N

N
N

HAL

open science

Argumentation techniques for existential rules

Bruno Yun

» To cite this version:

Bruno Yun. Argumentation techniques for existential rules. Artificial Intelligence [cs.AlI]. Université

de Montpellier, 2019. English. NNT: . tel-02197405v1

HAL Id: tel-02197405
https://theses.hal.science/tel-02197405v1
Submitted on 30 Jul 2019 (v1), last revised 27 Sep 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02197405v1
https://hal.archives-ouvertes.fr

THESE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITE DE MONTPELLIER

En Informatique
Ecole doctorale I2S

Unité de recherche LIRMM

ARGUMENTATION TECHNIQUES FOR
EXISTENTIAL RULES

Présentée par Bruno YUN
Le 11 Juillet 2019

Sous la direction de Madalina CROITORU, Rallou THOMOPOULOS
et Srdjan VESIC

Devant le jury composé de

Madalina CROITORU, MCF HDR, Université de Montpellier, France Directrice
Rallou THOMOPOULOS, DR, INRA, Montpellier, France Co-directrice
Srdjan VESIC, CR, CNRS, Lens, France Co-encadrant
Stefan WOLTRAN, PU, Vienna University of Technology, Vienne, Autriche Rapporteur
Leon VAN DER TORRE, PU, Faculty of Science, Technology and Communication, Luxembourg Rapporteur
Sanjay MODGIL, Senior Lecturer, King's College London, Londres, Royaume-Uni Examinateur
Marie-Christine ROUSSET, PU, University of Grenoble Alpes, Grenoble, France Examinatrice

UNIVERSITE
DE MONTPELLIER

Thanks

I want to express my gratitude to those that supervised me during my
thesis, namely Madalina CROITORU, Pierre BISQUERT, Srdjan VESIC
and Rallou THOMOPOULOS. They have always been the source of fruitful
(scientific) discussions and I will never forget the unconditional and endless
support that I received from each of them.

I also truly enjoyed being a part of the GRAPHIK team. They all
succeeded in awakening my curiosity for computer science and knowledge
representation in particular.

I thank all the co-workers and PhD students that I met at LIRMM and
INRA (especially Abdelraouf, Abdallah, Clément, Fati, Jocelyn, Martin and
Stathis) for the working atmosphere, advices and all the good moments that
we shared.

Now, I would like to thank everyone unrelated to research for their help.
First, I thank my parents and my brother for their trust and the help that
they provided me. Second, I thank all of my friends for the entertainment
and the laughing moments. Lastly, I apologise to everyone that was not
explicitly mentioned.

Abstract

In this thesis, we investigate reasoning techniques with argumentation graphs
generated from inconsistent knowledge bases expressed in the existential
rules language. The existential rules language is a subset of first-order logic
in which a knowledge base is composed of two layers: a fact layer and an on-
tology layer. The fact layer consists of factual knowledge (usually stored in
relational databases) whereas the ontology layer consists of reasoning rules
of deduction and negative constraints. Since the classical query answering
approaches fail in the presence of inconsistencies, we chose to work with an
conflict-tolerant reasoning approach that is based on building graphs with
structured arguments and attacks from the deductions of the underlying
logical knowledge base.

The three main results are the following. First, we study how argumen-
tation graphs are obtained from knowledge bases expressed in existential
rules, the structural properties of such graphs and show several insights as
to how their generation can be improved. Second, we propose a framework
that generates an argumentation graph with a special feature called sets of
attacking arguments instead of the regular binary attack relation and show
how it improves upon the current state-of-the-art using an empirical anal-
ysis. Third, we interest ourselves to ranking-based approaches in both the
context of query answering and argumentation reasoning. In the former, we
introduce a framework that is based on ranking maximal consistent subsets
of facts (repairs) in order to have a more productive query answering. In the
latter, we set up the foundation theory for semantics that rank arguments
in argumentation graphs with sets of attacking arguments.

Keywords: Argumentation, Inconsistency, Graphs, Existential rules,
Datalog+.

11

Résumé (version courte)

Dans cette these, nous étudions les techniques de raisonnement utilisant
des graphes d’argumentation générés a partir de bases de connaissances in-
consistantes exprimées dans le langage des reégles existentielles. Les trois
principaux résultats sont les suivants. Tout d’abord, nous étudions les pro-
priétés structurelles des graphes obtenus a partir de bases de connaissances
exprimées avec des regles existentielles et nous donnons plusieurs indications
sur la maniere dont leur génération peut étre améliorée. Deuxieémement,
nous proposons une technique pour générer un graphe d’argumentation ou
plusieurs arguments peuvent attaquer collectivement, remplacant ainsi la re-
lation d’attaque binaire classique et montrons expérimentalement les avan-
tages de cette technique. Troisiemement, nous nous intéressons aux ap-
proches fondées sur les classements pour le raisonnement en logique et en
argumentation.

Mots clés: Argumentation, Inconsistance, Graphes, Regles existen-
tielles, Datalog+.

Résumé (version longue)

Cette these présente un travail de recherche original dans le domaine de la
représentation des connaissances et du raisonnement, 'un des principaux
sous-domaines de 'intelligence artificielle. Le langage de représentation des
connaissances que nous abordons est appelé regles existentielles, une famille
de langages logiques correspondant au fragment existentiel conjonctif positif
de la logique du premier ordre. Le domaine de la représentation des connais-
sances s’intéresse a la découverte de formalismes fournissant une description
du monde pouvant étre utilisée efficacement pour créer des applications “in-
telligentes”. Dans ce contexte, le terme “intelligent” désigne la capacité
d’un systeme a trouver les conséquences implicites des connaissances ex-
plicitement représentées. Dans sa forme la plus simple, les données peu-
vent étre stockées explicitement par des expressions sous différentes formes,
par exemple dans une base de données relationnelle [Codd, 1970] ou un
triplet RDF. Cependant, afin d’obtenir cette “connaissance implicite” des
données stockées, les communautés de base de données et de représentation
des connaissances ont reconnu la nécessité de structurer les données en in-
formations et en connaissances. Ainsi, des bases de données déductives
avec des ontologies ont été créées pour déduire des données implicites, pal-
liant ainsi I'incomplétude des bases de données classiques. L’introduction
d’ontologies a également permis I’enrichissement et 'unification de vocabu-
laires appartenant a plusieurs sources de données. Dans le Web sémantique,
les connaissances ontologiques sont souvent représentées par des formalismes

111

basés sur les logiques de description [Baader et al., 2005]. Cependant, les
logiques de description ont une expressivité limitée: outre le fait qu’elles ne
prennent en charge que des prédicats unaires et binaires, la connaissance
ontologique ne peut étre décrite qu’en matiere de structure arborescente
(aucun cycle n’est autorisé). Dans un méme temps, le langage de base de
données déductives Datalog [Gallaire and Nicolas, 1987; Ceri et al., 1989,
qui est un sous-ensemble syntaxique de Prolog [Colmerauer and Roussel,
1996], a été élu comme langage par défaut pour les bases de données de
requétes. Cependant, dans ce langage, il est uniquement possible de pro-
duire des connaissances sur des individus déja connus et il n’est pas possible
de déduire 'existence d’individus inconnus. Ceci est une caractéristique cru-
ciale car nous ne pouvons pas supposer que tous les individus soient connus
a 'avance.

Le langage Datalog+ a été proposé pour répondre a ces deux exigences,
c’est-a-dire la capacité d’invention et la capacité a exprimer des structures de
haut niveau telles que des prédicats n-aires ou des ontologies plus complexes.
Le langage Datalog+ est une extension plus expressive du langage Datalog
[Cali et al., 2013] avec la possibilité de déduire des informations sur des
individus inconnus. Cependant, cette nouvelle capacité posa de nombreux
probléemes de calculabilité pour le traitement des requétes. Afin d’éviter ces
problemes, la famille de langages Datalog+ [Cali et al., 2013, 2009] a été
introduite. La famille Datalog+ correspond a l’ensemble des langages qui
restreignent la syntaxe des regles de Datalog+ afin d’assurer la calculabilité.
De plus, Datalog+ a également apporté une nouvelle fonctionnalité: les con-
traintes négatives permettant d’interdire certaines combinaisons de faits.
Veuillez noter que le nom regles existentielles fait référence au méme
formalisme que Datalog+ et nous utiliserons les deux noms de maniere in-
terchangeable.

L’introduction de contraintes négatives engendre des conflits dans les
bases de connaissances. La source de ces conflits est soit ’ensemble de
faits, soit ’ensemble de regles. Dans le premier cas, nous disons qu’un
ensemble de faits est inconsistant si 'application de I’ensemble de regles
sur cet ensemble de faits spécifiques génere un conflit. Dans le deuxieme
cas, un ensemble de regles est dit incohérent si I'application de toutes les
regles & un ensemble de faits conduira toujours a un conflit. La présence
de conflits est problématique, car dans la logique classique, une fois la con-
tradiction affirmée, toute proposition (ainsi que sa négation) peut en étre
déduite. Ceci est connu sous le nom d’explosion déductive (également ap-
pelée ex falso quodlibet). Pour résoudre les incohérences, Pollock [1987] a
introduit le raisonnement “défaisable” dans lequel les faits et les regles peu-
vent étre défaits et des “regles empiriques” ainsi que des préférences suff-
isent afin de rétablir des capacités de raisonnement satisfaisantes [Garcia
and Simari, 2004; Antoniou et al., 2000]. Dans cette these, nous nous limi-
tons aux inconsistances et supposons que nous n’avons pas d’incohérences,

1Y

c’est-a-dire que I'ensemble des regles est cohérent. Afin de raisonner en
présence d’inconsistances avec des regles existentielles, les deux approches
principales sont les sémantiques de réparation [Lembo and Ruzzi, 2007] et
I’argumentation basée sur la logique [Garcia and Simari, 2004; Modgil and
Prakken, 2014]. Les deux approches consistent a raisonner avec les “mon-
des” cohérents possibles, i.e. des sous ensembles de faits de la base logique
qui n’engendrent pas de conflits.

D’une part, les approches se basant sur les sémantiques de réparation
considerent généralement les sous-ensembles maximaux de faits cohérents
appelés réparations qu’ils manipulent & l'aide d’un modificateur (expan-
sion, scission, etc.) et d’une stratégie d’inférence (intersection, univer-
salité, etc.) pour répondre aux requétes en présence d’inconsistances [Baget
et al., 2016a]. D’autre part, les approches d’argumentation basées sur la
logique sont des approches ascendantes qui consistent a instancier un graphe
d’argumentation (c’est-a-dire, générer des arguments et des attaques entre
eux) a partir de connaissances exprimées dans un langage particulier puis a
utiliser une technique de raisonnement sur le graphe d’argumentation obtenu
afin de rétablir la consistance [Amgoud, 2014]. Dans cette these, nous avons
choisi de nous concentrer sur ’argumentation basée sur la logique en raison
de son intuitivité pour 'utilisateur. En effet, les explications fournies par
I’argumentation sont plus intuitives que celles fournies par les sémantiques
de réparation [Arioua, 2016].

Quatre approches majeures ont été étudiées dans la littérature pour
I’argumentation basée sur la logique: l’argumentation basée sur les hy-
potheses (ABA) [Bondarenko et al., 1993], ASPIC/ASPIC + [Modgil and
Prakken, 2014], la programmation avec des logiques défaisables (DeLP)
[Garcia and Simari, 2004] et 'argumentation déductive [Besnard and Hunter,
2008]. Dans cette these, nous nous intéressons & l’argumentation déductive
instancié avec des regles existentielles suivant les travaux de Croitoru and
Vesic [2013] et de Arioua et al. [2017]. Dans ce contexte, la question de
recherche a laquelle nous souhaitons répondre est la suivante:

Question de recherche

Comment peut-on raisonner avec l’argumentation basée sur la
logique dans le contexte des regles existentielles?

Les graphes d’argumentation générés par des systemes d’argumentation
basés sur la logique ont été largement étudiés, en particulier pour caractériser
leur capacité de réponses aux requétes et de traitement des inconsistances.
Néanmoins, peu de travaux on été menés en ce qui concerne la structure
réelle de tels graphes ou sur la maniere de construire ces graphes en pratique.
Notre probleme de recherche peut alors étre reformulé en un sous-ensemble
de questions de recherche plus précises comme suit:

Questions de recherche

e Quelles sont les caractéristiques particulieres des graphes
d’argumentation générés dans le contexte des regles existen-
tielles 7

e Pouvons-nous appliquer les techniques basées sur les classe-
ments sur les graphes générés ?

e Peut-on générer efficacement des graphes d’argumentation dans
le contexte des regles existentielles 7 Peut-on fournir des outils
a cet effet 7

Notre contribution peut étre résumée en trois résultats principaux. Pour
les graphes d’argumentation générés a partir de bases de données de regles
existentielles, nous avons (1) amélioré la compréhension de leurs propriétés
structurelles, (2) leur efficacité et (3) leur expressivité. En ce qui concerne la
compréhension, nous avons proposé un ensemble de propriétés qui élargissent
notre capacité a comprendre de tels graphes et développé des outils intuitifs
pour leur génération. En ce qui concerne leur efficacité, nous avons expliqué
comment générer un graphe d’argumentation par rapport a la structure de
la base de connaissances sous-jacente et nous avons introduit une nouvelle
maniere de créer des hypergraphes d’argumentation. Nous montrons que ces
hypergraphes d’argumentation permettent d’avoir une représentation des
données plus compacte et plus efficace. En ce qui concerne l'expressivité
des graphes d’argumentation, nous avons défini comment les sémantiques
basées sur les classements devraient étre utilisées avec des hypergraphes
d’argumentation. Nos résultats sont disséminés dans les différents chapitres:

Dans le chapitre 2, nous présentons le domaine théorique de la recherche
dans lequel nous travaillons, a savoir le formalisme des regles existentielles
et de la théorie de 'argumentation. Dans la section 2.1, nous introduisons
formellement le cadre de regles existentielles ainsi que le chalnage Skolem,
les différentes classes de regles décidables et les deux types de conflits (in-
cohérence et inconsistance). Ensuite, dans la section 2.2, nous nous concen-
trons sur la théorie de 'argumentation et présentons une introduction aux
approches les plus récentes en matiere d’évaluation des arguments dans le
contexte du cadre d’argumentation abstrait de Dung (approches basées sur
les extensions, sur 1’étiquetage et sur le classement).

Dans le chapitre 3, nous choisissons d’instancier des graphes a partir de
bases de connaissances incohérentes exprimées avec des regles existentielles
et nous revisitons le cadre d’argumentation de Croitoru and Vesic [2013].
Dans la section 3.1, nous présentons d’abord (1) des résultats généraux
pour les graphes générés, tels que 'appartenance a des classes de graphes
particulieres ou l'existence de caractéristiques particulieres (cycles et ar-

VI

guments fondés sur des conflits) et (2) des résultats plus précis pour les
graphes d’argumentation générés a partir de bases de connaissances sans
regles positives, tels qu'une caractérisation du nombre d’arguments factices
ou de la composition de composantes fortement connexes. Ensuite, dans
Section 3.2, nous montrons que la méthode naive de génération des graphes
d’argumentation peut étre améliorée en utilisant un prétraitement de la
base de connaissances ou un filtrage des arguments. Dans la section 3.3,
nous présentons DAGGER, une application intuitive permettant de générer,
visualiser et exporter un graphe d’argumentation a partir de bases de con-
naissances logiques. Enfin, dans la section 3.4, nous comparons les récents
solveurs de la communauté d’argumentation et montrons que les graphes
générés ont un impact conséquent sur les performances des solveurs. Cela
montre la nécessité d’utiliser I’argumentation basée sur la logique dans les
futures compétitions d’argumentation.

Dans le chapitre 4, nous présentons un systeme d’argumentation pour
les regles existentielles basé sur les hypergraphes d’argumentation comme
définis dans les travaux de Nielsen and Parsons [2007]. Dans la section 4.1,
nous montrons que ce nouveau systeme d’argumentation répond a de nom-
breuses propriétés souhaitables (postulats de rationalité, coincidence entre
plusieurs sémantiques d’argumentation, etc.). Nous montrons aussi que ce
systeme est plus efficace en ce qui concerne le temps de calcul, le nombre
d’arguments et d’attaques grace a une analyse empirique. Ensuite, dans la
section 4.2, nous présentons l'outil Java NAKED permettant de générer et
de visualiser ce nouveau systeme d’argumentation.

Dans le chapitre 5, nous décrivons comment les approches basées sur
le classement peuvent étre implémentées a la fois dans le cadre logique et
dans le cadre de ’argumentation. Dans la section 5.1, nous montrons qu’en
présence de redondances, les sémantiques basées sur le classement peuvent
produire des résultats différents si elles sont utilisées sur un noyau (un sous-
graphe ol les arguments redondants sont supprimés) par rapport & quand
elles sont utilisées sur le graphe d’argumentation d’origine. De plus, nous
fournissons des conditions pour que le rang des arguments soit augmenté,
diminué ou inchangé. Ensuite, dans la section 5.2, nous fournissons des in-
structions pour les sémantiques basées sur le classement dans le contexte des
hypergraphes d’argumentation et nous présentons la premiere sémantique
basée sur le classement pour ce type de graphes: la sémantique nh- cate-
goriser. Enfin, dans la section 5.3, nous utilisons une approche similaire
sans argumentation et définissons une approche pour le classement des en-
sembles de faits. Cette approche permet d’obtenir une réponse aux requétes
plus personnalisée sans prendre en compte I’ensemble des réparations.

Dans le chapitre 6, nous résumons nos contributions et présentons un
certain nombre de problemes de recherche futurs basés sur des extensions
possibles de notre travail et de nos travaux publiés.

VII

NOTE

Portions of this work have been published previously in:
e Journals

— Bruno Yun, Pierre Bisquert, Patrice Buche, Madalina Croitoru, Valérie
Guillard and Rallou Thomopoulos: Choice of environment-friendly food
packagings through argumentation systems and preferences, Ecological
Informatics (EI 2018). 24-36 (Impact factor: 1.82).

e Conferences

— Core rank A*:

* Bruno Yun, Srdjan Vesic, Madalina Croitoru and Pierre Bisquert:
Inconsistency Measures for Repair Semantics in OBDA, the 27th
International Joint Conference on Artificial Intelligence and the
23rd European Conference on Artificial Intelligence (IJCAI 2018).
1977-1983 (full paper).

*+ Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bis-
quert: Graph Theoretical Properties of Logic Based Argumenta-
tion Frameworks, 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018). 2148-2149 (short
paper).

* Bruno Yun, Madalina Croitoru and Patrice Buche: Are ranking
semantics sensitive to the notion of core?, 16th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2017). 943-951 (full paper).

* Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bisquert:
DAGGER: Datalog+/- Argumentation Graph GEneRator, 17th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018). 1841-1843 (demo paper).

x Bruno Yun, Madalina Croitoru and Srdjan Vesic: NAKED: N-
Ary graphs from Knowledge bases Expressed in Datalog+, 18th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019). (demo paper).

— Core rank A:

% Bruno Yun, Srdjan Vesic, Madalina Croitoru, Pierre Bisquert
and Rallou Thomopoulos: A Structural Benchmark For Logical
Argumentation Frameworks, 20th International Symposium on In-
telligent Data Analysis (IDA 2017). 334-346 (full paper).

— Core rank B:

% Bruno Yun, Rallou Thomopoulos, Pierre Bisquert and Madalina
Croitoru: Defining argumentation attacks in practice: an experi-
ment in food packaging consumer expectations, 23rd International
Conference on Conceptual Structures (ICCS 2018). 73-87 (full pa-
per).

— Core rank C:

VIII

* Nikos Karanikolas, Madalina Croitoru, Pierre Bisquert, Christos
Kaklamanis, Rallou Thomopoulos and Bruno Yun: Multi-criteria
Decision Making with Existential Rules Using Repair Techniques,
the 38th SGAI International Conference on Artificial Intelligence
(SGAI 2018). 177-183 (short paper).

— Not ranked:

* Bruno Yun, Srdjan Vesic and Madalina Croitoru: Toward a More
Efficient Generation of Structured Argumentation Graphs, the 7th
International Conference on Computational Models of Argument
(COMMA 2018). 205-212 (short paper).

* Bruno Yun, Srdjan Vesic, Madalina Croitoru and Pierre Bisquert:
Viewpoints using ranking based argumentation semantics, the 7th
International Conference on Computational Models of Argument
(COMMA 2018). 381-392 (full paper).

*x Bruno Yun, Pierre Bisquert, Patrice Buche and Madalina Croitoru:
Arguing about end-of-life of packagings: Preferences to the Res-
cue, 10th International Conference on Metadata and Semantics
Research (MTSR 2016). 119-131 (full paper).

* Bruno Yun and Madalina Croitoru: An Argumentation Workflow
for Reasoning in Ontology Based Data Access, 6th International
Conference on Computational Models of Argument (COMMA 2016).
61-68 (short paper).

* Bruno Yun, Madalina Croitoru and Srdjan Vesic: How to gener-
ate a benchmark of logical argumentation graphs?, the 7th Interna-
tional Conference on Computational Models of Argument (COMMA
2018). 475-476 (demo paper).

e Workshops

— Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bisquert:
Graph theoretical properties of logic based argumentation frameworks:
proofs and general results, 5th Workshop on Graph Structures for Knowl-
edge Representation and Reasoning (GKRQIJCAI 2018). 118-138 (full

paper).

IX

Contents

1

2

Introduction

Preliminaries

2.1 Existential rules framework L.
2.1.1 Logical language
2.1.2 Rulesand reasoning
2.1.3 Chase and finite expansionset
2.1.4 Complexity classes
2.1.5 Incoherence and inconsistence

2.2 Argumentation theoryo
2.2.1 Abstract argumentation semantics
2.2.2 Extension-based approaches
2.2.3 Labelling approach
2.2.4 Ranking-based semantics

2.3 Summary ...

Using Deductive Argumentation with Existential Rules
3.1 Deductive argumentation frameworks in existential rules
3.1.1 Argumentation graphs generated from knowledge bases
3.1.2 Argumentation graphs generated from knowledge bases
without rules.o
3.2 Improving the argument generation
3.2.1 Optimisation for knowledge bases without rules
3.2.2 Optimisation for knowledge bases with rules
33 The DAGGER tool
3.3.1 DAGGER's architecture
3.3.2 Usability scenarios
3.4 Benchmarks on logic-based argumentation frameworks
3.4.1 Benchmark generation
3.4.2 Results of literature solvers over the benchmark
35 Summary ..o

Argumentation Hypergraphs
4.1 Argumentation hypergraphs with the existential rules language .

CONTENTS

4.1.1 Hypergraph argumentation framework §* 92
4.1.2 Argumentation framework properties 94
4.1.3 Rationality postulates 99
414 Empiricalanalysis. 0oL 100
42 The NAKED tool 106
4.2.1 The argument and attack generation 107
422 Thestructure of NAKED 108
4.2.3 Usability scenarios 110
43 Summary ... e 112
Ranking-Based Reasoning 113
5.1 Ranking with existential rules deductive argumentation framework116
5.1.1 Coreequivalence 117
5.1.2 Characterising ranking changes 126
5.2 Ranking-based semantics with argumentation hypergraphs . . . 131
5.2.1 Properties for ranking-based semantics on hypergraphs . 132
5.2.2 The nh-categoriser 136
5.3 Ranking facts in inconsistent knowledge bases 142
5.3.1 The ranking-based inference framework 143
532 RIFresults 148
5.4 Summary e 155
Conclusion 159
6.1 Scope 160
6.2 Summary and contributionso 161
6.3 Perspectives 163
Appendix i
7.1 Miscellaneouso i
7.2 Proofs e ii
721 Chapter3 ii
722 Chapterdo viii
723 Chapterbo xii

XI

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8

3.9

4.1
4.2
4.3
4.4

4.5

Image of a spiny anteater 4
Representation of the first possible world 5
Representation of the second possible world 6
Representation of the third possible world 6
Abstract and known concrete classes of existential rules . . . 24
Known concrete FES classes and chases finiteness 25
Argumentation framework of Example 2.13 32
Argumentation framework of Example 2.17 37
Inclusion relations between argumentation semantics 37
Labelling that corresponds to {a,c} of Example 2.17 39
Labelling that corresponds to {a} of Example 2.17 39
An argumentation framework § 41
Representation of a 2-copy graph 58
Structural properties of argumentation frameworks generated

from simple knowledge bases 63
Approach workflow for optimising the argument generation . 64
Three steps reconstruction using k-copy graphs 66
The 3-layer structure of DAGGER, 75
Repair computation module of DAGGER 76
Argumentation module of DAGGER 78
Screen capture of the argumentation graph interface of the

DAGGER tool 79
Representation of the argumentation graph corresponding to

the knowledge base byq 82

Generation time comparison between Fxp and F* g for set A 102
Generation time comparison between Fxp and F*yp for set B 102
Comparison of the number of arguments between Fyp and

Frqp forset A 103
Comparison of the number of arguments between Fxp and
Frqg forset B 103

Comparison of the number of attacks between Fxp and F*xp
forset A 104

LIST OF FIGURES

4.6

4.7
4.8
4.9
4.10

5.1

0.2

5.3

5.4
9.5

5.6
5.7

Comparison of the number of attacks between xg and F*5p

forset B e 104
An argumentation hypergraph about packagings. 107
Representation of hyperedges in NAKED 109
Representation of the areas of interest in NAKED 110
Argument highlight feature in NAKED 111
Representation of the core ¢; of §xs using »<; and displayed

inTable 5.1 121
Representation of the core co of Fxs using »<5 and displayed

in Table 5.1 122
Representation of an argumentation framework & and one of

itscores ¢’ 129
Argumentation framework with equal h-categoriser scores . . 141
Another argumentation framework with equal h-categoriser

SCOTES & v v v e e e e e e e e e e 141
Representation of the RIF workflow 145
Representation of the considered packagings 154

XIII

List of Tables

1.1

2.1

2.2

3.1
3.2
3.3

3.4

3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1

5.1

5.2
5.3
5.4

9.5
5.6

Reading guide by topics Lo

Complexity of CQ entailment for studied Skolem-FES con-
creteclasses
Argumentation semantics with respect to criteria

Classes of argumentation frameworks studied in the literature
Images of the permutationcon X
Arguments in Fxp obtained from the knowledge base of Ex-

ample 3.23
Characteristics of the Fip and ?5-3‘{3 generated from the knowl-

edge bases. Lo
Characteristics of the small knowledge bases
Average computational time for small instances
Ranking of solvers for the generated small graphs
Number of timeouts for the generated large graphs
Ranking of solvers for the generated large graphs
Rankings extracted from the ICCMA 2015 website
Normalised Kendall’s tau distance between the rankings of

the generated graphs and the competition ranking

Comparison of the median number of arguments, attacks and
generation time needed between §* 43 and Fxp on the sets of
knowledge bases A1,A2,A3and B

Some arguments constructed from the knowledge base of FEx-
ample 5.12 and two particular cores obtained using »; and

Ranking on arguments of ¢; using the burden-based (and
discussion-based) ranking-based semantics
Ranking on arguments of co using the burden-based (and
discussion-based) ranking-based semantics
Ranking K using the ranking on arguments of Table 5.2
Ranking K using the ranking on arguments of Table 5.3
Ranking on repairs L.

11

27
38

52
60

70

73
81
83
84
84
84
86

86

Introduction

This thesis presents an original research in the field of Knowledge Repre-
sentation and Reasoning (KRR), one of the main sub-domains in Artificial
Intelligence (AI). The knowledge representation language we address is the
existential rules framework, a family of logical languages corresponding to
the positive conjunctive existential fragment of FOL. The contribution of
the thesis is the investigation of reasoning techniques using argumentation
graphs generated from inconsistent knowledge bases expressed in the exis-
tential rules language.

In the reminder of this chapter, we put in context this research vision
with respect to our work. The chapter is structured as follows. In Section
1.1, we introduce the general context of the existential rules framework and
the types of conflicts that may arise. In Section 1.2, we show the classical
techniques for reasoning in the presence of inconsistencies. In Section 1.3, we
recall the existing approaches for logic-based argumentation in the literature.
Section 1.4 discusses the research question and our contributions. Finally,
in Section 1.5, we conclude and highlight the structure of this thesis.

1.1 The existential rules framework

In the field of knowledge representation and reasoning, we thrive for for-
malisms that provide a high-level description of the world that can be ef-
fectively used to build intelligent applications. In this context, “intelligent”
refers to the ability of a system to find implicit consequences of its explicitly
represented knowledge.

In its simplest form, data can be stored explicitly as statements in various
manners, for instance in a relational database [Codd, 1970], an RDF triple
store or a graph database. However, in order to get this “implicit knowl-
edge” from the stored data, both the database and knowledge representation
communities acknowledged the need to limit complexity and organise data
into information and knowledge. Thus, deductive database with ontologies
were created to infer implicit data, hence palliating incompleteness in clas-
sical databases. The introduction of ontologies also enabled the enrichment

1

CHAPTER 1. INTRODUCTION

and unification of vocabularies in multiple data sources. In the Semantic
Web, ontological knowledge is often represented with formalisms based on
Description Logics (DLs), a family of formal KRR languages used for de-
scribing and reasoning about the relevant concepts of an application domain
[Baader et al., 2005]. However, DLs have a restricted expressivity: beside
the fact that they support only unary and binary predicates, the ontological
knowledge can only be described in terms of tree structures (i.e. no cycles are
allowed). Moreover, conjunctive query answering with classical DLs, such
as the ALCJ DL, has appeared to be extremely complex (it is 2EXPTIME-
complete in combined complexity, and still NP-complete in the size of the
data). Hence, there has been a trend to using so-called lightweight DLs for
which query answering is tractable and particular attention has been paid to
DL-Lite and the ££ DL [Calvanese et al., 2007] which possess the notable
property that query answering can be reduced to evaluation of standard
database queries. Please note that these DLs form the core of the so-called
tractable profiles of the Semantic Web language OWL 2.

Meanwhile, the Deductive Database language Datalog [Gallaire and Nico-
las, 1987; Ceri et al., 1989] which is a syntactic subset of Prolog [Colmer-
auer and Roussel, 1996] have been praised as the default language for query
databases. It is not only more expressive than regular relational databases
but also possesses desirable features for query answering since Datalog queries
on finite sets are guaranteed to terminate. However, in this language, all
variables in the rule head necessarily occur in the rule body. Therefore, we
can only produce knowledge about already known individuals and cannot
infer the existence of unknown individuals. This is a crucial feature since
we cannot assume that all individuals are known in advance.

The Datalog+ language have been proposed to meet these two require-
ments, i.e. value invention and the ability to express high-level structures
such as n-ary predicates or more complex ontologies. The Datalog+ lan-
guage is a more expressive extension of the Datalog language [Cali et al.,
2013] with the introduction of existential quantifiers in head rules, allowing
for the deduction of unknown individuals as in “if x is married then there
exists an unknown individual y such that x and y are married”. The in-
troduction of existential quantifiers in the head rules led to many problems
for the tractability of query answering given the need to deal with large
data sets. In order to avoid this tractability problem, the Datalog+ family
of languages [Cali et al., 2013, 2009] was introduced. The Datalog+ family
corresponds to the set of languages that restrict the rule syntax in order to
achieve tractability. Moreover, Datalog+ also brings a new feature: falsum
(L) in rule heads in order to forbid certain combinations of facts. Such a rule
is called a negative constraint and models some sort of logical negation in
the human reasoning like “x cannot be married and unmarried at the same
time”. These additional features made it possible for Datalog+ to generalise
disparate other KR formalisms such as plain Datalog and a variety of De-

2

1.1. THE EXISTENTIAL RULES FRAMEWORK

scription Logics families, in particular, DL-Lite and E£[Cali et al., 2010a].
Please note that the name existential rules framework refer to the same
formalism as Datalog+ and we will use the two names interchangeably.

The introduction of negative constraints gives rise to conflicts in the
knowledge representation. The source of those conflicts is either the set
of facts or the set of rules. In the former, we say that a set of facts is
inconsistent if applying the set of rules on that specific set of facts generates
falsum. In the latter, a set of rules is said to be incoherent if applying all of
the rules to any set of facts will always lead to falsum.

Example 1.1 (Inconsistency). Consider the following situation where we
want to know if John is married or not. Suppose that there are no means by
which we can verify the truthfulness and reliability of the factual knowledge.

o Factual knowledge: There is a piece of evidence e1 proving that John
is married and there is another piece of evidence es proving that John
s unmarried.

o Rules: If there is an evidence that a person is married than he 1is
married. Likewise, If there is an evidence that a person is unmarried,
then he is unmarried.

e Negative constraint: It is not possible for a person to be married and
unmarried at the same time.

The set of factual knowledge is inconsistent with respect to the set of
rules since we can generate generate both the facts that John is married
and unmarried (given evidence ey and ez). However, the set of rules is
coherent as we can find a set of facts such that all rules can be applied and
no contradiction are generated. For instance, there is an evidence proving
that John is married and an evidence proving that Alice is unmarried.

We now give an example of an incoherent set of rules.

Example 1.2 (Incoherence). Consider the following set of rules: spiny
anteaters are mammals, mammals do not lay eggs, spiny anteaters lay eggs,
and one cannot lay eggs and not lay eggs at the same time. Any set of
factual knowledge on which all these rules are applicable will always lead to
contradiction (lay eggs and not lay eggs).

Please note that Flouris et al. [2006] showed that inconsistency can be
viewed as a form of incoherence. The presence of conflicts is problematic,
as in classical logic, once a contradiction has been asserted, any proposition
(including their negations) can be inferred from it. This is known as deduc-
tive explosion (also called ez falso quodlibet). For instance if ¢ and —¢ are
true then, for any ¢ it holds that ¢ V ¢/ is true because ¢ is true. But since
¢ is false and ¢ V ¢ is true, then ¢ has to be true.

CHAPTER 1. INTRODUCTION

Figure 1.1: Image of a spiny anteater

In order to solve the incoherences, Pollock [1987] introduced Defeasible
Reasoning where both facts and rules can be defeated and “rules of thumb”
along with preferences are enough to choose the preferred outcome [Garcia
and Simari, 2004; Antoniou et al., 2000]. In this thesis, we restrict our-
selves to inconsistencies and we make the assumption that we do not have
incoherences, i.e. the set of rules is coherent. In the next section, we show
how to deal with inconsistencies and give a brief introduction on the main
approaches.

1.2 Inconsistency-tolerant reasoning

In order to reason in presence of inconsistencies within the context of the
existential rules framework, the two main approaches are Repair Seman-
tics [Lembo and Ruzzi, 2007] and Logic-Based Argumentation [Garcia and
Simari, 2004; Modgil and Prakken, 2014; Toni, 2014; Bondarenko et al.,
1993; Besnard and Hunter, 2001]. Both approaches consist in reasoning
with possible consistent “worlds”.

On the one hand, the repair semantics approaches generally consider
Maximally Consistent Subsets (MCS) of facts called repairs that they ma-
nipulate using a modifier (expansion, splitting, etc.) and an inference strat-
egy (intersection, universality, etc.) for answering queries in presence of
inconsistencies [Baget et al., 2016a]. Please note that the algorithms for
repair semantics in practical applications do not compute all of the repairs
but are based on rewriting queries [Lembo et al., 2015].

Example 1.3 (Repair semantics). Consider the following inconsistent
situation about the presence of a person in Anthony’s house last night. The
situation is modelled using a set of facts, a set of rules and a set of negative
constraints. We suppose that there are no means by which we can verify the
truthfulness and reliability of the factual knowledge. We have the following
set of facts:

f1: Anthony’s neighbour heard his washing machine running last night.

f2: Rebecca had dinner with Anthony at his house last night.

4

1.2. INCONSISTENCY-TOLERANT REASONING

f8: Rebecca was depressed and stayed at her house last night.

f4: There was no electricity in Anthony’s whole neighbourhood last night.
f5: Last night, Anthony posted a selfie of himself at his house.

f6: Last night, it was a full moon.

And the following set of rules:

r1: If the washing machine was running at X’s house, then there was a
person at X’s house.

r2: If there was no electricity at X house, then there was no person at his
X'’s house.

r3: If there was a selfie of someone at X’s house, then there was a person
at X'’s house.

r4: If someone had dinner with another person at X’s house, then there
was a person at X’s house.

And the following set of constraints:

nl: It is not possible that there is a person at X’s house and no person at
X'’s house at the same time.

n2: One cannot be at two different houses at the same time.

We can clearly see that the set of factual knowledge is inconsistent since
we can deduce that there was no person at Anthony’s house (using f4 and
r2) and that there was someone at Anthony’s house last night (using f1 and
r1). In order to cope with the inconsistencies, the repair semantics consider
the following set of repairs (the possible worlds).

o Rebecca was depressed and stayed at her house, there was no electricity
at Anthony’s house and it was a full moon ({f3, f1, f61})-

A%a
e | b

Figure 1.2: Representation of the first possible world

CHAPTER 1. INTRODUCTION

=)

Figure 1.3: Representation of the second possible world

o At Anthony’s house, the washing machine was running, Rebecca had
dinner with Anthony, Anthony took a selfie and it was a full moon

({f1; f2, f5, fo})-

o At Anthony’s house, the washing machine was running and Anthony
took a selfie of himself at his house, Rebecca was depressed and stayed
at her house and it was a full moon ({f1, f3, f5, f6})-

Figure 1.4: Representation of the third possible world

If we consider the repair semantics that answer positively to a query if
and only if it is entailed by all the repairs then we will get a negative answer
to the query “was there someone in Anthony’s house?” because in the first
repair, we have no proof that someone was in Anthony’s house. However, we
will get a positive answer to the query “was there a full moon last night?”.

On the other hand, the logic-based argumentation approaches are bottom-
up approaches that consist in first instantiating an argumentation framework
(i.e. generating arguments and attacks, see next section for an explanation)
from knowledge expressed in a particular language and then, applying a rea-
soning technique on the resulting argumentation graph in order to restore
consistency [Amgoud, 2014].

6

1.3. LOGIC-BASED ARGUMENTATION

In this thesis, we choose to focus on logic-based argumentation because
of its intuitiveness with respect to explanations compared to repair seman-
tics [Arioua, 2016] and its reusability in many domains such as debates [Leite
and Martins, 2011], decision-making [Gordon and Karacapilidis, 1997; Bonet
and Geffner, 1996] or persuasion [Amgoud et al., 2000; Prakken, 2006; Had-
jinikolis et al., 2013].

1.3 Logic-based argumentation

When working with logic-based argumentation, there are two main questions
that should be answered:

1. How do we generate the argumentation framework?

2. What are the reasoning techniques that can be used?

In order to answer those questions, we have to study how to build argu-
ments from a knowledge base using a given logic. Roughly speaking, a logic
has two main components: a logical language (a set of well-formed formulae)
and a consequence operator that can draw conclusions from a set of formu-
lae. In the literature, we can distinguish two main families of approaches
that are used in logic-based argumentation: The first family contains ap-
proaches where arguments are built from Tarskian logics [Tarski, 1936],
while the second family of approaches use rule-based logics for constructing
arguments. The Tarskian logic is an abstract logic, i.e. it generalises sev-
eral concrete logics that respect some axioms on the consequence operator
(expansion, idempotence, finitude, absurdity and coherence) whereas, rule-
based logics [Amgoud et al., 2004] are logics that usually encode two types
of rules (strict rules which encode certain knowledge and defeasible rules
which encode uncertain knowledge) and the consequence mechanism shows
how these rules can be chained. The distinction between the strict and de-
feasible rules is that a rule is “defeasible if it can be blocked or defeated in
some way” [Gabbay et al., 1993]. There are four major logical approaches
that have been studied in the literature: Assumption-Based Argumentation
frameworks (ABA) [Bondarenko et al., 1993], ASPIC/ASPIC+ [Modgil and
Prakken, 2014], Defeasible Logic Programming (DeLP) [Garcia and Simari,
2004] and Deductive argumentation [Besnard and Hunter, 2008]. The first
three approaches are systems based on rule-based logics whereas the fourth
is more oriented toward Classical Logics where an arguments is seen as a
pair with a hypothesis and a conclusion. We now briefly introduce each of
the aforementioned argumentation frameworks and show how they manage
to reason in presence of conflicting knowledge.

The ABA framework, as defined by Toni [2014], is composed of a lan-
guage, a set of rules, a set of assumptions (they are observations or defeasible

7

CHAPTER 1. INTRODUCTION

premises) and a contrariness function for explaining the reason against each
assumptions. The language used by the ABA framework is left abstract
(it can be any language of sentences) while the contrariness can be seen
as a “handle” to attack the weak point of an assumption. In ABA, the
arguments are deductions of claims using the rules and supported by as-
sumptions whereas the attack is defined as follows: an argument a attacks
another arguments b if and only if the conclusion of a is the contrary of
one of the assumptions of b. Several computational techniques have been
defined for ABA [Toni, 2013; Dung et al., 2006], extensions with preferences
have been proposed [Bao et al., 2017] and online tools' are available. We
end this short introduction to ABA by noting that the reasoning techniques
for this framework are called ABA semantics and can be viewed from two
perspectives: the argument and the assumption perspectives. In the first
perspective, the standard semantics for abstract argumentation, defined by
Dung [1995] in his seminal paper, are applied to ABA. These semantics can
compute “acceptable” or “winning” arguments with respect to the attacks
in the argumentation graph. In the second perspective, it considers that
sets of assumptions can attack each other and sets of “winning” assump-
tions can be computed in the same fashion. Correspondence between these
two perspectives are the results of the work of Dung et al. [2007] and Toni
[2012] and enabled a jump in performance.

The ASPIC+ framework was created in the context of the European
ASPIC project as a general framework for generating arguments that ac-
commodates a broad range of instantiating logics. As defined by Modgil
and Prakken [2014], an argumentation system is composed of a logical lan-
guage closed under negation, a set of rules (strict and defeasible) and a
labelling function that associates a sentence to some defeasible rules. Please
note that, inspiring themselves from the work of Bondarenko et al. [1993] on
ABA, Modgil and Prakken [2013] lifted the closure under negation condition
on the language by further adding a particular contrariness function that
associates a set of reasons against each sentences of the language. In the AS-
PIC+ framework, an argument can either be a sentence of the language or
built upon other arguments according to the rule applications. This frame-
work also includes three types of attacks, namely undercutting (attack on a
defeasible deduction based on the aforementioned labelling function), rebut-
ting (attacks on a weak conclusion) and undermining (attack on a premise).
The framework also accommodates with preferences on arguments using the
notion of defeat (or successful attack). As a preference relation on argu-
ments is somewhat harder to obtain than an ordering on elements of the
language or rules, the framework comes with ways to “lift” these orderings
in order to obtain a preference relation on arguments. An online tool for

ISuch as http://www-abaplus.doc.ic.ac.uk.

8

http://www-abaplus.doc.ic.ac.uk

1.3. LOGIC-BASED ARGUMENTATION

ASPIC+, called TOAST, has been developed and is available?. We end
this short introduction to ASPIC+ by a little discussion on the reasoning
techniques for this framework. As stated by Modgil and Prakken [2014], the
Dung’s extensions of this framework respect the four rationality postulates
defined by Caminada and Amgoud [2007] (Sub-argument closure, Closure
under Strict Rules, Direct Consistency, Indirect Consistency). This allows
ASPIC+ to restore the consistency of the data it is built on. Please note
that although some say that the framework violates the consistency in some
cases, patches have been proposed by Modgil and Prakken [2014].

The Defeasible Logic Programming (DeLP) is an argumentation formal-
ism for deciding between contradictory goals. As defined originally by Garcia
and Simari [2004], a Defeasible Logic Program is originally composed of a set
of fact (ground atoms or negated ground atoms), a set of strict rules and a
set of defeasible rules. It has to be noted that this formalism only considers
ground rules and that the set of strict rules are considered coherent and
consistent with the set of facts. In DeLP, an argument structure (or simply
argument) is a minimal non-contradictory set of defeasible rules that leads
to the deduction of a specific fact. Therefore, a sub-argument structure of an
argument structure is simply an argument structure with a “smaller” (for
set inclusion) set of defeasible rules. Thus, argument structures in DeL.P are
usually represented with triangles containing smaller triangles representing
their sub-argument structures. The attack considered in DeL.P is as follows:
an argument a that leads to hy attacks an other argument b if and only
if there is a sub-argument ¢ of b that leads to hs and {hy, ho} are conflict-
ing when put together with the facts and strict rules. This formalism also
includes two ways for comparing arguments by using either the specificity
criterion, based on the work of Poole [1985], or an explicit preference relation
defined among defeasible rules. The comparison criterion among arguments
is used in the same fashion as ASPIC+, i.e. using the notion of defeaters
(successful attacks). An online tool has been developed and is available?
and concrete applications have been studied [Garcia et al., 2000]. We end
this short introduction by briefly explaining one of the ways for reasoning
in the presence of inconsistencies in DelLP. First, the arguments are built
and attacks are computed. Second, a comparison criterion for arguments is
chosen and defeated arguments are computed. At this point, the result is
usually a tree-like graph called “Dialectical tree” where nodes are argument
structures and links are defeat relations. Third, the nodes of a dialectical
tree are marked in bottom-up process (from the leaves to the root). Fourth,
the marking on the root is used for query answering.

The Deductive argumentation, as originally defined by Besnard and
Hunter [2008], considers arguments as a pair (H,c) where H is a set of as-

2See http://toast.arg-tech.org.
3See http://1lidia.cs.uns.edu.ar/DeLP.

http://toast.arg-tech.org
http://lidia.cs.uns.edu.ar/DeLP

CHAPTER 1. INTRODUCTION

sumptions called the premises (or equivalently, the support) of the argument
and c is the conclusion (or equivalently, the claim or the consequent) of the
argument. In the literature, deductive argumentation have been used in two
main approaches: generating argumentation frameworks directly over the
abstract Tarskian logic [Amgoud and Besnard, 2009, 2010] or over a con-
crete Tarskian logic such as propositional logics [Amgoud and Cayrol, 1998;
Besnard and Hunter, 2001] or first-order logic [Besnard and Hunter, 2001,
2008, 2014]. In this thesis, we are interested in the second approach. More
precisely, we will study deductive argumentation frameworks built over the
existential rules framework following the work of Croitoru and Vesic [2013],
Arioua et al. [2017] and Arioua [2016]. In these argumentation frameworks,
although much effort has been spent to show the desirable behaviour with
query answering and inconsistency handling, there is not a lot of work on
the actual structure of such graphs or how to practically construct these
argumentation frameworks.

1.4 Research problem and contributions

Against this background, the research question we want to answer is:

Research Question

How can we reason using logic-based argumentation in the context
of the existential rules framework?

Our research problem can be reformulated into a subset of more precise
research questions as follows:

Research Questions

e Are the argumentation frameworks generated with the existen-
tial rules particular?

e Can we characterise and apply extension-based and ranking-
based techniques on the generated graphs?

e How can we efficiently generate argumentation graphs within
the context of existential rules? Can we provide tools?

Our contribution focused on improving (1) the understanding of the
structural properties of argumentation graphs generated from existential
rules databases, (2) their efficiency and (3) their expressivity. Regarding
the understanding, we have a proposed a set of properties that extends our
grasp of such graphs and developed intuitive tools for their generation. Re-

10

1.5. THESIS ORGANISATION

Topic Binary graphs

Hypergraphs

Chapter 3

Generation Published in [Yun et al., 2018c, 2017b]

Chapter 4
Published in [Yun et al., 2019]

Reasoning with extensions Chapter 2, Chapter 3

Chapter 4

Published in [Yun et al., 2018b)

Reasoning with rankings

Chapter 5 Chapter 5
Published in [Yun et al., 2017a]

Table 1.1: Reading guide by topics

garding their efficiency, we gave insights as to how one should generate an
argumentation graph with respect to the structure of the underlying knowl-
edge base and introduced a more efficient hypergraph-based argumentation
framework. Regarding the argumentation graph expressivity, we paved the
way by first defining how ranking-based semantics should be used with hy-
pergraph argumentation frameworks.

1.5 Thesis organisation

We chose to present the research that we did in the past three years while at
LIRMM by selecting some of our results submitted or published in interna-
tional conferences. Each chapter is constructed around results that we find
important in order to give a relevant representation of our research inter-
ests. Table 1.1 summarises the organisation of the thesis. Please note that
the presentation of our works was done “a posteriori” and does not coincide
with their chronological publication dates.

Chapter 2. In this chapter, we present the theoretical domain of research
that we are working in, namely the formalism of the existential rules frame-
work and the argumentation theory. In Section 2.1, we formally introduce
the existential rules framework along with the frontier chase, the several de-
cidable classes of rules and the two types of conflicts (incoherence and incon-
sistence). Then, in Section 2.2, we focus on the argumentation theory and
show an introduction to the state-of-the-art existing approaches for evaluat-
ing arguments in the context of Dung’s abstract argumentation framework
(extension-based, labelling-based and ranking-based approaches).

Chapter 3. In this chapter, we chose to instantiate graphs using incon-
sistent existential rules knowledge bases and to revisit the argumentation
framework of Croitoru and Vesic [2013]. In Section 3.1, we first present
both (1) general results for the generated graphs such that the membership
to particular graph classes or the existence of particular features (cycles
and conflict-based arguments) and (2) more focused results for argumen-

11

CHAPTER 1. INTRODUCTION

tation graphs generated from knowledge bases without positive rules such
that a characterisation of the number of dummy arguments or composi-
tions of strongly connected components. Then, in Section 3.2, we show that
the naive method for generating the argumentation framework can be im-
proved using either a preprocessing of the knowledge base or a filtration of
arguments. In Section 3.3, we introduce DAGGER as an intuitive appli-
cation for generating, visualising and exporting argumentation graph from
logical knowledge bases. Lastly, in Section 3.4, we benchmark state-of-the-
art solvers from the argumentation community and show that the generated
graphs impact the performance of solvers. This shows the necessity for logic-
based argumentation graphs in the upcoming argumentation competitions
and why some solvers can outperform other solvers on these graphs. This
chapter builds upon the published work of Yun et al. [2017b, 2018¢,b,f].

Chapter 4. In this chapter, we present a new argumentation framework
for the existential rules framework based on the hypergraph argumentation
framework defined in the work of Nielsen and Parsons [2007]. In Section 4.1,
we show that this new argumentation framework satisfies many desirable
properties (the rationality postulates, coincidence between argumentation
semantics, etc.) and is more efficient using an empirical analysis with respect
to computational time, number of argument and attacks. Then, in Section
4.2, we introduce the NAKED java tool for generating and visualising this
new argumentation framework. This chapter builds upon the published
work of Yun et al. [2019].

Chapter 5. In this chapter, we present how ranking-based approaches
can be implemented in both the argumentation and the logical setting. In
Section 5.1, we show that in the presence of redundancies, ranking-based
semantics may yield different results if they are used on a core (a subgraph
where redundant arguments are removed) compared to when they are used
on the original argumentation framework. Moreover, we provide conditions
for the rank of arguments to be increased, decreased or unchanged. Then,
in Section 5.2, we provide guidelines for ranking-based semantics in the
context of argumentation hypergraphs and introduce the first ranking-based
semantics for such type of graphs: the nh-categoriser. Finally, in Section 5.3,
we use a similar approach without argumentation and define a framework
for ranking sets of facts. This framework enables to get a more focused
query-answering without considering the set of all repairs. This chapter
builds upon the published work of Yun et al. [2017a, 2018g].

Chapter 6. This chapter summarises our contributions, and presents a
number of interesting future research problems based on possible extensions
of both this work and the published work of Yun et al. [2016, 2018e,a,h].

12

Preliminaries

2.1 Existential rules framework 14
2.1.1 Logical language 14
2.1.2 Rulesand reasoning. 17
2.1.3 Chase and finite expansionset 20
2.1.4 Complexity classes 26
2.1.5 Incoherence and inconsistence 27
2.2 Argumentation theory 32
2.2.1 Abstract argumentation semantics 32
2.2.2 Extension-based approaches 33
2.2.3 Labelling approach 38
2.2.4 Ranking-based semantics 40
23 Summary 44

In this chapter, we discuss two main problems of the knowledge repre-
sentation field: ensuring the termination of the reasoning mechanism and
reasoning in presence of conflicting knowledge.

In knowledge representation, we always thrive to find a good balance
between the expressiveness and the computational tractability, since a higher
expressiveness might lead to an infinite reasoning. In this section, we provide
an introduction to knowledge representation with the existential rules logical
framework and to its forward chaining inference mechanism called “chase”.
We recall the reasoning problem of query entailment and the notion of finite
classes of existential rules for which the chase is guaranteed to halt. Since
knowledge databases might contain conflicts, we introduce the two types of
conflicts (inconsistence and incoherence) and discuss how the argumentation
theory manages to handle inconsistencies using several evaluation methods.

13

CHAPTER 2. PRELIMINARIES

Research Questions in this Chapter

e How is knowledge represented using existential rules and how
can we reason with this knowledge?

e What are the different types of conflict (inconsistence and in-
coherence) and how can we maintain the ability to reason in
presence of conflicts?

e How can we handle conflicting knowledge in the context of ab-
stract argumentation theory?

2.1 Existential rules framework

The goal of knowledge representation and reasoning is to model human-level
intelligence and reasoning faculties. According to Levesque and Brachman
[1987], the biggest dilemma in this case is the trade-off between expressive-
ness and computational tractability of a given logical language. Datalog+ is
a first-order logical language that extends plain Datalog with value inven-
tion. It has the ability to express knowledge about “unknown” individuals
(e.g. “every bird comes from an egg” this specific egg might be unknown but
its existence still holds). This level of expressiveness comes at the high cost
of undecidability (the reasoning mechanism can be infinite), that is why dif-
ferent decidable fragments of Datalog+ have been defined under the name of
Datalog+ [Cali et al., 2012] which is a generalisation of Datalog [Ceri et al.,
1989] and certain fragments of Description Logics [Baader et al., 2005].

2.1.1 Logical language

We consider a first-order logical (FOL) language £ with no function sym-
bols (except for constants) built with the existential and universal quan-
tifiers (3,V) and the implication and conjunction connectives (—,A) on a
vocabulary Voc = (P, C) composed of a finite set of predicates P and a po-
tentially infinite set of constants €. Each predicate p € P is associated with
a positive integer which is called the arity of p. We are also given an in-
finite set of variables V, and an infinite set of existential “fresh” variables
Nulls (called “nulls”, which act as placeholders for unknown constants, and
can thus be seen as variables). We denote variables by uppercase letters
X,Y,Z, etc., constants by lowercase letters a,b,c,etc., and fresh variables
(nulls) by Nully, Nulls, etc.

A logical language is a symbolic representation of some knowledge about
the world. For these symbols to have meaning, they need to be “mapped”
to elements of the world. This is done using an interpretation function

14

2.1. EXISTENTIAL RULES FRAMEWORK

which maps predicates and constants symbols to elements of the domain of
interpretation.

Definition 2.1 (Interpretation). An interpretation of a logical language
L built on a vocabulary Voc = (P, €) is a pair (D,J) where D is a non-empty
set called the interpretation domain and J is an interpretation function of
the symbols of L such that:

1. for each constant c € C, J(c) € D.
2. for each predicate p € P of arity k, I(p) < DF.
3. for each pair (c,c’) of distinct constants in C, J(c) # I(c’).

The third item in the above definition is called the unique name as-
sumption and indicates that different constants should be interpreted by
different elements of the interpretation domain. This assumption is often
made in knowledge representation and Baget et al. [2011] showed that as
long as equality between constants is not considered (which is the case in
this thesis), adopting the unique name assumption or not does not make
any difference in the considered reasoning tasks.

Knowledge about the world is expressed using formulas built from the
logical language. The basic building blocks are called atomic formulas (or
atoms).

Definition 2.2 (Atom). An atom over the vocabulary Voc is of the form
p(t1, ..., tx), where p € P is a predicate of arity k and t; € VU CU Nulls is
either a variable, a constant, or a null.

Given a formula ® built on a language £, we note terms(®) and vars(®)
respectively the terms and variables (including nulls) occurring in ®. T
(tautology) and L (falsity) are allowed and considered themselves atoms. A
ground atom contains only constants.

Example 2.1 (Atoms, conjunctions, and interpretations). Consider
the following vocabulary P = {p,q}, C = {a,b}, then “AX p(a,X)” is an
atom, “p(a,b)” is a ground atom, and ‘“AX (p(a,X) Aq(X))” is a conjunction
of atoms. An interpretation might map “p” to the concept of parenthood,
“p(a,b)” might be interpreted as the individual “a” is a parent of “b” (e.g.
Adam is a parent of Bruno). ‘“AXp(a,X)” might be interpreted as there
exists an unknown individual such that “a” is its parent.

A basic form of knowledge is factual knowledge which is represented
using facts. Usually a fact is a ground atom, however to account for knowl-
edge expressing the existence of unknown constants (nulls), the definition of
fact is generalised to an atom that contains constants or nulls (existentially
quantified variables).

15

CHAPTER 2. PRELIMINARIES

Definition 2.3 (Fact). A fact on a language £ is an existentially closed
atom on L. A closed atom is of the form H)Z'p(&',)?) where p € P is a
predicate, @ is a finite (potentially empty) set of constants, and X is a finite
(potentially empty) set of existentially quantified variables.

Please note that for the purposes of this thesis, a fact is not a conjunc-
tion. To be able to manipulate conjunctions as sets of facts, existential
variables are represented using nulls.

Notation 2.1 (From existential variables to nulls). An existential vari-
able can be represented as a “fresh” Skolem term by removing the existential
quantifier and replacing the variable with a null. This null has to be “fresh”
(or “safe”) meaning that it has not been used before. For example, AX p(a, X)
can be represented as p(a, Nully) as long as Nully is fresh (i.e. Nully has not
been used before).

Notation 2.2 (From conjunctions to sets of facts). A conjunction of
facts can be represented as a set of facts by removing the existential quantifier
and replacing the variables with nulls. For example, AX (p(a, X) A q(X)) can
be represented as the set {p(a, Nully), q(Null})} assuming Nully is fresh.

A model of a formula built on £ is an interpretation of £ that makes this
formula true by considering the classical interpretation of logical connectives
and quantifiers.

Definition 2.4 (Logical consequence and equivalence). Given a lan-
guage £ and two formulas ®1 and @3 on L, ®9 is a (logical) consequence of
®; (denoted @1 E ®2) if all models of ®; are models of ®2. ®1 and Oy are
said to be logically equivalent (denoted ®1 = ®3) if &1 £ Oy and Py E @

One of the relevant problems in knowledge representation is the entail-
ment problem, which is asking whether a formula is a consequence of another
formula. This can be expressed on facts as follows: given two facts fi and
fa, is it true that fo is a consequence of fi (i.e. fi £ f2)? It is well known
that fi £ f> if and only if there exists a homomorphism from f> to fi [Baget
et al., 2011].

Definition 2.5 (Substitution and homomorphlsm) Let X be a set of
vamables and T a set of terms. a substitution ofX toT is a mapping form
XtoT (notation X - T). A homomorphism m from an atom a; to an
atom ay is a substitution of vars(ai) to terms(az) such that w(ay) = ap.t A
homomorphism m from a set of atoms S to a set of atoms S’ is a substitution
of vars(S) to terms(S’) such that m(S) C S’.

1By abuse of notation, the resulting atom after the substitution is applied is denoted
m(a1). Thus, m(a1) = a2 means that applying the substitution 7 to the variables of a;
produces the atom as.

16

2.1. EXISTENTIAL RULES FRAMEWORK

Example 2.2 (Homomorphism). The atom p(a, Nully) can be mapped to
the atom p(a,b) by the homomorphism n© = {Null; — b} that substitutes
Nully by b. Therefore p(a,b) E p(a, Nully).

Notation 2.3 (Homomorphism restriction z|;). Given a homomor-

phism m, we denote by dom(x) the domain of m. Given a set of variables X,
we denoted the restriction of w to X by nlg = {(X, n(X)) | X € dom(r) N X}.

The entailment problem is generally expressed using queries (query an-
swering problem), specifically conjunctive queries which are an existentially
closed conjunctions of atoms. These can be seen as asking if there is a set of
constants and nulls that make an existentially closed conjunction of atoms
a consequence of the set of facts.

Definition 2.6 (Query). A Conjunctive Query (CQ) s an emstentzally
closed conjunctwn of atoms of the form Q(X) = EIY<I>(X Y), where X is a
set of variables, Y is a set of existential variables (possibly with constants)
and ® is a conjunction of atoms. A Boolean Conjunctive Query (BCQ) is
a conjunctive query of the form Q() = E) <I)()7)

The answers to a conjunctive query Q()z) = 3y <I>()_() , 17) over a set of for-
mulas JF is the set of all tuples (constants and nulls) that if, substituted with
X and)7, make ® a consequence of F. The answer to a boolean conjunctive
query is either true or false, and it is true over a set of facts F if and only
if it is a consequence of F, otherwise it is false.

Example 2.3 (Conjunctive and boolean queries). Consider the query
QX) = AYp(X, Y), the answers to this query over the set of facts F =
{p(a,b),p(c, Nully)} are {a,c} because there is a homomorphism m; = {X —
a,Y — b} from Q to p(a,b), and there is a homomorphism my = {X — ¢, Y —
Nully} to p(c, Nully). The answer to the BCQ Q() = 3AX,Y p(X, Y) is true
(because it can be mapped to F using w1 or m2).

2.1.2 Rules and reasoning

Rules (or equivalently, positive rules) are formulas that allow the enrichment
of a set of facts with new deduced knowledge. These rules generally encode
domain-specific implications, for example “if X is a cat then X is an ani-
mal”. Existential rules [Baget et al., 2011] are general rules that account for
unknown individuals, they are also known as Tuple Generating Dependen-
cies (TGD) [Abiteboul et al., 1995], Conceptual Graphs rules [Salvat and
Mugnier, 1996; Sowa, 1976], Datalog” rules [Cali et al., 2013], etc.

Definition 2.7 (Existential rule). An existential rule (or simply a rule)
r is a formula of the form VX, Y ((X Y) — 37 U-C(X Z)) where X,Y are

tuples of wvariables, Z is a tuple of existential variables, and B, H are

17

CHAPTER 2. PRELIMINARIES

finite non-empty conjunctions of atoms respectively called body and head
of r and denoted Body(r) and Head(r). The frontier of r (denoted fr(r))
is the set of wvariables occurring in both the body and the head of r i.e.
fr(r) = vars(Body(r)) N vars(Head(r)).

Rules are used to infer new knowledge starting from an initial set of
facts based on the notion of rule application.

Definition 2.8 (Rule application). A rule r is said to be applicable to
a set of facts F if there is a homomorphism m from Body(r) to F. In that
case, the application of r to F according to n (denoted a(F,r,m)) adds to F
a set of facts 5% € (Head(r)) where m°% ¢ ensures that existential variables
are replaced with fresh nulls.

Example 2.4 (Rule application). Consider the rule r stating that two
sisters are the daughters of the same parent. This rules is modelled as:
VX, Y sisterOf(X,Y) — AZ daughterOf (X, Z) A daughterOf(Y,Z). This rule
r is applicable to the set T = {sisterOf (alice, barbara)} using the homomor-
phism m = {X — alice,Y — barbara} and therefore its application produces
a(F,r,m) = T U {daughterOf (alice, Nully), daughterO f (barbara, Null})} as-
suming Nully is safe.

Notation 2.4 (Rules with atomic head). In general, rules might have
a conjunction of atoms in their head, however for the purposes of this
thesis, we only consider rules with one atom in their head. Baget et al.
[2011] showed that any set of rules can be transformed to a set of rules with
atomic head. The idea is that conjunctions can be split using intermediary
atoms. For example, the rule YX,Y sisterOf(X,Y) — 3Z daughterOf(X,Z) A
daughterOf(Y,Z) can be transformed to a set of three rules with atomic
heads:

1. ¥X,YsisterOf(X,Y) » AZd(X,Y,Z)
2.¥X,Y,Zd(X,Y,Z) — daughterOf (X, Z)
3. ¥X,Y,Zd(X,Y,Z) — daughterOf (Y, Z)

A rule is applicable on a set of facts if there is a homomorphism from
the body of the rule to this set of facts, furthermore, a rule might not be
applicable right away but could become applicable after some new knowledge
is generated by another rule, which might make another rule applicable and
so on. This sequence of rule applications is called a derivation. Normally, a
derivation is a sequence of facts generated at each rule application, however,
we generalize this notion to include the rule and the homomorphism used
at each step.

18

2.1. EXISTENTIAL RULES FRAMEWORK

Definition 2.9 (Derivation). Given a set of facts F and a set of rules
R, a derivation of F with respect to R is a (potentially infinite) sequence §
of D; s.t. D; is a tuple (Fi,ri, ;) composed of a set of facts F;, a rule r;
and a homomorphism r; from Body(r;) to F; where: Do = (Fg = F,0,0), and
Fi = a(Fi_1,ri, ;). We denote by Facts(D;), Rule(D;), and Homo(D;) the set
of facts, rule and homomorphism of a tuple D;.

A derivation can be infinite as a rule can be applied again and again
without restrictions as shown in the following Example 2.5.

Example 2.5 (Derivation). Consider the set of facts F stating that Bruno
s a male human, and the rules R stating that any human has a parent and
that a male human is a man.

o F = {human(bruno), male(bruno)}.

e R ={r : YX human(X) — 3Y parentOf (Y, X),
ry : YX male(X) A human(X) — man(X)}.

A possible derivation of F w.r.t R is:

6 ={(7,0,0), (F1 = Fyp U {man(bruno)}, ro, 11 = {X — bruno}),
(F2 = F1 U {parentO f(Nully, bruno)}, r1, ma = {X — bruno}),
(F3 = Fo U {man(bruno)}, ro, m13 = {X — bruno}),
(F4 = F3 U {parentOf (Nully, bruno)}, ri, 7y = {X — bruno}),
L)

As we can see in this example, this derivation apply successively the
two rules r1 and ro even though it produces the same atoms using the same
homomorphisms.

A derivation for a specific fact f is a finite minimal sequence of rule
applications starting from a set of facts F and ending with a rule application
that generates f.

Definition 2.10 (Derivation for a fact). Given some sets of facts F and
rules R, a derivation for a fact f is a finite derivation § = (Dy,...,Dyn) of
F’' € F with respect to R such that:

1. f € Facts(Dy,) (i.e. the last rule application contains f).

2. & is minimal i.e. there is no derivation 8’ = (D), ...,D,) for f such
that:

e Facts(Dy) C Facts(Dg) and
o | Upres (Rule(D"), Homo(D’)) C Upes(Rule(D), Homo(D)).

19

CHAPTER 2. PRELIMINARIES

Example 2.6 (Derivation for a fact). Consider the previous Example
2.5, a derivation from F to man(bruno) s the sequence:

o1 = ((Fy = {human(bruno), male(bruno)}, 0, 0),
(F1 = Fo U {man(bruno)}, ra, m)).

Query answering over a set of facts and rules can be done by generating
all possible knowledge then finding homomorphisms from the queries to this
“saturated” set of facts. In order to generate this knowledge, rules are
applied in a breadth first manner. A breadth-first derivation is obtained by
considering at each “breadth-first” step all possible rule applications on the
current set of facts and applying them all before moving to the next step.

Definition 2.11 (Breadth-first derivation). Given a set of facts F and a
set of rules R, a breadth-first derivation of F with respect to R is a derivation
6 =((Fo=5,0,0), ..., (Fi,ri,m), ...) such that for all i < j, if (Fiz1\F;) N
7j(Body(r;)) # 0 then for all k > j, m(Body(ry)) € F;.

The above definition ensures that if a rule is applied on some atoms
generated by a rule application i+ 1 then no rule application afterwards can
use only the atoms in F;. Intuitively, once we go to the next breadth-first
step, we cannot apply a rule that could have been applied in a previous step
according to the same homomorphism.

An exhaustive breadth-first derivation ensures that all rules have been
applied according to all possible homomorphisms. An exhaustive derivation
may be infinite and might contain “redundant” rule applications, however
removing these “redundant” rule applications might make the exhaustive
derivation finite. The role of a chase is to remove rule applications that it
considers redundant.

2.1.3 Chase and finite expansion set

In order to answer queries over a set of facts and rules, the exhaustive
derivation has to be finite. A chase is a mechanism that takes an exhaustive
derivation and removes what it considers “redundant” rule applications us-
ing a derivation reducer. We use the formalization of Rocher [2016] for its
simplicity to define a derivation reducer and a chase.

Definition 2.12 (Derivation reducer). Given a set of facts F and a set
of rules R, a derivation reducer o is a function that takes a rule application
tuple D; = (Fi,ri, m;) in a derivation § = (Dy,...,D;,...) of F with respect to
R and returns a rule applications tuple o(D;) = (F7],r;, m;) such that F} = F;.

Definition 2.13 (o-chase). Given a set of facts F, a set of rules R, a
deriwation reducer o, and an exhaustive breadth first derivation § = (Dy,. ..,
D;,...) of F with respect to R: o-chase(F,R) = (d(Dyg),...,0(D;),...) and
o(D;) € o-chase(F,R) if and only if Facts(o(D;)) # Facts(c(D;-1)).

20

2.1. EXISTENTIAL RULES FRAMEWORK

The above definition ensures that only non redundant “meaningful” rule
applications are kept (i.e. rule applications that generate something new
according to the derivation reducer). A chase is finite if there is a breadth-
first rule application step k such that for all D; at step k, no new facts are
generated [Baget et al., 2014b].

Applying a chase on a set of facts F and a set of rules R generates the
saturated set of facts F* that contains all initial and generated facts.

Definition 2.14 (Saturated set of facts). Given a set of facts F and
a set of rules R, the saturation (or equivalently, closure) of F is Satx(F) =
Ubeo-chase,®) Facts(D). We also refer to Satx(F) by F* when the set of
rules R is obvious.

Saturating a set of facts F with a set of rules R until no new rule appli-
cation is possible allows us to obtain the universal model. The particularity
of this model is that it is representative of all models of (F U R) (we denote
the set of models of (F U R) by models(F,R)).

Definition 2.15 (Universal model). Given a set of facts F and a set of
rules R, a universal model M of (FUR) is a model of (FUR) such that for
all models M’ of (F UR), there is a homomorphism from M to M’.

It is not always possible to obtain the universal model (the saturated set
of facts might be infinite), however if the chase is finite then the model of
the saturated set of facts is a universal model [Baget et al., 2011]. Therefore
query entailment can be expressed using the notion of chase.

Theorem 2.1 (Query entailment and chase [Baget et al., 2011]).
Let us consider a set of facts F, a set of rules R and a Boolean conjunc-
tive query Q. If o-chase(F,R) is finite then, (F U R) £ Q if and only if
Facts(o-chase(F,R)) £ Q.

Different kinds of chases can be defined using different derivation re-
ducers. Each derivation reducer ensures a universal model if its chase is
finite. The most common chase is the Frontier chase [Baget et al., 2011], it
yields equivalent results as the well-known Skolem chase [Marnette, 2009]
that relies on a “skolemisation” of the rules by replacing each occurrence of
an existential variable Y with a functional term fJ ()Z), where X = fr(r) are
the frontier variables of r. Frontier chase and skolem chase yield isomorphic
results [Baget et al., 2014a], in the sense that they generate exactly the same
atoms, up to a bijective renaming of nulls by skolem terms.

The frontier chase considers two rule applications redundant if their map-
ping of the frontier variables are the same for the same rule.

Definition 2.16 (Frontier/Skolem chase). The frontier chase o, -chase

(equivalent to the Skolem chase relies on the frontier derivation reducer (de-
noted by or,) defined as follows. For any derivation §, or.(Dg) = Do and for

21

CHAPTER 2. PRELIMINARIES

every D; = (Fi,ri, m;) € 6:

Fiaq1 v ﬂisafe(Head(ri)) if for every j < i with r; =r;j,
Facts(of,(D;)) = 7ilfr(ry) (Body(ry)) # ilpr(r,) (Body(ri))
Fia otherwise

Example 2.7 (Frontier chase). Consider the following set of facts F and
set of rules R, inspired from the thesis of Hecham [2018], stating that an
animal shelter would keep a dog found alone if it has an owner. If it has
a collar or a microchip then it has an owner. A dog named “Jack” with a
collar and a microchip is found alone.

o J = {alone(jack), hasCollar(jack), hasMicrochip(jack)}

o R={r :VYX,Y hasOwner(X,Y) — keep(X),
ro : ¥X alone(X) A hasCollar(X) — Y hasOwner(X,Y),
r3 : ¥X alone(X) A hasMicrochip(X) — Y hasOwner(X,Y)}

A possible frontier chase of F and R is:

o, -chase(F,R) = ((F,0,0),
(F1 = FU {hasOwner(jack, Nully)}, ro, m = {X — jack}),
(F2 = F1 U {hasOwner (jack, Nullx)}, rs3, mo = {X — jack}),
(T3 = Fa U {keep(jack)}, r1, 13 = {X — jack,Y — Null1})).

First, ro is applied on {alone(jack), hasCollar(jack)} and generates Y
hasOwner(jack,Y) which is not redundant since ro has never been applied
before, therefore F1 = Fy U {hasOwner(jack, Nully)}. Then ry is applied on
{alone(jack), hasMicrochip(jack)} and generates Y hasOwner(jack,Y) which
is also not redundant because r3 has never been applied before (even if it
generates the same atom as ry), therefore Fo = F1U{hasOwner (jack, Nully)}.

Afterwards, r1 is applied on {hasOwner(jack, Null;)} and generates
{keep(jack)} which is not redundant as ry has never been applied before,
therefore 3 = Ja U {keep(jack)}. Finally, r1 is applied on the set of facts
{hasOwner(jack, Nully)} with the homomorphism my = {X — jack,Y —
Nully} and generates {keep(jack)} which is redundant since this rule appli-
cation reuses the same rule and frontier mapping as the rule application on
{hasOwner(jack, Nully)} (i.e. mlpr(r) = m3lpr(r) = {X — jack}). Since any
additional rule application would be redundant (all rules have been applied
with all possible homomorphisms) the frontier chase stops.

Even if the frontier reducer removes some redundant rule applications,
the frontier chase might be infinite as shown in the following Example 2.8.

Example 2.8 (Infinite frontier chase). Consider the set of fact F and
the set of rules R containing one fact and one rule.

22

2.1. EXISTENTIAL RULES FRAMEWORK

o 7 ={p(a)}
e R={r :¥Xp(X) - AY p(Y)}
A possible frontier chase of F and R is:

afr—chase(ff, R) =(F,0,0),(F1 = FU{p(Nully)},r1,m = {X — a}),
(Fo =F1U{p(Nully)},r1,m = {X — Null,}),
(Fs =F2 U {p(Null3)},ri,m = {X — Nulls}), .. .).

First, r1 is applied using m and generates AY p(Y) which is not redundant
since r1 has never been applied before, therefore F1 = Fo U {p(Nully)}. Then
r1 is applied on {p(Nully)} using w2 and generates AY p(Y) which is not
redundant since malrrr) = {X — Nulli} # milprr) = {X — a}, therefore
Ty =TF1 U {p(Nully)}, and so on infinitely.

Some derivation reducers are “stronger” than others, this implies that
their chase might stop in cases where others do not. This is known as the
reducer order relation.

Definition 2.17 (Reducer order relation [Rocher, 2016]). Given two
derivation reducers o1 and o2, we say that oy is weaker than oo (denoted by
o1 < o9) if for any set of rules R and set of facts F, if o1-chase is finite then
oo-chase is also finite. Furthermore, we say that oy is strictly weaker than
o9 if o1 < o9 and o9 £ 0y.

In the literature, there are four well-known types of chase: the Oblivious
chase (o,,,-chase) [Cali et al., 2013], the Skolem/Frontier chase (o,-chase)
[Marnette, 2009; Baget et al., 2011], the Restricted chase (o,,,-chase) [Fagin
et al., 2005], and the Core chase (ocore-chase) [Deutsch et al., 2008].
Proposition 2.1 (Chases finiteness order [Onet, 2013; Rocher, 2016]).
The following relations hold: oop; < 0fr < Ores < Ocore-

It is well-known that query entailment using a chase is undecidable (the
chase might be infinite) [Beeri and Vardi, 1981] even under strong restric-
tions such as using a single rule or restricting to binary predicates with no
constants. However, some restrictions on the set of rules can ensure decid-
ability for a specific type of chase. These restrictions are classified into three
big categories known as “abstract classes”. The first one is “Finite Expan-
sion Set” (FES) [Baget et al., 2014b] that ensures that a finite universal
model of the knowledge base exists and can be generated using a chase.
For each chase we can define its FES class: oblivious-FES, skolem-FES,
restricted-FES, and core-FES. The second class is called “Finite Unification
Set” (FUS) [Baget et al., 2011] which guarantees that some backward chain-
ing method halts. Finally, the class called “Greedy Bounded Treewidth Set”

23

CHAPTER 2. PRELIMINARIES

(GBTS) [Baget et al., 2011] ensures that the potentially infinite universal
model of a knowledge base has a bounded treewidth. Each abstract class
has a set of “concrete classes” that classifies rules based on their syntactic
properties e.g. the concrete class Datalog describes rules that do not contain
existentially quantified variables. The following Figure 2.1 shows the most
studied concrete classes in the literature and the relation between them: an
upward edge going from a class C to a class C’ means that any set of rules
in class C is also in class C’.

In this thesis we rely mainly on the frontier chase to reason with exis-
tential rules, for simplicity we will only give examples and intuitions about
concrete classes of skolem-FES.? Restricting ourselves to the frontier chase
and subsequently to the skolem-FES classes of rules is not a very restric-
tive constraint since most studied concrete FES classes are skolem-FES (cf.

Figure 2.2).
W-sticky-join Glut-fg
FES N TUS [GBTS
MFA Weakly-sticky Sticky-join Jointly-fg
Super-weak- Sticky Weakly-
acyclic frontier-guarded
T Domain- / \
Jointly-acyclic aGRD restricted Weakly- Frontier-

T guarded guarded

Weakly-acyclic ! \
\ Guarded Frontier-1

Datalog /

Linear

Figure 2.1: Abstract and known concrete classes of existential rules [Baget
et al., 2011; Rocher, 2016]

A concrete class is simply a syntactic distinction of rules. The most
basic skolem-FES concrete class is the Datalog class (also known as Range
Restricted [Abiteboul et al., 1995]) which are rules without the existential
quantifier. Another simple class is the aGRD class (Acyclic Graph of
Rule Dependency) [Baget et al., 2014a]. A Graph of Rule Dependency
is a directed graph that encodes possible interactions between rules: the

2For more information about these concrete classes, see the work of Baget et al.
[2011]. The online tool Kiabora http://graphik-team.github.io/graal/downloads/
kiabora-online checks automatically if a set of rules is skolem-FES.

24

http://graphik-team.github.io/graal/downloads/kiabora-online
http://graphik-team.github.io/graal/downloads/kiabora-online

2.1. EXISTENTIAL RULES FRAMEWORK

Skolem-FES ~MFA

I

Super-weak-
acyclic

I

Jointly-acyclic

I

Weakly-acyclic

Oblivious-FES

Figure 2.2: Known concrete FES classes and chases finiteness (all

skolem-FES concrete classes are restricted-FES and core-FES

nodes represent the rules and there is an edge from a node r; to re if and
only if an application of the rule r; may create a new application of the
rule ro. A GRD is acyclic when it has no circuit. The notions of “weak
acyclicity” [Marnette, 2009] and “joint acyclicity” [Krotzsch and Rudolph,
2011] are based on the position of the predicate and the existential and
frontier variables. The MFA class (Model Faithful Acyclicity) [Grau et al.,
2013] relies on detecting a specific set of facts called critical instance. The
following Example 2.9 provides some rules that are skolem-FES.

Example 2.9 (Skolem-FES rules). Consider the following sets of rules:

R ={VX, Y, Zp(X,Z) Ap(Z,Y) — p(X,Y)} is range restricted (Data-
log).

Ro = {VX, YsiblingOf(X,Y) — AZ parentOf(Z,X,Y)} is aGRD.

Rs = {r1 VX, Yp(X,Y) - IAZr(Y, Z),

rg VX, Yr(X,Y) — p(Y,X)}. {ri} is aGRD and {r2} is range re-
stricted, however Rs is weakly-acyclic and is neither aGRD nor range-
restricted.

Ry={r : VX, Yp(X,Y) - AZr(Y,Z),
ro VX, Yr(X, Y)Ar(Y,X) - p(X,Y)}. {r1} is aGRD and {ra} s range
restricted, however Ry is Jointly-acyclic.

Rs =A{r1 : ¥Xq(X) - AY p(X, Y) A p(Y, X) A p(X, X),

ra VX p(X, X) - r(X),

r3 VX r(X) - q(X)}. {r1} alone is aGRD, {re,r3} is range restricted,
however Ry is super-weakly-acyclic.

25

CHAPTER 2. PRELIMINARIES

o Rg={VX,Yp(X,Y) > 3AZ, Tq(Y,Z) Ap(Z,T)} is model-faithful-acyclic.

Not all concrete classes are created equal, some might have higher com-
plexity for query answering, and applying a chase on these classes would
require more time. In the next section we recall the definitions for some
complexity classes and describe the complexity of CQ entailment for the
skolem-FES concrete classes.

2.1.4 Complexity classes

Complexity is an indication of a computational problem inherent difficulty.
We briefly recall the definitions of the complexity classes by increasing com-
plexity. For more details about complexity theory, the reader is referred to
the work of Papadimitriou [1994].

Definition 2.18 (ACy). A problem is in ACy if it can be solved by a boolean
circuit of bounded depth with a polynomial number of AND and OR gates.

Definition 2.19 (Polynomial time (PTime)). A problem is in PTIME
if it can be solved by a deterministic Turing machine running in polynomial
time in the input.

Definition 2.20 (NP). A problem is in NP if it can be solved by a non-
deterministic Turing machine running in polynomial time in the input.

Definition 2.21 (coNP). A problem is in CONP if its complement is in the
class NP, meaning that there is a polynomial-time algorithm that can verify
no instances (counterexamples) using a non-deterministic Turing machine.

Definition 2.22 (Exponential time (ExpTime)). A problem is in the
EXPTIME class if it can be solved by a deterministic Turing machine running

in simple exponential time (2P(")) in the input. 2EXPTIME is running in
2217(’1)

exponential time 22" while SEXPTIME is 2

Furthermore, a problem P is hard for a given complexity class C' if any
instance of a problem from C can be reduced to an instance of P through
a reduction (in most cases, this reduction has to be in polynomial time,
but for lower classes (PTIME and below), logarithmic space reductions must
be used). A problem P is complete for a given complexity class C' if it
belongs to C' and is hard for C. For the query entailment problem, two
different measures of complexity are considered:

e Combined complexity: the input contains the set of rules, the set
of facts and the query.

e Data complexity: the input contains only the set of facts while the
set of rules and the query are assumed to be fixed.

26

2.1. EXISTENTIAL RULES FRAMEWORK

Data complexity is sometimes considered more relevant [Lembo et al.,
2010] because the query and the rules are usually far smaller than the
set of facts in practical applications, however both complexities can help
understand where the difficulties lie. Indeed, for instance, query answer-
ing over skolem-FES rules using a frontier chase has in the worst case
2EXPTIME-COMPLETE combined complexity and PTIME-COMPLETE data
complexity. The following Table 2.1 describes the combined and data com-
plexity of query answering for each studied concrete class of Skolem-FES.

Rule Class Combined Complexity Data Complexity
Datalog EXPTIME-COMPLETE [Chandra et al., 1981] PTIME-COMPLETE [Dantsin et al., 2001]
aGRD EXPTIME-COMPLETE [Cali et al., 2010b] PTIME-COMPLETE [Cali et al., 2010b]
Jointly-acyclic 2EXPTIME-COMPLETE [Krotzsch and Rudolph, 2011] | PTIME-COMPLETE [Krétzsch and Rudolph, 2011]
Weakly-acyclic 2EXPTIME-COMPLETE [Fagin et al., 2005] PTIME-COMPLETE [Fagin et al., 2005]
Super-weakly-acyclic 2EXPTIME-COMPLETE [Marnette, 2009] PTIME-COMPLETE [Marnette, 2009]
MFA 2EXPTIME-COMPLETE [Zhang et al., 2015] PTIME-COMPLETE [Marnette, 2009]

Table 2.1: Complexity of CQ entailment for studied Skolem-FES concrete
classes

2.1.5 Incoherence and inconsistence

To represent knowledge about the world one should account for “negative
knowledge”, i.e. information that dictates how things ought not to be, espe-
cially since generating new knowledge from seemingly correct information
might lead to a contradiction down the line. A basic form of “negative
knowledge” is stating that a fact and its negation (or equivalently, comple-
ment) should not be both asserted at the same time. While the existential
rules language £ is negation-free, the notion of integrity constraint from the
database domain can be used to express negative knowledge.

Definition 2.23 (Negative constralnt) A negative constmmt (or simply
a constraint) is a rule of the form VX ‘.B(X) — L where X is a tuples of
variables, and B is a finite non-empty conjunction of atoms.

In this thesis, we only consider “binary” negative constraints (a.k.a. de-
nial constraints) that express a conflict between two atoms. This restriction
simplifies subsequent definitions and does not imply a loss of generality since
any negative constraint can be transformed into a set of rules and binary
negative constraints [Cali et al., 2012].

Definition 2.24 (Conflicting facts). A set of facts Z = {fi, fa, ..., fu} is
a conflicting set of facts if and only if the body of a negative constraint can

27

CHAPTER 2. PRELIMINARIES

be mapped to Z. By abuse of notation, if Z = {f1, f2}, we say that fi is in
conflict with fs.

Example 2.10 (Negative constraint and conflicting facts). Consider
the negative constraint stating that it is impossible that a person is married
and unmarried at the same time: YX married(X) A unmarried(X) — L. The
fact married(bruno) is in conflict with unmarried(bruno) (and vice-versa)
because the body of the negative constraint can be mapped to these facts.

Negative constraints are used to ensure that a set of facts is consistent
(i.e. it contains no contradictions). This is especially important since in
presence of conflicts, query answering becomes trivial due to the principle
of explosion (ex falso quodlibet), i.e. “from falsehood anything follows”.

In the various domains of knowledge representation, conflicts might be
inherent to the represented domain or may arise from an incorrect descrip-
tion of the world. When a set of factual knowledge contains no conflicts it
is said to be consistent, otherwise it is inconsistent.

Definition 2.25 (Inconsistence). A set of facts F is inconsistent with
respect to a set of negative constraints N if and only if (FUN) has no possible
model (models(F,N) = 0) i.e. (FUN) E L. In practice, F is inconsistent if
a negative constraint can be applied i.e. there erists a negative constraint
r € N such that F £ Body(r).

An inconsistent set of facts does not necessarily mean an incorrect rep-
resentation of the factual knowledge of the world. In some cases, the incon-
sistency of the generated set of facts is unavoidable (i.e. the representation
has no model) even with a correct description of factual knowledge. This is
due to an incoherent set of rules.

Definition 2.26 (Incoherence). A set of rules R is incoherent with respect
to a set of negative constraints N if and only if RUN is unsatisfiable i.e. for
any set of facts S such that all rules in R are applicable, models(S,RUN) =
0. The application of R on any set of facts S will inevitably lead to an
inconsistent saturated set of facts S* with respect to N.

Clearly, the notions of incoherence and inconsistence are highly related.
In fact, an incoherent set of rules R will always lead to an inconsistent set of
facts F* if all rules in R are applied on JF [Flouris et al., 2006]. The following
Examples 2.11 and 2.12 describe the key difference between incoherence and
inconsistence.

Example 2.11 (Incoherence). Consider the following sets of facts F,
rules R, and negative constraints N representing the knowledge that mam-
mals do not lay eggs, platypus are mammals and penguins lay eggs. “Perry”
is a platypus, does it lay eggs (i.e. Q1() = layEggs(perry))? Does it not lay
eggs (i.e. Q2() = notLayEggs(perry))?

28

2.1. EXISTENTIAL RULES FRAMEWORK

F = {platypus(perry)}

R = {r : VX platypus(X) — mammal(X),
ry : YX mammal(X) — notLayEggs(X),
rs3 : VX platypus(X) — layEggs(X)}

N = {VXlayEggs(X) A notLayEggs(X) — L}

The saturated set of facts resulting from a frontier chase is

F* = {platypus(perry), mammal(perry), layEggs(perry), notLayEqggs(perry)}.

The set of rules R is incoherent because no set of facts (even outside F)
that makes all rules in R applicable prevents the application of the negative
constraint, therefore models(F, RUN) = 0. The answer to the boolean queries
Q1 and Qo is “true” (principle of explosion) i.e. Perry lays eggs and does
not lay eggs at the same time. The saturated set of facts F* is inconsistent
because models(F,RUN) = 0.

Example 2.12 (Inconsistence and incoherence). Consider the follow-
ing sets of facts F, rules R, and negative constraints N defined by Hecham
[2018] about a criminal case. If there is a scientific evidence incriminat-
ing a defendant, then he is responsible for the crime, if there is a scientific
evidence absolving a defendant then he is not responsible for the crime. A
defendant is guilty if responsibility is proven. If a defendant has an alibi then
he is innocent. There is a scientific evidence “el” incriminating a defendant
“alice”, while another scientific evidence “e2” is absolving her of the crime.
She also has an alibi. Is Alice innocent (i.e. Q1() = innocent(alice))? Is she

guilty (i.e. Q2() = guilty(alice))?
o F = {incrim(el, alice), absolv(e2, alice), alibi(alice)}

o R={r :VX,Yincrim(X,Y) — resp(Y),
ra : ¥X, Y absolv(X,Y) — notResp(Y),
rs : YX resp(X) — guilty(X),
r4 : ¥X alibi(X) — innocent(X)}

o N = {VXresp(X) A notResp(X) — L,
VX guilty(X) A innocent(X) — L}

The saturated set of facts resulting from a frontier chase is

o J* = {incrim(el, alice), absolv(e2, alice), alibi(alice), resp(alice),
notResp(alice), guilty(alice), innocent(alice)}.

The set of rules R is coherent because R UN is satisfiable i.e. there ex-
ists a possible set of facts S = {incrim(el, bob), absolv(e2, alice), alibi(alice)}
such that all rules in R are applicable and models(S,R U N) # 0, the set

29

CHAPTER 2. PRELIMINARIES

S* = {incrim(el, bob), absolv(e2, alice), aibli(alice), resp(bob), notResp(alice),
guilty(bob), innocent(alice)} is consistent as no negative constraint is ap-
plicable on it.

However the saturated set of facts F* is inconsistent because a negative
constraint is applicable, thus models(F, R UN) = 0. Since the set of rules is
coherent, the inconsistence of F* is due to an erroneous set of intial facts
(either one of the evidences, the alibi, or all of them are not valid).

The classical answer to the boolean queries Q1 and Qz is “true” (i.e.
Alice is guilty and innocent), because from falsehood, anything follows.

Inconsistence and incoherence are problematic for classical query answer-
ing. Indeed, as in classical logic, contradictions trivialise query answering
since everything follows from a contradiction.

In this thesis, we focus on inconsistency and only consider set of rules
that are coherent with respect to the set of negative constraints. This is not a
big assumption as the existential rules framework is widely used in Semantic
Web and in the so called Ontology-Based Data Access (OBDA). In this
setting, the rules and negative constraints are given by experts and are used
as an ontology to “access” multiple data sources. These sources are prone
to inconsistencies whereas the ontology is reliable since it is constructed by
field experts. Thus, we use the term inconsistent knowledge base to refer to
a triple composed of a fact base, a set of negative constraints and a set of
coherent rules with respect to the negative constraints.

Definition 2.27 (Inconsistent knowledge base). An inconsistent know!l-
edge base (or simply knowledge base if it is obvious by the context) is a tuple
KB = (F,R,N) where F is a set of facts, N is a set of negative constraints
and R is a set of existential rules coherent with respect to N.

The set of all possible knowledge bases is denoted by KBs. We now intro-
duce the notion of R-inconsistency. As opposed to the notion of conflicting
facts where the body of a negative constraint can be directly mapped to
the set of facts, R-inconsistency also consider the facts that can be derived
before trying to map the body of negative constraints.

Definition 2.28 (R-inconsistence). Let us consider a knowledge base
KB = (F,R,N). We say that a set of facts X is R-inconsistent with respect
to KB if and only if Satgun(X) | L. Otherwise, X is said to be R-consistent.

In the knowledge representation and reasoning field, there are several
ways to handle inconsistencies. The two main approaches are Consistency-
based approaches (first mentioned by Rescher and Manor [1970]) and Dung-
style logic-based argumentation approaches. The former consists in comput-
ing maximal consistent subsets (MCS) or repairs of the knowledge base and
using non-classical consequence relation to infer from the knowledge base.
In our context, the highlight is put on subsets of the fact base and repairs

30

2.1. EXISTENTIAL RULES FRAMEWORK

are particular subsets of facts. A MCS or (data) repair [Arenas et al., 1999]
of an inconsistent knowledge base KB = (F,R,N) is a maximal for set in-
clusion subset of F that is R-consistent. Thus, any superset of a repair is
R-inconsistent.

Definition 2.29 (Repair). Let XB = (F,R,N) be a knowledge base, a set
X C F is a repair of XB if and only if X is R-consistent and for every
X c X', X’ is R-inconsistent. The set of all repairs of KB is denoted by
repairs(XB).

The notion of minimal inconsistent set is similar to the concept of re-
pairs and corresponds to minimal for set inclusion subsets of F that are
R-inconsistent.

Definition 2.30 (Minimal inconsistent set). Let XB = (F,R,N) be a
knowledge base, a set X C F is a minimal inconsistent set of KB if and only
if X is R-inconsistent and for every X' C X, X' is R-consistent. The set of
all minimal inconsistent sets of KB is denoted by MI(KB).

The free facts of a knowledge base XB = (F, R, N) are facts of F that are
not “touched” by the inconsistencies. As a result, they are in every repairs
or in no minimal inconsistent sets.

Definition 2.31 (Free fact). Let XB = (F,R,N) be a knowledge base, a
fact f € T is a free fact if and only if for every minimal inconsistent set

m e MI(XB), f ¢ m. We denote by Free(KXB), the set of free facts of KXB.

Dung-style logic-based argumentation approaches are also widely used
to handle inconsistencies. Those approaches are based on instantiating an
abstract argumentation framework composed of a set of arguments and a
set of attacks among them. The logic-based version of an argumentation
framework views an argument as a structured entity built from a knowledge
base KB and the approach proceeds by computing all of the possible ar-
guments and attacks. Then, coalitions of arguments [Bertossi et al., 2005]
called extensions (sets of arguments that are conflict-free and are defend-
ing themselves) are computed and inconsistency-tolerance can be defined on
those extensions. In the next section, we begin by providing an introduc-
tion to the argumentation theory by introducing Dung’s abstract model of
argumentation [Dung, 1995] and the ranking-based semantics approach.

31

CHAPTER 2. PRELIMINARIES

2.2 Argumentation theory

Argumentation represents a major component of human intelligence. The
problems of understanding argumentation and its role in the way humans
reason have been addressed by many researchers in different fields. In this
section, we give an introduction to the argumentation theory as it was de-
fined originally by Dung [1995]. His perception of argumentation was built
around the basic principle that “the one who has the last word laughs best”.
Roughly speaking, Dung gives the idea that a statement is believable if it
can be argued successfully against attacking arguments. In other words,
whether or not an agent believes in a statement depends on whether or not
the argument supporting this statement can be successfully defended against
the counterarguments. Although many researchers have been analysing the
structure of arguments before Dung [Birnbaum et al., 1980; Birnbaum, 1982;
Cohen, 1987], he was the first one (to our knowledge) to clearly propose a
simple model for understanding the acceptability of arguments by proposing
semantical relations for abstract argumentation frameworks.

2.2.1 Abstract argumentation semantics

An abstract argumentation framework as defined by Dung [1995] takes as
input a set of arguments and a pre-constructed binary relation that repre-
sents attacks between arguments. In Dung’s abstract model, the structure
of arguments and the type of attack are not defined and are left unspecified.

Definition 2.32 (Argumentation framework [Dung, 1995]). An ar-
gumentation framework is a pair § = (o, X) where <f is a set of arguments
and Z is a binary relation over o/ . Given two arguments a,b € o/, we say
that a attacks b if and only if (a,b) € Z.

Notation 2.5. Let § = (&, %) and §' = (', Z’) be two argumentation
frameworks. FOF’ denotes the argumentation frameworks (o V.of’, B#URE")
representing the merging of the two argumentation frameworks § and §'.

An argumentation framework can be seen as a directed graph where
vertices represent arguments and edges represent attack between argument.

Example 2.13 (Argumentation framework). Suppose we have three
arguments a, b, and ¢ such that a and b attack each other (i.e. (a,b), (b,a) €
), and c attacks b (i.e. (c,b) € #). This argumentation framework is
shown in Figure 2.3.

@ To—O®

Figure 2.3: Argumentation framework of Example 2.13

32

2.2. ARGUMENTATION THEORY

Definition 2.33 (Path). Let § = (o, %) be an argumentation framework
and a € of . We say that a sequence S = (a1, ...,a,) is a path of size n from
an to a if and only if a1 = a and for every i € {2,3,...,n},(a;,ai-1) € Z.

Notation 2.6. Let § = (&7, %) be an argumentation framework and a,b €
. We say that b € %, (a) if and only if there exists a path of size n
from b to a. The set % (a) is called the set of direct attackers of a whereas
R5 (a) are called direct defenders of a. Please note that we will often use the
alternative notation Attg(a) to denote the set of direct attackers of a in §
or simply Att™(a) if the argumentation framework is clear from the context.
Similarly, we also use the notation Att*(a) to denote the set of arguments
directly attacked by a, namely Att*(a) = {b | (b,a) € #}.

Definition 2.34 (Set attack and defense). A set of argument S attacks
an argument b if there exists an argument ¢ € S such that (c,b) € Z. If there
is an argument a € S such that (b,a) € Z and S attacks b then S defends a.

Argumentation is based on the notion of acceptability of an argument in
the sense that a rational agent accepts only arguments which she can defend
from all possible attacks.

Definition 2.35 (Acceptability of an argument). Given an argumenta-
tion framework § = (o7, %). An arguments a € o is acceptable with respect
to a set of argument S C o7 if and only if S defends a from all its attacks,
that is for every b € of such that (b,a) € %, there exists ¢ € S such that
(c,b) e Z.

Example 2.14 (Example 2.13 cont’d). a is acceptable with respect to
{c}.

2.2.2 Extension-based approaches

Acceptability of argument is used to define argumentation semantics. Two
different methods are proposed to define semantics: extension-based [Dung,
1995] and labeling-based [Caminada, 2006]. We start by the extension-based
approach which defines what an acceptable argument means under some spe-
cific semantics. The idea behind the extension-based approach is to identify
and select a set of arguments called extensions that can survive a conflict
together. Thus, an extension is often represented as a reasonable position
or viewpoint in a debate. The reader can find examples of the semantics
presented in this thesis (the admissible, complete, grounded, preferred and
stable) in Dung [1995] and an intuitive introduction to argumentation se-
mantics can be found in Baroni et al. [2011].

Extension-based semantics are defined on the principle of conflict-freeness
which translates the idea the arguments in an extension should be able to
“stand together”, that is, the arguments of the same extension should not
attack each other.

33

CHAPTER 2. PRELIMINARIES

Definition 2.36 (Conflict-freeness). Let § = (o7, %) be an arqgumenta-
tion framework. A set of arguments S C o7 is conflict-free if and only if
there are no a,b € S such that (a,b) € %.

Please note that Definition 2.36 excludes all of the sets containing self-
attacking arguments.

Example 2.15 (Example 2.13 cont’d). {a,c} is conflict-free.
A naive extension is a maximal conflict-free set of arguments.

Definition 2.37 (Naive semantics). Let & = (&7, %) be an argumentation
framework. A set of arguments S C of is a naive extension if and only if S
is conflict-free and for every S’ C o/ such that S C S’, S” is not conflict-free.

A set of non-conflicting arguments can be seen as an agent’s position in
a debate, for this position to hold it has to defend all its argument. This
corresponds to the notion of admissibility [Dung, 1995].

Definition 2.38 (Admissibility of a set). Let § = (&, %) be an argu-
mentation framework. A conflict-free set of arguments S C &7 is admissible
if and only if every argument a € S is acceptable with respect to S.

An admissible set of arguments is a set of non-conflicting arguments that
defends all its elements, such set is called an admissible extension. Every
argumentation framework has at least one admissible set: the empty set.

Example 2.16 (Example 2.13 cont’d). The admissible extensions are:
0, {a}, {c}, and {a,c}. Note that {b} is not an admissible set since it does
not defend itself from c.

A preferred set of arguments is a maximal set of arguments that is ad-
missible. The idea of the preferred semantics is that one wants to accept as
many arguments as reasonably possible to have the largest viewpoint on a
debate.

Definition 2.39 (Preferred semantics). Let § = (&7, %) be an argumen-
tation framework. A preferred extension is a maximal (for set inclusion)
admissible set of arguments S C < .

A stable set of arguments S is a conflict-free set that attacks all of the
arguments outside of S. The idea of the stable semantics is that an argument
can only be for or against a viewpoint in a debate and that neutrality is not
allowed.

Definition 2.40 (Stable semantics). Let & = (7, %) be an argumentation
framework. A stable extension is a conflict-free set of arguments S C & such
that for every b € (&7 \S) there exists an argument a € S such that (a,b) € %.

34

2.2. ARGUMENTATION THEORY

A complete set of arguments is an admissible set that contains all of the
arguments that it defends. The complete semantics refines the admissibility
in the sense that one should always accept an argument if it can be defended.

Definition 2.41 (Complete semantics). Let § = (o7, %) be an argumen-
tation framework. An admissible set of arguments S C & is a complete
extension if and only if for every a € o, if S defends a then a € S.

Grounded semantics is the most skeptical (or least committed) of argu-
mentation semantics, it is defined based on the notion of complete extension.
It is the admissible extension that includes all the arguments it can defend
from all attacks.

Definition 2.42 (Grounded semantics). The grounded extension of an
argumentation framework is the least (with respect to set-inclusion) complete
extension.

In some cases, the stable semantics yields no extensions at all (not even
the empty set). That is why a more refined approach was defined: the semi-
stable semantics [Caminada et al., 2012]. Please note that this semantics is
equivalent to the admissible stage semantics defined by Verheij [1999].

Definition 2.43 (Semi-stable semantics [Caminada et al., 2012]).
Let & = (&, %) be an argumentation framework. A semi-stable extension is
a complete extension S such that SU {b € o | there exists a € S such that
(a,b) € #Z} is maximal (with respect to set inclusion) amongst all complete
extensions.

Contrary to the stable extensions, the existence of the semi-stable exten-
sions is always guaranteed. Furthermore, a stable semantics is a semi-stable
extension and semi-stable extensions coincide with stable extensions when
the set of stable extensions is not empty.

An ideal extension is a maximal for set inclusion set of argument that is
a subset of each preferred extension. It was shown by Caminada and Pigozzi
[2011] that the ideal extension is also a complete extension and thus it is a
superset of the grounded extension.

Definition 2.44 (Ideal semantics [Caminada and Pigozzi, 2011]).
Given an argumentation framework & = (o, %). An admissible set S is
called ideal if and only if it is a subset of each preferred extension. The ideal
extension of § is a maximal (with respect to set inclusion) ideal set.

For our purposes, we require some further formal notions. An argumen-
tation framework is strongly connected if and only if there is a path from
any argument a to any argument a’.

Definition 2.45 (Strongly connected). Let § = (<7, %) be an argumen-
tation framework. We say that & is strongly connected if and only if for every
a,a’ € o such that a # a’, there is a path from argument a to argument a’.

35

CHAPTER 2. PRELIMINARIES

The nodes of an arbitrary directed graph can be partitioned such that
the subgraphs, induced by each set of nodes, are maximal strongly connected
subgraphs. Each set of such a partition is called a strongly connected com-
ponents of this graph. In the rest of this thesis, we will denote by SCC(g),
this particular partition of the set of arguments of .

Definition 2.46 (Component-defeated [Gaggl and Woltran, 2013]).
Let § = (o, %) be an argumentation framework and S C & a set of argu-
ments. An argument b € o is component-defeated by S if there exists a € S
such that (a,b) € Z and a is not in same the strongly connected component
than b. The set of arguments component-defeated by S in & is Dg(S).

All of the above mentioned argumentation semantics are admissibility-
based, i.e. the extension returned are admissible sets. Moreover, in the
multiple-status semantics (such as complete, preferred, stable and semi-
stable), we can notice that odd-length unidirectional attack cycles are han-
dled badly. However, in some applications, cycles need to be treated equally
independently of their length [Pollock, 2001]. The stage semantics conforms
with this idea of “equal cycles treatment” but loses its proximity with the
grounded semantics as it was shown that even non attacked arguments can
be rejected in some cases [Baroni et al., 2011]. Against this background,
the ¢f2 semantics was designed as a multiple-status semantics that is not
admissibility-based, treats cycles equally and which accepted arguments are
a superset of those accepted by the grounded semantics.

Definition 2.47 (Cf2 semantics [Gaggl and Woltran, 2013]). Let & =
(o, Z#) be an argumentation framework and S C & be a set of arguments.
S is a cf2 extension of § if and only if:

e in case |SCC(F)| = 1, then S is a maximal conflict free set of §,

e otherwise, for every C € SCC(g), (SNC) is a cf2 extension of (ANY,RN
(Y XY)) where Y = C\ Dg(S).

Notation 2.7. Let § be an argumentation framework, we will denote by
Ext, (&) the set of extensions with respect to the argumentation semantics x
for &. We use the abbreviations cf,a,p,s,c,g,ss,i and cf2 for respectively
conflict-free, admissible, preferred, stable, complete, grounded, semi-stable,
ideal and cf2.

Definition 2.48 (Sceptically accepted, credulously accepted and
rejected arguments). Let & = (&7, %) be an argumentation framework and
Ext, (&) be the set of extensions with respect to the argumentation semantics
x for §. We say that:

e a is sceptically accepted with respect to x if and only if for every e €
Exty(¥),a € ¢.

36

2.2. ARGUMENTATION THEORY

e a is credulously accepted with respect to x if and only if for there exists
€1, €9 € Exty (&), such that a € €1 and a ¢ .

e a is rejected with respect to x if and only if for every ¢ € Ext (&), a € «.

Example 2.17 (Argumentation semantics). Consider the argumenta-
tion framework § = (o, %) such that o/ = {a,b,c,d} and Z = {(e,e), (d,e),
(d,c),(c,d), (b,c),(a,b)}, represented in Figure 2.4. We make the following
observations:

o The admissible extensions are {d}, {a}, {a,d}, {a,c} and 0.
o The complete extensions are {a}, {a,c}, {a,d} and 0.

e The preferred and cf2 extensions are {a,c} and {a,d}.

e The stable and semi-stable extension is {a,d}.

o The ideal extension is {a}.

o The least complete extension is {a} which is the ground extension.

S— G T —@

Figure 2.4: Argumentation framework of Example 2.17

Stable Admissiblity-based

l

Semi-stable

|

Grounded Preferred
Complete
Ideal Admissible SCC-based

|

Conflict-free

Figure 2.5: Inclusion relations between the several argumentation
semantics used in this thesis.

37

CHAPTER 2. PRELIMINARIES

Semantics | CF DF ADM INCDF MAX AGR UNIQ EXIST
Admissible | vV v v
Complete v v v v v

Stable v v v v v

Semi-stable | vV v v v v
Preferred v ov v v v v
Grounded | vV v v v v
Cf2 v v v
Ideal v v v v v v v

Table 2.2: Argumentation semantics with respect to criteria. v means the
criterion is satisfied

In Figure 2.5, we show the inclusion relations between the several ar-
gumentation semantics used in this thesis. An arrow from the node A to
the node B means that an extension for semantics A is also an extension
for semantics B. In Table 2.2, we summarise the semantics and their essen-
tial criteria. The criteria are as follows: CF means that the extensions are
conflict-free, DF means that they defend all their elements, INCDF means
that they include what they defend, MAX means that they are maximal
with respect to inclusion, AGR means that they attack all arguments that
are outside of the extension, UNIQ means that there is always one extension
and EXIST means that there is always at least one extension. The table is
only an illustration and the criteria are not completely dependent as some
of them are derivable from others.

2.2.3 Labelling approach

The labelling approach consists in mapping arguments with labels.

Definition 2.49 (Labelling). Let § = (o, %) be an argumentation frame-
work and A be a set of labels. A labelling L with respect to A is a total
function L : of — A.

A sensible choice for the labels (but not the only one possible) is in, out,
and undec in order to represent that an argument is accepted, rejected and
undecided respectively. = However, such a mapping does not have much
sense if made arbitrary. Thus, the notion of reinstatement labelling was
introduced as constraints to ensure the meaning of the mapping.

38

2.2. ARGUMENTATION THEORY

Definition 2.50 (Reinstatement labelling). Let § = (<7, %) be an arqu-
mentation framework. A labelling L is a reinstatement labelling if and only
if all of the following items are satisfied:

e for every a € o/, L(a) = in if and only if for every b € &/ such that
(b,a) € Z, L(b) = out

o for every a € o/, L(a) = out if and only if there exists b € &/ such that
(b,a) € Z and L(b) = in

e for every a € &, L(a) = undec if and only if L(a) # in and L(a) # out

Example 2.18 (Grounded labelling). The argumentation framework in
Ezample 2.4 can have different reinstatement labelings. Figure 2.6 corre-
sponds to the complete extension {a,c} and Figure 2.7 corresponds to the
grounded extension {a}.

out in out in
@00 0

Figure 2.6: Labelling that corresponds to {a,c} of Example 2.17

undec

undec(% undec undec out in

- (-
—@ o—@—@
Figure 2.7: Labelling that corresponds to {a} of Example 2.17

Every extension can be translated into a reinstatement labelling: the
arguments of the extension are in, those attacked by an argument of the
extension are out, and the others are undec. Similarly, one can build an
extension from a reinstatement labelling just by considering the arguments
that are labeled “in”. Moreover, Caminada [2006] proved that the reinstate-
ment labelings and the complete extensions can be mapped in a bijective
way and that other Dung’s argumentation semantics can be obtained from
particular reinstatement labelling. In this thesis, we will not delve into the
labelling representation and only use the extension-based approach.

In the next section, we introduce a similar approach for analysing and
detecting the most attacked arguments. Ranking-based semantics [Amgoud
and Ben-Naim, 2013; Bonzon et al., 2016; Besnard and Hunter, 2001] were
developed for ranking arguments with respect to their acceptability. The
added value of this approach is that contrary to the usual three value statuses
(accepted, rejected or undecided) offered by the argumentation semantics,
the ranking-based semantics offer a more gradual acceptability range which
can be more useful for many applications such as debate platforms on the
web (see the work of Leite and Martins [2011]).

39

CHAPTER 2. PRELIMINARIES

2.2.4 Ranking-based semantics

Amgoud and Ben-Naim [2013] give the three main properties of extension-
based (and labelling-based) semantics: Killing, Existence and Flatness.

e Killing. An attack from an argument a to b is drastic and it is no
longer possible for b to be in the same extension as a.

e FEristence. One successful attack against an argument has the same
effect on an argument as any number of successful attacks.

e Flatness. All arguments with the same status (accepted, rejected,
undecided) have the same level of acceptability and cannot be distin-
guished.

Although those intuitions may have been understandable in the context
of paraconsistent logics [Besnard and Hunter, 2008] because they will ensure
the consistency of a set of formulas by killing any contradiction between ar-
guments, these considerations are arguable when given in the context of
decision-making application [Yun et al., 2016, 2018a] or online debate plat-
forms [Leite and Martins, 2011]. In those applications, it is understandable
that many successful attacks should have a more negative impact than just
one successful attack. Thus, although many arguments can have the same
status, they should not be undistinguishable.

In the rest of this section, we formally define the ranking-based semantics
and scoring semantics.

Definition 2.51 (Ranking-based semantics o). A ranking-based seman-
tics o associates to any argumentation framework § = (7, %) a ranking =2
on &/ where >Z is a total preorder (reflezive and transitive relation) on <7 .
The notation a =S b means that a is at least as acceptable as b.

Notation 2.8. We use the notation a zg b if and only if a zg b andbd zg a.
Moreover, we say that a >g b if and only if a zg b and b a_‘g a. Likewise,
we say that a 5§ b if and only if a }g b. Finally, we say that a <§ b if and
only if a 5§ b andb ,{g a

A scoring function assign to each argument, in an argumentation frame-
work, a score based on different criteria. The score can be chosen in an
interval [0,1],[-1,1],N or even R. Please note that the score given by a
scoring function should not be confused with the inner weight of arguments
in weighted argumentation frameworks [Dunne et al., 2011; Coste-Marquis
et al., 2012]. Indeed, weights are given by external sources (preferences,
inner strength) whereas scores are computed with respect to the intrinsic
structure of the argumentation framework.

40

2.2. ARGUMENTATION THEORY

Definition 2.52 (Scoring function). A scoring semantics is a function
which associates to any argumentation framework § = (7, %) a scoring S
on &, where S is a function from </ to R.

Please note that scoring function and ranking-based semantics are not
independent notions. Indeed, one can use the scores from a scoring function
to rank arguments, thus obtaining a ranking-based semantics. However, it
does not mean that every ranking-based semantics is based on an under-
lying scoring function. Indeed, some ranking-based semantics can directly
compare arguments using methods such as the lexicographical order without
using scores.

Definition 2.53 (Lexicographical order). Let V = (V1,Vs,...,V,) and
V' = (V/,Vy,...,V;) be two vectors of real numbers of size n. The lexico-
graphical order between V and V' is defined as V >j. V' if and only if there
exists i € {1,...,n} such V; < V! and for every j < i,V; = V;.

1

Notation 2.9. We use the notation V =, V' if and only if V #iex V' and
V' #lex V. Moreover, we say that V >je V' if and only if V' #1ex V

2.2.4.1 Existing ranking-based semantics

In this section, we introduce the ranking-based semantics from the literature
that will be used in throughout the thesis. In order to correctly illustrate
the ranking outputted by each of these ranking-based semantics, we use the
argumentation framework in Figure 2.8 proposed by Delobelle [2017]

TN

Figure 2.8: An argumentation framework &

Besnard and Hunter [2001] proposed the h-categoriser function as a scor-
ing function that gives the strength of an argument based on the strengths
of its attackers.

Definition 2.54 (H-categoriser function [Besnard and Hunter, 2001]).
Let § = (o, %) be an abstract argumentation framework. The h-categoriser
function is C' : of — [0,1] defined as, for all a € & :

1 if Z7 (a) =

Cla=y _ 1 otherwise

41

CHAPTER 2. PRELIMINARIES

Pu et al. [2014] showed the existence and uniqueness of the values re-
turned by the h-categoriser function for any argumentation frameworks. The
following definition shows how the h-categoriser ranking-based semantics is
constructed from the scores returned by the h-categoriser function.

Definition 2.55 (H-categoriser ranking-based semantics [Pu et al.,
2014]). Let § = (/, %) be an abstract argumentation framework. The h-
categoriser ranking-based semantics on § returns a ranking zgc‘” on o/ such
that for every a,b € o :

b =1 q if and only if C'(a) < C'(b)

Example 2.19 (H-categoriser). We consider the argumentation frame-
work & depicted in Figure 2.8. The values returned by the h-categoriser func-
tion for each argument are C’(a) = C’(e) = C'(j) = 1,C’(c) = 0.667,C’(i) =~
0.333 and C'(b) = C'(d) = C'(f) = C’(g) = C'(h) = 0.5. Thus, the ranking on

& outputted by the h-categoriser ranking-based semantics is:

hcat hcat hcat hcat 3, ,_hcat j _hcat hcat _
¢ >3 b A" d A f Ay R~

~ . hcat hcat .
3 e gt g O h >

[

Amgoud and Ben-Naim [2013] introduced the Discussion-based ranking-
based semantics which compares the arguments with respect to the number
of paths leading to them. The intuition behind this ranking-based semantics
is that an even path to a should increase the score of a whereas an odd path
should reduce its score.

Definition 2.56 (Discussion count). Let § = (<7, %) be an argumenta-
tion framework, a € o/ and i € N\ {0}.

Dis;(a) —|%; (a)l if i is odd
isi(a) =
|Z; (a)l otherwise

The discussion count of a is the vector Dis(a) = (Disy(a), Dis2(a),...).

The discussion-based ranking-based semantics is computed using the lex-
icographical order on the discussion counts of the arguments.

Definition 2.57 (Discussion-based ranking-based semantics [Am-
goud and Ben-Naim, 2013]). Let & = (7, %) be an argumentation frame-
work. The discussion-based ranking-based semantics on § returns a ranking
zgis on & such that for every a,b € o/ :

b z;j"s a if and only if Dis(a) >jex Dis(b)

Example 2.20 (Discussion-based ranking-based semantics). We con-
sider the argumentation framework & depicted in Figure 2.8. We obtain the
following discussion counts:

42

2.2. ARGUMENTATION THEORY

Dis(a) = Dis(e) = Dis(j) = (0, 0, 0)

Dis(c) = (1, -1, 0)

Dis(b) = Dis(d) = Dis(h) = (1, 0, 0)
Dis(f) = Dis(g) = (2, -2, 0)
o Dis(i) = (2, 0, 0)

Here, it is enough to only compute discussion counts of size three as we
can see that every discussion count finishes with a zero (it means that there
are no paths of size more than two). Using the lezicographical order, we get
the following ranking on < :

dis _ _dis . _dis dis 1 _dis j _dis dis dis dis .
a~g" e~g” j>at e > bag d AP h >8P fag g2

The last ranking-based semantics considered in this thesis is the Burden-
based ranking-based semantics also defined by Amgoud and Ben-Naim [2013].
This ranking-based semantics uses some intuition from the discussion-based
ranking-based semantics as it first considers the direct attackers since it
is based on the lexicographical order. However, instead of computing the
number of paths for a specific argument, it updates the “burden” of each
argument with respect to the burden of its direct attackers.

Definition 2.58 (Burden vector). Let § = (&7, %) be an argumentation

framework, a € & and i € N\ {0}.
1 ifi=0
L+ Ybew; (a) m otherwise

Bur;(a) = {

The burden vector of an argument a is Bur(a) = (Burg(a), Buri(a),...).

The burden-based ranking-based semantics is then computed using the
lexicographical order on the burden vectors of the arguments.

Definition 2.59 (Burden-based ranking-based semantics). Let § =
(o, %) be an argumentation framework. The burden-based ranking-based
semantics on § returns a ranking zgw on & such that for every a,b € o :

b zg’” a if and only if Bur(a) >jex Bur(b)
Example 2.21 (Burden-based ranking-based semantics). We con-

sider the argumentation framework & depicted in Figure 2.8. We obtain the
following burden vectors:

43

CHAPTER 2. PRELIMINARIES

e Bur(a) = Bur(e) = Bur(j) = (1, 1, 1, 1)
e Bur(c) = (1, 2, 1.5, 1.5)

e Bur(b) = Bur(d) = Bur(h) = (1, 2, 2, 2)
e Bur(f) = Bur(g) = (1, 3, 2, 2)

e Bur(i) = (1, 3, 3,)

Using the lexicographical order, we get the following ranking on < :

bur _ _bur bur bur y _bur 3 _bur bur bur bur .
>3 b ~g d ~g h >a

axg ey j>aC Ry grg 1

Although the ranking on arguments is the same for the burden-based
and discussion-based ranking-based semantics in Example 2.20 and 2.21,
the equality of the two ranking-based semantics is not true. The reader is
invited to read the original paper by Amgoud and Ben-Naim [2013] for an
intuitive counter-example.

2.3 Summary

In this chapter we presented the existential rule logical fragment along with
the frontier chase forward chaining inference mechanism. We showed that
allowing the presence of existential quantifiers in the head of rules might lead
to infinite rule applications, that is why a derivation reducer is needed to
remove redundant rule applications. We presented the frontier derivation re-
ducer and showed the types of rules (Skolem-FES) for which it is guaranteed
to stop. Then we defined the different types of conflicts, namely, inconsis-
tence when a negative constraint is applicable, and incoherence when the
set of rules is unsatisfiable. In the rest of this thesis, we only work with
inconsistent knowledge bases with a coherent set of rules.

Afterwards, we presented the Argumentation Theory which is a conflict-
tolerant form of reasoning that is based on argumentation frameworks with
arguments and attacks among them. These argumentation frameworks can
then be used to evaluate arguments using different approaches:

1. The extensions-based approaches are semantics that are able to select
sets of non-conflicting arguments called extensions (or equivalently,
coalitions) that can survive a conflict together. We first recalled the
some admissible-based argumentation semantics such as Dung’s ar-
gumentation semantics (complete, preferred, stable and grounded),
the semi-stable and the ideal semantics. Second, we recalled an non

44

2.3. SUMMARY

admissible-based semantics based on strongly-connected components:
the cf2 semantics. Lastly, we presented how all of those argumentation
semantics are connected with respect to extensions inclusion.

2. The labelling approach is a semantics that is based on giving labels
to arguments. In the literature, we usually restrict ourselves to rein-
statement labelings in order to ensure the meaning of the labelling.
Since it was proven by Caminada [2006] that reinstatement labelings
straightforwardly coincide with the complete extensions, we can get
all of the usual Dung’s argumentation extensions by picking specific
labelings in the set of reinstatement labelings. In this thesis, we will
not delve into this labelling approach.

3. The last approach is called ranking-based semantics. These semantics
were developed following different intuitions than extension-based ap-
proaches. Indeed, ranking-based semantics are usually more gradual
because they do not directly “kill” an argument when it is attacked.
Ranking-based semantics return a ranking on arguments for any ar-
gumentation framework. In this thesis, we will only consider three
ranking-based semantics: h-categoriser, burden-based and discussion-
based ranking-based semantics. The first ranking-based semantics is
defined upon a scoring function whereas the last two are defined around
the lexicographical order on vectors of values (burden vector and dis-
cussion count).

We discussed about the existential rule logical fragment and approaches
for evaluating arguments when given an abstract argumentation framework.
In the next chapter, we show how the two notions can be combined using
logic-based argumentation and instantiation an argumentation framework
with an inconsistent knowledge base in the existential rules language.

Chapter 2 in a Nutshell

o Reasoning with existential rules requires a derivation reducer to
become decidable. Frontier/Skolem chase is the most used for-
ward chaining inference mechanism and has decidable classes
(types) of rules called Skolem-FES.

o There are two types of conflicts: inconsistency when a negative
constraint is applicable, and incoherence when the set of rules
is unsatisfiable. We will only work with coherent set of rules.

e A Dung’s abstract argumentation framework is composed of
arguments and attacks among them. Reasoning with such a
framework consists in evaluating arguments using several ap-
proaches: extensions-based, labelling-based and ranking-based.

45

Using Deductive Argumentation with
Existential Rules

3.1 Deductive argumentation frameworks in existential

rules 49
3.1.1 Argumentation graphs generated from knowledge
bases 52
3.1.2 Argumentation graphs generated from knowledge
bases without rules 56
3.2 Improving the argument generation 64
3.2.1 Optimisation for knowledge bases without rules . . 65
3.2.2 Optimisation for knowledge bases with rules. . . . 66
3.3 The DAGGER tool 74
3.3.1 DAGGER's architecture 74
3.3.2 Usability scenarios 76
3.4 Benchmarks on logic-based argumentation frameworks 78
3.4.1 Benchmark generation 80
3.42 Results of literature solvers over the benchmark . . 82
3.5 Summaryo 87

Logic-based argumentation considers constructing arguments from in-
consistent knowledge bases and computing attacks between them. The re-
sult of such a workflow is usually an argumentation graph (also called ar-
gumentation framework) where nodes are arguments and directed edges are
attacks between them. In this thesis, we focus on instantiating a specifi-
cally crafted deductive argumentation framework using the existential rules
language. The reason why we did not use any of the existing frameworks
is because they are not directly and straightforwardly applicable in the con-
text of the existential rules language. Indeed, none of the aforementioned
frameworks can be applied to an inconsistent existential rules knowledge
base without modifying it beforehand.

In the case of ABA, although it is abstract enough to function with a
language that has neither implication nor negation, it needs a contrariness
function that returns a single contrary sentence for each formula of the
language. This is not enough in the case where a fact appears in multiple

47

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

conflicts and the language does not allow for the disjunction. We only say
that ABA cannot be applied in a straightforward manner and not that it
cannot be applied at all. Toni [2014] proposes a fix to the aforementioned
problem that consists in adding new facts and rules in a specific way in
order to encode a single contrary per assumption. In the case of ASPIC+
framework, we cannot instantiate it since the definition of the contrariness
relation is not general enough to account for the existential rules negative
constraints. Let us illustrate this on an example. Suppose we are given three
facts: the biscuit has a square shape, the biscuit has a round shape and the
biscuit is sweet; no rules and one negative constraint: the biscuit cannot
have a square and round shape at the same time. As the fact “the biscuit
is sweet” is a free-fact (i.e. it is not involved in any minimal conflict), there
is no way to define its contrary in an intuitive manner (without modifying
the knowledge base). In the work of Modgil and Prakken [2014], the third
item of Definition 5.1 specifies that each formula of the language must have
at least one contradictory, which is not the case for the latter fact in our
example. Of course, workarounds exist but would necessitate the addition of
multiple facts, positive rules and negative constraints. In the case of DeLP,
we cannot instantiate it since the original work only consider ground rules
which cannot encompass existential rules. Last not but least, the approach
of Besnard and Hunter [2001] cannot be used directly as it was defined
originally for classical propositional or full first-order logic [Besnard and
Hunter, 2008].

The chapter is organized as follows: In Section 3.1, we revisit the partic-
ular deductive argumentation framework proposed by Arioua et al. [2017]
for existential rules and show various properties results. In Section 3.2, we
provide various optimisation for the arguments generation with respect to
the knowledge base structure. In Section 3.3, we showcase the first tool in
the literature for automatically generating the argumentation graph from an
inconsistent knowledge base expressed in existential rules. In Section 3.4,
we benchmark the top solvers of the ICCMA competition on the generated
graphs and show that the structure of the generated graphs have an impact
on argumentation solvers.

Research Questions in this Chapter

e How can one generate a deductive argumentation framework
from an inconsistent knowledge base expressed in existential
rules?

e How can we get an efficient argument generation?

e Do these generated argumentation graphs possess some partic-
ular structure? If yes, does it have an impact on solvers?

48

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

3.1 Deductive argumentation frameworks in existen-
tial rules

A deductive argumentation framework as described by Besnard and Hunter
[2001] is composed of arguments with a support (or equivalently, hypoth-
esis) and a conclusion that is derived from the support using the rule ap-
plications. The first deductive argumentation framework for the existential
rules language was defined in the work of Croitoru and Vesic [2013] where
arguments correspond to sequences of rule applications. It was proven that
the aforementioned framework possesses several desirable properties such
as the equivalence between repairs and preferred (respectively stable) ex-
tensions, the equivalence between intersection of extensions and some in-
consistency tolerant semantics but it also satisfies argumentation properties
defined by Caminada and Amgoud [2007]. As such, this particular deduc-
tive argumentation framework was the first link between the semantics used
in inconsistent ontological knowledge base query answering and those from
argumentation theory.

However, in practice, representing arguments as derivations is often re-
dundant as some atoms can be derived from the same set of facts in different
ways. We illustrate this intuition in the following example.

Example 3.1 (Multiple derivations for a fact). Let us consider the
knowledge base XB = (F, R, N) such that:

o F={p(a)}

e R={r =VX(pX) — q(X)),
ro = VX (p(X) = r(X)),
r3 = VX (r(X) — q(X))}

e N=90

We obtain two following derivations for the fact q(a):

91 ={(Fo = {p(a)},0,0), (F1 = Fo U {q(a)},r1,m = {X — a})).

d2 = {((Fo = {p(a)},0,0), (F2 = Fo U {r(a)},re, m2 = {X — a}),
(F3=F2U{q(a)},r3, m13 = {X — a})).

If we use the framework of Croitoru and Vesic [2013], we will get two
arguments with the same support {p(a)} and conclusion {q(a)}.

Although remembering which rule application is useful for many pur-
poses such as debates or explanation, some devices with limited memory
capacity cannot afford to keep all of those derivations. That is why, in both

49

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

the work of Arioua et al. [2017] and Yun et al. [2017a], a new deductive
argumentation framework for the existential rules framework was proposed
where the support of arguments are now composed of a minimal set of R-
consistent facts and the conclusion is only a set of atoms that is derived from
the support. This new argumentation framework is more compact as it does
not keep which rule applications led to the conclusion from the support.

Definition 3.1 (Deductive argument [Arioua et al., 2017; Yun et al.,
2017a]). Let XB = (F,R,N) be a knowledge base. An argument a is a tuple
(H,C) with H a non-empty R-consistent subset of F and C a set of facts such
that:

e H C JF and Satgun(H) = L (consistency)

e C C Satg(H) (entailment)

e there is no H C H such that C C Satx(H’) (minimality)
The support H of an argument a is denoted by Supp(a) and the conclusion C
by Conc(a). If X is a set of arqguments, we denote by Base(X) = |Jqex Supp(a).

Example 3.2 (Deductive argument). Consider the following knowledge
base XB = (F,R,N) describing the situation: If an animal is a dog then it
has an owner, if an animal can make cat sounds then it is not a dog.

e J = {animal(tom), miaow(tom), dog(tom)}

o R ={r =VYX(animal(X) A dog(X) — AYownerOf (Y, X)),
ro = ¥X(animal(X) A miaow(X) — notDog(X))}

e N = {¥X(dog(X) A notDog(X)) — L}

There are fourteen arguments that can be created from XB:

ay = ({animal(tom)}, {animal(tom)})

az = ({miaow(tom)}, {miaow(tom)})

az = ({animal(tom), miaow(tom)}, {animal(tom), miaow(tom)})

as = ({animal(tom), miaow(tom)}, {notDog(tom)})

as = ({animal(tom), miaow(tom)}, {animal(tom), notDog(tom)})

ag = ({animal(tom), miaow(tom)}, {miaow(tom), notDog(tom)})
(

a; = ({animal(tom), miaow(tom)}, {animal(tom), miaow(tom), notDog(tom)})

ag = ({dog(tom)}, {dog(tom)})

50

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

ag = ({animal(tom), dog(tom)}, {animal(tom), dog(tom)})
aip = ({animal(tom), dog(tom)}, {owner(Nully, tom)})
)
)

a1 = ({animal(tom), dog(tom)}, {animal(tom), owner(Nully, tom)})

ajo = ({animal(tom), dog(tom)}, {dog(tom), owner (Nully, tom)})

ais = ({animal(tom), dog(tom)}, {animal(tom), dog(tom), owner(Nully, tom)})
aiy = ({miaow(tom),dog(tom)}, {miaow(tom), dog(tom)})

Please note that we restrict ourselves to recognisable FES classes of
existential rules where the chase is guaranteed to stop [Baget et al., 2011]. In
this case, Satp(H) is a finite set. In order to capture inconsistencies between
arguments, we consider the binary attack relation of Croitoru and Vesic
[2013] where an argument a attacks an argument b if and only if the union
of the conclusion of a and an element of the support of b is R-inconsistent.
Roughly speaking, Croitoru and Vesic [2013] give the intuition that this
particular binary attack relation is enough to capture all of the conflicts
since we work in the OBDA setting where all the inconsistency “comes from
the fact”.

Definition 3.2 (Attack relation). An argument a attacks an argument b
denoted by (a,b) € Z (or aZb) if and only if there exists ¢ € Supp(b) such
that Conc(a) U {¢} is R-inconsistent.

Example 3.3 (Example 3.2 cont’d). We have an attack from argument
ay to ayg since the set {notDog(tom)} U {dog(tom)} is R-inconsistent. Please
note that this attack relation is mot symmetric. Here, we can see that ayg
does not attack ay.

Now that we defined the structure of arguments and attacks, the argu-
mentation graph corresponding to a knowledge base consists simply of all
arguments and attacks that can be generated.

Definition 3.3 (Argumentation graph). The argumentation graph in-
stantiated over a knowledge base KB is denoted by Fxs = (<, X), where the
set of arguments o/ and the set of attacks Z follow from Definition 8.1 and
Definition 3.2 respectively.

Example 3.4 (Example 3.3 cont’d). In our example, Fxs = (o, %)
where of = {ay,...,a14} and Z contains the 60 possible attacks on < .

Note that if the fact base of the knowledge base is R-consistent, then
there will be only one extension which will contain all of the arguments (in-
dependently of the argumentation semantics) since there will be no attacks
amongst the arguments. We thus restrict ourselves to the study of argu-
mentation graphs that are generated from inconsistent knowledge bases, i.e.
knowledge bases that have at least one minimal conflict of size at least two.

51

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Name Description

Finite & has a finite set of arguments
Non-trivial Ext,(F) # {0}

Coherent Ext,(§) = Exty(F)

Relatively grounded | GE = () Ext, (%)

Well-founded Ext.(§) = Exty(§) = Ext,(§) = Exts(F)

Table 3.1: Classes of argumentation frameworks studied in the literature

The rest of this section is organised as follows. In Section 3.1.1, we focus
on the argumentation graphs generated from general knowledge bases and
study their structural properties. Likewise, in Section 3.1.2, we study argu-
mentation graphs generated from knowledge bases without positive rules.

3.1.1 Argumentation graphs generated from knowledge bases

We first recall, in Table 3.1, the different classes of argumentation graphs
defined in the literature [Coste-Marquis et al., 2005].

The next proposition shows that an argumentation graph generated from
an inconsistent knowledge base has a finite number of arguments.

Proposition 3.1 (Finiteness [Arioua et al., 2017]). Let XB be a finite
inconsistent knowledge base. Then, Fxs is finite.

Proposition 3.2 shows that if an argument has a repair as its support and
the same repair as its conclusion, then the set containing only this argument
is an admissible set. Please note that such an argument does not always exist
because of the minimality condition on the support of an argument.

Proposition 3.2 (Sentinel [Arioua et al., 2017]). Let XB = (F,R,N)
be a knowledge base, A € repairs(KB) and Fxp = (o, Z). If the argument
a=(AA) € o then {a} is an admissible set.

Example 3.5 (Example 3.2 cont’d). The set {animal(tom),dog(tom)} is
a repair of XB. Thus, it holds that {ag} is an admissible set.

Proposition 3.3 shows that an argumentation graph generated from an
inconsistent knowledge base has at least one non empty preferred extension.

Proposition 3.3 (Non-triviality [Arioua et al., 2017]). Let XB be an
inconsistent knowledge base. Then Fxe is non-trivial.

Example 3.6 (Example 3.2 cont’d). In our example, we have three pre-
ferred extensions. Namely, Ext,(§xs) = {€1, €2, €3} where:

52

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

e & = {ay,a2,as, a4, as, a6, ar}
e &9 = {a1,as, a9, a10,a11, a12, 413}

e &3 ={as,ag,ais}

The next proposition shows that, in an argumentation graph generated
from an inconsistent knowledge base, each argument belongs to at least one
preferred (respectively stable) extension.

Proposition 3.4 (Rejected argument [Arioua et al., 2017]). Let KB
be an inconsistent knowledge base. Then Fxs has no rejected arguments
under preferred and stable semantics.

Example 3.7 (Example 3.6 cont’d). Fvery argument in &/ = {a1,...,a14}
is in at least one preferred extension of Exty(Fxs) = {€1, €2, €3}.

In general, working with argumentation frameworks is hard as shown by
Dunne and Wooldridge [2009] and Dimopoulos et al. [1999]. However, when
some properties are satisfied, this task can become easier. For instance,
when the stable and preferred coincide, the problem of the skeptical mem-
bership of an argument is much easier. Indeed, Dunne and Bench-Capon
[2002] have shown that checking whether an argument is in every stable
extensions is CONP-complete whereas checking whether an argument is in
every preferred extension is in the second level of the polynomial hierar-
chy (H‘;7 — complete). Another example is the problem of finding whether
there is a unique extension with respect to an argumentation semantics
and a given argumentation frameworks. Wolfgang [2017] shows that the
uniqueness problem is DP-complete for the stable semantics whereas it is
CONP-complete for the preferred semantics. Thus, coincidence between
multiple argumentation semantics can sometimes induce a large reduction
in complexity. In view of this, we highlight, in the next propositions and
corollaries, the coincidences and inclusions results between argumentation
semantics in this specific logic-based argumentation framework.

Proposition 3.5 shows that the set of preferred and stable extensions
coincide.

Proposition 3.5 (Coherence [Arioua et al., 2017]). Let XB be an
inconsistent knowledge base. Then Fxs is coherent.

Example 3.8 (Example 3.6 cont’d). In our example, it holds that the
set of preferred extensions is equal to the set of stable extensions. Namely,

Ext,(§xs) = Exts(Fxp) = {1, €2, €3}

In the next corollary, we show that the set of preferred extensions is
included in the set of cf2 extensions. Note that the inverse inclusion does
not hold.

53

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Corollary 3.1 (Preferred and cf2 inclusion). Let XB be an inconsistent
knowledge base. Then it holds that Ext,(ASxs) C Extcra(Sxs)-

Proof. Since we know that the set of stable extensions is included in the
set of cf2 extensions [Gaggl and Woltran, 2013] and that the argumentation
graph is coherent then we can conclude that the set of preferred extensions
is included in the set of cf2 extensions O

Example 3.9 (Example 3.6 cont’d). In our example, we have Ext,(Fxs) =
Exty(Jxp) = Extepa(Fxn) = {€1,€2,€3}. Please note that the equality is not
true and that it is possible to find a knowledge base such that there is a
cf2 extension of the generated argumentation graph that is not a preferred
extension (see Example 3.19 on page 63).

In the next corollary, we show that the semi-stable semantics is equiva-
lent to the preferred and stable semantics in this argumentation framework.

Corollary 3.2 (Semi-stable equivalence). Let XB be an inconsistent
knowledge base then it holds that Ext,(ASxs) = Extss(§xs) = Exts(Fxs)-

Proof. By definition, we know that Exts(Fxs) C Extss(Fxs). Moreover,
Caminada [2006] proved that Extss(Jxs) C Ext,(ASxs) holds in the gen-
eral case. Thus, since it holds that in this argumentation framework, we
have Ext,(§xs) € Exts(Jxs), we can conclude the proof. O

The next proposition shows that the grounded extension is equal to the
intersection of all the preferred extensions.

Proposition 3.6 (Relative groundedness [Arioua et al., 2017]). Let
KB be an inconsistent knowledge base. Then Fxp is relatively grounded.

Example 3.10 (Example 3.6 cont’d). In our example, we have that
Exty(Sxs) = {0} = (N Extp(Jxs)-

The next proposition shows that we can never create an argumentation
graph that is well-founded.

Proposition 3.7 (Well-foundedness [Arioua et al., 2017]). There is
no inconsistent knowledge base XB such that Fxp is well-founded.

In the next proposition, we show that self-attacking arguments do not
exist in this framework.

Proposition 3.8 (No self-attacking arguments). Let XB be an incon-
sistent knowledge base and Fxp = (', X) the corresponding argumentation
framework. There is no a € & such that (a,a) € X.

54

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proof sketch. We show this by contradiction. If there is a self-attacking
argument, then the union of its conclusion with its support is R-inconsistent.
This is a contradiction with the consistency of the support of an argument.

O

In the next proposition, we show that if an argument a is attacked by
an argument b, then b is also attacked.

Proposition 3.9 (Defense existence). Let XB be an inconsistent knowl-
edge base and Fxp = (,X#) be the corresponding argumentation framework.
For any a,b € & such that (a,b) € Z, there exists c € &/ such that (c,a) € %Z.

In the next proposition, we highlight that all subsets of a minimal in-
consistent set can be directly “translated” into arguments.

Proposition 3.10 (Conflict-based arguments). Let XB be an inconsis-
tent knowledge base and Fxp = (/,X%) be the corresponding argumentation
framework. If C € MI(XB) and E C C then (E,E) € <.

Proof. By definition, E is R-consistent. Let us prove Proposition 3.10 by
contradiction. Suppose that (E,E) ¢ o/, it means that there exists H C E
with E C Satg(H) (minimality). Thus, (C \ E) U H is R-inconsistent and
((C\ E) UH) c C, contradiction. O

Example 3.11 (Example 3.2 cont’d). In our example, we have that
MI(KXB) = {C} where C = {animal(tom), miaow(tom),dog(tom)}. We can
thus directly create the arguments corresponding to subsets of C, namely
ay, s, ds, das, dg and aiq.

In the next corollary, we show that if there is at least one minimal conflict
of size at least 2, then there is a cycle in the argumentation graph.

Corollary 3.3 (Cycle existence). Let KB be an inconsistent knowledge
base such that there exists S € MI(KB) with |S| > 2 and Fxp = (A, X) be
the corresponding argumentation framework. Jxp has at least one cycle.

Proof. Let us consider S € MI(XB) such that |S| > 2, 51,59 € S, S1 NSy =0,
|S1] =1 and S; U Sy = S. Using Proposition 3.10, we know that there exists
two arguments a; = (S1,51) and as = (S2,52) such that (ai,a2) € Z and
(ag, a1) EA. O

In the next corollary, we show that for each minimal inconsistent set,
there is a specific subset of the argumentation graph that is complete.

Corollary 3.4 (Conflict-based complete graphs). Let XB be an incon-
sistent knowledge base and Fxs = (7, %) be the corresponding argumenta-
tion framework. If C € MI(KB) then there exists a subgraph of Fxs with |C|
arguments that is complete.

55

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Proof. Let us consider the set @ = {a € & | a = (E,E) with E c C and
|E| = |C|-1}. It is easy to see that for every a, b € </, we have that (a,b) € Z.
Thus the restriction of Fxp to ¢ is a complete directed graph. O

Example 3.12 (Example 3.2 cont’d). It holds that the subgraph of Fxs
composed of the arguments /¢ = {ayq, ag, a14} s a complete graph.

In this section, we studied the structural properties, inclusion in graph
classes and equivalence between argumentation semantics of argumentation
graphs generated from general inconsistent knowledge bases. In the next
section, we restrict ourselves to knowledge bases without positive rules.

3.1.2 Argumentation graphs generated from knowledge bases with-
out rules

The graph theoretical results of this section are solely looking at the case
where the knowledge base is composed of a set of facts and a set of negative
constraints defined on these facts. Therefore, at the basis of our results lies
the notion of knowledge base minimal conflict (and thus repair). Please note
that knowledge bases without positive rules are not uncommon and without
interests. Indeed, in the Big data setting, the data sources are sometimes
presented in their saturated form, i.e. after the ontological rules have been
applied. In this context, our results are directly applicable. In this section,
we exhibit three main results proven by Yun et al. [2018b]:

1. The first result deals with the conflict-induced structural properties.
Namely, we characterise dummy arguments, arguments that are un-
attacked and that do not attack other arguments, and show the rep-
etitious nature of the argumentation graph by introducing the notion
of k-copy graph.

2. The second result deepens these results and looks into the symmetries
of the argumentation graph based on graph automorphisms.

3. Last, we look into the connectivity of the graph and demonstrate
strongly connected components related results.

Please note that these three points will enable us to completely char-
acterise the structural properties of argumentation graphs generated from
knowledge bases without positive rules.

We begin by proving that the number of dummy arguments is exponen-
tial with respect to the number of free facts. Proposition 3.11 is important as
it shows that even when there is no rules in the knowledge base, the number
of arguments can be exponentially increased when free facts are added.

Definition 3.4 (Dummy argument). Let § = (&7, %) be an argumenta-
tion framework. We say that a € & is a dummy argument if and only if
there is no (x,y) € #Z such that x =a ory = a.

56

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proposition 3.11 (Characterisation of dummy arguments). Let XB =
(F,R,N) be a knowledge base such that R =0 and |F| = n. There are exactly
2k — 1 dummy arguments in Fxs = (7, R), where k = |Free(XB)].

Proof sketch. Since we can build (2% — 1) R-consistent subsets from the set
of free facts, the number of dummy arguments is at least 28 — 1. Then, by
means of contradiction, we show that there cannot be a dummy argument
with a support that is not included in the set of free facts (cf. detailed proof
in Section 7.2.1 on page iii). |

Example 3.13 (Characterisation of dummy arguments). Let us con-
sider the following knowledge base KB = (F, R, N) inspired from the impos-
sible food triad problem proposed by George W. Hart:

e J = {potatoes(m), mayonnaise(m), cabbage(m), dish(m), edible(m)}
e R=10
o N = {VX(potatoes(X) A mayonnaise(X) A cabbage(X) — L1)}.

The knowledge base KB expresses the idea that an edible dish m cannot
contains potatoes, mayonnaise and cabbage at the same time. We have that
Free(XB) = {dish(m), edible(m)}, we conclude that there is 22 -1 = 3 dummy
argument. Those argument corresponds to:

e ({dish(m)},{dish(m)})
o ({edible(m)}, {edible})
o ({edible(m),dish(m)}, {edible(m),dish(m)}).

We now analyse the related behaviour of atoms in at least one conflict.
To do so, we introduce the notion of k-copy graph. A k-copy graph of an
argumentation graph is another graph that has k times more arguments and
each copy a’ of a attacks the same arguments as a and is attacked by the
same arguments. Formally:

Definition 3.5 (k-copy graph). Let § = (&7, %) and §' = (', Z’) be two
argumentation frameworks. We say that & is a k-copy graph of & if and
only if:

o || = k|| and there is a surjective function f from o/ to o/’ such
that for every argument a’ € </, we have |Wy| = k, where Wy = {a €

o | f(a) =a’}.
e For all a,b e <7, (a,b) € Z if and only if (f(a), f(b)) € %#’.

57

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

.\ ()
O—® g‘ 7@

Figure 3.1: Representation of a 2-copy graph

Example 3.14 (k-copy graph). In Figure 3.1, the graph G (on the right)
is a 2-copy graph of the graph G’ (on the left). In our example, we have that
W ={a1, a2}, Wy = {b1, b2}, Wer = {c1,c2}.

Please note that if two arguments are the copies of the same argument,
then they attack the same arguments and are attacked by the same argu-
ments.

The following proposition shows that if there is a knowledge base KB
with no rule and k free facts, then there exists a subgraph of ¢ that is a
2k_copy graph of Fyp where KB’ is the knowledge base with no rules, the
same negative constraints as KB and that contains only the facts that are
in at least one conflict.

Definition 3.6 (Subgraph). Let § = (&7, %) be an argumentation frame-
work. We say that §' = (', %’) is a subgraph of & if and only if &/’ C o,
X' C X and for every (x,y) € Z', x,y € .

Proposition 3.12 is important as it shows the behaviour of the instantia-
tion in the case of addition of free facts (facts not appearing in any conflict).
It shows the structure of the graph and exhibits the exponential growth of
the number of arguments with respect to these facts.

Proposition 3.12 (Number of arguments). Let XB = (F,R,N) be a
knowledge base with R = 0. If |Free(KB)| = k then there is a subgraph of
Fxs = (A, R) that is a (25)-copy graph of Fxy = (', R') where KB’ =
(F\ Free(KXB),R,N) and |«/| = (|o/'| + 1) = 2K — 1.

Proof sketch. If the set of free facts is empty, then it is obvious that Fys
is a 1-copy graph of itself. If the set of free facts is not empty, we consider
Sy = (', Z') where XB’ is the same knowledge base without the free
facts. We show that the number of arguments in &/’ is the same as the
number of R-consistent subsets of XB’. Last, we show that the subgraph
Sy = (A, Z") of Fxp where &/ = {a € & | Supp(a) ¢ Free(XB)}
and Z” = R\ is a (21T XBN)_copy graph of Fyp (cf. detailed proof in
Section 7.2.1 on page iii). m|

58

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

We want to emphasise the result of Proposition 3.12 as it shows that the
addition of “superfluous” facts will increase the size of the argumentation
graph by an exponential factor.

Example 3.15 (Example 3.13 cont’d). The argumentation framework
Sxs has a subgraph that is a 4-copy graph of s, where KB = ({potatoes(m),
mayonnaise(m), cabbage(m)},0,N). We show below the list of arguments of
the argumentation framework Fyp :

e aj : ({potatoes(m)}, {potatoes(m)})

e a), : ({mayonnaise(m)}, {mayonnaise(m)})

e aj : ({potatoes(m), mayonnaise(m)}, {potatoes(m), mayonnaise(m)})
e a) : ({cabbage(m)}, {cabbage(m)})

e al : ({potatoes(m), cabbage(m)}, {potatoes(m), cabbage(m)})

e aj : ({mayonnaise(m), cabbage(m)}, {mayonnaise(m), cabbage(m)})

The subgraph of Gxs that is a 4-copy graph of Fxx' has four times more
arqguments than Fyp because a copy of each argument is obtained by adding
a set of free facts in its support and conclusion.

We now focus on detecting symmetries in the graph. Please first note
that we have the presence of symmetric arcs in the argumentation framework
without rules. It obviously holds that if all negative constraints are binary,
then the graph has only symmetric arcs (since the undermining will rely on
binary sets). However, if the set of rules is not empty the symmetry of the
attack relation no longer holds.

Next, we explore the link between the instantiation and symmetries in
graphs. The following definitions introduce the notions needed to compre-
hend symmetries, namely, permutations of arguments, orbit of an argument
and the cycle notation of a permutation.

Definition 3.7 (Permutation). A permutation on a set of elements X is a
bijection o from X to X. Given a permutation o, the orbit of element x € X
is the set Oy = {x,0(x),0%(x),...,0™(x)}, with n € {0,1,...} the minimal
integer such that o"'(x) = x.

Example 3.16 (Permutation). Let us consider the set X = {1,2,3,4,5}
and the permutation o such that the images of X under o are given in Table
3.2. The orbit of the element 1 is O1 = {1,2,5}.

Definition 3.8 (Orbit cycle). Given a permutation o on X, an orbit O and
an element x € O, an orbit cycle of O is a sequence (x,0(x), c?(x) ..., 0™ (x)),
where n € {0,1,...} is the minimal integer such that o"*'(x) = x.

59

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

x |1]2]3|4]/5
ox) 2|54 |31

Table 3.2: Images of the permutation ¢ on X

A permutation can be compactly expressed as a product of cycles corre-
sponding to the orbits of the permutation. In the rest of the thesis, and in
order to simplify the notation, we omit cycles of singleton orbits.

Example 3.17 (Example 3.16 cont’d). Let us consider the previous orbit
O1. The sequence (1, 2,5) is an orbit cycle of O1 whereas the sequence (1,5, 2)
is not. Thus, the permutation o can be expressed by (1,2,5)(3,4).

Definition 3.9 (Automorphism). Let G = (V,E) be a graph. A permuta-
tion o on set 'V is an automorphism of G if and only if for every two nodes
v1,v9 € V, we have that (v1,v2) € E if and only if (6(v1),0(v2)) € E.

The set of automorphisms of a graph, together with the function com-
position operator, form a group called the automorphism group. The auto-
morphism groups of a graph characterise its symmetries, and are therefore
very useful in determining certain of its properties. A subset of a group is
called a generating set of a group if and only if every group’s element can
be expressed as the combination (under group operation) of finitely many
elements of the subset and their inverses.

Proposition 3.13 (Automorphisms in k-copy graphs). Let§ = (7, %)
be a k-copy graph of §' = (', %#’). For every a’ € of’, for every ay,as in
Wy, the permutation (a1, as) is an automorphism of §.

The next proposition shows that if we add nodes (and no arc) to a graph
with automorphisms, then the obtained graph also has automorphisms. It is
used for showing, in Corollary 3.5, that a graph constructed on a knowledge
base with no rules possesses non trivial automorphisms derived from its
subgraph.

Proposition 3.14 (Automorphisms transfer). Let G = (V,E) be a graph
such that o is an automorphism of G. The graph G’ = (V U X,E), where
XNV =0, has the automorphism ¢’ from VUX to VUX:

oc(v) ifveV

VvGVUX,a’(v):{ _
v ifveX

Corollary 3.5 (Automorphisms inheritance). Let XB = (F,R,N) be a
knowledge base with R = 0, |Free(XB)| = k,k > 0, KB’ = (F\ Free(XB),R,N)
and F" be a (2%)-copy graph of Fycw = (', R’). If§"" hask’ automorphisms,
then s has at least k' automorphisms.

60

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proof. From Proposition 3.12, we know that Jxs has a subgraph &, =
(7", #") that is a 2%-copy graph of Fyg. We first show that every argument
ae€ o\ " is a dummy argument. Then we use Proposition 3.14.

1. We showed in the proof of Proposition 3.12 that &/ = {a € & |
Supp(a) & Free(KXB)}. Thus, o \o/” = {a € o7 | Supp(a) C Free(KXB)}.
Since we there are no rules, the arguments in &/ \ &/ cannot attack
other arguments.

2. From Proposition 3.14, we conclude that there is an automorphism of
Jxs for every automorphism of 35’53.

O

Corollary 3.5 is important as it shows that a graph inherits all of the
automorphisms of its subgraph. This will be useful when designing new
solvers relying on symmetries.

We now characterise the connectivity of the graph by showing the struc-
ture of the strongly connected components. We first define the impossible
set associated to a minimal conflict C as the set containing all the possible
subsets of F that are supersets of at least one subset of C of size |C — 1].

Definition 3.10 (Impossible set). Let XB = (F,R,N) be a knowledge base
and C be a minimal conflict of MI(KXB). The impossible set of C denoted by
Imp(C) is{X cTF|X" €X and X’ c C with |X'| =|C-1|}.

In the following proposition, we characterise the structure of the strongly
connected components of an argumentation framework obtained from a
knowledge base without rules.

Proposition 3.15 (SCC characterisation). Let XB = (F,R,N) be a
knowledge base such that R = 0 and Fxpg = (F, %) be the corresponding
argumentation framework. We have that:

1. s; € SCC(Fxz) where s; = {(X;, X;)} with X; € 27\ Ucemracs) Imp(C)

2. (# \ Ui si) € SCC(&xs)

Proof sketch. The proof is split in two parts. First, we show by contradiction
that s; is a strongly connected component by itself. Then, we show that all
of the other arguments in (&7 \ |J;s;) are strongly connected (cf. detailed
proof in Section 7.2.1 on page iv).

|

Corollary 3.6 (Number of SCCs). Let XB = (F,R,N) be a knowledge
base such that R = 0. There are |2?\UC€MI(9<B) Imp(C)|+1 strongly connected
components in Fxs.

61

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Example 3.18 (Example 3.13 cont’d). The only minimal conflict is
C1 = {potatoes(m), mayonnaise(m), cabbage(m)}. Thus, we conclude that:

27\ U Imp(C) = {{potatoes(m)}, {mayonnaise(m)}, {cabbage(m)}, {dish(m)},
CeMI(XB)
{edible(m)}, {dish(m), edible(m)}, {potatoes(m), dish(m)},
{potatoes(m), edible(m)}, {potatoes(m), dish(m), edible(m)},
{mayonnaise(m), dish(m)}, {mayonnaise(m), edible(m)},
{mayonnaise(m), dish(m), edible(m)}, {cabbage(m), dish(m)},
{cabbage(m), edible(m)}, {cabbage(m), dish(m), edible(m)}}

Therefore, there are 15 + 1 = 16 strongly connected components in Fxs.

We now summarise all the structural properties of the argumentation
frameworks generated from simple knowledge bases using Figure 3.2 as an
example:

e There is one k-copy graph (encircled in the dashed-line zone).

e The arguments that are not inside the k-copy graph are dummy ar-
guments (arguments that are outside the dashed-line zone) and their
number can be computed using Proposition 3.11.

e There is one dense strongly connected component composed of the
majority of the arguments (encircled in the grey circle).

e The other strongly connected components are composed of only one ar-
gument each (arguments that are outside of the grey circle). The num-
ber of strongly connected components can be computed using Corol-
lary 3.6.

Since we deal with strongly connected components, one of the research
questions that naturally arises from this is whether or not the cf2 semantics
[Baroni et al., 2011; Gaggl and Woltran, 2013] is equivalent to the preferred
semantics in argumentation graphs generated from knowledge bases without
positive rules.

On one hand, it appears that if the set of negative constraints is com-
posed of only binary negative constraints, then the graph only has symmetric
arcs. We conclude that since all SCCs are not linked to each other, the cf2
semantics coincides with the naive and preferred semantics.

Proposition 3.16 (Naive and preferred equivalence). Let KB = (F,R,N)
be a knowledge base such that R = 0. The cf2 semantics coincides with the
preferred (respectively stable) and the naive semantics in Fxs.

62

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Figure 3.2: Structural properties of argumentation frameworks generated
from simple knowledge bases

On the other hand, if we add ternary negative constraints, the cf2 se-
mantics will no longer coincide with the preferred semantics as shown by a
counter-example in Example 3.19.

Example 3.19. Let XB = (F,R,N) be a knowledge base such that F =
{a(m),b(m),c(m),d(m),e(m)}, R = 0 and N = {VX(a(X) A b(X) A c(X) —
1),¥X(e(X) Ad(X) — L1)}. The corresponding argumentation framework
is composed of 161 attacks and 20 arguments. The set of preferred ez-
tensions is {e1, €2, €3, €4, €5, €6} wheareas the set of cf2 extensions is the set
{€1, €9, €3, €4, €5, €6, €7, €8} The list of arguments and the composition of the
extensions is given in Section 7.1 on page 1.

63

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

if there are
no rules

Generation

:

Processed KB Intermediary Graph Complete Graph

if there are
rules

Filtration Generation

Generated Filtration of Generation of
Arguments Arguments Attacks

Figure 3.3: Approach workflow for optimising the argument generation
phase.

3.2 Improving the argument generation

As mentioned in the previous section, the main drawback of using argu-
mentation as a reasoning method over inconsistent knowledge bases relies in
the large number of arguments generated. For instance, even for a modest
knowledge base composed of seven facts, three rules and one binary negative
constraint, one gets an argumentation graph with 383 arguments and 32768
attacks [Yun et al., 2017b]. In this section, we address this drawback and
ask the following research question:

“How can one filter out the arguments generated over the
knowledge base without compromising the semantical outcome
of the corresponding argumentation graph?”

We answer this question by providing a methodology adapted for knowl-
edge bases with or without positive rules. In the first case of knowledge
bases without rules, we use the observation that free facts induce an ex-
ponential growth on the argumentation graph without any impact on its
underlying structure [Yun et al., 2017b] (see Definition 3.5 on page 57 about
k-copy graph). Therefore, we will first generate the argumentation graph
corresponding to the knowledge base without the free facts and then recre-
ate the whole graph including the arguments of the free facts in an efficient
manner. This method allows to generate the graph faster.

In the second case of the knowledge bases with rules, we introduce a
new structure for the arguments and the attacks. In this new structure,
we have less arguments (up to 73% filtered arguments in our experiments).
We show that this new framework is semantically equivalent to the frame-
work introduced by Croitoru and Vesic [2013]. The whole aforementioned
methodology is represented in Figure 3.3.

Against this background, this section is organised as follows. In Section
3.2.1, we present the methodology above for argumentation graphs generated

64

3.2. IMPROVING THE ARGUMENT GENERATION

from knowledge bases without positive rules. In Section 3.2.2, we present
the other methodology above for argumentation graphs with positive rules.
We then provide an empirical evaluation of our work in which we benchmark
our approach on the knowledge bases introduced by Yun et al. [2017b] and
show that in most of the cases, the number of arguments and attacks of
the argumentation graphs corresponding to knowledge bases with rules is
reduced (at least by 25 % for the arguments and at least 14 % for the
attacks).

3.2.1 Optimisation for knowledge bases without rules

In this section, we propose an optimisation for the generation of the afore-
mentioned argumentation framework in the case where knowledge bases con-
tain no positive rules. The idea is to process the knowledge base before
generating the argumentation graph and recreate the whole argumentation
graph from this reduced graph.

In fact, as the number of free facts increases, the number of dummy
arguments (non attacked arguments that do not attack other arguments)
grows exponentially. However, a further result of Yun et al. [2017b] is that
if one removes the free facts from the knowledge base before generating the
argumentation graph, this argumentation graph possibly possesses “expo-
nentially less arguments” with respect to the number of free facts compared
to the original argumentation graph. Hence, we propose a four-step ap-
proach for generating the original argumentation graph faster:

1. We identify the set Free(XB). This step can be done by finding the
minimal inconsistent sets using existing algorithms [Grégoire et al.,

2007; Rocher, 2013]

2. We create the graph Fxp where XB’ = (F\ Free(XB), R, N) following
Definition 3.3 on page 51. Please note that this step can be achieved us-
ing the argumentation graph generator proposed by Yun et al. [2017b].

3. Then, we grow the generated graph to its original size. This can be
done by copying each arguments 2% times (where k = |Free(XB)|) and
adding attacks following the two principles: (1) if a attacks b then a
attacks all the copies of b and (2) if b is a copy of a in then b has the
same attackers and attacks the same arguments than a.

4. Last, we add 2¥ — 1 dummy arguments to the generated graph.
Example 3.20. Let KB = (F,R,N) be a knowledge base such that:

o F ={a(m),b(m),c(m)}

e R=0

65

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

o N = {¥X(a(X) A b(X) — 1)}

In this example, Free(XB) = {c(a)}. Hence, we generate the argumenta-
tion graph Fyp from the knowledge base XB' = ({{a(m),b(m)},0,N) (Step 1
in Figure 3.4). Then, from the graph of yg’, one can construct the corre-
sponding k-copy graph in Step 2. Finally, the dummy arguments are added
(Step 3). At this po