
HAL Id: tel-02191480
https://theses.hal.science/tel-02191480

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Addressing selfishness in the design of cooperative
systems

Guido Lena Cota

To cite this version:
Guido Lena Cota. Addressing selfishness in the design of cooperative systems. Computer Science
and Game Theory [cs.GT]. Université de Lyon; Università degli studi (Milan, Italie), 2017. English.
�NNT : 2017LYSEI023�. �tel-02191480�

https://theses.hal.science/tel-02191480
https://hal.archives-ouvertes.fr

DOCTORAL THESIS
Cotutelle-de-thèse

INSTITUT NATIONAL DES SCIENCES APPLIQUÉES DE LYON
ÉCOLE DOCTORALE ED 512 – INFORMATIQUE ET MATHÉMATIQUES DE LYON

SPÉCIALITÉ INFORMATIQUE
DIRECTOR: PROF. LUCA Q. ZAMBONI

UNIVERSITÁ DEGLI STUDI DI MILANO
DEPARTMENT OF COMPUTER SCIENCE

CORSO DI DOTTORATO IN INFORMATICA (XXVIII CYCLE) – INF/01
COORDINATOR: PROF. PAOLO BOLDI

Defended on 24 March 2017, by :
Guido LENA COTA

Addressing Selfishness in the Design
of Cooperative Systems

Supervisors: Prof. Lionel BRUNIE INSA de Lyon
Prof. Ernesto DAMIANI Università degli Studi di Milano

Cosupervisors: Dr. Sonia BEN MOKHTAR INSA de Lyon
Dr. Gabriele GIANINI Università degli Studi di Milano

EXAMINATION COMMITTEE:
Reviewers: Prof. Harald KOSCH Universität Passau, Germany

Prof. Vivien QUEMA Grenoble INP / ENSIMAG, France
Reviewer (Università degli Studi di Milano) , Examiner:

Dr. Julia LAWALL Sorbonne Universités, UPMC, LIP6, France
Examiners: Prof. Sara BOUCHENAK INSA de Lyon, France

Prof. Paola BONIZZONI Università degli Studi di Milano-Bicocca, Italy
Prof. Mariagrazia FUGINI Politecnico di Milano, Italy

NNT : 2017LYSEI023

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE

CHIMIE DE LYON
http://www.edchimie-lyon.fr

Sec : Renée EL MELHEM
Bat Blaise Pascal 3e etage
secretariat@edchimie-lyon.fr
Insa : R. GOURDON

M. Stéphane DANIELE
Institut de Recherches sur la Catalyse et l'Environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 avenue Albert Einstein
69626 Villeurbanne cedex
directeur@edchimie-lyon.fr

E.E.A.

ELECTRONIQUE,
ELECTROTECHNIQUE, AUTOMATIQUE
http://edeea.ec-lyon.fr

Sec : M.C. HAVGOUDOUKIAN
Ecole-Doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
Ecole Centrale de Lyon
36 avenue Guy de Collongue
69134 ECULLY
Tél : 04.72.18 60.97 Fax : 04 78 43 37 17
Gerard.scorletti@ec-lyon.fr

E2M2

EVOLUTION, ECOSYSTEME,
MICROBIOLOGIE, MODELISATION
http://e2m2.universite-lyon.fr

Sec : Sylvie ROBERJOT
Bât Atrium - UCB Lyon 1

04.72.44.83.62
Insa : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Fabrice CORDEY
CNRS UMR 5276 Lab. de géologie de Lyon
Université Claude Bernard Lyon 1
Bât Géode
2 rue Raphaël Dubois
69622 VILLEURBANNE Cédex
Tél : 06.07.53.89.13
cordey@ univ-lyon1.fr

EDISS

INTERDISCIPLINAIRE SCIENCES-
SANTE
http://www.ediss-
lyon.fr

Sec : Sylvie ROBERJOT
Bât Atrium - UCB Lyon 1

04.72.44.83.62
Insa : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Emmanuelle CANET-SOULAS
INSERM U1060, CarMeN lab, Univ. Lyon 1
Bâtiment IMBL
11 avenue Jean Capelle INSA de Lyon
696621 Villeurbanne
Tél : 04.72.68.49.09 Fax :04 72 68 49 16
Emmanuelle.canet@univ-lyon1.fr

INFOMATHS

INFORMATIQUE ET
MATHEMATIQUES
http://infomaths.univ-lyon1.fr
Sec :Renée EL MELHEM
Bat Blaise Pascal, 3e

étage
Tél : 04.72. 43. 80. 46
Fax : 04.72.43.16.87
infomaths@univ-lyon1.fr

M. Luca ZAMBONI

Bâtiment Braconnier
43 Boulevard du 11
novembre 1918
69622 VILLEURBANNE Cedex
 Tél :04 26 23 45 52
 zamboni@maths.univ-lyon1.fr

Matériaux

MATERIAUX DE LYON
http://ed34.universite-lyon.fr

Sec : Marion COMBE
Tél:04-72-43-71-70 –Fax : 87.12
Bat. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIERE
INSA de Lyon
MATEIS
Bâtiment Saint Exupéry
7 avenue Jean Capelle
69621 VILLEURBANNE Cedex
Tél : 04.72.43 71.70 Fax 04 72 43 85 28
Ed.materiaux@insa-lyon.fr

MEGA

MECANIQUE, ENERGETIQUE, GENIE
CIVIL, ACOUSTIQUE
http://mega.universite-lyon.fr

Sec : Marion COMBE
Tél:04-72-43-71-70 –Fax : 87.12
Bat. Direction
mega@insa-lyon.fr

M. Philippe BOISSE
INSA de Lyon
Laboratoire LAMCOS
Bâtiment Jacquard
25 bis avenue Jean Capelle
69621 VILLEURBANNE Cedex
Tél : 04.72 .43.71.70 Fax : 04 72 43 72 37
Philippe.boisse@insa-lyon.fr

ScSo

ScSo*
http://recherche.univ-lyon2.fr/scso/
Sec : Viviane POLSINELLI

Brigitte DUBOIS
Insa : J.Y. TOUSSAINT
Tél : 04 78 69 72 76
viviane.polsinelli@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 rue Pasteur
69365 LYON Cedex 07
Christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A B S T R A C T

Cooperative distributed systems, particularly peer-to-peer systems, are the basis of several
mainstream Internet applications (e.g., file-sharing, media streaming) and the key enablers of
new and emerging technologies, including Blockchain and the Internet of Things. Essential to
the success of cooperative systems is that nodes are willing to cooperate with each other by
sharing part of their resources, e.g., network bandwidth, CPU capability, storage space. How-
ever, as nodes are autonomous entities, they may be tempted to behave in a selfish manner by
not contributing their fair share, potentially causing system performance degradation and insta-
bility. Addressing selfish nodes is, therefore, key to building efficient and reliable cooperative
systems. Yet, it is a challenging task, as current techniques for analysing selfishness and design-
ing effective countermeasures remain manual and time-consuming, requiring multi-domain
expertise.

In this thesis, we aim to provide practical and conceptual tools to help system designers
in dealing with selfish nodes. First, based on a comprehensive survey of existing work on
selfishness, we develop a classification framework to identify and understand the most impor-
tant selfish behaviours to focus on when designing a cooperative system. Second, we propose
RACOON, a unifying framework for the selfishness-aware design and configuration of cooper-
ative systems. RACOON provides a semi-automatic methodology to integrate a given system
with practical and finely tuned mechanisms to meet specified resilience and performance objec-
tives, using game theory and simulations to predict the behaviour of the system when subjected
to selfish nodes. An extension of the framework (RACOON++) is also proposed to improve the
accuracy, flexibility, and usability of RACOON. Finally, we propose SEINE, a framework for fast
modelling and evaluation of various types of selfish behaviour in a given cooperative system.
SEINE relies on a domain-specific language for describing the selfishness scenario to evaluate
and provides semi-automatic support for its implementation and study in a state-of-the-art
simulator.

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

C O N T E N T S

1 I N T R O D U C T I O N 1
1.1 Selfishness in cooperative systems . 2

1.1.1 Example: selfishness in P2P file-sharing . 2
1.1.2 Example: selfishness in P2P live streaming 3
1.1.3 Example: selfishness in volunteer computing 3

1.2 Dealing with selfishness in cooperative systems 4
1.3 Research challenges . 6
1.4 Thesis contributions & outline . 7

I S E L F I S H N E S S I N C O O P E R AT I V E D I S T R I B U T E D S Y S T E M S 11

2 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 13
2.1 An overview of cooperative systems . 13
2.2 Selfish behaviour in cooperative systems . 14
2.3 A classification framework for selfish behaviours 19

2.3.1 Motivation . 20
2.3.2 Execution . 21
2.3.3 Details of the papers included in the review 24

2.4 Examples of selfish behaviour classification . 25
2.4.1 BAR Gossip, Li et al. [111] . 25
2.4.2 BOINC client, Anta et al. [20], Anderson [18], Yurkewych et al. [180] . . . 28
2.4.3 Delay tolerant network, Zhu et al. [188] . 29
2.4.4 Tor network, Dingledine et al. [135] . 30

2.5 General analysis of selfishness in cooperative systems 32
2.5.1 Analysis of the motivations . 32
2.5.2 Analysis of the executions . 33

2.6 Summary . 36

3 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 37
3.1 Approaches to selfishness analysis . 37

3.1.1 Analytical approaches . 37
3.1.2 Experimental approaches . 38

3.2 Related research: Game Theory . 41
3.2.1 Basic concepts . 41
3.2.2 Game types and applications to cooperative systems 42
3.2.3 Discussion and open issues . 45

3.3 Evaluation of the approaches to selfishness analysis 46
3.3.1 Evaluation methodology . 46
3.3.2 Evaluation results . 48

3.4 Summary . 49

v

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

vi C O N T E N T S

4 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 51
4.1 Incentive mechanisms . 51

4.1.1 Classification of incentive mechanisms . 52
4.1.2 Classification of incentive mechanisms from relevant studies 58
4.1.3 Desirable requirements for incentive schemes in cooperative systems . . . 59
4.1.4 Perspectives on the research challenges . 61

4.2 Accountability in distributed systems . 62
4.2.1 Basic concepts . 62
4.2.2 Related work: FullReview . 64
4.2.3 Discussion and open issues . 66

4.3 Summary . 69

II S E L F I S H N E S S - AWA R E D E S I G N O F C O O P E R AT I V E S Y S T E M S 71

5 T H E R A C O O N F R A M E W O R K 73
5.1 Overview . 74
5.2 Illustrative example: the O&A protocol . 76
5.3 RACOON Design Phase . 76

5.3.1 Input of the Design Phase . 77
5.3.2 Cooperation enforcement . 82
5.3.3 Selfishness injection . 86
5.3.4 Rationality injection . 90

5.4 RACOON Tuning phase . 99
5.4.1 Input of the Tuning phase . 99
5.4.2 Configuration evaluation and exploration 101

5.5 Evaluation . 103
5.5.1 Design and development effort . 103
5.5.2 Meeting design objectives using RACOON 104
5.5.3 Simulation compared to real system deployment 105
5.5.4 Execution time . 107
5.5.5 Expressiveness . 107

5.6 Summary . 109

6 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N 113
6.1 Overview . 115
6.2 Illustrative example: the S-R-R protocol . 115
6.3 RACOON++ Design phase . 115

6.3.1 Input of the Design phase . 116
6.3.2 Cooperation enforcement . 123
6.3.3 Selfishness injection . 124
6.3.4 Rationality injection . 127

6.4 RACOON++ Tuning phase . 131
6.4.1 Input of the Tuning phase . 131
6.4.2 Configuration evaluation . 132

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

C O N T E N T S vii

6.4.3 Configuration Exploration . 137

6.5 Evaluation . 143

6.5.1 Use cases . 143

6.5.2 Design and development effort . 144

6.5.3 Meeting design objectives using RACOON++ 146

6.5.4 RACOON++ effectiveness . 148

6.5.5 RACOON++ vs FullReview . 149

6.6 Summary . 152

III S E L F I S H N E S S I N J E C T I O N A N A LY S I S I N C O O P E R AT I V E S Y S T E M S 155

7 T H E S E I N E F R A M E W O R K 157

7.1 Domain Analysis . 158

7.2 SEINE Overview . 162

7.3 Modelling selfishness in SEINE-L . 163

7.4 Injecting selfishness in PeerSim using SEINE . 168

7.4.1 Library of Annotations . 168

7.4.2 SEINE-L Compiler . 169

7.4.3 Selfishness scenario generation . 171

7.4.4 SEINE Implementation . 172

7.5 Evaluation . 172

7.5.1 Generality and expressiveness of SEINE-L 173

7.5.2 Accuracy of SEINE-R . 174

7.5.3 Development effort . 176

7.5.4 Simulation time . 179

7.6 Summary . 180

IV C O N C L U S I O N S A N D F U T U R E W O R K 181

8 C O N C L U S I O N S 183

8.1 Summary . 183

8.2 Possible improvements and future research directions 186

8.2.1 Integration of RACOON and SEINE . 186

8.2.2 Additional types of selfish deviations . 187

8.2.3 Extending the RACOON framework . 188

8.2.4 Support for distributed testbeds . 190

V A P P E N D I X 193

A R A C O O N A N D R A C O O N + + : X M L S C H E M A F O R T H E I N P U T S O F T H E F R A M E -
W O R K 195

A.1 Schema for the XML inputs of RACOON . 195

A.2 Schema for the XML inputs of RACOON++ . 198

B R A C O O N A N D R A C O O N + + E VA L U AT I O N : U S E C A S E S S P E C I F I C AT I O N 203

B.1 RACOON use cases . 203

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

viii C O N T E N T S

B.2 RACOON++ use cases . 204
B.2.1 Experiments: Design and development effort 204
B.2.2 Experiments: RACOON++ effectiveness . 206

C S E I N E : G R A M M A R O F T H E S E I N E - L L A N G U A G E 209

D S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S O F S E I N E - L 211

B I B L I O G R A P H Y 216

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

L I S T O F F I G U R E S

Figure 1 Main contributions of the thesis. 7

Figure 2 A taxonomy of node types in cooperative systems. The framed box in-
dicates the focus of this thesis. 17

Figure 3 Classification of selfish behaviours in cooperative systems. 19

Figure 4 Overview of the deviation types implementing the objectives of the self-
ish behaviours considered for our analysis. 34

Figure 5 Overview of the main functionalities of a cooperative system that are
targeted by the selfish behaviours considered for our analysis. 35

Figure 6 Classification of classical games. 42

Figure 7 Taxonomy of incentive schemes for cooperative systems. 53

Figure 8 Overview of the incentive schemes adopted by the incentive mecha-
nisms listed in Table 14. 59

Figure 9 Overview of the incentive schemes adopted by the incentive mecha-
nisms listed in Table 14 and grouped by cooperative system categories. . 59

Figure 10 Overview of an accountability system. 63

Figure 11 Impact of the punishment values. The gray box indicates the acceptable
percentage of deviations and of wrongful evictions (up to 10%). 68

Figure 12 Impact of the audit period. The light gray box indicates the acceptable
percentage of deviations (up to 10%), whereas the dark gray box shows
the acceptable percentage of overhead (up to 40%). 69

Figure 13 RACOON Overview. 75

Figure 14 The O&A protocol between nodes i and J. 76

Figure 15 Selfishness manifestations in the O&A protocol shown in Figure 14. . . . 76

Figure 16 The state diagram representation of the Protocol Automaton specified in
Table 16. 81

Figure 17 The integration between the commitment protocol of R-acc with the O&A
protocol shown in Figure 16. 83

Figure 18 The Protocol Automaton of the R-acc audit protocol. For ease of reading,
we do not represent in the figure the required execution of the commit-
ment protocol on each message exchange of the audit protocol. 83

Figure 19 The Protocol Automaton of the O&A protocol, extended with selfish de-
viations. 87

ix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

x List of Figures

Figure 20 A visual representation of the Protocol Game described in Table 17. The
label besides each decision node indicates the player that takes action
at that node. The label on each edge denotes an action along with its
corresponding method in the PA. Nodes in the same information set
are connected by a dashed line. The labels below each leaf denote the
strategies of that play. 95

Figure 21 Illustrative example of the utility values that each player would obtain
from playing a certain strategy in the Protocol Game described in Table 17. 99

Figure 22 The sequence diagram of the chunk exchange protocol 3P, studied by
Guerraoui et al. [72]. 104

Figure 23 The Protocol Automaton of the chunk exchange protocol 3P. 104
Figure 24 RACOON vs FullReview Configurations. 106
Figure 25 Simulation vs real deployment (logarithmic scale). 107
Figure 26 Onion Forwarding Protocol. 108
Figure 27 Onion loss rate as a function of the percentage of selfish nodes in the

system (logarithmic scale). 109
Figure 28 The RACOON++ framework overview. 113
Figure 29 The S-R-R protocol between nodes r0 and R1. 116
Figure 30 The Protocol Automaton of the S-R-R protocol. 118
Figure 31 The integration between the commitment protocol of R-acc++ with the

S-R-R protocol shown in Figure 30. 124
Figure 32 The Protocol Automaton of the S-R-R protocol, extended with selfish

deviations. 125
Figure 33 The SG derived from the S-R-R protocol in Figure 31. 128
Figure 34 A simple PeerSim configuration file (a) and the corresponding PeerSim

components (b). Depicted in light colour in (b), are the additional com-
ponents that can easily be added. 133

Figure 35 Integration between the R-sim and PeerSim configuration properties (a)
and components (b). 134

Figure 36 The PA of the live streaming protocol [72]. 144
Figure 37 The PA of the load balancing protocol [92]. 145
Figure 38 The PA of the anonymous communication protocol. 145
Figure 39 Frequency of the number of configurations tested for each use case. . . . 148
Figure 40 Cooperation levels of the Live Streaming (LS), Load Balancing (LB), and

Anonymous Communication (AC) use cases, when varying the initial
fraction of selfish nodes. 149

Figure 41 Application-specific performance of the Live Streaming (LS) (a), Load
Balancing (LB) (b), and Anonymous Communication (AC) (c) use cases,
when varying the initial fraction of selfish nodes. 150

Figure 42 Performance comparisons between FullReview and RACOON++ CEM
in the Live Streaming (LS), Load Balancing (LB), and Anonymous Com-
munication (AC) use cases. 151

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Figure 43 Experiment results with different proportions of message loss. 152

Figure 44 Feature diagram of a Selfishness Scenario. 160

Figure 45 Overview of the SEINE framework. 163

Figure 46 The outline of a SEINE-L specification. 164

Figure 47 Comparison between the results published by Guerraoui et al. [72] and
the results obtained with SEINE. 175

Figure 48 Comparison between the results published by Ben Mokhtar et al. [28]
and the results obtained with SEINE. 176

Figure 49 Performance and contribution of BitTorrent and BitThief when down-
loading the same file, measured using SEINE. 176

Figure 50 Number and distribution of Lines of Code (a) to specify the Selfishness
Scenario into the faithful implementation of the use cases and (b) to
modify such scenarios, with and without using SEINE. 178

Figure 51 Performance of BAR Gossip when varying (a) the number of colluding
groups and (b) the fraction of resourceless mobile nodes. 179

Figure 52 Conceptual integration of SEINE into the RACOON framework. 187

Figure 53 Possible extensions of the RACOON framework (coloured in yellow). . . 189

L I S T O F TA B L E S

Table 1 Examples of application-related targets of a selfish deviation. 23

Table 2 Papers considered in our review, along with the characteristics of the co-
operative systems investigated and the types of selfish deviations therein
described. 26

Table 3 Selfish behaviour in P2P live streaming systems: free-riding (source: [111]).
27

Table 4 Selfish behaviour in P2P live streaming systems: misreport (source: [111]).
27

Table 5 Selfish behaviour in P2P live streaming systems: collusion (source: [111]).
28

Table 6 Selfish behaviour in volunteer computing: free-riding (source: [18, 20,
180]).
29

Table 7 Selfish behaviour in delay tolerant networks: defection (source: [188]).
30

Table 8 Selfish behaviour in delay tolerant networks: collusion (source: [188]).
30

xi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

xii List of Tables

Table 9 Selfish behaviour in Tor networks: defection (source: [135]).
31

Table 10 Selfish behaviour in Tor networks: free-riding (source: [135]).
32

Table 11 Classification of methodologies for experimental analysis. 39

Table 12 Comparative evaluation of analytical and experimental approaches for
selfishness analysis in cooperative systems. 49

Table 13 Advantages and drawbacks of incentive schemes for cooperative sys-
tems. 57

Table 14 Characteristics of the incentive mechanisms proposed in the papers con-
sidered to build the classification framework presented in Section 2.3. . 58

Table 15 Activities and parameters that influence the cost of enforcing account-
ability. 66

Table 16 The Protocol Automaton of the O&A protocol. 80

Table 17 Players, nodes, actions, and information sets that translate the Protocol
Automaton in Figure 19. 95

Table 18 Illustrative example of the computation of the communication costs in-
curred by the players of the Protocol Game shown in Figure 20. 98

Table 19 Illustrative example of the calculation of the incentive values assigned
to the players of the Protocol Game shown in Figure 20. 99

Table 20 The configuration parameters of the CEM. 102

Table 21 Simulation and real deployment parameters. 105

Table 22 FullReview Configurations . 105

Table 23 Comparison between RACOON and the existing approaches for selfish-
ness analysis. 111

Table 24 Selfish deviations . 122

Table 25 The strategies comprising the strategy profile s0, implementing the cor-
rect execution of the stage game in Figure 33. 129

Table 26 The strategies implemented in the SG of Figure 33 when players p0 and
p1 are from sub-populationsω1 andω3. 129

Table 27 Observed relations between the design objectives natively supported by
RACOON++ and the CEM configuration parameters. 142

Table 28 Rules to update the pScore vector created by the ParametersScore func-
tion in Alg. 7. 142

Table 29 Lines of Code needed for the use cases. 146

Table 30 Performance of the tuning process of RACOON++ in terms of time du-
ration and number of configurations tested. 147

Table 31 Design objectives of two scenarios generated for the Live Streaming (LS)
use case. 147

Table 32 Comparison between RACOON and the existing approaches for selfish-
ness analysis. 153

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

List of Tables xiii

Table 33 Subset of the papers considered in our review, along with the charac-
teristics of the cooperative systems investigated and the types of selfish
deviations therein described. 159

Table 34 The arguments required for each type of deviation point in SEINE. . . . 169
Table 35 The attributes of the annotation types to indicate deviation points in

SEINE. 170
Table 36 Lines of Code for expressing the Selfishness Scenarios of the papers con-

sidered in the domain analysis review. 173
Table 37 Average execution time to evaluate a Selfishness Scenario using SEINE

and the additional time it imposes. 179
Table 38 Evaluation of performance and capabilities of the integration between

RACOON and SEINE. 187
Table 39 Possible modifications of some elements of the Protocol Automaton (PA)

in order to account for the new type of “timing deviation” sketched in
Section 8.2.2. 190

Table 40 The inputs of the RACOON and RACOON++ frameworks. 195

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1
I N T R O D U C T I O N

A cooperative system is a complex distributed system that relies on the voluntary resource
contribution from its participants to perform the system function. Peer-to-peer (P2P) systems
are the most widespread and well-known examples of cooperative systems. Other examples
are cooperative distributed computing (e.g., grid computing [62], volunteer computing [18])
and self-organizing wireless networks (e.g., delay tolerant networks [56]). The popularity of
these systems has rapidly grown in recent years [44]. This trend is expected to continue, driven
by the ever-increasing demand for digital content, notably multimedia content (music, movies,
TV series), and fuelled by the emergence of P2P-assisted content delivery technologies [85, 147].

In cooperative systems, nodes from different administrative domains are expected to con-
tribute to the overall service provision, e.g., downloading files [2, 45], watching live events
streaming [1, 5], or making video and phone calls [23]. This collective contribution opens up the
potential for scalable, self-sustained and robust distributed systems, without requiring costly
dedicated servers.

Essential to the success of cooperative systems is that nodes are willing to cooperate with each
other by sharing part of their resources — e.g., network bandwidth, CPU capability, storage
space. However, in practice [78, 87, 114, 116, 144, 182], real systems often suffer from selfish
nodes that strategically withdraw from cooperation to satisfy their individual interests. For
instance, users of file-sharing applications may decide not to share any files [87, 182], or to
share files only with a small group of partners [114]. Predictably, these selfish behaviours can
severely undermine the systems performance and lead to widespread service degradation [111,
135, 141, 148]. For example, Guerraoui et al. [72] demonstrated experimentally that if 25% of
nodes participating in a P2P live streaming system download a given video file without sharing
it with other nodes, then half of the remaining nodes are not able to view a clear stream [72].

Despite the vast amount of research that has been conducted to address selfishness in coop-
erative systems, designing an efficient selfishness-resilient system remains a challenging, time-
consuming, and error-prone task [15, 118, 160]. A system designer has to account for a plethora
of design decisions (e.g., choosing the proper routing algorithm, selecting the appropriate over-
lay structure, deploying mechanisms to foster cooperation), each of which requires significant
effort to be evaluated [64, 98, 108]. The complexity is further enhanced by the many and var-
ied possibilities for a selfish node to deviate from the correct behaviour in a given system, as
well as by the diverse — and often conflictual — application-specific objectives that the system
designer seeks to achieve.

Part of the difficulty stems from the lack of a convenient unifying framework to design,
strengthen, tune and evaluate real-world cooperative systems in selfish-prone environments. Ex-
isting tools and methodologies provide only a partial solution. Analytical frameworks, partic-
ularly game theory [130], provide theoretical tools to reason about selfishness and cooperation

1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2 I N T R O D U C T I O N

in competitive situations like those underlying a cooperative system. On the other side, the ap-
plication of analytical models to real systems can be extremely complex [118, 150]. In contrast,
practical frameworks for designing and deploying robust distributed systems do not provide
any guidance for taking the problem of selfish behaviours into consideration [98, 108, 128].
This issue is typically handled by integrating into the system mechanisms designed to foster
cooperation and punish selfish nodes. However, the practical use of these mechanisms is not
straightforward, because they are either tailored to a particular application [45, 47, 111, 135] or
they are general but difficult to test and configure [53, 72, 76].

The aim of our research is to facilitate the task of system designers in dealing with selfishness
in cooperative systems. To this end, we present a classification framework and a descriptive
language for describing motivations and executions of selfish behaviours in cooperative dis-
tributed systems. Furthermore, we provide general methodologies, along with their software
implementations, for supporting the semi-automatic design and evaluation of cooperative sys-
tems deployed over a network of selfish nodes.

1.1 S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Most cooperative systems are characterised by untrusted autonomous individuals with their
own objectives — not necessarily aligned with the system objectives — and full control over
the device they use to interact with the system [127]. This applies especially to P2P systems,
due to the open nature of most of them [30, 116]. Autonomy and self-interest are the defining
characteristics of selfish nodes.

A selfish node is a strategic individual that cooperates with other nodes only if such be-
haviour increases its local benefits.1 Selfish behaviours have been observed in P2P [72, 78, 87,
114, 116, 144, 182] and in other cooperative systems [125, 135, 176]. The emergence of selfish-
ness in cooperative systems results in substantial degradation of performance, unpredictable
or limited availability of resources, and may even lead to a complete disruption of the system
functionalities [28, 71, 135, 152].

The large body of literature on selfishness in cooperative systems documents not only the
importance of this problem but also the number and variety of possible selfish behaviours.
In the remainder of this section, we present three examples of selfish behaviours in P2P and
volunteer computing, and we examine their impact on the system performance.

1.1.1 Example: selfishness in P2P file-sharing

By far, file-sharing has been the most popular and widely-deployed application of P2P. A P2P
file-sharing application (e.g., BitTorrent [45], eDonkey [78], Gnutella [87]) enables its users to
share files directly among each other via the Internet. The goal of these systems is to offer a
high variety and availability of digital content, supported by the voluntary contribution of files
and bandwidth by the users.

1 For the moment, we are content with this informal definition, but we formalise this concept later in Chapter 2.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.1 S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 3

File-sharing has become the most representative showcase for the problem of selfishness in
cooperative systems. In 2005, Hughes et al. [87] reported that almost 85% of participants of
the file-sharing system Gnutella do not share any files. The next year Handurukande et al. [78]
observed a similar situation in the eDonkey network, with almost four-fifths of the clients not
sharing anything. In two measurement studies between 2008 and 2010, Zghaibeh et al. [181,
182] showed that the population of selfish nodes in the BitTorrent community increased by
almost 80% in two years.

These selfish behaviours are pursued through rather simple actions, such as changing a con-
figuration parameter (e.g., the upload bandwidth) or exiting the client application once the files
of interest have been downloaded. Locher et al. [116] proposed a more complex, but highly ef-
fective, approach to downloading files in the BitTorrent system without uploading any data.
Specifically, the authors implemented and openly distributed a selfish client (BitThief) that ex-
ploits several features of the BitTorrent protocol to attain fast downloads and no contribution.

The example of BitThief is particularly instructive because it shows the easy accessibility of
selfish tools also to non-experts. In fact, even if manipulating a client software to implement a
selfish behaviour is costly and requires detailed technical knowledge, once this effort has been
made, it is simple to distribute the “hacked” client to the Internet community.

1.1.2 Example: selfishness in P2P live streaming

P2P live streaming applications, such as PPLive [5] and BitTorrent Live [1], are large-scale co-
operative systems that allow millions of users to watch streams of events at the same time. The
high scalability of P2P live streaming is ensured by the users’ contribution in disseminating
the video chunks in the stream, which alleviates the load on the streaming sources. The video
chunk dissemination is typically based on gossip protocols. In practice, each user proposes his
available chunks to randomly selected partners, who in turn request any chunks they need; the
interaction ends when the user delivers the requested chunks.

Selfish users in P2P live streaming systems have many possibilities to receive video chunks
while reducing their contribution [53, 72, 111]. For instance, a user may under-report the video
chunks available to avoid future requests, or may simply decide to ignore all the requests. Re-
cent studies performed on real live streaming systems [141, 163] have confirmed that the quality
of the stream (measured in terms of video discontinuity and latency) received by the coopera-
tive users is substantially reduced by the presence of selfish users in the system.

Collusion among nodes is another manifestation of selfishness, which has been addressed,
for example, by Guerraoui et al. in [72]. In their study, the authors observed that colluding
nodes could significantly lower the streaming quality by giving each other a higher priority.

1.1.3 Example: selfishness in volunteer computing

Volunteer computing aggregates the computational power of millions of Internet-connected
personal computers that donate their spare CPU cycles to a computational project. The most

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4 I N T R O D U C T I O N

famous of these projects is probably SETI@home, which aims to discover extraterrestrial intelli-
gence by processing radio telescope data [19]. The enormous success of SETI@home led to the
release of BOINC (Berkeley Open Infrastructure for Network Computing) [18], which rapidly
became the most popular platform for voluntary computing.

Using a BOINC client, volunteers download computational tasks (work units) from a project
server, solve the tasks locally, and send the final results back to the server. To encourage coop-
eration, BOINC rewards volunteers with credit points proportionally to their contribution [18].
The credits are typically displayed on web-based leaderboards accessible worldwide, allowing
volunteers to compare their ranking with other users. From a survey conducted by BOINC [12],
as well as from the behaviour of BOINC users on online forums [9], the credit system appears to
be very motivating for the volunteers. It is so motivating to induce some selfish users to cheat
the system only for achieving a better position in leaderboards [7, 10, 11]. Concretely, similarly
to BitThief, the original client was hacked and replaced with a selfish client that speeds up the
computation by sending untrustworthy results to the server labelled as completed work units.

The selfish behaviour of few “volunteers” may ruin the results of an entire experiment [7],
and thus undermine the correctness — or worse, the attractiveness — of a volunteer computing
system. The typical countermeasure to this issue is to detect and isolate selfish clients using
redundant task allocation, whereby the same work unit is assigned to several clients for result
comparison [18]. The drawback of this approach is the large overhead imposed on the clients,
which poses an unfavourable trade-off between correctness and performance.

1.2 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

The ways selfishness has been addressed in the literature on cooperative systems can be broadly
divided into two categories: analysis and design.

Studies in the first category provide analytical models to understand the motivations driving
a selfish node, as well as for predicting its expected behaviour. The most comprehensive frame-
work available for this purpose is Game Theory (GT), a branch of economics that deals with
strategic interactions in conflict situations [130]. GT provides a set of mathematical tools for
modelling competition and cooperation between rational (i.e., strategic and selfish) individuals,
like the autonomous and self-interested nodes in cooperative systems.

In the last decades, the distributed system community has extensively used GT to assess the
robustness of a variety of systems [26, 35, 36, 111, 112, 142, 167], taking advantage of the pre-
dictive power and general applicability of the tool. However, as for any analytical approach,
applying game-theoretic analysis to real systems tends to be complex, and requires many sim-
plifying assumptions to obtain a tractable model [150]. More precisely, the system designer
needs to create a mathematical model of the system (the game), including the alternative strate-
gies available to the nodes (the players) and their preferences over the possible outcomes of the
system (defined by an utility function). Then, the designer has to use game-theoretic arguments
to assess what strategy is the most likely to be played by the players, with respect to the given
utility function. The answer to this question is the solution of a game. The most common so-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.2 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 5

lution considered in the literature is the Nash Equilibrium [130], which describes the situation
in which no player wants to change unilaterally her strategy. Carrying out this process is in-
herently difficult for complex systems, especially because it is manual, time-consuming and
error-prone [118].

The second category of approaches to deal with selfishness in cooperative systems proposes
design solutions and mechanisms to enforce cooperation among selfish nodes. Yumerefendi
and Chase [178] advocate accountability as a viable solution for dealing with non-cooperative
behaviours. Distributed accountability systems [53, 72, 76] provide an implementation of this
solution that has been proven feasible and effective for cooperative systems. Particularly, the
FullReview system described in [53] can operate in the presence of selfish nodes. On the down-
side, enforcing accountability incurs a non-negligible cost on the system, mainly due to the high
message overhead and the intensive use of cryptography. This results in a fundamental trade-
off between performance and resilience to selfish nodes, which poses a difficult configuration
problem for the system designers. Since no reference solution is given in the studies cited above,
the configuration of such accountability mechanisms is a trial-and-error and time-consuming
procedure.

Accountability systems usually address selfishness with a strictly punitive approach, by iso-
lating or evicting selfish nodes [53, 72]. A complementary approach is to introduce incentives
for sharing resources, thereby making cooperation more profitable for selfish nodes. The large
number of incentive mechanisms proposed in the literature can be classified into reciprocity-
based and economy-based. Incentives based on direct reciprocity requires that nodes maintain
a history of past interactions with other nodes and use this information to influence the present
interaction. For example, BitTorrent applies a direct reciprocity incentive [45], whereby each
node prioritises the requests of other nodes based on their history of cooperation. Direct reci-
procity offers a lightweight and scalable incentive mechanism, but it can work only if nodes
have long-term relationships; otherwise, they may not have the opportunity to reciprocate ap-
propriately. To overcome this issue, indirect reciprocity-based incentives make the interactions
between two peers depend not only on the past interactions between them but also on the in-
teractions between them and other nodes. Reputation is the most common incentive based on
indirect reciprocity, and it has been widely applied to large-scale dynamic environments like
cooperative systems [121]. Reputation offers high flexibility and scalability, and can be imple-
mented in a fully decentralised manner [79, 94, 129, 185]. On the other hand, reputation mecha-
nisms are subject to many types of attacks [121], such as the dissemination of false information
(e.g., bad mouthing, unfair praise), and other strategic behaviours (e.g., whitewashing).

In economy-based incentive mechanisms, nodes pay for obtaining services or resources (as
consumers) and get paid for sharing resources (as providers). These mechanisms use virtual
currency as the commodity for trading resources and allow its later expenditure [25, 67]. The
major drawbacks of economy-based incentives are that they also introduce economic issues in
the system (e.g., price negotiation, inflation, deflation) [67], and they may require an authority
(virtual bank) to issue and certify the currency [25].

Mechanism Design (MD) represents the link between analysis and design approaches for
dealing with selfishness in cooperative systems. MD is a branch of game theory that provides

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6 I N T R O D U C T I O N

the mathematical framework for designing games, which, as we discussed above, are suitable
to model distributed systems. This argument has been well supported by many authors, among
which Shneidman et al. [160] and Aiyer et al. [15], who proposed to use MD as a design tool
for cooperative systems. The goal of MD is to design a system in such a way that selfish be-
haviours can be proved to be an irrational choice for selfish nodes. A notable example of the
mechanism design approach is the BAR Model of Aiyer et al. [15], which provides an archi-
tecture for building cooperative distributed systems that are robust to selfish and Byzantine
nodes. However, using mechanism design for designing real systems presents the same lim-
itations mentioned above for game theory analysis, particularly, the complexity added by its
analytical approach [15, 26, 27, 111, 118, 150]. Moreover, the resulting design solution suffers
from poor maintainability and flexibility: every change in the system parameters requires a full
revision of the design, which hinders the reuse of a successful solution in other systems.

1.3 R E S E A R C H C H A L L E N G E S

Based on the discussion above, we can summarise the Main Research Challenge (MRC) of this
thesis as follows:

(MRC) Provide integrated support for designing, tuning and evaluating cooperative sys-
tems deployed over a network of selfish nodes.

We decompose the MRC into two parts, namely Analysis (A) and Design (D), each facing
three sub-challenges.

(A) Provide (conceptual and practical) support for understanding, modelling and evaluating
selfish behaviours in cooperative systems.

(A.1) Develop a framework to understand and classify the motivations as well as the
strategies of selfish behaviours in cooperative systems.

(A.2) Develop tools to specify selfish behaviours in cooperative systems.

(A.3) Develop a framework to facilitate the development and evaluation of a behavioural
model of selfish nodes in a given cooperative system.

(D) Provide practical support for designing and configuring cooperative systems that meet
targeted functionality and performance objectives in the presence of selfish nodes.

(D.1) Identify general and practical mechanisms to enforce cooperation in cooperative
systems.

(D.2) Develop a methodology to facilitate the set-up and configuration of cooperation
enforcement mechanisms in a given cooperative system.

(D.3) Develop a framework to facilitate the assessment of the resilience of a given coop-
erative system against different types of selfish behaviours.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.4 T H E S I S C O N T R I B U T I O N S & O U T L I N E 7

1.4 T H E S I S C O N T R I B U T I O N S & O U T L I N E

Motivated by the challenges presented in the previous section, in this thesis, we present three
distinct but interrelated contributions. A brief outline of the contributions is depicted in Fig-
ure 1 and discussed below.

C1: Survey on selfishness in cooperative systems

Chapters 2, 3, 4

RACOON

C2: Selfishness-aware design of cooperative systems

Chapters 5, 6

C3: Selfishness-injection framework for cooperative systems

Chapter 7 Future work

Chapter 8

SEINE

Figure 1: Main contributions of the thesis.

(C.1) A survey on selfishness and its countermeasures in cooperative systems.
Related to all challenges.

In Chapter 2 we provide a comprehensive overview of the underlying motivations and strate-
gies of selfish nodes in cooperative systems. Based on a systematic review of the extensive
literature on the subject, we develop a classification framework to describe and analyse selfish
behaviours. Furthermore, in Chapter 3 and Chapter 4, we present the state-of-the-art to analyse
and cope with selfishness in cooperative systems.

With (C.1), we provide the conceptual basis on which build the practical contributions intro-
duced next.

(C.2) A framework for the selfishness-aware design of cooperative systems.
Related to challenge (A.3), (D.2), and (D.3).

In Chapter 5, we propose RACOON, an integrated framework for designing, tuning and eval-
uating cooperative systems resilient to selfish nodes. RACOON facilitates the work of system
designers by proposing an end-to-end and largely automated design methodology. In particu-
lar, RACOON automates the set-up and configuration of accountability and reputation mecha-
nisms into the system under design, using a novel approach based on game theory and simu-
lations. To illustrate the usefulness of our framework, we use it to design a P2P live streaming
system and an anonymous communication system. Experimental results and simulations show
that the designed systems can meet the targeted level of performance and selfish-resilience.

Chapter 6 presents RACOON++, which extends RACOON. In particular, RACOON++ in-
cludes a declarative model that allows parametrizing selfish behaviours, and introduces a new

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8 I N T R O D U C T I O N

model to predict the evolution of the system based on evolutionary game theory. We illustrate
the benefits of using RACOON++ by designing a P2P live streaming system, a load balancing
system, and an anonymous communication system. Extensive experimental results using the
state-of-the-art PeerSim simulator, which is completely integrated into our framework, verify
that the systems designed using RACOON++ achieve both resilience to selfish nodes and high
performance. We released a Java implementation of RACOON++ as an open-source project:
code and other data useful for evaluation are available on the project’s page on GitHub.2

(C.3) A framework for describing and injecting selfish behaviours in cooperative systems.
Related to challenge (A.2), (A.3) and (D.3).

In Chapter 7 we introduce SEINE, a framework for modelling various types of selfish be-
haviours in a given cooperative system and automatically understanding their impact on the
system performance through simulations. SEINE relies on a domain-specific language, called
SEINE-L, for describing the behaviour of selfish nodes, along with a run-time system that gen-
erates an implementation of the described behaviours for the state-of-the-art simulator Peer-
Sim [128].

We conclude the thesis in Chapter 8, in which we summarise the contributions with respect
to the initial research challenges. In this chapter, we also discuss some future work, notably, the
scheduled integration between the RACOON and SEINE frameworks.

L I S T O F P U B L I C AT I O N S , P O S T E R S A N D S U B M I S S I O N R E L AT E D T O T H I S T H E S I S .

• G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. A framework
for the design configuration of accountable selfish-resilient peer-to-peer systems. In Proceedings
of the 34th IEEE Symposium on Reliable Distributed Systems (IEEE SRDS’15). 2015.

• G. Lena Cota, S. Ben Mokhtar, G. Gianini, L. Brunie, E. Damiani. RACOON: A framework to
design Cooperative Systems resilient to selfish nodes. Poster at ACM EuroSys Conference. 2015.

• G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. Analysing
Selfishness Flooding with SEINE. Accepted for publication in the 47th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2017).

• G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. RACOON++:
A Semi-Automatic Framework for the Design and Simulation of Selfishness-Resilient Cooper-
ative Systems. Under review for the IEEE Transactions on Dependable and Secure Computing
(TDSC).

2 RACOON++ on GitHub: https://github.com/glenacota/racoon.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/racoon

1.4 T H E S I S C O N T R I B U T I O N S & O U T L I N E 9

T E C H N I C A L R E P O R T S A N D O T H E R R E S O U R C E S R E L AT E D T O T H I S T H E S I S .

• G. Lena Cota, P-L. Aublin, S. Ben Mokhtar, G. Gianini, E. Damiani, L. Brunie. A Semi-Automatic
Framework for the Design of Rational Resilient Collaborative Systems. Technical report,
http://liris.cnrs.fr/Documents/Liris-6739.pdf.

• RACOON++ on GitHub: https://github.com/glenacota/racoon.

• SEINE on GitHub: https://github.com/glenacota/seine.

L I S T O F P U B L I C AT I O N S N O T D I R E C T LY R E L AT E D T O T H I S T H E S I S .

• G. Gianini, M. Cremonini, A. Rainini, G. Lena Cota, L. G. Fossi. A game theoretic approach to
vulnerability patching. In IEEE International Conference on Information and Comm. Technology
Research (ICTRC). 2015.

• V. Bellandi, P. Ceravolo, E. Damiani, F. Frati, G. Lena Cota, J. Maggesi. Boosting the innovation
process in collaborative environments. In IEEE International Conference on Systems, Man, and
Cybernetics. 2013.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/racoon
https://github.com/glenacota/seine

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Part I

S E L F I S H N E S S I N C O O P E R AT I V E D I S T R I B U T E D S Y S T E M S

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2
A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

As highlighted in Chapter 1, cooperation is a necessary condition and a fundamental challenge
for any cooperative system such as peer-to-peer (P2P). The success of these systems depends on
the resource contribution of the participating nodes, which are autonomous individuals with
different goals, roles, and abilities. However, given this autonomy, self-interested nodes may
prefer to use the system services while contributing minimal or no resources in return. In the
last decade, a significant amount of research has investigated the presence and extent of self-
ishness in cooperative systems [78, 87, 125, 135, 176, 182]. All these studies confirm that selfish
behaviours can lead to a significant degradation of the overall system performance. Thus, a
clear understanding of the underlying motivations and strategies of selfish nodes is crucial for
optimal design and evaluation of cooperative systems.

The primary contributions of this chapter can be summarised as follows:

• We develop a classification framework to understand motivations and executions of self-
ish behaviours in cooperative distributed systems.

• We use our classification framework to survey relevant research works related to selfish-
ness in cooperative distributed systems.

Roadmap. We introduce the notion of cooperative systems in Section 2.1. Section 2.2 pro-
vides a definition of selfish behaviours and discusses the types of nodes that can partic-
ipate in a cooperative system, classified according to their goals and capabilities. In Sec-
tion 2.3, we propose a classification framework to describe motivations and executions of
selfish behaviours. We apply the framework to some illustrative cases in Section 2.4, and
we use it in Section 2.5 to analyse relevant research work. Finally, we summarise and draw
some conclusions in Section 2.6.

2.1 A N O V E RV I E W O F C O O P E R AT I V E S Y S T E M S

A cooperative system is a complex distributed system that relies on the voluntary resource
contribution from its participants to perform the system function. Examples of cooperative
systems are peer-to-peer applications (e.g., P2P file-sharing, P2P media streaming, P2P instant
messaging), collaborative computing (e.g., volunteer computing, grid computing), and self-
organizing wireless networks (e.g., delay tolerant networks). Common to all these systems is
the active role of participants in providing the system service, whether this is downloading
files, solving scientific problems or routing data in sparse wireless networks. In practice, each
participant shares a part of its local resources (e.g., network bandwidth, processing power, or
storage space) for the common good of the system.

13

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

14 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Participants of a cooperative system are autonomous individuals that cooperate with the sys-
tem using heterogeneous computational devices (nodes). For instance, a node can be a desktop
computer, a cluster of processors, a mobile phone, or a sensor device. Nodes are operated inde-
pendently by their respective owners and typically reside in different administrative domains.

Cooperative systems can leverage on cooperation, heterogeneity and autonomy of the partic-
ipating nodes to obtain the following characteristics:

Scalability. The capacities of a cooperative system depend on the number of participants
that are contributing. Thus, the system’s efficiency can grow organically with the system
size. It is quite telling that BitTorrent [45] and Skype [23], two of the most popular large-scale
applications involving millions of users, are examples of cooperative systems.

Cost-effectiveness. The costs needed to operate the system are shared among a large set of
contributors, and not borne by a single entity.

Resilience. Cooperative systems are less vulnerable to faults, attacks, and censorship, due to
the high diversity of the potential targets [151], e.g., different hardware and network specifics,
software architectures, and geographic locations.

2.2 S E L F I S H B E H AV I O U R I N C O O P E R AT I V E S Y S T E M S

A necessary starting point for our discussion on selfishness in cooperative systems is to provide
a clear understanding of what is a cooperative behaviour and what is a selfish behaviour. Our
definitions build on the seminal work "Rationality and self-interest in P2P Networks" by Shnei-
dman and Parkes [160], and are also indebted to the taxonomy of non-cooperative behaviours
proposed by Obreiter et al. [140].

Definition 2.1 (cooperative behaviour). A cooperative behaviour corresponds to the cor-
rect and faithful execution of the protocols underpinning a cooperative system.

Example 2.2.1 (file-sharing). In data distribution systems such as BitTorrent or Gnutella, coop-
erative behaviours are to advertise the available files and allocate bandwidth to implement
the data sharing protocol.

Example 2.2.2 (volunteer computing). Volunteer nodes participating in projects like SETI@home
and Folding@home behave cooperatively if they donate their spare CPU cycles to complete
the computational job assigned [18, 19].

Example 2.2.3 (P2P live streaming). Live streaming applications such as PPLive [5] allow mil-
lions of users to watch streams of events at the same time. In these systems, the cooperative
behaviour of peers is to advertise available video chunks and dedicate some upload band-
width to support the chunks propagation.

Ideally, each participant of a cooperative system implements the relevant cooperative be-
haviour. Unfortunately, this is very unlikely in real systems, as they are composed of au-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.2 S E L F I S H B E H AV I O U R I N C O O P E R AT I V E S Y S T E M S 15

tonomous individuals with own objectives — which may not be aligned with the system objec-
tives — and complete control over the hardware and software of the nodes they use to interact
with the system [127]. Long story short: system participants have the ability to modify their
behaviour if they are motivated enough to do so.

Notation. For convenience, henceforth we use the term node to denote both the system participant
and its controlled device, assuming that each participant controls exactly one node.

We can distinguish between two forms of non-cooperative behaviours: selfish behaviours
and malicious behaviours. Selfish behaviours have been observed in many real systems [72,
78, 87, 114, 116, 135, 144, 182], in which nodes deviate from the cooperative behaviour because
they devised a more profitable behaviour to adopt. The notion of profitability introduces an eco-
nomic aspect into our discussion. Specifically, cooperation comes at a cost to the contributors,
who are expected to consume their own resources (e.g., bandwidth, CPU, memory, storage) for
the common good of all nodes. Thus, we can safely assume that the satisfaction that a node de-
rives from participating in the system depends not only on the quality of the service it receives
but also on its cooperation costs. The utility of a given behaviour for a given node is a measure
(a value) of the node’s satisfaction for implementing that behaviour. For the purposes of this
chapter, and in conformity with earlier works on cooperative systems design [15, 26, 30, 111],
we provide the following informal definition of node’s utility:1

Definition 2.2 (utility). The utility that a node participating in a cooperative system re-
ceives from a given behaviour is defined by the benefit gained from the service provided
by the system and the cost of sharing its own resources when performing that behaviour.

Definition 2.3 (profitable behaviour). A behaviour is more profitable than another be-
haviour if it yields a higher utility.

We can now present our definition of selfish behaviour.

Definition 2.4 (selfish behaviour). A selfish behaviour is an intentional and profitable de-
viation from the cooperative behaviour.

Example 2.2.4 (message delivery). In wireless networks such as DTN [169] that rely on coop-
erative message propagation, a node may decide not to relay the traffic of other mobile nodes,
in order to extend its battery lifetime and preserve its bandwidth [176, 188].

Example 2.2.5 (cooperative storage). A node of a cooperative storage system (e.g., Pastiche [48]
OceanStore [103]) may selfishly withdraw from the resource allocation protocol and discard
some data of other nodes to save local storage space [47].

1 A formal definition can be found in Chapters 5 and 6, in which we present our game theoretic model of a cooperative
system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

16 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Example 2.2.6 (distributed accountability). PeerReview [76] is a decentralised accountability
system, also suitable for P2P networks, which detects misbehaviours by distributing the au-
diting workload among nodes. However, Diarra et al. [53] showed that PeerReview might
suffer from selfish behaviours, because the auditors have no incentive for supporting the
overhead introduced by the audit mechanism.

Example 2.2.7 (file-sharing). The Maze file-sharing system [86] includes an incentive system
in which peers earn points for uploading and expend points for successful downloads. De-
spite this incentive, in their empirical study of the Maze network, Lian et al. [114] have de-
tected groups of peers sharing files only among each other while refusing to share any file
with peers outside their group.

Based on these examples, we can further elaborate Definition 2.4 with some considerations on
the motivations behind selfish behaviours. There are many reasons why a node would choose
to stop following the cooperative behaviour, such as:

1. The cost of contributing resources to other nodes outweighs the benefits received from
the system.

2. The system does not impose punishments for selfish behaviours nor incentives to encour-
age contributions [38].

3. The punishment for selfish behaviours (resp. the incentive for contributions) is not fast,
certain and large enough to foster cooperation [30].

4. Nodes have economic or social reasons for cooperating only with a restricted group of
nodes [114, 121].

5. Nodes suffer from persistent resource shortage, due for example to hardware or software
limitations of the device that hosts the node (e.g., battery-powered devices) [75, 176].

6. An exogenous event that occurs in the node’s environment, such as temporary connectiv-
ity problems, or message loss [30].

According to the taxonomy of non-cooperative behaviours proposed by Obreiter et al. [140],
motivations (1-3) have to be considered unjustifiable, and the selfish behaviours they produce
should be deterred; conversely, selfish behaviours dictated by motivations (4-5) should be con-
sidered justifiable misbehaviours and be exempted from punishments.

Another interesting fact illustrated by the examples above is that selfish behaviours can also
occur in protocols specifically designed to address misbehaviours (Examples 2.2.6 and 2.2.7).
Note that this is consistent with Definition 2.4 as soon as the protocols in question rely on the
cooperation of autonomous nodes.

Another form of non-cooperative behaviours are malicious behaviours, which are defined
next.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.2 S E L F I S H B E H AV I O U R I N C O O P E R AT I V E S Y S T E M S 17

Definition 2.5 (malicious behaviour). A malicious behaviour is an intentional deviation
from the cooperative behaviour that aims at harming the system and disrupting its proto-
cols.

Example 2.2.8 (file-sharing). File pollution is the malicious introduction of tampered contents
in file-sharing networks, with the goal of discouraging the distribution of copyright protected
contents [115]. Frequent downloads of polluted files can degrade the quality of file-sharing
service to the point that the users decide to leave the system.

Example 2.2.9 (P2P overlay). The eclipse attack [164] is a malicious and coordinated behaviour
that aim to isolate correct nodes from the P2P overlay and its services by taking control of
their neighbour set.

In contrast with selfish behaviours, the only goal of a malicious behaviour is to deteriorate
the system performance as much as possible and, possibly, at any cost.

In the remainder of this section, we describe the types of nodes that can participate in a
cooperative system, and we suggest the taxonomy shown in Figure 2. Our taxonomy is inspired
by the classification of node types proposed by Feigenbaum and Shenker [57] and refined by
Shneidman and Parkes [160]. First, we distinguish nodes according to their ability and will to
strategize over different behaviours. Nodes that do not strategize can be either correct or faulty
(left side of Figure 2).

NODE TYPES

in cooperative systems

Correct nodes Faulty nodes Malicious nodes SELFISH NODES

do not strategize do strategize

Figure 2: A taxonomy of node types in cooperative systems. The framed box indicates the focus of this
thesis.

Correct nodes are also called altruistic [137] or obedient [57, 160], because they faithfully
follow the system protocols without pursuing individual interests.

Definition 2.6 (faulty nodes). A node is faulty when it fails to execute the cooperative
behaviour due to hardware or software bugs, misconfigurations, or other unintentional
faults.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

18 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Faulty nodes are incorrectly functioning nodes that may suffer from different types of failures,
including fail-stop (the node stops working), omissions (the node drops incoming or outgoing
messages), and Byzantine (the node behaves arbitrarily) failures [21, 160].

On the right side of Figure 2 are nodes that behave strategically to pursue personal objectives.
We distinguish between malicious and selfish nodes, according to the nature of their objectives.

Definition 2.7 (malicious nodes). A node is malicious when it executes a malicious be-
haviour (see 2.5) with the intent to degrade the system performance and disrupt the ser-
vice.

Definition 2.8 (selfish nodes). A node is selfish when it strategically executes the most
profitable behaviour, either cooperative (see 2.1) or selfish (see 2.4), with the aim of max-
imising its expected utility.

When designing a cooperative system, the designer should take all the types of nodes into
consideration [57, 136, 160]. More precisely:

• Correct nodes, of course, do not need any special handling.

• Faulty nodes should be detected and repaired (or replaced) promptly, typically using
redundancy, cryptographic signing, and Byzantine fault-tolerance techniques [21, 39, 40,
160].

• Malicious nodes can be handled using traditional security approaches for attacks preven-
tion, detection, and removal (e.g., accountability [72, 76, 179], intrusion detection and
prevention systems [88, 156], trusted hardware [109, 154]).

• Selfish nodes have to be incentivised to behave correctly, by making the cooperative
behaviour the most profitable behaviour to adopt.

Multiple mechanisms have been developed to address selfishness in cooperative systems. In
general, we can define these mechanisms as follows:

Definition 2.9 (Cooperation enforcement mechanisms). A cooperation enforcement mech-
anism is a method or collection of methods that aim to increase the utility of a cooperative
behaviour by reducing (or eliminating) deviation opportunities, or by rewarding coopera-
tion, or both.

In general, cooperation enforcement mechanisms create a relationship between the contri-
bution that a node provides to the system and the resources that it can consume from it. We
refer to Chapter 4 of this thesis for a detailed discussion of how such a relationship can be
implemented.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A C L A S S I F I C AT I O N F R A M E W O R K F O R S E L F I S H B E H AV I O U R S 19

In summary, the ultimate goal of a cooperative system designer is to build the system in
such a way that faulty nodes are tolerated, malicious nodes are expelled, and selfish nodes
are motivated to choose the cooperative behaviour. This thesis concentrates on the last part of
the goal. For a better understanding of the state-of-the-art techniques for handling faulty and
malicious nodes, we refer the interested reader to the literature cited above.

2.3 A C L A S S I F I C AT I O N F R A M E W O R K F O R S E L F I S H B E H AV I O U R S

In the previous section, we have already presented a few examples of selfish behaviours, taken
from the extensive literature on the subject. Despite their diversity and specificity, we found
that these behaviours share several common features in their conception and execution. We
believe that identifying these commonalities will provide new clues to understanding and ad-
dress selfishness in cooperative systems.

To support our claims, we develop a classification framework for the analysis and compar-
ison of selfish behaviours in cooperative systems. The framework, illustrated in Figure 3, is
based on the findings of a systematic review of 25 published studies related to our research
(more details can be found at the end of this section). Our classification is based on six dimen-
sions, grouped into two categories: the motivation for adopting a particular selfish behaviour,
and its practical execution in a given system. In practice, the execution of a selfish behaviour
describes an illegal implementation of the system protocols, which is initiated by a selfish node
in attempting to satisfy some personal motivation. We discuss each dimension in the following
subsections.

SELFISH BEHAVIOUR

MotivationMotivation ExecutionExecution

Objective Role

● Provider
● Requester

● Bandwidth
● CPU
● Storage
● Energy
● Service
● Incentive

Resource

● Gain
● Save
● Hide

TargetDeviation Activation

● Defection
● Free-riding
● Misreport
● Collusion
● (other types)

● Application
● Cooperation

enforcement
mechanism

● Always
● Adaptive
● Probabilistic

Figure 3: Classification of selfish behaviours in cooperative systems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

20 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

2.3.1 Motivation

The motivation of a selfish behaviour provides information about who commits the behaviour
and why. Specifically, a motivation is defined by three dimensions, which describe an objective
for a given resource of interest, along with the role being played in the system by the selfish node
when it deviated from the cooperative behaviour.

O B J E C T I V E . The driving force of any selfish behaviour is to increase the utility of the selfish
node that performs it. In Definitions 2.2 and 2.9, we presented the three factors that have a
substantial impact on the utility, namely resource consumption, resource contribution, and the
incentives introduced by the cooperation enforcement mechanisms. The objective of a selfish
behaviour suggests the strategy to increase the utility, which falls into one of the following
options:

• Gain more resources, to increase the benefits from consumption.

• Save local resources, to lower the contribution costs.

• Hide misbehaviours from the cooperation enforcement mechanisms, to escape from detec-
tion and associated penalties.

R E S O U R C E . A resource is a commodity that increases the personal utility of nodes that
possess it. We distinguish between physical and logical resources. A physical resource is a
node’s capacity, such as bandwidth, CPU power, storage space, or energy. These resources are
usually rival in consumption due to congestion.2 For example, in delay tolerant networks, a
mobile node that has reached its storage capacity cannot carry further messages until it frees
enough space. Similarly, if the volunteer of a distributed computing project like SETI@home is
contributing all its computational power, then it cannot volunteer for another project.

Logical resources are the high-level and application-specific service offered by the coopera-
tive system (e.g., file-sharing, message routing), and the incentive created by the cooperation
enforcement mechanism (e.g., money, level of trust).

R O L E . The motivation behind a selfish behaviour also depends on the role being played
by the selfish node when it decided to deviate from the correct protocol execution. In our
classification framework, we consider two general roles that apply to all cooperative systems:
resource provider and resource requester. The motivations that drive the behaviour of a selfish
provider are usually very different from those of a selfish requester. To illustrate this difference,
and as a summary example of the motivation of selfish behaviours, consider the situation below.

2 In economics, a good is said to be rival if its consumption by one consumer can negatively affect the simultaneous
consumption by another consumer.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A C L A S S I F I C AT I O N F R A M E W O R K F O R S E L F I S H B E H AV I O U R S 21

Summary Example 1 (P2P file-sharing)

P2P file-sharing applications such as BitTorrent and Maze assign a higher priority in down-
load to the peers that share more data. In this setting, a selfish node can increase its utility
by performing the following selfish behaviours:

• Lowering the contribution cost of hosting and delivering the files, even if this would
reduce the download priority acquired.3

Motivation: (the peer aims to) save bandwidth and storage when playing as a provider.

• Artificially increasing the benefit gaining higher priority in download.
Motivation: (the peer aims to) gain in quality of service when playing as a requester.

2.3.2 Execution

The execution of a selfish behaviour provides information about how the behaviour has been
implemented by a selfish node. More precisely, an execution is defined by three dimensions,
which describe the deviation type from a target functionality of the system, along with the activa-
tion policy that has triggered the deviation.

D E V I AT I O N . A (selfish) deviation is the implementation of a selfish behaviour for a partic-
ular cooperative system. The wide range of motivations behind a selfish behaviour, as well
as the application-specific nature of their implementation, generate a tremendous number of
possible deviations for any given cooperative behaviour. Nevertheless, based on our review of
the available literature, we could identify four types of deviation that match most of the selfish
behaviours analysed.

• Defection. A defection is an intentional omission in the execution of a system protocol.4

Example 2.2.4 presented a case of defection, whereby a mobile node may decide not to
participate in the store-carry-forward message propagation protocol in order to extend its
battery lifetime [176]. A selfish node performs a defection to stop the protocol execution,
so as to prevent requesters from consuming or even asking for its resources. A defection
can be put into practice by ignoring incoming requests, like in the example above, or by
refusing to join a protocol, like the selfish auditors in Example 2.2.6 that withdraw from
auditing other nodes.

• Free-riding. A free-ride is a selfish deviation that can reduce the amount of resources
contributed by a node without stopping the protocol execution. For instance, a peer par-
ticipating in a P2P live streaming application (see Example 2.2.3) might free-ride the data-
exchange protocol by sending fewer video chunks than what was requested by the other

3 For example, the node has already downloaded the desired files, and it is not interested in downloading other files for
the moment.

4 Avizienis et al. [21] define an omission as the “absence of actions when actions should be performed”.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

22 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

party [72]. As another example, in volunteer computing (see Example 2.2.2), a node may
decide to save some computational time for speeding up the credit collection process [7],
and thus free-ride by returning a result without performing the entire computation. The
literature on cooperative systems offers other definitions of free-riding, especially in the
context of peer-to-peer. Some authors define free-riding the complete lack of contribu-
tion [116, 135, 165], while others characterise it as downloading more data than upload-
ing [27, 38, 87]. Our definition is more general because it applies to any type of resource,
and it is more precise because it can be clearly distinguished from deviations that achieve
the same result by stopping the system protocols (i.e., defections).

• Misreport. The correct functioning of a system protocol depends not only on the faithful
implementation of operations, such as data transmission or task computation, but also
on the truthful exchange of information. Such information may include the hardware
specification of nodes (e.g., computational power, memory size, network connections)
or their current availability of data and resources. Based on this information, the proto-
cols underlying the cooperative system can operate the system function and optimise the
workload distribution among nodes. However, a selfish node may have some motivation
for providing false or inaccurate information, for example, to avoid contribution or gain
better access to resources. We define this type of deviation as misreport. Consider for
instance a P2P application for file-sharing (see Example 2.2.1) or media streaming (see
Example 2.2.3), in which peers advertise their sharable contents (files or video chunks).
In this scenario, under-reporting the list of sharable contents allows a selfish peer to save
upload bandwidth by reducing the number of requests [72, 148].

• Collusion. Up to this point, we have considered only deviations performed by a single
node. On the other hand, in Example 2.2.7 we introduced a collective form of selfish be-
haviour in P2P file-sharing, in which multiple peers act together to increase their utility.
Similarly to previous works [43, 57, 114, 129, 137], we call this type of deviation a collu-
sion, and we define it as the coordinated execution of a selfish behaviour performed by
a group of nodes called colluders. A collusion is more difficult to detect than individ-
ual deviations [28, 43, 72], because colluders can reciprocally hide their misbehaviours.
For example, the distributed accountability protocol of Example 2.2.6 can be cheated if a
sufficient number of colluding nodes stop auditing the logs of their colluders [53, 76].

TA R G E T. A selfish behaviour can affect different protocols or functionalities of a cooperative
system, which we define as the target of a deviation. At a high level, there are two categories
of targets: those representing application-related functionalities, and those specific to the coop-
eration enforcement mechanism. Table 1 reports some examples of the first category of targets,
along with a description of typical deviations. Concerning the second category, common tar-
gets for a cooperation enforcement mechanism are the monitoring and detection protocols (e.g.,
watchdogs, log auditing), and the incentive scheme (e.g., reputation, credits).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A C L A S S I F I C AT I O N F R A M E W O R K F O R S E L F I S H B E H AV I O U R S 23

Target Functionality Typical deviation

Data hosting Contribution of memory space for storing con-
tents, such as files or messages

Discarding stored contents to free
memory space

Data
transmission

Contribution of bandwidth capacity for deliv-
ering contents to other nodes

Transmitting less data than re-
quested

Content
sharing

Contribution of contents from a node to other
nodes

Advertising only part of the avail-
able contents, if any

Overlay
management

Maintenance of an overlay network, including
resource lookup for finding the hosts of a re-
quested resource

Ignoring lookup queries

Information
routing

Maintenance of routing tables and contribu-
tion of bandwidth capacity for routing mes-
sages through the system

Refusing to forward a message

Partner
management

Discovery of new partners for future interac-
tions, and selection of known partners for cur-
rent interactions a

Selecting only colluders

Resource
allocation

Distribution of resources among a set of se-
lected nodes b

Allocating more resources to collud-
ing partners

Information
providing

Provision of truthful information about current
state, resource capacities and availabilities

Providing false or inaccurate infor-
mation

Task
computation

Contribution of CPU time for executing a com-
putational task

Returning a result before complet-
ing the task

a A selection policy might be based for example on the resource capabilities of the known partners (e.g., considering
only high-bandwidth nodes), on their availability, or on direct experience.

b An allocation policy may, for example, allocate more resources to known partners, or to partners with lower re-
sources.

Table 1: Examples of application-related targets of a selfish deviation.

A C T I VAT I O N . Deviation type and target help provide a picture of how a selfish behaviour
has been implemented. What is still missing in the picture is the time dimension. This infor-
mation in provided by the activation policy of the behaviour execution. More precisely, the
activation of a selfish behaviour defines the rules or events that trigger its execution. We pro-
pose the following activation policies:

• Always, when nodes perform the same given selfish behaviour during their whole stay
period in the cooperative system. For instance, Locher et al. [116] developed a selfish
client of BitTorrent that always implements the same deviations.

• Probabilistic, when nodes perform a given selfish behaviour according to some probability
distribution. A selfish node may, for example, adopt a probabilistic activation policy to
make their deviations unpredictable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

24 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

• Adaptive, when a given selfish behaviour is triggered by an activation event, such as ex-
ceeding a threshold amount of resource consumption, or obtaining a service. For instance,
selfish participants of a P2P file-sharing application may decide to deviate from the correct
protocol execution only when they are not downloading [114]. Another typical situation,
described for example also by Aditya et al. [14], is to provide false information to a moni-
toring mechanism to cover up previous deviations. To put the last example another way,
a selfish behaviour can be the trigger of other selfish behaviours.

To conclude the presentation of the six dimensions of our classification framework for selfish
behaviours, we complete the Summary Example 1 by suggesting possible executions for the
proposed motivations.

Summary Example 2 (P2P file-sharing)

P2P file-sharing applications such as BitTorrent and Maze assign a higher priority in down-
load to the peers that share more data. In this setting, a selfish node can increase its utility
by performing the following selfish behaviours:

• Lowering the contribution cost of hosting and delivering the files, even if this would
reduce the download priority acquired.
Motivation: (the peer aims to) save bandwidth and storage when playing as a provider.
Execution#1: (the peer can) free-ride the data transmission protocol when not download-
ing (adaptive activation) [87].
Execution#2: (the peer can) always misreport the list of sharable files to other nodes,
when executing the information providing protocol [116].

• Artificially increasing the benefit gaining higher priority in download.
Motivation: (the peer aims to) gain in quality of service when playing as a requester.
Execution: (the peer can) always collude with other nodes to cheat the incentive mech-
anism and get rewarded in download priority. Lian et al. [114] describe several collu-
sion strategies observed in the Maze network. For instance, colluders can upload large
amounts of traffic among each others in order to artificially inflate their download pri-
ority even without contributing to the community at large.

2.3.3 Details of the papers included in the review

The classification framework outlined above is based on the review of 25 research papers on
the subject. We selected these papers with the following criteria in mind:

Relevance. The papers should be representative of (but not limited to) the types of coop-
erative systems used as examples in Section 2.2, namely, peer-to-peer systems, distributed
computing, and delay tolerant networks.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.4 E X A M P L E S O F S E L F I S H B E H AV I O U R C L A S S I F I C AT I O N 25

Quality. The papers should be of particular interest to the research community (estimated
considering publishers and number of citations). Also, they should provide detailed descrip-
tions of concrete selfish behaviours.

Coverage. As the commonalities among deviations began to emerge, we selected papers
also based on the type of the deviations described therein. In particular, the papers should
contribute to a relatively uniform distribution of deviation types, in order to avoid biases due
to over-representation of certain deviations.

Table 2 presents the list of papers considered for our review, along with some information
on the cooperative system investigated (i.e., application domain, service provided, architecture
type). From the analysis of these papers, we could identify 56 selfish behaviours. Almost
all behaviours can be classified using one of the four deviation types listed above. The only
exception describes a deviation that is very specific to the implementation of the target system
— i.e., the rarest-first policy for requesting file pieces in BitTorrent [116]. The right columns of
Table 2 show the contribution of each paper to the final distribution of deviation types.

Remark. We intentionally excluded from our classification the category of selfish deviations that
target the authentication protocol of reputation-based cooperation enforcement mechanisms (see Sec-
tion 4.1 for more details). Deviations in this category, such as whitewashing and Sybil attack [102],
exploit the difficulty in establishing node identities in cooperative systems so as to cheat the incen-
tive mechanism, for instance by escaping bad reputations or spreading false reputation information.
Although common and well-studied, we decided not to include these behaviours in our classification
framework because they are heavily tied to a specific type of cooperation enforcement mechanism, and,
therefore, not suitable for generalisation.

2.4 E X A M P L E S O F S E L F I S H B E H AV I O U R C L A S S I F I C AT I O N

Hereafter, we present in more details four papers considered for our survey, and we show
how to apply our classification framework to the selfish behaviours described by the respective
authors. The papers have been selected so as to fulfil the same criteria of relevance, quality
and coverage applied to the survey. In particular, the authors of the last paper investigate the
impact of selfishness in anonymous communication systems.

2.4.1 BAR Gossip, Li et al. [111]

Li et al. [111] address the problem of selfishness in P2P live streaming systems based on gossip
protocols, and develop a new protocol (BAR Gossip) that can tolerate both selfish and Byzantine
behaviours by the peers receiving the stream. In addition, the authors show that BAR Gossip is
stable in the presence of significant collusion (up to 40% of colluders in the system).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

26 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Table 2: Papers considered in our review, along with the characteristics of the cooperative systems inves-
tigated and the types of selfish deviations therein described.

Cooperative System Deviation types a

Reference Domain Name and/or Service Architecture D F M C O

Ben Mokhtar et al. [28] Data Distribution File-sharing,
live streaming

P2P
√

χ χ
√

χ

Ben Mokhtar et al. [26] Data Distribution FireSpam P2P (struct.)
√ √

χ χ χ

Guerraoui et al. [72] Data Distribution Media streaming P2P (unstruct.) χ
√ √ √

χ

Hughes et al. [87] Data Distribution Gnutella (file-sharing) P2P (unstruct.)
√

χ χ χ χ

Li et al. [111] Data Distribution BAR Gossip
(live streaming)

P2P (unstruct.) χ
√ √ √

χ

Lian et al. [114] Data Distribution Maze (file-sharing) P2P (unstruct.) χ χ χ
√

χ

Locher et al. [116] Data Distribution BitThief (file-sharing) P2P (unstruct.)
√

χ
√

χ
√

Piatek et al. [148] Data Distribution PPLive
(live streaming)

P2P (hybrid) χ
√

χ
√

χ

Sirivianos et al. [165] Data Distribution Dandelion
(file-sharing)

P2P (unstruct.)
√

χ
√

χ χ

Yang et al. [175] Data Distribution Maze (file-sharing) P2P (unstruct.)
√

χ χ χ χ

Anta et al. [20] Computing BOINC Client-server χ
√

χ χ χ

Anderson [18] Computing BOINC Client-server χ
√

χ
√

χ

Kwok et al. [104] Computing Grid Computing Client-server χ
√ √

χ χ

Shneidman and Parkes [161] Computing Leader-election Client-server χ χ
√

χ χ

Yurkewych et al. [180] Computing BOINC Client-server χ
√

χ
√

χ

Cox and Noble [47] Backup & Storage Samsara P2P (struct.) χ
√

χ χ χ

Gramaglia et al. [71] Backup & Storage P2P Storage P2P (struct.)
√

χ χ χ χ

Buttyán et al. [36] Networking Bulletin board DTN
√

χ χ χ χ

Blanc et al. [31] Networking Overlay management P2P (struct.)
√

χ χ χ χ

Li et al. [113] Networking Message switching DTN χ χ χ
√

χ

Mei and Stefa [124] Networking Message switching DTN
√ √

χ χ χ

Shneidman and Parkes [161] Networking Inter-domain routing Internet χ χ
√

χ χ

Zhu et al. [188] Networking Message switching DTN
√

χ χ
√

χ

Ben Mokhtar et al. [27] Anonym. Comm. RAC Proxy servers
√ √

χ χ χ

Jansen et al. [89] Anonym. Comm. Tor [54] Proxy servers
√

χ χ χ χ

Ngan et al. [135] Anonym. Comm. Tor [54] Proxy servers
√ √

χ χ χ

a D = defection , F = free-ride, M = misreport, C = collusion, O = other types.

C O O P E R AT I V E S Y S T E M D E TA I L S In a P2P live streaming system, the dissemination of
video chunks throughout the network can be achieved using gossip-based protocols. The typ-
ical implementation of these protocols is that each peer proposes its available chunks to ran-
domly selected partners, which in turn request any chunks they need; the protocols end when
the peer delivers the requested chunks.

S E L F I S H B E H AV I O U R S The selfish behaviours described by Li et al. in their paper are sum-
marised in Tables (3-5). Consider for example the free-riding and misreport deviations reported
in Tables 3 and 4, respectively. A selfish peer may adopt either behaviour for the same motiva-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.4 E X A M P L E S O F S E L F I S H B E H AV I O U R C L A S S I F I C AT I O N 27

tion: reducing the bandwidth consumption when participating in the gossip protocol as video
chunks provider. The way this motivation is brought into practice is quite different between
the two cases. In the first case, the free-riding deviation, a selfish peer first advertises all its
shareable chunks, but, once requested, it delivers only a part of them. The selfish behaviour
in Table 4 describes a different execution, whereby a misreporting peer under-reports its chunk
availability to reduce the probability of receiving chunk requests. Note that the activation pol-
icy for both the free-riding and misreport deviations has been classified as adaptive. In fact, Li
et al. assume that selfish peers will behave selfishly as long as they experience a video stream of
high quality; otherwise, they would stick to the cooperative behaviour to contribute improving
the system performance, and enjoy a good quality stream again.

Table 3: Selfish behaviour in P2P live streaming systems: free-riding (source: [111]).

Motivation Objective Resource Role a Description

Save Bandwidth P Save bandwidth consumption
for current activities

Execution Deviation Target Activation Description

Free-riding Data transmission Adaptive Send less video chunk than
what requested by the partners

a P = Provider, R = Requester

Table 4: Selfish behaviour in P2P live streaming systems: misreport (source: [111]).

Motivation Objective Resource Role Description

Save Bandwidth P Save expected bandwidth
consumption for future

activities

Execution Deviation Target Activation Description

Misreport Information providing Adaptive Under-report the available
chunks

The selfish behaviour reported in Table 5 describes the situation in which peers coordinate
their actions to increase their collective utility. The motivation here is to contribute resources
only with a subset of the network, thus, decreasing the overall contribution cost. Selfish peers
can implement this behaviour by colluding in a coordinated deviation against the partner se-
lection mechanism, so as to establish interactions only among themselves.

The impact of the preceding behaviours on the live streaming performance has been evalu-
ated by Li et al. through experiments and simulations [111]. The results show that, without any
cooperation enforcement mechanism in place, the presence of 50% of selfish nodes can prevent
correct nodes from watching a good quality stream.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

28 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Table 5: Selfish behaviour in P2P live streaming systems: collusion (source: [111]).

Motivation Objective Resource Role Description

Save Bandwidth P Save bandwidth consumption
colluding group

Execution Deviation Target Activation Description

Collusion Partner management Always Bias the partner selection and
prefer colluders to other peers

2.4.2 BOINC client, Anta et al. [20], Anderson [18], Yurkewych et al. [180]

BOINC [18] is an open-source client for volunteer computing, which aggregates the computa-
tional power of millions of Internet-connected personal computers (volunteers) that donate their
idle resources to a computational project (e.g., SETI@home [19]). The paper of Anderson [18]
marginally, and the papers of Anta et al. [20] and Yurkewych et al. [180] particularly, address
the problem of selfish volunteers in the BOINC system, whose main goal in to earn credits
faster even if at the expense of results accuracy and system efficiency. Specifically, all authors
agree on using redundant task allocation techniques to detect selfish activities and punish self-
ish volunteers with (virtual [18] or real money [20, 180]) monetary fines.

C O O P E R AT I V E S Y S T E M D E TA I L S As already introduced in Chapter 1, each project in
BOINC is hosted on a server that provides volunteers with work units. Once a volunteer has
computed (offline) the work unit, it sends the result back to the server [18]. To motivate coop-
eration, BOINC rewards volunteers with credit points proportionally to their contribution, and
makes available their scores on web-based leaderboards accessible worldwide.5

S E L F I S H B E H AV I O U R It is well documented that the BOINC credit system has attracted
not only volunteers but also selfish users, whose main goal is to rise in the credit leaderboards
ranking rather than making significant and reliable contributions to the project. For example,
the “The SETI@home problem” article by David Molnar [7] reports on two selfish BOINC clients
that have been developed, notably, also by Microsoft, to speed up the computation by sending
untrustworthy results to the server labelled as completed work units (more details can be found
here [8]). More recently, other volunteer computing projects that rely on the BOINC platform
have faced severe issues with selfish behaviours. Particularly, in 2013, a small group of 17 selfish
volunteers in the PrimeGrid project6 — i.e., collaborative searching for prime numbers — have
faked their results leading to approximatively one month’s worth of work to be redone [10].
Similar behaviours, though with almost no negative consequences on the validity of results,
have also been detected in some World Community Grid’s 7 research projects [11].

5 http://boincstats.com/
6 https://www.primegrid.com/
7 https://www.worldcommunitygrid.org/

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.4 E X A M P L E S O F S E L F I S H B E H AV I O U R C L A S S I F I C AT I O N 29

Table 6 reports the classification of the selfish behaviour described by Anta et al. [20], An-
derson [18], and Yurkewych et al. [180] in their papers. The motivation for such behaviour is
to earn more credits and faster in order to climb the ladder of the leaderboards ranking. With
this intention, a selfish volunteer may use a hacked BOINC client that is optimised for fast com-
putation rather than trustworthiness of results. More precisely, Table 6 describes a free-riding
deviation aiming at reducing the amount of task computation activities (e.g., data input and
accuracy checks).

Table 6: Selfish behaviour in volunteer computing: free-riding (source: [18, 20, 180]).

Motivation Objective Resource Role a Description

Gain Incentive P Obtain more credits than is due

Execution Deviation Target Activation Description

Free-riding Task computation - Send an untrustworthy result

a P = Provider, R = Requester

2.4.3 Delay tolerant network, Zhu et al. [188]

In their presentation of an incentive scheme (SMART) to foster cooperation in DTNs, Zhu et al.
also provide some examples of selfish behaviours that may occur in these systems. To address
this problem, the authors introduce a virtual currency to charge for and reward the cooperative
delivery of messages within the network. The SMART scheme has been evaluated through
simulations, which showed its applicability, reliability, and effectiveness also in the presence of
selfish nodes [188].

C O O P E R AT I V E S Y S T E M D E TA I L S Delay tolerant networks achieve end-to-end connectiv-
ity over a disrupted network by asking mobile nodes to participate in a message propaga-
tion process called store-carry-forward. This process relies on the cooperation of intermediate
nodes, which carry the messages of other nodes until the next hop of a communication path
appears [56].

To motivate selfish nodes to participate in a store-carry-forward protocol, Zhu et al. introduce
in DTNs a secure virtual currency (called layered coin) along with a payment scheme for re-
warding the provision of message forwarding [188]. This scheme works as follows: the source
node generates a multi-layered coin to transmit together with the message. The base layer cre-
ated by the source contains information about reward amount (credit value) and conditions.
Each intermediate node in the store-carry-forward process adds a layer to the coin, providing
details about its identity. Once the message has reached its destination, the recipient of the
message can distribute the credit to all intermediate nodes by using the identities stored in the
layered coin.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

30 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

S E L F I S H B E H AV I O U R S As already mentioned in Example 2.2.4, the hypothesis that each
node in a DTN is willing to forward messages to others might be unrealistic. In fact, participat-
ing in the store-carry-forward constitutes an important cost for mobile nodes with limited energy,
bandwidth and storage constraints. A selfish node motivated by the objective of saving these
resources may perform the selfish behaviour classified in Table 7. The simplest implementation
of this behaviour is to ignore any request to serve as an intermediate node during the whole
stay period in the DTN.

Table 7: Selfish behaviour in delay tolerant networks: defection (source: [188]).

Motivation Objective Resource Role a Description

Save Bandwidth, storage,
energy

P Save resources dedicated to
cooperation activities

Execution Deviation Target Activation Description

Defection Information routing Always Never participate in the
message propagation protocol

a P = Provider, R = Requester

The selfish behaviour described in Table 8 is related to the cooperation enforcement mech-
anism proposed by Zhu et al. [187, 188]. The motivation for this behaviour is to increase the
amount of layered coins received by the payment scheme, to gain more purchasing power when
acting as a service requester. With this intention, a selfish node may collude with other nodes
to forge a valid credit and reward themselves for “forward” operations they have never done.
In their paper, Zhu et al. also discuss a solution for this behaviour, based on the concatenation
of different layers.

Table 8: Selfish behaviour in delay tolerant networks: collusion (source: [188]).

Motivation Objective Resource Role Description

Gain Incentive R Obtain more credits than is due

Execution Deviation Target Activation Description

Collusion Incentive mechanism - Collude with other nodes to
increase the rewards

2.4.4 Tor network, Dingledine et al. [135]

Tor [54] is an anonymous communication system that uses Onion Routing [70] to protect its
users from traffic analysis on the Internet. This system works by relaying traffic over a network
of voluntary nodes located around the world. However, Ngan et al. have reported that while
the number of Tor users keeps growing, the number of relay nodes is not [135]. In their paper,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.4 E X A M P L E S O F S E L F I S H B E H AV I O U R C L A S S I F I C AT I O N 31

the authors investigate the reasons for this lack of cooperation and propose an incentive scheme
to reward Tor relays with a higher quality of service.

C O O P E R AT I V E S Y S T E M D E TA I L S Using Tor, when a source node wants to send a mes-
sage to a destination node, it first fetches the list of available relay nodes from trusted directory
authorities. Then, the source node builds a circuit of voluntary relay nodes. Circuits are up-
dated periodically, and relays can participate in multiple circuits at the same time. To protect a
message, the source encrypts it with the public key of the destination. Furthermore, to protect
the communication channel, the source uses the public key of each relay node in the circuit to
encrypt the address of the next relay node. The resulting message is called an onion. A relay
uses its private key to decrypt one layer of the onion and contributes a part of its bandwidth to
forward the resulting message to the next relay until the message eventually reaches its desti-
nation.

To incentivise Tor users to act as a relay, the directory authorities measures the performance
of relays to prioritise the traffic of the most active ones, i.e., the so-called “gold star” relays [135].
In practice, a gold star relay’s traffic always gets relayed ahead of other traffic.

S E L F I S H B E H AV I O U R S Ngan et al. [135] reported two selfish behaviours in Tor. The moti-
vation of both behaviours, summarised in Tables 9 and 10, is to reduce the communication and
computational burden of nodes when actively playing as a traffic relay (i.e., a service provider).
A relay node executing the selfish behaviour described in Table 9 behaves cooperatively until
it gets rewarded with a gold star; then, it stops participating in any relaying activity. Table 10
reports a different adaptive strategy, whereby nodes cap their relaying at a given bandwidth
threshold and free-ride any other request that would exceed that threshold.

Table 9: Selfish behaviour in Tor networks: defection (source: [135]).

Motivation Objective Resource Role a Description

Save Bandwidth, CPU P Save resources dedicated to
cooperation activities

Execution Deviation Target Activation Description

Defection Data transmission Adaptive Never participate in the system
as relay node

a P = Provider, R = Requester

To evaluate the performance of the preceding behaviours, Ngan et al. built “a packet-level
discrete event simulator that models a Tor overlay network” [135]. Then, they studied the

Ngan et al. evaluated the performance of the preceding behaviours by simulating an onion
routing network composed by a third of correct relays, another third of relays performing the
selfish behaviour in Table 9, and the remaining relays following the behaviour in Table 10. The
authors considered as performance measures the download and ping time of a relay node when
acting as a service requester (i.e., a Tor user). Results demonstrate that when no incentive

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

32 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Table 10: Selfish behaviour in Tor networks: free-riding (source: [135]).

Motivation Objective Resource Role Description

Save Bandwidth, CPU P Contribute less bandwidth than
the fair share

Execution Deviation Target Activation Description

Free-riding Data transmission Adaptive Relay traffic only up a given
threshold

mechanism is in place, the performance of selfish relays is slightly better than correct nodes.
Therefore, according to the evaluation by Ngan et al. [135], the utility of a selfish relay in Tor
can increase not only due to the lower contribution costs, but also to an increase (even if modest)
of the service benefits.

2.5 G E N E R A L A N A LY S I S O F S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

In Section 2.3, we have developed a new framework to classify the behaviour of selfish nodes
in cooperative systems, based on a systematic review of the state-of-the-art. We now apply
the framework to the reviewed papers, and we use it as a comprehensive analysis toolkit to
identify emerging patterns and characteristics of selfish behaviours. Our presentation of this
analysis is structured in accordance with the six dimensions of a selfish behaviour as presented
in Section 2.3.

Notation. Hereafter, we refer to the list of reviewed papers as the “paper dataset”, and we refer to the
entire set of selfish behaviours described in the paper dataset as the “behaviour dataset”.

2.5.1 Analysis of the motivations

The most common motivation for a selfish node to behave selfishly is to save bandwidth when
participating in the cooperative system as a resource provider. Every other motivation in the be-
haviour dataset follows this pattern, regardless of the application domain. Below, we elaborate
on this point and take a closer look at each dimension of a selfish motivation.

R E S O U R C E The application domain of a cooperative system has a strong influence on the
resources of interest for its selfish participants. For example, selfish volunteers in distributed
computing systems are more sensitive to their CPU availability and credit scores [18, 20, 180],
whereas selfish mobile nodes in DTNs takes energy consumption in more account [31, 36, 113,
124]. Notably, the energy consumption in battery-powered nodes is strictly related to the CPU
utilisation and, even more, to network traffic.8

8 Al-Karaki and Kamal reported that sending a bit over 10 or 100 m distance consumes as much energy as performing
thousands to millions of arithmetic operations [16].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.5 G E N E R A L A N A LY S I S O F S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 33

A second observation we can draw from the behaviour dataset is that selfish nodes are often
concerned about their bandwidth capacity, regardless of the application domain at hand (e.g.,
in data distribution [28, 87, 111, 116, 148], networking [113, 124, 188], backup [47, 71], and
anonymous communication [27, 27, 135]). This finding is perhaps expected since distributed
systems, in general, and cooperative systems, in particular, require intensive message-passing.
As a result, bandwidth consumption places a significant burden on the utility of any selfish
node.

R O L E & O B J E C T I V E A clear message we get from the analysis of the behaviour dataset
is that the vast majority of selfish behaviours are initiated by resource providers. The most
likely cause of this result is that providers are typically in charge of the most cost-intensive
functionalities of a cooperative system, such as data transmission [72, 87, 113, 148], task compu-
tation [18, 20, 104, 180], and monitoring [27, 28, 180]. This argument is reinforced by the finding
that saving resources is the typical objective of a selfish behaviour. On the contrary, we found
that resource requesters usually behave selfishly to further increase their benefits, i.e., gaining
more resources than what they should according to the system protocols [26, 116, 165, 188].

The two studies [28, 180] from the paper dataset that address selfish behaviours with a “hide”
objective are the only ones that do not take the robustness of the selfishness detection mecha-
nism in place for granted. We recall from Section 2.3 that the rationale of this objective is to
conceal misbehaviours, possibly colluding, in order to avoid punishments that could decrease
a selfish node’s utility. For example, redundant task allocation is a common mechanism in vol-
unteer computing systems to detect misbehaviours [18]. However, Yurkewych et al. [180] de-
scribed how selfish colluders could avoid detection if they agree on providing the same wrong
result to the project server, so as to cover each others’ deviations.

2.5.2 Analysis of the executions

Before proceeding with the analysis of the behaviour dataset, we would like to remind the
reader that one criterion to create the paper dataset was to ensure an as uniform as possible
representation of all deviation types, in order not to be biased by over-representation of cer-
tain types. On the other hand, it is important to bear in mind that the uniform distribution is
not representative of the actual attention given to each deviation type in the literature; on the
contrary, we found that most of the studies on the topic focus on free-riding.

After these preliminary remarks, we can now complete the analysis of the behaviour dataset
by introducing the three execution dimensions into consideration. As we will see, this broader
perspective will allow us to identify interesting patterns across the motivations and executions
of selfish behaviours.

D E V I AT I O N We start by examining the relationship between selfish objectives and devia-
tion types. Figure 4 illustrates the typical deviations that selfish nodes perform to put their
objectives into practice. As we already mentioned, the most common objective that motivates a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

34 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

selfish behaviour is to save resources (green areas in the figure). In our behaviour dataset, a sig-
nificant proportion of selfish nodes tries to fulfil this objective performing either free-riding or
defection deviations, which is reasonable in general as these deviations are the most convenient
and direct in cutting off resource contribution. In contrast, we found that increasing the benefits
obtained from the system is not as simple as reducing costs. Rather, it requires more sophisti-
cated strategies (pink areas in Figure 4), chiefly providing false information [111, 116, 161, 165]
or collude [72, 114, 188].

Save Gain Hide

Save: Defection

Save: Free-riding Save: Misreport

Save: Collusion

 Gain: Other

 Gain: Collusion

 Gain: Misreport

Hide: CollusionHide: Defection

Figure 4: Overview of the deviation types implementing the objectives of the selfish behaviours consid-
ered for our analysis.

We already know that saving bandwidth is the principal motivation behind a selfish be-
haviour. Remarkably, it is also the most common motivation associated with each deviation
type in our behaviour dataset, especially for defection and free-riding deviations. To be more
precise, if we consider collusion, saving bandwidth is the most frequent motivation together
with receiving more incentives. For example, the selfish collusion in P2P live streaming pre-
sented in Table 5 aimed to save bandwidth by biasing the selection of interaction partners [111],
whereas the collusion described in Table 8 could raise the reward distributed to the collud-
ers [188].

Also noteworthy about collusion is that this deviation type can be executed in combination
with other deviations, which, of course, can exacerbate the negative impact on the cooperative
system. As an illustration, let us consider again the example of collusion in volunteer comput-
ing described by Yurkewych et al. [180]. In that case, the collusion consisted in covering-up
a free-ride (stopping the task computation before completing it) by coordinating a misreport
deviation (sending the same incomplete result to the project server).

TA R G E T Figure 5 illustrates the primary targets of selfish deviations in the behaviour dataset.
For clarity, we aggregated some functionalities listed in Section 2.3.2: data management includes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.5 G E N E R A L A N A LY S I S O F S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S 35

data transmission, data hosting and data sharing, and partner and overlay management includes
overlay management, information routing, partner management and resource allocation. A
very large majority of selfish behaviours in our dataset target application-related functionali-
ties. Indeed, most of the papers reviewed assumed no selfishness in the cooperation enforce-
ment mechanisms, but only in the application at hand. However, assuming perfect selfishness-
resilience of such mechanisms is as unrealistic as assuming a cooperative system of all correct
nodes [28, 53, 180]. We will further investigate on this in the next chapters of this thesis.

Application Cooperation enforcement mechanism

Data management

Information providing

Partner and overlay
management

Task computation

Monitoring, detection,
incentive

Figure 5: Overview of the main functionalities of a cooperative system that are targeted by the selfish
behaviours considered for our analysis.

The application domain of a cooperative system can affect the target of a selfish behaviour.
For instance, deviations from task computation are the main issue in distributed computing [18,
20, 104, 180], whereas data hosting is the primary target in cooperative storage systems [47, 71].
Also, the system architecture has an impact on the target of a selfish deviation. As an illus-
tration, in centralised systems such as anonymizing networks and Grids, there are no selfish
behaviours that target partner selection or overlay management protocols, as such functionali-
ties are either absent or more rigidly controlled.

A C T I VAT I O N The last dimension of our classification framework defines the rule or event
that activates a selfish deviation. However, of the 56 selfish behaviours included in our dataset,
we cannot be completely confident about the reliability of more than half of the activation poli-
cies specified for their execution (e.g., the authors provided no rules that may trigger a devi-
ation, or failed to provide a clear justification for their choice). Unfortunately, given this gap,
we could not pursue a faithful and trustworthy analysis of the behaviour dataset along the
activation dimension.

The activation policies available in our behaviour dataset are either based on empirical obser-
vations of real-world cooperative systems (e.g., studies on Gnutella [87] and Maze [114, 175]),
or constructed by design (e.g., BitThief [116]).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

36 A S U RV E Y O N S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

2.6 S U M M A R Y

In this chapter, we provided the theoretical basis along with conceptual tools for reasoning on
selfishness in cooperative distributed systems. Although related to all the research challenges
presented in Section 1.3, this chapter directly addressed challenge (A.1) and (A.2), i.e., develop-
ing adequate support for understanding, classifying and specifying selfish behaviours.

After a brief overview of representative examples of cooperative systems, we gave a defi-
nition of selfish behaviour based on the notions of autonomy and utility, arguing that selfish
behaviours are intentional and profitable deviations from the faithful execution of the protocols
underpinning a cooperative system. Furthermore, we proposed a taxonomy of nodes partici-
pating in cooperative systems. Specifically, we identified four types of nodes — i.e., correct,
faulty, malicious, and selfish nodes — based on their correctness and capability to strategise.

Then, we developed a classification framework to enable the analysis and comparison of self-
ish behaviours in cooperative distributed systems. The framework is based on the systematic
review of 25 published studies on the subject. Our classification is based on six dimensions,
grouped into two categories: the motivation for adopting a particular selfish behaviour, and its
practical execution in a given system. The three dimensions for motivating a selfish behaviour
provide information about who commits the behaviour (role) and why (resource and objective).
On the other hand, the execution of a selfish behaviour describes the deviation type (i.e., defec-
tion, free-riding, misreport, or collusion) from a target functionality of the cooperative system,
along with the activation policy that has triggered the deviation. Finally, we tested the classifi-
cation framework by describing eight selfish behaviours in four different cooperative systems.

Lastly, we used our classification framework to conduct a comprehensive analysis of the
studies mentioned above, with the aim to identify emerging patterns and key characteristics of
selfish behaviours. In particular, we found that one of the most common motivation for a selfish
node to behave selfishly is to save bandwidth when participating in the cooperative system as a
resource provider. Also, we noted that defection and free-riding are often selected as deviation
types for achieving this objective, because they can be very effective in cutting down resource
consumption.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3
A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

The last two decades have witnessed a notable growth in the literature addressing the problem
of selfish behaviours in cooperative systems. We can broadly distinguish between studies that
focus on the analysis of selfishness and studies that design countermeasures to foster coopera-
tion among selfish nodes. The scope of this chapter is limited to the first category of studies,
especially game theory, leaving the discussion of the countermeasures to Chapter 4.

The contributions of this chapter are summarised below:

• We provide a comparative review of state-of-the-art approaches to analyse selfishness in
cooperative systems.

• We present a detailed description of the main characteristics, advantages and limitations
of using game theory for system analysis.

Roadmap. In Section 3.1 we introduce the main approaches to analyse selfish behaviours
in cooperative systems, namely, analytical and experimental. In Section 3.2 we present
a brief discussion of game theory and review research in which game theory has been
applied to system design problems. Then, in Section 3.3, we provide a comparative review
of analytical and experimental approaches to analyse selfishness. Finally, we summarise
the chapter in Section 3.4.

3.1 A P P R O A C H E S T O S E L F I S H N E S S A N A LY S I S

In this section, we discuss the related work for research challenge (A), i.e., understanding, mod-
elling and evaluating selfish behaviours in cooperative systems. The existing approaches can
be broadly divided into analytical and experimental. We discuss each of these categories below.

3.1.1 Analytical approaches

Analytical approaches provide mathematical tools to reason about selfishness and coopera-
tion in competitive situations like those underlying a cooperative system [26, 28, 71, 82, 111].
Game theory [130] has become the most prominent analytical framework for modelling self-
ishness in cooperative systems, due to the predictive power and general applicability of the
tool. Much work on the potential of game theory has been carried out in the context of content-
disseminating applications [28, 111, 112, 142], wireless and mobile networking [35, 36, 167],
cryptography [13, 95], security [69], anonymity and privacy mechanisms [27, 63].

37

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

38 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

One reason for the success of game-theoretic applications in the context of cooperative sys-
tems can be explained by the socio-economic dimension of these systems [143]. In fact, auton-
omy, self-interest and economic competition are not only the main characteristics of the partic-
ipants of a cooperative system (see Section 2.2), but also the basic ingredients of a game [130].
Therefore, game theory appears as the natural candidate for the formal representation of self-
ishness in these systems.

However, applying formal approaches to study real systems tends to be complex [118, 150].
Particularly, game theory approaches require manually creating a mathematical model of the
system (the game), including the alternative strategies available to the system participants (the
players) and their preferences over the possible outcomes of the system. Then, game-theoretic
arguments have to be formulated to assess what strategy is the most likely to be played by
the players. In addition to being complex and time-consuming, carrying out this process is
also prone to modelling errors, due to assumptions and simplifications to make the model
tractable [150].

A more detailed discussion of the objectives, characteristics and limitations of game theory
as a tool to analyse selfishness in cooperative systems is deferred to Section 3.2.

3.1.2 Experimental approaches

Experimental analysis of distributed systems has a long tradition in Computer Science [50, 51,
58] and can be an appropriate (or even necessary) solution to overcome the shortcomings of
analytical modelling [24, 66, 74]. In fact, an empirical approach based on experiments allows
gathering some knowledge through observations in the case where the scenario to investigate
is hard to formalise analytically. This is particularly true in complex distributed systems such
as cooperative systems, due to their large scale, the high dynamics of the environment, and the
high heterogeneity and autonomy of their participants (see Chapter 2).

M E T H O D O L O G I E S F O R E X P E R I M E N TA L A N A LY S I S . Gustedt et al. [74] proposed a gen-
eral classification of methodologies for experimental analysis of large-scale distributed systems,
depending on whether the experiment needs to execute (i) a real application or a model of an
application on (ii) a real environment or a model of a system environment. For instance, an ap-
plication can be a downloadable software program (e.g., BitTorrent [45], eMule [2], PPLive [5])
or a set of communication protocols, whereas a system environment can be a distributed net-
work of real machines, operating systems or middleware. Table 11 shows the four resulting
classes of methodologies, namely, real experiments (named “in-situ", by Gustedt et al. [74]),
emulation, benchmarking, and simulation. We discuss each class below.

Real experiments. Real experiments offer the least abstraction and the most accurate system
analysis, as they consist in observing the behaviour of a real system implementation running
on a real network. However, because cooperative systems typically consist of very large
numbers of nodes, performing real experiments could be very costly in terms of hardware
requirements and administration effort. Moreover, using real machines may hinder the re-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.1 A P P R O A C H E S T O S E L F I S H N E S S A N A LY S I S 39

Environment

Real Model

Real Real experiments Emulation
Application

Model Benchmarking Simulation

Table 11: Classification of methodologies for experimental analysis.

producibility of an experiment, due to external factors that could influence the experiment
results but are extremely difficult to control (e.g., network traffic and CPU usage). In order to
reduce hardware and effort costs, as well as to improve reproducibility, it is possible to use
experimental testbeds designed for performing experiments in real-scale distributed envi-
ronments. Among these testbeds, we cite Grid’5000 [37] and PlanetLab [41], which are more
suitable for large-scale distributed systems — particularly, the focus of Grid’5000 is more on
grid computing, whereas PlanetLab is more oriented to peer-to-peer.

Emulation. An emulator supports the execution of (almost) unmodified applications on var-
ious models of system environments. Such models must be realistic enough to reproduce
some of the characteristics of a real network (e.g., delays, message loss), while trying to give a
controllable, predictable, and repeatable experimental environment. Emulation experiments,
and specifically those based on ModelNet [168] and Emulab [173], are becoming very popu-
lar in many research areas [162], including complex distributed systems such as cooperative
systems.

Benchmarking. The goal of a benchmarking experiment is to help understand how a real
system environment will perform when a particular model of an application is running on
it. Such a model is carefully designed and configured in such a way as to analyse specific
systems’ performance, such as dependability [81, 117, 155].1

Simulation. Simulation is a classical approach in Computer Science, and it is widely used
to perform experiments on cooperative systems [26, 71, 104, 111, 124, 135]. A simulation
consists in the execution of a model of an application on a model of the system environment.
This allows for perfect control over the experimental conditions, high reproducibility, faster
execution time, and the possibility of simulating millions of nodes on a single host [24]. These
features come at the price of a high level of abstraction, which can introduce some bias in the
experimental results [74]. Relying on a well-established and extensively tested simulator
provides more certainty on the accuracy of the results. Naicken et al. [131] surveyed nine
existing simulators suitable for performing experiments in cooperative systems, especially
in peer-to-peer. Among these, and according to a recent survey [24], the most used are the
general network simulators ns (ns-2 [3] and its recent update ns-3 [80]) and OMNeT++ [4],
and the P2P PeerSim simulator [128].

1 Dependability of a system is a measure of its ability to perform its function in a trustworthy way [21].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

40 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

E X P E R I M E N TA L A N A LY S I S O F S E L F I S H N E S S . An experimental analysis of the impact
that selfish behaviours have on the system performance can be done only by modelling and
injecting such behaviours into the system under consideration, which is a non-trivial task. In-
deed, to carry out this task, one has to first analyse the functional specification of the considered
system and identify those steps (e.g., functions) for which selfish nodes may behave in a non-
cooperative way. Then, on each of the identified steps, one has to decide what are the possible
types of selfish behaviours that are meaningful in the system context, e.g., defection, free-ride,
misreport, or collusion deviation types (see Section 2.3.2 for a detailed description). Finally, one
has to integrate the selected behaviours into the system application, and then invest consider-
able effort in launching experiments to analyse how the system reacts.

For the purpose of these experiments, existing frameworks supporting the experimental eval-
uation of cooperative systems can be of some help. For example, the SPLAY environment pro-
posed by Leonini et al. [108] can simplify the evaluation of large-scale distributed systems in
real and emulated testbeds such as PlanetLab, ModelNet and EmuLab. Furthermore, SPLAY
provides mechanisms to control the dynamics (churn) of the system, which can be used to inject
faulty behaviours (node failures). Churn management and basic fault injection support are also
provided by various simulation frameworks, such as PeerSim [128], NS [3], and ProtoPeer [66].
Particularly, the RCourse library [122] extends the PeerSim simulator with new and more flex-
ible fault injection capabilities. For example, RCourse can simulate various types of hardware
and software faults (e.g., omission failures, message loss, message tampering), and it param-
eterizes some aspects of the faulty behaviours (e.g., occurrence rate or probability, fraction of
nodes involved in a certain fault). For completeness, it is also worth mentioning that bench-
mark suites for evaluating the dependability of distributed systems allow conducting more
sophisticated and accurate fault-injection experiments, but are tailored to very specific applica-
tion domains — e.g., MRBS for MapReduce systems [155], WS-FIT [117] and Gremlin [81] for
web-services.

What is interesting with the possibility of injecting faults into the system is that a fault may
have the same implementation as a certain type of selfish deviations, namely, defection. Con-
sider, for instance, Example 2.2.4, presented in the previous chapter and repeated below for
convenience.

Example 2.2.4 (message delivery). In wireless networks such as DTN [169] that rely on co-
operative message propagation, a node may decide not to relay the traffic of other mobile
nodes, in order to extend its battery lifetime and preserve its bandwidth [176, 188].

The selfish deviation described in Example 2.2.4 might be implemented as an omission failure,
where a node omits to respond to a request for forwarding messages of other nodes.

Apart from the very simple type of selfish deviations mentioned above, the existing tools
for experimental analysis in cooperative systems do not provide any specific support for mod-
elling and injecting selfishness, which has to be done manually. In practice, it is necessary to
hard-code both the control and logic of selfish behaviours into the parts of the system imple-
mentation that are affected by that behaviours. This activity typically results in generating
variant implementations of the same system (i.e., one for each node behaviour), or in creating a

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.2 R E L AT E D R E S E A R C H : G A M E T H E O R Y 41

single implementation that incorporates all the possible behaviours as well as the algorithmic
functionalities for their control (e.g., variables, if-clauses). The increased complexity and redun-
dancy of the source code reduce its readability, maintainability, and constant evolution. Finally,
once a system implementation is available, an extensive experimental campaign is required
to quantify the harm caused by various selfishness manifestations of different proportions of
selfish behaviours. Such a domain-specific evaluation has to be conducted manually, which is
tedious and time-consuming.

3.2 R E L AT E D R E S E A R C H : G A M E T H E O R Y

Game Theory (GT) is a mathematical framework originating from economics that deals with
strategic interactions in conflict situations. GT has become increasingly popular for modelling
selfishness in P2P and other cooperative systems, due to the predictive power and general
applicability of the framework.

In this section, after a short introduction to the basic concepts of GT, we present some rele-
vant applications to cooperative systems, and we discuss the main issues from a system design
perspective. For a detailed introduction to game theory, we refer to the recent book [130] by
Myerson.

3.2.1 Basic concepts

Game theory describes conflict situations as games between rational (i.e., strategic and self-
interested) decision-makers known as players.2 The game model includes the set of actions
available to each player, along with their constraints, costs and benefits throughout the game.
The strategy for a player is a complete plan of actions to be taken during the play. If the strategy
indicates a unique action for each decision point, then it is called a pure strategy; otherwise, it is
called a mixed strategy if it specifies a probability distribution over possible actions.

Each player is assumed to be a rational entity, who makes decisions and takes appropriate
actions to lead the game to the best possible outcome for herself, while anticipating the strate-
gies of other players. The preference of a player for the possible outcomes is expressed by a
utility function, which maps every outcome of the game to a real number (payoff). When all the
components of the game (players, actions, outcomes and payoffs) are common knowledge to
all the players, this game is called of complete information.

A game describes all the factors that characterise a strategic interaction but says nothing
about what actions are the most likely to be taken by the players. This information is provided
by the solution of a game, which offers a precise description of how the game will be played and
what the outcomes might be. The most famous solution is the Nash Equilibrium (NE), presented
in 1951 by John F. Nash [130]. An equilibrium describes a steady state condition of the game,
and the NE is the situation in which no player can improve her payoff by unilaterally switching

2 Note that there exists no convention to refer to the players with a particular gender. In this thesis, we will use the
female pronouns, following the textbook by Myerson [130].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

42 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

to an alternative strategy. Nash proved that every game has at least one NE in mixed strategies;
however, in general, there are many. To date, there is no consensus on which NE should be
considered as a solution in the case of multiple equilibria.3

3.2.2 Game types and applications to cooperative systems

C L A S S I C A L G A M E T H E O R Y. Classical game theory (CGT) is the most mature and well-
developed branch of GT. It is based on two main assumptions: players are fully rational utility
maximisers, and the identity of players remains fixed during the play. The focus of CGT is to
analyse the equilibria of temporally isolated interactions between players. Figure 6 illustrates
the basic classification of CGT. The central distinction is between cooperative and non-cooperative
games, based on whether players act independently or form collaborative coalitions. The in-
terest of collaborative games is on how to distribute the total profit generated by a coalition
to individual participants, whereas the goal of non-cooperative games is to predict the strate-
gic behaviour of rational players. For this reason, non-cooperative games appear to be more
appropriate to reason about selfishness.

CLASSICAL GAME THEORY

Non-cooperative games Cooperative games

Static games Sequential games

Figure 6: Classification of classical games.

We can further classify non-cooperative games into static (or strategic) and sequential (or ex-
tensive) games (see Figure 6). In static games, the players make their decisions at the beginning
of the game, without knowledge of the decisions of the other players. The “Prisoner’s dilemma”
and the “Battle of the sexes” are two classic examples of static games (we refer the interested
reader to [130] for the details). Conversely, in a sequential game, the players act in turns and
can observe previous actions by the other players. Sequential games are more versatile than
static games, and can model a wider range of real life situations; on the other hand, they are
more complex to model and analyse [139].

Application to Cooperative Systems (Peer-to-peer). Feldman et al. [60] developed a non-cooperative
static game to model selfish behaviours in P2P systems. According to this model, selfish
nodes cooperate only if the current contribution cost is below a given threshold (also known
as the node’s generosity level). The contribution cost is assumed to be inversely proportional
to the number of contributors in the system. The authors use GT reasoning to determine the

3 There is an entire literature on equilibrium selection which seeks to address reasons for players of a game to select a
certain equilibrium over another.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.2 R E L AT E D R E S E A R C H : G A M E T H E O R Y 43

minimum generosity level that allows the system to be stable and efficient. Also, the model
is used to evaluate the effects of different incentive mechanisms (e.g., isolation, reputation)
on the nodes’ behaviours and system performance.

Application to Cooperative Systems (Peer-to-peer). Gupta and Somani [73] proposed a reputation-
based mechanism to stimulate cooperation in P2P systems and develop a static game to evalu-
ate its performance. The game assumes that each node is a utility maximiser that strategises
about whether or not to serve requests of other nodes. Based on the analysis of the Nash
equilibria, the authors demonstrate that their incentive mechanism can effectively discour-
age selfish nodes from avoiding contributions.

Application to Cooperative Systems (Peer-to-peer file-sharing). To investigate selfishness in P2P
file-sharing, Park and van der Schaar [145] model cooperative behaviour as a three-stage se-
quential game: production of contents, notification of the contents available for sharing, and
transfer of the requested contents. The game analysis shows that sharing is not an equilib-
rium strategy and that peers receive only a small amount, if any, of the requested contents.
As a countermeasure, Park and van der Schaar propose two economy-based incentive mech-
anisms to reward sharing with monetary payments [145], which are proven effective through
an equilibrium analysis.

E V O L U T I O N A R Y G A M E T H E O R Y. Evolutionary game theory (EGT) originated as an adap-
tation of classical game theory to biological contexts [172]. Recently, the application of EGT has
been rapidly expanding to other fields, including information systems [142, 171, 183]. One
reason for the interest within the systems community is that EGT allows investigating the dy-
namics of large populations of players while relaxing the strict assumptions of full rationality
and static identities of CGT.

An evolutionary game involves the repetition of strategic interaction between myopic players
with bounded rationality, who can gradually adjust their strategy over time in response to
the payoffs that they have historically received. Specifically, EGT assumes that players can
learn what are the most remunerative strategies from previous interactions, and tend towards
those strategies by imitation [172]. An evolutionary stable strategy (ESS) is a strategy such that,
if adopted by (almost all) the population of players, cannot be invaded by any other strategy.
In plain words, an ESS is a strategy that cannot be improved by an alternative strategy. Note
that this definition is similar to that of the NE. In fact, it has been proven that each ESS is also a
Nash equilibrium, but the converse is not always true [172].

To summarise, the components of an evolutionary game are: (i) a static representation of the
system interactions, called a stage game; (ii) one or more populations of players; (iii) a function
to calculate the utility of a given behaviour; and (iv) the evolution dynamics that describes the
learning and imitation processes. We will discuss these components in more detail in Chapter 6.

Application to Cooperative Systems (BitTorrent). Wang et al. [171] use EGT to investigate the dy-
namics of incentive mechanisms based on service reciprocation, such as the one enforced in
BitTorrent [45]. For this, the authors develop an evolutionary game to study the evolution of

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

44 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

three simple strategies: always cooperate (ALLC), always defect (ALLD), and reciprocator (R)
— an R player cooperates with ALLC and R players, but not with ALLD players. Playing the
R strategy incurs a cost to the player, due to the information seeking operations required to
identify the strategy of the interacting players. Based on this model, Wang et al. theoretically
demonstrate that when the learning capabilities of players are weak and the reciprocation
cost is not negligible, players will never converge to the ALLC strategy [171].

Application to Cooperative Systems (Peer-to-peer). Zhao et al. [183] provide a general frame-
work based on EGT to analyse the performance and robustness of reciprocity-based incen-
tive mechanisms in P2P systems. An interesting finding emerging from their analysis is that
the overall degree of cooperation in the system is limited not only by the presence of selfish
nodes but also by unselective altruism. The explanation provided for this result is that self-
ish nodes have no incentive to cooperate with others if they receive resources in any case.
The evolutionary game proposed by Zhao et al. allows controlling the trade-off between the
degrees of altruism and cooperation.

M E C H A N I S M D E S I G N . Mechanism design (MD) provides a mathematical framework to
design games that produce desired outcomes for the designer [139]. MD can be thought of as
an inverse game theory, because rather than studying what are the equilibrium strategies of a
given game, it specifies how the played strategies should map to the desired outcome.

As the potentials of MD as a framework to design cooperative systems have become apparent,
researchers have started to take the computational complexity of mechanisms into considera-
tion. The first theoretical model that combined mechanism design with computation tractabil-
ity is due to Nisan and Ronen [138] and is known as algorithmic mechanism design (AMD). AMD
assumes centralised decision making, whereby players report their private information to a
trusted centre that regulates the players’ participation. Feigenbaum and Shenker [57] relaxed
this assumption and extended AMD to distributed algorithmic mechanism design (DAMD), in
which the mechanisms is carried out in a fully distributed fashion.

A notable example of the MD approach to distributed systems was proposed by Aiyer et
al. [15] under the name of BAR Model — Byzantine, Altruistic, Rational (BAR). The BAR Model
provides an abstract architecture for designing cooperative systems while taking into consider-
ation both rational behaviours and Byzantine failures. The design process leads to a so-called
BAR-tolerant system, which includes both fault-tolerance and cooperation enforcement mecha-
nisms to achieve provable resilience to protocol deviations. In practice, the BAR Model design
methodology consists in making every step of a distributed protocol a Nash Equilibrium, such
that it is in the best interest of rational nodes to follow the cooperative behaviour.

Application to Cooperative Systems (Peer-to-peer live streaming). In Section 2.4 we have already
presented BAR Gossip, a P2P live streaming protocol designed by Li et al. [111] using the
BAR Model. In BAR Gossip, peers help disseminate the video stream using gossip-based
protocols. The dissemination process is designed so as to ensure a fair exchange of data
and to make selfish behaviours detectable. Once detected, a misbehaving peer (rational or
Byzantine) is evicted from the system. Li et al. illustrate the effectiveness of BAR Gossip

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.2 R E L AT E D R E S E A R C H : G A M E T H E O R Y 45

through experiments and simulations [111], proving the BAR-tolerance of the protocol even
in the presence of significant collusion (up to 40% of colluders in the system). However, for
the sake of tractability, the authors assume that peers are risk-averse (i.e., they never deviate
from the protocol if there is any risk of being evicted from the system) and remain in the
system for very long periods of time. Moreover, the fair exchange of data may require peers
to waste some network bandwidth to balance bandwidth consumption [112].

3.2.3 Discussion and open issues

Game theory has been extremely successful in its application to cooperative systems, as ev-
idenced by the ever-increasing body of literature devoted to this subject. However, several
critiques have been made on some of its assumptions and applicability. In the remainder of this
section, we present two issues in GT that are most related to our work.

A C C U R A C Y V S T R A C TA B I L I T Y. For a tractable analysis of complex systems, an analyti-
cal approach requires a high level of abstraction of the system implementation. In this regard,
game theory is no exception [30, 118]. GT has been designed for general applicability to conflict
situations and not to capture the particularities of a given cooperative system. Deciding what
particularities might be unimportant from a strategic perspective, and thus suitable for abstrac-
tion, is not straightforward. In fact, some implementation details might have significant effects
on system design as well as on the players’ decision making. For instance, to the best of our
knowledge, there is no game-theoretic model of BitTorrent (e.g., [93, 149]) that takes into consid-
eration the rarest-first selection policy for downloading file pieces. Nevertheless, this policy has
been gamed by the selfish client BitThief to increase download speed without cooperating [116].

Another issue related to abstraction was raised by Rahman et al. [150], who demonstrated
that choosing different abstractions for modelling the same system may lead to equally valid
but contradictory results. As an example, the authors presented an equilibrium analysis of two
game models of BitTorrent based on different abstractions, and they showed that the coopera-
tive behaviour was a Nash equilibrium only for one of the two models. The key point made by
Rahman et al. is that the results obtained from a game-theoretic analysis should not be taken as
given, but they always need to be examined in more detail.

The trade-off between accuracy and tractability in GT applications is apparent not only when
modelling complex systems as games, but also the other way round when applying insights
from GT analysis in a workable system implementation. Real cooperative systems have proper-
ties that game theory fails to accommodate, such as the availability of cheap to change identities
in P2P (instead, classical GT assumes fixed and unforgeable identities [118]) or the difficulty of
measuring another’s node capacities or behaviour (conversely, GT often assumes complete in-
formation). For more practical examples, we refer the reader to the publication of Mahajan et
al. [118], describing the issues encountered by the authors in designing two cooperative pro-
tocols, namely, a packet forwarding protocol for wireless networks and a routing protocol for
Internet Service Providers. The authors also commented on the costs of implementing those

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

46 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

solutions (e.g., communication and computational overhead, required infrastructures), which
may not be worth the potential gain for the system [118].

U S A B I L I T Y. As for any analytical approach, applying GT analysis to real systems tends
to be complex [30, 118, 150]. The system designer needs to create a mathematical model of
the system (the game), including the alternative strategies available to the nodes (the players)
and their preferences over the possible outcomes of the system. Then, the designer has to use
game-theoretic arguments to assess what strategy is the most likely to be played by the players,
with respect to a utility function to be formalised as well as to a solution concept to be chosen
(e.g., Nash equilibrium). Carrying out this process is inherently difficult for complex systems,
especially because it is manual, time-consuming and error-prone [118].

Likewise, using MD for designing real systems presents the same limitations mentioned
above for analysis [15, 26, 27, 111, 118, 150]. Moreover, the resulting design solution suffers
from poor maintainability and flexibility: every change in the system parameters requires a full
revision of the design, which hinders the reuse of a successful solution in other systems.

In conclusion, game theory should not be considered as an off-the-shelf solution to deal with
selfish behaviours in cooperative systems. Still, its prescriptive analysis provides system de-
signers with a better understanding of the causes and impact of selfishness, and could be a
source of interesting ideas for addressing this issue in practice.

3.3 E VA L U AT I O N O F T H E A P P R O A C H E S T O S E L F I S H N E S S A N A LY S I S

In the previous section, we presented state-of-the-art approaches and corresponding tools to
analyse selfishness in cooperative systems. We provide hereafter a comparative evaluation of
some of these approaches, as an effort to gain a better understanding of their characteristics
and limitations. With such an understanding, we shall be better prepared to meet the research
challenge (A) of this thesis.

3.3.1 Evaluation methodology

S E L E C T I O N C R I T E R I A . The analysis approaches considered for the comparative evalua-
tion are selected based on the following criteria:

Relevance. The approaches should be appropriate for the analysis of selfishness in coopera-
tive systems. Consequently, it should not be surprising that all the approaches used to study
selfish behaviours in the papers reviewed in the previous chapter (see Table 2 for their com-
plete list) have been selected. Due to the relevance criterion, we do not consider benchmark-
ing approaches in our evaluation. Indeed, benchmark suites are usually tailored to a specific
application domain as well as to a specific model of application behaviour [74]. Given this
lack of generality, and to the best of our knowledge, we could not find any benchmarking
approach that is relevant to our study.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.3 E VA L U AT I O N O F T H E A P P R O A C H E S T O S E L F I S H N E S S A N A LY S I S 47

Quality. The approaches should be of particular interest to the research community. The
selection is based on knowledge acquired from recent surveys [24, 32, 74].

E VA L U AT I O N C R I T E R I A . The analysis approaches will be assessed according to a num-
ber of criteria grouped into three classes: General, Cooperative systems, and Selfishness properties.
For evaluating the performance of the selected approaches on these criteria, we relied on manu-
als [130], similar comparative surveys [24, 74], and other available documentation (e.g., project
wikis).

The General criteria concern properties that are considered for any analytical and experimen-
tal approach in Computer Science. The evaluation of such criteria will be made on a scale from
1 to 5, where 1 (graphically represented as “ ####”) indicates the worst performance and 5
(“ ”) is the best. The list of General criteria is presented below:

• Usability, gives an indication of the ease of use of the existing tools to carry out the consid-
ered analysis approach. In particular, the evaluation considers whether the tool provides
software support and if it allows for some form of automation in the analysis procedure
as well as for some control over the analysis conditions.

• Reproducibility, is the ability of the analysis approach to yield the same results when the
same methodology is applied to the same inputs. An analysis approach that ensures good
reproducibility must be considered better than an approach that ensures less.

• Abstraction, indicates the level of detail at which the cooperative system is specified and
analysed. A higher level of abstraction is easier to understand and allows for improved
control and reproducibility; on the other hand, it can affect direct empirical observation
and interpretation as it might introduce artefacts that do not pertain to real-world be-
haviours [74]. Therefore, it is important to know the level of abstraction of an analysis
approach to deduce what confidence can be put into the results. For consistency with the
evaluation of the other General criteria (i.e., the higher, the better), we will consider the
inverse of abstraction — i.e., the Refinement level.

The Cooperative systems criteria are related to approaches and tools suited for the analysis of
large-scale, heterogeneous cooperative systems. Specifically, we consider the following criteria:

• Scalability, measured as the maximum number of nodes supported by the considered anal-
ysis approach.

• Heterogeneity, indicates whether the considered approach supports control over the het-
erogeneity of nodes (“Controllable”) or not (“Fixed”).

Finally, the Selfishness class of criteria evaluates the adequacy of the analytical and experimen-
tal approaches as a means for analysing selfishness:

• Rationality, indicates whether the considered approach provides support for modelling (or
reproducing) selfish nodes, according to the definition we provided in Chapter 2 — i.e.,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

48 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

a selfish node is a node that strategically executes the most profitable behaviour, either
cooperative or selfish, with the aim of maximising its expected utility (Definition 2.8).

• A set of criteria (Defection, Free-ride, Misreport, Collusion) indicating whether the consid-
ered approach supports the analysis of the impact on the system performance of the devi-
ation types described in Section 2.3.2. Note that these criteria focus on the execution and
consequences of a selfish deviation, without making any assumptions on the rationality
of the nodes.

The evaluation of the Selfishness criteria is done in a qualitative way, and comprises “
√

” (the
capability is supported) and “χ” (the capability is not supported) as possible values.

3.3.2 Evaluation results

Table 12 presents the results of the comparative evaluation of the selected approaches suitable
for selfishness analysis. Several important conclusions can be drawn from these results. First
and foremost, game theory is the only tool that provides comprehensive and integrated support
for analysing selfishness in cooperative systems. On the contrary, as already discussed in Sec-
tion 3.1.2, the existing experimental approaches can provide very limited support. Specifically,
they allow to reproduce only one type of selfish deviation (i.e., defection) using fault injection
techniques, but without taking the rationality of nodes into consideration.

Secondly, if the control of the analysis conditions or reproducibility of the results is the
most wanted feature, then analytical approaches, as well as emulation and simulation ap-
proaches, should be considered. Particularly, game theory and simulations seem more suitable
for analysing extreme-scale systems. On the other hand, if it is more important that the anal-
ysis results are not biased by a high level of abstraction, then emulation (or, even better, real
experiments) should be preferred to simulation and analytical approaches.

The last observation that can be readily drawn from Table 12 is that game theory shows
the worst usability. The possible reasons for this result were discussed earlier in this chapter,
and are mainly due to the lack of a reliable and easy tool to simplify the game theoretic anal-
ysis — for example, by semi-automating the analysis procedure. In contrast with analytical
approaches, simulation approaches promise better usability for studying selfish behaviours in
cooperative systems. Significantly, simulation approaches can rely on good supporting tools,
such as the ns-2 simulator [3] and, notably, the simple and highly scalable PeerSim simula-
tor [128] along with its extension library RCourse [122].

To conclude, none of the existing approaches for analysing selfishness in cooperative sys-
tems has proved to be completely satisfactory. On the one hand, game theory is the only tool
available for modelling the dynamics and understanding the impact of different types of self-
ish nodes on a given system; however, it delivers poor usability and can be too abstract to
know how the results could apply to real-world settings. On the other hand, experimental
approaches offer more practical and usable tools for analysing the behaviour of distributed
systems in particular conditions, but they lack specific support for selfish behaviours. What,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

3.4 S U M M A R Y 49

Table 12: Comparative evaluation of analytical and experimental approaches for selfishness analysis in
cooperative systems.

General and cooperative systems criteria a Selfishness criteria b

Approaches Usa Rep Ref Sc He Ra D F M C

Analytical

Game theory [130] #### #### Unlimited Controllable
√ √ √ √ √

Experimental: real experiments

Grid’5000 [37] ## ## 1000 Fixed χ
√ c χ χ χ

PlanetLab [41] ### ## 1000 Fixed χ
√ c χ χ χ

Experimental: emulation

ModelNet [168] # # 100 Controllable χ
√ c χ χ χ

Emulab [173] # # 1000 Controllable χ
√ c χ χ χ

Experimental: simulation

NS-2 [3] # ## 100 Controllable χ
√ c χ χ χ

OMNeT++ [4] # ## 105 Controllable χ
√ c χ χ χ

PeerSim [122, 128] ### 106 Controllable χ
√ c,d χ χ χ

a Usa = usability, Rep = reproducibility, Ref = refinement (inverse of abstraction), Sc = scalability, He = heterogeneity.
b Ra = rationality, D = defection , F = free-ride, M = misreport, C = collusion.
c Implemented as faults or churn.
d Highly controllable using the RCourse library [122].

therefore, emerges is the need for a unifying tool that could bridge the gap between analytical
and experimental approaches.

3.4 S U M M A R Y

In this chapter, we provided a comparative review of the state-of-the-art approaches to analyse
selfish behaviours in cooperative system, which represent the related work for the research
challenge (A) of this thesis.

We organised the ways that selfishness can be analysed in cooperative systems into two broad
categories, namely, analytical and experimental approaches, and we presented an overview of
the characteristics, advantages and limitations of representative approaches for each category.
First, we showed that analytical approaches, notably game theory, provide mathematical tools
for understanding the dynamics of selfish individuals in competitive situations like those un-
derlying a cooperative system. However, we argued that applying such formal approaches to
study real systems tends to be complex, time-consuming, and prone to modelling errors, due
to assumptions and simplifications to make the mathematical model tractable.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

50 A N A LY S I N G S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Secondly, we reviewed the approaches for experimental analysis in cooperative systems (i.e.,
real experiments, emulation, benchmarking, and simulation). The adoption of an experimen-
tal approach can be in fact an appropriate solution to overcome the shortcomings of analytical
modelling. Although some the existing tools suitable for the experimental analysis of cooper-
ative systems have the ability to investigate simple faulty behaviours, we found that none of
them explicitly support the generation and assessment of selfish behaviours.

We concluded this chapter with a comparative evaluation of the approaches herein described.
The results showed that no satisfactory solution is presently available to provide a usable, reli-
able and comprehensive analysis of selfishness in cooperative systems. This motivates the need
for the methodologies and tools proposed in this thesis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4
D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

In the previous chapter, we reviewed state-of-the-art approaches for analysing the impact of
selfish behaviours in cooperative systems. This chapter completes the literature review by pre-
senting common and effective countermeasures against selfishness, grouped under the head-
ings of incentive mechanisms and accountability techniques.

The contributions of this chapter are listed below:

• We present characteristics, advantages and limitations of different types of incentive mech-
anisms designed for cooperative systems.

• We discuss how accountability techniques can be used to detect and isolate selfish nodes.

Roadmap. Section 4.1 provides an overview of incentive mechanisms, including a classi-
fication and comparative review of their incentive strategies. In Section 4.2, we present
the basic principles and practical issues of using accountability techniques in distributed
systems. In the same section, we provide a more detailed description of an illustrative
example (i.e., FullReview [53]). Finally, we conclude the chapter in Section 4.3 with a sum-
mary of the key insights.

4.1 I N C E N T I V E M E C H A N I S M S

An incentive is any factor that can stimulate or inhibit certain behaviours before their actual ex-
ecution. In the context of cooperative systems, an incentive should foster cooperation between
nodes and discourage selfish behaviours. From an economic perspective, this corresponds to
modifying the utility function of selfish nodes, so that they can expect greater benefits — or, con-
versely, lower costs — if they cooperate. An effective implementation of an incentive should
provide convincing arguments to support such an expectation.

We define an incentive mechanism as the set of protocols that implement the incentive in a
given system. These protocols may include, for instance, a protocol for monitoring the ac-
tions of nodes, and protocols for assigning punishments or rewards. In the literature, a wide
range of incentive mechanisms has been proposed for addressing selfishness in cooperative
systems. For example, some incentive mechanisms focus on detection and punishment of self-
ish behaviours [47, 68, 72, 111], others compensate the contribution costs and reward coopera-
tion [45, 135, 184], and yet other mechanisms seek to reduce the risk of interacting with selfish
nodes [27, 94, 114].

Based on a thorough review of relevant studies, we identify three basic components that char-
acterise every incentive mechanism: evaluation methods, incentive schemes and enforcement

51

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

52 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

methods. The evaluation methods assess the cooperation level of nodes to regulate the provision
of incentives. The evaluation of a node typically consists of two activities: acquiring infor-
mation about its behaviour and assessing its history of contributions. Examples of evaluation
methods proposed in the literature are log audits [72, 76], real-time monitoring [104, 114, 135],
redundant computation [18, 20, 175], periodic inspections [47, 68, 71, 124] and verifications [165,
188]. Such variety has emerged to accommodate the particular characteristics and requirements
of each cooperative system. For instance, centralised systems such as Grids or Tor can rely on
the central authority to monitor the nodes’ behaviour [104, 135], whereas decentralised evalua-
tion methods (e.g., [53, 72, 76]) are more suitable for cooperative distributed systems.

The incentive scheme specifies the overall strategy of an incentive mechanism to foster coop-
eration and reduce selfishness opportunities. Possible strategies might be to remunerate nodes
as compensation for their cooperation costs, to condition access to services, or to reduce the
risk of interacting with selfish nodes. In general, the incentive schemes proposed in the liter-
ature can be classified into reciprocity-based and economy-based. The strategy adopted by a
reciprocity-based scheme is to reward nodes in terms of quality of service based on their his-
tory of contributions, whereas an economy-based scheme aims to create an economic market in
which cooperation is the tradable good. Note that reciprocity schemes are more trust-oriented,
whereas economy schemes are more trade-oriented. We discuss incentive schemes in more
detail later in this section.

The last component of an incentive mechanism consists of the practical methods to enforce
the incentive scheme in a given system. Following the examples of scheme strategies given
above, some possible enforcement methods are virtual payments to remunerate contributions [18,
188], reputation mechanisms as a basis to regulate service provision [114, 135], and blacklists to
prevent interactions with selfish nodes [26, 27].

In the remainder of this section, we propose a classification of incentive mechanisms based
on their scheme, along with some illustrative examples. Then, we discuss some issues and
requirements of incentive mechanisms from a cooperative system designer perspective.

4.1.1 Classification of incentive mechanisms

We classify incentive mechanisms based on the scheme that defines their strategy. To this end,
we propose a taxonomy of incentive schemes for cooperative systems, along with a clear defi-
nition of the advantages and drawbacks of each class. Our taxonomy builds on previous liter-
ature reviews, notably the works of Feldman and Chuang [59], and Haddi and Benchaïba [75].
As illustrated in Figure 7, we broadly distinguish between reciprocity based and economy based
schemes.

4.1.1.1 Reciprocity-based schemes

In reciprocity schemes, the cooperation level of a node is related to the benefits it can receive
from interaction with other nodes. In practice, every node evaluates the history of the contri-
butions of other nodes and uses this information to decide with whom to interact as resource

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.1 I N C E N T I V E M E C H A N I S M S 53

INCENTIVE SCHEMES

Centralised Decentralised

Reciprocity-based Economy-based

Immediate Deferred

IndirectDirectDirect

Figure 7: Taxonomy of incentive schemes for cooperative systems.

provider or requester. Reciprocity-based schemes are either direct or indirect, depending on
whether the nodes’ cooperation level is evaluated using only first-hand information or by ag-
gregating information from different nodes.

D I R E C T R E C I P R O C I T Y. Incentive schemes based on direct reciprocity require that every
node maintains a (recent or past) history of interactions with all other nodes and use this infor-
mation to influence present interactions. The actual reciprocation can occur during the present
interaction or in future interactions. Based on this feature we can distinguish between immediate
and deferred reciprocity schemes.

Direct reciprocation is immediate when nodes exchange resources at the same time. An ap-
plication of this scheme is BAR Gossip, the BAR-tolerant live streaming protocol presented in
Section 3.2.2. BAR Gossip enforces reciprocity through the balanced exchange method, which
ensures that every peer will forward a video chunk to its partner only if it can receive in return
a chunk that it had not played out yet [111]. Immediate direct reciprocity has many advantages,
among which are the following: (i) it is fully decentralised and does not require any third party
to operate; (ii) it is lightweight, because nodes do not have to maintain a history of past con-
tributions but they focus only on the present interaction; (iii) it does not require establishing
long duration relationships, as the reciprocation opportunity occurs on the fly; (iv) it is privacy-
preserving, because nodes can reciprocate without taking the identity of the other node into
consideration; (v) it enables real-time detection and handling of selfish behaviours.

Despite the numerous advantages, applying immediate direct reciprocity schemes to cooper-
ative systems is quite problematic, due to the temporal constraint and the high heterogeneity of
nodes. In fact, the probability that two nodes have immediate and mutual interest for the cur-
rently owned resources — a condition known in economics as “double coincidence of wants”
— is usually very low. This may result in low efficiency and resource waste [59, 112].

A deferred direct scheme tackles the problems of the double coincidence of wants by allow-
ing nodes to reciprocate in the future a contribution received in the past. BitTorrent is a promi-
nent example of this class of scheme [45]. Particularly, peers in BitTorrent enforce a tit-for-tat

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

54 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

strategy, whereby they prioritise the download requests of other nodes based on their history
of cooperation. The basic requirement of a deferred reciprocity scheme is that nodes maintain
contribution information history for every node with which they have interacted. However,
this introduces the necessity of strong and persistent identification of nodes, and might impose
a non-negligible overhead to update and store such information. Moreover, deferred direct
schemes require nodes to establish long duration relationships to ensure adequate opportuni-
ties for reciprocation. BitTorrent partly solves the last issue by restricting the number of peers
with which each peer can interact, thereby increasing their interaction rate [139].

I N D I R E C T R E C I P R O C I T Y. Indirect reciprocity schemes allow nodes to contribute services
(or resources) to a set of nodes at a given time, and receive reciprocation from a different set
of nodes at a different time, even if they have never interacted before. The strategy adopted
by these schemes is to make the interactions between two nodes depend not only on the past
interactions between them but also on the interactions between them and other nodes in the
system. Indirect reciprocity appears to be practical and scalable, which makes it particularly
suitable for large and dynamic systems like cooperative systems.

The most common method to enforce indirect reciprocity in cooperative systems is using a
reputation mechanism. The reputation of a node is derived from its past behaviour and rep-
resents a good indicator of its cooperation probability in future interactions. Specifically, a
node (the trustor) relies on the reputation of another node (the trustee) to decide whether to
interact with it or not. The reputation value of the trustee is the mathematical representation
of its reputation, which is obtained from aggregating the recommendations (feedback) of other
nodes called the recommenders. In a decentralised reputation mechanism (e.g., EigentTrust [94]),
nodes play interchangeably the roles of the trustor, trustee and recommender. Conversely, in
global mechanisms, the reputation values are calculated by special nodes based on the opinions
of all the system participants [102, 121].

Feedback is a rating on a single interaction experience or formed by aggregation of several ex-
periences. Ratings can be positive, negative or neutral, and can be expressed in several formats,
such as binary (cooperative, non-cooperative), textual and numeric (discrete or continuous val-
ues) formats.

Remark. Allowing only positive or only negative ratings may result in unfair and biased reputation
values. For example, when only positive ratings are considered, a selfish but resource-rich node might
have a higher reputation than a cooperative but resource-poor node, because the former has more oppor-
tunities to receive positive rating without incurring the risk of receiving negative ones. On the other
hand, allowing only negative ratings can be unfair for cooperative nodes, as these nodes would have
the same reputation value of newcomers with no history of contributions.

In mechanisms like OCEAN [22] and Scrivener [133], trustors assess the reputation of a
trustee based only on their direct experiences of interaction. On the one hand, this strategy
leads to trustful and consistent assessment, as the process is carried out by the same node that
will use the resulting reputation values. On the other hand, relying exclusively on feedback

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.1 I N C E N T I V E M E C H A N I S M S 55

about first-hand experiences does not scale well in the size of the system [83], because the prob-
ability to interact with nodes with a known reputation would be too small. By contrast, indirect
reputation mechanisms such as EigenTrust [94], PowerTrust [185] and GossipTrust [186] allow
trustors to collect opinions from other recommenders, thereby achieving higher scalability and
offering more timely recommendations to assess a node’s reputation. These features are partic-
ularly suitable for large-scale and highly dynamic cooperative systems [59]. However, indirect
reputation approaches may also introduce substantial communication and computational costs
on the nodes to disseminate and aggregate recommendations. Moreover, selfish or malicious
recommenders can issue untruthful opinions, thus compromising the reliability of the reputa-
tion values [83, 102].

Once the reputation value of a node is available to a trustor, the trustor uses this information
to decide how to interact with it. Koutroli and Tsalgatidou [102] suggest the following strate-
gies: (i) the trustor interacts only with trustees with a reputation value above (resp. below) a
given threshold, (ii) the trustor interacts only with the trustee with the highest (resp. lowest)
reputation value, (iii) the probability that the trustor will interact with a trustee is proportional
to the reputation value of the latter.

The major drawback of reputation mechanisms is that they open up new opportunities for
selfish nodes to misbehave, as comprehensively surveyed by Hoffman et al. [83]. The most
studied misbehaviours against reputation are the dissemination of false recommendations (e.g.,
bad mouthing and false praising), whitewashing [60], collusion [114], and Sybil attack [55].
The common roots of these misbehaviours are that many reputation systems do not require
recommenders to provide proof of interactions that can justify their feedback, along with the
lack of persistent identities. Although accountability techniques (see Section 4.2) and strong
identity systems (e.g., public key infrastructures) can effectively mitigate the impact of these is-
sues [83, 110], they would add further overhead on the nodes and may conflict with the (explicit
or implicit) anonymity requirements of some systems (e.g., Tor).

4.1.1.2 Economy-based schemes

In economy-based schemes, nodes pay for obtaining resources and are compensated for the
resources they provide. Payment is a compensation for the contribution costs and is a solu-
tion to the problem of coincidence of wants observed in reciprocity-based schemes. In fact,
economy-based schemes do not rely on the mutual interest of owned resources but introduce
a new resource wanted by all peers, i.e., real money or virtual money (e.g., BitCoin [132] and
Nuglets [33]). Money is typically issued and certified by a Trusted Authority (TA), also called
bank. The activity of establishing a correspondence between a unit of a resource (e.g., a CPU
cycle, a file, a message) and money is called pricing. The pricing rules and requirements can
vary considerably in different cooperative systems, provided that the settled price is a good
incentive for collaboration.

The goal of an economy scheme is to create an economic market in which cooperation is the
tradable good. However, this introduces economic issues as well, such as price negotiations,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

56 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

inflation and deflation. Moreover, money becomes a new resource that selfish and malicious
nodes might seek to exploit.

We distinguish centralised and decentralised economy-based schemes, depending on whether
banks are directly involved in the payment mechanism.

C E N T R A L I S E D E C O N O M Y S C H E M E S . Centralised economy schemes strongly rely on banks.
A bank is a Trusted Authority that holds accounts of nodes and mediates every payment. More
precisely, after every interaction, the bank subtracts a fair amount of money (credit) from the
account of the resource consumer and adds it to the account of the resource provider. If the
consumer and provider have accounts with different banks, then an inter-bank transaction is
needed.

Centralised economy schemes have received wide acceptance in the literature of cooperative
systems [17, 29, 119, 134, 184]. For instance, Sprite [184] is a selfishness-resilient economy-based
mechanism for mobile ad-hoc networks. To prevent selfish behaviours, Sprite employs dedi-
cated bank nodes (called Credit Clearance Services) that allocate credit to a provider only if the
provider can produce verifiable proofs of cooperation, i.e., signed receipts. A similar method,
though computationally less demanding, is implemented by the Express system [90], which
uses hash chains instead of digital signatures as the proof of cooperation. Another example of
a centralised economy scheme has been proposed by Gramaglia et al. [71] for P2P backup sys-
tems, whereby nodes pay to store their backup data on others’ disks and are paid for sharing
their local storage space. The authors introduce payments via digital checks so that a central
bank can support payments when nodes are off-line.

Centralised economy schemes are computationally cost-effective for nodes, because most of
the burden to maintain dependable and secure payments is on banks. On the other hand, the
deployment and operation of a bank require a costly infrastructure that might be infeasible in
some environments. Moreover, as for any centralised system, banks constitute a bottleneck for
performance, a single point of failure, and — even more compelling — an appealing target for
malicious attackers.

D E C E N T R A L I S E D E C O N O M Y S C H E M E S . In the decentralised realisation of an economy-
based scheme, the payment mechanism consists of a direct exchange of money between re-
source consumer and provider [33, 89, 123, 159, 170, 188]. Banks do not play any role in this
exchange but are the only authority that can issue valid money (as in Nuglets [33]) or they
simply disappear (as in Bitcoin [132]).

The decentralisation of the payment mechanism offers two main advantages. First, it is
privacy-preserving, as it does not require disclosing the identity of the interacting nodes. The
only information a resource provider needs to know is that the consumer can pay for the re-
quested resource. Second, it allows the decentralised economy scheme to be more scalable and
robust to failures than the centralised scheme because it does not rely on banks’ dependability.
On the downside, decentralising the monetary exchange induces a substantial increase in the
overhead on the nodes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.1 I N C E N T I V E M E C H A N I S M S 57

A means for improving the robustness of decentralised economy schemes is to establish
trust among trading nodes. For instance, the incentive mechanisms presented by Buttyán et
al. [33, 34] use tamper-proof devices installed in each node to enforce the payment mecha-
nism. This approach, although effective in principle, is not applicable in most cooperative sys-
tems [153], due to the impossibility of forcing system participants to install trusted hardware.
A possible software-based solution to establish trust is to combine reputation and economy
based schemes. As an illustrative example, the ARM system [159] enforces a pricing method
that relates the price of a resource to the reputation value of the resource consumer. Hence, co-
operation is more attractive because it leads to high reputation values and, consequently, lower
prices to buy resources.

Table 13 summarises advantages and drawbacks of the incentive schemes discussed above.

Table 13: Advantages and drawbacks of incentive schemes for cooperative systems.

Incentive scheme Advantages Drawbacks

Immediate direct reciprocity • Decentralised

• Cost-effective

• Suitable for short-term relation-
ships

• Anonymity preserving

• Real-time detection and sanc-
tion of selfish nodes

• Limited applicability

• Poorly scalable

• Immediate double coincidence of wants

Deferred direct reciprocity • Eliminates immediate double
coincidence of wants

• Requires persistent and strong identities

• Requires long-term relationships

• Requires maintaining history of contribu-
tions

Indirect reciprocity • Eliminates immediate double
coincidence of wants

• Suitable for short-term relation-
ships

• Decentralised

• Highly scalable

• Shows broad adaptability

• Requires persistent and strong identities

• Correctness of the reputation value de-
pends on information truthfulness

• Possibly high communication and compu-
tational overhead due to reputation dis-
semination and assessment

Centralised economy • Low computational overhead
(for nodes)

• Shows broad adaptability

• High communication overhead with
banks

• Scalability bounded by the banks’ capac-
ity

• Requires persistent and strong identities

• Requires costly infrastructure and mecha-
nisms to enforce banks’ dependability

Decentralised economy • Decentralised

• Highly scalable

• Anonymity preserving

• Shows broad adaptability

• High communication and computation
overhead

• Requires costly devices or mechanisms to
enforce payments’ dependability

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

58 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

4.1.2 Classification of incentive mechanisms from relevant studies

In Chapter 2, we presented a classification framework to describe selfish behaviours in cooper-
ative systems (see Section 2.3), built on a systematic review of relevant papers selected from the
literature. Table 14 summarises the characteristics of the incentive mechanisms proposed in the
same studies and ordered by incentive scheme.1

Table 14: Characteristics of the incentive mechanisms proposed in the papers considered to build the clas-
sification framework presented in Section 2.3.

Enforcement methods a

Reference Evaluation methods Incentive scheme A Ba Bl E R S MP VP

Anderson et al. [18] Redundant computation Centralised economy χ χ χ χ χ χ χ
√

Anta et al. [20] Redundant computation Centralised economy χ χ χ χ χ χ
√ √

Gramaglia et al. [71] Inspection Centralised economy χ χ
√

χ χ χ χ
√

Yurkewych et al. [180] Redundant computation Centralised economy χ χ χ χ χ χ
√

χ

Shneidman and Parkes [161] Redundant computation Centralised economy χ χ χ χ χ χ
√

χ

Jansen et al. [89] - Decentralised economy χ χ χ χ χ
√

χ
√

Sirivianos et al. [165] Crypto. verification Decentralised economy χ χ χ χ χ χ
√ √

Zhu et al. [188] Crypto. verification Decentralised economy χ χ χ χ χ χ χ
√

Li et al. [111] Reporting Direct reciprocity χ
√

χ
√

χ χ χ χ

Buttyán et al. [36] Reporting Direct reciprocity χ
√

χ χ χ χ χ χ

Ben Mokhtar et al. [26] Reporting Indirect reciprocity χ χ
√ √

χ χ χ χ

Ben Mokhtar et al. [27] Broadcasting protocols Indirect reciprocity χ χ
√ √

χ χ χ χ

Ben Mokhtar et al. [28] Accountability Indirect reciprocity χ χ χ
√

χ χ χ χ

Blanc et al. [31] TA Monitoring Indirect reciprocity χ χ χ χ
√ √

χ χ

Cox and Noble [47] Inspection Indirect reciprocity
√

χ χ χ χ
√

χ χ

Guerraoui et al. [72] Accountability Indirect reciprocity χ χ χ
√ √

χ χ χ

Kwok et al. [104] TA Monitoring Indirect reciprocity
√

χ χ
√ √

χ χ χ

Lian et al. [114] TA Monitoring Indirect reciprocity χ χ χ χ
√ √

χ χ

Mei and Stefa [124] Inspection Indirect reciprocity χ χ χ
√

χ χ χ χ

Ngan et al. [135] TA Monitoring Indirect reciprocity χ χ χ χ
√ √

χ χ

Piatek et al. [148] Accountability Indirect reciprocity
√

χ χ χ χ
√

χ χ

Yang et al. [175] TA Monitoring Indirect reciprocity χ χ χ χ
√ √

χ χ

a A = agreements , Ba = barter, Bl = blacklists, E = eviction, R = reputation,
S = service differentiation or interruption, MP = money payments, VP = virtual payments.

As illustrated in Figure 8, more than half of the incentive mechanisms rely on the indirect
reciprocity scheme. This is most likely due to the high scalability and decentralisation of the
scheme, which properties well match with the particular characteristics of cooperative sys-
tems. Among the principal methods to enforce indirect reciprocity is reputation, often in com-
bination with service differentiation and eviction techniques. For example, Ngan et al. [135]
present a reputation-based service priority regime designed for Tor, whereby the traffic of a

1 The papers by Hughes et al. [87], Li et al. [113] and Locher et al. [116] are not included in Table 14 because no incentive
mechanism has been proposed by the authors.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.1 I N C E N T I V E M E C H A N I S M S 59

high-reputation relay has priority over the others. Also Guerraoui et al. [72] use reputation as
an indicator of the cooperation level of a node, but rather than rewarding nodes with higher
reputation values, they propose to evict from the system nodes with reputation below a certain
threshold.

Indirect reciprocity

Direct reciprocity

Centralised Economy

Decentralised Economy

Figure 8: Overview of the incentive schemes adopted by the incentive mechanisms listed in Table 14.

If we group the studies reported in Table 14 by the category of the cooperative system that
they investigate (e.g., data distribution, distributed computing), indirect reciprocity is again
among the most implemented schemes. The results shown in Figure 9 indicate distributed
computing systems as the only exception. The reason is that the client/server architecture of
these systems makes centralised economy schemes more suitable and effective.

IRIR

DR

DE

Data
distribution

IRIR

CE

Distributed
computing

IRIR CE

Distributed
storage

IRIR

DR

CE

DE

Networking

IRIR

DE

Anonymous
communication

IR (Indirect Reciprocity)

DR (Direct Reciprocity)

CE (Centralised Economy)

DE (Decentralised Economy)

Figure 9: Overview of the incentive schemes adopted by the incentive mechanisms listed in Table 14 and
grouped by cooperative system categories.

4.1.3 Desirable requirements for incentive schemes in cooperative systems

An incentive mechanism designed for a cooperative system needs to accommodate the particu-
lar features and requirements of these systems. In the following, we propose a list of desirable
requirements that an incentive mechanism should meet.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

60 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

D E C E N T R A L I S AT I O N . Incentive mechanisms should retain the decentralised nature of co-
operative systems. For example, a mechanism designed for a fully decentralised cooperative
system or a delay tolerant network should not rely on any central entity or authority, as this
would introduce delays, bottlenecks and overhead [153]. Similarly, economy-based schemes
might not be the appropriate solution, as they require a trusted authority to issue money and,
possibly, manage payments.

O V E R H E A D . Enforcing an incentive scheme imposes a substantial cost on the nodes, due to
the computational and communication overhead. This problem is especially critical in mobile
environments, in which nodes have limited resources. The overhead imposed by an incentive
mechanism should never exceed its expected benefits.

A D A P TA B I L I T Y. Cooperative systems cover a wide range of functionalities (e.g., file shar-
ing, distributed computing), communication infrastructures (e.g., the Internet, delay tolerant
networks), and many other system or application-specific properties (e.g., type of P2P overlay).
General applicability and flexibility of an incentive scheme are two desirable requirements to
fulfil, as they would reduce the development and configuration cost of the incentive mecha-
nism. A downside of generality, though, is a loss in efficiency, because the scheme does not
consider the proper functioning and the performance metrics of a particular system and appli-
cation [75].

F A I R N E S S . Nodes have different physical capacities and level of access to resources, e.g.,
mobile nodes may temporarily suffer from bad connectivity. Due to this heterogeneity, two
undesirable situations may arise:

• Resource-poor nodes might be penalised by incentive strategies based on rewards be-
cause their contribution level is lower than that of resource-rich nodes.

• Resource-rich nodes tend to receive more resource requests than a resource-poor node,
thus becoming a performance bottleneck and a point of failure.

A fair incentive scheme should take the heterogeneity of nodes into consideration, by avoid-
ing to further penalise resource-poor nodes as well as to overload the resource-rich ones. How-
ever, meeting this requirement can be challenging for two reasons. First, distinguishing be-
tween lack of cooperation due to resource shortage and selfish behaviour is still an open prob-
lem [140]. Second, reducing the load on resource-rich nodes can lead to a substantial degrada-
tion of the system performance, particularly in those systems that rely on a small core of highly
cooperative nodes [78, 87].

S E L F I S H R E S I L I E N C E . An incentive scheme may introduce new motivations and opportu-
nities for selfish nodes to misbehave [102, 140]. For example, a group of nodes may decide to col-
lude to increase their remuneration [114], or a node participating in the enforcement methods of
a mechanism may decide to limit its contribution so as to reducing the associated overhead [27].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.1 I N C E N T I V E M E C H A N I S M S 61

For this reason, rather paradoxically, selfish nodes may need incentives to be convinced to par-
ticipate in an incentive mechanism.

P R I VA C Y A N D A N O N Y M I T Y. An incentive mechanism might require guaranteeing the
anonymity of its participants for many reasons, such as (i) to protect the privacy of the inter-
acting nodes, (ii) to avoid retaliation from sanctioned nodes, (iii) to hide sensitive information
that could be exploited by malicious nodes (e.g., account credentials in centralised economy
schemes), (iv) to meet an application-specific requirement (e.g., anonymous communication
systems), and (v) to save costs and time to implement an identity infrastructure. Regardless
of the reason, there are different enforcement methods to enforce anonymity, ranging from
hiding real-world identity behind a pseudonym, to using state-of-the-art cryptographic mech-
anisms [79, 102, 157]. Note that privacy and anonymity requirements influence the choice of a
given incentive scheme.

Remark. Meeting the requirements of privacy and anonymity in incentive mechanisms for coopera-
tive systems is out of the scope of this thesis. We refer the interested reader to the references contained
in the papers cited above, including the two surveys on which we based our taxonomy of incentive
schemes [59, 75].

4.1.4 Perspectives on the research challenges

The review of the literature on incentive mechanisms presented above provides useful insights
to address the design challenges (D) of this thesis, and especially the research challenge (D.1) —
i.e., identifying general and practical mechanisms to enforce cooperation in cooperative systems.

Concerning generality, indirect reciprocity, as well as economy-based schemes, offer broad
adaptability to various application domains. From our survey, the indirect reciprocity scheme
appears to be the most adopted incentive in four out of the five categories of cooperative sys-
tems investigated (see Figure 9). Notably among these categories is data distribution, which
includes the most popular applications of cooperative systems (e.g., P2P file-sharing, P2P live-
streaming).

Indirect reciprocity can also meet the second requirement posed by the research challenge
(D.1), which is to provide a cooperation enforcement mechanism to use in practice in coop-
erative systems. Such a mechanism is represented by reputation systems. In fact, reputation
systems can well fit with the decentralised nature of cooperative systems [94, 185, 186], and are
particularly suitable for large-scale and highly dynamic environments [59]. On the contrary,
the other incentive schemes discussed above cannot be considered completely satisfactory. For
instance, as can be seen in Table 13, direct reciprocity schemes either show poor scalability (im-
mediate direct reciprocity) or are inadequate in highly dynamic systems (deferred direct reci-
procity). The central role of banks in economy-based incentives (either as transaction brokers
or trusted issuers of valid currency), not only poses some practical limitations to the scalability
of these schemes [153], but also fails to meet the desired requirement of decentralisation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

62 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Although reputation systems have good potential for meeting the research challenge (D.1),
we must be aware of the limitations of such mechanisms and provide appropriate solutions.
The first two limitations listed for indirect reciprocity schemes in Table 13 concern their robust-
ness to (i) attacks against the authentication system, such as whitewashing and Sybil attacks,
and (ii) the dissemination of false information by single nodes or groups of colluders. The ac-
countability techniques described in the next section have been advocated as a viable solution
for preventing these and other attacks [178].

The last limitation of reputation systems listed in Table 13 is related to the communication
and computational overhead imposed by the incentive mechanism, which might greatly reduce
the system performance. Solving the trade-off between system performance and the effective-
ness of the reputation scheme poses a difficult configuration problem, which is often a trial-and-
error and time-consuming procedure. This motivates the need for an approach that facilitates
the set-up and configuration of incentive mechanisms in a given cooperative system, which
represents research challenge (D.2) of this thesis.

4.2 A C C O U N TA B I L I T Y I N D I S T R I B U T E D S Y S T E M S

Accountability is the ability to hold individuals responsible for their actions [105, 177]. In
distributed systems, accountability techniques have been used to detect and isolate misbe-
haviour, as well as to assign non-repudiable responsibility for faulty actions and system fail-
ures [76, 126, 179]. Yumerefendi and Chase [178] promote accountability as a “first-class de-
sign principle" for building dependable and trustworthy systems on top of untrusted environ-
ments, such as those of cooperative systems. In fact, on the one side, traditional dependability
techniques (e.g., fault prevention, fault tolerance, fault removal) can identify errors and mis-
behaviours but fail to point to the responsible node. On the other side, traditional security
approaches (e.g., authentication, authorization) can protect the system against misbehaviours
pursued by external actors, but are not equally effective in preventing misbehaviours of nodes
within the security perimeter.

An accountability system provides practical means to meet all the above challenges. Also, as
demonstrated in several studies [53, 72, 76, 77, 178], it can detect and isolate selfish behaviours
in cooperative systems.

In the remainder of this section, we present the general characteristics of accountability tech-
niques for distributed systems, along with a more detailed presentation of the solution pro-
vided by Diarra et al. [53], FullReview. Finally, we discuss some issues of interest to system
designers.

4.2.1 Basic concepts

Accountability systems require each node to maintain a secure log to record its interactions with
other nodes [179]. Each node is further associated with a set of witness nodes, which periodically
check whether the log entries correspond to a correct execution of the underlying protocol. If

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.2 A C C O U N TA B I L I T Y I N D I S T R I B U T E D S Y S T E M S 63

any deviation is detected, then the witnesses build a proof of misbehaviour that can be verified
by any correct node, and punishment is inflicted on the misbehaving one. Fig 10 provides a
graphic representation of this approach, in which a node “Alice” logs the interactions with its
partners and is audited by a set of witnesses.

LOG

Alice's partners Alice's
witnesses

Alice

Interactions
(message exchange)

Audit

Figure 10: Overview of an accountability system.

More in detail, an accountability system relies on the following building blocks.

Secure hashes and digital signatures. They create binding and non-repudiable evidence
of nodes’ behaviour. In practice, each node is assigned at least one asymmetric key pair.
Keys can be distributed, for example, by a Public Key Infrastructure (PKI) or decentralised
protocols. When nodes communicate, they sign each request or response with their private
key. Requests and responses are generically referred as actions.

Secure logs. Secure logs retain all the signed actions, including the ones received from other
nodes, along with other relevant information. Roughly speaking, a log entry should indicate
what node performed what action on what resource, with what access level and at what time.
Logs are the primary source of information for an accountability system; thereby their relia-
bility must be guaranteed. Secure logs [76, 158] provide a tamper-evident authenticated data
structure to store signed actions, so that any attempt to corrupt the log is detectable. More in
detail, each log entry ew is associated with (i) a recursively defined hash value hw, computed
as a hash of ew concatenated with the value of hw−1, and (ii) an authenticator αiw, which is a
statement signed by node i using its private key to claim that its log entry ew has hash value
hw. The resulting hash chain, along with the generated authenticators, allows verifying that
a node has not been tampered with. For example, let the node i send a pair of authenticators
αi0 and αiw (corresponding to the entries e0 and ew of its log) to one of its witnesses, denoted
as j. Then, j can ask i for its log entries e0, e1, ...ew and recompute h0,h1, ...,hw; if the result-
ing hw does not match the hash value in αiw, the witness has verifiable evidence that i has
tampered with its log. Moreover, j can use the signed authenticators αi0 and αiw along with
the log entries sent by i to convince any other correct node of i’s misbehaviour.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

64 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

Auditing interfaces. They allow to access nodes’ secure logs and provide cryptographic
proofs of correctness of their behaviour. In practice, during an audit, the witness verifies
that (a sequence of) the signed actions of a node comply with the expected behaviour. This
can be done in several ways, for instance by using state machine replication [40, 53, 76], or by
checking if the log satisfies a set of invariants that must hold in any correct execution of the
system (e.g., a node can serve only content that it has previously received).

Depending on the result of the audit, a witness can classify nodes into three categories: (i)
exposed, if there is evidence of misbehaviour, (ii) suspected, if there is evidence that the node is
ignoring requests of interaction, and (iii) trusted, in all other cases. An accurate accountability
system must guarantee that no cooperative node is ever exposed, nor that a cooperative node
is suspected for a long time [76].

Remark. Accountability techniques can be either entirely based on software solutions (e.g., Peer-
Review [76], FullReview [53] and AVM [77]) or may require specialised trusted hardware (e.g.,
TrInc [109] and A2M [42]). Using hardware-based solutions has some advantages; for example,
they can significantly reduce the computational cost of maintaining secure logs, making them tamper-
evident by construction. However, these techniques are not suitable for the problem domain of this
thesis. In fact, the large scale and heterogeneity of cooperative systems, which are often distributed
across multiple administrative domains, make the use of trusted hardware unfeasible. Therefore, in
this thesis, we focus only on purely software-based accountability techniques.

4.2.2 Related work: FullReview

FullReview is a general software solution for enforcing accountability in a distributed sys-
tem [53]. Of particular interest for our work, the protocols used by FullReview are designed to
be resilient to selfish behaviours, embedding convincing incentives to force selfish nodes to par-
ticipate in the accountability process. To this end, FullReview makes some assumptions about
selfish nodes: they are risk averse,2 they do not collude, and they remain in the system for a
long time.

Concretely, FullReview applies to a set of nodes executing a reference implementation P of
the system.3 Each protocol is defined as a deterministic finite state machine [84]. The FullRe-
view protocols F are also defined as deterministic state machines. As already introduced in
Section 4.2.1, each node imaintains a secure log of the messages it exchanges with other nodes.
To sign messages, i holds a pair of public/private keys bound to a unique node identifier. The
correctness of i is checked periodically by its witness nodes, by replaying i’s log and compar-
ing the outputs with a reference implementation of P. If a witness finds discrepancies, then it
exposes i as faulty and generates a verifiable proof of misbehaviour that it makes available to
the rest of the system. In FullReview, exposed nodes are directly evicted from the system.

2 If a risk averse node estimates the probability to be detected for a deviation be greater than zero, then it will stick to the
protocol.

3 The reference implementation of the system is not the formal specification of the whole system, but it concerns only
the subset of functionalities (protocols) to monitor.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.2 A C C O U N TA B I L I T Y I N D I S T R I B U T E D S Y S T E M S 65

Hereafter, we present the five protocols executed by FullReview to enforce accountability in
the presence of selfish nodes.

Commitment protocol. This protocol ensures that the sender and the receiver of a message
have provable evidence that the other party has logged the exchange. Note that the mes-
sage exchange may take place during the execution of both P and F. Consider, for instance,
that node i wants to send a message m to node j. First, i adds a new entry ew to its secure
log. Then, i generates an authenticator αiw to prove it has logged the action, and sends the
authenticator to node j along with m. When j receives the message, it checks the attached
authenticator, logs the reception ofm in a new entry ez, and generates the corresponding au-
thenticator αjz. Finally, j sends its authenticator to i along with a message to ack the reception
ofm to its original sender.

Consistency protocol. This protocol checks that each node i maintains a single linear log,
which has to be consistent with all the authenticators it had issued. In practice, every time
a node i receives an authenticator from another node j, i forwards the authenticator to the
witnesses of j. Periodically, each of these witnesses picks the authenticators with the lowest
and the highest sequence number, and challenges node j to return all log entries in this range;
if node j is not correct, then it is exposed as faulty. Moreover, the witnesses use the log entries
of j to extract all the authenticators j has received from other nodes. Then, they propagate
such authenticators to the corresponding witness sets, to prevent collusion between a witness
and its monitored node.

Audit protocol. This protocol specifies the steps that a witness w periodically undertakes
to verify whether the actions of a node i are consistent with the reference implementations
of P and F. To avoid that a selfish witness would be tempted not to audit in order to save
local resources, the audit protocol is started by i, which proactively asks its witnesses for an
inspection. On the other hand, iwants to be inspected, because a successful audit releases the
Certificate of Correctness (CoC) that i needs to communicate with the other nodes. In contrast,
if i fails the audit, its witnesses issue and disseminate a Proof of Misbehaviour (PoM) of i,
thus, exposing i and leading i to an eviction. Finally, to ensure that selfish witnesses do
not lie about the outcome of an audit (e.g., claiming that the monitored is correct without
performing the verification, in order to save CPU), FullReview requires i to forward all the
audit results (either CoCs or PoMs, or both) to the witness set of each of its witnesses, asking
them to replicate the audit. If the majority of witnesses of a given witness w of i obtains a
different audit result than w, then w is exposed and evicted from the system.

Challenge/Response protocol. This protocol ensures that if a node does not answer to a mes-
sage, then, instead of being directly evicted from the system, it is suspected by the interacting
node. This is to avoid wrongful evictions of correct nodes operating under bad network
conditions.4 However, being suspected is not good for nodes, because correct nodes do not
communicate with suspected nodes. To get trusted again, a correct but suspected node must
correctly execute the challenge/response protocol of FullReview. There are two types of chal-

4 Message loss is commonplace in applications deployed over the Internet, which is the case for most cooperative sys-
tems.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

66 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

lenges defined in FullReview. First, an audit challenge is generated by a witness w when a
node i does not reply to its log request; i stops being suspected by w when it provides the
requested log entries. Secondly, a send challenge is triggered when a node i does not acknowl-
edge the reception of a message during the commitment protocol; also, in this case, i stops
being suspected when it provides its witnesses with the expected ack.

Evidence transfer protocol. This protocol ensures that faulty nodes are eventually exposed
by all correct nodes in the system. To this end, every correct node i periodically fetches and
replays the challenges collected by the witnesses of a node that i is interested in, for example,
an interacting partner.

We refer to the technical report of the authors for an exhaustive summary of each incentive
designed to discourage selfish deviations from the FullReview protocols [52, 53].

4.2.3 Discussion and open issues

Accountability techniques have been successfully applied to detect and punish selfishness in
cooperative systems, e.g., in P2P live streaming [53, 72, 76] and anonymous communication
systems [53]. On the downside, enforcing accountability incurs a non-negligible cost on the
system, which poses a difficult configuration problem for the system designer. We discuss cost
and configuration issues in turn below.

C O S T. The benefits of using accountability techniques come at the expense of a greater cost
to the system, mainly due to the high message overhead and the intensive use of cryptogra-
phy. Costs can be decomposed into three dimensions, namely, computation, communication
and storage. Table 15 summarises the activities and parameters that have a larger impact on
each cost dimension. For example, in FullReview [53], the computational overhead grows lin-
early with the number of witnesses assigned to each node and with the frequency of the audits.
Moreover, the communication and storage costs imposed by FullReview, measured in terms
of network traffic overhead and size of the secure log, grow with the square of the number of
nodes in the system.

Cost dimension Influencing activity Influencing parameter

Computation • Cryptographic operations

• Auditing

• Key length

• Hash function

• Frequency of audit

• Size of the log portion to verify

Communication • Log transmission

• Evidence dissemination

• Number of witnesses

• Frequency of audit

• Size of the log portion to verify

Storage • Logging • Log size

Table 15: Activities and parameters that influence the cost of enforcing accountability.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.2 A C C O U N TA B I L I T Y I N D I S T R I B U T E D S Y S T E M S 67

C O N F I G U R AT I O N . The fine tuning of the accountability mechanisms is a necessary but
challenging task for building a dependable and high-performance cooperative system. Config-
uring accountability mechanisms requires that a system designer select values for a number of
parameters that directly affect the system performance (see Table 15). Particularly, among the
possible parameters, we note the following:

• The number of witnesses associated with each node. More witnesses imply more com-
putation and communication overhead.

• The audit period between two log audits performed by the witnesses of a node. A short
audit period allows for rapid faults detection, but it also increases the computational and
communication overhead, due to the greater frequency of log requests and audits.

• The severity of the punishment of a faulty node in the case of a successful audit. De-
pending on the severity, punishments could vary from the eviction of the faulty node to
the reduction of its reputation value — if the accountability mechanism is coupled with a
reputation management system. A low severity of punishment may increase the number
of selfish deviations; whereas high severity may lead to the wrongful eviction of a correct
node, for example, if the network is not reliable (e.g., in a mobile environment), or if the
node gets suddenly disconnected (e.g., characterised by churn in P2P systems).

In the literature [53, 72, 76, 178], no indication is provided for the setting of these parameters,
leaving the designer with a critical and complex trade-off to deal with: on the one hand, achiev-
ing the desired resilience to misbehaviours without wrongly penalising correct nodes, and on
the other hand, imposing minimal costs. Resolving these conflicting requirements requires the
systematic evaluation of a large number of experiments, to investigate the impact of the value
of each parameter on the system performance. Moreover, such experiments require the ability
to inject and to automatically reason about selfish behaviours, which is not supported by state-
of-the-art experimental environments, such as Splay [108], PlanetLab [41], NS-3, ProtoPeer, and
PeerSim [24]. Overall, in the absence of convenient tools that support system designers with the
configuration of an accountability mechanism, its tuning is a time-consuming trial-and-error
procedure.

To highlight the trade-offs that a system designer has to take into account when setting up the
parameters of an accountability mechanism, we performed an experiment, involving a gossip-
based live streaming protocol monitored by the selfishness-resilient accountability mechanism
FullReview [53]. The live streaming protocol is inspired to the one described by Guerraoui et
al. [72]. In this protocol, a source node disseminates a set of video chunks to a subset of nodes
over an unreliable network. Periodically, each node sends the video chunks it received to a set
of randomly chosen partners and asks them for any video chunks it is missing. In this scenario,
we consider selfish nodes that always (i) free-ride the chunk-exchange protocol by sending
fewer video chunks than what was requested by the other party, and (ii) under-report their
chunk availability to reduce the probability of receiving chunk requests. The above deviations
have been described in Tables 3 and 4 using the classification framework for selfish behaviours
we presented in Chapter 2.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

68 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

FullReview applies to each node i in the system, requiring i to log all its activities, and as-
signing it to a set of witnesses that periodically verify whether i is correctly executing the live
streaming protocol. If any deviation is detected, i’s witnesses inflict a punishment of a given
severity on i. In our experiment, we assume that a system designer aims to create a selfishness-
resilient live streaming protocol such that:

1. The video received by correct nodes maintains good quality despite the presence of up
to 50% selfish nodes. Traverso et al. [166] set the quality threshold to 3% of jitter, above
which the quality of experience is significantly impaired.

2. Correct nodes are not wrongfully expelled from the system, even if the network suffers
from up to 5% of message loss.

3. The average bandwidth consumption per node including both the video stream and Full-
Review does not exceed 1 Mbps.

To reach this objective, we start with the FullReview default configuration (e.g., with an au-
dit period being 10 seconds) and vary the severity of punishments inflicted on nodes by the
accountability mechanism.

Figure 11 shows the percentage of correct nodes wrongly evicted by FullReview and the
percentage of selfish deviations observed in the system for various values (in our experiment
less than 10% selfish deviations for the selfish nodes translates into an experienced jitter lower
than 3%). As expected, the results show a clear increase in the percentage of correct nodes
wrongly evicted from the system. Nevertheless, the punishment values 1 and 1.5 satisfy the
first two requirements set by the designer.

0,5 1 1,5 2 2,5 3

0

5

10

15

20

25

30

35

40

45

 % Wrongful Evictions
 % Deviations

Severity of Punishment

%

Acceptable % Deviations

Acceptable % Wrongful Evictions

Figure 11: Impact of the punishment values. The gray box indicates the acceptable percentage of devia-
tions and of wrongful evictions (up to 10%).

We thus go further and measure the communication overhead incurred in the system for 1.5,
which has the lowest % of deviations, while varying the FullReview audit period, as this param-
eter highly impacts the communication overhead. The results, depicted in Figure 12, show that,
on the one hand, increasing the audit period decreases the overhead, because logs are requested
and audits are made less often by monitors; on the other hand, the longer the audit period, the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4.3 S U M M A R Y 69

slower faults are deterred, thereby increasing the percentage of selfish deviations. However,
none of the tested values achieves a bandwidth consumption that meets the third requirement
set by the designer. The designer has thus to continue the manual calibration process by testing
other pairs of parameter values and running further experiments.

Acceptable % Bandwidth Overhead

5 10 15 20 25 30
0

10

20

30

40

50

60
 % Bandwidth Overhead
 % Deviations

 Audit Period

%

Acceptable % Deviations

Figure 12: Impact of the audit period. The light gray box indicates the acceptable percentage of deviations
(up to 10%), whereas the dark gray box shows the acceptable percentage of overhead (up to
40%).

From this experiment, it is clear that manually calibrating accountability mechanisms to meet
both selfish-resilience and performance objectives is a challenging and time-consuming task.
We show in the following chapter how RACOON helps the system designer in reaching these
objectives.

4.3 S U M M A R Y

This chapter concludes our survey on selfishness and its countermeasures in cooperative sys-
tems, which constitutes the first contribution of this thesis (C.1). More particularly, in this
chapter, we addressed the research challenge (D.1) by reviewing two groups of state-of-the-art
countermeasures against selfish nodes, namely, incentive mechanisms and accountability.

We started by presenting objectives, characteristics, and limitations of incentive mechanisms.
To this end, we proposed a classification framework based on a taxonomy of incentive schemes.
According to this framework, we could categorise incentive mechanisms into reciprocity-based
and economy-based mechanisms. We showed that reciprocity-based mechanisms were more
suitable for large scale and heterogeneous systems, but require that nodes have mutual interest
for owned resources. In contrast, economy-based solutions overcome the problem of mutual
interest by introducing money as universal compensation for any contribution cost, but rely
on trusted authorities (banks) and introduce economic issues in the system, such as price ne-
gotiation, inflation and deflation. We concluded the first part of this chapter by advocating
reputation systems as a candidate solution to address and overcome the design challenges (D)
set by this thesis. However, we showed that reputation might also introduce new deviation
opportunities for selfish nodes, such as the dissemination of false information and collusion.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

70 D E A L I N G W I T H S E L F I S H N E S S I N C O O P E R AT I V E S Y S T E M S

In the second part of this chapter, we argued that accountability techniques can be the perfect
complement to reputation systems. In fact, on the one hand, enforcing accountability into a rep-
utation system can improve its robustness and reliability; on the other hand, sanction schemes
for accountability mechanisms can rely on the flexibility of reputation to keep a fair balance
between severity and tolerance. We organised the overview of accountability techniques by,
first, introducing basic concepts, such as audits and secure logs. Then, we presented the Full-
Review system and described in greater detail its selfishness-resilient protocols for enforcing
accountability in distributed systems. Finally, we identified and discussed the main challenges
for enforcing accountability in cooperative systems, which are the additional (computational,
communication and storage) overhead on the nodes, and the difficulty in finding a satisfactory
trade-off between accountability and performance without any tool support.

Supporting the design of selfish-resilient cooperative systems while solving the trade-offs
between system performance and the effectiveness of a cooperation enforcement mechanism
will be the focus and main contribution of the next part of the thesis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Part II

S E L F I S H N E S S - AWA R E D E S I G N O F C O O P E R AT I V E
S Y S T E M S :

T H E R A C O O N F R A M E W O R K

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5
T H E R A C O O N F R A M E W O R K

In Chapter 2, we described many and varied examples of selfish behaviours in cooperative
systems. Then, in Chapter 3 and Chapter 4, we discussed different approaches to analyse and
counter such behaviours, showing their advantages and drawbacks. Based on the findings
described in these chapters, and taking a system design perspective, we can draw three con-
clusions. First, in real cooperative systems, it is not realistic to assume that all nodes behave
as expected. Thus, a defensive design approach should be adopted, bearing the selfishness of
nodes in mind. Second, existing tools for addressing selfishness (e.g., game theory, incentive
mechanisms, accountability systems) introduce new design decisions themselves, in the form
of trade-offs between selfish-resilience and efficiency of the system, as well as between gener-
ality and applicability of the mechanism to enforce cooperation. We also showed that finding
the right balance in these trade-offs is not trivial, and usually requires extensive manual effort.
Finally and consequently to the previous conclusions, designing cooperative systems resilient
to selfish nodes is a challenging task.

To facilitate the work of designers of cooperative systems, we propose in this chapter a uni-
fied framework, RACOON, that addresses the design challenges stated above. RACOON pro-
vides a semi-automatic and general methodology, along with its software implementation, for
designing, tuning and evaluating cooperative systems resilient to selfish nodes. The RACOON
framework adopts a model-based approach, in which models direct the design of a cooperative
system. To begin, the system designer (hereafter referred as “Designer") provides the functional
specification of the system (i.e., communication protocols) and a set of performance objectives.
RACOON uses these models to support and extensively automate the following activities: (i)
enforcement of practical mechanisms to foster cooperation (i.e., accountability and reputation
mechanisms for distributed systems), (ii) development of a behavioural model of selfish nodes
to predict their strategic choices, (iii) tuning of the accountability and reputation mechanisms so
as to meet the Designer’s objectives, for which we propose a novel combination of simulations
and game theory. RACOON results in a redesign of the system specification, which includes
finely tuned mechanisms to meet selfish-resilience and performance objectives. This output
serves as a reference to developers for the eventual implementation phase of the system.

In summary, this chapter makes the following contributions:

• We present specification models to define the communication protocols underlying a co-
operative system and the list of design objectives that the system must fulfil.

• We describe how RACOON integrates accountability and reputation mechanisms to foster
cooperation in the system under design.

• We propose an automatic method to generate a representative set of selfish deviations
from any communication protocol specified using the framework.

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

74 T H E R A C O O N F R A M E W O R K

• We develop a game-theoretic model to predict the strategic (possibly, selfish) choices of
nodes. Also, we provide an automatic methodology to generate such games using the
information contained in the RACOON specification model.

• We present a method to evaluate alternative configurations of the incentive mechanisms
to meet the Designer’s objectives, using simulations based on game-theoretic reasoning.

• We illustrate the benefits of using RACOON by designing a P2P live streaming system
and an anonymous communication system. Their extensive evaluation via simulations
and real testbed deployment shows that the systems designed using RACOON achieve
both resilience to selfish nodes and high performance.

Roadmap. In Section 5.1 we provides an overview of RACOON. A detailed explanation
of the Design and Tuning phases is given in Section 5.3 and Section 5.4, respectively. Sec-
tion 5.5 presents a performance evaluation of RACOON. Finally, we conclude this chapter
in Section 5.6.

Remark. Work presented in this chapter has been published in Proceedings of the 34th IEEE Sympo-
sium on Reliable Distributed Systems (IEEE SRDS’15) [106].

5.1 O V E RV I E W

RACOON is a design and simulation framework aimed at supporting Designers in building a
selfish-resilient cooperative system that meets desired performance objectives. As illustrated in
Figure 13, the operation of RACOON consists of two phases: (i) the assisted design of the sys-
tem specification and behavioural models, and (ii) the objective-oriented tuning of the system
parameters. The pink boxes at the top and on the right of the figure are the inputs provided by
the Designer. The output of RACOON (the blue boxes at the bottom of Figure 13) includes a
specification of the cooperative system that includes finely tuned mechanisms to achieve selfish-
resilience and desired performance. In the following, we give an overview of the design and
tuning phases of RACOON, and then provide more detail in Sections 5.3 and 5.4.

The design phase is initiated by the Designer, who provides a specification of the coopera-
tive system. More precisely, the Designer specifies the communication protocols composing
the system as a set of state machines, each called Protocol Automaton. In Step (1) in Figure 13,
RACOON integrates the system specification with mechanisms to encourage nodes to coop-
erate. Specifically, RACOON uses two configurable Cooperation Enforcement Mechanisms
(CEM): a general accountability system to audit nodes’ behaviour and a reputation system to as-
sign rewards or punishments depending on the audit results. Then, the framework extends the
state machine representation of the system by adding new states and transitions that represent
selfish behaviours (Step (2)). The result is an Extended Specification of the cooperative system,
which includes selfish behaviours and cooperation enforcement mechanisms. Finally, in Step
(3), RACOON creates a Behavioural Model to describe the rationality expected in the selfish nodes

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.1 O V E RV I E W 75

(1)

Selfishness InjectionSelfishness Injection

Config. EvaluationConfig. Evaluation

(4)

(5)

Config. ExplorationConfig. Exploration

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton
 System

Specification
 System

Specification
 Design

 Objectives
 Design

 Objectives Input

RACOONRACOON

OutputOutput Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

System Specification
+ CE Mechanisms

System Specification
+ CE Mechanisms

CE Mechanisms
Config.

CE Mechanisms
Config.

DESIGN

PHASE

Cooperation
Enforcement (CE)

Cooperation
Enforcement (CE)

XML

Accountability
+ Reputation

Accountability
+ Reputation

Rationality InjectionRationality Injection

Behavioural Model

Evaluation Results

(2)

(3)

Classical
Game Theory

Classical
Game Theory

TUNING

PHASE

Extended Specification
Input

JAVA

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 System
Im

p
lem

en
tation

 System
Im

p
lem

en
tation

XML

 CE Mechanisms
 Config.

 CE Mechanisms
 Config.

XML

Automatic Steps

Support tools

Figure 13: RACOON Overview.

under consideration, in order to predict their strategic decisions and actions (i.e., sticking to the
communication protocols or deviating from them). To this end, the framework transforms the
Extended Specification into a game model of classical Game Theory (GT), which provides the
mathematical framework to model nodes’ rationality.

The goal of the tuning phase is to find a configuration setting for the CEM that makes the
system meet a list of Design Objectives set by the Designer. Tuning is an iterative refinement
process consisting of a sequence of two steps: configuration evaluation (Step (3) in Figure 13)
and configuration exploration (Step (4)). The evaluation is done using GT-driven simulations,
carried out automatically by the custom-built simulator included in the framework. More pre-
cisely, the RACOON simulator uses the Behavioural Model to simulate the strategic behaviour
of selfish nodes into an implementation, provided as input by the Designer, of the system spec-
ification in the simulator. Then, the framework uses the results of the evaluation to traverse the
configuration space and evaluate new configuration candidates for the CEM. Once RACOON
has found a configuration that meets the Design Objectives, the Designer can proceed with the
implementation of the system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

76 T H E R A C O O N F R A M E W O R K

5.2 I L L U S T R AT I V E E X A M P L E : T H E O & A P R O T O C O L

In the next sections, to support the description of the RACOON framework, we use the simple
protocol O&A (Offer & Accept) shown in Figure 14 as illustrative example. In the O&A protocol,
a node i offers some of its available resources (i.e., files) to a group of nodes collectively named
J,1 by sending a message gi0 with a list of such resources. Upon receiving this message, each
node j ∈ J replies with the list of resources offered by i that it accepts (message gj1 in Figure 14).
For instance, let i offer two files named file1 and file2. Then, assuming that j would not
accept files that it already owns, the message gj1 may be one of the following:

• g
j
1 : {file1, file2}, if j is missing both files specified in gi0;

• g
j
1 : {file1}, if j has only the second file offered by i;

• g
j
1 : {file2}, if j has only the first file offered by i;

• g
j
1 : {}, if j already owns the files listed in gi0.

i
offer (g

0
: {file1, file2})

accept (g
1
)

unicast message

multicast message
J

j
i

Figure 14: The O&A protocol between nodes i and J.

If the node i is selfish, it may decide to limit the amount of resources to share with J. To this
end, i may provide false information to J, offering fewer files than what it owns. For example,
Figure 15(a) shows that node i offers only file1, thus preventing any acceptance of the second
file file2. In the extreme, the selfish node i might refuse to send any offer messages to J
whatsoever, as shown in Figure 15(b).

i
offer (g

0
: {file1, file2})

accept (g
1
)

J
j

i
offer (g

0
: {file1, file2})

J
× ×

(a) (b)

i i

Figure 15: Selfishness manifestations in the O&A protocol shown in Figure 14.

5.3 R A C O O N D E S I G N P H A S E

The design phase helps the Designer in specifying a cooperative system that embeds mech-
anisms for enforcing cooperation as well as in defining a behavioural model of the system
participants. These activities result in the generation of two artefacts, namely, the Extended
Specification of the system and the Behavioural Model of selfish nodes.

1 The capital letter for J denotes a set of unique nodes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 77

In this section, we introduce the input of the design phase, we describe the accountability
and reputation mechanisms used in RACOON, we present the algorithm used to generate self-
ish deviations, and, finally, we describe an automatic approach for building a game-theoretic
behavioural model.

5.3.1 Input of the Design Phase

The input of the design phase is the functional specification of the cooperative system that should
be made resilient to selfish behaviours. The functional specification describes the correct (or
cooperative) behaviour of nodes using communication protocols, i.e., a set of rules of inter-
action that define what actions each node can take at each step. Like in many existing ap-
proaches [15, 53, 76, 98, 98], each communication protocol is specified using a state machine
representation [84]. More precisely, in RACOON, the Designer specifies the correct behaviour
of the nodes using a notation based on acyclic Deterministic Finite State Machines (DFSM),
called a Protocol Automaton.2

Remark. Over time, various formal approaches for describing communication protocols have been
proposed in the literature. From these, in his 2012 book on “Protocol Engineering”, König [101]
reports Finite State Machines (FSM), Petri nets, and process calculi as the most important and most
common. In particular, the author regards FSM as an adequate, intuitive and practical means for
protocol development, while considering the other approaches more useful for theoretical research.

Finite state machines have been defined and discussed in numerous publications, such as the book
“Introduction to Automata Theory, Languages and Computation” by Hopcroft et al. [84]. Among the
various types of FSM (e.g., extended state machines, pushdown automata, timed automata), our choice
to base the notation of the Protocol Automaton on DFSM is due to compatibility with the accountabil-
ity mechanism that we plan to use in RACOON, namely, FullReview [53], in which protocols are also
defined as DFSM (see Section 4.2.2).

The Protocol Automaton notation allows describing the participants, operations and mes-
sages of communication protocols by enriching the DFSM notation (states and transitions) with
additional information (roles, methods, messages, contents, and constraints). The elements of a
Protocol Automaton PA are not tied to a specific run of the protocol, but they rather provide
a template to describe any particular instance of it. To be more precise, the specification of a
given element in the PA (e.g., a role, a message, a content) describes a spectrum of possible valid
instances of that element in any protocol run. For example, in Section 5.2, we listed four alter-
native contents that may be included in the message gj1 in the O&A protocol; these alternatives
are captured by a single content definition in the PA, as we will discuss below.

Roles describe the parties involved in the protocol execution. More precisely, a role deter-
mines the responsibilities of a party (whether a node or a group of nodes) and constrains the
actions that the party is allowed to execute in a protocol run.

2 In this thesis, the terms “state machine” and “automaton” will be used interchangeably.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

78 T H E R A C O O N F R A M E W O R K

Definition 5.1 (Role). A role r ∈ R is a triple 〈rId, cardinality, isSelfish〉, with:

• rId: the alphanumeric identifier of the role,

• cardinality: the number of nodes represented by r. It can either be a single number or
a variable number designated by a greater than (>), greater than or equal to (>), less
than (<), less than or equal to (6) conditions, and

• isSelfish: a boolean valued true if r can be played by a selfish node; false otherwise.

For instance, in the protocol O&A, there are two roles. The first role, i, has cardinality 1 and
can be selfish, as shown in Section 5.2. The second role, J, is played by a non-empty set of nodes
(cardinality “> 1”); also, nodes have no interest in behaving selfishly when playing this role.

Remark. The Protocol Automaton specifies the correct interactions among individual nodes, one for
each role, regardless of the cardinality of their current role. For instance, the PA of the protocol O&A
in Figure 14 defines the interactions between two individuals: the node playing as i and any node
j ∈ J. The cardinality attribute allows to express how many instances of the same communication
protocol are described by a certain Protocol Automaton. As an example, let the cardinality of role J
be 10; then, the PA of O&A describes the correct behaviour in ten separate but procedurally identical
protocol runs between the node i and each node playing the role J.

The states that the cooperative system goes through when implementing a communication
protocol can be formalised as follows.

Definition 5.2 (State). A state s ∈ S is a triple 〈sId, roleId, sType〉, with:

• sId: the alphanumeric identifier of the state,

• roleId: identifies the active role r ∈ R that with its actions can trigger a transition from s

or that can terminate the protocol execution, and

• sType: specifies whether s is an initial, final, or intermediate state [84].

A transition between two states of the Protocol Automaton corresponds to a protocol step,
i.e., the method call that determines the next protocol state.

Definition 5.3 (Transition). A transition t ∈ T is a quadruple
〈tId, state1Id, state2Id,methodId〉, with:

• tId: the alphanumeric identifier of the transition,

• state1Id and state2Id: identify the source and target states (defined in S) of t, and

• methodId: identifies the methodm ∈M executed in t.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 79

A method is the set of actions performed by a certain role that can trigger a protocol tran-
sition. In particular, a communication method represents the delivery of a message from one
role to another, while a computation method performs local computations. For instance, in the
O&A protocol, there are only communication methods, named offer and accept. Examples of
computation methods include data encryption and compression, logging of messages, physical
storage and retrieval of data from a local database.

Definition 5.4 (Method). A methodm ∈M is a couple 〈mId,messageId〉, with:

• mId: the alphanumeric identifier of the method, and

• messageId: identifies the message g ∈ G sent by m, if m is a communication method,
null otherwise.

A message conveyed by a communication method can be formalised as the couple below.

Definition 5.5 (Message). A message g ∈ G is a couple 〈gId, contentId〉, with:

• gId: the alphanumeric identifier of the message, and

• contentId: identifies the content c ∈ C carried by g.

Figure 14 shows that the roles participating in the O&A protocol exchange the messages gi0
and gj1. As discussed above, the PA specifies the correct interactions among individual nodes.
Thus, the message gj1 may convey different contents (i.e., accepting different files), depending
on the node j ∈ J that is interacting with node i. Note that the sender and receiver of a message
g can be inferred from the transition t that executes the communication method m sending
g. Specifically, the sender of g is the active role of the t’s source state (i.e., t.state1Id.roleId),
whereas the receiver of g is the active role of t’s target state (i.e., t.state2Id.roleId).

The data carried by a message, i.e., a content, can be either a single data unit (e.g., a binary
file) or a collection (e.g., a list of integers) of data units.

Definition 5.6 (Content). A content c ∈ C is a quadruple 〈cId, cType, cSize, cLength〉,
with:

• cId: the alphanumeric identifier of the content,

• cType: provides information about the data type,3

• cSize: indicates the memory size of a single data-unit in c (given in bytes), and

• cLength: specifies the number of data units that comprise the content c. It can either
be a single number or a variable number designated by a greater than (>), greater than
or equal to (>), less than (<), less than or equal to (6) conditions.

3 Defined by the XML Schema type system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

80 T H E R A C O O N F R A M E W O R K

A constraint prescribes a relationship that has to be fulfilled by two contents. In the specifi-
cation model of RACOON, a constraint is defined as follows.

Definition 5.7 (Constraint). A constraint k ∈ K is a quadruple
〈kId, content1Id, content2Id,kType〉, with:

• kId: the alphanumeric identifier of the constraint,

• content1Id and content2Id: identify the two contents ∈ C that are subject to k, and

• kType: specifies the type of relationship required by k, which can be either an ordering
relation (=, <, >) or a set operation (subset, strict_subset, equal).

Finally, we can formalise a Protocol Automaton as follows.

Definition 5.8 (Protocol Automaton). A Protocol Automaton is a tuple 〈R,S, T ,M,G,C,K〉,
with:

• R: finite, non-empty set of roles,

• S: finite, non-empty set of states,

• T : finite set of transitions,

• M: finite set of methods,

• G: finite set of messages,

• C: finite set of contents, and

• K: finite set of constraints on contents.

Table 16 summarises the value of the Protocol Automaton of the O&A protocol.

Element Value

Roles R = {〈i, 1, true〉, 〈J,> 1, false〉}

States S = {〈s0, i, initial〉, 〈s1, J, intermediate〉, 〈s2, i, final〉}

Transitions T = {〈t0, s0, s1,offer〉, 〈t1, s1, s2,accept〉}

Methods M = {〈offer,gi0〉, 〈accept,g
j
1〉}

Messages G = {〈gi0, c0〉, 〈g
j
1, c1〉}

Contents C = {〈c0, integer, 4,> 0〉, 〈c1, integer, 4,> 0〉}

Constraints K = {〈k0, c1, c0, subset〉}

Table 16: The Protocol Automaton of the O&A protocol.

The Protocol Automaton of the O&A protocol can be represented by the diagram in Figure 16.
The label on a transition provides information about the method that triggers the transition,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 81

and about the message that might be sent. For example, the label between states s1 and s2,
indicates that a node j, while playing the role J, sends the message gj1 to role i by invoking the
communication method accept.

s1s1 s2s2
J.accept(g

1
, i)

s2

i.offer(g
0
, J)

s0s0

i j

Figure 16: The state diagram representation of the Protocol Automaton specified in Table 16.

In the RACOON framework, protocol automata are encoded in an XML-based format, to
support portability, reuse, and extensibility of the specification. The Designer specifies a new
Protocol Automaton as an XML document.4 For example, Listing 1 shows the XML representa-
tion of the PA described in Table 16.

1 <racoon name="OfferAndAccept">
2 <protocol_automaton>
3 <roles>
4 <role id="i" cardinality="1" isSelfish="true" />
5 <role id="J" cardinality=">1" isSelfish="false" />
6 </roles>
7 <states>
8 <state id="s0" roleId="i" type="initial" />
9 <state id="s1" roleId="J" type="intermediate" />

10 <state id="s2" roleId="i" type="final" />
11 </states>
12 <transitions>
13 <transition id="t0" state1Id="s0" state2Id="s1" methodId="offer" />
14 <transition id="t1" state1Id="s1" state2Id="s2" methodId="accept" />
15 </transitions>
16 <methods>
17 <method id="offer" messageId="g0i" />
18 <method id="accept" messageId="g1j" />
19 </methods>
20 <messages>
21 <message id="g0i" contentId="c0" />
22 <message id="g1j" contentId="c1" />
23 </messages>
24 <contents>
25 <content id="c0" type="integer" size="4" length=">=0" />
26 <content id="c1" type="integer" size="4" length=">=0" />
27 </contents>
28 <constraints>
29 <constraint id="k0" content1Id="c1" type="subset" content2Id="c0" />
30 </constraints>
31 </protocol_automaton>
32 <design_objectives>
33 <!-- specification of the design objectives (Section 5.4.1) -->
34 </design_objectives>
35 </racoon>

Listing 1: The XML document that specifies the Protocol Automaton described in Table 16.

Remark. The XML document provided as input by the Designer includes the specification of the
Protocol Automaton as well as of the design objectives presented later in Section 5.4.1.

4 The XML Schema for this document can be found in Appendix A.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

82 T H E R A C O O N F R A M E W O R K

5.3.2 Cooperation enforcement

The RACOON framework uses accountability and reputation mechanisms to make cooperation
the most profitable behaviour for all nodes. In practice, the quality of service received by nodes
depends on their reputation values, which are updated based on accountability audits.

The first step of the design phase of RACOON is the integration of the Cooperation Enforce-
ment Mechanisms (CEM) into the functional specification provided by the Designer. Concretely,
in addition to the protocols specified by the Designer, RACOON applies to each node a set of
accountability protocols based on FullReview [53] and a distributed reputation system.

The CEM used in RACOON are discussed hereafter.

5.3.2.1 Accountability Mechanism

RACOON uses accountability techniques for detecting misbehaviours and assigning nodes non-
repudiable responsibility for their actions. Concretely, we developed the R-acc mechanism,
based on the FullReview protocols presented in the previous chapter. R-acc also shares some
assumptions with FullReview about nodes’ behaviours (i.e., no collusion) and the system (i.e., a
Public Key Infrastructure is available to create trusted identities by means of digital signatures),
whereas it differs from other assumptions (i.e., nodes are not risk averse and can remain in the
system for a short time).

RACOON can automatically integrate R-acc into the Protocol Automaton specified by the
Designer, thus enriching the system specification with accountability operations and protocols.
To begin, R-acc requires each node to maintain a secure log to record all the observable actions
occurred during its execution of the Protocol Automaton and of R-acc as well. Further, it assigns
each node i to a set of other nodes, called its witness setws(i). A witness is in charge of auditing
the log of its monitored nodes, generating provable evidence of their behaviour and assigning
punishments or rewards accordingly. Such operations are defined by the five protocols outlined
below. Overall, R-acc uses the same protocols of FullReview, apart from a simple but significant
modification in the audit protocol.

Commitment protocol: ensures that the sender and the receiver of a message have provable
evidence that the other party has logged the exchange. Figure 17 shows the integration be-
tween the Protocol Automaton PA of the O&A protocol and the commitment protocol. As
an example, consider the node i in the start state s0. Before it sends the message gi0 to J, i
records the action in a new log entry ew. Then, i generates an authenticator αiw and sends
it to J along with the message gi0.5 Upon the reception of the message, each node j ∈ J logs
this event in a new log entry ez, and generates the corresponding authenticator αjz. Finally,
each node in J sends its authenticator to i (transition from state f0 to s1, in Figure 17), to
acknowledge the reception of gi0.

Consistency protocol: ensures that each node maintains a single and consistent linear log.
We refer to Section 4.2.2 for details.

5 For further details, we refer to the discussion on accountability techniques provided in Section 4.2 of the previous
chapter.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 83

● ew

LOG:i

s0s0

● ez

LOG:j

f0f0

● e
w+1

LOG:i

● ez+1

LOG:j

J.ack(α
z
, i)

j

● ew+2

LOG:i

f1f1

● ez+2

LOG:j

s2s2s2

i.ack(α
w+2

, J)i

s1s1

i.offer(g
0
 + α

w
, J)

i
J.accept(g

1
 + α

z+1
, i)

ji i j

Figure 17: The integration between the commitment protocol of R-acc with the O&A protocol shown in
Figure 16.

Audit protocol: a proactive and periodic inspection of a node’s behaviour, based on the ex-
amination of its log. In contrast with FullReview, R-acc introduces the probability of audit
parameter, which allows more control over the number of audits instead of auditing at every
audit period. Figure 18 shows the PA of the audit protocol between a monitored node rm
and one of its witnesses rw. Upon receiving the audit request ga0, the witness may either (i)
terminate the protocol in state f7 without performing the audit, or (ii) demand (message ga1)
and obtains (ga2) from rm all log entries since rm’s last audit. Following the second case, rw
can then verify if rm’s log conforms to the correct Protocol Automaton making up the func-
tional specification of the cooperative system (transition “audit" in Figure 18). The witness
sends the audit result back to the monitored node (message ga3). Finally, once verified the
correctness of its audit as described in Section 4.2.2, rm terminates the protocol. If instead
the witness does not receive the requested log from rm (state f8 in Figure 18), it will address
the issue by using the challenge/response protocol of R-acc. Concerning the accuracy of the

f1f1

r w
.log_req(g a1

, r m
)

f2f2

f3f3 s2s2f6

r m
.log_resp(g a2

, r w
)

f4f4

Audit

f5f5

r w
.aud_resp(g a3

, r m
)

r m
.fw

d_aud_resp(g a3
, w
s(r w

))

f8f8

Timeout
s2s2f9

rw.audit_chal(ga4, w(rm))

f0f0

r m
.aud_req(g a0

, r w
)

s2s2f7

Not Audit

Figure 18: The Protocol Automaton of the R-acc audit protocol. For ease of reading, we do not represent
in the figure the required execution of the commitment protocol on each message exchange of
the audit protocol.

audit protocol, if a message loss occurs during the delivery of a log file, and in the absence of
retransmission functions (e.g., all data is sent using UDP6), the witness might falsely accuse
a cooperative node based on the audit of a corrupted log segment [174]. The challenge/re-
sponse protocols account for this issue. False negative detections, on the other hand, may
occur because of deviations from the audit protocol. For instance, a selfish witness may re-

6 Though using TCP is the natural choice for implementing a distributed accountability system, there are some reasons
why a developer might use UDP. For example, because a certain level of error tolerance can result in a big performance
gain, or due to legacy constraints.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

84 T H E R A C O O N F R A M E W O R K

turn a negative audit result without actually checking the log, to save computation resources.
The FullReview protocols [53], on which R-acc is based, make this deviation detectable.

Challenge/response protocols: deal with nodes that do not respond to messages as provided
in PA (e.g., an offer message in the O&A protocol) or in R-acc (e.g., log requests, reception
acknowledgements), allowing certain tolerance for correct nodes that are slow or suffering
from network problems (e.g., message losses). Specifically, if a node i has been waiting too
long for a given message from another node j, i indicates the suspect state for j, and creates
one of the challenges described in Section 4.2.2 to allow j to prove it is correct and get trusted
again. Nodes in R-acc communicate only with non-suspected nodes.

Evidence transfer protocol: ensures that faulty nodes are eventually exposed by all correct
nodes in the system (see Section 4.2.2).

As a final remark, the commitment protocol is the only R-acc protocol that modifies the func-
tional specification of the system. The remaining protocols run in separate threads, scheduled
to execute periodically.

5.3.2.2 Reputation Mechanism

RACOON uses a reputation system (R-rep) to assist nodes in choosing a cooperative partner
to transact with. To provide this function, R-rep needs to collect information on the behaviour
of each node and aggregate this information to produce a reputation value for it. The R-acc
accountability system described in the previous section offers a practical and reliable solution
to carry out the information gathering task. Once the reputation of a node has been computed,
it can be used by the reputation mechanism to take action against selfish nodes while rewarding
the cooperative ones. Like in other studies (e.g., [72, 104]), we use reputation in combination
with an eviction condition, such that if the reputation of a node goes below a given threshold,
then no other node will accept to interact with it. This creates a credible deterrent to selfish
nodes, as being ignored would prevent them from receiving any service or resource from other
nodes.

Notation. In the remainder of this thesis, we say that a node is “evicted” from the system if it cannot
interact with any other node in the system.

I N F O R M AT I O N G AT H E R I N G A N D F E E D B A C K . The functionalities of the R-rep reputation
mechanism are distributed and decentralised, to better fit with the characteristics of cooperative
systems. In particular, using the terminology defined in Section 4.1.1, every node of the system
plays interchangeably the role of the trustor, trustee and recommender. The witness node in
R-acc plays also the role of recommender in R-rep, as it can form an opinion of a monitored
node (the trustee) based on the audit result. This solution keeps the computational overhead of
the CEM under control, as it does not require to perform the same type of operation twice (that
is, the evaluation of a certain behaviour). Furthermore, basing feedback on provable evidence
offers an effective defence against false feedback (e.g., bad mouthing, false praising).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 85

Apart from gathering information and provide feedback, the R-rep and R-acc cooperation en-
forcement mechanisms share also other features, to reduce design complexity and reuse avail-
able knowledge. First, R-rep identifies nodes using the same unique and permanent identity
assigned by R-acc. A strong identity system prevents many attacks against the registration pol-
icy of a reputation system, such as a Sybil attack or whitewashing [121]. Second, R-rep relies
on R-acc for storing the reputation data in a reliable manner. More precisely, nodes store their
reputation locally. To prevent manipulations, only witnesses — in their role of recommender —
can update the reputation value. Also, the update must be recorded in the R-acc secure log, so
that any tampering can be detected.

R E P U TAT I O N E S T I M AT I O N A N D R E P R E S E N TAT I O N . In R-rep, the reputation ρi of a
node i is an integer value between 0 (i.e., the eviction threshold) and ρmax. The upper limit
ρmax is a parameter of the reputation mechanism.

Every time a witness of the node i in R-acc performs an audit on i’s log, the reputation ρi is
updated depending on the audit result. In the case of a positive audit (i.e., the witness detected
at least one deviation of i from the correct behaviour), the reputation is decreased; otherwise,
the node i is rewarded with an increase of its reputation value. The decrease and increase of rep-
utations are calculated by the punishment function and reward function, defined in Definition 5.9
and Definition 5.10, respectively.

Definition 5.9 (Punishment function). The punishment function fP : N→N is:
fP(ρi) = d(ρmax − ρi) · dpe , with:

• ρmax ∈N: the upper limit of the reputation values in R-rep,

• ρi ∈ {0, ρmax}: the reputation of a node i, and

• dp ∈ R+
0 : the degree of punishment that controls the intensity of the reputation decrease.

The punishment function returns an integer that is proportional to the distance of the reputa-
tion from the maximum reputation that (cooperative) nodes can achieve in R-rep. The rationale
for this choice is to punish with greater severity nodes that already have a bad reputation, in
order to inhibit recidivism. The rapidity of the reputation decrease can also be modulated by
the degree of punishment parameter, such that the greater dp, the greater the decrease.

Definition 5.10 (Reward function). The reward function fR : N→N is defined as:
fR(ρi) = bρi · drc , with:

• ρi ∈ {0, ρmax}: the reputation value of a node i, and

• dr ∈ R+
0 : the degree of reward that controls the intensity of the reputation increase.

In the case of a negative audit, the reward function fR allows calculating the reward to assign
to the cooperative node in terms of a reputation increase. In the formula, the amount of increase

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

86 T H E R A C O O N F R A M E W O R K

is proportional to the reputation value of the node, in such a way as to reward more the nodes
that have been more cooperative in the past. Also, the magnitude of the reward can be further
tuned using the degree of reward parameter.

The reputation update mechanism of R-rep can be thus formalised as follows.

Definition 5.11 (Reputation update mechanism). Let ρoldi be the reputation of a node i
before being audited. Then, the reputation ρi ∈ [0, ρmax] of node i after the audit is:

ρi =

max {ρoldi − fP(ρ
old
i), 0}, in the case of a positive audit of node i

min {ρoldi + fR(ρ
old
i), ρmax}, in the case of a negative audit of node i

, with:

• fP: the punishment function (Definition 5.9), and

• fR: the reward function (Definition 5.10).

Example 5.3.1. Let the reputation be in the range {0, 20} and the degree of reward be 0.2. Also,
let the current reputation of a cooperative node i be 5. Then, after being audited, the reputa-
tion update mechanism will assign iwith the reputation ρi = min{5+ b0.2 · 5c, 20} = 6.

Example 5.3.2. Let the reputation be in the range {0, 10} and the degree of punishment be 2.
Assuming the current reputation of node i be 6, then its new reputation after a positive audit
will be: ρi = max{6− (d2 · (10− 6)e), 0} = 0.

The set up of the R-rep parameters can yield different results, with varying effects on the
nodes’ behaviour. In Section 5.4, we will show how the tuning phase of RACOON can support
the automatic configuration of these parameters to induce the desired behaviour.

5.3.3 Selfishness injection

In the previous step of the design phase, RACOON extended the functional specification of the
system with accountability and reputation mechanisms to sustain the selfishness-resilience of
the system. Then, in the selfishness injection step, the framework creates the basis for evaluat-
ing their effectiveness. Concretely, RACOON provides automatic support to identify represen-
tative types of deviations from the cooperative behaviour of the system, as well as to model
their execution into its functional specification (i.e., the Protocol Automaton).

In our survey of research work on selfishness in cooperative systems, presented in Chapter 2,
we found that the most common motivation for a node to behave selfishly is to save bandwidth,
and that defection and free-riding are the primary types of deviation to achieve this objective.7

On the basis of these findings, we designed the selfishness injection step of RACOON with a
special focus on selfish deviations that aim to cut down the bandwidth consumed for coopera-

7 For ease of reference, we recall that a defection is an intentional omission in the execution of a system protocol, whereas
a free-ride is a reduction of the amount of resources contributed by a node without stopping the protocol execution.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 87

tion. The investigation of other types of selfishness (e.g., computational or information-related)
will be the subject and main contribution of the last part of this dissertation.

The bandwidth consumed in a communication protocol mainly depends on the number and
size of the messages that are exchanged between nodes. Based on this observation, RACOON
automatically generates three types of communication-related deviations: (i) timeout deviation:
the node does not perform the prescribed method within the time limit; (ii) subset deviation: the
node sends only a subset of the correct message content; and (iii) multicast deviation: the node
sends a message only to a subset of the legitimate recipients. Note that timeout deviations can
be classified as a defection, whereas subset and multicast as free-riding deviations.

Remark. In the present version of the RACOON framework, the selfishness injection algorithm can
create only subset and multicast deviations with the largest departure from the correct behaviour. In
practice, message contents are shrunk down to a single data unit by subset deviations, whereas multi-
cast deviations reduce the number of receivers of a message to one. Such a “worst-case” approach can
be useful to assess the effectiveness of the cooperation enforcement mechanisms, thereby providing a
conservative test of the selfishness-resilience of the system under design. Also, it makes the specifica-
tion model simpler, avoiding to introduce additional parameters (i.e., the intensity of each deviation).
On the other hand, focusing only on the most severe deviations can be too rigid and restrictive. We
will come back to this issue in the next chapter.

RACOON generates the three deviations listed above relying on the Communication Selfishness
Injection (CSI) algorithm shown in Alg. 1. The algorithm takes a Protocol Automaton as input
and extends it with new elements (states, transitions, roles, etc.) representing deviations. For
instance, Figure 16 shows the result of the application of the CSI algorithm to the Protocol
Automaton PA of the O&A case study. The figure shows that, in the correct execution of PA,
the role i sends a message (gi0) to J; however, if i is played by a selfish node, it may also (from
top to bottom in the figure): timeout the protocol, send a message with a smaller payload (gi

′
0),

or send the message to a subset of recipients (J ′′). Notice that the accept transitions have no
deviations, because — as specified in Table 16 — their active role J is not selfish.

s0s0 s1s1 s2s2
J.accept(g

1
, i)

s2

i.offer(g
0
, J)

s3

i.timeout()

s4s4

s5s5

i.offer'(g0', J)

i.offer''(g '', J'')

J.accept(g1, i)

J''.accept(g
1
, i)

i

i

i
 0

i

j

j

j

Figure 19: The Protocol Automaton of the O&A protocol, extended with selfish deviations.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

88 T H E R A C O O N F R A M E W O R K

Hereafter, we describe the pseudo-code of the CSI algorithm in more detail. For rapid identi-
fication, the parts of the pseudo-code in Alg. 1 that are specific to the same type of deviation are
highlighted in the same colour. Furthermore, for brevity, in the pseudo-code we use the nota-
tion get(elementId) to refer to the element of PA to which the elementId identifier is associated.
We assume the get notation as recursive; for example, the statement get(t.state1Id.roleId) refers
to the active role of the source state of the transition t.

A deviation point is a transition of the Protocol Automaton in which a deviation can take
place. To determine if a transition is a deviation point, the CSI algorithm first checks whether
the active role can be played by a selfish node (line 4 in Alg. 1). If so, the algorithm verifies if
the transition is a timeout (line 6), subset (line 10), or multicast (line 14) deviation point, and
invokes the generative procedures accordingly. Each procedure is discussed separately below.

Timeout Deviations. For each transition t ∈ T that is not triggered by a legit timeout method,
the CSI algorithm generates a timeout deviation by calling the procedure InjectTimeoutDev
(line 7 in Alg. 1). The procedure creates a new final state s ′ along with an empty transition
connecting the source state of t with s ′.

Subset Deviations. For each transition t ∈ T triggered by a communication method, the
CSI algorithm checks whether its conveyed message content c is a collection of data-units
(line 10). If so, line 11 calls the procedure InjectSubsetDev, which creates new elements to
represent the deviation. In particular, the procedure creates the new content c ′ (line 21),
which has the same data type and size as c, but has only a single data-unit. The generation
of a new content might also require the creation of new constraints. In fact, since c ′ replaces
the correct content in the communication protocol execution, it must be subject to the same
constraints as c. This operation is addressed by the UpdateConstraints procedure (invoked in
line 22 in Alg. 1), which duplicates any constraint k ∈ K related to c and replaces the correct
content’s identifier with that of c ′. The InjectSubsetDev procedure terminates by connecting
the new state generated in line 25 to the rest of the PA. This is done by copying the outgoing
transitions of the target state s of t (lines 28-20). As a concrete example, this task creates the
transition between states s4 and s2 in Figure 19, based on the transition connecting s1 to s2.

Multicast Deviations. For each transition t ∈ T triggered by a communication method, the
CSI algorithm checks whether the recipient of the message sent during t has a cardinality
greater than 1 (line 13 in Alg. 1). If so, line 15 calls the procedure InjectMulticastDev to create
the new role r ′ (line 31) with cardinality equal to 1. Then, the procedure proceeds following
the same pattern as seen before: creating and adding the new elements in PA (lines 32-37),
and adding the outgoing transitions of the new state created (line 38).

The Extended Specification of the cooperative system resulting from the execution of the CSI
algorithm is the output of the selfishness injection step.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 89

Alg. 1: The Communication Selfishness Injection (CSI) algorithm.

Input: A Protocol Automaton PA := 〈R,S, T ,M,G,C,K〉.
Output: PA.

Algorithm CSI(PA)
1 origT := T // transitions originally included in PA

2 foreach t ∈ origT do
3 activeRole := get(t.state1Id.roleId)
4 if activeRole.isSelfish = true then
5 method := get(t.methodId)
6 ifmethod.mId 6= “timeout” then
7 InjectTimeoutDev(t)
8 if get(method.messageId) 6= null then
9 c := get(method.messageId.contentId) // sent content

10 if c.cLength > 1 then
11 InjectSubsetDev(t, s, c)
12 s := get(t.state2Id) // target state

13 r := get(s.roleId) // recipient role

14 if r.cardinality > 1 then
15 InjectMulticastDev(t, s, r)

Procedure InjectTimeoutDev(t)
16 s ′ := 〈new_sId, null, final〉
17 m ′ := 〈“timeout”, null〉
18 sourceState := get(t.state1Id)

19 t ′ := 〈new_tId, sourceState.sId, s’.sId, m’.mId〉
20 add s ′,m ′, and t ′ to PA

Procedure InjectSubsetDev(t, s, c)
21 c ′ := 〈new_cId, c.cType, c.cSize, 1〉
22 UpdateConstraints(c’.cId)

23 g ′ := 〈new_gId, c’.cId〉
24 m ′ := 〈new_mId, g’.gId〉
25 s ′ := 〈new_sId, s.roleId, s.sType〉
26 t ′ := 〈new_tId, t.state1Id, s’.sId, m’.mId〉
27 add s ′, c ′, g ′,m ′, and t ′ to PA

28 foreach ot ∈ T | ot.state1Id = s.sId do
29 ot ′ := 〈new_otId , s’ , ot.state2Id , ot.methodId〉;
30 add ot’ to PA;

Procedure InjectMulticastDev(t, s, r)
31 r ′ := 〈new_rId, 1, r.isSelfish〉
32 s ′ := 〈new_sId, r’.rId, s.sType〉
33 correctMessage := get(t.methodId.messageId)

34 g ′ := 〈new_gId, correctMessage.contentId〉
35 m ′ := 〈new_mId, g’〉
36 t ′ := 〈new_tId, t.state1Id, s’.sId, m’.mId〉
37 add r ′, s ′, g ′,m ′, and t ′ to PA

38 add out-transitions of s ′ . as in lines 28-30

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

90 T H E R A C O O N F R A M E W O R K

The worst case running time of the CSI algorithm is O(|T | ·max{|K|, |S|}), where |T | is the
number of transitions in the PA, |K| the number of constraints, and |S| the number of states. This
bound follows from the fact that, for each transition of the Protocol Automaton, the algorithm
calls three methods having the following orders of complexity:

• InjectTimeoutDev is O(1), because it involves operations having constant-time perfor-
mance, such as the creation of new PA elements as well as the retrieval (function get) and
storage (function add) of elements from the PA.8

• InjectSubsetDev includes two non-constant time activities: (i) the UpdateConstraints

function (line 22 in Alg. 1), which is linear to the size of the constraints set K, and (ii) the
copy of out-transitions of a state in lines 28-30, which is linear to the number of states in
S.9 Thus, the overall complexity of InjectSubsetDev is linear to the cardinality of the
larger set between K and S, i.e., O(max{|K|, |S|}).

• InjectMulticastDev is O(|S|), due to the complexity of copying the out-transitions of a
state (line 38), already discussed in the previous bullet.

The complexity of InjectSubsetDev dominates that of the other functions executed in the
main loop of the CSI algorithm, which explains the total complexity of CSI presented above.

5.3.4 Rationality injection

Rationality is an inherent quality of selfish nodes, which determines their decision-making in
choosing and performing the behaviour that they expect to be the most profitable to adopt. We
recall from Chapter 2 that a behaviour can be considered more or less profitable than another
based on the utility that it yields to the node (Definition 2.3), and, therefore, based on the ben-
efits and costs of performing that behaviour when participating in the system (Definition 2.2).
Thus, in a nutshell, a selfish node relies on its rationality to decide whether to stick to the pro-
tocol specification or to deviate from it, depending on which option maximises its utility.

A Rationality Model is a mathematical or logical (rule-based) description of the decision-making
process of selfish nodes. The Extended Specification created in the previous step of the RACOON
methodology cannot serve for this purpose, because it is limited to describing possible be-
haviours of selfish nodes without giving any indication of the likelihood of a particular be-
haviour. In RACOON, the rationality model is built on Game Theory (GT) [130], which appears
as the natural candidate for the formal representation of the rationality of selfish individuals.10

Particularly, we rely on the most mature and well-developed branch of GT, i.e., classical GT.
RACOON provides an automatic tool to describe the Extended Specification within the mathe-
matical framework of GT, thereby translating a Protocol Automaton PA into a game, referred
to as the Protocol Game PG.

8 The get and add operations are implemented using hash tables, and, specifically, the Java class HashMap (JDK 8),
which enables O(1) lookups in the average case and O(logn) in the worst case.

9 Given a transition t and a target state s, the maximum number of out-transitions of s is |S|−2, i.e., all states in |S| but
s and the source state of t.

10 We refer to Section 3.2 for notation, terminology and background material.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 91

The Protocol Game is the final output of the design phase, i.e., the Behavioural Model, which
provides the necessary structure for predicting the dynamics of selfish nodes during the tuning
phase of the RACOON framework. Hereafter, we describe the Protocol Game as well as the
process to generate it in more detail.

G A M E T Y P E . From the classification of game types in classical GT (see Section 3.2.2), we
consider non-cooperative sequential games as the most suitable type for describing the Protocol
Game. The reason to choose non-cooperative GT is twofold: first, it studies rational utility-
maximisers that act individually, like the selfish nodes participating in cooperative systems;11

second, it aims to make predictions about the strategic behaviour of rational individuals, which
is one of the objectives of the RACOON framework. At the same time, the reason to choose
sequential games to describe a Protocol Game is that they allow modelling interactions in which
the participants act in turns, like the nodes participating in a communication protocol.

G A M E D E S C R I P T I O N . A non-cooperative sequential game is usually represented as a rooted
tree, also called extensive form representation. In the following, we provide a formal definition
of game tree and extensive form game.

Definition 5.12 (Game tree). A game tree T is a quadruple
〈
N, n0 ,L, pred

〉
, with:

• N: finite, non-empty set of nodes (Definition 5.15),

• n0 : a unique root node ∈ N,

• L: finite, non-empty set of terminal nodes (leaves), such that L ⊂ N. Also, let D = N \L.
D is called the set of decision nodes, and

• pred : N→ D∪ { null }: the immediate predecessor of a node n ∈N.

Definition 5.13 (Extensive form game). A finite extensive form game consists of:

• T = 〈N , n0 , L ,pred〉: a game tree,

• P: finite, non-empty set of players (Definition 5.14),

• A: finite set of actions (Definition 5.16),

• H: finite set of information sets (Definition 5.18),

• A set of functions that describe for each n ∈ D,
– moves : N→ A: finite set of possible actions at n ,
– player : N→ P: the player who moves at n ,
– succ : N,A→ N: the successor node of n from action a, and
– info : N→ H: the information set that contains n .

• up(l)→ R: the utility assigned to player p as a function of the leaf l ∈ L.

11 This is because in Section 5.3.2 we made the assumption that nodes do not collude, similarly to FullReview and many
other cooperation enforcement mechanisms.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

92 T H E R A C O O N F R A M E W O R K

G A M E M A P P I N G . A Protocol Automaton PA = 〈R,S, T ,M,G,C,K〉 is translated into ele-
ments of a Protocol Game PG, which is modelled as an extensive form game. Each player of
PG is assigned to exactly one role ∈ R, and it is defined as follows.

Definition 5.14 (Player). A player p ∈ P is a couple 〈pId, roleId〉, with:

• pId: the alphanumeric identifier of the player, and

• roleId: identifies the role of the Protocol Automaton PA that corresponds to p.

The game tree T of the Protocol Game comprises a set of nodes N, with each node represent-
ing a state in the Protocol Automaton. Particularly, each leaf node ∈ L translates to a final state
in the PA, and represents a possible outcome of the stage game. The edges of the game tree cor-
respond to the transitions of the PA, whose methods are translated into actions of the Protocol
Game. In the following, we provide the definition of nodes and actions.

Definition 5.15 (Node). A node n ∈ N is a tuple 〈nId, stateId,predId, infosetId〉, with:

• nId: the alphanumeric identifier of the node,

• stateId: identifies the state of the Protocol Automaton PA that corresponds to n ,

• predId: indicates the predecessor decision node ∈ D, and

• infosetId: specifies the information set that contains n .

Definition 5.16 (Action). An action a ∈ A is a tuple
〈aId,methodId,playerId, sourceNodeId, targetNodeId〉, with:

• aId: the alphanumeric identifier of the action,

• methodId: refers the method of the Protocol Automaton PA that corresponds to a,

• playerId: indicates the player ∈ P that performs the action,

• sourceNodeId: specifies the node ∈ D where the action can be triggered, and

• targetNodeId: specifies the node ∈ N where the action leads to.

A play y is a path of the game tree, i.e., a sequence of actions, elements of A, from the root to a
leaf. It describes a particular interaction between players. The strategy of a player is the ordered
sequence of actions that she takes in a certain play. The strategy set (or strategy space) Σ is
the set of possible strategies available to a player. A strategy profile is the vector that specifies a
strategy for every player.

Definition 5.17 (Strategy). The strategy σi,j ∈ Σi of a player pi ∈ P for a given play yj is
the ordered sequence of actions {a ∈ A | a ∈ yj , a.playerId = pi.pId}.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 93

The Protocol Game is a game with complete information [130], because all the factors of the
game mechanisms (e.g., players, order of moves, possible strategies) are specified in the PA,
and, therefore, are common knowledge to the players. Furthermore, the PG is a game with
imperfect information, because players, when making a decision, are not informed of all the
events that have previously occurred.12 Thus, when a player performs an action, she does not
know exactly in which decision node of T she currently is, because she cannot determine if the
previous player’s action was a deviation or the correct method. Such condition of uncertainty
is defined by an information set [130], which is the set of alternative decision nodes that might
be played by a given player at a certain turn and among which the player cannot distinguish.
In the PG, the definition of an information set consists only of its identifier, since the association
with the nodes is made in their definition (element infosetId).

Definition 5.18 (Information set). An information set h ∈ H is a singleton 〈hId〉, where hId
is the alphanumeric identifier of the information set.

The RACOON framework translates any Protocol Automaton PA into the elements defining
a Protocol Game PG using the algorithm PAtoPG shown in Alg. 2. For clarity, we highlighted
with different colours the parts of the pseudo-code that generate players (blue), nodes (green),
and actions (red). Also, note that we used the same get notation introduced in the previous
section to describe Alg. 1. Hereafter, we comment on some parts of the PAtoPG algorithm.

The first part of Alg. 2 populates the players set P (lines 2-4) and translates the initial state
of the PA into the root of the game tree (lines 6-7). The other nodes, along with actions and
information sets, are generated by the TraversePA procedure, during a recursive traversal of
the states of the Protocol Automaton. Each traversal iteration starts with the creation of a new
information set h (line 10), which will be assigned to the decision nodes created during the
iteration (line 18). Then, for each outgoing transition t of the visited state s, the TraversePA
procedure (i) creates a new node n to map the target state tState of the transition t, and (ii)
creates a new action a to map themethod in the PA that triggers t (lines 22-23). In particular, if
tState is a final state, then n is also added to the set of leaves L (lines 15-16); otherwise, after the
creation of n (lines 18-19), the procedure invokes the recursive call on the target state (line 20).
Finally, the algorithm PAtoPG terminates in line 9 with the calculation of the utilities. This task
is supported by the CalculateUtilities procedure, which assigns a utility to each player for each
outcome of the game. We discuss this task later in this section.

Table 17 reports the values of the players, nodes, actions, and information sets that trans-
late the extended Protocol Automaton of the O&A protocol shown in Figure 19. A graphical
representation of these values is provided by the diagram in Figure 20.

In Definition 5.13, we listed four functions that are needed to define an extensive form game,
namely, moves , play , succ, info. Alg. 3 shows how these functions can be implemented in RACOON
using the elements of the Protocol Game created by the PAtoPG algorithm.

12 This knowledge can be gained only after an audit.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

94 T H E R A C O O N F R A M E W O R K

Alg. 2: Algorithm for the translation of a Protocol Automaton PA into a Protocol Game.
Highlighted in blue are the instructions to generate players, in green to generate nodes, and
in red to generate actions.

Input: A Protocol Automaton PA := 〈R,S, T ,M,G,C,K〉.
Output: A Game Tree T, the players P, the actions A, the information sets H, and the utilities.

Algorithm PAtoPG(PA)
1 create empty sets P,N,L,H,A

/* create the players */

2 foreach role ∈ R do
3 p := 〈new_pId, role.rId〉
4 add p to P

/* create the root of the game tree */

5 s := the initial state of PA

6 n0 := 〈“n0”, s.sId, null, null〉
7 add n0 to N

/* traverse the Protocol Automaton */

8 TraversePA(s,n0)
/* calculate the utility values */

9 CalculateUtilities()

Procedure TraversePA(s,pred)
10 h := 〈new_hId〉
11 p := GetPlayer(s.roleId) // return p such that p.roleId = s.roleId

12 foreach t ∈ T | t.state1Id = s.sId do
13 tState := get(t.state2Id)
14 if tState.sType = final then
15 n := 〈 new_nId, tState.sId, pred.nId, null 〉 // leaf node

16 add n to N,L
17 else

/* all decision nodes that can be reached from s belong to the same

information set h */

18 n := 〈 new_nId, tState.sId, pred.nId, h 〉 // decision node

19 add n to N

20 TraversePA(tState, n)
21 method := get(t.methodId)

22 a := 〈 new_aId, method.mId, p.pId, n.predId, n.nId 〉
23 add a to A

24 add h to H

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 95

Element Value

Players P = {〈p0, i〉, 〈p1, J〉}
Nodes N = {〈n0, s0,null,null〉, 〈n1, s1, n0, h1〉, 〈n2, s4, n0, h1〉, 〈n3, s5, n0, h1〉,

〈n4, s2, n1,null〉, 〈n5, s2, n2,null〉, 〈n6, s2, n3,null〉, 〈n7, s3, n0,null〉}
Actions A = {〈a0,offer, p0, n0, n1〉, 〈a1,offer ′, p0, n0, n2〉, 〈a2,offer ′′, p0, n0, n3〉,

〈a3, timeout, p0, n0, n7〉, 〈a4,accept, p1, n1, n4〉, 〈a5,accept, p1, n2, n5〉,
〈a6,accept, p1, n3, n6〉}

Information sets H = {〈h1〉}

Table 17: Players, nodes, actions, and information sets that translate the Protocol Automaton in Figure 19.

a
5
:accept

p0

p1

n0n0

a
4
:accept

a 0:o
ffer

a 1:
of

fe
r'

a
6
:accept

a
2 :offer''

a
3 :timeout

n1n1 n3n3

n4n4 n5n5 n6n6 n7n7

p1p1

y0 : {σ0,0 , σ1,0} y1 : {σ0,1 , σ1,1} y2 : {σ0,2 , σ1,2} y3 : {σ0,3 , σ1,3}

n2n2

Figure 20: A visual representation of the Protocol Game described in Table 17. The label besides each
decision node indicates the player that takes action at that node. The label on each edge denotes
an action along with its corresponding method in the PA. Nodes in the same information set
are connected by a dashed line. The labels below each leaf denote the strategies of that play.

Algorithm 3: Implementation of the moves , play , succ, info functions of an extensive form game.

Input: A Game Tree T =
〈
N, n0 ,L, pred

〉
, the set of players P, and the set of actions A.

Function moves(n ∈N)
1 create the empty set actionsResult
2 foreach a ∈A | a.targetNodeId = n .nId do
3 add a to actionsResult

return actionsResult

Function play(n ∈N)
4 foreach a ∈A do
5 if a.sourceNodeId = n .nId then
6 return get(a.playerId)

Function succ(n ∈N, a ∈A)
7 if a.sourceNodeId = n .nId then
8 return get(a.targetNodeId)

Function info(n ∈N)
9 return get(n.infosetId)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

96 T H E R A C O O N F R A M E W O R K

The complexity of the PAtoPG algorithm is determined by three operations:

• Generation of players, which is linear to the number of roles in R ∈ PA.

• Generation of the game tree, performed by the recursive method TraversePA. The method
traverses each state of each path of the Protocol Automaton; the traversal has linear com-
plexity O(|S|+ |T |), where |S| and |T | are the cardinalities of the states and transitions sets
in the PA.13 At each state visit, TraversePA executes only constant-time operations (e.g.,
generation of new elements, retrieval and storage of information from the PA). Hence,
the generation of the game tree has complexity O(|S|+ |T |).

• Calculation of the utilities associated with each outcome of the game tree, which, in the
worst case, it requires exploring every node in N and every edge (i.e., every action in A).
The time complexity of this activity can be expressed as O(|N|+ |A|) [46].

Based on the above observations, we can conclude that the overall complexity of the PAtoPG
algorithm is O(|R|+ |S|+ |T |+ |N|+ |A|).

U T I L I T Y F U N C T I O N . The utility function of a player assigns a value — called utility, or
payoff — to each outcome of a game [130]. In RACOON, the utility obtained by a player from
playing the Protocol Game has two terms: the cost of sharing resources and the incentives
(benefits or additional costs) provided by the cooperation enforcement mechanisms.14 Since
our focus is on selfish deviations that aim at saving bandwidth consumption, we calculate the
cost ki incurred by the player pi as the bandwidth necessary to implement a certain player’s
strategy. Furthermore, we calculate the incentives as a function fI of the selected strategy σi,j

and of the expected reputation that the player would get after her accountability audit in the
immediate future.

Definition 5.19 (Utility function). The utility function u : Σi → Z for player pi when
implementing the strategy σi,j is calculated as follows:
u(σi,j) = −k(σi,j) + fI , with:

• k ∈N: the communication costs incurred by the player, and

• fI : N, N→ Z: the incentive function (Definition 5.21).

The intuition behind the incentive function is based on two considerations. First, the underly-
ing assumption of any incentive mechanism is that the threat of future punishments (resp. the
promise of future rewards) has an impact on the decision-making of selfish nodes, and thus on
the utility they expect to derive from the execution of a certain strategy. In RACOON, the ratio-
nality model encourages the players to deviate from the protocol as much as possible (to save
resources), as long as this can be accomplished without being evicted by the CEM. Second, the
CEM links the probability of eviction to the reputation of the node. Therefore, if the reputation

13 The Protocol Automaton can be seen as a Directed Acyclic Graph, where each state corresponds to a node and each
transition to an edge. Finding the total number of paths in a DAG can be done in O(|nodes|+ |edges|) [46].

14 We assume that all players obtain the same benefit from playing the same game.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.3 R A C O O N D E S I G N P H A S E 97

ρi of a player pi increases at a point in time, then pi is more likely to deviate in the future, as
she will be further from the eviction threshold than before. On the other hand, if ρi decreases,
then the player will refrain from deviating in the future because she will get closer to eviction.

From the above considerations, we define the incentive function as follows.

Notation. For ease of exposition, we refer to the “reputation of a player” p ∈ P as the reputation of
the node in the system that is playing as p.

Definition 5.20 (Expected reputation). The expected reputation ρe of a player p is the repu-
tation that the player would get after an audit and consequent execution of the reputation
update mechanism.15

Definition 5.21 (Incentive function). Let ρi be the current reputation of a player pi play-
ing the strategy σi,j, and let ρei be the expected reputation of the same player. Then, the
incentive function fI : N, N→ Z is defined as:

fI(ρi, ρei) =


IR, if ρei − ρi > 0

0, if ρei − ρi = 0

−IP, if ρei − ρi < 0

, with:

• IR ∈ [0,+∞): the benefits expected from future rewards, and

• IP ∈ [0,+∞): the costs expected from future punishments.

The incentive function fI quantifies the expected variations of a reputation value in terms of
costs or benefits. When a player gets a reward in the form of a reputation increase, then the
function fI assumes a positive value: since she is farther from the eviction threshold, she can
afford to perform more deviations in the future. This corresponds to the utility increment IR.
On the contrary, when a player pi gets a punishment in the form of a reputation decrease, then
the incentive function assumes a negative value. This value can be computed as follows. If the
expected reputation value ρei goes below the eviction threshold, then pi is evicted. This negative
event by itself corresponds to a cost, called eviction cost, conventionally set at a very high
nominal value. If instead, the expected reputation value ρei stays above the eviction threshold,
then the player, wishing to return to the previous reputation level, must behave correctly in the
future and give up to potential benefits from deviations.

S U M M A R Y E X A M P L E . Let us consider the following setting of the O&A protocol case study
(see Figure 14). The role i has to send an offer message gi0 to role J, with J having cardinality
5. The offer message conveys a content c0, containing the identifiers of the files that i wants

15 See Definition 5.11.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

98 T H E R A C O O N F R A M E W O R K

Outcome Player Strategy J.cardinality c0.cSize c0.cLength Communication Cost

o0
p0 σ0,0 5 4 10 200

p1 σ1,0 1 4 10 40

p0 σ0,1 5 4 1 20
o1

p1 σ1,1 1 4 1 4

o2
p0 σ0,2 1 4 10 40

p1 σ1,2 1 4 10 40

p0 σ0,3 0 0 0 0
o3

p1 σ1,3 0 0 0 0

Table 18: Illustrative example of the computation of the communication costs incurred by the players of
the Protocol Game shown in Figure 20.

to offer to J. Let the identifiers be encoded as integers, each of size 4 byte, and the number of
identifiers sent via c0 be 10. Finally, let J accept all the identifiers offered by i. Given this setting,
and given the Protocol Game PGmodelling the O&A protocol (see Figure 20), in the following,
we calculate the utilities of the nodes participating in the protocol.

First, we calculate the communication costs. Consider for instance the communication cost
of the correct strategy σ0,0, played by the player p0 who maps the role i in the O&A protocol.
The cost is as follows:

k(σ0,0) = J.cardinality× (c0.cSize× c0.cLength) = 200 .

Table 18 summarises the communication costs of all strategies for each player. As another
example, consider the strategy σ1,1, played by the player p1 that maps the role J in PG. In
this case, the player received a single file identifier because the other player has performed a
subset deviation. Thus, the communication cost of p1 is:

k(σ1,1) = 1× (4× 1) = 4 .

Second, to calculate the (positive or negative) incentives provided by the cooperation enforce-
ment mechanisms of RACOON, let the reputation mechanism R-rep be configured as in the Ex-
ample 5.3.2 in Section 5.3.2: the maximum reputation be 10 and the degree of punishment be
2. Also, let the degree of reward be 0, like in FullReview [53].16 If the current reputation of
player p0 and player p1 is 6, then the incentive values contributed by the incentive function are
as reported in Table 19.

Finally, we can calculate the utility derived by each player for each strategy defined in the
PG by replacing the communication costs and incentive values calculated above into the util-
ity function presented in Definition 5.19. The results are displayed in Figure 21: the pairs of
numbers (one for each player) below each leaf are the utility values.

16 The only incentive included in FullReview is the threat of eviction from the system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.4 R A C O O N T U N I N G P H A S E 99

Outcome Player Strategy Audit result Expected reputation Incentive value

o0
p0 σ0,0 Negative 6 0

p1 σ1,0 Negative 6 0

p0 σ0,1 Positive 0 -10000 a
o1

p1 σ1,1 Negative 6 0

o2
p0 σ0,2 Positive 0 -10000 a

p1 σ1,2 Negative 6 0

p0 σ0,3 Positive 0 -10000 a
o3

p1 σ1,3 Negative 6 0

a The nominal cost assigned to an eviction.

Table 19: Illustrative example of the calculation of the incentive values assigned to the players of the Pro-
tocol Game shown in Figure 20.

p0

p1

a
4
:accept

a 0:o
ffer

a
5
:accept

a 1
:o
ffe
r'

a
6
:accept

a
2 :offer''

a
3 :timeout

p1p1

-200,-40 -10020,-4 -10040,-40 -10000,0

Figure 21: Illustrative example of the utility values that each player would obtain from playing a certain
strategy in the Protocol Game described in Table 17.

5.4 R A C O O N T U N I N G P H A S E

The tuning phase of RACOON aims at configuring the accountability and reputation mecha-
nisms according to a list of design objectives input by the Designer. Tuning involves an iterative
two-step refinement process, which alternates evaluation with the tuning of the configuration
parameters. The evaluation involves Game Theory (GT) analysis and simulations to study the
system dynamics in a given configuration setting. Then, an exploration algorithm uses the
evaluation results to optimise the parameters of the CEM. The tuning process ends after a set
number of iterations, or when a configuration that satisfies the Designer’s objectives is found.

5.4.1 Input of the Tuning phase

RACOON allows defining selfish-resilience and performance objectives for the cooperative sys-
tems designed within its framework. Each of these design objectives specifies a predicate over

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

100 T H E R A C O O N F R A M E W O R K

a system metric, which can be evaluated by the RACOON evaluation tool. Examples of predi-
cates are “at most” and “at least”. Hereafter, we present the objectives natively supported by
RACOON:

• Deviation rate: the frequency of the deviations performed by selfish nodes.

• Cooperation level: the fraction of cooperative nodes in the system.

• Audit precision: the number of correct positive audits divided by the total number of posi-
tive audits.

• Wrongful eviction rate: the fraction of correct nodes wrongly evicted by the CEM, due to
false-positive audit results.

• CEM message overhead: the costs of the accountability and reputation mechanisms in terms
of extra messages.

• CEM bandwidth overhead: the costs of the accountability and reputation mechanisms in
terms of bandwidth consumed.

We selected these metrics based on two factors: the metrics should be application-independent,
so as to be meaningful for any cooperative system designed using RACOON; the metrics should
be commonly used in related work on incentive mechanisms (e.g., [28, 53, 72, 100, 111, 124]). Ex-
amples of design objectives are “cooperation level at least 0.8" and “CEM message overhead at
most 0.6".17

The Designer can also specify custom application-specific requirements, e.g., on through-
put [100, 165], jitter [72, 111], anonymity [27], or download time [89, 116, 135]. For each custom
objective added to the list of design objectives, the Designer needs to implement the specific
methods to collect and evaluate the related metrics in the evaluation tool.

Definition 5.22 (Design Objective). A design objective o ∈ O is a quintuple
〈oId,predicate, value,minValue,maxValue〉, with:

• oId: the alphanumeric identifier of the design objective. The design objectives
natively supported by the framework have reserved identifiers (i.e., deviation_rate,
wrongful_eviction_rate, CEM_message_overhead, CEM_bandwidth_overhead,
audit_precision, cooperation_level),

• predicate: the predicate imposed by the design objective o over a system metric. It can
be either at_least or at_most,

• value: the threshold value ∈ R imposed by the design objective o over a system metric,

• minValue: the minimum value ∈ R that can be associated with the design objective
(default: 0.0), and

• maxValue: the maximum value ∈ R that can be associated with the design objective
(default: 1.0).

17 Despite not all the metric-predicate combinations are logical or desirable (e.g., “audit precision at most 0.0"), the evalua-
tion tool of RACOON accepts their specification for the sake of flexibility.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.4 R A C O O N T U N I N G P H A S E 101

In the RACOON framework, the Designer specifies the design objectives in the same XML
document she used to specify the Protocol Automaton (see Section 5.3.1). Listing 2 shows an
example of such specification.

1 <racoon name="OfferAndAccept">
2 <protocol_automaton>
3 <!-- specification of the design objectives (Section 5.3.1) -->
4 </protocol_automaton>
5 <design_objectives>
6 <objective id="cooperation_level" predicate="at_least" value="0.8" />
7 <objective id="CEM_message_overhead" predicate="at_most" value="0.6"/>
8 <custom_objective id="jitter" predicate="at_most" value="0.03" />
9 </design_objectives>

10 </racoon>

Listing 2: The XML document that specifies the Design Objectives and the Protocol Automaton.

5.4.2 Configuration evaluation and exploration

Configuration evaluation and exploration are the two interleaving steps of the RACOON frame-
work that aim to find a satisfactory configuration for the cooperation enforcement mechanisms
that meets the design objectives set by the Designer. The automatic approach adopted by
RACOON is to simulate the cooperative system under design in different regions of the pa-
rameter space, using the Behavioural model resulting from the design phase to drive the be-
haviour of selfish nodes. The exploration ends after a predefined number of iterations, or when
a configuration satisfying the Designer’s objectives is found.

To simulate the behaviour of selfish nodes, we developed and integrated into the RACOON
framework an event-based simulator (R-sim) specialised for peer-to-peer overlay networks. The
simulator takes as input an implementation of the Extended Specification of the system (pro-
vided by the Designer), the Behavioural Model (i.e., the Protocol Game PG), and the design
objectives to achieve. R-sim supports a cycle-based simulation model. Specifically, at each cy-
cle, every node executes the Extended Specification in turn. Correct nodes will never deviate
from the correct execution of the system specification, while the behaviour of selfish nodes
can change from one cycle to another according to the action that maximises their utility. To
this end, the R-sim simulator performs a game-theoretic analysis of the Protocol Game PG. In
particular, at each simulation cycle, R-sim proceeds as follows:

1. It creates a new instance of the PG, which reflects the current state of the interacting nodes
(e.g., reputation values, available resources).

2. It conducts a game analysis of the PG to identify the rational strategy of each node.

3. It uses the solution of the game analysis to drive the execution of the system implementa-
tion.

The game-theoretic analysis performed at step (2) determines the possible steady states of PG,
which are the equilibrium points (see Section 3.2). RACOON uses the Sequential Equilibrium
(SE) solution [130], a refinement of the Nash Equilibrium for sequential game with imperfect

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

102 T H E R A C O O N F R A M E W O R K

information. To find the SE of PG, R-sim relies on Gambit,18 an open-source library of tools
for solving non-cooperative games. Specifically, Gambit implements the algorithm by Koller,
Megiddo and von Stengel [99], using linear programming. Consider for instance the Protocol
Game created in the summary example of Section 5.3.4, and shown in Figure 21. In this game,
the SE found by Gambit is the cooperative strategy profile (offer, accept), which indicates that
the best strategy of the two players is not to deviate from the correct execution of the system.
In fact, any selfish strategy played by the player p0 (e.g., omitting to send the offer message)
would worsen her utility due to the punishment imposed by the CEM. The RACOON simulator
uses this information and simulates the players’ behaviour accordingly. Thus, if at a given cycle
the equilibrium strategy of a selfish player p0 is to perform a timeout deviation, for example,
because her reputation is high enough to alleviate the severity of future punishments, then
R-sim will skip any execution of the communication protocol of that node.

A single simulation allows verifying the selfish-resilience and performance guarantees of-
fered by a given configuration of the accountability and reputation mechanisms. If the results
are not satisfactory with respect to the design objectives set by the designer, the last step of
the RACOON framework supports the automatic exploration of the configuration space of the
CEM. A configuration candidate is an assignment of the parameters for the R-acc and R-rep
mechanisms, summarised in Table 20.

R-acc accountability mechanism

Name Allowed Values Definition

ws: witness set size ws ∈N The number of witnesses associated with each node.

ape: audit period ape ∈N The time period (in seconds) between two execu-
tions of the audit protocol.

apr: audit probability apr ∈ [0, 1] The probability that a witness sends a log request
during the execution of the audit protocol.

R-rep reputation mechanism

Name Range Definition

dp: degree of punishment dp ∈ R+
0 The parameter of the punishment function (see Defi-

nition 5.9) that controls the intensity of a reputation
decrease.

dr: degree of reward dr ∈ R+
0 The parameter of the reward function (see Defini-

tion 5.10) that controls the intensity of a reputation
increase.

Table 20: The configuration parameters of the CEM.

The exploration is an iterative process, which generates new candidates based on the evalua-
tion of the previous ones until a configuration is found that satisfies all the Designer’s objectives.
RACOON explores the configuration space using a greedy constraint-satisfaction algorithm,
which is guided by a set of simple rules that govern the updating of the configuration candi-
date. For instance, if when simulating a given configuration the overhead is already above the

18 Gambit: http://sourceforge.net/projects/gambit/

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.5 E VA L U AT I O N 103

threshold fixed by the Designer, RACOON will not increase the number of witnesses, the proba-
bility of audit or the audit period in the next configuration to be explored as this would further
increase the overhead [53, 76]. If no feasible solution is found after a pre-defined number of it-
erations (e.g., because the objectives are contradictory or too demanding), the framework stops
the search, asking the Designer to improve the design manually or to relax the design objectives.

The tuning phase concludes the execution of the semi-automatic design and configuration
process of cooperative systems supported by the RACOON framework. The outcome of RACOON
is an automatic redesign of the system specification provided by the Designer, which integrates
general and practical mechanisms (accountability and reputation) aiming to provide resilience
against selfish nodes that try to contribute less than their fair share to the system. RACOON
also supports the automatic tuning process of such mechanisms, with the goal of achieving a
satisfactory level of selfish-resilience and performance set by the system designer. The selfish-
resilience specification, as well as the finely tuned configuration of the cooperation enforcement
mechanisms, can be used by the Designer as a reference for later development and deployment
of the cooperative system.

5.5 E VA L U AT I O N

In this section, we demonstrate the benefits of using the RACOON framework to design selfish-
resilient cooperative systems. First, we assess the design effort required by the system designer
to specify a P2P live streaming protocol, along with a set of objectives she wants to achieve. Sec-
ond, we assess the effectiveness of RACOON by comparing the quality of a configuration it finds
with a set of R-acc configurations. Third, we assess the accuracy of the simulations performed by
RACOON compared to a real implementation of this accountable live streaming system. Fur-
ther, we evaluate the performance of RACOON by measuring the average time necessary to find
satisfactory configurations in 30 different use cases. Finally, we show the degree of re-usability
of the RACOON specification and simulation code by evaluating the effort required by the De-
signer to specify and simulate an anonymous communication protocol starting from the live
streaming protocol.

5.5.1 Design and development effort

We show in this section, the effort necessary for the Designer to describe a cooperative system
using RACOON. As a use case, we consider the P2P live streaming system described below.

P2P Live Streaming. The basic design of this system consists of a source node that dissemi-
nates video chunks to a set of nodes over a network. Periodically, each node sends the chunks
it has received to a set of randomly chosen partners, and asks them for the chunks they are
missing. Each chunk is associated with a playback deadline, which, if missed, would render
a chunk unusable and the corresponding portion of the video unplayable. For the chunk

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

104 T H E R A C O O N F R A M E W O R K

exchange, we use the three-phase gossip-based live streaming protocol (3P) studied by Guer-
raoui et al. [72] and depicted in Figure 22.

r
p

propose(g
0
)

request(g
1
)

unicast message

multicast message
r

C

serve(g
2
)

Figure 22: The sequence diagram of the chunk exchange protocol 3P, studied by Guerraoui et al. [72].

The functional specification of the protocol 3P involves two roles: the provider rp proposes
the set of chunks it has received to a set of consumers rC, which in turn request any chunks
they need. The protocol ends when rp sends to the nodes playing the role rC the requested
chunks. Figure 23 illustrates the Protocol Automaton (PA) of the protocol 3P.

s
0
s
0 s

1
s
1 s

2
s
2 s2s2s3

r p.p
ropo

se(g 0
,rC)

rC.r
eque

st(g 1
,r p)

r p.s
erve(

g 2,rC
)

Figure 23: The Protocol Automaton of the chunk exchange protocol 3P.

We recall from Section 5.3.1 that a Protocol Automaton describes the interactions among in-
dividual nodes, regardless of the cardinality of the role they are currently playing. Therefore,
the PA in Figure 23 defines the correct and separate executions of the protocol 3P between the
node playing as rp and each node playing as rC.

In our experiment, we assume that the Designer wants to meet the following objectives:

O1: A deviation rate lower than 10%;

O2: A bandwidth overhead lower than 40%;

O3: A wrongful eviction rate lower than 10%.

Overall, the XML specification of protocol and objectives contains 43 Lines of Code (LoC).19

In addition to writing this specification, the Designer has to develop a new module for the R-sim
simulator, which implements the P2P live streaming system. The implementation classes of this
module contain 500 LoC. This includes the implementation of the 3P protocol and the custom
monitors to measure live-streaming metrics (e.g., the number of chunks transmitted/received).

5.5.2 Meeting design objectives using RACOON

Given the above specification and the corresponding simulation code, RACOON explores the
space of possible configurations by running a set of simulations to find a configuration that
satisfies the objectives set by the designer. To carry out these simulations, we configured the
live streaming system using the parameters depicted in the column “Simulation” of Table 21.

19 The full specification is presented in Appendix B.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.5 E VA L U AT I O N 105

Parameter Simulation Experiment

Network size (nodes) 1000 100

Broadcast bandwidth (Kbps) a 674 674

Partner set size (nodes) b 7 6

Play-out delay (rounds) c 6 6

Bandwidth capacity (Kbps) a 1000 1000

a Same as by Guerraoui et al. [72].
b Slightly larger than the logarithm of

the network size [96].
c Same as by Traverso et al. [166].

Table 21: Simulation and real deployment parameters.

The configuration proposed by RACOON is depicted in the last column of Table 22. We com-
pare the performance of this configuration with the five FullReview configurations depicted in
the same table. We selected these configurations by varying two parameters: the audit period
and the degree of punishment. The first four configurations correspond to four combinations
of low and high values of these parameters (referred to as L and H, respectively in the con-
figuration names). These values are the lowest and highest values tested in the experiments
of Section 4.2.3, respectively. Besides these combinations, we included the best configuration
found in Section 4.2.3 (labelled M-M in Table 22) as it already satisfies the first two requirements
set by the designer.

L-L L-H H-L H-H M-M RACOON

Audit period 5 5 30 30 15 5

Audit probability 1.0 1.0 1.0 1.0 1.0 0.5

Degree of punishment 0.5 3.0 0.5 3.0 1.5 1.0

Table 22: FullReview Configurations

Figure 24 shows the simulation results of the six configurations. The RACOON configuration
is the only one that fulfils all the design objectives, which are depicted as horizontal dotted lines
in the figure. Furthermore, this configuration provides up to 33% fewer deviations, 42% fewer
wrongful evictions and 17% lower overhead than the others.

The results of this experiment show that RACOON can greatly facilitate the work of Design-
ers in making a cooperative system meet the desired design objectives. In fact, the automatic
tuning of the cooperation enforcement mechanisms performed by our framework can effec-
tively replace the manual trial-and-error calibration required by the existing approaches from
the literature (i.e., FullReview, in this experiment).

5.5.3 Simulation compared to real system deployment

To demonstrate the accuracy of RACOON simulations, we implemented a prototype of the live
streaming protocol described above. We configured the accountability and reputation mecha-
nisms using the parameters depicted in the last column of Table 22. Then, we deployed the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

106 T H E R A C O O N F R A M E W O R K

 % Deviations % Wrongful Evictions % Bandwidth Overhead
0

10

20

30

40

50 L-L L-H H-L

H-H M-M RACOON

%

Figure 24: RACOON vs FullReview Configurations.

prototype on real machines of the Grid’5000 testbed.20 Specifically, we ran 100 clients on 10
eight-core physical machines. Each machine is clocked at 2.5GHz with 32GB of RAM, and is
interconnected with the others via a Gigabit switch. We performed our experiment in this en-
vironment in order to measure the impact of selfish nodes on the video chunk loss without the
risk of fluctuating networking conditions. Otherwise, it would be always necessary to verify
whether a deteriorated stream quality comes from selfish nodes or the transient network, which
is tedious, imprecise, and time-consuming.

The column “Esperiment” of Table 21 describes our experimental settings. The only differ-
ences with the simulation settings are the lower number of nodes in the network and in the
partner set. Note also that the bandwidth of each client is still capped to 1000 Kbps in uplink.
In this experiment, we measure the chunk loss experienced by correct nodes as a function of
the fraction of selfish nodes in the system.

Figure 25 presents the results of our evaluation. This figure contains a curve showing the
impact of selfish nodes on traditional Gossip (i.e., without any accountability mechanisms) as
well as the two curves for the system designed using RACOON. The "SIM - RACOON" curve is
obtained using RACOON simulations, whereas the "G5K - RACOON" curve is obtained using
the real deployment. From this figure, we observe that without accountability mechanisms,
correct nodes experience 10% chunk loss with only 10% of nodes behaving selfishly, which
prevents them from watching the video stream. Further this figure shows that the simulated
curve and the real one, overlap up to the inclusion of 50% of selfish nodes in the system. Above
this value, the curves still exhibit a comparable shape.21 Finally, this figure shows that the
configuration found by RACOON is effective — i.e., correct nodes watch a high quality video
stream (video chunk loss lower than 3% [166]) — even when 90% of the network is composed
of selfish nodes.

20 Grid’5000: http://www.grid5000.fr
21 Notice that the maximum difference between them is 0.43% (“SIM - RACOON” = 0.5%, “G5K - RACOON” = 0.93%),

when the percentage of selfish nodes in the network is 90%.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.5 E VA L U AT I O N 107

 Acceptable Chunk Loss %

10 20 30 40 50 60 70 80 90
0,1

1

10

100

% of selfish nodes

%
 C

hu
nk

 L
os

s

Traditional Gossip

G5K - RACOON

SIM - RACOON

3

0

Figure 25: Simulation vs real deployment (logarithmic scale).

5.5.4 Execution time

To evaluate the time necessary for RACOON to find a satisfactory configuration, we performed
the following experiment. First, we defined a set of 30 different scenarios in the live streaming
application. Each scenario is a unique combination of the following elements: system objectives,
simulation settings (e.g., number of nodes, bandwidth capacity, play-out delay), percentage of
selfish nodes in the system, and message loss rate. Second, we measured the number of con-
figurations that RACOON explores in each case before finding a satisfactory solution. Finally,
we averaged these numbers over the total number of scenarios that have been considered. The
results show that for each scenario, an average of 26 configurations are explored by RACOON
before finding a satisfactory one (standard deviation 7, minimum configurations explored 8,
maximum 41). Considering that each configuration corresponds to one executed simulation
and that each simulation lasts approximately 42 seconds,22 the exploration algorithm takes on
average about 18 minutes to complete. This duration appears to be reasonable as all the activ-
ities performed by RACOON are done offline at design time. Finally, note that the execution
time of the RACOON framework is entirely dominated by the Configuration Evaluation step, as
the remaining steps take in average less than 30 milliseconds to be executed.

5.5.5 Expressiveness

To illustrate the generality of our framework, we use RACOON to design the simple anony-
mous communication protocol described below.

Anonymous Communication. The system is based on a simplified version of the Onion
Routing protocol for communication channel anonymity [70]. In Onion Routing, when a
source node wants to send a message to a destination node, the source node builds a circuit
of voluntary relay nodes. Circuits are updated periodically, and relays can participate in mul-
tiple circuits at the same time. To protect a message, the source encrypts it with the public

22 Average value over 1000 simulations, run on a 2.8 GHz machine with 8 GB of RAM.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

108 T H E R A C O O N F R A M E W O R K

key of the destination. Furthermore, to protect the communication channel, the source uses
the public key of each relay node in the circuit to encrypt the address of the next relay node.
The resulting message is called an onion. A relay uses its private key to decrypt one layer of
the onion and contributes some of its bandwidth to forward the resulting message to the next
relay, until the message eventually reaches its destination.

Figure 26a illustrates the protocol enabling the forwarding of onions. In this protocol, each
relay R: (i) receives onion messages from their predecessor in the circuit (PR); (ii) decrypts the
external layer of each onion; (iii) forwards the resulting onions to their respective successorNR.

(a) Forwarding protocol (b) Protocol automaton

Local computation

many-1 message

r
P

sendToRelay(g
0
)

r
r r

N

relay(g
1
)

decrypt(g
0
)

s0s0

s1s1

s3

r
P
.sendToRelay(g

0
, r

r
)

r
r
.decrypt()

1-many message

s2s2

r
r
.relay(g

1
, r

N
)

Figure 26: Onion Forwarding Protocol.

To design a selfish-resilient onion forwarding protocol using RACOON, the Designer follows
the same steps we have seen to design the live streaming system. First, she provides the spec-
ification of the system. This specification describes three roles, which are the relay rr, and its
previous (rP) and next (rN) hops. Note that rP and rN have cardinality > 1, because they repre-
sent a set of relay nodes. The Protocol Automaton of the forwarding protocol can be modelled
as in Figure 26b. The protocol includes a communication method and a computation method.
The communication methods sendToRelay and relay send messages that carry the single onion to
forward. The method decrypt is a decryption operation (i.e., local computation). A selfish relay
rr that aims at saving bandwidth strategically drops onions that are not intended for it.

Designing this system using RACOON only required writing 39 lines of XML specification
and 350 LoC for the implementation of the simulation module.23 The full XML specification is
presented in Appendix B.

We simulate an anonymous network of 1000 nodes, with different fractions of selfish partic-
ipants. Each node is the source of 50 onions. Every 5 rounds, a source node creates a circuit
of 3 node relays, which are randomly selected. This setting is similar to other state-of-the-art
protocols (e.g., [54]). We set the period of the audit to 10 rounds, with a probability of 0.5. In
the case of a positive audit, the misbehaving node incurs a punishment with a degree of 1. Mea-
surements in simulations are averaged over 50 independent runs, which ensures a standard
deviation less than 1%. As the evaluation metric, we consider the onion loss rate (i.e., the aver-

23 We assumed the same design objectives set for the P2P live streaming use case.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.6 S U M M A R Y 109

age percentage of onions missed by the destination node) of nodes as a function of the fraction
of selfish nodes in the system.

Figure 27 presents the results of our evaluation. The figure contains two curves. The “Tradi-
tional Anon. Comm.” logarithmic curve shows the results of an anonymous communication
system designed without any mechanism to prevent deviations. Unsurprisingly, in this case,
the onion loss rate increases significantly as the number of selfish nodes increases, up to above
90% of loss onions when one out of two nodes is selfish. On the contrary, the onion loss rate
of the anonymous communication system designed using RACOON ("SIM - Racoon" curve)
increases slowly and never exceeds 7% as the number of selfish nodes increases.

%
 O

ni
on

 lo
ss

 (
lo

g
sc

al
e)

% of rational users

Traditional Anon. Comm.

0 10 20 30 40 50 60 70 80 90 100
0

 1

10

100

SIM - Racoon

Figure 27: Onion loss rate as a function of the percentage of selfish nodes in the system (logarithmic scale).

5.6 S U M M A R Y

In this chapter, we presented RACOON, an integrated framework for the design and configu-
ration of cooperative systems resilient to selfish nodes. RACOON consists of two phases: the
assisted design of the system and the performance-oriented tuning of its parameters.

The first phase begins with the description of the protocols of the system to make resilient to
selfish nodes. RACOON includes a specification model, the Protocol Automaton, to facilitate
the designers in this task. To enforce cooperation, the framework extends the system specifica-
tion with two general, scalable and distributed mechanisms, namely, an accountability system
for auditing the nodes’ behaviour and a reputation mechanism to assign incentives depending
on the audit results. RACOON enables the later evaluation of these mechanisms by further
extending the system specification with selfish behaviours. For this purpose, it includes an
algorithm for the automatic injection into the Protocol Automaton of three types of selfish de-
viations, chosen based on the survey on selfishness presented in Chapter 2. The output is a
static representation of (cooperative and selfish) behaviours that might be played in the system.
To predict which behaviours are more likely to be played by selfish nodes, RACOON relies on
classical game theory: it transforms the extended Protocol Automaton into a game, thereby
providing the behavioural model to simulate selfishness in the next phase of the framework.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

110 T H E R A C O O N F R A M E W O R K

The goal of the tuning phase is to configure the cooperation enforcement mechanisms ac-
cording to a list of selfishness-resilience and performance objectives set by the designer. Tuning
involves an iterative two-step refinement process, which alternates evaluation with the tuning
of the configuration parameters. The evaluation is done using the game theory-driven sim-
ulator developed for RACOON. The simulator performs an automatic game analysis of the
behavioural model, thereby simulating the interactions of selfish nodes into a software imple-
mentation of the Protocol Automaton provided by the designer. If the evaluated configuration
fails to meet the design objectives, the framework explores the configuration space of the ac-
countability and reputation mechanisms automatically, until it finds a satisfactory solution or
after a set number of iterations.

We demonstrated the benefits of using the RACOON framework by designing two selfish-
resilient cooperative systems: a P2P live streaming system and an anonymous communication
system based on the onion routing protocol [70]. Experiments in simulation and (at a smaller
scale) in a real deployment on Grid’5000 showed that the live streaming system configuration
chosen by RACOON allows correct nodes to visualize a stream of good quality in the presence
of selfish nodes, as well as to meet other performance requirements set by the designer (e.g.,
limiting the bandwidth overhead to a fixed threshold). Also, these experiments proved that
the RACOON simulations are accurate compared to the performance of the corresponding real
system, with a maximum absolute difference of less than 1%. Finally, we evaluated the perfor-
mance of the framework in finding a satisfactory configuration in the live streaming use case,
showing that in the 30 scenarios considered this task took on average less than 20 minutes.

The RACOON framework is the central contribution of this thesis (C.2). It provides a general
and semi-automatic methodology, along with its software implementation, to address three
research challenges: (D.2) it facilitates the work of designers in enforcing practical and fine-
tuned mechanisms to foster cooperation in their particular system; (A.3) and (D.3) it simplifies
the development, evaluation, and use of behavioural models of selfish nodes for testing the
selfishness-resilience of cooperative systems. Related to the last two challenges, Table 23 po-
sitions the automatic tools included in RACOON in relation to the state-of-the-art approaches
for analysing selfishness in cooperative systems presented in Chapter 3. In particular, the table
shows that RACOON offers more domain-specific support to selfishness analysis than experi-
mental approaches, while still being more usable than pure analytical tools like game theory.

Nevertheless, some limitations in RACOON were found, revealing space for improvement.
In particular, we note three major issues in the current version of the framework, both theoreti-
cal and practical: (i) the selfish behaviours that can be generated during the selfishness injection
step are fixed and poorly customizable, (ii) the behavioural model builds on the assumptions
of classical game theory, notably, the notion of perfect rationality, which requires making some
unrealistic assumptions on the nodes’ capabilities, and (iii) the simulator at the heart of the tun-
ing phase is custom-built. The second issue explains the lowest score of RACOON with respect
to the refinement level (column Ref in Table 23), whereas the last issue determines its lower
usability than the other well-established simulation tools.

Providing solutions to the above issues is the aim and focus of the next chapter.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

5.6 S U M M A R Y 111

General and cooperative systems criteria a Selfishness criteria b

Approaches Usa Rep Ref Sc He Ra D F M C

Analytical

Game theory [130] #### #### Unlimited Controllable
√ √ √ √ √

Experimental: real experiments

Grid’5000 [37] ## ## 1000 Fixed χ
√ c χ χ χ

PlanetLab [41] ### ## 1000 Fixed χ
√ c χ χ χ

Experimental: emulation

ModelNet [168] # # 100 Controllable χ
√ c χ χ χ

Emulab [173] # # 1000 Controllable χ
√ c χ χ χ

Experimental: simulation

NS-2 [3] # ## 100 Controllable χ
√ c χ χ χ

OMNeT++ [4] # ## 105 Controllable χ
√ c χ χ χ

PeerSim [122, 128] ### 106 Controllable χ
√ c,d χ χ χ

Analytical + Experimental: simulation

RACOON ## #### 104 Controllable
√ √ √

χ χ

a Usa = usability, Rep = reproducibility, Ref = refinement (inverse of abstraction), Sc = scalability, He = heterogeneity.
b Ra = rationality, D = defection , F = free-ride, M = misreport, C = collusion.
c Implemented as faults or churn.
d Highly controllable using the RCourse library [122].

Table 23: Comparison between RACOON and the existing approaches for selfishness analysis.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6
T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

In this chapter, we present RACOON++, an enhanced and extended version of the framework
described in the previous chapter. Capitalising on the modularity of the RACOON methodol-
ogy, in RACOON++ we introduce new models and tools to address a number of limitations as
well as to provide new features. Figure 28 provides an overview of the new framework.

(1)

Selfishness InjectionSelfishness Injection

Config. EvaluationConfig. Evaluation

(4)

(5)

Config. ExplorationConfig. Exploration

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton
 System

Specification
 System

Specification
 Design

 Objectives
 Design

 Objectives Input

RACOONRACOON

OutputOutput Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

 Protocol
 Automaton

System Specification
+ CE Mechanisms

System Specification
+ CE Mechanisms

CE Mechanisms
Config.

CE Mechanisms
Config.

DESIGN

PHASE

Cooperation
Enforcement (CE)

Cooperation
Enforcement (CE)

XML

Accountability
+ Reputation

Accountability
+ Reputation

Rationality InjectionRationality Injection

Behavioural Model

Evaluation Results

(2)

(3)

Evolutionary
Game Theory
Evolutionary
Game Theory

TUNING

PHASE

Extended Specification
Input

JAVA

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 Protocol
 A

utom
aton

 System
Im

p
lem

en
tation

 System
Im

p
lem

en
tation

XML

 CE Mechanisms
 Config.

 CE Mechanisms
 Config.

XML

Automatic Steps

Support tools

Selfishness
model

Selfishness
model

XML

Figure 28: The RACOON++ framework overview.

RACOON++ have different inputs than the previous version of the framework. In particular,
RACOON++ provides a more expressive model for the system specification, along with a richer
model to describe the design objectives to meet. Furthermore, the new framework provides
the system designer with a simple yet expressive specification model to define the utility func-
tion and the behaviour of selfish nodes, which in RACOON were predefined and fixed for all
application scenarios. This model, called the Selfishness Model, shapes the utility function of a
node by assigning costs and benefits to specific actions of the communication protocols, and

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

114 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

parametrizes some aspects of selfish behaviours (who deviates, from which action, with what
type of deviation). The introduction of this input affects the operation of the Selfish Deviation
Generation component of the original RACOON framework, requiring the definition of a new
algorithm to generate selfish behaviours given a system specification and a selfishness model.

As a second major contribution of RACOON++, we model the behaviour of selfish nodes us-
ing Evolutionary Game Theory (EGT) [172] instead of the traditional non-cooperative approach
adopted in the previous version of the framework. Using EGT, we can relax the strict assump-
tion of perfect rationality of the nodes and consider them as active learners, who can adjust their
strategy over time in response to repeated observations of their own and others’ utilities. Such
learning and adaptation processes fit better with the computational and decisional capabilities
of real nodes [120, 171, 183]. Furthermore, as noted by Palomar et al. [142], an evolutionary
approach is more appropriate for modelling the dynamic behaviour of cooperative systems.

We integrate the RACOON++ functionalities with the state-of-the-art P2P simulator Peer-
Sim [92]. To the best of our knowledge, the simulator we developed in RACOON was the first
P2P simulator able to dynamically simulate selfish behaviours, based on GT analysis. However,
like all custom built simulators, it has neither the maturity, nor the efficiency, nor the acceptance
of well-known tools like PeerSim [24].

To summarise, the primary contributions of this chapter are the following:

• We present a declarative model for defining the utility function of a node and parametriz-
ing some aspects of selfish behaviours.

• We develop a more suitable model for reasoning on the strategic and dynamic interactions
of nodes, based on EGT.

• We integrate the state-of-the-art P2P simulator PeerSim into our framework, for scalability
and reproducibility purposes.

• We propose a new automatic configuration method for the accountability and reputation
mechanisms used by the framework.

• We assess the design effort and the effectiveness of using RACOON++ by designing three
cooperative systems: a live streaming system [72], a load balancing protocol [92], and an
anonymous communication system based on Onion Routing [70].

We released a Java implementation of the RACOON++ framework as an open-source project.
The code and data to reproduce the experiments presented in this chapter are freely available
on GitHub: https://github.com/glenacota/racoon.

Roadmap. The remainder of this chapter is organised as follows. In Section 6.1 we provide
a quick overview of the RACOON++ framework. Section 6.3 and Section 6.4 present an
updated version of the design and tuning phases of the framework, which accounts for
the new contributions. We report a performance evaluation of RACOON++ in Section 6.5,
and we conclude the chapter in Section 6.6.

The contents of this chapter are currently under review for the IEEE Transactions on Depend-
able and Secure Computing (TDSC).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/racoon

6.1 O V E RV I E W 115

6.1 O V E RV I E W

RACOON++ is an extension of the RACOON framework presented in Chapter 5. The frame-
work aims at supporting system designers (hereafter “Designer", for brevity) in building a
selfish-resilient cooperative system that meets desired design objectives. As depicted in Fig-
ure 28, the operation of RACOON++ consists of two phases: the assisted design of the system
and the objective-oriented tuning of its parameters. These phases share the same vision and
goals of the previous version of the framework, as we briefly show in the following.

The Designer initiates the design phase providing a state-machine representation of the com-
munication protocols composing the system, which RACOON++ integrates with a slight mod-
ification of the two Cooperation Enforcement Mechanisms (CEM) used in RACOON, namely,
accountability and reputation mechanisms (Step (1) in Figure 28). In Step (2), RACOON++ pro-
ceeds with the injection of selfish behaviours into the system specification, which results in the
Extended Specification of the system. For a better control over the injection process, we provide
the Designer with a Selfishness Model to describe the preferences and capabilities of selfish nodes.
Finally, in Step (3), RACOON++ transforms the Extended Specification into a game model of
Evolutionary Game Theory (EGT), which provides the mathematical framework to describe the
Behavioural Model of the selfish nodes under consideration.

The goal of the tuning phase is to find a configuration setting for the CEM that makes the
system meet a list of Design Objectives set by the Designer. As in RACOON, tuning is an iter-
ative refinement process consisting of game-theory driven simulations (Step (3)) to evaluate a
configuration candidate, and an exploration process to traverse the configuration space of the
CEM (Step (4)). Once RACOON++ has found a configuration that meets the design objectives,
the Designer can proceed with the implementation of her system.

6.2 I L L U S T R AT I V E E X A M P L E : T H E S - R - R P R O T O C O L

In the next sections, to support the description of the RACOON++ framework, we use the sim-
ple communication protocol S-R-R (Search, Request & Response) shown in Figure 29 as an illustra-
tive example. In the S-R-R protocol, a node r0 queries other nodes for some desired resources
(e.g., files). To this end, r0 sends a query message g0 to a group of nodes collectively named R1
(the capital letter denotes a set of nodes). Each node in R1 processes the query and replies with
the list of available resources (message g1). Upon receiving the list, r0 sends a new message
g2 to R1, requesting (a subset of) the resources listed in g1. Finally, each node in R1 sends the
requested data (message g3).

6.3 R A C O O N + + D E S I G N P H A S E

In this section, we introduce the new inputs of the design phase of RACOON++, and we
describe the updates in the accountability and reputation mechanisms adopted. Then, we
present the modifications in the algorithm to generate selfish deviations, along with the new
Behavioural Model based on Evolutionary Game Theory.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

116 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

r0

R
1

query(g
0
)

sendResult(g
1
)processQuery()

Protocol step

request(g2)
response(g3)

search request response

Unicast message

Multicast message

Figure 29: The S-R-R protocol between nodes r0 and R1.

6.3.1 Input of the Design phase

The inputs of the design phase are (i) the functional specification of the functionalities of the
cooperative system that should be made resilient to selfish behaviours, and (ii) the selfishness
model adopted by selfish nodes.

6.3.1.1 Functional specification

The functional specification describes the correct behaviour of nodes by means of a state-machine
representation of the communication protocols of the system. In RACOON++, we extend the
Protocol Automaton PA defined in Chapter 5 (Definition 6.5) with new information about the
role, transition, message, and content elements. We denote the new Protocol Automaton as
PA++.

A role determines the responsibilities of a party (whether a node or a group of nodes) and
constrains the actions that the party is allowed to execute in a protocol run. Every PA++ has
at least two types of roles: the provider of a resource or service, and the requester. However,
other types are also possible (e.g., brokers, auditors, recommenders). For example, in the S-R-R
protocol, there are two roles: r0 and R1, where r0 is a requester, and R1 corresponds to a given
number of potential providers.

Definition 6.1 (Role in RACOON++). A role r ∈ R++ is a triple 〈rId, cardinality, rType〉,
with:

• rId: the alphanumeric identifier of the role,

• cardinality: the number of nodes represented by r. It can either be a single number or
a variable number designated by a greater than (>), greater than or equal to (>), less
than (<), less than or equal to (6) conditions, and

• rType: specifies whether r is a provider, requester, or has other types of role.

A transition corresponds to a protocol step, i.e., the set of method calls that determine the
next protocol state. RACOON++ supports the definition of three types of transitions: abstract,
communication, and computation. An abstract transition groups many method calls into a sin-
gle “black box” transition, which may simplify the protocol representation by hiding some

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 117

implementation details. On the contrary, the remaining transition types allow to characterise a
(communication or computation) method that triggers the transition. For example, the protocol
S-R-R has three transitions: search (abstract), request and response (communication).

Definition 6.2 (Transition in RACOON++). A transition t ∈ T++ is a quadruple
〈tId, state1Id, state2Id,methodId〉, with:

• tId: the alphanumeric identifier of the transition,

• state1Id and state2Id: identify the source and target states ∈ S of t, and

• methodId: identifies the method m ∈ M executed in t. It is defined only for non
abstract transitions, null otherwise.

A message conveyed by a communication method (Definition 5.4 in the previous chapter) is
formalised as the quadruple below.

Definition 6.3 (Message in RACOON++). A message g ∈ G++ is a quadruple
〈gId, senderId, receiverId, contentId〉, with:

• gId: the alphanumeric identifier of the message,

• senderId and receiverId: identify the sender and receiver roles ∈ R++ of g, and

• contentId: identifies the content c ∈ C++ carried by g.

The content sent via a communication message in the Protocol Automaton can be either a
single data unit (e.g., a binary file) or a collection (e.g., a list of integers) of data units. With
respect to the definition provided in the previous chapter, we removed the information about
the memory size of a single data unit (element cSize). In RACOON, we used this information
to calculate the communication costs contributing to the utility function of selfish nodes (see
Definition 5.19); by contrast, in RACOON++ we provide a more expressive means to define
costs and benefits of selfish nodes, which we will describe in the next section.

Definition 6.4 (Content in RACOON++). A content c ∈ C++ is a triple
〈cId, cType, cLength〉, with:

• cId: the alphanumeric identifier of the content,

• cType: provides information about the data type,1and

• cLength: specifies the number of data units that comprise the content c. It can either
be a single number or a variable number designated by a greater than (>), greater than
or equal to (>), less than (<), less than or equal to (6) conditions.

1 Defined by the XML Schema type system.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

118 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

Finally, we can formalise the Protocol Automaton used in RACOON++ as follows.

Definition 6.5 (Protocol Automaton in RACOON++). A Protocol Automaton PA++ in
RACOON++ is a tuple 〈R++,S, T++,M,G++,C++,K〉, with:

• R++: finite, non-empty set of roles,

• S: finite, non-empty set of states (the same as in RACOON, see Definition 5.2),

• T++: finite set of transitions,

• M: finite set of methods (the same as in RACOON, see Definition 5.4),

• G++: finite set of messages,

• C++: finite set of contents, and

• K: finite set of constraints on contents (the same as in RACOON, see Definition 5.7).

Figure 30 shows the state diagram of the S-R-R protocol. The label on a transition provides
information about the method that triggers the transition, and about the message sent. For
example, the label between states s1 and s2 indicates that role r0 invokes the communication
method request, which conveys the message g2 to role R1. The role indicated in the label of
an abstract transition, such as the one between states s0 and s1 in Figure 30, is the one that
executes the first method encapsulated in the abstract transition.

s1s1

r
0
.request(g

2
, R

1
)

s0s0 s2s2s3s2s2

R
1
.response(g

3
, r

0
)r

0
.search

Figure 30: The Protocol Automaton of the S-R-R protocol.

Notation. For simplicity, in the remainder of this chapter we use the notation PA instead of PA++

to refer to the updated Protocol Automaton used in RACOON++. Similarly, for the set of roles R,
transitions T , messages G, and contents C (instead of R++, T++, G++, and C++, respectively).

As in the RACOON framework, protocol automata in RACOON++ are encoded in an XML-
based format.2 The Designer specifies a new Protocol Automaton as an XML document, which
also includes the specification of the Selfishness Model and design objectives presented later
in this chapter. For example, Listing 3 shows the XML representation of the PA described in
Figure 30.

2 The XML Schema can be found in Appendix A.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 119

1 <racoon name="SearchRequestResponse">
2 <protocol_automaton>
3 <roles>
4 <role id="r0" cardinality="1" type="requester" />
5 <role id="R1" cardinality=">=1" type="provider" />
6 </roles>
7 <states>
8 <state id="s0" roleId="r0" type="initial" />
9 <state id="s1" roleId="r0" type="intermediate" />

10 <state id="s2" roleId="R1" type="intermediate" />
11 <state id="s3" roleId="r0" type="final" />
12 </states>
13 <transitions>
14 <transition id="search" state1Id="s0" state2Id="s1" methodId="" />
15 <transition id="t1" state1Id="s1" state2Id="s2" methodId="request" />
16 <transition id="t2" state1Id="s2" state2Id="s3" methodId="response" />
17 </transitions>
18 <methods>
19 <method id="search" messageId="" />
20 <method id="request" messageId="g2" />
21 <method id="response" messageId="g3" />
22 </methods>
23 <messages>
24 <message id="g2" contentId="c2" senderId="r0" receiverId="R1" />
25 <message id="g3" contentId="c3" senderId="R1" receiverId="r0" />
26 </messages>
27 <contents>
28 <content id="c2" type="integer" size="4" length=">=0" />
29 <content id="c3" type="integer" size="4" length=">=0" />
30 </contents>
31 <constraints>
32 <constraint id="k0" content1Id="c3" type="equal" content2Id="c2" />
33 </constraints>
34 </protocol_automaton>
35 <selfishness_model>
36 <!-- specification of the selfishness model (subsection below) -->
37 </selfishness_model>
38 <design_objectives>
39 <!-- specification of the design objectives (Section 6.4.1) -->
40 </design_objectives>
41 </racoon>

Listing 3: The XML document that specifies the Protocol Automaton described in Figure 30.

6.3.1.2 Selfishness Model

The selfishness model carries the information about the economic drivers of a node. It does
so by specifying the utility (i.e., benefits and costs) that a node obtains in participating in the
cooperative system; furthermore, it indicates the possible deviations from the node’s correct
execution. A definition of selfishness model is provided below.

Definition 6.6 (Selfishness Model). A Selfishness Model SM is a couple 〈V ,D〉, with:

• V : finite set of valuations (Definition 6.7), and

• D: finite set of selfish deviations (Definition 6.10).

VA L U AT I O N S . Valuations describe the contributions to the overall utility of a certain be-
haviour. As in RACOON, the utility that a node receives from participating in the system is
given by the benefit obtained by consuming resources and the cost of sharing resources. A

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

120 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

valuation specifies this information at the granularity of transitions and messages of a Protocol
Automaton PA.

Definition 6.7 (Valuation). A valuation v ∈ V is a tuple
〈vId, scope, scopeId, roleId,benefit, cost〉, with:

• vId: the alphanumeric identifier of the valuation,

• scope: specifies whether v applies to a transition or a message,

• scopeId = {t.tId : t ∈ T }∪ {g.gId : g ∈ G}: identify a transition or a message in the PA,

• roleId: the identifier of the role r ∈ R associated to the valuation, and

• benefit and cost: the numerical values ∈N that quantify the benefit and cost.

In practice, a valuation specifies the costs and benefits obtained by a given role when a certain
transition takes place or a particular message is sent or received. We evaluate the contribution
of a given valuation to the overall utility as defined below.

Definition 6.8 (Valuation function). A valuation function υ : V → (Z) is defined as:

υ(v) =

v.benefit− v.cost, if v.scope = “transition” (a)

r.cardinality · c.cLength · (v.benefit− v.cost), if v.scope = “message” (b)

with:

• r: the receiver of the message g ∈ G such that g.gId = v.scopeId, corresponding to the
role r ∈ R such that r.rId = g.receiverId, and

• c: the content {c ∈ C | c.cId = g.contentId}.

As an example, consider the search transition of the S-R-R protocol. It is reasonable to ex-
pect that role r0 receives more benefit than cost from the transition because the node will
eventually receive useful information. This consideration can be expressed by the valuation
〈v0, “transition ′′, search, r0, 10, 1〉, which results in a contribution to the utility of υ(v0) = 9

(case (a), in Definition 6.8). Note that another system designer may have valued the same tran-
sition differently, according to her expertise and knowledge of the system.

By contrast, to evaluate the contribution to the overall utility of a valuation that applies to a
message, Definition 6.8 presents a formula (case (b)) that accounts for the cardinality of the re-
ceiver role of the message as well as the number of data units comprising the delivered content.
The rationale for this formula is based on the observation that costs and benefits of a message
are usually proportional to the number of data units transmitted or received (e.g., the commu-
nication costs of a message depends on its length and number of recipients). Consider, for in-
stance, the request transition of the S-R-R protocol, which involves the transmission of message
g2 to role R1. Let c2 be the content transmitted by g2, and let v1 = 〈v1, “message ′′,g2, r0, 5, 1〉

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 121

be the valuation associated with g2. Then, the contribution of v1 to the overall utility is:
υ(v1) = R1.cardinality · c2.cLength · 4. Note that it is also possible to define a valuation
associated to g2 that specifies benefits and costs of the receiver R1 of the message; for instance,
v2 = 〈v2, “message ′′,g2,R1, 5, 1〉).

S E L F I S H D E V I AT I O N S . The Selfishness Model of RACOON++ allows the Designer to spec-
ify where in the Protocol Automaton selfish deviation can occur, along with information about
their type and degree. The types of deviations supported by the framework are the same pro-
posed in RACOON, namely, timeout, subset, and multicast deviations (see Section 5.3.3). The
degree of a selfish deviation indicates the distance from the correct behaviour, as defined next.

Definition 6.9 (Deviation degree). The degree ∈ [0, 1] of a selfish deviation specifies the
intensity of a deviation as follows:

• The degree of a timeout deviation is always equal to 1.

• The degree of a subset deviation specifies the fraction of data units comprising a mes-
sage content that is to be dropped.

• The degree of a multicast deviation specifies the fraction of the intended receivers of a
multicast message to whom the message is not to be sent.

According to the above definition, timeout deviations can only occur to the maximum degree.
This is because there is no gradation in the intensity of timing out a prescribed action: when a
timeout occurs the protocol is stopped.

We can now present a definition of selfish deviation in the SM.

Definition 6.10 (Deviation). A selfish deviation d ∈ D is a tuple
〈dId, transitionId,dType,degree〉, with:

• dId: the alphanumeric identifier of the deviation,

• transitionId: identifies the transition of the Protocol Automaton that is the subject of
the deviation d. The wildcard value “*” specifies that all transitions in PA are subject
of d,

• dType: specifies whether d is a timeout, subset or a multicast deviation, and

• degree: the deviation degree (Definition 6.9).

For instance, 〈d0, t2, timeout, 1〉 describes the behaviour of a selfish node that never replies
to a request (see Figure 30). As another example, suppose the Designer wants to account for
selfish nodes that only send half of the content in any message exchange of the S-R-R protocol
(e.g., half of the requested resources). The selfish deviation 〈d1, ∗, subset, 0.5〉 represents this
behaviour. As a final example, let the Designer want to describe a selfish behaviour such that
selfish nodes send one-fourth of the requested contents only to half of the intended recipients.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

122 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

Such combination of subset and multicast deviations can be described by defining a pair of
deviations, e.g., 〈d2, ∗, subset, 0.25〉 and 〈d3, ∗,multicast, 0.5〉.

To conclude, notice that different types of transition (abstract, communication, or computa-
tion) are subject to different types of deviation. For example, a computation transition is not
affected by subset or multicast deviations because there is no message exchange. Table 24 lists
the possible combinations of deviation and transition types, showing the combinations that
may lead to an actual deviation (“

√
”) and those that cannot be applied (“χ”). Inapplicable

deviations will be ignored by the RACOON++ framework during the selfishness injection step.

Transition type Deviation type Applicable? Brief description

Abstract Timeout
√

The node terminates the protocol before the ex-
ecution of the abstract transition.

Abstract Subset χ Cannot be applied because communication
methods may be encapsulated into the transi-
tion.

Abstract Multicast χ Cannot be applied because communication
methods may be encapsulated into the transi-
tion.

Communication Timeout
√

The node terminates the protocol before the ex-
ecution of the communication method.

Communication Subset
√

The node sends a subset of the correct message
content.

Communication Multicast
√

The node sends a message to a random subset
of the legitimate recipients.

Computation Timeout
√

The node terminates the protocol before the ex-
ecution of the computation method.

Computation Subset χ Cannot be applied because the transition in-
volves no message exchange.

Computation Multicast χ Cannot be applied because the transition in-
volves no message exchange.

Table 24: Selfish deviations .

The Designer specifies the Selfishness Model in the same XML document she used to specify
the Protocol Automaton. Listing 4 reports the specification of some of the valuations and selfish
deviations presented as examples in this section.

1 <selfishness_model>
2 <valuations>
3 <valuation id="v0" scope="transition" scopeId="search" roleId="r0"
4 benefit="10" cost="1" />
5 <valuation id="v1" scope="message" scopeId="g2" roleId="r0"
6 benefit="5" cost="1" />
7 <valuation id="v2" scope="message" scopeId="g2" roleId="R1"
8 benefit="1" cost="1" />
9 </valuations>

10 <deviations>
11 <deviation id="d0" transitionId="t2" type="timeout" degree="1" />
12 <deviation id="d2" transitionId="*" type="subset" degree="0.25" />
13 </deviations>
14 </selfishness_model>

Listing 4: The XML document that specifies the Selfishness Model and the Protocol Automaton.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 123

6.3.2 Cooperation enforcement

The first automatic step of the design phase of RACOON++ is the integration of the Coopera-
tion Enforcement Mechanisms into the functional specification provided by the Designer. The
CEM includes protocols (i) to enforce accountability, (ii) to form, aggregate, and disseminate
reputation values, and (iii) to ensure that requester nodes can get the requested resource or
service with a probability proportional to their reputation. In particular, if the reputation of
a node hits the lower bound, no other node will accept its requests, thus preventing the node
from receiving any benefit from the system.

The two CEMs used in RACOON++ are discussed hereafter.

A C C O U N TA B I L I T Y M E C H A N I S M . RACOON++ can detect misbehaviours and assign nodes
non-repudiable responsability for their actions by relying on a refinement of the R-acc account-
ability mechanism presented in the previous chapter (Section 5.3.2). The main differences of
the current version, named R-acc++, with respect to the one used in RACOON involve the chal-
lenge/response and evidence transfer protocols, as described below:

Challenge/response protocols: deal with nodes that do not respond to messages as provided
in PA or in R-acc++, allowing certain tolerance for correct nodes that are slow or suffering from
network problems (e.g., message loss). Specifically, if a node i has been waiting too long for
a given message from another node j, i indicates the suspect state for j (see Section 4.2.2), and
creates a challenge for it. In the previous R-acc mechanism, nodes communicate only with
non-suspected nodes. R-acc++ adopts a more tolerant approach: while in the suspect state, the
probability of j to communicate with i is locally decreased by a fixed amount, until j responds
to the challenge and gets trusted again.

Evidence transfer protocol: R-acc++ does not include the evidence transfer protocol used in
R-acc. The same goal of ensuring that faulty nodes are eventually exposed by all correct nodes
in the system is accomplished by the reputation mechanism described next.

RACOON++ includes a Protocol Automaton specification for each protocol. The Designer
can refer to these specifications when writing the Selfishness Model, to define valuations and
deviations also for R-acc++, and test whether accountability still holds when this mechanism is
enforced by selfish nodes.

For the sake of completeness, we report in Figure 31 the result of the integration of the Proto-
col Automaton of the S-R-R protocol (Figure 29) and the commitment protocol of R-acc++.

R E P U TAT I O N M E C H A N I S M . The CEM used in RACOON++ includes the reputation sys-
tem R-rep designed for RACOON and described in Section 5.3.2. In a nutshell, the reputation of
a node is the summary of its history of behaviours, which is extracted by the accountability sys-
tem. Cooperation leads to a good reputation, while selfish behaviours lead to a bad reputation.
The difference with the previous framework lies in the use of the reputation value to encourage
nodes to cooperate.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

124 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

s0s0

r 0
.search

s1s1 f0f0
R 1

.ack(α z
, r 0

)R 1

f1f1 s2s2s3

r 0
.ack(α w+2

, R 1
)r 0

s2s2

r 0
.request(g 2

 + α w
, R 1

)r 0

R 1
.response(g 3

 + α z+1
, r 0

)R 1

Figure 31: The integration between the commitment protocol of R-acc++ with the S-R-R protocol shown
in Figure 30.

In RACOON, reputation was used to trigger the eviction of the node from the system. By
contrast, the CEM of the RACOON++ framework imposes an allocation regime such that the
probability of a node receiving a service or a resource in the future is proportional to its current
reputation. In particular, a node with zero reputation can still act as a service provider, because
the CEM prevents only those interactions in which it plays as a requester. The advantage of
this strategy over the eviction is twofold: first, it allows nodes with zero reputation to redeem
themselves by cooperating again (a win-win situation from both the node and the system point
of view); second, it alleviates the impact of false positive audits, which in RACOON could lead
to the irreversible eviction of a node.

6.3.3 Selfishness injection

In the selfishness injection step of the framework, RACOON++ automatically generates selfish
deviations from the functional specification of the system as well as the CEM. This is imple-
mented by the Selfish Deviation Injection (SDI) algorithm given in Alg. 4. The algorithm takes as
input a Protocol Automaton PA and the Selfishness Model SM. Then, it extends the PA with
new elements (states, transitions, roles, etc.) representing the deviations specified in the SM.

We now describe the pseudo-code of the SDI algorithm in more detail. For rapid identifica-
tion, the parts of the pseudo-code in Alg. 4 that are specific to the same type of deviation are
highlighted in the same colour. Furthermore, for brevity, we use the same get(elementId)
notation presented in the previous chapter to refer to the element of PA to which the elementId
identifier is associated.

A deviation point is a transition of the PA in which a deviation can take place. To determine
if a transition t ∈ T is a deviation point, the SDI algorithm first checks if the selfishness model
contains a selfish deviation d that affects t (line 3). In the affirmative case, Alg. 4 looks for
deviation points in lines 4 (timeout), 8 (subset), and 11 (multicast).

Timeout Deviations. For each deviation point t ∈ T , the algorithm generates a timeout de-
viation by calling the procedure InjectTimeoutDev (line 5 in Alg. 4). This procedure creates a
new final state s ′ and a new abstract transition connecting the source state of t with s ′.

Subset Deviations. For each deviation point t ∈ T triggered by a communication method,
SDI checks if the message content c comprises more than a single data unit (line 8). If so, line 9
calls the procedure InjectSubsetDev, which creates new elements to represent the deviation. In

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 125

particular, the procedure creates a new content c ′ (line 18) that shares the same data type as
c, but has a shorter length, calculated by taking d.degree into consideration (line 17).3

Multicast Deviations. For each deviation point t ∈ T triggered by a communication method,
the algorithm checks if the receiver of the message sent during t has a cardinality greater
than 1 (line 11 of Alg. 4). If so, line 12 calls the procedure InjectMulticastDev to create the
role r ′ (line 31) with a smaller cardinality than the correct one (calculated in line 30 using the
deviation degree d.degree).

Figure 32 shows the result of executing the SDI algorithm on the Protocol Automaton of Fig-
ure 30. Consider for example state s2. In the correct execution of the PA, the role R1 sends a
response message (g3) to r0. However, if R1 is selfish, it may also timeout the protocol, or send
a message with a smaller payload (g ′3).

s0s0

r
0
.search

s1s1 f0f0

R 1
.ack(α z

, r 0
)R 1

f1f1 s2s2s3

r 0
.ack(α w+2

, R 1
)r 0

s2s2

r
0
.request(g

2
 + α

w
, R

1
)

r
0

R 1
.response(g 3

 + α z+1
, r 0

)R 1

f1'f1'

R
1
.timeout

R
1
.response'(g

3
' + α

z+1
, r

0
)

R
1 r

0
.ack(α

w+2
, R

1
)r

0

s2s2s2'

Figure 32: The Protocol Automaton of the S-R-R protocol, extended with selfish deviations.

In order to assess the complexity of the SDI algorithm, we observe that each iteration of the
main loop (over the transitions of the PA) involves the following activities:

• Verification of deviation points, i.e., finding a deviation in the set D ∈ SM that satisfies
certain properties. The time complexity of such verification is linear to the size ofD.

• The possible execution of the InjectTimeoutDev, InjectSubsetDev, and InjectMulticastDev
methods to generate selfish deviations. These methods have the same complexity of their
counterparts in the CSI algorithm used in RACOON. In fact, their implementations differ
only for constant-time performance operations.4

Based on the above observations, we can conclude that the overall complexity of the SDI
algorithm is O(|T | · |D| ·max{|K|, |S|}), where |T | is the number of transitions in the PA, |D| is the
number of selfish deviations defined in the SM, |K| the number of constraints in the PA, and |S|

the number of states.
3 We refer to Section 5.3.3 of the previous chapter for a more detailed discussion of the UpdateConstraints procedure call

in line 19 of Alg. 4, as well as for the instructions in lines 27-29.
4 We refer to Section 5.3.3 for a discussion on the complexity analysis of these methods.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

126 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

Alg. 4: The Selfish Deviation Injection (SDI) algorithm.

Input: A Protocol Automaton PA := 〈R,S, T ,M,G,C,K〉, a Selfishness Model SM := 〈V ,D〉.
Output: PA.

Algorithm SDI(PA,SM)

1 origT := T // transitions originally included in PA

2 foreach t ∈ origT do
3 if ∃d ∈ D | d.transitionId = {t.tId, “*”} then
4 if d.dType = “timeout” then
5 InjectTimeoutDev(t)
6 if get(t.methodId).messageId 6= null then
7 c := get(t.methodId.messageId.contentId) // sent content

8 if d.dType = “subset” and c.cLength > 1 then
9 InjectSubsetDev(t, c,d)

10 r := get(t.state2Id.roleId) // recipient role

11 if d.dType = “multicast” and r.cardinality > 1 then
12 InjectMulticastDev(t, r,d)

Procedure InjectTimeoutDev(t)
13 s ′ := 〈new_sId, null, final〉
14 sourceState := get(t.state1Id)

15 t ′ := 〈new_tId, sourceState.sId, s’.sId, null〉 // defined as abstract transition

16 add s ′ and t ′ to PA

Procedure InjectSubsetDev(t, c, d)
17 length ′ := bc.cLength (1 - d.degree)c
18 c ′ := 〈new_cId, c.cType, length’〉
19 UpdateConstraints(c’.cId)

20 message := get(t.methodId.messageId)

21 g ′ := 〈new_gId, message.senderId, message.receiverId, c’.cId〉
22 m ′ := 〈new_mId, g’.gId〉
23 targetState := get(t.state2Id)

24 s ′ := 〈new_sId, targetState.roleId, targetState.sType〉
25 t ′ := 〈new_tId, t.state1Id, s’.sId, m’.mId〉
26 add c ′, g ′,m ′, s ′, and t ′ to PA

27 foreach ot ∈ T | ot.state1Id = targetState.sId do
28 ot ′ := 〈new_otId , s’ , ot.state2Id , ot.methodId〉
29 add ot’ to PA

Procedure InjectMulticastDev(t, r, d)
30 cardinality ′ := br.cardinality (1 - d.degree)c
31 r ′ := 〈new_rId, cardinality’〉
32 s ′ := 〈new_sId, r’.rId, s.sType〉
33 message := get(t.methodId.messageId)

34 g ′ := 〈new_gId, message.contentId〉
35 m ′ := 〈new_mId, g’.gId〉
36 t ′ := 〈new_tId, t.state1Id, s’.sId, m’.mId〉
37 add r ′, s ′, g ′,m ′, and t ′ to PA

38 add out-transitions of s ′ . as in lines 27-29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 127

6.3.4 Rationality injection

In the RACOON++ framework, the rationality of a selfish node is described by a Behavioural
Model, which determines its decision-making in choosing and carrying out the behaviour that it
expects to be the most profitable. From our extensive review of the related work on selfishness,
game theory has appeared as the most suitable candidate to formalise the rationality of selfish
individuals (see Chapter 3). Differently than in the previous version of the framework, in which
we used theoretical tools from classical Game Theory [130], to develop the Behavioural Model
in RACOON++ we rely on Evolutionary Game Theory (EGT) [172].

The first advantage of using EGT is that we can relax the strict assumption of perfect ratio-
nality of the nodes, which was imposed by classical game theory. Perfect rationality brings, in
fact, a great burden to nodes’ computational and analytical abilities, because it requires them
to solve a complex combinatorial problem [99] to assess the best action to take at each protocol
step. On the contrary, EGT allows modelling nodes as active learners with bounded rational-
ity [172], who can adjust their strategy over time in response to repeated observations of their
own and others’ utilities. Such learning and adaptation processes assume much lighter capa-
bilities on the part of the nodes, thereby providing a more feasible behavioural model for real
nodes [120, 183]. Furthermore, as argued by several authors (e.g., Palomar et al. [142], Wang et
al. [171]), the second advantage of adopting an evolutionary approach is that it appears more
appropriate for modelling and studying the dynamic behaviour of cooperative systems.

In the remainder of this section, we present the evolutionary game used in the framework for
modelling how selfish nodes evolve their behaviour in the cooperative system under design.
The components of an evolutionary game are: (i) a static representation of the system interac-
tions, in some cases called Stage Game; (ii) one or more populations of players; (iii) a function
to calculate the utility of a given behaviour; and (iv) the dynamics of the learning and imitation
processes. We describe each component separately below.

S TA G E G A M E . Evolutionary games involve the repetition of strategic interaction between
self-interested individuals. We model this interaction as a sequential game called the Stage
Game (SG), which we represent as in RACOON using the extensive form (or game tree) [130].
Figure 33 shows the game tree of the stage game derived from the S-R-R protocol illustrated
in Figure 32. To generate the SG, RACOON++ relies on the PAtoPG algorithm developed for
RACOON (pseudo-code in Alg. 2), which uses the information contained in the Extended Spec-
ification resulting from the selfishness injection step. Specifically, the tool translates the Protocol
Automaton included in the Extended Specification into elements of a stage game, as informally
described below.5

Players. A player p ∈ P corresponds to a role in the PA. For example, players p0 and p1 in
Figure 33 map to roles r0 and R1 of the S-R-R protocol. For ease of notation, let pk.type refer
to the type of the role mapped by player pk.

5 A formal definition of each element and of the mapping rule is provided in Section 5.3.4 of Chapter 5.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

128 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

a
2
:ack

 a
6
:ack

a
3
:response

a
1
:request

a
0
:search

p0

o0 o1 o2

p1

p0

p0 p0

p1

a
4
:response'

a
5
:timeout

s0 s1 s2

a
7
:ack

Figure 33: The SG derived from the S-R-R protocol in Figure 31.

Node. A node n ∈ N of the stage game is derived from a state in the PA, and is labelled with
the player who has to take action. A leaf node of the SG corresponds to a final state of the PA,
and represents a possible outcome of the stage game. In Figure 33, each leaf is labelled with
the corresponding outcome ok.

Actions. An action is a move of the player in the Stage Game, and is derived from a method
in the PA. Note that an edge of the game tree in Figure 33 corresponds to a transition in the
Protocol Automaton.

Strategies. A play is a path through the game tree from the root to a leaf. It describes a
particular interaction between two (or more) players. The ordered sequence of actions that a
player takes in a certain play constitutes her strategy. Consider for instance the left-most play
in Figure 33, which represents the correct execution of the S-R-R protocol: Table 25 reports
the strategies of players p0 and p1 to implement it.

P O P U L AT I O N O F P L AY E R S . A population is a group of individuals with common economic
and behavioural characteristics. Because of the symmetric nature of cooperative systems, in
RACOON++ we consider a single population of nodes, who can play the strategies in the strat-
egy space defined by the stage game. In conformity with the previous works [142] and [171],
we divide the strategy space into non-overlapping subsets, each representing a distinct combi-
nation of behaviours for the nodes (i.e., cooperative, selfishness of a certain type). We call these
subsets strategy profiles s ∈ S. RACOON++ creates a strategy profile sk for each play k of the SG,
such that sk includes the strategies carried out by all players participating in that play. Thus,
for example, and with reference to Figure 33, the strategy profile s0 represents the behaviour of
cooperative nodes and includes the strategies presented in Table 25.

We partition the overall population into sub-populations, so as to establish a one-to-one map-
ping with the strategy profiles. A sub-population ωk represents the group of nodes that adopt
the behaviour defined by sk. In accordance with the EGT model, a member of ωk participates

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.3 R A C O O N + + D E S I G N P H A S E 129

Player Strategy

p0 {a0:search, a1:request, a6:ack}

p1 {a2:ack, a3:response}

Table 25: The strategies comprising the strategy profile s0, implementing the correct execution of the stage
game in Figure 33.

in the system by repeatedly playing what is specified by her strategy profile, regardless of the
outcome of the play. However, a member of ωk can join another sub-population ωj if she ex-
pects to increase her utility by playing sj. Thus, the size of a sub-population reflects the success
of the associated strategy profile. As the system evolves, the distribution of members of the
sub-populations can vary. We call this information the population state of the system.

U T I L I T Y F U N C T I O N . The utility function of a player assigns a value (i.e., the utility) to each
outcome of a game. An outcome o of the SG depends on the sub-populations of the interacting
players, whose strategies determine the particular play that leads to o. For example, consider
the stage game in Figure 33, and let players p0 and p1 be members of sub-populationω1 andω3,
respectively. Table 26 lists the planned sequence of actions of the two players. The interaction
starts with player p0 executing the search transition and then sending a request message to
the other player. Player p1 will first acknowledge the reception of the message, and then she
will terminate the protocol. The interaction described above corresponds to the play {a0:search,
a1:request, a2:ack, a5:timeout} in Figure 33, which leads to the outcome o2 induced by the strategy
profile s2. The outcomes of a stage game describe the results of the interaction between every
possible combination of players from different sub-populations.

Player Strategy profile Strategy

p0 s1 {a0:search, a1:request, a6:ack}

p1 s3 {a2:ack, a5:timeout}

Table 26: The strategies implemented in the SG of Figure 33 when players p0 and p1 are from sub-
populationsω1 andω3.

In RACOON++, the utility received from playing a stage game has two terms: the protocol
payoff, and the incentives introduced by the CEM. The protocol payoff γj evaluates the costs and
benefits of a player when the outcome of SG is oj. To calculate this value, RACOON++ evaluates
the valuation elements defined in the selfishness model by the Designer (see Section 6.3.1.2). Let
us illustrate the procedure to evaluate the protocol payoff γ0 in the stage game of Figure 33, in
the case of interaction between members of the cooperative sub-population ω0. Consider the
following valuations associated to role r0 and, thus, to player p0:

• v0 = 〈v0, “transition ′′, search, r0, 10, 1〉 , which specifies benefits and costs associated to
role r0 when performing the abstract transition search (a0:search action in Figure 33).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

130 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

• v1 = 〈v1, “message ′′,g3, r0, 3, 1〉 , which specifies benefits and costs associated to role r0
when receiving the message g3 from role R1 (a3:response action in the figure).

Let the content c ∈ C transmitted by the message g3 comprise a list of 10 data units. Then,
the protocol payoff of player p0 is:

γ0(p0) = υ(v0) + υ(v1) = 9+ 2 · r0.cardinality · c.cLength = 9+ 2 · 1 · 10 = 29.

The protocol payoff is the expected utility that would be received if no incentives for cooper-
ation were attached to the system. However, the CEM used in RACOON++ establishes that the
ability of a player to obtain a requested service is proportional to her reputation value (see Sec-
tion 6.3.2). Thus, the utility uj ∈ R obtained by a player pi depends on whether she plays as a
service requester in the stage game. Formally:

uj(pi) =

γj(pi) · ρ(pi) if pi.type = “requester"

γj(pi) otherwise

, where the function ρ : P → [0, 1] determines the probability that player pi ∈ P will receive
the protocol payoff, calculated as the reputation of pi divided by the upper bound ρmax of
reputation values.

Following on the previous example, let the reputation mechanism allow values between 0
and 10, and let the requester player p0 have reputation 6. Then, her utility can be calculated as:

u0(p0) = γ0(p0) · ρ(p0) = 29 · 0.6 ' 17.4 .

E V O L U T I O N A R Y D Y N A M I C S A common assumption in traditional game theory is that
players have the information and skills to assess and choose the best strategy to play in the
current system’s state [130]. However, as other works have highlighted [142, 171, 183], this
assumption places a heavy burden on nodes’ computational and communication capabilities,
which is infeasible in most cooperative systems. On the contrary, EGT assumes that individuals
are not fully rational, but tend to implement the most remunerative strategies through learning
and imitation [172].

In RACOON++, each node monitors the utility it has obtained for playing the strategy profile
of its sub-population. If the utility decreases for more than a given number of consecutive ob-
servations, or if a specified time has elapsed, then the node will look for a fitter sub-population
to join. The accountability audits of R-acc++ provide the means to learn what are the fittest
sub-populations in the system. More precisely, we assume that a witness can infer the sub-
population and the utility of a node by auditing its logs, as the recorded actions can be traced
back to a particular strategy profile (the space of strategy profiles, as well as the costs and bene-
fits of each action, are common knowledge to all nodes, because we assume a single population).
After an audit, the witness compares its own utility against that of the monitored node. If the
witness has a lower utility, it will join the sub-population of the monitored node with a given

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 131

probability [171, 183]. Note that this probability determines the evolution rate: the smaller its
value, the slower the fittest sub-population in the system increases.

6.4 R A C O O N + + T U N I N G P H A S E

The tuning phase of RACOON++ aims at configuring the accountability and reputation mecha-
nisms according to a list of design objectives input by the Designer. Tuning involves an iterative
two-step refinement process, which alternates evaluation with the tuning of the configuration
parameters. The evaluation involves Evolutionary Game Theory (EGT) analysis and simula-
tions to study the system dynamics in a given configuration setting. This task is performed by
the R-sim simulator integrated into the framework. Then, an exploration algorithm uses the
evaluation results to optimise the parameters of the CEM. The tuning process ends after a set
number of iterations, or when a configuration that satisfies the Designer’s objectives is found.

6.4.1 Input of the Tuning phase

RACOON++ offers a predefined set of selfish-resilience and performance objectives for the co-
operative systems designed within its framework. As in RACOON, each of these design ob-
jectives defines a predicate over a system metric (see Definition 5.22), which can be evaluated
by the RACOON++ evaluation tool, namely, the R-sim simulator. Examples of predicates are
at most and at least. Hereafter, we present the application-independent objectives natively sup-
ported by RACOON++.

• Cooperation level: the fraction of cooperative nodes in the system;

• Cooperation persistence: the probability that a cooperative node stays cooperative;

• Cooperation attractiveness: the probability that a selfish node becomes cooperative;

• Audit precision: the number of correct positive audits divided by the total number of posi-
tive audits;

• Audit recall: the number of correct positive audits divided by the number of audits that
should have been positive;6

• CEM bandwidth overhead: the costs of the accountability and reputation mechanisms in
terms of additional bandwidth;

• CEM message overhead: the costs of the accountability and reputation mechanisms in terms
of extra messages.

Examples of design objectives are “cooperation level at least 0.8" and “CEM message overhead
at most 0.6". RACOON++ allows specifying further objectives on application-specific metrics
(e.g., throughput, jitter, anonymity level). For each custom objective, the Designer needs to
implement the methods to collect and evaluate the related metrics in the evaluation tool.

6 We recall that a selfish witness of the accountability system may decide not to perform an audit in order to save local
resources and return a false negative audit result instead. More details are provided in Section 4.2.2.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

132 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

The second input of the tuning phase is an implementation of the functional specification of
the designed system in the R-sim simulator, which we discuss in more detail in the next section.

6.4.2 Configuration evaluation

To evaluate a configuration setting for the CEM, RACOON++ simulates the system behaviour
using the simulation framework R-sim, which is based on the PeerSim simulator [128]. The
simulation results indicate whether the evaluated CEM configuration has satisfied the list of
design objectives set by the Designer or not. In the following, after a brief overview of the main
components of PeerSim, we present R-sim in detail.

6.4.2.1 PeerSim overview

PeerSim is a scalable simulation environment written in Java and released under the GPL open
source licence. Although originally designed for P2P systems, it can be easily adapted to simu-
late cooperative systems in general, as we will show in Section 6.5.

A simulation in PeerSim consists of different components (objects), where every component
is easily replaceable by another one implementing the same functionality (interface). Among
the main interfaces are Node, Protocol, Linkable, and Control. Concretely, in PeerSim, the
network in composed of nodes, which are containers of protocols. A linkable is a protocol that en-
ables communication between neighbour nodes, thereby defining an overlay network. Finally,
a control can monitor or modify every other component,7 and can be executed before or during
the simulation. The controls executed before the simulation are also called initializers.

The simulation engine of PeerSim offers cycle-based and event-based simulations. The cycle-
based model achieves extreme scalability and performance, at the cost of some loss of realism:
nodes communicate with each other directly (no message passing), and each node protocol
is executed in turn at every cycle. In contrast, the event-based model enables more realistic
simulations of the underlying communication network but is less scalable.8

An experiment in PeerSim is fully specified by a plain text configuration based on Java prop-
erty files, i.e., collections of pairs associating a property name to a property value. Properties
specify the simulation engine to use, the implementation (Java classes) of components to load
at runtime, and the numeric or string parameters for these components. Each component must
implement the appropriate interface of the PeerSim Java API.

The example configuration in Figure 34(a) defines a network composed of one million nodes.
Figure 34(b) illustrates the resulting PeerSim components. The simulation is run using the
cycle-based engine for 600 cycles. At each cycle, each node runs (i) an overlay protocol labelled
overlay that is implemented by the class Newscast [91],9 with parameter cache set to 20, and
(ii) an implementation of the S-R-R protocol (class SRR), labelled as srr in the configuration file.

7 For example, a control can add new nodes to the network or remove existing ones; or it can interact with protocols
providing them with external inputs of modifying their parameters.

8 The PeerSim developers tested up to 105 nodes in event-based simulations and 107 nodes in the cycle-based ones [128].
9 The Newscast overlay protocol maintains a robust random topology, based on the continuous exchange of up-to-date

information about neighbours (node addresses and timestamps). The amount of information exchanged depends on
the fixed-sized cache at the nodes, which is a protocol parameter.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 133

Network

SRR

Node

Newscast

neighbours

Configuration
Manager

Init1

Simulation
Engine

Initialisers

...

Ctrl1

Controls

...

network.size 1000000

simulation.cycles 600

protocol.overlay Newscast

protocol.overlay.cache 20

protocol.srr SRR

protocol.srr.linkable overlay

init.i1 Init1

init.i1.protocol overlay

control.c1 Ctrl1

control.c1.protocol srr

(a) (b)

...

Figure 34: A simple PeerSim configuration file (a) and the corresponding PeerSim components (b). De-
picted in light colour in (b), are the additional components that can easily be added.

The property “protocol.srr.linkable” assigns the Newscast overlay to SRR. The configura-
tion in Figure 34(a) also defines an initializer i1 and a control c1 for the protocols overlay and
srr, respectively.

As said above, the class SRR provides an implementation of the S-R-R protocol, and, specif-
ically, of its Protocol Automaton (Figure 30). Listing 5 presents the basic element of this class.
In particular, SRR needs to implement the CDProtocol interface10 and to provide the method
nextCycle that initiates the PA execution. Note that the SRR object calling this method acts as
the role r0 in the PA and interacts with each node that plays as R1 (lines 6-7 in Listing 5). More
precisely, r0 interacts with the SRR instance associated with a node in R1, which is maintained in
the list roleR1 declared in line 2. In Listing 5, the implementation of PA transitions is provided
in separate methods. Although this is is not a necessary restriction, it facilitates the conversion
of the PA into source code. The arguments of the search, request, and response methods are
the SRR instance of the interacting node and the content of the possible message exchange (e.g.,
the list messageG2 of resources requested by r0 in the message g2 ∈ PA.G).

1 public class SRR implements CDProtocol {
2 List<SRR> roleR1; // the role ’R1’ in the PA
3 // ...
4 public void nextCycle(Node node, int protocolID) {
5 // ...
6 for(SRR r1 : roleR1)
7 search(r1);
8 }
9 // impl. of transition ’search’ in the PA

10 public void search(SRR r1) { /* */ }
11 // impl. of transition ’t1’ (method ’request’) in the PA
12 public void request(SRR r1, List messageG2) { /* ... */ }
13 // impl. of transition ’t2’ (method ’response’) in the PA
14 public void response(SRR r0, List messageG3) { /* ... */ }
15 }

Listing 5: Source code of the main elements of the SRR class imlpemented in PeerSim.

10 The cycle-based extension of the Protocol interface.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

134 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

...

...

Network

 SRR

Node

Configuration
Manager

Simulation
Engine

Initialisers

Controls
...

RSInit

RSAccControl

RSMonitors

RSProtocol

Accountability

(a) (b)

network.size 1000000

...

protocol.srr SRR

...

racoon.protocol srr

racoon.accountability r-acc

racoon.coop_fraction 0.75

racoon.messageloss 0.05

racoon.monitors pkg.path.SRRMon

racoon.monitors.step 60

R-Sim

PeerSim

Created by the
Designer

 SRRMon

RACOON
Models

RAcc

RRep

Figure 35: Integration between the R-sim and PeerSim configuration properties (a) and components (b).

6.4.2.2 R-sim simulator

The RACOON++ simulation framework R-sim uses the evolutionary game model of the coop-
erative system to simulate the system dynamics in the candidate configuration setting. R-sim
supports a cycle-based model, in which time is structured into rounds. At each round, each
node plays a certain strategy of the SG, according to the evolutionary dynamics described in
Section 6.3.4. During the simulation, R-sim collects statistics about such dynamics, to evaluate
the design objectives. To the best of our knowledge, R-sim is the only available software tool
for the dynamic simulation of selfish and strategic behaviours in distributed systems.

In contrast with RACOON, which includes a custom-built simulator for cooperative systems,
RACOON++ relies on the state-of-the-art PeerSim simulator, thereby improving the usability,
accuracy and performance of the framework. We have chosen PeerSim among other simu-
lation tools (see [24] for a comprehensive review) for the following reasons: (i) it meets the
requirements of scalability and dynamicity imposed by the evolutionary model; (ii) it supports
the integration with RACOON++ thanks to its modular architecture; (iii) it is an active project,
with a good developer community and support.

As shown in Figure 35, R-sim exploits the modular architecture of PeerSim extending it with
new components to develop, simulate and evaluate the cooperative system resulting from the
design phase of the RACOON++ framework. Hereafter, we present the main components.

C O N F I G U R AT I O N PA R A M E T E R S . R-sim introduces new configuration parameters to set
up its additional components. These parameters can be specified in the PeerSim configuration
file by using the prefix “racoon.”. The portion of configuration file depicted in Figure 35(a),
for example, specifies six R-sim parameters, which we discuss in the remainder of this section.

R A C O O N M O D E L S . The set of Java classes collectively denoted as RACOON Models in Fig-
ure 35(b) allow representing in PeerSim the specification artefacts used in RACOON++, i.e., the
Protocol Automaton PA, Selfishness Model SM, design objectives, and Evolutionary Game EG.
The instances of these classes contain the information to simulate the behaviour of each sub-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 135

population of nodes defined in EG. Also, RACOON Models includes the CEMConfigCandidate

class to model the CEM configuration to evaluate.

C E M C L A S S E S . The RAcc and RRep protocol components implement the accountability and
reputation mechanisms used in RACOON++. In particular, RAcc extends the abstract class
Accountability, which maintains a SecureLog and provides the methods to invoke the ac-
countability protocols described in Section 6.3.2 (e.g., commit the reception of a message, audit
the log of a node, create challenges with createAuditChallenge and createSendChallenge). R-sim
also includes an implementation of the FullReview accountability mechanism.11 The configura-
tion parameter “racoon.accountability” indicates the accountability mechanism to enforce
between R-acc++ (“r-acc” or “racc”) and FullReview (“fullreview”). Note that the proper-
ties values are case insensitive and “r-acc” is the default.

R - S I M P R O T O C O L S . The RSProtocol class extends a standard PeerSim protocol to enable
its interaction with the RACOON++ framework. In the following, we discuss the additional
functionalities provided by RSProtocol, with reference to the re-implementation of the SRR

class shown in Listing 6. For ease of presentation, we denote the node that runs the extended
protocol as its actor.

1 public class SRR extends RSProtocol implements CDProtocol {
2 List<SRR> roleR1; // the role ’R1’ in the PA
3 // ...
4 public void nextCycle(Node node, int protocolID) {
5 // ...
6 for(SRR r1 : roleR1) {
7 if(r1.acceptInteraction(this))
8 search(r1);
9 }

10 }
11 // impl. of transition ’search’ in the PA
12 public void search(SRR r1) {
13 processRTransition("Search", this, "r0");
14 // ...
15 }
16 // impl. of transition ’t1’ (method ’request’) in the PA
17 public void request(SRR r1, List messageG2) {
18 processRMessage("g2", messageG2.size(), this, "r0", r1, "r1");
19 // ...
20 }
21 // impl. of transition ’t2’ (method ’response’) in the PA
22 public void response(SRR r0, List messageG3) {
23 processRMessage("g3", messageG3.size(), this, "r1", r0, "r0");
24 switch(getDeviationType("t2")){
25 case TIMEOUT:
26 break;
27 case SUBSET:
28 double deviationDegree = getDeviationDegree("t2");
29 /* implementation of the subset deviation */
30 break;
31 default:
32 /* implementation of the correct behaviour */
33 }
34 }
35 }

Listing 6: Source code of the main elements of the SRR class implemented in R-sim.

11 To enable a comparative evaluation of the R-acc++ and FullReview performance, presented in Section 6.5.5.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

136 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

RSProtocol provides attributes and methods to maintain the current sub-population of an
actor as well as the utility obtained since its last accountability audit. If on the one hand, the
sub-populations management is automatically carried out by R-sim at run-time, on the other
hand, the Designer needs to put information to calculate the utility directly into the source
code. RSProtocol simplifies this task by exposing two methods to retrieve such information
from the valuations defined in the SM (see Section 6.3.1.2):

• processRTransition (String tId, RSProtocol rsp, String rId). It retrieves the valua-
tions v ∈ SM.V that satisfies the following: v.scope = “transition”, v.scopeId = tId, and
v.roleId = rId. Then, it updates the utility of the protocol instance rsp based on the costs
and benefits specified in each valuation v retrieved. E.g., line 13 in Listing 6.

• processRMessage (String gId, int cLength, RSProtocol sender, String senderId,

RSProtocol receiver, String receiverId). It retrieves the valuations v ∈ SM.V such
that v.scope = “message”, v.scopeId = gId, and v.roleId = senderId∪ receiverId. Then,
it updates the utility of the protocol instances sender and receiver based on the costs
and benefits specified in the respective valuations retrieved, also taking into account the
length of the content conveyed by the message (see Definition 6.8). E.g., lines 18 and 23.

To facilitate the implementation of the selfish behaviours defined in the SM, the RSProtocol
class exposes the following methods:

• DeviationType getDeviationType (String tId). It returns the type12 of the deviation that
an actor may perform from the transition {t ∈ PA.T | t.tId = tId}. The result depends on
the strategy implemented by the current sub-population of the actor. The method can be
used as the argument of a switch-case statement, where each case-block implements the
execution of the transition according to the deviation type (lines 24-33 in Listing 6).

• double getDeviationDegree (String tId). If the deviation type of t ∈ PA.T with t.tId =

tId is NONE, then the method returns 0; otherwise, it returns the degree of the deviation
performed by the actor in t, which depends on the strategy implemented by its current
sub-population. For example, line 28 aims to get the degree of possible deviations from
the t2 transition of the S-R-R protocol (i.e., the execution of the response method).

Finally, the RSProtocol class enables the interaction between the extended protocol and
the RRep and RAcc instances ran by the same actor. In particular, RSProtocol exposes the
acceptInteraction method that returns true if the actor of the extended protocol can start an in-
teraction with the actor of the protocol passed as an argument;13 otherwise, the method returns
false. For example, in Listing 6, the actor playing as R1 in line 7 decides whether to accept or
not to interact with the actor playing the role r0.

The binding of the extended protocol to the other components of the R-sim simulator occurs at
run-time based on the value of the configuration parameter “racoon.protocol”. For example,
the configuration file in Figure 35(a) specifies that the protocol to extend is the one labelled as
srr and implemented by the SRR class.

12 DeviationType is an enum type whose values are TIMEOUT, SUBSET, MULTICAST, and NONE.
13 We recall that a node i may accept to interact with another node j based on (i) the current reputation value of j, and (ii)

whether j has been suspected by the R-acc++ mechanism (see Section 6.3.2).

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 137

R - S I M C O N T R O L L E R S . The RSInit control component initializes every RSProtocol in-
stance involved in the simulation. The initialization consists of three operations. First, it as-
signs a sub-population in EM to each node in the network, in such a way that the selfish sub-
populations are uniformly represented. The size of the cooperative sub-population, instead,
depends on the configuration parameter “racoon.coop_fraction”, which indicates the pro-
portion of cooperative nodes in the system. For example, the configuration file in Figure 35(a)
specifies that only one-fourth of the network consists of selfish nodes. Second, RSInit initial-
izes the accountability protocol (R-acc++ or FullReview) and the initial reputation value of each
node. Finally, the initializer sets the message loss rate to simulate in R-sim, which allows evalu-
ating the performance of systems deployed over unreliable networks. The rate of the message
loss is specified by the “racoon.messageloss” configuration parameter (default value: 0).

The RSAccControl component controls the operation of the Accountability instances in
R-sim, by checking at every simulation cycle what are the accountability protocols to execute.

R - S I M M O N I T O R S . R-sim includes three control components for monitoring a set of simu-
lation metrics and performance. Specifically, it includes monitors for the design objectives na-
tively supported by RACOON++ (class NativeDOMonitor), the performance of the accountabil-
ity mechanisms (class AccountabilityMonitor), and the performance of the sub-populations
(class SubPopulationMonitor) such as their size, average utility, and average reputation of
their members. Each of these monitors implements the PeerSim Control interface and extends
the R-sim abstract class DOMonitor, which defines what are the basic functions to implement for
measuring and evaluating a system metric. The Designer can implement her custom monitors
— e.g., the SRRMon class in Figure 35(b) — by extending the DOMonitor class and implementing
its abstract methods.

The RSMonitors controller is responsible for the periodic execution of the DOMonitor in-
stances, namely, the three monitors included in R-sim and the set of custom monitors indicated
in the configuration parameter “racoon.monitors”. The value of this parameter is the list of
full class names of each custom monitor to enable, each separated by a space. The number
of cycles between two monitoring executions is determined by the configuration parameter
“racoon.monitors.step” (default value: 1, i.e., every cycle). Finally, note that the RSMonitors
controller relies on the service class OutputWriter to write the simulation results as comma-
separated values (CSV) files.

6.4.3 Configuration Exploration

The output of the RACOON++ framework is the design and configuration of a cooperative
system that achieves the objectives set by the Designer. Thus far, we have described how
RACOON++ fosters cooperation using accountability and reputation mechanisms (Section 6.3.2),
and how it evaluates the system performance using EGT and simulation (Section 6.4.2). The last
step of the framework relies on the evaluation results to tune the configuration parameters of
its cooperation enforcement mechanisms, aiming to achieve the desired design objectives.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

138 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

T H E T U N I N G A L G O R I T H M . RACOON++ uses an iterated local search algorithm to sup-
port the automatic exploration of the CEM configuration space, moving from one configuration
candidate to a neighbouring one until all design objectives are met [107]. A configuration can-
didate χ ∈ X is a vector containing the CEM parameters, namely, witness set size, audit period,
audit probability, degree of punishment, and degree of reward (defined in Table 20 in the previous
chapter). Two configuration candidates are considered neighbours if they differ in exactly one
parameter value. In local search, neighbours are selected based on the performance achieved
by the last evaluated solution, i.e., based on the number and type of design objectives met by
the previous configuration candidate.

Alg. 5 presents the Tuning algorithm used in RACOON++, which is an instantiation of the lo-
cal search process described above. The algorithm takes as input an initial configuration conf ∈
X, and iteratively decides whether to explore or not neighbour configurations (lines 7-14) de-
pending on the performance computed by the Evaluate and Score functions (lines 5-6). Both
functions, along with the Neighbour function (line 14) for exploring the configuration neigh-
bourhood, are discussed next.

If no feasible solution is found after a number of iterations tMax,14 then the Tuning algo-
rithm stops the search, asking the Designer to improve the system design manually or to relax
the objectives. Nevertheless, the algorithm returns the best configuration found during the
exploration process, i.e., the configuration that has achieved the highest performance score
(lines 11-13 in Alg. 5).

Alg. 5: The Tuning algorithm to explore the configuration space of the CEM in RACOON++.

Data: A list of design objectives O.
Input: The maximum number of iterations tMax ∈N, and the initial configuration conf ∈ X.
Output: A configuration bestConf ∈ X.

Algorithm Tuning(tMax, conf)
1 bestConf := conf

2 bestScore := 0

3 t := 0

4 while t < tMax do
5 performance := Evaluate(conf)
6 score := Score(performance) // return 1.0 if all the objectives were met

7 if score = 1.0 then
8 bestConf := conf

9 break // stop the search

10 else
11 if score > bestScore then
12 bestConf := conf // store the best configuration evaluated so far

13 bestScore := score

14 conf := Neighbour(conf,performance)
15 t := t+ 1

16 return bestConf

14 For example, because the design objectives were contradictory or too demanding.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 139

P E R F O R M A N C E E VA L U AT I O N . The Tuning algorithm uses the Evaluate function (lines 1-
5 in Alg. 6) to compute the performance of a configuration on the objectives O set by the De-
signer. This function invokes the R-sim simulator to simulate the behaviour of the cooperative
system configured as specified in conf (line 1). The simulation results are saved in a vector of
real numbers, results, where the i-th element stores the metric value associated with the i-th
objective inO. Each simulation result is then evaluated against the corresponding design objec-
tive by the EvaluateObjective function reported in lines 6-12 in Alg. 6. This function returns a
real number ∈ [0, 1], in such a way that the higher the value the best the performance — notably,
the function returns 1.0 if the objective was met (lines 8-12). Note that as the evaluation metrics
can be defined in very different ranges,15 they are normalised into [0, 1] before to be used in the
EvaluateObjective function, in order to give to each metric a similar weight.

Alg. 6: The functions to calculate the performance and the score of a configuration candidate.

Data: A list of design objectives O.

Function Input: The configuration conf ∈ X to evaluate.
Function Output: The vector performance.

Function Evaluate(conf)
1 results := RSim.simulate(conf)
2 performance := {}

3 foreach o ∈ O do
4 performance[o] := EvaluateObjective(o, results[o])
5 return performance

Function Input: An objective o and the associated value r resulting from the simulation.
Function Output: A value ∈ [0, 1] that indicates the level of achievement of o.

Function EvaluateObjective(o, r)
6 r ′ := r/(o.maxValue− o.minValue) // rescaled result value

7 t ′ := o.value/(o.maxValue− o.minValue) // rescaled threshold

8 if o.predicate = at_least then
9 eval := r/t ′

10 else
11 eval := (1.0− r ′)/(1.0− t ′)
12 return min(eval, 1.0)

Function Input: The vector performance, i.e., the output of the EvaluateObjective function.
Function Output: The value score ∈ [0, 1].

Function Score(performance)
13 score := 1.0
14 foreach p ∈ performance do
15 score := score · p
16 return score

The execution of the Evaluate function returns a vector of real numbers, called the performance
vector. The Score function converts this vector into a single real number in [0, 1], calculated as

15 See the Definition 5.22 of design objectives presented in Chapter 5.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

140 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

the product of its values (lines 13-16). The score value is used in the Tuning algorithm to verify
whether the current configuration candidate has met all the design objectives (line 7 in Alg. 5)
as well as to keep track of the best configuration evaluated (lines 11-13).

G E N E R AT I N G C O N F I G U R AT I O N N E I G H B O U R S . If a configuration candidate conf ∈ X
fails to meet all the design objectives set by the Designer, then the Tuning algorithm explores
the neighbourhood of conf searching for better configurations. This process is carried out by
the Neighbour function in lines 1-17 in Alg. 7, which takes as input the current configuration
conf and its performance vector, and returns a neighbour configuration conf ′ that has not
been tested yet.

Alg. 7: The functions to generate the neighbours of a configuration candidate.

Data: A list of design objectives O and the set of configurations already tested.

Function Data: The set of configurations to_test.
Function Input: A configuration conf ∈ X and the associated vector performance.
Function Output: The neighbour configuration conf ′ ∈ X.

Function Neighbour(conf, performance)
1 add conf to tested
2 pScore := ParametersScore(performance)
3 max_p := max absolute value in pScore

/* Create the new configurations to test */

4 foreach p ∈ pScore such that p = max_p do
5 newConf := conf

6 if p > 0 then
7 newConf[p] := Increment(conf[p])
8 else
9 newConf[p] := Decrement(conf[p])

10 add newConf to to_test;
/* Return a new configuration to test */

11 conf ′ := conf
12 while conf ′ ∈ tested do
13 if to_test 6= ∅ then
14 conf ′ := Poll(to_test)
15 else
16 conf ′ := Random(conf ′) // random update of a random parameter of conf’

17 return conf ′

Function Input: The vector performance, i.e., the output of the EvaluateObjective function.
Function Output: A vector of values pScore to guide the update of a configuration candidate.

Function ParametersScore(performance)
18 pScore := [0, 0, 0, 0, 0]
19 foreach o ∈ O do
20 if performance[o] < 1.0 then
21 UpdatePScore(pScore,o)
22 return pScore

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.4 R A C O O N + + T U N I N G P H A S E 141

The neighbour selection is guided by a set of rules derived from an empirical analysis of the
CEM parameters and their impact on the design objectives natively supported by RACOON++.
Concretely, we performed a systematic evaluation of 250 configuration candidates in three co-
operative systems,16 for a total of 750 evaluations. For each system and each configuration
parameter, we evaluated the performance of the design objectives when increasing that param-
eter value, while keeping constant the other parameters. The relations emerging from every
combination parameter-objective were classified into the five categories listed below:

• Direct relation: an increase in the parameter value corresponds to an improvement in the
design objective performance greater than 5%.

• Weak direct relation: an increase in the parameter value corresponds to a slight improve-
ment in the design objective performance (between 1% and 5%).

• Unrelated: there is no significant correlation between the parameter value and the perfor-
mance of the design objective.

• Weak indirect relation: an increase in the parameter value corresponds to a slight degrada-
tion in the design objective performance (between 1% and 5%).

• Indirect relation: an increase in the parameter value corresponds to a degradation in the
design objective performance greater than 5%.

Table 27 summarises the results of the empirical analysis (for ease of presentation, “unre-
lated” results are omitted). For instance, we observe that the higher the number of witnesses,
the higher the CEM bandwidth overhead, because each witness increases the amount of log
transmissions and checking. As another example, we observe that the shorter the audit pe-
riod, the higher the cooperation level, because selfish nodes are detected earlier and punished
more often. Note that the relations listed in Table 27 have been observed in all the cooperative
systems considered for the empirical analysis; any other relation that did not reach uniform
consensus in the three systems was discarded.

The integration of these observations into the neighbour generation process is realised by the
function ParametersScore (lines 18-22 in Alg. 7). The function takes as input the performance
vector associated with a configuration candidate, and uses information derived from Table 27
to determine whether the CEM parameters could be modified (and how) to improve the overall
performance. To this end, ParametersScore creates a support vector of five elements, named
pScore, where each element is associated with a CEM parameter. For each design objective that
was not satisfied (lines 19-20), the function UpdatePScore increments or decrements the pScore
values as specified by the updating rules reported in Table 28. These rules are derived from the
relations in Table 27: direct and weak direct relations map to an increment of the pScore value
(+1 and +0.5, respectively), indirect and weak indirect relations map to a decrement (−1 and
−0.5), and unrelated cases do nothing. For example, let the unsatisfied design objectives be the
cooperation level and the CEM bandwidth overhead. Then, the overall pScore vector returned by
ParametersScore is {1− 1,−1, 1+ 1, 0.5+ 0.5, 0.5+ 0.5} = {0,−1, 2, 1, 1}.

16 The use cases selected for the evaluation of the RACOON++ framework, which we present in Section 6.5.1.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

142 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

Native Design Objective Parameter Relation

Cooperation Level Witness set size Direct

Cooperation Level Audit period Inverse

Cooperation Level Audit probability Direct

Cooperation Level Degree of punishment Direct (weak)

Cooperation Level Degree of reward Inverse (weak)

Cooperation Persistence Degree of punishment Direct (weak)

Cooperation Persistence Degree of reward Inverse (weak)

Cooperation Attractiveness Witness set size Direct (weak)

Cooperation Attractiveness Degree of punishment Direct

Audit Precision Witness set size Direct

Audit Precision Audit probability Direct

Audit Recall Witness set size Direct

Audit Recall Audit probability Direct

CEM Bandwidth Overhead Witness set size Inverse

CEM Bandwidth Overhead Audit probability Direct

CEM Bandwidth Overhead Degree of punishment Direct (weak)

CEM Bandwidth Overhead Degree of reward Inverse (weak)

CEM Message Overhead Witness set size Inverse

CEM Message Overhead Audit period Direct

CEM Message Overhead Degree of punishment Direct (weak)

CEM Message Overhead Degree of reward Inverse (weak)

Table 27: Observed relations between the design objectives natively supported by RACOON++ and the
CEM configuration parameters.

pScore update variations a

Unsatisfied Design Objective ws ape apr dp dr

Cooperation Level +1 -1 +1 +0.5 -0.5

Cooperation Persistence 0 0 0 +0.5 -0.5

Cooperation Attractiveness +0.5 0 0 +1 0

Audit Precision +1 0 +1 0 0

Audit Recall +1 0 +1 0 0

CEM Bandwidth Overhead -1 0 +1 +0.5 -0.5

CEM Message Overhead -1 +1 0 +0.5 -0.5

a ws = witness set size, ape = audit period, apr = audit probability ,
dp = degree of punishment, dr = degree of reward.

Table 28: Rules to update the pScore vector created by the ParametersScore function in Alg. 7.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.5 E VA L U AT I O N 143

The Neighbour function uses the pScore vector for two purposes: (i) to determine the param-
eters to modify for generating the neighbour configuration, i.e., the parameters corresponding
to the pScore elements with the greatest absolute value (lines 3-4 in Alg. 7),17 and (ii) to de-
termine whether to increment or decrement the selected parameter, based on the sign of the
associated pScore value. For instance, given the pScore vector {0,−1, 2, 1, 1}, the Neighbour

function will generate a neighbour configuration newConf characterised by an increment of
the audit probability (line 6-7), and will add it to the set of configurations to_test (line 10).
As another example, consider the vector {−2, 2, 0, 0, 0}. In this case, Neighbour will generate
two neighbour configurations to add to the to_test set: one configuration that decrements the
current witness set size, and the other one that increments the audit period. If no rules are avail-
able for updating a particular configuration (i.e., all elements in pScore are equal to 0), then no
neighbour configuration is generated.

The last part of the Neighbour function returns a configuration candidate conf ′ to the Tuning
algorithm. Note that conf ′ is either retrieved from the set of pending configurations to_test
(line 14 in Alg. 7) or is randomly generated if the to_test set is empty (line 16). Note that in
order to avoid the re-exploration of the regions of the configuration space, the algorithm keeps
memory of the previously generated candidates by storing them into the tested set.

6.5 E VA L U AT I O N

In this section, we demonstrate the benefits of using RACOON++ to design selfish-resilient co-
operative systems. We start by introducing the three use cases considered in the evaluation,
namely, a live-streaming protocol, a load balancing protocol, and an anonymous communica-
tion system. Then, we assess the effort required by a Designer to specify and implement the
use cases. Second, we evaluate the capability of RACOON++ to auto-configure the CEM, by
measuring the time needed to find a satisfactory configuration in 90 different scenarios. Third,
we evaluate the effectiveness of the RACOON++ cooperation enforcement mechanisms in with-
standing the impact of selfish nodes on a set of performance objectives. Finally, we compare the
performance of the CEM’s accountability mechanism with FullReview, showing that R-acc++
achieves better results while imposing less overhead than FullReview.

The RACOON++ framework is provided as a program, which is freely available on the
Racoon project website [6]. The framework consists of roughly 8,300 lines of Java code. To
facilitate the reproducibility of our results, the implementation of the use cases as well as the
configuration files related to the experiments reported in this section can also be downloaded
from the project website.

6.5.1 Use cases

We consider the following use cases.

17 The rationale behind this selection criterion is that the higher the pScore value of a parameter, the more empirical
observations were supporting its choice.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

144 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

Live Streaming. We consider the P2P live streaming system presented by Guerraoui et al. [72]
and already discussed in the previous chapter (Section 5.5.1).

Load Balancing. The heterogeneity of nodes and the high dynamics of P2P systems can lead
to a load imbalance.18 We assume a P2P system in which nodes are allowed to transfer all or
a portion of their load among themselves. The goal of a load balancing protocol is to regulate
these transfers in a way that evenly distributes the load among nodes, to optimise the use of
node capabilities. The load balancing protocol considered as a use case is the one proposed
by Jelasity et al. [92].

Anonymous Communication. We consider the basic anonymous communication protocol
presented in the previous chapter (Section 5.5.5), based on a simplified version of the Onion
Routing protocol for communication channel anonymity [70].

6.5.2 Design and development effort

To show the benefits of using RACOON++ in terms of design and development effort, we
present the operations that allow the Designer to specify, develop, and test the use cases.

I N P U T S S P E C I F I C AT I O N . The first step for the Designer is to decide what parts of the
system should be included in the RACOON++ functional specification (i.e., the Protocol Au-
tomata). The selected parts should fulfil two criteria. On the one hand, these parts should
represent system functionalities that are sensitive to selfish behaviours — specifically, to the de-
viation types described in Section 6.3.1.2. On the other hand, the selected parts should involve
actions that can be observed by other nodes (e.g., a message exchange), to allow accountability
audits [76]. Figures 36-38 illustrate the protocol automata defined for our use cases, presented
in turn hereafter.

The live streaming protocol (see Figure 36) involves two roles and three protocol steps: the
provider rp proposes the set of chunks it has received to a set of consumers rC, which in turn
request the chunks they need. The protocol ends when rp sends the requested chunks to rC.

s1s1

r
p
.propose(g

0
, r

C
) r

C
.request(g

1
, r

p
) r

p
.serve(g

2
, r

C
)

s0s0 s2s2s3s2s2

Figure 36: The PA of the live streaming protocol [72].

In the load balancing protocol, each node starts with a certain amount of load. We assume
that time is divided in cycles and that each node has a limited amount of load (quota) that it can
transfer in a given cycle. The basic idea proposed by Jelasity et al. [92] is that each node peri-
odically picks the neighbour that has the maximally different load (larger or smaller) from its
local load and has sufficient residual quota. If such a node can be found, then the load transfer
is performed. Figure 37 illustrates the Protocol Automaton designed using RACOON++. First,
the node playing as role r0 looks in its neighbourhood for a partner R1 for the load transfer,

18 The load can be measured in terms of different metrics, such as the number of queries received per time unit.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.5 E VA L U AT I O N 145

asking the neighbours for their current load and quota. Then, based on this information, r0
negotiates with R1 the amount of load to transfer (abstract transition negotiation), so that the
load transfer can finally take place (abstract transition transfer).

s1s1s0s0 s3s3

R 1
.selectPartnerResp(g 1

, r 0
)

r0
.transfer

r0
.selectPartnerReq(g 0

, R 1
)

r0
.negotiation

s2s2 s2s2s4

Figure 37: The PA of the load balancing protocol [92].

In the anonymous communication protocol, every time a relay rr receives an onion message
from its predecessors (rP) in the circuit, rr decrypts the external layer of the onion, and forwards
the resulting onion to the next hops rN in the circuit. If rr is the final destination of the onion,
then the protocol will end after the decrypt transition (state s2 of Figure 38).

s1s1

r
P
.sendToRelay(g

0
, r

r
) r

r
.decrypt() r

r
.relay(g

1
, r

N
)

s0s0 s2s2s3s2s2s2

Figure 38: The PA of the anonymous communication protocol.

Once the Designer has provided the functional specification of the system, she defines the
selfishness model. For example, consider the anonymous communication protocol. A selfish
relay rr that wants to save bandwidth may strategically avoid to forward onions that are not
intended for itself. Concretely, rr could avoid to relay any onion to its successors (timeout
deviation) or relay onions only to a subset of them (multicast deviation). As another example,
consider a selfish provider rp that wants to participate in the live streaming protocol but limits
its bandwidth consumption. A possible strategy for rp is to propose fewer chunks than it
has available (subset deviation), or send proposals to only a subset of its neighbours (muticast
deviation), in such a way as to reduce the number of chunks that could be requested.

Finally, the Designer provides RACOON++ with a list of design objectives that the system
must satisfy. Recall from Section 6.4.2 that an objective can be application-independent or
application-specific. Examples of application-specific objectives related to our use cases are
(i) a load distribution with a Coefficient of Variation (CoV) close to zero,19 (ii) a low fraction of
onions that do not reach their final destination, or (iii) a low fraction of video chunks that are
not played in time.

The Designer provides the RACOON++ specification inputs as an XML document. The first
column of Table 29 illustrates the conciseness of the XML representation of the inputs, showing
that the full specification of a use case does not require many Lines of Code (LoC). The full XML
specifications are presented in Appendix B.

R - S I M I M P L E M E N TAT I O N . The RACOON++ methodology requires the Designer to im-
plement the functional specification of the designed system in the integrated R-sim simulator,

19 The Coefficient of Variation is defined as the ratio of the standard deviation to the mean, and it indicates the extent of
variability in relation to the mean of the data set.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

146 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

R-sim Implementation a
Use case Specification

Std RS TOT CM

Live Streaming 55 384 28 444 32

Load Balancing 49 232 28 290 30

Anonymous Communication 49 212 23 289 31

a Std = standard operation, RS = R-sim functionalities, TOT = Std + RS, CM = custom monitor.

Table 29: Lines of Code needed for the use cases.

based on PeerSim. As discussed in Section 6.4.2, R-sim facilitates this task by providing a set
of ready-to-use components and an intuitive API to interface a standard PeerSim protocol with
the RACOON++ models and functionalities. For example, the framework includes an imple-
mentation of the CEM, the algorithms to simulate the rationality of selfish nodes, and native
monitors to assess application-independent system performance (e.g., audit precision and re-
call, bandwidth overhead). These software facilities reduce the number of functionalities to
code, allowing the Designer to focus only on implementing the application specific parts of
her system, such as the code to implement the correct execution of the protocol and the selfish
deviations from it.

The “R-sim Implementation” columns in Table 29 summarise the LoC of the use cases’ im-
plementations, distinguishing between the LoC needed to implement the standard operation
(“Std” column) from those introduced to invoke the R-sim functionalities (“RS” column). The
RS lines of code are in the range 6.3% − 9.6% of the total implementation code (average 8%,
standard deviation 0.02), which appears reasonable as it corresponds to only 28 additional LoC,
at most. Finally, the column “CM” in Table 29 indicates the size in lines of code of the R-sim
custom monitors created for each use case. Note that implementing the same monitors without
using R-sim would require almost 110 additional LoC, with a more than fourth-fold increase in
the size of the Java classes.

6.5.3 Meeting design objectives using RACOON++

To evaluate the capability of RACOON++ to find a satisfactory configuration for its cooperation
enforcement mechanisms, we performed the following experiment. First, we defined 30 dif-
ferent scenarios for each use case, for a total of 90 scenarios, where a scenario is a unique and
random combination of design objectives, system parameters (e.g., number of nodes, message
loss rate), application specific parameters (e.g., play-out delay associated with a video chunk,
length of a circuit of relays, initial distribution of loads), and fraction of selfish nodes in the
system.20 Second, we used RACOON++ to find a satisfactory configuration for each scenario,

20 The full specification of each scenario is available on the project website [6]. A specification includes: Protocol Automa-
ton, Selfishness Model, design objectives, and R-sim configuration.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.5 E VA L U AT I O N 147

while measuring the number of tested configurations and the duration of the process. The
results of the experiment are summarised in Table 30.

Configurations tested Time duration [s]
Use Case

Avg Median Range Not found Avg Median Range

Live Streaming 7.1 4.0 1–56 2 1,954 829 201–12,479

Load Balancing 6.1 3.5 2–25 0 1,151 407 183–9,695

Anonymous Communication 7.4 4.0 1–37 1 61 28 10–282

All use cases 6.8 4 1–56 3 1,046 355 10–12,479

Table 30: Performance of the tuning process of RACOON++ in terms of time duration and number of
configurations tested.

We observe that RACOON++ evaluates between 1 and 56 configurations before finding a
satisfactory one. This wide range is mainly due to the random characteristics of the scenarios
generated, which makes meeting the design objectives in some scenarios more challenging than
in others. Consider, for instance, the two Live Streaming scenarios compared in Table 31: the
objectives set for the scenario that required only one configuration to evaluate (column “LS
Scenario #6”) are apparently less strict than those of the other scenario (“LS Scenario #12”).

Design objective LS Scenario #6 LS Scenario #12

(at least) Cooperation level 0.8 0.95

(at most) CEM bandwidth overhead 0.6 0.45

(at most) Chunk loss 0.05 0.03

Configuration tested 1 56

Table 31: Design objectives of two scenarios generated for the Live Streaming (LS) use case.

Although the large variations of number of configurations tested, Figure 39 shows that their
distribution is skewed toward low values in all use cases.21 Thus, we consider the median of 4
configurations tested as a representative indicator of the RACOON++ performance in meeting
the design objectives, rather than the average value of almost 7 configurations.

The column “Not found” of Table 30 indicates the number of scenarios for which RACOON++
could not find a satisfactory configuration within a set number of attempts (i.e., 100). Overall,
the tuning process failed to meet all the design objectives in only three scenarios over 90, which
we consider as an acceptable result. The failures were due to too hard constraints on the ef-
ficiency and effectiveness of the cooperation enforcement mechanisms, which were expressed
as cost overhead and custom performance objectives (such as low video chunk loss rate), re-
spectively. In these cases, RACOON++ returns to the Designer the tested configuration that
has obtained the best performance over the design objectives (see Section 6.4.3). However, if

21 This explains the large difference between average and median in Table 30, especially in the time duration performance,
as we will discuss next.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

148 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

1 3 5 7 9 11 13 15 17 19 21 23

0

2

4

6

8

10

12

F
re

qu
en

cy

 1 3 5 7 9 11 13 15 17 19 ... >25

Configurations Tested
1 3 5 7 9 11 13 15 17 19

0

2

4

6

8

10

12

F
re

qu
en

cy

Configurations Tested

Live Streaming Load Balancing Anonymous Communication

1 3 5 7 9 11 13 15 17 19

0

2

4

6

8

10

12

F
re

qu
en

cy

Configurations Tested
 1 3 5 7 9 11 13 15 17 … >20 1 3 5 7 9 11 13 15 17 … >20

Figure 39: Frequency of the number of configurations tested for each use case.

not satisfied with this outcome, the Designer can either relax the performance requirements or
optimise some application-specific operation or parameter. For instance, in the live streaming
use case, the Designer could increase the partner set of each node to enhance its possibility to
interact with a cooperative partner and thereby receiving more video chunks.

Finally, we analyse the time performance of the tuning process. As reported in Table 30, the
median duration of the process is less than 6 minutes (average 18 min, range 10 s–208 min),22

which we consider as reasonable, as RACOON++ runs offline at design time. The large time
variation of the process is due not only to the number of configurations that have been explored
but also to the simulation time of a given scenario, which depends, among the other factors, on
the use case as well as the network size. For example, simulating the live streaming use case
takes longer than the other use cases, mainly because of the very large number of video chunk
objects to generate, disseminate, and process.

6.5.4 RACOON++ effectiveness

In this section, we show that the cooperative systems designed using RACOON++ can effec-
tively foster cooperation as well as achieve application-specific objectives in the presence of an
increasing proportion of selfish nodes. To this end, we evaluated 9 scenarios, 3 scenarios per
use case, randomly selected from the ones generated for the previous experiment. The Pro-
tocol Automaton, Selfishness Model, and CEM configuration of each scenario are reported in
Appendix B.2.1-B.2.2, whereas the code and R-sim configurations are available on the project
website [6].

In the first experiment, we assess the effectiveness of the CEM in fostering cooperation in the
tested systems. The experiment consists of a set of simulations, which monitor the dynamics
of 2,000 nodes for 3,000 simulation cycles. We initialize each simulation with an increasing
proportion of cooperative nodes (from 0.1 to 1), and we measure the cooperation level achieved
at the end of the simulation. Median results in Figure 40 show that the CEM succeeds in making
the nodes behave cooperatively in all use cases, with the worst results showing a dramatic
increase of the cooperation level, from 0.1 to 0.94 (Live Streaming use case)

22 Measures made on a 2.8 GHz machine with 8 GB of RAM.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.5 E VA L U AT I O N 149

0 0 0 0 0
0.5

0.6

0.7

0.8

0.9

1
LS LB AC

Initial Coop. Level

Fi
na

l C
oo

p.
 L

ev
el

 0.1 0.2 0.3 0.4 ≥ 0.5

Figure 40: Cooperation levels of the Live Streaming (LS), Load Balancing (LB), and Anonymous Commu-
nication (AC) use cases, when varying the initial fraction of selfish nodes.

We now focus on the correlation between cooperation level and application-specific perfor-
mance. Figures 41(a-b-c) present the median results of our evaluation for the three use cases.

The figures display a curve showing the impact of selfish nodes when no cooperation enforce-
ment mechanism is adopted (curve no CEM in the figures), and another curve for the results
obtained when using RACOON++ (curve CEM). For example, Figure 41(c) shows that without
any mechanism to prevent selfishness the fraction of onions that do not reach destination in
the anonymous communication use case increases linearly with the number of selfish nodes
in the system and reaches very high values (e.g., 40% of selfish nodes lead to a loss of almost
half of the transmitted onions, thereby making the system ineffective in practice). Similar con-
clusions hold for the number of chunks in the live streaming use case Figure 41(a). The initial
cooperation level also has an impact on the performance of the load balancing protocol, which
we measured in terms of CoV of the load distribution (the lower the CoV, the better the per-
formance). As we can observe in Figure 41(b), when no mechanism to foster cooperation is in
place the CoV increases with the number of nodes that refuse to participate in the balancing
protocol. In contrast, the results achieved by the systems designed using RACOON++ show
that the CEM can effectively withstand the impact of large populations of selfish nodes.

6.5.5 RACOON++ vs FullReview

In this section we present the benefits of using the RACOON++ CEM instead of the original
FullReview protocols [53]. The main differences between these mechanisms, already discussed
in Section 6.3.2, are (i) the approach to punishing selfish and suspect nodes, which is more
tolerant in the CEM, (ii) the possibility in R-acc++ to control the probability of auditing other
nodes, (iii) the dissemination of proofs of misbehaviour in the system, which in RACOON++
is realized by R-rep. To compare the performance of the RACOON++ CEM and of FullReview
in our use cases, we initialized the tested systems with a scenario randomly chosen from the
set created for the previous experiment. Then, we performed two sets of simulations for each
system. In one set we used the RACOON++ CEM to foster cooperation, and in the other set we
used FullReview. Both the CEM and FullReview were optimised for the scenario. In particular,

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

150 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0

0.2

0.4

0.6

0.8

1
CEM

no CEM

Fraction of selfish nodes

F
ra
ct
io
n
of

 C
hu
nk

 L
os
s

0 0.2 0.4 0.6 0.8 0.9

(a) Chunk Loss in LS

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0

0.2

0.4

0.6

0.8

1
CEM

no CEM

Fraction of selfish nodes

L
oa
d
C
oV

0 0.2 0.4 0.6 0.8 0.9

(b) Load CoV in LB

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9
0

0.2

0.4

0.6

0.8

1
CEM

no CEM

Fraction of selfish nodes

F
ra
ct
io
n
of

 O
ni
on

 L
os
s

0 0.2 0.4 0.6 0.8 0.9

(c) Onion Loss in AC

Figure 41: Application-specific performance of the Live Streaming (LS) (a), Load Balancing (LB) (b), and
Anonymous Communication (AC) (c) use cases, when varying the initial fraction of selfish
nodes.

the CEM was automatically configured by the RACOON++ tuning phase, whereas FullReview
was tuned manually.

The first important benefit of using CEM is shown in Figure 42(a), which represents the frac-
tion of nodes that are participating in the cooperative system at the end of the simulation. This
figure readily illustrates the opposite approaches adopted by RACOON++ and FullReview to
deal with selfishness: RACOON++ aims to motivate selfish nodes to change their strategy and
behave cooperatively, while FullReview operates by isolating non-cooperative nodes. We ad-
vocate our approach as the most appropriate for cooperative systems, for two reasons. First,
it takes into account the high heterogeneity of nodes and allows low-resource nodes to occa-
sionally behave selfishly because of resource shortages (e.g., low battery in mobile devices).
Second, it fits better with the cooperative design principles, which are based on participation
and inclusion rather than on punitive restrictions.

On the performance side, Figure 42(b) shows that the RACOON++ CEM can decrease the
bandwidth overhead in the tested systems, notably by up to 22% in the Live Streaming use

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.5 E VA L U AT I O N 151

case. This is mainly due to the replacement of the evidence transfer protocol of FullReview
with a lightweight reputation system, in which reputation values are exchanged by piggyback-
ing on the accountability protocols messages. Also, the CEM allows probabilistic audits, which
further reduces the traffic and computation overhead associated with the audit activities. As is
apparent from Figure 42(b), the types of cooperative system that gain the most from these opti-
misations are the ones performing an extensive message exchange, such as P2P live streaming
and anonymous communication. In fact, R-acc++ scales better than FullReview as the commu-
nication activities to log increase.

LS LB AC
0

500

1000

1500

2000

FullReview Racoon++

N
r

of
 A

ct
iv

e
N

od
es

(a) Active Nodes

LS LB AC
0

0.25

0.5

0.75

1

FullReview Racoon++

B
an

dw
id

th
 O

ve
rh

ea
d

(b) Bandwidth Overhead

Figure 42: Performance comparisons between FullReview and RACOON++ CEM in the Live Streaming
(LS), Load Balancing (LB), and Anonymous Communication (AC) use cases.

In the previous experiments, we assumed the systems running over a reliable network. How-
ever, as shown in earlier work [106], FullReview is very sensitive to message loss, which can sig-
nificantly increase the number of suspect nodes, and might even lead to the wrongful eviction
of a correct node. We evaluated the robustness of the RACOON++ CEM against message loss
by assessing the performance of the tested systems when running over an unreliable network
with up to 20% message loss. Figures 43(a) illustrates the cooperation levels achieved by the
tested systems at the end of the simulations when using the RACOON++ CEM and FullReview.
The curves show that message loss has a small impact on the cooperation, due to the mitigating
effect of the challenge/response protocol used by both mechanisms (see Section 6.3.2). Notice
that the FullReview curves in Figure 43(a) confirm what was already discussed for Figure 42(a),
that is the dramatic decrease of active nodes because of the extreme punishment enforced by the
accountability mechanism. Such performance degradation is much more severe for application-
specific objectives, as can be observed in Figures 43(b-c-d). The main reason is the FullReview
suspicion mechanism, which prevents a suspect node from interacting with others. Because
temporary message loss can trigger node suspicion, the larger the message loss rate, the longer
a node could be stuck in a suspect state. Conversely, in the RACOON++ CEM, a suspect node
can continue to interact with other nodes, though with a lower probability. This gives the sus-
pect node more opportunities to get out of the suspect state by behaving cooperatively, which
is also beneficial for the system. The Racoon++ curves in Figures 43(b-c-d) demonstrate that this
simple strategy is enough to guarantee resilience from selfish nodes while being tolerant to mes-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

152 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

sage loss. Particularly, in the load balancing use case, the CoV of the load distribution decreases
as the message loss rate increases (see Figure 43(c)). This is because, on the one hand, message
loss does not significantly impair the protocol performance; on the other hand, because the ad-
ditional penalisation caused by the suspicion mechanism makes selfish nodes more likely to
stop deviating and persist in cooperation.

0 0 0,01 0,01 0
0

0.2

0.4

0.6

0.8

1

LS, LB, AC - Racoon++
LS - FullReview
LB - FullReview
AC - FullReview

Message Loss

C
oo
pe
ra
tio
n
L
ev
el

0 0.05 0.1 0.15 0.2

(a) Cooperation Level

0 0 0,01 0,01 0
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Racoon++

FullReview

Message Loss

Fr
ac
tio
n
of

 C
hu
nk

 L
os
s

0 0.05 0.1 0.15 0.2

(b) Chunk Loss in LS

0 0 0,01 0,01 0
0

0.05

0.1

0.15

0.2
Racoon++

FullReview

Message Loss

L
oa
d
C
oV

0 0.05 0.1 0.15 0.2

(c) CoV of load in LB

0 0 0,01 0,01 0
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

Racoon++

FullReview

Message Loss

N
r
of

 O
ni
on

 L
os
s

0 0.05 0.1 0.15 0.2

(d) Onion Loss in AC

Figure 43: Experiment results with different proportions of message loss.

6.6 S U M M A R Y

In this chapter, we presented RACOON++, an enhancement of the RACOON framework for the
selfishness-aware and performance-oriented design of cooperative systems. It improves most
of the functionalities and supporting tools of the original framework, with a special focus on
addressing the following issues:

1. RACOON offers limited customisation of the characteristics of the selfish behaviours to evaluate.
RACOON++, instead, provides system designers with a simple yet expressive means, the
Selfishness Model, to parametrize various aspects of selfish behaviours, including details

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6.6 S U M M A R Y 153

on their execution (who deviates, from which step of the protocol, with what type of deviation)
as well as the utility obtained by the nodes. To account for this additional information, we
designed a new algorithm for the automatic generation and injection of selfish behaviours
into the specification of a given system.

2. The behavioural model used by RACOON is based on classical game theory, which requires restric-
tive and rather unrealistic assumptions on nodes’ rationality.
RACOON++, instead, relies on evolutionary game theory, which provides a more suitable
behavioural model for making predictions about the strategic and dynamic interactions
of nodes in cooperative systems.

3. RACOON relies on a custom-built simulator, which might hinder the usability and general accep-
tance of the framework.
RACOON++, instead, has been integrated with the state-of-the-art simulator PeerSim.

Table 32 illustrates the improvements of RACOON++ over RACOON with respect to the
evaluation criteria presented in Chapter 3 (Section 3.3). The use of the well-established and
extensively used simulator PeerSim increases the usability (column “Usa”), performance (col-
umn “Sc”), and accuracy (column “Ref”) of the framework. Furthermore, the new behavioural
model, along with the application-specific information provided by the Selfishness Model, are
also beneficial for the accuracy of the framework results, as they decrease the level of abstrac-
tion with which the cooperative system is specified and analysed (column “Ref”).

General and cooperative systems criteria a Selfishness criteria b

Approaches Usa Rep Ref Sc He Ra D F M C

RACOON ## #### 104 Controllable
√ √ √

χ χ

RACOON++ # ### 106 Controllable
√ √ √

χ χ

a Usa = usability, Rep = reproducibility, Ref = refinement (inverse of abstraction), Sc = scalability, He = heterogeneity.
b Ra = rationality, D = defection , F = free-ride, M = misreport, C = collusion.

Table 32: Comparison between RACOON and the existing approaches for selfishness analysis.

We evaluated RACOON++ on three use cases: a P2P live streaming system, a load balanc-
ing protocol, and an anonymous communication system. First, we described the operations to
specify and implement the use cases, showing that the facilities made available by the frame-
work can effectively reduce the design and development effort required from system design-
ers. Second, we assessed the effectiveness of the RACOON++ cooperation enforcement mech-
anisms (accountability and reputation) in achieving application-specific objectives in each use
case in the presence of selfish nodes. Third, we evaluated the capability of RACOON++ to
auto-configure the CEM, by measuring the time needed to find a satisfactory configuration in
90 different scenarios. Results showed that the process took on average less than 18 minutes
to complete. Finally, we compared the performance of the CEM’s accountability mechanism
with FullReview, showing that the accountability system included in RACOON++ can achieve

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

154 T H E R A C O O N + + F R A M E W O R K : R A C O O N M E E T S E V O L U T I O N

dramatic improvements while imposing less overhead than FullReview.

This chapter concludes the central part of the dissertation, devoted to the presentation of the
second contribution of this thesis (C.2), i.e., RACOON (along with its extension RACOON++),
a framework for designing cooperative systems that achieve desired performance objectives in
the presence of selfish nodes. For determining the achievement of such objectives, RACOON
includes an analysis tool to assess the impact of certain types of selfish behaviours on a sim-
ulated model of the system. However, as readily apparent in Table 32, the selfish behaviours
supported by the RACOON and RACOON++ frameworks do not cover all the types that we
identified in the survey on selfishness presented in Chapter 2. Moreover, the scope of the self-
ishness analysis supported by the RACOON frameworks is further restricted to systems that
use accountability and reputation mechanisms.

Such limitations motivated the search for a general and comprehensive tool for assessing the
impact of selfishness on cooperative systems, which will be the last contribution of this thesis
and the subject of the next part.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Part III

S E L F I S H N E S S I N J E C T I O N A N A LY S I S I N C O O P E R AT I V E
S Y S T E M S :

T H E S E I N E F R A M E W O R K

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7
T H E S E I N E F R A M E W O R K

As extensively discussed in the previous chapters, selfishness is one of the key issues that de-
signers of cooperative systems have to deal with. It has the potential to severely degrade the
system performance and to lead to instability and failures. For instance, in the peer-to-peer
live streaming system described by Guerraoui et al. [72], experiments shown that if a quarter
of nodes stop sharing their available resources, then half of the remaining 75% of nodes receive
a degraded stream. In the evaluation of the RACOON and RACOON++ frameworks (Chap-
ters 5-6), we presented similar experiments, showing that selfishness is a many-faceted and
widespread problem in cooperative systems.

In this context, understanding the impact that selfish behaviours may have on the system
is crucial for the design of reliable and effective countermeasures to mitigate such impact. In
Chapter 3, we argued that this can be done only by designing and injecting selfish behaviours
into the system under consideration, which is a non-trivial task, requiring multi-domain ex-
pertise. Indeed, to carry on this task, the system designer has to first analyse the functional
specification of the considered system and identify those steps (e.g., functions) for which selfish
nodes may behave in a non-cooperative way. Then, on each of the identified steps, the designer
has to determine what are the possible selfish behaviours that are meaningful in the context
of her application and implement the corresponding behaviours. Finally, the designer has to
invest considerable effort in experiments to assess the impact of the introduced behaviours on
the performance of the system.

To the best of our knowledge, the RACOON frameworks developed in this thesis are the first
tools to provide designers with domain-specific support for analysing selfishness in coopera-
tive systems. In fact, the frameworks include a semi-automatic simulation environment that
can assess the selfish-resilience of a system against a fixed set of three simple deviations. How-
ever, such deviations cover only a small subset of the many possibilities of deviation presented
at the beginning of this dissertation, in Chapter 2. Moreover, the deviations need to be manually
implemented for the simulators integrated into the RACOON frameworks.

To overcome these difficulties and limitations, we propose SEINE, a simulation framework
for rapid modelling and evaluation of selfish behaviours in a given cooperative system, aimed
at supporting the design and testing of selfishness-resilient systems. SEINE relies on a Domain-
Specific Language (DSL), called SEINE-L, for describing the behaviour of selfish nodes, along
with an annotation library to associate such specification with a system implementation for the
state-of-the-art simulator PeerSim [128]. We based our design of SEINE-L on the extensive sur-
vey on selfishness in cooperative systems that we presented in Chapter 2. SEINE-L provides
a unified semantics for defining Selfishness Scenarios, which allow describing capabilities, in-
terests and behaviours of the different types of nodes participating in the system. The SEINE
framework provides a compiler and the run-time system supporting the automatic and system-

157

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

158 T H E S E I N E F R A M E W O R K

atic evaluation of different Selfishness Scenarios in the PeerSim simulation framework. Simu-
lations return a set of statistics on the behaviour of the system in the presence of the specified
type of selfish nodes.

The use of the SEINE framework supports a clear separation of selfishness concerns from the
main logic of a cooperative distributed system. This separation improves overall maintainabil-
ity, reuse, and reproducibility of both the system implementation and experiments. Particularly,
the SEINE-L specification allows to describe and easily compare the same experimental condi-
tions in different versions of the same cooperative system.

Overall, this chapter aims to make the following contributions:

• We present the design of the SEINE-L language and we evaluate its expressiveness by
showing that it can capture the semantics of the selfish behaviours described in the papers
from the survey.

• We assess the impact of a Selfishness Scenario in a PeerSim simulation. Through the
evaluation of three complete use cases, namely, a gossip-based dissemination protocol,
a live streaming protocol (i.e., BAR Gossip [111]), and a file sharing system (i.e., BitTor-
rent [45, 116]), we show that the simulations enabled by SEINE are accurate with respect
to real measurements performed on these systems.

• We show that SEINE facilitates a substantial reduction of the effort required to model,
code, and evaluate selfish behaviours in a given system.

Roadmap. The chapter is organised as follows. In Section 7.1 we present the Selfishness
Scenario model, based on the survey on selfishness presented in Chapter 2. Section 7.2
provides an overview of SEINE, followed by a detailed description of its components: the
DSL for modelling a Selfishness Scenario (Section 7.3) and the support tools for injecting it
into a PeerSim simulation (Section 7.4). Section 7.5 presents a performance evaluation of
SEINE, and, finally, the chapter concludes in Section 7.6.

Work presented in this chapter has been accepted for publication in the 47th IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN 2017).

7.1 D O M A I N A N A LY S I S

In Chapter 2, we performed a systematic analysis of selfish behaviours in cooperative systems.
Given the vast body of literature on the subject, we selected 25 state-of-the-art papers that are of
particular interest to the research community and provide detailed and concrete descriptions of
selfish behaviours. For ease of presentation, we report fifteen of these papers in Table 33 below
(the complete list can be found in Table 2). For each paper, the table indicates some characteris-
tics of the studied system (i.e., application domain, service provided, architecture type), along
with further information to characterise the selfishness manifestation therein investigated.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.1 D O M A I N A N A LY S I S 159

Table 33: Subset of the papers considered in our review, along with the characteristics of the cooperative
systems investigated and the types of selfish deviations therein described.

Cooperative System Deviation types a

Reference Domain Name and/or Service Architecture D F M C O

Ben Mokhtar et al. [28] Data Distribution File-sharing, live streaming P2P
√

χ χ
√

χ

Ben Mokhtar et al. [26] Data Distribution FireSpam P2P (struct.)
√ √

χ χ χ

Guerraoui et al. [72] Data Distribution Media streaming P2P (unstruct.) χ
√ √ √

χ

Hughes et al. [87] Data Distribution Gnutella (file-sharing) P2P (unstruct.)
√

χ χ χ χ

Li et al. [111] Data Distribution BAR Gossip (live streaming) P2P (unstruct.) χ
√ √ √

χ

Lian et al. [114] Data Distribution Maze (file-sharing) P2P (unstruct.) χ χ χ
√

χ

Locher et al. [116] Data Distribution BitThief (file-sharing) P2P (unstruct.)
√

χ
√

χ
√

Piatek et al. [148] Data Distribution PPLive (live streaming) P2P (hybrid) χ
√

χ
√

χ

Sirivianos et al. [165] Data Distribution Dandelion (file-sharing) P2P (unstruct.)
√

χ
√

χ χ

Anderson [18] Computing BOINC Client-server χ
√

χ
√

χ

Kwok et al. [104] Computing Grid Computing Client-server χ
√ √

χ χ

Cox and Noble [47] Backup & Storage Samsara P2P (struct.) χ
√

χ χ χ

Gramaglia et al. [71] Backup & Storage P2P Storage P2P (struct.)
√

χ χ χ χ

Mei and Stefa [124] Networking Message switching DTN
√ √

χ χ χ

Ngan et al. [135] Anonym. Comm. Tor [54] Proxy servers
√ √

χ χ χ

a D = defection , F = free-riding, M = misreport, C = collusion, O = other types.

The goal of the domain analysis was to identify possible commonalities in the motivations
and executions of selfish behaviours, so as to build a domain-specific terminology and seman-
tics for their representation and understanding. The output of such analysis is the Selfishness
Scenario model, which provides the conceptual framework to characterise interests and capa-
bilities of different types of nodes participating in a cooperative system, as well as possible
executions of selfish behaviours. A visual representation of the overall model is given by the
feature diagram in Figure 44.1

Remark. The Selfishness Scenario model presents many common features with the classification
framework of selfish behaviours introduced in Chapter 2. Nevertheless, the two models differ in their
focus and objectives. On the one hand, the classification framework provides the conceptual template
to categorise one particular behaviour of a selfish node, based on the node’s motivation and a high-level
description of the behaviour execution. On the other hand, the Selfishness Scenario aims to describe in
greater details the implementation aspects of each selfish behaviour that may affect a given system, in
order to enable their replication for (analytical or experimental) analysis.

Hereafter, we define and discuss each component of the Selfishness Scenario model.

1 The feature diagram in the figure is a cardinality-based extension of the FODA notation [49].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

160 T H E S E I N E F R A M E W O R K

Actor Selfish Behaviour

DeviationActivation Rule

Resource Capability

[1..*] [1..*][0..*][1..*]

[0..*][1..*]

[1..*]

SELFISHNESS SCENARIOSELFISHNESS SCENARIO

Node ModelNode Model Selfishness ModelSelfishness Model

Figure 44: Feature diagram of a Selfishness Scenario.

Definition 7.1 (Selfishness Scenario). A Selfishness Scenario is a tuple 〈N,Σ〉, with:

• N: finite, non-empty set of node models (Definition 7.2) to describe the types of nodes in
the system, and

• Σ: finite set of selfishness models (Definition 7.5) to describe the behaviours of selfish nodes.

The participants of a cooperative system constitute a heterogeneous population both in their
personal interests and capabilities. A node model describes interests and capabilities of each type
of participants in terms of resources.

Definition 7.2 (Node Model). A node model n ∈ N is a tuple 〈E,Π〉, with:

• E: finite, non-empty set of resources of interest (Definition 7.3), and

• Π: finite set of capabilities that might hold over the resources in E (Definition 7.4).

Definition 7.3 (Resource). A resource ε ∈ E is a physical or logical commodity that in-
creases the personal utility of the nodes that possess it.

A physical resource represents a node’s capacity, such as bandwidth, CPU power, storage
space, or energy. A logical resource can be a high-level and application-specific service offered
by the cooperative system (e.g., file-sharing, message routing), or the incentive created by a
cooperation enforcement mechanism (e.g., money, level of trust).

Definition 7.4 (Capability). A capability π ∈ Π of a node model n ∈ N is a constraint on a
resource ε ∈ n.E.

Consider, for example, a cooperative system consisting of mobile and desktop nodes. Mobile
nodes usually have lower communication and computation capabilities than desktop nodes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.1 D O M A I N A N A LY S I S 161

Then, a Selfishness Scenario may describe this system using two node models (mobile and desk-
top) characterised by the same resources of interest (bandwidth and CPU) but different capabili-
ties (less bandwidth and CPU capacities for mobile nodes).

According to Definition 7.1, a Selfishness Scenario describes the possible behaviours of selfish
nodes as a set of selfishness models,2 whereby each selfishness model is characterised by a set of
selfish behaviours as well as the actors that might perform them.

Definition 7.5 (Selfishness Model). A selfishness model σ ∈ Σ is a tuple 〈A,B〉, with:

• A ⊂ N: finite, non-empty set of actors (Definition 7.6), and

• B: finite, non-empty set of selfish behaviours (Definition 7.7).

Definition 7.6 (Actor). An actor α ∈ (A ⊂ N) of a selfishness model σ ∈ Σ is a node model
that might exhibit the selfish behaviours described by σ.

In the Selfishness Scenario model, a selfish behaviour is characterised by a set of deviations
from the correct execution of the cooperative system, along with, possibly, the activation rule
that motivates an actor to adopt that behaviour.

Definition 7.7 (Selfish Behaviour). A selfish behaviour β ∈ B is a tuple 〈ar,∆〉, with:

• ar: the optional activation rule (Definition 7.8), and

• ∆: finite, non-empty set of selfish deviations (Definition 7.9).

Definition 7.8 (Activation Rule). The activation rule ar of a selfish behaviour β ∈ B de-
scribes the condition that will trigger each deviation specified in β.∆ to be executed.

Examples of activation rules are exceeding a threshold amount of resource consumption or
the delivery of a service (e.g., a file download). Another typical situation is providing false infor-
mation to a monitoring mechanism to cover up previous deviations. Thus, a selfish behaviour
may be the activator of other selfish behaviours.

Definition 7.9 (Deviation). A selfish deviation δ ∈ ∆ describes a type of deviation from the
correct execution of the protocols underlying a cooperative system. A deviation point is a
step of a system protocol in which the deviation may take place.

The wide range of motivations behind selfish behaviours, as well as the application-specific
nature of their implementation, generates a tremendous number of possible deviations for any

2 If the set of selfishness models is empty, then the Selfishness Scenario describes a cooperative system composed solely
of cooperative nodes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

162 T H E S E I N E F R A M E W O R K

given cooperative behaviour. Nevertheless, based on our review of the available literature, we
could identify four recurring types of deviations, named defection, free-riding, misreport, and
collusion. As shown in the last columns of Table 33, these types match almost all the selfish
behaviours analysed in our review. The only exception is the rarest-first policy for requesting
file pieces, which is very specific to the implementation of BitTorrent [116].

A defection is an intentional omission in the execution of a system protocol. A selfish node
performs a defection to stop the protocol execution, so as to prevent requesters from consuming
or even asking for its resources. Free-riding is a reduction of resources contributed by a node
without stopping the protocol execution. The literature on cooperative systems offers other
definitions of free riding, such as the complete lack of contribution [116, 135, 165], or download-
ing more data than what is uploaded [87]. Our definition is more general because it applies
to any resource, and it is more precise because it can be clearly distinguished from deviations
that achieve a similar result by stopping the system protocols. A misreport is the communica-
tion of false or inaccurate information, to avoid contribution or gain better access to resources.
Finally, a collusion is the coordinated execution of a selfish behaviour by a group of nodes that
act together to increase their benefits. Collusions are more difficult to detect than individual
deviations [28, 72], because colluders can reciprocally hide their misbehaviours.3

7.2 S E I N E O V E RV I E W

The SEINE framework aims to help cooperative system designers to evaluate the impact of
selfish behaviours on the system performance. The framework builds on the lessons learnt
from the domain analysis presented above, providing designers with modelling and simulation
tools to describe and experiment with Selfishness Scenarios in a given system. SEINE relies on
the PeerSim open-source simulator for large-scale distributed systems [128]. The results of the
simulation experiments are the output of SEINE.

Figure 45 provides an overview of the SEINE framework. To begin, the system designer
(hereafter "Designer", for brevity) produces the input files required by the framework, namely,
a Selfishness Scenario (S in the figure) specified using the SEINE-L DSL, a configuration file to
set up the simulation (C), and a Java implementation of the application protocols used in the
system (P). The clear separation between selfishness and implementation concerns facilitates
the maintenance and reuse of the S and P artefacts. To associate the DSL declarations to the
protocol implementation components (e.g., classes, variables, methods), the Designer decorates
such components using a library of Annotations provided by the SEINE framework.

Upon creating all the input files, the Designer uses SEINE to study the behaviour of the sys-
tem defined by C and P when faced with the Selfishness Scenario described in S. First, the
SEINE-L Compiler generates the configuration file C*, which extends C with instructions for in-
jecting selfish behaviours into P as well as for monitoring the system performance. Second,
SEINE calls the Configuration Manager included in the PeerSim library to build the experiment
at run-time via reading C* and instantiating the specified simulation components. These com-

3 We refer to Section 2.3.2 in Chapter 2 for a more detailed presentation of the deviation types considered in our work.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.3 M O D E L L I N G S E L F I S H N E S S I N S E I N E - L 163

Simulation
Config.

Simulation
Config.CC

 PeerSim

AnnotationsAnnotations SSPeerSimSSPeerSim

SEINE

SEINE-L CompilerSEINE-L Compiler

C*C*

Selfishness
Scenario
Selfishness
Scenario SSInput

Output Experiment results (selfishness scenario evaluation)Experiment results (selfishness scenario evaluation)

Application
Protocol

Application
ProtocolPP

Run-Time PeerSimConfig. ManagerConfig. Manager

Selfishness Scenario GeneratorSelfishness Scenario Generator

Figure 45: Overview of the SEINE framework.

ponents are Java classes that implement (i) the nodes that compose the network, (ii) the set
of protocols hosted by each node (including P), (iii) control objects to monitor or modify the
behaviour of the simulated system, and (iv) the Selfishness Scenario Generator that injects the
Selfishness Scenario into the simulation run-time. In particular, the Selfishness Scenario Gener-
ator uses Aspect-Oriented Programming techniques [61] and relies on a library of Java classes
(SSPeerSim, in Figure 45) to interact with the PeerSim simulator. Finally, the SEINE framework
presents the results of the simulation as a collection of statistics describing the behaviour of the
simulated cooperative system for the given Selfishness Scenario.

7.3 M O D E L L I N G S E L F I S H N E S S I N S E I N E - L

SEINE-L provides a clear and concise description of the capabilities, interests and behaviours of
different models of node participating in the protocols of a cooperative system. The semantics
of the DSL builds on the domain analysis presented in Section 7.1, while its syntax is designed
in the style of the PeerSim configuration file to offer a more coherent integration with this sim-
ulation framework. In fact, the system designer can write the SEINE-L program as a separate
file or integrate it directly into a PeerSim configuration file. Concretely, the SEINE-L syntax is
based on Java property files, i.e., collections of pairs associating a property name to a property
value. A formal specification of SEINE-L is provided as a context-free grammar, which can be
found in Appendix C.

The outline of a SEINE-L program is illustrated in Figure 46. The entry point is the keyword
seine followed by a dot and the name of the Selfishness Scenario. Then, the DSL provides
five top-level language constructs: resources of interest, indicators of the system state, node mod-
els, selfishness models, and observers to monitor the system behaviour. The declarations of the
first four constructs have the format keyword.[construct_name], whereas the observers are
defined inside a block of statements in curly braces.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

164 T H E S E I N E F R A M E W O R K

seine.[selfishness_scenario_name] {

 resource.[r1_name]
 ...

 indicator.[i1_name]
 ...

 node.[n1_name] { ... }
 ...

 selfishness.[s1_name] { ... }
 ...

 observers { ... }
}

Figure 46: The outline of a SEINE-L specification.

We illustrate the usage of the SEINE-L constructs by describing in detail the specification
of a Selfishness Scenario for the live streaming system described by Guerraoui et al. [72] and
already presented as use case of the RACOON and RACOON++ frameworks (see Section 5.5.1).
Listing 7 shows the SEINE-L specification of this scenario, called LSS, which we refer to in the
remainder of this section.

1 seine.LSS { # Live Streaming Selfishness scenario
2 resource.bwCapacity uniform(1000) # kbps
3 indicator.batteryLeft

5 node.mobile {
6 fraction 0.3 # fraction of mobile nodes in the system
7 selfish 0.5 # fraction of mobile nodes that are selfish
8 capability bwCapacity(500)
9 }

10 node.desktop { selfish 0.1 }
11 node.exclude 0 # the id of the node for which LSS does not apply

13 selfishness.smMobile {
14 actor mobile(0.8) # fraction of selfish mobile nodes and actors of smMobile
15 behaviour.bhvAggressive { # 1st behaviour of smMobile, with activation rule
16 activation batteryLeft < 30
17 freeriding { # characteristics of the deviation of bhvAggressive
18 degree 0.8 # degree of deviation
19 on send_SERVE # deviation point
20 }
21 }
22 behaviour.bhvWeak { # 2nd behaviour of smMobile, always triggered
23 freeriding { degree 0.3 on send_SERVE } # 1st deviation of bhvWeak
24 misreport { degree 0.3 on send_PROPOSE } # 2nd deviation of bhvWeak
25 }
26 }
27 selfishness.smColluders {
28 actor desktop mobile(0.2)
29 behaviour.bhvCollusive {
30 collusion { probability 0.15 }
31 }
32 }
33 observers {
34 period 100 # monitoring period
35 name package.path.LSSObserver # class implementing the monitoring process
36 }
37 }

Listing 7: SEINE-L specification of a Selfishness Scenario for the live streaming system studied
in [72].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.3 M O D E L L I N G S E L F I S H N E S S I N S E I N E - L 165

In LSS, a node can be either mobile or desktop, depending on its device type (lines 5-10). The
scenario shows that mobile nodes have severely constrained resources, and, particularly, their
upload bandwidth capacity is half of the desktops’ capacity (line 8). The selfish behaviours
declared in the LSS example aim to reduce the bandwidth dedicated to other nodes (lines 13-26
in Listing 7) or non-colluders (lines 27-32).

C O M M E N T S . Comments begin with # and continue to the end of the line, as illustrated, for
example, in lines 1, 2, 6 and many others.

R E S O U R C E S . The keyword resource introduces the declaration of a physical or logical re-
source. The declared resources must be associated with a value, which can function as an
indicator of its current state. Line 3 of the LSS scenario declares the bwCapacity resource, which
refers to the upload bandwidth capacity of nodes. A resource declaration can also provide in-
structions to initialize its values. In our example, all nodes are initialised with the same upload
capacity (mode uniform) of 1000 kbps. SEINE-L allows other two initialisation modes: random
and linear (i.e., a linearly increasing distribution of values within a specified range).

I N D I C AT O R S . An indicator declaration specifies a quantifiable attribute of either the sys-
tem or a node model that depends upon its current state. For instance, the batteryLeft indicator
in line 3 of Listing 7 can be used to guard the battery level of mobile nodes. Indicators cannot
be initialised within a SEINE-L program.

N O D E M O D E L . Each node model is declared using the node keyword followed by a name
and a block of properties delimited by curly braces. The LSS scenario declares mobile and
desktop nodes, respectively, in lines 5-9 and line 10. The properties that can characterise a node
model are listed below:

• fraction is the proportion of nodes in the system that hold this node model. If omitted,
the fraction is set evenly by the preprocessor so that all node fractions sum up to 1. For
instance, desktop nodes in the considered scenario will have the fraction set to 0.7.

• selfish is the fraction of selfish nodes within this node model. The default value is 1, i.e.,
all nodes holding this model are selfish.

• capability is a list of constraints over the values of the declared resources. Line 8 of
the LSS scenario, for example, halves the upload bandwidth capacity of mobile peers, to
500 kbps. The DSL syntax prevents the definition of capabilities on resources that are not
specified in the program.

There might be reasons to exclude a given set of nodes from the scope of the Selfishness
Scenario, for instance, because they represent special devices or trusted parties. In SEINE-L,
this can be achieved using the node.exclude keywords followed by the identifiers (i.e., inte-
gers) of the nodes to exclude. As an example, line 11 of Listing 7 excludes the first node from

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

166 T H E S E I N E F R A M E W O R K

the LSS scenario, because it represents the streaming source, which is assumed to be always
cooperative.

S E L F I S H N E S S M O D E L . The selfishness declaration specifies the set of selfish behaviours
adopted by a certain configuration of node models. Such a configuration is expressed by the
actor keyword followed by a list of terms, each defining the fraction of nodes of a given model
to associate with the selfishness under specification. In Listing 7, the selfish behaviours of the
LSS scenario described above are grouped into two selfishness declarations, namely, smMobile
and smColluders. The actors of the smMobile model are defined in line 14 as 80% of the selfish
population of the mobile nodes. In practice, given that 15% of nodes in the live streaming system
were described in lines 6-7 as selfish mobile nodes (i.e., 50% of 30% of the overall population),
the percentage of nodes that adopt the smMobile selfishness model is 12%. Consider now the
actor declaration in line 28 in Listing 7, which associates the smColluders selfishness model to
two node models, namely, all the selfish desktop nodes and 20% of the selfish population of the
mobile nodes (i.e., those that were not associated with the smMobile model in the declaration in
line 14). Notice that the fraction of desktop nodes could be omitted from the declaration, as the
default value is 1.

Each selfish behaviour that constitutes a selfishness model is described by a behaviour decla-
ration. A behaviour is a list of selfish deviations from the correct execution of a system protocol;
such deviations are strategically interrelated and triggered by the same activation rule, which
is introduced in SEINE-L by the activation keyword. An activation rule defines a condition
(e.g., greater-than-or-equal-to) over the current value of a resource or indicator declared in the
Selfishness Scenario. The LSS specification, for example, indicates in line 16 that every mobile
node with a smMobile selfishness model switches to a more aggressive behaviour to reduce
bandwidth consumption when it is running out of battery (i.e., the battery level drops below
30%). In contrast, if no activation rule is specified, then the selfish behaviour is always triggered.
This is the case of the bhvWeak (lines 22-25) and bhvCollusive (lines 29-31) behaviours. Support
for the specification of logical expressions to combine multiple activation rules is left to future
work.

A selfish behaviour specifies a non-empty set of deviations from the correct execution of cer-
tain steps (deviation points) of the system protocols. The practical specification of these steps,
called deviation points, is given in Section 7.4. The SEINE-L syntax allows to declare five types
of deviations, based on the classification developed from the domain analysis. Each deviation
type is introduced by its own keyword, namely, defection, freeriding (free-riding is also
accepted), misreport, and collusion. In addition, SEINE-L includes the keyword other if
none of the previous types applies — e.g., incentive-specific deviations such as whitewashing
and Sybil attacks in reputation systems [102], or application-specific deviations such as cheating
the rarest-first policy for requesting file pieces in BitTorrent [116].

The execution of a deviation can be further characterised by the following additional proper-
ties of the deviation declaration:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.3 M O D E L L I N G S E L F I S H N E S S I N S E I N E - L 167

• probability indicates the probability to deviate if the activation rule of the correspond-
ing behaviour is met. The default value is 1.

• on constrains the possible deviation points of a deviation. For instance, in the free-riding
declaration of the bhvAggressive behaviour (lines 17-20), the on property ties the execution
of this deviation to the deviation point named send_SERVE. Multiple deviation points can
be listed as illustrated below, separated by whitespace.

on send_PROPOSE send_REQUEST send_SERVE

SEINE-L also allows specifying the steps of a system protocol execution in which the de-
viation cannot take place, by preceding the name of a deviation point with an exclamation
mark. For instance, the code fragment below specifies a free-riding deviation that affects
all deviation points except the one named send_SERVE.

freeriding { on !send_SERVE }

• degree is a real value between 0 and 1 that specifies the intensity of free riding and misre-
port deviations (default value 1). In particular, the degree quantifies the reduction in the
amount of resources contributed by a node in the case of a free-riding deviation, and the
reduction in the reliability of the information provided in the case of a misreport devia-
tion.

Different deviations of the same type may affect the same deviation points. For instance,
in the LSS scenario, the smMobile model includes two behaviours that specify a free-riding
deviation on the send_SERVE deviation point. Note that if the value of the batteryLeft indicator
is below 30%, then both the behaviour are active. These conflicts are resolved by triggering the
first deviation in order of appearance in the program. The development of more sophisticated
conflict resolution strategies is another area of future study.

To conclude, SEINE-L also allows a compact declaration for deviations with only one prop-
erty. For example, the compact declaration for the collusion deviation in line 30 of Listing 7 is as
follows.

collusion.probability 0.15

O B S E RV E R S . The language constructs presented so far focus on the description of a Selfish-
ness Scenario. Also, SEINE-L provides a means to set-up monitoring components for assess-
ing the performance of a cooperative system under that scenario. This can be done using the
observers declaration. In practice, an observer is a Java object that collects statistics on the
system performance during its simulation with PeerSim (see Section 7.4 for more details). The
observers declaration specifies the full class names of each observer object to enable, as well
as the period between two monitoring events in terms of simulated seconds (the default value
is 100). For instance, the LSS scenario sets up the periodic execution of the LSSObserver object
every 100 simulated seconds. This can also be specified using the compact form below.

observers.name package.path.LSSObserver

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

168 T H E S E I N E F R A M E W O R K

7.4 I N J E C T I N G S E L F I S H N E S S I N P E E R S I M U S I N G S E I N E

The SEINE framework comprises the PeerSim simulator [128], a library of annotations for link-
ing the SEINE-L specification of a Selfishness Scenario to the source code of the application
protocols implemented in PeerSim, a compiler for SEINE-L, and a generator of simulation com-
ponents for modelling, executing and monitoring a Selfishness Scenario in PeerSim. In the
remainder of this section, we present each of the novel tools developed for SEINE.

7.4.1 Library of Annotations

Annotations are the means to link a Selfishness Scenario for a given system to the concrete im-
plementation of that system, i.e., a set of PeerSim protocols. More precisely, the Designer can
associate declarations of a SEINE-L Selfishness Scenario specification to the affected program
elements (e.g., classes, fields, methods) by decorating an element definition with annotations.
This operation requires small and simple modifications of the original code. The SEINE frame-
work provides eight types of annotation. @Seine decorates the declaration of each class im-
plementing a PeerSim protocol to associate with the SEINE-L specification. In other words, it
specifies which protocols are affected by the Selfishness Scenario. @Resource and @Indicator

declare a field modelling a resource or indicator in SEINE-L, respectively.
The remaining annotation types allow indicating deviation points in PeerSim protocols. Con-

cretely, a deviation point is the Java method that implements the part of the protocol in which
one or more deviations may take place. These annotations are named after their deviation type
(i.e., @Defection, @Freeriding, @Misreport, @Collusion, and @OtherDeviation) and target
method declarations. As an example, let Listing 8 be a fragment of the PeerSim implementa-
tion of the live streaming system to experiment with the LSS Selfishness Scenario presented in
Section 7.3. The annotations in lines 4 and 8 indicate the deviation points for the corresponding
deviation types provided in LSS. For instance, the collusion deviation in line 28 in Listing 7 is
implicitly associated with all the methods that have been annotated with @Collusion, such as
send_PROPOSE in Listing 8.

1 @Seine

2 public class LSS {

3 ...

4 @Misreport @Collusion(ref_arg = 1)

5 public void send_PROPOSE

6 (List cnksId, LSS interactingNode) { ... }

7 ...

8 @Freeriding

9 public void send_SERVE

10 (List cnks, LSS interactingNode) { ... }

11 }

Listing 8: A fragment of the PeerSim protocol implementing the system to associate with the LSS
scenario in Listing 7.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.4 I N J E C T I N G S E L F I S H N E S S I N P E E R S I M U S I N G S E I N E 169

The arguments of a deviation point might be linked to the execution of a selfish deviation.
For instance, the @Misreport deviation point in lines 4-6 in Listing 8 has an argument (cnksId)
that refers to the object representing the information to manipulate (a Java collection data type).
Table 34 summarises the argument required from each type of deviation point.

Required argument for the deviation point
Annotation

Description Type

@Defection / /

@Freeriding The object representing the resource to manipulate numerical a, collection b

@Misreport The object representing the information to manipulate numerical a, collection b

@Collusion The protocol instance ran by another node and poten-
tial colluder

PeerSim protocol c

@OtherDeviation / /

a Subclasses of the abstract class Number in Java (i.e., the primitive data types byte, short, int, long, float, and
double).

b Subclasses of the abstract class Collection in Java (i.e, implementations of the List and Set interfaces).
c Implementations of the Protocol interface in PeerSim.

Table 34: The arguments required for each type of deviation point in SEINE.

The annotations used to indicate deviation points can have different attributes, depending
on the deviation type that is represented. For instance, the @Collusion annotation in Listing 8
(line 4) specifies the attribute ref_arg, which indicates what argument of the send_PROPOSE
method is the reference to the protocol instance that might be ran by a potential colluder. This
is the first argument by default. The same attribute is also supported by the @Freeriding

and @Misreport annotation types, identifying the argument of the deviation point that may
be affected by the deviation. For instance, the free riding annotation in line 8 of Listing 8 can
modify the value of the list of chunks cnks to deliver to the requester req. Table 35 outlines the
attributes of each annotation type supported by SEINE to indicate deviation points.

7.4.2 SEINE-L Compiler

As shown in Figure 45, the SEINE-L compiler performs a source-to-source transformation of
the SEINE-L specification (S, in the figure) into the PeerSim configuration file format.

The SEINE-L compiler performs statically various consistency checks on the Selfishness Sce-
nario specification. Due to the declarative nature of the DSL, it is possible to verify the con-
sistency of a specification with respect to the following properties: no omission (i.e., each ref-
erenced construct must be declared), no double declaration, correctness of the node model
distribution (i.e., the proportions of the declared node models must sum to 1), and of the self-
ishness model distribution (i.e., for each node model, the proportions of selfish nodes adopting
a selfishness model must sum to 1). If any of these properties is not fulfilled, then the compiler
reports the error and stops.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

170 T H E S E I N E F R A M E W O R K

@Defection

Attribute Type Default value Description

return_value String “null” The value to return in place of the one resulting
from the correct method execution. The parame-
ter accepts the following values: “null” (default),
“true”, “false”, and any numeric value.

@Freeriding, @Misreport

Attribute Type Default value Description

ref_arg int 0 The ordering position (in the method declaration)
of the argument that is subject to deviation.

decrease boolean true True if the deviation decreases the correct value
(if a number) or length (if a data collection) of the
argument subject to deviation; false, if the devia-
tion increases the correct value or length.

@Collusion

Attribute Type Default value Description

ref_arg int 0 The ordering position (in the method declaration)
of the argument that refers to the protocol in-
stance that might be ran by a potential colluder.

return_value String “null” The value to return in place of the one resulting
from the correct method execution, if ref_arg
refers to a colluder. The parameter accepts the
following values: “null” (default), “true”, “false”,
and any numeric value.

mtd_colluder String “” The name of the method to execute in place of the
correct one if ref_arg refers to a colluder.

mtd_not_colluder String “” The name of the method to execute in place of
the correct one if ref_arg does not refer to a col-
luder.

@OtherDeviation

Attribute Type Default value Description

mtd String “” The name of the method to execute in place of the
correct one.

Table 35: The attributes of the annotation types to indicate deviation points in SEINE.

In addition to the detection of errors in the SEINE-L specification, the SEINE-L compiler can
also verify whether there are inconsistencies in the association between the DSL program and
the annotated PeerSim protocol. More precisely, it verifies that (i) the protocol class is decorated
with the @Seine annotation, (ii) for each resource and indicator in the specification there exists
a class field with the same name that has been properly annotated, and (iii) for each deviation
point explicitly defined in a deviation declaration (using the on property) there exists a method
declaration with the same name that has been consistently annotated.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.4 I N J E C T I N G S E L F I S H N E S S I N P E E R S I M U S I N G S E I N E 171

7.4.3 Selfishness scenario generation

The configuration file generated by the SEINE-L compiler enables the Configuration Manager
of the PeerSim simulator to initialise the native simulation objects (e.g., nodes, protocols, moni-
tors) as well as the Selfishness Scenario objects (e.g., resources, node models, deviations). Specif-
ically, each language construct of the SEINE-L syntax is implemented in a Java class in the
SSPeerSim Java library, which is included in the SEINE framework.

At run time, the Configuration Manager gives instructions to the Selfishness Scenario Genera-
tor to properly instantiate the classes in SSPeerSim so as to generate the objects that support the
simulation of the Selfishness Scenario. Also, the Selfishness Scenario Generator uses Aspect-
Oriented Programming (AOP) [61] techniques to modify the execution of the PeerSim protocol
components that have been annotated by the Designer, in such a way as to inject selfish be-
haviours and mode model capabilities. AOP is a relatively recent programming paradigm,
which allows seamlessly integrating cross-cutting functionalities into existing software imple-
mentations, in an automatic and reliable manner. As we have already argued in this chapter, we
treat selfishness as a separate concern from the main logic of a cooperative system. Therefore,
AOP is a good choice for our framework. For coherence with the SEINE and PeerSim frame-
works, both written in Java, we chose AspectJ [97] as the aspect-oriented language. In AspectJ,
cross-cutting behaviours are described in class-like modules, called aspects. An aspect includes
advice constructs for describing code to be inserted at given locations (joinpoints) of a standard
Java program. Such locations are specified by pointcut constructs. An advice can insert the code
before or after such locations, or it can replace existing code (around advice). The Selfishness
Scenario Generator includes the aspects listed below.

• SeineProtocolAspect can extend PeerSim protocol classes by adding fields for storing
selfishness-related information (e.g., the name of the node model implemented, the self-
ish behaviours that can be performed) as well as methods for behaving accordingly to
the Selfishness Scenario provided. The pointcut of this aspect intercepts all the classes
decorated with the @Seine annotation.

• ResourceIndicatorAspect replaces getters/setters of the fields decorated with @Resource

and @Indicator annotation types with a new implementation that (i) checks the fulfil-
ment of each activation condition that may trigger a selfish behaviour, and, only for re-
sources, (ii) constrains the values to the range specified by a capability condition.

• SelfishInjectionAspect specifies the advice that replaces the correct implementation
of an annotated deviation point with that of a selfish deviation. More precisely, first it
checks whether the deviation can take place. To this end, the advice verifies two condi-
tions: (i) the node executing the method can perform a deviation of that type (i.e., its node
model is associated with a selfishness model that includes the deviation), and (ii) the de-
viation is currently activated. Finally, if these conditions are satisfied, then the deviation
implemented in the advice can be executed; otherwise, the execution proceeds according
to the reference implementation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

172 T H E S E I N E F R A M E W O R K

The code snippet in Listing 9 outlines the integration of deviation code into the send_SERVE
method by the SelfishInjectionAspect. According to the LSS Selfishness Scenario presented
in Listing 7, this method is a deviation point only for selfish mobile nodes that adopt the smMo-
bile selfishness model, i.e., 12% of the overall system population (see Section 7.3).

1 @Freeriding

2 public void send_SERVE(...) {

3 /** SelfishInjectionAspect advice */

4 boolean can_deviate = /* Verification */ ;

5 if(can_deviate) {

6 /* Execution of the deviation code */

7 }

8 /** End of SelfishInjectionAspect advice */

10 /* reference method implementation */ ...

11 }

Listing 9: A code fragment representing code injection into the send_SERVE method.

Another type of simulation component instantiated by the Selfishness Scenario Generator is
the set of observers that monitor and gather statistics on the system performance. The SEINE
framework helps the Designer in creating application domain-specific observers, by providing
in the SSPeerSim library an abstract class that defines the methods that need to be implemented.
The execution of the Designer’s observers is coordinated by a configurable controller that is
automatically operated by the Selfishness Scenario Generator. Particularly, the set-up of the
controller is specified by the observers declaration of the SEINE-L program (see Section 7.3).

7.4.4 SEINE Implementation

All tools and components in SEINE are written in Java. The entire implementation consists
of almost 4000 lines of code, not including third-party components (i.e., the PeerSim simula-
tor) and automatically generated code (i.e., the SEINE-L parser, built using ANTLR [146]). We
developed the SEINE framework in a modular and loosely coupled manner, which promotes
extensibility and reuse of its core components. For example, the interaction with the PeerSim
simulator is implemented in a separate and independent module (the SSPeerSim library), which
is less than 25% of the entire source code.

The SEINE framework is freely available at https://github.com/glenacota/seine.

7.5 E VA L U AT I O N

In this section, we demonstrate the benefits of using SEINE to describe selfish behaviours and
evaluate their impact on cooperative systems. We start by assessing the generality and expres-
siveness of the SEINE-L language by outlining some of our experiences in describing Selfishness
Scenarios with our DSL. Then, we evaluate the accuracy of the SEINE output, developing and

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/seine

7.5 E VA L U AT I O N 173

testing three use cases selected from our literature review, namely, a gossip-based live stream-
ing protocol, a selfish-resilient media streaming protocol, and a selfish client for the BitTorrent
protocol. Also, we assess the effort required by a Designer to implement and test these use
cases. Finally, we show that SEINE imposes a small time overhead on the normal execution of
the PeerSim simulator.

To facilitate the reproducibility of our results, the configuration files related to the experi-
ments reported in this section are available for download on the project page on GitHub.

7.5.1 Generality and expressiveness of SEINE-L

We have used SEINE-L to express the Selfishness Scenarios described in the fifteen studies from
the domain analysis reported in Table 33. Many of these works present various strategies to
save bandwidth in data distribution applications, such as Gnutella [87], BitTorrent [116], and
PPLive [148]. Other works investigate selfishness in different domains, like the paper of Kwok
et al. [104] that studies Grid computing systems, and specifically the impact of task dispatching
policies within a Grid site that allocate resources only to local tasks. Overall, the number and
variety of the cooperative systems considered, as well as the different degrees of complexity
of the Selfishness Scenarios therein described, demonstrate the general applicability and the
expressive power of SEINE-L.

Table 36 shows that SEINE-L files are concise: the Selfishness Scenarios specified are between
14 and 37 Lines of Code (LoC), with an average of 25 LoC. The complete specification of each
Selfishness Scenario can be found in Appendix D

Reference LoC Reference LoC

Ben Mokhtar et al. [28] 29 Sirivianos et al. [165] 24

Ben Mokhtar et al. [26] 34 Anderson et al. [18] 17

Kwok et al. [104] 24 Cox and Noble [47] 14

Guerraoui et al. [72] 19 Gramaglia et al. [71] 35

Hughes et al. [87] 20 Mei and Stefa [124] 28

Li et al. [111] 37 Ngan et al. [135] 30

Lian et al. [114] 17 Piatek et al. [148] 18

Locher et al. [116] 23

Table 36: Lines of Code for expressing the Selfishness Scenarios of the papers considered in the domain
analysis review.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

174 T H E S E I N E F R A M E W O R K

7.5.2 Accuracy of SEINE-R

To validate the accuracy of SEINE, we compared the results produced by our framework with
those published in three use cases selected from the literature review. We discuss each use case
separately below.

7.5.2.1 Live Streaming

We consider the gossip-based streaming system presented by Guerraoui et al. [72] and already
described in Section 7.3. Despite its simplicity, this system is realistic enough to serve as a
representative example of a practical live streaming application. Guerraoui et al. deployed
the system over PlanetLab,4 in which a source node streams video chunks with a bit rate of
674kbps to 300 nodes having upload bandwidth limited to 1000kbps. They tested one scenario
with only cooperative nodes and another scenario with a quarter of the nodes being selfish,
following the selfishness model described in Section 7.3. To assess the system performance in
both scenarios, Guerraoui et al. considered the fraction of cooperative nodes perceiving a clear
stream (i.e., viewing at least 99% of the streamed chunks) when varying the playout deadline
from 0 to 60 seconds.

We developed this gossip-based live streaming system as a PeerSim protocol, and we used
SEINE to describe and simulate the same Selfishness Scenario as well as the same experiment
setting as investigated by Guerraoui et al. [72]. We ran ten simulations for each set of parame-
ters, obtaining a fairly low standard deviation (0.02 on average), and we used the mean value
to compare with the reference results. Figure 47 shows the high level of accuracy of SEINE-R,
with an almost perfect match of the curves representing the scenario with selfish nodes and a
remarkable correspondence also in the selfish-free scenario. 5 Note that in the latter scenario
our results show high accuracy when the playout deadline is above 7 seconds, whereas, below
this time limit, SEINE simulations indicated better results. This is mainly due to the lower, real-
world reliability of the PlanetLab network compared with the perfect but simulated reliability
of the PeerSim network.

7.5.2.2 BAR Gossip

Proposed by Li et al. [111], BAR Gossip is a P2P live streaming system designed to tolerate
both Byzantine and selfish peers. To this end, BAR Gossip includes mechanisms to enforce co-
operation, namely, verifiable partner selection and data exchange mechanisms that make non-
cooperative behaviours detectable and punishable. We select this use case to show that SEINE
can also be used as a tool for testing performance and robustness of selfish-resilient protocols.
For instance, BAR Gossip has been proven vulnerable to colluding nodes [28], which exchange
video chunks off-the-track among each other, thereby decreasing the system efficiency and par-
ticularly the streaming experience of non-colluding nodes.

4 PlanetLab: https://www.planet-lab.org/
5 Our results are plotted over a copy of the figure published in [72].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://www.planet-lab.org/

7.5 E VA L U AT I O N 175

25% freeriders Guerraoui et al. [11]
25% freeriders SEINE

No freeriders Guerraoui et al. [11]
No freeriders SEINE

%
 n

od
es

 v
ie

w
in

g
a

cl
ea

r
st

re
am

Playout deadline (s)

0 10 20 30 40 50 60
0

10

20

30

40

50

60

70

80

90

100

Figure 47: Comparison between the results published by Guerraoui et al. [72] and the results obtained
with SEINE.

We assessed the accuracy of SEINE in reproducing the BAR Gossip Selfishness Scenario that
was presented and experimentally studied by Ben Mokhtar et al. [28]. That study deployed
400 nodes in the Grid’5000 testbed,6 each node running either a compliant version of BAR
Gossip or a collusion-enabled implementation. We developed BAR Gossip [111] in PeerSim
and set up its protocols using the configuration reported by Ben Mokhtar et al. [28]. Then, we
simulated the system when varying the proportion of colluding nodes, from 0 to 50, and we
measured the fraction of missed updates by cooperative nodes. Again, we ran ten simulations
for each setting, obtaining an average standard deviation below 0.01. As clearly depicted in
Figure 48, the accuracy of the results output by SEINE-R with respect to the ones provided
by the authors of the reported study is very high (0.996 Pearson correlation score). The gap
between the results when the proportion of colluders is above 50% is due to some missing
parameters in the description of the experiment setting, especially the maximum of chunks
that can be exchanged during the optimistic push protocol.

7.5.2.3 BitThief

Locher et al. [116] developed and released software to download files in the BitTorrent protocol
without uploading any data. Specifically, they implemented and openly distributed a selfish
client, BitThief, capable of attaining fast downloads without contributing. The purpose of this
use case is twofold. First, it shows the accuracy of SEINE on empirical experiments performed
on real-world applications. Second, it proves the simplicity of using SEINE when a PeerSim
implementation of the system is already available. Specifically, we used the BitTorrent code
published on the PeerSim project website.7

We used SEINE to reproduce the real world experiment described by Locher et al. [116],
which consists in monitoring the download times for one torrent in a BitTorrent network with

6 Grid’5000: https://www.grid5000.fr/
7 http://peersim.sourceforge.net/code/bittorrent.tar.gz.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://www.grid5000.fr/
http://peersim.sourceforge.net/code/bittorrent.tar.gz

176 T H E S E I N E F R A M E W O R K

0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

% of colluders

%
 o

f
m

is
se

d
up

da
te

s

Ben Mokhtar et al. [3]

SEINE

Figure 48: Comparison between the results published by Ben Mokhtar et al. [28] and the results obtained
with SEINE.

(a) % of clients that have
downloaded the file

min

(b) File pieces uploaded by
the clients

0 10 20 30 40 50 60
0

20

40

60

80

100

BitThief BitTorrent

0 10 20 30 40 50 60
0

50

100

150

200

250

Figure 49: Performance and contribution of BitTorrent and BitThief when downloading the same file, mea-
sured using SEINE.

5% BitThief clients. BitThief exploits several features of the BitTorrent protocol by means of a set
of selfish deviations from the default client implementation. For example, a BitThief client can
open up to 500 connections with other peers (the default value is 80), to increase its probability
of receiving useful file pieces. In their experiment, Locher et al. showed that such deviations
allow BitThief clients to download the file with performance comparable to (if not better than)
the default clients, while not contributing any file pieces to other peers. The same result has
been obtained in our experiment using SEINE, as can been observed in Figures 49(a)-(b).

7.5.3 Development effort

To show the benefits of using SEINE in terms of design and development complexity, we dis-
cuss the effort required to describe, implement and maintain selfish behaviours in our use cases.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.5 E VA L U AT I O N 177

Using SEINE, the specification of the Selfishness Scenario to test is clearly separated from its ac-
tual integration into the cooperative system code. Such separation of concerns facilitates the
description and maintenance of node models and selfish behaviours, allowing the Designer to
focus only on the SEINE-L program and on a few annotations of the system code. On the con-
trary, without using SEINE, the Selfishness Scenario must be hard coded into the PeerSim Java
programs and configuration files.

As can be noted from Figure 50(a), implementing a Selfishness Scenario using SEINE is not
only easier but also extremely concise regarding Lines of Code. The bars in the figure provide
a graphical representation of the volume and distribution of code to modify with respect to
the faithful implementation of the cooperative system (the white part of the bar). The figure
also reports the exact number of LoC to add for each use case. We can derive two observations
from these results. First, implementing a Selfishness Scenario using SEINE requires four to five
times less code to write than without using our framework. Second, when not using SEINE,
such implementation (i.e., parameters, variables and methods) is scattered across the code of
the PeerSim Java program and configuration file; on the other hand, the annotation library
included in SEINE-R requires the Designer only to annotate existing fields and methods of the
PeerSim program, and to write a SEINE-L program directly into a configuration file.

To illustrate the gain in flexibility and maintainability of testing Selfishness Scenarios using
SEINE, we propose simple modifications to the scenarios of our use cases, and we discuss the
effort required to adapt the input files.

• Live Streaming: we duplicate a selfishness model specifying a different activation policy
and deviation parameters (i.e., a higher degree of free riding and misreporting).

• BAR Gossip: we remove a selfishness model.

• BitThief : we remove a resource and we add a probability of execution to all deviations.

Figure 50(b) illustrates the number of Lines of Code to modify (i.e., add, remove, or edit)
in each use case to implement the modifications listed above. Using SEINE, modifying the
Java class requires modification of at most 1 line, which corresponds to inserting or dropping
an annotation. Furthermore, when updating the configuration file, the Designer operates on
coherent and consecutive blocks, such as the selfishness model block. In contrast, as can be
observed in Figure 50(b), implementing the modifications to the Selfishness Scenarios when
not using SEINE leads to more LoC to modify, which are scattered across the sources.

To demonstrate how SEINE facilitates the fast development and testing of different Selfish-
ness Scenarios, we present two test cases for the BAR Gossip cooperative system. In the first
test case, we start from the Selfishness Scenario described in [28] and discussed in Section 7.5.2,
and we evaluate the impact of the size and number of colluding groups. More precisely, we
fix the fraction of selfish nodes in the system to 20%, and we evaluate the streaming quality
perceived by selfish and cooperative nodes when varying from one big colluding group to 10
smaller groups of equal size. Results depicted in Figure 51(a) show that the percentage of up-
dates missed by selfish nodes increases as they form colluding groups of smaller size. This is
due to the lower probability for colluders to meet, given the random nature of the underlying

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

178 T H E S E I N E F R A M E W O R K

LiveStreaming

no SEINESEINE no SEINESEINE

BarGossip

no SEINESEINE

BitThief

6 110 14 179 6 120
Java
class

Config
file 19 18 37 19 21 14

(a)

LiveStreaming

no SEINESEINE no SEINESEINE

BarGossip

no SEINESEINE

BitThief

Java
class

Config
file 8 3

0 41 1 45 1 43

5 12 5 4

(b)

Figure 50: Number and distribution of Lines of Code (a) to specify the Selfishness Scenario into the faithful
implementation of the use cases and (b) to modify such scenarios, with and without using
SEINE.

gossip protocol for chunk dissemination, which cannot be cheated in BAR Gossip by design.
On the contrary, the absence of significant changes in the performance for cooperative nodes
indicates that they are not affected by how colluders organise themselves into groups. The sys-
tem Designer can implement this test case using SEINE without modifying a single line of code
in the PeerSim implementation of BAR Gossip, but only operating on the SEINE-L code. Specif-
ically, the Designer first duplicates the selfishness model describing the collusive behaviour as
many times as the number of colluding groups she wants to create. Then, the Designer modifies
the fractions of the actor declarations, in such a way that they sum to one.

As a second test case, we investigate the impact of mobile nodes with lower bandwidth ca-
pabilities on the performance of BAR Gossip. Similarly to the previous test case, this scenario
modification does not change the system implementation but only the SEINE-L description of
the Selfishness Scenario. In particular, the Designer has to create a new node model block (i.e.,
mobile) which limits the bandwidth capacity with respect to the original node model (i.e., desk-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

7.5 E VA L U AT I O N 179

(a)

Number of colluding groups

(b)

1 2 4 6 8 10
0

5

10

15

20

25

30

0 10 20 30 40
0

5

10

15

20

25

Coop. Desktop

Coop. Mobile

% of mobile nodes

Selfish

Cooperative

%
 o

f
m

is
se

d
up

da
te

s

%
 o

f
m

is
se

d
up

da
te

s

Figure 51: Performance of BAR Gossip when varying (a) the number of colluding groups and (b) the
fraction of resourceless mobile nodes.

top). For example, the bandwidth capacity of desktop nodes is 1000 kbps, whereas it is capped
to 300 kbps for mobile nodes. This modification to the scenario corresponds to adding 4 lines
to the SEINE-L program and changing a few numeric values (e.g., refactoring the fraction of
desktop nodes). Figure 51(b) reports the results of this test case, showing that the percentage
of updates that are missed by cooperative nodes decreases as the fraction of mobile nodes in-
creases. This result can be explained by the lower contribution that mobile nodes make to the
chunk dissemination protocols, due to their limited resource capabilities.

To conclude, all these test cases demonstrate how the development and testing of cooperative
systems greatly benefit from the SEINE functionalities. Evaluating a new Selfishness Scenario
in a complex system like BAR Gossip only takes less than an hour, including the simulation
time, for instance.

7.5.4 Simulation time

In this section, we evaluate the extra execution time imposed by SEINE on the regular PeerSim
performance. To this end, we defined 10 different Selfishness Scenarios for each use case de-
scribed in Section 7.5.2, and we ran 40 simulations for each scenario. The results, summarised
in Table 37, show that SEINE imposes an average extra execution time of 5% (standard devia-
tion 0.03), ranging from the 1.6% extra time achieved by the BAR Gossip use case to the 7.8%
extra time of BitThief. Such a short duration increase — 11 seconds out of 154 seconds, at most
— appears to be very reasonable in light of the benefits provided by the SEINE framework.

Use Case Execution time (ms) Extra time (ms)

Live Streaming 86,900 4,791

BAR Gossip 15,088 238

BitThief 154,604 11,176

Table 37: Average execution time to evaluate a Selfishness Scenario using SEINE and the additional time
it imposes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

180 T H E S E I N E F R A M E W O R K

7.6 S U M M A R Y

In this chapter, we presented SEINE, a semi-automatic framework for fast modelling and eval-
uation of the impact of selfish behaviours on cooperative distributed systems. The framework
builds on the lessons learnt from the survey on selfishness presented in Chapter 2, providing
system designers with modelling and simulation tools to describe and experiment selfishness
in a given system.

At the heart of SEINE is the Selfishness Scenario model, which can capture the characteristics of
the various models of nodes and behaviours in a cooperative system. Based on this model, we
developed SEINE-L, an expressive domain-specific language to describe selfishness scenarios
in a clear and concise way. A SEINE-L specification allows describing interests and capabilities
of nodes in terms of system resources (e.g., bandwidth capacity, battery level) as well as imple-
mentation details of the selfish behaviours that they may take. In particular, a selfish behaviour
in SEINE-L is specified as a set of deviations triggered by an activation condition (e.g., a thresh-
old over the value of a resource), where each deviation has its own characteristics, such as type,
target and intensity. Once a SEINE-L specification of the selfishness scenario to analyse is pro-
vided, the SEINE framework proceeds with its evaluation through simulation experiments. To
this end, the framework provides a compiler and the run-time system supporting the automatic
and systematic evaluation of different selfishness scenarios in the state-of-the-art PeerSim simu-
lation framework. Simulations return a set of statistics on the behaviour of the system when in
the presence of the specified model of selfish nodes. The simulation results are also the output
of the SEINE framework.

We demonstrated the benefits of using SEINE by evaluating the framework in four aspects.
First, we evaluated the generality and expressiveness of SEINE-L, showing that the language
can capture the semantics of 38 selfish behaviours described in fifteen papers from the literature.
Second, to assess the accuracy of our framework, we used SEINE to develop and test three use
cases selected from the literature (i.e., a gossip-based live streaming protocol, a selfish-resilient
media streaming protocol, and a selfish client for the BitTorrent protocol), demonstrating that
the SEINE outputs were accurate with respect to real measurements performed on these use
cases. Third, we showed that SEINE could effectively reduce the effort required by a designer
to implement and test selfishness scenarios. Particularly, we evaluated the effort both quan-
titatively, in terms of lines of code (almost an order of magnitude lower when using SEINE),
and qualitatively with concrete examples. Finally, we showed that SEINE imposes on average
5% of time overhead on the normal execution of the PeerSim simulator, which we believe is
reasonable in light of the other benefits described above.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Part IV

C O N C L U S I O N S A N D F U T U R E W O R K

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8
C O N C L U S I O N S

8.1 S U M M A R Y

Selfishness is one of the key problems that confront designers of cooperative systems such as
peer-to-peer (P2P) live streaming systems and file-sharing networks. Indeed, selfish nodes have
the potential to severely degrade the system performance and to lead to instability and failures.
For example, in experiments conducted using the tools developed in this thesis, we showed
that if 25% of nodes participating in P2P live streaming stop sharing the video chunks they have
downloaded, then half of the remaining nodes are not able to view a clear stream (Chapter 7).

Despite the magnitude of the problem, current techniques for predicting the behaviour of self-
ish nodes, understanding their possible influence on the system, and designing cost-effective
countermeasures remain manual and time-consuming, requiring multi-domain expertise.

The research reported in this thesis aimed to further the understanding of selfish behaviours
in cooperative systems, as well as to provide conceptual and practical tools for helping design-
ers cope with the associated challenges. In the introductory chapter of this dissertation, we
identified two categories of challenges: the first category (A) aiming to provide support for
understanding, modelling and evaluating selfish behaviours in cooperative systems, and the
second category (D) aiming to facilitate the design and configuration of systems that meet tar-
geted cost-benefit trade-offs in the presence of selfish nodes. Motivated by these challenges, we
made three distinct but interrelated contributions, which are addressed in the three parts of the
dissertation as summarised below.

Part I: Selfishness in cooperative distributed systems

(C.1) A survey on selfishness and its countermeasures in cooperative systems.

The first part presented the background and motivation for our research through a comprehen-
sive survey of existing work on selfishness and its countermeasures. In Chapter 2, we focused
on characterising the behaviour of selfish nodes in cooperative systems. After introducing the
concepts and definitions used in the rest of the thesis, along with practical examples from vari-
ous application domains, we described a classification framework to specify and compare self-
ish behaviours. We illustrated the general applicability of this framework in four detailed use
cases, namely, a P2P live streaming system, the BOINC volunteer computing infrastructure, a
message propagation protocol for delay tolerant networks, and the Tor anonymous communi-
cation network. We used the classification framework for conducting a systematic analysis of
selfishness manifestations in the selected literature. Results from this analysis provided valu-

183

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

184 C O N C L U S I O N S

able insights to understand what are the most common and important selfish behaviours to
focus on when designing a cooperative system.

In the two remaining chapters of the first part, we reviewed previous work that has attempted
to address selfish behaviours. We started in Chapter 3 by presenting analytical and experimen-
tal approaches suitable for the analysis of selfishness in cooperative systems. Among the an-
alytical approaches, game theory was discussed in greater detail, due to its important role in
the technical contributions of this thesis. The chapter concluded with a comparative evaluation
of the presented approaches. It showed that no satisfactory approach is presently available to
conduct a comprehensive, usable, and reliable analysis of selfishness in cooperative systems.
This result provided the first motivation for the tools proposed in Part II.

Chapter 4 then focused on the study of two state-of-the-art countermeasures against selfish
nodes, i.e., incentive mechanisms and accountability, selected based on their importance in the
literature and relevance to our technical contributions. To begin, we described different in-
centive schemes to foster cooperation (resp. discourage selfishness), grouped into reciprocity-
based and economy-based schemes. Then, from the subsequent comparative evaluation of
these schemes, we found that reciprocity-based incentives — notably, reputation systems —
are the most suitable for dealing with various types of selfish nodes in any cooperative system.
In the second part of the chapter, we showed that the reliability and robustness of a reputa-
tion system could be greatly improved if paired with accountability techniques. Hence, we
concluded Chapter 4 presenting the basic principles of accountability, along with a detailed de-
scription of the FullReview system developed by Diarra et al. [53]. Finally, we discussed the
cost and configuration issues of accountability, which introduced the second motivation for the
framework proposed in the next part of the dissertation.

Part II: Selfishness-aware design of cooperative systems

(C.2) RACOON/RACOON++: a framework for the selfishness-aware design of coopera-
tive systems.

In the second part of the dissertation, we described the second contribution of the thesis: RACOON,
an integrated framework for the selfishness-aware and performance-oriented design of coop-
erative systems. RACOON puts into practice the knowledge about selfishness gained in the
previous part, bringing together different approaches with the goal of facilitating the enforce-
ment and configuration of efficient mechanisms to foster cooperation in any system deployed
over a network of selfish nodes.

The RACOON framework was presented in Chapter 5, which provided a detailed descrip-
tion of each step of its largely automated methodology. The operation of RACOON consists
of two phases: the assisted design of the cooperative system and the performance-oriented tun-
ing of its parameters. To begin, the system designer provides the functional specification of
the system (Protocol Automaton), along with a set of selfish-resilience and performance objec-
tives that the system should satisfy. RACOON then augments the specification with (i) two
cooperation enforcement mechanisms, namely, a reputation system and an accountability sys-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8.1 S U M M A R Y 185

tem based on FullReview, as well as (ii) possible deviations, drawn from a fixed pool of selfish
behaviours. Then, during the tuning phase, RACOON evaluates different configurations of
the cooperation enforcement mechanisms until it finds the configuration that allows achieving
the specified objectives. Such evaluation is performed through simulations that use classical
game theory analysis to drive the behaviour of selfish nodes. Overall, RACOON results in the
redesign of the system specification that includes finely tuned mechanisms to meet the selfish-
resilience and performance objectives set by the designer. We illustrated the benefits of using
the RACOON framework by designing a P2P live streaming system and an anonymous com-
munication system. Experiments in simulation and (at a smaller scale) in a real deployment
on Grid’5000 showed that RACOON could greatly simplify the design and configuration of the
use cases.

In the beginning of Chapter 6, we identified three major weaknesses of the RACOON frame-
work, both theoretical and practical: (i) it considers a predefined set of selfish behaviours,
which are fixed and poorly customizable, (ii) it relies on classical game theory to predict the
behaviours of selfish nodes, which requires making some strong assumptions on the capabil-
ities of nodes, and (iii) it relies on a custom-built simulator. Motivated by these weaknesses,
in the remainder of the chapter, we presented an enhanced and extended version of the frame-
work, called RACOON++. RACOON++ allows system designers to parametrize various aspects
of selfish behaviours, including details on their execution (who deviates, from which step of the
protocol, with what type of deviation) as well as the utility obtained by the nodes. Furthermore,
RACOON++ uses evolutionary game theory to better represent the dynamic behaviour of co-
operative systems, whereby selfish nodes can change their strategy over time through learning
and imitation. Finally, RACOON++ relies on the state-of-the-art open source simulator PeerSim,
thus improving the accuracy, reproducibility and performance of the original framework. We
evaluated RACOON++ on three use cases: a P2P live streaming system, a load balancing pro-
tocol, and an anonymous communication system. The evaluation showed that the systems de-
signed using RACOON++ could maintain a good behaviour as the rate of selfish nodes raised.

To summarise, the RACOON framework provides a general and semi-automatic method-
ology, along with its software implementation, for designing cooperative systems that achieve
desired performance objectives in the presence of (particular types of) selfishness. To determine
whether or not these objectives are met, RACOON includes an analysis tool based on game the-
ory and simulation, which is used to predict and automatically inject selfish behaviours into the
simulated system. However, despite some improvements made in RACOON++, the types and
characteristics of the selfish behaviours supported for evaluation are quite limited if compared
with those identified during the survey reported in Chapter 2. Moreover, the scope of the self-
ishness analysis supported by RACOON is further limited to systems that enforce a particular
type of incentive and accountability techniques, i.e., those automatically enforced by the frame-
work. Such limitations motivated the search for a more general and comprehensive analysis
tool, which is the last contribution of this thesis and the subject of the next part.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

186 C O N C L U S I O N S

Part III: Describing and injecting selfish behaviours in cooperative systems

(C.3) SEINE: a framework for describing and injecting selfish behaviours in cooperative
systems.

The third part of the dissertation, consisting of Chapter 7, presented SEINE, a semi-automatic
framework for fast modelling and evaluation of selfish behaviours in cooperative systems.
SEINE relies on a domain-specific language, called SEINE-L, for describing the behaviour of
selfish nodes, along with an annotation library to associate such specification with a system
implementation for the simulator PeerSim. To design SEINE-L, we based on the domain analy-
sis presented in the first part of this dissertation, especially, in Chapter 2. SEINE-L provides a
unified semantics for defining selfishness scenarios, which allow describing capabilities, interests
and behaviours of different types of nodes participating in the system. The SEINE framework
provides a compiler and the run-time system supporting the automatic and systematic evalua-
tion of different selfishness scenarios in the PeerSim simulation framework. Simulations return
a set of statistics on the behaviour of the system when in the presence of the specified type
of selfish nodes. We illustrated the generality of SEINE-L by describing fifteen selfishness sce-
narios extracted from the domain analysis. Then, we showed the accuracy and ease of use of
SEINE in evaluating the impact of selfish behaviours in three use cases selected from the liter-
ature, namely, a gossip-based dissemination protocol, a live streaming protocol (BAR Gossip),
and a file sharing system (BitTorrent).

8.2 P O S S I B L E I M P R O V E M E N T S A N D F U T U R E R E S E A R C H D I R E C T I O N S

In the following, we discuss possible improvements of the contributions presented in this thesis,
as well as future research direction that we consider worth pursuing.

8.2.1 Integration of RACOON and SEINE

The selfish behaviours considered by the RACOON framework to evaluate the selfish-resilience
of a system are quite limited if compared with the possibilities emerged from the survey pre-
sented in Chapter 2. We addressed this limitation by developing SEINE, which provides a sim-
pler, more general and comprehensive framework for selfishness analysis. The natural follow-
up work is the integration of the SEINE functionalities into the RACOON framework, so as to
combine the best analysis and design features from each tool, as summarised in Table 38.

Figure 52 illustrates how RACOON and SEINE might be composed into a single coherent
framework. In particular, the figure shows which steps of RACOON could be replaced by
SEINE. How to realise such integration in practice, especially the adaptation of the different
inputs, is an engineering task that will require careful design and implementation.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8.2 P O S S I B L E I M P R O V E M E N T S A N D F U T U R E R E S E A R C H D I R E C T I O N S 187

Table 38: Evaluation of performance and capabilities of the integration between RACOON and SEINE.

Analysis Design

General and cooperative systems criteria a Selfishness criteria b
CE c

Approaches Usa Rep Ref Sc Ra D F M C

RACOON(++) # ### 106 √ √ √
χ χ

√

SEINE ### 106 √ √ √ √ √
χ

RACOON(++) + SEINE ### 106 √ √ √ √ √ √

a Usa = usability, Rep = reproducibility, Ref = refinement (inverse of abstraction), Sc = scalability.
b Ra = rationality, D = defection , F = free-ride, M = misreport, C = collusion.
c CE = cooperation enforcement

Config. ExplorationConfig. Exploration

 CE Config. CE Config.

RACOONRACOON

DESIGN

PHASE

Cooperation
Enforcement (CE)

Cooperation
Enforcement (CE)

Evaluation Results

TUNING

PHASE

Selfishness InjectionSelfishness Injection

Config. EvaluationConfig. Evaluation

Rationality InjectionRationality Injection

SEINESEINE

Input

OutputOutput

Figure 52: Conceptual integration of SEINE into the RACOON framework.

8.2.2 Additional types of selfish deviations

In the review of research work on selfishness, presented in Chapter 2, we identified four re-
curring types of deviations from the cooperative behaviour: defection, free-riding, misreport,
and collusion. In this thesis, we showed that these types are sufficient to describe most of the
deviations described in the reviewed literature. However, other types of deviations are possi-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

188 C O N C L U S I O N S

ble. For example, as was noted in Chapter 2, we intentionally excluded from our consideration
incentive-specific deviations such as whitewashing and Sybil attacks in reputations systems,
or forgery and double spending in economy-based mechanisms. As another example of devi-
ation type, we might consider deviations that violate the timing requirements of an intended
behaviour, e.g., executing a certain task at a slower speed or delaying the sending of a message.
A practical example is provided by Guerraoui et al. [72] in the context of a gossip-based live
streaming system. In this system, each node proposes its available video chunks to randomly
selected partners, who in turn request any chunks they need; the interaction ends when the
proposing node delivers the requested chunks. The “timing deviation” described by the au-
thors consists in increasing the period between two proposals, so as to propose old chunks that
have a greater probability of not being requested because already received by the partners from
previous interactions with other nodes. As a result, the selfish node is asked to deliver fewer
chunks, which reduces its bandwidth consumption.

We plan to conduct a wider and deeper survey of the literature about selfishness, in order
to formalise the deviation types outlined above as well as to search for additional types. The
acquired knowledge would represent not only a conceptual contribution to enrich our under-
standing of the great variability of selfish behaviours, but it will also have practical importance
in providing the theoretical background to widen the range and scope of the selfishness injec-
tion tools proposed in this thesis.

8.2.3 Extending the RACOON framework

The modularity of the RACOON framework provides many possibilities to extend its capabili-
ties in different ways. For example, in Chapter 6, we presented RACOON++, which extended
the original framework with a new rationality model for selfish nodes (i.e., evolutionary game
theory) and with a model for parameterizing some aspects of the selfish behaviours supported.
Figure 53 highlights (coloured in yellow) several possibilities of extension, which are discussed
hereafter grouped under the heading of the respective step of the RACOON workflow.

C O O P E R AT I O N E N F O R C E M E N T. The RACOON framework uses accountability and rep-
utation mechanisms to make cooperation the most profitable behaviour for selfish nodes. Al-
though these mechanisms are general and practical enough to be enforced in most cooperative
systems, which were the requirements that led to their selection, a system designer might prefer
or even need to rely on different countermeasures against selfishness. For example, tit-for-tat
mechanisms have proved to be a less expensive yet workable solution in various cooperative
systems, including BitTorrent [45]. As another example, consider cooperative systems such
as ad-hoc networks in which nodes are likely to participate only for a short period. In these
systems, reputation might not be perceived as a sufficient motivating incentive, because the
benefits from cooperation could be long delayed after a node’s cooperative action. A suitable al-
ternative is offered by decentralised economy schemes, in which cooperative nodes get instant
remuneration in units of currency (e.g., real money, Bitcoin [132] or Nuglets [33]). The Bitcoin in-

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8.2 P O S S I B L E I M P R O V E M E N T S A N D F U T U R E R E S E A R C H D I R E C T I O N S 189

(1)

Selfishness InjectionSelfishness Injection

Config. EvaluationConfig. Evaluation

(4)

(5)

Config. ExplorationConfig. Exploration

 CE Config. CE Config.

RACOONRACOON

DESIGN

PHASE

Cooperation
Enforcement (CE)

Cooperation
Enforcement (CE)

Repository of
CE Mechanisms

Repository of
CE Mechanisms

Rationality InjectionRationality Injection

Extended Specification

Evaluation Results

(2)

(3)

Library of
rationality models

Library of
rationality models

TUNING

PHASE

Library of
selfish behaviours

Library of
selfish behaviours

Input

OutputOutput

Behavioural Model

Figure 53: Possible extensions of the RACOON framework (coloured in yellow).

frastructure and blockchain in general are particularly suited for cooperative systems, because
very robust and completely distributed (including the currency generation process) [157].

In future work, we intend to expand the set of cooperation enforcement mechanisms sup-
ported by RACOON, in such a way as to provide system designers with the flexibility to choose
the most appropriate according to the specific characteristics of their system.

S E L F I S H N E S S I N J E C T I O N . As discussed in Section 8.2.2, we plan to extend our set of self-
ish deviation types with new and more specific types. Then, building on these definitions,
we can extend the selfishness injection algorithms included in RACOON to generate and inte-
grate new types of deviations into the functional specification of the system, i.e., the Protocol
Automaton (see Chapter 5). However, this might require some modifications of the original
Protocol Automaton specification. For instance, to account for the “timing deviation” outlined
in the previous section, we might extend the tuples that specify methods and messages of the
Protocol Automaton with the duration and delay properties, as reported in Table 39. Then, we
can use these properties to slow down the execution of a method as well as to postpone the
delivery of a message.

R AT I O N A L I T Y I N J E C T I O N . The rationality of a selfish node is described by a rationality
model, which determines its decision-making in choosing and carrying out the (expected) most
profitable behaviour. In this thesis, we have presented three rationality models:

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

190 C O N C L U S I O N S

PA Element Original Tuple Modified Tuple

Methods 〈mId,messageId〉 〈mId,messageId,duration〉

where duration indicates the method execution time

Messages 〈gId, contentId〉 〈gId, contentId,delay〉

where delay specifies the amount of time to wait before sending
the message

Table 39: Possible modifications of some elements of the Protocol Automaton (PA) in order to account for
the new type of “timing deviation” sketched in Section 8.2.2.

• In RACOON, we used non-cooperative sequential games from classical game theory, which
are based on the assumption of perfect rationality [130]. Although this assumption might
appear to be unrealistic in practice [120], it can serve as a worst-case scenario analysis,
since it models the most strategic and powerful types of selfish nodes.

• In RACOON++, we used evolutionary games from evolutionary game theory [172], whereby
selfish nodes evolve their behaviours according to the dynamics of the system, tending to
implement the most remunerative strategies through learning and imitation. A drawback
of this rationality model is that it increases the computational cost and execution time for
evaluating its impact on the system performance.

• In SEINE, we developed the selfishness scenarios model along with the SEINE-L language
to express it. A SEINE-L specification can describe under what conditions a certain type
of nodes shall execute certain types of selfish deviations.

In future work, we plan to provide the users of the RACOON framework with the ability
to choose what rationality model they want to consider, depending on its usability, timeliness,
and reliability requirements. Furthermore, it could be interesting to investigate other models of
rationality in future research, such as models based on activity logs or network traces [114, 124,
155, 175], or consider different types of games (e.g., inspection games [68], repeated games and
Bayesian games [130]).

8.2.4 Support for distributed testbeds

In this thesis, we resorted to a combination of analytical and simulation approaches to analyse
the impact of selfish behaviours on the performance of a given cooperative system. These
approaches operate on a high level of abstraction, since both the system and the behaviour
of nodes are fully modelled. However, in general, as the level of abstraction increases, the
accuracy and confidence of the results go down.

A possible improvement of the analysis and design frameworks proposed in this thesis is
to extend their support to other experimental approaches, namely, real experiments and em-
ulation. Concretely, the frameworks should provide the necessary interfaces for running the

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8.2 P O S S I B L E I M P R O V E M E N T S A N D F U T U R E R E S E A R C H D I R E C T I O N S 191

same experiment in a seamless manner on local machines through simulations or deployed in
real (e.g., Grid’5000, PlanetLab) or emulated (e.g., ModelNet, EmuLab) networks. Among the
various approaches that might be considered, we plan to take inspiration from the SPLAY eval-
uation environment proposed by Leonini et al. [108] and the work of Friedman et al. [64, 65].

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Part V

A P P E N D I X

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A
R A C O O N A N D R A C O O N + + : X M L S C H E M A F O R T H E I N P U T S O F T H E
F R A M E W O R K

Table 40 summarises the inputs of the RACOON and RACOON++ frameworks that the sys-
tem designer can provide as XML documents. Particularly, the inputs of each framework are
included in the same XML document.

Framework Input Ref. Section

Protocol Automaton PA Section 5.3.1
RACOON

Design Objectives Section 5.4.1

Protocol Automaton PA++ Section 6.3.1

Selfishness Model Section 6.3.1RACOON++

Design Objectives Section 6.4.1

Table 40: The inputs of the RACOON and RACOON++ frameworks.

In this appendix, we provide the XML Schema definitions for the XML documents to specify
the inputs of the RACOON and RACOON++ frameworks.

A.1 S C H E M A F O R T H E X M L I N P U T S O F R A C O O N

General structure.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="racoon">
<xs:complexType>
<xs:sequence>
<xs:element ref="protocol_automaton"/>
<xs:element ref="design_objectives"/>

</xs:sequence>
<xs:attribute name="name" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>

Protocol Automaton.
<xs:element name="protocol_automaton">
<xs:complexType>
<xs:sequence>
<xs:element ref="roles"/>
<xs:element ref="states"/>
<xs:element ref="transitions"/>
<xs:element ref="methods"/>
<xs:element ref="messages"/>
<xs:element ref="contents"/>
<xs:element ref="constraints"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="roles">

195

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

196 R A C O O N A N D R A C O O N + + : X M L S C H E M A F O R T H E I N P U T S O F T H E F R A M E W O R K

<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="role"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="role">
<xs:complexType>
<xs:attribute name="cardinality" use="required"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="isSelfish" use="required" type="xs:boolean"/>

</xs:complexType>
</xs:element>
<xs:element name="states">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="state"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="state">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="roleId" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="stateType"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="stateType">
<xs:restriction base="xs:string">
<xs:enumeration value="initial"/>
<xs:enumeration value="final"/>
<xs:enumeration value="intermediate"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="transitions">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="transition"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="transition">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="methodId" use="required" type="xs:NCName"/>
<xs:attribute name="state1Id" use="required" type="xs:NCName"/>
<xs:attribute name="state2Id" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="methods">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="method"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="method">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="messageId" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="messages">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="message"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="message">
<xs:complexType>
<xs:attribute name="contentId" use="required" type="xs:NCName"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A.1 S C H E M A F O R T H E X M L I N P U T S O F R A C O O N 197

</xs:complexType>
</xs:element>
<xs:element name="contents">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="content"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="content">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="length" use="required"/>
<xs:attribute name="size" use="required" type="xs:integer"/>
<xs:attribute name="type" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="constraints">
<xs:complexType>
<xs:sequence>
<xs:element ref="constraint"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="constraint">
<xs:complexType>
<xs:attribute name="content1Id" use="required" type="xs:NCName"/>
<xs:attribute name="content2Id" use="required" type="xs:NCName"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="constraintType"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="constraintType">
<xs:restriction base="xs:string">
<xs:enumeration value="="/>
<xs:enumeration value="<"/>
<xs:enumeration value=">"/>
<xs:enumeration value="subset"/>
<xs:enumeration value="strict_subset"/>
<xs:enumeration value="equal"/>

</xs:restriction>
</xs:simpleType>

Design Objectives.
<xs:element name="design_objectives">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="objective"/>
<xs:element maxOccurs="unbounded" ref="custom_objective"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="objective">
<xs:complexType>
<xs:attribute name="id" use="required" type="objId"/>
<xs:attribute name="predicate" use="required" type="objPredicate"/>
<xs:attribute name="value" use="required" type="xs:double"/>

</xs:complexType>
</xs:element>
<xs:element name="custom_objective">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="predicate" use="required" type="objPredicate"/>
<xs:attribute name="value" use="required" type="xs:double"/>
<xs:attribute name="minValue" use="required" type="xs:double" default="0.0" />
<xs:attribute name="maxValue" use="required" type="xs:double" default="1.0" />

</xs:complexType>
</xs:element>
<xs:simpleType name="objId">
<xs:restriction base="xs:string">
<xs:enumeration value="deviation_rate"/>
<xs:enumeration value="cooperation_level"/>
<xs:enumeration value="audit_precision"/>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

198 R A C O O N A N D R A C O O N + + : X M L S C H E M A F O R T H E I N P U T S O F T H E F R A M E W O R K

<xs:enumeration value="wrongful_eviction_rate"/>
<xs:enumeration value="CEM_message_overhead"/>
<xs:enumeration value="CEM_bandwidth_overhead"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="objPredicate">
<xs:restriction base="xs:string">
<xs:enumeration value="at_least"/>
<xs:enumeration value="at_most"/>

</xs:restriction>
</xs:simpleType>
</xs:schema>

A.2 S C H E M A F O R T H E X M L I N P U T S O F R A C O O N + +

General structure.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="racoon">
<xs:complexType>
<xs:sequence>
<xs:element ref="protocol_automaton"/>
<xs:element ref="selfishness_model"/>
<xs:element ref="design_objectives"/>

</xs:sequence>
<xs:attribute name="name" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>

Protocol Automaton.
<xs:element name="protocol_automaton">
<xs:complexType>
<xs:sequence>
<xs:element ref="roles"/>
<xs:element ref="states"/>
<xs:element ref="transitions"/>
<xs:element ref="methods"/>
<xs:element ref="messages"/>
<xs:element ref="contents"/>
<xs:element ref="constraints"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="roles">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="role"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="role">
<xs:complexType>
<xs:attribute name="cardinality" use="required"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="roleType"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="roleType">
<xs:restriction base="xs:string">
<xs:enumeration value="provider"/>
<xs:enumeration value="requester"/>
<xs:enumeration value="other"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="states">
<xs:complexType>
<xs:sequence>
<xs:element minOccurs="1" maxOccurs="unbounded" ref="state"/>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A.2 S C H E M A F O R T H E X M L I N P U T S O F R A C O O N + + 199

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="state">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="roleId" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="stateType"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="stateType">
<xs:restriction base="xs:string">
<xs:enumeration value="initial"/>
<xs:enumeration value="final"/>
<xs:enumeration value="intermediate"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="transitions">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="transition"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="transition">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="methodId" use="required" type="xs:NCName"/>
<xs:attribute name="state1Id" use="required" type="xs:NCName"/>
<xs:attribute name="state2Id" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="methods">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="method"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="method">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="messageId" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:element name="messages">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="message"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="message">
<xs:complexType>
<xs:attribute name="contentId" use="required" type="xs:NCName"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="receiverId" use="required" type="xs:NCName"/>
<xs:attribute name="senderId" use="required"/>

</xs:complexType>
</xs:element>
<xs:element name="contents">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="content"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="content">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="length" use="required"/>
<xs:attribute name="type" use="required" type="xs:NCName"/>

</xs:complexType>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

200 R A C O O N A N D R A C O O N + + : X M L S C H E M A F O R T H E I N P U T S O F T H E F R A M E W O R K

</xs:element>
<xs:element name="constraints">
<xs:complexType>
<xs:sequence>
<xs:element ref="constraint"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="constraint">
<xs:complexType>
<xs:attribute name="content1Id" use="required" type="xs:NCName"/>
<xs:attribute name="content2Id" use="required" type="xs:NCName"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="constraintType"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="constraintType">
<xs:restriction base="xs:string">
<xs:enumeration value="="/>
<xs:enumeration value="<"/>
<xs:enumeration value=">"/>
<xs:enumeration value="subset"/>
<xs:enumeration value="strict_subset"/>
<xs:enumeration value="equal"/>

</xs:restriction>
</xs:simpleType>

Selfishness Model.
<xs:element name="selfishness_model">
<xs:complexType>
<xs:sequence>
<xs:element ref="valuations"/>
<xs:element ref="deviations"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="valuations">
<xs:complexType>
<xs:sequence>
<xs:element ref="valuation"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="valuation">
<xs:complexType>
<xs:attribute name="benefit" use="required" type="xs:integer"/>
<xs:attribute name="cost" use="required" type="xs:integer"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="roleId" use="required" type="xs:NCName"/>
<xs:attribute name="scope" use="required" type="valuationScope"/>
<xs:attribute name="scopeId" use="required" type="xs:NCName"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="valuationScope">
<xs:restriction base="xs:string">
<xs:enumeration value="transition"/>
<xs:enumeration value="message"/>

</xs:restriction>
</xs:simpleType>
<xs:element name="deviations">
<xs:complexType>
<xs:sequence>
<xs:element ref="deviation"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="deviation">
<xs:complexType>
<xs:attribute name="degree" use="required" type="xs:decimal"/>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="transitionId" use="required" type="xs:NCName"/>
<xs:attribute name="type" use="required" type="deviationType"/>

</xs:complexType>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A.2 S C H E M A F O R T H E X M L I N P U T S O F R A C O O N + + 201

</xs:element>
<xs:simpleType name="deviationType">
<xs:restriction base="xs:string">
<xs:enumeration value="timeout"/>
<xs:enumeration value="subset"/>
<xs:enumeration value="multicast"/>

</xs:restriction>
</xs:simpleType>

Design Objectives.
<xs:element name="design_objectives">
<xs:complexType>
<xs:sequence>
<xs:element maxOccurs="unbounded" ref="objective"/>
<xs:element maxOccurs="unbounded" ref="custom_objective"/>

</xs:sequence>
</xs:complexType>

</xs:element>
<xs:element name="objective">
<xs:complexType>
<xs:attribute name="id" use="required" type="objId"/>
<xs:attribute name="predicate" use="required" type="objPredicate"/>
<xs:attribute name="value" use="required" type="xs:double"/>

</xs:complexType>
</xs:element>
<xs:element name="custom_objective">
<xs:complexType>
<xs:attribute name="id" use="required" type="xs:NCName"/>
<xs:attribute name="predicate" use="required" type="objPredicate"/>
<xs:attribute name="value" use="required" type="xs:double"/>
<xs:attribute name="minValue" use="required" type="xs:double" default="0.0"/>
<xs:attribute name="maxValue" use="required" type="xs:double" default="1.0"/>

</xs:complexType>
</xs:element>
<xs:simpleType name="objId">
<xs:restriction base="xs:string">
<xs:enumeration value="cooperation_level"/>
<xs:enumeration value="cooperation_persistence"/>
<xs:enumeration value="cooperation_attractiveness"/>
<xs:enumeration value="audit_precision"/>
<xs:enumeration value="audit_recall"/>
<xs:enumeration value="CEM_cost_overhead"/>
<xs:enumeration value="CEM_message_overhead"/>

</xs:restriction>
</xs:simpleType>
<xs:simpleType name="objPredicate">
<xs:restriction base="xs:string">
<xs:enumeration value="at_least"/>
<xs:enumeration value="at_most"/>

</xs:restriction>
</xs:simpleType>
</xs:schema>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

B
R A C O O N A N D R A C O O N + + E VA L U AT I O N : U S E C A S E S
S P E C I F I C AT I O N

In this appendix we provide the specification of the cooperative systems used as a use case for
evaluating the RACOON and RACOON++ frameworks.

B.1 R A C O O N U S E C A S E S

Gossip-based P2P Live Streaming (XML Specification).

1 <racoon name="P2PLiveStreaming">
2 <protocol_automaton>
3 <roles>
4 <role id="rp" cardinality="1" isSelfish="true" />
5 <role id="rC" cardinality="7" isSelfish="false" />
6 </roles>
7 <states>
8 <state id="s0" roleId="rp" type="initial" />
9 <state id="s1" roleId="rC" type="intermediate" />

10 <state id="s2" roleId="rp" type="intermediate" />
11 <state id="s3" roleId="rC" type="final" />
12 </states>
13 <transitions>
14 <transition id="t0" state1Id="s0" state2Id="s1" methodId="propose" />
15 <transition id="t1" state1Id="s1" state2Id="s2" methodId="request" />
16 <transition id="t2" state1Id="s2" state2Id="s3" methodId="serve" />
17 </transitions>
18 <methods>
19 <method id="propose" messageId="g0" />
20 <method id="request" messageId="g1" />
21 <method id="serve" messageId="g2" />
22 </methods>
23 <messages>
24 <message id="g0" contentId="c0" />
25 <message id="g1" contentId="c1" />
26 <message id="g2" contentId="c2" />
27 </messages>
28 <contents>
29 <content id="c0" type="integer" size="4" length=">=0" />
30 <content id="c1" type="integer" size="4" length=">=0" />
31 <content id="c2" type="binary" size="6000" length=">=0" />
32 </contents>
33 <constraints>
34 <constraint id="k0" content1Id="c1" type="subset" content2Id="c0" />
35 <constraint id="k1" content1Id="c2" type="equal" content2Id="c1" />
36 </constraints>
37 </protocol_automaton>
38 <design_objectives>
39 <objective id="deviation_rate" predicate="at_most" value="0.1" />
40 <objective id="CEM_bandwidth_overhead" predicate="at_most" value="0.4"/>
41 <objective id="wrongful_eviction_rate" predicate="at_most" value="0.1"/>
42 </design_objectives>
43 </racoon>

Anonymous communication protocol (XML Specification).
1 <racoon name="AnonymousCommunication">
2 <protocol_automaton>
3 <roles>
4 <role id="rP" cardinality="10" isSelfish="false" />
5 <role id="rr" cardinality="1" isSelfish="true" />
6 <role id="rN" cardinality="10" isSelfish="false" />
7 </roles>

203

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

204 R A C O O N A N D R A C O O N + + E VA L U AT I O N : U S E C A S E S S P E C I F I C AT I O N

8 <states>
9 <state id="s0" roleId="rP" type="initial" />

10 <state id="s1" roleId="rr" type="intermediate" />
11 <state id="s2" roleId="rr" type="intermediate" />
12 <state id="s3" roleId="rN" type="final" />
13 </states>
14 <transitions>
15 <transition id="t0" state1Id="s0" state2Id="s1" methodId="sendToRelay" />
16 <transition id="t1" state1Id="s1" state2Id="s2" methodId="decrypt" />
17 <transition id="t2" state1Id="s2" state2Id="s3" methodId="relay" />
18 </transitions>
19 <methods>
20 <method id="sendToRelay" messageId="g0" />
21 <method id="decrypt" messageId="" />
22 <method id="relay" messageId="g1" />
23 </methods>
24 <messages>
25 <message id="g0" contentId="c0" />
26 <message id="g1" contentId="c1" />
27 </messages>
28 <contents>
29 <content id="c0" type="binary" size="10000" length=">=0" />
30 <content id="c1" type="binary" size="10000" length=">=0" />
31 </contents>
32 <constraints />
33 </protocol_automaton>
34 <design_objectives>
35 <objective id="deviation_rate" predicate="at_most" value="0.1" />
36 <objective id="CEM_bandwidth_overhead" predicate="at_most" value="0.4"/>
37 <objective id="wrongful_eviction_rate" predicate="at_most" value="0.1"/>
38 </design_objectives>
39 </racoon>

B.2 R A C O O N + + U S E C A S E S

B.2.1 Experiments: Design and development effort

Live Streaming (XML Specification).
1 <racoon name="P2PLiveStreaming">
2 <protocol_automaton>
3 <roles>
4 <role id="rp" cardinality="1" type="provider" />
5 <role id="rC" cardinality="10" type="requester" />
6 </roles>
7 <states>
8 <state id="s0" roleId="rp" type="initial" />
9 <state id="s1" roleId="rC" type="intermediate" />

10 <state id="s2" roleId="rp" type="intermediate" />
11 <state id="s3" roleId="rC" type="final" />
12 </states>
13 <transitions>
14 <transition id="t0" state1Id="s0" state2Id="s1" methodId="propose" />
15 <transition id="t1" state1Id="s1" state2Id="s2" methodId="request" />
16 <transition id="t2" state1Id="s2" state2Id="s3" methodId="serve" />
17 </transitions>
18 <methods>
19 <method id="propose" messageId="g0" />
20 <method id="request" messageId="g1" />
21 <method id="serve" messageId="g2" />
22 </methods>
23 <messages>
24 <message id="g0" contentId="c0" senderId="rp" receiverId="rC" />
25 <message id="g1" contentId="c1" senderId="rC" receiverId="rp" />
26 <message id="g2" contentId="c2" senderId="rp" receiverId="rC" />
27 </messages>
28 <contents>
29 <content id="c0" type="integer" length=">=0" />
30 <content id="c1" type="integer" length=">=0" />
31 <content id="c2" type="binary" length=">=0" />
32 </contents>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

B.2 R A C O O N + + U S E C A S E S 205

33 <constraints>
34 <constraint id="k0" content1Id="c1" type="subset" content2Id="c0" />
35 <constraint id="k1" content1Id="c2" type="equal" content2Id="c1" />
36 </constraints>
37 </protocol_automaton>
38 <selfishness_model>
39 <valuations>
40 <valuation id="v0" scope="transition" scopeId="t0" roleId="rp" benefit="200" cost="0" />
41 <valuation id="v1" scope="transition" scopeId="t0" roleId="rC" benefit="1000" cost="0" />
42 <valuation id="v2" scope="message" scopeId="g0" roleId="rp" benefit="0" cost="4" />
43 <valuation id="v3" scope="message" scopeId="g1" roleId="rC" benefit="20" cost="4" />
44 <valuation id="v4" scope="message" scopeId="g2" roleId="rp" benefit="0" cost="10000" />
45 <valuation id="v5" scope="message" scopeId="g2" roleId="rC" benefit="10000" cost="0" />
46 </valuations>
47 <deviations>
48 <deviation id="d0" transitionId="t0" type="multicast" degree="0.45" />
49 <deviation id="d1" transitionId="t0" type="subset" degree="0.5" />
50 </deviations>
51 </selfishness_model>
52 <design_objectives>
53 <custom_objective id="chunk_loss" predicate="at_most" value="0.03" min="0.0" max="1.0" />
54 </design_objectives>
55 </racoon>

Load Balancing (XML Specification).
1 <racoon name="LoadBalancing">
2 <protocol_automaton>
3 <roles>
4 <role id="r0" cardinality="1" type="requester" />
5 <role id="R1" cardinality="20" type="provider" />
6 </roles>
7 <states>
8 <state id="s0" roleId="r0" type="initial" />
9 <state id="s1" roleId="R1" type="intermediate" />

10 <state id="s2" roleId="r0" type="intermediate" />
11 <state id="s3" roleId="r0" type="intermediate" />
12 <state id="s4" roleId="R1" type="final" />
13 </states>
14 <transitions>
15 <transition id="t0" state1Id="s0" state2Id="s1" methodId="selectPartnerReq" />
16 <transition id="t1" state1Id="s1" state2Id="s2" methodId="selectPartnerResp" />
17 <transition id="negotiation" state1Id="s2" state2Id="s3" methodId="" />
18 <transition id="transfer" state1Id="s3" state2Id="s4" methodId="" />
19 </transitions>
20 <methods>
21 <method id="selectPartnerReq" messageId="g0" />
22 <method id="selectPartnerResp" messageId="g1" />
23 </methods>
24 <messages>
25 <message id="g0" contentId="c0" senderId="r0" receiverId="R1" />
26 <message id="g1" contentId="c1" senderId="R1" receiverId="r0" />
27 </messages>
28 <contents>
29 <content id="c0" type="integer" length="1" />
30 <content id="c1" type="integer" length="1" />
31 </contents>
32 <constraints />
33 </protocol_automaton>
34 <selfishness_model>
35 <valuations>
36 <valuation id="v0" scope="transition" scopeId="negotiation" roleId="r0" benefit="20" cost="40" />
37 <valuation id="v1" scope="message" scopeId="g0" roleId="r0" benefit="50" cost="40" />
38 <valuation id="v1" scope="message" scopeId="g1" roleId="R1" benefit="50" cost="40" />
39 </valuations>
40 <deviations>
41 <deviation id="d0" transitionId="t0" type="multicast" degree="0.5" />
42 <deviation id="d1" transitionId="t1" type="timeout" degree="1" />
43 <deviation id="d2" transitionId="transfer" type="timeout" degree="1" />
44 </deviations>
45 </selfishness_model>
46 <design_objectives>
47 <custom_objective id="cov" predicate="at_most" value="0.1" min="0.0" max="1.0" />
48 </design_objectives>
49 </racoon>

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

206 R A C O O N A N D R A C O O N + + E VA L U AT I O N : U S E C A S E S S P E C I F I C AT I O N

Anonymous communication (XML Specification).

1 <racoon name="AnonymousCommunication">
2 <protocol_automaton>
3 <roles>
4 <role id="rP" cardinality="10" type="requester" />
5 <role id="rr" cardinality="1" type="provider" />
6 <role id="rN" cardinality="10" type="requester" />
7 </roles>
8 <states>
9 <state id="s0" roleId="rP" type="initial" />

10 <state id="s1" roleId="rr" type="intermediate" />
11 <state id="s2" roleId="rr" type="final" />
12 <state id="s3" roleId="rN" type="final" />
13 </states>
14 <transitions>
15 <transition id="t0" state1Id="s0" state2Id="s1" methodId="sendToRelay" />
16 <transition id="t1" state1Id="s1" state2Id="s2" methodId="decrypt" />
17 <transition id="t2" state1Id="s2" state2Id="s3" methodId="relay" />
18 </transitions>
19 <methods>
20 <method id="sendToRelay" messageId="g0" />
21 <method id="decrypt" messageId="" />
22 <method id="relay" messageId="g1" />
23 </methods>
24 <messages>
25 <message id="g0" contentId="c0" senderId="rP" receiverId="rr" />
26 <message id="g1" contentId="c1" senderId="rr" receiverId="rN" />
27 </messages>
28 <contents>
29 <content id="c0" type="binary" length="1" />
30 <content id="c1" type="binary" length="1" />
31 </contents>
32 <constraints />
33 </protocol_automaton>
34 <selfishness_model>
35 <valuations>
36 <valuation id="v0" scope="transition" scopeId="t1" roleId="rr" benefit="256" cost="0" />
37 <valuation id="v1" scope="transition" scopeId="t1" roleId="rN" benefit="4096" cost="0" />
38 <valuation id="v2" scope="message" scopeId="g0" roleId="rN" benefit="256" cost="512" />
39 <valuation id="v3" scope="message" scopeId="g1" roleId="rr" benefit="256" cost="512" />
40 </valuations>
41 <deviations>
42 <deviation id="d0" transitionId="t2" type="multicast" degree="0.4" />
43 <deviation id="d1" transitionId="t2" type="timeout" degree="1" />
44 </deviations>
45 </selfishness_model>
46 <design_objectives>
47 <custom_objective id="onion_loss" predicate="at_most" value="0.1" min="0.0" max="1.0" />
48 </design_objectives>
49 </racoon>

B.2.2 Experiments: RACOON++ effectiveness

Deviations defined in the Selfishness Models.

Live Streaming

Id Scenario Deviations a

LS #2 {〈d0, t0, timeout, 1〉, 〈d1, t0,multicast, 0.45〉, 〈d2, t2, subset, 0.7〉}
LS #5 {〈d0, t0, timeout, 1〉, 〈d1, t2, timeout, 0.1〉, 〈d2, t2, subset, 0.2〉}
LS #19 {〈d0, t0,multicast, 0.45〉, 〈d1, t2, subset, 0.5〉}

a With reference to Figure 36, the PA transitions are triggered by the following methods: t0 by propose, t1 by
request, and t2 by serve.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

B.2 R A C O O N + + U S E C A S E S 207

Load Balancing

Id Scenario Deviations a

LB #4 {〈d0, t0, timeout, 1〉, 〈d1, t0,multicast, 0.5〉, 〈d2, t1, timeout, 1〉}
LB #5 {〈d0, t0, timeout, 1〉, 〈d1, t0,multicast, 0.5〉, 〈d2, t1, timeout, 1〉, 〈d3, transfer, timeout, 1〉}
LB #23 {〈d0, t0, timeout, 1〉, 〈d1, t0,multicast, 0.5〉, 〈d2, transfer, timeout, 1〉}

a With reference to Figure 37, the PA transitions are triggered by the following methods: t0 by selectPartnerReq
and t1 by selectPartnerResp. negotiation and transfer are two abstract transitions.

Anonymous Communication

Id Scenario Deviations a

AC #3 {〈d0, t2, timeout, 1〉, 〈d1, t2,multicast, 0.4〉}
AC #18 {〈d0, t2,multicast, 0.3〉}
AC #25 {〈d0, t2,multicast, 0.6〉}

a With reference to Figure 38, the PA transitions are triggered by the following methods: t0 by sendToRelay, t1 by
decrypt, and t2 by relay.

CEM Configurations.

Live Streaming Load Balancing Anonymous Comm.

Parameter LS #2 LS #5 LS #19 LB #4 LB #5 LB #23 AC #3 AC #18 AC #25

Witness set size (nodes) 2 2 3 1 2 2 3 3 3

Audit period (cycles) 18 16 20 20 14 14 20 20 20

Audit probability 0.75 0.65 0.6 0.6 0.7 0.65 0.6 0.6 0.6

Degree of punishment 4.0 4.0 4.0 4.0 5.0 4.0 4.0 4.0 4.0

Degree of reward 0.15 0.4 0.4 0.4 0.15 0.15 0.4 0.4 4.0

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

C
S E I N E : G R A M M A R O F T H E S E I N E - L L A N G U A G E

In this appendix we provide the context-free grammar of the SEINE-L domain-specific language
introduced in Section 7.3 in Chapter 7.

seine : ’seine’ ’.’ ID ’{’ declarations+ ’}’ ;

declarations : resource | indicator | node | selfishness | observers;

// Resource and indicator declarations

resource : ’resource’ ’.’ ID (init_resource)? ;

init_resource : ’random’ ’(’ DOUBLE ’,’ DOUBLE ’)’

| ’linear’ ’(’ DOUBLE ’,’ DOUBLE ’)’

| ’uniform’ ’(’ DOUBLE ’)’

;

indicator : ’indicator’ ’.’ ID ;

// Node type declarations

node : ’node’ ’.’ ID (’{’ node_body* ’}’)? # nodeDecl

| ’node.exclude’ node_exclude_list # nodeExclude

;

node_body : node_fraction | node_selfish_fraction | node_capabilities ;

node_fraction : ’fraction’ DOUBLE ;

node_selfish_fraction : ’selfish’ DOUBLE ;

node_capabilities : ’capability’ capability_item+ ;

capability_item : ID ’(’ DOUBLE ’,’ DOUBLE ’)’ | ID ’(’ DOUBLE ’)’;

node_exclude_list : DOUBLE* ;

// Selfishness model declarations

selfishness : ’selfishness’ ’.’ ID ’{’ selfishness_body ’}’ ;

selfishness_body : ’actor’ actor_list behaviour+

| behaviour+ ’actor’ actor_list

;

actor_list : actor_item+ ;

actor_item : ID (’(’ DOUBLE ’)’)? ;

behaviour : ’behaviour’ ’.’ ID ’{’ behaviour_body ’}’ ;

behaviour_body : (’activation’ activation_decl)? deviation_decl+

| deviation_decl+ (’activation’ activation_decl)?

;

activation_decl : ID BIN_OP DOUBLE ;

209

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

210 S E I N E : G R A M M A R O F T H E S E I N E - L L A N G U A G E

deviation_decl : DEV_TYPE (’{’ deviation_param+ ’}’)?

| DEV_TYPE ’.’ deviation_param

;

deviation_param : ’probability’ DOUBLE

| ’degree’ DOUBLE

| ’on’ methods_decl+

;

methods_decl : ID | ’!’ ID ;

// Observers declarations

observers : ’observers’ ’{’ observers_body ’}’

| ’observers’ ’.’ observers_names

;

observers_body : (’period’ observers_period)? observers_names ;

observers_period : DOUBLE ;

observers_names : ’name’ observers_names_item+ ;

observers_names_item : ID (’.’ ID)+ ;

// LEXER

BIN_OP : ’<’ | ’>’ | ’<=’ | ’>=’ | ’=’ ;

DEV_TYPE : (’free-riding’ | ’freeriding’)

| ’defection’

| ’misreport’

| ’collusion’

| ’other’

;

DOUBLE : (’0’..’9’)+ (’.’ (’0’..’9’)+)? ;

ID : (’a’..’z’|’A’..’Z’|’0’..’9’|’_’|’-’)+ ;

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

D
S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S
O F S E I N E - L

In the following, we report the SEINE-L description of the Selfishness Scenarios specified to
evaluate the generality and expressiveness of the SEINE-L language in Section 7.5 in Chapter 7.

P2P Backup, Gramaglia et al. [71]

1 seine.P2PBackup {
2 resource.spaceUtilisation uniform(75000) # MB
3 resource.backupSize uniform (10000) # MB
4 resource.onlinePeriodProb
5 node.peer1 {
6 fraction 0.25
7 selfish 0.5
8 capability onlinePeriodProb(1.0)
9 }

10 node.peer2 {
11 fraction 0.25
12 selfish 0.5
13 capability onlinePeriodProb(0.75)
14 }
15 node.peer3 {
16 fraction 0.25
17 selfish 0.5
18 capability onlinePeriodProb(0.5)
19 }
20 node.peer4 {
21 fraction 0.25
22 selfish 0.5
23 capability onlinePeriodProb(0.25)
24 }
25 selfishness.sm {
26 actor peer1 peer2 peer3 peer4
27 behaviour.bhv {
28 defection {
29 probability 0.5
30 on storePartnerData
31 }
32 }
33 }
34 observers.name p2pbackup.P2PBackupObserver
35 }

BAR Gossip, Li et al. [111]

1 seine.BarGossip {
2 resource.bandwidthCapacity
3 indicator.uploadDownloadRatio
4 node.peer {
5 selfish 0.6
6 capability bandwidthCapacity(0,150000)
7 }
8 node.exclude 0 # source
9 selfishness.proactive {

10 actor peer(0.3)
11 behaviour.proactiveDecline {
12 activation uploadDownladRatio > 1
13 defection.on startOptimisticPushProtocol
14 }
15 behaviour.proactiveJunk {
16 activation uploadDownladRatio < 1
17 misreport { degree 0.5 on sendPUSHmessage }
18 defection { probability 0.5 on sendBRIEFmessage }
19 }
20 }
21 selfishness.passive {
22 actor peer(0.5)
23 behaviour.passiveDecline {
24 activation uploadDownladRatio > 1
25 defection.on sendPUSH_RESPmessage
26 }
27 behaviour.passiveJunk {
28 activation uploadDownladRatio < 1
29 misreport { degree 0.5 on sendPUSH_RESPmessage }
30 }
31 }
32 selfishness.colluding {
33 actor peer(0.1)
34 behaviour.collusive { collusion }
35 }
36 observers.name bg.BarGossipObserver
37 }

211

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

212 S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S O F S E I N E - L

Dandelion, Sirivianos et al. [165]

1 seine.Dandelion {
2 resource.bandwidth random(0,1000) # Kbps
3 indicator.downloadedFraction
4 node.Leecher { fraction 0.995 selfish 0.7 }
5 node.Seeder { fraction 0.005 }
6 node.exclude 0 # source
7 selfishness.selfish_seeding {
8 actor Leecher(0.7)
9 behaviour.bhvs {

10 activation downloadedFraction = 100
11 defection { probability 0.5 on seedFile }
12 }
13 }
14 selfishness.misreporting {
15 actor Leecher(0.3)
16 behaviour.bhvm {
17 misreport {
18 probability 0.5
19 on notifyNeighboursToTracker
20 }
21 }
22 }
23 observers.name dandelion.DandelionObserver
24 }

Grid computing, Kwok et al. [104]

1 seine.GridComputing {
2 resource.reputationIndex uniform(0.5)
3 indicator.servicePromise # 1 if delivered, 0 otherwise
4 node.GridSiteManager { fraction 0.085 selfish 0.2 }
5 node.GridMachine { fraction 0.815 selfish 0 }
6 node.exclude 0 # the global task dispatcher
7 selfishness.smGSM_promise {
8 actor GridSiteManager(0.5)
9 behaviour.bhvGSM_promise {

10 activation servingMemberPromise = 1
11 freeriding.on dispatchRemoteTask
12 misreport.on notifyComputationalCapacity
13 }
14 }
15 selfishness.smGSM_RI {
16 actor GridSiteManager(0.5)
17 behaviour.bhvGSM_RI {
18 activation RI > 5
19 freeriding.on dispatchRemoteTask
20 misreport.on notifyComputationalCapacity
21 }
22 }
23 observers.name gc.GridComputingObserver
24 }

GiveToGet, Mei and Stefa [124]

1 seine.GiveToGet {
2 resource.bandwidth random(0,600000)
3 resource.storage random(0,100)
4 node.DeviceResourceful { fraction 0.25 selfish 0.2 }
5 node.DeviceResourceless {
6 fraction 0.75
7 selfish 0.7
8 capability bandwidth(0,200000)
9 }

10 selfishness.smDR {
11 actor DeviceResourceless(0.7)
12 behaviour.bhv_store {
13 activation storage > 60
14 defection { probability 0.8 on storeMessages }
15 }
16 behaviour.bhv_forward {
17 activation bandwidth > 150000
18 freeriding { degree 0.5 on forwardMessages }
19 }
20 }
21 selfishness.smCollusion {
22 actor DeviceResourceful DeviceResourceless(0.3)
23 behaviour.collusive {
24 collusion.on storeProofOfRelays
25 }
26 }
27 observers.name gtg.GiveToGetObserver
28 }

Tor, Ngan et al. [135]

1 seine.TorStar {
2 resource.bandwidth random(0,1000)
3 indicator.priority
4 node.Client { fraction 0.9 selfish 0 }
5 node.Relay {
6 fraction 0.1
7 capability bandwidth(0,500)
8 }
9 selfishness.smSelfish {

10 actor Relay(0.33)
11 behaviour.bhvS {
12 defection.on relayOnion
13 }
14 }
15 selfishness.smCooperative_reserve {
16 actor Relay(0.33)
17 behaviour.bhvC {
18 activation bandwidth > 50
19 defection.on relayOnion
20 }
21 }
22 selfishness.smAdaptive {
23 actor Relay(0.34)
24 behaviour.bhvA {
25 activation priority = 1
26 defection.on relayOnion
27 }
28 }
29 observers.name ts.TorStarObserver
30 }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S O F S E I N E - L 213

BOINC, Anderson [18]

1 seine.VolunteerComputing {
2 resource.CPU random(1.5,2.5)
3 indicator.recentPoints
4 node.Volunteer { selfish 0.1 }
5 node.exclude 0
6 selfishness.smV {
7 actor Volunteer
8 behaviour.task_computation {
9 activation recentPoints < 10000

10 freeriding.on processTask
11 }
12 behaviour.verification {
13 collusion.on coordinateResults
14 }
15 }
16 observers.name vc.VolunteerComputingObserver
17 }

Maze, Lian et al. [114]

1 seine.Maze {
2 resource.sharedFiles random(0,1000)
3 node.mazeClient {
4 fraction 0.9
5 selfish 0.1
6 }
7 node.mazeSybilClient {
8 fraction 0.1
9 }

10 selfishness.sm {
11 actor mazeClient mazeSybilClient
12 behaviour.bhv {
13 collusion.on uploadFilePieces notifySharedFiles
14 }
15 }
16 observers.name maze.MazeObserver
17 }

FireSpam, Ben Mokhtar et al. [26]

1 seine.FireSpam {
2 resource.spamFilteringCapability random(0,1000)
3 node.GoodFiltering {
4 fraction 0.25
5 selfish 0.55
6 capability spamFilteringCapability(750,1000)
7 }
8 node.AverageFiltering {
9 fraction 0.5

10 selfish 0.55
11 capability spamFilteringCapability(250,750)
12 }
13 node.BadFiltering {
14 fraction 0.25
15 selfish 0.55
16 capability spamFilteringCapability(0,250)
17 }
18 selfishness.smRational {
19 actor GoodFiltering(0.9) AverageFiltering(0.9) BadFiltering(0.9)
20 behaviour.bhvR {
21 freeriding.on forwardMessage sendReport
22 }
23 }
24 selfishness.smByzantine {
25 actor GoodFiltering(0.1) AverageFiltering(0.1) BadFiltering(0.1)
26 behaviour.bhvB {
27 defection {
28 probability 0.5
29 on filterSpamMessage forwardMessage createReport sendReport monitorNode
30 }
31 }
32 }
33 observers.name fs.FireSpamObserver
34 }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

214 S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S O F S E I N E - L

Acting, Ben Mokhtar et al. [28]

1 seine.Acting {
2 resource.bandwidth random(500,1000)
3 node.Peer {
4 fraction 0.7
5 selfish 0.5
6 capability bandwidth(0,1000)
7 }
8 node.Colluders {
9 fraction 0.3

10 capability bandwidth(0,1000)
11 }
12 node.exclude 0 # source
13 selfishness.smP {
14 actor Peer
15 behaviour.bhvP {
16 defection.on sendLogs
17 }
18 }
19 selfishness.smC {
20 actor Colluders
21 behaviour.bhvC1 {
22 collusion.on audit serveRequest
23 }
24 behaviour.bhvC2 {
25 collusion.on proposeContents
26 }
27 }
28 observers.name acting.ActingObserver
29 }

BitThief, Locher et al. [116]

1 seine.BitThief {
2 resource.maxBandwidth
3 resource.swarmSize uniform(80)
4 node.BitTorrentClient {
5 fraction 0.95
6 selfish 0
7 capability swarmSize(0,80) maxBandwidth(0,1000000)
8 }
9 node.BitThiefClient {

10 fraction 0.05
11 capability swarmSize(0,500) maxBandwidth(0,1000000)
12 }
13 node.exclude 0
14 selfishness.smBT {
15 actor BitThiefClient
16 behaviour.bhv {
17 defection.on sendFilePiece
18 misreport.on sendHaveFileMessage notifyPeersetSize
19 other.on requestRarestPiece
20 }
21 }
22 observers.name bt.BitThiefObserver
23 }

Samsara, Cox and Noble [47]

1 seine.Samsara {
2 resource.spaceUtilisation random(0,100)
3 node.client { selfish 0.1 }
4 selfishness.sm {
5 actor client
6 behaviour.bhv {
7 defection {
8 probability 0.5
9 on storePartnerData storePartnerClaim

10 }
11 }
12 }
13 observers.name samsara.SamsaraObserver
14 }

Gnutella, Hughes et al. [87]

1 seine.Gnutella {
2 resource.sharedFiles random(0,1000)
3 node.BigAltruistic { fraction 0.021 selfish 0 }
4 node.LittleAltruistic {
5 fraction 0.129
6 selfish 0
7 capability sharedFiles(0,10)
8 }
9 node.Freerider {

10 fraction 0.85
11 capability sharedFiles(0,0)
12 }
13 selfishness.smF {
14 actor Freerider
15 behaviour.bhvF {
16 defection.on uploadFilePieces notifySharedFiles
17 }
18 }
19 observers.name gnutella.GnutellaObserver
20 }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

S E I N E : E VA L U AT I O N O F T H E G E N E R A L I T Y A N D E X P R E S S I V E N E S S O F S E I N E - L 215

Lifting, Guerraoui et al. [72]

1 seine.GossipLiveStreaming {
2 resource.uploadBandwidth
3 node.peer { selfish 0.25 capability uploadBandwidth(0,125000) }
4 node.exclude 0 # source
5 selfishness.smF {
6 actor peer(0.9)
7 behaviour.bhvF {
8 freeriding { degree 0.3 on serveChunkRequest selectPartner }
9 misreport { degree 0.3 on proposeChunks }

10 }
11 }
12 selfishness.colluders {
13 actor peer(0.1)
14 behaviour.bhvC {
15 collusion { probability 0.15 on selectPartner }
16 }
17 }
18 observers.name lifting.LiftingObserver
19 }

Contracts, Piatek et al. [148]

1 seine.Contracts {
2 resource.bwCapacity uniform(65000) # the median
3 node.PPLiveClient { selfish 0.5 capability bwCapacity(0,150000) }
4 node.exclude 0 # source
5 selfishness.smS {
6 actor PPLiveClient(0.6)
7 behaviour.bhvS {
8 freeriding.on serveUpdates
9 }

10 }
11 selfishness.colluding {
12 actor PPLiveClient(0.4)
13 behaviour.collusive {
14 collusion.on selectPartner
15 }
16 }
17 observers.name contracts.ContractsObserver
18 }

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

B I B L I O G R A P H Y

[1] BitTorrent Live. URL https://btlive.tv/.

[2] eMule client for the eDonkey and the Kat networks. URL https://sourceforge.net/

projects/emule/.

[3] The Network Simulator – ns-2. URL http://www.isi.edu/nsnam/ns/.

[4] Omnet++ - discrete event simulator. URL https://omnetpp.org/.

[5] PPLive. URL http://www.pptv.com/.

[6] The Racoon Framework. URL https://github.com/glenacota/racoon.

[7] The SETI@Home Problem, 2000. URL http://archive.is/PMK7g.

[8] SETI@home Frequently Asked Questions, 2002. URL http://archive.is/ovek2.

[9] BOINC stats, 2009. URL https://boincstats.com/en/forum/10/4597.

[10] PrimeGrid online forum: “Cheaters’ credits rescinded", 2013. URL http://archive.is/F5ZJc.

[11] World Cummunity Grid online forum: “The PrimeGrid Cheating Scandal", 2013. URL http://

archive.is/vefXK.

[12] BOINC user survey results, 2016. URL http://boinc.berkeley.edu/poll/poll_results.

php.

[13] Ittai Abraham, Danny Dolev, Rica Gonen, and Joe Halpern. Distributed computing meets game
theory: robust mechanisms for rational secret sharing and multiparty computation. In Proceedings
of the 25th annual ACM symposium on Principles of distributed computing, pages 53–62. ACM, 2006.

[14] Paarijaat Aditya, Mingchen Zhao, Yin Lin, Andreas Haeberlen, Peter Druschel, Bruce Maggs, and
Bill Wishon. Reliable client accounting for p2p-infrastructure hybrids. In Proceedings of the 9th
USENIX conference on Networked Systems Design and Implementation, pages 8–8. USENIX Association,
2012.

[15] Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and Carl
Porth. Bar fault tolerance for cooperative services. In ACM SIGOPS operating systems review, vol-
ume 39, pages 45–58. ACM, 2005.

[16] Jamal N Al-Karaki and Ahmed E Kamal. Routing techniques in wireless sensor networks: a survey.
IEEE wireless communications, 11(6):6–28, 2004.

[17] Luzi Anderegg and Stephan Eidenbenz. Ad hoc-vcg: a truthful and cost-efficient routing protocol
for mobile ad hoc networks with selfish agents. In Proceedings of the 9th annual international conference
on Mobile computing and networking. ACM, 2003.

[18] David P Anderson. Boinc: A system for public-resource computing and storage. In Grid Computing,
2004. Proceedings. 5th IEEE/ACM International Workshop on, pages 4–10. IEEE, 2004.

217

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://btlive.tv/
https://sourceforge.net/projects/emule/
https://sourceforge.net/projects/emule/
http://www.isi.edu/nsnam/ns/
https://omnetpp.org/
http://www.pptv.com/
https://github.com/glenacota/racoon
http://archive.is/PMK7g
http://archive.is/ovek2
https://boincstats.com/en/forum/10/4597
http://archive.is/F5ZJc
http://archive.is/vefXK
http://archive.is/vefXK
http://boinc.berkeley.edu/poll/poll_results.php
http://boinc.berkeley.edu/poll/poll_results.php

218 Bibliography

[19] David P Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer. Seti@ home: an
experiment in public-resource computing. Communications of the ACM, 45(11):56–61, 2002.

[20] Antonio Fernández Anta, Chryssis Georgiou, and Miguel A Mosteiro. Algorithmic mechanisms
for internet-based master-worker computing with untrusted and selfish workers. In Parallel & Dis-
tributed Processing (IPDPS), 2010 IEEE International Symposium on, pages 1–11. IEEE, 2010.

[21] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts and taxonomy of
dependable and secure computing. IEEE transactions on dependable and secure computing, 1(1):11–33,
2004.

[22] Sorav Bansal and Mary Baker. Observation-based cooperation enforcement in ad hoc networks.
arXiv preprint cs/0307012, 2003.

[23] Salman A Baset and Henning Schulzrinne. An analysis of the skype peer-to-peer internet telephony
protocol. arXiv preprint cs/0412017, 2004.

[24] Anirban Basu, Simon Fleming, James Stanier, Stephen Naicken, Ian Wakeman, and Vijay K Gurbani.
The state of Peer-to-Peer network simulators. ACM Computing Surveys (CSUR), 45(4), 2013.

[25] Mira Belenkiy, Melissa Chase, C Chris Erway, John Jannotti, Alptekin Küpçü, Anna Lysyanskaya,
and Eric Rachlin. Making p2p accountable without losing privacy. In Proceedings of the 2007 ACM
workshop on Privacy in electronic society, pages 31–40. ACM, 2007.

[26] Sonia Ben Mokhtar, Alessio Pace, and Vivien Quema. Firespam: Spam resilient gossiping in the bar
model. In Reliable Distributed Systems, 2010 29th IEEE Symposium on, pages 225–234. IEEE, 2010.

[27] Sonia Ben Mokhtar, Gautier Berthou, Amadou Diarra, Vivien Quéma, and Ali Shoker. Rac: a
freerider-resilient, scalable, anonymous communication protocol. In Distributed Computing Systems
(ICDCS), 2013 IEEE 33rd International Conference on, pages 520–529. IEEE, 2013.

[28] Sonia Ben Mokhtar, Jérémie Decouchant, and Vivien Quéma. Acting: Accurate freerider tracking
in gossip. In 2014 IEEE 33rd International Symposium on Reliable Distributed Systems, pages 291–300.
IEEE, 2014.

[29] Naouel Ben Salem, Levente Buttyán, Jean-Pierre Hubaux, and Markus Jakobsson. Node cooperation
in hybrid ad hoc networks. Mobile Computing, IEEE Transactions on, 5(4), 2006.

[30] Radu Mihai Berciu. Designing incentives in P2P systems. PhD thesis, 2013.

[31] Alberto Blanc, Yi-Kai Liu, and Amin Vahdat. Designing incentives for peer-to-peer routing. In
Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies., vol-
ume 1, pages 374–385. IEEE, 2005.

[32] Tomasz Buchert, Cristian Ruiz, Lucas Nussbaum, and Olivier Richard. A survey of general-purpose
experiment management tools for distributed systems. Future Generation Computer Systems, 45:1–12,
2015.

[33] Levente Buttyán and Jean-Pierre Hubaux. Nuglets: a virtual currency to stimulate cooperation in
self-organized mobile ad hoc networks. Technical report, 2001.

[34] Levente Buttyán and Jean-Pierre Hubaux. Stimulating cooperation in self-organizing mobile ad hoc
networks. Mobile Networks and Applications, 8(5):579–592, 2003.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Bibliography 219

[35] Levente Buttyán and Jean-Pierre Hubaux. Security and cooperation in wireless networks: thwarting
malicious and selfish behavior in the age of ubiquitous computing. Cambridge University Press, 2007.

[36] Levente Buttyán, László Dóra, Márk Félegyházi, and István Vajda. Barter trade improves message
delivery in opportunistic networks. Ad Hoc Networks, 8(1):1–14, 2010.

[37] Franck Cappello, Eddy Caron, Michel Dayde, Frédéric Desprez, Yvon Jégou, Pascale Primet, Em-
manuel Jeannot, Stéphane Lanteri, Julien Leduc, Nouredine Melab, et al. Grid’5000: a large scale
and highly reconfigurable grid experimental testbed. In Proceedings of the 6th IEEE/ACM Interna-
tional Workshop on Grid Computing, pages 99–106. IEEE Computer Society, 2005.

[38] Christopher D Carothers, Ryan LaFortune, William D Smith, and Mark Gilder. A case study in mod-
eling large-scale peer-to-peer file-sharing networks using discrete-event simulation. In Proceedings
of the 2006 European of Modeling and Simulation Symposium which is part of the I3M Multiconference),
Barcelona, Spain, 2006.

[39] Antonio Carzaniga, Alessandra Gorla, and Mauro Pezzè. Handling software faults with redun-
dancy. In Architecting Dependable Systems VI, pages 148–171. Springer, 2009.

[40] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Transactions on Computer Systems (TOCS), 20(4):398–461, 2002.

[41] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike Wawrzoniak, and
Mic Bowman. Planetlab: an overlay testbed for broad-coverage services. ACM SIGCOMM Computer
Communication Review, 33(3):3–12, 2003.

[42] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. Attested append-only
memory: Making adversaries stick to their word. In ACM SIGOPS Operating Systems Review, vol-
ume 41, pages 189–204. ACM, 2007.

[43] Gianluca Ciccarelli and Renato Lo Cigno. Collusion in peer-to-peer systems. Computer Networks, 55
(15):3517–3532, 2011.

[44] Cisco Visual Networking Index Cisco. White paper: Cisco vni forecast and methodology, 2015-2020,
2016.

[45] Bram Cohen. Incentives build robustness in bittorrent. In Workshop on Economics of Peer-to-Peer
systems, volume 6, pages 68–72, 2003.

[46] Thomas H.. Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms, volume 6. MIT press Cambridge, 2001.

[47] Landon P Cox and Brian D Noble. Samsara: Honor among thieves in peer-to-peer storage. ACM
SIGOPS Operating Systems Review, 37(5):120–132, 2003.

[48] Landon P Cox, Christopher D Murray, and Brian D Noble. Pastiche: Making backup cheap and
easy. ACM SIGOPS Operating Systems Review, 36(SI):285–298, 2002.

[49] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker. Staged configuration using feature
models. In Software Product Lines, pages 266–283. Springer, 2004.

[50] Peter J Denning. Acm president’s letter: What is experimental computer science? Communications
of the ACM, 23(10):543–544, 1980.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

220 Bibliography

[51] Peter J Denning. Acm president’s letter: performance analysis: experimental computer science as
its best. Communications of the ACM, 24(11):725–727, 1981.

[52] Amadou Diarra, Sonia Ben Mokhtar, Pierre-Louis Aublin, and Vivien Quéma. Fullreview: Practical
accountability in presence of selfish nodes - technical report. URL https://goo.gl/GSA11A.

[53] Amadou Diarra, Sonia Ben Mokhtar, Pierre-Louis Aublin, and Vivien Quéma. Fullreview: Practical
accountability in presence of selfish nodes. In 2014 IEEE 33rd International Symposium on Reliable
Distributed Systems, pages 271–280. IEEE, 2014.

[54] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion router.
Technical report, DTIC Document, 2004.

[55] John R Douceur. The sybil attack. In Peer-to-peer Systems. Springer, 2002.

[56] Kevin Fall. A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003
conference on Applications, technologies, architectures, and protocols for computer communications, pages
27–34. ACM, 2003.

[57] Joan Feigenbaum and Scott Shenker. Distributed algorithmic mechanism design: Recent results and
future directions. September, 2002.

[58] Jerome A Feldman and William R Sutherland. Rejuvenating experimental computer science: a
report to the national science foundation and others. Communications of the ACM, 22(9):497–502,
1979.

[59] Michal Feldman and John Chuang. Overcoming free-riding behavior in peer-to-peer systems. ACM
SIGecom Exchanges, 5(4), 2005.

[60] Michal Feldman, Christos Papadimitriou, John Chuang, and Ion Stoica. Free-riding and whitewash-
ing in peer-to-peer systems. Selected Areas in Communications, IEEE Journal on, 24(5), 2006.

[61] Robert Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit. Aspect-Oriented software development.
Addison-Wesley Professional, 2004.

[62] Ian Foster, Carl Kesselman, and Steven Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International journal of high performance computing applications, 15(3):200–222, 2001.

[63] Julien Freudiger, Mohammad Hossein Manshaei, Jean-Pierre Hubaux, and David C Parkes. On non-
cooperative location privacy: a game-theoretic analysis. In Proceedings of the 16th ACM conference on
Computer and communications security, pages 324–337. ACM, 2009.

[64] Roy Friedman, Alexander Libov, and Ymir Vigfusson. Molstream: A modular rapid development
and evaluation framework for live p2p streaming. In Distributed Computing Systems (ICDCS), 2014
IEEE 34th International Conference on, pages 278–287. IEEE, 2014.

[65] Roy Friedman, Alexander Libov, and Ymir Vigfussony. Distilling the ingredients of p2p live stream-
ing systems. In Peer-to-Peer Computing (P2P), 2015 IEEE International Conference on, pages 1–10. IEEE,
2015.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://goo.gl/GSA11A

Bibliography 221

[66] Wojciech Galuba, Karl Aberer, Zoran Despotovic, and Wolfgang Kellerer. Protopeer: a p2p toolkit
bridging the gap between simulation and live deployement. In Proceedings of the 2nd International
Conference on Simulation Tools and Techniques, page 60. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2009.

[67] Flavio D Garcia and Jaap-Henk Hoepman. Off-line karma: A decentralized currency for peer-to-
peer and grid applications. In International Conference on Applied Cryptography and Network Security,
pages 364–377. Springer, 2005.

[68] Gabriele Gianini, Ernesto Damiani, Tobias R Mayer, David Coquil, Harald Kosch, and Lionel Brunie.
Many-player inspection games in networked environments. In 2013 7th IEEE International Conference
on Digital Ecosystems and Technologies (DEST), pages 1–6. IEEE, 2013.

[69] Gabriele Gianini, Marco Cremonini, Andrea Rainini, Guido Lena Cota, and Leopold Ghemmogne
Fossi. A game theoretic approach to vulnerability patching. In Information and Communication Tech-
nology Research (ICTRC), International Conference on, pages 88–91. IEEE, 2015.

[70] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications of the ACM,
42(2):39–41, 1999.

[71] Marco Gramaglia, Manuel Urueña, and Isaias Martinez-Yelmo. Off-line incentive mechanism for
long-term p2p backup storage. Computer Communications, 35(12):1516–1526, 2012.

[72] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime Monod, and Swagatika
Prusty. Lifting: lightweight freerider-tracking in gossip. In Proceedings of the ACM/IFIP/USENIX
11th International Conference on Middleware, pages 313–333. Springer-Verlag, 2010.

[73] Rohit Gupta and Arun K Somani. Game theory as a tool to strategize as well as predict nodes’ behav-
ior in peer-to-peer networks. In Parallel and Distributed Systems, 2005. Proceedings. 11th International
Conference on, volume 1. IEEE, 2005.

[74] Jens Gustedt, Emmanuel Jeannot, and Martin Quinson. Experimental validation in large-scale sys-
tems: a survey of methodologies. Parallel Processing Letters, 2009.

[75] Fatima Lamia Haddi and Mahfoud Benchaïba. A survey of incentive mechanisms in static and
mobile p2p systems. Journal of Network and Computer Applications, 58:108–118, 2015.

[76] Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: Practical accountability for
distributed systems. In ACM SIGOPS operating systems review, volume 41, pages 175–188. ACM,
2007.

[77] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel. Accountable virtual
machines. In OSDI, pages 119–134, 2010.

[78] Sidath B Handurukande, A-M Kermarrec, Fabrice Le Fessant, Laurent Massoulié, and Simon
Patarin. Peer sharing behaviour in the edonkey network, and implications for the design of server-less file
sharing systems, volume 40. ACM, 2006.

[79] Omar Hasan, Lionel Brunie, Elisa Bertino, and Ning Shang. A decentralized privacy preserving
reputation protocol for the malicious adversarial model. IEEE Transactions on Information Forensics
and Security, 8(6):949–962, 2013.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

222 Bibliography

[80] Thomas R Henderson, Mathieu Lacage, George F Riley, C Dowell, and J Kopena. Network simula-
tions with the ns-3 simulator. SIGCOMM demonstration, 15:17, 2008.

[81] Victor Heorhiadi, Shriram Rajagopalan, Hani Jamjoom, Michael K Reiter, and Vyas Sekar. Gremlin:
systematic resilience testing of microservices. In Distributed Computing Systems (ICDCS), 2016 IEEE
36th International Conference on, pages 57–66. IEEE, 2016.

[82] Enrique Hernandez-Orallo, Manuel David Serrat Olmos, Juan-Carlos Cano, Carlos T Calafate, and
Pietro Manzoni. Cocowa: a collaborative contact-based watchdog for detecting selfish nodes. IEEE
Transactions on Mobile Computing, 14(6):1162–1175, 2015.

[83] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and defense techniques
for reputation systems. ACM Computing Surveys (CSUR), 42(1), 2009.

[84] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, lan-
guages, and computation. ACM SIGACT News, 32(1):60–65, 2001.

[85] Yusuo Hu, Dafan Dong, Jiang Li, and Feng Wu. Efficient and incentive-compatible resource alloca-
tion mechanism for p2p-assisted content delivery systems. Future Generation Computer Systems, 29
(6):1611–1620, 2013.

[86] Chen Hua, Yang Mao, Han Jinqiang, Deng Haiqing, and Li Xiaoming. Maze: a social peer-to-peer
network. In E-Commerce Technology for Dynamic E-Business, 2004. IEEE International Conference on,
pages 290–293. IEEE, 2004.

[87] Daniel Hughes, Geoff Coulson, and James Walkerdine. Free riding on gnutella revisited: the bell
tolls? IEEE distributed systems online, 6(6), 2005.

[88] Nwokedi Idika and Aditya P Mathur. A survey of malware detection techniques. Purdue University,
48, 2007.

[89] Rob Jansen, Nicholas Hopper, and Yongdae Kim. Recruiting new tor relays with braids. In Pro-
ceedings of the 17th ACM conference on Computer and communications security, pages 319–328. ACM,
2010.

[90] Hamed Janzadeh, Kaveh Fayazbakhsh, Mehdi Dehghan, and Mehran S Fallah. A secure credit-
based cooperation stimulating mechanism for manets using hash chains. Future Generation Computer
Systems, 25(8), 2009.

[91] Márk Jelasity, Spyros Voulgaris, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten Van Steen.
Gossip-based peer sampling. ACM Transactions on Computer Systems (TOCS), 25(3):8, 2007.

[92] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. A modular paradigm for building self-
organizing peer-to-peer applications. In Engineering Self-Organizing Systems Workshop (ESOA), pages
265–282, 2009.

[93] Seung Jun and Mustaque Ahamad. Incentives in bittorrent induce free riding. In Proceedings of the
2005 ACM SIGCOMM workshop on Economics of peer-to-peer systems, pages 116–121. ACM, 2005.

[94] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrust algorithm for
reputation management in p2p networks. In Proceedings of the 12th international conference on World
Wide Web. ACM, 2003.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Bibliography 223

[95] Jonathan Katz. Bridging game theory and cryptography: Recent results and future directions. In
Theory of Cryptography Conference, pages 251–272. Springer, 2008.

[96] A-M Kermarrec, Laurent Massoulié, and Ayalvadi J. Ganesh. Probabilistic reliable dissemination in
large-scale systems. IEEE Transactions on Parallel and Distributed systems, 14(3):248–258, 2003.

[97] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G Griswold.
An overview of AspectJ. In European Conf. on Object-Oriented Programming. Springer, 2001.

[98] Charles Edwin Killian, James W Anderson, Ryan Braud, Ranjit Jhala, and Amin M Vahdat. Mace:
language support for building distributed systems. In ACM SIGPLAN Notices, volume 42, pages
179–188. ACM, 2007.

[99] Daphne Koller, Nimrod Megiddo, and Bernhard Von Stengel. Fast algorithms for finding random-
ized strategies in game trees. In Proceedings of the 26th annual ACM symposium on Theory of computing,
pages 750–759. ACM, 1994.

[100] Zhen Kong and Yu-Kwong Kwok. Efficient wireless packet scheduling in a non-cooperative envi-
ronment: Game theoretic analysis and algorithms. Journal of Parallel and Distributed Computing, 70
(8):790–799, 2010.

[101] Hartmut König. Protocol Engineering. Springer, 2012.

[102] Eleni Koutrouli and Aphrodite Tsalgatidou. Taxonomy of attacks and defense mechanisms in p2p
reputation systems—lessons for reputation system designers. Computer Science Review, 6(2):47–70,
2012.

[103] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis Geels, Ra-
makrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer, et al. Oceanstore: An
architecture for global-scale persistent storage. ACM Sigplan Notices, 35(11):190–201, 2000.

[104] Yu-Kwong Kwok, Kai Hwang, and ShanShan Song. Selfish grids: Game-theoretic modeling and
nas/psa benchmark evaluation. IEEE Transactions on Parallel and Distributed Systems, 18(5):621–636,
2007.

[105] Butler W Lampson. Computer security in the real world. Computer, 37(6):37–46, 2004.

[106] Guido Lena Cota, Sonia Ben Mokhtar, Julia Lawall, Gilles Muller, Gabriele Gianini, Ernesto Dami-
ani, and Lionel Brunie. A framework for the design configuration of accountable selfish-resilient
peer-to-peer systems. In Reliable Distributed Systems (SRDS), IEEE 34th Symposium on, pages 276–285.
IEEE, 2015.

[107] Jan Karel Lenstra. Local search in combinatorial optimization. Princeton University Press, 2003.

[108] Lorenzo Leonini, Étienne Rivière, and Pascal Felber. Splay: Distributed systems evaluation made
simple (or how to turn ideas into live systems in a breeze). In NSDI, volume 9, pages 185–198, 2009.

[109] Dave Levin, John R Douceur, Jacob R Lorch, and Thomas Moscibroda. Trinc: Small trusted hard-
ware for large distributed systems. In NSDI, volume 9, pages 1–14, 2009.

[110] Brian Neil Levine, Clay Shields, and N Boris Margolin. A survey of solutions to the sybil attack.
University of Massachusetts Amherst, Amherst, MA, 7, 2006.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

224 Bibliography

[111] Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper, Indrajit Roy, Lorenzo Alvisi, and Michael
Dahlin. Bar gossip. In Proceedings of the 7th symposium on Operating systems design and implementation,
pages 191–204. USENIX Association, 2006.

[112] Harry C Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison, Lorenzo Alvisi, and
Mike Dahlin. Flightpath: Obedience vs. choice in cooperative services. In OSDI, volume 8, 2008.

[113] Qinghua Li, Sencun Zhu, and Guohong Cao. Routing in socially selfish delay tolerant networks. In
INFOCOM, 2010 Proceedings IEEE, pages 1–9. IEEE, 2010.

[114] Qiao Lian, Zheng Zhang, Mao Yang, Ben Y Zhao, Yafei Dai, and Xiaoming Li. An empirical study of
collusion behavior in the maze p2p file-sharing system. In 27th International Conference on Distributed
Computing Systems (ICDCS’07), pages 56–56. IEEE, 2007.

[115] Jian Liang, Rakesh Kumar, Yongjian Xi, and Keith W Ross. Pollution in p2p file sharing systems.
In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies.,
volume 2, pages 1174–1185. IEEE, 2005.

[116] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Wattenhofer. Free riding in bittorrent is
cheap. In Proc. Workshop on Hot Topics in Networks (HotNets), pages 85–90. Citeseer, 2006.

[117] Nik Looker, Malcolm Munro, and Jie Xu. Ws-fit: A tool for dependability analysis of web services.
2004.

[118] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Experiences applying game
theory to system design. In Proceedings of the ACM SIGCOMM workshop on Practice and theory of
incentives in networked systems, pages 183–190. ACM, 2004.

[119] Mohamed MEA Mahmoud and Xuemin Shen. A secure payment scheme with low communication
and processing overhead for multihop wireless networks. Parallel and Distributed Systems, IEEE
Transactions on, 24(2), 2013.

[120] George J Mailath. Do people play nash equilibrium? lessons from evolutionary game theory. Journal
of Economic Literature, 36(3):1347–1374, 1998.

[121] Sergio Marti and Hector Garcia-Molina. Taxonomy of trust: Categorizing p2p reputation systems.
Computer Networks, 50(4):472–484, 2006.

[122] Tobias R Mayer, David Coquil, Christian Schoernich, and Harald Kosch. Rcourse: a robustness
benchmarking suite for publish/subscribe overlay simulations with peersim. In Proceedings of the
First Workshop on P2P and Dependability, page 3. ACM, 2012.

[123] Jim McCoy. Mojo nation responds. URL http://www. openp2p. com/pub/a/p2p/2001/01/11/mojoht. html,
2001.

[124] Alessandro Mei and Julinda Stefa. Give2get: Forwarding in social mobile wireless networks of
selfish individuals. IEEE Transactions on Dependable and Secure Computing, 9(4):569–582, 2012.

[125] Jingwei Miao, Omar Hasan, Sonia Ben Mokhtar, Lionel Brunie, and Kangbin Yim. An investigation
on the unwillingness of nodes to participate in mobile delay tolerant network routing. International
Journal of Information Management, 33(2):252–262, 2013.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Bibliography 225

[126] Nikolaos Michalakis, Robert Soulé, and Robert Grimm. Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In Proceedings of the 4th USENIX conference on Networked
systems design & implementation, pages 11–11. USENIX Association, 2007.

[127] John C Mitchell and Vanessa Teague. Autonomous nodes and distributed mechanisms. In Software
Security—Theories and Systems, pages 58–83. Springer, 2003.

[128] Alberto Montresor and Márk Jelasity. Peersim: A scalable p2p simulator. In IEEE 9th International
Conference on Peer-to-Peer Computing, pages 99–100. IEEE, 2009.

[129] Hayam Mousa, Sonia Ben Mokhtar, Omar Hasan, Osama Younes, Mohiy Hadhoud, and Lionel
Brunie. Trust management and reputation systems in mobile participatory sensing applications: A
survey. Computer Networks, 90:49–73, 2015.

[130] Roger B Myerson. Game theory. Harvard university press, 2013.

[131] Stephen Naicken, Anirban Basu, Barnaby Livingston, and Sethalat Rodhetbhai. A survey of peer-
to-peer network simulators. In Proceedings of The 7th Annual Postgraduate Symposium, Liverpool, UK,
volume 2, 2006.

[132] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[133] Animesh Nandi, Tsuen-Wan Johnny Ngan, Atul Singh, Peter Druschel, and Dan S Wallach.
Scrivener: Providing incentives in cooperative content distribution systems. In Proceedings of the
ACM/IFIP/USENIX 2005 International Conference on Middleware, pages 270–291. Springer-Verlag New
York, Inc., 2005.

[134] T-W.J. Ngan, D.S. Wallach, and P. Druschel. Incentives-compatible peer-to-peer multicast. 2004.

[135] Tsuen-Wan Ngan, Roger Dingledine, and Dan S Wallach. Building incentives into tor. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 238–256. Springer, 2010.

[136] Tsuen-Wan Johnny Ngan, Animesh Nandi, Atul Singh, Dan S Wallach, and Peter Druschel. On
designing incentives-compatible peer-to-peer systems. 2004.

[137] Seth James Nielson, Scott A Crosby, and Dan S Wallach. A taxonomy of rational attacks. In Interna-
tional Workshop on Peer-to-Peer Systems, pages 36–46. Springer, 2005.

[138] Noam Nisan and Amir Ronen. Algorithmic mechanism design. In Proceedings of the 31st annual
ACM symposium on Theory of computing, pages 129–140. ACM, 1999.

[139] Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V Vazirani. Algorithmic game theory, vol-
ume 1. Cambridge University Press Cambridge, 2007.

[140] Philipp Obreiter, Birgitta König-Ries, and Michael Klein. Stimulating cooperative behavior of au-
tonomous devices: An analysis of requirements and existing approaches. 2003.

[141] Joao FA Oliveira, Ítalo Cunha, Eliseu C Miguel, Marcus VM Rocha, Alex B Vieira, and Sérgio VA
Campos. Can peer-to-peer live streaming systems coexist with free riders? In IEEE P2P 2013
Proceedings, pages 1–5. IEEE, 2013.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

226 Bibliography

[142] Esther Palomar, Almudena Alcaide, Arturo Ribagorda, and Yan Zhang. The peer’s dilemma: A
general framework to examine cooperation in pure peer-to-peer systems. Computer Networks, 56
(17), 2012.

[143] Christos Papadimitriou. Algorithms, games, and the internet. In Proceedings of the 33rd annual ACM
symposium on Theory of computing, pages 749–753. ACM, 2001.

[144] Thanasis G Papaioannou and George D Stamoulis. Reputation-based policies that provide the right
incentives in peer-to-peer environments. Computer Networks, 50(4):563–578, 2006.

[145] Jaeok Park and Mihaela van der Schaar. Pricing and incentives in peer-to-peer networks, 2010.

[146] Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.

[147] Andrea Passarella. A survey on content-centric technologies for the current internet: Cdn and p2p
solutions. Computer Communications, 35(1):1–32, 2012.

[148] Michael Piatek, Arvind Krishnamurthy, Arun Venkataramani, Yang Richard Yang, David Zhang,
and Alexander Jaffe. Contracts: Practical contribution incentives for p2p live streaming. In NSDI,
pages 81–94, 2010.

[149] Dongyu Qiu and Rayadurgam Srikant. Modeling and performance analysis of bittorrent-like peer-
to-peer networks. In ACM SIGCOMM computer communication review, volume 34, pages 367–378.
ACM, 2004.

[150] Rameez Rahman, Tamás Vinkó, David Hales, Johan Pouwelse, and Henk Sips. Design space anal-
ysis for modeling incentives in distributed systems. In ACM SIGCOMM Computer Communication
Review, volume 41. ACM, 2011.

[151] Rodrigo Rodrigues and Peter Druschel. Peer-to-peer systems. Communications of the ACM, 53(10):
72–82, 2010.

[152] Giancarlo Ruffo and Rossano Schifanella. Fairpeers: Efficient profit sharing in fair peer-to-peer
market places. Journal of Network and Systems Management, 15(3):355–382, 2007.

[153] Normalia Samian, Zuriati Ahmad Zukarnain, Winston KG Seah, Azizol Abdullah, and Zu-
rina Mohd Hanapi. Cooperation stimulation mechanisms for wireless multihop networks: A survey.
Journal of Network and Computer Applications, 54, 2015.

[154] Ravi Sandhu and Xinwen Zhang. Peer-to-peer access control architecture using trusted computing
technology. In Proceedings of the 10th ACM symposium on Access control models and technologies, pages
147–158. ACM, 2005.

[155] Amit Sangroya, Damian Serrano, and Sara Bouchenak. Benchmarking dependability of mapreduce
systems. In Reliable Distributed Systems (SRDS), 2012 IEEE 31st Symposium on, pages 21–30. IEEE,
2012.

[156] Karen Scarfone and Peter Mell. Guide to intrusion detection and prevention systems (idps). NIST
special publication, 800(2007):94, 2007.

[157] Alexander Schaub, Rémi Bazin, Omar Hasan, and Lionel Brunie. A trustless privacy-preserving
reputation system. In IFIP International Information Security and Privacy Conference, pages 398–411.
Springer, 2016.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Bibliography 227

[158] Bruce Schneier and John Kelsey. Cryptographic support for secure logs on untrusted machines. In
USENIX Security, 1998.

[159] Haiying Shen and Ze Li. Arm: An account-based hierarchical reputation management system for
wireless ad hoc networks. In Distributed Computing Systems Workshops, 2008. ICDCS’08. 28th Interna-
tional Conference on. IEEE, 2008.

[160] Jeffrey Shneidman and David C Parkes. Rationality and self-interest in peer to peer networks. In
International Workshop on Peer-to-Peer Systems, pages 139–148. Springer, 2003.

[161] Jeffrey Shneidman and David C Parkes. Specification faithfulness in networks with rational nodes.
In Proceedings of the 23rd annual ACM symposium on Principles of distributed computing. ACM, 2004.

[162] Christos Siaterlis, Andres Perez Garcia, and Béla Genge. On the use of emulab testbeds for scientif-
ically rigorous experiments. IEEE Communications Surveys & Tutorials, 15(2):929–942, 2013.

[163] Thomas Silverston, Olivier Fourmaux, and Jon Crowcroft. Towards an incentive mechanism for
peer-to-peer multimedia live streaming systems. In 8th International Conference on Peer-to-Peer Com-
puting, pages 125–128. IEEE, 2008.

[164] Atul Singh, Tsuen-wan Ngan, Peter Druschel, and Dan S. Wallach. Eclipse attacks on overlay net-
works: Threats and defenses. In In IEEE INFOCOM. Citeseer, 2006.

[165] Michael Sirivianos, Jong Han Park, Xiaowei Yang, and Stanislaw Jarecki. Dandelion: Cooperative
content distribution with robust incentives. In USENIX Annual Technical Conference, volume 7, 2007.

[166] Stefano Traverso, Luca Abeni, Robert Birke, Csaba Kiraly, Emilio Leonardi, R Lo Cigno, and Marco
Mellia. Experimental comparison of neighborhood filtering strategies in unstructured p2p-tv sys-
tems. In IEEE 12th International Conference on Peer-to-Peer Computing (P2P), pages 13–24. IEEE, 2012.

[167] Ramona Trestian, Olga Ormond, and Gabriel-Miro Muntean. Game theory-based network selection:
Solutions and challenges. IEEE Communications surveys & tutorials, 14(4):1212–1231, 2012.

[168] Amin Vahdat, Ken Yocum, Kevin Walsh, Priya Mahadevan, Dejan Kostić, Jeff Chase, and David
Becker. Scalability and accuracy in a large-scale network emulator. ACM SIGOPS Operating Systems
Review, 36(SI):271–284, 2002.

[169] Athanasios V Vasilakos, Yan Zhang, and Thrasyvoulos Spyropoulos. Delay tolerant networks: Proto-
cols and applications. CRC press, 2016.

[170] Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. Karma: A secure economic
framework for peer-to-peer resource sharing. In Workshop on Economics of Peer-to-Peer Systems, vol-
ume 35, 2003.

[171] Yufeng Wang, Akihiro Nakao, Athanasios V Vasilakos, and Jianhua Ma. P2p soft security: On
evolutionary dynamics of p2p incentive mechanism. Computer Communications, 34(3):241–249, 2011.

[172] Jörgen W Weibull. Evolutionary game theory. MIT press, 1997.

[173] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Guruprasad, Mac Newbold, Mike
Hibler, Chad Barb, and Abhijeet Joglekar. An integrated experimental environment for distributed
systems and networks. ACM SIGOPS Operating Systems Review, 36(SI):255–270, 2002.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

228 Bibliography

[174] Zhifeng Xiao and Yang Xiao. Peerreview re–evaluation for accountability in distributed systems or
networks. International Journal of Security and Networks, 7(1):40–58, 2012.

[175] Mao Yang, Zheng Zhang, Xiaoming Li, and Yafei Dai. An empirical study of free-riding behavior in
the maze p2p file-sharing system. In International Workshop on Peer-to-Peer Systems, pages 182–192.
Springer, 2005.

[176] Younghwan Yoo and Dharma P Agrawal. Why does it pay to be selfish in a manet? IEEE Wireless
Communications, 13(6):87–97, 2006.

[177] Aydan R Yumerefendi and Jeffrey S Chase. Trust but verify: accountability for network services. In
Proceedings of the 11th workshop on ACM SIGOPS European workshop, page 37. ACM, 2004.

[178] Aydan R Yumerefendi and Jeffrey S Chase. The role of accountability in dependable distributed
systems. In Proceedings of HotDep, volume 5, pages 3–3. Citeseer, 2005.

[179] Aydan R Yumerefendi and Jeffrey S Chase. Strong accountability for network storage. ACM Trans-
actions on Storage (TOS), 3(3):11, 2007.

[180] Matthew Yurkewych, Brian N Levine, and Arnold L Rosenberg. On the cost-ineffectiveness of
redundancy in commercial p2p computing. In Proceedings of the 12th ACM conference on Computer
and communications security. ACM, 2005.

[181] Manaf Zghaibeh and Fotios C Harmantzis. Revisiting free riding and the tit-for-tat in bittorrent: A
measurement study. Peer-to-Peer Networking and Applications, 1(2):162–173, 2008.

[182] Manaf Zghaibeh, Kostas G Anagnostakis, and Fotios C Harmantzis. The behavior of free riders in
bit torrent networks. In Handbook of Peer-to-Peer Networking, pages 1207–1230. Springer, 2010.

[183] Bridge Qiao Zhao, John CS Lui, and Dah-Ming Chiu. A mathematical framework for analyzing
adaptive incentive protocols in p2p networks. IEEE/ACM Transactions on Networking, 20(2):367–380,
2012.

[184] Sheng Zhong, Jiang Chen, and Yang Richard Yang. Sprite: A simple, cheat-proof, credit-based
system for mobile ad-hoc networks. In INFOCOM 2003. 22nd Annual Joint Conference of the IEEE
Computer and Communications. IEEE Societies, volume 3, pages 1987–1997. IEEE, 2003.

[185] Runfang Zhou and Kai Hwang. Powertrust: A robust and scalable reputation system for trusted
peer-to-peer computing. Parallel and Distributed Systems, IEEE Transactions on, 18(4), 2007.

[186] Runfang Zhou, Kai Hwang, and Min Cai. Gossiptrust for fast reputation aggregation in peer-to-peer
networks. Knowledge and Data Engineering, IEEE Transactions on, 20(9), 2008.

[187] Haojin Zhu, Xiaodong Lin, Rongxing Lu, and Xuemin Shen. A secure incentive scheme for delay
tolerant networks. In Communications and Networking in China, ChinaCom 2008. 3rd International
Conference on, pages 23–28. IEEE, 2008.

[188] Haojin Zhu, Xiaodong Lin, Rongxing Lu, Yanfei Fan, and Xuemin Shen. Smart: A secure multilayer
credit-based incentive scheme for delay-tolerant networks. IEEE Transactions on Vehicular Technology,
58(8):4628–4639, 2009.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : Lena Cota DATE de SOUTENANCE : 24 / 03 / 2017
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Guido

TITRE : Addressing Selfishness in the Design of Cooperative Systems

NATURE : Doctorat Numéro d'ordre : 2017LYSEI023

Ecole doctorale : Informatique et Mathématiques de Lyon

Spécialité : Informatique

RESUME :

Cooperative distributed systems, particularly peer-to-peer systems, are the basis of several mainstream Internet
applications (e.g., file-sharing, media streaming) and the key enablers of new and emerging technologies, including
blockchain and the Internet of Things. Essential to the success of cooperative systems is that nodes are willing to
cooperate with each other by sharing part of their resources, e.g., network bandwidth, CPU capability, storage
space. However, as nodes are autonomous entities, they may be tempted to behave in a selfish manner by not
contributing their fair share, potentially causing system performance degradation and instability. Addressing selfish
nodes is, therefore, key to building efficient and reliable cooperative systems. Yet, it is a challenging task, as
current techniques for analysing selfishness and designing effective countermeasures remain manual and time-
consuming, requiring multi-domain expertise.

In this thesis, we aim to provide practical and conceptual tools to help system designers in dealing with selfish
nodes. First, based on a comprehensive survey of existing work on selfishness, we develop a classification
framework to identify and understand the most important selfish behaviours to focus on when designing a
cooperative system. Second, we propose RACOON, a unifying framework for the selfishness-aware design and
configuration of cooperative systems. RACOON provides a semi-automatic methodology to integrate a given
system with practical and finely tuned mechanisms to meet specified resilience and performance objectives, using
game theory and simulations to predict the behaviour of the system when subjected to selfish nodes. An extension
of the framework (RACOON++) is also proposed to improve the accuracy, flexibility, and usability of RACOON.
Finally, we propose SEINE, a framework for fast modelling and evaluation of various types of selfish behaviour in a
given cooperative system. SEINE relies on a domain-specific language for describing the selfishness scenario to
evaluate and provides semi-automatic support for its implementation and study in a state-of-the-art simulator.

MOTS-CLÉS : Information Technology, Design of distributed systems, Selfishness resilience, Selfish nodes, Game theory,
Semi-automatic configuration, Domain-specific language

Laboratoire (s) de recherche : LIRIS

Directeur de thèse: Prof. Lionel Brunie, Prof. Ernesto Damiani

Président de jury :

Composition du jury : Prof. Harald Kosch, Prof. Vivien Quéma, Dr. Julia Lawall, Prof. Sara Bouchenak, Prof. Paola Bonizzoni,
Prof. Mariagrazia Fugini

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

	Notice XML
	Page de titre
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Selfishness in cooperative systems
	1.1.1 Example: selfishness in P2P file-sharing
	1.1.2 Example: selfishness in P2P live streaming
	1.1.3 Example: selfishness in volunteer computing

	1.2 Dealing with selfishness in cooperative systems
	1.3 Research challenges
	1.4 Thesis contributions & outline

	Selfishness in cooperative distributed systems
	2 A survey on selfishness in cooperative systems
	2.1 An overview of cooperative systems
	2.2 Selfish behaviour in cooperative systems
	2.3 A classification framework for selfish behaviours
	2.3.1 Motivation
	2.3.2 Execution
	2.3.3 Details of the papers included in the review

	2.4 Examples of selfish behaviour classification
	2.4.1 BAR Gossip, Li et al. li2006
	2.4.2 BOINC client, Anta et al. [20], Anderson [18], Yurkewych et al. [180]
	2.4.3 Delay tolerant network, Zhu et al. [188]
	2.4.4 Tor network, Dingledine et al. [135]

	2.5 General analysis of selfishness in cooperative systems
	2.5.1 Analysis of the motivations
	2.5.2 Analysis of the executions

	2.6 Summary

	3 Analysing selfishness in cooperative systems
	3.1 Approaches to selfishness analysis
	3.1.1 Analytical approaches
	3.1.2 Experimental approaches

	3.2 Related research: Game Theory
	3.2.1 Basic concepts
	3.2.2 Game types and applications to cooperative systems
	3.2.3 Discussion and open issues

	3.3 Evaluation of the approaches to selfishness analysis
	3.3.1 Evaluation methodology
	3.3.2 Evaluation results

	3.4 Summary

	4 Dealing with selfishness in cooperative systems
	4.1 Incentive mechanisms
	4.1.1 Classification of incentive mechanisms
	4.1.2 Classification of incentive mechanisms from relevant studies
	4.1.3 Desirable requirements for incentive schemes in cooperative systems
	4.1.4 Perspectives on the research challenges

	4.2 Accountability in distributed systems
	4.2.1 Basic concepts
	4.2.2 Related work: FullReview
	4.2.3 Discussion and open issues

	4.3 Summary

	Selfishness-aware design of cooperative systems
	5 The RACOON framework
	5.1 Overview
	5.2 Illustrative example: the O&A protocol
	5.3 RACOON Design Phase
	5.3.1 Input of the Design Phase
	5.3.2 Cooperation enforcement
	5.3.3 Selfishness injection
	5.3.4 Rationality injection

	5.4 RACOON Tuning phase
	5.4.1 Input of the Tuning phase
	5.4.2 Configuration evaluation and exploration

	5.5 Evaluation
	5.5.1 Design and development effort
	5.5.2 Meeting design objectives using RACOON
	5.5.3 Simulation compared to real system deployment
	5.5.4 Execution time
	5.5.5 Expressiveness

	5.6 Summary

	6 The RACOON++ framework: RACOON meets evolution
	6.1 Overview
	6.2 Illustrative example: the S-R-R protocol
	6.3 RACOON++ Design phase
	6.3.1 Input of the Design phase
	6.3.2 Cooperation enforcement
	6.3.3 Selfishness injection
	6.3.4 Rationality injection

	6.4 RACOON++ Tuning phase
	6.4.1 Input of the Tuning phase
	6.4.2 Configuration evaluation
	6.4.3 Configuration Exploration

	6.5 Evaluation
	6.5.1 Use cases
	6.5.2 Design and development effort
	6.5.3 Meeting design objectives using RACOON++
	6.5.4 RACOON++ effectiveness
	6.5.5 RACOON++ vs FullReview

	6.6 Summary

	Selfishness injection analysis in cooperative systems
	7 The SEINE Framework
	7.1 Domain Analysis
	7.2 SEINE Overview
	7.3 Modelling selfishness in SEINE-L
	7.4 Injecting selfishness in PeerSim using SEINE
	7.4.1 Library of Annotations
	7.4.2 SEINE-L Compiler
	7.4.3 Selfishness scenario generation
	7.4.4 SEINE Implementation

	7.5 Evaluation
	7.5.1 Generality and expressiveness of SEINE-L
	7.5.2 Accuracy of SEINE-R
	7.5.3 Development effort
	7.5.4 Simulation time

	7.6 Summary

	Conclusions and future work
	8 Conclusions
	8.1 Summary
	8.2 Possible improvements and future research directions
	8.2.1 Integration of RACOON and SEINE
	8.2.2 Additional types of selfish deviations
	8.2.3 Extending the RACOON framework
	8.2.4 Support for distributed testbeds

	Appendix
	A RACOON and RACOON++: XML Schema for the inputs of the framework
	A.1 Schema for the XML inputs of RACOON
	A.2 Schema for the XML inputs of RACOON++

	B RACOON and RACOON++ evaluation: Use cases specification
	B.1 RACOON use cases
	B.2 RACOON++ use cases
	B.2.1 Experiments: Design and development effort
	B.2.2 Experiments: RACOON++ effectiveness

	C SEINE: Grammar of the SEINE-L language
	D SEINE: Evaluation of the generality and expressiveness of SEINE-L

	Bibliography
	Folio administratif

