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Résumé : Avec l’augmentation constante du nombre

de capteurs embarqués dans les avions et le

développement de liaisons de données fiables entre

l’avion et le sol, il devient possible d’améliorer la

sécurité et la fiabilité des systèmes aéronautiques à

l’aide de techniques de maintenance prédictive en

temps réel. Cependant, aucune solution architectu-

rale actuelle ne peut s’accommoder des contraintes

existantes en terme de faiblesse relative des moyens

de calcul embarqués et de coût des liaisons de

données.

Notre objectif est de proposer un algorithme réparti de

prédiction de pannes qui pourra être exécuté en pa-

rallèle à bord d’un avion et dans une station au sol et

qui fournira des prédictions de panne à bord en quasi-

temps réel tout en respectant un budget de communi-

cation. Dans cette approche, la station au sol dispose

de ressources de calcul importantes ainsi que de

données historiques et l’avion dispose de ressources

de calcul limitées et des données de vol récentes.

Dans cette thèse, nous étudions les spécificités

des données aéronautiques, les méthodes déjà

développées pour prédire les pannes qui y sont as-

sociées et nous proposons une solution au problème

posé. Nos contributions sont détaillées en trois parties

principales.

Premièrement, nous étudions le problème de la

prédiction d’événement rare, conséquence de la

haute fiabilité des systèmes aéronautiques. En ef-

fet, de nombreuses méthodes d’apprentissage et

de classification reposent sur des jeux de données

équilibrés. Plusieurs approchent existent cependant

pour corriger les déséquilibres d’un jeu de données.

Nous étudions leurs performances sur des jeux de

données extrêmement déséquilibrés et démontrons

que la plupart sont inefficaces à ce niveau de

déséquilibre.

Deuxièmement, nous étudions le problème de l’ana-

lyse de journaux d’événements textuels. De nom-

breux systèmes aéronautiques ne produisent pas

des données numériques faciles à manipuler mais

des messages textuels. Nous nous intéressons aux

méthodes existantes basées des scripts ou sur l’ap-

prentissage profond pour convertir des messages tex-

tuels en entrées utilisables par des algorithmes d’ap-

prentissage et de classification. Nous proposons en-

suite notre propre méthode basée sur le traitement du

langage naturel et montrons que ses performances

dépassent celles des autres approches sur un banc

d’essai public.

Enfin, nous proposons une solution d’apprentissage

réparti pour la maintenance prédictive en mettant au

point un algorithme s’appuyant sur les paradigmes

existants de l’apprentissage actif et de l’apprentissage

fédéré. Nous détaillons le fonctionnement de notre

algorithme, son implémentation et démontrons que

ses performances sont comparables avec celles des

meilleures techniques non réparties.
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Chapter 1

Introduction

Contents

1.1 General context and problem statement . . . . . . . . . . . . . . . . 1

1.2 Definition of general and industrial concepts . . . . . . . . . . . . . . 3

1.2.1 Characterization of aeronautical systems . . . . . . . . . . . . . 3

1.2.2 Predictive maintenance . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Presentation of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

This chapter presents the problematic of the thesis, offers a definition of the general and
industrial concepts and details the roadmap that was followed for the completion of the thesis.

Section1.1 details the general context of the thesis and the problematic it is meant to address.
The next section 1.2 starts with a characterization of aeronautical systems with a focus on

the specificities that justify the need to study them separately from other industrial systems.
Then, an explanation of the concept of predictive maintenance for industrial systems and the
reason why Machine Learning is considered particularly promising to achieve it are given.

Finally, by cross-examining the problematic of the thesis, the specificities of aeronautical
systems and the contributions of Machine Learning, the essential steps of the thesis are identi-
fied and the contribution roadmap formalised in section 1.3.

1.1 General context and problem statement

The goal of this thesis is to propose a real-time predictive maintenance system adapted to the
specific challenges of aeronautical systems. The corporation Safran, of which my hosting com-
pany TriaGnoSys is a subsidiary, is an aeronautical equipment supplier and , in this capacity,
has many integrated sensors deployed in a variety of aircraft. The measurements made by the
sensors during the flight are collected and stored after the flight. Currently, they are usually

1



Chapter 1. Introduction

analysed by an operator if and only if an anomaly is detected.
In order to improve the reliability of our equipments and to reduce maintenance costs, it would
be preferable to make use of those measurements to predict anomalies before they happen. Sev-
eral aeronautical constructors such as Airbus and Boeing have already adopted this approach by
using Machine Learning in order to deal with the vast amounts of data but in a strictly offline
manner, that is to say that they make use of their data only after landing. Some specificities
of aeronautical systems, detailed in the next section, already need to be addressed at this stage.
This application is not trivial and though predictive maintenance models for aeronautical sys-
tems already exist, the detail of their implementation is not publicly available.
To extend this work further, the goal of this thesis is to set a predictive maintenance model for
aeronautical systems that can operate during the flight. This would increase the security and
reliability of aeronautical systems and improve the organization of the maintenance operations
after landing. The main difference imposed by this goal concerns the computation resources.
Offline models can use as many computation servers as necessary in the very favourable context
of a data center whereas a model used in flight must use the on-board resources and follow a
number of constraints to be allowed on board. Those constraints are imposed by aeronautical
certification agencies and include, among others, fault tolerance, high reliability and isolation
with regards to other on-board software in case of malfunction.
The solution to those limitations that is investigated in this thesis is the use of a data link be-
tween the aircraft and the ground. Indeed, it is becoming the norm for commercial flights to
offer connectivity with the Internet and it is one of the services in which the hosting company
is specialised in. This connectivity can be achieved in different ways with different kind of
satellite connections or through direct air-to-ground communication. Figure 1.1 presents a sim-
plified representation of the systems involved.
The issue that remains is that, no matter what connectivity solution is used, compared to ground
connections, the data link between the aircraft and the ground is always financially more ex-
pensive, has a very limited bandwidth and a limited availability. Therefore, transmitting all
the measurements made by the on-board sensors to the ground following a cloud computing
paradigm is not realistic. As such, some computations have to take place on-board to transmit
only relevant data. The core of this thesis is to determine an ensemble of two learning models,
one on board and the other on the ground that can collaborate on the anomaly prediction prob-
lem and a software architecture able to support them in order to produce accurate estimates of
anomaly risks on board without saturating the data link.

2





Chapter 1. Introduction

more important a system is to the safety of the aircraft, the higher the requirements will be. The
exact steps needed to certify an aeronautical system will therefore vary slightly from one system
to another and are outside the scope of this thesis however there are enough similarities in the
certification process to lead to similarities in the aeronautical systems and that is of interest for
this work.

• The first and most obvious requirement, characteristic of aeronautical systems, is their
high reliability. Reliability in this case is defined as 1 − probability of failure over a
period of time. Mean Time Before Failure (MTBF) is often used as a way to express the
expected lifetime of an aeronautical system based on its reliability.

• A second specificity of aeronautical systems induced by the certification process is the
need to closely monitor their performances of aeronautical system and ensure the conser-
vation of the data obtained through this monitoring. This is required in order to demon-
strate that the aeronautical system meets the certification specifications.

• A third specificity of aeronautical systems is the difficulty to change them. The certifi-
cation process is costly, both financially and in terms of time, and introducing changes
to a system during the process creates additional costs. Similarly, an update to a previ-
ously qualified system also has to go through a certification process, though simpler than
the process for a new system. Because of this, there is a considerable delay between the
design of an aeronautical system and its actual implementation in the field.

• Lastly, though desirable, the goal of perfect isolation of aeronautical systems from each
other is, by design, impossible to achieve as they are co-located with every other on-
board system and have to share resources such as power supply. Aeronautical systems
are always interdependent at some level.

1.2.2 Predictive maintenance

As explained in the problem statement, the goal of this thesis is to achieve a better predictive
maintenance for aeronautical systems. Predictive maintenance is a popular topic for industrial
applications as a way to increase reliability and reduce costs and waste. Its principle is to
monitor the condition of the system to maintain in order to repair or replace it just in time
before it fails. There are two other approaches to maintenance.

The first one, corrective maintenance, replaces a system after it has started malfunctioning.
It has the advantage of minimizing the number of required maintenance operations but does
not allow for the planning of those operations and, in the case of interdependent systems, for
example in an assembly line, the consequences of a dysfunction can have an impact beyond the
system to maintain that might not be acceptable, like a complete halt of production in the case
of the assembly line.

4



1.2. Definition of general and industrial concepts

The second approach, called preventative maintenance, replaces and repairs systems in a
scheduled manner based on statistics of their reliability. This approach is favoured for criti-
cal systems where the consequences of a failure are considered unacceptable such as medical
systems or for systems where the cost of a planned maintenance is significantly lower than an
unplanned one. For the example of an assembly line, making a planned maintenance when the
line is not being operated for example. The preventative approach however leads to the repair
and replacement of systems that are still in working condition which implies that too many
maintenance operations are taking place and that there is a waste of spare parts. It is also possi-
ble that failures happen before the scheduled maintenance as the condition of the system is not
actively monitored so the number of unplanned maintenance operations is reduced but is not
zero.

In contrast, the predictive maintenance approach aims at replacing parts only when it is ne-
cessary like in the corrective approach but without letting the system fail like in the preventative
approach by modelling its behaviour based on monitoring data. When perfect accuracy is not
possible, it is also often possible depending on the model used to balance the sensitivity of the
prediction with regards to the relative cost of planned versus unplanned maintenance. It has the
downside of requiring the implementation of sensors to monitor the equipment. The table 1.1
summarizes the strengths and drawbacks of the three maintenance approaches identified.

Maintenance approach # of maintenance operations impact on operations complexity
Corrective + − ++
Preventative − + +
Predictive ++ ++ −

Table 1.1: Summary of maintenance paradigms

Predictive maintenance is therefore very desirable and, in theory, superior to the other ap-
proaches when sensors are easily implementable. It is also however technically more complex
as it relies on a failure prediction model that is potentially difficult to obtain whereas corrective
maintenance only requires to detect the malfunction and preventative relies on the system life
expectancy. The failure prediction model can be obtained from a formal analysis of the system
by a domain expert in the order to determine what can be deduced about the state of the system
from the monitored parameters. However, when studying the interactions of multiple inter-
dependent systems, the complexity of a formal analysis quickly becomes intractable with the
number of potential cross-system interactions. Such an approach can still be undertook at con-
siderable costs for extremely critical applications to ensure, for example, the safety of nuclear
power plant installations but such endeavours are not possible for every industrial system.

Even though formal analysis are not always possible, there is another approach that consists
in studying statistical correlations between the system failure events and the monitored param-
eters. Until recently, this approach required considerable computation resources to achieve
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acceptable levels of accuracy on complex systems. With the latest advances in Machine Learn-
ing applications, it is however becoming increasingly simple to sift through amounts of data
that would have been considered intractable a decade earlier.

1.3 Presentation of the thesis

In the two previous sections, we have identified the goal of the thesis, the specificities of the
aeronautical application field and the most suitable approach to create the failure prediction
model. Based on this, we identify the problems that this thesis needs to address in order to
reach a conclusion and structure it around these problems.

A natural first step as a preamble to this work is to present the background that it is necessary
to follow the contributions presented therein. As such, chapter 2 contains a synthetic overview
of the state of the art of the domain.

Then, the first problem that we identify is tied to the fact that aeronautical systems are
reliable. While obviously being a desirable trait for any industrial system, it also carries the
implication that there are few examples of failure to observe. That is a problem from a Machine
Learning perspective because for the statistical model to be accurate, it requires as many exam-
ples of failures as possible. If the failures are too rare, it will be difficult to generalize correctly
the model from the observations. A simple example and a common situation for aeronautical
systems such as engines or navigation sensors would be a critical system that only had a single
failure in several years of operation. Because of the criticality of the system, a failure predic-
tion model as accurate as possible is desired but since there is only a single known example
of failure it is not possibly to obtain a statistically conclusive result. A second aspect of this
problem is the balance aspect. Many Machine Learning classification algorithms are designed
to learn from a balanced dataset, that is to say a dataset where the classes to discriminate are
in equal proportions. For aeronautical systems, because of the scarcity of failures, this ratio
can typically be in the range of 1:100, 000. A first step in the thesis is therefore to understand
the extent of this problem and study which methods or combination of methods from Machine
Learning can operate on aeronautical systems in this situation of rare events prediction. We do
so in chapter 3. The results of this contribution have been published in the proceedings of the
16th IEEE International Conference on Machine Learning and Applications (ICMLA 2017) as
"Predictive models of hard drive failures based on operational data" by Aussel, N., Jaulin, S.,
Gandon, G., Petetin, Y., Fazli, E. and Chabridon, S. [Aussel et al., 2017].

The second problem that we need to acknowledge is that because of the costs, financial and
in terms of time, associated with updating aeronautical systems it is not reasonable to make
changes necessary for them in order to enable the work of this thesis. To put it in another way,
we cannot decide which parameters to monitor for the failure prediction model. We have to use
the parameters that are already monitored. Otherwise the delay in the update process and the
time needed to gather a sufficiently large sample that contain multiple failures would widely
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exceed the duration of the thesis. Nevertheless a positive aspect is that aeronautical systems are
already closely monitored so there is already data to work with but the data collection process
cannot be changed. A second important step in the thesis is therefore to study how to adapt
Machine Learning method to the pre-existing data format. We conduct this study and propose
our own approach in chapter 4. The results of this contribution have been published in the pro-
ceedings of the 26th IEEE International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS 2018) as "Improving Performances of
Log Mining for Anomaly Prediction Through NLP-Based Log Parsing" by Aussel, N., Petetin,
Y. and Chabridon, S. [Aussel et al., 2018].

Finally the last problem to address in the thesis is the distributed learning between the air-
craft and the ground station. Here the contribution is a new algorithm that can be run in parallel
on one host with real-time data sources and limited computational power, the aircraft, and an-
other host with high computational power but no access to recent data, the ground station. The
requirements of the algorithm are to be able to run with a limited communication budget and to
offer guarantees on the accuracy of its decision on the aircraft side. This is done in chapter 5.
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2.1 Introduction

In this chapter, we present a synthetic review of related work. This review is organised by
themes in three sections. The first one focuses on the current state-of-the-art in terms of pre-
dictive maintenance distinguishing frameworks and methods applicable in a generic industrial
context and in an aeronautical context. We will rely on it to determine what are the best practices
and useful metrics used in this field to measure our results.

Then an overview of Machine Learning fundamentals is given. Machine Learning is used
in this thesis to determine the statistical model that enables anomaly detection so we provide
a definition of Machine Learning and we detail the standard methods used to build a Machine
Learning pipeline step-by-step from data pre-processing to post-processing.

Finally, we review the current state-of-the-art in the matter of Distributed Learning. This is
necessary to set the context of the solution to propose to the thesis problem statement.

2.2 Predictive maintenance of industrial systems

2.2.1 General case

Predictive maintenance is about monitoring the state of a system to trigger maintenance just in
time in order to maximize maintenance efficiency. A good introduction to the field of predictive
maintenance can be found in [Mobley, 2002] with an explanation of predictive maintenance the-
ory, its financial and organisational aspects, concrete examples focused on industrial machinery
and guidelines on how to set up and sustain a predictive maintenance program.

There are plenty of studies about predictive maintenance focusing on its organisational or lo-
gistics aspects such as [Shafiee, 2015]. They are essential to ensure that the changes induced on
the maintenance policy actually translates into a net measurable improvement for the operator
of the system or, to put it in another way, how the failure predicted by the model can be trans-
lated into a concrete business process and how the efficiency of this process can be measured.
For this, aspects like cost of unplanned versus planned maintenance need to be considered as
well as location and availability of spare parts and maintenance personnel and associated costs.
A notable study, [Horenbeek and Pintelon, 2013], focuses on the interaction of monitored com-
ponents and how optimizing the cost of the maintenance policy of the whole system is not as
simple as optimizing the maintenance policy at component level. This study models a stochastic
dependence between components to show that the degradation of a component and its failure
has an impact on other components with possible cascading effects of primary failure of a com-
ponent inducing secondary failures of other components. It also introduces a structural and
economic dependence to model the fact that simultaneous maintenance of several components
at once is cheaper than individual of each component one by one. Nevertheless, since the focus
of this thesis is on the production of the failure prediction model, the organisational and logistics
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aspects are not explored further here and are left for future work.

There is also plenty of work focusing on the technical implementation of predictive main-
tenance, that is to say how to get from the observations from the sensors monitoring the system
to the failure prediction model. Multiple approaches to this problem exist. In [Hashemian,
2011], the authors propose a review of the state-of-the-art techniques available in 2011 with a
particular focus on industrial plants, the type of sensors that are available for various systems
and the effect on the observations for various types of anomaly. In general there are two dif-
ferent ways to establish a failure prediction model based on observations. The so called model
based approach starts from a theoretical physical model of the system to determine what would
observations indicative of an imminent failure look like or the statistical approach which starts
from a history of observations to try to infer a failure prediction model.

A good example of predictive maintenance based on a physical model can be found in [Maz-
zoletti et al., 2017]. This study leverages expert knowledge about the system it examines, here
a permanent magnet synchronous machine, to build an analytical theory of how a malfunction
may impact sensor measurements and then validates experimentally the theory. This approach
has been historically adopted in many other predictive maintenance studies such as [Bansal
et al., 2004] or [Byington et al., 2002]. However the more complex the system the more diffi-
cult it is to apply this approach. In the case of interdependent systems, which, as we have seen,
aeronautical systems generally are, building an exhaustive analytical theory would require ex-
perts for every system involved as well as experts in the interaction of those systems making it
impossible to scale this approach to, for example, an entire aircraft.

The other approach to failure prediction for predictive maintenance that has been gaining in
popularity lately is the statistical approach found for example in [Li et al., 2014a] and [Ullah
et al., 2017]. The goal of this approach is to find correlations between sensor measurements
and system failures and build the failure prediction model based on those without necessarily
resorting to the physical interpretation of the measurements. A very simple illustration would
be the following: let us assume that our system is equipped with a sensor SA measuring the
parameter A and let us assume that we found that when A < 5 the daily failure rate of our sys-
tem is 1% and when A > 5 the daily failure rate is 99%. Without knowing what A represents
or what unit it is expressed in, we can already intuitively propose a simple threshold rule for
failure prediction, when A > 5 predict failure and else predict non-failure. Of course, situa-
tions are rarely so clear cut and, even so, the next question to answer would be can we predict
when the threshold will be exceeded so there is an abundance of work on how to generate the
failure prediction model from the observations. In [Grall et al., 2002], a specific category of
system is studied, deteriorating systems, monitored by a sensor measurement characterized by
a stochastic increasing process and a failure threshold. A method is then proposed to identify
the parameters of the stochastic process from historical observations and to derive failure pre-
diction rules from them. This approach is very interesting as it foregoes the need for expert
knowledge of the system but as it still has analytical components there is still a difficulty in
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scaling it up when the number of sensor measurements increases or when we cannot make as-
sumptions a priori on their behaviour. The latest solution that has been found in that case is
to use a Machine Learning approach to automate the extraction of relevant features and rules
when there is a large volume of data available. [Li et al., 2014a] and [Ullah et al., 2017] provide
two recent examples of complex models, a Decision Tree and a Multi-layer Perceptron, learned
through Machine Learning techniques. We explain the principle of those techniques in the next
section 2.3 dedicated to Machine Learning fundamentals.

2.2.2 Aeronautical systems

The situation for machine learning techniques applied to aeronautics is quite complicated. There
is ample documentation of products being sold by aircraft manufacturers such as Boeing An-
alytX3 or Airbus Skywise4 but few details about them are public. Datasets are obviously not
publicly available and, even when a scientific publication exists, neither are the implemen-
tation of the algorithms used. An illustration of this can be found in [Burnaev et al., 2014]
and [Kemkemian et al., 2013].

It is also possible to find additional references in patents held by manufacturers but the level
of detail available is lower yet. The following patents [Song et al., 2012] and [Kipersztok et al.,
2015] illustrate that fact. It is also worth noting that the volume alone of patents held by the
aircraft manufacturers, more than 54.000 for Boeing alone as of 2019, makes it impossible to
conduct an exhaustive review.

For these reasons, despite the existing concrete applications of machine learning for pre-
dictive maintenance of aeronautical systems, it is still necessary to carefully study them in this
thesis.

A notable exception is the thesis recently made public [Korvesis, 2017]. Taking the slightly
different point of view of an aircraft manufacturer, it focuses on the issue of automation of Ma-
chine Learning for predictive maintenance processes while this thesis considers the problem of
software architecture and distributed execution. It is nevertheless worth noting that similar ob-
servations regarding the applicability of Machine Learning techniques to aeronautical systems
with regards to rare event predictions were reached concurrently in this thesis and in [Korvesis,
2017].

In the table 2.1, we summarize the contributions of the articles we discuss here for this
thesis.

3https://www.boeing.com/company/key-orgs/analytx/index.page
4https://www.airbus.com/aircraft/support-services/skywise.html
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Reference Comment
[Mobley, 2002] General introduction
[Shafiee, 2015] Logistics and process aspects
[Horenbeek and Pintelon, 2013] Multi-component complexity
[Hashemian, 2011] State-of-the-art for industrial plants; focus on sensors
[Mazzoletti et al., 2017] Predictive maintenance bqsed on physical models
[Bansal et al., 2004] Predictive maintenance bqsed on physical models
[Byington et al., 2002] Predictive maintenance bqsed on physical models
[Li et al., 2014a] Statistical approach with Decision Tree
[Ullah et al., 2017] Statistical approach with Multi-layer Perceptron
[Grall et al., 2002] Predictive maintenance for deteriorating system
[Burnaev et al., 2014] Aeronautical application; dataset not released
[Kemkemian et al., 2013] Aeronautical application; dataset not released
[Korvesis, 2017] Similar topic but focus on automation; datasets not released

Table 2.1: Summary of related work in predictive maintenance

2.3 Machine Learning fundamentals

This section is meant to give an overview of Machine Learning terminology and the techniques
that are discussed in this thesis. Machine Learning is a very active field of research at the
moment. For a more detailed introduction to the field from a statistical perspective, we rec-
ommend [Friedman et al., 2001]. To quote it, Machine Learning is about extracting knowledge
from data in order to create models that can perform tasks effectively. Unpacking that statement,
we can identify three points:

• Machine Learning is working from data. This means that the inputs are observations,
measurements, recordings with no assumption at this stage on their format. They can be
numerical or categorical, continuous or discrete, text files or video recordings. The only
thing that is certain is that we do not have access to a model to generate this data and have
to progress empirically towards it. This variety of inputs partially explains the variety of
learning methods that have been developed. A first difference that is usually made at this
stage is whether the data is labelled or not which, in this context, means that for a given
observation, we know the desired output. When the desired output is known, the data is
labelled and the learning is called supervised. When the desired output is not known, the
learning is called unsupervised. A hybrid situation where some of the data is labelled and
some is not is possible in which case the learning is called semi-supervised.

• The expected output is a model that performs a task. Once again, this formulation is very
generic and carries no assumption on the nature of the task. A generic denomination is
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often made depending on whether a categorical or a numerical output is expected. In
the first case, the model is called a classification model and in the second it is called a
regression model.

• There is an expectation of efficiency for the model. The question of performance metrics
is essential for a Machine Learning approach as it is necessary to guide the learning
process. A function called the loss function is used to determine how well the current
model fits the data.

The categories defined here are very broad and do not necessarily describes every method
available. For example, reinforcement learning is a popular sub-field of Machine Learning
interested in learning action policies using algorithms such as Q-learning [Watkins and Dayan,
1992] which is traditionally considered to be neither a classification nor a regression model.
Nevertheless these categories are part of the standard terminology in Machine Learning and are
a useful way to quickly describe the application range of a learning method.

Regarding the notations that we will use, roughly speaking, we have at our disposal a set
of multidimensional observations x ∈ R

d, (x1, x2, ..., xd). For example, x can represent the
data or a transformation of the data acquired by the sensors. For a given x, we associate a label
y ∈ R for a regression problem or {0, 1} for a binary classification problem with 0 coding for
no event and 1 for event. The objective consists in predicting the label y associated to a data x.

2.3.1 Logistic Regression

Logistic Regression (LR) [Friedman et al., 2001] is a method widely used for regression and
classification where predictions rely on the following logistic function:

φ(x) =
1

1 + exp−w0−
∑

d

i=1
wixi

(2.1)

In the regression case, φ(x) is interpreted as the estimate for y. In the classification case, φ(x)
is interpreted as the probability that y = 1 given x. Consequently, the objective is to estimate
Pr(y = 1|x) and so (w0, · · · , wd) from {(x1, y1), · · · , (xN , yN)}.

LR can be trained several methods such as Stochastic Gradient Descent or Limited mem-
ory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) [Bottou, 2010] depending on the
computing resources available. A known limitation of the LR model is that it works poorly with
time series, where the assumption that the observations {(x1, y1), · · · , (xN , yN)} are indepen-
dent is challenged.

2.3.2 Support Vector Machine

Support Vector Machine (SVM) is a technique that relies on finding the hyperplane that splits
the two classes to predict while maximizing the distance with the closest data points [Cortes
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and Vapnik, 1995]. With N the number of samples, xi the features of a sample, y its label and
~w the normal vector to the hyperplane considered, b the hyperplane offset and λ he soft-margin,
the SVM equation to minimize is:

f(~w, b) = λ‖~w‖2 +
1

N

N∑

i=1

max(0, 1− yi(w.xi − b)) (2.2)

It is worth noting that even if it was initially designed with separable data in mind, the equation
remains valid even when some points are on the wrong side of the decision boundary [Cortes
and Vapnik, 1995, Friedman et al., 2001] which means SVM is applicable even without the
assumption that the data is separable. SVM can also be trained online using, for example,
active learning techniques [Bordes et al., 2005].

2.3.3 Deep Neural Networks

Fully connected Deep Neural Networks (DNN) are popular architectures which aim at approx-
imating a complex unknown function f(x), where x ∈ R

n is an observation, by fθ(x) [Rosen-
blatt, 1957] [Negnevitsky, 2001]. θ consists of the parameters of the DNN, the bias vectors
b

(i) and the weight matrices W
(i) for all i, 1 ≤ i ≤ P , and fθ(x) is a sequential composi-

tion of linear functions built from the bias and from the weights, and of a non-linear activation
function g(.) (eg. the sigmoid g(z) = 1/(1 + exp(−z)) or the rectified linear unit (ReLu)
g(z) = max(0, z)) [Cybenko, 1989][LeCun et al., 2015].

Parameters θ = {b(i), W
(i)} are estimated from the back-propagation algorithm via a gra-

dient descent method based on the minimization of a cost function Lθ((x1, y1), · · · , (xN , yN))
deduced from a training dataset [Rumelhart et al., 1988].

However, when the objective is to classify high dimensional data such as colour images with
a large number of pixels, fully connected DNN are no longer adapted from a computational
point of view.

2.3.4 Convolutional neural networks

Convolutional Neural Networks (CNN) aim at dealing with the previous issue by taking into
account the spatial dependencies of the data [Albawi et al., 2017]. More precisely, data are now
represented by a 3-D matrix where the two first dimensions represent the height and the width
of the image while the depth represents the three colour channels (R,G,B).

Next, as fully connected DNN, CNN consists in building a function ftheta(x), where x ∈
R

d1 × R
d2 × R

d3 , by the sequential composition of the following elementary steps :

• a convolution step via the application of convolution filters on the current image. Each
filter is described by a matrix with appropriate dimensions;
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Figure 2.1: Example of a CNN architecture

• the application of an activation function g(.) such as the ReLu;

• a pooling step to reduce the dimension of the resulting image.

After the recursive application of these three steps, the output image is transformed into a vector
of Rn and is classified via a fully DNN described in the previous paragraph [Krizhevsky et al.,
2012]. A general CNN architecture is displayed in Fig. 2.3.4.

Again, the back-propagation algorithm estimates the parameters (weights and bias of the
final DNN and of the convolution matrices) of the CNN.

2.3.5 Decision Tree

Decision Tree (DT) [Breiman, 2017] is a supervised learning method that can be used for both
classification and regression. Its goal is to recusively create simple decision rules to infer the
value of the target. To do so, it determine each split as follow: given m the current node to split,
Qm the data available at that node, Nm the number of samples in Qm, θ the candidate split, nleft

and nright the amount of sample split respectively to the left and right of the node and H the
impurity function,

nleft

Nm

H(Qleft(θ)) +
nright

Nm

H(Qright(θ)) (2.3)

This step is repeated until Nm = 1, i.e. the split is pure, composed of a single class, or the
maximum depth is reached.
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2.3.6 Random Forest

Random Forest (RF) improves on DT by combining several decision trees each trained on boot-
strapped samples with different attributes. A process called bagging is used. Its principle is
that to train N trees, for each tree, a subset of the features and a subset of the observations are
sampled with replacement. New predictions are then made based on a vote among the different
decision trees [Criminisi et al., 2012].

2.3.7 Gradient Boosted Tree

Finally, Gradient Boosted Tree (GBT) is another ensemble technique based on decision trees.
Instead of training random trees like in RF, the training takes place in an iterative fashion
with the goal of trying to minimize a loss function using a gradient descent method [Crim-
inisi et al., 2012]. Example of log loss function characterized by the formula: 2×

∑N
i=1 log(1 +

exp(−2yiF (xi))) where N is the number of samples, xi and yi respectively the features and the
label of the sample i and F (xi) the predicted label for sample i. This function is minimized
through 10 steps of gradient descent.

2.4 Applied Machine Learning

In this section we take a more specific interest into three sub-fields of Machine Learning that
make use of the techniques described in section 2.3 to tackle specific challenges that are of use
to this thesis.

2.4.1 Distributed Learning

Many Machine Learning techniques such as DNNs are notorious for requiring large amount of
data to train effectively [Krizhevsky et al., 2012]. As a result, it is not unusual when employing
these techniques to have to consider the question of computational resource usage. An obvious
solution to reduce this usage would be to simply invest in a more powerful processing unit
but this solution is not always practical. Another way that can be investigated is to share the
computation load across multiple cores or multiple processing units.

The use of multiple cores to take advantage of the embarrassingly parallel nature of the
computations in DNNs, largely credited for the rise of deep learning methods in popularity, can
be found in the implementation of Machine Learning on Graphical Processing Units (GPUs). It
is sometimes called Parallel Learning and an example of a study on this can be found in [Sierra-
Canto et al., 2010]. We will not investigate this further as we are more specifically interested
in learning that happens between processing units in different hosts. The approach of using
sharing the computation load across multiple processing units is called distributed learning. It
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can take different shapes depending on how the processing units are allowed to communicate
with each other. [Peteiro-Barral and Guijarro-Berdiñas, 2013] is a survey of some of the work
done on this topic as of 2013.

Regarding the different characteristics of processing unit communications to take into ac-
count that are important to correctly frame the problem, several borrows from the field of dis-
tributed systems. We can mention:

• Centralized and decentralized learning: this question, very common in distributed sys-
tems, is about the roles of the hosts and whether one of them has a privileged role of
coordinator or master. A well-known example of a centralized learning method is the
parameter server for centralized asynchronous Stochastic Gradient Descent (SGD) de-
scribed in [Li et al., 2014c] for example. In this approach, a central server called the
parameter server distributes data and workload asynchronously to a group of workers
while maintaining a set of global parameters. After receiving updates from the work-
ers, the parameter server aggregate them and update the global model. An example of
work in centralized learning on an algorithm other than SGD can be found in [Zhang and
Kwok, 2014] where the method of Alternating Direction Method of Multipliers (ADMM)
is used to find a distributed consensus asynchronously by using partial barriers. In con-
trast, in decentralized learning, every host has the same role. In [Watcharapichat et al.,
2016], a variant of GD for Deep Learning is presented with the explicit goal of getting
rid of the parameter servers in order to remove potential performance bottlenecks. This
variant relies on exchanging partitions of the full gradient update called partial gradi-
ent exchanges. Another example of decentralized learning can be found in [Alpcan and
Bauckhage, 2009] where the authors propose a decentralized learning method for SVM
by decomposing the SVM classification problem into relaxed sub-problems.

• Data and model parallelism: as a flip side to distributed system bit-level parallelism and
task-level parallelism, the expression data parallelism and model parallelism are used.
They do, however, cover very similar concepts. Data parallelism expresses the idea that
the tasks between the hosts are shared by distributing the dataset between them while for
model parallelism operations are executed in parallel by the hosts on the same dataset.
They are illustrated in figure 2.4.1. A notable difference between model parallelism in
distributed learning and task parallelism in distributed systems is that model parallelism
does not necessarily imply that the operations are done on the same data. It is also worth
noting that data and model parallelisms are not mutually exclusive. In [Li et al., 2014c],
for example, the parameter server distributes both the data and the tasks between the
workers. This makes sense because fragments of a given dataset are assumed to represent
the same distribution and hence the results can be combined in the same model.

• Synchronous and asynchronous: the distinction between synchronous and asynchronous
communication in distributed learning is completely analogous to the one in distributed
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class imbalance (though with a much less drastic ratio). The most significant difference with
the prediction in aeronautical systems, beside the order of magnitude change in class imbalance
ratio, is that it is a decentralized algorithm with communication between hosts which is not a
realistic hypothesis for aircraft. Another problem that it does not address is the fact that the
performance of individual models is not controlled meaning that it is not lower bounded and
that there are no mechanisms to correct a potential drift of a local model. It makes sense in the
situation considered in [Valerio et al., 2017] but it is a requirement that needs to be addressed
in the aeronautical use case.

2.4.2 Active Learning

Another field of Machine Learning that we want to detail is Active Learning. Active Learning
is a field of semi-supervised learning where a third-party called an oracle can provide missing
labels on request. It is traditionally not considered a sub-field of Distributed Learning and is
applied in a very different context where data labelling requires the intervention of a human
operator that is both costly and slow and the goal is to provide a strategy to get the best model
accuracy under a fixed request budget. A summary of the principles of Active Learning from a
statistical perspective can be found in [Cohn et al., 1996]. From a practical perspective, active
learning has historically been used with success for use cases such as spam filtering [Georgala
et al., 2014], image classification [Joshi et al., 2009] or network intrusion detection [Li and
Guo, 2007]. Different approaches are available for Active Learning and a survey summarizing
them can be found in [Settles, 2009]. The most common approach for concrete applications
is called pool-based active learning and described in [Lewis and Gale, 1994]. The assumption
in this approach is that there is a large pool of unlabelled data and a smaller pool of labelled
data available. The labelled data is used to bootstrap a tentative model and a metrics to measure
the amount of information gain one can expect from a sample is defined. Some examples of
metrics can be a distance metrics between the sample and the decision boundary of the model,
the density of labelled data in the vicinity of the sample or the difference in the learned model
with regards to the possible labels. Once the metrics is defined, the unlabelled samples that
are expected to maximize the information gain are queried from the oracle then the tentative
model is updated and the process is repeated until the expected information gain falls below a
pre-defined threshold, meaning that no new label is expected to significantly change the model,
or the query budget is spent.

A recent example of active learning can be found in [Gal et al., 2017] where a pool based
approach is used on a dataset of skin lesion images with the goal to classify the images be-
tween benign or malign lesions (melanoma). The unlabelled images that are selected by the
active learning approach using the metrics BALD ([Houlsby et al., 2011]) are queried. In this
benchmark, the labels are known so they are simply disclosed but in a real world application a
dermatologist could be consulted.
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Another example of active learning relevant to this thesis can be found in [Miller et al.,
2014]. In the context of malware detection, the authors introduce the concept of adversarial
active learning. In this situation, the oracle is a human annotator that can be either a security
expert that is assumed to always provide the correct labels, a crowd-sourced non-expert that
is less expensive from a query perspective but that can make mistakes which are modelled as
noisy labels or an adversarial agent masquerading as a crowd-sourced non-expert that provides
the wrong labels. While an adversarial hypothesis is not directly applicable to our context, the
notion of having different oracles available that have different levels of reliability is relevant.

Finally, another approach to active learning in decision trees can be found in [De Rosa
and Cesa-Bianchi, 2017]. Here the approach is not pool-based but stream-based, that is to say
that the algorithm is receiving a stream of unlabelled samples and does not have access to the
complete pool which proscribes the greedy approach of evaluating every sample for information
gain and selecting the best. In this article, a decision tree is trained and when a new sample is
classified through it the confidence that is evaluated is not the confidence in the classification
of the sample but in the optimality of the model. To put it differently, when a new leaf is added
to the tree, the comparison is made between the ideal decision tree that could have been made
if the true distribution of the samples were known and the expected performance of the current
tree and, if the difference is found to exceed a certain threshold, labels are requested to minimize
to risk of selecting a sub-optimal split for the new leaf. The points that are the most relevant for
this thesis is that, by moving away from a greedy approach, we can ensure that the computation
cost remains manageable, making this algorithm suitable for an on-board implementation and
the notion of approaching the uncertainty in terms of bounded risks for the model to be sub-
optimal instead of considering sample misclassification makes it possible to directly manage
the trade-off between the communication budget and the quality of the model.

2.4.3 Federated Learning

A last sub-field of Distributed Learning that we would like to detail here is called Federated
Learning. This term was coined rather recently in [McMahan et al., 2016]. The first use case
described was the distributed learning of a centralized model for image classification and lan-
guage modelling on mobile devices. In this situation, several assumptions made on previous
works in distributed learning are not satisfied anymore. In particular, in this context, there is a
privacy concern with the data proscribing any transfer of raw data between the central server
and the clients, the data is massively distributed between a very large number of clients whose
availability may change suddenly and the data cannot be assumed Independent and Identically
Distributed (IID) between clients. Each one of these issues has already been studied individually
in Distributed Learning but they cumulatively make for a challenging problem. In [McMahan
et al., 2016], a solution to learn a DNN in this context is proposed. It uses iterative averaging
of synchronous SGD over a random subset of clients to update a central model that is then
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forwarded to the queried clients at each iteration.

Several publications are focused on improving different aspects of this method. In [Konečnỳ
et al., 2016], the communication efficiency is improved through several tricks like random
masks, update quantization and structured updates. In [Bonawitz et al., 2016], the focus is put
on establishing how to ensure that the data used by the client in an update cannot be deduced
from the update itself from the server-side by using a client-side differential privacy approach
with double masking. Conversely, [Geyer et al., 2017] also establishes how to mask whether a
client participated at all in a differential update.

In general, the constraints characterizing the federated learning approach are also applicable
to aircraft which are also numerous, with limited availability that can dynamically change and
with data that is not IID from one aircraft to another.

It is worth noting however that Federated Learning has been developped so far with DNN
applications in mind and, in particular, it is also compatible with SGD and not with DT based
approaches that do not rely on SGD.

In the table 2.2, we summarize the contributions of the articles we discuss here for this
thesis.

Reference Comment
[Peteiro-Barral and Guijarro-Berdiñas, 2013] Distributed Learning survey
[Sierra-Canto et al., 2010] Parallel but not distributed example
[Li et al., 2014c] Centralized learning example with asynchronous SGD
[Zhang and Kwok, 2014] Centralized learning example with ADMM
[Watcharapichat et al., 2016] Decentralized Learning example with GD
[Alpcan and Bauckhage, 2009] Decentralized Learning example with SVM
[Kubacki and Sosnowski, 2017] Synchronous Learning example, biocomputing
[Valerio et al., 2017] IoT communication-efficient Distributed Learning
[Cohn et al., 1996] Principles of Active Learning
[Settles, 2009] Active Learning survey
[Lewis and Gale, 1994] Pool-based Active Learning example
[De Rosa and Cesa-Bianchi, 2017] Stream-based Active Learning example
[Miller et al., 2014] Active Learning uncertain oracles at varying costs
[McMahan et al., 2016] Federated Learning original contribution
[Konečnỳ et al., 2016] Federated Learning communication efficiency
[Bonawitz et al., 2016] Federated Learning differential privacy

Table 2.2: Summary of related work in applied machine learning
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2.5 Conclusion

In this chapter, we have presented several works related to the problem of this thesis focusing
on Machine Learning fundamentals that will be useful for the next chapters and on state-of-the-
art contributions to the problem at hand. The state-of-the-art contributions provide interesting
clues to individually solve many of the problems we are faced with but none of the contributions
offer a global solution that would fit all the constraints of aeronautical systems. Starting from
this observation, we can further refine the questions that we address in the next chapters.

For rare event prediction in chapter 3, we have identified that most methods in applied
Machine Learning are not particularly concerned with class imbalance but are compatible with
multiple fundamental learning models and sampling methods. Therefore we will set out to
compare the performance of these learning models and sampling methods in situations of class
imbalance in order to determine which one would be the best choice to be at the core of the
applied Machine Learning method.

For chapter 4, dedicated to identifying the best way to adapt to the data format that is already
available and that is very often for aeronautical systems free form text, we are also looking for
pre-processing techniques that would not in theory depend on the applied framework. Thus,
the approach will be similar in trying to find the best methods without considerations such as
distributed execution at this stage.

For chapter 5, however, we have seen that existing methods, in particular in Federated Learn-
ing and Active Learning, already provide multiple relevant solutions but not to every problem
at the same time. Our approach will therefore be to figure out a new way to combine those
existing solutions in the same applied Machine Learning framework.
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In this chapter, we examine the applicability of different failure prediction techniques on
operational data. To do so, we consider a public dataset of hard drive data to use as a proxy for
confidential aeronautical data. We try to apply existing methods to this problem, observe that
their performances on operational data greatly differ from previous experiments and conclude
on the relevant techniques for rare event prediction.

3.1 Introduction

3.1.1 General problem

One of the characteristics distinguishing aeronautical systems is the high importance that is
given to their reliability as a way to ensure very high safety standards and minimize the cost of
maintenance. As a result, failures of aeronautical systems are extremely rare. This makes the
task of predicting them more difficult for two reasons.

First, being rare events, it is more difficult to collect a dataset that includes a number of
failures significant enough for statistical inference to be effective. In other words, if a given
system fails on average once per year of operation and is deployed on a fleet of 20 aircraft, in
order to collect a dataset containing at least 100 failures the data collection process should last
on average 5 years. Such a duration is not reasonable in most cases. In order to work around
that limitation, a practical solution is to work with artificially aged systems that are created by
submitting systems in a controlled environment to stressful constraints that are believed to lead
to precocious wear similar to that of older systems. For example, one could operate a system in
the presence of high vibrations, temperature or with an unusual workload in order to artificially
age it. However, this approach has been shown to introduce bias ([Pinheiro et al., 2007]) as the
failures of artificially aged systems do not exactly match those of operational systems. When-
ever it is possible, it is preferable to work with systems that are already extensively monitored
for which a significant volume of data is already available. Those systems are, fortunately, not
uncommon in aeronautics.

The second point making predictions difficult in that situation is that the ratio between fail-
ure samples, that is to say samples of a system that is about to fail, and healthy samples, from
normally operating systems, is heavily skewed in favour of the latter. This is potentially prob-
lematic for classification because many learning techniques such as Logistic Regression or De-
cision Tree operate best when the ratio between the two classes to predict is close to 1 ([Blagus
and Lusa, 2010]). However, if we take the example of a system failing once per year on average
again with a sampling rate, already pretty low, of 1 measure per hour we have on average about
8760 healthy sample for every failure sample for an imbalance ration in the range of 10−4. The
two general ways to approach this difficulty is to either use sampling techniques to correct the
imbalance by changing the sample population with the risk of introducing biases or by working
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with techniques that are more robust to imbalance.

Investigating these issues and more specifically the second point is necessary to design fail-
ure detection for aeronautical systems but given the confidential nature of industrial dataset and
to ensure the reproducibility of the results, the investigation was conducted on a public dataset
of another very reliable system, hard drive disks (HDDs).

3.1.2 Hard Drives

Hard drives are essential for data storage but they are one of the most frequently failing compo-
nents in modern data centres [Schroeder and Gibson, 2007], with consequences ranging from
temporary system unavailability to complete data loss. Many predictive models such as LR and
SVM, analysed in section 3.2, have already been proposed to mitigate hard drive failures but
failure prediction in real-world operational conditions remains an open issue. One reason is that
some failures might not be predictable in the first place, resulting, for example, from improper
handling happening occasionally even in an environment maintained by experts. However, this
alone cannot explain why the high performances of the failure prediction models that appear in
the literature have not mitigated the problem further. Therefore, the specificities of hard drives
need to be better taken into account.

First of all, the high reliability of a hard drive implies that failures have to be considered as
rare events which leads to two difficulties. The ideal application case of many learning methods
is obtained when the classes to predict are in equal proportions. Next, it is difficult to obtain
sufficient failure occurrences. Indeed, hard drive manufacturers themselves provide data on the
failure characteristics of their disks but it has been shown to be inaccurate (see e.g. [Schroeder
and Gibson, 2007], [Pinheiro et al., 2007]) and often based on extrapolating from the behaviour
of a small population in an accelerated life test environment. For this reason, it is important
to work with operational data collected over a large period of time to ensure that it contains
enough samples of hard drive failures.

Another challenge is that the Self-Monitoring, Analysis and Reporting Technology (SMART)
used to monitor hard drives is not completely standardized. Indeed, the measured set of at-
tributes and the details of SMART implementation are different for every hard drive manu-
facturer. From a machine learning point of view, there is no guarantee that a learning model
trained to predict the failures of a specific hard drive model will be able to accurately predict
the failures of another hard drive model. For this reason, in order to draw conclusions on hard
drive failure prediction in general, it is important to ensure that the proposed predictive models
are estimated from a variety of hard drive models from different manufacturers and also tested
on a variety of hard drive models. Until now, this constraint was not taken into account prop-
erly, probably because gathering a representative dataset has been a problem for many previous
studies, impairing the generality of their conclusions. We rather focus on the Backblaze public
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dataset5 consisting of several years worth of measurements on a large drive population oper-
ated in an expert-maintained environment. It has been made available recently, with the earliest
measurements done in 2013.

The objective of this contribution is to offer an insight as to why many previous studies are
not directly applicable when considering class imbalance, data heterogeneity and data volume
and next to adapt predictive models based on machine learning methods for pattern recognition
of hard drive failure prediction. We also compare the proposed models and discuss their per-
formances on the Backblaze dataset that includes hard drives from different manufacturers in
order to determine if they are robust to the differences in SMART parameters. The contribution
is organized as follows. In section 3.2, we review the state-of-the-art while paying a particular
attention to the datasets that were used. In section 3.3, we detail the new dataset that we use for
this study and the specific challenges associated with it. In section 3.4, we describe the different
machine learning techniques that we applied to the dataset, and we underline the different steps
of pre-processing, feature selection, sampling, learning and post-processing. In section 3.5,
we present and discuss our experimental results obtained with the three most relevant learning
models: SVM, RF and GBT. Finally, we end the contribution with a conclusion and we discuss
possible ways to extend this study.

3.2 Related Work

In this section, we will first describe the results obtained in the literature with a strong focus on
the numeric performances and then explain and comment them.

3.2.1 Previous studies

Several studies on the subject of hard drive failure prediction based on SMART data have al-
ready been carried out. In particular, [Murray et al., 2003], [Murray et al., 2005], [Zhao et al.,
2010] and [Wang et al., 2011] all used the same dataset. The models were tested on a dataset
of 369 hard drives of the same model with healthy drives and failed drives in equal proportions.
The data from healthy drives was collected in a controlled environment by the manufacturer.

In [Murray et al., 2003], several methods are proposed to build a prediction model: SVM,
unsupervised clustering, rank-sum test and reverse arrangements test. This study found the best
method among those tested to be the rank-sum test by detecting 24% of the failed drives while
maintaining a false alarm rate below 1%.

In [Murray et al., 2005], a subsequent study from the same authors, the best performances
were obtained with a SVM with a detection rate of 50.6% and a false alarm rate below 0.1%.

5https://www.backblaze.com/b2/hard-drive-test-data.html
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In [Zhao et al., 2010], hidden Markov models and hidden semi-Markov models are tested. The
best model reaches a detection rate of 52% and a false alarm rate below 0.1%.

In [Wang et al., 2011], a health monitoring method based on the Mahalanobis distance is
developed. It yields a detection rate of 67% while maintaining the false alarm rate below 0.1%
still.

In [Hamerly and Elkan, 2001], two Bayesian methods are tested, a Bayesian clustering
model based on expectation maximization and a supervised naive Bayes classifier. The dataset
used was collected from 1927 drives including 9 failed drives. The performances reached are
60% detection rate and a false alarm rate of 0.5%.

In [Zhu et al., 2013] and [Li et al., 2014b], a dataset comprising samples from 23, 395
drives operating in a data center is studied. Two different hard drives models from the same
manufacturer are used. The methods used are back-propagation recurrent neural networks,
SVM, classification and regression trees. The best results are obtained with classification trees
achieving over 95% detection with a false alarm rate of 0.09%.

In [Ma et al., 2015], a population of 1, 000, 000 drives is studied. 6 hard drive models are
considered. The method used is threshold-based classification with only 1 SMART parameter.
It reaches 70.1% recall and 4.5% false alarm rate. The dataset is unfortunately not publicly
available and neither are the precise models and the environmental conditions in which the
results are obtained making it difficult to comment or draw conclusions from these results.

3.2.2 Discussion

As we see, most previous studies were conducted on small datasets collected in a controlled
environment using manufacturer data. Moreover, [Schroeder and Gibson, 2007] and [Pinheiro
et al., 2007] have shown that manufacturer data on disk reliability is not accurate as it is rely-
ing on accelerated life tests and stress tests that appear to consistently underestimate the actual
disk failure rate. As such, hard drive failure prediction models trained on manufacturer data
have a high risk of being biased and cannot be relied on. Additionally, in [Murray et al., 2003]
manufacturer data on hard drives is mixed with data from hard drives returned by users. The
authors highlight in their paper the importance of understanding the induced limitations. How-
ever, given how often this dataset is used in other studies such as [Zhao et al., 2010] or [Wang
et al., 2011], it is preferable to rely on a dataset without such mixing.

The most notable exceptions to these issues are the studies [Zhu et al., 2013] and [Li et al.,
2014b]. Unfortunately the associated dataset used is not publicly available and is limited to two
drive models.

Very recently, some studies started to exploit the Backblaze dataset. [Botezatu et al., 2016]
considers a large subset of over 30, 000 drives from the Backblaze dataset to train several clas-
sifiers. However, the results (98% for the detection and 98% for the precision) are obtained on a
limited and different subset of filtered data. In the industry, [El-Shimi, 2017] shows promising
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results but the lack of implementation details prevents comparison.

Another limitation of previous studies is the choice of evaluation metrics which generally
coincide with the detection and false alarm rates. This is a relevant choice for balanced datasets
but, as operational datasets are extremely unbalanced in favour of healthy samples, even a low
false alarm rate in the range of 1% could translate into poor performances. Therefore, we rather
report precision and recall metrics.

In order to overcome these issues related to the dataset and to provide reproducible results,
we consider a large, operational and publicly available dataset from Backblaze, and compute the
precision and recall metrics, rather than detection and false alarm rates, on unfiltered samples.
This enables us to draw conclusions for operational data.

3.3 Dataset

As discussed in the previous section, choosing the right dataset is essential in order to draw
accurate conclusions on hard drive failure prediction. In this section, we provide details about
SMART parameters and how they can be interpreted and we describe the Backblaze dataset that
we work on.

3.3.1 SMART parameters

SMART is a monitoring system implemented in most hard drives that is meant to allow users to
anticipate hard drive failures by reporting the value of several indicators that are believed to be
representative of the health of the hard drive. Each SMART parameters reported shows up as
an ID, a normalized value ranging between 1 and 253 meant to indicate the health of the drive
with regards to the parameter as set by the manufacturer of the hard drive disk according to its
specifications and a raw value whose meaning depends on the implementation of the SMART
parameter but is usually associated with an event count or a physical measurement

It is important to note that this monitoring system has not been fully standardized resulting
in significant differences in implementation between hard drive manufacturers. As a result each
manufacturer is free to decide which SMART parameters should be monitored and how the
monitoring should be implemented. Details of their implementation are not disclosed meaning
there is no guarantee that SMART parameters from two different models or manufacturers have
the same meaning. Concretely, it follows that SMART parameters with the same ID from two
different hard drive models can actually represent slightly different phenomenons. It is also
possible for SMART parameters with different IDs from two different hard drive models to
represent the same phenomenon.
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3.3.2 Backblaze dataset

This work relies on operational data that the Backblaze company started to release at the end
of 2013. It gathers daily measurements of SMART parameters of each operational hard drive
disk of this company data centre. Updates to the dataset are provided quarterly. The fields of
the daily reports are composed as follows: the date of the report, the serial number of the drive,
the model of the drive, the capacity of the drive in bytes, a failure label that is at 0 as long as
the drive is healthy and that is set to 1 when the drive fails and finally the SMART parameters.
For the rest of the study, we focus on the data from January 2014 to December 2014 in order
to enable a comparison between prediction performances. Over this period, 80 fixed SMART
parameters are collected among those defined by the manufacturers. They include, for example,
counts of read errors, write faults, the temperature of the drive and its reallocated sectors count.
However, it should be noted that, as explained in the previous subsection, most drives do not
report every parameter resulting in many blank fields.

Finally, the dataset contains over 12 million samples from 47, 793 drives including 81 mod-
els from 5 manufacturers. Among those 12 million samples, only 2, 586 have their failure labels
set to 1 and the others are healthy samples, for an overall ratio of about 2 failure samples for
every 10, 000 healthy samples that is below 0.022%.

3.4 Data processing

We identify in this section a set of classification techniques that are best suited for an extremely
unbalanced training set and a loosely controlled environment in real operation as opposed to
laboratory experimentations. Considering the size of the dataset, we focus on classification
computations that can be distributed across several nodes.

3.4.1 Pre-processing

As noted in [Pinheiro et al., 2007], traditionally used outlier filtering techniques such as Ex-
treme Value Filtering are inadequate for SMART values of an operational set as it is difficult
to distinguish between exceptional values caused by a measurement artefact or by an anoma-
lous behaviour that may lead to a hard drive failure. A classical approach is to limit filtering to
obvious errors. In our case, this corresponds to physically impossible values such as power-on
hours exceeding 30 years. We filter on two SMART parameters, SMART 9, power-on hours,
and SMART 194, temperature. It turned out that this filtering is negligible and does not no-
ticeably impact the dataset with only 5 drives concerned, matching the observation in [Pinheiro
et al., 2007] that less than 0.1% of the hard drives are concerned.

Similarly to what is done in [Zhu et al., 2013], we define a time window for failure in the
following manner: after a drive fails, we relabel a posteriori the N previous samples from this
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particular drive as failures where N is the length of the time window in days. In other words,
with our classification model we try to answer the question "Is the hard drive going to fail in the
next N days?". This length will be optimized as a hyper parameter of the model to determine
its optimal value if it exists.

3.4.2 Feature selection

Not every SMART parameter is indicative of a failure. In [Pinheiro et al., 2007], a systematic
study of the predictive power of several SMART parameters such as temperature that were pre-
viously believed to be indicative of imminent failures shows that they are not useful predictors
on the population they study. Therefore, we can conclude that a subset of SMART parameters
have to be considered as noise for the purpose of failure prediction and thus the question of
feature selection is crucial in order to design an efficient failure prediction model. As such, we
consider different strategies for feature selection. We considered using Principal Component
Analysis (PCA) [Jolliffe, 2011] and Restricted Boltzmann Machines (RBM) [Hinton, 2002] in
order to identify the SMART parameters the most closely correlated with hard drive failures
however the results were consistently and significantly inferior to the other approaches so we
have chosen not to conduct a full study on them in order to minimize the computation time.

The other feature selection strategy that we consider is based on the pre-selection used in
related studies [Pinheiro et al., 2007, Zhu et al., 2013, Li et al., 2014b] of SMART parameters
highly correlated to failure events. With this scheme, we consider only the nine raw SMART
parameters number 5, 12, 187, 188, 189, 190, 198, 199 and 200. The description of those
SMART parameters is reported in 3.1.

SMART parameters Description
5 Reallocated Sector Count
12 Power Cycle Count
187 Reported Uncorrectable Errors
188 Command Timeout
189 High Fly Writes
190 Temperature Difference
198 Offline Uncorrectable Sector Count
199 UltraDMA CRC Errors Count
200 Multi-Zone Error Rate

Table 3.1: Description of SMART parameters

Finally, based on the fact that different hard drive manufacturers implement SMART pa-
rameters differently and do not necessarily implement the same SMART parameters in their
products, and based on the observation that the performances of feature selection strategies we
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tried are below the expectations set by other studies such as [Pinheiro et al., 2007, Zhu et al.,
2013, Li et al., 2014b], we emit an hypothesis. We postulate that even SMART parameters with
an overall low correlation to failure events that are discarded by most feature selection strategies
are still in fact important to create an accurate failure prediction model. Our interpretation is
that considering that hard drive failures are rare events and that multiple modes of failure can
be found across a large population of hard drives, it is possible for predictors of failure modes
with low prevalence to be distinct from predictors of failure modes with high prevalence while
the total number of failure across different low prevalence modes can be higher that the higher
prevalence failure mode. For example, assume the parameter X1 is a good predictor for the
failure F1 that represents 30% of all failures, the parameters X2, X3...X100 are good predictors
of failures F2, F3...F100 that each represents 0.5% of all failures and the remaining 20.5% of
failures cannot accurately be predicted by any parameter available. Most sensible feature se-
lection strategies will classify parameter X1 as relevant and discard parameters X2, X3...X100

as noise but accepting such a selection will discard important information and severely limit
the performances of the failure prediction model from a potential 79.5% of failures correctly
predicted to a mere 30%. It is important in that situation to preserve low information features.

We therefore take special interest in algorithms such as Random Forests that are not vulner-
able to noisy features and are, in fact, able to extract information from features with low cor-
relation with failure events. This also provides the additional benefit of not relying on sources
external to the dataset to select the features. When it is relevant, we thus use these algorithms
on the complete set of features.

3.4.3 Sampling techniques

In order to reduce the impact of the class imbalance issue on the learning algorithms, we inves-
tigate the use of sampling techniques. Given the extreme imbalance factor of the dataset, naive
oversampling and undersampling were excluded as potential sources of overfitting. In [Wallace
et al., 2011], they have been found to introduce statistical bias in populations with imbalance
factors in the order of 1/100. Given that the imbalance factor in our dataset is more than an
order of magnitude higher we do not investigate those techniques further. Contrary to [Botezatu
et al., 2016], we limit the application of sampling techniques to the same subset of data used for
training.

SMOTE (Synthetic Minority Oversampling TEchnique) aims at alleviating class imbalance
by generating additional training samples of the minority class through interpolation [Chawla
et al., 2002]. SMOTE first selects a random minority sample, then determines its k nearest
neighbours, selects one of them and places randomly on the segment between the two samples
a new artificial minority sample. This process is then repeated as many times as necessary
before reaching a pre-selected oversampling factor. By creating artificial instances distinct from
the existing minority samples, it partially avoids the overfitting problem observed with naive
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oversampling. It has been shown by [Chawla et al., 2002] to reliably improve classification
performances on a variety of benchmark datasets with imbalance ratio up to 1 for 50. However,
as acknowledged in the study, some datasets show much higher imbalance ratio. This is the case
of the Backblaze dataset with an imbalance ratio 100 times higher than the most imbalanced
dataset tested in [Chawla et al., 2002].

Another step to improve the training set is to filter a certain category of failure samples.
We observe that some failure samples share the exact same feature values as healthy samples
leading to the impossibility for any classifier based on those features to discriminate them. Thus,
filtering those hard-to-classify failure samples leads to a trade-off of a higher precision at the
expense of recall. Early results showed that the trade-off was not satisfactory with a loss of at
best more than 5% in recall for a gain of 1% in precision. Therefore we have chosen not to
conduct a full study of this method to minimize computation time.

3.4.4 Machine Learning algorithms

The theory of each Machine Learning algorithm described in this subsection are detailed in
chapter 2

All the parameters of the learning methods are optimized through grid-search.

Previous studies such as [Botezatu et al., 2016] have considered Logistic Regression for hard
drive failure prediction. We implemented it but results show a constant prediction in favour of
the majority class, which is understandable given the sensitivity of Logistic Regression to class
imbalance. Further work on sampling techniques is needed in order to use Logistic Regression
on the Backblaze dataset. We therefore focus our experimentations on solutions able to deal
with extreme class imbalance.

We more specifically investigate three approaches. The first is Support Vector Machine that
have been shown to produce good results in related studies such as [Zhu et al., 2013] and [Li
et al., 2014b]. However, given our additional requirement that the method we use need to
be compatible with distributed computing, we limited ourselves to the use of linear kernels
as distributed versions of non-linear kernels algorithms were not available. The learning took
place via 100 steps of stochastic gradient descent to ensure a reasonable computation time (see
table 3.2).

The second approach we use is the Random Forest. We set the number of decision trees at
50 with a maximum depth of 8 constructed with the Gini impurity metric.

Finally, we use Gradient boosted tree. The iterations are done with a log loss function
characterized by the formula: 2 ×

∑N
i=1 log(1 + exp(−2yiF (xi))) where N is the number of

samples, xi and yi respectively the features and the label of the sample i and F (xi) the predicted
label for sample i. This function is minimized through 10 steps of gradient descent.
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3.5 Experimental results

3.5.1 Post-processing

In order to ensure the accuracy of the results, two additional steps are taken. First, we perform
cross-validation through a customized stratified k-folding algorithm. The samples are first re-
grouped by HDD serial number so that the samples measured on one HDD are always in the
same fold. HDDs are then split between those that reported a failure during the study and those
that did not. The stratified k-sampling then takes place on the HDD level and not on the individ-
ual sample level in order to ensure that samples from a given HDD are always in the same fold.
For this study, the number of folds has been fixed to 3. On top of that, in order to account for
the optimization of the length of the time-window as an hyper-parameter of the models, every
measurement is rerun three times by selecting new sets of folds for the cross-validation and the
mean value is reported.

Two metrics are measured on the failed samples, precision and recall respectively defined
as the number of successfully predicted failures divided by the total number of predictions and
the number of failures successfully predicted divided by the total number of failures observed.
If we define the failure sample as positive and the healthy samples as negative we have:

precision =
true positive

true positive + false positive
(3.1)

recall =
true positive

true positive + false negative
(3.2)

Note that contrary to similar studies referenced in section 3.2, we decide to report precision
instead of false alarm rate: due to the high class imbalance, even a small false alarm rate could
translate into poor performances. Indeed, a misclassification of only 1% of the healthy samples
would result in 100 false alarms for every 10, 000 healthy samples, on average; since there are
only 2 failure samples for every 10, 000 healthy samples, it means that we have 50 false alarms
for every detected failure if we assume 100% recall on the failure samples, and consequently a
precision below 2%. Similarly, we can note that a constant prediction in favour of the majority
class would result in an accuracy of 99.98%.

3.5.2 Results and discussion

The performances in terms of precision and of recall are displayed in Fig. 3.1 (SVM), Fig. 3.2
(RF) and 3.3 (GBT) as a function of the time window length. The SMOTE sampling strategy is
then tested on the best performing model, RF with all features.

The experimental setup we use is a cluster of 3 computers running Apache Spark v2.1 using
a total of 24 cores. Due to the various size of the time window parameter, cross-validation and
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repetition of the tests, every technique is run a total of 180 times, not including the grid-search
executions to optimize the parameters. The execution time is reported in Table 3.2.

(a) Precision (b) Recall

Figure 3.1: Precision and Recall of SVM for varying time window length with and without
feature selection

There are several interesting points to notice on the graphs. First, on figure 3.1 for the linear
SVM, we note that the performances are low. This is likely a sign that the classes to predict are
not linearly separable. The solution for this would be to use another kernel for the SVM but
unfortunately this would be at the cost of the parellelization of the implementation which would
push the computation time beyond acceptable range. Regarding the length of the time window,
it should be noted that the linear increase in precision with preselected features is likely only
a side-effect of the relabelling. Further investigation reveals that the support vectors are not
changing when the time window changes so the model learnt is the same. This is most likely
because the inertia of the SVM model is too high to be affected by changing less than 0.1% of
the labels.

Second, for RF, on figure 3.2, we can note that the usage of pre-selected features does
not improve the performances but decreases them. The fact that feature selection does not
bring improvement is understandable given that RF models have been shown to be resilient to
noisy features. However the decrease also implies that the features that were not pre-selected
are not pure noise but also contain useful information to predict an impending failure. This
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(a) Precision (b) Recall

Figure 3.2: Precision and Recall of RF for varying time window length with and without feature
selection

Method Execution time (1 run) Execution time (180 runs)
SVM preselected 11 min 33 hours
SVM all features 24 min 72 hours
GBT preselected 10 min 30 hours
GBT all features 41 min 123 hours
RF preselected 14 min 42 hours
RF all features 37 min 111 hours
RF+SMOTE 42 min 126 hours

Table 3.2: Execution time of the methods
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(a) Precision (b) Recall

Figure 3.3: Precision and Recall of GBT for varying time window length with and without
feature selection
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(a) Precision (b) Recall

Figure 3.4: Precision and Recall of the RF model for varying time window length with and
without feature selection
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highlights the fact that SMART features are implemented differently on different drives and
thus that conclusion regarding features useful for predicting failures of a specific type of hard
drive model cannot easily be generalized to every type of hard drive. Additionally, for small
values of the time window, the RF model struggles because the scarcity of the failure labels
is further aggravated by the bagging technique used to learn the individual decision trees that
compose the RF model. This is especially true with the pre-selected features.

Finally, for GBT, on figure 3.3 it does not display the same limitation as RF for time win-
dows higher than one day, likely because it is not based on a bagging technique. The perfor-
mances when using all available features are mostly similar to RF.

Overall, the best performances are reached by RF and GBT when using all available features
with RF reaching up to 95% precision and 67% recall and GBT reaching up to 94% precision
and 67% recall. The reported precision of 95% and 94% would translate on average with daily
measurements on a single hard drive into a single false alarm respectively every 100.000 days
and 83.333 days. In the mean time, over two thirds of the failures would be predicted correctly.

In figure 3.4, the last experiment with the SMOTE sampling technique resulted in negative
results. The precision and recall of RF are decreased by SMOTE for smaller values of the time
window and are similar at higher values. This is likely the result of an imbalance factor of
5000, much higher than the one used when developing sampling techniques which remains in
the range of 2 to 100 in [Galar et al., 2012].

3.6 Conclusion

In this contribution, we work on hard drive failure prediction with a publicly available, large
and operational dataset from Backblaze with relevant metrics, which is crucial to bridge the gap
between laboratories studies and real-world systems and for reaching reproducible scientific
results. This implies to address the class imbalance between failures and non-failures and the
large dataset size. We have selected the precision and recall metrics, most relevant to the prob-
lem, and tested several learning methods, SVM, GBT and RF. With 95% precision and 67%
recall, the best performances were provided by RF with all features while GBT was a close
contender with 94% precision and 67% recall. SVM performances were unsatisfactory with a
precision below 1%. We have also shown that when studying different hard drive models from
different manufacturers, selecting the features classically used for hard drive failure prediction
leads to a drop in performances.

Contrary to what was expected, SMOTE did not improve the prediction performances high-
lighting the difficulties stemming from the extreme unbalanced ratio of the Backblaze dataset.
Additional work on sampling techniques is needed to balance the dataset. Ensemble-based Hy-
brid sampling techniques [Galar et al., 2012] such as SMOTEBagging, an improvement of the
SMOTE sampling technique, could help to improve our learning models and might enable to
use learning methods more sensitive to class imbalance such as logistic regression.
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Finally, we plan to evaluate on the Backblaze dataset other learning techniques which have
demonstrated promising results on other samples such as back-propagation recurrent neural
networks [Zhu et al., 2013], Bayesian classifiers [Hamerly and Elkan, 2001] or Mahalanobis
distance [Wang et al., 2011].

In general, with regards to the goal of studying rare event prediction, this study helps us
establish that sampling techniques are not performing sufficiently well yet for the level of im-
balance that interest us. Superior results are achieved by using learning techniques that are
already resilient to imbalance and the best results are achieved by Random Forests.
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In this chapter, we present the approach we designed to process text-based logs, the most
common type of data available for our aeronautical system, in an efficient manner in terms of
computational resources and model accuracy. To that end, we study existing methods in log
parsing and log mining, propose a new approach based on Natural Language Processing (NLP)
and validate our method on both an aeronautical dataset and a public benchmark.

4.1 Introduction

4.1.1 General problem

There is a discrepancy between the public datasets often used as benchmark for classification
algorithms and the data that is collected in actual aeronautical systems. Benchmark datasets
consist of well-known measurements and clean numerical or categorical values. This enables
standardized pre-processing and let the studies that uses them focus on the actual learning algo-
rithms. Meanwhile, the actual inputs from an industrial dataset are not necessarily compatible
with those methods. They take, for our use case, the form of full text event logs similar to
syslogs of Linux systems. An illustration can be found in table 4.1. Such logs cannot be di-
rectly used as inputs by classical classification algorithms which rely on numerical values. The
solution to change the data collection mechanism to fit the needs of the learning algorithm is
not practical because of the long time needed to collect a significant amount of failure samples.
Therefore, we want to use already existing data as much as possible. This means that we need
to find a mapping between the available industrial dataset and the inputs needed by the available
models. In order to achieve that, we focus on log parsing and log mining methods to determine
an efficient way both in terms of accuracy of the model and in terms of computation to find this
mapping from text to numerical values. Given the confidential nature of the industrial dataset
and to ensure the reproducibility of the results we validated our findings in parallel on a public
benchmark.

2015-28-Dec 15:20:13 TPSD 516 1 0 0 Resident SD Card Read/Write test passed on SD5
2015-28-Dec 15:20:18 TINF 435 1 0 0 CIDS communication established
2015-28-Dec 15:20:21 TPSD 463 1 0 0 eth0:UP. Connected

Table 4.1: Illustration of an aeronautical system text log
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4.1.2 Log parsing and log mining

The usage of logging systems is one of the most widespread solutions for monitoring complex
systems and applications. One such example would be the syslog of Linux machines. Such
logging systems offer both a high level of flexibility for developers and a high level of expres-
siveness for users making them very useful to understand potential anomalies. However the
high volume of log messages generated by complex systems makes it difficult for human oper-
ators to effectively monitor every event. This often leads to a reliance on high level signalling
of the gravity of log messages such as "information","warning" and "error". This system has
the obvious weakness of being only accurate for events and situations that were accounted for
at the time of the implementation of the logging system. In a situation of interaction between
multiple subsystems developed independently, the signalling might not be representative of the
state of the entire system. That is to say an "error" message from a subsystem could be the result
of a normal operation of the system, for example a subsystem reporting a loss of connectivity
when the network services are being reset at the system level. Conversely, a "normal" message
from a subsystem could indicate an anomaly in the system, for example, a subsystem reporting
communication taking place when the network services are shutdown at the system level. As
a result of this limitation and of the high volume of log messages, in practice, many logging
systems are often limited in their use as tools for postmortem diagnosis.

In order to enable a better usage of logs, many data mining techniques have been adapted
to automate log analysis. This process can be split into two main steps: i) how to transform
the raw unstructured text from the log messages into a suitable input for data mining; this is
called log parsing; ii) how to automatically exploit this structured information with data mining
techniques; this is called log mining. Log mining has been the subject of many publications [Xu
et al., 2009, Fu et al., 2009, Nagaraj et al., 2012], log parsing as well [Vaarandi, 2003, Makanju
et al., 2012]. However, until recently there was no benchmark of publicly available datasets and
implementations to systematically evaluate the performances of the log parsing methods. As a
result, the interactions between log mining and log parsing have been only partially explored.
Moreover, as logs are automated messages, even raw messages display repetitive patterns. Con-
sequently, the first parsing approach adopted has often been rule-based and aimed at distin-
guishing between constant parts and variable parts to categorize log messages. The constant
part being the string typed by the programmer when the software was written and the variable
part the variables that appear in that string. However, the log messages are made of sentences or
partial sentences understandable by a human operator and as such it is also possible to take into
consideration their semantic aspect in order to parse them and categorize them. Thus it would
make sense to investigate the use of NLP which is surprisingly scarcely studied [Bertero et al.,
2017, Kubacki and Sosnowski, 2017] and absent from state-of-the-art surveys such as [He et al.,
2016].

The goal of this contribution is to study the influence of a selection of log parsing tech-
niques from the field of NLP on the efficiency of a fixed log mining process aimed at providing
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log-based failure prediction of an aeronautical system with a focus on applicability. The re-
sults are evaluated on an industrial dataset collected on live systems and, in the end, the best
log parsing method found is evaluated on a new benchmark dataset and compared to existing
solutions found in [He et al., 2016]. We find that our solution achieves substantial performance
improvement on the benchmark dataset while also being more robust and easier to parametrize
than state-of-the-art solutions.

The contribution is organized as follows. First, we study existing works in log parsing and
log mining in section 4.2. Next, we detail the log parsing techniques that we implemented in
section 4.3. We explain the log mining process that we use in section 4.4. We present our results
and interpret them in section 4.5. Finally, 4.6 concludes the contribution.

4.2 Related work

There are many studies pertaining to both log mining and log parsing. Some of the recent works
include [Xu et al., 2009, Fu et al., 2009, Nagaraj et al., 2012]. In [Xu et al., 2009], the authors
first parse the constant and variable parts of the logs messages using either the source code
of the logging application or the messages themselves, then filter the messages on frequency
and perform anomaly detection by using PCA, treating outliers as anomalies. It is however not
directly applicable to complex interdependent aeronautical systems as the study of the static
source code might not be possible in the case of co-developed systems.

In [Fu et al., 2009], the authors filter out the variable parts of log messages using manually
defined rules and cluster the rest with a similarity measure based on a custom weighted edit
distance. They model the sequence between messages in a Finite State Automaton and per-
form anomaly detection by identifying sequences where impossible transitions are made. For
an aeronautical system, it is however not plausible to create a FSA of reasonable size for all
transitions.

In [Nagaraj et al., 2012], the authors first distinguish between state messages and event
messages before engineering features from the results of statistical tests run on each distribu-
tion separately. Finally, the anomaly detection is performed by analysing outliers. In the case
of aeronautical systems with a very large variety of messages and extremely rare failures the
assumptions that outliers correspond to anomalies is not verified.

The same issue appears in [Vaarandi, 2003]. It describes a log parsing method that is still
widely used to this day based on multiple passes over the logs to determine the most frequent
words and the messages in which they occur.

[Sipos et al., 2014] relies on Multiple Instance Learning (MIL) to predict hard drive fail-
ures. Daily aggregates are used to simplify the model. Even though this appears promising for
reducing the amount of data, it is not applicable to all kinds of data and requires a preliminary
domain analysis.
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[Makanju et al., 2012] describes another state-of-the-art log parsing algorithm, IPLoM, for
Iterative Partitioning Log Mining. It is of a particular interest for this since it has been found
in [He et al., 2016] to be the most effective log parsing algorithm available for the Hadoop
File System (HDFS) benchmark dataset which shares several characteristics with the industrial
dataset that this study is based on and in particular its size and the distributed nature of the
system being studied. IPLoM works by performing several steps of hierarchical partitioning of
the log messages before splitting them in constant and variable parts.

The study [He et al., 2016] reviews many of the recent works on log mining and log parsing
and points out that very little is available in terms of benchmark, be it from the perspective of
the datasets or of the implementation of the log parsers. This leads to difficulties in performance
evaluation for researchers designing new methods and difficulties in applying log mining meth-
ods for potential users. This study also highlights the fact that the existing log parsing solutions
are not distributed and tend to be very costly to run on large datasets in terms of execution time.
Subsequent studies from the same authors in [He et al., 2017a] and [He et al., 2017b] propose
two new log parsing algorithms POP and Drain. POP is based on recursive partitioning and
optimized for low time complexity and Drain is an online algorithm which uses fixed depth
parse tree. Though they both perform extremely well for log parsing with performances nearly
optimal, once evaluated on a log mining task benchmark, their performances are similar to those
of IPLoM. Finally, it is worth noting that the proposed methods are all rule-based and none of
them are based on Natural Language Processing.

The article [Bertero et al., 2017] presents an approach based on the NLP method of word
embedding for log parsing, sharing our observation that off-the-shelf NLP techniques could
potentially yield significant improvement over traditional rule-based log parsing. The authors
then use three different classifiers for log mining, Random Forest, Naive Bayes and Neural
Networks, evaluated on one of the public benchmark datasets from [He et al., 2016] that we
also use in our work reaching up to 90% accuracy with the Random Forest technique.

In [Kubacki and Sosnowski, 2017], the authors propose a parsing algorithm that uses de-
tailed semantic analysis and custom dictionaries defined through statistical analysis of their text
corpus, taken from logs of several servers at their disposal. Evaluation is then conducted on the
same servers rendering comparisons with benchmark performances difficult.

[Du and Li, 2017] describes a log parser called Spell for Streaming Parser for Event Logs
using Longest Common Subsequence (LCS). It is based on the LCS algorithm run in a streaming
fashion to identify constant and variables part of log messages and classify them into message
types. It does not however contain an evaluation on log mining metrics but only on log parsing.
In [Du et al., 2017], the Spell log parser is used in combination with a Long Short-Term Memory
(LSTM) deep neural network to evaluate the full pipeline on two public datasets, including
the HDFS benchmark that we also use, and reaching up to 96% F-measure on it. It is worth
noting that the deep learning approach used is considerably more complex to implement and
parametrize than our proposed solution.
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The table 4.2 summarizes the main principles discussed in these studies.

Reference Rule-based ML-based NLP-based Main difficulties for aeronau-
tical application

[Xu et al., 2009] × Requires system expertise
[Fu et al., 2009] × High model complexity
[Nagaraj et al., 2012] × Frequentist anomaly detec-

tion
[Vaarandi, 2003] × Frequentist anomaly detec-

tion
[Sipos et al., 2014] × Requires system expertise;

high model complexity
[Makanju et al., 2012] × Bad complexity scaling with

message variety
[He et al., 2017a] × × Some system expertise re-

quired
[He et al., 2017b] × × Some system expertise re-

quired
[Bertero et al., 2017] × × High model complexity
[Kubacki and Sosnowski, 2017] × × Highly customized semantics
[Du and Li, 2017] × Bad complexity scaling with

message variety
[Du et al., 2017] × Complex parametrization

Table 4.2: Summary of related work in log parsing and log mining

4.3 Log parsing

This section presents in detail the log parsing methods that we selected and implemented. They
are organized in five categories, namely tokenization, semantic techniques, vectorization, model
compression and classification methods.

Log parsing is understood here as the combination of methods used to transform the un-
structured character strings that compose the log messages in a structured form suitable for
failure prediction. Since the character strings form sentences or partial sentences understand-
able by a human operator, we take a special interest in methods from the field of NLP which
aim specifically at extracting structure from documents written in natural languages by oppo-
sition to formal languages. By contrast with the parsing of formal languages, it means that we
are parsing sentences that admit multiple interpretations as different words can cover multiple
meanings depending on the grammatical and semantic context of the sentence.
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The goal of this section is to present several easy to implement log parsing methods that can
be used to engineer the features necessary for log mining.

4.3.1 Tokenization

The first method that we apply is a tokenizer. Its role is to process a text and break it into indi-
vidual words in order to enable comparisons between sentences. In our case, we split the words
based on whitespaces and punctuation marks and convert the characters to lower case. As an
example, the sentence "Temperature too high: the CPU is overheating" would get broken down
into the words "temperature", "too", "high", "the", "cpu", "is", "overheating". It is worth noting
that this tokenizer has difficulties especially with contracted English forms such as "don’t" or
"it’s" in which case other solutions based on regular expressions can be used. However, such
forms are absent from our logs so these solutions were not considered.

4.3.2 Semantic techniques

The next methods we can apply on the individual words are stemming, synonym replacement
and stopwords removal. Those methods are not strictly necessary to perform failure prediction
as they simply aim to clean up the input text to reduce noise by looking into the meaning of
the words considered. We study their impact on the prediction performances in section 4.5.
Stemming is the process of removing inflected forms at the end of words to find out the stem of
the word. We use it to conflate similar words such as "failure" and "fail" which are semantically
close and convey a similar sense under the same stem "fail". This allows us to reduce the
vocabulary and increase the similarity between sentences whose meanings are close. In our
case, we apply a standard stemmer, the English snowball stemmer from the nltk package [Loper
and Bird, 2002].

With the synonym replacement method, we replace words by their most common lemma
corresponding to their most common meaning based on the standard wordnet module of the
nltk package. This allows us to conflate words with similar meaning but different stems that
cannot be caught by the stemming method. An example of that would be the words "present"
and "detected" that are quite common in the log messages, the synonym replacement method
can conflate them to the same representation, reducing further the vocabulary.

Stopwords removal is the process of removing stopwords. Stopwords are words that are
frequent but have a low relevance for the classification, one such example is the article "the".
If kept, the stopwords will induce noise in the classification model as two unrelated sentences
could have many such words in common. In our case, we use the standard list of English
stopwords found in the Apache Spark MLLib library [Meng et al., 2016] from which we re-
move the words "no", "not", "nor", "on", "off" and "any" (i.e. we will leave them in the logs)
which are meaningful in the failure messages we are looking for. A tokenizer and stopwords
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removal on the previous sentence "Temperature too high: the CPU is overheating" would result
in "temperature", "high", "cpu", "overheating".

4.3.3 Vectorization

The next step in adapting the logs to prediction algorithms is to determine how to transform the
sentences from a list of words into a vectorized representation. The first method that we try is
the bag-of-words model. In this model, a sentence is represented as a vector of dimension equal
to the total vocabulary size of the corpus. Each dimension corresponds to a given word and
the value of the vector is equal to the number of times the given word appears in the sentence.
This representation is easy to generate and the resulting model is easy to manipulate from a
machine learning perspective but it loses the information contained in the ordering of the words
in the sentence. For example, the sentences "Error: no network connection" and "Network
connection: no error" would have the same representation in this model despite having different
meanings.

The next model we try is the bi-gram model. In this model, instead of considering individual
words, we consider pairs of consecutive words. This reduces the ambiguity generated by the
loss of ordering. In the previous example, the vocabulary of the sentences would be respectively
"Error no", "no network", "network connection" and "network connection", "connection no",
"no error". This would capture the fact that both sentences are about network connection but
have different conclusions. The drawback of this approach is that it increases the size of the
vocabulary: given n different words, we can generate n2 different bi-grams so, theoretically,
a sentence should be represented in the bi-gram space by a vector of dimension n2. Not all
possible bi-grams are encountered which reduces this effect. In the example sentences, starting
from a vocabulary of 4 words, we only get 5 different bi-grams.

We also study the tri-gram model where tuples of three consecutive words are considered.
Given the limitations induced by the volume of logs and the increase in dimensionality of the
n-gram model, we do not study n-grams for n > 3.

4.3.4 Model compression

The final step before we run the classification is the hashing trick method. This method reduces
the size of the models in memory by applying a hashing function to the words and replacing
the words with their computed hash. It considerably reduces the memory footprint of the mod-
els enabling faster and more complex computations at the expense of possible hash collisions
and a reduction in the interpretability of the resulting models. In our case, we use the default
hashingTF implementation of Apache Spark MLLib library.
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4.3.5 Classification

The final step is the classification itself. The goal is to automatically categorize the log messages
encoded in the previous steps so that failure prediction can be made based on the message
categories. Two unsupervised clustering algorithms have been considered for this step, bisecting
k-means [Steinbach et al., 2000] and Latent Dirichlet Allocation (LDA) [Blei et al., 2003].

Bisecting k-means is a variant of the k-means clustering algorithm. It starts with a unique
cluster that regroups all samples and then iteratively splits the clusters starting with the one with
the highest within set sum of squared errors. In our case, k = 50 was found to be the optimal
value after a grid search step.

LDA is a topic modelling approach which attempts to generate topics associated with fre-
quently co-occurring words and assign to every sentence a set of weights corresponding to the
topic distribution inside the sentence. In our case, we set the number of topics to 50, as with the
bisecting k-means and the number of iterations to define the topics to 100.

The final outcome of all the previous steps are features whose format depends on the classi-
fication technique used in the last step. In the case of bisecting k-means, the text associated to
each message is replaced by a single value corresponding to its cluster label. An intuitive way
to explain how it works is that the messages classified in the same cluster are very similar and
are thus supposed to be about the same topic such as "Temperature test" or "Network failure",
it is worth noting that topics are in this representation mutually exclusive. In the case of LDA,
the log message is replaced by a vector of topic distribution. In that case, we extend the previ-
ous model with the possibility to be related to multiple topics. Hence if we have a "Network"
topic and a "Failure" topic, we would find network failures by selecting messages with a topic
distribution vector with a high value in both of these topics.

4.4 Log mining

This section describes the log mining process that we follow. We first present the modelling of
a failure case that we want to predict. We then describe the classification step.

4.4.1 Modelling

In order to evaluate the efficiency of the log parsing, we target a well-known failure in one of
the data storage sub-system of the aeronautical system that appears in our logs. The industrial
dataset used is a record of one year of logs from an aeronautical system currently in use. It
contains over 4.5 million log messages including 302 messages pertaining to the failure that
must be predicted. We manually label every instance of that failure. The failure messages
appear in burst because of retry mechanisms and the propagation of the consequences of the
failure to several subsequent tests. The repeated failures have no practical interest since they
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always happen in fixed sequences and do not reveal actual new events. Thus we filter them out
and only keep the failure label of the first message in each sequence. After this filtering, we end
up with 188 messages labelled as failures out of over 4.5 million log messages for an imbalance
ratio of over 23.000 : 1 in favour of the non-failure cases. We model the log messages as a
time series. The features we associate with each message depend on the classification step that
was used. If a bisecting k-means was performed, we associate to each message the sequence
of cluster labels of the 20 previous messages. If a LDA was performed, we associate to each
message the sequence of topic distribution vectors of the 20 previous messages. If less than 20
previous messages are available, we do not consider the current message for prediction. The
size of the slilding time window has been selected as a compromise between the size of the
model and the availability of computational resources.

4.4.2 Classification

The technique that we use to transform the features we engineered into predictions is the Ran-
dom Forest technique [Criminisi et al., 2012]. It is one of the state-of-the-art techniques for
classification. It requires little parametrization and is very efficient even in the case of extreme
class imbalance and in the presence of noise. In this study, we set the number of decision trees
at 20 with a maximum depth of 8, constructed using the Gini impurity metric. The parameters
were chosen through grid-search on the industrial dataset and kept unchanged for the public
benchmark.

Two other methods were considered, Gradient Boosted Trees [Criminisi et al., 2012] and
Support Vector Machine [Cortes and Vapnik, 1995]. Their performances however did not match
RF on any configuration. This is in line with the observation from [Bertero et al., 2017].

4.5 Results and interpretation

The results on the operational dataset are reported in the tables 4.3, 4.4 and 4.5. The comparison
with the existing method on the benchmark dataset is presented in Table 4.6. All of the following
results were validated through 3-fold cross-validation.

4.5.1 Metrics

We have chosen to report the standard performance metrics, precision, recall and F-score to
evaluate our results. Precision and recall are also used in the benchmark performance evaluation
in [He et al., 2016] and F-score is a hybrid metrics that will enable the comparison of techniques
that trade-off between precision and recall. Defining the failure messages that we manually
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labelled as positives and the non-failure ones as negatives, we have:

precision =
true positive

true positive + false positive
(4.1)

recall =
true positive

true positive + false negative
(4.2)

F − score =
2× precision× recall

precision + recall
(4.3)

4.5.2 Industrial dataset

In Table 4.3, the first observation that we can make is that no matter what log parsing techniques
are used, the precision remains quite high with its lowest value achieved with the combination
"LDA, bi-gram, stemming and synonyms replacement" at 75.8% and the next lowest at 85.7%.
This is likely due to the high precision and resilience to noise of the RF learning algorithm.
However, significant improvements can still be achieved as two combinations achieve 0 false
positive for a reported precision over 99.5%. Those two combinations are "LDA, tri-gram,
stemming and synonym replacement" and "LDA, bag-of-words, stemming, synonym replace-
ment and stopwords removal".

Concerning recall in Table 4.4, the differences between the different combinations are more
significant and the motivation for using the different models is more obvious. The most simple
combination, bag-of-words and bisecting k-means only achieves 45.4% recall with only one
other combination significantly lower, bisecting k-means, bi-gram, stemming and synonym re-
placement at 32.0% and a few combinations at comparable recall. The highest recall is achieved
with LDA and bi-gram at 89.9%.

Finally regarding the overall performances summarized with the F-score in Table 4.5, the
improvement brought by the log parsing techniques is even more obvious with every combi-
nation besides the previously mentioned "bisecting k-means, bi-gram, stemming and synonym
replacement" having a higher score than the basic "bisecting k-means and bag-of-words". That
is to say the top left combination bisecting k-means, bag-of-words can be considered a basic
log parser with little to no NLP applied to it and, beside one specific combination, every NLP
technique improves on it. The highest score of 0.937 is achieved by the combination which
also had the highest recall "LDA and bi-gram" followed by "LDA, bi-gram, stopwords removal,
stemming and synonym replacement" at 0.897.

Overall, it can be noted that the interactions between the different models and techniques
are complex as none of them can be highlighted as systematically increasing or decreasing the
metrics used. It is only when the models and methods are combined with each other that their
usefulness becomes apparent. This is not surprising considering that these NLP methods are
also in use in the field of speech processing and, similarly, the optimal combination of these
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Table 4.3: Log mining precision with different log parsing schemes on the industrial dataset
Bisecting k-means LDA

Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing
Nothing 0.865 0.930 0.971 0.962 0.978 0.988

Stopwords
removal 0.955 0.941 0.954 0.989 0.979 0.953

Stemming and
synonym replacement

Nothing 0.927 0.883 0.945 0.857 0.758 >0.995
Stopwords

removal 0.944 0.980 0.967 >0.995 0.974 0.906
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Table 4.4: Log mining recall with different log parsing schemes on the industrial dataset
Bisecting k-means LDA

Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing
Nothing 0.454 0.670 0.723 0.666 0.899 0.436

Stopwords
removal 0.782 0.643 0.674 0.471 0.512 0.671

Stemming and
synonym replacement

Nothing 0.604 0.320 0.723 0.586 0.499 0.459
Stopwords

removal 0.552 0.589 0.642 0.552 0.832 0.486
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Table 4.5: Log mining F-score with different log parsing schemes on the industrial dataset
Bisecting k-means LDA

Bag-of-words Bi-gram Tri-gram Bag-of-words Bi-gram Tri-gram

Nothing
Nothing 0.595 0.779 0.829 0.787 0.937 0.605

Stopwords
removal 0.860 0.764 0.790 0.638 0.672 0.788

Stemming and
synonym replacement

Nothing 0.731 0.470 0.819 0.696 0.602 0.628
Stopwords

removal 0.697 0.736 0.772 0.710 0.897 0.633
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techniques is still highly dependent on the dataset used with parameters as varied as the target
language, the vocabulary size, the number of available audio samples and on target task. The
key point is that the best combination we found with regard to F-score is quite robust, displaying
the best recall over every other combination and one of the best precision. To ensure further
that its performances are not coincidental beyond the cross-validation, in the next subsection, we
proceed to test it on the public benchmark with the same parameters we used for the industrial
dataset.

4.5.3 Public dataset

Table 4.6: Performance comparison against state-of-the-art approaches on the HDFS bench-
mark dataset

Precision Recall F-score
SLCT 0.593 0.649 0.620
LogSig 0.963 0.634 0.765
IPLoM 0.975 0.665 0.791
Drain 0.975 0.665 0.791
POP 0.975 0.665 0.791
Best log parsing

combination >0.999 0.985 0.992

We present in Table 4.6 is the comparison of the best combination "LDA and bi-gram", with
existing results from the studies [He et al., 2016], [He et al., 2017a] and [He et al., 2017b] on
a public benchmark dataset from an HDFS cluster6. This HDFS dataset was chosen among the
available benchmark sets in [He et al., 2016] as the largest dataset and also the closest one to
the industrial dataset we used. This dataset consists in over 11, 000, 000 messages belonging to
29 different categories generated from a 203-node cluster. The datasets contains over 16, 000
messages marked as WARN that are considered failures. The public benchmark is an extract of
2, 000 messages from this dataset. Though the problem of class imbalance is less pronounced
than on the industrial dataset, the HDFS dataset is very similar in terms of size and structure to
the aeronautical logs. An example of log messages from this set can be found in table 4.7 The
parameters used for the algorithms were kept at the same value as with the industrial dataset.
The comparison shows clearly that the natural language processing inspired approach improves
recall significantly while maintaining a high precision leading to a very significant increase of
the F-score from 0.791 for rule-based methods and 0.96 for Deep Learning based methods to
0.992.

6https://github.com/logpai/logparser/tree/master/logs/HDFS
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2008-11-11 03:40:58 BLOCK*NameSystem.allocateBlock:/user/root/randtxt/[...]
2008-11-11 03:40:59 Receiving block blk_904 src: /10.251.43.210:55700

Table 4.7: Example of raw HDFS text log

This could be seen as surprising because the traditional rule-based log parsing methods put
focus on producing a structure that perfectly transposes the information in the log messages
with performances such that significant improvements seemed unlikely. Our interpretation is
that building a perfectly unambiguous parsing is actually not a desirable outcome when dealing
with log messages because of the logs inherent ambiguity. The messages are implemented by
a human operator to be read and understood by another human operator with natural language
that is inherently ambiguous and flexible. This flexibility enables a human reader to understand
when several messages, though they might be worded differently, refer to a similar issue. For
example, when dealing with network problems, it is common that the actual log message vary
depending on the subsystem that attempted to connect. It is obvious for someone reading the
log messages that they are related but an unambiguous rule-based approach will not detect it
because it operates under the assumption that one spelling is equivalent to one lemma. Through
the use of natural language processing and clustering techniques in our approach, we introduce
ambiguity and flexibility by foregoing the word order and voluntarily confusing semantically
similar messages imitating in that sense the approach of a human operator and leading to better
results.

Finally, it is worth noting that these excellent performances were obtained by using the exact
same methods and parameters used on the industrial dataset which implies that this pipeline
is reliable for log parsing and rules out the possibility that the results were the product of a
coincidence enabled by the many combinations tested and further demonstrate the robustness
of our method.

4.6 Conclusion

In this contribution, we propose a general scheme for the failure prediction problem in the con-
text of industrial systems. Our approach is based on log mining, which is a promising approach
to achieve failure prediction as many systems already implement detailed logs and on log pars-
ing which is a critical preliminary step. We focus on simple NLP techniques or combination
thereof and on the interaction between log parsing and log mining and their effect on the perfor-
mances of failure prediction. To that end, we provide a detailed performance analysis on both
an industrial dataset of a system currently in use and on a large publicly available benchmark
dataset in order to compare the performances of our approach with state-of-the-art algorithms.
On the industrial dataset, we achieve 97.8% precision and 89.9% recall using the "LDA and
bi-gram" log parsing combination and a simple RF-based log mining. On the HDFS dataset,
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the same method improves the precision and recall from respectively 97.5% and 66.5% to over
99.9% and 98.5% and the F-score improves over the study [Du et al., 2017] from 96% to 99.2%
with a more simple and robust pipeline. We finally offer an interpretation of the improvement
yielded by NLP based methods over traditional rule-based methods. We considered the possi-
bility to use more complex NLP techniques such as word embedding but, given the excellent
performances of the simpler methods, any possible performance increase over them would most
likely not be measurable and deemed that obtaining the same performances with simpler meth-
ods is a stronger result. Several more advanced NLP techniques such as word embedding, topic
segmentation or a more elaborate synonym replacement process would be worth investigating
in the future however the most pressing issue would be to gather a more complex benchmark
dataset in order to evaluate said techniques.

In general, with regards to the objective of this chapter to study how to efficiently map
full text event logs to suitable inputs for classification algorithms, we have determined that a
combination of simple natural language processing techniques provides the best results on both
our own dataset and on benchmark sets.

59



Chapter 4. Automated Processing of Text-based Logs: Log Mining and Log Parsing in Industrial Systems

60



Chapter 5

Combining Federated and Active Learning

for Distributed Ensemble-based Failure

Prediction

Contents

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.1 General problem . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.1.2 Distributed Learning paradigms . . . . . . . . . . . . . . . . . . 62

5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.2 Active Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.1 Experimental settings . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.2 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

In this chapter, we propose a new Distributed Learning method to answer the problem stated
at the beginning of this thesis of distributed learning with strong constraints on client-side com-
putational resources and communication budget. To do so, we start by putting the problem
in context. We review existing works and their limitations with regards to our goal; then we
describe the algorithm we propose and, finally, we demonstrate its performance on a public
benchmark.
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5.1 Introduction

5.1.1 General problem

Throughout the two previous contributions, we have focused on concretely determining which
ML would work the best with the constraints of aeronautical data and proposing our own when
it was relevant. This has enabled us to set the frame needed for this final contribution by de-
termining which base methods would be available to us. In this contribution, we go back to
the initial goal to monitor aeronautical systems for failure prediction using Machine Learning.
The problem remains that aeronautical systems generate too much data to be able to handle the
prediction on the aircraft for lack of computational resources. Data links are available between
the aircraft and the ground but they are too expensive and not fast enough to transfer all the
data. Therefore, we cannot directly apply a cloud computing paradigm which would consist in
offloading all the data to a remote location such as a data centre with sufficient computational
resources and collecting the results.

In this situation, we can identify characteristics that the solution will need to demonstrate.
Firstly, it will need to be able to classify data from normal readings, i.e. situations where there
are no signs of imminent failures, using a minimal amount of computation power. This is key
to be able to process the large volume of data generated by the aeronautical systems without
overloading the data link. Secondly, the solution for failure prediction will need a mechanism
to identify interesting data, i.e. data that could be indicative of an imminent failure with regards
to a pre-defined threshold, and transfer this data from the aircraft to a central server on the
ground without spending too much communication budget. This is a direct consequence of the
observation that the amount of computational power on board is too limited to give an accurate
prediction of failure risks. Thirdly, we need a way to train a prediction model on the ground
without accessing the data from the aircraft. This is a direct consequence of the previous two
requirements as only a small amount data can be sent to the central server. But, as accurate
predictions are expected from it, we need a mechanism to enable centralized learning without
accessing the raw data.

Different solutions already exist for each of the characteristics we have identified taken in-
dividually. The main concern here is to figure out how to fulfil all the requirements simultane-
ously but the most immediate source of inspiration can be found in existing paradigms already
discussed in this thesis.

5.1.2 Distributed Learning paradigms

Two sub-fields of Machine Learning that provide elements of answer have been identified in
section 2.4.1 as Active Learning and Federated Learning. They have been designed with slightly
different use cases in mind which obviously leads to slightly different requirements but that
nevertheless match our own quite well.
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The Active Learning paradigm offers a way to model the envisioned relationship between
the aircraft and the central server on the ground. Its premiss is that the model being trained has
access to a third-party source of information, called an oracle, to reveal labels when necessary
and its goal is to maximize the performance of the trained model under a request budget. We can
immediately draw a parallel with the second characteristic of the solution we identified with the
aircraft playing the role of the active learning model in training and the central server playing the
role of the oracle albeit an imperfect one (an unusual situation but already studied, for example
in [Miller et al., 2014]). In that case, the active learning paradigm offers an approach to select
the hard-to-classify data and balance the amount of requests with the communication budget.
Regarding the first characteristic however, further investigations are required as a number of
works in Active Learning favour a greedy approach incompatible with the idea that normal
readings need to be processed quickly.

The Federated Learning paradigm is directly related to the third identified characteristic of
the solution, i.e. enabling centralized learning without accessing raw data. The communication
budget and the computational resources of the hosts are also concerns that are considered in
this approach. However, it is purely driven by the central server and does not provide any
mechanism for the clients to assess their performance and request clarifications from the central
server.

The goal of this contribution is to propose a new approach that fulfils all three requirements
by combining Active Learning and Federated Learning. The performances are evaluated on a
public benchmark and compared to existing solutions.

The contribution is organized as follows. First, we study existing works in Active Learning
and Federated Learning in section 5.2. Next, we detail our solution in section 5.3. We present
our results and interpret them in section 5.4 and section 5.5 concludes the contribution.

5.2 Related Work

In this section, we review state-of-the-art works related to our problem. A more comprehensive
review of Active Learning and Federated Learning can be found in section 2.4 but the goal here
is to focus on the applicability of the techniques reviewed with regards to the three identified
requirements.

Note that for aeronautics applications, following the results in chapter3, we would like to
use RF because of its ease of interpretation, resilience to noise and that it can be proved reliable
in a range of safety scenarios. An issue remains in that RF is easy to distribute but there is no
guarantee on the performance of individual trees.
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5.2.1 Federated Learning

The terminology of Federated Learning was coined recently in [McMahan et al., 2016]. It
describes a Distributed Learning situation where the following observations apply:

• There is a massive number of clients with limited computational resources each holding
a unique fraction of the dataset. Their availability is subject to changes. This matches
well the aeronautical use case where individual aircraft can be seen as clients. Their
availability is not perfect and depends on the satellite connection.

• The data are not independent and identically distributed between clients. In the original
use case because it is assumed that different users will interact differently with their mo-
bile device and type differently. In the aeronautical use case, this holds true as different
aircraft can face different flight conditions depending on their route and the way their
systems are used by the crew and the passengers.

• Communications are allowed between the clients and a central server but they are limited
by a communication budget and, for privacy concerns, no exchange of raw data is allowed.
In the aeronautical use case, the privacy requirement between the client and the server is
relaxed but the communication constraint is certainly relevant.

The original solution proposed is to initialize randomly a deep learning model at the server
level and to gather incremental SGD updates from the clients while exchanging only the model
parameters with them.

Since the publication of the original article, several contributions have followed and im-
proved different aspects of this method. More specifically, [Konečnỳ et al., 2016] proposes a
way to improve the communication efficiency and [Bonawitz et al., 2016] and [Geyer et al.,
2017] offer new insights as how to better guarantee that the privacy concerns are respected.

The Federated Learning approach is of high interest for us as it describes a framework for
massively distributed and communication-efficient learning in a context very close to ours. In
particular, Federated Learning would be a great answer to our third requirement, learning in a
centralized model without downloading data from the clients. There are however limitations.
We have so far identified RF as our most promising choice for a base learning model. Also,
Federated Learning is developed for DNN and uses incremental SGD updates from the clients.
However, RF does not use SGD so we cannot apply Federated Learning directly. Also, Feder-
ated Learning does not offer any solution for our first identified characteristic. For that we turn
to Active Learning.

5.2.2 Active Learning

Active Learning is a sub-field of semi-supervised learning where a third-party, called an oracle,
can provide missing labels on request. The goal is then to learn the most accurate model possible
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under a given request budget. A survey of different existing approaches can be found in [Settles,
2009] and a summary of the statistical foundations can be found in [Cohn et al., 1996]. A more
developed discussion about this is available in section 2.4. The general principle of Active
Learning is interesting for our problem because it allows us to dynamically balance uncertainty
on client-side and communication budget which would offerus a solution to fulfil the second
requirement we identified of allowing requests from the clientto the server for uncertain samples
under a communication budget.

However, a first obstacle that we have to overcome is that most Active Learning works are
pool-based and use a greedy sampling approach meant to minimize the intervention of the ora-
cle. Such oracle is often a human operator with the limitation of being prohibitively expensive
in terms of computation; a human operator is indeed still orders of magnitude slower and more
expensive than a complex computation. Examples of this can be found in [Georgala et al.,
2014], [Joshi et al., 2009] and [Li and Guo, 2007] illustrating the versatility of pool-based Ac-
tive Learning with three applications on very different use cases of respectively spam detection,
image classification and network intrusion detection. In our case, however, we envision the
oracle as another more powerful model faster and less expensive than a human operator and we
assume that complex computations are not possible on the client-side.

There are however other works on online active learning that adopt a stream-based approach.
In that approach, the decision to request a label from the oracle must be done immediately
and leads to more efficient decision from a computation point of view. Examples of this ap-
proach can be found in [Bouguelia et al., 2013] for an application to document classification
and in [Smailović et al., 2014] for an application to sentiment analysis. [De Rosa and Cesa-
Bianchi, 2017] is an article of particular interest to this thesis as it proposes a new way to train
decision trees using an active learning approach that focuses on minimizing the risk of selecting
a sub-optimal split when a new leaf is added to the tree by computing confidence intervals. This
approach is both computationally cheap and provides an easy way to trade-off the uncertainty
on the model and the communication budget. The only limitation is that this model is not dis-
tributed so we still need to implement a mechanism to leverage remote data sources to create a
centralized model.

5.3 Proposed Algorithm

The approach we propose to combine Active Learning and Federated Learning is to use the
confidence based active online DT from [De Rosa and Cesa-Bianchi, 2017] as a base model
that is learned on the client side and sent to the server. The server aggregates the client DTs
in an ensemble model similar to a RF to learn an accurate model without accessing the raw
data. Finally, the individual DTs use the ensemble model from the server as an oracle for label
requests. The figure 5.1 provides a high-level illustration of the approach envisioned.

To get more into details, each client has access to its local dataset and train a confidence
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based active online DT locally. Regularly, the central server sends an update request to the
clients. The clients reply with their current DT. The server creates an ensemble model by
collecting all the DTs. The ensemble model relies on majority voting to classify new samples,
that is to say a new sample is run through each DT and its classification is the most frequent
result among all DTs. A first parameter to control the communication budget of the approach
will therefore be how often the central server request updates from the clients.

From the client perspective, they have at their disposal a stream of observations to train
their local DT. As described in [De Rosa and Cesa-Bianchi, 2017], whenever the uncertainty
surrounding a new split in the DT exceeds a certain confidence threshold, a request is made
to reveal the true label of the samples needed to decide on the right split and a part of the
request budget is spent. Here the requests are sent to the server and the labels are decided using
the ensemble model. There is second parameter to control the communication budget of the
approach in the request budget of each client.

There is a last point that needs to be clarified in the initialization of the model. Indeed, the
necessary labels for the training of the DT are provided by the ensemble model but the ensemble
model can only provide labels after it has received base models from the clients. In order to
get around this constraint, we assume that some amount of labelled historical data is already
available and can be used in the first round of update to initialize the DTs. This assumption is
perfectly justified in the aeronautical use case where there is plenty of historical data available
and the problem of label availability only concerns recent data where the true status of a system
has not been clarified through a maintenance operation yet.

The proposed process is described in algorithm 1.

5.4 Experimental Results

5.4.1 Experimental settings

In order to enable a meaningful comparison with other works, we have selected for our experi-
ments the MOA airlines dataset7, one the of the public benchmarks that was used in [De Rosa
and Cesa-Bianchi, 2017]. Though it is related to the air transport industry, it is not strictly
speaking a dataset from an aeronautical system but it presents the advantages of being public
and enabling comparisons with other solutions. This dataset consists of over 500, 000 samples
each with a label and seven features. Each sample corresponds to real flight and the task is to
predict if the flight has taken off on schedule or if it was delayed. The seven features available
are summarized in table 5.1. The imbalance ratio in this dataset is quite even at 0.80 in favour
of the flights that are not delayed. This means that some of the techniques such as SVM or LR
ruled out in chapter 3 could have acceptable performances on this particular but, since the target

7https://moa.cms.waikato.ac.nz/datasets/
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Algorithm 1 Federated Active Forest

⊲ Ft is the forest at round t, Tk,t is the kth tree of Ft, C is the set of clients, Ck is the kth

client of C, nk,t is the dataset gathered by the kth client between rounds t and t− 1, Bmax is the
maximum request budget and Bk,t is the request budget remaining for the kth client at round t

1: Start

2: F0 ← SEEDFOREST(C)
3: for each round t = 1, 2, ... do

4: for each client Ck in C do

5: Tk,t ← CLIENTUPDATE((Tk,t−1))
6: end for

7: Ft ←
⋃
∀k

(Tk,t)

8: end for

9: End

10: function SEEDFOREST(C) ⊲ Server-side function
11: for each client Ck in C do

12: Tk,0 ← SEEDTREE()
13: end for

14: F0 ←
⋃
∀k

(Tk,0)

15: end function

16: function CLIENTUPDATE(Tk,t−1) ⊲ Client-side function
17: Bupdated ← Bk,t−1 + UPDATEBUDGET(sizeof(nk,t)) ⊲ Request budget increased to

match dataset growth
18: Tk,t, Bkt

← CONFIDENCEDECISIONTREE(Tk,t−1, nk,tBupdated)
19: return (Tk,t)
20: end function

21: function SEEDTREE ⊲ Client-side function
22: Tk,0, Bk,0 ← CONFIDENCEDECISIONTREE(Root_Tree, nk,0, Bmax) ⊲ Root_Tree is a

tree limited to a root node, nk,0 is assumed to be fully labelled
23: return (Tk,0)
24: end function
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application for aeronautical systems would not display this level of class balance and since our
proposed method is DT based, we do not consider them further.

Feature Description Format
Airline Unique identifier of the airline operating the flight alphanumeric
Flight numeric Unique flight ID numeric
AirportFrom Origin airport unique IATA code string
AirportTo Destination airport unique IATA code string
DayOfWeek Day of the week numeric
Time Timestamp (scale not disclosed) numeric
Length Length of the flight (min) numeric

Table 5.1: Description of features in the MOA airlines dataset

To evaluate the performance of our algorithm, we report the precision, recall and F-score as
in the previous contributions. Given the relatively balanced nature of this dataset and to provide
as many elements of comparison as possible with other works done on this benchmark, we also
report the accuracy. Defining the delayed flights as positives and the flights on schedule as
negatives as the labels in the dataset suggest us to do, we have:

accuracy =
true positive + true negative

true positive + true negative + false positive + false negative
(5.1)

precision =
true positive

true positive + false positive
(5.2)

recall =
true positive

true positive + false negative
(5.3)

F − score =
2× precision× recall

precision + recall
(5.4)

In order to ensure the validity of our results, we apply a 2-fold cross-validation by randomly
splitting out the dataset into two sets, one for training and one for testing, measuring the perfor-
mances a first time and repeating every measurement a second time after inverting the training
and testing sets. Regarding the parameters of this experiment, we examine more specifically the
performance of our method with regards to the number of hosts among which the samples will
be split, the maximum request budget available for the active learning process and the number
of communication rounds for the federated learning process. When studying the variations of a
parameter, others were kept at constant with 20 communication rounds, 5 clients and a request
budget of 10%. The numbers of communication rounds and clients were chosen so that the
constraints of distributed learning would be visible and the request budget was chose so that
comparisons with other methods are facilitated.
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5.4.2 Results and discussion

The results are regrouped by variable parameter and displayed in Figure 5.2 for the number of
hosts, 5.4 for the request budget and 5.3 for the number of communication rounds. As additional
information, table 5.4.2 provide additionnal insights on the average performances of individual
clients for varying number request budgets.

In Figure 5.2, the first observation that we can make is that the results seem slightly unsta-
ble, especially considering that cross-validation has already been applied to them so one could
expect smoother curves. In fact, the relative instability is a side effect of the majority voting
employed in the ensemble model. When the number of clients is even, there is a limit case
where each classification outcome gets the same number of vote. In such a case, our model
was configured to favour the delay prediction, resulting in an increase in recall and a decrease
in precision. This limit case is more frequent for small numbers of clients. Beside this, we can
observe that the accuracy is stable at about 61% which is an excellent level of performance com-
parable to state-of-the-art results in the non-distributed case with [De Rosa and Cesa-Bianchi,
2017] reporting about 62% of accuracy with a similar request budget. This validates the poten-
tial of the approach we propose for communication-efficient distributed learning. For the other
metrics, we can observe that they decrease slightly for high number of clients which illustrate
the fact that the distributed learning constraint does have a cost on the performance even it is
relatively small with the F-score decreasing from about 49.75% with a single host to 41.3% with
10 hosts.

Concerning Figure 5.3, the results are more straightforward. We observe that as the number
of communication rounds increase, the model accuracy is quite stable but it hides the fact that
precision is increasing at the expense of recall leading to an overall decreasing F-score from
51% to 30%. The interpretation to this behaviour is that the ensemble model is being updated
too frequently. The base DT model makes use of a grace period parameter which defines a
minimum amount of samples that need to be collected before a request can be made. The
default value used was 100, the same as in the original publication. However, as the dataset
is split between multiple clients and further down between multiple communication rounds. It
is possible when the number of communication rounds is too high that between consecutive
updates of the ensemble model, no updates of the local DTs have been made and consequently
no change is made on the ensemble model leading to "skipped" communication rounds that
eventually lead to lower the overall performances. We tested this interpretation by lowering the
grace period to 30 and observed that performances for a high number of communication rounds
were increased.

Regarding Figure 5.4, it is worth noting that it is using a different scale than the other fig-
ures as the request budget is presented as a logarithmic scale. The reason for that is to highlight
the extreme stability of the performances with a very slight increase of the accuracy for high
request budget from 56% to 59%. The interpretation for the very low values is largely due to
the initialization step that relies on fully labelled data. Given 5 clients, 20 rounds and a 50/50
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(a) Accuracy

(b) Precision

(c) Recall

(d) F-score

Figure 5.2: Performance with regards to number of hosts
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(a) Accuracy

(b) Precision

(c) Recall

(d) F-score

Figure 5.3: Performance with regards to the number of communication rounds
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(a) Accuracy

(b) Precision

(c) Recall

(d) F-score

Figure 5.4: Performance with regards to the request budget
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Figure 5.5: Average recall per client with regards to the budget request

training/test split, the amount of data used in the initialization only represents 2.5% of the total
dataset so even for an extremely low request budget of 0.1%, it is necessary to label 2.51% of
the dataset. Still, given that typical range for request budget in similar studies such as [De Rosa
and Cesa-Bianchi, 2017] starts at 10% this is a very promising result, showing that our approach
is efficient for extremely low request budgets thus fulfilling one of the requirements for applica-
bility to aeronautical systems. Finally, we have included Figure 5.4.2 to give insight as to what
changes in the model for different request budget. Indeed, if the performance of the ensemble
model is very stable, it is hiding the fact that the performance of the local DTs. Selecting recall
as the best illustration of this, we see that the average recall of individual DTs increases from
about 30% to 37% when the request budget increases. This is significant as local DTs would
act in a real-world implementation as back-up in situations where the data link between the
aircraft and the ground would be unavailable, as such, being able to guarantee a certain level of
performance of the local model is important.

Overall, it can be noted that the performances of the Federated Active Learning approach
that we propose are very stable and very close to state-of-the-art level of performance for non-
distributed learning.

5.5 Conclusion

In this contribution, we propose a new applied Machine Learning framework to enable real-time
learning for aeronautical systems. To do so, we identify three necessary characteristics for a so-
lution, review existing solutions for each of them and propose a new method to fulfil all of them
at the same time. Our method is a combination of Active Learning and Federated Learning. It
relies on training confidence decision trees at client level and aggregating them at server level
to create an ensemble model to act as an oracle. We provide a detailed performance analysis of
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our method on a public benchmark and compare our results to state-of-the-art classifiers.
Our approach achieves an accuracy of up to 61% very close to state-of-the-art levels of

performance of 62% despite the additional constraint of distributed learning and with a very
consistent level of performance with label budgets as low as 3% thanks to the initialization step
and the use of the ensemble model.

In general, with regards to the objective of this chapter, we have determined a new method
that fulfils all the requirements for real-time distributed failure prediction of aeronautical sys-
tems by combining existing works in an original way.
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6.1 Thesis outcome

One of the main challenges of the aeronautical industry is to balance the requirements to guar-
antee the highest level of reliability, so that air transport remains the safest way to travel, and
to keep the maintenance costs down in order to survive in a competitive market environment.
Those two requirements are often at odds but predictive maintenance offers a chance to recon-
cile these conflicting goals.

In our work, we have sought to address the problem of applying ML-based failure predic-
tion algorithms to aeronautical systems in real-time. To do so, we determined what are the
unique challenges that prevent offline failure prediction algorithms to be applied to aeronautical
systems. We identified three main challenges:

• The high level of reliability of aeronautical systems leads to extremely rare failures. This
complicates the situation from a ML perspective as it is difficult to draw statistically
relevant conclusions with so few examples and from the learning model perspective it
means that we need to deal with an extreme case of rare event prediction.

• The process to get a new aeronautical system certified and deployed is very demanding
and time-consuming. This implies that we have to deal with the existing data collection as
any suggested change would take too long to be deployed and gather a sufficient amount
of failures.
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• The computational resources available on-board are limited and so is the data link be-
tween the aircraft and the ground. This means that we can neither do all the computations
on-board nor can we move all the data to the ground and do the failure prediction there.
We have to find a hybrid solution.

The contributions of this thesis addressed all these problems point by point. In chapter 3, we
studied the problem of rare event prediction and extreme class imbalance from the perspective
of applied ML. We analysed the performances of existing sampling techniques and learning
models and established that sampling techniques are not performing sufficiently well yet for
the level of imbalance present in aeronautical systems. Superior results are achieved by using
learning techniques that are already resilient to imbalance and the best results are achieved by
Random Forests.

In chapter 4, we took interest in the data format problem. In particular, we studied how
to map the most widespread format in our systems, full-text logs, to a numerical input that
would be suitable for classification algorithms. We proposed a ML pipeline based on a com-
bination of simple natural language processing techniques and showed that it was robust, easy
to parametrize and provided the best results on both our industrial dataset and on public bench-
marks.

Finally, in chapter 5, we addressed the problem of distributed learning with limited re-
sources. We reviewed existing works and proposed a new solution based on the combination
of Active Learning and Federated Learning techniques that is efficient from a computation per-
spective and that offers a way to trade-off model accuracy and communications budget. We then
evaluated our approach on a public dataset to show that it maintains high levels of performance
even when compared to state-of-the-art non-distributed solutions.

Finally, a key point of this thesis that is worth noting is the constant concern of relating
every problem with a public dataset. It is unfortunately not always the case with industrial
applications in general and aeronautical works in particular and the lack of reproducibility it
leads to has been a source of difficulties for us and undoubtedly for other researchers around
the world as well. Consequently, we made a point of always including results with public data
in order to ensure that our contributions can be reproduced, compared with other works and
generally built upon.

6.2 Perspectives

Along this thesis we detailed several questions that we have not been able to investigate in the
timeframe of the thesis. We identified what we consider the most promising problems in this
section.

We have concluded in chapter 3 that existing sampling techniques are not adapted to extreme
class imbalance in the range of 1 : 10, 000 or more. An interesting research direction would
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be to try to figure out the requirements for such a technique to exist and determine if it would
be possible to adapt the existing sampling techniques for that problem or possibly to propose
new sampling techniques for extreme class imbalance. This contribution could be focused
around a comparative performance studies of the different approaches for varying levels of
class imbalance. This could reasonably be achieved in a matter of months.

Regarding our contribution on Federated Active learning, it has only been tested so far
on a public benchmark but a case study of its application to an industrial system, preferably
an aeronautical system, would be interesting. We are currently investigating what would be
the best possible target for this study with our industrial partner and what would be good public
dataset to serve as a proxy for this contribution. We cannot accurately estimate the timeframe for
this as it would highly depend on the specificities of the system chosen but a broad assessment
from previous work done would place it between six months and a year provided a good proxy
dataset is identified.

Finally, this thesis was aimed at producing a failure prediction model but another aspect
of predictive maintenance that we have not addressed is the organisation of the logistics and
business processes. Additional contributions could be made on how to design a predictive
maintenance program and a maintenance policy around the Federated Active Learning method
we proposed. The main questions would probably be centred around i) the real-time aspect of
the failure predictions and how to best take it into account in the aircraft and at the destination
airport, ii) the possibility offered by the failure prediction model to trade-off increased accuracy
of the prediction at the expense of communication costs and how to optimize the use of this
feature from a business perspective and iii) the question of the varying maintenance capabilities
at different airports and how to best take it into account when planning the maintenance of
systems whose failure is not critical. A thorough study of this problem is quite ambitious and
could be a suitable starting point for another thesis.
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Appendix A

Résumé substantiel

A.1 Introduction

A.1.1 Contexte et problématique

Le but de cette thèse est de proposer un système de maintenance prédictive en temps réel adapté
aux contraintes propres aux systèmes aéronautiques. De nombreux capteurs permettent de
mesurer et d’enregistrer la progression de multiples variables à bord. Ces mesures permettent
aujourd’hui d’analyser les pannes s’étant déjà produites. Afin d’améliorer la fiabilité des sys-
tèmes aéronautiques et de réduire leurs coûts de maintenance, il serait préférable d’utiliser ces
mesures afin d’anticiper les pannes. Plusieurs constructeurs et équipementiers aéronautiques ont
déjà adoptés cette approche mais de manière strictement hors-ligne, c’est à dire en exploitant les
données uniquement après atterrissage. Cette application est déjà intéressante en soi, les détails
d’implémentation de ces méthodes n’étant pas publics. Pour aller plus loin, l’objectif de cette
thèse est de proposer est de proposer un modèle de maintenance prédictive de systèmes aéro-
nautiques capable de fonctionner pendant le vol. Cet objectif impose des contraintes fortes sur
les ressources de calcul: là où les modèles hors-lignes peuvent disposer d’autant de ressources
que nécessaires dans le contexte très favorable d’un data center notre modèle embarqué doit
utiliser les ressources disponibles à bord et respecter plusieurs contraintes pour être autorisé
dans l’avion par les autorités de certification aéronautique. La solution que nous explorons pour
contourner ces limitations est l’utilisation d’une liaison de données entre l’avion et le sol. En
effet, il devient courant pour les vols commerciaux d’offrir de la connectivité avec Internet et
il s’agit de l’une des spécialités de l’entreprise accueillant cette thèse. Cette connectivité peut-
être obtenue de différentes manières à l’aide, par exemple, d’une connexion satellite ou d’une
connexion directe air-sol. Le problème qui demeure malgré tout est que peu importe la solution
de connectivité utilisée, comparé aux connexions disponibles au sol, la connexion entre l’avion
et le sol est couteuse financièrement et ne dispose que d’une bande passante limitée. C’est
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pourquoi transmettre au sol l’ensemble des mesures des capteurs embarqués selon le paradigme
du cloud computing n’est pas réaliste. Ainsi certains traitements doivent nécessairement avoir
lieu à bord pour ne transmettre que des données pertinentes. Le cœur de cette thèse est de
déterminer un ensemble de deux modèles d’apprentissage, l’un à bord et l’autre au sol, qui col-
laboreront sur le problème de prédiction d’anomalies et une architecture logicielle capable de
les supporter afin de produire des prédictions aussi précises que possible sans saturer la liaison
de données.

A.1.2 Définitions des concepts généraux et industriels

A.1.2.1 Caractérisations des systèmes aéronautiques

Un système est un ensemble de composants interdépendants formant un tout unifié. On pourrait
définir un système aéronautique comme un système qui se trouve dans un avion. Cette défini-
tion bien que correcte d’un point de vue sémantique est inexacte. L’industrie aéronautique est
soumise à un grand nombre de contraintes réglementaires fixées par des autorités de certifica-
tion qui ont la responsabilité d’autoriser ou non un système à bord des vols commerciaux de
son espace aérien. La nature exacte de ces contraintes varie selon la criticité du système envis-
agé et l’autorité de certification consultée. L’objectif de cette thèse n’est pas de faire une revue
exhaustive de ces contraintes mais il est néanmoins intéressant d’observer que plusieurs carac-
téristiques des systèmes aéronautiques en découlent et sont pertinentes dans ce cadre. Les plus
importantes sont la fiabilité élevée, la nécessité de mesurer et d’enregistrer les performances, la
durée importante des cycles de développement et l’interdépendance des systèmes.

A.1.2.2 Maintenance prédictive

Les approches possibles des politiques de maintenance des systèmes industriels peuvent se
ranger en trois catégories. La plus simple à mettre en place est la maintenance corrective.
Il s’agit d’intervenir uniquement lorsqu’un système tombe en panne. Cela conduit à minimiser
le nombre d’interventions de maintenance et donc les coûts associés mais impacte la fiabilité
des systèmes et dans le cas de systèmes interdépendants, comme une chaîne d’assemblage, peut
générer des impacts au-delà du système étudié. La maintenance préventive vise à remplacer et
réparer les systèmes avant qu’ils ne tombent en panne suivant un agenda fixe basé sur l’étude
de la fiabilité des systèmes en terme de durée de vie. Cette approche permet de diminuer le
nombre de maintenances non planifiées et les impacts des pannes mais conduit à remplacer des
systèmes fonctionnant encore correctement. Elle est préférée dans les circonstances où les con-
séquences d’une panne sont considérées comme inacceptables, par exemple avec des systèmes
médicaux. Enfin la troisième approche à laquelle nous nous intéressons plus particulièrement
dans cette thèse est la maintenance prédictive dont l’objectif est de planifier les opérations de
maintenance "juste à temps", c’est-à-dire juste avant que le système ne tombe en panne, de
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sorte que le nombre d’opérations soient minimisées comme dans l’approche corrective mais
sans laisser le système effectivement tomber en panne comme dans l’approche préventive. La
maintenance prédictive s’appuie sur des mesures de l’état du système par des capteurs. Son
principal défaut est la complexité de sa mise en œuvre. Dans les cas de systèmes complexes et
interdépendants en particulier, une approche formelle se basant sur une étude physique du sys-
tème pour en déduire son état devient rapidement trop complexe nécessitant des connaissances
pointues sur tous les systèmes impliquées et sur leurs interactions. Une approche statistique
peut être employée pour étudier la corrélation entre l’état du système et les résultats mesurés
mais cette approche demande des ressources de calcul considérables dans le cas de systèmes
complexes pour atteindre des niveaux de performance acceptables. Les dernières avancées en
apprentissage automatique permettent néanmoins de manipuler de façon de plus en plus simple
des volumes de données qui auraient été considérés trop massif il y a encore une décennie.

A.1.2.3 Présentation de la thèse

Cette thèse est structurée autour de la problématique de mise en place d’un système de main-
tenance prédictive temps réel de systèmes aéronautiques. Trois principaux problèmes ont été
identifiés pour atteindre cet objectif. Premièrement, la fiabilité des systèmes aéronautiques im-
plique qu’il y a peu de données disponibles concernant les pannes. D’un point de vue statistique
nous sommes donc confrontés à problème de détection d’événements rares. Plusieurs solutions
statistiques existent pour pallier à ce problème. Une première étape de cette thèse sera l’étude
de ces solutions et de leur efficacité. Deuxièmement, les cycles de développement très longs
des systèmes aéronautiques et les coûts financiers associés rendent impossible l’implémentation
de changement dans les systèmes étudiés et plus spécifiquement des paramètres mesurés. La
solution proposée devra donc s’appuyer sur les formats de données existants. En conséquence,
une deuxième étape dans la thèse sera d’étudier comment adapter les méthodes d’apprentissage
automatique aux données disponibles. Enfin, le dernier problème à adresser sera l’apprentissage
distribué entre l’avion et la station au sol. La contribution ici sera un nouvel algorithme pouvant
être exécuté en parallèle entre un hôte disposant de sources de données importantes mais de
ressources de calcul limitées et un hôte avec des ressources de calcul importantes mais aucun
accès aux données récentes sous contraintes de communication.
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A.2 Conclusion

A.2.1 Résultats de la thèse

L’un des grands défis de l’industrie aéronautique est de concilier l’exigence du plus haut niveau
de fiabilité avec la nécessité économique de maintenir les coûts de maintenance à un niveau
raisonnable pour survivre dans un environnement hautement compétitif. La maintenance pré-
dictive offre un moyen de réunir ces deux objectifs contradictoires. Dans cette thèse, nous avons
identifiés trois principaux obstacles à l’application des techniques de maintenance prédictive en
temps réel aux systèmes aéronautiques. Le premier est le haut niveau de fiabilité des systèmes
aéronautiques entraînant des difficultés à l’application de méthodes statistiques par l’extrême
rareté des événements à prédire. Le second est la nécessité de s’adapter aux formats de données
existants souvent éloignés des standards de l’apprentissage automatique afin de ne pas imposer
de changements coûteux à mettre en place financièrement et en termes de temps. Le troisième
obstacle est la nécessité de s’adapter aux contraintes propres de cet environnement distribué
que sont la rareté des ressources de calcul embarqués et la présence d’un budget de commu-
nication maximal. Les contributions de cette thèse adressent chaque obstacle point par point.
Nous avons étudié dans le chapitre 3 les méthodes statistiques dans une situation de prédiction
d’événements extrêmement rares. Nous avons établis que les solutions classiques notamment
d’échantillonnage développées dans des contextes moins difficiles ne sont pas suffisamment
efficaces. Les meilleurs résultats sont obtenus en utilisant des techniques d’apprentissage résis-
tantes au problème de déséquilibre par construction et la meilleure méthode pour notre prob-
lème est celle des Random Forest. Dans le chapitre 4, nous nous sommes intéressés au problème
du format des données. En particulier, nous étudiés comment faire correspondre le format le
plus répandue dans nos systèmes aéronautiques, les journaux d’événements textuels, avec le
format numérique attendu en entrée des méthodes de classification. Nous avons proposé une
chaîne de traitement complète d’apprentissage automatique basé sur une combinaison de méth-
odes simples issues du traitement du langage naturel puis nous avons montré que cette chaîne
de traitement était robuste, simple à paramétrer et produisait les meilleurs résultats à la fois
sur notre jeu de données industriel et sur un banc d’essai publique. Enfin dans le chapitre 5,
nous adressons le problème de l’apprentissage distribué avec contraintes. Nous proposons une
méthode originale basée sur la combinaison de techniques issues de l’apprentissage actif et
l’apprentissage fédéré. Nous évaluons notre solution sur un jeu de données publique et mon-
trons qu’elle maintient des niveaux de performances équivalents aux solutions à l’état de l’art
qui n’intègrent pas les contraintes d’apprentissage distribué. Pour finir, un point clé de cette
thèse que nous souhaitons souligner est la préoccupation constante que nous avons eu de mettre
en avant des jeux de données publiques pour valider nos résultats. Ce n’est malheureusement
pas toujours le cas pour les applications industrielles en général et aéronautiques en particulier
ce qui conduit à des grandes difficultés à reproduire les résultats mis en avant. Cela a été une
source de difficulté pour nous comme ça l’est sans aucun doute pour d’autres chercheurs. En
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conséquence toutes nos contributions incluent des résultats obtenus sur des données publiques
afin qu’elles puissent être reproduites, comparées et généralement servir de base de travail pour
d’autres.

A.2.2 Perspectives

Tout au long de cette thèse nous avons souligné plusieurs questions que nous n’avons pas été
en mesure d’adresser dans le cadre de notre travail. Nous identifions ici les plus prometteuses.
Nous avons conclus dans le chapitre 3 que les méthodes d’échantillonnages n’étaient pas adap-
tés aux situations de déséquilibre de classe extrême. Il serait intéressant d’étudier les conditions
nécessaires à la mise au point de telles techniques en adaptant des techniques existantes ou
en proposant de nouvelles. En ce qui concerne l’apprentissage actif fédéré proposé dans le
chapitre 5, il a été testé uniquement sur un jeu de données publique pour le moment. Nous
souhaitons valider ses performances sur un système aéronautique et travaillons à identifier un
jeu de données candidat prometteur. Enfin, cette thèse a eu pour objectif de proposer un modèle
de prédiction de panne mais un autre aspect de la maintenance prédictive que nous n’avons pas
étudié est l’aspect de la logistique et des processus industriels. Des contributions supplémen-
taires pourraient permettre d’identifier comment mettre en place une politique de maintenance
autour de notre modèle afin de tirer parti de ses spécificités pour maximiser son impact sur les
coûts de maintenance.
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