

w2k−2jζ2j, (w ∗ ζ)2k+1 =
k∑
j=0

w2k−2jζ2j+1.

By iteration, it is easy to see that µ(k)
k 6= 0 for all k ∈ N.

We have that ζ0 = R(0) and the radial wave functions Rk, k = 1, . . . , n satisfy the radial
Schrödinger equation (5.1.8)

∀ r > 0, −1

2
R′′k(r)−

1

r
R′k(r)−

Z

r
Rk(r) +W (r)Rk(r) = εkRk(r).

0 is a regular singular point and its indicial equation is −1
2
s(s− 1)− s = 0, with roots s1 = 0 and

s2 = −1. By Fuch’s theorem ([Tes12], Theorem 4.8), since s1 − s2 ∈ N the fundamental solutions
are given by {

u1(r) = h1(r)

u2(r) = h2(r)
r

+ c log(r)u1(r),

with h1(0) 6= 0 and h2(0) 6= 0. Since Rk, k = 1, . . . , n, is square integrable, necessarily, we have
Rk = u1, thus, Rk(0) 6= 0.

Proof of Lemma 5.13. To minimize ‖ψ00 − αTR‖L2(0,rc) with respect to α for rc small, we need to
determine how many successive terms in the singular expansion of ψ00 can be canceled with n
functions Rk, k = 1, . . . , n, i.e. we need to determine for which Nmax ≤ 2n we have

∀0 ≤ k ≤ Nmax, α
T ζk = ψk. (5.3.27)

Expressing ζk (resp. ψk) as a linear combination of (ζ0, . . . , Ed
Nmax

2
e−1ζ0) (resp. (ψ0, . . . , E

dNmax
2
e−1ψ0))

using Lemma 5.14, the linear system (5.3.27) can be reformulated as

(
M1

M2

)
ζT0
ζT0 E
...

ζT0 EdNmax/2e−1

α =

(
N1

N2

)
ψ0

Eψ0
...

EdNmax/2e−1ψ0

 , (5.3.28)

where M1 = (µ
(k)
j )0≤j,k≤dNmax/2e−1, and M2 = (ν

(k)
j )0≤j,k≤dNmax/2e−1, with µ

(k)
j and ν

(k)
j given by

Lemma 5.14. N1 and N2 the same matrices as M1 and M2 but where the coefficients µ(k)
j and ν(k)

j

are generated using (v2k) instead of (w2k).
We will show that if n ≤ 2, then Nmax = 2n, otherwise, Nmax = 5. Equation (5.3.28) is
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equivalent to {
M1(ζT0 Ek)0≤k≤dNmax/2e−1α = N1(Ekψ0)0≤k≤dNmax/2e−1

M2(ζT0 Ek)0≤k≤dNmax/2e−1α = N2(Ekψ0)0≤k≤dNmax/2e−1,

hence Equation (5.3.28) has a solution if and only if

M2M
−1
1 N1(Ekψ0)0≤k≤dNmax/2e−1 = N2(Ekψ0)0≤k≤dNmax/2e−1.

Since this holds for any value E, a necessary and sufficient condition to solve (5.3.28) isM2M
−1
1 N1 =

N2.

For n = 1, M1 = N1 =
(
1
)
and M2 = N2 =

(
−Z
)
hence it is easy to see that (5.3.28) is solvable

when Nmax = 2. The remainder ψ00−αR belongs to K∞, 72−ε(Γ), hence by Lemma 5.19, there exists
a constant C independent of rc such that

‖ψ00 − αR‖L2(0,rc) ≤ Crc
5/2−ε.

For n = 2, we can check using Lemma 5.14 that

M2M
−1
1 =

(
−Z 0
Z3

6
−2Z

3

)
.

Thus M2M
−1
1 N1 = N2 and (5.3.28) has a solution (α1, α2) such that ψ00(r)− αTR(r) belongs to

K∞, 112 −ε(Γ), hence by Lemma 5.19, ‖ψ00(r)− αTR(r)‖L2(0,rc) ≤ Crc
9/2−ε.

For n ≥ 3, the dependence on W does not vanish in M2M
−1
1 . For example, the (3, 1) coordinate

of the matrix M2M
−1
1 has a term equal to 391

6075
Z3w0 which is unlikely to be compensated in general.

For n ≥ 3, we thus have:
ψ00(r)− αTR(r) = O(r5),

hence ‖ψ00(r)− αTR(r)‖L2(0,rc) ≤ Crc
11/2 for a constant C independent of rc.

Proposition 5.15. Let n be the number of PAW functions for ` = m = 0. There exists a positive
constant C independent of rc such that

∀0 < rc < rmin,
∣∣∣ψ̃′00(0)

∣∣∣ ≤ Crc
min(2n,5)−ε. (5.3.29)

The proof of the proposition is very similar to the proof of the cusp reduction in [BCD17b] for
the wave function of the 1D-Hamiltonian with the double Dirac potential as we manipulate 1D
functions with similar properties.

Proof. We have

ψ̃00(r) = ψ00(r)−
〈
p̃ , ψ̃

〉T
(R(r)− R̃(r)) (5.3.30)

= ψ00(r)− αT (R(r)− R̃(r))−
〈
p̃ , ψ̃ − αT Φ̃

〉T
(R(r)− R̃(r)). (5.3.31)
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By construction, the PAW pseudo wave functions R̃k do not have a cusp at 0, so

ψ̃′00(0) = ψ′00(0)− αTR′(0)−
〈
p̃ , ψ̃ − αT Φ̃

〉T
R′(0)

= −Z
(
ψ00(0)− αTR(0)−

〈
p̃ , ψ̃ − αT Φ̃

〉T
R(0)

)
. (5.3.32)

First we rewrite
〈
p̃ , ψ̃ − αT Φ̃

〉
in a more convenient way. We have

ψ −
〈
p̃ , ψ̃

〉T
Φ = ψ̃ −

〈
p̃ , ψ̃

〉T
Φ̃.

By multiplying by p̃k, k = 1, .., n and integrating over the ball B(0, rc), we have

〈p̃k , ψ〉 −
〈
p̃ , ψ̃

〉T
〈p̃k ,Φ〉 = 0,

so 〈
p̃ , ψ̃

〉
= A−1 〈p̃ , ψ〉 ,

where A = (〈p̃j , φk〉)1≤j,k≤n = (〈pj , Rk〉[0,rc])1≤j,k≤n which is invertible by Assumption 5.1. By
definition of the PAW functions, the 3D-integrals can be reduced to integrals on a segment〈

p̃ , ψ̃
〉

= A−1 〈p , ψ00〉[0,rc] ,

where
〈f , g〉[0,rc] =

∫ rc

0

f(r)g(r)r2 dr.

By duality of the PAW functions,
〈
p̃j , φ̃k

〉
= δjk, we have

〈
p̃ , αT Φ̃

〉
= A−1

〈
p , αTR

〉
[0,rc]

. Hence,〈
p̃ , ψ̃ − αT Φ̃

〉
= A−1

〈
p , ψ00 − αTR

〉
[0,rc]

.

By Lemma 5.25, there exists a constant C independent of rc such that for any rc > 0,∣∣∣〈p , ψ00 − αTR
〉T

[0,rc]
A−TR′(0)

∣∣∣ ≤ C

rc3/2
‖ψ00−αTR‖L2(B(0,rc)) ≤

C

rc1/2
‖ψ00−αTR‖L2(0,rc). (5.3.33)

From Lemma 5.13, we know that there exists α ∈ Rn such that

‖ψ00 − αTR‖L2(0,rc) ≤ Crc
1
2
−ε+min(2n,5) and αTR(0) = ψ(0).

Inserting this equation into (5.3.32) finishes the proof.



5.3. Proofs 151

5.3.2 d-th derivative jump

An estimation of the derivative jump of the d-th derivative jump R̃k, k = 1, . . . , n is needed. In

fact, only the d-th derivative jump of
〈
p̃ , ψ̃

〉T
[R̃(d)]rc needs to be estimated.

Lemma 5.16. There exists a positive constant C independent of rc such that

∀0 < rc < rmin,

∣∣∣∣〈p̃ , ψ̃〉T [R̃(d)]rc

∣∣∣∣ ≤ C

rcd−1
,

and for any k ∈ N, we have ∥∥∥∥〈p̃ , ψ̃〉T (R(k) − R̃(k)
)∥∥∥∥

L∞(0,rc)

≤ C

rck
.

The proof of this lemma is given in the appendix.

Proof of Proposition 5.9. Using the relation (5.3.6), we have∫
[− 1

2
, 1
2

]3
(1−ω(r))

〈
p̃ , ψ̃

〉T
(Φ− Φ̃)e−iK·r dr = 4π

∫ rc

0

(1−ω(r))
〈
p̃ , ψ̃

〉T
(R(r)−R̃(r))j0(Kr)r2 dr.

(5.3.34)
Since ω is equal to 1 in a neighbourhood of 0, we can restrict the integral in the equation above to
the interval (rc − η, rc) for some η > 0. Recall that

j0(x) =
sin(x)

x
,

thus∫
[− 1

2
, 1
2

]3
(1−ω(r))

〈
p̃ , ψ̃

〉T
(Φ−Φ̃)e−iK·r dr =

4π

K

〈
p̃ , ψ̃

〉T ∫ rc

rc−η
(1−ω(r))(R(r)−R̃(r)) sin(Kr)r dr.

(5.3.35)
We denote by f the function r 7→ r(1− ω(r))(R(r)− R̃(r)) and use∫ rc

rc−η
f(r) sin(Kr) dr = Im

(∫ rc

rc−η
f(r)eiKr dr

)
.

By definition of the cut-off function, for any k ∈ N, we have

f (k)(rc − η) = 0, (5.3.36)

and for k ∈ N∗, (1− ω)(k)(rc) = 0. Thus by integration by parts,∫ rc

rc−η
f(r)eiKr dr =

[
f(r)

eiKr

iK

]rc
rc−η
− 1

iK

∫ rc

rc−η
f ′(r)eiKr dr =

i

K

∫ rc

rc−η
f ′(r)eiKr dr.
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As R− R̃ is Cd−1 but not Cd at rc, by integrating by parts d times, we have:∫ rc

rc−η
f(r)eiKr dr =

id+1rc
Kd+1

[R̃(d)]rce
iKrc − id+1

Kd+1

∫ rc

rc−η
f (d+1)(r)eiKr dr. (5.3.37)

Thus inserting the last equation in (5.3.35), we obtain∫
[− 1

2
, 1
2

]3
(1− ω(r))

〈
p̃ , ψ̃

〉T
(Φ− Φ̃)e−iK·r dr = Im(id+1eiKrc)

4πrc
Kd+2

〈
p̃ , ψ̃

〉T
[R̃(d)]rc

− Im

(
4πid+1

Kd+2

∫ rc

rc−η
〈p̃ , f〉T f (d+1)(r)eiKr dr

)
.

According to Lemma 5.16, ∣∣∣∣〈p̃ , ψ̃〉T [R̃(d)]rc

∣∣∣∣ ≤ C

rcd−1
.

Furthermore, we have〈
p̃ , ψ̃

〉T
f (d+1)(r) = r

(
(1− ω)

〈
p̃ , ψ̃

〉
(R− R̃

)(d+1)

+
(

(1− ω)
〈
p̃ , ψ̃

〉
(R− R̃

)(d)

.

By assumption on ω, we know that ‖ω(k)‖L∞(0,rc) ≤ Crc
−k, hence∥∥∥∥〈p̃ , ψ̃〉T f (d+1)

∥∥∥∥
L∞(0,rc)

≤ rc

d+1∑
k=0

(
d+ 1

k

)∥∥∥(1− ω)(k)(R− R̃)(d+1−k)
∥∥∥
L∞(0,rc)

+
d∑

k=0

(
d

k

)∥∥∥(1− ω)(k)(R− R̃)(d−k)
∥∥∥
L∞(0,rc)

≤ C

rcd
,

where we used Lemma 5.16. Thus, we obtain∣∣∣∣∫ rc

rc−η
〈p̃ , f〉T f (d+1)(r)eiKr dr

∣∣∣∣ ≤ rc

∥∥∥∥〈p̃ , ψ̃〉T f (d+1)

∥∥∥∥
L∞(0,rc)

≤ C

rcd−1
,

which finishes the proof of this proposition.

5.3.3 Convergence theorem

To prove the estimate on the eigenvalues, we will use the following classical result ([Wei74], p.
68).

Proposition 5.17. Let H be a self-adjoint coercive H1-bounded operator, E1 ≤ · · · ≤ En be the
lowest eigenvalues of H and ψ1, . . . , ψn be L2-normalized associated eigenfunctions. Let E(M)

1 ≤
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· · · ≤ E
(M)
n be the lowest eigenvalues of the Rayleigh quotient of H restricted to the subspace VM of

dimension M .
Let wk ∈ VM for 1 ≤ k ≤ n be such that

n∑
k=1

‖wk − ψk‖2
H1 < 1

Then there exists a positive constant C which depends on the H1 norm of H and the coercivity
constant such that for all 1 ≤ k ≤ n∣∣∣E(M)

k − Ek
∣∣∣ ≤ C

n∑
k=1

‖wk − ψk‖2
H1

We would like to apply this result to ψK = (Id + T )ψ̃K where ψ̃K is the truncation of the
plane-wave expansion of f to the wave number K. In order to do this, we need to show that the
H1

per-norm of (Id + T )ψ̃ is bounded by a the H1
per-norm of ψ̃ independently of the cut-off radius rc.

Lemma 5.18. There exists a positive constant C independent of rc such that for any function
f ∈ H1

per([−1
2
, 1

2
]3)

‖(Id + T )f‖H1
per
≤ C‖f‖H1

per
.

Proof. By definition, we have

(Id + T )f = f + 〈p̃ , f〉T (Φ− Φ̃)

= f + 〈p , f00〉T[0,rc] (R− R̃)Y00,

where
f00(r) =

∫
S(0,1)

f(r)Y00(r̂) dr̂.

Thus

‖(Id + T )f‖2
H1

per
≤ 2‖f‖2

H1
per

+ 2

∫ rc

0

〈p , f00〉2[0,rc] (R(r)− R̃(r))2r2 dr

+ 2

∫ rc

0

〈p , f00〉2[0,rc] (R′(r)− R̃′(r))2r2 dr. (5.3.38)

Unfortunately, we cannot directly use Lemmas 4.13 and 4.14 in [BCD17b] to complete the proof.
Indeed, in doing, we would have

‖(Id + T )f‖2
H1

per
≤ C

(
‖f‖2

H1
per

+ ‖f00‖2
H1(0,rc)

)
,

but we do not have ‖f00‖H1(0,rc) . ‖f‖H1
per
.

By Lemma 5.24, we have

〈p̃ , f〉T (R(r)−R̃(r)) = CT
rc(CrcG(P )CT

rc)
−1Crc

∫ 1

0

χ(t)P (t)f00(rct)t
2 dt ·

((
C−1

1

0

)
R(r)− P ( r

rc
)

)
,



154 CHAPTER 5. The VPAW method for 3D Hamiltonians

with
∥∥∥∥(C−1

1

0

)
R(r)

∥∥∥∥
L∞(0,rc)

uniformly bounded with respect to rc. Thus it suffices to study∫ 1

0
t2χ(rct)f00(rct)P (t) dt:∣∣∣∣∫ 1

0

t2χ(rct)f00(rct)P (t)2 dt

∣∣∣∣ ≤ (∫ 1

0

t2χ(rct)
2P (t) dt

)1/2(∫ 1

0

t2f00(rct)
2 dt

)1/2

≤ C

rc3/2

(∫ rc

0

r2f00(r)2 dr

)1/2

≤ C

rc3/2

(∫ rc

0

r2f00(r)6 dr

)1/6(∫ rc

0

r2 dr

)1/3

≤ C

rc1/2
‖f‖L6(Brc )

≤ C

rc1/2
‖f‖H1(Brc ).

We obtain a weaker result than in∣∣∣〈p , f00〉T[0,rc] (R(r)− R̃(r))
∣∣∣ ≤ C

rc1/2
‖f‖H1(Brc ).

Since
∥∥∥∥(C−1

1

0

)
R′(r)

∥∥∥∥
L∞(0,rc)

= O
(

1
rc

)
, we can prove similarly

∣∣∣〈p , f00〉T[0,rc] (R′(r)− R̃′(r))
∣∣∣ ≤ C

rc3/2
‖f‖H1(Brc ).

Thus inserting the last equations in (5.3.38) yields

‖(Id + T )f‖H1
per
≤ C‖f‖H1

per
.

We have all the elements to prove the main convergence theorem.

Proof of Theorem 5.6. Using Equation (5.3.2), Propositions 5.8, 5.9 and 5.10, we have

‖ψ̃M − ψ̃‖H1
per
≤
∥∥∥ψ̃M − ψ̃ − ηM + η

∥∥∥
H1

per

+ ‖ηM − η‖H1
per

≤

 ∑
K≥M,K∈(2πZ)3

(1 +K2)

(
rc

min(n,3)+1−ε

K4
+

1

rcd−1Kd+2

)2
 1

2

+ o

(
1

M5/2−ε

)
.
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By Proposition 5.17, we obtain

|EM − E| ≤ C‖(Id + T )(ψ̃M − ψ̃)‖2
H1

per

≤ C‖ψ̃M − ψ̃‖2
H1

per

≤ C


 ∑
K≥M,K∈(2πZ)3

(1 +K2)

(
rc

min(2n,5)−ε

M4
+

1

rcd−1Md+2

)2
1/2

+ o

(
1

M5/2−ε

)
2

≤ C

(
rc

2 min(2n,5)−2ε

M3
+
rc

min(2n,5)−ε

M4−ε +
1

rc2d−2M2d−1
+ o

(
1

M5−ε

))
.

5.4 Numerical results
In this section, we present some numerical results applied to the Hamiltonian H in [−L/2, L/2]3

H = −1

2
∆− Z∣∣r− R

2

∣∣ − Z∣∣r + R
2

∣∣ , (5.4.1)

with periodic boundary conditions. The lowest eigenvalue is sought using iterative schemes, hence
we are interested in the cost of the matrix-vector multiplication.

The problem is solved using plane-waves. The kinetic operator is diagonal in the reciprocal
space. The potential is discretized using a radial grid around the nuclei and a uniform grid in the
rest of the domain. For the VPAW method, the following integrals are pre-computed:

1. 〈eK , p̃〉 : since p̃(r) = p(r)Y`m(r̂) using (5.3.6), 〈eK , p̃〉 can be evaluated on a radial grid.

2.
〈
eK , φ− φ̃

〉
: we proceed like for 〈eK , p̃〉 using a radial grid;

3.
〈
eK , H(φ− φ̃)

〉
: H(φ− φ̃) is decomposed into a radial and a non-radial part. The first is

evaluated on a radial grid and the second on a uniform grid. For non-linear approximations
(Hartree-Fock and Kohn-Sham DFT), this term can be critical since it may be necessary
to re-compute these integrals regularly. This is the main drawback of the VPAW method
compared to the PAW method where this term does not exist.

4.
〈
φ− φ̃ , φ− φ̃

〉
,
〈
φ− φ̃ , H(φ− φ̃)

〉
: these integrals are computed using radial grids when

possible or using 3D integration schemes. For nonlinear models, the last integral needs to be
recomputed regularly, however, since there are N2

paw of them, it is not too costly.
The numerical results using a Julia [BEKS17] homemade code are summarized in the following

figures with Z = 3, R = 1 and L = 5. The atomic PAW function φk are the eigenfunctions of the
hydrogenoid atom. "1s" denotes the VPAW method with one PAW function for ` = 0 only, "2s"
with two PAW functions for ` = 0 and "2s1p" with two PAW functions for ` = 0 and one function
for ` = 1, |m| ≤ 1. The reference value for the lowest eigenvalue is given by the VPAW method for
200 plane waves per direction. Computation of the reference is out of reach by a direct plane-wave
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method. Figures 5.4.1 to 5.4.4 are log-log plots of the convergence of the lowest eigenvalue of
(5.4.1) with respect to the number of plane-waves per direction for different choices of the PAW
parameters.

In Figure 5.4.1, we clearly notice that the VPAW method converges faster than the direct
method. The convergence seems marginally faster when increasing the number of PAW functions.
However, with our construction, R̃20 and R̃21 are very close to the functions R20 and R21 which may
explain why there is no significant improvement. See Figure 5.4.3, where other PAW functions where
used, for which the difference between R̃20 and R20 is more pronounced and the VPAW-2s method
seems to perform better than the VPAW-1s method. Table 5.4.1 indicates that the asymptotic
regime is not reached, however we were unable to compute the lowest eigenvalues for more than
200 plane waves per direction.

Figure 5.4.1 – Error on the lowest eigenvalue with the VPAW method for different choices of PAW
functions.

Methods Slope

Direct method (for M ≥ 50) -2.87
VPAW method (for M ≥ 50) -3.80

Table 5.4.1 – Rate of convergence

The size of the VPAW acting region can significantly impact the convergence rate in the
pre-asymptotic regime (Figure 5.4.2). This plot suggests that there are different phases in the
convergence of the VPAW eigenvalue:

1. for very low plane-wave cut-off, the VPAW acting region is too small to be seen by the Fourier
grid, hence no improvement is observed;

2. as the plane-wave cut-off grows, the VPAW eigenvalue converges very fast, since for this
regime, the prefactors kill the 1

M3 and 1
M4 decay;
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3. for a larger plane-wave cut-off, the convergence slows down since the prefactor for the 1
M4

decay is not negligible anymore.

Figure 5.4.2 – Error on the lowest eigenvalue with the VPAW method for different choices of cut-off
radius.

In Figure 5.4.3, the Vanderbilt scheme [KF96] for generating the PAW functions was used. The
behaviour of the VPAW method for these functions is similar to the VPAW method studied in this
paper. This suggests that Theorem 5.6 could be generalized to different families of PAW functions.

Figure 5.4.3 – Error on the lowest eigenvalue with the VPAW method with Vanderbilt generation
scheme.

In Figure 5.4.4, a comparison between the original PAW method and the VPAW method is
provided. As expected, the PAW method converges quickly to a value close to the exact eigenvalue.
Nevertheless, for very accurate results on the lowest eigenvalue of (5.4.1), the VPAW method seems
the method of choice.
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Figure 5.4.4 – Error on the lowest eigenvalue with the PAW and VPAW methods.

5.5 Appendix
We have gathered in this section proofs of some technical lemmas, most of which are simple

transpositions of lemmas that can be found in [Dup17, BCD17b].

5.5.1 Results related to the weighted Sobolev space K∞,a(Γ)

Lemma 5.19. Let f ∈ K∞,a(Γ) and 0 < R < 1. Let ` ∈ N and m ∈ N such that |m| ≤ `. Then
there exists a constant C independent of f such that∫ R

0

|f`m(r)|r2 dr ≤ CRa+ 3
2‖f‖K∞,a ,

and for a ≥ 1 ∫ R

0

|f`m(r)|2 dr ≤ CR2a−2‖f‖K∞,a .

Proof. Since Y`m ∈ L∞(S(0, 1)), we have∫ R

0

|f`m(r)|r2 dr ≤ C

∫
B(0,R)

|f(r)| dr

≤ C

∫
B(0,R)

rar−a|f(r)| dr

≤ C

(∫ R

0

r2a+2 dr

)1/2(∫
B(0,R)

r−2a|f(r)|2 dr

)1/2

≤ CRa+ 3
2‖f‖K∞,a ,

where in the fourth inequality we used the definition of the weighted Sobolev space K∞,a. The
second identity is proved the same way.
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Lemma 5.20. Let N ∈ N∗ and η a radial function such that η ∈ K∞,5/2+N−ε(Γ), ε > 0. Then for
R sufficiently small, we have

‖η‖L∞(0,R) ≤ ‖f‖K∞,aRN+ 1
2
−ε.

Proof. By definition of the weighted Sobolev space, we have for R sufficiently small,∫
B(0,R)

|η(r)|2r−5−2N+2ε dr <∞,

hence ∫ R

0

|η(r)|2r−3−2N+2ε dr <∞,

Similarly we have ∫ R

0

|η′(r)|2r−1−2N+2ε dr <∞.

Therefore, {∫ R
0
|η(r)|2 dr ≤ R2N+3−2ε

∫ R
0
|η(r)|2r−1−2N+2ε dr,∫ R

0
|η′(r)|2 dr ≤ R2N+1−2ε

∫ R
0
|η′(r)|2r−1−2N+2ε dr.

By the Sobolev embedding theorem, we have the result.

Remark 5.21. Lemma 5.20 implies that the remainder ηN of the singularity expansion (5.1.20) of
radial functions are bounded : ‖ηN‖L∞(0,rc) ≤ Crc

N+1, where the constant is independent of rc.

5.5.2 Validity of the assumptions for the hydrogenoid atom

We show in this subsection that Assumption 5.1 hold in the particular case of the hydrogenoid
atom, i.e. where in (5.1.6) W = 0. The eigenfunctions of the hydrogenoid atom can be written

ϕn`m(r) = Rn`(r)Y`m(r̂), n ≥ `+ 1,

with

Rn`(r) =

√(
2Z

n

)3
(n− `− 1)!

2n(n+ `)!
e−Zr/n

(
2Zr

n

)`
L

(2`+1)
n−`−1

(
2Zr

n

)
, (5.5.1)

where L(2`+1)
n−`−1 denotes the generalized Laguerre polynomials.

Lemma 5.22. Let Rn`(r) = Ln−1(
2Z
n

)e−
Zr
n , where deg(Ln−1) = n − 1. Let r > 0 and Rk =

(R
(k)
1` (r), . . . , R

(k)
n` (r))T for 0 ≤ k ≤ n− 1. Then the matrix (R0, . . . ,Rn−1) is invertible.

Proof. We have

R
(k)
n` (r) =

(
Z

n

)k
e−

Zr
n

k∑
j=0

2j
(
k

j

)
L

(j)
n−1

(
2Zr

n

)
.

Let P =
(
L

(k)
j (2Zr

j+1
)
)

0≤j,k≤n−1
,M = (2j

(
k
j

)
)0≤j,k≤n−1 and Z =

(
( Z
k+1

)j
)

0≤j,k≤n−1
. It is easy to check

that
(R0, . . . ,Rn−1) = Z diag(e−Zr, . . . , e−

Zr
n )PM.
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P andM are both triangular with no null entry on the diagonal. Z is a Vandermonde matrix,
hence (R0, . . . ,Rn−1) is invertible.

5.5.3 Lemmas related to PAW functions

Let Pk, k ∈ N the polynomials defined by

Pk(t) =
1

2kk!
(t2 − 1)k. (5.5.2)

By definition, these polynomials form a basis of even polynomials and satisfy{
P

(j)
k (1) = 0, 0 ≤ j ≤ k − 1,

P
(k)
k (1) = 1.

Let P be the vector (P0, . . . , Pd−1)T and Crc ∈ Rn×d be the matrix such that

R̃(t) = CrcP ( t
rc

). (5.5.3)

The following lemma summarizes the main properties of the matrix Crc .

Lemma 5.23. Let C1 ∈ Rn×n and C2 ∈ Rn×(n−d) be the matrices such that

R̃(r) =
(
C1

∣∣∣ C2

)
P ( r

rc
).

Moreover, C1 is invertible, the norm of C−1
1 C2 is uniformly bounded with respect to rc and

CT
2 C
−T
1 e0 = O(rc).

Proof. Let Crc be the matrix
(
C1

∣∣∣ C2

)
. Let cj be the columns of Crc . By continuity of R̃ and of

its derivatives at rc, and by our choice of the polynomials Pk, the columns of Crc satisfy

∀ 0 ≤ j ≤ d− 1, cj = rc
jR(j)(rc)−

j−1∑
k=0

P
(j)
k ck. (5.5.4)

Hence ck is a linear combination of the vectors rcjR(j)(rc) for j ≤ k with coefficients that are
independent of rc. It is easy to see that the transformation of (cj)0≤j≤n−1 to (rc

jR(j)(rc))0≤j≤n−1 is
invertible. If rc is sufficiently small, by Assumption 5.1, the family (rc

jR(j)(rc))0≤j≤n−1 is linearly
independent, thus we can define (gj)0≤j≤n−1 to be the dual family to (cj)0≤j≤n−1 (i.e. cTj gk = δjk)

and we have ‖gj‖ = O
(

1
rcn−1

)
. Hence, using the recurrence (5.5.4), it is easy to see that the norm

of C−1
1 C2 is uniformly bounded with respect to rc.
To prove CT

2 C
−T
1 e0 = O(rc), first notice that C−T1 e0 = g1. Since P0 is a constant polynomial,

for j ≥ 1, we have

cj = rc
jR(j)(rc)−

j−1∑
k=1

P
(j)
k ck.
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Thus for j = n, we have

cTng0 = rc
nR(n)(rc)

Tg0 −
j−1∑
k=1

P
(j)
k cTk g0 = O(rc),

and by iteration, it is then easy to check that

∀n ≤ j ≤ d− 1, cTj g0 = O(rc).

Lemma 5.24. We have

〈p̃ , f〉T (R(r)−R̃(r)) = CT
rc(CrcG(P )CT

rc)
−1Crc

∫ 1

0

χ(t)P (t)f00(rct)t
2 dt ·

((
C−1

1

0

)
R(r)− P ( r

rc
)

)
,

with P being the vector of the polynomials Pk defined in (5.5.2), Crc the matrix of coefficients of R̃
in the basis (Pk) given in (5.5.3) and G(P ) the matrix

G(P ) =

∫ 1

0

χ(t)P (t)P (t)T t2 dt.

The norm of the matrix CT
rc(CrcG(P )CT

rc)
−1Crc is uniformly bounded as rc goes to 0 and we have∥∥∥∥(C−1

1

0

)
R(r)

∥∥∥∥
L∞(0,rc)

≤ C and
∥∥∥∥(C−1

1

0

)
R′(r)

∥∥∥∥
L∞(0,rc)

≤ C

rc
.

Proof. Since G(P ) is positive-definite, G(P )1/2 exists. It is easy to check that the matrix
G(P )1/2CT

rc(CrcG(P )CT
rc)
−1CrcG(P )1/2 is symmetric and is a projector, hence its norm is inde-

pendent of rc.
Writing down the Taylor expansion of R at rc, we obtain

R(r) =
n−1∑
k=0

(r − rc)k

k!
R(k)(rc) +O((r − rc)n)

=
n−1∑
k=0

1

k!

(
r

rc
− 1

)k
rc
kR(k)(rc) +O((r − rc)n).

By Lemma 5.23, ‖C−1
1 rc

kR(k)(rc)‖ is uniformly bounded as rc goes to 0, which concludes the proof
of the lemma.

Lemma 5.25. Let f ∈ L2(Γ). Let ` ≥ 0, |m| ≤ ` be integers. Let n be the number of PAW
functions associated to the angular momentum `,m for a cut-off radius rc. There exists a constant
independent of rc and f such that

| 〈p̃ , f〉T R(0)| ≤ C

rc3/2
‖f‖L2(Brc ).
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Sketch of the proof. The proof of this lemma is very similar to the proof of Proposition 3.2 in
[BCD17b]. We briefly sketch the proof in case ` = m = 0. First, it is easy to show that

〈p̃ , f〉 =

∫ 1

0

χ(t)(C(Q)
rc Grc)

−1C(Q)
rc Q(t)f(rct)t

2 dt, (5.5.5)

where Q(t) = (Q0(t), . . . , Qd−1(t))
T is a vector of even polynomials which forms a basis of even

polynomials of degree at most 2d− 2,

R̃(x) = C(Q)
rc Q( x

rc
),

with C(Q)
rc ∈ Rn×d and

Grc =

∫ 1

0

χ(t)Q(t)R(rct)
T t2 dt ∈ Rd×n.

By Lemma 5.14, we have that (ζ2k)0≤k≤n−1 and (ζ2k+1)0≤k≤n−1 defined by the singular expansion of
R :

R(t) =
n−1∑
k=0

ζ2kt
2k + ζ2k+1t

2k+1 + η2n(t), (5.5.6)

satisfy

ζ2k =
k∑
j=0

µ
(k)
j E jζ0 and ζ2k+1 =

k∑
j=0

ν
(k)
j E jζ0,

where µ(k)
k 6= 0 and E is the diagonal matrix of the eigenvalues (ε1, . . . , εn). By Lemma 5.14, ζ0

has no null entry. The eigenvalues of the atomic operator (5.1.6) for a fixed `,m are simple, hence
(E jζ0)0≤j≤n−1 is a linearly independent family. Hence, (ζ2k)0≤k≤n−1 is a basis of Rn. Let (hk) be
the dual basis to (rc

2jE jζ0)0≤j≤n−1, i.e. hTk rc2jE jζ0 = δkj.

Injecting (5.5.6) in the definition of Grc , we obtain

GT
rc =

∫ 1

0

χ(t)R(rct)Q(t)T t2 dt (5.5.7)

=

∫ 1

0

χ(t)

(
n−1∑
k=0

rc
2kEkζ0

n−1∑
j=k

µ
(j)
k rc

2j−2kt2j + rc

n−1∑
k=0

rc
2kEkζ0

n−1∑
j=k

ν
(j)
k rc

2j−2kt2j+1 + η2n(rct)

)
Q(t)T t2 dt.

(5.5.8)

By Lemma 5.19, we have∣∣∣∣∫ 1

0

χ(t)η2n(rct)Q(t)T t2 dt

∣∣∣∣ =
1

r3
c

∣∣∣∣∫ rc

0

χ( t
rc

)η2n(t)Q( t
rc

)T t2 dt

∣∣∣∣ ≤ Crc
2n. (5.5.9)

Let (Qk)0≤k≤d−1 be the even polynomials such that∫ 1

0

χ(t)t2jQk(t)t
2 dt = δjk.
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Such polynomials exist since the Gram matrix (
∫ 1

0
χ(t)t2j+2k+2 dt)0≤j,k≤n−1 is invertible. Let

Xj =

∫ 1

0

χ(t)t2j+1Q(t)t2 dt,

and

H =

 hT0
...

hTn−1

 ∈ Rn×n. (5.5.10)

Then denoting by ek the k-th canonical vector, we have

HGT
rc =

n−1∑
k=0

µ
(k)
k eke

T
k +

n−1∑
k=0

n−1∑
j=k+1

µ
(j)
k rc

2j−2keke
T
j + rc

n−1∑
k=0

ν
(j)
k rc

2j−2kekX
T
j +O(rc

2)

=
n−1∑
k=0

µ
(k)
k eke

T
k +O(rc).

Let

A =
n−1∑
k=0

µ
(k)
k eke

T
k ∈ Rn×n, (5.5.11)

and Π the transition matrix such that

C(Q)
rc = CrcΠ,

where Crc is defined in (5.5.3). Hence we have

(C(Q)
rc )T (C(Q)

rc Grc)
−TR(0) = (C(Q)

rc )T (C(Q)
rc Grc)

−TH−1e0

= (C(Q)
rc )T (C(Q)

rc GrcHT )−T e0

= ΠT

(
In

MT +O(rc)

)(
C−1CrcΠ

((
A
0

)
+O(rc)

))−T
e0

= ΠT

(
In

MT +O(rc)

)((
In

∣∣∣ M +O(rc)
)

Π

((
A
0

)
+O(rc)

))−T
e0,

where we used Lemma 5.23 in the third and fourth inequality. Decomposing Π into four blocks

Π =

(
Π1 Π2

Π3 Π4

)
, with Π1 ∈ Rn×n,



164 CHAPTER 5. The VPAW method for 3D Hamiltonians

we obtain

(C(Q)
rc )T (C(Q)

rc Grc)
−TR(0) =

((
ΠT

1 + ΠT
3M

T

ΠT
2 + ΠT

4M
T

)
+O(rc)

)
(Π1A+MΠ3A+O(rc)) e0

=

(
A−1

(ΠT
2 + ΠT

4M
T )(Π1 +MΠ3)−1

)
e0 +O(rc).

Hence ‖(C(Q)
rc )T (C

(Q)
rc Grc)

−TR(0)‖ is uniformly bounded as rc goes to 0. Thus, there exists a
constant C independent of rc and f such that :∣∣∣〈p̃ , f〉T R(0)

∣∣∣ ≤ C

∫ 1

0

|f(rct)|t2 dt

≤ C

rc3/2
‖f‖L2

per
.

We can now prove Lemma 5.16.

Proof of Lemma 5.16. We start with the proof of the estimate of
[〈
p̃ , ψ̃

〉T
R̃(d)

]
rc

. We have using

(5.5.5) and (5.5.3)[〈
p̃ , ψ̃

〉T
R̃(d)

]
rc

=
〈
p̃ , ψ̃

〉T
(R(d)(rc)− R̃(d)(rc)) (5.5.12)

=
1

rcd

∫ 1

0

χ(t)ψ00(rct)Q(t)t2 dt · (C(Q)
rc )T (C(Q)

rc Grc)
−T (rcdR(d)(rc)− CrcP (d)(1)

)
.

(5.5.13)

First, we prove that

(C(Q)
rc )T (C(Q)

rc Grc)
−T (rcdR(d)(rc)− CrcP (d)(1)

)
=

(
0
∗

)
+O(rc), (5.5.14)

then ∫ 1

0

χ(t)ψ00(rct)Q(t)t2 dt = ψ(0)e0 +O(rc). (5.5.15)

If both statements are true, then it is easy to deduce that there exists a constant C independent
of rc such that ∣∣∣∣[〈p̃ , ψ̃〉T R̃(d)

]
rc

∣∣∣∣ ≤ C

rcd−1
.
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Step 1 (proof of (5.5.14)) By (5.3.22), we have for 0 ≤ j ≤ 2n− 1 even

rc
jR(j)(rc) =

n−1∑
k=j/2

ζ2k
(2k)!

(2k − j)!
rc

2k + ζ2k+1
(2k + 1)!

(2k + 1− j)!
rc

2k+1 +O(rc
2n)

=
n−1∑
k=j/2

k∑
`=0

µ
(k)
` rc

2`E `ζ0
(2k)!

(2k − j)!
rc

2k−2` + rc

n−1∑
k=j/2

k∑
`=0

ν
(k)
` rc

2`E `ζ0
(2k + 1)!

(2k + 1− j)!
rc

2k−2` +O(rc
2n),

where we applied Lemma 5.20 to estimate the remainder of the singular expansion. By noticing
that Hrc2jE jζ0 = ej with H defined in (5.5.10), we have

(C(Q)
rc )T (C(Q)

rc Grc)
−T rc

jE jζ0 =

(
A−1

∗

)
ej +O(rc).

Using ‖(C(Q)
rc )(C

(Q)
rc Grc)

−1‖ = O
(

1
rc2n−2

)
, we thus get

(C(Q)
rc )T (C(Q)

rc Grc)
−T rc

jR(j)(rc) =

(
In
∗

) n−1∑
k=j/2

ek +O(rc). (5.5.16)

For 0 ≤ j ≤ 2n− 1 odd, we have

rc
jR(j)(rc) = rc

jζj +
n−1∑
k= j+1

2

ζ2k
(2k)!

(2k − j)!
rc

2k + ζ2k+1
(2k + 1)!

(2k + 1− j)!
rc

2k+1 +O(rc
2n),

similarly to the even case, we thus obtain

(C(Q)
rc )T (C(Q)

rc Grc)
−T rc

jR(j)(rc) =

(
A−1

∗

) n−1∑
k= j+1

2

ν
(k)
k ek +O(rc). (5.5.17)

For j ≥ 2n, using ‖(C(Q)
rc )(C

(Q)
rc Grc)

−1‖ = O
(

1
rc2n−2

)
, then

(C(Q)
rc )T (C(Q)

rc Grc)
−T rc

jR(j)(rc) = O(rc). (5.5.18)

From (5.5.16) (when d ≤ 2n− 1 and d is even), (5.5.17) (when d ≤ 2n− 1 and d is odd) or (5.5.18)
(when d ≥ 2n), we have

(C(Q)
rc )T (C(Q)

rc Grc)
−T rc

dR(d)(rc) =

(
0
∗

)
+O(rc).

It remains to prove the same statement for the other part. By definition of the polynomials Pk



166 CHAPTER 5. The VPAW method for 3D Hamiltonians

(5.5.2), we have
P (d)(1) = (0, . . . , 0︸ ︷︷ ︸

b d
2
c

, ∗, . . . , ∗)T ,

so CrcP (d)(1) is a linear combination of the last dd
2
e columns of Crc . However, by Lemma 5.23,

we know that except the first column of Crc , the columns of Crc do not depend on R(rc) and by
(5.5.16) and (5.5.17), for j ≥ 1,

eT0 (C(Q)
rc )T (C(Q)

rc Grc)
−T rc

jR(j)(rc) = O(rc),

which finishes the proof of the first step.

Step 2 (proof of (5.5.15)) Since ψ ∈ H2
per(Γ), by the Sobolev embedding theorem, ψ is continu-

ous, hence ψ(0) is finite. Thus∫ 1

0

χ(t)ψ00(rct)Q(t)t2 dt =

∫ 1

0

χ(t)

(
ψ(0) +

∫ rct

0

ψ′00(u) du

)
Q(t)t2 dt

= ψ(0)e0 +

∫ 1

0

χ(t)

∫ rct

0

ψ′00(u) duQ(t)t2 dt,

by definition of the polynomials Qk.
We have (C denotes a constant independent of rc)∣∣∣∣∫ 1

0

χ(t)

∫ rct

0

ψ′00(u) du Q(t)t2 dt

∣∣∣∣ ≤
(∫ 1

0

χ(t)2Q(t)2t4 dt

∫ 1

0

(∫ rct

0

ψ′00(u) du

)2

dt

)1/2

≤ Crc

(∫ 1

0

(
1

u
ψ′00

)2

u2 du

)1/2

.

Using a Hardy inequality [Eva10] (Theorem 7, p. 298), we get∣∣∣∣∫ 1

0

χ(t)

∫ rct

0

ψ′00(u) du Q(t)t2 dt

∣∣∣∣ ≤ Crc‖ψ‖H1
per
,

which ends the proof of (5.5.15).

The proof of the bound on
〈
p̃ , ψ̃

〉T
(R(k)−R̃(k)) is a simple extension of the proof of (5.5.14).



APPENDIX A

THE FROZEN CORE APPROXIMATION

In this appendix, we give the proof of the results stated in Section 1.2.2 in Chapter 1. The
computations are very similar with those for the Hartree-Fock theory. A detailed exposition of the
Hartree-Fock theory can be found in [CLBM06].

We are interested in the minimal energy of the N -body Schrödinger operator

EN
0 = inf

Ψ∈
N∧
i=1

L2(R3),‖Ψ‖=1

〈
Ψ|HN |Ψ

〉
, (A.1)

where

HN =
1

2

N∑
i=1

∆i −
N∑
i=1

Nat∑
I=1

ZI
|ri −RI |

+
∑

1≤i<j≤N

1

|ri − rj|
. (A.2)

Let nc < N and nv = N − nc. Let φ1, . . . , φnc in H1(R3). The wave functions (φi)1≤i≤nc are
called core wave functions and are supposed mutually orthogonal (

∫
R3 φφj = δij). We introduce the

core electron density

ρc(r) =
nc∑
i=1

|φi(r)|2.

To reduce the dimension of the minimization problem, in the same fashion as the Hartree-Fock
method, the test functions Ψ are reduced to

Ψ(r1, . . . , rN) = C
∑
σ∈SN

(−1)σ
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N)), (A.3)

where C is a normalization factor and Φv ∈
nv∧
i=1

L2(R3) is normalized and orthogonal to the core

wave functions
∀r2, . . . , rnv ∈ R3,

∫
R3

Φv(r, r2, . . . , rnv)φi(r) dr = 0.
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Let V FC be the set of such functions:

V FC =

{
Ψ is given by (A.3), ‖Ψ‖ = 1,

∫
R3nv

|Φv|2 = 1,

∫
R3

Φv(r, ·)φi(r) dr = 0,

∫
R3

φiφj = δij

}
. (A.4)

We denote by EFC the frozen core energy functional

EFC(Ψ) =
〈
Ψ|HN |Ψ

〉
, Ψ ∈ V FC. (A.5)

In the following, in an abuse of notation, for f, g ∈ L2(Rd), 〈f |g〉 denotes the L2 scalar product
in L2(Rd).

Proposition A.1. Let Ψ given by (A.3). Then the normalization constant C is equal to

C =
√
N !nv!.

Proof. We have

〈Ψ ,Ψ〉 = C2
∑
σ∈SN

∑
σ′∈SN

(−1)σ+σ′

〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1, . . . , rσ(N)),

nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉
(A.6)

By the orthogonality assumption on the core wave functions (φi)1≤i≤nc , the scalar products are
equal to 0 if the permutations σ and σ′ are not equal on [[1, nc]]. If σ = σ′ on [[1, nc]], we have:〈

nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N)),
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉
=
〈
Φv(rσ(nc+1), . . . , rσ(N)),Φv(rσ′(nc+1), . . . , rσ′(N))

〉
= (−1)σ−σ

′
,

because Φv is antisymmetric and normalized.
Now we simply have to count how many permutations σ and σ′ in (A.6) yield non zero terms.

σ and σ′ simply have to be equal on [[1, nc]]. Hence, there are N ! possible choices for σ and with
the previous requirement nv! possible choices for σ′. Thus

C2 = N !nv!.

As in the Hartree-Fock theory, it is possible to rewrite the energy functional EFC.
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Theorem A.2. If Ψ belongs to V FC then

EFC(Ψ) = ECORE(φ1, . . . , φnc) + EFC
v (φ1, . . . , φnc ,Φv),

where the core energy ECORE is

ECORE(φ1, . . . , φnc) =
nc∑
i=1

1

2

∫
R3

|∇φi|2 −
∫
R3

Nat∑
I=1

ZI
|r−RI |

ρc(r) dr +
1

2

∫
R3

∫
R3

ρc(r)ρc(r
′)

|r− r′|
dr dr′

− 1

2

∫
R3

∫
R3

∣∣∣∑nc
j=1 φj(r)φj(r

′)
∣∣∣2

|r− r′|
dr dr′.

and the valence energy functional EFC
v is

EFC
v (φ1, . . . , φnc ,Φv) =

1

2

∫
R3nv

|∇Φv|2 −
nv∑
i=1

∫
R3nv

Nat∑
I=1

ZI
|ri −RI |

|Φv(r1, . . . , rnv)|2 dr1 . . . drnv

+
∑

1≤i<j≤nv

∫
R3nv

|Φv(r1, . . . , rnv)|2

|ri − rj|
dr1 . . . drnv +

nv∑
i=1

∫
R3nv+3

ρc(r0)|Φv(r1, . . . , rnv)|2

|r0 − ri|
dr0dr1 . . . drnv

−
nc∑
i=1

nv∑
j=1

∫
R3nv+3

φi(r0)Φv(r1, . . . , rN)φi(r1)Φv(r1, . . . , rj−1, r0, rj+1, . . . , rnv)

|r0 − rj|
dr0dr1 . . . drnv .

The proof of this theorem is divided into several lemmas.

Lemma A.3. Let Ψ ∈ V FC. Then〈
Ψ| − 1

2

N∑
i=1

∆i|Ψ

〉
=

1

2

nc∑
i=1

‖∇φi‖2
L2(R3) +

1

2

∫
R3nv

|∇Φv|2,

and〈
Ψ| −

N∑
i=1

Nat∑
I=1

ZI
|ri −RI |

|Ψ

〉
=

∫
R3

−
Nat∑
I=1

ZI
|r−RI |

ρc(r) dr

−
nv∑
i=1

Nat∑
I=1

∫
R3nv

ZI
|ri −RI |

|Φv(r1, . . . , rnv)|2 dr1 . . . rnv .

Proof. We only prove the first assertion of this lemma since the proof of the second identity is
similar.
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We have〈
Ψ| − 1

2

N∑
i=1

∆i|Ψ

〉
=

1

N !nv!

∑
σ∈SN

∑
σ′∈SN

(−1)σ+σ′

〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|

−1

2

N∑
i=1

∆i|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉
. (A.7)

The idea of the proof consists in counting the non-zero terms in the double sum over σ and σ′ in
(A.7). First, we can rewrite it as〈

nc∏
i=1

φi(rσ(i)) Φv(rσ(nc+1), . . . , rσ(N))| −
1

2

N∑
i=1

∆σ(i)|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=

〈
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)| − 1

2

N∑
i=1

∆i|
nc∏
i=1

φi(rτ(i))Φv(rτ(nc+1), . . . , rτ(N))

〉
,

where τ = σ′σ−1.

If τ(i) 6= i for some i = 1, . . . , nc, by orthogonality of the core wave functions (φi)1≤i≤nc and the
valence wave function Φv, the scalar product is equal to 0. Otherwise, we have〈

nc∏
i=1

φi(rσ(i)) Φv(rσ(nc+1), . . . , rσ(N))| −
1

2

N∑
i=1

∆i|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=

〈
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)| − 1

2

N∑
i=1

∆i|
nc∏
i=1

φi(ri)Φv(rτ(nc+1), . . . , rτ(N))

〉

=
N∑
j=1

〈
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)| − 1

2
∆j|

nc∏
i=1

φi(ri)Φv(rτ(nc+1), . . . , rτ(N))

〉

= (−1)σ
′−σ 1

2

nc∑
j=1

‖∇φi‖2
L2(R3) + (−1)σ

′−σ 1

2

∫
R3nv

|∇Φv|2,

where we have used that Φv(rτ(nc+1), . . . , rτ(N)) = (−1)τΦv(rnc+1, . . . , rN) and (−1)τ = (−1)σ
′−σ.

It remains to count the number of permutations yielding non-zero terms in (A.7): there are N !
permutations σ. σ′ should be equal to σ on [[1, nc]], hence there are nv! of them.

We now turn to the two-body interactions.
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Lemma A.4. Let Ψ ∈ V FC. Then

〈
Ψ|

∑
1≤i<j≤N

1

|ri − rj|
|Ψ

〉
=

1

2

∫
R3×R3

ρc(r)ρc(r
′)

|r− r′|
drdr′ − 1

2

∫
R3×R3

∣∣∣∣ nc∑
i=1

φi(r)φi(r
′)

∣∣∣∣2
|r− r′|

drdr′

+
∑

1≤i<j≤nv

∫
R3nv

|Φv(r1, . . . , rnv)|2

|ri − rj|
dr1 . . . drnv +

nv∑
i=1

∫
R3nv+3

ρc(r0)|Φv(r1, . . . , rnv)|2

|r0 − ri|
dr0dr1 . . . drnv

−
nc∑
i=1

nv∑
j=1

∫
R3nv+3

φi(r0)Φv(r1, . . . , rN)φi(r1)Φv(r1, . . . , rj−1, r0, rj+1, . . . , rnv)

|r0 − rj|
dr0dr1 . . . drnv ,

where ρc is the core electronic density

ρc(r) =
nc∑
i=1

|φi(r)|2.

Proof. The two-body interaction potential can be written

∑
1≤i<j≤N

1

|ri − rj|
=

1

2

N∑
i,j=1
i 6=j

1

|ri − rj|

We have〈
Ψ|1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|Ψ

〉
=

1

N !nv!

∑
σ∈SN

∑
σ′∈SN

(−1)σ+σ′

〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|

1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉
. (A.8)

We count and compute the non-zero terms appearing in (A.8). This depends on the number of
transpositions in [[1, nc]].

First, we have〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=

〈
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)|1
2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rτ(i))Φv(rτ(nc+1), . . . , rτ(N))

〉
, (A.9)

where τ = σ′σ−1.
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If τ(i) = i on [[1, nc]], then〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=
(−1)τ

2

〈
nc∏
i=1

φi(ri)|
nc∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(ri)

〉

+ (−1)τ

〈
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)|
∑

1≤i≤nc
nc+1≤j≤N

1

|ri − rj|
|
nc∏
i=1

φi(ri)Φv(rnc+1, . . . , rN)

〉

+
(−1)τ

2

〈
Φv|

N∑
i,j=nc+1

i 6=j

1

|ri − rj|
|Φv

〉

=
(−1)τ

2

∑
1≤i 6=j≤nc

〈
φi(ri)φj(rj)|

1

|ri − rj|
|φi(ri)φj(rj)

〉
+ (−1)τ

∑
1≤i≤nc

nc+1≤j≤N

〈
φi(ri)Φv(rnc+1, . . . , rj, . . . , rN)| 1

|ri − rj|
|φi(ri)Φv(rnc+1, . . . , rj, . . . , rN)

〉

+
(−1)τ

2

nv∑
i,j=1
i 6=j

∫
R3nv

|Φv(r1, . . . , rnv)|2

|ri − rj|
dr1 . . . drnv

=
(−1)τ

2

∫
R3×R3

∑
1≤i 6=j≤nc

|φi(r)|2|φj(r′)|2

|r− r′|
drdr′

+ (−1)τ
nv∑
j=1

∫
R3nv+3

nc∑
i=1

|φi(r0)|2|Φv(r1, . . . , rnv)|2

|r0 − ri|
dr0 . . . drnv (A.10)

+
nv∑
i,j=1
i 6=j

(−1)τ

2

∫
R3nv

|Φv(r1, . . . , rnv)|2

|ri − rj|
dr1 . . . drnv .

There N ! possible choices for σ and nv! permutations such that σ = σ′ on [[1, nc]].

If in (A.9), there is exactly one integer k ∈ [[1, nc]] such that τ(k) 6= k, then τ(k) ∈ [[nc + 1, N ]].
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We denote by m = τ(k).〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=

〈
nc∏

i=1,i 6=k

φi(ri)φk(rk)Φv(rnc+1, . . . , rN)|

1

2

N∑
a,b=1
a6=b

1

|ra − rb|
|

nc∏
i=1,i 6=k

φi(ri)φk(rm)Φv(rτ(nc+1), . . . , rk, . . . , rτ(N))

〉
.

Then, we have〈
nc∏

i=1,i 6=k

φi(ri)φk(rk)Φv(rnc+1, . . . , rN)|1
2

1

|ra − rb|
|

nc∏
i=1,i 6=k

φi(ri)φk(rm)Φv(rτ(nc+1), . . . , rk, . . . , rτ(N))

〉
= 0,

• if both a and b are not equal to k because
∫
R3 φk(rk)Φv(rτ(nc+1), . . . , rk, . . . , rτ(N)) drk = 0,

• or if a = k and b ∈ [[1, nc]], because
∫
R3 φk(rm)Φv(rτ(nc+1), . . . , rm, . . . , rτ(N)) drm = 0.

Thus〈
nc∏
i=1

φi(rσ(i))Φv(rσ(nc+1), . . . , rσ(N))|
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=

〈
φk(rk)Φv(rnc+1, . . . , rN)|

N∑
j=nc+1

1

|rk − rj|
|φk(rm)Φv(rτ(nc+1), . . . , rk, . . . , rτ(N))

〉

= (−1)τ−1

〈
φk(rk)Φv(rnc+1, . . . , rN)|

N∑
j=nc+1

1

|rk − rj|
|φk(rm)Φv(rnc+1, . . . , rk, . . . , rN)

〉

= (−1)τ−1

nv∑
j=1

∫
R3nv

φk(r0)Φv(r1, . . . , rnv)φk(r1)Φv(r0, r2, . . . , rnv)

|r0 − rj|
dr0 . . . drnv . (A.11)

It remains to count the number of such terms appearing in (A.8). There are N ! choices possible for
σ. For a fixed k ∈ [[1, nc]], there are nv! permutations such that σ′(k) 6= σ(k) and σ′(i) = σ(i) for
i ∈ [[1, nc]], i 6= k.

If in (A.9), there are exactly two integers (k, l) ∈ [[1, nc]]
2 such that τ(k) 6= k and τ(l) 6= l. If

τ(k) 6= l, then τ(k) ∈ [[nc + 1, N ]] and the integral〈
φk(rk)φl(rl)Φv(rnc+1, . . . , rτ(k), . . . , rN)| 1

|ra − rb|
|φk(rτ(k))φl(rτ(l))Φv(rτ(nc+1), . . . , rk, . . . , rτ(N))

〉
= 0,

for any 1 ≤ a 6= b ≤ N .
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Hence 1 ≤ τ(k), τ(l) ≤ nc and so τ(k) = l and τ(l) = k. Finally we obtain〈
nc∏
i=1

φi(rσ(i)) Φv(rσ(nc+1), . . . , rσ(N))|
1

2

N∑
i,j=1
i 6=j

1

|ri − rj|
|
nc∏
i=1

φi(rσ′(i))Φv(rσ′(nc+1), . . . , rσ′(N))

〉

=
(−1)τ−1

2

〈
φk(rk)φl(rl)|

1

|rk − rl|
|φk(rl)φl(rk)

〉
. (A.12)

There N ! possible choices for σ and for each (k, l) ∈ [[1, nc]]
2, k 6= l, there are nv! permutations σ′

such that σ(k) = σ′(l) and σ(l) = σ′(k).

If there are more permutations in τ in (A.9), using the orthogonality of (φi)1≤i≤nc and Φv, for
any 1 ≤ a 6= b ≤ N we have〈

nc∏
i=1,i 6=k

φi(ri)φk(rk)Φv(rnc+1, . . . , rN)| 1

|ra − rb|
|

nc∏
i=1,i 6=k

φi(ri)φk(rm)Φv(rτ(nc+1), . . . , rk, . . . , rτ(N))

〉
= 0.

By inserting (A.10), (A.11) and (A.12) in (A.8) and noticing that∑
1≤i 6=j≤nc

|φi(r)|2|φj(r′)|2 −
∑

1≤i 6=j≤nc

φi(r)φi(r
′)φj(r)φj(r

′)

=
nc∑
i,j=1

|φi(r)|2|φj(r′)|2 −
nc∑
i,j=1

φi(r)φi(r
′)φj(r)φj(r

′)

= ρc(r)ρc(r
′)−

∣∣∣∣∣
nc∑
i=1

φi(r)φi(r
′)

∣∣∣∣∣
2

,

we finish the proof of the lemma.

In the frozen core approximation, the core orbitals (φi)1≤i≤nc are fixed and the minimization is
carried over the valence wave function Φv. The minimization problem thus becomes

EFC
v = min

Φv∈Vfc
EFC
v (φ1, . . . , φc,Φv), (A.13)

where Vfc is

Vfc =

{
Φv ∈

nv∧
i=1

L2(R3), ‖Φv‖L2(R3nv ) = 1,

∫
R3

φi(r1)Φv(r1, . . . , rnv) dr1 = 0, ∀ 1 ≤ i ≤ nc

}
.

Theorem A.5. Let (φi)1≤i≤nc ∈ H1(R3) and suppose the minimization problem (A.13) has a
minimizer Φv. Then Φv satisfies the Euler-Lagrange equation

HvΦv = EFC
v Φv,
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with

Hv =
nv∑
j=1

(
−1

2
∆j −

Nat∑
I=1

ZI
|RI − rj|

+ Jc(j)−Kc(j)

)
+

∑
1≤i<j≤nv

1

|ri − rj|
.

Jc(j) is the Coulomb operator with the core electrons

Jc(j)Φv(r1, r2, . . . , rnv) =
nc∑
i=1

∫
R3

|φi(r′)|2

|rj − r′|
dr′ Φv(r1, r2, . . . , rnv),

and Kc(j) the exchange operator with the core electrons

Kc(j)Φv(r1, r2, . . . , rnv) =
nc∑
i=1

∫
R3

φi(r
′)Φv(r1, r2, . . . , rj−1, r

′, rj+1, . . . , rnv)

|rj − r′|
dr′φi(rj).

Proof. The Euler-Lagrange equations are easily deduced from the minimization problem (A.13).
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APPENDIX B

FUNDAMENTAL FORMULA OF THE PAW METHOD

In this appendix, a proof of the formula for the PAW Hamiltonian (see Chapter 1):

(Id + T )∗H(Id + T )ψ̃ = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉)
〈p̃Ij , ·〉,

is given.

Recall that T =
Nat∑
I=1

TI where

TI =
∞∑
i=1

(φIi − φ̃Ii )〈p̃Ii , ·〉.

For each I = 1, . . . , Nat, the functions (φIi )i≥1, (φ̃
I
i )i≥1 and (p̃Ii )i≥1 are such that:

1. outside B(RI , rc), φ̃Ii = φIi and φ̃Ii − φIi is C1 at S(RI , rc);

2. (φ̃Ii )i≥1, (p̃i)i≥1 are Riesz basis of H1(RI , rc), i.e. for any f ∈ H1(B(RI , rc)):

f =
∞∑
i=1

〈
p̃Ii , f

〉
φ̃Ii .

3. for all i ≥ 1, p̃Ii is supported in B(RI , rc).

Moreover the balls B(RI , rc), I = 1, . . . , Nat are pairwise disjoint.

Proposition B.1. Let H = −1
2
∆ + V where V is a smooth, bounded multiplicative operator. Then

(Id + T )∗H(Id + T )ψ̃ = H +
Nat∑
I=1

∞∑
i,j=1

p̃Ii

(〈
φIi , Hφ

I
j

〉
−
〈
φ̃Ii , Hφ̃

I
j

〉)
〈p̃Ij , ·〉,
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Proof. We have

(Id + T )∗H(Id + T ) =H + T ∗H +HT + T ∗HT

=H +
Nat∑
I=1

(T ∗IH +HTI) +
Nat∑
I,J=1

T ∗IHTJ .

Let f, g ∈ H1(R3). We have

〈f , T ∗IHTJg〉 =

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) ,

∞∑
i=1

〈
p̃Ji , g

〉
H(φJi − φ̃Ji )

〉
.

The functions φIi − φ̃Ii and φJi − φ̃Ji are C1 at the sphere S(RI , rc). Moreover they are supported
respectively in B(RI , rc) and B(RJ , rc) which are disjoint. Hence 〈f , T ∗IHTJg〉 = 0. Thus

〈f , (Id + T )∗H(Id + T )g〉 =

〈
f +

Nat∑
I=1

TIf ,Hg +
Nat∑
I=1

HTIg

〉

= 〈f ,Hg〉+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) , Hg

〉

+
Nat∑
I=1

〈
f ,H

∞∑
i=1

〈
p̃Ii , g

〉
(φIi − φ̃Ii )

〉

+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) ,

∞∑
i=1

〈
p̃Ii , g

〉
H(φIi − φ̃Ii )

〉
.

Since φIi − φ̃Ii are supported in B(RI , rc), the integrals appearing above can be restricted to
B(RI , rc). We denote by

〈f ,Hg〉I,rc =

∫
B(RI ,rc)

1

2
∇f · ∇g + V fg.

The integrals are restricted to the balls B(RI , rc), hence we can use that f =
∞∑
i=1

〈
p̃Ii , f

〉
φ̃Ii and



APPENDIX B. 179

g =
∞∑
i=1

〈
p̃Ii , g

〉
φ̃Ii in B(RI , rc). Thus, we have

〈f , (Id + T )∗H(Id + T )g〉 = 〈f ,Hg〉+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
φ̃Ii , H

∞∑
i=1

〈
p̃Ii , g

〉
(φIi − φ̃Ii )

〉
I,rc

+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) , H

∞∑
i=1

〈
p̃Ii , g

〉
φ̃Ii

〉
I,rc

+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) ,

∞∑
i=1

〈
p̃Ii , g

〉
H(φIi − φ̃Ii )

〉
I,rc

= 〈f ,Hg〉+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
φ̃Ii , H

∞∑
i=1

〈
p̃Ii , g

〉
(φIi − φ̃Ii )

〉
I,rc

+
Nat∑
I=1

〈
∞∑
i=1

〈
p̃Ii , f

〉
(φIi − φ̃Ii ) ,

∞∑
i=1

〈
p̃Ii , g

〉
HφIi

〉
I,rc

= 〈f ,Hg〉+
Nat∑
I=1

∞∑
i,j=1

〈
p̃Ii , g

〉(〈
φIi , Hφ

I
j

〉
I,rc
−
〈
φ̃Ii , Hφ̃

I
j

〉
I,rc

)
〈p̃j , f〉 .
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Abstract

Cette thèse est consacrée à l’étude de la méthode PAW (projector augmented-wave) et d’une de ses modifi-
cations, baptisée méthode PAW variationnelle (VPAW), pour le calcul de l’état fondamental d’Hamiltoniens
en géométrie périodique. Ces méthodes visent à améliorer la vitesse de convergence des méthodes d’ondes
planes (ou méthodes de Fourier) en appliquant une transformation inversible au problème aux valeurs
propres initial agissant au voisinage de chaque site atomique. Cette transformation permet de capter
une partie des difficultés dues aux singularités coulombiennes. La méthode VPAW est analysée pour un
opérateur de Schrödinger unidimensionnel avec des potentiels de Dirac. Les fonctions propres de ce modèle
comprennent des sauts de dérivées similaires aux cusps électroniques. Le saut de dérivée des fonctions
propres du problème aux valeurs propres issu de la méthode VPAW est réduit de façon importante. Cela
entraîne une accélération de convergence en ondes planes du calcul des valeurs propres corroborée par une
étude numérique. Une étude de la méthode VPAW est conduite pour des Hamiltoniens 3D périodiques
avec des singularités coulombiennes, parvenant à des conclusions similaires. Pour la méthode PAW, la
transformation inversible comporte des sommes infinies qui sont tronquées en pratique. Ceci introduit une
erreur, qui est rarement quantifiée en pratique. Elle est analysée dans le cas de l’opérateur de Schrödinger
unidimensionnel avec des potentiels de Dirac. Des bornes sur la plus basse valeur propre en fonction des
paramètres PAW sont prouvées conformes aux tests numériques.

Keywords: quantum chemistry, eigenvalue problems, plane-waves discretization, projector augmented-
wave method

Abstract

This thesis is devoted to the study of the PAW method (projector augmented-wave) and of a variant called
the variational PAW method (VPAW). These methods aim to accelerate the convergence of plane-wave
methods in electronic structure calculations. They rely on an invertible transformation applied to the
eigenvalue problem, which acts in a neighborhood of each atomic site. The transformation captures some
difficulties caused by the Coulomb singularities. The VPAW method is applied to a periodic one-dimensional
Schrödinger operator with Dirac potentials and analyzed in this setting. Eigenfunctions of this model have
derivative jumps similar to the electronic cusps. The derivative jumps of eigenfunctions of the VPAW
eigenvalue problem are significantly reduced. Hence, a smaller plane-wave cut-off is required for a given
accuracy level. The study of the VPAW method is also carried out for 3D periodic Hamiltonians with
Coulomb singularities yielding similar results. In the PAW method, the invertible transformation has
infinite sums that are truncated in practice. The induced error is analyzed in the case of the periodic
one-dimensional Schrödinger operator with Dirac potentials. Error bounds on the lowest eigenvalue are
proved depending on the PAW parameters.

Keywords: quantum chemistry, eigenvalue problems, plane-waves discretization, projector augmented-
wave method

Laboratoire Jacques-Louis Lions
Université Pierre et Marie Curie – Boîte Courrier 187 – 75252 Paris Cedex 05
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