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Abstract

The objective of this thesis is the development of multi-objective optimization methods
for solving mechanical design problems. Indeed, most of the real problems in the field of
mechanical structures have several objectives that are often antagonistic. For example, it
is about designing structures by optimizing their weight, their size, and their production
costs. The goal of multi-objective optimization methods is the search for compromise
solutions between objectives given the impossibility to satisfy all simultaneously.

Metaheuristics are optimization methods capable of solving multi-objective opti-
mization problems in a reasonable calculation time without guaranteeing the optimality
of the solution (s). In recent years, these algorithms have been successfully applied to
solve the problem of structural mechanics.

In this thesis, two metaheuristics have been developed for the resolution of multi-
objective optimization problems in general and of mechanical structures design in partic-
ular. The first algorithm called NNIA+X is a hybridization of an immune algorithm
and three crossover inspired by the original crossover operator of the BSA algorithm.
The second one named MOBSA used the crossover and mutation operators of the BSA
algorithm.

To evaluate the effectiveness and efficiency of these two algorithms, tests on some
problems in literature have been made with a comparison with algorithms well known in
the field of multi-objective optimization. The comparison results using metrics widely used
in the literature have shown that our two algorithms can compete with their predecessors.

Keywords : Metaheuristics, Evolutionary Algorithms, Backtracking Search, Multi-objective
optimization, Hybrid algorithm, Structural design, Structural optimization.
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Résumé
L’objectif de cette thèse est le développement de méthodes d’optimisation multi-objectif
pour la résolution de problèmes de conception des structures mécaniques. En effet, la
plupart des problèmes réels dans le domaine de la mécanique des structures ont plusieurs
objectifs qui sont souvent antagonistes. Il s’agit, par exemple, de concevoir des structures
en optimisant leurs poids, leurs tailles, et leurs coûts de production. Le but des méthodes
d’optimisation multi-objectif est la recherche des solutions de compromis entre les objectifs
étant donnée l’impossibilité de satisfaire tous simultanément.

Les métaheuristiques sont des méthodes d’optimisation capables de résoudre les
problèmes d’optimisation multi-objectif en un temps de calcul raisonnable sans garantie
de l’optimalité de(s) solution(s). Au cours des dernières années, ces algorithmes ont été
appliqués avec succès pour résoudre le problème des mécaniques des structures.

Dans cette thèse deux métaheuristiques ont été développées pour la résolution des
problèmes d’optimisation multi-objectif en général et de conception de structures mé-
caniques en particulier. Le premier algorithme baptisé NNIA+X est une hybridation
d’un algorithme immunitaire et de trois croissements inspirés de l’opérateur de croise-
ment original de l’algorithme BSA. Le deuxième algorithme nommé MOBSA utilise les
opérateurs de croisement et de mutation de l’algorithme BSA. Pour évaluer l’efficacité et
l’efficience de ces deux algorithmes, des tests sur quelques problèmes dans littérature ont
été réalisés avec une comparaison avec des algorithmes bien connus dans le domaine de
l’optimisation multi-objectif. Les résultats de comparaison en utilisant des métriques très
utilisées dans la littérature ont démontré que ces deux algorithmes peuvent concurrencer
leurs prédécesseurs.

Mots clés: Métaheuristiques, Algorithmes évolutionnaires, Recherche Backtracking ,
Optimisation multi-objectif, algorithme hybride, Conception structurelle, Optimisation
des structures.
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Nowadays, the industrial world e.g. mechanics civil engineering is evolving from
traditional design process to model-based ones. This dynamic is due to two main issues.
Firstly, industrial sector aims to become more and more profitable and competitive to
ensure its economic viability. Secondly, technological and scientific progress are making
available more and more efficient mathematical and computer tools, by means of which
the particular specifications of a large spectrum of different systems (and structures) can
be simulated [3].

More than any other discipline, the computer sciences has been a revolution for
mathematics: by allowing numerical simulation of complex mathematical equations. Thus,
the design and analyzis of computer-based computing methods have become a new branch
of mathematics. These advances have also enabled mathematics to tackle much more com-
plex real word problems, stemming from immediate industrial or scientific motivations.
Simulations allow to provide both qualitative and quantitative answers.

Structural mechanics such as bridges, buildings, machinery or any other load-bearing
or load-bearing element is a complex problem in the field of civil engineering, where
structural integrity affects safety and functionality. As is usually the case in this and
other disciplines, structural design issues require the optimization of several conflicting
objectives, such as minimizing the total investment cost while maximizing the security of
the final structure. Problems with more than one objective function to be optimized are
known as multi-objective optimization (OM) problems, and their main feature is the lack
of a single solution that can optimize all objectives at the same time. Instead, solving
these problems consists of a set of alternative compromise solutions
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Chapter I. Introduction

In this thesis we focus on the context of structural design, the implication is that
there is no single design that minimizes the structure’s weight (to reduce the investment
cost as much as possible) and, at the same time, maximizes the stiffness (to provide the
highest possible degree of safety). Instead, there is a set of designs providing a trade-off
between these two conflicting optimization criteria. There is no single method available
to effectively solve all optimization problems. Several optimization algorithms have been
proposed, examined and analyzed in recent decades. However, optimization in the field
of engineering remains an active field of research, since several real optimization problems
remain very complex in reality and difficult to solve by the existing algorithms.

Metaheuristics [4] are a class of approximation algorithms which have become pop-
ular alternatives for solving both singe to multi-objective optimization problems. Accord-
ing to [5] "In spite of the popularity of multi-objective metaheuristics, a recent survey on
multi-objective optimization applied to structural design [6] revealed that the application
of metaheuristic techniques in this field has been scarce until very recently "

Multi-Objective Evolutionary Algorithms (MOEAs), which are a specific type of
metaheuristic, are considered as, highly suitable for solving Multi-objective optimization
Problems due to their ability to compute an approximation to the Pareto front in a single
run of the algorithm. In recent years, MOEAs such as the Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) [7], the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [8]
and Multi-Objective Evolutionary Algorithm based on Decomposition MOEA/D [2], have
been successfully applied in problems from structural mechanics field. "which are two of
the most popular MOEAs in the literature. It is worth noting, however, that NSGA-II and
SPEA2 date back to 2000 and there have been significant developments since then. For
example, new metaheuristic techniques, evolutionary and non-evolutionary based, have
been proposed but rarely have they been applied to structural design problems [5]"

Motivated by the aforementioned gaps, this work raises from the necessity of devel-
oping efficient and effective methods in the field of the multi-objective structure design.
In this regard, our work explores the multi-objective formulation of the structure and
mechanical design problem and the use of MOEAs, for solving for solving such problems.

Gaol

The main goal of this research is to develop effective and efficient MOEAs techniques for
structural mechanical and design. These algorithms do well to give the two basic objec-
tives of MOEAs:

• Minimize the distance of the generated solutions to fit the true Pareto-optimal set
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• Maximize the diversity of the achieved Pareto-set approximation

• More over, we aim to analyze of the obtained solutions from a structural & me-
chanical design point of view.

Contributions

This thesis has contributed with the following:

• A new method based-MOEAs using two operators of Backtracking Search Algo-
rithm. This method is called MOBSA.

• We carefully test MOBSA on a set of issues traditionally used by the community,
namely UF,CF [2]. MOBSA was for two applications in mechanical structures: fourteen
bars and two bars random vibration problem.

•A new method, called NNIA+X, based on immune algorithm has bee proposed.NNIA+X
is inspired by recombination operator of Backtracking Search algorithm. This algorithm
was tested on the ZDT problems [9] and DTLZ problems [1], and application in ten bars
problems.

As a result of these, the following lists the papers directly derived from this thesis
or those where ideas from this work have been used:

• Journal

• A. Tchvagha Zeine, A. El hami, R.Ellaia and E. Pagnacco, Backtracking Search
Algorithm for Multi-objective Design Optimization, International Journal of Math-
ematical Modelling and Numerical Optimisation, Vol. 8, No. 2, 2017.

• A. Tchvagha Zeine, N. El Hami, S. Ouhimmou, R. Ellaia and A.El Hami, Multiob-
jective optimization of trusses using Backtracking Search Algorithm, Uncertainties
and Reliability of Multiphysical Systems., Vol. 1, N°1. (2017) (Published by ISTE
Ltd. London, UK).
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• A. Tchvagha Zeine, E. Pagnacco, A. El hami and R. Ellaia, An immune multi-
objective optimization with Backtracking Search algorithm inspired recombination,
Engineering Applications of Artificial Intelligence, Submitted in 16-Nov-2016.

• Congress

• R. El-Maani, A. Tchvagha Zeine, R. Bouchaib, A. El-Hami, and R. Ellaia,
Backtracking search optimization algorithm for fluid-structure interaction prob-
lems, 4th International Colloquium on Information Science and Technology (IEEE-
CiSt’2016), pp.690-695, 24-26, October 2016, Tangiers-Assilah, Morocco.

• A. Tchvagha Zeine, R. Ellaia and A. El-Hami, Hybrid Backtracking Immune
Algorithm for Multi-objective Optimization. TAMTAM15, 04-08 mai 2015, Tanger
(Maroc).

• A. Tchvagha Zeine, R. Ellaia and A. El-Hami, Backtracking Immune Algorithm
for Continuous Multi-objective Optimization. IFORS-2017: 21st Conference of the
International Federation of Operational Research Societies. 17-21, 2017 July in
Quebec City, Canada.

Structure of the thesis

The structure of this thesis reflects these contributions with four chapters:

• In chapter II, we describe basic concepts related to the topic of single and multi-
objective optimization. The general concepts of metaheuristics are described, with em-
phasis on multi-objective evolutionary algorithms.

• In chapter IV, we present our contribution to multi-objective optimization namely
the multi-objective optimization backtracking search algorithm (MOBSA) that we have
developed. was, comparisons with some known multi-objective optimization methods are
presented.

• Chapter V, presents the application of MOBSA for solving multi-objective design
structure problems.
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• In chapter VI, we introduce a new hybrid immune algorithm using a crossover op-
erator inspired form backtracking Search algorithm. We also applied this new algorithm
structure design of ten bars problem.

We will conclude the manuscript with conclusions and perspectives of the work
carried out as well as appendices providing additional information.
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Chapter II. The multi-objective Evolutionary Algorithms: State of the art

Introduction

According to the Cambridge English dictionary, the optimization is "the act of making
something as good as possible". Mathematically speaking, the optimization consists of
identifying the solution i.e. single or many decision variable(s), minimizing or maximizing
a given function or a set of functions while fulfilling a set of constraints. Accordingly,
two kind of optimization problems are distinguished in the literature: single and multi-
objective optimization problems.

In the past, the most commonly utilized optimization techniques were gradient-based
method that used gradient information to search for solution space near an initial starting
point [10]. Compared to stochastic approaches the gradient-based methods converge
faster and can obtain solutions with higher for the problem convex. The gradient-based
methods can not be easily solved non-convex optimization problems. Other types of
optimization methods, known as metaheuristic algorithms, are stochastic approaches.
These methods are suitable for global research because of their ability to explore and
find promising areas in the search space at an affordable computational time [4, 11].
These algorithms tend to perform well for most of the optimization problems applications
in different fields, namely, applied mathematics, engineering, medicine, economics, and
other sciences. These methods are extensively utilized in the design of different systems
in civil, mechanical, electrical, and industrial engineering [10, 12, 13].

In this chapter, the Section 2, we present some basic definitions related to an opti-
mization problem. In the next Section 3, we introduce the main methods for solving the
optimization problems. In Section 4, we devoted to review some of the most Metaheuris-
tics evolutionary algorithms designed for solving Single and multi-objective optimization.

From Single to multi-objective optimization problem

In real-world optimization applications, it is often necessary to optimize single objective
or multiple objectives in one problem simultaneously. These problems are usually referred
to as Single-objective optimization problem (SOP) or multi-objective optimization (MO)
problems. The both types is presented as follows:
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II.2 From Single to multi-objective optimization problem

Single-objective optimization problem

A general Single-objective optimization problem (SOP) is defined as minimizing (or max-
imizing) an objective function f. A SOP can be defined as follows [14, 15]:



min
x∈Ω

f(x)

Subject to
gj(x)≤ 0, for j = 1, · · · , l
hk(x) = 0, for k = 1, · · · ,p
xli ≤ xi ≤ xui, for i= 1, · · · , nx,

(II.1)

where:
nx-dimensional decision space where each decision variable xi, xli,xui bounded by lower
and upper limits respectively, gj(x) are l inequality constraints and hk(x) are p equality
constraints.

Definition 2.1 (Single-Objective Global Minimum Optimization) :
The function f admits a global minimum if and only if:

∀x ∈ Ω :−∞< f(x∗)≤ f(x) (II.2)

x∗ is by definition the global minimum solution, f is the objective function, and the set
Ω is the feasible region of x. The goal of determining the global minimum solution(s) is
called the global optimization problem for a single-objective problem.

The Figure II.1 illustrates the case of a single-objective optimization problem for
global optimum and local optimum.

Figure II.1 – Global optimum and local optimum..
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Multi-objective optimization problem

Most of real world optimization problems involve two or more, often conflicting, design
objectives. Mathematically speaking, a multi-objective optimization problem can be for-
mulated as follows [1, 15–17]:



min
x∈Ω

F(x) = (f1(x), · · · ,fm(x))T

Subject to:
gj(x)≤ 0, for j = 1, · · · , l
hk(x) = 0, for k = 1, · · · ,p

(II.3)

where F is the vector of concurrent objective functions to optimize, m is the number of
objective functions, x = (x1, · · · ,xn) ∈ Ω is the nx-dimensional decision space where each
decision variable xi is bounded by lower and upper limits xli ≤ xi ≤ xui for i= 1, · · · , nx.
gj(x) are l inequality constraints and hk(x) are p equality constraints.

The Figure II.2 illustrates the case of a multi-objective optimization problem involv-
ing three decision variables and two objective functions.

x1

x3

x2

f1

f2

x
f(x)

Objective SpaceDecision Variables Space

Figure II.2 – A multi-objective optimization problem having three variables and two
objectives. The feasible search space is projected to the corresponding
objective space.

The solution of such problems is very difficult compared to single-objective optimiza-
tion. Indeed, for Multi-objective Optimization (MO) Problems, as objectives are usually
conflicting, there is no one optimal solution but a set of trade-offs solutions. This set of
trade-offs solutions is known as Pareto-optimal set back to the famous Italian economist
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Vilfrido Pareto [18].

Pareto dominance and optimality

The main goal of multi-objective optimization is to find an optimal solution for the prob-
lem described in II.3. To resolve this problem, most modern multi-objective optimization
algorithms use the concept of Pareto dominance. The principle of dominance is to com-
pare two solutions in order to determine wether one of these dominates the other one or
not. The Pareto dominance related is defined as follows:

Definition 2.2 (Pareto dominance)
Suppose xa and xb are two different feasible solutions to the MO problem. Then xa

dominates xb (noted as xa � xb) if and only if:

fi(xa)≤ fi(xb))∀ i ∈ {1, · · · , m} (II.4)

and:
∃k ∈ {1, · · · , m} fk(xa)< fk(xb) (II.5)

Definition 2.3 (Pareto-optimal solution:)
A solution x∗ is said to be Pareto-optimal if there is no solution that dominates it:

@ x ∈ Ω : x� x∗ (II.6)

Definition 2.4 (Pareto-optimal set:)
For a given MO Problem, the set X∗ of all Pareto-optimal solutions is called the

Pareto-optimal set and defined as follows:

X∗ = {x∗ ∈ Ω/@x ∈ Ω,f(x)≺ f(x∗)} (II.7)

Definition 2.5 (Pareto-optimal front:)
The Pareto-optimal front is the set F∗ of values or outcomes of all the objective

functions which corresponds to the solutions:

F∗ = {f(x∗) = (f1(x∗), ..., fm(x∗))T such that: x∗ ∈X∗} (II.8)
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Constraints handling

The search space of a constrained MO Problem can be formulated as follows:

C =


gj(x)≤ 0, for j = 1, · · · , l
hk(x) = 0, for k = 1, · · · ,p
xli ≤ xi ≤ xui for i= 1, · · · , nx.

(II.9)

where, gj(x) are l inequality constraints and hk(x) are p equality constraints.
Due to the presence of the constraints, the search space is partitioned into feasible

and infeasible regions. Many constraints’ handling methods have been proposed to solve
constrained MO problem [19, 20]. In this thesis, two different constraint handling meth-
ods namely Penalty method and constraint dominance method have been used.

Penalty method:
The idea of penalty methods was first introduced in [21]. This methods consists

in replacing the constrained optimization problems by an optimization problems without
constraints, by introducing new objective functions to be optimized:

φk(x) = fk(x) + rϕq(x) (II.10)

where the penalty function chosen here is :

ϕq(x) =
l∑

j=1
max{0, gj(x)}q +

p∑
k=1
|hj(x)|q, (II.11)

where q is the penalty exponent and r is a positive penalty parameter. The problem is
then solved directly for a value of r large enough, so the constraints are satisfied.

Constraints’ dominance method:

This methods proposed in [7], for solving constrained multi-objective optimization
is based on the concept of constrained domination, which is also known as superiority of
the feasible solution. In the presence of constraints, each solution can be either feasible
or infeasible. A solution xa is said to constraint-dominates a solution xb if any of the
following conditions is true:

1. xa is feasible and xb is infeasible.

2. xa and xb are infeasible and xa has a smaller constraint violation value.

12
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3. xa and xb are feasible and xa dominates xb with the usual dominance principle.

Decision Making

In most multi-objective optimization problems, the optimal Pareto set consists of a large
or even infinite number of solutions. Nevertheless, in practice, only one solution should
be selected from the optimal Pareto set. The person who has the task of choosing the
most practical solution from the optimal Pareto set is called the Decision Maker (DM).

The DM preferences are incorporated to induce a total order between the Pareto
set elements. There are several approaches in which DM preferences can be incorporated.
For example, the DM can classify the set of objectives according to their importance.
Another possibility is to obtain a sample of the Pareto front, then to select a solution
from this sample. A common classification of MO Problem resolution techniques is based
on the time when the DM is required to provide his/her preference information.

For this reason, different decision marking support techniques have been developed
for introducing DM preferences in the optimization process [22] This classification is the
following:

1. a priori methods: It characterizes the so-called ’priori’ methods used for their
simplicity of implementation and their great generically. Indeed, the objectives of
the optimization problem are transformed into a single objective function. Many
aggregation’s methods including weighted sum, fuzzy integrals, Tchebytchev func-
tions, ... are available in the literature [15]. In the weighted sum case, the decision
maker is supposed to quantify a priori the importance of each criterion in order to
build a single function. The single-objective optimization process is then launched
to determine the optimal solution.

2. a posteriori methods: In the posterior methods, one seeks to find the opti-
mal Pareto solutions without the DM intervening during the process of resolution.
Therefore, the method must provide the DM with the totality of the found Pareto
front, then the DM chooses the most suitable solutions for him/her. These meth-
ods do not require prior knowledge of the problem and therefore there is no need
to model the decision maker’s preferences. However, the huge number of solutions
obtained can make the optimal Pareto set difficult to analyze for the DM.

3. interactive methods: Interactive methods aim to involve the DM throughout the
research process. Therefore, throughout the resolution process the DM interacts
with the resolution method. The DM can define his/her preferences in a clear and

13
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understandable way. The process is iterated many times until the DM is satisfied.
The most efficient methods for obtaining a set of optimal solutions are the posterior
methods as the choice of a solution is made after having solved the optimization
problem.

Resolution methods

For finding the global optimum, different methods are available in the literature. These
methods can be classified into three main categories [23, 24]:

• Enumerative Methods,

• Deterministic Methods,

• Stochastic Methods.
In the following we have presented these three methods:

Enumerative Methods

The enumerative methods evaluate the objective function(s) for each feasible solution.
These methods are interesting and efficient in case where the optimization problem has
a limited number of solutions. The performances of such methods break down in case of
large space problem as it might be impossible to search all the candidate solutions in the
space [23].

Deterministic Methods

Deterministic methods do not rely on any random mechanism. They, in contrast, require
some mathematical properties of the problem at hand such as drivability and use them
to construct a set of potential solutions that converge to a global optimal solution. The
deterministic methods produce the same outputs for the same inputs and thus the re-
productivity of their results is too easy. These types of methods, as applied to nonlinear
minimization problems, generally rely on establishing an iterative procedure, which, after
a certain number of iterations, will hopefully converge to the minimum of the objective
function(s). The iterative procedure can be written in the following general form [25, 26]

xt+1 = xt+γdt
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where
γ the search step size
d is the direction of descent
tk is the iteration number.

The most famous deterministic methods available in the literature are described in
the following sub-subsections.

Gradient-based methods

The gradient method is probably one of the oldest optimization algorithms for solving
non-linear optimization problems [27]. These methods proceed as follows:

we choose a starting point x0 and we calculate the gradient of the objective function
f in the point x0. The gradient indicates the direction of the greatest increase in the
objective function f, we move a quantity λ0 in the opposite direction to the gradient and
we have the next point x1:

x1 = x0−λ0 5f(x0)
‖ 5f(x0) ‖

A series of points x0,x1, · · · ,xk is then obtained, which approach the optimum.

xk+1 = xk−λk 5f(x
k)

‖ 5f(xk) ‖

λk > 0 define the pace of displacement at each iteration. If the displacement step
has a given value, the method is called not determined.

The major disadvantage of these methods is the slow convergence for some types
of functions, in fact the method may converge towards a local optimum depending on
the chosen starting point. In flat or steep regions, convergence will be slowed down
considerably

Newton-based methods

Newton-based methods construct an approximation of the Hessian matrix, using only the
evolution of the gradients and assuming that the function can be locally approximated
by a quadratic limited expansion around the optimum.

The Newton method, is a powerful for solving single-objective Optimization. we
assume that the objective function is of class C2 is positive.

xk+1 = xk−|5 f(xk)|−1 +52f(xk)
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There is abundant literature on Newton-based methods. We refer the interested
reader to the references [28, 29].

Stochastic Methods

As indicated by their name, the stochastic methods use a stochastic process to guide the
search to find the minimum of the objective function(s) f. The majority of optimiza-
tion problems are difficult to tackle using the two previous exploration methods as the
necessary computation time can be unreasonable or even infinite. This is the case of
optimization problems having large and/or complex search spaces. This is also the case
of the problems using numerical models without any algebraic information on the link
between the decision variables, the objective functions, and constraints. For this kind,
Figure II.3 shows an example of black-box optimization problems, the stochastic meth-
ods are considered as suitable and efficient. The stochastic methods can be divided into
two main groups: single-solution search methods and multiple-solutions search methods
also named population-based search methods. The first group evolve one single solution
while the last group evolve a set (population) of solutions in the search space towards
the optimal solution without guarantee to attain it. The simulated annealing algorithm
proposed in [30] is one of the most known single-solution search methods. This algorithm
is inspired from physics laws of thermodynamic evolution to search for the minimum-
energy states. The evolutionary algorithms such as genetic algorithms are unboundedly
the most known population-based search algorithms. Under the term of metaheuristics
algorithms, a large number of both types of stochastic search methods is available in the
literature. The next section is dedicated to those algorithms designed for solving difficult
optimization problems.

Systemsdecision
variables x

Objectif function f
Contraintes g and h

Figure II.3 – Illustration of a complex black-box optimization problem. for optimiz-
ing system .

16



II.4 Metaheuristics

Metaheuristics

The word metaheuristic is derived from two Greek words, meta which means beyond, in
a higher level, and heuristic which means the art of inventing, making discoveries. The
etymological decomposition of the word thus makes it possible to understand its meaning:
a heuristic that makes it possible to find other heuristics, which favors emergence. As a
reminder, heuristics are simple empirical rules that are not based on sometimes complex
scientific analyzes, but on the experience and relationships accumulated over the results.
These rules therefore simply use past results to optimize future research by first examining
the more plausible cases [11, 31]. More simply, it will be said that metaheuristics form a
family of optimization algorithms designed to solve difficult optimization problems, often
coming from the field of operations research, engineering or artificial intelligence.

Metaheuristics appeared in the early 1980s with the aim of tackling difficult opti-
mization problems for which no more efficient classical optimization methods are known.

According to [32] "Metaheuristics are a family of non-exact optimization methods
for finding high quality solutions to complex optimization problems which cannot be
solved effectively by exact techniques". Metaheuristics cannot, in general, guarantee to
find optimal solutions but they tend to produce near-optimal solutions with a reasonably
low computational effort. This class of approaches includes, among others, for example:
Evolutionary Algorithms, Tabu Search, Simulated Annealing and Particle Swam Optimiza-
tion. Evolutionary Algorithms (EA), which are by far the most well-known and widely
used metaheuristics [5]. Algorithm 1 describes the Metaheuristics.

Algorithm 1 Pseudo code of Metaheuristics
Function X̂ = metaheuristics(nx,m, f (x) ,xl,xu,nit)
1: Generate a uniform random initial population X̂ of size nC ×nx in respect to xl and xu;
2: X̂ :=

(
X̂ | f (x)

)
, Evaluation;

3: for t= 0 : nit, do
4: XG ← generation

(
X̂
)
;

5: X̂t :=
(
X̂g | f (x)

)
, Evaluation;

6: X̂ ←
(
X̂;X̂t

)
;

7: end for

Simulated annealing

Simulated annealing [30] is inspired by the physical annealing process. The simulated
annealing process repeats an iterative procedure that looks for lower cost configurations
while controllably accepting configurations that degrade the cost function. We now give
the pseudo-code of a typical simulated annealing algorithm for a minimization problem:
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Algorithm 2 Pseudo code of Simulated Annealing
Function x∗ = SA(Vf ,T0,S, f (x) ,xl,xu,nit)
1: Choose, at random, an initial solution x0 in respect to xl and xu;
2: x← x0 and T← T0 ;
3: while T> S, do
4: i← 0;
5: while i < nit; do
6: x′ ∈Vf (x) ;
7: ∆f := f

(
x′
)
− f (x);

8: if ∆f< 0; then
9: x := x′ ;
10: else
11: Generate random r := R (0, 1) uniform distribution in the range;
12: if r < e

∆f
T ; then

13: x := x′ ;
14: end if
15: end if
16: end while
17: T := α(T);
18: end while

where T0 is the initial temperature, S the minimum threshold that the temperature
can reach, α the function decreasing the temperature at certain levels,Vf the neighborhood
function.

Other variations of this method have been proposed to deal with continuous search
spaces [33]. A detailed presentation of this method is given in [15]

Tabu search

Tabu Search (TS), developed by Glover [34] in 1986, was designed to manage an embedded
local search algorithm. The main mechanisms of TS is inspired by the human memory.
TS uses a memory mechanism to explore the search space from while escaping from local
optima. this Thus, TS uses the memory mechanism to learn from the past explored
path. More details from the basic concepts of TS till more recent developments can be
found in [34–36]. Tabu search algorithm has been initially developed for combinatorial
optimization problems but has been adapted for continuous optimization problems [37].
The Pseudo-code of Tabu Search are presented in Algorithm 3, Ω given a set of feasible
solutions and N(x) defend neighborhood for each feasible solution.
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Algorithm 3 Pseudo code of Tabu Search
1: Choose an initial solution x ∈ Ω;
2: Set x∗ = x;
3: Generate a subset V∗ of solution in N(x);
4: for t= 0 : nit, do
5: Choose a best v ∈V∗ and set x = v;
6: if f (x)< f (x∗) then
7: set x∗ = x;
8: end if
9: return best solution x∗;

10: end for

Evolutionary algorithms

Evolutionary algorithm (EA) a generic population-based metaheuristic optimization algo-
rithm. An EA uses mechanisms inspired by natural evolution [6, 33]. EAs use a population
based approach in which more than one solution participates in an iteration and evolves
a new population of solutions in each iteration [16].

1. EAs do not require any derivative information

2. EAs are relatively simple to implement

3. EAs are flexible and have a wide-spread applicability.

A typical EA follows the pseudo code included in Algorithm 4.

Algorithm 4 Pseudo code of EA
Function X̂ = EA(nx,m, f (x) ,xl,xu,nit)
1: Generate a uniform random initial population X of size nX×nx in respect to xl and xu;
2: X̂ :=

(
X̂ | f (x)

)
, Evaluation;

3: for t= 0 : nit, do
4: Xs ← Selection

(
X̂
)
;

5: Xr ← Reproduction
(
X̂s

)
;

6: X̂t :=
(
X̂r | f (x)

)
, Evaluation;

7: X̂ ←
(
X̂;X̂t

)
;

8: end for

Evolutionary Programming

Evolutionary Programming (EP) introduced by Fogel [38] in 1960s. Evolutionary Pro-
gramming was originally developed to simulate evolution as a learning process aiming to
generate artificial intelligence. In the classical formulation, the predictors were evolved in
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the form of finite state machines. Nowadays, there are several variants of EP for optimiz-
ing real-valued parameters, which have become the standard EP [1, 39]. The standard
EP algorithm shows in Algorithm 5.

Algorithm 5 Pseudo code of Evolutionary Programming
Function X̂ = GA(nnx ,m, f (x) ,xl,xu,nit)
1: Generate a uniform random initial population X of size nX×nx in respect to xl and xu;
2: X̂ := (X | f (x)), Evaluation;
3: for t= 0 : nit, do
4: Apply a mutation operator over the individuals in X to create Xm with nX children ;
5: X̂t := (Xm | f (x)), Evaluation;
6: Choose the best nX individuals from X∪X̂tto form the population X̂ for the next gener-

ation
7: end for

Genetic Algorithm

The genetic algorithm is a technique of optimization and research based on the principles
of genetics and natural selection. The Genetic Algorithms (GA) method was originally
developed by John Holland in [40]. Several changes to this formulation have been devel-
oped, including different kinds of representations, selection, crossover (recombination),
mutation, and reproduction. The pseudo code of GA is presented in the algorithm 7.

Algorithm 6 Pseudo code of Genetic Algorithm
Function X̂ = GA(nx,m, f (x) ,xl,xu,nit)
1: Generate a uniform random initial population X of size nX×nx in respect to xl and xu;
2: X̂ := (X | f (x)), Evaluation;
3: for t= 0 : nit, do
4: Xs := Select n < nX parents from the X̂ ;
5: Xc := Create n new offsprings, starting from the parents selected previously, (Xs);
6: Xm := Mute the offsprings produced in the crossing Xc step with the probability pm;
7: Xr := Replace the n bad chromosomes of the population with offsprings generated previ-

ously Xm;
8: X̂t := (Xr | f (x)), Evaluation;
9: Choose the best n individuals from X∪X̂tto form the population X̂ for the next generation
10: end for

Differential Evolution

The differential evolution method developed in [41] is an evolutionary method. This
optimization method was proposed by Storn and al [42] in 1997, as an alternative to the
genetic algorithm methods. DE is an evolutionary algorithm which has been mainly used
to solve continuous optimization problems. DE shares similarities with traditional EAs.

20



II.4 Metaheuristics

Algorithm 7 Pseudo code of Differential Evolution
Function X̂ = EA(nx,CR, f (x) ,xl,xu,nit)
1: Generate a uniform random initial population X of size nX×nx in respect to xl and xu;
2: X̂ := (X | f (x)), Evaluation;
3: for t= 0 : nit, do
4: for t= 0 : nX, do
5: r1 := R (0, 1) , r2 := R (0, 1) , r3 := R (0, 1);
6: Select randomly r1 6= r2 6= r3;
7: jrand := R (0, nx);
8: a := R (0, 1);
9: for j = 1 : nx, do
10: if a < Cr or j = jrand; then
11: ut+1(i, j) = xt(r3, j) +F(xt(r1, j)−xt(r2, j));
12: else
13: ut+1(i, j) = xt(i, j);
14: end if
15: end for
16: if (Ut+1(:, j) | f (x))< (Xt(:, j) | f (x)); then
17: Xt+1(:, j) = Ut+1(:, j);
18: else
19: Xt+1(:, j) = Ut(:, j);
20: end if
21: end for
22: end for

where R (0, 1) is a function that returns a real number between 0 and 1. Cr and F
are user-defined parameters.

Backtracking Search Algorithm

Backtracking Search optimization Algorithm (BSA), is one of the recently proposed evo-
lutionary algorithms (EAs). Motivation of its development was the need for a simpler
and effective search algorithm with a single control parameter. According to the BSA’s
author, it shows a good convergence performance compared to other algorithms, it is able
to solve multi-modal problems and it is not over sensitive to the initial value of the control
parameter [43].

BSA’s performance results from the combination of exploration of the search space
and of the use of a search direction matrix. The algorithm can be decomposed into
five successive steps: initialization, selection-I, mutation and crossover operators, and
selection-II.

The Pseudo code of BSA is presented in algorithm 8:
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Algorithm 8 Pseudo code of BSA
1: Initialization population
2: for t= 0 : nit, do
3: Selection-I
4: mutation
5: Crossover
6: Selection-II
7: end for

Artificial Immune Systems

Artificial Immune Systems (AIS), a variety of bio-inspired metaheuristics have become
popular in the last few years [44]. The first immune optimization algorithm proposed in
[45] and included an abstraction of clonal selection to solve computational problems.

The AIS algorithms implement a variety of principles observed in the adaptive part
of biological immune systems of the vertebrae [26,25] including the negative selection,
clonal selection, and immune networks.

Multi-Objective Evolutionary Algorithms

The goal of this thesis is to solve a multi-objective optimization problems (MO) Problems.
In MO Problems there is no single solution that minimizes all objectives simultaneously,
but a set of solutions that correspond to the best possible trade-offs among the objectives.
When solving a MO Problems, one usually not only wants to find this set of trade-
off solutions, but also that these solutions are well-distributed along the Pareto front.
Evolutionary Algorithms (EA) as part of metaheuristics, have been recognized to be
very successful in solving MO problems by finding a representative set of Pareto optimal
solutions within a single run [16, 46, 47].

For several years [48, 49], there is a growing interest in the applying of EAs to
deal with MO problems, these EAs are called multi-objective evolutionary algorithms
(MOEAs). The optimization process is based of an MOEAs in the iteration adaptation
of population until a pre-specified optimization goal is illustration in Algorithm 9.

Several MOEAs have been developed and applied in MO Problems, for example:
Multi-Objective Genetic Algorithm (MOGA) [50], Niched Pareto Genetic Algorithm [51],
Strength Pareto Evolutionary Algorithm (SPEA) [52], and its improved version (SPEA2)
[8], Non-dominated Sorting Genetic Algorithm (NSGA) [53], NSGA-II [7] and Multi-
Objective Evolutionary Algorithm based on Decomposition (MOEA/D) [54]. The popular
MOEAs are presented in detail, in this section.
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Algorithm 9 General MOEAs template
Function X̂ = MOEA(nx,nX,m, f (x))
1: Generate a uniform random two populations X of size nX×nx respect to xl and xu;
2: X̂ := (X | f (x));
3: t= 0;
4: while stopping criterion is not satisfied, do
5: X̂t := Evaluate

(
X | f

(
X̂
))

;

6: X̂r
t :=Ranking

(
X̂
⋃

X̂t

)
;

7: if X̂r
t not full then

8: X̂r := Crowding_Distance
(
X̂′′

t

⋃
X̂t

)
;

9: X̂t :=
(
X̂r

t

⋃
X̂r

)
;

10: end if
11: end while

Non-dominated sorting genetic algorithm II (NSGA-II)

The Non-dominated sorting genetic algorithm II (NSGA-II), was proposed by Deb et
al. [7]. NSGA-II is a revised version of the Non-dominated Sorting Genetic Algorithm
(NSGA) proposed by Srinivas and Deb [55].

The pseudo-code of the NSGA-II is shown in Algorithm 10. First, NSGA-II uses
the Pareto dominance to classify individuals in the parent’s population according to their
non-domination level. Then, NSGA-II applies evolutionary operators (selection, crossover,
and mutation) to create an offspring population having the same size as the parent popu-
lation. The combined parents and and offspring population is then partitioned into fronts
following the dominance ranks of individuals. Finally, the population for the next gen-
eration is selected from the combined population considering the ranked fronts and the
crowding distance. Figure II.4 shows a sketch of one iteration from NSGA-II. The crowd-
ing distance used in the selection operator of NSGA-II is designed to maintain diversity
within the population. NSGA-II procedure has three features:

1. It uses an elitist principle

2. It emphasizes non-dominated solutions.

3. It uses an explicit diversity preserving mechanism
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Figure II.4 – Diagram that shows the way in which the NSGA-II works.

Algorithm 10 Pseudo code of the NSGA-II algorithm
Function X̂ = NSGA− II(nx,nX,m, f (x) ,nit)
1: Generate a uniform random two populations X of size nX×nx respect to xl and xu;
2: X̂ := (X | f (x));
3: X̂ := Find_Non_Dominated

(
X̂ | f (x)

)
;

4: for t= 1 : tit, do
5: X̂′

t :=Binary_Tournament
(
X̂
)
;

6: X̂′′
t := Crossove&Mutation

(
X̂′

t

)
;

7: X̂′′
t :=

(
X | f

(
X̂′′

t

))
;

8: X̂r
t :=Ranking

(
X̂′′

t

⋃
X̂t

)
;

9: if X̂r
t not full then

10: X̂r := Crowding_Distance
(
X̂′′

t

⋃
X̂t

)
;

11: X̂t :=
(
X̂r

t

⋃
X̂r

)
;

12: end if
13: end for

Strength Pareto Evolutionary Algorithm 2 (SPEA2)

“Strength Pareto Evolutionary Algorithm2 (SPEA2) introduced by [8]. a revised version
of was proposed by Eckart and al. [52]. This approach has been conceived as a way to
integrate different evolutionary algorithms of multi-objective optimization. SPEA uses an
external archive Xe. Algorithm 11 shows the pseudo-code for SPEA2.

“SPEA2 has three main differences with respect to its predecessor:
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1. it incorporates a fine-grained fitness assignment strategy which takes into account
for each individual the number of individuals that dominate it and the number of
individuals to which it dominates;

2. it uses a nearest neighbor density estimation technique which guides the search more
efficiently,

3. it has an enhanced archive truncation method that guarantees the preservation of
boundary solutions.

”

Algorithm 11 Pseudo code of the SPEA2 algorithm
Function X̂ = SPEA2(nx,nX,m, f (x) ,nit,nX,nXt)
1: Generate a uniform random population Xt of size nX×nX in respect to xl and xu;
2: Create an empty external archive Xe→∅ of size nXe ;
3: t→ 0
4: while stopping criterion is not satisfied, do
5: X̂t := (Xt | f (x));
6: X̂e

t := (Xe
t | f (x));

7: Xt+1 := Find_Non_Dominated
(
X̂
⋃

Xe
t

)
;

8: if nXt+1 > nXt then
9: Use the truncation operator to remove elements;
10: else
11: nXt+1 < nXt

12: Use dominated individuals in Xt to fill Xe

13: end if
14: end while

Pareto Archived Evolution Strategy (PAES)

The Pareto Archived Evolution Strategy (PAES) a (1+1) evolution strategy initially in-
troduced by Knowles and Corne [56]. PAES uses local search from a population of one
and use a reference archive of previously found solutions. Thus archive is used identify the
approximate dominance ranking of the current solution vector. A description of PAES is
presented in Algorithm 5. An initial individual is first created, who serves as a parent to
create new solutions. The next step is to create an offspring from the parent individual,
which is achieved by applying a mutation operator to the parent.

The comparisons are made to decide whether the child will be added to the archive
or not, and what solution should be the parent for the next generation. PAES stores the
non-dominated solutions found so far during the search in an external archive [15, 17].
The pseudo-code of PAES is shows in algorithm 12.
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Algorithm 12 Pseudo code of the PAES algorithm
Function X̂ = PAES(n,m, f (x) ,nit,nX,nXt)
1: Generate a uniform random individual x;
2: Create an empty external archive Xe←− ∅ of size nXe ;
3: Add x to external archive Xe := Xe∪x;
4: t→ 0
5: while stopping criterion is not satisfied, do
6: Mutate x to create xm;
7: if x� xm; then
8: Discard xm;
9: else
10: if xm � x; then
11: Replace x with xm, and add xm to archive Xe := Xe∪xm;
12: end if
13: else
14: if ∃a ∈Xe | a � xm; then
15: Discard xm;
16: end if
17: else
18: Apply test (x,xm,Xe) to determine who becomes the new current solution and whether

to add xm to Xe;
19: end if
20: end while

The multi-objective evolutionary algorithm based on decomposition (MOEA/D)

The multi-objective evolutionary algorithm based on decomposition (MOEA/D) was pro-
posed by Zhong and al. [54]. MOEA decomposes the at hand MO problems into many
Single-objective problems (SOPs). This decompositions a linear or nonlinear weighted
aggregations of the initial MO problems objectives. Then, MOEA/D defines neighbor-
hood relations among the resulting SOPs using their aggregations weight vectors. To do
so, distances between those aggregations vectors are computed. The smallest the dis-
tance between the aggregation vectors of iand j, the closed are considered by MOEA/D.
MOEA/D optimizes each SOPs using, mainly, information from its neighbors.

In the framework of MOEA/D, several aggregation methods, , such as the weighted
sum approach, the Tchebytcheff approach, the penalty boundary intersection can be used
to decompose The initial MO problems.

Non-dominated neighbor immune algorithm (NNIA)

Non-dominated neighbor immune algorithm (NNIA) has been proposed for solving MO
problems [57]. It is a real-coded antibody population-based iterative EA designed to be
a global minimizer which uses recombination.

26



II.4 Metaheuristics

Algorithm 13 Pseudo code of the MOEA/D algorithm
1: A uniform spread of N weight vectors: λ1, ...,λnx ,
2: Initialize Xe←∅
3: Compute the Euclidean distance between any two weight vectors and then work out the T

closest weight vectors to each weight vector. For each i = 1, . . . ,nx, set B(i) = {i1, . . . , iT},
where λi1 , ...,λiT are the closest weight vectors to λi.

4: Generate an initial population X
5: X̂ := (X | f (x));
6: Initialize z = (z1, · · · ,zm)T;
7: for i= 1, . . . ,nx do
8: Randomly select two indexes k, l from B(i), and then generate a new solution y from xk

and xl by using genetic operators
9: Apply a repair/improvement heuristic on y to produce y′

10: for j = 1, . . . ,m do
11: if zj > f(y) then
12: zj = f(y)
13: end if
14: end for
15: for j ∈ B(i) do
16: if gte(y′

λj ,z)≤ gte(xjλj ,z) then
17: xj = y′ ;
18: X̂(:, j) :=

(
y′ | f (x)

)
;

19: end if
20: end for
21: Update of Xe := X̂ to Xe if it is non-dominated with respect to the vectors stored in Xe,

and remove from Xe the vectors dominated by f(y′)
22: end for
23: Return Xe;
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The heuristic search of NNIA is: proportional cloning, recombination, and hyper-
mutation. The population storing clones is called clone population. The NNIA algorithm
is presented in the algorithm 15.

Algorithm 14 Pseudo code of NNIA
Function X̂ = NNIA

(
nx,m, f (x) ,xl,xu,nX̂max,nAmax,nC ,nit

)
1: Generate a uniform random initial population X̂ of size nC ×nx in respect to xl and xu;
2: X̂ := Find_Non_Dominated

(
X̂ | f (x)

)
;

3: for t= 0 : nit, do
4: XA := CD_Truncation

(
X̂,nAmax

)
;

5: XC := Cloning (XA,nC);
6: XC :=Recombination(XC ,XA,xl,xu);
7: XC :=Hypermutation(XC ,xl,xu);
8: X̂ := Find_Non_Dominated

([
X̂;XC

]
| f (x)

)
;

9: X̂ := CD_Truncation
(
X̂,nX̂max

)
;

10: end for

Performances metrics

Multi-objective optimization algorithms, unlike single-optimization algorithms, aim si-
multaneously to ensure the convergence to, and to maintain the diversity within, the
Pareto-optimal set. Two kinds of metrics are necessary to adequately evaluate such per-
formances. In this thesis, we used the following metrics:

Generational distance

The Generational Distance (GD) proposed in [49], is a measure of the distance between
approximate solutions of the Pareto-optimal front F̂ and true Pareto front F∗. The
mathematical formulation of GD is the following:

GD(F∗, F̂) = 1
|F̂|

√√√√∑
p∈F̂

d(p,F∗)2, (II.12)

where d(x,F∗) is the minimum Euclidean distance between p and points of F∗.

Inverted generational distance

Inverted generational distance (IGD), According to [58], it is a variant of the Generational
Distance. It measures the distances between each solution composing the true optimal
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Pareto front F∗ and the computed approximation F̂. It is computed as:

IGD(F∗, F̂) = 1
|F̂|

√ ∑
p∗∈F∗

d(p∗, F̂)2 (II.13)

where d(p∗, F̂) is the minimum Euclidean distance between F∗ and the points in F̂.

Spacing metric

The Spacing metric (S), proposed by [59] measures the uniformity of the distribution of
the obtained solutions in the objective space. The mathematical formulation of S is the
following:

S(F̂) = 1
|F̂ |

√√√√√ |F̂|∑
i=1

(d−di)2, (II.14)

where d is the average value of all di and di =
|F̂|

min
j=1

 m∑
k=1
|fk(xi)−fk(xj)|

, for i 6= j and

i= 1, ..., |F̂|.

Hypervolume Metric

The Hyper-volume (Hv) performance measure was proposed by [58, 60]. This measure
calculates the volume This metric calculates the hypervolume of the multidimensional
objective space enclosed by the approximate approximate set X̂. Mathematically, for
each solution x̂ ∈ X̂, a hyper-cube vi is constructed with a reference point rp and the
solution x̂ as the diagonal corners of the hypercube. The reference point can simply be
found by constructing a vector of worst objective function values. Thereafter, a union of
all hypercubes is found and its HV is calculated:

Hv = volume
nX̂⋃
i=1

vi

 , (II.15)

Conclusion

In this chapter, we described the basics of both single and multi-objective optimization
problems. We thus presented the main differences between those two optimization prob-
lems from the point of view of uniqueness or multiplicity of possible solutions. The
Pareto dominance concept used for the multi-objective optimization has been presented.
The decision-making step or the approaches of integrating the decision-maker preferences
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into the resolution process have been discussed. The second main part of this chapter
presented the three main resolution methods available to deal with both single and multi-
objective optimization problems. We thus distinguished and presented the enumerative
methods, determinist methods, and stochastic methods. In the third section, we presented
the metaheuristics methods with particular emphasis on the MOEAs similar to those we
used in our research work. We reviewed the NSGA-II, SPEA2, PAES and MOEA/D
algorithms. We closed this chapter by presenting some performance metrics dedicated to
the evaluation and comparison of the MOEAs performances. The generational distance,
inverted generational distance, spacing metrics, and the hyper-volume metrics have been
presented.
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III.1 Introduction

Introduction

Many engineering problems have multiple objectives to be optimized. Except in triv-
ial problems, the objective functions are conflicting and there exists a number of Pareto
optimal solutions. Over the past decade, Evolutionary Algorithms (EAs) have been rec-
ognized to be very successful in solving Multi-objective Optimization (MO) problems by
finding a representative set of Pareto optimal solutions or a Pareto front within a single
run. State-of-the-art algorithms are described by, for example: [7, 8, 56, 61]. These algo-
rithms, which are population-based, are able to simultaneously explore various regions of
the Pareto front.

In the recent years, immune systems have inspired new algorithms to solve MO
Problems. Main principles of Artificial Immune Systems (AIS) algorithm are the clonal
selection, the mutation [62] and, more recently, the recombination [57, 63–69]. By us-
ing a recombination operator, the non-dominated neighbor-based immune optimization
algorithm (NNIA) appears to be efficient and effective to deal with MO problems [57].

NNIA has proved that is is beneficial to embed a crossover operator in the algorithm.
To achieve this, it uses simulated binary crossover (SBX). But SBX is a recombination
operator which performs search near the recombination parent [70].

Hybridization between algorithms is a promising way to improve their performances.
For example, immunity-based hybrid evolutionary algorithm known as HAIS for solving
both unconstrained and constrained MO problem [71] and the hybrid immune algorithm
of [72] is designed by combining the advantages of Gaussian and polynomial mutation.
[73] combines immune algorithm and Baldwinian learning. Reference [74], a novel Micro-
population Immune Multi-objective Optimization (MIMO) algorithm. Reference [75] in-
troduces a multi-objective immune algorithm with adaptive differential evolution. In ref-
erence [76] proposes a hybrid immune multi-objective optimization algorithm with a novel
recombination operator which is a combination of a newly designed difference evolution
recombination of [77] and the SBX recombination has also been designed.

In the present work, we propose a novel hybrid MO immune algorithm for tackling
continuous MO problems. Similarly to the NNIA, it considers features of MO problems:
based on the fitness values, best individuals in the trial population are selected and
recombined to guide the search toward the Pareto front. But NNIA uses SBX which has
mainly a local search ability. In our algorithm, recombination is basically inspired from
the one defined for the BSA but adaptations are found to fit in the immune algorithm.
Hence, three variants are designed in this work, resulting in new recombination operators
for immune algorithm.

This chapter is organized as follows: In Section 3 and 4, NNIA algorithm and BSA
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recombination are presented and we propose new algorithms to solve the MO problem.
The effectiveness of these algorithms is investigated in Section 5 when confronting to
various MO tests problems. A short summary is proposed to conclude this paper.

Multi-objective solution

In this work, strategy for solving the multi-objective optimization problem II.3 consists
in computing a representative set of Pareto optimal solutions X̂ which approximate X∗.
Each solution x̂k is a candidate and the set of candidates is the population X̂. Its maxi-
mum size is predefined by the user and it is referred as the size of dominant population.

Moreover, following the reference [57], terms are defined as in immunology:

1. Antibody: An antibody refers to the coding of a decision variable x. In this study,
a real-valued representation is adopted, being x itself.

2. Crowding distance: The crowding distance (CD) is a measure for diversity mainte-
nance [7]. It reads:

CD(X̂) =
m∑
j=1

Dj(X̂)
fmax
j −fmin

j + εD
(III.1)

where fmax
j and fmin

j are maximal and minimal values of the j-th objective respec-
tively, εD is a small number and:

Dj(X̂) =
 ∞ if x̂k is a boundary point of X̂

min
∣∣∣fk (X̂)−fl (X̂)∣∣∣ otherwise

(III.2)

for k, l ∈ {1, · · · , nx} such that k 6= l 6= j.

Immune optimization algorithm and recombination op-
erator

Non-dominated neighbor immune optimization algorithm

Non-dominated neighbor immune algorithm (NNIA) has been proposed for solving MO
problems [57]. It is a real-coded antibody population-based iterative EA designed to be
a global minimizer which uses recombination.

From a given trial population and knowing its fitness values, the dominant antibodies
are first found. Then, they are ranked according to their crowding-distance in order to
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select them for elitism (selection-I). Non-dominated individuals found so far are stored in
an external population, called dominant population. This population forms the current
approximation of the Pareto set. From the dominant population found so far, only partial
less-crowded individuals are selected to form the active population for the next iteration
(selection-II). The selection is therefore biased towards individuals with a high isolation
value. Then, an heuristic search is applied on this active population in order to form the
next trial population and all these process steps are repeated until a predefined number
of repetitions is reached.

The heuristic search of NNIA is: proportional cloning, recombination, and hyper-
mutation. The population storing clones is called clone population. Cloning an antibody
consists in making multiple identical copies of it [78]. The aim is that the greater the
crowding-distance value of an individual, the more times the individual will be repro-
duced. In NNIA, cloning is proportional [79]. Recombination is performed as a crossover
between each clone in the clonal population and a randomly selected active antibody. It
is realized by replacing at random some gene segments of the clone by the corresponding
ones of the selected active antibody, applying the SBX operator of [80] with boundary
control. SBX produces a new antibody from a weighted average a the two selected anti-
bodies where weights comes from a parametric probability distribution. Recombination
occurs unconditionally in NNIA, i.e. this event has a probability equal to one and it ap-
plies to every time steps. Hypermutation operator used in NNIA is the static polynomial
hypermutation with boundary control defined in the reference [79]. By using the non-
dominated neighbor-based selection and proportional cloning, NNIA pays more attention
to the less-crowded regions of the current trade-off front.

Dominant population, active population and clone population at time t are stored
by time-dependent variable matrices X̂, XA and XC , respectively. Their sizes are nX̂ ,
nA and nC respectively. The size nC of the clone population is predefined by the user,
as well as the maximum size for the dominant population nX̂max and for the active
population nAmax. Hence, three cases can be distinguished, depending of the number of
non-dominated antibodies:

1. If the number of non-dominated antibodies is less than nX̂max, an update of the
dominant population is performed with all of non-dominated antibodies and nX̂ <

nX̂max.

2. If the number of non-dominated antibodies is equal to nX̂max, they are all selected
to form the dominant population and nX̂ = nX̂max.

3. If the number of non-dominated antibodies is greater to nX̂max, a truncation selec-
tion is achieved by using the non-dominated neighbor-based selection mechanism:
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only the non-dominated antibodies part with greater crowding-distance values is
preserved for the dominant population and nX̂ = nX̂max.

The same rule applies for the active population: the active population comes from the
crowding-distance based truncation selection applied to the dominant population. Hence,
time-dependent variable matrices X̂ and XA have generally time-dependent sizes, espe-
cially at early stages of the optimization process.

The NNIA algorithm is presented in the algorithm 15 where := is the update oper-
ator. Inputs are xl and xu the lower and upper limits vectors (respectively), nD, nX̂max,
nAmax, nC and nit, the number of iterations. The reason for using an initial population
with a uniform distribution of solutions over the allowable range of the decision variables
is to sample the search space uniformly.

Algorithm 15 Pseudo code of NNIA
Function X̂ =NNIA

(
nx,m, f (x) ,xl,xu,nX̂max,nAmax,nC ,nit

)
1: Generate a uniform random initial population X̂ of size nC ×nx in respect to xl and xu;
2: X̂ := Find_Non_Dominated

(
X̂ | f (x)

)
;

3: for t= 0 : nit, do
4: XA := CD_Truncation

(
X̂,nAmax

)
;

5: XC := Cloning (XA,nC);
6: XC :=Recombination(XC ,XA,xl,xu);
7: XC :=Hypermutation(XC ,xl,xu);
8: X̂ := Find_Non_Dominated

([
X̂;XC

]
| f (x)

)
;

9: X̂ := CD_Truncation
(
X̂,nX̂max

)
;

10: end for

Empirical comparisons with various MO algorithms and several reference problems
have been performed in [57]. It has been found that NNIA was able to quite converge to
the true Pareto-optimal fronts in solving most of the reference problems.

Recombination and crossovers

NNIA recombination

In NNIA, the SBX is introduced as the recombination operator since a high level of
similarity is assumed between biological evolution and the production of antibodies [57].
This operator has been adopted in many MO EAs ([7, 56],...). It simulates the working
principle of the single-point crossover on binary-strings.

For a recombination operation, an antibody of the cloning population and an anti-
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body of the active population are selected and modified as:

{XC}ij :=


1−β

2 {XC}ij + 1+β
2 {XA}kj if a= 1 & b= 0

1+β
2 {XC}ij + 1−β

2 {XA}kj if a= 1 & b= 1
{XC}ij if a= 0

| a∼U (0,1) , b∼U (0,1)

for i∈ {1, . . . ,nC}, j ∈ {1, . . . ,nx} and k a random integer uniformly chosen in {1, . . . ,nA}.
Above, U is the uniform discrete distribution and β is a sample from a random distribu-
tion having the density:

p(β) =


0 if β < 0
η+1

2 βη if 0≤ β ≤ 1
η+1

2βη+2 if β > 1

where η is a real non-negative distribution index, which is chosen by the user. Hence,
four independent random variables are involved in this recombination operation: a, b, k
and β. In addition, a boundary control is performed by a simple projection:

{XC}ij :=


xli if {XC}ij < xli

{XC}ij if xli ≤ {XC}ij ≤ xui
xui if {XC}ij > xui

Crossover operator of backtracking search optimization algorithm

BSA has been recently proposed for solving single-objective optimization problems, based
on an attempt for a simpler search algorithm [? ]. It is a real-valued population-based
iterative EA designed to be a global minimizer. BSA is based on five successive processes:
selection-I, mutation, crossover, boundary control and selection-II. Analysis of BSA shows
that mutation is the main search operator of this algorithm, while crossover enables to
mix population.

Crossover strategy of BSA is very simple. It consists in mixing two inputs pop-
ulations to form a new output population. Let us denote XP and XQ the two inputs
populations and XR the output population, such that all of them are of equal sizes:
nX ×nx. Then, BSA’ crossover reads:

{XR}ij :=
 {XP}ij if Tij = 0{

XQ

}
ij

if Tij = 1 (III.3)

for i∈ {1, . . . ,nX}, j ∈ {1, . . . ,nx} and where T is a boolean matrix of sizes: nX×nx which

37



Chapter III. An immune multiobjective optimization with Backtracking
Search algorithm inspired recombination

is formed by following the algorithm 16. In this algorithm, η is an integer parameter which
control the amount of mixing between XP and XQ. It must be defined by the user such
that 0< η ≤ nx. In addition, a random permuting is first performed on samples (lines) of
XP before applying relation (III.3).

Algorithm 16 Algorithm for the generation of the T matrix used in the BSA crossover
1: Initialize T := 0 and a := U (0, 1);
2: if a= 0 then
3: for i= 1 : nX do
4: u := Permuting (1 : nx) ;
5: b := U (0, η) ;
6: for k = 1 : b do
7: j = uk;
8: Tij = 1;
9: end for
10: end for
11: else
12: for i= 1 : nX do
13: j := U (0, nx) ;
14: Tij = 1;
15: end for
16: end if

Recombination propositions for an hybrid algorithm

To obtain a more efficient immune algorithm, alternatives for the recombination strategy
are of interest. The proposal is an hybridization, consisting in exchanging the crossover
operator used for the recombination in NNIA with a novel BSA inspired recombination
operator.

In NNIA, recombination is achieved by involving SBX between the clonal population
and the active population. But it is important to note that both these populations have
different sizes, since it is the main objective of the clonal operator to expand the active
population. In contrast, crossover of BSA appears to be very simple and efficient. However
it concerns two populations of equal sizes. Hence, due to the unequal size of the clonal
population and the active population in NNIA, it is not possible to directly embed the
BSA crossover operator for the recombination in NNIA to obtain an hybrid algorithm.
To alleviate this incompatibility, two ideas emerge:

1. The first idea consists in expanding the active population in order to obtain an
extended active population, having its size equal to the clonal population size. The
simplest way to achieve this consists in duplicating the active population;
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2. The second idea consists in replacing the active population for the crossover by the
clonal population, leading finally to a crossover which uses only the clonal popula-
tion.

From our experiments on some tests problems, it appears that both these alternative
strategies lead to a better performance for the convergency and spacing of the Pareto front.
However, results can be worse for the spread of the Pareto front. This observation leads us
to a new idea: it is desirable to introduce a degree of mutation in the recombination of the
hybrid algorithm. As a consequence, the third proposal consists in mixing duplication of
the active population with new, random, individuals. This leads to introduce an additional
parameter for the resulting algorithm, being the amount of random individuals used in
this third recombination strategy.

Experiments

In this section, we study the efficiency of the hybridization when solving some well-
known MO problems including five ZDT problems [9] and five DTLZ problems [1]. These
benchmark problems have already been used to test the effectiveness of NNIA in [57]
and empirical comparisons have shown that NNIA was able to quite converge to the true
Pareto-optimal fronts of these problems, even for the complicated tests problems DTLZ1
and DTLZ3.

For NNIA the number of points along the Pareto front and the number of iterations
are fixed by the user. But it is expected that the obtained solutions points are accurate,
well-distributed and widely spread. In this work, performance metric indicators are used
to compare algorithms. They are the normalized Inverted generational distance (NIDG)
metric and the normalized spacing (NSP). NIGD is used to measure the convergency and
spreading while NSP is used to measure the distribution diversity.

Performance metrics

Approximate Pareto front solution of MO algorithms must achieve these two goals:
1. Convergence towards the true Pareto front; and
2. Diversity of solutions: the Pareto front must be uniformly distributed and spread

over the entire feasible objective space to adequately capture the trade-offs. For bench-
marks tests problems, the true Pareto front is known, allowing to exploit performance
metrics which used it.

We opted for two performance metrics for assessing algorithms efficiency. To measure
the extent of the convergence to the true set of Pareto-optimal solutions and the spread
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of the Pareto front set, a normalized version of the Inverted generational distance (IDG)
metric proposed by [81] is adopted, while a normalized version of the spacing metric
introduced by [? ] enables to measure the uniformity of the obtained solutions.

Normalized inverted generational distance

The normalized inverted generational distance (NIGD) is based on a proposition of [81].
It is a measure of the distance between the true Pareto front F ∗, which is known at
n∗ discrete values - and stored in the matrix F(X∗) - and approximate solutions of the
Pareto-optimal front F

(
X̂
)
:

NIGD
(
F(X∗) , F

(
X̂
))

= 1
n∗

√√√√√ n∗∑
j=1

c2
j , (III.4)

for:

cj = min
i ∈ {1, . . . , nX}

√√√√ m∑
k=1

(
Fk (X∗i )−Fk

(
X̂j

))2
 , j ∈ {1, . . . , n∗}

where • denotes a normalized objective function, ranging from 0 to 1 and defined by:

Fk (x) =
Fk (x)−min(Fk (X∗))

max(Fk (X∗))−min(Fk (X∗)) . (III.5)

Hence, the distance is calculated for every true solution with respect to its nearest
obtained Pareto optimal solution in the objective space. This implies that this measure
is sensitive to the spread of the Pareto front found by the MO procedure. Hence, both
diversity and convergence of the approximated set F

(
X̂
)
could be measured using IGD.

To obtain smaller values of this measure, the approximated set F
(
X̂
)
must be very close

to the Pareto front and cannot miss any part of the whole Pareto front at the same time.

Normalized spacing measure

The spacing metric introduced by [59] aims at measuring how uniformly the obtained
solutions are distributed by calculating a relative distance between the nearest solutions
to each other. However, in practice, to reduce bias when the orders of magnitudes of
the objectives differ considerably, the measure introduced by [59] is modified by taking
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normalized objectives functions. This leads to the normalized NSP measure, defined by:

NSP
(
F
(
X̂
))

=

√√√√√ 1
nX −1

nX∑
j=1

(
dj−d

)2
(III.6)

for:

dj = min
i ∈ {1, . . . , nX}

i 6= j

√√√√ m∑
k=1

(
Fk

(
X̂i

)
−Fk

(
X̂j

))2
 , j ∈ {1, . . . , nX}

where d is the mean of d. When the obtained solutions are more evenly distributed,
the NSP measure becomes smaller. Therefore, smaller NSP value indicates a preferable
solution. A null value suggests that the Pareto optimal solution set obtained by the
algorithm are evenly distributed. But we have to note that NSP does not assess for the
spread of the Pareto optimal solution.

Empirical comparison

In this section, performance of five NNIA variant are evaluated. The five variant are:

1. NNIA-X: the NNIA algorithm without crossover;

2. NNIA: the algorithm proposed by [57];

3. NNIA+X1: the hybridization of the NNIA algorithm with the BSA crossover by
using the first strategy proposed in the section 4. Inputs of the BSA crossover
function are 1) the clonal population and 2) a random permutation of an extended
active population obtained by duplicating individuals;

4. NNIA+X2: the hybridization of the NNIA algorithm with the BSA crossover by
using the second strategy proposed in the section 4. Inputs of the BSA crossover
function are 1) the clonal population and 2) a random permutation of the clonal
population;

5. NNIA+X3: the hybridization of the NNIA algorithm with the BSA crossover by
using the third strategy proposed in the section 4. Inputs of the BSA crossover
function are 1) the clonal population and 2) a random permutation of an extended
active population obtained by duplicating individuals with a proportion of random
individuals.
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For NNIA, parameters proposed in reference [57] are set:

• maximum size of dominant population: nX̂max = 100,

• maximum size of active population: nAmax = 20, and

• size of clone population nC = 100,

with the distribution index for SBX that is 15, the distribution index for polynomial
mutation that is 20 and the mutation probability of 1/nx. These parameters are remains
fixed for all experiments, with a number of iterations stopped at 250. In addition, for
NNIA+X3, the proportion of random individuals is chosen to be equal to nA and their
distribution is uniform.

Figures III.1, III.2, III.3 and III.4 show the statistic box plots 1 for NIGD and NSP
obtained for 1,000 independent runs performed on each test problems ZDT and DTLZ
that are chosen by [57]2.

1The boxplot shows the median (50th percentile) of the sample data using a horizontal red line.
Notched box plots indicate limits of the 95Edges of the rectangle exhibit the 25th and 75th percentile of
the observations. When end data are shown using +, the ends of the whiskers displayed by two horizontal
black lines are calculated using 1.5 times the interquartile space (the height of the rectangle) and data
points beyond the whiskers (the outliers) are displayed using +. However, when there is no data shown
using +, horizontal black line are given by the extrema of the data.

2From informations given in [1], it is believed that the problem denoted DTLZ6 in [57] is in fact the
DTLZ7 problem.
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Figure III.1 – Statistics box plots of NIGD obtained from 1000 independent runs of
benchmark tests problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6.
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Figure III.2 – Statistics box plots of NIGD obtained from 1000 independent runs
of benchmark tests problems DTLZ1, DTLZ2, DTLZ3, DTLZ4 and
DTL7.
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Figure III.3 – Statistics box plots of NSP obtained from 1000 independent runs of
benchmark tests problems ZDT1, ZDT2, ZDT3, ZDT4, ZDT6.
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Figure III.4 – Statistics box plots of NSP obtained from 1000 independent runs
of benchmark tests problems DTLZ1, DTLZ2, DTLZ3, DTLZ4 and
DTL7.

Analysis of NIGD statistic results show the superiority of NNIA over NNIA-X for
the treated tests problems. The superiority of NNIA+X1 and NNIA+X2 over NNIA is
also observed except for the difficult test problem DTLZ4. For ZDT4, the NNIA+X3
is found to be inferior to NNIA+X1 and NNIA+X2. But NNIA+X3 is found always
superior to NNIA for the treated tests problems. Analysis of NSP show the superiority of
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NNIA-X NNIA NNIA+X1 NNIA+X2 NNIA+X3
2% 11% 13% 11% 0.2%

Tableau III.1 – Percentage of results exhibiting a single point for the Pareto front of
the DTLZ4 test problem when 1,000 runs are carrying out.

NNIA over NNIA-X except for ZDT4 et DTLZ4. NNIA+X1, NNIA+X2 and NNIA+X3
appear to be approximately equal or superior to NNIA in all treated cases. But the
DTLZ4 problem appear to be the most difficult for all these algorithms, since there exist
some runs for which the Pareto front is approximated by only one, single, point. The
NSP for this situation is meaningless. Thus, statistics of NSP are not evaluated from the
same number of runs between the five algorithms. The Table III.1 show the percentage
of results exhibiting a single point for the Pareto front of the DTLZ4 test problem when
a sequence of 1,000 runs is carrying out with each algorithm.

Overall, we arrive to the conclusion that NNIA+X3 preserves better population
diversity and converges faster than NNIA for these bi-objective and three-objectives tests
problems.

Experiments on the ten-bar truss design problem

In this section, we address the multi-objective sizing and topology optimization of truss-
like structures which is a continuous subject of researches in structural design [82–84]. In
the past, a number of studies have been published where structural optimization problems
with multi-objectives are solved using meta-heuristics approach [32].

Problem formulation

Let the design domain comprises a set of nodes with fixed spatial coordinates, a set
of supports and a set of loads, as it is sketch in the Figure III.5 for the ten-bar truss
test. It is assumed that the structure will be modeled by linear, two nodes, bar elements
in linear elasticity, subjected only to axial forces and free from imperfections. In this
study, two objective functions have to be minimized: the mass and the displacement; and
one objective function has to be maximized: the first flexible natural frequency of the
structure.
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Figure III.5 – Sketch of the ten-bar truss.

Denoting x ∈ Ω the vector of the topological and sizing optimization parameters,
such that:

0≤ xi ≤ 1 for i ∈ {1, . . . , n}

where n= 10 is the number of elements, the three individual objectives are:

1. The mass w of the structure:

w (x) =
n∑
i=1

ρAlixi,

where li is the length of the i-th element, ρ = 2,768 kg/m3 is the density of the
material and A= 0.01419352 m2 is the element cross-section area.

2. The maximum displacement u of the structure:

u(x) = max
(

u∗ = argmin
S

(1
2uTK(x) u−uTF

))
,

where F is the vector of loads and K is the stiffness matrix of the finite element (FE)
model, having the Young’ modulus E = 68.95 GPa. The set S refers to the kinematic
admissible space, i.e. the one that satisfies the imposed boundary conditions given
by the supports while carrying all the prescribed loads, where P = 448.2 kN.

3. The opposite of the minimum flexible natural frequency f of the structure, in order
to maximize it:

−f (x) =−min
( 1

2πω
∗
)
,

where :
{
ω∗2,u∗

}
= argmin

u∈S

(
ω2 = uTK(x) u

uTM(x) u

)
, ‖u‖ 6= 0
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where M is the mass matrix of the FE model3.

Moreover, this MO problem is subjected to constraints for the mechanical stress σi for
each element i:

|σi (x)| ≤ σ i ∈ {1, . . . ,n}

where σ = 172.4 MPa is the yield strength.
Then, thanks to the introduced formulation and the domain of definition for x, the

sizing and the topology of the structure are optimized concurrently. As a consequence,
local rigid body modes or kinematic modes may appears in some cases when some design
variables are set to zero. For example, when x4 = x7 = 0, the element 10 is free to rotate.
In practice, concerned elements -such as the element 10 in this example- are detected since
their stress approach zero. As designs with local rigid body modes or kinematic modes
are not of interest, constraints are added to the MO problem formulation:

|σi (x)|
σ

> ε, i ∈ {1, . . . ,n} such that xi > 0

where ε= 0.001.
Since the optimal Pareto front is unknown for this problem, unnormalized metric

indicators are to assess for the MO algorithm performance. Thus, in practice, we introduce
an a priori scaling of the three objectives, by defining:

f1 (x) = w (x)
7,000 , f2 (x) = u(x)−0.016

20 , f3 (x) = 22,500− (2πf (x))2

5,000

Moreover, in order to handle constraints of this MO problem, we use the penalty
method. This technique consists in replacing the constrained optimization problems by
an optimization problems without constraints, when introducing new objective functions
to be optimized:

φk(x) = fk(x) + rϕ(x) (III.7)

where the penalty function chosen here is :

ϕ(x) =
n∑
i=1

(
max{0, |σi (x)|

σ
−1}

)2
+

n∑
i=1

(
max{0, ε− |σi (x)|

σ
}
)2

(III.8)

and where r is a positive penalty parameter. The problem is then solved directly for a
value of r large enough, so the constraints are satisfied. We have chosen here r = 1010.

3To obtain the best numerical efficiency for the FE analysis, the FE disassembly strategy proposed in
reference [85] is involved.

49



Chapter III. An immune multiobjective optimization with Backtracking
Search algorithm inspired recombination

Finally, the MO problem definition for the ten bar truss of this work is:

min
x∈Ω

(f1(x) + rϕ(x), f2(x) + rϕ(x), f3(x) + rϕ(x))

Numerical simulations for two objectives functions

In this subsection, the ten-bar MO problem of the previous section is subdivided and
changed into three more simple MO subproblems having only two objective functions by
considering them two-by-two: (w, u), (w, f) and (u, f). The NNIA and NNIA+X3 are
used to solve each of these three ten-bar MO problems. Algorithms parameters are kept
identical to the ones of the previous subsection 5.2.

Figures III.6 and III.7 show typical Pareto fronts obtained after 250 and 750 itera-
tions (respectively) of one typical run, when both algorithms start from the same initial
guess population. In these figures, a better diversity is observed for the NNIA+X3 for
each subproblem, and a better convergence is observed for the NNIA+X3 for the (w, f)
and (u, f) subproblems. Since each iteration of one of these algorithms requires nc = 100
evaluations of the mechanical problem, 25,000 functions evaluations are achieved when
250 iterations are carried out and 75,000 functions evaluations are achieved when 750
iterations are carried out.

Figure III.8 shows the evolution of two metrics indicators along the number of iter-
ations for one typical run. Metric indicators chosen here are spacing and hyper-volume
of Pareto fronts. Spacing evolution is presented in log-log scale in the figure. Each eval-
uation of the hyper-volume is achieved by using the same anti-utopia point and utopia
point for results consistency. Moreover, in order to compare the three MO results on
the same graph, a relative hyper-volume is plotted: the graph corresponds to the hyper-
volume obtained divided by its maximum value. These graphs show a better diversity
and convergence for NNIA+X3 compared to NNIA when early number of iterations are
considered.

Tendency observed in the previous figure is confirmed by statistical results of Figure
III.9 and Figure III.10. These figures show box plots statistic for spacing and hyper-
volume (respectively) when 300 runs stopped at 250 iterations are carried out. For spacing,
means and variance are clearly better for NNIA+X3. Hyper-volume statistic results are
also better for the NNIA+X3 when considering the (w, u) and (u, f) subproblems, while
they are almost identical for the (w, f) subproblem, although the mean and variance are
also better for the NNIA+X3. From results for the hyper-volume of the (w, f) subproblem,
it is assessed that this subproblem is the most difficult to solve since a wide spread is
observed in data for both algorithms.
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Figure III.6 – Pareto fronts of the ten-bar truss MO problem at iteration number
250 for one typical run when optimizing the three objectives functions
two-by-two: (w, u) (up-left), (w, f) (up-right), (u, f) (down).
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Figure III.7 – Pareto fronts of the ten-bar truss MO problem at iteration number
750 for one typical run when optimizing the three objectives functions
two-by-two: (w, u) (up-left), (w, f) (up-right), (u, f) (down).
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Figure III.8 – Metrics indicators of the ten-bar truss MO problem for one typical run
when optimizing the three objectives functions two-by-two: spacing
(up) and relative hyper-volume (down).

Numerical simulation for three objectives functions

Figure III.11 shows different views of the Pareto front obtained for one typical run when
solving the three objectives ten-bar truss problem, using NNIA+X3 with the following
parameter values: size of active population 30, clonal scale 150 and 750 iterations. In this
case, the size of the dominant population is not limited to any number and all Pareto
points found are kept. Figure III.12 shows the evolution of the number of points in the
dominant population for the Pareto front given in Figure III.11. It ends at 2216 Pareto
points for this run.

Figure III.13 show box plots statistics when 300 runs are carried out with NNIA
and NNIA+X3. It is observed that the number of points for the Pareto front is higher
for NNIA+X3, with a better spacing. But the hyper-volume is better for NNIA. De-
tailed analysis of results has revealed that bad results for hyper-volume are due to a slow
convergence to an extreme Pareto front point: the individual optima for the frequency
objective. For this problem, the individual minima found for the frequency objective is
most of the time better for NNIA than for NNIA+X3. However, it is also found that
individual minima of the three objectives are rarely found in the Pareto front by both
algorithms.
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Figure III.9 – Statistics box plots of spacing for 300 runs of the two-by-two MO
ten-bar subproblems: (w, u) (left), (w, f) (middle), (u, f) (right).
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Figure III.10 – Statistics box plots of relative hyper-volume for 300 runs of the two-
by-two MO ten-bar subproblems: (w, u) (left), (w, f) (middle), (u, f)
(right).
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For better results, the idea is to handle the three individual minima found by a mono-
objective optimization into the random initial population of both NNIA and NNIA+X3.
This simple modification greatly improve performance results. Figure III.14 show statis-
tics box plots when 300 runs of MO problem are carried out when the three individual
optima are given in the initial population. In such a situation and for each of the 300 runs
done, NNIA+X3 appears to be superior to NNIA for all performance aspects, including
the computed hyper-volume.

Figure III.11 – Four different views of the Pareto front obtained for one typical run
when solving the three objectives functions of the ten-bar truss prob-
lem; Colorized surface of the down-right sub-figure is added for a
better visualization and the color corresponds to the frequency ob-
jective f .
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Figure III.12 – Evolution of results for a typical run of the MO ten-bar problem:
Number of points for the Pareto front (left), spacing (middle) and
relative hyper-volume (right); Blue line with cross markers: NNIA;
Red line with squared markers: NNIA+X3.

Conclusion

This work focuses on the recombination step for an Artificial Immune Algorithm. NNIA
uses SBX for this operation, by using antibodies of the clonal population and antibodies
of the active population. We propose here new recombination strategies, by using the
BSA crossover operator when adapting input populations.

For the first recombination strategy, NNIA+X1, the clonal population and an ex-
tended active population are concerned, where the extended active population is obtained
by duplicating individual antibodies. In the second strategy, NNIA+X2, recombination
is achieved by using the clonal population and itself. The third strategy is NNIA+X3,
which uses the clonal population and an extended active population obtained by dupli-
cating individual antibodies and a proportion of random individuals. By this way, some
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Figure III.13 – Statistics box plots for 300 runs of the three objectives ten-bar prob-
lem with NNIA and NNIA+X3 with random initial population: Num-
ber of Pareto front points (left), spacing (middle) and relative hyper-
volume (right).
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Figure III.14 – Statistics box plots for 300 runs of the three objectives ten-bar prob-
lem with NNIA and NNIA+X3 when individual optima are handled
in the initial population: Number of Pareto front points (left), spac-
ing (middle) and relative hyper-volume (right).
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degree of mutation is introduced in the algorithm.
Results obtained for test problems ZDT and DTLZ of multi-objective optimiza-

tion concluded that NNIA+X3 can obviously not only accelerate the convergence speed,
but also keep the desirable diversity, especially when solving problems with many local
Pareto-optimal fronts. Then, we applied this algorithm to solve multi-objective topol-
ogy optimization of the ten bar truss structure. Experimental results indicate that the
proposed NNIA+X3 outperforms NNIA in terms of both convergence rate and solution
quality, both for the bi-objective and for three objective problems of the ten bar truss
structure.

As NNIA+X does not produce a good approximation of the Pareto Front of the
14-bar problem after 250 iterations.

We are interested in developing a new method for the resolution of MO problem
with constraints and the 14-bars problem. This method will be described in the next
chapter.
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Introduction

Most of the real world engineering problems can be formulated as multi-objective opti-
mization (MO) problems. They are characterized by a set of objective functions and by
certain constraints to be satisfied. Their solutions are given by a set of non-dominated
solutions known as Pareto front. The Pareto optimal set is thus the set of solutions rep-
resenting the best trade-offs between objectives. A comprehensive survey of the MO can
be found in [86].

Over the course of past decade, a significant number of multi-objective algorithms
has been developed. Between the population-based algorithms, which is the focus of this
work, the most well-regarded ones are: Multi-Objective Genetic Algorithm (MOGA) [50],
Non-dominated Sorting Genetic Algorithm (NSGA) [7, 53], Niched Pareto Genetic Al-
gorithm [51], Strength Pareto Evolutionary Algorithm (SPEA) [8, 60], Pareto-Archived
Evolution Strategy (PAES) [56] and Multiple Objectives with Particle Swarm Optimiza-
tion (MOPSO) [87].

In recent years, different types of MO algorithms have been proposed to solve prob-
lems with multiple objectives. For example, Generalized Differential Evolution 3 (GDE3)
[88], Archive-based Micro Genetic Algorithm (AMGA) [89], Local Search Based Evolu-
tionary Multi-Objective Optimization Algorithm (NSGAIILS) [90], Differential Evolution
with Self-adaptation and Local Search Algorithm (DECMOSA-SQP) [91], Multi-Objective
Self-adaptive Differential Evolution Algorithm with Objective-wise Learning Strategies
(OWMOSaDE) [92], Dynamical Multi-Objective Evolutionary Algorithm (DMOEADD)
[89], Multi-Objective Evolutionary Programming (MOEP) [93], Multi-Objective Evolu-
tionary Algorithm based on Decomposition (MOEA/D) [94], Multiple Trajectoire Search
(MTS) [95], LiuLi Algorithm [96], Clustering Multi-Objective Evolutionary Algorithm
(Clustering MOEA) [97], Enhancing MOEA/D with Guided Mutation and Priority Up-
date (MOEADGM) [98] and an Orthogonal Multi-objective Evolutionary Algorithm with
Lower-dimensional Crossover (OMOEAII) [99] are some of the competitive evolutionary
MO algorithms that aimed to obtain approximate Pareto front for multi-objective prob-
lems. These algorithms are compared in proceeding of "2009 IEEE Congress on Evolution-
ary Computation" for solving MO problems CEC [54]. From results obtained, MOEA/D
appears to be one of the most competitive for solving MO problems. It converts a MO
problem into a set of simple single-objective sub-problems. This approach is based on the
decomposition methods in mathematics and the optimization paradigm in evolutionary
computation [54, 100, 101].

From another hand, Backtracking Search Optimization Algorithm (BSA) is a new
nature-inspired algorithm proposed by [43] to solve single optimization problems. BSA’s

62



IV.2 Backtracking Search Algorithm

unique mechanism for generating a trial individual is effective, fast and capable of solving
different numerical optimization problems successfully and rapidly, with a simple struc-
ture. Since it was introduced, the BSA has attracted many researches and it has been
applied to various optimization engineering problems [102, 103]. Previously, two presented
multi-objective variants of basic BSA algorithm. For example, reference [104] solve multi-
type distributed generators along distribution networks problems using a multi-objective
BSA algorithm base on a weighting factor approach. The aim of this paper is also to
propose a multi-objective variant of BSA, but with a philosophy closer to the one of BSA
, both efficient and simple.

The rest of this paper is organized as follows: In Section 2 we present the BSA. In
Section 3, the MOBSA approach to solving MO problems is presented. In Section 4, the
proposed approach is validated when comparing with various multi-objective optimiza-
tion algorithms for several unconstrained and constrained benchmarks problems. Finally,
Section 5 provides a short summary of the paper.

Backtracking Search Algorithm

Backtracking Search optimization Algorithm (BSA), is one of the recently proposed evolu-
tionary algorithms. Motivation of its development was the need for a simpler and effective
search algorithm with a single control parameter. According to the BSA’s author, it shows
a good convergence performance compared to other algorithms, it is able to solve multi-
modal problems and it is not over sensitive to the initial value of the control parameter
[43].

BSA’s performance results from the combination of exploration of the search space
and of the use of a search direction matrix. The algorithm can be decomposed into
five successive steps: initialization, selection-I, mutation and crossover operators, and
selection-II. We explain these five steps in the following subsections.

Initialization

To generate an initial population, BSA uses a uniform random distribution function. The
individuals Xi,j of the initial population are built based on Equation (IV.1):

Xi,j ∼ a.(xlj ,xui) for i= 1, · · · ,nP and j = 1, · · · ,nx, (IV.1)

where nX is the population size and nx is the number of decision variables of the problem,
a := R (0, 1) is a random variable which follows a uniform distribution between 0 and 1,
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and xlj and xuj are respectively lower and upper bounds of the j-th decision variable.
Moreover, BSA requires an archived historical population. Then, it uses the Equation
(IV.2) to determine the initial values of the historical population Xh:

Xhi,j ∼ a.(xlj ,xui) for i= 1, ...,nX and j = 1, ...,nx. (IV.2)

Selection I

The first selection step aims to choose the historical population Xh in order to determine
the search direction. In the same way, as for the initial population, the individuals of the
historical population are redefined at the beginning of each iteration and computed using
the Equation (IV.3) for each i= 1, ...,nX and j = 1, ...,nx:

Let: a,b := U (0, 1) , if a < b then Xhi,j ←Xi,j . (IV.3)

Next, a permuting function is used to modify randomly the sequence of individuals of this
historical population, Equation (IV.4):

Xh := Permuting(Xh). (IV.4)

Mutation operator

The mutation operator generates the initial form of the trial mutated population Xm by
using Equation (IV.5):

Xmi,j = Xi,j +F (Xhi,j−Xi,j), for i= 1, ...,nX and j = 1, ...,nx, (IV.5)

where F is a parameter to control the amplitude of the search direction matrix which is
computed as the difference between the historical and the current populations matrices
(Xh−X).

In this paper, we use the value F = αN , where α is a real constant to choose and
N is the standard normal distribution.

Crossover Operator

From the trial population built using the mutation process, the BSA’s crossover mecha-
nism creates the final form of the trial population, which is denoted Xc. Based on the
fitness values affected to Xm, the best individuals in this population are selected to guide
the search through the target population individuals.
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Equation (IV.6) shows BSA’s crossover strategy:

Xci,j =
 Xi,j , if mapi,j = 1,

Xmi,j , if mapi,j = 0,
for i= 1, ...,nX and j = 1, ...,nx, (IV.6)

where map is a nX×nx binary integer-valued matrix which guide crossover directions.
This matrix determines the individuals of the trial population Xm to be mixed with
relevant individuals of X.

In addition, a last operation for the crossover step consists in repairing individuals
of Xc which overflow the allowed search-space. These individuals are regenerated as they
are in the initialization step so that they belong to the allowed search-space.

Selection II

BSA performs a second selection step from the trial population generated by the crossover
step. Thus, individuals from the trial population which have better fitness than individuals
in the historical population Xh are used to update this last one. Similarly, if the so
far obtained global minimum has worst fitness than best individual, BSA uses the best
individual as new global minimum in the next iteration.

The algorithm 17 gives the pseudo-code of Selection II.

Algorithm 17 Pseudo code of Selection II
Function globmin = Selection_II(X,nX, f (x) ,Xc)
1: Xf := (X | f (x));
2: Pcf := (X | f (x));
3: for i=1 to nX do
4: if Xcf (:, i)<Xf (:, i) then
5: X := Xc;
6: Xcf (:, i) := Xf (:, i);
7: end if
8: end for
9: Xf best := min(Xf ); // best∈ {1,...,nX;}
10: if Xf best < globmin then
11: globmin := Xf best;
12: end if

Proposed multi-objective backtracking search algorithm

In this section, the proposed multi-objective backtracking search algorithm (MOBSA)
is presented in detail. MOBSA includes the two main operators mutation and crossover
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presented by equation IV.5 and in algorithm IV.6 respectively, with non-dominated sorting
and constraint domination principle.

Pseudo code of the proposed MOBSA is presented in algorithm 18.

Algorithm 18 Pseudo code of the proposed MOBSA
Function X̂ = MOBSA(n,m, f (x) ,MaxG)
1: Generate a uniform random initial population X̂ respect to xl and xu, size of this population
nX̂×n;

2: X̂1 := Find_Non_Dominated
(
X̂ | f (x)

)
;

3: X̂1 := Crowding_Distance
(
X̂1
)
;

4: for t= 1 :MaxG, do
5: X̂i+1

c := Crossove+Mutation
(
X̂1,xl,xu

)
;

6: if x̂i+1
c,t dominates x̂i

t then
7: x̂i+1

t = x̂i+1
c,t

8: end if
9: if x̂i

t dominates x̂i+1
c,t then

10: x̂i+1
c,t is rejected

11: end if
12: if x̂i

t and x̂i+1
c,t , are non-dominated with each other, then

13: x̂i+1
c,t add to the population

14: end if
15: After this step ,X̂2 the size of this population between nX̂×n to 2nX̂×n;
16: X̂ := Find_Non_Dominated

(
X̂2 | f (x)

)
;

17: X̂ := Crowding_Distance
(
X̂2
)
;

18: end for

Fast non-dominated sorting

The fast non-dominated sorting procedure was developed in the framework of NSGA-II [?
]. In the elaboration of this procedure, the domination count np, the number of solutions
which dominate the solution p, and the set of solutions that the solution p dominates
Sp are calculated for every solution. The first non-dominated front is thus created and
initialized with all solutions having zero as domination count. Then, for each solution p
with np = 0, each member q of its set Sp is visited and its domination count is reduced
by one. As a result, if for any member, the domination count is equal to zero, we put it
in a separate list Q. The second non-dominated front is then created as the union of all
individuals belonging to Q. The procedure is repeated for subsequent fronts (F3,F4, etc.)
until all individuals are assigned their ranks. The fitness is set to a level number, lower
numbers correspond to higher fitness (F1 is the best).
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Crowding distance

The crowding distance defined in [7] is used as an estimate of the diversity measure of
individuals surrounding a given individual i in the population. This distance is the average
distance between two individuals located on either side of the given particular solution
along each objective. The average distance between individuals i− 1 and i+ 1 boarding
the individual i, located on the Pareto front is depicted in Figure IV.1. Such distance
is an estimation of the perimeter of cuboid formed by using the nearest neighbors. This
metric represents half of the perimeter of the cuboid encompassing the solution i.

f1

f2

•

•

••

•

•

•

•
•

•
i−1•

i+ 1
i

Figure IV.1 – Crowding distance of individual i.

The main consideration from the crowding distance is to find the Euclidean distance
between each individual in a front based on their m objectives. The computation of the
crowding distance, based on the normalized values of objectives, is given by the algorithm
19, where fmaxm and fminm are the maximum and minimum value of the mth objective
function respectively. The sum of individual crowding distance values corresponding to
each objective gives the overall crowding distance value.

Algorithm 19 Crowding distance calculation for a set solution I

1: n= |I| // number of solutions in I;
2: for each i, do
3: set I[i]distance = 0;
4: end for
5: for each objective m, I = sort(I,m) do
6: I[1]distance = I[n]distance =∞;
7: for i=2 to (n-1) do
8: I[i]distance = I[i]distance + (I[i+ 1].m− I[i−1].m)/(fmax

m − fmin
m );

9: end for
10: end for
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In this algorithm, I is a non-dominated set, n is the number of elements of I, I[i]m is
themth objective value of the ith individual in I, and sort(I,m) is sorting of the individuals
of I according to the mth objective.

Advantages of this algorithm are:

• Its simplicity, if we compare to most of the state-of-the-art EAs.

• Its efficiency to solve difficult MO problems, as it is demonstrated in the rest of this
paper.

Experimental study of MOBSA

In this section, we compare the performance of MOBSA with other two algorithms,
MOEA/D [94] and NSGA-II [7], for solving fifteen well-known complicated multi-objective
problems including UF1-UF8 unconstrained problems with variable linkage and con-
strained CF1-CF7 problems. The set of complicated MO problems studied in Congress
on Evolutionary Computation (CEC) [2] is chosen to assess the performance of the pro-
posed MOBSA. Indeed, these MO problems are generally considered in the literature since
Pareto fronts obtained have different shapes.

Experimental setting

In our experimental study, the source code of MOEA/D [94] can be found at
http://dces.essex.ac.uk/staff/zhang/webofmoead.htm. The code of NSGA-II can be ob-
tained from the original authors [7]. The simulated binary crossover (SBX) operator
and polynomial mutation [1] are applied in MOEA/D and NSGA-II for UF1-UF8 uncon-
strained problems and CF1-CF10 constrained problems. For SBX, the crossover proba-
bility pc is set as 0.8 and the distribution index for crossover is set as 15. For polynomial
mutation, the distribution index for mutation is set as 20 and the mutation probability
pm is set as 0.5. For MOBSA, the value of controls amplitude H used in this paper is
H = 3×N(0,1) (N is the standard normal distribution). The population size nXof all
compared algorithms is set as 300 for UF1-UF8 problems and 300 for CF1-CF7 prob-
lems. For MOEA/D, their neighbor size is set as 20. The maximum number of function
evaluation is set as 300,000 for 30-dimension UF problems, and 300,000 for 10-dimension
CF8-CF10 problems.
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Performance metric

In this study, we follow the choice of the reference [2] which considers the Inverted Gen-
erational Distance (IGD) metric to assess for quantitative evaluation of the algorithm
performance. IGD metric proposed by [58] is as follows. Suppose X∗ is a set of uniformly
distributed solutions original Pareto font and let X̂ be the approximate solutions of the
Pareto-optimal. Then:

IGD(X∗,X̂) =

√√√√√√
∑

x∗∈X∗
d(X∗,X̂)2

|X̂|
, (IV.7)

where d(X∗,X̂) is the minimum Euclidean distance between X∗ and the points in X̂.

Experimental study on Unconstrained MO problems

The eight unconstrained benchmark problems UF1-UF8 are addressed in this section.
They are defined in the appendix of this paper.

Figure IV.2 provides an example of Pareto fronts obtained by MOBSA for 5 inde-
pendent runs when using a population size of 300 and a maximum generation number
of 1000, for the UF1, UF2 and UF4 problems. As the initial population is random, the
Pareto front is different for each run but we can see how the results are obtained each
time. However, instead of a visual inspection, MOBSA’s performance is best studied from
performance indicators such as the IGD metric.

Hence, Figure IV.3 shows the evolution of the IGD along the number of func-
tions evaluations for one typical run. Moreover, in order to compare the performance
of MOBSA, we have also plotted the IGD evolution for the MOEA/D and NSGA-II al-
gorithms in graphs of this figure. However, it is obvious that MOBSA’s performance can
only be studied in a statistical manner since different results are obtained at each run.

Table IV.1, shows the Mean and Standard Deviation (SD) of the IGD metric ob-
tained using three algorithms MOBSA, MOEA/D and NSGA-II. In this table, boldfaced
numbers indicate the best of IGD mean across algorithms for each benchmark problem.
It can be observed from Table IV.1, that the MOBSA is able to converge better than any
other algorithm on five problems (UF1-UF2 and UF6-UF8). For problem ZDT3, the two
algorithms MOEA/D and NSGA-II outperforms MOBSA. For problems UF4 and UF3,
the MOBSA performs better than MOEA/D, but a little worse than NSGA-II in term of
convergence. Concerning results of MOBSA standards deviations, it can be observe that
they remain small after 100 runs for all unconstrained problems.

Figure IV.4 illustrates the box plots of comparisons between the proposed MOBSA
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and other two compared algorithms MOEA/D and NSGA-II with for unconstraint prob-
lems based on the IGD metric. Box plots are used to illustrate the distribution of results
over 100 independent runs. Symbol ’+’ denotes outliers.

As can be seen from Figure IV.4 that MOBSA performances stable and superior to
NSGA-II and MOEA/D in solving the more complex problems UF1, UF2, UF6, UF7 and
UF8. For tri-objective problem UF8, MOBSA performs as well as MOEA/D and superior
to NSGA-II. For two UF4 and UF5 problems, MOBSA is more stable than MOEA/D
and but better than NSGA-II. For UF3, MOEA/D performs better than two algorithms
MOBSA and NSGA-II.

According to the experimental results in Table IV.1 and Figure IV.4, we can come
to the conclusion that the proposed MOBSA converges faster and performs better than
the NSGA-II algorithm in solving the bi-objective problems UF1, UF2, UF6, UF7 and
tri-objective problem UF8. As for the bi-objective problems UF4 and UF5, NSGA-II con-
verges faster than the MOBSA algorithm. Comparing with MOEA/D, MOBSA converges
faster in dealing with most of the bi-objective problems except UF3 problem.

Figure IV.2 – Pareto fronts obtained for 5 independent runs of MOBSA when solving
UF1 problem (left) UF2 problem (middle) and UF4 problem (right).
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Algorithm Statistic UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8
MOBSA Mean 1.61E-03 1.46E-03 9.57E-03 1.17E-03 8.21E-02 1.04E-02 5.36E-04 5.54E-04

SD 5.92E-04 4.03E-04 2.29E-03 2.28E-05 5.60E-03 5.22E-04 1.78E-04 1.24E-04
MOEA/D Mean 4.42E-03 6.22E-03 4.95E-03 6.07E-02 3.19E-01 1.76E-01 4.43E-03 6.35E-02

SD 9,61E-05 1.20E-03 5.67E-03 4.15E-03 1.22E-01 1.12E-01 1.53E-04 1.14E-02
NSGA-II Mean 2.23E-03 1.90E-03 6.47E-03 1.10E-03 6.36E-02 1.09E-02 5.17E-03 7.43E-04

SD 8.57E-04 3.63E-04 1.79E-03 5.84E-05 2.23E-02 5.44E-03 5.24E-04 1.42E-04

Tableau IV.1 – Mean and Standard Deviation of the IGD metric results for the
unconstrained benchmark problems

Constrained benchmark problems results

As real engineering problems are inclined to have constrained conditions, we are inter-
ested to investigate the capability of the proposed algorithm in handling constrained MO
Problems. To do this, we have selected the CF1-CF7 problems in CEC2009 MO Problem
contest. They are defined in the appendix of this paper.

Figure IV.5 provides an example of Pareto fronts obtained by MOBSA for 5 inde-
pendent runs when using a population size of 300 and a maximum generation number of
1000, for the CF1, CF2 and CF4 problems. As it is explained in the previous section,
since the initial population is random, the obtained Pareto front is different for each run
but we can see how are the results each time. In addition, Figure IV.6 shows the evolution
of the IGD along the number of functions evaluations for one typical run, both for the
MOBSA and for the MOEA/D algorithm by using the algorithm parameters defined in
the previous section1.

Table IV.2, shows the mean and Standard Deviation (SD) of the IGD metric ob-
tained using three algorithms MOBSA, MOEA/ and NSGA-II. In this table, boldfaced
numbers indicate the best of IGD mean across algorithms for each benchmark problem.
As can be seen from Table IV.2, MOBSA is capable of finding a better mean of IGD than
any other algorithm on all the problems except CF5 and CF6. MOEA/D performs the
best on CF5 and CF6 problem in terms of average IGD metric. Moreover, one can note
that MOBSA standard deviation remains small for all problems after 100 runs.

Figure IV.7, shows the box plots of the IGD metric obtained by the proposed
MOBSA and other two compared algorithms over 100 independent runs in solving the
seven bi-objective constraint problems CF. Symbol ”+” denotes outliers.

Figure IV.7, shows the box plots of IGD metric obtained by MOBSA , MOEA/D
and NSGA-II. It can be seen that MOBSA performs better than two other algorithms in
solving five problems CF1-CF4 and CF7, of the seven problems. For UF5 problem, the

1However, MOEA/D used a penalty method to handle constraints of these problems, where 1015 is
chosen for the penalty constant.
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Figure IV.3 – Plot of the IGD evolution versus the number of functions evaluations
for UF seri problems by using MOBSA, MOEA/D and NSGA-II algo-
rithms in one typical run.72



IV.4 Experimental study of MOBSA

Figure IV.4 – Box plots of IGD metric obtained by three compared algorithms,
MOBSA ("1" column), MOEA/D ("2" column) and NSGA-II ("3" col-
umn), in solving the eight UF unconstrained problems. 73
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Figure IV.5 – Pareto fronts obtained for 5 independent runs of MOBSA when solving
CF1 problem (left), CF2 problem (middle) and CF4 problem (right).

MOBSA algorithm is more stable than MOEA/D, but NSGA-II superior to MOBSA. For
UF6, NSGA-II converge faster than two algorithm MOBSA and NSGA-II.

Simulation results show that MOBSA has remarkable performance. It is concluded
that MOBSA can obviously converges faster and performs better than the five bi-objective
constraint problems CF1-CF4 and CF7.

Algorithm Statistic CF1 CF2 CF3 CF4 CF5 CF6 CF7
MOBSA Mean 1.31E-05 3.39E-03 3.01E-03 1.67E-03 4.93e-03 1.90E-03 4.97E-03

SD 1.22E-06 1.22e-03 1.47E-04 1.29e-04 1.32e-04 3.65E-05 5.247E-04
MOEA/D Mean 4.32E-04 1.14E-02 1.76E-02 1.70E-03 1.84E-02 2.41E-03 1.89E-02

SD 3.88E-05 1 4.61E-03 3.37E-03 1.24E-03 7.65E-03 9.89E-04 9.52E-04
NSGA-II Mean 5.32E-04 2.30E-03 1.69E-02 4.25E-03 4.74E-03 6.11E-05 5.07E-03

SD 5.14E-05 2.74E-03 3.08E-03 1.29E-03 1.58E-03 3.35E-04 5.24E-04

Tableau IV.2 – Mean and Standard Deviation of the IGD metric results for the
constrained benchmark problems
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Figure IV.6 – Plot of the IGD evolution versus the number of functions evaluations
for CF problems by using MOBSA, MOEA/D and NSGA-II algorithms
in one typical run
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Figure IV.7 – Box plots of IGD metric obtained by three compared algorithms,
MOBSA ("1" column), MOEA/D ("2" column) and NSGA-II ("3" col-
umn), in solving the seven CF constrained problems.76



IV.5 Conclusion

Conclusion

In this chapter, we propose to extend the Backtracking Search Algorithm to solve multi-
objective optimization problems. BSA is a simple and effective global search algorithm
with a single control parameter developed for single-objective optimization problems,
called Multi-objective Optimization Backtracking Search Algorithm (MOBSA).

MOBSA which adopts the non-dominated sorting concept and the mechanism of
crowding distance calculation, to solve unconstrained or constrained multi-objective prob-
lems. It is a simple algorithm, which has the advantage of having only one parameter.

The performance of this algorithm is demonstrated experimentally with the help
of IGD metric indicator for fiveteen benchmarks problems including eight unconstrained
problems and seven constrained problems. Then, it is compared to the most considered
algorithms in the field: MOEA/D, NSGA-II and all algorithms in CEC platform. Hence,
we can conclude that MOBSA is able to solve complex MO problems Overall, the results
showed that MOBSA provides, most of the time, very competitive results compared to
others algorithms.

In the next chapter we will be presenting, the applications of this algorithm on the
mechanical structures.
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V.1 Structural Optimization and Mechanics

Structural Optimization and Mechanics

Since the last two decades, the optimal design of structures raises more keen interest. The
methods of optimization still too little applied to the traditional techniques of mechanical
design office in civil engineering, it gradually integrates with it as its reliability increases
[3, 105]. The idea of optimal design of structures, even if it is probably very old, is only
possible for a few decades thanks to the advent of the computer. Its implementation is
described in Figure V.1. Based on an initial design defined by a number of variable value
parameters, called design variables, the optimization aims to automatically determine
which design is the best in terms of structural performance criteria. The solution found
by this iterative process, alternating structural analysis and application of one of the
optimization methods, is described as optimal design [106, 107].

Initial design

Analysis of
the structure

Applying an
optimization method

New design

Optimal
design?

Fin

Next
Iteration

oui

non

Figure V.1 – Implementation of the optimization of structures.

The finite element method appeared with the need to solve complex computational
problems, many industrial software based on the finite element method have been devel-
oped for example ANSYS, ABAQUS.... Today, PDE’s numerical resolution methods are
mature enough to allow them to participate in engineering design assistance processes. In
the optimization domain, a number of algorithms are developed for solving these types
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of problems [108]. In this thesis we consider stochastic methods as mentioned in the first
two chapters.

In the field of calculation of mechanical structures, the engineer therefore has a
wide range of methods, supported by computer tools, including the finite element method
and optimization methods that are valuable allies for the optimal design of structures in
accordance with certain rules or standards.

The development of the art of engineering requires considerable effort to continu-
ally improve structural design techniques. Optimization is important in increasing the
performance of mass, position or cost. This work addresses the problem of truss struc-
tural, which have been dealt with in collaboration with both LERMA laboratory at the
Mohammadia School of engineering and the LMN laboratory at the INSA of Rouen.

Introduction

Many structural design problems e.g. truss structural mechanical are naturally multi-
objective, i.e., they have several conflicting objectives that have to be optimized simul-
taneously. Typically, we sometimes aim to minimize the weight of a structure and to
maximize the displacement between nodes while enhancing its robustness.

Many structural design problems e.g. truss structural mechanical are naturally
multi-objective, i.e., they have several conflicting objectives that have to be optimized
simultaneously. Typically, we sometimes aim to minimize the weight of a structure and to
maximize the displacement between nodes while enhancing its robustness [109]. However,
most of the engineering design problems involve multiple and often conflicting design
objectives. The solution of such problems is very difficult compared to single-objective
optimization. For Multi-objective Optimization (MO) Problems, as objectives are usually
conflicting, there is no one optimal solution but a set of trade-offs solutions. This set of
trade-offs solutions is known as Pareto-optimal set.

Over the past decade, metaheuristic algorithms have been found to be more flexible
and efficient for solving this kind of optimization problems [16, 110, 111]. Evolutionary
algorithms (EAs), as part of metaheuristics, have been applied widely to solve MO Prob-
lems this algorithm called Multi-Objective Evolutionary Algorithms (MOEAs). Many
studies reporting the resolutions of structural optimization problems using metaheuristics
have been published [32, 112–117].

In this chapter, multi-objective Optimization Backtracking search algorithm (MOBSA),
presented in the previous chapter IV is used to solve the multi-objective truss structural
problems.

The rest of this paper is organized as follows. The next section 3 presents the explicit
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Z

Yx1

x2

x3

x4

Q

L

P

Figure V.2 – I-Beam optimization

case of truss structural design problem. In section 4, we treat the implicit cases of two
complex problems.

Truss structural design problem: Explicit case

In this section, we present the explicit case for four classic problems. Those problems
have the advantage of being available in analytical form while showing the important
characteristics of structural design optimization.

I-Beam optimization

This example has been proposed by [117] as is illustrated on the figure V.2. We want to
minimize the weight of the beam and to maximize its displacement. The mathematical
definition of the problem is:

 minx f1(x) = 2x1x2 + x3(x1−2x4)
maxx f2(x) = PL3

48EI
(V.1)
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Subject to:


g(x) = My

Wy
+ Mz

Wz
−kg ≥ 0,

10≤ x1 ≤ 80
10≤ x2 ≤ 50
0.9≤ x3 ≤ 5
0.9≤ x4 ≤ 5

(V.2)

where:
Wy =

[
2x2x4(4x2

4 + 3x1(x1−2x4)) + x3(x1−x4)3

6x1

]

Wz = 2x4x3
2 + x3

3(x1−x4)
6x2

I =
[

2x2x4(4x2
4 + 3x1(x1−2x4)) + x3(x1−2x4)3

12

]

In equation V.1, the function f1 represents the weight of the beam, and the function f2

represents the maximum displacement of bream. The values of the deterministic param-
eters are given in Table V.1. In this table, kg and E designate the stress yield point and
the Young’s modulus of the material, respectively, and My and Mz designate maximum
bending moments of a beam around the x and y axes respectively.

Tableau V.1 – The parameter values

Var P(KN) Q(KN) E(KN/CM2) kg(KN/CM2) L(CM) My(KN.CM) Mz(KN.CM)
Valeur 600 50 2×104 16 200 30000 2500

The results shown in Figure V.3, shows the Pareto-optimal front obtained by the
approaches that we compare with MOBSA and NSGA-II algorithms, after 100 iteration,
we use a population size of 100 points respectively. The Pareto front obtained by this
algorithms is shown in right Figure V.3, the non-dominated solutions obtained by MOBSA
with a good distribution original Pareto front (PF) and good spread compared with results
obtained by algorithm NSGA-II shown in right) Figure V.3.
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Figure V.3 – Pareto front for MOBSA (left) and NSGA-II (right) the I-Beam

Two bars truss design

This case study, using a two-bar truss design problem, which has been well studied by
many researchers [112] and [114]. The problem is shown in Figure V.6.

x2x1

100KN

A B

y

1m4m

Figure V.4 – The two bars truss design

The mathematical description of the problem is as follows:


min
x

(f1(x),f2(x))
such that
f1(x) = x1

√
16 +x2

3 +x2
√

1 +x2
3

f2(x) = 20
√

16 +x2
3/(x1y)

(V.3)

Subject to:  f1 ≤ 0.1, f1 ≤ 105,

fstress,BC = 80
√

1 +x2
3/(x2y)≤ 105 (V.4)
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where
0≤ x1,x2, and 1≤ x3 ≤ 3

The resultant Pareto optimal front curve is shown on Figure V.5 obtained after
100 iterations and the population size is set as 100 points. Figure V.5 shows also the
convergence efficiency of MOBSA and the uniformly distributed solutions on the Pareto
front after 100 point non-dominated. However, we note that the optimization method that
we developed offers better convergence to PF compared to results obtained by NSGA-II.

Figure V.5 – Pareto front for MOBSA (left) and NSGA-II (right) the two bars truss
design

Four bars

As an example, the multi-objective optimization problem of four bars taken from [32, 112]
shown in Figure V.6. The objective is to find an optimal structure of the four bars
simultaneously minimizing the total mass and displacement of node C. We consider the
following functions :

• f1: The total volume,

• f2: The displacement
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Figure V.6 – Four bars

The mathematic formulations in this functions followings:

min
x

:
 f1(x) = L(2x1 +

√
2x2 +√x3 +x4)

f2(x) = FL
E ( 2

x1
− 2
√

2
x2

+ 2
x4

)
(V.5)

Subject to:


F
σ ≤ x1,x4 ≤ 3Fσ√

2F
σ ≤ x2,x3 ≤ 3Fσ

(V.6)

The resultant Pareto optimal front curve in figure V.7 obtained after 250 iterations and the
population size is set as 50 points. In figure V.7, demonstrate the convergence efficiency
of BSAMO, we note that the uniformly distributed solutions on the Pareto front after 50
and 100 point non-dominated. However, we note that the optimization method that we
developed offers better convergence to PF.

Figure V.7 – Pareto front of the Four Bars
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Design of a disc brake system

In this application, we deal with the disc brake design optimization studied by [118] and
[119]. The objectives are to minimize the mass of the brake system and to minimize the
stopping time. We consider four design variables x = (x1,x2,x3,x4): the inner radius of
the disc x1, the outer radius of the disc x2, the engaging force x3 and the number of
friction surfaces x4. The mathematical formulation of the problem is as follows:

minx :


f1(x) = 4.9×10−5(x2

2−x2
1)(x4−1)

f2(x) = 9.82×106(x2
2−x2

1)
x3x4(x3

2−x3
1)

(V.7)

subject to: 

c1(x) = 20− (x2−x1)≤ 0,
c2(x) = 2.5(x4 + 1)−30≤ 0
c3(x) = x3

3.14(x2
2−x2

1) −0.4≤ 0,

c4(x) = 2.22×10−3x3(x3
2−x3

1)
(x2

2−x2
1)2 −1≤ 0,

c5(x) = 900− 2.66×10−2x3x4(x3
2−x3

1)
(x2

2−x2
1) ≤ 0,

(V.8)

Figure V.8 – Pareto front for MOBSA (left) and NSGA-II (right) for the disc brake
design application

Figure V.8 shows the approximated Pareto fronts obtained using MOBSA and
NSGA-II for this design application. MOBSA generally yields better approximations
of the Pareto front compared to NSGA-II.
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Design of a welded beam

This second application concerns the multi-objective design of a welded beam as formu-
lated in [118, 119]. In this problem, we optimize two objective functions namely: the
fabrication cost f1 and the end deflection f2 = δ. This problem has four design variables
x = (w,L,d,h): the width w and length L of the welded area, the depth d and thickness
h of the main beam. The mathematical formulation of this application is as follows:

minx :
 f1(x) = 1.10471w2L+ 0.04811dh(14 +L)
f2(x) = δ

(V.9)

subject to:
c1(x) = w−h≤ 0, c2(x) = δ−0.25≤ 0 c3(x) = τ −13600≤ 0,
c4(x) = σ−30000≤ 0, c5(x) = 0.10471w2 + 0.04811hd(14 + L)−5 : 0≤ 0,
c6(x) = 0.125−W≤ 0, c7(x) = 6000−P≤ 0,

(V.10)

for 0.1≤ l,d≤ 10, 1.125≤ w,h≤ 2 and where:

Q = 6000(14 + L
2 ), D = 1

2
√

L2 + (w+d)2, δ = 65856
30000hd3 ,

J =
√

2
[

L2

6 + (w+d)2

2

]
, β = QD

J , σ = 504000
hd2 ,

α = 6000√
2wL

, τ =
√
α2 + αβL

D +β2, P = 4.013×30×106

196
dh3

6 (1−d

√
30
48

28 ).

Figure V.9 – Pareto front for MOBSA (left) and NSGA-II (right) for the welded
beam design application

87



Chapter V. Structural design using multi-objective Backtracking Search
Algorithm

The obtained Pareto fronts are shown in Figure V.9, with the fabrication cost f1

and the end deflection f2 on the horizontal and vertical axes, respectively. As it can be
seen, a better quality distribution and approximated Pareto front is obtained for MOBSA
compared to NSGA-II.

Truss structural design problem: Implied case

In this section, we address the multi-objective sizing and topology optimization of truss-
like structures which is a continuous subject of researches in structural design [32, 82–84].

Fourteen-bar truss design problem

In a first step, the fourteen-bar truss design problem formulation is introduced. Then, a
first application case is presented where we consider three bi-objective and constrained
optimization problems. Next, a second application case concerned one three objective
constrained optimization problem.

Problem formulation

Let the design domain comprises a set of nodes with fixed spatial coordinates, a set of
supports and a set of loads, as it is sketch in the Figure V.10 for the fourteen-bar truss
test. It is assumed that the structure will be modeled by linear, two nodes, bar elements
in linear elasticity, subjected only to axial forces and free from imperfections.

Figure V.10 – Sketch of the fourteeen-bar truss.

From a mechanical point of view, several choices can be of interest for objectives
functions. For example, two objectives functions can be minimized: the mass and the
displacement while one objective function can be maximized: the first flexible natural
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frequency of the structure. Then, denoting x ∈ Ω the vector of the topological and sizing
optimization parameters, such that:

0≤ xi ≤ 1 for i ∈ {1, . . . , n}

where n= 14 is the number of elements, the three individual objectives that can be
minimized are:

1. The mass w of the structure:

w (x) =
n∑
i=1

ρAlixi,

where li is the length of the i-th element, ρ = 2,768 kg/m3 is the density of the
material and A= 0.01419352 m2 is the element cross-section area.

2. The maximum displacement u of the structure:

u(x) = max
(

u∗ = argmin
S

(1
2uTK(x) u−uTF

))
,

where F is the vector of loads and K is the stiffness matrix of the finite element (FE)
model, having the Young’ modulus E = 68.95 GPa. The set S refers to the kinematic
admissible space, i.e. the one that satisfies the imposed boundary conditions given
by the supports while carrying all the prescribed loads, where P = 448.2 kN.

3. The opposite of the minimum flexible natural frequency f of the structure, in order
to maximize it:

−f (x) =−min
( 1

2πω
∗
)
,

where :
{
ω∗2,u∗

}
= argmin

u∈S

(
ω2 = uTK(x) u

uTM(x) u

)
, ‖u‖ 6= 0

where M is the mass matrix of the FE model1.

Moreover, all possible optimization problems must be subjected to constraints for the
mechanical stress σi for each element i:

|σi (x)| ≤ σ i ∈ {1, . . . ,n}

where σ = 172.4 MPa is the yield strength.
1To obtain the best numerical efficiency for the FE analysis, the FE disassembly strategy proposed in

reference [85] is involved.
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Then, thanks to the introduced formulation and the domain of definition for x, the
sizing and the topology of the structure are optimized concurrently. As a consequence,
local rigid body modes or kinematic modes may appears in some cases when some design
variables are set to zero. For example, when x4 = x7 = 0, the element 10 is free to rotate.
In practice, this problem is detected since minimal natural frequency of the bar truss is
null. As designs with local rigid body modes or kinematic modes are not of interest, one
supplementary constraint is added to the MO problem formulation:

f (x)> ε

where ε= 10−5.

Numerical simulations for the three bi-objectives functions problems

In this subsection, the performance of MOBSA is compared with NSGA-II in solving the
three objective functions by considering them two-by-two: (w, u), (w, f) and (u, f).

Besides that, the parameters used in NSGA-II are: population size: 50; mutation
probability: pm = 0,5; crossover probability: c = 0,8; and distribution index of SBX: 15.
The parameter used in MOBSA is 100 for the population size.

Figures V.11 shows typical Pareto fronts obtained after 250 iterations of one typical
run, when both algorithms start from the same initial guess population. From this figure,
a better diversity and a better convergence are observed for MOBSA compared to NSGA-
II. This is confirmed by the range of objective values obtained that are compared in Table
V.2.
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Problem Range of Pareto fronts values MOBSA NSGA-II
(w,u) w (kg) (745, 6012) (749, 6345)

u (mm) (-24.4, 177.2) (-24.4, 176.9)
(w,f) w (kg) (727, 1973) (727, 1974)

f (Hz) ( -28.1, -21.2) (-28.2, -18.8)
(u,f) u (mm) (24.4, 104.9) (24.4, 102.1)

f (Hz) ( -28.1, -14.1) (-27.9, -13.6)

Tableau V.2 – Comparison of the results for the three bi-objectives fourteen-bar truss
design problems.

Figure V.11 – Pareto fronts of the fourteen-bar truss MO problem.

Numerical simulation for three objectives functions problem

The three objectives functions problem is considered here. Figure V.12 shows views of
the Pareto front obtained for one typical run of 250 iterations using MOBSA with a
population size of 5000. This result is satisfactory, showing that MOBSA is efficient for
solving complex problems design of truss structures when three objectives and multiple
constraints exist.

91



Chapter V. Structural design using multi-objective Backtracking Search
Algorithm

Figure V.12 – Four different views of the Pareto front obtained for one typical run
when solving the three objectives functions of the fourteen-bar truss
problem, Colorized points of the sub-figures is added for a better vi-
sualization and the color corresponds to the frequency objective f .

Truss structure design subjected to random loads

In this section, the truss structure subjected to random Gaussian loading presented in
reference [120] is investigated (see Figure V.13).
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F

L2

L1

θ

Figure V.13 – Sketch of the two bars truss

Problem formulation

The areas of the two bars are decision variables of the optimization. The left end of the
bars is fixed while the other end is subjected to a mean plus a fluctuating load. The
deterministic material properties of the steel are the Young’s modulus E = 2.1×1011 Pa
and the density ρ = 7800 kg m−3. The horizontal bar has an area S1 and length L1 = 1
m while the other bar has an area S2 and a length L2 such that L2 = L1

cos(θ) . θ = π
4 rad is

the angle between the two bars. Bounds for the areas are: 2.2≤ S1 ≤ 20 and 5≤ S2 ≤ 10
if they are expressed in mm2. PSDbars

Figure V.14 – PSD of the two-bar truss for four extremum designs.
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In this problem, it is of interest to design the truss in respect to a vertical, Gaussian,
stationary load process F (t), where t denotes the time. It is described by its mean
F = 10,000 N and its power spectrum density (PSD), which is modeled by a constant
function over a limited range of frequencies (f1,f2):

 2000 if f1 ≤ f ≤ f2

0 if not
(V.11)

From a linear hypothesis for the structural behavior, the random vertical displacement
v(t) is obviously Gaussian too, characterized by its mean µV and its standard deviation
σV . From reference [120], it has been established that µV = h(ω = 0)×F or

µV =
(

1
k1 tan(θ)2 + 1

k1 sin(θ)2

)
×F

and
σ2
V = 1

2π

∫ +∞

−∞
ΦV V (ω)dω

with
ΦV V = h(ω)ΦFF (ω)hH(ω)

where h(ω) is the frequency response function of the truss:

h(ω) =
[
k2(k1−ω2m)sin(θ)2

k1−ω2m+k2 cos(θ)2 −ω2m
]−1

for k1 = ES1L1, k2 = ES2L2, m = ρ
3(S1L1 +S2L2) and where ω = 2πf is the angular

frequency.
Then, two objectives are considered for the optimization problem: the mean and

the standard deviation of the vertical displacement. It is thus formulated as follows:

min
(S1,S2)

 µV (S1,S2),
σV (S1,S2)

(V.12)

subject to:  22≤ S1 ≤ 200,
50≤ S2 ≤ 100

(V.13)

for two frequency bands: (f1,f2)=(100, 300) and (f1,f2)=(600, 800).
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Figure V.15 – MOBSA (up) and NSGA-II (down) Pareto fronts obtained for the
frequency band (100, 300) (left) and (600, 800) Hz (right) of the two-
bar truss optimization problem.

The problem under consideration is a MO optimization problem having two objec-
tives – µV and σV in Equation V.12 – conflicting. This is shown in Figure V.15. Reason is
the following. An excited structure responds according to its natural-dynamics modes, or,
equivalently, to its frequency responses functions or impulse responses functions. Hence,
the dynamic response is affected by the shape of the excitation profile and the structural
responses functions, which in turn leads to the resulting standard deviation in the struc-
tural response. On another hand, the mean structural response is given by the structural
null frequency response or, equivalently, its static response, independently of its dynamic
response. As a consequence, these two quantities, mean and standard deviation can be
conflicting, depending on the shape of the excitation profile and on the shape of the
structural responses functions. Figure V.14 is also provided to better understand this
point.
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Numerical simulations

From our experience, MOEA/D does not succeed in solving this problem while NSGA-II
[7] does it. Figure V.15, illustrates results obtained by MOBSA and NSGA-II for the two
considered frequencies band, when starting from the same initial population and for 100
iterations. Parameters used in NSGA-II are: population size: 20; mutation probability:
pm = 0.5; crossover probability: c= 0.8; and distribution index of SBX: 15.

To compare algorithms, 30 independent runs are achieved. Figure V.16 shows the
box-plots of IGD obtained by MOBSA and NSGA-II for the two frequency bands. It can
be seen that, statistically, MOBSA performs better than NSGA-II.

Figure V.16 – Box-plots of IGD for the frequency band (100, 300) (left) and (600,
800) Hz (right) for the two-bar truss obtained by MOBSA ("1" column)
and NSGA-II ("2" column)

Conclusion

The results presented in this chapter illustrate the application of the proposed method
MOBSA presented in chapter IV in the field of structural design. We presented interesting
results in the optimal design of static structures, in the explicit case. We also dealt with
two implicit cases for which the results were satisfactory. The extension to implicit cases
has pushed us to confront the problems we have encountered and to highlight them in
order to eventually lead to the development of a methodology for the resolution of complex
structure design problems.

The proposed methodology was implemented and tested by numerical simulation on
a basic case namely the beam, then a number of applications were processed. For each of
the problems the results given by MOBSA, with the same convergence parameters which

96



V.5 Conclusion

were fixed a priori following the recommendations of the previous chapter, were compared
with those given by other methods chosen in the literature and allowed to validate the
consistency and effectiveness of our proposed algorithm MOBSA.

Extending our study to other structural design problems is an interesting research
path that we intend to explore in the near future. Another interesting research line has to
do with the fact that the variation operators used in the metaheuristics operate without
any knowledge of the problem, with suggests that BSA operators could be designed to pro-
vide more effective and efficient search capabilities, which could speed up the optimization
process.
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MOBSA application in fluid-structure
interaction problems
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VI.1 Fluid-structure interaction problem

Fluid-structure interaction problem

A general fluid structure interaction problem consists of the description of the fluid and
solid fields, appropriate fluid structure interface conditions at the conjoined interface and
conditions for the remaining boundaries, respectively.

In the following, the fields and interface conditions are introduced, furthermore, a
brief sketch of the solution procedure for each of the fields is presented.

About the fluid

All kinds of fluid flow and transport phenomena are governed by basic conservation princi-
ples such as conservation of mass, momentum and energy. All these conservation principles
are solved according to the fluid model which gives set of partial differential equations,
called the governing equations of the fluid. The following part elaborates on the theoret-
ical background of CFD and the way it is employed for this particular case [121].

The continuity equation for a compressible fluid can be written as follows

∂ρ

∂t
+div (ρu) = 0 (VI.1)

where ρ represents the density and u represents velocity of the fluid. The first term of
the equation is the rate of change of density with respect to time and the next term is
net flow of mass out of the element boundaries.

Newton’s second law states that the rate of change of momentum of a fluid particle
equals to the sum of the forces acting on a particle. The forces acting on a body are a
combination of both surface and body forces. When this law is applied for Newtonian
fluid (viscous stress is proportional to the rates of deformation) resulting equations are
called as Navier-Stokes equations. The equations written below explain the momentum
conservation principle [121]:

∂(ρui)
∂t

+div(ρuiu) =−∂p
∂x

+div(µ∇ui) +SMx (VI.2)

∂(ρuj)
∂t

+div(ρuju) =−∂p
∂y

+div(µ∇uj) +SMy (VI.3)

∂(ρuk)
∂t

+div(ρuku) =−∂p
∂z

+div(µ∇uk) +SMz (VI.4)

where ρ represents the density; u represents velocity vector; ui; uj ; uk are the velocity
components in Cartesian coordinate system, µ is the dynamic viscosity and SM represents
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the momentum source term. Since the problem at hand does not involve the heat transfer,
energy equation is not considered.

About the structure

In structural mechanics problems, in general, the task is to determine deformations of
solid bodies, which arise because of the action of various kinds of forces. From this, for
instance, stresses in the body can be determined, which are of great importance for many
applications. For the different material properties there exist a large number of material
laws, which together with the balance equations lead to diversified complex equation
systems for the determination of deformations (or displacements).

The basic governing equation of motion is given as [122]:

mü+ cu̇+ku= f(t) (VI.5)

where m is a structural mass matrix, ü is an acceleration vector, c is a structural damping
matrix, u̇ is a velocity vector, k is a structural stiffness matrix, u is a displacement vector,
f is a force vector which is a function of time, the structural damping is not involved in
the finite element model so the above governing equation is modified into following form:

mü+ku= f(t) (VI.6)

It is normal practice to use a numerical technique called finite element method
(FEM) to find the solution for the equation (VI.6). The basic principle behind this
method of finding an approximate solution to the differential equations is to divide the
volume of a structure or system in to smaller (finite) elements such that infinite number
of DOFs is converted to a finite value [123, 124].

Interface Conditions

The main conditions at the interface are the dynamic and kinematic coupling conditions.
The force equilibrium requires the stress vectors to be equal as:

σf .n= σs.n ∀x ∈ Γfsi (VI.7)

also the normal velocities at interface the interface have to match as

u.n= ∂d

∂t
.n ∀x ∈ Γfsi (VI.8)

100



VI.2 Numerical discretization

Numerical discretization

The numerical computation is developed in two steps. In the first one, the conservation
equations are formulated and an approach is adopted to evaluate all the terms. In the
second one, a segregated, sequential solution algorithm is used to form the element ma-
trices, to assemble them and to solve the resulting system for each variable separately φ
[125]. In order to solve the governing equations of the fluid motion (VI.2) (VI.3) (VI.4),
their discretized form must first be generated. Thus, the first step is the generation of a
grid, which consists of dividing the solution domain into a finite number of computational
elements [126]. In the second step, each term of the partial differential equation describing
the flow is written in such a manner that the computer can be programmed to calculate
it [127].

Finite element discretization

The FEM divides the continuum region of interest into a number of simply shaped regions
called elements. In this discretization method, the variables within each element, are
interpolated using a local polynomial Nj(xi) (shape or interpolation function) in terms of
the values j at a set of nodal points j in a way that guarantees continuity of the solution
across element sides [128? ]:

φ=
n∑
j=1

Njφj (VI.9)

where Nj is a polynomial shape function at nodes j and n is the number of nodes
on the element. The discretization process, therefore, consists of deriving the element
matrices to put together the matrix equation [125]:

([
Atransiente

]
+
[
Aadvectione

]
+
[
Adiffusione

])
{φe}=

{
Sφe
}

(VI.10)

Galerkin’s method of weighted residuals is used to form the element integrals [125].
Each degree of freedom is solved in sequential fashion. The equations are coupled, so that
each equation is solved with intermediate values of the other degrees of freedom. The
process of solving all the equations in turn and then updating the properties is called a
global iteration. Before showing the entire global iteration structure, it is necessary to
see how each equation is formed [125].
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Figure VI.1 – Geometry and boundary conditions of the problem

Figure VI.2 – Fluid velocity

FSI optimization

This section illustrates a steady-state fluid-structure interaction problem. This problem
demonstrates the use of nonlinear large-deflection structural coupling for a fluid domain.

We consider a 2D elastic plate subjected to forces of a fluid flow in a channel with
inlet velocity 0.2 m/s. The geometry of the problem is shown in figure VI.1.

At the outlet, a zero gradient condition is applied. At the walls of the channel and
the beam, a no-slip condition is employed. The relevant material parameters for the flow
and the structure are: ρf = 1000 kg/m3, µf = 1 kg/m.s, Es = 5000 N/m2 et νs = 0.4.

The flow domain is discretized with 844 quadrilateral elements and for the plate 114
elements are used.
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Figure VI.3 – Fluid flow pressure

Figure VI.4 – Initial deflection of the plate

The multiple objective for this optimization is to obtain a minimal deflection of the
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plate with minimal volume:

min
d∈D

f(d) :
 uAx

V

 (VI.11)

The shape of the plate is defined by two splines, which are connected at the top and
bottom sides. The parameterization is done with 5 design variables according to figure
VI.5. This allows a horizontal displacement of the points of the plate within the design
space defined by:

Figure VI.5 – Parametrization of the plate with 5 design variables



0.85≤ d1 ≤ 0.97
0.90≤ d2 ≤ 0.97
0.94≤ d3 ≤ 0.99
0.98≤ d4 ≤ 1.05
0.98≤ d5 ≤ 1.1

(VI.12)

The FSI problem is solved by the non-dominated BSA approach in this part. The
Pareto front solutions are generated and updated as the optimization progresses.

Results

The NNIA was used to compare with non-dominated BSA for the FSI problem. The
parameter for NNIA included: Population size and Clone population size 20, Antibodies
number 20 and Mutation probability pm = 0.5, maximum iteration of 5.

104



VI.3 FSI optimization

Figure VI.6 – Pareto fronts of FSI optimization

Figure VI.7 – Pareto fronts of FSI optimization using NNIA

Figure VI.6 and VI.7 shows the optimized front obtained using non-dominated BSA
algorithm and NNIA respectively. According to Figure VI.6 the non-dominated solutions
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obtained by non-dominated BSA with a good distribution and good spread compared
with results obtained by algorithm NNIA shown in Figure VI.7.

Conclusion

This paper has introduced BSA, a new evolutionary-computing-based global search al-
gorithm for solve the problem of fluid-structure interaction. BSA’s algorithmic structure
enables it to benefit from previous generation populations by using solutions it has found
in the past for a given problem as it searches for solutions with better fitness values. In
comparison the result of algorithm non-dominated BSA’s with the NNIA algorithm, the
solution sets of Pareto shows our algorithm better efficiency and good distributions. The
numerical study is performed using a developed code which couples MATLAB (for the op-
timization problem) and ANSYS (for the finite element model) to evaluate the calculated
objective functions.
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Conclusion

In this dissertation, we present the development of novel optimization methods for multi-
objective optimization and for multi-objective design structure problems. Next to our
research motivations, objectives and terminologies introduction (chapter I), we have ex-
plained mono and multi-objective optimization methods in chapter II. In addition, in this
chapter we have presaged the metaheuristics especially evolutionary algorithms, this type
of methods use different types of evaluations and selections, each with its own advantages
and disadvantages.

The main results of this thesis are the two approaches that we propose to solve
multi-objective optimization problems. The first one converts the Backtracking Search
Algorithm (BSA) designed for single-objective problem to an algorithm named MOBSA
for solving problem of multi-objective optimization. The second one proposes a recom-
bination basically inspired from the one defined for the Backtracking Search Algorithm
(BSA) but adaptations are found to fit in the immune algorithm.

In Chapter IV, the first contribution is presented for MOBSA based on BSA’s
operators. The effectiveness of this method is validated by tests functions of various dif-
ficulties: unconstraint, constraint, continues and discontinues problems. A comparative
study of the obtained results by this approach and other optimization algorithms drawn
from the literature shows the effectiveness of this method thanks to the good compromise
between the exploitation and the exploration of the field of research and which gives better
results in the field. The results obtained also show the robustness of the MOBSA and
the possibility of finding the Pareto front with a good precision compared to conventional
approaches. The MOBSA is successfully applied to mechanical structure problems in
chapter V for two and three objective functions, where objective functions are contradic-
tory. In the implicit cases we use the finite element analysis to evaluate objective function
values. The application of 14 bars was not found in literature for multi-objectives prob-
lems. Therefore, we conclude that MOBSA offers a potential alternative solution for
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solving different multi-objective optimization problems, such as BSA for single-objective
optimization problems.

In chapter VI, MOBSA is successfully applied to multi-objective optimization of
fluid-structure interaction (FSI) problems and compered between NNIA algorithm.

Chapter III, we present our second contribution, which is a hybrid BSA with an
Immune algorithm. The proposed algorithm aims to update the solutions found in the op-
timization phase without restarting optimization. We have tested the proposed NNIA+X
algorithm on ten benchmarks problems, ZDT and DZDT. For the comparison we pro-
pose two metrics of qualities based on two other metrics presented in chapter II. These
results show that our proposal gives better results for all tested benchmarks. It does not
apply either to all the problems of fourteen bars that we have in Chapter V.

perspective

The future research topics may focus on the following:
• Extension of the proposed MOBSA for solving complex problems in the field of

optimum structural design for examples 72, 120 bars.
• Robust Multi-objective Backtracking Search Algorithm (MOBSA) will propose for

solving multi-objective problems under incertitude.
• Develop a simple method with lower computing complexity to describe the distri-

bution of current PF, called called Multiobjective Optimization using Flower Pollination
Algorithm (MOPFA).

• Based for three crossover proposed in Chapter III, we use of information about
the evolving environment for finding better searching directions.

"Choose a job you like and you will not have to work a single day of your life."
Confucius
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Annexe: The problems of ZDT and CEC2009

Functions test ZDT in reference [1]:

ZDT1:

For ZDT1 with convex Pareto front, it can be seen from in Equation 1:

min
x

:


f1(x) = x1

f2(x) = g(x)
(

1−
√
f1(x)
g(x)

) (1)

where:

g(x) = 1 + 9

nx∑
i=2

xi
nx−1

nx−1 ; xi ∈ [0,1]; nx = 30;

ZDT2

For ZDT2 with nonconvex Pareto front, it can be seen from in Equation 2:

min
x

:
 f1(x) = x1

f2(x) = g(x)
(
1− f1(x)

g(x)

)2 (2)

where:

g(x) = 1 + 9

nx∑
i=2

xi
nx−1

nx−1 ; xi ∈ [0,1]; nx = 30;

ZDT3

For ZDT3 with disconnected Pareto front, it can be seen from in Equation 3:

min
x

:


f1(x) = x1

f2(x) = g(x)
[
1−

√
f1(x)
g(x) −

f1(x)
g(x) sin(10πf1(x))

] (3)
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where:

g(x) = 1 + 9

nx∑
i=2

xi
nx−1

nx−1 ; xi ∈ [0,1]; nx = 30;

ZDT6

For ZDT6 with nonconvex Pareto front, it can be seen from in Equation 4:

min
x

:


f1(x) = 1−exp(4x1 sin(6x1π))
f2(x) = g(x)

(
1−

(
f1(x)
g(x)

)2) (4)

where:

g(x) = 1 + 9

nx∑
i=2

xi
nx−1

nx−1 ; xi ∈ [0,1]; nx = 10;

Figure A1.1 – Pareto-front for ZDT problems.
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2 Function test CEC 2009 in reference [2]:

Function test CEC 2009 in reference [2]:

Unconstrained multi-objective test problems

• Unconstrained Problem UF1:

min
x

:


f1(x) = x1 + 2

J1

∑
j∈J1

[xj− sin(6πx1 + jπ
n )]2

f2(x) = 1−√x1 + 2
J2

∑
j∈J2

[xj− sin(6πx1 + jπ
n )]2

(5)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

The search space is [0,1]× [−1,1]n−1.

• Unconstrained Problem UF2:

min
x

:


f1(x) = x1 + 2

J1

∑
j∈J1

y2
j

f2(x) = 1−√x1 + 2
J2

∑
j∈J2

y2
j

(6)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

The search space is [0,1]× [−1,1]n−1.

yj :
 xj− [0.3x2

1 cos(24πx1 + 4jπ
n )0.6x1] cos(6πx1 + jπ

n ) j ∈ J1

xj− [0.3x2
1 cos(24πx1 + 4jπ

n )0.6x1] sin(6πx1 + jπ
n ) j ∈ J2

(7)

• Unconstrained Problem UF3:

min
x

:


f1(x) = x1 + 2

|J1|(4
∑
j∈J1

y2
j −2 ∏

j∈J1
cos(20yjπ√

j
) + 2)

f2(x) = 1−√x1 + 2
|J2|(4

∑
j∈J2

y2
j −2 ∏

j∈J2
cos(20yjπ√

j
) + 2)

(8)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};
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Annexe: The problems of ZDT and CEC2009

yj = xj−x
0.5(1+3 j−2

n−2 )
1 , j = 2, ...,n,

The search space is [0,1]× [−1,1]n−1.

• Unconstrained Problem UF4:

min
x

:


f1(x) = x1 + 2

|J1|(4
∑
j∈J1

h(yj)

f2(x) = 1−x2
1 + 2

|J2|(4
∑
j∈J2

h(yj)
(9)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, h(t) = |t|

1 + exp2|t|

The search space is [0,1]× [−2,2]n−1.

• Unconstrained Problem UF5:

min
x

:


f1(x) = x1 + ( 1

2N + ε)|sin(2Nπx1)|+ 2
|J1|

∑
j∈J1

h(yj)

f2(x) = 1−x1 + ( 1
2N + ε)|sin(2Nπx1)|+ 2

|J2|
∑
j∈J2

h(yj)
(10)

where:

J1 = {j|j is odd and 2≤ j≤n} and J2 = {j|j is even and 2≤ j≤n}; N is an integer, ε > 0

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, h(t) = 2t2− cos(4πt) + 1

The search space is [0,1]× [−1,1]n−1.

• Unconstrained Problem UF6:

min
x

:


f1(x) = x1 + max{0,2( 1

2N + ε)|sin(2Nπx1)|}+ 2
|J1|(4

∑
j∈J1

(yj)2−2 ∏
j∈J1

cos(20yjπ√
j

) + 2)

f2(x) = 1−x1 + max{0,2( 1
2N + ε)|sin(2Nπx1)|}+ 2

|J2|(4
∑
j∈J2

(yj)2−2 ∏
j∈J1

cos(20yjπ√
j

) + 2)

(11)
where:

J1 = {j|j is odd and 2≤ j≤n} and J2 = {j|j is even and 2≤ j≤n}; N is an integer, ε > 0
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2 Function test CEC 2009 in reference [2]:

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, h(t) = 2t2− cos(4πt) + 1

The search space is [0,1]× [−1,1]n−1.

• Unconstrained Problem UF7:

min
x

:


f1(x) = 5√x1 + ∑

j∈J1
y2
j

f2(x) = 1− 5√x1 + ∑
j∈J2

y2
j

(12)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n}

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n,

The search space is [0,1]× [−1,1]n−1.

• Unconstrained Problem UF8:

min
x

:



f1(x) = cos(0.5x1π)cos(0.5x2π) + 2
|J1|

∑
j∈J1

y2
j

f2(x) = cos(0.5x1π)sin(0.5x2π) + 2
|J2|

∑
j∈J2

y2
j

f3(x) = sin(0.5x2π) + 2
|J3|

∑
j∈J2

y2
j

(13)

where:
J1 = {j|3≤ j ≤ n,andj−1 is a multiplication of 3},
J2 = {j|3≤ j ≤ n,andj−1 is a multiplication of 3},
J1 = {j|3≤ j ≤ n,andj−1 is a multiplication of 3},

yj = xj−x2 sin(6πx1 + jπ

n
);

The search space is [0,1]2× [−2,2]n−2.
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Figure A1.2 – Pareto-front for CF series problems.
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Algorithm Statistic UF1 UF2 UF3 UF4 UF5 UF6 UF7 UF8
MOBSA Mean 1.61E-03 1.46E-03 9.57E-03 1.17E-03 8.21E-02 1.04E-02 5.36E-04 5.54E-04

SD 5.92E-04 4.03E-04 2.29E-03 2.28E-05 5.60E-03 5.22E-04 1.78E-04 1.24E-04
MTS Mean 6.46E-03 6.15E-03 5.31E-02 2.36E-02 1.49E-02 5.92E-02 4.08E-02 1.13E-01

SD 3.49E-04 5.08E-04 1.17E-02 6.64E-04 3.28E-03 1.06E-02 1.44E-02 1.29E-02
DMOEADD Mean 1.04E-02 6.79E-03 3.34E-02 4.27E-02 3.15E-01 6.67E-02 1.03E-02 6.84E-02

SD 2.37E-03 2.02E-03 5.68E-03 1.39E-03 4.66E-02 1.03E-02 9.46E-03 9.12E-03
MOABC Mean 6.18E-03 4.84E-03 5.12E-02 5.80E-02 7.78E-02 6.54E-02 5.57E-02 6.73E-02

SD - - - - - - - -
LiuLi Mean 7.85E-03 1.23E-02 1.50E-02 4.35E-02 1.62E-01 1.76E-01 7.30E-03 8.24E-02

SD 2.09E-03 3.32E-03 2.40E-02 6.50E-04 2.82E-02 8.29E-02 8.90E-04 7.33E-03
MOEADGM Mean 6.20E-03 6.40E-03 4.29E-02 4.76E-02 1.79E+00 5.56E-01 7.60E-03 2.45E-01

SD 1.13E-03 4.30E-04 3.41E-02 2.22E-03 5.12E-01 1.47E-01 9.40E-04 8.54E-02
GDE3 Mean 5.34E-03 1.20E-02 1.06E-01 2.65E-02 3.93E-02 2.51E-01 2.52E-02 2.49E-01

SD 3.42E-04 1.54E-03 1.29E-02 3.72E-04 3.95E-03 1.96E-02 8.89E-03 3.55E-02
DECMOSA-SQP Mean 7.70E-02 2.83E-02 9.35E-02 3.39E-02 1.67E-01 1.26E-01 2.42E-02 2.16E-01

SD 3.94E-02 3.13E-02 1.98E-01 5.37E-03 8.95E-02 5.62E-01 2.23E-02 1.21E-01
Clustering MOEA Mean 2.99E-02 2.28E-02 5.49E-02 5.85E-02 2.47E-01 8.71E-02 2.23E-02 2.38E-01

SD 3.30E-03 2.30E-03 1.47E-02 2.70E-03 3.84E-02 5.70E-03 2.00E-03 2.30E-02
AMGA Mean 3.59E-02 1.62E-02 7.00E-02 4.06E-02 9.41E-02 1.29E-01 5.71E-02 1.71E-01

SD 1.03E-02 3.17E-03 1.40E-02 1.75E-03 1.21E-02 5.66E-02 6.53E-02 1.72E-02
OMOEAII Mean 8.56E-02 3.06E-02 2.71E-01 4.62E-02 1.69E-01 7.34E-02 3.35E-02 1.92E-01

SD 4.07E-03 1.61E-03 3.76E-02 9.67E-04 3.90E-03 2.45E-03 1.74E-03 1.23E-02
OW MOSaDE Mean 1.22E-02 8.10E-03 1.03E-01 5.13E-02 4.30E-01 1.92E-01 5.85E-02 9.45E-02

SD 1.20E-03 2.30E-03 1.90E-02 1.90E-03 1.74E-02 2.90E-02 2.91E-02 1.19E-02
MOEP Mean 5.96E-02 1.89E-02 9.90E-02 4.27E-02 2.25E-01 1.03E-01 1.97E-02 4.23E-01

SD 1.28E-02 3.80E-03 1.32E-02 8.35E-04 3.44E-02 3.45E-02 7.51E-04 5.65E-02
NSGAIILS Mean 1.15E-02 1.24E-02 1.06E-01 5.84E-02 5.66E-01 3.10E-01 2.13E-02 8.63E-02

SD 7.30E-03 9.11E-03 6.86E-02 5.12E-03 1.83E-01 1.91E-01 1.95E-02 1.24E-02

Tableau A1.1 – Mean and Standard Deviation of the IGD metric results for the unconstrained benchmark problems115



Annexe: The problems of ZDT and CEC2009

Constrained multi-objective test problems

• Constrained Problem CF1:

min
x

:



f1(x) = x1 + ∑
j∈J1

(xj− sin(6πx1 + jπ
n ))

f2(x) = 1−x1 + ∑
j∈J2

(xj− sin(6πx1 + jπ
n ))

Subject to:
t

1+e4|t| ≥ 0; t= f1 +f2−a|sin[Nπ(f1−f2 + 1)]|−1.

(14)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n}

where N is an integer and a≥ 1
2N

The search space is [0,1]n.

• Constrained Problem CF2:

min
x

:



f1(x) = x1 + ∑
j∈J1

(xj−x
2(1+ 3(j−2)

n−2
1 )2

f2(x) = 1−x1 + ∑
j∈J2

(xj−x
2(1+ 3(j−2)

n−2
1 )2

Subject to:
f1 +f2−a|sin[Nπ(f1−f2 + 1)]|−1≥ 0

(15)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n}

where N is an integer and a≥ 1
2N

The search space is [0,1]n.

• Constrained Problem CF3:

min
x

:



f1(x) = x1 + 2
|J1|(4

∑
j∈J1

y2
j −2 ∏

j∈J1
cos(20yjπ√

j
) + 2)

f2(x) = 1−√x1 + 2
|J2|(4

∑
j∈J2

y2
j −2 ∏

j∈J2
cos(20yjπ√

j
) + 2)

Subject to:
f2

1 +f2−a|sin[Nπ(f2
1 −f2 + 1)]|−1≥ 0.

(16)
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2 Function test CEC 2009 in reference [2]:

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

yj = xj−x
0.5(1+3 j−2

n−2 )
1 , j = 2, ...,n,

The search space is [0,1]× [−2,2]n−1.

• Constrained Problem CF4:

min
x

:



f1(x) = x1 + 2
|J1|

∑
j∈J1

h(yj)

f2(x) = 1−x2
1 + 2

|J2|4
∑
j∈J2

h(yj)

Subject to:
t

1+e4|t| ≥ 0;

(17)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, t= x2− sin(6πx1 + jπ

n
)−0.5x1 + 0.25,

The search space is [0,1]× [−2,2]n−1.

h2(t) =
 |t| if t < 3

2(1−
√

2
2 )

0.125 + (t−1)2 otherwise

and
hj(t) = t2, for j = 2, ...,n,

• Constrained Problem CF5:

min
x

:



f1(x) = x1 + 2
|J1|

∑
j∈J1

h(yj)

f2(x) = 1−x2
1 + 2

|J2|
∑
j∈J2

h(yj)

Subject to:
x2− sin(6πx1 + jπ

n )−0.5x1 + 0.25≥ 0;

(18)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};
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yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, t= x2− sin(6πx1 + jπ

n
)−0.5x1 + 0.25,

The search space is [0,1]× [−2,2]n−1.

yj =
 xj−0.8x1 cos(6πx1 + jπ

n ) if j ∈ J1

xj−0.8x1 sin(6πx1 + jπ
n ) if j ∈ J2

h2(t) =
 |t| if t < 3

2(1−
√

2
2 )

0.125 + (t−1)2 otherwise

and
hj(t) = t2− cos(4πt) + 1, for j = 2, ...,n,

• Constrained Problem CF6:

min
x

:



f1(x) = x1 + 2
|J1|

∑
j∈J1

(yj)2

f2(x) = (1−x1)2 + 2
|J2|

∑
j∈J2

(yj)2

Subject to:
x2− sin(6πx1 + 2π

n )− sing(0.5(1−x1)− (1−x1)2)
√
|0.5(1−x1)− (1−x1)2| ≥ 0;

x4− sin(6πx1 + 4π
n )− sing(0.5

√
1−x1− (1−x1))

√
|0.5
√

1−x1− (1−x1)| ≥ 0;
(19)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

The search space is [0,1]× [−2,2]n−1.

yj =
 xj−0.8x1 cos(6πx1 + jπ

n ) if j ∈ J1

xj−0.8x1 sin(6πx1 + jπ
n ) if j ∈ J2
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2 Function test CEC 2009 in reference [2]:

• Constrained Problem CF7:

min
x

:



f1(x) = x1 + 2
|J1|

∑
j∈J1

h(yj)

f2(x) = (1−x1)2 + 2
|J2|

∑
j∈J2

h(yj)

Subject to:
x2− sin(6πx1 + jπ

n )− sing(0.5(1−x1)− (1−x1)2)
√
|0.5(1−x1)− (1−x1)2| ≥ 0;

x2− sin(6πx1 + jπ
n )− sing(0.5

√
1−x1− (1−x1))

√
|0.5
√

1−x1− (1−x1)| ≥ 0;
(20)

where:

J1 = {j|j is odd and 2≤ j ≤ n} and J2 = {j|j is even and 2≤ j ≤ n};

yj = xj− sin(6πx1 + jπ

n
), j = 2, ...,n, t= x2− sin(6πx1 + jπ

n
)−0.5x1 + 0.25,

The search space is [0,1]× [−2,2]n−1.

yj =
 xj−0.8x1 cos(6πx1 + jπ

n ) if j ∈ J1

xj−0.8x1 sin(6πx1 + jπ
n ) if j ∈ J2

h2(t) = h4(t) = t2

and
hj(t) = t2− cos(4πt) + 1, for j = 3,5, ...,n,

119



Annexe: The problems of ZDT and CEC2009

Figure A1.3 – Pareto-front for CF series problems.
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Algorithm Statistic CF1 CF2 CF3 CF4 CF5 CF6 CF7
MOBSA Mean 1.31E-05 3.39E-03 3.01E-03 1.67E-03 4.93e-03 1.90E-03 4.97E-03

SD 1.22E-06 1.22e-03 1.47E-04 1.29e-04 1.32e-04 3.65E-05 5.247E-04
DMOEADD Mean 1.13E-02 2.10E-03 5.63E-02 6.99E-03 1.58E-02 1.50E-02 1.91E-02

SD 2.76E-03 4.53E-04 7.57E-03 1.46E-03 6.66E-03 6.46E-03 6.12E-03
MOABC Mean 9.92E-03 1.03E-02 8.62E-02 4.52E-03 6.78E-02 4.83E-03 1.69E-02

SD - - - - - - -
LiuLi Algorithm Mean 8.50E-04 4.20E-03 1.83E-01 1.42E-02 1.10E-01 1.39E-02 1.04E-01

SD 1.10E-04 2.64E-03 4.21E-02 3.29E-03 3.07E-02 2.59E-03 3.51E-02
MTS Mean 1.92E-02 2.68E-02 1.04E-01 1.11E-02 2.08E-02 1.62E-02 2.47E-02

SD 2.57E-03 1.47E-02 1.56E-02 1.37E-03
MOEADGM Mean 1.08E-02 8.00E-03 5.13E-01 7.07E-02 5.45E-01 2.07E-01 5.36E-01

SD 2.50E-03 9.99E-03 7.14E-02 1.01E-01 1.72E-01 1.00E-04 1.00E-01
DECMOSA-SQP Mean 1.08E-01 9.46E-02 1.00E+06 1.53E-01 4.13E-01 1.48E-01 2.60E-01

SD 1.96E-01 2.94E-01 0.00E+00 4.67E-01 5.91E-01 1.25E-01 2.60E-01

Tableau A1.2 – Mean and Standard Deviation of the IGD metric results for the constrained benchmark problems
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