
HAL Id: tel-02191544
https://theses.hal.science/tel-02191544v1

Submitted on 23 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Debugging of Behavioural Models using Counterexample
Analysis

Gianluca Barbon

To cite this version:
Gianluca Barbon. Debugging of Behavioural Models using Counterexample Analysis. Systems and
Control [cs.SY]. Université Grenoble Alpes, 2018. English. �NNT : 2018GREAM077�. �tel-02191544�

https://theses.hal.science/tel-02191544v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Gianluca BARBON

Thèse dirigée par Gwen SALAUN, UGA
et codirigée par Vincent LEROY, Université Grenoble Alpes / LIG

préparée au sein du Laboratoire Laboratoire d'Informatique de
Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Débogage de modèles comportementaux par
analyse de contre-exemple

Debugging of Behavioural Models using
Counterexample Analysis

Thèse soutenue publiquement le 14 décembre 2018,
devant le jury composé de :

Monsieur GWEN SALAÜN
PROFESSEUR, UNIVERSITE GRENOBLE ALPES, Directeur de thèse
Madame OLGA KOUCHNARENKO
PROFESSEUR, UNIVERSITE DE FRANCHE-COMTE, Rapporteur
Monsieur FRANCISCO DURAN
PROFESSEUR, UNIVERSITE DE MALAGA - ESPAGNE, Rapporteur
Monsieur STEFAN LEUE
PROFESSEUR, UNIVERSITE DE CONSTANCE - ALLEMAGNE,
Examinateur
Monsieur ROLAND GROZ
PROFESSEUR, GRENOBLE INP, Président
Monsieur VINCENT LEROY
INGENIEUR, GOOGLE A ZURICH - SUISSE, Co-directeur de thèse

Acknowledgements

First of all, I would like to express my special appreciation and thanks to my thesis di-
rector, Gwen Salaün, for his availability and guidance throughout my Ph.D., and for his
valuable comments in all my writings and rehearsals. I am also deeply grateful to my
thesis co-supervisor Vincent Leroy, in particular for his precious advices and help in the
tool development. Second, I would like to express my gratitude to my reviewers, Olga
Kouchnarenko and Francisco Durán, and to my examiners, Stefan Leue and Roland Groz,
for their precious remarks on my manuscript and for accepting to be part of the committee.

I am also grateful to all the CONVECS team members for having welcomed me as part of
their family. In particular, I would like to thank Radu Mateescu, Frederic Lang, Wendelin
Serwe and Hubert Garavel for both technical and theoretical advices and for the all the
insightful discussions we had. I would also like to thank Myriam Etienne, our team assis-
tant, for her kindness and the support with all the administrative concerns. Many thanks
are due to all the other past CONVECS team members I had the opportunity to meet,
who have helped me in one way or another.

A special thank goes to my office mates Lina Marsso and Ajay Krishna, for helping me
and for making the atmosphere enjoyable even in stressful moments. I also would like to
thank Emmanuel Yah Lopez for contributing in the development of a part of our tool.

Sincere thanks go out to all my friends, in Italy and in France, who have accompanied me
during this adventure. Someone in the laboratory, someone else in everyday life, you all
gave me a help. Particular thanks are due to all the wonderful people I met in Grenoble,
who shared with me a lot of funny (and less funny) moments during these three years.

Finally, last but not least, I would like to express my sincere gratitude to my family for
supporting me every day, in the good and in the bad times. It is also thanks to you all
that this thesis has finally come to light.

i

ii

Abstract

Model checking is an established technique for automatically verifying that a model satis-
fies a given temporal property. When the model violates the property, the model checker
returns a counterexample, which is a sequence of actions leading to a state where the prop-
erty is not satisfied. Understanding this counterexample for debugging the specification is
a complicated task for several reasons: (i) the counterexample can contain a large number
of actions; (ii) the debugging task is mostly achieved manually; (iii) the counterexample
does not explicitly point out the source of the bug that is hidden in the model; (iv) the
most relevant actions are not highlighted in the counterexample; (v) the counterexample
does not give a global view of the problem.

This work presents a new approach that improves the usability of model checking by sim-
plifying the comprehension of counterexamples. Our solution aims at keeping only actions
in counterexamples that are relevant for debugging purposes. This is achieved by detect-
ing in the models some specific choices between transitions leading to a correct behaviour
or falling into an erroneous part of the model. These choices, which we call ”neighbour-
hoods”, turn out to be of major importance for the understanding of the bug behind the
counterexample. To extract such choices we propose two different methods. One method
aims at supporting the debugging of counterexamples for safety properties violations. To
do so, it builds a new model from the original one containing all the counterexamples, and
then compares the two models to identify neighbourhoods. The other method supports the
debugging of counterexamples for liveness properties violations. Given a liveness property,
it extends the model with prefix / suffix information w.r.t. that property. This enriched
model is then analysed to identify neighbourhoods.

A model annotated with neighbourhoods can be exploited in two ways. First, the erroneous
part of the model can be visualized with a specific focus on neighbourhoods, in order to have
a global view of the bug behaviour. Second, a set of abstraction techniques we developed
can be used to extract relevant actions from counterexamples, which makes easier their
comprehension. Our approach is fully automated by a tool we implemented and that has
been validated on real-world case studies from various application areas.

iii

Résumé

Le model checking est une technique établie pour vérifier automatiquement qu’un modèle
vérifie une propriété temporelle donnée. Lorsque le modèle viole la propriété, le model
checker retourne un contre-exemple, i.e., une séquence d’actions menant à un état où
la propriété n’est pas satisfaite. Comprendre ce contre-exemple pour le débogage de la
spécification est une tâche compliquée pour plusieurs raisons: (i) le contre-exemple peut
contenir un grand nombre d’actions; (ii) la tâche de débogage est principalement réalisée
manuellement; (iii) le contre-exemple n’indique pas explicitement la source du bogue qui
est caché dans le modèle; (iv) les actions les plus pertinentes ne sont pas mises en évidence
dans le contre-exemple; (v) le contre-exemple ne donne pas une vue globale du problème.

Ce travail présente une nouvelle approche qui rend plus accessible le model checking en
simplifiant la compréhension des contre-exemples. Notre solution vise à ne garder que des
actions dans des contre-exemples pertinents à des fins de débogage. Pour y parvenir, on
détecte dans les modèles des choix spécifiques entre les transitions conduisant à un com-
portement correct ou à une partie du modèle erroné. Ces choix, que nous appelons neigh-
bourhoods, se révèlent être de grande importance pour la compréhension du bogue à travers
le contre-exemple. Pour extraire de tels choix, nous proposons deux méthodes différentes.
La première méthode concerne le débogage des contre-exemples pour la violations de pro-
priétés de sûreté. Pour ce faire, elle construit un nouveau modèle de l’original contenant
tous les contre-exemples, puis compare les deux modèles pour identifier les neighbourhoods.
La deuxième méthode concerne le débogage des contre-exemples pour la violations de pro-
priétés de vivacité. À partir d’une propriété de vivacité, elle étend le modèle avec des
informations de préfixe / suffixe correspondants à cette propriété. Ce modèle enrichi est
ensuite analysé pour identifier les neighbourhoods.

Un modèle annoté avec les neighbourhoods peut être exploité de deux manières. Tout
d’abord, la partie erronée du modèle peut être visualisée en se focalisant sur les neighbour-
hoods, afin d’avoir une vue globale du comportement du bogue. Deuxièmement, un ensem-
ble de techniques d’abstraction que nous avons développées peut être utilisé pour extraire
les actions plus pertinentes à partir de contre-exemples, ce qui facilite leur compréhension.
Notre approche est entièrement automatisée par un outil que nous avons implémenté et
qui a été validé sur des études de cas réels dans différents domaines d’application.

iv

Contents

1 Introduction 1
1.1 Context . 2
1.2 Motivations . 2
1.3 Approach . 3
1.4 Contributions . 5
1.5 Thesis Structure . 6

2 Related Work 9
2.1 Trace Explanation . 11
2.2 Fault Localization Using Testing . 16
2.3 Bug Visualization . 19
2.4 Alternative Approaches . 20
2.5 Concluding Remarks . 21

3 Preliminaries 23
3.1 Models . 23
3.2 LNT . 24

3.2.1 Data Types . 24
3.2.2 Functions . 24
3.2.3 Processes . 25

3.3 Temporal Properties . 26
3.3.1 Safety Properties . 27
3.3.2 Liveness Properties . 27

3.4 Operations on LTS . 28
3.4.1 Simulation Relation . 28
3.4.2 LTS Determinization . 28
3.4.3 LTS Minimization . 28
3.4.4 Synchronous Product . 29
3.4.5 Strongly Connected Components 29

4 Approach Overview 33
4.1 Transitions Types and Tagged LTS . 34

v

vi CONTENTS

4.2 The Neighbourhood Notion . 35
4.2.1 Neighbourhood Taxonomy . 36

4.3 Neighbourhood Exploitation . 38
4.3.1 Visualization Techniques . 39
4.3.2 Abstraction Techniques . 40

5 The Counterexample LTS Approach 45
5.1 Counterexample LTS Generation . 46
5.2 States Matching . 47
5.3 Transition Types Computation . 49
5.4 Neighbourhood Examples . 51

6 The Prefix-Suffix Approach 53
6.1 Prefixes and Suffixes . 54
6.2 Prefixes and Suffixes Calculation . 56

6.2.1 Max Prefix Calculation . 56
6.2.2 Max Suffix Calculation . 57
6.2.3 Common Prefix Calculation . 57
6.2.4 Common Suffix Calculation . 59
6.2.5 Order of Calculation . 60

6.3 Transitions Types Computation . 61
6.4 Concluding Remarks . 62

7 Tool Support: the CLEAR Tool 65
7.1 CLEAR Neighbourhood Calculation Module 65
7.2 CLEAR 3D Visualization Module . 67
7.3 CLEAR Analysis Module . 68
7.4 Concluding Remarks . 70

8 Experiments 71
8.1 3D Visualization Techniques Experiments 71

8.1.1 Interleaving Bug . 72
8.1.2 Interleaving Bug (V2) . 73
8.1.3 Iteration Bug . 73
8.1.4 Causality Bug . 76

8.2 Abstraction Techniques Experiments . 78
8.2.1 Quantitative Analysis . 79
8.2.2 Case Studies . 82
8.2.3 Empirical Evaluation . 91

8.3 Concluding Remarks . 95

9 Conclusion 97
9.1 Perspectives . 98

Chapter 1

Introduction

Recent computing trends are promoting the development of concurrent and distributed
applications, which are used in various domains. Here are listed some examples. Cyber-
physical systems involve many components such as controllers, sensors, or processors, which
are supposed to interact together to fulfil some specific functions. Software and middleware
technologies connect smart grids and smart meters in order to anticipate and optimize
energy consumption. Service Oriented Computing enables the implementation of value-
added Web accessible software systems that are composed of distributed services. Cloud
computing leverages hosting platforms based on virtualization, and promises to deliver
computational resources on demand via a computer network. Internet of Things networking
model allows physical objects to be seamlessly integrated into the information network, and
to become active participants in business processes.

The intrinsically parallel and distributed nature of these application makes them complex
to design and develop, and it favours the introduction of subtle coding errors, called bugs.
Bugs are defects of software which prevent the correct behaviour of the system. According
to [Kid98], the term bug was already used to name a “fault in the working of any electrical
apparatus” in the end of the 19th century, and was also used with the same meaning by
the well-known American inventor Thomas Edison. This term was later adopted by the
newborn computer engineering community in the late 1940s. After some decades, we are
still far from proposing techniques and tools avoiding the existence of bugs in a system
under development. However, it is nowadays possible to automatically chase and find bugs
that would have been very difficult, or even impossible, to detect manually. The process
of finding and resolving bugs is commonly called debugging. The verb to debug spread out
among professionals in the computer science field between the late 1940s and early 1950s,
to indicate the removal of “malfunctioning conditions from a computer or an error from a
routine” [Kid98]. Grace Hopper, while working on the IBM Mark I and II computers at
Harvard, was among the first using the term debug in such sense. The debugging step is
today one of the most important steps in the software development.

1

2 Chapter 1. Introduction

1.1 Context

The debugging process is still a challenging task for a developer, since it is difficult for
a human being to understand the behaviour of all the possible executions of concurrent
systems. Moreover, bugs can be hidden inside parallel behaviours. Because of this, the
debugging task still takes a considerable part of the whole time spent in software devel-
opment. Thus, there is a need for automatic techniques that can help the developer in
detecting and understanding those bugs, reducing the cost of software development.

Various methods have been developed in order to debug software, e.g., control flow analysis,
testing, slicing, static analysis. Model checking [CGP01, BK08] is one of these techniques,
with a specific focus on the verification of concurrent systems. This approach takes as input
a model and a property. The model, e.g., a Labelled Transition System (LTS), describes
all the possible behaviours of a concurrent program and is obtained by compilation from
a specification of the system (expressed with higher-level textual specification languages
such as process algebra). The property represents the requirements of the system and is
usually expressed with a temporal logic. Given a model and a property, a model checker
verifies whether the model satisfies the property. When the model violates the property,
the model checker returns a counterexample, which is a sequence of actions leading to a
state where the property is not satisfied.

1.2 Motivations

While a lot of work has been done on detecting the existence of program faults, much
less has been done on localizing such faults [GSB07]. Although model checking techniques
automatically find bugs in concurrent systems, it is still difficult to interpret and understand
the returned counterexamples for several reasons:

(i) The counterexample can be lengthy, since it may contain hundreds (even thousands)
of actions [BBC+12, LB13]. Large real-world specifications are often long and complex,
implying also long and complex counterexamples [BBC+12].

(ii) The debugging task is mostly achieved manually, since satisfactory automatic debug-
ging techniques do not yet exist. It is usually up to the developer to understand the coun-
terexample to locate the error [CGS04, GCKS06]. While a counterexample should ideally
be succinct and comprehensible to be readable by the developer [GK05], its length and
complexity force the developer to spend considerable time in examining it [LB13, GCKS06].
The counterexample analysis is thus a challenging and tedious task, which requires a sig-
nificant effort to the developer [GV03, GSB10, BBC+12]. Note that the non-automated
nature of the debugging not only takes a lot of time, but it may also lead to errors in the
bug comprehension [LB13]. Moreover, understanding the counterexample in concurrent

1.3. Approach 3

systems might be even more difficult because of interleavings. The interleaving semantics
implies non-deterministic choices between the processes, while a developer is normally used
to think sequentially [LB13].

(iii) The counterexample does not provide sufficient information to understand the
bug [GV03]. As a matter of fact, a counterexample is only a symptom of a bug which
shows its existence, but it does not explain its sources [WYIG06]. The possible causes of
the bug are hidden in the model, and may be represented by choices whose existence is not
evident in the sole counterexample. Searching for the actual causes of a bug remains one
of the most time consuming tasks in debugging [Zel09].

(iv) The actions in the counterexample seem to have the same importance even if it is not
the case [JRS02]. For instance, even if the last action of a counterexample is located where
the property become unsatisfied, the cause of the property violation might be linked to
actions which are located earlier in the counterexample. The importance of these relevant
actions is not highlighted in the counterexample.

(v) A counterexample is only one of the traces that lead to the bug [JRS02], thus a single
counterexample might not reveal all the circumstances in which the failure arises. Even if
the developer is able to fix the error expressed by the counterexample, the model checker
might produce other counterexamples in successive runs [BNR03]. A single counterexample
thus does not give a global view of the problem.

1.3 Approach

This work aims at developing a new approach for simplifying the comprehension of coun-
terexamples and thus favouring usability of model checking techniques. More precisely our
approach aims to automatically improve the comprehension of counterexamples by taking
only into account relevant actions and providing more exhaustive information about the
source of the bug, while keeping a global view of the faulty model. To do so, we highlight
some of the actions in the counterexample that are of prime importance. These actions
make the specification go from a (potentially) correct behaviour to an incorrect one. Thus,
they correspond to decisions or choices in the model that are of particular interest because
they can provide an explanation of the source of the bug. Once these choices have been
identified, they can be used for building simplified versions of the counterexample, for
instance keeping only actions that are relevant from a debugging perspective.

More precisely, in order to detect these choices, we need to categorize the transitions in
the model according to the behaviour of the system they lead to. We can thus recognize
three types of transitions; (a) correct transitions are transitions that only lead to correct
behaviours in the model; (b) incorrect transitions are transitions that only lead to incorrect
behaviours in the model; (c) neutral transitions are transitions that lead to both correct

4 Chapter 1. Introduction

and incorrect behaviours. We call neighbourhood a choice in the model between two (or
more) different transitions types. A neighbourhood consists of the set of incoming and
outgoing transitions of the states where these decision points are located. Those sets of
transitions identify specific parts of the specification that may explain the appearance of
the bug and are therefore meaningful from a debugging perspective. The nature of outgoing
transitions (correct, incorrect and neutral) allows us to classify neighbourhoods in different
types.

To extract transitions, and consequently neighbourhoods, from a model, we propose two
different approaches. The first one is called Counterexample LTS approach, and it has been
specifically designed to handle safety properties. Safety properties state that “something
bad never happens”. This method produces all the counterexamples from a given model and
compare them with the correct behaviours of the model to later identify neighbourhoods.
The second approach is called Prefix/Suffix approach, and it has been built to handle
liveness properties, which are properties used to state that “something good eventually
happens”. It focuses on the analysis of property’s actions execution in each state of the
model to locate neighbourhoods.

More precisely, the Counterexample LTS approach first extracts all the counterexamples
from the original model containing all the executions. This procedure is able to collect
all the counterexamples in a new LTS, maintaining a correspondence with the original
model. To do this, an LTS of the formula that represents the property is first created.
Then, the synchronous product between the original LTS and the LTS of the formula is
performed. The resulting LTS is called counterexample LTS. Its states are simulated by the
ones in the original LTS and it only contains traces that violates the property. Second, an
algorithm is defined to identify actions in the frontier where counterexamples and correct
behaviours, that share a common prefix, split in different paths. The states of the two LTSs
that belong to this frontier are compared to extract the differences in terms of outgoing
transitions between these states. The original LTS can contain outgoing transitions from
a state that do not appear in the corresponding state of the counterexample LTS. This
means that they belong to correct paths of the original LTS, which represent behaviours
that do not violate the given property, and thus represent correct transitions. By searching
for paths in the counterexample LTS that do not contain any correct transitions we are
also able to identify incorrect transitions (and consequently, neutral ones). Finally, when
all the transitions have been typed, we can analyse the incoming and outgoing transitions
of each state in the LTS to determine whether it is a neighbourhood or not.

The Prefix/Suffix approach allows to handle liveness properties. More precisely, we have a
specific focus on inevitability properties, which are one of the classes of liveness properties
most used by developers in practice [DAC99]. This second approach takes as input an LTS
and a liveness property in the form of a sequence of inevitable actions. In a first step it
enhances each state of the LTS with prefix/suffix information about the actions belonging to
the property that have already been or remain to be executed. Prefix and suffix information
is successively used to infer the type (correct, incorrect or neutral) of each transition. Given

1.4. Contributions 5

a transition, the prefix information on its source state and the suffix information on its
destination state are combined and compared to the sequence of inevitable actions. If such
combination leads to always respecting the sequence of inevitable actions, the transition is
labelled as correct. If the sequence is never respected, the transition is labelled as incorrect.
If the combination of prefix and suffix information reveals that the sequence is respected
only in some cases, the transition is labelled as neutral. When all transitions have been
typed, incoming and outgoing transitions of each state in the LTS can be analysed to detect
neighbourhoods.

We can finally exploit the LTS where neighbourhoods have been discovered to extract
precise information related to the bug, through the use of visualization and abstraction
techniques. We propose a debugging procedure to exploit neighbourhood which consists in
first making use of a global visual feedback of the model containing neighbourhoods, and
then allowing the developer to go into details and focus on single counterexamples.

More precisely, the developer can first exploit 3D visualization techniques we have devel-
oped to obtain a global view of the model, where correct/incorrect/neutral transitions and
neighbourhoods are highlighted using different colours. We implemented this visualiza-
tion method in a tool which provides several functionalities to facilitate the manipulation
of those models (forward/backward step-by-step animation, counterexample visualization,
zoom in/out, etc.).

In a subsequent step, given a counterexample, the developer can exploit several abstrac-
tion techniques defined on top of the notion of neighbourhood. These techniques aim at
removing irrelevant parts of the counterexample and highlighting relevant ones to simplify
its comprehension. Abstraction techniques can be divided into techniques that are inde-
pendent of the model and dependent on the model. The former set of techniques are the
ones that do not require an additional input from the user to give a result. Conversely,
the latter set consists of techniques which exploit a user input (e.g., a pattern of actions)
to perform the analysis. An example of the first set is the counterexample abstraction,
which consists of simplifying a given counterexample by keeping only actions which belongs
to neighbourhoods, thus making the debugging process easier by reducing the size of the
counterexample. An example of the second set of techniques is the search for the shortest
path from the initial node to a neighbourhood matching a pattern of actions provided by
the user. This abstraction technique is useful to focus on specific actions of the model and
to check whether they are relevant (or not) from a debugging perspective.

1.4 Contributions

This thesis presents an approach to extract relevant choices in a model that can provide
an explanation for the bug. As a summary, the main contributions of this thesis are the
following ones:

6 Chapter 1. Introduction

• The definition of the notion of choice inside the LTS, called neighbourhood, between
correct and incorrect behaviours. Several notions of neighbourhoods have been de-
fined depending on the type of transitions located at such a state (correct, incorrect
or neutral transitions).

• The development of a method to generate, given a model and a safety property, the
counterexample LTS, that is a model containing all the counterexamples.

• The development of algorithms that, given a model and a liveness property in the
form of a sequence of inevitable actions, are able to evaluate if the traces that go
through each state of the model represent prefixes and/or suffixes of the property.

• The implementation of our approach in a tool, called CLEAR, which has been pub-
lished online [cle]. This tool consists of three main modules: a computation module,
which is responsible for the detection of transition types and for the neighbourhood
computation; a 3D visualization module, which allows the developer to graphically
observe the whole model and see how neighbourhoods are distributed over that model;
an analysis module, which implements the abstraction techniques.

• The validation of our approach on real-world case studies from various application
areas. Our experiments show that our approach, by exploiting the notion of neigh-
bourhood together with the set of provided visualization and abstraction techniques,
simplifies the comprehension of the bug. Moreover, experiments carried on with the
3D visualization technique allowed us to identify some interesting visualization pat-
terns that correspond to typical cases of bugs. As a result, the 3D visualization
technique can be used for visual debugging in order to identify the bug by looking at
the graphical representation of the model extended with neighbourhoods.

These contributions have been (partially) published in two conference papers. The first
one [BLS17] describes a preliminary version of our approach for counterexample analysis
of safety property violations. The second one [BLS18] presents the approach working with
liveness property violations, with an improved version of neighbourhoods.

1.5 Thesis Structure

The rest of this thesis is organized as follows:

Chapter 2 overviews related work, presenting various types of debugging techniques, with a
particular focus on trace-based explanation approaches and testing-based fault localization.
We also describe bug visualization techniques and other alternative approaches in two
dedicated sections. At the end of the chapter we position our approach with respect to the
discussed related work.

Chapter 3 illustrates the scientific background needed to understand notions presented in

1.5. Thesis Structure 7

the rest of this work. In particular, it first introduces behavioural model (LTS model)
and model checking notions. The LNT language, which is the process algebra we adopt to
specify a system, is also described. At the end of the chapter we present some definitions
and algorithms that we will use on LTSs.

Chapter 4 surveys all the steps of our debugging approach. It first details the transitions
types, the neighbourhood notion and gives a neighbourhood taxonomy. Second, a method-
ology for debugging a faulty LTS is presented, exploiting visualization and abstraction
techniques on top of neighbourhoods.

Chapter 5 presents the Counterexample LTS approach for handling safety properties vio-
lations. It first describes the steps for generating the counterexample LTS. Then it details
how states of the original LTS and of the counterexample LTS match, in order to later
detect neighbourhoods. Finally, the step for typing transitions is presented.

Chapter 6 presents the Prefix / Suffix approach that we built for handling liveness prop-
erties violations. It first details the algorithms to compute prefixes and suffixes in a model
following the given sequence of inevitable actions. Second, it illustrates the method that
recognizes transitions types by exploiting the prefix and suffix information.

Chapter 7 describes the implementation of our approach in the CLEAR tool [cle], present-
ing in detail the three tool modules that performs neighbourhood detection, 3D visualiza-
tion and abstraction techniques, respectively.

Chapter 8 presents the application of our approach on real-word examples. First, it de-
scribes the visualization techniques for erroneous behavioural models by illustrating them
on some examples. Second, it details the use of abstraction techniques on four case studies.
An empirical study is also illustrated at the end of the chapter to validate our approach
with a set of developers.

Chapter 9 concludes this work, summarising our main contributions, and discusses future
perspectives.

8 Chapter 1. Introduction

Chapter 2

Related Work

In this chapter, we survey research works providing techniques for supporting the debug-
ging of specifications and programs, with a particular focus on trace-based explanation
approaches and testing-based fault localization.

Fault localization for program debugging has been an active topic of research for many
years in the software engineering community. Several options have been investigated
such as static analysis, slice-based methods, statistical methods, or machine learning ap-
proaches. In 1997 Lieberman, in his introduction to the special issue on The Debugging
Scandal [Lie97] highlighted the potential of debugging, warning about the lack of consider-
ation (for the time) by the computer science community. In his introduction he encouraged
the computer science community to spend more time on debugging, and to use the new
achievements in software and hardware technology in this task. For instance, he proposed
to use the new improvements on computer graphics to visualize the behaviour of the pro-
grams, in order to help developers in relating the static nature of the code to the dynamic
behaviour of a program. Citing articles appearing in that special issue, he suggested the
adoption of innovative ideas in the debugging process, like the use of software visualization
and of collaborative debugging. Lieberman finally concluded by trying to convince the in-
dustry to adopt debugging techniques, highlighting the lack of consideration of debugging
tools.

In the successive years debugging tools have been widely adopted by the community. An
exhaustive survey about existing techniques can be found in [WGL+16]. In addition to
the techniques we will discuss in the rest of this chapter, [WGL+16] also details fault
localization with multiple bugs, coincidental correctness (when a program has produced
one or more bugs during execution but, for some coincidence, the output of the program
remains correct) and combination of multiple fault localization techniques. A relevant
reference which gives a general perspective about debugging is the book of Zeller “Why
Programs Fail - A Guide to Systematic Debugging” [Zel09], which proposes to show that
automatic and manual debugging techniques can be used as systematic methods to find

9

10 Chapter 2. Related Work

and fix bugs in computer program.

Note that some of the works we present in this chapter rely on causality analysis, which aims
at relating causes and effects to help in debugging faults in (possibly concurrent) systems.
This kind of analysis relies on a notion of counterfactual reasoning, where alternative
executions of the system are derived by assuming changes in the program. Counterfactual
reasoning has been first introduced by Lewis [Lew73], and then it has been improved by
Halpern and Pearl with the introduction of the so-called actual cause conditions [HP05].
Some relevant examples of research works that rely on causality analysis are the line of
work of Goössler et al. [GMR10, GM13, GM15, WAK+13, WGG+15, GA14, GS15] and
the one of Leitner-Fischer and Leue [LL13, LL14, BHK+15]. It is worth noting that our
approach does not have a focus on causality analysis, instead we focus on the analysis of
choices made in the model and their impact on the validity of the given property.

Before presenting in detail the major techniques in debugging of concurrent systems, we
make two brief discussions about a proposed taxonomy of faults and about faults catego-
rization works.

A Taxonomy of Faults In [ALRL04] Avizienis et al. propose a taxonomy, making a
precise distinction between the terms failure, error and faults. A failure is described as an
event in which a service deviates from its correct behaviour. An error is a condition of a
system that may lead to a subsequent system failure. A fault (or bug) is the underlying
cause of an error, and can be divided into internal or external of a system. In [ALRL04]
the authors also discuss about some open questions in bug detection. In particular, they
state that the detection of bugs could benefit from a better understanding of real world
concurrency bug characteristics. However, the authors are aware that such characteristic
are still far to be catalogued, since real world bugs are usually under-reported by developers,
and are often not easy to understand. In our work we do not explicitly make a distinction
between failures, error and faults, as Avizienis did in [ALRL04]. Note that we will use the
words fault and bug as synonyms in the rest of this work.

Faults Categorization (generic) Recently, various research works have made an effort
to categorize faults. A general software fault classification is described in [GT05], where the
authors distinguish bugs between bohrbugs and mandlebugs. Bohrbugs are detailed as bugs
that can be easily isolated and that manifest under precise conditions, while mandlebugs are
bugs which are difficult to isolate and whose propagation and/or activation are complex.
Mandlebugs, in turn, comprehend heisenbugs and ageing-related bugs. Heisenbugs are
defined as a sort of elusive faults, which “stops causing a failure” or which can manifest
in different ways if the developer tries to isolate them. Ageing-related bugs are defined as
faults that cause an accumulation of errors in the system. Note that two classes, heisenbugs
and ageing-related bugs, may overlap.

Faults Categorization (in concurrent systems) In [FNU03] Farchi et al. present
a preliminary work to define bug characteristics in concurrent systems. Note that this

2.1. Trace Explanation 11

study has been built by observing programs that were intentionally buggy, not from real
bugged software. A comprehensive study of concurrency bugs characteristics is also pre-
sented in [LPSZ08], where the authors examine bugs in four large open source applications
in order to propose some categorizations of concurrency bugs. They first recognize two
prevalent categories of non-deadlock concurrency bugs: data-races, which are conflicting
accesses to one shared variable, and deadlocks, which occur when there exists a circular
wait between different processes. Second, they search for and try to categorize patterns in
bug, identifying two main patterns in non-deadlock concurrency bugs: atomicity violations,
that take place when concurrent executions violate the atomicity of a given code portion,
and ordering violations, which take place when the expected order of two memory accesses
is flipped. However, according to the authors their work does not intend to give general
conclusions about concurrency bugs, since it only focused on four applications and their
programming languages.

In our work we do not propose a categorization of concurrent faults. However, in Chapter 8
we present some experiments in which the visual rendering of bugs can lead to a sort of bug
categorization, exploiting the specific structure that characterize the bug in the rendering.
Note that our categorization does not propose to be exhaustive, but only suggests that
some bugs might be easily recognized by looking at their visual representation.

We will now present related work, divided into two main sets: trace explanation and fault
localization using testing. We will also describe bug visualization techniques and alternative
approaches (which do not rely neither on trace-based nor on test-based techniques) in two
dedicated sections.

2.1 Trace Explanation

An important line of research focuses on interpreting traces (execution traces or coun-
terexamples generated from model checking) and favouring their comprehension. In par-
ticular, techniques based on counterexample analysis represent the line of research that
is closer to our work. This section is divided in various paragraphs, each one dealing
with a specific trace-based approach. The first three paragraphs describe techniques which
focuses on the interpretation and on the explanation of the counterexample (see for in-
stance [JRS02, GV03]). The central part of the section presents techniques based on
pattern mining, distance metrics and minimal changes in a program. The last part of the
chapter describe methods that rely on causality notions applied to trace analysis in order
to give an explanation of the fault.

Game-theoretic Counterexample Interpretation In [JRS02] the authors propose a
game-theoretic method to interpret counterexamples traces from liveness properties by
partitioning them into fated and free segments. In particular, the computation of fated
segments is formulated in the form of two player reachability games between the system

12 Chapter 2. Related Work

and the environment. Fated segments represent inevitability w.r.t. the failure, pointing
out progress towards the bug, while free segments highlight the possibility to avoid the bug.
The proposed approach classifies states in a state-based model in different layers (which
represent distances from the bug) and produces a counterexample annotated with segments
by exploring the model. Both our work and [JRS02] aim at building an explanation from the
counterexample. However, our method focuses on locating branching behaviours that affect
the property satisfaction whereas their approach produces an enhanced counterexample
where inevitable events (w.r.t. the bug) are highlighted.

Multiple Variations of a Counterexample In [GV03] Groce and Visser propose au-
tomated methods for the analysis of multiple variations of a counterexample, in order to
identify portions of the source code crucial to distinguishing failing and successful runs.
These variations can be distinguished between executions that produce an error (negatives)
and executions that do not produce it (positives). Note that the set of negatives is defined
in such a way to focus on errors that are linked by similar behaviour. The authors then
propose various analysis to extract common features and differences between the two sets
in order to provide feedbacks to the user. Three different extraction methods are proposed:
a transition analysis, an invariant analysis and a transformation analysis. The third one
in particular appears more interesting since, by applying transformation of positives into
negatives, it allows understanding concurrency problems, i.e. unexpected interleavings.
Their approach has been implemented in the Java PathFinder [VHBP00] model checker
and takes as input compiled Java programs. Ball et al. present in [BNR03] a method
similar to the one proposed in [GV03], implemented in a tool called SLAM [BR01]. Their
approach takes as input C programs in the form of control flow graphs, calls a model
checker as a subroutine to localise the error cause and generates a counterexample for each
cause. It then extracts the transitions of the counterexample that do not appear in any
correct trace, thus representing program statements that are probably related to the cause
of the bug. Similarly to our work, the work presented by Groce and Visser in [GV03] also
wants to better explain the counterexample. However, while our approach is generic w.r.t
the language that produces the LTS, they have a specific focus on Java bytecode for their
analysis. Moreover our approach has a global view on the whole LTS, while they only focus
on a single counterexample and its variations. As for the work of Ball et al. in [BNR03],
we do not need to perform multiple calls to the model checker, as we reason on the whole
model. Moreover, while in [BNR03] the authors have a specific focus on safety properties,
we can also handle liveness ones.

Concise Counterexamples In [RS04] the authors aim to ease counterexample under-
standing in SAT-based Bounded Model Checking. Their approach allows extracting a
succinct counterexample, which allows identifying interesting events that contribute to the
cause of the failure. In particular, it finds minimal satisfying assignments to values of
variables of the input formulas in order to isolate the events responsible for the property
violation. The work of Ermis et al. [ESW12] also aims at giving a concise explanation of a
counterexample. This work takes as input a counterexample and formulas describing the

2.1. Trace Explanation 13

initial and the expected output states for the counterexample. The authors then use the
notion of error invariants, which are formulas that over-approximates the reachable states
at a given point of an error trace. By using these error invariants, their approach allows
identifying irrelevant transitions in an error trace and thus can provide a compact represen-
tation of that error trace. This approach has been implemented on top of the SMTInterpol
tool [CH10]. Methods which produce a concise counterexample, like [ESW12, RS04], are
partly similar to our approach, since their goal is to ease counterexample understanding.
However note that those works have a different point of view to counterexample analysis
with respect to us, since while we focus on extracting relevant actions on counterexamples,
they aim at slicing the counterexample by computing an invariant formula [ESW12] or by
computing minimal assignments to variables of the input formula [RS04].

Pattern Mining in Trace Analysis Some recent works perform counterexample anal-
ysis by applying pattern mining techniques, explicitly taking into account concurrency.
In [BWW14], sequential pattern mining is applied to execution traces for revealing unfore-
seen interleavings that may be a source of error, through the adoption of the well-known
mining algorithm CloSpan [YHA03]. The authors aim at identifying event sequences that
frequently occurs in faulty execution traces. This work deals with various typical issues in
the analysis of concurrent models, for instance the problem of increasing length of traces
and the introduction of spurious patterns when abstraction methods are used. CloSpan
is also adopted in [LB13], where Leue and Befrouei apply sequential pattern mining to
traces of counterexamples generated from a model using the SPIN model checker. By
doing so, they are able to reveal unforeseen interleavings that may be a source of error.
The approach presented in [LB13] is able to analyse concurrent systems and to extract
sequences of events for identifying bugs, thus representing one of the closest results to our
work. This approach is an enhanced version of the one proposed in [LB12] by the same
authors, where only contiguous events could be detected. Some works make use of pattern
mining approaches to reason on traces, as achieved in [BWW14, LB12, LB13]. In some
cases the use of pattern mining approaches to reason on traces may result more scalable
for large systems, and they can be helpful in cases in which it is not possible to obtain a
model of the system. In [LB12] the authors also make a precise comparison with the coun-
terexample analysis approach of Groce and Visser detailed in [GV03], which is the most
closely related work to theirs, showing that their approach requires to the user less effort
to understand the cause of a bug in a given case study. It is worth noting that reasoning
on traces can also induce several issues. For instance, the handling of looping behaviours
is non-trivial and may result in the generation of infinite traces or of an infinite number of
traces. Coverage is another problem, since a high number of traces does not guarantee to
produce all the relevant behaviours for analysis purposes. As a result, we decided to work
on the debugging of LTS models, which represent in a finite way all possible behaviours of
the system.

Distance Metrics A relevant line of works on counterexample interpretation is the one by
Groce et al. which makes use of distance metrics. A distance metric is a function between

14 Chapter 2. Related Work

two executions of the same program. In his first work [Gro04] Groce proposes the use of
distance metrics to understand counterexamples from bugged C programs and to determine
causal dependencies, exploiting the Lewis counterfactual reasoning to define causality. The
cause of the bad behaviour is identified by the delta between the counterexample and the
most similar correct execution, which is measured by a given distance metric. Note that,
w.r.t. the line of work of Gössler et al., that also deals with causality analysis, this work
has a white box approach, where the user is aware of the source code, while Gössler et al.
treat software components as black boxes. This approach has been implemented in a tool
called explain detailed in [GKL04], which makes use of the CBMC model checker to verify
ANSI C programs. The work of Groce is extended in [CGS04] with the use of predicate
abstraction, a state-space reduction technique that provides an high-level description of
the state-space, in conjunction with the MAGIC model checker [CCG+04]. According to
the authors, the abstract state-space allows making explanations more informative. The
work of Groce is finally improved in [GK05, GCKS06] in order to ease the comprehension
of counterexamples. This is done by reducing the counterexample length and automati-
cally hypothesizing causes of the error in [GK05], and by introducing a slicing method to
remove irrelevant changes in values between the correct execution and the counterexample
in [GCKS06]. Note that the line of works of Groce [Gro04, GKL04, GK05, GCKS06] do not
focus on the order of actions in the counterexample, like we and others do (e.g., [LB13]).
Instead, they take into account the values of variables that cause the bug. Moreover these
techniques only consider single counterexamples. While on one hand this allows better
performances, on the other hand taking into account the whole model (as we do) gives
a global view of the bug behaviour, allowing the developer to take into account all the
situations in which the failure arises.

Minimal Code Changes Griesmayer et al.’s work [GSB07, GSB10] propose to perform
minimal changes in a C program so that the counterexample will not fail in order to
localize faults. The authors take inspiration from model-based diagnosis to find components
(sets of expressions in a given program) that can be changed, in such a way to remove
differences between the actual and the intended behaviour. To do this their approach
first exploits a BMC model checker to produce a counterexample. Second, it looks for
minimal changes in the program that make a component behave in an alternative way,
in order to produce a correct execution with the same program inputs. In [dSACdLF17]
Alves et al. extend the work of Griesmayer focusing on concurrent programs. To do this,
the authors perform code transformations to convert the concurrent original version of
the program into a non-deterministic sequential one. The program is then instrumented
following [GSB07]. Bounded model checking is finally applied to the sequential version of
the program. Note that in our work we do not focus on a specific language, as the works
in [GSB07, GSB10, dSACdLF17] do with the C programming language, but we reason
on LTS behavioural models, thus remaining generic w.r.t specification and programming
languages. Moreover, to find the faulty component they need to modify the code, whereas
in our approach we do not modify the model.

2.1. Trace Explanation 15

Causal Analysis of Counterexamples Two works explicitly take into account causality
notions to give a counterexample explanation. The first one [WYIG06], of Wang et al.,
aims to locate defective program portions and to understand how these cause the failure.
The proposed approach consists in a weakest precondition computation algorithm that
produces a proof of infeasibility for an input counterexample, in the form of a minimal set
of predicates that contradict with each other. Their approach allows focusing on a single
counterexample, without the need to compare it to successful executions, thus resulting
more scalable w.r.t other works. Causal analysis is also used by Beer et al. in [BBC+12].
The authors adopt the Halpern and Pearl model to explain counterexample in LTL model
checking with a focus on hardware systems. Their approach takes as input a single coun-
terexample, in the form of a matrix of variable values. It then exploits an algorithm they
built to compute the set of causes and allows the user to focus only on the points of the
counterexample which are relevant for the failure. Similarly to the line of work of Groce
about distance metrics, [WYIG06, BBC+12] do not focus on the order of actions in the
counterexample (as we do), but reason on the values of variables that cause the bug in a
single counterexample.

Component Traces Analysis Gössler et al. exploit causality analysis in the interpreta-
tion of traces in component-based systems, in order to establish liabilities in case of fault
occurrence. In [GMR10] the authors reason about logical causality between contract vio-
lations, where a contract is used to specify the expected behaviour of a component. The
authors rely on the notion of precedence by Lamport [Lam78] to define temporal causal-
ity, and introduce three variants of logical causality (necessary, sufficient and horizontal
causality). This allows tracing the propagation of faults and establishing whether a prefix
of a local trace is part of the cause for the global property violation. In [GM15] Gössler
and Le Métayer improve the precision of the previous work by introducing the detection of
unaffected prefixes, which are prefixes of component traces that are not affected by the fail-
ures. Unaffected prefixes allow distinguishing dependencies between events in component
traces and analysing the propagation of failures. Finally, in [WAK+13, WGG+15, GA14]
some extensions of Gössler’s work for fault diagnosis are proposed for real-time systems.
Note that the line of work of Gössler has a focus on component liabilities in component-
based systems, while in our case we focus on locating choices in a behavioural model that
affect the property satisfaction.

Causality Checking In [LL13, LL14] Leitner-Fischer and Leue propose a causality check-
ing based on the Halpern and Pearl counterfactual reasoning. Causality checking aims at
providing insights on the causes of a property violation in model checking and allows the
developer to identify sequences of events that bring the system to the violation of the prop-
erty. This approach considers both the order of events and the non-occurrence of events as
causal for a failure. In [LL13] the authors built causality checking as an on-the-fly approach
integrated with algorithms for complete state exploration in explicit-state model checking.
Their method takes as input concurrent systems described by transition systems, and is
implemented using the SpinJa toolset, a Java re-implementation of the SPIN [Hol97] model

16 Chapter 2. Related Work

checker. The approach has been implemented in a tool called SpinCause. The tool has
been extended in [LL14] by introducing causality checking of PRISM [KNP02] models and
computation of probabilities of combination of causal events. In [BHK+15] the approach
proposed by Leitner-Fischer and Leue is improved using a symbolic representation of the
state space and SAT-based bounded model checking (in particular, the NuSMV2 model
checker [CCG+02]). The adoption of bounded model checking allows constraining the SAT
solver in order to generate only error traces with new information about the cause. Com-
paring to causality checking techniques, we do not have a specific focus on extracting causal
relations between events. Our aim is to detect choices in the model between correct and
incorrect behaviours, and to use this choices to ease the comprehension of counterexamples.

2.2 Fault Localization Using Testing

Another solution for localization of faults in failing programs consists in using testing
techniques, which is quite related to our approach since testing can be seen as a case of
non-exhaustive model checking. In this section we will present some examples of testing
techniques. The first paragraphs details methods that requires code changes to find the
fault, like for instance mutation testing [PT14]. We then present a method that exploits
a combination of counterexample analysis and testing in order to find vulnerable program
locations and dead code. At the end of the section we discuss pattern mining based
techniques (applied on testing), delta debugging based approaches and execution slicing.

Mutation Testing Mutation analysis proposes to introduce changes into the program
source code in order to produce mutant programs and to compare their output to the
original one in order to expose defects. Le Traon and Papadakis proposed in [PT14] an
approach which makes use of a mutation-based fault localization. This paper suggests
the use of a sufficient mutant set to locate effectively the faulty statements. Experiments
carried out on the well known Siemens test suite [HFGO94] reveal that mutation-based fault
localization is significantly more effective than current state-of-the-art fault localization
techniques. However, note that the technique proposed in [PT14] require to modify the
program code by introducing mutations, while in our case we do not need to modify the
code, since we reason only on the program model. Note also that this approach applies on
sequential C programs whereas we focus here on models of concurrent programs, without
relying on a specific language.

Automatic Correction In [HG04] He and Gupta propose an automated debugging
method which combines solutions from testing and weakest precondition used in formal
methods. The presented method is able to automatically locate and correct erroneous
statement in a faulty function, assuming the correct specification is available in the form
of preconditions and postconditions of the function. This approach first detects the faulty
statements using a path-based weakest precondition notion, then generates a modification
to remove the fault. All the test cases are thus executed again to search for other faulty

2.2. Fault Localization Using Testing 17

statements, until all the statements are corrected. Note that faulty programs need to be
written in a subset of C, and must be instrumented to generate execution traces. Moreover,
the presented approach is only capable to detect at most one error per function, and it is
not capable of correcting errors caused by non-terminating loops or segmentation faults.

Target Coverage In [BCH+04] Beyer et al. aim to produce test suites from C programs
where the coverage of a given predicate is ensured. To do this, the proposed method
extends the BLAST model checker [HJMS02] to first check the reachability of a given
target predicate and, second, to use the produced counterexample to find a test vector
(initial assignment) that reaches the target predicate. Such an approach is repeated to
check whether the control flow graph of the program is completely covered. This approach
can be used for finding dead code locations and for discovering security vulnerabilities, for
instance finding which parts of a program can be run with root privileges. While our goal
is to help the developer in the debugging of safety and liveness properties, the target of
Beyer et al. is the detection of C programs vulnerabilities.

Pattern Mining of Test Cases In [FLS06] Di Fatta et al. exploit pattern mining to
detect faults in software by analysing test cases. Their approach uses tests cases in the form
of function call trees as input and is divided into three main steps. The first step collects
and classifies execution traces into two categories, corresponding to correct and failing
runs, with the use of an oracle. The second step corresponds to a filtering phase in which
frequent pattern mining is performed, using the FREQT [AKA+02, Zak02] pattern mining
algorithm, to find frequent subtrees in successful and failing tests executions. The third
step represents the analysis phase, in which functions are ranked according to likelihood to
contain a bug with the use of ranking methods. As for other works in the testing field, this
approach is also evaluated on the Siemens test suite. It is worth mentioning that authors
in [FLS06] define a notion of neighbourhood, which correspond to a section of the control
flow of a program. In particular, the filtering phase of their approach allows to retrieve the
set of discriminative neighbourhoods in the function call trees that are useful in discovering
the faults. Even if this notion of neighbourhood has similar purposes to ours (both helps in
finding the faults), the two notions are different: their neighbourhood represents a section
of the fault call tree, while our neighbourhood notion is a set of incoming and outgoing
transitions representing a choice in an LTS model that has an impact on the property
compliance. Moreover, the use of testing techniques as the authors do in [FLS06] often
requires a high amount of test cases in order to ensure high results quality. In [BFT06]
Baudry et al. try to find a solution to this problem by producing a minimum amount of
test cases while maximizing the accuracy in diagnosis. Another work which deals with
the generation of test cases is the one detailed in [EBNS13], where Elmas et al. present
Concurrit, a domain specific language for reproducing concurrency bugs which helps in
generating tests. However, relying on a model as we do allows us to avoid the generation
of high amounts of test cases.

Delta Debugging A relevant and well known line of work about fault localization using

18 Chapter 2. Related Work

testing techniques is the one of Zeller et al. about delta debugging [Zel09]. The aim of
delta debugging consists in understanding the minimal differences (deltas) between a suc-
cessful and a failing program execution. In [Zel99] Zeller first presents delta debugging,
implemented as an algorithm to determine code changes between different releases of the
same program that cause unexpected behaviours. In [ZH02] Zeller and Hildebrandt apply
delta debugging to test case minimization, focusing on understanding which are the char-
acteristics of a test cases that are responsible for a given failure. In [CZ02] Choi and Zeller
use delta debugging to discover deltas in thread scheduling that produce concurrency fail-
ures. To do this they first generate new runs with alternative thread schedules of a Java
program with the DEJAVU tool [CAN+01]. Delta debugging is then used to extract the
location in thread schedules where the switch between threads produce a failure. The delta
debugging approach is used to locate and isolate cause-effect chains in [Zel02] and [CZ05],
by focusing on program’s states differences between a successful execution and a failing
one. In particular, in [Zel02] the authors have a focus on searching in space, that consists
in looking for values and variables that are causal for a failure. In [CZ05] Cleve and Zeller
improve this approach by focusing on “cause transitions”, which represent program points
where a failure cause originates (for instance, for the change of value in a variable). This
approach has been implemented in the Igor tool [igo] and evaluated on the Siemens test
suite [HFGO94], which consists of various C programs containing each one a defect. These
works which rely on delta debugging exhibit some drawbacks. First of all, in [Zel02] the
used method requires the developer to introduce instrumentation points on the analysed
program, and the validity of execution traces is not guaranteed [GV03]. In some cases (e.g.,
in [CZ05]) the obtained results cannot be generalized to arbitrary programs. In general,
delta debugging has been mainly applied to sequential programs, while our approach has a
focus on concurrent programs. Nevertheless Choi et Zeller in [CZ02] focus also on parallel
programming, but only from the point of view of thread scheduling. Moreover, test-based
approaches cannot verify a given property for all the executions of the program (as the
authors of [CZ02] state presenting their work).

Execution Slicing Another relevant debugging method consists in program slicing [Wei82,
Tip95]. Program slicing is detailed as the computation of the set of program slices (sub-
sets of program statements) that might affect given variables causing the fault, allowing
the extraction of accurate data dependencies between variables which influence the fault.
Slicing techniques comprehend static slicing, originally proposed by Weiser [Wei79], and
dynamic slicing, which applies to a specific program run [AH90, KL90]. A particular slicing
technique, called execution slicing [AHLW95], adopts a testing approach. Execution slicing
exploits test cases to infer faulty statements. It first computes for each test case a set of
corresponding executed statements (a slice). Second, it extracts the difference between
slices in failing and correct test cases in order to detect the faulty statements. Reasoning
on test cases, as it is done in execution slicing, brings the typical drawbacks of testing
techniques, for instance the need to generate an high amount of tests cases.

2.3. Bug Visualization 19

2.3 Bug Visualization

It has always been important to give a visual feedback to the developer in debugging
techniques. In [Lie97] Lieberman, while presenting the work of Baecker et al. about
software visualization for debugging [BDM97], said that “to debug a program, you have to
see what it is doing”. We present here various examples of visualization techniques applied
in fault debugging.

Code Colouring Various tools aim at performing code colouring to support verification
techniques. As an example, the work presented by Jones et al. [JHS02] aims at helping
the user in debugging faults, using visualization to assist the user in finding statements
that might contain faults. To do this, it colours program statements in order to distinguish
between the statements executed only in faulty executions and the ones executed only in
successful runs. Colouring is also used in the Maude [CDE+07] system for debugging Maude
programs. If a term in a program does not fully reduce, term colouring is used to better
understand the problem. Colouring techniques are also used for bug visualization in static
analysis tools, such as Polyspace [Pol]. Polyspace is a product built by Mathworks that
exploits static code analysis to discover critical runtime errors. It allows the visualization
of the control flow using the call hierarchy and the call flow graphs. Since we reason on the
LTS, we do not provide any code colouring. However, we provide transition colouring in
the visualized LTS, highlighting different types of transitions. Colouring the specification
that generated the LTS could be taken into account by using structural information, as we
discuss in Chapter 9.

Visualization of Traces and Models Trace visualization methods have been provided
in some of the approaches we presented in previous sections. For instance, in [BBC+12]
trace visual explanations are shown in the form of red dots exploiting the IBM RuleBase
PE trace viewer. The SpinCause tool proposed by [LL14] provides visualization of causal
relationships with fault trees, which are derived from safety and reliability engineering
and are used to map dependency relationship between faulty events. Note that various
model checkers are provided with basic visualizer components for visualizing models. As an
example, the CADP tool [GLMS13] offers a 2D component to draw and edit interactively
a PostScript representation of a BCG graph. The Uppaal model checker [LPY97] also
provides a graphical simulator to visualize the dynamic behaviours of a system. However
these components only give a global view of the system, without pointing out system parts
affected by a bug.

Visualization of Very Large State Spaces An important part of our method relies
on bug visualization techniques. The closest work to ours is a tool for visualizing the
structure of very large state spaces developed by Groote and Van Ham [GvH03, GvH06].
This approach relies on a clustering method to generate a simplified representation of the
state space, and can be useful for better understanding the overall structure of the model.
To do this, this method builds a 3D representation in the form of a tree, which constitutes

20 Chapter 2. Related Work

the backbone of the whole graph. The rest of the tree structure is built by clustering sets
of states. The use of clustering techniques provides an high scalability to the approach,
since individual states and transitions are not displayed but are grouped in sets. This tool
is particularly useful for better understanding the overall structure of the model, but this
work does not necessarily target debugging, which is our main objective here. Indeed, in
contrast, we do not have only as input a specification and its corresponding model, but
also a temporal property. This property allows us to distinguish correct and incorrect
behaviours in our model, and our visualization techniques focus on this question in order
to identify a particular structure that would help the developer to understand and identify
the source of the bug.

2.4 Alternative Approaches

Some relevant debugging methods do not follow a trace-based nor a testing approach. This
is the case of techniques that perform analysis on the code (e.g., [SY15]), or on control
flow graphs (e.g., [BCR15]).

Coverage Analysis In [SY15], the authors propose a new approach for debugging value-
passing process algebra through coverage analysis. The authors define several coverage
notions before showing how to instrument the specification without affecting original be-
haviours. This approach helps one to find errors such as ill-formed decisions or dead code,
but does not help to understand why a property is violated during analysis using model
checking techniques.

Flow Driven Approaches LocFaults [BCR15] is a flow-driven and constraint-based ap-
proach for error localization. This work focuses on programs with numerical statements
and relies on a constraint programming framework allowing the combination of Boolean
and numerical constraints. It takes as input a faulty C program for which a counterexample
and a postcondition are provided. This approach makes use of constraint based bounded
model checking combined with a minimal correction set (MCS) notion to locate errors in
the faulty program. A MCS represents the set of constraints that must be removed to
make the constraint system satisfiable. Their approach first builds a control flow graph
(CFG) from the program. Second, it generates a constraint system for the paths in the
CFG. Finally, MCSs are computed for each path in the CFG. CPBPV [CRH10] is used as
constraint based model checker, allowing building both the CFG and generating the con-
straint system on-the-fly. Note that authors do not mention whether their solution could
be used for analysing concurrent programs.

2.5. Concluding Remarks 21

2.5 Concluding Remarks

Our approach can be placed among the trace-based approaches. In particular, the line of
research which focuses on interpreting counterexample and favouring their comprehension
(e.g., [JRS02, GV03, BNR03]) is the closest to our work.

Reasoning on a behavioural model as we do brings various advantages. First of all, some
of the approaches we reviewed do not have a specific focus on concurrent systems. This is
the case of [RS04, ESW12] among trace-based techniques and of [PT14, BCH+04, HG04]
among testing ones. In our case our LTS based approach allows handling both se-
quential and concurrent systems. Various works need to focus on a specific language,
like [dSACdLF17, GSB07, GSB10, BCH+04] which have a focus on C programs, and need
to modify or instruments code, as in [PT14, HG04, Zel02]. Instead, reasoning on LTS be-
havioural models allows us to be generic w.r.t. specifications and programming languages.
Some existing approaches rely on analysis of traces, as [BWW14, LB12, LB13]. However,
reasoning on traces do not allows handling all the executions, while reasoning on the LTS,
which represents all the behaviour of a system, allows us to solve this issue.

22 Chapter 2. Related Work

Chapter 3

Preliminaries

This chapter presents some preliminary notions that we use in the rest of this work. We first
introduce Labelled Transition Systems. Then, the LNT specification language is described,
followed by the presentation of temporal properties. At the end of the chapter we present
some operations, definitions and algorithms that we use on LTSs.

3.1 Models

In this thesis we adopt Labelled Transition System (LTS) as behavioural model of concur-
rent programs. LTSs are used by a large set of concurrent system verification tools, such
as CADP [GLMS13], mCRL2 [CGK+13], LTSmin [KLM+15] and TAPAs [CDLT08]. An
LTS consists of states and labelled transitions connecting these states.

Definition 1 (LTS) An LTS is a tuple M = (S, s0,Σ, T) where S is a finite set of states;
s0 ∈ S is the initial state; Σ is a finite set of labels; T ⊆ S × Σ × S is a finite set of
transitions.

A transition is represented as s
l−→ s′ ∈ T , where l ∈ Σ. An LTS is usually produced from

a higher-level specification of the system described with a process algebra for instance.
Specifications can be compiled into an LTS using specific compilers.

An LTS can be viewed as all possible executions of a system. One specific execution is
called a trace.

Definition 2 (Trace) Given an LTS M = (S, s0,Σ, T), a trace of size n ∈ N is a sequence

of labels l1, l2, . . . , ln ∈ Σ such that s0 l1−→ s1 ∈ T, s1
l2−→ s2 ∈ T, . . . , sn−1

ln−→ sn ∈ T . A
trace is either infinite because of loops or the last state sn has no outgoing transitions. The
set of all traces of M is written as t(M).

23

24 Chapter 3. Preliminaries

Note that t(M) is prefix closed. One may not be interested in all traces of an LTS, but only
in a subset of them. To this aim, we introduce a particular label δ, called final label, which
marks the end of a trace, similarly to the notion of accepting state in language automata.
This leads to the concept of final trace.

Definition 3 (Final Trace) Given an LTS M = (S, s0,Σ, T), and a label δ, called fi-

nal label, a final trace is a trace l1, l2, . . . , ln ∈ Σ such that s0 l1−→ s1 ∈ T, s1
l2−→

s2 ∈ T, . . . , sn−1
ln−→ sn ∈ T , l1, l2, . . . , ln 6= δ and there exists a final transition sn

δ−→ sn+1.
The set of final traces of M is written as tδ(M).

Note that the final transition characterized by δ does not occur in the final traces and that
tδ(M) ⊆ t(M). Moreover, if M has no final label then tδ(M) = ∅.

In this thesis, we use LNT [CCG+18] as specification language and compilers from the
CADP toolbox [GLMS13] for obtaining LTSs from these specifications. We present in the
next section a short introduction to the LNT language, in order to let the reader understand
some LNT excerpts presented in Section 8. It is worth noting that, although we rely on
LNT in this thesis, our approach is generic in the sense that it applies on LTSs produced
from any specification language and any compiler/verification tool.

3.2 LNT

LNT is an improved version of LOTOS [BB87], providing a more user-friendly notation
which takes inspiration from typical imperative and functional programming languages
notations. LNT allows the definition of data types, functions, and processes, which we
present in the next paragraphs. The reader interested in more details about LNT should
refer to [CCG+18]. Note that comments in LNT can be single lines comments, in the form
”- - comment ”, or block comments, in the form ”(* comment *)”. LNT keywords are
highlighted in bold.

3.2.1 Data Types

LNT provides some predefined types, i.e., Boolean (bool), natural numbers (nat), integer
numbers (int), real numbers (real), characters (char) and strings (string). The user can
also declare abstract data types, through the use of the type keyword.

3.2.2 Functions

Functions are defined with the function keyword. A function can have zero, one or
more arguments and returns a result. The predefined data types are already provided

3.2. LNT 25

with predefined functions. Various statements can be used inside a function, for instance
correct termination (null), sequential composition (;), function return (return), variable
declaration (var), conditional construct (if), breakable loop construct (loop), for loop con-
struct (for). Value assignments to variables is performed with the := operator. Table 3.1
provides a simplified overview of function statements syntax where I stands for a state-
ment, V stands for an expression, x for a variable identifier, T stands for a type identifier
and L is a loop label.

Table 3.1: LNT function statements syntax.

I ::= null
| I1; I2

| return[V]
| var x:T in x := V ; I0 end var
| if V then I0 end if
| loop L in I0 end loop
| for I0 while V by I1 loop I2 end loop

3.2.3 Processes

Processes in LNT are defined with the process keyword. As for functions, they have
zero, one or more arguments, but they do not return a result. Statements presented for
functions in Table 3.1 also apply to processes. Moreover, LNT processes are also built from
behaviours, e.g. actions, nondeterministic choices (select), parallel composition (par) and
process instantiation. A process terminates by executing implicitly the special action exit.
In order to manage communications and synchronizations between processes, a list of gates
where they can perform actions is provided (between square brackets).

Gates, Offers and Channels

A gate is used by an LNT process to handle input/output communications and synchro-
nizations. A gate is defined as G(O1, . . . , On), where G stands for a gate and O stands
for an offer. Offers allows to exchange data on a gate and they can be an emission of an
expression or the reception of a value. In the first case an offer is highlighted by ”!V ”,
where V stands for an expression. Note that the ”!” is optional. In the second case the
offer must be highlighted by ”?x”, where x stands for a variable identifier which stores the
received value.

Gates can be untyped (none) or typed by a channel. In this latter case the channel defines
the gate profile, thus limiting offers profiles accepted by a gate. A channel is defined using
the channel keyword and must state one or more profiles which are lists of parameters

26 Chapter 3. Preliminaries

that declare the number and types of authorized offers. Note that two gates are compatible
only if they have the same type or they are both untyped.

Visible events on a process execution are represented by actions. Actions can be internal
(”i” action) or realised on a gate. An action on a gate is defined with the gate identifier.
Note that internal actions never have offers.

Nondeterministic Choice

Nondeterministic choices between two or more behaviours can be performed in processes
through the select operator. The syntax of a nondeterministic choice is the following,
where B stands for a behaviour: select B1 []...[] Bn end select. Note that this cor-
responds to a state in the LTS with multiple outgoing transitions, where each transition
corresponds to one of the Bi in a select construct.

Parallel Composition

The parallel composition operator par allows to declare multiple behaviours that are exe-
cuted in parallel. The syntax for the parallel composition is the following, where B stands
for a behaviour and G for a gate: par G1, ..., Gm in B1||...||Bn end par. The communica-
tion between behaviours B0, . . . , Bn is carried out by rendezvous on a list of synchronized
actions included in the synchronization set G1, . . . , Gm.

The parallel composition operator can be used to handle communication between different
processes using process instantiations as behaviours in the operator. One or more gates
can be declared in the synchronization set in order to specify on which gates the processes
must synchronize their actions. The ones not specified in the synchronization set are
executed independently by each process. Only actions which are offered by every process
in the parallel composition can be synchronized. Note that the exit action is always
synchronized between all processes at the end of a parallel composition.

3.3 Temporal Properties

Model checking consists in verifying that an LTS model satisfies a given temporal property
ϕ, which specifies some expected requirement of the system. Temporal properties are
usually divided into two main families: safety and liveness properties [BK08].

3.3. Temporal Properties 27

3.3.1 Safety Properties

Safety properties are widely used in the verification of real-world systems. Safety properties
state that “something bad never happens”. A safety property is usually formalised using a
temporal logic. To do this, we use Model Checking Language (MCL) [MT08] in Chapter 8.
MCL is an action-based, branching-time temporal logic used in order to express concurrent
systems temporal properties. A safety property can be semantically characterized by a
possibly infinite set of traces tϕ, corresponding to the traces that violate the property ϕ
in an LTS. If the LTS model does not satisfy the property, the model checker returns a
counterexample, which is one of the traces characterised by tϕ.

Definition 4 (Counterexample for Safety Properties) Given an LTS M = (S, s0,Σ, T)
and a safety property ϕ, a counterexample is any trace which belongs to t(M) ∩ tϕ.

3.3.2 Liveness Properties

Liveness properties state that “something good eventually happens”. We focus on a class
of liveness properties, called inevitable execution properties. Most of the patterns that
commonly occur in the specification of liveness properties make use of the inevitable ex-
ecutions. This is the case of the Response Property Pattern, that is the most common
pattern in [DAC99]. An inevitable execution property states that, given an LTS M and
an action l, every trace from the initial state in M presents a transition with the action l.
In this thesis we support nested inevitable executions. For instance, a property with two
nested actions l1 and l2 states that every trace in a given model must exhibit the action
l1 later followed by the action l2. Note that the two actions do not need to be contiguous
in traces. To express nested inevitable executions we define a nested inevitability oper-
ator using the Action-based Computation Tree Logic (ACTL) [DV90], which is another
action-based branching-time temporal logic:

Definition 5 (Nested Inevitability Operator) Given a sequence of labels l1, . . . ln, the nested
inevitability operator is defined as

Inev(l1, l2, . . . ln) = A[truetrueUl1A[truetrueUl2 . . . A[truetrueUlntrue] . . .]]

where A and U denote the ACTL operators along All paths and Until, resp.

A nested inevitable execution property can be semantically characterised by a possibly
infinite set of traces tϕ, corresponding to the traces that comply with the property ϕ in
an LTS. If the LTS model does not satisfy the property, the model checker returns a
counterexample, which is one of the traces characterised by t(M) \ tϕ.

Definition 6 (Counterexample for Liveness Properties) Given an LTS M = (S, s0,Σ, T)
and a liveness property ϕ, a counterexample is any trace which belongs to t(M) \ tϕ. A
counterexample can be in the form of an elementary trace, which is a trace where states are

28 Chapter 3. Preliminaries

pairwise distinct, or a lasso, which is a trace s0 l1−→ s1 ∈ T, . . . , sn−2
ln−1−−→ sn−1 ∈ T, sn−1

ln−→
sn ∈ T , such that s0 l1−→ s1 ∈ T, . . . , sn−2

ln−1−−→ sn−1 ∈ T is an elementary trace and sn = si
for some 0 ≤ i < n.

3.4 Operations on LTS

In this section we present some definitions, operations and algorithms which are used in
the rest of this work in order to handle LTSs.

3.4.1 Simulation Relation

The simulation relation [Par81] allows to relate two LTSs which behave in the same way.
It is defined formally as follows:

Definition 7 (Simulation Relation) Given two LTSs M1 = (S1, s
0
1,Σ1, T1) and M2 =

(S2, s
0
2,Σ2, T2), M1 is simulated by M2, written M1 v M2, iff ∃R ⊆ S1 × S2 such that

R(s0
1, s

0
2) and ∀s1 ∈ S1, s2 ∈ S2, R(s1, s2) implies ∀s1

l−→ s′1 ∈ S1,∃s2
l−→ s′2 ∈ S2, R(s′1, s

′
2).

3.4.2 LTS Determinization

The LTS determinization operation allows the conversion of a non-deterministic LTS to a
deterministic one. A deterministic LTS is formally defined as follows:

Definition 8 (Deterministic LTS) Given an LTS M = (S, s0,Σ, T), M is deterministic

iff ∀s ∈ S and ∀l ∈ Σ there exists at most one s′ ∈ Σ such that s
l−→ s′.

To determinize an LTS we perform an LTS reduction modulo weak trace equivalence,
meaning that the reduced LTS contains all the visible transitions sequences of the original
LTS. The determinization is performed with the Reductor tool of the CADP toolbox, which
makes use of the classic subset construction algorithm defined in [ASU86]. Thus, given
an LTS M , the resulting M ′ is a deterministic LTS which does not contain any invisible
transition and is weakly trace equivalent to M .

3.4.3 LTS Minimization

Given an LTS M , an LTS minimization operation on M consists in transforming M into
an equivalent LTS M ′ which have a minimum number of states. The equivalence between
M and M ′ is guaranteed by the strong bisimulation [Mil89] relation.

3.4. Operations on LTS 29

Definition 9 (Strong Bisimulation Relation) Given two LTSs M1 = (S1, s
0
1,Σ1, T1) and

M2 = (S2, s
0
2,Σ2, T2), M1 and M2 are strongly bisimilar, written M1 ≈M2, iff ∃R ⊆ S1×S2

such that R(s0
1, s

0
2) and ∀s1 ∈ S1, s2 ∈ S2, R(s1, s2) implies the following two conditions:

- ∀s1
l−→ s′1 ∈ S1,∃s2

l−→ s′2 ∈ S2 and R(s′1, s
′
2);

- ∀s2
l−→ s′2 ∈ S2,∃s1

l−→ s′1 ∈ S1 and R(s′1, s
′
2).

To perform the minimization operation we make use of the bcg min tool provided by the
CADP toolbox, which implements sequential variants of the partition refinement algorithm
for reducing an LTS modulo strong bisimulation detailed by Blom et Orzan in [BO05].

3.4.4 Synchronous Product

A synchronous product between two LTSs M1 and M2, written M1||M2, is defined as
follows:

Definition 10 (Synchronous Product) Given two LTSs M1 = (S1, s
0
1,Σ1, T1) and M2 =

(S2, s
0
2,Σ2, T2) the synchronous product between M1 and M2, written M1||M2, is an LTS

M = (S, s0,Σ, T) where S = S1 × S2; s0 = 〈s0
1, s

0
2〉; Σ = Σ1 ∪ Σ2; T such that:

- 〈s1, s2〉
l−→ 〈s′1, s2〉 if l ∈ Σ1, l /∈ Σ2 and s1

l−→ s′1;

- 〈s1, s2〉
l−→ 〈s1, s

′
2〉 if l /∈ Σ1, l ∈ Σ2 and s2

l−→ s′2;

- 〈s1, s2〉
l−→ 〈s′1, s′2〉 if l ∈ Σ1 ∩ Σ2 and s1

l−→ s′1 and s2
l−→ s′2.

3.4.5 Strongly Connected Components

In Chapter 6 we need to split an LTS in smaller portions in order to handle cycles. To do
this we use the notion of Strongly Connected Component (SCC) [Tar72], that is a partition
of an LTS where every state is reachable from any other state.

Definition 11 (Strongly Connected Component (SCC) in LTS) Given an LTS M =
(S, s0,Σ, T), an SCC of M is a tuple G = (SG,ΣG, TG) where:

- SG ⊆ S is a finite set of states;

- ΣG ⊆ Σ is a finite set of labels;

- TG ⊆ SG × ΣG × SG, TG ⊆ T is a finite set of transitions;

- for every pair of states (s′, s′′) ∈ SG there exists a path from s′ to s′′ such that

s′
l−→ s1 ∈ TG, s1

l−→ s2 ∈ TG, . . . , sn−1
l−→ s′′ ∈ TG and there exists a path from s′′ to

s′ such that s′′
l−→ s1 ∈ TG, s1

l−→ s2 ∈ TG, . . . , sn−1
l−→ s′ ∈ TG.

30 Chapter 3. Preliminaries

Note that s and s′ in Definition 11 can be the same, thus allowing also SCCs of only
one element. Moreover every SCC in an LTS is also a Maximally Strongly Connected
Component, since an SCC cannot be subsumed by a larger SCC by definition.

Tarjan Algorithm

To detect all the SCCs in an LTS we use the Tarjan’s SCCs algorithm [Tar72]. Given an
LTS M = (S, s0,Σ, T), the algorithm allows the detection of all the SCCs in linear time,
with a cost of O(|S| + |T |). The algorithm makes use of a modified depth-first search
procedure. The pseudo-code is given in Algorithm 1. Index and LowLink are two map
data structures where the key is a state and the value is an integer value. Index allows to
index states in the order they are reached during the exploration of the LTS. LowLink
allows to keep the index of the smallest state in the same strongly connected component.
For instance, given a state s, LowLink(s) is the smallest vertex in the same component as
s. The stack Stack collects the states that have been already reached but that have not yet
been assigned to an SCC. Functions Push and Pop performs the classic element addition
and removal operations on the stack. The loop at line 6 calls the StrongConnect
function on all the states that have not been numbered yet

The StrongConnect function represents the core element of the Tarjan’s algorithm. The
loop at line 16 allows iterating over state s successors (retrieved with the GetSuccessors
function), exploring with recursion on StrongConnect the states that have not yet been
discovered and updating LowLink(s). Min is a function that compute the minimum
between two values. Finally the if statement at line 22 allows returning an SCC when the
s state is identified as a root state of the SCC. At the end of the execution of the loop at
line 6 all the SCCs in M are identified and retrieved.

3.4. Operations on LTS 31

Algorithm 1 Tarjan SCC Algorithm

1: procedure Tarjan(M)
2: i← 0
3: Index(s) ← ∅
4: LowLink(s) ← ∅
5: Stack ← ∅
6: for all s ∈ SM do
7: if s /∈Index then
8: G← StrongConnect(s)
9: add G to the set of discovered SCCs
10:

11: function StrongConnect(s)
12: i← i+ 1
13: Index(s) ← i
14: LowLink(s) ← i
15: Push(StackG, s)
16: for all s′ ∈ GetSuccessors(s) do
17: if s′ /∈Index then
18: StrongConnect(s′)
19: LowLink(s) ← Min(LowLink(s),LowLink(s′))
20: else if Index(s′) < Index(s) then
21: LowLink(s) ← Min(LowLink(s),Index(s′))

22: if LowLink(s) = Index(s) then
23: G is a new SCC
24: do
25: w ←POP(StackG)
26: add state w to SG
27: while w 6= s

28: return G

32 Chapter 3. Preliminaries

Chapter 4

Approach Overview

The goal of our work is to simplify the comprehension of counterexamples by taking into
account relevant actions that are of prime importance to understand the bug. More pre-
cisely, our approach aims at highlighting choices in the model that contains such relevant
actions and that can thus explain the violation of a property. These choices are important
from a debugging point of view, since they represent decision points where the specification
goes from a (potentially) correct behaviour to an incorrect one, thus they can provide an
explanation of the bug. We call such choices neighbourhoods.

To detect neighbourhoods, our approach takes as input an LTS and a property. Then it
first performs a transition categorization step in which transitions in the LTS are typed
according to the behaviour of the system they lead to. Three types of transitions are rec-
ognized: correct transitions, which identify correct behaviours; incorrect transitions, which
identify incorrect behaviours and neutral transitions, which are common to both correct
and incorrect behaviours. The LTS where all the transitions have been categorized is called
tagged LTS and allows us to identify neighbourhoods. The neighbourhood detection step
takes as input the tagged LTS and analyses each state of the LTS. States where at least one
of the incoming transition is a neutral one and at least one of the outgoing transitions is
not neutral are identified as neighbourhoods. The set of recognized neighbourhoods can fi-
nally be exploited by the user with visual and abstraction techniques. The visual rendering
allows the developer to have a global view of the bug behaviour. Abstractions techniques
instead allow building simplified versions of counterexamples, for instance keeping only
actions that belong to neighbourhoods. These main steps of our approach are summarised
in Figure 4.1.

33

34 Chapter 4. Approach Overview

Figure 4.1: Overview of our approach.

In this chapter we first present the transitions types, we define the neighbourhood notion
and we provide a neighbourhood taxonomy. We then propose a methodology to exploit
neighbourhoods, using the visualization and the abstraction techniques.

Note that in order to recognize transition types in a model we have built two different
approaches: one for handling safety properties, called Counterexample LTS approach, and
another one for liveness properties, called Prefix/Suffix approach. We describe precisely
these two approaches in Chapter 5 and in Chapter 6. In this chapter we focus on how
the transition types, recognized with these two approaches, are exploited to identify neigh-
bourhoods.

4.1 Transitions Types and Tagged LTS

We are interested in detecting relevant choices in an LTS model between different be-
haviours. Such behaviours can be correct, meaning that they satisfy a given property, or
incorrect, meaning that they violate the given property. Relevant choices are character-
ized in a model by states with different types of outgoing transitions, meaning that some
transitions belong to correct behaviours while some others to incorrect ones. In order to
detect the choices in which we are interested, we first need to categorize the transitions in
the model into different types. The transition type allows to highlight the compliance with
the property of the paths in the model that traverse that given transition. Transitions in
the LTS can be categorized into three types:

• correct transitions, which belong to paths in the model that represent behaviours
which always satisfy the property.

4.2. The Neighbourhood Notion 35

• incorrect transitions, which belong to paths in the model that represent behaviours
which always violate the property.

• neutral transitions, which belong to portions of paths in the model which are
common to correct and incorrect behaviours.

We add the information concerning the detected transitions type (correct, incorrect and
neutral transitions) to the LTS in the form of tags. We define the set of transition tags as
Γ = {correct, incorrect, neutral}. Given an LTS M = (S, s0,Σ, T), a tagged transition is

represented as s
(l,γ)−−→ s′, where s, s′ ∈ S, l ∈ Σ and γ ∈ Γ. Thus, an LTS in which each

transition has been tagged with a type is called tagged LTS.

Definition 12 (Tagged LTS) Given an LTS M = (S, s0,Σ, T), and the set of transition
tags Γ, the tagged LTS is a tuple MT = (ST , s

0
T ,ΣT , TT) where ST = S, s0

T = s0, ΣT = Σ,
and TT ⊆ ST × ΣT × Γ× ST .

Figure 4.2 depicts on the left hand side a portion of an LTS and on the right hand side
the same portion in the corresponding tagged LTS where transitions types have been
recognized. Correct transitions are depicted with black lines, incorrect ones are depicted
with grey dotted lines and neutral ones are depicted with black dotted lines. Correct
transitions, represented by the transitions with QPut and Rack actions, belong to paths
that satisfy a given property. On the contrary, the incorrect transition with the Send
action belong to paths that never satisfies the given property. The neutral transitions with
the Recv represent a behaviour that is common to both correct and incorrect behaviours.

Figure 4.2: Example of Tagged LTS.

4.2 The Neighbourhood Notion

The tagged LTS where transitions have been typed allows us to identify neighbourhoods in
states in which an incoming neutral transition is followed by a correct or an incorrect one. A
neighbourhood represents a choice in the model between two (or more) different behaviours,
and consists of all the neutral incoming transitions and all the outgoing transitions. This set

36 Chapter 4. Approach Overview

of transitions identifies specific parts of the specification that may explain the appearance
of the bug and are therefore meaningful from a debugging perspective.

For instance, let us suppose a model of a concurrent system and a simple safety property
which states that we never want a given action A after an action B. Let us also suppose
that this property is false, since the system executes in some cases an action A after an
action B. In order to produce such incorrect cases, the system execution takes some precise
choices. Such choices can correspond to some specific interleaving generated by a parallel
composition operator or to nondeterministic choices in the specification from which the
LTS has been produced. Our neighbourhood notion allows us to identify these important
decision points in the model.

Note that only neutral transitions are taken into account as incoming transitions for the
neighbourhood. The incoming neutral transitions in a neighbourhood are called relevant
predecessors, since they highlight actions performed just before the ones described by the
correct (or incorrect) transitions. Relevant predecessors are always neutral transitions,
since they represent common prefixes for correct and incorrect transitions in neighbour-
hoods. These transitions are important from a debugging perspective since they represent
the last action that can be executed without an impact on the choice represented by the
neighbourhood. Thus, they are useful to the developer in order to locate the cause of the
bug in the specification.

Definition 13 (Neighbourhood) Given the tagged LTS MT = (ST , s
0
T ,ΣT , TT), a state s ∈

ST , such that ∃t = s′
(l,γ)−−→ s ∈ TT , t is a neutral transition, and ∃t′ = s

(l,γ)−−→ s′′ ∈ TT , t′

is a correct or an incorrect transition, the neighbourhood of state s is the set of transitions

Tnb ⊆ TT such that for each t′′ ∈ Tnb, either t′′ = s′
(l,γ)−−→ s ∈ TT or t′′ = s

(l,γ)−−→ s′′′ ∈ TT .

We now illustrate the example of a portion of a Tagged LTS depicted in Figure 4.2. The
incoming and outgoing transitions for the state highlighted in grey in the tagged LTS
in Figure 4.3 correspond to a neighbourhood. Note that the depicted state presents a
choice between different behaviours, highlighted by the different transition types. This
neighbourhood allows us to understand that the choice of the outgoing transition is relevant
from a debugging perspective, since it affects the property compliance. For instance, we
can see that if we choose a Rack action after the Recv action, the given property will be
satisfied. On the contrary, choosing the Send action after the Recv one will lead to an
incorrect behaviour, thus a property violation.

4.2.1 Neighbourhood Taxonomy

In order to detect all the neighbourhoods in the model, we built a simple procedure which
explores all the states in the tagged LTS and checks their incoming and outgoing transitions.
Given a state s, if there exists at least one incoming transition in s that is neutral, and at
least one of the outgoing transitions of s is not neutral, then s is a neighbourhood. Note

4.2. The Neighbourhood Notion 37

Figure 4.3: Example of neighbourhood with correct transitions.

that there exists a particular case of neighbourhood which does not require an incoming
neutral transitions. This is the case of a neighbourhood in the initial state of the LTS.

Given a state s in which a neighbourhood has been detected, we can identify a neigh-
bourhood type by looking at its outgoing transitions. More precisely, we can categorise
neighbourhoods in four types (as depicted in Figure 4.4 from left to right):

Figure 4.4: The four types of neighbourhoods.

1) with at least one correct transition (and no incorrect transition). The transitions con-
tained in this type of neighbourhood highlight a choice that can lead to behaviours that
always satisfy the property. Note that neighbourhoods with only correct outgoing tran-
sitions are not possible, since they would not highlight such a choice. Consequently, this
type of neighbourhood always presents at least one outgoing neutral transition.

2) with at least one incorrect transition (and no correct transition). The transitions con-
tained in this type of neighbourhood highlight a choice that can lead to behaviours that
always violate the property. Figure 4.5 shows a piece of a tagged LTS where the state in
the centre of the figure represents the origin of sequences of incorrect transitions. Note that
while a neutral outgoing transition is usually present to highlight the choice, a particular
case where only incorrect outgoing transitions are exposed exists. This is the case in which
the property is always false and the neighbourhood is located at the initial state of the
tagged LTS.

3) with at least one correct transition and at least one incorrect transition, but no neu-
tral transition. This type of neighbourhood highlights a choice between a correct and an
incorrect behaviour.

38 Chapter 4. Approach Overview

Figure 4.5: Example of neighbourhood with an incorrect transition.

4) with at least one correct transition, at least one incorrect transition and at least one
neutral transition. As for neighbourhood of type 3), this type also highlights a choice
between a correct and an incorrect behaviour, but the presence of the neutral transition
also allows us to choose a behaviour whose correctness is still not known at this point.

4.3 Neighbourhood Exploitation

The tagged LTS where neighbourhoods have been discovered can finally be exploited to
extract precise information related to the causes of the bug. To do this, the developer can
use two different methods: visualization techniques and abstraction techniques (see Fig-
ure 4.6). The visualization techniques rely on a 3D visual rendering of the tagged LTS with
neighbourhood, and provide functionalities to facilitate the manipulation of those models
(e.g., step-by-step path traversal, counterexample visualization, etc.). The abstraction
techniques aim at removing irrelevant parts of the counterexample and highlighting rel-
evant ones to simplify its comprehension. We now define a debugging procedure which
relies on the visualization and the abstraction techniques, and we successively present in
detail these two methods. The debugging procedure we propose provides hints to the de-
veloper to discover the source of the bug and thus favours the comprehension of its cause,
by exploiting the notion of neighbourhood.

Figure 4.6: Neighbourhood exploitation methods.

Methodology As far as usability is concerned, here is what we advocate for using our
approach from a methodological perspective. First, the developer can use the visual ren-
dering for taking a global look at the erroneous part of the tagged LTS and possibly notice

4.3. Neighbourhood Exploitation 39

interesting structures in that LTS that may guide her to specific kinds of bugs. The de-
veloper can dive in the LTS by focusing on chosen states or neighbourhoods and use the
step-by-step animation features for that exploration. Moreover, she can add to the visual-
ization some specific counterexample in order to focus on a particular trace of interest (the
shortest counterexample for instance) and use the visualization functionalities to better
understand the transitions and neighbourhoods on that specific trace.

In a second time, the developer can investigate more in detail the bug behaviour by fo-
cusing on single counterexamples. To do this, the developer can use one of the proposed
abstraction techniques. Abstraction techniques aim at simplifying the counterexample pro-
duced from the LTS and a given property, making a joint analysis of the counterexample
and of the tagged LTS with the set of neighbourhoods previously computed.

4.3.1 Visualization Techniques

The visualization techniques we developed give to the developer a graphical representation
of the tagged LTS extended with neighbourhoods, where correct/incorrect/neutral transi-
tions and neighbourhoods are highlighted. These 3D visualization techniques make use of
different colours to distinguish correct (green), incorrect (red) and neutral (black) transi-
tions on the one hand, and all kinds of neighbourhoods (represented with different shades
of yellow) on the other hand. The goal of this visual rendering is to provide a support for
visualizing the erroneous part of the tagged LTS and emphasize all the neighbourhoods
where a choice is taken and makes the specification either head to correct or incorrect
behaviour. Moreover, the developer can possibly notice interesting structures in the LTS
that may guide her to recognize specific kinds of bugs. We show several specifications in
Chapter 8 with invalid properties, which allow seeing how our approach can be used in
practice to visually identify typical bugs.

Figure 4.7: 3D visualization.

Figure 4.7 presents a mock-up of our 3D visualization approach. The state on the left hand

40 Chapter 4. Approach Overview

side of the figure depicted in light grey represents the initial state of the LTS, while the
two states in yellow and orange correspond to two neighbourhoods. Transitions are here
highlighted according to the types presented in Section 4.1. Different neighbourhoods are
also highlighted according to the categorization presented in Section 4.2.1.

Beyond visualizing the whole erroneous LTS, the visualization techniques also provide
functionalities in order to explore the tagged LTS for debugging purposes, facilitating the
manipulation of such LTS. For instance, the developer can rotate the LTS to change her
point of view, or perform zoom in/out on given states and neighbourhoods. We present
here the two main functionalities of the tool: the step-by-step path traversal and the
counterexample highlighting.

Step-by-Step Path Traversal One of the functionalities presented by the 3D visualiza-
tion technique provides a path traversal functionality that performs step-by-step animation
starting from the initial state or from any chosen state in the LTS. This functionality al-
lows the exploration of paths that lead to given neighbourhoods. The traversal keeps track
of the already traversed states and transitions. Moreover, the developer can also move
backward in that trace, performing different choices. Figure 4.8 shows a mock-up of the
step-by-step path traversal functionality.

Figure 4.8: Step-by-step path traversal functionality.

Counterexample Highlighting Another functionality allows the developer to visual-
ize a specific counterexample in the tagged LTS. The counterexample (produced by the
same tagged LTS under analysis) can first be chosen by the developer, thus is loaded
and highlighted in the tagged LTS. Then, this counterexample can be traversed using the
step-by-step animation feature for exploring specific details of such trace (in particular,
correct/incorrect transitions and neighbourhoods). Figure 4.9 shows a mock-up of the
counterexample highlighting functionality.

4.3.2 Abstraction Techniques

We present here some abstraction techniques we have proposed for our approach, organised
into two sets. The first set of techniques is independent of the model. It includes: (i) the

4.3. Neighbourhood Exploitation 41

Figure 4.9: Counterexample highlighting functionality.

abstracted counterexample technique, that allows to remove from a counterexample actions
that do not belong to neighbourhoods (and thus represent noise); (ii) the shortest path to
a neighbourhood technique, which retrieves the shortest sequence of actions that leads to
a neighbourhood. The second set is dependent on the model, consisting of techniques that
need an action or a pattern of actions to perform the analysis. It details improved versions
of (i) and (ii), where the user provides a pattern representing a sequence of non-contiguous
actions, in order to allow the developer to focus on a specific part of the model. Note
that the sets of techniques we present here can be enhanced with additional ones. The
abstraction techniques we have developed can be used as basis for new ones, by combining
them or by refining their results with constraints on the neighbourhood types. We will
comment on the relevance and benefit of the described abstraction techniques on real-world
examples in Chapter 8.

Abstraction Techniques Independent of the Model

We present in this section some abstraction techniques that are independent of the model,
meaning that they do not require an additional input from the developer.

Abstracted Counterexample We are able to provide an abstraction of a given coun-
terexample by keeping only transitions that belong to neighbourhoods. The aim of this
abstraction technique is to enhance the information usually contained in a counterexample
by pointing out actions involved in the cause of the bug. Given the tagged LTS MT , ob-
tained from a model M and a property ϕ, the set of states SN ⊂ ST where neighbourhoods
have been identified, and a counterexample ce, produced from M and ϕ, the procedure for
the counterexample abstraction consists of the following steps:

1. Matching between states of ce with states of MT .

2. Identification of states in ce that match states in SN .

3. Suppression of actions in ce, which do not represent incoming or outgoing transitions
of a neighbourhood.

42 Chapter 4. Approach Overview

In the case of liveness properties, the counterexample can be in the form of a lasso. In order
to treat such counterexample, the lasso is first unrolled. Then the unrolled counterexample
is treated as above.

Figure 4.10 shows an example of a counterexample where two neighbourhoods, highlighted
on the right side, have been detected and allow us to identify actions that are preserved
in the abstracted counterexample. For illustration purposes, let us consider the counterex-
ample, produced by a model checker from a model M and a property ϕ, given on the top
part of Figure 4.10. Once the set of neighbourhoods in the tagged LTS is computed using
M and ϕ, we are able to locate sub-sequences of actions corresponding to transitions in
the neighbourhoods. We finally remove all the remaining actions to obtain the abstracted
counterexample shown on the bottom part of the figure.

Figure 4.10: Counterexample abstraction.

Some alternative versions can be derived from this abstraction technique. An alternative
allows to refine the result of the technique by returning only actions that belong to a given
kind of neighbourhood. For instance, we can abstract the counterexample by showing only
actions that belong to neighbourhoods with incorrect transitions.

Shortest Path to a Neighbourhood The aim of this abstraction technique is to provide
a starting point to debug models that contain a high number of neighbourhoods. The
shortest path to a neighbourhood indeed shows the simplest way to reach the first choice
that may cause the bug. Given the tagged LTS MT , obtained from a model M and a
property ϕ, the set of states with a neighbourhood SN ⊂ ST , and the set of all traces
t(SN) ⊂ tδ(MT) between s0

T and each s ∈ SN , we extract the trace of size n ∈ N where n is
minimal w.r.t. the size of all other traces in t(SN). The neighbourhood is the closer one to
s0
T in terms of number of transitions between s0

T and the state where the neighbourhood has
been identified. From a practical point of view, this consists in performing a breadth-first
search for a neighbourhood in the tagged LTS, and then retrieving the sequence of actions
that are needed to reach that neighbourhood from the initial state s0. Let us consider a
portion of a tagged LTS MT depicted in Figure 4.11. States in grey highlight the set of
neighbourhoods identified in MT . We search for the neighbourhood that is the closest one
to the initial state. Transitions highlighted in black show the shortest path from the initial
state to the closest neighbourhood.

4.3. Neighbourhood Exploitation 43

Figure 4.11: Extracting the shortest path between the initial state and a neighbourhood.

Similarly to the abstracted counterexample technique, we define alternative versions, by
refining the searched type of neighbourhood or by forcing the path to match a pattern
of non-contiguous actions. A refined version of this technique consists of retrieving the
shortest path from the initial state to a neighbourhood with incorrect transitions. This
alternative version is useful to discover the shortest path that leads to a choice where at
least one of the possible options (that is, the one given by the incorrect transition) triggers
a behaviour that does not satisfy the given property.

Abstraction Techniques Dependent on the Model

We present here alternative versions of the two previous abstraction techniques in which
we exploit an input given by the user, in the form of a pattern representing a sequence
of non-contiguous actions. Note that the pattern can also be composed of a single action.
The aim of these techniques is to help the developer to focus on a specific part of the
analysed system to check whether it is involved in the bug.

Abstracted Counterexample Through a Given Pattern This alternative version of
the abstracted counterexample technique exploits an input given by the user, in the form
of a pattern representing a sequence of non-contiguous actions, to help the developer to
focus on a specific part of the analysed system. To do this, we produce the counterexample
that matches the given pattern and then we abstract it. Given the tagged LTS MT , given a
pattern r of size n ∈ N in the form of a sequence of non-contiguous labels l1, l2, . . . , ln ∈ ΣT ,
provided by the user, we apply the procedure described in the abstracted counterexample
technique (see the abstraction techniques independent on the model) to a counterexample
ce that matches the given pattern r to obtain the abstracted counterexample. Note that
the pattern can also be composed of a single action.

This technique may help in understanding the relevance of the given pattern of actions
in the cause of the bug. Indeed, let us imagine that at least one of the actions that
belongs to the pattern is present in a neighbourhood with an incorrect transition. In this
case, the pattern of actions is associated to the cause of the bug. Let us now imagine
an example where the pattern (for simplicity, composed of a single action) belongs to the
counterexample, but it is placed after an incorrect transition, like the one depicted in

44 Chapter 4. Approach Overview

Figure 4.12. In this case, the actions in the pattern occur when the execution is already
intended to trigger the bug, meaning that it is not relevant from a debugging perspective.

Figure 4.12: Pattern (of one action) in the abstracted counterexample.

Shortest Path to a Neighbourhood Through a Given Pattern This abstraction
technique searches for specific paths from the initial node to a neighbourhood that match
a given pattern in the form of a sequence of non-contiguous actions, representing a variation
of the shortest path to a neighbourhood described in Section 4.3.2. Given the tagged LTS
MT , obtained from a model M and a property ϕ, the set of states with a neighbourhood
SN ⊂ ST , and the set of all traces t(SN) ⊂ tδ(MT) between s0

T and each s ∈ SN , given a
pattern r of size n ∈ N in the form of a sequence of non-contiguous labels l1, l2, . . . , ln ∈ ΣC ,
provided by the user, we define as t(r) ⊂ t(SN) the subset of traces between s0

C and each
s ∈ SN that matches the given pattern r. We then extract the trace of size m ∈ N where
m is minimal w.r.t. the size of all other traces in t(r).

For illustration purposes, let us consider again the portion of a tagged LTS MT depicted
in Figure 4.13. States in grey highlight the set of neighbourhoods identified in MT . We
search for the path between the initial state and one of the neighbourhoods, that matches
a sequence of actions Recv and Rack with possibly other actions in between. Transitions
highlighted in black show the path that matches the given pattern.

Figure 4.13: Extracting the shortest path to a neighbourhood that matches a given pattern.

This technique can be helpful to check if the shortest path that leads to a neighbourhood
contains some actions provided by the user. Note that if the searched pattern of actions is
placed after a neighbourhood, the technique will not return any result.

Chapter 5

The Counterexample LTS Approach

In this chapter we describe the approach for computing the tagged LTS for safety property
violations. We first introduce the procedure to build an LTS containing all counterexam-
ples (counterexample LTS), given a model of the system (which we call full LTS, in order
to distinguish it from the counterexample LTS) and a safety property. We then present
a method to match states of the counterexample LTS and states of the full LTS. This
matching information allows us to identify transitions at the frontier between the coun-
terexample and the full LTS. The frontier is the area where traces, that share a common
prefix in the two LTSs, split in different paths. The computation of this frontier first allows
to detect correct transitions, which are then added to the counterexample LTS, making
it an enriched counterexample LTS. In a second step the enriched counterexample LTS is
used to detect incorrect and neutral transitions, leading to the construction of the tagged
LTS.

The main steps of the Counterexample LTS approach are summarised in Figure 5.1.

Figure 5.1: Counterexample LTS approach overview.

45

46 Chapter 5. The Counterexample LTS Approach

At the end of the chapter we show some examples of neighbourhoods extracted from the
tagged LTS produced with the Counterexample LTS approach.

5.1 Counterexample LTS Generation

The full LTS (MF) is given as input in our approach and is a model representing all
possible executions of a system. Given such an LTS and a safety property, our goal in this
subsection is to generate the LTS containing all counterexamples (MC).

Definition 14 (Counterexample LTS) Given a full LTS MF = (SF , s
0
F ,ΣF , TF), where

δ /∈ ΣF , and a safety property ϕ, a counterexample LTS MC is an LTS such that tδ(MC) =
t(MF) ∩ tϕ, i.e., a counterexample LTS is a finite representation of the set of all traces of
the full LTS that violate the property ϕ.

We use the set of final traces tδ(MC) instead of t(MC) since t(MC) is prefix closed, but
prefixes of counterexamples that belongs to t(MC) are not counterexamples. Moreover,
traces in the counterexample LTS share prefixes with correct traces in the full LTS.

Let us illustrate the idea of counterexample LTS on the example given in Figure 5.2. The
full LTS on the left hand side represents a model of a simple protocol that performs Send
and Receive actions in a loop. The counterexample LTS on the right hand side is generated
with a property ϕ stating that “no more than one Send action is allowed”. Note that final
transitions characterised by the δ label are not made explicit in this example.

Figure 5.2: Full LTS and counterexample LTS.

Given a full LTS MF and a safety property ϕ, the procedure for the generation of the
counterexample LTS consists of the following steps:

Step a) Conversion of the ϕ formula describing the property into an LTS called Mϕ, us-
ing the technique that allows the encoding of a formula into a graph described in [LM13].
Given an action formula that represents a logical formula built from basic action predicates

5.2. States Matching 47

and Boolean operators, this technique builds the LTS by replacing action formulas with
finite sets of transitions that can potentially occur in the process composition. Mϕ is a
finite representation of tϕ, using final transitions, such that tδ(Mϕ) = tϕ∩Σ∗F , where ΣF is
the set of labels occurring in MF . In this step, we also determinise Mϕ, as defined in Sec-
tion 3.4.2, and we finally reduce the size of Mϕ without changing its behaviour, performing
a minimization based on strong bisimulation [Mil89]. Those two transformations keep the
set of final traces of Mϕ unchanged. The LTS Mϕ obtained in this way is the minimal one
that is deterministic and accepts all the execution sequences that violates ϕ.

Let us consider again the previous example. The property ϕ that states that no more than
one Send action is allowed is translated in the LTS depicted in Figure 5.3a. The asterisk
symbol ∗ is used here for simplicity to summarise all the transitions that are represented
by the labels which are not contained in the property, while the δ symbol points out the
final transitions.

Step b) Synchronous product between MF and Mϕ with synchronisation on all the
labels of ΣF (thus excluding the final label δ). The result of this product is an LTS whose
final traces belong to t(MF) ∩ tδ(Mϕ), thus it contains all the traces of the LTS MF that
violate the formula ϕ. Note that t(MF) ∩ tδ(Mϕ) = t(MF) ∩ tϕ, because t(MF) ⊆ Σ∗F and
tδ(Mϕ) = tϕ ∩Σ∗F . Figure 5.3b shows the result of the product of the full LTS depicted in
Figure 5.2 and the property ϕ in the form of an LTS depicted in Figure 5.3a.

Step c) Pruning of the useless transitions generated during the previous step. In par-
ticular, we use the pruning algorithm proposed in [MPS12] to remove the traces produced
by the synchronous product that are not the prefix of any final trace. As we can see in
Figure 5.3b, final traces end with the δ transitions (that have been introduced by the final
δ transition in Mϕ produced in the first step). We first remove all the transitions that do
not belong to final traces. In the example, these consist of the Exit transition after the
Init transition and the Exit transition after the first Send and Recv transitions. At the
end of this process the δ transitions are not needed any more, thus they are removed. The
result of this step is depicted in Figure 5.3c.The LTS MC obtained at the end of Step c is
thus a counterexample LTS for MF and ϕ.

5.2 States Matching

We now need to match each state belonging to the counterexample LTS with the corre-
sponding one in the full LTS. To do this, we define a matching relation between states
of the two LTSs, by relying on the simulation relation introduced in Chapter 3. In our
context, we want to build such a relation between MC and MF , where a state x ∈ SC
matches a state y ∈ SF when the first is simulated by the latter, that is, when x v y.

48 Chapter 5. The Counterexample LTS Approach

(a) (b) (c)

Figure 5.3: The Counterexample LTS generation steps.

Figure 5.4: States matching.

Since the LTS that contains the incorrect behaviours is extracted from the full LTS, the
full LTS always simulates the counterexample LTS. Note that the correspondence of states
between the counterexample LTS and the full LTS is n-to-1. Indeed multiple states of the
counterexample LTS may correspond to a single state of the full LTS. For instance this is
the case when a loop is partially rolled out.

To build the simulation relation between MC and MF we exploit information generated by
the synchronous product used in step b) of Section 5.1. Indeed, the product also generates
a list of couples of states of MF and Mϕ where each couple is associated to the resulting
state of MC , representing the matching between each state of MC with the corresponding
one in MF . Let us consider again the example described in Figure 5.2. Each state of the
counterexample LTS on the right hand side of the picture matches a state of the full LTS on
the left hand side as shown in Figure 5.4. Note that the property ϕ has become unsatisfied
after a given number of iterations of the loop composed of Send and Recv actions, resulting
in a correspondence of several states of the counterexample LTS to a single state of the
full LTS.

5.3. Transition Types Computation 49

5.3 Transition Types Computation

The state matching information, retrieved in Section 5.2, is here exploited as input to
compare transitions outgoing from similar states in both LTSs. This comparison aims at
identifying transitions that originate from matched states, and that appear in the full LTS
but not in the counterexample LTS. We call this kind of transition a correct transition.

Definition 15 (Correct Transition) Given an LTS MF = (SF , s
0
F ,ΣF , TF), a property ϕ,

the counterexample LTS MC = (SC , s
0
C ,ΣC , TC) obtained from MF and ϕ, and given two

states s ∈ SF and s′ ∈ SC, such that s′ v s, we call a transition s
l−→ s′′ ∈ TF a correct

transition if there is no transition s′
l−→ s′′′ ∈ TC such that s′′′ v s′′.

A correct transition is preceded by incoming transitions that are common to the correct
and incorrect behaviours, meaning that they appear in both the full and the counterex-
ample LTSs. These transitions are relevant predecessors, which we already presented in
Section 4.2. States where a correct transition exists allow us in a second step to identify
neighbourhoods belonging to the first type (according to the neighbourhood taxonomy of
Chapter 4).

Let us illustrate the detection of a correct transition on an example. Figure 5.5 shows a
piece of full LTS and the corresponding counterexample LTS. The full LTS on the left hand
side of the figure represents a state that has been matched by a state of the counterexample
LTS on the right hand side and it has correct transitions outgoing from it.

Figure 5.5: Example of correct transitions.

We then add all the correct transitions detected in the full LTS to the counterexample
LTS. Note that correct transitions added to the counterexample LTS are all directed to a
new dedicated sink state (sk). In this way the behaviour described by the counterexample
LTS is not altered. The counterexample LTS, with the added correct transitions, is called
enriched counterexample LTS.

Definition 16 (Enriched Counterexample LTS) Given the counterexample LTS MC =
(SC , s

0
C ,ΣC , TC) obtained from a full LTS MF and a property ϕ, the set of correct transitions

Tct detected in MF and the set of labels Σct in Tct, the enriched counterexample LTS is a

50 Chapter 5. The Counterexample LTS Approach

tuple MEC = (SEC , s
0
EC ,ΣEC , TEC) where SEC = SC ∪ sk, s0

EC = s0
C, ΣEC = ΣC ∪Σct, and

TEC = TC ∪ Tct.

In Figure 5.6 we illustrate a portion of enriched counterexample LTS. The two correct
transitions detected in the full LTS are added to the counterexample LTS and are directed
to a destination state represented by the sink state.

Figure 5.6: Example of portion of Enriched Counterexample LTS.

All the information we need to perform the following steps is thus contained in the sole
enriched counterexample LTS. We now focus on transitions that lead only to behaviours
that do not satisfy the property. To detect this kind of transitions we check each transition
in the enriched counterexample LTS searching for correct transitions among its subsequent
transitions. If this is not the case, we classify the transition as incorrect transition.

Definition 17 (Incorrect Transition) Given an enriched counterexample LTS MEC =
(SEC , s

0
EC ,ΣEC , TEC), a state s ∈ SEC, the set Ssucc that contains s and its successors

states, we call a transition t = s
l−→ s′ ∈ TC an incorrect transition if there is no state

s′ ∈ Ssucc such that ∃t′ = s′
l−→ s′′ ∈ TC and t′ is a correct transition.

Definition 17 produces sequences of incorrect transitions, since successors of incorrect tran-
sitions are also incorrect. Note that this is not the case for correct transitions. Since correct
transitions are all directed to the sink state, they do not have successors and consequently
they do not produce any sequences of actions.

The transitions that are not correct nor incorrect are the ones that have both correct and
incorrect transitions among their successors. We call these transitions neutral transitions.
The detection of the three types of transition on the enriched counterexample LTS allows
us to obtain a tagged LTS (introduced in Section 4.1). Figure 5.7 shows the portion of
tagged LTS computed from the portion of enriched LTS of Figure 5.6.

5.4. Neighbourhood Examples 51

Figure 5.7: Example of portion of tagged Counterexample LTS.

5.4 Neighbourhood Examples

The tagged LTS allows us to extract neighbourhoods in a second step, according to the
procedure detailed in Section 4.2. The neighbourhood computation procedure detect neigh-
bourhoods in states where an incoming neutral transition is followed by a correct or an
incorrect one. Let us show a couple of neighbourhoods examples.

We first take into account again the last example of portion of tagged LTS. The incoming
and outgoing transitions of the state in the centre of Figure 5.8 represent a neighbourhood,
which belongs to the first type (see the taxonomy in Section 4.2.1).

Figure 5.8: Example of neighbourhood in a tagged Counterexample LTS.

Let us now consider again the counterexample LTS generated in Figure 5.3. We add the
sink state with correct transitions to such counterexample LTS, and we detect all the other
transitions types. In Figure 5.9 we depict the resulting tagged LTS, where we identify in a
second step some neighbourhoods. Correct transitions, all representing the Exit transition,
highlight a neighbourhood in the corresponding source state. In this example, the first two
neighbourhoods belong to the first type of neighbourhood (according to the taxonomy
detailed in Section 4.2.1). The third neighbourhood has both a correct and an incorrect
transition, corresponding to the second Send transition. Consequently, this neighbourhood

52 Chapter 5. The Counterexample LTS Approach

belongs to type 3. Note that this example contains an high number of neighbourhoods
w.r.t. the number of states in the LTS. This is commonly not the case in real-world cases,
since other transitions considered as noise by the developer are usually present between
neighbourhoods in tagged LTSs.

Figure 5.9: Neighbourhood identification.

Chapter 6

The Prefix-Suffix Approach

In this chapter we describe our approach to handle liveness properties, in particular in-
evitability properties, which are treated as a sequence of inevitable actions. The Coun-
terexample LTS technique presented in Chapter 5 does not work with liveness properties
violations. The reason is that the procedure which generates the counterexample LTS
does not support the presence of lassos in the counterexamples produced from a liveness
property violation. We thus propose an alternative approach, called the Prefix / Suffix
approach, which focuses on the analysis of the execution of the property’s actions in each
LTS state to locate neighbourhoods.

We first present in Section 6.1 the notions of prefixes and suffixes. These notions are used to
capture information about the actions belonging to the property that have already been or
remain to be executed. In Section 6.2 we describe the algorithms we developed to compute
prefixes and suffixes by analysing SCCs in the original LTS, in order to obtain an augmented
version of such LTS (augmented LTS). Prefix and suffix information is successively used
to detect the type of the transition (correct, incorrect or neutral) in order to obtain the
tagged LTS introduced in Chapter 4. The main steps of the Prefix / Suffix approach are
summarised in Figure 6.1. At the end of the chapter we illustrate with an example of
neighbourhood detected in a tagged LTS computed with the Prefix / Suffix approach, and
we compare this approach to the Counterexample LTS one.

Figure 6.1: Prefix / Suffix approach overview.

53

54 Chapter 6. The Prefix-Suffix Approach

6.1 Prefixes and Suffixes

An LTS M is a model representing all possible executions of a system. Given an inevitable
execution property ϕ, our goal is to analyse each state s in M to understand whether all
the traces that pass through s satisfy the sequence of actions expressed by ϕ. To do this
we compare the prefixes of traces that reach the state to prefixes of the given sequence.
Similarly we compare the suffixes of traces that start from the state to suffixes of the given
sequence. Note that in this work we use the symbol “ · ” to denote the concatenation
operator for labels and sequences of labels.

Definition 18 (Sequence of Inevitable Actions) Given an inevitable execution property
p = Inev(l1, . . . , ln), the sequence of concatenated labels k = l1 · l2 · . . . · ln of size n ∈ N is
the sequence of inevitable actions that respect the order defined by the nested inevitability
operator.

The sequence of inevitable actions may represent non-contiguous transitions in the model.
In order to match traces and prefixes (suffixes, resp.) of traces with the sequence of
inevitable actions, we define a matching operator as follows:

Definition 19 (Matching Operator) Given an LTS M = (S, s0,Σ, T), a sequence of la-

bels j = a1 · a2 · . . . · an, a sequence of contiguous transitions z = s1
l1−→ s2 ∈ T, s2

l2−→
s3 ∈ T, . . . , sm−1

lm−1−−−→ sm ∈ T , z is said to match j, written j ≺ z, if there exists integers
1 ≤ i1 < i2 < . . . < in ≤ m such that a1 = li1 , a2 = li2 , . . . , an = lin.

We assign to each state of the LTS the prefixes of the sequence of inevitable actions k
obtained up to the state under analysis. To do this, we introduce the notions of max prefix
and common prefix, w.r.t. k. The max prefix is the longest prefix of the k sequence among
the prefixes of traces that end in a given state. The common prefix is the longest prefix of
the k sequence that is common to all the prefixes of traces that end in a given state. We
define Tes as the set of all the prefixes of traces that end in s and Pk as the set of all the
prefixes of k.

Definition 20 (Max and Common Prefix) Given an LTS M = (S, s0,Σ, T), a sequence
of inevitable actions k, the set Pk of all the prefixes of k, a state s ∈ S, the max prefix,
defined as mps, is the longest element in Pk such that ∃t ∈ Tes, mps ≺ t. The common
prefix, defined as cps, is the longest element in Pk such that ∀t ∈ Tes, cps ≺ t.

In a similar way we assign to each state of the LTS the suffixes of the sequence of inevitable
actions k that will be completed starting from s. We introduce the notions of max suffix
and common suffix, w.r.t. k. The max suffix is the longest suffix of the k sequence among
the suffixes of traces that start from a given state. The common suffix is the longest suffix
of the k sequence that is common to all the suffixes of traces that start from a given state.
We define Tos as the set of all the suffixes of traces that start from s and Sk as the set of
all the suffixes of k.

6.1. Prefixes and Suffixes 55

Definition 21 (Max and Common Suffix) Given an LTS M = (S, s0,Σ, T), a sequence
of inevitable actions k, the set Sk of all the suffixes of k, a state s ∈ S, the max suffix,
defined as mss, is the longest element in Sk such that ∃t ∈ Tos, mss ≺ t. The common
suffix, defined as css, is the longest element in Sk such that ∀t ∈ Tos, css ≺ t.

The example given in Figure 6.2 shows the max/common prefixes and suffixes calculated
on each state of an LTS for a given sequence of inevitable actions k = A · Y . Let us take a
look at state 8: the cp value shows that the action A exists in every prefix of k produced
by prefixes of traces that end in state 8. Conversely, the cs value in state 8 is empty while
the ms value is A ·Y , meaning that the suffix A ·Y is not contained in every suffix of traces
that starts in state 8. It is also interesting to notice that in state 3 all the mp, cp,ms, cs
values are empty, since none of the actions in k have been or will eventually be met. As
a matter of fact, we can see that the only suffix of traces that respects the k sequence is

the one that begins with the transition 9
C−→ 10 ∈ T , since the composition of cp in state

9 and cs in state 10 represents the whole k sequence (we will see in details how the max
/ min prefixes and suffixes are used to categorise a given transition in Section 6.3). Note
that the repetition of the action A in some traces does not increase the size of computed
prefixes, since they must represent a prefix of the given k sequence.

Figure 6.2: Max / common prefixes and suffixes.

In some cases inevitable execution properties might not be satisfied because of loops in
which the execution of the system can remain infinitely. Our notion of suffix allows us to
discover such loops and understand whether they prevent the satisfaction of the property.
In particular, given a state s, if a loop impedes the completion of the k sequence in suffixes
of traces starting in s, the ms value is empty. If a choice that allows to exit from the loop
and later complete the k sequence exists inside the same loop, the ms value consists of the
suffix needed to complete the k sequence from s. Note that in both cases the cs value in s is
empty. One of these loops is present in the example in Figure 6.2 and is composed of states
4, 5, 6, 8, 9 and 12. These loops are treated in the next section by extracting the Strongly
Connected Components (SCCs) [Tar72] from the LTS. The LTS with the max/common
prefixes (suffixes, resp.) computed for each state is called augmented LTS.

Definition 22 (Augmented LTS) Given an LTS M = (S, s0,Σ, T) and a sequence of in-

56 Chapter 6. The Prefix-Suffix Approach

evitable actions k, the augmented LTS is a tuple Mk
E = (SE, s

0
E,ΣE, TE) such that each state

sE ∈ SE is a tuple sE = (s,mps, cps,mss, css), where s ∈ S, mps, cps ∈ Pks , mss, css ∈ Sks ;
s0
E = (s0,mps0 , cps0 ,mss0 , css0); ΣE = Σ; TE ⊆ SE × ΣE × SE, where ∀s l−→ s′ ∈
T, (s,mps, cps,mss, css)

l−→ (s′,mps′ , cps′ ,mss′ , css′) ∈ TE.

6.2 Prefixes and Suffixes Calculation

This section presents the computation of the prefixes and suffixes defined in Section 6.1.
In order to handle cycles in an LTS we use the notion of SCC. To detect all the SCCs in an
LTS we use the Tarjan’s SCCs algorithm [Tar72], detailed in Chapter 3. Given a sequence
of inevitable actions k, our approach considers each SCC of the LTS, and computes the
max/common prefixes and suffixes for every state in the SCC. Note that we start computing
prefixes for states in a given SCC only when all its predecessor SCCs have been computed
(in the case of suffixes we first compute all the successors).

We now introduce some definitions that we will use throughout the whole section. Given
an LTS M = (S, s0,Σ, T) and an SCC G = (SG,ΣG, TG) in M , we denote as SeG ⊆ SG

the set of initial states of G, such that, given a transition s
l−→ s′ ∈ T , the state s /∈ SG

and s′ ∈ SeG. The transition s
l−→ s′ ∈ T is defined as incoming transition and the set

of incoming transitions is written as T eG. Similarly, we denote as SoG ⊆ SG the set of

outgoing states such that, given a transition s
l−→ s′ ∈ T , the state s ∈ SoG and s′ /∈ SG.

The transition s
l−→ s′ ∈ T is defined as an outgoing transition and the set of outgoing

transitions is written as T oG.

Moreover, we denote as GM the component graph [CJLV02] of an LTS M where the states
are given by SCCs of M . The SCC containing the initial state s0 of the LTS M does not
have any predecessors and it is defined as G0. By definition, since all cycles are contained
in SCCs, GM is a directed acyclic graph. The rest of this section presents the computation
of the max prefix (suffix, resp.) and of the common prefix (suffix, resp.) for states of an
SCC.

6.2.1 Max Prefix Calculation

The max prefix inside an SCC is computed by first extracting the longest max prefix among
the incoming states of the SCC. Second, the incoming max prefix is extended with actions
contained inside the SCC to produce the longest (possible) prefix of k. Note that the max
prefix is the same for all the states of an SCC. The cost of the computation for an SCC G
is O(|T eG|+ |TG|+ |k|), since we first have to explore all the incoming transitions to compute
the initial max prefix, and second we have to collect all the actions in the SCC that are
also present in k.

6.2. Prefixes and Suffixes Calculation 57

Let us consider the SCC composed of states 1, 2 and 3 in Figure 6.3 (note that SCCs in
states 0, 4 and 5 are trivial). Given k = A · B · C, the initial max prefix for the SCC
is A, since the transition from state 0 to state 1 is the only incoming transition and it
contains the first action of the k sequence. One can notice that by looping inside the SCC
it is possible to complete the k sequence, since the SCC contains also actions B and C.
Consequently, the max prefix in each state of the SCC (states 1, 2 and 3) is equivalent to
the k sequence.

Figure 6.3: Max prefix calculation on an SCC.

6.2.2 Max Suffix Calculation

The max suffix is computed similarly to the max prefix, by considering suffixes of successors
instead of prefixes of predecessors. In the example in Figure 6.4 the max suffix for every
state in the SCC is B · C, since they are the only two actions contained in the SCC that
also exist in k.

Figure 6.4: Max suffix calculation on an SCC.

6.2.3 Common Prefix Calculation

We describe here the computation of the common prefix for each state in an SCC. The
pseudo-code of this procedure is detailed in Algorithm 2. The algorithm is divided into
two main steps: initialisation and internal transitions computation.

Initialisation step. Given an SCC G the algorithm initialises the common prefix of states
in G to k (Line 3). There are two exceptions to this rule. First, the initial state of the LTS

58 Chapter 6. The Prefix-Suffix Approach

s0 is initialised to the empty sequence since it has no predecessors. Second, if s is an initial
state of G, cps is initialised with the common prefixes of its incoming transitions (Line 7).

Let us take a look at the example in Figure 6.5. The initialisation step assigns cp = A·B ·C
to states 2 and 3, while it assigns cp = A to state 1, which is the only initial state of the
SCC.

Figure 6.5: Common prefix calculation on an SCC (init step).

Internal transitions computation step. After the initialisation step, all initial states have a
common prefix that accounts for transitions from outside of G. However, there may still be
paths within G that can produce a smaller prefix. This step deals with internal transitions
to detect smaller prefixes. First of all, we use Q (Line 8) as sorted set to order the states
in SG by increasing common prefix size. When modifying the common prefix of a state s,
UpdatePosition(Q, s) updates the position of s in Q. The loop of Line 9 iterates on Q,
removing the first element s at each iteration. The common prefix of all successors s′ of
s within G is updated using a function LCP which computes the longest common prefix
between two sequences of actions. When producing a smaller prefix, the position of s′ in
Q is updated.

Let us consider the SCC in Figure 6.6 (initialised in Figure 6.5). The internal transitions
computation step corrects the values of cp in states 2 and 3, assigning respectively cp = A
and cp = A ·B. The value of cp in state 1 remains the same, since it was already the lower
one among all the states of the SCC.

Figure 6.6: Common prefix calculation on an SCC.

Correctness and complexity. The cost of the initialisation step of the algorithm is
O(|SG| + |T eG|) since it considers all states and their incoming transitions. The rest of
the common prefix algorithm behaves similarly to the Dijkstra’s algorithm that deals with

6.2. Prefixes and Suffixes Calculation 59

the single-source shortest-paths problem in weighted directed graphs (in particular, to the
implementation which uses a Fibonacci heap as priority queue). When a state is removed
from Q, its common prefix is correct and will no longer be updated, as there is no state
in Q with a smaller common prefix. Note that the common prefix of a state s can only
be updated twice in the loop. Indeed, the predecessors of s are considered for updates
by increasing size of common prefix. There exists either a predecessor of s that has the
same common prefix and a transition that does not match in k, or a predecessor that has
a common prefix containing one less element, but a transition to s that matches k and
increases the prefix. In the first case, it is possible to first encounter a predecessor that
generates a smaller common prefix with a matching transition, leading to a first update of
cps, before the final assignment when reaching the optimal predecessor. The complexity
of the loop of the internal transitions computation step is O(|TG|+ |SG| log |SG|), because
the while loop performs exactly |SG| iterations, given that Q is initialised to SG and an
element is removed each time. Moreover the cost of inserting an element to Q and up-
dating its position is O(log |Q|). Hence, taking into account the initialization and the
internal transition computation steps, the complexity of the common prefix algorithm is
O(|T eG|+ |TG|+ |SG| log |SG|)

Algorithm 2 Common Prefix Computation

1: procedure CommonPrefix(G, k)
2: for all s ∈ SG do
3: cps ← k
4: if s = s0 then cps ← ∅
5: else if s ∈ SeG then

6: for all s′
l−→ s ∈ExtractIncomingTrans(s) do

7: if s′ /∈ SG then cps ← LCP(cps, cps′ · l)
8: Q← SG
9: while Q 6= ∅ do
10: s← PopFirst(Q)

11: for all s
l−→ s′ ∈ TG do

12: t← LCP(cps · l, cps′)
13: if |t| < |cps′ | then cps′ ← t ; UpdatePosition(Q, s′)

6.2.4 Common Suffix Calculation

The common suffix calculation is similar to the prefix case, but it differs in the initialisation
step. In the prefix case, the fact that the execution reaches a state indicates that it was
not stuck into a loop of a preceding SCC. Simply transposing this to the prefix case would
not work, as it is not certain that the execution will reach a final state. Indeed, in the
suffix case the execution may loop into the current SCC and never go through an outgoing

60 Chapter 6. The Prefix-Suffix Approach

transition, and a state may thus have a smaller common suffix than all states from its
successor SCCs. This initialisation step is presented in Algorithm 3. In the case of a
final state, the suffix is empty (Line 3). Otherwise, the common suffix is initialised to the
smallest suffix of k traversed by a loop from s to itself (Line 4). In the absence of loops
(SCC with single state and no self-loop), MinSuffixLoop returns k. The remainder of
the computation is similar to Algorithm 2, using a function LCS, which computes the
longest common suffix, instead of LCP. Searching the smallest-suffix loop for each state
is done by iteratively removing labels from k and looking for isolated vertices. Hence, the
overall cost of the computation is O(|T oG|+ |k| × (|TG|+ |SG|) + |SG| log |SG|), making the
common suffix computation having an higher complexity that the common prefix one.

Algorithm 3 Common Suffix Computation (Initialisation Step)

1: procedure CommonSuffixInit(G, k)
2: for all s ∈ SG do

3: if 6 ∃s l−→ s′ then css ← ∅
4: else css ← MinSuffixLoop(s, k,G)
5: if s ∈ SoG then

6: for all s
l−→ s′ ∈ExtractOutgoingTrans(s) do

7: if s′ /∈ SG then css ← LCS(css, l · css′)

Let us consider the example in Figure 6.7. The initialisation step assigns cs = B · C to
state 1, which is the smallest suffix of k that can be produced inside the SCC starting from
state 1. It then assigns the empty sequence and cs = C to states 2 and 3, since they are
outgoing states. The algorithm will later update the value of cs in state 1 to the empty
sequence with the internal transitions computation step.

Figure 6.7: Common suffix calculation on an SCC.

6.2.5 Order of Calculation

So far, we have considered the computation of prefixes and suffixes for the states of an
SCC. However, evaluating prefixes requires that the prefixes of all predecessor states of
an SCC are correct (successors states in case of suffixes). It is thus important to execute
our approach on SCCs in an appropriate order. Since by definition there are no cycles

6.3. Transitions Types Computation 61

in GM, we can define the depth of an SCC as 0 for the SCC that contains s0, and 1
plus the maximum depth of predecessor SCCs otherwise. Our approach computes prefixes
in SCCs by increasing depth, and suffixes by decreasing depth, ensuring the presence of
the necessary information. Note that the use of the depth value, that guarantees the
evaluation of the SCCs in the correct order, makes the calculation of prefixes and suffixes
in the initial LTS trivially correct. Given the costs of computing prefixes and suffixes in
each SCC, the total cost of the calculation of the augmented LTS is O(|k| × (|T |+ |S|) +∑

G∈GM
(|SG| log |SG|)).

6.3 Transitions Types Computation

We now need to obtain a tagged LTS from the augmented LTS, in order to detect neigh-
bourhoods in a next step. To do this, the augmented LTS with max/common prefixes and
suffixes is used to characterise its transitions. A transition is typed as correct if it belongs
to a correct part of the model, as incorrect if it belongs to an incorrect part of the model,
as neutral if none of the previous cases apply.

More specifically, a correct transition leads to a portion of the LTS where the sequence of
actions k is always respected. To state whether a transition is a correct one we compute
the sum of the length of cp in the source state and of cs in its destination state. Note
that we also have to take into account the label of the transition in this sum, since the
concatenation of cp with the label may produce a valid prefix of k. If the sum is equal or
higher than the size of the k sequence the transition is identified as correct.

Definition 23 (Correct Transition) Given an augmented LTS Mk
E = (SE, s

0
E,ΣE, TE),

two states sE = (s,mps, cps,mss, css) ∈ SE, s′E = (s′,mps′ , cps′ ,mss′ , css′) ∈ SE, a correct

transition is a transition sE
l−→ s′E ∈ TE such that cp = cps · l if cps · l is a prefix of k,

cp = cps otherwise, and |cp|+ |css′ | ≥ |k|.

On the contrary, an incorrect transition is a transition that leads to a portion of the LTS
where the sequence of actions k is never respected. We take into account the sum of the
length of mp in the source state and of ms in its destination state. As for the correct
transition, also in this case we need to take into account the label of the transition for
the sum. If the sum is lower than the size of the k sequence the transition is classified as
incorrect.

Definition 24 (Incorrect Transition) Given an augmented LTS Mk
E = (SE, s

0
E,ΣE, TE)

two states sE = (s,mps, cps,mss, css) ∈ SE, s′E = (s′,mps′ , cps′ ,mss′ , css′) ∈ SE, an incor-

rect transition is a transition sE
l−→ s′E ∈ TE such that mp = mps · l if mps · l is a prefix

of k, mp = mps otherwise, and |mp|+ |mss′ | < |k|.

When a transition cannot be identified as correct nor as incorrect, it means that it is com-
mon to both correct and incorrect behaviours. Such transition is called a neutral transition.

62 Chapter 6. The Prefix-Suffix Approach

The information concerning the detected types of transitions (correct, incorrect and neu-
tral) is added to the augmented LTS in the form of tags. In this way we obtain the tagged
LTS defined in Section 4.1, which can later be used to obtain neighbourhoods. Figure 6.8
depicts the tagged LTS obtained from the augmented LTS presented in Figure 6.2.

Figure 6.8: Transitions types computation.

Neighbourhood Example In Figure 6.9 we show again the example described in Fig-
ure 6.8, where the transition types computation has allowed to identify neighbourhoods
(states coloured in grey). In particular state 9, where correct and neutral transitions are
present, shows a neighbourhood of the first type, where a choice that will always satisfy
the property is possible. On the contrary, states 1, 6 and 8 show neighbourhoods of the
second type, where a choice that leads to an incorrect behaviour is possible.

Figure 6.9: Neighbourhood identification.

6.4 Concluding Remarks

We comment here on some differences between the Prefix / Suffix approach and the Coun-
terexample LTS one. First of all, note that both approaches generate a tagged LTS.
However, the transitions types are computed in two different ways and rely on different

6.4. Concluding Remarks 63

definitions, since we retrieve them from two different models: the enriched counterexample
LTS in the Counterexample LTS approach and the augmented LTS in the Prefix / Suffix
one. While the former is a reduced model and contains only incorrect behaviours (correct
transitions are directed to the sink state), the latter one contains both correct and incorrect
behaviours.

Consequently, tagged LTSs produced with each approach have some specific characteristics.
In a tagged LTS computed with the Counterexample LTS approach:

• correct transitions are only followed by the sink state;

• incorrect transitions are only followed by incorrect ones or by a final state;

• neutral transitions always precede correct and incorrect transitions.

Thus, a neutral transition tells us that we can still choose between a correct and an
incorrect behaviour. Moreover, in this tagged LTS a path does not contain more than a
correct transition, since all the correct behaviours are represented by the sink state.

In the case of a tagged LTS computed with the Prefix / Suffix approach neutral transitions
can instead also follow correct and incorrect ones. Indeed, in this case the tagged LTS
does not have a sink state to synthesize all the correct behaviours. Therefore, neutral
transitions are not only precursors of a choice between correct and incorrect behaviours
(as in the tagged LTS produced with the Counterexample LTS approach), but can also
represent final parts of paths that are common to both behaviours. Let us consider as an
example the portion of tagged LTS produced by the Prefix / Suffix approach in Figure 6.10.
The depicted LTS splits in two branches representing respectively a correct and an incorrect
behaviour, but at the end the two branches merge in a common suffix which is common to
both behaviours. This suffix is thus composed of neutral transitions.

Figure 6.10: Portion of tagged LTS (refix / Suffix approach).

The different characteristics between the tagged LTSs produced with the two approaches
do not have any influence on the neighbourhood detection. A neighbourhood is located
only in states where an incoming neutral transition is followed by at least one outgoing
correct or incorrect transition. Thus, the presence of incoming transitions of different types
on a given state, which can only happen in a tagged LTS produced by the Prefix / Suffix

64 Chapter 6. The Prefix-Suffix Approach

approach, does not affect the neighbourhood detection. Therefore, the neighbourhood
detection step is common to both approaches.

Finally, one of the perspective we have is to use the Prefix / Suffix approach with safety
properties. We will discuss this in Chapter 9.

Chapter 7

Tool Support: the CLEAR Tool

In this chapter we present the implementation of our approach into the CLEAR tool, which
is available online [cle]. The CLEAR tool architecture is depicted in Figure 7.1 and con-
sists of three main modules: (i) neighbourhood calculation module, (ii) 3D visualization
module and (iii) analysis module. The neighbourhood calculation module is responsible
for the transition types recognition (implementing the Counterexample LTS and the Pre-
fix / Suffix approaches) and for the neighbourhood computation. The result of this model
is represented by the tagged LTS, which can be exploited by the 3D visualization module
and by the analysis module. The latter one implements the abstraction techniques detailed
in Chapter 4. We discuss implementation details for each module of the tool in the rest of
this chapter.

7.1 CLEAR Neighbourhood Calculation Module

This module of the tool allows the computation of neighbourhoods, given a safety or a
liveness property and a system specification. The core of this CLEAR module has been
implemented in Java and consists of about 8000 lines of code. It also partially relies on the
CADP toolbox [GLMS13], which enables one to specify and analyse concurrent systems
using model and equivalence checking techniques.

To specify concurrent systems, we particularly make use of the LNT value passing pro-
cess algebra [CCG+18] and LOTOS [BB87]. Compilers provided by the CADP tool-
box [GLMS13] are used to transform LNT and LOTOS specifications into LTS models,
which are used as input format to our application. These LTS models are in BCG binary
format or AUT ASCII format. In particular, the AUT one is used as intermediate format
for the Java-based components of CLEAR. AUT files are then stored in memory using the
Jung (Java Universal Network/Graph Framework) Java graph modelling library.

To specify temporal properties, we use the Mu-Calculus Logic (MCL) [MT08]. Liveness

65

66 Chapter 7. Tool Support: the CLEAR Tool

Figure 7.1: Overview of the CLEAR tool modules.

properties are translated for simplicity in the form of sequences of strings representing the
sequences of inevitable actions. To verify that an LTS respects a given temporal property,
we make use of the CADP model checker (Evaluator [MT08]). Such model checker takes
as input an MCL property and an input specification or LTS model, and returns a verdict
(true or false + a counterexample if the property is violated).

The computation module is divided into three components. The first one implements the
Counterexample LTS approach for computing the tagged LTS for safety property violations,
The second one implements the Prefix / Suffix approach for computing the tagged LTS
from liveness property violations. The third component allows computing neighbourhood
in the tagged LTS, and is common to both approaches.

7.2. CLEAR 3D Visualization Module 67

Counterexample LTS Component This component first allows the counterexample
LTS generation step described in Chapter 5. The computation of the counterexample LTS
is achieved by a script we wrote using SVL [GL01], a scripting language that allows one to
interface with tools provided in the CADP toolbox. This script calls several tools: a specific
option of Evaluator for building an LTS from a formula following the algorithm in [LM13];
EXP.OPEN for building LTS products; Reductor for minimizing LTSs; Scrutator [MPS12]
for removing spurious traces in LTSs. After the generation of the counterexample LTS (in
the form of AUT file) through the SVL script, the tool takes as input such model in order
to perform the generation of the tagged LTS. The matching relation between states of
the full and counterexample LTSs (obtained by the SVL script during the counterexample
LTS generation) is then exploited to compare states of the two LTSs in order to extract
correct transitions. Correct transitions are added as an attribute to transitions in the Jung
model of the counterexample LTS, making it become an enriched counterexample LTS. In
particular transition types (correct, incorrect and neutral) are defined as an enum type in
the Java transition class. Correct transitions are later used to discover the neutral and
incorrect ones in the enriched counterexample LTS, thus producing the tagged LTS.

Prefix/Suffix Component This component of the tool implements the algorithms of
the Prefix / Suffix approach detailed in Chapter 6. The sequence of inevitable actions
describing the inevitability property is taken as input in the form of a sequence of strings.
Prefix and suffix information is computed and stored on each state of the Java model.
In particular we built some dedicated classes (CommonPref, CommonSuff, MaxPref and
MaxSuff) to represent prefix and suffix objects, and we provide them as attributes of a
state object. Transition types are later discovered and assigned to each transition using this
information. A regression testing tool has also been implemented during the developmental
phases of this component, in order to validate each improvement. A test set of 100 LTSs
and sequences of inevitable actions have been built and used to support the regression
tests.

Neighbourhood Computation Component Neighbourhoods are finally detected by
analysing incoming and outgoing transitions of every state in the tagged LTS. The transi-
tion type (correct, incorrect or neutral) is assigned to the corresponding transition object
instance through the graph modelling library. When a neighbourhood is detected, a spe-
cific identifier is added to the corresponding state object in the Java model of the LTS.
Thus, the set of neighbourhoods is stored in the Java model of the tagged LTS.

7.2 CLEAR 3D Visualization Module

We present here the 3D visualizer, which supports the visualization of tagged LTSs with
neighbourhoods. This component of the CLEAR tool has been developed as a web ap-
plication using Javascript, the AngularJS framework, the bootstrap CSS framework and

68 Chapter 7. Tool Support: the CLEAR Tool

the 3D force graph library. An improved version of the AUT file format is used as in-
put format for the 3D visualizer, and describes the tagged LTS with neighbourhoods.
This component produces a 3D render of the tagged LTS where the neighbourhoods are
highlighted with different colours, according to the neighbourhood taxonomy presented in
Section 4.2.1. The developer can exploit various functionalities to better inspect the faulty
model: forward/backward step-by-step animation, counterexample visualization, zoom in-
/out on specific states or neighbourhoods, etc.

Figure 7.2 depicts a screenshot of the 3D visualizer in a web browser. One can see the
different colours used in the LTS visualization with the legend on the left hand side. All
functionalities appear in the bottom part of the figure. When the LTS is loaded, there is
also the option to load a counterexample. On the right hand side, there is the name of the
file and the list of states/transitions of the current animation. Note that transition labels
are not shown, they are only displayed through mouseover. This choice allows the tool to
provide a clearer view of the LTS.

Figure 7.2: Screenshot of the CLEAR 3D visualization.

7.3 CLEAR Analysis Module

Finally, the last module of our tool provides the implementation of the abstraction tech-
niques described in Section 4.3.2. First of all, note that the abstracted counterexample
technique has been built in Java and relies on the CADP toolbox for the counterexample
generation. It first produces the counterexample from an LTS and a property using the

7.3. CLEAR Analysis Module 69

Evaluator model checker. Second, it performs the counterexample reduction by locating
and keeping actions that correspond to neighbourhoods, by comparing states of the coun-
terexample to the ones belonging to the tagged LTS. The result retrieved by this technique
consists of a counterexample abstracted in the form of a list of sub-sequences of actions,
accompanied by the list of all neighbourhoods.

The other abstraction techniques presented in Section 4.3.2 (e.g., the shortest path to a
neighbourhood and the pattern-based ones) have been developed using the Neo4j frame-
work. We use the Neo4j graph database to store the tagged counterexample LTS and we
built abstraction techniques as Neo4j queries. In this way the counterexample LTS enriched
with the neighbourhoods behaves like a database that we can interrogate to obtain the de-
sired information. Queries are built using the Cypher language, a graph query language
developed for the Neo4j graph database. We used Neo4j for these abstraction techniques
instead of using a custom-made Java solution since Neo4j allows an easier implementation
of the pattern-based techniques, because of the use of a query language, and of the shortest
path technique, thanks to the shortestpath function provided by the Cypher language. A
translator class has been built in our main tool in order to translate an LTS from the Java
Jung format to a Neo4j representation. The graph database is structured as follows. Nodes
represent states and tags are used to classify the initial state, the sink state, final states and
neighbourhoods. This categorisation allows multiple tags for the same state. For instance,
a state can be tagged with the state tag, the neighbourhood tag and the initialstate tag at
the same time. Neo4j relationships are used to represent transitions while properties are
used to characterise the transition type (correct, incorrect and neutral) and the neighbour-
hood type (following the taxonomy introduced in Section 4.2.1). This database is then
queried with the chosen abstraction technique. For instance, the shortest path from the
initial node to a neighbourhood is retrieved with the Cypher query depicted in Figure 7.3.

MATCH (init:INITIALSTATE), (nb:NEIGHBOURHOOD),

path = shortestpath((init)-[*]->(nb))

RETURN path ORDER BY length(path) LIMIT 1

Figure 7.3: Shortest path query.

Another example of query is the one in Figure 7.4, which allows the retrieval of the shortest
path to a neighbourhood through a given pattern. In this query, the pattern of actions
is represented by ’.*.ACTION1.*.ACTION2.*.’. The result of abstraction techniques is
displayed through the Neo4j GUI.

70 Chapter 7. Tool Support: the CLEAR Tool

MATCH (init:INITIALSTATE), (nb:NEIGHBOURHOOD),

path = shortestpath((init)-[*]->(nb))

WITH path, extract(n IN relationships(path) | n.action) AS actions

WITH path,

REDUCE (s = HEAD(actions), n IN TAIL(actions) | s + ’, ’ + n) AS result

WHERE result =∼ ’.*.ACTION1.*.ACTION2.*.’

RETURN path ORDER BY length(path) LIMIT 1

Figure 7.4: Shortest path to a neighbourhood through a given pattern query.

7.4 Concluding Remarks

We have seen in this chapter how each step of our approach has been implemented as
a CLEAR tool module (neighbourhood calculation module, 3D visualization module and
analysis module). In the next chapter, we apply our CLEAR tool to various real-world
examples, making use of each module to debug faulty models.

Chapter 8

Experiments

This chapter presents the evaluation of our approach on real-world examples from various
application areas. We divide the discussion of experiments in two sections, following the
methodology presented in Section 4.3. Thus, we first detail experiments we carried on
using our 3D visualization techniques. We show how the 3D visual rendering can be
used to graphically observe the faulty model and see how neighbourhoods are distributed,
allowing visual debugging of the model and identifying typical cases of bugs.

In the second section we focus on experiments using abstraction techniques. We first
present some experiments on which we perform the annotation of transitions types in the
model and the computation of neighbourhoods, with a quantitative point of view: size of
the models, number of discovered neighbourhoods, computation time, etc. We discuss how
the counterexample abstraction techniques can help in terms of reduction of the number
of actions in counterexamples, highlighting only the relevant ones. We then detail the use
of some abstraction techniques in four real-world case studies, taking into account both
violations of safety and liveness properties, in order to show the benefits of such techniques
in the debugging of faulty models. We finally present an empirical study that we put in
place to validate our approach and abstraction techniques in collaboration with a set of
developers.

8.1 3D Visualization Techniques Experiments

In this section, we show how our 3D visual rendering can be useful in order to better under-
stand bugs. We present some experiments of faulty LNT specifications. Each specification
is accompanied with a temporal property characterizing a requirement that is supposed
to be satisfied by the specification. Model checking techniques are used and confirm that
each property is violated by the corresponding specification. The LNT specifications we
present in this section exhibit typical bugs inherent to concurrent systems, e.g., bugs re-

71

72 Chapter 8. Experiments

lated to parallel composition or to non-deterministic choices. Other interesting of bugged
specifications are available online [cle], e.g., a model where the whole LTS is false (only
red transitions), or a specification where the bug can be reached from a single neighbour-
hood, which represents a mandatory and unique choice to obtain the bug. Moreover, it
is worth noting that these experiments are all generated by safety properties violations,
so the tagged LTSs depicted in the figures are all built using the Counterexample LTS
approach. One of the perspective we have is to apply the 3D visualization method also
to tagged LTSs produced with the Prefix / Suffix approach. We will discuss about this in
Chapter 9.

8.1.1 Interleaving Bug

The first example presents a simple specification given in Figure 8.1. This piece of code
could be included in a larger LNT specification. The LNT process consists of a parallel
construct with two branches. In the first branch, there is a sequence of actions EXECi. In
the second branch, there is a choice between a null statement (correct termination) and a
LOSS action. The safety property states that a LOSS action should never happen. This is
written in MCL as follows:

([true* . ’LOSS’ . true*] false)

process Main [EXEC1, EXEC2, EXEC3, EXEC4, EXEC5, LOSS: none] is
par

EXEC1; EXEC2; EXEC3; EXEC4; EXEC5
| |

select
LOSS

[]
null

end select
end par

end process

Figure 8.1: LNT code for the interleaving bug.

The corresponding erroneous LTS computed and colored with the techniques presented
in the former sections is given in Figure 8.2. The initial state is at the far left of this
figure and appears in orange (not in red as is usually colored the initial state) because
that state is a neighbourhood. This visualization shows that there is a sequence in which
the bug does not appear (sequence of neutral black transitions leading to a correct green
one). This happens when all EXECi actions execute and the second branch terminates
correctly (null). Interestingly, we can see that at any state there is an incorrect transition
(in red) corresponding to the execution of the LOSS action. This is typical of a bug which
is interleaved with other actions, and the representation in our tool is similar to a comb.

8.1. 3D Visualization Techniques Experiments 73

Figure 8.2: Visualization of the interleaving bug.

8.1.2 Interleaving Bug (V2)

The second example presents an extended and more complicated version of the former
example. The LNT specification given in Figure 8.3 consists of three parts in sequence.
The initial part (INITi actions) and the final part (CLOSEi actions) are used, respectively,
for initialisation and closing purposes. The central part consists of a parallel composition
where several EXECi actions are executed in parallel with another branch where there is a
select construct. The select construct allows one to choose between two branches with
several SENDi actions. The property states that a SEND2 action should never be followed
by a SEND1 action:

([true* . ’SEND2’ . true* . ’SEND1’ . true*] false)

The erroneous LTS is given in Figure 8.4. The red state on the left hand part corresponds
to the initial state. Then, we can clearly distinguish the initial part (left) with black
transitions because all these transitions can lead to a possibly erroneous part of the system.
Likewise, we can see on the right hand part of this figure the closing part of the specification
where all transitions are incorrect (red) and where the bug cannot be avoided. These
two parts (entirely black or entirely red) can be viewed as noise or actions that are not
helpful from a debugging perspective. In contrast the central part of the figure is highly
interesting. There are six neighbourhood states in that part of the LTS corresponding to
a choice between executing a correct part of the specification (avoiding the sequence with
a SEND2 action followed by a SEND1 action) leading to the white state (sink state), or
executing an incorrect part of the specification. There are six choices because this choice
is in parallel with the sequence of EXECi actions and can then appear at different states
(interleaving). This is typical of a bug which is interleaved with other actions, looking in
that case like a spider web due to the attraction of the sink state in the visualization.

8.1.3 Iteration Bug

This LNT specification (Fig. 8.5) exhibits a looping process with a nondeterministic choice
executed at each iteration of that loop. In one of the two branches of the choice, there is a

74 Chapter 8. Experiments

process Main [EXEC1, EXEC2, EXEC3, EXEC4, EXEC5, LOSS: none,
INIT1, INIT2, INIT3: none,
CLOSE1, CLOSE2, CLOSE3, CLOSE4: none,
SEND1, SEND2, SEND3, SEND4: none] is

(∗ initialisation part ∗)
par

INIT1 | | INIT3; INIT1 | | INIT1; INIT2
end par;
(∗ central part ∗)
par

EXEC1; EXEC2; EXEC3; EXEC4; EXEC5
| |

select
par

SEND2; SEND3 || LOSS
end par;
SEND1; SEND4

[]
SEND1;
par

SEND2 || SEND2; SEND3 || LOSS
end par;
SEND4

end select
end par;
(∗ closing part ∗)
select

par
CLOSE3; CLOSE2 || CLOSE4; CLOSE1 || CLOSE2 || CLOSE1

end par
[]

CLOSE1; CLOSE2
end select

end process

Figure 8.3: LNT code for the interleaving bug (V2).

parallel construct that allows one to obtain a LOSS action followed by a REC action, which
is the sequence of actions that must not happen according to the following MCL property:

([true* . ’LOSS’ . ’REC’ . true*] false)

The visualization of the erroneous part of the LTS corresponding to this LNT specification
looks like a flower and is given in Figure 8.6. Each petal corresponds to an iteration
of the loop. There is a neighbourhood present at the beginning of each iteration, which
represents a choice between reaching the incorrect behaviour, going to the sink state (both
at the center of the picture), or continuing to the next petal. All the petals consist of

8.1. 3D Visualization Techniques Experiments 75

Figure 8.4: Visualization of the interleaving bug (V2).

process Main [WAIT, INIT, REC, EXEC1, EXEC2, LOSS, STORE: none] is
var I ,K : nat in

I := 0;
K := 10;
for I :=0 while I<K by I:=I+1 loop

WAIT;
select

par
EXEC1; STORE || LOSS

end par
[]

par
REC; EXEC2 || LOSS

end par;
I :=10

end select
end loop

end var
end process

Figure 8.5: LNT code for the iteration bug.

neutral (black) transitions because the bug can still be avoided. There is a part of the LTS
with red transitions, which is reached after executing an incorrect transition in one of the
aforementioned neighbourhoods. After nine iterations, executing at each iteration the first
branch of the select construct, a final correct transition leads to the sink state and makes

76 Chapter 8. Experiments

the whole specification definitely avoid the incorrect part of the behaviour.

Figure 8.6: Visualization of the iteration bug.

8.1.4 Causality Bug

The fourth example is a producer-consumer system. The LNT specification consists of
about 100 lines of code and is available online [cle]. The specification is composed of three
main processes: a producer process, a consumer process and a process that can either be
a consumer or a producer. This last process is given in Figure 8.7. Each process can loop
infinitely or break the loop and terminate the execution. A deployer process is also part
of the specification in order to initiate the three other processes. The provided property
states that a process cannot consume if something has not been produced before. This is
written in MCL as follows:

[(not ”PRODUCE”)* . ”CONSUME” . true*] false

The specification violates this property when the PRODCONS process (Fig. 8.7) acts as a
consumer, because it can consume without ensuring that PRODUCE has been performed
beforehand.

8.1. 3D Visualization Techniques Experiments 77

process PRODCONS [CONNECT, READY, SYNC, WAIT : none,
DEPLOY, START, IAMPRODUCER, IAMCONSUMER : WHOAMI C,
CONSUME, PRODUCE : none

] is
var whoami : bool in

DEPLOY(1 of nat);
START(1 of nat);
CONNECT;
select

whoami := true; IAMPRODUCER(1 of nat)
[]

whoami := false; IAMCONSUMER(1 of nat)
end select;
WAIT;
READY;
if (whoami) then
loop L in

select
NULL [] break L

end select;
par

WAIT || PRODUCE; SYNC
end par

end loop
else

loop L in
select

NULL [] SYNC [] break L
end select;
par

WAIT || CONSUME
end par

end loop
end if

end var
end process

Figure 8.7: LNT code for the causality bug.

The erroneous LTS with colored transitions and neighbourhoods is given in Figure 8.8.
The LTS is divided into three parts. The initial part represents the portion of code in
which every process performs the deployment and this part of the model has no impact on
the bug (no neighbourhoods and all neutral transitions). Then, a set of neighbourhoods
of the same type is present between the first part of the LTS and the second (central)
one. These neighbourhoods have all a correct and a neutral transition, and represent
the first choice that contributes to the cause of the bug (when the PRODCONS process
decides to be a consumer). Those neighbourhoods can be viewed as a frontier between
the initial and central part of the LTS. All the correct transitions are directed to the sink

78 Chapter 8. Experiments

state, that abstracts the correct part of the LTS. A second frontier is present between
the central part of the LTS and the third part (with all red transitions). This frontier
is composed of neighbourhoods that represent the second cause of the bug, that happens
when a CONSUME action has been performed without an initial PRODUCE action. The
figure with the two frontiers helps in understanding that there is a causality between both
kinds of neighbourhoods. This is because neighbourhoods of the second frontier are reached
only when a neutral transition that represents the choice to be a consumer is taken in one
of the neighbourhoods belonging to the first frontier.

Figure 8.8: Visualization of the causality bug.

8.2 Abstraction Techniques Experiments

We present in this section some experiments we carried out on about 100 real-world ex-
amples. We first discuss our approach with a quantitative analysis on those experiments.
Second, we apply our abstraction techniques to four real-world case studies, taking into ac-
count both violations of safety and liveness properties. Finally, we will present an empirical
evaluation we built using the abstracted counterexample technique.

8.2. Abstraction Techniques Experiments 79

8.2.1 Quantitative Analysis

We now discuss our approach on various experiments with a quantitative point of view.
For each experiment, we use as input an LNT specification or an LTS model, and an
MCL property. Table 8.1 summarizes the results for some of these experiments, computed
for safety properties violations. The first column contains the name of the model and a
reference to a published article (when it exists). The second and third columns show the
size of the full and the counterexample LTSs, respectively, in terms of number of states,
transitions and labels. The fourth column gives the number of neighbourhoods for each
neighbourhood type according to the neighbourhood taxonomy (cn: with only correct
transitions, in: with only incorrect transitions, ci: with correct and incorrect transitions,
cni: with correct, incorrect and neutral transitions). The fifth column presents the ratio of
neighbourhoods over the number of states in the counterexample LTS as a percentage. We
also present in the table the results of the counterexample abstraction technique, in terms
of size of the shortest (retrieved with BFS exploration of the LTS) and of the abstracted
counterexample, respectively. Finally, the last column details the total computation time
(in seconds) for each test, which takes into account the counterexample LTS production,
the transition types annotation and the neighbourhood detection.

First of all, one can note that there exist some particular cases in which there is only one
neighbourhood in the model. This happens when the analysed property is always false. In
these particular cases, we identify the initial state as a neighbourhood with only incorrect
outgoing transitions. An example is represented by the Peterson algorithm case study, in
which we have introduced a bug, and that we have verified with a property that guarantees
mutual exclusion. Figure 8.9 shows a portion of the tagged LTS with the first (and sole)
discovered neighbourhood, with only incorrect transitions outgoing from it. A traditional
approach, where the developer analyses a single counterexample, would not have been able
to let the developer understand that the bug always occurs in all the states of the system,
and would have forced the developer to spend time trying to understand which actions
were relevant in the counterexample, which in this case is worthless. The tagged LTS with
the initial neighbourhood allows to understand that the bug is present in all the executions
of the systems, meaning that all the possible executions are not correct, and to avoid an
useless analysis of relevant actions. On the contrary, when the property is always verified
in all the system executions (thus no counterexample is produced) the counterexample LTS
is not generated and no neighbourhood is found (see the restaurant booking case).

Second, note that the average of the ratio between the number of neighbourhoods and
the number of states in the counterexample LTS is around 10%. In one case (multiway
rendezvous (simple)) that value is higher than 50%, but it is worth noting that in this case
the specification of the system was modified to obtain a simplified version of the example.

Third, we applied the counterexample abstraction technique to the case studies presented
in Table 8.1. We can see a clear gain in length between the original counterexample
and the abstracted one, which keeps only relevant actions using our approach and thus

80 Chapter 8. Experiments

E
x
a
m

p
le

L
F

(s/
t/

l)
L
C

(s/
t/

l)
cn
/
in
/
ci/
cin

r
a
tio

|C
e|

|C
e
r |

tim
e

1
.

sa
n

ita
ry

a
g
en

cy
(v

.1
)

[S
B

S
0
4
]

2
2
7

/
4
9
2

/
3
1

2
2
6

/
4
8
5

/
3
1

6
/

1
0

/
0

/
0

7
.0

8
1
4

2
7
.6

s
2
.

sa
n

ita
ry

a
g
en

cy
(v

.2
)

[S
B

S
0
4
]

1
4
2

/
2
9
1

/
3
1

5
2
6

/
1
,0

6
4

/
3
1

1
2

/
1
0

/
4

/
2

5
.3

2
6
4

7
7
.7

s
3
.

sa
n

ita
ry

a
g
en

cy
(v

.3
)

[S
B

S
0
4
]

9
1

/
1
7
2

/
3
1

5
5

/
9
5

/
2
3

5
/

5
/

2
/

0
2
1
.8

2
1
9

6
7
.9

s
4
.

S
S

H
p

ro
to

co
l

(v
.1

)
[M

P
1
1
]

2
3

/
2
5

/
2
3

2
4

/
2
4

/
1
9

1
/

0
/

1
/

0
8
.3

3
1
4

3
7
.6

s
5
.

S
S

H
p

ro
to

co
l

(v
.2

)
[M

P
1
1
]

2
3

/
2
5

/
2
3

4
0

/
4
0

/
1
9

3
/

0
/

1
/

0
1
0
.0

0
3
0

7
7
.7

s
6
.

clien
t

su
p

p
lier

(v
.1

)
[C

M
S
+

1
0
]

3
5

/
4
5

/
2
6

2
9

/
3
3

/
2
4

2
/

0
/

1
/

0
1
0
.3

4
1
8

5
7
.6

s
7
.

clien
t

su
p

p
lier

(v
.2

)
[C

M
S
+

1
0
]

3
5

/
4
5

/
2
6

2
5

/
2
5

/
2
4

3
/

0
/

1
/

0
1
6
.0

0
1
9

6
7
.7

s
8
.

clien
t

su
p

p
lier

(v
.3

)
[C

M
S
+

1
0
]

3
5

/
4
6

/
2
6

3
3

/
4
1

/
2
4

1
/

2
/

1
/

0
1
2
.1

2
1
6

4
7
.9

s
9
.

tra
in

sta
tio

n
[S

B
R

1
2
]

3
9

/
6
6

/
1
8

2
6

/
3
4

/
1
8

0
/

2
/

1
/

0
1
1
.5

4
6

2
7
.9

s
1
0
.

selfco
n

fi
g

[S
E

P
+

1
3
]

3
1
4

/
8
1
0

/
2
7

1
5
9

/
3
5
5

/
2
7

2
4

/
1
5

/
1

/
5

2
8
.3

0
1
4

2
7
.8

s
1
1
.

C
F

S
M

[J
J
9
3
]

1
,3

2
1

/
2
,5

6
3

/
7

3
,6

5
5

/
7
,2

4
6

/
7

1
2

/
2
0
5

/
2

/
0

5
.9

9
7

2
7
.8

s
1
2
.

o
n

lin
e

sto
ck

b
ro

k
er

[F
B

S
0
4
]

1
,3

3
1

/
2
,7

7
0

/
1
3

3
,5

1
6

/
7
,3

2
6

/
1
3

4
4

/
1
4
5

/
1
7

/
0

5
.8

6
2
3

2
7
.9

s
1
3
.

m
u

ltiw
a
y

ren
d

ezv
o
u

s
(sim

p
le)

[E
L

1
7
]

2
,1

7
1

/
5
,0

9
8

/
5
3

1
7
1

/
2
8
3

/
3
6

8
9

/
2

/
1

/
1

5
4
.3

9
4
7

3
8

8
.2

s
1
4
.

m
u

ltiw
a
y

ren
d

ezv
o
u

s
[E

L
1
7
]

1
,3

1
8

/
3
,2

1
7

/
5
3

5
3
9

/
1
,1

8
6

/
4
1

1
4
3

/
8

/
4

/
4

2
9
.5

0
4
7

2
2

7
.7

s
1
5
.

sh
ifu

m
i

(2
p

la
y
ers)

2
5

/
5
7

/
2
7

6
0

/
1
3
0

/
2
7

6
/

4
/

5
/

0
2
5
.0

0
7

4
7
.7

s
1
6
.

sh
ifu

m
i

(3
p

la
y
ers)

1
9
3

/
6
9
0

/
6
7

4
9
9

/
1
,8

1
4

/
6
7

3
0

/
5
3

/
1
0

/
1
8

2
2
.2

4
7

2
7
.9

s
1
7
.

sh
ifu

m
i

(4
p

la
y
ers)

1
,3

6
2

/
7
,2

0
9

/
1
2
5

3
,5

7
7

/
1
9
,2

3
3

/
1
2
5

2
0
6

/
4
1
8

/
1
5

/
1
8
8

2
3
.1

2
7

2
1
0
.6

s
1
8
.

sh
ifu

m
i

(5
p

la
y
ers)

9
,6

9
3

/
7
0
,5

9
6

/
2
0
1

2
5
,5

9
3

/
1
8
8
,4

6
6

/
2
0
1

1
,6

2
2

/
2
,9

9
9

/
2
0

/
1
,5

9
8

2
4
.3

8
7

2
1
2
.2

s
1
9
.

P
eterso

n
a
lg

o
rith

m
(v

.1
)

[P
et8

1
]

3
5
2
,1

1
2

/
5
5
2
,8

4
8

/
8
5

6
7
3
,5

6
9

/
1
,0

5
8
,1

1
3

/
8
5

0
/

1
/

0
/

0
0
.0

0
3
5

1
2
4
.2

s
2
0
.

P
eterso

n
a
lg

o
rith

m
(v

.2
)

[P
et8

1
]

3
5
2
,1

1
2

/
5
5
2
,8

4
8

/
8
5

6
8
3
,9

5
8

/
1
,0

7
4
,9

4
8

/
8
5

0
/

1
/

0
/

0
0
.0

0
3
5

1
2
4
.1

s
2
1
.

resta
u

ra
n
t

b
o
o
k
in

g
[M

P
S

0
8
]

5
5

/
7
8

/
3
1

-
0

/
0

/
0

/
0

0
.0

0
0

0
7
.2

s
2
2
.

tra
v
el

a
g
en

cy
[S

E
G

1
0
]

6
0

/
9
9

/
2
6

6
0

/
9
9

/
2
6

0
/

1
/

0
/

0
1
.6

7
2
2

1
7
.6

s
2
3
.

F
T

P
tra

n
sfer

[B
B

C
0
5
]

4
9

/
8
6

/
1
8

4
5

/
7
6

/
1
8

0
/

7
/

1
/

2
2
2
.2

2
1
0

2
7
.6

s
2
4
.

n
ew

s
serv

er
[O

S
B

1
4
]

2
1

/
3
4

/
8

1
4

/
1
8

/
6

0
/

1
/

1
/

2
2
8
.5

7
4

2
7
.7

s
2
5
.

m
a
rs

ex
p

lo
rer

[B
P

0
6
]

5
2

/
7
4

/
3
4

4
5

/
6
6

/
2
6

0
/

0
/

1
/

0
2
.2

2
2
3

2
7
.6

s
2
6
.

fa
cto

ry
jo

b
m

a
n

a
g
er

[B
F

F
0
9
]

3
0

/
4
5

/
1
4

1
8

/
2
1

/
1
4

2
/

0
/

1
/

0
1
6
.6

7
6

4
7
.9

s
2
7
.

v
en

d
in

g
m

a
ch

in
e

[G
M

W
1
2
]

1
7

/
1
9

/
1
6

1
3

/
1
3

/
1
2

0
/

0
/

1
/

1
1
5
.3

8
9

3
7
.5

s
2
8
.

resta
u

ra
n
t

serv
ice

[v
d

A
M

S
W

0
9
]

2
5

/
3
7

/
1
2

2
3

/
3
3

/
1
2

0
/

1
/

1
/

0
8
.7

0
9

2
7
.4

s
2
9
.

C
F

S
M

(estelle)
[J

J
9
3
]

4
,0

5
8

/
8
,2

1
9

/
9

2
4
,1

7
1

/
5
0
,8

3
0

/
9

1
,3

4
4

/
9
7
3

/
1
6

/
9

9
.6

9
1
8

2
8
.5

s
3
0
.

rea
ctiv

e
sy

stem
[L

S
W

0
8
]

2
6
6

/
7
2
0

/
5

2
9
6

/
7
8
6

/
5

0
/

1
/

0
/

0
0
.3

4
3

1
7
.8

s
3
1
.

b
u

g
rep

o
sito

ry
[G

S
1
1
]

rep
o
rt

8
0

/
1
5
8

/
1
3

1
0
8

/
2
0
3

/
1
3

0
/

1
/

0
/

0
0
.9

3
1
5

1
7
.6

s
3
2
.

m
essa

g
e

ex
ch

a
n

g
e

6
6
6

/
2
,2

8
1

/
2
0

1
,1

6
6

/
3
,8

5
7

/
2
0

0
/

7
4

/
0

/
7
4

1
2
.6

9
1
7

2
7
.9

s
3
3
.

T
F

T
P

/
U

D
P

p
ro

to
co

l
[G

T
0
9
]

(v
.1

)
4

/
7

/
2

5
/

1
1

/
2

0
/

1
/

0
/

0
2
0
.0

0
1

1
7
.7

s
3
4
.

T
F

T
P

/
U

D
P

p
ro

to
co

l
[G

T
0
9
]

(v
.2

)
9
8
,2

0
5

/
9
,0

1
8
,0

4
3

/
1
1

2
1
4
,2

1
7

/
1
9
,8

5
2
,1

2
0

/
1
1

2
,9

5
7

/
2
,4

4
4

/
1

/
1
6

2
.5

3
3

3
5
5
8
.3

s
3
5
.

T
F

T
P

/
U

D
P

p
ro

to
co

l
[G

T
0
9
]

(v
.3

)
6
1
,0

0
8

/
6
,3

2
8
,6

5
8

/
1
1

1
2
3
,9

8
3

/
1
2
,3

1
8
,3

5
3

/
1
1

6
,3

2
3

/
5
,7

5
8

/
0

/
1
,5

5
6

1
1
.0

0
8

8
3
0
1
.5

s
3
6
.

T
F

T
P

/
U

D
P

p
ro

to
co

l
[G

T
0
9
]

(v
.4

)
9
8
,2

0
5

/
9
,0

1
8
,0

4
3

/
1
1

2
1
4
,2

1
7

/
1
9
,8

5
2
,6

1
6

/
1
1

2
,9

5
5

/
2
,4

4
4

/
1

/
1
6

2
.5

3
3

3
5
7
1
.5

s

T
ab

le
8.1:

E
x
p

erim
en

tal
resu

lts.

8.2. Abstraction Techniques Experiments 81

Figure 8.9: Peterson Algorithm: the discovered neighbourhood.

facilitates the debugging task for the user. For instance, cases in which the abstracted
counterexample contains only two actions, like the train station case study, mean that we
identified only one neighbourhood in the shortest counterexample. The restaurant booking
example has both the original and the abstracted counterexample of length zero, since the
model is correct (thus it does not produce a counterexample). There exist some particular
cases in which the abstracted counterexample contains only one action. These are the
cases in which there exists only one neighbourhood in the model, placed in the initial
state, e.g., in the Peterson algorithm case study. Note that the abstracted counterexample
technique in some cases does not work. As an example, note that in the case of the
TFTP/UDP protocol, the abstracted counterexample technique has not reduced the size
of the shortest counterexample. This occurs because the counterexample does not contain
any neighbourhood. The last state reached in the counterexample LTS contains a final
transition, and neutral transitions. In this case, it is the final transition itself which is
incorrect.

Finally, as far as computation time is concerned, the table show that the time is quite low
for small examples, while it tends to increase w.r.t. the size of the LTS when we deal with
examples with hundreds of thousands of transitions and states. Note that an important
part of the total time in examples with large LTSs is spent in loading LTSs on the system
memory in the form of Jung graphs. The loading time takes about 30% of the total time
for examples with about a million of states, while it remains negligible for small examples
(about 1% of the computation time when dealing with LTSs with hundreds of states).
A relevant part of the total time is also represented by the time for the counterexample
LTSs production, which is slightly longer than the time for computing transitions types and
neighbourhood. Indeed, while for very small examples the counterexample LTS production
takes 98% of the total time, for average size ones (with thousands of states) this value
decreases to 45% and reaches 5% in examples with millions of states. This is because
the script involved in the counterexample LTS computation calls several CADP tools in
sequence. Note that when we increase the size of the examples, dealing with hundreds of
thousands of transitions and states, the time needed for the transitions and neighbourhood
computation steps becomes predominant w.r.t. the one needed for the computation of the
counterexample LTS.

82 Chapter 8. Experiments

8.2.2 Case Studies

We now present in detail four case studies: (i) the rock-paper-scissors game (shifumi) case
study, (ii) the sanitary agency case study, (iii) the alternating bit protocol case study and
(iv) the multiway rendezvous protocol case study.

Case Study: Shifumi Tournament

The shifumi case study models in LNT a tournament of rock-paper-scissors games. In a
typical game between two players each player forms one of the three possible shapes (rock,
paper or scissors). Each shape allows defeating one of the two others, but is defeated by
the remaining one (e.g. the rock defeats the scissors but is defeated by the paper). When
a shape is used against the same shape the game ends in a draw, and it is repeated. The
tournament allows more than two players to compete. When a player wins a game, she
continues playing with the next player. On the contrary, the player who loses the game
has to stop playing. The tournament continues until there is only a winner. Figure 8.10
shows the LNT process for a player.

process player [GETWEAPON: getweapon, GAME: game,
LOOSER: nat] (self: nat, honest: bool) is

var opponent: nat, mine, hers : weapon in
loop

GETWEAPON (self, ?mine);
select

GAME (self, ?opponent, mine, ?hers)
[]

GAME (?opponent, self, ?hers, mine)
end select;
if wins over (mine, hers) then

LOOSER (opponent)
elsif wins over (hers , mine) then
if (not (honest)) and (mine == rock) then null
else stop
end if

end if
end loop

end var
end process

Figure 8.10: LNT code for a shifumi player.

We discuss here one of the shifumi tournaments case studies described in Table 8.1, which
represents a tournament between three players. A safety property is provided to guarantee
no cheating by any player. More precisely, it avoids that a player who has previously lost
can play again in the tournament, and it is written in MCL as follows:

8.2. Abstraction Techniques Experiments 83

[(true* . ’LOOSER !1’ . true* . ’GAME .*. !1 .*’. true*) |
(true* . ’LOOSER !2’ . true* . ’GAME .*. !2 .*’. true*) |

(true* . ’LOOSER !3’ . true* . ’GAME .*. !3 .*’. true*)] false

The analysed tournament contains a bug, since a dishonest player is able to play again
after having lost a game. We have generated the counterexample LTS and applied two ab-
straction techniques: the abstracted counterexample technique (to a randomly produced
counterexample), and the shortest path to a neighbourhood technique. The abstracted
counterexample reduces the number of actions from 14 to 9, since it involves 5 neighbour-
hoods in the counterexample LTS. The detected neighbourhoods precisely identify the
origin of the bug. Indeed they allow us to understand that player one is the cheater and
that it cheats after having lost a game using rock as shape. First, the initial neighbourhood
indicates that alternative combinations that avoid the occurrence of the bug are possible
(see Figure 8.11a). Second, a subsequent neighbourhood highlights a game rock versus
paper between player one and player two, where player one loses and thus should have
exited the tournament (see Figure 8.11b). This neighbourhood is interesting also because
it shows that if player two chooses scissors she would lose that game and the bug would
not occur. Finally, the last neighbourhood points out that a new game is played between
player one and two, but this should not be possible, since the previous neighbourhood has
indicated that player one has lost (see Figure 8.11c).

(a) (b) (c)

Figure 8.11: Three of the neighbourhoods detected in the abstracted counterexample.

The shortest path to a neighbourhood technique (depicted in Figure 8.12) shows that the
discovered neighbourhood, which is only two transitions far from the initial state, belongs
to the first type (outgoing correct and neutral transitions). The correct transitions show
games between players one and two using scissors and paper, while the neutral ones show
the selection of the three possible shapes by player three. This means that the use of
scissors and paper shapes between players one and two avoids the bug, and confirms that
player one must use a rock to cheat. Moreover, neutral transitions show that the choice
of the shape by player three has no impact on the bug. The combined use of the two
abstraction techniques allowed us to have a finer information about the bug.

84 Chapter 8. Experiments

Figure 8.12: Shortest path to a neighbourhood.

Case Study: Sanitary Agency

We now describe the sanitary agency [SBS04] example (see the third line in Table 8.1),
which models an agency that aims at supporting elderly citizens in receiving sanitary
assistance from the public administration. The model involves four different participants:
(i) a citizen who requests services such as transportation or meal; the request can be
accepted or refused by the agency; (ii) a sanitary agency that manages citizens’ requests
and provides public fee payment; (iii) a bank that manages fees and performs payments;
(iv) a cooperative that receives requests from the sanitary agency, receives payments from
the bank, and provides transportations and meal services. Figure 8.13 gives the LTS model
for each participant. We assume in this example that the participants interact together
asynchronously by exchanging messages via FIFO buffers.

We evaluated two different properties on this case study, a liveness and a safety one.

Sanitary Agency: Liveness Property

We present a liveness property with two nested inevitable executions. The property states
that the treatment of a citizen request by the agency (represented by the REQ EM action)
should always take place, and should always be followed by the reception of a transport
service by the citizen (represented by the PROVT REC action). Such a property is written
in MCL as follows:

mu X . ((< (”REQ EM”) > true or < not (”REQ EM”) > X) and [(”REQ EM”)]
(mu X . ((< (”PROVT REC”) > true or < not (”PROVT REC”) > X)

and [not (”PROVT REC”)] X)) and [not (”REQ EM”)] X)

Our tool identifies five neighbouroods in the model. We then apply the abstracted coun-
terexample technique to the shortest counterexample, allowing to discover two neighbour-
hoods and consequently reducing the length of the counterexample from 15 actions to 4.
The top side of Figure 8.14 depicts the shortest counterexample while the bottom side
depicts the corresponding neighbourhoods. The extracted actions are relevant since the
neighbourhoods to which they belong precisely identify choices in the model that violate

8.2. Abstraction Techniques Experiments 85

Figure 8.13: LTS models for the sanitary agency.

the property. In this case, the first neighbourhood shows that the first action in the prop-
erty is not inevitable. The REQ EM action can take place only after an ACCEPTANCE EM

action, but the neighbourhood exhibits an incorrect transition with the REFUSAL EM ac-
tion, revealing that the citizen request can be refused and thus preventing its treatment.
The second neighbourhood shows that, even when the citizen request is treated by the
agency, the system does not always satisfy the nested inevitable action, since it can also
provide meal services. This is highlighted by the choice between the correct transition with
the PROVT EM action (emission of a transport service) and the incorrect transition with the
PROVM EM action (emission of a meal service).

Figure 8.14: Sanitary agency: shortest counterexample and neighbourhoods (liveness).

86 Chapter 8. Experiments

Sanitary Agency: Safety Property

For illustration purposes, we use an MCL safety property, which indicates that the payment
of a transportation service to the transportation cooperative cannot occur after submission
of a request by a citizen to the sanitary agency:

[true* . ’REQUEST EM’ . true* . ’PAYMENTT EM’ . true*] false

Our tool was able to identify twelve neighbourhoods in the counterexample LTS, divided
into five neighbourhoods from correct transitions, five from incorrect transitions and two
from correct and incorrect transitions (without neutral transitions).

Figure 8.15: Sanitary agency: full LTS and shortest counterexample (safety).

We applied the abstracted counterexample technique to the shortest counterexample. The
shortest counterexample involves four neighbourhoods, and this allows us to reduce its size
from 19 actions to only 6 actions. Figure 8.15 shows (from left to right) the full LTS of the
sanitary agency model, the shortest counterexample, and the four neighbourhoods for this
counterexample. Actions that appear in the counterexample are highlighted in bold. The
neighbourhoods and corresponding extracted actions are relevant in the sense that they
precisely identify choices that lead to the incorrect behaviour. In particular, they identify
the two causes of the property violation and those causes can be observed on the shortest
counterexample. The first cause of violation is emphasized by the first neighbourhood and
occurs when the citizen request is accepted. In that case, the refusal of the request is a
correct transition and leads to a part of the LTS where the property is not violated. The
three next neighbourhoods pinpoint the second reason of property violation. They show
that actions that trigger the request for payment of the transportation services have been
performed, while this is not permitted by the property. Note that different neighbourhood

8.2. Abstraction Techniques Experiments 87

types provide us with different information about choices, according to the neighbourhood
taxonomy. Finally, note that in this specific case the abstracted counterexample technique
was sufficient to understand the cause of the bug.

Case Study: Alternating Bit Protocol

We now discuss the Alternating Bit Protocol case study, which consists of a data link layer
network protocol that allows the retransmission of lost or corrupted messages. The version
of the protocol analysed here, available as CADP demo [Inr], is a variant without data
values written in LOTOS (the reader interested in LOTOS can refer to [BB87] for more
details). The model is composed of four processes: a TRANSMITTER process that acquires
and sends a message; a RECEIVER process that gets a message; MEDIUM1 and MEDIUM2

processes that represent transmission channels. The demo is provided with an inevitable
execution property that states that a PUT action will be eventually reached from the initial
state and which is written in MCL as follows:

mu X . (< true > true and [not ”PUT”] X) false

This property is not satisfied by the model because of the presence of loops in the specifi-
cation that can lead to an infinite trace that never reaches a PUT action. More precisely,
the problem is caused by an interaction between the RECEIVER and the MEDIUM2 processes,
depicted in Figure 8.16. When the TRANSMITTER process has not yet started the message
treatment (represented by the PUT action), the receiver might have to wait. In this case the
RECEIVER produces a TIMEOUT action, followed by the sending of an incorrect ack message
(RACK1 action). If this ack message is lost by MEDIUM2 (LOSS action) and the receiver is still
waiting, a loop might be produced until the TRANSMITTER starts the message treatment.

Our tool detects six neighbourhoods in the model, all with correct and neutral transi-
tions. In this case the use of the counterexample abstraction technique is not useful, since
each action in the counterexample belongs to a neighbourhood. The shortest path to a
neighbourhood technique may partially help, but it would not return any path, because a
neighbourhood exists in the initial state. However, in this case our neighbourhood notions
can help in understanding the bug even without the use of abstraction techniques. Fig-
ure 8.17 depicts a portion of the model with these neighbourhoods, which are located at
states 0, 2, 5, 12, 13 and 23. In particular, neighbourhoods at states 5, 12, 13, 23 present
choices that make the execution of the system remain infinitely inside the loops, preventing
the satisfaction of the property by reaching the PUT action. This is highlighted by neutral
transitions containing LOSS, RACK1 and TIMEOUT actions that repeat the cycle.

88 Chapter 8. Experiments

process MEDIUM2 [RACK0, RACK1, SACK0, SACK1, SACKe] : noexit :=
RACK0; (∗ acknowledge reception ∗)
(

SACK0; (∗ correct transmission ∗)
MEDIUM2 [RACK0, RACK1, SACK0, SACK1, SACKe]

[]
SACKe; (∗ loss with indication ∗)
MEDIUM2 [RACK0, RACK1, SACK0, SACK1, SACKe]

[]
(hide LOSS in
LOSS; (∗ silent loss ∗)
MEDIUM2 [RACK0, RACK1, SACK0, SACK1, SACKe]

))
[]
MEDIUM2 [RACK1, RACK0, SACK1, SACK0, SACKe]

endproc

process RECEIVER [GET, RDT0, RDT1, RDTe, RACK0, RACK1] : noexit :=
RDT0; (∗ correct control bit ∗)
GET; (∗ message M delivery∗)
RACK0; (∗ sending a correct ack ∗)
RECEIVER [GET, RDT1, RDT0, RDTe, RACK1, RACK0]

[]
RDT1; (∗ incorrect control bit => ∗)
RACK1; (∗ sending an incorrect ack ∗)
RECEIVER [GET, RDT0, RDT1, RDTe, RACK0, RACK1]

[]
RDTe; (∗ loss indication => ∗)
RACK1; (∗ sending an incorrect ack ∗)
RECEIVER [GET, RDT0, RDT1, RDTe, RACK0, RACK1]

[]
(hide TIMEOUT in
TIMEOUT; (∗ timeout => ∗)
RACK1; (∗ sending an incorrect ack ∗)
RECEIVER [GET, RDT0, RDT1, RDTe, RACK0, RACK1])

endproc

Figure 8.16: MEDIUM2 and RECEIVER processes in LOTOS.

Figure 8.17: Excerpt of the alternating bit protocol LTS model.

8.2. Abstraction Techniques Experiments 89

Case Study: Multiway Rendezvous Protocol

The last example we describe is the Multiway Rendezvous Protocol. This case study rep-
resents the evaluation of a formal model, written in LNT, of the multiway rendezvous
protocol implemented in DLC (Distributed LNT Compiler) [EL17], a tool that automat-
ically generates a distributed implementation in C of a given LNT specification. The
multiway rendezvous protocol must allow processes (called tasks) to synchronize, through
message exchange, on a given gate. In this case messages (e.g., abort, commit, ready) are
exchanged between two tasks T1 and T16 and a gate A to synchronize. In Figure 8.18 we
show a portion of the LNT specification of the protocol, depicting the parallel construct
that synchronizes tasks T1 and T16 and a gate A. Note that in this case study the gate
A does not corresponds to an LNT gate construct, but is built through an LNT process.

A synchronization success between T1 and T16 on gate A is represented by ACTION

!DLC GATE A !{DLC TASK 0 T1, DLC TASK 1 T16}. One of the two tasks cannot execute
more than two actions on gate A. This is expressed with the following MCL safety property:

[true* . ’ACTION !DLC GATE A .*’. true* . ’ACTION !DLC GATE A .*’.

true* . ’ACTION !DLC GATE A .*’. true*] false

We analyse a preliminary faulty version of the protocol which allows performing three
synchronizations on gate A, that is prohibited by the property (see example multiway
rendezvous in Table 8.1). We make use of two abstraction techniques to debug this model:
the abstracted counterexample, applied to the shortest counterexample, and the version of
the shortest path technique where the path must match a given pattern of actions. The
first technique shows that the bug is due to a combination of causes, all highlighted by
neighbourhoods. We summarise here the main ones. First of all, one of the neighbourhoods
(see Figure 8.19a) lets us understand that if a second synchronization on gate A is executed
instead of the refusal of the negotiation (that is actually executed in the counterexample)
the bug does not arise. This means that the refusal of the negotiation by gate A is involved
in causing the bug. We then detect a set of neighbourhoods, which shows that the bug
does not arise if an abort message is received by the task T16 before the reception of
a commit message. Figure 8.19b depicts one example of these neighbourhoods. Finally,
the last neighbourhood (see Figure 8.19c) triggers definitively the bad behaviour with the
second execution of the synchronization on gate A, represented in the form of an incorrect
transition.

Our approach shows that the bug comes from a shift between the progress of task T16 and
the rest of the system when a refusal is performed by gate A. This is precisely highlighted
through the presence in the neighbourhoods of the refusal of the negotiation by gate A and
the reception of the abort message after the first commit message. Our technique also shows
that the causes of the bug are all located before the execution of the second synchronization
on gate A (included), while the rest of the counterexample is irrelevant from a debugging
perspective. This outcome is also confirmed by the second abstraction technique we used.

90 Chapter 8. Experiments

module implem (task T1, task T16, data, latest) is

function gate A sync vect : sync vect list is
return {{ DLC TASK 0 T1, DLC TASK 1 T16 }}

end function

function global sync map : sync map is
return {sync map entry (dlc gate A , gate A sync vect)}

end function

process MAIN [TASK 0 T1 SEND, TASK 0 T1 RECV,
TASK 1 T16 SEND, TASK 1 T16 RECV,
GATE A SEND, GATE A RECV,
ACTION, HOOK REFUSE: annonce] is

par TASK 0 T1 SEND, TASK 0 T1 RECV, TASK 1 T16 SEND, TASK 1 T16 RECV,
GATE A SEND, GATE A RECV in

par
buffer [TASK 0 T1 SEND, TASK 1 T16 RECV] (DLC TASK 0 T1, DLC TASK 1 T16)

| | buffer [TASK 1 T16 SEND, TASK 0 T1 RECV] (DLC TASK 1 T16, DLC TASK 0 T1)
| | buffer [TASK 0 T1 SEND, GATE A RECV] (DLC TASK 0 T1, DLC GATE A)
| | buffer [GATE A SEND, TASK 0 T1 RECV] (DLC GATE A, DLC TASK 0 T1)
| | buffer [TASK 1 T16 SEND, GATE A RECV] (DLC TASK 1 T16, DLC GATE A)
| | buffer [GATE A SEND, TASK 1 T16 RECV] (DLC GATE A, DLC TASK 1 T16)
end par

| |
par

MANAGER [TASK 0 T1 SEND, TASK 0 T1 RECV, ACTION]
(DLC TASK 0 T1, task T1 state space, global sync map)

| | MANAGER [TASK 1 T16 SEND, TASK 1 T16 RECV, ACTION]
(DLC TASK 1 T16, task T16 state space, global sync map)

| |
GATE [GATE A SEND, GATE A RECV, ACTION, HOOK REFUSE]

(DLC GATE A, gate A sync vect)
end par

end par
end process

end module

Figure 8.18: Main LNT module of the multiway rendezvous protocol.

We defined two different patterns, one containing a single synchronization and the other one
with two synchronizations on gate A. While the abstraction technique used with the single
synchronization returned a path to the closest neighbourhood (depicted in a shortened
version in Figure 8.20), it did not returned any result using the second pattern, confirming
that all neighbourhoods are located before the second synchronization on gate A (included).

Finally, as collateral information, our approach provides the set of labels that are not
involved in the counterexample LTS, through the difference between the set of labels of

8.2. Abstraction Techniques Experiments 91

(a) (b) (c)

Figure 8.19: Three of the neighbourhoods detected in the abstracted counterexample.

Figure 8.20: Shortest path to a neighbourhood through a pattern.

the full LTS and the set of labels of the counterexample LTS. Since the counterexample
LTS contains all the possible counterexamples, labels that do not belong to it are not
involved in the cause of a bug. For instance, in Table 8.1 we see that in this case the
number of labels in the counterexample LTS is lower than the one in the full LTS (41 to
53), meaning that about 20% of labels are not related to the bug.

8.2.3 Empirical Evaluation

We conducted an empirical study to validate our approach. We asked 17 developers, with
different degrees of expertise, to find bugs on two test cases by taking advantage of the
abstracted counterexample techniques. One test case represents a vending machine, while
the other one represents a system with three communicating processes (already introduced
in Section 8.1). Note that the code provided with both test cases is syntactically correct
and compiles. The bug arise from the violation of the given property.

Vending Machine

The system provided with this specification is composed of two processes: a vending ma-
chine and a customer. The vending machine contains 4 bottles of water, 4 bottles of soda

92 Chapter 8. Experiments

and 4 bottles of beer. Money is represented by single unit coins. Each drink has a different
cost in terms of coins: 1 coin for the water, 2 for the soda and 3 for the beer. The cus-
tomer has a wallet containing 4 coins, and she continues buying drinks until she finishes
her money or the machine is out of stock. The machine can also provide change if the
inserted amount of coins exceeds the cost of the chosen drink and if the customer requires
it. The provided property states that if the customer has only 2 coins in his wallet, she
should not be able to buy a beer, since it costs 3 coins, and it is written in MCL as follows:

[true*.’CUSTOMER WALLET !2’.
true*.’DRINK CHOICE !BEER !+1’.

true*.’PROVIDE DRINK !BEER’.

true*] false

The CUSTOMER WALLET !2 label checks the content of the customer’s wallet, DRINK CHOICE

!BEER !+1 expresses the beer choice and PROVIDE DRINK !BEER shows the beer distribution
by the machine. This property is not satisfied by the system. This means that, even if
the customer only has 2 coins, he is able to buy a beer, which should not be possible. In
Figure 8.21 we depict a simplified version of the vending machine process. The bug is in
the else branch of the if statement with the condition total coins == 0. The machine
does not update the internal money quantity to 0 when the change is provided.

Concurrent Processes

In this case we reused the specification presented in the Causality Bug example (see Sec-
tion 8.1.4). We recall here briefly how this specification behaves. The system provided
with this specification is composed of three main processes: a producer process, a con-
sumer process and a process that can be both a consumer and a producer. Each process
can loop infinitely or break the loop and terminate the execution. A deployer process is
also present in order to deploy the three other processes.

The provided property prevents a process to consume if something has not been produced
before. The MCL formula states that it should be impossible to have a consumption event
(CONSUME) which has not been preceded by a production event (PRODUCE). This property
is written in MCL as follows:

[(not ”PRODUCE”)* . ”CONSUME” . true*] false

This property is not satisfied by the system. In particular, this happens when the PRODCONS
process (depicted in Figure 8.7 in Section 8.1.4) first chooses to be a consumer, and then
does not perform a SYNC action.

8.2. Abstraction Techniques Experiments 93

process MACHINE [PROVIDE DRINK : DISPENSER C, DRINK CHOICE : DRINK CHOICE C,
COIN INSERT, RETRIEVE CHANGE : COINS C, OP : INTERNAL OP C]

(water stock , soda stock, beer stock : int , rem change : nat) is
var quant, water q, soda q, beer q : int , inserted coins , tot coins : nat,

drink : DRINK TYPE in
inserted coins := 0; tot coins := rem change; water q := water stock ;

soda q := soda stock; beer q := beer stock ;

COIN INSERT(?inserted coins); tot coins := inserted coins + tot coins ;
DRINK CHOICE(?drink, ?quant);
loop L in

if CHECK MONEY(drink,tot coins) then (∗ Check if inserted money is sufficient . ∗)
OP(STOCK COINS); break L

end if ;
COIN INSERT(?inserted coins); tot coins := inserted coins + tot coins

end loop

case drink of DRINK TYPE in
WATER −>

if CHECK QUANT(water q, quant) then
PROVIDE DRINK(!WATER);
water q := water q − quant;
tot coins := tot coins − DRINK VALUE(drink)

end if
| SODA −> (∗ similar to WATER case, removed for simplicity ∗)
| BEER −> (∗ similar to WATER case, removed for simplicity ∗)

end case;

if (tot coins == 0) then
RETRIEVE CHANGE(!tot coins)

else OP(PROVIDE COINS); RETRIEVE CHANGE(!tot coins);
end if ;
if ((water q!=0) or (soda q!=0) or (beer q!=0)) then

MACHINE[PROVIDE DRINK, DRINK CHOICE, COIN INSERT, RETRIEVE CHANGE, OP]
(water q, soda q, beer q , tot coins)

end if
end var

end process

Figure 8.21: Simplified LNT process of the vending machine.

Evaluation

The developers were divided in two groups, in order to evaluate both specifications with
and without the abstracted counterexample. The first group was provided with the vending
machine specification without the abstracted counterexample and the communicating pro-
cesses test case with the abstracted counterexample. We did the opposite with the second
group of users. We gave to the users a description of the test case, the LNT specification
of the test, the property, a normal counterexample and an abstracted counterexample with

94 Chapter 8. Experiments

an explanation of our method. The developers were asked to discover the bug and measure
the total time spent in debugging each specification, then to send us the results by email.
When a developer did not discover an actual bug we considered her result as a false positive
and we did not take it into account in computing total average times, since it invalidated
the final results. Table 8.2 depicts the empirical study results in terms of time, comparing
for both test cases the time spent with and without the abstracted counterexample.

Vending Machine Concurrent Sys. Total time

Classic count. 21.5 min 16 min 19 min
Abstracted count. 20.5 min 10 min 15 min

Table 8.2: Empirical study results.

The total average time spent in finding the bug in both test cases without our techniques
is of 19 minutes, while the average time using the abstracted counterexample is of 15
minutes, showing a gain in terms of time with the use of our approach. In general, the
gain in time is not that high. This is due to two main reasons. First, the length of
the two counterexamples is quite short (27 and 15 actions respectively) w.r.t real cases,
making the advantage of our techniques less obvious. This is caused by simple test cases
specifications, expressly chosen to allow developers to carry out tests in a reasonable time.
The aim of our approach is not to debug simple test cases like these ones, but is rather to
complement existing analysis techniques to help the developer when debugging complex
real cases. Second, a part of the developers were using our method for the first time, while
it is worth noting that our method requires some knowledge in order to use it properly.

We tried to measure also the well known precision and recall values on the empirical study.
Precision represents the fraction of relevant results (true positives) among all the retrieved
results (true positives + false positives). In our case, it corresponds to the number of true
bugs among all bugs discovered by the developers. We computed precision for all tests
we carried on, obtaining a total precision value of 0.73%. Recall represents the fraction
of relevant results (true positives) among all the relevant elements (true positive + false
negatives). However in our empirical study we do not have false nor true negatives, since
a bug is always present in each test. Thus, in our case it is not worth computing the recall
measure, since the absence of false negatives give maximum recall (100%).

Finally, we also asked developers’ opinion about the benefit given by our method in de-
tecting the bug. Over 17 developers, only 4 of them said the abstracted counterexample
was not useful or that they did not need it. Almost two-thirds of the developers agreed
considering our approach helpful: 8 found that our technique was useful and 3 said that it
can be useful in some circumstances (the remaining 2 did not express an opinion).

8.3. Concluding Remarks 95

8.3 Concluding Remarks

Our experiments show that our approach, by exploiting the notion of neighbourhood,
can be used to simplify the comprehension of a bug. It is also worth noting that our
visualization techniques are not always helpful because, in some cases, nothing can be
deduced from the visual model or because the model is too large in terms of number
of states/transitions. In those situations, the developer can use one of the abstraction
techniques. Finally, is worth stressing that, since our approach applies on the tagged LTS
and computes all the neighbourhoods, the returned solution is able to pinpoint all the
causes of the property violation, as we have shown precisely in the case studies.

96 Chapter 8. Experiments

Chapter 9

Conclusion

In this work, we have proposed a novel approach for debugging concurrent systems, in
particular for simplifying the comprehension of erroneous behavioural specifications under
validation using model checking techniques. To do so, we have introduced the notion of
neighbourhoods corresponding to the junction of correct and incorrect transitions in the
LTS. Such neighbourhoods represent relevant portions of the LTS which highlight choices
between a correct and an incorrect behaviour. Several notions of neighbourhoods have been
defined depending on the type of transitions located at such a state (correct, incorrect or
neutral transitions). By looking more carefully at those states, we can better understand
the source of the bug.

We have proposed two methods for extracting such neighbourhoods. In the first one we
have defined a procedure to obtain an LTS containing all the counterexamples given an
LTS and a safety property. This LTS containing only counterexamples is then compared
to the original LTS for automatically computing all neighbourhoods. The second method
focuses on a class of liveness properties, called inevitability properties. We have defined
an algorithm to augment the LTS that represents the model of the system with notions
of prefixes and suffixes, which express parts of the sequence of inevitable actions. This
augmented model is then exploited to compute neighbourhoods.

We have also developed two methods for exploiting neighbourhoods, 3D visualization tech-
niques and abstraction techniques, allowing the developer to first exploit a global visual
feedback of the model containing neighbourhoods, and then to go into details and focus
on single counterexamples. In this way the developer can obtain precise information that
explains the cause of the bug.

We implemented our approach in a tool, called CLEAR, and we evaluated it on several
real-world case studies, demonstrating the advantage of both the visualization and the ab-
straction techniques in practice when adopting the neighbourhood approach. We have also
presented several examples of typical bugs with their corresponding visual models. These
models exhibit interesting structures that characterize the bug and are helpful for support-

97

98 Chapter 9. Conclusion

ing the developer during her debugging tasks. Our experimental study, also supported by
an empirical evaluation, shows that our neighbourhood approach helps in practice for more
easily pinpointing the source of the bug in the corresponding LTS model.

9.1 Perspectives

As far as future improvements are concerned, we propose here some ideas and research
directions to extend our work.

1. Our methods perform a semantic analysis of the LTS model, but we do not take
into account the structure of the specification. One perspective is to combine the
semantic information of the LTS to the syntactic specification from which that model
was extracted. This will be achieved by extending our approach with structural
information, for instance, in the form of a control flow graph of the specification.
The addition of the structural information will allow getting finer results which would
help in the identification of the source of the bug. It would also allow the use of code
colouring techniques to highlight portions of the original specification, that should
be looked at carefully for debugging purposes.

2. In some cases the developer may require information that is not provided by the
abstraction techniques detailed in Chapter 4. We thus propose to extend the set of
abstraction techniques with new ones, based on new notions. For instance, one can
define a technique which exploits relations between neighbourhoods. As an example,
in the Sanitary Agency case study, presented in Chapter 8, we detected that it
was necessary to pass through the first neighbourhood to reach the other two. We
could exploit this to extract, given a neighbourhood, all the neighbourhoods that
are necessary to traverse in order to reach the former one. A notion of distance to
the bug can also be used to build an abstraction technique which retrieves all the
neighbourhoods that are at a given distance. For instance, a neighbourhood that
is closer to the bug is more relevant than another one that is more distant. One
can also classify neighbourhoods according to the probability to reach them from a
chosen state (in this case, the neighbourhood with the highest probability should be
more interesting), or group them using a similarity notion.

3. It is worth observing that with the counterexample LTS approach the correct part of
the LTS is entirely discarded (sink state). However, we can still have some situations
in which most of the model is false, resulting in a huge and difficult to visualize LTS.
A perspective thus aims at handling the classic state space explosion problem when
the model from the specification consists of a large number of states/transitions.
One idea in that direction is to rely on clustering techniques (e.g., the ones proposed
in [GvH06]) in order to detect repetition of a sub-part of the model (as in the iteration
bug in Section 8.1). Once that part of the model is detected, if it does not include

9.1. Perspectives 99

any neighbourhood, it could be collapsed because it is not of interest for finding the
bug.

4. The Prefix / Suffix approach has been used for liveness property violations, but we
think that it could be applicable also to safety ones. To do this, we propose to search
for actions (or sequences of actions) that must not appear, as usually stated by a
safety property, instead of searching for sequences of actions that should appear, as
we do with the inevitable actions. Consequently in the case of safety properties the
correct transitions would be the ones in which the prefix and suffix information is
empty. An evaluation with the same case studies we used in this work would also be
carried on in order to compare performances of the two approaches.

5. The current 3D visualization method has been evaluated only with safety property
violations, thus taking into account tagged LTSs generated with the Counterexample
LTS approach. Our aim is to apply the 3D visualization method to tagged LTSs
produced with the Prefix / Suffix approach, thus allowing the use of the methodology
proposed in Section 4.3 also with liveness property violations. Visualizing such tagged
LTS could result in an increased number of correct transitions, due to the lack of a
sink state. However, clustering techniques (e.g., [GvH06]) could be applied in order
to reduce the size of correct parts of the tagged LTS.

6. Another perspective consists in building a repository of specifications and visual-
izations corresponding to typical bugs, starting with those presented in Section 8.1.
This would allow developers to rely on this repository when trying to understand
and correct an erroneous specification by visual analysis. The developers could also
contribute by adding their own specifications and visual patterns to the repository.

7. One of the issues we had to cope with during our work was the lack of erroneous
models. Consequently, we often had to build new faulty models or to introduce faults
artificially on existing ones. We thus propose the creation of a test suite of erroneous
case studies (in the form of behavioural models, i.e., LTSs), similarly to what have
been done with the Siemens Test Suite [HFGO94] in the testing community. Such
test suite could be useful also for comparing different debugging techniques.

8. As an ambitious long term perspective, we propose to detect and classify typical bugs
in categories (e.g., bugs related to variables, to concurrency, or to non-deterministic
choice operators). This could later be useful to build methods to automatically repair
the bug, thus avoiding the manual intervention of the developer.

100 Chapter 9. Conclusion

Bibliography

[AH90] Hiralal Agrawal and Joseph Robert Horgan. Dynamic program slicing. In
Proc. PLDI’90, pages 246–256. ACM, 1990.

[AHLW95] Hiralal Agrawal, Joseph R. Horgan, Saul London, and W. Eric Wong. Fault
localization using execution slices and dataflow tests. In Proc. of ISSRE’95,
pages 143–151. IEEE, 1995.

[AKA+02] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and Setsuo
Arikawa. Optimized substructure discovery for semi-structured data. In
Proc. of PKDD’02, volume 2431 of LNCS, pages 1–14. Springer, 2002.

[ALRL04] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. Basic concepts and taxonomy of dependable and secure com-
puting. IEEE Trans. Dependable Sec. Comput., 1(1):11–33, 2004.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley, 1986.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO Specification
Language LOTOS. Computer Networks, 14:25–59, 1987.

[BBC05] A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component
Adaptation. Journal of Software Systems, 74(1), 2005.

[BBC+12] Ilan Beer, Shoham Ben-David, Hana Chockler, Avigail Orni, and Richard J.
Trefler. Explaining counterexamples using causality. Formal Methods in
System Design, 40(1):20–40, 2012.

[BCH+04] Dirk Beyer, Adam Chlipala, Thomas A. Henzinger, Ranjit Jhala, and Rupak
Majumdar. Generating tests from counterexamples. In Proc. of ICSE’04,
pages 326–335. IEEE Computer Society, 2004.

[BCR15] Mohammed Bekkouche, Hélène Collavizza, and Michel Rueher. LocFaults:
A New Flow-driven and Constraint-based Error Localization Approach. In
Proc. of SAC’15, pages 1773–1780. ACM, 2015.

101

102 BIBLIOGRAPHY

[BDM97] Ronald Baecker, Chris DiGiano, and Aaron Marcus. Software visualization
for debugging. Commun. ACM, 40(4):44–54, 1997.

[BFF09] T. Bultan, C. Ferguson, and X. Fu. A Tool for Choreography Analysis Using
Collaboration Diagrams. In Proc. of ICWS’09. IEEE, 2009.

[BFT06] Benoit Baudry, Franck Fleurey, and Yves Le Traon. Improving test suites
for efficient fault localization. In Proc. of ICSE’06, pages 82–91. ACM, 2006.

[BHK+15] Adrian Beer, Stephan Heidinger, Uwe Kühne, Florian Leitner-Fischer, and
Stefan Leue. Symbolic Causality Checking Using Bounded Model Checking.
In Proc. of SPIN’15, volume 9232 of LNCS, pages 203–221. Springer, 2015.

[BK08] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[BLS17] Gianluca Barbon, Vincent Leroy, and Gwen Salaün. Debugging of Concur-
rent Systems Using Counterexample Analysis. In Proc. of FSEN’17, volume
10522 of LNCS, pages 20–34. Springer, 2017.

[BLS18] Gianluca Barbon, Vincent Leroy, and Gwen Salaün. Counterexample Sim-
plification for Liveness Property Violation. In Proc. of SEFM’18, volume
10886 of LNCS, pages 173–188. Springer, 2018.

[BNR03] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to
cause: localizing errors in counterexample traces. In Proc. of POPL’03,
pages 97–105. ACM, 2003.

[BO05] Stefan Blom and Simona Orzan. Distributed state space minimization.
STTT, 7(3):280–291, 2005.

[BP06] Antonio Brogi and Razvan Popescu. Automated generation of BPEL
adapters. In Proc. of ICSOC’06, volume 4294 of LNCS, pages 27–39.
Springer, 2006.

[BR01] Thomas Ball and Sriram K. Rajamani. The SLAM toolkit. In Proc. of
CAV’01, volume 2102 of LNCS, pages 260–264. Springer, 2001.

[BWW14] Mitra Tabaei Befrouei, Chao Wang, and Georg Weissenbacher. Abstraction
and Mining of Traces to Explain Concurrency Bugs. In Proc. of RV’14,
volume 8734 of LNCS, pages 162–177. Springer, 2014.

[CAN+01] Jong-Deok Choi, Bowen Alpern, Ton Ngo, Manu Sridharan, and John M.
Vlissides. A perturbation-free replay platform for cross-optimized multi-
threaded applications. In Proc. of IPDPS’01, page 23. IEEE Computer
Society, 2001.

[CCG+02] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto
Giunchiglia, Marco Pistore, Marco Roveri, Roberto Sebastiani, and Ar-
mando Tacchella. Nusmv 2: An opensource tool for symbolic model check-

BIBLIOGRAPHY 103

ing. In Proc. of CAV’02, volume 2404 of LNCS, pages 359–364. Springer,
2002.

[CCG+04] Sagar Chaki, Edmund M. Clarke, Alex Groce, Somesh Jha, and Helmut
Veith. Modular verification of software components in C. IEEE Trans.
Software Eng., 30(6):388–402, 2004.

[CCG+18] D. Champelovier, X. Clerc, H. Garavel, Y. Guerte, F. Lang, C. McKinty,
V. Powazny, W. Serwe, and G. Smeding. Reference Manual of the LNT to
LOTOS Translator (Version 6.7). INRIA/VASY and INRIA/CONVECS,
153 pages, 2018.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso
Mart́ı-Oliet, José Meseguer, and Carolyn L. Talcott, editors. All About
Maude - A High-Performance Logical Framework, How to Specify, Program
and Verify Systems in Rewriting Logic, volume 4350 of Lecture Notes in
Computer Science. Springer, 2007.

[CDLT08] Francesco Calzolai, Rocco De Nicola, Michele Loreti, and Francesco Tiezzi.
Tapas: A tool for the analysis of process algebras. Trans. Petri Nets and
Other Models of Concurrency I, 5100:54–70, 2008.

[CGK+13] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers,
Erik P. de Vink, Wieger Wesselink, and Tim A. C. Willemse. An overview
of the mcrl2 toolset and its recent advances. In Proc. of TACAS’13, volume
7795 of LNCS, pages 199–213. Springer, 2013.

[CGP01] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking.
MIT Press, 2001.

[CGS04] Sagar Chaki, Alex Groce, and Ofer Strichman. Explaining abstract coun-
terexamples. In Proc. of SIGSOFT FSE’04, pages 73–82. ACM, 2004.

[CH10] Jürgen Christ and Jochen Hoenicke. Instantiation-based interpolation for
quantified formulae. In Decision Procedures in Software, Hardware and
Bioware, 18.04. - 23.04.2010, volume 10161 of Dagstuhl Seminar Proceed-
ings. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2010.

[CJLV02] Edmund M. Clarke, Somesh Jha, Yuan Lu, and Helmut Veith. Tree-Like
Counterexamples in Model Checking. In Proc. of (LICS’02, pages 19–29.
IEEE Computer Society, 2002.

[cle] CLEAR Debugging Tool. https://github.com/gbarbon/clear/.

[CMS+10] J. Cámara, J. Antonio Mart́ın, G. Salaün, C. Canal, and E. Pimentel.
Semi-Automatic Specification of Behavioural Service Adaptation Contracts.
Electr. Notes Theor. Comput. Sci., 264(1):19–34, 2010.

104 BIBLIOGRAPHY

[CRH10] Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. CPBPV: a
constraint-programming framework for bounded program verification. Con-
straints, 15(2):238–264, 2010.

[CZ02] Jong-Deok Choi and Andreas Zeller. Isolating failure-inducing thread sched-
ules. In Proc. of ISSTA’02, pages 210–220. ACM, 2002.

[CZ05] Holger Cleve and Andreas Zeller. Locating causes of program failures. In
Proc. of ICSE’05, pages 342–351. ACM, 2005.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
Property Specifications for Finite-State Verification. In Proc. of ICSE’99,
pages 411–420. ACM, 1999.

[dSACdLF17] Erickson H. da S. Alves, Lucas C. Cordeiro, and Eddie B. de L. Filho. A
method to localize faults in concurrent C programs. JSS, 132:336–352, 2017.

[DV90] Rocco De Nicola and Frits W. Vaandrager. Action versus state based logics
for transition systems. In Proc. of Semantics of Systems of Concurrent
Processes, 1990, volume 469 of LNCS, pages 407–419. Springer, 1990.

[EBNS13] Tayfun Elmas, Jacob Burnim, George C. Necula, and Koushik Sen. CON-
CURRIT: a domain specific language for reproducing concurrency bugs. In
Proc. of PLDI’13, pages 153–164. ACM, 2013.

[EL17] Hugues Evrard and Frédéric Lang. Automatic Distributed Code Generation
from Formal Models of Asynchronous Processes Interacting by Multiway
Rendezvous. JLAMP, 88:33, March 2017.

[ESW12] Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In Proc.
of FM’12, volume 7436 of LNCS, pages 187–201. Springer, 2012.

[FBS04] X. Fu, T. Bultan, and J. Su. Conversation Protocols: A Formalism for
Specification and Verification of Reactive Electronic Services. Theoretical
Computer Science, 328(1-2):19–37, 2004.

[FLS06] Giuseppe Di Fatta, Stefan Leue, and Evghenia Stegantova. Discriminative
Pattern Mining in Software Fault Detection. In Proc. of SOQUA’06, pages
62–69. ACM, 2006.

[FNU03] Eitan Farchi, Yarden Nir, and Shmuel Ur. Concurrent bug patterns and how
to test them. In Proc. of IPDPS’03, page 286. IEEE Computer Society, 2003.

[GA14] Gregor Goessler and Lacramioara Astefanoaei. Blaming in component-based
real-time systems. In Proc. of EMSOFT’14, pages 7:1–7:10. ACM, 2014.

[GCKS06] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error
explanation with distance metrics. STTT, 8(3):229–247, 2006.

BIBLIOGRAPHY 105

[GK05] Alex Groce and Daniel Kroening. Making the most of BMC counterexam-
ples. ENTCS, 119(2):67–81, 2005.

[GKL04] Alex Groce, Daniel Kroening, and Flavio Lerda. Understanding counterex-
amples with explain. In Proc. of CAV’04, volume 3114 of LNCS, pages
453–456. Springer, 2004.

[GL01] Hubert Garavel and Frédéric Lang. SVL: A Scripting Language for Compo-
sitional Verification. In Proc. of FORTE’01, volume 197 of IFIP Conference
Proceedings, pages 377–394. Kluwer, 2001.

[GLMS13] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe.
CADP 2011: A Toolbox for the Construction and Analysis of Distributed
Processes. STTT, 15(2):89–107, 2013.

[GM13] Gregor Gößler and Daniel Le Métayer. A General Trace-Based Framework
of Logical Causality. In Proc. of FACS’13, volume 8348 of LNCS, pages
157–173. Springer, 2013.

[GM15] Gregor Gößler and Daniel Le Métayer. A general framework for blaming in
component-based systems. Sci. Comput. Program., 113:223–235, 2015.

[GMR10] Gregor Gößler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causality
analysis in contract violation. In Proc. of RV’10, volume 6418 of LNCS,
pages 270–284. Springer, 2010.

[GMW12] C. Gierds, A. J. Mooij, and K. Wolf. Reducing Adapter Synthesis to Con-
troller Synthesis. IEEE T. Services Computing, 5(1), 2012.

[Gro04] Alex Groce. Error explanation with distance metrics. In Proc. of TACAS’04,
volume 2988 of LNCS, pages 108–122. Springer, 2004.

[GS11] G. Gössler and G. Salaün. Realizability of Choreographies for Services Inter-
acting Asynchronously. In Proc. of FACS’11, volume 7253 of LNCS, pages
151–167. Springer, 2011.

[GS15] Gregor Gößler and Jean-Bernard Stefani. Fault ascription in concurrent
systems. In Proc. of TGC’15, volume 9533 of LNCS, pages 79–94. Springer,
2015.

[GSB07] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Automated fault
localization for C programs. Electr. Notes Theor. Comput. Sci., 174(4):95–
111, 2007.

[GSB10] Andreas Griesmayer, Stefan Staber, and Roderick Bloem. Fault localization
using a model checker. Softw. Test., Verif. Reliab., 20(2):149–173, 2010.

106 BIBLIOGRAPHY

[GT05] Michael Grottke and Kishor S Trivedi. A classification of software faults.
Journal of Reliability Engineering Association of Japan, 27(7):425–438,
2005.

[GT09] Hubert Garavel and Damien Thivolle. Verification of GALS systems by
combining synchronous languages and process calculi. In Proc. of SPIN’09,
volume 5578 of LNCS, pages 241–260. Springer, 2009.

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining counterexam-
ples. In Proc. of SPIN’03, volume 2648 of LNCS, pages 121–135. Springer,
2003.

[GvH03] Jan Friso Groote and Frank van Ham. Large State Space Visualization. In
Proc. of TACAS’03, volume 2619 of LNCS, pages 585–590. Springer, 2003.

[GvH06] Jan Friso Groote and Frank van Ham. Interactive visualization of large state
spaces. STTT, 8(1):77–91, 2006.

[HFGO94] Monica Hutchins, Herbert Foster, Tarak Goradia, and Thomas J. Ostrand.
Experiments of the effectiveness of dataflow- and controlflow-based test ade-
quacy criteria. In Proc. of ICSE’94, pages 191–200. IEEE Computer Society
/ ACM Press, 1994.

[HG04] Haifeng He and Neelam Gupta. Automated debugging using path-based
weakest preconditions. In Proc. of FASE’04, volume 2984 of LNCS, pages
267–280. Springer, 2004.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre.
Lazy abstraction. In Proc. of POPL’02, pages 58–70. ACM, 2002.

[Hol97] Gerard J. Holzmann. The model checker SPIN. IEEE TSE, 23(5):279–295,
1997.

[HP05] Joseph Y. Halpern and Judea Pearl. Causes and explanations: A structural-
model approach. part i: Causes. The British Journal for the Philosophy of
Science, 56(4):843–887, 2005.

[igo] Igor tool. https://www.st.cs.uni-saarland.de/askigor/downloads/.

[Inr] Inria CONVECS team. CADP demo 01: Alternating Bit Protocol.

[JHS02] James A. Jones, Mary Jean Harrold, and John T. Stasko. Visualization
of test information to assist fault localization. In Proc. of ICSE’02, pages
467–477. ACM, 2002.

[JJ93] T. Jéron and C. Jard. Testing for Unboundedness of FIFO Channels. Theor.
Comput. Sci., 113(1):93–117, 1993.

BIBLIOGRAPHY 107

[JRS02] HoonSang Jin, Kavita Ravi, and Fabio Somenzi. Fate and Free Will in
Error Traces. In Proc. of TACAS’02, volume 2280 of LNCS, pages 445–459.
Springer, 2002.

[Kid98] Peggy Aldrich Kidwell. Stalking the elusive computer bug. IEEE Annals of
the History of Computing, 20(4):5–9, 1998.

[KL90] Bogdan Korel and Janusz W. Laski. Dynamic slicing of computer programs.
Journal of Systems and Software, 13(3):187–195, 1990.

[KLM+15] Gijs Kant, Alfons Laarman, Jeroen Meijer, Jaco van de Pol, Stefan Blom,
and Tom van Dijk. Ltsmin: High-performance language-independent model
checking. In Proc. of TACAS’15, volume 9035 of LNCS, pages 692–707.
Springer, 2015.

[KNP02] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM: prob-
abilistic symbolic model checker. In Proc. of TOOLS’02, volume 2324 of
LNCS, pages 200–204. Springer, 2002.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[LB12] Stefan Leue and Mitra Tabaei Befrouei. Counterexample explanation by
anomaly detection. In Proc. of SPIN’12, volume 7385 of LNCS, pages 24–
42. Springer, 2012.

[LB13] Stefan Leue and Mitra Tabaei Befrouei. Mining Sequential Patterns to
Explain Concurrent Counterexamples. In Proc. of SPIN’13, volume 7976 of
LNCS, pages 264–281. Springer, 2013.

[Lew73] David K. Lewis. Counterfactuals. Blackwell, 1973.

[Lie97] Henry Lieberman. The debugging scandal and what to do about it (intro-
duction to the special section). Commun. ACM, 40(4):26–29, 1997.

[LL13] Florian Leitner-Fischer and Stefan Leue. Causality checking for complex
system models. In Proc. of VMCAI’13, volume 7737 of Lecture Notes in
Computer Science, pages 248–267. Springer, 2013.

[LL14] Florian Leitner-Fischer and Stefan Leue. Spincause: a tool for causality
checking. In Proc. of SPIN’14, pages 117–120. ACM, 2014.

[LM13] Frédéric Lang and Radu Mateescu. Partial Model Checking using Networks
of Labelled Transition Systems and Boole an Equation Systems. Logical
Methods in Computer Science, 9(4), 2013.

[LPSZ08] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. Learning from
mistakes: a comprehensive study on real world concurrency bug character-
istics. In Proc. of ASPLOS’08, pages 329–339. ACM, 2008.

108 BIBLIOGRAPHY

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a
nutshell. STTT, 1(1-2):134–152, 1997.

[LSW08] Stefan Leue, Alin Stefanescu, and Wei Wei. Dependency analysis for con-
trol flow cycles in reactive communicating processes. In Proc. of SPIN’08,
volume 5156 of LNCS, pages 176–195. Springer, 2008.

[Mil89] Robin Milner. Communication and Concurrency. Prentice Hall, 1989.

[MP11] J. A. Mart́ın and E. Pimentel. Contracts for Security Adaptation. J. Log.
Algebr. Program., 80(3-5), 2011.

[MPS08] Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of service pro-
tocols using process algebra and on-the-fly reduction techniques. In Service-
Oriented Computing - ICSOC 2008, 6th International Conference, Sydney,
Australia, December 1-5, 2008. Proceedings, 2008.

[MPS12] Radu Mateescu, Pascal Poizat, and Gwen Salaün. Adaptation of Service
Protocols Using Process Algebra and On-the-Fly Reduction Techniques.
IEEE TSE, 38(4):755–777, 2012.

[MT08] Radu Mateescu and Damien Thivolle. A Model Checking Language for
Concurrent Value-Passing Systems. In Proc. of FM’08, volume 5014 of
LNCS, pages 148–164. Springer, 2008.

[OSB14] Meriem Ouederni, Gwen Salaün, and Tevfik Bultan. Compatibility checking
for asynchronously communicating software. In Proc. of FACS’13, volume
8348 of LNCS. Springer, 2014.

[Par81] David Michael Ritchie Park. Concurrency and Automata on Infinite Se-
quences. In Proc. of TCS’81, volume 104 of LNCS, pages 167–183. Springer,
1981.

[Pet81] Gary L. Peterson. Myths about the mutual exclusion problem. Inf. Process.
Lett., 12(3):115–116, 1981.

[Pol] Polyspace (online). https://www.mathworks.com/products/polyspace.html.

[PT14] Mike Papadakis and Yves Le Traon. Effective Fault Localization via Muta-
tion Analysis: A Selective Mutation Approach. In Proc. of SAC’14, pages
1293–1300. ACM, 2014.

[RS04] Kavita Ravi and Fabio Somenzi. Minimal assignments for bounded model
checking. In Proc. of TACAS’04, volume 2988 of LNCS, pages 31–45.
Springer, 2004.

[SBR12] G. Salaün, T. Bultan, and N. Roohi. Realizability of Choreographies Using
Process Algebra Encodings. IEEE Transactions on Services Computing,
5(3):290–304, 2012.

BIBLIOGRAPHY 109

[SBS04] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and Reasoning on Web
Services using Process Algebra. In Proc. of ICWS’04, pages 43–50. IEEE
Computer Society, 2004.

[SEG10] R. Seguel, R. Eshuis, and P. W. P. J. Grefen. Generating Minimal Pro-
tocol Adaptors for Loosely Coupled Services. In Proc. of ICWS’10. IEEE
Computer Society, 2010.

[SEP+13] Gwen Salaün, Xavier Etchevers, Noel De Palma, Fabienne Boyer, and
Thierry Coupaye. Verification of a Self-configuration Protocol for Dis-
tributed Applications in the Cloud. In Assurances for Self-Adaptive Sys-
tems, pages 60–79. Springer, 2013.

[SY15] Gwen Salaün and Lina Ye. Debugging Process Algebra Specifications. In
Proc. of VMCAI’15, volume 8931 of LNCS, pages 245–262. Springer, 2015.

[Tar72] Robert Endre Tarjan. Depth-First Search and Linear Graph Algorithms.
SIAM J. Comput., 1(2):146–160, 1972.

[Tip95] Frank Tip. A survey of program slicing techniques. J. Prog. Lang., 3(3),
1995.

[vdAMSW09] W. M. P. van der Aalst, A. J. Mooij, C. Stahl, and K. Wolf. Service Inter-
action: Patterns, Formalization, and Analysis. In Proc. of SFM’09, volume
5569 of LNCS. Springer, 2009.

[VHBP00] Willem Visser, Klaus Havelund, Guillaume P. Brat, and Seungjoon Park.
Model checking programs. In Proc. of ASE’00, pages 3–12. IEEE Computer
Society, 2000.

[WAK+13] Shaohui Wang, Anaheed Ayoub, BaekGyu Kim, Gregor Gößler, Oleg Sokol-
sky, and Insup Lee. A causality analysis framework for component-based
real-time systems. In Proc. of RV’13, volume 8174 of LNCS, pages 285–303.
Springer, 2013.

[Wei79] Mark Weiser. Program slices: formal, psychological, and practical investiga-
tions of an automatic program abstraction method. PhD thesis, University
of Michigan, 1979.

[Wei82] Mark Weiser. Programmers use slices when debugging. Commun. ACM,
25(7):446–452, 1982.

[WGG+15] Shaohui Wang, Yoann Geoffroy, Gregor Gößler, Oleg Sokolsky, and Insup
Lee. A hybrid approach to causality analysis. In Proc. of RV’15, volume
9333 of LNCS, pages 250–265. Springer, 2015.

[WGL+16] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. A
Survey on Software Fault Localization. IEEE TSE, 42(8):707–740, 2016.

110 BIBLIOGRAPHY

[WYIG06] Chao Wang, Zijiang Yang, Franjo Ivancic, and Aarti Gupta. Whodunit?
causal analysis for counterexamples. In Proc. of ATVA’06, volume 4218 of
LNCS, pages 82–95. Springer, 2006.

[YHA03] Xifeng Yan, Jiawei Han, and Ramin Afshar. CloSpan: Mining Closed Se-
quential Patterns in Large Datasets. In Proc. of SDM’03, pages 166–177.
SIAM, 2003.

[Zak02] Mohammed Javeed Zaki. Efficiently mining frequent trees in a forest. In
Proc. of KDD’02, pages 71–80. ACM, 2002.

[Zel99] Andreas Zeller. Yesterday, my program worked. today, it does not. why? In
Proc. of ESEC/SIGSOFT FSE’99, volume 1687 of LNCS, pages 253–267.
Springer, 1999.

[Zel02] Andreas Zeller. Isolating cause-effect chains from computer programs. In
Proc. of SIGSOFT FSE’02, pages 1–10. ACM, 2002.

[Zel09] Andreas Zeller. Why Programs Fail - A Guide to Systematic Debugging,
2nd Edition. Academic Press, 2009.

[ZH02] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-
inducing input. IEEE TSE, 28(2):183–200, 2002.

	Introduction
	Context
	Motivations
	Approach
	Contributions
	Thesis Structure

	Related Work
	Trace Explanation
	Fault Localization Using Testing
	Bug Visualization
	Alternative Approaches
	Concluding Remarks

	Preliminaries
	Models
	LNT
	Data Types
	Functions
	Processes

	Temporal Properties
	Safety Properties
	Liveness Properties

	Operations on LTS
	Simulation Relation
	LTS Determinization
	LTS Minimization
	Synchronous Product
	Strongly Connected Components

	Approach Overview
	Transitions Types and Tagged LTS
	The Neighbourhood Notion
	Neighbourhood Taxonomy

	Neighbourhood Exploitation
	Visualization Techniques
	Abstraction Techniques

	The Counterexample LTS Approach
	Counterexample LTS Generation
	States Matching
	Transition Types Computation
	Neighbourhood Examples

	The Prefix-Suffix Approach
	Prefixes and Suffixes
	Prefixes and Suffixes Calculation
	Max Prefix Calculation
	Max Suffix Calculation
	Common Prefix Calculation
	Common Suffix Calculation
	Order of Calculation

	Transitions Types Computation
	Concluding Remarks

	Tool Support: the CLEAR Tool
	CLEAR Neighbourhood Calculation Module
	CLEAR 3D Visualization Module
	CLEAR Analysis Module
	Concluding Remarks

	Experiments
	3D Visualization Techniques Experiments
	Interleaving Bug
	Interleaving Bug (V2)
	Iteration Bug
	Causality Bug

	Abstraction Techniques Experiments
	Quantitative Analysis
	Case Studies
	Empirical Evaluation

	Concluding Remarks

	Conclusion
	Perspectives

