
HAL Id: tel-02197405
https://theses.hal.science/tel-02197405v1
Submitted on 30 Jul 2019 (v1), last revised 27 Sep 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Argumentation techniques for existential rules
Bruno Yun

To cite this version:
Bruno Yun. Argumentation techniques for existential rules. Artificial Intelligence [cs.AI]. Université
de Montpellier, 2019. English. �NNT : �. �tel-02197405v1�

https://theses.hal.science/tel-02197405v1
https://hal.archives-ouvertes.fr

ARGUMENTATION TECHNIQUES FOR
EXISTENTIAL RULES

 Devant le jury composé de

Madalina CROITORU, MCF HDR, Université de Montpellier, France

Rallou THOMOPOULOS, DR, INRA, Montpellier, France

Srdjan VESIC, CR, CNRS, Lens, France

Stefan WOLTRAN, PU, Vienna University of Technology, Vienne, Autriche

Leon VAN DER TORRE, PU, Faculty of Science, Technology and Communication, Luxembourg

Sanjay MODGIL, Senior Lecturer, King's College London, Londres, Royaume-Uni

Marie-Christine ROUSSET, PU, University of Grenoble Alpes, Grenoble, France

Directrice

Co-directrice

Co-encadrant

Rapporteur

Rapporteur

Examinateur

Examinatrice

Présentée par Bruno YUN
Le 11 Juillet 2019

Sous la direction de Madalina CROITORU, Rallou THOMOPOULOS
et Srdjan VESIC

THÈSE POUR OBTENIR LE GRADE DE DOCTEUR
DE L’UNIVERSITÉ DE MONTPELLIER

En Informatique

École doctorale I2S

Unité de recherche LIRMM

Thanks

I want to express my gratitude to those that supervised me during my
thesis, namely Madalina CROITORU, Pierre BISQUERT, Srdjan VESIC
and Rallou THOMOPOULOS. They have always been the source of fruitful
(scientific) discussions and I will never forget the unconditional and endless
support that I received from each of them.

I also truly enjoyed being a part of the GRAPHIK team. They all
succeeded in awakening my curiosity for computer science and knowledge
representation in particular.

I thank all the co-workers and PhD students that I met at LIRMM and
INRA (especially Abdelraouf, Abdallah, Clément, Fati, Jocelyn, Martin and
Stathis) for the working atmosphere, advices and all the good moments that
we shared.

Now, I would like to thank everyone unrelated to research for their help.
First, I thank my parents and my brother for their trust and the help that
they provided me. Second, I thank all of my friends for the entertainment
and the laughing moments. Lastly, I apologise to everyone that was not
explicitly mentioned.

I

Abstract

In this thesis, we investigate reasoning techniques with argumentation graphs
generated from inconsistent knowledge bases expressed in the existential
rules language. The existential rules language is a subset of first-order logic
in which a knowledge base is composed of two layers: a fact layer and an on-
tology layer. The fact layer consists of factual knowledge (usually stored in
relational databases) whereas the ontology layer consists of reasoning rules
of deduction and negative constraints. Since the classical query answering
approaches fail in the presence of inconsistencies, we chose to work with an
conflict-tolerant reasoning approach that is based on building graphs with
structured arguments and attacks from the deductions of the underlying
logical knowledge base.

The three main results are the following. First, we study how argumen-
tation graphs are obtained from knowledge bases expressed in existential
rules, the structural properties of such graphs and show several insights as
to how their generation can be improved. Second, we propose a framework
that generates an argumentation graph with a special feature called sets of
attacking arguments instead of the regular binary attack relation and show
how it improves upon the current state-of-the-art using an empirical anal-
ysis. Third, we interest ourselves to ranking-based approaches in both the
context of query answering and argumentation reasoning. In the former, we
introduce a framework that is based on ranking maximal consistent subsets
of facts (repairs) in order to have a more productive query answering. In the
latter, we set up the foundation theory for semantics that rank arguments
in argumentation graphs with sets of attacking arguments.

Keywords: Argumentation, Inconsistency, Graphs, Existential rules,
Dataloд±.

II

Résumé (version courte)

Dans cette thèse, nous étudions les techniques de raisonnement utilisant
des graphes d’argumentation générés à partir de bases de connaissances in-
consistantes exprimées dans le langage des règles existentielles. Les trois
principaux résultats sont les suivants. Tout d’abord, nous étudions les pro-
priétés structurelles des graphes obtenus à partir de bases de connaissances
exprimées avec des règles existentielles et nous donnons plusieurs indications
sur la manière dont leur génération peut être améliorée. Deuxièmement,
nous proposons une technique pour générer un graphe d’argumentation où
plusieurs arguments peuvent attaquer collectivement, remplaçant ainsi la re-
lation d’attaque binaire classique et montrons expérimentalement les avan-
tages de cette technique. Troisièmement, nous nous intéressons aux ap-
proches fondées sur les classements pour le raisonnement en logique et en
argumentation.

Mots clés: Argumentation, Inconsistance, Graphes, Règles existen-
tielles, Dataloд±.

Résumé (version longue)

Cette thèse présente un travail de recherche original dans le domaine de la
représentation des connaissances et du raisonnement, l’un des principaux
sous-domaines de l’intelligence artificielle. Le langage de représentation des
connaissances que nous abordons est appelé règles existentielles, une famille
de langages logiques correspondant au fragment existentiel conjonctif positif
de la logique du premier ordre. Le domaine de la représentation des connais-
sances s’intéresse à la découverte de formalismes fournissant une description
du monde pouvant être utilisée efficacement pour créer des applications “in-
telligentes”. Dans ce contexte, le terme “intelligent” désigne la capacité
d’un système à trouver les conséquences implicites des connaissances ex-
plicitement représentées. Dans sa forme la plus simple, les données peu-
vent être stockées explicitement par des expressions sous différentes formes,
par exemple dans une base de données relationnelle [Codd, 1970] ou un
triplet RDF. Cependant, afin d’obtenir cette “connaissance implicite” des
données stockées, les communautés de base de données et de représentation
des connaissances ont reconnu la nécessité de structurer les données en in-
formations et en connaissances. Ainsi, des bases de données déductives
avec des ontologies ont été créées pour déduire des données implicites, pal-
liant ainsi l’incomplétude des bases de données classiques. L’introduction
d’ontologies a également permis l’enrichissement et l’unification de vocabu-
laires appartenant à plusieurs sources de données. Dans le Web sémantique,
les connaissances ontologiques sont souvent représentées par des formalismes

III

basés sur les logiques de description [Baader et al., 2005]. Cependant, les
logiques de description ont une expressivité limitée: outre le fait qu’elles ne
prennent en charge que des prédicats unaires et binaires, la connaissance
ontologique ne peut être décrite qu’en matière de structure arborescente
(aucun cycle n’est autorisé). Dans un même temps, le langage de base de
données déductives Datalog [Gallaire and Nicolas, 1987; Ceri et al., 1989],
qui est un sous-ensemble syntaxique de Prolog [Colmerauer and Roussel,
1996], a été élu comme langage par défaut pour les bases de données de
requêtes. Cependant, dans ce langage, il est uniquement possible de pro-
duire des connaissances sur des individus déjà connus et il n’est pas possible
de déduire l’existence d’individus inconnus. Ceci est une caractéristique cru-
ciale car nous ne pouvons pas supposer que tous les individus soient connus
à l’avance.

Le langage Dataloд+ a été proposé pour répondre à ces deux exigences,
c’est-à-dire la capacité d’invention et la capacité à exprimer des structures de
haut niveau telles que des prédicats n-aires ou des ontologies plus complexes.
Le langage Dataloд+ est une extension plus expressive du langage Datalog
[Cal̀ı et al., 2013] avec la possibilité de déduire des informations sur des
individus inconnus. Cependant, cette nouvelle capacité posa de nombreux
problèmes de calculabilité pour le traitement des requêtes. Afin d’éviter ces
problèmes, la famille de langages Dataloд± [Cal̀ı et al., 2013, 2009] a été
introduite. La famille Dataloд± correspond à l’ensemble des langages qui
restreignent la syntaxe des règles de Dataloд+ afin d’assurer la calculabilité.
De plus, Dataloд± a également apporté une nouvelle fonctionnalité: les con-
traintes négatives permettant d’interdire certaines combinaisons de faits.
Veuillez noter que le nom règles existentielles fait référence au même
formalisme que Dataloд± et nous utiliserons les deux noms de manière in-
terchangeable.

L’introduction de contraintes négatives engendre des conflits dans les
bases de connaissances. La source de ces conflits est soit l’ensemble de
faits, soit l’ensemble de règles. Dans le premier cas, nous disons qu’un
ensemble de faits est inconsistant si l’application de l’ensemble de règles
sur cet ensemble de faits spécifiques génère un conflit. Dans le deuxième
cas, un ensemble de règles est dit incohérent si l’application de toutes les
règles à un ensemble de faits conduira toujours à un conflit. La présence
de conflits est problématique, car dans la logique classique, une fois la con-
tradiction affirmée, toute proposition (ainsi que sa négation) peut en être
déduite. Ceci est connu sous le nom d’explosion déductive (également ap-
pelée ex falso quodlibet). Pour résoudre les incohérences, Pollock [1987] a
introduit le raisonnement “défaisable” dans lequel les faits et les règles peu-
vent être défaits et des “règles empiriques” ainsi que des préférences suff-
isent afin de rétablir des capacités de raisonnement satisfaisantes [Garćıa
and Simari, 2004; Antoniou et al., 2000]. Dans cette thèse, nous nous limi-
tons aux inconsistances et supposons que nous n’avons pas d’incohérences,

IV

c’est-à-dire que l’ensemble des règles est cohérent. Afin de raisonner en
présence d’inconsistances avec des règles existentielles, les deux approches
principales sont les sémantiques de réparation [Lembo and Ruzzi, 2007] et
l’argumentation basée sur la logique [Garćıa and Simari, 2004; Modgil and
Prakken, 2014]. Les deux approches consistent à raisonner avec les “mon-
des” cohérents possibles, i.e. des sous ensembles de faits de la base logique
qui n’engendrent pas de conflits.

D’une part, les approches se basant sur les sémantiques de réparation
considèrent généralement les sous-ensembles maximaux de faits cohérents
appelés réparations qu’ils manipulent à l’aide d’un modificateur (expan-
sion, scission, etc.) et d’une stratégie d’inférence (intersection, univer-
salité, etc.) pour répondre aux requêtes en présence d’inconsistances [Baget
et al., 2016a]. D’autre part, les approches d’argumentation basées sur la
logique sont des approches ascendantes qui consistent à instancier un graphe
d’argumentation (c’est-à-dire, générer des arguments et des attaques entre
eux) à partir de connaissances exprimées dans un langage particulier puis à
utiliser une technique de raisonnement sur le graphe d’argumentation obtenu
afin de rétablir la consistance [Amgoud, 2014]. Dans cette thèse, nous avons
choisi de nous concentrer sur l’argumentation basée sur la logique en raison
de son intuitivité pour l’utilisateur. En effet, les explications fournies par
l’argumentation sont plus intuitives que celles fournies par les sémantiques
de réparation [Arioua, 2016].

Quatre approches majeures ont été étudiées dans la littérature pour
l’argumentation basée sur la logique: l’argumentation basée sur les hy-
pothèses (ABA) [Bondarenko et al., 1993], ASPIC/ASPIC + [Modgil and
Prakken, 2014], la programmation avec des logiques défaisables (DeLP)
[Garćıa and Simari, 2004] et l’argumentation déductive [Besnard and Hunter,
2008]. Dans cette thèse, nous nous intéressons à l’argumentation déductive
instancié avec des règles existentielles suivant les travaux de Croitoru and
Vesic [2013] et de Arioua et al. [2017]. Dans ce contexte, la question de
recherche à laquelle nous souhaitons répondre est la suivante:

Question de recherche

Comment peut-on raisonner avec l’argumentation basée sur la
logique dans le contexte des règles existentielles?

Les graphes d’argumentation générés par des systèmes d’argumentation
basés sur la logique ont été largement étudiés, en particulier pour caractériser
leur capacité de réponses aux requêtes et de traitement des inconsistances.
Néanmoins, peu de travaux on été menés en ce qui concerne la structure
réelle de tels graphes ou sur la manière de construire ces graphes en pratique.
Notre problème de recherche peut alors être reformulé en un sous-ensemble
de questions de recherche plus précises comme suit:

V

Questions de recherche

• Quelles sont les caractéristiques particulières des graphes
d’argumentation générés dans le contexte des règles existen-
tielles ?

• Pouvons-nous appliquer les techniques basées sur les classe-
ments sur les graphes générés ?

• Peut-on générer efficacement des graphes d’argumentation dans
le contexte des règles existentielles ? Peut-on fournir des outils
à cet effet ?

Notre contribution peut être résumée en trois résultats principaux. Pour
les graphes d’argumentation générés à partir de bases de données de règles
existentielles, nous avons (1) amélioré la compréhension de leurs propriétés
structurelles, (2) leur efficacité et (3) leur expressivité. En ce qui concerne la
compréhension, nous avons proposé un ensemble de propriétés qui élargissent
notre capacité à comprendre de tels graphes et développé des outils intuitifs
pour leur génération. En ce qui concerne leur efficacité, nous avons expliqué
comment générer un graphe d’argumentation par rapport à la structure de
la base de connaissances sous-jacente et nous avons introduit une nouvelle
manière de créer des hypergraphes d’argumentation. Nous montrons que ces
hypergraphes d’argumentation permettent d’avoir une représentation des
données plus compacte et plus efficace. En ce qui concerne l’expressivité
des graphes d’argumentation, nous avons défini comment les sémantiques
basées sur les classements devraient être utilisées avec des hypergraphes
d’argumentation. Nos résultats sont disséminés dans les différents chapitres:

Dans le chapitre 2, nous présentons le domaine théorique de la recherche
dans lequel nous travaillons, à savoir le formalisme des règles existentielles
et de la théorie de l’argumentation. Dans la section 2.1, nous introduisons
formellement le cadre de règles existentielles ainsi que le châınage Skolem,
les différentes classes de règles décidables et les deux types de conflits (in-
cohérence et inconsistance). Ensuite, dans la section 2.2, nous nous concen-
trons sur la théorie de l’argumentation et présentons une introduction aux
approches les plus récentes en matière d’évaluation des arguments dans le
contexte du cadre d’argumentation abstrait de Dung (approches basées sur
les extensions, sur l’étiquetage et sur le classement).

Dans le chapitre 3, nous choisissons d’instancier des graphes à partir de
bases de connaissances incohérentes exprimées avec des règles existentielles
et nous revisitons le cadre d’argumentation de Croitoru and Vesic [2013].
Dans la section 3.1, nous présentons d’abord (1) des résultats généraux
pour les graphes générés, tels que l’appartenance à des classes de graphes
particulières ou l’existence de caractéristiques particulières (cycles et ar-

VI

guments fondés sur des conflits) et (2) des résultats plus précis pour les
graphes d’argumentation générés à partir de bases de connaissances sans
règles positives, tels qu’une caractérisation du nombre d’arguments factices
ou de la composition de composantes fortement connexes. Ensuite, dans
Section 3.2, nous montrons que la méthode näıve de génération des graphes
d’argumentation peut être améliorée en utilisant un prétraitement de la
base de connaissances ou un filtrage des arguments. Dans la section 3.3,
nous présentons DAGGER, une application intuitive permettant de générer,
visualiser et exporter un graphe d’argumentation à partir de bases de con-
naissances logiques. Enfin, dans la section 3.4, nous comparons les récents
solveurs de la communauté d’argumentation et montrons que les graphes
générés ont un impact conséquent sur les performances des solveurs. Cela
montre la nécessité d’utiliser l’argumentation basée sur la logique dans les
futures compétitions d’argumentation.

Dans le chapitre 4, nous présentons un système d’argumentation pour
les règles existentielles basé sur les hypergraphes d’argumentation comme
définis dans les travaux de Nielsen and Parsons [2007]. Dans la section 4.1,
nous montrons que ce nouveau système d’argumentation répond à de nom-
breuses propriétés souhaitables (postulats de rationalité, cöıncidence entre
plusieurs sémantiques d’argumentation, etc.). Nous montrons aussi que ce
système est plus efficace en ce qui concerne le temps de calcul, le nombre
d’arguments et d’attaques grâce à une analyse empirique. Ensuite, dans la
section 4.2, nous présentons l’outil Java NAKED permettant de générer et
de visualiser ce nouveau système d’argumentation.

Dans le chapitre 5, nous décrivons comment les approches basées sur
le classement peuvent être implémentées à la fois dans le cadre logique et
dans le cadre de l’argumentation. Dans la section 5.1, nous montrons qu’en
présence de redondances, les sémantiques basées sur le classement peuvent
produire des résultats différents si elles sont utilisées sur un noyau (un sous-
graphe où les arguments redondants sont supprimés) par rapport à quand
elles sont utilisées sur le graphe d’argumentation d’origine. De plus, nous
fournissons des conditions pour que le rang des arguments soit augmenté,
diminué ou inchangé. Ensuite, dans la section 5.2, nous fournissons des in-
structions pour les sémantiques basées sur le classement dans le contexte des
hypergraphes d’argumentation et nous présentons la première sémantique
basée sur le classement pour ce type de graphes: la sémantique nh- cate-
goriser. Enfin, dans la section 5.3, nous utilisons une approche similaire
sans argumentation et définissons une approche pour le classement des en-
sembles de faits. Cette approche permet d’obtenir une réponse aux requêtes
plus personnalisée sans prendre en compte l’ensemble des réparations.

Dans le chapitre 6, nous résumons nos contributions et présentons un
certain nombre de problèmes de recherche futurs basés sur des extensions
possibles de notre travail et de nos travaux publiés.

VII

NOTE

Portions of this work have been published previously in:

• Journals

– Bruno Yun, Pierre Bisquert, Patrice Buche, Madalina Croitoru, Valérie
Guillard and Rallou Thomopoulos: Choice of environment-friendly food
packagings through argumentation systems and preferences, Ecological
Informatics (EI 2018). 24-36 (Impact factor: 1.82).

• Conferences

– Core rank A∗:

∗ Bruno Yun, Srdjan Vesic, Madalina Croitoru and Pierre Bisquert:
Inconsistency Measures for Repair Semantics in OBDA, the 27th
International Joint Conference on Artificial Intelligence and the
23rd European Conference on Artificial Intelligence (IJCAI 2018).
1977-1983 (full paper).

∗ Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bis-
quert: Graph Theoretical Properties of Logic Based Argumenta-
tion Frameworks, 17th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2018). 2148-2149 (short
paper).

∗ Bruno Yun, Madalina Croitoru and Patrice Buche: Are ranking
semantics sensitive to the notion of core?, 16th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS
2017). 943-951 (full paper).

∗ Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bisquert:
DAGGER: Datalog+/- Argumentation Graph GEneRator, 17th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2018). 1841-1843 (demo paper).

∗ Bruno Yun, Madalina Croitoru and Srdjan Vesic: NAKED: N-
Ary graphs from Knowledge bases Expressed in Dataloд±, 18th
International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2019). (demo paper).

– Core rank A:

∗ Bruno Yun, Srdjan Vesic, Madalina Croitoru, Pierre Bisquert
and Rallou Thomopoulos: A Structural Benchmark For Logical
Argumentation Frameworks, 20th International Symposium on In-
telligent Data Analysis (IDA 2017). 334-346 (full paper).

– Core rank B:

∗ Bruno Yun, Rallou Thomopoulos, Pierre Bisquert and Madalina
Croitoru: Defining argumentation attacks in practice: an experi-
ment in food packaging consumer expectations, 23rd International
Conference on Conceptual Structures (ICCS 2018). 73-87 (full pa-
per).

– Core rank C:

VIII

∗ Nikos Karanikolas, Madalina Croitoru, Pierre Bisquert, Christos
Kaklamanis, Rallou Thomopoulos and Bruno Yun: Multi-criteria
Decision Making with Existential Rules Using Repair Techniques,
the 38th SGAI International Conference on Artificial Intelligence
(SGAI 2018). 177-183 (short paper).

– Not ranked:

∗ Bruno Yun, Srdjan Vesic and Madalina Croitoru: Toward a More
Efficient Generation of Structured Argumentation Graphs, the 7th
International Conference on Computational Models of Argument
(COMMA 2018). 205-212 (short paper).

∗ Bruno Yun, Srdjan Vesic, Madalina Croitoru and Pierre Bisquert:
Viewpoints using ranking based argumentation semantics, the 7th
International Conference on Computational Models of Argument
(COMMA 2018). 381-392 (full paper).

∗ Bruno Yun, Pierre Bisquert, Patrice Buche and Madalina Croitoru:
Arguing about end-of-life of packagings: Preferences to the Res-
cue, 10th International Conference on Metadata and Semantics
Research (MTSR 2016). 119-131 (full paper).

∗ Bruno Yun and Madalina Croitoru: An Argumentation Workflow
for Reasoning in Ontology Based Data Access, 6th International
Conference on Computational Models of Argument (COMMA 2016).
61-68 (short paper).

∗ Bruno Yun, Madalina Croitoru and Srdjan Vesic: How to gener-
ate a benchmark of logical argumentation graphs?, the 7th Interna-
tional Conference on Computational Models of Argument (COMMA
2018). 475-476 (demo paper).

• Workshops

– Bruno Yun, Madalina Croitoru, Srdjan Vesic and Pierre Bisquert:
Graph theoretical properties of logic based argumentation frameworks:
proofs and general results, 5th Workshop on Graph Structures for Knowl-
edge Representation and Reasoning (GKR@IJCAI 2018). 118-138 (full
paper).

IX

Contents

1 Introduction 1

2 Preliminaries 13

2.1 Existential rules framework . 14

2.1.1 Logical language . 14

2.1.2 Rules and reasoning 17

2.1.3 Chase and finite expansion set 20

2.1.4 Complexity classes . 26

2.1.5 Incoherence and inconsistence 27

2.2 Argumentation theory . 32

2.2.1 Abstract argumentation semantics 32

2.2.2 Extension-based approaches 33

2.2.3 Labelling approach . 38

2.2.4 Ranking-based semantics 40

2.3 Summary . 44

3 Using Deductive Argumentation with Existential Rules 47

3.1 Deductive argumentation frameworks in existential rules 49

3.1.1 Argumentation graphs generated from knowledge bases 52

3.1.2 Argumentation graphs generated from knowledge bases
without rules . 56

3.2 Improving the argument generation 64

3.2.1 Optimisation for knowledge bases without rules 65

3.2.2 Optimisation for knowledge bases with rules 66

3.3 The DAGGER tool . 74

3.3.1 DAGGER’s architecture 74

3.3.2 Usability scenarios . 76

3.4 Benchmarks on logic-based argumentation frameworks 78

3.4.1 Benchmark generation 80

3.4.2 Results of literature solvers over the benchmark 82

3.5 Summary . 87

4 Argumentation Hypergraphs 89

4.1 Argumentation hypergraphs with the existential rules language . 91

CONTENTS

4.1.1 Hypergraph argumentation framework F? 92
4.1.2 Argumentation framework properties 94
4.1.3 Rationality postulates 99
4.1.4 Empirical analysis . 100

4.2 The NAKED tool . 106
4.2.1 The argument and attack generation 107
4.2.2 The structure of NAKED 108
4.2.3 Usability scenarios . 110

4.3 Summary . 112

5 Ranking-Based Reasoning 113
5.1 Ranking with existential rules deductive argumentation framework116

5.1.1 Core equivalence . 117
5.1.2 Characterising ranking changes 126

5.2 Ranking-based semantics with argumentation hypergraphs . . . 131
5.2.1 Properties for ranking-based semantics on hypergraphs . 132
5.2.2 The nh-categoriser . 136

5.3 Ranking facts in inconsistent knowledge bases 142
5.3.1 The ranking-based inference framework 143
5.3.2 RIF results . 148

5.4 Summary . 155

6 Conclusion 159
6.1 Scope . 160
6.2 Summary and contributions 161
6.3 Perspectives . 163

7 Appendix i
7.1 Miscellaneous . i
7.2 Proofs . ii

7.2.1 Chapter 3 . ii
7.2.2 Chapter 4 . viii
7.2.3 Chapter 5 . xii

XI

List of Figures

1.1 Image of a spiny anteater . 4

1.2 Representation of the first possible world 5

1.3 Representation of the second possible world 6

1.4 Representation of the third possible world 6

2.1 Abstract and known concrete classes of existential rules . . . 24

2.2 Known concrete FES classes and chases finiteness 25

2.3 Argumentation framework of Example 2.13 32

2.4 Argumentation framework of Example 2.17 37

2.5 Inclusion relations between argumentation semantics 37

2.6 Labelling that corresponds to {a, c} of Example 2.17 39

2.7 Labelling that corresponds to {a} of Example 2.17 39

2.8 An argumentation framework F 41

3.1 Representation of a 2-copy graph 58

3.2 Structural properties of argumentation frameworks generated
from simple knowledge bases 63

3.3 Approach workflow for optimising the argument generation . 64

3.4 Three steps reconstruction using k-copy graphs 66

3.5 The 3-layer structure of DAGGER 75

3.6 Repair computation module of DAGGER 76

3.7 Argumentation module of DAGGER 78

3.8 Screen capture of the argumentation graph interface of the
DAGGER tool . 79

3.9 Representation of the argumentation graph corresponding to
the knowledge base b44 . 82

4.1 Generation time comparison between FKB and F?KB for set A 102

4.2 Generation time comparison between FKB and F?KB for set B 102

4.3 Comparison of the number of arguments between FKB and
F?KB for set A . 103

4.4 Comparison of the number of arguments between FKB and
F?KB for set B . 103

4.5 Comparison of the number of attacks between FKB and F?KB

for set A . 104

LIST OF FIGURES

4.6 Comparison of the number of attacks between FKB and F?KB

for set B . 104
4.7 An argumentation hypergraph about packagings. 107
4.8 Representation of hyperedges in NAKED 109
4.9 Representation of the areas of interest in NAKED 110
4.10 Argument highlight feature in NAKED 111

5.1 Representation of the core c1 of FKB using ./1 and displayed
in Table 5.1 . 121

5.2 Representation of the core c2 of FKB using ./2 and displayed
in Table 5.1 . 122

5.3 Representation of an argumentation framework F and one of
its cores c ′ . 129

5.4 Argumentation framework with equal h-categoriser scores . . 141
5.5 Another argumentation framework with equal h-categoriser

scores . 141
5.6 Representation of the RIF workflow 145
5.7 Representation of the considered packagings 154

XIII

List of Tables

1.1 Reading guide by topics . 11

2.1 Complexity of CQ entailment for studied Skolem-FES con-
crete classes . 27

2.2 Argumentation semantics with respect to criteria 38

3.1 Classes of argumentation frameworks studied in the literature 52
3.2 Images of the permutation σ on X 60
3.3 Arguments in FKB obtained from the knowledge base of Ex-

ample 3.23 . 70
3.4 Characteristics of theFKB andF∗

KB
generated from the knowl-

edge bases. 73
3.5 Characteristics of the small knowledge bases 81
3.6 Average computational time for small instances 83
3.7 Ranking of solvers for the generated small graphs 84
3.8 Number of timeouts for the generated large graphs 84
3.9 Ranking of solvers for the generated large graphs 84
3.10 Rankings extracted from the ICCMA 2015 website 86
3.11 Normalised Kendall’s tau distance between the rankings of

the generated graphs and the competition ranking 86

4.1 Comparison of the median number of arguments, attacks and
generation time needed between F?KB and FKB on the sets of
knowledge bases A1,A2,A3 and B 101

5.1 Some arguments constructed from the knowledge base of Ex-
ample 5.12 and two particular cores obtained using ./1 and
./2. 120

5.2 Ranking on arguments of c1 using the burden-based (and
discussion-based) ranking-based semantics 124

5.3 Ranking on arguments of c2 using the burden-based (and
discussion-based) ranking-based semantics 124

5.4 Ranking K using the ranking on arguments of Table 5.2 . . . 125
5.5 Ranking K using the ranking on arguments of Table 5.3 . . . 125
5.6 Ranking on repairs . 156

1
Introduction

This thesis presents an original research in the field of Knowledge Repre-
sentation and Reasoning (KRR), one of the main sub-domains in Artificial
Intelligence (AI). The knowledge representation language we address is the
existential rules framework, a family of logical languages corresponding to
the positive conjunctive existential fragment of FOL. The contribution of
the thesis is the investigation of reasoning techniques using argumentation
graphs generated from inconsistent knowledge bases expressed in the exis-
tential rules language.

In the reminder of this chapter, we put in context this research vision
with respect to our work. The chapter is structured as follows. In Section
1.1, we introduce the general context of the existential rules framework and
the types of conflicts that may arise. In Section 1.2, we show the classical
techniques for reasoning in the presence of inconsistencies. In Section 1.3, we
recall the existing approaches for logic-based argumentation in the literature.
Section 1.4 discusses the research question and our contributions. Finally,
in Section 1.5, we conclude and highlight the structure of this thesis.

1.1 The existential rules framework

In the field of knowledge representation and reasoning, we thrive for for-
malisms that provide a high-level description of the world that can be ef-
fectively used to build intelligent applications. In this context, “intelligent”
refers to the ability of a system to find implicit consequences of its explicitly
represented knowledge.

In its simplest form, data can be stored explicitly as statements in various
manners, for instance in a relational database [Codd, 1970], an RDF triple
store or a graph database. However, in order to get this “implicit knowl-
edge” from the stored data, both the database and knowledge representation
communities acknowledged the need to limit complexity and organise data
into information and knowledge. Thus, deductive database with ontologies
were created to infer implicit data, hence palliating incompleteness in clas-
sical databases. The introduction of ontologies also enabled the enrichment

1

CHAPTER 1. INTRODUCTION

and unification of vocabularies in multiple data sources. In the Semantic
Web, ontological knowledge is often represented with formalisms based on
Description Logics (DLs), a family of formal KRR languages used for de-
scribing and reasoning about the relevant concepts of an application domain
[Baader et al., 2005]. However, DLs have a restricted expressivity: beside
the fact that they support only unary and binary predicates, the ontological
knowledge can only be described in terms of tree structures (i.e. no cycles are
allowed). Moreover, conjunctive query answering with classical DLs, such
as the ALCI DL, has appeared to be extremely complex (it is 2ExpTime-
complete in combined complexity, and still NP-complete in the size of the
data). Hence, there has been a trend to using so-called lightweight DLs for
which query answering is tractable and particular attention has been paid to
DL-Lite and the EL DL [Calvanese et al., 2007] which possess the notable
property that query answering can be reduced to evaluation of standard
database queries. Please note that these DLs form the core of the so-called
tractable profiles of the Semantic Web language OWL 2.

Meanwhile, the Deductive Database language Datalog [Gallaire and Nico-
las, 1987; Ceri et al., 1989] which is a syntactic subset of Prolog [Colmer-
auer and Roussel, 1996] have been praised as the default language for query
databases. It is not only more expressive than regular relational databases
but also possesses desirable features for query answering since Datalog queries
on finite sets are guaranteed to terminate. However, in this language, all
variables in the rule head necessarily occur in the rule body. Therefore, we
can only produce knowledge about already known individuals and cannot
infer the existence of unknown individuals. This is a crucial feature since
we cannot assume that all individuals are known in advance.

The Dataloд+ language have been proposed to meet these two require-
ments, i.e. value invention and the ability to express high-level structures
such as n-ary predicates or more complex ontologies. The Dataloд+ lan-
guage is a more expressive extension of the Datalog language [Cal̀ı et al.,
2013] with the introduction of existential quantifiers in head rules, allowing
for the deduction of unknown individuals as in “if x is married then there
exists an unknown individual y such that x and y are married”. The in-
troduction of existential quantifiers in the head rules led to many problems
for the tractability of query answering given the need to deal with large
data sets. In order to avoid this tractability problem, the Dataloд± family
of languages [Cal̀ı et al., 2013, 2009] was introduced. The Dataloд± family
corresponds to the set of languages that restrict the rule syntax in order to
achieve tractability. Moreover, Dataloд± also brings a new feature: falsum
(⊥) in rule heads in order to forbid certain combinations of facts. Such a rule
is called a negative constraint and models some sort of logical negation in
the human reasoning like “x cannot be married and unmarried at the same
time”. These additional features made it possible for Dataloд± to generalise
disparate other KR formalisms such as plain Datalog and a variety of De-

2

1.1. THE EXISTENTIAL RULES FRAMEWORK

scription Logics families, in particular, DL-Lite and EL[Cal̀ı et al., 2010a].
Please note that the name existential rules framework refer to the same
formalism as Dataloд± and we will use the two names interchangeably.

The introduction of negative constraints gives rise to conflicts in the
knowledge representation. The source of those conflicts is either the set
of facts or the set of rules. In the former, we say that a set of facts is
inconsistent if applying the set of rules on that specific set of facts generates
falsum. In the latter, a set of rules is said to be incoherent if applying all of
the rules to any set of facts will always lead to falsum.

Example 1.1 (Inconsistency). Consider the following situation where we
want to know if John is married or not. Suppose that there are no means by
which we can verify the truthfulness and reliability of the factual knowledge.

• Factual knowledge: There is a piece of evidence e1 proving that John
is married and there is another piece of evidence e2 proving that John
is unmarried.

• Rules: If there is an evidence that a person is married than he is
married. Likewise, If there is an evidence that a person is unmarried,
then he is unmarried.

• Negative constraint: It is not possible for a person to be married and
unmarried at the same time.

The set of factual knowledge is inconsistent with respect to the set of
rules since we can generate generate both the facts that John is married
and unmarried (given evidence e1 and e2). However, the set of rules is
coherent as we can find a set of facts such that all rules can be applied and
no contradiction are generated. For instance, there is an evidence proving
that John is married and an evidence proving that Alice is unmarried.

We now give an example of an incoherent set of rules.

Example 1.2 (Incoherence). Consider the following set of rules: spiny
anteaters are mammals, mammals do not lay eggs, spiny anteaters lay eggs,
and one cannot lay eggs and not lay eggs at the same time. Any set of
factual knowledge on which all these rules are applicable will always lead to
contradiction (lay eggs and not lay eggs).

Please note that Flouris et al. [2006] showed that inconsistency can be
viewed as a form of incoherence. The presence of conflicts is problematic,
as in classical logic, once a contradiction has been asserted, any proposition
(including their negations) can be inferred from it. This is known as deduc-
tive explosion (also called ex falso quodlibet). For instance if ϕ and ¬ϕ are
true then, for any ψ it holds that ϕ ∨ψ is true because ϕ is true. But since
ϕ is false and ϕ ∨ψ is true, then ψ has to be true.

3

CHAPTER 1. INTRODUCTION

Figure 1.1: Image of a spiny anteater

In order to solve the incoherences, Pollock [1987] introduced Defeasible
Reasoning where both facts and rules can be defeated and “rules of thumb”
along with preferences are enough to choose the preferred outcome [Garćıa
and Simari, 2004; Antoniou et al., 2000]. In this thesis, we restrict our-
selves to inconsistencies and we make the assumption that we do not have
incoherences, i.e. the set of rules is coherent. In the next section, we show
how to deal with inconsistencies and give a brief introduction on the main
approaches.

1.2 Inconsistency-tolerant reasoning

In order to reason in presence of inconsistencies within the context of the
existential rules framework, the two main approaches are Repair Seman-
tics [Lembo and Ruzzi, 2007] and Logic-Based Argumentation [Garćıa and
Simari, 2004; Modgil and Prakken, 2014; Toni, 2014; Bondarenko et al.,
1993; Besnard and Hunter, 2001]. Both approaches consist in reasoning
with possible consistent “worlds”.

On the one hand, the repair semantics approaches generally consider
Maximally Consistent Subsets (MCS) of facts called repairs that they ma-
nipulate using a modifier (expansion, splitting, etc.) and an inference strat-
egy (intersection, universality, etc.) for answering queries in presence of
inconsistencies [Baget et al., 2016a]. Please note that the algorithms for
repair semantics in practical applications do not compute all of the repairs
but are based on rewriting queries [Lembo et al., 2015].

Example 1.3 (Repair semantics). Consider the following inconsistent
situation about the presence of a person in Anthony’s house last night. The
situation is modelled using a set of facts, a set of rules and a set of negative
constraints. We suppose that there are no means by which we can verify the
truthfulness and reliability of the factual knowledge. We have the following
set of facts:

f1: Anthony’s neighbour heard his washing machine running last night.

f2: Rebecca had dinner with Anthony at his house last night.

4

1.2. INCONSISTENCY-TOLERANT REASONING

f3: Rebecca was depressed and stayed at her house last night.

f4: There was no electricity in Anthony’s whole neighbourhood last night.

f5: Last night, Anthony posted a selfie of himself at his house.

f6: Last night, it was a full moon.

And the following set of rules:

r1: If the washing machine was running at X ’s house, then there was a
person at X ’s house.

r2: If there was no electricity at X house, then there was no person at his
X ’s house.

r3: If there was a selfie of someone at X ’s house, then there was a person
at X ’s house.

r4: If someone had dinner with another person at X ’s house, then there
was a person at X ’s house.

And the following set of constraints:

n1: It is not possible that there is a person at X ’s house and no person at
X ’s house at the same time.

n2: One cannot be at two different houses at the same time.

We can clearly see that the set of factual knowledge is inconsistent since
we can deduce that there was no person at Anthony’s house (using f4 and
r2) and that there was someone at Anthony’s house last night (using f1 and
r1). In order to cope with the inconsistencies, the repair semantics consider
the following set of repairs (the possible worlds).

• Rebecca was depressed and stayed at her house, there was no electricity
at Anthony’s house and it was a full moon ({f3, f4, f6}).

Figure 1.2: Representation of the first possible world

5

CHAPTER 1. INTRODUCTION

Figure 1.3: Representation of the second possible world

• At Anthony’s house, the washing machine was running, Rebecca had
dinner with Anthony, Anthony took a selfie and it was a full moon
({f1, f2, f5, f6}).

• At Anthony’s house, the washing machine was running and Anthony
took a selfie of himself at his house, Rebecca was depressed and stayed
at her house and it was a full moon ({f1, f3, f5, f6}).

Figure 1.4: Representation of the third possible world

If we consider the repair semantics that answer positively to a query if
and only if it is entailed by all the repairs then we will get a negative answer
to the query “was there someone in Anthony’s house?” because in the first
repair, we have no proof that someone was in Anthony’s house. However, we
will get a positive answer to the query “was there a full moon last night?”.

On the other hand, the logic-based argumentation approaches are bottom-
up approaches that consist in first instantiating an argumentation framework
(i.e. generating arguments and attacks, see next section for an explanation)
from knowledge expressed in a particular language and then, applying a rea-
soning technique on the resulting argumentation graph in order to restore
consistency [Amgoud, 2014].

6

1.3. LOGIC-BASED ARGUMENTATION

In this thesis, we choose to focus on logic-based argumentation because
of its intuitiveness with respect to explanations compared to repair seman-
tics [Arioua, 2016] and its reusability in many domains such as debates [Leite
and Martins, 2011], decision-making [Gordon and Karacapilidis, 1997; Bonet
and Geffner, 1996] or persuasion [Amgoud et al., 2000; Prakken, 2006; Had-
jinikolis et al., 2013].

1.3 Logic-based argumentation

When working with logic-based argumentation, there are two main questions
that should be answered:

1. How do we generate the argumentation framework?

2. What are the reasoning techniques that can be used?

In order to answer those questions, we have to study how to build argu-
ments from a knowledge base using a given logic. Roughly speaking, a logic
has two main components: a logical language (a set of well-formed formulae)
and a consequence operator that can draw conclusions from a set of formu-
lae. In the literature, we can distinguish two main families of approaches
that are used in logic-based argumentation: The first family contains ap-
proaches where arguments are built from Tarskian logics [Tarski, 1936],
while the second family of approaches use rule-based logics for constructing
arguments. The Tarskian logic is an abstract logic, i.e. it generalises sev-
eral concrete logics that respect some axioms on the consequence operator
(expansion, idempotence, finitude, absurdity and coherence) whereas, rule-
based logics [Amgoud et al., 2004] are logics that usually encode two types
of rules (strict rules which encode certain knowledge and defeasible rules
which encode uncertain knowledge) and the consequence mechanism shows
how these rules can be chained. The distinction between the strict and de-
feasible rules is that a rule is “defeasible if it can be blocked or defeated in
some way” [Gabbay et al., 1993]. There are four major logical approaches
that have been studied in the literature: Assumption-Based Argumentation
frameworks (ABA) [Bondarenko et al., 1993], ASPIC/ASPIC+ [Modgil and
Prakken, 2014], Defeasible Logic Programming (DeLP) [Garćıa and Simari,
2004] and Deductive argumentation [Besnard and Hunter, 2008]. The first
three approaches are systems based on rule-based logics whereas the fourth
is more oriented toward Classical Logics where an arguments is seen as a
pair with a hypothesis and a conclusion. We now briefly introduce each of
the aforementioned argumentation frameworks and show how they manage
to reason in presence of conflicting knowledge.

The ABA framework, as defined by Toni [2014], is composed of a lan-
guage, a set of rules, a set of assumptions (they are observations or defeasible

7

CHAPTER 1. INTRODUCTION

premises) and a contrariness function for explaining the reason against each
assumptions. The language used by the ABA framework is left abstract
(it can be any language of sentences) while the contrariness can be seen
as a “handle” to attack the weak point of an assumption. In ABA, the
arguments are deductions of claims using the rules and supported by as-
sumptions whereas the attack is defined as follows: an argument a attacks
another arguments b if and only if the conclusion of a is the contrary of
one of the assumptions of b. Several computational techniques have been
defined for ABA [Toni, 2013; Dung et al., 2006], extensions with preferences
have been proposed [Bao et al., 2017] and online tools1 are available. We
end this short introduction to ABA by noting that the reasoning techniques
for this framework are called ABA semantics and can be viewed from two
perspectives: the argument and the assumption perspectives. In the first
perspective, the standard semantics for abstract argumentation, defined by
Dung [1995] in his seminal paper, are applied to ABA. These semantics can
compute “acceptable” or “winning” arguments with respect to the attacks
in the argumentation graph. In the second perspective, it considers that
sets of assumptions can attack each other and sets of “winning” assump-
tions can be computed in the same fashion. Correspondence between these
two perspectives are the results of the work of Dung et al. [2007] and Toni
[2012] and enabled a jump in performance.

The ASPIC+ framework was created in the context of the European
ASPIC project as a general framework for generating arguments that ac-
commodates a broad range of instantiating logics. As defined by Modgil
and Prakken [2014], an argumentation system is composed of a logical lan-
guage closed under negation, a set of rules (strict and defeasible) and a
labelling function that associates a sentence to some defeasible rules. Please
note that, inspiring themselves from the work of Bondarenko et al. [1993] on
ABA, Modgil and Prakken [2013] lifted the closure under negation condition
on the language by further adding a particular contrariness function that
associates a set of reasons against each sentences of the language. In the AS-
PIC+ framework, an argument can either be a sentence of the language or
built upon other arguments according to the rule applications. This frame-
work also includes three types of attacks, namely undercutting (attack on a
defeasible deduction based on the aforementioned labelling function), rebut-
ting (attacks on a weak conclusion) and undermining (attack on a premise).
The framework also accommodates with preferences on arguments using the
notion of defeat (or successful attack). As a preference relation on argu-
ments is somewhat harder to obtain than an ordering on elements of the
language or rules, the framework comes with ways to “lift” these orderings
in order to obtain a preference relation on arguments. An online tool for

1Such as http://www-abaplus.doc.ic.ac.uk.

8

http://www-abaplus.doc.ic.ac.uk

1.3. LOGIC-BASED ARGUMENTATION

ASPIC+, called TOAST, has been developed and is available2. We end
this short introduction to ASPIC+ by a little discussion on the reasoning
techniques for this framework. As stated by Modgil and Prakken [2014], the
Dung’s extensions of this framework respect the four rationality postulates
defined by Caminada and Amgoud [2007] (Sub-argument closure, Closure
under Strict Rules, Direct Consistency, Indirect Consistency). This allows
ASPIC+ to restore the consistency of the data it is built on. Please note
that although some say that the framework violates the consistency in some
cases, patches have been proposed by Modgil and Prakken [2014].

The Defeasible Logic Programming (DeLP) is an argumentation formal-
ism for deciding between contradictory goals. As defined originally by Garćıa
and Simari [2004], a Defeasible Logic Program is originally composed of a set
of fact (ground atoms or negated ground atoms), a set of strict rules and a
set of defeasible rules. It has to be noted that this formalism only considers
ground rules and that the set of strict rules are considered coherent and
consistent with the set of facts. In DeLP, an argument structure (or simply
argument) is a minimal non-contradictory set of defeasible rules that leads
to the deduction of a specific fact. Therefore, a sub-argument structure of an
argument structure is simply an argument structure with a “smaller” (for
set inclusion) set of defeasible rules. Thus, argument structures in DeLP are
usually represented with triangles containing smaller triangles representing
their sub-argument structures. The attack considered in DeLP is as follows:
an argument a that leads to h1 attacks an other argument b if and only
if there is a sub-argument c of b that leads to h2 and {h1,h2} are conflict-
ing when put together with the facts and strict rules. This formalism also
includes two ways for comparing arguments by using either the specificity
criterion, based on the work of Poole [1985], or an explicit preference relation
defined among defeasible rules. The comparison criterion among arguments
is used in the same fashion as ASPIC+, i.e. using the notion of defeaters
(successful attacks). An online tool has been developed and is available3

and concrete applications have been studied [Garćıa et al., 2000]. We end
this short introduction by briefly explaining one of the ways for reasoning
in the presence of inconsistencies in DeLP. First, the arguments are built
and attacks are computed. Second, a comparison criterion for arguments is
chosen and defeated arguments are computed. At this point, the result is
usually a tree-like graph called “Dialectical tree” where nodes are argument
structures and links are defeat relations. Third, the nodes of a dialectical
tree are marked in bottom-up process (from the leaves to the root). Fourth,
the marking on the root is used for query answering.

The Deductive argumentation, as originally defined by Besnard and
Hunter [2008], considers arguments as a pair (H , c) where H is a set of as-

2See http://toast.arg-tech.org.
3See http://lidia.cs.uns.edu.ar/DeLP.

9

http://toast.arg-tech.org
http://lidia.cs.uns.edu.ar/DeLP

CHAPTER 1. INTRODUCTION

sumptions called the premises (or equivalently, the support) of the argument
and c is the conclusion (or equivalently, the claim or the consequent) of the
argument. In the literature, deductive argumentation have been used in two
main approaches: generating argumentation frameworks directly over the
abstract Tarskian logic [Amgoud and Besnard, 2009, 2010] or over a con-
crete Tarskian logic such as propositional logics [Amgoud and Cayrol, 1998;
Besnard and Hunter, 2001] or first-order logic [Besnard and Hunter, 2001,
2008, 2014]. In this thesis, we are interested in the second approach. More
precisely, we will study deductive argumentation frameworks built over the
existential rules framework following the work of Croitoru and Vesic [2013],
Arioua et al. [2017] and Arioua [2016]. In these argumentation frameworks,
although much effort has been spent to show the desirable behaviour with
query answering and inconsistency handling, there is not a lot of work on
the actual structure of such graphs or how to practically construct these
argumentation frameworks.

1.4 Research problem and contributions

Against this background, the research question we want to answer is:

Research Question

How can we reason using logic-based argumentation in the context
of the existential rules framework?

Our research problem can be reformulated into a subset of more precise
research questions as follows:

Research Questions

• Are the argumentation frameworks generated with the existen-
tial rules particular?

• Can we characterise and apply extension-based and ranking-
based techniques on the generated graphs?

• How can we efficiently generate argumentation graphs within
the context of existential rules? Can we provide tools?

Our contribution focused on improving (1) the understanding of the
structural properties of argumentation graphs generated from existential
rules databases, (2) their efficiency and (3) their expressivity. Regarding
the understanding, we have a proposed a set of properties that extends our
grasp of such graphs and developed intuitive tools for their generation. Re-

10

1.5. THESIS ORGANISATION

Topic Binary graphs Hypergraphs

Generation
Chapter 3 Chapter 4
Published in [Yun et al., 2018c, 2017b] Published in [Yun et al., 2019]

Reasoning with extensions
Chapter 2, Chapter 3 Chapter 4
Published in [Yun et al., 2018b]

Reasoning with rankings
Chapter 5 Chapter 5
Published in [Yun et al., 2017a]

Table 1.1: Reading guide by topics

garding their efficiency, we gave insights as to how one should generate an
argumentation graph with respect to the structure of the underlying knowl-
edge base and introduced a more efficient hypergraph-based argumentation
framework. Regarding the argumentation graph expressivity, we paved the
way by first defining how ranking-based semantics should be used with hy-
pergraph argumentation frameworks.

1.5 Thesis organisation

We chose to present the research that we did in the past three years while at
LIRMM by selecting some of our results submitted or published in interna-
tional conferences. Each chapter is constructed around results that we find
important in order to give a relevant representation of our research inter-
ests. Table 1.1 summarises the organisation of the thesis. Please note that
the presentation of our works was done “a posteriori” and does not coincide
with their chronological publication dates.

Chapter 2. In this chapter, we present the theoretical domain of research
that we are working in, namely the formalism of the existential rules frame-
work and the argumentation theory. In Section 2.1, we formally introduce
the existential rules framework along with the frontier chase, the several de-
cidable classes of rules and the two types of conflicts (incoherence and incon-
sistence). Then, in Section 2.2, we focus on the argumentation theory and
show an introduction to the state-of-the-art existing approaches for evaluat-
ing arguments in the context of Dung’s abstract argumentation framework
(extension-based, labelling-based and ranking-based approaches).

Chapter 3. In this chapter, we chose to instantiate graphs using incon-
sistent existential rules knowledge bases and to revisit the argumentation
framework of Croitoru and Vesic [2013]. In Section 3.1, we first present
both (1) general results for the generated graphs such that the membership
to particular graph classes or the existence of particular features (cycles
and conflict-based arguments) and (2) more focused results for argumen-

11

CHAPTER 1. INTRODUCTION

tation graphs generated from knowledge bases without positive rules such
that a characterisation of the number of dummy arguments or composi-
tions of strongly connected components. Then, in Section 3.2, we show that
the naive method for generating the argumentation framework can be im-
proved using either a preprocessing of the knowledge base or a filtration of
arguments. In Section 3.3, we introduce DAGGER as an intuitive appli-
cation for generating, visualising and exporting argumentation graph from
logical knowledge bases. Lastly, in Section 3.4, we benchmark state-of-the-
art solvers from the argumentation community and show that the generated
graphs impact the performance of solvers. This shows the necessity for logic-
based argumentation graphs in the upcoming argumentation competitions
and why some solvers can outperform other solvers on these graphs. This
chapter builds upon the published work of Yun et al. [2017b, 2018c,b,f].

Chapter 4. In this chapter, we present a new argumentation framework
for the existential rules framework based on the hypergraph argumentation
framework defined in the work of Nielsen and Parsons [2007]. In Section 4.1,
we show that this new argumentation framework satisfies many desirable
properties (the rationality postulates, coincidence between argumentation
semantics, etc.) and is more efficient using an empirical analysis with respect
to computational time, number of argument and attacks. Then, in Section
4.2, we introduce the NAKED java tool for generating and visualising this
new argumentation framework. This chapter builds upon the published
work of Yun et al. [2019].

Chapter 5. In this chapter, we present how ranking-based approaches
can be implemented in both the argumentation and the logical setting. In
Section 5.1, we show that in the presence of redundancies, ranking-based
semantics may yield different results if they are used on a core (a subgraph
where redundant arguments are removed) compared to when they are used
on the original argumentation framework. Moreover, we provide conditions
for the rank of arguments to be increased, decreased or unchanged. Then,
in Section 5.2, we provide guidelines for ranking-based semantics in the
context of argumentation hypergraphs and introduce the first ranking-based
semantics for such type of graphs: the nh-categoriser. Finally, in Section 5.3,
we use a similar approach without argumentation and define a framework
for ranking sets of facts. This framework enables to get a more focused
query-answering without considering the set of all repairs. This chapter
builds upon the published work of Yun et al. [2017a, 2018g].

Chapter 6. This chapter summarises our contributions, and presents a
number of interesting future research problems based on possible extensions
of both this work and the published work of Yun et al. [2016, 2018e,a,h].

12

2
Preliminaries

2.1 Existential rules framework 14

2.1.1 Logical language 14

2.1.2 Rules and reasoning 17

2.1.3 Chase and finite expansion set 20

2.1.4 Complexity classes 26

2.1.5 Incoherence and inconsistence 27

2.2 Argumentation theory 32

2.2.1 Abstract argumentation semantics 32

2.2.2 Extension-based approaches 33

2.2.3 Labelling approach 38

2.2.4 Ranking-based semantics 40

2.3 Summary . 44

In this chapter, we discuss two main problems of the knowledge repre-
sentation field: ensuring the termination of the reasoning mechanism and
reasoning in presence of conflicting knowledge.

In knowledge representation, we always thrive to find a good balance
between the expressiveness and the computational tractability, since a higher
expressiveness might lead to an infinite reasoning. In this section, we provide
an introduction to knowledge representation with the existential rules logical
framework and to its forward chaining inference mechanism called “chase”.
We recall the reasoning problem of query entailment and the notion of finite
classes of existential rules for which the chase is guaranteed to halt. Since
knowledge databases might contain conflicts, we introduce the two types of
conflicts (inconsistence and incoherence) and discuss how the argumentation
theory manages to handle inconsistencies using several evaluation methods.

13

CHAPTER 2. PRELIMINARIES

Research Questions in this Chapter

• How is knowledge represented using existential rules and how
can we reason with this knowledge?

• What are the different types of conflict (inconsistence and in-
coherence) and how can we maintain the ability to reason in
presence of conflicts?

• How can we handle conflicting knowledge in the context of ab-
stract argumentation theory?

2.1 Existential rules framework

The goal of knowledge representation and reasoning is to model human-level
intelligence and reasoning faculties. According to Levesque and Brachman
[1987], the biggest dilemma in this case is the trade-off between expressive-
ness and computational tractability of a given logical language. Dataloд+ is
a first-order logical language that extends plain Datalog with value inven-
tion. It has the ability to express knowledge about “unknown” individuals
(e.g. “every bird comes from an egg” this specific egg might be unknown but
its existence still holds). This level of expressiveness comes at the high cost
of undecidability (the reasoning mechanism can be infinite), that is why dif-
ferent decidable fragments of Dataloд+ have been defined under the name of
Dataloд± [Cal̀ı et al., 2012] which is a generalisation of Datalog [Ceri et al.,
1989] and certain fragments of Description Logics [Baader et al., 2005].

2.1.1 Logical language

We consider a first-order logical (FOL) language L with no function sym-
bols (except for constants) built with the existential and universal quan-
tifiers (∃,∀) and the implication and conjunction connectives (→,∧) on a
vocabulary Voc = (P,C) composed of a finite set of predicates P and a po-
tentially infinite set of constants C. Each predicate p ∈ P is associated with
a positive integer which is called the arity of p. We are also given an in-
finite set of variables V, and an infinite set of existential “fresh” variables
Nulls (called “nulls”, which act as placeholders for unknown constants, and
can thus be seen as variables). We denote variables by uppercase letters
X ,Y ,Z , etc ., constants by lowercase letters a,b, c, etc ., and fresh variables
(nulls) by Null1,Null2, etc.

A logical language is a symbolic representation of some knowledge about
the world. For these symbols to have meaning, they need to be “mapped”
to elements of the world. This is done using an interpretation function

14

2.1. EXISTENTIAL RULES FRAMEWORK

which maps predicates and constants symbols to elements of the domain of
interpretation.

Definition 2.1 (Interpretation). An interpretation of a logical language
L built on a vocabulary Voc = (P,C) is a pair (D, I) where D is a non-empty
set called the interpretation domain and I is an interpretation function of
the symbols of L such that:

1. for each constant c ∈ C, I(c) ∈ D.

2. for each predicate p ∈ P of arity k, I(p) ⊆ Dk .

3. for each pair (c, c ′) of distinct constants in C, I(c) , I(c ′).

The third item in the above definition is called the unique name as-
sumption and indicates that different constants should be interpreted by
different elements of the interpretation domain. This assumption is often
made in knowledge representation and Baget et al. [2011] showed that as
long as equality between constants is not considered (which is the case in
this thesis), adopting the unique name assumption or not does not make
any difference in the considered reasoning tasks.

Knowledge about the world is expressed using formulas built from the
logical language. The basic building blocks are called atomic formulas (or
atoms).

Definition 2.2 (Atom). An atom over the vocabulary Voc is of the form
p (t1, . . . , tk), where p ∈ P is a predicate of arity k and ti ∈ V ∪ C ∪ Nulls is
either a variable, a constant, or a null.

Given a formula Φ built on a language L, we note terms (Φ) and vars (Φ)
respectively the terms and variables (including nulls) occurring in Φ. >
(tautology) and ⊥ (falsity) are allowed and considered themselves atoms. A
ground atom contains only constants.

Example 2.1 (Atoms, conjunctions, and interpretations). Consider
the following vocabulary P = {p,q}, C = {a,b}, then “∃X p (a,X)” is an
atom, “p (a,b)” is a ground atom, and “∃X (p (a,X)∧q(X))” is a conjunction
of atoms. An interpretation might map “p” to the concept of parenthood,
“p (a,b)” might be interpreted as the individual “a” is a parent of “b” (e.g.
Adam is a parent of Bruno). “∃X p (a,X)” might be interpreted as there
exists an unknown individual such that “a” is its parent.

A basic form of knowledge is factual knowledge which is represented
using facts. Usually a fact is a ground atom, however to account for knowl-
edge expressing the existence of unknown constants (nulls), the definition of
fact is generalised to an atom that contains constants or nulls (existentially
quantified variables).

15

CHAPTER 2. PRELIMINARIES

Definition 2.3 (Fact). A fact on a language L is an existentially closed
atom on L. A closed atom is of the form ∃~X p (~a, ~X) where p ∈ P is a
predicate, ~a is a finite (potentially empty) set of constants, and ~X is a finite
(potentially empty) set of existentially quantified variables.

Please note that for the purposes of this thesis, a fact is not a conjunc-
tion. To be able to manipulate conjunctions as sets of facts, existential
variables are represented using nulls.

Notation 2.1 (From existential variables to nulls). An existential vari-
able can be represented as a “fresh” Skolem term by removing the existential
quantifier and replacing the variable with a null. This null has to be “fresh”
(or “safe”) meaning that it has not been used before. For example, ∃X p (a,X)
can be represented as p (a,Null1) as long as Null1 is fresh (i.e. Null1 has not
been used before).

Notation 2.2 (From conjunctions to sets of facts). A conjunction of
facts can be represented as a set of facts by removing the existential quantifier
and replacing the variables with nulls. For example, ∃X (p (a,X) ∧ q(X)) can
be represented as the set {p (a,Null1), q(Null1)} assuming Null1 is fresh.

A model of a formula built on L is an interpretation of L that makes this
formula true by considering the classical interpretation of logical connectives
and quantifiers.

Definition 2.4 (Logical consequence and equivalence). Given a lan-
guage L and two formulas Φ1 and Φ2 on L, Φ2 is a (logical) consequence of
Φ1 (denoted Φ1 � Φ2) if all models of Φ1 are models of Φ2. Φ1 and Φ2 are
said to be logically equivalent (denoted Φ1 ≡ Φ2) if Φ1 � Φ2 and Φ2 � Φ1.

One of the relevant problems in knowledge representation is the entail-
ment problem, which is asking whether a formula is a consequence of another
formula. This can be expressed on facts as follows: given two facts f1 and
f2, is it true that f2 is a consequence of f1 (i.e. f1 � f2)? It is well known
that f1 � f2 if and only if there exists a homomorphism from f2 to f1 [Baget
et al., 2011].

Definition 2.5 (Substitution and homomorphism). Let ~X be a set of
variables and ~T a set of terms. a substitution of ~X to ~T is a mapping form
~X to ~T (notation ~X → ~T). A homomorphism π from an atom a1 to an
atom a2 is a substitution of vars (a1) to terms (a2) such that π (a1) = a2.1 A
homomorphism π from a set of atoms S to a set of atoms S ′ is a substitution
of vars (S) to terms (S ′) such that π (S) ⊆ S ′.

1By abuse of notation, the resulting atom after the substitution is applied is denoted
π (a1). Thus, π (a1) = a2 means that applying the substitution π to the variables of a1
produces the atom a2.

16

2.1. EXISTENTIAL RULES FRAMEWORK

Example 2.2 (Homomorphism). The atom p (a,Null1) can be mapped to
the atom p (a,b) by the homomorphism π = {Null1 → b} that substitutes
Null1 by b. Therefore p (a,b) � p (a,Null1).

Notation 2.3 (Homomorphism restriction π |~X). Given a homomor-

phism π , we denote by dom(π) the domain of π . Given a set of variables ~X ,
we denoted the restriction of π to ~X by π |~X = {(X ,π (X)) |X ∈ dom(π) ∩ ~X}.

The entailment problem is generally expressed using queries (query an-
swering problem), specifically conjunctive queries which are an existentially
closed conjunctions of atoms. These can be seen as asking if there is a set of
constants and nulls that make an existentially closed conjunction of atoms
a consequence of the set of facts.

Definition 2.6 (Query). A Conjunctive Query (CQ) is an existentially
closed conjunction of atoms of the form Q (~X) = ∃~Y Φ(~X , ~Y), where ~X is a
set of variables, ~Y is a set of existential variables (possibly with constants)
and Φ is a conjunction of atoms. A Boolean Conjunctive Query (BCQ) is
a conjunctive query of the form Q () = ∃~Y Φ(~Y).

The answers to a conjunctive query Q (~X) = ∃~Y Φ(~X , ~Y) over a set of for-
mulas F is the set of all tuples (constants and nulls) that if, substituted with
~X and ~Y , make Φ a consequence of F. The answer to a boolean conjunctive
query is either true or false, and it is true over a set of facts F if and only
if it is a consequence of F, otherwise it is false.

Example 2.3 (Conjunctive and boolean queries). Consider the query
Q (X) = ∃Y p (X , Y), the answers to this query over the set of facts F ={p (a,b),p (c,Null1)} are {a, c} because there is a homomorphism π1 = {X →
a,Y → b} from Q to p (a,b), and there is a homomorphism π2 = {X → c,Y →
Null1} to p (c,Null1). The answer to the BCQ Q () = ∃X ,Y p (X , Y) is true
(because it can be mapped to F using π1 or π2).

2.1.2 Rules and reasoning

Rules (or equivalently, positive rules) are formulas that allow the enrichment
of a set of facts with new deduced knowledge. These rules generally encode
domain-specific implications, for example “if X is a cat then X is an ani-
mal”. Existential rules [Baget et al., 2011] are general rules that account for
unknown individuals, they are also known as Tuple Generating Dependen-
cies (TGD) [Abiteboul et al., 1995], Conceptual Graphs rules [Salvat and
Mugnier, 1996; Sowa, 1976], Datalog∃ rules [Cal̀ı et al., 2013], etc.

Definition 2.7 (Existential rule). An existential rule (or simply a rule)
r is a formula of the form ∀~X , ~Y

(
B(~X , ~Y) → ∃~Z H(~X , ~Z)

)
where ~X , ~Y are

tuples of variables, ~Z is a tuple of existential variables, and B, H are

17

CHAPTER 2. PRELIMINARIES

finite non-empty conjunctions of atoms respectively called body and head
of r and denoted Body (r) and Head (r). The frontier of r (denoted f r (r))
is the set of variables occurring in both the body and the head of r i.e.
f r (r) = vars (Body (r)) ∩vars (Head (r)).

Rules are used to infer new knowledge starting from an initial set of
facts based on the notion of rule application.

Definition 2.8 (Rule application). A rule r is said to be applicable to
a set of facts F if there is a homomorphism π from Body (r) to F. In that
case, the application of r to F according to π (denoted α (F, r ,π)) adds to F

a set of facts π saf e (Head (r)) where π saf e ensures that existential variables
are replaced with fresh nulls.

Example 2.4 (Rule application). Consider the rule r stating that two
sisters are the daughters of the same parent. This rules is modelled as:
∀X ,Y sisterO f (X ,Y) → ∃Z dauдhterO f (X ,Z) ∧ dauдhterO f (Y ,Z). This rule
r is applicable to the set F = {sisterO f (alice,barbara)} using the homomor-
phism π = {X → alice,Y → barbara} and therefore its application produces
α (F, r ,π) = F ∪ {dauдhterO f (alice,Null1), dauдhterO f (barbara,Null1)} as-
suming Null1 is safe.

Notation 2.4 (Rules with atomic head). In general, rules might have
a conjunction of atoms in their head, however for the purposes of this
thesis, we only consider rules with one atom in their head. Baget et al.
[2011] showed that any set of rules can be transformed to a set of rules with
atomic head. The idea is that conjunctions can be split using intermediary
atoms. For example, the rule ∀X ,Y sisterO f (X ,Y) → ∃Z dauдhterO f (X ,Z) ∧
dauдhterO f (Y ,Z) can be transformed to a set of three rules with atomic
heads:

1. ∀X ,Y sisterO f (X ,Y) → ∃Z d (X ,Y ,Z)

2. ∀X ,Y ,Z d (X ,Y ,Z) → dauдhterO f (X ,Z)

3. ∀X ,Y ,Z d (X ,Y ,Z) → dauдhterO f (Y ,Z)

A rule is applicable on a set of facts if there is a homomorphism from
the body of the rule to this set of facts, furthermore, a rule might not be
applicable right away but could become applicable after some new knowledge
is generated by another rule, which might make another rule applicable and
so on. This sequence of rule applications is called a derivation. Normally, a
derivation is a sequence of facts generated at each rule application, however,
we generalize this notion to include the rule and the homomorphism used
at each step.

18

2.1. EXISTENTIAL RULES FRAMEWORK

Definition 2.9 (Derivation). Given a set of facts F and a set of rules
R, a derivation of F with respect to R is a (potentially infinite) sequence δ
of Di s.t. Di is a tuple (Fi , ri ,πi) composed of a set of facts Fi , a rule ri
and a homomorphism πi from Body (ri) to Fi where: D0 = (F0 = F, ∅, ∅), and
Fi = α (Fi−1, ri ,πi). We denote by Facts (Di), Rule (Di), and Homo(Di) the set
of facts, rule and homomorphism of a tuple Di .

A derivation can be infinite as a rule can be applied again and again
without restrictions as shown in the following Example 2.5.

Example 2.5 (Derivation). Consider the set of facts F stating that Bruno
is a male human, and the rules R stating that any human has a parent and
that a male human is a man.

• F = {human(bruno), male (bruno)}.

• R = {r1 : ∀X human(X) → ∃Y parentO f (Y ,X),
r2 : ∀X male (X) ∧ human(X) →man(X)}.

A possible derivation of F w.r.t R is:

δ = 〈(F, ∅, ∅), (F1 = F0 ∪ {man(bruno)}, r2,π1 = {X → bruno}),
(F2 = F1 ∪ {parentO f (Null1,bruno)}, r1,π2 = {X → bruno}),
(F3 = F2 ∪ {man(bruno)}, r2,π3 = {X → bruno}),
(F4 = F3 ∪ {parentO f (Null2,bruno)}, r1,π4 = {X → bruno}),
. . . 〉.

As we can see in this example, this derivation apply successively the
two rules r1 and r2 even though it produces the same atoms using the same
homomorphisms.

A derivation for a specific fact f is a finite minimal sequence of rule
applications starting from a set of facts F and ending with a rule application
that generates f .

Definition 2.10 (Derivation for a fact). Given some sets of facts F and
rules R, a derivation for a fact f is a finite derivation δ = 〈D0, . . . ,Dn〉 of
F′ ⊆ F with respect to R such that:

1. f ∈ Facts (Dn) (i.e. the last rule application contains f).

2. δ is minimal i.e. there is no derivation δ ′ = 〈D ′0, . . . ,D
′
m〉 for f such

that:

• Facts (D ′0) ⊂ Facts (D0) and

• ⋃
D′∈δ ′ (Rule (D

′),Homo(D ′)) ⊂
⋃

D∈δ (Rule (D),Homo(D)).

19

CHAPTER 2. PRELIMINARIES

Example 2.6 (Derivation for a fact). Consider the previous Example
2.5, a derivation from F to man(bruno) is the sequence:

δ1 = 〈(F0 = {human(bruno),male (bruno)}, ∅, ∅),
(F1 = F0 ∪ {man(bruno)}, r2,π1)〉.

Query answering over a set of facts and rules can be done by generating
all possible knowledge then finding homomorphisms from the queries to this
“saturated” set of facts. In order to generate this knowledge, rules are
applied in a breadth first manner. A breadth-first derivation is obtained by
considering at each “breadth-first” step all possible rule applications on the
current set of facts and applying them all before moving to the next step.

Definition 2.11 (Breadth-first derivation). Given a set of facts F and a
set of rules R, a breadth-first derivation of F with respect to R is a derivation
δ = 〈(F0 = F, ∅, ∅), . . . , (Fi , ri ,πi), . . . 〉 such that for all i < j, if (Fi+1\Fi) ∩
πj (Body (r j)) , ∅ then for all k > j, πk (Body (rk)) * Fi .

The above definition ensures that if a rule is applied on some atoms
generated by a rule application i + 1 then no rule application afterwards can
use only the atoms in Fi . Intuitively, once we go to the next breadth-first
step, we cannot apply a rule that could have been applied in a previous step
according to the same homomorphism.

An exhaustive breadth-first derivation ensures that all rules have been
applied according to all possible homomorphisms. An exhaustive derivation
may be infinite and might contain “redundant” rule applications, however
removing these “redundant” rule applications might make the exhaustive
derivation finite. The role of a chase is to remove rule applications that it
considers redundant.

2.1.3 Chase and finite expansion set

In order to answer queries over a set of facts and rules, the exhaustive
derivation has to be finite. A chase is a mechanism that takes an exhaustive
derivation and removes what it considers “redundant” rule applications us-
ing a derivation reducer. We use the formalization of Rocher [2016] for its
simplicity to define a derivation reducer and a chase.

Definition 2.12 (Derivation reducer). Given a set of facts F and a set
of rules R, a derivation reducer σ is a function that takes a rule application
tuple Di = (Fi , ri ,πi) in a derivation δ = 〈D0, . . . ,Di , . . . 〉 of F with respect to
R and returns a rule applications tuple σ (Di) = (F′i , ri ,πi) such that F′i ≡ Fi .

Definition 2.13 (σ-chase). Given a set of facts F, a set of rules R, a
derivation reducer σ , and an exhaustive breadth first derivation δ = 〈D0, . . . ,

Di , . . . 〉 of F with respect to R: σ-chase (F,R) = 〈σ (D0), . . . ,σ (Di), . . . 〉 and
σ (Di) ∈ σ-chase (F,R) if and only if Facts (σ (Di)) , Facts (σ (Di−1)).

20

2.1. EXISTENTIAL RULES FRAMEWORK

The above definition ensures that only non redundant “meaningful” rule
applications are kept (i.e. rule applications that generate something new
according to the derivation reducer). A chase is finite if there is a breadth-
first rule application step k such that for all D j at step k, no new facts are
generated [Baget et al., 2014b].

Applying a chase on a set of facts F and a set of rules R generates the
saturated set of facts F∗ that contains all initial and generated facts.

Definition 2.14 (Saturated set of facts). Given a set of facts F and
a set of rules R, the saturation (or equivalently, closure) of F is SatR (F) =⋃

D∈σ-chase (F,R) Facts (D). We also refer to SatR (F) by F∗ when the set of
rules R is obvious.

Saturating a set of facts F with a set of rules R until no new rule appli-
cation is possible allows us to obtain the universal model. The particularity
of this model is that it is representative of all models of (F ∪R) (we denote
the set of models of (F ∪ R) by models (F,R)).

Definition 2.15 (Universal model). Given a set of facts F and a set of
rules R, a universal model M of (F ∪R) is a model of (F ∪R) such that for
all models M ′ of (F ∪ R), there is a homomorphism from M to M ′.

It is not always possible to obtain the universal model (the saturated set
of facts might be infinite), however if the chase is finite then the model of
the saturated set of facts is a universal model [Baget et al., 2011]. Therefore
query entailment can be expressed using the notion of chase.

Theorem 2.1 (Query entailment and chase [Baget et al., 2011]).
Let us consider a set of facts F, a set of rules R and a Boolean conjunc-
tive query Q. If σ-chase (F,R) is finite then, (F ∪ R) � Q if and only if
Facts (σ-chase (F,R)) � Q.

Different kinds of chases can be defined using different derivation re-
ducers. Each derivation reducer ensures a universal model if its chase is
finite. The most common chase is the Frontier chase [Baget et al., 2011], it
yields equivalent results as the well-known Skolem chase [Marnette, 2009]
that relies on a “skolemisation” of the rules by replacing each occurrence of
an existential variable Y with a functional term f rY (

~X), where ~X = f r (r) are
the frontier variables of r . Frontier chase and skolem chase yield isomorphic
results [Baget et al., 2014a], in the sense that they generate exactly the same
atoms, up to a bijective renaming of nulls by skolem terms.

The frontier chase considers two rule applications redundant if their map-
ping of the frontier variables are the same for the same rule.

Definition 2.16 (Frontier/Skolem chase). The frontier chase σf r -chase
(equivalent to the Skolem chase relies on the frontier derivation reducer (de-
noted by σf r) defined as follows. For any derivation δ , σf r (D0) = D0 and for

21

CHAPTER 2. PRELIMINARIES

every Di = (Fi , ri ,πi) ∈ δ :

Facts (σf r (Di)) =

Fi−1 ∪ π
saf e
i (Head (ri)) if for every j < i with ri = r j ,

πj |f r (r j) (Body (r j)) , πi |f r (ri) (Body (ri))

Fi−1 otherwise

Example 2.7 (Frontier chase). Consider the following set of facts F and
set of rules R, inspired from the thesis of Hecham [2018], stating that an
animal shelter would keep a dog found alone if it has an owner. If it has
a collar or a microchip then it has an owner. A dog named “Jack” with a
collar and a microchip is found alone.

• F = {alone (jack), hasCollar (jack), hasMicrochip (jack)}
• R = {r1 : ∀X ,Y hasOwner (X ,Y) → keep (X),
r2 : ∀X alone (X) ∧ hasCollar (X) → ∃Y hasOwner (X ,Y),
r3 : ∀X alone (X) ∧ hasMicrochip (X) → ∃Y hasOwner (X ,Y)}

A possible frontier chase of F and R is:

σf r -chase (F,R) = 〈(F, ∅, ∅),

(F1 = F ∪ {hasOwner (jack,Null1)}, r2,π1 = {X → jack}),
(F2 = F1 ∪ {hasOwner (jack,Null2)}, r3,π2 = {X → jack}),
(F3 = F2 ∪ {keep (jack)}, r1,π3 = {X → jack,Y → Null1})〉.

First, r2 is applied on {alone (jack), hasCollar (jack)} and generates ∃Y
hasOwner (jack,Y) which is not redundant since r2 has never been applied
before, therefore F1 = F0 ∪ {hasOwner (jack,Null1)}. Then r3 is applied on{alone (jack), hasMicrochip (jack)} and generates ∃Y hasOwner (jack,Y) which
is also not redundant because r3 has never been applied before (even if it
generates the same atom as r2), therefore F2 = F1∪{hasOwner (jack,Null2)}.

Afterwards, r1 is applied on {hasOwner (jack,Null1)} and generates{keep (jack)} which is not redundant as r1 has never been applied before,
therefore F3 = F2 ∪ {keep (jack)}. Finally, r1 is applied on the set of facts{hasOwner (jack,Null2)} with the homomorphism π4 = {X → jack,Y →
Null2} and generates {keep (jack)} which is redundant since this rule appli-
cation reuses the same rule and frontier mapping as the rule application on{hasOwner (jack,Null1)} (i.e. π4 |f r (r1) = π3 |f r (r1) = {X → jack}). Since any
additional rule application would be redundant (all rules have been applied
with all possible homomorphisms) the frontier chase stops.

Even if the frontier reducer removes some redundant rule applications,
the frontier chase might be infinite as shown in the following Example 2.8.

Example 2.8 (Infinite frontier chase). Consider the set of fact F and
the set of rules R containing one fact and one rule.

22

2.1. EXISTENTIAL RULES FRAMEWORK

• F = {p (a)}
• R = {r1 : ∀X p (X) → ∃Y p (Y)}
A possible frontier chase of F and R is:

σf r -chase (F,R) = 〈(F, ∅, ∅), (F1 = F ∪ {p (Null1)}, r1,π1 = {X → a}),
(F2 = F1 ∪ {p (Null2)}, r1,π2 = {X → Null1}),
(F3 = F2 ∪ {p (Null3)}, r1,π2 = {X → Null2}), . . . 〉.

First, r1 is applied using π1 and generates ∃Y p (Y) which is not redundant
since r1 has never been applied before, therefore F1 = F0 ∪ {p (Null1)}. Then
r1 is applied on {p (Null1)} using π2 and generates ∃Y p (Y) which is not
redundant since π2 |f r (r1) = {X → Null1} , π1 |f r (r1) = {X → a}, therefore
F2 = F1 ∪ {p (Null2)}, and so on infinitely.

Some derivation reducers are “stronger” than others, this implies that
their chase might stop in cases where others do not. This is known as the
reducer order relation.

Definition 2.17 (Reducer order relation [Rocher, 2016]). Given two
derivation reducers σ1 and σ2, we say that σ1 is weaker than σ2 (denoted by
σ1 ≤ σ2) if for any set of rules R and set of facts F, if σ1-chase is finite then
σ2-chase is also finite. Furthermore, we say that σ1 is strictly weaker than
σ2 if σ1 ≤ σ2 and σ2 � σ1.

In the literature, there are four well-known types of chase: the Oblivious
chase (σobl -chase) [Cal̀ı et al., 2013], the Skolem/Frontier chase (σf r -chase)
[Marnette, 2009; Baget et al., 2011], the Restricted chase (σr es -chase) [Fagin
et al., 2005], and the Core chase (σcore -chase) [Deutsch et al., 2008].

Proposition 2.1 (Chases finiteness order [Onet, 2013; Rocher, 2016]).
The following relations hold: σobl ≤ σf r ≤ σr es ≤ σcore .

It is well-known that query entailment using a chase is undecidable (the
chase might be infinite) [Beeri and Vardi, 1981] even under strong restric-
tions such as using a single rule or restricting to binary predicates with no
constants. However, some restrictions on the set of rules can ensure decid-
ability for a specific type of chase. These restrictions are classified into three
big categories known as “abstract classes”. The first one is “Finite Expan-
sion Set” (FES) [Baget et al., 2014b] that ensures that a finite universal
model of the knowledge base exists and can be generated using a chase.
For each chase we can define its FES class: oblivious-FES, skolem-FES,
restricted-FES, and core-FES . The second class is called “Finite Unification
Set” (FUS) [Baget et al., 2011] which guarantees that some backward chain-
ing method halts. Finally, the class called “Greedy Bounded Treewidth Set”

23

CHAPTER 2. PRELIMINARIES

(GBTS) [Baget et al., 2011] ensures that the potentially infinite universal
model of a knowledge base has a bounded treewidth. Each abstract class
has a set of “concrete classes” that classifies rules based on their syntactic
properties e.g. the concrete class Datalog describes rules that do not contain
existentially quantified variables. The following Figure 2.1 shows the most
studied concrete classes in the literature and the relation between them: an
upward edge going from a class C to a class C’ means that any set of rules
in class C is also in class C’.

In this thesis we rely mainly on the frontier chase to reason with exis-
tential rules, for simplicity we will only give examples and intuitions about
concrete classes of skolem-FES.2 Restricting ourselves to the frontier chase
and subsequently to the skolem-FES classes of rules is not a very restric-
tive constraint since most studied concrete FES classes are skolem-FES (cf.
Figure 2.2).

MFA

Super-weak-
acyclic

Jointly-acyclic

Weakly-acyclic

aGRD

Datalog

Weakly-sticky

W-sticky-join

Sticky-join

Sticky

Domain-
restricted

Linear

Jointly-fg

Glut-fg

Weakly-
frontier-guarded

Weakly-
guarded

Frontier-
guarded

Guarded Frontier-1

FES FUS
GBTS

Figure 2.1: Abstract and known concrete classes of existential rules [Baget
et al., 2011; Rocher, 2016]

A concrete class is simply a syntactic distinction of rules. The most
basic skolem-FES concrete class is the Datalog class (also known as Range
Restricted [Abiteboul et al., 1995]) which are rules without the existential
quantifier. Another simple class is the aGRD class (Acyclic Graph of
Rule Dependency) [Baget et al., 2014a]. A Graph of Rule Dependency
is a directed graph that encodes possible interactions between rules: the

2For more information about these concrete classes, see the work of Baget et al.
[2011]. The online tool Kiabora http://graphik-team.github.io/graal/downloads/

kiabora-online checks automatically if a set of rules is skolem-FES.

24

http://graphik-team.github.io/graal/downloads/kiabora-online
http://graphik-team.github.io/graal/downloads/kiabora-online

2.1. EXISTENTIAL RULES FRAMEWORK

MFA

Super-weak-
acyclic

Jointly-acyclic

Weakly-acyclic

aGRD

Datalog

Skolem-FES

Oblivious-FES

Figure 2.2: Known concrete FES classes and chases finiteness (all
skolem-FES concrete classes are restricted-FES and core-FES

nodes represent the rules and there is an edge from a node r1 to r2 if and
only if an application of the rule r1 may create a new application of the
rule r2. A GRD is acyclic when it has no circuit. The notions of “weak
acyclicity” [Marnette, 2009] and “joint acyclicity” [Krötzsch and Rudolph,
2011] are based on the position of the predicate and the existential and
frontier variables. The MFA class (Model Faithful Acyclicity) [Grau et al.,
2013] relies on detecting a specific set of facts called critical instance. The
following Example 2.9 provides some rules that are skolem-FES.

Example 2.9 (Skolem-FES rules). Consider the following sets of rules:

• R1 = {∀X ,Y ,Z p (X ,Z) ∧ p (Z ,Y) → p (X ,Y)} is range restricted (Data-
log).

• R2 = {∀X ,Y siblinдO f (X ,Y) → ∃Z parentO f (Z ,X ,Y)} is aGRD.

• R3 = {r1 : ∀X ,Y p (X ,Y) → ∃Z r (Y ,Z),
r2 : ∀X ,Y r (X ,Y) → p (Y ,X)}. {r1} is aGRD and {r2} is range re-
stricted, however R3 is weakly-acyclic and is neither aGRD nor range-
restricted.

• R4 = {r1 : ∀X ,Y p (X ,Y) → ∃Z r (Y ,Z),
r2 : ∀X ,Y r (X ,Y) ∧ r (Y ,X) → p (X ,Y)}. {r1} is aGRD and {r2} is range
restricted, however R4 is Jointly-acyclic.

• R5 = {r1 : ∀Xq(X) → ∃Y p (X ,Y) ∧ p (Y ,X) ∧ p (X ,X),
r2 : ∀X p (X ,X) → r (X),
r3 : ∀X r (X) → q(X)}. {r1} alone is aGRD, {r2, r3} is range restricted,
however R5 is super-weakly-acyclic.

25

CHAPTER 2. PRELIMINARIES

• R6 = {∀X ,Y p (X ,Y) → ∃Z ,T q(Y ,Z)∧p (Z ,T)} is model-faithful-acyclic.

Not all concrete classes are created equal, some might have higher com-
plexity for query answering, and applying a chase on these classes would
require more time. In the next section we recall the definitions for some
complexity classes and describe the complexity of CQ entailment for the
skolem-FES concrete classes.

2.1.4 Complexity classes

Complexity is an indication of a computational problem inherent difficulty.
We briefly recall the definitions of the complexity classes by increasing com-
plexity. For more details about complexity theory, the reader is referred to
the work of Papadimitriou [1994].

Definition 2.18 (AC0). A problem is in AC0 if it can be solved by a boolean
circuit of bounded depth with a polynomial number of AND and OR gates.

Definition 2.19 (Polynomial time (PTime)). A problem is in PTime
if it can be solved by a deterministic Turing machine running in polynomial
time in the input.

Definition 2.20 (NP). A problem is in NP if it can be solved by a non-
deterministic Turing machine running in polynomial time in the input.

Definition 2.21 (coNP). A problem is in coNP if its complement is in the
class NP, meaning that there is a polynomial-time algorithm that can verify
no instances (counterexamples) using a non-deterministic Turing machine.

Definition 2.22 (Exponential time (ExpTime)). A problem is in the
ExpTime class if it can be solved by a deterministic Turing machine running
in simple exponential time (2p (n)) in the input. 2ExpTime is running in

exponential time 22
p (n)

while 3ExpTime is 22
2p (n)

.

Furthermore, a problem P is hard for a given complexity class C if any
instance of a problem from C can be reduced to an instance of P through
a reduction (in most cases, this reduction has to be in polynomial time,
but for lower classes (PTime and below), logarithmic space reductions must
be used). A problem P is complete for a given complexity class C if it
belongs to C and is hard for C. For the query entailment problem, two
different measures of complexity are considered:

• Combined complexity: the input contains the set of rules, the set
of facts and the query.

• Data complexity: the input contains only the set of facts while the
set of rules and the query are assumed to be fixed.

26

2.1. EXISTENTIAL RULES FRAMEWORK

Data complexity is sometimes considered more relevant [Lembo et al.,
2010] because the query and the rules are usually far smaller than the
set of facts in practical applications, however both complexities can help
understand where the difficulties lie. Indeed, for instance, query answer-
ing over skolem-FES rules using a frontier chase has in the worst case
2ExpTime-complete combined complexity and PTime-complete data
complexity. The following Table 2.1 describes the combined and data com-
plexity of query answering for each studied concrete class of Skolem-FES.

Rule Class Combined Complexity Data Complexity

Datalog ExpTime-complete [Chandra et al., 1981] PTime-complete [Dantsin et al., 2001]

aGRD ExpTime-complete [Cal̀ı et al., 2010b] PTime-complete [Cal̀ı et al., 2010b]

Jointly-acyclic 2ExpTime-complete [Krötzsch and Rudolph, 2011] PTime-complete [Krötzsch and Rudolph, 2011]

Weakly-acyclic 2ExpTime-complete [Fagin et al., 2005] PTime-complete [Fagin et al., 2005]

Super-weakly-acyclic 2ExpTime-complete [Marnette, 2009] PTime-complete [Marnette, 2009]

MFA 2ExpTime-complete [Zhang et al., 2015] PTime-complete [Marnette, 2009]

Table 2.1: Complexity of CQ entailment for studied Skolem-FES concrete
classes

2.1.5 Incoherence and inconsistence

To represent knowledge about the world one should account for “negative
knowledge”, i.e. information that dictates how things ought not to be, espe-
cially since generating new knowledge from seemingly correct information
might lead to a contradiction down the line. A basic form of “negative
knowledge” is stating that a fact and its negation (or equivalently, comple-
ment) should not be both asserted at the same time. While the existential
rules language L is negation-free, the notion of integrity constraint from the
database domain can be used to express negative knowledge.

Definition 2.23 (Negative constraint). A negative constraint (or simply
a constraint) is a rule of the form ∀~X B(~X) → ⊥ where ~X is a tuples of
variables, and B is a finite non-empty conjunction of atoms.

In this thesis, we only consider “binary” negative constraints (a.k.a. de-
nial constraints) that express a conflict between two atoms. This restriction
simplifies subsequent definitions and does not imply a loss of generality since
any negative constraint can be transformed into a set of rules and binary
negative constraints [Cal̀ı et al., 2012].

Definition 2.24 (Conflicting facts). A set of facts Z = {f1, f2, . . . , fn} is
a conflicting set of facts if and only if the body of a negative constraint can

27

CHAPTER 2. PRELIMINARIES

be mapped to Z . By abuse of notation, if Z = {f1, f2}, we say that f1 is in
conflict with f2.

Example 2.10 (Negative constraint and conflicting facts). Consider
the negative constraint stating that it is impossible that a person is married
and unmarried at the same time: ∀X married (X) ∧ unmarried (X) → ⊥. The
fact married (bruno) is in conflict with unmarried (bruno) (and vice-versa)
because the body of the negative constraint can be mapped to these facts.

Negative constraints are used to ensure that a set of facts is consistent
(i.e. it contains no contradictions). This is especially important since in
presence of conflicts, query answering becomes trivial due to the principle
of explosion (ex falso quodlibet), i.e. “from falsehood anything follows”.

In the various domains of knowledge representation, conflicts might be
inherent to the represented domain or may arise from an incorrect descrip-
tion of the world. When a set of factual knowledge contains no conflicts it
is said to be consistent, otherwise it is inconsistent.

Definition 2.25 (Inconsistence). A set of facts F is inconsistent with
respect to a set of negative constraints N if and only if (F∪N) has no possible
model (models (F,N) = ∅) i.e. (F ∪ N) � ⊥. In practice, F is inconsistent if
a negative constraint can be applied i.e. there exists a negative constraint
r ∈ N such that F � Body (r).

An inconsistent set of facts does not necessarily mean an incorrect rep-
resentation of the factual knowledge of the world. In some cases, the incon-
sistency of the generated set of facts is unavoidable (i.e. the representation
has no model) even with a correct description of factual knowledge. This is
due to an incoherent set of rules.

Definition 2.26 (Incoherence). A set of rules R is incoherent with respect
to a set of negative constraints N if and only if R∪N is unsatisfiable i.e. for
any set of facts S such that all rules in R are applicable, models (S,R ∪N) =
∅. The application of R on any set of facts S will inevitably lead to an
inconsistent saturated set of facts S∗ with respect to N.

Clearly, the notions of incoherence and inconsistence are highly related.
In fact, an incoherent set of rules R will always lead to an inconsistent set of
facts F∗ if all rules in R are applied on F [Flouris et al., 2006]. The following
Examples 2.11 and 2.12 describe the key difference between incoherence and
inconsistence.

Example 2.11 (Incoherence). Consider the following sets of facts F,
rules R, and negative constraints N representing the knowledge that mam-
mals do not lay eggs, platypus are mammals and penguins lay eggs. “Perry”
is a platypus, does it lay eggs (i.e. Q1 () = layEддs (perry))? Does it not lay
eggs (i.e. Q2 () = notLayEддs (perry))?

28

2.1. EXISTENTIAL RULES FRAMEWORK

• F = {platypus (perry)}
• R = { r1 : ∀X platypus (X) →mammal (X),
r2 : ∀X mammal (X) → notLayEддs (X),
r3 : ∀X platypus (X) → layEддs (X)}
• N = {∀X layEддs (X) ∧ notLayEддs (X) → ⊥}

The saturated set of facts resulting from a frontier chase is

• F∗ = {platypus (perry),mammal (perry), layEддs (perry), notLayEддs (perry)}.

The set of rules R is incoherent because no set of facts (even outside F)
that makes all rules in R applicable prevents the application of the negative
constraint, therefore models (F,R∪N) = ∅. The answer to the boolean queries
Q1 and Q2 is “true” (principle of explosion) i.e. Perry lays eggs and does
not lay eggs at the same time. The saturated set of facts F∗ is inconsistent
because models (F,R ∪N) = ∅.

Example 2.12 (Inconsistence and incoherence). Consider the follow-
ing sets of facts F, rules R, and negative constraints N defined by Hecham
[2018] about a criminal case. If there is a scientific evidence incriminat-
ing a defendant, then he is responsible for the crime, if there is a scientific
evidence absolving a defendant then he is not responsible for the crime. A
defendant is guilty if responsibility is proven. If a defendant has an alibi then
he is innocent. There is a scientific evidence “e1” incriminating a defendant
“alice”, while another scientific evidence “e2” is absolving her of the crime.
She also has an alibi. Is Alice innocent (i.e. Q1 () = innocent (alice))? Is she
guilty (i.e. Q2 () = дuilty (alice))?

• F = {incrim(e1,alice), absolv (e2,alice), alibi (alice)}
• R = {r1 : ∀X ,Y incrim(X ,Y) → resp (Y),
r2 : ∀X ,Y absolv (X ,Y) → notResp (Y),
r3 : ∀X resp (X) → дuilty (X),
r4 : ∀X alibi (X) → innocent (X)}
• N = {∀X resp (X) ∧ notResp (X) → ⊥,
∀X дuilty (X) ∧ innocent (X) → ⊥}

The saturated set of facts resulting from a frontier chase is

• F∗ = {incrim(e1,alice), absolv (e2,alice), alibi (alice), resp (alice),
notResp (alice), дuilty (alice), innocent (alice)}.

The set of rules R is coherent because R∪N is satisfiable i.e. there ex-
ists a possible set of facts S = {incrim(e1, bob), absolv (e2,alice), alibi (alice)}
such that all rules in R are applicable and models (S,R ∪ N) , ∅, the set

29

CHAPTER 2. PRELIMINARIES

S∗ = {incrim(e1, bob), absolv (e2,alice), aibli (alice), resp (bob), notResp (alice),
дuilty (bob), innocent (alice)} is consistent as no negative constraint is ap-
plicable on it.

However the saturated set of facts F∗ is inconsistent because a negative
constraint is applicable, thus models (F,R ∪N) = ∅. Since the set of rules is
coherent, the inconsistence of F∗ is due to an erroneous set of intial facts
(either one of the evidences, the alibi, or all of them are not valid).

The classical answer to the boolean queries Q1 and Q2 is “true” (i.e.
Alice is guilty and innocent), because from falsehood, anything follows.

Inconsistence and incoherence are problematic for classical query answer-
ing. Indeed, as in classical logic, contradictions trivialise query answering
since everything follows from a contradiction.

In this thesis, we focus on inconsistency and only consider set of rules
that are coherent with respect to the set of negative constraints. This is not a
big assumption as the existential rules framework is widely used in Semantic
Web and in the so called Ontology-Based Data Access (OBDA). In this
setting, the rules and negative constraints are given by experts and are used
as an ontology to “access” multiple data sources. These sources are prone
to inconsistencies whereas the ontology is reliable since it is constructed by
field experts. Thus, we use the term inconsistent knowledge base to refer to
a triple composed of a fact base, a set of negative constraints and a set of
coherent rules with respect to the negative constraints.

Definition 2.27 (Inconsistent knowledge base). An inconsistent knowl-
edge base (or simply knowledge base if it is obvious by the context) is a tuple
KB = (F,R,N) where F is a set of facts, N is a set of negative constraints
and R is a set of existential rules coherent with respect to N.

The set of all possible knowledge bases is denoted by KBs . We now intro-
duce the notion of R-inconsistency. As opposed to the notion of conflicting
facts where the body of a negative constraint can be directly mapped to
the set of facts, R-inconsistency also consider the facts that can be derived
before trying to map the body of negative constraints.

Definition 2.28 (R-inconsistence). Let us consider a knowledge base
KB = (F,R,N). We say that a set of facts X is R-inconsistent with respect
to KB if and only if SatR∪N (X) |= ⊥. Otherwise, X is said to be R-consistent.

In the knowledge representation and reasoning field, there are several
ways to handle inconsistencies. The two main approaches are Consistency-
based approaches (first mentioned by Rescher and Manor [1970]) and Dung-
style logic-based argumentation approaches. The former consists in comput-
ing maximal consistent subsets (MCS) or repairs of the knowledge base and
using non-classical consequence relation to infer from the knowledge base.
In our context, the highlight is put on subsets of the fact base and repairs

30

2.1. EXISTENTIAL RULES FRAMEWORK

are particular subsets of facts. A MCS or (data) repair [Arenas et al., 1999]
of an inconsistent knowledge base KB = (F,R,N) is a maximal for set in-
clusion subset of F that is R-consistent. Thus, any superset of a repair is
R-inconsistent.

Definition 2.29 (Repair). Let KB = (F,R,N) be a knowledge base, a set
X ⊆ F is a repair of KB if and only if X is R-consistent and for every
X ⊂ X ′, X ′ is R-inconsistent. The set of all repairs of KB is denoted by
repairs (KB).

The notion of minimal inconsistent set is similar to the concept of re-
pairs and corresponds to minimal for set inclusion subsets of F that are
R-inconsistent.

Definition 2.30 (Minimal inconsistent set). Let KB = (F,R,N) be a
knowledge base, a set X ⊆ F is a minimal inconsistent set of KB if and only
if X is R-inconsistent and for every X ′ ⊂ X , X ′ is R-consistent. The set of
all minimal inconsistent sets of KB is denoted by MI (KB).

The free facts of a knowledge base KB = (F,R,N) are facts of F that are
not “touched” by the inconsistencies. As a result, they are in every repairs
or in no minimal inconsistent sets.

Definition 2.31 (Free fact). Let KB = (F,R,N) be a knowledge base, a
fact f ∈ F is a free fact if and only if for every minimal inconsistent set
m ∈ MI (KB), f <m. We denote by Free (KB), the set of free facts of KB.

Dung-style logic-based argumentation approaches are also widely used
to handle inconsistencies. Those approaches are based on instantiating an
abstract argumentation framework composed of a set of arguments and a
set of attacks among them. The logic-based version of an argumentation
framework views an argument as a structured entity built from a knowledge
base KB and the approach proceeds by computing all of the possible ar-
guments and attacks. Then, coalitions of arguments [Bertossi et al., 2005]
called extensions (sets of arguments that are conflict-free and are defend-
ing themselves) are computed and inconsistency-tolerance can be defined on
those extensions. In the next section, we begin by providing an introduc-
tion to the argumentation theory by introducing Dung’s abstract model of
argumentation [Dung, 1995] and the ranking-based semantics approach.

31

CHAPTER 2. PRELIMINARIES

2.2 Argumentation theory

Argumentation represents a major component of human intelligence. The
problems of understanding argumentation and its role in the way humans
reason have been addressed by many researchers in different fields. In this
section, we give an introduction to the argumentation theory as it was de-
fined originally by Dung [1995]. His perception of argumentation was built
around the basic principle that “the one who has the last word laughs best”.
Roughly speaking, Dung gives the idea that a statement is believable if it
can be argued successfully against attacking arguments. In other words,
whether or not an agent believes in a statement depends on whether or not
the argument supporting this statement can be successfully defended against
the counterarguments. Although many researchers have been analysing the
structure of arguments before Dung [Birnbaum et al., 1980; Birnbaum, 1982;
Cohen, 1987], he was the first one (to our knowledge) to clearly propose a
simple model for understanding the acceptability of arguments by proposing
semantical relations for abstract argumentation frameworks.

2.2.1 Abstract argumentation semantics

An abstract argumentation framework as defined by Dung [1995] takes as
input a set of arguments and a pre-constructed binary relation that repre-
sents attacks between arguments. In Dung’s abstract model, the structure
of arguments and the type of attack are not defined and are left unspecified.

Definition 2.32 (Argumentation framework [Dung, 1995]). An ar-
gumentation framework is a pair F = (A ,R) where A is a set of arguments
and R is a binary relation over A . Given two arguments a,b ∈ A , we say
that a attacks b if and only if (a,b) ∈ R.

Notation 2.5. Let F = (A ,R) and F′ = (A ′,R ′) be two argumentation
frameworks. F⊕F′ denotes the argumentation frameworks (A ∪A ′,R∪R ′)
representing the merging of the two argumentation frameworks F and F′.

An argumentation framework can be seen as a directed graph where
vertices represent arguments and edges represent attack between argument.

Example 2.13 (Argumentation framework). Suppose we have three
arguments a, b, and c such that a and b attack each other (i.e. (a,b), (b,a) ∈
R), and c attacks b (i.e. (c,b) ∈ R). This argumentation framework is
shown in Figure 2.3.

a b c

Figure 2.3: Argumentation framework of Example 2.13

32

2.2. ARGUMENTATION THEORY

Definition 2.33 (Path). Let F = (A ,R) be an argumentation framework
and a ∈ A . We say that a sequence S = (a1, . . . ,an) is a path of size n from
an to a if and only if a1 = a and for every i ∈ {2, 3, . . . ,n}, (ai ,ai−1) ∈ R.

Notation 2.6. Let F = (A ,R) be an argumentation framework and a,b ∈
A . We say that b ∈ R−n (a) if and only if there exists a path of size n
from b to a. The set R−1 (a) is called the set of direct attackers of a whereas
R−2 (a) are called direct defenders of a. Please note that we will often use the
alternative notation Att−

F
(a) to denote the set of direct attackers of a in F

or simply Att− (a) if the argumentation framework is clear from the context.
Similarly, we also use the notation Att+ (a) to denote the set of arguments
directly attacked by a, namely Att+ (a) = {b | (b,a) ∈ R}.

Definition 2.34 (Set attack and defense). A set of argument S attacks
an argument b if there exists an argument c ∈ S such that (c,b) ∈ R. If there
is an argument a ∈ S such that (b,a) ∈ R and S attacks b then S defends a.

Argumentation is based on the notion of acceptability of an argument in
the sense that a rational agent accepts only arguments which she can defend
from all possible attacks.

Definition 2.35 (Acceptability of an argument). Given an argumenta-
tion framework F = (A ,R). An arguments a ∈ A is acceptable with respect
to a set of argument S ⊆ A if and only if S defends a from all its attacks,
that is for every b ∈ A such that (b,a) ∈ R, there exists c ∈ S such that
(c,b) ∈ R.

Example 2.14 (Example 2.13 cont’d). a is acceptable with respect to{c}.

2.2.2 Extension-based approaches

Acceptability of argument is used to define argumentation semantics. Two
different methods are proposed to define semantics: extension-based [Dung,
1995] and labeling-based [Caminada, 2006]. We start by the extension-based
approach which defines what an acceptable argument means under some spe-
cific semantics. The idea behind the extension-based approach is to identify
and select a set of arguments called extensions that can survive a conflict
together. Thus, an extension is often represented as a reasonable position
or viewpoint in a debate. The reader can find examples of the semantics
presented in this thesis (the admissible, complete, grounded, preferred and
stable) in Dung [1995] and an intuitive introduction to argumentation se-
mantics can be found in Baroni et al. [2011].

Extension-based semantics are defined on the principle of conflict-freeness
which translates the idea the arguments in an extension should be able to
“stand together”, that is, the arguments of the same extension should not
attack each other.

33

CHAPTER 2. PRELIMINARIES

Definition 2.36 (Conflict-freeness). Let F = (A ,R) be an argumenta-
tion framework. A set of arguments S ⊆ A is conflict-free if and only if
there are no a,b ∈ S such that (a,b) ∈ R.

Please note that Definition 2.36 excludes all of the sets containing self-
attacking arguments.

Example 2.15 (Example 2.13 cont’d). {a, c} is conflict-free.

A naive extension is a maximal conflict-free set of arguments.

Definition 2.37 (Naive semantics). Let F = (A ,R) be an argumentation
framework. A set of arguments S ⊆ A is a naive extension if and only if S
is conflict-free and for every S ′ ⊆ A such that S ⊂ S ′, S ′ is not conflict-free.

A set of non-conflicting arguments can be seen as an agent’s position in
a debate, for this position to hold it has to defend all its argument. This
corresponds to the notion of admissibility [Dung, 1995].

Definition 2.38 (Admissibility of a set). Let F = (A ,R) be an argu-
mentation framework. A conflict-free set of arguments S ⊆ A is admissible
if and only if every argument a ∈ S is acceptable with respect to S.

An admissible set of arguments is a set of non-conflicting arguments that
defends all its elements, such set is called an admissible extension. Every
argumentation framework has at least one admissible set: the empty set.

Example 2.16 (Example 2.13 cont’d). The admissible extensions are:
∅, {a}, {c}, and {a, c}. Note that {b} is not an admissible set since it does
not defend itself from c .

A preferred set of arguments is a maximal set of arguments that is ad-
missible. The idea of the preferred semantics is that one wants to accept as
many arguments as reasonably possible to have the largest viewpoint on a
debate.

Definition 2.39 (Preferred semantics). Let F = (A ,R) be an argumen-
tation framework. A preferred extension is a maximal (for set inclusion)
admissible set of arguments S ⊆ A .

A stable set of arguments S is a conflict-free set that attacks all of the
arguments outside of S. The idea of the stable semantics is that an argument
can only be for or against a viewpoint in a debate and that neutrality is not
allowed.

Definition 2.40 (Stable semantics). Let F = (A ,R) be an argumentation
framework. A stable extension is a conflict-free set of arguments S ⊆ A such
that for every b ∈ (A \S) there exists an argument a ∈ S such that (a,b) ∈ R.

34

2.2. ARGUMENTATION THEORY

A complete set of arguments is an admissible set that contains all of the
arguments that it defends. The complete semantics refines the admissibility
in the sense that one should always accept an argument if it can be defended.

Definition 2.41 (Complete semantics). Let F = (A ,R) be an argumen-
tation framework. An admissible set of arguments S ⊆ A is a complete
extension if and only if for every a ∈ A , if S defends a then a ∈ S.

Grounded semantics is the most skeptical (or least committed) of argu-
mentation semantics, it is defined based on the notion of complete extension.
It is the admissible extension that includes all the arguments it can defend
from all attacks.

Definition 2.42 (Grounded semantics). The grounded extension of an
argumentation framework is the least (with respect to set-inclusion) complete
extension.

In some cases, the stable semantics yields no extensions at all (not even
the empty set). That is why a more refined approach was defined: the semi-
stable semantics [Caminada et al., 2012]. Please note that this semantics is
equivalent to the admissible stage semantics defined by Verheij [1999].

Definition 2.43 (Semi-stable semantics [Caminada et al., 2012]).
Let F = (A ,R) be an argumentation framework. A semi-stable extension is
a complete extension S such that S ∪ {b ∈ A | there exists a ∈ S such that
(a,b) ∈ R} is maximal (with respect to set inclusion) amongst all complete
extensions.

Contrary to the stable extensions, the existence of the semi-stable exten-
sions is always guaranteed. Furthermore, a stable semantics is a semi-stable
extension and semi-stable extensions coincide with stable extensions when
the set of stable extensions is not empty.

An ideal extension is a maximal for set inclusion set of argument that is
a subset of each preferred extension. It was shown by Caminada and Pigozzi
[2011] that the ideal extension is also a complete extension and thus it is a
superset of the grounded extension.

Definition 2.44 (Ideal semantics [Caminada and Pigozzi, 2011]).
Given an argumentation framework F = (A ,R). An admissible set S is
called ideal if and only if it is a subset of each preferred extension. The ideal
extension of F is a maximal (with respect to set inclusion) ideal set.

For our purposes, we require some further formal notions. An argumen-
tation framework is strongly connected if and only if there is a path from
any argument a to any argument a′.

Definition 2.45 (Strongly connected). Let F = (A ,R) be an argumen-
tation framework. We say that F is strongly connected if and only if for every
a,a′ ∈ A such that a , a′, there is a path from argument a to argument a′.

35

CHAPTER 2. PRELIMINARIES

The nodes of an arbitrary directed graph can be partitioned such that
the subgraphs, induced by each set of nodes, are maximal strongly connected
subgraphs. Each set of such a partition is called a strongly connected com-
ponents of this graph. In the rest of this thesis, we will denote by SCC (F),
this particular partition of the set of arguments of F.

Definition 2.46 (Component-defeated [Gaggl and Woltran, 2013]).
Let F = (A ,R) be an argumentation framework and S ⊆ A a set of argu-
ments. An argument b ∈ A is component-defeated by S if there exists a ∈ S
such that (a,b) ∈ R and a is not in same the strongly connected component
than b. The set of arguments component-defeated by S in F is DF (S).

All of the above mentioned argumentation semantics are admissibility-
based, i.e. the extension returned are admissible sets. Moreover, in the
multiple-status semantics (such as complete, preferred, stable and semi-
stable), we can notice that odd-length unidirectional attack cycles are han-
dled badly. However, in some applications, cycles need to be treated equally
independently of their length [Pollock, 2001]. The stage semantics conforms
with this idea of “equal cycles treatment” but loses its proximity with the
grounded semantics as it was shown that even non attacked arguments can
be rejected in some cases [Baroni et al., 2011]. Against this background,
the cf2 semantics was designed as a multiple-status semantics that is not
admissibility-based, treats cycles equally and which accepted arguments are
a superset of those accepted by the grounded semantics.

Definition 2.47 (Cf2 semantics [Gaggl and Woltran, 2013]). Let F =
(A ,R) be an argumentation framework and S ⊆ A be a set of arguments.
S is a cf2 extension of F if and only if:

• in case |SCC (F) | = 1, then S is a maximal conflict free set of F,

• otherwise, for every C ∈ SCC (F), (S∩C) is a cf2 extension of (A∩Y ,R∩
(Y × Y)) where Y = C \ DF (S).

Notation 2.7. Let F be an argumentation framework, we will denote by
Extx (F) the set of extensions with respect to the argumentation semantics x
for F. We use the abbreviations c f ,a,p, s, c,д, ss, i and c f 2 for respectively
conflict-free, admissible, preferred, stable, complete, grounded, semi-stable,
ideal and cf2.

Definition 2.48 (Sceptically accepted, credulously accepted and
rejected arguments). Let F = (A ,R) be an argumentation framework and
Extx (F) be the set of extensions with respect to the argumentation semantics
x for F. We say that:

• a is sceptically accepted with respect to x if and only if for every ε ∈
Extx (F),a ∈ ε.

36

2.2. ARGUMENTATION THEORY

• a is credulously accepted with respect to x if and only if for there exists
ε1, ε2 ∈ Extx (F), such that a ∈ ε1 and a < ε2.

• a is rejected with respect to x if and only if for every ε ∈ Extx (F),a < ε.

Example 2.17 (Argumentation semantics). Consider the argumenta-
tion framework F = (A ,R) such that A = {a,b, c,d} and R = {(e, e), (d, e),
(d, c), (c,d), (b, c), (a,b)}, represented in Figure 2.4. We make the following
observations:

• The admissible extensions are {d}, {a}, {a,d}, {a, c} and ∅.

• The complete extensions are {a}, {a, c}, {a,d} and ∅.

• The preferred and cf2 extensions are {a, c} and {a,d}.

• The stable and semi-stable extension is {a,d}.

• The ideal extension is {a}.

• The least complete extension is {a} which is the ground extension.

abcde

Figure 2.4: Argumentation framework of Example 2.17

Stable

Semi-stable

Preferred

Complete

Admissible

Conflict-free

Cf2

Grounded

Ideal

Admissiblity-based

SCC-based

Figure 2.5: Inclusion relations between the several argumentation
semantics used in this thesis.

37

CHAPTER 2. PRELIMINARIES

Semantics CF DF ADM INCDF MAX AGR UNIQ EXIST

Admissible X X X X

Complete X X X X X

Stable X X X X X

Semi-stable X X X X X X

Preferred X X X X X X

Grounded X X X X X X

Cf2 X X X

Ideal X X X X X X X

Table 2.2: Argumentation semantics with respect to criteria. X means the
criterion is satisfied

In Figure 2.5, we show the inclusion relations between the several ar-
gumentation semantics used in this thesis. An arrow from the node A to
the node B means that an extension for semantics A is also an extension
for semantics B. In Table 2.2, we summarise the semantics and their essen-
tial criteria. The criteria are as follows: CF means that the extensions are
conflict-free, DF means that they defend all their elements, INCDF means
that they include what they defend, MAX means that they are maximal
with respect to inclusion, AGR means that they attack all arguments that
are outside of the extension, UNIQ means that there is always one extension
and EXIST means that there is always at least one extension. The table is
only an illustration and the criteria are not completely dependent as some
of them are derivable from others.

2.2.3 Labelling approach

The labelling approach consists in mapping arguments with labels.

Definition 2.49 (Labelling). Let F = (A ,R) be an argumentation frame-
work and Λ be a set of labels. A labelling L with respect to Λ is a total
function L : A → Λ.

A sensible choice for the labels (but not the only one possible) is in, out,
and undec in order to represent that an argument is accepted, rejected and
undecided respectively. However, such a mapping does not have much
sense if made arbitrary. Thus, the notion of reinstatement labelling was
introduced as constraints to ensure the meaning of the mapping.

38

2.2. ARGUMENTATION THEORY

Definition 2.50 (Reinstatement labelling). Let F = (A ,R) be an argu-
mentation framework. A labelling L is a reinstatement labelling if and only
if all of the following items are satisfied:

• for every a ∈ A , L(a) = in if and only if for every b ∈ A such that
(b,a) ∈ R, L(b) = out

• for every a ∈ A , L(a) = out if and only if there exists b ∈ A such that
(b,a) ∈ R and L(b) = in

• for every a ∈ A , L(a) = undec if and only if L(a) , in and L(a) , out

Example 2.18 (Grounded labelling). The argumentation framework in
Example 2.4 can have different reinstatement labelings. Figure 2.6 corre-
sponds to the complete extension {a, c} and Figure 2.7 corresponds to the
grounded extension {a}.

a

in

b

out

c

in

d

out

e
undec

Figure 2.6: Labelling that corresponds to {a, c} of Example 2.17

a

in

b

out

c

undec

d

undec

e
undec

Figure 2.7: Labelling that corresponds to {a} of Example 2.17

Every extension can be translated into a reinstatement labelling: the
arguments of the extension are in, those attacked by an argument of the
extension are out, and the others are undec. Similarly, one can build an
extension from a reinstatement labelling just by considering the arguments
that are labeled “in”. Moreover, Caminada [2006] proved that the reinstate-
ment labelings and the complete extensions can be mapped in a bijective
way and that other Dung’s argumentation semantics can be obtained from
particular reinstatement labelling. In this thesis, we will not delve into the
labelling representation and only use the extension-based approach.

In the next section, we introduce a similar approach for analysing and
detecting the most attacked arguments. Ranking-based semantics [Amgoud
and Ben-Naim, 2013; Bonzon et al., 2016; Besnard and Hunter, 2001] were
developed for ranking arguments with respect to their acceptability. The
added value of this approach is that contrary to the usual three value statuses
(accepted, rejected or undecided) offered by the argumentation semantics,
the ranking-based semantics offer a more gradual acceptability range which
can be more useful for many applications such as debate platforms on the
web (see the work of Leite and Martins [2011]).

39

CHAPTER 2. PRELIMINARIES

2.2.4 Ranking-based semantics

Amgoud and Ben-Naim [2013] give the three main properties of extension-
based (and labelling-based) semantics: Killing, Existence and Flatness.

• Killing. An attack from an argument a to b is drastic and it is no
longer possible for b to be in the same extension as a.

• Existence. One successful attack against an argument has the same
effect on an argument as any number of successful attacks.

• Flatness. All arguments with the same status (accepted, rejected,
undecided) have the same level of acceptability and cannot be distin-
guished.

Although those intuitions may have been understandable in the context
of paraconsistent logics [Besnard and Hunter, 2008] because they will ensure
the consistency of a set of formulas by killing any contradiction between ar-
guments, these considerations are arguable when given in the context of
decision-making application [Yun et al., 2016, 2018a] or online debate plat-
forms [Leite and Martins, 2011]. In those applications, it is understandable
that many successful attacks should have a more negative impact than just
one successful attack. Thus, although many arguments can have the same
status, they should not be undistinguishable.

In the rest of this section, we formally define the ranking-based semantics
and scoring semantics.

Definition 2.51 (Ranking-based semantics σ). A ranking-based seman-
tics σ associates to any argumentation framework F = (A ,R) a ranking �σ

F

on A where �σ
F

is a total preorder (reflexive and transitive relation) on A .
The notation a �σ

F
b means that a is at least as acceptable as b.

Notation 2.8. We use the notation a ≈σ
F
b if and only if a �σ

F
b and b �σ

F
a.

Moreover, we say that a �σ
F
b if and only if a �σ

F
b and b �σ

F
a. Likewise,

we say that a �σ
F
b if and only if a �σ

F
b. Finally, we say that a ≺σ

F
b if and

only if a �σ
F
b and b �σ

F
a

A scoring function assign to each argument, in an argumentation frame-
work, a score based on different criteria. The score can be chosen in an
interval [0, 1], [−1, 1],N or even R. Please note that the score given by a
scoring function should not be confused with the inner weight of arguments
in weighted argumentation frameworks [Dunne et al., 2011; Coste-Marquis
et al., 2012]. Indeed, weights are given by external sources (preferences,
inner strength) whereas scores are computed with respect to the intrinsic
structure of the argumentation framework.

40

2.2. ARGUMENTATION THEORY

Definition 2.52 (Scoring function). A scoring semantics is a function
which associates to any argumentation framework F = (A ,R) a scoring S
on A , where S is a function from A to R.

Please note that scoring function and ranking-based semantics are not
independent notions. Indeed, one can use the scores from a scoring function
to rank arguments, thus obtaining a ranking-based semantics. However, it
does not mean that every ranking-based semantics is based on an under-
lying scoring function. Indeed, some ranking-based semantics can directly
compare arguments using methods such as the lexicographical order without
using scores.

Definition 2.53 (Lexicographical order). Let V = (V1,V2, . . . ,Vn) and
V ′ = (V ′1 ,V

′
2 , . . . ,V

′
n) be two vectors of real numbers of size n. The lexico-

graphical order between V and V ′ is defined as V �lex V
′ if and only if there

exists i ∈ {1, . . . ,n} such Vi < V
′
i and for every j < i,Vj = Vi .

Notation 2.9. We use the notation V ≈lex V ′ if and only if V �lex V ′ and
V ′ �lex V . Moreover, we say that V �lex V

′ if and only if V ′ �lex V .

2.2.4.1 Existing ranking-based semantics

In this section, we introduce the ranking-based semantics from the literature
that will be used in throughout the thesis. In order to correctly illustrate
the ranking outputted by each of these ranking-based semantics, we use the
argumentation framework in Figure 2.8 proposed by Delobelle [2017]

a b c d e

f д h i

j

Figure 2.8: An argumentation framework F

Besnard and Hunter [2001] proposed the h-categoriser function as a scor-
ing function that gives the strength of an argument based on the strengths
of its attackers.

Definition 2.54 (H-categoriser function [Besnard and Hunter, 2001]).
Let F = (A ,R) be an abstract argumentation framework. The h-categoriser
function is C ′ : A → [0, 1] defined as, for all a ∈ A :

C ′(a) =

1 if R−1 (a) = ∅

1
1+

∑
b∈R−

1
(a)

C ′(b) otherwise

41

CHAPTER 2. PRELIMINARIES

Pu et al. [2014] showed the existence and uniqueness of the values re-
turned by the h-categoriser function for any argumentation frameworks. The
following definition shows how the h-categoriser ranking-based semantics is
constructed from the scores returned by the h-categoriser function.

Definition 2.55 (H-categoriser ranking-based semantics [Pu et al.,
2014]). Let F = (A ,R) be an abstract argumentation framework. The h-
categoriser ranking-based semantics on F returns a ranking �hcat

F
on A such

that for every a,b ∈ A :

b �hcat
F

a if and only if C ′(a) ≤ C ′(b)

Example 2.19 (H-categoriser). We consider the argumentation frame-
work F depicted in Figure 2.8. The values returned by the h-categoriser func-
tion for each argument are C ′(a) = C ′(e) = C ′(j) = 1,C ′(c) ≈ 0.667,C ′(i) ≈
0.333 and C ′(b) = C ′(d) = C ′(f) = C ′(д) = C ′(h) = 0.5. Thus, the ranking on
A outputted by the h-categoriser ranking-based semantics is:

a ≈hcat
F

e ≈hcat
F

j �hcat
F

c �hcat
F

b ≈hcat
F

d ≈hcat
F

f ≈hcat
F

д ≈hcat
F

h �hcat
F

i

Amgoud and Ben-Naim [2013] introduced the Discussion-based ranking-
based semantics which compares the arguments with respect to the number
of paths leading to them. The intuition behind this ranking-based semantics
is that an even path to a should increase the score of a whereas an odd path
should reduce its score.

Definition 2.56 (Discussion count). Let F = (A ,R) be an argumenta-
tion framework, a ∈ A and i ∈ N \ {0}.

Disi (a) =

−|R−i (a) | if i is odd

|R−i (a) | otherwise

The discussion count of a is the vector Dis (a) = (Dis1 (a),Dis2 (a), . . .).

The discussion-based ranking-based semantics is computed using the lex-
icographical order on the discussion counts of the arguments.

Definition 2.57 (Discussion-based ranking-based semantics [Am-
goud and Ben-Naim, 2013]). Let F = (A ,R) be an argumentation frame-
work. The discussion-based ranking-based semantics on F returns a ranking
�dis
F

on A such that for every a,b ∈ A :

b �dis
F

a if and only if Dis (a) �lex Dis (b)

.

Example 2.20 (Discussion-based ranking-based semantics). We con-
sider the argumentation framework F depicted in Figure 2.8. We obtain the
following discussion counts:

42

2.2. ARGUMENTATION THEORY

• Dis(a) = Dis(e) = Dis(j) = (0, 0, 0)

• Dis(c) = (1, -1, 0)

• Dis(b) = Dis(d) = Dis(h) = (1, 0, 0)

• Dis(f) = Dis(g) = (2, -2, 0)

• Dis(i) = (2, 0, 0)

Here, it is enough to only compute discussion counts of size three as we
can see that every discussion count finishes with a zero (it means that there
are no paths of size more than two). Using the lexicographical order, we get
the following ranking on A :

a ≈dis
F

e ≈dis
F

j �dis
F

c �dis
F

b ≈dis
F

d ≈dis
F

h �dis
F

f ≈dis
F

д �dis
F

i

The last ranking-based semantics considered in this thesis is the Burden-
based ranking-based semantics also defined by Amgoud and Ben-Naim [2013].
This ranking-based semantics uses some intuition from the discussion-based
ranking-based semantics as it first considers the direct attackers since it
is based on the lexicographical order. However, instead of computing the
number of paths for a specific argument, it updates the “burden” of each
argument with respect to the burden of its direct attackers.

Definition 2.58 (Burden vector). Let F = (A ,R) be an argumentation
framework, a ∈ A and i ∈ N \ {0}.

Buri (a) =

1 if i = 0

1 +
∑
b ∈R−1 (a)

1
Buri−1 (b)

otherwise

The burden vector of an argument a is Bur (a) = (Bur0 (a),Bur1 (a), . . .).

The burden-based ranking-based semantics is then computed using the
lexicographical order on the burden vectors of the arguments.

Definition 2.59 (Burden-based ranking-based semantics). Let F =
(A ,R) be an argumentation framework. The burden-based ranking-based
semantics on F returns a ranking �bur

F
on A such that for every a,b ∈ A :

b �bur
F

a if and only if Bur (a) �lex Bur (b)

.

Example 2.21 (Burden-based ranking-based semantics). We con-
sider the argumentation framework F depicted in Figure 2.8. We obtain the
following burden vectors:

43

CHAPTER 2. PRELIMINARIES

• Bur(a) = Bur(e) = Bur(j) = (1, 1, 1, 1)

• Bur(c) = (1, 2, 1.5, 1.5)

• Bur(b) = Bur(d) = Bur(h) = (1, 2, 2, 2)

• Bur(f) = Bur(g) = (1, 3, 2, 2)

• Bur(i) = (1, 3, 3, 3)

Using the lexicographical order, we get the following ranking on A :

a ≈bur
F

e ≈bur
F

j �bur
F

c �bur
F

b ≈bur
F

d ≈bur
F

h �bur
F

f ≈bur
F

д �bur
F

i

Although the ranking on arguments is the same for the burden-based
and discussion-based ranking-based semantics in Example 2.20 and 2.21,
the equality of the two ranking-based semantics is not true. The reader is
invited to read the original paper by Amgoud and Ben-Naim [2013] for an
intuitive counter-example.

2.3 Summary

In this chapter we presented the existential rule logical fragment along with
the frontier chase forward chaining inference mechanism. We showed that
allowing the presence of existential quantifiers in the head of rules might lead
to infinite rule applications, that is why a derivation reducer is needed to
remove redundant rule applications. We presented the frontier derivation re-
ducer and showed the types of rules (Skolem-FES) for which it is guaranteed
to stop. Then we defined the different types of conflicts, namely, inconsis-
tence when a negative constraint is applicable, and incoherence when the
set of rules is unsatisfiable. In the rest of this thesis, we only work with
inconsistent knowledge bases with a coherent set of rules.

Afterwards, we presented the Argumentation Theory which is a conflict-
tolerant form of reasoning that is based on argumentation frameworks with
arguments and attacks among them. These argumentation frameworks can
then be used to evaluate arguments using different approaches:

1. The extensions-based approaches are semantics that are able to select
sets of non-conflicting arguments called extensions (or equivalently,
coalitions) that can survive a conflict together. We first recalled the
some admissible-based argumentation semantics such as Dung’s ar-
gumentation semantics (complete, preferred, stable and grounded),
the semi-stable and the ideal semantics. Second, we recalled an non

44

2.3. SUMMARY

admissible-based semantics based on strongly-connected components:
the cf2 semantics. Lastly, we presented how all of those argumentation
semantics are connected with respect to extensions inclusion.

2. The labelling approach is a semantics that is based on giving labels
to arguments. In the literature, we usually restrict ourselves to rein-
statement labelings in order to ensure the meaning of the labelling.
Since it was proven by Caminada [2006] that reinstatement labelings
straightforwardly coincide with the complete extensions, we can get
all of the usual Dung’s argumentation extensions by picking specific
labelings in the set of reinstatement labelings. In this thesis, we will
not delve into this labelling approach.

3. The last approach is called ranking-based semantics. These semantics
were developed following different intuitions than extension-based ap-
proaches. Indeed, ranking-based semantics are usually more gradual
because they do not directly “kill” an argument when it is attacked.
Ranking-based semantics return a ranking on arguments for any ar-
gumentation framework. In this thesis, we will only consider three
ranking-based semantics: h-categoriser, burden-based and discussion-
based ranking-based semantics. The first ranking-based semantics is
defined upon a scoring function whereas the last two are defined around
the lexicographical order on vectors of values (burden vector and dis-
cussion count).

We discussed about the existential rule logical fragment and approaches
for evaluating arguments when given an abstract argumentation framework.
In the next chapter, we show how the two notions can be combined using
logic-based argumentation and instantiation an argumentation framework
with an inconsistent knowledge base in the existential rules language.

Chapter 2 in a Nutshell

• Reasoning with existential rules requires a derivation reducer to
become decidable. Frontier/Skolem chase is the most used for-
ward chaining inference mechanism and has decidable classes
(types) of rules called Skolem-FES.

• There are two types of conflicts: inconsistency when a negative
constraint is applicable, and incoherence when the set of rules
is unsatisfiable. We will only work with coherent set of rules.

• A Dung’s abstract argumentation framework is composed of
arguments and attacks among them. Reasoning with such a
framework consists in evaluating arguments using several ap-
proaches: extensions-based, labelling-based and ranking-based.

45

3
Using Deductive Argumentation with

Existential Rules
3.1 Deductive argumentation frameworks in existential

rules . 49

3.1.1 Argumentation graphs generated from knowledge
bases . 52

3.1.2 Argumentation graphs generated from knowledge
bases without rules 56

3.2 Improving the argument generation 64

3.2.1 Optimisation for knowledge bases without rules . . 65

3.2.2 Optimisation for knowledge bases with rules 66

3.3 The DAGGER tool . 74

3.3.1 DAGGER’s architecture 74

3.3.2 Usability scenarios 76

3.4 Benchmarks on logic-based argumentation frameworks 78

3.4.1 Benchmark generation 80

3.4.2 Results of literature solvers over the benchmark . . 82

3.5 Summary . 87

Logic-based argumentation considers constructing arguments from in-
consistent knowledge bases and computing attacks between them. The re-
sult of such a workflow is usually an argumentation graph (also called ar-
gumentation framework) where nodes are arguments and directed edges are
attacks between them. In this thesis, we focus on instantiating a specifi-
cally crafted deductive argumentation framework using the existential rules
language. The reason why we did not use any of the existing frameworks
is because they are not directly and straightforwardly applicable in the con-
text of the existential rules language. Indeed, none of the aforementioned
frameworks can be applied to an inconsistent existential rules knowledge
base without modifying it beforehand.

In the case of ABA, although it is abstract enough to function with a
language that has neither implication nor negation, it needs a contrariness
function that returns a single contrary sentence for each formula of the
language. This is not enough in the case where a fact appears in multiple

47

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

conflicts and the language does not allow for the disjunction. We only say
that ABA cannot be applied in a straightforward manner and not that it
cannot be applied at all. Toni [2014] proposes a fix to the aforementioned
problem that consists in adding new facts and rules in a specific way in
order to encode a single contrary per assumption. In the case of ASPIC+
framework, we cannot instantiate it since the definition of the contrariness
relation is not general enough to account for the existential rules negative
constraints. Let us illustrate this on an example. Suppose we are given three
facts: the biscuit has a square shape, the biscuit has a round shape and the
biscuit is sweet; no rules and one negative constraint: the biscuit cannot
have a square and round shape at the same time. As the fact “the biscuit
is sweet” is a free-fact (i.e. it is not involved in any minimal conflict), there
is no way to define its contrary in an intuitive manner (without modifying
the knowledge base). In the work of Modgil and Prakken [2014], the third
item of Definition 5.1 specifies that each formula of the language must have
at least one contradictory, which is not the case for the latter fact in our
example. Of course, workarounds exist but would necessitate the addition of
multiple facts, positive rules and negative constraints. In the case of DeLP,
we cannot instantiate it since the original work only consider ground rules
which cannot encompass existential rules. Last not but least, the approach
of Besnard and Hunter [2001] cannot be used directly as it was defined
originally for classical propositional or full first-order logic [Besnard and
Hunter, 2008].

The chapter is organized as follows: In Section 3.1, we revisit the partic-
ular deductive argumentation framework proposed by Arioua et al. [2017]
for existential rules and show various properties results. In Section 3.2, we
provide various optimisation for the arguments generation with respect to
the knowledge base structure. In Section 3.3, we showcase the first tool in
the literature for automatically generating the argumentation graph from an
inconsistent knowledge base expressed in existential rules. In Section 3.4,
we benchmark the top solvers of the ICCMA competition on the generated
graphs and show that the structure of the generated graphs have an impact
on argumentation solvers.

Research Questions in this Chapter

• How can one generate a deductive argumentation framework
from an inconsistent knowledge base expressed in existential
rules?

• How can we get an efficient argument generation?

• Do these generated argumentation graphs possess some partic-
ular structure? If yes, does it have an impact on solvers?

48

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

3.1 Deductive argumentation frameworks in existen-
tial rules

A deductive argumentation framework as described by Besnard and Hunter
[2001] is composed of arguments with a support (or equivalently, hypoth-
esis) and a conclusion that is derived from the support using the rule ap-
plications. The first deductive argumentation framework for the existential
rules language was defined in the work of Croitoru and Vesic [2013] where
arguments correspond to sequences of rule applications. It was proven that
the aforementioned framework possesses several desirable properties such
as the equivalence between repairs and preferred (respectively stable) ex-
tensions, the equivalence between intersection of extensions and some in-
consistency tolerant semantics but it also satisfies argumentation properties
defined by Caminada and Amgoud [2007]. As such, this particular deduc-
tive argumentation framework was the first link between the semantics used
in inconsistent ontological knowledge base query answering and those from
argumentation theory.

However, in practice, representing arguments as derivations is often re-
dundant as some atoms can be derived from the same set of facts in different
ways. We illustrate this intuition in the following example.

Example 3.1 (Multiple derivations for a fact). Let us consider the
knowledge base KB = (F,R,N) such that:

• F = {p (a)}
• R = {r1 = ∀X (p (X) → q(X)),
r2 = ∀X (p (X) → r (X)),
r3 = ∀X (r (X) → q(X))}
• N = ∅

We obtain two following derivations for the fact q(a):

δ1 = 〈(F0 = {p (a)}, ∅, ∅), (F1 = F0 ∪ {q(a)}, r1,π1 = {X → a})〉.
δ2 = 〈(F0 = {p (a)}, ∅, ∅), (F2 = F0 ∪ {r (a)}, r2,π2 = {X → a}),

(F3 = F2 ∪ {q(a)}, r3,π3 = {X → a})〉.
If we use the framework of Croitoru and Vesic [2013], we will get two

arguments with the same support {p (a)} and conclusion {q(a)}.

Although remembering which rule application is useful for many pur-
poses such as debates or explanation, some devices with limited memory
capacity cannot afford to keep all of those derivations. That is why, in both

49

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

the work of Arioua et al. [2017] and Yun et al. [2017a], a new deductive
argumentation framework for the existential rules framework was proposed
where the support of arguments are now composed of a minimal set of R-
consistent facts and the conclusion is only a set of atoms that is derived from
the support. This new argumentation framework is more compact as it does
not keep which rule applications led to the conclusion from the support.

Definition 3.1 (Deductive argument [Arioua et al., 2017; Yun et al.,
2017a]). Let KB = (F,R,N) be a knowledge base. An argument a is a tuple
(H ,C) with H a non-empty R-consistent subset of F and C a set of facts such
that:

• H ⊆ F and SatR∪N (H) 6 |= ⊥ (consistency)

• C ⊆ SatR (H) (entailment)

• there is no H ′ ⊂ H such that C ⊆ SatR (H
′) (minimality)

The support H of an argument a is denoted by Supp (a) and the conclusion C
by Conc (a). If X is a set of arguments, we denote by Base (X) =

⋃
a∈X Supp (a).

Example 3.2 (Deductive argument). Consider the following knowledge
base KB = (F,R,N) describing the situation: If an animal is a dog then it
has an owner, if an animal can make cat sounds then it is not a dog.

• F = {animal (tom),miaow (tom),doд(tom)}
• R = {r1 = ∀X (animal (X) ∧ doд(X) → ∃YownerO f (Y ,X)),
r2 = ∀X (animal (X) ∧miaow (X) → notDoд(X))}
• N = {∀X (doд(X) ∧ notDoд(X)) → ⊥}
There are fourteen arguments that can be created from KB:

a1 = ({animal (tom)}, {animal (tom)})
a2 = ({miaow (tom)}, {miaow (tom)})
a3 = ({animal (tom),miaow (tom)}, {animal (tom),miaow (tom)})
a4 = ({animal (tom),miaow (tom)}, {notDoд(tom)})
a5 = ({animal (tom),miaow (tom)}, {animal (tom),notDoд(tom)})
a6 = ({animal (tom),miaow (tom)}, {miaow (tom),notDoд(tom)})
a7 = ({animal (tom),miaow (tom)}, {animal (tom),miaow (tom),notDoд(tom)})
a8 = ({doд(tom)}, {doд(tom)})

50

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

a9 = ({animal (tom),doд(tom)}, {animal (tom),doд(tom)})
a10 = ({animal (tom),doд(tom)}, {owner (Null0, tom)})
a11 = ({animal (tom),doд(tom)}, {animal (tom),owner (Null0, tom)})
a12 = ({animal (tom),doд(tom)}, {doд(tom),owner (Null0, tom)})
a13 = ({animal (tom),doд(tom)}, {animal (tom),doд(tom),owner (Null0, tom)})
a14 = ({miaow (tom),doд(tom)}, {miaow (tom),doд(tom)})

Please note that we restrict ourselves to recognisable FES classes of
existential rules where the chase is guaranteed to stop [Baget et al., 2011]. In
this case, SatR (H) is a finite set. In order to capture inconsistencies between
arguments, we consider the binary attack relation of Croitoru and Vesic
[2013] where an argument a attacks an argument b if and only if the union
of the conclusion of a and an element of the support of b is R-inconsistent.
Roughly speaking, Croitoru and Vesic [2013] give the intuition that this
particular binary attack relation is enough to capture all of the conflicts
since we work in the OBDA setting where all the inconsistency “comes from
the fact”.

Definition 3.2 (Attack relation). An argument a attacks an argument b
denoted by (a,b) ∈ R (or aRb) if and only if there exists ϕ ∈ Supp (b) such
that Conc (a) ∪ {ϕ} is R-inconsistent.

Example 3.3 (Example 3.2 cont’d). We have an attack from argument
a4 to a10 since the set {notDoд(tom)} ∪ {doд(tom)} is R-inconsistent. Please
note that this attack relation is not symmetric. Here, we can see that a10
does not attack a4.

Now that we defined the structure of arguments and attacks, the argu-
mentation graph corresponding to a knowledge base consists simply of all
arguments and attacks that can be generated.

Definition 3.3 (Argumentation graph). The argumentation graph in-
stantiated over a knowledge base KB is denoted by FKB = (A ,R), where the
set of arguments A and the set of attacks R follow from Definition 3.1 and
Definition 3.2 respectively.

Example 3.4 (Example 3.3 cont’d). In our example, FKB = (A ,R)
where A = {a1, . . . ,a14} and R contains the 60 possible attacks on A .

Note that if the fact base of the knowledge base is R-consistent, then
there will be only one extension which will contain all of the arguments (in-
dependently of the argumentation semantics) since there will be no attacks
amongst the arguments. We thus restrict ourselves to the study of argu-
mentation graphs that are generated from inconsistent knowledge bases, i.e.
knowledge bases that have at least one minimal conflict of size at least two.

51

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Name Description

Finite F has a finite set of arguments

Non-trivial Extp (F) , {∅}
Coherent Extp (F) = Exts (F)

Relatively grounded GE =
⋂

Extp (F)

Well-founded Extc (F) = Extд (F) = Extp (F) = Exts (F)

Table 3.1: Classes of argumentation frameworks studied in the literature

The rest of this section is organised as follows. In Section 3.1.1, we focus
on the argumentation graphs generated from general knowledge bases and
study their structural properties. Likewise, in Section 3.1.2, we study argu-
mentation graphs generated from knowledge bases without positive rules.

3.1.1 Argumentation graphs generated from knowledge bases

We first recall, in Table 3.1, the different classes of argumentation graphs
defined in the literature [Coste-Marquis et al., 2005].

The next proposition shows that an argumentation graph generated from
an inconsistent knowledge base has a finite number of arguments.

Proposition 3.1 (Finiteness [Arioua et al., 2017]). Let KB be a finite
inconsistent knowledge base. Then, FKB is finite.

Proposition 3.2 shows that if an argument has a repair as its support and
the same repair as its conclusion, then the set containing only this argument
is an admissible set. Please note that such an argument does not always exist
because of the minimality condition on the support of an argument.

Proposition 3.2 (Sentinel [Arioua et al., 2017]). Let KB = (F,R,N)
be a knowledge base, A ∈ repairs (KB) and FKB = (A ,R). If the argument
a = (A,A) ∈ A then {a} is an admissible set.

Example 3.5 (Example 3.2 cont’d). The set {animal (tom),doд(tom)} is
a repair of KB. Thus, it holds that {a9} is an admissible set.

Proposition 3.3 shows that an argumentation graph generated from an
inconsistent knowledge base has at least one non empty preferred extension.

Proposition 3.3 (Non-triviality [Arioua et al., 2017]). Let KB be an
inconsistent knowledge base. Then FKB is non-trivial.

Example 3.6 (Example 3.2 cont’d). In our example, we have three pre-
ferred extensions. Namely, Extp (FKB) = {ε1, ε2, ε3} where:

52

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

• ε1 = {a1,a2,a3,a4,a5,a6,a7}
• ε2 = {a1,a8,a9,a10,a11,a12,a13}
• ε3 = {a2,a8,a14}
The next proposition shows that, in an argumentation graph generated

from an inconsistent knowledge base, each argument belongs to at least one
preferred (respectively stable) extension.

Proposition 3.4 (Rejected argument [Arioua et al., 2017]). Let KB

be an inconsistent knowledge base. Then FKB has no rejected arguments
under preferred and stable semantics.

Example 3.7 (Example 3.6 cont’d). Every argument in A = {a1, . . . ,a14}
is in at least one preferred extension of Extp (FKB) = {ε1, ε2, ε3}.

In general, working with argumentation frameworks is hard as shown by
Dunne and Wooldridge [2009] and Dimopoulos et al. [1999]. However, when
some properties are satisfied, this task can become easier. For instance,
when the stable and preferred coincide, the problem of the skeptical mem-
bership of an argument is much easier. Indeed, Dunne and Bench-Capon
[2002] have shown that checking whether an argument is in every stable
extensions is coNP-complete whereas checking whether an argument is in
every preferred extension is in the second level of the polynomial hierar-
chy (Π

p
2 − complete). Another example is the problem of finding whether

there is a unique extension with respect to an argumentation semantics
and a given argumentation frameworks. Wolfgang [2017] shows that the
uniqueness problem is DP-complete for the stable semantics whereas it is
coNP-complete for the preferred semantics. Thus, coincidence between
multiple argumentation semantics can sometimes induce a large reduction
in complexity. In view of this, we highlight, in the next propositions and
corollaries, the coincidences and inclusions results between argumentation
semantics in this specific logic-based argumentation framework.

Proposition 3.5 shows that the set of preferred and stable extensions
coincide.

Proposition 3.5 (Coherence [Arioua et al., 2017]). Let KB be an
inconsistent knowledge base. Then FKB is coherent.

Example 3.8 (Example 3.6 cont’d). In our example, it holds that the
set of preferred extensions is equal to the set of stable extensions. Namely,
Extp (FKB) = Exts (FKB) = {ε1, ε2, ε3}.

In the next corollary, we show that the set of preferred extensions is
included in the set of cf2 extensions. Note that the inverse inclusion does
not hold.

53

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Corollary 3.1 (Preferred and cf2 inclusion). Let KB be an inconsistent
knowledge base. Then it holds that Extp (ASKB) ⊆ Extcf 2 (FKB).

Proof. Since we know that the set of stable extensions is included in the
set of cf2 extensions [Gaggl and Woltran, 2013] and that the argumentation
graph is coherent then we can conclude that the set of preferred extensions
is included in the set of cf2 extensions �

Example 3.9 (Example 3.6 cont’d). In our example, we have Extp (FKB) =
Exts (FKB) = Extcf 2 (FKB) = {ε1, ε2, ε3}. Please note that the equality is not
true and that it is possible to find a knowledge base such that there is a
cf2 extension of the generated argumentation graph that is not a preferred
extension (see Example 3.19 on page 63).

In the next corollary, we show that the semi-stable semantics is equiva-
lent to the preferred and stable semantics in this argumentation framework.

Corollary 3.2 (Semi-stable equivalence). Let KB be an inconsistent
knowledge base then it holds that Extp (ASKB) = Extss (FKB) = Exts (FKB).

Proof. By definition, we know that Exts (FKB) ⊆ Extss (FKB). Moreover,
Caminada [2006] proved that Extss (FKB) ⊆ Extp (ASKB) holds in the gen-
eral case. Thus, since it holds that in this argumentation framework, we
have Extp (FKB) ⊆ Exts (FKB), we can conclude the proof. �

The next proposition shows that the grounded extension is equal to the
intersection of all the preferred extensions.

Proposition 3.6 (Relative groundedness [Arioua et al., 2017]). Let
KB be an inconsistent knowledge base. Then FKB is relatively grounded.

Example 3.10 (Example 3.6 cont’d). In our example, we have that
Extд (FKB) = {∅} = ⋂

Extp (FKB).

The next proposition shows that we can never create an argumentation
graph that is well-founded.

Proposition 3.7 (Well-foundedness [Arioua et al., 2017]). There is
no inconsistent knowledge base KB such that FKB is well-founded.

In the next proposition, we show that self-attacking arguments do not
exist in this framework.

Proposition 3.8 (No self-attacking arguments). Let KB be an incon-
sistent knowledge base and FKB = (A ,R) the corresponding argumentation
framework. There is no a ∈ A such that (a,a) ∈ R.

54

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proof sketch. We show this by contradiction. If there is a self-attacking
argument, then the union of its conclusion with its support is R-inconsistent.
This is a contradiction with the consistency of the support of an argument.

�

In the next proposition, we show that if an argument a is attacked by
an argument b, then b is also attacked.

Proposition 3.9 (Defense existence). Let KB be an inconsistent knowl-
edge base and FKB = (A ,R) be the corresponding argumentation framework.
For any a,b ∈ A such that (a,b) ∈ R, there exists c ∈ A such that (c,a) ∈ R.

In the next proposition, we highlight that all subsets of a minimal in-
consistent set can be directly “translated” into arguments.

Proposition 3.10 (Conflict-based arguments). Let KB be an inconsis-
tent knowledge base and FKB = (A ,R) be the corresponding argumentation
framework. If C ∈ MI (KB) and E ⊂ C then (E,E) ∈ A .

Proof. By definition, E is R-consistent. Let us prove Proposition 3.10 by
contradiction. Suppose that (E,E) < A , it means that there exists H ⊂ E
with E ⊆ SatR (H) (minimality). Thus, (C \ E) ∪ H is R-inconsistent and
((C \ E) ∪ H) ⊂ C, contradiction. �

Example 3.11 (Example 3.2 cont’d). In our example, we have that
MI (KB) = {C} where C = {animal (tom),miaow (tom),doд(tom)}. We can
thus directly create the arguments corresponding to subsets of C, namely
a1,a2,a3,a8,a9 and a14.

In the next corollary, we show that if there is at least one minimal conflict
of size at least 2, then there is a cycle in the argumentation graph.

Corollary 3.3 (Cycle existence). Let KB be an inconsistent knowledge
base such that there exists S ∈ MI (KB) with |S | ≥ 2 and FKB = (A ,R) be
the corresponding argumentation framework. FKB has at least one cycle.

Proof. Let us consider S ∈ MI (KB) such that |S | ≥ 2, S1, S2 ⊆ S, S1 ∩ S2 = ∅,
|S1 | = 1 and S1 ∪ S2 = S. Using Proposition 3.10, we know that there exists
two arguments a1 = (S1, S1) and a2 = (S2, S2) such that (a1,a2) ∈ R and
(a2,a1) ∈ R. �

In the next corollary, we show that for each minimal inconsistent set,
there is a specific subset of the argumentation graph that is complete.

Corollary 3.4 (Conflict-based complete graphs). Let KB be an incon-
sistent knowledge base and FKB = (A ,R) be the corresponding argumenta-
tion framework. If C ∈ MI (KB) then there exists a subgraph of FKB with |C |
arguments that is complete.

55

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Proof. Let us consider the set AC = {a ∈ A | a = (E,E) with E ⊂ C and
|E | = |C |−1}. It is easy to see that for every a,b ∈ AC , we have that (a,b) ∈ R.
Thus the restriction of FKB to AC is a complete directed graph. �

Example 3.12 (Example 3.2 cont’d). It holds that the subgraph of FKB

composed of the arguments AC = {a4,a9,a14} is a complete graph.

In this section, we studied the structural properties, inclusion in graph
classes and equivalence between argumentation semantics of argumentation
graphs generated from general inconsistent knowledge bases. In the next
section, we restrict ourselves to knowledge bases without positive rules.

3.1.2 Argumentation graphs generated from knowledge bases with-
out rules

The graph theoretical results of this section are solely looking at the case
where the knowledge base is composed of a set of facts and a set of negative
constraints defined on these facts. Therefore, at the basis of our results lies
the notion of knowledge base minimal conflict (and thus repair). Please note
that knowledge bases without positive rules are not uncommon and without
interests. Indeed, in the Big data setting, the data sources are sometimes
presented in their saturated form, i.e. after the ontological rules have been
applied. In this context, our results are directly applicable. In this section,
we exhibit three main results proven by Yun et al. [2018b]:

1. The first result deals with the conflict-induced structural properties.
Namely, we characterise dummy arguments, arguments that are un-
attacked and that do not attack other arguments, and show the rep-
etitious nature of the argumentation graph by introducing the notion
of k-copy graph.

2. The second result deepens these results and looks into the symmetries
of the argumentation graph based on graph automorphisms.

3. Last, we look into the connectivity of the graph and demonstrate
strongly connected components related results.

Please note that these three points will enable us to completely char-
acterise the structural properties of argumentation graphs generated from
knowledge bases without positive rules.

We begin by proving that the number of dummy arguments is exponen-
tial with respect to the number of free facts. Proposition 3.11 is important as
it shows that even when there is no rules in the knowledge base, the number
of arguments can be exponentially increased when free facts are added.

Definition 3.4 (Dummy argument). Let F = (A ,R) be an argumenta-
tion framework. We say that a ∈ A is a dummy argument if and only if
there is no (x ,y) ∈ R such that x = a or y = a.

56

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proposition 3.11 (Characterisation of dummy arguments). Let KB =

(F,R,N) be a knowledge base such that R = ∅ and |F | = n. There are exactly
2k − 1 dummy arguments in FKB = (A ,R), where k = |Free (KB) |.

Proof sketch. Since we can build (2k − 1) R-consistent subsets from the set
of free facts, the number of dummy arguments is at least 2k − 1. Then, by
means of contradiction, we show that there cannot be a dummy argument
with a support that is not included in the set of free facts (cf. detailed proof
in Section 7.2.1 on page iii). �

Example 3.13 (Characterisation of dummy arguments). Let us con-
sider the following knowledge base KB = (F,R,N) inspired from the impos-
sible food triad problem proposed by George W. Hart:

• F = {potatoes (m),mayonnaise (m), cabbaдe (m),dish(m), edible (m)}
• R = ∅

• N = {∀X (potatoes (X) ∧mayonnaise (X) ∧ cabbaдe (X) → ⊥)}.

The knowledge base KB expresses the idea that an edible dish m cannot
contains potatoes, mayonnaise and cabbage at the same time. We have that
Free (KB) = {dish(m), edible (m)}, we conclude that there is 22−1 = 3 dummy
argument. Those argument corresponds to:

• ({dish(m)}, {dish(m)})
• ({edible (m)}, {edible})
• ({edible (m),dish(m)}, {edible (m),dish(m)}).
We now analyse the related behaviour of atoms in at least one conflict.

To do so, we introduce the notion of k-copy graph. A k-copy graph of an
argumentation graph is another graph that has k times more arguments and
each copy a′ of a attacks the same arguments as a and is attacked by the
same arguments. Formally:

Definition 3.5 (k-copy graph). Let F = (A ,R) and F′ = (A ′,R ′) be two
argumentation frameworks. We say that F is a k-copy graph of F′ if and
only if:

• |A | = k ∗ |A ′ | and there is a surjective function f from A to A ′ such
that for every argument a′ ∈ A ′, we have |Wa′ | = k, where Wa′ = {a ∈
A | f (a) = a′}.

• For all a,b ∈ A , (a,b) ∈ R if and only if (f (a), f (b)) ∈ R ′.

57

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

c ′

a′ b ′ a1

c1

a2

b1

b2

c2

Figure 3.1: Representation of a 2-copy graph

Example 3.14 (k-copy graph). In Figure 3.1, the graph G (on the right)
is a 2-copy graph of the graph G ′ (on the left). In our example, we have that
Wa′ = {a1,a2},Wb′ = {b1,b2},Wc ′ = {c1, c2}.

Please note that if two arguments are the copies of the same argument,
then they attack the same arguments and are attacked by the same argu-
ments.

The following proposition shows that if there is a knowledge base KB

with no rule and k free facts, then there exists a subgraph of FKB that is a
2k -copy graph of FKB′ where KB′ is the knowledge base with no rules, the
same negative constraints as KB and that contains only the facts that are
in at least one conflict.

Definition 3.6 (Subgraph). Let F = (A ,R) be an argumentation frame-
work. We say that F′ = (A ′,R ′) is a subgraph of F if and only if A ′ ⊆ A ,
R ′ ⊆ R and for every (x ,y) ∈ R ′, x ,y ∈ A ′.

Proposition 3.12 is important as it shows the behaviour of the instantia-
tion in the case of addition of free facts (facts not appearing in any conflict).
It shows the structure of the graph and exhibits the exponential growth of
the number of arguments with respect to these facts.

Proposition 3.12 (Number of arguments). Let KB = (F,R,N) be a
knowledge base with R = ∅. If |Free (KB) | = k then there is a subgraph of
FKB = (A ,R) that is a (2k)-copy graph of FKB′ = (A ′,R ′) where KB′ =

(F \ Free (KB),R,N) and |A | = (|A ′ | + 1) ∗ 2k − 1.

Proof sketch. If the set of free facts is empty, then it is obvious that FKB

is a 1-copy graph of itself. If the set of free facts is not empty, we consider
FKB′ = (A ′,R ′) where KB′ is the same knowledge base without the free
facts. We show that the number of arguments in A ′ is the same as the
number of R-consistent subsets of KB′. Last, we show that the subgraph
F′′
KB
= (A ′′,R ′′) of FKB where A ′′ = {a ∈ A | Supp (a) * Free (KB)}

and R ′′ = R |A ′′ is a (2 |Free (KB) |)-copy graph of FKB′ (cf. detailed proof in
Section 7.2.1 on page iii). �

58

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

We want to emphasise the result of Proposition 3.12 as it shows that the
addition of “superfluous” facts will increase the size of the argumentation
graph by an exponential factor.

Example 3.15 (Example 3.13 cont’d). The argumentation framework
FKB has a subgraph that is a 4-copy graph of FKB′, where KB′ = ({potatoes (m),
mayonnaise (m), cabbaдe (m)}, ∅,N). We show below the list of arguments of
the argumentation framework FKB′:

• a′1 : ({potatoes (m)}, {potatoes (m)})
• a′2 : ({mayonnaise (m)}, {mayonnaise (m)})
• a′3 : ({potatoes (m),mayonnaise (m)}, {potatoes (m),mayonnaise (m)})
• a′4 : ({cabbaдe (m)}, {cabbaдe (m)})
• a′5 : ({potatoes (m), cabbaдe (m)}, {potatoes (m), cabbaдe (m)})
• a′6 : ({mayonnaise (m), cabbaдe (m)}, {mayonnaise (m), cabbaдe (m)})
The subgraph of FKB that is a 4-copy graph of FKB′ has four times more

arguments than FKB′ because a copy of each argument is obtained by adding
a set of free facts in its support and conclusion.

We now focus on detecting symmetries in the graph. Please first note
that we have the presence of symmetric arcs in the argumentation framework
without rules. It obviously holds that if all negative constraints are binary,
then the graph has only symmetric arcs (since the undermining will rely on
binary sets). However, if the set of rules is not empty the symmetry of the
attack relation no longer holds.

Next, we explore the link between the instantiation and symmetries in
graphs. The following definitions introduce the notions needed to compre-
hend symmetries, namely, permutations of arguments, orbit of an argument
and the cycle notation of a permutation.

Definition 3.7 (Permutation). A permutation on a set of elements X is a
bijection σ from X to X . Given a permutation σ , the orbit of element x ∈ X
is the set Ox = {x ,σ (x),σ2 (x), . . . ,σn (x)}, with n ∈ {0, 1, . . . } the minimal
integer such that σn+1 (x) = x.

Example 3.16 (Permutation). Let us consider the set X = {1, 2, 3, 4, 5}
and the permutation σ such that the images of X under σ are given in Table
3.2. The orbit of the element 1 is O1 = {1, 2, 5}.

Definition 3.8 (Orbit cycle). Given a permutation σ on X , an orbit O and
an element x ∈ O, an orbit cycle of O is a sequence (x ,σ (x),σ2 (x) . . . ,σn (x)),
where n ∈ {0, 1, . . . } is the minimal integer such that σn+1 (x) = x.

59

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

x 1 2 3 4 5

σ (x) 2 5 4 3 1

Table 3.2: Images of the permutation σ on X

A permutation can be compactly expressed as a product of cycles corre-
sponding to the orbits of the permutation. In the rest of the thesis, and in
order to simplify the notation, we omit cycles of singleton orbits.

Example 3.17 (Example 3.16 cont’d). Let us consider the previous orbit
O1. The sequence (1, 2, 5) is an orbit cycle of O1 whereas the sequence (1, 5, 2)
is not. Thus, the permutation σ can be expressed by (1, 2, 5) (3, 4).

Definition 3.9 (Automorphism). Let G = (V ,E) be a graph. A permuta-
tion σ on set V is an automorphism of G if and only if for every two nodes
v1,v2 ∈ V , we have that (v1,v2) ∈ E if and only if (σ (v1),σ (v2)) ∈ E.

The set of automorphisms of a graph, together with the function com-
position operator, form a group called the automorphism group. The auto-
morphism groups of a graph characterise its symmetries, and are therefore
very useful in determining certain of its properties. A subset of a group is
called a generating set of a group if and only if every group’s element can
be expressed as the combination (under group operation) of finitely many
elements of the subset and their inverses.

Proposition 3.13 (Automorphisms in k-copy graphs). Let F = (A ,R)
be a k-copy graph of F′ = (A ′,R ′). For every a′ ∈ A ′, for every a1,a2 in
Wa′, the permutation (a1,a2) is an automorphism of F.

The next proposition shows that if we add nodes (and no arc) to a graph
with automorphisms, then the obtained graph also has automorphisms. It is
used for showing, in Corollary 3.5, that a graph constructed on a knowledge
base with no rules possesses non trivial automorphisms derived from its
subgraph.

Proposition 3.14 (Automorphisms transfer). Let G = (V ,E) be a graph
such that σ is an automorphism of G. The graph G ′ = (V ∪ X ,E), where
X ∩V = ∅, has the automorphism σ ′ from V ∪ X to V ∪ X :

∀v ∈ V ∪ X ,σ ′(v) =

σ (v) if v ∈ V

v if v ∈ X

Corollary 3.5 (Automorphisms inheritance). Let KB = (F,R,N) be a
knowledge base with R = ∅, |Free (KB) | = k,k > 0,KB′ = (F\Free (KB),R,N)
and F′′ be a (2k)-copy graph of FKB′ = (A ′,R ′). If F′′ has k ′ automorphisms,
then FKB has at least k ′ automorphisms.

60

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

Proof. From Proposition 3.12, we know that FKB has a subgraph F′′
KB
=

(A ′′,R ′′) that is a 2k -copy graph of FKB′. We first show that every argument
a ∈ A \A ′′ is a dummy argument. Then we use Proposition 3.14.

1. We showed in the proof of Proposition 3.12 that A ′′ = {a ∈ A |

Supp (a) * Free (KB)}. Thus, A \A ′′ = {a ∈ A | Supp (a) ⊆ Free (KB)}.
Since we there are no rules, the arguments in A \ A ′′ cannot attack
other arguments.

2. From Proposition 3.14, we conclude that there is an automorphism of
FKB for every automorphism of F′′

KB
.

�

Corollary 3.5 is important as it shows that a graph inherits all of the
automorphisms of its subgraph. This will be useful when designing new
solvers relying on symmetries.

We now characterise the connectivity of the graph by showing the struc-
ture of the strongly connected components. We first define the impossible
set associated to a minimal conflict C as the set containing all the possible
subsets of F that are supersets of at least one subset of C of size |C − 1|.

Definition 3.10 (Impossible set). Let KB = (F,R,N) be a knowledge base
and C be a minimal conflict of MI (KB). The impossible set of C denoted by
Imp (C) is {X ⊆ F | X ′ ⊆ X and X ′ ⊂ C with |X ′ | = |C − 1|}.

In the following proposition, we characterise the structure of the strongly
connected components of an argumentation framework obtained from a
knowledge base without rules.

Proposition 3.15 (SCC characterisation). Let KB = (F,R,N) be a
knowledge base such that R = ∅ and FKB = (A ,R) be the corresponding
argumentation framework. We have that:

1. si ∈ SCC (FKB) where si = {(Xi ,Xi)} with Xi ∈ 2F\
⋃

C ∈MI (KB) Imp (C)

2. (A \
⋃

i si) ∈ SCC (FKB)

Proof sketch. The proof is split in two parts. First, we show by contradiction
that si is a strongly connected component by itself. Then, we show that all
of the other arguments in (A \

⋃
i si) are strongly connected (cf. detailed

proof in Section 7.2.1 on page iv).
�

Corollary 3.6 (Number of SCCs). Let KB = (F,R,N) be a knowledge
base such that R = ∅. There are |2F\

⋃
C ∈MI (KB) Imp (C) |+1 strongly connected

components in FKB.

61

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Example 3.18 (Example 3.13 cont’d). The only minimal conflict is
C1 = {potatoes (m), mayonnaise (m), cabbaдe (m)}. Thus, we conclude that:

2F \
⋃

C ∈MI (KB)

Imp (C) = {{potatoes (m)}, {mayonnaise (m)}, {cabbaдe (m)}, {dish(m)},
{edible (m)}, {dish(m), edible (m)}, {potatoes (m),dish(m)},
{potatoes (m), edible (m)}, {potatoes (m),dish(m), edible (m)},
{mayonnaise (m),dish(m)}, {mayonnaise (m), edible (m)},
{mayonnaise (m),dish(m), edible (m)}, {cabbaдe (m),dish(m)},
{cabbaдe (m), edible (m)}, {cabbaдe (m),dish(m), edible (m)}}

Therefore, there are 15 + 1 = 16 strongly connected components in FKB.

We now summarise all the structural properties of the argumentation
frameworks generated from simple knowledge bases using Figure 3.2 as an
example:

• There is one k-copy graph (encircled in the dashed-line zone).

• The arguments that are not inside the k-copy graph are dummy ar-
guments (arguments that are outside the dashed-line zone) and their
number can be computed using Proposition 3.11.

• There is one dense strongly connected component composed of the
majority of the arguments (encircled in the grey circle).

• The other strongly connected components are composed of only one ar-
gument each (arguments that are outside of the grey circle). The num-
ber of strongly connected components can be computed using Corol-
lary 3.6.

Since we deal with strongly connected components, one of the research
questions that naturally arises from this is whether or not the cf2 semantics
[Baroni et al., 2011; Gaggl and Woltran, 2013] is equivalent to the preferred
semantics in argumentation graphs generated from knowledge bases without
positive rules.

On one hand, it appears that if the set of negative constraints is com-
posed of only binary negative constraints, then the graph only has symmetric
arcs. We conclude that since all SCCs are not linked to each other, the cf2
semantics coincides with the naive and preferred semantics.

Proposition 3.16 (Naive and preferred equivalence). Let KB = (F,R,N)
be a knowledge base such that R = ∅. The cf2 semantics coincides with the
preferred (respectively stable) and the naive semantics in FKB.

62

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN
EXISTENTIAL RULES

b
b

b
b

b
b

b

b
b

b
b

b

b

Figure 3.2: Structural properties of argumentation frameworks generated
from simple knowledge bases

On the other hand, if we add ternary negative constraints, the cf2 se-
mantics will no longer coincide with the preferred semantics as shown by a
counter-example in Example 3.19.

Example 3.19. Let KB = (F,R,N) be a knowledge base such that F ={a(m),b (m), c (m),d (m), e (m)}, R = ∅ and N = {∀X (a(X) ∧ b (X) ∧ c (X) →
⊥),∀X (e (X) ∧ d (X) → ⊥)}. The corresponding argumentation framework
is composed of 161 attacks and 20 arguments. The set of preferred ex-
tensions is {ε1, ε2, ε3, ε4, ε5, ε6} wheareas the set of cf2 extensions is the set{ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8}. The list of arguments and the composition of the
extensions is given in Section 7.1 on page i.

63

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

KB

Processed KB Intermediary Graph Complete Graph

Generated
Arguments

Filtration of
Arguments

Generation of
Attacks

if there are
no rules

if there are
 rules

Generation Completion

Generation Filtration

Figure 3.3: Approach workflow for optimising the argument generation
phase.

3.2 Improving the argument generation

As mentioned in the previous section, the main drawback of using argu-
mentation as a reasoning method over inconsistent knowledge bases relies in
the large number of arguments generated. For instance, even for a modest
knowledge base composed of seven facts, three rules and one binary negative
constraint, one gets an argumentation graph with 383 arguments and 32768
attacks [Yun et al., 2017b]. In this section, we address this drawback and
ask the following research question:

“How can one filter out the arguments generated over the
knowledge base without compromising the semantical outcome

of the corresponding argumentation graph?”

We answer this question by providing a methodology adapted for knowl-
edge bases with or without positive rules. In the first case of knowledge
bases without rules, we use the observation that free facts induce an ex-
ponential growth on the argumentation graph without any impact on its
underlying structure [Yun et al., 2017b] (see Definition 3.5 on page 57 about
k-copy graph). Therefore, we will first generate the argumentation graph
corresponding to the knowledge base without the free facts and then recre-
ate the whole graph including the arguments of the free facts in an efficient
manner. This method allows to generate the graph faster.

In the second case of the knowledge bases with rules, we introduce a
new structure for the arguments and the attacks. In this new structure,
we have less arguments (up to 73% filtered arguments in our experiments).
We show that this new framework is semantically equivalent to the frame-
work introduced by Croitoru and Vesic [2013]. The whole aforementioned
methodology is represented in Figure 3.3.

Against this background, this section is organised as follows. In Section
3.2.1, we present the methodology above for argumentation graphs generated

64

3.2. IMPROVING THE ARGUMENT GENERATION

from knowledge bases without positive rules. In Section 3.2.2, we present
the other methodology above for argumentation graphs with positive rules.
We then provide an empirical evaluation of our work in which we benchmark
our approach on the knowledge bases introduced by Yun et al. [2017b] and
show that in most of the cases, the number of arguments and attacks of
the argumentation graphs corresponding to knowledge bases with rules is
reduced (at least by 25 % for the arguments and at least 14 % for the
attacks).

3.2.1 Optimisation for knowledge bases without rules

In this section, we propose an optimisation for the generation of the afore-
mentioned argumentation framework in the case where knowledge bases con-
tain no positive rules. The idea is to process the knowledge base before
generating the argumentation graph and recreate the whole argumentation
graph from this reduced graph.

In fact, as the number of free facts increases, the number of dummy
arguments (non attacked arguments that do not attack other arguments)
grows exponentially. However, a further result of Yun et al. [2017b] is that
if one removes the free facts from the knowledge base before generating the
argumentation graph, this argumentation graph possibly possesses “expo-
nentially less arguments” with respect to the number of free facts compared
to the original argumentation graph. Hence, we propose a four-step ap-
proach for generating the original argumentation graph faster:

1. We identify the set Free (KB). This step can be done by finding the
minimal inconsistent sets using existing algorithms [Grégoire et al.,
2007; Rocher, 2013]

2. We create the graph FKB′ where KB′ = (F \ Free (KB),R,N) following
Definition 3.3 on page 51. Please note that this step can be achieved us-
ing the argumentation graph generator proposed by Yun et al. [2017b].

3. Then, we grow the generated graph to its original size. This can be
done by copying each arguments 2k times (where k = |Free (KB) |) and
adding attacks following the two principles: (1) if a attacks b then a
attacks all the copies of b and (2) if b is a copy of a in then b has the
same attackers and attacks the same arguments than a.

4. Last, we add 2k − 1 dummy arguments to the generated graph.

Example 3.20. Let KB = (F,R,N) be a knowledge base such that:

• F = {a(m),b (m), c (m)}
• R = ∅

65

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

• N = {∀X (a(X) ∧ b (X) → ⊥)}.

In this example, Free (KB) = {c (a)}. Hence, we generate the argumenta-
tion graph FKB′ from the knowledge base KB′ = ({{a(m),b (m)}, ∅,N) (Step 1
in Figure 3.4). Then, from the graph of FKB′, one can construct the corre-
sponding k-copy graph in Step 2. Finally, the dummy arguments are added
(Step 3). At this point, we reconstructed FKB.

a

b

a,c

b,c c Step 3

Step 2Step 1

Figure 3.4: Three steps reconstruction using k-copy graphs

We would like to highlight that in the case where the set of positive rules
is not empty, one cannot just remove the set of free facts as they can be used
by rules and thus be used to build more complex arguments. We thus need
a more complex approach to deal with general knowledge bases.

3.2.2 Optimisation for knowledge bases with rules

We now present a novel argumentation framework that aims at reducing the
number of arguments and the number of attacks in the case where the set of
rules is not empty. We show several desirable results such as the equivalence
between the preferred and stable extensions of the aforementioned frame-
work and the new one and some basic properties regarding attacks in the
new framework. The idea behind this new framework is to remove, amongst
the arguments with the same support, those that have conclusions that can
be “decomposed”. Let us illustrate the idea on Example 3.21.

Example 3.21. Let us consider the following knowledge base KB = (F,R,N)
describing the situation: If X is a pitbull then X is a dog, X cannot be a dog
and a cat at the same time.

• F = {pitbull (tom), cat (tom)}
• R = {∀X (pitbull (X) → doд(X))}

66

3.2. IMPROVING THE ARGUMENT GENERATION

• N = {∀X (doд(X) ∧ cat (X) → ⊥)}.

There are four arguments:

• a1 = ({pitbull (tom)}, {pitbull (tom)})
• a2 = ({pitbull (tom)}, {doд(tom)})
• a3 = ({pitbull (tom)}, {doд(tom),pitbull (tom)})
• a4 = ({cat (tom)}, {cat (tom)})
Our approach will delete the argument a3 because we can “reconstruct”

the argument a3 from the two arguments a1 and a2.

Why do we only filter the arguments with the same support? Let us il-
lustrate this with an example. Suppose that we also have the fact adult (tom)
in KB. Amongst many others, we would have the following two arguments:

• a5 = ({adult (Tom)}, {adult (Tom)})
• a6 = ({pitbul (Tom),adult (Tom)}, {pitbul (Tom),adult (Tom)})
Could we remove the argument a6 and reconstruct it from a1 and a5? We

chose not to do this because it is not obvious that a1 and a5 are compatible
with respect to the ontology and the negative constraints. That is the reason
why we keep the argument a6. On the contrary, note that a1 and a2 which
have the same support must be compatible together. Let us now formalise
this intuition.

Definition 3.11 (Filtrated set of arguments). Let KB be a knowledge
base and FKB = (A ,R) be the argumentation framework constructed from
KB using Definition 3.3 on page 51. Let D (FKB) = {a = (H ,C) ∈ A | there
exists X ⊆ A \{a} such that for every b ∈ X , Supp (b) = H and

⋃
b ∈X Conc (b) =

C}. The filtrated set of arguments is A ∗ = A \ D (FKB).

Example 3.22 (Example 3.21 cont’d). In this example, the set D (FKB)
is {a3} and the corresponding filtrated set of arguments is A ∗ = {a1,a2,a4}.

Since we dropped some arguments, the attack relation have to be re-
designed in order to keep all the conflicts. In particular, we need to allow
for directed hyperedges (also called sets of attacking arguments) where ar-
guments with the same support can jointly attack a single argument.

Definition 3.12 (Sets of attacking arguments). An attack is a pair
(X ,a) where X ⊆ A ∗ and a ∈ A ∗ such that X is minimal for set inclusion
set such that for every x1,x2 ∈ X , Supp (x1) = Supp (x2) and there exists ϕ ∈
Supp (a) such that (

⋃
x ∈X Conc (x)) ∪ {ϕ}) is R-inconsistent.

67

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

The next example shows that this definition of attack is necessary in
order to capture some attacks that would be lost otherwise.

Example 3.23 (Sets of attacking arguments). Let us consider the fol-
lowing knowledge base KB = (F,R,N) such that:

• F = {a(m),b (m), c (m)}
• R = {∀X (a(X) ∧ b (X) → d (X) ∧ e (X))}
• N = {∀X (c (X) ∧ d (X) ∧ e (X) → ⊥)}
The list of arguments is represented in Table 3.3. We have the at-

tack ({a′3,a′7},a′15) where a′3 = ({a(m),b (m)}, {d (m)}),a′7 = ({a(m),b (m)},{e (m)}) and a′15 = ({c (m)}, {c (m)}). Note that if the classical attack defi-
nition was used, a′15 would not be attacked anymore since we removed its
attackers, for instance ({a(m),b (m)}, {b (m),d (m), e (m)}).
Definition 3.13 (Filtrated argumentation framework). Let KB be a
knowledge base. The corresponding filtrated argumentation framework F∗

KB

is the pair (A ∗,R∗) where A ∗ is as defined in Definition 3.11 and R∗ is the
set of all possible attacks that can be constructed using Definition 3.12.

The proposed argumentation framework F∗
KB

is an instantiation of the
hypergraph argumentation framework proposed by Nielsen and Parsons [2006].
We briefly recall the necessary definitions of the extension-based semantics
in this framework.

Definition 3.14 (Hypergraph argumentation semantics). Let us con-
sider the hypergraph argumentation framework F∗

KB
= (A ∗,R∗), we say that:

• A set of arguments S is conflict-free if and only if there is no argu-
ment a ∈ S, such that (S,a) ∈ R∗.

• A set of arguments S1 attacks a set of arguments S2 if and only if
there exists a ∈ S2 such that (S1,a) ∈ R∗.

• An argument a is said to be acceptable with respect to a set of ar-
guments S, if S defends a from all attacking sets of arguments in a.

• A set of arguments S1 defends an argument a if and only if for every
set of arguments S2 such that (S2,a) ∈ R∗, we have that S1 attacks S2.

• A conflict-free set of arguments S is said to be admissible if each
argument in S is acceptable with respect to S.

• An admissible set S is called a preferred extension if there is no
admissible set S ′ ⊆ A ∗, S ⊂ S ′.

68

3.2. IMPROVING THE ARGUMENT GENERATION

• A conflict-free set S is a stable extension if S attacks all arguments
in A ∗ \ S.

With a slight abuse of notation, we also use the notation Extp (F
∗
KB

)
(respectively Exts (F

∗
KB

)) to refer to the set of all preferred extensions (re-
spectively stable extensions) of F∗

KB
. Let X ⊆ F and F∗

KB
= (A ∗,R∗), we

denote by Arд(X ,A ∗), all the arguments in A ∗ such that their supports are
included in X . Namely, Arд(X ,A ∗) = {a∗ ∈ A ∗ | Supp (a∗) ⊆ X}.

In the next proposition, we show that we preserve the equivalence be-
tween the set of repairs and the set of preferred (respectively stable) exten-
sions of F∗

KB
.

Proposition 3.17 (Repair equivalence). Let us consider F∗
KB
= (A ∗,R∗).

It holds that Extx (F
∗
KB

) = {Arд(A′,A ∗) | A′ ∈ repairs (KB)} for i ∈ {s,p}.

Proof sketch. The proof is split in two parts. Let F∗
KB
= (A ∗,R∗) and N ={Arд(A′,A ∗) | A′ ∈ repairs (KB)}. First, we show that each set of arguments

in N is a stable extension. Second, we show that each preferred extension
is included in N . Last, since each stable extension is a preferred extension
[Nielsen and Parsons, 2006], we can conclude the proof (see detailed proof
in Section 7.2.1 on page v). �

Corollary 3.7 show that there is a one to one equivalence between the
set of extensions of FKB and F∗

KB
.

Corollary 3.7 (Extensions equivalence). Let FKB be an argumentation
framework and F∗

KB
be the corresponding filtrated argumentation framework.

It holds that Extx (F
∗
KB

) = {E ∩A ∗ | E ∈ Extx (FKB)} with x ∈ {s,p}.

Example 3.24 (Example 3.23 cont’d). The argumentation framework
FKB is composed of 18 arguments and 51 attacks. The corresponding filtrated
argumentation framework F∗

KB
has 12 arguments and 66 attacks. The list

of all the arguments and those filtrated (in grey) is represented in Table 3.3.
There are three preferred and stable extensions in FKB:

• ε1 = {a′0,a′1,a′2,a′3,a′4,a′5,a′6,a′7,a′8,a′9,a′10,a′11, a′12,a′13,a′14}
• ε2 = {a′0, a′15,a′16}
• ε3 = {a′1, a′15,a′17}.

Likewise, the preferred/stable extensions in F∗
KB

are:

• ε ′1 = {a′0,a′1,a′2,a′3,a′4,a′5,a′7,a′8,a′9}
• ε ′2 = {a′0,a′15,a′16}
• ε ′3 = {a′1, a′15,a′17}

69

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Name Description

a′0 ({a(m)}, {a(m)})
a′1 ({b (m)}, {b (m)})
a′2 ({a(m),b (m)}, {a(m),b (m)})
a′3 ({a(m),b (m)}, {d (m)})
a′4 ({a(m),b (m)}, {a(m),d (m)})
a′5 ({a(m),b (m)}, {b (m),d (m)})
a′6 ({a(m),b (m)}, {a(m),b (m),d (m)})
a′7 ({a(m),b (m)}, {e (m)})
a′8 ({a(m),b (m)}, {a(m), e (m)})
a′9 ({a(m),b (m)}, {b (m), e (m)})
a′10 ({a(m),b (m)}, {a(m),b (m), e (m)})
a′11 ({a(m),b (m)}, {d (m), e (m)})
a′12 ({a(m),b (m)}, {a(m),d (m), e (m)})
a′13 ({a(m),b (m)}, {b (m),d (m), e (m)})
a′14 ({a(m),b (m)}, {a(m),b (m),d (m), e (m)})
a′15 ({c (m)}, {c (m)})
a′16 ({a(m), c (m)}, {a(m), c (m)})
a′17 ({b (m), c (m)}, {b (m), c (m)})

Table 3.3: Arguments in FKB obtained from the knowledge base of
Example 3.23. Arguments in grey are filtrated and do not appear in F∗

KB

70

3.2. IMPROVING THE ARGUMENT GENERATION

Proposition 3.18 (Less arguments). Let KB be a knowledge base, FKB =

(A ,R) be the corresponding argumentation framework and F∗
KB
= (A ∗,R∗)

the filtrated argumentation framework. Then it holds that |A ∗ | ≤ |A |.

However, it is not true that |R | ≤ |R∗ |.

Proposition 3.19 (Attack properties). Let KB be a knowledge base,
FKB = (A ,R) be the corresponding argumentation framework and F∗

KB
=

(A ∗,R∗) be the filtrated argumentation framework. It holds that:

1. a ∈ A ∗ is not attacked in FKB if and only if a is not attacked in F∗
KB

2. if a ∈ A ∗ is attacked in FKB then |Att−
FKB

(a) | ≤ |Att−
F∗
KB

(a) |.

Proof sketch. The proof for the first item is straightforward. In order to
prove the second item, we create a particular function and show that it is
injective. The reader is invited to read the detailed proof in Section 7.2.1
on page vii. �

The second item of Proposition 3.19 shows that the arguments that are
not filtrated can only have more attackers. Indeed, for an arbitrary argument
a ∈ A ?, if one of its attackers in FKB is filtrated, there will be a set S ⊆ A ?

that will attack a in F?.

Please note that for an arbitrary filtrated argument a = (Supp (a),Conc (a)),
it is not always possible to find a set of arguments X = {x1,x2, . . . ,xn} in F∗

KB

such that for every i ∈ {1, . . . ,n}, Supp (xi) = Supp (a) and the conclusions of
the arguments in X are distinct and the union of their conclusions is equal
to the conclusion of a. The next example shows a counter-example.

Example 3.25 (Distinct conclusion). Let KB = (F,R,N) be a knowledge
base such that:

• F = {a(m), c (m)}
• R = {∀X (a(X) → b (X))}
• N = ∅

As one can see, the argument d = ({a(m), c (m)}, {a(m), c (m),b (m)}) is
filtrated because of the two arguments x1 = ({a(m), c (m)}, {a(m), c (m)}) and
x2 = ({a(m), c (m)}, {b (m), c (m)}). Note that here, it holds that X = {x1,x2}
satisfies Supp (x1) = Supp (x2) = Supp (d) and

⋃
xi ∈X Conc (xi) = Conc (d) but for

all x1,x2 ∈ X , Conc (x1) ∩Conc (x2) = ∅ is not true.

Please note that in the case where the set of rules is empty, the set of
filtrated arguments is empty and FKB is equivalent to F∗

KB
.

71

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Proposition 3.20 (No filtration). Let KB = (F,R,N) be a knowledge
base such that R = ∅ and FKB = (A ,R) be the corresponding argumentation
framework. It holds that D (FKB) = ∅ and F∗

KB
= (A ∗,R∗) is such that

A ∗ = A and (b,a) ∈ R if and only if ({b},a) ∈ R∗.

We end this section by discussing the efficiency of the new argumenta-
tion framework based on the filtration of arguments for reducing the number
of arguments and attacks by comparing the number of arguments in FKB

and F∗
KB

. For our analysis, we chose to work with a particular subset of
108 knowledge bases (named b1 to b108) extracted from the study of Yun
et al. [2017b]. Since this argumentation framework has been shown to grow
exponentially with respect to the number of free facts, this particular set
of knowledge bases was chosen for its small size. These knowledge bases
were generated by fixing the size of the set of facts and successively adding
negative constraints until saturation. This dataset is composed of knowl-
edge bases with two to seven facts with different characteristics as shown in
Table 3.5 on page 81.

We provide a generator based on the Graal Java Toolkit [Baget et al.,
2015c] for directly generating F∗

KB
from an inconsistent existential rules

knowledge base expressed in DLGP format [Baget et al., 2015b]. This tool
can be downloaded along with the dataset used in this section using the
following link: https://gite.lirmm.fr/yun/paper-comma-generator.

In Table 3.4, we present the number of arguments and attacks in FKB

and F∗
KB

along with the percentage of arguments filtered and the percentage
of reduction of attacks. These two percentages are defined as:

%Arд. Filtrated =
|A | − |A ∗ |

|A |
and %Att . Reduction =

|R | − |R∗ |

|R |

We can make the following observations:

1. This method does not provide any advantages in the case where the
knowledge base is devoid of rules. Indeed, when there is no positive
rules, Proposition 3.20 shows that there will be no filtrated arguments
and the set of attacks will remain unchanged.

2. Although the instance with the highest percentage of reduction of
attacks (here it is b12 with 88%) is also the instance with the highest
percentage of arguments filtered (73%), this is not always the case.
Indeed, the instances b10 and b13 both have a percentage of arguments
filtered of 33% but they have a percentage of attacks filtered of 50%
and 33% respectively.

3. Lastly, in all the instances with rules, there are less arguments and
less attacks in F∗

KB
compared to FKB. Please note that although it is

72

https://gite.lirmm.fr/yun/paper-comma-generator

3.2. IMPROVING THE ARGUMENT GENERATION

guaranteed that the number of arguments will be less or equal from
Proposition 3.18, the number of attacks can increase in some cases (see
Example 3.24).

Name of Median # Median # Median # Median # Median % Median %

the KB arg. FKB att. FKB arg. F∗
KB

att. F∗
KB

arg. filtrated att. reduction

b1 to b6 17 80 17 80 0 0

b32 4 6 4 6 0 0

b33 to b35 8 24 8 24 0 0

b36 to b40 17 96 17 96 0 0

b41 to b56 36 380 36 380 0 0

b7 to b12 11 17.5 4.5 11 53.6 40.2

b13 to b18 14 87.5 6 35 57.1 60.4

b19 to b28 71 1280 41 704 38.7 37.5

b29 to b31 16 29 8 21 50 26.7

b57 to b58 8 13.5 6 11.5 25 14.8

b59 to b82 28.5 303.5 15.5 173.5 46.2 45.9

b83 to b84 12 34 9 24 25 30.1

b85 to b87 24 129 12 57 50 55.8

b88 to b108 85 1652 35 596 59.0 63.5

Table 3.4: Characteristics of the FKB and F∗
KB

generated from the
knowledge bases.

73

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

3.3 The DAGGER tool

In this section, we introduce DAGGER: a generator for logic based argumen-
tation frameworks instantiated from inconsistent knowledge bases expressed
using Dataloд± (or equivalently, existential rules language). The tool allows
for the import of a knowledge base in DLGP (for Datalog Plus) format (see
the work of Baget et al. [2015b] for a complete explanation of the DLGP syn-
tax), the generation and visualisation of the corresponding argumentation
graph. Furthermore, the argumentation framework can also be exported
in the Aspartix format [Egly et al., 2008]. The DAGGER tool is currently
available for download at https://gite.lirmm.fr/yun/Dagger and a demo
video is available for viewing at https://youtu.be/z96mDd9M6oE.

While a lot of theoretical work in the past 23 years has focused, amongst
others, on optimising the extension finding procedures [Gaggl, 2013; Lagniez
et al., 2015], on the investigation of various extension notions [Baroni et al.,
2011] or on the investigation of desirable properties of logic based instan-
tiations [Amgoud, 2014; Modgil and Prakken, 2014], there are few tools
that allow to generate an argumentation graph from a given knowledge base
[Thimm, 2017]. Furthermore, the few available tools for reasoning using
argumentation over inconsistent knowledge bases do not allow for further
interoperability (allowing their output to be used by other tools).

The DAGGER tool allows any knowledge engineer to (1) input a knowl-
edge base in a commonly used format, (2) generate, (3) visualise and (4)
export the argumentation graph. This tool is very useful, especially for
practical argumentation. Such scenario could be used when a non expert
wants to reason, using argumentation, over a knowledge base in a particular
domain ([Arioua et al., 2016; Tamani et al., 2014a,b], etc.). It could also be
useful for investigating the theoretical properties of the generated argumen-
tation framework. Given the fact that certain graph theoretical properties
could radically improve the extension computation efficiency [Yun et al.,
2017b] such visualisation could be a useful tool for argumentation special-
ists. Last, please note that, even when the knowledge base is modestly large,
the corresponding argumentation graph can become truly immense [Yun
et al., 2017b]. In this case, allowing tool interoperability that will directly
and straightforwardly load a logically generated argumentation graph into
efficient solvers [Thimm, 2017; Lagniez et al., 2015] can make the difference
between time out errors and obtaining a result.

3.3.1 DAGGER’s architecture

The layered architecture of the DAGGER tool is shown in Figure 3.5 and is
detailed as follows:

• High level: This layer is mainly composed of the graphical user in-
terface (GUI) that is used for the different interactions. It has a text

74

https://gite.lirmm.fr/yun/Dagger
https://youtu.be/z96mDd9M6oE

3.3. THE DAGGER TOOL

area that allows to enter a knowledge base expressed in the DGLP
format (i.e. the format for expressing existential rules).

• Mid level: This layer is composed of the logical model: knowledge
bases and argumentation frameworks.

• Low level: This layer is composed of the computational tools that
allow the computation of the arguments, the attacks (via the Graal
library) and the repairs (i.e. the extensions).

The information flow passes from the high level to the low level through
the intermediate level using the different communication channels between
modules.

Figure 3.5: The 3-layer structure of DAGGER

75

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

3.3.2 Usability scenarios

We consider three usability scenarios of DAGGER. All of these scenarios are
easily employed using DAGGER.

Scenario 1 First, we consider the task of a non computer science specialist
inputting an inconsistent knowledge base of his expertise and wanting to find
the maximally consistent point of views one can consider (see Figure 3.6).
For instance, let us consider the knowledge base of Example 3.26. Please
note that tools for assisting non domain experts in building such knowledge
bases without computer expertise exists [Chein and Mugnier, 2009].

Figure 3.6: Screen capture of the main interface of the DAGGER tool and
its repair computation module

Example 3.26. Let KB = (F,R,N) be a knowledge base such that:

• F = {packaдinд(a),has (a,plasticFilm),protectEnv (a)}
• R = {∀X (packaдinд(X) ∧ has (X ,plasticFilm) → pollute (X))}
• N = {∀X (pollute (X) ∧ protectEnv (X) → ⊥)}
In this knowledge base, a packaging a with a plastic film is said to pro-

tect the environment. However, since the possession of a plastic film leads

76

3.3. THE DAGGER TOOL

to pollution, this knowledge base is thus inconsistent. Finding maximally
consistent point of views (or equivalently, repairs) consists in computing all
maximal subsets of F that do not trigger a negative constraint of F. Here,
we have three repairs:

• R1 = {packaдinд(a),has (a,plasticFilm)},
• R2 = {packaдinд(a), protectEnv (a)}
• R3 = {has (a,plasticFilm),protectEnv (a)}

Scenario 2 Second, we consider an argumentation specialist looking for
graph-based structural properties of argumentation graphs instantiated with
particular knowledge bases (see Figure 3.7 and 3.8). For instance, let KB be
a knowledge base with three facts a(m),b (m), c (m), no rules and only contain-
ing one binary negative constraint ∀X (b (X) ∧ c (X) → ⊥). By generating the
graph representation one might observe that the graph is symmetrical thus
satisfying certain restrictions over its extensions [Amgoud, 2014]. However,
if one considers a ternary negative constraint that is added to the knowledge
base (i.e. ∀X (a(X) ∧ b (X) ∧ c (X) → ⊥)), one can observe that the structure
of the graph changes and it is no longer symmetric (and thus the properties
of Amgoud [2014] do not hold anymore).

Scenario 3 Third, we consider a knowledge base composed of seven facts,
two rules and one negative constraint. Generating the graph over such a
knowledge base yields a graph of 383 arguments and 32768 attacks. Non
optimised tools are not able to handle these large graphs for a computa-
tionally expensive operation such as finding all its extensions for a given ar-
gumentation semantics. However, ASPARTIX argumentation solvers based
on SAT [Lagniez et al., 2015] will generate all extensions in less than one
second. This is why one can use the export feature for such computations.

77

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Figure 3.7: Screen capture of the main interface of the DAGGER tool and
its argumentation module

3.4 Benchmarks on logic-based argumentation frame-
works

Despite argumentation being a mature field, practically inspired benchmarks
are currently missing. As a rare example of a practical argumentation
benchmark consider NoDE1, which contains graphs that model debates
from Debatepedia2, the drama “Twelve Angry Men” by Reginald Rose and
Wikipedia revision history. However, the graphs from this benchmark are
small (many of them have less than 10 arguments) and their structure is
simplistic. The lack of benchmarks was acknowledged by the community
long time ago, but became obvious with the appearance of the first Interna-
tional Competition on Computational Models of Argumentation (ICCMA)3

in 2015. This is why new algorithms are always tested on randomly gen-
erated graphs, e.g. in the works of Nofal et al. [2014] and Cerutti et al.
[2013].

The goal of this section is to address this drawback by generating argu-

1http://www-sop.inria.fr/NoDE/
2http://debatepedia.org/
3http://argumentationcompetition.org/

78

http://www-sop.inria.fr/NoDE/
http://debatepedia.org/
http://argumentationcompetition.org/

3.4. BENCHMARKS ON LOGIC-BASED ARGUMENTATION
FRAMEWORKS

Figure 3.8: Screen capture of the argumentation graph interface of the
DAGGER tool

mentation graphs from inconsistent knowledge bases and studying their prop-
erties empirically (by benchmarking argumentation solvers). We chose to
instantiate the logic-based argumentation framework of Arioua et al. [2017]
and Croitoru et al. [2015] as described in Definition 3.3 on page 51. As
we explained in Section 3.1, this argumentation framework possesses many
desirable properties and can be reused for query answering or exported in
order to be reused by argumentation solvers.

We provide the first benchmark in the literature that uses graphs gener-
ated from knowledge bases expressed with existential rules instead of random
graphs. Using a suite of parametrised existential rule knowledge bases, we
produced the first large scale practically-oriented benchmark in the literature.
Furthermore, we run the top six solvers from ICCMA 2015 on the generated
benchmark and show that the ranking is considerably different from the one
obtained during the competition on randomly generated graphs.

As seen in Section 3.1, the existential rules framework, as a logical lan-
guage, provides many features (n-ary negative constraints, existential vari-
ables in the rule conclusion, etc.) that make the instantiated argumentation
graph far from simplistic. Furthermore, the instantiated graph is reflecting
the structure of the inconsistent knowledge bases and it is thus justifying its
interest as practical benchmark. Generating such graphs is thus significant

79

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

for a broader community interested in reasoning in presence of inconsistency
on the Semantic Web.

All experiments presented in the rest of this section were performed
on a VirtualBox Linux machine running with a clean Ubuntu installation
with one allocated processor (100%) of an Intel core i7-6600U 2.60GHz and
8GB of RAM. The argumentation graphs used (in the Aspartix format) are
available online at https://gite.lirmm.fr/yun/iccma-2019.

The section is structured as follows. In Section 3.4.1, we discuss how we
obtained the set of knowledge bases and the approach for generating the ar-
gumentation graphs. In Section 3.4.2, we study the results from benchmark-
ing the top solvers from ICCMA on our generated argumentation graphs.

3.4.1 Benchmark generation

Knowledge Base Generation We generated a total of 134 knowledge
bases: 108 different knowledge bases for the set of small graphs (denoted
b1 to b108) and 26 for the set of big graphs accessible online at https:

//github.com/anonymousIDA/Knowledge_bases. This has been done in
order to produce graphs of similar sizes to those of the 2015 International
Competition on Computational Models of Argumentation (ICCMA 2015).
The ICCMA benchmark contains two sets of graphs: a set composed of
small graphs (less than 383 arguments) and a set of big graphs (3783 to
111775 arguments). We define, for a fixed size of generated fact base (that
varied from 2 to 5), some knowledge bases with binary (respectively ternary
when applicable) constraints in order to obtain an incremental coverage of
the facts. We then add rules in a similarly incremental manner. Table 3.5
shows the characteristics of the knowledge bases we selected. For example,
if considering 3 facts a(m),b (m), c (m), we chose a representative of binary
constraints as ∀X (a(X) ∧ b (X) → ⊥) or ∀X (a(X) ∧ c (X) → ⊥) or ∀X (b (X) ∧
c (X) → ⊥). We then chose ∀X (a(X) ∧ b (X) ∧ c (X) → ⊥).

From Knowledge Bases to Argumentation Graphs In the argumen-
tation graph generation process, we only kept knowledge bases whose ar-
gumentation frameworks were not automorphic to a previously generated
graph. The knowledge base format is DLGP [Baget et al., 2015b], allowing
translations to and from various Semantic Web languages such as RDF/S,
OWL, RuleML or SWRL [Baget et al., 2015a]. For the graph generation, we
made use of Graal [Baget et al., 2015c], a Java toolkit for reasoning within
the framework of existential rules. Graal was used for storing the existen-
tial rule knowledge bases and for computing conflicts. On top of Graal we
provided a graph generation program that works in two steps:

1. All possible arguments are generated: R-consistent subsets of F are
used as supports and conclusions are deduced from them. Then, non
minimal arguments are removed (see Definition 3.1 on page 50).

80

https://gite.lirmm.fr/yun/iccma-2019
https://github.com/anonymousIDA/Knowledge_bases
https://github.com/anonymousIDA/Knowledge_bases

3.4. BENCHMARKS ON LOGIC-BASED ARGUMENTATION
FRAMEWORKS

Name of the Number Number Number Type Number Number

KB of facts of rules of NC of NC of Args of Attacks

b1 to b6 2 to 7 ∅ 1 Binary 2 to 95 2 to 2048

b32 3 ∅ 2 Binary 4 6

b33 to b35 4 ∅ 2 to 3 Binary 7 to 9 24 to 32

b36 to b40 5 ∅ 2 to 3 Binary 14 to 19 56 to 128

b7 to b12 2 1 to 6 1 Binary 4 to 30 5 to 240

b13 to b18 2 2,4 or 6 1 Binary 6 to 30 15 to 450

b19 to b28 2 to 7 1 or 3 1 Binary 11 to 383 32 to 32768

b29 to b31 3 2 1 Binary 16 27 to 30

b57 to b58 3 1 2 Binary 8 13 to 14

b59 to b82 4 3 2 to 4 Binary 22 to 71 123 to 896

b41 to b56 3 to 6 ∅ 1 to 3 Ternary 6 to 55 9 to 752

b83 to b84 3 1 1 Ternary 12 29 to 39

b85 to b87 3 2 1 Ternary 24 93 to 147

b88 to b108 4 3 1 to 2 Ternary 78 to 103 990 to 2496

Table 3.5: Characteristics of the small knowledge bases

81

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Figure 3.9: Representation of the argumentation graph corresponding to
the knowledge base b44

2. Attacks are computed following Definition 3.2 on page 51.

The obtained graphs were translated in the Aspartix (apx) format (the same
format used in ICCMA 2015).

Example 3.27. Let us consider the knowledge base b44 = (F,R,N) such
that:

• F = {a(m),b (m), c (m),d (m), e (m)}
• R = ∅

• N = {∀X (a(X) ∧ b (X) ∧ c (X) → ⊥)}
The corresponding argumentation graph Fb44 is composed of 26 arguments

and 144 attacks and is represented in Figure 3.9. We show by this example
that some of our generated graphs also possess a sense of “symmetry”.

In the next section, we report the results obtained from the run of the
top six overall argumentation solvers on the proposed benchmark.

3.4.2 Results of literature solvers over the benchmark

We recall that the graphs used in the ICCMA 2015 benchmark were sep-
arated in three sets: a first set of large graphs (1152 to 9473 arguments)
with large grounded extensions and an average density4 of 1.00%, a second

4Graph density for a directed G = (V ,E) is equal to |E |
|V |(|V |−1) where V is the set of

nodes and E the set of arcs.

82

3.4. BENCHMARKS ON LOGIC-BASED ARGUMENTATION
FRAMEWORKS

set of smaller graphs (141 to 400 arguments) with numerous complete/pre-
ferred/stable extensions and an average density of 3.68% and a third set
of medium graphs (185 to 996 arguments) with rich structure of strongly
connected components and an average density of 7.75%. Our benchmark
graphs are denser, having an average density of 31.27% for small graphs and
29.69% for large graphs.

To see if the proposed benchmark graphs behave in a similar manner as
the randomly generated graphs of ICCMA 2015, we ran the top six solvers
of the competition: CoQuiAAS , ArgSemSAT (ArgS.SAT), LabSATSolver
(LabSATS.), ASGL, ASPARTIX-D and ArgTools (ArgT.). We used the
solvers to complete two computational tasks: SE (given an abstract ar-
gumentation framework, determine some extensions) and EE (given an ab-
stract argumentation framework, determine all extensions). These two com-
putational tasks were to be solved with respect to the following standard
semantics: complete semantics (CO), preferred semantics (PR), grounded
semantics (GR) and stable semantics (ST).

In order to have similar assessment conditions, we used exactly the same
ranking method as ICCMA 2015. The solvers were ranked with respect to
the number of timeouts on these instances and ties were broken by the actual
runtime on the instances. Table 3.6 shows the average time needed for each
solver to complete each task for each semantics in the case of small graphs.
There were no errors or time-outs thus the average time reflects the actual
ranking (see Table 3.7).

For large instances, many solvers did not support large inputs resulting in
several crashes or errors. Ties were broken by the average time of successfully
solved instances (Table 3.9). Please note that for large graphs, for some
tasks, some solvers timed out for all instances resulting in equal rankings
(EE-CO: ASGL and ArgTools for instance).

Task ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 0,0138 0,1719 0,0059 0,0249 0,0031 0,3644

SE-PR 0,0165 0,2137 0,0059 0,4445 0,0007 0,2906

SE-GR 0,0339 0,2101 0,0057 0,3217 0,0010 0,1944

SE-ST 0,0148 0,2194 0,0060 0,0279 0,0018 0,2520

EE-CO 0,0694 0,2282 0,0096 0,0247 0,0024 0,2908

EE-PR 0,0517 0,1660 0,0085 0,5763 0,0029 0,3765

EE-GR 0,0325 0,1861 0,0052 0,3239 0,0016 0,2262

EE-ST 0,0486 0,1661 0,0065 0,0231 0,0027 0,3151

Table 3.6: Average computational time for small instances (in seconds)

It is noticeable that CoQuiAAS comes first in the two batches of gen-

83

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Task ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 3 5 2 4 1 6

SE-PR 3 4 2 6 1 5

SE-GR 3 5 2 6 1 4

SE-ST 3 5 2 4 1 6

EE-CO 4 5 2 3 1 6

EE-PR 3 4 2 6 1 5

EE-GR 3 4 2 6 1 5

EE-ST 4 5 2 3 1 6

Table 3.7: Ranking of solvers for the generated small graphs

Task ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 15 26 16 1 0 11

SE-PR 18 1 17 26 0 11

SE-GR 17 0 18 26 0 11

SE-ST 15 0 18 2 0 11

EE-CO 22 26 26 9 2 21

EE-PR 21 26 26 26 15 21

EE-GR 16 26 17 26 0 11

EE-ST 15 23 17 1 1 11

Table 3.8: Number of timeouts for the generated large graphs

Task ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 4 6 5 2 1 3

SE-PR 5 2 4 6 1 3

SE-GR 4 2 5 6 1 3

SE-ST 5 2 6 3 1 4

EE-CO 4 5 5 2 1 3

EE-PR 2 4 4 4 1 3

EE-GR 3 5 4 5 1 2

EE-ST 4 6 5 2 1 3

Table 3.9: Ranking of solvers for the generated large graphs

erated graphs. This may come from the fact that CoQuiAAS is based on

84

3.4. BENCHMARKS ON LOGIC-BASED ARGUMENTATION
FRAMEWORKS

MiniSAT solver, which is known to work well in the presence of structured
information (i.e. symmetries). It might be the case that the generated graphs
keep some of their structure even after being translated into a SAT instance
which could explain the obtained result.

In order to see how different the solver ranking on the random benchmark
used by ICMMA 20155 is from the solver ranking on the knowledge base
benchmark, we used the normalised Kendall’s tau distance.6 The distance
outputs 0 if two rankings are identical and 1 if one ranking is the reverse of
the other. Table 3.11 shows the normalised Kendall’s tau distance between
the rankings of the generated graphs and the competition ranking. What
comes out is that:

• Although the ranking of the ICCMA 2015 benchmark and the one
for large graphs for the task EE-GR is slightly different (we can not
break the tie between ASPARTIX-d and ASGL), they are identical
with respect to the Kendall’s tau distance.

• We have the same normalised Kendall’s tau distance for the small
graphs and the large graphs for the tasks SE-CO, SE-PR and SE-GR.

• The small graphs have a higher normalised Kendall’s tau distance than
the large graphs for the tasks SE-ST, EE-CO, EE-PR and EE-GR.

• The small graphs have a lower normalised Kendall’s tau distance than
the large graphs for the task EE-SET.

• In average, the results are more similar for the large graphs than for
the small graphs.

This benchmark is interesting because it shows that for the instantiated
graphs we generated, it is strongly advised to use CoQuiAAS as the solver.
For relatively small graphs, the choice of the solver can be bypassed as the
differences are negligible. However, for larger graphs, we noticed several
issues:

• It seems that ASGL uses a different algorithm for SE-GR and EE-GR
(this is very noticeable by the difference in the number of timeouts).

• ASGL is not suitable for finding complete extensions.

• Aspartix-D is not suitable for finding preferred and grounded exten-
sions.

• There are 15 instances that were too big to perform the task EE-PR
for all solvers.

5http://argumentationcompetition.org/2015/results.html
6This distance is equal to the number of pairwise disagreements between two ranking

lists and is normalised by dividing by
n (n−1)

2 , where n is the number of solvers.

85

http://argumentationcompetition.org/2015/results.html

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Task ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.

SE-CO 4 2 5 3 1 6

SE-PR 1 4 6 5 3 2

SE-GR 3 5 4 6 1 2

SE-ST 2 5 6 1 4 3

EE-CO 2 5 6 1 3 4

EE-PR 1 4 6 5 2 3

EE-GR 3 5 4 6 1 2

EE-ST 2 4 5 1 3 6

Table 3.10: Rankings extracted from the ICCMA 2015 website

Task Small graphs Large graphs

SE-CO 0.400 0.400

SE-PR 0.467 0.467

SE-GR 0.200 0.200

SE-ST 0.600 0.467

EE-CO 0.467 0.200

EE-PR 0.400 0.067

EE-GR 0.267 0.000

EE-ST 0.333 0.400

Average 0.392 0.275

Table 3.11: Normalised Kendall’s tau distance between the rankings of the
generated graphs and the competition ranking

86

3.5. SUMMARY

3.5 Summary

In this chapter, we presented a deductive argumentation framework for in-
consistent knowledge bases expressed in the existential rules language. We
showed that the instantiation of this argumentation framework possesses
desirable properties in two cases: the general case (when the argumentation
graph is generated from general inconsistent knowledge bases) but also in
the case where the knowledge base has no positive rules.

In the general case, we showed that the generated graphs are includ-
ed/not included in several graph classes (included in the class of coherent
and relatively grounded), possess a specific structure (cycle, defense, no
self-attacking arguments) and that some subgraphs can be characterised
with respect to the conflicts of the knowledge base. In the case where the
graph is generated from a knowledge base with no positive rules, we showed
some conflict induced structural properties (dummy arguments characteri-
sation, k-copy graphs), symmetry results and highlighted the general shape
of strongly connected components. However, we also exhibited that this
argumentation framework has an exponential number of arguments even in
the case where the underlying knowledge has no positive rules.

Against this background, we presented two avenues for improving the
generation of arguments and attacks: In the case where the graph is gen-
erated from a knowledge base without positive rules, one can filtrate the
free facts from the knowledge base before the graph generation and recre-
ate the full graph without loss of generality. However, the aforementioned
strategy does not work in the case of an inconsistent knowledge base with
positive rules since free facts can be used in rule applications. That is the
reason why we propose a new method that consists in filtrating arguments
that can be “reconstructed” by other arguments having the same support.
However, since this method removes arguments and attacks, one needs to
change the binary attack relation to sets of attacking arguments in order to
keep the basic rationality desiderata. Furthermore, we showed that, in this
new framework, most of the basic properties are still satisfied (repairs and
extensions equivalence).

On the practical side, we also developed the DAGGER tool which is the
first all-in-one implementation that can generate, allow for visualisation and
export argumentation graphs from inconsistent knowledge bases expressed
in the existential rule language.

Lastly, we used the DAGGER tool and designed an experiment using
the top six solvers from the 2015 international competition on computa-
tional models of argumentation (see http://argumentationcompetition.

org/2015/) in order to prove that the peculiar structure of the generated
graphs have an impact on the solvers. The results shown that a solver out-
performed all of the other solvers on our instances and that the general
ranking was relatively different.

87

http://argumentationcompetition.org/2015/
http://argumentationcompetition.org/2015/

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
EXISTENTIAL RULES

Chapter 3 in a Nutshell

• We showed several properties for the framework in the case
where the argumentation graph is generated from a knowledge
without positive rules (symmetry, dummy arguments, k-copy
graphs, etc.) and in the general case (class of graph, special
arguments, cycles, etc.)

• We showed that we can speed up the argument generation pro-
cess by processing of the knowledge in the case where there are
no positive rules. In the case where the knowledge has rules,
we can filtrate the arguments and add hyperedges in order to
reduce the number of arguments and attacks.

• DAGGER is an implementation of the deductive argumenta-
tion framework for the existential rules language and is the
first tool that allows the generation, the visualisation and the
exportation of such argumentation graphs.

• We empirically showed that the intrinsic structure of the gener-
ated argumentation graphs have an effect on the performance
of the current top solvers for argumentation semantics.

88

4
Argumentation Hypergraphs

4.1 Argumentation hypergraphs with the existential rules
language . 91

4.1.1 Hypergraph argumentation framework F? 92

4.1.2 Argumentation framework properties 94

4.1.3 Rationality postulates 99

4.1.4 Empirical analysis 100

4.2 The NAKED tool . 106

4.2.1 The argument and attack generation 107

4.2.2 The structure of NAKED 108

4.2.3 Usability scenarios 110

4.3 Summary . 112

In the previous chapter, we showed that logic-based argumentation is
an approach that can accommodate with reasoning in the context of incon-
sistent logic knowledge bases. Indeed, specifically crafted instantiations for
Dataloд± (such as the instantiation of Croitoru and Vesic [2013], Yun et al.
[2017b] and Arioua et al. [2017]), have been proven to respect rationality
desiderata [Amgoud, 2014; Caminada and Amgoud, 2007] and to output a
set of extensions equivalent to the set of repairs [Lembo et al., 2010; Bi-
envenu, 2012] of the knowledge base (i.e. the maximum consistent sets of
facts with respect to inclusion). Unfortunately, it was shown that these
instantiations suffer from a major drawback: an exponential number of ar-
guments and attacks [Yun et al., 2018d,b]. This problem occurs even in the
case where there are no rules in the knowledge base (count, for instance, a
graph with 13 arguments and 30 attacks for a meagre knowledge base with
solely four facts, no positive rules and a single negative rule). As a con-
sequence, the argumentation graph for a “normally-sized” knowledge base
cannot be held in main memory, requires dedicated large-graph visualisation
tools, and, despite their polynomial complexity regarding the number of ar-
guments, still poses combinatorial challenges for the computation of ranking
techniques. This is a big problem as it shows that the reasoning efficiency
may be lacking particularly when compared to other inconsistent tolerant
reasoning methods such as ASP [Ostrowski and Schaub, 2012] or dedicated
tools [Bourgaux, 2016].

89

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Please note that this does not mean that logic-based argumentation does
not have an added value. For instance, its explanatory power might benefit
to increase the scrutinability of the system by human users [Arioua et al.,
2016; Besnard et al., 2014] and the use of ranking semantics can induce a
stratification of the inconsistent knowledge base [Amgoud and Ben-Naim,
2015] that might be of use for query answering techniques [Yun et al., 2018g].

The question that naturally arose is whether or not we can find “better”
or more efficient argumentation frameworks for Dataloд±. In the previous
chapter, we proposed methods for improving the argument generation by
either processing the knowledge base or filtering the arguments and switch-
ing to hypergraphs. Following the latter intuition that hypergraphs might
be a more efficient and compact form of argumentation frameworks, in this
chapter, we first propose a new hypergraph argumentation framework and
show how to instantiate it directly and straightforwardly from an incon-
sistent knowledge base expressed in Dataloд±. Second, we show that this
new hypergraph argumentation framework benefits from the same desirable
properties (rationality postulates, structural properties, etc.) as its binary
argumentation framework counterpart. Lastly, we show an implementation
of the NAKED tool for generating, visualising and exporting argumentation
hypergraphs from knowledge bases expressed using Dataloд±. Then, using
the aforementioned tool, we compare this new hypergraph argumentation
framework with the previous binary framework and show how we improve
upon the state-of-the-art.

The chapter is organized as follows: In Section 4.1, we introduce the hy-
pergraph argumentation framework, show the various properties that it sat-
isfies and compare it to the previous argumentation framework for Dataloд±.
In Section 4.2, we show the first implementation of a generator for our hy-
pergraph argumentation framework.

Research Questions in this Chapter

• How can we instantiate a hypergraph from an inconsistent
knowledge base in Dataloд±? Is this representation efficient?

• Can we provide a tool that generates such hypergraphs?

90

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

4.1 Argumentation hypergraphs with the existential
rules language

As seen in the previous chapter, the existing argumentation frameworks
for the existential rules suffer from the exponential increase of arguments
when free facts are added in the fact base. More generally, this problem is
stemming from the observation that for a consistent subset of the fact base,
nearly all of the subsets of its saturation with rule application will constitute
a new argument.

Thus, the intuitions behind this new framework are twofold: (1) The ar-
guments will be built upon other arguments (à la ASPIC+). In the essence,
this framework is close to rule-based formalisms where arguments are con-
structed from the ontology. (2) Our framework is different from existing
frameworks because of a special feature: sets of attacking arguments.

In this section, we thrive to show that this framework retains all of the
desirable properties (repair equivalence, rationality postulate, etc.) with less
arguments and attacks than the existing frameworks.

There are three main contributions in this section. First, we introduce
a logic-based argumentation framework with directed hyperedges for an in-
consistent knowledge base expressed using Dataloд±. Second, we provide a
theoretical analysis of the new argumentation framework with respect to its
syntactic (i.e. graph theoretical) and semantic properties. Namely we show
that:

• The rationality postulates (indirect consistency, direct consistency and
closure) defined by Caminada and Amgoud [2007] are satisfied by the
proposed framework.

• There is a one-to-one correspondence between the repairs of the knowl-
edge base and the preferred (resp. stable) extensions of the new argu-
mentation framework.

• The grounded extension is equal to both the intersection of preferred
(resp. stable) extensions and to the set of arguments generated from
the intersection of the repairs of the knowledge base.

• The premises of the non attacked arguments are subsumed by the set
of free-facts (the intersection of repairs of the knowledge base).

• There are no self-attacking arguments, all the attacked arguments are
defended and there is at least one cycle in the argumentation frame-
work if the set of arguments is finite.

• If there are no rules in the knowledge base, the number of arguments
is less or equal to the number of facts and the upper-bound to the

number of attacks is
n−1∑
i=1

(
n
i

)
(n− i) where n is the number of arguments.

91

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Third, we provide a tool for generating this argumentation framework
from a Dataloд± knowledge base expressed in DLGP format and study its
performance in terms of argumentation graph compression rate and gener-
ation time.

4.1.1 Hypergraph argumentation framework F?

Please note that although the framework described in this section has some
similarities with the ASPIC+ framework, we would like to highlight that the
ASPIC+ cannot be directly instantiated with Dataloд± because the language
does not have the negation and the contrariness function is not general
enough for this language. Moreover, when instantiating ASPIC+ with a lot
of logical languages (e.g. classical propositional logic), one has to add all the
tautologies of the language in the set of strict rules in order to guarantee
that the result will be consistent, i.e. to satisfy the rationality postulates
defined by Caminada and Amgoud [2007]. In order to avoid adding this
enormous number of rules and also with the goal of decreasing the number
of arguments, we propose not to add them. However, the cost of forgetting
to add those rules (and the arguments generated using them) would result
in violation of rationality postulates. We propose to solve this problem
in a more elegant way. Namely, we allow for the use of sets of attacking
arguments (i.e. directed hyperedges).

In the next definition, we extend Dung’s abstract framework with sets
of attacking arguments, i.e. sets of arguments can now jointly attack an
argument.

Definition 4.1 (Argumentation framework F?). An hypergraph argu-
mentation framework is a pair F? = (A ?,R?) with A ? a set of arguments
and R? ⊆ (2A ?

\ ∅) ×A ? a set of attacking arguments.

Notation 4.1. We denote by KF? the set of all possible hypergraph ar-
gumentation frameworks. Let F?,F?′ ∈ KF?, we define F? ⊕ F?′ as the
argumentation framework (A ? ∪A ?′,R? ∪R?′).

In the next definition, we show how we build arguments and how to
instantiate F? from an inconsistent knowledge base KB.

Definition 4.2 (Argumentation framework F?KB). Let us consider the
knowledge base KB = (F,R,N). The corresponding argumentation frame-
work denoted by F?KB = (A ?,R?) with R? ⊆ 2A ?

×A ? is such that:

• An argument a ∈ A ? is either:

– f , where f ∈ F. Conc (a) = f and Prem(a) = {f }
– a1, . . . ,an → f ′ if a1, . . . ,an are arguments such that there exists

a tuple (r ,π) where r ∈ R,π is a homomorphism from the body

92

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

of r to {Conc (a1), . . . ,Conc (an)} and f ′ is the resulting atom from
the rule application. Conc (a) = f ′ and Prem(a) = Prem(a1) ∪ · · · ∪
Prem(an)

where Prem(a) is R-consistent.

• An attack is a pair (X ,a) ∈ R? where X ⊆ A ? and a ∈ A ? such that X
is minimal for set inclusion such that

⋃
x ∈X

Prem(x) is R-consistent and

there exists φ ∈ Prem(a) such that (
⋃
x ∈X

Conc (x))∪{φ} is R-inconsistent.

Notation 4.2. Let KB = (F,R,N) be a knowledge base, X ⊆ F be a set
of facts and X ′ ⊆ A ? a set of arguments. We define the set of arguments
generated by X as Arд?(X) = {a ∈ A ? | Prem(a) ⊆ X} and the base of a set
of arguments X ′ as Base?(X ′) =

⋃
x ′∈X ′

Prem(x ′).

Example 4.1. Suppose that one is indecisive about what to eat for an ap-
petiser. He decides that the dish should contain salted cucumbers, sugar,
yogurt, not be a soup and be edible. However, he finds out that combining
together salted cucumbers, sugar and yogurt may not be a good idea. Fur-
thermore, combining salted cucumbers with yogurt is a dish called “tzaziki”
which is a famous greek soup. We model the situation with the following
knowledge base KB = (F,R,N) :

• F = {contains (m, saltC), contains (m, suдar), contains (m,yoдurt),
notSoup (m), edible (m)}
• R = {∀X (contains (X , saltC) ∧ contains (X ,yoдurt) → tzaziki (X))}
• N = {∀X (contains (X , saltC) ∧ contains (X , suдar) ∧ contains (X ,yoдurt) →
⊥),∀X (tzaziki (X) ∧ notSoup (X) → ⊥)}

The resulting argumentation graph F?KB is composed of eleven attacks
and the six following arguments:

• a1 = contains (m, suдar)

• a2 = contains (m, saltC)

• a3 = contains (m,yoдurt)

• a4 = notSoup (m)

• a5 = edible (m)

• a6 = a2,a3 → tzaziki (m)

An example attack of R? is ({a1,a2},a3).
93

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

In case of binary attacks (i.e. classical Dung’s framework [Dung, 1995]),
a set of arguments X is said to attack an argument a if and only if there
exists b ∈ X such that b attacks a. We need a similar notion here except
that we already have a notion of attack from a set towards an argument. In
order not to mix up the two notions, we introduce the notation R◦, which
stands for the saturated set of attacks. For example, if ({a,b}, c) ∈ R? then
each set X ′ containing a and b (i.e. such that {a,b} ⊆ X ′) attacks c too (i.e.
(X ′, c) ∈ R◦).

Definition 4.3 (Saturated set of attacks). Let F? = (A ?,R?) be an
argumentation framework. We define R◦ ⊆ 2A ?

× A ? the saturated set of
attacks as R◦ = {(X ,a) such that there exists (X ′,a) ∈ R? with X ′ ⊆ X}.

4.1.2 Argumentation framework properties

The propose argumentation framework F? is an instantiation of the abstract
hypergraph framework proposed by Nielsen and Parsons [2006, 2007]. For
the purpose of this thesis being self-contained, we briefly recall the necessary
definitions.

Definition 4.4 (Argumentation semantics). Let F? = (A ?,R?) be an
argumentation framework and R◦ be the corresponding saturated set of at-
tacks:

• A set of arguments S is conflict-free if and only if there is no argu-
ment a ∈ S such that (S,a) ∈ R◦.

• A set of arguments S1 attacks a set of arguments S2 if and only if
there exists a ∈ S2 such that (S1,a) ∈ R◦. By abuse of notation, we
will use the notation (S1, S2) ∈ R◦ for the case when S1 attacks a set
of arguments S2.

• A set of arguments S1 defends an argument a if and only if for every
set of arguments S2 such that (S2,a) ∈ R?, we have that (S1, S2) ∈ R◦.

• A conflict-free set of arguments S is said to be admissible if each
argument in S is defended by S.

• An admissible set S is called a preferred extension if there is no
admissible set S ′ ⊆ A ?, S ⊂ S ′.

• A conflict-free set S is a stable extension if S attacks all arguments
in A ? \ S.

• An admissible set S is called a grounded extension if S is minimum
for set inclusion such that it contains every argument defended by S.

94

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

The set of all preferred (resp. stable and grounded) extensions of an
argumentation framework F? is denoted by Extp (F

?) (resp. Exts (F
?) and

Extд (F
?)).

Example 4.2 (Example 4.1 cont’d). The preferred (resp. stable) exten-
sions of Extp (F

?
KB) (resp. Exts (F

?
KB)) are:

• E1 = {a2,a3,a5,a6}
• E2 = {a1,a2,a4,a5}
• E3 = {a1,a3,a4,a5}

The grounded extension is EGE = {a5}
In the next proposition, we show that there is one-to-one correspondence

between the set of preferred (resp. stable) extensions and the set of repairs.

Proposition 4.1 (Preferred and stable characterisation). Let KB =

(F,R,N) be a knowledge base, F?KB be the corresponding argumentation
framework and x ∈ {s,p}. Then:

Extx (F
?
KB) = {Arд?(A′) | A′ ∈ repairs (KB)}

Proof sketch. The sketch of the proof is as follows:

1. We prove that {Arд?(A′) | A′ ∈ repairs (KB)} ⊆ Exts (F
?
KB).

2. We prove that Extp (F
?
KB) ⊆ {Arд?(A′) | A′ ∈ repairs (KB)}.

3. Since every stable extension is a preferred one [Nielsen and Parsons,
2007], we can proceed as follows. From the first item, we have that{Arд?(A′) | A′ ∈ repairs (KB)} ⊆ Extp (F

?
KB), thus the theorem holds

for preferred semantics. From the second item, we have Exts (F
?
KB) ⊆{Arд?(A′) | A′ ∈ repairs (KB)}, thus the theorem holds for stable se-

mantics.

For a detailed proof, please refer to Section 7.2.2 on page viii. �

Example 4.3 (Example 4.2 cont’d). As explained in Proposition 4.1,
we have a one to one correspondence between repairs and preferred (resp.
stable) extensions. Hence, we have:

• E1 = Arд?({contains (m, saltC), contains (m,yoдurt), edible (m)})
• E2 = Arд?({contains (m, suдar), contains (m, saltC),notSoup (m), edible (m)})
• E3 = Arд?({contains (m, suдar), contains (m,yoдurt),notSoup (m), edible (m)})

95

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

We now show that there is an equivalence between the non-attacked
arguments and the arguments generated from free-facts.

Corollary 4.1 (Non-attacked characterisation). Let KB be a knowl-
edge base, F?KB = (A ?,R?) be the corresponding argumentation framework
and a ∈ A ?. There is no S ⊆ A ? such that (S,a) ∈ R? if and only if
Prem(a) ⊆

⋂
repairs (KB).

Proof. We split this proof in two parts:

• (⇒) By definition, if a ∈ A ? is such that there is no (S,a) ∈ R?

then it means that a belongs to every preferred (resp. stable) exten-
sions. Using the result of Proposition 4.1, we deduce that Prem(a) ⊆⋂
repairs (KB).

• (⇐) Suppose that Prem(a) ⊆
⋂
repairs (KB). It means that for every

R-consistent subset X ⊆ F, we have that Prem(a) ∪ X is R-consistent.
Suppose that there exists S ⊆ A ? such that (S,a) ∈ R?. It means that
there exists φ ∈ Prem(a) such that (

⋃
s ∈S

Conc (s))∪{φ} is R-inconsistent.

Thus, (
⋃
s ∈S

Prem(s)) ∪ {φ} is R-inconsistent and (
⋃
s ∈S

Prem(s)) ∪ Prem(a)

is R-inconsistent, contradiction.

�

Please note that although it is tempting to say that the non-attacked
arguments do not contribute to attacks because the are based on free-facts,
we show in the next example that this is not true in the general case.

Example 4.4. Let KB = (F,R,N) be the knowledge base such that:

• F = {d (m),a(m), c (m)}
• R = {∀X (d (X) → e (X)),∀X (a(X) → b (X))}
• N = {∀X (a(X) ∧ c (X) → ⊥),∀X (e (X),b (X) ∧ c (X) → ⊥)}
The knowledge base KB has two repairs, i.e. repairs (KB) = {{a(m),

d (m)}, {d (m), c (m)}}. The fact d (m) is a free-fact. There are five arguments
in the argumentation framework F?KB:

• a0 = d (m)

• a1 = a0 → e (m)

• a2 = c (m)

• a3 = a(m)

• a4 = a3 → b (m)

96

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

We can see that the non-attacked argument a1 is contributing to an attack
to a2 with a4, i.e. ({a1,a4},a2) ∈ R?.

In the next proposition, we show that, in our argumentation framework,
the grounded extension is equal to the intersection of the preferred exten-
sions. Note that although it is always true that the set grounded extension
is included the intersection of the preferred extensions, the equality is not
true in the general case.

Proposition 4.2 (Grounded and preferred). Let KB = (F,R,N) be a
knowledge base, F?KB be the corresponding argumentation framework and
EGE be the grounded extension of F?KB. Then:

EGE =
⋂

Extp (F
?
KB)

Proof sketch. Nielsen and Parsons [2007] showed that EGE ⊆
⋂

Extp (F
?
KB).

We now show that
⋂

Extp (F
?
KB) ⊆ EGE Let use consider a ∈

⋂
Extp (F

?
KB).

Using Proposition 4.1, we have that a ∈
⋂

A′∈r epair s (KB) Arд
?(A′). Thus,

a ∈ Arд?(
⋂
repairs (KB)). We conclude that Prem(a) ⊆

⋂
repairs (KB), then

with Corollary 4.1, we conclude that a is not attacked and a ∈ EGE . �

Example 4.5 (Example 4.2 cont’d). We have that the grounded exten-
sion EGE = E1 ∩ E2 ∩ E3 = {a5}.

We now show that the grounded extension is equal to the set of argu-
ments generated by the intersection of all the repairs.

Proposition 4.3 (Grounded characterisation). Let KB = (F,R,N) be
a knowledge base, F?KB be the corresponding argumentation framework and
EGE be the grounded extension of F?KB. Then:

EGE = Arд?(
⋂

repairs (KB))

Proof sketch. The proof relies on three results: (1) The equivalence between
the preferred extensions and the repairs as proven in Proposition 4.1; (2) The
fact that the grounded extension is equal to the intersection of all preferred
extensions (see Proposition 4.2) and (3) the fact that for every collection of
set of formulae S1, . . . , Sn , Arд

?(S1 ∩ · · · ∩Sn) = Arд?(S1) ∩ · · · ∩Arд
?(Sn). �

Example 4.6 (Example 4.2 cont’d). We have that the grounded exten-
sion is EGE = {a5} = Arд?({edible (m)}).

We now show that the argumentation framework F?KB does not have
self-attacking arguments.

97

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Proposition 4.4 (Self-attacking arguments). Let KB be a knowledge
base and F?KB = (A ?,R?) be the corresponding argumentation framework.
There is no (S, t) ∈ R? such that t ∈ S.

Proof. Suppose that there is (S, t) ∈ R? such that t ∈ S. It means that
there exists φ ∈ Prem(t) such that (

⋃
s ∈S

Conc (s)) ∪ {φ} is R-inconsistent. It

means that (
⋃
s ∈S

Prem(s)) ∪ {φ} is R-inconsistent and thus
⋃
s ∈S

Prem(s) is R-

inconsistent since t ∈ S, contradiction with the definition of an attack. �

In Proposition 4.5 below, we show that an attacked argument is always
defended by a set of arguments.

Proposition 4.5 (Defense). Let KB be a knowledge base and F?KB =

(A ?,R?) be the corresponding argumentation framework. If there is (S, t) ∈
R? then there exists (S ′, s) ∈ R? such that s ∈ S.

Proof. Let us prove it by contradiction. Suppose that (S, t) ∈ R? and that
there is no S ′ ∈ A ? such that (S ′, s) ∈ R?, where s ∈ S. Namely, it means
that there exists φ ∈ Prem(t) such that (

⋃
s ∈S

Conc (s)) ∪ {φ} is R-inconsistent.

Thus, (
⋃
s ∈S

Prem(s)) ∪ {φ} is R-inconsistent. Let X = {x1, . . . ,xn} be a subset

of (
⋃
s ∈S

Prem(s)) such that X ∪ {φ} is R-inconsistent and for all X ′ ⊂ X ,

X ′ ∪ {φ} is R-consistent. Then, let us denote by s1, the argument in S such
that x1 ∈ Prem(s1), we have that ({a2, . . . ,an ,aφ}, s1) ∈ R? where ai = xi for
i ∈ {2, . . . ,n} and aφ = φ, contradiction. �

We now introduce the definition of cycle for an argumentation framework
with sets of attacking arguments.

Definition 4.5 (Cycle). A cycle in F? = (F?,R?) is a sequence of attacks
in R? of the form ((S1, t1), . . . , (Sn , tn)) such that for every i ∈ {1, . . . ,n −
1}, ti ∈ Si+1 and tn ∈ S1.

The following Corollary 4.2 follows directly from Proposition 4.5. If the
number of arguments is finite then there exists at least one cycle.

Corollary 4.2 (Cycle existence). Let KB be a knowledge base and F?KB =

(A ?,R?) be the corresponding argumentation framework. If A ? has a finite
number of arguments and R? , ∅ then there exists a cycle in F?KB.

Example 4.7 (Example 4.1 cont’d). The following sequence of attacks
(({a2,a3},a1), ({a1,a3},a2)) is a cycle in F?KB.

Contrary to the argumentation framework F where the number of argu-
ments can be exponential even in the case where the set of rules is empty,
we show that for the framework F? described in Definition 4.2, the set of
arguments is at most equal to the number of facts.

98

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

Proposition 4.6 (Argument upper-bound). Let KB = (F,R,N) be a
knowledge base such that R = ∅ and F? = (A ?,R?) be the corresponding
argumentation framework. It holds that |A ? | ≤ |F |.

Proof. Let a ∈ A ? be an argument of F?. Since there are no rules then
a = f , where f ∈ F. Thus we have that |A ? | ≤ |F |. Note that the equality
holds if and only if there are no facts f such that {f } is inconsistent. �

In the next proposition, we show an upper bound to the number of
attacks with respect to the number of arguments.

Proposition 4.7 (Attack upper-bound). Let KB be a knowledge base
and F?KB = (A ?,R?) be the corresponding argumentation framework. If

|A ? | = n then |R? | ≤
n−1∑
i=1

(
n
i

)
(n − i).

Proof sketch. We prove the proposition by induction (for a detailed proof,
see Section 7.2.2 on page ix). �

Please note that this attack upper-bound is generally never reached in
large instances because of the minimality condition on the set of attacking
arguments.

4.1.3 Rationality postulates

In this section, we prove that the framework we propose in this thesis satisfies
the rationality postulates for instantiated argumentation frameworks. We
first prove the indirect consistency postulate.

Notation 4.3. Let KB = (F,R,N) be a knowledge base and F?KB = (A ?,R?)
be the corresponding argumentation framework. If X ⊆ A ? is a set of
arguments, then we define Concs (X) =

⋃
x ∈X

Conc (x) and Outputx (F
?
KB) =⋂

E∈Extx (F?KB)
Concs (E) where x ∈ {s,p,д}.

Proposition 4.8 (F? Indirect consistency). Let KB = (F,R,N) be a
knowledge base, F?KB be the corresponding argumentation framework and
x ∈ {s,p,д}. Then:

• for every E ∈ Extx (F
?
KB),Concs (E) is a R-consistent.

• Outputx (F
?
KB) is R-consistent.

For the complete proof of Proposition 4.8, see Section 7.2.2 on page x.

Since our instantiation satisfies indirect consistency then it also satisfies
direct consistency. Indeed, if a set is R-consistent, then it is consistent.
Thus, we obtain the following corollary.

99

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Corollary 4.3 (F? Direct consistency). Let KB = (F,R,N) be a knowl-
edge base, F?KB be the corresponding argumentation framework and x ∈{s,p,д}. Then:

• for every E ∈ Extx (F
?
KB),Concs (E) 6 |= ⊥.

• Outputx (F
?
KB) 6 |= ⊥.

We now show that the argumentation framework satisfies the closure
postulate.

Proposition 4.9 (F? Closure). Let KB = (F,R,N) be a knowledge base,
F?KB be the corresponding argumentation framework and x ∈ {s,p,д}. Then:

• for every E ∈ Extx (F
?
KB),Concs (E) = SatR (Concs (E))

• Outputx (F
?
KB) = SatR (Outputx (F

?
KB))

For the complete proof, see Section 7.2.2 on page xi.

4.1.4 Empirical analysis

In this section, we compare our approach with the existing argumentation
frameworks for Dataloд± with respect to the number of arguments and the
number of attacks.

We chose to work with the set of knowledge bases extracted from the
study of Yun et al. [2017b, 2018f] (see Table 3.5 on page 81). We recall that
these inconsistent knowledge bases are composed of two main sets:

• A set A composed of 108 knowledge bases. This dataset is further split
into three smaller set of knowledge bases:

– A set of A1 of 31 knowledge bases without rules, two to seven
facts, and one to three negative constraints.

– A set A2 of 51 knowledge bases generated by fixing the size of
the set of facts and successively adding negative constraints until
saturation.

– A set A3 of 26 knowledge bases with only ternary negative con-
straints, three to four facts and one to three rules.

• A set B composed of 26 knowledge bases with eight facts, six rules and
one or two negative constraints. This set contains more free-facts than
the knowledge bases in set A.

100

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

Deductive argumentation framework FKB

KB # Arg. # Att. Gen. Time (ms)

A1 22 128 160

A2 25 283 133

A3 85 1472 399,5

B 5967 11542272 533089

Hypergraph argumentation framework F?KB

KB #Arg. %Arg. ↓ #Att. %Att. ↓ Gen. Time (ms) %Time ↓

A1 5 77,27 6 93,75 276,00 -81,48

A2 7 72,00 8 92,93 342,00 -183,57

A3 7 91,76 9 99,26 369,50 1,66

B 14 99.77 20.5 99.99 7814.5 98.08

Table 4.1: Comparison of the median number of arguments, attacks and
generation time needed between F?KB and FKB on the sets of knowledge

bases A1,A2,A3 and B

For each knowledge base KB in these two sets, we compare the number
of generated arguments and attacks of the new framework F?KB with the
framework FKB.

We provide a the tool based on the Graph of Atom Dependency de-
fined by Hecham et al. [2017a] and the Graal Java Toolkit [Baget et al.,
2015c] for generating the new argumentation framework from an inconsis-
tent knowledge base expressed in the DLGP format. The tool is avail-
able for download at the following address: https://www.dropbox.com/

sh/dlpmr07gqvpuc61/AABDgwfHJRNVYcsqpDg7kMfEa?dl=0

4.1.4.1 Experimental results

In Table 4.1, we show the number of arguments and attacks of the two
frameworks for the two sets A and B. We make the following observations:

• The generation of F? is slower than the one for F when the number
of arguments and attacks is relatively low (see A1 and A2) but when
the number of arguments and attacks increases, we can see that the
generation of F? is much faster (see Figure 4.1 and 4.2). The reason for
this is simple. Contrary to the framework F, there is no exponential
increase of the number of arguments with the number of free-facts in
F? as seen with the knowledge bases in set B. Moreover, for all the
knowledge bases considered in sets A and B, the number of arguments

101

https://www.dropbox.com/sh/dlpmr07gqvpuc61/AABDgwfHJRNVYcsqpDg7kMfEa?dl=0
https://www.dropbox.com/sh/dlpmr07gqvpuc61/AABDgwfHJRNVYcsqpDg7kMfEa?dl=0

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Figure 4.1: Generation time for both the old framework FKB and the new
framework F?KB with the set of knowledge bases A. Instances are sorted

with respect to the generation time of FKB

Figure 4.2: Generation time for both the old framework FKB and the new
framework F?KB with the set of knowledge bases B. Instances are sorted

with respect to the generation time of FKB

102

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

Figure 4.3: Number of arguments for both the old framework FKB and the
new framework F?KB with the set of knowledge bases A. Instances are

sorted with respect to the number of arguments of FKB

Figure 4.4: Number of arguments for both the old framework FKB and the
new framework F?KB with the set of knowledge bases B. Instances are

sorted with respect to the number of arguments of FKB

103

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Figure 4.5: Number of attacks for both the old framework FKB and the
new framework F?KB with the set of knowledge bases A. Instances are

sorted with respect to the number of attacks of FKB

Figure 4.6: Number of attacks for both the old framework FKB and the
new framework F?KB with the set of knowledge bases B. Instances are

sorted with respect to the number of attacks of FKB

104

4.1. ARGUMENTATION HYPERGRAPHS WITH THE
EXISTENTIAL RULES LANGUAGE

and attacks in F? is less or equal to the number of arguments and
attacks in F (see also Figure 4.3, 4.4 and 4.5 and 4.6).

• When only the set of negative constraints is varying, the number of
arguments of F? seems to be unchanged whereas in F, it is varying.
Furthermore, the framework F seems much denser than F?. Indeed,
the median density1 of F is 26.34% and 31,03% whereas the median
density of F? is 4,69% and 0.02% on the sets A and B respectively.

The entire experiment was conducted on a Debian computer with an
Intel Xeon E5-1620 (3.60GHz) processor and 64GBs of RAM.

1The density is equal to the number of attacks divided by the maximum number of
possible attacks. In the case of a directed graph, the maximum number of attacks is given
by n(n − 1) where n is the number of nodes. In the case of F?, we use the formula in
Proposition 4.7 to obtain the maximum number of attacks.

105

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

4.2 The NAKED tool

In this section, we present NAKED, a tool for generating and visualising hy-
pergraph argumentation framework that uses knowledge bases expressed in
Dataloд± [Cal̀ı et al., 2009]. In the NAKED tool, we instantiate the frame-
work of Nielsen and Parsons [2007] which allows us to avoid the explosion
of the number of arguments while keeping all the desirable properties of the
previous argumentation framework (see the previous Section 4.1).

Classically, reasoning with argumentation graphs consists of either find-
ing extensions or ranking arguments from the most to the least acceptable.
As a result, most of the past work has been focused, amongst others, on
optimising the efficiency of the extension finding procedures [Gaggl, 2013;
Lagniez et al., 2015], on the investigation of various extension-based and
ranking-based notions [Baroni et al., 2011; Bonzon et al., 2016; Amgoud
and Ben-Naim, 2015] and on the investigation of desirable properties of
logic based instantiations [Amgoud, 2014; Modgil and Prakken, 2014].

There are few practical tools that allow to generate an argumentation
framework from a given knowledge base [Thimm, 2017; Yun et al., 2018c].
Furthermore, the few available tools for reasoning using argumentation over
inconsistent logical knowledge bases often suffer from on of the following
problems: (1) they do not allow further tool interoperability (allowing their
output argumentation graph to be loaded in other tools), (2) they do not
scale up for a practical use or (3) they only consider binary argumentation
frameworks. Our workflow enables any data engineer to:

1. input a knowledge base in the well-known DLGP format for Dataloд±
and generate an argumentation hypergraph that instantiates the frame-
work of Nielsen and Parsons [2007] and outputs a visualisation (see
Figure 4.7 for an example of hypergraph visualisation).

2. interact with the graph representation by allowing manual arguments
re-positioning. Moreover, the end-user has the possibility to observe a
specific argument by highlighting the corresponding argument and its
attackers in different colours.

3. exporting the generated argumentation hypergraph in the DOT format
for a better tool interoperability.

All of these functions are useful for a non computer science expert who
wants to reason over an inconsistent knowledge base in a particular domain
using argumentation [Arioua et al., 2016; Tamani et al., 2014a,b]. NAKED
could also be useful for investigating the theoretical properties of the graph-
based representation of the generated argumentation framework in the same
fashion as Yun et al. [2017b] and Arioua et al. [2017]. Given the fact that
certain graph theoretical properties could radically improve the extension

106

4.2. THE NAKED TOOL

Figure 4.7: An argumentation hypergraph about packagings.

computation efficiency [Yun et al., 2017b] such visualisation is a useful tool
for argumentation specialists. A presentation video explaining all of the fea-
tures of NAKED is available online at: https://youtu.be/q54iNWBZ9dY.
NAKED is meant to assist domain experts and argumentation developers in
the specification, visualisation and/or export of logic based argumentation
frameworks built over the Dataloд± language.

This section is structured as follows. In Section 4.2.1, we describe the
different steps and mechanisms of the arguments and attacks generation in
NAKED. In Section 4.2.2, we describe the main visual areas of the NAKED
tool and how argumentation hypergraph are represented. In Section 4.2.3,
we show two real-life scenarios of the usage of NAKED.

4.2.1 The argument and attack generation

In this section, we show how NAKED allows for the generation of arguments
and attacks. As shown in Section 4.1, the arguments are built upon each
other based on how rules can be applied. In a sense, the arguments can
be seen as pieces of rule derivations. Thus, in order to generate all of the
arguments that conclude a given fact, we need to extract all the possible
derivations for this specific fact. Without a sound a complete derivation
extraction mechanism, we will not be able to generate all the arguments.
The most common chases such as the frontier/skolem chase or the oblivious
chase all possess a derivation reducer in order for the chase to stop. However,

107

https://youtu.be/q54iNWBZ9dY

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

those derivation reducers might induce a loss of rule applications depending
on the order in which the rules are applied. Although this loss of derivations
has no effect for the classical entailment, it has critical consequences for
the generation of arguments. In order to fix this derivation loss problem,
Hecham et al. [2017b] provides the Graph of Atom Dependency (GAD)
which is constructed alongside a chase. This GAD is constructed differently
depending on the choice of the chase [Hecham et al., 2017a]. Moreover,
the GAD allows for the extraction of all the derivations for any given fact.
Against this background, the generation of the GAD is necessary for the
generation of arguments. Let KB = (F,R,N) be an arbitrary inconsistent
knowledge base, we show the four step process that leads to the generation
of the argumentation framework F?KB:

1. First, the graph of atom dependency (GAD) of the knowledge base KB

is constructed alongside the chase. Here, the GAD is a specific edge-
labeled directed hypergraph where nodes are atoms of SatR∪N (F) and
the hyperedges represent the different rule applications (see [Hecham
et al., 2017a] for more details).

2. Second, we recursively build the arguments in A ? by parsing the
derivations of the GAD of KB and filter arguments with inconsistent
premises (see Definition 4.2 on page 93).

3. Third, the set of repairs of KB are computed. Although this step is
arduous, one can find more efficient approaches than the naive method.
We compute the minimal inconsistent sets of KB using the GAD and
use efficient algorithms from graph theory to calculate the repairs from
the minimal inconsistent sets.

4. Fourth, for each repair R, we compute the set of arguments Arд?(R).
As we know that there are no attacks from a subset of Arд?(R) to
an argument of Arд?(R), we only compute attacks from a subset of
Arд?(R) to an argument of A ? \Arд?(R).

4.2.2 The structure of NAKED

In this section, we introduce the three main areas of the NAKED interface
(see Figure 4.9):

• Area 1 (the blue area): In this area, the user can input an incon-
sistent knowledge base KB = (F,R,N) in the DLGP format [Baget
et al., 2015b]. This format can accommodate existential rules (and
other constructs that can be seen as special kinds of existential rules:
facts, negative constraints and conjunctive queries). Once the knowl-
edge base is specified, the user can launch the graph generation by
pressing the “Compute” button.

108

4.2. THE NAKED TOOL

• Area 2 (the red area): In this area, the argumentation hypergraph
F?KB = (A ?,R?) is automatically displayed and laid out. The square
nodes represent arguments in A ? whereas round black nodes repre-
sent the hyperedges in R?. In our visualisation, we decided to group
attacks that originate from the same set of attacking arguments, i.e.
each round black node represents a maximal group of hyperedges in
R? that have the same set of attacking arguments S. Thus, for each
round black node, there is a unique set of attacking arguments S and
each argument in S is linked to the round black node with an undi-
rected black edge. Each of the grey directed edge from a round black
node to an argument node a represents the attack (S,a) ∈ R?. This is
explained in Example 4.8.

Example 4.8 (Hyperedge representation). In Figure 4.8, the set
of attacking arguments associated with the round black node is S ={A1,A0}. There are two outgoing grey edges form the round black node
to A2 and A3, thus the two corresponding attacks in R? are (S,A2) and
(S,A0).

Figure 4.8: Representation of hyperedges in NAKED

Moreover, each node can be individually moved and repositioned by
doing a drag and drop gesture.

• Area 3 (the green area): This area is used for textually observing
the graph and exporting it to other formats. There are five tabs:

– In the “Arguments & Attacks” tab, the user can retrieve the list
of arguments and attacks as well as their meaning.

– In the “Observer” tab, the user can highlight a particular argu-
ment and its attackers as well as retrieve the list of the argument’s
attackers (see Figure 4.10)

– In the “Repairs” tab, the user can find the list of maximal con-
sistent set of facts (repairs) of the knowledge base.

109

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Figure 4.9: Representation of the areas of interest in NAKED

– In the “Log” tab, the user can find the history of the interactions
with the system, errors, feedbacks, etc.

– In the “Dot Representation” tab, the user find the graph in the
DOT format.

4.2.3 Usability scenarios

We consider two usability scenarios of NAKED.

Scenario 1 First, we consider the task of a non computer science specialist
inputting an inconsistent knowledge base of his or her expertise and wanting
to find the maximally consistent point of views one can consider with respect
to a given knowledge base. Please note that tools for assisting non domain
experts in building such knowledge bases without computer expertise exists
[Chein and Mugnier, 2009]. Finding maximally consistent point of views
(or repairs) consists in computing all maximal subsets of facts that do not
trigger any negative constraints of the knowledge base. NAKED will not
only be able to provide the list of repairs but also highlight why a given fact
does not belong to a specific repair using the observer tab.

Scenario 2 Second, we consider the task of an argumentation expert that
wants to generate argumentation hypergraphs for benchmarking purposing.

110

4.2. THE NAKED TOOL

Figure 4.10: Argument highlight feature in NAKED

111

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

Although efficient algorithms that compute extensions exists for argumenta-
tion hypergraphs [Nielsen and Parsons, 2006], there is a lack of such graphs.
Our tool provides a DOT format output which enables interoperability with
many graph tools.

4.3 Summary

In this chapter, we presented a new hypergraph argumentation framework
for the inconsistent knowledge bases expressed in the existential rules lan-
guage. We showed that the instantiation of this argumentation framework
possesses good properties and is semantically equivalent to the previous de-
ductive argumentation framework while having less arguments and attacks.
This new framework is a solution that effectively tackles the problem of
the exponential growth of the argumentation framework that the previous
deductive argumentation framework possessed.

Moreover, we provided the NAKED tool for generating, visualising and
exporting such hypergraph argumentation frameworks in an intuitive way.
This tool is useful for both argumentation experts that want to generate
argumentation graphs for benchmarking purposes and for non computer
science specialists that want to model a specific inconsistent knowledge base.
For the later, the NAKED tool is specially useful as it can highlight the
conflicts in the knowledge base by putting an argument and its attackers in
the foreground.

In the next chapter, we focus on the benefits that ranking-based rea-
soning can yield not only in the context of argumentation but also in the
more general setting of knowledge representation and reasoning for query
answering by introducing novel frameworks.

Chapter 4 in a Nutshell

• We proposed a hypergraph argumentation framework for the
existential rules language and showed that it possesses many
desirable properties (rationality postulates and structural re-
sults). We conducted an experiment and showed that this new
framework is more efficient than the old deductive framework.

• NAKED is an implementation of the hypergraph argumenta-
tion framework for Dataloд± and is the first tool that allows
the generation, the visualisation and the exportation of such
argumentation graphs.

112

5
Ranking-Based Reasoning

5.1 Ranking with existential rules deductive argumenta-
tion framework . 116

5.1.1 Core equivalence 117

5.1.2 Characterising ranking changes 126

5.2 Ranking-based semantics with argumentation hyper-
graphs . 131

5.2.1 Properties for ranking-based semantics on hyper-
graphs . 132

5.2.2 The nh-categoriser 136

5.3 Ranking facts in inconsistent knowledge bases 142

5.3.1 The ranking-based inference framework 143

5.3.2 RIF results . 148

5.4 Summary . 155

In the argumentation theory, the standard approach consists in using
extension-based semantics [Baroni et al., 2011; Dung, 1995] aimed at eval-
uating which arguments can be accepted together. These semantics return
subsets of arguments (called extensions) that can be used to evaluate the ac-
ceptability of arguments in a ternary way by checking whether an argument
belongs to one, all or no extensions with respect to a particular argumen-
tation semantics. However, this restricted gradation has been criticised as
lacking for some applications such as online debates [Leite and Martins, 2011]
or decision-making tools (an example can be found in the introduction of
Chapter 2 in the thesis of Delobelle [2017]). That is why another approach,
called ranking-based semantics, based on ranking arguments according to
their acceptability was introduced.

Ranking-based semantics have been extensively studied by a large amount
of researchers [Pereira et al., 2011; Amgoud and Ben-Naim, 2015; Gabbay
and Rodrigues, 2015; Baroni et al., 2015; Amgoud et al., 2016; Amgoud
and Ben-Naim, 2013; Bonzon et al., 2016; Rago et al., 2016; Yun et al.,
2017a]. New semantics are being introduced, as well as the principles they
should satisfy. One of the main reasons of their popularity is that they offer
a finer evaluation than extension-based semantics [Dung, 1995; Caminada
et al., 2012; Baroni et al., 2011; Caminada, 2007]. To put it in a nutshell,

113

CHAPTER 5. RANKING-BASED REASONING

classical argumentation semantics consider sets of arguments (extensions)
whereas ranking-based semantics work at the level of individual arguments.
Although these two approaches may seem distinct, they both give different
details and insights on the underlying argumentation framework that they
are applied on.

Among the many uses of ranking-based semantics in logic-based argu-
mentation, Amgoud and Ben-Naim [2015] introduced the Argumentation-
based Ranking Logics (ARL) as a framework for ranking conclusions of
arguments using ranking-based semantics. However, the original work by
Amgoud and Ben-Naim [2015] is only defined for argumentation frameworks
without redundancies as these redundancies may “mislead the argumenta-
tion graph by creating more attacks and arguments” [Amgoud et al., 2014].
We argue that redundancies are an important part of real-life knowledge
bases and interest ourselves into studying how much these redundancies can
impact the ranking on conclusions of arguments returned. Moreover, our
study will cover the behaviour of ranking-based semantics in the presence of
redundant knowledge and how their removal (with the use of cores) impacts
the ranking on facts returned.

Next, in the same fashion as works in the literature have extended
ranking-based semantics to other particular binary argumentation frame-
works such as weighted argumentation frameworks [Amgoud et al., 2017],
support argumentation frameworks [Amgoud and Ben-Naim, 2016] or bipo-
lar argumentation frameworks [Amgoud et al., 2008], we extended ranking-
based semantics to the special case of hypergraph argumentation frame-
works. We show that ranking-based semantics can also be applied to this
type of argumentation frameworks by providing both desirable properties
that these semantics should satisfy and the first ranking-based semantics
called nh-categoriser for argumentation hypergraphs.

Lastly, inspiring ourselves from the frameworks defined by Bonzon et al.
[2018], Konieczny et al. [2015] and Yun et al. [2018h], that use a ranking
method and an aggregation function to obtain a ranking on sets of argu-
ments, we propose a new framework for ranking repairs in the OBDA setting.
This new framework shows that the ranking on the facts of an inconsistent
knowledge base, obtained by computing the contribution of each fact in the
intrinsic conflicts of the knowledge base, can be used to rank and improve
the set of repairs of the knowledge base. We show in a real-life use-case how
this framework can be useful in the context of the food industry and help
professionals in ranking packaging alternatives.

The chapter is organized as follows: In Section 5.1, we focus on ranking-
based reasoning with argumentation frameworks in the context of logic-
based argumentation and we study the effect on redundancies on the rank-
ings of argument conclusions. In Section 5.2, we extend the notion of
ranking-based semantics for hypergraph argumentation frameworks by in-
troducing both desirable properties that such semantics should satisfy and

114

the first ranking-based semantics for argumentation hypergraphs. In Section
5.3, we show how to improve the set of repairs with inconsistency values for
query answering in the presence of inconsistencies.

Research Questions in this Chapter

• What is the impact of redundancies on the rankings returned
by ranking-based semantics?

• What are the properties that a ranking-based semantics for hy-
pergraph argumentation frameworks should satisfy? Is there a
semantics satisfying those properties?

• How can we rank repairs of a knowledge base without external
information?

115

CHAPTER 5. RANKING-BASED REASONING

5.1 Ranking with existential rules deductive argumen-
tation framework

In the rest of this section, we do not follow the extension-based argumen-
tation semantics but we focus on the effect of ranking-based semantics, in
the setting of logic based argumentation. In the context of logic-based argu-
mentation, arguments are sometimes based upon equivalent and redundant
data. Cores are notions introduced by Amgoud et al. [2014] that delete such
arguments. We investigate two different notions of core in such a logically in-
stantiated argumentation framework that will remove redundant arguments
and attacks in a different manner. We then ask the following research ques-
tion:

“Will the manner of defining the core of a logically instantiated
argumentation framework affect the ranking output of

ranking-based semantics?”

Our initial intuition was that the answer was negative, since the core
of an argumentation framework is supposed to return an equivalent, but
smaller, argumentation framework. Surprisingly, the answer is positive. We
give an example of such a change using one particular ranking-based se-
mantics and show why this change happens. Our contribution is thus not
only to uncover this unexpected behaviour but also to investigate some of
its reasons. The salient points of this section are :

• The first investigation of ranking-based semantics in the first-order
logic fragment of existential rules.

• The study of several notions of core in logical argumentation frame-
work and the proof of their equivalences and properties.

• The first characterisation of core-induced ranking modifications of se-
mantics satisfying postulates from Amgoud and Ben-Naim [2013] and
Bonzon et al. [2016].

The core is a notion introduced by Amgoud et al. [2014] that enables
to simplify logically instantiated argumentation frameworks without losing
data. In this section we will use two notions of core initially defined by
Amgoud et al. [2014] and we will adapt them to the logical instantiation
using existential rules of this thesis. We give an example of how the two core
notions yield argumentation frameworks with significantly less arguments for
the same logical output and prove two new key results that extend the state-
of-the-art. First, we give the relation between the base of the two cores for
existential rules instantiated argumentation frameworks. Second, we show
how the two cores can be obtained from each other.

116

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

5.1.1 Core equivalence

The notion of core relies on the notion of equivalence of formulae, arguments
and, subsequently, of induced argumentation frameworks. To define the
notion of core we first need to define the notion of equivalence of formulae.
Adapting the work of Amgoud et al. [2014] for existential rules, two facts are
equivalent if the sets given by the closure1 of each fact are equal. Similarly,
we say that two sets of facts are equal if, for each fact in every set, we can
find an equivalent fact in the other set.

Definition 5.1 (Equivalent facts or sets of facts). Let f1, f2 be two
facts and F1, F2 be two sets of facts. We say that:

• f1 and f2 are equivalent (f1 � f2) if and only if SatR ({f1}) ≡ SatR ({f2}).
• F1 and F2 are equivalent (F1 � F2) if and only if for every f ∈ F1,

there exists f ′ ∈ F2 such that f � f ′ and for every f ∈ F2, there exists
f ′ ∈ F1 such that f � f ′. We have that F1 � F2 otherwise.

Please note that in the first item of Definition 5.1, the ≡ notation refers
to the logical equivalence defined in Definition 2.4 on page 16.

Example 5.1 (Equivalent facts). Let us consider the inconsistent knowl-
edge base KB = (F,R,N) expressing the fact that we cannot have a cat, a
mouse and a turtle at the same time, cats are pussycats (and conversely,
pussycats are cats), cats and mouses are mammals, Tom is a cat, Tom is a
pussycat, Jerry is a mouse and John is a turtle.

• F = {pussycat (tom), cat (tom),mouse (jerry), turtle (john)}.

• R = {∀X (cat (X) → pussycat (X)),
∀X (pussycat (X) → cat (X)),
∀X (cat (X) →mammal (X)),
∀X (mouse (X) →mammal (X))}.

• N = {∀X ,Y ,Z (cat (X) ∧mouse (Y) ∧ turtle (Z) → ⊥)}.

We have that pussycat (tom) � cat (tom) since SatR ({pussycat (tom)}) =
SatR ({cat (tom)}) = {cat (tom),pussycat (tom),mammal (tom)}.

Using the equivalence of formulae from Definition 5.1 and inspiring our-
selves from the work of Amgoud et al. [2014], we can now define the notion
of equivalence between arguments. We will consider two equivalence rela-
tions. The first one (./1) considers two arguments as being equivalent if

1In the following we consider that the rule application is using the restricted chase which
does not consider redundant new facts generated by each step of the rule application (see
more details in the work of Baget et al. [2014b]).

117

CHAPTER 5. RANKING-BASED REASONING

they have equal supports and equivalent conclusions. The second one (./2)
considers two arguments as being equivalent if they have equivalent supports
and equivalent conclusions. Note that if there are two arguments a and a′

such that a ./1 a
′ then obviously a ./2 a

′.

Definition 5.2 (Arguments equivalence [Amgoud et al., 2014]). Let
a and a′ be two arguments. We have:

• a ./1 a
′ if and only if Supp (a) = Supp (a′) and Conc (a) � Conc (a′).

• a ./2 a
′ if and only if Supp (a) � Supp (a′) and Conc (a) � Conc (a′).

Example 5.2 (Example 5.1 cont’d). Let us consider the argumenta-
tion framework FKB = (A ,R) such that the arguments of A are repre-
sented in Table 5.1. We have that a13 6./1 a1 whereas a13 ./2 a1 where
a13 = ({cat (tom)}, {cat (tom)}) and a1 = ({pussycat (tom)}, {pussycat (tom)}).

We can note that if there is an attack between two arguments, they are
not equivalent.

Proposition 5.1 (Attacked non equivalence). Let F = (A ,R) be an
argumentation framework and a,a′ ∈ A . If (a,a′) ∈ R then a 6./1 a′ and
a 6./2 a

′.

Before we can define the notion of core, we first need to give the notions of
equivalence relation, equivalence class and the set of all possible equivalence
classes.

Definition 5.3 (Equivalence classes). If X is a set of elements, ./ an
equivalence relation on X and x ∈ X , then x̄./ = {x ′ ∈ X |x ′ ./ x}. We say
that x̄./ is the equivalence class of an element x for equivalence relation ./.
The set of all possible equivalence classes will be denoted by X/ ./ = {x̄./ |x ∈
X}. Note that for readability purposes, we will sometimes denote x̄./ by x̄
whenever the equivalence relation is obvious.

We are now ready to define the notion of core of a logical argumentation
framework. A core of an argumentation system F = (A ,R) is an argumen-
tation system that can be seen as a particular subgraph F′ = (A ′,R ′) of
F. There are three restrictions. First, A ′ must obviously be a subset of
the set of arguments A . Second, for a given equivalence relation ./ on the
arguments, there must be a unique argument in A ′ for each equivalence
class. Third, R ′ must be a restriction of R to A ′.

Definition 5.4 (Core [Amgoud et al., 2014]). Let F = (A ,R) and
F′ = (A ′,R ′) be two argumentation frameworks and ./ be an equivalence
relation on arguments. F′ is a core of F if and only if the three following
items are satisfied:

118

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

• A ′ ⊆ A

• for every G ∈ A / ./, there exists a unique a ∈ A such that a ∈ G ∩A ′

for the given equivalence relation ./.

• R ′ = R ∩ (A ′ ×A ′).

We denote by Core./ (F) the set of all cores of an argumentation framework
F for equivalence relation ./.

Note that since we consider two equivalence relations for arguments we
can naturally construct two sets of cores from an argumentation framework
F: Core./1 (F) that follows from the first equivalence relation and Core./2 (F)
that follows from the second.

Example 5.3 (Example 5.2 cont’d). We are interested in which argu-
ments are contained in two different cores. Table 5.1 has five columns. The
first three columns represents an example of 20 arguments (out of 75) that
can be constructed over the knowledge base of Example 5.1 along with their
respective supports and conclusions. The last two columns show whether the
20 arguments belong or not to two examples of cores c1 and c2. The two ex-
amples of cores have been constructed using respectively the first and the sec-
ond equivalence relations: core c1 ∈ Core./1 (FKB) and core c2 ∈ Core./2 (FKB)
(such that it is included in Core./2 (c1), as it can be verified in Table 5.1).

The next section shows properties of the two types of cores obtained
from the two equivalence relations ./1 and ./2.

5.1.1.1 Core equivalence properties

Let us first summarise the theoretical results of this section. In Proposition
5.2, we show that the attack relation satisfies the properties defined by
Amgoud et al. [2014] which implies equivalences between the argumentation
framework and any of its cores. In Proposition 5.3, we show that it is useless
to employ a more restrictive equivalence relation once a core has already been
obtained using a less restrictive equivalence relation. In Proposition 5.4, we
show that all cores constructed using ./2 can be constructed using specific
cores of ./1 on which we compute a core using ./2. This basically means
that we can bypass the core constructed with ./1 when we are interested by
a less restrictive relation such as ./2. Proposition 5.3 and Proposition 5.4
combined provide an important result as it will allow us not to be concerned
about the order of applying cores on the argumentation framework.

According to the work of Amgoud et al. [2014], there are two properties
(C1b and C2b) that are desirable for an attack relation. The first prop-
erty states that two arguments with equivalent conclusions should attack
the same arguments. The second property states that two arguments with

119

CHAPTER 5. RANKING-BASED REASONING

Name Support Conclusion c1 c2

a1 {P} {P} X X

a2 {P} {MT } X X

a3 {M} {M} X X

a4 {M} {M J } X X

a5 {T} {T} X X

a6 {P ,M} {P ,M} X X

a7 {P ,M} {MT ,M} X X

a8 {P ,M} {P ,M J } X X

a9 {P ,M} {MT ,M J } X X

a10 {P ,T} {P ,T} X X

a11 {P ,T} {MT ,T} X X

a12 {T ,M} {T ,M} X X

a13 {C} {C} X

a14 {C} {MT } X

a15 {C,M} {C,M} X

a16 {C,M} {MT ,M} X

a17 {C,M} {C,M J } X

a18 {C,M} {MT ,M J } X

a19 {C,T} {C,T} X

a20 {C,T} {MT ,T} X

Acronym Meaning

C cat (tom)

M J mammal (jerry)

MT mammal (tom)

M mouse (jerry)

P pussycat (tom)

T turtle (john)

Table 5.1: Some arguments constructed from the knowledge base of
Example 5.12 and two particular cores obtained using ./1 and ./2.

equivalent supports should be attacked by the same arguments. In the next
proposition, we show that the attack relation considered in this section re-
spects both properties.

120

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

Proposition 5.2 (Attackers equivalence). Let FKB = (A ,R) be a logical
argumentation framework such that A is the set of arguments defined in
Definition 3.1 and R is the set of attacks defined according to Definition
3.2. R enjoys both of the following properties:

1. C1b : for every a,b, c ∈ A , if Conc (a) � Conc (b) then ((a, c) ∈ R if and
only if (b, c) ∈ R).

2. C2b : for every a,b, c ∈ A , if Supp (a) � Supp (b) then ((c,a) ∈ R if and
only if (c,b) ∈ R).

Please see Section 7.2.3 on page xii for the proof of Proposition 5.2.

a1

a2

a3

a4

a5
a6a7

a8

a9

a10

a11

a12

a13

a14
a15 a16

a17

a18

a19

a20

Figure 5.1: Representation of the core c1 of FKB using ./1 and displayed in
Table 5.1

A natural question one can ask at this point is whether the order of
applying the cores matters. That is to say: “Is it possible to first compute a
core for a particular equivalence relation and then use it to compute another
core?” To answer this question, we provide two main results. The first
proposition shows that applying a more restrictive equivalence relation than
the one used to compute a core does not change this core. We begin by
defining the notion of less restrictive equivalence relation and follow with
the proposition.

121

CHAPTER 5. RANKING-BASED REASONING

a1

a2

a3

a4
a5

a6

a7

a8

a9
a10

a11

a12

Figure 5.2: Representation of the core c2 of FKB using ./2 and displayed in
Table 5.1

Definition 5.5 (More restrictive equivalence relation). Let ./ and ./′

be two equivalence relation on a set of elements X , we say that ./ is more
restrictive than ./′ (and thus, ./′ is less restrictive than ./) if and only if for
every x ,x ′ ∈ X such that x ./ x ′, it holds that x ./′ x ′.

A trivial result is that a more restrictive equivalence relation means
that less arguments are equivalent. Likewise, a less restrictive equivalence
relation will have more equivalent arguments and thus filter more arguments.

Proposition 5.3 (No filtration result). Let F be an argumentation frame-
work and ./, ./′ be two equivalence relation such that ./ is more restrictive
than ./′. It holds that:

for every c ′ ∈ Core./′ (F),Core./ (c
′) = {c ′}

Proof. Suppose that we have for every a,a′ ∈ A , it holds that if a ./ a′ then
a ./′ a′. Now, let us consider c ′ = (Ac ′,Rc ′) ∈ Core./′ (F) and c = (Ac ,Rc) ∈
Core./ (c

′). We denote by X the set such that Ac ′ = X ∪Ac and X ∩Ac = ∅.
If X , ∅, it means that there exists b ∈ X and b ′ ∈ Ac such that b 6./′ b ′ and
b ./ b ′, contradiction. It follows that X = ∅ and that c ′ is the only core of
Core./ (c

′). �

122

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

We now prove that the set of cores of an argumentation framework F
obtained using the equivalence relation ./2 is equal to the set of cores that
are built on cores of F using ./1.

Proposition 5.4 (Core construction equivalence). Let F = (A ,R) be
an argumentation framework and ./1, ./2 be the equivalence relations defined
in Definition 5.2. It holds that:

Core./2 (F) =
⋃

c1∈Core./1 (F)

Core./2 (c1)

Please refer to Section 7.2.3 on page xiii for the complete proof of Propo-
sition 5.4. From Proposition 5.3 and Proposition 5.4, the next proposition
holds.

Proposition 5.5 (Symmetric construction equivalence). Let F be an
arbitrary argumentation framework and ./1, ./2 be the equivalence relations
defined in Definition 5.2. It holds that:⋃

c2∈Core./2 (F)

Core./1 (c2) =
⋃

c1∈Core./1 (F)

Core./2 (c1)

Proposition 5.5 is important for the next section that characterises rank-
ing changes induced by cores as it tells us that if we are only concerned by
./2-induced ranking changes, we can bypass the core obtained via ./1.

5.1.1.2 Rankings on different cores

Now that we have investigated the notions of core for an argumentation
framework, we can study how ranking-based semantics behave on them. In
the work of Amgoud and Ben-Naim [2015], the authors define the notion of
Argumentation-based Ranking Logic (ARL) that takes a knowledge base as
input and, using ranking-based semantics on the instantiated argumentation
graph, provides a ranking of the formulae of the knowledge base. In the
following we adapt their results and provide the corresponding existential
rules argumentation-based ranking logic. The extension we provide is two
fold. First we consider the existential rules framework for instantiation.
Second, we take into account the notion of core in the reasoning mechanism.
The new process is composed of four steps:

1. First, an argumentation framework is instantiated from a knowledge
base KB = (F,R,N) (see Example 5.12 for the knowledge base consid-
ered as example throughout this section).

123

CHAPTER 5. RANKING-BASED REASONING

2. Second, a core c constructed using an equivalence relation is consid-
ered (see Table 5.1 for two examples of cores on the knowledge base
from Example 5.12 considering the two equivalence relations defined
in Definition 5.2, and Figures 5.1 and 5.2 for the visual depiction of
the cores as graphs).

3. Third, the arguments of c are ranked using a ranking-based semantics
σ2 (see Table 5.2 and Table 5.3 for the ranking of the arguments of
the two cores from Figures 5.1 and 5.2 and Table 5.1 outputted by the
burden-based and discussion-based ranking-based semantics [Amgoud
and Ben-Naim, 2013]).

4. Finally, their conclusions are ranked following a simple principle: a
conclusion is ranked higher than another conclusion if it is supported
by an argument which is ranked higher than any argument supporting
the second conclusion (see Table 5.4 and Table 5.5).

x

a1,a2,a13,a14

a3,a4,a5

a6,a7,a8,a9,a10,a11,a15,a16,a17,a18,a19,a20

a12

x

Table 5.2: Ranking on arguments of c1 using the burden-based (and
discussion-based) ranking-based semanticsx

a1,a2,a3,a4,a5

a6,a7,a8,a9,a10,a11,a12

x

Table 5.3: Ranking on arguments of c2 using the burden-based (and
discussion-based) ranking-based semantics

Before commenting on the results of ranking on the knowledge base,
let us first define the ARL for existential rules. The definition that we
provide is inspired by the work of Amgoud and Ben-Naim [2015] adapted
for existential rules and the notion of core. We recall that the ranking on
arguments resulting from a ranking-based semantics σ on an argumentation
framework F will be denoted by �σ

F
or simply by � if there is no ambiguity.

For two arguments a,b ∈ A , the notation a � b means that b is at least as
acceptable as a.

Definition 5.6 (Existential rules ARL). An existential rules ARL is a
tuple:

ARL = (KB,F, c,σ ,K ,C′)

2We recall that ranking-based semantics are defined in Definition 2.51 on page 40.

124

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORKx

{P}, {MT }, {C}
{M}, {M J }, {T}

{P ,M}, {MT ,M}, {P ,M J }, {MT ,M J }, {P ,T}, {MT ,T}, {C,M}, {C,M J }, {C,T}
{T ,M}

x

Table 5.4: Ranking K using the ranking on arguments of Table 5.2x

{P}, {MT }, {C},{M}, {M J }, {T}
{P ,M}, {MT ,M}, {P ,M J }, {MT ,M J }, {P ,T}, {MT ,T}, {C,M}, {C,M J }, {C,T}, {T ,M}

x

Table 5.5: Ranking K using the ranking on arguments of Table 5.3

where KB is an inconsistent knowledge base, F is the instantiated argumen-
tation framework (this may be omitted if the instantiation used is clear),
c = (A ′,R ′) is the chosen core of F for a given equivalence relation ./, σ is
a ranking-based semantics and K ,C′ are defined as follows:

• for every X ⊆ F,C′(X) = {Y | there exists a ∈ A ′ ∩ Arд(X) such that
Conc (a) � Y}, i.e. C′(X) is the set of equivalent sets of facts that can
be concluded by arguments of c constructed on subsets of X .

• for every X ⊆ F and for every Y ,Z ∈ C′(X), (Y ,Z) ∈ K (X) if and only if
there exists a,b ∈ A ′ ∩Arд(X) such that Conc (a) � Y ,Conc (b) � Z and
a �σc b. K (X) corresponds to a ranking on elements of C′(X) obtained
via the ranking of arguments σ on c.

Note that the equivalence relation is absent from ARL because the core
is already given. Let us now show by the means of an example that the
ranking-based semantics considered (namely burden-based) is sensitive to
the notion of core and thus outputs different rankings for logically equivalent
argumentation graphs.

Example 5.4 (Example 5.1 cont’d). Let c1 (respectively c2) be the core
of FKB using equivalence relation ./1 (respectively ./2). The argumentation
graph of c1 (respectively c2) is represented in Figure 5.1 (respectively Figure
5.2). The ranking on arguments of c1 (respectively c2) computed with the
burden-based ranking-based semantics is given in Table 5.2 (respectively Ta-
ble 5.3). Finally, the ranking of conclusions is computed and displayed in
Table 5.4 (respectively Table 5.5). Note that in this example, the discussion-
based ranking-based semantics gives the same ranking.

This example shows that, surprisingly, a core does not always have the
same ranking as the original argumentation framework (since c1 and c2 have
different rankings). For instance, a1 is ranked higher than a3 for c1 (Table
5.2) but a1 is ranked equal to a3 for c2 (Table 5.3). This change in the

125

CHAPTER 5. RANKING-BASED REASONING

ranking of arguments is significant as it impacts the ranking of their conclu-
sions. Hence, the atom cat (tom) which was ranked higher than mouse (jerry)
and turtle (john) (Table 5.4) is now ranked equal to them (Table 5.5). This
is caused by the existence of equivalences (here, cat (tom) is equivalent to
pussycat (tom)) in the knowledge base. In fact, these equivalences generate
redundant attacks between arguments that decrease the ranking of other ar-
guments. That is why, by deleting redundancy in cores, we can observe that
the ranking of some arguments is modified.

Hence, the chosen equivalence relation also plays a role in the ranking
(as we have different rankings for the two cores). The next subsection in-
vestigates the reasons for such a behaviour.

5.1.2 Characterising ranking changes

In the rest of this section, we consider an argumentation framework and one
of its cores constructed either using ./1 or ./2. We give a necessary and suffi-
cient condition for obtaining an equal (with respect to the set of arguments)
./1 and ./2 induced core from its original argumentation framework. Then,
for those argumentation frameworks where the induced core is different,
we provide sufficient conditions for characterising the difference between the
ranking of the core and the one of its original argumentation framework.
More precisely:

1. We provide a sufficient condition for an argument’s rank to in-
crease in the induced core. The new ranking of these arguments is
further characterised by a sufficient condition on their respective po-
sitions. This is done via the CP postulate characterisation.

2. We provide a sufficient condition for an argument’s rank to remain
unchanged in the induced core. This is done via the NaE postulate
characterisation.

3. Last, we provide a sufficient condition for an argument’s rank to
decrease in the induced core. This is done via the CP and SCT pos-
tulates characterisation.

Identity of induced core. We begin by introducing the notation needed
for the rest of this section.

Definition 5.7 (Different core). Let us consider an argumentation frame-
work F = (A ,R) and one of its cores c = (A ′,R ′) with respect to an equiv-
alence relation, we denote by Xc (or X if the core is obvious) the set of
arguments that have been deleted, namely A = A ′ ∪ Xc and Xc ∩ A ′ = ∅.
If Xc , ∅ then the core is said to be different from F, otherwise it is not
different from F.

126

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

The next proposition gives a necessary and sufficient condition for all
cores using ./1 of an argumentation framework F to be not different from F.

Proposition 5.6 (Not different core characterisation ./1). Let KB =

(F,R,N) be a knowledge base and FKB be the corresponding argumentation
framework. We have that Core./1 (FKB) = {FKB} if and only if for every R-
consistent subset Y of F, there are no y1,y2 such that SatR (Y) |= y1, SatR (Y) |=
y2, y1 , y2 and y1 � y2.

Please refer to Section 7.2.3 on page xiv for the proof of Proposition 5.6.
Similarly, we show a necessary and sufficient condition for all core using

./2 of an argumentation framework F to be no different than F.

Proposition 5.7 (Not different cores characterisation ./2). Let KB =

(F,R,N) be a knowledge base and FKB be the corresponding argumentation
framework. We have Core./2 (FKB) = {FKB} if and only if both the two
following items are satisfied:

• there are no f1, f2 ∈ F such that f1 � f2 and f1 , f2

• for every R-consistent subset Y ⊆ F, there are no y1,y2 such that
SatR (Y) |= y1, SatR (Y) |= y2,y1 , y2 and y1 � y2.

Please refer to Section 7.2.3 on page xiv for the proof of Proposition 5.7.

Rank increase. From now on, we consider an argumentation framework
F = (A ,R) and c ′ = (A ′,R ′), one of its cores for equivalence relation ./1
or ./2. An interesting property is that for each attack from an argument
removed by the core towards an argument of the core, we can find an attack
that comes from an argument of the core towards that same argument.

Proposition 5.8 (Attack equivalence). Let us consider F = (A ,R),
c ′ = (A ′,R ′) one of its cores for equivalence relation ./1 or ./2, E = {(a,b) ∈
R | a ∈ Xc ′ and b ∈ A ′} and E ′ = {W ⊆ R | W is maximal for set inclusion
such that for every (wi ,w j), (wk ,wl) ∈ W ,wi ./ wk ,w j = wl , {wi,wk} ⊆ Xc ′

and w j ,wl < Xc ′}.
The function f : R ′ → E ′, that associates to each attack (a′,b ′) ∈ R ′ a

set of attacks W ∈ E ′ such that for every (wi ,w j) ∈W ,wi ./ a
′ and w j = b ′,

is surjective.

Proof. Let us consider W ∈ E ′ and an element (wi ,w j) ∈ W . Then since c ′

is a core of F for ./1 (respectively ./2), we have that there exists a unique
z ∈ w̄i ./2 ∩A ′ (respectively w̄i ./1 ∩A ′). Then, using Proposition 5.2, we get
that (z,w j) ∈ R ′. �

This proposition means that the modification of the ranking is induced
mainly by a quantitative loss. We now introduce the notion of graph iso-
morphism which will be used to clone our argumentation frameworks.

127

CHAPTER 5. RANKING-BASED REASONING

Definition 5.8 (Isomorphism). Let G1,G2 be two directed graphs. Let
V (Gi) denote the set of vertices of Gi and E (Gi) the set of its arcs. We say
that γ : V (G1) → V (G2) is an isomorphism from G1 to G2 if and only if for
every (x ,y) ∈ E (G1), (γ (x),γ (y)) ∈ E (G2). For simplicity purposes, we will
also write G2 = γ (G1).

Using the previous Proposition 5.8, we can have a better understanding
as to why some arguments have better ranking in a core than in F with
some ranking-based semantics. The reason is because some arguments of
the core c ′ that have equivalent arguments in Xc ′ (with respect to ./2 or ./1)
have their attacks amplified by those arguments. Of course, depending on
the ranking-based semantics used, having more attackers does not always
mean that the ranking of the argument is worst. This concept corresponds
to the Cardinality Postulate (CP) postulate [Bonzon et al., 2016; Amgoud
and Ben-Naim, 2013].

Definition 5.9 (CP [Amgoud and Ben-Naim, 2013]). Let σ be a
ranking-based semantics and �σ

F
be the ranking obtained after applying σ

on F. We say that σ satisfies CP if and only if for every F = (A ,R) and
for every a,b ∈ A such that |Att− (a) | < |Att− (b) |, it holds that b �σ

F
a and

a �σ
F
b.

Note that the burden-based and the discussion-based ranking-based se-
mantics both satisfy the CP postulate [Amgoud and Ben-Naim, 2013].

We are now interested in the impact of arguments removed by a core on
arguments that belong to the core.

Definition 5.10 (Set of arguments attacked by filtrated arguments).
Let F be an argumentation framework and c ′ be one of its cores. We denote
by Jc ′ (or J if the core is obvious) the set of arguments of c ′ that have at
least one attacker that is equivalent to an argument in Xc ′. More precisely,
J = {a ∈ A ′ | there exists (e,a) ∈ R ′ and f ((e,a)) , ∅}, where f is the
function defined in Proposition 5.8.

Example 5.5. Let F = (A ,R) be an argumentation framework and c ′ =
(A ′,R ′) be a core of F for an equivalence relation. In this example depicted
in Figure 5.3, we have A = {a,b, c,d, e, i,д,h} and R = {(i,a), (д,a), (c,b), (d,b),
(e,b), (h,b)}. Suppose that ī = {i,д} and c̄ = {c,d, e}. The core c ′ is such
that A ′ = {a, i, c,b,h} and Jc ′ = {a,b}.

The next proposition states that every argument of the core that is
attacked by an argument equivalent to a deleted argument is ranked better
in the core.

Proposition 5.9 (Argument rank increase). Let F,F′ be two argumen-
tation frameworks, c ′ be a core of F with respect to an equivalence relation,
γ be an isomorphism such that F′ = F ⊕ γ (c ′) and σ be a ranking-based

128

5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE
ARGUMENTATION FRAMEWORK

b

b b

b

b

b

b

A

b

X

g i

h

e

d
ca

b

Figure 5.3: Representation of an argumentation framework F and one of
its cores c ′

semantics that satisfies CP . It holds that for every b ∈ Jc ′,b �
σ
F′
γ (b) and

γ (b) �σ
F′
b.

Proof. Let (a,b) be an attack of c ′ such that f ((a,b)) , ∅. It means that
there exists an argument a′ ∈ Xc ′ such that (a′,b) ∈ R. We thus have
|Att− (γ (b)) | < |Att− (b) | and since σ satisfies CP , b �σ

F′
γ (b) and γ (b) �σ

F′
b. �

In Proposition 5.9, we showed that some arguments of the core may be
ranked higher. We now proceed further in this direction by introducing a
sufficient condition for characterising the ranking of such arguments.

Proposition 5.10 (Rank characterisation). Let a,b ∈ J . If σ satisfies

CP and

|Att− (a) | −

∑
e ∈Att− (a)∩A ′

| f ((e,a)) |

<

|Att− (b) | −

∑
e ∈Att− (b)∩A ′

| f ((e,b)) |

then b �σc ′ a and a �σc ′ b.

Proof. We have for all arguments a in A ′, |Att− (a) |−
∑

e ∈Att− (a)∩A ′ | f ((e,a)) | =
|Att− (a) ∩A ′ |. Thus, we can say that |Att− (a) ∩A ′ | < |Att− (b) ∩A ′ |. Since
σ is a semantics that satisfy CP , b �σc ′ a and a �σc ′ b. �

Example 5.6 (Example 5.5 cont’d). We have that f ((i,a)) = {(д,a)},
f ((c,b)) = {(d,b), (e,b)} and f ((h,b)) = ∅. Thus, we can compute that
|Att− (a) |−

∑
e ∈Att− (a)∩A ′ | f ((e,a)) | = 1 and |Att− (b) |−

∑
e ∈Att− (b)∩A ′ | f ((e,b)) | =

4 − 2 = 2. We conclude that under a ranking-based semantics σ satisfying
CP , b �σc ′ a and a �σc ′ b.

Unchanged rank. We now give a sufficient condition for an argument to
keep the same rank. The basic notion behind this is that arguments that
are not attacked by others do not undergo a change in their rank. This is
true if the Non Attacked Equivalence (NaE) postulate is satisfied, namely if
all the non-attacked argument have the same rank.

129

CHAPTER 5. RANKING-BASED REASONING

Definition 5.11 (NaE [Amgoud and Ben-Naim, 2013]). We say that
a ranking-based semantics σ satisfies the NaE if and only if for every ar-
gumentation framework F = (A ,R) and for every a,b ∈ A such that
Att− (a) = Att− (b) = ∅, it holds that a �σ

F
b and b �σ

F
a.

Note that the burden-based, discussion-based, the h-categoriser [Besnard
and Hunter, 2001] and the Tuples [Cayrol and Lagasquie-Schiex, 2005] ranking-
based semantics satisfy the NaE postulate.

Proposition 5.11 (Unchanged non attacked arguments). Let F and
F′ be two argumentation frameworks, c ′ = (A ′,R ′) be a core of F, a ∈ A ′,
Att− (a) = ∅ and γ be an isomorphism such that F′ = F ⊕ γ (c ′). If σ is a
ranking-based semantics that satisfies NaE then a �σ

F′
γ (a) and γ (a) �σ

F′
a.

Proof. We know that the core c ′ has fewer arguments and attacks than F.
Thus, the argument a is not attacked in either c ′ or γ (c ′). Furthermore,
since σ satisfies NaE, γ (a) and a are equivalent. �

Rank decrease. In the next proposition, we introduce a sufficient condition
for an argument of the core to have its rank decreased. This condition holds
if the semantics used for the ranking satisfies the CP and Strict Counter
Transitivity (SCT) postulates. The SCT postulate specifies that if the at-
tackers of an argument b are at least as numerous and acceptable as those
of an argument a and either the attackers of b are strictly more numerous
or acceptable than those of a, then a is strictly more acceptable than b.

Definition 5.12 (SCT [Amgoud and Ben-Naim, 2013]). We say that
a ranking-based semantics σ satisfies SCT if and only if for every argumen-
tation framework F = (A ,R) and for every a,b ∈ A such that there is an in-
jective mapping д : Att− (a) → Att− (b) with for every a′ ∈ Att− (a),a′ �σ

F
д(a′)

and (|Att− (a) | < |Att− (b) | or there exists a′ ∈ Att− (a), a′ �σ
F
д(a′),д(a′) �σ

F
a′)

then b �σ
F
a and a �σ

F
b.

Note that the burden-based, discussion-based and the h-categoriser ranking-
based semantics satisfy the SCT postulate.

The idea behind the next proposition is that if an argument’s attackers
have their ranks increased, then its rank is reduced.

Proposition 5.12 (Argument rank decrease). Let F and F′ be two
argumentation frameworks, c ′ = (A ′,R ′) be a core of F for an arbitrary
equivalence relation, a be an argument of A ′ with a < Jc ′ and γ be an iso-
morphism such that F′ = F ⊕ γ (c ′). If σ is a semantics that satisfies CP and
SCT and Att− (a) ⊆ Jc ′ then γ (a) �σ

F′
a and a �σ

F′
γ (a).

Proof. Since a < Jc ′, we have that Att− (γ (a)) = {γ (a′) |a′ ∈ Att− (a)} and thus
|Att− (a) | = |Att− (γ (a)) |. Now, since Att− (a) ⊆ Jc ′, we have that for every
b ∈ Att− (b),b �σ

F′
γ (b) and γ (b) �σ

F′
b (using Proposition 5.9). Finally, using

the SCT postulate, we conclude that γ (a) �σ
F′

a and a �σ
F′
γ (a). �

130

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

5.2 Ranking-based semantics with argumentation hy-
pergraphs

As shown in the previous chapter, hypergraph argumentation frameworks
can be very useful in the context of logic-based argumentation. However, it
was not as extensively studied as its binary counterpart. Therefore, many
notions such as supports, preferences, weights or ranking-based semantics
have not been implemented yet for this framework. Against this background,
we thrive to generalise the ranking-based semantics for argumentation hyper-
graphs by (1) translating desirable properties for ranking-based semantics on
binary argumentation frameworks for hypergraph argumentation framework
and (2) defining the first ranking-based semantics for hypergraph argumen-
tation framework.

The structure of this section is as follows. In Section 5.2.1, we show
how the existing properties for ranking-based semantics can translate in the
context of hypergraph argumentation framework. In Section 5.2.2, we intro-
duce the nh-categoriser as the first ranking-based semantics for hypergraph
argumentation framework.

Example 5.7. In this section, we will consider the hypergraph argumenta-
tion framework F? = (A ?,R?) such that:

• A ? = {a,b, c,d, e}
• R? = {({d},a), ({b}, a), ({b}, c), ({b, e},d), ({d, c}, e), ({a, c}, e)}.

A ranking-based semantics σ? is a function that returns a ranking on
argument for every hypergraph argumentation framework.

Definition 5.13 (Ranking-based semantics σ?). A ranking-based se-
mantics σ? associates to any hypergraph argumentation framework F? =
(A ?,R?) a ranking �σ

?

F?
on A ? where �σ

?

F?
is a total preorder (reflexive and

transitive relation) on A ?. The notation a �σ
?

F?
b means that a is at least

as acceptable as b.

Notation 5.1. As usual, the notation a �σ
?

F?
b is used for a �σ

?

F?
b and

b �σ
?

F?
a. Likewise, we use a ≈σ

?

F?
b for a �σ

?

F?
b and b �σ

?

F?
a. By abuse of

notation, if S and S ′ are two sets of arguments, we write that S �σ
?

F?
S ′ if

and only if for every s ∈ S and every s ′ ∈ S ′, we have s �σ
?

F?
s ′. Let S be a set

in (2A ?
\ ∅) and σ? be a ranking-based semantics, the set minσ

?

F?
(S) is the

set {s ∈ S | for every s ′ ∈ S, s ′ �σ
?

F?
s}.

Definition 5.14 (Path). Let F? = (A ?,R?) ∈ KF? and a ∈ A ?. We say
that a sequence of attacks ((S1, t1), . . . , (Sn , tn)) is a path of size n from S1 to
a if and only if for every i ∈ {1, . . . ,n}, (Si , ti) ∈ R?, tn = a and for every
i ∈ {1, . . . ,n − 1}, it holds that ti ∈ Si+1.

131

CHAPTER 5. RANKING-BASED REASONING

Notation 5.2. Let F? = (A ?,R?) ∈ KF? , S ∈ 2A ?
and a ∈ A ?, we say that

S ∈ R?−
n (a) if and only if there exists a path of size n from S to a. We say

that S ∈ R?−
1 (a) is a direct attacker of a and S ∈ R?−

2 (a) is a direct defender
of a.

Example 5.8 (Example 5.7 cont’d). The sequence (({d},a), ({a, c}, e))
is a path of size 2 from {d} to e. Thus, {d} ∈ R?−

2 (e) and {d} is a direct
defender of e.

5.2.1 Properties for ranking-based semantics on hypergraphs

We first introduce the definition of an isomorphism between two argumen-
tation hypergraphs.

Definition 5.15 (Isomorphism). An isomorphism between two argumen-
tation hypergraphs F? = (A ?,R?) and F?′ = (A ?′,R?′) is a bijective func-
tion γ : A ? → A ?′ such that for every S ∈ 2A ?

and every a ∈ A ?, (S,a) ∈
R? if and only if ({γ (s) | s ∈ S},γ (a)) ∈ R?′. With a slight abuse of notation,
we will note F?′ = γ (F?).

In the rest of this section, we recall the properties for a ranking-based
semantics σ? that have been defined in the literature [Amgoud and Ben-
Naim, 2013; Bonzon et al., 2016] and we translate them for hypergraph
argumentation frameworks. We now begin with the properties that can be
translated straightforwardly.

The Abstraction property states that the name of the arguments should
not be taken into account for the ranking.

Property 5.1 (Abstraction). We say that σ? satisfies Abstraction if and
only if for any F?,F?′ ∈ KF? and isomorphism γ such that F?′ = γ (F?), we
have a �σ

?

F?
b if and only if γ (a) �σ

?

F?
′ γ (b)

The Independence property states that two arguments with no paths
connecting them should not influence each other.

Property 5.2 (Independence). We say that σ? satisfies Independence
if and only if for any F? = (A ?,R?),F?′ = (A ?′,R?′) in KF? such that
A ?∩A ?′ = ∅ and every a,b ∈ A ? we have a �σ

?

F?
b if and only if a �σ

?

F?⊕F?
′ b.

The Void precedence property states that non-attacked arguments should
be ranked higher than attacked arguments.

Property 5.3 (Void precedence). We say that σ? satisfies Void prece-
dence if and only if for any F? = (A ?,R?) ∈ KF? and a,b ∈ A ? such that
R?−

1 (a) = ∅ and R?−
1 (b) , ∅ we have a �σ

?

F?
b.

The Self-contradiction property states that self-contradicting arguments
should be ranked lower than non self-contradicting arguments.

132

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

Property 5.4 (Self-contradiction). We say that a ranking-based seman-
tics σ? satisfies Self-contradiction if and only if for any F? = (A ?,R?) ∈
KF? and a,b ∈ A ? such that there exists S1 ∈ R?−

1 (a) with a ∈ S1 and there
exists no S2 ∈ R?−

1 (b) with b ∈ S2 we have b �σ
?

F?
a.

The Cardinality precedence property states that if an argument a has
more attackers than an argument b than it should be ranked lower than b.

Property 5.5 (Cardinality precedence). We say that σ? satisfies Cardi-
nality precedence if and only if for any F? = (A ?,R?) ∈ KF? and a,b ∈ A ?

such that |R?−
1 (a) | > |R

?−
1 (b) | we have b �σ

?

F?
a.

The Defense precedence property states that if a and b are two arguments
with the same number of attackers and a is defended but b is not then a
should be ranked higher than b.

Property 5.6 (Defense precedence). We say that σ? satisfies Defense
precedence if and only if for any F? = (A ?,R?) ∈ KF? and a,b ∈ A ? such
that |R?−

1 (a) | = |R
?−
1 (b) |,R

?−
2 (a) = ∅ and R?−

2 (b) , ∅ we have b �σ
?

F?
a.

The Total property states that two arguments should always be compa-
rable.

Property 5.7 (Total). We say that σ? satisfies Total if and only if for
any F? = (A ?,R?) ∈ KF? and a,b ∈ A ? we have a �σ

?

F?
b or b �σ

?

F?
a.

The Non-attacked equivalence property states that two non-attacked ar-
guments should be ranked equivalently.

Property 5.8 (Non-attacked equivalence). We say that σ? satisfies
Non-attacked equivalence if and only if for any F? = (A ?,R?) ∈ KF? and
a,b ∈ A ? such that R?−

1 (a) = R?−
1 (b) = ∅ we have a ≈σ

?

F?
b

Definition 5.16 (Simple and distributed defense). Let F? = (A ?,R?) ∈
KF? and a ∈ A ?. The defense of a is simple if and only if for every direct de-
fender S of a, there is a unique S ′ ∈ R?−

1 (a) and s ′ ∈ S ′ such that (S, s ′) ∈ R?.
The defense of a is distributed if and only if for every direct attacker S of a,
there is at most one direct defender S ′ of a such that (S ′, s) where s ∈ S.

The Distributed-defense precedence property states that if a has a simple
and distributed defense and b has a simple but not distributed defense than
a should be higher than b.

Property 5.9 (Distributed-defense precedence). σ? satisfies Distributed-
defense precedence if and only if for any F? = (A ?,R?) ∈ KF?, for any
a,b ∈ A ? such that |R?−

1 (a) | = |R
?−
1 (b) | and |R?−

2 (a) | = |R
?−
2 (b) | and that

the defense of a is simple and distributed and that the defense of b is simple
but not distributed we have a �σ

?

F?
b.

133

CHAPTER 5. RANKING-BASED REASONING

An attack (respectively defense) branch of an argument a is an hyper-
graph argumentation framework such that its fusion with the original argu-
mentation framework should result in the addition of an even (respectively
odd) path to a.

Definition 5.17 (Added attack and defense branch). Let F? = (A ?,R?)
be an hypergraph argumentation framework and a ∈ A ?. P+ (a) (respectively
P− (a)) is a pair (A ?

0,R?
0) called a defense (respectively attack) branch

added to a if and only if the three following items are satisfied:

• A ?
0 = {a,x1, . . . ,xk} and A ? ∩A ?

0 = {a}
• there exists n ∈ 2N (respectively n ∈ 2N + 1), S1 ∈ (2A ?

0 \ ∅) and a path
((S1, t1), . . . , (Sn , tn)) of size n such that tn = a.

• R?
0 = {(Si , ti) | i ∈ {1, . . . ,n}} and (

n⋃
1
Si) ∪ {a} = A ?

0

The Strict addition of defense branch property states that adding a de-
fense branch to an argument should increase its rank.

Property 5.10 (Strict addition of defense branch). We say that σ?

satisfies Strict addition of defense branch if and only if for any F?′,F? =
(A ?,R?) ∈ KF? and any a ∈ A ? such that there exists an isomorphism γ
with F?′ = γ (F?) we have γ (a) �σ

?

F?⊕F?
′
⊕P+ (γ (a))

a.

The Addition of defense branch property states that adding a defense
branch to an attacked argument should increase its rank.

Property 5.11 (Addition of defense branch). We say that σ? satisfies
Addition of defense branch if and only if for any F?′,F? = (A ?,R?) ∈ KF?

and any a ∈ A ? such that there exists an isomorphism γ with F?′ = γ (F?)
and R?−

1 (a) , ∅ we have γ (a) �σ
?

F?⊕F?
′
⊕P+ (γ (a))

a.

The Addition of attack branch property states that adding an attack
branch to an argument should decrease its rank.

Property 5.12 (Addition of attack branch). We say that σ? satisfies
Addition of attack branch if and only if for any F?′,F? = (A ?,R?) ∈ KF?

and any a ∈ A ? such that there exists an isomorphism γ with F?′ = γ (F?)
we have a �σ

?

F?⊕F?
′
⊕P− (γ (a))

γ (a).

The Increase of attack branch property states that increasing the length
of an attack branch of an argument a should decrease the ranking of a.

Property 5.13 (Increase of attack branch). We say that σ? satisfies
Increase of attack branch if and only if for any F?′,F? = (A ?,R?) ∈ KF?

and any a ∈ A ? such that there exists an isomorphism γ with F?′ = γ (F?),
for every S ∈ (2A \ ∅) such that for every s ∈ S,R?−

1 (s) = ∅, there exists a
path of size n from S to a with n ∈ 2N+1 and there is no path of size m from
S to a with m ∈ 2N then for every s ∈ S, γ (a) �σ

?

F?⊕F?
′
⊕P+ (γ (s))

a.

134

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

The Increase of defense branch property states that increasing the length
of a defense branch of an argument a should increase the ranking of a.

Property 5.14 (Increase of defense branch). We say that σ? satisfies
Increase of defense branch if and only if for any F?′,F? = (A ?,R?) ∈ KF?

and any a ∈ A ? such that there exists an isomorphism γ with F?′ = γ (F?),
for every S ∈ (2A \ ∅) such that for every s ∈ S,R?−

1 (s) = ∅, there exists a
path of size n from S to a with n ∈ 2N and there is no path of size m from S
to a with m ∈ 2N + 1 then for every s ∈ S, a �σ

?

F?⊕F?
′
⊕P+ (γ (s))

γ (a).

Definition 5.18 (Cycle). Let F? = (A ?,R?) be an hypergraph argumen-
tation framework, S ∈ (2A ?

\ ∅) and s ∈ A ?. We say that a path from S to s
is a cycle if and only if s ∈ S. An argumentation framework is called acyclic
if and only if there is no cycle.

The Attack vs full defense property states that, in an acyclic hypergraph
argumentation framework, an argument with only one direct attacker should
be ranked lower than an argument without any attack branch.

Property 5.15 (Attack vs full defense). We say that σ? satisfies Attack
vs full defense if and only if for any F? = (A ?,R?) ∈ KF? that is acyclic and
a,b ∈ A ? such that |R?−

1 (b) | = 1,R?−
2 (b) = ∅, there exists no S ∈ (2A ?

\ ∅)
with for every s ∈ S,R?−

1 (s) = ∅ and a path of size n from S to a with
n ∈ 2N + 1 then a �σ

?

F?
b.

In the next properties, we make the assumption that the set of arguments
should be compared with respect to their weakest arguments. We work
under this hypothesis since, for an attack to exist, all arguments from S
are necessary. Of course, another aggregation function could be used and
most of the corresponding definitions could easily be changed to take this
modification into account.

The Quality precedence property states that if an argument a has an
attacker S such that the weakest element of S is ranked higher than every
weakest element of any attacker of b than a should be ranked lower than b.

Property 5.16 (Quality precedence). We say that σ? satisfies Quality
precedence if and only if for any F? = (A ?,R?) ∈ KF? and a,b ∈ A ? such
that there exists S ∈ R?−

1 (a) and for every S ′ ∈ R?−
1 (b) we have minσ

?

F?
(S) �σ

?

F?

minσ
?

F?
(S ′) then b �σ

?

F?
a.

Before introducing the next properties, we need to introduce a relation
that compares sets of sets of arguments by inspiring ourselves from [Amgoud
and Ben-Naim, 2013].

Definition 5.19 (Group comparison). Let F? = (A ?,R?) and G,G ′ ⊆
(2A ?

\∅). We say that G ≥ G ′ if and only if there exists an injective function
f : G ′ → G such that for every д′ ∈ G ′,minσ

?

F?
(f (д′)) �σ

?

F?
minσ

?

F?
(д′).

135

CHAPTER 5. RANKING-BASED REASONING

Notation 5.3. As usual, we use the notation G > G ′ if and only if |G ′ | < |G |
or there exists д′ ∈ G ′ such that minσ

?

F?
(f (д′)) �σ

?

F?
minσ

?

F?
(д′).

The Counter-transitivity property states that if the attackers of a are
better than the attackers of b with respect to the group comparison then b
should be ranked higher than a.

Property 5.17 (Counter-transitivity). We say that σ? satisfies Counter-
transitivity if and only if for any F? = (A ?,R?) ∈ KF? and a,b ∈ A ? such
that R?−

1 (a) ≥ R?−
1 (b) then b �σ

?

F?
a.

The Strict counter-transitivity property states that if the attackers of a
are better than the attackers of b with respect to the group comparison then
b should be ranked strictly higher than a.

Property 5.18 (Strict counter-transitivity). We say that σ? satisfies
Strict counter-transitivity if and only if for any F? = (A ?,R?) ∈ KF? and
a,b ∈ A ? such that R?−

1 (a) > R?−
1 (b) then b �σ

?

F?
a.

5.2.2 The nh-categoriser

As mentioned before, in each set of attacking arguments, all the components
are necessary. Thus, removing one argument from the set of attacking argu-
ments would make the attack void. In the definition of the nh-categoriser,
we thus consider the force of the set of attacking arguments to be the force of
the weakest argument of the set. Of course, the approach can be generalised
with other aggregating methods.

Definition 5.20 (Nh-categoriser function). Let F? = (A ?,R?) be an
hypergraph argumentation framework. The nh-categoriser function is C :
A ? → [0, 1] defined as, for all a ∈ A ?:

C (a) =

1 if R?− (a) = ∅

1
1+

∑
S∈R?−

1 (a)
min
s∈S

C (s) otherwise

In the rest of this section, we consider the argumentation framework
F? = (A ?,R?) where A ? = {a1, . . . ,an}. We now answer the two following
questions for the nh-categoriser function: (1) “How many solutions exists?”
and (2) “how to find them?”

We first transform the problem into a fixed point form. Let us consider
v ∈ [0, 1]n such that:

v = F (v) = [f1 (v), f2 (v), . . . , fn (v)]
T (5.1)

136

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

where the function F maps [0, 1]n to [0, 1]n , and for every i ∈ {0, . . . ,n},
the function fi from [0, 1]n to [0, 1] is defined by the nh-categoriser function:

fi (v) =

1 if R?− (ai) = ∅

1
1+

∑
S∈R?−

1 (ai)
min
aj ∈S

fj (v)
else

(5.2)

The function F is continuous and non-increasing as for every two vectors
u = (u1, . . . ,un) and u ′ = (u ′1, . . .u

′
n) of [0, 1]n with u1 ≤ u ′1, . . . ,un ≤ u ′n ,

F (u) ≥ F (u ′) holds.

Proposition 5.13 (Solution existence). For any argumentation frame-
work F? = (A ?,R?), the nh-categoriser valuation defined in (5.2) has at
least one solution in [0, 1]n.

Proof. The proof is similar to the one of Pu et al. [2014] and relies on the
equivalence result that function F has at least one fixed point. The proof
uses Brouwer’s fixed point theorem and the fact that [0, 1]n is homeomorphic
to a closed ball and function that F is continuous on it. �

Proposition 5.14 (Uniqueness of nh-categoriser valuation). Let F? =
(A ?,R?) be an hypergraph argumentation framework with A ? = {a1, . . . ,an}
and R? with sets of attacking arguments. Then, the scores of the nh-
categoriser function converge toward a unique solution v∗ ∈ [0, 1]n, which
is the limit of the sequence of {v (k)}∞k=0 defined from an arbitrary selected

v (0) in [0, 1]n and , for each k ≥ 1, generated by:

v (k) = F (v (k−1)) (5.3)

Proof. First, let us consider that u (0) = (0, . . . , 0),u (1) = F (u (0)) = (1, . . . , 1)
and u (k) = F (u (k−1)) for each k ≥ 2. We can easily check that:

u (0) ≤ u (2) ≤ u (1) (5.4)

and that there exists 0 < φ < 1 such that:

φu (1) ≤ u (2) (5.5)

This is true because every element of u (2) is strictly positive and φ can
be initialised to the minimum element.

Now, let us prove by induction that for all k ≥ 0, the following statement
holds:

u (0) ≤ u (2) ≤ · · · ≤ u (2k) ≤ · · · ≤ u (2k+1) ≤ · · · ≤ u (3) ≤ u (1) (5.6)

Base case: We showed in (5.4) that u (0) ≤ u (2) ≤ u (1).

137

CHAPTER 5. RANKING-BASED REASONING

Inductive step: Suppose that u (0) ≤ u (2) ≤ · · · ≤ u (2k) ≤ · · · ≤ u (2k+1) ≤

· · · ≤ u (3) ≤ u (1) is true. We need to prove that u (2k) ≤ u (2k+2) ≤ u (2k+1) ≤

u (2k+1).

First, we show that u (2k+2) ≤ u (2k+1). Since u (2k) ≤ u (2k+1) and that F
is non increasing, we deduce that F (u (2k+1)) ≤ F (u (2k)) and that u (2k+2) ≤

u (2k+1). Likewise, we show u (2k) ≤ u (2k+2) using the same reasoning.

Second, we show that u (2k+2) ≤ u (2k+3) ≤ u (2k+1). Since we prove in the
previous step that u (2k+2) ≤ u (2k+1) and u (2k) ≤ u (2k+2), we deduce using
the fact that F is non increasing that u (2k+2) ≤ u (2k+3) and u (2k+3) ≤ u (2k+1)

respectively. This concludes the proof by induction.

From (5.5) and (5.6), we find that there exists φ such that φu (2k−1) ≤ u (2k)

for each k ≥ 1. Now, let us denote πk = sup{π such that πu (2k−1) ≤ u2k)}.
Then, 0 < φ ≤ π1 ≤ · · · ≤ πk ≤ · · · ≤ 1. We now show that lim

k→∞
πk = 1.

We first show fi (πu) =
1

π+fi (u) (1−π)
fi (u) for all i ∈ {1, 2, . . . ,n}.

fi (πu) =
1

1 +
∑

S ∈R?−
1 (ai)

min
aj ∈S

fj (πu)

=
1

1 + π
∑

S ∈R?−
1 (ai)

min
aj ∈S

fj (u)

=

1 +
∑

S ∈R?−
1 (ai)

min
aj ∈S

fj (u)

1 + π
∑

S ∈R?−
1 (ai)

min
aj ∈S

fj (u)
× fi (u)

=
1

1+π
∑

S∈R?−
1 (ai)

min
aj ∈S

fj (u)

1+
∑

S∈R?−
1 (ai)

min
aj ∈S

fj (u)

× fi (u)

=
1

(1+
∑

S∈R?−
1 (ai)

min
aj ∈S

fj (u))π−π+1

1+
∑

S∈R?−
1 (ai)

min
aj ∈S

fj (u)

× fi (u)

=
1

π + 1−π
1+

∑
S∈R?−

1 (ai)
min
aj ∈S

fj (u)

× fi (u)

fi (πu) =
1

π + (1 − π) fi (u)
× fi (u)

Then, there exists 0 < α < 1 and a continuous function ψ (π) = 1
π+α (1−π)

138

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

such that:

F (πu) ≤ ψ (π)F (u),∀π ∈ [φ, 1[,u ∈ [φ, 1]n (5.7)

Then, we show that:

u (2k+1) = F (u (2k)) ≤ F (πku
(2k−1)) ≤ ψ (πk)u

(2k) ≤ ψ (πk)u
(2k+2) (5.8)

By definition of πk , it holds that πku
(2k−1) ≤ u (2k) and since F is non

decreasing, we deduce that F (u (2k)) ≤ F (πku
(2k−1)). Using (5.7), we conclude

that F (πku
(2k−1)) ≤ πkF (u

(2k−1)) = πku
(2k). Using (5.6), we have that u (2k) ≤

u (2k+2) and πku
(2k) ≤ πku

(2k+2) .

Now, we show that πk+1 ≥
1

ψ (πk)
by contradiction. Suppose that this

πk+1 <
1

ψ (πk)
. Using (5.8), we have that u (2k+1) ≤ ψ (πk)u

(2k+2) and thus
1

ψ (πk)
u (2k+1) ≤ u (2k+2). Contradiction with the definition of πk+1.

We now show that:

1 − πk+1 ≤ (1 − α) (1 − πk) ≤ · · · ≤ (1 − α)k (1 − π1) ≤ (1 − α)k (1 − φ) (5.9)

Using the previous result, we have that:

πk+1 ≥
1

ψ (πk)
= πk + α (1 − πk)

απk − α − πk + 1 ≥ 1 − πk+1

(1 − α) (1 − πk) ≥ 1 − πk+1

This is sufficient to prove (5.9) by noticing that φ ≤ π1.
As 0 < α < 1, thus by (5.9) we have:

lim
k→∞

(1 − πk+1) = 0 ⇒ lim
k→∞

πk = 1 (5.10)

There by (5.6), we get for any integer p ≥ 1:

0 ≤ u (2k+2p) − u (2k) ≤ u (2k+1) − u (2k) ≤ (1 − πk)u
(2k+1) ≤ (1 − πk)u

(1) (5.11)

Since [0, 1]n is normal, both {u (2k+1)}∞k=0 and {u (2k)}∞k=1 are convergence
sequences. By (5.10) and (5.11), thus, there exists u∗ ∈ [0, 1]n such that:

lim
k→∞

u (2k+1) = lim
k→∞

u (2k) = u∗ (5.12)

Hence, u (2k) ≤ u∗ ≤ u (2k+1) and u (2k) ≤ F (u∗) ≤ u (2k+1). Letting k → ∞
and combining with (5.12), it follows that F (u∗) = u∗ (it is a fixed point of

139

CHAPTER 5. RANKING-BASED REASONING

F . We now show that the result holds for any arbitrary v (0) ∈ [0, 1]n . By
induction, we have that for any k ≥ 1,u (2k) ≤ v (2k) ≤ u (2k−1) and u (2k) ≤

v (2k+1) ≤ u (2k+1). Then v (k) → v∗ = u∗ as k → ∞. In particular, let v (0) = w∗,
where w∗ is any fixed point of F in [0, 1]n , then v (k) = w∗ for all k ≥ 1, and
we get w∗ = u∗. So F has a unique fixed point in [0, 1]n .

�

Now that we showed the existence and uniqueness of the values returned
by the nh-categoriser function for any argumentation hypergraphs, we show
how the nh-categoriser ranking-based semantics is constructed from the
scores returned by nh-categoriser function.

Definition 5.21 (Nh-categoriser ranking-based semantics). Let F? =
(A ?,R?) be an argumentation hypergraph. The nh-categoriser ranking-
based semantics on F? returns a ranking �nh

F?
on A ? such that for every

a,b ∈ A ?, a �nh
F?

b if and only if C (a) ≥ C (b).

Example 5.9 (Example 5.7 cont’d). The nh-categoriser scores of argu-
ments are C (a) ≈ 0.38,C (b) = 1,C (c) = 0.5,C (d) ≈ 0.65 and C (e) ≈ 0.53. We
obtain the ranking: b �nh

F?
d �nh

F?
e �nh
F?

c �nh
F?

a.

We now show that nh-categoriser satisfies the same properties as h-
categoriser.

Proposition 5.15 (Property satisfaction). The nh-categoriser satisfies
Abstraction, Independence, Void precedence, Defense precedence, Counter-
transitivity, Strict counter-transitivity, Increase of attack branch, Increase
of defense branch, Addition of attack branch, Total and Non-attacked equiv-
alence.

In the next proposition, we show that there always exists a regular
Dung’s abstract argumentation framework such that the score on arguments
with the h-categoriser function (see Definition 2.54 on page 41) are the same
as the scores on arguments in the hypergraph argumentation framework with
the nh-categoriser function.

Proposition 5.16 (Dung equivalent existence). Let F = (A ?,R?) be
an hypergraph argumentation frameworks. Then, there exists an abstract
argumentation framework F = (A ,R), a subset {a1, . . . ,am} ⊆ A and a
bijection γ : A ? → {a1, . . . ,am} such that for every a ∈ A ?, C (a) = C ′(γ (a)).

Proof. The detailed proof can be found in Section 7.2.3 on page xv. �

Example 5.10 (Example 5.9 cont’d). Let us consider the abstract ar-
gumentation framework F = (A ,R) with A = {a′,b ′, c ′,d ′, e ′} ∪ {da ,ba ,ace ,
bc ,bed ,dce} and R = {(da ,a), (da ,ace), (ba ,a), (ba ,ace), (bc , c), (bc ,dce), (bed ,d),
140

5.2. RANKING-BASED SEMANTICS WITH ARGUMENTATION
HYPERGRAPHS

(bed ,da), (dce , e), (dce ,bed), (ace , e), (ace ,bed)} depicted in Figure 5.4. If γ is
the bijection from A ? to A with γ (a) = a′,γ (b) = b ′,γ (c) = c ′,γ (d) = d ′ and
γ (e) = e ′ then it holds that for every a ∈ A ?, C (a) = C ′(γ (a)).

a′ da

ba ace bed d ′

e ′ dce bc c ′b ′

Figure 5.4: Argumentation framework with equal h-categoriser scores

We would like to point out that for a particular hypergraph argumen-
tation framework, there might be several binary argumentation frameworks
such that Proposition 5.16 is satisfied. For instance, in Example 5.11, we
show another binary argumentation framework that satisfies Proposition
5.16.

Example 5.11 (Example 5.10 cont’d). Let us consider the binary ar-
gumentation framework F = (A ,R) with A = {a′,b ′, c ′,d ′, e ′} and R ={(d ′,a′), (b ′,a′), (e ′,d ′), (a′, e ′), (b ′, c ′), (c ′, e ′)}, depicted in Figure 5.5 and the
bijection γ from A ? to A such that γ (a) = a′,γ (b) = b ′,γ (c) = c ′,γ (d) = d ′

and γ (e) = e ′. It also holds that for every a ∈ A ?, C (a) = C ′(γ (a)).

a′d ′

e ′

b ′

c ′

Figure 5.5: Another argumentation framework with equal h-categoriser
scores

141

CHAPTER 5. RANKING-BASED REASONING

5.3 Ranking facts in inconsistent knowledge bases

We now place ourselves in the Ontology-Based Data Access (OBDA) set-
ting where one wants to “access” the data stored in different source. In
this setting, the aggregation of all the databases often result in an incon-
sistent knowledge base due to conflicting data or incompatible vocabulary.
As a result, the main research avenue is to investigate query answering over
a set of fact bases enriched by the ontology [Poggi et al., 2008]. One of
the main challenges of reasoning in OBDA applications is handling the in-
herent inconsistency that might occur amongst independently built data
sources partially describing the same knowledge of interest [Benferhat et al.,
1997; Lukasiewicz et al., 2015; Lembo et al., 2015; Hecham et al., 2017b].
Classically inconsistent tolerant semantics consider all maximally consistent
subsets of a fact base (called repairs) that they manipulate using a modifier
(expansion, splitting, etc.) and an inference strategy (intersection, univer-
sality, etc.) [Baget et al., 2016a].

Using all repairs might be inappropriate for certain applications that
would rather focus on particular sources of knowledge. For instance, when
considering more reliable knowledge (i.e. sensor information, provenance
data etc.) one could only consider repairs using mostly facts from such
sources. Preferences on facts have been used for inconsistency-tolerant rea-
soning in the work of Staworko et al. [2012]. In that setting, the authors
suppose that the preference order on the facts is given but unfortunately,
this is not always the case. In such cases, we propose to use the inconsis-
tency of the elements of the knowledge base as an intrinsic preference on the
facts. Such inherent preference on the facts (i.e. facts that are more or less
responsible for the inconsistencies) generates a preference on the repairs that
are containing these facts (i.e. repairs that contain more or less controversial
facts). In this section, we propose a framework that takes into consideration
the inconsistency on the facts when using the repairs for query answering
and restricts the set of repairs to the “best” with respect to inconsistency
values. Since we consider a subset of repairs we obtain more answers than
classical inconsistency-tolerant query answering.

In this section, we characterise desirable properties of such frameworks
like free facts entailment, syntax independence and reliability preservation.
We also provide an implementation of our approach and discuss its perfor-
mance. The salient point of this section lies in it being the first approach
in the literature capable of ranking repairs using only the inherent struc-
ture of the knowledge base. This is a significant result as our approach is
applicable on a large variety of domains without requiring additional prefer-
ence information. Furthermore, we show the significance and the practical
interest of our approach using the real data collected in the framework of
the Pack4Fresh project for reducing food wastes. During this project, we
collected data using an online poll from a set of professionals of the food in-

142

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

dustry, including wholesalers, quality managers, floorwalkers and warehouse
managers, about food packagings and their characteristics. The framework
was able to rank the repairs efficiently and the results were then analysed
and evaluated by experts from the packaging industry.

5.3.1 The ranking-based inference framework

We introduce the Ranking-based Inference Framework (RIF) and its three
main components: the inconsistency value, the lifting function and the
inconsistency-tolerant inference. It is similar to the work in argumenta-
tion by Konieczny et al. [2015], where only the best extensions are used
for reasoning. The section is organised as follows: in Section 5.3.1.1, we
recall the notion of Drastic and MI Shapley inconsistency values, in Section
5.3.1.2, we give examples of lifting functions and in Section 5.3.1.3, we show
how inconsistency-tolerant inferences are modified in order to be used in the
framework.

An inconsistency measure according to Grant and Hunter [2011] is a
function that, given a knowledge base KB = (F,R,N), associates a number
to each set of facts.

Definition 5.22 (Inconsistency measure). An inconsistency measure is
a function I : KBs × 2L → R such that for every KB = (F,R,N) ∈ KBs and
C,C ′ ∈ 2L:

• I (KB,C) = 0 if and only if C is R-consistent

• I (KB,C ∪C ′) ≥ I (C)

• if α is a free fact of KB, then I (KB,F) = I (KB,F\{α}).
For readability purposes, we will use the notation IKB (C) instead of

I (KB,C) and I (C) if the working knowledge base KB is obvious.

An inconsistency value is a function that associates a number to each
fact of a knowledge base KB. Many inconsistency values were defined by
Hunter and Konieczny [2010] using existing inconsistency measures and the
Shapley value from coalitional game theory. We introduce a framework that
makes use of these inconsistency values together with a lifting function and
an inconsistency-tolerant inference relation to improve the productivity of
query answering for an inconsistent knowledge base.

Our framework is based on three layers. First, an inconsistency value
is used to calculate the score of each fact of KB. We previously mentioned
Shapley inconsistency values, but any function returning a score for each
fact of KB can be used.

143

CHAPTER 5. RANKING-BASED REASONING

Definition 5.23 (Inconsistency value). An inconsistency value is a func-
tion V : KBs × L → R. Let �V

L
be the total, reflexive and transitive binary

order on L with respect to KB and V defined as: for every a,b ∈ L,a �V
L
b

if and only if V(KB,a) ≤ V(KB,b).
For readability purposes, we write Va (KB) instead of V(KB,a). More-

over, we write � instead of �V
L

when L and V are obvious.

Second, we need a lifting function, i.e. a function that compares the
set of repairs, based on the individual scores of facts with respect to an
inconsistency value. A criterion of comparison would be to evaluate the
“strongest” fact of each set. A generalisation of this criterion is the so-
called leximax which, in the case where the best facts are equally strong,
proceeds to compare the next best fact of each set. Please note that the set
of all total, reflexive and transitive binary orders on X is denoted by �X .

Definition 5.24 (Lifting function). A lifting function is a function L :
2L× �L→�2L.

For readability purposes, we use the notation L� (X) for L(X , �). Fur-
thermore, (E,E ′) ∈ L� (X) means that E is better than or equal to E ′.

Third, we use an inconsistency-tolerant inference relation restricted to
the best repairs sets ranked by the lifting function to answer the query. At
this step, one can use the usual inconsistency-tolerant inference relations
such as AR, IAR, ICR or any of the modifier-based semantics of Baget et al.
[2016a]

Definition 5.25 (Inference). An inconsistency-tolerant inference relation
is a function |=: KBs × Q→ {True, False}.

Based on the previous notions, we define our framework (see Figure 5.6).

Definition 5.26 (RIF). A ranking-based inference framework (RIF) is
a tuple RIF = (V, L, |=) where V is an inconsistency value, L is a lifting
function and |= is an inconsistency-tolerant inference. The top result of
RIF = (V, L, |=) on a knowledge base KB = (F,R,N) is OUTRIF (KB) = {E ∈
repairs (KB) | for all E ′ ∈ repairs (KB), (E,E ′) ∈ L�

V
F (F)}.

5.3.1.1 RIF inconsistency value

An inconsistency value is a function that associates a value to each fact of
the knowledge base. This value is supposed to be higher the more a fact is
conflicting with the other facts. In this thesis, we make the choice to focus on
the Shapley inconsistency value introduced by Hunter and Konieczny [2010]
because it possesses many desirable properties as will be shown in Propo-
sition 5.17 below. The Shapley inconsistency value uses notions from game
theory to measure the responsibility of each fact to the overall inconsistency
of the knowledge base.

144

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

K
B

IN
C

....

1 0.
9

0.
7 0

L
....

r1
r2

rn

Se
t o

f R
ep

ai
rs

R
an

ki
ng

 o
n

Fa
ct

s

...

r1r2 rn

R
an

ki
ng

 o
n

R
ep

ai
rs

⊨

Se
t o

f B
es

t R
ep

ai
rs

r2 Q
ue

ry

?

An
sw

er

R
ep

ai
r G

en
er

at
io

n

Figure 5.6: Representation of the RIF workflow

145

CHAPTER 5. RANKING-BASED REASONING

Definition 5.27 (Shapley inconsistency value). Let I be an inconsis-
tency measure, KB = (F,R,N) a knowledge base and f ∈ F, the Shapley
inconsistency value corresponding to I , noted VI is defined as:

V
I
f (KB) =

∑
C⊆F

(|C | − 1)!(|F | − |C |)!

|F |!
(IKB (C) − IKB (C\{f }))

Note that if one considers F as the vector (f1, f2, . . . , fn), then VI (KB)
is the vector of corresponding Shapley inconsistency values, i.e. VI (KB) =
(VI

f1
(KB),VI

f2
(KB), . . . ,VI

fn
(KB)).

Let KB = (F,R,N) be a knowledge base, the inconsistency values inves-
tigated in this thesis are the following:

• The drastic Shapley inconsistency value is computed by using the fol-
lowing inconsistency measure:

IKB
d (X) =

0 if X is R-consistent with respect to KB

1 otherwise

• The MI Shapley inconsistency value is computed by using the following
inconsistency measure:

IKB
MI (X) = |MI ((X ,R,N)) |

We now show that every Shapley inconsistency value satisfies Distribu-
tion, Symmetry and Minimality. The result and its proof are similar to that
of Hunter and Konieczny [2010].

Proposition 5.17 (Shapley I.V. property satisfaction). Let I be an
arbitrary inconsistency measure and KB = (F,R,N) a knowledge base, the
Shapley inconsistency value corresponding to I satisfies:

• (Distribution)
∑
a∈F
VI
a (KB) = IKB (F)

• (Symmetry) If a,b ∈ F such that for all X ′ ⊆ F,a,b < X ′ we have
IKB (X ′ ∪ {a}) = IKB (X ′ ∪ {b}) then it holds that VI

a (KB) = VI
b (KB)

• (Minimality) If a is a free fact of KB then VI
a (KB) = 0

In Example 5.12, we show how the MI and drastic Shapley inconsistent
values are computed from a simple knowledge base.

146

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

Example 5.12 (MI and drastic Shapley inconsistency values). Let us
consider the knowledge base KB = (F,R,N) where F = {d (m), a(m), c (m),b (m, s)},
R = {∀X (c (X) ∧ b (X , s) → u (X))} and N = {∀X (d (X) ∧ a(X) → ⊥), ∀X
(u (X) ∧ d (X) → ⊥), ∀X (u (X) ∧ a(X) → ⊥)}.

We have that VId
d (m)

(KB) = 4 × 1
12 =

1
3 and VIMI

d (m)
(KB) = 4 × 1

12+
1
4 × 2 = 5

6 . Thus, here we have that F = {d (m),a(m), c (m),b (m, s)} and
VId (KB) = (13 ,

1
3 ,

1
6 ,

1
6) and VIMI (KB) = (56 ,

5
6 ,

2
3 ,

2
3). Since a higher score

means being more inconsistent, the resulting ranking on facts, for both in-
consistency values, is c (m) ∼ b (m, s) � d (m) ∼ a(m).

We recall that we work with the total, reflexive and transitive ranking
�V
F

on F extracted from the inconsistency value.

5.3.1.2 RIF lifting

A lifting function L� compares sets of elements with respect to the ranking
� and returns a total order on the sets.

Let us first introduce the sort relation that will be used in order to define
the L�leximax notion below. Given a set of elements X = {x1,x2, . . . ,xn} and
a total, reflexive and transitive binary relation � on X , sort(X , �) returns a
sorted vector (x1,x2, . . . ,xn) such that for every xi ,x j , we have that xi � x j
if and only if i ≤ j. The element at position i in the vector sort(X , �) is
denoted by sorti (X , �). Note that the returned vector is not necessarily
unique due to the fact that some elements might be equivalent, i.e. xi ∼ x j .

In this thesis, we consider two possible instantiations of the lifting func-
tion L. The L�max lifting function compares the subsets with respect to their
maximal elements and L�leximax compares the elements after sorting them in
decreasing order.

Let Y be a set of elements, � be a ranking on Y, E,E ′ ∈ 2Y , sort(E, �) =
(x1,x2, . . . ,xn) and sort(E ′, �) = (x ′1,x

′
2, . . . ,x

′
m). We say that:

• (E,E ′) ∈ L�max (Y) if and only if max (E) � max (E ′), where max (X) =
sort1 (X , �).

• (E,E ′) ∈ L�leximax (Y) if and only if one of the following holds: (1)
m = n and for every i ∈ {1, . . . ,n},xi ∼ x ′i , (2) there exists i ∈{1, . . . ,min(m,n)} such that xi � x ′i and for every j ∈ {1, . . . , i −1},x j ∼
x ′j or (3) n > m and for every i ∈ {1, . . . ,m}, xi ∼ x ′i .

Example 5.13 (Example 5.12 cont’d). Let RIF = (VId , L�leximax , |=) be
a RIF. It holds that for every R ∈ repairs (KB) \ {c (m),b (m, s)}, we have
({c (m),b (m, s)},R) ∈ L�leximax (F) but (R, {c (m),b (m, s)}) < L�leximax (F) and
thus, OUTRIF (KB) = {{c (m),b (m, s)}}

147

CHAPTER 5. RANKING-BASED REASONING

5.3.1.3 RIF inference

Inconsistency-tolerant query answering is a challenging problem that re-
ceived a lot of attention recently. We recall that we place ourselves in
the context of OBDA, where the ontology is assumed to be satisfiable and
fully reliable. In the following, we recall some of the most well-known
inconsistency-tolerant inferences that have been proposed in the literature.
Let KB = (F,R,N) be a knowledge base and q be a boolean conjunctive
query. Then:

• q is said to be AR entailed by KB denoted by KB |=AR q if and only
if for every R ∈ repairs (KB),C`R (R) |= q

• q is said to be IAR entailed by KB denoted by KB |=IAR q if and only

if C`R *
,

⋂
R∈r epair s (KB)

R+
-
|= q

• q is said to be ICR entailed by KB denoted by KB |=ICR q if and only
if

⋂
R∈r epair s (KB)

C`R (R) |= q

Example 5.14 (Example 5.12 cont’d). A query q = ∃x (c (x)) is not AR,
IAR nor ICR entailed. Indeed, we cannot entail q from the closure of all
the repairs, the intersection of the closure of all the repairs nor the closure
of the intersection of all repairs.

We propose here to reuse AR, IAR, ICR by restricting them to the top
result of a RIF instead of the whole set of repairs.

Definition 5.28 (Restricted inference). Let x ∈ {AR, IAR, ICR}. We
denote the restriction of |=x to the top result of RIF instead of the whole set
of repairs by |=RIFx .

For instance, the restricted version of AR will be denoted by |=RIFAR and
defined as KB |=RIFAR q if and only if for every R ∈ OUTRIF (KB),C`R (R) |= q.

Example 5.15 (Example 5.13 cont’d). Let us consider the query q =
∃X (c (X)). The query q is AR, IAR and ICR entailed with respect to RIF

since OUTRIF (KB) = {{c (m),b (m, s)}}.

5.3.2 RIF results

This section presents a characterisation of the framework in terms of prop-
erties and general productivity results. In Section 5.3.2.1, we show some
desirable properties of the framework and how such component properties
relate to framework properties. In Section 5.3.2.2, we show an algorithm for
computing the top result of the framework and its performance on a given
set of data. In Section 5.3.2.3, we explicit the use of our framework on a
real life scenario.

148

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

5.3.2.1 RIF properties

In this section, we show that the desirable properties on the components can
lead to desirable properties on the entire framework. First, we introduce
desirable properties for general inconsistency values. The minimality
property states that a free fact should have the lowest score. The flawed
property conveys the idea that a non-free fact should have a strictly positive
score. Lastly, the bottom facts property states that an R-inconsistent fact
should have the score 1.

Definition 5.29 (Minimality). We say that an inconsistency value V
satisfies minimality if and only if for any knowledge base KB and every free
fact a of KB, it holds that Va (KB) = 0.

Definition 5.30 (Flawed). We say that an inconsistency value V satisfies
flawed if and only if for any knowledge base KB and every non free fact a
of KB, it holds that Va (KB) > 0.

Definition 5.31 (Bottom facts). We say that an inconsistency value V
satisfies bottom facts if and only if for any knowledge base KB = (F,R,N)
and a ∈ F such that {a} is R-inconsistent, it holds that Va (KB) = 1

The R-append and N-append properties are satisfied if the addition of a
rule or a negative constraint to a knowledge base cannot decrease the score
of any fact.

Definition 5.32 (R-append). We say that an inconsistency value V sat-
isfies R-append if and only if for any knowledge base KB = (F,R,N) and
any positive rule r < R such that KB′ = (F,R ∪ {r},N), it holds that for
every f ∈ F,Vf (KB) ≤ Vf (KB′).

Definition 5.33 (N-append). We say that an inconsistency value V sat-
isfies N-append if and only if for any knowledge base KB = (F,R,N) and
any negative constraint n < N such that KB′ = (F,R,N ∪ {n}), it holds that
for every f ∈ F,Vf (KB) ≤ Vf (KB′).

The abstraction-I property states that an inconsistency value should not
rely on the names of constants or predicates.

Definition 5.34 (Abstraction-I). We say that an inconsistency value V
satisfies abstraction-I if and only if for any two knowledge bases KB,KB′

and any isomorphism3 γ such that γ (KB) = KB′, it holds that for every
f ∈ F, Vf (KB) = Vγ (f) (KB′).

3The isomorphism γ renames the predicates and the constants. We use an abuse of
notation and apply γ to sets of facts, sets of rules, negative constraints and to knowledge
bases (meaning we apply to all three).

149

CHAPTER 5. RANKING-BASED REASONING

The cardinality-MI property says that the score is based on minimal
inconsistent subsets. Namely, if the score of a fact is strictly inferior to the
score of an other fact, it means that the number of minimal inconsistent
sets the first fact belongs to is strictly lower than the number of minimal
inconsistent sets the second facts belongs to.

Definition 5.35 (Cardinality-MI). We say that an inconsistency value V
satisfies cardinality-MI if and only if for any knowledge base KB = (F,R,N)
and any two facts f , f ′ ∈ F such that Vf (KB) < Vf ′ (KB), it holds that
|{X ∈ MI (KB) | f ∈ X}| < |{X ∈ MI (KB) | f ′ ∈ X}|.
Proposition 5.18 (MI and drastic I.V. property satisfaction). It
holds that:

• VIMI satisfies minimality, flawed, abstraction-I, bottom facts and does
not satisfy cardinality-MI, R-append and N-append.

• VId satisfies minimality, flawed, abstraction-I and does not satisfy
cardinality-MI, R-append, N-append and bottom facts.

The lifting function uses a ranking on elements in order to provide a
ranking on sets. We introduce some basic desirable properties for lifting
functions below.

The data sensitive property ensures that element ranking is taken into
account by the lifting function. The abstraction-L states that the ranking
returned by the lifting function should not be concerned with the names of
the elements.

Definition 5.36 (Data sensitive). We say that a lifting function L sat-
isfies data sensitive if and only if for any set of elements Y such that
|Y | > 1 and any two sets E,E ′ ∈ 2Y , there exist two different total, re-
flexive and transitive binary relations �, �′ on Y such that (E,E ′) ∈ L� (Y)
and (E,E ′) < L�

′

(Y).

Definition 5.37 (Abstraction-L). We say that a lifting function L satis-
fies abstraction-L if and only if for any for any two set of elements Y ,Y ′, any
total, reflexive and transitive binary relation � on Y , any two sets E,E ′ ∈ 2Y

and any isomorphism γ such that γ (Y) = Y ′ and γ (�) = �′, it holds that
(E,E ′) ∈ L� (Y) if and only if (γ (E),γ (E ′)) ∈ L�

′

(Y ′).

Proposition 5.19 (Max and leximax property satisfaction). It holds
that L�max , L

�

leximax satisfy data sensitive and abstraction-L.

Please note that |=RIFx with x ∈ {AR, IAR, ICR} satisfies the QCE, QCI,
Cons, ConsS, ConsC properties from the work of Baget et al. [2016b].

We now introduce some properties on the whole framework. A
desirable property is the entailment of free facts (the free property). The

150

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

supremacy property states that if a fact is strictly less controversial than
any other fact, then it should be entailed. non entailment ejection states
that if a fact is only entailed by the closure of a repair which is not ranked
amongst the best repairs, then it will not be entailed by the knowledge base.
The abstraction property states that if there is a renaming of the constants
and predicates in a knowledge base, the answers of our framework should
remain unchanged.

Definition 5.38 (Free). We say that a RIF RIF = (V, L, |=) satisfies free
if and only if for any knowledge base KB and any free fact a of KB, it holds
that KB |=RIF a.

Definition 5.39 (Supremacy). We say that a RIF RIF = (V, L, |=) satis-
fies supremacy if and only if for any knowledge base KB such that there
exists f ∈ F with Vf (KB) , 1 and for every f ′ ∈ F \ {f }, we have
Vf (KB) < Vf ′ (KB) then it holds that KB |= f .

Definition 5.40 (Non entailment ejection). We say that a RIF RIF =

(V, L, |=) satisfies non entailment ejection if and only if for any knowledge
base KB, any R ∈ repairs (KB) \ OUTRIF (KB) and f ∈ C`R (R) such that
there is no R′ ∈ repairs (KB) \ {R} with f ∈ C`R (R

′) then KB 6 |= f .

Definition 5.41 (Abstraction). We say that a RIF RIF satisfies abstrac-
tion if and only if for any two knowledge base KB,KB′, any query q, any
isomorphism γ such that γ (KB) = KB′ and x ∈ {AR, IAR, ICR}, it holds that
KB |=RIFx q if and only if γ (KB) |=RIFx γ (q).

Proposition 5.20 (RIF property satisfaction). It holds that:

• Abstraction-I and abstraction-L imply abstraction.

• Let RIF = (V, L�, |=RIFx) where x ∈ {AR, IAR, ICR} then RIF satisfies
free and non entailment ejection.

• Let RIF = (V, L�y , |=
RIF
x) where x ∈ {AR, IAR, ICR}, y ∈ {leximax ,max}

and V satisfies bottom facts then RIF satisfies supremacy.

Although it is not always better to be more productive for all applica-
tions, the following result shows that the RIF is more productive than the
usual IAR, AR and ICR semantics.

Proposition 5.21 (Productivity). Let RIF be a RIF and be q a query,
then:

• If KB |=x q then KB |=RIFx q, where x ∈ {AR, IAR, ICR}
• If KB |=RIFIAR q then KB |=RIFICR q

• If KB |=RIFICR q then KB |=RIFAR q

151

CHAPTER 5. RANKING-BASED REASONING

However, it is worth noting that our framework does not make every
inconsistency-tolerant inference relation more productive. For instance, that
is not the case with the non objection semantics defined by Benferhat et al.
[2016].

5.3.2.2 Algorithmic results

In this section, we show a simple recursive algorithm that uses minimal
inconsistent sets to compute the top result of our framework and we study
the behaviour of this algorithm thanks to an experiment. Since finding each
minimal inconsistent set has been proven to be practically feasible as it
is polynomial for data complexity and exponential for combined complexity
[Lembo et al., 2010; Hecham et al., 2017a], we make the assumption that this
set is given. The top result of our framework is obtained by calling Algorithm
5.1 with X and Z initialised to ∅ and M to the set of minimal inconsistent
sets of KB. The parameter X is the set considered for building the result and
Z is the set used for avoiding redundancies by memorising encountered sets.
In Algorithm 5.1, we begin by checking if the set considered was already
encountered (see line l1). Then, we proceed by finding facts with a minimal
score that can be added to X without triggering a minimal inconsistent set
(see line l2). If such facts cannot be found, it means that the considered set X
is indeed a repair and should be returned (see line l3). Otherwise, the above
mentioned process is repeated by augmenting the set of the considered set
X with the facts found in line l2 (see line l4). The set E contains repairs with
maximal elements with respect to VIMI .4 However, although these repairs
contain maximal elements, they are not equivalent with respect to leximax
and this is why we have to refine the set E (see line l5). Please note that
an alternate definition of VIMI found in the work of Hunter and Konieczny
[2010] can be used for a faster computation.

We ran the algorithm on the knowledge bases described by Yun et al.
[2017b] and compared its performance with a basic algorithm for computing
the RIF, namely naively finding all repairs, computing the inconsistency
values and refining them by using leximax. The knowledge bases were split
in two sets: A first set A of 108 knowledge bases with 2 to 7 facts, 0 to 6
rules and 1 to 4 binary or ternary negative constraints and a second set B
of 26 knowledge bases with 8 facts, 6 rules and between 1 and 2 binary or
ternary negative constraints. For further details about the knowledge bases,
the reader is invited to consult the original paper of Yun et al. [2017b]. The
results were as follows:

• For the set A, the average number of repairs per knowledge base was
2.89 and the average number of repairs in the top result of the RIF

4The obtained set is similar to the notion of preferred sub-theories of a stratification
defined by Brewka [1989].

152

5.3. RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

Algorithm 5.1 OFRecc

Data: Two sets of sets of facts M,Z and a set of facts X
Result: A set of repairs OUTRIF (KB) where RIF = (VIMI , L�leximax , |=

RIF)

begin
l1 if X < Z then

Z ←− Z ∪ {X}
Y ←− {f ∈ F \ X | for all m ⊆ X ,m ∪ {f } < M}

l2 Y ′ ←− {y ∈ Y | VIMI
y is minimal}

if Y ′ = ∅ then
l3 return {X}

else
E ←− ∅ for y ′ ∈ Y ′ do

l4 E ←− E ∪OFRecc (M,X ∪ {y ′})
l5 E ′ ←− top sets of E with L�leximax with respect to VIMI

return E ′

else
return ∅

was 2.11. It means that the average number of repair was reduced by
26.92%. Moreover, it takes an average of 543ms per knowledge base
to find the top result of the RIF with the basic algorithm whereas it
takes an average of 601ms per knowledge base to find the same top
result with our algorithm.

• For the set B, the average number of repairs per knowledge base was
4.5 and the average number of repairs in the top result of the RIF was
3.62. It means that the average number of repair was reduced by of
19.66%. Moreover, it takes an average of 1.764s per knowledge base
to find the top result of the RIF with the basic algorithm whereas it
takes an average of 1.617s per knowledge base to find the top result
with our algorithm.

Although finding the set Y ′ and E ′ (see l2 and l5) can be found in polyno-
mial time, in the worst case scenario, we would still have to search through-
out all the subsets of F which would be exponential with respect to |F |.
All experiments were performed on a Mac machine running on macOS High
Sierra with an Intel core i5 2.8 GHz and 8GB of RAM and were reproduced
multiple times.

5.3.2.3 Application scenario

We now consider an application scenario constructed in the setting of the
Pack4Fresh project [Yun et al., 2016] which was aimed at choosing the

153

CHAPTER 5. RANKING-BASED REASONING

Figure 5.7: Representation of the considered packagings (from left to
right): the opened plastic packaging without lid (opl), the wooden

packaging (wp), the plastic packaging with a rigid lid (prl) and the plastic
packaging with a plastic film (ppf).

best packaging for strawberries. In this project, an online poll consisting
of 66 questions was submitted to an audience of 21 professionals from the
food industry. We distinguished four kinds of professionals: the whole-
salers, the floorwalkers, the quality managers and the warehouse managers.
The questions were aimed at collecting the individual vision of each per-
son about the characteristics of four packagings: the wooden packaging
(wp), the plastic packaging with a plastic film (ppf), the plastic packag-
ing with a rigid lid (prl) and the opened plastic packaging without lid
(opl) (see Figure 5.7). The answers of this poll were formalised into a set
of 50 facts and 160 rules. In our application scenario, the inconsistency
of the knowledge base comes from the fusion of the divergent visions of
the several professionals about the four aforementioned packagings. These
visions were explicitly expressed using the rules. For instance, the rule
∀X (pp f (X ,wholesaler0) → cheapCost (X)) conveys the idea that the entity
wholesaler0 believes that the plastic packaging with a plastic film is cheap.
A group of packaging experts constructed another set of 18 rules consti-
tuting expert knowledge. For instance, the rule ∀X (keepHumidity (X) →
badFridдeConservation(X)) states that if X is a packaging that keeps hu-
midity then X is a bad packaging for fridge conservation whereas the rule
∀X (accelerateDecay (X) → badE f f ectOnFruits (X)) states that if X is a pack-
aging that accelerates decay then it is considered as having a bad effect
on fruits. Lastly, a set of 34 negative constraints representing conflicting
atoms, such as ∀X (notBadE f f ectOnFruits (X) ∧ badE f f ectOnFruits (X) →
⊥), and incompatibilities between packagings, such as ∀X ,Y ,Z ,T (opl (X ,Y)∧
prl (Z ,T) → ⊥), was added.

The formalisation yielded a set of 33 repairs where each repair corre-
sponds to the vision of a collection of individuals about a single packag-
ing. For instance, we have that the repair opl2 = {opl (po, f loorwalker0),
opl (po,wharehouse manaдer0)} corresponds to the vision of the two agents
f loorwalker0 and wharehouse manaдer0 about the opened plastic packaging
without lid. Amongst the 33 repairs, 16 concerned the wooden packag-
ing, 6 concerned the plastic packaging with a rigid lid, 9 concerned the
plastic packaging with a plastic film and 2 concerned the opened plastic
packaging without lid. The different number of repairs is explained by the

154

5.4. SUMMARY

diverse quantity of disagreements amongst individuals. For instance, only
two wholesalers disagreed about the characteristics of the opened packaging
without lid whereas eight wholesalers disagreed about the characteristics
of wooden packaging. In our model, the size of the repair corresponds to
the number of individuals that agreed on all the characteristics of a specific
packaging. Please note that the repairs are not ranked solely based on their
cardinality.

Surprisingly, the ranking on repairs was extremely clear as it showed
that wp > prl ∼ pp f > opl (see Table 5.6). Indeed, the repairs about the
wooden packaging were ranked above the other repairs. The repairs about
the plastic packaging with a rigid lid were ranked roughly equally with the
repairs about plastic packaging with a plastic film and the repairs about
opened packaging without lid were last. The ranking was evaluated by a
group of packaging experts which confirmed that the ranking on packagings
was intuitive with respect to the data of the knowledge base. Indeed, the
experts acknowledged that wooden packaging was ranked first because its
characteristics were slightly less contested by the experts.

The knowledge base in DLGP format as well as a JAVA implementation
of the tool for computing the top result of our framework is accessible at:
https://gite.lirmm.fr/yun/IJCAI2018.

5.4 Summary

In this chapter, we first instantiated the argumentation-based ranking logic,
defined by Amgoud et al. [2014], with the existential rules framework and
showed that it is impacted by the notion of cores. Indeed, we highlighted
that the ranking of some arguments in an argumentation graph and in a
core of this graph can be different. The main reason for this change in the
ranking of arguments is that redundant arguments (and thus the attacks
from them) are removed. In the case where the argumentation graph is
generated from a knowledge base, we defined two sufficient properties for
the cores of the graph to be not different from the original graph. Moreover,
we proposed several properties for characterising the ranking changes.

In the second part of this chapter, we studied how ranking-based seman-
tics can be transposed in the setting of hypergraph argumentation frame-
works. We translated the 18 desirable properties for ranking-based semantics
on binary argumentation framework defined in the literature for argumen-
tation hypergraphs. Then, we introduced the nh-categoriser as the first
ranking-based semantics for argumentation hypergraphs and showed the ex-
istence and uniqueness of its solution. As we see it, those results will enable
the argumentation community to further consider new kind of frameworks
such as argumentation hypergraphs in the future.

Lastly, we presented the Ranking-based Inference Framework (RIF) that

155

https://gite.lirmm.fr/yun/IJCAI2018

CHAPTER 5. RANKING-BASED REASONING

wp1
...

wp16

pp f1, prl1

pp f2, prl2

pp f3

pp f4

pp f5, prl3,prl4

pp f6

prl5

prl6

pp f7
...

pp f9

opl1

opl2

x

F
ro

m
“w

or
st

”
to

“b
es

t”
re

p
ai

rs

Table 5.6: Ranking on repairs. For simplicity, repairs are denoted by the
packaging they are referencing

156

5.4. SUMMARY

takes into consideration the inconsistency on the facts when using the repairs
for query answering and restricts the set of repairs to the best with respect to
inconsistency values. Since we consider a subset of repairs, we obtain more
answers than classical inconsistency-tolerant query answering in most cases.
We characterised the desirable properties of such a framework with respect
to the following properties: Abstraction, Free, Non Entailment Ejection
and Supremacy. We also introduced an algorithm for computing the top
result of such a framework and showed its results on a real-life scenario
about packagings. Please note that the ranking-based inference framework
is more abstract than the work of Staworko et al. [2012] as we can consider an
inconsistency value returning the same preferences on facts, a lifting function
that uses these preferences such that the completion optimal repairs are
ranked first, Globally optimal repairs second, Pareto optimal repairs third
and followed by the other repairs.

Chapter 5 in a Nutshell

• We studied the impact of cores on the rankings returned by
ranking-based semantics and proposed several properties for
characterising ranking changes.

• We introduced the notion of ranking-based semantics for argu-
mentation hypergraph and translated all of the existing prop-
erties for the binary argumentation graphs to argumentation
hypergraphs. We also defined the nh-categoriser as the first
ranking-based semantics for hypergraphs.

• We introduced the ranking-based inference framework for rank-
ing repairs of an inconsistent knowledge base by using inconsis-
tency values. We proposed several properties for the framework
and describe a real-life application scenario.

157

6
Conclusion

6.1 Scope . 160

6.2 Summary and contributions 161

6.3 Perspectives . 163

In this thesis, we answered a research question that originated from the
necessity to preserve the ability to reason in presence of inconsistencies in
a knowledge base expressed using the existential rules framework. The in-
consistencies are conflicts that stem from incorrect factual knowledge. The
problem of inconsistence has been addressed for existential rules using the
various Repair Semantics. However, those approaches are lacking in many
aspects, such that explanatory power, compared to logic-based argumenta-
tion approaches.

Research Question

How can we reason using logic-based argumentation in the context
of the existential rules framework?

Our research hypothesis is that logic-based argumentation can be prac-
tically used to reason in presence of inconsistencies in real-life databases.
However, although there has been many theoretical works on the structure
of arguments, there is a lack of studies about the structural properties of the
generated argumentation frameworks and the practical generation of such
graphs. Our research question can be refined as follows:

159

CHAPTER 6. CONCLUSION

1. What are the particularities of argumentation frameworks gen-
erated from existential rules knowledge bases?

2. How can we generate logic-based argumentation frameworks for
the existential rules framework? Is this framework usable for
large set of data and can we improve the generation process?

3. Can we provide tools that allow for an automatic generation of
argumentation graphs?

4. What are the reasoning techniques that can be used with logic-
based argumentation?

6.1 Scope

Since our research problem was vast, we restricted its scope in order to
address it in a more focused manner:

• Dataloд+ is a first order logical language that has the ability to express
knowledge about unknown individuals using value invention. The level
of expressiveness brought by this ability comes at the high cost of
computation tractability since the reasoning mechanism of Dataloд+
can be infinite. That is the reason why several decidable fragments of
Dataloд+ have been defined: Finite Expansion Set (FES) [Baget et al.,
2014b] guaranteeing a finite forward chaining mechanism (chase), Fi-
nite Unification Set (FUS) [Baget et al., 2011] guaranteeing a finite
backward chaining mechanism, and Greedy Bounded Treewidth Set
(GBTS) [Baget et al., 2011] guaranteeing a finite forward-like infer-
ence mechanism. We decided to work with the family of these decid-
able fragments which is called Dataloд± or equivalently, the existential
rules framework. As arguments are often composed of a conclusion
that is deduced from a support, we choose to focus to focus on the
forward chaining mechanism which is arguably the most intuitive one
given its ability to handle transitive rules [Rocher, 2016]. The second
question that we needed to answer is what type of chase do we want
to use? There are four kinds of chases: Oblivious, Frontier/Skolem,
Restricted, and Core. In this thesis, we use the Frontier/Skolem chase
which is the most used chase given its relatively low cost and its ability
to stay decidable for all known concrete classes of the FES fragment
[Baget et al., 2011].

• Logic-based argumentation is an approach that consists in building ar-
guments from a knowledge base using a given logic. There has been

160

6.2. SUMMARY AND CONTRIBUTIONS

many major logical approaches that have been studied in the litera-
ture: Assumption-Based Argumentation (ABA) [Toni, 2014], ASPIC+
[Modgil and Prakken, 2014], Defeasible Logic Programming (DeLP)
[Garćıa and Simari, 2004] or Deductive argumentation [Besnard and
Hunter, 2008]. However, since none of these previous approaches can
be directly applied to a knowledge base expressed using the existential
rules framework, we decided to focus on logic-based formalisms that
were dedicated to this language, i.e. the argumentation frameworks
defined by Croitoru and Vesic [2013] and Arioua [2016].

• Inconsistency-tolerant techniques are techniques that can be used for
handling inconsistencies in knowledge bases expressed in the existential
rules framework. In this thesis, we consider two of these techniques:
repair semantics and argumentation semantics. For the former, focus
on the most well-known repair semantics, namely AR, IAR and ICR
[Lembo et al., 2010]. For the later, we focus only on extension-based
[Dung, 1995] and ranking-based approaches [Amgoud and Ben-Naim,
2015].

6.2 Summary and contributions

In order to achieve our goals, we provided three main contributions:

1. We revisited the logic-based argumentation framework defined by Ar-
ioua [2016] and showed many of its structural properties. We proved
that this argumentation framework has an exponential number of ar-
guments with respect to the size of the knowledge base which makes
it difficult to be used in real-life applications.

2. We provided optimisations in order to accelerate the generation and
limit the number of arguments. We also defined a new logic-based
hypergraph argumentation framework for the existential rules frame-
work and empirically showed that it is more efficient that the binary
argumentation framework.

3. On the one hand, we studied ranking-based approaches for binary
argumentation frameworks and introduced how this notion can be ap-
plied for hypergraph argumentation frameworks. On the other hand,
we showed that ranking-based approaches can also be applied directly
on the factual knowledge in order to improve repair semantics.

In Chapter 2, we introduced the existential rules framework and reviewed
the various reasoning techniques that are used in the context of the abstract
argumentation model proposed by Dung [1995].

161

CHAPTER 6. CONCLUSION

In Chapter 3, we studied the specially crafted deductive logic-based argu-
mentation framework proposed by Arioua et al. [2017] and Yun et al. [2017a].
In this framework, we highlighted several structural properties such as the
presence of particular arguments and subgraphs, the presence of symmetries,
the characterisation of strongly connected components or the explosion of
the number of arguments when free facts are added. To solve the problem of
the huge amount of arguments generated, we defined optimisation methods
in both the case of knowledge bases with or without positive rules. In the
first case, we showed that the generation of the argumentation graph can
be fastened using a pre-processing of the underlying knowledge base. In the
second case, we showed that the number of arguments can be reduced by
filtering “redundant” arguments and replacing the binary attack relation by
sets of attacking arguments. Using these insights, we developed the first tool
for generating argumentation frameworks from existential rules knowledge
bases (DAGGER) and we compared the results of the best solvers for argu-
mentation semantics on the generated graphs. The benchmark provided a
clear view that logically generated argumentation graphs are very different
from randomly generated graphs usually used in benchmarks. Moreover,
the benchmark can be used by a data engineer to choose the best solver for
logically generated graphs.

Based on the insights that we uncovered when optimising the existing
argumentation framework for existential rules, we introduced in Chapter
4, a new logic-based argumentation framework which is an instantiation
of the framework defined by Nielsen and Parsons [2007] and showed in an
experiment that it is more efficient both with respect to the size of the ar-
gumentation graph and with respect to the computational time. Indeed,
we showed that this new argumentation framework does not suffer from the
aforementioned problem of explosion of the number of arguments. Imple-
menting this new framework in a tool (NAKED) enabled for the generation,
visualisation and export of an argumentation hypergraph generated from an
existential rules knowledge base.

After solving the problem of the generation of the argumentation graph,
we investigated, in Chapter 5, how ranking-based techniques can be used
for handling inconsistencies in both the logic-based argumentation theory
and the logic setting. First, we studied the behaviour of the ranking on
arguments returned by classical ranking-based semantics, in the context of
the framework of Arioua et al. [2017] and Yun et al. [2017a], when redun-
dant knowledge is present in the underlying knowledge base. We provided
sufficient conditions on the knowledge base for preventing the apparition
of redundant arguments and showed several examples of ranking modifi-
cations caused by redundancies. Second, we provided an extension of the
notion of ranking-based semantics to the special case of hypergraph argu-
mentation by converting existing desirable properties and ranking-based se-

162

6.3. PERSPECTIVES

mantics. Lastly, we showed that ranking-based techniques can also be used
directly on knowledge bases using the ontological layer in order to compute
the contribution of each fact in the overall inconsistency of the knowledge
base. This approach is not only able to rank pieces of knowledge with re-
spect to their “inconsistency value” but can also be used to rank repairs
using the same approach as Konieczny et al. [2015] and Bonzon et al. [2018].

6.3 Perspectives

This thesis answered the research question we set out to address and our
contributions opened interesting avenues for future work.

1. Ranking-based techniques.

Ranking-based techniques are often used in the logical setting in or-
der to get a degree of inconsistency or acceptability. In this thesis,
we studied ranking-based techniques from two perspectives: the argu-
mentation and the knowledge base perspectives. In the argumentation
perspective, ranking-based semantics are used for ranking arguments
with respect to the structure of the underlying argumentation frame-
work. The ranking on arguments obtained by these ranking-based
semantics can be used in many ways. As we showed in Section 5.1,
the approach of Amgoud and Ben-Naim [2015] is able to rank formulas
using the output of ranking-based semantics. In the work of Yun et al.
[2018h], the output of ranking-based semantics is “lifted” in order to
rank sets of arguments or extensions. Likewise, in the knowledge base
perspective, we showed in Section 5.3 that the approach of Yun et al.
[2018g] is also able to rank formulas based on their contributions in
the overall inconsistency of the knowledge base and that this ranking
can also be “lifted” to repairs.

• Correspondence between perspectives. The first question
that we ask here is: Can we find a correspondence between ranking-
based techniques in the two perspectives? This is a natural ques-
tion as ranking-based techniques in the two perspectives can
yield rankings on formulas and rankings on extensions or re-
pairs. Moreover, since there is an equivalence between repairs
and preferred (respectively stable) extensions in most logic-based
argumentation frameworks with existential rules (see Chapter 3
and Chapter 4), a ranking on extensions can be converted into
a ranking on repairs and vice versa. A positive answer to this
question would provide a link between argumentation theory and
the results in the knowledge representation community and allow
practical applications to explain to users why a particular for-

163

CHAPTER 6. CONCLUSION

mula holds by constructing and highlighting several arguments
in favour or against this formula.

• Improving rankings. The second question that we ask is: Can
the ranking-based techniques be improved? Ranking techniques
in argumentation make use of the structure of an argumentation
framework whereas in the knowledge base perspective, ranking
techniques are based on the notion of minimal inconsistent sets.
Following the work of Bonzon et al. [2018], it would be possible to
combine these two techniques. It would be interesting to study
what properties are produced by the combination of these two
techniques.

2. Efficient generation. In Chapter 4, we introduced a new framework
for logic-based argumentation that is based on instantiating hyper-
graphs. As we showed in an experiment, this new framework is much
more efficient than those of Croitoru and Vesic [2013] and Arioua et al.
[2017]. Against this background, it would be interesting to scale up
the experiment and generate argumentation frameworks using large
existential rules knowledge bases such as LUBM [Bourgaux, 2016].

3. Incoherence. We showed in Chapter 2 that there are two types
of conflicts: inconsistencies and incoherences. In this thesis, we fo-
cused on how to solve inconsistencies using logic-based argumentation
techniques. However, it would be interesting to study how incoher-
ences can be handled in the context of the existential rules frame-
work. In the work of Martinez et al. [2014], the author proposed a
logic-based argumentation framework for the existential rules frame-
work inspired by DeLP. They introduced Defeasible Dataloд± which
added a defeasible layer composed of defeasible atoms (weaker state-
ments) and rules (weaker inferences). In the work of Hecham [2018],
defeater rules (rules that prevent the application of defeasible rules)
were added to the defeasible layer of defeasible Dataloд±. In this set-
ting, the author introduced the Statement Graph and the Graph of
Atom Dependency [Hecham et al., 2017b] as two new logic-based for-
malisms for reasoning with incoherent knowledge. To the best of our
knowledge, the three aforementioned formalisms are currently the only
works that study how to handle incoherences in the context of the ex-
istential rules framework. In the future, it would be interesting to
explore how other argumentation frameworks such as ASPIC+ and
ABA can be instantiated with the existential rules framework [Yun
and Croitoru, 2016; Lam et al., 2016] and to show that there is po-
tential for cross-fertilisation for research on the relationship between
defeasible reasoning in existential rules and major logic-based argu-
mentation frameworks.

164

6.3. PERSPECTIVES

4. Argumentation & human reasoning. Computer supported collab-
orative decision-making is a task that consists in collectively taking a
decision via social interaction using a computer. Previous research
gives grounds to believe that groups of students that are more efficient
than others for collective tasks use specific speech and argumenta-
tion typologies in their interaction during the social interaction. In
the PEPS S2IH APOLONIO (Argument Patterns in computer sup-
ported cOllaborative LearNIng) project, we aimed at collecting the in-
teraction data and applying the existing approaches from the argumen-
tation literature. In this project, several student classes were divided
into groups for or against a specific topic. Each student and group
had to rank arguments while their interactions was recorded. Then,
different pairs of groups for or against the topic were asked to find a
common ranking on the whole set of arguments. In the future, we plan
to publish our results on this experiment. This cross-fertilisation will
be beneficial to both computer scientists and psychologists. On one
hand, the human sciences will use the approaches developed in the
computer science community in order to identify the argument pat-
terns used by efficient groups. On the other hand, computer sciences
will benefit from the real-world data coming from other domains in
order to compare and evaluate existing theoretical approaches.

5. Practical applications.

In the setting of the Pack4Fresh project for reducing post-harvest
wastes, we developed a decision-support system (DSS) for ranking
strawberry packaging alternatives based on poll results and argumen-
tation. In the real world, choosing a packaging alternative can be
an arduous task as it requires a balance between pros and cons. For
instance minimising food waste and losses could also significantly con-
tribute to decrease the overall environmental impact of the food itself.
In our workflow, we collected answers to a poll from a large number of
consumers in order to model the overall viewpoint of consumers about
the characteristics of each packaging in propositional logics. Then, we
instantiated an ASPIC+ argumentation framework based the afore-
mentioned knowledge base. The extensions are computed for a specific
semantics and ranked with respect to sets of preferences on packaging
characteristics [Yun et al., 2018a]. In this system, the ranking on alter-
natives given by the DSS is greatly affected by the user’s preferences.
In the future, we plan on further implementing (1) automatic rankings
that rely on the structure of the argumentation framework itself [Yun
et al., 2018h], (2) automatic rankings that are based on the knowledge
base itself (see Section 5.3) and (3) switching to a more expressive
language such as the existential rules framework or description logics.

165

7
Appendix

7.1 Miscellaneous . i

7.2 Proofs . ii

7.2.1 Chapter 3 . ii

7.2.2 Chapter 4 . viii

7.2.3 Chapter 5 . xii

This chapter contains the proofs for the propositions and examples of
the several chapters of this thesis.

7.1 Miscellaneous

Example 3.19 Let KB = (F,R,N) be a knowledge base such that F ={a(m),b (m), c (m),d (m), e (m)}, R = ∅ and N = {∀X (a(X) ∧ b (X) ∧ c (X) →
⊥),∀X (e (X) ∧ d (X) → ⊥)}. The corresponding argumentation framework is
composed of 161 attacks and the following 20 arguments:

• a0 : ({a(m)}, {a(m)})
• a1 : ({b (m)}, {b (m)})
• a2 : ({a(m),b (m)}, {a(m),b (m)})
• a3 : ({c (m)}, {c (m)})
• a4 : ({a(m), c (m)}, {a(m), c (m)})
• a5 : ({b (m), c (m)}, {b (m), c (m)})
• a6 : ({d (m)}, {d (m)})
• a7 : ({a(m),d (m)}, {a(m),d (m)})
• a8 : ({b (m),d (m)}, {b (m),d (m)})),d (m)})

i

CHAPTER 7. APPENDIX

• a9 : ({a(m),b (m),d (m)}, {a(m),b (m),d (m)})
• a10 : ({c (m),d (m)}, {c (m),d (m)})
• a11 : ({a(m), c (m),d (m)}, {a(m), c (m),d (m)})
• a12 : ({b (m), c (m),d (m)}, {b (m), c (m),d (m)})
• a13 : ({e (m)}, {e (m)})
• a14 : ({a(m), e (m)}, {a(m), e (m)})
• a15 : ({b (m), e (m)}, {b (m), e (m)})
• a16 : ({a(m),b (m), e (m)}, {a(m),b (m), e (m)})
• a17 : ({c (m), e (m)}, {c (m), e (m)})
• a18 : ({a(m), c (m), e (m)}, {a(m), c (m), e (m)})
• a19 : ({b (m), c (m), e (m)}, {b (m), c (m), e (m)})
The preferred extensions will be composed of the following sets:

• ε1 = {a0,a1,a2,a6,a7,a8,a9}
• ε2 = {a0,a3,a4,a6,a7,a10,a11}
• ε3 = {a1,a3,a5,a6,a8,a10,a12}
• ε4 = {a0,a1,a2,a13,a14,a15,a16}
• ε5 = {a0,a3,a4,a13,a14,a17,a18}
• ε6 = {a1,a3,a5,a13,a15,a17,a19}
The set of cf2 extensions is the set {ε1, ε2, ε3, ε4, ε5, ε6, ε7, ε8} with:

• ε7 = {a0,a1,a3,a6,a7,a8,a10}
• ε8 = {a0,a1,a3,a13,a14,a15,a17}

7.2 Proofs

7.2.1 Chapter 3

Proposition 3.11 (Characterisation of dummy arguments) Let KB =

(F,R,N) be knowledge base such that R = ∅ and |F | = n. There are exactly
2k − 1 dummy arguments in FKB where k = |Free (KB) |.

ii

7.2. PROOFS

Proof 3.11. Let us consider Unn = {a ∈ A | Att− (a) = Att+ (a) = ∅}, the set
of dummy arguments.

1. Let us prove that |Unn | ≥ 2k − 1. The set Free (KB) corresponds to
the set of facts that are not in any conflict. Since k = |Free (KB) |, we
conclude that there are at least 2k−1 arguments of the form (X ,X) that
have a non empty subset X of Free (KB) as support. These arguments
are not attacked and do not attack other arguments as the elements
of their supports and conclusions are not in any conflict.

2. Let us prove that |Unn | ≤ 2k − 1. By means of contradiction, we
suppose that |Unn | > 2k − 1. It means that that there is a dummy
argument a ∈ Unn such that Supp (a) * Free (KB). Thus, there exists
a minimal inconsistent set X ∈ MI (KB) such that X ∩ Supp (a) , ∅.
Now, let us consider Y = X \ Supp (a). We know that Y is not empty
otherwise there is a contradiction with the consistency of the support
of a. Furthermore, Y is R-consistent since Y ⊂ X . Thus, there is an
argument b = (Y ,Y) such that (b,a) ∈ R, contradiction.

�

Proposition 3.12 (Number of arguments) Let KB = (F,R,N) be a
knowledge base with R = ∅. If |Free (KB) | = k then there is a subgraph of
FKB = (A ,R) that is a (2k)-copy graph of FKB′ = (A ′,R ′) where KB′ =

(F \ Free (KB),R,N) and |A | = (|A ′ | + 1) ∗ 2k − 1.

Proof 3.12. If Free (KB) = ∅, then it is obvious that FKB is a 1-copy graph
of itself. Suppose now that Free (KB) , ∅. We denote by FKB′ = (A ′,R ′) the
argumentation framework from the knowledge base KB′ = (F\Free (KB),R,N).
Moreover, since R = ∅, the arguments can only be of the form (X ,X) where
X is an R-consistent subset of F \ Free (KB). Hence, |A ′ | = |{X | X is a non
empty R-consistent subset of F \ Free (KB)}|.

Now, let us consider FKB = (A ,R), the argumentation framework cor-
responding to the knowledge base KB. We show that the subgraph F′′

KB
=

(A ′′,R ′′) of FKB where A ′′ = {a ∈ A | Supp (a) * Free (KB)} and R ′′ =
R |A ′′ is a (2 |Free (KB) |)-copy graph of FKB′:

• We know that for any set X that is an R-consistent subset of F \

Free (KB), X ∪X ′, where X ′ is a subset of Free (KB), is an R-consistent
set. Thus |A ′′ | = |{X ∪ X ′ | X ′ ⊆ Free (KB) and X is a non empty
R-consistent subset of F \ Free (KB)}|. Since the number of subsets of
Free (KB) is 2 |Free (KB) |, then |A ′′ | = |A ′ | ∗ 2 |Free (KB) |.

• We denote by f the function from A ′′ to A ′ such that f (a′′) = a′ iff
Supp (a′) = Supp (a′′) ∩ (F \ Free (KB)). We now show that this function

iii

CHAPTER 7. APPENDIX

is surjective. Let a′ be an argument of A ′ and c an arbitrary element
of Free (KB) (it exists since Free (KB) , ∅). As mentioned before, we
know that E = Supp (a′) ∪ {c} is R-consistent. Therefore a′′ = (E,E) is
an argument of A ′′ and f (a′′) = a′.

• Let a′ ∈ A ′ and Wa′ = {a′′ ∈ A ′′ | f (a′′) = a′}. For every subset X of
Free (KB), L = X ∪Supp (a′), (L,L) ∈Wa′. Since the number of different
subsets of Free (KB) is 2 |Free (KB) |, we have |Wa′ | ≥ 2 |Free (KB) |. Since
for every a′1,a

′
2 ∈ A′, Wa′1 ∩Wa′2 = ∅, then for every a′ ∈ A ′, |Wa′ | =

2 |Free (KB) | because |A ′′ | = |A ′ | ∗ 2 |Free (KB) |.

• Let (a′′1 ,a
′′
2) ∈ R ′′, by definition, we have that there exists ϕ ∈ Supp (a′′2)

s.t. Conc (a′′1) ∪ {ϕ} is R-inconsistent. Since there are no rules, it is
true that Supp (a′′1) ∪ {ϕ} is also R-inconsistent. However, this incon-
sistency cannot come from elements of Free (KB). Thus, there exists
ϕ ∈ Supp (a′′2)∩ (F\Free (KB)) such that (Supp (a′′1)∩ (F\Free (KB))∪{ϕ}
is R-inconsistent. Therefore (f (a′′1), f (a

′′
2)) ∈ R ′ since Supp (f (a′′1)) =

Supp (a′′1) \ Free (KB) and Supp (f (a′′2)) = Supp (a′′2) \ Free (KB).

• Let a′′1 ,a
′′
2 ∈ A ′′ such that (f (a′′1), f (a

′′
2)) ∈ R ′. It means that there

exists ϕ ∈ Supp (f (a′′2)) s.t. Conc (f (a′′1)) ∪ {ϕ} is R-inconsistent. By
definition, we have that Supp (f (a′′2)) = Supp (a′′2) \ Free (KB), thus
ϕ ∈ Supp (a′′2). Likewise, we have that Conc (f (a′′1)) = Supp (f (a′′1)) =
Supp (a′′1)\Free (KB) = Conc (a′′1)\Free (KB). We conclude that (Conc (a′′1)\
Free (KB)) ∪ {ϕ} is R-inconsistent. Therefore Conc (a′′1) ∪ {ϕ} is R-
inconsistent and (a′′1 ,a

′′
2) ∈ R ′′.

Finally, we have that |A | = |{X | X is an R-consistent subset of F}| =
|{X | X * Free (KB) and X is an R-consistent subset of F} ∪ {X | X ⊆
Free (KB)}| −1 = |A ′ | ∗2 |Free (KB) |+2 |Free (KB) |−1 = (|A ′ |+1) ∗2 |Free (KB) |−1.
This concludes the proof. �

Proposition 3.15 (SCC characterisation) Let KB = (F,R,N) be a
knowledge base such that R = ∅ and FKB = (A ,R) be the corresponding
argumentation framework. We have that:

1. si ∈ SCC (FKB) where si = {(Xi ,Xi)} with Xi ∈ 2F\
⋃

C ∈MI (KB) Imp (C)

2. (A \
⋃

i si) ∈ SCC (FKB)

Proof 3.15. We split the proof in two parts:

1. Suppose that si is not a strongly connected component by itself, it
means that there is another argument a such that there is a path from
si = {Xi ,Xi} to a and inversely. Let us denote by a1, the first argument
attacked by si on a path from si to a. By definition, it means that there

iv

7.2. PROOFS

exists ϕ ∈ Supp (a1) such that Xi ∪ {ϕ} is R-inconsistent. Since Xi is
R-consistent, it means that Xi ∪ {ϕ} is a minimal conflict and that
Xi ∈ Imp (Xi ∪ {ϕ}). Then, Xi < 2F \

⋃
C ∈MI (KB) Imp (C), contradiction.

2. Let a,b be two arguments in (A \
⋃

i si), we show here that there is
a path from a to b. From the definitions, we know that a (resp. b)
is of the form (X ,X) (resp.(X ′,X ′)) such that there exists a minimal
conflict C (resp. C ′) and W ⊆ C (resp. W ′ ⊆ C ′) with |W | = |C − 1|
(resp. |W ′ | = |C ′ − 1|) and W ⊆ X (resp. W ′ ⊆ X ′).

Let H = C \ X , X ′′ = X ′ \ H , W ′′ ⊆ X ′′ with |W ′′ | = |X ′′ − 1| and
J = H ∪W ′′ ∪ (C ′ \ X ′).

• If J is R-consistent, we denote by u, the argument (J , J). We have
that u belongs to (A \

⋃
i si) because J = |C ′ − 1| and J ⊆ C ′. We

have that a attacks u and u attacks b.

• If J is R-inconsistent, it means that there is a minimal conflict
C ′′ ⊆ J such that C ′′ * C ′ and C ′′ * C. Let us consider K ,L ⊆ J
such that |K | = |L| = |J − 1|, H ⊆ K and H * L. By definition,
K and L are R-consistent, thus the arguments c = (K ,K) and
d = (L,L) exist. We have that a attacks c, c attacks d and d
attacks b.

�

Proposition 3.17 (Repair equivalence) Let F∗
KB
= (A ∗,R∗), it holds

that Extx (F
∗
KB

) = {Arд(A′,A ∗) | A′ ∈ repairs (KB)} for i ∈ {s,p}.

Proof 3.17. The proof is split in two parts. Let F∗
KB
= (A ∗,R∗) and N ={Arд(A′,A ∗) | A′ ∈ repairs (KB)}. We first show that N ⊆ Exts (F

∗
KB

). Then
since, the set of stable extensions is included in the set of preferred extensions
Nielsen and Parsons [2006], we have that N ⊆ Extp (F

∗
KB

). In the second part
of the proof, we show that Extp (F

∗
KB

) ⊆ N .

• We first show N ⊆ Exts (F
∗
KB

). Let A′ be a repair of KB and let
E = Arд(A′,A ∗). Let us prove that E is a stable extension of F∗

KB
. We

first prove that E is conflict-free. By means of contradiction we suppose
the contrary, i.e. let X ⊆ E, b ∈ E such that (X ,b) ∈ R∗. From the
definition of attack, there exists ϕ ∈ Supp (b) such that (

⋃
a∈X Conc (a))∪{ϕ} is R-inconsistent. Thus (

⋃
x ∈X Supp (x))∪{ϕ} is R-inconsistent and

A′ is R-inconsistent, contradiction. Therefore E is conflict-free.

Let us now prove that E attacks all arguments outside the set E. Let
b ∈ A ∗\Arд(A′,A ∗) and let ϕ ∈ Supp (b) such that ϕ < A′. By definition,
we know that there is S ′ ⊆ A′ such that c = (S ′,A′) is an argument
in FKB. If c ∈ A ∗, we have that ({c},b) ∈ R∗. Otherwise, there

v

CHAPTER 7. APPENDIX

exists a set of arguments M = {a1,a2, . . . ,an} ⊆ A ∗ with Supp (ai) = S ′

such that
⋃

ai ∈M Conc (ai) = A′. Hence, (M,b) ∈ R∗ and E is a stable
extension.

• We now show that Extp (F
∗
KB

) ⊆ N . Let E ∈ Extp (F
∗
KB

) and let us prove
that there exists a repair A′ such that E = Arд(A′,A ∗). Let S = Base (E).
Let us prove that S is R-consistent. Aiming to a contradiction, suppose
that S is R-inconsistent. Let S ′ ⊆ S be such that:

1. S ′ is R-inconsistent

2. Every proper set of S ′ is R-consistent. Let us denote by S ′ the
set {ϕ1,ϕ2, . . . ,ϕn}.

Let a ∈ E be an argument such that ϕn ∈ Supp (a). Let S ′′ ⊆ S ′ \{ϕn} such that c = (S ′′, S ′ \ {ϕn}) is an argument of FKB. Then, if
c ∈ A ∗, we have that ({c},a) ∈ R∗. Otherwise, there exists a set of
arguments M = {a1,a2, . . . ,an} ⊆ A ∗ with Supp (ai) = S ′′ such that⋃

ai ∈M Conc (ai) = S ′ \ {ϕn}. Hence, a is attacked by c or by M. Since
E is conflict-free, we have that c < E (resp M * E). However, since E is
admissible, there exists B = {b1, . . .bn} such that B ⊆ E and (B, c) ∈ R∗

(respectively there exists ai ∈ M \ E and (B,ai) ∈ R∗). By definition,
this means that there exists ϕ j ∈ Supp (c) (resp ϕ j ∈ Supp (ai)) such
that (

⋃
bi ∈B Conc (bi)) ∪ {ϕ j} is R-inconsistent. Since ϕ j ∈ S, there is

an argument d ∈ E such that ϕ j ∈ Supp (d). Therefore, (B,d) ∈ R∗.
Contradiction and E is R-consistent.

Let us now prove that there exists no S ′ ⊆ F such that S ⊂ S ′ and
S ′ is R-consistent. We use the proof by contradiction. Thus, suppose
that S is not a maximal R-consistent subset of F. Then, there exists
a repair S ′ of KB, such that S ⊂ S ′. We have that E ⊆ Arд(S,A ∗).
Denote E ′ = Arд(S ′,A ∗). Since S ⊂ S ′ then Arд(S,A ∗) ⊂ E?. Thus,
E ⊂ E ′. From the first part of the proof, E ′ ∈ Exts (F

∗
KB

). Consequently,
E ′ ∈ Extp (F

∗
KB

). We also know that E ∈ Extp (F
∗
KB

). Contradiction,
since no preferred set can be a proper subset of another preferred set.
Thus, we conclude that Base (E) is a repair of KB.

Let us show that E = Arд(Base (E),A ∗). It must be that E ⊆ Arд(S,A ∗).
Also, we know (from the first part) that Arд(S,A ∗) is a stable and a
preferred extension, thus the case E * Arд(S,A ∗) is not possible

�

Proposition 3.19 (Attack properties) Let KB be a knowledge base,
FKB = (A ,R) be the corresponding argumentation framework and F∗

KB
=

(A ∗,R∗) be the filtrated argumentation framework. It holds that:

1. a ∈ A ∗ is not attacked in FKB if and only if a is not attacked in F∗
KB

vi

7.2. PROOFS

2. if a ∈ A ∗ is attacked in FKB then |Att−
FKB

(a) | ≤ |Att−
F∗
KB

(a) |

Proof 3.19. The proofs are as follows:

1. We show that a ∈ A ∗ is not attacked in FKB if and only if a is not
attacked in F∗

KB
. The proof is split in two parts:

• (⇒) Let a ∈ A ∗ and suppose that a is not attacked in FKB but a
is attacked in F∗

KB
. If there exists b ∈ A ∗ such that ({b},a) ∈ R∗.

Then, we have that (b,a) ∈ R, hence a is attacked inFKB. Contra-
diction. Otherwise, there exists B = {b1, . . . ,bn} ⊆ A ∗ such that
(B,a) ∈ R∗. Let CB =

⋃
bi ∈B Conc (bi). Let SB = Supp (b1) = · · · =

Supp (bn). We now show that b = (SB,CB) is an argument in FKB.
Indeed, SB is consistent, CB ⊆ SatR (SB). By means of contradic-
tion, suppose that SB is not a minimal set satisfying the previous
two conditions and let SB′ ⊂ SB such that CB ⊆ SatR (SB

′). Then,
b1 is not an argument since (SB′,Conc (b1)) is an argument. Thus,
b is an argument in FKB and we have that (b,a) ∈ R.

• (⇐) Suppose now that a is attacked in FKB but that a is not
attacked in F∗

KB
. Let (b,a) ∈ R. The case b ∈ A ∗ is trivial

because ({b},a) ∈ R∗. Suppose that b < A ∗. This means that
there exists B = {b1, . . . ,bn} ⊆ A ∗ such that Supp (b1) = · · · =
Supp (bn) and Conc (b) =

⋃
bi ∈B Conc (bi). So either (B,a) ∈ R∗ or

there exists B′ ⊂ B such that (B′,a) ∈ R∗.

2. We show that if a ∈ A ∗ is attacked inFKB then |Att−
FKB

(a) | ≤ |Att−
F∗
KB

(a) |.

Suppose that a ∈ A ∗ is attacked in FKB. Let B = {b1, . . . ,bn} be the
set of all attackers of a in FKB. Without loss of generality, let B∩A ∗ ={bk , . . . ,bn}. Let us define a function f : B → {B′ ⊆ A ∗ | (B′,a) ∈ R∗}
as follows:

f (bi) =

{bi} if bi ∈ A ∗

B′ = {b1i , . . . ,bki } where B is an arbitrary set such

that for every b ji ∈ B
′, Supp (b ji) = Supp (bi) and⋃

b ji ∈B
′Conc (b

j
i) = Conc (bi) and B′ is a minimal

set satisfying the previous two conditions otherwise

f is well defined since such B′ exists if bi < A ∗, by definition of A ∗.
Let us prove that f is an injective function. Let bi ,bj ∈ B. The
case i ≥ k or j ≥ k is obvious. In the remainder of the proof, we
suppose that i < k and j < k. Denote B′ = f (bi) and B′′ = f (bj).
Suppose that B′ = B′′. Thus Supp (bi) = Supp (bj). Note that Conc (bi) =

vii

CHAPTER 7. APPENDIX

⋃
b ∈B′Conc (b) =

⋃
b ∈B′′Conc (b) = Conc (bj). Thus bi = bj . This shows

that f is injective. We conclude that |Att−
FKB

(a) | ≤ |Att−
F∗
KB

(a) |.

�

7.2.2 Chapter 4

Proposition 4.1 (Preferred & Stable Characterisation) Let KB =

(F,R,N) be a knowledge base, F?KB be the corresponding argumentation
framework and x ∈ {s,p}. It holds that:

Extx (F
?
KB) = {Arд?(A′) | A′ ∈ repairs (KB)}

Proof 4.1. The plan of the proof is as follows:

1. We prove that {Arд?(A′) | A′ ∈ repairs (KB)} ⊆ Exts (F
?
KB).

2. We prove that Extp (F
?
KB) ⊆ {Arд?(A′) | A′ ∈ repairs (KB)}.

3. Nielsen and Parsons [2007] proved that every stable extension is a
preferred one, we can thus proceed as follows. From the first item,
we have that {Arд?(A′) | A′ ∈ repairs (KB)} ⊆ Extp (F

?
KB), thus the

theorem holds for preferred semantics. From the second item we have
that Exts (F

?
KB) ⊆ {Arд?(A′) | A′ ∈ repairs (KB)}, thus the theorem

holds for stable semantics.

1. We first show {Arд?(A′) | A′ ∈ repairs (KB)} ⊆ Exts (F
?
KB). Let A′ ∈

repairs (KB) and let E = Arд?(A′). Let us prove that E ∈ Exts (F
?
KB).

We first prove that E is conflict-free. By means of contradiction we
suppose the contrary, i.e. let b ∈ E such that (E,b) ∈ R◦. From the defi-
nition of R◦, there exists E ′ ⊆ E such that (E ′,b) ∈ R?, i.e. φ ∈ Prem(b)
such that (

⋃
e ′∈E′

Conc (e ′))∪{φ} is R-inconsistent. Thus (
⋃

e ′∈E′
Prem(e ′))∪

{φ} is R-inconsistent; consequently A′ is R-inconsistent, contradiction.
Therefore E is conflict-free. Let us now prove that E attacks all argu-
ments outside the set. Let b ∈ Arд?(F) \Arд?(A′) and let φ ∈ Prem(b),
such that φ < A′. Let A′c = {a1, . . . ,an} be the set of all arguments
of the form ai = φi where φi ∈ A′. We have φ < A′, so, due to the
set inclusion maximality for the repairs, A′ ∪ {φ} is R-inconsistent.
Therefore, (A′c ,b) ∈ R?. Consequently, E is a stable extension.

2. We now need to prove that Extp (F
?
KB) ⊆ {Arд?(A′) | A′ ∈ repairs (KB)}.

Let E ∈ Extp (F
?
KB) and let us prove that there exists a repair A′

such that E = Arд?(A′). Let S = Base?(E). Let us prove that S is R-
consistent. Aiming to a contradiction, suppose that S is R-inconsistent.
Let S ′ ⊆ S be such that (1) S ′ is R-inconsistent and (2) every proper
set of S ′ is R-consistent. Let us denote S ′ = {φ1,φ2, . . . ,φn}. Let

viii

7.2. PROOFS

a ∈ E be an argument such that φn ∈ Prem(a). Let Y = {a1, . . . ,an−1}
be a set of arguments of the form ai = φi . It holds that (Y ,a) ∈
R? because

⋃
ai ∈Y

Prem(ai) is R-inconsistent (by definition of S ′) and

(
⋃

ai ∈Y
Conc (ai)) ∪ {φn} is R-inconsistent. However, since E is an ad-

missible set, it means that a is defended by E. Thus, we know that
(E,Y) ∈ R◦, i.e. there exists aj ∈ Y such that (E,aj) ∈ R◦. Since E is
conflict-free, we deduce that aj < E. Now consider a′ ∈ E such that
φ j ∈ Prem(a′), it holds that (E,a′) ∈ R◦, contradiction. So it must be
that S is R-consistent.

Let us now prove that there exists no S ′ ⊆ F such that S ⊂ S ′ and S ′

is R- consistent. We use the proof by contradiction. Thus, suppose
that S is not a maximal R-consistent subset of F. Then, there exists
S ′ ∈ repairs (KB), such that S ⊂ S ′.

We have that E ⊆ Arд?(S), since S = Base?(E). Denote E ′ = Arд?(S ′).
Since S ⊂ S ′ then Arд?(S) ⊂ E ′. Thus, E ⊂ E ′. From the first part
of the proof, E ′ ∈ Exts (F

?
KB). Consequently, E ′ ∈ Extp (F

?
KB). We

also know that E ∈ Extp (F
?
KB). Contradiction, since no preferred set

can be a proper subset of another preferred set. Thus, we conclude
that Base?(E) ∈ repairs (KB). Let us show that E = Arд?(Base?(E)). It
must be that E ⊆ Arд?(S). Also, we know (from the first part) that
Arд?(S) is a stable and a preferred extension, thus the case E ⊂ Arд?(s)
is not possible.

3. Now we know that the set {Arд?(A′) | A′ ∈ repairs (KB)} in included
in Exts (F

?
KB) and Extp (F

?
KB) ⊆ {Arд?(A′) | A′ ∈ repairs (KB)}. The

theorem follows from those two facts, as explained at the beginning of
the proof.

�

Proposition 4.7 (Attack upper-bound) Let KB be a knowledge base
and F?KB = (A ?,R?) be the corresponding argumentation framework. If

|A ? | = n then |R? | ≤
n−1∑
i=1

(
n
i

)
(n − i).

Proof 4.7. We show by induction that for every |A ? | ≥ 2, we have |R? | ≤
n−1∑
i=1

(
n
i

)
(n − i).

• Base: If |A ? | = 2 then we have that |R? | ≤
(
2
1

)
(2 − 1) = 2

• Inductive Step: Let us denote by E (A ?), the maximum number of
attacks on the set of arguments A ?. Suppose that A ? = {a1, . . . ,ak}

ix

CHAPTER 7. APPENDIX

and E (A ?) is
k−1∑
i=1

(
k
i

)
(k−i). We show that E (A ?∪{ak+1}) = k∑

i=1

(
k+1
i

)
(k+

1 − i). We have that E (A ? ∪ {ak+1}) = E (A ?) + x + y where x is the
maximum number of attacks from a subset of {a1, . . . ,ak} to ak+1 and
y is the maximum number of attacks from a subset of {a1, . . . ,ak+1}
containing ak+1 to an argument of {a1, . . . ,ak}. We have that x = 2k−1

and y =
k∑
i=1

(
k
i

)
i. Thus:

E (A ? ∪ {ak+1}) = E (A ?) + 2k − 1 +
k∑
i=1

(
k

i

)
i

E (A ? ∪ {ak+1}) =

k−1∑
i=1

(
k

i

)
(k − i)

+ 2k − 1 +

k∑
i=1

(
k

i

)
i

E (A ? ∪ {ak+1}) =

k−1∑
i=1

(
k

i

)
k

+ k + 2k − 1

E (A ? ∪ {ak+1}) =

k−1∑
i=1

(
k

i

)
k

+ k +

k∑
i=1

(
k

i

)
E (A ? ∪ {ak+1}) =

k−1∑
i=1

(
k

i

)
(k + 1)

+ k + 1

E (A ? ∪ {ak+1}) =

k−1∑
i=1

(
k + 1

i

)
(k + 1 − i)

+ k + 1

E (A ? ∪ {ak+1}) =

k∑
i=1

(
k + 1

i

)
(k + 1 − i)

This concludes the proof by induction. �

Proposition 4.8 (F? Indirect consistency) Let KB = (F,R,N) be a
knowledge base, F?KB be the corresponding argumentation framework and
x ∈ {s,p,д}. Then:

• for every E ∈ Extx (F
?
KB),Concs (E) is a R-consistent.

• Outputx (F
?
KB) is R-consistent.

Proof 4.8. Let E be a stable or a preferred extension of F?KB. From Propo-
sition 4.1, there exists a repair A′ ∈ repairs (KB) such that E = Arд?(A′).

x

7.2. PROOFS

Note that Concs (E) = SatR∪N (A
′) (this follows from the definition of the ar-

guments). Formally, SatR∪N (SatR∪N (A
′)) = SatR∪N (Concs (E)). Since SatR∪N is

idempotent, this means that we have SatR∪N (A
′) = SatR∪N (Concs (E)). Since

SatR∪N (A
′) 6 |= ⊥ , then SatR∪N (Concs (E)) 6 |= ⊥ and Concs (E) is R-consistent.

Let us now consider the case of grounded semantics. Denote EGE the
grounded extension of F?KB. We have seen that for every E ∈ Extp (F

?
KB),

it holds that SatR∪N (Concs (E)) 6 |= ⊥. Since the grounded extension is a subset
of the intersection of all the preferred extensions, and since there is at least
one preferred extension Nielsen and Parsons [2007], say E1, then EGE ⊆ E1.
Since SatR∪N (Concs (E)) 6 |= ⊥ then SatR∪N (Concs (EGE)) 6 |= ⊥ and Concs (EGE) is
R-consistent.

Consider the case of stable or preferred semantics. Let us prove that
SatR∪N (Outputx (F

?
KB)) 6 |= ⊥. From the definition of the output, we have

Outputx (F
?
KB) =

⋂
E∈Extx (F?KB)

Concs (E). Since every knowledge base has at

least one repair then, there is at least one stable or preferred extension E.
From the definition of the output, we have that Outputx (F

?
KB) ⊆ Concs (E).

Since Concs (E) is R-consistent thus Outputx (F
?
KB) is R-consistent.

Note that since there is only one grounded extension, we can deduce that
SatR (Outputд (F

?
KB)) = SatR (Concs (EGE)).

�

Proposition 4.9 (F? Closure) Let KB = (F,R,N) be a knowledge base,
F?KB be the corresponding argumentation framework and x ∈ {s,p,д}.
Then:

• for every E ∈ Extx (F
?
KB),Concs (E) = SatR (Concs (E)

• Outputx (F
?
KB) = SatR (Outputx (F

?
KB))

Proof 4.9. Let E be a preferred, a stable or the grounded extension. The
proof is split in two parts:

• From the definition of the saturation, Concs (E) ⊆ SatR (Concs (E)). We
prove that SatR (Concs (E)) ⊆ Concs (E). Suppose that α ∈ SatR (Concs (E)).
This means that there exists a minimal set {α1, . . . ,αk} ⊆ Conc (E)
and a sequence of rule applications such that α is produced from{α1, . . . ,αk}.

Note that from Proposition 4.8, {α1, . . . ,αk} is R-consistent. Since
α1, . . . ,αk ∈ Concs (E) then there exist a1, . . . ,ak ∈ E such that we have
Conc (a1) = α1, . . . ,Conc (ak) = αk . Thus, there exists an argument a
such that Prem(a) = Prem(a1) ∪ · · · ∪ Prem(ak) and Conc (a) = α . Since
E is a preferred, a stable or the grounded extension, Theorems 4.1
and 4.3 imply that there exists a set S ⊆ F such that E = Arд?(S) =
Arд?(Base?(E)). From this observation and since Supp (a) ⊆ Base?(E),
we conclude that a ∈ E. Thus, α ∈ Concs (E), which ends the proof.

xi

CHAPTER 7. APPENDIX

• In the case of grounded semantics, the result holds directly from the
first part of the proposition. The reminder of the proof considers stable
or preferred semantics. From the definition of SatR,Outputx (F

?
KB) ⊆

SatR (Outputx (F
?
KB)). So we need to prove that SatR (Outputx (F

?
KB)) ⊆

Outputx (F
?
KB). Let α ∈ SatR (Outputx (F

?
KB)). Then there exist a

minimal set {α1, . . . ,αk} ⊆ Outputx (F
?
KB) and a sequence of rule ap-

plications such that α is produced from {α1, . . . ,αk}. Since α1, . . . ,αk ∈
Outputx (F

?
KB) then for every E ∈ Extx (F

?
KB), we have α1, . . . ,αk ∈

Concs (E). Therefore for every E ∈ Extx (F
?
KB),α ∈ SatR (Concs (E)).

From the first part of the proof, SatR (Concs (E)) = Concs (E). Thus, for
every E ∈ Extx (F

?
KB),α ∈ Concs (E). Thus, α ∈ Outputx (F

?
KB).

�

7.2.3 Chapter 5

Proposition 5.2 (Attackers equivalence) Given a logical argumenta-
tion framework FK = (A ,R) with A being the set of arguments defined by
Definition 3.1 and R the set of attacks defined according to Definition 3.2,
the set R enjoys the following properties:

1. C1b : for every a,b, c ∈ A , if Conc (a) � Conc (b) then ((a, c) ∈ R if and
only if (b, c) ∈ R).

2. C2b : for every a,b, c ∈ A , if Supp (a) � Supp (b) then ((c,a) ∈ R if and
only if (c,b) ∈ R).

Proof 5.2. Let KB = (F,R,N) be a knowledge base expressed using existen-
tial rules and FKB = (A ,R) the corresponding argumentation framework.
Now, we consider a,b, c ∈ A .

1. Suppose that Conc (a) � Conc (b). If (a, c) ∈ R, it means that there
exists ϕ ∈ Supp (c) such that SatR∪N (Conc (a)∪{ϕ}) |= ⊥. However, since
Conc (a) � Conc (b), we can infer that SatR (Conc (a)) = SatR (Conc (b)),
thus SatR∪N (Conc (b) ∪ {ϕ}) |= ⊥ and (b, c) ∈ R. Likewise, (b, c) ∈ R
implies (a, c) ∈ R which ends the proof.

2. Suppose now that Supp (a) � Supp (b). If (c,a) ∈ R, it means that there
exists ϕ ∈ Supp (a) such that SatR∪N (Conc (c)∪{ϕ}) |= ⊥. However, since
Supp (a) � Supp (b), by definition, we have that there exists ϕ ′ ∈ Supp (b)
s.t. ϕ ′ � ϕ, i.e. SatR (ϕ

′) = SatR (ϕ). Therefore, we can infer that
SatR (Conc (c) ∪ {ϕ ′}) |= ⊥ and (c,b) ∈ R. Likewise, (c,b) ∈ R implies
(c,a) ∈ R which ends the proof.

�

xii

7.2. PROOFS

Proposition 5.4 (Core construction equivalence) Let F = (A ,R) be
an argumentation framework and ./1, ./2 be the equivalence relations defined
in Definition 5.2. It holds that:

Core./2 (F) =
⋃

c1∈Core./1 (F)

Core./2 (c1).

Proof 5.4. This proof will be split in two parts:

• (⊆) We prove this inclusion by construction. Let c ′ = (A ′,R ′) ∈
Core./2 (F), by definition, for every G ∈ A / ./1, we chose a unique x in
G for c1. Here, if there exists a ∈ G∩A′ then we choose x = a, otherwise
we choose a random element of G. Now that we have a specific core
c1 of A for ./1, we repeat the process and construct c2 from c1. In the
end, c2 = c

′.

• (⊇) Let c1 = (A1,R1) ∈ Core./1 (F) and c2 = (A2,R2) ∈ Core./2 (c1). We
prove that c2 ∈ Core./2 (F). We will proceed by proving each parts of
Definition 5.4.

– Since c2 is a core of c1 for equivalence relation ./2, then A2 ⊆ A1.
Likewise, since c1 is a core of F, we have A1 ⊆ A . Finally, we
have that A2 ⊆ A .

– Let f : A1/ ./2→ A / ./2 a function that takes as input an element
x̄ of A1/ ./2 and returns an element ¯̄x of A / ./2 s.t. x̄ ∩ ¯̄x , ∅.
We will show that this function is a bijection.

∗ Injective: Suppose that there exists x̄ , ȳ ∈ A1/ ./2 s.t. f (x̄) =
f (ȳ) = ¯̄z and x̄ , ȳ. By definition, it means that ¯̄z ∩ x̄ , ∅

and ¯̄z ∩ ȳ , ∅. Let z1 ∈ ¯̄z ∩ x̄ and z2 ∈ ¯̄z ∩ ȳ. Since z1, z2 ∈ ¯̄z,
we have that z1 ./2 z2, contradiction with x̄ , ȳ.

∗ Surjective: We have to prove that for every ¯̄x ∈ A / ./2, there
exists x̄ ∈ A1/ ./2 s.t. f (x̄) = ¯̄x . Suppose that there is no
x̄ ∈ A1/ ./2 s.t. f (x̄) = ¯̄x . Let us consider an argument x ∈ ¯̄x .
Then, there exists G1 ∈ A / ./1 s.t. x ∈ G1. Furthermore,
there exists x1 ∈ G1 s.t. x1 ∈ A1. Keep in mind that x1 ∈ ¯̄x
since x1 ./1 x and thus x1 ./2 x . Now, let G ∈ A1/ ./2 s.t.
x1 ∈ G. By definition of the core, there is a unique x2 ∈ G∩A2

and x2 ./2 x1 thus, x2 ∈ ¯̄x , contradiction.

Since c2 is a core of c1 for ./2, we have that for every x̄ ∈ A1/ ./2,

there is a unique x ∈ x̄ ∩A2. But now, since f is a bijection, we
can easily conclude that for every ¯̄x ∈ A / ./2, there is a unique
x ∈ ¯̄x ∩A2.

– The final point is obvious since it is only a restriction of attacks.

This ends the proof. �

xiii

CHAPTER 7. APPENDIX

Proposition 5.6 (Not different core characterisation ./1) Let KB =

(F,R,N) be a KB and FKB be the corresponding argumentation framework.
We have that Core./1 (FKB) = {FKB} iff for all R-consistent subset Y of F,

there is no y1,y2 such that SatR (Y) |= y1, SatR (Y) |= y2, y1 , y2 and y1 � y2.

Proof 5.6. We divide this proof in two parts:

• (⇒) We show that contrapositive of this implication is true by reductio
ad absurdum. Suppose that there is a R-consistent subset Y of F and
there exists y1,y2 such that SatR (Y) |= y1, SatR (Y) |= y2, y1 , y2, y1 � y2
and Core./1 (FKB) = {FKB}. Let us consider Y ′′ ⊆ Y s.t. there is no
Y ′ ⊂ Y ′′ and SatR |= y1. We have that a = (Y ′′, {y1}) and b = (Y ′′, {y2})
are two arguments of FKB. Furthermore, we have that a ./1 b meaning
that FKB < Core./1 (FKB), contradiction.

• (⇐) We show that this implication is true by reductio ad absurdum.
Suppose that Core./1 (FKB) , {FKB}. It means that there exists c1 =
(A1,R1) ∈ Core./1 (FKB) with Xc1 , ∅. Therefore, it exists an argument
x ∈ Xc1 s.t. x ∈ A and x < A1. We deduce that there exists x ′ ∈ A1 s.t.
Conc (x) � Conc (x ′), Supp (x) = Supp (x ′). By definition of an argument,
we have that Conc (x) ⊆ SatR (Supp (x)) and Conc (x ′) ⊆ SatR (Supp (x

′)),
contradiction.

This ends the proof. �

Proposition 5.7 (Not different core characterisation ./2) Let KB =

(F,R,N) be a KB and FKB be the corresponding argumentation framework.
We have Core./2 (FKB) = {FKB} iff the two following items are satisfied:

• there is no f1, f2 ∈ F such that f1 � f2 and f1 , f2

• for all R-consistent subset Y ⊆ F, there is no y1,y2 such that SatR (Y) |=
y1, SatR (Y) |= y2,y1 , y2 and y1 � y2.

Proof 5.7. We divide this proof in two parts:

• (⇒) We show that contrapositive of this implication is true by reduc-
tio ad absurdum in the same fashion as the proof of Proposition 5.6.
Indeed, following the same reasoning, we can deduce that there exists
two arguments a,b ∈ FKB s.t. a ./1 b and thus a ./2 b. It means that
FKB < Core./2 (FKB), contradiction.

• (⇐) We show that this implication is true by reductio ad absurdum.
Suppose that Core./2 (FKB) , {FKB}. It means that there exists c2 =
(A2,R2) ∈ Core./2 (FKB) with Xc2 , ∅. Therefore, there exists an ar-
gument x ∈ Xc2 s.t. x ∈ A and x < A2. It means that there exists
x ′ ∈ A2 s.t. Conc (x) � Conc (x ′), Supp (x) � Supp (x ′). We can consider
two cases which both lead to contradictions:

xiv

7.2. PROOFS

– If Supp (x) , Supp (x ′), there exists a ∈ Supp (x) and a < Supp (x ′)
(resp. a < Supp (x) and a ∈ Supp (x ′)). Since we have Supp (x) �
Supp (x ′), there exists a′ ∈ Supp (x ′) (resp. a′ ∈ Supp (x)) s.t. a � a′,
contradiction.

– If Supp (x) = Supp (x ′), then since Conc (x) ⊆ SatR (Supp (x)) and
Conc (x ′) ⊆ SatR (Supp (x

′)), contradiction

This ends the proof. �

Proposition 5.16 (Dung Equivalent Existence) Let F = (A ?,R?) be
an hypergraph argumentation frameworks. Then, there exists an abstract
argumentation framework F = (A ,R), a subset {a1, . . . ,am} ⊆ A and a
bijection γ : A ? → {a1, . . . ,am} such that for every a ∈ A ?, C (a) = C ′(γ (a)).

Proof 5.16. This proof is split in two parts:

1. First, we exhibit how to build an abstract argumentation framework
F from an arbitrary hypergraph argumentation framework F?.

2. Second, we show that the aforementioned F is such that Proposition
5.16 is satisfied.

1- Let F? = (A ?,R?) be an arbitrary hypergraph argumentation frame-
work. We build the abstract argumentation F = (A ,R) such that:

• A = {a1, . . . ,am} ∪ {am+1, . . . ,an}
• There is a bijection γ1 from A ? to {a1, . . . ,am} and a bijection
γ2 from R? to {am+1, . . . ,an}.

• For every (S, t) ∈ R?, we create the attack (γ2 ((S, t)),γ1 (t)) in R.

• For every (S, t) ∈ R?, we consider the set XS = {s ∈ S | for
every s ′ ∈ S, s ′ �nh

F?
s} and we chose xS ∈ XS . Then, for every

S ′ ∈ R?−
1 (xS), we create the attack (γ2 ((S

′,xS)),γ2 ((S, t))) in R.

2- We now show that the constructed argumentation framework F is such
that Proposition 5.16 is satisfied. Let X ′ = {am+1, . . . ,an} and F′ =
(A ′,R ′) be the restriction of F to X ′, i.e. A ′ = X ′ and R ′ = {(a,b) ∈
R | a ∈ X ′ and b ∈ X ′}.

We now define the function f : X ′ → R that returns for every element
a in X ′, the minimum score of the attackers associated with the attack
corresponding to a. Namely, for every a ∈ X ′, f (a) = min

a′∈W
C (a′) where

(W , t) = γ−12 (a) and γ−12 is the inverse function of γ2.

We now prove that for every a ∈ A ′, it holds that f (a) = 1
1+

∑
(b,a)∈R′

f (b) .

Let a be an arbitrary argument in A ′, {b1, . . . ,bp} the set of attackers

xv

CHAPTER 7. APPENDIX

of a in F′ and (W , t) = γ−12 (a). By construction, we know that there
exists xW ∈ W such that {b1, . . . ,bp} = {γ2 ((S ′,xW)) |S ′ ∈ R?−

1 (xW)}.
Thus,

f (a) = min
a′∈W

C (a′)

f (a) = C (xW)

f (a) =
1

1 +
∑

S ′∈R?−
1 (xW)

min
s ′∈S ′

C (s ′)

f (a) =
1

1 +
∑

(b,a)∈R′
f (b)

Since f satisfies the same formula as h-categoriser then f is identical
to h-categoriser on F′ Pu et al. [2014].

Let us now consider the whole argumentation graph F. Since there are
no attacks from arguments in {a1, . . . ,am} to arguments in {am+1, . . . ,an},
the h-categoriser gives the same scores to {am+1, . . . ,an} in F and in
F′. Since for every argument a in {a1, . . . ,am}, the set of attackers of a
in F is {b ∈ {am+1, . . . ,an} | γ−12 (b) = (S,γ−11 (a)) with S ∈ R?−

1 (γ
−1
1 (a))},

we have that for every a ∈ {a1, . . . ,am}:

C ′(a) =
1

1 +
∑

b ∈R−1 (a)
C ′(b)

C ′(a) =
1

1 +
∑

b ∈R−1 (a)
f (b)

C ′(a) =
1

1 +
∑

b ∈R−1 (a)
min
a′∈W

C (a′)
where (W , t) = γ−12 (b)

C ′(a) =
1

1 +
∑

S ∈R?−
1 (γ

−1
1 (a))

min
s ∈S

C (s)

C ′(a) = C (γ−11 (a))

This concludes the proof.

�

xvi

Index

Symbols

R?−
n (a) . 132

Arд(X ,A ∗) .69

Att+ . 33

Att−
F

. 33

Base (X)see Base

Bur see Burden vector

Csee nh-categorise function

C ′ see h-categoriser function

Conc (a) see Conclusion

Concs (X) . 99

Core./ (F) . 119

D (FKB) .67, 72

DF . 36

Dis see Discussion count

Extx (F) . 36

Extx (F
?) . 95

Extx (F
∗
KB

) .69

Free (KB) . 31

I (KB,C) see Inconsistency measure

IKB (C) . . see Inconsistency measure

IKB
d (X) . 146

IKB
MI (X) . 146

Imp (C) . 61

Jc ′ . 128

K (X) . 125

Outputx (F
?
KB)99

Q () . see Boolean conjunctive query

Q (~X) see Conjunctive query

SCC (F) . 36

Supp (a)see Support

Wa′ . 57

X/ ./ see Equivalence classes

Xc . 126

A . 32

AC0 . 26

ARL . see ARL

F . 32

FKB .51

F? . 92

F?KB . 92

F∗
KB

. .68

A ∗ . . see Filtrated set of arguments

A ? . 92

KF? . 92

Arд?(X) . 93

Base?(X) .93

R . 32

R∗ .68

R−n (a) . 33

R? . 92

R◦ .94

Satsee Saturated set of facts

C .see Constant

D .15

repairs (KB) .31

MI (KB) . 31

F . 18

F∗ see Saturated set of facts

I .15

KB . 30

KBs . 30

L . see Language

Λ . 38

L�leximax . 147

L(X , �) see Lifting function

L� (X)see Lifting function

N . 28

Nulls . 14

P . see Predicate

R . 19

R-inconsistence 30

RIF . see RIF

RIF abstraction 151

V(KB,b) . . . see Inconsistency value

VI (KB) .146

VI
f (KB) . see Shapley inconsistency

value

Va (KB) see Inconsistency value

V . see Variable

Voc see Vocabulary

≈σ
?

F?
. .131

≈σ
F

. 40

./1 . 118

./2 . 118

Body (r) see Body

xvii

INDEX

⊥ . 15

σ-chase . 20

� . 117

δ see Derivation

≡ see Logical equivalence

� . 117

∃ . 14

Facts . 19

∀ . 14

Nullsee Fresh variable

σf r -chase see Frontier chase

σf r . see Frontier derivation reducer

Head (r) see Head

Homo . 19

Ox . see Orbit

C′(X) . 125

|=RIFx see Restricted inference

|=AR . see AR

|=IAR . see IAR

|=ICR . see ICR

⊕ . 32, 92

π see Homomorphism

π saf e . 18

Rule . 19

σ? . 131

sort .147

→ . 14

�lex see Lexicographical order

�σ
?

F?
. 131

�σ
F

. .40

�bur
F

.see Burden-based ranking
semantics

�dis
F

. . see Discussion-based ranking
semantics

�hcat
F

. see h-categoriser
ranking-based semantics

�V
L

. 144

> . 15

� see Logical consequence

~a . 16

∧ . 14

aRb . 51

f r (r) see Frontier

terms (Φ) . 15

vars (Φ) . 15

coNP . 26

ExpTime . 26

NP . 26

PTime . 26

Dataloд± . 2

Dataloд+ . 2, 14

A

ABA . 7, 47

Abstract argumentation framework 32

Abstraction . 132

Abstraction-I 149

Abstraction-L 150

Acceptability33, 68

Acyclic graph of rule dependency see
aGRD

Addition of attack branch134

Addition of defense branch134

Admissible set . . . 34, 37, 52, 68, 94

aGRD . 24

Answer . 17

AR . 148

ArgSemSAT . 83

ArgTools . 83

Argument .32

Arity . 14

ARL . 123, 125

Artificial intelligence 1

ASGL . 83

ASPARTIX-D 83

ASPIC+ 7, 8, 48, 91

Assumption-based argumentation see
ABA

Atom . 15

Atomic head . 18

Attack . 32

Attack branch 134

Attack vs full defense 135

Automorphism60

Automorphisms inheritance 60

Automorphisms transfer 60

xviii

INDEX

B
Base . 50, 93
Bipolar argumentation framework 114
Body . 18
Boolean conjunctive query . . 17, 21,

30
Bottom facts 149
Breadth-first derivation 20
Burden vector 43
Burden-based ranking-based seman-

tics . 43

C
Cardinality precedence see CP
Cardinality-MI 150
Cf2 extension 36, 37, 54, 63
Chase .20
Chase finiteness order 23
Closed atom . 16
Closure . 100
Coalition see Extension
Coherent . 52, 53
Combined complexity 26
Complete extension 35, 37
Complete problem 26
Complexity classes 26
Component-defeated 36
Conclusion 49, 50
Concrete classes 24
Conflict-based argument 55
Conflict-based complete graph . . 55
Conflict-freeness 34, 68, 94
Conflicting facts27, 28
Conjunction 14, 15
Conjunctive query 17
Constant . 14
CoQuiAAS . 83
Core . 116, 118
Core chase . 23
Counter-transitivity136
CP126, 128, 133
Credulously accepted 36
Critical instance 25
Cycle55, 98, 135

D
DAGGER . 74
Data complexity 26
Data sensitive 150
Datalog . 2
Deductive argument 50
Deductive argumentation . . 7, 9, 49
Defeasible logic programming . . .see

DeLP
Defeasible reasoning4
Defeasible rules 7
Defense branch 134
Defense precedence 133
DeLP . 7, 9, 48
Density . 82, 105
Derivation 18, 19
Derivation for a fact19, 20
Derivation reducer 20
Description logics 2
Direct attacker 33, 132
Direct consistency 100
Direct defender 33, 132
Discussion count 42
Discussion-based ranking-based seman-

tics . 42
Distributed defense 133
Distributed-defense precedence .133
DLGP 72, 74, 92, 106
DOT . 106
Drastic Shapley inconsistency value

143, 146
Dummy argument 56, 57, 62

E
Entailment problem16
Equivalence classes 118
Equivalence relation 118
Equivalent facts 117
Equivalent set of facts 117
Ex falso quodlibet 3
Exhaustive breadth-first derivation 20
Existence property 40
Existential quantifier see ∃
Existential rules see Dataloд±

xix

INDEX

Extension 31, 33

F
Fact . 16
Falsum . see ⊥
FES .23, 51
Filtrated argumentation framework 68
Filtrated set of arguments 67
Finite .52
Finite expansion setsee FES
Finite unification set see FUS
First-order logic 1, 14
Flatness property 40
Flawed . 149
Formula . 15
Free fact . 31, 57
Free property 151
Fresh variable14
Frontier . 18, 21
Frontier chase 21, 22
Frontier derivation reducer 21
Functional term21
FUS . 23

G
GAD . 101
GBTS . 24
Graal . 72, 80
Graph of rule dependency 24
GRD see Graph of rule dependency
Greedy bounded tree-width set . see

GBTS
Ground atom 15
Grounded extension . .35, 37, 94, 97
Grounded labelling 39
Group comparison 135

H
H-categoriser function41
H-categoriser ranking-based seman-

tics . 42
Hard problem 26
Head . 18
Homomorphism 16, 17
Homomorphism restriction 17

Hypergraph argumentation framework
92

Hypothesis see Support

I
IAR . 148
ICCMA .78
ICR . 148
Ideal extension 35, 37
Implication see →
Impossible set 61
In . 38
Incoherence3, 28, 29
Inconsistency 3, 28, 29
Inconsistency measure 143
Inconsistency value 143, 144
Inconsistency-tolerant inference 143,

144
Inconsistent knowledge base30
Increase of attack branch 134
Increase of defense branch 135
Independence 132
Indirect consistency 99
Infinite derivation 19
Infinite frontier chase 22
Interpretation15
Interpretation domain see D

Interpretation function see I

Isomorphism 127, 132

J
Joint acyclicity 25

K
K-copy graph 57
Killing property40
Knowledge representation 1

L
Labelling . 33, 38
LabSATSolver 83
Language . 7, 14
Lexicographical order 41
Leximax see L�leximax
Lifting function 143, 144

xx

INDEX

Logic-based argumentation 4
Logical consequence16
Logical equivalence 16

M
Mapping . 16
MCS see Repair
MFA . 25
MI Shapley inconsistency value 143,

146
Minimal inconsistent set 31
Minimality property 149
Model . 16
Model faithful acyclicity . . see MFA
More restrictive equivalence relation

121
Multiple derivations49

N
N-append .149
NaE 126, 129, 133
Naive semantics 34, 62
NAKED 90, 107
Negative constraint27, 28
Nh-categoriser 136
Nh-categoriser function 136
Nh-categoriser ranking-based seman-

tics .140
Non entailment ejection151
Non-attacked equivalence . see NaE
Non-trivial .52
Null see Fresh variable

O
OBDA . 30, 142
Oblivious-FES 23
Ontology-based data accesssee

OBDA
Orbit . 59
Orbit cycle . 59
Out .38

P
Path . 33, 131
Permutation . 59

Positive rule see Rule
Predicate . 14
Preferred extension . .34, 37, 54, 68,

94, 97
Productivity 151

Q
Quality precedence 135
Query entailment 13, 21

R
R-append . 149
Range restricted 24
Ranking-based semantics . . . 39, 40,

114
Rationality postulates99
Reducer order relation 23
Reinstatement labelling 38
Rejected argument 36, 53
Relational databases 1
Relatively grounded 52, 54
Repair . 4, 31, 95
Repair semantics 4
Restricted chase 23
Restricted inference 148
Restricted-FES 23
RIF .143, 144
Rule . 17
Rule application 18
Rule-based logics7

S
Saturated set of attacks see R◦

Saturated set of facts 21
Sceptically accepted 36
Scoring function40, 41
SCT 126, 130, 136
Self-attacking argument 54, 98
Self-contradiction 133
Semi-stable extension 35, 37, 54
Sentinel .52
Set attack 33, 68, 94
Set defense 33, 68, 94
Set of attacking argument . . . 67, 91
Shapley inconsistency value 146

xxi

INDEX

Simple defense 133
Skolem chase 21
Skolem term 16, 21
Skolem-FES 23–25
Skolemisation 21
Stable extension 34, 37, 69, 94
Stage semnatics 36
Strict addition of defense branch 134
Strict counter-transitivity . see SCT
Strongly connected35
Strongly connected component . 36,

61, 83
Subgraph . 58
Substitution . 16
Support . 49, 50
Support argumentation framework 114
Supremacy . 151
Symmetry59, 60

T
Tarskian logics 7
Term . 15
TGD . see Rule
Total . 133

U
Undec . 38
Unique name assumption 15
Universal model 21
Universal quantifier see ∀

V
Variable . 14
Vocabulary . 14
Void precedence 132

W
Weak acyclicity 25
Weighted argumentation framework

114
Well-founded 52, 54

xxii

Bibliography

Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of Databases.
Addison-Wesley. (p. 17, 24)

Amgoud, L. (2014). Postulates for logic-based argumentation systems. Int.
J. Approx. Reasoning, 55(9):2028–2048. (p. V, 6, 74, 77, 89, 106)

Amgoud, L. and Ben-Naim, J. (2013). Ranking-Based Semantics for Ar-
gumentation Frameworks. In Scalable Uncertainty Management - 7th In-
ternational Conference, SUM 2013, Washington, DC, USA, September
16-18, 2013. Proceedings, pages 134–147. (p. 39, 40, 42, 43, 44, 113, 116,
124, 128, 130, 132, 135)

Amgoud, L. and Ben-Naim, J. (2015). Argumentation-based Ranking Log-
ics. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, May
4-8, 2015, pages 1511–1519. (p. 90, 106, 113, 114, 123, 124, 161, 163)

Amgoud, L. and Ben-Naim, J. (2016). Evaluation of Arguments from Sup-
port Relations: Axioms and Semantics. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 900–906. (p. 114)

Amgoud, L., Ben-Naim, J., Doder, D., and Vesic, S. (2016). Ranking Ar-
guments With Compensation-Based Semantics. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fifteenth Inter-
national Conference, KR 2016, Cape Town, South Africa, April 25-29,
2016., pages 12–21. (p. 113)

Amgoud, L., Ben-Naim, J., Doder, D., and Vesic, S. (2017). Acceptabil-
ity Semantics for Weighted Argumentation Frameworks. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pages
56–62. (p. 114)

Amgoud, L. and Besnard, P. (2009). Bridging the Gap between Ab-
stract Argumentation Systems and Logic. In Scalable Uncertainty Man-
agement, Third International Conference, SUM 2009, Washington, DC,
USA, September 28-30, 2009. Proceedings, pages 12–27. (p. 10)

Amgoud, L. and Besnard, P. (2010). A Formal Analysis of Logic-Based
Argumentation Systems. In Scalable Uncertainty Management - 4th In-
ternational Conference, SUM 2010, Toulouse, France, September 27-29,
2010. Proceedings, pages 42–55. (p. 10)

xxiii

BIBLIOGRAPHY

Amgoud, L., Besnard, P., and Vesic, S. (2014). Equivalence in logic-based
argumentation. Journal of Applied Non-Classical Logics, 24(3):181–208.
(p. 114, 116, 117, 118, 119, 155)

Amgoud, L., Caminada, M., Cayrol, C., Lagasquie-Schiex, M.-C., and
Prakken, H. (2004). Towards a consensual formal model: inference part.
(p. 7)

Amgoud, L. and Cayrol, C. (1998). On the Acceptability of Arguments in
Preference-based Argumentation. In UAI ’98: Proceedings of the Four-
teenth Conference on Uncertainty in Artificial Intelligence, University of
Wisconsin Business School, Madison, Wisconsin, USA, July 24-26, 1998,
pages 1–7. (p. 10)

Amgoud, L., Cayrol, C., Lagasquie-Schiex, M.-C., and Livet, P. (2008). On
bipolarity in argumentation frameworks. Int. J. Intell. Syst., 23(10):1062–
1093. (p. 114)

Amgoud, L., Maudet, N., and Parsons, S. (2000). Modelling dialogues using
argumentation. In Proceedings Fourth International Conference on Mul-
tiAgent Systems, pages 31–38, Boston, MA, USA. IEEE Comput. Soc.
(p. 7)

Antoniou, G., Billington, D., Governatori, G., Maher, M. J., and Rock, A.
(2000). A Family of Defeasible Reasoning Logics and its Implementation.
In ECAI 2000, Proceedings of the 14th European Conference on Artificial
Intelligence, Berlin, Germany, August 20-25, 2000, pages 459–463. (p. IV,
4)

Arenas, M., Bertossi, L. E., and Chomicki, J. (1999). Consistent Query An-
swers in Inconsistent Databases. In Proceedings of the Eighteenth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, pages
68–79. (p. 31)

Arioua, A. (2016). Formalizing and Studying Dialectical Explanations in
Inconsistent Knowledge Bases. PhD thesis. (p. V, 7, 10, 161)

Arioua, A., Croitoru, M., and Buche, P. (2016). DALEK: A Tool for Dialec-
tical Explanations in Inconsistent Knowledge Bases. In Computational
Models of Argument - Proceedings of COMMA 2016, Potsdam, Germany,
12-16 September, 2016., pages 461–462. (p. 74, 90, 106)

Arioua, A., Croitoru, M., and Vesic, S. (2017). Logic-based argumentation
with existential rules. Int. J. Approx. Reasoning, 90:76–106. (p. V, 10,
48, 50, 52, 53, 54, 79, 89, 106, 162, 164)

xxiv

BIBLIOGRAPHY

Baader, F., Horrocks, I., and Sattler, U. (2005). Description Logics as
Ontology Languages for the Semantic Web. In Mechanizing Mathematical
Reasoning, Essays in Honor of Jörg H. Siekmann on the Occasion of His
60th Birthday, pages 228–248. (p. IV, 2, 14)

Baget, J.-F., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M.-L.,
Papini, O., Rocher, S., and Tabia, K. (2016a). A General Modifier-Based
Framework for Inconsistency-Tolerant Query Answering. In Principles of
Knowledge Representation and Reasoning: Proceedings of the Fifteenth
International Conference, KR 2016, Cape Town, South Africa, April 25-
29, 2016., pages 513–516. (p. V, 4, 142, 144)

Baget, J.-F., Benferhat, S., Bouraoui, Z., Croitoru, M., Mugnier, M.-L.,
Papini, O., Rocher, S., and Tabia, K. (2016b). Inconsistency-Tolerant
Query Answering: Rationality Properties and Computational Complexity
Analysis. In Logics in Artificial Intelligence - 15th European Conference,
JELIA 2016, Larnaca, Cyprus, November 9-11, 2016, Proceedings, pages
64–80. (p. 150)

Baget, J.-F., Garreau, F., Mugnier, M.-L., and Rocher, S. (2014a). Extend-
ing Acyclicity Notions for Existential Rules. In ECAI 2014 - 21st Eu-
ropean Conference on Artificial Intelligence, 18-22 August 2014, Prague,
Czech Republic - Including Prestigious Applications of Intelligent Systems
(PAIS 2014), pages 39–44. (p. 21, 24)

Baget, J.-F., Garreau, F., Mugnier, M.-L., and Rocher, S. (2014b). Re-
visiting Chase Termination for Existential Rules and their Extension to
Nonmonotonic Negation. CoRR, abs/1405.1071. (p. 21, 23, 117, 160)

Baget, J.-F., Gutierrez, A., Leclère, M., Mugnier, M.-L., Rocher, S., and
Sipieter, C. (2015a). Datalog+, RuleML and OWL 2: Formats and Trans-
lations for Existential Rules. In Proceedings of the RuleML 2015 Chal-
lenge, the Special Track on Rule-based Recommender Systems for the Web
of Data, the Special Industry Track and the RuleML 2015 Doctoral Con-
sortium hosted by the 9th International Web Rule Symposium (RuleML
2015), Berlin, Germany, August 2-5, 2015. (p. 80)

Baget, J.-F., Gutierrez, A., Leclère, M., Mugnier, M.-L., Rocher, S., and
Sipieter, C. (2015b). DLGP: An extended Datalog Syntax for Existential
Rules and Datalog+/- Version 2.0. (p. 72, 74, 80, 108)

Baget, J.-F., Leclère, M., Mugnier, M.-L., Rocher, S., and Sipieter, C.
(2015c). Graal: A Toolkit for Query Answering with Existential Rules.
In Rule Technologies: Foundations, Tools, and Applications - 9th Inter-
national Symposium, RuleML 2015, Berlin, Germany, August 2-5, 2015,
Proceedings, pages 328–344. (p. 72, 80, 101)

xxv

BIBLIOGRAPHY

Baget, J.-F., Leclère, M., Mugnier, M.-L., and Salvat, E. (2011). On rules
with existential variables: Walking the decidability line. Artif. Intell.,
175(9-10):1620–1654. (p. 15, 16, 17, 18, 21, 23, 24, 51, 160)

Bao, Z., Cyras, K., and Toni, F. (2017). ABAplus: Attack Reversal in
Abstract and Structured Argumentation with Preferences. In PRIMA
2017: Principles and Practice of Multi-Agent Systems - 20th International
Conference, Nice, France, October 30 - November 3, 2017, Proceedings,
pages 420–437. (p. 8)

Baroni, P., Caminada, M., and Giacomin, M. (2011). An introduction to
argumentation semantics. Knowledge Eng. Review, 26(4):365–410. (p. 33,
36, 62, 74, 106, 113)

Baroni, P., Romano, M., Toni, F., Aurisicchio, M., and Bertanza, G. (2015).
Automatic evaluation of design alternatives with quantitative argumen-
tation. Argument & Computation, 6(1):24–49. (p. 113)

Beeri, C. and Vardi, M. Y. (1981). The Implication Problem for Data De-
pendencies. In Automata, Languages and Programming, 8th Colloquium,
Acre (Akko), Israel, July 13-17, 1981, Proceedings, pages 73–85. (p. 23)

Benferhat, S., Bouraoui, Z., Croitoru, M., Papini, O., and Tabia, K. (2016).
Non-Objection Inference for Inconsistency-Tolerant Query Answering. In
Proceedings of the Twenty-Fifth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pages
3684–3690. (p. 152)

Benferhat, S., Dubois, D., and Prade, H. (1997). Some Syntactic Approaches
to the Handling of Inconsistent Knowledge Bases: A Comparative Study
Part 1: The Flat Case. Studia Logica, 58(1):17–45. (p. 142)

Bertossi, L. E., Hunter, A., and Schaub, T. (2005). Introduction to Incon-
sistency Tolerance. In Inconsistency Tolerance [result from a Dagstuhl
seminar], pages 1–14. (p. 31)

Besnard, P., Garćıa, A. J., Hunter, A., Modgil, S., Prakken, H., Simari,
G. R., and Toni, F. (2014). Introduction to structured argumentation.
Argument & Computation, 5(1):1–4. (p. 90)

Besnard, P. and Hunter, A. (2001). A logic-based theory of deductive argu-
ments. Artif. Intell., 128(1-2):203–235. (p. 4, 10, 39, 41, 48, 49, 130)

Besnard, P. and Hunter, A. (2008). Elements of Argumentation. MIT Press.
(p. V, 7, 9, 10, 40, 48, 161)

Besnard, P. and Hunter, A. (2014). Constructing argument graphs with
deductive arguments: a tutorial. Argument & Computation, 5(1):5–30.
(p. 10)

xxvi

BIBLIOGRAPHY

Bienvenu, M. (2012). On the Complexity of Consistent Query Answering
in the Presence of Simple Ontologies. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto,
Ontario, Canada. (p. 89)

Birnbaum, L. (1982). Argument Molecules: A Functional Representation
of Argument Structure. In Proceedings of the National Conference on
Artificial Intelligence, Pittsburgh, PA, USA, August 18-20, 1982., pages
63–65. (p. 32)

Birnbaum, L., Flowers, M., and McGuire, R. (1980). Towards an AI Model
of Argumentation. In Proceedings of the 1st Annual National Conference
on Artificial Intelligence, Stanford University, CA, USA, August 18-21,
1980., pages 313–315. (p. 32)

Bondarenko, A., Toni, F., and Kowalski, R. A. (1993). An Assumption-
Based Framework for Non-Monotonic Reasoning. In LPNMR, pages 171–
189. (p. V, 4, 7, 8)

Bonet, B. and Geffner, H. (1996). Arguing for Decisions: A Qualitative
Model of Decision Making. In UAI ’96: Proceedings of the Twelfth An-
nual Conference on Uncertainty in Artificial Intelligence, Reed College,
Portland, Oregon, USA, August 1-4, 1996, pages 98–105. (p. 7)

Bonzon, E., Delobelle, J., Konieczny, S., and Maudet, N. (2016). A Compar-
ative Study of Ranking-Based Semantics for Abstract Argumentation. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA., pages 914–920. (p. 39,
106, 113, 116, 128, 132)

Bonzon, E., Delobelle, J., Konieczny, S., and Maudet, N. (2018). Com-
bining Extension-Based Semantics and Ranking-Based Semantics for Ab-
stract Argumentation. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Conference, KR
2018, Tempe, Arizona, 30 October - 2 November 2018., pages 118–127.
(p. 114, 163, 164)

Bourgaux, C. (2016). Inconsistency Handling in Ontology-Mediated Query
Answering. PhD thesis, Université Paris-Saclay, Paris. (p. 89, 164)

Brewka, G. (1989). Preferred Subtheories: An Extended Logical Framework
for Default Reasoning. In Proceedings of the 11th International Joint Con-
ference on Artificial Intelligence. Detroit, MI, USA, August 1989, pages
1043–1048. (p. 152)

Cal̀ı, A., Gottlob, G., and Kifer, M. (2013). Taming the Infinite Chase:
Query Answering under Expressive Relational Constraints. J. Artif. Intell.
Res., 48:115–174. (p. IV, 2, 17, 23)

xxvii

BIBLIOGRAPHY

Cal̀ı, A., Gottlob, G., and Lukasiewicz, T. (2009). A general datalog-based
framework for tractable query answering over ontologies. In Proceedings
of the Twenty-Eigth ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2009, June 19 - July 1, 2009,
Providence, Rhode Island, USA, pages 77–86. (p. IV, 2, 106)

Cal̀ı, A., Gottlob, G., and Lukasiewicz, T. (2012). A general Datalog-based
framework for tractable query answering over ontologies. J. Web Sem.,
14:57–83. (p. 14, 27)

Cal̀ı, A., Gottlob, G., Lukasiewicz, T., Marnette, B., and Pieris, A. (2010a).
Datalog+/-: A Family of Logical Knowledge Representation and Query
Languages for New Applications. In Proceedings of the 25th Annual IEEE
Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010,
Edinburgh, United Kingdom, pages 228–242. (p. 3)

Cal̀ı, A., Gottlob, G., and Pieris, A. (2010b). Advanced Processing for
Ontological Queries. PVLDB, 3(1):554–565. (p. 27)

Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., and Rosati, R.
(2007). Tractable Reasoning and Efficient Query Answering in Description
Logics: The DL-Lite Family. J. Autom. Reasoning, 39(3):385–429. (p. 2)

Caminada, M. (2006). On the Issue of Reinstatement in Argumentation. In
Logics in Artificial Intelligence, 10th European Conference, JELIA 2006,
Liverpool, UK, September 13-15, 2006, Proceedings, pages 111–123. (p. 33,
39, 45, 54)

Caminada, M. (2007). Comparing two unique extension semantics for formal
argumentation: ideal and eager. In Proceedings of the 19th Belgian-Dutch
conference on artificial intelligence (BNAIC 2007), pages 81–87. Utrecht
University Press. (p. 113)

Caminada, M. and Amgoud, L. (2007). On the evaluation of argumentation
formalisms. Artif. Intell., 171(5-6):286–310. (p. 9, 49, 89, 91, 92)

Caminada, M. and Pigozzi, G. (2011). On judgment aggregation in abstract
argumentation. Autonomous Agents and Multi-Agent Systems, 22(1):64–
102. (p. 35)

Caminada, M. W. A., Carnielli, W. A., and Dunne, P. E. (2012). Semi-stable
semantics. J. Log. Comput., 22(5):1207–1254. (p. 35, 113)

Cayrol, C. and Lagasquie-Schiex, M.-C. (2005). Graduality in Argumenta-
tion. J. Artif. Intell. Res. (JAIR), 23:245–297. (p. 130)

Ceri, S., Gottlob, G., and Tanca, L. (1989). What you Always Wanted to
Know About Datalog (And Never Dared to Ask). IEEE Trans. Knowl.
Data Eng., 1(1):146–166. (p. IV, 2, 14)

xxviii

BIBLIOGRAPHY

Cerutti, F., Dunne, P. E., Giacomin, M., and Vallati, M. (2013). Com-
puting Preferred Extensions in Abstract Argumentation: A SAT-Based
Approach. In Theory and Applications of Formal Argumentation - Second
International Workshop, TAFA 2013, Beijing, China, August 3-5, 2013,
Revised Selected papers, pages 176–193. (p. 78)

Chandra, A. K., Lewis, H. R., and Makowsky, J. A. (1981). Embedded
Implicational Dependencies and their Inference Problem. In Proceedings
of the 13th Annual ACM Symposium on Theory of Computing, May 11-
13, 1981, Milwaukee, Wisconsin, USA, pages 342–354. (p. 27)

Chein, M. and Mugnier, M.-L. (2009). Graph-based Knowledge Represen-
tation - Computational Foundations of Conceptual Graphs. Advanced
Information and Knowledge Processing. Springer. (p. 76, 110)

Codd, E. F. (1970). A Relational Model of Data for Large Shared Data
Banks. Commun. ACM, 13(6):377–387. (p. III, 1)

Cohen, R. (1987). Analyzing the Structure of Argumentative Discourse.
Computational Linguistics, 13(1-2):11–24. (p. 32)

Colmerauer, A. and Roussel, P. (1996). The birth of Prolog. In History of
programming languages—II, pages 331–367. ACM, New York, 1 edition.
(p. IV, 2)

Coste-Marquis, S., Devred, C., and Marquis, P. (2005). Symmetric Ar-
gumentation Frameworks. In Symbolic and Quantitative Approaches to
Reasoning with Uncertainty, 8th European Conference, ECSQARU 2005,
Barcelona, Spain, July 6-8, 2005, Proceedings, pages 317–328. (p. 52)

Coste-Marquis, S., Konieczny, S., Marquis, P., and Ouali, M. A. (2012).
Weighted Attacks in Argumentation Frameworks. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Thirteenth Inter-
national Conference, KR 2012, Rome, Italy, June 10-14, 2012. (p. 40)

Croitoru, M., Thomopoulos, R., and Vesic, S. (2015). Introducing
Preference-Based Argumentation to Inconsistent Ontological Knowledge
Bases. In PRIMA 2015: Principles and Practice of Multi-Agent Systems
- 18th International Conference, Bertinoro, Italy, October 26-30, 2015,
Proceedings, pages 594–602. (p. 79)

Croitoru, M. and Vesic, S. (2013). What Can Argumentation Do for In-
consistent Ontology Query Answering? In Scalable Uncertainty Manage-
ment - 7th International Conference, SUM 2013, Washington, DC, USA,
September 16-18, 2013. Proceedings, pages 15–29. (p. V, VI, 10, 11, 49,
51, 64, 89, 161, 164)

xxix

BIBLIOGRAPHY

Dantsin, E., Eiter, T., Gottlob, G., and Voronkov, A. (2001). Complex-
ity and expressive power of logic programming. ACM Comput. Surv.,
33(3):374–425. (p. 27)

Delobelle, J. (2017). Ranking-based Semantics for Abstract Argumentation.
(Sémantique à base de Classement pour l’Argumentation Abstraite). PhD
thesis. (p. 41, 113)

Deutsch, A., Nash, A., and Remmel, J. B. (2008). The chase revisited.
In Proceedings of the Twenty-Seventh ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2008, June 9-11,
2008, Vancouver, BC, Canada, pages 149–158. (p. 23)

Dimopoulos, Y., Nebel, B., and Toni, F. (1999). Preferred Arguments are
Harder to Compute than Stable Extension. In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence, IJCAI 99, Stock-
holm, Sweden, July 31 - August 6, 1999. 2 Volumes, 1450 pages, pages
36–43. (p. 53)

Dung, P. M. (1995). On the Acceptability of Arguments and its Fundamen-
tal Role in Nonmonotonic Reasoning, Logic Programming and n-Person
Games. Artif. Intell., 77(2):321–358. (p. 8, 31, 32, 33, 34, 94, 113, 161)

Dung, P. M., Kowalski, R. A., and Toni, F. (2006). Dialectic proof pro-
cedures for assumption-based, admissible argumentation. Artif. Intell.,
170(2):114–159. (p. 8)

Dung, P. M., Mancarella, P., and Toni, F. (2007). Computing ideal sceptical
argumentation. Artif. Intell., 171(10-15):642–674. (p. 8)

Dunne, P. E. and Bench-Capon, T. J. M. (2002). Coherence in finite argu-
ment systems. Artif. Intell., 141(1/2):187–203. (p. 53)

Dunne, P. E., Hunter, A., McBurney, P., Parsons, S., and Wooldridge, M.
(2011). Weighted argument systems: Basic definitions, algorithms, and
complexity results. Artif. Intell., 175(2):457–486. (p. 40)

Dunne, P. E. and Wooldridge, M. (2009). Complexity of Abstract Argumen-
tation. In Argumentation in Artificial Intelligence, pages 85–104. (p. 53)

Egly, U., Gaggl, S. A., and Woltran, S. (2008). ASPARTIX: Implementing
Argumentation Frameworks Using Answer-Set Programming. In Logic
Programming, 24th International Conference, ICLP 2008, Udine, Italy,
December 9-13 2008, Proceedings, pages 734–738. (p. 74)

Fagin, R., Kolaitis, P. G., Miller, R. J., and Popa, L. (2005). Data ex-
change: semantics and query answering. Theor. Comput. Sci., 336(1):89–
124. (p. 23, 27)

xxx

BIBLIOGRAPHY

Flouris, G., Huang, Z., Pan, J. Z., Plexousakis, D., and Wache, H. (2006).
Inconsistencies, Negations and Changes in Ontologies. In Proceedings,
The Twenty-First National Conference on Artificial Intelligence and the
Eighteenth Innovative Applications of Artificial Intelligence Conference,
July 16-20, 2006, Boston, Massachusetts, USA, pages 1295–1300. (p. 3,
28)

Gabbay, D. M., Hogger, C. J., and Robinson, J. A., editors (1993). Handbook
of logic in artificial intelligence and logic programming. Clarendon Press
; Oxford University Press, Oxford : Oxford ; New York. (p. 7)

Gabbay, D. M. and Rodrigues, O. (2015). Equilibrium States in Numerical
Argumentation Networks. Logica Universalis, 9(4):411–473. (p. 113)

Gaggl, S. A. (2013). A Comprehensive Analysis of the cf2 Argumentation
Semantics: From Characterization to Implementation. PhD thesis, TU
Wien. (p. 74, 106)

Gaggl, S. A. and Woltran, S. (2013). The cf2 argumentation semantics
revisited. J. Log. Comput., 23(5):925–949. (p. 36, 54, 62)

Gallaire, H. and Nicolas, J.-M. (1987). Logic Approach to Knowledge and
Data Bases at ECRC. IEEE Data Eng. Bull., 10(4):2–9. (p. IV, 2)

Garćıa, A. J., Gollapally, D., Tarau, P., and Simari, G. R. (2000). Delibera-
tive stock market agents using jinni and defeasible logic programming. In
esaw’00 engineering societies in the agents’ world, workshop of ecai 2000.
(p. 9)

Garćıa, A. J. and Simari, G. R. (2004). Defeasible Logic Programming: An
Argumentative Approach. TPLP, 4(1-2):95–138. (p. IV, V, 4, 7, 9, 161)

Gordon, T. F. and Karacapilidis, N. I. (1997). The Zeno Argumentation
Framework. In Proceedings of the Sixth International Conference on Ar-
tificial Intelligence and Law, ICAIL ’97, Melbourne, Vicoria, Australia,
June 30 - July 3, 1997, pages 10–18. (p. 7)

Grant, J. and Hunter, A. (2011). Measuring the Good and the Bad in Incon-
sistent Information. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, pages 2632–2637. (p. 143)

Grau, B. C., Horrocks, I., Krötzsch, M., Kupke, C., Magka, D., Motik,
B., and Wang, Z. (2013). Acyclicity Notions for Existential Rules and
Their Application to Query Answering in Ontologies. J. Artif. Intell.
Res., 47:741–808. (p. 25)

xxxi

BIBLIOGRAPHY

Grégoire, É., Mazure, B., and Piette, C. (2007). Boosting a Complete Tech-
nique to Find MSS and MUS Thanks to a Local Search Oracle. In IJCAI
2007, Proceedings of the 20th International Joint Conference on Artifi-
cial Intelligence, Hyderabad, India, January 6-12, 2007, pages 2300–2305.
(p. 65)

Hadjinikolis, C., Siantos, Y., Modgil, S., Black, E., and McBurney, P. (2013).
Opponent Modelling in Persuasion Dialogues. In IJCAI 2013, Proceed-
ings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, pages 164–170. (p. 7)

Hecham, A. (2018). Defeasible reasoning for existential rules. (Raison-
nement defaisable dans les règles existentielles). PhD thesis. (p. 22, 29,
164)

Hecham, A., Bisquert, P., and Croitoru, M. (2017a). On the Chase for
All Provenance Paths with Existential Rules. In Rules and Reasoning
- International Joint Conference, RuleML+RR 2017, London, UK, July
12-15, 2017, Proceedings, pages 135–150. (p. 101, 108, 152)

Hecham, A., Croitoru, M., and Bisquert, P. (2017b). Argumentation-Based
Defeasible Reasoning For Existential Rules. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, AAMAS
2017, São Paulo, Brazil, May 8-12, 2017, pages 1568–1569. (p. 108, 142,
164)

Hunter, A. and Konieczny, S. (2010). On the measure of conflicts: Shapley
Inconsistency Values. Artif. Intell., 174(14):1007–1026. (p. 143, 144, 146,
152)

Konieczny, S., Marquis, P., and Vesic, S. (2015). On Supported Inference
and Extension Selection in Abstract Argumentation Frameworks. In Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty - 13th
European Conference, ECSQARU 2015, Compiègne, France, July 15-17,
2015. Proceedings, pages 49–59. (p. 114, 143, 163)

Krötzsch, M. and Rudolph, S. (2011). Extending Decidable Existential Rules
by Joining Acyclicity and Guardedness. In IJCAI 2011, Proceedings of the
22nd International Joint Conference on Artificial Intelligence, Barcelona,
Catalonia, Spain, July 16-22, 2011, pages 963–968. (p. 25, 27)

Lagniez, J.-M., Lonca, E., and Mailly, J.-G. (2015). CoQuiAAS: A
Constraint-Based Quick Abstract Argumentation Solver. In 27th IEEE
International Conference on Tools with Artificial Intelligence, ICTAI
2015, Vietri sul Mare, Italy, November 9-11, 2015, pages 928–935. (p. 74,
77, 106)

xxxii

BIBLIOGRAPHY

Lam, H.-P., Governatori, G., and Riveret, R. (2016). On ASPIC+ and
Defeasible Logic. In Computational Models of Argument - Proceedings of
COMMA 2016, Potsdam, Germany, 12-16 September, 2016., pages 359–
370. (p. 164)

Leite, J. and Martins, J. (2011). Social Abstract Argumentation. In IJCAI
2011, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011, pages 2287–
2292. (p. 7, 39, 40, 113)

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2010).
Inconsistency-Tolerant Semantics for Description Logics. In Web Reason-
ing and Rule Systems - Fourth International Conference, RR 2010, Bres-
sanone/Brixen, Italy, September 22-24, 2010. Proceedings, pages 103–117.
(p. 27, 89, 152, 161)

Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., and Savo, D. F. (2015).
Inconsistency-tolerant query answering in ontology-based data access. J.
Web Sem., 33:3–29. (p. 4, 142)

Lembo, D. and Ruzzi, M. (2007). Consistent Query Answering over De-
scription Logic Ontologies. In Web Reasoning and Rule Systems, First
International Conference, RR 2007, Innsbruck , Austria, June 7-8, 2007,
Proceedings, pages 194–208. (p. V, 4)

Levesque, H. J. and Brachman, R. J. (1987). Expressiveness and tractability
in knowledge representation and reasoning. Computational Intelligence,
3:78–93. (p. 14)

Lukasiewicz, T., Martinez, M. V., Pieris, A., and Simari, G. I. (2015). From
Classical to Consistent Query Answering under Existential Rules. In Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA., pages 1546–1552. (p. 142)

Marnette, B. (2009). Generalized schema-mappings: from termination to
tractability. In Proceedings of the Twenty-Eigth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, PODS 2009,
June 19 - July 1, 2009, Providence, Rhode Island, USA, pages 13–22.
(p. 21, 23, 25, 27)

Martinez, M. V., Deagustini, C. A. D., Falappa, M. A., and Simari, G. R.
(2014). Inconsistency-Tolerant Reasoning in Datalog +/- Ontologies via
an Argumentative Semantics. In Advances in Artificial Intelligence - IB-
ERAMIA 2014 - 14th Ibero-American Conference on AI, Santiago de
Chile, Chile, November 24-27, 2014, Proceedings, pages 15–27. (p. 164)

xxxiii

BIBLIOGRAPHY

Matt, P.-A. and Toni, F. (2008). A Game-Theoretic Measure of Argument
Strength for Abstract Argumentation. In Logics in Artificial Intelligence,
11th European Conference, JELIA 2008, Dresden, Germany, September
28 - October 1, 2008. Proceedings, pages 285–297. (p.)

Modgil, S. and Prakken, H. (2013). A general account of argumentation
with preferences. Artif. Intell., 195:361–397. (p. 8)

Modgil, S. and Prakken, H. (2014). The ASPIC+ framework for structured
argumentation: a tutorial. Argument & Computation, 5(1):31–62. (p. V,
4, 7, 8, 9, 48, 74, 106, 161)

Nielsen, S. H. and Parsons, S. (2006). Computing Preferred Extensions for
Argumentation Systems with Sets of Attacking Arguments. In Compu-
tational Models of Argument: Proceedings of COMMA 2006, September
11-12, 2006, Liverpool, UK, pages 97–108. (p. 68, 69, 94, 112, v)

Nielsen, S. H. and Parsons, S. (2007). A Generalization of Dung’s Abstract
Framework for Argumentation: Arguing with Sets of Attacking Argu-
ments. In Maudet, N., Parsons, S., and Rahwan, I., editors, Argumen-
tation in Multi-Agent Systems, pages 54–73. Springer Berlin Heidelberg.
(p. VII, 12, 94, 95, 97, 106, 162, viii, xi)

Nofal, S., Atkinson, K., and Dunne, P. E. (2014). Algorithms for decision
problems in argument systems under preferred semantics. Artif. Intell.,
207:23–51. (p. 78)

Onet, A. (2013). The Chase Procedure and its Applications in Data Ex-
change. In Data Exchange, Integration, and Streams, pages 1–37. (p. 23)

Ostrowski, M. and Schaub, T. (2012). ASP modulo CSP: The clingcon
system. TPLP, 12(4-5):485–503. (p. 89)

Papadimitriou, C. (1994). Computational Complexity. Addison Wesley Pub.
Co. (p. 26)

Pereira, C. d. C., Tettamanzi, A., and Villata, S. (2011). Changing One’s
Mind: Erase or Rewind? In IJCAI 2011, Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, pages 164–171. (p. 113)

Poggi, A., Lembo, D., Calvanese, D., Giacomo, G. D., Lenzerini, M., and
Rosati, R. (2008). Linking Data to Ontologies. J. Data Semantics, 10:133–
173. (p. 142)

Pollock, J. L. (1987). Defeasible Reasoning. Cognitive Science, 11(4):481–
518. (p. IV, 4)

xxxiv

BIBLIOGRAPHY

Pollock, J. L. (2001). Defeasible reasoning with variable degrees of justifi-
cation. Artif. Intell., 133(1-2):233–282. (p. 36)

Poole, D. (1985). On the Comparison of Theories: Preferring the Most
Specific Explanation. In Proceedings of the 9th International Joint Con-
ference on Artificial Intelligence. Los Angeles, CA, USA, August 1985,
pages 144–147. (p. 9)

Prakken, H. (2006). Formal systems for persuasion dialogue. Knowledge
Eng. Review, 21(2):163–188. (p. 7)

Pu, F., Luo, J., Zhang, Y., and Luo, G. (2014). Argument Ranking with
Categoriser Function. CoRR, abs/1406.3877. (p. 42, 137, xvi)

Rago, A., Toni, F., Aurisicchio, M., and Baroni, P. (2016). Discontinuity-
Free Decision Support with Quantitative Argumentation Debates. In
Principles of Knowledge Representation and Reasoning: Proceedings of
the Fifteenth International Conference, KR 2016, Cape Town, South
Africa, April 25-29, 2016., pages 63–73. (p. 113)

Rescher, N. and Manor, R. (1970). On inference from inconsistent premisses,
volume 1. (p. 30)

Rocher, S. (2013). Interrogation tolérante aux incohérences. Technical re-
port, Université de Montpellier. (p. 65)

Rocher, S. (2016). Querying Existential Rule Knowledge Bases: Decidabil-
ity and Complexity. PhD thesis, Université Montpellier II - Sciences et
Techniques du Languedoc, Montpellier. (p. 20, 23, 24, 160)

Salvat, E. and Mugnier, M.-L. (1996). Sound and Complete Forward and
backward Chainingd of Graph Rules. In Conceptual Structures: Knowl-
edge Representation as Interlingua, 4th International Conference on Con-
ceptual Structures, ICCS ’96, Sydney, Australia, August 19-22, 1996, Pro-
ceedings, pages 248–262. (p. 17)

Sowa, J. F. (1976). Conceptual Graphs for a Data Base Interface. IBM
Journal of Research and Development, 20(4):336–357. (p. 17)

Staworko, S., Chomicki, J., and Marcinkowski, J. (2012). Prioritized repair-
ing and consistent query answering in relational databases. Ann. Math.
Artif. Intell., 64(2-3):209–246. (p. 142, 157)

Tamani, N., Mosse, P., Croitoru, M., Buche, P., and Guillard, V. (2014a).
A Food Packaging Use Case for Argumentation. In Closs, S., Studer,
R., Garoufallou, E., and Sicilia, M.-A., editors, Metadata and Semantics
Research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany,
November 27-29, 2014. Proceedings, pages 344–358. Springer International
Publishing, Cham. (p. 74, 106)

xxxv

BIBLIOGRAPHY

Tamani, N., Mosse, P., Croitoru, M., Buche, P., Guillard, V., Guillaume,
C., and Gontard, N. (2014b). Eco-Efficient Packaging Material Selec-
tion for Fresh Produce: Industrial Session. In Hernandez, N., Jäschke,
R., and Croitoru, M., editors, Graph-Based Representation and Reason-
ing: 21st International Conference on Conceptual Structures, ICCS 2014,
Iaşi, Romania, July 27-30, 2014, Proceedings, pages 305–310. Springer
International Publishing, Cham. (p. 74, 106)

Tarski, A. (1936). On Some Fundamental Concepts of Metamathematics.
In Logic, Semantics, Methamathematics. Oxford University Press. (p. 7)

Thimm, M. (2017). The Tweety Library Collection for Logical Aspects of
Artificial Intelligence and Knowledge Representation. KI, 31(1):93–97.
(p. 74, 106)

Toni, F. (2012). Reasoning on the Web with Assumption-Based Argumen-
tation. In Reasoning Web. Semantic Technologies for Advanced Query
Answering - 8th International Summer School 2012, Vienna, Austria,
September 3-8, 2012. Proceedings, pages 370–386. (p. 8)

Toni, F. (2013). A generalised framework for dispute derivations in
assumption-based argumentation. Artif. Intell., 195:1–43. (p. 8)

Toni, F. (2014). A tutorial on assumption-based argumentation. Argument
& Computation, 5(1):89–117. (p. 4, 7, 48, 161)

Verheij, B. (1999). Two Approaches to Dialectical Argumentation: Admis-
sible Sets and Argumentation Stages. (p. 35)

Wolfgang, D. (2017). Technical Note: On the Complexity of the Uniqueness
Problem in Abstract Argumentation. (p. 53)

Yun, B., Bisquert, P., Buche, P., and Croitoru, M. (2016). Arguing About
End-of-Life of Packagings: Preferences to the Rescue. In Metadata
and Semantics Research - 10th International Conference, MTSR 2016,
Göttingen, Germany, November 22-25, 2016, Proceedings, pages 119–131.
(p. 12, 40, 153)

Yun, B., Bisquert, P., Buche, P., Croitoru, M., Guillard, V., and Thomopou-
los, R. (2018a). Choice of environment-friendly food packagings through
argumentation systems and preferences. Ecological Informatics, 48:24–36.
(p. 12, 40, 165)

Yun, B. and Croitoru, M. (2016). An Argumentation Workflow for Reason-
ing in Ontology Based Data Access. In Computational Models of Argument
- Proceedings of COMMA 2016, Potsdam, Germany, 12-16 September,
2016., pages 61–68. (p. 164)

xxxvi

BIBLIOGRAPHY

Yun, B., Croitoru, M., and Bisquert, P. (2017a). Are Ranking Semantics
Sensitive to the Notion of Core? In Proceedings of the 16th Conference on
Autonomous Agents and MultiAgent Systems, AAMAS 2017, São Paulo,
Brazil, May 8-12, 2017, pages 943–951. (p. 11, 12, 50, 113, 162)

Yun, B., Croitoru, M., Bisquert, P., and Vesic, S. (2018b). Graph Theoreti-
cal Properties of Logic Based Argumentation Frameworks. In Proceedings
of the 17th International Conference on Autonomous Agents and MultiA-
gent Systems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages
2148–2149. (p. 11, 12, 56, 89)

Yun, B., Croitoru, M., and Vesic, S. (2019). NAKED: N-Ary graphs from
Knowledge bases Expressed in Datalog+/-. In Proceedings of the 18th In-
ternational Conference on Autonomous Agents and MultiAgent Systems,
AAMAS 2019, Montreal, Canada, May 13-17, 2019. (p. 11, 12)

Yun, B., Croitoru, M., Vesic, S., and Bisquert, P. (2018c). DAGGER:
Datalog+/- Argumentation Graph GEneRator. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Sys-
tems, AAMAS 2018, Stockholm, Sweden, July 10-15, 2018, pages 1841–
1843. (p. 11, 12, 106)

Yun, B., Croitoru, M., Vesic, S., and Bisquert, P. (2018d). Graph The-
oretical Properties of Logic Based Argumentation Frameworks: Proofs
and General Results. In Graph Structures for Knowledge Representa-
tion and Reasoning - 5th International Workshop, GKR 2017, Melbourne,
VIC, Australia, August 21, 2017, Revised Selected Papers, pages 118–138.
(p. 89)

Yun, B., Thomopoulos, R., Bisquert, P., and Croitoru, M. (2018e). Defining
Argumentation Attacks in Practice: An Experiment in Food Packaging
Consumer Expectations. In Graph-Based Representation and Reasoning
- 23rd International Conference on Conceptual Structures, ICCS 2018,
Edinburgh, UK, June 20-22, 2018, Proceedings, pages 73–87. (p. 12)

Yun, B., Vesic, S., and Croitoru, M. (2018f). Toward a More Efficient Gener-
ation of Structured Argumentation Graphs. In Proceedings of the 7th In-
ternational Conference on Computational Models of Argument, COMMA
2018, 11th - 14th September, 2018, Warsaw, Poland. (p. 12, 100)

Yun, B., Vesic, S., Croitoru, M., and Bisquert, P. (2018g). Inconsistency
Measures for Repair Semantics in OBDA. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI
2018, July 13-19, 2018, Stockholm, Sweden., pages 1977–1983. (p. 12, 90,
163)

xxxvii

BIBLIOGRAPHY

Yun, B., Vesic, S., Croitoru, M., and Bisquert, P. (2018h). Viewpoints using
ranking-based argumentation semantics. In Proceedings of the 7th In-
ternational Conference on Computational Models of Argument, COMMA
2018, 11th - 14th September, 2018, Warsaw, Poland. (p. 12, 114, 163,
165)

Yun, B., Vesic, S., Croitoru, M., Bisquert, P., and Thomopoulos, R. (2017b).
A Structural Benchmark for Logical Argumentation Frameworks. In Ad-
vances in Intelligent Data Analysis XVI - 16th International Symposium,
IDA 2017, London, UK, October 26-28, 2017, Proceedings, pages 334–346.
(p. 11, 12, 64, 65, 72, 74, 89, 100, 106, 107, 152)

Zhang, H., Zhang, Y., and You, J.-H. (2015). Existential Rule Languages
with Finite Chase: Complexity and Expressiveness. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 1678–1685. (p. 27)

xxxviii

	1 Introduction
	1.1 The existential rules framework
	1.2 Inconsistency-tolerant reasoning
	1.3 Logic-based argumentation
	1.4 Research problem and contributions
	1.5 Thesis organisation

	2 Preliminaries
	2.1 Existential rules framework
	2.1.1 Logical language
	2.1.2 Rules and reasoning
	2.1.3 Chase and finite expansion set
	2.1.4 Complexity classes
	2.1.5 Incoherence and inconsistence

	2.2 Argumentation theory
	2.2.1 Abstract argumentation semantics
	2.2.2 Extension-based approaches
	2.2.3 Labelling approach
	2.2.4 Ranking-based semantics

	2.3 Summary

	3 Using Deductive Argumentation with Existential Rules
	3.1 Deductive argumentation frameworks in existential rules
	3.1.1 Argumentation graphs generated from knowledge bases
	3.1.2 Argumentation graphs generated from knowledge bases without rules

	3.2 Improving the argument generation
	3.2.1 Optimisation for knowledge bases without rules
	3.2.2 Optimisation for knowledge bases with rules

	3.3 The DAGGER tool
	3.3.1 DAGGER's architecture
	3.3.2 Usability scenarios

	3.4 Benchmarks on logic-based argumentation frameworks
	3.4.1 Benchmark generation
	3.4.2 Results of literature solvers over the benchmark

	3.5 Summary

	4 Argumentation Hypergraphs
	4.1 Argumentation hypergraphs with the existential rules language
	4.1.1 Hypergraph argumentation framework F
	4.1.2 Argumentation framework properties
	4.1.3 Rationality postulates
	4.1.4 Empirical analysis

	4.2 The NAKED tool
	4.2.1 The argument and attack generation
	4.2.2 The structure of NAKED
	4.2.3 Usability scenarios

	4.3 Summary

	5 Ranking-Based Reasoning
	5.1 Ranking with existential rules deductive argumentation framework
	5.1.1 Core equivalence
	5.1.2 Characterising ranking changes

	5.2 Ranking-based semantics with argumentation hypergraphs
	5.2.1 Properties for ranking-based semantics on hypergraphs
	5.2.2 The nh-categoriser

	5.3 Ranking facts in inconsistent knowledge bases
	5.3.1 The ranking-based inference framework
	5.3.2 RIF results

	5.4 Summary

	6 Conclusion
	6.1 Scope
	6.2 Summary and contributions
	6.3 Perspectives

	7 Appendix
	7.1 Miscellaneous
	7.2 Proofs
	7.2.1 Chapter 3
	7.2.2 Chapter 4
	7.2.3 Chapter 5

