N
N

N

HAL

open science

Addressing selfishness in the design of cooperative
systems
Guido Lena Cota

» To cite this version:

Guido Lena Cota. Addressing selfishness in the design of cooperative systems. Computer Science
and Game Theory [cs.GT]. Université de Lyon; Universita degli studi (Milan, Italie), 2017. English.

NNT': 2017LYSEIO23 . tel-02191480

HAL Id: tel-02191480
https://theses.hal.science/tel-02191480
Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02191480
https://hal.archives-ouvertes.fr

UNIVERSITE
DE LYON

ég UNIVERSITA
— DEGLI STUDI
@ DI MILANO

NNT : 2017LYSEI023

DOCTORAL THESIS

Cotutelle-de-these

INSTITUT NATIONAL DES SCIENCES APPLIQUEES DE LYON

ECOLE DOCTORALE ED 512 — INFORMATIQUE ET MATHEMATIQUES DE LYON
SPECIALITE INFORMATIQUE
DIRECTOR: PROF. LUCA Q. ZAMBONI

UNIVERSITA DEGLI STUDI DI MILANO

DEPARTMENT OF COMPUTER SCIENCE
CORSO DI DOTTORATO IN INFORMATICA (XXVIII CYCLE) — INF/01
COORDINATOR: PROF. PAOLO BOLDI

Defended on 24 March 2017, by :
Guido LENA COTA

Addressing Selfishness in the Design
of Cooperative Systems

Supervisors: Prof. Lionel BRUNIE INSA de Lyon
Prof. Ernesto DAMIANI Universita degli Studi di Milano

Cosupervisors: Dr. Sonia BEN MOKHTAR INSA de Lyon
Dr. Gabriele GIANINI Universita degli Studi di Milano

EXAMINATION COMMITTEE:

Reviewers: Prof. Harald KOSCH Universitit Passau, Germany

Prof. Vivien QUEMA Grenoble INP / ENSIMAG, France
Reviewer (Universita degli Studi di Milano) , Examiner:

Dr. Julia LAWALL Sorbonne Universités, UPMC, LIP6, France
Examiners: Prof. Sara BOUCHENAK INSA de Lyon, France

Prof. Paola BONIZZONI Universita degli Studi di Milano-Bicocca, Italy

Prof. Mariagrazia FUGINI Politecnico di Milano, Italy

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Département FEDORA — INSA Lyon - Ecoles Doctorales — Quinquennal 2016-2020

SIGLE ECOLEDOCTORALE NOM ET COORDONNEES DU RESPONSABLE
CHIMIE DE LYON M. Stéphane DANIELE
CHIMIE http://www.edchimie-lyon.fr Institut de Recherches sur la Catalyse et I'Environnement de Lyon
IRCELYON-UMR 5256
Sec : Renée EL MELHEM Equipe CDFA
Bat Blaise Pascal 3° etage 2 avenue Albert Einstein
secretariat@edchimie-lyon.fr 69626 Villeurbanne cedex
Insa : R. GOURDON directeur@edchimie-lyon.fr
ELECTRONIQUE M. Gérard SCORLETTI
E.E.A. ELECTROTECHNIQUE, AUTOMATIQUE | gcole Centrale de Lyon
http://edeea.ec-lyon.fr 36 avenue Guy de Collongue
69134 ECULLY
Sec : M.C. HAVGOUDOUKIAN Tél : 04.72.18 60.97 Fax : 04 78 43 37 17
Ecole-Doctorale.eea@ec-lyon.fr Gerard.scorletti@ec-lyon.fr
EVOLUTION, ECOSYSTEME, M. Fabrice CORDEY
E2M2 MICROBIOLOGIE, MODELISATION CNRS UMR 5276 Lab. de géologie de Lyon
http://e2m?2.universite-lyon.fr Université Claude Bernard Lyon 1
Bat Géode
Sec : Sylvie ROBERIOT 2 rue Raphaél Dubois
Bat Atrium - UCB Lyon 1 69622 VILLEURBANNE Cédex
04.72.44.83.62 Tél : 06.07.53.89.13
Insa : H. CHARLES cordey@ univ-lyonl.fr
secretariat.e2m2@univ-lyonl.fr
INTERDISCIPLINAIRE SCIENCES Mme Emmanuelle CANET-SOULAS
EDISS SANTE INSERM U1060, CarMeN lab, Univ. Lyon 1
http://www.ediss- Batiment IMBL
lyon.fr 11 avenue Jean Capelle INSA de Lyon
Sec : Sylvie ROBERJOT 696621 Villeurbanne
Bat Atrium - UCB Lyon 1 Tél : 04.72.68.49.09 Fax :04 72 68 49 16
04.72.44.83.62 Emmanuelle.canet@univ-lyon1.fr
Insa : M. LAGARDE
secretariat.ediss@univ-lyonl.fr
INFORMATIQUE ET M. Luca ZAMBONI
INFOMATHS | MATHEMATIQUES
http://infomaths.univ-lyon1.fr Batiment Braconnier
Sec :Renée EL MELHEM 43 Boulevard du 11
Bat Blaise Pascal, 3° novembre 1918
étage 69622 VILLEURBANNE Cedex
Tél : 04.72. 43. 80. 46 Tél :04 26 23 45 52
Fax : 04.72.43.16.87 zanboni @t hs. uni v-lyonl. fr
infomathgpuniv-lyon1.fr
MATERIAUX DE LYON M. Jean-Yves BUFFIERE
Matériaux http://ed34.universite-lyon.fr INSA de Lyon
MATEIS
Sec : Marion COMBE Batiment Saint Exupéry
Tél:04-72-43-71-70 -Fax : 87.12 7 avenue Jean Capelle
Bat. Direction 69621 VILLEURBANNE Cedex
ed.materiaux@insa-lyon.fr Tél:04.72.43 71.70 Fax 04 72 43 85 28
Ed.materiaux@insa-lyon.fr
MECANIQUE,ENERGETIQUE,GENIE M. Philippe BOISSE
MEGA CIVIL,ACOUSTIQUE INSA de Lyon
http://mega.universite-lyon.fr Laboratoire LAMCOS
. Batiment Jacquard
S?C : Marion COMBE 25 bis avenue Jean Capelle
Tél:04-72-43-71-70 -Fax : 87.12 69621 VILLEURBANNE Cedex
Bat. Direction Tél: 04.72 .43.71.70 Fax:04 72 43 72 37
mega@insa-lyon.fr Philippe.boisse@insa-lyon.fr
ScSo* M. Christian MONTES
ScSo http://recherche.univ-lyon2.fr/scso/

Sec : Viviane POLSINELLI
Brigitte DUBOIS

Insa: J.Y. TOUSSAINT

Tél: 0478697276

viviane.polsinelli@univ-lyon2.fr

Université Lyon 2

86 rue Pasteur

69365 LYON Cedex 07
Christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

ABSTRACT

Cooperative distributed systems, particularly peer-to-peer systems, are the basis of several
mainstream Internet applications (e.g., file-sharing, media streaming) and the key enablers of
new and emerging technologies, including Blockchain and the Internet of Things. Essential to
the success of cooperative systems is that nodes are willing to cooperate with each other by
sharing part of their resources, e.g., network bandwidth, CPU capability, storage space. How-
ever, as nodes are autonomous entities, they may be tempted to behave in a selfish manner by
not contributing their fair share, potentially causing system performance degradation and insta-
bility. Addressing selfish nodes is, therefore, key to building efficient and reliable cooperative
systems. Yet, it is a challenging task, as current techniques for analysing selfishness and design-
ing effective countermeasures remain manual and time-consuming, requiring multi-domain
expertise.

In this thesis, we aim to provide practical and conceptual tools to help system designers
in dealing with selfish nodes. First, based on a comprehensive survey of existing work on
selfishness, we develop a classification framework to identify and understand the most impor-
tant selfish behaviours to focus on when designing a cooperative system. Second, we propose
RACOON, a unifying framework for the selfishness-aware design and configuration of cooper-
ative systems. RACOON provides a semi-automatic methodology to integrate a given system
with practical and finely tuned mechanisms to meet specified resilience and performance objec-
tives, using game theory and simulations to predict the behaviour of the system when subjected
to selfish nodes. An extension of the framework (RACOON++) is also proposed to improve the
accuracy, flexibility, and usability of RACOON. Finally, we propose SEINE, a framework for fast
modelling and evaluation of various types of selfish behaviour in a given cooperative system.
SEINE relies on a domain-specific language for describing the selfishness scenario to evaluate
and provides semi-automatic support for its implementation and study in a state-of-the-art
simulator.

iii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

CONTENTS

1 INTRODUCTION 1
1.1 Selfishness in cooperative systems 2
1.1.1 Example: selfishness in P2P file-sharing 2

1.1.2 Example: selfishness in P2P live streaming 3

1.1.3 Example: selfishness in volunteer computing 3

1.2 Dealing with selfishness in cooperative systems 4
1.3 Researchchallenges 6
1.4 Thesis contributions & outline L. 7

I SELFISHNESS IN COOPERATIVE DISTRIBUTED SYSTEMS 11
2 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS 13
2.1 Anoverview of cooperativesystems 13
2.2 Selfish behaviour in cooperative systems, .. 14
2.3 A classification framework for selfish behaviours 19
2.3.1 Motivation. 20

2.3.2 Execution 21

2.3.3 Detalils of the papers included in thereview 24

2.4 Examples of selfish behaviour classification 25
2.4.1 BARGossip, Lietal. [111] o o 25

2.4.2 BOINC client, Anta et al. [20], Anderson [18], Yurkewych etal. [180] . .. 28

2.4.3 Delay tolerant network, Zhuetal [188] 29

2.4.4 Tor network, Dingledineetal. [135] 30

2.5 General analysis of selfishness in cooperative systems 32
2.5.1 Analysis of themotivations 32

2.5.2 Analysisoftheexecutions L. 33

2.6 SUMMATIY o o vttt e e e e 36

3 ANALYSING SELFISHNESS IN COOPERATIVE SYSTEMS 37
3.1 Approaches to selfishness analysis 37
3.1.1 Analytical approaches 37

3.1.2 Experimental approaches 38

3.2 Related research: Game Theory 41
3.2.1 Basicconcepts 41

3.2.2 Game types and applications to cooperative systems 42

3.2.3 Discussionand openissues 45

3.3 Evaluation of the approaches to selfishness analysis 46
3.3.1 Evaluationmethodology, 46

3.3.2 Evaluationresults. L L L oL 48

34 Summary 49

v

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

vi

CONTENTS

4

II

DEALING WITH SELFISHNESS IN COOPERATIVE SYSTEMS

4.1 Incentive mechanisms
4.1.1 C(lassification of incentive mechanisms
4.1.2 C(lassification of incentive mechanisms from relevant studies
4.1.3 Desirable requirements for incentive schemes in cooperative systems . . .
4.1.4 Perspectives on the research challenges

4.2 Accountability in distributed systems o 000
4.2.1 Basicconcepts
4.2.2 Related work: FullReview
4.2.3 Discussion and openissues oL

4.3 Summary

SELFISHNESS-AWARE DESIGN OF COOPERATIVE SYSTEMS

THE RACOON FRAMEWORK

5.1 Overview e

5.2 Ilustrative example: the O&A protocol

5.3 RACOON DesignPhase
5.3.1 InputoftheDesignPhase
5.3.2 Cooperation enforcement
5.3.3 Selfishnessinjection
5.3.4 Rationality injection o 0oL

54 RACOONTuningphase
5.4.1 InputoftheTuningphase
5.4.2 Configuration evaluation and exploration.

5.5 Evaluation
5.5.1 Design and developmenteffort
5.5.2 Meeting design objectives using RACOON
5.5.3 Simulation compared to real system deployment.
5.5.4 Executiontime o
5.5.5 Expressiveness oo

5.6 Summary

THE RACOON++ FRAMEWORK: RACOON MEETS EVOLUTION

6.1 Overview

6.2 Illustrative example: the S-R-Rprotocol

6.3 RACOON++ Designphase
6.3.1 InputoftheDesignphase
6.3.2 Cooperation enforcement
6.3.3 Selfishnessinjection
6.3.4 Rationality injection

6.4 RACOON++Tuningphase
6.4.1 Inputofthe Tuningphase

6.4.2 Configuration evaluation

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

51
51
52
58
59
61
62
62
64
66
69

III

CONTENTS

6.4.3 Configuration Exploration. 137

6.5 Evaluation 143
6.5.1 Usecases. e 143
6.5.2 Design and developmenteffort 144
6.5.3 Meeting design objectives using RACOON++. 146
6.5.4 RACOON++effectiveness 148

6.5.5 RACOON++vsFullReview 149

6.6 Summary 152
SELFISHNESS INJECTION ANALYSIS IN COOPERATIVE SYSTEMS 155
THE SEINE FRAMEWORK 157
7.1 Domain Analysis 158
7.2 SEINEOverview e 162
7.3 Modelling selfishness in SEINE-L 163
7.4 Injecting selfishness in PeerSim using SEINE 168
7.4.1 Library of Annotations 168

7.4.2 SEINE-LCompiler 169
7.4.3 Selfishness scenario generation 171

7.4.4 SEINEImplementation 172

7.5 Evaluation 172
7.5.1 Generality and expressiveness of SEINE-L 173
7.5.2 Accuracyof SEINE-R. 174
7.5.3 Developmenteffort. 176
7.5.4 Simulationtime L oo 179

7.6 SUMMATY . . . o o oo vt 180
CONCLUSIONS AND FUTURE WORK 181
CONCLUSIONS 183
8.1 Summary 183
8.2 Possible improvements and future research directions 186
8.2.1 Integration of RACOON and SEINE 186
8.2.2 Additional types of selfish deviations 187
8.2.3 Extending the RACOON framework 188
8.2.4 Support for distributed testbeds o oL 190
APPENDIX 193

RACOON AND RACOON++: XML SCHEMA FOR THE INPUTS OF THE FRAME-

WORK 195
A.1 Schema for the XML inputs of RACOON 195
A.2 Schema for the XML inputs of RACOON++ 198
RACOON AND RACOON++ EVALUATION: USE CASES SPECIFICATION 203
B.1 RACOONUSECASES . .« « v v o oo e e e et e e e e e e e e e e e e 203

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

vii

viii CONTENTS

B.2 RACOON+H+ USECASES - » « v v v v v e 204
B.2.1 Experiments: Design and developmenteffort. 204

B.2.2 Experiments: RACOON++ effectiveness 206

C SEINE: GRAMMAR OF THE SEINE-L LANGUAGE 209

D SEINE: EVALUATION OF THE GENERALITY AND EXPRESSIVENESS OF SEINE-L 211
BIBLIOGRAPHY 216

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

LIST OF FIGURES

Figure 1
Figure 2

Figure 3
Figure 4

Figure 5

Figure 6
Figure 7
Figure 8

Figure 9

Figure 10
Figure 11

Figure 12
Figure 13
Figure 14

Figure 15
Figure 16

Figure 17

Figure 18

Figure 19

Main contributions of the thesis.

A taxonomy of node types in cooperative systems. The framed box in-
dicates the focusof thisthesis.

Classification of selfish behaviours in cooperative systems.

Overview of the deviation types implementing the objectives of the self-
ish behaviours considered for our analysis.

Overview of the main functionalities of a cooperative system that are
targeted by the selfish behaviours considered for our analysis.

Classification of classical games.
Taxonomy of incentive schemes for cooperative systems.

Overview of the incentive schemes adopted by the incentive mecha-
nisms listedin Table 14.. o L.

Overview of the incentive schemes adopted by the incentive mecha-
nisms listed in Table 14 and grouped by cooperative system categories. .
Overview of an accountability system.
Impact of the punishment values. The gray box indicates the acceptable
percentage of deviations and of wrongful evictions (up to 10%).
Impact of the audit period. The light gray box indicates the acceptable
percentage of deviations (up to 10%), whereas the dark gray box shows
the acceptable percentage of overhead (up to40%).
RACOON Overview.
The O&A protocol betweennodesiand J.
Selfishness manifestations in the O&A protocol shown in Figure 14. . . .
The state diagram representation of the Protocol Automaton specified in
Table 16.
The integration between the commitment protocol of R-acc with the O&A
protocol shown in Figure16.,

The Protocol Automaton of the R-acc audit protocol. For ease of reading,
we do not represent in the figure the required execution of the commit-
ment protocol on each message exchange of the audit protocol.
The Protocol Automaton of the O&A protocol, extended with selfish de-

VIatioNS. e

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

35

68

ix

X List of Figures

Figure 20

Figure 21

Figure 22

Figure 23
Figure 24
Figure 25
Figure 26
Figure 27

Figure 28
Figure 29
Figure 30
Figure 31

Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37
Figure 38

Figure 39
Figure 40

Figure 41

Figure 42

A visual representation of the Protocol Game described in Table 17. The
label besides each decision node indicates the player that takes action
at that node. The label on each edge denotes an action along with its
corresponding method in the PA. Nodes in the same information set
are connected by a dashed line. The labels below each leaf denote the
strategiesof thatplay. L. 95
lustrative example of the utility values that each player would obtain
from playing a certain strategy in the Protocol Game described in Table 17. 99
The sequence diagram of the chunk exchange protocol 3P, studied by

Guerraouietal. [72]. 104
The Protocol Automaton of the chunk exchange protocol 3P. 104
RACOON vs FullReview Configurations. 106
Simulation vs real deployment (logarithmicscale). 107
Onion Forwarding Protocol. 108
Onion loss rate as a function of the percentage of selfish nodes in the

system (logarithmicscale). 109
The RACOON++ framework overview. 113
The S-R-R protocol betweennodesrpand Ry. 116
The Protocol Automaton of the S-R-R protocol. 118
The integration between the commitment protocol of R-acc++ with the

5-R-R protocol shown in Figure 30. 124
The Protocol Automaton of the S-R-R protocol, extended with selfish

deviations. 125
The SG derived from the S-R-R protocol in Figure31. 128

A simple PeerSim configuration file (a) and the corresponding PeerSim
components (b). Depicted in light colour in (b), are the additional com-

ponents that can easilybeadded. L. 133
Integration between the R-sim and PeerSim configuration properties (a)

and components (b). L 134
The PA of the live streaming protocol [72]. 144
The PA of the load balancing protocol [92]. 145
The PA of the anonymous communication protocol. 145
Frequency of the number of configurations tested for each use case. . . . 148

Cooperation levels of the Live Streaming (LS), Load Balancing (LB), and
Anonymous Communication (AC) use cases, when varying the initial
fraction of selfishnodes., 149
Application-specific performance of the Live Streaming (LS) (a), Load
Balancing (LB) (b), and Anonymous Communication (AC) (c) use cases,
when varying the initial fraction of selfishnodes. 150
Performance comparisons between FullReview and RACOON++ CEM
in the Live Streaming (LS), Load Balancing (LB), and Anonymous Com-
munication (AC) use cases. v vttt 151

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Figure 43
Figure 44
Figure 45
Figure 46
Figure 47
Figure 48

Figure 49

Figure 50

Figure 51

Figure 52
Figure 53

Experiment results with different proportions of message loss. 152

Feature diagram of a Selfishness Scenario. 160
Overview of the SEINE framework. 163
The outline of a SEINE-L specification. 164
Comparison between the results published by Guerraoui et al. [72] and

the results obtained with SEINE. 175
Comparison between the results published by Ben Mokhtar et al. [28]

and the results obtained with SEINE. 176

Performance and contribution of BitTorrent and BitThief when down-
loading the same file, measured using SEINE. 176
Number and distribution of Lines of Code (a) to specify the Selfishness
Scenario into the faithful implementation of the use cases and (b) to

modify such scenarios, with and without using SEINE. 178
Performance of BAR Gossip when varying (a) the number of colluding

groups and (b) the fraction of resourceless mobilenodes. 179
Conceptual integration of SEINE into the RACOON framework. 187

Possible extensions of the RACOON framework (coloured in yellow). . . 189

LIST OF TABLES

Table 1

Table 2

Table 3

Table 4

Table 5

Table 6

Table 7

Table 8

Examples of application-related targets of a selfish deviation. 23
Papers considered in our review, along with the characteristics of the co-
operative systems investigated and the types of selfish deviations therein
described. 26
Selfish behaviour in P2P live streaming systems: free-riding (source: [111]).

27
Selfish behaviour in P2P live streaming systems: misreport (source: [111]).

27
Selfish behaviour in P2P live streaming systems: collusion (source: [111]).

28
Selfish behaviour in volunteer computing: free-riding (source: [18, 20,
180]).

29
Selfish behaviour in delay tolerant networks: defection (source: [188]).

30
Selfish behaviour in delay tolerant networks: collusion (source: [188]).

30

Xi

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

xii List of Tables

Table 9

Table 10

Table 11
Table 12

Table 13

Table 14

Table 15

Table 16
Table 17

Table 18

Table 19

Table 20

Table 21

Table 22

Table 23

Table 24
Table 25

Table 26

Table 27

Table 28

Table 29
Table 30

Table 31

Table 32

Selfish behaviour in Tor networks: defection (source: [135]).

31
Selfish behaviour in Tor networks: free-riding (source: [135]).

32
Classification of methodologies for experimental analysis. 39
Comparative evaluation of analytical and experimental approaches for
selfishness analysis in cooperative systems. 49
Advantages and drawbacks of incentive schemes for cooperative sys-
tems. ... 57
Characteristics of the incentive mechanisms proposed in the papers con-
sidered to build the classification framework presented in Section 2.3. . 58

Activities and parameters that influence the cost of enforcing account-

ability. 66
The Protocol Automaton of the O&A protocol. 80
Players, nodes, actions, and information sets that translate the Protocol

AutomatoninFigure19. o o o 0oL 95
Ilustrative example of the computation of the communication costs in-

curred by the players of the Protocol Game shown in Figure 20. 98
Mlustrative example of the calculation of the incentive values assigned

to the players of the Protocol Game shown in Figure20. 99
The configuration parameters of the CEM. 102
Simulation and real deployment parameters. 105
FullReview Configurations 105

Comparison between RACOON and the existing approaches for selfish-
nessanalysis. L 111
Selfishdeviations. 122
The strategies comprising the strategy profile sy, implementing the cor-
rect execution of the stage game in Figure 33. 129
The strategies implemented in the SG of Figure 33 when players py and
p1 are from sub-populations wyand w3z.o 0oL 129

Observed relations between the design objectives natively supported by

RACOON++ and the CEM configuration parameters. 142
Rules to update the pScore vector created by the ParametersScore func-

tioninAlg. 7.. 142
Lines of Code needed for theusecases. 146

Performance of the tuning process of RACOON++ in terms of time du-
ration and number of configurations tested. 147
Design objectives of two scenarios generated for the Live Streaming (LS)
USECASE. . v v v i i i e e e e e e 147
Comparison between RACOON and the existing approaches for selfish-
nessanalysis. L L 153

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Table 33

Table 34

Table 35

Table 36

Table 37

Table 38

Table 39

Table 40

List of Tables

Subset of the papers considered in our review, along with the charac-

teristics of the cooperative systems investigated and the types of selfish

deviations therein described. L 0L
The arguments required for each type of deviation point in SEINE.

The attributes of the annotation types to indicate deviation points in

SEINE. e
Lines of Code for expressing the Selfishness Scenarios of the papers con-

sidered in the domain analysisreview.
Average execution time to evaluate a Selfishness Scenario using SEINE

and the additional time itimposes.
Evaluation of performance and capabilities of the integration between

RACOON and SEINE. i
Possible modifications of some elements of the Protocol Automaton (PA)

in order to account for the new type of “timing deviation” sketched in

Section 8.2.2. L
The inputs of the RACOON and RACOON++ frameworks.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

179

190
195

xiii

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

INTRODUCTION

A cooperative system is a complex distributed system that relies on the voluntary resource
contribution from its participants to perform the system function. Peer-to-peer (P2P) systems
are the most widespread and well-known examples of cooperative systems. Other examples
are cooperative distributed computing (e.g., grid computing [62], volunteer computing [18])
and self-organizing wireless networks (e.g., delay tolerant networks [56]). The popularity of
these systems has rapidly grown in recent years [44]. This trend is expected to continue, driven
by the ever-increasing demand for digital content, notably multimedia content (music, movies,
TV series), and fuelled by the emergence of P2P-assisted content delivery technologies [85, 147].

In cooperative systems, nodes from different administrative domains are expected to con-
tribute to the overall service provision, e.g., downloading files [2, 45], watching live events
streaming [1, 5], or making video and phone calls [23]. This collective contribution opens up the
potential for scalable, self-sustained and robust distributed systems, without requiring costly
dedicated servers.

Essential to the success of cooperative systems is that nodes are willing to cooperate with each
other by sharing part of their resources — e.g., network bandwidth, CPU capability, storage
space. However, in practice [78, 87, 114, 116, 144, 182], real systems often suffer from selfish
nodes that strategically withdraw from cooperation to satisfy their individual interests. For
instance, users of file-sharing applications may decide not to share any files [87, 182], or to
share files only with a small group of partners [114]. Predictably, these selfish behaviours can
severely undermine the systems performance and lead to widespread service degradation [111,
135, 141, 148]. For example, Guerraoui et al. [72] demonstrated experimentally that if 25% of
nodes participating in a P2P live streaming system download a given video file without sharing
it with other nodes, then half of the remaining nodes are not able to view a clear stream [72].

Despite the vast amount of research that has been conducted to address selfishness in coop-
erative systems, designing an efficient selfishness-resilient system remains a challenging, time-
consuming, and error-prone task [15, 118, 160]. A system designer has to account for a plethora
of design decisions (e.g., choosing the proper routing algorithm, selecting the appropriate over-
lay structure, deploying mechanisms to foster cooperation), each of which requires significant
effort to be evaluated [64, 98, 108]. The complexity is further enhanced by the many and var-
ied possibilities for a selfish node to deviate from the correct behaviour in a given system, as
well as by the diverse — and often conflictual — application-specific objectives that the system
designer seeks to achieve.

Part of the difficulty stems from the lack of a convenient unifying framework to design,
strengthen, tune and evaluate real-world cooperative systems in selfish-prone environments. Ex-
isting tools and methodologies provide only a partial solution. Analytical frameworks, partic-
ularly game theory [130], provide theoretical tools to reason about selfishness and cooperation

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2 INTRODUCTION

in competitive situations like those underlying a cooperative system. On the other side, the ap-
plication of analytical models to real systems can be extremely complex [118, 150]. In contrast,
practical frameworks for designing and deploying robust distributed systems do not provide
any guidance for taking the problem of selfish behaviours into consideration [98, 108, 128].
This issue is typically handled by integrating into the system mechanisms designed to foster
cooperation and punish selfish nodes. However, the practical use of these mechanisms is not
straightforward, because they are either tailored to a particular application [45, 47, 111, 135] or
they are general but difficult to test and configure [53, 72, 76].

The aim of our research is to facilitate the task of system designers in dealing with selfishness
in cooperative systems. To this end, we present a classification framework and a descriptive
language for describing motivations and executions of selfish behaviours in cooperative dis-
tributed systems. Furthermore, we provide general methodologies, along with their software
implementations, for supporting the semi-automatic design and evaluation of cooperative sys-
tems deployed over a network of selfish nodes.

1.1 SELFISHNESS IN COOPERATIVE SYSTEMS

Most cooperative systems are characterised by untrusted autonomous individuals with their
own objectives — not necessarily aligned with the system objectives — and full control over
the device they use to interact with the system [127]. This applies especially to P2P systems,
due to the open nature of most of them [30, 116]. Autonomy and self-interest are the defining
characteristics of selfish nodes.

A selfish node is a strategic individual that cooperates with other nodes only if such be-
haviour increases its local benefits.! Selfish behaviours have been observed in P2P [72, 78, 87,
114, 116, 144, 182] and in other cooperative systems [125, 135, 176]. The emergence of selfish-
ness in cooperative systems results in substantial degradation of performance, unpredictable
or limited availability of resources, and may even lead to a complete disruption of the system
functionalities [28, 71, 135, 152].

The large body of literature on selfishness in cooperative systems documents not only the
importance of this problem but also the number and variety of possible selfish behaviours.
In the remainder of this section, we present three examples of selfish behaviours in P2P and

volunteer computing, and we examine their impact on the system performance.

1.1.1 Example: selfishness in P2P file-sharing

By far, file-sharing has been the most popular and widely-deployed application of P2P. A P2P
file-sharing application (e.g., BitTorrent [45], eDonkey [78], Gnutella [87]) enables its users to
share files directly among each other via the Internet. The goal of these systems is to offer a
high variety and availability of digital content, supported by the voluntary contribution of files
and bandwidth by the users.

1 For the moment, we are content with this informal definition, but we formalise this concept later in Chapter 2.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.1 SELFISHNESS IN COOPERATIVE SYSTEMS

File-sharing has become the most representative showcase for the problem of selfishness in
cooperative systems. In 2005, Hughes et al. [87] reported that almost 85% of participants of
the file-sharing system Gnutella do not share any files. The next year Handurukande et al. [78]
observed a similar situation in the eDonkey network, with almost four-fifths of the clients not
sharing anything. In two measurement studies between 2008 and 2010, Zghaibeh et al. [181,
182] showed that the population of selfish nodes in the BitTorrent community increased by
almost 80% in two years.

These selfish behaviours are pursued through rather simple actions, such as changing a con-
figuration parameter (e.g., the upload bandwidth) or exiting the client application once the files
of interest have been downloaded. Locher et al. [116] proposed a more complex, but highly ef-
fective, approach to downloading files in the BitTorrent system without uploading any data.
Specifically, the authors implemented and openly distributed a selfish client (BitThief) that ex-
ploits several features of the BitTorrent protocol to attain fast downloads and no contribution.

The example of BitThief is particularly instructive because it shows the easy accessibility of
selfish tools also to non-experts. In fact, even if manipulating a client software to implement a
selfish behaviour is costly and requires detailed technical knowledge, once this effort has been
made, it is simple to distribute the “hacked” client to the Internet community.

1.1.2 Example: selfishness in P2P live streaming

P2P live streaming applications, such as PPLive [5] and BitTorrent Live [1], are large-scale co-
operative systems that allow millions of users to watch streams of events at the same time. The
high scalability of P2P live streaming is ensured by the users’ contribution in disseminating
the video chunks in the stream, which alleviates the load on the streaming sources. The video
chunk dissemination is typically based on gossip protocols. In practice, each user proposes his
available chunks to randomly selected partners, who in turn request any chunks they need; the
interaction ends when the user delivers the requested chunks.

Selfish users in P2P live streaming systems have many possibilities to receive video chunks
while reducing their contribution [53, 72, 111]. For instance, a user may under-report the video
chunks available to avoid future requests, or may simply decide to ignore all the requests. Re-
cent studies performed on real live streaming systems [141, 163] have confirmed that the quality
of the stream (measured in terms of video discontinuity and latency) received by the coopera-
tive users is substantially reduced by the presence of selfish users in the system.

Collusion among nodes is another manifestation of selfishness, which has been addressed,
for example, by Guerraoui et al. in [72]. In their study, the authors observed that colluding
nodes could significantly lower the streaming quality by giving each other a higher priority.

1.1.3 Example: selfishness in volunteer computing

Volunteer computing aggregates the computational power of millions of Internet-connected
personal computers that donate their spare CPU cycles to a computational project. The most

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

4 INTRODUCTION

famous of these projects is probably SETI@home, which aims to discover extraterrestrial intelli-
gence by processing radio telescope data [19]. The enormous success of SETI@home led to the
release of BOINC (Berkeley Open Infrastructure for Network Computing) [18], which rapidly
became the most popular platform for voluntary computing.

Using a BOINC client, volunteers download computational tasks (work units) from a project
server, solve the tasks locally, and send the final results back to the server. To encourage coop-
eration, BOINC rewards volunteers with credit points proportionally to their contribution [18].
The credits are typically displayed on web-based leaderboards accessible worldwide, allowing
volunteers to compare their ranking with other users. From a survey conducted by BOINC [12],
as well as from the behaviour of BOINC users on online forums [9], the credit system appears to
be very motivating for the volunteers. It is so motivating to induce some selfish users to cheat
the system only for achieving a better position in leaderboards [7, 10, 11]. Concretely, similarly
to BitThief, the original client was hacked and replaced with a selfish client that speeds up the
computation by sending untrustworthy results to the server labelled as completed work units.

The selfish behaviour of few “volunteers” may ruin the results of an entire experiment [7],
and thus undermine the correctness — or worse, the attractiveness — of a volunteer computing
system. The typical countermeasure to this issue is to detect and isolate selfish clients using
redundant task allocation, whereby the same work unit is assigned to several clients for result
comparison [18]. The drawback of this approach is the large overhead imposed on the clients,

which poses an unfavourable trade-off between correctness and performance.

1.2 DEALING WITH SELFISHNESS IN COOPERATIVE SYSTEMS

The ways selfishness has been addressed in the literature on cooperative systems can be broadly

divided into two categories: analysis and design.

Studies in the first category provide analytical models to understand the motivations driving
a selfish node, as well as for predicting its expected behaviour. The most comprehensive frame-
work available for this purpose is Game Theory (GT), a branch of economics that deals with
strategic interactions in conflict situations [130]. GT provides a set of mathematical tools for
modelling competition and cooperation between rational (i.e., strategic and selfish) individuals,
like the autonomous and self-interested nodes in cooperative systems.

In the last decades, the distributed system community has extensively used GT to assess the
robustness of a variety of systems [26, 35, 36, 111, 112, 142, 167], taking advantage of the pre-
dictive power and general applicability of the tool. However, as for any analytical approach,
applying game-theoretic analysis to real systems tends to be complex, and requires many sim-
plifying assumptions to obtain a tractable model [150]. More precisely, the system designer
needs to create a mathematical model of the system (the game), including the alternative strate-
gies available to the nodes (the players) and their preferences over the possible outcomes of the
system (defined by an utility function). Then, the designer has to use game-theoretic arguments
to assess what strategy is the most likely to be played by the players, with respect to the given
utility function. The answer to this question is the solution of a game. The most common so-

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.2 DEALING WITH SELFISHNESS IN COOPERATIVE SYSTEMS

lution considered in the literature is the Nash Equilibrium [130], which describes the situation
in which no player wants to change unilaterally her strategy. Carrying out this process is in-
herently difficult for complex systems, especially because it is manual, time-consuming and
error-prone [118].

The second category of approaches to deal with selfishness in cooperative systems proposes
design solutions and mechanisms to enforce cooperation among selfish nodes. Yumerefendi
and Chase [178] advocate accountability as a viable solution for dealing with non-cooperative
behaviours. Distributed accountability systems [53, 72, 76] provide an implementation of this
solution that has been proven feasible and effective for cooperative systems. Particularly, the
FullReview system described in [53] can operate in the presence of selfish nodes. On the down-
side, enforcing accountability incurs a non-negligible cost on the system, mainly due to the high
message overhead and the intensive use of cryptography. This results in a fundamental trade-
off between performance and resilience to selfish nodes, which poses a difficult configuration
problem for the system designers. Since no reference solution is given in the studies cited above,
the configuration of such accountability mechanisms is a trial-and-error and time-consuming
procedure.

Accountability systems usually address selfishness with a strictly punitive approach, by iso-
lating or evicting selfish nodes [53, 72]. A complementary approach is to introduce incentives
for sharing resources, thereby making cooperation more profitable for selfish nodes. The large
number of incentive mechanisms proposed in the literature can be classified into reciprocity-
based and economy-based. Incentives based on direct reciprocity requires that nodes maintain
a history of past interactions with other nodes and use this information to influence the present
interaction. For example, BitTorrent applies a direct reciprocity incentive [45], whereby each
node prioritises the requests of other nodes based on their history of cooperation. Direct reci-
procity offers a lightweight and scalable incentive mechanism, but it can work only if nodes
have long-term relationships; otherwise, they may not have the opportunity to reciprocate ap-
propriately. To overcome this issue, indirect reciprocity-based incentives make the interactions
between two peers depend not only on the past interactions between them but also on the in-
teractions between them and other nodes. Reputation is the most common incentive based on
indirect reciprocity, and it has been widely applied to large-scale dynamic environments like
cooperative systems [121]. Reputation offers high flexibility and scalability, and can be imple-
mented in a fully decentralised manner [79, 94, 129, 185]. On the other hand, reputation mecha-
nisms are subject to many types of attacks [121], such as the dissemination of false information
(e.g., bad mouthing, unfair praise), and other strategic behaviours (e.g., whitewashing).

In economy-based incentive mechanisms, nodes pay for obtaining services or resources (as
consumers) and get paid for sharing resources (as providers). These mechanisms use virtual
currency as the commodity for trading resources and allow its later expenditure [25, 67]. The
major drawbacks of economy-based incentives are that they also introduce economic issues in
the system (e.g., price negotiation, inflation, deflation) [67], and they may require an authority
(virtual bank) to issue and certify the currency [25].

Mechanism Design (MD) represents the link between analysis and design approaches for
dealing with selfishness in cooperative systems. MD is a branch of game theory that provides

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

6 INTRODUCTION

the mathematical framework for designing games, which, as we discussed above, are suitable
to model distributed systems. This argument has been well supported by many authors, among
which Shneidman et al. [160] and Aiyer et al. [15], who proposed to use MD as a design tool
for cooperative systems. The goal of MD is to design a system in such a way that selfish be-
haviours can be proved to be an irrational choice for selfish nodes. A notable example of the
mechanism design approach is the BAR Model of Aiyer et al. [15], which provides an archi-
tecture for building cooperative distributed systems that are robust to selfish and Byzantine
nodes. However, using mechanism design for designing real systems presents the same lim-
itations mentioned above for game theory analysis, particularly, the complexity added by its
analytical approach [15, 26, 27, 111, 118, 150]. Moreover, the resulting design solution suffers
from poor maintainability and flexibility: every change in the system parameters requires a full
revision of the design, which hinders the reuse of a successful solution in other systems.

1.3 RESEARCH CHALLENGES

Based on the discussion above, we can summarise the Main Research Challenge (MRC) of this
thesis as follows:

(MRC) Provide integrated support for designing, tuning and evaluating cooperative sys-
tems deployed over a network of selfish nodes.

We decompose the MRC into two parts, namely Analysis (A) and Design (D), each facing
three sub-challenges.

(A) Provide (conceptual and practical) support for understanding, modelling and evaluating
selfish behaviours in cooperative systems.

(A.1) Develop a framework to understand and classify the motivations as well as the

strategies of selfish behaviours in cooperative systems.
(A.2) Develop tools to specify selfish behaviours in cooperative systems.

(A.3) Develop a framework to facilitate the development and evaluation of a behavioural
model of selfish nodes in a given cooperative system.

(D) Provide practical support for designing and configuring cooperative systems that meet
targeted functionality and performance objectives in the presence of selfish nodes.

(D.1) Identify general and practical mechanisms to enforce cooperation in cooperative
systems.

(D.2) Develop a methodology to facilitate the set-up and configuration of cooperation
enforcement mechanisms in a given cooperative system.

(D.3) Develop a framework to facilitate the assessment of the resilience of a given coop-
erative system against different types of selfish behaviours.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

1.4 THESIS CONTRIBUTIONS & OUTLINE

1.4 THESIS CONTRIBUTIONS & OUTLINE

Motivated by the challenges presented in the previous section, in this thesis, we present three
distinct but interrelated contributions. A brief outline of the contributions is depicted in Fig-

ure 1 and discussed below.

C1: Survey on selfishness in cooperative systems
Chapters 2, 3, 4

RACOON
C2: Selfishness-aware design of cooperative systems
Chapters 5, 6
C3: Selfishness-injection framework for cooperative systems SEINE ™o
Chapter 7 : Future work

Chapter 8

Figure 1: Main contributions of the thesis.

(C.1) A survey on selfishness and its countermeasures in cooperative systems.

Related to all challenges.

In Chapter 2 we provide a comprehensive overview of the underlying motivations and strate-
gies of selfish nodes in cooperative systems. Based on a systematic review of the extensive
literature on the subject, we develop a classification framework to describe and analyse selfish
behaviours. Furthermore, in Chapter 3 and Chapter 4, we present the state-of-the-art to analyse
and cope with selfishness in cooperative systems.

With (C.1), we provide the conceptual basis on which build the practical contributions intro-

duced next.

(C.2) A framework for the selfishness-aware design of cooperative systems.
Related to challenge (A.3), (D.2), and (D.3).

In Chapter 5, we propose RACOON, an integrated framework for designing, tuning and eval-
uating cooperative systems resilient to selfish nodes. RACOON facilitates the work of system
designers by proposing an end-to-end and largely automated design methodology. In particu-
lar, RACOON automates the set-up and configuration of accountability and reputation mecha-
nisms into the system under design, using a novel approach based on game theory and simu-
lations. To illustrate the usefulness of our framework, we use it to design a P2P live streaming
system and an anonymous communication system. Experimental results and simulations show
that the designed systems can meet the targeted level of performance and selfish-resilience.
Chapter 6 presents RACOON++, which extends RACOON. In particular, RACOON++ in-
cludes a declarative model that allows parametrizing selfish behaviours, and introduces a new

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

8 INTRODUCTION

model to predict the evolution of the system based on evolutionary game theory. We illustrate
the benefits of using RACOON++ by designing a P2P live streaming system, a load balancing
system, and an anonymous communication system. Extensive experimental results using the
state-of-the-art PeerSim simulator, which is completely integrated into our framework, verify
that the systems designed using RACOON++ achieve both resilience to selfish nodes and high
performance. We released a Java implementation of RACOON++ as an open-source project:
code and other data useful for evaluation are available on the project’s page on GitHub.?

(C.3) A framework for describing and injecting selfish behaviours in cooperative systems.
Related to challenge (A.2), (A.3) and (D.3).

In Chapter 7 we introduce SEINE, a framework for modelling various types of selfish be-
haviours in a given cooperative system and automatically understanding their impact on the
system performance through simulations. SEINE relies on a domain-specific language, called
SEINE-L, for describing the behaviour of selfish nodes, along with a run-time system that gen-
erates an implementation of the described behaviours for the state-of-the-art simulator Peer-
Sim [128].

We conclude the thesis in Chapter 8, in which we summarise the contributions with respect
to the initial research challenges. In this chapter, we also discuss some future work, notably, the
scheduled integration between the RACOON and SEINE frameworks.

LIST OF PUBLICATIONS, POSTERS AND SUBMISSION RELATED TO THIS THESIS.

¢ G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. A framework
for the design configuration of accountable selfish-resilient peer-to-peer systems. In Proceedings
of the 34th IEEE Symposium on Reliable Distributed Systems (IEEE SRDS’15). 2015.

e G. Lena Cota, S. Ben Mokhtar, G. Gianini, L. Brunie, E. Damiani. RACOON: A framework to
design Cooperative Systems resilient to selfish nodes. Poster at ACM EuroSys Conference. 2015.

® G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. Analysing
Selfishness Flooding with SEINE. Accepted for publication in the 47th IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN 2017).

¢ G. Lena Cota, S. Ben Mokhtar, J. Lawall, G. Muller, G. Gianini, E. Damiani, L. Brunie. RACOON++:
A Semi-Automatic Framework for the Design and Simulation of Selfishness-Resilient Cooper-
ative Systems. Under review for the IEEE Transactions on Dependable and Secure Computing
(TDSC).

2 RACOON++ on GitHub: https://github.com/glenacota/racoon.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/racoon

1.4 THESIS CONTRIBUTIONS & OUTLINE

TECHNICAL REPORTS AND OTHER RESOURCES RELATED TO THIS THESIS.

e G. Lena Cota, P-L. Aublin, S. Ben Mokhtar, G. Gianini, E. Damiani, L. Brunie. A Semi-Automatic
Framework for the Design of Rational Resilient Collaborative Systems. Technical report,
http:/ /liris.cnrs.fr/Documents / Liris-6739.pdf.

¢ RACOON++ on GitHub: https://github.com/glenacota/racoon.

e SEINE on GitHub: https://github.com/glenacota/seine.

LIST OF PUBLICATIONS NOT DIRECTLY RELATED TO THIS THESIS.

¢ G. Gianini, M. Cremonini, A. Rainini, G. Lena Cota, L. G. Fossi. A game theoretic approach to
vulnerability patching. In IEEE International Conference on Information and Comm. Technology
Research (ICTRC). 2015.

¢ V. Bellandi, P. Ceravolo, E. Damiani, F. Frati, G. Lena Cota,]. Maggesi. Boosting the innovation
process in collaborative environments. In IEEE International Conference on Systems, Man, and
Cybernetics. 2013.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

https://github.com/glenacota/racoon
https://github.com/glenacota/seine

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Partl

SELFISHNESS IN COOPERATIVE DISTRIBUTED SYSTEMS

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

As highlighted in Chapter 1, cooperation is a necessary condition and a fundamental challenge
for any cooperative system such as peer-to-peer (P2P). The success of these systems depends on
the resource contribution of the participating nodes, which are autonomous individuals with
different goals, roles, and abilities. However, given this autonomy, self-interested nodes may
prefer to use the system services while contributing minimal or no resources in return. In the
last decade, a significant amount of research has investigated the presence and extent of self-
ishness in cooperative systems [78, 87, 125, 135, 176, 182]. All these studies confirm that selfish
behaviours can lead to a significant degradation of the overall system performance. Thus, a
clear understanding of the underlying motivations and strategies of selfish nodes is crucial for
optimal design and evaluation of cooperative systems.
The primary contributions of this chapter can be summarised as follows:

* We develop a classification framework to understand motivations and executions of self-
ish behaviours in cooperative distributed systems.

* We use our classification framework to survey relevant research works related to selfish-
ness in cooperative distributed systems.

Roadmap. We introduce the notion of cooperative systems in Section 2.1. Section 2.2 pro-
vides a definition of selfish behaviours and discusses the types of nodes that can partic-
ipate in a cooperative system, classified according to their goals and capabilities. In Sec-
tion 2.3, we propose a classification framework to describe motivations and executions of
selfish behaviours. We apply the framework to some illustrative cases in Section 2.4, and
we use it in Section 2.5 to analyse relevant research work. Finally, we summarise and draw

some conclusions in Section 2.6.

2.1 AN OVERVIEW OF COOPERATIVE SYSTEMS

A cooperative system is a complex distributed system that relies on the voluntary resource
contribution from its participants to perform the system function. Examples of cooperative
systems are peer-to-peer applications (e.g., P2P file-sharing, P2P media streaming, P2P instant
messaging), collaborative computing (e.g., volunteer computing, grid computing), and self-
organizing wireless networks (e.g., delay tolerant networks). Common to all these systems is
the active role of participants in providing the system service, whether this is downloading
files, solving scientific problems or routing data in sparse wireless networks. In practice, each
participant shares a part of its local resources (e.g., network bandwidth, processing power, or
storage space) for the common good of the system.

13

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

14 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Participants of a cooperative system are autonomous individuals that cooperate with the sys-
tem using heterogeneous computational devices (nodes). For instance, a node can be a desktop
computer, a cluster of processors, a mobile phone, or a sensor device. Nodes are operated inde-
pendently by their respective owners and typically reside in different administrative domains.

Cooperative systems can leverage on cooperation, heterogeneity and autonomy of the partic-

ipating nodes to obtain the following characteristics:

Scalability. The capacities of a cooperative system depend on the number of participants
that are contributing. Thus, the system’s efficiency can grow organically with the system
size. It is quite telling that BitTorrent [45] and Skype [23], two of the most popular large-scale
applications involving millions of users, are examples of cooperative systems.

Cost-effectiveness. The costs needed to operate the system are shared among a large set of
contributors, and not borne by a single entity.

Resilience. Cooperative systems are less vulnerable to faults, attacks, and censorship, due to
the high diversity of the potential targets [151], e.g., different hardware and network specifics,

software architectures, and geographic locations.

2.2 SELFISH BEHAVIOUR IN COOPERATIVE SYSTEMS

A necessary starting point for our discussion on selfishness in cooperative systems is to provide
a clear understanding of what is a cooperative behaviour and what is a selfish behaviour. Our
definitions build on the seminal work "Rationality and self-interest in P2P Networks" by Shnei-
dman and Parkes [160], and are also indebted to the taxonomy of non-cooperative behaviours
proposed by Obreiter et al. [140].

Definition 2.1 (cooperative behaviour). A cooperative behaviour corresponds to the cor-

rect and faithful execution of the protocols underpinning a cooperative system.

Example 2.2.1 (file-sharing). In data distribution systems such as BitTorrent or Gnutella, coop-
erative behaviours are to advertise the available files and allocate bandwidth to implement

the data sharing protocol.

Example2.2.2 (volunteer computing). Volunteer nodes participating in projects like SETI@home
and Folding@home behave cooperatively if they donate their spare CPU cycles to complete
the computational job assigned [18, 19].

Example 2.2.3 (P2P live streaming). Live streaming applications such as PPLive [5] allow mil-
lions of users to watch streams of events at the same time. In these systems, the cooperative
behaviour of peers is to advertise available video chunks and dedicate some upload band-

width to support the chunks propagation.

Ideally, each participant of a cooperative system implements the relevant cooperative be-
haviour. Unfortunately, this is very unlikely in real systems, as they are composed of au-

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.2 SELFISH BEHAVIOUR IN COOPERATIVE SYSTEMS

tonomous individuals with own objectives — which may not be aligned with the system objec-
tives — and complete control over the hardware and software of the nodes they use to interact
with the system [127]. Long story short: system participants have the ability to modify their

behaviour if they are motivated enough to do so.

Notation. For convenience, henceforth we use the term node to denote both the system participant

and its controlled device, assuming that each participant controls exactly one node.

We can distinguish between two forms of non-cooperative behaviours: selfish behaviours
and malicious behaviours. Selfish behaviours have been observed in many real systems [72,
78,87,114, 116, 135, 144, 182], in which nodes deviate from the cooperative behaviour because
they devised a more profitable behaviour to adopt. The notion of profitability introduces an eco-
nomic aspect into our discussion. Specifically, cooperation comes at a cost to the contributors,
who are expected to consume their own resources (e.g., bandwidth, CPU, memory, storage) for
the common good of all nodes. Thus, we can safely assume that the satisfaction that a node de-
rives from participating in the system depends not only on the quality of the service it receives
but also on its cooperation costs. The utility of a given behaviour for a given node is a measure
(a value) of the node’s satisfaction for implementing that behaviour. For the purposes of this
chapter, and in conformity with earlier works on cooperative systems design [15, 26, 30, 111],

we provide the following informal definition of node’s utility:!

Definition 2.2 (utility). The utility that a node participating in a cooperative system re-
ceives from a given behaviour is defined by the benefit gained from the service provided
by the system and the cost of sharing its own resources when performing that behaviour.

Definition 2.3 (profitable behaviour). A behaviour is more profitable than another be-
haviour if it yields a higher utility.

We can now present our definition of selfish behaviour.

Definition 2.4 (selfish behaviour). A selfish behaviour is an intentional and profitable de-

viation from the cooperative behaviour.

Example 2.2.4 (message delivery). In wireless networks such as DTN [169] that rely on coop-
erative message propagation, a node may decide not to relay the traffic of other mobile nodes,
in order to extend its battery lifetime and preserve its bandwidth [176, 188].

Example2.2.5 (cooperative storage). A node of a cooperative storage system (e.g., Pastiche [48]
OceanStore [103]) may selfishly withdraw from the resource allocation protocol and discard

some data of other nodes to save local storage space [47].

1 A formal definition can be found in Chapters 5 and 6, in which we present our game theoretic model of a cooperative
system.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

15

16 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Example 2.2.6 (distributed accountability). PeerReview [76] is a decentralised accountability
system, also suitable for P2P networks, which detects misbehaviours by distributing the au-
diting workload among nodes. However, Diarra et al. [53] showed that PeerReview might
suffer from selfish behaviours, because the auditors have no incentive for supporting the

overhead introduced by the audit mechanism.

Example 2.2.7 (file-sharing). The Maze file-sharing system [86] includes an incentive system
in which peers earn points for uploading and expend points for successful downloads. De-
spite this incentive, in their empirical study of the Maze network, Lian et al. [114] have de-
tected groups of peers sharing files only among each other while refusing to share any file
with peers outside their group.

Based on these examples, we can further elaborate Definition 2.4 with some considerations on
the motivations behind selfish behaviours. There are many reasons why a node would choose
to stop following the cooperative behaviour, such as:

1. The cost of contributing resources to other nodes outweighs the benefits received from
the system.

2. The system does not impose punishments for selfish behaviours nor incentives to encour-

age contributions [38].

3. The punishment for selfish behaviours (resp. the incentive for contributions) is not fast,
certain and large enough to foster cooperation [30].

4. Nodes have economic or social reasons for cooperating only with a restricted group of
nodes [114, 121].

5. Nodes suffer from persistent resource shortage, due for example to hardware or software
limitations of the device that hosts the node (e.g., battery-powered devices) [75, 176].

6. An exogenous event that occurs in the node’s environment, such as temporary connectiv-
ity problems, or message loss [30].

According to the taxonomy of non-cooperative behaviours proposed by Obreiter et al. [140],
motivations (1-3) have to be considered unjustifiable, and the selfish behaviours they produce
should be deterred; conversely, selfish behaviours dictated by motivations (4-5) should be con-
sidered justifiable misbehaviours and be exempted from punishments.

Another interesting fact illustrated by the examples above is that selfish behaviours can also
occur in protocols specifically designed to address misbehaviours (Examples 2.2.6 and 2.2.7).
Note that this is consistent with Definition 2.4 as soon as the protocols in question rely on the
cooperation of autonomous nodes.

Another form of non-cooperative behaviours are malicious behaviours, which are defined

next.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.2 SELFISH BEHAVIOUR IN COOPERATIVE SYSTEMS

Definition 2.5 (malicious behaviour). A malicious behaviour is an intentional deviation
from the cooperative behaviour that aims at harming the system and disrupting its proto-
cols.

Example 2.2.8 (file-sharing). File pollution is the malicious introduction of tampered contents
in file-sharing networks, with the goal of discouraging the distribution of copyright protected
contents [115]. Frequent downloads of polluted files can degrade the quality of file-sharing
service to the point that the users decide to leave the system.

Example2.2.9 (P2P overlay). The eclipse attack [164] is a malicious and coordinated behaviour
that aim to isolate correct nodes from the P2P overlay and its services by taking control of
their neighbour set.

In contrast with selfish behaviours, the only goal of a malicious behaviour is to deteriorate
the system performance as much as possible and, possibly, at any cost.

In the remainder of this section, we describe the types of nodes that can participate in a
cooperative system, and we suggest the taxonomy shown in Figure 2. Our taxonomy is inspired
by the classification of node types proposed by Feigenbaum and Shenker [57] and refined by
Shneidman and Parkes [160]. First, we distinguish nodes according to their ability and will to
strategize over different behaviours. Nodes that do not strategize can be either correct or faulty
(left side of Figure 2).

NobE TYPES
in cooperative systems

do not strategize do strategize

Correct nodes Faulty nodes Malicious nodes SELFISH NODES

Figure 2: A taxonomy of node types in cooperative systems. The framed box indicates the focus of this
thesis.

Correct nodes are also called altruistic [137] or obedient [57, 160], because they faithfully
follow the system protocols without pursuing individual interests.

Definition 2.6 (faulty nodes). A node is faulty when it fails to execute the cooperative
behaviour due to hardware or software bugs, misconfigurations, or other unintentional
faults.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

17

18 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Faulty nodes are incorrectly functioning nodes that may suffer from different types of failures,
including fail-stop (the node stops working), omissions (the node drops incoming or outgoing
messages), and Byzantine (the node behaves arbitrarily) failures [21, 160].

On the right side of Figure 2 are nodes that behave strategically to pursue personal objectives.

We distinguish between malicious and selfish nodes, according to the nature of their objectives.

Definition 2.7 (malicious nodes). A node is malicious when it executes a malicious be-
haviour (see 2.5) with the intent to degrade the system performance and disrupt the ser-

vice.

Definition 2.8 (selfish nodes). A node is selfish when it strategically executes the most
profitable behaviour, either cooperative (see 2.1) or selfish (see 2.4), with the aim of max-
imising its expected utility.

When designing a cooperative system, the designer should take all the types of nodes into
consideration [57, 136, 160]. More precisely:

¢ Correct nodes, of course, do not need any special handling.

¢ Faulty nodes should be detected and repaired (or replaced) promptly, typically using
redundancy, cryptographic signing, and Byzantine fault-tolerance techniques [21, 39, 40,
160].

* Malicious nodes can be handled using traditional security approaches for attacks preven-
tion, detection, and removal (e.g., accountability [72, 76, 179], intrusion detection and

prevention systems [88, 156], trusted hardware [109, 154]).

¢ Selfish nodes have to be incentivised to behave correctly, by making the cooperative

behaviour the most profitable behaviour to adopt.

Multiple mechanisms have been developed to address selfishness in cooperative systems. In

general, we can define these mechanisms as follows:

Definition 2.9 (Cooperation enforcement mechanisms). A cooperation enforcement mech-
anism is a method or collection of methods that aim to increase the utility of a cooperative
behaviour by reducing (or eliminating) deviation opportunities, or by rewarding coopera-

tion, or both.

In general, cooperation enforcement mechanisms create a relationship between the contri-
bution that a node provides to the system and the resources that it can consume from it. We
refer to Chapter 4 of this thesis for a detailed discussion of how such a relationship can be

implemented.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A CLASSIFICATION FRAMEWORK FOR SELFISH BEHAVIOURS

In summary, the ultimate goal of a cooperative system designer is to build the system in
such a way that faulty nodes are tolerated, malicious nodes are expelled, and selfish nodes
are motivated to choose the cooperative behaviour. This thesis concentrates on the last part of
the goal. For a better understanding of the state-of-the-art techniques for handling faulty and
malicious nodes, we refer the interested reader to the literature cited above.

2.3 A CLASSIFICATION FRAMEWORK FOR SELFISH BEHAVIOURS

In the previous section, we have already presented a few examples of selfish behaviours, taken
from the extensive literature on the subject. Despite their diversity and specificity, we found
that these behaviours share several common features in their conception and execution. We
believe that identifying these commonalities will provide new clues to understanding and ad-
dress selfishness in cooperative systems.

To support our claims, we develop a classification framework for the analysis and compar-
ison of selfish behaviours in cooperative systems. The framework, illustrated in Figure 3, is
based on the findings of a systematic review of 25 published studies related to our research
(more details can be found at the end of this section). Our classification is based on six dimen-
sions, grouped into two categories: the motivation for adopting a particular selfish behaviour,
and its practical execution in a given system. In practice, the execution of a selfish behaviour
describes an illegal implementation of the system protocols, which is initiated by a selfish node
in attempting to satisfy some personal motivation. We discuss each dimension in the following

subsections.
SELFISH BEHAVIOUR
Motivation Execution
Objective Resource Role Deviation Target Activation
¢ Gain * Bandwidth e Provider e Defection * Application e Always
e Save « CPU * Requester ¢ Free-riding * Cooperation e Adaptive
* Hide ¢ Storage * Misreport enforcement * Probabilistic
. mechanism
¢ Energy ¢ Collusion
* Service e (other types)

* Incentive

Figure 3: Classification of selfish behaviours in cooperative systems.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

19

20 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

2.3.1 Motivation

The motivation of a selfish behaviour provides information about who commits the behaviour
and why. Specifically, a motivation is defined by three dimensions, which describe an objective
for a given resource of interest, along with the role being played in the system by the selfish node
when it deviated from the cooperative behaviour.

OBJECTIVE. The driving force of any selfish behaviour is to increase the utility of the selfish
node that performs it. In Definitions 2.2 and 2.9, we presented the three factors that have a
substantial impact on the utility, namely resource consumption, resource contribution, and the
incentives introduced by the cooperation enforcement mechanisms. The objective of a selfish
behaviour suggests the strategy to increase the utility, which falls into one of the following

options:
¢ Gain more resources, to increase the benefits from consumption.
e Save local resources, to lower the contribution costs.

¢ Hide misbehaviours from the cooperation enforcement mechanisms, to escape from detec-

tion and associated penalties.

RESOURCE. A resource is a commodity that increases the personal utility of nodes that
possess it. We distinguish between physical and logical resources. A physical resource is a
node’s capacity, such as bandwidth, CPU power, storage space, or energy. These resources are
usually rival in consumption due to congestion.? For example, in delay tolerant networks, a
mobile node that has reached its storage capacity cannot carry further messages until it frees
enough space. Similarly, if the volunteer of a distributed computing project like SETI@home is
contributing all its computational power, then it cannot volunteer for another project.

Logical resources are the high-level and application-specific service offered by the coopera-
tive system (e.g., file-sharing, message routing), and the incentive created by the cooperation

enforcement mechanism (e.g., money, level of trust).

ROLE. The motivation behind a selfish behaviour also depends on the role being played
by the selfish node when it decided to deviate from the correct protocol execution. In our
classification framework, we consider two general roles that apply to all cooperative systems:
resource provider and resource requester. The motivations that drive the behaviour of a selfish
provider are usually very different from those of a selfish requester. To illustrate this difference,
and as a summary example of the motivation of selfish behaviours, consider the situation below.

2 In economics, a good is said to be rival if its consumption by one consumer can negatively affect the simultaneous
consumption by another consumer.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A CLASSIFICATION FRAMEWORK FOR SELFISH BEHAVIOURS

Summary Example 1 (P2P file-sharing)

P2P file-sharing applications such as BitTorrent and Maze assign a higher priority in down-
load to the peers that share more data. In this setting, a selfish node can increase its utility

by performing the following selfish behaviours:

* Lowering the contribution cost of hosting and delivering the files, even if this would
reduce the download priority acquired.>
Motivation: (the peer aims to) save bandwidth and storage when playing as a provider.

¢ Artificially increasing the benefit gaining higher priority in download.

Motivation: (the peer aims to) gain in quality of service when playing as a requester.

2.3.2 Execution

The execution of a selfish behaviour provides information about how the behaviour has been
implemented by a selfish node. More precisely, an execution is defined by three dimensions,
which describe the deviation type from a target functionality of the system, along with the activa-
tion policy that has triggered the deviation.

DEVIATION. A (selfish) deviation is the implementation of a selfish behaviour for a partic-
ular cooperative system. The wide range of motivations behind a selfish behaviour, as well
as the application-specific nature of their implementation, generate a tremendous number of
possible deviations for any given cooperative behaviour. Nevertheless, based on our review of
the available literature, we could identify four types of deviation that match most of the selfish

behaviours analysed.

o Defection. A defection is an intentional omission in the execution of a system protocol.*
Example 2.2.4 presented a case of defection, whereby a mobile node may decide not to
participate in the store-carry-forward message propagation protocol in order to extend its
battery lifetime [176]. A selfish node performs a defection to stop the protocol execution,
so as to prevent requesters from consuming or even asking for its resources. A defection
can be put into practice by ignoring incoming requests, like in the example above, or by
refusing to join a protocol, like the selfish auditors in Example 2.2.6 that withdraw from

auditing other nodes.

o Free-riding. A free-ride is a selfish deviation that can reduce the amount of resources
contributed by a node without stopping the protocol execution. For instance, a peer par-
ticipating in a P2P live streaming application (see Example 2.2.3) might free-ride the data-

exchange protocol by sending fewer video chunks than what was requested by the other

3 For example, the node has already downloaded the desired files, and it is not interested in downloading other files for
the moment.
4 Avizienis et al. [21] define an omission as the “absence of actions when actions should be performed”.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

21

22 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

party [72]. As another example, in volunteer computing (see Example 2.2.2), a node may
decide to save some computational time for speeding up the credit collection process [7],
and thus free-ride by returning a result without performing the entire computation. The
literature on cooperative systems offers other definitions of free-riding, especially in the
context of peer-to-peer. Some authors define free-riding the complete lack of contribu-
tion [116, 135, 165], while others characterise it as downloading more data than upload-
ing [27, 38, 87]. Our definition is more general because it applies to any type of resource,
and it is more precise because it can be clearly distinguished from deviations that achieve
the same result by stopping the system protocols (i.e., defections).

e Misreport. The correct functioning of a system protocol depends not only on the faithful
implementation of operations, such as data transmission or task computation, but also
on the truthful exchange of information. Such information may include the hardware
specification of nodes (e.g., computational power, memory size, network connections)
or their current availability of data and resources. Based on this information, the proto-
cols underlying the cooperative system can operate the system function and optimise the
workload distribution among nodes. However, a selfish node may have some motivation
for providing false or inaccurate information, for example, to avoid contribution or gain
better access to resources. We define this type of deviation as misreport. Consider for
instance a P2P application for file-sharing (see Example 2.2.1) or media streaming (see
Example 2.2.3), in which peers advertise their sharable contents (files or video chunks).
In this scenario, under-reporting the list of sharable contents allows a selfish peer to save
upload bandwidth by reducing the number of requests [72, 148].

® Collusion. Up to this point, we have considered only deviations performed by a single
node. On the other hand, in Example 2.2.7 we introduced a collective form of selfish be-
haviour in P2P file-sharing, in which multiple peers act together to increase their utility.
Similarly to previous works [43, 57, 114, 129, 137], we call this type of deviation a collu-
sion, and we define it as the coordinated execution of a selfish behaviour performed by
a group of nodes called colluders. A collusion is more difficult to detect than individ-
ual deviations [28, 43, 72], because colluders can reciprocally hide their misbehaviours.
For example, the distributed accountability protocol of Example 2.2.6 can be cheated if a
sufficient number of colluding nodes stop auditing the logs of their colluders [53, 76].

TARGET. A selfish behaviour can affect different protocols or functionalities of a cooperative
system, which we define as the target of a deviation. At a high level, there are two categories
of targets: those representing application-related functionalities, and those specific to the coop-
eration enforcement mechanism. Table 1 reports some examples of the first category of targets,
along with a description of typical deviations. Concerning the second category, common tar-
gets for a cooperation enforcement mechanism are the monitoring and detection protocols (e.g.,
watchdogs, log auditing), and the incentive scheme (e.g., reputation, credits).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.3 A CLASSIFICATION FRAMEWORK FOR SELFISH BEHAVIOURS

Target Functionality Typical deviation
Data hosting ~ Contribution of memory space for storing con- Discarding stored contents to free
tents, such as files or messages memory space
Data Contribution of bandwidth capacity for deliv- Transmitting less data than re-
transmission ering contents to other nodes quested
Content Contribution of contents from a node to other ~ Advertising only part of the avail-
sharing nodes able contents, if any
Owerlay Maintenance of an overlay network, including Ignoring lookup queries
management resource lookup for finding the hosts of a re-
quested resource
Information Maintenance of routing tables and contribu- Refusing to forward a message
routing tion of bandwidth capacity for routing mes-
sages through the system
Partner Discovery of new partners for future interac- Selecting only colluders
management tions, and selection of known partners for cur-
rent interactions ?
Resource Distribution of resources among a set of se- Allocating more resources to collud-
allocation lected nodes ® ing partners
Information Provision of truthful information about current ~ Providing false or inaccurate infor-
providing state, resource capacities and availabilities mation
Task Contribution of CPU time for executing a com- Returning a result before complet-
computation ~ putational task ing the task

2 A selection policy might be based for example on the resource capabilities of the known partners (e.g., considering
only high-bandwidth nodes), on their availability, or on direct experience.

b An allocation policy may, for example, allocate more resources to known partners, or to partners with lower re-

sources.

ACTIVATION.

Table 1: Examples of application-related targets of a selfish deviation.

Deviation type and target help provide a picture of how a selfish behaviour

has been implemented. What is still missing in the picture is the time dimension. This infor-

mation in provided by the activation policy of the behaviour execution. More precisely, the

activation of a selfish behaviour defines the rules or events that trigger its execution. We pro-

pose the following activation policies:

o Always, when nodes perform the same given selfish behaviour during their whole stay

period in the cooperative system. For instance, Locher et al. [116] developed a selfish

client of BitTorrent that always implements the same deviations.

® Probabilistic, when nodes perform a given selfish behaviour according to some probability

distribution. A selfish node may, for example, adopt a probabilistic activation policy to

make their deviations unpredictable.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

23

24 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

o Adaptive, when a given selfish behaviour is triggered by an activation event, such as ex-
ceeding a threshold amount of resource consumption, or obtaining a service. For instance,
selfish participants of a P2P file-sharing application may decide to deviate from the correct
protocol execution only when they are not downloading [114]. Another typical situation,
described for example also by Aditya et al. [14], is to provide false information to a moni-
toring mechanism to cover up previous deviations. To put the last example another way,
a selfish behaviour can be the trigger of other selfish behaviours.

To conclude the presentation of the six dimensions of our classification framework for selfish
behaviours, we complete the Summary Example 1 by suggesting possible executions for the

proposed motivations.

Summary Example 2 (P2P file-sharing)

P2P file-sharing applications such as BitTorrent and Maze assign a higher priority in down-
load to the peers that share more data. In this setting, a selfish node can increase its utility
by performing the following selfish behaviours:

* Lowering the contribution cost of hosting and delivering the files, even if this would
reduce the download priority acquired.
Motivation: (the peer aims to) save bandwidth and storage when playing as a provider.
Execution#1: (the peer can) free-ride the data transmission protocol when not download-
ing (adaptive activation) [87].
Execution#2: (the peer can) always misreport the list of sharable files to other nodes,
when executing the information providing protocol [116].

* Artificially increasing the benefit gaining higher priority in download.
Motivation: (the peer aims to) gain in quality of service when playing as a requester.
Execution: (the peer can) always collude with other nodes to cheat the incentive mech-
anism and get rewarded in download priority. Lian et al. [114] describe several collu-
sion strategies observed in the Maze network. For instance, colluders can upload large
amounts of traffic among each others in order to artificially inflate their download pri-
ority even without contributing to the community at large.

2.3.3 Details of the papers included in the review

The classification framework outlined above is based on the review of 25 research papers on

the subject. We selected these papers with the following criteria in mind:

Relevance. The papers should be representative of (but not limited to) the types of coop-
erative systems used as examples in Section 2.2, namely, peer-to-peer systems, distributed

computing, and delay tolerant networks.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

24 EXAMPLES OF SELFISH BEHAVIOUR CLASSIFICATION

Quality. The papers should be of particular interest to the research community (estimated
considering publishers and number of citations). Also, they should provide detailed descrip-
tions of concrete selfish behaviours.

Coverage. As the commonalities among deviations began to emerge, we selected papers
also based on the type of the deviations described therein. In particular, the papers should
contribute to a relatively uniform distribution of deviation types, in order to avoid biases due

to over-representation of certain deviations.

Table 2 presents the list of papers considered for our review, along with some information
on the cooperative system investigated (i.e., application domain, service provided, architecture
type). From the analysis of these papers, we could identify 56 selfish behaviours. Almost
all behaviours can be classified using one of the four deviation types listed above. The only
exception describes a deviation that is very specific to the implementation of the target system
— i.e., the rarest-first policy for requesting file pieces in BitTorrent [116]. The right columns of
Table 2 show the contribution of each paper to the final distribution of deviation types.

Remark. We intentionally excluded from our classification the category of selfish deviations that
target the authentication protocol of reputation-based cooperation enforcement mechanisms (see Sec-
tion 4.1 for more details). Deviations in this category, such as whitewashing and Sybil attack [102],
exploit the difficulty in establishing node identities in cooperative systems so as to cheat the incen-
tive mechanism, for instance by escaping bad reputations or spreading false reputation information.
Although common and well-studied, we decided not to include these behaviours in our classification
framework because they are heavily tied to a specific type of cooperation enforcement mechanism, and,
therefore, not suitable for generalisation.

2.4 EXAMPLES OF SELFISH BEHAVIOUR CLASSIFICATION

Hereafter, we present in more details four papers considered for our survey, and we show
how to apply our classification framework to the selfish behaviours described by the respective
authors. The papers have been selected so as to fulfil the same criteria of relevance, quality
and coverage applied to the survey. In particular, the authors of the last paper investigate the
impact of selfishness in anonymous communication systems.

2.4.1 BAR Gossip, Lietal. [111]

Lietal. [111] address the problem of selfishness in P2P live streaming systems based on gossip
protocols, and develop a new protocol (BAR Gossip) that can tolerate both selfish and Byzantine
behaviours by the peers receiving the stream. In addition, the authors show that BAR Gossip is
stable in the presence of significant collusion (up to 40% of colluders in the system).

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

25

26

A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Table 2: Papers considered in our review, along with the characteristics of the cooperative systems inves-

tigated and the types of selfish deviations therein described.

Cooperative System

Deviation types *

Reference Domain Name and/or Service Architecture D F M C O
Ben Mokhtar et al. [28] Data Distribution File-sharing, P2pP V4 X X Vv X
live streaming
Ben Mokhtar et al. [26] Data Distribution FireSpam P2P (struct.) Vv Vv X X X
Guerraoui et al. [72] Data Distribution Media streaming P2P (unstruct.) X v Vv YV X
Hughes et al. [87] Data Distribution ~ Gnutella (file-sharing) P2P (unstruct.) Vv X X X X
Lietal. [111] Data Distribution ~ BAR Gossip P2P (unstruct.) X v v VX
(live streaming)
Lian et al. [114] Data Distribution Maze (file-sharing) P2P (unstruct.) X X Vv X
Locher et al. [116] Data Distribution BitThief (file-sharing) P2P (unstruct.) 4 X Vv X Vv
Piatek et al. [148] Data Distribution ~ PPLive P2P (hybrid) X v X v X
(live streaming)
Sirivianos et al. [165] Data Distribution =~ Dandelion P2P (unstruct.) iv4 X v X X
(file-sharing)
Yang et al. [175] Data Distribution Maze (file-sharing) P2P (unstruct.) 4 X X X X
Anta et al. [20] Computing BOINC Client-server X Vv X X X
Anderson [18] Computing BOINC Client-server X v X v X
Kwok et al. [104] Computing Grid Computing Client-server X v Vv X X
Shneidman and Parkes [161] ~ Computing Leader-election Client-server X X VAR X
Yurkewych et al. [180] Computing BOINC Client-server X v x VX
Cox and Noble [47] Backup & Storage = Samsara P2P (struct.) X Vv X X X
Gramaglia et al. [71] Backup & Storage ~ P2P Storage P2P (struct.) V4 X X X X
Buttyan et al. [36] Networking Bulletin board DTN 4 X X X X
Blanc et al. [31] Networking Overlay management P2P (struct.) VA X X X X
Lietal. [113] Networking Message switching DTN X X X Vv X
Mei and Stefa [124] Networking Message switching DTN v Vv X X X
Shneidman and Parkes [161] ~ Networking Inter-domain routing Internet X X v X X
Zhu et al. [188] Networking Message switching DTN V4 X X V4 X
Ben Mokhtar et al. [27] Anonym. Comm. RAC Proxy servers VARV X X X
Jansen et al. [89] Anonym. Comm. Tor [54] Proxy servers Vv X X X X
Ngan et al. [135] Anonym. Comm. Tor [54] Proxy servers v VX X X

2D = defection , F = free-ride, M = misreport, C = collusion, O = other types.

COOPERATIVE SYSTEM DETAILS
video chunks throughout the network can be achieved using gossip-based protocols. The typ-

In a P2P live streaming system, the dissemination of

ical implementation of these protocols is that each peer proposes its available chunks to ran-
domly selected partners, which in turn request any chunks they need; the protocols end when
the peer delivers the requested chunks.

SELFISH BEHAVIOURS

marised in Tables (3-5). Consider for example the free-riding and misreport deviations reported

The selfish behaviours described by Li et al. in their paper are sum-

in Tables 3 and 4, respectively. A selfish peer may adopt either behaviour for the same motiva-

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

24 EXAMPLES OF SELFISH BEHAVIOUR CLASSIFICATION

tion: reducing the bandwidth consumption when participating in the gossip protocol as video
chunks provider. The way this motivation is brought into practice is quite different between
the two cases. In the first case, the free-riding deviation, a selfish peer first advertises all its
shareable chunks, but, once requested, it delivers only a part of them. The selfish behaviour
in Table 4 describes a different execution, whereby a misreporting peer under-reports its chunk
availability to reduce the probability of receiving chunk requests. Note that the activation pol-
icy for both the free-riding and misreport deviations has been classified as adaptive. In fact, Li
et al. assume that selfish peers will behave selfishly as long as they experience a video stream of
high quality; otherwise, they would stick to the cooperative behaviour to contribute improving
the system performance, and enjoy a good quality stream again.

Table 3: Selfish behaviour in P2P live streaming systems: free-riding (source: [111]).

Motivation | Objective Resource Role ? Description

Save Bandwidth P Save bandwidth consumption
for current activities

Execution Deviation Target Activation Description

Free-riding Data transmission Adaptive Send less video chunk than
what requested by the partners

2 P = Provider, R = Requester

Table 4: Selfish behaviour in P2P live streaming systems: misreport (source: [111]).

Motivation | Objective Resource Role Description
Save Bandwidth P Save expected bandwidth
consumption for future
activities
Execution Deviation Target Activation Description
Misreport Information providing Adaptive Under-report the available
chunks

The selfish behaviour reported in Table 5 describes the situation in which peers coordinate
their actions to increase their collective utility. The motivation here is to contribute resources
only with a subset of the network, thus, decreasing the overall contribution cost. Selfish peers
can implement this behaviour by colluding in a coordinated deviation against the partner se-
lection mechanism, so as to establish interactions only among themselves.

The impact of the preceding behaviours on the live streaming performance has been evalu-
ated by Li et al. through experiments and simulations [111]. The results show that, without any
cooperation enforcement mechanism in place, the presence of 50% of selfish nodes can prevent
correct nodes from watching a good quality stream.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

27

28 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Table 5: Selfish behaviour in P2P live streaming systems: collusion (source: [111]).

Motivation | Objective Resource Role Description
Save Bandwidth P Save bandwidth consumption
colluding group
Execution Deviation Target Activation Description
Collusion Partner management Always Bias the partner selection and
prefer colluders to other peers

2.4.2 BOINC client, Anta et al. [20], Anderson [18], Yurkewych et al. [180]

BOINC [18] is an open-source client for volunteer computing, which aggregates the computa-
tional power of millions of Internet-connected personal computers (volunteers) that donate their
idle resources to a computational project (e.g., SETI@home [19]). The paper of Anderson [18]
marginally, and the papers of Anta et al. [20] and Yurkewych et al. [180] particularly, address
the problem of selfish volunteers in the BOINC system, whose main goal in to earn credits
faster even if at the expense of results accuracy and system efficiency. Specifically, all authors
agree on using redundant task allocation techniques to detect selfish activities and punish self-

ish volunteers with (virtual [18] or real money [20, 180]) monetary fines.

COOPERATIVE SYSTEM DETAILS As already introduced in Chapter 1, each project in
BOINC is hosted on a server that provides volunteers with work units. Once a volunteer has
computed (offline) the work unit, it sends the result back to the server [18]. To motivate coop-
eration, BOINC rewards volunteers with credit points proportionally to their contribution, and

makes available their scores on web-based leaderboards accessible worldwide.’

SELFISH BEHAVIOUR It is well documented that the BOINC credit system has attracted
not only volunteers but also selfish users, whose main goal is to rise in the credit leaderboards
ranking rather than making significant and reliable contributions to the project. For example,
the “The SETI@home problem” article by David Molnar [7] reports on two selfish BOINC clients
that have been developed, notably, also by Microsoft, to speed up the computation by sending
untrustworthy results to the server labelled as completed work units (more details can be found
here [8]). More recently, other volunteer computing projects that rely on the BOINC platform
have faced severe issues with selfish behaviours. Particularly, in 2013, a small group of 17 selfish
volunteers in the PrimeGrid project® — i.e., collaborative searching for prime numbers — have
faked their results leading to approximatively one month’s worth of work to be redone [10].
Similar behaviours, though with almost no negative consequences on the validity of results,
have also been detected in some World Community Grid’s 7 research projects [11].

5 http:/ /boincstats.com/
6 https:/ /www.primegrid.com/
7 https:/ /www.worldcommunitygrid.org/

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

24 EXAMPLES OF SELFISH BEHAVIOUR CLASSIFICATION

Table 6 reports the classification of the selfish behaviour described by Anta et al. [20], An-
derson [18], and Yurkewych et al. [180] in their papers. The motivation for such behaviour is
to earn more credits and faster in order to climb the ladder of the leaderboards ranking. With
this intention, a selfish volunteer may use a hacked BOINC client that is optimised for fast com-
putation rather than trustworthiness of results. More precisely, Table 6 describes a free-riding
deviation aiming at reducing the amount of task computation activities (e.g., data input and

accuracy checks).

Table 6: Selfish behaviour in volunteer computing: free-riding (source: [18, 20, 180]).

Motivation | Objective Resource Role @ Description
Gain Incentive P Obtain more credits than is due

Execution Deviation Target Activation Description
Free-riding Task computation - Send an untrustworthy result

2 P = Provider, R = Requester

2.4.3 Delay tolerant network, Zhu et al. [188]

In their presentation of an incentive scheme (SMART) to foster cooperation in DTNs, Zhu et al.
also provide some examples of selfish behaviours that may occur in these systems. To address
this problem, the authors introduce a virtual currency to charge for and reward the cooperative
delivery of messages within the network. The SMART scheme has been evaluated through
simulations, which showed its applicability, reliability, and effectiveness also in the presence of
selfish nodes [188].

COOPERATIVE SYSTEM DETAILS Delay tolerant networks achieve end-to-end connectiv-
ity over a disrupted network by asking mobile nodes to participate in a message propaga-
tion process called store-carry-forward. This process relies on the cooperation of intermediate
nodes, which carry the messages of other nodes until the next hop of a communication path
appears [56].

To motivate selfish nodes to participate in a store-carry-forward protocol, Zhu et al. introduce
in DTNs a secure virtual currency (called layered coin) along with a payment scheme for re-
warding the provision of message forwarding [188]. This scheme works as follows: the source
node generates a multi-layered coin to transmit together with the message. The base layer cre-
ated by the source contains information about reward amount (credit value) and conditions.
Each intermediate node in the store-carry-forward process adds a layer to the coin, providing
details about its identity. Once the message has reached its destination, the recipient of the
message can distribute the credit to all intermediate nodes by using the identities stored in the
layered coin.

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

30

A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

SELFISH BEHAVIOURS As already mentioned in Example 2.2.4, the hypothesis that each
node in a DTN is willing to forward messages to others might be unrealistic. In fact, participat-
ing in the store-carry-forward constitutes an important cost for mobile nodes with limited energy,
bandwidth and storage constraints. A selfish node motivated by the objective of saving these
resources may perform the selfish behaviour classified in Table 7. The simplest implementation

of this behaviour is to ignore any request to serve as an intermediate node during the whole

stay period in the DTN.

Table 7: Selfish behaviour in delay tolerant networks: defection (source: [188]).

Motivation | Objective Resource Role ? Description
Save Bandwidth, storage, P Save resources dedicated to
energy cooperation activities
Execution Deviation Target Activation Description
Defection Information routing Always Never participate in the
message propagation protocol

2 P = Provider, R = Requester

The selfish behaviour described in Table 8 is related to the cooperation enforcement mech-
anism proposed by Zhu et al. [187, 188]. The motivation for this behaviour is to increase the
amount of layered coins received by the payment scheme, to gain more purchasing power when
acting as a service requester. With this intention, a selfish node may collude with other nodes
to forge a valid credit and reward themselves for “forward” operations they have never done.
In their paper, Zhu et al. also discuss a solution for this behaviour, based on the concatenation

of different layers.

Table 8: Selfish behaviour in delay tolerant networks: collusion (source: [188]).

Motivation | Objective Resource Role Description
Gain Incentive R Obtain more credits than is due
Execution Deviation Target Activation Description
Collusion Incentive mechanism - Collude with other nodes to
increase the rewards

2.4.4 Tor network, Dingledine et al. [135]

Tor [54] is an anonymous communication system that uses Onion Routing [70] to protect its
users from traffic analysis on the Internet. This system works by relaying traffic over a network
of voluntary nodes located around the world. However, Ngan et al. have reported that while

the number of Tor users keeps growing, the number of relay nodes is not [135]. In their paper,

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

24 EXAMPLES OF SELFISH BEHAVIOUR CLASSIFICATION

the authors investigate the reasons for this lack of cooperation and propose an incentive scheme

to reward Tor relays with a higher quality of service.

COOPERATIVE SYSTEM DETAILS Using Tor, when a source node wants to send a mes-
sage to a destination node, it first fetches the list of available relay nodes from trusted directory
authorities. Then, the source node builds a circuit of voluntary relay nodes. Circuits are up-
dated periodically, and relays can participate in multiple circuits at the same time. To protect a
message, the source encrypts it with the public key of the destination. Furthermore, to protect
the communication channel, the source uses the public key of each relay node in the circuit to
encrypt the address of the next relay node. The resulting message is called an onion. A relay
uses its private key to decrypt one layer of the onion and contributes a part of its bandwidth to
forward the resulting message to the next relay until the message eventually reaches its desti-
nation.

To incentivise Tor users to act as a relay, the directory authorities measures the performance
of relays to prioritise the traffic of the most active ones, i.e., the so-called “gold star” relays [135].

In practice, a gold star relay’s traffic always gets relayed ahead of other traffic.

SELFISH BEHAVIOURS Ngan et al. [135] reported two selfish behaviours in Tor. The moti-
vation of both behaviours, summarised in Tables 9 and 10, is to reduce the communication and
computational burden of nodes when actively playing as a traffic relay (i.e., a service provider).
A relay node executing the selfish behaviour described in Table 9 behaves cooperatively until
it gets rewarded with a gold star; then, it stops participating in any relaying activity. Table 10
reports a different adaptive strategy, whereby nodes cap their relaying at a given bandwidth
threshold and free-ride any other request that would exceed that threshold.

Table 9: Selfish behaviour in Tor networks: defection (source: [135]).

Motivation | Objective Resource Role @ Description

Save Bandwidth, CPU P Save resources dedicated to
cooperation activities

Execution Deviation Target Activation Description

Defection Data transmission Adaptive Never participate in the system
as relay node

2 P = Provider, R = Requester

To evaluate the performance of the preceding behaviours, Ngan et al. built “a packet-level
discrete event simulator that models a Tor overlay network” [135]. Then, they studied the

Ngan et al. evaluated the performance of the preceding behaviours by simulating an onion
routing network composed by a third of correct relays, another third of relays performing the
selfish behaviour in Table 9, and the remaining relays following the behaviour in Table 10. The
authors considered as performance measures the download and ping time of a relay node when
acting as a service requester (i.e., a Tor user). Results demonstrate that when no incentive

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

31

32 A SURVEY ON SELFISHNESS IN COOPERATIVE SYSTEMS

Table 10: Selfish behaviour in Tor networks: free-riding (source: [135]).

Motivation | Objective Resource Role Description

Save Bandwidth, CPU P Contribute less bandwidth than
the fair share

Execution Deviation Target Activation Description
Free-riding Data transmission Adaptive Relay traffic only up a given
threshold

mechanism is in place, the performance of selfish relays is slightly better than correct nodes.
Therefore, according to the evaluation by Ngan et al. [135], the utility of a selfish relay in Tor
can increase not only due to the lower contribution costs, but also to an increase (even if modest)
of the service benefits.

2.5 GENERAL ANALYSIS OF SELFISHNESS IN COOPERATIVE SYSTEMS

In Section 2.3, we have developed a new framework to classify the behaviour of selfish nodes
in cooperative systems, based on a systematic review of the state-of-the-art. We now apply
the framework to the reviewed papers, and we use it as a comprehensive analysis toolkit to
identify emerging patterns and characteristics of selfish behaviours. Our presentation of this
analysis is structured in accordance with the six dimensions of a selfish behaviour as presented
in Section 2.3.

Notation. Hereafter, we refer to the list of reviewed papers as the “paper dataset”, and we refer to the
entire set of selfish behaviours described in the paper dataset as the “behaviour dataset”.

2.5.1 Analysis of the motivations

The most common motivation for a selfish node to behave selfishly is to save bandwidth when
participating in the cooperative system as a resource provider. Every other motivation in the be-
haviour dataset follows this pattern, regardless of the application domain. Below, we elaborate
on this point and take a closer look at each dimension of a selfish motivation.

RESOURCE The application domain of a cooperative system has a strong influence on the
resources of interest for its selfish participants. For example, selfish volunteers in distributed
computing systems are more sensitive to their CPU availability and credit scores [18, 20, 180],
whereas selfish mobile nodes in DTNs takes energy consumption in more account [31, 36, 113,
124]. Notably, the energy consumption in battery-powered nodes is strictly related to the CPU
utilisation and, even more, to network traffic.®

8 Al-Karaki and Kamal reported that sending a bit over 10 or 100 m distance consumes as much energy as performing
thousands to millions of arithmetic operations [16].

Cette thése est accessible a I'adresse : http://theses.insa-lyon.fr/publication/2017LYSEI023/these.pdf
© [G. Lena Cota], [2017], INSA Lyon, tous droits réservés

2.5 GENERAL ANALYSIS OF SELFISHNESS IN COOPERATIVE SYSTEMS

A second observation we can draw from the behaviour dataset is that selfish nodes are often
concerned about their bandwidth capacity, regardless of the application domain at hand (e.g.,
in data distribution [28, 87, 111, 116, 148], networking [113, 124, 188], backup [47, 71], and
anonymous communication [27, 27, 135]). This finding is perhaps expected since distributed
systems, in general, and cooperative systems, in particular, require intensive message-passing.
As a result, bandwidth consumption places a significant burden on the utility of any selfish
node.

ROLE & OBJECTIVE A clear message we get from the analysis of the behaviour dataset
is that the vast majority of selfish behaviours ar