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Résumé de la theése :

Une méthode de dualité pour des
problemes non convexes du Calcul
des Variations

La recherche de minima globaux pour des fonctionnelles non convexes est un probleme majeur.
En raison du manque de convexité, un critere d’optimalité comme ’équation d’Euler ou les
conditions d’optimalité du premier et second ordre ne sont pas suffisantes pour caractériser une
solution globale parmi tous les points critiques et en particulier parmi les minimiseurs locaux.
Une conséquence de cela est que les algorithmes classiques d’optimisation peuvent converger vers
un minimiseur local sans aucune possibilité de vérifier s’il s’agit effectivement d’un minimiseur
global. La difficulté est donc double : nous avons d’abord besoin d’un cadre théorique permettant
d’obtenir des conditions nécessaires et suffisantes d’optimalité ; ensuite, nous devons proposer
des nouvelles méthodes numériques qui permettent d’exclure tous les minimiseurs locaux (ou
points critiques) et d’atteindre les minimiseurs globaux aprés un temps de calcul acceptable.

Motivée dans un tel contexte, cette these vise a étudier et développer un nouveau principe
général de convexification permettant de traiter une classe spécifique mais importante de
problémes variationnels non convexes, notamment certains problemes a frontiére libre. Grace a
ce principe, nous avons pu mettre en ceuvre les puissantes techniques de dualité en ramenant
le probleme non convexe étudé a des formulations de type primal-dual. Ceci nous a permis de
proposer des algorithmes efficaces de recherche numérique de minima globaux.

La these est structurée en trois parties, chacune composée de plusieurs chapitres. Nous
collectons dans la Partie A (Chapitre 1) des outils et techniques mathématiques de base se
rapportant au sujet. La Partie B est composée des Chapitres 2, 3, 4. Cette partie théorique
peut étre considérée comme la « colonne vertébrale » de la thése. Les contributions numériques
sont présentées dans la Partie C constituée des Chapitres 5, 6 dans lesquels nous étudions la
convergence des nouveaux algorithmes et présentons leur implémentation sur une plates-forme
de calcul haute performance.

Un apercu des chapitres 2, 3, 4, 5, 6 est donné ci-dessous.



viii Résumé de la thése

Chapitre 2. Un principe général de dualité pour des problemes
variationnels non convexes

Dans ce chapitre, nous introduisons le principe général de convexification dans un cadre abstrait.
Ensuite, nous 'appliquons a une classe de problemes non convexes du calcul des variations pour
lesquels un résultat de dualité est établi. Le probleme dual consiste a maximimiser le flux d’un
champ de vecteurs soumis a un systeme de contraintes ponctuelles convexes et a une contrainte
de type divergence. Les résultats obtenus dans [20] dans le cas de fonctionnelles a croissance
super linéaire (cadre WP, avec p > 1) sont étendus au cas de fonctionnelles & croissance linéaire
(définies dans W11 et relaxées dans BV'). Des conditions suffisantes d’optimalité sont reformulées
dans ce cadre tenant compte des discontinuités des compétiteurs dans 'espace BV et de la
relaxation de la condition de trace sur le bord.

Le principe général de convexification

On se donne une fonctionnelle F' : X — [0,+o0] de domaine non vide o X est un espace
topologique muni d’une topologie 7. Pour fixer les idées, on peut mettre au départ I’ hypothese
standard que les sous-niveaux {F < R} sont des parties 7—compactes de X. De cette facon, F'
atteint son minimum sur X.

On suppose que X s’injecte continuement dans un espace vectoriel topologique localement
convexe Y. Dans la suite cette injection sera notée

prueX — @, €Y.
L’idée est de construire une fonctionnelle convere G : X — [0, +00] telle que :

Gop=F |, lli}fG:lgl(fF. (1)

La construction d’une telle fonctionnelle convexe G s’avere en fait élémentaire lorsque 1'on fait
I’hypothese suivante :

(H1)

Il existe un sous-ensemble convexe métrisable compact K C Y
dont 'ensemble extrémal K satisfait : ¢(X) C K.

Rappelons que v est un point extrémal de K si I'égalité v = Gv; + (1—0)ve € K avec vi,v3 € K
avec 6 € [0,1] entraine que que v = v; = vy. Un cas particulier important est celui ot Y
est le dual d’un espace de Banach séparable Z muni la topologie faible-étoile. Alors, Y* peut
étre identifié avec Z lui-méme et tout ensemble convexe, borné, x-faiblement fermé K C Y est
compact métrisable et coincide avec 'enveloppe convexe de K .

Notant < -,- > le crochet de dualité entre Y et son dual Y*, introduisons la conjuguée de
Fenchel de la fonctionnelle Fyy définie par Fy(v) = F(u) si v = ¢(u) et Fy(v) = +oo si v ¢ ¢o(X).
Par conséquent :

Fy(v) = sup{<wv,g>—-F(p(u)) : ue X} .

On obtient alors une fonctionnelle G avec deux propriétés requises dans (1) en posant :
G(v) = Fy"(v) = sup{<w,g>—F(g) : g Y} .
Notons que la biconjuguée Fjj* coincide avec la convexification séquentielle de F{y donnée par :
np np
: fn s h hy . h
(Fo)*™*(v) = inf {hmhlanti F(uy) : Zti Py = ’U} ,
i=1 i=1
ott {th :i=1,--- ny} sont des scalaires dans [0, 1] tels que 3, t/ = 1.

Le point clé pour établir I’égalié ' = Fj* o ¢ est la propriété suivante des points extrémaux :



Résumé de la thése ix

Lemme 1. Soit x € K, V un voisinage de x et notons 1y la fonction caractéristique de V.

Alors
1y + xx)™(x) = 1.

En fait, ayant en vue des applications en analyse asymptotique, on peut étendre facilement la
construction de G au cas d’une suite de fonctionnelles F© : X — [0, +00] telle que F'* I'— converge
vers F' pour la topologie 7. On définit alors (F§)* : Y* — [0, +o0] puis (F§)™ : Y — [0, +o0]
comme ci-dessus et on suppose que la suite (F;) est uniformément coercive au sens suivant :

(H2)

Pour tout R, il existe un sous-ensemble 7-compact Cr tel que :
Ve>0, {fue X : F¢(u) <R} CCg.

On obtient :

Théoréme 2. Supposons que G° = (F§)** I'-converge vers G pour la topologie faible de Y .
Alors, sous les hypothéses (H1) et (H2), F© I'-converge vers F sur (X,7) ot F := G o .

Remarquons que, dans le cas particulier d’une suite constante F := F' avec F' non convexe
et & priori non s.c.i, on obtient une formule de dualité pour la régularisése s.c.i. de F : F(u) =
(Fo)**(py). Par ailleurs, le Théoréme 2 permet d’offrir une alternative au calcul d’une I'- limite.
Pour cela, il est utile d’introduire une variante du résultat permettant de se ramener a des
fonctionnelles homogenes G*. 11 suffit d’ajouter I’hypothese suivante :

(H3) 1l existe une forme linéaire continue lo € Y* telle que lop =1 sur K .

qui revient a supposer que le compact convexe K est contenu dans la base d’un cone convexe
fermé de Y. Pour tout € > 0, nous introduisons ’ensemble convexe de Y™* :

D, = {geY" : (F5)"(9) <0} = {g€Y" : <pu,g>< F(u) Vue X},

Alors sous I'hypothese supplémentaire (H3), on obtient que G*(v) = (F§)™(v) = xp_(v) pour
tout v € K. Le calcul de la I'-limite G sur ’ensemble K (nécessaire pour calculer G o ¢) se
ramene alors & celui de la limite au sens de Kuratowski D de la suite (D.). Une fois que cet
ensemble convexe D est identifié, on déduit la I'-limite F' & ’aide de la formule :

F(u) = sup{< p(u),g>: g€ D}.

Plus précisément, nous avons le résultat suivant :
Théoréme 3. Sous les hypothéses (H1), (H2), (H3) les trois conditions suivantes sont équiva-
lentes :
i) F© T'—converge vers une limite F' dans X,
it) (F§)™ I'—converge vers une limite G dans Y,

iii) D converge au sens de Kuratowski vers un ensemble D dans la topologie forte de Y*.

De plus, si l'une de ces conditions est vraie, alors F', G et D satisfont les relations

D = {geY" :<yy,9g>< F(u) Vue X}, (2)

Gv) = sup<wv,g> si<vly>=1, G(v) = +oo sinon, (3)
geD

F(u) = G(pu) = sup <y, 9> . (4)

geD
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Application aux problemes variationnels non convexes

Le principe de convexification abstrait décrit ci-dessus va s’appliquer a une classe de problemes
variationnels non convexes o I'inconnue est une fonction scalaire v € L*(£2) et £ un domaine
Lipschitzien borné de RY. Les espaces sont X = L'(Q) , Y = L>®(Q x R) et I'injection de
@ : X — Y est définie par :

1 if >t
prueX—1,€Y, 1,(z,t) == IU(SU)
0 ifu(z) <t

Il est facile de vérifier que I'application u + 1, est continue de L'() & valeurs dans L>°(£2 x R)
muni de sa topologie *-faible (nous sommes dans le cas on Y = Z* si Z = L(2 x R)). Par
ailleurs 'image de ¢ est contenue dans ’ensemble convexe

K :={ve L®(QxR) : v(z,t) €[0,1] pour p.p. (z,t) € 2 xR},

qui est un compact de L>°(£2 x R) muni de sa topologie *-faible. Il est facile de vérifier que 1, est
un point extréme de K car il prend ses valeurs dans {0, 1}. On est donc bien dans la situation
ot p(X) C K conformément a I’hypothese (H1).

Soit F : u € LY(Q) — R U +oo une fonctionnelle s.c.i vérifiant ’hypothése de coercivité
ci-dessous :

F(u) > k|ul — ¢, pour certaine constante adéquate k > 0. (5)
Pour tout R > 0, 'ensemble {u : F'(u) < R} est un compact de L(Q).

Nous considérons le probleme de minimisation

(P) inf {F(u) : ueL'(Q)}.

Sous I’hypothese (5), le probléeme (P) a au moins une solution et I’ensemble des solutions
Argmin(P) est un compact non vide de L!(£) (comme F est non convexe, nous nous attendons

a priori & des solutions multiples). L’hypothese (H 2) est vérifiée. Suivant la construction générale
précédente, nous définissons pour tout couple (v,g) € L>®(Q x R) x L1( x R)

(
(
Fy(g9) = sup {/ g(z,t) 1, dxdt — } G(v sup {/ guvdxdt — Fg(g)}
ueLl(Q) L/OXR gELOO(Qx]R) OxR
(6)

Appliquant le Théoreme 2, on obtient donc
G(1,) = F(u) pour tout u € L'(Q) . (7)
Notre principe de convexification se conduit au probleme d’optimisation convexe suivant
(Q) inf {G(v) : ve L*(Q xR;[0,1])} ,
dont I’ensemble des solutions Argmin(Q) est un faible-étoile compact non vide de L> (2 xR; [0, 1]).

Du fait que infx F' = infy Fyy = infy (Fp)*™*, les deux probémes ont bien le méme infimum (la
seconde condition de (1)), d’ot :

Lemme 4. On a inf(P) = inf(Q) et I"équivalence :

u € Argmin (P) <= 1, € Argmin (Q) .
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Pour que ce résultat théorique soit exploitable, il s’agit maintenant d’identifier 1’énergie
convexifiée G = (Fy)** et d’établir un schéma de dualité pour le probleme (Q) permettant
d’implanter des algorithmes numériques. D’autre part, s’il n’est pas réduit & un singleton, le
convexe Argmin (Q) contient des solutions v prenant des valeurs intermédiaires dans (0, 1) (i.e.
v n’est pas de forme 1,,); il s’agit de comprendre la structure de ces solutions et d’en déduire les
solutions du probléme initial (P).

Une réponse compléte a ces questions est obtenue sous une hypotheése supplémentaire sur la
fonctionnelle F' permettant d’utiliser I’ argument de « slicing » décrit ci-dessous. Notons

A= {v € L*®(Q xR) : v(z,-) non croissante (a.e. v € Q) , v(x,—00) =1, v(x,+00) = 0} .
Pour tout v € A et s € [0,1] , nous définissons
us(z) :=inf{r e R : v(x,7) < s}. (8)

Par construction, le sous-graphe de us coincide a un ensemble Lebesgue-négligeable pres avec
I’ensemble de niveau {r € R : v(z,7) > s}. Plus précisément

Ly (7,t) = Lpps sy (2, 1) pour p.p. (z,t) € A x R. 9)
Dans ce qui suit, nous noterons vg 1’élément de A défini par

vo(z,t) := 1g50y  (Clest-d-dire vg = 14, avec ug =0) .

Définition 5. On dit qu'une fonctionnelle J : L*°(Q x R) — [0, +o0] satisfait la formule
généralisée de co-aire si pour tout v € L>(2 x R) la fonction s — J(1,s4)) est Lebesgue-
measurable dans R et

T(v) = /_:O J(os)ds Vo€ L®(QxR). (10)

Théoréme 6. Supposons que F satisfait I’hypothése de coercivité (5) et qu’il existe une fonc-
tionnelle faiblement-étoile s.c.i. et convexe J : L>®°(Q x R) — [0, 400] satisfaisant la formule
généralisée de co-aire et telle que

J(1,) = F(u) pour toutu e L*(Q) . (11)

Alors, si{us:s € [0,1]} est une famille paramétrisée associée da v par (8), on a

1
/ F(us)ds sive A,
G(v) = Jo (12)
400 Sinon.
Done, siv € Argmin G, alors v € A et us € Argmin F for L'-p.p. s € (0,1). En particulier, si
le probléme initial (P) admet un nombre fini de solutions {u',...,u"}, alors
K K
Argmin G = {Ztkluk t, >0, Ztk:l} , (13)
k=1 k=1

autrement dit, toute solution v du probléme (Q) est une fonction constante par morceaux.

C’est une conséquence remarquable du Théoréme 6 qu’un minimiseur global pour le probleme
(Q) choisi adéquatement (en prenant t; € (0,1) dans (13)) peut encoder toutes les solutions
multiples potentiellement du probléme (P). Nous référons au Chapitre 6 pour les simulations
numériques de cette caractéristique intéressante.
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Un schéma de dualité

Une classe assez large de fonctionnelles est couverte par le Théoréme 6, en particulier

. 1,2
F(u) = { éf(u,Vu) dx — /\/Qp(x)udx , siue WyH(R)

sinon

ot f = f(t, ) est une fonction f: R x RN — (—o0, +-00] satisfaisant :
1
f est s.c.i. dans RV xR, Vt € R, f(t,-) est convexe , f(t,z) > k|z|> — z

ot k> 0, X est un paramétre positif et le terme source p(z) (charge) appartient & L™ () (' est
Pexposant conjugué de r) ou r est compatible avec 'injection Wol 2(Q) € L"(9) (cest de dire
r§%51N23,r<+oosiN:2).

Notons que la non convexité de la densité d’énergie f(u, Vu) ne se manifeste que par la
dépendance par rapport a u. En fait, la convexité par rapport a la partie du gradient est nécessaire
afin d’obtenir la semi-continuité inférieure de F'(u) et un probléme primal bien posé . Il s’avere
que la condition (11) va étre obtenue en considérant la fonctionnelle convexe 1-homogene définie
par :

—ztf(t, f—;) sizt <0

(14)
+00 sizt > 0.

J(v) = /QXRhf(t,Dv) ot hy(t, 2", ) ::{

Nous décrivons d’ici le probleme dual dans le cas simple ou f est de la forme f(t,2) =
g(t) + p(z) étant donnés ¢ : RN — R convexe continue avec p(0) =0et g: R — R U {400}
une fonction semi-continue inférieurement avec éventuellement de dénombrable discontinuités.
Le probléme primal s’écrit

(Py) inf {/Q (p(Vu) + g(u)) dx — )\/Qp(x)u de : u€ H&(Q)}

et sa version convexifiée est donnée par

(Qx) inf {/QXR hy(t, Dv) — A p(x)(v —wo)dzdt : ve A, v—1vy € BVp(2 x R)}

QxR

ou BVj(2 x R) désigne I'ensemble des fonctions intégrable a variations bornés dans Q2 x R et
dont la trace s’annule sur la frontiere latérale 992 x R (voir [103]).

Le probleme dual (désigné par (P3)) pour notre probleme non convexe (Py) est alors recouvert
en appliquant la dualité classique au probleme (Q)). Les compétiteurs de ce probléme dual sont
des champs de vecteurs o = (%, 0) : Q@ x R — RY x R pris dans la classe

X1 (2 xR) = {0 € L¥(Qx R;RVH) © dive € L (2 xR)}
et (P3) consiste au probleme du flux maximal ci-dessous :
(P3) Sup{—/at(x,O)dx c o€, —dive=Ap danstR} ,
Q

ot o € K signifie que le champs vectoriel o € X7 (€2 x R) satisfait les contraintes locales (convexe) :

o (2,1) = ¢ (0%(2,)) — g(t) pour LV +pp. (z,1) € Q x R .
ol(z,t) > —g(t) Vte S, et pour LN-pp. x€Q,
ou Sy est I'ensemble de discontinuités de g.

Le résultat principal obtenu dans [20] est qu’il n’y a pas de saut de dualité.
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Théoréme 7. inf(Py) = sup(Py).

Parmi les conséquences du Théoréme 7, nous pouvons obtenir (voir [20]) des conditions
nécessaires et suffisantes pour un minimiseur global de (P)), donc permettant d’exclure tous
les minimiseurs locaux qui sont minimiseurs non globaux. Une deuxiéme conséquence est une
caractérisation du point-selle qui permet la mise en ceuvre de I'algorithme primal-dual efficace
(voir Chapitre 5).

Le résultat ci-dessus peut étre étendu aux problemes aux conditions limites mixtes de type
Dirichlet-Neumann. En particulier, si u = ug est prescrit sur un sous-ensemble I'g C 92 pour
certain ug € WH2(Q), alors les compétiteurs o de (P;) doivent satisfaire une condition de
trace normale nulle sur (092 \ T'g) x R, tandis que le terme linéaire a étre maximisé devient
quo o - l/uod’HN , étant G, le graphe de ug avec la normale unitaire v, orientée vers le bas.
Pour le cas plus délicat avec les conditions aux limites de type Robin, nous référons a [20].

Lorsque la condition de trace ug est une fonction bornée, on peut en géréral établir par
principe de comparaison que les minimiseurs du probléme primal (P)) sont bornés. Dans ce cas,
I'infimum est inchangé si 'on impose u & valeurs dans un intervalle fermé adéquat I := [m, M| de
la droite réelle. Cela permet de réduire le probleme primal (Py) a la classe de fonctions admissible

{u € WA Q1) : u = ug sur Fo}. Le résultat de dualité reste valable en prenant comme

champs admissibles pour le probleme dual (P5) la classe K(ug, g, I) des éléments o € X1(2 x I)
satisfaisant les contraintes locales (15) sur € x I et les conditions d’équilibre

—dive=Ap(z) mnQxI |, 0% vg=0 sur (0N\Ty) x1I.

En conséquence, le probléeme convexifié (Q)) devient

(Qx) inf {/ hy(t, Dv) — A p(x)(v—vo)dadt : v € A(uo,I‘O,I)}
QxI QxI
ou ’ensemble des fonctions admissibles v est donné par
A(ug, To, I) := {U € BV(Qx I;[0,1]) :v=1sur Q@ x {m},v =0sur Q@ x {M},v=1,, sur I'g x I}

Si la solution de (Q)) est unique, alors elle est de la forme T = 15z ol @ est 1'unique solution de
(Py). Dans le cas de non unicité, la structure des solutions est donnée par le Théoréme 6. Une
caractérisation de type point-selle d’un couple optimal (v, ) pour (Qy) et (P5) est obtenue en
introduisant, pour toute couple (v, o), avec v € BV (2 x I;]0,1]) et o € X1(£2 x I), le Lagrangien

L(v,0) = / (0-Dv)=A [ p)(v—wvo)dudt. (16)
QxT QxT

Théoréme 8. Posant A = A(ug,To, I) et K= K(up,To,I), on a :

inf(Py) = inf sup L(v,0) = sup inf L(v,0) = sup(Py).
veA ek oek vEA

De plus, (U,7) est optimal si et seulement s’il est un point-selle de L, i.e.

L(v,0) < L(©,5) <L(v,5) VY(v,0)e AxK.

I'-convergence de fonctionnelles non convexes

Le Théoréme 6 peut étre appliqué a une suite de fonctionnelles du type précédent i.e. :

Fo(u) = /Q £ (u(z), Vu(z)) de,
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Un cas particulier célebre est celui étudié par Modica-Mortola ol f.(t,2) = elz|> + 1 W (t)
ot W : R — RT est un potentiel non convexe qui s’annule uniquement en deux valeurs o, 3
(potentiel diphasique) et € est un parametre infinitésimal. Une variante un peu plus générale de
cette fonctionnelle, étudiée dans [13] est de choisir fe(t,2) = 1f(t,e2)) out f : RxRY — [0, +00)
satisfait les hypotheses ci-dessous :

i) f est continue par rapport a la premiére variable et convexe par rapport a la deuxiéme;

ii) il existe deux nombres réels 0 < a < 3 tels que f(¢,0) > 0sit # «, B, f(a,0) = f(5,0) =0,
et pour tout z # 0 et tout ¢, f(t,2) > f(¢,0);

iii) il existe M > 3 tel que f(t,-) est borné localement, uniformément en ¢ € [0, M];

iv) il existe une fonction 1 a croissance super-linéaire telle que f(¢,p) > 1(p) pour tout ¢t € R
et pe RV,

L’approche par dualité proposée dans le Théoréme 6 permet de calculer la I'— limite de F** dans
LY(Q) par une méthode plus intuitive que celle utilisée dans [13]. Il est en effet facile de passer &
la limite simple sur 1’ensemble des contraintes associés au probléme dual (convexe D.). Une fois
connu la limite D de D, (au sens de Kuratowski), Iidentification de la I-limite F' a l'aide de la
formule (4) permet alors d’obtenir :

Théoréme 9. Quand ¢ tend vers zero, F T'—converge dans L*($2; [0, M]) vers la fonctionnelle
F' donnée par

/ h(va) dHN" siu € BV(;{a, B})
SuN

+o00 sinon .

F(u) =

ot h(z) est la fonction convexe positivement homogeéne de degré un définie par :

h(z) = /j

(fe(t,-) est Uenveloppe conique de f(t,-) et fX*(t,) est son enveloppe convexe)

fc**(tvz)dt ) fc(tVz) :;I;gfa(tvz) :

Extension du principe de dualité au cas des fonctionnelles a croissance linéaire

Jusqu’a présent nous avons considéré des fonctionnelles intégrales ou l'intégrande f(t,z) a un
comportement super linéaire a 'infini en la variable z = Vu. Cette hypothese est indispensable
pour obtenir 'existence d’une solution du probléme primal dans un espace de Sobolev de type
WP(Q) avec p > 1. Motivés par les problémes & frontiére libre de type surfaces minimales ou
variation totale qui seront abordés dans les chapitres suivant, il nous faut étendre les résultats de
dualité au cas de fonctionnelles non convexes a croissance linéaire. Ceci est fait dans la derniere
partie du Chapitre 2 ou le probleme primal se présente sous la forme

(P) inf {/Q (e(Vu) + g(u)) dz — /Qp(a:)u dr : uwe Wh(Q), u = ug sur 8(2} (17)

ol ¢ : RV — RT est une fonction convexe continue telle que klz| — + < ¢(z) < C(1 + |2])
pour certains constants k,C > 0, g : R — (—00, +00] est une fonction s.c.i. et up un élément
donné dans W1(Q). Pour que I'infimum de (P) soit fini, nous imposons sur les fonctions g et p
des conditions supplémentaires détaillées dans la Section 2.5. Le probléme (P) n’admet pas en
général de solution dans W11(Q). 1l faut le relaxer dans I'espace BV (2) ce qui est relativement
classique (voir par exemple [71, 72]). Le probléme relaxé (P) s’écrit sous la forme

(PR) min { E(u) : v € BV(Q)} (18)
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ou I’énergie a minimiser est donnée par
B(u) = [ (o(Vu) + 9(u) ~ payu) dz + /8 (w0 — wpe) dH
dDu
00 dl D¢ u d N-1
—i—/Qw (d!D%\)' u]—i—/ (vu) dH

p(s2)

(19)

(o p*°(2) := lim est la fonction de récession de ). L’infimum de ce probleme relaxé

s—+00
(PR) est atteint et que 'on a inf(P) = min(PR). Nous nous placerons dans le cas ot le domaine

de g est borné de sorte que les compétiteurs appartiennent a BV (2;I) ou I := [m, M| est un
intervalle fermé adéquat.

(PR) min { E(u) : ue BV(%1)] (20)

Une théorie de dualité et des champs de calibration doit étre réformulée pour ce probleme
(PR) en tenant compte des discontinuités de compétiteurs dans ’espace BV'. La fonctionnelle
convexe 1-homogene J sur v € BV (2 x I) a laquelle nous appliquerons la formule de coaire
s’écrit :

—2t (go(_z—;) + g(t)) sizt <0,
J(v) == /QXIh(t, Dv) ou h(t, 2%, 2') = ©™(2%) sizt =0, (21)
400 si 2t > 0.

Remarquons que la fonction 1-homogene I est maintenant bien définie pour z! = 0 car o™ est
finie. Par ailleurs

dDu
1,) = F(u) = d > d|Du Nt
9,0 = Fu) = [ (70 + g()do+ [ o (G700 Y dipeul+ [ (ule=(on) an
D’aprés Théoréme 6, le probléeme convexifié de (PR) s’écrit

(Q) inf{E(v) L e ,4(1)} (22)

ou

E(@) := J(v) 4 £(v), pour v € BV (2 x I),

(o) == — /Q  pl@)(v = vo) dadt + /6 (a0 — w)dHY e+ /6 (o) a !
Yuo (2,1) := ™ ((uo(@) — tva(z))  pour (z,t) € 90 x I,

A = {v € BV x I;[0,1]) : v=1sur Qx {m}, v=0sur Qx {M}}.

De maniére similaire a (12), on a :

= [ By wstnds = [ B1u)ds = [ Bu.)ds

pour tout v € A(I) tel que E(v) < +o0, et que inf(PR) = inf(Q) (voir Proposition 2.19).
De méme fagon d’établir le probléme dual dans le cas ou les fonctionnelles a croissance super
linéaire, nous associons (PR) & un probleme dual de (PR) écrit sous la forme

(P*) Sup{ / (z,0) dﬂ:—f—/ (ura)dHN =1 : o€ B(I)} (23)

ou B(I) est une classe des champs de vecteurs définie dans le sens suivant :
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- K(I) désigne la classe des champs de vecteurs o € X1(2 x I) satisfaisant les contraintes
convexe s

v

oa,) > ¢ (0% (1) — g(t) powr L pp. (2,6) € QX T, (24)
ol(x,t) > —p(0) — g(t) Vte S, et pour LV-p.p. z € Q. (25)

Ici, S, désigne I'ensemble de discontinuités de g supposé Lebesgue négligeable.
- B(I) est la classe des champs o € K(I) tels que

—dive =p dansQ x I, (26)
0¥ v = =0y, surdfdx I, (27)

ol 0¥ - v est la trace normale faible de o sur la frontiere 9(§2 x I).

Nous utilisons de mémes techniques dans [20] pour démontrer les résultats principaux de
la théorie de dualité au cas de problémes non convexes a croissance linéaire que : il n’y a pas
de saut de dualité (voir Théoreme 10) et que la condition d’optimalité (nécessaire et suffisante)
est fourni par des champs de calibration sur les graphes de compétiteurs (notés par G,) du
probléme primal permettant de caractériser tous ses minimiseurs globaux (voir Théoréme 11).

Théoréme 10. On a inf(P) = min(PR) = sup(P*).

Théoréme 11. Soit u, o admissible pour les problémes (PR) dans (20) et (P*) dans (23),
respectivement. Alors, u est solution de (PR) et o est solution de (P*) si et seulement si

h(t,vy) =0 -1y HY -p.p. sur G,,. (28)

ou de facon équivalente :

z)) € 0p(Vu(x)) pour LY -p.p. x € uTH(R\ S,), (29)

z)) = ¢* (0" (2, u(x))) — g(u(x))  pour LN-pp.x eu” R\ Sy,  (30)

ol(z,t) = —p(0) — g(t) Vt € R et pour LY -p.p. z € {u =t}, (31)
pour HN Tp.p. x € Sy et YVt € [u(z),u’ (z)], (32)
pour | Dul-p.p. sur Q. (33)

ou u* désignent les limites approzimatives supérieures et inférieures de u, et S, = {ut >u"}.
Nous appelons une tel o une calibration pour la solution u.

A ce cas de problémes non convexes & croissance linéaire, nous obtenons aussi une caractérisa-
tion de type point-selle d’un couple optimal (7,7) pour (Q) et (P*). Pour cela nous introduisons,
pour toute couple (v,0), avec v € BV (2 x I;[0,1]) et 0 € X1(Q2 x I), le Lagrangien

L(v,0) :=4(v) + 0 Dv

ol £(v) est le terme affine de E(v) (voir (22)).
Théoréme 12. On a

inf(P) = inf sup L(v,0)= su inf L(v,0) = sup(P¥).
) UEA(I)UGICI()I) (v,0) UGKF()I)UEA(I) (0,0) p(7")

De plus, (v,7) est optimal si et seulement s’il est un point selle de L sur A(I) x KC(I), i.e.

L(v,0) < L(v,7) < L(v,7) V(v,0) € A(I) x K(I).
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Chapitre 3. Une méthode de relaxation convexe pour des pro-
blemes aux frontieres libres

Nous nous intéressons dans ce chapitre a une classe assez large de problemes a frontiere libre,
notamment ceux que 1’on rencontre en traitement d’images ol la partie convexe de I’énergie est
de type variation totale. Pour ce type de problémes (en dimension 2), nous exploitons la théorie
des champs de calibration 3d pour établir un principe d’exclusion qui généralise celui découvert
par Visintin dans les années 1990. Grace a ce résultat, nous pouvons ramener un probleme
bidimensionnel a frontiére libre ou multi-phasique a la minimisation d’une fonctionnelle convexe
en dimension deux. Les tests numériques basés sur cette minimisation conduisent a des interfaces
d’une qualité surprenante.

Soit © un ouvert borné Lipschitzien de R et I" un sous-ensemble Borélien de 9. Nous
désignons par v la normale extérieure unitaire sur 9§2. Etant donné ug € L'(99), nous
considérons le probleme d’infimum

inf {/Q[h(Vu) +g(u) — p(x)uldr : we WHH(Q) , u = wug sur F} (34)

Les hypotheses que nous imposons sur h, g, p sont précisées suivantes :

(H1) La fonction h : RN — R est convexe continue, positivement 1-homogéne et telle que

Vze RN, Cilz| < h(z) < Co(1+2]) .

(H2) La fonction g : R — (—o00, +00] est une fonction semicontinue inférieurement avec éventuel-
lement des discontinuités. Nous supposerons qu’il existe un ensemble Lebesgue négligeable
D C R tel que g est semicontinue supérieurement sur R\ D, i.e.

limsupg(s) < g(t), vt e R\ D.
s—t
(H3) Le terme source p satisfait I'une des hypotheses suivantes :
a)p€ LYQ) sidomg:={t € R: g(t) < +oo} est borné,

9(t)

b) p € L" () si g satisfait lim inf 22 >0 pour r > 1 (' = 15).

e

Sous ces hypotheses, 'infimum dans (34) est fini et les suites minimisantes sont bornées dans
WH1(Q). En utilisant la méthode directe au calcul des variations, nous obtenons I'existence de
solutions pour le probleme relaxé dans BV (2) :

(Py) inf { Fy(u) : we BV(Q)}

ou Fy est défini dans BV (Q) par

/hDu +/ dx+/h ((up — u) vo)dHN 1 .

Notons que dans la notation ci dessus, nous indiquons la dépendence relativement a g car nous
aurons besoin de considérer plusieurs choix pour g.

Lemme 13. Sous les hypothéses (H1)(H2)(H3), on a inf (34) = min(Py). De plus, toutes les
suites minimisantes pour (34) est faiblement relativement compacte dans BV () et admet une
sous-suite convergeant dans L'(Q) vers une solution de (Py).
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Nous soulignons que ¢ est a priori une fonction nonconvex a valeurs dans (—oo, +00| et
que les discontinuités sont autorisées. Ceci est crucial si nous souhaitons associer a (P;) des
problémes a frontiere libre ou multiphasique.

Le résultat principal de ce chapitre (Théoreme 15) spécifie que, sous certaines conditions, le
probléeme de minimisation (P;) peut étre relaxé sous la forme (Py«+). Autrement dit, on peut
légitimement remplacer g par son enveloppe convexe ¢g** sans changer la valeur de 'infimum.
L’argument clé est le principe d’exclusion suivant :

Théoréme 14. Soit —0o < a < b < +oo tels que g < g dans (a,b) ot gqp est donné par

ga,b(t) — {g(t) sit ¢ (a, b) M

et M b i=
map(t —a)+g(a) sinon b b—a

Supposons que ug ¢ (a,b) p.p. sur I'. Alors, on a inf(Py) = inf(P,, ). En outre, si u est
solution de (Pg) alors u(x) ¢ (a,b) pour p.p. x € 1.

En particulier, le principe d’exclusion peut étre utilisé sur une union dénombrable d’intervalles
(a,b) sur laquelle g > gqp , c’est-a-dire I’ensemble suivant

Z = {9>g"} (35)

En fait, si Z est borné, nous pouvons appliquer le Lemme 3.5 (voir Chapitre 3) pour démontrer
que Z est une union dénombrable d’intervalles ouverts. En conséquence, nous considerons les
hypotheses supplémentaires suivantes :

(H4) Z :={g > ¢**} borné;
(H5) wop € R\ Z p.p.surI.
Nous sommes prét a énoncer notre résultat principal de relaxation convexe :
Théoréme 15. Sous les hypothéses (H1-H5), on a :
i) inf(Py) = inf(Pgex)
it) St u est solution de (Py), alors u(x) € R\ Z pour p.p. x € Q.

En particulier si g est tel que dom(g) \ Z se compose d’un nombre fini de nombres réels
t1 <--- <ty , alors solutions de (Py) sont de la forme

k
u= Zti]‘Ai , avec {A;,1 < i <k} partition Borelienne de Q. (36)
i=1

On a seulement ArgminP, C Argmin Py mais 1’égalité apparait au cas ou Py« admet
unique solution. Ce probléme de unicité pour (Py«+) semble étre une tache tres difficile car g**
n’est pas strictement convexe (du tout sur Z), nous référons au papier récent pour le resultat de
unicité dans un contexte similaire [15]. Nous croyons que 'unicité pour (P,) implique I'unicité
pour (Pg++) méme si nous ne sommes pas encore en mesure de le prouver. Actuellement, dans
beaucoup des exemples des problemes multiphasiques présentés dans Section 3.3, nous observons
une trés bonne convergence de I'approximation numérique de (Pg++) vers une solution de la
forme (36). Par conséquent, nous croyons que l'unicité tient génériquement en ce qui concerne
les données aux bords et les parameétres entrant dans la définition de g, 2.

Dans ce chapitre, nous introduisons également des approches numériques basées sur des
algorithmes primal-dual avec schémas explicite ou semi-implicite. La non différentiabilité de g**
est traitée par une méthode de projection sur I’épigraphe offrant une alternative tres efficace
a la méthode de régularisation classique. La conjonction de cette méthode de projection avec
le caractere semi-implicite de ’algorithme permet d’obtenir une convergence rapide avec une
excellente précision des interfaces obtenues (voir les Sections 3.3 et 3.4)
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Chapitre 4. Une méthode de calibration pour des surfaces mini-
males avec frontiere libre et un probleme de type Cheeger

Nous appliquons la théorie des calibrations & un probléme classique de surfaces minimales
avec frontiere libre et établissons de nouveaux résultats de comparaison avec sa variante ou la
fonctionnelle des surfaces minimales est remplacée par la variation totale (les deux fonctionnelles
coincident lorsque la surface est constituée exclusivement de plateaux). Nous montrons que
les deux problemes ne sont pas identiques en général notamment lorsque 'ouvert de référence
n’est pas un ensemble de Cheeger. A cette occasion, nous généralisons la notion de calibrabilité
introduite par Caselles-Chambolle et Al. et nous construisons explicitement une solution duale
pour le probleme associé a la seconde fonctionnelle. Aucune régularité n’est requise : le domaine
est ouvert convexe quelconque de R? et la construction utilise un potentiel localement Lipschitzien
lié a la distance au cut-locus.

Nous nous intéressons aux deux problémes a frontiere libre suivants

B(A) := inf {/D V14 |VulPde — M {u>1}] : ue Wol’l(D)}, (37)
Bo(A) := inf {/D(l +|Vul)dz — N {u=1}] : ue Wy (D), 0<u< 1}, (38)

olt D est un ouvert borné de RY. Le probléme d’optimisation associé & 3()) est une variante
de probleme $(A), olt 'on remplace la fonctionnelle [, /1 + [Vu|?dz par la variation totale
Jp(1+ |Vu|)dz. Par ailleurs, pour qu’une surface paramétrisée par u € VVO1 (D) soit minimale
dans le contexte du probleme (M), il est nécessaire que u soit solution du probléme aux limites

Vu
—div—F——=——==0 inD\Q 39
u=0 ondD, u=1 ondQ(u), (40)

ou Q(u) := {u = 1}. La frontiere libre correspond au bord de Q(u).

La motivation de ce chapitre est de caractériser les solutions de 5(A) et Bo(\) en utilisant la
méthode duale des champs de calibration, puis de comparer la valeur des infima S(\) et Sy(A).
Il est clair que B(\) < Bo(A) pour tout A > 0 (car on a /1 + [2[2 < 1+ |z| pour tout z € RY).
La question se pose de déterminer les valeurs de A\ pour lesquelles I'égalité 5(A) = Fp(A) a lieu.

Les énergies relaxées associées a () et fo(A) s’écrivent respectivement :

E ;:/1/1+v 24 +/dD5 +/ AHNT Al > 1),
N i [Vul*dx D| ul aDM [{u > 1}
E(u) = \D]Jr/ d\Du!—i—/ luldHY T — A{u = 1}].

D oD

Notons que —A|{u = 1}| peut étre présenté comme une intégrale [, go(u)dz ou go(t) = 0 si
t €[0,1), g(1) = =X et g(t) = +o0 sinon. D’autre part E\ et EY coincident sur la classe des
fonctions caractéristiques, i.e. E\(1g) = E9(1q) pour Q@ C D. Du fait que la variation totale est
homogene de degré un, le probleme [y(\) entre dans le cadre des résultats de relaxation convexe
obtenus au Chapitre 3. En particulier une solution du probleme [y(A) ne peut pas prendre de
valeurs intermédiaire dans (0,1) et Uinfimum [y(\) reste inchangé si 'on remplace go(t) par son
enveloppe convexe g§*(t). Par conséquent, on a :

Bo(M) min{/D(l +Du| - )\u)dat—i—/aD uldHV e BV(D;{O,l})} (41)
=min{|D|+ P(Q) — \Q| : QC D}

=Dl +m(A, D)
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ou m(\, D) désigne I'infimum du probleme géométrique suivant :
m(A\, D) :==min {P(Q) — A\|Q| : QC D}. (42)

Le probléme (42) est une variante intéressante du probleme de Cheeger pour laquelle nous
établissons les Propositions 4.4, 4.5, 4.6 et 4.7. Parmi celles ci, nous mentionnons deux résultats
faisant intervenir ’ensemble de Cheeger maximal de D. Notant hp la constante de Cheeger de
D et Cp son ensemble de Cheeger maximal, on a :

Corollaire 16.

(i) Soit A > hp et Q une solution de m(\, D). Alors Q D Cp, hq = hp, et Q, D ont les
meémes ensembles de Cheeger.

(7i) Soit (A\,) une suite telle que A\, > hp, A L hp et Q,, une solution de m(\,, D). Alors :

Cp= () Q- (43)

neN

La structure particuliére du probléme non convexe Bo()) sur RY permet de réduire le probleme
dual initialement en dimension (/N + 1) & un probléme en dimension N (voir Remarque 4.2) : en
effet le champ vectoriel o = (0%, o!) peut étre cherché sous la forme o(z,t) = (—q(x),tdiv, ¢ +
a(x)) et on est ramené & trouver ¢ : D — R solution de

sup {/ (divg — Ndz : g€ L®(D;RY), |¢| <1, 0<divg < )\} ) (44)
D
Ce probléme dual (44) permet alors de caractériser les solutions du probléeme géométrique

m(A, D), comme indiqué ci-dessous.

Théoréme 17. Le probléme dual (44) admet une solution G dans L>(D;RYN) et on a m(\, D) =
sup (44). Un couple optimal (2,q) pour m(\, D) et (44) est caractérisé par les conditions suivantes

|9l <1 p.p dans D, 0<divg< A p.pdansD, (45)
g-vo=1 HN 1pp. suroQ, divg=X p.p. dans D\ Q. (46)

Cette caractérisation suggere une extension de la notion de calibrabilité introduite par
Caselles-Chambolle et Al. dans [4], qu’on appellera 6-calibrabilité :

Définition 18. Soit # > 1 et Q C RY un ensemble borné & périmetre fini. On dit Q 6-calibrable
s'il existe un champ de vecteurs ¢ € L>®(€; RY) tel que

llalloo < 1, qg-vog=1 HN"Lpp. sur 99, 0 <divg < 0\q dans D'(Q).
a comparer avec la notion classique de calibrabilité [4] :

Définition 19. Soit © un sous-ensemble borné & périmétre fini dans RY. On dit Q calibrable
s'il existe un champ de vecteurs ¢ € L>(; RY) tel que

llgloo <1, q-vo=1 HN"Lp.p. sur 99, divg = X dans D'(Q),
pour certaine constante A € R.
Une caractérisation des ensembles 0-calibrables est donné ci-dessous.

Proposition 20. Soit Q C RY un ensemble borné a périmetre fini. Les conditions suivantes
sont équivalentes :
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(i) Q est solution du probléme m(0Aq,Y) pour certaine 6 > 1.
(ii) lq est solution de (41) pour A = 6Aq.
(iii) 1l existe un champ de vecteurs g € L=(Q;RN) tel que

lg) <1 p.p. dansQ, 0<divg<6OAqp.p. dansQ, q-vg=1 HY " p.p. sur 9Q.

Au cas ou Q est convexe et de classe OB, ces trois conditions sont en effet équivalentes a

(iv) On a
max {1, (N — 1)/100(8(2))\51} <49, (47)

0l Koo (0R) désigne la L*°-norme de la courbure moyenne de OS).

Rappelons que si D est un convexe de R?, 'ensemble de Cheeger de D est unique et s’obtient en
prenant la réunion des disques d’un certain rayon contenus dans D : posons pour tout § > 0 (§
doit étre plus petit que le rayon intérieur R de D)

D°:={zeD : dz D > &}

ou d(x, D) désigne la distance de x & D¢ := R?\ D. Alors il existe une valeur unique § = &*
telle que |D°| = w62, Alors, hp = 1/6* et 'ensemble Cheeger de D est donné par

Cp =U{B(z,0") : B(xz,0") C D} .

Cet ensemble Cp est calibrable au sens de la Définition 19. Nous allons construire des ensembles
0-calibrable de maniere similaire. Pour cela nous introduisons ’ensemble €2 suivant

o= |J B@ah. (48)
Bz "1)CD

Dans tout ce qui suit, on supposera que D est un convexe borné de R?.
Lemme 21. Soit A >0 et 0 = )‘)‘ﬁi' Alors Q) défini par (48) est un conveze 0-calibrable.

Notons que dans la discussion de caractérisation de #-calibrabilité, 2y lui-méme minimise le
probléme m(A, 2y). A Desprit de la théorie des champs de calibration, nous arrivons & construire
explicitement une calibration pour 2). Pour le faire, nous utiliserons un potentiel associé a la
distance au cut-locus.

Potentiel associé au cut-locus

Nous introduisons la fonction p : D — R, définie par
p(z) :==sup{d >0 : d(x,D°) <6} (49)

Nous appellerons p le potentiel de cut-locus associé a D. On peut vérifier que ’ensemble
{6 : d(xz,D%) — 6 <0} est exactement 1’ intervalle [0, p(2)]. Quelques propriétés intéressantes
du potentiel p sont données ci-dessous :

Lemme 22. p est continu, atteint son mazimum R dans ’ensemble central de D et p(x) >
d(z, D°). De plus, pour tout r > 0,

plx)=r<=d(z,D")=r<=x € 0Q1. (50)
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Lemme 23. p est continu sur D et localement Lipschitzien sur D (le gradient de p au point x
peut exploser quand d(xz, D) — 0). Sur 0D, on a :

1

kop ()

p(z) < et pla)=7(x),

ot kyp(x) est la courbure au point x et T(x) la distance normale au cut-locus :
7(x) = sup{t > 0 : x est l'unique projection de (x — tvp(x)) sur OD}.
Théoréme 24. Soit D C R? un domaine convexe borné. Dans 'ouvert {0 < p < R}, le potentiel

ﬂ) + % =0 (au sens des distributions).

localement Lipschitzien p satisfait Vp # 0 p.p. et div (IVPI

Corollaire 25. Soit 1 > 0 et u, la solution unique de

(Qu) inf{/Rz ]Du|+g/D(1—u)2 : uEBVO(D)}.

Alors, on a

up(r) = {(1_w>1<r>)+ si plr) < 7

<
(1 - hTD)_A'_ st p(x) > % (plateau).
Corollaire 26. Soit u > A > hp. Alors, pour s =1 — %, l’ensemble niveau
{u, >s}={p>1"1}=Q,

est solution du probléme m(\, D).

Une construction explicite pour des champs de calibration sur D

Soit D un sous-ensemble convexe borné dans R?. On sait que pour A = hp (la constante de
Cheeger de D) le probleme m(\, D) admet exactement deux solutions {0, Cp} (out Cp est
Pensemble de Cheeger de D). Pour A > hp, 'unique minimiseur est ’ensemble ) défini dans
(48). Nous retrouvons ce résultat en construisant une calibration g pour 2y, qui satisfait les
conditions suivantes :

|9l <1 p.pdans D, 0<divg< A p.pdansD, (52)
=

g-vo=1 HN"Lpp. surdQ, divg p.p. dans D \ Q. (53)

Pour cela, nous partons d'un champ de vecteurs g, € L*(£2, D;R2) tel que
lan,| <1, divgn, = hp p.p. dans Qp,, Thp - V0, =1 Hl-p.p. sur 0,

Comme (2, coincide avec I’ensemble de Cheeger de D, 'existence d’un tel champ est assurée
(mais malheureusement nous n’en avons pas une construction explicite). Ce champ gp,, est
compatible avec les conditions (52)-(53) sur I'ouvert €y, . La construction de g reste a réaliser
en dehors de €y, ,.

La deuxiéme étape est de construire g dans 2 \ Q. Cette construction est donnée expli-
citement par g, := —‘g—z‘ ou p est le potentiel du cut-locus que nous venons de introduire. Ce
champ g, satisfait d’apres le Théoréme 24

lgpl =1 dans Q \ Qp), qp-va, =1 sur 0y,
1
divg, = s divg, € [hp,A]  p.p. dans Qy \ Qp,,

Qp "V, = hp "V, = 1 sur 0Qy,,.
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Posant § = g, sur Q) \ Q4,, , nous voyons que g vérifie les conditions (52)-(53) sur tout I'ouvert
Q) (la divergence de g ne charge pas le bord de €2, car la trace normale gy, - Ve, est la méme
des deux cotés (égale a 1)).

La troisieme étape est de donner une construction de g dans D \ . Cette construction est
fournie par le résultat suivant :

Lemme 27. I existe un champ de vecteurs qy dans D\ Qy tel que
lgz| <1 dans D\ Q,, divgy = XA dans D\ Qy, Q- vo, =1 suroQ,. (54)

En fait le champ ¢, peut étre construit explicitement dans un ensemble en général plus grand
que D (voir la construction dans la preuve du lemme dans Section 4.3.4). Les conditions (54)
sont compatibles avec les conditions (52)-(53) et la continuité de la trace normale est préservée
a la traversée de 0€y.

En résumé, la construction de g est donnée par g = qp,,, dans £23,,, ¢ = g, dans €, \ Qp, et
G = q\ dans D\ Q,.

Résultats de comparaison

Discutons maintenant la relation entre S(\) et Sy(A) que nous avons évoquée au début du
chapitre. Nous introduisons les valeurs critiques de A suivantes
Ao =sup{A >0 : u=0solution de (A},
A1 =inf{\A >0 : u =1 solution de S(\)}.
On peut montrer facilemement le résultat suivant :
Théoréme 28. Si \g < A1, alors B(N) < Bo(A) pour tout X € (Ao, A1).

Autrement dit , 1’égalité S(\) = Bo(\) n’est possible que si S(A) (et donc aussi So(\)) admet
pour solution v = 0 ou u = 1. Par conséquent, si y(\) admet une solution unique de la forme
u = 1q avec 0 < || < |D|, alors on aura 'inégalité stricte 5(\) < So(N).

Dans les deux propositions suivantes, nous avons obtenu quelques estimations de ces valeurs
critiques Ag, A1.

Proposition 29. On a

P(D)

0<X <hp <—7~
D]

< A1

De plus, si D n’est pas un ensemble de Cheeger, on a l’inégalité stricte Ao < hp < %, donc
B(A) < Bo(A) pour tout A € [hp, %IT)).
Proposition 30. On a :
(1) Ao > A§ ou
A= {Il(hD) si hp <
l+hp—75 sihp >

INERNIE]

Y ds
; I(y):/o NoCEDR

(7i) OpAp < A\ <OpAp+1 ou bp est la constante de calibration de D et \p = P(D)/|D|. En
particulier, si D est un convexe de classe CV1, alors

max{Ap, (N — 1)keo(0D)} < A1 <1+ max{Ap, (N — 1)kao(0D)}.
Quand 0D admet un point singulier (cone normal non réduit a une seule direction), alors
A1 = +00 (i.e. u=1 ne peut jamais étre une solution de (X)).

Finalement nous présentons des simulations numériques dans le cas ot D = {z € R? : |z| <
R} avec différentes valeurs de \ et R (voir Section 4.4). Il apparait que les fonctions A\g(R) et
A1(R) coincident pour R < 1 alors que \g(R) < A;(R) pour R > 1.
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Chapitre 5. Un nouveau schéma semi-implicite basé sur la mé-
thode d’Arrow-Hurwicz pour des problemes de points selle

La derniére partie de la these est consacrée aux algorithmes d’optimisation utilisés pour la
validation numérique de la méthode de convexification que nous avons proposée. Il s’agit
notamment d’adapter les algorithmes existants de type primal-dual pour la recherche de points
selle, en introduisant de nouvelles variantes plus efficaces en précision (finesse des interfaces) et
temps calcul (notamment lorsque les champs de calibration du probléme dual sont 3d). Nous
avons en particulier introduit une variante semi-implicite de la méthode d’Arrow—Hurwicz (basée
sur un Laplacien inverse) qui permet de réduire le nombre d’itérations nécessaires pour obtenir
une qualité satisfaisante des interfaces. Par ailleurs nous avons traité la non différentiabilité
structurelle des Lagrangiens utilisés a 'aide d’une méthode géométrique de projection sur
Iépigraphe offrant ainsi une alternative aux méthodes classiques de régularisation (voir la Section
3.4 du Chapitre 3). De nombreux tests numériques sont présentés (2d ou 3d) avec un comparatif
entre les différentes méthodes.

L’objectif de ce chapitre est de fournir des algorithmes efficaces pour chercher des points
selle pour un certain Lagrangien L(u,p) sur des convexes fermés C, K, qui sont caractérisés par
les inégalités

L(a,p) < L(4,p) < L(u, p), Yu € C, Vp € K. (55)

D’habitude, on pense immédiatement a la méthode de descente-montée suivant la direction du
gradient. Pour un lagrangien général L(u,p), 'approche la plus simple introduite par Arrow-
Hurwicz a la forme

Pny1 = Ik (pn + Tngf;(umpn))
Upt1 = Hc(un — Tn%(u”’p”))'

ou Ilg, Il sont les projecteurs orthogonaux sur des convexes fermés K et C respectivement.
Il s’agit d’un algorithme d’optimisation itératif d’ordre un qui converge sous des conditions
tres strictes (notamment la stricte convexité-concavité) et pour un choix tres précis des pas
Tn = 0, >prgTn = 00 (cf. M. Kallio et A. Ruszczynski). Pour s’affranchir de ces contraintes,
L.D. Popov [97] a proposé une modification de la méthode d’Arrow-Hurwicz en introduisant un
réajustement intermédiare noté (u,,p,,) suivant le schéma suivant :

Pnt1 = g (pn + T%(“m]%))

unt1 = g (Un - T%(ﬂnapn)>
_ oL _ _
Pnt1 =k (pn+1 + T%(U"’p”)>

Un+1 = e (Un+1 - T%(ﬂm%))-

Il est démontré I'existence d’un scalaire positif 7y tel que I'algorithme modifié converge pour tout
pas constant 7 dans l'intervalle 0 < 7 < 7. Cette amélioration permet d’élargir la classe des
problémes ou la méthode est applicable a tous les Lagrangiens convexes-concaves dont les dérivées
sont Lipschitziennes. Par ailleurs I'introduction de points auxiliaires rend le processus itératif
plus stable. Toutefois les projections supplémentaires introduites sont compliquées et rendent
plus lourd le calcul numérique. Ensuite Chambolle-Pock et al. ont considéré des Lagrangien de
type linéaires de la forme :

L(u,p) = <Au,p> + <f’u> - <gap>a
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ot A est un opérateur linéaire continu et (-,-) désigne le produit scalaire associé sur les espaces
de Hilbert des variables u,p. Dans ce contexte, ils ont utilisé des points auxiliaires faciles a
mettre en oeuvre : P, 1 = Ppy1 €t Upp1 = 2Upq1 — Up. 1l est établi que I'algorithme itératif

Pn+1 = HK(pn + O‘(Aﬂn - g))
uny1 = e (un — B(A™prt1 + ) (56)

Upy1 = 2Upy1 — Up

converge vers un point-selle de L(u, p) si 'on choisit a, 8 > 0 tels que a3||A||? < 1. Ici A* désigne
lopérateur adjoint de A. Il y a eu ensuite beaucoup d’efforts pour accélérer la convergence des
algorithmes de type Arrow-Hurwicz par exemple dans [35] oi une méthode de variation des pas
de descente-montée est utilisée, ou en modifiant le choix de I'extrapolation des points auxiliaires,
ou en implémentant des schémas implicites. Dans un papier plus récent [36], un changement de
la métrique permet d’augmenter le pas de temps. Un tel résultat est obtenu pour un Lagrangien
général du type

L(u,p) = (Au, p) + F(u) — G(p). (57)

ou F' et G sont différentiables. Dans ce cadre de nombreux résultats de I’ordre de convergence
ont étés obtenus [35, 36]. L’idée principale y est de combiner la technique de type proximal
avec des schémas implicites classiques. Mais, pour étre efficaces, de telles méthodes demandent
que l'opérateur proximal soit facile a calculer en pratique et pour ce faire il est nécessaire de
pénaliser les contraintes convexes C' et K avec des fonction lisses définies dans tout espace entier.
Ces méthodes de pénalisation ne sont pas adaptées aux nos cas ou les convexes C' et K sont non
lisses et comportent un grand nombre de contraintes. L’objet de ce chapitre est de remédier a ces
difficultés en proposant des algorithmes nouveaux permettant de résoudre (57) dans le contexte
d’un grand nombre de contraintes et ensuite dans le contexte de fonctions non différentiables F
et G.

Nous considérons un Lagrangien L(u,p) défini sur V- x W ou V, W sont des espaces de
Hilbert. On se donne deux convexes fermés C C V et K C W, puis deux fonctions convexes
différentiables F,G : V' — R. Les dérivées premieres satisfont la condition de Lipschitz avec
les constantes Ly, L,, respectivement. Nous supposons en outre ’existence d’un point-selle
pour le Lagrangien L(u,p) (qui est acquise en pratique sous une hypothese de coercivité ou de
compacité).

Schéma explicite

Description de ’algorithme dans le schéma explicite

Initialisation : Soit n € N. Etant donné (ug, po) € C' x K, et Ty = ug.

pn+1 = Uk (pn + a(AT, — G'(pn)))
Un+1 = e (un — B(A Ppy1 + F'(un))) (58)

Upy1 = 2Upy1 — Up
ou A* désigne l'opérateur adjoint de A; Ilx, Ilo désignent respectivement les projecteurs

orthogonaux sur les fermés convexes K, C'; et les parametres «, 8 > 0 sont choisis de facon
convenable (précisés apres).

Nous obtenons le résultat de convergence suivant :
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Théoréme 31. Pour tous «a, 3 tels que

2 2
O<a<—, 0<B<—,
L, Ly (59)
L¢L aL, pL
2 Hflg g f
af (JJAI? - 2472} + 20 4 BS <1,
Ualgorithme (58) converge vers un point selle de L(u,p) dans C x K.
Notons que, quand F' = G = 0, le probléme (57) réduit a
L(u,p) = (Au, p), (60)

et 'algorithme (58) devient

Pn+1 = g (pn + aAHn)
Upt1 = Ho(un — BA™ppt1) (61)
Upt1 = 2Upy1 — Up.
Dans ce cas, les paramétres positifs «, 3 seront étre choisis tels que af||A4]|?> < 1, pour que (61)
converge vers un point-selle de L(u,p) sur C' x K. Le choix de «a, § est maintenant plus flexible

et ne fait pas intervenir les constantes de Lipschitz Ly, L,. Noter que dans le cas ot F', G sont
affines, on retrouve le résultat de Chambolle-Pock et al. [96].

Schéma semi-implicite

Dans le schéma explicite 1ié a la méthode d’Arrow-Hurwicz, 1’algorithme (58) est convergent
sous une condition de bornitude de 'opérateur linéaire A (le choix de «, 5 dépendent de ||A]]).
Dans la version semi-implicite présentée ci-dessous, cette dépendance n’existe plus.

Description de l’algorithme dans le schéma semi-implicite

Initialisation : Soit n € N. Etant donné (ug,po) € C x K et Ty = uyp.

Pt = U (pn + (AT, — G,(pn))
Unt1 = e (un — B(A* A+ 1) 7HA*ppi1 + F'(un))) (62)

Up+1 = 2U’n—i—l — Un
ol «, 8 > 0 sont choisis convenablement (& préciser plus tard).

L’opérateur A est supposé satisfaire I’hypothese suivante : Soit O est un fermé convexe de
I’espace de Hilbert V' tel que 0 € O et Ilp le projecteur orthogonal sur O.

VO, YueV, (A(u-—Tp(u)),Allp(u)) > 0. (63)

Noter que A satisfait automatiquement 1’hypotheése (63) quand A est une transformation
orthogonale. En effet, comme A*A =1, on a :

(A(u —TIlo(u)), Allp(u)) = (A*A(u — Ilo(u)), o (u)) = (u—Io(u), Ho(u)).

La condition (63) sera également vérifiée dans les applications que nous traitons ot A représente
Popérateur gradient V. Nous renvoyons pour cela a la Section 5.3.

Théoréeme 32. Soit AV — Z un opérateur linéaire, fermé de domaine dense, satisfaisant
Uhypothése (63). Pour tous a, B tels que

al,

<1,
2

2 2
0<a<— 0<fB<—,
o I, I5; I aff +

Ualgorithme (62) converge vers un point-selle de L(u,p) sur C x K.
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Lorsque le terme F'(u) est absent dans le Lagrangien L(u,p) alors I'algorithme (62) se réduit
a (voir Section 5.3 pour les détails)

Pny1 = g (pn + a(At, — G,(pn))
Unt1 = He(up — B(A*A) L A*pyiy)

Upy1 = 2Upy1 — Up

Dans cette situation, la condition (63) devra étre remplacée par ’hypotheése que A*A est défini
positif (donc inversible) et si de plus G est linéaire, les parametres positifs «, 5 devront satisfaire
la contrainte a8 < 1.

En conclusion, le schéma explicite généralisé (58) est tres bien adapté a la recherche de points
selles de Lagrangiens du type (57). La contribution principale de ce chapitre est de proposer
une nouvelle variante semi-implicite de cet algorithme qui converge sous des contraintes moins
restrictives sur les parametres numériques «, 5 qui ne dépend pas du pas de discrétisation. Le
schéma semi-implicite couplé avec la méthode de splitting pour la partie explicite offre une
diminution notoire du temps de calcul et du nombre d’itérations nécessaire pour atteindre une
solution satisfaisante (voir Section 5.4 et Section 6.1 du Chapitre 6). Méme si le temps dédié a
une itération est long (en raison du solveur choisi pour le Laplacien), le cotit global en temps
calcul est réduit de facon particulierement importante lorsqu’on traite une grille tres fine afin d’
obtenir des interfaces plus précises.

Pour terminer, quelques remarques sur le cas non différentiable : c’est une situation que
nous rencontrons dans le traitement numérique des probléeme a frontieére libre ou multiphasique
abordés au Chapitre 3 (voir Section 3.4). La technique classique de régularisation du Lagrangien
s’avere peu efficace en ce qui concerne la qualité de la frontiere libre. Une alternative prometteuse
est la mise en ceuvre d’une méthode de projection géométrique sur les épigraphes de F' et G.
Cette méthode est complétement compatible avec le schéma implicite que nous proposons et
s’avere spectaculairement efficace dans les exemples de problemes a frontiere libre traités dans la
Section 3.4 du Chapitre 3.

Chapitre 6. Algorithmes primal-dual pour des problemes a fron-
tiere libre

Ce chapitre est consacré aux simulations numériques de problemes aux frontieres libres. C’est
I’occasion non seulement de rafraichir le sujet avec une présentation illustrée par de nombreuses
simulations, mais aussi de valider la théorie de la dualité introduite au Chapitre 2 pour les
problemes variationnels non-convexes. C’est ici en fait que sont testés les performances des
algorithmes explicites, implicites basés sur la formulation primal-dual (discutés dans la Chapitre
5). Notons que les Lagrangiens que nous avons traités sont en dimension trois et qu’ils sont
testés relativement a la convergence vers un point selle 3d. Une procédure est ensuite mise en
place pour retrouvrer les solutions 2d des problémes primals. Ces combinaisons de techniques
fournissent une approche numérique intéressante pour une classe assez large des problemes
variationnels non convexes.
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Perspectives et problemes ouverts

En ce qui concerne la théorie de dualité étudiée et développée au Chapitre 2, nous sommes
conduits & des perspectives et quelques problemes ouverts qui peuvent motiver des travaux
futurs.

Fonctionnelles définies sur une espace de fonctions a valeurs vectorielles

Les arguments dans la Section 2.2 ont été développés seulement dans le cas de fonctions scalaires.
Précisément, I’espace X qui s’injecte dans les points extrémaux d’un convexe compact a toujours
été L1(Q) et 'injection l'application ¢ : v € X +— 1, € Y ou Y = L®(Q x R;[0,1]). Une
extension de la méthode & des fonctions a valeurs vectorielles requiert de construire une autre
injection. Un choix simple serait d’associer au champ vectoriel u € L'(Q; R") la masse de Dirac
en u(x) de sorte que op(u) est la mesure de Young sur  x RY définie par :

< o(u), >= /sz(x,u(x))da: c e OV xRY) .

Si |2] =1 et u(w) est dans un compact convexe donné K C R¥ alors ¢(u) est un point extréme
de I'ensemnle de mesures de probabilité sur €2 x K dont la premiére marginale coincide avec la
mesure de Lebesgue sur €2. Néanmoins, le calcul explicit de la fonctionnelle convexifiée semble
difficile dans ce cadre général. Une alternative possible serait de faire appel a des outils de la
théorie de la mesure géométrique tels que les courants Cartésiens ou les varifolds [90, 69, 70].

Fonctionnelles intégrales dépendant de la matrice Hessienne

Revenant au cas scalaire, il serait particulierement intéressant de développer une théorie de
dualité pour la minimisation de fonctionnelles du type

= / f(Vu, V) dx
Q

ot f(z, M) : RN x Rg,éN est une fonction convexe en M mais pas en z. La procédure générale
de convexification décrite dans la Section 2.3 du Chapitre 2 pourrait étre développée dans ce
contexte. On s’attend a ce que le tenseur de courbure en chaque point (z,u(z)) du graphe de u

joue un role clé dans le calcul de la fonctionnelle convexifiée.

Fonctionnelle de Mumford-Shah

Les problemes & discontinuité libre ont été une motivation premiere pour le principe de convexi-
fication présenté dans le Chapitre 2. L’objectif du papier de référence [1] était de démontrer
I'optimalité de certaines configurations pour le probléme de segmentation d’images décrit ci-apres.
Soit 2 un domaine Lipschitzien borné de R? et g : © — [0,1] (représentant les données de
niveaux de gris).

(P) inf {/ |Vu|2 dz + H( / lu — g( 2dm}
u€SBV(Q) | Ja\s, 2

Il s’agit d’un probleme bien posé (existence au moins d’un minimiseur) dans ’espace SBV ()
des fonctions u € L'(Q) dont le gradient au sens distributions Du se décompose en une partie
réguliere Vu (coincide avec le gradient défini p.p.) et une partie singuliére concentrée sur
I’ensemble de saut S, qui est un sous-ensemble rectifiable de dimension 1 (inconnu) de € dont
la longueur totale est notée H!(S,). Une formulation plus mécanique de (P) (populaire en
mécanique des fractures) s’écrit

inf / 1|Vu|2dx+H1(K)+1/ lu—g(z)?de : K fermé C Q, u € C1(Q\ K)
Q\K 2 2 Ja
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Comme le terme source g satisfait 0 < g < 1, en utilisant un argument trivial de troncature,
on vérifie facilement que I'infimum de (P) est inchangé si restreignons aux compétiteurs u a
valeurs dans [0, 1]. Nous considérons donc 'espace métrique X = L1(Q;[0,1]) sur lequel nous
définissons la fonctionnelle

Flu) = /Q\S 2|Vu\2da:+7-l 2/ lu—g(z)|*de siue€ SBV(Q;]0,1])

+0o0 sinon.

Alors, F' est coercive et s.c.i. La fonctionnelle convexe G : L*°(£2 x [0, 1]) — [0, +-00] associée a F’
via la construction de la Section 2.3 du Chapitre 2 (voir aussi la Remarque 2.12), est définie
formellement par :

Gv) = sup {/ gvdxdt — F;(g)} , Fy(g) = sup {/ g(x,t) 1, dedt — F(u)}
geL>=(Qx[0,1]) | /x[0,1] weXx | Jax(0,1]

On a bien G(1,) = F(u) pour tout u € X et inf(P) = inf {G(v) : v e L>®(Q x [0,1];[0,1])}.

Malheureusement, cette fonctionnelle G abstraite ne peut pas étre identifiée en utilisant la
formule de co-aire (12) et, a notre connaissance, aucune formule explicite pour G n’est disponible.
Alternativement, dans [1], une autre fonctionnelle s.c.i. convexe J a été utilisée telle que J < G
mais satisfaisant J(1,) = G(1,) = F(u) pour tout v € X. Bien que l'on ne sait pas si J a le
méme infimum que G, un schéma de dualité appliqué a J a été utile notamment pour vérifier
loptimalité de certains compétiteurs pour le probleme (P) (voir plusieurs exemples dans [1]).
Dans le cadre de la minimisation de J, le probleme dual s’écrit comme suit :

(Q) sup{—/ o'(x,0)dr : 0 €K, divo =0dans Q x [0,1], 0" - vqg = 0 sur 9Q x [0,1]}
Q

ou la contrainte convexe o € IC se divise en deux conditions :

1 1
i) §’Ux|2 <o+ ilt—g(:r)IQ p.p. dans Q x [0,1]

to
/ o%(x,s)ds
t1

La deuxiéme condition prend en compte l’énergie de saut dans F(u) et est non locale. L
fonctionnelle J définie dans BV (2 x R; [0, 1]) vérifie la formule de coaire et satisfait

< 1 ,p.p.x € et pour tout (t1,2) € [0,1]?

ii)

J(v) = sup{/QXR(Dv-a) o EeEKR, O‘ECI(QXR)} .

On a bien J(1,) = F(u) pour tout u € L*(2) tandis que J(v) < +oco implique que v(z, ) est
non croissant. On obtient :

Proposition 33. Soit g € L>°(Q;[0,1]). Alors, inf(P) > sup(Q) avec l’égalité si, pour une paire
(u,0) admissible, on a

oz, u(x)) = (Vu(z), sVl = Ju—g*) pp ze
I (@) o(x,t)-v, = 1 Hpp.ze€S,,

u™ ()

(64)

ot ut désignent les limites approximatives supérieures et inférieures de u, et S, = {u™ > u~}.

Notons que le dernier résultat n’est utile que lorsqu’il est possible de deviner des couples
particuliers (u, o) satisfaisant les conditions (64). Quand un compétiteur u est candidat & étre
un minimiseur global, chercher un ¢ fournit une condition suffisante d’optimalité. Notons que,
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grace aux relations (64), un tel champ de vecteurs o (s'il existe) a ses valeurs prescrites sur le
graphe de u (du moins sa trace normale). La difficulté est de ’étendre en dehors du graphe de u
tout en préservant les contraintes i) et ii) et la condition de divergence nulle. Nous référons a [1]
pour des constructions explicites dans le cas de conditions de type Dirichlet. Malheureusement,
il n’a pas été possible de trouver un champ de calibration permettant de démontrer 'optimalité
d’une fonction du type crack-tip. En fait, 'existence d’une telle calibration ne peut étre garantie
que si la conjecture suivante est vérifiée :

Conjecture : L’égalité suivante a lieu : inf(P) = sup(Q).

Postulant a priori la validité d’une telle conjecture, des schémas numérique liés a un algorithme
primal-dual ont été utilisés récemment pour résoudre le probléme (P) (voir [96]). Au meilleur de
nos connaissances, aucun saut numérique réfutant la conjecture n’a jamais été mis en évidence.

Question d’unicité de la solution pour un probléme multiphasique

Dans le Chapitre 3, nous avons prouvé (voir Théoréme 3.3) que tous minimiseurs du probléeme
non convexe sont des minimiseurs du probleme convexifié. Cependant, ’énoncé inverse pourrait
étre faux bien que nous n’ayons aucun contre-exemple. A ce stade, se pose une question ouverte
profonde : Est-il possible de montrer I'unicité pour le probleme convexifié malgré le fait que le
potentiel convexifié g** n’est pas strictement convexe 7 Remarquez que dans le cas intéressant
que nous avons traité, g** est affine par morceaux.

Critére d’optimalité pour les interfaces d’un probéme multiphasique anisotrope

Dans le Chapitre 3, les conditions d’optimalité géométriques que nous avons trouvées pour les
interfaces ne sont valables que dans le cas isotrope de la fonctionnelle de la variation totale (la
relation entre la courbure algébrique des interfaces et les sauts respectifs du minimiseur u et de
la densité g(u) est donnée par I’équation (3.11)). Au vu des résultats de simulation numérique
de la Section 3.3.2, il serait intéressant de trouver I’équivalent de la formule (3.11) en termes de
conditions nécessaire d’optimalité.

Perspectives pour les applications numériques

Notre algorithme semi-implicite (dans lequel un Laplacien inverse est utilisé) s’avere efficace
non seulement en terme de précision (finesse des interfaces) mais aussi en temps de calcul. De
plus quand ce schéma numérique est combiné avec la méthode de projection de I’épigraphe, il
permet de traiter de nombreux Lagrangiens non différentiables. Dans des travaux futurs, nous
envisageons une étude compléte sur I'ordre de convergence de cette méthode, en particulier en
comparaison avec le schéma implicite classique. D’autre part, lorsque le probléme considéré
nécessite un schéma de dualité en dimension trois, le nombre d’itérations nécessaires pour obtenir
des interfaces nettes est considérablement plus grand et dans ce cas un temps de calcul acceptable
requiert 'utilisation d’une plate-forme de calcul haute performance (parallele). Un objectif futur
est de réduire ce temps de calcul en affinant notre approche globale lorsqu’on est proche d’un
optimum global par des outils spécifiques au voisinage des interfaces.
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The search for global minima of non convex variational problems is a delicate issue. Due to the
lack of convexity, an optimality criterion like Euler’s equation or second order conditions is not
sufficient to characterize a global solution among all critical points and even in the subclass of
local minimizers. As a dramatic consequence, all classical optimization algorithms may converge
to a local minimizer without any possibility to check whether it is indeed a global one. The
difficulty is twofold: firstly, we need a theoretical framework providing necessary and sufficient
optimality conditions; secondly, we have to propose new numerical methods which allow to rule
out all local minimizers (or critical points) and to reach global minimizers in an acceptable
computation time.

Motivated in such a context, this thesis aims to study and develop a general new convexifi-
cation principle allowing to treat a specific but large class of non convex variational problems.
Thanks to this principle, we are able to enforce the powerful duality techniques and bring back
such problems to primal-dual formulations, thus making the numerical search for global minima
efficient.

The thesis is structured into three parts, each of them consisting of several chapters. We
collect in Part A (Chapter 1) some useful mathematical background supporting essentially the
research of the topic. Part B is composed of Chapters 2, 3, 4. This part can be considered as
the “backbone” theoretical part of the thesis. The numerical contributions are presented in Part
C along Chapters 5, 6 in which we study the convergence of new algorithms and present their
implementation on high performance computing platforms.

A short summary of each of the five chapters is given below:

e In Chapter 2 the general convexification principle is presented. We then extend the results
of the duality theory obtained in the case of super linear growth functionals (defined in
WP with p > 1, see [1, 19, 20, 22]) in the case of linear growth functionals (defined in
Wh! and relaxed in BV). A theory of duality and calibration fields is reformulated in this
framework taking into account the discontinuities of the competitors in the BV space.

e In Chapter 3 we are interested in a fairly large class of free boundary problems, particularly
in the context of image processing where the convex part of the energy is of the total
variation type. For this kind of problem (in dimension 2), we exploit the theory of 3d
calibration fields to establish an exclusion principle that generalizes the one discovered by
Visintin in the 1990s [107]. Thanks to this result, we can reduce a two-dimensional free
boundary or multiphase problem to the minimization of a convex functional in dimension
two. Numerical tests based on this minimization lead to interfaces of unexpectedly high
quality.

e In Chapter 4, we apply the theory of calibrations to a classical problem of minimal surfaces
with free boundary and establish new results from the comparison with its variant where
the functional of the minimal surfaces is replaced by the total variation (the two functionals
coincide when the surface is exclusively constituted of plateaus). We show that the two
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problems are not identical in general, especially when the integral domain is not a Cheeger
set. On this occasion, we generalize the concept of calibrability introduced by Caselles-
Chambolle and Al. [4] and we give an explicit construction of a dual solution for the
problem associated with the second functional. No regularity is required: the domain
is any convex open subset of R?. The construction uses a locally Lipschitzian potential
related to the distance to the cut-locus.

The two last Chapters 5 and 6 of the thesis are devoted to the optimization algorithms
used for the numerical validation of the convexification method that we proposed. This
involves adapting the existing primal-dual algorithms for the search of saddle points, by
introducing new variants which are more efficient in precision (fineness of the interfaces)
and computational time (notably when the calibration fields of the dual problem are 3d). In
particular, we introduce a new semi-implicit variant of the Arrow-Hurwicz method (based on
an inverse Laplacian) which permits to reduce the number of necessary iterations to obtain
a high quality of the interfaces. Moreover, we treat the structural non-differentiability
of Lagrangians used with a geometric projection method on the epigraph, thus offering
an alternative to classical regularization methods [95]. Numerous numerical tests are
presented (2d or 3d) with a comparison between the different methods.
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Mathematical background and
notations






Chapter 1

Preliminaries

This chapter is devoted to recall basic mathematical notions which provide
important analysis tools for the thesis. We begin in the first section
with the direct method in Calculus of Variations and the notion of I'-
convergence. In the next section we collect some useful tools of Convex
Analysis. Then, we summarize the properties of lower semicontinuity of
functionals defined in Sobolev spaces and the relaxation techniques for
linear-growth functional in BV space (some notions in Geometric Measure
Theory will be invoked). The last sections of this chapter are added
to recall the methods of convex duality, classical algorithms based on
primal-dual formulations.

1.1 Direct method in calculus of variations. I'-convergence

The direct method in the calculus of variations is a general method for deriving the existence
of a minimizer for a given functional. This method rests upon two important notions : lower
semicontinuity and compactness conditions (called sometimes coerciveness conditions), in order to
show that minimizing sequences admit a subsequence converging to a minimizer of the functional.
Let us briefly present these two notions in a general topological space. For a very extensive
survey we refer to [27, 72, 25].

In the following, we denote by X a normed vector space and 7 a topology on X. By
convention, if we do not specify the topology 7, it is the topology induced by norm. We denote
by f: X — RU {400} an extended real-valued function, dom f = f~!(R) the domain of f.
An extended real-valued function f is said to be proper if dom f # (), in other words it is not
identically +oco. We shall use the notation {f < a} :={z € X : f(z) < a}, and similar. We
define the epigraph of f (denoted by epi(f)) as the subset of X x R :

epi(f) =={(z,a) e X xR : f(z) < a}.

1.1.1 Lower semicontinuity

Definition 1.1. Let f: X - RU{+o0} and z € X.

(i) f is 7-lower semicontinuous (shortly seq. 7-l.s.c.) at x if
Va e R, (f(z) >a)= (AU e N, : irl}ff>o¢) (1.1)

where N, denotes the family of all 7-neighborhoods of x.
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(ii) f is T-sequentially lower semicontinuous (7-sequentially l.s.c.) at z if

V(aj) € X, (a; B o) = (f(a) < limint f(s,)) (12)
or in other words
f(x) = min {ljlgl_ﬁgj fz) « z; 5 a:} (1.3)

We see that if f is 7-l.s.c. at x, then f is 7-sequentially l.s.c. at x. The converse is true if x
admits a countable basis of neighborhoods, thus the two notions are equivalent if for instance
the topology 7 is metrizable.

We say that f is 7-(sequentially) lower semicontinuous on X if it is 7-(sequentially) l.s.c. at
all z € X. And a function f is said to be 7-upper semicontinuous (7-u.s.c.) if —f is 7-ls.c.

Remark 1.2. Tt can be checked that a function f is lower semicontinuous on X if and only if
every lower level set {f < a} is closed or if and only if its epigraph is a closed subset of X x R.

By exploiting one of the equivalent properties in previous remark, it is easy to deduce the
following stability property

Lemma 1.3. If (f;)ics is a family of T-l.s.c. functions, then

f(x) = sup fi(x)

el

is 7-1.s.c.

Theorem 1.4. Let 7 be a topology on X such that (X,7) is a compact topological space. If
f: X > RU{+o0} is a 7-L.s.c function on X, then

Argmin f := {x €eX : f(x)= igl(ff}
1s a nonempty closed subset of X.

Proof. Let C' = f(X) C (—o0,+00], and for c€ C let F, ={z € X : f(x) <c¢}. Since f is 7-
Ls.c., F, is a 7-closed set. Suppose {c1,ca,...,cp} C C. By taking c = min{cy : 1 <k <n}eC,
we have

n
m F, cp — F. ?é 0.
k=1
This shows that the collection {F, : ¢ € C'} has the finite intersection property (the intersection
of finitely many members of its is nonempty). But a topological space is compact if and only if
for every collection of closed subsets with the finite intersection property the intersection of all
the members of the collection is nonempty [91]. Applying this theorem, we get that

() Fe#0.

ceC

and this intersection is closed because each member is closed.

Let € e Fe- Then for all ¢ € C we have f(z) < ¢, and because C = f(X) this means
that for all y € X we have f(z) < f(y). Therefore, z € Argmin f. Now let € Argmin f. Then
for all y € X we have f(x) < f(y), hence for all ¢ € C we have f(z) < ¢, hence z € (.c¢ Fe.
Therefore Argmin f = (\.cc Fe, which we have shown is nonempty and closed, proving the
claim. |

Obviously the compactness assumption in Theorem 1.4 can be weakened by requiring the
existence of a T7-compact subset K of X such that infyx f = infx f. In practice, for applying the
existence result, we need to find a topology 7 for which this condition is fulfilled together with
the lower semicontinuity of f.
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1.1.2 Coerciveness conditions

We recall that a set K C X is 7-precompact (or 7-relatively compact) in X if its closure is
T-compact. K is 7-sequentially precompact if

V(z;) € K 3(xj,) : x;, T-converges in X.
And K is said to be T-sequentially compact if
V(z;) C K 3 € K,3(x;,) : 7, — .
Definition 1.5. Let f: X — RU {+o0}.
(i) f is T-coercive if for all a € R the sublevel set {f < a} is 7-precompact;

(ii) f is 7-mildly coercive if there is a non-empty 7-compact set K C X such that
inf f = inf f.
iny f iny f

Remark 1.6. We observe that if f is 7-1.s.c. and 7-coercive, then for all « € R the set {f < a} is
T-compact. Besides, if f is 7-coercive then it is 7-mildly coercive. In fact, if f is not identically
+o00, then there exists a € R such that {f < a} is not empty, and K may be taken as the
closure of {f < a} in X (when f = 400, we can take K as any 7-compact subset of X). Notice
that 7-mild coerciveness does not implies 7-coerciveness in general. For instance, any periodic
function f : RY — R is a mildly coercive function, but it is non-coercive. An intermediate
condition between coerciveness and mild coerciveness is: there exists a € R such that {f < a}
is non empty and 7-precompact.

Theorem 1.7. Let f: X — RU {400} be a proper function such that
(i) [ is T-l.s.c.;
(ii) f is T-mildly coercive.
Then there is T € X such that f(T) = infx f and the set Argmin f is T-compact.

Theorem 1.7 is a direct consequence of Theorem 1.4. In fact, as f is 7-mildly coercive,
there is a non-empty 7-compact subset K of X such that infx f = infx f. Then the restriction
flx is still 7-l.s.c. on the 7-compact K, hence f attains its minimum in K and the set
Argminy f = Argming f is 7-compact.

As mentioned in Remark 1.6, the condition (ii) in Theorem 1.7 can be replaced by that
f is T-coercive. When 7 is a sequential topology, we can use the sequential notions of lower
semicontinuity and coerciveness instead. Indeed, in order to minimize a function on a sequential
topological space, we need only the lower semicontinuity and the coerciveness of f along the
so-called minimizing sequences.

Definition 1.8. A sequence (z;) C X is called a minimizing sequence for the function f on X if

Jim f(ay) = in £

Such a minimizing sequence always exists thanks to the definition of infx f. We shall prove
in the following Theorem 1.7 within a sequential topology 7 (when 7 is a general topology on X,
the direct method might also be used for Theorem 1.7, just replacing sequences by nets and
subsequence by cofinal subnets). Despite of repetition, the proof is short and very useful in
practice, which provides the usual direct way to show the existence of minimizers for a minimum
problem.
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Proof of Theorem 1.7. Suppose that 7 is a sequential topology. Let K be a T-compact subset of
X such that infg f = infx f. For every minimizing sequence for f on K, by possibly extracting a
converging subsequence, we find a sequence (r;) C K such that f(z;) — infx f and z; > T € K.
Then the lower semicontinuity of f induces

. < £(F) < Tim i N —inf f
inf f < f(z) < lim inf f(z;) = inf f
It completes the proof with T € Argmin f. |

It is figured out that the combination of lower semicontinuity and coerciveness conditions
assures the existence of minimum points. This type of argument based on the use of minimizing
sequences is referred to as the direct method of the calculus of variations (as we have already
mentioned at the beginning of the section), which allows to construct a minimizing sequence
converging to a minimum point of a given function. When dealing with a differentiable functional
f defined on a topological vector space, the indirect method consists in studying the minimization
problem via the Euler equation f’(x) = 0.

1.1.3 Relaxation

In many cases, f does not own the lower semicontinuity property. In such cases, minimum
points of f may not exist. Nevertheless, we are interested in charcaterizing the limit points of
minimizing sequences. To that aim, we introduce the so-called [.s.c. envelop of f whose existence
follows from Lemma 1.3.

Definition 1.9. Let f : X — RU{+o00}. We define the relaxed function 77 and the sequentially
relaxed function f % by, for every z € X:

F(x)={g9(x) ]| g: X 2 RU{+0}, gis m-ls.c. , g < f},

7Y x) = inf {liminff(a:j) Dz a:}

J—+0o0

T Se

The relaxed function f is also called the 7-l.s.c. envelope of f (similarly, f
sequentially L.s.c. envelope of f).

4 is the 7-

By Lemma 1.3, the function f is 7-l.s.c. and it is the greatest ¢ 7-l.s.c. with ¢ < f.
Obviously, f* = f if and only if f is 7-Ls.c. The function f " is 7-sequentially l.s.c. When 7 is
sequential, its holds for every = € X,

F(z) = f>Yx) = liminf f(y) = min {lim inf f(z;) : z; > x}
. J—+00

y o
Theorem 1.10. Let f: X — RU {400}, then

(i) Vo € X, T (w) = suppey, infy f,

(ii) epi T = clxxr(epi f),

(iii) infx f =infx f,

() if f is T-coercive then f' attains its minimum and

Argmin f = Argmin f' N {x €eX : f(x)= F(m)}

We remark that the minimum points for f  are exactly all the limits of converging sequences
(x) such that lim; f(x;) = infx f.
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1.1.4 TI'-Convergence

Following what has just been mentioned in Section 1.1.3, the minimum points of the relaxed
function f  are actually the cluster points of minimizing sequences of f. Thus, it is attracting to
study the behavior of minimizing sequences of f. For certain reason arsing in concrete problems,
one is led to consider the behavior of minimizing sequences of a family of functions. To that
aim, the notion of I'-convergence was introduced in the literature by De Giorgi in 1970s. In
the very special case of I'-convergence, the relaxed function f is indeed a I'(7)-limit of the
constant family (f;) with f; = f for all j € N. We recall in the following the definition and some
important properties of I'-convergence. For more details on the proof of the results listed below
and the complete view of this topic, we refer to the book of Dal Maso [45] or other references
[7, 27, 25].

Definition 1.11. Given a sequence f; : X — RU {+o0}, we define its I'(7)-liminf and I'(7)-
limsup as the following function from X to R U {+o0}:

I'(7)-liminf f; = lim inf inf f;
(P tmint 1) (2 = sup tmint ing 70)

I'(7)-limsup f; | () := sup limsup inf f;(y).
j—4o00 UENz j—+oo YEU

If there is F': X — R U {+o0} such that

f=T(r)-liminf f; = T(7)-limsup f;

Jj—r+oo j—+o0
we say that the sequence f; I'(7)-converges to the I'(7)-limit F', and we write f; L f.

It is clear that I'(7)-liminf; f; < I'(7)-limsup; f;. The sequence f; I'(7)-converges tof if
and only if

I'(7)-limsup f; < f < T'(7)-liminf f;.
j j

Remark 1.12. When (X, 7) is metrizable, f; I'(7)-converges to f on X if and only if the two
assertions below hold

(i) for all z € X, for every sequence x; T-converging to x, we have

f(z) < liminf f;(x;);

j—+oo
(ii) for all z € X, there is a sequence x; T-converging to x such that

limsup f;(z;) < f(z).

Jj—+oo

Notice that the statement (ii) above can be replaced by:

(ii") for all x € X, there exists a sequence x; T-converging to = such that

f(u) = lim f;(x;).

j—+oo
We have the following compactness Theorem due to Kuratowski.

Theorem 1.13. In a separable metric space every sequence f; admits a I'-converging subsequence.
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In the following we collect some important properties of I'-limits.

Definition 1.14. We say that a sequence (f;) is T-equicoercive in X if for every r € R there
exists a T-compact subset K, C X such that {f; <r} C K, for all j € N.

In practice, we often use the following characterization for T-equicoerciveness which is
easier to handle (this characterization can be found in [45, Theorem 7.7]): A sequence (f;) is
T-equicoercive if and only if there exists a 7-coercive and 7-1.s.c. function ¢ : X — RU {+o0}
such that f; > ¢ on X for all j € N.

Proposition 1.15. If f; I'(1)-converges to f, we have

(i) for all x € X, f(x) = inf liminf f;(z;);

:vjlm J=too

(ii) the lower and upper T'(T)-limits are T-l.s.c. functions on X. In particular, if the T'(T)-limit
exists, then it is 7-l.s.c. on X;

(tit) (stability) if g is T-continuous in X, then the sequence (fj + g) I'(1)-converges to f + g in
X;

(iv) if a sequence of T-equicoercive functions f; satisfying

jdim min(f; +g) = min(f +g)

for all g being T-continuous and bounded from below, then f; ﬂ f;

(v) If (fj) admits a minimizing sequence T-relatively compact, then all limit points of this
sequence minimizes f, in other words

liminfinf f; = min f.
oo X 1 X !

Proposition 1.16. The following facts hold true

I'(7)-liminf f; = F(T)—lim‘inffg, I'(7)-limsup f; = I'(7)-lim sup?;.
j J j j

In particular, a sequence (fj) I'(T)-converges to f if and only if its relaxed sequence (TJT)
['(7)-converges to f.

The main result about the convergence of minima and minimizers of a I'-convergent sequence
of functions (or functionals) is summarized in the next theorem:

Theorem 1.17. Let fj : X — RU {400} be a sequence of functions on (X, ) such that:
i) (f;) is T-equicoercive,
i) f; 5 fin (X, 7).

Then, for every minimizing sequence (x;) (i.e. such that fj(x;) —infx f; — 0), there exists a
converging subsequence x;, such that

j, Sax , z€Argminf , f(z)= kgffoo Fir(25,)-
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1.2 Convex analysis

We recall in this section some important properties of convex functions. As we know, convexity
plays an important role in the search for minimum points of functions. One of the most powerful
technical tools is the notion of Moreau-Fenchel conjugate. We quote [98, 100, 57, 14] for the
details on this topic.

In the following, we denote by X a normed vector space, X* the topological dual of X, and
(-,-) the associated duality pairing. Let us first recall the definition of a convex function defined
on X.

Definition 1.18. A function f: X — RU {400} is convex if for every z,y € X and for every
t € [0, 1], there holds

f(A =tz +ty) < (A —0)f(z) +1f(y).
f is called strictly convex if the inequality above is satisfied with the < inequality.

A function f is convex if and only if its epigraph epi f is a convex set in the product space
X x R. Convex functions enjoy nice continuity properties. We refer to [11] for a proof of

Theorem 1.19. Let f : X — RU {+o0} be convex and proper. If there is an open subset U of
X such that supy f < 400, then f is continuous and locally Lipschitzian on int(dom f).

The following important result is a well-known consequence of Hahn-Banach Theorem.

Theorem 1.20. Let f: X — RU {400} be convex and proper. Then f is l.s.c. with respect
to the strong topology induced by norm in X if and only if f is l.s.c. with respect to the weak
topology o(X, X*).

1.2.1 Moreau-Fenchel conjugate

Definition 1.21. Let f: X — RU{+oo} be proper. The Moreau-Fenchel conjugate f*: X* —
R U {400} is defined by

fH(@7) i= sup{(z*, x) — f(x)}.

zeX

Analogously, if f* is proper, we then introduce the biconjugate f** : X — RU {+o0} as
f™(x) := sup {{(z,z") — f*(2")}.
r*eX*

Notice that in the definition above f does not need to be convex. A direct consequence is
the so called Fenchel inequality

flz)+ f* (%) > (2, x), VaeX,Vz*e X"

Definition 1.22. Let f : X — RU{+oc}. The subdifferential of f at x € X is the possibly
empty subset f(x) C X* defined by

Of(@) = {a* € X* ¢ f(a)+ f'(a") = (z,2")}.

Clearly, x* € 0f(z) is equivalent to x € Jf*(z*). It can be easily checked that 9f(x) is
convex weak-* closed. If f is convex and continuous at x € X then Jf(x) is a nonempty and
weakly-* compact subset of X*. Additionally, whenever f is convex and has a differential
(or Gateaux derivative) f’(z) at x, the subdifferential of f reduces to df(x) = {f'(x)}. We
summarize in the following basic properties of the Fenchel transform and then we give some
examples.
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Proposition 1.23. Let f: X — RU {400} be proper.
(i) f* is convex and o(X*, X)-l.s.c.,
(i) f*(0) = —infx f,
() if f > g then f* < g*,
(v) < f.
Example 1.24. Let f: X — R be a function defined by f(x) = %Hx“%
(a) If p is such that 1 < p < +o0 then

1 '
fr@™) = Sl ke
p/

where p’ satisfies % + z% = 1.

(b) If p =1 the Moreau-Fenchel conjugate f* coincides with the indicator function of the unit
ball in X™*, that means

fr(@") = xp-(z7)
with B* = {z* € X* : ||z*||x- < 1}.

Example 1.25. Let y¢ be the indicator function of a nonempty closed convex subset C' C X.
The Moreau-Fenchel conjugate of x¢ is the support function of C, i.e.,

(xc)* (") = he(z") = igg@c*, ).

Example 1.26 (Integral functionals). Let 1 < p < 400 and I, : (Lz)d — RU {400} be defined
as

u = I,(u) = /]RN o(z,u(x))du

where ¢ : RN x R? — [0, +00] is a measurable integrand with respect to the product o-algebra
&, (RY) ® B(R?). Assume that I, is proper. Then, the Moreau-Fenchel conjugate of I, is given
by

(Ip)" + (%) — RU {+o0}

v [ @ u@)d

where ¢*(x, 2*) = sup {(z*, zy—p(z,2) @ z € ]Rd} (notice that ¢*(x, z*) is a convex measurable
integrand).

We recall here the two key results which are widely used in duality methods. For the proof
of these results, we refer to [14].

Theorem 1.27. Let f : X — RU {400} be convex and proper. Then
(i) f isl.s.c. if and only if f** = f.
(ii) If f* is proper (i.e., Ixf € X*,Ir € R,Vz € X, f(z) > (xf,z) — 1), then f** = f.

Theorem 1.28. Let X be a normed space and let f : X — [0,400] be a convexr and proper
function. Assume that f is continuous at 0, then
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(i) f* achieves its minimum on X*.

(ii) f(0) = f(0) = —infx- f*

In this paragraph, we recall an important result of convex duality theory shown in Theo-
rem 1.31. Before stating that result, let us invoke two properties of Fenchel conjugation with
respect to summing and composing functions:

Proposition 1.29 (Conjugate of a sum). Let f,g: X — RU {+oo} be convex such that

dxg € X : f is continuous at xg and g(xg) < +oo. (1.4)
Then :
(0 (o) = it (£ + @),
1 27

(ii) If both sides of the equality in (i) are finite, then the infimum in the right-hand side is
achieved.

Proposition 1.30 (Composition). Let X,Y two Banach spaces and A : X — Y a linear
operator with dense domain dom(A). Let ¥ :Y — RU {400} be a convez, l.s.c. function and
let F: X — RU{+o0} be the convez functional defined by

F(u) =Y(Au) ifu € dom(A), F(u) =400  otherwise .
Assume that there exists ug € dom A such that ¥ is continuous at Aug. Then :
(i) The Fenchel conjugate of F' is given by
Ve X*, F*(f)=inf{V*(0) : c€Y", A%c = [},

where, if both sides of the above equality are finite, the infimum in the right-hand side is
achieved.

(ii) If in addition Y is reflexive and U is l.s.c., coercive, we have

F(u) = F**(u) = inf{¥(p) : (u,p) € G(A)},
where G(A) denote the graph of A.

By combing two Propositions 1.29 and 1.30, one can prove the following duality result. It
then can be applied to primal-dual formulations of convex variational problems. We can find in
[14, 26] a proof of this powerful result.

Theorem 1.31. Let X and Y be two Banach spaces and let be given the following functions:

- a linear operator A : X — Y with dense domain dom A;
- a convex function ® : X — RU {4o00};

- a convex l.s.c function U : Y — RU {+o0} which is continuous at some point Aug with
up € dom(A);

then

in)f( {U(Au) + ®(u)} = sup {—¥*(0) — ®*(—A%0)}
ue oeyY'*

where the supremum on the right hand side is achieved. Furthermore, a pair (u,o) is optimal
for the left hand side and the right hand side respectively if and only if it satisfies the relations

o€ dVY(Au) and — A*G € 0P (u).
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1.2.2 Convex optimization

Let X be a reflexive Banach space with norm denoted by || - ||, and C be a closed convex subset
of X. Let f: X — RU{+oc} be a proper function on C. We are interested in the constraint
optimization problem

inf f(z) (1.5)

zeC

We call solution for problem (1.5) all element T € C such that f(Z) = inf,cc f(z), and denote
the set of these solutions by

Argmin, f := {x €eC: f(x)= érelgf(x)}

We will drop the subscript C whenever C = X, i.e. Argmin f instead. Notice that in many cases
we prefer to replace the problem (1.5) by a minimum problem over the entire space X, to that
aim, we associate f and the convex C with the functional f: X — R U {400} defined by

f(x) = f(x) + xe().
Note that if f is convex l.s.c. function, then so is f Moreover, we have

;Iég fz) = ;g)f(f(a;) and Argmin, f = Argmin f.

After summarizing two important characterizations of minimizers of Gateaux differentiable
functions in the two following propositions, we present an application to proximal approximations
which is widely exploited in numerical methods.

Proposition 1.32. Let f be convexr l.s.c. function and be Gateauzw differentiable with f'
continuous. Then, for T € C, the three following conditions are equivalent

(i) T is solution for (1.5);
(it) {f'(T),x —T) >0 for allx € C;
(iit) (f'(x),x —T) >0 for all x € C.

Proposition 1.33. We suppose that f = f1 + fo with fi, fa : X — RU{+o00} being convex
l.s.c., and f1 being Gateauz differentiable (with Gateaux derivative fi). Then, for T € C, the
three following conditions are equivalent

(i) T is solution for (1.5);
(i) (fi(@),x =) + f2(z) — f2(T) =2 0 for all z € C;
(iii) (fi(z),z —T) + fo(x) — fo(T) > 0 for all x € C.

The inequalities in Proposition 1.32 (ii),(iii), Proposition 1.33 (ii),(iii) are called variational
inequalities.

Example 1.34 (Application to proximal approximation). We consider the function f : X —
R U {400} defined by

£(@) = gllz — 9l + ()

where ¢ : X — RU {400} is convex l.s.c. and proper, and y is given in X. Function f; =
%H:z: — y||? is strictly convex and l.s.c. Hence, f is strictly convex l.s.c. On the other hand, f
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is coercive. In fact, since ¢ admits a continuous affine minorant written as (z,z) + « for some
z€ X, a €R, we have

1
f@) 2 Sllz =yl + (22) + a

1 2 1 2 1 2
£@) 2 Sllz+2 =yl = Sllz = ol + 5ol + o,

and it shows that f(z) — +o0 as ||z|| = 4+00. We may then apply the results of existence and
uniqueness of solution to conclude that: there exists unique T € X such that

£(@) = 37—yl + (@)

According to Proposition 1.33, T is characterized by one of the following conditions

~—

Vz e X,
Vz e X,

—o(
-

<T—y,z—j>+gp(z
(z—y,2—T) + (2

—~
8
~— ~—

S
A\VARAYS

0,
0,

~—

The mapping y — T = Z(y) from X to itself, introduced by Moreau [88] is called proximal
operator associated with the convex l.s.c. ¢, and denoted by

T = Prox,, y. (1.6)

In particular, when ¢ = ¢, the indicator function of a closed convex subset C in X, we find the
projection on C ( we write Il¢) and the equivalent conditions to (1.6) become

zeCand (T —y,z—7) >0, Vz€C, (1.7)
zeCand (z—y,z—7T) >0, Vz €C,
7 =1le(y)

We refer to [108] for more discussion on properties of orthogonal projection.

1.3 Integral functionals in Sobolev spaces

A central interest in the calculus of variations is the search for extrema of minimization problems
of the type

inf {F(u) : ue K}

where the class K of admissible functions u is a subset of some Banach space. Usually, in
concrete problems F'(u) is an integral functional defined on L spaces. The essence of the calculus
of variations is the identification of necessary and sufficient conditions on the functional F'(u)
so that the existence of minimizers is guaranteed. These relies on suitable growth conditions
which provide coercivity for some topology. The key point is to verify the lower semicontinuity
for this topology. If it is not the case we need to substitute F with its relaxed functional F.
In this section, we gather some useful results which can be used to check rapidly the lower
semicontinuity for functionals defined in Sobolev spaces. We refer to the books [64, 27] for a
complete study on these results. The proof of theorems listed below can be found in [64].

In what follows, we assume that € is an open subset of RV,



16 Preliminaries Chapter 1

1.3.1 Integral functionals with integrand f(z, z)

We summarize in this subsection the lower semicontinuity properties of the integral functional
Iy defined by

LP(CR™) 3 2= I4(2) = /Qf(:z,z(:z))dx

where f: Q x R™ — [—o0, +00] is an LY x B-measurable function (B stands for the o-algebra
of Borel subsets of R™) and 1 < p < +o00. We say that I is well-posed in LP(£2; R™) if for every
z € LP(Q;R™) it holds

/ [ (z, z(z))dr < +o0
Q
where f~ denotes the negative part of f.

Theorem 1.35 (Well-posedness). Let 1 < p < +oc0 and let f : Q@ x R™ — [—o0,+00] be a
LN x B-measurable function. Then Iy is well-posed in LP(1;R™) if and only if there is a
nonnegative function v € L'() and a constant C > 0 such that

flx,2) 2 =Clz[P —~(x)
for a.e. © € Q and for every z € R™.

Theorem 1.36 (strong lower semicontinuity). Let 1 < p < 400 and let f : QxR™ — [—00, 4]
be a LN x B-measurable function. Asumme that the functional Iy is well-posed in LP(S;R™).
Then Iy is l.s.c. with respect to the strong topology in LP(S1;R™) if and only if f(x,-) is l.s.c. in
R™ for a.e. x € ().

Corollary 1.37 (Strong continuity). Let 1 < p < 400 and let f : Q x R™ — [—o0, +00] be a
LN x B-measurable function. Assume that there is a nonnegative function v € L'(Q) and a
constant C > 0 such that

[f(z,2)] < C[2P + ()

for a.e. x € Q) and for every z € R™. Then, the functional Iy is continuous with respect to the
strong convergence in LP(Q;R™) if and only if f(x,-) is continuous in R™ for a.e. x € Q.

Theorem 1.38 (Weak lower semicontinuity). Let 1 < p < 400 and let f : @ x R™ — [—00, +00]
be a LN x B-measurable function. Assume that f(z,-) is Ls.c. in R™ for a.e. x € Q and that
the funtional Iy is well-defined in LP(S;R™). Then, Iy is sequentially l.s.c. with respect to the
weak convergence in LP(; R™) if and only if the two following conditions hold true:

(i) f(x,-) is convex in R™ for a.e. x € §);
(ii) there are two functions a € L'(Q) and b € LY (Q; R?) such that
f(z,2) > a(z) +b(x) - 2

for a.e. x € Q and for every z € R™.

1.3.2 Integral functionals with integrand f(z,u, 2)

In this subsection, we summarize lower semicontinuity properties of the integral functional I

defined by

LI RY) x LP(Q;R™) 3 (u, 2) > If(u, 2) := /Qf(x,u(x),z(:x))dzx
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where f : Q x R x R™ — [~o0, +00] is an £V x B-measurable function (B now stands for
the o-algebra of Borel subsets of R? x R™) and 1 < p < +00. We say that I ¢ is well-posed in
LI(Q;RY) x LP(S;R™) if for every (u, z) € LI(;R?) x LP(Q; R™) it holds

[ @ (@), 2@)ds < +o0
Q

where f~ denotes the negative part of f.

Theorem 1.39 (Well-posednes). Let 1 < p,q < 400 and f : Q x RT x R™ — [—o0, +-00] be
LN x B-measurable function. Then, the integral functional Iy is well-posed if and only if there
exist a nonnegative function w € LY(Q) and a constant C > 0 such that

f@,u,2) 2 =C(ju]? + [2°) —w(z)
for a.e. x € Q and for evey (u,z) € R* x R™

Theorem 1.40 (Strong-strong lower semicontinuity). Let 1 < p,q < 400 and f : Qx RExR™ —
[—00, +00] be LN x B-measurable function. Assume that I; is well-posed in LI(%; RY) x LP(; R™).
Then, Iy is sequentially l.s.c. with respect to the strong-strong convergence in L1(Q; RY) x
LP(;R™) if and only if f(z,-,-) is Ls.c. in RY x R™ for a.e. x € .

Theorem 1.41 (Strong-weak lower semicontinuity). Let 1 < p,q < +00 and f : Q x R4 x R™ —
[—o00, +00] be LN x B-measurable function. Assume that: f(x,-,-) is L.s.c. in R? x R™ for a.e.
x €, Iy is well defined in LI(Q;RY) x LP(;R™) and there is zy € LP(S;R™) such that

[ $ @),z < o0
Q

for every u € LI(Q;R?). Then, the functional Iy is sequentially l.s.c. with respect to the
strong-weak convergence in LI(Q;RY) x LP(Q; R™) if and only if the following conditions hold
true

(i) f(z,u,-) is convex in R™ for a.e. x € Q and for every u € RY;

(ii) there are a constant C > 0 and two functions a € L*(Q), B : Q x RT — R™ LN x B-
measurable such that

flz,u,2) > a(x) + B(z,u) - 2 — Clu|?
for a.e. x € Q and for every (u,z) € R x R™;
(iii) there are a constant C1 > 0 and a function by € L*(Q) such that
B, w)l”" < Cilul? + by (2)

for a.e. x € Q and for every u € RY.

1.4 Relaxation in BV

We recall in this section the relaxation in BV of linear-growth functionals defined in Wh!,
As consequence, the relaxed optimization problems are established in BV, particularly, the
minimum is attained under appropriate coerciveness conditions. For the more detailed discussion
on this topic, we refer to [17, 27, 6, 63].

Let us begin by recalling the space of functions of bounded variation and collecting some
fine properties of functions in this space.
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1.4.1 The space BV
Let Q ¢ RY be an open bounded subset.

Definition 1.42. A function u € L'(Q) is said to be a function of bounded variation in € if the
distributional derivative of u is representable by a finite Radon measure in 2, i.e. if

/ uVpds = — / dpdDu V¢ € CP(Q)
Q Q

for some RN -valued measure Du in . The vector space of all functions of bounded variation in
2 is denoted by BV ().

Definition 1.43. Let u € L} (Q). The variation V(u,) of u in  is defined by
V(u, Q) :=sup {/ wdivedr : ¢ € CHELERY), [|¢]lo < 1}.
Q

Proposition 1.44. Let u € LY(Q2). Then, u € BV (Q) if and only if V(u,Q) < +oo. In
addition, V(u,Q) coincides with |Du|(2) for any uw € BV () and the map u — |Du|(§2) is lower
semicontinuous in BV (Q) with respect to the Llloc-topology.

In view of Proposition 1.44, |Du|(2) is sometimes call the variation of u in €. We notice
that the vector space BV (Q2) is a Banach space when endowed with the norm

ull By o) = llullL1 @) + [Du|(€2).

A specific class of BV functions is characteristic functions of sets of finite perimeter. We recall
that the characteristic function 15 of a subset E C RY is given by

1 ifzeFE
1E($)={

0 ifzeRV\E.

In the following, we define the perimeter of an £V-measurable subset in RV and then gather
some remarkable properties of perimeter.

Definition 1.45 (Sets of finite perimeter). Let E be an £~ -measurable subset of RY. For any
open set Q C RY the perimeter of E in Q, denoted by P(E,), is the variation of 1z in €,
namely

P(E,Q) := sup{/ udivodr : ¢ € CHEOLRY), [¢]le < 1}.
E

We say that E is a set of finite perimeter in Q if P(E,Q) < 400.

Theorem 1.46. For any set E of finite perimeter in ), the distributional derivative D1g is
an RN -valued finite Radon measure in 2. Moreover, P(E,Q) = |D1g|(Q) and a generalized
Gauss-Green formula holds

/divd)da::—/(yE-qS)d\DlE] Vo € CL(Q;RY)
E Q

where D1g = vg|D1g| is the polar decomposition of D1g.
Proposition 1.47 (Properties of perimeter).
(i) The function Qs P(E,Q) is the restriction to open sets of a Borel measure in RY.

(ii) Ew— P(E,Q) is lower semicontinuous with respect to local convergence in measure in €.
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(iii) E — P(E,Q) is local, i.e. P(E,Q) = P(F,Q) whenever QN (EAF)| =0.
(iv) P(E,Q) = P(RN\ E,Q) and

P(EUF,Q)+ P(ENF,Q) < P(E,Q) + P(F,Q).

Theorem 1.48 (Coarea formula in BV). For any open set @ C RN and u € L} (), one has

loc

V)= [ P{u >t Q).

— 0o
In particular, if u € BV (Q) the set {u >t} has a finite perimeter in Q for L'-a.e. t € R and

+o0o +o0
Dul(B) = [ " IDVnyl(B)t DuB) = [ Dl (Bt

for any Borel set B C €.

This paragraph is devoted to summarizing the notions of approximate continuity and
differentiability of bounded variation.

Definition 1.49 (Approximate limits). Let u € L] (). We say that u has an approzimate
limit at x € § if there exist a z € R such that

lim |u(z) — z|dx =0 (1.10)

e—0t Be (q;)

where { B. () stands for m /. B.(z)" The set D, of points where this property does not

hold is called the approzimate discontinuity set. For any x € Q \ D,, z is uniquely determined
by (1.10). We call z the approximate limit of u at x and denote by u(xz). We say that u is
approximately continuous at x if z ¢ D,, and u(x) = u(z), i.e. = is a Lebesgue point of u.

Notice that the set of points where the approximate limits exists does not depend on the
representative in the equivalent class of u, but the property of being approximately continuous
at x depends on the value of u at the point (this value could be different for functions in the
same equivalent class).

Definition 1.50 (Approximate jump points). Let u € Ll (). We say that z is an approzimate

jump point of w if there exist a,b € R and v € SV~! such that a # b and

lim, B o) [uy) —aldy =0,  lim B o) |u(y) — bldy = 0, (1.11)
where B (z,v) = x +e{y € B1(0) : (v,y) = 0}. Up to a permutation of (a,b) and a
change of sign of v, the triple (a,b,v) is uniquely determined by (1.11), we then denote by
(ut(z),u (z), v (x)) with a convention that u™(z) > u~(x). The set of approximate jump
points is denoted by S,. The quantity [u] := v —u~ is the jump of u across the interface S,
and v, is the direction of the jump.

Definition 1.51 (Approximate differentiability). Let u € L{ () and let z € Q\ D,. We say

loc
that w is approzimately differentiable at x if there is a vector P € R such that

. [u(y) — w) = (Py — )|
e—=0TJ B.(x) €

dz = 0. (1.12)

If u is approximately differentiable at x, the vector P, uniquely determined by (1.12), is called
the approzimate differential (or approximate gradient) of u at x and denoted by Vu(x).
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Notice that S, is a countably H™~l-rectifiable Borel set contained in the approximate
discontinuity set D,. As recalled above, the space BV (2) consists of all functions of bounded
variation in €, whose distributional derivative Du is a R¥-valued Radon measure with total
variation |Du| bounded in Q. The measure Du can be decompose into two parts: an absolutely
continuous part (denoted by Vudx) and a singular part (denoted by D’u) with respect to the
Lebesgue measure, namely

Du = Vudz + D?u.

In particular, denoting by D¢ the Cantor part of the measure Du, one has

Du = Vudzx + D + [u]u, HY LS,

where [u] := u™ — u™ is the jump of u. We say that a function u € BV () is a special function
with bounded variation if the Cantor part of its derivative Du is zero. We denote by SBV ()
the space of all special functions with bounded variation. We obtain

Du = Vudz + [uly, HN 'S,  Yu € SBV(Q).

The space SBV () was introduced by De Giorgi and Ambrosio in [49]. This space is to provide
a weak formulation for some variational problems with free discontinuity or minimum problems
characterized by a competition between volume energies, concentrated on N-dimensional sets,
and surface energies concentrated on (N — 1)-dimensional sets. The best-known example of a
free discontinuity problem, proposed by D. Mumford and J. Shah in image segmentation, is the
minimization of the functional

1 1
P)= [ S IVulde + MY (S + 5 [ fu g() do
O\S,, Q

where g : Q — [0,1] is a grey level data.

In the following, we recall two important boundary trace theorems of functions of bounded
variation:

Theorem 1.52 (Boundary trace theorem). Let Q C RY be an open set with bounded Lipschitz
boundary and u € BV (Q). Then, for H¥'-a.e. x € 9 there exists Tr(u)(x) € R such that

e—0t

lim eV / lu(y) — Tr(u)(z)|dz = 0.
QNB:(z)

Moreover, || Tr(u)||L190) < Cllullpy(q) for some constant C > 0 depending only on Q. The

extension T of u to 0 out of Q belongs to BV (RN) and, viewing Du as a measure on the whole
of RN and concentrated on Q, DT is given by

DT = Du + Tr(u)voHN 1L 00,

Theorem 1.53 (Continuity of trace operator). Let  be an open subset of R with bounded
Lipschitz boundary. Then, the trace operator u — Tr(u) is continuous between BV (Q), endowed
with the topology induced by strict convergence, and L'(0Q, HN~1L0Q).
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1.4.2 Integral representation of relaxed functionals

In this subsection, we gather some important properties of lower semicontinuity and relaxation
for integral functionals of the type

Flu) = {/Qf(x,u, Vu)dz if u € WH(Q) (1.13)

+o0 if w e BV(Q)\ Wh(Q)

where € is an open bounded subset of RY and f: Q x R x RN — [0, +-oc] is a Borel function,
with f(z,t,-) convex on RY for each (x,t) € Q x R. First, let us recall a well-known result on

the Llloc—lower semicontinuity of F":

Theorem 1.54 (Serrin [101]). Let f = f(x,t,2) be continuous in Q x R x RN convex in the
variable z, and satisfies one of the following conditions:

(i) f(z,t,z) = +00 as z — +oo for each (z,t) € Q x R.

(ii) f(x,t,-) is strictly convex in RN for each (x,t) € Q x R.
(iii) the derivatives fr(x,t,2), f.(z,t,2), fzz(z,t,2) exist and are continuous.
Then F(u) is lower semicontinuous in W;)Cl(ﬂ) with respect to L}, -convergence.

The conditions given above may appear too stringent and many efforts have been done in
order to find the minimal assumptions on f that ensure the Llloc—lower semicontinuity of F' on
VV&;(Q) For instance, we quote [48, 50, 73]. In applications, it may happen that such a lower
semicontinuity fails. Even if it is not the case, such a property is useless if we cannot ensure that
sequences with uniformly bounded energy are weakly compact in VVl:(l)Cl . This difficulty causes
typically in optimization problems where the integrand f exhibits a linear growth condition.
A fundamental issue consists then to identify the so called relaxed functional associated with
F. Assuming that sequences with finite energy are relatively compact for the L'-topology, this
relaxed functional is defined by

F(u) := inf {lim inf/ f (@, un, Vuy)dz = u, € WHHQ), 4, — u in Ll(Q)} .
Q

n—-+o0o

Remark 1.55. It is easy to check that

F(u) = inf {liminf/ f(x,tn, Vup)dz = up, € WHHQ), up, 5 u}
Q

n——+o0o

for any topology 7 such that {F < R} is 7-relatively compact for all R > 0.

A quite general result for the identification of F has been derived in [44]. Let us introduce:

Definition 1.56 (Recession function). The recession function of f is given by

00 L . f(l‘a ta SZ)
e (x,t,2) = SETOO . .

It is easy to check that f° is convex and positively homogenous of degree 1 with respect to

the variable z. For example, f°(z) = |z| if f(2) = /1 + |2|%.
Assuming that © is an open bounded subset of RY, we set

0o ~ dDu c ut (@) 00 N-1
F(u) .:/Qf(x,u,Vu)daH—/Qf (a:,u, d|DCu|)d|D u|—i—/Su /u_(x) f (x,s,%)ds dH
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for every u € BV (Q2). For simplicity, we sometimes use the following notation

/Qf(x,u,Du = /fxuVu dx+/f°° xﬁda’zgcu‘)dD ul

—i—/ /U*(z) foo(x S, V. )ds dHN 1
Su Ju(z) o '

Then, we obtain :

Theorem 1.57 (Dal Maso [44]). Let Q be a bounded open subset of RY and let f : QxR xRN —
[0, +00] be a Borel function such that:

(i) for each (x,t) € Q x R, the function z +— f(x,t,2) is convex in RY;

(ii) there exists a Borel subset B of Q x R, with HN ((Q x R) \ B) = 0, such that f is lower
semicontinuous at each point of B x RN ;

(7ii) there exists two constants ¢ >0 , d > 0 such that
clz| —d < f(x,t, 2)
for all (x,t,2) € Q x R x RY;
(iv) the function (x,t) — f(x,t,0) is locally bounded in Q@ x R.

Then the functional F(u) is lower semicontinuous on BVjy.(2) for the L1, -topology.

1.4.3 Relaxed variational problems
Let us consider the following variational problem
(P) inf{F(u,Q) : ueW"(Q), u=wugon 0N} (1.14)

where €2 is a bounded open subset of RV, ug € L'(09), and the functional F is given by (1.13).
Assume that F satisfies all assumptions of Theorem 1.57 and such that

flz,t,2) < C(1+]z2]), Y(z,t,2) € A x R x RY,

In order to facilitate our discussion, let us also consider the dependence of F' on the integration
domain Q. The following minimization problem is called the relaxzed problem of (P) in BV (£2):

(PR) inf{F(u,Q) : ue BV(Q)},
where
~ (uVug)
F(u,Q) = F(u,9) —|—/ / " f°° z, s, sgn(ug — u)vg)ds dHN 1 (1.15)
00 J (uAug)(

and vq is the outer unit normal to Q. Here F represents the relaxed functional associated with
F'. Notice that the boundary constraint {u = ug on 92} has been dropped but it appears in a
relaxed form in the definition of F through the boundary integral term in (1.15).

Let us check that inf(P) = min(PR). Let Q be a bounded open subset of RY such that
Q cc Q. According to Gagliardo’s Theorem in [67], for any ug € L(09), there exists a function
g € WH1(Q) such that its trace on 9§ agrees with ug. Then, for every u € BV (Q), we set

u  in Q)
v=19_ o~ (1.16)
u  inQ\ Q.
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The function v defined by the cut-and-paste formulation (1.16) still belongs to BV (), moreover
Dv = Dul_Q + Diugl_ (2 \ Q) + (Tip — u)rodHN 1L (see for instance [6, Corollary 3.89]).
This leads to

F(0,Q) = F(u, Q) + Fiio, 0\ Q) + /OQ/MO (2, s, sgn(uo — w)ve)ds dHN 1. (1.17)

(uAug)(z)

We find that F(p, Qlﬁ) does not depend on u so that minimizing F (v, Q) for v e BV(Q) with
constraint v = U in Q\ Q is equivalent to minimizing F(u,Q) on BV (), namely

min{F(v,Q) : ve BV(Q), v =1 in Q\ Q} = min{F(u,Q) : ue BV(Q)}+ F(ip, 2\ Q).
We conclude that min(PR) = inf(P) by noticing that
inf{F(v,Q) : ve W (Q), v =1 in Q\ Q} = min{F(v,Q) : ve BV(Q), v="71inQ\Q}.

In the specific case where the integrand f is given by f(t,2) = ¢(2) + g(t), the relaxed
problem (PR) becomes

mm{/goDu +/g da?+/ ((up — w)vg)dHN ™! ueBV(Q)}

where

/go (Du) /<p (Vu) dm—{—/ (DC ‘)d|D°u| + [ ™ (1 ) dHN L.

SuNQ

1.5 Convex duality. Primal-dual formulations

In this section, we briefly present: the two methods of the classical convex duality (duality by
perturbation and duality by min-max), their coincidence and primal-dual formulations resulting
therein. We refer to [57, 12] for the details on the topic.

1.5.1 Duality by perturbation

Let X, Y be normed vector spaces. We denote by X*, Y* the topological dual spaces of X
and Y, respectively. Let A : X — Y be a continuous linear operator with its adjoint operator
denoted by A* : Y* — X*. Let us consider the following problem

(P) inf f(u, Au)

where f is a function from X x Y to RU {+o0}. Problem (P) is called the primal problem. We
introduce a perturbation ® : X x Y — R U {400} given by

Then for each p € Y we obtain a perturbed problem

(Pp) ulg)f( O (u, p).

Obviously, ®(u,0) = f(u, Au), thus (Py) is identical to (P). We say that (Pp) is the perturbed
problem of (P) associated with the perturbation ®.

Let ®* : X* x Y* — R U {+o0} be the conjugate function of ®. The following problem is
called the dual problem of (P) associated with the perturbation ®:

(P) sup {—®*(0,p")}.
igue

Then, it holds
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Proposition 1.58. —o0 < sup(P*) < inf(P) < 4o0.

If it holds the equality sup(P*) = inf(P), we shall say there is no duality gap. Let us
determine the dual problem (P*). By using f* (the Moreau-Fenchel conjugate of f), we obtain

®*(0,p*) = sup {(p*,p) — f(u, Au—p)} = sup sup {(p*,p) — f(u, Au—p)}.
;g{/&' ueX peY

For fixed u € X and setting ¢ = Au — p, we deduce that

®*(0,p") = sup sup {(p"*, Au) — (p*, q) — f(u,q)} = sup {{p", Au) — (p*,q) — f(u,q)},
ueX qeyY Zgi)g

in other words, ®(0,p*) = f*(A*p*, —p*). Hence, the dual problem (P*) reads

sup {—f"(A"p*,—p")}.

In the following, we summarize the result of no duality gap and the optimality conditions.

Theorem 1.59. Assume that f is convex, inf P < 400, and

{ there exists ug € X such that f(ug, Aug) < +oo, the function (1.18)

p > f(ug,p) being continuous at Auyg.
Then, (P*) attains its mazimum and sup(P*) = inf(P).
Proposition 1.60. The two assertions below are equivalent:
(i) @ is a solution for (P), p* is a solution for (P*) and inf(P) = sup(P*);
(i) uwe X, p* € Y* satisfy the optimality condition:
f(@,Aw) + f*(A*p*,—p*) =0 (1.19)
or equivalently,

(A*p*, —p*) € Of (w, Au). (1.20)

Theorem 1.61. Let X be a reflexive Banach space, f: X xY — RU {400} be convex l.s.c.
function. Assume that (1.18) is satisfied, and that

lim  f(u, Au) = 4o0.

[[ul| =00

Then, (P) and (P*) have solutions, inf P = sup P* and the optimality condition (1.19)-(1.20) is
verified.

In particular, when f is of the form f(u, Au) = ¢(Au) + g(u) with ¢ : Y — RU {400} and
g : X — RU{+o0}, the primal problem (P) reduces to

nf {p(Au) +g(u)}.
It can be checked that f*(u*,p*) = ¢*(p*) + g*(u*). Therefore, (P*) is recast as

sup {—¢"(—p") —g"(A"p")}.
p*EY*
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Notice that if ¢, g are convex l.s.c., then f is convex l.s.c. Additionally, the condition (1.18)
should be adapted with

(1.21)

there exists up € X such that g(ug) < 400, ¢(Aug) < +00, and
© being continuous at Awuyg.

On the other hand, the optimality condition (1.19) reads
= {p(Au) +¢"(=p") = (=P, Aw)} + {9(@) + ¢"(A"P") — {A"P", W)} 2 0.

The inequality above is obtained thanks to the Fenchel inequalities, thus these non negative
quantities become null, which yield the following primal-dual optimality conditions

p(Au) + ¢*(—p*) — (-p", Aw) = 0,
9(@) +g*(A'p") = (A'p", W) = 0.
These conditions can be equivalently rewritten as
A'p* € 9g(u),
—p" € 0p(AT).

1.5.2 Duality by min-max
We recall in this subsection some very basic and important results of the saddle point theory.
We refer to [57] for more details on the topic.

Saddle point problems

Let L : X XY — R be a real-valued function defined on the product space X x Y, that we call
Lagrangian function. Let A be a subset of X and B be a subset of Y. Then, it holds:

Proposition 1.62.

inf L(u,p) < inf sup L(u, p). 1.22
ZggégA (u p)_ggAilelg (u,p) (1.22)

Definition 1.63. A couple (u,p) € A x B is called a saddle-point of L on A x B if
L(w,p) < L(u,p) < L(u,p), Yu € A,Vp € B. (1.23)
Proposition 1.64. L: A x B — R admits a saddle point (u,p) on A x B if and only if

inf L. p) — minsup L 1.24
ey 2 L) = g sup L) e

and this number is then equal to L(w,p).
Proof. Let (u,p) be a saddle point for L on A x B. It holds

inf sup L(u,p) < sup L(u,p) = L(u,p) = inf L(u,p) < sup inf L(u,p). (1.25)
ueA pep peB ucA peB u€A

The equalities in (1.25) is deduced from the inequalities (1.23). The combination of (1.22)-(1.25)
then implies that

L(@,7) = sup L(@, p) = mi L — inf L(u,7) = inf L .
(@, p) ,Sfelg (a, p) gg;}igg (u,p) Inf (u, D) max inf (u,p)



26 Preliminaries Chapter 1

Inversely, suppose that (1.24) holds, in which the minimum is attained at some @ € A and the
maximum is attained at some p € B. We get that

inf L(u,p) < L(u,p) < sup L(u,p). (1.26)
ueA pEB

Taking into account the equality (1.24), the inequalities (1.26) become equalities from which
(uw,p) is a saddle point for L on A x B. [ |

Remark 1.65. In particular, if the Lagrangian L has a saddle point on A x B, then it holds

sup inf L(u,p) = inf sup L(u,p).
sup inf, (u,p) Jnf sup (u,p)

Characterization of saddle points
We collect in this paragraph some useful characterizations of saddle points.

Proposition 1.66. Let ug € A, pg € B and o € R such that
L(ug,p) < a,Vp € B, and a < L(u,po),Vu € A.
Then, (ug,po) is a saddle point for L on A x B and

a = inf sup L(u,p) = sup inf L(u,p).
u€A pe3 peB uE
One can prove that the set of all saddle points for L on A x B is of the form Ay x By where
Ay C A and By C B (see for instance [57]). We remark in addition, the properties discussed
above are established in rather flexible conditions that do not require the convex-concavity of L
and that A, B are arbitrary subsets. From now on, the Lagrangian L is supposed to satisfy the
following assumptions:

Assumptions on Lagrangian L
Let X, Y be reflexive Banach spaces. We assume that

A C X is nonempty closed convex, (1.27)
B C Y is nonempty closed convex. (1.28)

The Lagrangian L : A x B — R is defined on A x B such that

Vu € A, L(u, ) is concave u.s.c., (1.29)
Vp € B, L(-,p) is convex Ls.c.. (1.30)

Proposition 1.67. Let L : A x B — R satisfy the assumptions (1.27)—(1.30). The saddle point
set Ag x By for L is convex. Moreover, if L(u,p) is strictly convex in u (resp. strictly concave
in p), then Ay (resp. By) has at most one point.

Proposition 1.68. Let L : A x B — R satisfy the assumptions (1.27)—(1.30), and in addition,
L(u,-) is Gateauz differentiable for each u € A, L(-,p) is Gateauz differentiable for each p € B.
Then, (u,p) € A x B is a saddle point for L on A x B if and only if

<Zﬁ(u,p),u—u> >0 YueA,

oL
(a7 5y > )
<6p(u,p),p p>_0 VpeB
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Proposition 1.69. Let L(u,p) = ¢(u,p) + g(u,p) such that g : A x B — R is convez-concave,
¢ : Ax B — R is convex-concave and Gateaux differentiable. Then, (u,p) € A X B is a saddle
point for L on A x B if and only if

<gi( D), u >+g(u,p)g(u,p)20 Vu € A,
<g§( 'P): p_p> —9(u,p) +g(@,p) >0 VpeB.

Existence of saddle points

In this paragraph, we summarize some compactness conditions ensuring the existence of saddle
points of L on A x B.

Proposition 1.70. Let L : A x B — R satisfy the assumptions (1.27)—(1.30). Assume that
A, B are bounded. (1.31)
Then, L admits a saddle point (u,p) on A x B and

L(u ax L = ma L
(@, p) = min max L(u, p) = max min L(u, p).

Proposition 1.71. Let L : A x B — R satisfy the assumptions (1.27)—(1.30). Suppose in
addition that

Ipo € B such that 1111€1rr}l L(u,po) = +o0, (1.32)
||u||—+o0

Jug € A such that lier% L(ug,p) = —o0. (1.33)
IIP\]\D—>+OO

Then, L admits a saddle point (u,p) on A x B, and

L(w,p) = mi L = in L .

D) = e L) = e e p)

Remark 1.72. The same results can be obtained if A,B are compact subsets of separable
topological vector spaces. The conditions (1.31) and (1.32)-(1.33) can be combined to ensure
the existence of saddle points, for instance: A is bounded and (1.33) holds, or B is bounded and
(1.32) holds.

Proposition 1.73. Let L : A x B — R satisfy the assumptions (1.27)-(1.30) and assume that
A is bounded (or (1.32) holds). Then, we have

min sup L(u, p) = sup inf L(u D).
ueA peB peB ueA

Proposition 1.74. Let L : A x B — R satisfy the assumptions (1.27)-(1.30). Assume that the
condition (1.32) holds, and

lim inf L(u —00.
peB  ucA ( p)
llpll—+oc0

Then, L admits a saddle point on A x B.

The following is a generalized result where the coercive conditions on Lagrangian are simplified
with compactness. We can find the proof of this result in [56, 57, 39].
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Proposition 1.75. Let A and B be nonempty convex subsets of two locally convex topological
vector spaces, and let B be compact. Assume that L : A x B — R is such that for every p € B,
L(-,p) is convex, and for every u € A, L(u,-) is u.s.c. and concave. Then, if the quantity

m := inf sup L(u
Jnf sup (u,p)

is finite, we have m = supy,cg infyea L(u,p), and there exists p € B such that inf,c 4 L(u,p) = m.
If in addition A is compact and for every p € B, L(-,p) is l.s.c., then there exists u € A such
that L(u,p) = m.

Application of saddle-point theorems to duality

We are now at point to make use of saddle point theorems for duality. This applications basically
relies on Moreau-Fenchel conjugates which introduced in Section 1.2.1. We turn back to consider
the infimum problem

(P) inf f(u, Au)

where f(u, Au) = ¢(Au) + g(u) with ¢ : Y — R U {400} being convex l.s.c and proper on Y.
Under this assumption, ¢ coincides with its biconjugate ¢**, thus we have

p(Au) = sup {(Au,p*) —"(p")}. (1.34)
Let us consider the Lagrangian L defined by

L(u,p*) = g(u) + (Au, p*) — " (p").
By substituting (1.34) into (P), we obtain a saddle point problem

inf L(u, p* 1.35
Jnf sup, (u, p%) (1.35)

which is identical to (P). Problem (1.35) is called a primal-dual formulation of the minimum
problem (P). Its dual problem (P*) is then defined by

P* inf L(u,p*),
) Supdnf Lw,p")

and there holds
—o00 < sup(P*) < inf(P) < +oo.

Once inf sup L = sup inf L happens, there is equivalence between the existence of saddle points
for L and the existence of solutions for problems (P), (P*) with inf(P) = sup(P*). In this case,
the saddle points are equal to the couples of solutions for (P) and (P*). In this approach, the
optimality condition reads, for (@, p*) being a saddle point,

inf L(u,p") = L(u,p*) = sup L(w,p").

ueX prEY*
We remark that if f is non convex, the reformulation into a inf-sup problem is always feasible
within a decomposition of f into convex part and non convex part.

The dual problem (P*) is computed as

sup {—¢"(p*) — g"(—A"p")}
p*ey*

by observing that

inf L(u,p*) = —¢"(p*) — sup {(Au, —p*) — g(u)} = =" (p") — g"(—A"p").

ueX weX
Additionally, we can derive the following optimality conditions

—\"p* € 0g(u),
P € 0p(Au).
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1.5.3 Identification of duality methods

This subsection is devoted to the discussion of the coincidence of the two duality methods
mentioned above. The proof of this result can be found in [57]. We also quote [10] for the
detailed discussion on this topic. We shall interpret the following saddle point problem

inf sup L(u,p*
Jnf, sup (u,p")

to the context of Section 1.5.1. Here, L(u,p*) denotes the Lagrangian defined on the subset
A x B of the product space X x Y*. We introduce a function ® : X x Y — R determined by

Blup) = {sup{<p,p*> + L(u,p*) : p* € B} if (u,p) € AXY (1.36)

|+ if (u,p) € (X \ A) x Y.
It is evident that function ®(u,p) is convex l.s.c. in p.

Lemma 1.76. For every u € X, function p — ®(u,p) is convex l.s.c. on'Y.

In addition, if A is a closed convex subset of X, and for each p* € B, L(-,p*) is convex Ls.c.,
then @ is convex l.s.c. on X x Y. In fact, for p* € B fixed, the mapping (u, p) — (p,p*) + L(u, p*)
is convex l.s.c. on A x Y. The extension by infinity outside a closed convex set still preserves
the convexity and lower semicontinuity, thus ® is convex l.s.c on the entire product space X x Y.
These are stated in the next lemma.

Lemma 1.77. Assume that A is a closed convex subset of X and for each p* € B, L(-,p*) is
convez l.s.c. Then, ® is convez l.s.c. on X XY .

Clearly, at p = 0 it holds

®(u,0) = sup L(u,p").
p*eEB

Moreover, ® actually defines a perturbation as mentioned in the circumstance of Section 1.5.1.
Hence, the problem

. E I D

sup {—®%(0,p")}. (1.37)
p*eY*
Proposition 1.78. Let B C Y™ be a closed conver set. Assume that for each u € A, L(u,-) is
concave u.s.c. on B. Then, problem (1.37) coincides with

sup inf L(u,p*
sup inf, (u,p"),

in other words, the two concepts of duality are identical.

1.6 Classical saddle-point algorithms

In this section, we recall the two important algorithms based on primal-dual formulations:
Uzawa’s algorithm and Arrow-Hurwicz’ algorithm. These two algorithms was actually introduced
to seek solutions of a constrained optimization problem. However, both of them basically relies on
saddle point problems resulting from the primal-dual formulation of the constrained optimization
problem. These classical algorithms have widely been used in numerical approximation and
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since then there have been many improved variants of the algorithms. Let us shortly describe in
the following the versions of the two algorithms that we can find in the book of Ekeland-Temam
[57] the proof of convergence results.

V and W are Hilbert spaces. For simplicity, we denote by (-,-) the inner product and
| - || == +/(:,+) the corresponding norm on both V and W. Let V* and W* respectively denote
the associated topological dual spaces.

1.6.1 Uzawa’s algorithm

Let C C V, K C W be such that
C and K are nonempty closed convex sets. (1.38)
We consider the following saddle point problem

ing sup L(u, p), L(u,p) = F(u) + (p,¥(u)), (1.39)
ue peEK

where F': C' — R is a real-valued function, ¥ : C' — W is a possibly nonlinear mapping (noticing
that the scalar product (¥(u),p) in L is intended in the Hilbert space W). We remark that

many optimization problems can be rewritten in this inf-sup form. In fact, the Lagrangian (1.39)
can be derived from the method of Lagrange multipliers for the constrained infimum problem

inf {F(u) : uweC,¥(u)=0}.

Standing assumptions
The Lagrangian L satisfies the following properties of coerciveness, differentiability, strong
convexity, lower semicontinuity, and Lipschitz continuity:

K is bounded ; (1.40)
F : C — Ris Gateaux differentiable ; (1.41)
allu —v|? < (F'(u) — F'(v),u—v), a>0, YuovcecC, (1.42)
Vp € K, the function (p, ¥(-)) is convex l.s.c. on C; (1.43)
U : C' — W is Lipschitzian , ie. ||¥(u) — ¥(v)| < ¢|lu — ||, Vu,v € C. (1.44)

We recall that a function F': C — R being Gateaux differentiable is strongly convex if it
satisfies the condition (1.42), or equivalently

Fltu+ (1 —t)v) < tF(u) + (1 — )F(v) — t(1 — t)%”u — |

for all u,v € C and for all ¢t € [0,1]. Strong convexity plays a very important role in the
convergence to the unique minimizer of F' on C. Another equivalent condition for strong
convexity is given by the inequality (1.45) in Lemma 1.79. We refer to [92] for more details
on strongly convex functions. Before describing Uzawa’s algorithm, let us summarize the
well-posedness of the saddle point problem (1.39) in the two lemmas below.

Lemma 1.79. F' : C — R is convez l.s.c. and such that

F(u) > F(v) + (F'(0),u — v) + %Hu —l?, VuweC, (1.45)
ilelré F(u) = 4o0. (1.46)

l[ul| =00
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Lemma 1.80. Under the assumptions (1.38) and from (1.40) to (1.44), L admits a saddle point
(@,p) on C' x K where i is uniquely determined and minimize the function u — sup,e . L(u, p)

on C.

We give here a description of Uzawa’s algorithm and the convergence result of this method.
The proof of this result can be found in [57].

Description of Uzawa’s algorithm
Initialization: Let n € N. Given pg € K.

up, = Argming {F(u) + (pp, ¥(u))}, (1.47)
prr1 = Uk (Pn + pn¥(us)), (1.48)

where Il is an orthogonal projection on K and p, > 0 is chosen appropriately.

Proposition 1.81. Under the assumptions (1.38) and from (1.40) to (1.44), and let p, be
chosen such that

2a
0<pn<72,
C

the Uzawa’s algorithm defined by the iterative process (1.47)-(1.48) is convergent, i.e. u, — i in
V', where & = Argming {suppeK L(-,p)}.

1.6.2 Arrow-Hurwicz’ Algorithm

We observe that in the description of Uzawa’s algorithm, the step (1.47) is not completely
specified, that how to seek the minimizer is not discussed. This partly unfinishedness, however,
permits us to arbitrarily choose a method for determining the current minimizer u,,. Arrow and
Hurwicz introduced a variant in which the step (1.47) is computed explicitly.

For the sake of simplicity, the algorithm of Arrow and Hurwicz was proposed under the
assumptions which are more specified than in the previous method: F' is a quadratic form on V
and W is a linear operator.

Standing assumptions
V, W are Hilbert spaces, on which

K C W is a nonempty closed convex set. (1.49)
U:V —>W,A:V — V* are linear operators such that

A= A%, (1.50)
(Au,u) > aflul®>, a>0, YucV, (1.51)

(A* is the adjoint of A), f is a element of V* and

Fu) = (Au,u) — 2 (f,u) . (1.52)

We then deal with the saddle point problem

inf sup L(u,p),  L(u,p) = F(u) + (p, Yu) .
ueV peK

Under the assumptions from (1.49) to (1.52), the existence of saddle points are ensured since
the hypotheses of Lemma 1.80 are all satisfied. That means L admits a saddle point (@, p) on
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V x K, and 4 is the unique minimizer of the function u ~ sup,¢ L(u,p). We are ready to
describe the Arrow-Hurwicz algorithm.

Description of Arrow-Hurwicz’ algorithm
Initialization: Let n € N. Given pg € K and ug € V.

Up1 = Up — plS_l(Aun -f+ \I’*pn)a (153)
pnt1 =k (pn + p2Vunyi), (1.54)

with a suitable choice of p1, p2 > 0, S being the canonical isomorphism from V to V* and Il
being an orthogonal projection on K.

We remark that the canonical isometrically isomorphism S : V. — V* is provided by
F. Riesz’ representation theorem, see for instance [108]. We observe that if the iterative process
(1.53)-(1.54) converges to (@, p), then the couple (i, p) must satisfy

Al — f+ U =0,
p=Uk(p+pVa), Vp>D0.

These conditions are obtained from the characterization of saddle points of L on V' x K. The
following is a convergence result (see [57] for a proof of this result).

Proposition 1.82. Under the assumptions from (1.49) to (1.52) and for any p1, p2 > 0 such
that

II=pSTr A <B <1, pdl|9)? +

2p2(6 — 1) <0
p1 ’

the Arrow-Hurwicz’ algorithm defined by (1.53)-(1.54) converges, i.e. u, — 4 in 'V, being 0 the
minimizer of u — sup,ek L(u,p).
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Chapter 2

A general duality principle for non
convex variational problems

2.1 Introduction

The role of duality techniques is nowadays very well established in applied mathematics, mechanics
and numerical analysis. In the context of infinite dimensional vector spaces, convex analysis
has been a powerful mathematical tool taking a major part in this success. It is great to honor
the pioneering contributions of J.J. Moreau which go back to the 60’s [89] (lectures notes at
college de France) almost concomitantly with the work of T.Rockafellar [98] focused on the
finite dimensional case. Such a mathematical step in functional analysis was crucial in order
to make a rigorous existence theory in elasticity theory (existence of equilibrium strain/stress
tensors, quasi-static evolution) and it could extended to non linear (but convex) situations,
notably in plasticity theory [104, 105]. Let us emphasize that the impact of duality and convexity
encompass a very broad area in optimization theory: in numerical analysis many efficient and
stable algorithms are based on min-max (or saddle points) schemes and still recent progress in
this area are very influential (for instance around proximal projection algorithms); in optimal
mass transport [106] the existence and the characterization of an optimal map often goes through
the existence of a solution for a dual problem; in asymptotic analysis (dimension reduction,
homogenization) a huge number of results have been obtained by combining duality arguments
and I'-convergence techniques (for the latter notion we refer to Section 1.1.4 of Chapter 1).

Unfortunately, such a duality theory completely breaks down as soon as some nonconvexity
appears in the optimization problem under study. In particular, this drawback is often met in
Calculus of Variations, where even very classical problems involve non-convex energy costs. As
no systematical tool is available to characterize a global optimum, a dramatic consequence is
that all currently available numerical methods loose their efficiency, because they are not able to
rule out local minimizers and detect the global ones.

The aim of this chapter is to present some new perspectives for exploiting duality in a
context of non convex variational problems. We begin by presenting in Section 2.2 a general
convexification recipe. It enlightens a new interpretation of the calibration field developed for
the Munford-Shah segmentation problem [1][34] and suggests a new road for identifying the
variational limit of non convex functionals. In Section 2.3, we show how the recipe can be applies
to integral functionals satisfying a generalized coarea formula. Then we present a survey of the
primal-dual framework obtained in [19][20] and we sketch a new proof for the I'- convergence of
Cahn-Hilliard models.

In the end of the thesis we discusss possible new developements and present a still unsolved
conjecture.
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2.2 General framework

We fix some preliminary notations. In this section (X, 7) denotes a topological space. We assume
that there exists a continuous embedding

pueEX—=p,eY |

where Y is a topological locally convex vector space. The symbol < -, - > will denote the duality
mapping between Y and its dual Y*. Our convexification procedure is based on the following
assumption:

(H1)

There exists a suitable compact metrizable convex subset K C Y
whose extremal set K satisfies: (X)) C K.

A typical situation is when Y is the dual of a separable Banach space Z equipped with the
weak-star topology . Then Y* can be identified with Z itself and every bounded and weakly-star
closed convex subset of Y is compact metrizable. Recall that v is an extreme point of K if
v=~0v; + (1-0)vy € K with v1,vy € K and 6 € (0,1) cannot occur unless v = v; = vy. The set
of all extreme points of K is called the extremal set of K.

We consider a sequence of proper functionals F© : X — [0, +o0] which we assume to be
uniformly coercive, that is:

(H2) For every R , there exists a T-compact subset C'r such that:
Ve>0,{ueX : F¢(u) < R} C Chg.

Define F§ : Y — [0, +00] by setting
F5(pu) = F°(u) foreveryue X | Fj(v)=+oco if v ¢ o(X).
The Fenchel conjugate of F{j is given on Y* by:
(F5)*(g) :=sup{<wv,g> —F5(v) : veY} =sup{< pu,g > —F(u) : ue X}

Then (being K metrizable) the biconjugate (F§)** will coincide with the sequential convexification
of I, that is, for every v € Y:

np nh
* . s h h h
(F5)™(v) = inf {hmhmfizlti Fe(uy) - ;ti Pun = v} ,
where {t# : i=1,--- n;} are real numbers in [0, 1] such that 3, t# = 1.
The main result of this section states that the variational limit of F** at every u € X agrees
with that of the convexification (F§)** at ¢,. To be more precise let us consider (see [45]) the
(sequential) I'-limits of F defined on (X, 7) by

I'—liminf F*(u) =inf { limi(r)lfFE(uE) D Us = uf, (2.1)
e

I'—limsup F*(u) =inf { limsup F*(us) : u. — u}, (2.2)
e—0

and in a similar way the I'-limits of (F§) and (F§)** defined on Y. In order to simplify notations,
in the following, we will denote by:

- F', F” the I'—lim inf and I'—lim sup of F*© (defined on X)

- F{, FJ, the I'=lim inf and I'—lim sup of F§ (defined on Y)



2.2 General framework 37
- G', G”, the I'—liminf and I"'—lim sup of (F§)**

Observe that due to (H2) by [27, Prop. 1.3.5], all sequential notions coincide with the
topological ones. For instance it holds:
F'(u)(u) = sup liminfinf F° |, F”(u)(u)= sup limsupinf F° . (2.3)
vevw VY vevw) ¢V
On the other hand, in case of the constant sequence F¢ = F, the lower and upper I'-limits F’, F"
coincide and agree the usual notion of lower semicontinuous envelope:

F(u) =sup{®(u) : ® lower semicontinuous , ® < F }
Theorem 2.1. Under (H1) and (H2), there holds for every u € X :
I'—liminf F*(u) < I'—liminf(F§)* (¢u) < T'—limsup(F;)*™(pn) < T —limsup F*(u) .
In particular, if F© := F for every e, then

F(u) = (Fo)™ (¢u) -

The proof of Theorem 2.1 rests upon the following result. Let V an open subset Y and set

inf{y(V) Y =w, VEP(K)} ifweK

(2.4)
+00 otherwise

Oy (w) := {
where P(K) denotes the space of probability measures on Y supported on compact subset K
and [v] denotes the barycenter (i.e. [, gdv = g([v]) for every continuous linear form g € Y*, see

[51)).

Lemma 2.2. The function 0y is convex, l.s.c and satisfies
0<Oy<1inK, Oy =0 inK\V,0y=1inKnV .

Moreover 0y agrees with the convez l.s.c envelope of the function 1y + xx (where xx =0 on K
and xg = +00 on' Y \ K ). It vanishes identically on K whenever VN K = .

Proof. We recall that K being compact and metrizable, the set of probability measures K is
a weakly-star compact subset on which the affine map v — [v] is continuous and takes values
in K. It is then straightforward to check that the function 0y : Y — [0, 400] is convex l.s.c.
on Y. If w € K, by taking v to be the Dirac mass at w in (2.4), we infer that 0y (w) € [0, 1]
whereas Oy (w) = 0if w ¢ V. If w € V is an extreme point of K, the latter choice v = §y,
turns out to be the unique one compatible with the condition [v] = w and in this case we get
Oy (w) = 0,,(V) = 1. In fact it is a Choquet integral representation Theorem (see [51, Thm 25,
p 283]) that every w € K is the barycenter of a suitable probability measure supported on K,
thus 6y vanishes identically on K whenever V N K = (.

On the other hand let us compute the Moreau-Fenchel conjugate of 8y. For every g € Y™,
we have

07 (g) = 31612{< g,w > —Oy(w)} = 6871318() {/K(< g, w > —1y(w)) V(dw)}

=sup {<g,w>-1y(w)} = (1v +xx)"(9),
weK
where, for the third equality, we used that the supremum over P(K) is reached by Dirac masses.
As 0y is convex ls.c., we deduce that 0y = (0y)™* = (1y + xx)** . Thus we have proved that
Ay coincides with the convex l.s.c. envelop of 1y 4+ x k. |
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Proof of Theorem 2.1. By the assumption (H2), the sequential caracterizations (2.1) for F', F”
can be used restricting ourselves to sequences u. — u where u. belong to a fixed compact
subset C'(= Cgr) C X. Since the embedding ¢ : C' — ¢(C) is bicontinuous, the convergences
Ue — U OF . — @y, are equivalent. Thus, by the indentity F(u.) = F{(¢u.) ( notice that
I'—liminf F§(v) = 400 whenever v ¢ ¢(X)), we infer that

F(S:F,OQO , F,/:F”O(p.
We are therefore reduced to showing that for every u € X:
i) Fi(pu) = T=liminf F§(p,) < T—liminf(F§)**(ou) ,

ii) T—limsup(F§)** (pu) < T — limsup F§(vu) = Ff (¢u) -
The inequality ii) is obvious since (F§)** < F§. Let us show i). Let v in K and choose a real
t < Fj(v). Then, by using the topological characterization of Fjj (see (2.3)), we may find a

suitable open neighbourhood V' of v such that ¢ < infy F? holds for € small enough. For such

e, we have F§ > t6y. Then, by using lemma 2.4 and by passing to the biconjugate, we obtain
(E§5)™ > t(0y)™ =t0y. We deduce

I—liminf(F5)*(v) > tOy(v) = t.

The claim i) follows since by (H1) we have ¢, € K for every u € X. |
Homogeneous variant: In many cases the convex compact subset K appears to be the base
of a closed convex cone. Namely we make the additional assumption
(H3) There exists a continuous linear form lo € Y™ such that lp =1 on K .

This assumption allows us to simplify our duality scheme. For every € > 0, we introduce the
convex set of Y*:

D, :={geY" : (F5)"(9) <0} = {geY" :<py,9g>< F*(u) Vue X},
and in a similar way, we define D', D” C Y* as
D' = {geY™ : (Fy)'(g) <0} , D" :={geY" : (Ff)(9) < 0}. (2.5)

Note that all results hereafter are unchanged if D, is defined alternatively with a large inequality.
It turns out that functionals (F§)™, (F{)*™, (F{/)*™* agree on K with the support functions of
D., D', D" respectively (they are one homogeneous convex, l.s.c. functionals on V).

Lemma 2.3. For every v € Y with < v,ly >=1 (in particular for v € p(X)), one has

(F§5)™(v) = sup <wv,g> , (F)*™(w) = sup <v,g> , (F)™(@v) = sup <v,9> .
g€D. geD’! geD”

Proof. Clearly, we have for every v € Y,

(£5)"(v) = sup <wv,g>—(F5)"(9) = sup <v,9>.
gey'* geD,

We need to prove that the converse inequality holds if v satisfies < v,y >= 1. We notice that
under (H3), we have for every g € Y* and A € R

(F5)" (g — Mo) = Sg§{< pu, g — Ao > —F*(u)} = (F5)"(9) — A . (2.6)
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In particular, by applying the identity above with A > (F§)*(g), we obtain that gy := g — Al
satisfies (F§)*(gx) < 0 thus gx € D.. Therefore, for every v such that < v,ly >= 1, one has

<v,9>—(F5)"(9) = <wv,ga>+A=(F5)"(9) < sup <v,h>+A—(F5)"(9)
heDe

hence the desired inequality letting A N\, (F§)*(g). The proof is the same for (F})** and
(FY). .

In the next lemma we establish a comparison between the sets D', D" defined above and the
lower and upper Kuratowski limits of the sets D, in Y*, where Y* is equipped with the strong
topology (that is, the topology of the uniform convergence on the compact subsets of V). Let
us denote by Li(D.) and Ls(D.) these lower and upper Kuratowski limits. There are closed
subset of Y* whose indicator functions (see [45]) coincide respectively with I'—lim inf xp. and
I'—limsup xp.. In other words:

i) g€ Li(D.) iff there exist g. € D, such that g. — g.

ii) g € Ls(D.) iff there exist a subsequenceg’, with g. € D., such that g, — g¢.

Lemma 2.4. With the notations above and D', D" defined by (2.5), we have the following
inclusions:

ii) D' C Li(D.) C Ls(D.)C D" .

Proof. Since K is compact and by exploiting the definition of F{j on a minimizing sequence, it is
easy to check that, for every g € Y*, it holds

— limsup (F§)*(g) = lim inf i%f{FOs— <Lg>F > i%f{Fé— <ng>t=—(F)"(9). (2.7

Let us show i). Since (F§)*™ < F§, we have G” < F{/. The inequality G” < (Fj)*™ is then a
consequence of the fact that G” is l.s.c and convex (as the I'—lim sup-limit of sequence of convex
functions). On the other hand, for every g € Y* and every sequence {v.} converging to v in Y,
one has:
limeinf(Fo‘E)**(ve) > <w,g > —limsup (F§)*(9) >< g,v > —(F})*(9)
3

where we used Moreau-Fenchel inequality and (2.7). Thus G'(v) >< g,v > —(F})*(g). The
inequality (Fj)** < G’ follows by taking the supremum with repect to g € Y*.

Let us show ii): Let g € D" and assume first that (F§)*(g) < 0. Then, by (2.7), one has
(F§)*(g) <0 for e small enough (hence g € D,) so that g belongs to Li(D.). This conclusion
can be extended to an element g € D’ such that (F})*(g) = 0. Indeed let g, := g — (1/n) lo.
Then, by (2.6), (F})*(gn) = —1/n < 0. Therefore g,, belongs to the closed subset Li(D.) while
gn — g as n — oo. Eventually we have proved that D' C Li(D.).

It remains to show that Ls(D.) C D”. Let g € Ls(D.) and v € Y*. By the (sequential)
definitions of Ls(D,) and of F{/, there exits a sequence (vg, ge) € Y x Y* such that

ge € D. and g. — g strongly in Y* | v, — v in Y and limsup F§(ve) < Fj(v) .
13

Then, by applying Moreau Fenchel-inequality and (2.7), we are led to

<v,g> = li§n < Ve, ge > < limsup F§(ve) + limsup(F§)*(g:) < FJ(v)+0,
£ £

holding for every v € Y. Thus owing to the definition of D" in (2.5), we get g € D”. This proves
that Ls(D.) C D". n
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To summarize this section we give the following practical result, that will be useful in
the applications, where we need to identify the I'-limit of a sequence {F¢} . Notice that by
Kuratowski’s compactness theorem [7] [45] and our assumptions (H1)(H2) (which allow to treat
X as a separable metric space) such a I'-limit exists, at least for a subsequence of {F*}.

Theorem 2.5. Assume that (H1), (H2), (H3) hold. Then, the following three assertions are
equivalent:

i) F© T'—converges to a limit F in X (i.e. F'=F"=F).
i) (F§)*™ T'—converges to a limit G inY (i.e. G =G" =G).

iii) De converges in the Kuratowski sense to a set D in the strong topology of Y* (i.e. D' =
D"=D,).

In addition, if one of these assertions holds true, then F', G and D satisfy the relations

D ={geY" : <ypug>< F(u) Vu e X}, (2.8)
G(v) = sup <wv,g> if<wv,lg>=1, G(v) = +oo otherwise, (2.9)
geD
F(u) = G(pu) = sup <@y, 9> . (2.10)
geD

Proof. If F* L\ F, then by definition F' = F' = F" so that F; = F}/ and D’ = D". We conclude
that ii) and iii) hold by invoking Lemma 2.4. We have G = (F{})™* = (Fj)** and D = D' = D",
showing (2.8), (2.9) and (2.10) as a consequence of Theorem2.1

Conversely, assume ii) or iii) holds. By compactness we consider F' and a subsequence
{F*r} that T'—converges to F'. Then, the reconstruction formula (2.10) shows that the limit F is
uniquely determined. Hence the whole sequence {F¢} I'-converges to F'. |

2.3 Application to non convex variational problems

We now apply the framework developed in Section 2.2 to the following situation. Let €2 be a
bounded Lipschitz domain of RY . We consider the embedding of X = L*(Q) into Y = L*®(QxR)
defined by:

1 ifu(z) >t

ueX—1, €Y, 1,(z,t) =
v “ u(@?) {O if u(z) <t.

Let us consider
K:={ve L*QxR) : v(x,t) €[0,1] ae.(z,t) € 2 xR} .

It is a compact subset of L>°(Q2 x R) equipped with its weak-star topology (we are in the case
where Y = Z* if we set Z = L'(2 x R)). It is easy to check that 1, is an extreme point of K
as it takes values in {0,1}. Moreover the map u ~ 1, is continuous from L!(Q2) to L>°(Q x R)
(embedded with its weak star topology).

Let F:u € L'Y(Q) - RU+oco be a possibly non convex functional. We simply assume that
F is l.s.c. (with respect to the strong convergence in L'(£2)) and that the following coercivity
assumption holds:

{ F(u) > kl|jul|— ¢ , for suitable constant k > 0. (2.11)

For every R > 0, the set {u : F(u) < R} is a compact subset of L!(1).
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We consider the minimization problem
(P) inf {F(u) : weL'(Q)}.

Under the assumption (2.11), this problem has at least one solution and the set of solutions
Argmin P is a non void compact subset of L!(§2) (since F is not convex, we expect & priori
multiple solutions).

Following the construction developed in Section 2.2, we define for every pair (v,g) €
L>®(Q x R) x L'(Q x R)

Fy(g) = sup {/ g(z,t) 1, dxdt — F(u)} , G(v) = sup {/ gvdxdt — Fék(g)}
ueLl(Q) L/OXR geL>®(QxR) L/OXR
(2.12)

Since F' coincides with its L.s.c. envelope, it is a consequence of Theorem 2.1 that it holds
G(1,) = F(u) forallue LY(Q) (2.13)

Our convexification recipe leads to the following convex optimization problem

(Q) inf{G(v) ;v e L®(Q xR; 0, 1])},

whose set of solutions Argmin(Q) is a non empty weakly star compact subset of L>(2 x R; [0, 1]).

Lemma 2.6. It holds inf(P) = inf(Q) and the following equivalence holds:
u € Argmin(P) <= 1, € Argmin(Q) .
Proof. Applying (2.12) with g = 0, we get
inf(Q) = —G*(0) = —(Fp)*(0) = —sup{—F(u) : u € X} =inf(P).
The equivalence statement follows by using the identity (2.13). |

The next step is twofold: first we have to identify the convexified energy in practice in order
to settle a duality scheme for Q; then, as some solutions v for (Q) may take intermediate values
in (0,1) (i.e. v is not of the form 1,,), we have to specify how solutions to (P) can be recovered.

A complete answer to these two requirements will be obtained under an additional assumption
on functional F'. We will use the following slicing argument on the class

A:={ve L*(Q xR) : v(x,-) non increasing (a.e. z € Q) , v(z,—o0) =1, v(zr,+00) =0}.
For every v € A and s € [0,1] , let us define
us(z) :=inf{r €R : v(x,7) < s}. (2.14)

Notice that, by construction, the subgraph of us agrees up to a Lebesgue negligible set with the
level set {7 € R : v(x,7) > s}, namely

Ly, (7,t) = 1pps sy (2, 1) for a.e. (z,t) € A xR. (2.15)
In what follows we denote by vy the element of A defined by

vo(w,t) = 1ys0y  (that is vg = 1, with ug =0) .
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Definition 2.7. We say that a functional J : L>(£2 x R) — [0, +-00] satisfies the generalized
coarea formula if for every v € L*(Q x R) the function s + J(1,,)) is Lebesgue-measurable
on R and there holds

T(v) = / T M) ds  Voe L¥Q X R). (2.16)

—00

It is readily seen that a functional J satisfying the generalized coarea formula has to be positively
1-homogeneous (i.e. J(Av) = AJ(v) for all A > 0) and that J(v) vanishes for constant functions
.

Theorem 2.8. Assume that F' satisfies (2.11) and that there exists a conver and weakly-star
l.s.c functional J : L®(Q x R) — [0, +00] satisfying the generalized co-area formula and such
that

J(1y,) = F(u) for every u € L'(Q) (2.17)
Then, if {us;s € [0,1]} is the parametrized family associated to v through (2.14), it holds
1
/ F(us)ds ifveA
G(v) =14 o (2.18)
400 otherwise
Therefore, if v € Argmin G, then v € A and us € Argmin F' for L'-a.e. s € (0,1). In particular,
if the initial problem P admits a finite number of solutions {u',. .. ,uK}, then
K K
ArgminG = {Ztk Lt tp >0, > tp= 1} , (2.19)
k=1 k=1

meaning that a solution v of problem Q must be a piecewise constant function.

It is remarkable consequence of Theorem 2.8 that a global minimizer for problem (Q) suitably
chosen (taking t; € (0,1) in (2.19)) can encode all the possibly mutiple solutions to problem
(P). We refer to [20] for the numerical illustration of this nice feature.

Before giving the proof let us notice first that the coarea condition (2.17) is used merely to
minorize G. An upper bound for G is provided in the general case owing to the following result:

Lemma 2.9. Let v € L®°(Q x R) such that G(v) < +o0o. Then v € A and it holds

1
Gv) < / F(us)ds  with us defined by (2.14) .
0

Remark: By a slight modification of the proof, it is possible to show that the conclusions of
Lemma 2.9 still hold if the first condition in (2.11) is replaced by: F'(u) > [, A(|u|) where
B : Rt — [0, +00] is non decreasing with 8(+00) = 00)

Proof. By using Fubini formula, one checks easily that, for every u € L'(Q), one has

/|u]dx = / |1, —vo| dzdt .
Q QxR

Therefore, by (2.11), for every v it holds:

1
k/ v—ug|l dedt — - ifveAd
Fo(v) > H(v):=1{ Jaxr [o=ol K
+00 otherwise
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It is easy to check that H(v) is convex and weakly l.s.c. Indeed if liminf J(v,) < +oc holds
for a sequence v, in A such that v, — v weakly-star, then v(z,-) is still non increasing and
the inequality liminf [, p [vn—v0| > [q.r [v—0| shows that [ |[v—wo|(x,t) dt < 400 for a.e.
x € Q. Thus v(x,+00) = 0 and v(x, —oc0) = 1. It follows that v € A and liminf H(vy,) > H (v).
Now we may conclude by simply saying that H = Fj* > J so that G(v) < +o0o implies that
H(v) < 400 hence v € A (in addition we get (v —vg) € L}(Q x R)).

For the second assertion, we apply Jensen’s inequality to the convex functional G and to the
family of functions {vs, s € [0, 1]} where vs(z,t) = 1, (x,t) (see (2.15)). One checks easily that
fol vs(x,t) ds = v(x,t). Thus, recalling that G(1,,) = F'(us) holds by Theorem 2.1, we conclude
that

Gl) < /OlG(vs)ds _ /OlF(uS)ds.

Proof of Theorem 2.8. By the definition of Fp, it holds J < Fy. Thus, as J is convex l.s.c., by
taking the biconjugates we infer that J < F* = G. Let v € A. By applying the assumption
(2.17), we derive that J(v) = fol F(us) ds being ug defined by by (2.14). Thus G(v) > fol F(ug)ds.
By invoking Lemma 2.9, we are led to the identity (2.18). Assume now that v € Argmin G.
By Lemma 2.6, F' and G share the same infimum value which is a finite real a. Therefore, as
0=Gv) —a= fol (F(us) — a)ds , we deduce that us € Argmin F' for a.e. s € [0, 1]. Therefore
(P) has infinitly many solutions unless v is piecewise constant. Conversely, if (P) has a finite
set of solutions {u¥ : 1 < k < K}, then it is straightforward that the set of solutions to (Q)
coincides with the convex hull of {1+ : 1 <k < K}. [ |

2.4 Duality schemes and examples

A large class of functionals satisfying the assumptions required in Theorem 2.8 are of the kind

. 1,2
F(u) = { /Qf(ua Vu)dr — )\/Qp(l’)udl’ , ifue Wy (Q)
400

otherwise

where the integrand f = f(t, z) is a function f : R x RV — (—o0, +00] sastisfying:
1
VteR, f(t,-)is convex , fisls.c.on RY xR , f(t,z) > k|z|® — Z (2.20)

where k > 0, \ is a non negative parameter and the source term p(z) (load) belongs to L" (Q)
(r' conjugate exponent of 7) where r is compatible with the embedding Wy"*(Q) C L"(Q) (that

isr < 5N >3, 7 <+o0if N =2).

Notice that here the non convexity of the energy density f(u, Vu) involves only the dependence
with respect to u . In fact the convexity with respect to the gradient part is necessary to obtain
lower semicontinuity for F'(u) and well posedness for the primal problem. It turns out that the
condition (2.17) is satisfied by considering the convex 1-homogeneous functional defined by:

2t Z) ift <0
J(v) ::/ hy(t,Dv) where hy(t,2",z2") :—{ ‘ f( _Zt) n (2.21)
QxR

400 if 2t >0

We refer to the recent paper [20] for further details namely for a proof of the coarea formula.
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2.4.1 Dual problem in ) x R

Let us decribe the dual problem in the simpler case where f is of the form f(¢,z) = g(t) + ¢(2)
being ¢ : RY — R, convex continuous with ¢(0) = 0 and g : R — R U {+occ} a lower
semicontinuous function with possibly countably many discontinuities. The primal problem
reads

(Py) inf {/ (p(Vu) 4+ g(u)) dz — )\/ p(r)udr : u e H&(Q)}
) Q
and its convexified version

(9) inf{/QXRhf(t,Dv)—)\ p(x)(v—vo)dadt : veEA, U—UOEBVO(QXR)}

QxR
where BVj(£2 x R) denotes the set of integrable functions with bounded variations on 2 x R and
whose trace vanishes on the lateral boundary 09 x R (see [103]).

The dual problem to our non convex problem (P,) is then recovered be applying classical

duality to problem (Q)). The competitors of this dual problem (P3) are vector fields o =
(0%, ") : 2 x R — RN x R we take in the class

X1 (2 xR) = {0 € L¥(Qx RV« dive € L (@ xR)}

and (Py) consists in the following maximal flux problem:
(P3) sup{—/at(:v,O)d:L‘ coekk, —dive=Ap ianR} ,
Q

where 0 € K means that the vector field o € X;(Q x R) satisfies the pointwise (convex)
constraints:

{ ol(z,t) > ¢*(0%(x,t)) — g(t) for LN ae. (2,t) € A xR (2.22)

T
ol(z,t) > —g(t) Vte S, and for LN-ae. z €Q,

where S, is the set of discontinuities of g.

Notice here that the regularity condition o € X7(2 x R) is required in order to be able to define
the normal trace of o on a N-dimensional rectifiable subset of R¥*+1 (in particular for every t,
ol(-,t) is well defined for a.e. = € Q). This allows also to compute the flux of o through the
graph of any competitor u for (Py). By applying a generalized Green formula for duality pairings
(v,0), it is possible to show (see [20] for details) that, for every admissible pair (u, o) one has:

/Qf(u,Vu)dx—)\/Qp(x)udaz > —/Qat(x,O)dx,

thus it holds inf(Py) > sup(P5). The core of our duality theory is the following no-gap result
(see [20] for a complete proof in the case p = 0)

Theorem 2.10.
inf(Pn) = sup(Py) -

Among consequences of of Theorem 2.10, we can derive (see [20]) necessary and sufficient
conditions for a global optimum of (P,) , thus allowing to rule out local minimizers which
are non global ones. A second consequence is a saddle point characterization which fits to
the implementation of efficient primal-dual algorithms ([95]). This is described in the next
subsection.
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Remark 2.11. The result above can be extended to mixed Dirichlet-Neumann conditions. In
particular if u = wg is prescribed on a subset I'y C 9 for some ug € WH2(Q2), then the
competitors o for (Py) have to satisfy a vanishing normal trace condition on (92 \ I'g) x R,
while the linear term to be maximized becomes quO 0 - vy dHYN , being G, the graph of ug with
unit normal v, pointing downwards. For the more delicate case of Robin type conditions, we
refer to [20].

Remark 2.12. When the boundary datum on I'g is a bounded function ug, it exists in general a
priori lower and upper bound for the minimizers of the primal problem (P)). In this case the
infimum is unchanged if we impose u to take values in a suitable closed interval I := [m, M] of
the real line. We are thus led to consider the variant of the primal problem (P)) where the class

of admissible functions is restricted to {u e WH2(;1) : uw=ugon FO}. The duality result

continues to hold (with a simpler proof), provided the admissible fields in the dual problem (P5)
are taken in the class IC(ug, I'g, ) of elements o € X (92 x I) satisfying the pointwise constraints
(2.22) on Q x I and the equilibrium conditions

—dive=Ap(z) mQxI , o®-vg=0 on (IQ\Ty) xI.

Accordingly the convexified problem (Q,) becomes

(Qy) inf{ [ h(t.D0) =X [ pla)(o — vo)dadt 5 ve A(uo,Fo,I)}

QxI

where the set of admissible functions v is given by
A(up,To, I) := {v €BV(QxI;[0,1]) : v=1on Q2 x {m}, v=0o0nQ x{M}, v=1,, on Iy x I}

(the condition [, ; h¢(t, Dv) < +oo implies implicitely that v(z,-) is monotone non increasing).

Remark 2.13. The growth condition (2.20) with exponent r = 2 can be considered with a different
exponent r € (1,+00) and all the statements can be reformulated accordingly. The case r =1
works pretty well for the dual problem see [19] but a lot of attention has to be devoted for the
existence and compactness issue in the primal problem. Indeed the functional F' is no more
Ls.c. in L'(Q) and has to be relaxed in the space BV (2) whereas, in order that inf(Py) > —oo,
we need to chose A in a finite interval [0, \*) (this is in relation with the limit load problem is
plasticity [24]).

To have in mind a prototype situation, let us mention for instance the free boundary problem
studied in the seminal paper [3]:

1
inf {/ oI Vul?da+ sl {u>0}] + we W'@), u=1on 89} , (2.23)
Q

the free boundary being the frontier of the positivity set {u > 0} (see Figure 2.1, in which
Q=(0,1)2 C R?).

Clearly, problem (2.23) falls into this general framework, by taking I'g = 9Q, ug =1, p=0
and ¢(z) = 32| and g(t) = K 1(0,400)(t) which jumps at t = 0. It is easy to check that
solutions u exist and satify 0 <« < 1 a.e. so that Remark 2.12 applies and the dual problem
can be restricted to vector fields defined in © x (0,1). Let K be the set of 0 € X;(Q x (0,1))

such that

1
ol(z,t) + Kk > 5]0”5(:6,75)]2 a.e. on ) x R, o'(x,0) > 0 a.e. on Q.
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The dual problem reads:
sup{ —/ ol(z,1)dx : €K, dive=0 inQ x (0,1)}. (2.24)
Q

Notice that the integral on () represents the flux of ¢ across the graph of the boundary datum
ug = 1. Thus problem (2.24) has a nice fluid mechanic interpretation: it consists in maximizing
the downflow through the top face © x {1} of an incompressible fluid constrained into the
cylinder 2 x R, whose speed o satisfies the conditions above, preventing in particular the fluid
to pass across the bottom face (see Figure 2.1 (b)).

Figure 2.1: (a) The free boundary problem (2.23). (b) The optimal flow problem (2.24).

2.4.2 Saddle point characterization

We consider the variant described in Remark 2.12 where competitors for (Q,) are in the class
A := A(uo,To, 1) (here I = (m, M)) and competitors o for (Py) are in the class K := K(uo, Lo, I).
Let us introduce, for every pair (v, o), with v € BV (Q2x I;0,1]) and 0 € X;(Q x I), the following
Lagrangian

L(v,0):= / (o - Dv) — A p(z) (v —vg) dzdt (2.25)
QxI QxI

Theorem 2.14. There holds

inf(Py) = inf sup L(v,0) = sup inf L(v,0) = sup(Py).
vEA O'GI/C\ O’E’/C\ veEA

Moreover, a pair (U,7) is optimal for (Qy) and for the dual problem (Py) if and only if it is a
saddle point for L, namely

L@w,0) < L(v,5) <L(v,5) VY(v,0)e AxK.

The proof is straightforward. Different numerical schemes (explicit and implicit) in order to
solve the saddle point problem above are presented in [20] and [95]. In particular in the case of
the 2d-example (2.23), some threshold value x* can be computed for which a numerical solution
v(z1, z2,t) is piecewise constant taking three values 0,6,1 (6 € (0,1)). The upper level sets of
v thus determine two global minimizers u,us for the original free boundary problem (u; =1
remains a solution for k < k* and is the unique one).
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2.4.3 An example of I'-convergence

We revisit here the celebrated asymptotic analysis of the Modica-Mortola functional which
arises in the sharp interface model for Cahn-Hilliard fluids, showing how the duality approach
developed in Section 2.2 can be used efficiently. In fact we can treat a sligthly more general
model where we consider a family of functionals (F¢).~, indexed with a (small) scale parameter
e > 0, of the following form (see [13] )

1
P = = [ fu(e),eVu(e) do,
Q
where  is bounded domain of RV with Lipschitz boundary and f : R x RNV — [0, +00) the
following assumptions on :

i) f is continuous in the first variable and convex in the second,;

ii) there exist two real numbers 0 < o < f such that f(¢,0) > 0if ¢t # «, 5, f(a,0) = f(5,0) =
0, and for every z # 0 and every ¢, f(t,z) > f(¢,0);

iii) there exists M > (3 such that f(t,-) is locally bounded, uniformly in ¢ € [0, M];

iv) there exists a function ¢ with superlinear growth at oo, such that f(¢,p) > ¢ (p) for every
teRand p e RV,

Under such assumptions, it is not difficult to show that the family {F°,e > 0} is equicoercive in
X = LY(9;]0, M]) (that is satisfies the condition (H2) in Section 2.2). Our aim is to compute
the T-limit of F as € — 0. For every t € R and z € R, we define

f(t,ez)
€

fe(t, z) = [ (t, z)dt .

[

. B
’ fc(t’ Z) = égng(t’ Z) ) h(Z) :/a

By construction the conical enveloppe of f. is one-homogeneous in z. It follows that h is a
convex and one homogeneous function of z. An easy computation involving Moreau-Fenchel
conjugates, for fixed ¢ and with respect to the variable z, shows that

62 =S P2 L ) = s {es o (2) <0} (2.26)

2*€RN

Under these assumptions, we can show the following result:

Theorem 2.15. As e goes to zero, F I'~converges in L*(Q; [0, M]) to the functional F given by

/ h(vl) dHY=Y ifu € BV (9 {o, B})
SuN

+00 otherwise .

F(u) =

Here S, denotes the discontinuity set of u given in the form v = als + Blg\4, vy = @—Z‘
represents the inwards pointing normal to the interface A N 2 and the integral on 5, is taken
with respect to the N —1 dimensional measure.

The Modica-Mortola functional corresponds to taking f(t,2) = 3|z|*> + W(t) where the double
well potential W : RT™ — R™ is a continuous function such that

lim — =400 , W()=0 <= te{a,p}.

t—oo ¢

In that case we recover an isotropic interface energy h(z) = c|z| where the surface tension
coefficient is determined by ¢ = ff V2W (s)ds (see [86]).
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As an alternative to [13], we propose here a proof by duality exploiting Theorem 2.5 in Section
2.2. Let us sketch the different steps. We consider X = L1(Q; [0, M]), Y := L>®(Q x (=1, M))
(endowed with the weak star topology) and ¢ : u € X +— 1,(x,y) . The assumptions (H1)(H2)
are fulfilled as well as (H3) if we consider the (weakly star) continuous linear form ly(v) :=
Q! Jax(-1,0vdzdt (as uw € X is non negative, it holds 1, = 1 on € x (—1,0) so that
lo(1,) =1).

Let usset Q :=Q x (=1,M) , Q7 :=Q2 x (—=1,0), QT :=Q x (0, M). First we compute:

D, := {pELl(Q):/Qlupdxdt<F5(u) VuEX}.

We observe that p € D, iff it holds inf{F*¢(u) — fQ+p1u} > fQ_ p. Thus, by applying the
duality result of Theorem 2.10 (in the variants described in Remark 2.11 and Remark 2.12), we
get

Dgz{pELl(Q) cdoek., —dive=p inQ", 0" -vqg=0 on 9N x (0, M)

/Jt(a:,O)dx+/ p<0}.
Q Q-
where, in view of (2.26) and of the continuity of f(-, 2),
K.={o € L®(Q"R"™) . f*(t,0%) <co' ae inQ"}.
Next we define D to be the closure in L'(Q) of the set Dy given by

Doz{pELl(Q) :doeky 1, —divo=p inQ", 0" -vg=0 ondQ x (0, M)
/at(x,O)dx—i—/ p<0},
Q Q-

Ko={oc €CH Q") : o(x,t) €To(t) V(x,t)cQ'},
Cot) = {a=(2",7) €RY x R: f*(t,2") <0, 7 > 0if t € {a, B} }
We introduce the following functional G defined on L(Q):

Gv) = Sup/v-pdxdt = Sup/v-pd:vdt.
peD JQ pEDo JQ

where

By a straight forward computation, we observe that the support function of the convex constraint
associated to subset Ky i.e. Cy(t) = {q =(z5,7) ERVN xR : f*(t,2*) <0, 7> 0if t € {a,b’}}
is given by:

h(t, 2%, 2") = f3*(t,2%) if2' =0 or [zt <Oandte {a,ﬁ}} ., h(t, 2", 2") = +00 otherwise.

As a consequence of a commutation argument between the symbols sup and [ (see [17]), we infer
that G(v) = [ h(t, Dv). In particular G(v) is finite only for those functions v(z,t) which are
piecewise constant with respect to ¢ and such that v =1 for t < a, v =0 for ¢t >  and v = 0(x)
for t € (o, B) being 6 an element of BV (£;[0,1]). Then G(v) = ff Jo [25(t, D) = [, h(DF).
If v = 1,, then we have § = 14 for a suitable subset A C  with finite perimeter so that
u=aly+ Blg\a and G(1u) = F(u). Therefore G(v) (which satisfy coarea formula) is nothing
else but the convexified functional associated with the limit F' given in Theorem 2.15. In other
words we have showed that the set Dy above satisfies

Dy = D = {peLl(Q) : /QpludxdtgF(u) vueLl(Q)} . (2.27)

Owing to Theorem 2.5, we deduce Theorem 2.15 by invoking the following result:
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Lemma 2.16. With the notations above, D. converges in the Kuratowski sense to D in L(Q).

Proof. First we prove that Dy C Li(D.) (thus D C Li(D.)). Let p € Dy and o € Ky associated.
By continuity, o* is positive in a neighborhood of t € {«, 3} while in the complementary f*(t,o%)
is majorized by a negative constant. Therefore o € K. and p € D, for ¢ small enough.

Let us show now that Ls(D.) C D. Let p € Ls(D,). Then it exists a sequence such that p. — p
in L'(Q) and p. = —divo. in QT, where 0. has a vanishing normal trace on 952 x (0, M) and
satisfies

fA(t, o) <eol inQ" /ag(x,o) dx—i—/ pe <0 . (2.28)
Q Q-

By Gauss-Green formula applied on € x [0, s] and by exploiting the vanishing normal trace
condition on 992 x (0, M), we obtain that for every s € (0, M), it holds:

/ ol(z,s) dx—/ ol(x,0)dz :/ pedrdt < [|pellpi(q) -
Q Q Qx[0,s]

Thus, by integrating in s over (0, M) and taking into account (2.28), we deduce that

(t,o%) <= /Q )
As f*(t,02) = —f(t,0) is minorized, we infer that [y f*(¢,07) — 0 and that ol is bounded in
LY(Q™). By the assumption iii) on f, this implies that {o®} is bounded and equi-integrable in
LY(Q™), hence up to a subsequence we may assume that o — @ in L'(Q*;RY) for a suitable
o®. By the convexity of f*(t,-), it is easy to show that the weak limit o satisfies f*(¢,0%) <0
a.e. in QT. Let u € L'(Q2) such that F(u) < +oco. Then we have u = aly + 1o\ 4 where A is
a subset of finite perimeter. We denote by v4 the outward pointing normal to A which is well
defined H' a.e. on QA (its essential boundary).

o fr oe(z,t)dedt < Me||pel|(q)

In view of (2.27), in order to show that p € D, we are reduced to check that
/ plydxdt < F(u) = / h(va)dH?' .
Q DANQ

Recalling that p. — p in L'(Q) while p. = —divo. in QT and 1, = 1 in Q~, we have

/ plydxdt = lim </ e dxdt 7/ 1,div 05)
Q e—0 - Q+

< lim sup (—/ ol(z,B) dx — / ol(x,a)dr + o%(x,t) - vy H (dr) ® dt)
e—=0 A Q\A 0AX (a,3)

< / 0% (1) - va H' (do) @ dt,
Ax (a,B)

where:

- in the second line we applied the generalized Gauss -Green formula on subset Q% taking
into account the right hand side inequality in (2.28) and the fact that o - v vanishes on
002 x (0, M),

- in the third line, we used the fact that o’(-,¢) is nonnegative for ¢t € {«, 8} together with
the weak convergence of the normale trace of 0. on dA x («, ().

Next we observe that, thanks to f*(t,0%) < 0, we have f*(¢,0") = 0 and, by Moreau-Fenchel
inequality, it holds: oZ(x,t) - va < f¥*(t,v4). We can therefore conclude that

/pludxdt < / () HY(dr) @ dt = [ h(va)dH' = F(u) .
Q OAX(a,) OA
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2.5 Extension of the duality principle to the case of linear-
growth functionals

In this section, we extend the duality scheme developed in Section 2.4 and deeply studied in
[20], to the case of linear-growth functionals. As we are motivated by specific examples which
will be developed in Chapters 3 and 4, we shall focus on the case of variational problems of the
particular form given by

(P) inf{ /Q (o(Vu) + g(u)) do — /

p(x)udr : we WHHQ), u = up on 89} (2.29)
Q

where ¢ : RN — RT is a convex continuous function such that
1
klz] = o < olz) = C+]2)), (2.30)

for suitable constants k,C' > 0, g : R — (—o00, +00] is a l.s.c function and ug is a fixed element
in L1(09). In order that the infimum above is finite, we shall assume one of the following
additional asumptions on functions g and p :

(A) domg:= {t € R: g(t) < 400} is bounded and p € L*(Q);
t /
(B) g satisfies lim inf Q > 0 for some r > 1 such that p e L" () (' = I ).
[t =400 [¢] r—1

The existence issue for (P) is not trivial since minimizing sequences are merely bounded
in W11(Q) and admit possibly discontinuous cluster points in the space BV (£2). To obtain
a well-posed primal problem, we need to relax it in the space BV (Q2). This is a well-known
technical procedure (see [17]) that we describe shortly in the next subsection.

2.5.1 Relaxation in BV

We recall some preliminary notion of BV functions. For every function u € BV (2), we recall
u® (x) denote the upper and lower approzimate limits of u, S, := {x € Q : u=(z) < ut(z)} is
the set of all approximate jump points of u. Du is a bounded Radon measure, which can be
decomposed into

Du = Vudz + Du+ (vt — w7 ) d(HN7ILS,)

where v, denotes the Radon-Nikodym density of Du with respect to its total variation |Dul,
i.e. v, = dDu/d|Du|. Note that D is the Cantor part of the measure Du. The quantity
[u] :==ut — ™ is called the jump of u across the interface S, and the direction of the jump is
given by v, along S,. Accordingly, the complete graph of function u, denoted by G, is defined
by

Gui= U ({o} % u™ (@), ut (@)]).
e

It is a rectifiable subset of 2 x R with an oriented unit normal denoted by v,. G, is indeed the
support of the bounded Radon vector measure D1, in 2 x R, namely

D1, = D, d(HNLG,) (2.31)
Actually, from writing the measure D1, as the sum of

D1,L(Sy xR)  and  D1,L((Q\S.) x R) (2.32)
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one can derive a decomposition of the complete graph G, into two parts: a wvertical part and an
approzimately continuous part (denoted by G,,). Therefore, the density 7, is determined by

Du(w,t) = (vu(x),0) forx € Syandt € [u (z),u”(z)],
on the vertical part. On the approximately continuous part, it is identified as

(Vu(z), —1)

Du(x,u+($)) = 1+ |Vu(x)|2

(2.33)
if u is approximately differentiable at x (with its approximate gradient Vu(z)), and it is
horizontal, i.e. Uy(z,u™(x)) = (v,(x),0), at points corresponding to the Cantor part of Du
otherwise. Notice that v, = dD/d|Du| |Dul-a.e in 2. We remark also that the complete
graph G, of functions u belonging to W1P(Q) agrees with the usual graph G, and D, (z, u(z))
only has the form (2.33). But, it is not always the case when dealing with BV functions.

With the settings mentioned above, the relaxed functional BV (§2) of the primal problem (P)
n (2.29), is given by

Bu) = | (#(Vu) +g(w) = pla)u) de + / (w0 — w)vo) !

2.34)
dD°u (
o) d| D¢ / N-1
+ Jo () 407+ H
with > being the recession function of ¢, namely
o0 _ o(sp)
=1 . 2.
P (p) = lim — (2.35)

For the sake of simplification, we adopt the convention below

dD¢

/ngu /@Vudx—i—/ ( u)d!DcuH-/ > (vy,) dHN L.

d|D¢ul|
Then, the relaxed problem of the problem (P) in (2.29), is formulated as
(PR) min { E(u) : u€ BV(Q)}. (2.36)

Problem (PR) attains its minimum in BV (Q2) and if inf(P) < 400 then it holds
inf(P) = inf(PR).

Remark that, when the domain of g is bounded, there exist a priori lower and upper bounds for
the minimizers of the primal problem (PR). Accordingly, we can restrict (PR) to the space
BV (€; [a, b]) where —0o < a < b < 400 and [a,b] is a suitable closed interval such that the
minimum is unchanged.

2.5.2 Dual problem

From now on, we assume that inf(P) < +o00. Additionally, we make the assumption (A), namely
dom(g) CC I := [a,b] where —oco < a < b < 400 so that the relaxed solutions of the problem
(PR) belongs to BV (£2;I) and thus (PR) reduces to

(PR) min { E(u) : ue BV(%1)}. (2.37)

Adopting the same strategy as in Section 2.3, we need to construct a functional J : L>°(£2 x
I) — [0, 4+00] satisfying the co-area formula and such that J(1,) = F(u) where

F(u) := /Q (gp(Du) + g(u))dx
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To that aim, we consider

—!(p(Z) +9(t)) if2 <0,
J(v) = /Qx[ h(t, Dv) where h(t, 2%, 2") = ©™(2%) if 2t =0, (2.38)
+00 if 2 > 0.

Remark 2.17. We notice that, if F(u) < +oo, then v € BV (£2;I) and as g(u) < +0o a.e., the
function v = 1,, (as an element of BV (2 x R; [0, 1])) is such that v(z,-) is non increasing with
v(z,a+0) =1 and v(z,b—0) = 0.

Remark 2.18. The important modification of J(v) with respect to (2.21) lies on the fact that
the positively 1-homogenous function I is now well defined for z* = 0 since ©™>° given in (2.35) is
finite. It allows to handle the jump energy in our duality framework. This setting is compatible
with functionals with linear growth, whose minimizers in BV spaces may occur discontinuity.

Let us check that J(1,) = F(u) for every uw € BV (£2;I). By the decomposition (2.32), there
holds

/ h(t, D1,) = / h(t, ) d(HN LTy)
QxI QxI
T 5 gy N ute) N-1
:/ h(t, ) dH +// (s, (4, 0))ds dHN1.
Gy, Su Ju~ ()

The integral taken over the approximately continuous part (of the complete graph) G,, can be
calculated as

dD‘u

H o) = [ (ufa), (vu(x),—1))dx+/QE (u+(x), (M,o)> d| D%l

Gu Q

by taking into account the positive 1-homogeneity of h and the disintegration

(HVLG.)(Ax B) = /A o) (B) <\/1 FValds + d|DCu|> (2.39)

for all Borel subsets A x B C (2\ S,) x I. Here, d,(,) denotes the Dirac measure. Notice in
addition that the Jacobian of the mapping Q2 >  — (z,u(z)) € G, is provided by /1 + [Vul?
that appears in the formula of disintegration above. Using the definition (2.38) of h, we deduce
that
T 00 dDu c 0o N-1
[ D1 = [ (e(Va) +g()de+ [ o A%l + [ [ule® () dH
QxI Q Q d|D¢ul

u

which yields J(1,) = F(u).
Now, we are going to establish that F(u) given in (2.34) satisfies

E(u) = E(1,) (2.40)
where we define

E(v) = J(v) + £(v)

with £(v) being a suitable affine functional on BV (§2 x I). For that purpose, we have to define
£(v) so that

0(1,) =— /Qp(:n)u(x)d:n + /E)Q 0™ ((ug — w)v)dH "1 Yu e BV(;1). (2.41)
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Let us define for v € BV(2 x I)

L(v) = — / p(z)(v — vg) dxdt + D yug (0, 1) (v — vo)dHN ~Ldt
Qx1I oxI
(2.42)
+ / gooo (uoug)dHN_l
o0

where vo(z,t) =1 — H(t) (H(t) being the Heavyside function) and

Yug (T, ) == Lpoo((uo(x) — t)ug(ac)) for (z,t) € 002 x I. (2.43)

We observe that v, (z,-) is Lipschitz with

OVu
Ot Yuo (7, 1) := L(3:,15) =

{gooo(—l/g(m)) if t > wup(x),
ot

—¢>(va(z)) ift <wuo(z),
and that for every u € BV (1), it holds true
(1u B U()) _ 1[0,u(gc)] if u(x) > 0, (2.44)
_1[u(x),0] if U(CU) < 0.
We derive from the identity (2.44) that

u(z) = /R (Lu(z, ) — vo(, £))dt, (2.45)
/R@t’yuo (x,t)(1y — vo)dt = ©=°((up — u)rg) — ™ (ugrg). (2.46)

Now, let uw € BV (Q; ). Keeping in mind that as u and ug range in the interval I, the identity
(2.44) remains true in I so that the integral representations (2.45)-(2.46) can be restricted to I.
From these observations, we can verify that

/ O Vuo (T, 1) (Lo — UO)dHN_ldt
o0xI

(2.47)
—/ ((ug — u)vg) dHN! _/8 gpoo(uoyg)dHN_l.
Q

On the other hand, we have (by using the integral representation (2.45) above restricted to I)
that

/ () (L — vo)dadt — / p(x)u(z)dz. (2.48)
QxIT Q

From (2.47) and (2.48), we find that ¢(v) with its definition given in (2.42) satisfies (2.41).
In combination with the fact that J(1,) = F(u), it shows that the required identification
E(u) = E(1,) is supplied.

In virtue of Section 2.3, especially Lemma 2.6, the convexified problem of (PR) in dimension
N + 1, reads

(Q) inf { E(v) : ve A(D)} (2.49)
where, according to Remark 2.17, the admissible set is given by:

A(l) :=={v € BV x I;0,1]) : v=10nQx {a}, v=0o0nQx {b}}. (2.50)

Keep in mind that by definition of h, the condition Joxr (t Dv) < 400 implies implicitly that
v(z,-) is monotone non increasing. We provide in the next proposition the so-called slicing
formula which allows to establish the equality between the primal relaxed problem (PR) and its
convexified problem (Q).
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Proposition 2.19. For every v € A(I) such that E(v) < 400, it holds

~ 1 1 1
E(v):/o E(l{v>s}(x,t))ds:/o E(lus)ds:/o F(us)ds. (2.51)

As a consequence, we have inf(PR) = inf(Q).

Proof. Let v € A(I) such that E(v) < 4+oc. Since v(z,-) is non increasing (because of the
finiteness of J(v)), v only takes values into [0, 1]. We recall that the layer cake representation
formula for any function w with values in [0, 1] is w(x) = fol 1iy>sy(7)ds. We get

/Qxlp(x)(v — vo)dzdt = /Qx[p(x) (/01 1iyssy(,t)ds — Uo) dxdt

. /0 1 /Q p(x) /1 (Ly, — vo)dtdzds (2.52)

:/Ol/ﬂp(m)usda:ds

where the second equality is obtained by using the identification (2.15) with the function wug
defined by (2.14), and the third equality is obtained by exploiting (2.45). Again, by the layer
cake representation formula and then, by (2.15), we infer that

1
/ Oy (2, £) (v — vo)dHN it = / / Ot (2, 1) (Lpusgy — v0)dHN ~dtds
oOxI 0 oOxI
1
— / / O g (2, ) (L, — vo)dH N~ dtds (2.53)
0 oOx1

1
:/ SOOO((UO - US)VQ)dHN_ldS - / (POO(UQVQ)dHN_l
0 JoQ o0

where third equality is obtained by the same computation of (2.47). As the functional J(v)
satisfies the coarea formula and the condition (2.17), it holds

J(v) = /_ ;OO T s (. 1))ds = /0 L (1 )ds = /0 1 ( /Q o(Dus) + /Q g(us)dx> ds.  (2.54)

We deduce from the equalities (2.52)-(2.53)-(2.54) that

E(v) = /01 E(1,,)ds = /01 E(ug)ds.

We observe that for £l-a.e. s € (0,1), the function us belongs to BV (£2; ). This is to say
E(uy) > inf(P), and by the slicing formula (2.51), E(v) > inf(P). Therefore, because of the
arbitrariness of v € A([), we conclude that inf(PR) > inf(P). Conversely, we have already known
that E(u) = E(1,) for u € BV(Q) (as shown in (2.40)). It follows that inf(P) > inf(PR). W

In the next lemma, we give an extended integration by parts formula which intuitively
describes the fluxes across the graphs of competitors u of the relaxed problem (PR). Then, it
permits formulating the dual problem of the problem (PR) in terms of maximizing the fluxes.

Lemma 2.20. Let u € BV (Q;1). For every o € X1(Q2 x I) satisfying
—dive =p(z) inQ x I, o v = =0y, ondx I, (2.55)

and for every v of class A(I), it holds

l(v) + o-Dv= /7 o DrdHYN — / p(z)udz + / 0™ ((up — W)va)dHN 1 (2.56)
QxI G~ Q o0

u
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where £(v) is defined in (2.42).
In particular, if v=1,, for some u € BV (Q; 1), one has

/7 o UydHN — / x)udzx + / ((up — u) VQ)dHN_I
Gu

(2.57)
- /7 o - ﬁad’HN / x)udr + / ((ug — ) VQ)dHN_l.

Proof. For every v € A(I) (see (2.50) for the definition of A([)), v —1; =0 on Q x {a,b}. We
apply the generalized Gauss-Green formula (keeping in mind the constraints of (2.55)) to obtain

/ o-D(v—1-) = —/ (w-1)divo+ [ 0% v — 1)dHN1de
Qx1 Qx1T oQx1I
- / p@)0=15) = [ g0~ 1p)dH e
Qx1I o0Qx1I
p(z)(v — o) — / p(z)udr — / Yo (2, 1) (v — vo)dHN ~1at
Qx1I Q oQxI

. / (up — ) )dH N L / o™ (uora)dHN 1,
o0

(2.58)

wherein the third equality is done by decomposing v — 1~ = v — vg — (1; — vo) and invoking the
equations (2.45)-(2.47). By means of (2.31), we have

U-D1~:/ o D~dHN
~/Q><I v 7'1: v

from which (2.58) yields (2.56). When v is of the kind 1, for some u € BV (£2;1), (2.57) is a
direct consequence of (2.56) (again using (2.45)-(2.47) for the computation). [ |

Notably, when one takes u = ug where @y € BV (Q; 1) and ug = ug on 012, the integration by
parts formula (2.57) turns into

/7 o- ﬁ%d’HN - /Qp(m)ﬂod:c

(2.59)
= L o DydHN — / x)udx + / uy — u) I/Q)dHN_l.
Gy

In particular, if u = 0, the subgraph function 1 agrees with the function vy, which belongs to
A(I). Moreover, we obtain

- / ot (2, 0)dx + / 2 (g )dHN !
Q o0

— [ o pudn - / udm+/ (1o — u)vo)dHN
Gy

(2.60)

In our recent case, the primal problem (P) in (2.29) that we are treating is a Dirichlet problem
with the prescribed boundary value u = ug. Then, (P) is relaxed in BV (€; ) to become (PR)
n (2.37). By exploiting the relation (2.60), the dual problem of (P) (in fact the dual of the
relaxed problem (PR)) that we propose, is established as

(P*) sup{ / (x,0)dz +/ (uora)dHN™! : o€ B(I)} (2.61)

where B(I) is a class of vector fields defined in the following sense:
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- KC(I) denotes the class of vector fields o € X7 (€ x I) satisfying the convex constraints

ol(z,t) > ¢*(0%(x, 1)) — g(t) for LY ae. (z,t) € A x 1T, (2.62)
ol(x,t) > —p(0) — g(t) Vte€ S, and for LN-a.e. z € Q. (2.63)

v

Here, S, denotes the set of discontinuities of g. S, is assumed to be Lebesgue negligible.

- B(I) is the class of fields o € K(I) such that

—dive=p inQxI, (2.64)
0¥ v = =0, onodfdxlI, (2.65)

where 0% - v is the weak normal trace of o on the boundary 9(Q2 x I).

Let us remark that the affine form in o appearing in the dual problem (P*), namely

Lwy:—/a@mw+/gwwmwmw4
Q 80
can be rewritten as

uwzﬁfaﬁme—/m@%m
. Q
uQ

being g any element of BV (£2; I) such that uy = up on 9€2. This can be checked easily by using
the extended Green formula in Lemma 2.20.

In the next lemma, we show that the infimum of (P) is bounded from below by the extremum
of its dual problem (P*).

Lemma 2.21. It holds sup(P*) < inf(P).

Proof. 1t is easy to verify the inequality sup(P*) < inf(P) (= inf(PR)). Indeed, taking u, o the
competitors of (PR) and (P*) respectively, we have

/ O"D].u—/i o - DydHN
QxIT

—/ (z,u(z)) - Vu(z) — o'(z, dx+/ (z,ut(x)) - vy d| D u|

—I—// uudsdHNl

<[ [ <x u(a >>>+¢<Vu<x>>—ot@c,u(w»]dx

—I—/ (z,ut - vy, d| DUl —I—/ / vy ds dHN !
u™ ()

_/ [ (Vu(z )) dx—i—/ (z,u™ - vy d|DCul|

+// l/udsdHNl

In the calculation above, we derive the first and second equalities by using (2.31), the decomposi-
tion (2.32) and the disintegration (2.39); the first inequality by making use of the Moreau-Fenchel
inequality; and the second inequality by involving the constraint (2.62).

On the other hand, we recall that the recession function of a closed proper convex function
is characterized as the support function of the effective domain of its convex conjugate function,
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see [98, Theorem 13.3]. Keeping in mind that the integrand ¢(z) is continuous and convex, it
happens 0% (z,t) - v, < p>°(v,). Then, we deduce that

/QXRO' -D1, < /Q [(,D(VU) + g(u)}dm + /Q 0> (vy) d|Du| + /Su [u]p™ () dHN L.

By adding [, ¢ ((ug — u)v)dHN 1 — [, p(z)udz in both sides of the inequality above and
using the relation (2.60), the definition (2.34), the flux of any o € B(I) passing through the
interface ¢ = 0 is bounded from above

- / ot (2, 0)dz + / o> (uga)dHN ! < E(u),
Q o0
where E(u) is the energy of the relaxed problem (PR). This entails that
sup(P*) < inf(PR) = inf(P).
[ |

Theorem 2.22. There is no duality gap between the primal and dual problems defined respectively
in (2.29) and (2.61), i.e.

inf(P) = sup(P*).

Proof. By Proposition 2.19, we have inf(Q) = inf(PR) (= inf(P)). To prove the equality
inf(P) = sup(P*), we can alternatively demonstrate that inf(Q) = sup(P*). For this purpose,
we introduce a perturbation of the dual problem

d(n) ::inf{/ o'(z,0)dr — / ™ (ugro)dHN 1 o€ X1(Q x I),
Q o0
—dive =p, 0% - vg = =0y, on 0 x I, 0+77€IC(I)}

for n € Co(Q x I;RN*1). For the sake of simplicity, by convention, the constraint in the
abbreviated form — divo = p appearing in the definition of ® is meant to be satisfied £V *1-a.e.
in Q x I. We can easily verify the convexity of the map n — ®(n), and evidently, for n = 0,
—®(0) is nothing else but (P*), i.e.

sup(P*) = —&(0). (2.66)

Moreover, ® is continuous at 0, namely, for any n with ||n]|. < 0, there is o9 € K(I) such that

o) < [ o'(w,0)do— [ o (uopa)dH .
Q o0
In fact, we can take o( of the kind

oo(z,t) = (—(x,t), (cq — p(x))t + 1)

where 1 € R is determined later, cq := |0Q|/]Q|, ¥(x,t) := Vw™ if t > up(z) and Y(z,t) := Vw™
if t < ug(), with w* being the unique solution to the boundary value problems Aw™ = cq
in Q, wf = p>®(—vq) on 9N and Aw™ = cq in Q, v, = —p™(vg) on IQ. We see that, by
construction, og € L®(Q x I; RN diveg = —pin Q x I and (09)* - vo = —0yyu, on 0 x 1.
Let us show that ;1 can be chosen so that oo +n € K(I) for every n with ||n|s < 6. In other
words, o¢ + 1 must satisfy the conditions (2.62)-(2.63). To that aim, we have to choose u so
that the following implication is ensured

(ca—p)t+p+q > " (W(x,t) — g(t)

lg < 0 = {
(coa—p)t+p+q" > —p(0) — g(t).
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Clearly, it is possible to choose p since t € I, and ¢*(¢(z,t)) < k||¢(z,t)||c + 1/k (see the
growth condition of ¢ in (2.30)).
Therefore, we have

—®(0) = —&**(0) = min(®*). (2.67)

where ®* denotes the Moreau-Fenchel conjugate of ®. Notice that the conjugate is taken in the
duality between continuous functions and bounded measures. We shall show that

B*(A) = {E(v) if A\ = Dv with v € A(I),

] (2.68)
+o00 otherwise.

Then, as a consequence, there holds min(®*) = min {E(v) NS A(I)}. Thus, by (2.66)-(2.67),
we conclude that inf(Q) = sup(P*), and the proof is completed.

Let us sketch the proof of the claim (2.68). The proof is delicate, very technical, and can be
achieved in the similar way of the results of G. Bouchitté and I. Fragala in [20]. We refer to this
paper for further details. Let A be a bounded vector measure such that ®*(\) < 4+00. Basically,
the proof of the claim (2.68) is supported by the three statements :

(i) For every o € X1(Q x I) and every v € BV, (2 x I), it holds
/ E(t,Dv):sup{/ (c+mn)-Dv : UGD(QXI;RN+1),J+77€IC(I)};
QxI QxI

(ii) For every compact neighborhood U of the boundary 9 and every bounded continuous
W Q x I — RNTL there hold

(A — Dvg, 1)) = 0 whenever divey =0in Q x I and ) =0 on U x I,

/ R(t, \) < +oo;
(Q\U)xT

(iii) There exists a scalar function v € L{ (Q x I) with v(z,-) monotone non-increasing such
that A = Dv. Furthermore, up to adding a constant to v, we have v € A(I), i.e.

v € BVoo(Q x I;[0,1]), v(z,a) =1, wv(x,b)=0.

We are going to compute ®*()). Let o be an element of X;(€ x I). By the assertion (iii)
above, the duality pair (o - A\) = (¢ - Dv) is well defined. On the other hand, by (i), it holds

h(t, Dv) = sup{/ (c+n)-Dv : neDQx L;RYY, o +ne IC(I)}.
QxI QxI
The Moreau-Fenchel conjugate of ® is computed as followings
@*(A):sup{/ n-Dv—®(n) : nECO(QxI;RNH}
QxI

zsup{/ n-Dv—®(n) : UED(QXI;RN+1}
Qx1I

:sup{/ (77+0)'Dv—/ at(x,O)dx—i-/ 0> (upvg)dHY ! — (Dv,0) :
QxI Q a9
neDQx LRV o e X1(2 xR),
—dive=p, 0% - vg= -0y, on 02 X I, 0 +n € IC(I)}
:/ h(t, Dv) + sup { (Dvy — Dv, o) —1—/ 0> (ugr)dHN 1
Qx1I o)

0€X1(QxR), —dive =p, 0¥ vg = —0¢yy, on 02 x I, O'E]C(I)}.
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In the calculation above, we used : the definition of ®* in the first equality; the density of
D(Q x I;RNT1) in Cy(Q x I; RNY*1) and the continuity of ® at 0 in the second equality; the
definition of ® in the third equality; and the assertion (i) in the fourth equality. Finally, to
finish the calculation, by invoking (2.56) (with @ = 0), we find that the supremum in the fourth
equality of ®*(\) above agrees with ¢(v), hence ®*(\) is equal to the energy of the convexified
problem (PR), namely

B*(N) = / hi(t, Do) + £(v) = E(v).
QxI
As shown by the assertion (iii), v belongs to A(I), the demonstration of (2.68) is done. [

Remark 2.23. The dual problem (P*) can be interpreted as a problem accompanying with the
constraint of free divergence. To that aim, we set & = (6%, %) such that
o’ =o", =o' +plx)t VoeK().
Clearly, dive = 0, and & satisfies
Gl(z,t) > ¢*(3%(z,t)) — g(t) + p(z)t for LN ae. (2,t) € QA x I, (2.69)
al(z,t) > —p(0) — g(t) + p(x)t Vte S, and for LV-ae. x € (. '

At that moment, the flux formula (2.56) reduces to
/ 5. Du+ O vue (2, 8) (0 — vo)dHN ~Vdt + / o (ugra)dHN !
QxI o0 xI oQ
= | & vdHY +/ 0% ((ug — w)va)dHN L.
GZ oN
When v = 1, for some u € BV (; 1), one has
/7 G - DydHN +/ 0™ ((ug — u)vg)dHN 1
u [2}9]
(2.70)
= | & vdHY +/ 0> ((up — U)o )dHN L.
GZ o2
In addition, if u = up where ug € BV (2;I) and up = up on 012, it holds
/5 G-y dHY = ﬁ & - Dy dHY + /6Q 0™ ((ug — u)va)dHN L.

u
uo

In the specific case where @ = 0, the flux formula (2.70) becomes

—/ 5t(l',0)d$+/ QDOO(’LLoI/Q)d/HN_l =
Q o0

On the other hand, the two fluxes of ¢ and ¢ passing through the interface ¢t = 0 are identical,
precisely as ¢ — o = (0, p(z)t) we have

/ (5(2,0) — o (,0))dz = 0.
Q

Following these observations, it allows to establish another equivalent dual problem. Let us
denote by KCo(I) the class of vector fields in X (2 x R) verifying the convex constraints (2.69).
Then, there holds

5~ﬁudHN+/8 2 (g — v )dHY 1.

Gu 9)

sup(P*) = sup{ - /Q?ft(x,O)da: + /BQ 0> (ugr)dHN 1 & e Ko(I),

dive =0in Q x I, ()" - vq = —0¢yu, on 0§ x I}.
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2.5.3 Optimality conditions and saddle point characterization

We provide in the following the necessary and sufficient conditions for optimality.

Theorem 2.24. Let u, o be admissible to problems (PR) in (2.37) and (P*) in (2.61), respec-
tively. Then, u is a solution to (PR) and o is a solution to (P*) if and only if

h(t,vy) = o - D, HN -a.e. on G,,. (2.71)
We call such o a calibration for u.

Proof. Assume that u, o are respectively admissible to problems (PR) in (2.37) and (P*) in
(2.61), and they satisfy the condition (2.71).

sup(P* )_—/ dew—i—/ (uorq) d’HN 1
:ﬁ o - DudHN —/p(a: uda:—i—/ 2 (1) — w)vo)dHN !
G

= /Gu h(t, D, )dHN — / x)udx +/ uo — w)vg)dHN L
= E(u) > inf(PR) = inf(P).

In the comparison above, we used in the order the definition of sup(P*), Lemma 2.20 (see also
(2.60)), the condition (2.71), the equality J(1,) = F(u), and the definition of inf(PR) (note
that inf(PR) = inf(P)). As we concluded in Lemma 2.21, we infer that all the equalities become
equalities. It means u, o are optimal correspondingly for the (relaxed) primal and dual problems.
Suppose now that u, o are optimal correspondingly for the (relaxed) primal and dual problems.
Again, we apply in the order Lemma 2.20 (see also (2.60)), the optimality of o, the no duality
gap, the optimality of u, and the equality J(1,) = F(u) to the sequence of calculation below

/7 o UydHN — / x)udzr + / ((up — u) VQ)dHN_I

= —/ at(:L‘,O)da:+/ 0> (ugrg)dHN !
Q o
= sup(P*) = inf(P) = inf(PR) = E(u)

=/ E(t,ﬁu)dHN—/p(m)uda:jL/ 0> ((ug — w)vg)dHN L.
Gu Q o0

We deduce that [z o DydHY = = fg, h R(t, 7, )dHN , which implies (2.71). [

Corollary 2.25. Assume u, o are optimal correspondingly for the (relaxed) primal and dual
problems. The condition (2.71) is satisfied if and only if it holds

o%(z,u(z)) € dp(Vu(r)) for LY -a.e. x € uTH(R\ Sy), (2.72)

ol (z,u(x)) = o* (0% (z,u(x))) — g(u(z)) for LY -a.e. x € uTH(R\ Sy), (2.73)
ol(z,t) = —p(0) — g(t) Vt € R and for LY -a.e. x € {u = t}, (2.74)

o (x,t) - vy = () for HN ta.e. x € Sy, and Vt € [u™(z),u"(z)], (2.75)

o (z,ut () - vy = 0™ (V) for |Dul-a.e. on Q. (2.76)

Proof. On the complete graph G, at the points corresponding to singular parts D7u and D¢,
the conditions (2.75)-(2.76) agree with (2.71).

On the usual graph G, except the points corresponding the Cantor part of Du where
vt # 0 (see the definition (2.33) of D, on G,,), the following computation is done H¥-a.e. on
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G, N2 x (R\ Sy)] with making use of the conditions (2.72)-(2.73) and noticing the definition
of h,

L N
7 Pu= 75 0"+ 9" (0) — gw) = —7h (<2 07 = " (0") + glu)

Besides, because of (2.74),
0 (—en+1) = —o'(w,1) = p(0) + g(t) = h(t, —en-+1)

HN-a.e. on Gy, N[Q x S, (here the vector ey is the (N + 1)-th element of the standard basis
of RN*1),

Conversely, suppose that (2.71) holds true. As o verifies the constraint (2.22), there holds
HN-a.e. on G, N[Q x (R\ Sy)] (except the points corresponding the Cantor part of Du):

~ R R R R v
(6.2 =090 < 75 0"+ 9497 (0%) — 9(w)) = 0% (-2 07 = (%) +9(w))
u

= P (Va0 — " (0%) + g(w)) < 4 ((Vu) + g(u)) = 4 (9~ 1) + g(w))

= h(t, 7).

As we see, these inequalities above is indeed equalities, which give (2.72)-(2.73). By using the
second constraint in (2.22), we infer that

h(t,—en+1) =0 - (—en+1) = =o' (2.) < @(0) + g(t) = h(t, —en+1)

HN-a.e. on G, N (2 x R). Hence, this inequality actually holds with equality, which yields the
condition (2.74). (]

Our duality result in the extended case of linear-growth functionals also provide a min-max
formulation. In an analogous way, let us establish this saddle point characterization. Let
v e BV(QxI)and o € X1(Q x I), we introduce the Lagrangian

L(v,0) :={4(v) + o - Dv (2.77)
Qx1I

where ¢(v) is the affine form defined in (2.42).
Theorem 2.26. We have

inf(P)= inf sup L(v,0)= su inf L(v,o) = sup(P").
(P) UEA(I)UEICI()I)( ) UEICI()I)UE-A(I)( ) = sup(P”)

Furthermore, a pair (T,7) is optimal for the convezified problem (Q) (in (2.49)) and for the dual
problem (P*) (in (2.61)) if and only if it is a saddle point for L(v,0), i.e.

L(v,0) < L(v,7) < L(v,7) V(v,0) € A(I) x K(I).
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Proof. We observe that
L(v,0) =(v) + o-D(v—uwvy) — / o' (x,0)dx
Qx1I Q

__ / p(x)(v — vo) dxdt +
QxI

—/ (v—wp)dive +
QxI

O Yo (2, 1) (v — vo)dHN_ldt + / gooo(uoyg)dHN_l
o0 By)

(v — ) (0" - VQ)dHNfldt—/ ot (z,0)da

o0xT Q

where we used the generalized Gauss-Green formula. It easy to see that for v = vy + ¥ with
Y € D(Q x I), the infimum inf,c 4y L(v,0) is finite only if dive = 0, and when we take
¥ € D(Q x I) it must hold 0% - vg = —0yyy, (z,t). This is to say that

inf L(v,0) =

—/ O't(.%‘,O)dSU—I—/ ™ (upva)dHN 1 if o € B(I)
veA(T) o o0

—00 if o ¢ B(I).
So it turns out that

sup(P*) = sup inf L(v,0).
(7) ocek (1) veA) (v,9)

Besides, we have
inf(P) = inf{E(v) : ve AU)} =inf{J(v) + L) : ve A(I)}

= inf su {/ 0-Dv+€v}: inf sup L(v,o
UE-A(I)UEICI()I) Qx1I ®) UGA(I)UGKI()I) (v:0)

where we used the definition of E(v) and the identification

J(v) = h(t,Dv) = sup / o - Dv. (2.78)
QxI oek(I)/QxI

Notice that for every ¢ € R, the function h(t,-) (defined in (2.38)) is the support function of the
convex subset of RV+!

K@) :={q=(¢"q¢") : ¢ > ¢"(¢") —g(t)}

(we can find the proof of this fact in [98, Corollary 13.5.1]). This result can be extended to the
integral functional [, ; h(t,-) on the space of bounded vector-valued measure [20], namely

/ R(t,N) = sup {(\0) v € Co(@x RN, () € K(t) in Q2 x 1}
QxI

for any bounded vector-valued measure A € M(Q2 x I; RN*1). Moreover, this equality remains
true if we restrict the supremum above on smooth functions 1 € D(Q x I; RN*1). And then the
identification (2.78) can be proved. We refer to [20] for its delicate proof.

The last part of the theorem is the classical result in min-max theory (see [57]). [



Chapter 3

A convex relaxation method for free
boundary problems

We introduce in this chapter a convex relaxation method for a large
class of non convex variational problems where the dependence of the
functional with respect to gradient satisfies the assumption of positive
one-homogeneity. This method is directly applied to free boundary or
multiphase problems in which we minimize the classical total variation
or anisotropic norms. One of the main results of the convexification
procedure is the so-called exclusion principle, which states that optimal
solutions for the relaxed problem avoid taking values in the non convex
regions of the functional. We also present in this chapter various
numerical experiments based on a primal-dual algorithm where the non
differentiability of Lagrangians is treated by using a new epigraph

projection.

3.1 Introduction

In this chapter we focus on a particular case of the convexification method developed in Chapter 2
dealing with non convex variational problems of the kind

inf {/Q(h(Vu) +g(u) —px)u)dz : uve WHHQ), u=ugon F}

where I' be a Borel subset of 9Q. We will still assume that the convex function i : RY — [0, +00)
is convex continuous, but we assume in addition that it satisfies the 1-homogeneity condition:

h(tz) = th(z) forall ze€ RN and t > 0.

It turns out in this case that, under mild conditions on the possibly discontinuous non convex
function g and a suitable compatibility condition on the prescribed Dirichlet datum wug, the
duality results obtained in Chapter 2 holding in the higher dimension space R¥*! can be reduced
to the initial dimension N. As a consequence, we deduce that optimizers u do not take values
in the non convexity subset of g defined by Z := {g > ¢**} ; it is what we call the exclusion
principle. As a consequence the infimum of the initial non convex problem coincides with that
of its direct convexified version:

inf {/Q(h(Vu) + g (u) = pa)u)de s w e WHH(Q), u = ug on r} .
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In fact the exclusion principle mentioned above is not new: it has been discovered by A. Visintin
in the 1990’s (see [107]) in the different context of Cahn-Hilliard type models where g is a double
well potential and u represents the density of a two-phase fluid. In this case the boundary
condition is replaced by a prescribed total mass condition [, u = m and the arguments of the
proof relying on rearrangements tricks allow to replace the term [, h(Vu)dx by a general convex
1-homogeneous functional satisfying the co-area formula.

The method we use here, based on the calibration theory developed in Chapter 2, gives a
very interesting alternative. The main benefit is that we can extend the exclusion principle
to situations where the potential g is discontinuous, possibly infinite. In particular, as we are
motivated by more general free boundary problems or multiphase problems, we will apply the
result when g is chosen so that the coincidence set {t € R : g(t) = g™*(t) < +o0} is a finite subset
{t1,...,tn} (sorted in increasing order) while the boundary data ug avoids all intermediate values.
Doing so we can reduce some n-multiple phases problem to a classical convex optimization
problem for which many efficient algorithms are available. Note however that, by construction,
g** will not be differentiable at the values ¢; corresponding to the searched phases. To overcome
this difficulty we propose two numerical methods: the first one combines an explicit primal-dual
scheme with a geometric (polyhedral) projection on the epigraph of ¢** whereas the second one
combines the semi-implicit algorithms studied in Chapter 5 with a projection on the epigraph
of g*. The efficiency of the method is evidenced in many numerical simulations including the
case where the homogeneous integrand h is associated with a crystalline norm. An optimality
criterion for the interfaces is derived in the case where h is the Euclidean norm.

3.2 Exclusion principle and main results

Let Q be an open bounded domain of RY with Lipschitz boundary and let T be a Borel subset
of 9Q. We denote by vq the unit exterior normal on 92. For a given ug € L'(952), we consider
the infimum problem

inf {/Q[h(Vu) + g(u) — p(x)uldz : uwe WHHQ) , u=ug on I‘} (3.1)

We recall that, by Gagliardo’s Theorem, the trace map: u € WH1(Q) — Tr(u) € L'(99Q) is
continuous and surjective.
The standing hypotheses on h, g, p are listed below:

(H1) The function h : RY — (—o0,+00] is lower semicontinuous, positively 1-homogeneous,
convex satisfying the standard growth condition

Vz e RN, Cilz] < h(z) < Co(1+2]) .

(H2) The function ¢g : R — (—o00, +00] is a lower semicontinuous function with possibly many
jumps; more precisely we assume that there exists a Lebesgue negligible set D C R such
that ¢ is upper semicontinuous on R\ D, namely

limsup g(s) < g(t), Yt e R\ D.

s—t
(H3) The source term p satisfies one of the hypothesis listed below:

a)p€ L) ifdomg:={t €R: g(t) < +oo} is bounded
g(t)

b) p € L™ (Q) if g satisfies lim inf —=>0forr>1 ("= 1)

e 1
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Under these assumptions, the infimum in (3.1) is finite and minimizing sequences are bounded
in W11(Q). By using the classical direct method of Calculus of Variations, we obtain existence
of solutions for the relaxed problem in BV (£2) namely:

(Py) 1ﬁ{@w):uermg

being F, defined on BV () by

/hDu+/ m+/humeMMW1.

Note that in the notation above, we underlined the dependence with respect to g since we will
need to consider different choices for g. The next result is classical.

Lemma 3.1. Under (H1)(H2)(H3), it holds inf (3.1) = min(P,). Furthermore any minimizing
sequence for (3.1) is weakly relatively compact in BV (Q) and admits a subsequence converging
in LY(Q) to a solution of (Py).

We emphasize that g is a priori a nonconvex function ranging in (—oo,+o0c] and that
discontinuities are allowed. This is crucial in order to associate (P;) with some free boundary or
multi-phase problems.

The main result of this section (Theorem 3.3) specifies under which conditions the minimum
problem (FPy) can be relaxed in (Py«+), being ¢** the convex enveloppe of g. The key argument
is the following fundamental exclusion principle:

Theorem 3.2. Let —0o < a < b < 400. Assume that g, < g in (a,b) where g, is the affine
interpolant given by:

_ fott) yrg @) _ ) 9@
ga,b(t) = {mab( ) " g( ) otherwise 7 d b b—a .

Then if ug ¢ (a,b) a.e. on T, it holds inf(Py) = inf(Py, ). Moreover any solution u to (P,) is
such that u(x) ¢ (a,b) for a.e. x € .

Before giving the proof of Theorem 3.2, we notice that the exclusion principle can be used
on a countable union of intervals (a,b) on which g > g, 5, namely to the following set

= {9>g"} (3.2)

Indeed, if Z is bounded, we may apply Lemma 3.5 to show that Z is a countable union of open
intervals. Accordingly we consider the following additional assumptions:

(H4) Z :={g > ¢**} bounded ;
(H5) up e R\ Z a.e. onT.

We are now in position to state our main “convex relaxation result”:
Theorem 3.3. Under (H1-H5), it holds:

i) inf(Py) = inf(Pge~)

it) If uw is a solution to (Py), then u(x) € R\ Z for a.e. x € .
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In particular if g is such that dom(g) \ Z consists of finitely many reals numbers t; < --- < t,
then solutions to (Py) are of the form

k
u= ZtilAi . with {A;,1 <i <k} Borel partition of Q. (3.3)
i=1

Remark 3.4. We have merely ArgminP, C Argmin Py but equality holds in the case Py«
admits a unique solution. This uniqueness issue for (Py«+) seems to be a very difficult task since
g™ is not stricly convex (at all on Z) and we refer for that to the recent paper for a uniqueness
result in a similar context [15]. We believe that uniqueness for (Py) implies uniqueness for (Pgs«)
although we are not yet able to prove it. Actually in many examples of mutiphase problems as
presented in Section 3.3, we observed a very good convergence of the numerical approximation
of (Pg++) to a solution of the form (3.3). Therefore we believe that uniqueness holds generically

with respect to the boundary data and the parameters entering in the definition of g, €.

Lemma 3.5. Let g : R — (—o0,+0o0] be a l.s.c. non convex function whose Fenchel biconjugate
g** is proper. Let Z be the non empty set Z :={t € R : g(t) > ¢g**(t)} and let [m, M] be the
closure of the interval {t € R : g"*(t) < 400} (—o0o <m < M < +o00). Then, we have:

(i) Z is an open set and Z C (m,M);

(ii) Assume that Z is bounded. Then there exists an at most countably disjoint family of finite
intervals {(a;, b;) }icrso that Z = Uier(ai, b;). Furthermore g** is affine in each interval

(ai,bi).

Proof. (i) Obviously one has Z C [m, M] since g(t) = ¢g**(t) = +oo for t ¢ [m, M]. On the other
hand, as we are on the real line, the convex envelope co g of g is given by:

g7 (t) = (cog)(t) = inf {fg(t)) + (1 = O)g(t") = 6 €[0,1], ¥',t" € [m, M], 0t'+ (1 - 0)t" =t}

Keeping in mind that if ¢**(t) < +00, we have to choose t',t” € dom g, we infer that if m € R
then ¢**(m) = g(m), i.e. m ¢ Z. Thus g** agrees with g on the extreme points of [m, M], that
ism,M ¢ Z and Z C (m, M)

We show now that Z¢ =R\ Z is a closed subset of R. Let t, € Z¢ be such tha t, — t. We
need to check that ¢ € Z¢ which is already known if ¢ ¢ (m,M). If t € (m, M), we exploit
the continuity of the convex function ¢** on the open intervall (m, M) together with the lower
semicontinuity of g:
g™ (t) = limsup g™ (t,) > lim inf g(t,) > g(t).
n

Thus ¢g**(t) = g(t) and t € Z°.

(ii) As a bounded open subset of (m, M), Z can be written as Z = U;es(a;, b;) where [ is finite
or countable and (a;, b;) C (m, M) (thus g(a;), g(b;) are finite). It remains to show that ¢g** is
affine in each interval (a;,b;). Let us denote by § the convex function which coincides with g**
on Z¢ and with the affine interpolant of ¢g** on each interval [a;, b;]. Clearly one has:

9" <g , g7 =g=ginz° , 0§(t) ={(9)' ()} ={mi} Vt€ (ai,bi),

where m; = ngz%g@ denotes the slope of § on [a;,b;]. We are done if we can show the

inequality g > ¢ since then g** > ¢ by taking the convex envelope, thus ¢** = §. We observe
that the function ¢ := g — § vanishes on Z¢ and is l.s.c. (since g is L.s.c. and § is continuous
on (m, M)). Asssume that inf ¢ < 0. Then, recalling that Z is bounded, ¢ achieves its global
minimum at some ¢ € Z. Let i € I such that ¢ € (a;,b;). Then §(t) > §(¢) + m;(t — t) whereas

o(t) > (t) for all t € R. So far we obtain that g(t) > g(t) +m;(t — t) thus m; € 9g(t). This is

inpossible since g**(t) < g(t). [ |
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Lemma 3.6. Let u € BV (). If u does not take value in the interval (a,b) almost everywhere
in Q then neither does its boundary trace HN~'-almost everywhere in 0.

Proof. For HN"1l-a.e. € 99, the boundary trace of u (denoted by Tr(u)) is defined in a way
such that

lim r_N/ lu(y) — Tr(u)(x)| dy = 0. (3.4)
QNB(0,r)

r—0t

We shall prove the lemma by contradiction. Suppose that Tr(u)(z) := a € (a,b). By setting
n := min{|a — a|, |b — a|}, we find that for a.e. y € Q, since u(y) ¢ (a,b),

lu(y) — a] >n > 0.

Then we infer that
[ July) = Tr(@) @) dy > 920 BO, 1] = 06~).
QNB(0,r)

This contradicts to the definition of trace (3.4). |

Remark 3.7. Since the set of non-convexity Z := {g > ¢**} is a union of open intervals (as shown
in Lemma 3.5), it is the case to apply Lemma 3.6 so that if u does not take value in Z then
neither does its boundary trace. This explains the necessity of condition ug € Z¢ appearing in
(H5). Moreover, there is a counterexample figuring out that it does not hold inf(Py) = inf(Py«)
if ug € Z. We refer to Example 3.9.

Remark 3.8. The positive 1-homogeneity property of the integrand h in the hypothesis (H1)
must also be guaranteed in order to validate Theorems 3.2 and 3.3. We describe in Example
3.10 a counterexample where h lacks its homogeneity property.

Proof of Theorem 3.2

In order to prove the Theorem, we exploit the duality framework developed in Chapter 2,
especially its extension discussed in details in Section 2.5 of this chapter (see also Remark 2.23).
Accordingly let us first write the dual problems associated with (P,) and (P, ,) respectively.
To that aim, we use the part a) of the assumption (H3), namely dom(g) CC I := [«, 5] where
—00 < a < ff < 4+00. We set K := dom(h*). By the linear growth condition (H1), K is a convex
compact subset of RY. Let K, denote the class of fields 0 = (6%, o?) in the space

Xy (2 x 1) :={o e L®(Qx LRV« dive e L@ x D)},
satisfying the following convex pointwise constraints

o"(x,t) e K, VY(x,t)eQxI,
ol(z,t) +gt) —p(x)t >0 for LY cae. (z,t) € Q x 1.

Then, taking into account Remark 2.23 for including the source term p(x) in the constraint, the
dual problem of (Py) can be written as

(Py) sup{ - /Qat(x,a)d:n + /F h((uo — a)ve)dHN! o € Ky,

dive =0, 0* - vg = —0yy, on I’ XI}
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where 7, is defined on 02 x I by

(3.5)

")/uo(x?t) = h((UO(x> - t)l/g(ﬂ?)), O Yuy = 8%“) (.f(},t) = {h(_yﬂ(x)) = UO(x)

—h(vg(x)) ift <wup(z).

Recall that the divergence-free constraint diveo = 0 is taken in the distribution sense in the open
subset 2 x I. Similarly, the dual problem of (P, ,) can be written as

(P;ab) sup{ —/ ol(x,a)dx + / h((up — a)yg)dHN_l N RS S
’ Q r '
dive =0, 0° - vg = =0y, on I' x I}

where the convex constraint Ky, , is the counterpart of Ky, precisely the fields o must satisfy
o¥(z,t) e K, VY(z,t) e QxI,
ol (x,t) + gap(t) —px)t >0  for LV ae. (2,t) €Qx 1.
As g > gqp, by exploiting the non gap result of Theorem 2.22, we get:
sup(P;) = inf(Py) > inf(P,, ,) = sup(P;a’b).
As a consequence we will deduce the desired equality inf(P,) = inf(Py, ,) if we can prove that
sup(Py) < sup(Py, ,). (3.6)

The idea to demonstrate this claim consists in changing any admissible o for (77; ) to an admissible
oap for (P, ) keeping the flux across the interface ¢ = a unchanged. To that aim, setting

0(t) = (Z:—Z A 1)+ and ¢(z) := = [ 0%(z, s)ds, we associate to each o € Kg4 a laminated field

b—a Ja

04, defined by

ray(o,8) = {U(x,t) ift ¢ (a,b)

(a(@), (1= 0(8)0" (x,a) + O(t)* (z,b))  if t € [a,b]. (3.7)

We can show that o, belongs to Ky p. Actually, as g > g, and — div, ¢ agrees with the slope
of JZJ)(J:, -), we infer that

occKy, dive=0 — Oap € Kap, divogp=0.

This construction of ¢¥ is described in Figure 3.1.

Figure 3.1: The field o, defined by (3.7).

Let us check now that o, still satisfies the normal trace condition on I' x I. This is clearly true
onI'x (I\ (a,b)). On the other hand, since the boundary value ug is outside the interval (a,b),
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the function Oyyy,(x,t) given by (3.5) is constant with respect to ¢t on [a, b]. Thus, we get for
HN-ae. (z,t) €T x (a,b),

b
(0ap)” Vo =q -vo= / o’ - vg dt = —0yy,-
a

b—a

Therefore, as the flux across the interface ¢t = a is clearly unchanged after we change o into o,y,
we obtain:

—/ at(:r,a)d:v+/h((uo—a)m)dHN_l . —/ a(ib(x,a)d:v—l—/h((uo—a)ug)d’HN_l
Q r Q r
< Sup(P;w) = inf(Pga,b).

Then, by taking the supremum on the left hand side of the inequality above over all admissible
o € K4, we obtain claim (3.6).

Eventually, let u € Argmin(7P,). Then

Fy,,(u) < Fg(u) = inf(Py) = inf(Py, , ).
This implies that v € Argmin(Py, ,) and also that Iy, ,(u) = Fy(u). Thus, gqp(u(z)) = g(u(z))
holds for a.e. x € Q. As g > gop on (a,b), this means that the minimizer u does not take values
in the interval (a,b). The proof of Theorem 3.2 is finished.
3.3 Application to free boundary and multiphase problems
In this Section we consider several multi-phase problems on the unit square = (0,1)? of R2.
The boundary data ug will take two values up = 0 on I'g and ug = 1 on I'1, with {I'p,I";1} being

a partition of I' := 99Q2. We treat first a three phase problem (see subsection 3.3.1) and then a
four phase problem (see subsection 3.3.2).

3.3.1 A three phases problem

We consider the variational problem
inf{/Q|Vu]da:+)\’{u7$;}‘ cu e WhH(Q), u=00onTy, u=1on I‘l} (3.8)
where the non convex function g(t) is given by
0 if t=1%
g(t) =<\ if tel0,)u(3,1] (3.9)

+o00  otherwise .

The convex envelope of ¢(t) reads

(1) = 2\t — 1| ift e (0,1)
g +o00 otherwise

In Figure 3.2 below, we represent g, ¢** and epig := {(t,a) € R? : g(t) < a} the epigraph of g.
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O W

Figure 3.2: (a) Representation of g and of g** (in blue). (b) Representation of g*. The epigraphs
epig and epig* are filled in dashed.

Notice that in this case the set Z = {g™ < g} is the complement of {0,1,1}. In view

of Theorem 3.3, a solution to the relaxed problem in BV (2) associated with (3.8) takes only

three values represented by the phases Ag := {u = 0}, A1 = {u =1}, A;:= {u=1}. The
2

convexified problem that we are going to solve in order to recover these three phases solutions

reads

min{/Q|Du]+/Fo |u\+/rl|1u]+2>\/ﬂ‘u;’daz : u € BV () [0,1])} (3.10)

If the solution u to (3.10) is unique, then (see Theorem 3.3) it is of the form u = $14, + 14,

2
which allows to determine the searched optimal partition {4, A 1 A1} of . This scenario is

confirmed by numerical simulations, namely in the particular case described in Figure 3.4 (see
also the 4 phases variant of (3.10) in Figures 3.9.

Dual problem and interface conditions

The dual problem to (Pg««) reads:

(Q) sup{/rlq-l/g—/ﬂg*(div q) : qELOO(Q;RN), lg| < 1}

Let g solve (Q). Then a function @(z) taking values in {0,1/2,1} for a.e. x € Q solves problem
(Py) (then also (Pg+)) if and only if

qg=ruvy on Sy, divq € g™ (u) a.e. in

where Sz denotes the jump set of .

We now give optimality conditions for minimal partitions, called recovering interface condi-
tions. Euler equation for shape variations of problem (Pgys«) is written in the form of conservation
law (see [21])

divA=0 1in
where A is a tensor defined on the product space Argmin(Pg=«) x Argmax(Q):
A(u, q) := (|Du| + g™ (u)) I = Du® gq.

Let (@,q) be an element of Argmin(Py«) x Argmax(Q). The vector field g identifies to Du/| D1,
and the function @ only takes values in {0,1/2,1} so that ¢**(u) = g(uw). Thus, we have

AW, q) = (I,—va®ug) [Ulds. + g(u)1q L.
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In particular, on the interface Sz N €2 the conservation law reduces to
[, + [g(w)] = 0 (3.11)

provided (I2—v3®v5)ds. being the tangential projection of the curve vector measure vzdg_ and
the distribution kg_14 = div ((IQ-W@W)(;SE> being the algebraic curvature vector of Sz, see

[16, 18]. Notice that the curvature form (3.11) is achieved thanks to the fact that [u] is constant
along the interface Sz N Q. In our case, [1] = 3, [¢(¥)] = A, and hence |rg_ | = 2. It is to say
that the interfaces of partitions are curves with constant curvature (arcs of radius %), see the
configuration in Figure 3.3.

Figure 3.3: (a) Configuration of minimal partitions. (b) Equilibrium of junction.

On the other hand, the vector measure F := div.A defines a force field on © which, by the
stabilization of shape variations, belongs to the normal cone to the domain €. From this point
of view, if a junction J of three phases occurs then it must be balanced, therefore the force
must vanish at that point, i.e. F(J) = 0. Inversely, F' is singular at the triple junction and
F(J)=11+ %(7"’07% + 7"'%71) # 0, see Figure 3.3.

Numerical results

In this subsection we present numerical simulations in R? where we solve the convexified problem
(3.10) by using the algorithm described in Section 3.4. They are done over the unit square
Q= (0,1)? and \ = 3/4. The Dirichlet conditions are varied on the boundary:

u=0onTy and wu=1onI¥ (3.12)

where {I'g, I'{'} is a partition of 9Q with I'{* = ((0, 1] x {0}) U ({1} X [0,04)) fora € {0, 13,3, 1}.

Figure 3.4: Problem of three phases or minimal partitions (in (3.10)). Respectively, {u = 0} is
blue, {u = 1/2} is green, {u = 1} is red.
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Anisotropic variant

According to hypothesis (H1), we may substitute the classical total variation [ |Du| with [ h(Du)
being h any crystalline norm, that is

h(z) = ||z||p :=inf{r >0 : z € rB},

where B is a convex compact polyhedron containing 0 in its interior. The related anisotropic
perimeter Pp in RY is defined as

Pp(A) i— /M lvalpdHV=1  for AC RV,

where v4 denotes the outward unit normal to the boundary 0A of A. Let K be the polar of B
that is

K={rcRV:2.2*<1,Vze B}.

As the crystalline norm h(z) coincides with the support function of K, optimal multiphase
configurations will favour interfaces whose normal are orthogal to the faces of K. This is
confirmed by the numerical simulations below (Figures 3.6 and 3.7) which have been performed
in R? in the case where K is a square or a regular hexagon that we rotate with different angles
0, see Figure 3.5.

Figure 3.5: Rotation is applied to convex sets in oder to generate variants of orientation on
which we define anisotropic seminorms.

The numerical simulations are enforced with the primal-dual algorithms stated in Section

3.4.

Figure 3.6: Here h is the support function of Ky deduced from (—1,1)? after a rotation of angle

0. From the left to the right the solution for 6 = 0, ¢, 7, 5, all with A = 1.
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0

Psaudocolor
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Figure 3.7: Here h is the support of K = Hy where Hy is a regular hexagon deduced form Hy by

a rotaion of angle f. From the left to the right, the solution for 6 = 0, &, 7, §, all with A = 4/5.

3.3.2 A 4 phases problem

We exhibit in this section a 4-phase problem with many nice numerical results which highlight
the validity of Theorem 3.3. The non convex term g and its convex envelop are set up as below

A if t € [0,a) —2t+ A if t €[0,a)
—£L(t—a) iftelab s a(t—a) iftela,b
w if t € (b, 1] bt — g ift e (b,1]

+00 otherwise +00 otherwise

We shall put some conditions on parameters so that function g is well-defined (see Figure 3.8 for
this configuration):

Ab—a)

0<a<b, 0< A\, 0< k<

The third condition assures the convex envelop of g to link to value a in order to have 4-phase
solution. If not ¢** is affine in the interval [0,b]. At that moment, by the exclusion principle
(Theorem 3.2), optimal solutions will be kept away from value a. And hence, the problem
degenerates and reduces to a 3-phase problem.

A *
g(t) 2 L ( T)
Wi

A

A Ry
iy /////////////K/////////
. 207 77

R s 2
000000000000000000064555555550% 1555507

I I 77770707707V 7777777777708777777

Figure 3.8: (a) Graphs of functions g and ¢** (in blue). (b) Illustration of the Fenchel conjugate
g*. Epigraphs epi g, epig* are displayed in dashed.

We shall use the algorithms proposed in Section 3.4 for the simulation. In our numerical
experiment, we maintain the prescribed boundary conditions on the partition {Fo, I‘l/ 2} of 0f2

as the settings (3.12) for the 3-phase problem studied in Section 3.3.1. This arrangement permits
having boundary junctions which are one singular point and one regular point of the domain’s
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boundary 0. It will serve on further discussions about interface conditions and phase-junctions.
In the following (see Figure 3.9), we present numerical results for some variants where we combine
anisotropic effects due to the use of a crystalline norm (with different #-rotations as discussed in
the section 3.3.1) and a tune of the weight parameters A, x, u. For the numerical simulations
shown in Figure 3.9, the parameters are fixed as below:

a=025 b=0.75, p=03, k=07,

the weight parameter \ and the angle of rotation 6 will be varied. With this configuration, an
optimal solution (by Theorem 3.3) would take only four values in {0, %, %, 1} which are called 4
phases. Such a 4-phase solution clearly gives a partition of the domain €.

Notice that in the case of the total variation, the geometric optimality condition (3.11) still
holds on Sz N Q2 (which consists of all interfaces appearing in Figure 3.9). The determination
of the counterpart of condition (3.11) in case of crystalline norms is a delicate issue worth of
further investigations.
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Figure 3.9: Problem of 4-phases. Each row corresponds to a choice of certain (A,6). In a
left-to-right order, the norm h is generated by a ball (Euclidian norm), by a square and by a
regular hexagon (crystalline norms).

3.4 Min-max approach. A primal-dual algorithm for non differ-
entiable Lagrangians

In this section, we shall deal with multiphase problems introduced in previous sections by means
of numerical approach. The convexification principle fundamentally based on Theorem 3.3 is
applied to bring us a convex problem under the form

Inf J (V) + g7 (u) = p(w)ulde
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where C, which is comprised the boundary condition u = ug on I, is a closed convex subset in
WH(Q). By a duality argument, we can rewrite this infimum problem as a saddle point problem

inf sup / [Vu-q+ ¢ (u) — p(z)u]d (3.13)
ueC qeK JQ

with K = dom(h*). Remark that under the assumption on positive homogeneity of h (see (H1)),
one has h*(¢q) = 0 for all |g| < 1, h*(q) = +oo otherwise. So, if we replace the density h by a
gauge (Minkowski functional) of a closed convex set then the constraint K is indeed the polar of
that closed convex set. We denote by L(u,q) the Lagrangian associated to the inf-sup problem
(3.13)

L) = [ [Vu-q+9"(w) = pla)uldz,

We can use classical primal-dual algorithms based on Arrow-Hurwicz’ method to seek a saddle
point of L(u,q) in C x K. But, to that aim, we shall need a regularization of function ¢g**
since this function is usually piecewise affine and hence non differentiable. Take for instance
the 3-phase problem introduced in the previous section, ¢g** is not differentiable at 1/2. A
regularization for g** in that case can be done with

2X/(t—3)2+¢e2 ifte(0,1)
ga(t) = .
+o00 otherwise .

Correspondingly, we denote L. the regularized Lagrangian which is obtained by substituting

g** with its regularization g.. Then by using the explicit algorithm described in Chapter 5, we

produce an iterative process with initialization 7,0 > 0, (ug, q(})l) ce(Cx K, ﬂg = ug,

oL
a1 = e (ah + 0= (ah,ah))

dq
oL
h h h h _h
Un+1 = HC (un - 6 87,1,8 (un7 qn-l—l))
—h h h
Up+1 = 2un+1 - Up

where H%,Hg are respectively the orthogonal projections on closed convex sets K, C'. The
superscript h indicates that a discretization with mesh size h was done. This algorithm converges
to a saddle point (proved in Chapter 5) under the following constraint on the step sizes

2 0L,
0<n,  0<O<7—, n6||Vh||2+Tgs<1
gt

where Ly denotes the Lipschitz constant of gL. In Chapter 5, we also proposed a semi-implicit
scheme which considerably accelerates the convergence of the iterative algorithm. This implicit
scheme is realized with inspiration from the splitting method for Navier-Stokes system (in this
circumstance, the couple (u, q) stands for the pressure and the speed of the fluid):

a1 = W (ah + V"))
up g = gy — 0(1 = AM) (= div® gnp1 + g (un) — p")

—h _ h h
Upt1 = 2un—‘,—l - Up

with A" being a discretized Laplacian and I standing for the identity operator. Note that the
projection on C'is just to maintain the boundary condition v = ug on I' and this can be simply
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implemented within Laplacian operator, thus it is hidden. This scheme gives an iterative process
converging under conditions which are more flexible

0<n, no < 1.

L

oA

However, the step size 0 is still constrained by the Lipschitz constant of the derivative of the
regularization g. which is of order O(1/¢). This is a limited aspect of regularization method
since handling the inverse of Laplacian within an iterative algorithm, as we know, is costly. To
overcome this challenge, we introduce a new approach using a geometric projection on epigraph.
And we shall demonstrate that the stepsizes are free from Lipschitz constants.

3.4.1 Explicit scheme with projection on epi(g**)

Let us rewrite problem (3.13) by introducing a new variable a € LY(Q) :

in(fJ sup / (Vu -q—p(z)u+ oz) dx (3.14)
g*y(i)ﬁa aeke e

and denote by L(u,q) the corresponding Lagrangian

f/(u, q) == /Q (Vu cq—p(z)u+ a)dw.

We introduce some notations

= (u,a), q:=(¢,—p,pB),
C:={(wa) s ueC g*@w<a}, K:={@-p1):qek} (3.15)
Au = (Vu,u,a), A*q = (—divq—pjﬁ).

Then, A defines a linear operator from W1(Q) x LY(Q) to L'(Q;RY) x L1(Q) x L'(Q), and its
adjoint is A*. Problem (3.14) now falls into the form

inf_sup (47, )) (3.16)
ueC aef('

where ((-)) is a scalar product defined by

((Aw,q)) := (Vu,q) — (p,u) + (a, B).

We remark that the presence of 3 is just to define the scalar product (()), it will be kept equal
to 1 by the convex constraint K. And the convex C is indeed (a part of) epigraph of function
g (u € C is the boundary condition). Problem (3.16) is a standard problem which has the
simplest form. We can easily apply the explicit algorithm based on Arrow-Hurwicz’ method
described in Chapter 5 to obtain

~h h (~h —h

pt+1 = HI? (qn + nAun)

~h h (~h *~h
Unt1 = Hg(un —0A Gy 41)

—h __o~h
Upy1 = 2un+1 — U,

The choice of step sizes is now of order O(h) and it is no longer squeezed by Lipschitz constants

0<n,  0<6, |V")? <1
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It is evident that transforming problem (3.13) to the standard one (3.16) with the projection on
epigraph allows facing difficulties resulting from the non-differentiability of ¢**. At the moment,
a semi-implicit scheme should be generated to help speed up the convergence of the algorithm.
The splitting technique may be applied to the Lagrangian f/(u, q) to create such a semi-implicit
scheme. More precisely, we rewrite the inf-sup problem (3.14) into the form

inf  sup / (qﬁ'q—p(aﬁ)u—i—a)dm (3.17)
(pu,0)eC geK JQ

with C given by
C = {(Vu, u,) : u€C, g (u) < a}.

And the implicitness of the scheme in variable u is effectively enforced thanks to the following
projection

inf 1/ <|Vv—¢>\2+\U—u|2+|a—a|2>dw.
v=ugonT 2 Jo
7 (v)<a
This is a slightly heavy projection. But pay attention that if we remove the epigraph component
(¢**(v) < a) then that projection just becomes a proximal operator of a quadratic form with
easily solvable resolvent which appears as (I — A")~! in discretized schemes. For more details
in this topic, we refer to the discussion in Chapter 5. Fortunately, removing the epigraph part
in variable u is doable and even simple by exploiting the conjugate ¢* instead of ¢**. In the
next subsection, we shall see that the semi-implicit scheme is still well adapted for the epigraph
projection method. This will be a quite complete setting in order to reach a better acceleration
in convergence of our algorithms.

3.4.2 Semi-implicit scheme with projection on epi(g*)

We start with recasting the saddle point problem (3.13) as

inf  sup / [Vu-q+71u—g*(7) — p(r)uldx = inf sup / [Vu-q+71u— 5 — p(x)ulde
weC ek Q veC geg JQ
TEL®(Q) g*(1)<p

(3.18)

We use here the epigraph of the conjugate g* (instead of ¢**). Let us set some notations to be
suitable for the current context

U= ('LL,OZ), E]\:: ((L_paT?/B)a
o= {1 :uec), Ki={a-prp):ack d@<sl @
A\a:: (Vu,u,u,a), (A\)*é\:(—dlvq_p—i_Tuﬁ)
We observe that the convex set C' is merely the boundary condition whilst K is independently

combined by the convex constraint K and the epigraph of g*. With these configuration, problem
(3.18) becomes

inf sup ((43,q)) (3.20)
UEC aef?

where the corresponding scalar product ((-)) is given by

(AT, @) = (Vu, q) = (p,u) + (7,0) + (@, B).
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The semi-implicit scheme (described in Chapter 5) is available and perfectly fits the standard
problem (3.20). It provides a convergent iterative algorithm

~h h (~h A=h
dn+1 = H[’% (qn + nAun)

h o =105 (@) — 6(A" A) " (A(@h ) (3:21)
Upyy = 204y — Uy,

under a rather comfortable choice of step sizes
0<mn, 0<8, nd < 1.

For conveniences in practice, let us unfold the algorithm (3.21) in the expression of primal
variables u, ¢ and extra variables T, 3:

iy =i (g +nValh)
(TT}LL+17 6£Ll+1) = ngi(g*) ((T:LL) /B;LL) + 77@27 _1)>
(3.22)
“Z+1 = UZ — 021 — Ah)_l( - dth(QZH) + 7'7’;+1 - ph>

—h _ h h
Upt1 = 2un+1 - U

In summary, the algorithm (3.22) is an effective combination between the epigraph projection

method and the semi-implicit scheme. This coupling provides a quite powerful numerical

approach to treat non-differentiable Lagrangians of saddle point problems of the same type, and

contemporaneously brings considerable profit on acceleration of convergence of the algorithm.
To simplify our discussion, we denote in the following

e EReg: explicit scheme combined with regularization,
e EEpi: explicit scheme combined with epigraph projection,
e IEpi: semi-implicit scheme combined with epigraph projection.

As shown in Figures 3.10, 3.11 and Table 3.1, the combination of the semi-implicit scheme and
the epigraph projection method in IEpi is more efficient in term of precision of the interfaces
and reduces many necessary iterations.

104 103

) " [ ERe|] | _ERe| ~—EReg| |

op — EEpi || ||— EEpi | |
! —IEpi | . 40/l IEpi 1 |
%, 124 | g |
,3} E 0: —_ ] i

0 5 10 0 500 1000 1500 0 500 L1000 L1500
Tteration 104 N N

Figure 3.10: Convergence of primal-dual gap (in N = 1500) and comparison in terms of iteration
and computational time for the 3-phase problem with the classical total variation and A = 0.75.
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primal-dual gap < 10™3 with MPI in 6 processes

N iteration time (second)
EReg EEpi IEpi EReg EEpi IEpi
201 6329 3706 1566 2.361 1.599 49.047
401 14164 7600 2127 20.414 13.269 110.211
601 23393 11379 3045 87.592 55.751 316.240
801 45089 14939 3854 356.529 158.577 760.536
1001 63759 18264 4790 897.927 342.014 1551.827

Table 3.1: Comparison of numerical methods in terms of iteration and computational time for
the 3-phase problem with the classical total variation and A = 0.75.

Contour
Var u

- 0.9200
—0.5100
—0.4900 /\ /\
I o000

Max: 1.000
Min: 0.000

EReg EEpi IEpi

Figure 3.11: Approximation of interfaces of discontinuity. Here are contour lines of numerical
solution u for 3-phase problem (N = 1500, A = 0.75, primal-dual gap < 1073).

3.5 Counterexamples

In this section, we discuss about the necessary of the assumptions on positive homogeneity of h
in (H1) and on the boundary constraint (H5). We shall show that if one of the two assumptions
mentioned above is violated, the convexification procedure fails, meaning in particular that
inf (Pgi*) < inf(Py, ). In the two following examples, we choose the non convex g to be g = gy
where

0 ift €[0,1)
g)\(t) =q-A ift=1
+oo ift ¢ [0, 1]
and ) is a positive real parameter.

In that case, the subset Z defined in (3.5) is given by Z = (0,1) and the convex envelop
reads

wer At ift € [0,1]
g3 (1) = {+oo if t ¢ [0,1] (3:23)

Since dom(gy) \ Z := {0, 1}, the application of Theorem 3.3 should lead to solutions u ranging
in {0,1}.

Example 3.9. In this example the assumption (H5) is not satisfied. Let © be the unit cube in
R2, ie. Q= (0,1)2. We take the boundary data ug = % and consider the variational problem

inf {/ |Vul|dx +/ g(w)dz : uwe WhH(Q),u = % on 8Q}
Q Q
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that we rewrite in its relaxed form
1
(P,) inf {/ |Dul +/ u— Sjant +/ o)z : ue BV(Q)} .
Q a0 2 Q

Let u be optimal for problem (Pg,). Then it satisfies % <wu < 1. Indeed, if we set & = u V %,
then

/|Vu\dx—)\]u:1]2/ Vildz — Ali = 1|
Q Q

so that equality holds and @ = u a.e. We can then apply to u the following identity
/ | Dw| +/ lw—=|dH" = / P(w>t)dt forallwe BV ;|1 (3.24)
Q o0 2 1 2

(which is derived from the coarea formula applied to the function v defined by v = w — % in Q
and v =0 in R?\ ).
Now by taking into account {u = 1} C {u > t} for all ¢ € [, 1], we infer that

1 1
min(Py,) = /Q\Du] + /m fu—SldH" = Au=1] > / (P(u > 1) — 2A|u > ty)dt. (3.25)

2

Let hq denote the Cheeger constant of §2, that is

. PA)
ho = b A

Then, if A < "2 it holds
1 1
/1 (P(u>1t) = 22[u > ¢])dt > /1 (P(u> 1)~ holu>t[)dt >0 .
2 2
Therefore, from (3.25), we conclude that

h
inf(Py,) > 0 whenever A < ?Q .

Now if we consider the convex problem (Pgi*) obtained by substituting g) with g}*, by taking
U= % as a competitor, we get

. A A
inf(FPyr) < —§\Q’ =3

This shows that for all A < %
inf(Pgs) < inf(Py,).

Remark In fact it can be readily checked that u = % is the unique solution to problem (ng\*)

for all A < hq. Indeed , as for (Py), any solution u to (Pg;+) belongs to BV (Q; {%, ID so that
by applying (3.24), we get

1 1 A
/|Duy+/ \u—f\dHl—)\/u > / (P(u>t) = Aju>t)dt - 2|9 ,
Q o0 2 Q 1 2

where, since A < hgq, the integral in the right hand side is strictly positive unless u = % a.e.
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Example 3.10. In the following, taking the same g, as before, we consider now the case where
h is not homogeneous. More precisely we consider two different integrands

h(z) =4/1+4 |z|%, ho(z) =1+ |z|.

Correspondingly, we set

9

B(\) = inf /Qh(Vu)dx ~Af{u=1}

. Bo(\) = inf /ho(vu)dx—A]{u:u
ueWy ™ (Q) @) /o

uEWOI’1

and we look at the associated relaxed problems in BV (2):
B(A) = inf {/ h(Du) —l—/ lu|dH' — )\‘{u = 1}‘ tu € BV(Q)} ,
Q G9)
Bo(\) = inf{/ ho(Du) +/ uldi! ~A[fu=1}| : ue BV(Q)} |
Q o0

Let us observe that 4(\) is the infimum of a minimal surface problem with free boundary
which is quite challenging (see for instance [46, 29, 6, 71, 62, 77, 85]). The infimum problem
corresponding to Bo(A) is much simpler. In particular as it well fits the assumptions (H1)-(H5) of
our convexification result (Theorem 3.3), its solutions only take value in {0, 1} and by substituting
u with 1 4, we obtain:

Bo(A) = [ +inf {P(A) — MA| : ACQ} .

Suppose that the convexification principle holds also for problem $()), then observing that
Jo h(Du) = [o ho(Du) for u = 14, we infer that the equality 5(\) = fo(A) would hold for every
A > 0. We are going to show that such an equality does not hold in general even in a very
standard situation where explicit solutions are known.

To that aim we consider the radial case where Q = {x € R? : |z| < R}.

In this case, we obtain that the unique solution of problem Sy(A)) is ug = 0 for A < hg where
hq = % is the Cheeger constant of 2. In contrast the unique solution is u; = 1 for A > hq. For
the precise value A = hq we obtain exactly two solutions ug, u1. Accordingly,

(19 if A < ho
Po(X) = {P(Q) +(1=NQ A > hg.

Let us now turn to the determination of the infimum S()\). By a rearrangement argument,
we can prove that solutions are all radial of the form u(z) = go(%) being ¢(t) : [0, 1] — [0, 1]
monotone non increasing. The plateau {u = 1} is associated with an interval ¢ € [0, p] for a
suitable value of p € [0,1] to be determined. For such a plateau, the minimal surface problem

reads
1
J(p) = inf I(p), I(p)=R / JR2 + o2 tdt . (3.26)
p

w(p)=1
©(1)=0

The first integral of Euler equation for this minimization problem reads

/

lp
/R2+§0/2 =K

for some constant u. As ¢(1) = 0, we are led to the explicit form

o) = K(ut),  K(u,t):= uR log (;jﬁ V;:;) , (3.28)

(3.27)
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provided we can find p € [0, p] such that ¢(p) = K(u, p) = 1. In fact, the function u — K(u, p)
is stricly increasing on [0, p] so that such a p is unique and exists if and only if

1< K(p,p)—pRlog<

1+vi-p° Vl_p2> ) (3.29)
p

If the inequality above is strict, then we obtain that the solution to (3.26) is unique and smooth.
In the limit case where (3.29) is an equality, one has u = p and ¢'(p) = +o0. If K(p,p) < 1,
then no solution to (3.26) exists but merely a (unique) relaxed solution which exhibits a jump at
t = p of amplitude 1 — K(p, p). In all cases, we have determined, in term of parameter p € [0, 1],
an optimized radial configuration whose plateau {u = 1} agrees with the disk B(0, p). Its total
energy is given by

E(p) := 27 J(p) + (1 — N)mp*R* .

In order to minimize E(p) on interval [0, 1], we introduce

a(p) == sup {p: K(u,p) <1}
0<p<p

It is easy to check that for every p € [0, 1] such that if K(p,p) < 1 then 7i(p) = p. Otherwise,
7i(p) is the unique solution of equation K (u,p) = 1. After a straightforward computation and
exploiting (3.27), we obtain

1 2
J(p) = RQ/p t2—tu(p)2dt+pR(l - K(H(p)ap)) ‘

Thus, noticing that K (i(p), p) < 1, we are led to:

oz 20| 1-K(u(p).p)
E(p) = nR* | VT (p)? — p/p® — W(p)? + ilp)* log VL ( r )+(1—)\)p2

p++/p—1i(p)?

(3.30)

Summarizing, an optimal p for E(p) will give a radial function @(z) = @(%) = K(u(p), %l)
(defined in (3.28)) which minimizes the relaxed problem associated with $(A). This solution is
continuous if K (p,p) = 1 and otherwise exhibits a jump of amplitude 1 — K (p, p) before reaching
the value 1 on the plateau. This is illustrated in Figure 3.12.

A<1 A>1
u(r) ! u(r)?
Y ! =1 up)
0 5 R T 0 5 R T

Figure 3.12: Illustration for an optimal u and optimality conditions.
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20

10}

Figure 3.13: Numerical computation of functions 8y()), (), critical values of A\: A\g(R), A1(R),
2

and Cheeger constant hg = 4.
The minimization of E(p) is performed by using Matlab for different values of R and A. It
turns out that:

e For R > 1, the exists constants A\o(R) < hg < A1(R) where hg = % (Cheeger constant
of ) and such that B(\) < Bo(A) for every A € (Ao, A1). Solutions to S(A) do or do not
have jump depending on the position of A\ with respect to 1: [u] =0 if A <1 and [u] > 0
if A > 1 (see Figure 3.12 and the middle subfigure of Figure 3.13). In contrast it holds
B(A) = Bo(A) for A < Ag (in this case u = 0 solves both problems) or for A > A\; (in that
case u = 1 is a solution).

e For small balls R < 1, we have the equality 8(A) = Bo(A) (and Ao = A; = % which is
shown in the last subfigure of Figure 3.13).






Chapter 4

Calibrating fields for minimal
surfaces with free boundary and
Cheeger-type problem

In this chapter, we apply the duality theory introduced in Chapter 2
to study a problem of minimal surfaces with free boundary. The aim is
to characterize optimal surfaces and their free boundaries by finding
a calibration field solving an associated dual problem. An interesting
upper bound of this problem is given by a variant of Cheeger problem,
which we revisit with using an explicit 2-dimensional calibration method
based on the construction of a cut-locus potential. The comparison with
the original problem is discussed in detail.

Let D be an open bounded nonempty subset of RY with N > 2. Given A > 0. A subset Q C D
have its area as N-dimensional Lebesgue measure denoted by |Q| := £V () and its perimeter as
(N — 1)-dimensional Hausdorff measure of the boundary 92 denoted by P(f) := HN~1(99).
4.1 Presentation of two free boundary problems

We consider in the following the variational problem of minimal surfaces with free boundary

BQ%:hﬂ{A”“AﬂVMMx—AHu21}|:uGWﬁ%Dﬁ.

We denote by E) the relaxed functional of problem () in BV (D), namely

EWQ:/WM+WWM+/dm%H/)M&W”—MWEHL (4.1)
D D oD

By convention, when we say @ is a solution of 5()), we intend to say @ minimizes the relaxed
problem inf{E\(u) : uw € BV(D)}. The competitive term —\|{u > 1}| can be written as an
integral [}, g(u)dx with

(1) = 0 ift <1,
=0 ife> 1

We see that the integrand ¢(t) is non convex and discontinuous at ¢ = 1.
By a comparison argument, one can figure out that, if u is optimal for S(A) then 0 < u < 1.
Let Q(u) := {u = 1}. The variational problem 3(\) is actually to minimize the area of surfaces
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on D\ Q(u) in competition with the A-scaled Lebesgue measure of Q(u) (i.e. A\|Q(u)]). These

surfaces are given by graphs of functions u in RV*!. Minimal surfaces have a prescribed boundary

realized by the constraint u = 0 on 0D and are free on the boundary 992(u). Because of this

reason, 0Q2(u) is called free boundary. See Figure 4.1 for illustration. A surface is minimal in
this context, with a free boundary, must satisfy the following partial differential equation

Vu
—div————=-=0 in D\ Q(u), 4.2

o \ 2 (42

u=0 ondD, u=1 ondQ(u), (4.3)

which is indeed derived from the Euler-Lagrange equation of the functional Ey(u). Note that

the left-hand side of the equation (4.2) is well-known as a representation of the scalar mean

curvature of the graph of function w, up to a division by N — 1. In this sense, minimal surfaces
have zero mean curvature.

t
Q(u)

u=20
T

Figure 4.1: A surface with prescribed boundary u = 0 on 9D and free boundary d{u = 1}.

By replacing the surface-area integral in problem 3(\) by the total variation of u, we obtain
a variant with minimizing total variation with free boundary

Bo(}) i= inf {/ (1+ |Vul)de — A fu=1}] : ue Wh(D), 0<u< 1} @
D
It leads to another free boundary problem whose partial differential equation is given by

—div <|§Z> =0 inD)\Qu),

u=0 ondD, u=1 ondQ(u).

In BV(D), the relaxed functional of problem () is
E(u) == |D| +/ d|Dul +/d luldHN T = A{u = 1}]. (4.5)
D 9D

Similarly, when we say @ is a solution to problem [y(\), we means, by convention, @ minimizes
its relaxed problem, i.e. inf {E{(u) : w € BV(D)}. We remark that % only takes values in [0, 1].
In fact, by truncating @ to obtain % = max{min{%, 1},0}, we decrease the energy EY. Since
{u=1} c {u=1} and [, d|Duldz > [, d|Duldz, we have ES(u) > E{(u). It turns out that
the relaxed problem of 5y(A) can be restricted to BV (D; [0, 1]). Besides, the competitive term
—Al{u = 1}] in (4.4) can also be recast as [}, go(u)dz where

go(t) =01in [0,1), go(1) = =\, and go(t) = +oo for t ¢ [0, 1].

go is a non convex function with discontinuity at ¢ = 1.
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Here two important observations are in order:

Firstly, if u is the characteristic function of some finite perimeter subset ) C D, we find from
(4.1) and (4.5) that

Ex(u) = Ex(1g) = |D| + P(Q) = NQ| = E}(1a) = EX(u). (4.6)

Therefore, F) and Eg coincide together on the class of characteristic functions.

Secondly, the non convex variational problem [y(A) in (4.4) satisfies the positive one—
homogeneity assumption used in Chapter 3 and we may apply the convexification argument (see
Theorem 3.3). Therefore,

- solutions u do not take intermediate value in (0, 1), that is u = 1 for some 2 being a
finite perimeter subset of D;

- the infimum Fy()\) is unchanged if we substitute gy with its convex envelop

9o (t) = —=Atin [0,1], and g5 (t) = +oo fort ¢ [0,1]. (4.7)
As a consequence, we may rewrite Jy(\) as the infimum of a convex problem
Bo(\) = inf{/D(l V| + g5 (w)da : u e WIN(D; [0, 1])} (4.8)
— min {/ (1+ |Du| — u)da +/ uldHN! : w e BV(D: [0, 1])}
D oD
_ min {/ (1+ | Dul — Mu)dz +/ uldHN L s e BV(D; {0, 1})} .
D oD

By substituting u with 1o (while Q = {u = 1}) in the last equality, we obtain

Bo(A) = min{|D| + P(Q) — A|Q| : Q C D}
= |D|+ m()\, D) (4.9)

where we denote by m(A, D) the infimum of the geometric problem
m(A, D) :=min{P(Q) — \|Q| : QC D}. (4.10)

Remark 4.1. The equality (4.9) can be obtained directly by using the co-area formula for BV-
functions. In fact, we take u € BV (R¥;[0, 1]) such that u = 0 in R¥\ D. Since {u = 1} C {u > s}
for all s € (0,1), we have

EY(u) =|D| + /01 P({u > s})ds — A[{u=1}| > |D| + /01 P({u > s})ds — M{u > s}|. (4.11)

As u is a BV -function in D, its level sets are finite perimeter subsets of D. We deduce from
(4.11) that So(A) > |D| + m(A, D). The inequality So(A) = |D| + m(A, D) occurs when we
evaluate EY at 1o with Q being a solution to problem m(\, D).

Obviously as |z| < \/1+ |22 <1+ |2| for all z € RV we have the following inequalities
m(X D) = fo(N) — D] < BN < Bo(N). (4.12)

A natural question is to know in which cases 5(A) < fo(N). This is the main objective of
Section 4.4 where we demonstrate that the inequality S(\) < Bo(A) will happen for arranging
in some interval of Ry (which is non empty as soon as D is non smooth) and the solutions to
these two problems do not always coincide. We also provide numerical illustrations of this non
coincidence issue.

For clarity, we give here the synopsis of the next sections of this chapter:
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e Section 4.2: We present in Subsection 4.2.1 the dual problems associated with 5(\) and
Bo(N) in dimension N 4 1. After studying some general properties of the geometric problem
m(A, D) in Subsection 4.2.2, we consider a N-dimensional dual problem associated with
problem m(A, D), which allows to characterize solutions of m(A, D) (in Subsection 4.2.3).
We then introduce in Subsection 4.2.4 the notion of #-calibrability which generalizes the
classical notion of calibrability.

e Section 4.3: We recall the construction of the Cheeger set of convex sets in R? in Subsection
4.3.1 and then explicitly construct #-calibrable sets of convex sets in R? (the set Q) in
Subsection 4.3.2. We introduce in Subsection 4.3.3 a function called cut-locus potential
and use this function to construct explicitly a vector field on D which calibrates the set
Q.

e Section 4.4: We discuss about the occurrence of the inequality 5(A) < Sp(A) according to
the value of A and to the geometric properties of D. Some numerical simulations are given
in the case of a disk.

4.2 Dual problems and calibration method

The variational problems associated respectively with S(A) and Sy(A) are non convex with linear
growth. They enter the duality framework developed in Section 2.5 of Chapter 2, where a
characterization of global minimizers is provided (cf. Theorem 2.24).

4.2.1 Dual problems in dimension N + 1

This subsection is devoted to state the dual problems associated with 5(A) and So(A) in N + 1
dimensions. Let us first set Q = D x [0, 1].

Dual problem of 5(\)

The dual variational problem of S()\) is given by

t . . t X ¢
sups — [ o'(2,0) : dive=0inQ, o'+ /1 —|c*|2>0in Q, o'(z,1 ZA—lonD},
p{- [ o0 Q. o'+ 1=l P 2010 Q. o'(@.1)

where o = (0%, 0%) € L®(Q;RY). Note that the constraint o'(z,1) > A — 1 on D is associated
with the discontinuity of the non convex part g(t) at t = 1.

The dual problem can be interpreted in the point of view of fluid dynamics as an optimal flow
problem in the cube ) wherein we maximize the downward flow o = (0%, o!) of an incompressible
fluid (dive = 0 in @) through the bottom interface D x {0} subject to the pointwise non linear
constraint o’ 4+ /1 — [0%[2 > 0 in @ and the pointwise linear constraint o'(x,1) > X\ — 1 on the
upper interface D x {1}.

By means of calibration fields, we can characterize minimal surfaces (with free boundary)
thanks to the following optimality conditions (see Theorem 2.24, Corollary 2.25): u is an
optimal solution for problem 3()) if and only if there exists a calibration field o € L>®(Q;RY),
o = (0%(z,t),0(x,t)) being admissible to the dual problem and satisfying on the complete
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graph G, of u that

Vu(x)
V14 |[Vu(z)?

ol(z,u(z)) = — /1 — |Vu(z)[? for £LN-a.e. z € u71([0, 1)),

o®(z,u(z)) = for £LN-a.e. x € u=1(]0,1)),

ol(z, 1) =X —1 for LN-a.e. z € {u =1},
o(xz,t) -1, =1 for HN-a.e. x € S, and Vt € [u™(z),u™ (z)],
o (z,ut(z)) =1 for |Dul-a.e. x € Q,

where S, denotes the jump set of u. In particular, @ = 0 is an optimal solution to S(\) if and
only if

o*(x,0) =0, o'(z,0)=—-1, o' (z,1)>A—1 onD, (4.13)

ol +4/1—|o*2 >0, dive=0 inQ. (4.14)

And, w =1 is optimal to S(\) if and only if there hold

o*(z,1)=0, o'(z,1)=A—1 onD, ¢ -vp=1 ondD,

ol +4/1—|o*2 >0, dive=0 inQ.

With these optimality conditions, it is easy to check that if u = 0 solves (), then it solves
B(N) for all 0 < N < A, and similarly, if « = 1 minimizes 3(\), then it minimizes 5(\”) for all
A’ > X\. We shall say v = 0 and u = 1 are trivial solution of 3(\).

Let us introduce two following critical values of A which provide the dependence on A of the
appearance of the trivial solutions for problem [(\):

Ao =sup{A>0 : u=0solves 5(\)}, (4.15)
A1 =inf{A>0 : u=1solves S(\)}. (4.16)

According to this definition, if A\g < A\; and A € (Ag, A1) then a solution to problem 3(\) of the
kind 1g is such that 0 < [Q] < |D|.

Dual problem of 5y())

We apply the same duality framework to obtain the dual problem of Sy(\). There holds
Bo(A) = sup {/ —o'(2,0)dz : dive =0, |0*| <1, ' +1>0inQ, o'(z,1) > A —1on D}
D

where o = (0%, 0') € L°(Q;RY). The pointwise constraint o*(x,1) > X\ — 1 is involved with the
discontinuity of gg at t = 1.

A characteristic function 1q for some  C D is optimal for problem [y()) if and only if there
is a calibration field o € L®(Q;RY), o = (¢%(x,t), 0! (z,t)) verifying

dive =0, 0% <1, ¢'+1>0 £V lae inQ, of(z,1)>A—1 LN-ae inD, (4.17)
ol(z,1)=X—1 LN-ae. inQ, ol(2,0) = -1 LN-ae. inD\Q, (4.18)
0% -vg=1 HN-ae. ondQ x (0,1). (4.19)
Note that constraints (4.17) make the vector field o admissible to the dual problem while

conditions (4.18)-(4.19) are interpreted from the optimality conditions in Theorem 2.24, Corollary
2.25.



90 Calibrations for free-boundary minimal surfaces, Cheeger-type problem Chapter 4

Remark 4.2. In the particular case of the variational problem associated to Sy(\), due to the
homogeneity of the total variation, there exists a closed relation between the (N + 1)-dimensional
calibration fields above and the solutions of a more classical N-dimensional dual problem, namely
we have the following assertions:

(i) If (1g, o) is a pair of calibration then there exists a vector field ¢ € L°°(D;R”), which is
. 1 4 o
given by q(z) := — [, o® (=, t)dt, verifying

lgl <1in D, divg < Ain £, divg > Xin D\ , q-vg=—1ondN. (4.20)

(ii) If ¢ € L*°(D;RY) is a vector field satisfying (4.20), and if in addition, divg > 0 in D and
divg =X in D\ Q then o,(x,t) calibrates 1o where

og(z,t) == (—q(x), tdivg(z) — 1+ (A —divg)4). (4.21)

Let us sketch a proof of these two statements. We set here u = 1 for the sake of simplicity.
(i) Assume that (u, o) is a pair of calibration and ¢(x) = — fol o®(x,t)dt. We have

lq(z)| = \/01 o (x,t)dt| < /01 o (a,t)|dt < 1.

and on the other hand,
1 1
divg(z) = — div, / o (a, t)dt = — / div, 0% (x, £)dt.
0 0

Since o is a divergence-free vector field, i.e. divo = div, 0% + %ﬁ =0, it holds

1 ot
divg(z) = | ——dt = o'(x,1) — o'(x,0).
o Ot
Under conditions (4.17)-(4.18), we derive that divg < A in Q and divg > A in D \ Q. In fact,
we have o!(z,0) > —1, ol(z,1) = A —1in Q, and in D\ Q, o'(z,0) = -1, o'(x,1) > A — 1. For
verifying ¢ - vq = 1 on 012, it suffice to use (4.19), that is for every x € 012,

q(z) - vo(z) = <— /01 a%x,t)dt) ‘vg(x) = — /01 o%(z,t) - vo(z)dt = —1.

(ii) The vector field o, defined by (4.21) is a calibration for 1q if and only if it satisfies the
optimality conditions (4.17)-(4.19). It is easy to verify these conditions.

Remark 4.2 is to say that we probably obtain among (N + 1)-dimensional calibration fields a
calibration ¢ whose first component o does not depend on ¢ and whose second component o? is
linear in ¢. At the moment, the (/N + 1)-dimensional calibration is completely determined by the
N-dimensional field ¢(z) := — fol o”(x,t)dt and vice versa.

In Subsection 4.2.3 we shall come back to the determination of this N-dimensional vector
field ¢(z) as a solution of a N-dimensional variational problem.

4.2.2 Geometric problem m(\, D)

This subsection is devoted to the properties of the geometric problem m(\, D) in (4.10). We
minimize the shape functional

JA(9) = P(Q) — Al

among all open subset of D with finite perimeter.
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Theorem 4.3 (existence). The infimum m(\, D) is finite and attained.

Proof. We prove by using the direct method of Calculus of Variations. For every 2 C D, we
observe that
P(Q2) — \Q| > P(Q) — A\|D| > =A|D|.

This is to say that m(A, D) is finite, i.e. inf{P(Q) — A|Q| : & C D} > —A|D|. We now
take a minimizing sequence (€2,), i.e. P(2,) — A, — m(\, D). Since 0 < |Q,| < |D|,
we have sup,, P(€,) < 4+o00. Therefore, the sequence of functions w, := 1g, is bounded in
BV (D). As consequence, there exists a subsequence (uy,) converging to some u strongly
in L'(D). Thus, there is a subset  C D such that u = 1g a.e. and D1g,, converges
weakly-* to D1q. Since |Qy,,| = [pun, — [pu = |Q| (furthermore, 2, converges to Q in
measure in D, i.e. |D N (,, AQ)| — 0) and because of lower semicontinuity of perimeter, i.e.
liminf, P(Q,,) > P(£2), we obtain

m(\, D) = limkinf(P(an) — A1) > P(2) — AQ] > m(X, D).
This show that Q is a minimizer. |

We recall that the Cheeger constant of D is given by

)

hp :=inf{\q : Q2 C D,|Q| > 0}, with A := T

(4.22)

An optimal shape of this geometric problem is called Cheeger set of D. In case D is convex, it
turns out that such a Cheeger set is unique (see for instance [33], [82], [94]) and we shall denote
it by Cp. In general, it can be proved (see [82], [28]) that a union of Cheeger sets is a Cheeger
set. Thus, we may extend the definition of Cp by setting

Cp :=J{Q : Qis a Cheeger set of D}.
Then, Cp is called the mazimal Cheeger set.

Proposition 4.4. The following equality holds: hp = sup{A > 0 : m(\, D) = 0}. More
precisely, one has

(i) If X\ € (0,hp) then m(\, D) = 0 and the empty set () is the unique solution.
(ii) If X\ = hp then m(\, D) = 0 and Argmin Jy(Q2) = {0, Cheeger sets of D}.

(iii) If X > hp then m(A, D) < 0 and solutions of m(\, D) have strictly positive Lebesgue
measure. (In other words, O does not solve m(\, D) anymore).

Proof. Assume that A < hp. Then, for all measurable subset 2 C D, one has
INQ) = P(Q) = A9 = (hp — A)[Q] = 0 (4.23)

Thus, m(A, D) = 0 where ) is a solution. Observing that by (4.23), Jx(€2) > 0 whenever || > 0
and A\ < hp, we deduce that Q = () is the unique solution (up to a Lebesgue negligible set) in the
case A < hp. If A = hp, the non empty solutions to m(\, D) are by definition the Cheeger sets
of D. In particular, if D is convex, we derive that m(\, D) has exactly two solutions {0, Cp}.
Assume now that A > hp. Then, if € is a Cheeger set of D, one has
P(Q
JA(©) =19 (\§2|) = A) =191~ N <.
and therefore, m(\, D) < 0. It follows that any solution € to m(\, D) has strictly positive
Lebesgue, i.e. |©2] > 0. (Indeed, |©2] = 0 implies that Jy(€2) > 0). [ |
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Proposition 4.5. Let D be a Cheeger set of itself, i.e. hp = P(D)/|D|. For all A\ > hp, it
holds m(X, D) = (hp — \)|D| and D is the unique solution for m(\, D).

Proof. As, by Proposition 4.4, m(\, D) < 0, any solution €2 is such that |Q2| > 0. On the other
hand, for such a solution €2 it holds

IN(Q) = P(Q) = hp[Qf + (hp = M)[Q = (hp — M)[€]
whereas since P(D) = hp|D|, we have
JA(D) = (hp = A)|D] < (hp = N)[9].

It follows that D is also a solution and that m(X\, D) = (hp —\)|D| = (hp — A)|Q2|. Thus, Q =D
is the unique solution (up to a Lebesgue negligible set) to m(\, D). [ |

Proposition 4.6 (monotonicity).

(i) If C C D then m(\,C) > m(\, D). Consequently, if ¥ is a solution to m(\, D) then it is
also a solution to m(X\,X) and hence, m(\, D) = m(\,%).

(ii) Let Q(X), Q(u) be solutions of m(\, D) and m(u, D) respectively. Then, if 0 < XA < u,
there hold

QN CcQu) and m(p,D) <m(\ D) <0.
Particularly, one has m(p, D) < m(A, D) <0 if hp < A < p.
(iii) If D is a solution to m(\, D) then D is also a solution to m(u, D) for any p > .

Proof. (i) Let C C D. We assume that 2 and ¥ are solutions to m(A, C') and m(\, D) respectively.
Since Q2 C C' C D, it holds

m(X, C) = P(Q) — N|Q| > m(), D).

By applying this result to C' = X, we obtain m(A, ) > m(A, D). On the other hand, since ¥ is
a minimizer of m(\, D), it turns out that for all A C X(C D),

P(A) — MA| > m(\, D) = P(X) — A\X|.
Thus, by taking the infimum of the left hand side of the inequality above over all subsets A C 3,
we have m(\, X) > P(X) — A|X|. This show that ¥ is a minimizer of m(\,X). So, the equality
holds m(\, X) = m(A, D).
(ii) Tt is a fact [6, Proposition 3.38] that for any two finite perimeter sets A, B in R we have
P(A)+ P(B)> P(ANnB)+ P(AUB). (4.24)

Let 0 < A < p and let Q(X), Q(u) be solutions of m(A, D) and m(u, D) respectively. Then, it
holds

P(Q(N) — A < P(QA) N Q1)) — AN N Q).
P(Q()) — nlp)] < P2 UQ(n)) — 12N UQ(w)]

By adding both inequalities above and using (4.24), we obtain

0 < A(12)] = 1200 N Q)]) = (190 V()| = [2m)]) = (A = @] 2N\2(w)| < 0.
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This means (A — )| Q(A)\Q(p)| = 0. Since A < p, we get |Q(A)\Q(n)| = 0, hence Q(\) C Q(u).
By using again A\ < u, Q(A) C Q(u) (that we have already known) and (i), we deduce that

m(A, D) = P(QA)) = AQA)| = P(QA)) — plQN)| = m(p, Q(p)) = m(p, D). (4.25)

As proved in Proposition 4.4, both m(\, D) and m(u, D) are non positive. Notice that the first
inequality in (4.25) becomes “>" if Q(\) # (. In the case where hp < A < pu, by invoking
Proposition 4.4 (iii), we infer that m(u, D) < m(\, D) < 0.

(iii) Let 0 < A < p. If D is solution to m(A, D) then for every Q C D,

P(Q) - 10 = P(Q) - A2 + (A — )|
> P(D) = AID| + (A - )| D|
— P(D) - D)

Thus, D is also optimal for m(u, D). [ |

Proposition 4.7. Let (\,) be an strictly increasing sequence converging to X\ and Q, be a
solution of m(\,, D). Then, Q\)T :=U,, Q is a minimizer of m(\, D). Furthermore, P(Q,) —
P(QN)T). Similarly, assume that A, | A, then Q(N\)™ := N, QL s a minimizer of m(\, D) and
P(y) = P(QA)7).

Proof. Assume that A, T A, and for each n € N, §2,, is a solution of m(\,,, D). Then, for every
subset ) C D, one has

P(Qn) - >\n|Qn| < P(Q) - )‘n|Q| (4'26)

Since the family (€2,,) is monotone (see Proposition 4.6 (ii)) and the perimeter is lower semi-
continuous (see [6, Proposition 3.38]), i.e. P(Q(A)") < liminf, P(€,), we derive from (4.26) by
passing to the limit inferior that

P(QA)T) = NQN)T] < P(Q) = A|Q].

This shows that Q(A)™ is a solution of m(\, D). Besides, as €, is a minimizer of m(\,, D), one
has

P(n) = An|Qn| < P(QAN)T) = Al QAT
By taking the limit superior on both sides of the inequality above, we obtain
limsup P(2,,) < P(Q(\)™T).
Once again with the lower semicontinuity of the perimeter, we conclude lim,, P(Q,) = P(Q(A\)T).

The remained assertion is proved analogously. |

Corollary 4.8.

(i) Let A > hp and Q be a solution to m(\, D). Then Q O Cp, hq = hp, and 2, D share the
same Cheeger sets.

(ii) Let (\,) be a sequence such that Ay, > hp, Ay | hp, and let Q, be a solution to m(\,, D).
Then it holds

Cp= () Q. (4.27)
neN
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Proof. (i) Let A > hp. Assume that € is a solution to m(\, D). Since 2 solves m(A, D), it
follows Proposition 4.6 (ii) that © contains all Cheeger sets of D, hence, 2 D Cp.
On the other hand, if A is a Cheeger set of D then by (i), we infer that A C Cp C Q@ C D.

Thus, A is also a Cheeger set of 2. Conversely, supposed that A is now a Cheeger set of 2, then
as Cp C §, it holds

P(4) _ P(Cp)

= hp.
Al = lopl P

It shows by definition, that A is a Cheeger set of D. We conclude that A is a Cheeger set of € if
and only if it is a Cheeger set of D. Consequently, hg = hp.

(ii) We set Qoo := Ny 2n- It is obvious (by (i)) that Cp C Qu. By Proposition 4.7, Q0 is
a Cheeger set of D. Hence, Qs = Cp (note that Cp is the maximal Cheeger set of D). |

Remark 4.9. The assertion iii) in Corollary 4.8 gives an alternative to the construction of the
maximal Cheeger set proposed in [28]. Actually, we may extend the assertion iii) to any sequence
(A\n) satisfying A\, > hp and A, — hp. And then the maximal Cheeger set of D is determined by

Cp= () {2 : Qsolves m(X,D)}.
A>hp

4.2.3 Dual problem associated with m(\, D)

In view of Remark 4.2, our goal is to evidence a dual problem where the unknown ¢ is a vector
field ¢ : D — R™. In order that this problem is easy to handle, we slightly change the convex
integrand g§* which appears in (4.8). We consider the new convex function

go(t) = —Amin{¢, 1} vt € R.

Then, it is easy to check that
m(\, D) = inf{/ (V| + Go(w) da : u e Wol’l(D)}. (4.28)
D

Indeed, by a trivial truncation argument, we observe that the infimum in the right hand side is
achieved for functions u taking values in the interval [0, 1] on which go = go.

We now compute in the classical convex framework the dual problem of (4.28). As the usual
qualification assumption is satisfied (see Theorem 1.31, Chapter 1), this dual problem reads

sup {—/ (G0)*(divq)dz : g € L=®(D;RY), |q| <1a.e. in D}. (4.29)
D
As (go)*(t*) =t* + A for t* € [\, 0], and (go)*(t*) = +o0 otherwise, we obtain
m(\, D) = sup {/ (divg — Ndz : ge L®(D;RY), |¢| <1, 0<divg < )\} . (4.30)
D

Theorem 4.10. The dual problem (4.29) admits a solution G in L>®(D;RY) and it holds
m(\, D) = sup (4.29). An optimal pair (Q,q) for m(X\, D) and (4.29) is characterized by the
following conditions

lgl <1 a.e. inD, 0<divg< A a.e inD, (4.31)
Gg-va=1 HN"tae ondQ, divg=X a.e inD\Q. (4.32)
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Proof. Since our convex function go satisfies the qualification assumption (go is continuous),
we deduce from the classical duality theory that the dual problem (4.29) attains its maximum
at some § € L>®(D;RY) and m(\, D) = sup (4.29). We refer to [26], [57] for more details on
these duality results. Notice that € is a solution to m(A, D) if and only if 1¢ is a solution of
the variational problem (4.28), which is identical to Sy(\). Then, the optimal pair (€2,g) for
m(\, D) and (4.29) is characterized by applying the classical duality results to the dual pair
(1q,q) which gives the conditions (4.31)-(4.31). [ |

Theorem 4.10 provides optimality conditions (4.31)-(4.32) from which minimizers of the
geometric problem m(A, D) will be characterized once a calibrating field g exists and is determined.
In particular, in light of Remark 4.2, the N-dimensional vector field § may be used to create
an (N + 1)-calibration for the problem [Sy()) defined in (4.4). In Section 4.3, we shall describe
an explicit construction of a 2-dimensional field § in support of a potential associated with
the distance to the cut-locus. But, before doing that, we present in the subsection below a
generalized notion of classical calibrable sets, the so-called #-calibrable sets. These sets are
actually optimal shapes of the geometric problem m(\, D).

4.2.4 6O-calibrable bodies

The shape optimization problem m (A, D) maintains pretty many interesting properties of the
Cheeger problem. For instance, Cheeger sets are calibrable sets in the sense introduced by
Caselles-Chambolle et Al. in [4] while solutions of the problem m(\, D) are calibrable but in a
more general sense as stated in the following definition.

Definition 4.11. Let § > 1 and © C R be a bounded set of finite perimeter. € is called
6-calibrable if there exists a vector field ¢ € L>(€; RY) such that

llglleo <1, qg-vo=1 HY"lae. on 99, 0 <divg < 0\q in D'(Q).

Notice that the condition ¢-vg = 1 HV"!-a.e. on 9 can be understood as q-D1g = —|D1g)|
in the sense of measure in Q. It is easy to see that if ) is §-calibrable then it is also ~y-calibrable
for every v > . Thus, we define the calibration constant of a subset Q C R by the minimum
value of 6 > 1 such that € is §-calibrable, namely

Oq:=inf {0 : 0 > 1, Qis H-calibrable} . (4.33)

Naturally, we have 6 > 1. In the special case where 8 = 1, we find that € is actually a Cheeger
set, in other words, calibrable in the sense introduced in [4]:

Definition 4.12. Let Q is a bounded set of finite perimeter in RY. € is said to be calibrable if
there exists a vector field ¢ € L>(€; RY) such that

llgllo <1, q-vo=1 HN"lae on 99, divg =X in D'(Q),
for some constant A € R.

We remark that the constant A appearing in Definition 4.12 is not an arbitrary real value
but determined by A = A := P(2)/|9|. In fact, once 2 is calibrable, it turn out that

MQ!:/ (divq)lgdac:/ q-vodH ™' = P(Q)
RN o0N

which yields A = \q.

Proposition 4.13. Let § > 1, and Q C RY be a bounded set of finite perimeter. The following
assertions are equivalent:
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(i) Q is 6-calibrable,
(ii) Q is a minimizer of m(6Aq,2).

Proof. (i) = (i7). Assume that € is f-calibrable. By definition of §-calibrability, for every A C Q
being a subset of finite perimeter, we have divg — 0\g < 0 a.e. in . This implies that

/(divq—H/\Q)lAdx > / divg dz — 620|Q| = P(Q) — Oral9.
Q Q

Since [ divglade = [, q-vadHN ™1 < P(A), we obtain immediately
P(A) — BAalA| > P(Q) — 0209

It is to say that Q minimizes m(f\q, ).
(71) = (i). We now assume that 2 is a solution of m(6Aq,?). According to Theorem 4.10,
there exists ¢ € X1(Q;RY) with ||¢|leo < 1 such that 0 < divg < O)\q a.e. in , and

P(Q) — 070|Q| = /Q(divq — ba)da

This implies that ¢ - vq = 1 DHYa.e. on 092. We showed that € is a 6-calbrable set. |
Corollary 4.14. There hold
(i) A bounded finite-perimeter set Q in RN is I1-calibrable if and only if it is a self-Cheeger set.
(ii) 1-calibrability coincides with the clasical calibrability in the sense of Definition 4.12.

Proof. (i) It is easy to figure out that € is a minimizer of the problem m(Aq, §2) is equivalent to
that it is a self-Cheeger set. Indeed, we observe that for every A C Q with finite perimeter and
|A| >0,
P(Q P(A
PIR) ~ Xalfl < P(4) = dala] = T < T,

which means A\q = inf {P(A4)/|A| : A C Q} = hq.
(ii) When € is a 1-calibrable set, we have 0 < divg < A\q a.e. in Q and q-vg =1 HVL-a.e.
on 0f2 so that

P(Q) 1 / )
o= —7>- = — divqg.
T T ke

We see that (Aq — divg) is a positive Radon measure and [,(Aq — divg) = 0. This means

divg = A\q in D'(Q). [ |

Characterization of 6-calibrable sets

We provide here a characterization of #-calibrable sets among the class of finite perimeter subsets
in RV,

Proposition 4.15. Let Q C RY be a bounded subset of finite perimeter. The following conditions
are equivalent:

(i) Q is a solution for problem m(6Aq,S2) for some 6 > 1.

(ii) lq is a relaxed solution for the variational problem defined by (4.28) for A = 6Aq.
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717 ere exists a vector field q € ; such that
Th field L®(Q; RN h th

lgf <lae inQ, 0<divg<Oigae inQ, q-voq=1H""ae ondQ (4.34)

In the case Q being convex and of class CY', these three conditions are indeed equivalent to

(iv) It holds
max {1, (N = 1)rae (002" } <6, (4.35)
where Koo (0N) denotes the L -norm of the mean curvature of 0S).

The equivalences between the triple conditions (i)-(ii)-(iii) in Proposition 4.15 mean sig-
nificantly that all level sets {w > t}, ¢ € (0,1), of a relaxed solution u of the variational
problem (4.28) (which is identical to By()\)) are A\ -calibrable sets if A > hp. The geometric
characterization (4.35) is derived from the result below.

Proposition 4.16 ([4]). Let Q be a bounded convexr subset in RN of class CV'. Let Q be the
solution of m(\, Q) with X\ > 0. Then, Q = Q if and only if A > max{Aq, (N — 1)keo(02)}.

For more details on this geometric characterization, we refer to the study of F. Alter,
V. Caselles, and A. Chambolle in [4]. In what follows, we show that solutions of the geometric
problem m(\, D) are #-calibrable sets.

Remark 4.17. The condition (iv) in Proposition 4.15 is actually to say that the calibration
constant of a nonempty bounded open subset € in RV of class C™! is determined by

0o = max {1, (N — 1)/{00(8Q))\51} .

Proposition 4.18. Let Q C RY be a finite perimeter subset with || > 0. Then, if Q solves
m(\, D) for some A > 0, it holds \g < A\. As a consequence, Q) is a 0-calibrable set with
0 =g

Proof. Suppose that € solves problem m(\, D). Then, ) automatically solves m(\,Q), see
Proposition 4.6. If A > Aq, we have  is f-calibrable with 6§ = )\/\51. If A < Ag, Q will
solve m(Aq, ), thus € is 1-calibrable, or equivalently, a Cheeger set of D. It turns out that
A=Xq=hp. [ |

Remark 4.19. We shall see later that solutions Q of problem m(\, D) in 2 dimensions are indeed
f-calibrable sets with their calibration constants determined by 6q = )\)\51.

Eventually, let us give some interesting comments. The notion of #-calibrability as we have
seen, covers the classical conception of calibrability while the calibration constant g intuitively
represents how far () stretches out from its Cheeger set. In this context, when 6 is near the
critical value 1, we say {2 concentrates on its Cheeger set. Otherwise, as 0 is near 400, we
say that it diffuses. For instance, we consider the family of non void solutions of the geometric
problem m(\, D) for a convex nonsmooth body D in RY with it curvature xeo(0D) = 400 (it
means D has sharp corners on its boundary). We denote this family by {Q(6)}s with 6 = A\\g?,
A € [hp,+0o0]. Then, the family is a increasing sequence of sets which continuously fills the
space between the maximal Cheeger set of D and D itself, namely

Cp=Q1)C..cQ) C..CQ(+o0)=D.
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Figure 4.2: A 6#-calibrable set of the unit cube in three dimensions.

Figure 4.3: A f-calibrable set of nonconvex domain in three dimensions.

We illustrate in Figures 4.2 and 4.3 #-calibrable sets of convex and non convex domains
in R3. They are obtained by using the primal-dual algorithm discussed in Chapter 5 to solve
the variational problem (4.28). Figure 4.2 is done with D being the unit cube and A = 5.5. In
Figure 4.3, the non convex domain D is generated by a pair of unit cube joining with a small
rectangular solid tube, and (4.28) is solved with A = 5.8. In both figures, the green surfaces
present the boundary of #-calibrable sets inside D, and the red regions indicate their common
boundaries with 0D.

4.3 Cut-locus potential and an explicit construction of 2-dimen-
sional calibrating fields

The following metric notions will be used. For z,y being two points in R?, the segment joining
them denoted by [z,y] := {(1 —t)x +ty : ¢t € [0,1]}. The distance between them is measured
as |z — y|. For every nonempty subset A of R, we denote by d(z, A) the distance from z to A,
namely

d(z,A) :=inf{|lz —y| : ye A}.

If z € A, then d(x, A) = 0. The distance between two nonempty subsets A, B of R? is given by
d(A, B) :=inf{d(z,B) : x € A}.

In this section we assume that D is a bounded convex open subset of R?.
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The distance function to the complement of D will be given by d(-, D¢). Let R be the inradius
of D, given by R = max,cp d(x, D). For every § such that 0 < ¢ < R, we set

D°:={zeD : dx,D > d}.

We have D? = D. Tt is easy to see that D? is a subset of D, whose boundary is the inner parallel
set to dD at distance 6. Thus, D? is convex as D (a formal proof can be found in the proof of
Lemma 4.21). We denote by D the so-called core of D,

Df .= ﬂ D° = {z: B(z,R) Cc D}.
0<o6<R

Hereafter, B(x,r) denotes the open ball in R? centered at x with radius r > 0.

For all A > R™!, we define a specified subset of D, denoted by €2, which is the union of all
balls of radius A~! contained in D, namely

o= |J B@ah. (4.36)
B(z,A~1)CD

Evidently, Q) coincides with the union of the family of balls of radius § = 1/ centered in D°.
We call Q2 1 central set of D. We give in the following results on the convexity and 6-calibrability
of Q). Let us begin with recalling the characterization of calibrable sets (Cheeger sets) in two
dimensions since they are special cases of 8-calibrability.

4.3.1 Cheeger sets in R?

In 2-dimensional case, Cheeger set of a convex set is convex and uniquely defined as the union
of a family of disks of suitable radius, for more details we refer to [102, Theorem 3.32 i)]. The
radius was then identified as 1/hp.

Following is a well-known result we can find in the work of by Bernd Kawohl and Thomas
Lachand-Robert in [79]. We also recall here its proof for convenience.

Theorem 4.20. There exists a unique value 6 = 6* such that |D°| = n6%. Then, hp = 1/5*
and the Cheeger set of D is Cp = U{B(x,0") : B(x,0*) C D}.

Proof. Let R be the radius of D. Tt is easy to see that |D%| and 762 are monotone functions
in ¢, which are strictly decreasing and strictly increasing respectively in (0, R). So, there is a
unique §* € (0, R) such that |D°| = 762,

Let C' is the Cheeger set of D. Then, C' is the union of disks containing in D of radius § = 1/hp,
[102, Theorem 3.32 i)]. Let C? := {x € C : d(x,C%) > §}. By Steiner’s formulae, we typically
have

IC| = |C%) + 6P(C°) + 76> (4.37)
P(C) = P(C%) + 2md. (4.38)

We will show that 1/hp = ¢*. Since C' is Cheeger set of D, by definition, 1/0 = hp = P(C)/|C]|
or P(C) = |C|. Use (4.37) and (4.38), we can derive that |C%] = 762. Let us figure out that
C% = D°, and then, this completes the proof by the uniqueness of §*. For any z € C°, as C C D,
d(z, DY) > d(z,C®) > §. This shows C° C D%. Inversely, if x € D° then B(z,d) C D would be
contained in C. Hence, x is in C?. [ |
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4.3.2 Characterization of #-calibrable sets in R%2. The set (),

Inspired from Theorem 4.20, -calibrable sets in R? are also formed by a cover of balls with

certain radius.

Lemma 4.21. Let A >0 and § = )\/\5; Then Q) defined by (4.36) is convex and 0-calibrable.
Notice that by the characterization of f-calibrability discussed in Section 4.2.4, £, itself

minimizes problem m(\, £2)).

Proof. First of all, we will prove that €, is convex. We observe that D is a convex set. In fact,
D? coincides with {z € D : B(z,0) C D} and this is a convex set. For any x;,zy € D%, there
exist B(x1,9), B(x2,d) C D. It is easy to see that

B ;9”2 ,6) C conv (B(x1,8) U B(2,8)) C conv(D) = D.
Thus, (21 + 22)/2 is in D?. Now, for every x,y € Q,, there exist B(xg, A™'), B(yo,A\"") C D
1
such that = € B(zg, \™!),y € B(yo, A™!). Then, we get v ;— Ye B(m0 —21—90, X) since
r4y _rotyo| |z—wo| |y—w| 1
2 2 - 2 2 A

To+yo 1
2 A
Secondly, by Proposition 4.15 (iv), we shall prove that k. (9€2)) > Aq, so that Q) is )\/\51—

calibrable. For the sake of simplicity, let us set, only in this proof, § = A~! and §* = hBl. Since

) is a union of disks of radius § containing in D, we obtain by Steiner’s formulae [74],

Qx| = |D°| 4+ 6P(D%) + w62, (4.39)

P(Qy) = P(D°) + 270, (4.40)

As D? is convex, we have B( ) C Q. So, xT—HJ is in Q).

on the other hand, the curvature of 92 is finite and koo (0€2)) = A. Hence, it suffice to show
that

Ag, = <\ (4.41)

By substituting (4.39)-(4.40) in (4.41), we get inequalities which are equivalent to (4.41),

|DO| + §P(D?) + w62 |D%| — 762 p )
>l ——— > (00« |D°| — >
PO +2m6 20 5P 1 2mer =0 P = mn 20

The last inequality is true as 6 < 6*. In fact, since D* C D°, we have, by Theorem 4.20,
|D°| > |D”| = (6%)* > md®.

We close the proof with repeating the conclusion that €y is )\)\éi—calibrable, in other words, 2

itself solves problem m(\, £2y). [ |
A
ST
1
)

N j

Figure 4.4: Configuration of {2 inside a square domain D.
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Figure 4.4 gives a configuration for the )\)\g_zi—calibrable subset (2 of a square domain D in
R?. Note that ke (0D) = +o0. The infinite curvature occurs at corners of the square. Q) is
constructed by four circular arcs which tangentially cover the four corners in the way to remove
the infinity of curvature. These circular arcs are uniquely determined by their positions (meaning
being tangent to D) and their radii of A~!. Thanks to the geometric characterization (4.35),
it is clear to say that the calibration constant of €1 is given by fq, = )\)\ﬁi. When A\ = hp,
we get the Cheeger set of D and 0g, = 1. As discussed in Section 4.2.4, the family {Q}, is
a increasing sequence of g, -calibrable sets which continuously spread out from the Cheeger
kernel Cp to reach D. This evolution corresponds to the slide of calibration constant o, in the
rail from 1 to +ooc.

In Figure 4.5, we give a numerical 6- calibrable set of a non convex subset in R?. The non
convex subset comprises two unit square linking together by a small rectangle. This #-calibrable
set is obtained by solving numerically the variational problem m(\, D) with A = 3.94 by the
primal-dual algorithms described in Chapter 5.

Figure 4.5: A f-calibrable set of nonconvex domain in two dimensions.

Is an ellipse domain 6-calibrable 7

Let us observe an ellipse in its standard form

z? N 3 .
a? b2

And, D is defined as D = {x € R? : 2%/a® + 23/b* < 1}. By the geometric characterization
(4.35), as an ellipse always have finite curvature, it is certainly f-calibrable for some # > 1. The
question to investigate is when an ellipse is #-calibrable ?

%

N
_

Z

\
.

\‘\

\

-

T

SN

9.8 99 9.92

Figure 4.6: Ellipse domain D = {z € R? : 0.12%? 4+ 22 < 1} and its D° subsets. Red lines in the
right subfigure are geodesic distance to D, which are orthogonal to 9D,

Take for instance, an ellipse stretched out so that the maximum curvature is large enough
and Koo(0D) > hp. Then, it is not a self-Cheeger set. By construction of 2, we shall
obtain a family of fq, -calibrable sets with their calibration constants 6, being bounded, i.e.
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1 <6, <0p < +oo. In Figure 4.6, we present D = {z € R?: 0.12% + 23 < 1} and D? subsets.
As we can see, for some ¢’ large enough, DY occurs singular points on its boundary. And, if
hBl is less than all such &', D is self-Cheeger set. Otherwise, D must be 6p-calibrable for some
0p > 1.

Let us turn back to answer precisely the question when a general ellipse domain D is 6-
calibrable. We restrict our case in the first quadrant of the 2-dimensional Cartesian coordinate
system so that we have a parameterization of the ellipse,

b
Ty = —\/a? — 22 .
a

Following calculations are first derivatives and then, the mean curvature of the elliptic curve,

b x ba xl ba*
I L R e T
a? — xf (a? — x1)2 (1+25)2 [a* — 21(a? — b?)]2

Clearly, its maximal mean curvature is attained at = a. Thus, k(D) = |k(a)| = a/b?. Besides,
the area of the ellipse is formulated with

|D| = b/ 2V a? — s?ds = wab.
a

—a
According to Proposition 4.15, it is now reasonably said that the ellipse D is a @-calibrable set if
and only if

2
a
PD)>—.
(D) 2 b6
On the other hand, the circumference of the ellipse is given by P(D) = 4aE(e), where e is the
eccentricity /1 — b?/a?, and E(e) is a complete elliptic integral of the second kind,

w/2
E(e) := / /1 — e2sin? pdp. (4.43)
0

It turns out that inequality (4.42) is equivalent to
T

bE(e) o7
a 40

By setting ¢ := b/a, we can verify that function G(t) := tE(v/1 — t2) is monotonically increasing
in the unit interval (0,1). Or, G(v/1 — e€?) monotonically decreases in e in (0, 1). Therefore, it is
easy to see that for each 6 given in [1,+00), the inequality (4.44) is satisfied for any ellipse with
eccentricity smaller than the critical value ey where the equality of (4.44) happens, see Figure
4.7 for visualization.

(4.42)

(4.44)

B

************ OO % 0.5] :

—_— 60
e c; ~0.7911741

_ 0 f T T
0 to 1 ¢t 1 3 5 7

0

Figure 4.7: Is an ellipse domain #-calibrable?
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In Figure 4.7, tg is the solution of G(t) = w/(460). The blue interval (g, 1) with
(t0,1) = {t € (0,1): G(t) > 7/(40)}

defines the red interval (0, eg) which represents all of ellipses with eccentricity less than ey. Of
course, the quantity eg can be easily approximated by available numerical methods. As a direct
result, every ellipse with eccentricity less than e; (in this case, § = 1) is a self-Cheeger set. And
the inequality (4.44) reduces to be 1 — e?FE(e) > 7/4. At that moment, e; can be numerically
estimated by 0.7911741. If we carefully regard in Figure 4.7, as 6 tends to infinity, eg approaches
1. The interval (0, ep) is then enlarged to fit the unit interval (0,1). In detail, ey belongs to
(0,e,) for all 4 > 6. It is to say that if D is f-calibrable, it is immediately p-calibrable. This
emphasizes again an attractive illustration of Proposition 4.6 (iii).

4.3.3 Cut-locus potential

Let n : D% — S! be the Gauss map assigning each point = on the boundary of D? with
its normal vps(z) which is in the unit sphere S* (n is universal, thus, we prefer ignoring its
dependence on D°, i.e. using n instead of nyps for simplicity). We call ¢°(z) the angle of
vps(z) in S'. As DO is a convex set, the singular set of n is at most countable. We denote it
by 9sD° := {x; : j € J}. Then, the regular part of 9D’ is given by 9,D° := 9D’ \ 9;D°. For
each singular point z in sD%, the Gauss map n has its limits inferior and superior which will
be respectively denoted as v ;(z) and 1/;5 (). Accordingly, ¢? (z) and ¢ (z) are defined. For
each x € D, we denote by Nps(x) the normal cone of D? at x, namely

Nps(z) = {m* €ER? : (z*,y—12)<0,Vye D‘S}.

The normal cone Nps(x) will reduce to {0} if z is inside D°. When x is on the boundary of D?,

the normal cone is generated by the unit vector v, ;(z) and VE(; (x), that is

Nps(z) = {aljgé(x)—l—bugé(x) : a,beR+}.

If z € 9,D°, it happens n(z) = l/ga () = v, s(x) and Nps(x) is the positive ray spanned by

Dd
vps(z), i.e. Nps(xz) =Rivps(z). We then define
N(z) ==z + {p € Nps(z) : |p| <8}, for z € DI, (4.45)
C%(z) =z + {p € Nps(z) : |p| =4}, for z € D°. (4.46)

For every 4,4’ such that 0 < ¢’ < § < R, we define
M (z) =z + {p € Nps(x) : <p, uli)é(x)> <6-— 5’} , for z € D9, (4.47)

For all z € D and for A being a closed subset of R?, IT4(z) denotes the orthogonal projection
in R? of z on A. We note by Ils(x) the projection in R? of 2 on the closure D?.

All notations above can be defined for every convex nonempty subset of D, but for convenience,
we just recall them on the family of special subsets {D°}s. We begin in the followings with some
preparatory lemmas before discussing about cut-locus potential.

Some preparatory lemmas

The lemma below provides the projection on the boundary of a closed convex set from inside.

Lemma 4.22. Let Q be a closed convex subset of R%2. Let y € Q and y* € 9 be a projection of
y on 0L, i.e.:

ly —z| > |y —y*| Vze . (4.48)

Then, it holds (x — y*,y — y*) > 0 for every x € Q.
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Proof. We may assume that y € int 2 so that y # y*. Under (4.48), it is clear that Q contains
the ball B(y, |y — y*|). Therefore the normal cone Nq(y*) (which is non reduced to {0}) must
be a subset of the normal cone to B(y, |y — y*|) i.e. of Ry (y* —v). [ |

Let A be the singular set of d(-, D) (i.e. the set of point € D such that d(-, D°) is not
differentiable at z, or equivalently such that IIpe(x) is not a singleton). The closure of A in D is
called the cut-locus of D and denoted by A. Let v: D — [0, R] be geodesic distance passing x
from D to cut-locus A, namely

v:xz €D ((z)+d(z, D),
where ((z) is the normal distance to cut-locus A from z, i.e.

() = {min{t >0:2+tVd(z,D) €A} Ve ? \ A, (4.49)
0 Vr € A.

Here, Vd(x, D) denotes the gradient of the distance function, and hence, it is a unit vector
providing the direction of the geodesic distance starting from x to cut-locus A. We refer to
[42, 41, 43, 40] for more details on this topic.

Lemma 4.23. Ifz € D and § = () then

x ifx € A,

Fs() = {m + ((2)Vd(z,D¢) ifz € D\ A.

Proof. If x € K, xis in D%. Assume now z € D \ A. Let 2, € A such that
zy =z + ((x)Vd(z, D°).
It is evidently that |z — .| = ((x)|Vd(z, D¢)| = {(x). Besides, we observe
V(z) = d(Il;(z), D) < d(ls(x), z) + d(z, D°).
This implies that
d(s(x), ) = ((x) = |& — 2|

Thus, by uniqueness of projection, IT5(x) must coincide with .. [ |

Lemma 4.24. Let D be a bounded convex set in RN . Given x € D such that d(x, D?) < § for
some 6 > 0. Then, for every & such that 0 < & < 8, we have d(x, D®) < &'.

Proof. Tt is trivial if z € D9, since D% ¢ DY for any &' < §. We now assume that = ¢ D°. Let
x5 and xg be the projections of z on D%, DY, respectively. As d(ac,D5) < 4, x is contained
in B(xs,0). Let us show that we can always find out a ball B(z,¢") C B(xs,d) such that
z € B(z,0) and z is an interior point of D’. And hence, by the fact that z has a unique
projection on the boundary of the closed convex set DY, the lemme is proved thanks to

d(z, D) = |z — zg| < |z — 2| < &

If d(z,D%) < §'. Take z = x5, we have x € B(2,0') C B(xz5,0) C D. Then, d(z, D) > &, it
means z € D°. Otherwise, &' < d(z, D°) < §. We set

z=(1—t)x + txg, for some t € [0,1].
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We have |z — z| = t|z — z5| = td. For every t € [0,1], y € B(z,t0),

ly —xs| <|y—z|+ |z —xs| =td + (1 —t)|x — z5] < 6.

Thus, B(z,td) C B(zs,0) and x € B(z,t§). Besides, d(z, D) > d(z,0B(z,td)) = td. The
inequality becomes equality if and only if B(z,td) touches the boundary of D, or equivalently,
B(z,t0) = B(zs,). We observe that B(z,t6) = B(xs,6) if and only if d(z, D?) = § and t = 1.
Therefore, for t = §/8, z is an interior point of D% since d(z, D¢) > d(z,dB(z,8")) = §'. We
then obtain a ball B(z,d") such that B(z,0") C B(xs,0) and x € B(z,d). [ |

Lemma 4.25. We have :
(i) For all &' < &, it holds

D' ={eeD” : d(,(D"))>6-0}={re D" : Bz,6-5)c D"}
(ii) Given x € 8,D%, z € ODNMJ(x) (see (4.47) for the definition of MS(x)). Then, for every
y € M{(x), we have |y — z| = d(y, D). In particular, |x — z| = d(x, D) = 6.
(iii) For each §' < 4, it holds

oD% ¢ |J M=)
x€0s DI

As consequence, for every x € D, if I5(x) is in 8,D° then Iy (z) belongs to 8,D% for all
8 < 0.

Proof. (i) Let E := {:1; e DY . d(x,(D¥)¢) > 6 — 5’}. It is easy to verify that
E={zeD" : B(z,6-4§)c D"}

We will prove that D% = E.
For every = € D%, B(z,8) C D implies that

§ < d(z,D%) < d(z,0D") +d(dD”, D°) = d(«,dD" ) +&'.
That means d(z, (D%)¢) = d(z,dD%) > § — §'. Tt is to say that z is in E. So, we get D° C E.

For every x € E, B(z,6 — &) c DY implies that for all y € B(z,6 — &), y is in D% and
d(y, D¢) > §'. Thus, we obtain

d(z, D) = d(z,0B(z,6 — ¢')) + d(0B(z,§ — &), D°)
> (—-8)+8 =6.
It shows that 2 € D°. The inverse inclusion D? O F is true.
(ii) Given z € 9,D% and z € 9D N M{(x), we have z = 4 p with |p| < §. It follows that
d=d(z,D° < |z —z| <4

Or, d(z,z) = d(z, D) = 9.

For every y € M{(x), we will prove that |y — 2| = d(y, D). Suppose that d(y, D) < |y — 2|
and d(y, D) = |y — Z| for some Z € dD, Z # z. Then, |y — Z| < |y — 2|. Recall that as = € 9,D°,
M{(x) is a segment joining = and z. We have

|z =2 < |z —y[+ |y —Z
<|lz—yl+ly—=2[=0
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while |z — Z| > d(x, D) = 6. This gives a contradiction. So, d(y, D) = |y — z|.

(iii) It is equivalent to prove that for every & < &, y € d,D implies that IIs(y) € d,D°.
Suppose that y € 8,0 and II5(y) € 9,D°. From (i) and (i), we derive that |y — II5(y)| = 6 — &',
As Ts(y) € 9,D°, the ball B(Tls(y),d) then touches the boundary of D at a unique point
called z. Let w be the intersection of segment Mg (I15(y)) = [I5(y), z] and dD?. By using (i),
d(w,D¢) = ¢'. The ball B(w, ') contained in B(Ils(y),d) touches D at and only at z. In
other words, w is in 8,D% . Besides, both y and w are in M{(5(y)). Tt is easy to see that they
coincide. We conclude that y belongs to 9,D% | a contradiction. The proof is completed. |

Lemma 4.26. The followings hold true:

(i) Given x € OD° and x* € OD such that |x — 2*| = d(x, D¢). For every &' <4, let z* be the
intersection of the segment [x,z*] and dD® . Then, we have

Iy (z*) = 2.
(ii) For every y € MJ(x), with x = Ts(y), we always have g (y) € M{(x) for every &' < 6.
Proof. (i) For each z € [z,2*], z can be parametrized as
2(t) .= (1 —t)z" + ta.
If we take z* = z(6'/8) then z* € D . In fact, it holds d(z*, D¢) = §' since
§ = |2* —2*| > d(2*,D%) > d(z*,0B(z", |z" — x*|)) = §'.
Besides, we have

§=lz*—2*> inf |2*—y| >4
yeD¥

It turns out that Iy (z*) = z*.

D

Figure 4.8: Proof. The kite in gray color represents the set M g,.
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(ii) See Figure 4.8 for illustration. Suppose that y* := Iy (y) ¢ Mg (z). Without loss of
generality, we can assume that the segment [y, y*] intersects [z, 2] at z, where z* € 9D such
that |z — 27| = d(z, D). Let z* be the intersection of the segment [z, %] and D% . By (i), we
get that IIy(z+) = 2*. So, the segment [2*, 2] is contained in Mg (z*). Therefore, for every
z € [z*, 2], z admits z* as its unique projection on DY 1t is then clearly that

ly—z<ly—z[+lz=2"<ly—z+|z =y [=ly - ¢
gives a contradiction to the fact that y* is the nearest point on D? to . |

Lemma 4.27. Let D be a convex subset of R? with positive measure, i.e. |D| > 0. For every
x € 0D, we define

k?BD(ﬂf) — I+ VE(:Z;) ) VB($)

Then, we have
(i) for every x € 0D, 0 < kgp(z) < 1;
(ii) kop(x) =1 for every x € 0, D;

(iii) Ve € (0,1), In € N such that #{x : kap(z) < e} < n (# measures the cardinality of
sets).

Proof. We recall that the normal cone of D at x is given by
Np(z) := {azfg(x) +bvp(x) @ abe R+} )

For every = € 0D, we denote by ¢(z) the angle

1
QO(Z') = §A(VD('I‘)7V—5($))7
by Tp(x) the tangent cone of D at x

Tp(x):=cl{s(y—=x) : ye D, s >0}
:{ang(az)—l—le;(:L‘) : a,b€R+},

where T3 () are the left and right tangent unit vectors of D at 2. We denote by t(z) the angle

Y(w) = 3 /(T (@), T5 (@)

Since tangent and normal cones are polar each other, i.e. Np(x) = (Tp(z))?, for every x € 0D,

i
ola) + () = 1.

(i) Since |D| > 0, int D # (), in other words, int Tp(z) # 0. It is to say ¥(z) > 0 (and
Y(x) < 7/2 as D convex). This implies that ¢(z) = § — ¥ (x) < 5. Then, we have

0<p(x) < T
2
For all x € 0D, it holds

1+ cos2p(x)

5 = cos? p(z) = sin® ¥(z).

kop(x) =
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Hence, 0 < kspp(x) < 1.

(ii) D is convex, its boundary 0D admits at most countably many singular points. On the
regular part 9,D = D \ 0D, we get v, (z) = v} (z), i.e. p(z) =0. Then, kyp(x) = 1.

(iii) Suppose there exists 0 < ¢ < 1 such that for every n € N, #{z : kyp(x) < e} > n.
Consider the function h(y) defined by

1 2
h(p) := 2 hcosse (p’ for ¢ € [0, E).
2 2
h is a decreasing function in [0, 7), namely

@ < ¢ = h(e) > h(y).

Moreover, for every x € 9D, it holds h(¢(z)) = kgp(x). There always exists @ € (0,7/2) such
that h(p) = e. We set

E:={x€0D : kgp(z) <e=h(®)}.

Then, for all x € E, by the monotonicity of h, it must be satisfied that ¢(z) > . Hence, for
every n € N,

n
=3 7< Y v < Y pla) <2m.
=1 zeE x€0D

That means @ < 27 /n for all n € N. In other words, we deduce that =0 (or € = h(p) = 1).
This gives a contradiction. |

Lemma 4.28. Let a(z,0) be a function defined by
a(z,8) := d(z,D°) — § (4.50)
forz e D \@, and ¢ € [0, R|. Then, for each x € D \@, function o(z,-) satisfies
=—0 if0 <6 < d(z, D)

a(z,0) § = —d(z, D) if d(x, D) < § < v(x)
strictly increasing  if y(x) < 6 < R.

Furthermore, there is unique § = 6(x) € (y(z), R) such that a(x,d) = 0.

Proof. For v € D \@, d(z,D) > 0. For all § such that 0 < § < d(x, D), x is in D?. So,
az,d) = —9.
If 6 = v(x), then by Lemma 4.23, II5(z) = x + {(x)Vd(z, D¢). We have

a(z,y(x)) = ((z) —v(x) = —d(z, D).
For d(x, D) < § < ~(z), let T € A such that
T =+ ((z)Vd(z, D),

x* € 0D such that |T — 2*| = d(T, D°), and w be the intersection of the segment [Z,z*] and
OD?’. 1t is clearly that € [¥,2*] and w € 9,D°. By Lemma 4.26 (i), we obtain w = IIs(z*). As
consequence, II5(x) = w and hence, keeping in mind that |z — z*| = d(x, D¢) (by Lemma 4.25
(ii)), we have

d(z,D%) = |z —w| = |2* —w| — |z — &*| = § — d(x, D°).
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So, we conclude that a(z, §) = d(x, D’)—§ = —d(z, D) for every & such that d(x, D¢) < § < ().
In the interval (v(z), R), function a(x, ) is strictly increasing in 0. In fact, for every ¢, 6’ such
that v(z) < & < § < R, x is outside D?. By property of projection, the ball B(z, |z — IIg (z)|)
is contained in (D% )¢. We have
d(z,D°) — d(z,D") = |z — I(z)| — |z — ()|

= d(Il5(z), B(z, |z — Iy (z)|))

> d(Is(x), 0D”)

=§-46.

The inequality becomes equality, i.e. d(Ils(z),dD?) = d(Il5(z), B(z, |z — s (z)|)), if and only if
s (5 (2)) = g () = Ny s (@) € [Hs(2), ], (4.51)

where [II5(x), x] denotes the segment joining IIs(x) and x. The expression (4.51) also shows that
5(z) € 9,D%. Tt follows Lemma 4.25 by (iii) that IIy(z) € 8,D° and moreover, by (ii) that
M (IT5(z)) is a segment comprising regular points of d(-, D¢) in the direction orthogonal to d.D,
which includes x and IlIg (x). Therefore, Ils(z) can be rewritten as

II5(z) = z + tsVd(z, D°),

for some t5 > 0. Since y(x) < §, we get ((x) < tg, or equivalently, x + ((z)Vd(z, D) contained
in M{(Ms(x)). This gives a contradiction to the fact that  + ¢(z)Vd(z, D) is a singular point
of d(-, D). So, we conclude that the relation (4.51) never occurs and, then a(z,-) is strictly
increasing.

Finally, it is evidently that

a(z,y(z)) = d(z, D'™) — y(z) = —d(z, D) < 0,
oz, R) = d(z,D®) — R > 0.
So, by continuity of a(z, ), there exists unique 6 = d(x) in (y(z), R) so that a(z,d) = 0. [ |

Remark 4.29. We notice that if a(z,8) < 0 for some x € D\ Q1 and § > 0 then for every ¢’
R

satisfying 0 < ¢’ < 4, it holds «(x,¢’) < 0. This is described in Lemma 4.24. By using Lemma
4.25 (i), Q2 can be recast as

U ={zeD : a(z,\7') <0}.

As a consequence of the monotonicity of function a(z,-), the family {Qx},>p-1 is clearly strictly
monotone with respect to A. In other words, it holds ) & Qy for all N > A > R™L.

Cut-locus potential
We introduce the function p : D — R, defined by
p(z) :==sup{d >0 : d(z,D°) <6} (4.52)

We call p cut-locus potential.
It is clear that function p can be rewritten as

p(x) =sup{d >0 : «a(z,d) < O0}.

This supremum is attained at a unique d, such that a(z,d,) = 0. In fact, {6 : d(z,D?)—§ <0}
is the full interval [0, p(x)]. See Figure 4.9.
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afz, )

—d(z, D) }------

Figure 4.9: Function «o(z,-), for x € D\

=

Lemma 4.30. p is continuous, achieves its mazimum R on the central set of D and p(x) >
d(z, D). Moreover, for every r > 0,

px) =r <= dx,D")=r <=z €. (4.53)

Proof. The continuity of p can be deduced from the continuity of the map § — d(z, D?) (notice
that the map § — d(z, D%) is continuous only if D is convex). Since we have the inclusions
(0,d(z,D%)] C {6 > 0:d(zx,D?) <5} C (0,R], it is clear that p is bounded, namely

d(z,D) < p(z) < R.

Moreover, p(x) = R for every = € Q%.

We now prove that Q1 = {p > r} for every r > 0, then, the equivalences (4.53) are consequent.
In fact, if z € Q1 then c}(x,DT) < r. This implies that p(x) > r. Since Q1 is an open set, we
have Q1 C {p > T’r} For the inverse inclusion, for any x € {p > r}, there exists § > r such that
o> d(mr, D?). This shows that 2 € Q% C Q% Thus, {p >r} C Q% [ |

Remark 4.31. By Lemma 4.30, we consider 2y as a superlevel set of p,
ka{xeD : p(a:)>)\71}.
Then, level sets of p being €% :={x € D : p(x) =5} = (‘?Q% will give a partition to D, namely

D= |J ¢,
0<6<R

where CTt = Q L. The family {C°}¢<s<r being the boundaries of 1 in D are indeed arcs of
radius 9.

Lemma 4.32. p is locally Lipschitz in D (the Lipschitz constant blows-up as d(x, D) — 0).
On 0D, p(x) < m and p(x) = 7(x) the normal distance to the cut locus, namely

7(x) = sup{t > 0 : x is the unique projection of x — tvp(x) on dD}.
Notice that 7 : 9D — [0, R] is a function defined on 0D (it measures the normal distance

from boundary to cut-locus) and 7(x) = {(z) for all z € D where ¢ : D — [0, R] given by (4.49)
(¢ is defined in the entire D).
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Proof. Firstly, we prove that p is locally Lipschitz in D. Given § > 0, for every z € Q5-1 N D,
we have

d(z,D) >0 and 0 = |z —Is(x)|.

We set 7 := d(z, D). Let z be the point lying outside the disk B(Ils(x),d), on the line passing
z, Il5(x) such that |z — z| = 7. So, z is in D. For every ¢’ < §, we take y as the point inside
D, on the same latter line such that the disks B(y, ') and B(Ils(z),d) have the same tangents
passing z. See Figure 4.10 for our settings.

Figure 4.10: To prove that p is locally Lipschitzian.

Thales’ Theorem is applied,

Gl T
|z —s(x)] &
then, we get
5/
|z =yl = 5(0+7) (4.54)

We notice that B(Ils(x),8) C D and, z € B(z,r) C D. Since D convex, we have
conv [B(H(;(a:), o) U {z}} c D.

This implies B(y,d') € D. Thus, y € D% and, by using the equality (4.54), it holds

!
d(:c,D‘S/) <lzv—yl=lz—y|l-r=8§8-r1- %)
‘We now can summarize that
!
Vr € QN D, V5 <6, dw, D) <8 —d(x,D)(1— %). (4.55)

We observe that for each z € D \@, by using Remark 4.31, z € 0Qs5-1 N D with § = p(z). As a
consequence of statement (4.55), for every x, 2’ € D \@ and, for every §' < d = p(x), we have
d(z', DY) =& < |o —2'| + d(z, D) — &'

5/
< |z —2'| — d(z, D) {1 - 5] :
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If p(z') < p(x), we can choose &' = p(’) and, then d(z/, D) — § = 0. It turns out that

d(z, D) (1 - ’;g;) <lz—2|.

Therefore, for every x,2’ € D'\ Q% such that p(z’) < p(x), we have

,_

— z. (4.56)

In other words, p is locally Lipschitz in D \ Q1 , thus, it is locally Lipschitz in D.
R
Secondly, we show that on 0D, it holds p(z) < ——. As shown in Example 4.37, the

koD ()
function p is at risk of exploding if it touches 0D. However, near the boundary, this positive

function has an upper bound characterized by geometry of D: For x € 9D, we get an estimation

1
kop(x)

0<p(z) <

where p denotes the limit inferior of p at =

o(x) :=su inf
p( ) 6>I(;B(m,s)ﬁD

(As p is continuous, p coincides with its limit inferior p on dD). In fact, for every € > 0, we
denote

;= inf .
Pe = pasynn”

Then, for each y € B(x,¢) N D, p(y) > p. and d(y, D*®) < p(y). By Lemma 4.24, we have
d(y, DP<) < p. Thus, d(z, DPe) < p.. It follows

p(z) < d(z, D?) = supd(x, D) < sup p. = p(z).
e>0 e>0

This implies B(Il;,)(x), p(x)) C D and x € dB(Il;,(x), p(x)), i.e. this ball touches D at z. It
is to say that

1
kop ()

pz) <

Finally, p(z) = 7(x) on 90D is a direct consequence of the fact that d(x, D) = 0 and
{0+ a(z,0) <0} = [0,7(2)]. u

Remark 4.33. Y. Li and L. Nirenberg proved in [83] that 7 is Lipschitz if D is C*! but it is
untrue for a general convex domain (even C%“ with a < 1 is not enough).

Theorem 4.34. Let D C R? be a bounded convex domain. On the open subset {0 < p < R},
the locally Lipschitz potential p satisfies Vp # 0 a.e. and div (%) + % = 0 in the sense of

distributions.
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Proof. Note that the open subset {0 < p < R} is indeed D \ 21 where p is not constant. On
R
this subset, the vector field n := —Vp/|Vp| can be rewritten as

o) — as—Hp(Z)(x)
(@) = plz)

We are going to prove that II,,)(z) is locally Lipschitz in z and hence, so is 7.
We firstly claim that for every 4, ' satisfying 0 < &’ < ¢, for each y € D, there is a constant
K such that

ITs5(y) — s (y)| < Ks[d — 0. (4.57)

It follows immediately that for every x € D \@, 2’ € B(x,e) C D, keeping in mind (4.56),

|Hp(x) (:U) - Hp(ac’)(x,” < |Hp(x) (:U) - Hp(ac’)(x)‘ + |:I7 - xl‘
< Kyw)lp(@) = pla)| + |z — 2|
R

< - — 2.
= (Kp(m) + d(B(m,s),DC)> Chakd

Hence, 1 is locally Lipschitz.
To complete the proof of the first part, we now make the assertion (4.57) evident. Given

0 < &' < 4, for every y € D, by Lemma 4.26 (ii), Iy (y) is always in M{(I15(y)), see Figure 4.8

for illustration. We obtain

|6 =0

o) (4.58)

Ts5(y) — s (y)| < |w — x|

where = = IT5(y) and w is the extreme point of M (z) in the complement of D® (see Figure
4.8). By passing Lemma 4.27 (iii), there exists Kyps > 0 such that

Kyps = min {k:aD(s) D s € (9D5} = min {C082 o(s) : s€ 8D6}.

Since z € dD?, we have

1
cos ()

< (4.59)

1
K8D5 .

We then use the inequalities (4.58) and (4.59) to derive that

Ls(y) — Mo (y)] <

Figure 4.11: Divergence of 7 along C°.
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1 _
The next step is to prove that divy = — in D\ Q 1. The vector field 7 is indeed the unit
p

normal to the level sets C% = {x € D : p(z) = 6} which are arcs of radius §. Given z and .
on CY illustrated by Figure 4.11. Let us evaluate locally divergence of 7 along directions 7 and
n*. We recall that

o /0@t eh) —n(z)
(Dn)h - h = g%< - ,h>

for some non null direction h. Since |n| = 1, we have

n(z +ch) —n(z)

[‘77‘2(513 +e¢eh) — \77\2(:1:)} =0.

m | =

2(Dn)h-n = ( e+ eh) + () ) =
Thus, for h = 7, we get

(Dn)n-n = 0. (4.60)

As n locally Lipschitz, there is some constant M such that

M Ms [ 1 Mé 2 M
§E|x+5h—x€|:< _1>:5( 1+€—1)~5.

’n(w +¢eh) — n(:)

e \cosf.

Hence, for h = n*,

<"7(:v +ch) — n(@) h> _ <n(fc +eh) —nlze) h> N <n(ws) — (@) h>
9

€ €

% sin 6, % n tan 6,
20 20 €

_Me 1

25 6§

We obtain
1

(D) = 5. (4.61)

From the equations (4.60) and (4.61), we can derive that

divy = (Dn)" : Id = (Dn)" : m@n+nt@n) = (Dn)n-n+ (Dn)n* -0t =

1_1
5 p

As 7 is locally Lipschitz on the open set {0 < p < R}, the equality above holds not only a.e. on

this set but also in the distributional sense. |

Corollary 4.35. Let ;> 0 and wu, the unique solution to

(Qu) inf{/R2 ]Du|+%/D(1—u)2 : uGBVo(D)}.

Then, we have

- P <5 4.62
uu(x) = (I_TD i if p(z) > % (plateau,). (4.62)
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Proof. 1t is easy to check that the function @w defined by

u(x) = {(l_lll)l(ﬂc))+ if p(x)

1
< ho
h : 1
(I_TD)+ 1f)0<$)2@

satisfied the Euler-Lagrange equation of the problem (Q,):

v
—div <|VZ|) =p(l—u) in D,
Vu
— 1 oD.
Vi VD on
Since (Q,,) is strictly convex, by the uniqueness of solution, one has u, = . |

Corollary 4.36. Let 4 > A > hp. Then, for s=1— %, the upper level set
{uy>sy={p>1""} =
solves the problem m(\, D).

Proof. From the explicit expression of the unique solution w, in (4.62), we can easily check
that {u, > s} = {p > A7'}, then by Lemma 4.30 these upper level sets agree with Q). The
optimality of {u, > s} for the problem m(\, D) follows the results of F. Alter, V. Caselles, and
A. Chambolle in [4, Proposition 4] |

We remark that according to Theorem 4.10 the optimality of 2 for problem m(\, D) can
be achieved by constructing an explicit calibrating field for 2, which will be done in the next
subsection.

In Figure 4.12, we present the explicit solution w,, of problem (Q,,) given by Corollary 4.35
in a quarter of the square (0,1)2. The white curve determines the maximum-valued plateau of
the solution u,. As we observe, the maximum-valued plateau corresponds to the Cheeger set of
the domain, it means {z € D : w,(x) = maxp u,} = Q.

Figure 4.12: The unique solution u, of problem (Q,,).

Example 4.37 (Explicit p in case of a square domain).

We take the unit square centered at the origin D = (—1/2,1/2)2. We shall find p is a
C'/2-function.

The inradius of D is R = 1/2. So, we denote by 22 the central set of D. We recall that

CO={zxeD : dz,D° =45},
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and for each z € D\ g, by Lemma 4.24, there exists a unique C? such that = € C°. Hence, p is
determined by its level sets, i.e. C?. It is easy to check that p(z) = 1/2 for all € Q. Let us
formulate p in D\ Qo. We set = (1, 22), and § = 1/2 — ¢ for t € (0,1/2). Then, z € C? if
and only if it holds

{(xl — )+ (22— 1) = (5 - 1)°

IE%JFI'%Z%.

Thanks to these relations, we can get t as a function in z

t=$1+x2—;—\/§\/(;—$1> (;—962)-

p(:c):;—tzl—(aﬁl—i—xg)—i—\@\/(;—xl) (;—1'2).

For some = = (z1,%2), y = (1/2,x2), we have |x — y| =|1/2 — x1|, then

o(@) = P < |5 — ol + ﬁ\/(i o) (5 -2)

<z —yl+/lz -yl

Thus, we have

We notice that p is locally Lipschitzian but not Lipschitzian in D. Moreover, p is a C 1/2_function.
We give in the followings some calculations for the normalized gradient of p:

1 V24(x 1_4
Vp<x>=( : 2(1)>, alw) = Y2222

SN

)
—1 — 1
1 5—:1;1

2 a(x)

1 )Z p(z) '
@) a3 -m) (- =)

In Figure 4.13, we present the cut-locus potential p and its normalized gradient on a square
domain D = (—1/2,1/2)2. The simulation is done on a first quarter of D. We plot in the left
subfigure the contours of p while in the right one with a magnifying glass the normalized gradient
of p, i.e. Vp/|Vpl|, in streamlines (in black) which start from 022 and orthogonally across the
geodesic levels of p (in varied colors).

0.5 0.5 0.5
0.4
0.3
0.25 0.25)
0.2
0.1
O0 0.25 0.5 0

Figure 4.13: Illustration of p and its noramlized gradient Vp/|Vp| in case D = (—1/2,1/2)2.

1
Vola)| =1+ 75 (alo) +
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4.3.4 An explicit construction for calibrating fields on D

As we have already known, for each bounded convex open subset D of R?, for A = hp, problem
m(A, D) has exactly two solution {(), Cp} (see Proposition 4.4). The nonempty solution, i.e.
Cp, is the Cheeger set of D, which actually is the union of balls contained in D of radius hBl.
Naturally, we expect that the unique solution to problem m(\, D) with A > hp has the similar
form which can be built of (4.36), namely the set Q. Evidently, Cp is Q. According to
Theorem 4.10, the optimality of 2 is equivalent to finding an optimal solution g to the problem
(4.30) satisfying

|7l <1 ae. inD, 0<divg< A ae. inD, (4.63)
ivg= A\

q-vo, = H'-a.e. on 9Qy, divg a.e. in D\ Q,. (4.64)
In the point of view of calibrability, § is a calibrating field for €1y so that Q) is a A)\ﬁi-calibrable
subset of D. Such a vector field can be explicitly constructed on D by starting from a calibrating
field of the Cheeger set of D. This semi-explicit construction is provided with the existence of a
calibrating field for the Cheeger set of D, that means g = qp,,, in Qp,,, where g, € L>°(Qy,; R?)

satisfies
lgn,| <1, divgy, =hp ae. inQy,, Ghp Ve, =1 H'-a.e. on o,

It remains the explicit part of the semi-explicit construction which will be devised in two different
modules: a construction of g on Q) \ Q, by using cut-locus potential p and a construction of g
by a unit vector field with constant divergence on D \ €.

Q

Figure 4.14: The inclusion €, C 2\ C D.

Figure 4.14 illustrates the strict inclusion €25, C @\ C D for A > hp and D being a square.
We start the construction of g with the calibrating field for the Cheeger set €23, and build it
outside continuously: in Q) \ Q,, then in D\ Q. This procedure will produce a calibrating
field for €, on D.

A construction of § on Q) \ 2}, by using cut-locus potential p

The construction for the calibrating field § only has meaning when D is not a self-Cheeger set.
We assume D is not a Cheeger set so that 2, # Q. On the nonempty components of 23\ Qp,,,,
we define § = ¢, with

Vp
7

where p is the cut-locus potential discussed in the previous paragraph. Immediately, we have

|qp| =1 inQy\ Qpp,s qp v, =1 on 0. (4.65)
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The normalized field g, inherits from the cut-locus potential p the locally Lipschitzian property.
By Lemma 4.30 and Theorem 4.34, it holds hp < p~! < X in €, \ Qp,,, hence,

1 _
divg, = i divg, € [hp,A] a.e. in Q) \ Q. (4.66)

Additionally, this is a continuous construction of g in Q) \ €23, since it maintains the orthogonal
trace of the field, i.e.

p VO, =dnp Vo, =1 on O, - (4.67)

It is clear that the properties (4.65), (4.66), (4.67) are compatible with the conditions (4.63)-
(4.64).

A construction of § by a unit vector field with constant divergence on D \ Q)

We shall complete the construction of § on the entire D with designing a unit vector field ¢y in
D\ Q, such that

qr- Vo, =(qp-vo, =1 ondy,
and ¢ fits in with the conditions (4.63)-(4.64).

Lemma 4.38. There exists a vector field q\ in D \ Qy satisfying
lga| <1 in D\ Q,, divgy = X in D\ Q,, Q- vo, =1 ondQy. (4.68)

Proof. Only here, we set 6 = 1/ for the simplification of notations. We reuse the notations
introduced at the beginning of Section 4.3.3. Since D? is a convex set, the singular part of its
boundary 9,D° has many at most countable points, denoted by {z;j:jel}:= dsD%. For each
point = € 9sD°, the normal cone of D? at the point, denoted by Nps(z), is generated by the
two limit vectors v ;(z) and v}, (). ¢% () and ¢’ (z) are the corresponding angles of the two
vectors in S'. We recall the definition of the sets N°(z), C°(z), and M (x):

No(z):=z+{p € Nps(z) : |p| <4}, forz € DI,
CO(z) :==x 4 {p € Nps(x) : |p| =0}, forz € dD°,
M} () :zx—l—{pENDa(:c) : <p,1/g(5(x)> §5—5/}, forz e D3, 0< ' <4 <R.

Then, Q) can be characterized by using N%(z) and C%(z),

o= | M@, o= | ). (4.69)

x€Dd €D’

It is remarkable that {Nps(z) : x € D°} is a family of disjoint sets. In fact, if it isn’t true,
there exists a point that have at least two distinguished projections on D?, a contradiction to
the fact that DS is a closed convex set. So, {N%(x) : z € D°} will give a partition to Q). We
also observe that C°(x) describing the boundary of U, s N°(x) is a point or an arc of a circle
centered at x of radius §. By definition of €y, C°(z) is clearly contained in Qy. When z is a
regular point of dD?, i.e. z € 0, D?, the normal cone Nps(z) will reduce to only one direction
and C°(z) will be a singleton, let’s say C°(z) = {y,}. In that case, y, must lie on 9D N 9.
Otherwise, if = € 9,D%, N%(z) is indeed the intersection between the normal cone z + Nps(x)
and the closed ball B(x, ) and, C°(z) is the arc of B(x,d) in N°(x). Since p is increasing map,
N®(z) is characterized by

N*(z) = 2 + (come{vp, (), vhs(2)} N B(0,9) ).
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And, C%(x) is determined by the interval (¢% (), ¢’ (z)). In addition, these angle intervals must
be less than 7. Because int D? # (§, for very x € 9D, the tangent cone at x is non trivial. As
consequence, Nps () being the polar of tangent cone always has its angle less than 7. Inversely,
for every y € 9Q), y can be decomposed as y = II5(y) + (y — ls(y)) with |y — IIs(y)| = J. Or,
y € C°(Ms(y)). Hence, (4.69) is verified. Moreover, {C%(x) : x € dD°} is a partition of 9.
For abbreviation, for each z; € dsD?, we set

N? = N°(x;), C? = C%(y), (4.70)

)+ vpe(as) A - )

(4.71)

We remark that 0Q\N D C Ujey C]‘~s , keeping in mind C]‘~s are arcs of radius § given by a triple
of center, angle, and oriented unit vector, respectively (z;, ¢;,v;) € 9sD° x (0,7/2) x S'. For
instance, see Figures 4.15.

Now, let us introduce the regions where we want to construct the vector field gy,

forz e D%, M(z)=z+ {p € Nps(z) - <p, VB;(J:)> <4, <p, V55($)> < 5} , (4.72)
hi= J Mi(), Ay =3\ Q. (4.73)
zeD?

Figure 4.15: A configuration for the extension of a calibrating field on an ellipse domain.

Figure 4.15 presents the settings of the construction when D is an ellipse domain. The thick
black curve is the boundary of D. The dashed curve is the boundary of the Cheeger set €2}, of
D. The cyan region is the set D? which generates 5. €, is illustrated in the figure with its
boundary in red color. The sets Mg (xj) are in green background. The region in light yellow
background is a component of Ajy. C’;S are red arcs of radius ¢, centered at x;, determined by
angle ¢; and the oriented unit vector v;. {CJ‘-S } are the boundaries of 2 inside D, i.e. 92\ N D.

D should be contained in Xy. In fact, for every y € D, let x = Il5(y) and p = y — .
Since |z — (z + 5V§; (x))| =6 =d(xz,D) and = + 51/3; (z) € 9D, we have that = + 51;55 (x) are
projections of & on D¢. As D is convex, these projections implies that for all z € D,

<x —(z+0vpys(z)), 2 — (. + 5V55(33))> >0,

(2= (@ +0vfs(@)). 2 = (@ + 0 (2)) 2 0.
Therefore, for z = y, we obtain (p, Vﬁ; (z)) < 6. Hence, by definition (4.72),y = z+p € MJ(z). In
particular, when z € 9,D?, the left and right limits are the same, i.e. vhs(z) = 1/2)'5 (x) = vps(z),

while N%(z) coincides with M{(x) and they are folded up to be a segment. At that moment, p
and vps () are co-linear, then, (p,vps(x)) = |p| < 6. This is to say that y € N°(z) = MJ(x).
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Of course, when y € D? or y = Ils (y), the associated cones degenerate and shrink to a point.
We get y = TI5(y) = N°(y) = M (y).

We notice that since the angle of Nps(z) is always less than 7, Mg (z) is bounded for every
x € D°. ¥ is then bounded. Tt is clear that {Mg(x) : x € D%} is a partition of ¥, and hence,
Ay admits a decomposition,

A= M)\ U= |J M@\ (4.74)
IEDé IeasD(s
For short, we set
Ag\ = Mg(:cj) \ﬁ)\ for some z; € (95D5, and Ay = U Af\- (4.75)
jeJ

Ay has many at most countable disjoint components. Figures 4.15 and 4.4 are examples
performing this configuration. In Figure 4.15, Xy strictly contains D whereas they coincide in
case of Figure 4.4.

We now explicitly construct the vector field gy in Ay satisfying conditions (4.68). In each
component A%, we set x = (s,t) and

A3 (s,1) = gl (s,1) i= (s — aj(s, )i, t — aj(s, t)vt), (4.76)

where v; = (v§,v}) is the oriented unit vector defined C]‘-s and a;(s,t) > 0 such that div q{ =1

In fact, ¢f is the unit normal of the ball of radius 1 centered at point a;v;,
[s —aj(s, t)yj]z + [t —a;(s, t)uﬂQ =1. (4.77)
We observe also that
divgl(s,t) =1 < Osa;(s, t)v; + ataj(s,t)V§ =1. (4.78)

From equation (4.77), we can find out explicitly a; in function of (s, t), and in such a way, (4.78)
is fulfilled,

aj(s,t) = sv§ + vk — \/1 — (svf — twg)2. (4.79)

Therefore, gx(s,t) = qi(s,t) = q{()\s,)\t) in Ag\ is a construction that we expected. This
completes the proof. |

Example 4.39 (Construction of a calibration).

(a) In case D = (—3,3)?, ¥, coincides with D, see Figure 4.4. The boundary of D° has 4

singular points and 92\ N D = U?:lC]‘?. The oriented vectors of CJ‘-; are (+£1/v/2,4+1/v2).
Take v1 = (1/v/2,1/v/2) for example, it is easy to give an explicit construction of the
calibrating field gy in A}. Thanks to (4.79) and (4.76), we have, for (s,t) € A},

ai(s,t) =

s+t 1 (s —t)? 1(8’t)_<S_a1(s,t),t_a1(s,t)>'

V2 Ve V2 T TR

Then, the expected construction of gy in A} is given by gx(s,t) = ¢i(s,t) = ¢i (As, At). By
the same way, we obtain the construction of ¢y in other components of Ay.
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(b) In case D given by an ellipse of standard form, see Figure 4.15, D is strictly contained in
Y. Ay now has two components and the boundary of €2y inside D is the union of arcs Cf
and C§ whose oriented vectors are (£1,0). Take v = (1,0) for example to construct ¢y in
Al we get, for (s,t) € A,

ai(s,t) =s—V1—1t2, ai(s,t) = (\/1—t2,t>.

Therefore, we obtain gy(s,t) by scaling ¢i (s, t), i.e. qr(s,t) = gi(s,t) = qi (As, At).

In summary, the vector field g can be built with g5, on €2, with g, on Q) \ Q,,, by means
of cut-locus potential p, then glued with gy on D \ 2 so that we can obtain a calibrating field g
which calibrate 2y in the sense of #-calibrability. We remark also that the construction of the
calibrating field § can be done in a region which is more large than D, i.e. in Xy.

4.4 Comparison results
We now go back to the initial question about the comparison between free boundary problems
B(A\) and By(N) that we have mentioned at the beginning of this chapter.

As observed from the optimality conditions given in Sections 4.2.1, if u = 0 solves S()), then
it solves S(\') for all 0 < X < A, and similarly, if u = 1 solves 3(\), then it solves 3(\”) for all
A’ > \. Accordingly, we have introduced the critical values Ao, \1 € [0, +o0] defined by

Ao =sup{A >0 : u=0solves S(\)}, (4.80)
A1 =inf{A>0 : u=1solves S(\)}. (4.81)
Following this definition, if Ag < A; and A € (Ag, A1) then a solution to problem S(A) of the
kind 1g is such that 0 < |©2] < |D|. The key argument in order to show that S(\) < Bo(N)
for all A in (Mg, A1) (see Theorem 4.40) will be showing that such a characteristic function 1g

cannot be optimal for S(\). On the other hand, as the relaxed funcionals E) and Eg coincide
on characteristic functions (see (4.6)), it is clear that S(\) = Bo(\) for all X & (Mg, \1).

Theorem 4.40. Assume that \og < \1. Then it holds S(X) < Bo(A) for every X € (Ao, \1).

Proof. Let A € (\g, A\1). We shall prove the theorem by contradiction. Suppose that S(A) = Bo(A).
Then, @ = 1g is a solution for 5(A\) where 2 C D is such that 0 < || < |D| (since A € (Ao, A1))
and 1q solves fp(A). For such €, let us define

:'f/ (\/1+v 2—1>d +/ dHN L u e WHY(D\Q),u= o0NDy.
Q. m{D\Q |Vul x 8D\§\ul u (D\Q),u=c¢con

We firstly claim that

lim £ = 0. (4.82)

e—0t €

By definition of a., for every e > 0, there is 7. € W1(D \ Q) such that u. = & on 92N D, and

/ <\/1+|Vﬂg|2—1> da:+/ ueldHN T < ap + €2
D\Q 0D\

We then set

1 in ,
Us =
. inD\Q.
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Clearly, u. — @ as € — 0. On the other hand, we observe that

Fx(ue) — Ex(@) = /D\Q (\/1 + VP - 1) do + /M\Q luc|dHN ! — eP(0Q N D)

<. +e2—eP(OQ2N D).

This leads to the contradiction

d

de

Ej(ue) < lim (ae + 6) — P(02N D) < 0.

e=0 e—0t S

To complete the proof, let us now prove the claim (4.82). For each n > 0, there exists
veWHL(D\ Q) such that v =1 on QN D and

/ _|wldHN T <.
aD\Q

Let u. = ev. Then, u. = ¢ on 92 N D, and hence,

< 1+ |V 2—1>d +/ dHN 1
“e /D\Q( Ve v aD\Q e
< 1+e2|V 2—1>d + en.
/D\Q (Vr+eve v+ e

We derive that for all > 0, lim sup Qe < 7. So, it holds true (4.82). [ |
e—0t €

In the one dimensional case, it is possible to compute explicitly the values of Ag, A1. It turns
out that these values coincide if and only if the length of the interval D is less than 2. Without
loss of generality, lets us consider 5(\) and Sy(\) associated with the domain Dy, = (—h,h)
(whose Cheeger constant is hp = 1):

B(N) :inf{/_hh V1du2de — N{u> 1} : u€ WH(=h, h), u(£h) :o},
ﬁo(A):2h+inf{/}; /| de — AN{u=1}| : uwe Whi(=h,h), u(j:h)zo}.

Since Dy, is a Cheeger set, the solution to 5y(A) is either u = 0 or u = 1 (by invoking the identity
(4.9) and Propositions 4.4, 4.5). Thus:
Bo(A) = min{2h,2(1 + h(1 — X))} .

For problem [3()\), it is easy to check that the optimal solution is either u = 0 or of the radial
form uqy(x) = min{1, (h — |z|)/a} for a suitable value of parameter a € [0, h]. Plugging in the
expression of Fy given above, we are then reduced to minimize the convex function

(@) :=2((1=N(h—a)+V1+a?), acoh]

and to compare its minimum value with F)(0) = 2h. Note that the derivative 7} (a) =

2 (\/li7 —(1- )\)) vanishes at a unique point ay which satisfies /14 a3 =1 — X. We have to
consider three cases depending on whether or not a;y € [0,h] and h < 1.
- If A > 1, then the minimum of 7, is reached at a = 0 and therefore B(\) = [Bo(A) =

min{2h, 2(14+h(1—X))}. The solution wy is then uy = 0if Ah < 1 and uy = 1 if Ah > 1, whereas
the two solutions coexist for Ah = 1.
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-If0 < A< 1andh <1, the for every a € [0, h], we have rp(a) > 2v/1+ a? > 2h. Thus,
noticing that Ah < 1, we are led to S(A\) = Bo(A) = 2h and the unique solution is uy = 0.

Accordingly, combining with the first case above, we infer that A\g = A1 = % if h <1.

-If0< A< 1landh > 1, the situation is a litle more complicated as we may find a solution

which differs from 0 and 1. The value a belongs to [0, h] if and only if A, ;=1 — ﬁ <A<

If A < A, then the minimum value of rj, () is reached for o = h. Since r,(h) = 2v/1+ h? > 2h,
we obtain a unique solution uy = 0 and B(A\) = [o(A) = 2h. If XA € [\, 1), then we have to
check the sign of 7, () — 2h. After a tedious but straightforward computation, we obtain that
this quantity is positive unless A* := H% < A < 1 (this latter situation is possible since, for
h > 1, it holds A. < A* < 1). All in all, we deduce that still uy = 0 is the unique solution and
B(A) = Bo(A) =2h if XA € [0,\*). In contrast, for A € (A*, 1), the solution becomes uy = u,, and
we obtain a strict inequality S(\) < Bo(A).

Summarizing we have shown that the critical values Ag, A1 differ if and only if A > 1. More
precisely these values are given in terms of h as follows:

1 ifh<1 L ifh<i
o(h) = {’L = . M(h) = {’L = (4.83)

= ifh>1 1 ifh>1

In higher dimension N > 2 | explicit computations are not available (except in the radial
case). However we are able to derive some estimates where the role of the Cheeger constant of
D is enlightened.

Proposition 4.41. It holds

P(D
0<X <hp SL < A
D
Furthermore, if D is not a Cheeger set, one has the strict inequalities Ao < hp < %, thus

B(A) < Bo(N) for every X € [hp, %).

Proof. By definition of hp, we have hp < Ap := P(D)/|D|. If uw = 0 is a solution to S(\) then
it holds

BA) = Bo(A) = [DI.

Since Byo(A) = |D| + m(A, D) (see (4.9)), the second equality above implies that m(\, D) = 0.
Thus, by invoking Proposition 4.4, we deduce that A\g < hp < Ap. In addition, we observe that

Ex(1) = Ex(0) = P(D) = A[D[ >0

for all A < Ap. Therefore, whenever u = 1 is a solution to the problem B(\), it must hold
A > Ap (since E)(1) < E5(0)). Hence, by definition of A;, we get Ap < A1.

Let us now prove that Ay > 0. To this end, we shall exploit calibration fields of the dual
problem associated to S(A) in order to show that there exists a small strictly positive value A so
that u = 0 minimizes 5(\). Then, by definition of Ag, we infer that Ag > 0. Notice that if u =0
minimizes S(\) then it minimizes Gy(A), too.

Assume that A is small enough such that 0 < A < A9, namely 0 < A < 1. Let ¢: D — RY
be a vector field satisfying
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We notice that such a vector field exists, for instance ¢ = hi where ¢ is the calibrating field
for the Cheeger set of D. Let Q := D x I with I := [0,1]. Now we construct a vector field
o= (0%(x,t),0'(x,t)) in Q, of the form below

o%(x,t) = —a(t)q(z), o(x,t) = NA(t), for (z,t) € Q, (4.84)

where the real valued functions a : I — R and A : I — R satisfy

a0)=0,  A(t) = /0 " a(s)ds — % (4.85)

In order to obtain a calibration field o of the form (4.84)-(4.85) which calibrates v = 0 for
problem 5(\), the field o must satisfy the optimality conditions (4.13)-(4.14), namely

o*(x,0) =0, o'(z,0)=~-1, o'(z,1)>A—1 onD, (4.86)

o'+ /1 —|o%2 >0, dive=0 inQ. (4.87)

It is easy to see that for any function a(t) such that

la(t)| < h)j\j Vit el, /01 a(s)ds > 1, \/1 —a(t)?|q(x)|]> + NA(t) > 0 V(z,t) € Q,

the vector field o defined by (4.84)-(4.85) fulfills the conditions (4.86)-(4.87). Fortunately, such
a function a(t) is available. For example, we can choose a(t) = 2t whereas A should be taken
small enough but strictly positive (i.e. 0 < A < 1) and such that

hp h2
A< ) 4.
mm{ o 1 } (1.8)
We have finished the proof of Ay > 0. In summary, we have 0 < Ay < hp < P|g|) ) < A
When D is not a Cheeger set, it is clear that hp < |(D|) In the case A = hp, let Q be the

Cheeger set of D. Then € must be strictly contained in D so that 0 < || < |D|. And in this
case, 1q is a solution to Sy(A\). We repeat the argument that the characteristic function 1o with
0 < || < |D| cannot solve the problem £(A) (which is evidenced in the proof of Theorem 4.40),
so as to show B(hp) < Bo(hp). In other words, A9 < hp, and hence, we get S(\) < [p(A) for
every A € [hp, |(D‘)) [ |
Remark 4.42. In the case where D is a f-calibrable set but not a Cheeger set, the calibration
constant of D is strictly larger than 1, namely 6p > 1 (see (4.33) for the definition of #p). Then
we have [hp,0pAp) C (Ao, A1) (where Ap := P(D)/|D]). In fact, by Proposition 4.41, it holds
Ao < hp. On the other hand, for all A € (hp,0pAp), any solution §2 of the geometric problem
m(A, D) (see (4.10)) is strictly contained in D, thus 0 < || < |D|. In view of (4.8)-(4.9), the
characteristic function 1q minimizes problem Sy(\). But, 1g (with 0 < || < |D]) cannot be a
solution for problem 3(\) (see the proof of Theorem 4.40). This is to say that 5(\) < Bo(A) for
all A € (hD,QDAD).

Proposition 4.43. We have:

(i) Ao > \§ where

oo [T (o) ifhp <3 I(y):/y ds (489)
" W+hp-3 ifhp>3 0 Vs(2—s)
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(i) 6pAp < A1 < OpAp + 1 where Op is the calibration constant of D and A\p := P(D)/|D|.
Particularly, if D is a convex set of class C1', then

max{Ap, (N — 1)k (0D)} < A1 <1+ max{Ap, (N — 1)k (0D)}. (4.90)
When 0D exhibits a corner, A1 = 400 (i.e. w =1 can’t neither be a solution to B(X)).

Proof. Let Q := D x [0, 1].
i) We are seeking a vector field of the type

o(w,t) = (= a(tg(z), A(t)divg(x) —1) for (2,1) € Q
with
A'(t)=a(t), a(0)=A0)=0, and |¢/ <1, divg=hp inD, (4.91)

so that o is a calibration of u = 0 for the problem 5()\) (Note that ¢ exists as the calibrating
field of Cheeger set of D). This happens if and only if o satisfies the optimality conditions
(4.13)-(4.14), namely

o*(x,0) =0, o'(z,0)=-1, o'(z,1)>X—1 onD,

o'+ 4/1—|o%2 >0, dive=0 inQ.

We deduce from these conditions that the function a(t) and its primitive function A(t) should
be chosen, taking into account (4.91), such that

AWhp > A, and /1 —|a(®)]2 + A(hp > 1, Ve [0,1].
‘We then set
M(h) :=sup {A(1) : A(0) =0, \/1—[A(®)2+ A(t)h>1,vt € [0,1]}.

It follows immediately that A < M(hp)hp. If we set A§ := M(hp)hp, then by definition,
Ao > AS. Let ¢(t) :== hpA(t) in [0, 1], we have

hDMmm:wm{¢u);wmzowhfﬁﬂp+¢zl} (4.92)
D

Observe that the inequality constraint on v in (4.92) can be rewritten equivalently as

¥'?
I

1- > ((1=9)+)%

or in other words,

|W< v(E2-vy) i<l
Y~ |1 if ¢ > 1.

For simplicity, let us introduce

. s(2—s) ifs<l1 vl
7(S)‘—{l ifs>1 I(y)_/o 7(S)ds'
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We deduce that % < hp and (I o)/ (t) < hp. Remarkably, the integral I(y) is strictly

)
increasing, then the maximum (4.92) attains when I o ¢)(t) = hpt for all ¢t € [0,1]. At that
moment, since I(y) is invertible, ¥(t) is completely determined by

Y(t) = I Y(hpt).
Moreover, the integral I(z) can be computed explicitly
I(x) = 2 arcsin (%) ifzx <1,
T+ar—1 if > 1.
Hence, we obtain
(1) = 2sin? (") if hp <3,
1+hD—g if hp > g,

which yields (4.89).

ii) For the inequality OpAp < A1, we refer to Remark 4.42.

We now prove that A > 1+6pAp implies A > ;. And hence, we get A\ < 1+680pAp. To that
aim, let A > 1+ 60pAp. Then, D is a #-calibrable set and itself minimizes problem m(A — 1, D).
Thus, there exists a calibrating field ¢ satisfying

lgf <1, 0<divg<A—1inD, and ¢-n=1ondD.

We now construct a vector field ¢ from ¢ under the form
o(z,t) = (—q(z),(t — 1) divg(z) + A —1).
It is easy to verify that o is admissible for the dual problem of 5()), that is
o'(z,1)=X—1in D, dive =0inQ,
and for all (z,t) € Q,
1 —|o%(z,t)|2 4+ o' (z,t) > (t — 1) divg(x) + A\ — 1 > —divg(z) + A — 1> 0.
Therefore, it holds
B0 = = [ o'(2,0) = (L= N)|D|+ P(D) = fo().
We deduce that S(A) = Bo(N), that means u = 1 solves S(\). Hence, A > Ay.
We have finished the proof of the inequalities
OpAp < A\ < OpAp + 1. (4.93)

Now, for the specific case where D is convex and of class C!, we recall (Remark 4.17) that the
calibration constant of D is given by

0p = max {1, (N = 1)kec(@D)AG' }.

Equivalently, we have §pAp = max{Ap, (N — 1)k (0D)} which can be substituted in (4.93) to
obtain (4.90). We observe that if (N —1)kso(0D) < Ap, then D is a Cheeger set. Thus, hp = Ap
and fp = 1. The estimation (4.93) reduces to hp < Ay < hp + 1. In contrast, when A\p <
(N —1)keo(0D), D is a fp-calibrable set and (N — 1)koo(0D) < A1 < (N — 1)ko(0D)+1. N



4.4 Comparison results 127

Example 4.44. Let D = {z € R? : ||z|| < R} be a disk of radius R in R2. Recall that disks are
self-Cheeger sets and that the Cheeger constant of a disk is completely determined by its radius,
i.e. h D = 2 / R.

Here we shall reuse the computation of Example 3.10 and observe the behaviors of S()\),
Bo(A) with respect to A and R. Recall that according to Example 3.10, the relaxed problem of
B()\) can be interpreted as inf{E(r), r € [0,1]} where

SRy 2r| 1-K(p(r),r)
E(r)=7R? | 1 —7(r)2 —r/r2 —(r)% + 7(r)? log ii\/j«—;gr;z + ( = > + (1= M)r?

Then, the solution @ of problem () has its plateau {w = 1} determined by the disk centered at
0 of radius TR, where 7 is the minimizer of E(r). The radical function @ is evaluated explicitly
with u(z) = @(%) = K(f(7), ER‘) (given by (3.28)). The graph of @ except the plateau {w = 1} is
a minimal surface with a prescribed boundary fixed on the boundary of D. The minimal surface
has a free boundary corresponding to the boundary of the plateau {u = 1} (See Figure 4.16).

&= =

Figure 4.16: Continuous and discontinuous minimizers of 5(A) in case D is a disk.

As predicted by Theorem 4.40, Bo(A) coincides with S(A) outside the interval (g, A1) where
their common minimizers are trivial characteristic functions either 7 =0 (A < M) orw =1
(A > A\1). When )\g < A, the strict inequality S(\) < Bo(A) happens. At the moment, the
minimizers @ for problem ((\) are not a characteristic functions any more.
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Figure 4.17: Case R < 1. Behaviors of 5()), and features of their solutions.
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Figure 4.18: Case R > 1. Behaviors of 3(\) and features of its solutions.

By numerical experiments, we observe that in case R < 1, 5p(A) is identical to B(\) for all
A > 0, see Figure 4.17. In case R > 1, the strict inequality S(\) < [p(\) appears for certain
interval (Mg, A1), see Figure 4.18. As shown in these figures, the critical values A9, A\; detaches
the Cheeger constant hp in the opposite sides (i.e. A\g < hp < A1) as soon as R > 1. Another
attractive phenomena is made evident that the discontinuity of minimizers of problem 5(\)
presents when A passes 1 (as shown in Figure 4.18 by the jump of u denoted by [u]).
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Since D is a disk, 0pAp = hp = 2/R. Proposition 4.43 provides bounds on A\g and A;:

where A is determined as

In Figure 4.19 we visualize these estimations. The critical values A\p, A1 are numerically computed.
As we can see, a conjecture to determine Ay can be derived from numerical results, that

2 1
Alzmax{R,l—i-R}.

Figure 4.19: Critical values of A in the case where D is a disk in R?.
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Chapter 5

A new semi-implicit scheme based
on Arrow-Hurwicz method for
saddle point problems

This chapter provides numerical algorithms for searching saddle points
for a large class of convex-concave Lagrangians which covers many nice
examples treated in this thesis. A generalized explicit iterative scheme
based on Arrow-Hurwicz method is proved to be convergent to a saddle
point of the problem. We also propose in this chapter, a convergent semi-
implicit scheme in order to accelerate the convergence of the iterative
process. Numerical experiments are provided for a nontrivial numerical
problem modeling an optimal shape problem of thin torsion rods [2]. The
semi-implicit scheme is figured out in practice robustly efficient in
comparison with the explicit one. This chapter is the reproduction of

our submitted paper [95].

5.1 Introduction

The initial motivation of this chapter arises from the numerical approximation of problems of
the calculus of variations of the kind

(P) inf {/Q[go(Vu) +g(u)]dz : ue WP(Q),u=ugon 89} (5.1)

where ¢ : RV — R is a convex, non differentiable function, and g : R — (—o0, +00] is a probably
non convex function (with possible discontinuities).

In the case where g is convex and smooth, many numerical methods based on duality or
minimax algorithms exist in the literature. However, in specific cases, the non differentiability of
 creates difficulties for the convergence in particular at the interfaces where the gradient of u is
close to the singular set of .

We shall focus on a model example where the interface represents boundary of an optimal
shape for thin torsion rods studied in [2]. For any value of parameter s (s > 0 represents the
mass of material to be placed in subset Q) we have to solve

m(s) = inf{/g(p(Vu) Tu € H&(Q),/ﬂu = s}.
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Here g = 0 and the convex function

Lz +1) ifjz| >1
ple) = ¢ 2Tl
|z if 2] <1

is non differentiable at 0. Our goal is to determine the subsets {|Vu| > 1} (full region),
{0 < |Vu| <1} (homogenized region) and {Vu = 0} (empty region).

By the classical duality argument (see for instance [57]), we may reformulate (P) as an
inf-sup problem

(M) inf, sup Llup) Liuw.p) = [ [Va-p-+g(w) - o ()lds

where ¢* is the Fenchel conjugate of ¢, C' = {u € W'P(Q),u = ug on 90}, and K = L¥ (Q; R).
When g is convex, the Lagrangian L(u,p) is convex, concave, and solving (P) amounts to
searching saddle points of (M), that is pairs (4,p) in C' x K such that

L(a,p) < L(a,p) < L(u,p), Yu € C, ¥p € K. (5.2)

When ¢ is non convex, the duality theory studied in Chapter 2 or in [19, 20, 22] provides a
convexified version of (P) in dimension (N +1) from which an equivalent saddle point formulation
(like (5.2)) can be obtained (but in higher dimension, except if ¢ is one-homogeneous (see Chapter

3)).

The core of this chapter is to develop efficient methods for solving problems of the type (5.2).
Usually, we immediately think of the gradient descent-ascent so as to seek a saddle point. For a
general Lagrangian L(u,p), the simplest approach introduced by Arrow and Hurwicz has the
form

Pnt+1 = Uk (pn + Tngj;(unapn))

Upt1 = Hc(un — Tngi(un,pn)).

where Ilx, Il are orthogonal projections on the closed convex sets K and C, respectively. How-
ever, this first-order iterative optimization algorithm converges under very stringent conditions
(like strict convexity-concavity) and special choosing of stepsizes 7, — 0, >02 7, = o0 [78]. To
overcome these difficulties, L. D. Popov [97] gave a modification of the Arrow-Hurwicz method
by introducing the so-called "leading" point, denoted by (@y,p,,), which is an auxiliary point in
order to jump to the next approximation with the help of the gradient direction,

OL

Pyl = Ik (pn + T%(ﬂn7ﬁn)>

unt+1 = e (Un - T%(ﬂmﬁnn

_ oL, _
Prny1 = HK (pn+1 + T?p(“"rupn))

Upy1 = o (Un+1 — T%(Wmﬁn))'

In his paper, he proved that there exists a positive scalar 79 such that the modified algorithm
converges for all constant stepsize 7 taken in the interval 0 < 7 < 79. This improvement
enlarges the class of applicable problems whose convex-concave Lagrangians have derivatives
satisfying Lipschitz conditions. It is clear that leading points makes the iterative processes more
stable. But, because of extra projections, the more complicated the projections are, the heavier
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computation is. So, in some cases, replacing the extra projections as well as leading points is
necessary. Chambolle-Pock et al. [96, 35] started dealing with a typical Lagrangian which is a
linear form

L(u,p) = <Au,p> + <f’u> - <gup>7

where A is a bounded linear operator and (-,-) denotes the associated scalar product on
Hilbert spaces of variables u, p. With these settings, they used simply computed leading points:
Pni1 = Pn+1 and Up 1 = 2uUp 1 — Up. The replaced leading points are just a linear extrapolation
based on the current and previous iterates. And, it is proved that the iterative process

Pn+1 = HK(pn + a(Aﬂn - g))
Uuny1 = lo(up — B(A ppy1 + f)) (5.3)

Upy1 = 2Upy1 — Up

converges to a saddle point of L(u,p) if we choose a, 3 > 0 such that af|A||*> < 1. Here, A*
denotes the adjoint of operator A. We remark that the algorithm (5.3) without the projectors
IIx and Ilg, can be interpreted as the Arrow-Hurwicz algorithm for the augmented Lagrangian

Lg(u,p) = L(u,p) — B(A"p, A"p)
and the augmented parameter § is optimal for the convergence.

After that, many efforts has been made to accelerate the convergence of algorithms of
Arrow-Hurwicz type, as for instance in [35], where moving stepsizes, modified extrapolation of
leading points and implicit schemes are used. In a more recent paper [36], metric changes allow
to enlarge the stepsize. Such results are obtained for a general Lagrangian of the kind

L(u,p) = (Au, p) + F(u) — G(p). (5.4)

In addition, many results on the convergence rates are achieved in [35, 36]. The main ideas
therein are to combine proximal techniques with implicit schemes. But, to be efficient, such
methods need that the proximal map is easy to compute in practice and for that it is necessary
to penalize the convex constraint C' and K by smooth functions defined on the whole space.
These penalization methods are not well adapted to our case where convex sets C' and K are
non smooth and involve to many constraints. Therefore, we shall proceed with non trivial
projections and we shall adapt algorithms solving (5.4) in this context. Let us emphasize that
the convergence results obtained in this chapter are completely new.

The explicit scheme is discussed in Section 5.2 with a proof of the convergence under the
classical CFL like conditions. The new semi-implicit schemes is introduced in Section 5.3 and
the proof of the convergence is obtained under conditions on «, 5 which do not depend on the
size of the mesh (and of the norm of operator A). Section 5.4 deals with numerical results and
evidences the advantage of the semi-implicit algorithm, namely of its variant where a splitting
technique allows to reduce the iteration number of implicit solvers. We remark that because of
the presence of the adjoint operator A* in the (explicit, implicit) algorithms, we have to choose
discretization methods ensuring the condition (Au,p) = (u, A*p). Among such discretization
methods, we favored the Marker and Cell (MAC) grids which well fit for implementing an
effective parallel computation. The computational costs of the different algorithms are then
compared, showing again the interest of our semi-implicit algorithm.

5.2 Saddle point problem and explicit scheme

Let C and K be closed convex non empty subsets of Hilbert spaces V and W, respectively. We
denote by (-,-) the inner product and by ||-|| := v/(:,-) the corresponding norm on both Hilbert
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spaces without ambiguity. Given A : V' — W a continuous linear operator with its induced norm
[A]l := sup {[|Av]| : v € V} [jv]| < 1}.
We consider an inf-sup optimization problem in the very generic form

inf sup L(u,p)  with  L(u,p) = (Au,p) + F(u) — G(p), (5.5)
ueC peK
where F, G are convex functions and supposed to be differentiable. Their derivatives satisfy the
Lipschitz condition with constants Ly, L, respectively. We assume that the set of saddle points
C x K of Lagrangian L(u,p) is not empty.

The aim is to find a saddle point (@,p) of L(u,p) in C x K. Now, let us generalize the
explicit scheme introduced in (5.3) for the general saddle point problem (5.5). Basically, we keep
the main idea of the convergence proof by Chambolle-Pock et al. [96] with additional technical
difficulties due to additional convex function F' and G. We propose an iterative algorithm as
follows.

Description of the algorithm in explicit scheme
Initialization: Let n € N. Given (up,po) € C x K, and @y = uyg.

Pr1 =k (pn + (At — G'(pn)))
Unt1 = e (un — B(Apns1 + F'(un))) (5.6)

Upy1 = 2Upy1 — Up

where A* stands for the adjoint of operator A; Ilg, Il respectively denote the orthogonal
projectors on closed convex sets K, C'; and the stepsizes «, 8 > 0 are chosen suitably.

We get below the convergence result:

Theorem 5.1. Under the standing assumption, for all o, B such that

2 2
0<O£<f, O<I8<L77
9 f (57)
LL oL, BL '
of (JIAI? - 472} + 2452+ 5L <1,

the proposed algorithm (5.6) converges to a saddle point of L(u,p) in the set C x K.

Before proving the theorem, let us recall some important properties of orthogonal projection
on a closed convex set.

Proposition 5.2. Let IIp be an orthogonal projection on a closed convexr subset D in a Hilbert
space V. Followings hold true:

(i) For every u,v € V,
(Ip(u) — p(v),u —v) = |[p(u) — Mp(v)]*. (5.8)
As a consequence, the projection is a monotone 1-Lipschitz operator.
(it) For every z € D,
lu = Tp(w)|f* + |2 = Hp(u)|* < flu— 2|
In particular, if 0 € D then

lu = TIp ()| + |[Tp(w)* < [|ull*. (5.9)
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(iii) For everyv €V,
IIp(u) —v=Ip_y(u—v). (5.10)
where D — v is the Minkowski addition, i.e. D —v:={d—v:d € D}.
Proof. (i) For every u € V, the characterization of IIp(u) is given by
(u—Tp(u),z—Ip(u)) <0 VzeD (5.11)
We choose z = IIp(v), then
(u—Tp(u),Ip(v) —p(u)) <O0. (5.12)
Similarly, we have
(v—=TIp(v),Ip(u) —p(v)) <O0. (5.13)

Summing inequalities (5.12) and (5.13), we obtain the inequality (5.8). The monotonicity and
Lipschitz continuity are direct consequences.
(ii) For every z € D, by using (5.11), we have

(u— 2w — 2) =|u — Hp(w)|> + |z — Tp |2 + 2(u — Tp(u), p(u) — 2)
>[lu — Hp(uw)|2 + ||z - o>

(iii) For every z € D, we recall the characterization (5.11),
(u—Tp(u),z —p(u)) <O0.
This is equivalent to
(u—v—Ip(u) —v),z—v— Ip(u) —v)) <0, VzeD.

It is to say that IIp(u) — v is the projection of (u — v) on the set D — v. [ |

Proof of Theorem 5.1. Let (1,p) € C x K be a saddle point of L(u,p). Beside the characteriza-
tion given by the inequalities (5.2), saddle points of the problem (5.5) can be characterized by,
see [57] in detail:

(G, p) is a saddle point of L(u,p) in C x K if and only if

0 forall ueC (5.14)
0 for all pe K. (5.15)

Q

Under the standing assumption, F' an have second derivatives defined almost everywhere.

Then, we obtain
F'(u) — F'(v) = /01 F'((1— 0)v + 0u)(u—v)df Vu,v eV, (5.16)
) -G = [ (-0 +0)p- a0 Vg€ W (517
We define

Fou = / F"((1— 8)v + 6u))de, Jap = / G"((1 = 0)q + 0p))do.
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We observe that f, ., gqp are symmetric bilinear forms on product spaces V x V and W x W,
respectively. Since F', G are convex functions, f,, and g4, are positive semi-definite. Such
bilinear forms admit factorizations by operators, see [99] Theorem 12.33 p.331, as

<fv,uv7 V> = <va,uV7 Mfu,uv>7 <gq,pW7 W) = <M

9q,p

W, M, W).

Ya,p
Furthermore, by Lipschitz conditions, we have
(fout' u) S Lyl Vu',0" € Voand (gqpd’, ") < Lolld P VD', q" € W.

Hence, fi,.4, gq,p are continuous bilinear forms, i.e. f,, € L(V x V;R), g4, € LIW x W;R). In
what follows, the role of symmetric positive semi-definite bilinear forms f, ., g4, is exploited.
We firstly introduce some useful notation:

P,=p,—p, U,=u,—1u, U,=1u,—1, fn:fﬂ,una 9n = Gp,pn »

7 . (5.18)
K=K-p, C=C-a.

By using (5.10) with the settings (5.18) above, we can rewrite the iterative process (5.6) as

Poi1 =Tz (Py + (AU, — G'(pn)))
Upt1=Ugz(Up — B(A"pny1 + F'(un)))

Up+t1 = 2Up41 — Up.
We notice that the couple of equations (5.16) - (5.17) give us the following representation
F'(uy) — F'(0) = f,Up (5.19)
G'(pn) — G'(D) = gnPa. (5.20)
Since 0 € K , we can handle the inequality (5.9) in order to deduce that

1Pasll? < 1Py + a(Atin = G'(pa))|I? = |Pas1 = P — a(AT, — G'(pa))|”
= ||PnH2 - HPn—i—l - PnH2 + 2a<Aﬂn - G/(pn)7pn+1>
< Hanz - Hpn—l-l - PnH2 + 20‘<AU7L - gnPn)7 Pn+1>-

The second inequality is obtained by adding a non negative amount —(Ad — G'(p), p — p), see
(5.15) for evidence and passing the equality (5.20). Similarly, we just repeat the same procedure
for the variable u

1Unt1l” < 1Un = B(A*pus1 + F'(un))|* = |Uns1 = Up + B(A s + F'(un))||?
< ”Un||2 - ||Un+1 - UnH2 - 2ﬁ<A*Pn+1 + fnUrw Un+1>-

For short, let us denote

Sn = al|Uall? + B Pall?,
Ry = al|Upt1 — Un||2 + B[ Pat1 — Pn||2~

It then follows that
Sni1 < Sp = B — 208 ((A*Payr + faUn, Uny1) = (AT, = g Pa, Pata)) - (5.21)
By definition of adjoint operator, (A* P, 1, Up+1) = (AUp+1, Prt1), we observe that
— 208 [{(A*Pays + flUn, Uns1) = (AT = g Po, Pat1)]
= =208 [(fuUn, Unt1) + (90 Pas Pas1) = (ATn = Ua), Pasa)|
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In the followings, let us do some necessary estimations. By using definition of leading point U,
and continuity of operator A, we deduce that

(A(Unt1 = Un), Pus1) =(A(Un+1 = Un), Pat1) = (A(Up = Un-1), Pata)
=(A(Un+1 = Un), Pat1) = (A(Up = Up—1), Bp)
<A(U —Un— 1) 1 — B, >
>(A(Unt1 = Un), Pota) = (A(Un = Un-1), Pa)
— AT = Un—all| Pat1 — Pall-

We have already mentioned that the bilinear form f,, have positive square root My, . By taking
into account this factorization, we get

_<fnUna Un+1> = _<anUn+1aanUn+1> - <an(U - Un+1)7anUn+1>

IN

(L4 DMy Uil + FIMy, Ui — TP (5.22)

IN

L
U1 = UalP,
4
and analogously,
L
<gnPnaPn+1> g||Pn+1 Pn||2 (5.23)

We recall that the inequality 2ab < (da? + b?/d) holds true for any a,b and any § > 0. We now
make use of the previous estimations. For any § > 0, it holds
Ly al,
Surt < Sn—a (1= 220 ) Ui = 0l = 6 (1= 252 ) 1P = Ral?

- Qaﬁ [< ( n+l — Un)7Pn+1> - (A(Un - Un—1)7Pn>]
+ 20B||A[[[|[Un — Un—1[[[[ Ptr — Fal|

L al,
SSn_O‘( /8 f) HUn-H UnHZ_ﬂ(l_) ”Pn-l—l nH2

— 203 [< ( n+l — Un)>Pn+1> - <A(Un - Unfl)’ n>]
1
+aBA] (81Un = UnalP + 51 Pass = Pal?)
Given M > N > 1 and 7 > 0, let us take the sum of the inequality (5.21) from N up to M:
L aly\ &
S < S —a (1- Bf) D 01 = Ul =3 (1= %52) 32 1B = Bl
n=N

—2a8[(A (UM+1 - UM), Pary1) = (A(Un — Un-1), P

~ 2 aBlA] & )
+aBl| A6 Y NUnr = Unll® + === 3 [|Pass = Pal
n=N-1 n=N

BLy
2

M—-1
<sy—a(1- —BIIAM) > 101 = Ul

aLy, ofA
~p(1-2ge -2 ”)ZHPW P

L
W ( _ 521”) 1Unrs1 — Ut |2 + 0Bl A8 Uy — Uy 1|2

+2aB(A(UNn — Un-1), Pn)

1
+ Al (AVar1 = Ul + ~[Parsall).
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We develop Spr+1 and rearrange the previous calculation to obtain

ollA
sl +6 (1- ny ”) T

a(l—ﬁ myAw)ZHUnH U,

n=N
alL, ofA (5.24)
+5(1— T— | H) ZHPnH Pn”2
8L
a1 5L mmw) [Urrss — U P
< Sy + aB||A|l6|Ux — Un-1l* + 2a5(A(Un — Un-1), Pn)-
We observe that for «, 5, J,y being positive numbers, it holds
allAll
B(1- " ) >0 »
o (1= 25 Bl Alls) >0 allAll< v < At (5.25)
aL oA 28||A 1 2—al .
61 g_H H)>0 Q*gLU‘<E<WAﬁ
L
a(1- %f —6||A||v) >0
We then derive from (5.25) that
2 2
O<a<— 0<f<,,
L/l | oL, AL (5.26)
of (||A||2— ilg) + 5t <L

Therefore, if we choose («, 3) satisfying (5.26) and (4,y) given in the intervals defined by (5.25),
the left-hand side of inequality (5.24) is positive. We see that two sequences ||[Ups4+1] and
|| Prr+1]| are bounded while both ||Upr41 — Ul and || Pasr+1 — Pasl] converge to 0 as M — +o0.
Or, equivalently, {un/} and {pys} are bounded and the sequences ||[upr+1 — unr||, [|[par+1 — Pl
go to 0 as M — +oo. So, there exists a subsequence (uys, ,par,, ) weakly converging to some
(ux, ps) € C x K, furthermore, upz, +1 and @y, converge to u, whilst pas, 1 converges to p,. By
passing in the limit in (5.6), we have

P = M (pe + a(Au, — G'(ps)),
Uy = o (us — B(A™pse + F'(us)).

This shows that (us,p«) is solution to problem (5.5). We now can replace 4 = u,, p = p, and
N = My, in (5.24). Then, as k is large enough, the right-hand side of (5.24) will arbitrarily
small. Thus, for every M > My, ||[Up || and || Pys|| are as small as we want. We conclude that
(Unr, Par) converges to (0,0) as M — 4o0. [ |

Remark 5.3. If F = G = 0, the problem (5.5) reduces to

inf sup(Au, p), 5.27
inf sup(Au. ) (5.27

and the algorithm (5.6) becomes
Pny1 = Ik (pn + aAUn)
Upt1 = o (up — BA™Pp11) (5.28)

Up+1 = 2un+1 — Un.
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In that case, positive parameters «, 3 will be chosen such that af3||A||?> < 1, so that the process
(5.28) converges to a saddle point of L(u,p) in C' x K. The choice of «, 3 is now more flexible,
without upper bounds of Lipschitz constants.

5.3 Semi-implicit scheme

In the explicit scheme based on Arrow - Hurwicz method, the algorithm (5.6) is convergent under
the permanent appearance of the boundedness of the linear operator A. We wonder whether we
find out an process which converges to a saddle point of L(u,p) whose numerical parameters
do not depend on the boundedness of A. In the next works, we shall show up such a process,
namely semi-implicit algorithm.

The idea of the following algorithm comes from the ascertainment that the steps a and 3 of
the algorithms (5.6) and (5.28)are limited by large eigenvalues of the operator A whereas this
steps could be increased for the part of the iterate associated to low eigenvalues. We then aim
for progress with optimal steps o and S whatever the considered eigenmode of the iterate.

We suppose that C' C dom(A). Problem (5.5) can be written as

min  max(q,p) + F(u) — G(p) (5.29)
(z,q)eC Y€K

with C' := {(u, Au) : u € C}. Now, if we apply the process (5.6) to the problem in this form, we
obtain

Pn+1 = HK(pn + a(Qn - G,(pn)))
(Unt1, @nt1) = a(un — BF (un), gn — BPn+1) (5.30)

§n+1 = 2%1-1—1 —qn

It is evident that C C V xImA C V x W. As V x Im A is a linear subspace of V x W, we
deduce that

Hé(un B 'BF/(un)’ In = 6p"+1) = HC'(HVXIIHA(UH - /BF/(un>a qn — 6pn+1))
= HO((Um an) — BHVXImA(F,(Un),pn+1)).

The projection Iy x1m 4(u”, ¢%) is indeed to search an optimizer for the problem
1

minimize 3 (||Au — %2 + |Ju— u0||2) .
This is in fact a proximal operator of a quadratic form. Its resolvent is easily determined,

u* = prox 4 o(u’) = (A*A+ 1)1 (A% +u°).

q
Besides, whenever operator A is bounded, it holds
[Au — Auw* [+ [lu — [ < (|4 + D) flu — w1

Then, the proximal operator assures the couple (Il (u*), Allg(u*)) isn’t too far from (u*, Au™).
This leads to the idea of replacing the projection Il in the process (5.30) by a simpler approxi-
mation

{un+1 = Ilo(un — Bn) (5.31)

dn+1 = Aun—i- 1
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with %, being the proximal point determined by

Up = ProxXp, .| (F'(up)) = (A*A + I)_I(A*an + F'(uy)). (5.32)
Therefore, we introduce a semi-implicit scheme:

Description of the algorithm in semi-implicit scheme
Initialization: Let n € N. Given (ug,po) € C x K and 1y = ug.

Pn+1 = HK(pn + a(Aﬁn - G/(pn))
tni1 = Ho(un — BA* A+ 1)1 (AP + F(un)) (5.33)

Upy1 = 2Upy1 — Up

where o, § > 0 is taken appropriately.

Remark 5.4. If C =V, replacing the projection Il in the process (5.30) by (5.31) is straightfor-
ward. Ortherwise, we notice that once A is an isometric operator, i.e. |[Au| = ||ul|, Yu € dom(A),
this replacement is clearly equivalent. Then, in other words, the expression (5.31) defines a
projector on C' which naturally coincides with the projector II 5. In addition, if A is an orthogonal
operator, in this case, Au,1 is indeed the projection of A(u, — fu,) on the image AC, which
will be shown in Lemma 5.5.

Lemma 5.5. Let O be a closed convex subset of Hilbert space V' such that 0 € O and Ilp be
the orthogonal projector on O. For every densely defined, closed, linear operator A :V — W
satisfying

VO, YueV, (A(u—Tp(u)),Allp(u)) >0, (5.34)

the process (5.31) is identified with

{Un+1 = HC(un - 5ﬂn) (535)

dn+1 = HAC(Aun - BAan)
Proof. By making use of notation (5.10), it is easy to verify that
Unt1 = Ho(up — Pn) <= Upt1 — uo = oy (un — up — By), Yug € C.

Since 0 is always in C' — ug, and by dealing with the characterization of the projection Ilc_,,,
we derive that for all ug € C,

(Un — up — Bln — (Unt1 — uo), U — Un+1) < 0.
We deduce from the hypothesis (5.34) on the operator A that
Vug € C,  (Auy — BAU, — Aupyr, Aug — Atpyr) < 0. (5.36)

AC is closed convex. Convexity is preserved by linearity and closedness is preserved by closedness
of A. The inequality (5.36) well defines a projection on AC,

Aun+1 = HAC(Aun - ﬁAan)

If ¢,+1 is a projection of Au, — SAu, on AC then by the uniqueness of projection, ¢,+1 must
coincide with Awu,y1. The proof is completed. |
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Remark 5.6. When A is an orthogonal operator, it evidently satisfies the hypothesis (5.34). At
the moment, keeping in mind that A*A = I, it gives an identification

(A(u —TIlo(u)), Allo(u)) = (A*A(u —Ilo(u)), o (u)) = (u —Ilo(u), Ho(u)).

In practice, A usually stands for gradient operator V. Let us show that, in this case, gradient
operator satisfies the hypothesis (5.34). In the following lemma, we regard u as a function of
variable x in a suitable space, for example v € V' = L?(Q2). We say that u has local constraints
in the convex C if u(z) € C(z) for all x € Q.

Lemma 5.7. Let O be a closed convex subset of Hilbert space V' such that 0 € O and Ilp be
the orthogonal projector on O. We suppose, in addition, that the projection Ilo is local in the
sense that @ = Ilp(u) is equivalent to u(x) = Moy (u(z)),Vz € Q. Then, the gradient operator
V satisfies the hypothesis (5.34).

Proof. For every u,v € V, let @, © be the projections of u,v on O, respectively. By using the
inequality (5.8), we have that

(u—v—(a—17v),u—10v)>0.
Since the projection Il is realized locally, choosing v € V' such that v(x) = u(x + th) for t > 0
and some given h € RV, we have

t%(u(az) —u(x +th) — [4(x) — a(z + th)], u(x) — w(x + th)) > 0.

We recall that the Gateaux derivative of u is defined by

(Vu(z),h) := lim ulw + th) = u(q:)

t—0+ t
By passing to limit as ¢ — 0", we obtain
(Vu(x) — Vu(z), Va(z)) > 0.
In other words, we get
(Vu — Vo (u), VIIp(u)) > 0.

This completes the proof of lemma. |

It is ready to prove the convergence of semi-implicit scheme proposed in (5.33). Here are the
main result:

Theorem 5.8. Let A: V — W be a densely defined, closed linear operator satisfied the hypothesis
(5.34). For all a, B such that

2 2 al
0 — 0 — — <1
<a<Lg, <ﬁ<Lf, af + 5 <L

the iterative process defined by (5.33) converges to a saddle point of L(u,p) in the set C x K.
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Proof. We maintain using the notation (5.18) and introduce some more notation:
Gn = Alip,  qn = Au,, Qn = AU,, Q, = AU,.

Under the above settings and passing the translation of projection (5.10), we can rewrite the
process (5.33) as

Poy1 = H[?(Pn + a(g, — G'(pn)))
Unt1 = Ha(Un - 5ﬂn)

Gn+1 = Atpp

Qnt+1 = 2Gn+1 — qn-

We manipulate again the property of projection (5.9), the characterization (5.15) and the
representation (5.20) to obtain that

”Pn+1H2 < |1Pn+a(g, — G/(pn))”2 —[Poy1 — Pn — (@, — G/(pn))”2
<N Pull? = 1 Pasr = Pull® +204(Q,, — gnPr, Pas1)
and similarly,

1Unt1l? < U = B> = 1Un1 — Un + Bt |
= ”U"HQ B HU”‘H - UTLHQ - 2B<ﬂn> Un+1>-

Within the spirit of Lemma (5.5), @Qp41 is indeed the projection of (@, — £g,) on AC. We then
have

1Qn+1l” < 1Qn — Banll® — |Qns1 — Qn + Banl?
<1Qnl* = |Qnt1 — Qull* — 28(dn, Qn1)
‘We denote that

Sn = a([|Unll® + 1Qnll*) + Bl Pal®
R, = O‘(HUn—H - UnH2 + HQn—H - QnH2> + BHPn-&-l - PnH2

Then, it holds
Sut1 < Su = R — 208 ((@in, (A" A+ DUns1) = @y = goPa, Part)) . (5:37)

Keeping in mind that @, = (A*A+ 1)~ (A*ppi1 + F'(uy)), (A*A + 1) is self-adjoint, and use
the inequality (5.14) and the representation (5.19), we get

(A A+ D)7 A ot + F(ug)), (A" A+ 1) Un 1)

(A*pni1 + F'(un), Unta)

<A*Pn+1 + fnUn7 Un+1>-

<17, (A*A + I)Un—i-l)

v

Besides, we derive that

(A"Pot1 + fuUn, Uns1) = (Qn — gn P, Pot1)
=(fuUn, Un+1> + (gnPns Prt1) — <@n — Qny1, Pn+1>
:<anUn7 anUn+1> + <MgnPn> MgnPn+1>

+ <Qn+1 - Qna Pn+1> - <Qn - anla Pn> - <Qn - anthJrl - Pn>
L L
> = Uns1 = Unl? = 21 Pass = Pall®
+ <Qn+1 - Qna Pn+1> - <Qn - anla Pn> - HQn - Qn71||||Pn+1 - Pn”
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In the inequality above, we reused the estimates (5.22)-(5.23) in the proof of congvergence of
explicit scheme. We recall that 2ab < (da? + b?/6) for any a,b and any 6 > 0. Therefore, for
every § > 0, it follows

L
Sn+1 < Sn - O‘HQn-ﬁ-l - Qn”2 —« (1 - 62f> ||Un+1 - UTLH2

aL
8 (1 - ) |Pasr — Pol?

— 208 [<Qn+1 — Qny Prg1) — (Qn — Qn—1, )]
+ QOzBHQn - Qﬂ,leHPﬂri’l - PTLH?

and then

L
Sust < S = allQuer = Qull? — (1= Z5L) Vs — Ui
~ 5 (1-252) 1Pusa - PaJP
- 20‘6 [<Qn+1 - an n+1> - <Qn - Qn—1>Pn>]
+ a8 (81Qu = Quot P+ 31 Pust = Pal?).

Let M > N > 1 and v > 0. We take the sum of the inequality (5.37) from N up to M in order
to obtain

M
Sp1 < S —a Y |@Qns1 — Qnl?

n=N

BLy % 2 alLy . 2
- 1_7 ZHUn-H_UnH -8 1_7 Z||Pn+1_Pn||
n=N n=N

—2aB[(Qm+1 — Qum, Prta) — (QN — Qn-1, P)]
M-1

ﬁ
+aBs Y (1Qn — Qnl + — Z |Pos1 — P,
n=N-1
which leads to
M-1 BLf M
Sars1 < Sy —a(t = 0) 3 Qi = Qul* = (1= 252} 3 s — Un?
n=N n=N

~p(1-2% - ) z 1Pt — P

— al|Qur+1 — Qurl* + Oéﬁ5HQN —Qn-_1]?
+208(QN — QN-1, Pn)

1
+ a8 (11Qu = Quil® + 1P ).
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After rearranging, it turns out immediately that

8]
| Quraa|? + | Unra | + 8 (1 - 7) | Paga |2

M—1
+a(l—=88) > 1Qni1 — Qull®
n=N
ﬂLf < 2
+a - [Un+1 — Ul .
(1-3) 3 599

al, « M 9
81— 5" =5 ) 2 1P — Bl
2 0) =,

+ ol = BY)||Qu+1 — Qull?
< Sy +aBd||Qn — Qn_1]* +2a8(QNn — Qn_1, Py).

We extract all the coefficients in the left-hand side of the inequality (5.38) and regard that for
any «, 3,6, being positive parameters, the following holds true

5(1-5) >0

a(l —56) >0 B<L—2f

a(1-21) >0 = la<y<} (5.39)
B(1-25—§) >0 B<i<Tme

a(l—p5y)>0

We then derive from the right-hand side of (5.39) that

2 2 al
0 - 0 = —4 < 1. 5.40
<a<Lg, <B<Lf, af + 5 < (5.40)

So, if we choose the couple (o, 8) as in (5.40) and (v, d) in the intervals defined by the right-hand
side of (5.39) then the left-hand side of (5.38) is positive. We deduce that the sequences || Ups+1]|,
HQM-HHa ”PM-HH are bounded while HUM-‘rl — UM”, HQM-H — QMH and HPM-H — PMH must
converge to 0 as M — +o0o. We then have the same conclusion for the sequences ||upry1]|,
lanslls [Ipaalls Nluarer —untlls lanr+1 — quel and [|par1 — pasl], respectively. Therefore, the
sequences {upnr+1}, {qm+1}, {pPam+1} have subsequences converging in weak topology. Let say
Uy, @+, and p, are corresponding limits. By substituting & = us, § = g«, P = p«, and handling
again the inequality (5.38) we can derive that sequences {uns}, {qar}, {par} are indeed Cauchy

sequences, hence converge to the limits wu., g, and p,, respectively. By passing to the limit in
(5.33) and (5.35), we have

P = M (ps + a(Aus — G'(ps))
s = e (ue — Buy)
Auy = ac(Auy — fAU)

where 1, is the proximal point prox 4, (F'(u«)) (see (5.32)), that is
Uy = (A A+ 1) YAy + F'(uy)).
It is easy to see that for every u € C'

0 < (Us,u — us) + (A, A(u — uy)) = (A" A+ DUy, u — uy).
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We deduce that

(Auy, — G'(py),p—p«) <0 Vp€EK,
(A" py + F'(uy),u —us) >0 VueC.

This is to say that (u«,ps«) is a saddle point of L(u,p) in C' x K. |

Remark 5.9. We emphasize that if the term F(u) is absent in the Lagrangian L(u,p), the
projection on C' can be restricted only on AC. Then, the algorithm (5.33) reads

Prt1 = Uk (pn + (g, — G/(pn))
dn+1 = HAC(Qn - /BA(A*A)_IA*pn-i-l)
qn+1 = 2Qn+1 —dqn

where ¢, = Au,. In this situation, the hypothesis (5.34) should be replaced by A*A being
positive definite so that A*A is invertible. And when the term G(p) is not also present, the
positive parameters «, 8 just have to satisfy the constraint a8 < 1 to ensure the convergence of
the algorithm.

5.4 Application to the shape optimization of thin torsion rods

Let D be a bounded connected domain in R? and s be a real parameter. We are interested in
considering the variational problem, studied in [2]

m(s) := inf {/D e(Vu) :u e H&(D),/Du = s}

where ¢ : R? — R is a convex function given by

Lz +1) if|z|>1
o) (B D)L
|z if 2] < 1.

We see that the integrand ¢ is not strictly convex and not differentiable at 0. Its Fenchel
conjugate is the positive part of a quadratic form

*(p) = % (Ipf* - 1), -

It is clear that ¢* is convex but non strictly convex, too. See Figure 5.1 for illustration.

v(2) ©*(p) dpi(p)

1 .y

1

1
|

TI\[TT l
T\ 1 |
A l
1\ 1
|
1l |
=4 0 \1
[ |

JEN« —!

Figure 5.1: From left to right, the description of function ¢(z), its Fenchel conjugate ¢*(p) and
the regularization of ¢*(p).
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We recall that the Fenchel conjugate of an integral functional is an integral of the Fenchel
conjugate of the corresponded integrand, i.e.

([ snas) = [ @i

For more details on this topic, we refer to [57]. We are going to apply this fact to calculate the
conjugate of m(s). For every A € R,

m*(A) =sup{As —m(s)} = — inf {/D o(Vu) — /\/Du}

scR ueH} (D)

= — inf sup {/p-Vu—/go*(p)—)\/u}
ueHé(D)ngZ(D;R% D D D

The second equality occurs with a replacement of the functional [}, ¢(Vu) by a Fenchel conjugate.
We regard that the functional

pr inf {/p~Vu—/cp*(p)—/\/ u}
weH (D) /D D D

is finite if and only if —divp = A. So, by passing the inf-sup permutation argument, m*(\) can
be rewritten as

m*(A\) = inf {/D ©*(p) : p € L*(D;R?), —divp = )\} . (5.41)

Furthermore, optimal solutions of m(s) and m*(\) are characterized by certain optimality
conditions

u solution to m(s) Jpu=s
p solution to m*(\) = —divp = A
A € Om(s) p € 0p(Vu) a.e.

Many interesting properties of functions m(s) and m*(\) were studied in [2]. One of them which
is obviously seen is that the Fenchel equality is satisfied

m(s) +m*(A) = sA,

since A € Om(s).

We shall focus on the inf-sup formulation of m*(\) which is adapted within our numerical
schemes. But we must notice that ¢* is neither strictly convex and nor differentiable on the unit
circle {p € R? : |[p| = 1}. A regularization for ¢* should be done before enforcing the algorithms.
See Figure 5.1 for visualization. Instead of taking the subgradient of ¢*, we regularize it by
removing the discontinuities with an e-affine symmetric connection

M(p):{@:upuz—lmzl i lpl ~ 1] < §

0¢*(p) otherwise.

It is ready to find a saddle point of the problem with e-regularization.

The solution of such a problem in the context of shape optimization of thin torsion rods
exhibits regions where u is constant corresponding to regions without material, regions where
|Vu| > 1 corresponds to the optimal region for the material in order to struggle torsion. Regions
where 0 < |Vu| < 1 describes the regions of homogenized material for which the convexity
of the Lagrangian is not strict. This makes the problem nontrivial. Depending on the mass
constraint, such a homogenization region can appear (low mass constraint leading to the so-called
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"homogeneous solution") or not ("special solution"). To answer the question whether an optimal
design contains some homogenization region is equivalent to investigate when the special solution
exists. And naturally, we wonder in which domain D special solutions present. These are still
open issue. In Figure 5.2, the magnitude of the gradient of the solution is plotted, a special
solution can be found in the left figure, a homogenized solution is in the middle with weak
gradient (lower than 1) on regions limited by thick lines corresponding to |Vu| = 1. In the right
figure, the value X is close to the critical Cheeger constant while as we see, the optimal shape
becomes thinner and tends to the boundary of the Cheeger set of the domain D [79].

e

N

W—

Figure 5.2: Special (left) and homogenized (middle and right) solutions depending on the mass
constraint.

It is easy to see that if D is a symmetric simple connected domain then solutions of m(s) are
symmetric. When D is a square, the symmetrization allows dividing D in four parts. Without
lost of generality, let us describe the discretization settings with D = [0,0.5]? instead of unit
square. Let x = (x1,z2), p = (p1,p2). The subdivision leads to the appearance of extra boundary
conditions

u(+,0.5) =u(0.5,-) =0
pl(oa ) = pQ('a 0) = 0.

Because of the presence of the adjoint operator A* in the algorithms (5.6) and (5.33), we
must choose discretization methods which ensure the condition (Au,p) = (u, A*p). Among such
methods, we prefer to implement our algorithms with staggered MAC (Marker and Cell) grids
[75]. We shall adopt the superscript h for indicating the discretization with respect to a mesh
size h. For instance, V" and div" stand for the discrete gradient and divergence operators,
respectively. The discretization with MAC grids not only adapts to the condition div"* = —(V?)*,
but also facilitates a parallel computation by a simple decomposition of the domain D. In Figure
5.3, we briefly describe the configuration of the MAC grids in our implementation, wherein
the third subfigure presents a strip partitioning of the domain while the gray dashed patterned
region indicates the communication interface used within a parallel computation.

[

[ ] [ ] [ ] [ ) °
P2
[ ] [ ] [ ] v [ ) [ )
o X P1
. . . (2 ° . ° °

Ve 2220222222272 22272

Figure 5.3: Staggered MAC grids.
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We provide an explicit iterative process in discrete scheme with

Phiy =P+ a(Vhal — dpz(pl)
ul =TI (ul + B(divP(ph ) + ) (5.42)
h

a7h _ h
Upt1 = 2un+1 — Up-

where Hfé is the discretized projection. In this case, the projection is just simple to keep the
boundary condition « = 0 on dD. Since Lipschitz constants Ly = 0, Ly = (2 + €)/2¢, the
positive parameters «, 8 should be chosen such that

4e
24¢’

a2+¢)

2v/2
4e '

a< aBci + <1 with ¢, == ||[V"]] = Y

We remark that o < 4 and tends to 0 as € — 0. But with the second condition, the product a3
should be of order O(h?).

In the point of view of implicit scheme, the proposed convergent process reads

Pl =l 4+ a(Vhal — 0pz(ph))
ul | =l + BT — AM)HAivi (ph,) + N) (5.43)

=h  _— 9,h h
Unt1 = 2un+1 — Up-

We replaced div™(pf, ;) + A in the explicit process by %, = (I — A")~1(div"(pl, ;) + \) which is

solution of the equations

(1 — Ao = divh(ph, ) + A
v=0 on 0D

The projection H}(’} then disappears since the boundary condition on w is added within resolving
uy,. Moreover, the positive parameters are simplified
4e a(24¢
, Oéﬁ + g
2+4+¢ 4e

a < < 1.
We see that the choices of «, 8 now do not depend on ¢, and thus, the product o/ is of order
O(1) with respect to h. Nevertheless, the stepsize « is still restricted by small e.

The regularizing parameter ¢ is linked to the grid size, in practice we take for instance ¢ = 3h.
This relation makes the stepsize « be of order of h for the implicit algorithm (5.43). It leads to
introduce a new algorithm with s sub-iterations on the explicit part of (5.43), in implementation
Kk = 50:

pZH,O = Pﬁ,n
h h h=h h
pn+1,k+1 = pn+1,k + %(V Up — 890:(pn+1,k))7 k= Oa 17 ey R — 1

ul ) =ul 4+ B(I - AMTH v (ph, ) + )

=h h h
Unt1 = 2un+1 = Unp-

(5.44)

The algorithm (5.44) allows « to be k times bigger and then reduces the number of iterations in
n.

From now on, the algorithm (5.44) is called Implicit Sub-iteration Scheme (ISS), the algorithm
(5.43) is called Implicit Scheme (IS) and the algorithm (5.42) is called Explicit Scheme (ES).

In Figure 5.4, we present the Euclidean norm of the gradient of a solution, i.e. |Vu|. The left
figure shows an expected solution with the explicit scheme. The centered and the right ones are
in a quarter domain which are done with implicit methods (IS) and (ISS), respectively. We see
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that in implicit scheme (IS), the contact zones are still not tangent to the boundary of domain
(the region on which it is difficult to converge the algorithm). And, the (IS) algorithm, expected
to be slower than (ISS), introduces an other drawback with numerical artefacts.

T—

- i w—

L!J -

Figure 5.4: Case A\ =5 for (ES) on the left, (IS) in the middle, (ISS) on the right, for the same
grid size.

In the processes (5.43)-(5.44), the inverse Laplacian computation is the most costly. The
computational cost thus depends highly on the solver used for the inverse Laplacian operator. If

one uses a multigrid or a FFT solver, it can be of order Tloah” Besides, handling a multigrid
0g

solver, for instance AGMGPAR (A parallel version of Algebraic Multigrid method), see [93],
and Marker and Cell (MAC) grids, it easy to implement our algorithms with MPI (Massage
Passing Interface) library which provides an effective environment for parallel computation. In
the following computations, comparisons between the different schemes are done with a fixed
number of process to 6, leading to good scalability for all methods.

Before comparing the computational cost, we ensure that the algorithms converge to the
exact solution as the grid size h goes to zero. We then consider a case in which the unique exact
solution is known, that is when D is a disk. In such a case, the solution is a special solution and
it is radial with mass concentrated on the periphery and with an internal radius of R = % (see
Figure 5.5), see [2] for the expression of the exact solution.

Figure 5.5: Exact solution when the constraint domain D is a disk.

We are then able to compute the numerical internal radius rn, Ry defined respectively as
the maximal value of radius where |Vu| is smaller than a half and the minimal value of radius
where |Vu| is bigger than one. The error on the internal radius is measured as a number of cells
for different cell sizes. The radius error is of order of a half of grid size whatever the grid, as
shown on Figure 5.6.
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Figure 5.6: Graph of 2|ry — R|N and 2|Ry — R|N with respect to the grid size N.

We are now concerned with the comparison of computational cost between schemes (ES),
(IS), (ISS) in the case where A = 5, for a unitary square D, so that an homogeneous solution

occurs.

0.0 0.0 0.0
-1.0 -1.0 —1.0\\

-2.0 -2.0 -2.0 \

-3.0 -3.0 -3.0

-4.0 50 100 150 200 250 -4.0 2.0 4.0 6.0 8.0 -4.0 0.5 1.0 1.5 2.0

Iterations (x10"3) Iterations (x10"3) Iterations (x10"3)
Figure 5.7: Convergence of algorithms with criterion || divp + A||z2 < 107* in case A = 5. From

left to right, the first figure is in (ES), the second with (IS), and the last one is done with (ISS)

We remark that we have to well pay for the cost of inverse Laplacian operator. So, the choice
of solvers should be carefully considered. But, the positive side of semi-implicit scheme is to
reduce globally many iterations of the iterative process. When the projections on convex sets
become more expensive, this reduction of iteration will evidently save the computational time.
At the moment, semi-implicit scheme is the most efficient, see Table 5.1, Figure 5.7 and Figure

5.8.

| divp + A|[z2 < 10~% with MPI in 6 processes
N iterations time (seconds)
ES IS | ISS ES IS ISS
101 9451 763 | 360 0.59 12.75 5.84
201 21647 | 1340 | 545 4.92 47.63 20.18
301 | 34719 | 1857 | 733 17.96 92.01 39.93
501 59438 | 2822 | 856 113.29 311.92 121.36
801 | 98484 | 4072 | 1251 | 848.15 819.10 467.12
1201 | 154107 | 5777 | 1596 | 3590.69 | 2625.47 | 1460.76
1701 | 232793 | 7629 | 2038 | 11520.75 | 7642.35 | 3876.28
1921 | 268999 | 8507 | 2230 | 17183.18 | 11174.52 | 5717.89

Table 5.1: Comparison of three methods in iterations and computational time in case A = 5.
The stop criterion is ||divp + A||z2 < 107%. They are implemented with MPI in 6 processes.
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Figure 5.8: Comparison of three methods in term of iterations, computational time, convergence
of energy function in case \ = 5.

Remark 5.10. When dealing with non differentiable Larangians, we propose a more efficient
alternative for the regularization method that we used for simulations in this chapter a new
approach by using a geometric epigraph projection. We refer to the numerical part of Chapter 3
for the description of the epigraph projection method.

5.5 Conclusion

The generalized explicit scheme for searching saddle points of Lagrangians of type (5.4) is
convergent and widely applicable. The main contribution of this chapter is to propose a semi-
implicit extension of such an algorithm. It remains convergent under less restrictive constraint
on numerical parameters. Non differentiability can possibly occur in Lagrangians, and in this
case, to fix it, we regularize derivatives of Lagrangians, with a smoothing parameter linked to
the space discretization parameter. The semi-implicit scheme, coupled to a splitting method for
the rapidly computed explicit part, provides a robust acceleration of the computational cost
in comparison with the fully explicit one. The number of iterations in order to reach a precise
convergence is widely reduced as shown in Section 5.4. Even if an iteration is more costly for
the semi-implicit algorithm, the global computational cost is clearly reduced, specially for fine
grids and provides accurate solutions. Furthermore, such an algorithm can reveal even more
performing than explicit scheme when Lipschitz constants functions F' and G are lower and also
if the Lagrangian contains large quadratic terms with respect to the p variable. This algorithm
has then been willingly tested on a stiff problem. In any case, the solver of a Laplacian type
problem must be carefully chosen since it mainly contributes to the computational cost. Once
set up, the heavier projections are, the more efficiency the semi-implicit scheme shows.






Chapter 6

Application of primal-dual
algorithms to free boundary
problems

This chapter is devoted to numerical simulations of free boundary prob-
lems. It is an occasion not only to refresh the topic with an exhibition
of numerical solutions but also to validate the worthy fruits from the
theory of duality and calibrations for non-convex variational problems
presented in Chapter 2. This is actually the place where explicit, im-
plicit algorithms based on primal-dual formulation shows their surprising

efficiency, particularly in three dimensions.

6.1 An elliptic-type free boundary problem

In this section we present our numerical approximation for an elliptic-type free boundary
problem which appeared in [20]. We consider a free boundary problem given by the elliptic
partial differential equation

Au=0 in Q\ {u=0},
u=1 on 0%,

where € is assumed to be a bounded open subset of RY. The frontier of the zero level set
E = {u = 0} is called free boundary. This elliptic-type free boundary problem has been
firstly considered in the pioneering paper [3]. (See also [29] for this elliptic case). A variational
formulation for this problem is given by

1
Z(Q,N) = inf{/ 5|vuy2 +A{u >0} : we WH(Q), u=1on 89} : (6.1)
Q
Actually, the infimum problem Z(£2, A) can be viewed as a shape optimization problem:
. 1 2
I%f{/ﬂ 5IVus? + A2\ E|} ,
with ug being the solution to the partial differential equation

Au=0 inQ\FE,
u=20 in F,
u=1 on 0f).
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Problem (6.1) is a non convex variational problem which is easily seen through our framework
by setting its integrand with

£(t:2) = 31217 + Axo 00y (1) (62)

and the prescribed boundary term ug = 1. Notice that the function f admits a discontinuity at
{t =0}.

According to the duality theory presented in Chapter 2, there is no gap between Z(€2, \) and
its dual problem, denoted by Z*(€2, \),

Z5(Q,A) = sup{—/gat(w,l)dm : JGB}, (6.3)

where B is the class of bounded divergence free vector field on €2 x R satisfying the pointwise
constraints

1
ol(z,t) + A > §|a’”(x,t)|2 a.e. on  x R, o'(z,0) >0 a.e. on . (6.4)

The dual problem is stated in higher dimension, however, it is just a linear programming on a
convex set.

It is easy to check that any solution u € W12(Q) to problem (6.1) takes values in [0, 1].
Therefore, we can treat the problem Z*(€2, A) on the bounded subset Q x [0, 1] instead of © x R.
Then, an optimal pair (@, @) for the couple of problems in duality Z(€2, \) and Z*(€2, \), in view
of Theorem 2.14, is actually a saddle point for the Lagrangian

inf sup / o-Duv, (6.5)
veA oek JQx[0,1]

on closed convex subsets
ﬁ:{veBVw(QxR) rv=1fort <0, v=0fort>1, vzlon@Qx[O,l]},

K={reXi(@x(0,1) : o'+ > Lo* ae. on 2 x (0,1), ¢'(-,0) > 0 ae. on 2.

Notice carefully that the integration domain in (6.5) is the product of 2 times the closed interval
[0, 1]. In fact, minimizing over A the functional v — fo[o,l] o-Dv appearing in (6.5) is equivalent
to minimizing over the space of functions v € BV (£2 x (0,1)) satisfying the boundary condition
v =1 on 9Q x [0, 1] the functional

v [ 0~D1)+/Q[Ut(x,O)(v(x,0+)—1)—Jt(:1:,1)v(:c,1_)] dx

(0,1)

where v(z,07) and v(z,17) are respectively the traces of v on Q x {0} and Q x {1}.

We recall that, if (U,7) is an optimal pair for the inf-sup problem (6.5), the function T should
be a step function. Indeed, the primal problem (6.1) is expected to admit only one or at most a
finite number of solutions. Then, by Theorem 2.8, the step function T will take only the values
0 and 1 in case of a unique solution, or a finite number of values in [0, 1] in case of multiple
solutions.

6.1.1 Discretization

We use two different numerical schemes proposed in the Chapter 5 to solve the saddle point
problem (6.5).
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In the explicit scheme, we choose an initial point (vg, 0g) € A x K and two positive stepsizes
a, 3. Then, for each n € N, denoting by h the size parameter of a cartesian grid in RV*!, we let

op =1k (o) + aViol)
ol = + Bdivi(o ory) (6.6)

—h _ h
Up+1 = 2vn+1 — Up,

where I1% is a suitable projection operator associated with the convex constraint K (¢). The
convergence for system (6.6) requires that the stringent condition a3 c,ZL < 1 is satisfied, where
¢, equals 2v/ N + 1/h (namely the norm of the discretized gradient operator).

The second scheme is the following semi-implicit algorithm
oh =1k (ol + aVioh)
U1 = on — BAM) TN (div" (0 44)) (6.7)

Tpy =205 — vy
Notice that (6.7) differs from (6.6) just in the term —(A")~!(div"(s?,;)) which replaces
div"(c", ;). The theoretical convergence of this second algorithm is proved under the con-
dition a8 < 1, which is independent from both the mesh side and the space dimension (see
Chapter 5). Moreover, in this case the convergence occurs after a relatively small number of
iterations (see Figure 6.4 and Table 6.1).

6.1.2 Some simulations in case N =1

When the open set € is an interval (0,a) of the real line, we can solve explicitly the primal
problem, which reads

Z(a,\) = inf{/o [ i + A{u#0}|dt : uweWH(0,a), u(0) = u(a) = 1}. (6.8)

The Euler-Lagrange equation written in the integrated conservation law form reads

1
5’“”2 — AX{uzo} = C. (6.9)

Two cases may occur, according to whether the measure of the level set {u = 0} is null or strictly
positive. In the first case, the solution is the constant function equal to 1 on (0, a), with cost
equal to Aa. In the second case, the constant C in (6.9) equals zero, so that u’ € {0, :t\/ﬁ}
Setting B = {z € (0,a) : v/ = £v/2)}, since [§ v’ = 0, there holds [E*| = |E~|, and the cost
is 4A\|E~|. On the other hand, since u(0) = 1 and u reaches the level zero, we have the lower
bound |E~| > 1/v/2). Therefore, such a function u can be a minimizer only if a > 2,/2/\, and
in this case the minimal cost is larger than or equal to 2v/2\, with equality if £~ = (0,1/v/2)),
Et = (h—1/v2X,a). To summarize, we have Z(), a) = min{\a, 2v/2\}, and

(i) for a € (0, 2\[] the unique solution is u; = 1;

(ii) for a > 21/2, the unique solution is

—V2\x +1 if z € [0, \/%]
EQ(CL'): 0 ifxe [ﬁ a—\/%]
1

V22 +1—+2a ifx€la NoULE

(iii) for a = 2\/§ there are two solutions, given by the two functions u; and us.
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Below we give some numerical results obtained, for a = 2, by using the algorithm (6.7).
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Figure 6.1: Streamlines of & and level sets of T.

In Figure 6.1 we present three cases A = 1,2,4. They represent the behaviour of the optimal
o and U in each case. Up to a translation of the interval 2 = (0,2) into (—1,1), we can work on
the cylinder (—1,1) x (0, 1); then, for symmetry reasons, we limit ourselves to plot our functions
on the right part (0,1) x (0,1) of the cylinder. Notice that the most important issue is the
location of the discontinuity set of T, as the free boundary is given by the intersection of this set
with the horizontal axis.

For A = 2, we recover the two solutions 71 and us since the optimal function T exhibits three
values (see Figure 6.1, were the regions in blue, red, and brown correspond respectively to the
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level sets {v =0}, {v = 0.8886}, and {v =1}).
In constrast, for A = 1 or A = 4, when the primal problem admits a unique solution, the
function v exhibits only two values (see the regions in blue and brown in Figure 6.1).

6.1.3 Some simulations in case N = 2

By using the concavity of the map A — Z(£2,\) one can check that, similarly to the one
dimensional case, there exists a critical value A* = A\*(Q2) below which the unique solution of the
primal problem is u; = 1, corresponding to the function vy € A which vanishes identically in
2 x (0,1). For A = X\*(£2) this solution may coexists with a non constant solution @a, exhibiting
a free boundary E. Moreover, the function Q +— A\*(2) turns out to be monotone decreasing
with respect to domain inclusions. In the special case when 2 = Bp := {|z| < R}, we find the
explicit value \*(Bgr) = %.

We now present some numerical simulations obtained for = (—1,1)% Noticing that
By C Q C B, s, we can predict a critical value A*(§2) in the interval (e, 2e). In fact, by using
the second algorithm described above with a mesh size 1072 and by tuning the value of \, we
obtained the estimate \*(§2) ~ 4.7.

In Figures 6.2 and 6.3 we represent respectively the behaviour of the optimal field @ and of
the optimal function @ for A = 2e (for symmetry reasons, Figure 6.2 is referred just to a quarter
of 2, namely to the set (0,1)?). Notice that the free boundary is given by the frontier of the
region in dark blue.

—x

Figure 6.3: Level sets and plots of @ in the case \ = 2e.
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| diveol||2 < 1072 with MPI in 6 processes

N iterations time (seconds)
explicit implicit explicit implicit
63 10662 621 62.54 39.65
123 31147 926 1810.78 501.15
183 59501 1222 11775.74 2333.48
243 93526 1521 44432.96 7430.99

Table 6.1: Free boundary problem. A = 2e. Comparison of two methods in iterations and
computational time. The stop criterion is || divo|[z2 < 1073, They are implemented with MPI

in 6 processes.
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Figure 6.4: Free boundary problem. A = 2e. Comparison of two methods in term of iterations,

computational time.
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Figure 6.5: Plots of optimal T in case A approaching the Cheeger constant hp.

6.2 Free boundary problems with linear growth

We switch to the integrand

f(tv Z) = (p(Z) + >‘X(0,+oo) (t) (610)

where ¢ is a function with linear growth. Replacing the quadratic term |z|2/2 in (6.2) by ¢(2)
still reproduce variants of free boundary in the analogical context. Nevertheless, solutions of
the related variational problems are not obligatory to be continuous. Thus, these problems
should be relaxed in BV space so that their minimum are attained and their minimizers have
possibly discontinuities. When the solutions accept discontinuities, solving numerically the
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variational problems is required to approach the discontinuity interfaces well or at least agreeably.
One of the simplest ways is to augment the nodes of the discretized grid. Yet it results in a
very big computation, especially, 3-dimensional grids. The difficulty is then multiplied since
the primal-dual algorithms are iterative processes. We meet the challenge of reducing the
computational time because the more the iteration is, the more it takes time. We have to
balance these purposes to obtain a pertinent approximation of the discontinuity interfaces in an
acceptable amount of time. The semi-implicit scheme is expectantly designed to do this task.

In case where we take p(2) = /1 + |z]?, we get a variational formulation of minimal surfaces
having free boundary

J(QN) = imf{/Q V1+|Vul2+A{u>0} : ue WH(Q), u=1on GQ}. (6.11)

Up to a constant, the problem 7 (€2, ) is actually a reformulation of the problem §(A) in Chapter
4. The prescribed boundary data is now ug = 1 instead of ug = 0. The dual problem of J (2, \)
reads

T, N) ::sup{—/QUt(%l)dx : UEB}’

where the class B of bounded divergence-free vector field on 2 x R satisfies the pointwise
constraints

lo%(z,t)] <1 ae. on Q xR, o' (z,t) +1/1—|o%(x, )2 +A>0 ae. on A xR, (6.12)
o'(x,0) > —1 a.e. on (. (6.13)
With the same approach in Section 6.1, we are interesting in solving the primal and dual

problems, 7 (2, A) and J*(£2, \), by means of the saddle point problem

inf sup / o-Duv, (6.14)
'UEA O'EIC QX[O)l]

where closed convex subsets are now adapted with

/T:{UGBVOO(QXR) cv=1fort<0,v=0fort>1, vzlon@Qx[O,l]},
KC =

{oeX1@x (0,1) : [0°[ <1, o' + /1= [07]2 + A > 0 ae. in Q% (0,1),
o'(-,0) > —1 a.e. on Q}

i .I,\“\\\I\‘\‘xr o

Figure 6.6: Streamlines of @ and plots of T in the case A = 0.8.
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In view of Theorem 2.14, we can recover the optimal pair (@, ) for the couple of problems in
duality J(Q,\) and J*(2, A) from any saddle point of (6.14). We then apply the semi-implicit
algorithm (6.7) to solve (6.14). The only thing changed in this scheme is the projection on the
closed convex set K. We present in Figure 6.6 a saddle point of the problem (6.14) for Q = [—3, 3]
and A = 0.8. Because of symmetry reason, we plot them in a quarter of the domain 2. As we can
see, the optimal T almost takes values in {0, 1} and has a thin interface of intermediate values
in (0,1). This interface presents the theoretical discontinuity of ¥ which allows recovering the
solution to the primal problem 7 (2, A). In Figure 6.7, we plot the optimal @ of J (€2, \) which
is obtained from . We chose in this example the square €2 large enough (of sizes 6 x 6) and
small enough (A = 0.8) so that we can find an optimal @ that does not have any discontinuity.
Note that the free boundary is given by the frontier of the dark blue region.

z
L\L _x

Figure 6.7: Level sets and plots of @ in the case A = 0.8.

As discussed widely in Section 4.4 of Chapter 4, when we replace ¢(z) in (6.10) by ¢o(z) =
1 + |z|, the problem J (2, ) coincide with the problem minimizing total variation

Jo(Q,\) := |Q| + inf {/ \Vuldz + A{u >0} : we WH*(Q), u=1on ag}
Q

if and only if their common solutions are trivial, i.e. either w =0 or w = 1. And in dimension 2,
solutions of the problem Jp(2, \) are explicit, and of the form 10\, where 2, is the union of all
ball of radius 1/A contained in 2. Nonetheless, we also have some simulation in dimension 2. In
our implementation, we took 2 = [—1/2,1/2]. The Cheeger constant of € is explicitly computed
hq =24 /m. We show in Figure 6.8 the solution of the primal problem Jy(2, \) and the saddle
point for the problem (6.14) for A = hq = 2 + /7. Figure 6.9 displays the approximation of the
Cheeger set Cq of Q and its calibrating field (in the first quarter of the domain). It is easy to
see that the optimal T is actually the characteristic function of the complement of Cq in €, i.e.
U = 1g\¢y,- Then, W is determined by us(x) = inf{t € R : v(x,t) < s} for any s € (0,1).

Figure 6.8: Plots of u, v and streamlines of & in the case A = hg = 2 4 /7.
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Figure 6.9: Approximation of Cheeger set and calibrating field.






Perspectives and open problems

Concerning the duality theory studied and developed in Chapter 2, we are led to perspectives
and open problems which motivates many interests for future works. Let us describe them in
the following:

Functionals involving vector valued functions

The arguments in Section 2.2 have been developped merely in the case of scalar functions.
Namely the space X for which we construct an embedding in the extreme points of some convex
compact subset has always been L'(2). An extension of the method working for vector valued
functions requires to construct another embedding. A very simple choice would be to associate
to a vector field u € L'(€2;RY) the Dirac mass at u(z) so that ¢(u) becomes the Young measure
on Q x RY defined by:

< o(u), b >= /QQ,Z)(:L‘,u(x))d:E e QX RY) .

If |Q| = 1 and u(z) is assigned to stay in a given convex compact subset K C RY, then ¢(u) is
an extreme point in the set of probabilities measures on {2 x K whose first marginal agrees with
the Lebesgue measure on 2. However the explicit computation of the convexified functional
seems difficult in this framework. A possible issue would be to consider more involved tools of
geometric measure theory as Cartesian currents or varifolds [90, 69, 70].

Functionals involving second order gradients

Going back to the scalar case, many problems involve functionals of the kind
F(u) = / f(Vu, V?u) dz
Q

being f(z, M) : RY x Ré\}f,ran a function convex in M but not in z. Applying the convexification
procedure like in Section 2.3 seems to be a nice perspective in this context; It will involve the

curvature tensor at each point (z,u(z)) of the graph of w.

Mumford -Shah functional

The free discontinuity problems have been the first motivation for the convexification recipe
presented in Chapter 2. The goal was to prove the optimality of some specific configurations for
the image segmentation problem described hereafter. Let 2 be a bounded and Lipschitz domain
of R? and g : Q — [0,1] (grey level data).

1 1
o Lo 2 (s, 7/ - 24
(P) ueSIJIBlV(Q) {/Q\Su 2|Vu| dx + H (Sy) + 2 Jo lu — g(x)|* dzx

This setting turns out to be well posed (existence of at least one minimizer) in the space SBV (Q2)
of functions u € L*(Q) whose distributional gradient Du consists in a regular part Vu (coincides
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with the a.e. defined gradient) and a singular part concentrated on the jump set S, which is
a rectifiable one dimensional (unknown) subset of £ whose total length is denoted H!(S,). A
more mechanical formulation of (P) (popular in fracture mechanics) reads

inf{/ 7|Vu|2dm—|—’H / lu — g(x)|?*dz : K closed subset C Q , u € CI(Q\K)}
O\K

As the source term g satisfies 0 < g < 1, by using a trivial truncation argument, one checks
easily that the infimum of (P) is unchanged if restricted to competitors u taking values in [0, 1].
Accordingly we consider the metric space X = L*(€;[0,1]) on which we define the functional

1
/ |vm2mpvﬂ(5) /ﬁu—g@ﬂ%m if u € SBV(Q;]0,1])
Q\S,, 2 2 Jo .

400 otherwise

F(u) :=

Then F' turns out to be coercive and ls.c. Recalling the construction in Section 2.3 (see also
Remark 2.12), we can define a convex functional G on L>*(Q2 x [0, 1]) by setting:

G(v) = sup {/ gv dxdt — Fé‘(g)} , Fi(g) = sup {/ g(x,t) 1, dxdt — F(u)} .
geL>(Qx[0,1]) (J/2x[0,1] wex | Jax(o,1]

so that G(1,) = F(u) for every u € X and inf(P) = inf {G(v) : v € L*(Q x [0,1];]0,1])}.

Unfortunately this functional G' cannot be recovered by using the coarea formula (2.18) and, to
our knowledge, no explicit formula for G is available. Alternatively, in [1], another convex ls.c.
functional J was used such that J < G but satisfying J(1,) = G(1,) = F(u) for every u € X.
Although it is not known whether or not J shares the same infimum as G, a duality scheme
applied to J has been unexpectedly useful for checking the optimality of some competitors for
problem (P) (see many examples in [1]). In this framework the dual problem reads as follows:

(Q) Sup{—/ o'(x,0)dz , 0 €K, divo =0 on Q x [0,1], 0” - vg =0 on 9N x [0,1]},
Q
where the convex constraint ¢ € K splits into the two conditions:

1 1
i) 5’g9”|2 <o+ §]t —g(2))? ae. in Qx[0,1]

1)
/ o%(z,s)ds

t1

< 1 ,aexcQand for every (t1,t) € [0,1]?

ii)

The second condition takes into account the jump energy in F'(u) and is non local. The functional
J defined in BV (€ x R;[0,1]) can be recovered by duality:

J@):sm{A?QDWU):JEK,JGC%QXR%.

As claimed before this convex functional satisfies J(1,) = F(u) whereas J(v) < +oo implies
that v(x,-) is non increasing. It is then possible to prove:

Proposition I. Let g € L*°(9Q;[0,1]). Then it holds inf(P) > sup(Q) with equality if, for an
admissible pair (u,o), one has
o(z,u(z) = (Vu(@),2(|Vu* = u—g?) ae z€Q

W@ 2 ).y = 1 (*)
fu,(m) o (x,t) vy =1 H ae xz€S8,,

where u* denote the upper and lower approzimate limits of u and Sy, = {u™ > u~}.
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Let us notice that the latter result is useful merely when it is possible to guess particular pairs
(u, o) satisfying conditions (x). When a competitor u is candidate to be a global minimizer,
finding a o provides a sufficient condition of optimality. This calibrating vector field o if it exists
is determined on the graph of u by relations (x). The difficulty is to extend it outside the graph
of w while preserving the constraints i) and i) and the divergence free condition. We refer to
[1] for explicit constructions in case of particular Dirichlet boundary data. Unfortunately a
calibration field for proving the optimality of a function of type crack-tip could not yet be found.
A very challenging issue which will be worth for further investigations is the following:

Conjecture: The following equality holds: inf(P) = sup(Q).

Postulating a priori the validity of such a conjecture, numerical schemes based on a primal-dual
algorithm are actually used to solve problem (P) (see [96]). To our knowledge, it has neither
been evidenced any numerical gap disproving the conjecture.

Uniqueness of solution for a multiphase problem

In Chapter 3, we proved (see Theorem 3.3) that any minimizer of the non convex problem is a
minimizer of the convexified. However the converse statement could be untrue although we have
no counterexample. At this stage, arises a deep open issue: is it possible to show uniqueness for
the convexified problem despite the fact that the convexified potential g** is not strictly convex ?
Notice that in the interesting case we have treated, g** is piecewise affine.

Optimality criterion for phase interfaces of an anisotropic multiphase problem

In Chapter 3, the geometric optimality conditions that we found for the phase interfaces are valid
only in the isotropic case of the total variation functional (relation between algebraic curvature
of the interfaces and the respective jumps of the minimizer u and of the density g(u) (see (3.11)).
We are interested in finding the counterpart of these optimality conditions in the anisotropic
variant where crystalline norms are considered.

Perspectives of numerical approximation

Our semi-implicit algorithm (wherein an inverse Laplacian is utilized) is proved to be efficient
not only in term of precision (fineness of interfaces) but also in computational time. Especially
when this numerical scheme is combined with the epigraph projection method, it allows to
treat many non differentiable Lagrangians. In future works, we expect a complete study on the
convergence rate of this method, in particular in comparison with the classical implicit scheme.
On the other hand, when the problem considered requires a duality scheme in dimension 3,
the number of iterations necessary to obtain sharp interfaces is considerably increased and an
acceptable computation time requires using a high performance (parallel) computing platform.
A further objective is to reduce the computation time by making our global approach accurate
with additional tools in the vicinity of the interfaces.
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Une méthode de dualité pour des problemes non convexes du Calcul des Variations

Dans cette these, nous étudions un principe général de convexification permettant de traiter certains
problémes variationnels non convexes sur R?. Gréce & ce principe nous pouvons mettre en ceuvre les
puissantes techniques de dualité et ramener de tels problemes a des formulations de type primal-dual
dans R rendant ainsi efficace la recherche numérique de minima globaux. Une théorie de la,
dualité et des champs de calibration est reformulée dans le cas de fonctionnelles a croissance linéaire.
Sous certaines hypotheses, cela nous permet de généraliser un principe d’exclusion découvert par
Visintin dans les années 1990 et de réduire le probléme initial a la minimisation d’une fonctionnelle
convexe sur R?. Ce résultat s’applique notamment & une classe de problémes & frontiére libre ou
multi-phasique donnant lieu a des tests numériques tres convaincants au vu de la qualité des interfaces
obtenues. Ensuite nous appliquons la théorie des calibrations a un probleme classique de surfaces
minimales avec frontiere libre et établissons de nouveaux résultats de comparaison avec sa variante
ou la fonctionnelle des surfaces minimales est remplacée par la variation totale. Nous généralisons
la notion de calibrabilité introduite par Caselles-Chambolle et Al. et construisons explicitement
une solution duale pour le probleme associé a la seconde fonctionnelle en utilisant un potentiel
localement Lipschitzien lié a la distance au cut-locus. La derniere partie de la these est consacrée aux
algorithmes d’optimisation de type primal-dual pour la recherche de points selle, en introduisant de
nouvelles variantes plus efficaces en précision et temps calcul. Nous avons en particulier introduit une
variante semi-implicite de la méthode d’Arrow-Hurwicz qui permet de réduire le nombre d’itérations
nécessaires pour obtenir une qualité satisfaisante des interfaces. Enfin nous avons traité la non
différentiabilité structurelle des Lagrangiens utilisés a I'aide d’une méthode géométrique de projection
sur I’épigraphe offrant ainsi une alternative aux méthodes classiques de régularisation.

Mot clés : Optimisation non convexe, Principe de min-max, Frontiere libre, Discontinuités libres,
Gamma-convergence, Algorithme primal-dual, Projection épigraphique.

A duality method for non-convex problems in Calculus of Variations

In this thesis, we study a general principle of convexification to treat certain non convex variational
problems in R¢. Thanks to this principle we are able to enforce the powerful duality techniques and
bring back such problems to primal-dual formulations in R%*!, thus making efficient the numerical
search of a global minimizer. A theory of duality and calibration fields is reformulated in the case
of linear-growth functionals. Under suitable assumptions, this allows us to revisit and extend an
exclusion principle discovered by Visintin in the 1990s and to reduce the original problem to the
minimization of a convex functional in R?. This result is then applied successfully to a class of
free boundary or multiphase problems that we treat numerically obtaining very accurate interfaces.
On the other hand we apply the theory of calibrations to a classical problem of minimal surfaces
with free boundary and establish new results related to the comparison with its variant where the
minimal surfaces functional is replaced by the total variation. We generalize the notion of calibrability
introduced by Caselles-Chambolle and Al. and construct explicitly a dual solution for the problem
associated with the second functional by using a locally Lipschitzian potential related to the distance
to the cut-locus. The last part of the thesis is devoted to primal-dual optimization algorithms for
the search of saddle points, introducing new more efficient variants in precision and computation
time. In particular, we experiment a semi-implicit variant of the Arrow-Hurwicz method which
allows to reduce drastically the number of iterations necessary to obtain a sharp accuracy of the
interfaces. Eventually we tackle the structural non-differentiability of the Lagrangian arising from
our method by means of a geometric projection method on the epigraph, thus offering an alternative
to all classical regularization methods.

Keywords : Non-convex optimization, Min-Max principle, Free boundary, Free discontinuities,
Gamma-convergence, Primal-dual algorithm, Epigraph projection.
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