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Abstract

During the Mid to Late Pleistocene, the land area affected by periglacial conditions expanded and 

contracted repeatedly over large surfaces in mid-latitude Western Europe. In such environments, 

permafrost or deep seasonal freezing of the ground formed typical features, which have been the 

subject of abundant research by geomorphologists.  In particular, researchers attempted to reconstruct 

the maximal extent of Pleistocene permafrost based on field evidence. Although most reconstructions 

suggest that permafrost spread over part of France during the coldest periods of the Pleistocene, there is 

no agreement regarding the land surface affected. This is mainly due to the scarcity of field data used for 

mapping and to the questionable palaeoclimatic significance of certain periglacial features. In addition, 

permafrost modelling during the Last Glacial Maximum using Global Climate Models does not seem 

consistent with field data. To solve these issues, a database of Pleistocene periglacial features has been 

compiled from a review of academic literature and unpublished reports, the analysis of aerial photographs 

and new field surveys. Polygons, soil stripes, ice-wedge pseudomorphs, sand wedges and composite 

wedge pseudomorphs were included in the database together with their geographic coordinates, 

geological context, description and references. The distribution of the identified features was analysed 

with a GIS software and clearly indicates that large areas in France were affected by periglaciation, 

apart from the southwesternmost part of France and the Languedoc. Ice-wedge pseudomorphs do not 

extend south of 47°N which indicates that widespread discontinuous permafrost did not affect the land 

south of the Paris basin. The exclusive presence of sand wedges with primary infill between 45 and 

47°N, mainly in the periphery of coversands, suggests that thermal contraction cracking of the ground 

occurred together with sand drifting in a context of deep seasonal frost or sporadic discontinuous 

permafrost, unfavourable for the growth of significant ground-ice bodies. However, the description of 

composite-wedge pseudomorphs below 47°N indicates that at least locally ice veins formed probably 

during exceptionally cold winters. To provide a chronological framework for thermal contraction cracking 

single-grain OSL measurements were performed on 33 samples taken in the sandy infilling of sand-

wedges and composite-wedge pseudomorphs. Results suggest that multiple events were recorded 

within wedges. The extraction of the datasets using the Finite Mixture Model, which was developed 

to analyse statistically data comprising multiple components, allowed calculating 86 ages. These age 

estimates show that wedge activity in France occurred at least 11 times over the last 100 ka.  The most 

widespread events of thermal contraction cracking occurred between ca. 30 and 24 ka (Last Permafrost 

Maximum) and are concomitant with periods of high sand availability (MIS 2). Although most phases 
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of sand-wedge growth correlate well with known Pleistocene cold periods, the identification of wedge 

activity during late MIS 5 and the very beginning of the Holocene strongly suggests that sand-wedges 

do not only indicate permafrost but also deep seasonal ground freezing in the context of low winter 

insolation. The previously published young ages yielded by North-European sand-wedges likely result 

from poor record of periglacial periods concomitant with low sand availability and/or age averaging 

inherent to standard luminescence methods. This work allowed us to propose a map of the maximum 

extent of Late Pleistocene permafrost in France, which partially reconciles field data with palaeoclimatic 

simulations. The remaining discrepancies may be linked with a potential time lag between the Last 

Permafrost Maximum (c. 31–24 ka) and the Last Glacial Maximum (21 ka) and to the already identified 

warm winter bias of the models.
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Résumé

De nombreuses tentatives de reconstruction de l’étendue du paléo-pergélisol à partir de données 

de terrain montrent que de grandes parties de la France ont été affectées à la fin du Pléistocène. Cette 

étendue maximale a été attribuée au Dernier Maximum Glaciaire (DMG). Néanmoins, des contradictions 

existent entre les différentes reconstructions qui ont été réalisées pendant près d’un siècle ; elles résident 

en partie dans l’absence de consensus sur la signification paléoclimatique de certaines structures 

périglaciaires. De plus, le cadre chronologique utilisé pour ces reconstructions est principalement basé 

sur des datations relatives et/ou sur l’hypothèse que le maximum de froid durant le dernier glaciaire a été 

atteint pendant le DMG. Dans ce contexte, il était nécessaire de réévaluer les structures déjà décrites à la 

lumière de notre connaissance actuelle des processus périglaciaires et d’en chercher de nouvelles pour 

datation. L’approche développée pour résoudre ces problèmes a été divisée en trois parties. Tout d’abord, 

une base de données homogène fournissant un accès simple aux structures périglaciaires répertoriées 

sur le territoire français a été constituée. Celle-ci permet de remettre un site ou une structure dans un 

contexte régional pour éviter les interprétations simplistes et favorise une vision à l’échelle nationale.  

Cette base de données est accessible en ligne (https://afeqeng.hypotheses.org/48). Les données en coupe 

concernant les coins sableux, les pseudomorphoses de coin de glace et les coins composites ainsi que 

les données obtenues à partir de photos aériennes sur les polygones et les sols striés ont été compilées. 

Dans la deuxième partie de notre travail, nous nous sommes attachés à traiter les données recueillies. 

L’analyse à l’aide d’un SIG nous a apportée des informations sur l’influence de différents facteurs sur 

le développement des structures périglaciaires. Des comparaisons avec un ensemble de données du 

Nord de l’Europe a rendu possible la proposition d’une nouvelle carte des limites du pergélisol lors de 

son extension maximale en Europe de l’Ouest. La carte a ensuite été comparée avec des simulations du 

pergélisol issues de Modèles Globaux du Climat. Enfin, la troisième partie de cette thèse fournit le premier 

cadre chronologique pour la fissuration par contraction thermique du sol en France, en s’appuyant sur la 

datation par luminescence optiquement stimulée (OSL) du remplissage sableux des coins. 

Extension géographique des structures périglaciaires en France

La distribution des structures identifiées indique clairement que de larges zones en France ont été 

affectées par des phénomènes périglaciaires, sauf l’extrême Sud-Ouest et le Languedoc. Les structures 

périglaciaires sont principalement situées dans des bassins sédimentaires, en particulier dans des dépôts 

alluviaux datant du début ou du milieu du Pléistocène.
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Les pseudomorphoses de coin de glace se situent uniquement au nord de la latitude 47°N, 

préférentiellement dans des terrains mal drainés. Leur présence prouve que les régions localisées au 

nord de cette latitude ont été affectées a minima par du pergélisol discontinu étendu, qui se développe 

dans des environnements actuels lorsque la température moyenne annuelle de l’air (TMAA) est inférieure 

ou égale à -4/-5°C. La distribution des pseudomorphoses de coin de glace est fortement corrélée avec 

celle des dépôts lœssiques. Néanmoins, leur absence en dessous de 47°N ne peut pas être expliquée 

uniquement par des difficultés d’identification dans des terrains plus hétérogènes. Elle suggère plutôt 

que la croissance de corps de glace significatifs n’était pas possible au sud de cette latitude. Les coins 

composites qui ont été décris à une latitude inférieure à 47°N possèdent un remplissage secondaire 

limité, ce qui témoigne que, au moins localement, des veines de glace se sont formées à des latitudes 

plus basses, mais probablement pendant des hivers exceptionnellement froids.

Les coins sableux épigénétiques fossiles sont principalement situés entre 47 et 43.5°N au voisinage 

de sables de couverture dans la vallée de Loire, le nord de l’Aquitaine et dans la basse vallée du Rhône. 

L’analyse de ces structures à l’aide d’un SIG montre qu’elles sont présentes essentiellement dans des terrains 

bien drainés, souvent à une altitude plus élevée que celle des terrains environnants. Leur interprétation 

est plus controversée dans la mesure où ces structures sont rares dans les environnements actuels et 

où elles ont été décrites principalement dans des zones arides à pergélisol continu où la déflation est 

active, notamment en Antarctique. Au Pléistocène, dans un contexte caractérisé par une forte aridité 

aux latitudes moyennes et par l’extension des déserts froids, ces coins ne doivent probablement être 

considérés que comme des indicateurs de la contraction thermique puisque le transport éolien de sable 

était bien plus important que dans des milieux arctiques actuels. C’est notamment le cas en France, 

comme le suggère la localisation des coins sableux sur les marges de sables de couverture ou à proximité 

de vieilles formations sableuses soumises à la déflation. La contraction thermique du sol se produit 

de façon habituelle dans des zones qui sont affectées soit par un gel saisonnier profond, soit par du 

pergélisol, à des TMAA inférieures ou égales à -1/0°C et jusqu’à 2°C dans des zones hyper-continentales. 

La fissuration est favorisée par de fortes chutes de température et un gradient thermique moyen dans la 

couche active supérieur à -10°C/m. L’interprétation de ces structures comme des témoins de pergélisol 

continu telle qu’elle était admise auparavant est probablement une des principales raisons des différences 

entre les reconstructions de l’extension du pergélisol qui ont été proposées.

Aucune structure de pingo en système fermé n’a été observée en France. Dans des environnements 

actuels, ces structures sont limitées au pergélisol continu, c’est-à-dire dans des zones où les TMAA sont 
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inférieures à -6°C/-8°C. En se basant sur cette observation, il n’y a pour le moment aucune preuve que du 

pergélisol continu ait affecté la France. Des récentes recherches dans le nord de la France ont néanmoins 

permis d’identifier les traces d’un potentiel pingo en système ouvert dans des alluvions du dernier 

glaciaire. Ces structures se forment actuellement a minima dans des milieux à pergélisol discontinu 

étendu. Des déformations thermokarstiques liées à la fonte d’un pergélisol riche en glace (lithalses ?) 

ont également été identifiées. Leur datation pourrait potentiellement apporter des données pour mieux 

contraindre les phases de froids extrêmes du dernier glaciaire.

La plupart des sols en tâches et des sols striés sont situés au nord de la latitude 47°N, ce qui correspond 

à la limite sud de la distribution des pseudormorphoses de coin de glace. Ces structures peuvent dès lors 

être interprétées comme des déformations d’une couche active dans des milieux à pergélisol. 

Aucune corrélation n’a été trouvée entre la taille des polygones, qui sont interprétés comme des 

réseaux de fissures de contraction thermique et d’autres paramètres tels que la composition du sol. La 

taille moyenne du diamètre des polygones suggère plutôt que les polygones en France ont atteint un état 

d’équilibre après leur subdivision durant de multiples ou de longues périodes d’activité.

L’étendue du pergélisol qui a été définie à partir de ces résultats est en accord avec les résultats sur les 

aquifères profonds d’Europe de l’ouest qui montrent que leur recharge n’a pas été interrompue pendant 

les phases les plus froides de la fin du Pléistocène dans la majeure partie de la France. La carte proposée 

est également en accord avec les précédentes reconstructions considérées comme les plus « chaudes ». 

La reconstruction de l’étendue du pergélisol obtenue par les simulations climatiques montre néanmoins 

des différences avec les données de terrain. Une des raisons invoquées peut être un décalage dans le 

temps entre le DMG (21 ka) utilisé pour la modélisation et l’âge de l’extension maximale du pergélisol 

au dernier glaciaire (31-24 ka), ou également un biais chaud pour les températures hivernales dans les 

modèles comme déjà identifié par certains auteurs.

Cadre chronologique

Les données chronologiques disponibles sur les structures périglaciaires en France étaient quasi-

inexistantes et ce travail constitue un apport significatif à ce sujet.  

Dans les dépôts lœssiques du nord de la France, six niveaux principaux de pseudomorphoses de 

coin de glace ont été décrits. A l’exception de quelques dates OSL, ces structures sont principalement 

datées par corrélation avec d’autres coupes. Les niveaux de pseudomorphoses de coin de glace indiquent 
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que de multiples phases d’aggradation et de dégradation du pergélisol se sont produites au cours du 

Pléistocène récent. L’histoire du pergélisol reconstituée à partir des coupes de lœss diffère fortement de 

celle suggérée par les âges obtenus dans le Nord de l’Europe sur des coins sableux. Ces derniers indiquent 

au contraire une phase principale d’activité à la fin du Pléniglaciaire. Les quelques dates précédemment 

réalisées sur des coins sableux en France ont donné des âges plus anciens que pour ceux du Nord de 

l’Europe. Des coins appartenant à un même réseau polygonal ont par ailleurs livré des âges différents. 

Ces résultats suggéraient donc que la croissance des coins de sable a été asynchrone et contrôlée par 

des facteurs locaux plutôt que globaux. Néanmoins, des datations récentes faites au Canada ont montré 

que la présence de multiples populations de paléodoses dans des coins sableux pourrait témoigner de 

plusieurs périodes d’activité. De plus amples recherches étaient donc nécessaires pour établir si c’était le 

cas ou non. L’étude et la datation des coins sableux français a donné cette opportunité et nous a permis 

d’établir la première chronologie de la fissuration par contraction thermique en France.

Trois zones ont été prospectées pour trouver de nouveaux coins sableux en vue de leur datation : le nord 

de l’Aquitaine, la vallée de la Loire et la basse vallée du Rhône. Ces régions sont situées dans le voisinage 

de sables de couverture ou de sables alluviaux qui ont pu fournir suffisamment de matériel par déflation 

pour la formation de remplissages primaires sableux pendant le Pléistocène. La recherche dans la basse 

vallée du Rhône n’a pas permis d’identifier de nouvelles structures, mais 17 échantillons ont été pris dans 

5 coins dans le Nord de l’Aquitaine et 16 échantillons dans 8 coins de la vallée de la Loire. L’analyse en OSL 

single grain des échantillons collectés nous a permis d’identifier plusieurs phases d’activité dans chaque 

échantillon. Les 86 âges obtenus définissent 11 périodes de fissuration par contraction thermique, ce 

qui est plus en accord avec l’apparente complexité et le nombre de phases à pseudomorphoses de coin 

de glace dans le Nord de la France. La croissance des coins étaient plus importante pendant les phases 

de refroidissement de la fin du Pléistocène lorsque la contraction thermique était concomitante avec la 

mise en place des sables de couverture. La principale période de contraction thermique identifiée, que 

ce soit pour les coins sableux ou les coins de glace, s’est produite entre 30 et 24 ka, ce qui correspond 

très probablement à l’étendue maximale du pergélisol. De façon plus surprenante, il apparait que des 

coins ont fonctionné pendant la fin du SIM 5 et le début de l’Holocène, c’est-à-dire au cours de périodes 

pendant lesquelles d’autres proxys (insectes, pollen) montrent clairement que les TMAA étaient trop 

élevées pour que du pergélisol puisse se développer. Ces périodes sont caractérisées par une faible 

insolation hivernale, qui cause une forte saisonnalité et un gel saisonnier profond en hiver. Les coins 

sableux pouvaient se former dans de telles conditions.



9

Les dates précédemment obtenues sur les coins sableux tombent principalement pendant les SIM 3/2 

dans le Nord de l’Aquitaine, ou à la fin du SIM 2 – Dryas récent dans le nord de l’Europe. Ces âges se 

corrèlent bien avec la principale période de mise en place des sables de couverture dans chacune de ces 

régions et expliquent donc l’apparente divergence observées entre les deux zones pour la croissance des 

coins sableux. Par ailleurs, dans la mesure où des méthodes de datation par luminescence conduisant à 

des âges moyennés ont été utilisées pour dater ces coins, l’identification de plusieurs périodes d’activité 

est impossible et fournit une explication aux âges variables livrés par des coins appartenant à un même 

réseau polygonal.
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1. Introduction

During the Pleistocene, the low temperatures and the large extent of ice sheets caused 40 to 50% 

of the earth’s land surface to experience multiple phases of periglacial conditions (French, 2007). The 

repetitive development and thaw of ground ice bodies and the formation of wedges due to thermal 

contraction cracking of the ground are amongst the processes that shaped, formed and/or deformed 

the mid-latitudes landscapes during this period. Numerous periglacial relict features that include wedge 

structures and large involutions have been widely observed in France in the last 80 years which led to 

the assumption that large parts of France was affected by frost-action during the Pleistocene. In recent 

years, the development of rescue archaeology has greatly increased the number of features described. 

Remote sensing and online databases of aerial photographs (Geoportail, Google Earth) have also eased 

the recognition of patterned ground and large polygonal networks.  In modern environments, such 

features reflect specific cold climate conditions, therefore their relict counterpart should indicate similar 

past environments. Their study can lead to a better understanding of the periglaciation history in France 

and Europe. However, the weak agreement between the reconstitutions of past permafrost previously 

attempted highlights the different interpretations that have been made upon the occurrence of certain 

periglacial features, and the lack of well-described data. Within this framework, the first goal of this 

thesis was to create a database that gathers the French undisputable Pleistocene periglacial features. 

In order to achieve this goal it was necessary not only to re-evaluate the literature, including articles, 

PhD theses, unpublished dissertations and geology reports from rescue archaeology, in the light of our 

present understandings of periglacial processes but also to gather new features from field surveys and 

from the analysis of aerial photographs. GIS-based analysis of the database and placing the French data 

in a broader context allowed a better understanding of the environmental conditions during the Late 

Pleistocene. The second goal of the thesis was to provide a chronology of the periglacial events in France 

by dating sand-wedges with optically stimulated luminescence (OSL). 

This work raised many questions that have been addressed in this thesis:

 ₋ What are the environmental parameters that influence the formation of the periglacial 

features studied? 

 ₋ What are the reasons behind the different interpretations of the field evidence for 

periglaciation? Which periglacial features were strictly formed under permafrost conditions? 

 ₋ What was the maximum extent of the permafrost during the Late Pleistocene? Does the 
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maximum extent of the features correspond to the Last Glacial Maximum?

 ₋ What are the techniques that should be used when considering the dating of sand-

wedges? Are the previously acquired ages on sand-wedges reliable? 

 ₋ When did thermal contraction cracking of the ground occur in France during the Late 

Pleistocene?

This thesis consists of an introductory chapter (2) that aims at providing the scientific background 

necessary for the understanding of the terms further used. It is followed by chapter 4, which contains 

the research methodologies and details on the material used that were not developed at length in the 

papers published in international journals. 

Chapter 4 presents the French database of periglacial features and has been published in the journal 

Quaternaire (Andrieux et al., 2016a; https://afeqeng.hypotheses.org/48). It reports on the selection 

criteria of the features added to the database, and on the main limits that should be considered when 

using the data for interpretations. 

Chapter 5 deals with the GIS analysis of the database, and was published in the journal Permafrost 

and Periglacial Processes (Andrieux et al., 2016b). By accommodating different layers of information 

the main factors that influenced the development of periglacial features in France were elucidated. 

The geographic distribution of the georeferenced features added to those from northern Europe also 

allowed us to propose a map of the permafrost boundaries in Western Europe during the Last Permafrost 

Maximum (LPM). The field data were also compared to the permafrost distribution according to a model 

downscaled for France to delineate the advances and issues in reconstruction methodologies. 

Chapter 6 contains a paper submitted to Earth and Planetary Science Letters (Andrieux et al., 

submitted). The chronology of thermal contraction cracking in France was investigated thanks to the 

optical luminescence dating of 33 samples taken in French sand-wedges. The results reflect that the 

primary sand-filled features have a complex multi-phased activity history, which calls into question our 

understanding of how periglaciation occurred in Western Europe during the Late Pleistocene.  

In chapter 7, results and discussions of the papers are synthesized. It also provides a discussion 

about the implication of this work and the further research that could be considered to improve our 

understanding of the Pleistocene periglacial palaeoenvironments in Europe.
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2. Scientific background

This paragraph aims at defining the basics of periglacial processes, landforms and terms that will be 

further discussed.

2.1. Permafrost and deep seasonal freezing of the ground 

The most prominent processes in periglacial environment are due to the frost action in the ground. 

In such environments, the land areas experience either perennially frozen ground, or seasonal frost. 

The ground that remains frozen (at temperature at or below 0°C) for at least two consecutive years 

is termed permafrost (French, 2007). It is topped by a seasonally frozen layer named active layer, i.e. 

which freezes in winters and thaw in summers. The distribution and thickness of permafrost and the 

active layer is determined by many factors such as air temperature, thermal conductivity of the ground, 

ground texture, aspect, vegetation and snow cover, etc. (Mackay, 1993). Permafrost highly impacts the 

circulation of water in the ground, and is usually classified depending on the percentage of the land area 

it covers (French, 2007). It is considered as continuous when it underlies more than 90% of an area, 

as widespread discontinuous when it underlies 50 to 90% and sporadic (or “scattered” sensu Allard 

and Seguin, 1987) when it underlies between 10 to 50% of the area. This classification is used in this 

thesis. Continuous permafrost indicates areas with thick permafrost where only localized thawed zones 

or taliks exist beneath lakes or river channels.  Discontinuous permafrost is used for areas that have large 

unfrozen zones, and sporadic permafrost indicates only patches of perennially frozen ground (Figure 1). A 

relationship exists between Mean Annual Air Temperatures (MAATs) and the type of permafrost, however 

the MAATs proposed for the southernmost permafrost boundary and the continuous-to-discontinuous 

boundary vary according to the authors. In this thesis the MAATs for the permafrost boundaries were 

chosen following Romanovskij (1976), Vandenberghe and Pissart (1993) and Huijzer and Vandenberghe 

(1998) and have been taken with caution since the relationship between permafrost and temperatures 

may have been slightly different in the past (Murton and Kolstrup, 2003).

The degree of differentiation between perennially and seasonally frozen sediment depends 

largely upon the time over which the permafrost existed (French, 2007). Only few features provide 

unequivocal proof of periglaciation and their recognition has often proved difficult and led to debate 

in the scientific community (e.g. Péwé, 1966; Black, 1976; Kasse and Vandenberghe, 1998; Bockheim 

et al., 2009; Christiansen et al., 2016). Distinguishing nowadays relict or inactive features that 
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formed under those conditions during the Pleistocene is thus even more complex. Not only the relict 

features may be deformed or eroded by thermokarst or pedogenesis, but can also relate to multiple 

events of deep seasonal freezing and/or permafrost. This is why the recognition of frost-action 

features requires caution and a good understanding of the processes involved in their formation.

Continuous permafrost Discontinuous permafrost

Widespread Sporadic, and
in susceptible 

soils

No 
conventional 

permafrost

ca. -8/-6°C ca. -5/-4°C ca. -1/0°C

Lake
Lake

Talik
Taliks

MAATs

Deep ciculation highly 
impeded or absent

Circulation highly impeded or locally impeded No impediment to groundwater 
circulation

Glacières may
develop in karstic 

cold air trap

Figure 1: Schematic diagram illustrating the permafrost boundaries and circulation of water. Mean Annual Air Temperatures 

of the different permafrost types were chosen following Romanovskij (1976), Vandenberghe and Pissart (1993) and Huijzer 

and Vandenberghe (1998); grey: permafrost; modified from Ford (1993).

2.2. Thermal contraction cracking

The rapid cooling and the lowering of temperatures of the ground can lead to its contraction and 

subsequent cracking (Lachenbruch, 1962, 1966). This process also known as thermal contraction cracking, 

occurs in areas that undergo deep freezing of the ground either within permafrost or not, therefore it is one 

of the most indicative markers for periglaciation. Thermal contraction cracking forms polygonal networks 

of fissures reaching 5 to 30 m in diameter that were mapped using aerial photographs in France (see chapter 

5). These should not be confused with the decimetric cryo-desiccation polygons that are ubiquitous in 

environment experiencing seasonal freezing (Washburn, 1979). Repeated thermal contraction cracking 

and filing of the narrow fissures by ice and mineral material builds structures termed veins when they 

are <10 cm wide or wedges when they are >10 cm (Murton et al., 2000; Murton, 2013) (Figure 2). 



17

Figure 2: A – Large polygonal network of thermal contraction cracks, subdivided by small cryo-desiccation cracks (Veyrac, 

France); B – Cryo-desiccation polygons affected by redox processes, in clayey sand (Gironde, France); C – Network of wedges 

in cross-section (Le Thor, France). Photos P. Bertran.

According to the geomorphological context, three sub-types of wedges can be distinguished. 

Epigenetic wedges develop in stable host materials and grow sideways. Syngenetic wedges grow 

upward in environments characterised by a high rate of sedimentation (e.g. in loess deposits). Anti-

syngenetic wedges grow downward on surfaces subject to erosion (Murton, 2013) (Figure 3). 

Figure 3: Classification of wedges according to growth direction
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In current environments, wedges are classified depending on their infilling that can vary based on 

suface conditions:

 ₋ In a permafrost milieu, snow or melt-water may fill the cracks during the summer and 

freeze at depth. The repetition of this process forms V-shaped ice-wedges (Murton, 2013) (Figure 

4A).  During phases of permafrost degradation, the void left by the ice-body may be filled by overlying 

sediment or host material.  This is distinguished as a ‘secondary infilling’. Ice-wedge thaw usually 

led to host material deformations and micro-faulting (Harris et al., 2005) and relict structures bear 

little resemblance with active ice-wedges. They are called ice-wedge pseudomorphs. Many ice-

wedge pseudomorphs have been identified in northern France, essentially in the loess deposits.

 ₋ The primary infilling of wedges by ground material forms soil wedges.  The most distinctive 

of these are sand-wedges (Figure 4B). They are formed by the progressive infilling of thermal 

contraction cracks by aeolian sand (Péwé, 1959; Murton et al., 2000). In modern environments, 

active sand-wedges have been mostly described in polar deserts in continuous permafrost (e.g. 

in Antarctica; Bockheim et al., 2009) but they may form in seasonally frozen ground (Wolffe et 

al., 2016). Sand wedges have a high preservation potential as they are not composed of ice, and 

therefore do not get deformed during permafrost thaw. Relict sand-wedges have been described 

in French Quaternary sediments and are valuable geochronological proxies that can be dated (see 

chapter 6).

 ₋ The infilling of both ice and ground-material lead to the formation of composite-wedges 

(Figure 4C). Therefore, these wedges in a relict state present both primary and secondary infillings. 

Composite-wedge pseudomorphs were identified in France, but difficulties in the recognition of 

secondary infillings may have led to their classification as sand-wedges (see chapter 4).
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Figure 4: A - Ice-wedge (Canadian Arctic, photo A. Pissart). Scale is 2 m long; B - Inactive primary sand wedge in ice-rich clay 

and pebbly sand (Mackenzie Delta, Canada; from Murton et al., 2000); C - Inactive primary sand wedge on the left, and 

composite sand-ice wedge on the right in massive ice and icy sediments (Mackenzie Delta, Canada; from Murton et al., 2000).
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2.3. Patterned ground, involutions and other periglacial features

In periglacial environments, repeated frost heave and thaw consolidation together with other 

processes such as load casting cause ductile deformation of the ground that in turn form patterned 

ground. These can be associated or not with the sorting of material, and are classified into small polygons 

(<10 m in diameter), circles or nets, hummocks and mudboils (Washburn, 1979). The patterned ground 

features are mostly present in the active layer of permafrost, but can also form in areas affected by deep 

seasonal freezing of the ground. On slopes nets, polygons and circles tend to stretch, which results in the 

formation of soil stripes (Büdel 1960; Bertran et al., submitted) (Figure 5). 

Figure 5: A – soil stripes in aerial photograph (IGN/Google Earth) and B – in cross-section (photo P. Benoit), Champfleury_3 

(3.99°E, 48.60°N); C – soil stripes in vertical and horizontal cross-section, Havrincourt  (3.07°E, 50.12°N) (photo P. Antoine); 

D - Stretching of nets into soil stripes on slopes, from Büdel (1960)
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Small nets and soil stripes were identified in France thanks to geological surveys, re-evaluation of 

the French literature and investigation of aerial photographs (see chapter 4, and 5). Cross-sections in 

patterned grounds showed involutions (sensu French, 2007). Multiple mechanisms interacting between 

each others are cited to explain the genesis of involutions and patterned ground features, and it is often 

difficult or impossible to assign a particular process to their formation. Although it is likely that the 

involutions spotted in France are of periglacial origin (i.e. cryoturbations; Bertran et al., submitted), they 

were referenced but not fully studied in this thesis. 

Beside ice-wedges, one of the most indicative markers of permafrost is the occurrence of pingos. 

These are large domes formed of injection ice that can reach up to 500 m in diameter and 70 m in 

height, and that require the conservation of large ice bodies. Two types of pingos are distinguished. The 

closed-system pingos form only in continuous permafrost above drained lakes and water-rich sediment, 

whereas open-system pingos are linked with the resurgence of groundwater (Figure 6; Figure 7A). As the 

water freezes in the permafrost, it is forced upward forming ice mounds. Lithalsas are cryogenic mounds 

composed of segregation ice that form in discontinuous permafrost (Pissart, 2002; Calmels et al., 2007) 

(Figure 7B). Both the pingos and lithalsas create distinctive crater-shaped scars when thawed. Palsas 

are ice-cored peat mounds, which are characteristics of sporadic permafrost areas and that form where 

abundant segregation ice accumulates near the ground surface (Figure 6; Figure 7C). They may reach up 

to 50 m in diameter and 7 m in height (Washburn, 1979; French, 2007).

 
Figure 6: Schematic diagram of A – a palsa, B – an open-system pingo, and C – a closed-system pingo; from French, 2007.

Despite the investigation of several potential examples in the literature, no pingo or lithalsa scars have 

been identified so far with certainty in France (Boyé, 1958; Michel, 1967; Courbouleix and Fleury, 1996; 

Lécolle, 1998) whereas convincing examples are described in The Netherlands (Kasse and Bohncke, 1992) 

and in the United Kingdom (Watson and Watson, 1974; Ballantyne and Harris, 1994; Ross et al., 2011). 
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Figure 7: A - Pingos (Canadian Arctic, Photo A. Pissart); B - Lithalsa scars (Hautes-Fagnes, Photo A. Pissart); C – Palsa in peatland 

(Mongolia, Photo P. Bertran).

2.4. Permafrost reconstructions

Based on field evidence, several regional and national overviews aiming at reconstructing the 

extent of Pleistocene permafrost in France have been published, namely by Cailleux (1948), Poser 

(1948), Tricart (1956), Maarleveld (1976), Lautridou and Sommé (1981), Velichko (1982), Texier and 

Bertran (1993), Courbouleix and Mouroux (1994), Lautridou and Coutard (1995), Van Vliet-Lanoe 

(1989, 1996), Huijzer and Vandenberghe (1998), Van Vliet-Lanoe and Hallégouet (2001), Lenoble et 

al. (2012), Vandenberghe et al. (2014) (Figure 8). Although these reconstructions differ significantly, 

they all agree that permafrost extended over large parts of north-eastern France during the coldest 

periods of the Pleistocene (particularly the Last Glacial). The southern limit of the permafrost 

extent is more controversial and the differences between the reconstructions have to be linked 

with divergences in the interpretation of the scarce periglacial features, particularly sand-wedges. 
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Figure 8: Reconstitutions of the Pleistocene permafrost extent in Western Europe from Pöser (1948), Tricart (1957), Maarleveld 

(1976), Velichko (1982), Huijzer and Vandenberghe (1998) and Van-Vliet Lanoë and Hallegouet (2001)
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In the last decade, modelling of past permafrost has provided new data on this issue using different 

approaches (e.g. Renssen and Vandenberghe, 2003; Levavasseur et al. 2011; Vandenberghe et al., 2012; 

Saito et al., 2013; Kitover et al., 2013) (Figure 9, Figure 10). These models successfully reconstructed 

current permafrost but the simulations of permafrost extent during the Last Glacial Maximum (LGM, ca. 

21 ka) show large discrepancies. Models predict the absence of permafrost in areas where geological 

features forming in discontinuous or continuous permafrost have been described (Levavasseur et al., 

2011). In addition, large uncertainties emerged in the modelled extension for the LGM, for example the 

southern limit of discontinuous permafrost is located either in France or in Poland for respectively the 

‘cold’ and ‘warm’ extremes (Vandenberghe et al., 2012). 

In this context, it is critical to provide a database with geo-located features in France, similar to 

previous work done in Northern Europe (Isarin et al., 1998). The GIS-analysis of such databases can 

provide keys to understand the factors involved in the distribution of periglacial features.

Figure 9: Last Permafrost Extent (LPM) according to Vandenberghe et al. (2014). Blue: Permafrost; red line: approximate 

boundary between continuous and discontunuous permafrost; dashed orange line: approximate limit of LPM winter sea ice 

extent



25

Figure 10: Simulations of the LGM permafrost extent. A – Renssen and Vandenberghe (2003), the 0°C isotherm show 

the area covered by permafrost; B – Saito (2013), yellow: ice, blue: permafrost, green: deep seasonal freezing of the 

ground; C – Levavasseur et al. (2011), blue: continuous permafrost, orange: discontinuous permafrost; D – Kitover et 

al. (2015), dark blue areas show the extent of permafrost.
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2.5. Chronological data

One of the issues encountered by the researchers for their reconstructions is the lack of dating since 

the periglacial features observed may have formed during different periods. The main chronological 

markers currently available in France are based on stratigraphy in loess sequences, but a few dating have 

been made in direct relation with periglacial features. 

2.5.1. Loess chronostratigraphy

The correlation of the different cross-sections from northern France and the available datings made 

it possible to subdivide the sequences and find different periglacial events (Antoine and Locht, 2015; 

Antoine et al., 2016) (Figure 11):

 ₋ The Early glacial stretches from ca. 112 to 78 ka (OIS 

5c to 5a). The fossil soils show evidence for deep seasonal 

freezing. Flint tools associated with this phase have been dated 

between 91 to 105 ka by thermoluminescence (Fresnoy-au 

val: 106 ± 12 ka BP, Goval and Locht., 2009; Villiers-Adam: 105 

± 12 ka BP, Locht et al., 2003; Seclin: 91 ± 11 à 95 ± 11 ka BP, 

Tuffreau et al., 1994). The first local aeolian deposits are found 

within the end of this sequence in the OIS 5-4 around 78 to 70 

ka and characterize an environment with greater aridity. 

 ₋ The Lower Pleniglacial (ca.70 to 55 ka) shows the 

first widespread loess deposits associated with ice wedge 

pseudomorphs (Villiers-Adams, Loch et al., 2003). This 

sequence is rarely preserved in northern France because of 

erosion, which is attributed to permafrost degradation. The 

sequence is better represented in the Rhine valley where it 

has been dated by OSL to 65 ± 5 ka (Antoine et al., 2001). 

 ₋ The Middle Pleniglacial (ca. 55 to 35 ka) is 

characterized by the development of palaeosoils (‘Saint-

Acheul and Villiers-Adam Soil Complexes’), which reflect long 

Figure 11: Summary of Northern France pedo-

lithostratigraphic sequences. F1-F6: ice-wedge 

pseudomorphs levels  (Antoine et al., 2016)
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interstadials (Antoine et al., 2016). The Middle Pleniglacial sequence is marked at its beginning 

by an erosive event that led to the deposition of laminated and cryoturbated colluvium dated to 

55-50 ka cal BP. Erosion is thought to reflect thermokarst gullies linked at Villiers-Adam with the 

degradation of ice-wedge pseudomorphs, which developed between 45 to 55 ka (Antoine et al., 

2001) (Figure 12). 

Figure 12: Incision of a thermokarstic gully on a slope (source P. Antoine, drawing L. Deschodt)

 ₋ The Upper Pleniglacial (ca.30 to 15 ka) is characterized by thicker loess deposits. In the 

lower part, several levels of ice wedge pseudomorphs associated with soliflucted ‘tundra gleys’ 

(i.e. Haplic Cryosols according to Kadereit et al., 2013) have been identified. A major level of ice 

wedge pseudomorphs has been described at the transition between the Middle and the Upper 

Pleniglacial at ca. 30 ka. Above this level, a thick cryoturbated tundra gley associated with two levels 

of ice wedge pseudomorphs, which are rarely preserved, is described as the ‘Santerre Horizon’. The 

sequence continues with laminated loess marked by small syngenetic wedges and dated in most 

cross-sections from northern Europe between 22 and 27 ka. At the top of this level a tundra gley 

associated with ice wedge pseudomorphs is observed (e.g. Sourdon, Antoine, 1989). This tundra 

gley is thought to be the French equivalent of the ‘Nagelbeek tongue horizon’ or ‘Kesselt level’ 

described in Belgium, which has been dated around 22 ka 14C BP or 27-26 cal ka BP (Haesaerts et 

al., 1981; Lautridou, 1985; Van Vliet-Lanoë, 1996). More recent relative datings in Onnaing (France) 

yielded younger ages close to 22 ka cal BP (Antoine and Locht, 2015). A last level of small ice wedge 

pseudomorphs, or soil wedges, has been identified at the summit of the loess deposits in Saint-

Hilaire-sur-Helpe (Feray et al., 2013) and would stratigraphically be situated between 15 and 20 ka.
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This approach based on stratigraphic markers to provide relative ages has proven useful for 

the loess areas thanks to the homogeneity of the deposits and their high sedimentation rates (e.g. 

Vandenberghe, 1983; Haesaerts et al., 2016). In other areas with heterogeneous Quaternary sediments, 

or low sedimentation rates, it is often impossible to get a chronological framework (e.g. Pleistocene 

terraces with epigenetic wedges). Although the temporal history of sediment infillings in wedges may be 

complicated, attempts to dating these features have been made in the last 30 years.

2.5.2. Ice-wedge pseudomorph dating

Despite stratigraphic markers that give relative ages, only few reliable dating were made in 

direct association with ice-wedge pseudomorphs in cross-sections from Northern France, Belgium, 

Netherlands and Germany. At Grouw (Netherlands), in a milieu characterised by high sedimentation 

rates of loess, Vandenberghe (1993) was able to bring to light seven phases of syngenetic ice-wedge 

development using 14C dating, i.e. 3 formed between 43.3 ka and 35.3 ka, one is older than 43.3 ka and 

3 are younger than 35.3 ka. At Hermignies (Belgium) a level of ice-wedge pseudomorphs is intercalated 

between two levels of loess dated to 21.5 ± 2.5 and 25.9 ± 3 ka by thermoluminescence (Frechen et 

al., 2001). Two levels of ice wedge pseudomorphs were also dated in Germany at Ostrau between 

respectively 25.7 ± 3.6 ka and 28.0 ± 3.8 ka and between 29.1 ± 4 ka and 30.3 ± 4.2 ka (Kreutzer et 

al., 2012; Meszner et al., 2013). In Poland and NW Ukraine, at least three events are dated between 

30 and 12 ka (Zielinski et al., 2014) and an ice-wedge pseudomorph was dated between 40 ± 4 and 

41 ± 3.5 ka (Kostrup, 2007). In France, at Savy, a tundra gley associated with a level of ice wedge 

pseudomorphs yielded an U/Th Electron Spin Resonance (ESR) age of 30 ± 2 ka on a horse bone and 

dental enamel (Locht et al., 2006), and at Havrincourt six levels of ice-wedge pseudomorphs have been 

identified (F1, F2, F3, F4, F5, F6; Antoine et al., 2014) and dated with Single-Aliquot Regenerative-dose 

Optically Stimulated Luminescence (SAR OSL). F1 was not dated but is stratigraphically anterior to F2 

and F3 that were formed within two tundra gleys slotted together and dated at 28.4 ± 1.8 ka (Figure 

12). Another tundra gley formed in association with F4 yielded an age of 31.4 ± 2.0 ka. F5 identified 

at the interface between two soil complexes was dated between 42.1 ± 2.8 and 51.5 ± 3.2 ka. Finally, 

small pseudomorphs (F6) were identified in a tundra gley bracketed between 61.7 ± 4 and 65 ± 3.8 ka. 
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Figure 13: Loess cross-section Hav.2-P5 in Havrincourt (France) showing two ice-wedge levels (F2 and F3), from Antoine et al. 

(2014) (Photo P. Antoine)

2.5.3. Dating of sand-wedges and composite-wedge pseudomorphs 

The sand wedges and the primary sandy infilling of the composite wedge pseudomorphs that have 

been preserved with little sediment disturbance are suitable for luminescence dating. With the recent 

advances in luminescence techniques and protocols, some of the dating may appear obsolete but provide 

useful information that can be used for comparisons. 

Kolstrup and Mejdahl (1986) were the first to apply thermoluminescence (TL) on K-feldspars collected 

from the sand filling of two sand wedges and a composite-wedge pseudomorph in Jutland (Denmark). 

This returned ages of 39 ± 5, 24 ± 3 and 17 ± 3 ka. The oldest age coming from the composite-wedge 

pseudomorph exceeded the expected age and was attributed to partial bleaching due to sediment 

mixing during secondary infilling. These ages were later corrected by Christiansen (1998) for the effect 

of shallow traps (Mejdhal et al., 1992) and gave estimates of 24 ± 2 ka, 33 ± 3 ka, and 53 ± 5 ka. Böse 

(1992) used both TL (Mejdhal 1988, 1991) and infrared-stimulated luminescence (IRSL; Duller, 1991) 
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on a sand wedge from the Brandenburg region in Germany yielding respectively ages of 19.4 ± 1.5 and 

19.3 ± 1.5 ka. Multiple-aliquot additive-dose infrared-stimulated luminescence (IRSL MAAD) was applied 

on K-feldspars grains and polymineral fine grains collected from two sand wedges infillings found at 

Crumbling Point in the Mackenzie Delta area (Canada) by Murton et al. (1997) giving a mean age of 

14 ± 1 ka (n = 7) and another sample yielded a fading-corrected IRSL age of 16.1 ± 0.2 ka (Murton and 

Bateman, 2007). Christiansen (1998) also dated a sand-wedge at Emmerleve Klev (Denmark) using TL on 

K-feldspars, and optically stimulated luminescence (OSL) on quartz, which age estimates are respectively 

34 ± 3 ka and 32 ± 3 ka. Owen et al. (1998) used IRSL and OSL MAAD on polymineral fraction collected 

within the fill of a sand wedge found in the Gobi Desert (Mongolia). The sample returned an age of 15.7 

± 3.0 ka. Böse (2000) dated sand wedges at two sites in western Poland using single-aliquot regeneration 

and added-dose (SARA procedure, Mejdahl and Bøtter-Jensen, 1994) on feldspars, which gave mean ages 

of 12.9 ± 1.3 ka (n=4) on feldspars and 14.3 ± 1.4 ka (n=3) on quartz. French et al. (2003) applied multiple-

aliquot OSL on quartz taken from the fill of three sand wedges to show two separate periods of wedge 

formation in Pine Barrens (New Jersey, USA) of 15-18 ka and 55-65 ka. Kolstrup (2004) found single-

aliquot regenerative-dose (SAR) OSL ages from the sandy infill of a composite-wedge pseudomorph in 

Tjaereborg (Denmark) of 270 ka which is much older than the host sediments (which gave an age of 150 

ka). The wedge samples showed poor equivalent dose (De) reproducibility and single grain measurement 

confirmed the existence of multiple-dose populations within the sample. This was attributed to partial 

bleaching but it could also reflect by part a multiple-phased wedge growth. Briant et al. (2005) reported 

two SAR OSL ages on quartz coming from a sand wedge in Pode Hole Quarry (England) of 31.1 ± 2.1 

and 10.5 ± 1.2. Kjaer et al (2006) dated a sand-wedge in Sölvegatan (Sweden) yielding a SAR OSL age on 

quartz of 16 ± 1 ka. Kovacs et al. (2007) published two SAR OSL ages from a sand wedge in Mogyorod 

(Hungary) of 20.75 ± 2.3 and 22.66 ± 2.86 ka. The ages were later recalculated by Fàbiàn et al. (2014) 

including different values of paleomoisture and yielded estimates of 15.7 ± 1.8 ka and 17.2 ± 2.2 ka. 

Kasse et al. (2007) dated two units in the Netherlands containing sand wedges which give their relative 

ages. The sand wedges have formed between 28.8 ± 2.4 to 24.4 ± 1.8 ka in unit A and between 25.2 

± 2 ka to 17.2 ± 1.2 ka in unit B. Buylaert et al. (2009) dated with SAR OSL 14 sand wedges in Flanders 

(Belgium) and included single grain measurements which show that the sediment within the cracks was 

bleached prior burial. The wedges in Vrasene yielded the ages of 13.9 ± 1.0, 18 ± 1.3, 14.4 ± 0.9 ka, in 

Sint-Niklaas 16.4 ± 1.1, 129 ± 11, 36.4 ± 4.1 ka, in Ruddervoorde 21.0 ± 1.2, 19.3 ± 1.1, 15.4 ± 1.0 ka, in 

Aalter 14.8 ± 0.9, 20.4 ± 1.2, 15.5 ± 1.0 ka, and in Belsele 15.5 ± 1.0, 14.0 ± 0.9 ka. Guhl et al. (2012) dated 

two features with sandy infills in Jonzac (France). The authors applied SAR OSL on quartz from the sand 
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wedges and used the Central Age Model (CAM) for the calculation of age estimates, yielding the age of 

26.6 ± 4.4 ka. The investigation of the OSL results from the second feature revealed contamination of 

the sample by host material. The use of single grain measurement and Finite Mixture Model (FMM) for 

the calculation of the age estimates provided an age of 27.4 ± 5.5 ka for the second feature by isolating 

the different age components. In the southwest of France, OSL dating was carried out on numerous sand 

wedges. Lenoble et al. (2012) published the SAR OSL ages on quartz of two sand wedges in Cap-de-Bos 

(24.3 ± 2.8 ka) and Leognan (25.5 ± 2.2 ka). Bertran et al. (2014) reported two ages of a sand wedge in 

Salaunes (26.7 ± 1.5 ka on feldspars and 24.3 ± 1.7 ka on quartz), and two ages on quartz from another 

sand wedge found in Cussac-Fort-Médoc (26.6 ± 1.8 and 27.7 ± 1.7 ka). Other datings on sand wedges 

were done in 2013 and yielded the SAR OSL ages on quartz of 21.1 ± 1.1 ka in Mérignac, 30.0 ± 1.5 ka in 

Saint-André-de-Cubzac, 46.4 ± 2.2 and 93 ± 4.2 ka in Durtal, and unexpected ages that were considered 

as incoherent of 95.4 ± 5.9 and 121.1 ± 6.2 ka on a sand wedge found in Jau-Dignac-et-Loirac. Rémillard 

et al. (2015) dated the sandy infills of two composite-wedge pseudomorphs and a sand wedge found on 

the Magdalen Islands (Canada) with a SAR OSL technique on quartz. This returned the ages of 10.1 ± 0.7 

and 10.7 ± 0.7 ka for the sand infills in the composite wedge pseudormophs, and 9.8 ± 0.7 ka for the sand 

wedge. In Poland, Ewertowski et al. (2016) dated the sandy infill of a composite-wedge pseudomorph 

in Kaszczor which returned the OSL ages of 18.1 ± 0.1, 17.5 ± 0.9, 18.3 ± 0.8, 18.6 ± 0.9 ka, and a sand-

wedge in Wloszakowice that yielded estimates of 14.9 ± 0.8, and 14.6 ± 0.9 ka.

3. Research methodologies

In view of the broad objectives of this study, namely to assess the chronology and extent of the Late 

Pleistocene permafrost in France, and to comply with the timing and limited funds available to conduct 

this project, it was necessary to define cost and time-effective methodologies.

3.1. Data acquisition

A thorough search of the literature, which includes articles in journals, PhD and master theses, 

archaeological survey reports, geology reports, and the explanatory notes of the geological maps of 

France, was conducted to gather data on periglacial features. Since the investigated literature covers the 

last 80 years, the features were re-evaluated to the light of our present knowledge and understanding 

of periglacial processes and environments. Although the initial data gathered were abundant, all the 

features from the literature that were not accompanied by drawings, photographs, or good descriptions 
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and all the data that could give raise to doubts were not added to the published version of the database 

(see chapter 4).

New field surveys were necessary not only to check the features described in the literature, but also 

because it was essential to find new features to describe, analyse, sample and date. France is a country 

of almost 650,000 km². Obviously it was not possible to prospect the whole territory in order to find 

periglacial evidence. To restrain the study area we focused our work on the regions located at altitudes 

lower than 500 m. This allowed us to exclude from the database the features mentioned in mountainous 

areas, and for which it was complicated to infer a Pleistocene origin since deep seasonal freezing or 

permafrost still occur at present time. Despite such a limitation, the study area remained large, so that 

we organised our survey into two parts:

 ₋ The analysis and interpretation of the aerial photographs available in Google Earth and 

Geoportail made it possible to cover large areas. Search was initiated in regions where periglacial 

features had already been described in the literature, and was then extended to neighbouring areas 

or regions that share similar geological characteristics. Regions were then tested when features 

were expected. Feature visibility is highly dependent on local conditions such as ground moisture 

or vegetation, so it was necessary to review all archival photographs taken over the last 10-20 years 

to improve the chance to spot features (Figure 14). The features observed comprise polygonal 

networks, soil stripes, potential thermokarst, small nets and other undetermined patterned 

ground. The geographic coordinates and an image of each periglacial evidence identified were 

stored (see chapter 5). A site was considered to represent a single land parcel or a few adjacent 

parcels where periglacial features were spotted. Only the indisputable features were added in the 

published version of the database, and only the image with the most clearly visible features were 

selected for analysis. 242 sites of small nets and 90 of involutions were analysed in Bertran et al. 

(submitted).
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Figure 14: Local conditions impact on features visibility. Polygons St Rémy en Provence in A – 2013, B – 2015.

 ₋ New field data and samples were collected from cross-sections either during rescue 

archaeology investigations or during our own geological surveys. The latter required the 

identification of potential sites where both cross-sections and periglacial features could be visible. 

The Loire valley, Northern Aquitaine, and the lower valley of the Rhône were prospected for this 

purpose to check the presence of wedges that were previously identified in aerial photographs 

as polygonal networks. To gather the data presented in this thesis, hundreds of sites that include 

quarries, building constructions, drainage ditches and trenches were inspected in each of the area 

selected. In the Bordeaux region this work was initiated by different authors (P. Bertran, A. Lenoble, 

L. Sitzia) and was continued during my PhD.

3.2. Geological setting

The Loire valley, Northern Aquitaine and the lower Rhône valley were surveyed to find periglacial 

features (Figure 15). Despite an extensive search, no periglacial evidence was found in the lower Rhône 

valley. In contrary, many features were discovered in Northern Aquitaine, and in the Loire valley.
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Figure 15: Simplified Geological map of France (BRGM), and surveyed areas: A - Loire valley, B - Northern Aquitaine and 

C - Lower valley of the Rhône River

A total of 33 samples were taken within the sandy infills of sand wedges and composite wedge 

pseudomorphs located in these areas for dating purposes. Although numerous periglacial features were 

described during the course of the PhD, the emphasis is placed here on the sampled ones. 

3.2.1. Northern Aquitaine

The surveyed area in northern Aquitaine is located in the Aquitaine sedimentary basin which is 

mostly composed by Jurassic, Cretaceous, Tertiary and Quaternary deposits. From the Late Miocene 

to the Middle Pleistocene the basin was filled by fluvial deposits coming from the Massif Central and 

the Pyrenees mountains and carried by the Dordogne and Garonne rivers, setting up complex terrace 

systems (Dubreuilh, 1976; Sitzia, 2014).  Most epigenetic relict sand-wedges were found in the Middle 

to Lower Pleistocene Garonne terraces. These features are located in close proximity to the Landes 

coversands that accumulated during the Late Pleistocene and could have provided sufficient sand 

for the infilling of the wedges (Sitzia et al., 2015) (Figure 16). Most sand-wedges in this area develop 
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in gravel or sand of alluvial origin that show sometimes cryoturbations. Sand wedges usually open 

below decimetre thick coversands with ventifacts, have massive sandy infillings with faint laminations, 

are V-shaped, 1 to 2 m in depth, and 0.3 to 0.6 m in width. A few develop within alluvial loam and 

show deformation. In total, 16 samples were gathered from 5 sand-wedges in Northern Aquitaine.

Figure 16: Spatial distribution of the periglacial features described in Northern Aquitaine. Numbered wedges were dated: 

1=Cussac-Fort-Médoc, 2=St-André-de-Cubzac, 3=Salaunes (Château Montgaillard), 4=Mérignac (Parking Chronopost)

3.2.1.1. Salaunes (Château Montgaillard)

At Salaunes (Château Montgaillard, latitude 44.935°N, longitude 0.821°W, altitude 49 m a.s.l.), 

a heterogeneous sequence of lower Pleistocene sandy gravel (Fxa on the geological map of France) 

is overlain by thin coversand (< 30 cm) within which centimetric ventifacts are visible. Multiple 

sand wedges were found in the sections that also contains involutions (Figure 17B). Although the 

sand wedges have a massive sandy infill and are about the same length (ca.1 m) their width varies 

significantly from a few centimetres to 50 cm. Four samples were taken laterally within a sand wedge 

that is 1.1 m in depth and 0.5 m in width (Shfd14011, Shfd14012, Shfd14013, Shfd14014) (Figure 17A). 
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Figure 17: Sand-wedges in sandy gravel at Salaunes (Château Montgaillard; 44.935°N, 0.821°W). A - Close-up of the sampled 

wedge, 1=Shfd14011, 2=Shfd14012, 3=Shfd14013,  4=Shfd14014. B - Cross-section of the site showing involutions. LA: 

ploughed horizon, E: eluvial horizon, Bth: spodic horizon, Fm: massive silt and clay, Fl: laminated silt, Sp: planar cross-stratified 

sediment, Gp: planar cross-stratified gravel, F: Fault

3.2.1.2. Cussac-Fort-Médoc (Parcelle Lagrange)

At Cussac-Fort-Médoc (Parcelle Lagrange, latitude 45.114°N, longitude 0.750°W, altitude 38 m a.s.l.), 

several sand wedges were observed in ditches. They form a large polygonal network (12 to 15 m in 

diameter) visible on aerial photographs and described by Lenoble et al. (2012) (Figure 18). The sand 

wedges in this area are found in Lower Pleistocene sandy gravel (Fxb1) and are sometimes overlain with 

coversand which width varies from a few centimetres to 20 cm. The sand wedges are generally about 0.8 

m in length and 0.3 to 0.7 m in width and are characterized by a massive sandy infilling. The wider sand 

wedge was sampled (Shfd14021, Shfd14022, Shfd14023, Shfd14024, Shfd14025, Shfd14025; Figure 18C).
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Figure 18: Sand-wedges in sandy-gravel (45.114°N, 0.75°W) A and B - Cussac-Fort-Médoc “le Moule” (Photos A. Lenoble) 

and C - Cussac-Fort-Médoc “Parcelle Lagrange” 1=Shfd14021, 2=Shfd14022, 3=Shfd14023,  4=Shfd14024, 5=Shfd14025, 

6=Shfd14026. Scales are 50 cm.

3.2.1.3. Mérignac (Parking Chronopost) 

At Mérignac (Parking Chronopost, latitude 44.827°N, longitude 0.689°W, altitude 47 m a.s.l.), 

multiple sand wedges and a composite wedge pseudomorph were found in a 250 m long cross-

section (Figure 19; Figure S1). They formed in Lower Pleistocene alluvial gravel and loam (Fxbg) and 

can attain 1 to 2 m in depth. The sand wedges in the alluvial loam show deformation and have a 0.3 

to 0.6 m width whereas the ones in the gravel are not deformed and are thinner (0.2 to 0.4 m). The 

wedges are associated with networks of small fissures without distinguishable infill. These fissures 

cross-cut the wedges and are therefore posterior to their development. They are generally 0.2 m in 

length and are more visible in the loam where they can reach their maximum depth (up to 1.5 m). 
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Figure 19: Mérignac (Parking Chronopost) A and B - massive sand-wedges in alluvial loam, C - deformed sand-wedge with a 

bulbous shape in alluvial loam, D - small composite-wedge in gravel and E - laminated sand-wedge in gravel 1=Shfd14015, 

2=Shfd14016, 3=Shfd14017,  4=Shfd14018, 5=Shfd14019 

Ductile deformation and reverse faults were identified within the gravel. Similar 

deformations were identified during simulations of collapsing magma chambers 

(Geyer et al., 2006). In our context they were interpreted as resulting from the 

collapse of a karstic cavity in the underlying limestone (Jolivel et al., 2016) (Figure 20).
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Figure 20: Ductile deformations in Mérignac (Parking Chronopost; 44.827°N, 0.689°W) B and C similar to deformations 

identified during experimentation of a caldera collapse (A; Geyer et al., 2006)

A sand wedge from this site was sampled and dated in 2012 using small aliquots SAR OSL (Shfd12099). 

For comparison, it was dated in this study using single grain OSL (shfd12099-2) along with 5 other samples 

taken in a different sand wedge (Shfd14015, Shfd14016, Shfd14017, Shfd14018, Shfd14019) (Figure 18A).

3.2.1.4. Saint-André-de-Cubzac (ZAC parc d’Aquitaine)

At Saint-André-de-Cubzac (ZAC Parc d’Aquitaine; 45°N, 0.43°W, 60 m a.s.l.), numerous sand wedges 

where observed below 30 to 50 cm thick coversand in a Tertiary clay or clayey sand substratum 

(RCFx). In the clayey sand, the sand wedges have a massive infill with faint laminations. They have a 

classic V shape, open just below the coversand, are 10 to 30 cm wide, and 1.6 m deep. In the clay, the 

wedges are deformed and have sometimes bulbous shapes. These sand wedges are clearly visible only 

below the first 50 to 60 cm of cryoturbated clay substratum. Single-aliquot SAR OSL was applied on 

a sample taken within a sand wedge in 2012 (Shfd12098), and for comparison in this study we used 

single grain SAR OSL to acquire the age estimates from the same sample (Shfd12098-2) (Figure 21). 
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Figure 21: Sand wedges in Oligocene clayey sand, Saint-André-de-Cubzac (45°N, 0.43°W; Photos P. Bertran). Scales are 50 cm 

long.

3.2.2. Loire valley

In the Loire valley, the study area stretches over 400 km from the Sologne region to the mouth of the 

river Loire nearby Nantes. Sand-wedges, composite-wedge pseudomorphs, ice-wedge pseudomorphs 

and involutions were found in this area in several alluvial terraces, noted Fv, Fw, Fx, and Fy-z on the 

geological map of France, and in chalk deposits (Figure 22). These terraces overlay Miocene limestones, 

sands or marls, or the Plio-Pleistocene Sologne sandy and silty alluvial deposits (Tissoux et al., 2017; 

Liard et al., 2017). The Loire valley is also characterised by thin sandy aeolian deposits that were listed on 

few maps (Haase et al., 2007) and are thought to have originated either from the reworking by the wind 

of sandy alluvial deposits during the Mid to Late Pleistocene or from the surrounding plateaus.

The sites of Olivet and Sainte-Geneviève-des-Bois (Les Bézards) are located in the Loire valley 

nearby the Sologne coversands. La-Chapelle-aux-Choux, Durtal, Challans and La Louverie are also 

in the Loire valley downstream in areas within which thin coversands are widespread (Figure 22). 
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Figure 22: Spatial distribution of the periglacial features described in the Loire valley. Numbered wedges were dated: 1=Saint-

Christophe-du-Ligneron (Challans), 2=Les Rairies (Durtal), 3=La Flèche (La Louverie), 4=La Chapelle aux Choux, 5=Olivet, 

6=Sainte-Geneviève-des-Bois (Les Bézards)

3.2.2.1. Olivet

 At Olivet (Latitude 47.815° N, longitude 1.927° E, altitude 114 m a.s.l.), a sand wedge within which 

laminations were observed has been sampled (Shfd15085, Shfd15086). The wedge develops in a Lower 

Pleistocene sandy alluvial terrace of the Loire River (Fw). Its opening is deformed by cryoturbation and it 

is 0.8 m wide, 1.8 m in depth (Figure 23A).
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3.2.2.2. Sainte Geneviève des Bois (Les Bézards)

At Sainte-Geneviève-des-Bois (Les Bézards, latitude 47.810° N, longitude 2.742° E, altitude 145 m a.s.l.) a 

composite wedge pseudomorph grew within Tertiary silty sand (e-g). The deformed wedge is characterized by 

a primary massive coarse sand infill within which 4 samples were taken (Shfd15087, Shfd15088, Shfd15089, 

Shfd15090) and a secondary silt infill in its centre where U-shaped laminations are visible (Figure 23B).

Figure 23: A - Sand wedge in lower Pleistocene alluvial sand (Olivet, 47.815°N, 1.927°E), 1=Shfd15085, 2=Shfd15086. Its 

opening is deformed by cryoturbations, the sample 3 was not dated. B - Composite-wedge pseudomorph in Tertiary silty 

sand, 4=Shfd15087, 5=Shfd15088, 6=Shfd15089, 7=Shfd15090

3.2.2.3. La Chapelle aux Choux 

At La-Chapelle-aux-Choux (Latitude 47.617°N, longitude 0.211°E, altitude 69 m a.s.l), three sand wedges 

found in gravel and sandy gravel were sampled (Fx, Fw). The wedges share a similar classic V shape but 

different size characteristics. The first sand wedge that was sampled appears below 30 cm of cryoturbated 

gravel, and is 0.35 m wide and 1 m in length (Shfd15076) (Figure 24A). Three samples were taken in another 

wedge found in gravel (Shfd15077, Shfd15078, Shfd15079).  It is 0.5 m wide and 0.7 m in depth, but its top 

part may have been eroded (Figure 24B). Two samples were taken in another sand wedge that develops 

in sandy gravel (Shfd15083, Shfd15084). It is 0.35 m wide, 1 m in depth. While the other two wedges 

sampled in this area have a massive sand infilling this one shows laminations of more or less coarse sand 

and is characterized by a centimetre-wide crack extending downward out of the wedge toe (Figure 24C). 
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Figure 24: Sand-wedges in Midlle Pleistocene gravel and sandy gravel (La Chapelle aux Choux, 47,61°N, 0.21°E). The scraper 

is 35 cm long.

3.2.2.4. Les Rairies (Durtal)

At Les Rairies (Durtal, latitude 47.660° N, longitude 0.231° W, altitude 39 m a.s.l.), a composite wedge 

pseudomorph has been identified within sandy gravel deposits (Fx). Unlike other composite wedge 

pseudomorphs observed, the wedge sampled has a late primary sandy infill with laminations (30 cm 

wide, 1.7 m depth) which cross-cuts a wider secondary infill composed of massive sandy gravel (1 m wide, 

2 m in depth). Vertical laminations are visible in the infilling of the sand wedge where 2 samples were 

taken: Shfd13040 was dated using both single aliquot SAR OSL and single grain SAR OSL (Shfd13040-2) 

and Shfd14028 with single grain SAR OSL. A sample taken in the secondary infilling returned incoherent 

ages (Figure 25A).

3.2.2.5. Saint-Christophe-du-Ligneron (Challans)

At Saint-Christophe-du-Ligneron (Challans, latitude 46.8° N, longitude 1.76° E, altitude 32 m a.s.l.), 

a sand wedge has been described within gravel (P2) and sampled (Shfd14020). It is 0.4 m in width and 

1.4 m in depth. The first 30 cm of the host material show a platy structure which testifies to numerous 

freezing and thawing cycles. In the wedge the upper 30 cm are composed of a sandy gravel whereas the 

lower part of the infilling is massive silty sand (Figure 25B). It is likely that this wedge is a composite-

wedge pseudomorph.
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3.2.2.6. La Flèche (La Louverie)

At La Flèche (La Louverie, latitude 47.685° N, longitude 0.010° W, altitude 34 m a.s.l.), a forked sand 

wedge was identified. It opens in sand and gravel (Fx) where upward bending of the strata is visible. The top 

part of the wedge is deformed, 0.5 m wide, and affected by redox and soil formation processes. The wedge is 

1.7 m and its silty sand infilling shows a laminated part where a sample was taken (Shfd14027) (Figure 25C).

Figure 25: A - Composite-wedge pseudomorph in Midlle Pleistocene sandy gravel (Durtal, 47,66°N, 0.231°E); B - Sand-wedge 

in Pliocene gravel (Challans, 46.8°N, 1.76°E); C - A forked sand-wedge in Middle Pleistocene sand and gravel (La Louverie, 

47.685°N, 0.01°W)

3.3. Luminescence Dating

The dating of relict periglacial wedges yields palaeoclimatic and geomorphological information. 

Emphasis was placed on the dating of primary sand infill, deposited in thermal contraction cracks, 

because it can provide age estimates of the timing of wedge growth. Optically Stimulated Luminescence 

(OSL) dating was considered the most adequate method to derive an absolute chronology for thermal 

contraction cracking in France. 

After burial the sediment is exposed to a low level of radiations coming from both cosmic radiations 

(cosmic rays) and the decay of naturally-occurring radionuclides, principally Uranium (U), Thorium 

(Th), Rubidium (Rb) and Potassium (K). They are present in the surrounding sediment matrix or are 

constituents of some minerals, and emit alpha particles (α), beta particles (β) and gamma rays (ɣ). Most 

crystals contain lattice defects or impurities where electrons get trapped when excited by these ionizing 
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radiations. Since this occurs at a certain rate, the crystals act as storage units of energy which intensity is 

related to the time of accumulation. Eviction of electrons from shallow traps may occur by vibration of the 

lattice during burial of the sample (Aitken, 1998). This makes the shallow traps unstable and not adequate 

for dating. Deeper traps require a higher amount of energy to be emptied and thus are stable over 

geological time-scales. Energy coming from sunlight during transport, from an external light or thermal 

source is required to remove the electrons out of deeper traps and make it return to its equilibrium state 

(i.e bleaching, zeroing or reset; Figure 26A). In the case of optically stimulated luminescence, light is used 

to release the electrons from the traps. Once the electrons are evicted, they can be trapped again, or 

recombine in defects attractive to electrons (luminescence centres). The recombination of the electrons 

result in the emission of light, termed optically stimulated luminescence. The intensity of the light signal 

emitted is proportional to the amount of electrons stored in the defects. This allows for the stored charge 

to be quantified, i.e. the equivalent dose (De) measured in Gray (Gy). It can be used in combination with 

the data on the total dose rate received while buried (Gy/ka) to calculate the age since the last light or 

heat exposure following (Aitken, 1998):

Age (ka) = Equivalent dose (De) (Gy) / Dose rate (Gy/ka)

The luminescence measurements were performed in Sheffield (England) under the supervision of 

Mark Bateman (Departement of Geography, University of Sheffield) on a Risø reader TL-DA-15 equipped 

with a 90Sr/90Y beta source for irradiation (Figure 26B). Quartz was chosen over feldspars because it is 

ubiquitous in sand-wedge infilling. It can provide age estimates up to 350 ka (Murray and Olley, 2002). 

Preparation of the samples and dating methodologies are described in chapter 6.

 

Figure 26: A - Luminescence principle. B - Risø reader TL-DA-15 equipped with a 90Sr/90Y beta source for irradiation used for 

the OSL measurements in this PhD, aka Scooby
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4. Database of Pleistocene periglacial features in France: 

description of the online version

Eric Andrieux, Pascal Bertran, Pierre Antoine, Laurent Deschodt, Arnaud Lenoble, 

Sylvie Coutard, et collaborateurs*

* Aurélie Ajas, Quentin Borderie, Jean-Pierre Coutard, François Didierjean, Bertrand Dousteyssier, 

Catherine Ferrier, Philippe Gardère, Thierry Gé, Morganne Liard, Jean-Luc Locht, Henri-Georges Naton, 

Mathieu Rué, Luca Sitzia, Brigitte Van Vliet-Lanoë, Gérard Vernet

Andrieux, E., Bertran, P., Antoine, P., Deschodt, L., Lenoble, A., Coutard, S., 2016b. Database of 
pleistocene periglacial features in France: description of the online version », Quaternaire, 27/4, 329-
339. 
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5. Spatial analysis of the French Pleistocene permafrost by a GIS 

database

Eric Andrieux, Pascal Bertran, Kazuyuki Saito

Résumé:

L’analyse à l’aide d’un SIG de la base de données compilant les figures périglaciaires de France 

permet une meilleure évaluation de l’étendue maximale du pergélisol passé. La distribution des 

pseudomorphoses de coin de glace ne descend pas sous la latitude 47°N, ce qui suggère que le pergélisol 

discontinu étendu n’a pas affecté les régions au sud du Bassin parisien. La présence exclusive de coins 

de sable avec un remplissage primaire entre les latitudes 45 et 47°N, principalement à la périphérie de 

sables de couverture, indique que la fissuration par contraction thermique du sol s’est produite dans un 

contexte à la fois de déflation et de gel saisonnier profond ou de pergélisol sporadique, dans des milieux 

qui ne sont pas favorables à la croissance de corps de glace significatifs. La variation latitudinale de la 

taille des coins de sable montre clairement que ces structures se sont formées au niveau de la marge 

sud affectée par la contraction thermique. La carte de l’extension maximale du pergélisol Pléistocène en 

France proposée ici réconcilie en partie les données de terrain avec les simulations paléoclimatiques. 

Les contradictions restantes entre ces données peuvent être liées à un décalage dans le temps entre la 

dernière extension maximale du pergélisol (LPM, c. 31-24 ka) et le Dernier Maximum Glaciaire (DMG, 21 

ka).

Mots clés: Pléistocène; pergélisol; SIG; Modélisation paléoclimatique; France 

Andrieux, E., Bertran, P., Saito K., 2016a. Spatial analysis of the French Pleistocene permafrost by a 
GIS database. Permafrost and Periglacial Processes, 27 (1), 17-30.
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Spatial analysis of the French Pleistocene permafrost by a GIS database

Eric Andrieux,1* Pascal Bertran1,2 and Kazuyuki Saito3

1 University of Bordeaux, PACEA, Pessac, France
2 INRAP, Pessac, France
3 International Arctic Research Center, University of Fairbanks, Fairbanks, Alaska, USA

ABSTRACT

GIS analysis of the French database of Pleistocene periglacial features allows an improved evaluation of the
maximum extent of past permafrost. The distribution of typical ice-wedge pseudomorphs does not extend south of
47°N and therefore suggests that widespread discontinuous permafrost did not affect the regions south of the Paris
Basin. The exclusive presence of sand wedges with primary infill between 45 and 47°N, mainly in the periphery
of coversand areas, suggests that thermal contraction cracking of the ground occurred together with sand drifting
in a context of deep seasonal frost or sporadic discontinuous permafrost, unfavourable for the growth of significant
ground-ice bodies. The latitudinal variation of the wedge dimensions clearly shows that the sand wedges were located
in the southern margin of the area affected by thermal contraction. The proposed map of Pleistocene permafrost in
France partially reconciles field data with palaeoclimatic simulations. The remaining discrepancies may arise primar-
ily from the time lag between the Last Permafrost Maximum (c. 31–24 ka) and the Last Glacial Maximum (21 ka).
Copyright © 2015 John Wiley & Sons, Ltd.

KEY WORDS: Pleistocene; permafrost; GIS; palaeoclimatic modelling; France

INTRODUCTION

The extent of Pleistocene permafrost in France has been
reconstructed several times based on field evidence (e.g.
(Poser, 1948; Tricart, 1956; Maarleveld, 1976; Velichko,
1982; Huijzer and Vandenberghe, 1998; Van Vliet-Lanoë
and Hallégouët, 2001)). Although these reconstructions dif-
fer significantly, largely because available data are scarce,
they agree that permafrost spread over part of France dur-
ing the coldest periods of the Pleistocene. During the last
decade, modelling of past permafrost has provided new
data on this issue using different approaches ((Renssen
and Vandenberghe, 2003); Levavasseur et al., 2011;
(Vandenberghe et al., 2012; Saito et al., 2013; Kitover
et al., 2013)). The resulting estimates of permafrost extent
at 21 ka (Last Glacial Maximum, LGM) still show,
however, rather poor agreement. Within this framework,
more field data are critical to evaluate the accuracy of the
models and their ability to reconstruct the Last Glacial cli-
mate. To improve such an approach, the French database of

Pleistocene periglacial features was set up in 2012 by sev-
eral institutions (Laboratoire PACEA – université de
Bordeaux, Laboratoire de Géographie Physique – CNRS
Meudon, Institut National de Recherches Arquéologiques
Préventives). This database benefitted particularly from
the recent development of rescue archaeology, which has
yielded a large amount of new field data. The database
was presented by Bertran et al. (2014), who focused on
the geographic distribution of the georeferenced features
and their main characteristics, and reviewed the available
chronological data.

The present paper adds to the database a GIS, which
accommodates different layers of information and eluci-
dates the factors that influence the development of
periglacial features. In order to place the French data in
a broader context, data from the northern Europe database
(Isarin et al., 1998) have been integrated and make it pos-
sible to propose a new map of the main permafrost
boundaries in Western Europe during its maximal extent.
The field data were also compared with an improved set
of modelled permafrost distributions, derived from LGM
simulations by state-of-the-art global climate models
(GCMs) and downscaling for France on a 2 km resolution,
to delineate advances and issues in both reconstruction
methodologies.
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Geoffroy-Saint-Hilaire, 33600 Pessac, France.
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MATERIAL AND METHODS

Data Acquisition and Selection

Numerous periglacial structures have been described in
France. Many of the data collected in this study come from
journals, doctoral theses and archaeological survey reports.
These data were rigorously selected, and all entries not ac-
companied by drawings, photographs or descriptions were
rejected from the database.
The analysis and interpretation of aerial photographs

available in Google Earth and Geoportail (http://www.
geoportail.gouv.fr/accueil) identified hundreds of periglacial
features (Bertran et al., 2014). They were classified as: (1)
polygonal networks; (2) soil stripes; and (3) small nets, usu-
ally appearing as adjacent irregular circles. Photographs
were strictly selected to show only indisputable features.
These appear mainly on aerial photographs taken in late
summer and in years of severe drought, because of differen-
tial growth of vegetation or contrasting water content of the
ground. They were sought primarily in areas where
periglacial features had been previously reported in the liter-
ature. Searches were then extended to neighbouring regions
with a similar substrate.
New field data were also collected from trenches made

during rescue archaeology investigations and from cross-
sections in key areas such as Bordeaux, Nantes and Angers
((Lenoble et al., 2012; Bertran et al., 2014), unpublished
data). Structures observed in cross-sections were classified
as: (1) sand wedges (i.e. wedges with a primary infill of
sand, including possible composite wedges); (2) ice-wedge
pseudomorphs (i.e. wedge structures wider than 0.2m, with
a secondary infill and either subsidence structures or
upturned host strata); and (3) cryoturbation structures (min-
imum height of 0.5m). For each feature observed in the
field, the width, height and spacing were measured and the
nature of the host material and the infilling was determined.
When several features were juxtaposed, the largest values
were considered as representative of the site, having re-
moved the values of apparent width obtained on ice-wedge
pseudomorphs and sand wedges observed obliquely to the
cross-sections.
All the data were stored in a GIS developed with ArcGIS

(ESRI Redlands, California, USA). In order to place the
French data in a broader context, we included in our data-
base information on sand wedges (N=22), composite
wedges (N=5), ice-wedge pseudomorphs (N=33),
cryoturbations (N=36) and pingo scars (N=7) from the da-
tabase Paleo-periglacial phenomena in Northwestern
Europe developed by Isarin et al. (1998). This database is
accessible on the website of the National Snow and Ice Data
Center (http://nsidc.org/data/ggd248.html).

Dimension Measurement from Aerial Photographs

The good quality and resolution of the geolocalised aerial
photographs provided by the French National Geographical

Institute (IGN http://www.ign.fr/) allowed us to measure the
dimensions and spacing of numerous features. This opera-
tion was performed in a standardised way using ImageJ
software in order to obtain reliable values. ImageJ is an
open-source image processing software (US National Insti-
tute of Health, http://imagej.nih.gov/ij/). The images were
acquired from screenshots of Google Earth and Geoportail.
For each image, the information about scale and location
was retained. The images with the most clearly visible fea-
tures were selected for analysis. A total of 94 images of po-
lygonal networks, 83 of soil stripes and three of small nets
were analysed. The images were previously converted to
greyscale and the contrast was increased.

The grey-level values of profiles intersecting the features
were measured. On the graphs obtained, the lowest
(darkest) values are usually provided by the sides of the
polygons (higher ground moisture, more developed vegeta-
tion) and form clearly identifiable peaks (Figure 1). De-
pending on the case, the margins of the soil stripes appear
to have a lighter colour (e.g. on chalklands) or a darker col-
our than the stripe centres. The concordance of the peaks
with the polygon sides or the margins of the soil stripes
and not with artefacts such as ditches or gullies was
checked every time and any dubious peak was ignored.
Several profiles have been made in the most suitable areas
for each photograph. The spacing between the peaks has
then been averaged over all the profiles. The widths ob-
tained in this way are comparable to the spacing of the
polygon sides such that it can be measured from cross-
sections. They are also similar to the values used in the
simulations by Plug and Werner (Plug and Werner,
2002). The measurements of soil stripes are perpendicular
to their orientation.

This technique has the advantage of being standardised,
replicable and easy to implement. But it may slightly under-
estimate the actual size of the polygons because the profiles
pass at a more or less great distance from the centre of grav-
ity of each polygon. The distribution of the values was fi-
nally adjusted to a Gaussian function or a combination of
Gaussian functions using the software Fitik 0.9.8 (Wojdyr,
2010) to define precisely the modal value(s).

Geographic Processing

ArcGIS has been used to combine information from the da-
tabases and the digital elevation model (DEM), and to map
the results. The DEM Aster GDEM was used, which has a
30m resolution (http://gdem.ersdac.jspacesystems.or.jp/).

The nature of the substrate for each feature was extracted
from the geological map of France (scale 1:50 000)
established by the Bureau de Recherches Géologiques et
Minières (BRGM) (http://infoterre.brgm.fr/). Owing to the
scale of the map, imprecision remains high and the thinner
and less extensive geological formations are not specified,
thus leading to possible misidentification. Data on soil tex-
ture are available in the database GIS Sol from the Institut
National de la Recherche Agronomique (http://www.gissol.
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fr/outil/outils.php). The percentage of sand, silt and clay in
the topsoil is measured in samples and averaged for geo-
graphic areas corresponding to the agricultural area of a
township (1 to 45 546 ha, averaging 1 sample for 115 ha).
Therefore, the resolution remains low and may also generate
significant bias in some areas.
Altitude, slope gradient and slope orientation were de-

rived from the DEM Aster GDEM. The 30m resolution
leads to mean values for surfaces of 900m2. Tests were
performed to extract the orientation of soil stripes with
the 50m resolution DEM from the IGN for comparison.
The orientation of soil stripes was also determined using
the ‘ruler’ tool in Google Earth, which measures the an-
gle in degrees between a line (a stripe) and the north
azimuth.
The relative altitude of sand wedges and ice-wedge

pseudomorphs to their surrounding land was analysed
using ArcGIS tools. A buffer of 300m in diameter was
set around the features, then the average elevation of
the area was calculated and compared to that of the
features.

Modelled Palaeo-Permafrost Distributions

The distribution of the subsurface thermal regime at the
LGM (21 ka) was reproduced using surface air temperature
products from selected GCMs participating in the
Paleoclimate Model Intercomparison Project Initiative III
(Braconnot et al., 2012) and a statistical diagnosis devel-
oped by Saito et al. (2013) that utilises freezing and thawing
indices. The derived frozen ground types roughly corre-
spond to continuous and discontinuous permafrost, season-
ally (longer than 2weeks) and intermittently (shorter than
2weeks) frozen ground, and no freezing.

The maps were further downscaled with a digital ele-
vation model, ETOPO1 (Amante and Eakins, 2009), to a
1 arc-minute resolution, assuming the constant atmo-
spheric lapse rate of 6.5 ºC/km (Saito et al., 2014). In
producing topography at the LGM, change in sea level
was set constantly to -127m (Clark and Mix, 2002;
Milne and Mitrovica, 2008), and glacial isostasy was
not taken into account. The explanation of the frozen
ground diagnosis, the downscaling methodology and

Figure 1 Aerial view of polygons (Google Earth/National Geographical Institute) and analysis of the grey levels along a profile with ImageJ to measure the
polygon width.
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details of the models used in this study are given in
Saito et al. (2014).

RESULTS

The French database has identified so far 914 georeferenced
structures: 58 ice-wedge pseudomorphs, 75 sand wedges, 56
cryoturbations, 346 polygonal networks, 137 soil stripes and
242 small nets (Figure 2). The elevation of the features de-
rived from the DEM is between 0 and 393m asl. On average,
the features visible on aerial photographs (polygons, pat-
terned ground) are located at a slightly higher elevation than
those observed in cross-sections (ice-wedge pseudomorphs,
sand wedges, cryoturbations), but the difference is not statis-
tically significant.

Polygons

The polygons occur mainly in Pleistocene or Neogene allu-
vial formations but they can also be found in marl, chalk
and sandy or clayey weathering mantles (alterites). The
southernmost polygons reach 43.4°N, but the majority of
them are located in the Paris Basin north of 47°N. No polygon
was observed on aerial photographs in the areas of northern
France where loess deposits are thicker than 3m (Lautridou,
1985), because of burial under post-LGM loess cover.

Polygon diameters range from 10 to 25m. The size distri-
bution can be adjusted to a Gaussian function with a mode
equal to 15.1m (quality of fit R2=0.810) (Figure 3). No clear
relationship appears in our data-set between the size of the
polygons and the latitude, or with the lithology of the host ma-
terial (Figure 4) or with the soil texture (Figure 5).

Figure 2 Map of periglacial features listed in the French database. This figure is available in colour online at wileyonlinelibrary.com/journal/ppp
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Sand Wedges and Ice-Wedge Pseudomorphs

Several observations can be made from the spatial analysis
of the distribution and size of sand wedges and ice-wedge
pseudomorphs:

1. Ice-wedge pseudomorphs are abundant north of 49°N and
present to 47°N (Figure 6). No typical ice-wedge pseudo-
morphs have been found south of 47°N, although a few
composite wedges have been reported previously from
the Bordeaux region, close to 45°N (Bertran et al., 2014).
Most of the pseudomorphs have been described from loess
sections in northern France. The distribution of ice-wedge
pseudomorphs is strongly correlated with that of loess.

2. The area between 47 and 43°N includes the majority of the
sand wedges. No sand wedge is recorded at a lower lati-
tude. Thewedges are locatedmainly onNeogene toMiddle
Pleistocene alluvial deposits, typically in the periphery of

aeolian coversands as in Aquitaine and south of Orleans
in the Paris Basin. Sand wedges have also been described
on the margins of the great north European sand belt.

3. The maximum depth of the wedges in Europe clearly re-
lates to the latitude (Figure 7). The depth range is large
for a given latitude, but the maximum value decreases
rapidly between 57 and 43°N. The southernmost wedges
have a maximal depth of about 1.5m.

4. The width of the wedges also relates to the latitude
(Figure 8). The outliers are, however, more numerous
than in the previous case.

5. Sand wedges are located in sites that are on average at a
higher elevation than the surrounding terrain. Con-
versely, ice-wedge pseudomorphs are located on flat ter-
rain (Figure 9).

Soil Stripes

Soil stripes in the database are primarily located in the
Paris Basin, particularly in the border of coverloams, on
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alluvial deposits or chalk. They have typically formed on a
coarse substrate (gravel, fragmented chalk) covered by a
metre-thick layer of loess that forms pockets in the coarse
material. Few examples have been reported south of the
Loire River.
Soil stripes have developed on a 6.3° mean slope gradi-

ent, with a maximum of 25° and a minimum of 0°. The lat-
ter value is clearly underestimated due to the low resolution
of the DEM. The orientation distribution of the soil stripes
obtained from the 30m and 50m DEMs, and that measured
using the ‘ruler’ tool in Google Earth are significantly dif-
ferent (Figure 10). On account of the low resolution of the
DEMs, only the values obtained from Google Earth are con-
sidered here as valid. Based on these data, a preferred

direction appears along a NNW/SE axis, with a dominant
NNW slope orientation (more than 50% of the soil stripes).

The average spacing of the stripes measured with ImageJ
ranges from 2.5 to 13.3 m (Figure 3). The modal width cal-
culated from adjustment of the distribution to a Gaussian
function is 7.3m, but the quality of the fit is poor
(R2 =0.813). Insofar as the histogram of the values clearly
shows the existence of distinct peaks, the distribution was
then adjusted to a combination of two Gaussian functions.
The quality of the fit improves significantly (R2 = 0.930).
Modal widths are respectively 4.6 and 7.9m. The average
spacing of the stripes is, thus, substantially less than the di-
ameter of the polygons, and there is less than 10 per cent
overlap between both features. No relationship was found

Figure 6 Distribution of pingo or lithalsa scars, ice-wedge pseudomorphs and sand wedges listed in the French and northern European (Isarin et al., 1998)
databases. The distribution of pingo or lithalsa scars in Great Britain has been taken from Ballantyne and Harris (Ballantyne and Harris, 1994). The outlines of
the Scandinavian and British ice sheets at 21 ka (solid line) and 19 ka (dashed line) are taken from Böse et al. (2012). The other ice sheets come from Ehlers
and Gibbard (Ehlers and Gibbard, 2004). The -120m sea level is taken from http://www.emodnet.eu/bathymetry. Southern limits of: 1 – closed-system pingo
scars; 2 – open-system pingo or lithalsa scars; 3 – ice-wedge pseudomorphs; 4 – sand wedges. This figure is available in colour online at wileyonlinelibrary.

com/journal/ppp
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between stripe width and orientation (Figure 11A). Stripe
width as a function of latitude and the nature of the ground
shows some interesting patterns (Figure 11B). In northern
France, soil stripes in loess overlying chalk (shown as ‘silt’
when loess is indicated on the 1:50 000 geological map and
otherwise as ‘chalk’) or on alluvial gravel (‘gravel’) have an
average width close to 8m. Further south, many soil stripes
have developed in weathered clay (‘clay’) or colluvium de-
rived from it. Such stripes have a width centred around

4.5m. If we consider all the available data, the latitude does
not seem to play an important role by itself, except that the
loess belt occurs between 48 and 51°N. Overall, therefore,
the composition of the sedimentary cover seems mainly to
determine the width of the stripes.

Small Nets

The geographical distribution of small nets is generally
similar to that of soil stripes and a gradual transition be-
tween the two features is locally observed. Small nets are,
however, more rarely found on a chalk substrate, whereas
they are abundant on plateaus of old detrital formations or
weathered clays. Because of the frequent interruption of
the walls (coalescent or partially eroded circles), few aerial
photographs have been favourable for measuring their size.
Three sites in the Paris Basin gave sizes between 6.2 and
10.7m, comparable to those obtained on soil stripes. In a
few cases, the attribution of large nets to cryoturbation
within a former active layer rather than to networks of
ice-wedge pseudomorphs remains uncertain without data
in cross-section.

DISCUSSION

The Role of Local Factors in the Distribution and
Characteristics of Periglacial Features

The distribution of the features recorded in the database in-
dicates that a large part of France was affected by periglacial
phenomena, as shown by Bertran et al. (2014). These fea-
tures are mainly located in sedimentary basins, particularly
in Cretaceous and Cenozoic terrains, as well as along the
Pleistocene alluvial corridors. The southwesternmost part
of France and the Languedoc are the only regions that did
not yield any periglacial features, despite abundant field
research.

In modern periglacial environments, many factors may
control the formation of the investigated features
(Washburn, 1979; French, 2007). They include the cli-
mate, but also local factors that greatly influence the ther-
mal regime of the ground, such as vegetation, snow cover
and topography. The nature of the ground and especially
its frost susceptibility, thermal conductivity and mechani-
cal behaviour as well as the water content are also key
parameters.

As part of our study, the influence of some parameters
has been assessed by combining several layers of informa-
tion in a GIS. Although the resolution of the layers of the
ground composition and topography remains low, their
comparison with the distribution map of periglacial features
and their dimensions highlights the following:

1. The soil stripes are interpreted to have developed in a for-
mer active layer (Goldthwait, 1976; Washburn, 1985) in
thin (less than 2m thick) fine-grained material overlying
coarse deposits. This explains the lack of soil stripes in
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the plains of northern France with a thick loess cover, and
their abundance in the Cretaceous aureole of the Paris Ba-
sin, especially in the periphery of plateaus where the silt
cover is thin. However, this does not explain their scar-
city in the Cretaceous terrains and the alluvial formations
of the Aquitaine Basin. The width of the stripes is mainly
influenced by the nature of the sedimentary cover,
whereas the other parameters considered (latitude, slope
gradient, slope orientation) do not play any identifiable
role. The properties of this cover are therefore crucial to
their formation (Ballantyne and Harris, 1994). The slope
orientation also seems to control the presence/absence of
soil stripes, since they are mostly oriented to the north-
west and to a lesser extent, to the southeast.

2. The polygons are interpreted as networks of thermal con-
traction cracks (sandwedges or ice-wedgepseudomorphs)
that developed in a wide variety of frost-susceptible sub-
strates. No clear correlation has been found between their
size and other parameters, including the ground composi-
tion. Similar findings were also made in active periglacial
environments in Svalbard (Matsuoka and Hirakawa,
1993). This observation is quite unexpected insofar as
the linear shrinkage coefficient of the ground is potentially
correlated with its grain size (Lachenbruch, 1962;
Romanovskij, 1985). This may be explained by the fol-
lowing phenomena: (1) the critical role played by the
fine-grained matrix and/or the interstitial ice on

contraction rather than by the coarse-grained component
of the ground; and (2) a sufficiently long activity of the net-
works so that secondary cracks have subdivided themuntil
a steady statewas reached,which is relatively independent
of the ground composition. According to the simulations
made by Plug and Werner (Plug and Werner, 2002; Plug
andWerner, 2008), a steady state appears after a few hun-
dredyears,with a strongvariability associatedwith the fre-
quency of extreme cold winter events. The size of the
epigenetic networks inNeogene or Lower Pleistocene for-
mations, particularly sand wedge networks, may result
from repeated but very discontinuous activity during the
cold stadials of the Pleistocene. The average spacing of
the cracks (i.e. the polygon sides) measured in our data-
set is around 15.3m. It falls within the range of the
steady-state values obtained by Plug and Werner (Plug
and Werner, 2002) in their various scenarios. In the ab-
senceof accurate data on theageof the formations inwhich
the polygons formed, it has not been possible to really test
the possible influence of the exposure time to periglacial
processes on the spacing of the cracks.

3. The distribution of ice-wedge pseudomorphs correlates
strongly with that of loess in northern France. This cor-
relation is not related to the fact that silts strongly favour
thermal contraction cracking (Romanovskij, 1985), be-
cause sand wedges and polygons are present in a wide
variety of substrates. Nor is it simply related to a

Figure 9 Distribution of the differences in elevation between the sites with ice-wedge pseudomorphs or sand wedges and the surrounding terrains within a
circle 300m in diameter. This figure is available in colour online at wileyonlinelibrary.com/journal/ppp
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coincidence between the latitudinal extension of loess
and that of ice wedges insofar as very few pseudomorphs
have been described in the northeastern quarter of France
outside the loess area although situated at similar lati-
tude. The most likely assumption is that there is a bias
due to poor preservation and recognition of ice-wedge
pseudomorphs in heterogeneous materials.

4. The sand wedges have a very discontinuous distribu-
tion over France, limited to sandy or gravelly forma-
tions on plateaus and high terraces. The difference in
altitude between the sand wedge sites and the surround-
ing terrains shows that they grew on prominences, that
is, in well-drained contexts, unlike ice wedges. They
also concentrate in the vicinity of coversands. Their
formation thus appears to have been highly dependent
on the capacity of the ground to provide enough sand
for deflation to fill the cracks, and their distribution un-
derestimates the areas that were affected by thermal
contraction cracking.

Latitudinal Zonation of Periglacial Features

A latitudinal zonation of periglacial features across
Europe clearly emerges from the map in Figure 6 and
the size distribution of the wedges. The main points are
as follows:

1. No pingo or lithalsa scars have been identified with
certainty in France, although an extensive literature is
devoted to possible examples (e.g. (Boyé, 1958;
Michel, 1967; Courbouleix and Fleury, 1996; Lécolle,
1998)). The general lack of ramparts, observations in
vertical cross-sections and chronological data casts
doubt on the interpretation of many closed depressions
as scars of perennial ice mounds. The features de-
scribed in the coversands of Aquitaine by Boyé (Boyé,
1958) and Legigan (Legigan, 1979) have been recently
reinterpreted as being of karstic origin (sinkholes) by
Texier (Texier, 2011), following observations in

Figure 10 Orientation of the soil stripes, using (A) the 50 m digital elevation model (DEM); (B) the 30m DEM; and (C) the ‘ruler’ tool in Google Earth. This
figure is available in colour online at wileyonlinelibrary.com/journal/ppp
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trenches and radiocarbon dating. Convincing examples
of pingos dated to the Pleniglacial have instead been
described in The Netherlands (Kasse and Bohncke,
1992) and in the UK (Watson and Watson, 1974;
Ballantyne and Harris, 1994; Ross et al., 2011). The ma-
jority of these examples are thought to have originated as
open-system pingos or lithalsas and are, therefore, indic-
ative of continuous or widespread discontinuous perma-
frost (Mackay, 1988; French, 2007; Pissart, 2000;
Wolfe et al., 2014). According to Wolfe et al. (2014),
the lithalsas are currently developing in Arctic environ-
ments at a mean annual air temperature (MAAT) close
to -4 °C, with extremes at -2 and -7 °C, while Mackay
(Mackay, 1988) suggested that open-system pingos are
unable to grow at a MAAT higher than -5 to -6 °C.
Closed-system pingos, typically associated with
refreezing of a talik following the drainage of a lake,
are the only periglacial features whose presence is limited
to a continuous permafrost environment (Washburn,
1979; French, 2007). Some features in The Netherlands
have been classified as closed-system pingo scars by
Isarin et al. (1998).

2. No typical ice-wedge pseudomorphs have been described
south of 47°N. This indicates that the growth of large ice
bodies in thermal contraction cracks was not possible in
more southern regions, either because of the absence of
permafrost or the brevity of permafrost phases. The pres-
ence of composite wedges in southwest France suggests
that, at least locally, ice veins formed at lower latitudes,
possibly during some exceptionally cold winters (cf.
(Murton and Kolstrup, 2003)). In current Arctic environ-
ments, ice wedges may grow where regional MAATs are
lower than, or equal to -3.5 to -4 °C (Hamilton et al.,
1983; Burn, 1990). According to M. Allard (personal
communication), however, these values should be seen
as extreme ones and a limit closer to -5 °C, as proposed
by Péwé (Péwé, 1966) in Alaska, is probably more
representative.

3. The southernmost sand wedges are located at 43.5°N in
southwest France, and 43°N in the southeast (Provence).
In modern periglacial environments, the distribution of
sand wedges is restricted to very dry areas within contin-
uous permafrost, particularly in Antarctica (Bockheim
et al., 2009; Hallet et al., 2011), where thermal contrac-
tion cracking is associated with active sand drifting. Dur-
ing the Pleistocene, characterised by greater aridity than
at present in mid-latitudes (Jost et al., 2005) and the ex-
tension of cold deserts (Kasse, 2002; Bertran et al.,
2011), sand inputs may not have been a limiting factor
for the formation of sand wedges as in modern Arctic re-
gions and the southern boundary of these features is
thought to reflect that of thermal contraction cracking.
This is particularly the case in the periphery of
coversands in southwest France. Thermal contraction
cracking currently occurs where there is permafrost or
deep seasonal frost, and the MAAT is lower or equal
to -1/0 °C (Washburn et al., 1963; Friedman et al.,
1971; Allard and Seguin, 1987) or even 2 °C in hyper-
continental areas (Romanovskij, 1973, 1985).

4. The relationship between the maximal depth of ice-
wedge pseudomorphs and sand wedges and latitude sug-
gests that thermal contraction cracks propagate deeper in
the ground as the ground temperature decreases, due to
more brittle permafrost behaviour, enhanced thermal
conductivity of the ground (Throop et al., 2012) and
deepening of the depth of zero annual thermal amplitude
(and, hence, thickening of the layer subject to stress)
(Romanovskij, 1973). Figure 7 indicates that sand
wedges in southwest France are located in an area
unfavourable for deep thermal contraction cracking.
The depth of the sand wedges at latitude 45°N is be-
tween 0.7 and 1.5 m, comparable with the depth of the
active-layer soil wedges in discontinuous permafrost in
sub-Arctic Québec (Jetchick and Allard, 1990), and to
the cracks in deep seasonal frost in Iceland (Friedman
et al., 1971). According to our database, the depth of
ice-wedge pseudomorphs at latitude 50°N reaches 4 to
5m, and approximately corresponds to the depths of
ice wedges in widespread discontinuous permafrost in
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Svalbard (MAAT= -6 °C; (Matsuoka and Hirakawa,
1993)).

5. The relationship between the width of the wedges and
latitude can be explained by several factors: (i) the fre-
quency of harsh winters that favoured thermal contrac-
tion cracking increased with latitude; (ii) the duration
of the growth of ice bodies also increased with latitude,
in conjunction with longer permafrost phases during the
Pleistocene; and (iii) for sand wedges, which may have
repeatedly grown during the coldest phases separated by
long periods of inactivity, the cumulative number of
growth episodes increased with latitude. The relation-
ship between width and latitude is, however, less clear
than that between depth and latitude, and the dispersion
of the measurements is large. For ice-wedge pseudo-
morphs, the main factor involved is probably the subsi-
dence of the host material that accompanied the melting
of ice. The collapse of the walls may have caused signif-
icant variations in the width of the pseudomorphs. Other
possible factors include the presence of anti-syngenetic

wedges (Mackay, 1995) and non-representative mea-
surements of the actual width of the wedges because
of their obliquity to the cross-section.

Pleistocene Permafrost Extent: Synthesis and Compari-
son with Other Data

The field data allow approximate delineation of the areas af-
fected by past permafrost (Figure 6). The configuration described
here probably coincides with the Last Permafrost Maximum
(LPM) according to the optically stimulated luminescence ages
obtained on the infilling of sand wedges (Buylaert et al., 2009;
Bertran et al., 2014, and references therein; E. Andrieux, unpub-
lished data). The main points that can be drawn are:

1. France has probably never been affected by continuous
permafrost. Based on the current state of knowledge,
the southern limit of pingo and lithalsa scars crosses
Belgium and the UK north of latitude 51°N.

Figure 12 Frozen ground distribution at 21 ka (Last Glacial Maximum) derived from surface air temperatures simulated by global climate models participating
in the Paleoclimate Model Intercomparison Project Initiative III, and downscaled to Western Europe. Here, (A) the coldest (MPI_ESM_P), (B) median

(MRI_CGM3) and (C) warmest (IPSL_CM5A_LR) results are shown. Continuous (CP) and discontinuous (EP) permafrost are shown in dark and light blue,
respectively, and seasonal (Sf) frost in green. See figure 6 for symbols. This figure is available in colour online at wileyonlinelibrary.com/journal/ppp
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Unfortunately, most of the scars remain undated and
some may have formed during the Younger Dryas
Stadial. Nevertheless, an LGM age has been proposed
for some pingo scars in The Netherlands (K. (Kasse
and Bohncke, 1992)). At this latitude, the ice wedges
may have reached about 6m in depth.

2. The southern boundary of ice-wedge pseudomorphs is
close to 47°N and approximately corresponds to the
southern edge of the Paris Basin. According to the data
from present-day ice-wedge environments, this limit
would have been close to the MAAT isotherm of -3 to
-4 °C. The area between 47 and 51°N was, therefore, af-
fected by widespread discontinuous permafrost.

3. The southern boundary of the sand wedges, located
around 43.5°N in southwest France, is assumed to reflect
the limit of thermal contraction cracking, at a MAAT
close to -1 to 0 °C. Therefore, the area between 43.5
and 47°N was probably affected by sporadic discontinu-
ous permafrost or, at the southern margin of that area, by
deep seasonal frost.

In comparison with many reconstructions of past perma-
frost extent based on field data ((Huijzer and Vandenberghe,
1998; Van Vliet-Lanoë and Hallégouët, 2001; Vandenberghe
et al., 2014), and references therein), the one proposed here
is among the less ‘cold’ (i.e. for which the permafrost extent
was less important). The main reasons for this reconstruction
are the observation that true ice-wedge pseudomorphs did
not develop at latitudes south of 47°N, and the interpretation
of sand wedges as features that were not necessarily related
to permafrost conditions in contexts where sand drifting
was widespread.
Studies on groundwater recharge of deep aquifers in

Europe (Jiraková et al., 2011) provide new data for compar-
ison. They show that the recharge associated with the water-
sheds of Provence, northern Aquitaine and the southern
Paris Basin does not exhibit any interruption during the Late
Pleistocene, whereas the recharge of aquifers in Normandy,
the northern part of the Paris Basin and Lorraine (northeast
France) displays a gap between c. 30 and 19 ka, which re-
flects the interruption of groundwater circulation by the
growth of widespread permafrost. These data agree well
with the reconstruction proposed here.

Comparison to Palaeoclimatic Simulations

A downscaling of the simulated distribution of permafrost
during the LGM (21 ka) was made for Western Europe.
The comparison between the simulation and the data shows
a more or less important divergence according to the model
used (Figure 12). Considering a median simulation such as
21kMRI_CGM3, the limits of continuous and discontinu-
ous permafrost were located at least 3° to the north and
10° to the east of the limits implied by the field data. For
the coldest simulation (21kMPI_ESM_P), the difference is
reduced to about 2° in latitude and 5° in longitude. It places
the southern limit of discontinuous permafrost near the

Franco-Belgian border, whereas the continuous permafrost
zone did not spread beyond the northeastern corner of
Germany.

In agreement with Vandenberghe et al. (2014) and
Bertran et al. (2014), the LPM (i.e. the coldest period of
the Last Glacial) does not coincide strictly with the LGM
and seems significantly older (c. 24–31 ka). This may partly
explain the discrepancies observed between the simulated
and field data. According to the latter, the difference between
the LPM and LGMMAATs would have been in the order of
2 to 3 °C, a value which does not seem unrealistic.

CONCLUSION

The GIS analysis of the French and northern European data-
bases of Pleistocene periglacial features has significantly
clarified our understanding of the distribution of past perma-
frost. The distribution of indisputable ice-wedge pseudo-
morphs does not extend south of 47°N and, therefore,
suggests that widespread discontinuous permafrost did not
affect the regions south of the Paris Basin. The exclusive
presence of primary sand wedges in a band located between
45 and 47°N reflects the association between active sand
transport by the wind at the margins of the coversands and
thermal contraction cracking of the ground subject to deep
seasonal frost or sporadic discontinuous permafrost but
unfavourable to the growth of large ground-ice bodies.
The latitudinal evolution of the different types of wedges
clearly demonstrates that the sand wedges were located in
the southern margin of the area affected by thermal contrac-
tion. The distribution of pingo scars in Western Europe,
which are restricted to the UK (however, many of them
are thought to be lithalsa scars, J. Murton personal commu-
nication) and The Netherlands, strongly suggests that con-
tinuous permafrost never spread over France.

The proposed map of Pleistocene permafrost in France
partially reconciles field data with palaeoclimatic simula-
tions. A discrepancy between them may reflect a time lag
between the LPM (probably about 31–24 ka) and the LGM
(21 ka). This remains to be investigated thoroughly using
simulations and improved dating of periglacial features.
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6. The chronology of Late Pleistocene thermal contraction cracking 

in France

Eric Andrieux, Mark D. Bateman, Pascal Betran

Résumé:

Une grande partie de la France est restée hors de l’emprise des calottes glaciaires durant la fin du 

Quaternaire, et a été soumise à des phases répétées d’activité périglaciaire. De nombreuses structures 

périglaciaires ont été décrites dans ces zones, mais la compréhension des conditions environnementales 

et climatiques qui ont présidé à leur formation, leur chronologie et la reconstitution de l’étendue du 

pergélisol étaient jusqu’à présent des objectifs difficiles à atteindre. Les remplissages primaires sableux 

fossiles et les pseudomorphoses de coins composites ont enregistré cette activité périglaciaire. Dans la 

mesure où ils contiennent du matériel riche en quartz bien blanchis, ces structures sont adaptées à la 

datation par Luminescence Stimulée Optiquement (OSL). Cette étude vise à reconstruire la chronologie 

de l’activité des coins dans deux régions: le nord de l’Aquitaine, et la vallée de la Loire. Les résultats 

des mesures en OSL single-grain permettent d’identifier plusieurs phases d’activité des coins sableux, 

au minimum 11 durant les derniers 100 ka. La phase de fissuration par contraction thermique la plus 

répandue s’est produite entre 30 et 24 ka (i.e. pendant la dernière phase d’extension maximale du 

pergélisol, LPM), qui est concomitante avec des périodes de grande disponibilité en sable éolien (SIM 2). 

Bien que la plupart des phases de croissance des coins sableux se corrèle bien avec les périodes froides 

du Pléistocène, l’identification de périodes d’activité vers la fin du SIM 5 et au début de l’Holocène 

suggère fortement que ces structures n’indiquent pas seulement la présence de pergélisol mais aussi un 

gel saisonnier profond dans un contexte de faible insolation hivernale. Ces données suggèrent également 

que les âges globalement plus jeunes obtenus à partir des coins sableux dans le nord de l’Europe résultent 

très certainement d’un enregistrement limité des périodes caractérisées par une déflation réduite, et/

ou du calcul moyenné des âges qui est inhérent aux méthodes standard de datation par luminescence.

Mots clés : OSL, Datation par luminescence, Coin de sable, France

Andrieux, E., Bateman M., Bertran, P., 2017. The chronology of Late Pleistocene thermal contraction 
cracking in France. submitted
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Abstract

Much of France remained unglaciated during the Late Quaternary and was subjected to repeated 

phases of periglacial activity. Numerous periglacial features have been reported but disentangling the 

environmental and climatic conditions they formed under, the timing and extent of permafrost and the 

role of seasonal frost has up until now remained elusive. The primary sandy infillings of relict sand-

wedges and composite-wedge pseudomorphs record periglacial activity. As they contain well-bleached 

quartz-rich aeolian material they are suitable for optically stimulated luminescence dating (OSL).  This 

study aims to reconstruct when wedge activity took place in two regions of France; Northern Aquitaine 

and in the Loire valley. Results from single-grain OSL measurements identify multiple phases of activity 

within sand wedges which suggest that wedge activity in France occurred at least 11 times over the 

last 100 ka.  The most widespread events of thermal contraction cracking occurred between ca. 30 and 

24 ka (Last Permafrost Maximum) which are concomitant with periods of high sand availability (MIS 

2). Although most phases of sand-wedge growth correlate well with known Pleistocene cold periods, 

the identification of wedge activity during late MIS 5 and the very beginning of the Holocene strongly 

suggests that these features do not only indicate permafrost but also deep seasonal ground freezing 

in the context of low winter insolation. These data also suggest that the overall young ages yielded by 

North-European sand-wedges likely result from poor record of periglacial periods concomitant with low 

sand availability and/or age averaging inherent with standard luminescence methods. 

Keywords: OSL, Luminescence dating, Sand wedge, France
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Introduction

Globally during the last glacial periglaciation extended from high to mid-latitude areas driven by 

overall climatic coolings. Areas beyond the ice limits experienced multiple periglacial phases and have 

records of these events preserved in the surficial sediments and landforms (Isarin et al., 1998; Andrieux 

et al., 2016a).  A long-standing challenge has been to establish the relationship between preserved 

structures and periglacial processes and climate (e.g. Williams, 1968; Péwé, 1966; Vandenberghe, 1983; 

Kasse and Vandenberghe, 1998; Murton et al., 2000; Murton, 2013). This has led to attempt to model 

the style and extent of periglaciation in mid latitudes (e.g. Tricart, 1956; Maarleveld, 1976; Huijzer and 

Vandenberghe, 1998; Van Vliet-Lanoë and Hallégouët, 2001; Vandenberghe et al., 2014).  A second 

challenge has been to understand the timing and extent of these relict periglacial features to enable 

linkages with other palaeoclimatic proxy records and to better understand spatial regional differences. 

Previous work (e.g. Buylaert et al., 2009) have undertaken this at the region scale but such studies are 

hampered by the often polycyclic nature of periglacial features.  

The age of when ice and sand wedges formed remains uncertain so far in France and available data 

are often marred by large uncertainties. The secondary nature of the infilling of ice wedge pseudomorphs 

does not allow direct dating, and age estimates generally rely on bracketing dates obtained from host 

and cover sediments. Primary infillings are composed of quartz-rich aeolian sand, which is suitable for 

optically stimulated luminescence (OSL) dating. Sand wedges are, however, far from being readily datable 

features. Standard OSL methods applied to a sample of sandy infilling, i.e. a cylinder 5 cm in diameter 

and 20 cm long, make sense only if all the sand grains have a similar depositional history. Studies in 

modern arctic settings suggest that such an assumption is probably not true in most cases. As shown 

by Mackay (1993), thermal contraction cracking occurs episodically resulting in repetitive abandonment 

and reactivation of the wedges. The millimetre-thick vertical sand laminae may thus reflect successive, 

discrete episodes of cracking and filling, which are potentially separated by long phases of wedge 

inactivity. 

Accordingly, recent studies by Bateman (2008) and Bateman et al. (2010) pointed that OSL dating 

of sand wedges shows sometimes palaeodose (De) scatter that cannot be explained by poor recycling, 

sensitivity changes, variable OSL components, recuperation problems, or large De uncertainties from 

dim grains. This scatter may be related to multiple De components as it would be the case in a multi-

phase formation model for the wedges. Consequently, the ages calculated from luminescence values 
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yielded by aliquot measurement or/and Central Age Model analysis (CAM, Galbraith et al., 1999) may not 

necessarily represent the true ages of the features but rather averaged values. The use of high resolution 

single grain measurements and the extraction of the datasets with Finite Mixture Model (FMM, Galbraith 

and Green, 1990), which was developed to analyse statistically data comprising multiple components, 

allow for the calculation of more representative ages (Bateman et al., 2010, 2014; Guhl et al., 2013). 

This present study aimed to establish for the first time a chronological framework for periglacial 

wedge formation in France during the Late Pleistocene.  Following the approach proposed by 

Bateman et al. (2010), single grain OSL measurements and FMM analysis were applied to a 

comprehensive suite of 33 samples taken from the infillings of French sand-wedges and composite-

wedge pseudomorphs in order to better understand the chronology of Late Pleistocene thermal 

contraction cracking events. The features selected are from a number of sites located within two 

regions, one in Northern Aquitaine which is one of the southernmost areas of sand-wedge occurrence 

in France (~45°N), the other in the Loire valley in a more northern region (~47°N) (Figure 1). 

Figure 1: Spatial distribution of periglacial features in France with zooms on A) Loire valley and B) Northern Aquitaine. OSL dating was 

carried out on the numbered features, the ones dated therein are highlighted with a red square. 1 Challans; 2 Durtal; 3 La Flèche; 4, 5, 6 

La-Chapelle-aux-Choux; 7 Olivet; 8 Sainte-Geneviève-des-Bois; 9 Jau-Dignac; 10 Jonzac (Guhl et al., 2013); 11 Cussac-Fort-Médoc; 12 Saint-

André-de-Cubzac; 13 Salaunes; 14, 15 Mérignac; 16 Pessac Cap-de-Bos, 17 Lac Bleu (Lenoble et al., 2012). 
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Background

Relict periglacial wedge structures and pseudomorphs created by thermal contraction cracking 

in areas that underwent permafrost and/or deep seasonal freezing of the ground have been widely 

reported in France. Ice-wedge pseudomorphs characterised by a secondary infilling replacing ice have 

been described in alluvial deposits of the Paris basin and in loess of northern France (e.g. Michel, 1969, 

1975; Sommé and Tuffreau, 1971; Lautridou, 1985; Antoine, 1988, 1990; Lécolle, 1989; Deschodt et al., 

1998; Sellier and Coutard, 2007; Feray, 2009; Moine et al., 2011; Andrieux et al., 2016a,b). These features 

are only found north of 47°N, and demonstrate that part of the territory was affected by permafrost 

during the coldest periods of the Pleistocene (Andrieux et al., 2016a). Relict epigenetic sand wedges 

have been discovered between 47 and 43.5°N in the vicinity of coversands in the Loire valley, Northern 

Aquitaine and Provence (Bouteyre and Allemann, 1964; Arnal, 1971; Antoine et al., 2005; Lenoble et 

al., 2012; Bertran et al., 2014; Andrieux et al., 2016a,b). Unlike ice-wedge pseudomorphs, they show a 

laminated or massive primary infilling of aeolian sand. Composite wedge pseudomorphs that have both 

primary and secondary infilling have also been described (Antoine et al., 2005; Andrieux et al., 2016a,b) 

but difficulties in identifying secondary infillings in sandy sedimentary contexts may have lead to the 

classification of a large number of these features as ‘sand wedges’ (Andrieux et al., 2016b).

In Europe, North America and Asia, thermoluminescence (TL), infrared-stimulated luminescence 

(IRSL) and optically-stimulated luminescence (OSL) have been already applied for dating sand wedges 

on K-feldspars, polymineral fine grains or quartz, using multiple aliquots or single aliquots approaches. 

Although different techniques were used that does not ensure data homogeneity, the calculated ages 

provide a first chronological framework for sand wedge development during the Late Pleistocene. The 

largest set of OSL ages has been obtained by Buylaert et al. (2009) from 14 sand and composite wedges 

in Flanders, Belgium. The results suggest that most wedges (i.e. 12 out of 14) were active between 21.8 

± 1.2 and 13.9 ± 1.0 ka. This is in agreement with the previously published ages for northern Europe 

(Böse, 1992, 2000; Briant et al., 2005; Kjaer et al., 2006; Kasse et al., 2007), which show that the features 

mostly formed during the late Pleniglacial and the Lateglacial. Few ages fall within MIS 3 (Kolstrup and 

Mejdhal, 1986; Kolstrup, 2007; Christiansen, 1998). More to the south (47.64°N), two sand wedges also 

yielded late MIS 2 ages in Hungary (Kovàcs et al., 2007; Fàbiàn et al., 2014).  The published OSL ages for 

French sand wedges (ca. 45°N) are on average older and cluster between 37 and 23 ka (Guhl et al., 2013; 

Lenoble et al., 2012; Bertran et al., 2014). Although being part of the same polygonal network visible 

in aerial photographs, all the investigated wedges yielded different ages which cannot be explained by 
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luminescence dating uncertainties. This strongly suggested that sand wedge growth was asynchronous 

and controlled by local conditions rather than global.

A number of cross-sections in loess from northern France, Belgium and Germany show networks of 

ice-wedge pseudomorphs which open generally in iron-depleted and cryoturbated horizons referred to 

as “tundra gleys” (i.e. Haplic Cryosols according to Kadereit et al., 2013).  These serve as benchmark levels 

for the correlation between sections at a regional scale in northern France (Antoine and Locht, 2015). 

The few reliable numerical ages in direct association with the pseudomorphs highlight six events of 

permafrost development. The main phase is characterized by two levels of large ice wedge pseudomorphs, 

sometimes slotted together, and dated to ca. 25 and 30 ka respectively (Frechen et al., 2001; Locht et 

al., 2006; Kreutzer et al., 2012; Meszner et al., 2013; Antoine et al., 2015). This period stretches over 

GS 3, 4 and 5 and can be interpreted as the Last Permafrost Maximum (LPM, Vandenberghe et al., 2014). 

Three other levels of ice-wedge pseudomorphs associated with tundra gleys have been identified in 

France at Havrincourt (Antoine et al., 2014): (1) small pseudomorphs at the top of the sequence, which 

remain undated but are stratigraphically younger than the LPM, (2) pseudomorphs in between two soil 

complexes dated respectively to 42.1 ± 2.8 and 51.5 ± 3.2 ka, and (3) small pseudomorphs bracketed 

between 61.7 ± 4 and 65 ± 3.8 ka. 

These ages depict a complex formation history and differ from those published for sand wedges in 

Northern Europe, which are unexpectedly much younger. 

Study sites

The precise location of the studied features, the sample name and the lab codes are given in table 1. 

The sites of Salaunes (Château Montgaillard), Cussac-F”” width, and have either a massive or a laminated 

sandy infilling (Figure 2). In total, 17 samples were gathered from 5 sand wedges in these sites.

In the Loire valley 16 samples were taken from 6 epigenetic sand wedges (Olivet, La Flèche, La-

Chapelle-aux-Choux, Challans) and 2 composite wedge pseudomorphs (Durtal, Sainte-Geneviève-des-

Bois) (table 1, Figure 2). The wedges develop within Pleistocene alluvial terraces composed of sandy 

gravel, in close proximity of rivers which provided abundant aeolian sand during the glacials. The wedges 

are 0.3 to 1 m wide and 1 to 2.5 m in depth. At Durtal a primary laminated sandy infill (0.3 m wide, 1.7 m 

depth) cross-cuts a previous secondary infill composed of massive sandy gravel (1 m wide, 2 m in depth). 
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The composite wedge at Sainte-Geneviève-des-Bois, 1.2 m wide and 1.7 m in depth, shows a primary 

massive sandy infill cross-cut by a secondary silty infill which exhibits U-shaped lamination.  The site of 

Saint-Christophe-du-Ligneron (Challans) is located south of the Loire estuary in the vicinity of a small 

coversand area.

Figure 2: Relict sand-wedges in A) Mérignac (Chronopost; 44.83°N, 0.69°W), B) Cussac-Fort-Médoc (Parcelle Lagrange, 45.11°N, 0.75°W), C) 

and D) La Chapelle-aux-Choux (47.62°N, 0.21°E), E) Saint-Christophe-du-Ligneron (Challans; 46.8°N, 1.76°W)
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Table 1: Location of the studied features

Methodology

Sample collection and preparation

Thirty-three samples were collected for OSL from the sandy infillings of freshly exposed sand wedges 

or composite wedge pseudomorphs by hammering in the sections opaque PVC tubes or metal tubes (60 

mm in diameter, 250 mm long). To get a better chance of recording different events potentially preserved 

in the wedges multiple samples were taken along a horizontal line in the infilling of each wedge when 

possible. Vertical samples were taken within the primary infillings to check for the influence of depth on 

doses. The host sediments were also sampled for gamma dose rate modelling purposes.

The samples were prepared under subdued red light conditions at the Sheffield Luminescence 
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Laboratory. To avoid any potential light contamination that may have occurred during sampling, 2 cm of 

sediment located at the ends of the PVC tubes was removed and used for estimations of palaeomoistures. 

The light-unexposed material was treated with hydrochloric acid (1m, HCl) and  hydrogen peroxide (H2O2) 

to remove carbonates and organic matter. To ensure that only one grain will fit into each hole when 

mounted on discs for single grain analysis and to minimise intra-sample variability dry sieving of the 

sediment was performed, and the 180-250 µm fraction size was kept for OSL measurement. Heavy liquid 

treatment with sodium polytungstate  at 2.67 g.cm-3 allowed the separation of quartz from sediment of 

higher specific gravity (i.e  heavy minerals). The remaining sediment was then treated with hydrofluoric 

acid (HF) to etch the grain surface and to remove residual feldspars and light minerals other than quartz. 

Once dry, the sediment was treated again with HCl, and then re-sieved at 180 µm to remove acid-soluble 

fluorides and any grains that have been significantly reduced in size by etching.

Dose rate determination 

Dose rates to individual samples are based on elemental measurements made using inductively-

coupled plasma mass spectrometry (ICP-MS) as in situ gamma-spectrometer were not possible.  This 

was carried out at the laboratories of SGS Canada (www.sgs.ca). Insofar as most wedges are less than 

0.5 m in width, it was generally not possible to sample 0.3 m away from the host sediment. Therefore, 

the adjacent different lithostratigraphic units of host sediment were also measured to establish their 

contribution to the gamma dose rate. Gamma dose rates were modelled and corrected using the scaling 

factors of Aitken (1985) and had little impact on the total doses. Elemental concentrations were converted 

to annual dose rates using data from Guérin et al. (2011). In order to adjust the dose rates, the following 

attenuation factors were used: (i) alpha and beta grain size attenuation effects from Bell (1980), Mejdhal 

(1979) and Readhead (2002), (ii) an a-value of 0.10 ± 0.02 for coarse grain quartz (Olley et al. 1998), (iii) 

an etch attenuation factor after Duller (1992), and (iv) an attenuation for palaeomoisture content based 

on moisture content at time of sampling with an absolute error of ± 5% incorporated to allow for past 

changes. The contribution to dose rates from cosmic sources is a function of geographic location, burial 

depth and altitude and was calculated using the algorithms published in Prescott and Hutton (1994). An 

internal quartz dose rate of 10 µGy/ka was added to the total dose rate as done by Vandenberghe et al. 

(2008). The dosimetry results are available in table 2.
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Table 2: Elemental and associated data used to calculate OSL sample dose rates. 

Luminescence measurements

Luminescence measurements were performed on a Risø reader TL-DA-15 equipped with a 90Sr/90Y 

beta source for irradiation (Bøtter-Jensen et al., 2003).  The reader was fitted with a single grain 

attachment that used a 10 mW Nd:YVO4 solid state diode-pumped laser emitting at 532 nm, which 

produced a spot approximately 50 µm in diameter (Duller et al., 1999), allowing simulation of individual 

grains. The luminescence emissions were detected through a Hoya U-340 filter. The purity of extracted 

quartz was tested for each sample by stimulation with infra-red light as per Duller (2003). No samples 

showed signs of feldspar contamination. Single grains were measured on 9.6 mm diameter aluminium 

discs containing 100 holes.

Equivalent dose (De) determination was carried out using the Single-Aliquot Regenerative-dose (SAR; 

Murray and Wintle, 2000, 2003; Table S1). A four point SAR protocol was employed to bracket the expected 
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palaeodoses  with an additional  recycling point to check for uncorrected sensitivity changes (Figure S1). 

Preheat temperatures were determined using a dose recovery preheat plateau test (Murray and Wintle, 

2003). The samples displayed OSL decay curves dominated by the fast (bleachable) component, had 

good dose recovery, low thermal transfer and good recycling (Figure S2).  De values were only accepted 

when the recycling ratio was comprised between 0.8 and 1.2, recuperation on zero dose was lower 

than 5%, and the error on the De was less than 30%. The grains exhibiting a signal that was not possible 

to fit by an exponential, or exponential plus linear growth curve were rejected. However, when the 

palaeodose could not be ascertained for a grain due to saturation it was recorded as it gives important 

information on the sample. A minimum of 50 De values which met the quality acceptance criteria were 

measured for each sample to ensure a representative spread in De values and to assess the degree of 

scatter and skewness of the data. Only 2 to 4% of the grains had a measurable OSL signal that met the 

selection criteria. The samples CAH2.1, CAH2.2, CAH2.3, CAH4.1 and CAH4.2 from the Loire valley had 

between 10 to 20% saturated grains, whereas the samples from Northern Aquitaine do not show any 

saturation. Potential contamination by host material was checked during sampling and preparation. No 

evidence for mixing of different material was found.

The measurements of the OSL signal at single grain level show a large De heterogeneity with high 

overdispersion (Figure 3; Figure S3). As for the sand wedge investigated by Bateman et al. (2008, 

2010) the scatter of the De values cannot be explained by poor recycling, recuperation problems, or 

sensitivity changes.  In few sampled wedges sand lamination was visible, which testifies to the lack of 

post-depositional perturbation of the primary infilling. However, a significant amount of the samples 

were taken from massive sand bodies or from infillings where lamination was only locally preserved, 

which probably indicate that subsequent mixing occurred due to ice thaw, bioturbation and other 

pedoturbations (Murton et al., 2000). Such processes may have lead to the inclusion of partially bleached 

grains in the wedges coming from the surrounding ground surface or from the host sediment, which can 

result in long tails of De or in broad distributions rather than in discrete peaks. The scatter of data is thus 

assumed to be caused either by poor bleaching of grains prior burial or by the mixing of different age 

deposits.

An averaging issue would arise if the Central Age model (CAM; Galbraith et al 1999, Roberts et al., 

2000) was used to extract the De values since this model is designed for well-bleached samples. The 
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standard approaches are to use either the Minimum Age Model (MAM; Galbraith and Laslett, 1993) 

or the Finite Mixture Model (FMM; Galbraith and Green 1990) to calculate age estimates.  FMM 

allows the extraction of De components within De distributions and MAM extract the component that 

provide the minimum age. In our case this means that FMM date the different periods of periglacial 

wedge infilling while MAM gives the estimate of the last time the wedge was active. Both models 

were used to calculate the age estimates of the wedges. However, FMM was considered more 

appropriate because of the potential multi-phased nature of sand-wedges. As the CAM is the model 

used in previous dating of sand-wedges, the CAM ages were calculated for comparison purposes.

Figure 3: Examples of probability density functions (pdf) plotted for the single grain samples Shfd13040 and Shfd14022 with the individual 

grain results above (Black) and mean (grey) showing multiple De components. Overdispersion values (OD) were calculated as per Galbraith 

et al., (1999), skewness (Sk) as per Bailey and Arnold (2006).

For FMM a σb value of 0.15 was chosen based on dose recovery tests. The best fit was assessed 

by iteratively increasing the number (k) of components until the closest to zero value of the Bayesian 

Information Criterion (BIC) was reached. To avoid the influence of potential post-contamination the De 

components were considered only when exceeding 10% of the total De values for each sample (Bateman 

et al., 2007).

Results

FMM analysis allowed extraction of two to four components for each of the 33 samples from which a 

total of 86 age estimates were calculated, 47 in the Loire valley and 39 in Northern Aquitaine respectively 

(table 3).  The OSL ages range between 337 ± 40 ka and 7.5 ± 1.2 ka. 

In order to test the assumption that wedge activity was not random during the last glacial but rather 

occurred during specific, climate-controlled periods, the cumulated probability density of the ages was 

calculated using Oxcal 4.2 (Bronk Ramsey, 2013) with the expectation that peaks would emerge from 
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the probability distribution. As this was the case, the distribution was adjusted to a combination of 

Gaussian functions using the software Fityk 0.9.8 (Wojdyr, 2010) and their respective contribution was 

calculated. The goodness of fit was assessed using R², which reached almost unity (R²=0.9999). The 

standard deviation of the distribution around the centre of each Gaussian function was estimated from 

the Full Width at Half Maximum (FWHM). The PDF was plotted together with the NGRIP δO18 data over 

the last 100 ka tuned to the revised Greenland Ice Core Chronology proposed by Rasmussen et al. (2014) 

to compare the thermal contraction cracking events with known cooling occurrences over Europe (Figure 

4).The results suggest the following: 

 ₋ The sand wedges and composite wedge pseudomorphs were repeatedly active during the 

Pleistocene up to the beginning of the Holocene.

 ₋ The oldest events are recorded in the Loire valley where 71% of OSL ages fall within MIS 3, 

4 and 5. In contrast, MIS 2 represent up to 54% of the total OSL ages in Northern Aquitaine. In the 

latter area, the oldest age falls within MIS 4.

 ₋ A total of 11 peaks of wedge activity have been extracted from the 86 ages provided by 

the samples from the whole dataset during the last 100 ka, i.e.  8.5 ± 0.6, 11.9 ± 0.5, 15.3 ± 0.4, 17.4 

± 0.7, 20.7 ± 0.7, 24 ± 1.1, 30 ± 2.5, 42.5 ± 1.9, 56.2 ± 4, 71.4 ± 1.8, 86 ± 4.2 ka 

 ₋ Seven OSL ages are older than 100 ka and may correspond to cracking events that occurred 

during MIS 6, 8 or 10.

The PDFs of the estimates calculated with the different age models (i.e. CAM, MAM, and FMM) 

allow for comparisons (Figure 5).Differences between the models are evident. As expected the CAM 

based dataset by averaging all grains from samples  identifies fewer more prominent phases of wedge 

activity during MIS 2.  The MAM based dataset by selecting only the youngest component of grains from 

a sample, under-estimates the earlier phases of wedging.  The FMM datasets by attempting to isolate 

similar age components within samples provides a longer record with more phases within it. 

As shown on a representative case study in figure 6, the calculated ages are much younger than the 

host material of the wedges. They overlap from one sample to another within the same wedge, and 

between different wedges, and they are not dependent on depth.
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Table 3: Finite Model Mixture (FMM) ages in comparison with the estimates calculated from the Central Age Model (CAM) and 

Minimum Age Model (MAM) 
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Figure 4: Probability density of the FMM ages and FMM estimates of the Loire valley (white) and Northern Aquitaine (black),plotted 

together with the NGRIP δO18 data over the last 100 ka tuned to the revised Greenland Ice Core Chronology proposed by Rasmussen 

et al. (2014). The distribution of the probability density function was adjusted to a combination of Gaussian functions using the software 

Fityk 0.9.8 (Wojdyr, 2010) and their respective contribution was calculated in percentages of the complete dataset. The goodness of fit was 

assessed using R², which reached almost unity (R²=0.9999). Blue boxes in the Ngrip curve and over the age estimates represent the Full 

Width at Half Maximum (FWHM) of each Gaussian function fitted.
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Figure 5: Probability density function of the ages calculated from A) CAM, B) 

MAM, and C) FMM. 

Figure 6: Representative case study of two wedges sampled A) Mérignac (Chronopost) and B) Sainte-Genevieve-des-bois (Les Bézards). OSL 

ages are calculated from FMM components which contribution in the sample is shown in percentage. Coloured circles show the overlap of 

ages between the samples and their belonging to an age cluster.
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Discussion

The overall age distribution of periglacial wedges shows repetitive thermal contraction cracking over 

the last 100 ka. However, substantial differences emerge from the comparison between the two regions. 

Two main factors may be involved, which include:

(1)  The latitude of the investigated wedges. As expected, the Loire valley yields a larger number of 

ages falling into MIS 5 to 3 than does Northern Aquitaine which is located at lower latitude. Overall, the 

first area is assumed to have been more frequently affected by deep seasonal freezing and/or permafrost 

during the Late Pleistocene.

(2) The sand availability. In addition to the temperature drop that triggers thermal contraction 

cracking, the main limiting factor in the growth of sand-wedges is the sand supply. In the Loire valley the 

sand has a fluvial origin, and sand drifting was probably active during the stadials all along the last glacial 

on bare alluvial deposits exposed to deflation. In contrast, the location of the sand wedges of Northern 

Aquitaine near the margin of the coversands (“Sables des Landes” Formation, Sitzia et al., 2015) strongly 

suggests that this formation, which was fed by deflation on the continental plateau exposed during sea-

level lowstands, was the main sand source that filled the contraction cracks.  Available chronological data 

(Bertran et al., 2011; Sitzia et al., 2015) show that the coversands built up mostly between ca. 24 and 

14 ka. Comparison between the distribution of ages for coversands and sand wedges points to strong 

similarity, suggesting that the latter primarily record periods where thermal contraction cracking and 

huge sand drifting in the coversand area occurred at once (Figure 7). To a certain extent, this record may, 

therefore, be biased toward MIS 2 which corresponds to the main phase of coversand emplacement. 

Age clusters were identified in both areas within the Lateglacial (12 ka, i.e. Younger Dryas, 5 dates in 

whole data set) and, more surprisingly, within the early Holocene at 8.5 ka (5 dates). Wedge activity 

during these periods, which were typified by mean annual air temperatures too high for permafrost 

development in France (Renssen and Isarin, 1998; Simonis et al., 2012), reinforces the assumption that 

these features are poor indicators of past permafrost as already suggested by Andrieux et al. (2016a) and 

Wolfe et al. (2016). However, as reconstructed by some proxies, particularly beetles (Ponel et al., 2007), 

mean January air temperatures remained very low (up to -10°C in the Paris basin) during the Younger 

Dryas due to low winter insulation (Berger, 1978) allowing deep seasonal ground freezing to occur. Sand 

drifting was still active in European coversand areas during the Younger Dryas (Kasse, 2002; Sitzia et al., 

2015). In Aquitaine, fields of parabolic dunes developed on large areas at that time (Bertran et al., 2011). 
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More recent sand wedge activity was unexpected, since temperatures rose significantly in the early 

Holocene, although the seasonal contrast remained high compared to present. Considering the 

uncertainty associated with the OSL ages, we assume here that the recorded thermal contraction events 

may reflect the impact of the short cooling events identified at 9.3 and 8.2 ka in the Greenland ice cores 

(Rasmussen et al., 2014) and in other proxy records (Wanner et al., 2011). They also indicate that sand 

was still mobile at least locally and not yet totally fixed by vegetation.

MIS 2 is a period characterized by strong wedge activity, and includes up to 54% of the ages (i.e. 

21 dates) of the Northern Aquitaine data set. Both regions record wedging at the beginning and in the 

middle of Greenland Stadial 2 (GS 2.1) around respectively 17.5 ka (GS 2.1a) and 21 ka (GS 2.1c), and 

around 24 ka at the end of GS 3. Another cluster is identified at 15.5 ka (late GS 2.1) only in Northern 

Aquitaine. The absence of this phase of contraction cracking in the Loire valley may be explained as 

follows:

(1) Sand availability and/or deflation were limited in regions distant from the main coversand areas. 

However, the reason why this occurred specifically during this period remains hard to explain. 

(2) The higher number of ages obtained in Northern Aquitaine allows better precision in the 

calculation of peaks, which are typified by low FWHM. This highlights the sensitivity of the method used 

for identifying the major phases of wedge growth to the size of the data set. Further dating will make it 

possible to improve the representativeness of the identified phases.  

A period of widespread thermal contraction cracking which is common to both study areas is also 

recorded during the end of MIS 3 at approximately 30 ka (GS 5). Older wedge activity is mostly detected 

in the Loire valley. Clustering of ages appears less obvious, however, and the identified phases have to be 

considered with caution. The most preeminent phase took place at ~56 ka, i.e. probably at the very end 

Figure 7: Probability density of the sand wedge ages in Northern Aquitaine compared with the aeolian records from southwest France 

(Sitzia et al., 2015) and the insolation in June and December at 60°N (Berger, 1978). Interstadials are illustrated by grey shading and light 

grey indicates cold sub-events (Rasmussen et al., 2014)
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of MIS 4 taking into account the luminescence dating uncertainties. It is worth noting that a significant 

number of ages (6 dates) fall within late MIS 5 which was typified on average by a mild climate. PDF 

analysis suggests that they cluster around ~86 ka, i.e. during the stadial GS 22. As for the early Holocene, 

this period coincides with a minimum in winter insolation (Berger, 1978).

Although it is not possible to define De values for saturated grains, their presence within the 

investigated wedges is interpreted as reflecting phases of thermal contraction cracking that are beyond 

the limit of the luminescence dating method on quartz. The saturated grains come from samples that 

provided the oldest ages, i.e. MIS 8 or 10. 

In some wedges (Salaunes, Mérignac and Cussac-Fort-Médoc) the samples taken from the sides 

of the infilling have yielded older ages than those from the middle. This has to be interpreted as the 

preferred preservation of early phases of activity in the sides of the wedges. 

Comparisons with the records of Northern Europe

The analysis presented here show that the permafrost events previously identified in the loess deposits 

of northern France were also recorded in the sand wedges and composite wedge pseudomorphs from 

southwest France and the Loire valley. Particularly, the two main levels of large ice-wedge pseudomorphs 

dated to 30 and 25 ka in the loess sequences have their counterparts in sand wedges (ca. 30 and 24 

ka respectively). Such a synchronicity testifies to widespread events of thermal contraction cracking in 

France, which are thought to coincide with the last maximum of permafrost extension. Because of the 

scarcity of available ages, more in detail fitting of the records remains impossible both for older and 

younger phases. Overall, the number of the phases of wedge development appears to be larger in the 

sand wedges than in loess. The following factors may be involved: 

(1) Poor preservation of ice-wedge pseudomorphs due to thermokarst processes (Locht et al., 2006). 

Strong pedoturbation at the top of loess sequences during the Holocene may also have obscured or 

made illegible Late Pleniglacial features.

(2) Lack of permafrost and associated growth of large ice bodies susceptible to produce pseudomorphs. 

Thermal contraction cracking in the context of deep seasonal freezing of the ground created sand wedges 

where sand drifting was active, but only tiny fissures elsewhere. This was especially the case for Late 
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MIS 5 and the Lateglacial.  

Using a same approach to that used here on periglacial patterned ground (polygons and stripes) 

found in East Anglia, UK, Bateman et al. (2014) found similar phases of activity during the last 90 ka at 

55–60 ka (MIS 4), 31–35 ka (MIS 3), 20–22 ka (GS2.1c) and 11–12 ka (GS1). However, most of the previous 

age estimates for sand wedges from northern Europe fall within late MIS 2 and the Lateglacial, i.e. during 

the main periods of coversand emplacement.  In contrast to loess sequences, almost no wedge activity 

is recorded within late MIS 3 and early MIS 2. In the light of our data, this pattern has to be interpreted 

as reflecting two main factors: (1) limited record of thermal contraction phases during periods with low 

sand availability, (2) the use of aliquot and/or CAM analysis for the calculation of age estimates, which 

led to averaging the signal. This skewed the ages in favour of the most prominent phases of activity and 

hampered identification of the multiple events of sand wedge growth. Although a few studies in North 

America have suggested that distinct generations of sand wedges or multi-phased wedges occurred, 

multiple-dose populations within wedges in Europe (Kolstrup, 2004) or unexpected ages were often 

attributed to partial bleaching of the sand grains due to sediment mixing and were thus rejected.

Conclusion

The application of single grain OSL to 33 samples taken from sand and composite wedges in France 

allowed identifying of multi-phased thermal contraction events within single preserved wedge features. 

FMM analysis identified two to four components for each sample and resulted in the calculation of 86 

age estimates, each corresponding to a period of ground cracking. These show that wedges were active 

during Late Pleistocene cooling periods when thermal contraction and sand drifting in the coversand 

areas occurred at the same time, i.e. dominantly during MIS 2. Synchronicity between the ages provided 

by ice-wedge pseudomorphs, sand-wedges and composite-wedges in France testifies to widespread 

events of thermal contraction cracking between ca. 30 and 24 ka (Last Permafrost Maximum). Late MIS 5 

and Early Holocene events also suggest that wedging occurred in connection with deep seasonal ground 

freezing during phases with marked seasonality. In comparison, the mainly late MIS2 – Younger Dryas 

ages yielded by North-European sand wedges are interpreted as reflecting poor record of the periods 

with low sand supply. In addition, the potential averaging issue inherent with the use of aliquots and 

CAM analysis for the dating of sand-wedges may have biased the ages towards the major phases of 
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activity and have hampered the identification of multiple periods of opening. 

By providing the first chronological framework for thermal contraction cracking in France, this study 

shows that sand-wedges and composite-wedge pseudomorphs are significant, but complex archives of 

the Pleistocene periglacial environments. Our results allow reassessing the periglaciation of France and 

its timing across Western Europe. However, owing to OSL uncertainties more effort in dating is required 

to improve the accuracy of the identified phases of thermal contraction cracking. The multiplication of 

study areas in Europe should also make it possible to highlight the latitudinal fluctuations of periglacial 

processes during the last glacial.
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Appendix

Table S1: The Single-Aliquot Regenerative-dose (SAR) protocol used in this study. * The final dose given is equal to the first 

regeneration dose allowing the calculation of a recycling ratio. The third or fourth regeneration point is always 0 Gy allowing 

recuperation to be observed.

Figure S1: Single-aliquot regenerative dose (SAR) OSL decay curves and dose response curves for a single grain of sample Shfd14022. The 

used signal and background intervals are highlighted in grey.
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Figure S2: Dose-recovery preheat plateau test performed on three small aliquots at each temperature. The average values of the dose 

recovery (black) and the recycling ratio (white) are presented with standard deviation. The solid line indicates the ideal values.
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Figure S3: Probability density functions (pdf, solid line) plotted for all samples with the individual grain results above (Black) and mean (dark 

grey) compared with the pdf (grey filled curv) of the same data without outliers. Overdispersion values (OD), and OD without outliers (C.OD) 

were calculated as per Galbraith et al., (1999), skewness (Sk) and Sk without outliers (C.Sk) as per Bailey and Arnold (2006).
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7. Synthesis

At the start of our study on the extent and chronology of the Late Pleistocene permafrost in France, 

the already existing reconstructions based on field evidence showed that large parts of France were 

affected by permafrost during the Late Pleistocene and attributed its maximum extent to the Last Glacial 

Maximum (LGM). However, the discrepancies between the overviews that were done for almost a 

century highlighted that the occurrence of certain features gave rise to different interpretations. The 

different overviews, produced from periglacial field evidence, highlight the poor agreement of the 

scientific community on the palaeoclimatic significance of certain periglacial features. In addition, the 

chronological framework used for the different reconstructions was mostly based on relative ages and/

or on the assumption that the coldest period of the Pleistocene was reached during the LGM. In this 

context, it was critical to re-evaluate the field evidence of periglaciation in France to the light of the 

present knowledge and to look for new datable features. The approach developed to solve these issues 

was divided into three parts. First of all, it was necessary to provide a homogenised and easy to access 

dataset of features that would allow a site or an occurrence of periglacial features to be placed in a 

broader regional context. This will avoid the pitfalls of simplistic local environmental interpretations, and 

instead, will make it possible to provide a more accurate regional synopsis. This has led to the creation 

of the database of the French periglacial features that compiles data from cross-sections, i.e. relict sand-

wedges, ice-wedge pseudomorphs, composite-wedge pseudomorphs, and data from aerial photographs, 

i.e. polygonal networks and soil stripes. Other patterned ground such as small nets, thermokarst, and 

involutions in cross-section will be added in the future. This database is available online at https://

afeqeng.hypotheses.org/48. The second part of our work aimed at processing the gathered data. GIS-

based analysis gave us information on the influence of different factors on the development of periglacial 

features. Comparison with a dataset from northern Europe made it possible to propose a new map of 

the permafrost boundaries based on field evidence in Western Europe. The map was then compared 

with an improved set of modelled permafrost distributions to delineate the issues in the reconstruction 

methods. Finally the third part of the thesis provides the first chronological framework for thermal 

contraction cracking in France that relies on OSL dating of sand-wedges.

7.1. Geographical extent of periglacial features in France

The distribution of the identified features clearly indicates that large areas in France were affected 

by periglacial phenomena, apart from the south-westernmost part of France and the Languedoc that are 
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the only regions free of periglaciation evidence. The relict features are mainly located in sedimentary 

basins, and particularly in Early to Middle Pleistocene alluvial deposits. 

Ice-wedge pseudomorphs are only found north of 47°N, preferably on poorly drained flat terrains. 

Their occurrence proves that the regions where these features are found were affected by at least 

widespread discontinuous permafrost during the Pleistocene, in environments similar to those actual 

where regional MAATs are lower than or equal to -4 to -5°C. The distribution of ice-wedge pseudomorphs 

correlates strongly with that of loess deposits. However, their absence below 47°N cannot be explained 

only by difficulties in identifying secondary infillings in more heterogeneous materials, and rather shows 

that the growth of large ice bodies was not possible south of 47°N. The composite-wedge pseudomorphs 

that have been described below this latitude have small secondary infillings which suggest that at least 

locally ice veins formed at lower latitudes, but probably during exceptionally cold winters. 

Relict epigenetic sand wedges are mainly located between 47 and 43.5°N in the vicinity of coversands 

in the Loire valley, Northern Aquitaine and Provence. GIS analysis shows that they are mostly present 

in well-drained terrains, often times at a higher altitude than the surroundings terrains. Interpretations 

of their presence is more controversial since in modern environments they are rare, and were mainly 

described in very dry areas within continuous permafrost where thermal contraction cracking is associated 

with sand drifting (e.g. Antarctica; Bockheim et al., 2009). This has led many researchers to consider that 

these particular features formed only under continuous permafrost, and outside misinterpretations of 

features it is probably the main reason behind the contradictory reconstructions of past permafrost that 

have been made in France. However, in the Pleistocene context that is characterised by greater aridity 

at mid-latitudes and the extension of cold deserts, we proposed that these features should only be used 

to infer the boundaries of thermal contraction cracking since the sand availability was more important 

than in modern arctic milieus. This is particularly relevant in France when considering the location of 

sand-wedges that are mostly on the margins of coversands and where old sandy formations are cropping 

out. Thermal contraction cracking occurs in current environments in areas that undergo deep seasonal 

freezing of the ground or permafrost where MAATs are lower or equal to -1/0°C (Washburn et al., 

1963; Friedman et al., 1971) and up to 2°C in hyper-continental areas (Romanovskij, 1976). According 

to observations in the Canadian Arctic, cracking is favoured by sharp temperature drops and a mean 

thermal gradient in the active layer higher than ca. -10°C/meters (Fortier and Allard, 2005). The recent 

discovery of active sand-wedges in areas subject to deep seasonal freezing of the ground (Wolffe et al., 

2016) supports our assumption. 
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Since ice-wedge pseudomorphs are indicative to at least widespread discontinuous permafrost, it 

was expected to find features that form in similar conditions in northern France. Possible examples of 

pingo and lithalsa scars were described in the literature, but the lack of description and observation in 

cross-section made their classification as cryogenic mounds difficult (Michel, 1967; Lécolle, 1998) and 

the origin of many depressions has been reinterpreted as karstic (Boyé, 1958; Courbouleix and Fleury, 

1996; Texier, 2011; Becheler, 2014). Recently, ductile and brittle deformations that may result from the 

development of an open-system pingo and thermokarst have been observed in Pleistocene alluvial 

deposits at Gourgançon (France) (Van Vliet-Lanoë et al., 2016; Jolivel et al., 2016). In addition, the aerial 

photographs and the Digital Elevation Model (DEM) of the area revealed rounded depressions in alluvial 

deposits that could correspond to thermokarstic features (Figure 27). Erosion events in loess sequences 

that are characterized in the sediment by lateral undercutting are also described in the literature and 

are thought to be of thermokarstic origin (Antoine et al., 2001; Antoine et al., 2008). In northern France, 

two main thermokarst events were identified in the Villiers-Adam loess sequence at the base and the 

top of the Middle pleniglacial. These events suggest rapid thawing of permafrost and are interpreted as 

a potential marker for Dansgaard-Oeschger events (Antoine et al., 2013). Similar features were identified 

in other parts of northern France in aerial photographs (Figure 28), their identification and dating could 

potentially provide data to better constrain extreme cold phases.

No closed-system pingo scar has been observed in France. In modern environment, these features 

are limited to continuous permafrost, i.e. at MAATs lower than -6/-8°C. Based on our current state of 

knowledge, there is no evidence showing that continuous permafrost has affected France. 

Most of small nets and soil stripes are located at latitude greater than 47°N, which corresponds to 

the southern boundary of ice-wedge pseudomorphs, and can therefore be interpreted as deformations 

of an active layer on permafrost. Cross-sections in areas covered by small nets showed involutions. 

Their origin is controversial since periglacial processes and earthquakes can form similar features 

(Jolivel et al., 2016).  However, Bertran et al. (submitted) show that there is no clear relationship 

between their distribution and known faults and the earthquakes listed in available databases, 

which suggest mostly a periglacial origin. No correlation has been found between the size of the 

polygons, which are interpreted as networks of thermal contraction cracks, and other parameters 

such as ground composition. The average polygon diameter rather suggests that the polygons in 

France reached a steady-state after their subdivision during multiple or long periods of activity. 
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Figure 27: Features visible in aerial photographs near Gourgançon - Charny-le-Bachot; A - DEM with a 5m resolution show 

depression in the alluvial deposits; B, C - aerial photographs of the depression visible in the alluvial deposits, potentially of 

thermokarstic origin.; D - soil stripes are visible in the same area on a slope

Figure 28: Potential thermokarst in Northern France (Sissonne, 49.5°N, 4°E)



111

The permafrost extent that is inferred from these results is in line with data on western European deep 

aquifers that show an uninterrupted recharge even during the coldest periods of the Late Pleistocene in 

most part of France (Jirakova et al., 2011; Saltel et al., 2016), and in agreement with previous ‘warmer’ 

reconstructions made, e.g. Lautridou and Sommé (1981) or Huijzer and Vandenberghe (1998). Climatic 

simulations still show, however, discrepancies between field data and the reconstructed extent of 

permafrost (Saito et al., 2013; Andrieux et al., 2016b). The reasons for such a difference is not fully 

assessed, but can partly be explained by a time lag between the LGM (21 ka) used for modelling and the 

LPM (31-24 ka), or by a warm winter bias of the models as already noticed by Kageyama et al. (2006).

7.2. Chronological framework

The chronological data available to define the chronology of periglaciation in France is scarce because 

periglacial features have rarely been dated. 

In the loess deposits of northern France, six main levels of ice-wedge pseudomorphs have been 

described. To the exception of a few OSL bracketing ages, the researchers often rely on correlations 

between different cross-sections to provide the relative ages of the features. The levels of ice-wedge 

pseudomorphs show a complex formation history during the Late Pleistocene with multiple periods of 

permafrost aggradation and degradation. This differs from the ages of sand-wedges obtained in Northern 

Europe that in contrary suggest a main phase of activity during the Late Pleniglacial. The few French sand-

wedges that were already dated not only yielded older estimates than those in Northern Europe, but 

also showed that several wedges belonging to the same polygonal network gave different ages. These 

results suggested that sand-wedge growth was asynchronous and controlled by local conditions rather 

than global. However, recent luminescence dating in Canada demonstrated that multiple paleodose 

populations within sand-wedges could be the result of multiple periods of activity. Further research was 

needed to firmly establish whether it was the case or not. Investigating the French sand-wedges gave 

that opportunity, and allowed us to provide the first chronological framework for thermal contraction 

cracking in France.

Three areas were surveyed in order to sample sand-wedges, namely the northern Aquitaine, the 

Loire valley and the lower Rhone valley. These regions were in the vicinity of coversand or alluvial sand 

that could have provided sufficient aeolian sand for the growth of sand-wedges during the Pleistocene. 

The survey of the lower Rhone valley did not provide features to be sampled, but 17 samples were 
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taken from 5 wedges in Northern Aquitaine and 16 samples from 8 wedges in the Loire valley. The 

application of single grain OSL to the collected samples allowed multi-phased thermal contraction 

events within each wedge to be identified. The 86 calculated age estimates cluster around 11 periods 

of wedge activity during the Late Pleistocene, which is more in line with the apparent number of ice-

wedge pseudomorph events. Wedges were active during most Late Pleistocene cooling periods when 

thermal contraction cracking was concomitant with sand drifting. Most of thermal contraction activity, 

let it be for ice-wedges or sand-wedges, occurred between ca. 30 and 24 ka which likely corresponds to 

the Last Permafrost Maximum. More surprisingly it appears that wedging occurred also during Late MIS 

5 and the Early Holocene, for which other proxies (e.g. beetles, pollens) clearly indicate that MAATs were 

too high for permafrost to develop. These periods are characterized by low winter insolation causing a 

strong seasonality and subsequent deep seasonal freezing of the ground.  Sand-wedges were able to 

form in this context which supports the assumption that they have formed outside permafrost during 

the Pleistocene.

Previous dating obtained on sand-wedges fall mainly during the MIS 3/2 in northern Aquitaine and 

late MIS 2 - Younger Dryas in northern Europe. This correlates well with the main phases of coversand 

emplacement in both areas, and reflect a poor record in the wedges of the periods with low sand supply. 

Since averaging methods were used for the dating, the estimates are probably biased towards the most 

prominent phases of wedging, which hampers the identification of multiple periods of activity.

7.3. Outlook and future prospects

The ongoing acquisition of data on periglacial features and the mapping of their distribution across 

Europe are necessary. Approximate zones sharing similar climatic conditions during the LGM were 

defined by K. Saito using MAATs given by the Global Climate Models (GCMs) involved in the Paleoclimate 

Model Intercomparison Project (PMIP3) (Figure 29; Jolivel et al., 2016; Saito et al., 2013). The resultant 

maps potentially highlight areas that were affected by similar periglacial processes, which can ease the 

finding of periglacial features. 
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Figure 29: Simulations of the Mean Annual Air Temperatures (MAATS) from the different Global Climate Models (GCMs) 

(source K. Saito; Jolivel et al., 2016), in comparison with the distribution of sand wedges (orange triangle) and ice-wedge 

pseudomorphs from the French database of periglacial features (see chapter 4, 5) and from the Northern Europe database 

(Isarin et al., 1998). GCMs : CCSM4 = National Center for Atmospheric Research, USA; GISS8_E2 = NASA Goddard Institute 

for Space Studies, USA; IPSL_CM5A = Institut Pierre-Simon Laplace, France; MIROC_ESM = Japan Agency for Marine-Earth 

Science and Technology, Japan; MPI_ESM = Max Planck Institute for Meteorology, Germany

The analysis of these maps and the distribution of the periglacial features from the French database 

and northern Europe database (Isarin et al., 1998) stressed the following points:

The coldest models are those from Institut Pierre-Simon Laplace (IPSL, France), and Max Planck 

Institute for Meteorology (MPI, Germany) and have a difference of ca. 5°C with the warmer model 

(National Center for Atmospheric Research, CCSM4, USA). All the simulations show MAATs isotherms 

parallel to the latitudes in northern France and that become slanted near the Bay of Biscay. 

Considering the coldest model (IPSL) the distribution of ice-wedge pseudomorphs correlates roughly 

with the 0°C isotherm. Because ice-wedges in modern environments can form at MAATs of -4°C, the bias 

of this model is evaluated to at least 4°C. Part of Normandy, Champagne-Ardenne, Alsace, and Lorraine 

are amongst the areas that have potentially been affected by the growth of ice-wedges. 

The southernmost sand-wedges in northern Aquitaine and the lower Rhône valley are located in 

areas subjected to similar climatic conditions that correspond to the 6°C isotherm in the IPSL model. Since 
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thermal contraction cracking can occur in MAATs up to +2°C in hyper-continental milieus (Romanovskij, 

1976) the bias is also evaluated to at least 4°C. 

The IPSL model suggests that France was not affected by continuous permafrost, even with a 4°C bias 

taken into account. In contrary, the simulation suggests that continuous permafrost affected England, 

the Netherlands, and the north of Germany. This is in agreement with the LPM map proposed (Chapter 

5).

Dating of French sand-wedges shows an intricate thermal contraction cracking chronology, which 

question the model of periglaciation across France and Europe. Wedges inactivity should be taken with 

caution since numerous factors contribute to wedging that are not necessarily related to temperature (e.g. 

snow or vegetation cover, sand input). It is thus difficult to map the extent of permafrost or deep seasonal 

freezing during distinct periods of the Pleistocene with the data available, only broad trends can be 

identified as for example the LPM. In addition, more datings are needed to make up for the luminescence 

dating resolution. It is especially the case for the identified periods of wedging that are older than 35 

ka, for which the amount of ages remains too low to be statistically significant. Further dating is also 

needed in direct association with ice-wedge pseudomorph levels in loess deposits to better understand 

the permafrost events. The implementation of an approach based on Bayesian chronological modelling 

that takes into account the stratigraphical constraints should also improve the representativeness and 

the accuracy of the identified phases of thermal contraction cracking or permafrost (Lanos and Dufresne, 

2012). 

Although quartz has proved to be a reliable dosimeter for dating sand-wedges, the saturated grains 

identified during our measurements indicate that other methods of dating should be considered in 

northern France where it is likely that MIS 8-10 wedging has been recorded. K- Feldspars have a higher 

saturation dose, which allows the potential to date much older deposits than quartz. However, feldspars 

are far from being readily datable because they often suffer from anomalous fading and consistent under-

estimation of ages (e.g. Wintle, 1997). Despite methodological doubts raised (Buylaert et al., 2012), 

Infrared Radiofluorescence (IR-RF) of K-feldspar (Trautmann et al., 1999; Frouin et al., 2015, 2017) have a 

great potential to overcome these issues. Single-grain feldspar IRSL (Rhodes, 2015) also shows promising 

results.

A particular intention of this thesis was to combine the results of geomorphological work with GIS 

analysis and the OSL dating of features, in order ultimately to shed new light on how periglaciation 
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occurred in France. Such an interdisciplinary approach should be used and intensified in other regions to 

allow geographical and temporal comparisons. The advances in remote sensing analysis, luminescence 

and simulation methodologies hold a lot of promises, and should further ease the reconstructions 

and understanding of Pleistocene environments. Having a better grasp of the past is the key to better 

anticipate and adapt to the future. 
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Figure S1: Schematic diagram of the Mérignac Parking Chronopost cross-section (44.827°N, 0.689°W). Fm=alluvial loam, Gp=Oblique gravel 

beds, Gh=horizontal gravel beds
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