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Chapter 1
Introduction

1.1 Statistical physics and disordered systems

This thesis takes place in the large context of the study of disordered systems from a statistical
physics point of view. The general idea of statistical physics is to use a probabilistic description
of a system and its interaction with the environment, and study the properties which emerge at
large scales (typically when the number of degrees of freedom becomes very large). The most
interesting properties, at least from a theoretical point of view, are the ones that do not depend
on the details of the probabilistic description, but only on some global settings: symmetries,
spatial dimension, decreasing of correlations, existence of large moments for a distribution, etc.
A well-known example of such an emerging large-scale property is formalized mathematically
with the central limit theorem. It states that the average of a large number of random variables
converges (after proper rescaling) to a Gaussian variable, as soon as the variables are indepen-
dent (or at least weakly correlated), and distributed with the same distribution for which the
second moment exists, i.e. large fluctuations are not too probable.

A physical system is usually defined with the specification of the possible configurations, the
configuration space, and the energy of the system in each of these configurations, the energy
landscape. When the system has a large number of degrees of freedom (for example if the system
is a gas with many particles), it is usually not possible to determine its exact configuration, or
to describe its exact dynamics, due to thermal fluctuations.

In such a situation, the statistical physics approach consists in defining macroscopic states of
the system as probability distributions over the configuration space, which depend only on a few
parameters (e.g. the temperature of the system). This means that when the system is in a given
macroscopic state, we do not know its exact configuration (the positions and velocities of all
particles in gas for example), only the probability for it to be in each configuration. This allows
us to makes the link between the microscopic description of a system and the phenomenological
laws of thermodynamics which govern its macroscopic properties. Ideas of statistical physics
have also inspired other fields of science who deal with collective phenomenon, chaos, etc.

Standard statistical physics is a very successful theory, but not all systems can be described
with a simple energy landscape. Disordered system, in the context of statistical physics, means
that even the energy of each configuration is described by a probabilistic approach. For example,
to study the transport of electrons in a metal, one needs to take into account that the energy of
a given configuration for the electrons depends on the impurities and the defects of the metal
lattice. These are hard to describe exactly, but can be modeled efficiently by a probabilistic
approach, stating for example that the impurities are uniformly distributed in the sample. In
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2 Chapter 1. Introduction

this case, the density of impurities remains the only parameter of the model, compared to all
the spatial positions of the defects needed to define a deterministic energy landscape.

At non-zero temperature, the study of a disordered system involves two levels of randomness:
the energy landscape (i.e. the energy level of each configuration) is itself a random object, and for
each realisation of this landscape the state of the system is defined by a probability distribution,
depending on this energy landscape. The random energy model (REM), developed by Derrida
in [1], is a good toy model to understand the ideas of disordered systems.

At low temperatures, the equilibrium thermodynamics of a system is governed by configura-
tions with the lowest energies, and by the energy barriers between them. In disordered systems,
due to the randomness of the energy landscape, characterizing these low energy configurations
is difficult. This generally leads to the existence of lots of metastable states, i.e. configurations
with an energy level close to the minimal energy one (which is the equilibrium state at zero
temperature), but far away in configuration space. Finding the statistical properties of the equi-
librium state or the metastable states in a disordered system (which are random objects) are
difficult questions, and can be viewed as a special case of extreme-value statistics, which will be
defined later in this introduction.

It is important to note that sometimes, even if a deterministic description of a system is
possible, it can be more interesting to try to understand it using a probabilistic approach, as
the microscopic details of the energy landscape can be irrelevant to the properties studied. A
probabilistic approach can lead to exact predictions with simpler derivations. It is also possible
that a deterministic solution of a problem, with very strong dependence on initial conditions (or
other parameters) has no practical use.

Ideas from statistical physics of disordered systems are now used in a wide range of contexts:
combinatorial optimisation, neural networks, error-correcting codes, financial markets, protein-
folding problems, and more.

1.2 Probability theory and stochastic processes
We now briefly introduce some concepts of probability which are used in this thesis. The main
objects of probability theory are random variables. These are the mathematical formalisations
of experiments with several possible outcomes, for which it is not possible to predict the result,
but only give probabilities for the possible outcomes. Typical examples are the result of flipping
a coin or rolling a dice. These are also historical examples, as probability theory started with
the study of games of chance, and gambling.

If X designs a random variable, and A a subset of the possible outcomes, we will denote the
probability that the event A happens as Prob(X ∈ A), which is a number between 0 and 1.

When X takes its values in R (for example, the temperature of the day with arbitrary preci-
sion), the probability of any event depending on X can be expressed in terms of the probability
density function of X, which we denote P(x) := ∂xProb(X < x). X is said to be a Gaussian
variable with mean µ and variance σ2 if it has the density

P(x) = 1
σ
√

2π
e−

(x−µ)2

2σ2 . (1.1)

In this thesis, we denote average quantities with respect to some random variable X using a
bracket notation: 〈f(X)〉. In the case of a Gaussian variable as defined above, this gives for the
first two moments

〈X〉 :=
∫ ∞
−∞

dxxP(x) = µ , 〈(X − µ)2〉 :=
∫ ∞
−∞

dx (x− µ)2P(x) = σ2 . (1.2)



1.2. Probability theory and stochastic processes 3

For more details on the mathematical formalism of probability theory, and its various applica-
tions, we refer to the good introduction of W. Feller [2].

In physics, when the random variable is the microscopic configuration q of a thermodynamical
system at temperature T , its law (i.e. the probability to be in each configuration which define
the macroscopic state) is constructed from the Boltzmann weight wq = e−

E(q)
T , where E(q) is

the energy of the configuration q (which can also be random in the case of a disordered system).
To obtain a well-defined probability law, we need it to be normalised to one (if we sum over all
the possible configurations). This naturally leads to the introduction of the partition function
of the system

Z =
∑
q

e−
E(q)
T , (1.3)

such that the probability to be in configuration q is wq/Z. While appearing here solely as a
normalisation constant, the partition function is a powerful tool to compute various quantities
on a thermodynamical system. For example, in this thesis we will be able to extract extreme
value statistics using a formulation of the problem in terms of a partition function.

A particular class of random variables are stochastic (or random) processes. Formally, it is a
collection of random variables, indexed by a unidimensional parameter, discrete or continuous,
which we interpret as a time. The existence of this parameter allows us to have an object with
more structure and look, for example, at a dynamical situation. The regularity (continuity,
differentiability) of a stochastic process is a subtle question and in this thesis we use derivatives
even if the mathematical definition of these are sometimes unclear.

There are various ways to define a random process; stochastic differential equations, Markov
chain, random walk. These can be effective models for out-of-equilibrium situations, either tran-
sient or stationary, where a system evolves in contact with a random environment. It allows
us to go beyond equilibrium statistical physics and study diffusion or transport phenomena,
relaxation to the equilibrium and aging. As in the equilibrium case, the randomness of the
microscopic dynamic can have different physical origins, and is usually only an effective de-
scription which try to capture the relevant ingredients of the true microscopic dynamics. For a
more detailed discussion on the possibilities and the limitations of stochastic processes to model
physical situations, we refer to the book of Van Kampen [3].

1.2.1 Random walks and Brownian motion

The simplest stochastic process one can construct is the symmetric random walk. It is defined
with a discrete time and and represents a particle, or a walker, evolving on the (vertical) real
axis. At each time step, the particle either goes up by one unit, or down by the same quantity,
with equal probability. Furthermore the increments are independent (as given by successive coin
toss). The value of a random walk, i.e. the position of the particle at discrete time n, denoted
Xn, is constructed from a sequence of independent and identically distributed (i.i.d.) variables
δX1, δX2, δX3,... as

Xn =
n∑
k=1

δXk, and X0 = 0 . (1.4)

For the standard random walk described above, the distribution of theXk is defined by Prob(δXk =
1) = Prob(δXk = −1) = 1/2. Random walks have a lot of interesting properties, as we will see
through this thesis. One is the possibility to construct a continuous process from it, defined as
the scaling limit

Bt = lim
δt→0

√
2DδtXbt/δtc . (1.5)
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We denote bxc the floor of x (the largest interger smaller than x). Bt is the well-known Brownian
motion, or Wiener process, which we defined here with an arbitrary diffusive constant D. It
was formalized by Einstein in [4] as an effective probabilistic description for the dynamics of a
particle suspended in a gas or liquid, as observed by Brown in 1827. Physically, the movement
of the particle is due to the large number of collisions with the molecules of its environment,
and the diffusive constant D is then related to the molecular, discrete, nature of matter and the
Avogadro number.

The existence of the scaling limit (1.5) , where time scales with δt while space scales with√
δt, allowing us to define a continuous process is very similar to the central limit theorem

mentioned above. The resulting process Bt is Gaussian and does not depend, apart from the
diffusive constant D, on the distribution of δXk, as long as the second moment 〈δX2

k〉 is finite.
The covariance of a Brownian motion is given by

〈XtXs〉 = 2Dmin(t, s) . (1.6)

The limit (1.5) can also be viewed as a physical experiment where the resolution does not
allow us to observe the microscopic dynamics (i.e. the discretness of the evolution). This means
that large-time properties of random walks falling in the universality class of the Brownian
motion (i.e. its increments are independent and have a finite second moment) can be studied
using Brownian motion as an effective model. We will see in the next sections some of the strong
properties of Brownian motion. These are useful both to use Brownian motion as a starting
point to understand physical systems, but also to construct models which go beyond Brownian
motion by relaxing some of the hypothesis used in its construction.

1.2.2 Markov processes

One of the interesting properties of Brownian motion, which is natural from its construction as
a scaling limit of a random walk, cf. Eq. (1.5), is that it is a process without memory. More
precisely, the evolution of the process after time t does not depend on how the process arrived
to its current value Xt. This property is called Markov property, and any process with this
property is called a Markov process.

In analogy with quantum mechanics, it is common to define the propagator P (x2, t2|x1, t1)
of a real valued random process, which is the probability density function for the process Xt to
be at position x2 at time t2, knowing that the process was in x1 at time t1. In the case of a
Markov process, this propagator is very important, as it allows us to construct any probability
density of the process (and then, any observables on the process). If the process is starting from
the origin, i.e. Xt=0 = 0, this gives for t1 < t2 < t3

P(Xt1 = x1, Xt2 = x2, Xt3 = x3) = P (x3, t3|x2, t2)P (x2, t2|x1, t1)P (x1, t1|0, 0) , (1.7)

and the formula can obviously be generalized to an arbitrary number of points, and to processes
with values in a larger-dimensional space, e.g. Xt ∈ Rd. From this, it is clear that the knowledge
of the starting point, or its distribution if it is random, and the propagator completely define a
Markovian process.

The propagator of a Markov process also has the following property, sometimes referred as
Chapman-Kolmogorov equation

P (x2, t2|x1, t1) =
∫ ∞
−∞

dxP (x1, t1|x, t)P (x, t|x2, t2) for any t ∈ (t1, t2) . (1.8)
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On top of these important properties, other tools commonly used in statistical physics are
restricted to Markov processes. To cite a few, we have the master equation and the Fokker-
Planck equation. This last one consists in writing the evolution of the probability density
function for the position of the process as a deterministic partial differential equation. All this
makes Markov processes suitable for exact analytic calculations, and explains why they are so
commonly used in the physics (and other science) literature. The Markov property is also very
useful when dealing with numerical simulations of a random process, as it allows one to store
only the current value of the process. Monte-Carlo simulations are an important example of a
numerical method based on the Markov property. For more details on the properties of Markov
process, as well as a lot of their applications, we refer to [3] and [5].

While we have introduced the Markov property using Brownian motion as an example, it is
important to note that the independence of the increments is not a necessary condition for a
process to be Markovian (but it is sufficient). For example, an Ornstein–Uhlenbeck [6] process
is a Markov process with correlated increments.

In physical situations, or in other fields where stochastic processes play an important role,
one may encounter situations where the history dependence is primordial [7, 8, 9]. This means
that constructing a model using a Markov process is not possible. Then, many of the standard
methods, both to construct and study the model, fail, and results are usually derived case by
case. In the first part of this thesis we consider an important class of non-Markovian processes:
the fractional Brownian motion. This is the object of chapters 2 and 4.

1.2.3 The three Levy’s arcsine laws
Another striking property of Brownian motion is the existence of the three arcsine laws. They
state that for a Brownian motion Bt, with 0 < t < 1 and B0 = 0, three observables Y have the
same cumulative distribution function (1.9), the arcsine distribution, equivalent to the proba-
bility density (1.10),

Prob(Y < y) = 2
π
arcsin(√y) (1.9)

⇔ P(y) = 1
π
√
y(1− y)

. (1.10)

The observables in question are (see Fig. 1.1)

1. First arcsine law: The time that the process Bt is positive, (red in Fig. 1.1),

t+ :=
∫ 1

0
Θ(Bt) dt . (1.11)

2. Second arcsine law: The last time the process is at its initial position, (blue in Fig. 1.1),

tlast := sup {t ∈ [0, 1], Bt = 0} . (1.12)

3. Third arcsine law: The time at which the process Bt achieves its maximum (which is
almost surely unique), (green in Fig. 1.1)

tmax := t, s.t. Bt = sup {Bs, s ∈ [0, 1]} . (1.13)

The historical derivation of these results is by P. Lévy [10]. While these laws are well-studied for
Brownian motion, with many derivations and generalisations to constrained Brownian motion
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Figure 1.1: The three random variables following the arcsine distribution: tmax, in green, is the
time where the process achieves its maximum. tlast, in blue, is the last time the process is at its
starting value X0 = 0. Finally, t+, in red, is the time spend in the positive half space, which is
the sum of the red intervals.

(see for example [11]), little is known about their generalization to other random processes, es-
pecially in the non-Markovian case. The random acceleration process was investigated recently
[12, 13]. Chapters 2 and 3 of this thesis give a new generalization of these laws to an impor-
tant class of non-Markovian processes, namely fractional Brownian motions. These new results
contain scaling properties (i.e. the asymptotic behavior of probabilities) which were already con-
jectured from the persistence exponent (defined in section 1.2.5) and non-trivial predictions in
the bulk. This gives, in most cases, different distributions for Levy’s observables which we were
able to compare with great precision to numerical simulations.

1.2.4 Anomalous diffusion and self-similarity

As we have seen in the previous section, cf. 1.2.1, a large class of stochastic processes behave at
large times like a standard Brownian motion, and as a consequence the second moment of the
position of the particle grows linearly with time: 〈X2

t 〉 ∼ t. This is the signature of a diffusion
process.

This universality is due to the fact that Brownian motion is the only continuous process
with stationary, independent and Gaussian increments. In physical situations, these properties
of the increment are usually verified only on a large enough time scale, but this explains why
this standard diffusion is very commonly seen in nature.

However, there are also interesting situations where experimental data show a non-linear
growth of the second moment, 〈X2

t 〉 ∼ tα, which is a phenomenon usually referred as anomalous
diffusion. The case where α > 1 is referred to as super-diffusion, while α < 1 corresponds to
sub-diffusion. To model such a situation, and obtain an anomalous diffusive process, at least
one of the three fundamental hypotheses of Brownian motion has to be removed. This gives
three main classes of anomalous diffusive process:

• heavy tails of the increments (Levy-flight process) or heavy tails in the waiting time be-
tween increments for continuous-time random walks (CTRW); these processes are non-
Gaussian.

• time dependence of the diffusion constant, which means in the discrete settings that the
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distribution of the increments is time dependent: the process has non-stationary incre-
ments.

• long-range correlations between increments: the process is non-Markovian.

These mathematical properties leading to anomalous diffusion can have various physical ori-
gins. CTRW is a good model for diffusion on a disordered substrate, where the particle may be
trapped for long times in a specific site. Long-range correlations appear naturally when dealing
with spatially extended systems and trying to write an effective dynamics of a single degree of
freedom. For an extensive review on anomalous diffusion from a statistical physics point of view,
we refer to [14]. Other studies on anomalous diffusion can be found in [15, 16, 17, 18].

Anomalous diffusion can be a consequence of a stronger property (but equivalent in the case
of a Gaussian process): self-similarity with index H, an exponent that we will refer as the Hurst
exponent, cf. 1.3. A stochastic process Xt is called H-self-similar if rescaling time by λ > 0 and
space by λ−H leaves the distribution of the process invariant:

λ−HXλt
law= Xt . (1.14)

This property is stronger than anomalous diffusion in the sense that the growth of every moment,
and not only the second one, is governed by the same exponent H: 〈Xn

t 〉 ∼ tnH . The Brownian
motion is self-similar of index 1/2. For an introduction to self-similar processes, we refer to [19].

Self-similarity, also known as scale invariance, is an important notion of statistical physics
which appears also in other contexts [20]. Self-similar geometric objects are the well known
fractals [21, 22], and critical phenomena, or phase transitions, usually lead to a divergence of
the typical length scale, leaving a large window of scale invariance for the system between its
microscopic scale and its macroscopic one.

1.2.5 Extreme-value statistics and persistence
When dealing with random objects, the first and most natural questions to ask are related
to averaged quantities or typical behavior. These questions are obviously an important step
in understanding and comparing stochastic models to experiments or data, but there are also
situations were the interest lies in the extremes or rare events. As we already mentioned in
section 1.1, the physics of disordered systems at low temperatures is governed by the states
with a (close to) minimal energy in the random energy landscape. In other contexts, extreme
weather conditions are of large importance in the dimensioning of infrastructures such as dams
and bridges. More generally, extreme-value questions appear naturally in many optimization
problems.

The simplest and first case studied for these extreme-value statistics (EVS) was the distri-
bution of the maximum of N independent and identically distributed (i.i.d.) random variables,
which is now well understood in the large-N limit thanks to the classification of the Fisher-
Tippett-Gnedenko theorem: Depending on the initial distribution of the variables, the rescaled
maximum follows either a Weibull, Gumbel or Fréchet distribution. These results are reviewed
in [23] within a mathematical approach. For a physical presentation of the extreme value statis-
tics, its links with statistical physics of disordered system, and more specifically the replica-trick,
we refer to [24]. Another physical interpretation of EVS in the context of depinnig of a particle
in disorder, where the three limiting distributions are relevant, can be found in [25].

The case of strongly correlated variables is a natural extension to this problem, as many
physically relevant situations present deviations from the i.i.d. case. Lots of results were derived
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for random walks and Brownian motion [26], the free energy of a directed polymer on a tree
[27], path length on trees [28] or hierarchically correlated variables [29]. The distribution of the
largest eigenvalue is also a central question in random matrix theory [30, 31]. A very interesting
case of a 1D Hamiltonian with disorder is studied in Ref. [32], where the transition between a
strongly localised phase to a delocalised one corresponds in the EVS language to ”breaking of
the Gumble universality class": In the localised phase, the eigenvalues of the Hamiltonian are
independent while the delocalisation induces level correlations, leading to a new result for the
ordered statistics of correlated variables, obtained explicitly in Ref. [33].

As we will see in more details in section 1.3.5, Pickands and later Piterbarg were able to de-
rive interesting results for the extreme-value distribution of generic Gaussian processes, leading
to the introduction of the universal Pickands constants. This will be introduced in more details
in section 1.3.5.

Extreme-values statistics is also closely linked to other interesting observables one can define
on a stochastic process. A natural quantity one can investigate is the distribution of the time it
takes to reach a certain level, known as the hitting time. If for simplicity we choose this level to
be 0, the probability that a continuous process Xt did not reach 0 up to time T (i.e. the hitting
time is larger than T ) is called the survival probability, usually defined with a fixed starting
point x > 0:

S(T, x) = Prob(Xt > 0 , ∀t ∈ [0, T ] |X0 = x) . (1.15)
The asymptotic properties of this object have motivated lots of work. In many cases of interest
the large-T behavior of the survival probability has an algebraic decay, independent of x and
with an exponent θ, called the persistence exponent

S(T, x) ∼
T→∞

T−θ . (1.16)

This exponent is non trivial and difficult to compute in many situations, even for a simple diffu-
sion with random initial conditions [34]. An extensive review of these questions, in the context
of statistical physics, can be found in [35]. For a mathematical approach of some other recent
developments, we refer to [36]. All these objects are notably difficult to investigate in the case
of non Markovian processes. Some other studies in this case can be found in Ref. [37, 38, 39, 12].

To make the link with the previous section, it is useful to note that if X(t) is a self-similar
process of index H, one can construct a stationary process X̃(s) by defining

X̃(s) := e−HsX(es) . (1.17)

This duality is at the basis of several studies of the persistence exponent, where the algebraic
decay of the survival probability of the self-similar process is transformed to an exponential
decay in the stationary process. This is used in [40, 41, 34, 42, 43, 44, 45].

For example, if we apply the transformation (1.17) to the standard Brownian motion Bt, we
obtain a Gaussian process B̃(s) with correlator〈

B̃(s1)B̃(s2)
〉

= exp
(
−1

2 |s1 − s2|
)
, (1.18)

which is nothing but an Ornstein–Uhlenbeck process [6].
Another natural extension of the extreme-values statistic is to look at extreme values not

defined relative to a fixed threshold, but relative to the previous extremes of the process. This
leads to the statistics of records, with many new interesting questions. The notion of records has
taken a large importance in the last decades, and it is quite common to see sports performance
or climate change to cite a few, analyzed in terms of records. Some recent studies on this topic
can be found in [46, 47, 48, 49, 50].
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1.3 Fractional Brownian motion (fBm)

Figure 1.2: Two realisations of fBm paths for different values of H, generated using the same
random numbers for the Fourier modes in the Davis and Harte procedure [51]. Some of the
observables studied in this thesis, the maximum value m and the time when it is reached tmax,
are represented.

1.3.1 Definition and properties
Fractional Brownian motion is a generalization of standard Brownian motion, introduced previ-
ously in section 1.2.1. It has two of the main properties of standard Brownian motion, namely,
it is a Gaussian process Xt and its increments are stationary, i.e. the distribution of Xt − Xs

depends only on the time difference t − s. However, relaxing the condition of independence
of the increments (so the process can be non-Markovian) allows the process to be self-similar
of arbitrary index H (between 0 and 1), contrary to the fixed value of 1/2 for the standard
Brownian case. Following the historical introduction of Mandelbrot and Van Ness in [52], the
self-similarity index H of a fBm is called the Hurst exponent.

As a Gaussian process, a fBm Xt is defined via its mean 〈Xt〉 = 0 and covariance function
(or 2-point correlation function)

〈XtXs〉 = |s|2H + |t|2H − |t− s|2H . (1.19)

This constraints the process Xt to start at 0, X0 = 0, but we can also consider a fBm Yt starting
at a non-zero value y = Y0, simply defined as Yt = Xt + y, with Xt as above. As we said, the
case H = 1/2 correspond to standard Brownian motion; there the covariance function (1.19)
reduces to 〈XtXs〉 = 2 min(s, t) and it is the only value of H where the process is Markovian.
The correlations of the increments are given by

〈∂tXt ∂sXs〉 = 2H(2H − 1)|t− s|2(H−1). (1.20)

For H > 1/2 they are positively correlated, whereas for H < 1/2 they are anti-correlated. As
we can see in Fig. 1.2, this makes the paths of a fBm with H small very rough, while for large
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H, the paths are more smooth. Mathematically this is formalized via Hölder continuity: the
fBm paths Xt are almost surely Hölder-continuous of any order less than H.

The stationarity of the increments can be checked from the covariance (1.19) by computing
the second moment

〈(Xt −Xs)2〉 = 2|t− s|2H , (1.21)

and as Xt −Xs is a centered Gaussian variable, it proves that its full distribution depends only
on |t− s|.

In order for the process Xt to be well-defined, its covariance function (1.19) has to be a
continuous and positive-definite function. This constraints the possible values of H, namely
0 < H ≤ 1. To see this, we can look at the covariance matrix of the process taken at time t1 = 1
and t2 = 2: (

〈XiXj〉
)
ij

=
(

2 22H

22H 22H+1

)
(1.22)

The diagonal terms are always positive, while the determinant 22H+2−24H is negative if H > 1.
This implies that one of its eigenvalues is negative. This is not possible for a Gaussian covariance
matrix.

The limiting case H = 1 is a linear process with a single degree of freedom, its Gaussian ran-
dom slope X: Xt = Xt. In the other limit, when H → 0, the correlations become logarithmic,
and there is no unique definition of a limiting process corresponding to H = 0. Log-correlated
Gaussian fields are an active topic of research, both in the mathematics and physics community.
Recent work can be found in Refs. [53, 54].

The study of the extreme-value statistics for fractional Brownian processes started with Sinai
[55], and led few years later to the derivation of the persistence exponent (1.16) for the fBm
by Molchan [56] : θ = 1 − H, a very non trivial result cited by Nourdin in [57] as one of the
most beautiful results about fBm. In the physical literature, this result was guessed a few years
earlier using heuristical arguments by Krug et al [40, 58]. Note that this topic is not closed, as
the error terms, i.e. bounds on the subleading corrections in the rigorous proofs of Eq. (1.16)
for the fBm seems still far from optimal. Aurzada gave a recent improvement in this direction
[59], as well as an extension to moving boundaries in [60]. In this thesis, chapter 2, various
observables related to extreme-value statistics for fBm are considered, and their distributions
are computed with a perturbative approach around standard Brownian motion. This allows us
to check some scaling behavior involving the persistence θ and go beyond.

And finally, we note that even if it will not be used in this thesis, the links between fBm
and stochastic integration is an active topics in the mathematical community. It is for example
possible to define fBm as the integration of a deterministic kernel with respect to a standard
Brownian motion. Stochastic equations defined with a fractional Brownian noise (the formal
derivative of a fBm) are also interesting for various reasons, and difficult from a theoretical
point of view, due to the lack of the Martingale property. All these directions of studies are well
presented in the book of Nourdin [57].

1.3.2 History and applications

The history of fractional Brownian motion started with a study by Kolmogorov [61], even if
the model was not clearly defined. Then, Hurst showed while studying the Nil river, as well as
other hydrological systems, that long range dependence is a key factor to understand statistics
of certain time series, notably via the introduction of the rescaled range observable [62]. This
led Mandelbrot and Van Ness to name after him the parameter of their model of self-invariant
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Gaussian process with stationary increments, the fractional Brownian motion, defined in its final
form in [52].

Interestingly, several processes commonly used in physics, mathematics, and computer sci-
ence belong to the fBm class. For example, it was recently proven that the dynamics of a tagged
particle in single-file diffussion, cf. [63, 64, 65], has at large times the fBm covariance function
(1.19) with Hurst exponent H = 1/4. Experimental realisations of single-file diffusion can be
found in [66, 67].

Anomalous diffusion, already discussed in section 1.2.4, is another interesting property of
fractional Brownian motion. The fact that the index of self-similarity H of a fBm is a free
parameter allows us to model situations where the second moment grows non-linearly with
time: 〈X2

t 〉 = 2t2H , both for super diffusion and sub-diffusion.
Other applications of fBm can be found: diffusion of a marked monomer inside a polymer

[17, 68, 69, 70], polymer translocation through a pore [17, 71, 72, 73], finance (fractional Black-
Scholes, fractional stochastic volatility models, and their limitations) [74, 75, 76], telecommuni-
cation and network [77], granular materials [78], in top of the historical application to hydrology
[79, 80].

Let us now discuss how extended Markovian systems lead to a non-Markovian dynamics
when a single degree of freedom is considered. As a simple example we consider the Edwards-
Wilkison dynamics for an interface (or a polymer) parametrized by a function h of x, which
evolves with time according to the dynmaics

∂th(x, t) = ∆xh(x, t) + ξ(x, t) . (1.23)

This is a first-order differential equation with respect to time. The random noise ξ is uncorrelated
in the t direction and Gaussian. This implies that the evolution of the whole system is Markovian.

If we now choose a specific point x0, and look at the evolution of hx0(t) = h(x0, t), the
Markovian nature is lost. This can be derived by first looking at (1.23) in Fourier domain:

(∂t + q2)ĥ(q, t) = ξ̂(q, t) . (1.24)

where the noise has now correlations 〈ξ̂(q, t)ξ̂(q′, t′)〉 = 2πδ(q + q′)δ(t − t′), assuming that the
initial noise ξ(x, t) is uncorrelated in both x and t directions, and that space is unidimen-
sional. For each values of q, the equation (1.24) now reduces to the evolution equation of an
Ornstein-Uhlenbeck process [6] and allows us to express the correlations of the solutions in
Fourier variables, assuming we start with flat initial conditions h(x, t = 0) = 0, and t1 < t2:

〈ĥ(q1, t1)ĥ(q2, t2)〉 = 1− e−2q2
1t1

2q2
1

e−q
2
2(t2−t1)(2π)δ(q1 + q2) . (1.25)

This expression is not symmetric with respect to q1 ↔ q2 because of the time ordering (t1 < t2).
After two inverse Fourier transformations, which reduce to a simple integration over q, we can
obtain the correlations of the process at a point x0:

〈hx0(t1)hx0(t2)〉 = 1
2π

∫
q

1− e−2q2 min(t1,t2)

2q2 e−q
2|t2−t1|

= 1
2
√
π

(√
t1 + t2 −

√
|t1 − t2|

)
. (1.26)

We see here the appearance of a non-trivial diffusion exponent : 〈hx0(t)2〉 ∼ t1/2. But this process
is not self-affine due to the initial conditions. However, if we look at the large-time behavior of
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this process, the correlation function of its increments becomes exactly the correlation function
of a fBm, Eq. (1.19), with Hurst exponent H = 1

4 , as shown in [40]. This can be interpreted as
follows for a very large polymer (with L2 >> t, where L is the number of monomer): At large
times, the polymer is in an equilibrium thermal state, and has forgotten its initial condition.
Thus if we start with a polymer in thermal equilibrium, each of its monomers will perform a
fBm with Hurst exponent 1/4.

Depending on the space dimension, the elasticity kernel (the Laplacian term in Eq. (1.23)),
and the spatial correlations of the noise, fBm with other values of the Hurst exponent can emerge
from this simple dynamic [40, 70]. The emergence of non-Markovian random processes and in
particular of a fBm process is an important motivation for this thesis.

1.3.3 Numerical simulations

The absence of Markov property makes simulations of fractional Brownian motion less straight-
forward that for a standard Brownian motion. Various methods have been developed depending
on the objective: exact or approximated, with a fixed total length or not, etc. For a good
presentations of these, and a lot of details, we refer to [51] and [81].

In this thesis, we test most of our analytical results on fBm with numerical simulations. The
nature of observables we investigate gives a fixed length to the paths we need to generate (cf.
the three arcsine laws). In this situation, the Davis and Harte algorithm is the most suited, as
it is exact (cf. section 2.I) and fast, path with N discrete points are generated in a time of order
N ln(N).

1.3.4 Fractional Brownian bridges

When studying random processes Xt in a time interval [0, T ], quite generally the initial value X0
is known, and the endpoint XT is itself a random variable determined by the random process.
On the other hand, there are also cases when one knows the endpoint XT . These processes are
referred to as bridges. Fractional Brownian motion bridges, with an endpoint chosen as X1 = 0,
are presented on Fig. 1.3 for different values of H.

Bridges are useful building blocks in constructing more complicated observables; we will see
an application of this idea when looking at the positive time of a process, cf. section 3.2. They
are also commonly used in constructing refinements of random walks, e.g. for financial modeling
[82]. Finally, they appear as the difference from the asymptotic limit in the construction of the
empirical distribution function [83].

For a Brownian motion bridge (H = 0.5) terminating at its starting point after time T ,i.e.
X0 = XT = 0 both tmax and t+ corresponding to the observables of the first and third arcsine
laws and defined in section 1.2.3, have a uniform distribution [10]

Pbridge
H=1/2(tmax) = Pbridge

H=1/2(t+) = 1
T
. (1.27)

This is in contrast to the case of a Brownian motion with a free endpoint corresponding to the
Arcsine law given in (1.10):

P free
H=1/2(t = tmax) = P free

H=1/2(t = t+) = 1
π
√
t(T − t)

. (1.28)

These two results, as well as a way to interpolate between them can be found in Ref. [11]. For
the maximum value m, on the interval [0, T ], the probability distributions of the bridge case
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Figure 1.3: Examples of fBm bridges for different values of H, generated from the same random
numbers using the Davis and Harte procedure [51]. H = 0.25 in red (outmost curves) to
H = 0.875 in blue (innermost), with increments of 1/8.

also differ from the free case:

Pbridge
H=1/2(m) = 2m

T
e−

m2
T Θ(m) , (1.29)

P free
H=1/2(m) = e−

m2
4T

√
πT

Θ(m) . (1.30)

In chapter 4, we extend these results to the case of a fBm, giving the expression of the
distribution of t+, tmax and m in an expansion in ε = H − 1

2 .

1.3.5 Pickands constants

The properties, and particularly the asymptotics, of the distribution of the maximum of Gaussian
processes has been well studied in the mathematical and physical literature [84, 43, 44]. For Xt

a stationary centered Gaussian process, whose covariance function verifies, for some α > 0 and
C > 0, the short time asymptotic

r(t) = 〈XsXt+s〉 = 1− C|t|α + o(|t|α) , (1.31)

Pickands proved in [85] the following asymptotic:

Prob
(

max
t∈[0,T ]

Xt > u

)
' C

1
αHαTu

2
α
e−u

2

√
2πu

when u→∞ . (1.32)

This asymptotic probability is proportional to T , as the events corresponding to large value of
the maximum are localized in time, and can appear anywhere in the interval [0, T ]. The constant
C can be absorbed via a rescaling of time. This yields several non-trivial predictions: first the
dominant term in this asymptotic is Gaussian, which is quite intuitive and follows the Borell
lemma [86]. But this also predicts the power law prefactor u2/α and its universal amplitude,
which is now known as the Pickands constants Hα. It is important to note that these constants
depend only on α, and not on the precise nature of the process Xt, which gives this results a
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strong universality. In his seminal paper, Pickands gives the expression of these constants in
term of a fBm Xt of Hurst exponent H = α/2:

Hα = lim
T→∞

1
T

∫ ∞
0

dmem Prob
(

max
t∈[0,T ]

χt > m

)

= lim
T→∞

1
T
〈emaxt∈[0,T ] χt〉 with χt := Xt − |t|α . (1.33)

This result has been extended by Piterbarg in 1978, where he relaxed the stationarity condi-
tion to arrive at an even more universal statement. The hypothesis are now the following: Xt is
a continuous Gaussian process defined for t ∈ [0, T ], with a unique time t0 ∈ (0, T ) of maximal
variance, which we normalise to one for simplicity:

〈X2
t 〉 < 1 ∀t 6= t0 and 〈X2

t0〉 = 1 . (1.34)

We suppose that close to t0, the squared variance verifies

〈X2
t 〉 = 1− a|t− t0|β + o

(
|t− t0|β

)
when t→ t0, (1.35)

and the covariance

〈XtXs〉 = 1− |t− s|α + o (|t− s|α) when s, t→ t0 , (1.36)

which defines two exponents α > 0 and β > 0 and a constant a > 0. In this situation, and
contrary to the stationary case, the large values of the maximum are always reached close to t0,
which naturally remove the dependence on T in the asymptotics. If α > β, which means that
the concentration of the variance is stronger than the decay of the correlations, it reduces to the
same asymptotic as a single Gaussian variable, namely

Prob
(

max
t∈[0,T ]

Xt > u

)
' e−

u2
2

√
2πu

when u→∞ . (1.37)

The most interesting case corresponds to β > α, when both the correlations and the variance
matter, and we have the following asymptotic, cf. [84],

Prob
(

max
t∈[0,T ]

Xt > u

)
'

2HαΓ( 1
β )

βa1/β u
2
α
− 2
β
e−

u2
2

√
2πu

when u→∞ . (1.38)

The Pickands constants (1.33) appear again, which makes it a central quantity in the study of
Gaussian processes. For the derivation of these results, (1.32), (1.37) and (1.38), and some other
important concepts in the study of Gaussian process, and particularly their extremes, we refer
to [84]. In a more physical context, the Pickands constants and the related theorem presented
here were used in the study of fluctuating interfaces in [87]. More recent developments on this
topic can be found in [88, 89, 90, 91]

The question of how to compute the Pickands constants remains. Despite its importance
in the previously mentioned theorem, and up to now, only two of the values of Hα are known
analytically:

H1 = 1 and H2 = 1√
π
. (1.39)

The first value, when α = 1, can be computed because the fBm of Hurst exponentH = α/2 = 1/2
reduces to a standard Brownian motion. The second value corresponds to the case where the
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fBm is simply an affine process, i.e. a straight line of random slope. For other values of α the
question is still open, and only some bounds exist [92].

This give numerical simulations a particular importance in the study of Pickands constants.
However, straightforward simulation, using the original definition of Eq. (1.33), is quite unstable
as the convergence to the large-T limit is slow (T−1/2 in the case α = 1) and the variance of the
observable emax zt is large [93]. Recently, Dieker and Yakir [94] gave a new representation for
Pickands constants, more suitable to numerical simulations, especially for α ≥ 1. The results
obtained in their article seem to be the best estimation up to date for Pickands constant. The
new expression of Pickands constant they built and used is

Hα =
〈
emaxt∈R χt∫∞
−∞ dteχt

〉
, (1.40)

with the same process χt as defined in Eq. (1.33).

In chapter 5 we will extand our study of fractional Brownian motion to introduce drift. This
allows us to study observables related to the process zt and we will be able to expend the value
of Pickands constant arround its known value at α = 1, leading to a new exact result for the
Pickands constants with α close to 1:

Hα = 1− γE(1− α) +O(1− α)2 . (1.41)

1.4 Elastic interfaces in disordered media

1.4.1 Generical ideas

Elastic interfaces are a simple model of disordered systems where the system studied is an in-
terface, i.e. a line or a surface in usual experimental situations, which have some form of elastic
energy and thus tend to remain flat. In order to treat this with a simple mathematical formula-
tion, we assume that the interface can be described as a function, usually called displacement or
position, u(x) with x ∈ Rd. d is the internal dimension of the interface: d = 1 for a line, d = 2
for a surface, etc. This description excludes overhangs and dislocations from the discussion. To
simplify notation, we will also write variables as indices: ux := u(x).

If we consider the equilibrium situation, the energy of the system can be written as the sum
of two terms:

E[ux] = c

2

∫
x
(∇xux)2 +

∫
x
V (ux, x) . (1.42)

The first one expresses the elastic energy (in the case of standard short-ranged elasticity) which
is locally proportional to the curvature of the surface, and c is the elastic constant. The second
term models the interaction of the interface with a quenched (i.e. which does not change with
time) disordered environment. This is a random field, the extension of random processes when
the parameter is a multidimensional variable, depending both on the internal variable x and the
position of the interface ux at this point. For simplicity, we assume that this random field is
Gaussian and has two-point correlation function of the form〈

V (u, x)V (u′, x′)
〉

= R(u− u′)δd(x− x′) . (1.43)

Considering uncorrelated disorder in the x direction is natural when we look at situation where
the interface is rough, i.e. 〈

(ux − uy)2
〉
∼ |x− y|2ζ , (1.44)
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with ζ < 1, such that the elasticity dominates over disorder at small scale.
For the model to be well defined, it is usual to add a confining term to the energy of the

interface, for example in the form of a quadratic potential m2

2 (ux − w)2, such that the position
of the interface remains bounded, as in any realistic situation. The curvature of the potential is
m and w is its center.

Understanding the zero temperature behavior of this model is linked to the research of the
minimal energy Etot = E[ux] + m2

2 (ux − w)2, as a function of w, over all the possible config-
urations x 7→ ux of the interface. This is a good example of extreme-value statistics problems
appearing in the statistical physics of disordered system. This also has an interesting mapping
to Burgers equation with random initial conditions [41].

It is possible to consider an overdamped dynamics (out of equilibrium) for the same model
(i.e. the inertia of the interface is negligible) at zero temperature, with some friction coefficient
η. The displacement of the interface is now a function of the time t and space x, and denoted
uxt. Its evolution can be modeled with a stochastic differential equation, which writes

η∂tuxt = c∇2
xuxt + F (uxt, x) +m2(wt − uxt) . (1.45)

The random force is related to the random potential of the static model by F (u, x) = ∂uV (u, x),
but it is also possible to consider a dynamics which does not have a static equivalent (when the
force is non-potential). It is then useful to introduce the force force correlator ∆〈

F (u, x)F (u′, x′)
〉

= ∆(u− u′)δd(x− x′) . (1.46)

The last term of Eq. (1.45) is the confining potential already introduced in the static case, and
acts as a driving for the interface if its center wt is time dependent. To model a non-zero tem-
perature dynamics, we simply need to add a white noise (both in t and x) to Eq. (1.45), but
this case will not be considered in this thesis, and its analytical treatment is very hard.

As we will see, this simple model of elastic interfaces exhibits a lot of complex features due
to the competition between elasticity (which tends to flatten the interface) and the disorder
(which tends to make it rough). In the dynamical situation and for generic disorder, the motion
consists in avalanches, i.e. bursts of movement localized in time, between which the interface is
pinned, i.e. blocked by the disorder. We refer to [95] for a more detailed introduction on elastic
interfaces in disordered media.

1.4.2 Some applications and experimental realisations
Consider a 2D Ising box, with an external field imposed on two opposite boundaries represented
on figure 1.4. As in a typical metallic sample, the lattice contains impurities: some missing spins
(denoted by a circle) and some random-field disorder for some other vertex, i.e. vertex where
the sign of the spin is imposed by an external field (denoted by a bold sign on the figure). The
boundary conditions (with a different sign on each side) generate typical configurations where the
spins are separated into two domains. The interface between these two domains, represented by
a dotted line on the figure, is a good example of an elastic object as the interaction between spins
gives an energy proportional to the surface. In the continuous limit, such a magnetic sample is
then well analyzed with the model presented in the previous section, where the random potential
V represents the impurities of the metalic lattice. And varying the strength of the external field
is equivalent to a driving of the interface.

The crackling electromagnetic signal emitted when slowly magnetizing a ferromagnet, cor-
responding to the growth of one of the magnetic domain into the other and observed by H.
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Figure 1.4: A 2D Ising box, with a domain wall (dashed line) in the presence of disorder (bold
signs for random-field disorder and dots for missing spin) and opposite boundary conditions at
the top and bottom of the box.

Barkhausen in 1919 [96], can then be understood as the avalanches of an interface under quasi-
static driving. For more recent experiments related to magnetic domain walls and their dynamics
we cite [97, 98], and [99] is a good review of the concepts involved.

Other examples of systems described using the model of an elastic interface slowly driven
in a random medium are: fluid contact lines [100], crack fronts in fracture [101, 102], strike-slip
faults in geophysics [103], fronts of chemical reaction in porous media, and many more [104, 105].
Note that some of these experimental setups present interfaces with long-range elasticity, which
requires to change the Laplacian term in (1.45) to an non-local operator.

The model of elastic interfaces in random media, which allows us to investigate systems
developing rough surfaces and avalanche dynamics, is then important both conceptually and in
applications.

1.4.3 Functional renormalisation
The full model (1.45) of an interface of internal dimension d in presence of realistic short-ranged
disorder, i.e. ∆(u) in Eq. (1.46) decays to 0 for large u, is difficult to treat analytically and
requires methods such as the Functional Renormalization Group (FRG) [106, 107, 108]. The
idea is first to define the effective disorder correlator,

∆eff(w1 − w2) = 〈F (ux(w1), x)F (ux(w2), x)〉 , (1.47)

where ux(w) is the equilibrium configuration in the static case, or the left-most metastable
configuration in the dynamic case, given that the confining potential is centered in w. The FRG
follows its flow as the curvature of the confining potential m is sent to 0, in order to study the
large scale properties of the model. The limit of m → 0 allows the interface to explore larger
and larger portions of the disorder to find its most favorable position (i.e. the lowest energy
configuration in the equilibrium case).

When the dimension d of the interface is larger than a critical value, d > duc, this effective
disorder correlator flows to zero, i.e. the disorder becomes irrelevant and the interface is flat at
large scales. Note that duc = 4 for short-ranged elasticity and duc = 2 for long-ranged elasticity.
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Using standard ideas of renormalisation theory, it is possible to compute the effective disorder
correlator at large scale for d ≤ duc in a perturbative expansion in ε = duc − d. One of the
key features of this effective disorder correlator (both for the statics and the dynamics) is the
existence of a cusp at u = 0, i.e. ∆′eff(0+) 6= 0 even if the microscopic disorder is smooth [108].
This is important both for the theoretical treatment of the model (as it gives a non analytical
field theory) and for its physical interpretation, as this cusp is directly related to the existence
of metastable states and avalanches.

Once the effective disorder correlator is known, several observables can be investigated. For
details on the functional renormalisation formalism and some of its recent applications, we refer
to [109, 110, 111, 112, 113, 114].

1.4.4 The mean field model and the Brownian force model

A simpler version of the model presented in Eq. (1.45) is the so-called Brownian force model
(BFM) introduced in [112, 115, 116, 117]. The BFM is defined with the dynamical equation
(1.45) by choosing the disordered forces F (u, x) as independent (in the x direction) Brownian
motions, i.e.

〈F (u, x)F (u′, x′)〉 = 2 min(u, u′)δd(x− x′) (1.48)

This model is not stationary in the u direction (as the correlator is not a function of u − u′),
contrary to what we expect from a realistic model, but it is very interesting in several respects:
first it is exactly solvable, and several avalanche observables have been calculated, as discussed
in chapter 6 or in [95]. Second, it was shown recently [115, 117] to be the appropriate mean-field
theory (i.e. d ≥ duc) for the space-time statistics of the velocity field u̇xt (i.e. the derivative with
respect to time t of the displacement field uxt) in a single avalanche for d-dimensional interfaces
close to the depinning transition as it reproduces the main feature of the effective disorder of a
realistic model: its cusp, cf. previous section.

Remarkably, when considering the dynamics of the center of mass of the interface, it repro-
duces the results of the simpler ABBM model (in reference to its authors Alessandro, Beatrice,
Bertotti and Montorsi), a toy model for a single degree of freedom (a particle), introduced
long ago on a phenomenological basis to describe the Barkhausen experiments presented earlier
[118, 119] and much studied since [97, 120, 116]. Last but not least, the BFM is an exact fixed
point of the flow equations of the FRG [116], and it is stable, even for d < duc, but it requires
a quite unphysical infinite range correlator for the disordered force. On the other hand, it is
also the starting point for the calculation of avalanche observables beyond mean-field, i.e. for
realistic short-ranged correlated disorder forces, as it corresponds in the field theory language
to the resummation of all tree diagrams [115, 117].

The key property which makes the BFM (and the ABBM) model solvable is that the disorder
is taken to be a Brownian random force landscape. Since it can be shown that under monotonous
forward driving the interface always moves forward (Middleton’s theorem [121]), the resulting
equation of motion for the velocity field is Markovian, and amenable to exact methods, as
presented in chapter 6.

Despite being exactly solvable, the explicit calculation of avalanche observables in the BFM
requires solving a non-linear instanton equation and performing Laplace inversions, which is not
always an easy task. Global avalanche properties, such as the probability distribution function
(PDF) of global size S, of duration, and of velocity have been obtained for arbitrary driving [95].
Detailed space time properties however are more difficult. In Ref. [117] a finite wave-vector ob-
servable was calculated, demonstrating an asymmetry in the temporal shape. More recently, in
Ref. [122], the joint PDF of the local avalanche size at all points was obtained for the BFM, and
from that, the spatial shape of an avalanche in the limit of large aspect ratio S/`4 was derived,
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where ` is the spatial extension of an avalanche, i.e. the range of points which move during an
avalanche. This is an important observable accessible in experiments, but not well studied up to
now. Even the fact that an avalanche has a finite extent, instead of an exponentially decaying
tail in its spatial extension is a non-trivial result, which up to now was only proven for very
large avalanches in the BFM.

In this thesis, chapter 6, we show that this extension is indeed finite in the BFM, and we
give its distribution, in agreement with the exponent we can extract from scaling arguments.
We also calculate further distributions of observables for the BFM which contain information
about local properties, such as the joint density of global and local avalanches. We consider
various protocols, where the interface is either driven uniformly in space or at a single point; in
the latter case we identify new universal exponents characterizing the small scale behavior of
the avalanche distribution, which are gathered in table 6.1.
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Chapter 2

Extreme-value statistics of fractional
Brownian motion

2.1 Presentation of the chapter

This chapter is based on joint work by K. J. Wiese and myself, published in two articles [123, 124].
Large portions of these articles have been used with only minor changes. We study here the
extreme-value statistics of a fBm, a generalisation of Brownian motion presented in section
1.3 of the introduction. The structure is as follows: Section 2.2 introduces the path-integral
formulation of the extreme-value statistics, followed by its perturbative expansion around the
markovian case, with ε = H − 1/2 as a small parameter and where H is the Hurst exponent of
the process. This defines the main integrals to be calculated, for which we give a diagrammatic
representation. As the calculations are rather tedious, they are relegated to appendix 2.C.

Section 2.3 presents our results: We start by recalling scaling relations in section 2.3.1, before
introducing our most general formula, the probability to start at m1 > 0, to reach the minimum
x0 ≈ 0 at time time t, and to finish at time T > t in m2 > 0. This allows us to derive several
simpler results: First the distribution of times when the maximum is achieved, for a Brownian
known as the third arcsine law (section 2.3.3). Second, the distribution of the value of this
maximum. And third, the joint distribution of maximum, and the time when this maximum is
taken.

Extensive numerical simulations for different values of H test these analytical predictions
in section 2.4 and give very good agreement with the analytical prediction, even far from the
expansion point H = 1/2.

Conclusions of this chapter are given in Section 2.5, followed by several appendices: Appendix
2.A gives details on the perturbation expansion. Appendix 2.B reviews useful results from [125],
including a new derivation of the latter. Appendix 2.C calculates the main new, and most
difficult, contribution. Appendix 2.D gives details on the corrections to the third Arcsine Law,
while for the attained maximum and its cumulative distribution this is done in appendices 2.E
and 2.F. Appendix 2.G gives a list of used inverse Laplace transforms. Finally, in appendix
2.H is verified that the second cumulant is correctly reproduced, and appendix 2.I presents the
algorithm used to generate samples in numerical simulations.

21
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2.2 Perturbative approach to fractional Brownian motion

2.2.1 Path integral formulation and the action

Following the ideas of [126, 127, 42, 125], we start our study of the extreme-value statistics of
the fBm with a path-integral Z+ from which several distributions will be deduced,

Z+(m1, t1;x0;m2, t2) =
∫ Xt1+t2=m2

X0=m1
D[X] Θ[X] δ(Xt1 − x0) e−S[X] . (2.1)

It sums over all paths Xt, weighted by their probability e−S[X], starting at X0 = m1 > 0, passing
through x0 (close to 0) at time t1, and ending in Xt1+t2 = m2 > 0, while staying positive for all
t ∈ [0, T = t1 + t2], as it is schematically represented in Fig. 2.1. The latter is enforced by the
product of Heaviside functions Θ[X] :=

∏t1+t2
s=0 Θ(Xs). This positivity constraint is necessary

to get information on the extreme-value statistics as it selects paths with a minimum value
which is larger than the barrier. It is also what renders calculations difficult (computing a
Gaussian integral on a constrained domain is non-trivial). This path integral depends on the
Hurst exponent H through the action.

m1

x0

m2

0 t1 T
time

space

Figure 2.1: Schematic representation of the paths contributing to Z+

Since the fBmXt is a Gaussian process, the action S[X] can (at least formally) be constructed
from the covariance function of Xt,

S[X] = 1
2

∫
t1,t2

Xt1G(t1, t2)Xt2 . (2.2)

Here 〈Xt1Xt2〉 = G−1(t1, t2), with the covariance given in Eq. (1.19). This, however, is not
enough to evaluate the path integral (2.1), since it is not evident how to implement the product
of Θ-functions. Following the formalism of Ref. [125], we use standard Brownian motion as a
starting point for a perturbative expansion, setting H = 1

2 + ε with ε a small parameter; then
the action at first order in ε is (we refer to the appendix of Ref. [125] for the derivation)

S [X] = 1
4Dε,τ

∫ T

0
Ẋ2
τ1dτ1 −

ε

2

∫ T−τ

0
dτ1

∫ T

τ1+τ
dτ2

Ẋτ1Ẋτ2

|τ2 − τ1|
+O(ε2) . (2.3)

The time τ is a regularization cutoff for coinciding times (a UV cutoff). We will see that it has
no impact on the distribution of observables which can be extracted from the path integral. One
can also introduce discrete times spaced by τ , as in [125].

The first term of Eq. (5.7), which we denote S0[X], is the action for standard Brownian
motion, with a rescaled diffusion constant

Dε,τ = 1 + 2ε[1 + ln(τ)] +O(ε2) ' (eτ)2ε. (2.4)
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It is a dimensionful constant, as fBm and standard Brownian motion do not have the same time
dimension. The second term, which we denote S1[X], is the first correction to the action. It
is non-local in time, which implies that the process is non-Markovian (even if we neglect O(ε2)
terms). We check this expansion of the action in appendix 2.H, where we compute the covariance
of the process from a path integral, and recover Eq. (1.19) at first order in ε.

As we will see in section 2.3, this path integral Z+(m1, t1;x0;m2, t2), in the limit of x0 → 0,
encodes a plethora of information about the maximum of the process: both distributions of the
maximal value m of the process , denoted PTH(m) and of the time tmax when this maximum is
reached, denoted PTH(t), can be extracted from it, as well as the joint distribution of this two
observables. Further, the same distributions in the case of a fBm bridge can be extracted, but
this will be the object of chapter 4.

It is important to note that the limit of x0 → 0 is non-trivial, as it forces the process to
go close to an absorbing boundary which leads to non-trivial scaling involving the persistence
exponent θ, as defined in Eq. (1.16).

2.2.2 The order-0 term

Having expressed the perturbative expansion of the action, the main task is to compute the
path integral (2.1), at first order in ε, and in the limit of small x0. Expanding the exponential
of the action in (2.1),

e−S[X] = e−S0[X] (1− S1[X] + ...) , (2.5)

allows us to compute the path integral perturbatively in the non-local interaction S1[X], defined
as the second term of Eq. (2.3),

S1[X] = −ε2

∫ T−τ

0
dτ1

∫ T

τ1+τ
dτ2

Ẋτ1Ẋτ2

|τ2 − τ1|
. (2.6)

This gives

Z+(m1, t1;x0;m2, t2) = Z+
0 (m1, t1;x0;m2, t2) + εZ+

1 (m1, t1;x0;m2, t2) +O(ε2) . (2.7)

Z+
0 is the term with no non-local interaction, while εZ+

1 is the term with one interaction (it is
proportional to ε because the non-local interaction itself has an amplitude of order ε). Formally,
the order-0 term is

Z+
0 (m1, t1;x0;m2, t2) =

∫ Xt1+t2=m2

X0=m1
D[X] Θ[X] δ(Xt1 − x0) e−S0[X] , (2.8)

where S0 is the action of a standard Brownian motion,

S0 [X] = 1
4Dε,τ

∫ t

0
Ẋ2
τ1dτ1 . (2.9)

Since Brownian motion is a Markov process, this action is local in time. It allows us to write
the path integral as a product,

Z+
0 (m1, t1;x0;m2, t2) =

Xt1=x0∫
X0=m1

D[X]Θ[X]e−S0[X]
XT=m2∫
Xt1=x0

D[X]Θ[X]e−S0[X]

= P+
0 (m1, x0, t1)P+

0 (x0,m2, t2) . (2.10)
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In the second line, the constraint δ(Xt1−x0) is enforced by the boundary conditions of the path
integral. In the last line, we expressed each path integral in terms of the propagator P+

0 (x1, x2, t)
of standard Brownian motion, constraint to the positive half space. Its formal definition is

P+
0 (x1, x2, t) = ∂x1Prob(Xt+t0 < x1 and Xs > 0, ∀s ∈ [t0, t0 + t] |Xt0 = x2) (2.11)

The expression of this propagator is obtained using the fact that the increments of a Brownian
motion is Gaussian, and its Markovian nature allows to enforce the positivity constraint using
the method of images. This gives

P+
0 (x1, x2, t) = 1√

4πDt

(
e−

(x1−x2)2
4Dt − e−

(x1+x2)2
4Dt

)
'

x1→0
x1x2

e−
x2
2

4Dt
√

4πD3t3
, (2.12)

for an arbitrary diffusive constant D. We now use that the diffusive constant is Dε,τ = 1+O(ε).
This allows us to express the path integral (2.1) at leading order in ε, and in the limit of small
x0, as

Z+
0 (m1, t1;x0;m2, t2) '

x0→0
x2

0
m1m2e

−
m2

1
4t1
−
m2

2
4t2

4πt3/21 t
3/2
2

+O(ε) . (2.13)

Before going to the order ε calculation, let us briefly discuss how we recover known results for
Brownian motion from the expression 2.13. If we integrate Z+

0 over m1 and m2 in the limit of
x0 → 0, we select all paths reaching a minimum over [0, t1 + t2] of value equal to 0 and at time
t1, without any constraint on the starting and ending points (apart that they are larger than
the minimum value 0). Due to translation invariance, this is equivalent to a process with fixed
starting value equal to 0, and an arbitrary minimum value (smaller than 0). The distribution
of the time at which such a minimum is reached is known as one the arcsine laws, discussed in
the introduction 1.2.3. We recover it here,

PT
H= 1

2
(tmax = t) = lim

x0→0

1
x2

0

∫
m1,m2>0

Z+
0 (m1, t;x0;m2, T − t) = 1

π
√
t(T − t)

, (2.14)

as given in Eq. (1.10) apart that we did not fixe the length of the time interval to 1.
To include the order-ε term in the diffusive constant to get the full result for Z+ at order ε,

we use Eq. (2.4) expanded in ε,

Z+
0 '
x0→0

x2
0
m1m2e

−
m2

1
4t1
−
m2

2
4t2

4πt3/21 t
3/2
2

×
{

1 + ε [1 + ln(τ)]
(
m2

1
2t1

+ m2
2

2t2
− 6

)}
+O(ε2) . (2.15)

It is interesting to note that the order-ε term appearing here can also be computed from the
result (2.13) as

2[1 + ln(τ)](t1∂t1 + t2∂t2)Z+
0 . (2.16)

2.2.3 The first-order terms
To go beyond Brownian motion and include non-Markovian effects, i.e. interactions non-local in
time, we need to compute the first-order correction in the expansion (2.7), which is called Z+

1
and reads

Z+
1 (m1, t1;x0;m2, t2) = 1

2

∫ T−τ

0
dτ1

∫ T

τ1+τ
dτ2

∫ XT=m2

X0=m1
D[X] Ẋτ1Ẋτ2

|τ2 − τ1|
δ(Xt1 − x0) Θ[X] e−S0[X] .

(2.17)
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As before, we denote T = t1 + t2. To compute Z+
1 , we decompose it into three terms, distin-

guished by their time ordering. Denote Z+
α the part where τ1 < τ2 < t1, Z+

β the part where
t1 < τ1 < τ2, and Z+

γ the term where τ1 < t1 < τ2. Then

Z+
1 (m1, t1;x0;m2, t2) = Z+

α (m1, t1;x0;m2, t2) + Z+
β (m1, t1;x0;m2, t2) + Z+

γ (m1, t1;x0;m2, t2) .
(2.18)

In the first term, the interaction affects only the process in the time interval [0, t1], and there is
no coupling with the process on the time interval [t1, t1 + t2]. This leads, as shown in appendix
2.A, to a factorized expression for Z+

α ,

Z+
α (m1, t1;x0;m2, t2) = P+

1 (m1, x0, t1)P+
0 (x0,m2, t2) . (2.19)

Here P+
1 (m,x0, t) is the order-ε correction to the propagator of fBm in the half space (i.e.

constrained to remain positive). This object, which we need in the limit of x0 → 0, was studied
and computed in Ref. [125]. The result is recalled in appendix 2.B, and recalculated using more
efficient technology developed here. The second term is similar to the first, swapping the two
time intervals,

Z+
β (m1, t1;x0;m2, t2) = P+

0 (m1, x0, t1)P+
1 (x0,m2, t2) . (2.20)

The third term, Z+
γ , is more complicated as the interaction couples the two time intervals [0, t1]

and [t1, T = t1 + t2]. We can still take advantage of locality in time of the action S0 to write
the path integral (2.17), with time integrals restricted to 0 < τ1 < t1 < τ2 < T , as a product of
simpler path integrals:

Z+
γ (m1, t1;x0;m2, t2) (2.21)

= 1
2

∫ t1

0
dτ1

∫ T

t1

dτ2
τ2 − τ1

∫
x1,x2>0

∫ Xτ1=x1

X0=m1
D[X]Θ[X]e−S0[X]

∫ Xt1=x0

Xτ1=x1
D[X]Θ[X]Ẋτ1e

−S0[X]

×
∫ Xτ2=x2

Xt1=x0
D[X]Θ[X]e−S0[X]

∫ XT=m2

Xτ2=x2
D[X]Θ[X]Ẋτ2e

−S0[X] .

In this expression, all path integrals can be expressed in terms of the bare propagator P+
0 ; we

refer to appendix 2.A for how to deal with the terms containing Ẋ. We have not written the
cut-off τ as there are no short-time divergences that need to be regularized (contrary to the
terms Z+

α and Z+
β ). The structure of the time integrals, which are products of convolutions,

suggests to use Laplace transforms (with respect to the time variables: t1 → s1, t2 → s2). This,
and the identity

1
τ2 − τ1

=
∫
y>0

e−y(τ2−τ1) (2.22)

give us a simple form for the double Laplace transform of Z+
γ , which we will denote with a tilde

(for details see appendix 2.A),

Z̃+
γ (m1, s1;x0;m2, s2) (2.23)

= 2
∫
x1,x2,y>0

P̃+
0 (m1, x1; s1) ∂x1P̃

+
0 (x1, x0; s1 + y)P̃+

0 (x0, x2; s2 + y) ∂x2P̃
+
0 (x2,m2; s2) .

The Laplace-transformed constrained propagator appearing in this expression is

P̃+
0 (x1, x2; s) =

∫ ∞
0

dt e−stP+
0 (x1, x2, t) = e−

√
s|x1−x2| − e−

√
s(x1+x2)

2
√
s

'
x1→0

x1e
−
√
sx2 . (2.24)



26 Chapter 2. Extreme-value statistics of fractional Brownian motion

The Laplace transformation gives another simplification: the space dependence is now exponen-
tial in the propagator, as compared to the Gaussian form of P+

0 (x1, x2, t), which renders the
space integrations elementary. (Without the Laplace transform, already the first space integra-
tion gives an error-function, and the remaining integrations are highly non-trivial). Nevertheless,
the final result for Z+

γ (m1, t1;x0;m2, t2) is complicated, and requires to compute the three in-
tegrals in Eq. (2.23), and two inverse Laplace transformations. These steps are performed in
appendix 2.C.

2.2.4 Graphical representation and diagrams 6

m1

x1

x2

x0

m2

s1

⌧1

s1 + y

t1

s2 + y

t1 + t2

s2

⌧2
time

space

m1

x1

x2

x0

m2

s1

⌧1

s1 + y
⌧2

s1

t1 + t2

s2

t1
time

space

FIG. 3. Left: Graphical representation of the contribution Z+
� to the path-integral Z+(m1, t1; x0; m2, t2) given in Eq. (12). The red curve

represents the non-local interaction in the action, second line of Eq. (14), while blue lines are bare propagators. We also indicate the Laplace
variable which appears in each time slice in Eq. (32). Right: Graphical representation of Z+

↵

the first space integration gives an error-function, and the re-
maining integrations are highly non-trivial). Nevertheless, the
final result for Z+

� (m1, t1; x0; m2, t2) is complicated, and re-
quires to compute the three integrals in Eq. (32), and two in-
verse Laplace transformations. These steps are performed in
appendix C.

D. Graphical representation

It is useful to give a diagrammatic representation for the
terms of the perturbative expansion. We denote bare propaga-
tors (33) with a solid blue lines. The interaction between two
points (⌧1, x1) and (⌧2, x2) is represented in red. As can be
seen from Eq. (32), it acts as 2@x1

on the propagator starting at
x1, 2@x2 on the propagator starting at x2; it also translates the
Laplace variable of each time slice between these two points
by +y. The space variables x1, x2 and the interaction vari-
able y (which has the inverse dimension of time) have to be
integrated from 0 to 1. In case of divergences, the integration
has to be cut off with a large-y cutoff (c.f. appendix G for the
link between the short time cutoff ⌧ and the large y cutoff).

The contribution of Z+
� , is computed in detail in Appendix

C, and represented in Figure 3 (left), together with the contri-
bution Z+

↵ (right).

IV. ANALYTICAL RESULTS

We present here some known scaling results about extremal
properties of the fBm. We then show how our perturbative ex-
pansion, and the computation of Z+(m1, t1; x0; m2, t2), al-
lows us to obtain analytical results on the distributions beyond
these scaling arguments. Some of our results were already
presented in a Letter [18].

A. Scaling results

Let us start with the the survival probability S(T, x), and
the persistence exponent ✓, defined for any random process

Xt with X0 = x > 0 as

S(T, x) := prob (Xt � 0 for all t 2 [0, T ])

⇠
T!1

T�✓x+o(1) .
(34)

For a review of these concepts in the context of theoretical
physics, we refer to [35]. In a large class of processes the ex-
ponent ✓ is independent of x, and characterizes the power-law
decay for the probability of long positive excursions. For frac-
tional Brownian motion with Hurst exponent H it was shown
that ✓x = ✓ = 1 � H [32, 36]. To understand the link of
S(T, x) with the maximum distribution for fBm, we use self
affinity of the process Xt to write PT

H(m) as

PT
H(m) =

1p
2TH

fH

✓
y =

mp
2TH

◆
. (35)

Here f is a scaling function depending on H . The survival
probability is related to the maximum distribution by

S(T, x) =

Z x

0

PT (m) dm =

Z xp
2T H

0

fH(y) dy . (36)

This states that due to translational invariance a realisation of
a fBm starting at x and remaining positive is the same as a
realisation starting at 0 and having a minimum larger than
�x. Finally, the symmetry x ! �x (for a fBm starting at
X0 = 0) gives the correspondence between minima and max-
ima. These considerations allow us to predict the scaling be-
havior of PT

H(m) at small m from the large-T behaviour of
S(T, x) [32],

f(y) ⇠
y!0

y↵ , S(T ) ⇠ T�(↵+1)H , (37)

and finally

PT
H(m) ⇠

m!0
m

✓
H �1 = m

1
H �2 . (38)

For the distribution of the time at which the maximum is
achieved we can estimate the behavior close to the origin by
assuming that small values of the maximum are reached close
to the origin. Starting with

PT
H(m)dm = PT

H(t)dt , (39)

Figure 2.2: Left: Graphical representation of the contribution Z+
γ to the path-integral

Z+(m1, t1;x0;m2, t2) given in Eq. (2.1). The red curve represents the non-local interaction in
the action, second line of Eq. (5.7), while blue lines are bare propagators. We also indicate the
Laplace variable which appears in each time slice in Eq. (2.23). Right: Graphical representation
of Z+

α

It is useful to give a diagrammatic representation for the terms of the perturbative expan-
sion. We denote bare propagators (2.24) with a solid blue lines. The interaction between two
points (τ1, x1) and (τ2, x2) is represented in red. As can be seen from Eq. (2.23), it acts as 2∂x1

on the propagator starting at x1, 2∂x2 on the propagator starting at x2; it also translates the
Laplace variable of each time slice between these two points by +y. The space variables x1, x2
and the interaction variable y (which has the inverse dimension of time) have to be integrated
from 0 to ∞. In case of divergences, the integration has to be cut off with a large-y cutoff (cf.
appendix 2.G for the link between the short time cutoff τ and the large y cutoff).

The contribution of Z+
γ is computed in detail in Appendix 2.C, and represented in Figure

2.2 (left), together with the contribution Z+
α (right).

2.3 Analytical Results
We recall here some known scaling results about extremal properties of the fBm. We then show
how our perturbative expansion, and the computation of Z+(m1, t1;x0;m2, t2), allows us to
obtain analytical results on the distributions beyond these scaling arguments.

2.3.1 Scaling results

We review the links between the survival probability, defined in Eq. (1.15) and the related
persistence exponent θ (1.16), to the extreme value observables we investigate here. We recall
that for fractional Brownian motion with Hurst exponent H it was shown that θ = 1−H [56, 59].
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To understand the link of S(T, x) with the maximum distribution for fBm, we use self affinity
of the process Xt to write PTH(m) as

PTH(m) = 1√
2TH

fH

(
y = m√

2TH

)
. (2.25)

Here f is a scaling function depending on H. The survival probability is related to the maximum
distribution by

S(T, x) =
∫ x

0
P T (m) dm =

∫ x√
2TH

0
fH(y) dy . (2.26)

This states that due to translational invariance a realisation of a fBm starting at x and remaining
positive is the same as a realisation starting at 0 and having a minimum larger than −x. Finally,
the symmetry x→ −x (for a fBm starting at X0 = 0) gives the correspondence between minima
and maxima. These considerations allow us to predict the scaling behavior of PTH(m) at small
m from the large-T behaviour of S(T, x) [56],

f(y) ∼
y→0

yα ⇔ S(T, x) ∼ T−(α+1)H , (2.27)

and finally
PTH(m) ∼

m→0
m

θ
H
−1 = m

1
H
−2 . (2.28)

For the distribution of the time at which the maximum is achieved we can estimate the behavior
close to the origin by assuming that small values of the maximum are reached close to the origin.
Starting with

PTH(m)dm = PTH(t)dt , (2.29)

and using scaling, m ∼ tH , we obtain

PTH(t) ∼ P TH(m)dm
dt ∼

(
tH
) 1
H
−2
tH−1 ∼ t−H . (2.30)

This should be valid when t → 0 (or m → 0). By time reversal symmetry t → T − t, we also
have

PTH(t) ∼
t→T

(T − t)−H . (2.31)

2.3.2 The complete result for Z+(m1, t1;x0;m2, t2)

We present here the final result for Z+, defined in Eq. (2.1), at order ε. This path integral was
first expanded, cf. Eq. (2.7), by treating the non-local term in the action (5.7) perturbatively.
The first term Z+

0 of this expansion is given in Eq. (2.15), while the second term Z+
1 was split

into three contributions Z+
α , Z+

β and Z+
γ , see Eq. (2.18). The first two terms can be obtained

explicitly from (2.89), while the third one is computed in appendix 2.C, the result being split
between (2.102), (2.117) and (2.133).

In order to display a compact form, we choose T ≡ t1 + t2 = 1 (which is equivalent to
rescaling m1 and m2 by T−H and t1 and t2 by T−1) and introduce new rescaled (dimensionless)
variables,

y1 = m1√
2tH1

, y2 = m2√
2tH2

(2.32)

t1 =ϑ , t2 = 1− ϑ . (2.33)
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In these new variables, the final result is

Z+(m1, t1;x0;m2, t2) '
x0→0

x2−4ε
0

y1y2 exp
(
−1

2y
2
1 − 1

2y
2
2

)
2π [ϑ(1− ϑ)]2H

× (2.34)

{
1 + ε

[
I(y1)

1 +

√
1− ϑ
ϑ

y2
y1

+ I(y2)

1 +

√
ϑ

1− ϑ
y1
y2

+
(
1− y2

2
)
I
(√

1− ϑy1
)√

ϑ(1− ϑ)y1y2

+
(
1− y2

1
)
I
(√
ϑy2

)√
ϑ(1− ϑ)y1y2

−
I
(√

1− ϑy1 +
√
ϑy2

)
√
ϑ(1− ϑ)y1y2

+ 2(1− ϑ)y2
1 + ϑy2

2 − 1√
ϑ(1− ϑ)y1y2

+ (y2
1 − 2)

(
ln(2y2

1) + γE
)

+ (y2
2 − 2)

(
ln(2y2

2) + γE
)
− 4− 2γE

]}
+O(ε2) .

The special function I appearing in this expression is

I(z) = z4

6 2F2

(
1, 1; 5

2 , 3; z
2

2

)
+ π(1− z2)erfi

(
z√
2

)
− 3z2 +

√
2πe

z2
2 z + 2 , (2.35)

where erfi is the imaginary error function, defined from the error function as erfi(z) = −i erf(iz).

2.3.3 The third arcsine law: Distribution of the time when the maximum is reached
To simplify the result (2.34), we can extract from it distributions of a single observable. We start
with the probability distribution PTH(t) of tmax, the time when the fBm achieves its maximum.
For Brownian motion, H = 1/2, this distribution is well known as the third arcsine law, because
the cumulative distribution involves the arcsin function, cf. Eq. (1.9),

PT1
2

(tmax = t) = 1
π
√
t(T − t)

, for t ∈ [0, T ] . (2.36)

Until now, only scaling properties were known for this distribution in the general case [18], as
recalled in Eq. (2.30).

The path integral (2.1), in the limit of x0 → 0, selects paths which go through x0 ≈ 0+ at
time t1 while staying positive. This means that we sum over paths reaching their minimum (in
the interval [0, t1 + t2], and which is almost surely unique) at t1, starting at m1 and ending at
m2. This is equivalent to summing over paths starting at 0, reaching their minimum with value
−m1 at time t1, and ending in m2 −m1. Integrating over m1 and m2 finally gives the sum over
all paths reaching their minimum in t1, independent of the value of this minimum, and the end
point. Up to a normalization, this is the probability distribution of tmin. By symmetry, this is
the same as the distribution of tmax. Formally, it reads

PTH(tmax = t) = lim
x0→0

1
ZN(x0, T )

∫
m1,m2>0

Z+(m1, t;x0;m2, T − t) . (2.37)

The normalization ZN depends on x0 and T . It ensures that PTH(t) is normalized; it can be
expressed in terms of the path integral Z+ as

ZN(x0, T ) =
∫ T

0
dt
∫
m1,m2>0

Z+(m1, t;x0;m2, T − t) . (2.38)

At order 0, starting from Eq. (2.13) and integrating over m1 and m2 allows us to recover
Eq. (2.36) with normalisation ZN(x0, T ) = x2

0.
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For the order-ε correction, the integrations over m1 and m2 are lengthy. This is done in
appendix 2.D. It allows us to write an ε-expansion for the distribution of tmax in the form

PT
H= 1

2 +ε(t) = PT1
2

(t) + ε δPT (t) +O(ε2) . (2.39)

The result (2.146) reads

δPT(t) = 1
π
√
t1t2

{√
t1
t2

[
π − 2 arctan

(√
t1
t2

)]
+
√
t2
t1

[
π − 2 arctan

(√
t2
t1

)]
− ln(t1t2) + cst

}
,

(2.40)
where t1 = t and t2 = T − t. It takes a simple form if we exponentiate this order-ε correction,

PTH(tmax = t) = 1
π[t(T − t)]H exp

(
εF

(
ϑ = t

T

))
+O

(
ε2
)
. (2.41)

The term ln(t1t2) = ln
(
t(T −t)

)
in δP T(t) gives the expected change, from Eq. (2.30) and (2.31),

in the scaling form of the Arcsine law,
√
t(T − t)→ [t(T − t)]H . The regular part (with a finite

limit when t→ 0 and t→ T ) induces a non-trivial change in the shape,

F(ϑ) =

√
ϑ

1− ϑ

π − 2 arctan

√ ϑ

1− ϑ

+

√
1− ϑ
ϑ

π − 2 arctan

√1− ϑ
ϑ

+ cst .

(2.42)
The time reversal symmetry t→ T − t (corresponding to ϑ→ 1−ϑ) is explicit and the constant
ensures normalization. The contribution of F(ϑ) to the probability that the maximum is attained
at time t is quite noticeable, as shown in Fig. 2.3.

Figure 2.3: Distribution of tmax for T = 1 and H = 0.25 (red) or H = 0.75 (blue) given
in Eq. (2.41) (plain lines) compared to the scaling ansatz, i.e. F = cst. (dashed lines) and
numerical simulations (dots). For H < 0.5 realisations with tmax ≈ T/2 are less probable (by
about 10%) than expected from scaling. For H > 0.5 the correction has the opposite sign.

2.3.4 The distribution of the maximum

We now present results for the distribution of the maximum PTH(m). For standard Brownian
motion

PT1
2

(m) = e−
m2
4T

√
πT

, m > 0 . (2.43)
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On the other hand, the scaling results presented in 2.3.1 predict that for any H, PTH(m) behaves
at small scale as m1/H−2, as given in Eq. (2.28).

Using our path integral, we can go further. Similarly to the distribution of tmax, the distri-
bution of the maximum m itself can be extracted from Z+, defined in Eq. (2.1),

PTH(m) = lim
x0→0

1
ZN

∫ T

0
dt
∫
m2>0

Z+(m, t;x0;m2, T − t) . (2.44)

The details of these computations (integrations over t and m2) are given in appendix 2.E. Its
ε-expansion, recast in exponential form, leads to the scaling form of Eq. (2.25), with

fH(y) =
√

2
π
e−

y2
2 eε[G(y)+cst] +O(ε2) . (2.45)

The constant term ensures normalization. Figure 2.4 shows the form of this scaling function for
different values of H, as well as a first comparison to numerical simulations. The function G
involves a combination of special functions denoted I in Eq. (2.35) , and logarithmic terms,

G(y) = I(y) + (y2 − 2)[γE + ln(2y2)] . (2.46)

It has a different asymptotics for small and large y,

G(y) ∼
{
−2 ln(y) for y →∞
−4 ln(y) for y → 0

. (2.47)

The second line implies that P TH(m) ∼ m−4ε when m → 0, which is consistent (at order ε)
with the scaling result (2.28), 1

H − 2 = −4ε + O(ε2). Formulas (2.45)-(2.47) also predict the
distribution at large m. It is known that the leading behavior of P TH(m) is Gaussian, which can
be formalized as

lim
y→∞

ln
(
fH(y)

)
y2 = −1

2 . (2.48)

This is a direct consequence of an important theorem in the theory of Gaussian processes, the
Borell inequality [86]. It states that for any Gaussian process Xt the cumulative distribution of
its maximum value over the interval [0, T ], m = supt∈[0,T ]Xt, verifies

Prob(m > u) ≤ exp
(
−(u− 〈m〉)2

2σ2

)
, (2.49)

where 〈m〉 and σ2 = supt∈[0,T ]〈X2
t 〉 are assumed to be finite. Specifying this to fBm with T = 1

allows us to derive Eq. (2.48). A proof of this theorem and a derivation of its implications for
fBm can be found in Ref. [57].

Our result (2.45) goes further, and gives the subleading term in the large-m (and equivalently
large-y) regime, a power law with exponent −2ε+O(ε2). It can be written as

lim
y→∞

ln
(
fH(y) exp(y

2

2 )
)

ln(y) = −2ε+O(ε2) . (2.50)

Comparison of our full prediction (i.e. not only the asymptotics) with numerical simulations of
the fBm are presented in the next section 2.4.
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Figure 2.4: Scaling function fH(y) for the distribution of the maximum, as defined in Eq. (2.25),
for different values of H: H = 0.25 in red, H = 0.4 in yellow, H = 0.6 in green, and H = 0.75
in blue. The plain lines represent the analytic prediction from our perturbative theory (at first
order in ε) given in Eq. (2.45); the symbols are results from numerical simulations, cf. section
2.4.

2.3.5 Survival probability

The survival probability S(x, T ) is defined as the probability for a process Xt to stay positive
up to time t, while starting at X0 = x,

S(x, t) := prob (Xt>0, ∀t ∈ [0, T ] |X0 = x) . (2.51)

As before, scaling properties of the fBm allow us to write this as a function of y = x√
2TH . As

mentioned, the survival probability is the cumulative distribution of the maximum value, and
reads

S(y) =
∫ y

0
du fH(u) , (2.52)

with fH defined in Eq. (2.25). Similarly to the other distributions, we can compute its ε-
expension and recast it into an exponential form to get

S(y) = erf
(
y√
2

)
exp

ε M(y)
erf
(
y√
2

)
+O(ε2) . (2.53)

The functionM(y) is

M(y) =
√

8
π
y 2F2

(
1
2 ,

1
2; 3

2 ,
3
2;−y

2

2

)
−
√

2
π
e−

y2
2 y3

2F2

(
1, 1; 3

2 , 2; y
2

2

)
(2.54)

+
√

2πe−
y2
2 y erfi

(
y√
2

)
−
[
erf
(
y√
2

)
+
√

2
π
e−

y2
2 y

] [
ln
(
2y2

)
+ γE

]
.

Some details of its derivation are given in appendix 2.F and thos result is plotted on Fig. 2.5.
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Figure 2.5: The survival probability S(y) for H = 1/2 (blue solid line), H = 0.75 (red, dashed),
H = 0.25 (green, dot-dashed), and asymptotics S(y) = 1 (black, dotted), in a log-log plot.

2.3.6 The joint distribution for tmax and m

The result (2.34) was obtained by considering paths starting at X0 = m1 > 0 with an absorbing
boundary at x = 0 constraining the process to stay positive, as can be seen from the path-
integral definition (2.1). Using translational invariance, and the symmetry x↔ −x of the fBm,
we can reinterpret this as the sum over paths starting at X0 = 0, reaching their maximum (over
the interval [0, T = t1 + t2]) of value m1 at time t1, and ending in XT = m1 −m2 < m1.

The integral over m2 is then, in the limit x0 → 0 and up to a normalisation factor ZN, the
joint probability density for a fBm to have a maximum value m = m1 at a time t = tmax = t1
over the interval [0, T ]; this we can write as

PTH(m, t) = lim
x0→0

1
ZN

∫ ∞
0

dm2 Z
+(m, t;x0;m2, T − t) . (2.55)

We recall the result for Brownian motion that we recover for ε = 0,

PT1
2

(m, t) = me−
m2
4t

2πt3/2
√
T − t

. (2.56)

To simplify the ensuing discussion, we now consider the conditional probability

PTH(m|t) := PTH(m, t)∫
m>0 PTH(t,m)

= P
T
H(m, t)
PTH(t)

. (2.57)

Interestingly, in the case of the Brownian motion, we can make a change of variables m→ υ :=
m/
√

2t such that this conditional distribution function becomes independent of t (or equivalently,
independent of ϑ = t/T )

PT1
2

(m|t) = m
e−

m2
4t

2t = 1√
2t
υe−

υ2
2 = dυ

dmP 1
2
(υ|ϑ) (2.58)

with
P 1

2
(υ|ϑ) = υe−

υ2
2 . (2.59)
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For H 6= 1
2 , this independence is broken, and the result at order ε can be written as

PH= 1
2 +ε(υ|ϑ) = υe−

υ2
2 eεG(υ|ϑ) +O(ε2) , (2.60)

where now υ = m√
2tH (to keep υ a dimensionless variable).

The non-trivial correction G(υ|ϑ) is obtained from the result (2.34) as

G(y1|ϑ) =
∫
y2>0

y2e
−
y2
2
2 [...] , (2.61)

where [...] are the terms in the square brackets of Eq. (2.34).
While we can integrate Eq. (2.34) over y1 and y2 to obtain the probability that the maximum

is attained at time t, we were in general not able to analytically integrate it solely over y2, due
to the presence of the term I(

√
1− ϑy1 +

√
ϑy2). An exception are the two limiting cases ϑ = 0

and ϑ = 1, for which

G(υ|0) = (υ2 − 2)[γE + ln(2υ2)] + (3− υ2)[I(υ)− 2]
1− υ2 + 2

√
2π
υ

1− υ2 −
e
υ2
2 erfc

(
υ√
2

)
1− υ2

 ,

(2.62)
G(υ|1) = (υ2 − 2)[γE + ln(2υ2)] + I(υ)− 2 . (2.63)

Note that PH(υ|1) is also the conditional probability that a fBm path, starting at x0 � 1, and
having survived up to time T has final position m =

√
2υTH . This reproduces Eqs. (9)-(10) of

Ref. [125].
The asymptotic behaviors for small υ are

PH(υ|ϑ) ∼ υ
1
H
−1 ' υ1−4ε +O(ε2) (2.64)

For large υ, the situation is more complicated. For the two limiting cases the behavior is
consistent with

PH(υ|0) ∼υ1+2εe−υ2/2−
√

8πυε +O(ε2) , (2.65)

PH(υ|1) ∼υ1−2εe−υ2/2 +O(ε2) . (2.66)

It would be interesting to understand this behaviour from scaling arguments.
The conditional probability (2.60) is plotted on figure 2.6 for various value of H, supple-

mented by results obtained via numerical integration of Eq. (2.61) for ϑ = 0.1, 0.5, and 0.9. It
varies smoothly as a function of ϑ.

2.4 Numerical Results
To validate the perturbative approach presented in this thesis, we tested our analytical results
with direct numerical simulations of fBm paths. The discretized fBm paths are generated using
the Davis and Harte procedure as described in [51] (and references therein). The idea is to take
advantage of the stationarity of the increments and use fast-Fourier transformations to compute
efficiently the square root of its covariance function. This method is exact, i.e. the samples
generated have exactly the covariance function given in Eq. (1.19), and is adapted to situations
where the length of the path to generate is fixed. Other simulation techniques exist, reviewed
in Ref. [128].
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Figure 2.6: The conditional probability PH(y|ϑ) for various values of H and ϑ. Top left H = 1
3 ,

top rightH = 2
5 , bottom leftH = 3

5 and bottom rightH = 2
3 . The plain curves are the analytical

prediction (2.60), where the scaling functions are given analytically for the two extremal cases,
ϑ = 0 and ϑ = 1 cf. Eqs. (2.62)-(2.63); for 0 < ϑ < 1 the curves are obtained via numerical
integration. The predicted spread of the curves (which collapse for H = 1

2 to Eq. (2.56), plotted
in black dashes) is well reproduced in the numerics, both for ε > 0 and ε < 0. For ϑ → 1 the
agreement with numerics is remarkable, while for ϑ close to zero, we see significant deviations.
These deviations may be due to both discretisation effects and ε2 corrections (they have the
same sign for both ε > 0 and ε < 0).
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Figure 2.7: Left: Numerical estimation of F for different values of H on a discrete system of
size N = 212, using 108 realizations. Plain curves represent the theoretical prediction (2.42),
vertically translated for better visualization. Error bars are 2σ estimates. Note that for H = 0.6,
H = 0.66 and H = 0.8 the expansion parameter ε is positive, while for H = 0.4, H = 0.33 and
H = 0.2 it is negative. Right: Deviation for large |ε| between the theoretical prediction (2.42)
and the numerical estimations (2.67), rescaled by ε as in Eq. (2.68). These curves collapse for
different values of H, allowing for an estimate of the O(ε2) correction to PTH(t), as written in
Eq. (2.69).

2.4.1 The third arcsine Law

For the distribution of tmax, we want to test our analytical results given in Eqs. (2.41)-(2.42).
Fig. 2.3 shows the good agreement between theory and numerics. To perform a more precise
comparison, we extract from the numerically computed distribution P T,Hnum (t) an estimation Fεnum
of the function F as

Fεnum

(
t

T

)
:= 1

ε
ln
(
PT,Hnum(t)× [t(T − t)]H

)
. (2.67)

This function should converge, as ε→ 0, to the theoretical prediction (2.42). Obviously, statis-
tical errors become relevant in this limit due to the factor of ε−1, while for larger ε we expect to
see deviation due to order-ε2 (and larger) corrections, which are not taken into account in our
analytical computations. As can be seen on Fig. 2.7, our numerical and analytical results are in
remarkable agreement for all values of H studied, both for ε positive and negative. This means
in particular that even for large values of ε (H = 0.8 or H = 0.2 in the cases studied here), the
order-ε correction is large as compared to higher-order corrections.

The precision of our simulations allows us to numerically investigate these subleading O(ε2)
corrections, extracted as follows,

Fε2(ϑ) = 1
ε

[
Fεnum(ϑ)−F(ϑ)

]
= 1
ε2 ln

(
PT,Hnum(t)[t(T − t)]H

eεF(ϑ)

)
. (2.68)

This is shown in Fig. 2.7 (right). The collapse of the curves for different values of ε (once rescaled
by ε−1), suggests that there exists a function F2(ϑ), which would be the limit as ε→ 0 of Fε2(ϑ),
such that the probability distribution can be written as

PT
H= 1

2 +ε(t) = eεF(ϑ)+ε2F2(ϑ)

[t(T − t)]H +O(ε3) . (2.69)
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Our estimation of F2 is plotted on figure 2.7 (right). Our perturbative approach and its dia-
grammatic representation allows us to write the integrals needed to compute F2 analytically;
this, however, is left for future work. This numerical study of the ε2-order corrections is also
used to compare tmax and t+ distributions in figure 3.5.

2.4.2 The distribution of the maximum

Figure 2.8: Middle: The combination (2.71) for H = 0.6. The plain line is the analytical
prediction exp(ε[G(m/

√
2) + 4 lnm] + cst) of the distribution of the maximum without its small-

scale power law and large-scale Gaussian behavior. The symbols are numerical estimations for
T = 1 of the same quantity m2−1/H exp(m2/4)P T=1,H

num (m) for different sample sizes. At small
scale discretization errors appear. At large scales the statistics is poor due to the Gaussian
prefactor. For the four decades in between theory and numerics are in very good agreement.
Left: ibid for H = 0.4. Right ibid for H = 0.75. In all cases, the large scale-behavior on both
plots is consistent with m2ε.

For the distribution of the maximum we rewrite formula (2.45) such that the small-m be-
havior reproduces the exact scaling result (2.28) without changing the result at ε-order,

fH(y) =
√

2
π
y

1
H
−2e−

y2
2 eε[G(y)+4 ln y+cst] +O(ε2) . (2.70)

To extract the non-trivial contribution from numerical simulations, we study for T = 1 (see
Fig. 2.8)

m2− 1
H e

m2
4 P1,H

num(m) = e
ε

[
G
(
m√

2

)
+4 lnm+cst

]
+O(ε2) . (2.71)

The left-hand side is evaluated from the normalized binned distribution of the maximum for
each fBm path, denoted P1,H

num(m). The right-hand side is the analytical result; the constant
term is evaluated by numerical integration such that fH(y), given in Eq. (2.70), is normalized
to 1.

The sample size N (i.e. lattice spacing dt = N−1) of the discretized fBm used for this
numerical test is important, as the samples recover Brownian behavior for m smaller than a
cutoff of order N−H . This can be understood by assuming that the typical value of the first
discretized point X1/N is of order N−H ; thus for m� N−H ,

P 1,H
num(m) ∼ prob(X1/N = m) ∼ m0 (2.72)

Far small H the system size necessary to obtain the asymptotic behavior at small scale is very
large, so we focus our tests on H > 0.4. Figure 2.8 presents results for H = 0.4, H = 0.6 and



2.5. Conclusions 37

H = 0.75, without any fitting parameter. As predicted, convergence to the small-scale behavior
is quite slow. For example, in the H = 0.6 plot the convergence to the small-scale behavior is
somewhere between 10−1 and 10−2 (in dimensionless variables where we rescaled the total time
to T = 1). This might lead to a wrong numerical estimation of the persistence exponent or other
related quantities, if the crossover to the large-scale behavior is not properly taken into account.
At large scales, the numerical data on Fig. 2.8 grow asm2ε, consistent with the prediction (2.50).

As stated, for H < 0.5 the numerical simulations do not allow us to investigate the small-
scale behavior of the distribution, as can be seen for H = 0.4 on figure 2.8. Nevertheless, the
agreement with the theoretical prediction is good in the crossover region and in the beginning of
the tail. The numerical prefactor of the small-scale power law is also very sensitive to numerical
errors (and probably to ε2-corrections) due to a vanishing probability when m→ 0 for H < 0.5,
as can be seen in Fig. 2.4.

2.5 Conclusions

To conclude this chapter, we presented a perturbative approach for the extreme-value statistics
of fractional Brownian motion. This allows to derive the first analytical results for generic values
of H in the range 0 < H < 1, beyond scaling relations. The main, and most general result is
the joint probability of the value of the maximum and the time when this maximum is reached,
conditioned on the value of the end point, as given in Eq. (2.34). From this, we extracted simpler
result, as the unconditioned distribution of the value of the maximum, as well as distribution
of the time when this maximum is reached. These two distributions have non-trivial features,
which we compared to numerical simulations. The remarkable agreement of the simulations
with our predictions is a valuable check of our method. It also shows that the perturbative
approach gives surprisingly good results, even far form the expansion point H = 1

2 .
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2.A Details on the perturbative expansion

We explicit here details on the steps transforming Eq. (2.21) into Eq. (2.23). We have to deal
with terms of the form∫ Xt=x2

X0=x1
D[X]Θ[X]Ẋ0e

−S0[X] = lim
δ→0

∫ Xt=x2

X0=x1
D[X]Θ[X]Xδ − x1

δ
e−S0[X]

= lim
δ→0

∫ ∞
0

dxx− x1
δ

P+
0 (x1, x, δ)P+

0 (x, x2, t− δ)

= lim
δ→0

∫ ∞
0

dx 2∂xP+
0 (x1, x, δ)P+

0 (x, x2, t− δ)

=
∫ ∞

0
dx δ(x− x1)2∂xP+

0 (x, x2, t)

= 2∂x1P
+
0 (x1, x2, t) .

(2.73)

We first introduced a discretized version of the derivative, then expressed the path integral in
terms of propagators, did an integration by parts and finally took the limit of δ → 0.

With this result we can express every path integral in Eq. (2.21) in terms of the bare prop-
agator P+

0 (x1, x2, t),

Z+
γ (m1, t1, x0, t2,m2) = 1

2

∫ T

t1
dτ2

∫ t1

0
dτ1

∫
x1,x2>0

1
τ2 − τ1

P+
0 (m1, x1, τ1) (2.74)

× 2∂x1P
+
0 (x1, x0, t1 − τ1)P+

0 (x0, x2, τ2 − t1) 2∂x2P
+
0 (x2,m2, T − τ2) .

We now use the identity 1
τ2−τ1 =

∫
y>0 e

−y(τ2−τ1), and perform two Laplace transformations
(t1 → s1 and t2 → s2). It is important to note that the time integrals are in general divergent at
small times, thus we introduced a short-time cutoff τ in the action, cf. Eq. (5.7). The short-time
cutoff τ corresponds to a large-y cutoff Λ = e−γE/τ . This value is imposed by the following
equality, valid for all T > 0, in the limit of Λ→∞ and τ → 0:∫ T

0
dt
∫ Λ

0
e−ytdy = ln(TΛ) + γE +O(e−TΛ) != ln

(
T

τ

)
=
∫ T

τ

1
t

dt . (2.75)

To simplify the computations, we introduce new time variables,

T1 = τ1, T2 = t1 − τ1, T3 = τ2 − t1, T4 = t1 + t2 − τ2 . (2.76)

This gives

Z̃+
γ (s1, s2) = 2

∫
t1,t2>0

e−s1t1−s2t2
t1+t2∫
t1

dτ2

t1∫
0

dτ1

Λ∫
0

dy e−y(τ2−τ1) P+
0 (t1) ∂P+

0 (τ1 − t1)P+
0 (τ2 − t1)

× ∂P+
0 (t1 + t2 − τ2)

= 2
∫ Λ

0
dy
∫
Ti>0

e−(T1+T2)s1e−(T3+T4)s2e−(T2+T3)y P+
0 (T1) ∂P+

0 (T2)P+
0 (T3) ∂P+

0 (T4) .

(2.77)

The space dependence (i.e. x0, x1, x2 dependence) is omitted for notational clarity. The suc-
cessive integrations over time variables transform this expression into a product of Laplace-
transformed propagators with different Laplace variables,

Z̃+
γ (m1, s1;x0;m2, s2) = 2

∫ Λ

0
dy
∫
x1,x2>0

P̃+
0 (m1, x1, s1) ∂x1P̃

+
0 (x1, x0, s1 + y) (2.78)

× P̃+
0 (x0, x2, s2 + y) ∂x2P̃

+
0 (x2,m2, s2) .
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This is the formula given in the main text in Eq. (2.23), apart that here we made explicit
the large-y cutoff. As we will see, there is no large-y divergence here, which render the cutoff
irrelevant. The other time orderings, corresponding to Z+

α and Z+
β , have a similar structure.

For Zα, this gives

Z+
α (m1, t1, x0, t2,m2) = (2.79)

1
2

∫ t1

τ1
dτ2

∫ t1

0
dτ1

∫
x1,x2>0

P+
0 (m1, x1, τ1) 2∂x1P

+
0 (x1, x2, τ2 − τ1) 2∂x2P

+
0 (x2, x0, t1 − τ2)P+

0 (x0,m2, t2)
τ2 − τ1

.

This term is represented diagrammatically in Fig. 2.2 (right); computing the double Laplace
transform gives

Z̃+
α (m1, s1;x0;m2, s2) = (2.80)[

2
∫ Λ

0
dy
∫
x1,x2>0

P̃+
0 (m1, x1, s1) ∂x1P̃

+
0 (x1, x2, s1 + y) ∂x2P̃

+
0 (x2, x0, s1)

]
P̃+

0 (x0,m2, s2) .

In this case, the integrations affect only the first three propagators. The term in square brackets
is the correction to the constrained propagator from m1 to x0, with Laplace variable s1. This
object was at the center of Ref. [125]; the results are recalled in the next appendix. Similarly for
Zβ, after the Laplace transformations, the integrations affect only the last three propagators,
giving

Z̃+
β (x0, s1;x0;m2, s2) = (2.81)

P̃+
0 (m1, x0, s1)

[
2
∫ Λ

0
dy
∫
x1,x2>0

P̃+
0 (x0, x1, s2) ∂x1P̃

+
0 (x1, x2, s2 + y) ∂x2P̃

+
0 (x2, x0, s2)

]
.

2.B Recall of the results for Z+
1 (m, t)

In Ref. [125], the propagator Z+(m, t) for fBm, conditioned to start at x0 ≈ 0+, to remain
positive, and to finish in m at time t was computed at order ε. For standard Brownian motion,
this conditioned propagator is

Z+
0 (m, t) = lim

x0→0

1
x0
P+

0 (x0,m, t) = me−
m2
4t

2
√
πt3/2

. (2.82)

The term x−1
0 is the normalisation (i.e. one divides by the conditional probability). The order-ε

correction of this propagator is given in Eq. (51) of [125],

Z+
1 (m, t) =Z+

0 (m, t)
[(

m2

2t − 2
)(

ln(m2) + γE
)

+ I
(
m√
2t

)
+ ln(t)− 2γE

]
=Z+

0 (m, t)
[
I(z) + z2

(
ln(2z2) + γE

)
+ (z2 − 1) ln(t)− 4 ln(z)− 4γE

]
.

(2.83)

This result assumes a proper normalisation of Z+
1 such that x0 and ln(x0) terms cancel, i.e.

the limit x0 → 0 is well-defined, and the integral over m is equal to unity. We introduced
z := m/

√
2t, and I is the combination of special functions defined in Eq. (2.35), and recalled in

Eq. (2.167).
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We can also use the diagrammatic rules introduced in section 2.2.4 to compute the Laplace-
transformed correction to this propagator (without conditioning). This corresponds to the dia-
gram represented in Fig. 2.2 (right) without the slice on the right,

P̃+
1 (x0,m, s) = 2

∫ Λ

0
dy
∫
x1,x2>0

P̃+
0 (x0, x1, s)∂x1P̃

+
0 (x1, x2, s+ y)∂x2P̃

+
0 (x2,m, s) . (2.84)

This is the term appearing in the square brackets in Eqs. (2.80) and (2.81). The integrations
over space can be done, giving the following integral, rescaling y → us, and setting m = 1 for
simplicity:

P̃+
1 (x0, 1, s) = 1√

s

Λ/s∫
0

du
u2

{[(√
s− 1

)
u− 2

]
e−
√
s sinh(

√
sx0)− x0u

√
s e−

√
s cosh(

√
sx0) (2.85)

+ 2
√
u+ 1

[
e−
√
s
√
u+1 cosh(

√
s(u+ 1)x0)− e−

√
s(
√
u+1+x0) − e−

√
s(x0
√
u+1+1) + e−

√
s(x0+1)

]}
.

This is a logarithmically diverging integral at large u, which makes the UV cutoff necessary, cf.
Appendix 2.A where we explicit the link between the y cutoff Λ and the time cutoff τ). Doing
the integration over u, and then taking the limit x0 → 0 as well as expressing the cutoff Λ in
term of τ gives

1
x0
P̃+

1 (x0,m, s) '
x0→0

em
√
s (m√s+ 1

)
Ei
(
−2m

√
s
)
− e−m

√
s (m√s+ 1

)
ln(m

√
s) (2.86)

+m
√
se−m

√
s

[
ln
(
m2

2τ

)
− 1

]
+ e−m

√
s

[
ln
(
τ2

2x4
0

)
− 3γE + 4

]
.

This expression in Laplace variables for the correction to the propagator is a new result (in
[125], a more complicated transformation was used to derive Eq. (2.83)). The inverse Laplace
transform can be done, using Eqs. (2.174)-(2.177) for the complicated terms,

P+
1 (x0,m, t)
P+

0 (x0,m, t)
'

x0→0
I(z)+z2

[
ln(2z2) + γE

]
+(z2−1)

[
ln
(
t

τ

)
− 1

]
+ln

(
τ2

4x4
0z

4

)
−4γE+2 . (2.87)

We still need to correct this with the rescaling of the diffusion constant, i.e. taking into account
the order-ε correction in Eq. (2.12) given the expression of the diffusive constant (2.4). This
gives

2t∂tP+
0 (x0,m, t)[1 + ln(τ)] = P+

0 (x0,m, t)(z2 − 3)
[
1 + ln(τ)

]
. (2.88)

A check of consistency is that this cancels all dependence on τ , and we find for the propagator
at order ε,

P+(x0,m, t) '
x0→0

(2.89)

P+
0 (x0,m, t)

{
1 + ε

[
I(z) + z2

(
ln(2z2) + γE

)
+ (z2 − 1) ln(t)− ln

(
4x4

0z
4
)
− 4γE

]}
+O(ε2) .

This propagator, integrated over m, reads, both in time and Laplace variables∫ ∞
0

dmP̃+
1 (x0,m, s) '

x0→0

x0√
s

(
3− 3γE − ln(4sτ) + ln

(
τ2

x4
0

))
,∫ ∞

0
dmP+

1 (x0,m, t) '
x0→0

x0√
πt

(
3− 2γE + ln

(
tτ

x4
0

))
.

(2.90)
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2.C Computation of the new correction Z+
γ

Outline of the Calculation
We present here details of the calculation of Z+

γ , starting from its expression in Laplace variables
(2.23), graphically represented in Fig. 2.2. First, we introduce the notation

S(m,x0, s, y) := 1
x0

∫ ∞
0

dx P̃+
0 (m,x, s) ∂xP̃+

0 (x, x0, s+ y) (2.91)

= 1
x0

e−(m−x0)
√
s+y − e−(m+x0)

√
s+y + 2e−x0

√
s+y−m

√
s − e−(m−x0)

√
s − e−(m+x0)

√
s

2y .

The expression of P̃+
0 is given in Eq. (2.24). We see from Eq. (2.23) that one can write

Z̃+
γ (m1, s1;x0;m2, s2) as

Z̃+
γ (m1, s1;x0;m2, s2) = −2x2

0

∫
y>0
S(m1, x0, s1, y)S(m2, x0, s2, y) . (2.92)

The minus sign comes from an integration by parts. It is interesting to look at the asymptotics
of S in the limit of x0 → 0,

S(m,x0, s, y) '
x0→0

1
y

(
e−m

√
s+y√s+ y − e−m

√
s√s+ y

)
∼

y→∞
e−m

√
s

√
y

. (2.93)

This implies that the x0 → 0 limit can not be taken before integrating over y, as this induces
a new large-y, i.e. short-time divergence. Taking this limit before integration, and regularizing
the new divergence with the large-y cutoff Λ would lead to a wrong result. This is expected as
the scaling of the result in terms of x0 depends on H, thus inducing a ln(x0) term at order ε.

In the following, we note S = S̄ + δS with

S̄(m,x0, s, y) := 1
x0

e−(m−x0)
√
s+y − e−(m+x0)

√
s+y + 2e−(x0+m)

√
s − e−(m−x0)

√
s − e−(m+x0)

√
s

2y ,

δS(m,x0, s, y) := 1
x0

e−x0
√
s+y−m

√
s − e−x0

√
s−m

√
s

y
. (2.94)

Denoting Si := S(mi, x0, si, y), the integration over y is a sum of four terms (with the last two
related by exchanging points 1 and 2),∫

y>0
S1S2 =

∫
y>0
S̄1S̄2 +

∫
y>0

δS1δS2 +
∫
y>0
S̄1δS2 +

∫
y>0
S̄2δS1 . (2.95)

This leads to the following decomposition of Z+
γ (m1, t1;x0;m2, t2),

Z+
γ = x2

0
[
ZA(m1, t1;m2, t2) + ZB(m1, t1;x0;m2, t2) + ZC(m1, t1;m2, t2) + ZC(m2, t2;m1, t1)

]
,

(2.96)
with

ZA(m1, s1;m2, s2) = −2L−1
s2→t2 ◦ L

−1
s1→t1

[
lim
x0→0

∫
y>0
S̄(m1, x0, s1, y)S̄(m2, x0, s2, y)

]
,

ZB(m1, s1;x0;m2, s2) = −2L−1
s2→t2 ◦ L

−1
s1→t1

[
lim
x0→0

∫
y>0

δS(m1, x0, s1, y)δS(m2, x0, s2, y)
]
,

ZC(m1, s1;m2, s2) = −2L−1
s2→t2 ◦ L

−1
s1→t1

[
lim
x0→0

∫
y>0
S̄(m1, x0, s1, y)δS(m2, x0, s2, y)

]
.

(2.97)
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We anticipate here that ZA and ZC have a well-defined x0 → 0 limit, and only ZB has a
divergence (as shown later). The next step consists in computing these three integrals over y,
taking the limit of small x0, and performing the inverse Laplace transforms w.r.t. s1 and s2.
The order of these manipulations can sometimes be inverted to simplify the calculations.

The term ZA

In the first term of Eq. (2.97) it is possible to take the x0 → 0 limit inside the integral, as this
integrand converges fast enough for large y, given the asymptotic of S̄,

S̄ '
x0→0

e−m
√
s+y√s+ y − e−m

√
s√s

y
. (2.98)

This gives

∫
y>0
S̄1S̄2 '

x0→0

∫
y>0

(
e−m1

√
s1+y√s1 + y − e−m1

√
s1
√
s1
) (
e−m2

√
s2+y√s2 + y − e−m2

√
s2
√
s2
)

y2 .

(2.99)
We can do the inverse Laplace transformations s1 → t1 and s2 → t2 before integrating over y,
using

L−1
s→t

[
−e−m

√
s+y√s+ y

]
= e−

m2
4t

2
√
πt3/2

(
1− m2

2t

)
e−ty . (2.100)

One thus finds

L−1
s2→t2 ◦ L

−1
s1→t1

∫
y>0
S̄1S̄2 '

x0→0

e
−
m2

1
4t1
−
m2

2
4t2

4πt3/21 t
3/2
2

(
1− m2

1
2t1

)(
1− m2

2
2t2

)∫
y>0

(1− e−t1y)(1− e−t2y)
y2 .

(2.101)
Integrating over y and using the definition of ZA, the final result for this term is

ZA(m1, t1;m2, t2) = e
−
m2

1
4t1
−
m2

2
4t2

2π(t1t2)3/2

(
1− m2

1
2t1

)(
1− m2

2
2t2

)[
t1 ln(t1)+ t2 ln(t2)− (t1 + t2) ln(t1 + t2)

]
.

(2.102)

The term ZB

For the second term of Eq. (2.97), the limit x0 → 0 cannot be taken inside the integral, as

δS = 1
x0

e−x0
√
s+y−m

√
s − e−x0

√
s−m

√
s

y
'

x0→0

e−m
√
s

y
(
√
s−
√
s+ y) ∼

y→∞
−e
−m
√
s

√
y

. (2.103)

However, we can extract the diverging part by writing

∫
y>0

δS1δS2 = e−m1
√
s1−m2

√
s2 ln(x−2

0 + 1) +
∫
y>0

[
δS1δS2 −

e−m1
√
s1−m2

√
s2

y + 1 Θ(y < x−2
0 )
]
.

(2.104)
This expression is constructed such that for all x0 > 0 the term added outside the integral and
the term subtracted inside the integral cancel. The diverging part when x0 → 0 is now the
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term outside the integral and the integral has a finite limit when x0 → 0. To proceed, denote
K := e−m1

√
s1−m2

√
s2 . We then decompose the integral as a sum of three terms,∫

y>0

[
δS1δS2 −

K
y + 1Θ(y < x−2

0 )
]

=
∫ x−2

0

0
dy
[
δS1δS2 −K

(
√
s1 + y −√s1)(

√
s2 + y −√s2)

y2

]

+K
∫ x−2

0

0
dy
[

(
√
s1 + y −√s1)(

√
s2 + y −√s2)

y2 − 1
y + 1

]

+
∫ ∞
x2

0

dy δS1δS2 . (2.105)

In the second term we can take the limit of x0 → 0 to obtain (without the K factor in front)∫
y>0

[
(
√
s1 + y −√s1)(

√
s2 + y −√s2)

y2 − 1
y + 1

]
(2.106)

= −
(

2 +
√
s1
s2

+
√
s2
s1

)
ln (
√
s1 +

√
s1) + 1

2

√
s1
s2

ln (s1) + 1
2

√
s2
s1

ln (s2)− 1 + ln(4) .

For the first and third term, we first perform a rescaling of the integration variable (y → x−2
0 v)

and then take the limit of x0 → 0,

∫ x−2
0

0
dy
[
δS1δS2 −K

(
√
s1 + y −√s1)(

√
s2 + y −√s2)

y2

]
'

x0→0
K
∫ 1

0
dv


(
e−
√
v − 1

)2

v2 − 1
v

 ,

∫ ∞
x2

0

du δS1δS2 '
x0→0

K
∫ ∞

1
dv

(
e−
√
v − 1

)2

v2 . (2.107)

The sum of the last two contributions in the limit of x0 → 0 is

K
∫ ∞

1
dv

(
e−
√
v − 1

)2

v2 +K
∫ 1

0
dv


(
e−
√
v − 1

)2

v2 − 1
v

 = K [3− 2γE − 2 ln(4)] . (2.108)

Summing all these contribution gives∫
y>0

δS1δS2 '
x0→0

e−m1
√
s1−m2

√
s2
[
−
(

2 +
√
s1
s2

+
√
s2
s1

)
ln (
√
s1 +

√
s2) (2.109)

+
√
s1
s2

ln (
√
s1) +

√
s2
s1

ln (
√
s2)− 2 ln(2x0) + 2− 2γE

]
.

We now need a series of Inverse Laplace transforms obtained in appendix 2.G. To deal with the
double Laplace inversion, we start with formula (2.172) and use the special function J defined
in Eq. (2.168). Using commutativity of derivation and integration with the Laplace transform,
we can use the identity(

2 +
√
s1
s2

+
√
s2
s1

)
e−m1

√
s1−m2

√
s2 = (∂m1 + ∂m2)

(∫
m1

+
∫
m2

)
e−m1

√
s1−m2

√
s2 (2.110)

to obtain

L−1
s2→t2◦L

−1
s1→t1

[
e−m1

√
s1−m2

√
s2

(
2 +

√
s1
s2

+
√
s2
s1

)
ln (
√
s1 +

√
s2)
]

(2.111)

= (∂m1 + ∂m2)2

e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

[
J
(

(m2t1 +m1t2) 2

4t1t2 (t1 + t2)

)
+ 1

2 ln
( 1

4t1
+ 1

4t2

)
− γE

2

] .
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For the other terms, the inverse Laplace transforms are decoupled, and can be computed from
Eq. (2.173). We get

L−1
s2→t2 ◦ L

−1
s1→t1

[
e−m1

√
s1−m2

√
s2

√
s1
s2

ln (
√
s1)

]
(2.112)

= ∂2
m1

e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

[
J
(
m2

1
4t1

)
+ 1

2 ln
( 1

4t1

)
− γE

2

] .

The sum of all terms, with a prefactor of −2 coming from the definition of ZB, is

ZB(m1, t1;x0;m2, t2) = m1m2e
−
m2

2
4t2
−
m2

1
4t1

2π(t1t2)3/2
[
2 ln(2x0)− 2 + 2γE

]
(2.113)

+ 2(∂m1 + ∂m2)2

e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

[
J
(

(m2t1 +m1t2) 2

4t1t2 (t1 + t2)

)
+ 1

2 ln
( 1

4t1
+ 1

4t2

)
− γE

2

]
− 2 ∂2

m1

e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

[
J
(
m2

1
4t1

)
+ 1

2 ln
( 1

4t1

)
− γE

2

]+ (1↔ 2) .

The derivatives can be computed explicitly, using the relation between I and J given in
Eq. (2.169),

∂2
m1

{
e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

[
J
(
m2

1
4t1

)
+ 1

2 ln
( 1

4t1

)
− γE

2

]}
= (2.114)

− e
−
m2

2
4t2
−
m2

1
4t1

4π(t1t2)3/2 t2

[
I
(
m1√
2t1

)
+
(
m2

1
2t1
− 1

)(
ln (4t1) + γE

)]
.

The same result holds for the term involving ∂2
m2 . For the term involving simultaneously m1

and m2, we can use almost the same trick,

(∂m1 + ∂m2)2
[
e
−
m2

2
4t2
−
m2

1
4t1J

(
(m2t1 +m1t2) 2

4t1t2 (t1 + t2)

)]
(2.115)

= t1 + t2
4t1t2

e
−
m2

2
4t2
−
m2

1
4t1

[
2(z2 − 1)J

(
z2

2

)
− 2(2z2 − 1)J ′

(
z2

2

)
+ 2z2J ′′

(
z2

2

)]

= − t1 + t2
4t1t2

e
−
m2

2
4t2
−
m2

1
4t1 I

(
m1t2 +m2t1√
2t1t2(t1 + t2)

)
.

The second line is the explicit derivative of the first line, expressed for simplicity in terms of the
variable

z = m1t2 +m2t1√
2t1t2(t1 + t2)

. (2.116)
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The combination of J and its derivatives appearing in the second line is exactly the function I,
as can be checked from Eq. (2.169). After these simplifications,

ZB(m1, t1;x0;m2, t2) '
x0→0

e
−
m2

2
4t2
−
m2

1
4t1

2π(t1t2)3/2

{
2m1m2

[
ln(2x0) + γE − 1

]
+ t2

[
I
(
m1√
2t1

)
+
(
m2

1
2t1
− 1

)(
ln(4t1) + γE

)]
+ t1

[
I
(
m2√
2t2

)
+
(
m2

2
2t2
− 1

)(
ln(4t2) + γE

)]

− (t1 + t2)
[
I(z) +

(
z2 − 1

)(
ln
( 4t1t2
t1 + t2

)
+ γE

)]}
. (2.117)

The term ZC

For this term, we can take the limit x0 → 0 inside the integral, as it converges for large y using
asymptotics (2.98) and (2.103), giving∫

y>0
S̄1δS2 '

x0→0
e−m2

√
s2

∫
y>0

e−m1
√
s1+y√s1 + y − e−m1

√
s1
√
s1

y

√
s2 −

√
s2 + y

y
. (2.118)

To compute the Laplace inversion s1 → t1, we use Eq. (2.100)

L−1
s1→t1

[∫
y>0
S̃1δS2

]
= e

−
m2

1
4t1

2
√
πt

3/2
1

(
m2

1
2t1
− 1

)
e−m2

√
s2

∫
y>0

(1− e−t1y)(
√
s2 + y −√s2)
y2

= e
−
m2

1
4t1

2
√
πt

3/2
1

(
m2

1
2t1
− 1

)
e−m2

√
s2

√
s2

∫
v>0

(1− e−t1s2v)(
√
v + 1− 1)

v2 . (2.119)

We changed variables y → s2v between the two lines. To perform the inverse Laplace transform
with respect to s2, we need

L−1
s2→t2

[
e−m2

√
s2

√
s2

e−t1s2v
]

= θ(t2 − vt1) e
− m2

2
4(t2−vt1)√

π(t2 − vt1)
. (2.120)

Finally, to compute ZC , only the integration over v remains to be done,

ZC(m1, t1; t2,m2) = − e
−
m2

1
4t1

√
πt

3/2
1

(
m2

1
2t1
− 1

) ∫
v>0

e−m2
2

4t2
√
πt2
−Θ(t2 − vt1) e

− m2
2

4(t2−vt1)√
π(t2 − vt1)

 √v + 1− 1
v2

= −e
−
m2

1
4t1 e

−
m2

2
4t2

2π(t1t2)3/2 (m2
1 − 2t1) t2

t1

∫
v>0

1−Θ
(
t2
t1
− v

)
e
−
m2

2
4t2

(
1

1−vt1/t2
−1
)

√
1− v t1t2


√
v + 1− 1
v2 (2.121)

= −e
−
m2

1
4t1 e

−
m2

2
4t2

2π(t1t2)3/2 (m2
1 − 2t1)

ν ∫ ν

0
dv

1− e
−a
(

1
1−v/ν−1

)
√

1− v/ν

 √v + 1− 1
v2 + ν

∫ ∞
ν

dv
√
v + 1− 1
v2

 ;

here we have introduced ν = t2/t1 and a = m2
2/(4t2). Thus the following integrals needs to be

computed,

I1(a, ν) = ν

∫ ν

0
dv

1− e
−a
(

1
1−v/ν−1

)
√

1− v/ν

 √v + 1− 1
v2 and I2(ν) = ν

∫ ∞
ν

dv
√
v + 1− 1
v2 .

(2.122)
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The term I2 is easy,

I2(ν) = ν

∫ ∞
ν

dv
√
v + 1− 1
v2 =

√
ν + 1− 1 + ν asinh

( 1√
ν

)
=
√
t1 + t2
t1

− 1 + t2
t1

asinh
(√

t1
t2

)
.

(2.123)
The other integral is more involved. To evaluate it, we perform a change of variables

I1(a, ν) = ν

∫ ν

0
dv

1− e
−a
(

1
1−v/ν−1

)
√

1− v
ν

 √v + 1− 1
v2 (2.124)

=
∫ ∞

0
dx

( 1√
x+ 1

− e−ax
) √(ν + 1)x+ 1−

√
x+ 1

x2 .

To simplify the integrand, we then take its second derivative with respect to a,

∂2
aI1(a, ν) = −

∫ ∞
0

dx e−ax
(√

(ν + 1)x+ 1−
√
x+ 1

)
(2.125)

= −

√
π
(√

ν + 1e
a
ν+1 erfc

(√
a
ν+1

)
− eaerfc (

√
a)
)

2a3/2 .

The function
f(a) = 1

2 I
(√

2a
)

+ 3a− 1 + a ln(a) , (2.126)

where I is defined in (2.167), satisfies

f ′′(a) = −
√
π

2
ea

a3/2 erfc(
√
a) . (2.127)

We can then express the second derivative of I1 in terms of f ,

∂2
aI1(a, ν) = 1

1 + ν
f ′′
(

a

1 + ν

)
− f ′′(a) . (2.128)

After two integrations over a we obtain, with yet unknown functions A(ν) and B(ν),

I1(a, ν) = (ν + 1) f
(

a

ν + 1

)
− f(a) +B(ν)a+A(ν) . (2.129)

The small-a behavior of f can be obtained as

f(a) = 2
√
π
√
a+ a ln(a)− 2

√
π

3 a3/2 + a2

3 +O(a5/2) . (2.130)

We can compare this to the limit when a goes to 0 of the initial integral to determinate the
integration constants A and B. The limit is computed by taking the limit inside the integral,
with result

lim
a→0

I1(a, ν) = 1−
√
ν + 1 + 1

2(ν + 1) ln(ν + 1)− ϑ ln
(√

ν + 1 + 1
)
. (2.131)

Finally, we get

I1

(
m2

2
4t2

,
t2
t1

)
=
(

1 + t2
t1

)
f

(
m2

2

4t2
t1

t2 + t1

)
− f

(
m2

2

4t2

)
(2.132)

+ 1−
√
t2 + t1
t1

+ t2 + t1
t1

ln
(√

t2 + t1
t1

)
− t2
t1

ln
(√

t2 + t1
t1

+ 1
)
.
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This has been checked numerically with excellent precision.
There are a few terms that cancel between I1 and I2, and expressing asinh in terms of ln,

and f in terms of I finally gives

ZC(m1, t1;m2, t2) = e
−
m2

1
4t1 e

−
m2

2
4t2

2π(t1t2)3/2

(
1− m2

1
2t1

)[
(t1 + t2) I

(
m2√
2t2

√
t1

t2 + t1

)
(2.133)

−t1I
(
m2√
2t2

)
− 2t2 + t1

(
m2

2

2t2
− 1

)
ln
(

t1
t2 + t1

)
+ t2 ln

(
t1 + t2
t2

)]
.

We computed numerically the double Laplace transform of (2.133), and checked with high
precision agreement with (2.118), where the integral over y is evaluated numerically.

2.D Correction to the third arcsine Law

As stated in the main text, the distribution of tmax can be extracted from our path integral (2.1)
as follows:

PTH(t) = lim
x0→0

1
ZN(T, x0)

∫
m1,m2>0

Z+(m1, t;x0;m2, T − t) . (2.134)

The order-0 contribution (2.13) gives for the normalisation

ZN(x0, T ) =
∫ T

0
dt
∫
m1,m2>0

Z+
0 (m1, t;x0;m2, T − t) +O(ε) '

x0→0
x2

0 +O(ε) . (2.135)

We recover the well-known Arcsine Law distribution for standard Brownian motion,

PT1
2

(t) = lim
x0→0

∫
m1,m2>0 Z

+
0 (m1, t;x0;m2, T − t)

x2
0

=
∫
m1,m2>0

m1m2e
−
m2

1
4t1
−
m2

2
4t2

4πt3/21 t
3/2
2

= 1
π
√
t(T − t)

.

(2.136)

Let us now write every term in the ε-expansion: ZN = ZN
(0) + εZN

(1) + O(ε2) and Z+ = Z+
(0) +

εZ+
(1) + O(ε2). It is important to note that these terms slightly differ from those in Eq. (2.7),

where the expansion was done with respect to the non-local perturbation in the action. As
computed in Eq. (2.15), the term Z+

0 contains some order-ε correction, contrary to Z+
(0) which

is defined as the constant part of Z+ in its ε expansion.
Using these new notations, we have

PTH(t) = lim
x0→0

∫
Z+

(0)

ZN
(0)

1 + ε

∫ Z+
(1)∫

Z+
(0)
−
ZN

(1)

ZN
(0)

+O(ε2)

= PT1
2

(t) lim
x0→0

1 + ε

∫ Z+
(1)∫

Z+
(0)
−
ZN

(1)

ZN
(0)

+O(ε2) , (2.137)

where
∫
symbol implicitly denotes integration over m1 and m2. The normalisation ensures that

the correction to the probability

δPT (t) = PT1
2

(t) lim
x0→0

∫ Z+
(1)∫

Z+
(0)
−
ZN

(1)

ZN
(0)

 (2.138)
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does not change the normalisation, i.e. its integral over t vanishes.
To compute the order-ε correction to the distribution (2.136), we have to compute the integral

over m1 and m2 of Z+
α , as well as Z+

β and Z+
γ (m1, t1;x0;m2, t2). The last term, computed in

Appendix 2.C, was decomposed in four terms, see Eq. (2.96). The expressions for these terms
are given in Eqs. (2.102), (2.117) and (2.133).Using the identity

∫
z>0 e

− z
2
2 (z2 − 1) = 0, we find

the simplifications ∫
m1,m2>0

ZA =
∫
m1,m2>0

ZC = 0 . (2.139)

Thus, the only contribution of Z+
γ comes from ZB, defined in (2.97),

1
x2

0

∫
m1,m2>0

Z+
γ (m1, t1;x0;m2, t2) =

∫
m1,m2>0

ZB(m1, t1;x0;m2, t2) (2.140)

= − 2
π
√
t1t2

[
1 + ln

( 4t1t2
t1 + t2

)
− 2 ln(2x0) + 2γE

]
+ 1
t1

+ 1
t2

− t1 + t2
2π(t1t2)3/2

∫
m1,m2>0

e
−
m2

1
4t1
−
m2

2
4t2 I

(
z = m1t2 +m2t1√

2t1t2(t1 + t2)

)

We have used the identity
∫∞

0 dze−z2/2I(z) =
√

2π. To compute the last integral, we use relation
(2.169), which in this case gives

t1 + t2
2π(t1t2)3/2

∫
m1,m2>0

e
−
m2

1
4t1
−
m2

2
4t2 I(z) (2.141)

= − 2
π
√
t1t2

∫
m1,m2>0

(∂m1 + ∂m2)2
[
e
−
m2

1
4t1
−
m2

2
4t2J

(
(m1t2 +m2t1)2

4t1t2(t1 + t2)

)]
.

Only the cross term of the derivatives (i.e. the term with 2∂m1∂m2) is not a total derivative and
gives a non-zero contribution,

2
π
√
t1t2

∫
m2>0

e
−
m2

2
4t2 ∂m1J

(
(m2t1 +m1t2) 2

4t1t2 (t1 + t2)

)∣∣∣∣∣
m1=0

= 2
πt1

arctan
(√

t2
t1

)
. (2.142)

The final result for this correction is
1
x2

0

∫
m1,m2>0

Z+
γ (m1, t1;x0;m2, t2) = −2

π
√
t1t2

[
ln
( 4t1t2
t1 + t2

)
− 2 ln(2x0) + 1 + 2γE

]
(2.143)

+ 1
t1

+ 1
t2
− 2
πt1

arctan
(√

t2
t1

)
− 2
πt2

arctan
(√

t1
t2

)
.

The contributions to the correction from Z+
α and Z+

β are easily computed from their expressions
in terms of propagators given in the main text, cf. Eqs. (2.19) and (2.20), and then using formula
(2.90),

x−2
0

∫
m1,m2>0

P+
0 (x0,m1, t1)P+

1 (x0,m2, t2) + (1↔ 2) '
x0→0

1
π
√
t1t2

[
6− 4γE + ln(t1t2) + ln

(
τ2

x8
0

)]
.

(2.144)
The last term of order ε comes from the rescaling of the diffusive constant, which was made
explicit in Eq. (2.15),

2[1 + ln(τ)](t1∂t1 + t2∂t2) 1
x2

0

∫
m1,m2>0

Z+
0 = −2[1 + ln(τ)]

π
√
t1t2

. (2.145)
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Summing all these contributions at order ε, and taking into account the correction from nor-
malisation gives the final result for the order-ε term of the probability,

δPT (t) = 1
π
√
t1t2

{
− ln(t1t2) +

√
t1
t2

[
π − 2 arctan

(√
t1
t2

)]
+
√
t2
t1

[
π − 2 arctan

(√
t2
t1

)]

+ 2 ln(T ) + 4− 6γE + ln
(
τ2

x4
0

)
−
ZN(1)(T, x0)

x2
0

− 2
[
1 + ln(τ)

]}
,

(2.146)

with t1 = t and t2 = T−t. As expected, the dependence in τ vanishes at the end of the computa-
tion, and the order ε of the normalisation factor ZN(1) is fixed by the condition

∫ T
0 dt δP T (t) = 0,

which gives
ZN(1) = x2

0
[
8 ln(2) + 2− 6γE − 4 ln(x0)

]
. (2.147)

Equivalently, the constant term, i.e. the second line of Eq. (2.146), becomes −8 ln(2). The
interpretation of this result as well as a comparison to numerical simulations is presented in the
main text.

2.E Correction to the maximum-value distribution

Similarly to the distribution of tmax, the distribution of m can be computed from the path
integral Z+(m1, t1, x0,m2, t2). This is done by taking the limit of small x0, the integral over m2
and the integral over t1 at t1 + t2 = T fixed,

PTH(m) = lim
x0→0

1
ZN(T, x0)

∫ m2

0
dm2

∫ T

0
dt Z+(m, t, x0,m2, T − t) . (2.148)

It is useful to note that the integration over t = t1 at fixed T = t1 + t2 can be replaced by
taking the Laplace transform of Z+ at equal arguments (s1 = s2 = s) and then performing the
inverse Laplace transform s → T . The normalisation ZN(T, x0) is the same as the one for the
distribution of P TH(t); expanding in ε thus gives the same structure as (2.137), with the

∫
symbol

now being the integrals over m2 > 0 and t1 ∈ [0, T ].
We start with the contribution of Zγ . As before, the integral over m2 of ZA vanishes, so this

term does not contribute. The correction from ZB can be computed starting with Eq. (2.109),
taken at equal Laplace variables (i.e. s1 = s2 = s),

∫
m2

∫
t
ZB = 4e

−m
√
s

√
s

[
ln(x0)− 1 + γE + 2 ln(2) + ln(

√
s)
]
. (2.149)

To take the inverse Laplace transform, we use Eq. (2.174). This gives

∫
m2

∫
t
ZB = 4e

−m
2

4T
√
πT

[
J
(
m2

4T

)
+ ln

(4x0√
T

)
+ γE

2 − 1
]
. (2.150)

For the contribution of ZC , it is easier to compute the inverse Laplace transform of Eq. (2.118)
(s1 = s2 = s→ T ) before integrating over y. This gives

∫
m2

∫
t
ZC = −2e

−m
2

4T
√
πT

∫ ∞
0

dy
y2

[
e−

m2
4T y

(√
1 + y − 1− y

)
+
√

1 + y − 1
]
. (2.151)
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Let us define

IC(a) :=
∫ ∞

0

du
u2

(
e−au

(√
1 + u− 1− u

)
+
√

1 + u− 1
)
. (2.152)

After deriving twice w.r.t. a, then integrating twice, and fixing the integration constants, we
get

IC(a) = γE + 1 + ln(4) + a[3− γE − ln(4)] (2.153)

− a2

3 2F2

(
1, 1; 5

2 , 3; a
)

+ π

2 (2a− 1)erfi(
√
a)− ea

√
πa+ (1− a) ln(a) .

We can express this in terms of the special function I ,

IC

(
z2

2

)
= γE + 2 + ln(4)− z2

2 [γE + ln(4)]− 1
2I(z) +

(
1− z2

2

)
ln
(
z2

2

)
, (2.154)

This has been checked numerically. The final result for this correction is, with z := m/
√

2T ,

∫
m2

∫
t
ZC = e−

z2
2

√
πT

[
I(z) + (z2 − 2)

(
γE + ln

(
2z2
))
− 4

]
. (2.155)

The last corrections are: x−2
0
∫
m2

∫
t Z

+
α and x−2

0
∫
m2

∫
t Z

+
β . The first one is easy to compute using

the results for the correction to the propagator recalled in Eq. (2.90), and the inverse Laplace
transform (2.174),

1
x2

0

∫ T

0
dt
∫ ∞

0
dm2 P

+
0 (x0,m, t)P+

1 (x0,m2, T − t) (2.156)

'
x0→0

L−1
s→T

[
e−m

√
s

√
s

(
3− ln(4sτ)− 3γE + ln

(
τ2

x4
0

))]

'
x0→0

e−
m2
4T

√
πT

[
−2J

(
m2

4T

)
+ ln

(
T

τ

)
+ 2− 2γE + ln

(
τ2

x4
0

)]
.

For the correction from Z+
β , we start with the Laplace expression of the correction to the

propagator (2.86), where the integration over m2 simplifies the last slice to x0√
s
. Then, the

needed inverse Laplace transformation is

1
x2

0

∫ T

0
dt
∫ ∞

0
dm2 P

+
1 (x0,m, t)P+

0 (x0,m2, T − t) (2.157)

'
x0→0

1
x0
L−1
s→T

[
P+

1 (x0,m, s)√
s

]
= e−

m2
4T

√
πT

[
−2J

(
m2

4T

)
+ m2

2T ln
(
T

τ

)
+ 2− 2γE + ln

(
τ2

x4
0

)]
.

The final result for this is obtained using Eqs. (2.174)-(2.177).
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We now give a summary of all corrections, in the limit of x0 → 0:

x−2
0

∫
t,m2
P+

1 (x0,m, t)P+
0 (x0,m2, t2) ' e−

m2
4T

√
πT

[
−2J

(
m2

4T

)
+ m2

2T ln
(
T

τ

)
+ 2− 2γE + ln

(
τ2

x4
0

)]
,

x−2
0

∫
t,m2
P+

0 (x0,m, t)P+
1 (x0,m2, t2) ' e−

m2
4T

√
πT

[
−2J

(
m2

4T

)
+ ln

(
T

τ

)
+ 2− 2γE + ln

(
τ2

x4
0

)]
,

∫
t,m2
ZC(m, t;m2, t2) ' e−

m2
4T

√
πT

[
I
(

m√
2T

)
+
(
m2

2T − 2
)(

γE + ln
(
m2

T

))
− 4

]
,

∫
t,m2
ZB(m, t;m2, t2) ' e−

m2
4T

√
πT

[
4J
(
m2

4T

)
+ 4 ln

(4x0√
T

)
+ 2γE − 4

]
,

4(1 + ln(τ))
x2

0
T∂T

∫
t

∫
m2
Z+

0 '
e−

m2
4T

√
πT

[
1 + ln(τ)

(
m2

2T − 1
)]

.

The last line is the correction to the diffusion constant, i.e. the order-ε term appearing in Eq.
(2.15). The final result at order ε is∫
m2

∫
t
Z+(m, t,m2, T − t) (2.158)

= e−
m2
4T

√
πT

{
1 + ε

[
I
(

m√
2T

)
+
(
m2

2T − 2
)(

γE + ln
(
m2

T

))
+
(
m2

2T − 1
)

ln(T ) + cst
]}

+O(ε2) .

To better interpret the different terms, we recast the corrections, and especially those as m2

2T ln(T )
and ln(T ), into an exponential form,

e−
m2
4T

√
πT

[
1 + ε

(
m2

2T − 1
)

ln(T )
]

+O(ε2) = e−
m2
4T

√
πT

eε
m2
2T ln(T )T−ε +O(ε2) = e−

m2
4T1+2ε

√
πT 1/2+ε +O(ε2) .

(2.159)
This part of the correction gives the correct dimension to the variables in the order-0 result,

z = m√
2t
→ y = m√

2tH
= m√

〈x2
t 〉
. (2.160)

The other parts of the correction, which are a function of z = m√
2t and which we call G(z), give

a non-trivial change to the scaling function of the distribution,

PTH(m) = e
− m2

4T2H
√
πTH

e
ε

[
G
(
z= m√

2t

)
+cst

]
+O(ε2) = e−

y2
2

√
πTH

eε[G(y)+cst] +O(ε2) . (2.161)

We changed the variable in G from z to y as it does not change the result at order ε and since
it is more consistent in terms of dimensions. The function G is given by

G(y) = I(y) + (y2 − 2)
[
ln(2y2) + γE

]
. (2.162)

The function I is regular at y = 0, and its asymptotic behavior is given in Eq. (2.171); this gives
the asymptotics for G as

G(y) ∼
{
−2 ln(y) for y →∞
−4 ln(y) for y → 0 .

(2.163)
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Since these asymptotics are logarithmic new power laws are obtained for the density distribution,
both at m→ 0 and m→∞, which multiply the Gaussian term, with

PT1
2 +ε(m)× e

m2
4T1+2ε ∼

{
m−4ε for m→ 0
m−2ε for m→∞ .

(2.164)

The constant term in Eq. (2.158) is fixed by normalisation. Instead of computing it at order
ε, we can also evaluate it numerically such that (2.161) is exactly normalized, and not only at
order ε. This is appropriate for numerical checks and the procedure we adopted for the latter.

2.F Correction to the survival distribution
To compute the survival probability up to time T of a fBm starting in m, we need to take the
primitive function w.r.t. m of (2.158). We can deal with the terms involving I using (2.169);
the difficult part comes from ∫ y

0
dme−

m2
2 (2−m2) ln(m) . (2.165)

To deal with this integration, we consider e−
m2
2 ma, compute the primitive function w.r.t. m,

and then take the derivative w.r.t. a, at a = 0 and a = 2.
The final result can be written as

S(y) = erf
(
y√
2

)
+ εM(y) +O(ε2) (2.166)

This is at leading order in ε equivalent to the exponentiated form given in the main text (2.53),
with the functionM given by Eq. (2.54).

2.G Special functions and some inverse Laplace transforms
In our computations there are two combinations of special functions which appear frequently,
and which we denote I and J . Their expressions in terms of hypergeometric functions and error
functions are

I(z) = z4

6 2F2

(
1, 1; 5

2 , 3; z
2

2

)
+ π(1− z2)erfi

(
z√
2

)
− 3z2 +

√
2πe

z2
2 z + 2 (2.167)

J (x) = π

2 erfi
(√
x
)
− x 2F2

(
1, 1; 3

2 , 2;x
)

(2.168)

These functions are linked by

∂2
z

[
e−

z2
2 J

(
z2

2

)]
= −1

2e
− z

2
2 I(z) . (2.169)

It is useful to give their asymptotics, as their natural definition in terms of a series does not
allow for an efficient evaluation at large arguments,

J (x) '
x→∞

1
2
[

ln(4x) + γE
]

+ 1
4x −

3
16x2 + 5

16x3 −
105

128x4 +O

( 1
x5

)
(2.170)

I(z) '
z→∞

− z2
[
ln
(
2z2
)

+ γE
]

+ ln(2z2) + γE + 3 + 1
2z2 −

1
2z4 +O

( 1
z5

)
. (2.171)
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These functions appear in the inverse Laplace transforms involving ln(x) or Ei(x) functions. We
give here the main non-trivial formulas used to deal with Laplace inversions:

L−1
s2→t2 ◦ L

−1
s1→t1

[
e−m1

√
s1−m2

√
s2 ln (

√
s1 +

√
s2)
]

(2.172)

= ∂m1∂m2

e
−
m2

2
4t2
−
m2

1
4t1

2π
√
t1t2

[
2J
(

(m2t1 +m1t2)2

4t1t2 (t1 + t2)

)
+ ln

( 1
4t1

+ 1
4t2

)
− γE

] ,

L−1
s2→t2 ◦ L

−1
s1→t1

[
e−m1

√
s1−m2

√
s2 ln (

√
s1)
]

= ∂m1∂m2

e
−
m2

2
4t2
−
m2

1
4t1

2π
√
t1t2

[
2J
(
m2

1
4t1

)
− ln(4t1)− γE

] ,

(2.173)

L−1
s→t

[
e−m

√
s

m
√
s

ln(m2s)
]

= e−
m2
4t

m
√
πt

[
2J

(
m2

4t

)
+ ln

(
m2

4t

)
− γE

]
, (2.174)

L−1
s→t

[
m
√
se−m

√
s ln(m2s)

]
= me−

m2
4t

2
√
πt3/2

{
−I
(
m√
2t

)
+
(
m2

2t − 1
)[

ln
(
m2

4t

)
− γE

]}
, (2.175)

L−1
s→t

[
em
√
s

m
√
s
Ei
(
−2m

√
s
)]

= e−
m2
4t

2m
√
πt

[
−2J

(
m2

4t

)
+ ln

(
m2

t

)
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]
, (2.176)

L−1
s→t

[
em
√
sEi
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−2m

√
s
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= me−
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4t

4
√
πt3/2

[
2J
(
m2
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)
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(
m2

t

)
− γE −

2
√
πt

m
e
m2
4t erfc

(
m

2
√
t

)]
.

(2.177)
To derive Eq. (2.172), we start with an integral representation of the logarithm,

ln (
√
s1 +

√
s2) =

∫ ∞
0

dα
α

(
e−α − e−α(√s1+√s2)

)
. (2.178)

We compute now the inverse Laplace transform of this integral representation, with the expo-
nential prefactor

L−1
s2→t2 ◦ L

−1
s1→t1

[
e−m1

√
s1−m2

√
s2
(
e−α − e−α(√s1+√s2)

)]

= m1m2e
−
m2

1
4t1
−
m2

2
4t2

4π(t1t2)3/2

[
e−α −

(
1 + α

m2

)(
1 + α

m2

)
e
−α2

(
1

4t1
+ 1

4t2

)
−α
(
m1
2t1

+m2
2t2

)]
.

(2.179)

To simplify this expression, it is useful to take the primitive with respect to m1 and m2,∫
m1,m2

L−1
s2→t2,s1→t1

[
e−m1

√
s1−m2

√
s2
(
e−α − e−α(√s1+√s2)

)]
(2.180)

= e
−
m2

2
4t2
−
m2

1
4t1

π
√
t1t2

e−α − e
−α2

(
1

4t1
+ 1

4t2

)
−α
(
m1
2t1

+m2
2t2

)
α

.

We still have to deal with the integration over α which is now an integral of the form

∫
α>0

e−α − e−α2A−αB

α
. (2.181)
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We can compute this integral by deriving w.r.t A, integrating over α, and then integrating over
A; alternatively, we can use the same strategy with B. The two results are

∫
α>0

e−α − e−α2A−αB

α
= 1

2

[
π erfi

(
B

2
√
A

)
+ ln(A)− 2 ln(B)− γE

]
−
B2

2F2
(
1, 1; 3

2 , 2; B2

4A

)
4A +CB ,

(2.182)∫
α>0

e−α − e−α2A−αB

α
= π

2 erfi
(

B

2
√
A

)
−
B2

2F2
(
1, 1; 3

2 , 2; B2

4A

)
4A + CA . (2.183)

Thus
CA − CB = 1

2
[

ln(A)− 2 ln(B)− γE
]
, (2.184)

and the case A = 0, B = 1, allows us to conclude on CA = 1
2 ln(A)− γE

2 and CB = ln(B). The
final result for the integral is

∫
α>0

e−α − e−α2A−αB

α
= π

2 erfi
(

B

2
√
A

)
−
B2

2F2
(
1, 1; 3

2 , 2; B2

4A

)
4A + 1

2 ln(A)− γE
2

= J
(
B2

4A

)
+ 1

2 ln(A)− γE
2 . (2.185)

We checked this result numerically with very good precision.
Applying this formula to the integral over α and specifying A = 1

4t1 + 1
4t2 and B = m1

2t1 + m2
2t2 ,

we obtain Eq. (2.172). The same computation, with A = 1
4t1 , and B = m1

2t1 gives Eq. (2.173).
To derive Eq. (2.176) (with m = 1 for simplicity), we start with the integral representation

of the exponential integral function,

e
√
sEi

(
−2
√
s
)

= −
∫ ∞

0

e−
√
s−x

√
s (2
√
s+ x) dx = −

∫ ∞
0

e−
√
s(2y+1)

y + 1 dy . (2.186)

Doing the inverse Laplace transform inside the integral leads to

L−1
s→t

[
e
√
sEi

(
−2
√
s
)]

= −
∫ ∞

0

(2y + 1)e−
(2y+1)2

4t

2
√
πt3/2(y + 1)

dy = − e−
1
4t

√
πt3/2

∫ ∞
0

te−u√
4tu+ 1 + 1

du .

=
e−

1
4t
[
6t
(
πerfi

(
1

2
√
t

)
+ ln(t)− γ + 2

)
− 2F2

(
1, 1; 2, 5

2 ; 1
4t

)]
24
√
πt5/2

− 1
2t .

(2.187)

To express this result in terms of our special function J , we can use the following relation
between Hypergeometric functions,

2F2

(
1, 1; 2, 5

2; a
)

= 3 2F2

(
1, 1; 3

2 , 2; a
)
−

3
[
ea
√

π
4aerf(

√
a)− 1

]
a

. (2.188)

This can be checked by Taylor expansion. With that, and the definition of J in Eq. (2.168),
we obtain the announced result (2.177). Equation (2.176) is obtained from there by taking one
derivative.
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2.H Check of the covariance function

As a check of the action, we computed the two-point correlation function (i.e. the covariance
function). The needed path integral is

〈Xt1Xt2〉 =
∫
x

∫ XT=x

X0=0
D[X]Xt1Xt2e

−S[X] . (2.189)

At first order in ε, we can expand this path integral using Eq. (5.7) ,

〈Xt1Xt2〉 = 〈Xt1Xt2〉0 + ε

2

∫ t−τ

0
dτ1

∫ t

τ1+τ
dτ2

〈
Xt1Xt2Ẋτ1Ẋτ2

〉
0

τ2 − τ1
+O(ε2) . (2.190)

Here, averages 〈•〉0 are performed with the action S0[X] given in Eq. (2.9), i.e. the action of
standard Brownian motion with diffusive constant Dε,τ = 1 + 2ε[1 + ln(τ)] +O(ε2). This action
is quadratic, and using Wick contractions allows us to write

〈Xt1Xt2Ẋτ1Ẋτ2〉0 = 4
(

min(t1, t2)δ(τ1−τ2)+Θ(t1−τ1)Θ(t2−τ2)+Θ(t1−τ2)Θ(t2−τ1)
)
+O(ε) .
(2.191)

In this equation, we used only the zeroth order for the diffusive constant (Dε,τ = 1 +O(ε)); the
first term does not contribute since τ1 and τ2 do not coincide due to the time regularization.

The last two terms require to compute the integrals∫ min(t1,t2−τ)

0
dτ1

∫ t2

τ1+τ
dτ2

1
τ2 − τ1

+
∫ min(t2,t1−τ)

0
dτ1

∫ t1

τ1+τ
dτ2

1
τ2 − τ1

(2.192)

= t1 ln(t1) + t2 ln(t2)− |t1 − t2| ln |t1 − t2| − 2 min(t1, t2)(ln(τ) + 1) .

We now sum all contributions to order ε, the Brownian result with the rescaled diffusive constant
being 〈Xt1Xt2〉0 = 2Dε,τ min(t1, t2). This gives

〈Xt1Xt2〉 = 2Dε,τ min(t1, t2) + 2ε (t1 ln(t1) + t2 ln(t2)− |t1 − t2| ln |t1 − t2|)
− 4εmin(t1, t2)(ln(τ) + 1) +O(ε2)

= 2 min(t1, t2) + 2ε (t1 ln(t1) + t2 ln(t2)− |t1 − t2| ln |t1 − t2|) +O(ε2)
= t1+2ε

1 + t1+2ε
2 − |t1 − t2|1+2ε +O(ε2) . (2.193)

The τ dependence in the diffusive constant and in the first correction to the action cancel, and
we recover the fBm correlation function at first order in ε. We also see that the correction to
the diffusive constant is equivalent to setting ln(τ) = −1.

2.I The Davis and Harte algorithm
The numerical results presented in this thesis are obtained via the Davis and Harte algorithm
which allows us to generate sample of fractional Brownian of size N with a computation time
of order N ln(N). To present how it works, let’s define γ(k) the autocorrelation function of the
fractional Brownian noise (i.e. the increments of the fractional Brownian motion):

γ(k) = 〈(Xn+k+1 −Xn+k)(Xn+1 −Xn)〉 = |k + 1|2H + |k − 1|2H − 2|k|2H (2.194)

where n is arbitrary as the fractional Brownian noise is a stationary process. To generate a
Gaussian process, it is standard to compute the square root of it’s auto-correlation matrix.
Let’s define 

rk =γ(k) for 0 ≤ k < N
rN=0
rk =γ(2N − k) for N < k < 2N

. (2.195)
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From fast Fourier transform, we can compute

λk =
2N−1∑
j=0

rj exp
(

2πi jk2N

)
. (2.196)

Then, we generate W0, WN , V (1)
k and V (1)

k (for 1 ≤ k < N) as independent, standard, normal
random variables and define for 1 ≤ k < N

 Wk = 1√
2

(
V

(1)
k + iV

(2)
k

)
W2N−k= 1√

2

(
V

(1)
k − iV (2)

k

) . (2.197)

Finally, we obtain a fractional Brownian noise sample as

Zk = 1√
2N

2N−1∑
j=0

√
λjWj exp

(
2πi jk2N

)
. (2.198)

Zk is defined for 0 ≤ k < 2N but only the N first terms (0 ≤ k < N) have the distribution of
a fractional Brownian noise. Zk for N ≤ k < 2N − 1 has also the distribution of a fractional
Brownian noise but is not independent of the first sample, and so have no use in a numerical
simulation.

To check that we have indeed generated a fractional Brownian noise, we need to verify that
the sample as the right covariance function

〈ZnZn+k〉 = 1
2N

2N−1∑
j1,j2=0

√
λj1λj2 〈Wj1Wj2〉 exp

(
2πinj1 + (n+ k)j2

2N

)
. (2.199)

From the definition of W , we have

〈WkW2N−k〉 = 1 for 1 ≤ k < N

〈W0W0〉 = 1
〈WNWN 〉 = 1 ,

(2.200)

all other correlations being zero. Using the symmetry of (rk), we write the result of the fast
Fourier transform as :

λj = γ(0) + 2
N−1∑
l=1

γ(l) cos
(
π
lj

N

)
(2.201)

and we note that λk = λ2N−k pour 1 ≤ k < N .
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〈ZnZn+k〉 = 1
2N

λ0 + λNe
−iπk +

N−1∑
j=1

√
λjλ2N−je

2πi kj2N +
N−1∑
j=1

√
λ2N−jλje

−2πi kj2N
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= 1

2N

λ0 + λN (−1)k + 2
N−1∑
j=1

λj cos
(
π
kj

N

)
= 1

2N

[
γ(0) + 2

N−1∑
l=1

γ(l) + (−1)k
(
γ(0) + 2

N−1∑
l=1

γ(l) cos(πl)
)

+ 2
N−1∑
j=1

(
γ(0) + 2

N−1∑
l=1

γ(l) cos
(
π
lj

N

))
cos

(
π
kj

N

)]

= 1
2N

[
γ(0)

1 + (−1)k + 2
N−1∑
j=1

cos
(
π
kj

N

)
+ 2

N−1∑
l=1

γ(l)

1 + (−1)k+l + 2
N−1∑
j=1

cos
(
π
lj

N

)
cos

(
π
kj

N

)]
= γ(k)

(2.202)

This proves that (Zk) has the right distribution (i.e. it is Gaussian with right auto-correlation
function) and we can obtain a fractional Brownian motion sample by simply taking the cumu-
lative of (Zk).
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Chapter 3
The first and second arcsine laws

3.1 Presentation of the chapter
This chapter contains partially unpublished results from joint work with K. Wiese, T. Sadhu
and myself, as well as results from [124]. We extend the perturbative expansion of the fBm,
which allowed us to derive the new result for the distribution of tmax in chapter 2, to treat also
the first two arcsine laws, i.e. the distributions of the observables t+ and tlast as defined in the
introduction, section 1.2.3. To this aim, we first derive in section 3.2 a generalized propagator
containing information both on the position and the positive time for a standard Brownian
motion. This is used as a starting point for the perturbative expansion of the distribution
of t+, similarly to chapter 2. Surprisingly we obtain the same result, at first order, as for the
distribution of tmax. Numerical simulations are in excellent agreement with this analytical result,
and allow us to conjecture that a second order calculation should distinguish between the two
distributions (the ones of t+ and tmax).

0.0 0.2 0.4 0.6 0.8 1.0 t/T
0.5

1.0

1.5

2.0
PH (t/T)

H=0.25

Maximum time
Positive time
Last zero

Figure 3.1: The three Arcsin laws for the fractional Brownian motion with H = 1/4. The dots
represent results from numerical simulations, the dotted line the expected results from scaling
(identical for the positive time and the maximum time) wherever the plain lines include the
non-trivial corrections computed in this thesis, chapters 2 and 3.

The distribution of the time of the last zero requires a different approach, as there is no
non-trivial correction at first-order. In section 3.4, using symmetry arguments, we compute the
correction at second-order in ε, and compare it to numerics.

Even if it is not necessary to derive these results, we give in appendix 3.A the expression of
the action at second order which should allow us to compute any observable defined for the fBm

59
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at second order in ε.

3.2 Positive time of a Brownian motion

In this section, we investigate the distribution of the time spend up to time T by a Brownian
motion Xt in the positive half space. This time, denoted t+, is a random variable defined by

t+ :=
∫ T

0
dtΘ(Xt) , (3.1)

where Θ is the Heaviside function: Θ(x) = 1 if x > 0, and Θ(x) = 0 otherwise.
Below, we first consider a discrete random walk and derive the Laplace transform (i.e. gen-

erating function) of the distribution of t+ using combinatorial methods. Taking the continuous-
time limit allows us to obtain the distribution of t+ for Brownian motion, and recover the second
arcsine law. This also gives us an explicit construction for the propagator with constraint on the
value of t+ for a standard Brownian motion, which we will use in our perturbative framework
to obtain new results on the fractional Brownian motion.

3.2.1 Positive time of a discrete random walk

Consider a discrete random walk Xn with discrete steps ±1 (without bias), starting at X0 = 0.
We denote Nn,x the number of paths which go from 0 to x in n steps. This number is non-zero
only if x and n have the same parity and x is smaller than n. It can be obtained by retaining
the term of order qx from the generating function for all paths, (q + q−1)n, i.e.

(
q + 1

q

)n
=

n∑
i=0

qi
(1
q

)n−i(n
i

)
. (3.2)

Identifying x = 2i− n yields

Nn,x =
(
n
n+x

2

)
. (3.3)

It can also be deduced as follows: Paths ending in x have n+ = n+x
2 up segments, and n− = n−x

2
down segments. The number of paths with n+ up segments is

( n
n+

)
, which again yields Eq. (3.3).

Denote by N+
n,x the number of strictly positive paths, i.e. Xi > 0 for all i > 0, which go from

0 to x > 0 in n steps. By the reflexion principle, illustrated on figure 3.2, this is the same as the
number of paths that go from 1 to x in n− 1 steps, minus the number of paths which start at
−1 and go to x in n− 1 steps,

N+
n,x = Nn−1,x−1 −Nn−1,x+1 = x

n
Nn,x . (3.4)

The ratio
N+
n,x

Nn,x
= x

n
(3.5)

is the probability that a path from 0 to x in n steps is strictly positive, also known as the Ballot
theorem1.

1The ballot theorem states that if in an election candidate A receives p votes and candidate B receives q votes
with p > q, the probability that A stays ahead of B throughout the count is (p− q)/(p+ q), see Refs. [129, 2].
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Figure 3.2: Illustration of the reflection principle: Every path emanating from 1 and attaining
zero again (blue) is compensated by a reflected path emanating from −1 (green).

Another quantity of interest is the number of excursions, i.e. paths that go from X0 = 0 to
X2n = 0 with all intermediate positions positive, and which we denote N+,first

2n , because the end
point is the first zero of the path. Such a path necessarily has X2n−1 = 1, which gives

N+,first
2n = N+

2n−1,1 = 1
2n− 1

(
2n− 1
n

)
= (2n− 2)!
n!(n− 1)! . (3.6)

We now study the time when a random process is positive: A segment Si from i − 1 to i is
considered positive if Xi−1 +Xi > 0, and negative otherwise. Note that contrary to the positions
Xi, a segment Si is either positive or negative. The time t+ a random walk is positive is defined
as the number of positive segments.

Denote Npos
2n,2k the number of bridge paths of length 2n with 2k positive intervals; by con-

vention we set Npos
0,0 := 1. We can use Eq. (3.6) to get a recursion relation for Npos

2n,2k, with
n ≥ 1,

Npos
2n,2k =

n∑
i=1

[
N+,first

2i Npos
2(n−i),2(k−i) +N+,first

2i Npos
2(n−i),2k

]
. (3.7)

This is illustrated in figure 3.2. In this sum, 2i is the position of the first zero (after the origin)
of the path of lenght 2n. Since the path does not change sign these 2i first segments are either
all positive (first term inside the sum) or negative (second term).

To solve this equation, we introduce two generating functions:

p̃pos(ν, ρ) :=
∑
n≥0

∑
k≥0

ν2kρ2nN
pos
2n,2k
22n , (3.8)

p̃+,first(ρ) :=
∑
n>0

ρ2nN
+,first
2n
22n = 1−

√
1− ρ2

2 . (3.9)

Inserting these definitions into Eq. (3.7) transforms the recursion relation into an algebraic
equation

p̃pos(ν, ρ) =
[
p̃+,first(νρ) + p̃+,first(ρ)

]
p̃pos(ν, ρ) + 1 . (3.10)

Eq. (3.10) can be solved as

p̃pos(ν, ρ) = 1
1− p̃+,first(νρ)− p̃+,first(ρ) . (3.11)
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This is a geometric sum of the form

p̃pos(ν, ρ) =
∑
n≥0

[
p̃+,first(νρ) + p̃+,first(ρ)

]n
. (3.12)

Its interpretation is simple: All bridges can be constructed as a sequence of first-return bridges.
In a first-return bridge each factor of ρ comes with a factor of ν for the positive paths, and alone
for negative paths.

Using the explicit expression of Eq. (3.9), we obtain

p̃pos(ν, ρ) = 2√
1− (νρ)2 +

√
1− ρ2 . (3.13)

Other generating functions can be obtained as well: First, for the probability to return to zero
(including the term with zero steps) the latter is

p̃0(ρ) :=
∑
n≥0

ρn
Nn,x

2n = 1√
1− ρ2 . (3.14)

For the probability to return to 0 without having become negative, this is (including the term
with zero steps)

p̃≥0
0 (ρ) = 1

1− p̃+
first(ρ)

≡ p̃pos(0, ρ) = 2
1 +

√
1− ρ2 . (3.15)

The generating function for paths starting at zero and ending in x without ever returning to
zero can be obtained as well

p̃+
x (ρ) :=

∑
n≥0

ρn
N+
n,x

2n = ρx(
1 +

√
1− ρ2

)x =

(
1−

√
1− ρ2

)x
ρx

. (3.16)

This can be understood by considering the path from the end: One can first go up and down
to the starting value x for a number n ≥ 0 steps, before going down by one step, leading to
p̃≥0

0 (ρ)× ρ
2 for the generating function to (backwards!) reach x− 1. Repeating this x times, and

using Eq. (3.15), we arrive at Eq. (3.16).

3.2.2 Propagators in continuous time

We now wish to take the continuum limit. To this aim, we note that in the limit of a time-
discretisation step δt→ 0, the process

Xt '
√

2δtXn , with n = floor
(
t

δt

)
≡
⌊
t

δt

⌋
(3.17)

converges to a Brownian motion, as already mentioned in the introduction (1.5). The normali-
sation ensure that we recover the covariance function (1.19) with H = 1/2.

Denote by P(t+, X0 = x1, XT = x2) the probability distribution of the positive time t+
within the interval [0, T ] and the end point XT = x2 for a standard Brownian motion Xt

starting at X0 = x1. This is formally defined as

P(t+, X0 = x1, XT = x2) = ∂t+∂x2Prob
(∫

t
Θ(Xt) > t+, XT > x2|X0 = x1

)
. (3.18)
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Figure 3.3: In red (bottom curve) a contribution to W̃+
1 (λ, s, x1, x2), where the path reaches 0

at least once (here for x1 = 0.5 and x2 = 1). In blue (top curve) the additional contribution to
W̃+

2 (λ, s, x1, x2), where the path never reaches 0, possible when x1 and x2 have the same sign
(here for x1 = 0.5 and x2 = 1).

For our perturbative expansion it is useful to have this in Laplace variables, namely

W̃+(λ, s, x1, x2) =
∫ ∞

0
dT
∫ T

0
dt+e−sT−λt+P(t+, X0 = x1, XT = x2) . (3.19)

We now use the result from the previous section, starting with the special case x1 = x2 = 0.
The probability distribution for a Brownian that its positive time, up to time T , is t+ and that
X0 = XT = 0, i.e. the process is a bridge, can be obtained from the discrete case via

P(t+, XT )dt+dXT

∣∣∣
XT=0

'
δt→0

1
2nN

pos
n,k . (3.20)

Here n = bT/δtc, k = bt+/δtc, and δt is the time discretisation step. This allows us to relate
the generating function (3.13) to the Laplace transform of the continuous-time distribution W̃+

with x1 = x2 = 0, which we denote W̃+(λ, s), setting ν → e−δtλ, ρ→ e−δts and then taking the
limit of δt→ 0. The measure dt+dBT gives a factor of

√
2δt3/2, cf. Eq. (3.17). This yields

W̃+(λ, s)
√

2δt3/2 ' p̃pos(e−δtλ, e−δts)δt2 ' 2δt2√
1− e−2δt(s+λ) +

√
1− e−2δts

'
√

2δt3/2√
λ+ s+

√
s

+O(δt2) . (3.21)

Both sides of the equation have the same scaling with δt and thus we obtain

W̃+(λ, s) = 1√
λ+ s+

√
s
. (3.22)

From this result for the bridge we obtain the expression for W̃ (λ, s, x1, x2) by distinguishing
two cases, see Fig. 3.3: The first case is when the process changes sign at least once. It can be
decomposed into a constant-sign part (contributing to t+ or not, depending on the signe of x1),
a bridge part, and another constant sign part ending in x2. The other case is when the process
never changes sign, which corresponds to the survival probability and can be expressed using
the method of images.
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We recall the Laplace transform of this propagator from x1 to x2, conditioned that the path
has never touched zero,

P̃+
0 (x1, x2; s) = e−

√
s|x1−x2| − e−

√
s|x1+x2|

2
√
s

Θ(x1x2) . (3.23)

The normalized limit x1 → 0 is

P̃+
0 (x2; s) = lim

x1→0

1
x1
P̃+

0 (x1, x2; s) = e−
√
sx2 Θ(x2) . (3.24)

The final result is the sum of two terms,

W̃+(λ, s, x1, x2) = W̃+
1 (λ, s, x1, x2) + W̃+

2 (λ, s, x1, x2) . (3.25)

The first contribution involves a crossing, and is a product of two factors (3.24) and one factor
(3.22),

W̃+
1 (λ, s, x1, x2) = e−

√
s+λΘ(x1)|x1| 1√

s+ λ+
√
s
e−
√
s+λΘ(x2)|x2| , (3.26)

The Θ functions in the exponential are understood as follows: If x1 > 0, then s is changed to
s+λ, since this segment contributes both to T and t+. In the opposite case x1 < 0, this segment
contributes only to T but not to t+, thus s remains unchanged. The same argument applies to
the last factor as a function of the sign of x2.

The contribution when the walk never changes sign is

W̃+
2 (λ, s, x1, x2) = e−

√
s+λΘ(x1)|x1−x2| − e−

√
s+λΘ(x1)|x1+x2|

2
√
s+ λΘ(x1)

Θ(x1x2) . (3.27)

This is the propagator (3.23), with again s shifted to s+ λ if x1, and as a consequence also x2,
are positive.

The result for W̃+(λ, s, x1, x2) can also be obtained by solving the Fokker-Planck equation

∂2
x2W̃

+(λ, s, x1, x2) = [s+ λΘ(x2)] W̃+(λ, s, x1, x2) + δ(x1 − x2) . (3.28)

One verifies that W̃+
1 + W̃+

2 is indeed a solution.
As a check, we consider Brownian motion starting at 0 and without any constraint at the

end point. Integrating W̃+ over the last variable gives∫ ∞
−∞

dx W̃+(λ, s, 0, x) = 1√
s(s+ λ)

. (3.29)

The corresponding probability distribution for t+ is known as one of the Arcsine laws. Indeed,
computing the double Laplace transform from this known result (1.10) yields Eq. (3.29):

∫ ∞
0

dT
∫ T

0
dt+ e−sT−λt+

1
π
√
t+(T − t+)

= 1√
s(s+ λ)

. (3.30)
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3.3 Time of a fBm remains positive

As derived in the previous section, the Laplace transform (t+ → λ and T → s) of the probability
density that a Brownian motion Xt goes from X0 = x1 to XT = x2 while being positive during
a time t+ in between is

W̃+(λ, s, x1, x2) =
exp

(
−|x1|

√
λΘ(x1) + s− |x2|

√
λΘ(x2) + s

)
√
λ+ s+

√
s

+
Θ(x1x2)

(
e−|x1−x2|

√
λΘ(x1)+s − e−|x1+x2|

√
λΘ(x1)+s

)
2
√
λΘ(x1) + s

.

(3.31)

To compute the correction at order ε to the first arcsine law, we follow the same procedure as
for the time of the maximum tmax (third arcsine law), cf. section 2.2.3. The path integral to
study is now

Z(t+, T ) =
∫ ∞
−∞

dx
∫ XT=x

X0=0
D[X]δ

(∫ T

0
dtΘ(Xt)− t+

)
e−S[X] , (3.32)

or in Laplace variables (t+ → λ and T → s)

Z̃(λ, s) =
∫ ∞

0
dTe−sT

∫ ∞
−∞

dx
∫ XT=x

X0=0
D[X]e−λ

∫ T
0 dtΘ(Xt)e−S[X] . (3.33)

x1

x2

x

s s+ y s

time

space

Figure 3.4: This diagram represents the order ε correction to the distribution of the positive
time, for a fBm of Hurst exponent H = 1/2 + ε. The blue lines are propagators W̃+ (3.31) and
the red curvy line is the interaction, non-local in time, which shifts the Laplace variable s of the
propagator by y in the middle slice. The contribution of this diagram is given by integrating
over x1, x2 and x for the space variables (without positivity constraint, contrary to the diagrams
of Fig. 2.2), and over y > 0 for the interaction variable, cf. Eq. (3.34).

In this case there is no point whose value is specified, and there is only one diagram to take
into account, represented in Fig. 3.4.

The integrations are easy to do, as there is no non-trivial limit x0 → 0 to take in this case.
The analytical expression of the diagram 3.4, which is the order ε term of (3.33), is

Z̃1(s, λ) = 2
∫
x,x1,x2

∫ ∞
0

dy W̃+(s, λ, 0, x1) ∂x1W̃+(s+ y, λ, x1, x2) ∂x2W̃+(s, λ, x2, x) (3.34)

= 2
s

[ log(16)√
κ+ 1

+ 1
2

( 1√
κ+ 1

+ 1
)

log(κ+ 1)−
( 1
κ+ 1 + 2√

κ+ 1
+ 1

)
log

(√
κ+ 1 + 1

)]
.
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with κ = λ/s. The interaction shifts the Laplace variable s of the second propagator by y and
acts as 2∂x1 on the second propagator and as 2∂x2 on the last one, with an overall prefactor ε/2.

As fBm is a self-similar process, the probability distribution of t+ can be written in the form

PT
H= 1

2 +ε(t+) = 1
T

(
1

π
√
ϑ(1− ϑ)

+ εg+
1 (ϑ)

)
+O(ε2), with ϑ = t+/T . (3.35)

The correction we want to compute, g+
1 (ϑ), is related to g+

1 (κ) := Z̃1(1, κ) via

g+
1 (κ) :=

∫ 1

0
dϑ g

+
1 (ϑ)

1 + κϑ
. (3.36)

The scaling form of Eq. (3.35) and the integral transform appearing here (3.36) are discussed
in detail in section 4.3.1. The inverse of the transformation (3.36) can be computed using an
analytical continuation of g+

1 (κ):

g+
1 (ϑ) = 1

2πiϑ lim
α→π−

[
g+

1

(
e−iα

ϑ

)
− g+

1

(
eiα

ϑ

)]
, (3.37)

which, together with the expression of g+
1 (κ) from (3.34)

g+
1 (κ) = 8 log(2)√

κ+ 1
+
( 1√

κ+ 1
+ 1

)
log(κ+ 1)− 2

( 1
κ+ 1 + 2√

κ+ 1
+ 1

)
log

(√
κ+ 1 + 1

)
,

(3.38)
allows us to obtain the analytical expression of g+

1 (ϑ),

g+
1 (ϑ) = 2(1− 2ϑ) arccos(

√
ϑ)

πϑ(ϑ− 1) + 1
ϑ
− ln(ϑ(1− ϑ))
π
√
ϑ(1− ϑ)

− 8 ln(2)
π
√
ϑ(1− ϑ)

. (3.39)

Surprisingly, this is the same result as for the correction to the distribution of tmax (2.40). This
means that we have, up to second order corrections, the same distributions for tmax and t+:

PT
H= 1

2 +ε(tmax) +O(ε2) = PT
H= 1

2 +ε(t+) +O(ε2) = eεF(ϑ)

π[t(T − t)]H , (3.40)

with the expression of F given in Eq. (2.42).
We test this with numerical simulations, extracting F from an estimated distribution of t+

for various values of H. This is represented on Fig. 3.5 Left. The agreement is very good, but
we can see that the deviations due to order ε2 terms are larger than for the distribution of tmax,
as shown on Fig. 3.5 Right.

3.4 Last zero of a fBm

3.4.1 The Brownian case
To derive the second arcsine law (i.e. distribution of the time of the last zero) for Brownian
motion, we consider paths going from X0 = 0 to Xt = x0 > 0 without constraint, and then from
Xt = x0 > 0 to XT = x > 0 with positivity constraint. Taking the limit x0 → 0 forces the path
to have its last zero at time t. The weight of these paths as a function of t, integrated over the
end point x, is then proportional to the distribution of tlast. This is obtained via the simple
computation ∫ ∞

0
dxP0(0, x0, t)P+

0 (x0, x, T − t) '
x0→0

x0
2

1
π
√
t(T − t)

, (3.41)

and we recover, with a normalisation x0/2, the arcsine distribution (1.10).
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Figure 3.5: Left: comparison of a numerical estimation of F to the prediction (2.42) in the case of
the distribution of t+ for various values of H (vertically translated for a better visualisation), see
section 2.4.1 for details on the numerical procedure. Right: Comparison between the estimated
order ε2 corrections (2.68) for the distribution of t+ (red) and tmax (green), indicating that are
different.

3.4.2 Scaling and perturbative expansion for the distribution of the last zero
For a fBm with generic Hurst exponent, we can look at the scaling of P(tlast = t) close to the
boundaries. A path with its last zero at time t, is composed of a bridge of length t, whose
probability scale with t−H , and a survival process of length T − t whose probability scale with
(T−t)−θ, with the survival exponent θ = 1−H. When the process is non-Markovian (H 6= 1/2),
the two parts are not independent and the probability of such paths is hard to evaluate, but we
can still gives its asymptotics:

PTH(tlast = t) ∼
{

t−H for t→ 0
(T − t)H−1 for t→ T

. (3.42)

We see that contrary to the case of t+ and tmax, the distribution of tlast is not symmetric under
time reversion t→ T − t.

To go beyond scaling results, we again write a path integral which encodes the distribution
in the limit of x0 → 0,

Z last(x0, t, T ) =
∫ ∞

0
dx
∫ XT=x

X0=0
D[X]δ(Xt = x0)

T∏
t′=t

Θ(Xt′)e−S[X] (3.43)

and expand in ε using the expansion of the action (2.3). As there is a point whose value is
imposed, Xt = x0, there is three different contributions, represented on figure 3.6.

Interestingly, these contributions are quite easy to compute due to symmetry. Diagrams (b)
and (c) only correct the free propagator from 0 to x0 and the constrained propagator from x0
to x respectively. The diagram (a), which should be the most difficult to compute, is in fact
irrelevant in the x0 → 0 limit. To understand that, we can express the order ε correction to
Z last as

Z last
1 (x0, t, T ) = −ε2

∫ T−τ

0
dτ1

∫ T

τ1+τ
dτ2
〈Ẋτ1Ẋτ2〉
|τ2 − τ1|

, (3.44)

where 〈. . . 〉 indicates average over a Brownian motion Xt′ constrained by X0 = 0, Xt = x0 and
Xt′ > 0 ∀t′ ∈ [t, T ], and τ is the time cut-off. This is similar to (2.17), but we replace the path
integral notation by the average, which are formally identical.
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Figure 3.6: The three contributions at order ε to the distribution of the last zero tlast. Green lines
represent propagators without constraint, while blue lines represent propagators with positivity
constraint. The double line on the time axis indicates the absorbing boundary.

The three diagrams of Fig. 3.6 correspond to the different time ordering of τ1, τ2 and t. For
the diagram (a), we have τ1 < t < τ2 < T and then Ẋτ1 is independent of Ẋτ2 (because of the
constraint Xt = x0 and the Markov property). As 〈Ẋτ1〉 = x0/t, diagram (a) is subleading in
the limit of x0 → 0 (it is of order x2

0) compared to diagrams (b) and (c) (which are of order x0)
and thus does not correct the distribution of tlast.

We then have the following ε-expansion

PT
H= 1

2 +ε(tlast = ϑT ) = sin(Hπ)
πT

1
ϑH(1− ϑ)1−H +O(ε2) , (3.45)

where we have resummed the contributions of diagrams (b) and (c) in the power law prefactor,
giving respectively ϑ

1
2 → ϑH and (1− ϑ)

1
2 → (1− ϑ)1−H .

3.4.3 The two non-trivial diagrams at second order

We now present briefly the computations allowing us to obtain the distribution of tlast at second
order in ε. For that, we need to write the action up to second order in ε,

S[X] = S0[X]− ε

2

∫
T>τ2>τ1>0

Ẋτ1Ẋτ2

|τ2 − τ1|
− ε2

∫
Ẋτ1Ẋτ2C−1

2 (τ2, τ1) +O(ε3) , (3.46)

with C−1
2 (τ1, τ2) a function computed in appendix 3.A, but whose expression is not needed here.

Expanding the exponential of the action in (3.43), the correction of order ε2 of Z last can be
written as

Z last
2 (x0, t, T ) = 1

8

∫
T>τ2>τ1>0

∫
T>τ4>τ3>0

〈Ẋτ1Ẋτ2Ẋτ3Ẋτ4〉
|τ2 − τ1||τ4 − τ3|

+
∫
T>τ2>τ1>0

〈Ẋτ1Ẋτ2〉C−1
2 (τ1, τ2) .

(3.47)
The first term of (3.47) gives diagrams with two interactions, i.e. two loops diagrams. The
different time orderings give a total of 15 diagrams. Luckily, the simplification used in the
previous section is still helpful: all diagrams with an odd number of interaction vertices in the
interval [0, t] vanish in the limit x0 → 0, and all diagrams with all vertices in either [0, t] or in
[t, T ] contribute only to the (known) correction of the scaling behavior.

The second term of (3.47) gives one-loop diagrams with a new interaction given by C−1
2 . The

diagrams are the same as in Fig. 3.6, and, as the nature of the interaction does not matter in
the arguments of the previous section, they also correct only the scaling behavior, with terms
of order ε2.
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Figure 3.7: The diagramsD1 (left) andD2 (right). The double line in the time axe indicates when
there is an absorbing boundary, and the propagator are either free ones (in green), or constrained
ones (in blue). Each interaction carries a variable yi which shifts the Laplace variable of the
propagator between its two vertexes, and each vertexe (x1, x2, x3 and x4) acts as 2∂xi on the
propagator starting at xi.

All this leaves only 2 diagrams D1 and D2 with a non-trivial contribution to the distribution
of tlast, represented on Fig. 3.7. The expansion of the distribution of tlast is then

PT
H= 1

2 +ε(tlast = ϑT ) = sin(Hπ)
πT

1
ϑH(1− ϑ)1−H + 4ε2 lim

x0→0

2
x0

(D1 +D2) +O(ε3) . (3.48)

As we said, all diagrams other than D1 and D2 are either vanishing or already taken into account
in the power law prefactor. The combinatorial factor of 4 written above is

(1
2

)2 1
2! × 2× 24 = 4 , (3.49)

where each interaction contributes a ε
2 , the

1
2! is from the expansion of the exponential, com-

pensated because in each diagram the two interactions can be interchanged; finally each of
the four derivatives contributes a factor of 2. The normalisation 2/x0 comes from the 0-order
computations (3.41).

The contributions of these diagrams, presented on figure 3.7, are easily expressed in term of
Laplace variables, T → s and t→ λ:

D1 =
∫
y1,y2>0

∫
x1,x2

P̃0(x0, x1, s+ λ)∂x1P̃0(x1, x2, s+ λ+ y1)∂x2P0(x2, x0, s+ λ+ y1 + y2)

×
∫
x3,x4,x>0

P̃+
0 (x0, x3, s+ y1 + y2)∂x3P̃

+
0 (x3, x4, s+ y1)∂x4P̃

+
0 (x4, x, s) (3.50)

D2 =
∫
y1,y2>0

∫
x1,x2

P0(x0, x1, s+ λ)∂x1P0(x1, x2, s+ λ+ y2)∂x2P0(x2, x0, s+ λ+ y1 + y2)

×
∫
x3,x4,x>0

P+(x0, x3, s+ y1 + y2)∂x3P+(x3, x4, s+ y1)∂x4P+(x4, x, s) . (3.51)

Note the only change between the two diagrams in red. The usual scaling property makes the
dependence on s of these diagrams trivial: Di(s, λ) = 1

sDi(1, κ) with κ = λ
s .

The integrations over space variables are similar in the two cases, and we can combine the
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Figure 3.8: Left: the results of numerical integrations, red dots, and the fit (3.56) in plain
line blue. Right: Numerical simulations for various values of H (cf. legend) compared to the
prediction (3.56) from our perturbative expansion. For ϑ close to 0, higher order corrections are
dominate even for H close to 1/2 but for ϑ close to one, the agreement with our prediction is
very good.

two to obtain

g2(κ) =4 lim
x0→0

2
x0

(
D1(1, κ) +D2(1, κ)

)
=− 4

∫
y1,y2>0

√
y1 + y2 + 1 (

√
y1 + 1 +

√
y2 + 1−

√
y1 + y2 + 1− 1)

y2
1y

2
2 (y1 + y2)

(3.52)

×
(
y2
(√

κ+ 1−
√
κ+ y1 + 1

)
+ y1

(√
κ+ y1 + y2 + 1−

√
κ+ y1 + 1

))
.

We were not able to deal with the integrations over y1 and y2 analytically. However, numerical
integration and the inversion formula already used in Eq. (3.37), which writes here as

g2(ϑ) = lim
α→π−

[
g2

(
e−iα

ϑ

)
− g2

(
eiα

ϑ

)]
, (3.53)

allows us to obtain a good estimation for the ε2-correction. It is useful to define

F last
2 (ϑ) := π

√
ϑ(1− ϑ)g2(ϑ) (3.54)

such that we can write the expansion of the distribution of tlast in our usual way:

PT
H= 1

2 +ε(tlast = ϑT ) = 1
T

sin(Hπ)
πϑH(1− ϑ)1−H exp

(
ε2F last

2 (ϑ)
)

+O(ε3) . (3.55)

The results from numerical integration for F last
2 are plotted on figure 3.8, red dots, and a

good fit is given by:

F last
2 (ϑ) '11.595ϑ3/2 − 10.743ϑ2 + 8.301ϑ

+ 13.302
√
ϑ+ 13.231 (1− ϑ)3/2 − 2.166

√
1− ϑ− 17.979 (3.56)
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3.A Action at second order
We recall here the computation, and extend it at second order, of the expansion in ε of the
action of a fBm path with Hurst exponent H = 1

2 + ε which was done in [125]. As a Gaussian
process, the action has the form

S[X] = 1
2

∫
Xt1Xt2G(t1, t2) (3.57)

where G(t1, t2) is the inverse of the correlation function of a fBm (1.19). But we can also start
from the correlations of Ẋ and write the action as

S[X] = 1
2

∫
Ẋt1Ẋt2C−1(t1, t2) . (3.58)

This correlation function is

〈Ẋt1Ẋt2〉 =C(t1, t2) = 2δ(t1 − t2)2H|t2 − t1|2H−1 + 2H(2H − 1)|t1 − t2|2(H−1)

=2δ(t1 − t2)(1 + 2ε)τ2ε + 2ε
|t1 − t2|

+
4ε2( log |t1 − t2|+ 1

)
|t1 − t2|

+O(ε3)

=2Dε,τ

[
δ(t1 − t2) + ε

|t1 − t2|
+

2ε2 ln
∣∣ t1−t2

τ

∣∣
|t1 − t2|

+O(ε3)
]
. (3.59)

In the first line, the first term is not well defined and needs to be regularized using the time
cutoff τ . In the second line we expand the second term in ε and reorganize the expansion in the
last line. The rescaled diffusion constant appearing here is

Dε,τ = (1 + 2ε)τ2ε . (3.60)

We compute the inverse of C order by order in ε, which gives

C−1(t1, t2) = 1
2Dε

[
δ(t1 − t2)− ε

|t1 − t2|
−

2ε2 log
∣∣ t1−t2

τ

∣∣
|t1 − t2|

+
∫
s

ε2

|s− t1||s− t2|
+O(ε3)

]
. (3.61)

The order-ε term is already known and used in [125], as well as in the previous chapters of
this thesis. The next term is new and gives the correction to the action at order ε2: S2[X] =∫
Ẋt1Ẋt2C−1

2 (t1, t2) with

C−1
2 (t1, t2) = −

2 log
∣∣ t1−t2

τ

∣∣
|t1 − t2|

+
∫
s

1
|s− t1||s− t2|

. (3.62)
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Chapter 4
Fractional Brownian bridges and positive
time

4.1 Presentation of the chapter

This chapter is based on joint work by K. Wiese and my self published in [130]. We extend the
results of the previous chapters to the case of fBm bridges, focusing on the three observables:

(i) the time tmax the random process achieves its maximum,

(ii) the value m of this maximum,

(iii) the time t+ the process is positive, aka its positive time.

We will show that at leading order in ε = H− 1
2 , the probability distributions for tmax and t+ are

different for the bridge case, contrary to standard Brownian bridge where the tow distributions
are simply uniform. The first order computations in ε are enough to distinguish them, contrary
to the case of a fBm with a free end point, cf. section 3.3. And as we will see in chapter 5, the
distribution of the maximum of a fBm bridge have intersting links to the Pickands constants.

Finally we test our analytical results against numerical simulations for H = 0.4, H = 0.6,
and H = 0.66. This is achieved by constructing a subtracted process out of each realization of
a fBm with free endpoints. This procedure yields the same statistics as a fractional Brownian
bridge, and is much more efficiently simulated than an unconstrained fBm, for which one retains
only realizations which are bridges.

This chapter is organised as follows: Section 4.2 introduces some general results about Gaus-
sian bridges, as well as their application to fractional Brownian motion.

Section 4.3 studies t+, the time spent by the process in the positive half space. General
considerations using the self-similarity of the process are presented and used to simplified the
perturbative expansion described in the previous chapters, with technical steps left to appendix
4.B. The analytical results obtained are then compared to numerical simulations.

Section 4.4 presents results on the extreme-value statistics for a fBm bridge: the maximum
value m as well as the time tmax to reach it. Some of these results are derived from the general
result (2.34) of chapter 2; but we also present a new and simpler way to obtain the maximum-
value distribution.

Several appendices complete this chapter: Appendix 4.B contains details about the inverse
of an integral transform appearing in our calculation, and its relation to the Abel transform.
Appendix 4.C summarises the necessary inverse Laplace transforms needed in the main text.

73
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4.2 Preliminaries: Gaussian Bridges

Consider a real-valued process Xt, starting at X0 = 0. We define a bridge, denoted XB
t , to be

the same process conditioned to be at a at time T . Its one- and two-point correlation functions
are

〈XB
t1〉 = 〈Xt1δ(XT − a)〉

〈δ(XT − a)〉 , (4.1)

〈XB
t1X

B
t2〉 = 〈Xt1Xt2δ(XT − a)〉

〈δ(XT − a)〉 . (4.2)

We now assume that Xt is a centered Gaussian process, i.e. 〈Xt〉 = 0 for all t, and that cumulants
of order higher than 2 vanish. To express the correlation function of the bridge process in terms
of the unconditioned process, we insert the identity δ(x) =

∫∞
−∞ e

ikx dk
2π into the above equations.

After some lines of algebra presented in appendix 4.A, we arrive at

〈XB
t1〉 = a

〈Xt1XT 〉
〈X2

T 〉
(4.3)

〈XB
t1X

B
t2〉 = 〈Xt1Xt2〉 −

[
〈X2

T 〉 − a2
]〈Xt1XT 〉〈Xt2XT 〉

〈X2
T 〉2

. (4.4)

Consider now the subtracted process XS
t defined from the original process Xt as

XS
t := Xt − (XT − a)〈XtXT 〉

〈X2
T 〉

. (4.5)

One easily checks that its one and two-point correlation functions coincide with those of XB
t

given in Eqs. (4.3)–(4.4). This is sufficient to conclude that XB
t and XS

t are the same processes,

XS
t

law= XB
t . (4.6)

While this result was derived in Ref. [131] by other methods, the prescription (4.5) does not
seem to be generally known, apart for Brownian motion Xt := Bt where the subtracted process
(4.5) reduces to

BS
t = Bt −

t

T

(
BT − a

)
. (4.7)

But this simple linear subtraction does not lead to the correct correlation function for other
processes than the standard Brownian motion.

For fractional Brownian motion with Hurst exponent H, the subtracted term is non-linear
in t, containing the expression

f

(
ϑ := t

T

)
:= 〈XtXT 〉

〈X2
T 〉

= 1
2
[
1 + ϑ2H − (1− ϑ)2H

]
. (4.8)

The equivalence (4.6) is crucial for the numerical simulations presented in this work. Simulating
bridge process using its definition requires to discard almost all generated paths, while the
subtracted process can be constructed from every generated path without loss of statistics.
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4.3 Time a fBm birdge remains positive

As in section 3.2, we denote W̃+(λ, s, x1, x2) the propagator in Laplace variable wich contains
information on the positive time of the process. Its expression is given in Eq. (3.31). To recover
the distribution of t+ for a Brownian Bridge, i.e. x1 = x2 = 0, we have

W̃+(λ, s, 0, 0) = W̃+(λ, s) = 1√
λ+ s+

√
s
. (4.9)

Let us note some subtleties. Eq. (4.9) is the double Laplace transform of the probability dis-
tribution that the Brownian process spends a time t+ in the positive half space and ends in 0
at time T . If we want to have the conditional probability distribution for t+, knowing that the
process is a bridge, we need to divide the result by the probability density to return to x = 0 at
time T , which is (2

√
πT )−1. The double Laplace transform to compute is then∫ ∞

0
dT
∫ T

0
dt+e−sT−λt+

1
T

1
2
√
πT

= 1√
λ+ s+

√
s
. (4.10)

Here 1/T is the uniform probability distribution (1.27) of t+ for a Brownian Bridge,

Pbridge
1/2 (t+) = 1

T
, (4.11)

and (2
√
πT )−1 is the probability density to return to 0 at time T . This indeed reproduces

Eq. (4.9).

4.3.1 Scale invariance and a useful transformation
The fact that fBm is a scale invariant (i.e. self affine) process implies interesting properties for
various distributions. For t+, and similarly for other temporal observables, the distribution
PTH(t+) for a fBm process defined on [0, T ] (with either a free end-point or a constrained one)
takes the scaling form

PTH(t+) = 1
T
g

(
ϑ = t+

T

)
. (4.12)

Using this, the double Laplace transform of the distribution can be reformulated using a one-
variable transformation:

P̃H(λ, s) =
∫ ∞

0
dT
∫ T

0
dt+e−sT−λt+PTH(t+) =

∫ ∞
0

dT
∫ 1

0
dϑ e−T (s+λϑ)g(ϑ)

= 1
s

∫ 1

0
dϑ g(ϑ)

1 + λ
sϑ

= 1
s
ḡ

(
κ = λ

s

)
. (4.13)

The scaling function g(ϑ) encoding the distribution PTH(t+), and the scaling function ḡ(κ) en-
coding its double Laplace transform P̃ (λ, s), are related by a simple integral transform which
we denote K1,

K1[g](κ) :=
∫ 1

0
dϑ g(ϑ)

1 + κϑ
= ḡ(κ) . (4.14)

For the case of interest, a fBm bridge of lenght T , this relation is more complicated since we can
not compute directly the double Laplace transform of Pbridge

H (t+), but only the transform of an
unnormalised distribution, which we write ZN(T )Pbridge

H (t+). As we will see, the normalisation
factor ZN(T ), which is the probability density to return to 0 at time T , is a power law,

ZN(T ) = C Tα−1 , (4.15)
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with some constant C. In this case, the double Laplace transform of the unnormalised distribu-
tion is computed as∫ ∞

0
dT
∫ T

0
dt+e−sT−λt+CTα−1Pbridge

H (t+) =
∫ 1

0
dϑ
∫ ∞

0
dT CTα−1e−T (s+λϑ)g(ϑ)

= C Γ(α)
sα

∫ 1

0
dϑ g(ϑ)(

1 + λ
sϑ
)α

!= C Γ(α)
sα

Kα[g]
(
κ = λ

s

)
. (4.16)

Here we generalised the K transform to another exponent,

Kα[g](κ) :=
∫ 1

0
dϑ g(ϑ)

(1 + κϑ)α . (4.17)

If ḡ(κ) = Kα[g](κ) is the Kα transform of a function g(ϑ) normalised to unity, then ḡ(κ) → 1
for κ → 0. If further g(ϑ) is time-reversal symmetric, g(ϑ) = g(1 − ϑ) for ϑ ∈ [0, 1], then the
function ḡ(κ) has the symmetry

ḡ(κ) = 1
(1 + κ)α ḡ

(
− κ

1 + κ

)
. (4.18)

4.3.2 FBm bridge with H = 1
2 + ε

The path-integral approach presented in Section 2.2 yields an expression for the (unnormalised)
density distribution of t+ for a bridge,

Zpos(t+, T ) =
∫ XT=0

X0=0
D[X] δ

(∫ T

0
dtΘ(Xt)− t+

)
e−S[X] . (4.19)

It is useful to consider its double Laplace transform (T → s and t+ → λ), which we denote with
a tilde

Z̃pos(λ, s) =
∫ ∞

0
dT e−sT

∫ XT=0

X0=0
D[X] e−S[X]−λ

∫ T
0 dtΘ(Xt) . (4.20)

Using the ε-expansion (5.7) for the action, we compute this perturbatively, expanding around
Brownian motion. The resulting series in ε has the form

Z̃pos(λ, s) = Z̃pos
0 (λ, s) + εZ̃pos

1 (λ, s) +O(ε2) . (4.21)

The first term of this expansion, the result for Brownian motion, is as in Eq. (4.9) obtained from
the propagator W̃+,

Z̃pos
0 (λ, s) = W̃+(λ, s) = 1√

s

1√
1 + κ+ 1

= ḡ0(κ)
2
√
s
. (4.22)

Here we denoted
ḡ0(κ) =

∫ 1

0
dϑ g0(ϑ)√

1 + κϑ
= 2√

1 + κ+ 1
. (4.23)

This can be inverted to
g0(ϑ) = 1 . (4.24)

This reproduces the known result that the probability distribution (1.27) for a Brownian bridge
is uniform [10, 11].
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To compute the order-ε term Z̃pos
1 (λ, s), we use the same diagrammatic rules as in Chapter

2, Section 2.2.4. As seen there, these rules are easily expressed in Laplace variables, which is why
we compute the expansion of Z̃pos(λ, s). The first order-ε correction comes from the non-local
interaction in the action, given in the second line of Eq. (5.7), and can be written as

Z̃pos
1A (λ, s) = 2

∫ Λ

0
dy
∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 W̃
+(λ, s, 0, x1) ∂x1W̃

+(λ, s+ y, x1, x2) ∂x2W̃
+(λ, s, x2, 0) .

(4.25)
As explained in chapter 2, Eq. 2.75, the large-y cutoff Λ, which is necessary as the integral
is logarithmically divergent, is linked to the short-time (UV) regularisation τ introduced in
Eq. (5.7) by Λ = e−γE/τ . Performing the integrations over space variables and over y, and after
some simplifications, we obtain

Z̃pos
1A (λ, s) = 1√

s

[( 4√
κ+ 1

+ 4
)

ln
(√

κ+ 1 + 1
)
− 2κ+ 2 +

√
κ+ 1

κ
ln(κ+ 1) (4.26)

+ ln(sτ) + 7− 7 ln(4) + γE√
κ+ 1 + 1

]
.

We have expressed the result in terms of the dimensionless variable κ = λ/s. The second order-ε
correction comes from the rescaling of the diffusive constant, cf. Eq. (2.4). It is computed by
rescaling T in the result for the Brownian, setting T → Dε,τT . In Laplace variables, this is
equivalent to writing

Z̃pos
0 (λ, s)→ 1

Dε,τ
Z̃pos

0

(
λ

Dε,τ
,
s

Dε,τ

)
. (4.27)

Extracting the order-ε term gives

Z̃pos
1B (λ, s) = −1 + ln(τ)

2
√
s

2√
1 + κ+ 1

. (4.28)

Resumming all order-ε corrections,

Z̃pos
1 (λ, s) = Z̃pos

1A (λ, s) + Z̃pos
1B (λ, s) , (4.29)

the τ dependence vanishes. The ln(s) term in Eq. (4.26) is proportional to ḡ0(κ), such that we
can recast it as an order-ε correction to the exponent of the prefactor: s−1/2 → sH−1 + O(ε2).
This allows us to write the path integral (4.20) in the form

Z̃pos(λ, s) = Γ(1−H)
2
√
πs1−H

[
ḡ0(κ) + εḡpos

1 (κ)
]

+O(ε2) . (4.30)

With this choice of prefactor, the constant C in Eq. (4.16) is C = (2
√
π)−1, and ḡpos

1 (κ) is

ḡpos
1 (κ) = 8

( 1√
κ+ 1

+ 1
)

ln
(√

κ+ 1 + 1
)
− 22κ+ 2 +

√
κ+ 1

κ
ln(κ+ 1) + 4 3− 4 ln(4)√

κ+ 1 + 1
.

(4.31)

We recall that this function contains contributions from Z̃pos
1A , Z̃pos

1B and the expansion of

1√
π

Γ
(1

2 − ε
)

= 1 + ε
[
γE + ln(4)

]
+O(ε2) , (4.32)

due to the choice of normalisation in Eq. (4.30).
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We know that the distribution of the positive time has the form given in Eq. (4.12). After
expanding it in ε it gives

Pbridge
H= 1

2 +ε(t+) = 1
T

[
g0(ϑ) + εgpos

1 (ϑ)
]

+O(ε2) , (4.33)

where, as before, ϑ = t+/T .
We have seen in Section 4.3.1 that the scaling functions g(ϑ) and ḡ(κ) are related via

the K1−H transform, where the index of the transformation is fixed by the prefactor sH−1

in Eq. (4.30).
Expanding with respect to ε in the definition of the K transform gives

ḡ(κ) =
∫ 1

0
dϑ 1

(1 + κϑ)
1
2−ε

g(ϑ) =
∫ 1

0
dϑ1 + ε ln(1 + κϑ)√

1 + κϑ
[g0(ϑ) + εg1(ϑ)] +O(ε2)

= ḡ0(κ) + ε

∫ 1

0
dϑ
[
g1(ϑ) + g0(ϑ) ln(1 + κϑ)

]
√

1 + κϑ
+O(ε2) (4.34)

The order-ε correction g1(ϑ) that we are looking for is then given by

g1(ϑ) = K−1
1
2

[ḡ1(κ)− ḡ0,1(κ)] , (4.35)

where we have defined

ḡ0,1(κ) =
∫ 1

0
dϑ ln(1 + κϑ)√

1 + κϑ
g0(ϑ) = 2

κ

{
2 +
√

1 + κ
[
ln(κ+ 1)− 2

]}
. (4.36)

This contribution is valid both for t+ and tmax, since both observables have the same distribution
at order zero, and both have the same power law from scaling.

We now have to deal with the inverse K 1
2
transform in Eq. (4.35). This is linked to the Abel

transform, on which details are given in Appendix 4.B. The final result for the order-ε correction
is

gpos
1 (ϑ) = 4

[
2− 1√

ϑ+ 1
+ ln

(√
ϑ+ 1
4
√
ϑ

)
− 1√

1− ϑ+ 1
+ ln

(√
1− ϑ+ 1
4
√

1− ϑ

)]
. (4.37)

We can check that the integral of gpos
1 (ϑ) over [0, 1] vanishes, such that Eq. (4.33) is correctly

normalised at order ε. We also checked that by computing numerically the K1/2 transform of
this result reproduces ḡpos

1 (κ)− ḡ0,1(κ) with excellent precision.
Close to the boundary, the asymptotics is

gpos
1 (ϑ) '

ϑ→0,1
−2 ln(ϑ)− 2 ln(1− ϑ) . (4.38)

This asymptotics can be recast into a power law consistent with scaling. The distribution of t+
for a fBm bridge with H = 1

2 + ε can then be written as

Pbridge
H= 1

2 +ε(t+) =
exp

(
ε [Fpos(ϑ)− 4]

)
T [ϑ(1− ϑ)]2H−1 +O(ε2) . (4.39)

The scaling function Fpos(ϑ) has by definition vanishing integral, and is given by

Fpos(ϑ) = 4
[
3− 1√

ϑ+ 1
+ ln

(√
ϑ+ 1
4

)
− 1√

1− ϑ+ 1
+ ln

(√
ϑ+ 1
4

)]
. (4.40)
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4.3.3 Numerical results

To test our analytical predictions, we compare them to results from numerical simulations, using
the same methods as in chapter 2 with details given in its appendix 2.I. As presented in section
4.2, we were able to transform each generated fBm path in a fBm bridge path with the correct
weight. Then, from a large number of generated paths (typically 106), we construct a numerical
estimation Pbridge

H (t+) of the distribution of t+ for various values of H, choosing T = 1. This is
shown on Fig. 4.1, where results for the distributions of both t+ and tmax are given. To compare
to the analytical result (4.40), we extract Fpos

num from these distributions, using

Fpos
num(ϑ) = 1

ε
ln
(
T [ϑ(1− ϑ)]2H−1Pbridge

H= 1
2 +ε(ϑ)

)
. (4.41)

As is shown in Fig. 4.2 (left), when ε→ 0, Fpos
num(ϑ) converges to Fpos(ϑ). The deviation being

antisymmetric in ε strongly suggests that there is an order-ε2 correction to the distribution of
t+, which we did not calculate here.

Figure 4.1: Comparison of the two “Arcsine laws” for a fBm bridge with Hurst exponent H =
0.66. Dots represent the distribution extracted from numerical simulations, the plain lines
represent the analytical result at order ε given in Eqs. (4.39) and (4.46), and the dashed line is
the scaling form (identical for both observables).

4.4 Extremum of fBm Bridges

In chapter 2 , a general formula was derived for the path integral over fBm paths Xt starting
at m1, going to x0 ≈ 0 at time t1 and ending in m2 at time t1 + t2 = T , while staying positive,
Xt > 0 for all t ∈ [0, T ]. This quantity, denoted Z+(m1, t1;x0;m2, t2), is the result, up to
first-order term, of an ε expansion and its expression is given in (2.34).

Here we apply this result to fBm bridges. The general result for Z+(m1, t1;x0;m2, t2),
restricted to m1 = m2 = m, and choosing t1 + t2 = T , immediately gives the joint distribution
of the maximum m, and the time tmax = t1 when this maximum is attained. In a second step,
we can then integrate over t1 at T fixed, or over m at t1 and t2 fixed, to obtain the distributions
of m and tmax.

We will finally rederive these results in a simpler way, taking advantage of the scaling trans-
formations introduced in section 4.3.1.



80 Chapter 4. Fractional Brownian bridges and positive time
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Figure 4.2: Left: Numerical estimation of the scaling function Fpos(ϑ), from top to bottom for
H = 0.33 (red dots), H = 0.4 (orange dots), H = 0.6 (green dots), and H = 0.66 (blue dots),
compared to the analytical result given in Eq. (4.40) (plane line). Right: ibid for Fmax(ϑ) for
H = 0.33 (blue dots, bottom) and H = 0.66 (red dots, top), the analytical result (plane line) is
given in Eq. (4.47). For both plots, and for each value of H, the statistics is done with 5× 106

sampled paths, discretized with N = 212 points.

4.4.1 Distribution of the time to reach the maximum
Starting with Eq. (2.34) and following the procedure section 2.3.3, we express the probability
for tmax, denoted Pbridge

H (tmax), as

Pbridge
H (tmax) = 1

ZN(T )

∫ ∞
0

dmZ+(m, t;x0;m,T − t) . (4.42)

The integral over m accounts for all possible values of the maximum. ZN(T ) is a normalisation
factor such that the integral over tmax of Pbridge

H (tmax) is normalised to unity,

ZN(T ) =
∫ T

0
dt
∫ ∞

0
dmZ+(m, t;x0;m,T − t) = x2−4ε

0√
4π

(1 + εC1) +O(ε2) . (4.43)

The constant C1 can be computed from Z+, but it is equivalent to require that the order-ε term
in Eq. (4.42) does not change the normalisation, such that the distribution Pbridge

H (tmax) remains
normalised to one.

Expanding the distribution of tmax in the same way as for Eq. (4.33), the order-ε term
becomes, setting again ϑ = tmax/T , and T = 1

gmax
1 (ϑ) = 2

√
π

∫ ∞
0

dm
[
Z+

1 (m,ϑ;x0;m, 1− ϑ)− C1Z
+
0 (m,ϑ;x0;m, 1− ϑ)

]
= 2

[
6(
√

1− ϑ+
√
ϑ)− 3ϑ ln(1− ϑ)− 3(1− ϑ) ln(ϑ) + (4− 3ϑ) ln(2− ϑ) (4.44)

+ (3ϑ+ 1) ln(ϑ+ 1) + (6ϑ− 4)arcth(
√

1− ϑ) + (2− 6ϑ)arcth(
√
ϑ)− 8− 4 ln(2)

]
.

This result will be checked from Eq. (4.71) given below. Demanding that gmax
1 (ϑ) has integral

zero fixed the constant C1 to C1 = 4 ln(2)− γE.
Close to the boundary, the correction has the same asymptotics as in the calculation for t+,

namely
gmax

1 (ϑ) '
ϑ→0,1

−2 ln(ϑ)− 2 ln(1− ϑ) , (4.45)
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which indicates the same change in the power-law behaviour of Pbridge
H (tmax). Again taking an

exponential resummation of the order-ε correction, we obtain a formula similar to Eq. (4.39),
but with a different scaling function Fmax(ϑ),

Pbridge
H= 1

2 +ε(tmax) =
exp

(
ε
[
Fmax(ϑ)− 4

])
T [ϑ(1− ϑ)]2H−1 +O(ε2) . (4.46)

Fmax(ϑ) is a bounded function of ϑ ∈ [0, 1] and can be expressed from Eq. (4.44) as

Fmax(ϑ) = gmax
1 (ϑ) + 2 ln

(
ϑ(1− ϑ)

)
+ 4 . (4.47)

The constant 4 was added in Eq. (4.47) and subtracted in Eq. (4.46) to have
∫ 1

0 dϑ gmax
1 (ϑ) =∫ 1

0 dϑFmax(ϑ) = 0.
The two distributions, for t+ and tmax, at order ε are plotted in Fig. 4.1. While both functions

have the same power-law behavior for ϑ close to 0 or 1, their difference is clearly visible. The
result (4.47) for Fmax(ϑ) is compared with great precision to numerical simulations on figure
4.2 (right).

4.4.2 The maximum-value distribution
Similarly to the distribution of tmax, the distribution of the maximum value m = maxt∈[0,T ]Xt

can be expressed from the result Eq. 2.34 :

Pbridge
H (m) = 1

ZN(T )

∫ T

0
dt Z+(m, t;x0;m,T − t) . (4.48)

This calculation is rather cumbersome, but it is possible to give a simpler derivation, where
we do not constrain paths to go close to the boundary, but construct Pbridge

H (m) by taking a
derivative of its cumulative distribution, the survival probability, conditioned such that the end
point of the process is the same as the starting point. In this framework, the order-ε correction
to Pbridge

H (m) can, due to the non-local term in the action (5.7), be expressed in Laplace variables
(T → s) using the diagrammatic rules presented in 2.2.4. The integrals to be computed are

Z̃max
1A (m, s) = 2∂m

∫ Λ

0
dy
∫
x1,x2>0

P̃+
0 (m,x1; s) ∂x1P̃

+
0 (x1, x2; s+ y) ∂x2P̃

+
0 (x2,m; s) (4.49)

= 2(a+ 1)e2a Ei(−4a)− 2Ei(−2a) + 2e−2a
{
a

[
ln
(
m2

4τ

)
− ln(a)− 1

]
+ ln

( 2τ
m2

)
− γE

}
,

where a :=
√
sm is a dimensionless variable, Λ = e−γE/τ , and the propagator P̃+

0 (x1, x2; s)
is defined in Eq. (3.23). To deal with the inverse Laplace transform, we use formulas already
derived in 2.G , plus similar formulas collected in appendix 4.C. The final result for the correction
after the inverse Laplace transformation is

Zmax
1A (m,T ) = ze−z

2

√
πT

{
2z
√
πez

2erfc(z) + 4(1− z2)J
(
z2
)

+ 2z2
[
ln
(
Tz2

τ

)
+ γE − 1

]
(4.50)

+ ln
(

τ3

T 3z8

)
− 4γE + 1

}
.

We introduced the scaling variable z := m/
√
T . The special function J defined in Eq. 2.168 is

J (x) = 1
2πerfi

(√
x
)
− x 2F2

(
1, 1; 3

2 , 2;x
)
. (4.51)
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Figure 4.3: Plain red line: optimal paths for fBm conditioned to X0 = 0, X1/2 = 1 and X1 = 0,
for, from left to right, H = 0.1, H = 0.25 and H = 1. The blue dashed-line represents the
optimal paths when neglecting the correlation between [0, 1/2] and [1/2, 1].

For a Brownian bridge we have

Zmax
0 (m,T ) = m

√
πT

3
2
e−

m2
T , (4.52)

which, after normalisation, allows to recover the distribution (1.29).
The second order-ε correction, which comes from the rescaling of the diffusive constant, is

obtained by replacing T → Dε,τT in Eq. (4.52); for the order-ε term this gives

Zmax
1B (m,T ) = ze−z

2

√
πT

(2z2 − 3)(1 + ln τ) . (4.53)

Resumming these corrections up to order ε cancels all τ dependencies; recasting the relevant
corrections into the power-law prefactor and the Gaussian tail and expressing the result in terms
of the dimensionless variable y := m/TH finally yields

Pbridge
H (m) = 2

√
πTH

[
Zmax

0 + ε(Zmax
1A + Zmax

1B )
]

+O(ε2) = 2y1−8ε

TH
e−y

2Aε+εG(y)+cst +O(ε2) .

(4.54)

The special function G appearing here is as defined in Refs. [125],

G(y) = −4
(
y2 − 1

)
J
(
y2
)

+ 2
√
πey

2
y erfc(y) + 2y2

[
ln
(
4y2

)
+ γE

]
− 4γE − 2 . (4.55)

This result contains several non-trivial predictions: First, at smallm, the distribution Pbridge
H (m)

has a power law given by m1−8ε+O(ε2). This can be obtained by considering the probability
starting at m to remain positive (survive) up to time T ,

S(T,m) :=
∫ m

0
dm1 PH(m1) . (4.56)

In this relation the dependence of PH(m) on T is implicit. It is valid both for the case of a
bridge and of a free endpoint. A surviving bridge process (starting and ending in m→ 0) needs
to survive both at its beginning and at its end, thus we expect that for small m

Sbridge(T,m) ∼
[
S free(T,m)

]2
. (4.57)

Using the fact that P free
H (m) ∼ m

1
H
−2, cf. Eq. 2.28, implies that

Pbridge
H (m) ∼ m

2
H
−3 . (4.58)
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This is in agreement with our order-ε result.
Second, at large m, Pbridge

H (m) has a Gaussian tail with the dimensionless variable y2 =
z2/T 2ε = m2/T 2H and a non-trivial number Aε = 1 + 4ε ln(2) +O(ε2). We will see in the next
section why this number appears, and how we can compute it exactly (i.e. for all H).

Third, there is a crossover in the power-law behavior at large y, given by the asymptotic
behaviour of the function G(y),

G(y) '
y→∞

4 ln(y) . (4.59)

This yields a subleading power-law behaviour at large m

Pbridge
H (m) eAε

m2
T2H ∼ m1−4ε+O(ε2) . (4.60)

4.4.3 Optimal path for fBm, and the tail of the maximum distribution

In this section, we study the tail of the maximum distribution for fBm. Contrary to a process
with a free endpoint, the maximum is not taken at the end, and as a consequence the tail is not
simply given by the known propagator evaluated at time T at position m.

We start with some general considerations: If we choose t1, ..., tn ∈ R, then the density
distribution for a fBm path Xt to take values Xt1 = x1, ..., Xtn = xn can be expressed, using the
Gaussian nature of the process Xt, as

Pn(x1, x2, ..., xn) = exp

−1
2
∑
ij

xiMijxj

 . (4.61)

The matrixMij is given by

M−1
ij = 〈XtiXtj 〉 = t2Hi + t2Hj − |ti − tj |2H . (4.62)

To study bridges, consider now two points, x1 = x at time t1 = t with 0 < t < T and x2 = 0 at
time t2 = T . The probability distribution of x given xT = 0 is then given by

P(xt = x|xT = 0) = P2(x, 0) = exp
(
−M11 x

2

2

)
. (4.63)

The matrix element in question is (with ϑ = t/T )

M11
2 = 1

T 2H
1

4ϑ2H − [ϑ2H − (1− ϑ)2H + 1]2
. (4.64)

It takes its minimum for ϑ = 1
2 . The tail for the maximum of a bridge is thus given by Eq. (4.63)

with the matrix element M11 in Eq. (4.64) evaluated at ϑ = 1
2 : If we take a realisation of Xt

with a large value of the maximum value m, the path typically reaches m close to the center of
the interval, as it is the point where the process has maximum variance. This means that when
m = maxs∈[0,t]Xs � tH , we have tmax ≈ t/2, which also means that m ≈ Xt/2. The Gaussian
tail of the maximum value distribution should then be the same as the tail of Xt/2 distribution
(with power law corrections due to the fluctuation of tmax around t/2, cf. chapter 5). This gives
for large m

PTH(m) ∼ P(xT/2 = m|xT = 0) = e
− m2
T2H

4H
4−4H

+O(ln(m))
. (4.65)



84 Chapter 4. Fractional Brownian bridges and positive time

This heuristic argument is consistent with the result from our ε expansion, and allows us to
predict the exact value of the constant Aε,

Aε = 4H

4− 4H = 1 + 4 ln(2)ε+O(ε2) . (4.66)

We can go further and study the shape of the optimal path with conditions X0 = X1 = 0 and
X1/2 = 1. This is done by considering Pn(x, 1, 0), taken at time t1 = t, t2 = 1/2 and t3 = T = 1.
We then find XSP

t = x which minimises the “energy” − lnP3(x,m, 0). This is for 0 ≤ ϑ ≤ 1
2

achieved for
XSP
t = m

4−4H
[
2− 2(1− 2ϑ)2H + 4H(1− ϑ)2H + 4Hϑ2H − 4H

]
. (4.67)

For T
2 < t ≤ T one has XSP

t = XSP
T−t. This is represented for m = 1 and T = 1 in red in Fig. 4.3

for various values of H. It is interesting to observe that this optimal path is not a straight line
going from X0 = 0 to X1/2 = 1 and back to X1 = 1, but at t = 1/2 peaked for H < 1/2, and
smoothened for H > 1/2. It is equivalently interesting to compare this to the optimal path
which goes from X0 = 0 to X1/2 = 1, without imposing any constraint at t = 1, plus a similar
segment from X1/2 = 1 to X1 = 0 without constraint on X0 (blue dashed lines). This would
indeed be the optimal path if there were no correlations between times t < 1/2 and t > 1/2.

We finally note that the limit of H → 1 is non-trivial, and given by (see right of Fig. 4.3)

XSP
t = m

ln(4)
{

(1− 2ϑ)2 ln(1− 2ϑ)− 2(1− ϑ)2 ln(1− ϑ) + ϑ[ln(16)− 2ϑ ln(4ϑ)]
}
, 0 ≤ t ≤ T

2
(4.68)

and XSP
t = XSP

T−t for T
2 < t < T . We expect this also to be the lowest-energy fluctuation for the

fBm bridge.
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Figure 4.4: Numerical results for PH(υ|ϑ) for H = 2
5 (left), H = 3

5 (middle) and H = 2
3 (right).

The values of ϑ are chosen as ϑ = 0, ϑ = 0.05, ϑ = 0.25 to ϑ = 0.5, the maximum useful value
due to the symmetry ϑ→ 1− ϑ. We used N = 218 points, and 5× 106 samples.

4.4.4 Joint Distribution of m and tmax

To obtain the joint distribution of m and tmax, we start with Eq. (2.34), and specify m1 = m2 =
m. This is equivalent, in the notations of section 2.3.2, to setting

y1 = m√
2ϑH

, y2 = m√
2(1− ϑ)H

where ϑ = tmax
T

. (4.69)

The resulting expression can more compactly be written in terms of

υ := m√
2[ϑ(1− ϑ)]H

. (4.70)
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Recasting terms proportional to ln(ϑ), ln(1− ϑ) and ln(υ) into the prefactor, we get

Z+(m,ϑ;x0;m, 1− ϑ) = x2−4ε
0 υ2−8εe−

υ2
2

2π[ϑ(1− ϑ)]3H−1

{
1 + ε

[
F(υ, ϑ) + C2

]}
+O(ε2) , (4.71)

with

F(υ, ϑ) =
I
(
υ(1− ϑ)

)
+ I

(
υϑ
)
− I(υ) + 2(υ2 − 1)

υ2ϑ(1− ϑ) −
I
(
υ(1− ϑ)

)
1− ϑ −

I
(
υϑ
)

ϑ
+ 2 I

(
υ
√

1− ϑ
)

+ 2 I
(
υ
√
ϑ
)

+ υ2( ln(2υ2) + γE
)
− 12− 8 ln(2) , (4.72)

C2 = 4
[
2− γE + ln(2)

]
. (4.73)

First, this result allows us to recover Eqs. (4.44) and (4.47), noting that

Fmax(ϑ) =
√

2
π

∫ ∞
0

dυ υ2e−
υ2
2 F(υ, ϑ) . (4.74)

As we defined
∫ 1
0 dϑFmax(ϑ) = 0, there is an additional constant C2, related to the prefactor

υ−8ε in Eq. (4.71).
Second, we can extract the conditional probability of υ, given ϑ. This is interesting since for

a Brownian the latter depends only on the variable υ introduced in Eq. (4.70),

Pbridge
H= 1

2
(υ|ϑ) =

√
2
π
υ2e−

υ2
2 . (4.75)

For a generic value of H = 1
2 + ε, our ε expansion, recast in an exponential form, gives

Pbridge
H (υ|ϑ) =

√
2
π
υ

2
H
−2e−

υ2
2 +ε[F(υ,ϑ)+C2−Fmax(ϑ)] +O(ε2) . (4.76)

The functions F(υ, ϑ) and Fmax(ϑ) are defined in Eqs. (4.72) and (4.47). The exponent in
Eq. (4.76) can be derived from scaling. To this aim, note that the probability to have a maximum
of m up to time T is

PH(m) = ∂mS(T,m) . (4.77)

On the other hand, the probability that the maximum m is taken at time T is

PH(m|T ) = ∂TS(T,m) . (4.78)

We conclude that for small m

Pbridge
H (m|T ) ∼ m

T
Pbridge
H (m) ∼ m

2
H
−2 ∼ υ

2
H
−2 . (4.79)

This exponent, written in Eq. (4.76), agrees with the perturbative expansion

2
H
− 2 = 2− 8ε+O(ε2) . (4.80)

Finally, using the result (4.64), and expressing it in terms of υ predicts a tail e−A′ευ2 , with

A′ε = 2[ϑ(1− ϑ)]2H

4ϑ2H − [ϑ2H − (1− ϑ)2H + 1]2

= 1
2

[
1 + ε2 [(1− ϑ) ln(1− ϑ) + ϑ ln(ϑ)]2

2(1− ϑ)ϑ +O(ε3)
]
. (4.81)
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Thus our resummation (4.76) is correct to order ε; whether at higher order it is preferential to
use υ introduced in Eq. (4.70) with A′ε given in Eq. (4.81), or whether one should keep e−υ2/2

for the tail and redefine υ can only be answered after a second-order calculation.
We verified the prediction (4.76) for Pbridge

H (υ|ϑ) numerically, see Fig. 4.4. The agreement is
good for H close to 1

2 , both for ε = − 1
10 and ε = 1

10 (left two figures). Corrections of order ε2

can be anticipated, since our numerical results for both ε = − 1
10 and ε = 1

10 show approximately
the same (small) deviation from the analytics, independent of the sign of ε.

These putative O(ε2) corrections also explain the larger systematic deviations for H = 2
3 ,

i.e. ε = 1
6 (right plot).

4.5 Conclusions
In this chapter we developed a systematic analytical framework to treat bridge processes for
fractional Brownian motion, in an expansion around Brownian motion. We considered the
probability of the time t+ that a bridge process is positive, and of the time tmax it achieves its
maximum. For a Brownian bridge, both t+ and tmax have the same uniform probability distri-
bution. For a fractional Brownian bridge, both observables have the same power-law behavior
for times close to the beginning and end, but the subleading scaling functions are rather differ-
ent. We calculate them to first order in ε, and verified them to high precision with numerical
simulations. We also obtained and checked the joint distribution of the maximum m, and the
time tmax when this maximum is taken. These tests were possible due to the development of an
efficient algorithm to generate samples of fBm bridges.

4.A Details on correlation functions for Gaussian bridges

Starting from Eqs. (4.1) and (4.2), and inserting the identity δ(x) =
∫∞
−∞ e

ikx dk
2π , we obtain

〈δ(XT − a)〉 =
∫ ∞
−∞

dk
2π 〈e

ik(XT−a)〉 =
∫ ∞
−∞

dk
2π e

−ika e−
k2
2 〈X

2
T 〉 = e

− a2
2〈X2

T
〉

√
2π
√
〈X2

T 〉
, (4.82)

〈Xt1δ(XT − a)〉 =
∫ ∞
−∞

dk
2π 〈Xt1e

ik(XT−a)〉 =
∫ ∞
−∞

dk
2π e

−ika ik 〈Xt1XT 〉e−
k2
2 〈X

2
T 〉

= e
− a2

2〈X2
T
〉

√
2π
√
〈X2

T 〉

a〈Xt1XT 〉
〈X2

T 〉
, (4.83)

and

〈Xt1Xt2δ(XT − a)〉 =
∫ ∞
−∞

dk
2π

〈
Xt1Xt2e

ik(XT−a)
〉

=
∫ ∞
−∞

dk
2π e

−ikae−
k2
2 〈X

2
T 〉
[
〈Xt1Xt2〉 − k2〈Xt1XT 〉〈Xt2XT 〉

]

= e
− a2

2〈X2
T
〉

√
2π
√
〈X2

T 〉
×
[
〈Xt1Xt2〉+

(
a2 − 〈X2

T 〉
)〈Xt1XT 〉〈Xt2XT 〉

〈X2
T 〉2

]
. (4.84)

From the first to the second line of the last two equations we used Wick’s theorem and its
consequence,

〈X1f(X2)〉 = 〈X1X2〉〈f ′ (X2)〉 (4.85)
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and the fact that Xt has mean zero. Putting everything together, we arrive at Eqs. (4.3) and
(4.4).

4.B Abel transform and inversion of K 1
2
transform

For a real function g(ϑ) non-vanishing on the interval [0, 1], we consider the transformation K 1
2

defined as
ḡ(κ) ≡ K 1

2
[g](κ) :=

∫ 1

0

g(ϑ)√
1 + κϑ

dϑ . (4.86)

The question is how to reconstruct g, knowing ḡ.
The Abel transform F of a function f is defined as [132, 133]

F (y) =
∫ ∞
y

2rf(r)√
r2 − y2 dr . (4.87)

The inverse formula, allowing to recover f from F , is

f(r) = − 1
π

∫ ∞
r

F ′(y)√
y2 − r2 dy . (4.88)

To make the link with K 1
2
, we change variables from ϑ to r :=

√
ϑ in Eq. (4.86), and introduce

f(r) := g(ϑ = r2). Then, for κ > 0,

ḡ(κ) =
∫ 1

0

f(r)√
1 + κr2

2r dr = 2√
κ

∫ ∞
0

f(r)r√
1
κ + r2

dr . (4.89)

In the last equality, we changed the upper integration limit, using f(r) = 0 for r > 1. We
now continue ḡ(κ)

√
κ in the complex plane from real positive to real negative κ, by setting

κ = eiϕ/y2|ϕ=±π with y > 0. This gives

ḡ(κ)
√
κ =

∫ ∞
y

2rf(r)√
r2 − y2 dr +

∫ y

0

2rf(r)√
r2 − y2 dr = F (y) + e−iϕ/2G(y) . (4.90)

We have split the integral over r into two parts: the first part is a real function F (y) ∈ R, which
is the Abel transform of f(r). The second term is purely imaginary because of the denominator;
which of the two possible branches is taken depends on how we continued ḡ(κ)

√
κ, choosing

either of the branches ϕ = ±π. This means that we can express the Abel transform F (y) of
f(r) from ḡ(κ) as

F (y) = R
[
ḡ(κ)
√
κ
∣∣
κ=−1/y2

]
, (4.91)

where R denotes the real part. We can now use formula (4.88) to invert the Abel transform.
Since f(r) vanishes for r > 1, according to the definition (4.87) also F (y) vanishes for y > 1.

One can thus reduce the upper bound in Eq. (4.88) to 1. Finally reintroducing the function g(ϑ)
instead of f(r), we get

g(ϑ) = − 1
π

∫ 1
√
ϑ

F ′(y)√
y2 − ϑ

dy , (4.92)

where F (y) is defined from ḡ(κ) in Eq. (4.91). We now want to apply this to compute g1(ϑ)
from Eq. (4.35). We need to compute the inverse K1/2 transform of

ḡpos
1 (κ)− ḡ0,1(κ) = 8

( 1√
κ+ 1

+ 1
)

ln
(√

κ+ 1 + 1
)

(4.93)

− 16 ln(4)− 1√
κ+ 1 + 1

− 4
(
κ+
√
κ+ 1 + 1

)
ln(κ+ 1)

κ
.
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From scaling, we expect that close to the boundary

g1(ϑ) ' −2 ln
(
ϑ(1− ϑ)

)
. (4.94)

To simplify the calculation, we subtract this divergent part. Define

ḡln(κ) :=
∫ 1

0
dϑ

ln
(
ϑ(1− ϑ)

)
+ 2

√
1 + κϑ

= 4[ln(2)− 1]
1 +
√
κ+ 1

+ 2
√
κ+ 1 ln(κ+ 1)

κ
+ 4

(
1−
√
κ+ 1

)
ln
(√
κ+ 1 + 1

)
κ

. (4.95)

Setting ḡ(κ) := ḡpos
1 (κ)− ḡ0,1(κ) + 2ḡln(κ) in Eq. (4.91) yields

F (y) =− 8y2 ln(y)√
1− y2 − 24

√
1− y2 ln(2)− 8

(
y2 − 1

)
arcsin(y)
y

. (4.96)

Computing the integral (4.92) finally gives

g(ϑ) = K−1
1
2

[
ḡ1(κ)− ḡ0,1(κ) + 2ḡln(κ)

]
(4.97)

= 4
[
3− 1√

1− ϑ+ 1
− 1√

ϑ+ 1
+ ln

(
(
√
ϑ+ 1)(

√
1− ϑ+ 1)

16

)]
.

Adding the logarithmic terms, we recover the result (4.37) given in the main text.

4.C Inverse Laplace transforms, and other useful relations
In this appendix we give a table of useful relations for the inverse Laplace transforms encountered
in this article.

All appearing hypergeometric functions can be eliminated by using the two special functions
already used in chapter 2 and named I(x) and J (x),

I(x) = 1
6x

4
2F2

(
1, 1; 5

2 , 3; x
2

2

)
+ π

(
1− x2

)
erfi
(
x√
2

)
+
√

2πe
x2
2 x+ 2− 3x2 , (4.98)

J (x) = 1
2π erfi

(√
x
)
− x 2F2

(
1, 1; 3

2 , 2;x
)

(4.99)

These functions are related to each other by the relations

I(x) = 2 + 2(1− x2)J
(
x2

2

)
+
√

2πe
x2
2 x erfc

(
x√
2

)
, (4.100)

I(x) = −2 e
x2
2 ∂2

x

[
e−

x2
2 J

(
x2

2

)]
. (4.101)

To arrive at these identities, and to express everything in terms of one of these two functions,
two non-trivial relations between hypergeometric functions were used (they can be checked by
Taylor-expansion to high order)

−3 2F2

(
1, 1; 3

2 , 2; x
2

2

)
+ 2F2

(
1, 1; 2, 5

2; x
2

2

)
+ 6
x2

√π

2
e
x2
2

x
erf
(
x√
2

)
− 1

 = 0 (4.102)
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−x3
[
3 2F2

(
1, 1; 3

2 , 2;−x
2

2

)
+ 2F2

(
1, 1; 2, 5

2; x
2

2

)]
(4.103)

+ erf
(
x√
2

)[
3πxerfi

(
x√
2

)
− 3
√

2πe
x2
2

]
+ 6x = 0 .

We now express the needed inverse Laplace transforms either in terms of I or J , depending on
which form is more compact.

Transforms involving only e−
√
s, and powers of

√
s are elementary,

L−1
s→t

[
e−
√
s
]

= e−
1
4t

2
√
πt3/2

(4.104)

L−1
s→t

[
e−
√
s√s

]
= −e

− 1
4t (2t− 1)

4
√
πt5/2

(4.105)

L−1
s→t

[e−√s√
s

]
= e−

1
4t

√
πt

. (4.106)

Transforms with an additional factor of ln(s) are

L−1
s→t

[
e−
√
s√s ln(s)

]
= − e−

1
4t

4
√
πt5/2

{
−2t I

( 1√
2t

)
+ (2t− 1)

[
ln(4t) + γE

]}
(4.107)

L−1
s→t

[e−√s ln(s)√
s

]
= e−

1
4t

√
πt

[
2J

( 1
4t

)
− ln(4t)− γE

]
(4.108)

L−1
s→t

[
e−
√
s ln(s)

]
= e−

1
4t

4
√
πt5/2

[
2J

( 1
4t

)
− ln(4t)− γE

]
−

erfc
(

1
2
√
t

)
t

. (4.109)

Transforms involving the exponential integral function are

L−1
s→t

[
Ei
(
−
√
s
) ]

= −
erfc

(
1

2
√
t

)
2t (4.110)

L−1
s→t

[
e
√
sEi

(
−2
√
s
) ]

= e−
1
4t

4
√
πt3/2

[
2J ( 1

4t) + ln(t)− γE

]
−

erfc
(

1
2
√
t

)
2t (4.111)

L−1
s→t

[√
se
√
sEi

(
−2
√
s
) ]

= e−
1
4t

8
√
πt5/2

{
2t I

( 1√
2t

)
+ (2t− 1)

[
ln(t)− γE

]
− 8t

}
(4.112)

L−1
s→t

[e√sEi (−2
√
s)√

s

]
= e−

1
4t

2
√
πt

[
γE − 2 J

( 1
4t

)
− ln(t)

]
. (4.113)
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Chapter 5

FBm with drift and Pickands constants

5.1 Presentation of the chapter

This chapter is based on yet unpublished work with A. Rosso and K. J. Wiese. We extend here
the perturbative approach to fBm to include drift. Applying this to a specific drift allows us
to investigate observables related to Pickands’ constants, an object defined and motivated the
introduction, in section 1.3.5. For 0 < α ≤ 2, the Pickands constant Hα is defined from a fBm
with drift and Hurst exponent H = α/2, cf. Eq. (1.33). In section 5.3, the perturbative expan-
sion around Brownian motion with linear drift allows us to obtain a new result for the value
of the Pickands constants near α = 1, which goes beyond the two known values H1 = 1 and
H2 = 1/

√
π. In section 5.4 we present interesting links between fBm bridges and Pickands’ con-

stant, which gives an independent test, using our results of chapter 4, of our result on Pickands’
constant.

To simplify the discussion in the next sections, we define a process zt with an arbitrary drift
strength µ

zt = Xt + µ|t|α , (5.1)

where Xt is a fBm with Hurst exponant H = α/2. Setting µ = −1 allows to recover zt = χt, as
appearing in (1.33). But Pickands constants can also be computed with µ = 1, using

Hα = lim
T→∞

1
T
E(e−mint∈[0,T ] zt) , (5.2)

which simply uses the fact that the distribution of the maximum with a negative drift is the
same as the distribution of the minimum (in absolute value) with a positive drift.

5.2 Brownian motion with drift, α = 1

Here we recall some results about Brownian motion with drift which will be useful in order to
study Pickands constant around α = 1.

For α = 1 the process Xt is a standard Brownian Bt, with covariance 〈BtBs〉 = 2Dmin(t, s).
The propagator of the process zt = Bt + µt with positivity constraint, that we denote P+

µ , is

91
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given by

P+
µ (x0, x, T ) := ∂xP(zT < x, ∀t ∈ [0, T ] zt > 0|z0 = x0)

= e
µ

2D (x−x0)− µ2
4DT

√
4πDT

(
e−

(x−x0)2
4DT − e−

(x+x0)2
4DT

)
= e

µ
2D (x−x0)− µ2

4DTP+
0 (x0, x, T ) .

(5.3)

Here P+
0 is the same propagator for the process with no drift. For our purpose of computing

Pickands’ constant, we choose µ = D = 1. We can recover a generic diffusive constante D (with
µ = D) with a global rescaling of time T → DT , as can be checked on Eq. (5.3). The survival
probability Q of this process, which is defined as the probability to stay positive up to time T
while starting at x0 > 0, can be computed from P+

µ :

Qα=1(x0, T ) =
∫ ∞

0
dxP+

µ=1(x0, x, T ) = 1
2

[
erf
(
x0 + T

2
√
T

)
− e−x0erfc

(
x0 − T
2
√
T

)
+ 1

]
. (5.4)

From that, we can extract the distribution of m, defined as m = −mint∈[0,T ] zt,

PTα=1(m) = ∂mQα=1(m,T ) = 1
2e
−merfc

(
m− T
2
√
T

)
+ e−

(m+T )2
4T

√
πT

. (5.5)

The result (5.5) allows to extract Pickands’ constant, via its main definition given in the intro-
duction (1.33):

∫ ∞
0

dmemPTα=1(m) =
(
T

2 + 1
)[

erf
(√

T

2

)
+ 1

]
+

√
T

π
e−

T
4 '
T→∞

T + 2 +O(e−
T
4 ). (5.6)

The Pickands constant is the coefficient of the linear term in the large-T asymptotics, and we
recover the exact result for the Brownian case:

H1 = 1

.

5.3 Pertubative expansion around Brownian motion: α = 1 + ε

5.3.1 Action with drift
For α = 1+ε, with ε a small parameter1, we construct in appendix 5.A the action for the process
zt, defined in Eq. (5.1) with µ = 1. This follows the ideas of [125] and [123]. It writes

S[zt] = S0[zt] + εS1[zt] +O(ε2) , (5.7)

with

S0[zt] =
∫ T

0
dt ż2

t

4Dε,τ
− (zT − z0)

2 + Dε,τT

4 ,

S1[zt] =− 1
4

∫ T

0
dt żt log

(
t

T − t

)
− 1

4

∫ T−τ

0
dt1

∫ T

t1+τ
dt2

żt1 żt2
t2 − t1

.

(5.8)

1Note the difference with the expansion parameter used in the previous chapters, ε = H − 1
2 , which gives a

factor 2 of difference ε = ε/2.
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We recognise S0 as the standard Brownian action with a renormalised diffusion constant

Dε,τ = 1 + ε[1 + ln(τ)] +O(ε2) , (5.9)

and a linear drift µ = Dε,τ . The time τ is a regularization cutoff for coinciding times (a UV
cutoff). We will see that it has no impact on the distribution of observables which can be
extracted from the path integral.

The order-ε term contains a new term as compared to the previous chapters, due to the non
linearity in the drift of the process zt when α 6= 1. This means that on top of the diagrams with
the interaction, non-local in time, that we computed for our other observables, we need to take
into account a new type of correction.

5.3.2 Survival probability and Pickands constants
To investigate the Pickands constants, we start with a path integral representation for the
survival probability of the process zt,

Qα(m,T ) = 1
ZN(T )

∫ ∞
0

dx
∫ zT=x

z0=m
D[zt] Θ[zt]e−S[zt] , (5.10)

where Θ[zt] constrains the path zt to remain positive, and the normalisation constant ZN(T )
is the sum over all paths without the constraint (and thus independent of m because of the
translational symmetry). Computing the path integral in (5.10), using the ε-expansion of the
action (5.7), allows us to write

ZN(T )Qα(m,T ) = Z+
0 (m,T ) + εZ+

1 (m,T ) +O(ε2) (5.11)

= 〈Θ[zt]〉0 + ε
[
〈Θ[zt]S1[zt]〉0 + (1 + ln τ)T∂TZ+

0 (m,T )
]

+O(ε2) .

The averages 〈...〉0 denote averages over paths zt with respect to the standard Brownian action
with drift (µ = D = 1), initial conditon z0 = m and a free end-point zT . The term Z+

0 ≡ 〈Θ[z]〉0
identifies with Qα=1(m,T ), the survival distribution for the Brownian given in (5.4). For the
order-ε term Z+

1 , there is a contribution due to the non local correction to the action S1, cf.
Eq. (5.8), and a contribution due to the rescaling of the diffusive constant (and the drift) in S0,
D = 1→ Dε,τ .

Before expliciting these terms, we show how this leads to the Pickands constant. Using
ZN (T ) = limm→∞ ZN (T )Qα(m,T ), because Qα is a cumulative, we arrive at

Qα(m,T ) = Z+
0 (m,T )[1− ε lim

m→∞
Z+

1 (m,T )] + εZ+
1 (m,T ) +O(ε2) . (5.12)

Then, the Pickands constant is obtain from the large-T asymptotic of∫ ∞
0

dmem∂mQα(m,T ) =
∫ ∞

0
dmem∂mZ

+
0 (m,T ) (5.13)

+ ε

[∫ ∞
0

dmem∂mZ
+
1 (m,T )− lim

m→∞
Z+

1 (m,T )
∫ ∞

0
dmem∂mZ

+
0 (m,T )

]
+O(ε2) .

The first term was already computed in Eq. (5.6). For the ε-order term, the function Z+
1 (m,T )

can be expressed from the bare propagator P+
µ=1, given in (5.3), and its cumbersome Laplace

transform Z̃+
1 (m, s) as derived in appendix. The asymptotics∫ ∞

0
dmem∂mZ

+
1 (m,T ) =

T→∞

T 2

4

[
ln
(
T

τ

)
− 1

]
+ T

2

[
ln
(
T

τ

)
− 1− 2γE

]
+O(ln(T )) (5.14)
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and
lim
m→∞

Z+
1 (m,T ) = T

4

[
ln
(
T

τ

)
− 1

]
, (5.15)

allow us to compute Pickands constant at order-ε. Combining these contributions according to
(5.13) cancels all τ dependency, and finally gives

H1+ε = 1− εγE +O(ε2) , (5.16)

where γE is the Euler-Mascheroni constant, whose numerical value is γE ≈ 0.577. This result,
which gives the derivative of the Pickands constant at α = 1, can be compared to the extensive
numerical simulation of [94], see figure 5.1.

5.3.3 Maximum-value distribution in the large time limit

For standard Brownian motion, α = 1, the distribution PTα=1(m) given in (5.5) has the interesting
property to converge to a non trivial limit when T →∞, namely,

P∞α=1(m) = lim
T→∞

∂mQα=1(m,T ) = e−m . (5.17)

Using the same expansion as in (5.13), we can express this distribution for α = 1 + ε,

PTα (m) = ∂mZ
+
0 (m,T ) + ε

[
∂mZ

+
1 (m,T )− lim

m→∞
Z+

1 (m,T )∂mZ+
0 (m,T )

]
+O(ε2) .

The expression of Z̃+
1 (m, s), which is given in appendix 5.B, allows us in principle to compute

PTα (m) for a generic T , but we restrict ourselves to the large T limit for simplicity. Using the
asymptotic

∂mZ
+
1 (m,T ) =

T→∞
−e−m

{
1 + γE + ln(m) + T

4

[
1 + log

(
τ

T

)]}
− Ei(−m) +O(T−1) , (5.18)

and the one given in (5.15), we see that PTα (m) converges at large T to a non-trivial distribution
which reads

P∞α=1+ε(m) = e−m
{

1− ε
[
1 + γE + emEi(−m) + log(m)

]}
+O(ε2) . (5.19)

This is in agreement with our following conjecture: for all α ∈ (0, 2), the distribution PTα (m)
converges to a distribution P∞α (m) which has the following large-m asymptotics:

P∞α (m) '
m→∞

Hα
α
m

1
α
−1e−m . (5.20)

5.4 Maximum-value of a fBm Bridge and Pickands constants

We recall here one of the theorems [84] involving Pickands’ constant which gives interesting
links to the results of chapter 4. It assumes that a centered process Xt, defined on some interval
[0, T ], has a unique time t0 of maximum variance, normalized to one for simplicity. Close to t0,
we assume that the variance verifies

〈X2
t 〉 = 1− a|t− t0|β + o

(
|t− t0|β

)
when t→ t0, (5.21)
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Figure 5.1: Left: Comparison between the numerical values of Pickands constants from [94]
(red dots, interpolated with the green line) and the slope at α = 2H = 1 predicted by our
perturbative expansion (blue dotted line). Right: Test on the asymptotic behavior of P∞α (m),
for α = 1. (red), α = 1.2 (green) and α = 1.5 (blue). Plain lines represent the conjectured
limits for large m, using numerical value of Hα from [94]. Numerical parameters are T = 8 and
dt = 2−14.

and the covariance

〈XtXs〉 = 1− c|t− s|α + o (|t− s|α) when s, t→ t0 . (5.22)

This defines two constants a, c > 0 and two exponents α and β. Interestingly, a rescaled fBm
bridge verifies all these hypothesis. The maximum variance is obviously located at the middle
of the time interval, and the s are deduced from the covariance function of a fBm Bridge, cf. 4.2.
For a fBm bridge, which we denote Bt here, of length 1, i.e. B0 = B1 = 0, and Hurst exponent
H, we have

〈Bt1Bt2〉 = t2H1 + t2H2 − |t1 − t2|2H −
1
2
(
t2H1 + 1− |1− t1|2H

) (
t2H2 + 1− |1− t2|2H

)
. (5.23)

The maximum variance is 〈B2
1/2〉 = (41−H−1)/2, and then after proper rescaling, the hypothesis

(5.21) and (5.22) are verfied with

α = 2H , β = 2 , a = 4α(21−αα− α+ 1)
4− 2α , c = 2α+1

4− 2α . (5.24)

We are in the case β > α, for which the theorem predicts the asymptotics (1.38), written here
for the specific values of α and β,

Prob

 max
t∈[0,T ]

Bt√
〈B2

1/2〉
> u

 ' √π

a
Hαc

1
αu

1
H
−1 e

−u
2
2

√
2πu

when u→∞ . (5.25)

This can be compared to the results obtained within our perturbative expansion in chapter 4,
with the final result given in Eq. (4.54). The large-u (or m in the notation of chapter 4) power-
law confirms our prediction (4.60), as 1

H − 1 = 1− 4ε+ O(ε2). But the result (5.25) also gives
the prefactor, which can be compared successfully with our full result at order-ε given in Eq.
(4.54). This is an independent check for our prediction (5.16), but can also be used as a way to
extract numerically the value of the Pickands constants. Figure 5.4 gives two examples of such
estimations.
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Figure 5.2: The distribution of the maximum-value of a rescaled fBm Bridge, divided by the all
terms of the asymptotics given in Eq. (5.25) apart the Pickands constant. This should converge
at large u to a plateau whose value is exactly the Pickands constant corresponding to the Hurst
exponent of the fBm. Left: numerical simulations with H = 0.4, right: numerical simulations
with H = 0.6. In both cases, the value of the Pickands constant extracted is in agreement with
the prediction (5.16) and with the numerical results of Dieker and Yakier [94].

5.A Derivation of the action
Here we derive the action for the process zt = Xt + µ tα, where Xt is a fractional Brownain
motion with Hurst exponent H = α/2 = (1 + ε)/2 and diffusive constant D = 1, i.e. close to a
standard Brownian motion. The action for Xt is already known, and recalled here in Eq. 2.3.
From this, it is possible to obtain the action for zt by simply making the change of variables
Ẋt → żt − µ [1 + ε(1 + ln t)] +O(ε2). Expanding each term of the action, we get∫ T

0
dt Ẋ2

t

4Dε,τ
→
∫ T

0
dt ż2

t

4Dε,τ
− µzT − z0

2Dε,τ
+ µ2T

4Dε,τ
(5.26)

− εµ2

∫ T

0
dt żt(1 + ln t) + ε

µ2T ln(T )
2 +O(ε2) ,

and ∫ T−τ

0
dt1

∫ T

t1+τ
dt2

Ẋt1Ẋt2

t2 − t1
→
∫ T−τ

0
dt1

∫ T

t1+τ
dt2

żt1 żt2
t2 − t1

− µ2T

[
ln
(
τ

T

)
+ 1

]
− µ

∫ T

0
dt żt

[
log
(
t

τ

)
+ log

(
T − t
τ

)]
+O(ε) . (5.27)

There are some simplifications:

µ2 T

4Dε,τ
+ ε

µ2T log(T )
2 + ε

µ2T

4

[
ln
(
τ

T

)
+ 1

]
= µ2T

1+ε

4 +O(ε2) , (5.28)

∫ T

0
dt żt log

(
t(T − t)
τ2

)
− 2

∫ T

0
dt żt(1 + ln t) =

∫ T

0
dt żt log

(
T − t
t

)
− 2(zT − z0)(1 + log τ) . (5.29)

After recombining all these terms, we finally get

S[zt] =
∫ T

0
dt ż2

t

4Dε,τ
− µ(zT − z0)

2 + µ2T
1+ε

4

− µ ε4

∫ T

0
dt żt log

(
t

T − t

)
− ε

4

∫ T−τ

0
dt1

∫ T

t1+τ
dt2

żt1 żt2
t2 − t1

+O(ε2) .
(5.30)
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The last term of the first line does not depend on zt and acts only as a global normalisation
which has no impact on the observables we compute from this action. We choose to change it to
µ2TDε,τ/4 for simplicity and fix µ = 1, which finally gives the expressions (5.7) and (5.8) given
in the main text.

5.B Details of calculations
In this appendix, we give the details of the computation for the order-ε correction in the path
integral (5.10). The difficult contribution was written 〈S1[zt]Θ[zt]〉0 in (5.11), which we now
decompose in two terms using the expression of S1 given in (5.8):

Z+
1A(m,T ) = 1

4

∫ T−τ

0
dt1

∫ T

t1+τ
dt2

〈
żt1 żt2Θ[z]e

ZT−Z0
2 −T4

〉
0

t2 − t1
, (5.31)

and
Z+

1B(m,T ) = 1
4

∫ t

0
dt
〈
żt Θ[z]e

ZT−Z0
2 −T4

〉
0

log
(

t

T − t

)
. (5.32)

Here, the averages 〈...〉0 denote averages with respect to the standard Brownian action, with no
drift, as the drift is now enforced explicitely by the exponential factors. We can express these
in term of the bare propagator with positivity constrain P+

0 . Following the diagrammatic rules
defined in chapter 2, the first correction can be written in the Laplace variable (T → s) as

Z̃+
1A(m, s) =

∫
xi,y>0

e
x3−m

2 P̃+
0 (m,x1, s̄) ∂x1P̃

+
0 (x1, x2, s̄+ y) ∂x2P̃

+
0 (x2, x3, s̄) . (5.33)

We have introduce s̄ = s+ 1/4, a shifted variable due to the term e−T/4. As explained in [125],
and recalled in chapter 2, each żti in (5.31) corresponds to a −2∂xi in (5.33). And to account for
the factor (t2 − t1)−1, we use the identity (t2 − t1)−1 =

∫
y>0 e

−y(t2−t1) which produces another
shift in the second propagator, with a new variable y which we need to integrate over. As a
recall, the expression of the propagator in Laplace variable appearing here is:

P̃+
0 (x1, x2, s) = e−

√
s|x1−x2| − e−

√
s(x1+x2)

2
√
s

. (5.34)

The second correction, due to the non linearity in the drift, is given by

Z+
1B(m,T ) = 1

2

∫
xi>0

∫ T

0
dt e

x2−m
2 P+

0 (m,x1, t)∂x1P
+
0 (x1, x2, T − t) log

(
T − t
t

)
e−

T
4 . (5.35)

In order to compute the Laplace transformation of this, we use the following integral represen-
tation of the logarithm:

ln
(
T − t
t

)
=
∫ ∞

0

dy
y

(
e−yt − e−y(T−t)

)
. (5.36)

Inserting this in (5.35) and taking the Laplace transfomr gives

Z̃+
1B(m, s) =

∫ ∞
0

dy
y

∫
xi>0

e
x2−m

2
[
P̃+

0 (m,x1, s̄+ y) ∂x1P̃
+
0 (x1, x2, s̄)

− P̃+
0 (m,x1, s̄) ∂x1P̃

+
0 (x1, x2, s̄+ y)

]
.

(5.37)
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In the two terms Z̃+
1A and Z̃+

1B, the integrals over the space variables xi can be computed quite
easly, as the Laplace transformed propagator P̃+

0 is exponential in these variable (contrary to
the case before Laplace transformation, where the dependence is Gaussian). For the integral
over y, Z̃+

1A has a logarithmic divergence at large y wich corresponds to the UV divergence when
t2 → t1 in (5.31). The necessary large y cutoff Λ (such that the integration over y is performed
in the interval [0,Λ]) equivalent to the UV cutoff τ is given by Λ = e−γE/τ , as explained in
chapter 22. Combining these two terms finally gives

s2
(
Z̃1A(m, s) + Z̃1B(m, s)

)
(5.38)

= −e
(√s̄− 1

2)m

8
√
s̄

[
8s̄3/2(m+ 1) + 8ss̄m+ 4s̄− 2

√
s̄(m− 1)− 1

]
Ei
(
−2
√
s̄m
)

+e−(√s̄+ 1
2)m

16
√
s̄

[ (
8s̄3/2 + 8ss̄m+ 4s̄+ 2

√
s̄− 1

) (
log(4s̄τ) + 1 + γE

)
− 8
√
s̄

+
(
8s̄3/2 − 8ss̄m+ 4s̄− 6

√
s̄− 1

)(
log
(
m2

τ

)
− 1 + γE

)]
+1

2
[
Ei
(
−m2 −m

√
s̄

)
+ e−mEi

(
m

2 −m
√
s̄

)
− log(sτ)− γE

]
with, as before, s̄ = s+ 1

4 .
From this expression, and denoting Z̃+

1AB = Z̃+
1A + Z̃+

1B , it is possible to compute the
asymptotics used in the main text, first in the Laplace variable:

Z̃1AB(m, s) '
s→0

(e−m − 1)(log(sτ) + γE)
4s2 (5.39)

+ e−m(log(m) + γE)− (m+ 1)Ei(−m)
s

+O(ln(s)) ,

Z̃1AB(m, s) '
m→∞

− log(sτ) + γE
4s2 +O(e−m) , (5.40)

and ∫ ∞
0

dmem∂mZ̃
+
1AB(m, s) '

s→0
−

log(sτ) + γE − 1
2

2s3 − log(sτ3) + 3γE + 2
2s2 +O

(1
s

)
. (5.41)

For the last one, it is important to note that the integral over m has to be computed before the
s→ 0 limit is taken.

The other ε-order correction in (5.10) comes from the change of the diffusive constant in the
Brownian action, from D = 1 to Dε,τ = 1 + ε(1 + ln τ) + O(ε), with the corresponding change
in the drift such that the term linear in zt in S0, cf. (5.8), stays unchanged. This change is
equivalent to do T → Dε,τT in the result for the Brownian, which, as stated in the main text,
gives an ε-order correction of the form (1 + ln τ)T∂TZ+

0 (m,T ) in (5.11). Then, combining

(1 + ln τ)T∂T
∫ ∞

0
dmem∂mZ̃

+
0 (m,T ) '

T→∞
(1 + ln τ)T +O(e−T/4) (5.42)

and the inverse Laplace transformation of (5.41) gives the result (5.14) of the main text. For
the tow other asymptotics, the rescaling of the diffusive constant has no impact as

lim
T→∞

T∂TZ
+
0 (m,T ) = lim

m→∞
T∂TZ

+
0 (m,T ) = 0 . (5.43)

and then formula (5.18) and (5.15) are computed directly from (5.39) and (5.40) respectively,
via an inverse Laplace transformation.

2This comes from the requirement:
∫ T

0 dt
∫ Λ

0 e−yt = log(ΛT ) + γE +O(e−TΛ) != ln(T/τ) =
∫ T
τ

dt
t
.
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5.C Derivation from scaling of (5.20)

The heuristic derivation of (5.20) is : for m � Tα and T � 1 we have PTα (m) ' P∞α (m), and
for m� Tα, we have PTα (m) ' e−

(m−Tα)2
4Tα because very large values of the minimum are reached

almost surely at the end of the interval. Then using the relation of PTα (m) with the Pickands
constant, we get∫ ∞

0
dme−mPTα (m) '

∫ Tα

0
dme−mP∞α (m) ' HαT when T →∞ . (5.44)

From this, assuming that the large m behaviour of P∞α (m) is exponential times a power law,
the unique possibility is the one given in (5.20).
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Chapter 6
Mean-field theory for avalanches,
the Brownian force model

6.1 Presentation of the chapter

This chapter presents results from joint work with P. Le Doussal and K. Wiese [134], with essen-
tially the same presentation as the article. It is structured as follows: In section 6.2 we precise
the definition of the BFM, introduced in section 1.4, and of the main avalanche observables,
together with the general method to obtain their distributions from the instanton equation.
Section 6.3 starts by recalling the calculation of the distributions of the global size (total swept
area) S and of the local jump size Sr of an avalanche, for an arbitrary kick amplitude. In
Section 6.3.3 we extend thes calculations to the joint density ρ(Sr, S) of local and global size
for single avalanches, i.e. in the limit of an infinitesimal kick. In Section 6.4 we study the case
of an interface driven at a single point. When the force at this point is imposed, we find a new
exponent τ0 = 5/3 for the probability distribution function (PDF) of the local jump S0 at that
point. When the local displacement is imposed, we find a new exponent τ = 7/4 for the PDF of
the global size S. In Section 6.5 we show that the extension ` of a single avalanche along one
internal direction (i.e. the total length in d = 1) is finite; we calculate its distribution, following
either a local or a global kick. In all cases it exhibits a divergence P (`) ∼ `−3 at small `, with
the same prefactor. All these exponents can be found in Table 6.1. Finally, in Section 6.6 we
study the position of the interface, which is a non-stationary process. We explain how the Larkin
and BFM roughness exponents emerge from the dynamics. Most of our results are tested in a
numerical simulation of the equation of motion in d = 1.

Driving protocol Observable Exponent
any force kick global size S τ = 3/2

uniform force kick local size S0 τ0 = 4/3
uniform force kick S0 at fixed S τ0 = 2/3
localized force kick local size S0 τ0 = 5/3

local displacement imposed global size S τ = 7/4
any force kick extension ` κ = 3

Table 6.1: Summary of small-scale exponents for different distributions in the Brownian-Force
Model, depending on the observable and the driving protocol.
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The technical parts of the calculations are presented in Appendices 6.A to 6.J, together with
general material about Airy, Weierstrass and Elliptic functions. A short presentation of the
numerical methods is also included.

6.2 Avalanche observables in the BFM

6.2.1 The Brownian Force Model

We have introduced and motivated the Brownian Force Model (BFM) in the introduction, section
1.4. In this chapter, it is defined as a random process u̇xt, which represents a velocity field and
is solution of the stochastic differential equation (in the Ito sense):

η∂tu̇xt = ∇2
xu̇xt +

√
2σu̇xt ξxt +m2(ẇxt − u̇xt) . (6.1)

This equation models the overdamped time evolution, with friction η, of the velocity field u̇xt ≥ 0
of an interface with internal coordinate x ∈ Rd; the space-time dependence is denoted by indexes
u̇(x, t) ≡ u̇xt. It is the sum of three contributions:

• short-ranged elastic interactions expressed as the Laplacian of u̇xt,

• stochastic contributions from a disordered medium, where ξ is a unit Gaussian white noise
(both in x and t) :

ξxtξx′t′ = δd(x− x′) δ(t− t′), (6.2)

• a confining quadratic potential of curvature m2, centered at wxt, acting as a driving. By
analogy with field theory, we refer to m as a mass.

The driving velocity is chosen positive, ẇxt ≥ 0, as well as the initial velocitiy u̇xt=0 ≥ 0. Using
the Middleton theorem [121], it implies that u̇xt ≥ 0 for all t > 0, which ensures that (6.1), and
especially the terms in

√
u̇xt, is well defined.

Equation (6.1), taken here as a definition, can also be derived from the equation of motion
of an elastic interface, parametrized by a displacement field uxt in a quenched random force field
F (u, x),

η∂tuxt = ∇2
xuxt + F (uxt, x) +m2(wxt − uxt) . (6.3)

The random force field is a collection of independent one-sided Brownian motions in the u
direction with correlator

F (u, x)F (u′, x′) = 2σδd(x− x′) min(u, u′) . (6.4)

Taking the temporal derivative ∂t of Eq. (6.3), and assuming forward motion of the interface,
one obtains Eq. (6.1) for the velocity variable ∂tuxt ≡ u̇xt (we use indifferently ∂t or a dot to
denote time derivatives). The fact that the equation for the velocity is Markovian even for a
quenched disorder is remarkable and results from the properties of the Brownian motion.

Details of the correspondence are given in [116, 117] where subtle aspects of the position
theory, and its links to the mean-field theory of realistic models of interfaces in short-ranged
disorder via the Functional Renormalisation Group (FRG) are discussed. In the last section of
this paper we will mention some properties of the position theory of the Brownian force model.
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Figure 6.1: An avalanche in d = 1.

6.2.2 Avalanche observables and scaling

The BFM (6.1) allows to study the statistics of avalanches as the dynamical response of the
interface to a change in the driving. We consider solutions of (6.1), responses to a driving of
the form

ẇxt = δwx δ(t) , δwx ≥ 0 , δw = L−d
∫
x
δwx > 0 . (6.5)

The initial condition is
u̇xt=0 = 0 . (6.6)

This solution describes an avalanche which starts at time t = 0 and ends when u̇xt = 0 for all x.
The time at which the avalanche ends, also called avalanche duration, was studied in [95] and
its distribution given in various situations, as well as its joint distribution with the avalanche
size, defined in (6.7)

Within the description (6.3), i.e. in the displacement theory, it corresponds to an interface
pinned, i.e. at rest, in a metastable state at t < 0. It is submitted at t = 0 to a jump in the total
applied force m2δw. More precisely, the center of the confining potential jumps at t = 0 from wx
(where it was for t < 0) to wxt=0+ = wx + δwx (where it stays for all t > 0). As a consequence,
the interface moves forward (since δwx ≥ 0) up to a new metastable state. This is represented in
figure 6.1, where uxt=0 is the initial metastable state and uxt=∞ is the new metastable state at
the end of the avalanche. In fact, as we can see from the distribution of avalanche durations, the
new metastable state is reached almost surely in a finite time. For details on these metastable
states and the system’s preparation see [116, 117, 95].

The discussion of the avalanche observables will be the central question of this chapter. They
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can be computed from the solution of (6.1) given (6.5) and (6.6); they are represented in figure
6.1 for a more visual definition in the case d = 1.

• Global size of the avalanche:
S =

∫
x∈Rd

∫ ∞
0

u̇tx dt . (6.7)

This is the total area swept by the interface during the avalanche.

• Local size of the avalanche:

Sr = m−1
∫
x∈{r}×Rd−1

∫ ∞
0

u̇tx dt . (6.8)

This is the size of the avalanche localized on a hyperplane, where one of the internal coor-
dinates is r; the factor m−1 allows to express S and Sr using the same units (see below).
In d = 1 this yields Sr = m−1 ∫∞

0 u̇tr dt, i.e. the transversal jump at the point r of the
interface. For d > 1 the variable r is still one-dimensional, and Sr the total displacement
in a hyperplane of the interface.

• Avalanche extension:

For d = 1, the extension (denoted `) of an avalanche is the lenght of the part of the
interface which (strictly) moves during the avalanche. The generalisation to avalanches of
a d-dimensional interface is done with the definition

` =
∫ ∞
−∞

dr Θ(Sr > 0) , (6.9)

where Θ is the Heaviside function. Note that even for a d-dimensional interface, the
extension ` is a unidimensional observable (cf. figure 6.2).

Note that
Sr > 0 ⇔ Supp

⋂
{r} × Rd−1 6= ∅ (6.10)

where Supp denotes all the points of the interface moving during an avalanche (i.e. its support).
We use natural scales (or units) to switch to dimensionless expressions, both for the (local

and global) avalanche size Sm, as for the time τm expressed as

Sm = σ

m4 , τm = η

m2 . (6.11)

The extension, a length in the internal direction of the interface, is expressed in units of m−1.
This is equivalent to setting m = σ = η = 1. All expressions below, except explicit mention, are
expressed in these units.

While Sm is the large-size cutoff for avalanches, there is generically also a small-scale cutoff.
As in the BFM the disorder is scale-invariant (by contrast with more realistic models with
short-ranged smooth disorder), it is the increment in the driving δw which sets the small-scale
cutoff for the local and global size of avalanches. They scale as min(S) ∼ δw2 (global size) and
min(Sr) ∼ δw3 (local size).
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Figure 6.2: An avalanche in d = 2; the transverse direction is orthogonal to the plane of the
figure and the colored zone corresponds to the support of the avalanche.

Masseless case

There are cases of interest where the limit m→ 0 is taken. Reminding that the driving force is
fxt = m2wxt, in this limit wxt disappears from the equation of motion. We can however drive
with a fixed increase in the applied force (kick), by replacing in the equations of motion (6.1)
and (6.3)

m2(wxt − uxt)→ fxt

m2(ẇxt − u̇xt)→ ḟxt .
(6.12)

Note that the small-scale properties of avalanches are unchanged as they are independent of m.
The definition of the observables is the same except that the factor of m−1 is not added in the
definition (6.8). To bring σ and η to unity, we then define time in units of η and displacements
u in units of σ. The results will still have an unfixed dimension of length. In some of them, the
system size L leads to dimensionless quantities (it also acts as a cutoff for large sizes, although
we will not use this explicitly).

6.2.3 Generating functions and instanton equation
To compute the distribution of the observables presented above, we use a result from [116,
117] which allows us to express the average over the disorder of generating functions (Laplace
transforms) of u̇xt, solution of (6.1). In dimensionless units, this result reads

G[λxt] =
〈

exp
(∫

xt
λxtu̇xt

)〉
= e

∫
xt
ẇxtũxt . (6.13)

Here 〈· · · 〉 denotes the average over disorder and
∫
xt denotes integration over x ∈ Rd (or [0, L]d

when a finite volume is needed for regularization) and t ∈ [0,∞[. ũ is a solution of the differential
equation (called instanton equation)

∂2
xũ+ ∂tũ− ũ+ ũ2 = −λxt . (6.14)
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Since avalanche observables that we consider are integrals of the velocity field over all times (cf.
observable definitions above), the sources λxt we need in (6.13) are time independent. Thus we
only need to solve the space dependent, but time independent, instanton equation

ũ′′x − ũx + ũ2
x = −λx . (6.15)

The prime denotes derivative w.r.t x. In the massless case discussed above, the term −ũx is
absent, all other terms are identical.

The global avalanche size implies a uniform source in the instanton equation: λx = λ,
while the local size implies a localized source λx = λδ1(x). To obtain information on the
extension of avalanches, we need to consider a source localized at two different points in space,
λx = λ1δ(x− r1) + λ2δ(x− r2).

This instanton approach, which derives from the Martin-Siggia-Rose formulation of (6.1),
allows us to compute exactly disorder averaged observables for any form of driving, by solving
a "simple" ordinary differential equation, which depends on the observable we want to compute,
i.e. on λxt, but not on the form of the driving ẇxt. For a derivation of (6.13) and (6.14) we refer
to [116].

6.3 Distribution of avalanche size

6.3.1 Global size
As defined in (6.7) the global size of an avalanche is the total area swept by the interface. Its
PDF was calculated in [116, 115, 117] and reads, in dimensionless units,

Pδw(S) = δŵ

2
√
πS

3
2
e−

(S−δŵ)2
4S . (6.16)

Here δŵ = Ldδw. This result does not depend on the spatial form of the driving (it can be
localized, uniform, or anything in between), as long as it is applied as a force on the interface.
Driving by imposing a specific displacement at one point of the interface is another interesting
case that leads to a different behavior, see Section 6.4.2.

We can test this against a direct numerical simulation of the equation of motion (6.1). There
is excellent agreement over 5 decades, with no fitting parameter, see Fig. 6.3.

Avalanches have the property of infinite divisiblity, i.e. they are Lévy processes with singular
measure. Details on this can be found in Section V of [112] (and references therein) and section
4 of [122] (and references therein). This can be written as an equality in distribution, i.e. for
probabilities,

Pδw1 ∗ Pδw2
d= Pδw1+δw2 . (6.17)

It implies that we can extract from the probability distribution (6.16) the single avalanche
density per unit δw that we denote ρ(S) and which is defined as

Pδw(S) '
δŵ�1

δw ρ(S) . (6.18)

This avalanche density contains the same information as the full distribution (6.16); its expres-
sion is

ρ(S) = Ld

2
√
πS

3
2
e−

S
4 ∼ S−τ . (6.19)

It is proportional to the system volume since avalanches occur anywhere along the interface. It
defines the avalanche exponent τ = 3

2 for the BFM. Due to the divergence when S → 0 it is not
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Figure 6.3: Green histogram : global avalanche-size distribution from a direct numerical simula-
tion of a discretized version of Eq. (6.1) with parameters : N = 1024,m = 0.01, df = m2δw = 1
and dt = 0.05. Red line : theoretical result given in Eq. (6.16). For details about the simulation
see appendix 6.H.

normalizable (it is not a PDF), but as the interface follows on average the confining parabola,
it has the following property ∫ ∞

0
dS Sρ(S) = Ld . (6.20)

In this picture, typical, i.e. almost all avalanches are of vanishing size, S ≈ 0, or more precisely
S ≤ δŵ2, but moments of avalanches are dominated by non-typical large avalanches (of order
Sm).

6.3.2 Local size

We now investigate the distribution of local size Sr as defined in Eq. (6.8). We have to specify
the form of the kick; we start with one uniform (in x): δwx = δw for all x ∈ R. In this case
the system is translationnaly invariant, and we can choose r = 0, as any local size will have the
same distribution.

The distribution of S0 is obtained by solving Eq. (6.15) with the source λx = λδ(x), and
then computing the inverse Laplace transform with respect to λ of G(λ) = exp(δw

∫
x ũ

λ), where
ũλ is the instanton solution (depending on λ). This has been done in [117]; the final result is

Pδw(S0) = 2× 3
1
3

S
4
3
0

e6δŵδŵAi
(( 3

S0

)1
3

(S0 + 2δŵ)
)
'

δŵ�1
δw

2Ld−1

πS0
K 1

3

(2S0√
3

)
. (6.21)

Here δŵ = Ld−1δw, Ai is the Airy function, and Kν the Bessel function. We use that Ai(x) =
1
π

√
x
3 K 1

3

(
2
3x

3/2
)
for x > 0. This distribution has again the property of infinite divisibility, which

is far from obvious on the final results but, can be checked numerically.
The small-δw limit defines the density per unit δw of the local sizes of a “single avalanche",
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which is given by

ρ(S0) = 2Ld−1

πS0
K 1

3

(2S0√
3

)
'

S0�1
Ld−1

6√3 Γ(1/3)
πS0

4/3 ∼ S−τφ0 . (6.22)

Its small-size behavior defines the local size exponent τφ = 4
3 for the BFM.

The distribution (6.21), or the density (6.22), can be compared to the results of direct
numerical simulations of the BFM, and the agreement is very good over 7 decades, without any
fitting parameter, cf. Fig. 6.4.
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Figure 6.4: Green histogramm: Local avalanche-size distribution from a direct numerical simu-
lation of a discretized version of (6.1)with parameters N = 1024,m = 0.01, df = m2δw = 1, and
dt = 0.05. Red line: the theoretical result given in Eq. (6.21). For details about the simulation
see appendix 6.H.

Another interesting property is that the tail of large local sizes behaves as ρ(S0) 'S0�1

S
−3/2
0 e−2S0/

√
3, i.e. with the same power-law exponent in the pre-exponential factor as the global

size.

6.3.3 Joint global and local size

We now extend these results with a new calculation of the joint density of local and global sizes.
This observable is readily accessible in experiments where the spatial structure can be recorded
(cf. fracture experiments [101]); this gives a good test of the mean-field nature of the avalanches,
or deviations thereof. Consider Pδw(S0, S), the joint PDF of local size S0 and global size S,
following a uniform kick δw. For arbitrary δw it does not admit a simple explicit form (see
Appendix 6.D). We thus again consider the “single avalanche" limit δw → 0. It defines the joint
density ρ(S, S0), via Pδw(S0, S) ' δw ρ(S0, S), which we now calculate. Equivalently one can
consider the conditional probability Pδw(S0|S) of the local size, given that the global size is S.
In the limit δw → 0 these two objects are related by

P0+(S0|S) = ρ(S0, S)
ρ(S) , (6.23)



6.3. Distribution of avalanche size 109

where ρ(S) is given in Eq. (6.19); the two factors of δw cancel. For simplicity we discuss the
result for P0+(S0|S), which is easily possible for experimental data, as one usually bins the
avalanches by their size. While both ρ(S) and ρ(S0, S) are not probabilities, i.e. they cannot be
normalized to one, we will show that the conditional probability P0+(S0|S) is well-defined, and
normalized to unity.

A natural decomposition of this conditional PDF is

P0+(S0|S) = P̂0+(S0|S) + δ(S0)
(

1−
∫
u>0
P̂0+(u|S)

)
. (6.24)

The first term is the smooth part defined for S0 > 0 which comes from the avalanches containing
the point r = 0. The second term arises from all avalanches which do not contain the point
r = 0. This term contains a substraction so that the total probability is normalized to unity,∫
S0
P0+(S0|S) = 1, as it should be.
The smooth part is calculated using the instanton-equation approach. The details are given

Appendix 6.D. The final result takes the scaling form

P̂0+(S0|S) = 1
L

4× 3
2
3

S
2
3
0

e−
2
3α

3[
αAi

(
α2)−Ai′

(
α2)] (6.25)

with

α := 3
2
3S

2
3
0

S
. (6.26)

The factor 1/L is natural since only a fraction of order 1/L of avalanches contains the point
r = 0. As written, this smooth part is not normalized. Its integral is equal to the probability p
that the point S0 has moved (i.e. S0 > 0) during an avalanche, for which we find

p :=
∫ ∞

0
dS0 P̂0+(S0|S) = S

1
4

L

3Γ
(

1
4

)
√
π

. (6.27)

The scaling of this probability with size shows that in a single avalanche only a finite portion of
the interface is moving. If we assume statistical translational invariance we deduce that

p = 〈`〉S/L , (6.28)

where ` is the extension defined in (6.9), and 〈`〉S its mean value conditioned to the global size
S. Hence we deduce that

〈`〉S =
3Γ
(

1
4

)
√
π

S
1
4 . (6.29)

In the following sections we will in fact calculate the PDF of the extension `.
By dividing by p, we can now define a genuine normalized PDF for S0, P̃0+(S0|S), conditioned

to both S and S0 > 0, so that the decomposition (6.24) becomes

P0+(S0|S) = p P̃0+(S0|S) + δ(S0)(1− p) . (6.30)

Explicitly

P̃0+(S0|S) = 4
√
πe−

2
3α

3

3
1
3 Γ
(

1
4

)
S

2
3
0 S

1
4

[
αAi

(
α2)−Ai′

(
α2)] , (6.31)
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Figure 6.5: Distribution of α, defined in Eq. (6.26), from numerical simulations. This is compared
to the theoretical prediction (6.33). Keeping only large-size avalanches, this converges (without
any adjustable parameter) to the δw = 0+ result. Numerical parameters used here are N =
1024,m = 0.02, δw = 10, dt = 0.01, different from the one used in Fig. 6.3 and 6.4 as we want
to be close to the δw = 0+ limit.

with α defined in Eq. (6.26). It is now normalized to unity,
∫
S0>0 P̃0+(S0|S) = 1. One sees that

the typical local size scales as S0 ∼ S3/4. Computing the first moment we find its conditional
average to be 〈S0〉S,S0>0 =

√
π

3Γ(1/4)S
3/4. Its PDF has two limiting behaviors,

P̃0+(S0|S) '


e−

12S4
0

S3

Γ(5
4)S

3
4

for S0 � S
3
4

√
π

3
2
3 Γ(1

3)Γ(5
4)S

2
3
0 S

1
4

for S0 � S
3
4 .

(6.32)

The first one shows that the probability of avalanches which are “peaked" at r = 0 decays very
fast. The second shows an integrable divergence at small S0 with an exponent 2/3. Comparing,
for instance, with the behavior of the local size density (6.22), we see that conditioning on S
yields a rather different behavior and exponent.

It is interesting to note that changing variables in Eq. (6.31) from S0 to α, defined in (6.26),
gives

P̃0+(α|S) =
√

3πe−
2
3α

3

Γ
(

1
4

)
α

3
4

[
αAi

(
α2)−Ai′

(
α2)] , (6.33)

which is now independent of S, and thus easier to test numerically as it does not require any
conditionning. Figure 6.5 shows the agreement of these predictions with numerical simulations,
in the limit of large S which is equivalent to δw = 0+ as used in the theoretical derivation.

6.3.4 Scaling exponents
Let us now discuss the various exponents obtained until now. They are consistent with the usual
scaling arguments for interfaces. If an avalanche has an extension of order ` (in the codirection
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of the hyperplane over which the local size is calculated), the transverse displacement scales as
u ∼ `ζ . Here the roughness exponent ζ for the BFM with short-range elasticity is

ζBFM = 4− d . (6.34)

The avalanche exponent for the global size follows the Narayan-Fisher (NF) prediction [107]

τ = 2− 2
d+ ζ

BFM
−−→ 3

2 . (6.35)

The global size then scales as S ∼ `d+ζ , since all d internal directions are equivalent, and the
transverse response scales with the roughness exponent ζ. In turn this gives ` ∼ S

1
d+ζ . In the

BFM with short-range elasticity this leads to ` ∼ S1/4 as found above.
Similarly, the local size, defined here as the avalanche size inside a dφ-dimensionel subspace,

is S0 ∼ `dφ+ζ , leading to a generalized NF value τφ = 2 − 2
dφ+ζ . In the BFM we have focused

on the case dφ = d− 1 (i.e. the subspace is an hyperplane), hence dφ + ζ = 3 and the local size
exponent becomes τφ = 4/3. It also implies S0 ∼ `3, hence S0 ∼ S3/4 as found above.

6.4 Driving at a point: avalanche sizes
Here we briefly study avalanche sizes for an interface driven only in a small region of space, e.g.
at a point. There are two main cases:

• the local force on the point is imposed, which in our framework means to consider a local
kick δwx = δw δ(x). In the massless setting it amounts to use fx = δf δ(x),

• the displacement ux=0,t of one point of the interface is imposed.

As we now see this leads to different universality classes and exponents.

6.4.1 Imposed local force
Consider an avalanche following a local kick at x = 0, i.e. δwx = δw0δ(x). In the BFM the
distribution of the global size of an avalanche does not depend on whether the kick is local in
space or not. One still obtains [117] the global-size distribution as given in Eq. (6.16) with
δŵ =

∫
x δwx = δw0.

The distribution of the local size at the point of the kick is more interesting. The calculation
is performed in Appendix 6.C. For simplicity we restrict to d = 1, the general case can be
obtained as above by inserting factors of Ld−1. The full result for the PDF, Pδw0(S0), is given
in (6.107) and is bulky. In the limit δw0 → 0 it simplifies. Noting Pδw0(S0) ' δw0ρ(S0), the
corresponding local-size density becomes

ρ(S0) = − 1
31/3S

5/3
0

Ai′
(
31/3S

2/3
0

)
. (6.36)

At small S0, or equivalently in the massless limit at fixed δf0 = m2δw0, it diverges as

ρ(S0) '
S0�1

S
−5/3
0

32/3Γ(1/3)
∼ S−τ0,loc.driv.

0 . (6.37)

This leads to a new avalanche exponent

τ0,loc.driv. = 5
3 . (6.38)
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The cutoff at small size is given by the driving, S0 ∼ δw3/2
0 . At large S0 the PDF is cut by the

scale Sm ≡ 1 and decays as

ρ(S0) '
S0�1

S
−3/2
0

2
√
π31/4 e

−2S0/
√

3 . (6.39)

6.4.2 Imposed displacement at a point

We analyze the problem in the massless case. To impose the displacement at point x = 0 we
replace in the equation of motion (6.1) and (6.3), m2 → m2δ(x). Hence there is no global mass,
but a local one to drive the interface at a point. To impose the displacement, we consider the
limit m2 → ∞. In that limit ux=0,t = w0,t, and the local size of the avalanche S0 is equal to
δw0.

While the local size S0 is fixed by the driving, we can calculate the distribution of global
sizes. It is obtained in Appendix 6.E using an instanton equation with a Dirac mass term. It can
be mapped onto the same instanton equation as studied for the joint PDF of local and global
sizes. The Laplace-transform of the result for the PDF is given in Eq. (6.133). Its small-driving
limit, i.e. the density, is

ρ(S) =
√

3
Γ(1/4)S7/4 ∼ S

−τloc.driv. (6.40)

with a distinct exponent
τloc.driv. = 7

4 . (6.41)

6.5 Distribution of avalanche extension
In this section we study the distribution of avalanche extension. In the BFM they can be
calculated analytically. We start by recalling standard scaling arguments.

6.5.1 Scaling arguments for the distribution of extension

As mentioned in the last section, we expect that the global size S and the extension ` of
avalanches are related by the scaling relation

S ∼ `d+ζ (6.42)

in the region of small avalanches S � Sm (in dimensionfull units). From the definition of the
avalanche-size exponent

P (S) ∼ S−τ (6.43)

and using the change of variables P (S)dS = P (`)d` we find

P (`) ∼ `−κ with κ = 1 + (τ − 1)(d+ ζ) . (6.44)

Using the value for τ from the NF relation (6.35) we obtain

τ = 2− 2
d+ ζ

. (6.45)

For short-range elasticity, this yields

κ = d+ ζ − 1 . (6.46)
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The prediction for the BFM is that ζBFM = 4− d and τBFM = 3/2, which leads to

κBFM = 3 (6.47)

in all dimensions. We will now check this prediction from the scaling relations with exact
calculations on the BFM model in d = 1.

6.5.2 Instanton equation for two local sizes
If we want to investigate the joint distribution of two local sizes at points r1 and r2, we need to
solve the instanton equation with two local sources,

ũ′′x − ũx + ũ2
x = −λ1δ(x− r1)− λ2δ(x− r2) . (6.48)

This solution is difficult to obtain for general values of λ1 and λ2. Nevertheless λ1,2 → −∞ is
an interesting solvable limit, and sufficient to compute the extension distribution. Let us denote
by ũr1,r2(x) a solution of Eq. (6.48) with r1 < r2 in this limit λ1,2 → −∞. It allows to express
the probability that two local sizes in an avalanche following an arbitrary kick δwx equal 0,

Pδwx(Sr1 = 0, Sr2 = 0)

= exp
(∫

x∈Rd
δwx ũr1,r2(x)

)
.

(6.49)

We further restrict for simplicity to the massless case, i.e. without the linear term ũx in Eq. (6.48).
One easily sees from the latter equation that ũr1,r2 takes the scaling form

ũr1,r2(x) = 1
(r1 − r2)2 f

(2x− r1 − r2
2(r2 − r1)

)
. (6.50)

The function f(x) is solution of
f ′′(x) + f(x)2 = 0 . (6.51)

It diverges at x = ±1
2 , vanishes at x→ ±∞ and is negative everywhere: f(x) ≤ 0. As δwx ≥ 0,

the latter is a necessary condition s.t. the probability (6.49) is bounded by one.
In the interval x ∈] − 1

2 ,
1
2 [, the scaling function f(x) can be expressed in terms of the

Weierstrass P-function, see (6.174),

f(x) = −6P
(
x+ 1

2; g2 = 0; g3 = Γ(1/3)18

(2π)6

)
. (6.52)

The value of g3 > 0 is consistent with the required period 2Ω = 1, see (6.171). Note from
Appendix 6.I that there is another solution of the form (6.52) with g3 = −

(
2
√
π Γ(1/3)

4
1
3 Γ(5/6)

)6
< 0

which violates the condition f(x) ≤ 0, hence is discarded. For |x| ≥ 1/2, the function f(x) reads

f(x) = − 6
(|x| − 1/2)2 . (6.53)

One property of the solution ũr1,r2(x) is that it diverges as ∼ (x− r1,2)−2 when x ≈ r1,2. There
are thus two cases:

(i) - the driving δwx is non-zero at one of these points, or vanishes too slowly near this point
(e.g. only linearly or slower). Then the integral in (6.49) is not convergent, equal to −∞, which
implies

Pδwx(Sr1 = 0, Sr2 = 0) = 0 .
This means that the avalanche contains surely at least one of the points r1 or r2.

(ii) - If δwx vanishes fast enough, for example if δwx is localised away from x = ±r1,2 (e.g
δwx = δwδ(x− y) for some y ∈ R\{r1, r2}), the probablity (6.49) becomes non trivial.
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6.5.3 Avalanche extension with a local kick
We now consider a local kick centered at x = 0, i.e. wx = δw0 δ(x). If further 0 < r1 < r2, then

Pδw0(Sr1 = 0, Sr2 = 0) = Pδw0(Sr1 = 0) . (6.54)

This comes from the fact that in the interval x ∈ [−∞, r1], the solution ũr1,r2(x) is identical to
the instanton solution with only one infinite source at r1 (in other word, it does not “feel" the
source in r2). This shows for instance that the support of the avalanche is larger or equal than
the set of points where the driving is non-zero.

This property also shows that avalanches are connected, i.e. it is impossible to draw a plane
where the interface did not move between two moving parts of the interface. As a function of
r (which is one-dimensional), the support (i.e. the set of points where Sr > 0) of an avalanche
following a local kick at x = 0 must be an interval. Since this interval contains x = 0 we will
write it as [−`1, `2] with `1 > 0 and `2 > 0. This allows to define the extension of an avalanche
as ` = `1 + `2.

To calculate the joint PDF of `1 and `2 for a kick at x = 0 we consider (6.49) with r1 =
−x1 < 0 < r2 = x2. Using the previous results about the instanton equation with two sources,
and the fact that the interface model is translationaly invariant, we obtain the joint cumulative
distribution for `1 > 0 and `2 > 0:

Fδw0(x1, x2) := Pδw0 (`1 < x1, `2 < x2) . (6.55)

It can, for any x1, x2 > 0, be expressed in terms of the function f obtained in the preceding
section,

Fδw0(x1, x2) = Pδw0(Sr1 = 0, Sr2 = 0) = exp
(∫

x
δw0δ(x) ũ−x1,x2(x)

)

= e
δw0

1
(x1+x2)2

f

(
− x2−x1

2(x1+x2)

)
. (6.56)

Since the argument of f is within the interval ]− 1
2 ,

1
2 [ we must use the expression (6.52).

From this one can obtain several results. First taking x2 → ∞ one obtains the PDF of `1
alone,

Pδw (`1) = 12δw
`31

e
−δw 6

`21 . (6.57)

A similar result holds for `2.
In principle, one can now obtain the distribution of avalanches extension

Pδw0(`) =
∫ ∞

0
d`1

∫ ∞
0
d`2 δ(`− `1 − `2)∂`1∂`2Fδw0(`1, `2) (6.58)

It has a rather complicated expression. Let us define in addition to the total length, the aspect
ratio

k = `1 − `2
2(`1 + `2) , −1

2 < k <
1
2 . (6.59)

Using a change of variables, we obtain the joint density of total extension and aspect ratio in
the limit δw0 → 0,

ρ (`, k) := lim
δw0→0

1
δw0

Pδw0 (`, k) = R(k)
`3

, (6.60)

R(k) :=6f(k) + 6kf ′(k) +
(
k2 − 1

4

)
f ′′(k) . (6.61)
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The function f(x) was defined in Eq. (6.52). While the probability as a function of ` decays as
`−3, the dependence on the aspect ratio is more complicated and plotted in figure 6.6. Note that
in this expression f(k) can be replaced by freg(k) := f(k) + 6

(k+ 1
2 )2 + 6

(k− 1
2 )2 , which is a regular

function of k, vanishing at k = ±1
2 . Integration over k gives
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Figure 6.6: Decay amplitude R(k) as a function of the aspect ratio k involved in the joint density
of ` and k, and defined in Eqs. (6.60) and (6.61).

ρ (`) = B

`3
with B = 24 + 2

∫ 1/2

−1/2
freg(k) = 8

√
3π . (6.62)

6.5.4 Avalanche extension with a uniform kick
If a kick extends over the whole system, as e.g. a uniform kick δwx = δw, the avalanche will
have almost surely an infinite extension as the local size is non-zero everywhere,

Pδw (Sr = 0) = 0 for any r ∈ R . (6.63)

However, in the limit of a small δw which is also the limit of a “single avalanche", we can
recover the result for the distribution of extension. This is consistent with the idea that “single
avalanches" do not depend on the way they are triggered. These calculations allow to obtain
the extension distribution without solving explicitly the instanton equation. (The use of elliptic
integrals is in fact equivalent to the use of Weierstrass functions as solutions of the instanton
equation, cf. Appendix 6.I).

We now focus on the following ratio of generating functions
〈eλ1s0+λ2sr〉
〈eλ1s0〉〈eλ2sr〉

(6.64)

in the limit λ1, λ2 → −∞. It compares the probability that both local sizes s0 := S0 and sr := Sr
are simultaneously 0 to the product of the two probabilties that each one is 0.

We can express this ratio, using the instanton-equation approach, as

lim
λ1,λ2→−∞

〈eλ1s0+λ2sr〉
〈eλ1s0〉〈eλ2sr〉

= exp
(∫

x
δwx

[
ũr(x)− ũ∞(x)− ũ∞(x− r)

]) (6.65)
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where ũr := ũr1=0,r2=r. We denote by ũ∞ := ũr1=0,r2=∞, the solution of the instanton equation
with one source at r = 0 and the other one at infinity. It is the same as the solution for only
one source in r = 0. The above expression is valid for any form of driving δwx.
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Figure 6.7: The distribution of extension ρ(`), as obtained from the elliptic integrals (6.141) and
(6.137) (black line). The (straight) green dotted line is the small-` asymptotics (6.68), whereas
the (curved) red dotted line is the large-` asymptotics (6.70). The numerical simulation (green
histogram) is cut at small scale due to discretization effects. Numerical parameters are N = 210,
m = 0.05, dw = 100 and dt = 0.01.

We can now specify to the case of small and uniform driving δwx = δw; the quantity of
interest is then

Z(r) =
∫
x
ũr(x)− ũ∞(x)− ũ∞(x− r) . (6.66)

While ũr(x) is not integrable, Z(r) is well defined as the two ũ∞ terms cancel precisely the two
non-integrable poles located at x = 0 and x = r.

Using that ũr is a solution of Eq. (6.48), we can obtain an expression of Z(r) as an elliptic
integral, see Appendix 6.F for details of the calculation. The formulas written there are for
the massive case, but only allow to get an implicit expression for Z(r). They however allow
us to extract the small-scale behavior of the avalanche-extension distribution (equivalently the
massless limit). For small r, the behavior of Z(r) is

Z(r) ' 4
√

3π
r

. (6.67)

To understand the connection with the avalanche extension, we need to get back to the inter-
pretation of (6.64). Now that we have specified the kick to be uniform, the two averages of the
denominator are independent of r, and act only as a normalization constants. The numerator,
in the limit of λ1,2 → −∞, is the probability that both s0 and sr are simultaneously equal to 0.
Deriving this two times w.r.t. r (which lets the denominator invariant) gives the probability that
the avalanche start in x = 0 and end in x = r. Dividing by δw and taking the limit1 δw → 0 ,

1Note that the denominators can then be set to unity. There is no ambiguity since the calculation could be
performed first at finite but large λi, and setting δw to zero after taking the derivative and dividing by δw, and
only at the end taking the limit of infinite λi.
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we obtain the extension density in the limit of a single avalanche as

ρ(`) = 1
δw

∂2
re
δwZ(r)|δw=0+,r=`

=∂2
r Z̃(r)

∣∣∣
r=`
' B̃`−3 when `→ 0

(6.68)

with
B̃ = 8

√
3π . (6.69)

We recover here the `−3 divergence for small ` of the extension of avalanches. Note that this
calculation gives exactly the same prefactor as in Eq. (6.62), which confirms that we are studying
the same object, namely a “single avalanche".

Finally, in the massive case, one can also compute the tail of the extension distribution,
resulting into (see Appendix 6.F)

ρ(`) ' 72 `e−` when `→∞ . (6.70)

6.6 Non-stationnary dynamics in the BFM

The easiest way to construct a position theory equivalent to the BFM model defined in Eq. (6.1)
is to consider the non-stationnary evolution of an elastic line in some specific quenched disorder,
given in Eq. (6.3). We refer to Ref. [112] for a more general introduction to the position, or
displacement theory of elastic interfaces. The disorder considered here has the correlations of
independent one-sided Brownian motions, as given in Eq. (6.4).

Consider the initial condition uxt=0 = 0. We can then compute the correlation function of
the position

uxt =
∫ t

0
u̇xs ds

for a uniform driving wt = vt θ(t), starting at t = 0. The calculation is sketched in Appendix
6.J. In dimensionless units and in Fourier space, the result reads

〈uqtu−qt〉c = v

[
2q2(t− 1) + 2t− 5

(q2 + 1)3 − 4e−(q2+1)t

q2 (q2 + 1)3

+ 4e−t

q2 (2q2 + 1) + e−2(q2+1)t

(q2 + 1)3 (2q2 + 1)

]
.

(6.71)

At large times, the displacement correlations behave as (restoring units)

〈uqtu−qt〉c '
t→∞

2σvt
(q2 +m2)2 . (6.72)

The q dependence is similar to the so-called Larkin random-force model [135], but with a time-
dependent amplitude, i.e. the effective disorder is growing with time, which is natural given the
correlations of the disorder (6.4). The correlation of the position thus remains non-stationary
at all times2.

2Note that there are stationary versions of the BFM, which we will not discuss here, see discussions in e.g.
[115, 116, 117].
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From Eq. (6.72) one obtains the correlations of the displacement in real space, still in the
large-t limit

(uxt − u0t)2 ' 2vt
∫

ddq

(2π)d
1

(q2 +m2)2 (1− cos qx)

∼ vt× x2ζL
(6.73)

with ζL = (4 − d)/2 the Larkin roughness exponent. Note that the average displacement is
uxt = vt− 1−e−m2t

m2 (see Appendix 6.J ). Hence we see that the BFM roughness scaling u ∼ x4−d

is dimensionally consistent with the correlation at large times,

(uxt − u0t)2 ' 2 uxt x4−d . (6.74)

This result, ζ = 4 − d = ε, is in agreement with the FRG approch: the position theory of the
BFM model is an exact fixed point for the flow equation of the FRG with a roughness exponent
ζ = ε, as discussed in [112, 116].

6.7 Conclusion
We presented a general investigation of the Brownian Force Model, using its exact solvability
via the instanton equation in various settings. After reviewing the results and the calculations
of [110, 115, 116, 117], we extended the study in several directions.

First, we computed observables containing information about the spatial structure of avalanches
in the BFM: the joint density of S and S0 (or equivalently, the distribution of the local size S0
at fixed total global size S), and the distribution of the extension ` of an avalanche. These
distributions display power laws in their small-scale regime, which we recovered using scaling
arguments, together with universal amplitudes.

We also extended the method to study new driving protocols relevant to distinct experimental
setups. The derived results show new exponents for the small-scale behavior of the global
avalanche-size distribution following a locally imposed displacement, and for the small-scale
behavior of the local-size distribution following a localized kick.

Finally, we presented results for the non-stationary dynamics of the BFM, focusing on ob-
servables which exist only in the position theory, such as the roughness exponent. This explains
why both the Larkin roughness and the BFM roughness (emerging from the FRG approach),
play a role in this model, depending on whether the driving is stationary or not.

6.A Airy functions
We recall the definition of the Airy function:

Ai(z) :=
∫ ∞
−∞

dt

2πe
i t

3
3 +izt . (6.75)

The following formula is useful for a ∈ R∗,

Φ(a, b, c) =
∫
C

dz

2iπ e
a z

3
3 +bz2+cz

=|a|−1/3e
2b3
3a2−

bc
a Ai

(
b2

|a|4/3
− c sgn(a)
|a|1/3

)
. (6.76)

It can be obtained from (6.75), deforming the contour C, e.g. to z = − b
a + iR.



6.B. General considerations on the instanton equation 119

6.B General considerations on the instanton equation

Sourceless equation

Massive case

It is useful to start with the simpler sourceless instanton equation

y′′ = y − y2 . (6.77)

Here we denote by a prime the derivative with respect to x. It can be interpreted as the classical
equation of motion of a particule (of mass 2) in a potential V (y) = −y2 + 2y3

3 , represented in
Fig. 6.8. Multiplying by y′ and integrating once, we obtain y′ = ±

√
E − V (y), where E is a real

integration constant equivalent to the total “energy” of the particle. Its phase-space diagram
(y, y′) is represented in Fig. 6.9.
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Figure 6.8: Representation of the potential energy V (y) as a function of y, and lines of constant
total energy, with E = 0 in red, E > 0 in blue and, E < 0 in green.

From figures 6.8 and 6.9, we see that:
(i) - there is exactly one positive E = 0 solution y+(x) defined for all x ∈ R, up to a shift

x→ x+ x0. It reads ∫ 3/2

y+(x)

dy√
y2 − 2

3y
3

= |x|

⇔ y+(x) = 3
1 + cosh x = 3

2

[
1− tanh2

(
x

2

)]
.

(6.78)

(ii) - There is exactly one negative E = 0 (zero energy) solution y−(x) defined for all x ∈ R∗,
namely ∫ y−(x)

−∞

dy√
y2 − 2

3y
3

= |x|

⇔ y−(x) = 3
1− cosh x = 3

2

[
1− coth2

(
x

2

)]
.

(6.79)
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Figure 6.9: Phase-space diagram, i.e. trajectories represented with y′ as a function of y. The
case E = 0 is in red, E > 0 in blue and and E < 0 in green. We can see that properties of the
solution (periodicity, divergences, etc.) strongly depend on the value of E.

(iii) - There are two classes of solutions with E 6= 0. The first class is defined on an interval
of finite length r(E) with

r(E) = 2
∫ t

−∞

dy√
E + y2 − 2

3y
3

(6.80)

where t 6= 0 denotes the smallest real root of E = −t2 + 2
3 t

3. This integral is convergent at large
negative y due to the cubic term, and also convergent near the root y = t (for E → 0 it diverges
logarithmically). If one chooses x = 0 as center of the interval, the solution y(x) satisfies∫ t

y(x)

dy√
E + y2 − 2

3y
3

= |x| . (6.81)

It diverges at both ends x = ±r(E)/2. It is sometimes more convenient to choose x = 0 as the
endpoint of the interval ]0, r(E)[. Then, for x ∈]0, r(E)[ one has∫ y(x)

−∞

dy√
E + y2 − 2

3y
3

= x . (6.82)

Setting y = 1
2 − z, this can be rewritten as

√
6
∫ ∞

1
2−y(x)

dz√
4z3 − 3z + (1 + 6E)

= x . (6.83)

This gives, in terms of the Weirstrass elliptic function P,

y(x) = 1
2 − P

(
x√
6

; g2 = 3, g3 = −1− 6E
)
. (6.84)

It diverges at x = 0 and x = r(E), and is the proper solution on the interval ]0, r(E)[, see
Appendix 6.I.

The second class of solutions with E 6= 0 exists only for −1
3 < E < 0; these solutions are

periodic on the whole real line. As can be seen from Figs. 6.8 and 6.9, y(x) varies in a bounded
and strictly positive interval. We will not discuss these solutions as they will not be needed
below.



6.B. General considerations on the instanton equation 121

- 6 - 4 - 2 2 4 6

0.2

0.4

0.6

0.8

1.0

1.2

1.4

- 6 - 4 - 2 2 4 6

- 12

- 10

- 8

- 6

- 4

- 2

Figure 6.10: Solutions with energy 0 of equation (6.77); left : y+(x), right : y−(x).

Massless case

Consider now the massless sourceless equation,

y′′ = −y2 . (6.85)

The analysis is similar to the massive case discussed above with V (y) = −2
3y

3. Its solutions
have the following properties:

(i) - there is no positive E = 0 solution.
(ii) - There is only one negative E = 0 solution y−(x) defined for all x ∈ R∗,∫ y−(x)

−∞

dy√
−2

3y
3

= |x| ⇔ y−(x) = − 6
x2 . (6.86)

It can be obtained by considering the limit x� 1 in the solution (6.79).
(iii) - There is now only one class of solutions with E 6= 0 (the periodic ones have disap-

peared). They are defined on an interval of length r(E). They have E = 2
3 t

3, hence t = (3E/2)1/3

and

r(E) = 2
∫ t

−∞

dy√
2
3 t

3 − 2
3y

3

=


√

6π
(

2
3|E|

)1/6 Γ(1/3)
Γ(5/6) , E > 0

√
6π
(

2
3|E|

)1/6 2Γ(7/6)
Γ(2/3) , E < 0 .

(6.87)

The solution y(x) satisfies for x ∈]0, r(E)[∫ y(x)

−∞

dy√
E − 2

3y
3

= x . (6.88)

It can be expressed in terms of the Weirstrass function,

y(x) = −P
(
x√
6

; g2 = 0, g3 = −6E
)
. (6.89)

It diverges at x = 0 and x = r(E). The periods are consistent with
√

6× 2Ω (see Appendix 6.I)
using the relation Γ(7/6)

Γ(2/3) = Γ(1/3)3

4×21/3π3/2 . Note also the relation Γ(1/3)
Γ(5/6) = 2×22/3π3/2

3Γ(2/3)3 .
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Instanton solution with a single delta source

We now use these results to construct the solutions in presence of sources. For a single delta
source this was done in [110] and [117]. We first recall and then extend this analysis, as a more
general approach is needed here.

Massive case

Consider the instanton equation

ũ′′(x)− ũ(x) + ũ(x)2 = −λδ(x) . (6.90)

We are looking for a solution defined for all x ∈ R. Other physical requirements3 (e.g. from the
derivation of the dynamical action) is that ũ(x) vanishes as x → ±∞, and that the solution is
analytic around λ = 0 (obtainable in a power series in λ). We need a function which is piecewise
solution of Eq. (6.77) for x ∈]−∞, 0[ and for x ∈]0,∞[, with a discontinuity in its derivative,

ũ′(0+)− ũ′(0−) = −λ . (6.91)

As we have seen in the previous section, in order to be defined on an infinite interval, it must
be constructed from the zero-energy E = 0 solutions y±(x) of (6.77) up to a shift x → x + x0.
By symmetry it reads ũ(x) = y±(|x| + x0) where x0 ≡ x0(λ) is chosen to satisfy the condition
(6.91). The procedure is illustrated in Fig. 6.11. Note that the sign of λ dictates which of the
branches ± must be chosen. To summarize,

ũλ(x) = 3
1 + sλ cosh(|x|+ x0) = 3

2
[
1− hλ(|x|+ x0)2] . (6.92)

The function x0(λ) is determined from

λ = 6sλ sinh(x0)[
1 + sλ cosh(x0)

]2 = 3
2hλ(x0)

[
1− hλ(x0)2] (6.93)

with sλ = sgn(λ), hλ(x) = tanh(x2 ) for λ > 0 and hλ(x) = coth(x2 ) for λ < 0. 4

This form does not make explicit that ũλ(x) is analytic in λ near λ = 0. We will thus use
the following equivalent form. Introduce z = hλ(x0). Equation (6.93) can then be rewritten as
a cubic equation for z ≡ z(λ),

λ = 3z(1− z2) . (6.94)

The trigonometric addition rules allow to rewrite

ũλ(x) = 3(1− z2)

2
[

cosh
(
x
2
)

+ z sinh
(
|x|
2

) ]2
= 6(1− z2)e−|x|[

1 + z + (1− z)e−|x|
]2 .

(6.95)

The appropriate branch for (6.94) is the one for which z → 1 as λ → 0 (corresponding to
x0 →∞). As can be seen in Fig. 6.12, this branch is defined for λ ∈]−∞, λc = 2√

3 [, while z(λ)

3Because of finite range elasticity, the the effect at x = 0 of a kick at x must decay at large x. Because of the
cutoff Sm, the positive integer moments of avalanche sizes must exist

4Note that formally x0 → x0 + iπ is equivalent to λ→ −λ.
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Figure 6.11: Graphical representation of the construction of solutions of the instanton equation
for λ > 0 (blue) and λ < 0 (green). The dotted part of the curve represents the discontinuity
in the derivative. The red line represents the E = 0 solution of (6.77), the only one needed to
solve the instanton equation with one local source.

decreases from z(−∞) = ∞ to zc = z(λc) = 1/
√

3. The other branches are solutions of (6.90)
but do not satisfy the physical requirements mentioned above.

Equations (6.94) and (6.95) thus define the solution to the instanton equation for λ ∈] −
∞, λc[, in a way which is explicitly analytic around λ = 0. For instance one can check that the
small-λ expansion

ũλ(x) = λ

2 e
−|x| + λ2

6

(
e−|x| − 1

2e
−2|x|

)
+O(λ3) (6.96)

obtained by iteratively solving Eq. (6.90) at small λ, is reproduced by Eqs. (6.94) and (6.95).
Finally the partition sum corresponding to an homogeneous kick is expressed as

Z(λ) =
∫ ∞
−∞
dx ũλ(x) = 6(1− z) . (6.97)

Hence, from Eq. (6.94), it satisfies

λ = 1
72Z(Z − 6)(Z − 12) , (6.98)

recovering the result obtained in [110].

Massless case

The massless instanton equation

ũ′′(x) + ũ(x)2 = −λδ(x) (6.99)

is solved similarly. For λ < 0 there is a solution defined for all x ∈ R,

ũλ(x) = − 6
(|x|+ x0)2 , x3

0 = −24
λ
. (6.100)

Note that for the massless case the physical solution is not required to be analytic in λ at λ = 0
(i.e. integer moments of avalanche sizes diverge). This solution can be obtained from (6.95) in
the (formal) double limit of small x and large z, with x0 = 2/z. The equation determining z
now is λ = −3z3. The generating function for a uniform kick becomes Z = −6z = (72λ)1/3.
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x0= -x*

x0= x*

x0= -∞

x0= +∞

x0= 0
y= y+

y= y-

Figure 6.12: The generating function Z(λ) = 6(1− z) is represented here with some indications
of the link with the construction of the instanton solution; the green and blue dot correspond
to the solutions represented in figure 6.11.

6.C Calculation of probabilities and densities of S0

For an arbitrary kick δwx, in the massive case, the Laplace transform of the distribution of local
size is ∫

dS0 e
λS0Pδwx(S0) = exp

(
Ld−1

∫
dx δwxũ

λ(x)
)
. (6.101)

Here ũλ(x) is given in Eq. (6.95). Performing the Laplace inversion in general is difficult, but
there are some tractable cases.

Uniform kick

Let us start with a uniform kick δwx = δw, and δŵ = Ldδw. It is more efficient to take a a
derivative of Eq. (6.101) w.r.t. λ and write the Laplace inversion for S0Pw(S0),

S0Pδw(S0) =
∫
C

dλ

2iπ e
−λS0∂λe

6δŵ(1−z(λ)) . (6.102)

Here C is an appropriate contour parallel to the imaginary axis and we used that
∫
dx ũ(x) =

6(1 − z). The function z(λ) is solution of λ = 3z(1 − z2). One can now use z as integration
variable and rewrite

S0Pδw(S0) = 6δŵe6δŵ
∫
C

dz

2iπ e
−3z(1−z2)S0e−6δŵz , (6.103)

using dλ∂λ = dz∂z. We will be sloppy here about the integration contour, as this procedure is
heuristic to guess the result, which will then be tested (see below). As the exponential contains
a cubic term, we use the Airy integral formula of Appendix 6.A leading to

S0Pw(S0) = 6δŵe6δŵΦ(a, b, c) . (6.104)
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Here Φ is defined in Eq. (6.76), with a = 9S0, b = 0 and c = −(3S0 + 6δŵ). This immediately
leads to formula (6.21) in the main text. We have checked numerically that it reproduces the
correct Laplace transform (6.101) for λ < λc.

Local kick

For a local kick it is possible to calculate the PDF of the local jump at the position of the kick.
Consider a local kick at x = 0, i.e. δwx = δw0δ(x). For simplicity in this subsection we set

d = 1. Inserting this value in (6.101) we find that the LT of the PDF of the local size at the
same point S0 reads ∫

dS0 e
λS0Pδw0(S0) = e

3
2 (1−z2)δw0 (6.105)

using ũλ(0) = 3
2(1− z2). The same manipulations as above lead to

S0P (S0) = −
∫
C

dz

2iπ e
−3z(1−z2)S0∂ze

3
2 (1−z2)δw0

= 3δw0e
3δw0

2

∫
C

dz

2iπ z e
−3z(1−z2)S0− 3

2 z
2δw0

= 3δw0e
3δw0

2 ∂cΦ(a, b, c)|
a=9S0,b=− 3δw0

2 ,c=−3S0
. (6.106)

Using Eq. (6.76) leads to

Pδw0(S0) = δw0e
δw0−

δw3
0

36S2
0

31/3S
5/3
0

[
δw0

2× 31/3S
2/3
0

Ai(u)−Ai′(u)
]

(6.107)

u = 31/3S
2/3
0 + δw2

0

4× 32/3S
4/3
0

.

We can check normalization, and that 〈S0〉 = 1
2δw0, consistent with the small-λ expansion of

(6.105). The asymptotics are

Pδw0(S0) '



δw
3/2
0 e

δw0
2 −

δw3
0

18S2
0

√
6πS2

0
for S0 � 1

δw0e
δw0− 2√

3
S0

2 4√3
√
πS

3/2
0

for S0 � 1 .

(6.108)

This result, and the new exponent τ = 5/3 of the divergence at small S0, which appear when
δw0 → 0, is discussed in the main text.

6.D Calculation of the joint density of S and S0

We will obtain the joint density from the generating function of S0 and S,

〈eλS0+µS〉 = e
∫
x
δwxũx (6.109)

in terms of the solution of the instanton equation. Let us consider a uniform kick δwx = δw.



126 Chapter 6. Avalanches in the Brownian force model

Instanton equation and its solution

Massive case

Here ũ (that we will also denote ũλ,µ to make the dependence on the sources explicit) is the
solution, in the variable x, of the instanton equation

ũ′′ − ũ+ ũ2 = −λδ(x)− µ . (6.110)

We must solve this equation with similar requirements as discussed below for Eq. (6.90), except
that now the instanton goes to a constant at infinity (since the source acts everywhere). Clearly,
the new uniform source can be removed by a shift ũ → ũ + c, where the constant c verifies
µ = c− c2. This results in the mass term −ũ→ −(1− 2c)ũ, which can be brought back to Eq.
(6.110) with µ = 0, i.e. Eq. (6.90), by a simple scale transformation. At the end one can check
that given ũλ(x) the solution of Eq. (6.90), the solution of Eq. (6.110), noted ũλ,µ(x), is given
by

ũλ,µ(x) = 1− β2

2 + β2ũλ/β
3(βx) . (6.111)

The constant β > 0 such that
β2 = β2

µ :=
√

1− 4µ . (6.112)

In summary, the instanton solution is

ũλ,µ(x) = 1− β2

2 + 6β2(1− z2)e−β|x|[
1 + z + (1− z)e−β|x|

]2 , (6.113)

where z is the solution of
λ

β3 = 3z(1− z2) . (6.114)

It is connected to z = 1 at λ = 0.

Massless case

It is useful to also give the solution in the massless case, for which one needs to solve

ũ′′ + ũ2 = −λδ(x)− µ (6.115)

for µ ≤ 0. Using a shift and a rescaling we can check that the solution now is

ũλ,µ(x) = −β
2

2 + β2ũλ/β
3(βx) . (6.116)

The parameter β > 0 such that β2 =
√
−4µ, and ũλ(x) is the massive instanton solution. In

summary, this gives

ũλ,µ(x) = −β
2

2 + 6β2(1− z2)e−β|x|[
1 + z + (1− z)e−β|x|

]2 (6.117)

where z is again the solution (6.114). If µ→ 0, hence β → 0 we recover the massless instanton
(6.100).
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Joint distribution

Let us again consider the massive case. To obtain the joint probability distribution Pδw(S, S0),
we need to calculate the generating function Z(λ, µ),

〈eλS0+µS〉 =
∫ ∞

0

∫ ∞
0

Pδw(S0, S)eλS0+µSdS dS0

=eδwZ(λ,µ)
(6.118)

Integrating (6.113), we obtain

Z(λ, µ) =
∫
x
ũλ,µ(x) = Ld

1− β2

2 + Ld−16βz(1− z)

=: LdZ1(µ) + Ld−1Z2 (λ, µ) .

(6.119)

Z1(µ) is the generating function for the distribution of the total size of avalanches and Z2(λ, µ)
a new term defined by (6.119). The volume factors come from the coordinates along which the
instanton solution is constant.

From equations (6.114) and (6.119), we can express λ as a function of Z2 and β,

λ = 3β3
(

1− Z2
6β

)[
1−

(
1− Z2

6β

)2
]
. (6.120)

This is equivalent to Z2(λ, µ) = βZ
(
λ
β3

)
where Z ≡ Z(λ) is the generating function of the local

size, which was implicitly defined as a solution of Eq. (6.98).
Considering the limit of small δw, we obtain Pδw(S, S0) ≈ δw ρ(S, S0), which defines the

joint density ρ(S, S0) of total and local sizes in the limit of a single avalanche. To simplify the
computation, we decompose the distribution ρ(S, S0) as

ρ(S, S0) = ρ(S, S0) + δ(S0) (ρ(S)− ρ̄(S))

ρ̄(S) =
∫
S0>0

ρ(S, S0) . (6.121)

Here ρ(S, S0) is the smooth part of the joint density for S and S0, and is also the joint density of
single avalanches containing 0 (i.e. S0 > 0). The second term takes into account all avalanches
that occur away from 0: the δ(S0) ensures that the avalanche does not contain 0 and the
subtraction ensure that

∫
S0
ρ(S, S0) = ρ(S) where ρ(S) is the global size density. As we will

check at the end of the calculation, the correct generating function for ρ is Z2(λ, µ)Ld−1 +
6 (1− βµ)Ld−1.

As ρ(S) is already known, we only want to compute ρ(S, S0). To eliminate the term δ(S0) we
multiply (6.121) by S0 and use that S0ρ(S, S0) = S0ρ(S, S0). Multiplication by S0 is equivalent
to taking a derivative with respect to λ in the generating function,

S0 ρ(S0, S) = Ld−1
∫ i∞

−i∞

dµ
2πie

−µS
∫ i∞

−i∞

dλ
2πie

−λS0∂λZ2 (λ, µ)

= Ld−1
∫ i∞

−i∞

dµ
2πie

−µS
∫ i∞

−i∞

dZ
2πie

−β
3

72
Z
β

(
6−Z

β

)(
12−Z

β

)
S0 . (6.122)

Here we changed variables from λ to Z2 (and dropped the index) using (6.120). To simplify
the calculations, we introduce a new variable x, such that Z = 2× 3

1
3x+ 6β, with β defined in
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Eq. (6.112),

ρ(S0, S) = Ld−1 2× 3
1
3

S0

∫ i∞

−i∞

dµ
2πi e

−µS
∫ i∞

−i∞

dx
2πi e

−x
3
3 S0+31/3β2xS0

= Ld−1 × 2× 3
1
3
e−S/4

S0

∫ i∞

−i∞

dx
2πi e

−x
3
3 S0 1

4

∫ i∞

−i∞

dy
2πi e

− yS4 +(−y)1/231/3xS0

= Ld−1 × 2× 3
1
3
e−S/4

S0

∫ i∞

−i∞

dx
2πi e

−x
3
3 S0

∫ ∞
0

dy
4πe

− yS4 sin
(√

y3
1
3xS0

)
= Ld−1 × 2× 3

2
3
e−S/4
√
πS

2
3S0

∫ i∞

−i∞

dx
2πi e

−x
3
3 S0xS0e

− (31/3xS0)2
S . (6.123)

The steps of this calculations are: first a linear change of variable 4µ − 1 → y, such that
β = (−y)

1
2 , then a deformation of the contour of integration to integrate on both sides of the

branch cut R+. Finally, the last integration can be performed in terms of Airy functions (e.g.
using Appendix 6.A),

ρ(S, S0) = 6Ld−1
√
πS2 e

−S4 F
(√

3S0/S
3
4
)

(6.124)

F (u) = 1
u

2
3
e−

2
3u

4 (
u

4
3Ai

(
u

8
3
)
−Ai′

(
u

8
3
))

.

The density of avalanches with global size S and which contain 0, i.e. with S0 > 0 is

ρ(S) =
∫ ∞

0
dS0 ρ(S, S0) = Ld−1 × 2

√
3
π

[ ∫ ∞
0

duF (u)
]
e−

S
4

S
5
4

= Ld−1
3 Γ

(
1
4

)
2π

e−
S
4

S
5
4
, (6.125)

where
3 Γ

(
1
4

)
2π = 2

√
3
π

∫ ∞
0

duF (u) ≈ 1.7311012158 . (6.126)

To test our solution one can check that

∫ ∞
0

ds
3 Γ

(
1
4

)
2π

e−
S
4

S
5
4

(eµS − 1) = 6
[
1− (1− 4µ)

1
4
]
. (6.127)

We have checked numerically several other requirements, originating from the definitions, namely

∫ ∞
0

dS ρ̄(S, S0) = ρ0(S0) = 2Ld−1

πS0
K1/3

(
2S0/

√
3
)

∫ ∞
0

dS
∫ ∞

0
dS0 S0ρ̄(S, S0) = Ld−1∫ ∞

0
dS
∫ ∞

0
dS0 Sρ̄(S, S0) = 6Ld−1∫ ∞

0
dS
∫ ∞

0
dS0 ρ̄(S, S0)eµS(eλS0 − 1) = Z2(λ, µ)Ld−1 .
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6.E Imposed local displacement
We set for simplicity d = 1 in this section. The PDF of the global size in presence of imposed
position driving is obtained from

eµS = em
2ũx=0δw , (6.128)

where ũx is the solution of a slightly modified instanton equation:

ũ′′x −m2δ(x)ũx + ũ2
x = −µ (6.129)

and we have kept explicit the local mass. This equation is the same as the massless Eq. (6.115),
with λ = −m2ũx=0, a self-consistency condition. Using its solution given in Eqs. (6.117) and
(6.114) we eliminate λ and z in the system

λ = −m2ũx=0 = −m2β2
(
1− 3

2z
2
)

λ

β3 = 3z(1− z2)
(6.130)

with β = (−4µ)1/4. It is then easy to see that there is a solution such that m2ũx=0 remains
finite when m2 →∞, in which case z →

√
2
3 and

lim
m2→∞

m2ũx=0 = −
√

2
3β

3 . (6.131)

Hence we find
Pδw0(S) = LT−1

−µ→S e
−δw

√
2
3 (−4µ)3/4

. (6.132)

The result for the density is simpler,

Sρ(S) = −LT−1
−µ→S ∂µ

√
2
3(−4µ)3/4 , (6.133)

leading to

ρ(S) =
√

3
Γ(1/4)S7/4 (6.134)

and a new exponent 7/4 discussed in the main text.

6.F Some elliptic integrals for the distribution of avalanche extension
Here we make explicit the calculation for the density of extensions sketched in the main text.
The relevant generating function, defined in the main text in Eq. (6.66), is

Z(r) =
∫
x
ũr(x)− ũ∞(x)− ũ∞(x− r) . (6.135)

The integrand is represented on Fig. 6.13.Here ũr(x) is the solution of the instanton equation
with two local sources, one at x = 0 and one at x = r. The solution ũ∞ with one source at
x = 0 and one at infinity is equivalent to the solution with only one source at x = 0.

The first simplification in the calculation of this integral is the symmetry arround r/2.
Another is that, for x ∈]−∞, 0[, ũr(x)− ũ∞(x) cancels exactly. Then, the idea is to express the
integral for Z(r) without explicitly solving the instanton equation, using the change of variables∫

ũdx =
∫
ũ

du
ũ′

. (6.136)
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Figure 6.13: Instanton solutions involved in the computation of Z(r) for r = 1: in blue, ũ1(x),
in red ũ∞(x) and in purple, ũ∞(x− 1).

This requires to express the derivative of ũ w.r.t. x as a function of ũ, which is easy because ũ
is solution of a differential equation, and to decompose the integral into two parts such that the
change of variables is well defined: from x = −∞ to x = 0 and from x = 0 to x = r/2. The rest
is deduced by symmetry.

In these two intervals, ũ∞(x − r) does not contain a pole, and can safely be computed
separately. Moreover, as we said, ũr(x)− ũ∞(x) vanishes in the first interval, i.e. for x ∈]−∞, 0].
This leaves only the integral of ũr(x)− ũ∞(x) over x running from x = 0 to x = r/2. To simplify
notations we introduce the variable t < 0,

t := ũr(r/2) , (6.137)

which is in one-to-one correspondance with r, and is a nice parameter to express Z. Indeed,
after the change of variables (6.136), the integral now runs from u = −∞ to u = t, and for
0 < x < r/2, with ũ ≡ ũr, we have

ũ′r =
√
−t2 + 2

3 t
3 + ũ2 − 2

3 ũ
3 . (6.138)

Further, with ũ ≡ ũ∞,

ũ′∞ =
√
ũ2 − 2

3 ũ
3 . (6.139)

This comes from the results of Appendix 6.B, and the relation E = −t2 + 2
3 t

3. To express r in
terms of t, we use the same idea as in the derivation of Eq. (6.136),

r = 2
∫ r/2

0
dx = 2

∫ t

−∞

dũr
ũ′r

. (6.140)

Putting these ingredients together, we obtain Z(r) as a function of t, which we call Z̃(t), in term
of an elliptic integral, as well as the expression of r as a function of t,

Z̃(t) = 2
∫ t

−∞

 u√
−t2 + 2

3 t
3 + u2 − 2

3u
3
− u√

u2 − 2
3u

3

du− 2
∫ 0

t

u√
u2 − 2

3u
3
du

= 2t
∫ ∞

1

 y√
y2 − 1− 2

3 t(y3 − 1)
− 1√

1− 2
3 ty

 dy − 6 + 2
√

9− 6t , (6.141)
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r(t) = 2
∫ t

−∞

du√
−t2 + 2

3 t
3 + u2 − 2

3u
3

= 2
∫ ∞

1

dy√
y2 − 1− 2

3 t(y3 − 1)
. (6.142)

We now use this to characterise the small-size divergence of the extension distribution. This is
encoded in the small r behavior of Z(r), which corresponds to the large-t behavior of Z̃(t). For
the latter, we have

Z(t) ' −2
√

3
2

[∫ ∞
1
du

(
u√

u3 − 1
− 1√

u

)
− 2

]
|t|

1
2

' 2
√

6πΓ(5/6)
Γ(1/3) |t|

1
2 ,

(6.143)

which is also the exact result in the massless limit. We next need to invert Eq. (6.142) in the
large-t limit,

|t| ' A2r−2 , A = 2
√

6πΓ(7/6)
Γ(2/3) =

√
6Γ(1/3)3

42/3π
. (6.144)

The small-r behavior of Z(r) is then given by

Z(r) ' 4
√

3π r−1 . (6.145)

For small |t| we find
r(t) ' 2 ln(12/|t|) (6.146)

and
Z̃(t) ' t2 ln(1/|t|) (6.147)

which leads to
Z̃(r) = 72 re−r +O(e−r) (6.148)

This leads to the tail of the extension density,

ρ(`) = ∂2
r Z̃(r)

∣∣∣
r=`
' 72 ` e−` when `→∞ . (6.149)

6.G Joint distribution for extension and total size

For simplicity, we consider only m = 0 (massless limit). To obtain the joint distribution of
extension and total size we have to add a global source µ to the instanton equation, in addition
to the two local sources, whose parameters are sent to infinity. With the same tricks as previously,
cf. Appendix 6.D and notably Eq. (6.116), we change this problem to a new one with a mass
β = (−4µ)

1
4 , but no global source. The generating function is now a function of r, the distance

between the two local sources and β, the new mass. As in Appendix 6.F, we can change the
variable r to the new parameter t defined in Eq. (6.142) and express everything in terms of
elliptic integrals:

r(t, β) = 2
∫ ∞
t

dy√
−β2t2 − 2

3 t
3 + β2y2 + 2

3y
3

= β−1f

(
t

β2

)
,

Z(t, β) = −2
∫ ∞
t

 y√
−β2t2 − 2

3 t
3 + β2y2 + 2

3y
3
− 1√

2
3y

dy + 2
√

6t = β g

(
t

β2

)
.

(6.150)
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The functions f and g are

f(x) = 2
∫ ∞
x

du√
−x2 − 2

3x
3 + u2 + 2

3u
3

= 2
∫ ∞

1

du√
u2 − 1 + 2

3x(u3 − 1)
,

g(x) = −2x
∫ ∞

1

 u√
u2 − 1 + 2

3x(u3 − 1)
− 1√

2
3xu

 du+ 2
√

6x .
(6.151)

From that, we have Z(r, β) = β
(
g ◦ f−1) (βr) and then ∂2

rZ(r, β) = β3 (g ◦ f−1)′′ (βr) which
gives

ρ(l, s) = 1
4l7F

(
sl−4

4

)
, (6.152)

where F is the inverse LT of x 7→ (−x)
3
4 (g◦f−1)′′

(
(−x)

1
4
)
with g and f the functions previously

defined. Giving an analytic expression for this scaling function F seems out of reach for now.

6.H Numerics

We test most of our results with a direct numerical simulation of the equation of motion (6.1).
This is done by discretizing both time and space. To avoid the

√
δt term (where δt is the time

discretization) from a naive Euler time discretisation, we use the method of [136]. It allows
to express the exact propagator of the d = 0 version of (6.1) in terms of random distributions
(Poisson and Gamma distribution). We review this result here.

Let us start with the d = 0 stochastic equation,

∂tu̇t = α− βu̇t +
√

2σu̇t η(t) (6.153)

where η is a Gaussian white noise and α is positive (so that u̇ remains non-negative at all times).
It can be integrated exactly using Bessel functions (cf. [116] for a derivation of this using the
instanton equation for the ABBM model):

P (u̇t|u̇0) = β

σ

√
u̇t
u̇0

−1+α

2 sinh
(
βt
2

)I−1+α

β
σ

√
u̇tu̇0

sinh
(
βt
2

)
(eβt2 )α e−βσ u̇0e

−βt+u̇t
1−e−βt . (6.154)

To use this representation efficiently in a numerical algorithm, the trick is to expand it in a
series, and then express it as a combination of two distributions,

P (u̇t|u̇0) =
∞∑
n=0

u̇n−1+α
t u̇n0

n!Γ(n+ α)

 β

2σ sinh
(
βt
2

)
2n+α (

e
βt
2
)α
e
−β
σ

u̇0
eβt−1 e

−β
σ

u̇t
1−e−βt

=
∞∑
n=0

Poisson
[
β

σ

u̇0
eβt − 1

]
(n)Gamma

[
n+ α,

1− e−βt

β
σ

]
(u̇t) . (6.155)

The Poisson and Gamma distributions used above are

Poisson [λ] (n) = e−λ
λn

n! for n ∈ N (6.156)

Gamma [k, θ] (x) = 1
θ(k − 1)!

(
x

θ

)k−1
e−

x
θ for x ∈ R (6.157)
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This means that we can generate u̇t at time t from u̇0 by choosing first n according to the
Poisson distribution and then choosing u̇t from a Gamma distribution with a shape depending
on n. This can be summed up as a nice equality between random variables,

u̇t = Gamma
[
Poisson

[
β

σ

u̇0
eβt − 1

]
+ α,

1− e−βt

β
σ

]
(6.158)

To use this in a numerical simulation of Eq. (6.1), we first write a discretized (in space) version
of the latter,

∂tu̇i,t = (u̇i+1,t + u̇i−1,t)− (m2 + 2)u̇i,t +
√

2σu̇i,tξi,t +m2δwi,t . (6.159)

Choosing α = u̇i+1,t + u̇i−1,t, which is assumed to be constant on the time interval [t, t + δt],
and β = m2 + 2 in Eq. (6.157) allows us to generate u̇i,t+δt, knowing all u̇i,t, with a correct
probability distribution at order δt.

6.I Weierstrass and Elliptic functions

Here we recall some properties of Weierstrass’s elliptic function P (source [137] chapter 18, and
Wolfram Mathworld). It appears in complex analysis as the only doubly periodic function on
the complex plane with a double pole 1/z2 at zero5. Denoting ω1, ω2 the two (a priori complex)
primitive half-periods, every point of the lattice Λ = {2mω1 + 2nω2|(n,m) ∈ Z2} is a pole of
order 2 for P. It can be constructed for z ∈ C− Λ as

P(z|ω1, ω2) := 1
z2 +

∑
(m,n)6=(0,0)

1
(z − 2mω1 − 2nω2)2 −

1
(2mω1 + 2nω2)2 . (6.160)

It is an even function of the complex variable z, with P(z) = P(−z). Note that the choice of
primitive vectors (2ω1, 2ω2) is not unique, since one can alternatively choose any linear combi-
nation. The conventional choice of roots g2 and g3 is defined from its expansion around z = 0,

P(z|ω1, ω2) = 1
z2 + g2

20z
2 + g3

28z
4 +O(z6) . (6.161)

The function P is alternatively denoted

P(z|ω1, ω2) = P(z; g2, g3) (6.162)

the latter being defined in Mathematica as WeierstrassP[z, {g2, g3}]. More explicitly, the pa-
rameters g2, g3 are expressed from the half-periods as

g2 = 60
∑

(m,n)6=(0,0)

1
(2mω1 + 2nω2)4 and g3 = 140

∑
(m,n)6=(0,0)

1
(2mω1 + 2nω2)6 . (6.163)

The Weierstrass elliptic function verifies an interesting homogeneity property,

P(λz;λ−4g2, λ
−6g3) = λ−2P(z; g2, g3) , (6.164)

and the non-linear differential equation

P ′(z)2 = 4P(z)3 − g2P(z)− g3 . (6.165)
5It also appears as the second derivative of the Green function of the free field on a torus.
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It is thus linked to elliptic integrals. Restricting now to g2, g3 ∈ R and focusing on z ∈ R one can
choose one half-period to be real, which we denote Ω 6. The function P(z) is then periodic in R of
period 2Ω and diverges at all points 2mΩ,m ∈ Z. It is defined in the fundamental interval ]0, 2Ω[,
repeated by periodicity. In this interval it satisfies the symmetry P(2Ω−z; g2, g3) = P(z; g2, g3).
Its values in the first half-interval, i.e. for z ∈ [0,Ω] are such that (with y ∈ [e1,∞])

z =
∫ ∞
y

dt√
4t3 − g2t− g3

⇔ y = P(z; g2, g3) (6.166)

where e1 is the largest real root of the polynomial in t

4t3 − g2t− g3 = 4(t− e1)(t− e2)(t− e3) . (6.167)

The roots ei are all real if ∆ = g3
2 − 27g2

3 > 0 and only one, namely e1, is real if ∆ < 0. Hence
the period is given by

Ω =
∫ ∞
e1

dt√
4t3 − g2t− g3

, P(Ω) = e1 , P ′(Ω) = 0 . (6.168)

It is always finite, except when e1 is a double root, in which case ∆ = 0 and the period is infinite
Ω =∞.

For g2 = 0 the integral (6.168) can be calculated explicitly using∫ ∞
1

du√
u3 − 1

= Γ(1/3)3

4
2
3π

= −
√
π Γ(1/6)

Γ(−1/3) , (6.169)∫ ∞
−1

du√
u3 + 1

=
√
π

Γ(1/3)
Γ(5/6) . (6.170)

The half-periods are

Ω =


1

4πΓ(1/3)3g
−1/6
3 when g3 > 0

√
π

Γ(1/3)
4

1
3 Γ(5/6)

|g3|−1/6 when g3 < 0
, (6.171)

and the other period can be chosen as 1
2Ω(1 + i

√
3).

Finally, taking another derivative of (6.165) we see that the Weierstrass function also satisfies

P ′′(z) = 6P(z)2 − g2
2 , (6.172)

and P(z; g2, g3) is the only solution of this differential equation which satisfies (6.161).
From this we can find solutions of the instanton equation

ũ′′x −Aũx + ũ2
x = 0 , (6.173)

where A = 1 is the massive case and A = 0 the massless case. Comparing with Eq. (6.172) we
see that a family of solutions are

ũx = A

2 − 6b2P
(
c+ bx; A2

12b4 , g3

)
. (6.174)

Because of the homogeneity relation (6.164), this is a two-parameter family. These solutions are
periodic. In the massless case A = 0, the period of (6.174) is Ω/b where Ω is given by (6.171).

6The conventions are such that if ∆ < 0, Ω = ω1 is real and ω2 imaginary (for g3 > 0 and the reverse for
g3 < 0), and if ∆ < 0, Ω = ω1 ± ω2.
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6.J Non-stationary dynamics
In the velocity theory the observables of the BFM are calculated from the dynamical action

S[u̇, ũ] =
∫
t,q
ũ−q,t(∂t + q2 +m2)ũq,t − σ

∫
t,x
ũ2
xtu̇xt

where ũ is the response field. The quadratic part of the action, S0, defines the free response
function,

〈u̇q,tũq,t′〉S0 := Rq,t−t′ = θ(t− t′)e−(q2+m2)(t−t′) . (6.175)

Standard perturbation theory in the disorder σ is then performed, and has the peculiarity to
contain only tree diagrams. It is easy to see that the average velocity is not corrected by the
disorder, hence its value is the same as in the free theory. In presence of a uniform driving
w = vt, and taking into account the initial condition u̇xt=0 = 0, one has

u̇x,t = 〈u̇xt〉S = v
(
1− e−m2t

)
. (6.176)

This implies

uxt = vt− 1− e−m2t

m2 . (6.177)

Next we compute the connected correlations, where q means Fourier space and x real space,

u̇q,t1 u̇−q,t2
c = 〈u̇q,t1 u̇−q,t2〉S

= σ

∫
s,x
〈u̇q,t1 u̇−q,t2 ũ2

x,su̇x,s〉S0 (6.178)

= 2σ
∫
s
〈u̇xs〉S0Rq,t1−sRq,t2−s .

Calculating this integral, and further integrating over t1 and t2 we obtain

uq,tu−q,t
c =

∫ t

0
dt1

∫ t

0
dt2 u̇q,t1 u̇−q,t2

c
. (6.179)

This is the final result given in the main text, see Eq. (6.71). Alternatively we can obtain the
correlations of uxt using

eµxuxt1 =
∫
x
µxUxt1 + 1

2

∫
x1x2

µx1µx2Ux1t1Ux2t2
c + ...

= exp
(
vm2

∫
x,t>0

ũλxt

)
, (6.180)

where ũλxt is the solution of the space-time dependent instanton equation with a source λxt =
µxθ(t)θ(t1−t). Using the perturbation method in the source of Section III.H of [117], specializing
to that source in (261), we obtain at the end the same result as above.
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Chapter 7
General conclusion

In this thesis, I have presented analytical calculations for the distribution of several observables.
Table 7.1 summarize the main new results, from chapters 2 and 3, concerning fractional Brownian
process (starting at X0 = 0 and ending at a free end-point at final time chosen here to be T = 1
for simplicity), in comparison with the corresponding results for the Brownian motion. In each
of these results, the scaling behavior is expressed in terms of the Hurst exponent H of the fBm
process, while the other terms are computed in an ε-expansion and involve scaling functions
(denoted with calligraphic letters) whose expressions are given in the main text. All of these
results are obtained, discussed and compared to numerical simulations in the main text.

Observable Brownian motion ε expansion for fBM with H = 1/2 + ε

Maximum value m P(m) = e−m
2/4
√
π

= m
1
H
−2
e−m

2/4
√
π

eε[G(m/
√

2)+4 ln(m)+cst] +O(ε2)
with G(y) given in Eq. (2.46)

time of the max tmax P(t) = 1
π
√
t(1−t)

= 1
π[t(1−t)]H exp(εF(t)) +O(ε2)

with F(t) given in Eq. (2.42)

last zero tlast P(t) = 1
π
√
t(1−t)

= sin(πH)
πtH(1−t)1−H exp

(
ε2F last

2 (t)
)

+O(ε3)
with F last

2 (t) given in Eq. (3.56)

positive time t+ P(t) = 1
π
√
t(1−t)

= 1
π[t(1−t)]H exp(εF(t)) +O(ε2)

with F(t) given in Eq. (2.42)

υ = m√
2tHmax

at given tmax P(υ|t) = υe−
υ2
2 = υ

1
H
−1e−

υ2
2 eε[G(υ|t)+4 ln(υ)] +O(ε2)

with G(υ|t) given in Eq. (2.61)

Table 7.1: Summary of distributions for fractional Brownian motion with a free end-point.

Table 7.2 references in the same way the similar results obtained for a fBm process con-
strained to start and end at the origin, also called bridge process: Xt=0 = Xt=1 = 0. the
observable tlast does not appear here as it is trivial in this case. The results for Brownian bridge
are also recalled.
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Observable Brownian bridge fBM bridge with H = 1/2 + ε

Maximum value m P(m) = 2me−m2 = m
2
H
−3e
−m2 4H

4−4H
+εG(m)+cst +O(ε2)

with G(m) given in Eq. (4.55)

time of the max tmax P(t) = 1 = 1
[t(1−t)]2H−1 exp(ε [Fmax(t)− 4]) +O(ε2)
with Fmax(t) given in Eq. (4.47)

positive time t+ P(t) = 1 = 1
[t(1−t)]2H−1 exp(ε [Fpos(t)− 4]) +O(ε2)
with Fpos(t) given in Eq. (4.40)

υ = m√
2[tmax(1−tmax)]H P(υ|t) =

√
2
πυ

2e−
υ2
2 =

√
2
πυ

2
H
−2e−

υ2
2 +ε[F(υ,t)−Fmax(t)+cst] +O(ε2)

at given tmax with F(υ, t) given in Eq. (4.72)

Table 7.2: Summary of distributions for fractional Brownian motion with an end-point con-
strained to the origin (i.e. bridge process, Xt=0 = Xt=1 = 0).

For future research, it would be interesting to extend these results to second-order in ε,
notably to prove analytically the difference between the distributions of tmax and t+ in the case
of a free end-point. As mentioned in chapter 5, the links between these distributions and the
Pickands constant should be investigated in more details, which could give an non-perturbative
check for some of these results.

The pertubative methods developed in this thesis should also allow to obtain distribution
for other observables (records statistics, ...) or for other process (fBm with linear drift or other
constraints). It could also be interesting to study the effect of non-Gaussian perturbations, on
top of the non-Markovian one treated here, to obtain results for a larger class of stochastic
processes.
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Résumé

Dans cette thèse, on étudie des processus
stochastiques issus de la physique statistique.
Le mouvement Brownien fractionnaire, objet
central des premiers chapitres, généralise le
mouvement Brownien aux cas où la mémoire
est importante pour la dynamique. Ces effets
de mémoire apparaissent par exemple dans
les systèmes complexes et la diffusion anor-
male. L’absence de la propriété de Markov
rend difficile l’étude probabiliste du processus.
On développe une approche perturbative au-
tour du mouvement Brownien pour obtenir de
nouveaux résultats, sur des observables liées
aux statistiques des extrêmes. En plus de
leurs applications physiques, on explore les
liens de ces résultats avec des objets mathé-
matiques, commes les lois de Lévy et la con-
stante de Pickands.

Dans un deuxième temps, le modèle phéno-
ménologique d’interfaces élastiques en milieu
désordonné est étudié, dans le cas d’un désor-
dre Brownien. On s’intéresse aux avalanches,
c’est-à-dire à la réponse du système à une
impulsion, et plusieurs distributions d’observa-
bles sont calculées exactement. Ces résul-
tats nouveaux sont obtenus en résolvant une
équation d’instanton déterministe mais non-
linéaire qui encode les propriétés statistiques
du modèle.

Mots Clés
Mouvement Brownien, Mouvement Brownien
fractionnaire, Processus Non-Markovien, In-
variance d’échelle, Intégrales de chemin, Des-
ordre gelé, Interfaces, Avalanches.

Abstract

In this thesis, we study stochastic processes
appearing in different areas of statistical phy-
sics: Firstly, fractional Brownian motion is a
generalization of the well-known Brownian mo-
tion to include memory. Memory effects ap-
pear for example in complex systems and
anomalous diffusion, and are difficult to treat
analytically, due to the absence of the Markov
property. We develop a perturbative expan-
sion around standard Brownian motion to ob-
tain new results for this case. We focus on
observables related to extreme-value statis-
tics, with links to mathematical objects: Levy’s
arcsine laws and Pickands’ constant.

Secondly, the model of elastic interfaces in dis-
ordered media is investigated. We consider
the case of a Brownian random disorder force.
We study avalanches, i.e. the response of
the system to a kick, for which several distri-
butions of observables are calculated analyt-
ically. To do so, the initial stochastic equa-
tion is solved using a deterministic non-linear
instanton equation. Avalanche observables
are characterized by power-law distributions
at small-scale with universal exponents, for
which we give new results.

Keywords
Brownian motion, fractional Brownian motion,
Non-Markovian processes, Scale invariance,
Path Integrals, Quenched disorder, Interfaces,
Avalanches.
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