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Abstract

In order to reduce greenhouse gas emissions and shipping costs, the use of kites as an auxiliary
propulsion device for ships is promising. In fact, compared to the use of classic sails, a kite does not
reduce the pay load storage capacity and generates a greater towing force thanks to dynamic �ights.
Assuming that the interactions between a ship and a kite are negligible, the literature has shown
by solving the mean equilibrium of the system that fuel savings are signi�cant. These assumptions
are strong since the kite induces ship motions and due to sea state the ship motion may change the
kite �ight. In order to estimate more accurately the performance and the operability of a kite-towed
vessel, a dynamic modeling of the system is implemented.

A classical kite modeling is used. This model neglects the mass of the kite and assumes straight
and inelastic tethers. These assumptions lead to a kinematic model depending on the lift coef�cient
and the aerodynamic lift to drag ration angle. A linear evolution of these aerodynamic coef�cients
as a function of the curvature of the �ight path is proposed. In addition, by developing a quasi-
analytical line model, it is shown that from 2 m.s-1 of relative wind the straight tether assumption
is reasonable. Based on the tether model, an analytical criterion assessing the minimum wind speed
to enable a quasi-static kite �ight is developed. In particular, it is shown that for a kite sur�ng
kite, the minimum wind launch for quasi-static �y is 3.4 m.s-1. In order to solve all the interaction
terms between the kite and the ship, a time domaine seakeeping model based on the linearized ship
equation of motion assuming a potential �ow is developed. The convolution product of the impulse
response of the ship is computed with state-space systems. This method has the advantage to run
fast. However, since horizontal ship motions are not well represented by such theories, a coupling
with a maneuverability model is presented. Comparisons to front sea basin tests and gyration and
zigzagging tests show rather good results.

To study the interactions between the kite and the ship a monolithic coupling and a dissociated
coupling are compared. The dissociated coupling neglects the in�uence of ship motions on the
kite �ight. In a calm water case, results obtained by the two types of coupling are very close. In
regular waves, ship motions are dominated by the wave in�uence. Thus, a network of low frequency
subharmonic appears in the kite excitation spectrum. The fundamental frequency of the subharmonic
is given by the difference between the wave frequency and the frequency of the nearest kite excitation
harmonic. When this difference is small enough, a lock-in phenomenon appears. This kite lock-
in phenomenon is a bene�t for the kite and the ship when the shift of the excitation harmonics
corresponds to an increase. The kite towing is increased up to 34% and the kite ef�ciency is increased
up to 4% compared to a calm water case. The roll amplitude is reduced by 20% compared to a �ight
con�guration at the boundary of the kite lock-in phenomenon. This phenomenon as it is not visible
with the dissociated approach shows the interest of a monolithic coupling. Furthermore, a course
keeping stability study shows that the rudder needs to be actively controlled.
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Résumé

A�n de réduire les émissions de gaz à effet de serre et le coût du transport maritime, l'utilisation
des cerfs-volants comme système de propulsion auxiliaire des navires est prometteuse. Un cerf-
volant réduit très peu la capacité d'emport et à surface égale permet en vol dynamique de générer
une traction importante. En supposant que les interactions entre un navire et un cerf-volant sont
négligeables, la littérature a montré en résolvant l'équilibre moyen du système que les économies
de carburant pouvaient être signi�cative. Ces hypothèses sont fortes car le cerf-volant impose des
mouvements au navire qui lui même, en étant soumis aux vagues, peut modi�er le vol du cerf-volant.
Pour estimer plus précisément les performances et l'opérabilité d'un navire tracté par cerf-volant,
une modélisation dynamique du système est alors mise en œuvre.

Une modélisation analytique de cerf-volant est utilisée. Ce modèle néglige la masse du cerf-volant et
suppose que les lignes sont droites et indéformablee. Ces hypothèses conduisent à un modèle ciné-
matique dépendant du coef�cient de portance et de la �nesse aérodynamique. Une évolution linéaire
des coef�cients aérodynamiques en fonction de la courbure de la trajectoire de vol est proposée. Par
ailleurs, en développant un modèle quasi-analytique de ligne, il est montré qu'à partir de 2 m.s-1de
vent relatif que l'hypothèse de ligne droite est raisonnable. En se basant sur un modèle de ligne, un
critère analytique de vitesse de vent minimum permettant un vol quasi-statique est présenté. Dans
le but de résoudre l'ensemble des termes d'interaction entre le cerf-volant et le navire, un modèle
linéarisé de tenue à la mer temporelle est développé. Le produit de convolution de la réponse impul-
sionnelle du navire est calculé avec des systèmes d'états. Cette méthode à l'avantage d'être rapide
à calculer. Cependant comme celle-ci représente mal les mouvements horizontaux des navires, le
modèle développé est alors couplé à un modèle de manœuvrabilité.

Pour étudier les interactions entre le cerf-volant et le navire un couplage monolithique et un couplage
dissocié sont comparés. Le couplage dissocié néglige l'in�uence des mouvements du navire sur le
vol du cerf-volant. En cas de mer calme, les résultats obtenus par les deux types de couplage sont
très proches. En cas de houle régulière les mouvements du navires sont principalement causés par
la vague. Un réseau de sous-harmoniques basse fréquence apparait alors dans le spectre d'excitation
du navire. La fréquence fondamentale des sous-harmoniques est donnée par la différence entre la
fréquence de vague et la fréquence de l'harmonique la plus proche de l'excitation du kite. Quand
cette différence est suf�samment petite, un phénomène d'accrochage apparait. Ce phénomène est
béné�que pour le cerf-volant et le navire quand le décalage des harmoniques d'excitation correspond
à une augmentation. La traction du cerf-volant est augmentée jusqu'à 34% et l'ef�cacité du kite est
augmenté jusqu' 4% par rapport au cas en mer calme. L'amplitude de roulis est diminuée de 20% par
rapport à une con�guration de vol en limite du phénomène d'accrochage. Ce phénomène n'est pas
visible avec l'approche dissociée ce qui montre l'intérêt d'un couplage monolithique. Par ailleurs,
une étude de la stabilité de route montre qu'il est nécessaire de contrôler activement le safran.
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T k Tether force2 R3 [N]

t � Tangent unit vector to the trajectoryC at the
curvilinear abcissa�

[–]

Tm Ship draft at midship [m]

T c
s

Direct cosine matrix from thes frame to thec
frame

[–]

tp Propeller thrust deduction factor [–]

Ua Tether attachment point velocity [m.s-1]

Uc Current velocity [m.s-1]
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Notations

Ud Desired ship velocity [rad]

Uh Mean ship forward speed [m.s-1]

Uk The relative velocity of the kite K with respect
to the tether attachment point A

[m.s-1]

Uref True wind speed at the altitude of measurment
zref

[m.s-1]

Urw;xy At a point X, the relative wind speed referring
to a position on the ship Y

[m.s-1]

Us Velocity vector of the ship atOs with respect
to thec frame expressed in thes frame

[m.s-1]

U tw True wind speed [m.s-1]

V s Generalized velocity vector of the ship atOs

with respect to thec frame expressed in thes
frame

[m.s-1, rad.s-1]

w Wake fraction [-]

W k Kite weight [N]

xvk Kite velocity direction [–]

zref Altitude of wind measurement [m]
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Reference frames and parameterizations

In this thesis, if no simpli�cations are mentioned, following notations hold by default:

• a: represents a vector.

• a: represents a matrix.

• a: represents an orthogonal frame. The origin of the frame is denotedOa, and each
vector are denoted byxa, y

a
andza.

• a(b ) : denotes the vectora expressed in the frameb. In this casea(b ) 2 R3.

• Tb
a
: represents the square transformation matrix from thea frame to theb frame.

Consequently, any vectorn(a) expressed ina can be transformed inb as follows:

n(b ) = Tb
a
n(a) . Moreover,Tb

a
is orthogonal, consequently

�
Tb

a

� T
=

�
Tb

a

� � 1
=

Ta
b
.

• a � b: denotes the scalar product.

• � : denotes the cross product.

• � : denotes the Hadamard product.

• Two matrices side by side means a matrix product

• _x: denotes the time derivative of the scalarx.

• _a: denotes the time derivative ofa. If it is not precised, the time derivative is per-
formed with respect to a Galilean frame.

Earth �xed frame: n-frame

The mathematical developments assume that the orthogonal reference framen is Galilean.
n is centered onOn , somewhere on the mean sea level surface. The three unit vectors ofn
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baseline

Lpp

Aft perpendicular Midship Forward perpendicular

lz

xsOs
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zs

R

H

P

Figure 1.: Ship reference frames and parameterization

are denoted byxn , y
n

andzn . zn is pointing downward with respect to the earth gravity.
Consequently, the earth gravityg can be expressed as follows:

g = gzn ; (1)

whereg = 9 :81 m.s-2. Moreover, any other frame experiencing a rectilinear and uniform
motion with respect to then is assumed to be Galilean as well.

Current reference frame: c-frame

The current referencec centered onOc is translating at the constant velocityUc. The three
unit vectors ofc are denotedxc, y

c
andzc. Consequently, at any time we have:

h
xc; y

c
; zc

i
=

h
xn ; y

n
; zn

i
: (2)

The current velocity is assumed to be horizontal, thus we haveUc � zc = 0 .

Ship reference frame:s-frame

s is the ship �xed frame,xs is pointing forward in the ship symmetry plane,zs is pointing
downward andy

s
completes the direct orthogonal basis.zs is normal to the free surface

when the ship is at the hydrostatic equilibrium. The origin ofs denoted byOs is in the ship
symmetry plane at mid-ship and at a vertical distance up to the baselinelz. The mid-ship
is a plane normal toxs positioned at the half distance between aft perpendicular and the
forward perpendicular. The aft perpendicular is normal toxs at the transom. The forward
perpendicular is the intersection of the stern with the free surface when the ship is at the
hydrostatic equilibrium. Figure1 illustrates the ship reference frame.
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Reference frames and parameterizations

The generalized position vector of the ship denoted byS = [ sx ; sy ; sz; � s; � s;  s]Tc is
the assembly of the position ofOs and the ship Euler's angles with respect to thec frame.
The generalized ship velocity atOs expressed ins with respect to thec frame is denoted by
V s = [ us; vs; ws; ps; qs; r s]T , where the �rst three components are the linear velocities
U(s)

s and the last three components are the turning rates
 (s)
s=c.

The transformation of a vector expressed in thes frame denoted byn(s) can be expressed is
thec frame withn(c) = T c

s
n(s) , whereT c

s
is the direct cosine matrix (cf. Eq. (3)).

T c
s

=

2

4
c sc� s � s sc� s + c ss� ss� s s ss� s + c sc� ss� s

s sc� s c sc� s + s� ss� ss s � c ss� s + s� ss sc� s

� s� s c� ss� s c� sc� s

3

5 (3)

where, c and s denote the cosine and the sine functions. The turning rates and the time
derivatives of the ship Euler's angles satisfy the following relationship:

2

4
ps

qs

r s

3

5 = Rs
c

2

4
_� s
_� s
_ s

3

5 ; (4)

where,

Rs
c

=

2

4
1 0 � s� s

0 c� s c� ss� s

0 � s� s c� sc� s

3

5 : (5)

The pointA is the tether attachment point. The position ofA with respect toOs is OsA =
h
a(s)

x ; a(s)
y ; a(s)

z

i T
expressed ins. R denotes the rudder position,OsR =

h
r (s)

x ; r (s)
y ; r (s)

z

i T

expressed ins. P denotes the propeller position,OsP =
h
p(s)

x ; p(s)
y ; p(s)

z

i T
expressed ins

Seakeeping reference frame:h-frame

The seakeeping reference frame,h =
�

Oh ; xh ; y
h
; zh

�
, is centered onOh . This frame is

translating at the constant mean ship forward speedUh and the following relationship holds
at any time:

zh = zc (6)
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Reference frames and parameterizations

At the reference ship position,Oh coincides with a pointH �xed to the ship (Fig.1). The
position ofH is de�ned with respect toOs in the ship reference frame as follows:

OsH = [ hx ; 0; hz]T (7)

At the mean ship heading in the reference position,xh = xs.

Wind reference frames

tw -frame

tw denotes the true wind basis. In this study the true wind speed is assumed to be horizontal,
consequentlyzn = ztw holds. The true wind speed is orientated byx tw = U tw

kU tw k andy
tw

completes the orthogonal basis. The true wind velocityU tw may depend on the position
within the wind �eld and notably due to the wind friction with the free surface. However,
in this thesis, the true wind speed is assumed to vary only with the altitude with respect to
then frame in terms of magnitude. Therefore, the true wind direction is independent of the
altitude and the associatedtw frame is constant with the altitude. Assuming the true wind
directionx tw is equal toxn or xn , the true wind angle� tw is de�ned as follows:

� tw = � �  s (8)

rw -frame

The relative wind speed is a composition of the true wind velocity and the ship speed with
respect to the current framec. Consequently, the relative wind speed depends on a position
within the wind �eld and on a position on the ship. At a pointX , the relative wind speed
referring to a position on the shipY can be written as follows:

Urw (X; Y ) = U tw (X ) � Uy � Uc; (9)

whereUy denotes the velocity of the pointY �xed to the ship with respect to thec frame.
The notation ofUrw (X; Y ) can be simpli�ed byUrw;xy . The relative wind basis is denoted
rw xy . SinceUy is not necessarily horizontal,zrw;y can be different fromzn , the orthogonal

basis of therw xy frame is de�ned as follows:xrw;xy =
U rw;xy





 U rw;xy







, y

rw;xy
=

zn � x rw;xy




 zn � x rw;xy








andzrw;xy = xrw;xy � y
rw;xy

.
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K

A

xn

Kite
pa

th

y
kn

zkn

zn

xkn y
n


 n

xvkn
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Figure 2.: Schema of the kite reference framekn

The apparent wind speedUaw is the wind speed relative to the kite:

Uaw = U tw (K ) � Ua � Uc � Uk (10)

where,Ua is the velocity of the tether attachment point on the ship andUk is the relative
velocity of the kiteK with respect toA.

Kite reference frame: kn -frame

kn is a kite reference frame (Fig.2) centered onK with zkn = AK
kAK k , y

kn
= zkn � zn

kzkn � zn k and
xkn = y

kn
� zkn . The direction of the velocityK with respect toOn is denoted byxvkn .

The projection ofxvkn on the plane
�

xkn ; y
kn

�
is denoted by~xvkn . The angle of~xvkn with

respect toxkn is denoted by
 n .

k is a kite reference frame (Fig.3) centered onK andzk = AK
kAK k , y

k
=

zk � zrw;ka




 zk � zrw;ka








and

xk = y
k

� zk . The kite velocity is directed byxvk . The kite elevation angle is given by:

� k =
�
2

� arccos
�
zk � zrw;ka

�
(11)

The kite azimuth angle is de�ned as follows:

� k = arccos
�

y
k

� y
rw;ka

�
(12)
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1. Context

1.1. Preliminaries

To reduce the carbon footprint and the fuel consumption, the beyond the sea® project at-
tempts to set up kites on commercial ships as an auxiliary propulsion device for fuel savings.

The concept was �rst introduced byPocock(1827) to tow ships and buggys. Then, this
concept of kite towing of ship was revisited for pleasure purposes by a group of four friends
from United Kingdom and notably by Ian Day and Martin Rayment with the Jacob's Ladder
project1 in 1978. They started the project setting up a ram air kite called at this time a
“�exifoil”. In order to increase the power they added kites to form a stack. Then, they tried
the concept on different catamaran boats to increase the speed. In 1982, in Portland UK at
the Speed Week event, on a 30 ft hull, they performed their best speed, 25 knots. Figure
1.1bis picture of Ian Day and Martin Rayment during their record. Figure1.1ashows how
the launching phase can be sensitive.

(a) Launching phase (b) Speed record at Portland during the Speed Week in
1982: 25 knots

Figure 1.1.: The �rst project of ship towed by kite: the Jacob's Ladder project

In the literature, the concept of kite towing was introduced byDuckworth(1983) andWelli-
come and Wilkinson(1984). Duckworth(1983) argued that the installation of a kite on ship
requires less modi�cation than for a classical rig, and that a kite can be recovered in case

1http://www.panduj.plus.com/jladder/jl.htm
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1. Context

of storm insuring the ship safety. This study was focused on the use of axi-symmetric sta-
ble parachutes. Consequently, the operabilty of the kite was focused on downwind sailing
only. Latter,Wellicome and Wilkinson(1984) performed a theoretical study about kite and
introduced the so-called zero-mass kite model. In (Wellicome, 1985), Wellicome provides
an analysis of the performance of different wind devices, such as conventional soft sail rig,
Prossl rig, rigid wings and static kite classi�ed into the passive device category, and �ettner
rotor, wind turbine and active maneuvered kite into the active category. His study leads to
the conclusion that the kite is one of the best candidate. The bene�ts of a kite can be listed
as follows:

• For a re�tted ship, a kite requires less general arrangement modi�cations than a clas-
sical rig.

• Since the tether attachment point is at the deck level, the mean heeling angle induced
by a kite is small compared to a classical rig.

• With an active maneuvered kite performing a dynamic �ight, the towing forces are
greater than the force developed by a classical rig of the same area (Leloup et al.,
2014).

• Depending on the tether length, the kite can catch faster winds thanks to the wind
gradient.

Fuel saving predictions have been carried out in the literature byNaaijen et al.(2006),
Leloup et al.(2016) andPodeur et al.(2016). They all predicts signi�cant fuel saving pre-
dictions. The most realistic fuel predictions has been performed byPodeur et al.(2016) on
a 2200 TEU container ship towed by a kite of 800 m2. Indeed, in that case using the 4 years
weather database provided by the European Center for Medium range Weather Forecast
(ECMWF), the mean fuel saving is 12.1 % for a ship forward speed of 8.2 m.s-1 and 6.7 %
for a ship forward speed of 9.8 m.s-1.

Figure 1.2.: A Skysails kite of 320 m2 on a 90 m long cargo ship

Despite all the advantages offer by a kite, quite few ships have been equipped with a kite.
The most advanced project dedicated to the use of kites as an auxiliary propulsion device
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1.2. Ecological interests

for merchant ship was led by the Skysail® company2 (cf. Fig. 1.2). In 2008, this company
equipped a bulk carrier of 90 m long with a ram air kite of 320 m2 (Erhard and Strauch,
2012). Actually, two experimental vessels promoting the energy transition are equipped
with a kite. The �rst vessel is the Race For Water3 vessel (cf. Fig.1.3a) launched in spring
2017. The second vessel is Energy Observer4, launched during the summer 2017 and is
equipped with a kite provided by the beyond the sea® project (cf. Fig.1.3b).

(a) Vessel of the Race For Water project (b) Vessel of the Energy Observer project

Figure 1.3.: Experimental vessels equipped with a kite

1.2. Ecological interests

The seaway is one of the most ef�cient way of transport in terms of CO2 emmissions.
Figure1.4 shows that a ship emits regarding the payload less than 10% of CO2 emitted
by a truck and 2% of CO2 emitted by an airplane. According to (Smith et al., 2014), the
overall maritime emission of CO2 per year over the period 2007-2012 is 810 million tonnes,
which represents 2.6% of the global emission. For a ship,Ronen(2011) shows that the fuel
consumption may represent more than 75% of the operating costs. In addition, the CO2

emissions could be considered as proportional to the fuel consumption. An estimation of
the ratio of the fuel consumption and CO2 emissions can be found inCorbett et al.(2009).
Consequently, the ecological and economical interests are joint.

According to the International Maritime Organisation (Smith et al., 2014), CO2 emissions
could increase drastically due to an important raise of gross domestic products. Indeed,
depending on the socioeconomic scenario considered inSmith et al.(2014), the gross do-
mestic production should be multiplied between three and seven. An important effort should
be performed by the shipping industry to improve the fuel-ef�ciency of the world �eet. The
effect of improving the fuel ef�ciency is investigated in (Smith et al., 2014). 16 scenarios

2http://www.skysails.info
3www.raceforwater.com
4http://www.energy-observer.org/
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Figure 1.4.: Typical CO2 emission in grams per ton kilometers for different modes of trans-
port; Source: (Buhaug et al., 2009)

for the period 2012-2050 were considered. These scenarios assume different input parame-
ters such as the Representative Concentration Pathways (RCP, see (Moss et al., 2008)), the
Shared Socioeconomic Pathway (SSP, see (Ebi et al., 2014)), a Fuel-Ef�ciency Improve-
ment (FEI) compared to �eet average in 2012, the roll out of Emission Control Area (ECA)
and the use of Lique�ed Natural Gas (LNG) engine.

RCP is a resultant radiative forcing in W.m-2 due to greenhouse gas. For instance, an RCP
of 2.6 W.m-2 corresponds to a raise of the mean temperature on earth of 1.5° and is the
most optimistic scenario. The most pessimistic RCP considered is 8.5 W.m-2. According
to a RCP level, Smith et al. extrapolated the oil and coal demand. Five SSP were con-
sidered from 1 to 5, respectively namedsustainability, middle of the road, fragmentation,
inequalityandconventional development. A SSP is a qualitative parameter. A narrative
description of different SSP can be found in (Kriegler et al., 2012; Smith et al., 2014). For
instance, the SSPmiddle of the roadcorresponds to “A world that sees the trends typical
of recent decades continuing, with some progress towards achieving development goals.
Dependency on fossil fuels is slowly decreasing. Development of low-income countries pro-
ceeds unevenly.” The full method of combining RCP and SSP is detailed in (Smith et al.,
2014) according to the method proposed byKriegler et al.(2012).

Here only 4 scenarios are reported. For each scenario, the development of the LNG and
ECA are not considered. The best and the worst combination of RCP and SSP are consid-
ered, respectively RCP2.6 with SSP2 and RCP8.5 with SSP5. For this two combinations of
RCP and SSP, two fuel-ef�ciency improvement are considered, 40% and 60%. Figure1.5
shows for this 4 scenarios the CO2 emissions projections.

The RCP and SSP combination are relatively independent of the maritime industry since the
maritime industry represents only 2.6% of the total CO2 emissions. For the most optimistic
scenario, an increasing of 35% of CO2 emissions is expected in 2050, with the combination
RCP2.6, SSP2 and FEI 60%. For the worst case, RCP8.5, SSP5 and FEI 40%, an increase of
245% of CO2 is expected in 2050. Comparing the two equivalent combinations of RCP and
SSP, the effect of the fuel-ef�ciency improvement can be assessed. In 2050, the effect of an
improvement of the fuel ef�ciency from 40% to 60% leads to a drop of the CO2 emissions
between 400 and 900 million of tons depending on the scenario.
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Figure 1.5.: CO2 emissions projections between 2012 and 2050; results ofSmith et al.
(2014)

These CO2 emissions forecasts show how it is important to improve the fuel ef�ciency of
the shipping industry. Therefore, the development of new devices and notably kites in order
to decrease the carbon footprint of ships is important. As highlighted byTraut et al.(2014),
the use of kite on merchant ships is one of the most promising wind device for fuel saving
and a kite is compatible with most of other saving fuel devices, for instance with LNG
engine or �ettner rotor.

1.3. Economical interest

The interest of a kite for fuel saving has been investigated in the past by (Naaijen et al., 2006;
Naaijen and Koster, 2010; Leloup, 2014; Leloup et al., 2016). They showed that the kite
towing could provide signi�cant fuel savings without compromising the safety of merchant
ship in terms of mean equilibrium of the system. Their studies have been performed on a
225 m long cargo ship, the British Bombardier.Leloup et al.(2016) investigated the fuel
saving with a kite of 320 m2 , the biggest ever manufactured at the time, with a tether length
of 300 m. This kite area were considered since the Skysail® company had already proven
the validity of the kite towing concept on a bulk carrier of 90 m long. The expected fuel
saving ratio were estimated from 10% with a true wind speed of 9.8 m.s-1and up to 60 %
with a true wind speed of 15 m.s-1. Later,Podeur et al.(2016) investigated the fuel saving
along an ocean trip between Halifax (Canada, Nova Scotia) and Le Havre (France), back
and forth over 4 years.

However in these studies, the kite and its operability costs have not been considered. Here
a very simple approach is proposed. It can be de�ned an effective savingCe as follows:
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1. Context

Ce = Csa � Ck (1.1)

whereCk is the kite cost and theCsa is the fuel saving. The fuel saving can be expressed
as follows:

Csa = �� kf tdCs;t (1.2)

where�� kf is the mean fuel saving ratio,td is kite lifetime andCs;t is ship operating cost per
unit of time.

Meyer et al.(2012) investigated the effect of the ship speed on the pro�t and operating
cost of a container ship. They show the existence of an optimal speed taking into account
economical aspects. It should be possible to perform the same work to determine an optimal
ship speed with a kite. The ship operating cost can be represented as an increasing function
of the fuel pricecf .

The kite cost is directly function of the material cost. The kite cost and the lifetime of a kite
are very important to assess the economical interests of a kite. It can be assumed that the
higher the wind loading considered for the design is, the higher the retail cost of the kite will
be. Consequently, the kite retail cost can be expressed by an increasing function of the wind
loading specs for kite designCk (� d). The kite lifetime is dependent on many parameters,
but probably the most important one is the following factor of safety,� d=� k which is the
kite wind loading compared to its wind loading of design. Then it can be assumed that the
kite lifetime can be given by a decreasing function of the factor of safety,td (� d=� k ).

The counterpart of an important kite wind loading design, is that for given materials used for
the kite and the tether, the weight of the kite system increases. Additionally the minimum
operating wind speed required increases with the kite weightWk . Consequently, the mean
kite power saving ratio is a function of the kite wind load design as well. Moreover, as
shown by the kite fuel saving studies, the kite fuel saving ratio depends on the weather
condition and on the ship speed.

According to previous discussion studies, the ship pro�t without kite can be expressed as
follows:

Cp = [ Ci;t (Us) � Cs;t (Us; cf )] td (� d=� k ) (1.3)

where,Ci;t is the operating income of the merchant per unit of time represented as an
increasing function of the ship speed, which means more round trips per annum. The ship
pro�t with kite ~Cp can be expressed as follows:

~Cp = Cp + �� kf tdCs;t (Us; cf ) � Ck (� d) (1.4)
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1.3. Economical interest

Thus a kite pro�t ratio� p = ~Cp=Cp, being the pro�t with kite divided by the pro�t without
kite can be expressed as follows:

� p = 1 +
1

Ci;t (Us) � Cs;t (Us; cf )

�
�� kf (Utw ; Us; � d) Cs;t (Us; cf ) �

Ck (� d)
td (� d=� k )

�

(1.5)
This kite ratio pro�ts makes sense only ifCi;t (Us) > C s;t (Us; coil ). The kite towing
technology has an economical interest if the kite pro�t ratio� p is higher than 1. This
economical criteria can be simpli�ed as follows:

�� kf (Utw ; Us; � d) Cs;t (Us; cf )
td (� d=� k )

Ck (� d)
> 1 (1.6)

Results presented byPodeur et al.(2016) show that the kite fuel saving ratio decreases with
the ship speed. The evolution of the kite pro�t ratio with the ship speed are less obvious
since the ship operating cost per day increases with the speed. According toMeyer et al.
(2012), the ship operating costs of a 8000 TEU container ship is around 50 k$ per day at a
ship speed of 10 m.s-1. Figure1.6shows the minimum kite fuel saving ratio to make pro�ts
as function of the kite cost and for different kite lifetime is day. For instance, with a kite
cost of 200k$, the kite should have at least an ef�ciency of 11.5% and a lifetime of 35 days
or �ve days of lifetime with 80 % of fuel saving ef�ciency.
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Figure 1.6.: Minimum required kite fuel saving ratio as function of the kite cost and different
kite lifetime for a 8000 TEU container ship with ship operating cost of 50k$ per
day.

Moreover an increase of the fuel price is a bene�t for the kite towing technology. Figure
1.7 shows the oil price evolution over the period 2005-2017. The oil price was stabilized
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around 90-100 USD between 2011 and 2014 and dropped drastically around 45-50 USD
since 2015. This important price drop was caused by output growth of the OPEP and Rus-
sia to protect their market from the oil shale producers. Since 2017, the oil shale producers
improved their process, now they make pro�t from an oil price per barrel of 30 USD. Con-
sequently, the oil price per barrel may stay relatively low for a while. The kite towing
technology might be delayed since its pro�ts are dependent of the oil price.

Figure 1.7.: Oil price per barrel since 2005

1.4. Beyond the sea® project

The beyond the sea® project began in 2007 under the initiative of the french navigator Yves
Parlier. In 2014, a consortium of industrial partners and research center joined the beyond
the sea® project with the sponsorship of the French Environment and Energy Management
Agency (ADEME). ADEME ranked the beyond the sea® project as the more convincing
project to succeed in the call for project “ship of the future”. This consortium is composed
of french industrial and academic partners able to offer expertise and technology to develop
the system. The industrial and academic partners of the beyond the sea company are:

• Cousin Trestec, manufacturer of innovative ropes and braids.

• Porcher Industries, manufacturer of innovative fabrics.

• Bopp, designer and manufacturer of hydraulic and electrical winches and deck equip-
ment for marine applications.

• CMA-CGM, worlwide shipping group.
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1.4. Beyond the sea® project

• ENSTA Bretagne, a french national graduate engineering institute and the Dupuy de
Lôme Research Institute.

• DAAM, a company handling a �eet of competition sailing boats. DAAM is in charge
of trials carried out at sea.

The Beyond the sea® company is in charge of the practical knowledge for the kite design,
control, launching and recovery procedures. To solve the associated technological chal-
lenges, the company works in close cooperation with research laboratories. The launching
and recovery procedures have been investigated byDu Pontavice(2016) at the Ladhyx the
research laboratory of the Ecole Polytechnique. The control of the kite is investigated by
the IMS laboratory byCadalen et al.(2017).

The theoretical understanding of the ship towed by a kite system is managed by the ENSTA
Bretagne laboratory IRDL in close cooperation with the industrial partner and the ENSM
(Ecole Nationale Supérieure Maritime), with trains merchant ship of�cers.Leloup(2014)
developed the �rst theoretical knowledge on the fuel saving predictions and the �uid struc-
ture interaction on the kite for the Beyond the sea® project. The research program managed
at the ENSTA Bretagne can be split into three �elds. The kite is a very �exible structure, its
geometry is highly dependent on its aerodynamic loading. The prediction of the kite �ying
shape, deformations and stresses constitute one a of the major scienti�c and technical issue
to address. A second major scienti�c issue concerns the in�uence of the kite on the ship,
both in terms of fuel savings and in terms of ship motions and operability. The third �eld of
research concerns the experimental study of the dynamic kite �ight and ship towed by kite.
Since 2014, these three �elds are the purpose of three PhD programs. Among these scien-
ti�c challenges, the present PhD dissertation deals with the prediction of the ship motions
induced by a towing kite and its operability.
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2. Position of the problem and strategy

2.1. State of the art

The state of the art section is focused on the theoretical knowledge of the ship towed by a
kite system. A more extensive literature review could have been achieved for each subsys-
tems but it was preferred to provide these reviews in each dedicated chapters.

The �rst theoretical work about a kite can be found early in the eighties withLoyd (1980).
This work was focused on the wind power production. ThenWellicome and Wilkinson
(1984) used a zero mass kite model to estimate the kite towing force during a dynamic kite
�ight. This model neglects the mass of the kite and assumes straight and inelastic tethers.
Then, in (Wellicome, 1985), they compared different wind system for the propulsion of
ship. They showed that the kite is one of the most promising technology for fuel savings.

Later,Naaijen et al.(2006); Naaijen and Koster(2010) applied the mean kite towing force
obtained with a zero mass kite model to solve the ship equilibrium in terms of surge, sway
and yaw motions. The promising fuel savings were con�rmed despite the induced resistance
due to the ship drift. Their work was the �rst theoretical result predicting the fuel saving for
different sailing conditions. Moreover, they argued that a kite should be attached at the bow
to limit the rudder angle to counteract the kite yaw moment.Dadd(2013) paid attention
to the validation of the zero mass kite model, and to the associated fuel saving solving
only the surge equilibrium. The comparison of the zero mass kite model with experiments
is presented in (Dadd et al., 2010). Results show, despite the simplicity of the modeling,
a good agreement. Consequently,Leloup et al.(2014) used the zero mass kite model to
compare a kite with a classical rig on a sailing yacht.Leloup(2014) solved the longitudinal
equilibrium of a cargo ship over a transatlantic trip to estimate the mean fuel savings.

The most advanced work in terms of ship modeling were achieved byRan et al.(2013) us-
ing the SEAMAN maneuvering and seakeeping in-house code of the Swedish Ship Testing
Institute (SSPA) described in (Ottoson and Bystrom, 1991). The kite force was estimated
with a zero-mass kite model on a prede�ned trajectory. The coupling between the ship and
the kite was partially taken into account by means of the instantaneous horizontal ship ve-
locity. The considered position to compute the ship velocity was not detailed. The in�uence
of the vertical ship velocity were neglected. Their results have been presented in terms of
mean equilibrium. This work was a �rst attempt to study the dynamic motions of a ship
towed by kite and only few details on the methodology were provided,which are too few to
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be useful. Unfortunately, no further work from the authors was published on the topic, as
far we know.

2.2. Scienti�c issue and objectives of the thesis

As shown by the literature review, the existing knowledge about ships towed by kites had
been motivated by the demonstration of the economical interest of the kite by solving the
equilibrium of the ship according to a mean kite towing force. To consider a mean towing
force is a strong assumption. A kite performing a dynamic a �ight imposes to the ship
an oscillatory excitation. The coupling between a ship and a kite may modify the mean
equilibrium of the system. The dynamic motions of the system, may have an impact on the
fuel saving estimation. Moreover, the kite oscillatory excitation may represent a risk for the
ship safety in terms of seakeeping and maneuverability, and crews must be trained about
how the kite system works and interacts.

From the kite design point of view, ship motions due to the kite and the sea state may modify
the kite �ight leading to an increase of the wind loading applied on the kite. The dynamic
loading will probably leads to a heavier design. Consequently, the wind velocity required
to launch the kite will increase. As discussed in Sec.1.3, the kite cost increases with the
wind loading and may have a signi�cant impact on the kite pro�t.

The aim of this thesis is therefore to investigate the effect of the dynamic motions of a ship
towed by kite on safety, pro�ts and fuel savings. The dynamic motions of a ship towed
by kite depends on parameters such as the kite area, tether length and tether attachment
point. The scienti�c issue is to determine the in�uence of these parameters on the dynamic
motions of the systems and on its operability.

The chosen strategy is to investigate this problematic with quasi-analytical and numerical
modeling approaches. As much as possible, employed methods should be transferable as
in-house code to provide dedicated tools to design kite towing systems for ships. There-
fore, the modeling must be open for different types of ship. Moreover, in applied physics,
numerical methods are generally developed to describe an identi�ed phenomenon. On the
contrary, for this scienti�c issue, the practical knowledge on the kite towing of large ship is
almost nonexistent or con�dential1 Consequently, methods developed in this study should
be fast enough to run a large number of con�gurations and accurate enough to represent the
important physics phenomena related to the system. The trade off between computational
time and accuracy associated to this work is therefore arbitrary.

1Cargo ship, MS Beluga Skysails
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2.3. Organization of the thesis

The thesis is organized in three major parts:

• The partII deals with the kite system modeling including the tether. The zero mass
kite model is presented in Chap.3. In this chapter a comparison with experimental
data at full scale is performed. Since the zero mass kite model assumes straight and
inelastic tether, the Chap.4 investigates the relevancy of these assumptions with a
quasi-analytical model based on the catenary equation. Thanks to the quasi-analytical
tether model, a low wind limit to enable a static kite �ight is developed in Chap.5.

• The partIII focuses on the development of a dynamic ship model in time domain
to perform a monolithic coupling with the kite model. Chapter6 introduces a time
domain method to take into account seakeeping motions. The model is compared to
towing tank experimental results. Chapter7 presents a method mixing the maneuver-
ing equations of motions with the presented time domain seakeeping modeling. The
mixed model is compared to free sailing results and other empirical methods.

• The partIV is dedicated to the coupling of the kite modeling with the ship modeling.
First, based on the presented ship model, the mean equilibrium of a ship is performed
in Chap.8. The in�uence of the sailing condition, the tether attachment position and
the windage force are investigated. In Chapter9, the interactions between the kite
and the ship are studied in both calm water and waves conditions with the presented
ship modeling limited to heave, roll and pitch motions. To take into account the 6
degrees of freedom (dof) of the ship, the course keeping stability is investigated in
Chap. 10. The last chapter11 presents results of free sailing simulations in calm
water and regular waves. The in�uence of the dynamic motions on ship and kite
performances are compared to the mean equilibrium approach. The interactions phe-
nomenon highlighted in Chap.9 are studied modeling the 6 dof with different tether
lengths.

The conclusion summarizes the results of each chapter and proposes several recommenda-
tions to continue and enhance the presented work.
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3. Zero-mass kite model

Résumé: Modélisation du kite sans masse

Un cerf-volant est une structure légère et �exible. La canopée du cerf-volant est générale-
ment fabriquée en toile légère. La structure du cerf-volant peut être renforcée par des
boudins gon�ables et un réseau de brides. Sa forme en vol est très dépendente du charge-
ment aérodynamique et de façon réciproque le chargement aérodynamique est très dépen-
dent de la forme en vol. Ainsi, pour calculer les performances en vol du cerf-volant il
faudrait en toute rigueur résoudre le problème couplé : �uide et structure. Cependant de
telles méthodes sont coûteuses en termes de temps de calcul. D'autres méthodes plus sim-
ples ont été développées dans la littérature pour estimer les performances d'un cerf-volant
: vitesse et force de traction. La plus simple d'entre-elles fait l'hypothèse d'un cerf-volant
sans masse avec des lignes droites et inélastiques (Wellicome and Wilkinson, 1984; Dadd
et al., 2011; Leloup et al., 2016). Cette approche est utilisée dans l'ensemble de la thèse.

Dans ce chapitre l'équation cinématique du vol du cerf-volant est introduite, cf. Eq.
3.1.Cette équation analytique est ensuite analysée pour mettre en évidence un majorant
analytique du maximum de traction (Eq.3.18) ainsi que le maximum de force propulsive
(Eq. 3.19) en tenant compte d'une loi d'évolution de la vitesse du vent avec l'altitude en
puissance 1/7. Il est ensuite montré qu'au vent arrière, un cerf-volant peut fournir par exem-
ple 3.67 fois plus d'effort propulsif qu'une voile de Laser (dériveur olympique), à support
nautique identique.

L'équation cinématique du cerf-volant dépend de la �nesse aérodynamique du cerf-volant
et la traction du cerf-volant dépend du coef�cient de portance. Il est donc important d'es-
timer correctement ces deux paramètres. Précédemment, à travers la littérature consacrée,
ces deux coef�cients ont été considérés constants au cours du vol de façon à obtenir en
moyenne la même vitesse de cerf-volant et la même force de traction. Ici, en suivant la
même démarche, une comparaison avec des essais de vol de cerf-volant instrumenté ont
permis de montrer que les amplitudes de vitesse et de force de traction ne pouvait être
correctement représentées avec un modèle à coef�cient constant, cf. Fig.3.5.

Pour l'étude des mouvements dynamiques d'un navire tracté par cerf-volant, l'estimation
des amplitudes d'effort est pourtant cruciale. En effet, en théorie linéaire, les amplitudes
de mouvement d'un navire sont proportionnelles aux amplitudes d'excitation. Ainsi, une
formulation linéaire de l'angle de �nesse et du coef�cient de portance en fonction de la
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3. Zero-mass kite model

valeur absolue de la dérivée de la direction de la vitesse est proposée. Les coef�cients
de la loi linéaire sont adimensionnés par le rapport entre une longueur caractéristique du
cerf-volant et la vitesse du vent relatif perçue par le navire. La longueur caractéristique du
cerf-volant choisie est la racine carrée de sa surface. A dérivée de la direction constante,
la perte de performance aérodynamique en virage augmente avec la taille du cerf-volant et
diminue avec la vitesse du vent. Comparé au cas de vol dynamique choisi, la correction
est satisfaisante, cf. Fig.3.6. Cependant a�n de valider cette approche, une étude traitant
plusieurs cas de vol dynamique serait nécessaire.

3.1. Introduction

A kite is mainly composed of �exible and light materials such as fabric. The canopy is made
with a very light fabric. Eventually, a kite is also composed of in�atable tubes as battens in
the chord direction and at the leading edge. The bridle lines connect the kite structure to the
tethers. A kite is controlled by the variations of the bridle line length or tether lengths. This
adjustement of bridle line can be performed by a control pod below the kite (cf. Fig.3.1a)
or directly with the back tethers (cf. Fig.3.1b). Since only a small part of the aerodynamic
force is distributed to the back tethers or the bridle lines closed to the trailing edge (around
20-30%), they are controlled to modify the kite �ying shape. In this way, the actuator has
low energy consumption. This modi�cation of the kite �ying shape leads to a dissymetric
aerodynamic loading which enables a modi�cation of the kite heading.

The most advanced kite models take into account the complete kite Fluid Structure In-
teraction (FSI). The kite FSI problem is usually solved by iterative processes coupling a
structural solver, generally a Finite Element (FE) model, and a �uid solver in order to de-
scribe the aerodynamic pressure distribution (Bosch et al., 2014; Chatzikonstantinou, 1989;
Breukels et al., 2013). These methods are very usefull to evaluate the stress in the fabric
and in the in�atable tubes.

However, all these approaches are time consuming. Consequently, many studies focusing
on the global kite system performance use simpler approaches. These simple approaches
can be classi�ed into three groups: zero-mass model (Wellicome and Wilkinson, 1984;
Dadd et al., 2011; Leloup et al., 2016), point-mass model (Williams et al., 2008) and rigid
body model (Williams et al., 2008; Terink, 2009; Terink et al., 2011). The zero-mass model
neglects the mass of the kite and assumes that the tether is straight and inelastic. These
assumptions lead to a kinematic equation of the kite motion. The in�uence of the ship
motions on the kite �ight can then be taken into account trough the tether attachment point
velocity. This model has the advantage of being very fast to compute.

First, the zero-mass model such as formulated byLeloup et al.(2016), dynamic kite trajec-
tory and the control of the kite are detailed. According to the zero mass model, a convenient
upper bound of the tether tension during a dynamic �ight is developed. Then, a comparison
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(a) Schema of an in�atable kite with a single tether con-
trolled by a pod

(b) Schema of an in�atable kite controlled by the
two back tethers

Figure 3.1.: Tether and bridle lines

with experimental data is provided. Based on experimental data, a correction of the lift to
drag angle and lift coef�cient as functions of the kite yaw turning rate are proposed.
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3. Zero-mass kite model

3.2. Kite velocity and force

This section summarizes the development of the zero-mass model as formulated in (Leloup,
2014; Leloup et al., 2016). The masses of the tether and the kite are neglected. The tether
is assumed to be straight and of constant lengthL t . Consequently, the kite velocity is
normal tozk and for any con�gurations the tether tension is opposed to the aerodynamic
kite force. Assuming that the apparent wind velocity is in its symmetry plane,Leloup et al.
(2016) expressed the kite velocityUk , with respect to tether attachment point velocityUa,
as follows:

Uk = Urw;ka

2

4xvk � xrw;ka +

s
�
xvk � xrw;ka

� 2 +
�

zk � xrw;ka

sin � k

� 2

� 1

3

5 xvk ; (3.1)

whereUrw;ka denotes the relative wind speed,Urw;ka = U tw (K ) � Ua � Uc andxvk is the
kite velocity direction with respect toA. � k denotes the lift to drag ratio angle. This equation
constitutes the kite kinematic equation of motion and can be integrated numerically.The kite
velocity is a real number if the following condition is satis�ed:

�
xvk � xrw;ka

� 2 +
�

zk � xrw;ka

sin � k

� 2

� 1 > 0: (3.2)

Then, the tether tension is given by the following formula:

T k = �
� aClk AkU2

aw

2 cos� k
zk (3.3)

The generalized tether force vector acting on the ship atOS with respect to thes frame is
expressed as follows:

F k =
h

T (s)
k OSA (s) � T (s)

K

i T
(3.4)

According to this model, the kite �ight is modi�ed by the ship motions through the tether
attachment point velocity with the expression of the relative wind speed:

Urw;ka = U tw (K ) � Ua � Uc (3.5)
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3.3. Wind gradient

The wind above the sea increases with the altitude due to the friction stress on the free
surface within the atmospheric boundary layer. This phenomenon, called wind gradient
can have a signi�cant effect on the kite performance. A common way to take into account
this effect is to use a wind gradient power law as investigated byPeterson and Hennessey
(1978):

U tw = Uref

 
x(n )

z

zref

! nv

(3.6)

whereUref denotes the true wind speed at the altitude of referencezref . According to
a multi-site studyPeterson and Hennessey(1978) suggested that a power law exponent
nv = 1=7 is realistic. This simple formulation of the wind gradient is suggested by theIttc
(2014) as well.

3.4. Kite trajectory and control

3.4.1. Control

The kite velocity directionxvk is controlled in order to follow a trajectory denoted byC .
The kite velocity direction is de�ned by the target point~K expressed as follows:

~K = C (� + kUkk dt) ; (3.7)

where� is the curvilinear abscissa ofC� the closest point of the trajectory from the current
kite positionK . Hence, the kite velocity directionxvk is de�ned as follows:

xvk =

�
K ~K � xk

�
xk +

�
K ~K � yk

�
y

k





�

K ~K � xk

�
xk +

�
K ~K � yk

�
y

k








(3.8)

The pointC� is determined according to the following equation:

KC � � t � = 0 ; (3.9)

wheret � is the tangent vector to the trajectory at curvilinear abscissa� . Equation (3.9) is
solved numerically with a Newton-Raphson algorithm.

Any trajectory can be considered thanks to the use of a numerical solver to determineC� .
Hence, the trajectoryC can be experimental or theoretical.
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K̃

C�

ds=



 Uk




 dt

K
Uk

C

t�

Figure 3.2.: Schema describing the target point to control the kite directionxvk

3.4.2. Trajectory

To perform a dynamic �ight, the considered theoretical trajectory is the eight shape Lis-
sajous curve as used byArgatov et al.(2009) andLeloup(2014). This type of trajectory has
the advantage to avoid twists of the tether system. The Lissajous trajectories, is de�ned by
the elevation� C and the azimuth� C as follows:

(
� C = � � 8 sin (2� ) + � 8

� C = � � 8 sin(� ) + � 8
; (3.10)

where,� 2 [0; 2� ]. � 8 and� 8 are the elevation and the azimuth of the center of the trajectory
denoted byC8. The trajectory is de�ned with respect torw ra , the relative wind basis with
accordingly to the tether attachment positionA at the reference wind measurement altitude1.
On a sphere of radiusL t , a pointC of the trajectory is de�ned as a function of elevation� C

and azimuth� C with respect torw ra frame as follows:

C =

2

4
L t cos� C cos� C

L t cos� C sin � C

� L t sin � C

3

5

rw ra

; (3.11)

As shown in Fig.3.3, the Lissajous trajectories can be rotated by an angle� 8 aroundC8A.

Any point of the trajectory must agree with Eq. (3.2) insuring the realness the kite velocity.
The bene�t to de�ne the trajectory with respect to the relative wind basis is that the realness
of the kite velocity along the trajectory does not depend signi�cantly on the ship motions.
Nevertheless, ship motions may modify signi�cantly the shape of the trajectory with respect
to the earth �xed framen. Consequently, two trajectory de�nitions are investigated further
in the paper. The �rst de�nition takes into account all components of the tether attachment
point velocity. The second de�nition takes only the horizontal components of the tether
attachment point velocity with respect to the earth �xed framen to compute the relative

1The subscriptr in rw ra denotes the altitude of wind measurement and should not be confused with the
subscriptr for the rudder.

24



3.5. An upper bound of the kite force

C

Ure f� C

� C

A
xrw;ra

zrw;ra

y
rw;ra

� 8

C8

C

Figure 3.3.: Schema of the Lissajous trajectory parameterization

wind basis. This modi�ed relative wind basis of trajectory de�nition is denoted by~rw ra

and is given as follows:

~U
(n )
rw;ra = U(n )

tw (zref ) �
h
u(n )

a ; v(n )
a ; 0

i T
(3.12)

3.5. An upper bound of the kite force

For design purposes, maximizing the traction provided by a given kite could be interesting.
Leloup et al.(2016) showed that the apparent wind speed can be expressed as follows:

Uaw = Urw;ka
xrw � zk

sin � k
; (3.13)

which can be written in terms of elevation and azimuth as follows:

Uaw = Urw;ka
cos (� k ) cos (� k )

sin � k
(3.14)

In the case of a zero ship speed with no currentUc, the apparent wind speed limit is driven
by:

Uaw � Utw (K )
cos� k

sin � k
(3.15)

The true wind speed vary with the altitude due to the wind gradient. Consequently, it exists
a kite elevation to maximize the apparent wind speed. Using the wind gradient expression
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in Eq. 3.6, and assuming that the altitude tether attachment point is zero, Eq. (3.15) can be
expressed as a function of the kite elevation:

Uaw � Uref

�
L t sin � k

jzref j

� nv cos� k

sin � k
(3.16)

The maximum ofsinnv � k cos� k is reached for� k = arctan
p

nv . As recommended by
the Ittc (2014), typical value for the power law parameter above the sea isnv = 1

7 , which
leads to an optimal elevation angle of20:7°. According to the trigonometrical relationship,

cos� k =
q

1
nv +1 andsin � k =

q
nv

nv +1 , the upper bound of the apparent wind velocity is:

Uaw � Uref

0

@
L t

q
nv

nv +1

jzref j

1

A

nv q
1

nv +1

sin � k
(3.17)

In terms of kite force magnitude, the upper bound is:

Tk �
� aClk Ak

2 cos� k sin2 � k (nv + 1)
U2

ref

"
L 2

t nv

z2
ref (nv + 1)

#nv

(3.18)

The maximum of kite towing force is obtained for� k = arctan
p

2nv=3, consequently
T k � x tw is maximized by:

T k � x tw �
� aClk Ak

2 cos� k sin2 � k
� 2

3nv + 1
� 3=2

U2
ref

"
L 2

t nv

z2
ref

�
nv + 2

3

�

#nv

(3.19)

Just by the way as an illustrative example, the performance of a kite can be compared to the
sail performance of the Olympic Laser Class at downwind. Performing s-turn maneuvers,
Schutt and Williamson(2017) showed that the downwind force coef�cient can reach a value
of Cdc = 2 :5. The s-turn is a maneuver performed by the athlete combining an oscillating
yaw motion with an oscillating roll motion to increase the downwind force coef�cient. Ne-
glecting, the bene�t from the wind gradient for the kite, and considering the same sail area,
the ratio of propulsive force between a kite and a Olympic Laser Class rig is at downwind
is written as follows:

T k � x tw
1
2 � aCdcAkU2

ref

<
Clk

Cdc

1
2 cos� k sin2 � k

(3.20)

Referring to the literature,Dadd et al.(2010) measured on a classical kite a lift to drag angle
of 12° and a lift coef�cient of 0.776. This example leads then to the statement that a kite is
up to 3.68 times more powerful than a classical rig at downwind. A more comprehensive
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comparison was performed byLeloup et al.(2014). They compared the performance of a
keel yacht Beneteau First Class 8 and its classical rig with the same keel yacht but equipped
with a kite of 25 m2. The classical sail area of the Beneteau First Class 8 is 34 m2 at upwind
and 65 m2 at downwind. With the kite, the authors argued that the ship performance is
increased by 40% at upwind and by 250% at downwind.

3.6. Comparison with experimental data

The zero-mass kite model is compared to the experimental data obtained byBehrel et al.
(2017). As shown in this section, the zero mass kite model dependends on two parameters,
the kite lift coef�cient Clk and the lift to drag angle� k . These coef�cients must be adapted
in order to �t the data. The onshore full scale trials (Behrel et al., 2017) was performed with
a classical kite Cabrinha® Switchblade of 5 m2 designed for kite-sur�ng. The tether length
was 80 m long. During the run, the kite performed eight shape trajectories controlled by
an autopilot based on the algorithm proposed in (Fagiano et al., 2013). The experimental
kite position is determined with a 3D load cell assuming that the tethers are straight, which
seems reasonable as a �rst approach. The evolution of the wind velocity with the altitude
was identi�ed thanks to a SOnic Detection And Ranging (SODAR). Experimental results
presented here correspond to a phase averaging post-processing of a 5 minutes kite �ight
run.

Figure 3.4 shows the evolution of the wind velocity with respect to kite altitude on the
average trajectory. The SODAR measured the wind velocity at altitudes of 48 m, 53 m and
58 m. The cross represents the wind velocity at kite positions during the run. Hence, for the
presented case, the wind velocity has been �tted with a linear function such as:

Utw = 3 :16� 0:035k(n )
z (3.21)

The wind gradient function in Eq. (3.21) was therefore used for following simulation re-
sults.
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Figure 3.4.: Linear evolution of the wind velocity along the altitude of the average trajectory

3.6.1. Comparison with the zero-mass model

The zero-mass model presented in (Leloup et al., 2016) assumes a constant lift to drag angle
and a constant kite lift coef�cient. The kite velocity is only dependent of� k . Consequently,
zero-mass model results presented are obtained with a lift to drag angle which enables kite
trajectories to be done in the same time of 5.86 seconds than the experimental data. The
kite towing force is dependent on the kite lift coef�cient. Hence, the kite lift coef�cient is
adjusted in order to obtain the same mean towing force. Note that the kite trajectory used
for the simulation is the same than the kite trajectory of the experimental measurements.
The position of the kite is integrated with the 4th order Runge-Kutta scheme with a time
step of 0.1 s. According to the convergence time step performed in AnnexB.1, a time step
of 0.1 s is small enough.

Figure3.5 shows the evolution of the kite velocity and the evolution of the tether tension
at pointA on the average trajectory. The experimental velocity is obtained by �nite differ-
entiation, which induces some noise in the signal sampled at 50 Hz. This noise in terms
of speed and tension for the simulated results still exists since the simulation uses the av-
erage kite trajectory of the experimental data. However, this noise is barely visible as the
sampling frequency of the simulation is only 10 Hz. The kite lift to drag angle and the lift
coef�cient used for the zero-mass model are respectively 12.45° and 0.855. Relative mar-
gins in terms of tension and velocity between simulation results and average experimental
data are respectively around 1% and 0.1%.

The main difference between experiments and results concerns the tether tension and kite
velocity oscillatory amplitudes. Amplitude predicted by the simulation is slightly underes-
timated for velocity results but is less satisfying for tension results. The error in terms of
amplitude of tether tension is more signi�cant.

The tether tension given by Eq.3.3 is a linear function of the square of the apparent wind
velocity, consequently a tension error is linearly dependent on the square of the kite velocity
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error. In order to perform an eight pattern trajectory, the back tether are steered. The
difference of the two back tether lengths leads to an important deformation of the kite �ying
shape. Hence, a modi�cation of the kite lift coef�cient and of kite lift to drag ratio angle
can be expected.
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Figure 3.5.: Evolution of the kite velocity and the evolution of the tether tension at point
A along the average trajectory: comparison of the zero mass model set with
constant lift to drag angle and lift coef�cient with the average phasing of the
experimental data.

3.6.2. Modi�cation of the kite aerodynamic specs

When the back tethers are steered to impose a yaw rate to the kite, the �ying shape is
highly modi�ed. This shape modi�cation leads to an evolution of the aerodynamic specs
of the kite. Even without considering tip vortices, the yaw rate induces an evolution of
the local in�ow velocity along the kite span. According to Eq. (3.1), the kite velocity is
independent of its area. Consequently, for a given radius of curvature of the trajectory, the
evolution of the local in�ow along the span and the effect of the �ying shape deformation
are more consequent with larger kites. Here it is assumed that the evolution of the kite lift
to drag angle� k = arctan ( Cdk=Clk ) and lift coef�cient are proportional to the ratio of a
characteristic length of the kite with the radius of curvature of the trajectory. For a given
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3. Zero-mass kite model

aspect ratio, the characteristic length of the kite can be
p

Ak . To be more precise, the radius
of curvature to consider is the radius of curvature of the projected trajectory on the plane�

K; x k ; y
k

�
. Let us denote this radius of trajectory~RC . The lift to drag angle and the lift

coef�cient could written as follows:

8
<

:

� k = � 0 + �
0

�

p
A k

~RC

Clk = Cl0 + �
0

l

p
A k

~RC

(3.22)

where,�
0

� and �
0

l are two coef�cients. Eq. (3.22) can be rewritten in terms of heading
rate according to the relationship between the radius of curvature of the trajectory and the
kite velocity. Using the Fresnet's relationships,~RC can be rewritten as function of the
turning rate of the kite velocity direction around the axiszkn denoted_
 n , where
 n is the
angle ofxvkn with respect toxkn . Furthermore, according to Eq. (3.1), the kite velocity
is proportional to the relative wind speed, thus the correction proposed can be rewritten as
function of _
 n and the relative wind speed as follows:

(
� k = � 0 +

p
A k

Urw
� � j _
 n j

Clk = Cl0 +
p

A k
Urw

� l j _
 n j
(3.23)

The determination of coef�cients� 0, � � , Cl0 and� l can be evaluated by comparison with
the experimental data set. First,� 0 and� � are identi�ed in order to obtain respectively the
same maximum and minimum speed than the experiments. Then,Cl0 and� l are identi�ed
in order to obtain respectively the same maximum and minimum tether tension than the
experiments. According to this method, following values were identi�ed:

8
>>>><

>>>>:

� 0 = 0 :2013rad

� � = 0 :0422

Cl0 = 0 :9856

� l = � 0:3718

(3.24)

The results in terms of kite velocity and tether tension are plotted in Fig.3.5. With the
modi�cation introduced for the lift to drag angle and the lift coef�cient, the noise in the kite
velocity and the tether tension time series is more signi�cant. Indeed, the computation of
the kite yaw rate requires two �nite differences of the kite position. However, as expected
with the identi�cation method of� 0, � � , Cl0 and� l , the amplitude of the kite velocity and
the amplitude of the tether tension are respected.

An overall good agreement is found in terms of velocity but a slight phase difference exists
between simulation results and experimental data. Results presented by the modi�ed model,
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Figure 3.6.: Evolution of the kite velocity and the evolution of the tether tension atA along
the average trajectory: comparison of the zero mass model with a lift to drag
angle and a lift coef�cient linarly depedent of the kite yaw rate with the average
phasing of the experimental data.

are almost in the range of the� 2� of the tether tension. The linear modi�cations of the lift
to drag angle and of the lift coef�cient with the kite yaw rate lead to a main inprovement of
the zero mass model. However, these modi�cations should be tested for more experimental
cases. Finally, since at the �rst order ship motions are proportional to the amplitude of
excitation forces, these modi�cations ,as they enhance the prediction of the kite excitation
amplitude, are very crucial.

Moreover, the minimum allowable radius of curvature of the trajectory can be estimated
according to Eq. (3.22). Indeed, during a kite �ightClk must be positive. This means that
the trajectory radius of curvature must satisfy the following condition:

~RC > �
�

0

l

Cl0

p
Ak (3.25)

As for numerical application, the maximum trajectory radius of curvature of the 5 m2

Cabrinha® Switchblade is2:23
p

Ak � 5:0 m, which is approximately its span length. This
is consistent with observations on kites dedicated to kite-sur�ng.
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3. Zero-mass kite model

Coef�cients � 0, � � , Cl0 and� l are dimensionless quantities. Consequently, modi�cations
presented in Eqns. (3.23) and (3.24) were kept for the next steps of this study.

3.7. Conclusion

In this chapter, the zero-mass kite model with straight and inelastic tether has been intro-
duced. According to this model, an upper bound of the tether tension has been identi�ed.
Its classical version assumes a constant lift to drag angle and a constant lift coef�cient. A
comparison with experimental data have shown that this assumption is not realistic in terms
of velocity amplitude and tether tension. Since ship motions are theoretically proportional
to excitation forces, a correction of the classical zero mass model has been proposed. This
modi�cation assumes that the kite lift to drag angle and the kite lift coef�cient are linearly
dependent of the kite yaw rate. The resulting model is then dependent on four parameters. A
good agreement is found between the experimental data and the modi�ed zero mass model.
However a phase difference is observed. This phase difference is probably due to the tether
effect and the kite mass.

Tether effects are neglected with this kite model. Since the tether system is the link between
the kite and the ship, it appears necessary to investigate the importance of the tether in such
a system. Consequently, a tether analysis is provided in the next chapter.
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4. Static analysis of tethers

Résumé: Analyse statique des lignes

Dans le chapitre précédent, pour obtenir une équation cinématique de vol de cerf-volant,
une hypothèse de ligne droite et inélastique a été employée. Cette hypothèse est forte et
mérite d'être discutée. Dans ce chapitre, un modèle analytique de ligne de cerf-volant est
développé dans le cas d'un vol statique.

Le modèle de ligne se base sur l'équation de la chainette qui suppose une ligne inélastique
et un chargement linéique constant. Ce modèle présente l'avantage d'être analytique. La
forme de la ligne et la tension aux extrémités dépendent de la position du cerf-volant et du
chargement aérodynamique sur la ligne. Ce problème peut également être résolu de façon
inverse si la force aérodynamique du cerf-volant est connue. Le chargement aérodynamique
varie le long de la ligne à cause du gradient de vent et de la direction locale de la ligne. Un
modèle de chargement aérodynamique équivalent constant est donc proposé. Par ailleurs,
la force aérodynamique du cerf-volant dépend de sa position, le problème est donc couplé.
Ainsi, l'équation d'équilibre entre le cerf-volant et la ligne est résolue numériquement.

Dans un premier temps l'implémentation du modèle est véri�ée sur un cas académique
d'une ligne soumis à son poids propre. Dans un second temps, le modèle de chargement
équivalent est discuté au travers d'une comparaison avec une modélisation de ligne par
éléments �nis. Les résultats montrent que le fait de supposer un chargement aérodynamique
constant n'est pas signi�catif sur les différences de tension et de direction entre les deux
extrémités. En effet, les différences relatives entre les deux modèles en termes de tension et
de direction sont respectivement inférieures à 2% et 1.2%.

Par la suite, avec le modèle de ligne présenté, les différences de tension et d'angle aux deux
extrémités de la ligne sont étudiées en fonction du vent pour un cas de vol statique au zénith
i.e. angle d'azimuth nul par rapport à la direction du vent. Pour se rapprocher d'un cas de
vol dynamique, des vitesses de vent allant jusqu'à 65 m.s-1 sont considérées. La différence
de tension entre les deux extrémités tend vers zéro avec l'augmentation de la vitesse du vent.
La différence d'angle entre les deux extrémités tend vers une valeur constante non nulle. En
effet, la force aérodynamique du cerf-volant ainsi que le chargement aérodynamique de la
ligne augmentent avec la vitesse du vent. Pour le cas considéré, à partir de 10 m.s-1 de vent
les lignes peuvent être considéré droites. En se basant sur le modèle cinématique de kite
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4. Static analysis of tethers

sans masse, en vol dynamique, un vent apparent de 10 m.s-1 correspond à un vent réel de 2
m.s-1.

Par cette analyse on peut considérer que si les effets d'accélération sur lignes sont nég-
ligeables dans le cadre d'un vol dynamique, l'hypothèse de ligne droite nécessaire au
développement du modèle cinématique de cerf-volant sans masse est raisonnable. Il serait
alors intéreressant de poursuivre cette investigation pour quanti�er l'effet de l'accélération
sur les lignes en vol dynamique de cerf-volant.

4.1. Introduction

The tether is the interface between the kite and the ship. It seems crucial to investigate the
role played by the tether in such a system. Using a classical kite, it can be observed that the
tether sag is particularly important for a static kite �ight con�guration in a case of low wind
speed. In a case of a dynamic kite �ight, the tether sag may be quite small and the tether
may be almost straight. This chapter is a �rst approach to investigate the effect of the tether
on the kite �ight. The bene�t of the zero mass model (cf. Chap.3) is its simplicity which
is however due to some strong assumptions. The weight of the kite and the weight of the
tether are neglected and the tether is assumed to be straight. Here, through a static analysis,
the effect of the tether weight and shape on static kite �ight con�guration are investigated.

Tethers are currently made of �ber materials such as Dyneema® (Ultra-high-molecular-
weight polyethylene, UHMWPE). This means that compression, transverse shear, bending
and torsional stiffness of the tether can be neglected compared to the tensile stiffness. In
addition, the tether shape is highly dependent on aerodynamic loading acting on the tether
surface and tether gravity acting on the tether volume. This kind of structure has been
studied for other industrial applications such as electrical power lines, anchored offshore
structures, tethered underwater vehicles or sling loads. Tether models for airborne wind
energy applications were inspired by these applications. Williams et al. (2007) developed a
so-called lumped mass model for dynamic �ight. The mass of each element is concentrated
on each node and the distance between each node remains constant. Breukels and Ockels
(2007) used discrete element modelling with inelastic bar elements. Argatov et al. (2011)
took into account sag due to wind load and tether weight, assuming that the tension along
the tether is constant. They proposed a method to calculate wind load by neglecting the
tangential wind component relatively to the line. They showed how tether effects decrease
the electric power production for a dynamic �ight. A model considering the tether as a
single straight elastic spring to account for material stiffness has been used in order to
study the stability of the kite during a dynamic �ight byTerink et al.(2011). All these
tether models have been developed for dynamic �ight and are still valid for static �ight.
Nevertheless, for discrete models, an arti�cial structural damping needs to be added to
reach the static equilibrium as reported byBreukels and Ockels(2007).

34



4.2. Mathematical model

Considering low wind velocities, tether sag could be important, therefore a single straight
elastic spring modelling the tether (Terink et al., 2011) could not become a realistic enough
assumption. Varma and Goela (1982) developed a soft kite tether model for static kite �ights
at zero azimuth angle. Their model is based on the catenary curve. They considered a
�exible tether of constant length and mass per unit length. Indeed, the average aerodynamic
loading applied on the tether is not signi�cantly modi�ed by increasing the length of the
tether due to its tensile stiffness. Hobbs (1986) studied the in�uence of the wind velocity
gradient effect on the tether shape for static kite �ights at zero azimuth angle. He concluded
his study on the wind pro�le in�uence arguing that the main factor in�uencing the tether
shape is the mean quadratic wind velocity according to the altitude. On the other hand,
being quasi-analytical, the model proposed by (Varma and Goela, 1982) has the potential to
suf�ciently reduce computation times in order to perform tether analysis at the early stage
of the design.

This chapter provides a quasi-analytical formulation of the catenary curve (Irvine, 1981;
Varma and Goela, 1982) to model a �exible tether of a constant length for any static kite
�ight position, with an arbitrary attachment point altitude on the ship deck, and with a wind
velocity gradient law for kite towing forces estimation. The determination of tether's shape
and tension only requires the solution of a one-dimensional transcendental equation with a
�xed-point algorithm. This procedure improves the reliability and the convergence rate of
2D Newton's method suggested in (Irvine, 1981). A closed-form solution is presented to
evaluate a mean aerodynamic loading on the tether according to the wind velocity gradient
effect.

4.2. Mathematical model

4.2.1. Reformulation of the catenary

The tether model is based on the well-known catenary curve (Irvine, 1981). A constant
load per unit length is applied on the tether.A andK points denote joint connections at
each extremities of the tether, respectively for ship attachment point and kite position. The
tether is assumed to be �exible, of a constant length and with no transverse shear and no
bending stiffness. Consequently, the tether remains in a plane de�ned by(A; x t ; zt ) of the
reference framet . It is assumed that the ship is sailing at a constant speed on a straight

course. Consequently, the ship �xed frames is Galilean and
h
xs; y

s
; zs

i
=

h
xn ; y

n
; zn

i
.

The unit vectorzt is de�ned by the load per unit lengthq in Eq. (4.1).

q = �



 q




 zt = � qzt (4.1)

The unit vectory
t

is de�ned asy
t

= ( zt � AK ) =kAK k, where "� " denotes the cross
product operator. In order to obtain a direct orthonormal coordinate system, the unit vector
x t is given byx t = y

t
� zt . Figure4.1 illustrates the coordinate systemss andt .
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Figure 4.1.: Tether reference framet and notations used for the development of the catenary
equation

With the tensionT along the tether ands the curvilinear abscissa, Eqns. (4.2) and (4.3)
de�ne respectively the static equilibrium of an in�nitesimal tether lengthds projected onx t

andzt . T (t )
x andT (t )

z denote respectivelyT � x t andT � zt .

dT (t )
x

ds
=0 (4.2)

dT (t )
z

ds
� q =0 (4.3)

According to Eqns. (4.2) and (4.3), a catenary functionC must verify the following equa-
tion:

q

T (t )
x

=
C

00
(x t )q

1 + C0 (x t )
2

(4.4)

Therefore, by integration of Eq. (4.4), C could be expressed as follows:

C (x t ) =
T (t )

x

q
cosh

 
q

T (t )
x

x t + K 1

!

+ K 2 (4.5)

whereK 1 andK 2 are two constants of integration. They are determined by the boundary

conditions: constant tether lengthL t , coordinates ofA = [0 ; 0; 0]Tt andK =
h
k(t )

x ; 0; k(t )
z

i T

t
,

which leads to:
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0 =
T (t )

x
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k(t )
z =

T (t )
x

q
cosh

�
q

Tyt

k(t )
x + K 1

�
+ K 2 (4.7)

L t =
Z k ( t )

x

0

q
1 + [C0 (x t )]

2dxt =
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� sinh (K 1)

#

(4.8)

Using trigonometric identities, constantsK 1 andK 2 can be expressed thanks to the bound-
ary conditions in order to obtain the functionC. The functionC can be expressed by
following Eq. (4.9):

Ct (x t ) =
k(t )

z sinh (�x t ) + �
n

sinh (�y t ) � sinh
�

�k (t )
x

�
+ sinh

h
�

�
k(t )
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�io
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�

�k (t )
x

�

(4.9)
where� and� are de�ned by Eqns. (4.10) and (4.11):

� =
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�
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� k(t )
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�
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�
�k (t )

x

�i
(4.11)

It can be noticed that the catenary function does not depend on the load per unit length,q.

Equation (4.11) can be rearranged in order to compute the value of� . With u = � 2
�

k(t )
x

� 2
,

�L t = L t

k ( t )
x

and� = k ( t )
z

k ( t )
x

, Eq. (4.11) becomes:

u =

8
<

:
argcosh

2

4
u

�
�L t

2 � � 2
�

2
+ 1

3

5

9
=

;

2

(4.12)

The value ofu is computed by applying the �xed-point algorithm to Eq. (4.12). The
convergence is achieved for all positive values ofu. Thus, for a given kite positionK
and a given ship attachment point positionA, tether tension can be expressed by:
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T (x t ) =
hq

�
; 0;

q
�

C
0

t (x t )
i T

t
(4.13)

It can be noticed that the inverse of� is directly proportional to the tension in thex t direction
with the factorq. Consequently, tether shape and tension along the tether are determined
for any kite and ship attachment point.

By contrast to the previous approach, an expression giving the kite locationK , for a known
tension atK , could be relevant in order to determine the minimal wind velocity required
for a static �ight. This expression is then developed. The tension is tangential to the tether,
which means atK :
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�
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z

T (t )
x

(4.14)

Then, using Eqns. (4.6), (4.7) and (4.8), expressions for the kite locationK with a given
tether tension atK are:
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Equations (4.15) and (4.16) are similar to Eqns. (1.27) and (1.28) given by IrvineIrvine
(1981) in case of a �exible tether of a constant length and with a very large Young's modu-
lus.

4.2.2. Tether Load Model

The load per unit length on the tether is given by Eq. (4.17), whereq
w

denotes the load per
unit length due to wind andq

g
denotes weight distribution, along the curvilinear abscissa.

q(s) = q
w

(s) + q
g

= q
w

(s) + mt gzn (4.17)

wheremt denotes the mass per unit length of tether andg the acceleration due to gravity
(g = 9 :81m s-2).

Aerodynamic tether loading modelingqw is rather tricky since a tether can encounter a
wide range of Reynolds number. The �ow around a circular cylinder has been widely stud-
ied in the past and is still a research topic as mentioned by Sarpkaya in his literature review
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(2004). In addition, a textile rope has not exactly a circular section. Jung in (2009) per-
formed wind tunnel experiments for various rope sections and various roughness surface at
a Reynolds,Re = 84:0 103. According to his measurements the drag coef�cient can vary
from 0:76 to 1:56 with orthogonal �ow. Nevertheless, since the Reynolds effect and the
surface roughness are out of the scope of the thesis, the Hoerner formulation (1965) was
chosen similarly to many other authors involved in airborne wind energy.Urw depends on
altitude, and thereforeq

w
as well. Since the catenary tether model requires only constant

load per unit length (cf. Sect.4.2.1), an approximation of constant wind tether load must be
achieved. The determination of an equivalent altitude~zn to evaluateq

w
is proposed here. It

is assumed that the tether is a straight line betweenA andK .

zt

x t

Urw (~zn )

K

A

q
d

q
l

� t

x t Tether

Figure 4.2.: Diagram of the tether wind load model

As illustrated in Fig.4.2, wind loadq
w

can be decomposed into drag forceq
d

and lift force
q

l
(cf. Eq. (4.18)).

q
w

= q
l
+ q

d
(4.18)

q
d

andq
l

are determined thanks to Hoerner formulas (Hoerner, 1965), Eqns. (4.19) and
(4.20), where a base drag coef�cient of1:1 is assumed for orthogonal �ows (� t = �= 2). � a

is the air density,dt is the tether diameter and� t is the angle of attack between the wind
and the tether as described in Fig.4.2.

q
d

=
1
2

� adt
�
1:1 sin3 (� t ) + 0 :02

�
kUrw (~zn )k Urw (~zn ) (4.19)

q
l

=
1
2

� adt
�
1:1 sin2 (� t ) cos (� t )

�
kUrw (~zn )k

Urw (~zn ) � [Urw (~zn ) � AK ]
kUrw (~zn ) � AK k

(4.20)

With respect to the ship velocityUs and according to Eq. (3.6) , the relative wind velocity
at the altitude~zn is given by Eq. (4.21).

Urw (~zn ) = Uref

�
~zn

zref

� nv

� Ua (4.21)
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In order to conserve approximately the total force acting on the tether,~zn is de�ned such
that Eq. (4.22) is veri�ed.

kUrw (~zn )k2 =
1

�
k(n )

z � a(n )
z

�
Z k ( n )

z

a( n )
z

kUrw (z)k2 dz (4.22)

This equation leads to Eq. (4.23), a second degree polynomial equation in~znv
n . Only the

greatest root, which has a physical meaning is kept.
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(4.23)

It must be noticed that the de�nition of the equivalent altitude~zn , Eq. (4.22) is not correct
to conserve the total force acting on the tether. Indeed, the load direction varies with the
altitude which is not considered in Eq. (4.22). A better de�nition could have been:

Urw (~zn ) =
U2p
kU2k

(4.24)

with,

U2 =
1

�
k(n )

z � a(n )
z

�
Z K z0

Sz0

kUrw k Urw dz (4.25)

However, the previous proposition in Eq. (4.22) should be reasonable enough in order to
achieve a closed-form formulation of the equivalent altitude~zn .

4.2.3. Aerodynamic Kite Model

For a static �ight, forces acting on the kite must be opposed to the tether tension and vary
with altitude due to the wind velocity gradient. Applying the �rst Newton's law to the kite,
Eq. (4.26) is obtained:

0 = � T
�

k(t )
x

�
+ L k + D k + W k (4.26)

where:
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• T
�

k(t )
x

�
is the tether tension at kite location.

• L k is the lift kite aerodynamic force.

• D k is the drag kite aerodynamic force.

• W k is the kite weight,W k = + M K gzn whereM K is the kite mass.

Kite weight is completely known.D k is by de�nition in the direction of the relative wind
and can be determined as follows:

D k =
1
2

� aAkClk tan ( � k ) kUrw k Urw ; (4.27)

where,� a is the air density,Ak is the kite area andClk is the kite lift coef�cient. According
to the assumption of a constant lift-to-drag ratio, the magnitude of the lift,kLk can be
determined by Eq. (4.28). In addition, by de�nition, the kite lift is orthogonal to the drag,
which is expressed by Eq. (4.29).

kL kk =
kD kk

tan ( � k )
(4.28)

L k � D k = 0 (4.29)

One more equation is needed to determine the lift. As a balance is expected between kite

forces and tether tension, we know that at least they must stay in the
�

A; y
t
; zt

�
plane.

This is a consequence of the projection of Eq. (4.26) on axisy
t
, which is expressed by the

following Eq. (4.30):
(L k + D k + W k ) � y

t
= 0 (4.30)

Thanks to the scalar Eq. (4.30), L (t )
x;k is given by Eq. (4.31):

L (t )
y;k = �

�
D (t )

y;k + W (t )
y;k

�
(4.31)

Equations (4.28) and (4.29) lead to a second order polynomial equation inL (t )
z;k . L (t )

z;k solu-
tion is given by Eq. (4.32):

L (t )
z;k =

p
� � L (t )

y;k D (t )
y;k D (t )

z;k� �
D (t )

x;k

� 2
+

�
D (t )

z;k

� 2
� ; (4.32)

� =

�
D (t )

x;k

� 2
kD kk2

tan2 (� k )

� �
D (t )

x;k

� 2
+

�
D (t )

z;k

� 2
�

�
L (t )

y;k

� 2
tan2 (� k )

�
; (4.33)
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where� , Eq. (4.33) is the discriminant of the second order polynomial equation inL (t )
z;k .

Finally, L (t )
x;k is expressed in Eq. (4.34) using Eq. (4.29):

L (t )
x;k = �

L (t )
y;k D (t )

y;k + L (t )
z;kD (t )

z;k

D (t )
x;k

(4.34)

The condition� � 0 is a necessary condition to allow a static kite �ight.

4.2.4. Kite static equilibrium

The equilibrium equation of the kite, Eq. (4.26), can be solved by coupling these models.
Since the tether force depends on the kite position into the plane(x t ; zt ), the equilibrium
must be searched in a plane. The plane(x t ; zt ) is de�ned with the tether loadingqdepending
on the kite position cf. Eqns. (4.19) and (4.20). The equilibrium solution can be searched in
a arbitrary plane. Here, the equilibrium is searched into the plane(A; x ~t ; z~t ) where,x~t and
z~t are de�ned with the tether loading corresponding to the static kite position~K according
to the zero mass modeling:

8
>>>>>>>>><

>>>>>>>>>:

~� k = � arccos
�

sin � k

cos~� k

�

~K
(rw )

= L t

h
cos~� k cos~� k ; cos~� k sin ~� k ; sin ~� k

i T
+ A (rw )

z~t =
� q





 q








y~t
=

�
z~t � A ~K

�
=





 A ~K








x~t = y~t
� z~t

(4.35)

Then, this plane remains constant and can be denoted by(A; x ~t ; z~t ). A Newton-Raphson
algorithm, is used to solve the kite static equilibrium. The initial condition of the algorithm
is de�ned by Eqns. (4.15) and (4.16), where the tensionT is equal to the aerodynamic

forces applied to the kite at position~K
(rw )

andt is equal to~t . After each iteration of the
algorithm the framet changes until convergence.

4.2.5. Veri�cation of the implementation

The implementation of the presented model is veri�ed thanks to experimental data provided
by Irvine and Sinclair inIrvine and Sinclair(1976). In this experiment, the two extremities
of a cable were horizontally attached. The cable length was1:20m, the cable cross sectional
area was1:58 10� 6 m2 and the Young's modulus of the cable was1:00 1011 N.m-2. The
horizontal distance between the attachment points was1:00m. A total of 20 weights of2:45
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N were added to the cable with ferrules in order to neglect the cable bending stiffness. From
the attachment point, the weights were attached with a distance of0:03 m and the weights
were equally spaced each other by a distance of0:06 m. The weight of the cable, ferrules
plus weights were50 N. Figure4.3 shows the cable corresponding to the experiment in
(Irvine and Sinclair, 1976) (dashed line) and the corresponding cable shape predicted by the
model, Eqns. (4.9 - 4.12). The experimental cable shape from (Irvine and Sinclair, 1976)
has been graphically reported (digitized with a dedicated software).

0 0:2 0:4 0:6 0:8 1

� 0:4

� 0:2

0

x t [m]

z t
[m

]

Catenary model
Experimental data (Irvine and Sinclair, 1976)

Figure 4.3.: Tether shape; comparison of the presented model with experimental data of
Irvine and Sinclair(1976)

The presented model �ts pretty well with the experimental dataIrvine and Sinclair(1976)
and can be considered as being validated. Nevertheless, a comparison between the whole
presented model and static kite �ight must be investigated as well.

4.3. Case of Study

The following application is based on the case study ofDadd(2013) where kite parameters
have been extrapolated from experimental data measured on aFlexifoil Blade III in (Dadd
et al., 2010). Kite and tether characteristics are presented in table4.1. Tether features, line
mass and diameter (cf. table4.1), have been estimated using maximum wing loading of
1.103 N.m-2 with a safety coef�cient of 2.

The ship attachment point altitude,a(n )
z , is 10 m and the true wind speed is measured at an

altitude ofzref = 10 m. According to (Ittc, 2014), the wind velocity gradient parameter is
n = 1=7. The air density is� a = 1 :2 kg.m-3.
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4. Static analysis of tethers

Flexifoil Blade III specs extrapolated by Dadd 2013
Kite surface 320m2

Kite mass* 150kg
Tether length 300m
Kite lift coef�cient 0:776 [� ]
Lift to drag ratio angle 12�

Tether specs (estimation)
Line mass* 0:45kg.m-1

Diameter* 30:0 mm
Drag coef�cient for orthogonal �ow 1.1

Table 4.1.: Kite and tether characteristics for the study; (*) denotes estimation

4.4. Comparison with a �nite element tether modeling

With the model presented in this study, the aerodynamic load is assumed to be constant
along the tether. This section aims to assess the importance of neglecting the evolution of
the aerodynamic load with the altitude and the angle betweenUrw;ka and the local tangent
vector direction of the tether. The modeling is compared with a �nite element analysis of
the tether where the evolution of the aerodynamic load is taken into account.

The �nite element modeling is performed using quasi-elastic bars (linear truss) of constant
length with the software Abaqus (Hibbett et al., 1998). A backward Euler implicit numerical
scheme is used. The initial position corresponds to the catenary solution. The aerodynamic
loading is gradually applied to the tether with a linear ramp. It is assumed that the static
equilibrium is reached when the ratio between kinetic energy and the strain energy is less
than10� 4. For practical reasons, it was easier to apply an aerodynamic loading transversaly
to the elements according to the Morison formula:

ql =
1
2

� adt U2
rw � 1:1 sin2 � t (4.36)

The comparison is performed with kite specs presented in Sec.4.3 with no ship speed
and an attachment point at zero altitude. The tether is considered to be in Dyneema® SK78.
According to the manufacturers data and a linear regression in AnnexB.2.3, the relationship
between the mass per unit of length [kg.m-1] and the diameter [m] can be expressed as
follows:

d2
t = 1 :98� 10� 3mt (4.37)

The two tether diameters tested are30� 10� 3 mm and60� 10� 3 mm corresponding respec-
tively to 0:455 kg.m-1 and1:82 kg.m-1. Since the presented model assumes the tether to
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4.4. Comparison with a �nite element tether modeling

be inelastic, a Young modulus convergence is performed in AnnexB.2.1 for making each
element quasi-inelastic. Then, a mesh convergence is performed in AnnexB.2.2. These
convergence procedures lead to a Young's modulus of104Esk78 (whereEsk78 = 65:7 GPa)
and to 30 elements of equal length.

The equilibrium between the kite and the tether is performed with the presented model for
different wind speed and different kite azimuth. All cases presented assume no ship forward
speed. True wind speeds tested aref 5; 7:5; 10g m.s-1. Three azimuth angles are tested, a
�rst one at zero azimuth angle, a second one around 40° and 50° azimuth angle and a third
one around 70° and 75°. The angles of azimuth are not identical as they are resulting from
the equlibrium (cf. §4.2.4). Boundary conditions applied to the �nite element model are
the position of the tether extremities computed with the presented model. The comparison
between the two models is focused on the direction of the tether tension at the attachment
point A and at the kite extremityK , both in terms of direction and magnitude. The differ-
ence of tension direction� � is expressed as follows:

� � = arccos

 
T cat � T fem

kT catk



 T fem






!

; (4.38)

whereT cat andT fem denote respectively the tether tension obtained with the presented
model and the �nite element method. The relative difference of tension magnitude is ex-
pressed as follows:

� T =
T cat � T fem�

�T fem

�
� (4.39)

Figure4.4contains plots of the difference of tension direction in degree and plots of the rel-
ative difference of tension magnitude in percentage.denotes the results at the attachment
point on the deckA and denotes the results at the kite location. Each column corresponds
to a true wind speed and each group of two rows corresponds to a tether diameter, 0.03 m
and 0.06 m.

It can be noticed that the difference in terms of tension direction remains within a range of
� 1.2° and the relative difference of magnitude remains within a range of� 2%. These dif-
ferences are acceptable. The effect of the evolution of the aerodynamic wind load with the
altitude is not very signi�cant on the �nal equilibrium compared to an equivalent constant
aerodynamic wind load obtained according to the method developed in the §4.2.3. This
comparison con�rms the statement given byHobbs(1986) arguing that the main factor
in�uencing the tether shape is the mean quadratic wind velocity according to the altitude.
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Figure 4.4.: Comparison of the presented model with a �nite element tether simulations

4.5. Tether effect on static kite �ight con�gurations

4.5.1. Results

Figure4.5 represents static kite �ight positions for different azimuth angles at wind condi-
tion Uref = [7 :5; 0; 0]Tn m.s-1 and ship velocityUs = [0 ; 7:5; 0]Tn m.s-1. Static kite �ight
positions de�ne the �ight window edge. Two models are compared: the zero mass model
in dashed line and the catenary formulation in solid line.

The top of Figs.4.6 and4.7 show the angle between the tether tension at positionsA and
K :

� = arctan
�

C
0
�

k(t )
x

��
� arctan

�
C

0
�

a(t )
x

��
(4.40)

The bottom of Fig.4.6and the middle of Fig.4.7show the relative difference between the
magnitude of the tether tension atK andA in percentage:
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Figure 4.5.: Kite �ight position for azimuth angles from -78° to 78° calculated with the
catenary formulation in solid line and with the zero mass model in dashed line.
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(4.41)

Fig. 4.6 compares� and� T for azimuth angles from -78° to 78° in the same wind speed
and ship velocity as in Fig.4.5. Fig. 4.6compares� and� T with zero ship speed and zero
azimuth angle for different wind speeds from 0 m.s-1 to 65 m.s-1. With this kite �ight condi-
tion, the true wind speed, the relative wind speed and the apparent wind speed are the same.
Neglecting the effect of the altitude of the tether attachment point and assuming straight
lines, the apparent wind speed for a dynamic �ight case can be maximized as follows (cf.
Eq. (3.17)):

Uaw � Uref

0

@
L t

q
nv

nv +1

zref

1

A

nv q
1

nv +1

sin � k
(4.42)
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Figure 4.6.: Difference of tether tension betweenA andK for different kite azimuth angle;
in terms of direction on the top; in terms magnitude on the bottom

At the bottom, Fig.4.7 plots Ueqv
ref the equivalent true wind velocity corresponding to the

highest apparent wind speed for a dynamic �ight case according to the Eq. (4.42). Conse-
quently,Ueqv

ref can be expressed as follows:

Ueqv
ref =

Uref 
l t

q
n v

n v +1

zref

! nv q
1

n v +1

sin � k

(4.43)
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Figure 4.7.: Difference of tether tension between positionsA and K for different wind
speeds at the altitude of measurementzref . At the top side: angle between
the tension direction atA andK . At the middle: relative difference of tension
betweenA andK . At the bottom: equivalent reference wind speed in case of
dynamic �ight, cf. Eq. (4.43).

4.5.2. Analysis

Figures4.5 and4.6 investigates the in�uence of the kite position along the wind window
edge. According to Fig.4.5, the wind window obtained with the catenary formulation
is smaller than the wind window obtained with the zero mass model. According to Fig.
4.6, the evolution of� the angle between the tether tension atA andK , and the relative
difference� T between the magnitude of the tension atK andA, are almost symmetrical
with respect to zero azimuth angle and remains almost constant between -70° and 70° of
azimuth angle.� has a minimal value of 2.58° at zero azimuth angle. Near the extreme
azimuth angles, -78° and 78°,� is slightly superior to 4°. The maximal value of� T is 4.3%
for a zero azimuth angle. The relative difference decreases for the extreme azimuth angles
and tends to 0%.

Figure4.7investigates the in�uence of the true wind speed for a zero azimuth angle position
and zero ship speed. The lower wind speed allowing a static �ight is around 3 m.s-1. For
Uref = 3 :27 m.s-1, � is maximal and reaches 18.75°.� T is maximum (43.14%) atUref =
3:27m.s-1. � and� T decreases when the wind speed increases.� tends to a non zero value
1.7°. � T tends to zero.
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4.5.3. Discussion

At extreme azimuth values the tether is almost horizontal and the kite is low in terms of
altitude. For these kite positions, the tether load per unit length is almost normal toAK .
Consequently, the difference of the tether tension norm atA and K tends to zero. The
aerodynamic kite forces and the aerodynamic part of the tether load per unit length are
lower due to the wind gradient. For a constant kite tension, the lower the tether load is
, the lower the angle between the tether tension atA andK is . On the contrary, for a
constant tether load per unit length, the lower the tether tension is, the more important is� .
At extreme azimuth angles the two phenomenon are in competition. For this case of study,
results show that the decrease of aerodynamic forces is more signi�cant than the decrease
of tether load per unit length. Near zero azimuth angle,� T is maximum whereas� is
minimum. Here again, the increase of the aerodynamic kite force is more signi�cant than
the increase of tether load per unit length.

Concerning the effect of the true wind speed, Fig.4.7 shows the more important the wind
speed is, the less signi�cant is the tether effect in terms of tension. The relative difference
between the tether tension norm atA andK tends towards zero and the angle between the
tether tensions converges to a constant value. This shows that there is a balance between the
increase of kite aerodynamic loading and the increase of the tether aerodynamic load per
unit length. Nevertheless, at high wind speed, the constant angle between the tether tension
is small, 1.7°. This shows that for high wind velocities (greater than 10 m.s-1for static
�ight) a straight tether assumption is reasonable. Moreover the bottom of Fig.4.7 shows
the equivalent true wind speed for a dynamic �ight. For instance, with a true wind speed of
10 m.s-1 at the reference altitude for static �ight, the equivalent reference wind velocity is
around 2 m.s-1 for dynamic �ight. Consequently, if the effects of the tether acceleration are
supposed negligible, even for reasonable true wind speed (greater than 2 m.s-1), the straight
tether assumption remains reasonable in case of a dynamic �ight. However, a dynamic
analysis of the tether should be carried out to con�rm this assumption.

At low wind speed lower than 10 m.s-1, in case of a static kite �ight, the tether cannot be
considered as a straight line. The difference of tension between positionsA andK becomes
signi�cant. UnderUref = 3 :27 m.s-1, no solution of kite equilibrium are found above the
sea level. Kite and tether weights dominate the aerodynamic forces. However, since the
kite launch step begins with a quasi static kite �ight, a low wind limit of operability could
be investigated according to the catenary formulation.

4.6. Conclusion

A static tether analysis has been performed according to an analytical modeling. The tether
model was based on the well-known catenary equation. The tether load per unit length
was assumed constant in order to be consistent with the catenary model requirements. The
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4.6. Conclusion

kite was modeled assuming a constant lift to drag ratio and lift coef�cient and taking into
account its weight. Since the catenary model requires that the tether remains in a plane, an
analytical method to determine the kite forces has been developed in order to complete this
requirement. The determination of the kite position was performed in agreement with tether
and kite models.

Results show that tether effects could be important at extreme azimuth angles. However, for
high wind speed the effect of the tether on the difference of tension between the tether at-
tachment point and the kite are not signi�cant. Consequently, the straight tether assumption
as used in the zero mass model should be reasonable for high wind speed greater than 10
m.s-1. In a case of dynamic kite �ight the straight tether assumption is relevant for reference
wind speed greater than 2 m.s-1. At low wind speed, the tether tension at the kite is clearly
different from the tether tension at the attachment point. The tether weight can dominate
the aerodynamic load on the tether.

Furthermore, this �rst approach shows that a low wind limit criterion enabling a static kite
�ight could be developed with this model by neglecting the aerodynamic load on the tether.
Moreover, even if this model shows that the tether is almost straight for high wind speed
and that a straight tether assumption seems reasonable, an investigation of the acceleration
effect of the tether should be conducted.
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5. Low wind limit of kite operability

Résumé: Vent minimum d'utilisation d'un cerf-volant

Le vol d'un cerf-volant pendant les procédures de lancement et de récupération peut être
considéré comme quasi-statique. La �èche de la ligne peut être alors importante et ce d'au-
tant plus que le vent est faible. A�n d'éviter l'accrochage et le ragage de la ligne qui pourrait
entrainer une perte de control du cerf-volant, les lignes doivent malgré tout rester au-dessus
du pont du navire. Dans ce chapitre cette contrainte d'utilisation en termes de vitesse de
vent minimum est formalisée mathématiquement au travers du modèle de ligne chainette
introduit au chapitre précédent.

En négligeant le chargement aérodynamique de la ligne devant son poids propre, un critère
analytique dépendant des caractéristiques du cerf-volant et de la ligne est développé, cf. Eq.
(5.9). En considérant un cerf-volant de 0.5 kg.m-2 avec un coef�cient de portance de 0.7,
la vitesse de vent minimum de lancement d'un cerf-volant en vol quasi-statique est de 3.4
m.s-1.

L'hypothèse négligeant le chargement aérodynamique est discutée. Il est montré qu'en util-
isant une ligne en Ultra-High-Molecular-Weight Polyethylene, la proportion entre l'effort
aérodynamique et le poids propre de la ligne diminue en fonction du diamètre de la ligne.
En considérent un vent de 3.4 m.s-1, l'effort aérodynamique sur la ligne ne représente plus
que 20% du poids propre à partir de 7 mm de diamètre.

5.1. Introduction

Most kite launch steps begin by a quasi-static �ight at zero azimuth angle. Therefore, the
low wind limit in terms of velocity for static kite �ight at zero azimuth angle is an important
parameter. It has been shown in Sec.4, that at low wind speed, the tether weight dominates
the aerodynamic tether load. Consequently, neglecting the aerodynamic load on the tether,
an analytical criterion to estimate the low wind limit of operability is developed in this
section.
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5.2. An analytical criterion

Obviously, a tether should not touch the ship deck or the water. In that case, friction with
the ship deck or the water could have a dramatic effect on the material durability and kite
control. This leads to the mathematical condition that all points of the tether must be above
the attachment point, as shown in Fig.5.1. The mathematical expression of this limit is
given by Eq. (5.1).

zn

xn

zt

xt
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q

k(n)
z
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T (0)
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�

Horizontal tangency

Figure 5.1.: Diagram of the lower limit static �ight case

T (0) � zn = 0 (5.1)

In the static kite �ight case at zero azimuth angle, the �rst Newton's law applied to the tether
and projected on axiszn , in accordance with the condition given by Eq. (5.1), leads to Eq.
(5.2).

L (n )
z;k + W (n )

z;k + l t q(n )
z = 0 (5.2)

Therefore, the relative wind at the kite location is given by Eq. (5.3).

Urw =

vu
u
t 2

�
�
�W (n )

z;k + l t q
(n )
z

�
�
�

� aAkCL;k
(5.3)
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In the static kite �ight at zero azimuth angle, the kite position in framen, compared to the
position in framet , is de�ned by the angle� = arctan

�
q � xn=q� zn

�
. Kite altitude inn is

given by:

k(n )
z = a(n )

z � k(t )
x sin (� ) � k(t )

z cos (� ) (5.4)

Then, assumingUrw andUa are co-linear, the wind velocity at the measurement altitude is
given by Eq. (5.5) by inserting Eqns. (5.2) and (5.3) into Eq. (4.21) and reorganizing:

Uref;min =
(� zref )nv

h
� a(n )

z + k(t )
x sin (� ) + k(t )

z cos (� )
i nv

2
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4

vu
u
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�
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z;k + l t q � zn

�

� aAkCL;k
+ Ua

3

7
5

(5.5)

Sinceq depends onUref;min (cf. Eqns. (4.17- 4.21)), this last equation needs to be solved.
Thus, rather than to give a numerical solution of the problem, a closed-form approximation
of the minimal wind velocity required for a static �ight is provided assuming that the load
per unit length on the tether is only due to the gravity. Therefore,zt is equal tozn , � is
equal to zero and the load per unit length,q = q

g
, is constant. Then, the closed-form Eq.

(5.3) becomes:

Urw =

s
2g(M k + mt l t )

� aAkCL;k
(5.6)

whereg = 9 :81 m.s-2 is the acceleration due to gravity. Using Eqns. (4.16) and (4.21), the
lower limit is:

Uref;min =
(� zref )nv

� q
2g(M k + l t m t )

� a A k CL;k
+ Ua

�

(
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z + tan ( � k )
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m t

�
" r

1 +
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m t l t
(m t l t + M k ) tan( � k )

� 2
� 1

#) nv (5.7)

For dimensional analysis, this last equation becomes non-dimensional, with:

8
>>>>>>>><

>>>>>>>>:

~U = Uref;min

q
A k � a CL K

2gM k
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(5.8)
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Then ~U could be expressed as follows:

~U =

p
1 + ~l t + ~Ua
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5.3. Analysis

The parameter~L t can be considered as the dimensionless tether length. The attachment
point altitude is non-dimensional using the wind measurement altitude, which leads to the
parameter~az. The parameter~m characterizes the tether mass per unit length compared to
the kite mass. This last parameter provides information on the structural and material design
priority between the tether and the kite, it increases when the ratio of safety factors between
the line and the kite increases.~U and ~Ua denote respectively the low wind limit parameter
and the ship speed parameter.

~U increases with the parameter~m. Analyzing the derivative of~U with respect to� k , it can
be shown that~U increases with the lift to drag angle. On the contrary,~U decreases with~az.
At the beginning of a launch step,~L t = 0 , and ~U becomes:

~U =
1 + ~Ua

~anv
z

(5.10)

As expected, with no tether, the low wind limit is only dependent of the tether attachment
point altitude and of the kite mass, area and lift coef�cient. The derivative of~U with respect
to ~L t at ~L t = 0 is:

@~U

@~L t

�
�
�
�
�
~l t =0

=
1

2~anv
z

(5.11)

Since~az is always positive for kite applications, near~L t = 0 , the required wind speed
increases with the tether length. When the tether length tends towards in�nity, the non-
dimensional low wind limit is equivalent to:

lim
~L t ! + 1

~U =
�

~m cos� k

1 � sin � k

� nv

~L
( 1

2 � nv )
t (5.12)

~m is always positive, consequently ifnv < 1=2, the required wind speed tends towards
in�nity. If nv > 1=2 the required wind speed tends towards zero. In the special case
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5.3. Analysis

Figure 5.2.: Surface plots, for 3 �xed values ofeaz, 0:1, 0:5 and1, of the non-dimensional
minimum wind velocityeU versus~m and~l t

nv = 1=2, the non-dimensional limit tends towards the constant
p

~m=tan � k . However, for
a realistic wind gradient, the typical value ofnv is 1=7, therefore the required wind speed
should tend toward in�nity.

For intermediate values of the tether length, the variation of the low wind limit according to
the tether length is less obvious. Consequently a numerical analysis has been carried out.
Figure5.2 represents three surface plots of the non-dimensional minimal wind velocity~U
de�ned in Eq. (5.9) versus the two non-dimensional parameters~m and ~L t , for ~Ua = 0 and
�xed values of ~az, 0:1, 0:5 and1. The wind gradient parameter is taken to the classical
valuenv = 1=7. An optimal tether length can appear to minimize~U. Finally the effective
minimal wind velocityUref;min is obtained by dividing~U by the factor

p
Ak � aClk =2Wk .

According to the specs of kite dedicated to the kite-surf with an in�atable leading edge and
kites built within the beyond the sea® project, the ratio between the kite mass and the kite
area is around 0.5 kg.m-2. According to the experimental data in (Dadd et al., 2010) and
(Behrel et al., 2016), the kite lift coef�cient can be estimated around 0.7. Consequently,
with an existing kite, the low wind limit is aroundUref;min � 3:4~U. Assuming a wind
measurement altitude of 10 m above the sea level, values of~m between 0.01 and 0.05 are
investigated in Fig.5.3.

In Fig. 5.3, the evolution of the non-dimensional low wind limit~U with the non-dimensional
tether length is plotted for different values of~m and~az = 1 . Taking~az = 1 makes sense
with a wind measurement on the top of the launching mast. As expected, near~L t = 0 ,
~U = 1 . Then, ~U increases of less than 1% for~m = 0 :05, which is not very signi�cant.
A minimum can be observed near~L t = 0 :53. This minimum, depends quasi-linearly on
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Figure 5.3.: Evolution of the non-dimensional low wind limit~U with the non-dimensional
tether length~L t for different values of~m from 0.01 to 0.05,~Ua = 0 and~az = 1 .

the parameter~m. By curve �tting, the linear relationship giving the optimal tether length is
identi�ed as follows:

~L t;min = � 2:2 ~m + 0 :6 (5.13)

In order to obtain a practical result, Eq. (5.13) can be expressed, reminding~az = 1 ; as
follows:

~L t;min = 0 :6
M k

mt
+ 2 :2a(n )

z (5.14)

Beyond this minimum, sincenv < 1=2, the value of~U increases to in�nity.

In order to obtain a closed-form low wind limit criterion, the aerodynamic load on the
tether has been neglected. Consequently, it can be expected than the low wind limit is
underestimated. According to the characteristics of diameter and mass per unit of length
of dyneema® SK78 provided by tether manufacturer, the ratio,� a=g, between the tether
aerodynamic force per unit of lenght and the tether gravity per unit of length is plotted on
Fig. (5.4). � a=g is estimated as follows:

� a=g =
1
2 � adt CdtU2

ref;min

mt g
; (5.15)

where,Uref;min � 3:4~U
�

~L t = 0
�

= 3 :4 m.s-1 andCdt = 1 :1. Figure (5.4) shows that
tether aerodynamic forces are of the same order for low tether mass per unit of length.
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Figure 5.4.: Ratio of the tether wind loading with the tether weight as function of the tether
mass per unit of length

Above mt > 25 g.m-1 the tether aerodynamic load is less than 20% of the tether gravity
load and abovemt > 0:15 kg.m-1, the aerodynamic load is less then 10% of the tether
gravity load. According to this result, the assumption of neglecting the aerodynamic force
can be considered as being reasonable for a heavy tether.

5.4. Conclusion

A closed-formula has been developed in order to estimate the low wind limit to operate
the kite in a static �ight mode. A mathematical analysis has been perform to study the
in�uence of parameters such as the tether mass per unit of length, the tether length, the
kite mass, the aerodynamic specs of the kite and the tether attachment point altitude. This
low wind limit increases with the ratio between the tether mass per unit of length and the
kite mass and with the lift to drag ratio angle. However, the low wind limit decreases with
the tether attachment point altitude. The effect of tether length are less obvious, but it has
been shown that the low wind limit increases near zero tether length for any tether and kite
characteristics. Performing a numerical analysis, with classical value of kite design, it has
been shown that the low wind limit decreases to a minimum and �nally increases to in�nity
for an in�nite tether length.

Finally, since the criterion is based on the assumption that the aerodynamic load on the
tether is negligible at low wind, the validity of this mathematical development is limited to
heavy tether with small diameter. For instance, for a tether made of dyneema® the tether
aerodynamic load is less than 20% of the gravity load for line mass per unit of length
superior to 25 g.m-1 corresponding to 7 mm in diameter

59





Part III.
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6. Time domain seakeeping modeling

Résumé: Modélisation de la tenue à la mer dans le domaine
temporel

La dynamique des navires est traditionnellement scindée entre mouvement de manœuvrabil-
ité et mouvement de tenue à la mer. Pour étudier la manœuvrabilité, généralement unique-
ment les mouvements horizontaux du navire en mer calme sont modélisés. La tenue à la
mer traite plus généralement des mouvements oscillants des corps �ottants soumis à un état
de mer. L'objectif de cette thèse est notamment de modéliser les mouvements d'un navire
tracté par kite dans son environnement, i.e. état de mer et de vent. L'objectif global de cette
partie est de modéliser les mouvements d'un navire seul dans son environnement. Cepen-
dant le kite peut représenter un risque pour la manœuvrabilité et la tenue à la mer d'un
navire et par conséquent, une modélisation couplant la tenue à la mer et la manœuvrabil-
ité des navires devra être mise en œuvre. Dans un premier temps, ce chapitre traite de la
modélisation des mouvements de tenue à la mer par une approche temporelle. La méthode,
doit pouvoir être étendue pour prendre en compte les mouvements de manœuvrabilité et
permettre de rendre compte des interactions entre le navire et le cerf-volant.

Une façon courante et performante de modéliser les mouvements d'un navire soumis aux
vagues est de faire l'hypothèse de �uide parfait irrotationnel et d'une réponse linéaire du
navire par rapport à son excitation. Par l'hypothèse de linéarité, les mouvements d'un navire
dû aux vagues sont obtenus par le principe de superposition : ils correspondent à la somme
des mouvements dû aux potentiels des vitesses incidentes, diffractées et de radiées. En pra-
tique, ce problème �uide est souvent résolu dans le domaine fréquentiel en supposant des
mouvements harmoniques de petite amplitude. Les codes commerciaux résolvent l'ampli-
tude et le déphasage du mouvement du navire par rapport à une vague monochromatique.
Par fréquence, il est également possible de connaitre les efforts de vague, de diffraction et de
radiation. Par ailleurs, en connaissant le spectre d'excitation du cerf-volant, il est alors pos-
sible de connaitre les mouvements du navire. Cependant, les mouvements du navire peuvent
modi�er le vol du cerf-volant et donc son spectre d'excitation. Une approche fréquentielle
se limiterait donc à un couplage faible entre le cerf-volant et le navire. De plus, il n'est pas
possible d'étendre une telle modélisation pour prendre en compte la manœuvrabilité.

Pour étudier les interactions entre un cerf-volant et un navire, une approche temporelle ap-
parait donc nécessaire. Les méthodes temporelles résolvant les mouvements de tenue à
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la mer peuvent être décomposées en trois types (Skejic, 2013): les méthodes CFD (Com-
putational Fluid Dynamics), les méthodes potentielles temporelles et les méthodes basées
sur les réponses impulsionnelles. Les méthodes CFD peuvent être précises mais requièrent
d'importantes ressources informatiques et/ou de temps de calcul. Les méthodes potentielles
temporelles présentent de l'intérêt car elles sont plus rapides que les méthodes CFD. Cepen-
dant, le développement d'un tel code dans le temps imparti d'une thèse a semblé être trop
ambitieux. Les méthodes basées sur les réponses impulsionnelles peuvent être très rapide en
termes de temps de calcul. Ces méthodes demandent des développements plus raisonnables.
Ces méthodes ont été introduites par CumminsCummins(1962) pour modéliser l'effet de
n'importe quel type d'excitation sur la tenue à la mer des navires. Plus tard,Bailey et al.
(1997) et Fossen(2005) ont étendu cette méthode pour prendre en compte la manoeuvra-
bilité des navires dans un état de mer formé. Une méthode proche de celle deBailey et al.
(1997) est mise en oeuvre dans ce chapitre.

Avec les méthodes basées sur les réponses impulsionnelles, les efforts de radiation sont
calculés en temporel par des produits de convolution ce qui peut être coûteux en termes de
temps de calcul. Pour contourner ce problème,Kristiansen et al.(2005) et Fossen et Smogeli
(2004) ont introduit l'utilisation de systèmes d'état pour calculer le produit de convolution.
Cette méthode est mathématiquement équivalente au calcul du produit de convolution tant
que la fonction de transfert du navire est analytiquement connue. Ici, les fonctions de trans-
fert du navire sont calculées au moyen de la méthode des tranches (Salvesen et al., 1970)
avec le logiciel de tenue à la mer Shipmo développé par le Marin® qui résout le problème
de tenue à la mer en fréquentiel. Ainsi la fonction de transfert du navire est connue pour
des fréquences de mouvements particuliers. Il est donc nécessaire de réaliser une identi�-
cation des fonctions de transfert sous forme de fractions rationnelles a�n d'en obtenir une
expression analytique. Différentes méthodes d'identi�cation des fonctions de transfert ont
été étudiées en détail parPérez and Fossen(2008). Cependant, leurs travaux se sont limités
aux fonctions de transferts de navires sans vitesse d'avance. Il est montré dans ce chapitre
que la forme des fractions rationnelles doit être modi�ée pour répondre aux propriétés des
fonctions de transfert avec vitesse d'avance de navire. Une forme adaptée de fraction ra-
tionnelle est donc proposée dans ce chapitre. Une méthode d'indenti�cation fréquentielle
est utilisée. Cette méthode est initialisée par une méthode temporelle (Kung, 1978).

Un exercice de validation de l'ensemble de la méthode est par la suite proposé avec un navire
militaire de surface le DTMB 5512. L'Université d'Iowa a mis à disposition en accès libre
des données d'essais en bassin décrites parIrvine et al.(2008). Ces données concernent
les mouvements de pilonnement et tangage avec et sans vitesse d'avance soumis à une
houle régulière de face. Plusieurs, fréquence de vagues ont été investiguées. La résolution
fréquentiel du problème de tenue à la mer avec la méthode des tranches deSalvesen et al.
(1970) montre des résultats satisfaisant par rapport à l'expérimental. La transformation dans
le domaine temporel du modèle de tenue à la mer est très satisfaisante car une excellente
équivalence est trouvée avec la méthode deSalvesen et al.(1970).

Cette méthode qui est linéaire et qui se base sur une hypothèse de �uide parfait est connu
pour ne pas être très adéquate pour modéliser les mouvements de roulis des navires. Cela
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peut s'expliquer par le fait que le roulis est fortement non linéaire et visqueux par nature.
Une façon de corriger la méthode est d'ajouter un amortissement de roulis supplémentaire
à celui calculé par la résolution de l'écoulement potentiel. Les mouvements de roulis sont
alors comparés aux prédictions du modèle deIkeda et al.(1978).

6.1. Introduction

The aim of this thesis is to model the motions of a ship towed by kite under the in�uences
of sea state and wind. The dynamic ship motions are traditionally split between maneuver-
ability and seakeeping. To study the maneuverability of a ship, the modeling is restrained to
the horizontal ship motions in calm water. Seakeeping motions concern the oscillating mo-
tions of �oating bodies exposed to waves. The overall objective of this part is to model the
ship motions since the kite may represent a risk for the ship safety in terms of seakeeping
and maneuverability. Consequently, a modeling coupling the seakeeping and the maneuver-
ability of ships is required. More speci�cally, the objective of this chapter is to develop a
seakeeping modeling being able to be extended to take into account maneuvering motions
and to study the interactions with the kite.

The seakeeping of ship is commonly studied with seakeeping codes based on the potential
�ow theory under the assumption of linear response of the ship to a given perturbation on a
mean path. These studies are usually performed into the frequency domain in order to take
bene�t from the linear formulation to sum the motions. Nevertheless, since the kite and
the ship may be strongly coupled, their interactions cannot be directly computed through a
spectral description of the kite excitation. Consequently, the computation of ship motions
due to a kite into the frequency domain is limited to a weak coupling between the kite and
the ship. Here, the semantics of aweakand astrong coupling is based on the work of
Markert(2010). A weak coupling can be performed by a segregated numerical scheme. In
order to perform a strong coupling between the kite and the ship, a monolithic scheme into
the time domain formulation is required.

As highlighted by Skejic in (2013), time-domain methods enabling to compute the 6 de-
grees of freedom (dof) combining horizontal and vertical motions of a ship are the linear
convolution based methods (Bailey et al., 1997), the two time scale models (Skejic and
Faltinsen, 2008) and the CFD methods. According toSkejic and Faltinsen(2008) the two
time scale models are more appropriate to take into account the second order wave drift
motion. However, this phenomenon is beyond the scope of the thesis. The linear convolu-
tion based methods are preferred since they are based on more widespread seakeeping tools.
The linear convolution based methods applied to the ship motions have been introduced by
Cummins(1962) in order to take into account any type of excitation. Later,Bailey et al.
(1997) developed a method based on the linear convolution method and unifying the ma-
neuvering and seakeeping coordinates systems. Thanks to this uni�ed coordinate system,
the formulation of the kite force into the ship coordinate system is more straight forward.
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Nevertheless, the computation of a linear convolution product is time consuming. Conse-
quently,Kristiansen et al.(2005) andFossen and Smogeli(2004) introduced the state-space
modeling to compute quickly the linear convolution integral of the Cummins equation of
ship motion. Based on these developments, the linear convolution based method is faster
than the real-time on a classical computer. Therefore, the convolution based method per-
formed with state-space systems is suitable for design purposes. The identi�cation of the
state-space systems (Pérez and Fossen, 2008) has been detailed only for the zero forward
speed case. Consequently, a slight modi�cation of the structure of the state-space system is
proposed to take into account the effects of the forward speed on the state-space systems.

First the dynamic ship equation of motion according to the classical frequency domain
approach is introduced. Secondly, the time domain equation of motion based on the con-
volution method is presented. This section is an overview of the work achieved byFossen
(2005). Thirdly, the identi�cation of the state-space systems and their new structure are
introduced. Finally, a validation of the method in head waves regarding heave and pitch
motions is presented. These comparisons are based on the experimental �uid dynamics
(EFD) of the surface vessel combatant DTMB 5512 provided by the University of Iowa and
studied byIrvine et al.(2008). The roll motion modeling is compared to the method of
Ikeda et al.(1978).

6.2. Frequency domain solution

Assuming moderate sea states, the starting point of the mathematical model is the linearized
equation for small amplitude ship motions in regular waves used notably bySalvesen et al.
(1970):

h
M �

S
+ A �

i
•� +

h
B � + B �

�

i
_� + C � � = F � � �F � ; (6.1)

where,M �
S

, A � , B � andC � denote respectively the generalized mass matrix, added mass
matrix, damping matrix and the restoring matrix with respect to theh frame.B �

�
is an extra

generalized damping matrix accounting only for the roll motion as proposed in (Salvesen
et al., 1970). F � denotes the sum of the generalized external forces (forces and moments)
applied to the ship expressed in theh frame. �F � is the mean value ofF � .

6.3. Time domain solution

This section is an overview of the work ofFossen(2005).
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6.3.1. Transformation into thes and c frames: uni�ed coordinates systems

Since Eq. (6.1) is linear, the ship motions can be summed with respect to a sum of excitation
forces. Since,A � and B � are frequency dependent matrices, Eq. (6.1) holds only for a
given frequency of excitation,! . Consequently, this assumption leads to the following
relationship:

•� = � ! 2� (6.2)

And, the direct cosine matrix between theh frame and thes frame is equal to the direct
cosine matrix between the earth �xed framen and the ship �xed frames for small angles
de�ned in Eq. (3). Thus, the direct cosine matrix can be simpli�ed considering small angles
of oscillations:

Th
s

=

2

4
1 � � 6 � 5

� 6 1 � � 4

� � 5 � 4 1

3

5 (6.3)

Under the assumption of small amplitude of motions, the expression of the ship speed vari-
ation can be approximated by�V s = [ us � Uh ; vs; ws; ps; qs; r s]Ts with respect to thes
frame.� can be expressed in terms of�V s with Eq. (6.4). The detail of this transformation
was presented inFossen(2005) and is reported in AnnexC.1.

(
_� = J �V s � Uh

! 2
e
L � _V s

•� = J � _V s + UhL �V s

; (6.4)

where,
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2
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6
6
6
6
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4

1 0 0 0 zH 0
0 1 0 � zH 0 xH

0 0 1 0 � xH 0
0 0 0 1 0 0
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7
7
7
7
7
5

; (6.5)

and,

L =

2

6
6
6
6
6
6
4

0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 � 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7
7
7
7
7
7
5

(6.6)
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Then, using Eq. (6.4), the ship equation of motion, Eq. (6.1), can be expressed in terms of
�V s as follows:

h
M

S
+ A

i
� _V s +

h
B + B

�
+ D

i
�V s + C � = F � �F ; (6.7)

where,

8
>>>>>>>>>>><

>>>>>>>>>>>:

M
S

= J T M �
S

J

A = J T A � J

D = J T M �
S

L

B = J T �
B � + UhA � L

�
J

B
�

= B �
�

C = J T C �

F = J T F �

(6.8)

6.3.2. Impulse response function

Since a kite and a ship may have strong coupled motions, it is more convenient recom-
mended to transform Eq. (6.7) into the time domain using the impulse response function as
Cummins(1962), Ogilvie (1964) andFossen and Smogeli(2004). Moreover, it is more con-
venient to use the parameterization forV s instead of�V s. The steady state corresponds to
us = Uh and�V s = 0 . Due to the special structure ofC, it can be noticed thatC � = C S.
Consequently, the ship equation of motion for arbitrary motions and using the parameteri-
zation inV s is:

h
M

S
+ ~A

i
_V s +

h
~B + B

�
+ D

i
Vs + � + C S = F ; (6.9)

where, ~A = lim
! ! + 1

A (! ) and ~B = lim
! ! + 1

B (! ). � is de�ned as follows:

� =

t�

�1

K (t � � ) �V s (� ) d�; (6.10)

whereK denotes the retardation matrix. Strictly speaking, the left boundary of the convo-
lution term should be�1 . However, for a causal system the left boundary can be replaced
by 0. The expression of the retardation matrix is given in Eq. (6.11) and can be obtained by
comparing Eq. (6.1) and Eq. (6.9) assuming sinusoidal motions. Mathematical details are
developed in AnnexC.2.
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K (j! ) = B (! ) � ~B + j!
h
A (! ) � ~A

i
; (6.11)

wherej 2 = � 1.

Reciprocally, the added mass and the damping matrix can be obtained with the Laplace
transform of the retardation matrix as follows:

(
A ij = 1

! = (K ij ) + ~A ij

B ij = < (K ij ) + ~B ij
; (6.12)

where,= and< denote respectively the imaginary part and the real part.

The computation of the convolution product is time consuming. However, each convolution
component� i 2 J1;6Kcan be approximated by a state space system in Eq. (6.13), as introduced
by Kristiansen et al.(2005) for the radiation forces. The mathematical justi�cation of this
transformation can be found in (Sontag, 2013).

� i �

8
>>>><

>>>>:

� i =
6P

j =1
� ij

_y
ij

= A
0

ij
y

ij
+ B

0

ij �V s;j

� ij = C
0

ij y
ij

; (6.13)

where,
n

A
0

ij
; B

0

ij ; C
0

ij

o
represents a state-space model corresponding to a rational transfer

function denoted byH ij �tting the K ij (j! ) data, fori; j 2 J1; 6K. � i denotes the ith com-
ponent of the vector� j . y

ij
is the state vector of the state space system. In order to clarify

the notation which might be slightly confusing, it should be mentioned that Eq. (6.13) does
not use the Einstein summation convention.

6.4. Identi�cation of the state-space systems

6.4.1. Structure of the state-space systems

Direct equivalences exist between a rational transfer function and a state-space system. For
instance, for single input and output system, the corresponding canonical state-space system
of a transfer function is given as follows:
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Where the coef�cientai andbi are respectively the numerator and denominator coef�cient
of the following transfer function:

H ij =
an� 1pn� 1 + : : : + a1p + a0

pn + bn� 1pn� 1 + : : : + b0
(6.15)

Form of the transfer function at zero forward speed At zero forward speed, properties
of the retardation function as described inPérez and Fossen(2008) impose the form of the
transfer function as follows:

H ij =
K ij (t = 0) pn� 1 + : : : + a1p

pn + bn� 1pn� 1 + : : : + b0
(6.16)

Moreover according to the Riemann-Lebesgue Lemma, the transfer functions must be sta-
ble. The denominator should respect the Routh-Hurwitz criterion.

Form of the transfer function with forward speed With forward speed, the retardation
function may not tend towards zero at zero frequency. IndeedB ij (! = 0) can be different
from B ij (! = 1 ), consequently:

lim
p! 0

H ij 6= 0 (6.17)

This condition is not satis�ed with the form given in Eq. (6.16). In case of forward speed,
H ij should have the following form:

H ij =
K ij (t = 0) pn� 1 + : : : + a1p + a0

pn + bn� 1pn� 1 + : : : + b0
; (6.18)

where the coef�cienta0 andb0 should respect the following condition:

a0

b0
= B ij (! = 0 ) � B ij (! = 1 ) (6.19)
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Computation of the hydrodynamic data and extrapolation towards zero and in�nite
frequency The dataK ij (j! ) are obtained with the added mass and damping obtained
according to the STF strip theory (Salvesen et al., 1970). The 3D added mass and damping
are expressed in terms of sectional added mass and damping. For instance, the STF strip
theory expressedA �

33and B �
33 in terms of sectional added massa33 and dampingb33 as

follows:

(
A �

33 (! ) =
�

L pp
a33 (!; x ) dx � Uh

! 2 b33 (!; x a)

B �
33 (! ) =

�
L pp

b33 (!; x ) dx + Uha33 (!; x a)
; (6.20)

wherexa is the longitudinal position of the aft perpendicular section.

The sectional added mass and damping are obtained with the Shipmo seakeeping software
developed by the Marin® assuming an in�nite depth. The frequency range of the data
depends on the ship size, but for a commercial ship, the low frequency limit is generally
0.1 rad.s-1 and the high frequency limit does not generally exceed 3 rad.s-1. To improve the
quality of the identi�cation method an extrapolation of the hydrodynamic data towards the
asymptotic value is necessary.

As shown byNewman(1977), assuming a potential �ow, at zero and in�nite frequency, the
2D sections damping is zero. At in�nite frequency, the 2D sections in�nite added mass are
approximated with the highest frequency computed, which is justi�ed since the added mass
remain almost constant at high frequency. Each sectional added mass and damping are then
extrapolated at high frequency with the function in Eq.6.21, as used in (Pérez and Fossen,
2008) and originally proposed byGreenhow(1986):

f e (! ) =
� 1

! 4 +
� 2

! 2 ; (6.21)

where� 1 and� 2 are two constants chosen in order to provide continuity and differentiabil-
ity.

Transfer function identi�cation method The identi�cation ofH ij can be identi�ed ei-
ther into the frequency domain or into the time domain, seePérez and Fossen(2008). Here,
a time domain identi�cation method is used to initialize the frequency domain identi�cation
method.

A �rst identi�cation of H ij into the time domain is performed with the the singular value
decomposition method proposed byKung (1978). This step is performed with a modi�ed
Matlab® function “imp2ss” to impose the order. This method is ef�cient but the identi�ed
transfer function has the following form:

H ij =
anpn + : : : + a1p + a0

pn + bn� 1pn� 1 + : : : + b0
: (6.22)
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6. Time domain seakeeping modeling

Consequently, to comply with the form imposed by Eq. (6.18), an is set to zero,an� 1 is set
to K ij (t = 0) anda0 is set toa0 = b0 [B ij (! = 0) � B ij (! = 1 )].

This �rst estimation of the transfer function is used as initial solution of the frequency do-
main identi�cation method. The frequency identi�cation step is performed with the “oe”
function of the Matlab® system identi�cation toolbox. This function uses a local optimiza-
tion scheme based on gradient methods and constraints can be added. The structure of
the transfer function, as proposed in Eq. (6.18), can be imposed to the frequency domain
optimization algorithm.

These two steps are repeated for several transfer function orders, for instance from 2 to 10.
Then, the best transfer function order is selected according to the normalized mean square
error from:

8
>>><

>>>:

etot = 1
2 (ew + et )

ew =
P

k [jH ij (j! k )� K ij (j! k )j]2
P

k jK ij (j! k )j2

et =
P

k [H ij (tk )� K ij (tk )]2

P
k K ij (tk )2

(6.23)

As an illustration of the identi�cation method AnnexC.4 provides the details about the
David Taylor Model Basin (DTMB) 5512 for the termK 33. After the time domain iden-
ti�cation, the best order found is 4 with an erroretot = 10:4 %. After the frequency
identi�cation step, the erroretot dropped to 1.87 %.

6.5. Incoming waves and diffraction

The Froude-Krilov and diffraction forces are obtained with the STF 2D strip theorySalvesen
et al.(1970). Assuming an in�nite depth, the dispersion relationship iskwg = ! 2

w , where
k is the wave-number andg the gravity. ! w and� w denote respectively the wave angular
frequency in rad.s-1 and the angle of the waves with respect to the ship heading.� w is given
by � w =  s �  w , where w denotes the wave angle with respect toxn . With i 2 J1; 6K,
each componentf wi of the Froude-Krilov and diffraction forces generated by a single unit
wave can be expressed by the following expression:

f wi (us; � w ; ! w ; t) = E i (us; � w ; ! w) cos
�

kw cos ( w) s(n )
x

+ k sin ( w) s(n )
y � ! w t � � w (us; � w ; ! w) + � w

�
(6.24)

whereE i is the amplitude of the ith component off
w

and� is a random initial wave phase.
� w is the re�ection phase change of the Froude-Krylov and diffraction force with respect
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6.6. Time domain equation of motion

to the free surface elevation. According to Eq.6.24, the wave frequency of encounter is
obtained by time derivation of the cosine function argument:

! e = ! w �
Us

g
! 2

v cos� w (6.25)

For any wave spectrumSw (! w ;  w), the Froude-Krilov and diffraction forces can be ex-
pressed as follows:

F w (us;  s) =
NX

i =1

q
2Sw (! w;i ;  w;i ) �  w � ! w f

w
(us;  s �  w;i ; ! i ) (6.26)

where� i is a random phase equidistributed between0 and2� to obtain a Gaussian wave
spectrum.

6.6. Time domain equation of motion

Equations describing the motion of the system can be transformed into a system of �rst
order differential equations Eq. (6.27). This system is deduced from Eqns. (3, 4, 6.9, 6.13).

8
>>>>><

>>>>>:

_S =

"
T c

s
0

0 Rc
s

#

V s + [ Uc 03]T

_V s =
h
M

S
+ ~A

i � 1 h
F �

h
~B + B

�
+ D

i
V s � � � C S

i

_y
ij

= A
0

ij
y

ij
+ B

0

ij �V s;j ; 8i; j 2 J1; 6K

(6.27)

Equation (6.27) represents 12 scalar equations for the ship and 75 scalars equations for
the state-space systems assuming that the order of each state space system is 5 and taking
into account the ship symmetry. Thus, with the presented model, a ship towed by kite is
described by approximately 90 scalar equations depending on the state space model orders.

This system of differential equations is numerically integrated with a Runge-Kutta scheme
of order 4 with a �xed time step.

6.7. Time domain validation case

The presented ship model is compared to experimental �uid dynamics (EFD) data and with
STF strip theory results on the David Taylor Model Basin (DTMB) 5512. The DTMB
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6. Time domain seakeeping modeling

model 5512 is a 1:46.6 scale model. The hull form and its specs are respectively plotted in
Fig. 6.1and summarized in Tab6.1. The experimental data are provided by the University
of IowaThe University of Iowa(2013) and are presented in Irvine et al.Irvine et al.(2008).
The EFD data concern the heave and pitch motions in regular head waves, with and without
forward speed.

� 0:2 � 0:1 0 0:1 0:2

0

0:1

0:2

y [m]

x
[m

]

Figure 6.1.: DTMB 5512 hull sections at the scale of 1:46.6.

Parameter Units 5512 Full Scale

Scale ratio - 46.6 1

Length,L pp m 3.048 142.04

Beam,B m 0.405 18.87

Draft, T m 0.132 6.15

Weight Kg - t 86.6 8763.5

LCG m 1.536 71.58

VCG m 0.162 7.55

Pitch radius of gyration,k5 m 0.764 35.6

Table 6.1.: DTMB 5512 hull and full scale characteristics

6.7.1. Results

The computation of ship motions is performed at zero forward speed and at a Froude
number of 0.28 which corresponds toUh = 1 :53 m.s-1 and with frequency head waves,
! 0, ranging from 1 rad.s-1 to 7.5 rad.s-1. Figures6.2 and 6.3 plot the heave and pitch
transfer function obtained with the experimental data, with the STF strip theory and with
the presented model. The experimental data are obtained for different wave steepness
sw = f 0:025; 0:05; 0:075g. The amplitude of the transfer function for heave motion is
directly the ratio of the heave amplitude motion to the wave amplitude. The RAO ampli-
tude for the pitch motion is given by the ratio of the pitch motion amplitude (in radian) to the
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6.7. Time domain validation case

wave amplitude multiplied by the wave numberk. The phase angle of the presented model
is obtained by cross correlation between the free surface elevation and the ship motion time
series.
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EFD datasw 2 f 0:025; 0:05; 0:075g

Figure 6.2.: Heave and pitch transfer function atUh = 0 :0 m.s-1as function of the wave
frequency of encounterwe. The results are obtained with the frequency domain
and time domain approaches, experimental data for different wave steepnesses
sw and with the STF strip theory.

The results presented in Fig.6.4shows the predicted roll motion with the strip theory using
the damping predicted by the method ofIkeda et al.(1978). The results ofIkeda et al.
(1978) are considered as a reference.

6.7.2. Analysis and Discussion

Concerning the amplitude, an overall good agreement is found with and without forward
speed between the EFD data, the STF strip theory and the presented time domain seakeeping
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Figure 6.3.: Heave and pitch transfer function atUh = 1 :53 m.s-1 as function of the wave
frequency of encounterwe. The results are obtained with the frequency domain
and time domain approaches, experimental data for different wave steepnesses
sw and with the STF strip theory.

model. For the considered waves, the in�uence of the wave steepness on the EFD data is
not signi�cant.

As it is theoretically expected, the STF strip theory and the time domain approach match
perfectly for the amplitude. Very small differences can be observed in terms of phase angle,
but these differences are caused by the accuracy of the post-processing method. The very
small differences with the STF strip theory are due to the approximations performed with
the identi�cation method of the transfer functionsH ij .

As a conclusion for the heave and pitch motions, the very small differences between the STF
strip theory and the presented time domain seakeeping model in Figs.6.2and6.3show that
the transformation of the equation of motion into thes frame and the the state-space model
identi�cation method is consistent and accurate enough.
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6.8. Conclusion
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Figure 6.4.: Roll response amplitude operator and phase atU = 7 :716 m.s-1 as function
of the frequency of encounterwe with DTMB 5512 at full scale. The results
are obtained with the presented model and the STF strip theory with the roll
damping modeled with the method proposed byIkeda et al.(1978).

The roll motion is much more dif�cult to predict with a linear model. With the DTMB at
full scale, results presented in Fig.6.4show the predicted roll motion with the strip theory
using the damping predicted by the method ofIkeda et al.(1978). The results ofIkeda et al.
(1978) are considered as a reference.

The extra roll damping is determined to obtain approximately the same roll motion ampli-
tude at the natural roll ship frequency as the model ofIkeda et al.(1978). For the presented
simulation the extra roll damping is set to1:53 � 108 kg.m.s-1. As shown in Fig.6.4, at
the natural roll ship frequency,! roll = 0 :56 rad.s-1, the roll motion is well predicted. At
high frequency, greater than 1 rad.s-1, the roll motion amplitude is well predicted, only a
slight difference in terms of phase is observable. Nevertheless, for the wave frequency in
the range] 0; 1] rad.s-1, predictions appear to be less accurate.

6.8. Conclusion

A time domain seakeeping model based on the Cummin's equation has been implemented
with respect to the ship �xed coordinate system. The convolution product has been per-
formed using state-space models. The state-model models have been identi�ed with the
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6. Time domain seakeeping modeling

STF strip theory data. The structure of the state-space system has been modi�ed to comply
with the forward speed requirements.

A validation using EFD data has been performed on the DTMB 5512 in regular head waves.
The results show that the heave and pitch motions predicted by the STF strip theory and the
time domain approaches are consistent. Their comparisons with the EFD data are satis-
factory. The approximations performed using state-space models are negligible. The ship
model and its implementation give satisfactory results for the vertical ship motions. The
predicted roll motion is less satisfactory, nevertheless the roll amplitude at the natural roll
frequency of the ship is correctly estimated.

The STF strip theory (Salvesen et al., 1970) is based on the potential �ow assumption and
the horizontal ship motions dominated by viscous effects therefore the presented model is
not adequate for the horizontal motions. The hydrodynamic model needs to be modi�ed to
take into account horizontal motions.
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7. Extension of the time domain seakeeping
for the maneuvering motions

Résumé: Prise en compte des mouvements de manœuvrabilité
dans le modèle temporel de tenue à la mer

Ce chapitre présente une façon d'étendre le modèle de tenue à la mer pour modéliser les
mouvements de manœuvrabilité. Les mouvements de manœuvrabilité sont des mouvements
à basse fréquence. Ils correspondent aux efforts de radiation basse fréquence du modèle de
tenue à la mer. Seulement, l'in�uence de la viscosité est signi�cative sur les mouvements de
manœuvrabilité. Comme le modèle de tenue à la mer suppose un écoulement non visqueux,
il est nécessaire de modi�er la formulation des efforts hydrodynamiques liés aux mouve-
ments horizontaux du modèle temporel de tenue à la mer.

Deux types de modèles de manœuvrabilité peuvent être reconnus dans la littérature : les
modèles du typeAbkowitz (1980) et les modèles modulaires proposés parKobayashi et al.
(1995) également connu sous le nom de modèle MMG (Japanese research Mathematical
Modeling Group). Les modèles du typeAbkowitz (1980) représentent les efforts du safran,
de l'hélice et de la coque sous forme de série de Taylor pour chaque composante de mou-
vement considéré. Les modèles modulaires se distinguent car le safran, l'hélice, la coque et
leurs interactions sont modélisés de façon indépendante.

L'approche modulaire est préférée car elle s'implémente facilement en programmation
orientée objet, ce qui présente un avantage pour la maintenance et l'évolution du code
comme l'indiqueSutulo and Soares(2005). Dans ce chapitre, les efforts correspondant
aux composantes horizontales de mouvements sont remplacés par le modèle modulaire de
Yoshimura and Masumoto(2012). Ce modèle a été choisi carYoshimura and Masumoto
(2012) propose une formulation paramétrique qui permet donc d'adapter le modèle pour
différents types de navire. L'incorporation de ces modèles dans le modèle de tenue à la mer
temporel est similaire à la méthode suivie parSutulo and Guedes Soares(2006).

De plus le modèle temporel de tenue à la mer est valide autour d'une vitesse d'avance
moyenne alors que la variation de vitesse d'avance au cours d'une manœuvre peut grande-
ment varier. Plus précisément, les systèmes d'état correspondent à une vitesse d'avance.
Ainsi, pour avoir une formulation continue en vitesse d'avance, les systèmes d'états cor-
respondant à deux vitesses d'avance sont calculés au cours de la simulation. L'effort de
radiation est ensuite linéairement interpolé.
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7. Extension of the time domain seakeeping for the maneuvering motions

Une validation de cette approche est proposée avec le porte conteneur KCS. Des essais zig-
zag 15°/1° de navigation libre à l'échelle 1:52.667 effectué au bassin de Potsdam (Mo�di
and Carrica, 2014; Shen et al., 2015) et des essais de giration avec un angle de barre à 35° et
des essais zig-zag 20°/20° (Fukui et al., 2015, 2016) ont été utilisé comme cas de validation.
De plus, en utilisant les résultats de manoeuvrabilité disponibles dans (Toxopeus and Lee,
2008; Stern et al., 2011) obtenus par différents codes et différents essais en bassin offrent
des points de comparaisons supplémentaires.

L'extension du modèle temporel de tenue à la mer donne des résultats satisfaisants par
rapport aux essais en bassin et aux autres codes.

7.1. Introduction

The aim of this chapter is to enhance and to complete the model developed in Chap.6 to
predict horizontal motions of a ship towed by a kite, since a kite might have an important
impact on the maneuverability of the ship. The kite must be small enough to lead to small
horizontal amplitude of ship motions in order to guarantee the ship safety. This require-
ment complies with the small amplitude of ship motions around a mean ship forward speed
assumed by the time domain seakeeping model developed in chapter6.

As highlighted byBailey et al.(1997) the damping relative to the horizontal motions is
dominated by viscous effects at low frequency. Hence, at low frequency, horizontal ship
motions predicted with the time domain seakeeping model based on the potential �ow the-
ory introduced in Chap.6 are overestimated. At least, the damping relative to the horizontal
ship motion must be corrected to represent the viscous effects. An inclusion of the viscous
effects into the time domain seakeeping model has been proposed byBailey et al.(1997)
andFossen and Smogeli(2004). They suggested to add a viscous decaying ramp or viscous
exponential decay to the frequency damping data. Their proposition has been implemented
but results are not satisfactory as shown in AnnexC.6. Another manner to model the 6
degrees of freedom of a ship is to mix time domain seakeeping equations of motion with
maneuvering equations of motion. The mixed approach is introduced in this chapter. In
addition, the ship forward speed may vary during a maneuver whereas the ship model of
Chap.6 is de�ned around a mean ship forward speed. Consequently, the formulation of the
model must be transformed into a forward speed continuous model, which is proposed in
this chapter.

To predict horizontal motions of a ship, rudder, propeller and hull advance resistance models
should be introduced. In the literature, horizontal motions are basically studied by the
maneuverability of ships. The maneuvering model can be classi�ed into two groups. The
�rst group of models is proposed byAbkowitz (1980), where the hydrodynamic forces of
the bare hull, rudder and propeller are described by a single Taylor expansion for each
component of the motion. The second type of model is the MMG model (Kobayashi et al.,
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7.2. Maneuvering apparatus and other external forces modelings

1995) proposed by the Japanese research Mathematical Modeling Group (MMG). MMG
models are implemented in a modular way. The bare hull, the rudder, the propeller and their
interactions are described by dedicated models. The bare hull is usually represented by
Taylor expansions. The coef�cients of the Taylor's expansions can be obtained with captive
model tests, Computational Fluid Dynamics (Toxopeus, 2011) or parametric models such
as (Clarke et al., 1983; Yoshimura and Masumoto, 2012).

Here, a modular approach such as proposed by the MMG model is preferred in order to
offer an easier maintenance and future developments (Sutulo and Soares, 2005). Indeed,
this approach offers the advantage to implement each model in a separated manner. Among
MMG models proposed in the literature, the model ofYoshimura and Masumoto(2012)
has the advantage to proposed a parametric description of the hull, rudder and propeller
built with regressions based on differents types of ship, from �shing vessels to container
ships. In addition, a parametric description of the interaction coef�cient between the hull,
propeller and rudder is also proposed. Consequently, in this thesis, in order to develop a
tool dedicated to a wide variety of ships, the rudder, the propeller and their interactions are
modeled with the parametric model proposed byYoshimura and Masumoto(2012).

Firstly, the propeller, rudder and windage models are introduced. Secondly, the approach
adding a viscous modi�cation of the damping data is introduced with the equations of mo-
tion for a varying forward speed. Thirdly, the mixed maneuvering and seakeeping approach
is introduced. Then, a validation exercise is proposed for the two approaches with free
sailing EFD data performed by the Hokkaido University and by the Potsdam Model Basin
(SVA). Results are then analyzed and discussed.

7.2. Maneuvering apparatus and other external forces modelings

7.2.1. Propeller model

The expression of the propeller thrust is given by Eq. (7.1).

X P = (1 � tp) � wK T D 4
P n2

p (7.1)

The open water propeller thrust factor is denoted byK T . The thrust deduction factor is
denoted bytp. The thrust deduction factor represents the decrease of the propeller thrust
due to the presence of the hull. The thrust factor is a function of the propeller advance ratio,
denoted byJ and expressed with the wake fractionw in Eq. (7.2).

J = (1 � w)
uS

nP DP
(7.2)
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The thrust deduction factor and the wake fraction can be determined with a semi-empirical
formula such as the one formulated byHarvald(1983) andJournée(1976).

The propeller torque is given by:

K P = � wK QD 5
P n2

p (7.3)

whereK Q is the propeller torque factor. The generalized force vector of the propeller thrust
is given by:

Fp = [ X p; 0; 0; K p; 0; 0]T (7.4)

The pitch moment due to the propeller thrust is not taken into account since the induced
trim angle is small and no coupling with the other motion mode is further considered. This
assumption holds for the following rudder and hull advance resistance sub-model.

7.2.2. Rudder model

According toYoshimura and Masumoto(2012) rudder forces are expressed as follows:
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>>:

X r = � kh (1 � t r ) F
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Yr = � kh (1 + ah) F
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r cos�
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0
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r cos�

; (7.5)

wheret r , ah andx
0

h are coef�cients representing the interactions of the rudder with the hull
and the propeller. The symbol

0
denotes that a parameter is non-dimensional. Parametric

expressions of these coef�cients are provided in (Yoshimura and Masumoto, 2012). The
non-dimensional rudder forceF

0

r is expressed as follows:

F
0

n =
A r

L ppTm
f � r U

02
r sin � r ; (7.6)

where,A r is the lateral rudder area.f � r is a coef�cient modeling the effect of the rudder
aspect ratio� r on the rudder lift coef�cient.Yoshimura and Masumoto(2012) expressed
this coef�cient as follows:

f � r =
6:13� r

2:25 + � r
(7.7)

U0
r is the non-dimensional rudder in�ow velocity:
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U
0

r =
Ur

Us
=

q
u02

r + v02
r : (7.8)

The determination of the rudder in�ow velocity is not an easy task. Indeed, the in�ow
depends on the hull, propeller and rudder con�guration and on the interactions between
them. However, the determination of the exact in�ow velocity in the whole �uid domain is
out of the scope of this work. But, the modeling of these interactions cannot be avoided.
It can be found in the literature several empirical formulas to describe this phenomenon.
Here, the formulation provided inYoshimura and Masumoto(2012), Eq. (7.9) is chosen in
order to obtain a parametric formulation of the interaction coef�cients.
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r r
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� (7.9)

The dependency of the rudder in�ow velocity with the propeller thrust is modeled thanks
to the interactions coef�cients� and� and the geometric ratio between the propeller diam-
eter and the rudder span,� = Dp=br . Parametric expressions of� and� are provided in
(Yoshimura and Masumoto, 2012). Downstream to the propeller the axial �ow is increased,
which can be noticed in Eq.7.9. The axial rudder in�ow velocity increases with the pro-
peller thrust loading coef�cientCth = 8K T =�J 2. The transverse rudder in�ow velocity
v(s)

R depends on the ship turning rate and ship transverse velocity. The hull tends to de-
crease the absolute value of the transverse rudder in�ow velocity. This effect is represented
by Yoshimura and Masumoto with the �ow recti�cation factors,
 r andl

0

r in Eq. 7.9. The
propeller walk effect can be take into account using a different value of
 r according to

the sign of
�

v
0

s + l
0

r r
0

s

�
. According toFukui et al.(2016), the �ow recti�cation factor may

depend on the heeling angle. A correction can be given to the
 r as follows:


 r = 
 r (� s = 0) [1 + c
 j� sj] (7.10)

The generalized force vector of the rudder is given by:

Fr =
h
X r ; Yr ; 0; � r (s)

z Yr ; 0; N r

i T
(7.11)

wherer (s)
z is the componant along thezs axis of the geometric center of the rudder.

7.2.3. Hull advance resistance

The hull advance resistance can be split into two parts: the steady hull advance resistance
with no drift and the hull resistance due to drift and yaw rate. Since the propeller force is
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already multiplied by(1 � t), wheret is the thrust deduction factor, only the bare hull resis-
tance must considered. The hull resistance due to drift and yaw rate is non-linear. Here this
part of the hull resistance can be expressed with the non-linear Taylor expansion proposed
by Yoshimura and Masumoto(2012). The hull advance resistance force is assumed to be
oriented by the longitudinal ship axisxs, F hi = [ X h ; 0; 0; 0; 0; 0]T :

X hi = X bh (us) + kh

n
X

0

� 2
s
� 2

s + X
0

� s r 0
s
� sr

0

s + X
0

r 02
s

r
02
s + X

0

� 4
s
� 4

s

o
(7.12)

wherekh = 1
2 � wL ppTm U2

s , with L pp andTm denoting respectively the waterline ship length
and the draft at midship. The non-dimensional ship turning rate is expressed as follows:

r 0
s =

L pp

Us
r s: (7.13)

The hull resistance part due to drift and yaw rate can be replaced by any other formulation
of induced resistance due to the drift.

7.2.4. Windage model

The windage model used here is an empirical model proposed byBlendermann(1994).
According to wind tunnel tests performed on various types of ships,Blendermann(1994)
proposed a formulation of the windage force as follows:
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Nwa = L oa
A l
A f

h
sl

L oa
� 0:18

�
� rw � �

2

� i
Ywa

(7.14)

In this formulation,L oa denotes the overall ship length.Hm = A l =Loa de�nes mean height
of the windage lateral surface.A l andA f denote respectively the lateral and the windage
frontal area.sl denotes the distance of the windage lateral-plane centroid from the main
section. sh is the height of the windage lateral plane centroid. The other parameters are
tabulated dependenig on the type of ship.
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7.2. Maneuvering apparatus and other external forces modelings

K wa andNwa are expressed atOwa de�ned by the intersection of the ship symmetry plane,
midship section and the free surface. The generalized windage force can be expressed atOs

as follows:

F wa =
h
[X wa; Ywa; 0] [K wa; 0; Nwa] + OsOwa � [X wa; Ywa; 0]T

i T
(7.15)

7.2.5. Modeling of a varying forward speed

The time domain seakeeping model is de�ned with respect to a given forward speed (cf.
Chap. 6). To take into account a varying forward speed, a new formulation of the added
mass and damping at in�nite frequency and of the �uid memory force� is proposed here.

Assuming that the ship forward speed is within the range
h
U(1)

h ; U(2)
h

i
, the added mass, the

damping and the expression of the �uid memory force are approximated by linear interpo-
lations. According to mean forward speedsU(1)

h andU(2)
h , the ratio� is de�ned as,

� =
us � U(1)

h

U(2)
h � U(1)

h

(7.16)

Each components of the �uid memory force are then calculated as follows:

� i = (1 � � ) � (1)
i + � � (2)

i (7.17)

where,
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>>>>>>>>:

� (1)
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6P
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ij

� (1)
ij = C

0(1)
ij y(1)

ij

� (2)
i =

6P

j =1
� (2)

ij

� (2)
ij = C

0(2)
ij y(2)

ij

; (7.18)

The interpolated added mass matrix is given from:

~A = (1 � � ) ~A
(1)

+ � ~A
(2)

(7.19)

Finally, the damping matrix is given from:

~B = (1 � � ) ~B
(1)

+ � ~B
(2)

(7.20)
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7. Extension of the time domain seakeeping for the maneuvering motions

The ship equations of motion is then transformed as follows:
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(7.21)

The expression of the external forces, denoted byF , can be precised as the sum of the �rst
order wave force, rudder force, propeller force, hull advance resistance and windage forces,
which leads to:

F = F w + F r + F p + F hi + F wa + F hnl (7.22)

7.3. A mixed seakeeping and maneuvering model

7.3.1. Maneuvering equations of motion

The maneuvering motion may lead to large horizontal ship motions: surge, sway and yaw.
The maneuvering motions are at low frequency. Consequently, it is assumed that the ma-
neuvering derivatives can be taken constant and that the zero frequency added mass are
constant too. Consequently, ship equations of motion considered for the ship maneuvering
can be written as follows:
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V s

i (7.23)

wheremh is the degree of freedom vector and� denotes the Hadamard product. Gen-
erally, maneuvering models consider only the surge sway and yaw motion, consequently
mh = [1 ; 1; 0; 0; 0; 1]T . The matrixC

rb;s
is the Coriolis and centripetal matrix de�ned

as follows (Perez, 2006):

C
rb;s

=

2

4
� sI

3
� � sS

�
G(s)

s

�

� sS
�

G(s)
s

�
I

s

3

5 : (7.24)
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7.3. A mixed seakeeping and maneuvering model

whereGs is the ship center of gravity. The matrixS denotes the three-by-three skew-
symmetric matrix, for instance:

S
�

G(s)
s

�
=

2

6
4

0 � g(s)
sz g(s)

sy

g(s)
sz 0 � g(s)

sx

� g(s)
sy g(s)

sx 0

3

7
5 (7.25)

Into the sum the generalized external forcesF , the generalized hydrodynamic force of the
hull F h is taken into account. The hydrodynamic force of the hull can be expressed as series
expansion of the ship velocity parameterization. For instance, the hull derivatives proposed
in the MMG model ofYoshimura and Masumoto(2012) are given as function of the yaw
turning rater s and the ship drift angle� s = � arctan vs

us
:
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(7.26)
wherekh = 1

2 � wL ppTm U2
s . The non-dimensional yaw turning rate is de�ned asr 0

s =
L pp
Us

r s.

To take into account the heeling moment due to the drift, it is assumed that the heeling mo-
ment is zero atTm =3 below the free surface. Consequently, the generalized hydrodynamic
force of the hull is written as follows:

F h = [0 ; Yh ; 0; zm Yh ; 0; Nh ]T (7.27)

where it is assumed thatzm = lz � 2
3Tm .

7.3.2. 6 dof mixed equations of motion

The mixed approach is based on the maneuvering equations of motion for horizontal mo-
tions and the seakeeping time domain equations of motion for the vertical motions. Equa-
tions of motions can then be written as follows:
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� is determined according to Eq. (7.17), where transfer functionsH22, H26, H62 andH66

are set to zero. The degree of freedom vectors are de�ned as follows:mv = [0 ; 0; 1; 1; 1; 0]T

andmh = [1 ; 1; 0; 0; 0; 1]T . The added mass matrixA
hv

is a mix between~A, the in�nite
frequency added mass for the vertical ship motion andA

s
(0), the zero frequency added

mass for the horizontal ship motion.A
hv

is de�ned as follows:
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The damping matrixB
hv

de�ned as follows:

B
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(7.30)

SinceA
hv

andB
hv

vary with the ship speed, these matrices are de�ned by linear interpola-
tion between two ship speeds as achieved in Eqns (7.19) and (7.20).

The sum of the generalized external forcesF is expressed as follows:

F = F w + F r + F p + F hi + F wa + F h (7.31)

7.4. Case of study

The Kriso Container Ship was chosen as a case of study because this ship model is well
documented in the literature.
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7.4. Case of study

7.4.1. Kriso Container Ship modeling

The case of study is the Kriso Container Ship (KCS) at test conditions used during the
SIMMAN 2008 workshop. A summary of the hull particulars and test conditions is given in
Tab.7.1and the hull sections are represented in Fig. Open water propeller curves are given
in AnnexC.7.1. The hull advance resistance is approximated with the regression model of
Holtrop and Mennen(1982), the data are given in AnnexC.7.2.

Hull Rudder Propeller Test conditions
L pp 230 m A r 54.5 m2 Dp 7.9 m GM t 0.60 m

Bs 32.2 m � r 1.8 p(s)
x -110.8 m i zz � i yy 57.5 m

Tm 10.8 m _� r 2.32 °/s p(s)
z 10.4 m i xx 12.9 m

r s 52030 m3 r (s)
x -115 m Open water propeller curve Us 24 knots

Cb 0.651 r (s)
z 7.7 m cf. AnnexC.7.1 LCB -3.4 m

Table 7.1.: Kriso Container Ship (KCS) particulars and test conditions

� 15 � 10 � 5 0 5 10 15
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15

y [m]

z
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]

Figure 7.1.

Added masses at zero frequency have been estimated with the STF strip theorySalvesen
et al.(1970) data at! = 0 :1. The hull maneuvering derivatives of the KCS are taken from
(Fukui et al., 2015). This model has the advantage to take into account the heel in�uence.
The Taylor expansion modeling the surge, sway and yaw hydrodynamic force of the hull is
given from:
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7. Extension of the time domain seakeeping for the maneuvering motions
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wherekh = 1
2 � wL ppTm U2

s . The hull derivatives are given in AnnexC.7.3. The interaction
coef�cients modeling the interaction between the hull, the propeller and the rudder are given
in AnnexC.7.4.

According to the STF strip theory and the considered maneuvering model in Eq. (7.32),
transfer functionsH ij for the �uid memory forces can be estimated. Expressions of the
transfer functions are given in AnnexC.7.6. Corresponding impulse responses, added
masses and damping are �tted with good agreement.

In following results, the mean ship speeds of reference are
h
U(1)

h ; U(2)
h

i
= [10:29; 12:86]

m.s-1 for the zig-zag tests and
h
U(1)

h ; U(2)
h

i
= [5 :15; 12:86]m.s-1 for the turning circle.

7.4.2. Benchmark results

Two benchmark results are used to compare and to validate the two approaches with time
series of maneuvering motions. Free sailing tests of zig-zag 15°-1° were performed at the
Potsdam Model Basin (SVA) with a KCS model at the scale of 1:52.667. These results can
be found in (Mo�di and Carrica, 2014; Shen et al., 2015). Fukui et al.(2015) andFukui et al.
(2016) investigated the effect of the roll motion on the KCS maneuverability. Turning circle
with a rudder angle of 35° and zig-zag 20°/20° maneuvers were carried out with a KCS
scale model of 1:105 at the tank of the Japan Marine United Corporation (JMUC). These
two free sailing results are used to compare the time series of the standard maneuvering
motions obtained with the presented 6 dof dynamic ship models. The ship speed entry
is 12.35 m.s-1(Froude number 0.26) according to the Simman 2008 workshop casesStern
et al.(2011) and the rudder angle is zero at the beginning of the test maneuvers. Free sailing
maneuver results are digitized from (Fukui et al., 2016) and (Shen et al., 2015).
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7.5. Validation of the mixed seakeeping and maneuvering model

A turning circle maneuver consists in turning the rudder at a given angle with ship mo-
tions let free. Generally, the considered rudder angle for a turning circle is� 35°. A zigzag
X � r =X  s test maneuver consists in turning the rudder at the angleX � r until the ship expe-
riences a heading modi�cation ofX  s and reversing the rudder angle until the ship experi-
ences a heading deviation of� X  s from the initial course and so on. A standard de�nition
of this maneuver is provided in (ITTC, 2002).

Moreover standard KCS maneuvering results were presented in (Toxopeus and Lee, 2008;
Stern et al., 2011). These results were obtained with experiments and empirical methods.
Moreover, in (Toxopeus and Lee, 2008) statistical maneuvering results obtained with similar
ship are presented.

7.5. Validation of the mixed seakeeping and maneuvering model

7.5.1. Results

During a turning circle maneuver with a rudder angle of 35°, Figs.7.2 and7.3 show re-

spectively the ship path in the plane
�

xn ; y
n

�
and time series of the drift angle� s, surge

velocity us, heel angle� s, surge velocityus and yaw turning rater s. Figs. 7.2 and7.3
compare the results obtained thanks to the mixed seakeeping and maneuvering model (solid
line) with the EFD data of the free running test at the JMUC (dashed line).

� 800 � 600 � 400 � 200 0 200 400 600 800
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200

400
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y [m]

x
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]

Mixed seakeeping and
maneuvering model

Experimental free running
JMUC

Figure 7.2.: Turning circle path with rudder angle� r = 35° . The results obtained with the
mixed seakeeping and maneuvering model () are compared with the free
sailing EFD data of the JMUC ( ).
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Figure 7.3.: Time history during a 35° turning circle maneuver of the: drift angle� s, surge
velocity us, heel angle� s, surge velocityus and yaw turning rater s. The
results obtained with the mixed seakeeping and maneuvering model () are
compared with the free sailing EFD data of the SVA ().

Figure7.4shows, during a KCS zigzag 20/20° test maneuver, the time history of: the rudder
angle� r , the ship heading s, the ship drift angle� s = � arctan (vs=us), the heeling angle
� s and the ship longitudinal speedus. Solid lines correspond to the mixed seakeeping
and maneuvering model. Dashed lines correspond to the free sailing data performed by
the JMUC. Figure7.5 shows, during a KCS zigzag 15/1° test maneuver, the time history
of: the rudder angle� r , the ship heading s, the ship drift angle� s, the heeling angle
� s and the ship longitudinal speedus. Solid lines correspond to the mixed seakeeping
and maneuvering model. Dashed lines correspond to the experimental free sailing data
performed by the SVA.
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Figure 7.4.: Time history during a zigzag 20/20° maneuver of : rudder angle� r , heading s,
drift angle� s, heel angle� s and surge velocityus. Results obtained with the
mixed seakeeping and maneuvering model () are compared with the free
sailing EFD data of the JMUC ( ).
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Figure 7.5.: Time history during a zigzag 15/-1° maneuver of : rudder angle� r , heading s,
drift angle� s, heel angle� s and surge velocityus. Results obtained with the
mixed seakeeping and maneuvering model () are compared with the free
sailing EFD data of the SVA ( ).
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7.5. Validation of the mixed seakeeping and maneuvering model

7.5.2. Analysis and discussion

According to Figure7.2, the transient part of the ship path is correctly estimated for both
turning circles. The turning radius of gyration is correctly estimated. The only difference is
the maximum transfer distance. In Figure7.3, it can be shown that the transient part of the
yaw turning rate and the surge velocity are accurately predicted until 50 seconds. However,
transient parts of the drift angle and heeling angle are less well predicted. The predicted
drift angle increases more rapidly than during the free sailing tests. Amplitudes of roll are
more important and slower. Regarding steady states, the drift angle and the loss of surge
velocity are overestimated. The turning rate is underestimated which is consistent with the
predicted ship speed that is lower. The heeling angle seems to converge towards the same
value.

According to the zig-zag maneuvers 20/20° and 15/-1°, respectively in Figs.7.4 and7.5,
the predicted turning period is slightly longer. The predicted heading for both maneuvers
is slightly longer. However, concerning the amplitude of the motions, observations are
different. The loss of surge velocity and the drift angle are underestimated for the zig-zag
test 15/-1° and overestimated for the zig-zag test 20/20°. For the zig-zag 15/-1°, the roll
amplitude is overestimated and overshoot angles are underestimated, whereas for the zig-
zag 20/20°, these motions are correctly predicted in terms of amplitude. Concerning the
evolution of ship motions during these two zig-zag maneuvers, the same patterns than for
the free sailing data are observed.

Despite the difference noticed between the predicted motions and the free sailing data of
the SVA basin and JMUC basin, the mixed maneuvering and seakeeping approach shows
a signi�cant improvement compared to the direct extension of the time domain seakeeping
model. The mixed seakeeping and maneuvering approach is satisfying. Finally, according
to maneuvering results from different other empirical methods, PMM tests and free sailing
results available in (Toxopeus and Lee, 2008; Stern et al., 2011) and compiled in Tab.7.2,
the mixed seakeeping and maneuvering approach is validated for the KCS.
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7. Extension of the time domain seakeeping for the maneuvering motions

Overshoot Tactical
angles diameter

Type Source
10/10° 10/-10° 10/10° 10/-10° 20/20° � r = 35°

1st 2nd

Empirical
methods

SurSim 3.8° 4.2° 9.1° 3.88L pp

SurSim sb 10.1° 15.1° 20.0° 2.77L pp

FreSim 4.2° 5° 9.7° 4.36L pp

FreSim sb 9.6° 13.0° 18.5° 2.96L pp

MPP Marin 6.3° 7.7° 13.3° 3.01L pp

Force SY Adv - - 16.7° 19.1° - -
Force SY Sim - - 24.2° 29.8° - -

Circular
Motion Tests

Hiroshima CMT - - 29.1° 18.7° - -
MOERI CMT - - 8.0° 6.7° - -
NMRI CMT - - 12.0° 9.2° - -
Hokkaido Univ.
CMT

- - 12.0° 9.0° - -

Free Sailing
Tests

SVA - - 17.0° 20.0° - -
BSHC - - 20.3° 21.6° - 2.74L pp

Hokkaido Univ.
(quasi 3dof)

- - 11.7° 11.97° - 3.34L pp

Statistics (Toxopeus and Lee, 2008) 10° 15° 23.70° 2.8L pp

Presented model 11.65° 9.65° 17.5° 21.05° 24.60° 2.82L pp

Table 7.2.: Compilation of KCS standard maneuvering results from (Toxopeus and Lee,
2008; Stern et al., 2011)

7.6. Conclusion

The time domain seakeeping approach developed in Chap.6 has been enhanced to model
the horizontal ship motion. First, rudder, propeller, windage models have been introduced.
Parametric models, suitable with the presented approach have been introduced to enable
the study of different ships. An approach mixing the modeling of the horizontal motion
with a maneuvering model and the modeling of the vertical motion with the time domain
seakeeping model has been developed. A validation exercise with experimental free sailing
data and other empirical method was successfully performed.

The mixed approach uses constant maneuvering derivatives which is suitable for low fre-
quency motions. Therefore, the evolution of the linear damping with the frequency of the
motion is not represented. To verify this effect a second approach modifying the potential
damping with viscous exponential decay such as proposed in (Bailey et al., 1997; Fossen
and Smogeli, 2004) has been implemented in AnnexC.6. At this time, results are not satis-
factory and need further investigations.
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Towards kite towing of ships
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8. Mean equilibrium of a ship towed by kite

Résumé: Equilibre moyen d'un navire tracté par cerf-volant

A�n d'étudier les paramètres qui ont de l'importance sur les performances d'un navire
tracté par cerf-volant, une étude de l'équilibre du navire est menée en considérant la force
de traction moyenne au cours d'une trajectoire.

Dans un premier temps, la méthode de résolution de l'équilibre des 6 degrés de libertés est
introduite. Dans un second temps, deux indicateurs permettant d'estimer la performance
du système sont introduits. Le premier indicateur est le ratio d'économie de puissance. Le
second indicateur est le facteur d'ef�cacité du cerf-volant correspondant au rapport entre
l'effort propulsif du cerf-volant et la norme de la force de traction. Il est suggéré que
pour optimiser le pro�t apporté par un cerf-volant, il est plus intéressant de maximiser
l'ef�cacité du cerf-volant plutôt que le coef�cient d'économie de puissance. En effet le
facteur d'ef�cacité du cerf-volant est un compromis entre maximisation des économies de
puissance et minimisation de la charge alaire pour augmenter la durée de vie du kite et
diminuer son prix. Ensuite, l'in�uence du fardage, de la position longitudinale du point
d'attache et de la vitesse du vent sont étudiés sur le porte conteneur KCS de 230 m tracté
par un kite de 500 m2 avec 500 m de ligne.

L'in�uence du fardage est prépondérante devant celle du cerf-volant sur l'équilibre du navire
en lacet et est du même ordre sur la dérive. Le fardage rend le navire ardent. Quand le point
d'attache du cerf-volant est proche de l'étrave, l'in�uence du cerf-volant sur l'équilibre en
lacet du navire est neutre. En revanche, en reculant le point d'attache, le navire devient plus
ardent et l'angle de dérive diminue. La position longitudinale du point d'attache n'a que
très peu d'effet sur la gîte et l'économie de puissance réalisée.

Sans surprise, la vitesse du vent augmente l'économie de puissance, l'angle de dérive, l'an-
gle de barre et la gîte. L'allure la plus risquée pour l'équilibre du navire est le vent de
travers. L'allure permettant de réaliser la plus grande économie de puissance hélice évolue
du petit largue vers le grand largue quand la vitesse du vent augmente. L'ef�cacité du
kite est maximale au vent arrière tant que la vitesse du vent est supérieure à la vitesse du
navire. Si la vitesse du vent est plus faible que la vitesse du navire, le vent arrière n'est
pas réalisable à moins de tirer pro�t du gradient de vent. Cependant, ces con�gurations
n'ont pas été étudiées pour des restrictions d'implémentation. Dans ce cas, plus la vitesse
du vent diminue plus le maximum d'ef�cacité est obtenu pour des allures proche du vent.
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8. Mean equilibrium of a ship towed by kite

Le facteur d'ef�cacité du cerf-volant favorise donc les allures portantes où la charge allaire
est minimale. On peut en déduire que la vitesse d'utilisation du navire est décisive pour
dé�nir l'intervalle de vent d'utilisation du cerf-volant et donc sa charge allaire nominale de
conception.

8.1. Introduction

An important step of this thesis is to determine the mean equilibrium of a ship towed by
a kite. Considering, the mean kite towing force,Naaijen and Koster(2010); Leloup et al.
(2016) have investigated the mean equilibrium of a ship towed by a kite. Their analysis
focused on the fuel saving prediction. In (Naaijen and Koster, 2010), the mean equilib-
rium was solved for the surge, sway and yaw motions. They showed that the additional
resistance caused by the drift imposed by the transverse force of the kite is not signi�cant.
Consequently,Leloup et al.(2016) solved only the surge equilibrium. A short comment
on the heeling equilibrium and mean rudder angle showed that the kite preserves the ship
safety. Naaijen and Koster(2010) and Leloup et al.(2016) developed their analysis on
the British Bombardier tanker (Leeuwen and Journée, 2001) with a given kite area, tether
length and tether attachment point. A kite of 320 m2 and a kite of 500 m2 were used in these
studies.

The ship modeling used in (Naaijen and Koster, 2010; Leloup et al., 2016), was simpli�ed:
windage and interactions between the hull, the propeller and the rudder were neglected. As
shown in Chap.7 the ship maneuvering is dependent on the interactions between the hull,
the propeller and the rudder due to a modi�cation of the local in�ow velocity. Since, the
kite towing force decreases the propeller thrust, the local in�ow velocity at the rudder is
modi�ed. The �rst aim of this chapter is to assess the mean equilibrium of a ship towed by
a kite, taking into account the windage and these interactions.

Moreover, the interest of these previous studies was to assess the fuel saving ratio. As
highlighted in Sec.1.3, the fuel saving ratio is important. Nonetheless, to evaluate the
pro�ts, the kite cost and the lifetime of the kite should also be regarded. The assessment of
the cost and the lifetime of a kite is beyond the scope of the thesis. However, a criteria taking
into account global parameters in�uencing the lifetime and the cost of a kite is developed
and studied.

Consequently, in this chapter, the mean equilibrium of a ship towed by kite is solved con-
sidering its 6 degrees of freedom and the interactions between the hull, the propeller and
the rudder. In this �rst approach, the coupling between the kite and the ship is neglected.
Indeed, a mean kite towing force is computed considering that the tether attachment point
is moving at a constant velocity. This �rst approach is fast and enable the study of a wide
range of design parameters.
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8.2. Equations of the mean equilibrium of a ship towed by kite

Firstly, the 6 dof equations of balance of a ship towed by a kite are introduced. Secondly,
the criteria taking into account the fuel saving ratio, the lifetime and the cost of a kite is
developed. With the case of study detailed in sections8.4 and8.5, investigations of the
in�uence of the windage effect, longitudinal tether attachment point and true wind speed
on the mean ship equilibirum are performed. In section8.6 the evolution of the mean
aerodynamic pressure and the kite ef�ciency criteria are investigated for different sailing
conditions.

8.2. Equations of the mean equilibrium of a ship towed by kite

8.2.1. Equilibrium equation

The equation of balance is independent from ship positions in the horizontal planes(n )
x and

s(n )
y . The mean vertical velocity of the ship is zero, hence_s(n )

z = 0 . At the equilibrium

the ship turning rate is zero,
h

_� s; _� s; _� s

i T
= 0 . Hence, the 6 scalar equations in Eq.

8.1 depend on the horizontal linear ship velocities, the vertical ship position and the three

attitude angles of the ship:
h

_s(n )
x ; _s(n )

y ; s(n )
z ; � s; � s; � s

i T
. Hence, using ship equations of

motion Eq. (7.28), the balance equations of the ship is:

0 = F
�

_s(n )
x ; _s(n )

y ; s(n )
z ; � s; � s; � s

�
� C

h
0; 0; s(n )

z ; � s; � s; 0
i T

(8.1)

Since the aim of this chapter is to solve the mean equilibrium of a ship towed by kite, the
mean kite force over a loop trajectory is considered. The mean generalized kite force is
denoted by�F k . Since only the �rst order wave load is considered for the ship modeling, the
mean generalized wave force is0. Hence, the wave force is not represented in Eq. (8.1).

Here, the equilibrium is solved for a given ship speedUs =

r �
_s(n )
x

� 2
+

�
_s(n )
y

� 2
and a

given true wind angle� tw . The surge balance, the sway balance and the yaw balance are
adjusted respectively by the propeller rotational speednp, the ship drift� s and the rudder
angle� r . The heave, roll and pitch balances depend on the vertical position of the ship and
on heeling and trim angles. Consequently, Eq. (8.1) can be transformed as follows:

0 = F
�

np; � s; s(n )
z ; � s; � s; � r

�
� C

h
0; 0; s(n )

z ; � s; � s; 0
i T

(8.2)

Equation (8.2) is solved with a Newton-Raphson algorithm. The initial solution is(~np; 0; 0; 0; 0; 0),
where~np corresponds to a propeller advance ratioJ of 0.6:

~np = (1 � w)
Us

0:6Dp
(8.3)
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8. Mean equilibrium of a ship towed by kite

8.2.2. Kite ef�ciency

In (Naaijen et al., 2006; Naaijen and Koster, 2010; Leloup et al., 2016), the kite ef�ciency
was studied through the fuel saving ratio. The fuel saving ratio is de�ned as the difference
between the fuel consumption without and with the kite divided by the fuel consumption
without the kite. To estimate this fuel saving ratio, transmission ef�ciency and the brake
speci�c fuel consumption are required. Here, the power saving ratio is preferred, since it
does not depend on the ship engine ef�ciency. The power saving ratio is de�ned from:

� k =
np;wokK p;wok � np;wk K p;wk

np;wokK p;wok
(8.4)

wherenp andK p are respectively the propeller rotational speed and the propeller torque.
Subscriptswk andwok denote respectively the corresponding quantity with and without
the kite. This power saving ratio expresses the relative decrease of the power delivered by
the shaft to the propeller.

As it has been shown in Sec.1.3, the kite pro�t is also dependent of the lifetime and the cost
of the kite. It is assumed that the kite lifetime can be represented by an increasing function
of the ratio� d=� k , where� d and� k are respectively the aerodynamic pressure specs for
the design and the kite aerodynamic pressure at �ight. The kite cost is supposed to be an
increasing function of� d. Assuming that the lifetime and the cost of a kite are linear, the
criteria in Eq. (1.6) can be rewritten as:

ktd

kCk

�� kf (Utw ; Us; � d)
� k

Cs;t (Us; cf ) > 1 (8.5)

wherektd andkCk are the linear positive coef�cient of the lifetime and cost functions of the
kite. This criteria has to be maximized. Neglecting the propeller and the engine ef�ciency,
at a given speed, the criteria can be expressed as follows:

�
T k � xs

kT kk
> 1 (8.6)

where� is a positive constant and the kite ef�ciency� x is de�ned by:

� x =
T k � xs

kT kk
(8.7)

The kite ef�ciency� x has to be maximized.� x enables to represent the trade off between a
high kite power saving ratio and a high wind loading safety factor to extend the kite lifetime.
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8.3. Case of study

The ship studied here is the Kriso Container Ship (KCS). The specs of the KCS are detailed
in Sec. 7.4.1. The propeller, rudder, windage models and the modeling of the interaction
with the hull is detailed in7.2. The hydrodynamic model of the hull uses the Taylor ex-
pansions and the derivatives presented inFukui et al.(2015). Coef�cients required by the
modeling of the ship are given in AnnexC.7. The tether attachment pointA is in the ship
symetry plane at a height of 25 m above the baseline.

The kite model used to compute the mean kite towing force has been developed in Chap.
3. This model is based on the so-called zero-mass kite model. This model depends on
two parameters, the lift to drag angle� k and the lift coef�cientClk . Based on full scale
experiments, signi�cant evolution of� k andClk have been noticed according to the turning
rate of the kite along a trajectory. Consequently, in3.6.2a linear modi�cation with the kite
turning rate has been proposed as follows:

(
� k = � 0 +

p
A k

Urw
� � j _
 n j

Clk = Cl0 +
p

A k
Urw

� l j _
 n j
(8.8)

� 0, � � , Cl0 and� l have been identi�ed on a kite of 5 m2 with an in�atable leading edge
dedicated to kite sur�ng. Same coef�cients were taken and are reminded below:

8
>>>><

>>>>:

� 0 = 0 :2013rad

� � = 0 :0422

Cl0 = 0 :9856

� l = � 0:3718

(8.9)

The mean kite towing force is computed over a Lissajous trajectory as de�ned in Sect.3.4.
Trajectory amplitudes are arbitrarily set to� � 8 = 20° and� � 8 = 8°. The center of the
trajectory[� 8; � 8] and the angle of the trajectory� 8 around the axisC8A are determined
by the optimization of the longitudinal kite towing force with a code similar to the one
used byLeloup et al.(2016). A database of the optimized trajectory parameters� 8, � 8 and
� 8 according to different wind conditions, ship velocities and tether lengths is then used.
Results presented in next sections use a linear interpolation of this database to determine
the trajectory parameters. A part of this database is plotted in Fig.8.1for L t = 500 m.

It can be noticed that the optimal trajectory at downwind, i.e.� tw > 150°, is an horizontal
Lissajous trajectory, i.e.� 8 = 180°. With � 8 = 180°, at the extremities of the trajectory,
the kite is going down. When the ship heading is closer to the wind, i.e.� tw < 100°, the
kite orientation decreases down to� 8 = 90°. The faster the true wind speed is, the more
the transition between the two orientations is pronounced and the closer to the wind the
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Figure 8.1.: For different true wind speedUtw 2 f 7:5; 10:0; 12:5; 15:0g m.s-1, optimum
kite �ight trajectory parameters versus true wind angle� tw : trajectory angle
� 8, azimuth of the center of the trajectory� 8, elevation of the center of the
trajectory� 8.

transition is. The azimuth of the trajectory center decreases with the true wind angle. The
evolution of the elevation trajectory center is less pronounced and remains within the range
� 8 2 [19°; 26°].
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8.4. In�uence of the windage force

Figures8.2 and8.3 show results of mean equilibrium, with and without considering the
windage on the ship. Figure8.2 shows the evolution of the mean equilibrium with re-
spect to the true wind angle with the con�gurationL t = 500 m, Ak = 500 m2, A (s) =
[110; 0; � 10:6]T m andUtw = 12:5 m.s-1. Figure8.3 shows the evolution of the mean
equilibrium with the longitudinal tether attachment position with the con�gurationL t =
500 m, Ak = 500 m2, Utw = 12:5 m.s-1 and� tw = 90°. The mean equilibrium are de-
picted in terms of power saving ratio� k , drift angle � s, rudder angle� r and heel angle
� s.
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Figure 8.2.: Mean evolution of the kite power saving ratio� k , drift angle� s, rudder angle
� r and heel angle� s with the true wind angle� tw . The solid line is the mean
equilibrium with the windage taken into account. The dashed line is the mean
equilibrium without the windage effect. Con�guration:L t = 500 m, Ak = 500
m2, A (s) = [110; 0; � 10:6]T m andUtw = 12:5 m.s-1

In Figure8.2, the power saving ratio increases with the true wind angle to a maximum at
broad reach and then decreases slightly until� tw = 180°. The windage does not modify
this evolution. The windage effect on the power saving ratio reduces signi�cantly the kite
power saving ratio until� tw = 140°. For higher true wind angle, the windage has almost no
effect on the power saving ratio. The windage causes an increase of the propeller demand
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8. Mean equilibrium of a ship towed by kite

whereas the power supplied by the kite remains constant, which explains the loss of power
saving ratio.

In Figure8.2, the drift angle is de�ned as� s = � arctan (vs=us). Since, the drift motion
is symmetrical with respect to the true wind angle, the results are discussed in terms drift
angle modulus. The drift angle modulus increases slightly up to� tw = 90°. Then, the drift
angle modulus decreases continuously to zero until� tw = 180°, which is trivial since the
mean kite transverse force is zero at downwind. This evolution is directly driven by the
evolution of the transverse windage and kite force. The windage effect is signi�cant on the
drift angle. Indeed, for� tw = 90°, the drift angle is doubled by the effect of the wind load
on the ship.

In Figures8.2 and8.3, it can be noticed that the windage effect is even more signi�cant
on the yaw equilibrium. With windage, the rudder angle becomes always negative for a
starboard course. This results shows that the longitudinal tether attachment position leads
to a weather helm ship. Indeed, according to the wind load model (Blendermann, 1994),
the center of the wind load pressure is around20 m, which is almost at mid-ship. Results
shows that the windage effect dominates the yaw equilibrium of the ship.

The maximum heel angle with and without windage are respectively -2.9° and -2.25°. The
windage increases the heel angle. The heel angle modulus reach a maximum value at� tw =
90°. For the considered sailing conditions, the heel angle seems reasonable. The in�uence
of the windage is less signi�cant than the kite on the heel angle.

In �gure 8.3, the effect of the longitudinal tether attachment position,a(s)
x , on the mean

equilibrium is studied.a(s)
x = 0 m, corresponds to a tether attachment point at mid-ship and

a(s)
x = 115 m corresponds to a tether attachment point at the bow. The longitudinal position

of A does not modify signi�cantly the power saving ratio, as it stays at less than 2% of
variation. However, the power saving ratio increases witha(s)

x and observed a maximum
near the bow. The windage does not modify the evolution of the power saving ratio with the
longitudinal position ofA. The drift angle modulus increases with the longitudinal position
of A. The rudder angle modulus decreases with the longitudinal position ofA. The heel
angle modulus increases slightly with the longitudinal position ofA.

The evolution of the rudder angle con�rms the fact that the KCS is a weather helm ship.
As a consequence, with a backwards longitudinal position ofA, the yaw generates a more
important rudder angle modulus leading to a higher transverse force in opposition to the
transverse kite towing force. Consequently, the ship drift angle decreases with backwards
tether attachment position. The increase of rudder angle modulus with backward tether
attachment position increases the rudder heeling moment. On the contrary, the decrease
of drift angle modulus with backwards tether attachment position decreases the heeling
moment. As shown by the results in terms of heel angle, the decrease of drift angle is slightly
predominant over the increase of drift angle. Nevertheless, this effect may be different with
a different ship.
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Figure 8.3.: ForUtw = 12:5 m.s-1, � tw = 90°, L t = 500 m andAk = 500 m: mean
evolution of the kite power saving ratio� k , drift angle� s, rudder angle� r and
heel angle� s with the longitudinal position of the tether attachment pointa(s)

x .
The solid line is the mean equilibrium with the windage taken into account.
The dashed line is the mean equilibrium without the windage effect.

As a partial conclusion, the windage effect is not negligible with respect to the kite towing
force and particularly for the yaw equilibrium.
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8.5. In�uence of the true wind speed

The effect of the true wind speed is investigated in this section. Figure8.4 shows the evo-
lution of the mean equilibrium with true wind direction� tw for different true wind speed
Utw 2 f 7:5; 10; 12:5; 15g m.s-1. For this results the windage effect is taken into account.
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Figure 8.4.: For different true wind speedUtw 2 f 7:5; 10; 12:5; 15gm.s-1: mean evolution
of the kite power saving ratio� k , drift angle� s, rudder angle� r and heel angle
� s with the true wind angle.

In Figure8.4, the global evolution of the kite power ef�ciency, drift angle, rudder angle and
heel angle is similar for each true wind speed. As expected, the kite power ef�ciency, and
the modulus of the drift, rudder and heel angles increase with the true wind speed. The
optimum true wind angle in terms of kite power ef�ciency increases with the true wind
speed. The optimal true wind angle withUtw = 7 :5 m.s-1 is around� tw = 115°, whereas
the optimal true wind angle withUtw = 15 m.s-1 is around� tw = 145°. Similarly, the true
wind angle to obtain the maximum angle modulus of the drift, rudder and heel increases
with the true wind speed. The evolution of the most critical true wind angle is not very
signi�cant and stay within a range of 20° around� tw = 90°. With Utw = 15 m.s-1, the
drift, rudder and heel angles are respectively� s = � 3°, � r = � 4° and� s = � 4°.
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8.6. Remarks on the kite ef�ciency and the mean aerodynamic
pressure

In this section, the same navigation conditions as in Sec.8.5 are used: the tether length is
L t = 500 m, the kite areaAk = 500 m2. Figure8.5shows the mean aerodynamic pressure
� k and the kite ef�ciency� k as function of the true wind angle for different true wind speed.
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Figure 8.5.: For different true wind speedUtw 2 f 7:5; 10; 12:5; 15gm.s-1: evolution with
the true wind angle of the mean aerodynamic pressure� k and of the kite ef�-
ciency� x .

The mean aerodynamic pressure� k is given by the tether tension divided by the kite area.
It can be shown that� k has a maximum between 100° and 90° of true wind angle. The
minimum of � k is obtained at downwind. Consequently the safety factor of kite design is
maximum at downwind. Even if, the dead downwind is not the optimal wind condition in
terms of power saving ratio, the lifetime of the kite is increased, as discussed in Sec.1.3.
The trade off between the kite power saving ratio and the kite lifetime should be indicated
by the kite ef�ciency� k .

For all true wind speeds superior to the ship speed, the maximum of kite ef�ciency is ob-
tained at dead downwind. In these cases, the kite ef�ciency is an increasing function of the
true wind angle. For the true wind speedUtw = 7 :5 m.s-1, the kite ef�ciency is maximum
at � tw = 145°. According to the de�nition of the kite ef�ciency� k , the dead downwind is
the best trade off between the kite power saving and the kite lifetime to make pro�ts in the
case of a true wind speed superior to the ship speed. When the true wind speed is less than
the ship speed, the best trade off is shifted to lower true wind angle.
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8. Mean equilibrium of a ship towed by kite

8.7. Conclusion

In section8.4, the in�uence of the windage force has been investigated. It has been shown
that the windage is not negligible at for kite sailing conditions. The windage effect is par-
ticularly important for a beam reach course. The ship drift angle is almost doubled. The
windage effect on the yaw equilibrium dominates the kite effect.

The effect of the longitudinal tether attachment point is more pronounced on the ship drift
and on the rudder angle than on the kite power saving ratio and the heel angle. Indeed
a backwards tether attachment position decreases the ship drift angle. On the contrary, a
forwards tether attachment position reduces the rudder angle. For a container ship, the
general arrangement imposes a tether attachment point at the bow. The results complies
with the analysis ofNaaijen and Koster(2010). Even if the ship drift is maximum for an
attachment position at the bow, the ship drift angle remains reasonable, less than 3° for the
cases investigated in this study. As a �rst approximation, the ship drift angle and the rudder
angle can be considered as linear with the transverse force. Consequently, it would mean
that for a kite of 1000 m2, the drift angle should be around 6°. From a more general point
of view, the more critical sailing condition for the ship safety are obtained close to a beam
reach sailing.

Through a brief economical analysis it has been shown that� k , the ratio between the kite
towing force along the ship axis and the kite force modulus, could be more relevant. The
kite ef�ciency indicates the best trade off between power saving and kite lifetime. The
results shows that this ratio is maximum at dead downwind in case of a true wind speed
greater than the ship speed. In case of a true wind speed lower than the ship speed, the
maximum is obtained at lower true wind angles. Eventually, despite a ship speed faster than
the wind, the bene�t from the wind gradient could enable a kite �ight. However, these very
special cases have not been considered. According to the kite ef�ciency criteria, it could
be more relevant to design a kite only for downwind sailing courses. In this case, the use
of kites is less critical for the ship safety and larger kites could be used. Consequently, the
ship speed is decisive in de�ning the kite wind range for design and the aerodynamic wind
loading for design� d.

This study considers the mean kite towing force to solve the static equilibrium of the ship.
The amplitudes of the dynamic ship motions induced by a dynamic kite �ight have not been
considered. Since the kite induces ship motions, the kite �ight can be modi�ed, which can
lead to a modi�cation of the mean equilibrium. The kite power saving ratio and ef�ciency
may be altered by dynamic motions. Consequently dynamic motions of a ship towed by kite
and kite-ship interactions should be investigated. This work is the aim of the next chapters.
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Résumé: Etude des interactions navire-kite

Dans ce chapitre les interactions entre un cerf-volant et un navire sont étudiées. Pour mettre
en évidence ces interactions, deux types de couplage entre le modèle de cerf-volant sans
masse et le modèle de navire sont comparés : un couplage monolithique et un couplage dis-
socié. Le couplage dissocié intègre la force du kite comme une série temporelle prédéter-
minée en ne considérant que la vitesse moyenne du navire. Le couplage monolithique prend
en compte le terme de couplage entre les deux modèles qui est la vitesse du point d'attache
des lignes.

Le cas d'étude utilisé pour cette étude est un navire militaire de surface, le DTMB 5512 à
pleine échelle. Ce navire a été choisi pour cette étude plutôt que le KCS car sa fréquence
de résonnance en roulis (0.56 rad.s-1) est plus proche des fréquences d'excitation du cerf-
volant. Seuls les mouvements de roulis, pilonnement et tangage sont étudiés sur une route
au travers. Un cas de navigation en mer calme et trois cas de navigation en houle régulière de
travers sont étudiés avec les fréquences de vague 0.4, 0.56 et 0.8 rad.s-1. En conservant les
mêmes amplitudes angulaires de trajectoire, plus les lignes sont courtes plus les fréquences
des harmoniques sont élevées. Ainsi en faisant varier la longueur de ligne, le domaine
fréquentiel est balayé.

Sans interactions (couplage dissocié), le spectre d'excitation du kite en roulis est composé
de plusieurs harmoniques. Les harmoniques paires ont le plus d'amplitudes. Le second har-
monique est le plus important. En cas en mer calme, les interactions entre le kite et le navire
sont faibles. On peut toutefois remarquer que le couplage diminue l'amplitude d'excitation
du kite et l'amplitude de roulis du navire. Le couplage dissocié est alors conservatif par
rapport au couplage monolithique en cas de mer calme.

En cas de houle régulière le mouvement de roulis est principalement causé par la vague.
Dans ce cas il est préférable pour dé�nir la trajectoire de vol du cerf-volant de négliger la
vitesse verticale du point d'attache. Comme le mouvement de roulis du navire est quasi-
harmonique à la fréquence de vague, un réseau de sous-harmoniques basse fréquence appa-
rait. La fréquence fondamentale des sous-harmoniques est donnée par la différence entre la
fréquence de vague et la fréquence de l'harmonique d'excitation la plus proche. Quand cette
différence est suf�samment petite, un phénomène d'accrochage apparait. Les harmoniques
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9. Interactions between a kite and a ship

d'excitation du cerf-volant sont alors décalés à la fréquence de vague et le réseau de sous-
harmoniques n'apparait pas. Ce phénomène d'accrochage de fréquence est béné�que pour
le cerf-volant et le navire quand le décalage des harmoniques d'excitation correspond à une
augmentation. Le cerf-volant parcourt alors la trajectoire plus rapidement, et ainsi la force
de traction est plus importante. Par ailleurs, le mouvement de roulis est atténué. L'am-
plitude de roulis peut dans certain cas devenir légèrement plus faible que sans cerf-volant.
Avec un état de mer, le couplage monolithique apparait alors alors comme incontournable.

9.1. Introduction

Considering the mean kite towing force,Leloup et al.(2016) and Naaijen et al.(2006)
solved the horizontal equations of balance of a ship towed by a kite to determine the fuel
savings.Ran et al.(2013) studied the contribution of a kite to the mean ship thrust, drift
angle and rudder angle. In the previous chapter, the 6 dof mean equilibrium has been solved.
All these previous studies neglected the interactions between the kite and the ship. The kite
force was imposed as a prede�ned external force to the ship. Nevertheless, motions of such
a system are highly dynamic since a kite experiences a periodic dynamic �ight. InBigi
et al. (2016), the in�uence of the kite attachment point on the deck was investigated on a
�shing vessel equipped with a kite. This study was limited to horizontal ship motions, surge,
sway and yaw, by means of a maneuvering model in calm water with a monolithic coupling
approach between the ship and the kite. Nevertheless, even if the water was supposed
to be calm,Bigi et al. (2016) did not take into account the effect of radiated waves on
ship motions. Thus, the in�uence of the kite excitation frequency on the added mass and
damping of the ship was neglected. Since hydrodynamic added mass and damping depend
strongly on the frequency of the motion (Newman, 1977; Molin, 2002; Faltinsen, 2005;
Bertram, 2012), this assumption is questionable.

The aim of this chapter is to investigate the interaction between a ship and a kite. Con-
sequently a segregated coupling approach is compared to a monolithic coupling approach
between the ship model (cf. Chap.6) and the kite model (cf. Chap.3). The term monolithic
approach refers to the semantic developed in (Markert, 2010; Lewis et al., 1984) where the
two interacting models are solved simultaneously in time with the same numerical scheme
of integration. The monolithic approach solves the coupled system. By contrast, the segre-
gated approach solves the motions of the whole system assuming that ship motions have no
in�uence on the kite �ight, consequently the kite �ight is calculated considering only the
mean tether attachment point velocity.

Section9.2presents the two coupling methods, the segregated approach and the monolithic
approach. Section9.3 presents the case of study. Sections9.4 and9.5 investigate respec-
tively through a calm water case and a regular beam wave case, the coupling between ship
and kite. The in�uence of the kite excitation frequencies is investigated with different tether
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lengths and constant angular amplitudes of trajectory. In these sections Results are pre-
sented analyzed and discussed. A general discussion about methods and results is �nally
provided in Section9.7.

9.2. Coupling methods

The tether tension induces motions to the ship. The expression of generalized kite force
acting on the ship is expressed as follows:

F k =
h

T (s)
k OSA (s) � T (s)

k

i T
(9.1)

In addition, according to the zero-mass kite model (cf. Chap.3 and Eq. (3.5)), the ship
motions can modify the kite �ight and the tether tension through the relative wind speed at
the kite altitude with respect to the tether attachment pointA:
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�
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�
k(n )

z

�
� Ua (9.2)

Two coupling approaches are investigated: a monolithic and a segregated approaches. The
monolithic approach takes into account all the coupling terms between kite and ship models.
As for the considered segregated approach, it assumes a prede�ned kite force and then
solves ship equations of motion separately.

9.2.1. A monolithic approach

The whole system of equations ruling the motion of a ship towed by kite are obtained with
Eqns. (6.27) and3.1as follows:
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Equation (9.3) includes 3 scalar equations for the kite. With the monolithic approach, the
fully coupled system between ship and kite motions is solved. This monolithic system of
differential equations is numerically integrated with the 4th order Runge-Kutta scheme with
�xed time step.
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9.2.2. A segregated approach

By contrast to the monolithic approach, the segregated approach considers only the mean
tether attachment point velocity on the ship. Ship motions are computed by applying the
time series of the kite towing force as an external force. Thus, ship equations of motion can
be expressed as follows:
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whereF
0

denotes external forces such as rudder, propeller and windage forces only and
does not include the kite force applied as a time seriesF k (t).

This segregated approach could be very practical to study the motions of ship towed by kite.
Even if here, this approach is performed into the time domain, the segregated approach can
be performed into the frequency domain by applying the kite excitation spectrum directly
in Eq. (6.1). The validity of such an approach for the ship and kite system in comparison
with the monolithic approach must however be assessed.

9.3. Case of study

In order to simplify the analysis, only vertical ship motions (heave, roll and pitch) of the
DTMB 5512 at full scale are considered here. The analysis is focused on the roll motion.
Thus, in the scope to observe signi�cant roll motion, a true wind angle� tw = 90° is chosen.
A true wind speed of referenceUref = 10 m.s-1 at the altitudez(n )

ref = 10 m corresponding to
the high range of a fresh breeze from the Beaufort scale is considered. The wind gradient
parameter used here isnv = 1=7. The ship speed is set toUh = 7.5 m.s-1 since it corresponds
to a common sailing speed condition of the world merchant ship �eet (Smith et al., 2014).
A kite with an area ofAk = 500 m2 and with the aerodynamic specs determined in Eq. (8.9)
is used. The tether attachmentpointA is 7.9 m above the water line.

The kite �ight trajectory corresponds to a Lissajous trajectory as de�ned in Sec.3.4.2.
The amplitudes of the trajectory are arbitrarily set to� � 8 = 20° and � � 8 = 8°. The
critical radius of curvature of this trajectory is given byL t � � 8. Keeping a constant angular
trajectory size and varying the tether length, the in�uence of the kite excitation frequency
can be studied. Tether lengths between 360 m and 1000 m are investigated.

The center of the trajectory[� 8; � 8] and the angle of the trajectory� 8 around the axisC8A
are determined by the optimization of the longitudinal kite towing force with a code similar
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to the one used byLeloup et al.(2016). Figure9.1 (a), (b) and (c) show respectively the
evolution of� 8, � 8 and� 8 with the tether length for the sailing condition mentioned before
in this section.
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Figure 9.1.: Kite �ight trajectory parameter versus tether length. (a): Trajectory angle� 8;
(b) Azimuth of the center of the trajectory; (c): Elevation of the center of the
trajectory.

A calm water case and three regular beam wave cases of2:5 m high consistent with a fresh
breeze are considered. Three wave frequencies investigated aref 0:4; 0:56; 0:8g rad.s-1.
The0:56 rad.s-1 wave frequency corresponds to the natural roll ship frequency.

For all following results, the simulation time is 1640 s with a time step of 0.3 s. Results
are mainly studied into the frequency domain. Consequently, in order to correctly represent
power spectrum results, the Fast Fourier Transform (FFT) is performed with a signal zero-
padded 5 times longer than the initial data. In order to avoid the representation of the
sine cardinal due to this numerical method, the signal is �ltered with an Hamming window
(Hamming, 1989).

9.4. Calm water case

9.4.1. Kite excitation spectrum

Figure9.2 (a) and (b) respectively show the time series and the spectrum of the kite roll
excitation moment obtained with the segregated approach for a tether lengthL t = 500
m. Only the varying part of the kite excitation is taken into account to compute the kite
excitation spectrum.
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Figure 9.2.: With a tether lengthL t = 500 m; (a): spectrum of the kite excitation moment
around the longitudinal ship axisxs; (b): Time history of the kite excitation
moment around the longitudinal ship axisxs over the last loop.

With the segregated approach, the kite �ight is not modi�ed by the ship motions. It can
be noticed in Fig.9.2 (a) that the roll excitation moment is mainly composed of several
harmonics. For convenience, harmonics are denoted! ki wherei is a positive integer. Only
the �rst, the second and the fourth harmonics are signi�cant. The whole spectrum is not
represented but harmonics at higher frequencies are not signi�cant. The second and the
fourth harmonics are the most powerful ones. The second harmonics appears to be the most
critical for the ship motions due to its proximity with the natural roll ship frequency.

9.4.2. Comparison of the segregated approach with the monolithic approach

Figure 9.3 shows the evolution of the roll amplitude (a), of the �rst kite excitation har-
monic frequency (b), and of the amplitude kite moment of excitation (c) with respect to the
tether length. Three methods are compared: the segregated approach in dashed-dotted line
and the two monolithic approaches with the kite trajectories de�ned in~rw ra and inrw ra

respectively in solid and dashed lines.

As expected, the �rst kite excitation harmonic! k1 decreases with the tether length since the
angular amplitude of the Lissajous trajectories is kept constant. No major difference can be
noticed between the three approaches in terms of harmonics frequencies.
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Figure 9.3.: (a) Amplitude of the ship roll motion, (b) �rst kite harmonic frequency and (c)
amplitude of the kite moment of excitation for different tether lengths from 360
m to 990 m by step length of 10 m in calm water.

The roll amplitude� � s and the amplitude of the kite roll moment� K k predicted by the
segregated are higher than those predicted by the two monolithic approaches. The two
trajectory de�nitions in ~rw ra andrw ra give almost the same results both in terms of roll
amplitude and kite roll moment amplitude.

For all the approaches presented, the evolution of the roll amplitude is similar. The kite
moment amplitude increases quasi linearly with the tether length. Three ruptures can be
observed on the evolution the kite moment amplitude. These ruptures correspond to the
evolution of the trajectory with the tether length as shown in Fig.9.1.

Due to the wind gradient, the longer the tether is, the larger the kite roll moment is. This
raise in terms of the kite roll moment explains the continuous raise in terms of roll ampli-
tude. However, two important slope variations can be noticed betweenL t = 360 m and
L t = 500 m and aroundL t = 790 m which do not correspond to any particular event in
the kite roll moment curve. In fact, these two increases are due to the proximity of the two
most powerful kite roll excitation harmonics from the natural roll ship frequency. Indeed,
for L t = 440 m the second harmonic frequency is almost equal to the natural roll frequency
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of the ship. And forL t = 790 m, the fourth harmonic frequency approaches the natural roll
ship frequency.

In case of a slower true wind speed, the increase of the kite roll moment with the tether
length would be less signi�cant. In such a case, it could be observed a maximum of roll
amplitude for tether length corresponding to a match between a kite harmonic frequency
and the natural roll frequency of the ship.

According to these results, in calm water, the segregated apporach and the monolithic ap-
proaches lead to versy similar results. However, the segregated approach is slightly conser-
vative in comparison to the monolithic approache.

9.5. Regular beam wave case

To investigate a case closer to a real ocean environment, the in�uence of regular beam waves
is studied. The wave considered is 2.5 m high at frequencies of! w of 0.4 rad.s-1, 0.56
rad.s-1 and 0.8 rad.s-1. As for the calm water case, the frequency domain of kite excitation
is scanned with different tether lengths ranging fromL t = 360 m to L t = 990 m with a
tether length step of 10 m.

9.5.1. Comparison between the trajectory de�nitions in ~rw ra and rw ra

As outlined at the end of section3.4.2, the de�nition of the kite trajectory with respect
to the relative wind basisrw ra may represent an issue. The trajectory de�nition in~rw ra

takes only horizontal components of the tether attachment point velocity into account. The
previous case of study in calm water did not highlight any major difference between the
trajectory de�ned in ~rw ra and the trajectory de�ned inrw ra . Indeed, in calm water the
vertical amplitude of the ship motions is not signi�cant. Nevertheless, in case of regular
beam wave of 2.5 m high, the effects of the vertical ship motion on the trajectory de�nition
is more important.

Figure9.4 shows the trajectory de�ned in~rw ra in solid line and the trajectory de�ned in
rw ra in dashed line with respect to then frame. A very clear difference of trajectory shape
can be noticed between the two de�nitions. The local minimums of the radius of curvature
along the trajectory de�ned inrw ra are much smaller than those along the trajectory de�ned
in ~rw ra .

Performing such a sharp trajectory represents no dif�culty since the kite yaw motion is
imposed. However, a real kite may be not able to perform such a trajectory with short radius
of curvature. Therefore, a particular attention must be paid to the trajectory de�nition for
the design of a kite auto-pilot dedicated to the towing of ship, as it has to be realistic. In the
rest of the study, all the trajectories will be de�ned in~rw ra .
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