Keywords: Argumentation, Inconsistency, Graphs, Existential rules, Datalo ± semantics

I want to express my gratitude to those that

Résumé (version courte)

Dans cette thèse, nous étudions les techniques de raisonnement utilisant des graphes d'argumentation générés à partir de bases de connaissances inconsistantes exprimées dans le langage des règles existentielles. Les trois principaux résultats sont les suivants. Tout d'abord, nous étudions les propriétés structurelles des graphes obtenus à partir de bases de connaissances exprimées avec des règles existentielles et nous donnons plusieurs indications sur la manière dont leur génération peut être améliorée. Deuxièmement, nous proposons une technique pour générer un graphe d'argumentation où plusieurs arguments peuvent attaquer collectivement, remplaçant ainsi la relation d'attaque binaire classique et montrons expérimentalement les avantages de cette technique. Troisièmement, nous nous intéressons aux approches fondées sur les classements pour le raisonnement en logique et en argumentation.

Mots clés: Argumentation, Inconsistance, Graphes, Règles existentielles, Datalo ±.

Résumé (version longue)

Cette thèse présente un travail de recherche original dans le domaine de la représentation des connaissances et du raisonnement, l'un des principaux sous-domaines de l'intelligence artificielle. Le langage de représentation des connaissances que nous abordons est appelé règles existentielles, une famille de langages logiques correspondant au fragment existentiel conjonctif positif de la logique du premier ordre. Le domaine de la représentation des connaissances s'intéresse à la découverte de formalismes fournissant une description du monde pouvant être utilisée efficacement pour créer des applications "intelligentes". Dans ce contexte, le terme "intelligent" désigne la capacité d'un système à trouver les conséquences implicites des connaissances explicitement représentées. Dans sa forme la plus simple, les données peuvent être stockées explicitement par des expressions sous différentes formes, par exemple dans une base de données relationnelle [START_REF] Codd | A Relational Model of Data for Large Shared Data Banks[END_REF] ou un triplet RDF. Cependant, afin d'obtenir cette "connaissance implicite" des données stockées, les communautés de base de données et de représentation des connaissances ont reconnu la nécessité de structurer les données en informations et en connaissances. Ainsi, des bases de données déductives avec des ontologies ont été créées pour déduire des données implicites, palliant ainsi l'incomplétude des bases de données classiques. L'introduction d'ontologies a également permis l'enrichissement et l'unification de vocabulaires appartenant à plusieurs sources de données. Dans le Web sémantique, les connaissances ontologiques sont souvent représentées par des formalismes III basés sur les logiques de description [START_REF] Baader | Description Logics as Ontology Languages for the Semantic Web[END_REF]. Cependant, les logiques de description ont une expressivité limitée: outre le fait qu'elles ne prennent en charge que des prédicats unaires et binaires, la connaissance ontologique ne peut être décrite qu'en matière de structure arborescente (aucun cycle n'est autorisé). Dans un même temps, le langage de base de données déductives Datalog [START_REF] Gallaire | Logic Approach to Knowledge and Data Bases at ECRC[END_REF][START_REF] Ceri | What you Always Wanted to Know About Datalog (And Never Dared to Ask)[END_REF], qui est un sous-ensemble syntaxique de Prolog [START_REF] Colmerauer | The birth of Prolog[END_REF], a été élu comme langage par défaut pour les bases de données de requêtes. Cependant, dans ce langage, il est uniquement possible de produire des connaissances sur des individus déjà connus et il n'est pas possible de déduire l'existence d'individus inconnus. Ceci est une caractéristique cruciale car nous ne pouvons pas supposer que tous les individus soient connus à l'avance.

Le langage Datalo + a été proposé pour répondre à ces deux exigences, c'est-à-dire la capacité d'invention et la capacité à exprimer des structures de haut niveau telles que des prédicats n-aires ou des ontologies plus complexes. Le langage Datalo + est une extension plus expressive du langage Datalog [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF] avec la possibilité de déduire des informations sur des individus inconnus. Cependant, cette nouvelle capacité posa de nombreux problèmes de calculabilité pour le traitement des requêtes. Afin d'éviter ces problèmes, la famille de langages Datalo ± [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF][START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF] a été introduite. La famille Datalo ± correspond à l'ensemble des langages qui restreignent la syntaxe des règles de Datalo + afin d'assurer la calculabilité. De plus, Datalo ± a également apporté une nouvelle fonctionnalité: les contraintes négatives permettant d'interdire certaines combinaisons de faits. Veuillez noter que le nom règles existentielles fait référence au même formalisme que Datalo ± et nous utiliserons les deux noms de manière interchangeable.

L'introduction de contraintes négatives engendre des conflits dans les bases de connaissances. La source de ces conflits est soit l'ensemble de faits, soit l'ensemble de règles. Dans le premier cas, nous disons qu'un ensemble de faits est inconsistant si l'application de l'ensemble de règles sur cet ensemble de faits spécifiques génère un conflit. Dans le deuxième cas, un ensemble de règles est dit incohérent si l'application de toutes les règles à un ensemble de faits conduira toujours à un conflit. La présence de conflits est problématique, car dans la logique classique, une fois la contradiction affirmée, toute proposition (ainsi que sa négation) peut en être déduite. Ceci est connu sous le nom d'explosion déductive (également appelée ex falso quodlibet). Pour résoudre les incohérences, [START_REF] Pollock | Defeasible Reasoning[END_REF] a introduit le raisonnement "défaisable" dans lequel les faits et les règles peuvent être défaits et des "règles empiriques" ainsi que des préférences suffisent afin de rétablir des capacités de raisonnement satisfaisantes [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF][START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF]. Dans cette thèse, nous nous limitons aux inconsistances et supposons que nous n'avons pas d'incohérences, IV c'est-à-dire que l'ensemble des règles est cohérent. Afin de raisonner en présence d'inconsistances avec des règles existentielles, les deux approches principales sont les sémantiques de réparation [START_REF] Lembo | Consistent Query Answering over Description Logic Ontologies[END_REF] et l'argumentation basée sur la logique [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF][START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF]. Les deux approches consistent à raisonner avec les "mondes" cohérents possibles, i.e. des sous ensembles de faits de la base logique qui n'engendrent pas de conflits. D'une part, les approches se basant sur les sémantiques de réparation considèrent généralement les sous-ensembles maximaux de faits cohérents appelés réparations qu'ils manipulent à l'aide d'un modificateur (expansion, scission, etc.) et d'une stratégie d'inférence (intersection, universalité, etc.) pour répondre aux requêtes en présence d'inconsistances [Baget et al., 2016a]. D'autre part, les approches d'argumentation basées sur la logique sont des approches ascendantes qui consistent à instancier un graphe d'argumentation (c'est-à-dire, générer des arguments et des attaques entre eux) à partir de connaissances exprimées dans un langage particulier puis à utiliser une technique de raisonnement sur le graphe d'argumentation obtenu afin de rétablir la consistance [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF]. Dans cette thèse, nous avons choisi de nous concentrer sur l'argumentation basée sur la logique en raison de son intuitivité pour l'utilisateur. En effet, les explications fournies par l'argumentation sont plus intuitives que celles fournies par les sémantiques de réparation [START_REF] Arioua | Formalizing and Studying Dialectical Explanations in Inconsistent Knowledge Bases[END_REF].

Quatre approches majeures ont été étudiées dans la littérature pour l'argumentation basée sur la logique: l'argumentation basée sur les hypothèses (ABA) [START_REF] Bondarenko | An Assumption-Based Framework for Non-Monotonic Reasoning[END_REF], ASPIC/ASPIC + [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], la programmation avec des logiques défaisables (DeLP) [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF]] et l'argumentation déductive [START_REF] Besnard | Elements of Argumentation[END_REF]. Dans cette thèse, nous nous intéressons à l'argumentation déductive instancié avec des règles existentielles suivant les travaux de Croitoru and Vesic [2013] et de Arioua et al. [2017]. Dans ce contexte, la question de recherche à laquelle nous souhaitons répondre est la suivante: Question de recherche Comment peut-on raisonner avec l'argumentation basée sur la logique dans le contexte des règles existentielles?

Les graphes d'argumentation générés par des systèmes d'argumentation basés sur la logique ont été largement étudiés, en particulier pour caractériser leur capacité de réponses aux requêtes et de traitement des inconsistances. Néanmoins, peu de travaux on été menés en ce qui concerne la structure réelle de tels graphes ou sur la manière de construire ces graphes en pratique. Notre problème de recherche peut alors être reformulé en un sous-ensemble de questions de recherche plus précises comme suit:

V

Questions de recherche

• Quelles sont les caractéristiques particulières des graphes d'argumentation générés dans le contexte des règles existentielles ?

• Pouvons-nous appliquer les techniques basées sur les classements sur les graphes générés ?

• Peut-on générer efficacement des graphes d'argumentation dans le contexte des règles existentielles ? Peut-on fournir des outils à cet effet ?

Notre contribution peut être résumée en trois résultats principaux. Pour les graphes d'argumentation générés à partir de bases de données de règles existentielles, nous avons (1) amélioré la compréhension de leurs propriétés structurelles, (2) leur efficacité et (3) leur expressivité. En ce qui concerne la compréhension, nous avons proposé un ensemble de propriétés qui élargissent notre capacité à comprendre de tels graphes et développé des outils intuitifs pour leur génération. En ce qui concerne leur efficacité, nous avons expliqué comment générer un graphe d'argumentation par rapport à la structure de la base de connaissances sous-jacente et nous avons introduit une nouvelle manière de créer des hypergraphes d'argumentation. Nous montrons que ces hypergraphes d'argumentation permettent d'avoir une représentation des données plus compacte et plus efficace. En ce qui concerne l'expressivité des graphes d'argumentation, nous avons défini comment les sémantiques basées sur les classements devraient être utilisées avec des hypergraphes d'argumentation. Nos résultats sont disséminés dans les différents chapitres: Dans le chapitre 2, nous présentons la théorie du domaine de la recherche dans lequel nous travaillons, à savoir le formalisme des règles existentielles et de la théorie de l'argumentation. Dans la section 2.1, nous introduisons formellement le cadre des règles existentielles ainsi que le chaînage Skolem, les différentes classes de règles décidables de Datalo + et les deux types de conflits (incohérence et inconsistance). Ensuite, dans la section 2.2, nous nous concentrons sur la théorie de l'argumentation et présentons une introduction aux approches les plus récentes en matière d'évaluation des arguments dans le contexte du cadre d'argumentation abstrait de Dung (approches basées sur les extensions, sur l'étiquetage et sur le classement).

Dans le chapitre 3, nous choisissons d'instancier des graphes à partir de bases de connaissances incohérentes exprimées avec des règles existentielles et nous revisitons le cadre d'argumentation de Croitoru and Vesic [2013]. Dans la section 3.1, nous présentons d'abord (1) des résultats généraux pour les graphes générés, tels que l'appartenance à des classes de graphes particulières ou l'existence de caractéristiques particulières (cycles et argu-VI ments fondés sur les conflits) et ensuite, [START_REF]106 Drastic Shapley inconsistency value 143, 146 Dummy argument[END_REF] des résultats plus précis pour les graphes d'argumentation générés à partir de bases de connaissances sans règles positives, tels qu'une caractérisation du nombre d'arguments factices ou de la composition de composantes fortement connexes. Puis, dans Section 3.2, nous montrons que la méthode naïve de génération des graphes d'argumentation peut être améliorée en utilisant un prétraitement de la base de connaissances ou un filtrage des arguments. Dans la section 3.3, nous présentons DAGGER, une application intuitive permettant de générer, visualiser et exporter un graphe d'argumentation à partir de bases de connaissances logiques. Enfin, dans la section 3.4, nous comparons les solveurs de la communauté d'argumentation et montrons que les graphes générés ont un impact conséquent sur les performances de ces solveurs. Cela montre la nécessité d'utiliser l'argumentation basée sur la logique dans les futures compétitions d'argumentation.

Dans le chapitre 4, nous présentons un système d'argumentation pour les règles existentielles basé sur les hypergraphes d'argumentation comme définis dans les travaux de Nielsen and Parsons [2007]. Dans la section 4.1, nous montrons que ce nouveau système d'argumentation répond à de nombreuses propriétés souhaitables (postulats de rationalité, coïncidence entre plusieurs sémantiques d'argumentation, etc.). Nous montrons aussi que ce système est plus efficace en ce qui concerne le temps de calcul, le nombre d'arguments et d'attaques grâce à une analyse empirique. Ensuite, dans la section 4.2, nous présentons l'outil Java NAKED permettant de générer et de visualiser ce nouveau système d'argumentation.

Dans le chapitre 5, nous décrivons comment les approches basées sur le classement peuvent être implémentées à la fois dans le cadre logique et dans le cadre de l'argumentation. Dans la section 5.1, nous montrons qu'en présence de redondances, les sémantiques basées sur le classement peuvent produire des résultats différents si elles sont utilisées sur un noyau (un sous-graphe où les arguments redondants sont supprimés) par rapport à quand elles sont utilisées sur le graphe d'argumentation d'origine. De plus, nous fournissons des conditions pour que le rang des arguments soit augmenté, diminué ou inchangé. Ensuite, dans la section 5.2, nous fournissons des instructions pour les sémantiques basées sur le classement dans le contexte des hypergraphes d'argumentation et nous présentons la première sémantique basée sur le classement pour ce type de graphes: la sémantique nh-categoriser. Enfin, dans la section 5.3, nous utilisons une approche similaire sans argumentation et définissons une approche pour le classement des ensembles de faits. Cette approche permet d'obtenir une réponse aux requêtes plus personnalisée sans prendre en compte l'ensemble des réparations.

Dans le chapitre 6, nous résumons nos contributions et présentons un certain nombre de problèmes de recherche futurs basés sur des extensions possibles de notre travail et de nos travaux publiés. 5.1 Some arguments constructed from the knowledge base of Example 5.12 and two particular cores obtained using 1 and 1

Introduction

This thesis presents an original research in the field of Knowledge Representation and Reasoning (KRR), one of the main sub-domains in Artificial Intelligence (AI). The knowledge representation language we address is the existential rules framework, a family of logical languages corresponding to the positive conjunctive existential fragment of FOL. The contribution of the thesis is the investigation of reasoning techniques using argumentation graphs generated from inconsistent knowledge bases expressed in the existential rules language.

In the reminder of this chapter, we put in context this research vision with respect to our work. The chapter is structured as follows. In Section 1.1, we introduce the general context of the existential rules framework and the types of conflicts that may arise. In Section 1.2, we show the classical techniques for reasoning in the presence of inconsistencies. In Section 1.3, we recall the existing approaches for logic-based argumentation in the literature. Section 1.4 discusses the research question and our contributions. Finally, in Section 1.5, we conclude and highlight the structure of this thesis.

The existential rules framework

In the field of knowledge representation and reasoning, we thrive for formalisms that provide a high-level description of the world that can be effectively used to build intelligent applications. In this context, "intelligent" refers to the ability of a system to find implicit consequences of its explicitly represented knowledge.

In its simplest form, data can be stored explicitly as statements in various manners, for instance in a relational database [START_REF] Codd | A Relational Model of Data for Large Shared Data Banks[END_REF], an RDF triple store or a graph database. However, in order to get this "implicit knowledge" from the stored data, both the database and knowledge representation communities acknowledged the need to limit complexity and organise data into information and knowledge. Thus, deductive database with ontologies were created to infer implicit data, hence palliating incompleteness in classical databases. The introduction of ontologies also enabled the enrichment

1 CHAPTER 1. INTRODUCTION
and unification of vocabularies in multiple data sources. In the Semantic Web, ontological knowledge is often represented with formalisms based on Description Logics (DLs), a family of formal KRR languages used for describing and reasoning about the relevant concepts of an application domain [START_REF] Baader | Description Logics as Ontology Languages for the Semantic Web[END_REF]. However, DLs have a restricted expressivity: beside the fact that they support only unary and binary predicates, the ontological knowledge can only be described in terms of tree structures (i.e. no cycles are allowed). Moreover, conjunctive query answering with classical DLs, such as the ALCI DL, has appeared to be extremely complex (it is 2ExpTimecomplete in combined complexity, and still NP-complete in the size of the data). Hence, there has been a trend to using so-called lightweight DLs for which query answering is tractable and particular attention has been paid to DL-Lite and the EL DL [START_REF] Calvanese | Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family[END_REF] which possess the notable property that query answering can be reduced to evaluation of standard database queries. Please note that these DLs form the core of the so-called tractable profiles of the Semantic Web language OWL 2.

Meanwhile, the Deductive Database language Datalog [START_REF] Gallaire | Logic Approach to Knowledge and Data Bases at ECRC[END_REF][START_REF] Ceri | What you Always Wanted to Know About Datalog (And Never Dared to Ask)[END_REF] which is a syntactic subset of Prolog [START_REF] Colmerauer | The birth of Prolog[END_REF] have been praised as the default language for query databases. It is not only more expressive than regular relational databases but also possesses desirable features for query answering since Datalog queries on finite sets are guaranteed to terminate. However, in this language, all variables in the rule head necessarily occur in the rule body. Therefore, we can only produce knowledge about already known individuals and cannot infer the existence of unknown individuals. This is a crucial feature since we cannot assume that all individuals are known in advance.

The Datalo + language have been proposed to meet these two requirements, i.e. value invention and the ability to express high-level structures such as n-ary predicates or more complex ontologies. The Datalo + language is a more expressive extension of the Datalog language [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF] with the introduction of existential quantifiers in head rules, allowing for the deduction of unknown individuals as in "if x is married then there exists an unknown individual such that x and are married". The introduction of existential quantifiers in the head rules led to many problems for the tractability of query answering given the need to deal with large data sets. In order to avoid this tractability problem, the Datalo ± family of languages [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF][START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF] was introduced. The Datalo ± family corresponds to the set of languages that restrict the rule syntax in order to achieve tractability. Moreover, Datalo ± also brings a new feature: falsum (⊥) in rule heads in order to forbid certain combinations of facts. Such a rule is called a negative constraint and models some sort of logical negation in the human reasoning like "x cannot be married and unmarried at the same time". These additional features made it possible for Datalo ± to generalise disparate other KR formalisms such as plain Datalog and a variety of De-

THE EXISTENTIAL RULES FRAMEWORK

scription Logics families, in particular, DL-Lite and EL [Calì et al., 2010a]. Please note that the name existential rules framework refer to the same formalism as Datalo ± and we will use the two names interchangeably.

The introduction of negative constraints gives rise to conflicts in the knowledge representation. The source of those conflicts is either the set of facts or the set of rules. In the former, we say that a set of facts is inconsistent if applying the set of rules on that specific set of facts generates falsum. In the latter, a set of rules is said to be incoherent if applying all of the rules to any set of facts will always lead to falsum. Example 1.1 (Inconsistency). Consider the following situation where we want to know if John is married or not. Suppose that there are no means by which we can verify the truthfulness and reliability of the factual knowledge.

• Factual knowledge: There is a piece of evidence e 1 proving that John is married and there is another piece of evidence e 2 proving that John is unmarried.

• Rules: If there is an evidence that a person is married than he is married. Likewise, If there is an evidence that a person is unmarried, then he is unmarried.

• Negative constraint: It is not possible for a person to be married and unmarried at the same time.

The set of factual knowledge is inconsistent with respect to the set of rules since we can generate generate both the facts that John is married and unmarried (given evidence e 1 and e 2). However, the set of rules is coherent as we can find a set of facts such that all rules can be applied and no contradiction are generated. For instance, there is an evidence proving that John is married and an evidence proving that Alice is unmarried. We now give an example of an incoherent set of rules.

Example 1.2 (Incoherence). Consider the following set of rules: spiny anteaters are mammals, mammals do not lay eggs, spiny anteaters lay eggs, and one cannot lay eggs and not lay eggs at the same time. Any set of factual knowledge on which all these rules are applicable will always lead to contradiction (lay eggs and not lay eggs).

Please note that [START_REF] Flouris | Inconsistencies, Negations and Changes in Ontologies[END_REF] showed that inconsistency can be viewed as a form of incoherence. The presence of conflicts is problematic, as in classical logic, once a contradiction has been asserted, any proposition (including their negations) can be inferred from it. This is known as deductive explosion (also called ex falso quodlibet). For instance if ϕ and ¬ϕ are true then, for any ψ it holds that ϕ ∨ ψ is true because ϕ is true. But since ϕ is false and ϕ ∨ ψ is true, then ψ has to be true. In order to solve the incoherences, [START_REF] Pollock | Defeasible Reasoning[END_REF] introduced Defeasible Reasoning where both facts and rules can be defeated and "rules of thumb" along with preferences are enough to choose the preferred outcome [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF][START_REF] Antoniou | A Family of Defeasible Reasoning Logics and its Implementation[END_REF]. In this thesis, we restrict ourselves to inconsistencies and we make the assumption that we do not have incoherences, i.e. the set of rules is coherent. In the next section, we show how to deal with inconsistencies and give a brief introduction on the main approaches.

Inconsistency-tolerant reasoning

In order to reason in presence of inconsistencies within the context of the existential rules framework, the two main approaches are Repair Semantics [START_REF] Lembo | Consistent Query Answering over Description Logic Ontologies[END_REF] and Logic-Based Argumentation [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF][START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF][START_REF] Toni | A generalised framework for dispute derivations in assumption-based argumentation[END_REF][START_REF] Bondarenko | An Assumption-Based Framework for Non-Monotonic Reasoning[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF]. Both approaches consist in reasoning with possible consistent "worlds".

On the one hand, the repair semantics approaches generally consider Maximally Consistent Subsets (MCS) of facts called repairs that they manipulate using a modifier (expansion, splitting, etc.) and an inference strategy (intersection, universality, etc.) for answering queries in presence of inconsistencies [Baget et al., 2016a]. Please note that the algorithms for repair semantics in practical applications do not compute all of the repairs but are based on rewriting queries [START_REF] Lembo | Inconsistency-tolerant query answering in ontology-based data access[END_REF].

Example 1.3 (Repair semantics). Consider the following inconsistent situation about the presence of a person in Anthony's house last night. The situation is modelled using a set of facts, a set of rules and a set of negative constraints. We suppose that there are no means by which we can verify the truthfulness and reliability of the factual knowledge. We have the following set of facts: f1: Anthony's neighbour heard his washing machine running last night. f2: Rebecca had dinner with Anthony at his house last night.

INCONSISTENCY-TOLERANT REASONING

f3: Rebecca was depressed and stayed at her house last night. f4: There was no electricity in Anthony's whole neighbourhood last night. f5: Last night, Anthony posted a selfie of himself at his house. f6: Last night, it was a full moon.

And the following set of rules: r1: If the washing machine was running at X 's house, then there was a person at X 's house.

r2: If there was no electricity at X 's house, then there was no person at X 's house.

r3: If there was a selfie of someone at X 's house, then there was a person at X 's house.

r4: If someone had dinner with another person at X 's house, then there was a person at X 's house.

And the following set of constraints: n1: It is not possible that there is a person at X 's house and no person at X 's house at the same time.

n2: One cannot be at two different houses at the same time.

We can clearly see that the set of factual knowledge is inconsistent since we can deduce that there was no person at Anthony's house (using f4 and r2) and that there was someone at Anthony's house last night (using f1 and r1). In order to cope with the inconsistencies, the repair semantics consider the following set of repairs (the possible worlds).

• Rebecca was depressed and stayed at her house, there was no electricity at Anthony's house and it was a full moon ({f 3 , f 4 , f 6 }). • At Anthony's house, the washing machine was running, Rebecca had dinner with Anthony, Anthony took a selfie and it was a full moon ({f 1 , f 2 , f 5 , f 6 }).

• At Anthony's house, the washing machine was running and Anthony took a selfie of himself at his house, Rebecca was depressed and stayed at her house and it was a full moon ({f 1 , f 3 , f 5 , f 6 }). If we consider the repair semantics that answer positively to a query if and only if it is entailed by all the repairs then we will get a negative answer to the query "was there someone in Anthony's house?" because in the first repair, we have no proof that someone was in Anthony's house. However, we will get a positive answer to the query "was there a full moon last night?".

On the other hand, the logic-based argumentation approaches are bottomup approaches that consist in first instantiating an argumentation framework (i.e. generating arguments and attacks, see next section for an explanation) from knowledge expressed in a particular language and then, applying a reasoning technique on the resulting argumentation graph in order to restore consistency [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF].

LOGIC-BASED ARGUMENTATION

In this thesis, we choose to focus on logic-based argumentation because of its intuitiveness with respect to explanations compared to repair semantics [START_REF] Arioua | Formalizing and Studying Dialectical Explanations in Inconsistent Knowledge Bases[END_REF] and its reusability in many domains such as debates [START_REF] Leite | Social Abstract Argumentation[END_REF], decision-making [START_REF] Gordon | The Zeno Argumentation Framework[END_REF][START_REF] Bonet | Arguing for Decisions: A Qualitative Model of Decision Making[END_REF] or persuasion [START_REF] Amgoud | Modelling dialogues using argumentation[END_REF][START_REF] Prakken | Formal systems for persuasion dialogue[END_REF][START_REF] Hadjinikolis | Opponent Modelling in Persuasion Dialogues[END_REF].

Logic-based argumentation

When working with logic-based argumentation, there are two main questions that should be answered:

1. How do we generate the argumentation framework from the data? 2. What are the reasoning techniques that can be used on an argumentation framework?

In order to answer those questions, we have to study how to build arguments from a knowledge base using a given logic. Roughly speaking, a logic has two main components: a logical language (a set of well-formed formulae) and a consequence operator that can draw conclusions from a set of formulae. In the literature, we can distinguish two main families of approaches that are used in logic-based argumentation: The first family contains approaches where arguments are built from Tarskian logics [START_REF] Tarski | On Some Fundamental Concepts of Metamathematics[END_REF], while the second family of approaches use rule-based logics for constructing arguments. The Tarskian logic is an abstract logic, i.e. it generalises several concrete logics that respect some axioms on the consequence operator (expansion, idempotence, finitude, absurdity and coherence) whereas, rulebased logics [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] are logics that usually encode two types of rules (strict rules which encode certain knowledge and defeasible rules which encode uncertain knowledge) and the consequence mechanism shows how these rules can be chained. The distinction between the strict and defeasible rules is that a rule is "defeasible if it can be blocked or defeated in some way" [START_REF] Gabbay | Handbook of logic in artificial intelligence and logic programming[END_REF]. There are four major logical approaches that have been studied in the literature: Assumption-Based Argumentation frameworks (ABA) [START_REF] Bondarenko | An Assumption-Based Framework for Non-Monotonic Reasoning[END_REF], ASPIC/ASPIC+ [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], Defeasible Logic Programming (DeLP) [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF] and Deductive argumentation [START_REF] Besnard | Elements of Argumentation[END_REF]. The first three approaches are systems based on rule-based logics whereas the fourth is more oriented toward Classical Logics where an arguments is seen as a pair with a hypothesis and a conclusion. We now briefly introduce each of the aforementioned argumentation frameworks and show how they manage to reason in presence of conflicting knowledge.

The ABA framework, as defined by [START_REF] Toni | A generalised framework for dispute derivations in assumption-based argumentation[END_REF], is composed of a language, a set of rules, a set of assumptions (they are observations or defeasible CHAPTER 1. INTRODUCTION premises) and a contrariness function for explaining the reason against each assumptions. The language used by the ABA framework is left abstract (it can be any language of sentences) while the contrariness can be seen as a "handle" to attack the weak point of an assumption. In ABA, the arguments are deductions of claims using the rules and supported by assumptions whereas the attack is defined as follows: an argument a attacks another arguments b if and only if the conclusion of a is the contrary of one of the assumptions of b. Several computational techniques have been defined for ABA [START_REF] Toni | A generalised framework for dispute derivations in assumption-based argumentation[END_REF][START_REF] Dung | Dialectic proof procedures for assumption-based, admissible argumentation[END_REF], extensions with preferences have been proposed [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] and online tools1 are available. We end this short introduction to ABA by noting that the reasoning techniques for this framework are called ABA semantics and can be viewed from two perspectives: the argument and the assumption perspectives. In the first perspective, the standard semantics for abstract argumentation, defined by [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] in his seminal paper, are applied to ABA. These semantics can compute "acceptable" or "winning" arguments with respect to the attacks in the argumentation graph. In the second perspective, it considers that sets of assumptions can attack each other and sets of "winning" assumptions can be computed in the same fashion. Correspondence between these two perspectives are the results of the work of [START_REF] Dung | Computing ideal sceptical argumentation[END_REF] and [START_REF] Toni | Reasoning on the Web with Assumption-Based Argumentation[END_REF] and enabled a jump in performance.

The ASPIC+ framework was created in the context of the European ASPIC project as a general framework for generating arguments that accommodates a broad range of instantiating logics. As defined by [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], an argumentation system is composed of a logical language closed under negation, a set of rules (strict and defeasible) and a labelling function that associates a sentence to some defeasible rules. Please note that, inspiring themselves from the work of [START_REF] Bondarenko | An Assumption-Based Framework for Non-Monotonic Reasoning[END_REF] on ABA, [START_REF] Modgil | A general account of argumentation with preferences[END_REF] lifted the closure under negation condition on the language by further adding a particular contrariness function that associates a set of reasons against each sentences of the language. In the AS-PIC+ framework, an argument can either be a sentence of the language or built upon other arguments according to the rule applications. This framework also includes three types of attacks, namely undercutting (attack on a defeasible deduction based on the aforementioned labelling function), rebutting (attacks on a weak conclusion) and undermining (attack on a premise). The framework also accommodates with preferences on arguments using the notion of defeat (or successful attack). As a preference relation on arguments is somewhat harder to obtain than an ordering on elements of the language or rules, the framework comes with ways to "lift" these orderings in order to obtain a preference relation on arguments. An online tool for

LOGIC-BASED ARGUMENTATION

ASPIC+, called TOAST, has been developed and is available2 . We end this short introduction to ASPIC+ by a little discussion on the reasoning techniques for this framework. As stated by [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], the Dung's extensions of this framework respect the four rationality postulates defined by [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF] (Sub-argument closure, Closure under Strict Rules, Direct Consistency, Indirect Consistency). This allows ASPIC+ to restore the consistency of the data it is built on. Please note that although some say that the framework violates the consistency in some cases, patches have been proposed by [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF].

The Defeasible Logic Programming (DeLP) is an argumentation formalism for deciding between contradictory goals. As defined originally by [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF], a Defeasible Logic Program is originally composed of a set of fact (ground atoms or negated ground atoms), a set of strict rules and a set of defeasible rules. It has to be noted that this formalism only considers ground rules and that the set of strict rules are considered coherent and consistent with the set of facts. In DeLP, an argument structure (or simply argument) is a minimal non-contradictory set of defeasible rules that leads to the deduction of a specific fact. Therefore, a sub-argument structure of an argument structure is simply an argument structure with a "smaller" (for set inclusion) set of defeasible rules. Thus, argument structures in DeLP are usually represented with triangles containing smaller triangles representing their sub-argument structures. The attack considered in DeLP is as follows: an argument a that leads to h 1 attacks an other argument b if and only if there is a sub-argument c of b that leads to h 2 and {h 1 , h 2 } are conflicting when put together with the facts and strict rules. This formalism also includes two ways for comparing arguments by using either the specificity criterion, based on the work of [START_REF] Poole | On the Comparison of Theories: Preferring the Most Specific Explanation[END_REF], or an explicit preference relation defined among defeasible rules. The comparison criterion among arguments is used in the same fashion as ASPIC+, i.e. using the notion of defeaters (successful attacks). An online tool has been developed and is available3 and concrete applications have been studied [START_REF] García | Deliberative stock market agents using jinni and defeasible logic programming[END_REF]. We end this short introduction by briefly explaining one of the ways for reasoning in the presence of inconsistencies in DeLP. First, the arguments are built and attacks are computed. Second, a comparison criterion for arguments is chosen and defeated arguments are computed. At this point, the result is usually a tree-like graph called "Dialectical tree" where nodes are argument structures and links are defeat relations. Third, the nodes of a dialectical tree are marked in bottom-up process (from the leaves to the root). Fourth, the marking on the root is used for query answering.

The Deductive argumentation, as originally defined by [START_REF] Besnard | Elements of Argumentation[END_REF], considers arguments as a pair (H , c) where H is a set of as-CHAPTER 1. INTRODUCTION sumptions called the premises (or equivalently, the support) of the argument and c is the conclusion (or equivalently, the claim or the consequent) of the argument. In the literature, deductive argumentation have been used in two main approaches: generating argumentation frameworks directly over the abstract Tarskian logic [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF]Besnard, 2009, 2010] or over a concrete Tarskian logic such as propositional logics [START_REF] Amgoud | On the Acceptability of Arguments in Preference-based Argumentation[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] or first-order logic [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF], 2008, 2014]. In this thesis, we are interested in the second approach. More precisely, we will study deductive argumentation frameworks built over the existential rules framework following the work of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF], [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF] and [START_REF] Arioua | Formalizing and Studying Dialectical Explanations in Inconsistent Knowledge Bases[END_REF]. In these argumentation frameworks, although much effort has been spent to show the desirable behaviour with query answering and inconsistency handling, there is not a lot of work on the actual structure of such graphs or how to practically construct these argumentation frameworks.

Research problem and contributions

Against this background, the research question we want to answer is:

Research Question How can we reason using logic-based argumentation in the context of the existential rules framework?

Our research problem can be reformulated into a subset of more precise research questions as follows:

Research Questions

• Are the argumentation frameworks generated with the existential rules particular?

• Can we characterise and apply extension-based and rankingbased techniques on the generated graphs?

• How can we efficiently generate argumentation graphs within the context of existential rules? Can we provide tools?

Our contribution focused on improving (1) the understanding of the structural properties of argumentation graphs generated from existential rules databases, (2) their efficiency and (3) their expressivity. Regarding the understanding, we have a proposed a set of properties that extends our grasp of such graphs and developed intuitive tools for their generation. Re-

THESIS ORGANISATION

Topic

Binary graphs Hypergraphs Generation Chapter 3 Chapter 4 Published in [Yun et al., 2018c[START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] Published in [START_REF] Yun | NAKED: N-Ary graphs from Knowledge bases Expressed in Datalog+[END_REF] Reasoning with extensions Chapter 2, Chapter 3 Chapter 4 Published in [START_REF] Yun | Graph Theoretical Properties of Logic Based Argumentation Frameworks[END_REF] Reasoning with rankings Chapter 5 Chapter 5 Published in [Yun et al., 2017a] Table 1.1: Reading guide by topics garding their efficiency, we gave insights as to how one should generate an argumentation graph with respect to the structure of the underlying knowledge base and introduced a more efficient hypergraph-based argumentation framework. Regarding the argumentation graph expressivity, we paved the way by first defining how ranking-based semantics should be used with hypergraph argumentation frameworks.

Thesis organisation

We chose to present the research that we did in the past three years while at LIRMM by selecting some of our results submitted or published in international conferences. Each chapter is constructed around results that we find important in order to give a relevant representation of our research interests. Table 1.1 summarises the organisation of the thesis. Please note that the presentation of our works was done "a posteriori" and does not coincide with their chronological publication dates.

Chapter 2. In this chapter, we present the theoretical domain of research that we are working in, namely the formalism of the existential rules framework and the argumentation theory. In Section 2.1, we formally introduce the existential rules framework along with the frontier chase, the several decidable classes of rules and the two types of conflicts (incoherence and inconsistence). Then, in Section 2.2, we focus on the argumentation theory and show an introduction to the state-of-the-art existing approaches for evaluating arguments in the context of Dung's abstract argumentation framework (extension-based, labelling-based and ranking-based approaches).

Chapter 3. In this chapter, we chose to instantiate graphs using inconsistent existential rules knowledge bases and to revisit the argumentation framework of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF]. In Section 3.1, we first present both (1) general results for the generated graphs such that the membership to particular graph classes or the existence of particular features (cycles and conflict-based arguments) and (2) more focused results for argumen-CHAPTER 1. INTRODUCTION tation graphs generated from knowledge bases without positive rules such that a characterisation of the number of dummy arguments or compositions of strongly connected components. Then, in Section 3.2, we show that the naive method for generating the argumentation framework can be improved using either a preprocessing of the knowledge base or a filtration of arguments. In Section 3.3, we introduce DAGGER as an intuitive application for generating, visualising and exporting argumentation graph from logical knowledge bases. Lastly, in Section 3.4, we benchmark state-of-theart solvers from the argumentation community and show that the generated graphs impact the performance of solvers. This shows the necessity for logicbased argumentation graphs in the upcoming argumentation competitions and why some solvers can outperform other solvers on these graphs. This chapter builds upon the published work of [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF]Yun et al. [, 2018c,b,f],b,f].

Chapter 4. In this chapter, we present a new argumentation framework for the existential rules framework based on the hypergraph argumentation framework defined in the work of [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF]. In Section 4.1, we show that this new argumentation framework satisfies many desirable properties (the rationality postulates, coincidence between argumentation semantics, etc.) and is more efficient using an empirical analysis with respect to computational time, number of argument and attacks. Then, in Section 4.2, we introduce the NAKED java tool for generating and visualising this new argumentation framework. This chapter builds upon the published work of [START_REF] Yun | NAKED: N-Ary graphs from Knowledge bases Expressed in Datalog+[END_REF].

Chapter 5. In this chapter, we present how ranking-based approaches can be implemented in both the argumentation and the logical setting. In Section 5.1, we show that in the presence of redundancies, ranking-based semantics may yield different results if they are used on a core (a subgraph where redundant arguments are removed) compared to when they are used on the original argumentation framework. Moreover, we provide conditions for the rank of arguments to be increased, decreased or unchanged. Then, in Section 5.2, we provide guidelines for ranking-based semantics in the context of argumentation hypergraphs and introduce the first ranking-based semantics for such type of graphs: the nh-categoriser. Finally, in Section 5.3, we use a similar approach without argumentation and define a framework for ranking sets of facts. This framework enables to get a more focused query-answering without considering the set of all repairs. This chapter builds upon the published work of Yun et al. [2017a.

Chapter 6. This chapter summarises our contributions, and presents a number of interesting future research problems based on possible extensions of both this work and the published work of Yun et al. [2016.

In this chapter, we discuss two main problems of the knowledge representation field: ensuring the termination of the reasoning mechanism and reasoning in presence of conflicting knowledge.

In knowledge representation, we always thrive to find a good balance between the expressiveness and the computational tractability, since a higher expressiveness might lead to an infinite reasoning. In this section, we provide an introduction to knowledge representation with the existential rules logical framework and to its forward chaining inference mechanism called "chase". We recall the reasoning problem of query entailment and the notion of finite classes of existential rules for which the chase is guaranteed to halt. Since knowledge databases might contain conflicts, we introduce the two types of conflicts (inconsistence and incoherence) and discuss how the argumentation theory manages to handle inconsistencies using several evaluation methods.

• How is knowledge represented using existential rules and how can we reason with this knowledge?

• What are the different types of conflict (inconsistence and incoherence) and how can we maintain the ability to reason in presence of conflicts?

• How can we handle conflicting knowledge in the context of abstract argumentation theory?

Existential rules framework

The goal of knowledge representation and reasoning is to model human-level intelligence and reasoning faculties. According to [START_REF] Levesque | Expressiveness and tractability in knowledge representation and reasoning[END_REF], the biggest dilemma in this case is the trade-off between expressiveness and computational tractability of a given logical language. Datalo + is a first-order logical language that extends plain Datalog with value invention. It has the ability to express knowledge about "unknown" individuals (e.g. "every bird comes from an egg" this specific egg might be unknown but its existence still holds). This level of expressiveness comes at the high cost of undecidability (the reasoning mechanism can be infinite), that is why different decidable fragments of Datalo + have been defined under the name of Datalo ± [START_REF] Calì | A general Datalog-based framework for tractable query answering over ontologies[END_REF] which is a generalisation of Datalog [START_REF] Ceri | What you Always Wanted to Know About Datalog (And Never Dared to Ask)[END_REF] and certain fragments of Description Logics [START_REF] Baader | Description Logics as Ontology Languages for the Semantic Web[END_REF].

Logical language

We consider a first-order logical (FOL) language L with no function symbols (except for constants) built with the existential and universal quantifiers (∃, ∀) and the implication and conjunction connectives (→, ∧) on a vocabulary Voc = (P, C) composed of a finite set of predicates P and a potentially infinite set of constants C. Each predicate p ∈ P is associated with a positive integer which is called the arity of p. We are also given an infinite set of variables V, and an infinite set of existential "fresh" variables Nulls (called "nulls", which act as placeholders for unknown constants, and can thus be seen as variables). We denote variables by uppercase letters X , Y , Z , etc., constants by lowercase letters a, b, c, etc., and fresh variables (nulls) by Null 1 , Null 2 , etc.

A logical language is a symbolic representation of some knowledge about the world. For these symbols to have meaning, they need to be "mapped" to elements of the world. This is done using an interpretation function The third item in the above definition is called the unique name assumption and indicates that different constants should be interpreted by different elements of the interpretation domain. This assumption is often made in knowledge representation and [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] showed that as long as equality between constants is not considered (which is the case in this thesis), adopting the unique name assumption or not does not make any difference in the considered reasoning tasks.

Knowledge about the world is expressed using formulas built from the logical language. The basic building blocks are called atomic formulas (or atoms). Definition 2.2 (Atom). An atom over the vocabulary Voc is of the form p(t 1 , . . . , t k), where p ∈ P is a predicate of arity k and t i ∈ V ∪ C ∪ Nulls is either a variable, a constant, or a null.

Given a formula Φ built on a language L, we note terms (Φ) and ars (Φ) respectively the terms and variables (including nulls) occurring in Φ. (tautology) and ⊥ (falsity) are allowed and considered themselves atoms. A ground atom contains only constants.

Example 2.1 (Atoms, conjunctions, and interpretations). Consider the following vocabulary P = {p, q}, C = {a, b}, then "∃X p(a, X)" is an atom, "p(a, b)" is a ground atom, and "∃X (p(a, X) ∧ q(X))" is a conjunction of atoms. An interpretation might map "p" to the concept of parenthood, "p(a, b)" might be interpreted as the individual "a" is a parent of "b" (e.g. Adam is a parent of Bruno). "∃X p(a, X)" might be interpreted as there exists an unknown individual such that "a" is its parent.

A basic form of knowledge is factual knowledge which is represented using facts. Usually a fact is a ground atom, however to account for knowledge expressing the existence of unknown constants (nulls), the definition of fact is generalised to an atom that contains constants or nulls (existentially quantified variables). CHAPTER 2. PRELIMINARIES Definition 2.3 (Fact). A fact on a language L is an existentially closed atom on L. A closed atom is of the form ∃ X p(a, X) where p ∈ P is a predicate, a is a finite (potentially empty) set of constants, and X is a finite (potentially empty) set of existentially quantified variables.

Please note that for the purposes of this thesis, a fact is not a conjunction. To be able to manipulate conjunctions as sets of facts, existential variables are represented using nulls.

Notation 2.1 (From existential variables to nulls). An existential variable can be represented as a "fresh" Skolem term by removing the existential quantifier and replacing the variable with a null. This null has to be "fresh" (or "safe") meaning that it has not been used before. For example, ∃X p(a, X) can be represented as p(a, Null 1) as long as Null 1 is fresh (i.e. Null 1 has not been used before). Notation 2.2 (From conjunctions to sets of facts). A conjunction of facts can be represented as a set of facts by removing the existential quantifier and replacing the variables with nulls. For example, ∃X (p(a, X) ∧ q(X)) can be represented as the set {p (a, Null 1), q(Null 1)} assuming Null 1 is fresh.

A model of a formula built on L is an interpretation of L that makes this formula true by considering the classical interpretation of logical connectives and quantifiers. Definition 2.4 (Logical consequence and equivalence). Given a language L and two formulas Φ 1 and Φ 2 on L, Φ 2 is a (logical) consequence of Φ 1 (denoted Φ 1 Φ 2) if all models of Φ 1 are models of Φ 2 . Φ 1 and Φ 2 are said to be logically equivalent (denoted

Φ 1 ≡ Φ 2) if Φ 1 Φ 2 and Φ 2 Φ 1 .
One of the relevant problems in knowledge representation is the entailment problem, which is asking whether a formula is a consequence of another formula. This can be expressed on facts as follows: given two facts f 1 and f 2 , is it true that f 2 is a consequence of f 1 (i.e. f 1 f 2)? It is well known that f 1 f 2 if and only if there exists a homomorphism from f 2 to f 1 [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF]. Definition 2.5 (Substitution and homomorphism). Let X be a set of variables and T a set of terms. a substitution of X to T is a mapping form X to T (notation X → T). A homomorphism π from an atom a 1 to an atom a 2 is a substitution of ars (a 1) to terms (a 2) such that π (a 1) = a 2 .1 A homomorphism π from a set of atoms S to a set of atoms S is a substitution of ars (S) to terms (S) such that π (S) ⊆ S .

EXISTENTIAL RULES FRAMEWORK

Example 2.2 (Homomorphism). The atom p(a, Null 1) can be mapped to the atom p(a, b) by the homomorphism π = {Null 1 → b} that substitutes Null 1 by b. Therefore p(a, b) p(a, Null 1). Notation 2.3 (Homomorphism restriction π | X). Given a homomorphism π , we denote by dom(π) the domain of π . Given a set of variables X , we denoted the restriction of π to X by π |

X = {(X , π (X)) | X ∈ dom(π) ∩ X }.
The entailment problem is generally expressed using queries (query answering problem), specifically conjunctive queries which are an existentially closed conjunctions of atoms. These can be seen as asking if there is a set of constants and nulls that make an existentially closed conjunction of atoms a consequence of the set of facts. Definition 2.6 (Query). A Conjunctive Query (CQ) is an existentially closed conjunction of atoms of the form

Q (X) = ∃ Y Φ(X , Y)
, where X is a set of variables, Y is a set of existential variables (possibly with constants) and Φ is a conjunction of atoms. A Boolean Conjunctive Query (BCQ) is a conjunctive query of the form Q

() = ∃ Y Φ(Y).
The answers to a conjunctive query Q (X) = ∃ Y Φ(X , Y) over a set of formulas F is the set of all tuples (constants and nulls) that if, substituted with X and Y , make Φ a consequence of F. The answer to a boolean conjunctive query is either true or false, and it is true over a set of facts F if and only if it is a consequence of F, otherwise it is false. Null 1). The answer to the BCQ Q () = ∃X , Y p(X , Y) is true (because it can be mapped to F using π 1 or π 2).

2 = {X → c, Y → Null 1 } to p(c,

Rules and reasoning

Rules (or equivalently, positive rules) are formulas that allow the enrichment of a set of facts with new deduced knowledge. These rules generally encode domain-specific implications, for example "if X is a cat then X is an animal". Existential rules [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] are general rules that account for unknown individuals, they are also known as Tuple Generating Dependencies (TGD) [START_REF] Abiteboul | Foundations of Databases[END_REF], Conceptual Graphs rules [START_REF] Salvat | Sound and Complete Forward and backward Chainingd of Graph Rules[END_REF][START_REF] Sowa | Conceptual Graphs for a Data Base Interface[END_REF], Datalog ∃ rules [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF], etc. Definition 2.7 (Existential rule). An existential rule (or simply a rule) r is a formula of the form ∀ X , Y B(X , Y) → ∃ Z H(X , Z) where X , Y are tuples of variables, Z is a tuple of existential variables, and B, H are CHAPTER 2. PRELIMINARIES finite non-empty conjunctions of atoms respectively called body and head of r and denoted Bod (r) and Head (r). The frontier of r (denoted f r (r)) is the set of variables occurring in both the body and the head of r i.e. f r (r) = ars (Bod (r)) ∩ ars (Head (r)).

Rules are used to infer new knowledge starting from an initial set of facts based on the notion of rule application.

Definition 2.8 (Rule application).

A rule r is said to be applicable to a set of facts F if there is a homomorphism π from Bod (r) to F. In that case, the application of r to F according to π (denoted α (F, r, π)) adds to F a set of facts π saf e (Head (r)) where π saf e ensures that existential variables are replaced with fresh nulls.

Example 2.4 (Rule application). Consider the rule r stating that two sisters are the daughters of the same parent. This rules is modelled as:

∀X , Y sisterO f (X , Y) → ∃Z dau hterO f (X , Z) ∧ dau hterO f (Y , Z).
This rule r is applicable to the set F = {sisterO f (alice, barbara)} using the homomorphism π = {X → alice, Y → barbara} and therefore its application produces α (F, r , π) = F ∪ {dau hterO f (alice, Null 1), dau hterO f (barbara, Null 1)} assuming Null 1 is safe. Notation 2.4 (Rules with atomic head). In general, rules might have a conjunction of atoms in their head, however for the purposes of this thesis, we only consider rules with one atom in their head. [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] showed that any set of rules can be transformed to a set of rules with atomic head. The idea is that conjunctions can be split using intermediary atoms. For example, the rule ∀X , Y sisterO f (X , Y) → ∃Z dau hterO f (X , Z) ∧ dau hterO f (Y , Z) can be transformed to a set of three rules with atomic heads:

1. ∀X , Y sisterO f (X , Y) → ∃Z d (X , Y , Z) 2. ∀X , Y , Z d (X , Y , Z) → dau hterO f (X , Z) 3. ∀X , Y , Z d (X , Y , Z) → dau hterO f (Y , Z)
A rule is applicable on a set of facts if there is a homomorphism from the body of the rule to this set of facts, furthermore, a rule might not be applicable right away but could become applicable after some new knowledge is generated by another rule, which might make another rule applicable and so on. This sequence of rule applications is called a derivation. Normally, a derivation is a sequence of facts generated at each rule application, however, we generalize this notion to include the rule and the homomorphism used at each step.

EXISTENTIAL RULES FRAMEWORK

Definition 2.9 (Derivation). Given a set of facts F and a set of rules R, a derivation of F with respect to R is a (potentially infinite) sequence δ of D i s.t. D i is a tuple (F i , r i , π i) composed of a set of facts F i , a rule r i and a homomorphism π i from Bod (r i) to F i where: D 0 = (F 0 = F, ∅, ∅), and

F i = α (F i-1 , r i , π i).
We denote by Facts (D i), Rule (D i), and Homo(D i) the set of facts, rule and homomorphism of a tuple D i .

A derivation can be infinite as a rule can be applied again and again without restrictions as shown in the following Example 2.5.

Example 2.5 (Derivation). Consider the set of facts F stating that Bruno is a male human, and the rules R stating that any human has a parent and that a male human is a man.

• F = {human(bruno), male (bruno)}.

• R = {r 1 : ∀X human(X) → ∃Y parentO f (Y , X), r 2 : ∀X male (X) ∧ human(X) → man(X)}.
A possible derivation of F w.r.t R is:

δ = (F, ∅, ∅), (F 1 = F 0 ∪ {man(bruno)}, r 2 , π 1 = {X → bruno}), (F 2 = F 1 ∪ {parentO f (Null 1 , bruno)}, r 1 , π 2 = {X → bruno}), (F 3 = F 2 ∪ {man(bruno)}, r 2 , π 3 = {X → bruno}), (F 4 = F 3 ∪ {parentO f (Null 2 , bruno)}, r 1 , π 4 = {X → bruno}),
As we can see in this example, this derivation apply successively the two rules r 1 and r 2 even though it produces the same atoms using the same homomorphisms.

A derivation for a specific fact f is a finite minimal sequence of rule applications starting from a set of facts F and ending with a rule application that generates f . Definition 2.10 (Derivation for a fact). Given some sets of facts F and rules R, a derivation for a fact f is a finite derivation δ = D 0 , . . . , D n of F ⊆ F with respect to R such that:

1. f ∈ Facts (D n) (i.e. the last rule application contains f). 2. δ is minimal i.e. there is no derivation δ = D 0 , . . . , D m for f such that:

• Facts (D 0) ⊂ Facts (D 0) and

• D ∈δ (Rule (D), Homo(D)) ⊂ D ∈δ (Rule (D), Homo(D)).

CHAPTER 2. PRELIMINARIES

Example 2.6 (Derivation for a fact). Consider the previous Example 2.5, a derivation from F to man(bruno) is the sequence:

δ 1 = (F 0 = {human(bruno), male (bruno)}, ∅, ∅), (F 1 = F 0 ∪ {man(bruno)}, r 2 , π 1) .
Query answering over a set of facts and rules can be done by generating all possible knowledge then finding homomorphisms from the queries to this "saturated" set of facts. In order to generate this knowledge, rules are applied in a breadth first manner. A breadth-first derivation is obtained by considering at each "breadth-first" step all possible rule applications on the current set of facts and applying them all before moving to the next step. . Given a set of facts F and a set of rules R, a breadth-first derivation of F with respect to R is a derivation

δ = (F 0 = F, ∅, ∅), . . . , (F i , r i , π i), . . . such that for all i < j, if (F i+1 \F i) ∩ π j (Bod (r j)) ∅ then for all k > j, π k (Bod (r k)) F i .
The above definition ensures that if a rule is applied on some atoms generated by a rule application i + 1 then no rule application afterwards can use only the atoms in F i . Intuitively, once we go to the next breadth-first step, we cannot apply a rule that could have been applied in a previous step according to the same homomorphism.

An exhaustive breadth-first derivation ensures that all rules have been applied according to all possible homomorphisms. An exhaustive derivation may be infinite and might contain "redundant" rule applications, however removing these "redundant" rule applications might make the exhaustive derivation finite. The role of a chase is to remove rule applications that it considers redundant.

Chase and finite expansion set

In order to answer queries over a set of facts and rules, the exhaustive derivation has to be finite. A chase is a mechanism that takes an exhaustive derivation and removes what it considers "redundant" rule applications using a derivation reducer. We use the formalization of [START_REF] Rocher | Querying Existential Rule Knowledge Bases: Decidability and Complexity[END_REF] for its simplicity to define a derivation reducer and a chase. Definition 2.12 (Derivation reducer). Given a set of facts F and a set of rules R, a derivation reducer σ is a function that takes a rule application tuple D i = (F i , r i , π i) in a derivation δ = D 0 , . . . , D i , . . . of F with respect to R and returns a rule applications tuple σ

(D i) = (F i , r i , π i) such that F i ≡ F i .
Definition 2.13 (σ -chase). Given a set of facts F, a set of rules R, a derivation reducer σ , and an exhaustive breadth first derivation δ = D 0 , . . . , D i , . . . of F with respect to R: σ-chase (F, R) = σ (D 0), . . . , σ (D i), . . . and σ (D i) ∈ σ-chase (F, R) if and only if Facts (σ (D i)) Facts (σ (D i-1)).

EXISTENTIAL RULES FRAMEWORK

The above definition ensures that only non redundant "meaningful" rule applications are kept (i.e. rule applications that generate something new according to the derivation reducer). A chase is finite if there is a breadthfirst rule application step k such that for all D j at step k, no new facts are generated [START_REF] Baget | Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation[END_REF].

Applying a chase on a set of facts F and a set of rules R generates the saturated set of facts F * that contains all initial and generated facts.

Definition 2.14 (Saturated set of facts). Given a set of facts F and a set of rules R, the saturation (or equivalently, closure) of F is Sat R (F) = D ∈σ-chase (F,R) Facts (D). We also refer to Sat R (F) by F * when the set of rules R is obvious.

Saturating a set of facts F with a set of rules R until no new rule application is possible allows us to obtain the universal model. The particularity of this model is that it is representative of all models of (F ∪ R) (we denote the set of models of (F ∪ R) by models (F, R)).

Definition 2.15 (Universal model). Given a set of facts F and a set of rules R, a universal model M of (F ∪ R) is a model of (F ∪ R) such that for all models M of (F ∪ R), there is a homomorphism from M to M .

It is not always possible to obtain the universal model (the saturated set of facts might be infinite), however if the chase is finite then the model of the saturated set of facts is a universal model [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF]. Therefore query entailment can be expressed using the notion of chase.

Theorem 2.1 (Query entailment and chase [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF]). Let us consider a set of facts F, a set of rules R and a Boolean conjunctive query

Q. If σ-chase (F, R) is finite then, (F ∪ R) Q if and only if Facts (σ-chase (F, R)) Q.
Different kinds of chases can be defined using different derivation reducers. Each derivation reducer ensures a universal model if its chase is finite. The most common chase is the Frontier chase [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF], it yields equivalent results as the well-known Skolem chase [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF] that relies on a "skolemisation" of the rules by replacing each occurrence of an existential variable Y with a functional term f r Y (X), where X = f r (r) are the frontier variables of r . Frontier chase and skolem chase yield isomorphic results [Baget et al., 2014a], in the sense that they generate exactly the same atoms, up to a bijective renaming of nulls by skolem terms.

The frontier chase considers two rule applications redundant if their mapping of the frontier variables are the same for the same rule. Definition 2.16 (Frontier/Skolem chase). The frontier chase σ f r -chase (equivalent to the Skolem chase relies on the frontier derivation reducer (denoted by σ f r) defined as follows. For any derivation δ , σ f r (D 0) = D 0 and for CHAPTER 2. PRELIMINARIES

every D i = (F i , r i , π i) ∈ δ : Facts (σ f r (D i)) =            F i-1 ∪ π saf e i (Head (r i)) if for every j < i with r i = r j , π j | f r (r j) (Bod (r j)) π i | f r (r i) (Bod (r i)) F i-1 otherwise
Example 2.7 (Frontier chase). Consider the following set of facts F and set of rules R, inspired from the thesis of [START_REF] Hecham | Defeasible reasoning for existential rules. (Raisonnement defaisable dans les règles existentielles)[END_REF], stating that an animal shelter would keep a dog found alone if it has an owner. If it has a collar or a microchip then it has an owner. A dog named "Rex" with a collar and a microchip is found alone.

• F = {alone (rex), hasCollar (rex), hasMicrochip(rex)} • R = {r 1 : ∀X , Y hasOwner (X , Y) → keep(X), r 2 : ∀X alone (X) ∧ hasCollar (X) → ∃Y hasOwner (X , Y), r 3 : ∀X alone (X) ∧ hasMicrochip(X) → ∃Y hasOwner (X , Y)}
A possible frontier chase of F and R is:

σ f r -chase (F, R) = (F, ∅, ∅), (F 1 = F ∪ {hasOwner (rex, Null 1)}, r 2 , π 1 = {X → rex}), (F 2 = F 1 ∪ {hasOwner (rex, Null 2)}, r 3 , π 2 = {X → rex}), (F 3 = F 2 ∪ {keep (rex)}, r 1 , π 3 = {X → rex, Y → Null 1 }) .
First, r 2 is applied on {alone (rex), hasCollar (rex)} and generates ∃Y hasOwner (rex, Y) which is not redundant since r 2 has never been applied before, therefore F 1 = F 0 ∪ {hasOwner (rex, Null 1)}. Then r 3 is applied on {alone (rex), hasMicrochip(rex)} and generates ∃Y hasOwner (rex, Y) which is also not redundant because r 3 has never been applied before (even if it generates the same atom as r 2), therefore

F 2 = F 1 ∪ {hasOwner (rex, Null 2)}.
Afterwards, r 1 is applied on {hasOwner (rex, Null 1)} and generates {keep (rex)} which is not redundant as r 1 has never been applied before, therefore F 3 = F 2 ∪ {keep (rex)}. Finally, r 1 is applied on the set of facts {hasOwner (rex, Null 2)} with the homomorphism π 4 = {X → rex, Y → Null 2 } and generates {keep (rex)} which is redundant since this rule application reuses the same rule and the same frontier mapping as the rule application on {hasOwner (rex, Null 1)} (i.e. π 4 | f r (r 1) = π 3 | f r (r 1) = {X → rex}). Since any additional rule application would be redundant (all rules have been applied with all possible homomorphisms) the frontier chase stops.

Even if the frontier reducer removes some redundant rule applications, the frontier chase might be infinite as shown in the following Example 2.8.

Example 2.8 (Infinite frontier chase). Consider the set of fact F and the set of rules R containing one fact and one rule.

EXISTENTIAL RULES FRAMEWORK

• F = {p (a)} • R = {r 1 : ∀X p(X) → ∃Y p(Y)}
A possible frontier chase of F and R is:

σ f r -chase (F, R) = (F, ∅, ∅), (F 1 = F ∪ {p (Null 1)}, r 1 , π 1 = {X → a}), (F 2 = F 1 ∪ {p (Null 2)}, r 1 , π 2 = {X → Null 1 }), (F 3 = F 2 ∪ {p (Null 3)}, r 1 , π 2 = {X → Null 2 }),
First, r 1 is applied using π 1 and generates ∃Y p(Y) which is not redundant since r 1 has never been applied before, therefore F 1 = F 0 ∪ {p (Null 1)}. Then r 1 is applied on {p (Null 1)} using π 2 and generates ∃Y p(Y) which is not redundant since

π 2 | f r (r 1) = {X → Null 1 } π 1 | f r (r 1) = {X → a}, therefore F 2 = F 1 ∪ {p (Null 2
)}, and so on infinitely. Some derivation reducers are "stronger" than others, this implies that their chase might stop in cases where others do not. This is known as the reducer order relation. Definition 2.17 (Reducer order relation [START_REF] Rocher | Querying Existential Rule Knowledge Bases: Decidability and Complexity[END_REF]). Given two derivation reducers σ 1 and σ 2 , we say that σ 1 is weaker than σ 2 (denoted by σ 1 ≤ σ 2) if for any set of rules R and set of facts F, if σ 1 -chase is finite then σ 2 -chase is also finite. Furthermore, we say that σ 1 is strictly weaker than σ 2 if σ 1 ≤ σ 2 and σ 2 σ 1 .

In the literature, there are four well-known types of chase: the Oblivious chase (σ obl -chase) [START_REF] Calì | Taming the Infinite Chase: Query Answering under Expressive Relational Constraints[END_REF], the Skolem/Frontier chase (σ f r -chase) [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF][START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF], the Restricted chase (σ r es -chase) [START_REF] Fagin | Data exchange: semantics and query answering[END_REF], and the Core chase (σ cor e -chase) [START_REF] Deutsch | The chase revisited[END_REF].

Proposition 2.1 (Chases finiteness order [START_REF] Onet | The Chase Procedure and its Applications in Data Exchange[END_REF][START_REF] Rocher | Querying Existential Rule Knowledge Bases: Decidability and Complexity[END_REF]). The following relations hold:

σ obl ≤ σ f r ≤ σ r es ≤ σ cor e .
It is well-known that query entailment using a chase is undecidable (the chase might be infinite) [START_REF] Beeri | The Implication Problem for Data Dependencies[END_REF] even under strong restrictions such as using a single rule or restricting to binary predicates with no constants. However, some restrictions on the set of rules can ensure decidability for a specific type of chase. These restrictions are classified into three big categories known as "abstract classes". The first one is "Finite Expansion Set" (FES) [START_REF] Baget | Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation[END_REF] that ensures that a finite universal model of the knowledge base exists and can be generated using a chase. For each chase we can define its FES class: oblivious-FES, skolem-FES, restricted-FES, and core-FES . The second class is called "Finite Unification Set" (FUS) [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] which guarantees that some backward chaining method halts. Finally, the class called "Greedy Bounded Treewidth Set" CHAPTER 2. PRELIMINARIES (GBTS) [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] ensures that the potentially infinite universal model of a knowledge base has a bounded treewidth. Each abstract class has a set of "concrete classes" that classifies rules based on their syntactic properties e.g. the concrete class Datalog describes rules that do not contain existentially quantified variables. The following Figure 2.1 shows the most studied concrete classes in the literature and the relation between them: an upward edge going from a class C to a class C' means that any set of rules in class C is also in class C'.

In this thesis we rely mainly on the frontier chase to reason with existential rules, for simplicity we will only give examples and intuitions about concrete classes of skolem-FES. 2 Restricting ourselves to the frontier chase and subsequently to the skolem-FES classes of rules is not a very restrictive constraint since most studied concrete FES classes are skolem-FES (cf.

Weaklyguarded

Frontierguarded

Guarded

Frontier-1

FES FUS GBTS

Figure 2.1: Abstract and known concrete classes of existential rules [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF][START_REF] Rocher | Querying Existential Rule Knowledge Bases: Decidability and Complexity[END_REF] A concrete class is simply a syntactic distinction of rules. The most basic skolem-FES concrete class is the Datalog class (also known as Range Restricted [START_REF] Abiteboul | Foundations of Databases[END_REF]) which are rules without the existential quantifier. Another simple class is the aGRD class (Acyclic Graph of Rule Dependency) [Baget et al., 2014a]. A Graph of Rule Dependency is a directed graph that encodes possible interactions between rules: the nodes represent the rules and there is an edge from a node r 1 to r 2 if and only if an application of the rule r 1 may create a new application of the rule r 2 . A GRD is acyclic when it has no circuit. The notions of "weak acyclicity" [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF] and "joint acyclicity" [START_REF] Krötzsch | Extending Decidable Existential Rules by Joining Acyclicity and Guardedness[END_REF] are based on the position of the predicate and the existential and frontier variables. The MFA class (Model Faithful Acyclicity) [START_REF] Grau | Acyclicity Notions for Existential Rules and Their Application to Query Answering in Ontologies[END_REF] relies on detecting a specific set of facts called critical instance. The following Example 2.9 provides some rules that are skolem-FES.

Example 2.9 (Skolem-FES rules). Consider the following sets of rules:

• R 1 = {∀X , Y , Z p(X , Z) ∧ p(Z , Y) → p(X , Y)} is range restricted (Data- log). • R 2 = {∀X , Y siblin O f (X , Y) → ∃Z parentO f (Z , X , Y)} is aGRD. • R 3 = {r 1 : ∀X , Y p(X , Y) → ∃Z r (Y , Z), r 2 : ∀X , Y r (X , Y) → p(Y , X)}. {r 1 }
is aGRD and {r 2 } is range restricted, however R 3 is weakly-acyclic and is neither aGRD nor rangerestricted.

•

R 4 = {r 1 : ∀X , Y p(X , Y) → ∃Z r (Y , Z), r 2 : ∀X , Y r (X , Y) ∧ r (Y , X) → p(X , Y)}. {r 1 } is aGRD and {r 2 } is range restricted, however R 4 is Jointly-acyclic. • R 5 = {r 1 : ∀Xq(X) → ∃Y p(X , Y) ∧ p(Y , X) ∧ p(X , X), r 2 : ∀X p(X , X) → r (X), r 3 : ∀X r (X) → q(X)}. {r 1 } alone is aGRD, {r 2 , r 3 } is range restricted, however R 5 is super-weakly-acyclic. • R 6 = {∀X , Y p(X , Y) → ∃Z ,T q(Y , Z) ∧p(Z ,T)} is model-faithful-acyclic.
Not all concrete classes are created equal, some might have higher complexity for query answering, and applying a chase on these classes would require more time. In the next section we recall the definitions for some complexity classes and describe the complexity of CQ entailment for the skolem-FES concrete classes.

Complexity classes

Complexity is an indication of a computational problem inherent difficulty. We briefly recall the definitions of the complexity classes by increasing complexity. For more details about complexity theory, the reader is referred to the work of [START_REF] Papadimitriou | Computational Complexity[END_REF].

Definition 2.18 (AC 0). A problem is in AC 0 if it can be solved by a boolean circuit of bounded depth with a polynomial number of AND and OR gates.

Definition 2.20 (NP).

A problem is in NP if it can be solved by a nondeterministic Turing machine running in polynomial time in the input. Definition 2.21 (coNP). A problem is in coNP if its complement is in the class NP, meaning that there is a polynomial-time algorithm that can verify no instances (counterexamples) using a non-deterministic Turing machine.

Definition 2.22 (Exponential time (ExpTime)). A problem is in the

ExpTime class if it can be solved by a deterministic Turing machine running in simple exponential time (2 p (n)) in the input. 2ExpTime is running in

exponential time 2 2 p (n) while 3ExpTime is 2 2 2 p (n)
.

Furthermore, a problem P is hard for a given complexity class C if any instance of a problem from C can be reduced to an instance of P through a reduction (in most cases, this reduction has to be in polynomial time, but for lower classes (PTime and below), logarithmic space reductions must be used). A problem P is complete for a given complexity class C if it belongs to C and is hard for C. For the query entailment problem, two different measures of complexity are considered:

• Combined complexity: the input contains the set of rules, the set of facts and the query.

• Data complexity: the input contains only the set of facts while the set of rules and the query are assumed to be fixed.

EXISTENTIAL RULES FRAMEWORK

Data complexity is sometimes considered more relevant [START_REF] Lembo | Inconsistency-Tolerant Semantics for Description Logics[END_REF] because the query and the rules are usually far smaller than the set of facts in practical applications, however both complexities can help understand where the difficulties lie. Indeed, for instance, query answering over skolem-FES rules using a frontier chase has in the worst case 2ExpTime-complete combined complexity and PTime-complete data complexity. The following Table 2.1 describes the combined and data complexity of query answering for each studied concrete class of Skolem-FES.

Rule Class

Combined Complexity Data Complexity Datalog ExpTime-complete [START_REF] Chandra | Embedded Implicational Dependencies and their Inference Problem[END_REF] PTime-complete [START_REF] Dantsin | Complexity and expressive power of logic programming[END_REF] aGRD ExpTime-complete [Calì et al., 2010b] PTime-complete [Calì et al., 2010b] Jointly-acyclic 2ExpTime-complete [START_REF] Krötzsch | Extending Decidable Existential Rules by Joining Acyclicity and Guardedness[END_REF]] PTime-complete [START_REF] Krötzsch | Extending Decidable Existential Rules by Joining Acyclicity and Guardedness[END_REF] Weakly-acyclic 2ExpTime-complete [START_REF] Fagin | Data exchange: semantics and query answering[END_REF] PTime-complete [START_REF] Fagin | Data exchange: semantics and query answering[END_REF] Super-weakly-acyclic 2ExpTime-complete [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF] PTime-complete [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF] MFA 2ExpTime-complete [START_REF] Zhang | Existential Rule Languages with Finite Chase: Complexity and Expressiveness[END_REF] PTime-complete [START_REF] Marnette | Generalized schema-mappings: from termination to tractability[END_REF] Table 2.1: Complexity of CQ entailment for studied Skolem-FES concrete classes

Incoherence and inconsistence

To represent knowledge about the world one should account for "negative knowledge", i.e. information that dictates how things ought not to be, especially since generating new knowledge from seemingly correct information might lead to a contradiction down the line. A basic form of "negative knowledge" is stating that a fact and its negation (or equivalently, complement) should not be both asserted at the same time. While the existential rules language L is negation-free, the notion of integrity constraint from the database domain can be used to express negative knowledge.

Definition 2.23 (Negative constraint). A negative constraint (or simply a constraint) is a rule of the form ∀ X B(X) → ⊥ where X is a tuples of variables, and B is a finite non-empty conjunction of atoms.

In this thesis, we only consider "binary" negative constraints (a.k.a. denial constraints) that express a conflict between two atoms. This restriction simplifies subsequent definitions and does not imply a loss of generality since any negative constraint can be transformed into a set of rules and binary negative constraints [START_REF] Calì | A general Datalog-based framework for tractable query answering over ontologies[END_REF]. Definition 2.24 (Conflicting facts). A set of facts Z = {f 1 , f 2 , . . . , f n } is a conflicting set of facts if and only if the body of a negative constraint can CHAPTER 2. PRELIMINARIES be mapped to Z . By abuse of notation, if Z = {f 1 , f 2 }, we say that f 1 is in conflict with f 2 .

Example 2.10 (Negative constraint and conflicting facts). Consider the negative constraint stating that it is impossible that a person is married and unmarried at the same time: ∀X married (X) ∧ unmarried (X) → ⊥. The fact married (bruno) is in conflict with unmarried (bruno) (and vice-versa) because the body of the negative constraint can be mapped to these facts.

Negative constraints are used to ensure that a set of facts is consistent (i.e. it contains no contradictions). This is especially important since in presence of conflicts, query answering becomes trivial due to the principle of explosion (ex falso quodlibet), i.e. "from falsehood anything follows".

In the various domains of knowledge representation, conflicts might be inherent to the represented domain or may arise from an incorrect description of the world. When a set of factual knowledge contains no conflicts it is said to be consistent, otherwise it is inconsistent. Definition 2.25 (Inconsistence). A set of facts F is inconsistent with respect to a set of negative constraints N if and only if (F∪N) has no possible model (models (F, N) = ∅) i.e. (F ∪ N) ⊥. In practice, F is inconsistent if a negative constraint can be applied i.e. there exists a negative constraint r ∈ N such that F Bod (r).

An inconsistent set of facts does not necessarily mean an incorrect representation of the factual knowledge of the world. In some cases, the inconsistency of the generated set of facts is unavoidable (i.e. the representation has no model) even with a correct description of factual knowledge. This is due to an incoherent set of rules. Definition 2.26 (Incoherence). A set of rules R is incoherent with respect to a set of negative constraints N if and only if R ∪ N is unsatisfiable i.e. for any set of facts S such that all rules in R are applicable, models (S, R ∪ N) = ∅. The application of R on any set of facts S will inevitably lead to an inconsistent saturated set of facts S * with respect to N.

Clearly, the notions of incoherence and inconsistence are highly related. In fact, an incoherent set of rules R will always lead to an inconsistent set of facts F * if all rules in R are applied on F [START_REF] Flouris | Inconsistencies, Negations and Changes in Ontologies[END_REF]. The following Examples 2.11 and 2.12 describe the key difference between incoherence and inconsistence.

Example 2.11 (Incoherence). Consider the following sets of facts F, rules R, and negative constraints N representing the knowledge that mammals do not lay eggs, platypus are mammals and penguins lay eggs. "Perry" is a platypus, does it lay eggs (i.e. Q 1 () = la E s (perr))? Does it not lay eggs (i.e. Q 2 () = notLa E s (perr))?

EXISTENTIAL RULES FRAMEWORK

• F = {plat pus (perr)} • R = { r 1 : ∀X plat pus (X) → mammal (X), r 2 : ∀X mammal (X) → notLa E s (X), r 3 : ∀X plat pus (X) → la E s (X)} • N = {∀X la E s (X) ∧ notLa E s (X) → ⊥}
The saturated set of facts resulting from a frontier chase is

• F * = {plat pus (perr), mammal (perr), la E s (perr), notLa E s (perr)}.

The set of rules R is incoherent because no set of facts (even outside F) that makes all rules in R applicable prevents the application of the negative constraint, therefore models (F, R∪N) = ∅. The answer to the boolean queries Q 1 and Q 2 is "true" (principle of explosion) i.e. Perry lays eggs and does not lay eggs at the same time. The saturated set of facts

F * is inconsistent because models (F, R ∪ N) = ∅.
Example 2.12 (Inconsistence and incoherence). Consider the following sets of facts F, rules R, and negative constraints N defined by [START_REF] Hecham | Defeasible reasoning for existential rules. (Raisonnement defaisable dans les règles existentielles)[END_REF] about a criminal case. If there is a scientific evidence incriminating a defendant, then he is responsible for the crime, if there is a scientific evidence absolving a defendant then he is not responsible for the crime. A defendant is guilty if responsibility is proven. If a defendant has an alibi then he is innocent. There is a scientific evidence "e1" incriminating a defendant "alice", while another scientific evidence "e2" is absolving her of the crime. She also has an alibi. Is Alice innocent (i.e. Q 1 () = innocent (alice))? Is she guilty (i.e. Q 2 () = uilt (alice))?

• F = {incrim(e1, alice), absol (e2, alice), alibi (alice)}

• R = {r 1 : ∀X , Y incrim(X , Y) → resp(Y), r 2 : ∀X , Y absol (X , Y) → notResp(Y), r 3 : ∀X resp(X) → uilt (X), r 4 : ∀X alibi (X) → innocent (X)} • N = {∀X resp(X) ∧ notResp(X) → ⊥, ∀X uilt (X) ∧ innocent (X) → ⊥}
The saturated set of facts resulting from a frontier chase is

• F * = {incrim(e1, alice), absol (e2, alice), alibi (alice), resp(alice), notResp(alice), uilt (alice), innocent (alice)}.

The set of rules R is coherent because R ∪ N is satisfiable i.e. there exists a possible set of facts S = {incrim(e1, bob), absol (e2, alice), alibi (alice)} such that all rules in R are applicable and models (S, R ∪ N) ∅, the set S * = {incrim(e1, bob), absol (e2, alice), aibli (alice), resp(bob), notResp(alice), uilt (bob), innocent (alice)} is consistent as no negative constraint is applicable on it.

However the saturated set of facts F * is inconsistent because a negative constraint is applicable, thus models (F, R ∪ N) = ∅. Since the set of rules is coherent, the inconsistence of F * is due to an erroneous set of intial facts (either one of the evidences, the alibi, or all of them are not valid).

The classical answer to the boolean queries Q 1 and Q 2 is "true" (i.e. Alice is guilty and innocent), because from falsehood, anything follows.

Inconsistence and incoherence are problematic for classical query answering. Indeed, as in classical logic, contradictions trivialise query answering since everything follows from a contradiction.

In this thesis, we focus on inconsistency and only consider set of rules that are coherent with respect to the set of negative constraints. This is not a big assumption as the existential rules framework is widely used in Semantic Web and in the so called Ontology-Based Data Access (OBDA). In this setting, the rules and negative constraints are given by experts and are used as an ontology to "access" multiple data sources. These sources are prone to inconsistencies whereas the ontology is reliable since it is constructed by field experts. Thus, we use the term inconsistent knowledge base to refer to a triple composed of a fact base, a set of negative constraints and a set of coherent rules with respect to the negative constraints. Definition 2.27 (Inconsistent knowledge base). An inconsistent knowledge base (or simply knowledge base if it is obvious by the context) is a tuple KB = (F, R, N) where F is a set of facts, N is a set of negative constraints and R is a set of existential rules coherent with respect to N.

The set of all possible knowledge bases is denoted by KB s . We now introduce the notion of R-inconsistency. As opposed to the notion of conflicting facts where the body of a negative constraint can be directly mapped to the set of facts, R-inconsistency also consider the facts that can be derived before trying to map the body of negative constraints.

Definition 2.28 (R-inconsistence). Let us consider a knowledge base KB = (F, R, N). We say that a set of facts X is R-inconsistent with respect to KB if and only if Sat R∪N (X) |= ⊥. Otherwise, X is said to be R-consistent.

In the knowledge representation and reasoning field, there are several ways to handle inconsistencies. The two main approaches are Consistencybased approaches (first mentioned by [START_REF] Rescher | On inference from inconsistent premisses[END_REF]) and Dungstyle logic-based argumentation approaches. The former consists in computing maximal consistent subsets (MCS) or repairs of the knowledge base and using non-classical consequence relation to infer from the knowledge base. In our context, the highlight is put on subsets of the fact base and repairs 2.1. EXISTENTIAL RULES FRAMEWORK are particular subsets of facts. A MCS or (data) repair [START_REF] Arenas | Consistent Query Answers in Inconsistent Databases[END_REF] of an inconsistent knowledge base KB = (F, R, N) is a maximal for set inclusion subset of F that is R-consistent. Thus, any superset of a repair is R-inconsistent. Definition 2.29 (Repair). Let KB = (F, R, N) be a knowledge base, a set X ⊆ F is a repair of KB if and only if X is R-consistent and for every X ⊂ X , X is R-inconsistent. The set of all repairs of KB is denoted by repairs (KB).

The notion of minimal inconsistent set is similar to the concept of repairs and corresponds to minimal for set inclusion subsets of F that are R-inconsistent. Definition 2.30 (Minimal inconsistent set). Let KB = (F, R, N) be a knowledge base, a set X ⊆ F is a minimal inconsistent set of KB if and only if X is R-inconsistent and for every X ⊂ X , X is R-consistent. The set of all minimal inconsistent sets of KB is denoted by MI (KB).

The free facts of a knowledge base KB = (F, R, N) are facts of F that are not "touched" by the inconsistencies. As a result, they are in every repairs or in no minimal inconsistent sets. Definition 2.31 (Free fact). Let KB = (F, R, N) be a knowledge base, a fact f ∈ F is a free fact if and only if for every minimal inconsistent set m ∈ MI (KB), f m. We denote by Free (KB), the set of free facts of KB.

Dung-style logic-based argumentation approaches are also widely used to handle inconsistencies. Those approaches are based on instantiating an abstract argumentation framework composed of a set of arguments and a set of attacks among them. The logic-based version of an argumentation framework views an argument as a structured entity built from a knowledge base KB and the approach proceeds by computing all of the possible arguments and attacks. Then, coalitions of arguments [START_REF] Bertossi | Introduction to Inconsistency Tolerance[END_REF] called extensions (sets of arguments that are conflict-free and are defending themselves) are computed and inconsistency-tolerance can be defined on those extensions. In the next section, we begin by providing an introduction to the argumentation theory by introducing Dung's abstract model of argumentation [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] and the ranking-based semantics approach. CHAPTER 2. PRELIMINARIES

Argumentation theory

Argumentation represents a major component of human intelligence. The problems of understanding argumentation and its role in the way humans reason have been addressed by many researchers in different fields. In this section, we give an introduction to the argumentation theory as it was defined originally by [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF]. His perception of argumentation was built around the basic principle that "the one who has the last word laughs best". Roughly speaking, Dung gives the idea that a statement is believable if it can be argued successfully against attacking arguments. In other words, whether or not an agent believes in a statement depends on whether or not the argument supporting this statement can be successfully defended against the counterarguments. Although many researchers have been analysing the structure of arguments before Dung [START_REF] Birnbaum | Towards an AI Model of Argumentation[END_REF][START_REF] Birnbaum | Argument Molecules: A Functional Representation of Argument Structure[END_REF][START_REF] Cohen | Analyzing the Structure of Argumentative Discourse[END_REF], he was the first one (to our knowledge) to clearly propose a simple model for understanding the acceptability of arguments by proposing semantical relations for abstract argumentation frameworks.

Abstract argumentation semantics

An abstract argumentation framework as defined by [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] takes as input a set of arguments and a pre-constructed binary relation that represents attacks between arguments. In Dung's abstract model, the structure of arguments and the type of attack are not defined and are left unspecified. Definition 2.32 (Argumentation framework [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF]). An argumentation framework is a pair F = (A , R) where A is a set of arguments and R is a binary relation over A . Given two arguments a, b ∈ A , we say that a attacks b if and only if (a, b) ∈ R. 2.2. ARGUMENTATION THEORY Definition 2.33 (Path). Let F = (A , R) be an argumentation framework and a ∈ A . We say that a sequence S = (a 1 , . . . , a n) is a path of size n from a n to a if and only if a 1 = a and for every i ∈ {2, 3, . . . , n}, (a i , a i-1) ∈ R. Argumentation is based on the notion of acceptability of an argument in the sense that a rational agent accepts only arguments which she can defend from all possible attacks. Definition 2.35 (Acceptability of an argument). Given an argumentation framework F = (A , R). An arguments a ∈ A is acceptable with respect to a set of argument S ⊆ A if and only if S defends a from all its attacks, that is for every b ∈ A such that (b, a) ∈ R, there exists c ∈ S such that (c, b) ∈ R.

Example 2.14 (Example 2.13 cont'd). a is acceptable with respect to the set {c}.

Extension-based approaches

Acceptability of argument is used to define argumentation semantics. Two different methods are proposed to define semantics: extension-based [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] and labeling-based [START_REF] Caminada | On the Issue of Reinstatement in Argumentation[END_REF]. We start by the extension-based approach which defines what an acceptable argument means under some specific semantics. The idea behind the extension-based approach is to identify and select a set of arguments called extensions that can survive a conflict together. Thus, an extension is often represented as a reasonable position or viewpoint in a debate. The reader can find examples of the semantics presented in this thesis (the admissible, complete, grounded, preferred and stable) in [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] and an intuitive introduction to argumentation semantics can be found in [START_REF] Baroni | An introduction to argumentation semantics[END_REF].

Extension-based semantics are defined on the principle of conflict-freeness which translates the idea the arguments in an extension should be able to "stand together", that is, the arguments of the same extension should not attack each other. Please note that Definition 2.36 excludes all of the sets containing selfattacking arguments.

Example 2.15 (Example 2.13 cont'd). {a, c} is conflict-free.

A maximal conflict-free set of arguments is called a naive extension.

Definition 2.37 (Naive semantics). Let F = (A , R) be an argumentation framework. A set of arguments S ⊆ A is a naive extension if and only if S is conflict-free and for every S ⊆ A such that S ⊂ S , S is not conflict-free.

A set of non-conflicting arguments can be seen as an agent's position in a debate, for this position to hold it has to defend all its argument. This corresponds to the notion of admissibility [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF].

Definition 2.38 (Admissibility of a set). Let F = (A , R) be an argumentation framework. A conflict-free set of arguments S ⊆ A is admissible if and only if every argument a ∈ S is acceptable with respect to S.

An admissible set of arguments is a set of non-conflicting arguments that defends all its elements, such set is called an admissible extension. Every argumentation framework has at least one admissible set: the empty set.

Example 2.16 (Example 2.13 cont'd). The admissible extensions are: ∅, {a}, {c}, and {a, c}. Note that {b} is not an admissible set since it does not defend itself from c.

A preferred set of arguments is a maximal set of arguments that is admissible. The idea of the preferred semantics is that one wants to accept as many arguments as reasonably possible to have the largest viewpoint on a debate. Definition 2.39 (Preferred semantics). Let F = (A , R) be an argumentation framework. A preferred extension is a maximal (for set inclusion) admissible set of arguments S ⊆ A .

A stable set of arguments S is a conflict-free set that attacks all of the arguments outside of S. The idea of the stable semantics is that an argument can only be for or against a viewpoint in a debate and that neutrality is not allowed.

Definition 2.40 (Stable semantics)

. Let F = (A , R) be an argumentation framework. A stable extension is a conflict-free set of arguments S ⊆ A such that for every b ∈ (A \S) there exists an argument a ∈ S such that (a, b) ∈ R.

A complete set of arguments is an admissible set that contains all of the arguments that it defends. The complete semantics refines the admissibility in the sense that one should always accept an argument if it can be defended. Definition 2.41 (Complete semantics). Let F = (A , R) be an argumentation framework. An admissible set of arguments S ⊆ A is a complete extension if and only if for every a ∈ A , if S defends a then a ∈ S.

Grounded semantics is the most skeptical (or least committed) of argumentation semantics, it is defined based on the notion of complete extension. It is the admissible extension that includes all the arguments it can defend from all attacks. Definition 2.42 (Grounded semantics). The grounded extension of an argumentation framework is the least (with respect to set-inclusion) complete extension.

In some cases, the stable semantics yields no extensions at all (not even the empty set). That is why a more refined approach was defined: the semistable semantics [START_REF] Caminada | Semi-stable semantics[END_REF]. Please note that this semantics is equivalent to the admissible stage semantics defined by [START_REF] Verheij | Two Approaches to Dialectical Argumentation: Admissible Sets and Argumentation Stages[END_REF].

Definition 2.43 (Semi-stable semantics [START_REF] Caminada | Semi-stable semantics[END_REF]). Let F = (A , R) be an argumentation framework. A semi-stable extension is a complete extension S such that S ∪ {b ∈ A | there exists a ∈ S such that (a, b) ∈ R} is maximal (with respect to set inclusion) amongst all complete extensions.

Contrary to the stable extensions, the existence of the semi-stable extensions is always guaranteed. Furthermore, a stable semantics is a semi-stable extension and semi-stable extensions coincide with stable extensions when the set of stable extensions is not empty.

An ideal extension is a maximal for set inclusion set of argument that is a subset of each preferred extension. It was shown by [START_REF] Caminada | On judgment aggregation in abstract argumentation[END_REF] that the ideal extension is also a complete extension and thus it is a superset of the grounded extension. Definition 2.44 (Ideal semantics [START_REF] Caminada | On judgment aggregation in abstract argumentation[END_REF]). Given an argumentation framework F = (A , R). An admissible set S is called ideal if and only if it is a subset of each preferred extension. The ideal extension of F is a maximal (with respect to set inclusion) ideal set.

For our purposes, we require some further formal notions. An argumentation framework is strongly connected if and only if there is a path from any argument a to any argument a . Definition 2.45 (Strongly connected). Let F = (A , R) be an argumentation framework. We say that F is strongly connected if and only if for every a, a ∈ A such that a a , there is a path from argument a to argument a .

CHAPTER 2. PRELIMINARIES

The nodes of an arbitrary directed graph can be partitioned such that the subgraphs, induced by each set of nodes, are maximal strongly connected subgraphs. Each set of such a partition is called a strongly connected components of this graph. In the rest of this thesis, we will denote by SCC (F), this particular partition of the set of arguments of F. Definition 2.46 (Component-defeated [Gaggl and Woltran, 2013]). Let F = (A , R) be an argumentation framework and S ⊆ A a set of arguments. An argument b ∈ A is component-defeated by S if there exists a ∈ S such that (a, b) ∈ R and a is not in same the strongly connected component than b. The set of arguments component-defeated by S in F is D F (S).

All of the above mentioned argumentation semantics are admissibilitybased, i.e. the extension returned are admissible sets. Moreover, in the multiple-status semantics (such as complete, preferred, stable and semistable), we can notice that odd-length unidirectional attack cycles are handled badly. However, in some applications, cycles need to be treated equally independently of their length [START_REF] Pollock | Defeasible reasoning with variable degrees of justification[END_REF]. The stage semantics conforms with this idea of "equal cycles treatment" but loses its proximity with the grounded semantics as it was shown that even non attacked arguments can be rejected in some cases [START_REF] Baroni | An introduction to argumentation semantics[END_REF]. Against this background, the cf2 semantics was designed as a multiple-status semantics that is not admissibility-based, treats cycles equally and which accepted arguments are a superset of those accepted by the grounded semantics. Definition 2.47 (Cf2 semantics [START_REF] Gaggl | The cf2 argumentation semantics revisited[END_REF]). Let F = (A , R) be an argumentation framework and S ⊆ A be a set of arguments. S is a cf2 extension of F if and only if:

• in case |SCC (F)| = 1, then S is a maximal conflict free set of F, • otherwise, for every C ∈ SCC (F), (S ∩C) is a cf2 extension of (A∩Y , R ∩ (Y × Y)) where Y = C \ D F (S).
Notation 2.7. Let F be an argumentation framework, we will denote by Ext x (F) the set of extensions with respect to the argumentation semantics x for F. We use the abbreviations c f , a, p, s, c, , ss, i and c f 2 for respectively conflict-free, admissible, preferred, stable, complete, grounded, semi-stable, ideal and cf2.

Definition 2.48 (Sceptically accepted, credulously accepted and rejected arguments). Let F = (A , R) be an argumentation framework and Ext x (F) be the set of extensions with respect to the argumentation semantics x for F. We say that:

• a is sceptically accepted with respect to x if and only if for every ε ∈ Ext x (F), a ∈ ε.

ARGUMENTATION THEORY

• a is credulously accepted with respect to x if and only if for there exists

ε 1 , ε 2 ∈ Ext x (F), such that a ∈ ε 1 and a ε 2 .
• a is rejected with respect to x if and only if for every ε ∈ Ext x (F), a ε. • The admissible extensions are {d}, {a}, {a, d}, {a, c} and ∅.

• The complete extensions are {a}, {a, c}, {a, d} and ∅.

• The preferred and cf2 extensions are {a, c} and {a, d}.

• The stable and semi-stable extension is {a, d}.

• The ideal extension is {a}.

• The least complete extension is {a} which is the ground extension. 2.2: Argumentation semantics with respect to criteria. means the criterion is satisfied In Figure 2.5, we show the inclusion relations between the several argumentation semantics used in this thesis. An arrow from the node A to the node B means that an extension for semantics A is also an extension for semantics B. In Table 2.2, we summarise the semantics and their essential criteria. The criteria are as follows: CF means that the extensions are conflict-free, DF means that they defend all their elements, INCDF means that they include what they defend, MAX means that they are maximal with respect to inclusion, AGR means that they attack all arguments that are outside of the extension, UNIQ means that there is always one extension and EXIST means that there is always at least one extension. The table is only an illustration and the criteria are not completely dependent as some of them are derivable from others.

Labelling approach

The labelling approach consists in mapping arguments with labels. Definition 2.49 (Labelling). Let F = (A , R) be an argumentation framework and Λ be a set of labels. A labelling L with respect to Λ is a total function L : A → Λ.

A sensible choice for the labels (but not the only one possible) is in, out, and undec in order to represent that an argument is accepted, rejected and undecided respectively.

However, such a mapping does not have much sense if made arbitrary. Thus, the notion of reinstatement labelling was introduced as constraints to ensure the meaning of the mapping. Every extension can be translated into a reinstatement labelling: the arguments of the extension are in, those attacked by an argument of the extension are out, and the others are undec. Similarly, one can build an extension from a reinstatement labelling just by considering the arguments that are labeled "in". Moreover, [START_REF] Caminada | On the Issue of Reinstatement in Argumentation[END_REF] proved that the reinstatement labelings and the complete extensions can be mapped in a bijective way and that other Dung's argumentation semantics can be obtained from particular reinstatement labelling. In this thesis, we will not delve into the labelling representation and only use the extension-based approach.

ARGUMENTATION THEORY

In the next section, we introduce a similar approach for analysing and detecting the most attacked arguments. Ranking-based semantics [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF][START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] were developed for ranking arguments with respect to their acceptability. The added value of this approach is that contrary to the usual three value statuses (accepted, rejected or undecided) offered by the argumentation semantics, the ranking-based semantics offer a more gradual acceptability range which can be more useful for many applications such as debate platforms on the web (see the work of [START_REF] Leite | Social Abstract Argumentation[END_REF]).

Ranking-based semantics

Amgoud and Ben-Naim [2013] give the three main properties of extensionbased (and labelling-based) semantics: Killing, Existence and Flatness.

• Killing. An attack from an argument a to b is drastic and it is no longer possible for b to be in the same extension as a.

• Existence. One successful attack against an argument has the same effect on an argument as any number of successful attacks.

• Flatness. All arguments with the same status (accepted, rejected, undecided) have the same level of acceptability and cannot be distinguished.

Although those intuitions may have been understandable in the context of paraconsistent logics [START_REF] Besnard | Elements of Argumentation[END_REF] because they will ensure the consistency of a set of formulas by killing any contradiction between arguments, these considerations are arguable when given in the context of decision-making application [Yun et al., 2016[Yun et al., , 2018a]] or online debate platforms [START_REF] Leite | Social Abstract Argumentation[END_REF]. In those applications, it is understandable that many successful attacks should have a more negative impact than just one successful attack. Thus, although many arguments can have the same status, they should not be undistinguishable.

In the rest of this section, we formally define the ranking-based semantics and scoring semantics. A scoring function assign to each argument, in an argumentation framework, a score based on different criteria. The score can be chosen in an interval [0, 1], [-1, 1], N or even R. Please note that the score given by a scoring function should not be confused with the inner weight of arguments in weighted argumentation frameworks [START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Coste-Marquis | Weighted Attacks in Argumentation Frameworks[END_REF]. Indeed, weights are given by external sources (preferences, inner strength) whereas scores are computed with respect to the intrinsic structure of the argumentation framework.

ARGUMENTATION THEORY Definition 2.52 (Scoring function).

A scoring semantics is a function which associates to any argumentation framework F = (A , R) a scoring S on A , where S is a function from A to R.

Please note that scoring function and ranking-based semantics are not independent notions. Indeed, one can use the scores from a scoring function to rank arguments, thus obtaining a ranking-based semantics. However, it does not mean that every ranking-based semantics is based on an underlying scoring function. Indeed, some ranking-based semantics can directly compare arguments using methods such as the lexicographical order without using scores.

Definition 2.53 (Lexicographical order). Let V = (V 1 , V 2 , . . . , V n) and V = (V 1 , V 2 , . . . , V n) be
two vectors of real numbers of size n. The lexicographical order between V and V is defined as V l ex V if and only if there exists i ∈ {1, . . . , n} such V i < V i and for every j < i, V j = V i . Notation 2.9. We use the notation V ≈ l ex V if and only if V l ex V and V l ex V . Moreover, we say that V l ex V if and only if V l ex V .

Existing ranking-based semantics

In this section, we introduce the ranking-based semantics from the literature that will be used in throughout the thesis, i.e. h-categoriser, burden-based and discussion-based. In order to correctly illustrate the ranking outputted by each of these ranking-based semantics, we use the argumentation framework in Figure 2.8 proposed by [START_REF] Delobelle | Ranking-based Semantics for Abstract Argumentation[END_REF] [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] proposed the h-categoriser function as a scoring function that gives the strength of an argument based on the strengths of its attackers. [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF]). Let F = (A , R) be an abstract argumentation framework. The h-categoriser function is C : A → [0, 1] defined as, for all a ∈ A :

Definition 2.54 (H-categoriser function

C (a) =            1 if R - 1 (a) = ∅ 1 1+ b ∈R - 1 (a)
C (b) otherwise [START_REF] Pu | Argument Ranking with Categoriser Function[END_REF] showed the existence and uniqueness of the values returned by the h-categoriser function for any argumentation frameworks. The following definition shows how the h-categoriser ranking-based semantics is constructed from the scores returned by the h-categoriser function.

Definition 2.55 (H-categoriser ranking-based semantics [START_REF] Pu | Argument Ranking with Categoriser Function[END_REF]). Let F = (A , R) be an abstract argumentation framework. The hcategoriser ranking-based semantics on F returns a ranking hcat

(a) = C (e) = C (j) = 1, C (c) ≈ 0.667, C (i) ≈ 0.333 and C (b) = C (d) = C (f) = C () = C (h) = 0.5.
Thus, the ranking on A outputted by the h-categoriser ranking-based semantics is: [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF] introduced the Discussion-based rankingbased semantics which compares the arguments with respect to the number of paths leading to them. The intuition behind this ranking-based semantics is that an even path to a should increase the score of a whereas an odd path should reduce its score.

a ≈ hcat F e ≈ hcat F j hcat F c hcat F b ≈ hcat F d ≈ hcat F f ≈ hcat F ≈ hcat F h hcat F i Amgoud
Definition 2.56 (Discussion count). Let F = (A , R) be an argumenta- tion framework, a ∈ A and i ∈ N \ {0}. Dis i (a) =      -|R - i (a)| if i is odd |R - i (a)| otherwise
The discussion count of a is the vector Dis (a) = (Dis 1 (a), Dis 2 (a), . . .).

The discussion-based ranking-based semantics is computed using the lexicographical order on the discussion counts of the arguments.

ARGUMENTATION THEORY

Example 2.20 (Discussion-based ranking-based semantics). We consider the argumentation framework F depicted in Figure 2.8. We obtain the following discussion counts:

• Dis(a) = Dis(e) = Dis(j) = (0, 0, 0)

• Dis(c) = (1, -1, 0) • Dis(b) = Dis(d) = Dis(h) = (1, 0, 0) • Dis(f) = Dis(g) = (2, -2, 0) • Dis(i) = (2, 0, 0)
Here, it is enough to only compute discussion counts of size three as we can see that every discussion count finishes with a zero (it means that there are no paths of size more than two). Using the lexicographical order, we get the following ranking on A :

a ≈ dis F e ≈ dis F j dis F c dis F b ≈ dis F d ≈ dis F h dis F f ≈ dis F dis F i
The last ranking-based semantics considered in this thesis is the Burdenbased ranking-based semantics also defined by [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF]. This ranking-based semantics uses some intuition from the discussion-based ranking-based semantics as it first considers the direct attackers since it is based on the lexicographical order. However, instead of computing the number of paths for a specific argument, it updates the "burden" of each argument with respect to the burden of its direct attackers.

Definition 2.58 (Burden vector). Let

F = (A , R) be an argumentation framework, a ∈ A and i ∈ N \ {0}. Bur i (a) =      1 if i = 0 1 + b ∈R - 1 (a) 1 Bur i -1 (b) otherwise
The burden vector of an argument a is Bur (a) = (Bur 0 (a), Bur 1 (a), . . .).

The burden-based ranking-based semantics is then computed using the lexicographical order on the burden vectors of the arguments. (j) = (1,1,1,1) • Bur(c) = (1,2,1.5,1.5

) • Bur(b) = Bur(d) = Bur(h) = (1, 2, 2, 2) • Bur(f) = Bur(g) = (1, 3, 2, 2)
• Bur(i) = (1,3,3,3) Using the lexicographical order, we get the following ranking on A :

a ≈ bur F e ≈ bur F j bur F c bur F b ≈ bur F d ≈ bur F h bur F f ≈ bur F bur F i
Although the ranking on arguments is the same for the burden-based and discussion-based ranking-based semantics in Example 2.20 and 2.21, the equality of the two ranking-based semantics is not true. The reader is invited to read the original paper by [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF] for an intuitive counter-example.

Summary

In this chapter we presented the existential rule logical fragment along with the frontier chase forward chaining inference mechanism. We showed that allowing the presence of existential quantifiers in the head of rules might lead to infinite rule applications, that is why a derivation reducer is needed to remove redundant rule applications. We presented the frontier derivation reducer and showed the types of rules (Skolem-FES) for which it is guaranteed to stop. Then we defined the different types of conflicts, namely, inconsistence when a negative constraint is applicable, and incoherence when the set of rules is unsatisfiable. In the rest of this thesis, we only work with inconsistent knowledge bases with a coherent set of rules.

Afterwards, we presented the Argumentation Theory which is a conflicttolerant form of reasoning that is based on argumentation frameworks with arguments and attacks among them. These argumentation frameworks can then be used to evaluate arguments using different approaches:

1. The extensions-based approaches are semantics that are able to select sets of non-conflicting arguments called extensions (or equivalently,

SUMMARY

coalitions) that can survive a conflict together. We first recalled the some admissible-based argumentation semantics such as Dung's argumentation semantics (complete, preferred, stable and grounded), the semi-stable and the ideal semantics. Second, we recalled an non admissible-based semantics based on strongly-connected components: the cf2 semantics. Lastly, we presented how all of those argumentation semantics are connected with respect to extensions inclusion.

2. The labelling approach is a semantics that is based on giving labels to arguments. In the literature, we usually restrict ourselves to reinstatement labelings in order to ensure the meaning of the labelling.

Since it was proven by [START_REF] Caminada | On the Issue of Reinstatement in Argumentation[END_REF] that reinstatement labelings straightforwardly coincide with the complete extensions, we can get all of the usual Dung's argumentation extensions by picking specific labelings in the set of reinstatement labelings. In this thesis, we will not delve into this labelling approach.

3. The last approach is called ranking-based semantics. These semantics were developed following different intuitions than extension-based approaches. Indeed, ranking-based semantics are more gradual because they do not directly "kill" an argument when it is attacked. Rankingbased semantics return a ranking on arguments for any argumentation framework. In this thesis, we only consider three ranking-based semantics: h-categoriser, burden-based and discussion-based ranking-based semantics. The first ranking-based semantics is defined upon a scoring function whereas the last two are defined around the lexicographical order on vectors of values (burden vector and discussion count).

We discussed about the existential rule logical fragment and approaches for evaluating arguments when given an abstract argumentation framework. In the next chapter, we show how the two notions can be combined using logic-based argumentation and instantiation an argumentation framework with an inconsistent knowledge base in the existential rules language.

• Reasoning with existential rules requires a derivation reducer to become decidable. Frontier/Skolem chase is the most used forward chaining inference mechanism and has decidable classes (types) of rules called Skolem-FES.

• There are two types of conflicts: inconsistency when a negative constraint is applicable, and incoherence when the set of rules is unsatisfiable. We will only work with coherent set of rules.

• A Dung's abstract argumentation framework is composed of arguments and attacks among them. Reasoning with such a framework consists in evaluating arguments using several approaches: extensions-based, labelling-based and ranking-based.

3

Using Deductive Argumentation with Existential Rules Logic-based argumentation considers constructing arguments from inconsistent knowledge bases and computing attacks between them. The result of such a workflow is usually an argumentation graph (also called argumentation framework) where nodes are arguments and directed edges are attacks between them. In this thesis, we focus on instantiating a specifically crafted deductive argumentation framework using the existential rules language. The reason why we did not use any of the existing frameworks is because they are not directly and straightforwardly applicable in the context of the existential rules language. Indeed, none of the aforementioned frameworks can be applied to an inconsistent existential rules knowledge base without modifying it beforehand.

In the case of ABA, although it is abstract enough to function with a language that has neither implication nor negation, it needs a contrariness function that returns a single contrary sentence for each formula of the language. This is not enough in the case where a fact appears in multiple conflicts and the language does not allow for the disjunction. We only say that ABA cannot be applied in a straightforward manner and not that it cannot be applied at all. [START_REF] Toni | A generalised framework for dispute derivations in assumption-based argumentation[END_REF] proposes a fix to the aforementioned problem that consists in adding new facts and rules in a specific way in order to encode a single contrary per assumption. In the case of ASPIC+ framework, we cannot instantiate it since the definition of the contrariness relation is not general enough to account for the existential rules negative constraints. Let us illustrate this on an example. Suppose we are given three facts: the biscuit has a square shape, the biscuit has a round shape and the biscuit is sweet; no rules and one negative constraint: the biscuit cannot have a square and round shape at the same time. As the fact "the biscuit is sweet" is a free-fact (i.e. it is not involved in any minimal conflict), there is no way to define its contrary in an intuitive manner (without modifying the knowledge base). In the work of [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], the third item of Definition 5.1 specifies that each formula of the language must have at least one contradictory, which is not the case for the latter fact in our example. Of course, workarounds exist but would necessitate the addition of multiple facts, positive rules and negative constraints. In the case of DeLP, we cannot instantiate it since the original work only consider ground rules which cannot encompass existential rules. Last not but least, the approach of [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] cannot be used directly as it was defined originally for classical propositional or full first-order logic [START_REF] Besnard | Elements of Argumentation[END_REF].

The chapter is organized as follows: In Section 3.1, we revisit the particular deductive argumentation framework for existential rules proposed by [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF] and show various properties results. In Section 3.2, we provide various optimisation for the arguments generation with respect to the knowledge base structure. In Section 3.3, we showcase the first tool in the literature for automatically generating the argumentation graph from an inconsistent knowledge base expressed in existential rules. In Section 3.4, we benchmark the top solvers of the ICCMA competition on the generated graphs and show that the structure of the generated graphs have an impact on argumentation solvers.

Research Questions in this Chapter

• How can one generate a deductive argumentation framework from an inconsistent knowledge base expressed in existential rules?

• How can we get an efficient argument generation?

• Do these generated argumentation graphs possess some particular structure? If yes, does it have an impact on solvers?

DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES

Deductive argumentation frameworks in existential rules

A deductive argumentation framework as described by [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] is composed of arguments with a support (or equivalently, hypothesis) and a conclusion that is derived from the support using the rule applications. The first deductive argumentation framework for the existential rules language was defined in the work of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] where arguments correspond to sequences of rule applications. It was proven that the aforementioned framework possesses several desirable properties such as the equivalence between repairs and preferred (respectively stable) extensions, the equivalence between intersection of extensions and some inconsistency tolerant semantics but it also satisfies argumentation properties defined by [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF]. As such, this particular deductive argumentation framework was the first link between the semantics used in inconsistent ontological knowledge base query answering and those from argumentation theory. However, in practice, representing arguments as derivations is often redundant as some atoms can be derived from the same set of facts in different ways. We illustrate this intuition in the following example.

Example 3.1 (Multiple derivations for a fact). Let us consider the knowledge base KB = (F, R, N) such that:

• F = {p (a)} • R = {r 1 = ∀X (p(X) → q(X)), r 2 = ∀X (p(X) → r (X)), r 3 = ∀X (r (X) → q(X))} • N = ∅
We obtain two following derivations for the fact q(a):

δ 1 = (F 0 = {p (a)}, ∅, ∅), (F 1 = F 0 ∪ {q (a)}, r 1 , π 1 = {X → a}) . δ 2 = (F 0 = {p (a)}, ∅, ∅), (F 2 = F 0 ∪ {r (a)}, r 2 , π 2 = {X → a}), (F 3 = F 2 ∪ {q (a)}, r 3 , π 3 = {X → a}) .
If we use the framework of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF], we will get two arguments with the same support {p (a)} and conclusion {q (a)}.

Although remembering which rule application is useful for many purposes such as debates or explanation, some devices with limited memory capacity cannot afford to keep all of those derivations. That is why, in both the work of [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF] and Yun et al. [2017a], a new deductive argumentation framework for the existential rules framework was proposed where the support of arguments are now composed of a minimal set of Rconsistent facts and the conclusion is only a set of atoms that is derived from the support. This new argumentation framework is more compact as it does not keep which rule applications led to the conclusion from the support. Definition 3.1 (Deductive argument [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]Yun et al., 2017a]). Let KB = (F, R, N) be a knowledge base. An argument a is a tuple (H, C) with H a non-empty R-consistent subset of F and C a set of facts such that:

• H ⊆ F and Sat R∪N (H) |= ⊥ (consistency) • C ⊆ Sat R (H) (entailment) • there is no H ⊂ H such that C ⊆ Sat R (H) (minimality)
The support H of an argument a is denoted by Supp(a) and the conclusion C by Conc (a). If X is a set of arguments, we denote by Base (X) = a ∈X Supp(a).

Example 3.2 (Deductive argument). Consider the following knowledge base KB = (F, R, N) describing the situation: If an animal is a dog then it has an owner, if an animal can make cat sounds then it is not a dog.

• F = {animal (tom), miaow (tom), do (tom)} • R = {r 1 = ∀X (animal (X) ∧ do (X) → ∃YownerO f (Y , X)), r 2 = ∀X (animal (X) ∧ miaow (X) → notDo (X))} • N = {∀X (do (X) ∧ notDo (X)) → ⊥}
There are fourteen arguments that can be created from KB: Please note that we restrict ourselves to recognisable FES classes of existential rules where the chase is guaranteed to stop [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF]. In this case, Sat R (H) is a finite set. In order to capture inconsistencies between arguments, we consider the binary attack relation of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] where an argument a attacks an argument b if and only if the union of the conclusion of a and an element of the support of b is R-inconsistent. Roughly speaking, [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] give the intuition that this particular binary attack relation is enough to capture all of the conflicts since we work in the OBDA setting where all the inconsistency "comes from the fact". We have an attack from argument a 4 to a 10 since the set {not Do (tom)} ∪ {do (tom)} is R-inconsistent. Please note that this attack relation is not symmetric. Here, we can see that a 10 does not attack a 4 . Now that we defined the structure of arguments and attacks, the argumentation graph corresponding to a knowledge base consists simply of all arguments and attacks that can be generated. Note that if the fact base of the knowledge base is R-consistent, then there will be only one extension which will contain all of the arguments (independently of the argumentation semantics) since there will be no attacks amongst the arguments. We thus restrict ourselves to the study of argumentation graphs that are generated from inconsistent knowledge bases, i.e. knowledge bases that have at least one minimal conflict of size at least two. EXISTENTIAL RULES

a 1 = ({animal (tom)}, {animal (tom)}) a 2 = ({miaow (tom)}, {miaow (tom)}) a 3 = ({animal (tom), miaow (tom)}, {animal (tom), miaow (tom)})

Name Description

Finite F has a finite set of arguments The rest of this section is organised as follows. In Section 3.1.1, we focus on the argumentation graphs generated from general knowledge bases and study their structural properties. Likewise, in Section 3.1.2, we study argumentation graphs generated from knowledge bases without positive rules.

Non-trivial Ext p (F) {∅} Coherent Ext p (F) = Ext s (F) Relatively grounded GE = Ext p (F) Well-founded Ext c (F) = Ext (F) = Ext p (F) = Ext s (F)

Argumentation graphs generated from knowledge bases

We first recall, in Table 3.1, the different classes of argumentation graphs defined in the literature [START_REF] Coste-Marquis | Symmetric Argumentation Frameworks[END_REF].

The next proposition shows that an argumentation graph generated from an inconsistent knowledge base has a finite number of arguments.

Proposition 3.1 (Finiteness [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB be a finite inconsistent knowledge base. Then, F KB is finite. Proposition 3.2 shows that if an argument has a repair as its support and the same repair as its conclusion, then the set containing only this argument is an admissible set. Please note that such an argument does not always exist because of the minimality condition on the support of an argument. Proposition 3.2 (Sentinel [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB = (F, R, N) be a knowledge base, A ∈ repairs (KB) and

F KB = (A , R). If the argument a = (A, A) ∈ A then {a} is an admissible set. Example 3.5 (Example 3.2 cont'd).
The set {animal (tom), do (tom)} is a repair of KB. Thus, it holds that {a 9 } is an admissible set.

Proposition 3.3 shows that an argumentation graph generated from an inconsistent knowledge base has at least one non empty preferred extension.

Proposition 3.3 (Non-triviality [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB be an inconsistent knowledge base. Then F KB is non-trivial.

Example 3.6 (Example 3.2 cont'd). In our example, we have three preferred extensions. Namely, Ext p (F KB) = {ε 1 , ε 2 , ε 3 } where:

3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES • ε 1 = {a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 } • ε 2 = {a 1 , a 8 , a 9 , a 10 , a 11 , a 12 , a 13 } • ε 3 = {a 2 , a 8 , a 14 }
The next proposition shows that, in an argumentation graph generated from an inconsistent knowledge base, each argument belongs to at least one preferred (respectively stable) extension.

Proposition 3.4 (Rejected argument [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB be an inconsistent knowledge base. Then F KB has no rejected arguments under preferred and stable semantics.

Example 3.7 (Example 3.6 cont'd). Every argument in A = {a 1 , . . . , a 14 } is in at least one preferred extension of Ext p (F KB) = {ε 1 , ε 2 , ε 3 }.
In general, working with argumentation frameworks is hard as shown by [START_REF] Dunne | Complexity of Abstract Argumentation[END_REF] and [START_REF] Dimopoulos | Preferred Arguments are Harder to Compute than Stable Extension[END_REF]. However, when some properties are satisfied, this task can become easier. For instance, when the stable and preferred coincide, the problem of the skeptical membership of an argument is much easier. Indeed, [START_REF] Dunne | Coherence in finite argument systems[END_REF] have shown that checking whether an argument is in every stable extensions is coNP-complete whereas checking whether an argument is in every preferred extension is in the second level of the polynomial hierarchy (Π p 2 -complete). Another example is the problem of finding whether there is a unique extension with respect to an argumentation semantics and a given argumentation frameworks. [START_REF] Wolfgang | Technical Note: On the Complexity of the Uniqueness Problem in Abstract Argumentation[END_REF] shows that the uniqueness problem is DP-complete for the stable semantics whereas it is coNP-complete for the preferred semantics. Thus, coincidence between multiple argumentation semantics can sometimes induce a large reduction in complexity. In view of this, we highlight, in the next propositions and corollaries, the coincidences and inclusions results between argumentation semantics in this specific logic-based argumentation framework.

Proposition 3.5 shows that the set of preferred and stable extensions coincide. Although Coste-Marquis et al. [2005] showed that symmetric frameworks are always coherent, it has to be pointed out that the framework considered here is not symmetric. Proposition 3.5 (Coherence [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB be an inconsistent knowledge base. Then F KB is coherent.

Example 3.8 (Example 3.6 cont'd). In our example, it holds that the set of preferred extensions is equal to the set of stable extensions. Namely,

Ext p (F KB) = Ext s (F KB) = {ε 1 , ε 2 , ε 3 }.
In the next corollary, we show that the set of preferred extensions is included in the set of cf2 extensions. Note that the inverse inclusion does not hold.

Corollary 3.1 (Preferred and cf2 inclusion). Let KB be an inconsistent knowledge base. Then it holds that Ext p (AS KB) ⊆ Ext c f 2 (F KB).

Proof. Since we know that the set of stable extensions is included in the set of cf2 extensions [START_REF] Gaggl | The cf2 argumentation semantics revisited[END_REF] and that the argumentation graph is coherent then we can conclude that the set of preferred extensions is included in the set of cf2 extensions Example 3.9 (Example 3.6 cont'd). In our example, we have

Ext p (F KB) = Ext s (F KB) = Ext c f 2 (F KB) = {ε 1 , ε 2 , ε 3 }.
Please note that the equality is not true and that it is possible to find a knowledge base such that there is a cf2 extension of the generated argumentation graph that is not a preferred extension (see Example 3.19 on page 63).

In the next corollary, we show that the semi-stable semantics is equivalent to the preferred and stable semantics in this argumentation framework.

Corollary 3.2 (Semi-stable equivalence). Let KB be an inconsistent knowledge base then it holds that Ext

p (AS KB) = Ext ss (F KB) = Ext s (F KB).
Proof. By definition, we know that Ext s (F KB) ⊆ Ext ss (F KB). Moreover, [START_REF] Caminada | On the Issue of Reinstatement in Argumentation[END_REF] proved that Ext ss (F KB) ⊆ Ext p (AS KB) holds in the general case. Thus, since it holds that in this argumentation framework, we have Ext p (F KB) ⊆ Ext s (F KB), we can conclude the proof.

The next proposition shows that the grounded extension is equal to the intersection of all the preferred extensions.

Proposition 3.6 (Relative groundedness [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). Let KB be an inconsistent knowledge base. Then F KB is relatively grounded.

Example 3.10 (Example 3.6 cont'd). In our example, we have that

Ext (F KB) = {∅} = Ext p (F KB).
The next proposition shows that we can never create an argumentation graph that is well-founded.

Proposition 3.7 (Well-foundedness [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]). There is no inconsistent knowledge base KB such that F KB is well-founded.

In the next proposition, we show that self-attacking arguments do not exist in this framework.

Proposition 3.8 (No self-attacking arguments). Let KB be an inconsistent knowledge base and F KB = (A , R) the corresponding argumentation framework. There is no a ∈ A such that (a, a) ∈ R.

DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES

Proof sketch. We show this by contradiction. If there is a self-attacking argument, then the union of its conclusion with its support is R-inconsistent. This is a contradiction with the consistency of the support of an argument.

In the next proposition, we show that if an argument a is attacked by an argument b, then b is also attacked. Proposition 3.9 (Defense existence). Let KB be an inconsistent knowledge base and F KB = (A , R) be the corresponding argumentation framework. For any a, b ∈ A such that (a, b) ∈ R, there exists c ∈ A such that (c, a) ∈ R.

In the next proposition, we highlight that all subsets of a minimal inconsistent set can be directly "translated" into arguments.

Proposition 3.10 (Conflict-based arguments). Let KB be an inconsistent knowledge base and

F KB = (A , R) be the corresponding argumentation framework. If C ∈ MI (KB) and E ⊂ C then (E, E) ∈ A . Proof. By definition, E is R-consistent. Let us prove Proposition 3.10 by contradiction. Suppose that (E, E) A , it means that there exists H ⊂ E with E ⊆ Sat R (H) (minimality). Thus, (C \ E) ∪ H is R-inconsistent and ((C \ E) ∪ H) ⊂ C, contradiction.
Example 3.11 (Example 3.2 cont'd). In our example, we have that MI (KB) = {C} where C = {animal (tom), miaow (tom), do (tom)}. We can thus directly create the arguments corresponding to subsets of C, namely a 1 , a 2 , a 3 , a 8 , a 9 and a 14 .

In the next corollary, we show that if there is at least one minimal conflict of size at least 2, then there is a cycle in the argumentation graph.

Corollary 3.3 (Cycle existence). Let KB be an inconsistent knowledge base such that there exists S ∈ MI (KB) with |S | ≥ 2 and F KB = (A , R) be the corresponding argumentation framework. F KB has at least one cycle.

Proof. Let us consider S ∈ MI (KB) such that |S | ≥ 2, S 1 , S 2 ⊆ S, S 1 ∩ S 2 = ∅, |S 1 | = 1 and S 1 ∪ S 2 = S.
Using Proposition 3.10, we know that there exists two arguments a 1 = (S 1 , S 1) and

a 2 = (S 2 , S 2) such that (a 1 , a 2) ∈ R and (a 2 , a 1) ∈ R.
In the next corollary, we show that for each minimal inconsistent set, there is a specific subset of the argumentation graph that is complete. Example 3.12 (Example 3.2 cont'd). It holds that the subgraph of F KB composed of the arguments A C = {a 4 , a 9 , a 14 } is a complete graph.

In this section, we studied the structural properties, inclusion in graph classes and equivalence between argumentation semantics of argumentation graphs generated from general inconsistent knowledge bases. In the next section, we restrict ourselves to knowledge bases without positive rules.

Argumentation graphs generated from knowledge bases without rules

The graph theoretical results of this section are solely looking at the case where the knowledge base is composed of a set of facts and a set of negative constraints defined on these facts. Therefore, at the basis of our results lies the notion of knowledge base minimal conflict (and thus repair). Please note that knowledge bases without positive rules are not uncommon and without interests. Indeed, in the Big data setting, the data sources are sometimes presented in their saturated form, i.e. after the ontological rules have been applied. In this context, our results are directly applicable. In this section, we exhibit three main results proven by [START_REF] Yun | Graph Theoretical Properties of Logic Based Argumentation Frameworks[END_REF]:

1. The first result deals with the conflict-induced structural properties. Namely, we characterise dummy arguments, arguments that are unattacked and that do not attack other arguments, and show the repetitious nature of the argumentation graph by introducing the notion of k-copy graph.

2. The second result deepens these results and looks into the symmetries of the argumentation graph based on graph automorphisms.

3. Last, we look into the connectivity of the graph and demonstrate strongly connected components related results.

Please note that these three points will enable us to completely characterise the structural properties of argumentation graphs generated from knowledge bases without positive rules.

We begin by proving that the number of dummy arguments is exponential with respect to the number of free facts. Proposition 3.11 is important as it shows that even when there is no rules in the knowledge base, the number of arguments can be exponentially increased when free facts are added. Definition 3.4 (Dummy argument). Let F = (A , R) be an argumentation framework. We say that a ∈ A is a dummy argument if and only if there is no (x,) ∈ R such that x = a or = a. Proof sketch. Since we can build (2 k -1) R-consistent subsets from the set of free facts, the number of dummy arguments is at least 2 k -1. Then, by means of contradiction, we show that there cannot be a dummy argument with a support that is not included in the set of free facts (cf. detailed proof in Section 7.2.1 on page iii).

Example 3.13 (Characterisation of dummy arguments). Let us consider the following knowledge base KB = (F, R, N) inspired from the impossible food triad problem proposed by George W. Hart:

• F = {potatoes (m), ma onnaise (m), cabba e (m), dish(m), edible (m)} • R = ∅ • N = {∀X (potatoes (X) ∧ ma onnaise (X) ∧ cabba e (X) → ⊥)}.
The knowledge base KB expresses the idea that an edible dish m cannot contain potatoes, mayonnaise and cabbage at the same time. We have that Free (KB) = {dish(m), edible (m)}, we conclude that there is 2 2 -1 = 3 dummy argument. Those arguments correspond to:

• ({dish(m)}, {dish(m)}) • ({edible (m)}, {edible}) • ({edible (m), dish(m)}, {edible (m), dish(m)}).
We now analyse the related behaviour of atoms in at least one conflict. To do so, we introduce the notion of k-copy graph. A k-copy graph of an argumentation graph is another graph that has k times more arguments and each copy a of an argument a attacks the same arguments as a and is attacked by the same arguments. Formally: Definition 3.5 (k-copy graph). Let F = (A , R) and F = (A , R) be two argumentation frameworks. We say that F is a k-cop graph of F if and only if:

• |A | = k * |A | and there is a surjective function f from A to A such that for every argument a ∈ A , we have |W a | = k, where W a = {a ∈ A | f (a) = a }. • For all a, b ∈ A , (a, b) ∈ R if and only if (f (a), f (b)) ∈ R . c a b a 1 c 1 a 2 b 1 b 2 c 2 Figure 3.1: Representation of a 2-cop graph
Example 3.14 (k-copy graph). In Figure 3.1, the graph G (on the right) is a 2-cop graph of the graph G (on the left). In our example, we have that

W a = {a 1 , a 2 },W b = {b 1 , b 2 },W c = {c 1 , c 2 }.
Please note that if two arguments are the copies of the same argument, then they attack the same arguments and are attacked by the same arguments.

Definition 3.6 (Subgraph). Let F = (A , R) be an argumentation frame- work. We say that F = (A , R) is a subgraph of F if and only if A ⊆ A , R ⊆ R and for every (x,) ∈ R , x, ∈ A .
The following proposition shows that if there is a knowledge base KB with no rule and k free facts, then there exists a subgraph of F KB that is a 2 k -cop graph of F KB where KB is the knowledge base with no rules, the same negative constraints as KB and that contains only the facts that are in at least one conflict. Proposition 3.12 is important as it shows the behaviour of the instantiation in the case of addition of free facts (facts not appearing in conflicts). It shows the structure of the graph and exhibits the exponential growth of the number of arguments with respect to these facts. Proposition 3.12 (Number of arguments).

Let KB = (F, R, N) be a knowledge base with R = ∅. If |Free (KB)| = k then there is a subgraph of F KB = (A , R) that is a (2 k)-cop graph of F KB = (A , R) where KB = (F \ Free (KB), R, N) and |A | = (|A | + 1) * 2 k -1.
Proof sketch. If the set of free facts is empty, then it is obvious that F KB is a 1-cop graph of itself. If the set of free facts is not empty, we consider F KB = (A , R) where KB is the same knowledge base without the free facts. We show that the number of arguments in A is the same as the number of R-consistent subsets of KB . Last, we show that the subgraph

F KB = (A , R) of F KB where A = {a ∈ A | Supp(a)
Free (KB)} and R = R |A is a (2 |F r ee (KB) |)-cop graph of F KB (cf. detailed proof in Section 7.2.1 on page iii).

DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES

We want to emphasise the result of Proposition 3.12 as it shows that the addition of "superfluous" facts will increase the size of the argumentation graph by an exponential factor.

Example 3.15 (Example 3.13 cont'd). The argumentation framework F KB has a subgraph that is a 4-copy graph of F KB , where KB = ({potatoes (m), ma onnaise (m), cabba e (m)}, ∅, N). We show below the list of arguments of the argumentation framework F KB :

• a 1 : ({potatoes (m)}, {potatoes (m)}) • a 2 : ({ma onnaise (m)}, {ma onnaise (m)}) • a 3 : ({potatoes (m), ma onnaise (m)}, {potatoes (m), ma onnaise (m)}) • a 4 : ({cabba e (m)}, {cabba e (m)}) • a 5 : ({potatoes (m), cabba e (m)}, {potatoes (m), cabba e (m)}) • a 6 : ({ma onnaise (m), cabba e (m)}, {ma onnaise (m), cabba e (m)})
The subgraph of F KB that is a 4-copy graph of F KB has four times more arguments than F KB because a copy of an argument is obtained by adding a set of free facts in its support and conclusion.

We now focus on detecting symmetries in the graph. Please first note that we have the presence of symmetric arcs in the argumentation framework without rules. It obviously holds that if all negative constraints are binary, then the graph has only symmetric arcs (since the undermining will rely on binary sets). However, if the set of rules is not empty the symmetry of the attack relation no longer holds.

Next, we explore the link between the instantiation and symmetries in graphs. The following definitions introduce the notions needed to comprehend symmetries, namely, permutations of arguments, orbit of an argument and the cycle notation of a permutation. Definition 3.7 (Permutation). A permutation on a set of elements X is a bijection σ from X to X . Given a permutation σ , the orbit of element x ∈ X is the set

O x = {x, σ (x), σ 2 (x), . . . , σ n (x)}, with n ∈ {0, 1, . . . } the minimal integer such that σ n+1 (x) = x.
Example 3.16 (Permutation). Let us consider the set X = {1, 2, 3, 4, 5} and the permutation σ such that the images of X under σ are given in Table 3.2. The orbit of the element

1 is O 1 = {1, 2, 5}.
Definition 3.8 (Orbit cycle). Given a permutation σ on X , an orbit O and an element x ∈ O, an orbit cycle of O is a sequence (x, σ (x), σ 2 (x) . . . , σ n (x)), where n ∈ {0, 1, . . . } is the minimal integer such that σ n+1 (x) = x.

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH EXISTENTIAL RULES

x 1 2 3 4 5 2 5 4 3 1 Table 3.2: Images of the permutation σ on X A permutation can be compactly expressed as a product of cycles corresponding to the orbits of the permutation. In the rest of the thesis, and in order to simplify the notation, we omit cycles of singleton orbits.

σ (x)
Example 3.17 (Example 3.16 cont'd). Let us consider the previous orbit O 1 . The sequence (1,[START_REF]106 Drastic Shapley inconsistency value 143, 146 Dummy argument[END_REF]5) is an orbit cycle of O 1 whereas the sequence (1, 5, 2) is not. Thus, the permutation σ can be expressed by (1, 2, 5)(3, 4). Definition 3.9 (Automorphism). Let G = (V , E) be a graph. A permutation σ on set V is an automorphism of G if and only if for every two nodes

1 , 2 ∈ V , we have that (1 , 2) ∈ E if and only if (σ (1), σ (2)) ∈ E.
The set of automorphisms of a graph, together with the function composition operator, form a group called the automorphism group. The automorphism groups of a graph characterise its symmetries, and are therefore very useful in determining certain of its properties. A subset of a group is called a generating set of a group if and only if every group's element can be expressed as the combination (under group operation) of finitely many elements of the subset and their inverses. Proposition 3.13 (Automorphisms in k-copy graphs). Let F = (A , R) be a k-cop graph of F = (A , R). For every a ∈ A , for every a 1 , a 2 in W a , the permutation (a 1 , a 2) is an automorphism of F.

The next proposition shows that if we add nodes (and no arc) to a graph with automorphisms, then the obtained graph also has automorphisms. It is used for showing, in Corollary 3.5, that a graph constructed on a knowledge base with no rules possesses non trivial automorphisms derived from its subgraph.

Proposition 3.14 (Automorphisms transfer). Let G = (V , E) be a graph such that σ is an automorphism of G. The graph G = (V ∪ X , E), where X ∩ V = ∅, has the automorphism σ from V ∪ X to V ∪ X : for every ∈ V ∪ X , σ () =      σ () if ∈ V if ∈ X Corollary 3.5 (Automorphisms inheritance). Let KB = (F, R, N) be a knowledge base with R = ∅, |Free (KB)| = k, k > 0, KB = (F \ Free (KB), R, N) and F be a (2 k)-cop graph of F KB = (A , R). If F has k automorphisms, then F KB has at least k automorphisms.

DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES

Proof. From Proposition 3.12, we know that F KB has a subgraph F KB = (A , R) that is a 2 k -cop graph of F KB . We first show that every argument a ∈ A \ A is a dummy argument. Then we use Proposition 3.14.

1. We showed in the proof of Proposition 3.12 that

A = {a ∈ A | Supp(a) Free (KB)}. Thus, A \A = {a ∈ A | Supp(a) ⊆ Free (KB)}.
Since we there are no rules, the arguments in A \ A cannot attack other arguments.

2. From Proposition 3.14, we conclude that there is an automorphism of F KB for every automorphism of F KB .

Corollary 3.5 is important as it shows that a graph inherits all of the automorphisms of its subgraph. This will be useful when designing new solvers relying on symmetries.

We now characterise the connectivity of the graph by showing the structure of the strongly connected components. We first define the impossible set associated to a minimal conflict C as the set containing all the possible subsets of F that are supersets of at least one subset of C of size |C -1|. Definition 3.10 (Impossible set). Let KB = (F, R, N) be a knowledge base and C be a minimal conflict of MI (KB). The impossible set of C denoted by

Imp(C) is {X ⊆ F | X ⊆ X and X ⊂ C with |X | = |C -1|}.
In the following proposition, we characterise the structure of the strongly connected components of an argumentation framework obtained from a knowledge base without rules.

Proposition 3.15 (SCC characterisation). Let KB = (F, R, N) be a knowledge base such that R = ∅ and F KB = (A , R) be the corresponding argumentation framework. We have that:

1. s i ∈ SCC (F KB) where s i = {(X i , X i)} with X i ∈ 2 F \ C ∈M I (KB) Imp(C) 2. (A \ i s i) ∈ SCC (F KB)
Proof sketch. The proof is split in two parts. First, we show by contradiction that s i is a strongly connected component by itself. Then, we show that all of the other arguments in (A \ i s i) are strongly connected (cf. detailed proof in Section 7.2.1 on page iv). We now summarise all the structural properties of the argumentation frameworks generated from simple knowledge bases using Figure 3

.2 as an example:

• There is one k-copy graph (encircled in the dashed-line zone).

• The arguments that are not inside the k-copy graph are dummy arguments (arguments that are outside the dashed-line zone) and their number can be computed using Proposition 3.11.

• There is one dense strongly connected component composed of the majority of the arguments (encircled in the grey circle).

• The other strongly connected components are composed of only one argument each (arguments that are outside of the grey circle). The number of strongly connected components can be computed using Corollary 3.6.

Since we deal with strongly connected components, one of the research questions that naturally arises from this is whether or not the cf2 semantics [START_REF] Baroni | An introduction to argumentation semantics[END_REF][START_REF] Gaggl | The cf2 argumentation semantics revisited[END_REF] is equivalent to the preferred semantics in argumentation graphs generated from knowledge bases without positive rules.

On one hand, it appears that if the set of negative constraints is composed of only binary negative constraints, then the graph only has symmetric arcs. We conclude that since all SCCs are not linked to each other, the cf2 semantics coincides with the naive and preferred semantics. Proposition 3.16 (Naive and preferred equivalence). Let KB = (F, R, N) be a knowledge base such that R = ∅. The cf2 semantics coincides with the preferred (respectively stable) and the naive semantics in F KB . On the other hand, if we add ternary negative constraints, the cf2 semantics will no longer coincide with the preferred semantics as shown by a counter-example in Example 3.19.

Example 3.19. Let KB = (F, R, N) be a knowledge base such that F = {a(m), b (m), c (m), d (m), e (m)}, R = ∅ and N = {∀X (a(X) ∧ b (X) ∧ c (X) → ⊥), ∀X (e (X) ∧ d (X) → ⊥)}.
The corresponding argumentation framework is composed of 161 attacks and 20 arguments. The set of preferred extensions is {ε 1 , ε 2 , ε 3 , ε 4 , ε 5 , ε 6 } wheareas the set of cf2 extensions is the set

{ε 1 , ε 2 , ε 3 , ε 4 , ε 5 , ε 6 , ε 7 , ε 8 }.

Improving the argument generation

As mentioned in the previous section, the main drawback of using argumentation as a reasoning method over inconsistent knowledge bases relies in the large number of arguments generated. For instance, even for a modest knowledge base composed of seven facts, three rules and one binary negative constraint, one gets an argumentation graph with 383 arguments and 32768 attacks [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF]. In this section, we address this drawback and ask the following research question:

"How can one filter out the arguments generated over the knowledge base without compromising the semantical outcome of the corresponding argumentation graph? "

We answer this question by providing a methodology adapted for knowledge bases with or without positive rules. In the first case of knowledge bases without rules, we use the observation that free facts induce an exponential growth on the argumentation graph without any impact on its underlying structure [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] (see Definition 3.5 on page 57 about k-copy graph). Therefore, we will first generate the argumentation graph corresponding to the knowledge base without the free facts and then recreate the whole graph including the arguments of the free facts in an efficient manner. This method allows to generate the graph faster.

In the second case of the knowledge bases with rules, we introduce a new structure for the arguments and the attacks. In this new structure, we have less arguments (up to 73% filtered arguments in our experiments). We show that this new framework is semantically equivalent to the framework introduced by [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF]. The whole aforementioned methodology is represented in Figure 3.3.

Against this background, this section is organised as follows. In Section 3.2.1, we present the methodology above for argumentation graphs generated from knowledge bases without positive rules. In Section 3.2.2, we present the other methodology above for argumentation graphs with positive rules. We then provide an empirical evaluation of our work in which we benchmark our approach on the knowledge bases introduced by [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] and show that in most of the cases, the number of arguments and attacks of the argumentation graphs corresponding to knowledge bases with rules is reduced (at least by 25 % for the arguments and at least 14 % for the attacks).

Optimisation for knowledge bases without rules

In this section, we propose an optimisation for the generation of the aforementioned argumentation framework in the case where knowledge bases contain no positive rules. The idea is to process the knowledge base before generating the argumentation graph and recreate the whole argumentation graph from this reduced graph.

In fact, as the number of free facts increases, the number of dummy arguments (non attacked arguments that do not attack other arguments) grows exponentially. However, a further result of [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] is that if one removes the free facts from the knowledge base before generating the argumentation graph, this argumentation graph possibly possesses "exponentially less arguments" with respect to the number of free facts compared to the original argumentation graph. Hence, we propose a four-step approach for generating the original argumentation graph faster:

1. We identify the set Free (KB). This step can be done by finding the minimal inconsistent sets using existing algorithms [START_REF] Grégoire | Boosting a Complete Technique to Find MSS and MUS Thanks to a Local Search Oracle[END_REF][START_REF] Rocher | Interrogation tolérante aux incohérences[END_REF] 2. We create the graph F KB where KB = (F \ Free (KB), R, N) following Definition 3.3 on page 51. Please note that this step can be achieved using the argumentation graph generator proposed by [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF].

3. Then, we grow the generated graph to its original size. This can be done by copying each arguments 2 k times (where k = |Free (KB)|) and adding attacks following the two principles: (1) if a attacks b then a attacks all the copies of b and (2) if b is a copy of a in then b has the same attackers and attacks the same arguments than a.

4. Last, we add 2 k -1 dummy arguments to the generated graph.

Example 3.20. Let KB = (F, R, N) be a knowledge base such that:

• F = {a(m), b (m), c (m)} • R = ∅ • N = {∀X (a(X) ∧ b (X) → ⊥)}.
In Step 3

Step 2 Step 1 We would like to highlight that in the case where the set of positive rules is not empty, one cannot just remove the set of free facts as they can be used by rules and thus be used to build more complex arguments. We thus need a more complex approach to deal with general knowledge bases.

Optimisation for knowledge bases with rules

We now present a novel argumentation framework that aims at reducing the number of arguments and the number of attacks in the case where the set of rules is not empty. We show several desirable results such as the equivalence between the preferred and stable extensions of the aforementioned framework and the new one and some basic properties regarding attacks in the new framework. The idea behind this new framework is to remove, amongst the arguments with the same support, those that have conclusions that can be "decomposed". Let us illustrate the idea on Example 3.21.

Example 3.21. Let us consider the following knowledge base KB = (F, R, N) describing the situation: If X is a pitbull then X is a dog, X cannot be a dog and a cat at the same time.

• F = {pitbull (tom), cat (tom)} • R = {∀X (pitbull (X) → do (X))} 3.2. IMPROVING THE ARGUMENT GENERATION • N = {∀X (do (X) ∧ cat (X) → ⊥)}.
There are four arguments:

• a 1 = ({pitbull (tom)}, {pitbull (tom)}) • a 2 = ({pitbull (tom)}, {do (tom)}) • a 3 = ({pitbull (tom)}, {do (tom), pitbull (tom)}) • a 4 = ({cat (tom)}, {cat (tom)})
Our approach will delete the argument a 3 because we can "reconstruct" the argument a 3 from the two arguments a 1 and a 2 .

Why do we only filter the arguments with the same support? Let us illustrate this with an example. Suppose that we also have the fact adult (tom) in KB. Amongst many others, we would have the following two arguments:

• a 5 = ({adult (Tom)}, {adult (Tom)}) • a 6 = ({pitbul (Tom), adult (Tom)}, {pitbul (Tom), adult (Tom)})
Could we remove the argument a 6 and reconstruct it from a 1 and a 5 ? We chose not to do this because it is not obvious that a 1 and a 5 are compatible with respect to the ontology and the negative constraints. That is the reason why we keep the argument a 6 . On the contrary, note that a 1 and a 2 which have the same support must be compatible together. Let us now formalise this intuition. Since we dropped some arguments, the attack relation have to be redesigned in order to keep all the conflicts. In particular, we need to allow for directed hyperedges (also called sets of attacking arguments) where arguments with the same support can jointly attack a single argument. Definition 3.12 (Sets of attacking arguments). An attack is a pair (X , a) where X ⊆ A * and a ∈ A * such that X is minimal for set inclusion set such that for every x 1 , x 2 ∈ X , Supp(x 1) = Supp(x 2) and there exists ϕ ∈ Supp(a) such that

(x ∈X Conc (x)) ∪ {ϕ}) is R-inconsistent.

CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH EXISTENTIAL RULES

The next example shows that this definition of attack is necessary in order to capture some attacks that would be lost otherwise.

Example 3.23 (Sets of attacking arguments). Let us consider the following knowledge base KB = (F, R, N) such that:

• F = {a(m), b (m), c (m)} • R = {∀X (a(X) ∧ b (X) → d (X) ∧ e (X))} • N = {∀X (c (X) ∧ d (X) ∧ e (X) → ⊥)}
The list of arguments is represented in Table 3.3. We have the attack ({a 3 , a 7 }, a 15) where

a 3 = ({a(m), b (m)}, {d (m)}), a 7 = ({a(m), b (m)}, {e (
m)}) and a 15 = ({c (m)}, {c (m)}). Note that if the classical attack definition was used, a 15 would not be attacked anymore since we removed its attackers, for instance ({a(m), b (m)}, {b (m), d (m), e (m)}). Definition 3.13 (Filtrated argumentation framework). Let KB be a knowledge base. The corresponding filtrated argumentation framework F * KB is the pair (A * , R *) where A * is as defined in Definition 3.11 and R * is the set of all possible attacks that can be constructed using Definition 3.12.

The proposed argumentation framework F *

KB is an instantiation of the hypergraph argumentation framework proposed by [START_REF] Nielsen | Computing Preferred Extensions for Argumentation Systems with Sets of Attacking Arguments[END_REF]. We briefly recall the necessary definitions of the extension-based semantics in this framework.

Definition 3.14 (Hypergraph argumentation semantics). Let us consider the hypergraph argumentation framework F * KB = (A * , R *), we say that: • A set of arguments S is conflict-free if and only if there is no argument a ∈ S, such that (S, a) ∈ R * .

• A set of arguments S 1 attacks a set of arguments S 2 if and only if there exists a ∈ S 2 such that (S 1 , a) ∈ R * .

• An argument a is said to be acceptable with respect to a set of arguments S, if S defends a from all attacking sets of arguments in a.

• A set of arguments S 1 defends an argument a if and only if for every set of arguments S 2 such that (S 2 , a) ∈ R * , we have that S 1 attacks S 2 .

• A conflict-free set of arguments S is said to be admissible if each argument in S is acceptable with respect to S.

• An admissible set S is called a preferred extension if there is no admissible set S ⊆ A * , S ⊂ S .

• A conflict-free set S is a stable extension if S attacks all arguments in A * \ S.

With a slight abuse of notation, we also use the notation Ext p (F * KB) (respectively Ext s (F * KB)) to refer to the set of all preferred extensions (respectively stable extensions) of F * KB . Let X ⊆ F and F * KB = (A * , R *), we denote by Ar (X , A *), all the arguments in A * such that their supports are included in X . Namely, Ar (X ,

A *) = {a * ∈ A * | Supp(a *) ⊆ X }.
In the next proposition, we show that we preserve the equivalence between the set of repairs and the set of preferred (respectively stable) extensions of F * KB . Proposition 3.17 (Repair equivalence). Let us consider

F * KB = (A * , R *). It holds that Ext x (F * KB) = {Ar (A , A *) | A ∈ repairs (KB)} for i ∈ {s, p}. Proof sketch. The proof is split in two parts. Let F * KB = (A * , R *) and N = {Ar (A , A *) | A ∈ repairs (KB)}.
First, we show that each set of arguments in N is a stable extension. Second, we show that each preferred extension is included in N . Last, since each stable extension is a preferred extension [START_REF] Nielsen | Computing Preferred Extensions for Argumentation Systems with Sets of Attacking Arguments[END_REF], we can conclude the proof (see detailed proof in Section 7.2.1 on page v). 3.3. There are three preferred and stable extensions in F KB :

• ε 1 = {a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 , a 11 , a 12 , a 13 , a 14 } • ε 2 = {a 0 , a 15 , a 16 } • ε 3 = {a 1 , a 15 , a 17 }.
Likewise, the preferred/stable extensions in F * KB are:

• ε 1 = {a 0 , a 1 , a 2 , a 3 , a 4 , a 5 , a 7 , a 8 , a 9 } • ε 2 = {a 0 , a 15 , a 16 } • ε 3 = {a 1 , a 15 , a 17 } EXISTENTIAL RULES Name Description a 0 ({a(m)}, {a(m)}) a 1 ({b (m)}, {b (m)}) a 2 ({a(m), b (m)}, {a(m), b (m)}) a 3 ({a(m), b (m)}, {d (m)}) a 4 ({a(m), b (m)}, {a(m), d (m)}) a 5 ({a(m), b (m)}, {b (m), d (m)}) a 6 ({a(m), b (m)}, {a(m), b (m), d (m)}) a 7 ({a(m), b (m)}, {e (m)}) a 8 ({a(m), b (m)}, {a(m), e (m)
1. a ∈ A * is not attacked in F KB if and only if a is not attacked in F * KB 2. if a ∈ A * is attacked in F KB then |Att - F KB (a)| ≤ |Att - F * KB (a)|.
Proof sketch. The proof for the first item is straightforward. In order to prove the second item, we create a particular function and show that it is injective. The reader is invited to read the detailed proof in Section 7.2.1 on page vii.

The second item of Proposition 3.19 shows that the arguments that are not filtrated can only have more attackers. Indeed, for an arbitrary argument a ∈ A , if one of its attackers in F KB is filtrated, there will be a set S ⊆ A that will attack a in F .

Please note that for an arbitrary filtrated argument a = (Supp(a), Conc (a)), it is not always possible to find a set of arguments X = {x 1 , x 2 , . . . , x n } in F * KB such that for every i ∈ {1, . . . , n}, Supp(x i) = Supp(a) and the conclusions of the arguments in X are distinct and the union of their conclusions is equal to the conclusion of a. The next example shows a counter-example.

Example 3.25 (Distinct conclusion). Let KB = (F, R, N) be a knowledge base such that:

• F = {a(m), c (m)} • R = {∀X (a(X) → b (X))} • N = ∅ As one can see, the argument d = ({a(m), c (m)}, {a(m), c (m), b (m)}) is filtrated because of the two arguments x 1 = ({a(m), c (m)}, {a(m), c (m)}) and x 2 = ({a(m), c (m)}, {b (m), c (m)}). Note that here, it holds that X = {x 1 , x 2 } satisfies Supp(x 1) = Supp(x 2) = Supp(d) and x i ∈X Conc (x i) = Conc (d) but for all x 1 , x 2 ∈ X , Conc (x 1) ∩ Conc (x 2) = ∅ is not true.
Please note that in the case where the set of rules is empty, the set of filtrated arguments is empty and F KB is equivalent to F * KB . We end this section by discussing the efficiency of the new argumentation framework based on the filtration of arguments for reducing the number of arguments and attacks by comparing the number of arguments in F KB and F * KB . For our analysis, we chose to work with a particular subset of 108 knowledge bases (named b 1 to b 108) extracted from the study of [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF]. Since this argumentation framework has been shown to grow exponentially with respect to the number of free facts, this particular set of knowledge bases was chosen for its small size. These knowledge bases were generated by fixing the size of the set of facts and successively adding negative constraints until saturation. This dataset is composed of knowledge bases with two to seven facts with different characteristics as shown in Table 3.5 on page 80.

We provide a generator based on the Graal Java Toolkit [Baget et al., 2015c] for directly generating F * KB from an inconsistent existential rules knowledge base expressed in DLGP format [START_REF] Baget | DLGP: An extended Datalog Syntax for Existential Rules and Datalog+/-Version 2[END_REF]. This tool can be downloaded along with the dataset used in this section using the following link: https://gite.lirmm.fr/yun/paper-comma-generator.

In Table 3.4, we present the number of arguments and attacks in F KB and F * KB along with the percentage of arguments filtered and the percentage of reduction of attacks. These two percentages are defined as:

%Ar . Filtrated = |A | -|A * | |A | and %Att . Reduction = |R | -|R * | |R |
We can make the following observations:

1. This method does not provide any advantages in the case where the knowledge base is devoid of rules. Indeed, when there is no positive rules, Proposition 3.20 shows that there will be no filtrated arguments and the set of attacks will remain unchanged.

2. Although the instance with the highest percentage of reduction of attacks (here it is b 12 with 88%) is also the instance with the highest percentage of arguments filtered (73%), this is not always the case. Indeed, the instances b 10 and b 13 both have a percentage of arguments filtered of 33% but they have a percentage of attacks filtered of 50% and 33% respectively.

3. Lastly, in all the instances with rules, there are less arguments and less attacks in F * KB compared to F KB . Please note that although it is guaranteed that the number of arguments will be less or equal from Proposition 3.

The DAGGER tool

In this section, we introduce DAGGER: a generator for logic based argumentation frameworks instantiated from inconsistent knowledge bases expressed using Datalo ± (or equivalently, existential rules language). The tool allows for the import of a knowledge base in DLGP (for Datalog Plus) format (see the work of [START_REF] Baget | DLGP: An extended Datalog Syntax for Existential Rules and Datalog+/-Version 2[END_REF] for a complete explanation of the DLGP syntax), the generation and visualisation of the corresponding argumentation graph. Furthermore, the argumentation framework can also be exported in the Aspartix format [START_REF] Egly | ASPARTIX: Implementing Argumentation Frameworks Using Answer-Set Programming[END_REF]. The DAGGER tool is currently available for download at https://gite.lirmm.fr/yun/Dagger and a demo video is available for viewing at https://youtu.be/z96mDd9M6oE.

While a lot of theoretical work in the past 23 years has focused, amongst others, on optimising the extension finding procedures [START_REF] Gaggl | A Comprehensive Analysis of the cf2 Argumentation Semantics: From Characterization to Implementation[END_REF][START_REF] Lagniez | CoQuiAAS: A Constraint-Based Quick Abstract Argumentation Solver[END_REF], on the investigation of various extension notions [START_REF] Baroni | An introduction to argumentation semantics[END_REF] or on the investigation of desirable properties of logic based instantiations [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF][START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], there are few tools that allow to generate an argumentation graph from a given knowledge base [START_REF] Thimm | The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation[END_REF]. Furthermore, the few available tools for reasoning using argumentation over inconsistent knowledge bases do not allow for further interoperability (allowing their output to be used by other tools).

The DAGGER tool allows any knowledge engineer to (1) input a knowledge base in a commonly used format, (2) generate, (3) visualise and (4) export the argumentation graph. This tool is very useful, especially for practical argumentation. Such scenario could be used when a non expert wants to reason, using argumentation, over a knowledge base in a particular domain [START_REF] Arioua | DALEK: A Tool for Dialectical Explanations in Inconsistent Knowledge Bases[END_REF]Tamani et al., 2014a,b], etc.). It could also be useful for investigating the theoretical properties of the generated argumentation framework. Given the fact that certain graph theoretical properties could radically improve the extension computation efficiency [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] such visualisation could be a useful tool for argumentation specialists. Last, please note that, even when the knowledge base is modestly large, the corresponding argumentation graph can become truly immense [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF]. In this case, allowing tool interoperability that will directly and straightforwardly load a logically generated argumentation graph into efficient solvers [START_REF] Thimm | The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation[END_REF][START_REF] Lagniez | CoQuiAAS: A Constraint-Based Quick Abstract Argumentation Solver[END_REF] can make the difference between time out errors and obtaining a result.

DAGGER's architecture

The layered architecture of the DAGGER tool is shown in Figure 3.5 and is detailed as follows:

• High level: This layer is mainly composed of the graphical user interface (GUI) that is used for the different interactions. It has a text

THE DAGGER TOOL

area that allows to enter a knowledge base expressed in the DGLP format (i.e. the format for expressing existential rules).

• Mid level: This layer is composed of the logical model: knowledge bases and argumentation frameworks.

• Low level: This layer is composed of the computational tools that allow the computation of the arguments, the attacks (via the Graal library) and the repairs (i.e. the extensions).

The information flow passes from the high level to the low level through the intermediate level using the different communication channels between modules.

Figure 3.5: The 3-layer structure of DAGGER

Usability scenarios

We consider three usability scenarios of DAGGER. All of these scenarios are easily employed using DAGGER.

Scenario 1 First, we consider the task of a non computer science specialist inputting an inconsistent knowledge base of his expertise and wanting to find the maximally consistent point of views one can consider (see Figure 3.6).

For instance, let us consider the knowledge base of Example 3.26. Please note that tools for assisting non domain experts in building such knowledge bases without computer expertise exists [START_REF] Chein | Graph-based Knowledge Representation -Computational Foundations of Conceptual Graphs[END_REF].

• F = {packa in (a), has (a, plasticFilm), protectEn (a)} • R = {∀X (packa in (X) ∧ has (X , plasticFilm) → pollute (X))} • N = {∀X (pollute (X) ∧ protectEn (X) → ⊥)}
In this knowledge base, a packaging a with a plastic film is said to protect the environment. However, since the possession of a plastic film leads to pollution, this knowledge base is thus inconsistent. Finding maximally consistent point of views (or equivalently, repairs) consists in computing all maximal subsets of F that do not trigger a negative constraint of F. Here, we have three repairs:

• R 1 = {packa in (a), has (a, plasticFilm)}, • R 2 = {packa in (a), protectEn (a)} • R 3 = {has (a, plasticFilm), protectEn (a)}
Scenario 2 Second, we consider an argumentation specialist looking for graph-based structural properties of argumentation graphs instantiated with particular knowledge bases (see Figure 3.7 and 3.8). For instance, let KB be a knowledge base with three facts a(m), b (m), c (m), no rules and only containing one binary negative constraint ∀X (b (X) ∧ c (X) → ⊥). By generating the graph representation one might observe that the graph is symmetrical thus satisfying certain restrictions over its extensions [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF]. However, if one considers a ternary negative constraint that is added to the knowledge base (i.e. ∀X (a(X) ∧ b (X) ∧ c (X) → ⊥)), one can observe that the structure of the graph changes and it is no longer symmetric (and thus the properties of [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF] do not hold anymore).

Scenario 3 Third, we consider a knowledge base composed of seven facts, two rules and one negative constraint. Generating the graph over such a knowledge base yields a graph of 383 arguments and 32768 attacks. Non optimised tools are not able to handle these large graphs for a computationally expensive operation such as finding all its extensions for a given argumentation semantics. However, ASPARTIX argumentation solvers based on SAT [START_REF] Lagniez | CoQuiAAS: A Constraint-Based Quick Abstract Argumentation Solver[END_REF] will generate all extensions in less than one second. This is why one can use the export feature for such computations.

Benchmarks on logic-based argumentation frameworks

Despite argumentation being a mature field, practically inspired benchmarks are currently missing. As a rare example of a practical argumentation benchmark consider NoDE1 , which contains graphs that model debates from Debatepedia2 , the drama "Twelve Angry Men" by Reginald Rose and Wikipedia revision history. However, the graphs from this benchmark are small (many of them have less than 10 arguments) and their structure is simplistic. The lack of benchmarks was acknowledged by the community long time ago, but became obvious with the appearance of the first International Competition on Computational Models of Argumentation (ICCMA)3 in 2015. This is why new algorithms are always tested on randomly generated graphs, e.g. in the works of [START_REF] Nofal | Algorithms for decision problems in argument systems under preferred semantics[END_REF] and [START_REF] Cerutti | Computing Preferred Extensions in Abstract Argumentation: A SAT-Based Approach[END_REF]. The goal of this section is to address this drawback by generating argu- We provide the first benchmark in the literature that uses graphs generated from knowledge bases expressed with existential rules instead of random graphs. Using a suite of parametrised existential rule knowledge bases, we produced the first large scale practically-oriented benchmark in the literature. Furthermore, we run the top six solvers from ICCMA 2015 on the generated benchmark and show that the ranking is considerably different from the one obtained during the competition on randomly generated graphs.

As seen in Section 3.1, the existential rules framework, as a logical language, provides many features (n-ary negative constraints, existential variables in the rule conclusion, etc.) that make the instantiated argumentation graph far from simplistic. Furthermore, the instantiated graph is reflecting the structure of the inconsistent knowledge bases and it is thus justifying its interest as practical benchmark. Generating such graphs is thus significant for a broader community interested in reasoning in presence of inconsistency on the Semantic Web.

All experiments presented in the rest of this section were performed on a VirtualBox Linux machine running with a clean Ubuntu installation with one allocated processor (100%) of an Intel core i7-6600U 2.60GHz and 8GB of RAM. The argumentation graphs used (in the Aspartix format) are available online at https://gite.lirmm.fr/yun/iccma-2019.

The section is structured as follows. In Section 3.4.1, we discuss how we obtained the set of knowledge bases and the approach for generating the argumentation graphs. In Section 3.4.2, we study the results from benchmarking the top solvers from ICCMA on our generated argumentation graphs.

Benchmark generation

Knowledge Base Generation We generated a total of 134 knowledge bases: 108 different knowledge bases for the set of small graphs (denoted b 1 to b 108) and 26 for the set of big graphs accessible online at https: //github.com/anonymousIDA/Knowledge_bases. This has been done in order to produce graphs of similar sizes to those of the 2015 International Competition on Computational Models of Argumentation (ICCMA 2015). The ICCMA benchmark contains two sets of graphs: a set composed of small graphs (less than 383 arguments) and a set of big graphs (3783 to 111775 arguments). We define, for a fixed size of generated fact base (that varied from 2 to 5), some knowledge bases with binary (respectively ternary when applicable) constraints in order to obtain an incremental coverage of the facts. We then add rules in a similarly incremental manner. Table 3.5 shows the characteristics of the knowledge bases we selected. For example, if considering 3 facts a(m), b (m), c (m), we chose a representative of binary constraints as

∀X (a(X) ∧ b (X) → ⊥) or ∀X (a(X) ∧ c (X) → ⊥) or ∀X (b (X) ∧ c (X) → ⊥). We then chose ∀X (a(X) ∧ b (X) ∧ c (X) → ⊥).
From Knowledge Bases to Argumentation Graphs In the argumentation graph generation process, we only kept knowledge bases whose argumentation frameworks were not automorphic to a previously generated graph. The knowledge base format is DLGP [START_REF] Baget | DLGP: An extended Datalog Syntax for Existential Rules and Datalog+/-Version 2[END_REF], allowing translations to and from various Semantic Web languages such as RDF/S, OWL, RuleML or SWRL [Baget et al., 2015a]. For the graph generation, we made use of Graal [Baget et al., 2015c], a Java toolkit for reasoning within the framework of existential rules. Graal was used for storing the existential rule knowledge bases and for computing conflicts. On top of Graal we provided a graph generation program that works in two steps:

• F = {a(m), b (m), c (m), d (m), e (m)} • R = ∅ • N = {∀X (a(X) ∧ b (X) ∧ c (X) → ⊥)}
The corresponding argumentation graph F b 44 is composed of 26 arguments and 144 attacks and is represented in Figure 3.9. We show by this example that some of our generated graphs also possess a sense of "symmetry".

In the next section, we report the results obtained from the run of the top six overall argumentation solvers on the proposed benchmark.

Results of literature solvers over the benchmark

We recall that the graphs used in the ICCMA 2015 benchmark were separated in three sets: a first set of large graphs (1152 to 9473 arguments) with large grounded extensions and an average density 4 of 1.00%, a second set of smaller graphs (141 to 400 arguments) with numerous complete/preferred/stable extensions and an average density of 3.68% and a third set of medium graphs (185 to 996 arguments) with rich structure of strongly connected components and an average density of 7.75%. Our benchmark graphs are denser, having an average density of 31.27% for small graphs and 29.69% for large graphs.

To see if the proposed benchmark graphs behave in a similar manner as the randomly generated graphs of ICCMA 2015, we ran the top six solvers of the competition: CoQuiAAS , ArgSemSAT (ArgS.SAT), LabSATSolver (LabSATS.), ASGL, ASPARTIX-D and ArgTools (ArgT.). We used the solvers to complete two computational tasks: SE (given an abstract argumentation framework, determine some extensions) and EE (given an abstract argumentation framework, determine all extensions). These two computational tasks were to be solved with respect to the following standard semantics: complete semantics (CO), preferred semantics (PR), grounded semantics (GR) and stable semantics (ST).

In order to have similar assessment conditions, we used exactly the same ranking method as ICCMA 2015. The solvers were ranked with respect to the number of timeouts on these instances and ties were broken by the actual runtime on the instances. Table 3.6 shows the average time needed for each solver to complete each task for each semantics in the case of small graphs. There were no errors or time-outs thus the average time reflects the actual ranking (see Table 3.7).

For large instances, many solvers did not support large inputs resulting in several crashes or errors. Ties were broken by the average time of successfully solved instances (Table 3.9). Please note that for large graphs, for some tasks, some solvers timed out for all instances resulting in equal rankings (EE-CO: ASGL and ArgTools for instance). Table 3.9: Ranking of solvers for the generated large graphs erated graphs. This may come from the fact that CoQuiAAS is based on MiniSAT solver, which is known to work well in the presence of structured information (i.e. symmetries). It might be the case that the generated graphs keep some of their structure even after being translated into a SAT instance which could explain the obtained result.

In order to see how different the solver ranking on the random benchmark used by ICMMA 20155 is from the solver ranking on the knowledge base benchmark, we used the normalised Kendall's tau distance. 6 The distance outputs 0 if two rankings are identical and 1 if one ranking is the reverse of the other. Table 3.11 shows the normalised Kendall's tau distance between the rankings of the generated graphs and the competition ranking. What comes out is that:

• Although the ranking of the ICCMA 2015 benchmark and the one for large graphs for the task EE-GR is slightly different (we can not break the tie between ASPARTIX-d and ASGL), they are identical with respect to the Kendall's tau distance.

• We have the same normalised Kendall's tau distance for the small graphs and the large graphs for the tasks SE-CO, SE-PR and SE-GR.

• The small graphs have a higher normalised Kendall's tau distance than the large graphs for the tasks SE-ST, EE-CO, EE-PR and EE-GR.

• The small graphs have a lower normalised Kendall's tau distance than the large graphs for the task EE-SET.

• In average, the results are more similar for the large graphs than for the small graphs.

This benchmark is interesting because it shows that for the instantiated graphs we generated, it is strongly advised to use CoQuiAAS as the solver. For relatively small graphs, the choice of the solver can be bypassed as the differences are negligible. However, for larger graphs, we noticed several issues:

• It seems that ASGL uses a different algorithm for SE-GR and EE-GR (this is very noticeable by the difference in the number of timeouts).

• ASGL is not suitable for finding complete extensions.

• Aspartix-D is not suitable for finding preferred and grounded extensions.

• There are 15 instances that were too big to perform the task EE-PR for all solvers.

Summary

In this chapter, we presented a deductive argumentation framework for inconsistent knowledge bases expressed in the existential rules language. We showed that the instantiation of this argumentation framework possesses desirable properties in two cases: the general case (when the argumentation graph is generated from general inconsistent knowledge bases) but also in the case where the knowledge base has no positive rules.

In the general case, we showed that the generated graphs are included/not included in several graph classes (included in the class of coherent and relatively grounded), possess a specific structure (cycle, defense, no self-attacking arguments) and that some subgraphs can be characterised with respect to the conflicts of the knowledge base. In the case where the graph is generated from a knowledge base with no positive rules, we showed some conflict induced structural properties (dummy arguments characterisation, k-copy graphs), symmetry results and highlighted the general shape of strongly connected components. However, we also exhibited that this argumentation framework has an exponential number of arguments even in the case where the underlying knowledge has no positive rules.

Against this background, we presented two avenues for improving the generation of arguments and attacks: In the case where the graph is generated from a knowledge base without positive rules, one can filtrate the free facts from the knowledge base before the graph generation and recreate the full graph without loss of generality. However, the aforementioned strategy does not work in the case of an inconsistent knowledge base with positive rules since free facts can be used in rule applications. That is the reason why we propose a new method that consists in filtrating arguments that can be "reconstructed" by other arguments having the same support. However, since this method removes arguments and attacks, one needs to change the binary attack relation to sets of attacking arguments in order to keep the basic rationality desiderata. Furthermore, we showed that, in this new framework, most of the basic properties are still satisfied (repairs and extensions equivalence).

On the practical side, we also developed the DAGGER tool which is the first all-in-one implementation that can generate, allow for visualisation and export argumentation graphs from inconsistent knowledge bases expressed in the existential rule language.

Lastly, we used the DAGGER tool and designed an experiment using the top six solvers from the 2015 international competition on computational models of argumentation (see http://argumentationcompetition. org/2015/) in order to prove that the peculiar structure of the generated graphs have an impact on the solvers. The results shown that a solver outperformed all of the other solvers on our instances and that the general ranking was relatively different.

• We showed several properties for the framework in the case where the argumentation graph is generated from a knowledge without positive rules (symmetry, dummy arguments, k-copy graphs, etc.) and in the general case (class of graph, special arguments, cycles, etc.)

• We showed that we can speed up the argument generation process by processing of the knowledge in the case where there are no positive rules. In the case where the knowledge has rules, we can filtrate the arguments and add hyperedges in order to reduce the number of arguments and attacks.

• DAGGER is an implementation of the deductive argumentation framework for the existential rules language and is the first tool that allows the generation, the visualisation and the exportation of such argumentation graphs.

• We empirically showed that the intrinsic structure of the generated argumentation graphs have an effect on the performance of the current top solvers for argumentation semantics. In the previous chapter, we showed that logic-based argumentation is an approach that can accommodate with reasoning in the context of inconsistent logic knowledge bases. Indeed, specifically crafted instantiations for Datalo ± (such as the instantiation of [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF], [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] and [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]), have been proven to respect rationality desiderata [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF][START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF] and to output a set of extensions equivalent to the set of repairs [START_REF] Lembo | Inconsistency-Tolerant Semantics for Description Logics[END_REF][START_REF] Bienvenu | On the Complexity of Consistent Query Answering in the Presence of Simple Ontologies[END_REF]] of the knowledge base (i.e. the maximum consistent sets of facts with respect to inclusion). Unfortunately, it was shown that these instantiations suffer from a major drawback: an exponential number of arguments and attacks [Yun et al., 2018d,b]. This problem occurs even in the case where there are no rules in the knowledge base (count, for instance, a graph with 13 arguments and 30 attacks for a meagre knowledge base with solely four facts, no positive rules and a single negative rule). As a consequence, the argumentation graph for a "normally-sized" knowledge base cannot be held in main memory, requires dedicated large-graph visualisation tools, and, despite their polynomial complexity regarding the number of arguments, still poses combinatorial challenges for the computation of ranking techniques. This is a big problem as it shows that the reasoning efficiency may be lacking particularly when compared to other inconsistent tolerant reasoning methods such as ASP [START_REF] Ostrowski | ASP modulo CSP: The clingcon system[END_REF] or dedicated tools [START_REF] Bourgaux | Inconsistency Handling in Ontology-Mediated Query Answering[END_REF].

Please note that this does not mean that logic-based argumentation does not have an added value. For instance, its explanatory power might benefit to increase the scrutinability of the system by human users [START_REF] Arioua | DALEK: A Tool for Dialectical Explanations in Inconsistent Knowledge Bases[END_REF]Besnard et al., 2014] and the use of ranking semantics can induce a stratification of the inconsistent knowledge base [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] that might be of use for query answering techniques [Yun et al., 2018g].

The question that naturally arose is whether or not we can find "better" or more efficient argumentation frameworks for Datalo ±. In the previous chapter, we proposed methods for improving the argument generation by either processing the knowledge base or filtering the arguments and switching to hypergraphs. Following the latter intuition that hypergraphs might be a more efficient and compact form of argumentation frameworks, in this chapter, we first propose a new hypergraph argumentation framework and show how to instantiate it directly and straightforwardly from an inconsistent knowledge base expressed in Datalo ±. Second, we show that this new hypergraph argumentation framework benefits from the same desirable properties (rationality postulates, structural properties, etc.) as its binary argumentation framework counterpart. Lastly, we show an implementation of the NAKED tool for generating, visualising and exporting argumentation hypergraphs from knowledge bases expressed using Datalo ±. Then, using the aforementioned tool, we compare this new hypergraph argumentation framework with the previous binary framework and show how we improve upon the state-of-the-art.

The chapter is organized as follows: In Section 4.1, we introduce the hypergraph argumentation framework, show the various properties that it satisfies and compare it to the previous argumentation framework for Datalo ±. In Section 4.2, we show the first implementation of a generator for our hypergraph argumentation framework.

Research Questions in this Chapter

• How can we instantiate a hypergraph from an inconsistent knowledge base in Datalo ±? Is this representation efficient?

• Can we provide a tool that generates such hypergraphs?

ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE

Argumentation hypergraphs with the existential rules language

As seen in the previous chapter, the existing argumentation frameworks for the existential rules suffer from the exponential increase of arguments when free facts are added in the fact base. More generally, this problem is stemming from the observation that for a consistent subset of the fact base, nearly all of the subsets of its saturation with rule application will constitute a new argument. Thus, the intuitions behind this new framework are twofold: (1) The arguments will be built upon other arguments (à la ASPIC+). In the essence, this framework is close to rule-based formalisms where arguments are constructed from the ontology. (2) Our framework is different from existing frameworks because of a special feature: sets of attacking arguments.

In this section, we thrive to show that this framework retains all of the desirable properties (repair equivalence, rationality postulate, etc.) with less arguments and attacks than the existing frameworks.

There are three main contributions in this section. First, we introduce a logic-based argumentation framework with directed hyperedges for an inconsistent knowledge base expressed using Datalo ±. Second, we provide a theoretical analysis of the new argumentation framework with respect to its syntactic (i.e. graph theoretical) and semantic properties. Namely we show that:

• The rationality postulates (indirect consistency, direct consistency and closure) defined by [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF] are satisfied by the proposed framework.

• There is a one-to-one correspondence between the repairs of the knowledge base and the preferred (resp. stable) extensions of the new argumentation framework.

• The grounded extension is equal to both the intersection of preferred (resp. stable) extensions and to the set of arguments generated from the intersection of the repairs of the knowledge base.

• The premises of the non attacked arguments are subsumed by the set of free-facts (the intersection of repairs of the knowledge base).

• There are no self-attacking arguments, all the attacked arguments are defended and there is at least one cycle in the argumentation framework if the set of arguments is finite.

• If there are no rules in the knowledge base, the number of arguments is less or equal to the number of facts and the upper-bound to the number of attacks is

n-1 i=1 n i (n -i)
where n is the number of arguments.

Third, we provide a tool for generating this argumentation framework from a Datalo ± knowledge base expressed in DLGP format and study its performance in terms of argumentation graph compression rate and generation time.

Hypergraph argumentation framework F

Please note that although the framework described in this section has some similarities with the ASPIC+ framework, we would like to highlight that ASPIC+ cannot be directly instantiated with Datalo ± because the language does not have the negation and the contrariness function is not general enough for this language. Moreover, when instantiating ASPIC+ with a lot of logical languages (e.g. classical propositional logic), one has to add all the tautologies of the language in the set of strict rules in order to guarantee that the result will be consistent, i.e. to satisfy the rationality postulates defined by [START_REF] Caminada | On the evaluation of argumentation formalisms[END_REF]. In order to avoid adding this enormous number of rules and also with the goal of decreasing the number of arguments, we propose not to add them. However, the cost of forgetting to add those rules (and the arguments generated using them) would result in violation of rationality postulates. We propose to solve this problem in a more elegant way. Namely, we allow for the use of sets of attacking arguments (i.e. directed hyperedges).

In the next definition, we extend Dung's abstract framework with sets of attacking arguments, i.e. sets of arguments can now jointly attack an argument. In the next definition, we show how we build arguments and how to instantiate F from an inconsistent knowledge base KB. where Prem(a) is R-consistent.

• An attack is a pair (X , a) ∈ R where X ⊆ A and a ∈ A such that X is minimal for set inclusion such that

x ∈X Prem(x) is R-consistent and there exists φ ∈ Prem(a) such that (

x ∈X Conc (x))∪{φ} is R-inconsistent.
Notation 4.2. Let KB = (F, R, N) be a knowledge base, X ⊆ F be a set of facts and X ⊆ A a set of arguments. We define the set of arguments generated by X as Ar (X) = {a ∈ A | Prem(a) ⊆ X } and the base of a set of arguments X as Base (X) =

x ∈X Prem(x).

Example 4.1. Suppose that one is indecisive about what to eat for an appetiser. He decides that the dish should contain salted cucumbers, sugar, yogurt, not be a soup and be edible. However, he finds out that combining together salted cucumbers, sugar and yogurt may not be a good idea. Furthermore, combining salted cucumbers with yogurt is a dish called "tzaziki" which is a famous greek soup. We model the situation with the following knowledge base KB = (F, R, N) :

• F = {contains (m, saltC), contains (m, su ar), contains (m, o urt), notSoup(m), edible (m)} • R = {∀X (contains (X , saltC) ∧ contains (X , o urt) → tzaziki (X))} • N = {∀X (contains (X , saltC) ∧ contains (X , su ar) ∧ contains (X , o urt) → ⊥), ∀X (tzaziki (X) ∧ notSoup(X) → ⊥)}
The resulting argumentation graph F KB is composed of eleven attacks and the six following arguments:

• a 1 = contains (m, su ar) • a 2 = contains (m, saltC) • a 3 = contains (m, o urt) • a 4 = notSoup(m) • a 5 = edible (m) • a 6 = a 2 , a 3 → tzaziki (m) An example attack of R is ({a 1 , a 2 }, a 3).
In case of binary attacks (i.e. classical Dung's framework [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF]), a set of arguments X is said to attack an argument a if and only if there exists b ∈ X such that b attacks a. We need a similar notion here except that we already have a notion of attack from a set towards an argument. In order not to mix up the two notions, we introduce the notation R • , which stands for the saturated set of attacks. For example, if ({a, b}, c) ∈ R then each set X containing a and b (i.e. such that {a, b} ⊆ X) attacks c too (i.e. (X , c) ∈ R •). Definition 4.3 (Saturated set of attacks). Let F = (A , R) be an argumentation framework. We define R • ⊆ 2 A × A the saturated set of attacks as R • = {(X , a) such that there exists (X , a) ∈ R with X ⊆ X }.

Argumentation framework properties

The propose argumentation framework F is an instantiation of the abstract hypergraph framework proposed by Nielsen andParsons [2006, 2007]. For the purpose of this thesis being self-contained, we briefly recall the necessary definitions.

Definition 4.4 (Argumentation semantics). Let F = (A , R) be an argumentation framework and R • be the corresponding saturated set of attacks:

• A set of arguments S is conflict-free if and only if there is no argument a ∈ S such that (S, a) ∈ R • .

• A set of arguments S 1 attacks a set of arguments S 2 if and only if there exists a ∈ S 2 such that (S 1 , a) ∈ R • . By abuse of notation, we will use the notation (S 1 , S 2) ∈ R • for the case when S 1 attacks a set of arguments S 2 .

• A set of arguments S 1 defends an argument a if and only if for every set of arguments S 2 such that (S 2 , a) ∈ R , we have that (S 1 , S 2) ∈ R • .

• A conflict-free set of arguments S is said to be admissible if each argument in S is defended by S.

• An admissible set S is called a preferred extension if there is no admissible set S ⊆ A , S ⊂ S .

• A conflict-free set S is a stable extension if S attacks all arguments in A \ S.

• An admissible set S is called a grounded extension if S is minimum for set inclusion such that it contains every argument defended by S.

ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE

The set of all preferred (resp. stable and grounded) extensions of an argumentation framework F is denoted by Ext p (F) (resp. Ext s (F) and Ext (F)). The preferred (resp. stable) extensions of Ext p (F KB) (resp. Ext s (F KB)) are:

• E 1 = {a 2 , a 3 , a 5 , a 6 } • E 2 = {a 1 , a 2 , a 4 , a 5 } • E 3 = {a 1 , a 3 , a 4 , a 5 } The grounded extension is E G E = {a 5 }
In the next proposition, we show that there is one-to-one correspondence between the set of preferred (resp. stable) extensions and the set of repairs. Proposition 4.1 (Preferred and stable characterisation). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p}. Then:

Ext x (F KB) = {Ar (A) | A ∈ repairs (KB)}
Proof sketch. The sketch of the proof is as follows:

1. We prove that {Ar (A) | A ∈ repairs (KB)} ⊆ Ext s (F KB).

We prove that Ext

p (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}.
3. Since every stable extension is a preferred one [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF], we can proceed as follows. From the first item, we have that {Ar (A) | A ∈ repairs (KB)} ⊆ Ext p (F KB), thus the theorem holds for preferred semantics. From the second item, we have Ext s (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}, thus the theorem holds for stable semantics.

For a detailed proof, please refer to Section 7.2.2 on page viii.

CHAPTER 4. ARGUMENTATION HYPERGRAPHS

We now show that there is an equivalence between the non-attacked arguments and the arguments generated from free-facts. Proof. We split this proof in two parts:

• (⇒) By definition, if a ∈ A is such that there is no (S, a) ∈ R
then it means that a belongs to every preferred (resp. stable) extensions. Using the result of Proposition 4.1, we deduce that Prem(a) ⊆ repairs (KB).

• (⇐) Suppose that Prem(a) ⊆ repairs (KB). It means that for every R-consistent subset X ⊆ F, we have that Prem(a) ∪ X is R-consistent.

Suppose that there exists S ⊆ A such that (S, a) ∈ R . It means that there exists φ ∈ Prem(a) such that (

s ∈S Conc (s)) ∪ {φ} is R-inconsistent. Thus, (s ∈S Prem(s)) ∪ {φ} is R-inconsistent and (s ∈S Prem(s)) ∪ Prem(a) is R-inconsistent, contradiction.
Please note that although it is tempting to say that the non-attacked arguments do not contribute to attacks because the are based on free-facts, we show in the next example that this is not true in the general case.

Example 4.4. Let KB = (F, R, N) be the knowledge base such that:

• F = {d (m), a(m), c (m)} • R = {∀X (d (X) → e (X)), ∀X (a(X) → b (X))} • N = {∀X (a(X) ∧ c (X) → ⊥), ∀X (e (X), b (X) ∧ c (X) → ⊥)}
The knowledge base KB has two repairs, i.e. repairs (KB) = {{a(m), d (m)}, {d (m), c (m)}}. The fact d (m) is a free-fact. There are five arguments in the argumentation framework F KB :

• a 0 = d (m) • a 1 = a 0 → e (m) • a 2 = c (m) • a 3 = a(m) • a 4 = a 3 → b (m)

ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE

We can see that the non-attacked argument a 1 is contributing to an attack to a 2 with a 4 , i.e. ({a 1 , a 4 }, a 2) ∈ R .

In the next proposition, we show that, in our argumentation framework, the grounded extension is equal to the intersection of the preferred extensions. Note that although it is always true that the set grounded extension is included the intersection of the preferred extensions, the equality is not true in the general case. Proposition 4.2 (Grounded and preferred). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and E G E be the grounded extension of F KB . Then:

E G E = Ext p (F KB)
Proof sketch. [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF] showed that

E G E ⊆ Ext p (F KB). We now show that Ext p (F KB) ⊆ E G E Let use consider a ∈ Ext p (F KB).
Using Proposition 4.1, we have that a ∈ A ∈r epair s (KB) Ar (A). Thus, a ∈ Ar (repairs (KB)). We conclude that Prem(a) ⊆ repairs (KB), then with Corollary 4.1, we conclude that a is not attacked and a ∈ E G E .

Example 4.5 (Example 4.2 cont'd). We have that the grounded extension

E G E = E 1 ∩ E 2 ∩ E 3 = {a 5 }.
We now show that the grounded extension is equal to the set of arguments generated by the intersection of all the repairs. Proposition 4.3 (Grounded characterisation). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and E G E be the grounded extension of F KB . Then:

E G E = Ar (repairs (KB))
Proof sketch. The proof relies on three results: (1) The equivalence between the preferred extensions and the repairs as proven in Proposition 4.1; (2) The fact that the grounded extension is equal to the intersection of all preferred extensions (see Proposition 4.2) and (3) the fact that for every collection of set of formulae S 1 , . . . , S n , Ar (S We now show that the argumentation framework F KB does not have self-attacking arguments. Proposition 4.4 (Self-attacking arguments). Let KB be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. There is no (S, t) ∈ R such that t ∈ S.

1 ∩ • • • ∩ S n) = Ar (S 1) ∩ • • • ∩ Ar (S n).
Proof. Suppose that there is (S, t) ∈ R such that t ∈ S. It means that there exists φ ∈ Prem(t) such that (

s ∈S Conc (s)) ∪ {φ} is R-inconsistent. It means that (s ∈S Prem(s)) ∪ {φ} is R-inconsistent and thus s ∈S Prem(s) is R- inconsistent since t ∈ S,
contradiction with the definition of an attack.

In Proposition 4.5 below, we show that an attacked argument is always defended by a set of arguments. Proposition 4.5 (Defense). Let KB be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. If there is (S, t) ∈ R then there exists (S , s) ∈ R such that s ∈ S.

Proof. Let us prove it by contradiction. Suppose that (S, t) ∈ R and that there is no S ∈ A such that (S , s) ∈ R , where s ∈ S. Namely, it means that there exists φ ∈ Prem(t) such that (

s ∈S Conc (s)) ∪ {φ} is R-inconsistent. Thus, (s ∈S Prem(s)) ∪ {φ} is R-inconsistent. Let X = {x 1 , . . . , x n } be a subset of (s ∈S Prem(s)) such that X ∪ {φ} is R-inconsistent and for all X ⊂ X , X ∪ {φ} is R-consistent.
Then, let us denote by s 1 , the argument in S such that x 1 ∈ Prem(s 1), we have that ({a 2 , . . . , a n , a φ }, s 1) ∈ R where a i = x i for i ∈ {2, . . . , n} and a φ = φ, contradiction.

We now introduce the definition of cycle for an argumentation framework with sets of attacking arguments.

Definition 4.5 (Cycle).

A cycle in F = (F , R) is a sequence of attacks in R of the form ((S 1 , t 1), . . . , (S n , t n)) such that for every i ∈ {1, . . . , n -1}, t i ∈ S i+1 and t n ∈ S 1 .

The following Corollary 4.2 follows directly from Proposition 4.5. If the number of arguments is finite then there exists at least one cycle. The following sequence of attacks (({a 2 , a 3 }, a 1), ({a 1 , a 3 }, a 2)) is a cycle in F KB .

Contrary to the argumentation framework F where the number of arguments can be exponential even in the case where the set of rules is empty, we show that for the framework F described in Definition 4.2, the set of arguments is at most equal to the number of facts. Proof. Let a ∈ A be an argument of F . Since there are no rules then a = f , where f ∈ F. Thus we have that |A | ≤ |F|. Note that the equality holds if and only if there are no facts f such that {f } is inconsistent.

In the next proposition, we show an upper bound to the number of attacks with respect to the number of arguments. . Let KB be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. If

|A | = n then |R | ≤ n-1 i=1 n i (n -i).
Proof sketch. We prove the proposition by induction (for a detailed proof, see Section 7.2.2 on page ix).

Please note that this attack upper-bound is generally never reached in large instances because of the minimality condition on the set of attacking arguments.

Rationality postulates

In this section, we prove that the framework we propose in this thesis satisfies the rationality postulates for instantiated argumentation frameworks. We first prove the indirect consistency postulate. Concs (E) where x ∈ {s, p, }.

Proposition 4.8 (F Indirect consistency). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p, }. Then:

• for every E ∈ Ext x (F KB), Concs (E) is a R-consistent. • Output x (F KB) is R-consistent.
For the complete proof of Proposition 4.8, see Section 7.2.2 on page x. Since our instantiation satisfies indirect consistency then it also satisfies direct consistency. Indeed, if a set is R-consistent, then it is consistent. Thus, we obtain the following corollary. 4.3 (F Direct consistency). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p, }. Then:

• for every E ∈ Ext x (F KB), Concs (E) |= ⊥. • Output x (F KB) |= ⊥.
We now show that the argumentation framework satisfies the closure postulate.

Proposition 4.9 (F Closure). Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p, }. Then:

• for every E ∈ Ext x (F KB), Concs (E) = Sat R (Concs (E)) • Output x (F KB) = Sat R (Output x (F KB))
For the complete proof, see Section 7.2.2 on page xi.

Empirical analysis

In this section, we compare our approach with the existing argumentation frameworks for Datalo ± with respect to the number of arguments and the number of attacks.

We chose to work with the set of knowledge bases extracted from the study of [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] (see Table 3.5 on page 80). We recall that these inconsistent knowledge bases are composed of two main sets:

• A set A composed of 108 knowledge bases. This dataset is further split into three smaller set of knowledge bases:

-A set of A 1 of 31 knowledge bases without rules, two to seven facts, and one to three negative constraints.

-A set A 2 of 51 knowledge bases generated by fixing the size of the set of facts and successively adding negative constraints until saturation.

-A set A 3 of 26 knowledge bases with only ternary negative constraints, three to four facts and one to three rules.

• A set B composed of 26 knowledge bases with eight facts, six rules and one or two negative constraints. This set contains more free-facts than the knowledge bases in set A. For each knowledge base KB in these two sets, we compare the number of generated arguments and attacks of the new framework F KB with the framework F KB .

ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE

We provide a the tool based on the Graph of Atom Dependency defined by Hecham et al. [2017a] and the Graal Java Toolkit [Baget et al., 2015c] for generating the new argumentation framework from an inconsistent knowledge base expressed in the DLGP format. The tool is available for download at the following address: https://www.dropbox.com/ sh/dlpmr07gqvpuc61/AABDgwfHJRNVYcsqpDg7kMfEa?dl=0

Experimental results

In Table 4.1, we show the number of arguments and attacks of the two frameworks for the two sets A and B. We make the following observations:

• The generation of F is slower than the one for F when the number of arguments and attacks is relatively low (see A 1 and A 2) but when the number of arguments and attacks increases, we can see that the generation of F is much faster (see Figure 4.1 and 4.2). The reason for this is simple. Contrary to the framework F, there is no exponential increase of the number of arguments with the number of free-facts in F as seen with the knowledge bases in set B. Moreover, for all the knowledge bases considered in sets A and B, the number of arguments

ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE

and attacks in F is less or equal to the number of arguments and attacks in F (see also Figure 4.3,4.4 and 4.5 and 4.6).

• When only the set of negative constraints is varying, the number of arguments of F seems to be unchanged whereas in F, it is varying. Furthermore, the framework F seems much denser than F . Indeed, the median density1 of F is 26.34% and 31,03% whereas the median density of F is 4,69% and 0.02% on the sets A and B respectively.

The entire experiment was conducted on a Debian computer with an Intel Xeon E5-1620 (3.60GHz) processor and 64GBs of RAM.

The NAKED tool

In this section, we present NAKED, a tool for generating and visualising hypergraph argumentation framework that uses knowledge bases expressed in Datalo ± [START_REF] Calì | A general datalog-based framework for tractable query answering over ontologies[END_REF]. In the NAKED tool, we instantiate the framework of [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF] which allows us to avoid the explosion of the number of arguments while keeping all the desirable properties of the previous argumentation framework (see the previous Section 4. 1).

Classically, reasoning with argumentation graphs consists of either finding extensions or ranking arguments from the most to the least acceptable. As a result, most of the past work has been focused, amongst others, on optimising the efficiency of the extension finding procedures [START_REF] Gaggl | A Comprehensive Analysis of the cf2 Argumentation Semantics: From Characterization to Implementation[END_REF][START_REF] Lagniez | CoQuiAAS: A Constraint-Based Quick Abstract Argumentation Solver[END_REF], on the investigation of various extension-based and ranking-based notions [START_REF] Baroni | An introduction to argumentation semantics[END_REF][START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF][START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] and on the investigation of desirable properties of logic based instantiations [START_REF] Amgoud | Postulates for logic-based argumentation systems[END_REF][START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF].

There are few practical tools that allow to generate an argumentation framework from a given knowledge base [START_REF] Thimm | The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation[END_REF]Yun et al., 2018c]. Furthermore, the few available tools for reasoning using argumentation over inconsistent logical knowledge bases often suffer from on of the following problems: (1) they do not allow further tool interoperability (allowing their output argumentation graph to be loaded in other tools), (2) they do not scale up for a practical use or (3) they only consider binary argumentation frameworks. Our workflow enables any data engineer to:

1. input a knowledge base in the well-known DLGP format for Datalo ± and generate an argumentation hypergraph that instantiates the framework of [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF] and outputs a visualisation (see Figure 4.7 for an example of hypergraph visualisation).

2. interact with the graph representation by allowing manual arguments re-positioning. Moreover, the end-user has the possibility to observe a specific argument by highlighting the corresponding argument and its attackers in different colours.

3. exporting the generated argumentation hypergraph in the DOT format for a better tool interoperability.

All of these functions are useful for a non computer science expert who wants to reason over an inconsistent knowledge base in a particular domain using argumentation [START_REF] Arioua | DALEK: A Tool for Dialectical Explanations in Inconsistent Knowledge Bases[END_REF]Tamani et al., 2014a,b]. NAKED could also be useful for investigating the theoretical properties of the graphbased representation of the generated argumentation framework in the same fashion as [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] and [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF]. Given the fact that certain graph theoretical properties could radically improve the extension computation efficiency [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] such visualisation is a useful tool for argumentation specialists. A presentation video explaining all of the features of NAKED is available online at: https://youtu.be/q54iNWBZ9dY. NAKED is meant to assist domain experts and argumentation developers in the specification, visualisation and/or export of logic based argumentation frameworks built over the Datalo ± language.

This section is structured as follows. In Section 4.2.1, we describe the different steps and mechanisms of the arguments and attacks generation in NAKED. In Section 4.2.2, we describe the main visual areas of the NAKED tool and how argumentation hypergraph are represented. In Section 4.2.3, we show two real-life scenarios of the usage of NAKED.

The argument and attack generation

In this section, we show how NAKED allows for the generation of arguments and attacks. As shown in Section 4.1, the arguments are built upon each other based on how rules can be applied. In a sense, the arguments can be seen as pieces of rule derivations. Thus, in order to generate all of the arguments that conclude a given fact, we need to extract all the possible derivations for this specific fact. Without a sound a complete derivation extraction mechanism, we will not be able to generate all the arguments. The most common chases such as the frontier/skolem chase or the oblivious chase all possess a derivation reducer in order for the chase to stop. However, those derivation reducers might induce a loss of rule applications depending on the order in which the rules are applied. Although this loss of derivations has no effect for the classical entailment, it has critical consequences for the generation of arguments. In order to fix this derivation loss problem, [START_REF] Hecham | Argumentation-Based Defeasible Reasoning For Existential Rules[END_REF] provides the Graph of Atom Dependency (GAD) which is constructed alongside a chase. This GAD is constructed differently depending on the choice of the chase [Hecham et al., 2017a]. Moreover, the GAD allows for the extraction of all the derivations for any given fact. Against this background, the generation of the GAD is necessary for the generation of arguments. Let KB = (F, R, N) be an arbitrary inconsistent knowledge base, we show the four step process that leads to the generation of the argumentation framework F KB :

1. First, the graph of atom dependency (GAD) of the knowledge base KB is constructed alongside the chase. Here, the GAD is a specific edgelabeled directed hypergraph where nodes are atoms of Sat R∪N (F) and the hyperedges represent the different rule applications (see [Hecham et al., 2017a] for more details).

2. Second, we recursively build the arguments in A by parsing the derivations of the GAD of KB and filter arguments with inconsistent premises (see Definition 4.2 on page 93).

3. Third, the set of repairs of KB are computed. Although this step is arduous, one can find more efficient approaches than the naive method. We compute the minimal inconsistent sets of KB using the GAD and use efficient algorithms from graph theory to calculate the repairs from the minimal inconsistent sets.

4. Fourth, for each repair R, we compute the set of arguments Ar (R).

As we know that there are no attacks from a subset of Ar (R) to an argument of Ar (R), we only compute attacks from a subset of Ar (R) to an argument of A \ Ar (R).

The structure of NAKED

In this section, we introduce the three main areas of the NAKED interface (see Figure 4.9):

• Area 1 (the blue area): In this area, the user can input an inconsistent knowledge base KB = (F, R, N) in the DLGP format [START_REF] Baget | DLGP: An extended Datalog Syntax for Existential Rules and Datalog+/-Version 2[END_REF]. This format can accommodate existential rules (and other constructs that can be seen as special kinds of existential rules: facts, negative constraints and conjunctive queries). Once the knowledge base is specified, the user can launch the graph generation by pressing the "Compute" button.

• Area 2 (the red area): In this area, the argumentation hypergraph • Area 3 (the green area): This area is used for textually observing the graph and exporting it to other formats. There are five tabs:

F KB = (A ,
-In the "Arguments & Attacks" tab, the user can retrieve the list of arguments and attacks as well as their meaning.

-In the "Observer" tab, the user can highlight a particular argument and its attackers as well as retrieve the list of the argument's attackers (see Figure 4.10) -In the "Repairs" tab, the user can find the list of maximal consistent set of facts (repairs) of the knowledge base. -In the "Dot Representation" tab, the user find the graph in the DOT format.

Usability scenarios

We consider two usability scenarios of NAKED.

Scenario 1 First, we consider the task of a non computer science specialist inputting an inconsistent knowledge base of his or her expertise and wanting to find the maximally consistent point of views one can consider with respect to a given knowledge base. Please note that tools for assisting non domain experts in building such knowledge bases without computer expertise exists [START_REF] Chein | Graph-based Knowledge Representation -Computational Foundations of Conceptual Graphs[END_REF]. Finding maximally consistent point of views (or repairs) consists in computing all maximal subsets of facts that do not trigger any negative constraints of the knowledge base. NAKED will not only be able to provide the list of repairs but also highlight why a given fact does not belong to a specific repair using the observer tab.

Scenario 2 Second, we consider the task of an argumentation expert that wants to generate argumentation hypergraphs for benchmarking purposing. Although efficient algorithms that compute extensions exists for argumentation hypergraphs [START_REF] Nielsen | Computing Preferred Extensions for Argumentation Systems with Sets of Attacking Arguments[END_REF], there is a lack of such graphs.

THE NAKED TOOL

Our tool provides a DOT format output which enables interoperability with many graph tools.

Summary

In this chapter, we presented a new hypergraph argumentation framework for the inconsistent knowledge bases expressed in the existential rules language. We showed that the instantiation of this argumentation framework possesses good properties and is semantically equivalent to the previous deductive argumentation framework while having less arguments and attacks. This new framework is a solution that effectively tackles the problem of the exponential growth of the argumentation framework that the previous deductive argumentation framework possessed. Moreover, we provided the NAKED tool for generating, visualising and exporting such hypergraph argumentation frameworks in an intuitive way. This tool is useful for both argumentation experts that want to generate argumentation graphs for benchmarking purposes and for non computer science specialists that want to model a specific inconsistent knowledge base. For the later, the NAKED tool is specially useful as it can highlight the conflicts in the knowledge base by putting an argument and its attackers in the foreground.

In the next chapter, we focus on the benefits that ranking-based reasoning can yield not only in the context of argumentation but also in the more general setting of knowledge representation and reasoning for query answering by introducing novel frameworks.

Chapter 4 in a Nutshell

• We proposed a hypergraph argumentation framework for the existential rules language and showed that it possesses many desirable properties (rationality postulates and structural results). We conducted an experiment and showed that this new framework is more efficient than the old deductive framework.

• NAKED is an implementation of the hypergraph argumentation framework for Datalo ± and is the first tool that allows the generation, the visualisation and the exportation of such argumentation graphs.

5

Ranking-Based Reasoning In the argumentation theory, the standard approach consists in using extension-based semantics [START_REF] Baroni | An introduction to argumentation semantics[END_REF][START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] aimed at evaluating which arguments can be accepted together. These semantics return subsets of arguments (called extensions) that can be used to evaluate the acceptability of arguments in a ternary way by checking whether an argument belongs to one, all or no extensions with respect to a particular argumentation semantics. However, this restricted gradation has been criticised as lacking for some applications such as online debates [START_REF] Leite | Social Abstract Argumentation[END_REF] or decision-making tools (an example can be found in the introduction of Chapter 2 in the thesis of [START_REF] Delobelle | Ranking-based Semantics for Abstract Argumentation[END_REF]). That is why another approach, called ranking-based semantics, based on ranking arguments according to their acceptability was introduced.

Ranking-based semantics have been extensively studied by a large amount of researchers [START_REF] Pereira | Changing One's Mind: Erase or Rewind?[END_REF][START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF][START_REF] Bibliography Gabbay | Equilibrium States in Numerical Argumentation Networks[END_REF][START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF]Amgoud et al., 2016;[START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF][START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF][START_REF] Rago | Discontinuity-Free Decision Support with Quantitative Argumentation Debates[END_REF]Yun et al., 2017a]. New semantics are being introduced, as well as the principles they should satisfy. One of the main reasons of their popularity is that they offer a finer evaluation than extension-based semantics [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF][START_REF] Caminada | Semi-stable semantics[END_REF][START_REF] Baroni | An introduction to argumentation semantics[END_REF][START_REF] Caminada | Comparing two unique extension semantics for formal argumentation: ideal and eager[END_REF]. To put it in a nutshell, classical argumentation semantics consider sets of arguments (extensions) whereas ranking-based semantics work at the level of individual arguments. Although these two approaches may seem distinct, they both give different details and insights on the underlying argumentation framework that they are applied on.

Among the many uses of ranking-based semantics in logic-based argumentation, [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] introduced the Argumentationbased Ranking Logics (ARL) as a framework for ranking conclusions of arguments using ranking-based semantics. However, the original work by [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] is only defined for argumentation frameworks without redundancies as these redundancies may "mislead the argumentation graph by creating more attacks and arguments" [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]. We argue that redundancies are an important part of real-life knowledge bases and interest ourselves into studying how much these redundancies can impact the ranking on conclusions of arguments returned. Moreover, our study will cover the behaviour of ranking-based semantics in the presence of redundant knowledge and how their removal (with the use of cores) impacts the ranking on facts returned.

Next, in the same fashion as works in the literature have extended ranking-based semantics to other particular binary argumentation frameworks such as weighted argumentation frameworks [START_REF] Amgoud | Acceptability Semantics for Weighted Argumentation Frameworks[END_REF], support argumentation frameworks [Amgoud and Ben-Naim, 2016] or bipolar argumentation frameworks [START_REF] Amgoud | On bipolarity in argumentation frameworks[END_REF], we extended rankingbased semantics to the special case of hypergraph argumentation frameworks. We show that ranking-based semantics can also be applied to this type of argumentation frameworks by providing both desirable properties that these semantics should satisfy and the first ranking-based semantics called nh-categoriser for argumentation hypergraphs.

Lastly, inspiring ourselves from the frameworks defined by [START_REF] Bonzon | Combining Extension-Based Semantics and Ranking-Based Semantics for Abstract Argumentation[END_REF], [START_REF] Konieczny | On Supported Inference and Extension Selection in Abstract Argumentation Frameworks[END_REF] and [START_REF] Yun | Viewpoints using ranking-based argumentation semantics[END_REF], that use a ranking method and an aggregation function to obtain a ranking on sets of arguments, we propose a new framework for ranking repairs in the OBDA setting. This new framework shows that the ranking on the facts of an inconsistent knowledge base, obtained by computing the contribution of each fact in the intrinsic conflicts of the knowledge base, can be used to rank and improve the set of repairs of the knowledge base. We show in a real-life use-case how this framework can be useful in the context of the food industry and help professionals in ranking packaging alternatives.

The chapter is organized as follows: In Section 5.1, we focus on rankingbased reasoning with argumentation frameworks in the context of logicbased argumentation and we study the effect on redundancies on the rankings of argument conclusions. In Section 5.2, we extend the notion of ranking-based semantics for hypergraph argumentation frameworks by introducing both desirable properties that such semantics should satisfy and the first ranking-based semantics for argumentation hypergraphs. In Section 5.3, we show how to improve the set of repairs with inconsistency values for query answering in the presence of inconsistencies.

Research Questions in this Chapter

• What is the impact of redundancies on the rankings returned by ranking-based semantics?

• What are the properties that a ranking-based semantics for hypergraph argumentation frameworks should satisfy? Is there a semantics satisfying those properties?

• How can we rank repairs of a knowledge base without external information?

Ranking with existential rules deductive argumentation framework

In the rest of this section, we do not follow the extension-based argumentation semantics but we focus on the effect of ranking-based semantics, in the setting of logic based argumentation. In the context of logic-based argumentation, arguments are sometimes based upon equivalent and redundant data. Cores are notions introduced by [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] that delete such arguments. We investigate two different notions of core in such a logically instantiated argumentation framework that will remove redundant arguments and attacks in a different manner. We then ask the following research question:

"Will the manner of defining the core of a logically instantiated argumentation framework affect the ranking output of ranking-based semantics? "

Our initial intuition was that the answer was negative, since the core of an argumentation framework is supposed to return an equivalent, but smaller, argumentation framework. Surprisingly, the answer is positive. We give an example of such a change using one particular ranking-based semantics and show why this change happens. Our contribution is thus not only to uncover this unexpected behaviour but also to investigate some of its reasons. The salient points of this section are :

• The first investigation of ranking-based semantics in the first-order logic fragment of existential rules.

• The study of several notions of core in logical argumentation framework and the proof of their equivalences and properties.

• The first characterisation of core-induced ranking modifications of semantics satisfying postulates from [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF] and [START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF].

The core is a notion introduced by [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] that enables to simplify logically instantiated argumentation frameworks without losing data. In this section we will use two notions of core initially defined by [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] and we will adapt them to the logical instantiation using existential rules of this thesis. We give an example of how the two core notions yield argumentation frameworks with significantly less arguments for the same logical output and prove two new key results that extend the stateof-the-art. First, we give the relation between the base of the two cores for existential rules instantiated argumentation frameworks. Second, we show how the two cores can be obtained from each other.

Core equivalence

The notion of core relies on the notion of equivalence of formulae, arguments and, subsequently, of induced argumentation frameworks. To define the notion of core we first need to define the notion of equivalence of formulae. Adapting the work of [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] for existential rules, two facts are equivalent if the sets given by the closure1 of each fact are equal. Similarly, we say that two sets of facts are equal if, for each fact in every set, we can find an equivalent fact in the other set.

Definition 5.1 (Equivalent facts or sets of facts). Let f 1 , f 2 be two facts and F 1 , F 2 be two sets of facts. We say that:

• f 1 and f 2 are equivalent (f 1 f 2) if and only if Sat R ({f 1 }) ≡ Sat R ({f 2 }).
• F 1 and F 2 are equivalent (F 1 F 2) if and only if for every f ∈ F 1 , there exists f ∈ F 2 such that f f and for every f ∈ F 2 , there exists f ∈ F 1 such that f f . We have that F 1 F 2 otherwise.

Please note that in the first item of Definition 5.1, the ≡ notation refers to the logical equivalence defined in Definition 2.4 on page 16.

Example 5.1 (Equivalent facts). Let us consider the inconsistent knowledge base KB = (F, R, N) expressing the fact that we cannot have a cat, a mouse and a turtle at the same time, cats are pussycats (and conversely, pussycats are cats), cats and mouses are mammals, Tom is a cat, Tom is a pussycat, Jerry is a mouse and John is a turtle.

• F = {puss cat (tom), cat (tom), mouse (jerr), turtle (john)}.

• R = {∀X (cat (X) → puss cat (X)), ∀X (puss cat (X) → cat (X)), ∀X (cat (X) → mammal (X)), ∀X (mouse (X) → mammal (X))}. • N = {∀X , Y , Z (cat (X) ∧ mouse (Y) ∧ turtle (Z) → ⊥)}.
We have that puss cat (tom)

cat (tom) since Sat R ({puss cat (tom)}) = Sat R ({cat (tom)}) = {cat (tom), puss cat (tom), mammal (tom)}.
Using the equivalence of formulae from Definition 5.1 and inspiring ourselves from the work of [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF], we can now define the notion of equivalence between arguments. We will consider two equivalence relations. The first one (1) considers two arguments as being equivalent if they have equal supports and equivalent conclusions. The second one (2) considers two arguments as being equivalent if they have equivalent supports and equivalent conclusions. Note that if there are two arguments a and a such that a 1 a then obviously a 2 a . Definition 5.2 (Arguments equivalence [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]). Let a and a be two arguments. We have:

• a 1 a if and only if Supp(a) = Supp(a) and Conc (a) Conc (a). 5.1. We have that a 13 1 a 1 whereas a 13 2 a 1 where a 13 = ({cat (tom)}, {cat (tom)}) and a 1 = ({puss cat (tom)}, {puss cat (tom)}).

We can note that if there is an attack between two arguments, they are not equivalent.

Proposition 5.1 (Attacked non equivalence). Let F = (A , R) be an argumentation framework and a, a ∈ A . If (a, a) ∈ R then a 1 a and a 2 a .

Before we can define the notion of core, we first need to give the notions of equivalence relation, equivalence class and the set of all possible equivalence classes.

Definition 5.3 (Equivalence classes). If X is a set of elements, an equivalence relation on X and x ∈ X , then x = {x ∈ X |x x}. We say that x is the equivalence class of an element x for equivalence relation . The set of all possible equivalence classes will be denoted by X / = {x |x ∈ X }. Note that for readability purposes, we will sometimes denote x by x whenever the equivalence relation is obvious.

We are now ready to define the notion of core of a logical argumentation framework. A core of an argumentation system F = (A , R) is an argumentation system that can be seen as a particular subgraph F = (A , R) of F. There are three restrictions. First, A must obviously be a subset of the set of arguments A . Second, for a given equivalence relation on the arguments, there must be a unique argument in A for each equivalence class. Third, R must be a restriction of R to A . Definition 5.4 (Core [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]). Let F = (A , R) and F = (A , R) be two argumentation frameworks and be an equivalence relation on arguments. F is a core of F if and only if the three following items are satisfied:

RANKING WITH EXISTENTIAL RULES DEDUCTIVE ARGUMENTATION FRAMEWORK

• A ⊆ A

• for every G ∈ A / , there exists a unique a ∈ A such that a ∈ G ∩ A for the given equivalence relation .

• R = R ∩ (A × A).
We denote by Core (F) the set of all cores of an argumentation framework F for equivalence relation .

Note that since we consider two equivalence relations for arguments we can naturally construct two sets of cores from an argumentation framework F: Core 1 (F) that follows from the first equivalence relation and Core 2 (F) that follows from the second.

Example 5.3 (Example 5.2 cont'd). We are interested in which arguments are contained in two different cores. Table 5.1 has five columns. The first three columns represents an example of 20 arguments (out of 75) that can be constructed over the knowledge base of Example 5.1 along with their respective supports and conclusions. The last two columns show whether the 20 arguments belong or not to two examples of cores c 1 and c 2 . The two examples of cores have been constructed using respectively the first and the second equivalence relations: core c 1 ∈ Core 1 (F KB) and core c 2 ∈ Core 2 (F KB) (such that it is included in Core 2 (c 1), as it can be verified in Table 5.1).

The next section shows properties of the two types of cores obtained from the two equivalence relations 1 and 2 .

Core equivalence properties

Let us first summarise the theoretical results of this section. In Proposition 5.2, we show that the attack relation satisfies the properties defined by [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF] which implies equivalences between the argumentation framework and any of its cores. In Proposition 5.3, we show that it is useless to employ a more restrictive equivalence relation once a core has already been obtained using a less restrictive equivalence relation. In Proposition 5.4, we show that all cores constructed using 2 can be constructed using specific cores of 1 on which we compute a core using 2 . This basically means that we can bypass the core constructed with 1 when we are interested by a less restrictive relation such as 2 . Proposition 5.3 and Proposition 5.4 combined provide an important result as it will allow us not to be concerned about the order of applying cores on the argumentation framework.

According to the work of [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF], there are two properties (C1b and C2b) that are desirable for an attack relation. The first property states that two arguments with equivalent conclusions should attack the same arguments. The second property states that two arguments with

Name Support Conclusion c 1 c 2 a 1 {P } {P } a 2 {P } {M T } a 3 {M} {M} a 4 {M} {M } a 5 {T } {T } a 6 {P , M} {P , M} a 7 {P , M} {M T , M} a 8 {P , M} {P , M } a 9 {P , M} {M T , M } a 10 {P ,T } {P ,T } a 11 {P ,T } {M T ,T } a 12 {T , M} {T , M} a 13 {C} {C} a 14 {C} {M T } a 15 {C, M} {C, M} a 16 {C, M} {M T , M} a 17 {C, M} {C, M } a 18 {C, M} {M T , M } a 19 {C, T } {C, T } a 20 {C, T } {M T ,T } Acronym Meaning C cat (tom) M mammal (jerr) M T mammal (tom) M mouse (jerr) P puss cat (tom) T turtle (john)
Table 5.1: Some arguments constructed from the knowledge base of Example 5.12 and two particular cores obtained using 1 and 2 .

equivalent supports should be attacked by the same arguments. In the next proposition, we show that the attack relation considered in this section respects both properties.

Proposition 5.2 (Attackers equivalence). Let F KB = (A , R) be a logical argumentation framework such that A is the set of arguments defined in Definition 3.1 and R is the set of attacks defined according to Definition 3.2. R enjoys both of the following properties:

1. C1b : for every a, b, c ∈ A , if Conc (a) Conc (b) then ((a, c) ∈ R if and only if (b, c) ∈ R). 2. C2b : for every a, b, c ∈ A , if Supp(a) Supp(b) then ((c, a) ∈ R if and only if (c, b) ∈ R).
Please see Section 7. 5.1

A natural question one can ask at this point is whether the order of applying the cores matters. That is to say: "Is it possible to first compute a core for a particular equivalence relation and then use it to compute another core?" To answer this question, we provide two main results. The first proposition shows that applying a more restrictive equivalence relation than the one used to compute a core does not change this core. We begin by defining the notion of less restrictive equivalence relation and follow with the proposition. 5.1

Definition 5.5 (More restrictive equivalence relation). Let and be two equivalence relation on a set of elements X , we say that is more restrictive than (and thus, is less restrictive than) if and only if for every x, x ∈ X such that x x , it holds that x x .

A trivial result is that a more restrictive equivalence relation means that less arguments are equivalent. Likewise, a less restrictive equivalence relation will have more equivalent arguments and thus filter more arguments.

Proposition 5.3 (No filtration result). Let F be an argumentation framework and , be two equivalence relation such that is more restrictive than . It holds that:

for every c ∈ Core (F), Core (c) = {c }
Proof. Suppose that we have for every a, a ∈ A , it holds that if a a then a a . Now, let us consider c

= (A c , R c) ∈ Core (F) and c = (A c , R c) ∈ Core (c). We denote by X the set such that A c = X ∪ A c and X ∩ A c = ∅. If X ∅, it means that there exists b ∈ X and b ∈ A c such that b
b and b b , contradiction. It follows that X = ∅ and that c is the only core of Core (c).

RANKING WITH EXISTENTIAL RULES DEDUCTIVE ARGUMENTATION FRAMEWORK

We now prove that the set of cores of an argumentation framework F obtained using the equivalence relation 2 is equal to the set of cores that are built on cores of F using 1 .

Proposition 5.4 (Core construction equivalence). Let F = (A , R) be an argumentation framework and 1 , 2 be the equivalence relations defined in Definition 5.2. It holds that:

Core 2 (F) = c 1 ∈Cor e 1 (F) Core 2 (c 1)
Please refer to Section 7.2.3 on page xiii for the complete proof of Proposition 5.4. From Proposition 5.3 and Proposition 5.4, the next proposition holds.

Proposition 5.5 (Symmetric construction equivalence). Let F be an arbitrary argumentation framework and 1 , 2 be the equivalence relations defined in Definition 5.2. It holds that:

c 2 ∈Cor e 2 (F) Core 1 (c 2) = c 1 ∈Cor e 1 (F) Core 2 (c 1)
Proposition 5.5 is important for the next section that characterises ranking changes induced by cores as it tells us that if we are only concerned by 2 -induced ranking changes, we can bypass the core obtained via 1 .

Rankings on different cores

Now that we have investigated the notions of core for an argumentation framework, we can study how ranking-based semantics behave on them. In the work of [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF], the authors define the notion of Argumentation-based Ranking Logic (ARL) that takes a knowledge base as input and, using ranking-based semantics on the instantiated argumentation graph, provides a ranking of the formulae of the knowledge base. In the following we adapt their results and provide the corresponding existential rules argumentation-based ranking logic. The extension we provide is two fold. First we consider the existential rules framework for instantiation. Second, we take into account the notion of core in the reasoning mechanism. The new process is composed of four steps:

1. First, an argumentation framework is instantiated from a knowledge base KB = (F, R, N) (see Example 5.12 for the knowledge base considered as example throughout this section).

2. Second, a core c constructed using an equivalence relation is considered (see Table 5.1 for two examples of cores on the knowledge base from Example 5.12 considering the two equivalence relations defined in Definition 5.2, and Figures 5.1 and 5.2 for the visual depiction of the cores as graphs).

3. Third, the arguments of c are ranked using a ranking-based semantics σ2 (see Table 5.2 and Table 5.3 for the ranking of the arguments of the two cores from Figures 5.1 and 5.2 and Table 5.1 outputted by the burden-based and discussion-based ranking-based semantics [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF]).

4. Finally, their conclusions are ranked following a simple principle: a conclusion is ranked higher than another conclusion if it is supported by an argument which is ranked higher than any argument supporting the second conclusion (see Table 5.4 and Table 5.5). 5.2: Ranking on arguments of c 1 using the burden-based (and discussion-based) ranking-based semantics

            a 1 , a 2 ,
a 12             Table
      a 1 , a 2 , a 3 , a 4 , a 5
a 6 , a 7 , a 8 , a 9 , a 10 , a 11 , a 12       Table 5.3: Ranking on arguments of c 2 using the burden-based (and discussion-based) ranking-based semantics Before commenting on the results of ranking on the knowledge base, let us first define the ARL for existential rules. The definition that we provide is inspired by the work of [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] adapted for existential rules and the notion of core. We recall that the ranking on arguments resulting from a ranking-based semantics σ on an argumentation framework F will be denoted by σ F or simply by if there is no ambiguity. For two arguments a, b ∈ A , the notation a b means that b is at least as acceptable as a.

Definition 5.6 (Existential rules ARL). An existential rules ARL is a tuple: 5.4: Ranking K using the ranking on arguments of Table 5.2 5.5: Ranking K using the ranking on arguments of Table 5.

ARL = (KB, F, c, σ , K, C) 5.1. RANKING WITH EXISTENTIAL RULES DEDUCTIVE ARGUMENTATION FRAMEWORK             {P }, {M T }, {C} {M}, {M }, {T } {P , M}, {M T , M}, {P , M }, {M T , M }, {P ,T }, {M T ,T }, {C, M}, {C, M }, {C, T } {T , M}             Table
      {P }, {M T }, {C},{M}, {M }, {T } {P , M}, {M T , M}, {P , M }, {M T , M }, {P ,T }, {M T ,T }, {C, M}, {C, M }, {C, T }, {T , M}       Table
3
where KB is an inconsistent knowledge base, F is the instantiated argumentation framework (this may be omitted if the instantiation used is clear), c = (A , R) is the chosen core of F for a given equivalence relation , σ is a ranking-based semantics and K, C are defined as follows:

• for every X ⊆ F, C (X) = {Y | there exists a ∈ A ∩ Ar (X) such that Conc (a) Y }, i.e. C (X)
is the set of equivalent sets of facts that can be concluded by arguments of c constructed on subsets of X .

• for every X ⊆ F and for every Note that the equivalence relation is absent from ARL because the core is already given. Let us now show by the means of an example that the ranking-based semantics considered (namely burden-based) is sensitive to the notion of core and thus outputs different rankings for logically equivalent argumentation graphs.

Y , Z ∈ C (X), (Y , Z) ∈ K (X)
Example 5.4 (Example 5.1 cont'd). Let c 1 (respectively c 2) be the core of F KB using equivalence relation 1 (respectively 2). The argumentation graph of c 1 (respectively c 2) is represented in Figure 5.1 (respectively Figure 5.2). The ranking on arguments of c 1 (respectively c 2) computed with the burden-based ranking-based semantics is given in Table 5.2 (respectively Table 5.3). Finally, the ranking of conclusions is computed and displayed in Table 5.4 (respectively Table 5.5). Note that in this example, the discussionbased ranking-based semantics gives the same ranking.

This example shows that, surprisingly, a core does not always have the same ranking as the original argumentation framework (since c 1 and c 2 have different rankings). For instance, a 1 is ranked higher than a 3 for c 1 (Table 5.2) but a 1 is ranked equal to a 3 for c 2 (Table 5.3). This change in the CHAPTER 5. RANKING-BASED REASONING ranking of arguments is significant as it impacts the ranking of their conclusions. Hence, the atom cat (tom) which was ranked higher than mouse (jerr) and turtle (john) (Table 5.4) is now ranked equal to them (Table 5.5). This is caused by the existence of equivalences (here, cat (tom) is equivalent to puss cat (tom)) in the knowledge base. In fact, these equivalences generate redundant attacks between arguments that decrease the ranking of other arguments. That is why, by deleting redundancy in cores, we can observe that the ranking of some arguments is modified.

Hence, the chosen equivalence relation also plays a role in the ranking (as we have different rankings for the two cores). The next subsection investigates the reasons for such a behaviour.

Characterising ranking changes

In the rest of this section, we consider an argumentation framework and one of its cores constructed either using 1 or 2 . We give a necessary and sufficient condition for obtaining an equal (with respect to the set of arguments) 1. We provide a sufficient condition for an argument's rank to increase in the induced core. The new ranking of these arguments is further characterised by a sufficient condition on their respective positions. This is done via the CP postulate characterisation.

2. We provide a sufficient condition for an argument's rank to remain unchanged in the induced core. This is done via the N aE postulate characterisation.

3. Last, we provide a sufficient condition for an argument's rank to decrease in the induced core. This is done via the CP and SCT postulates characterisation.

Identity of induced core. We begin by introducing the notation needed for the rest of this section.

Definition 5.7 (Different core). Let us consider an argumentation framework F = (A , R) and one of its cores c = (A , R) with respect to an equivalence relation, we denote by X c (or X if the core is obvious) the set of arguments that have been deleted, namely

A = A ∪ X c and X c ∩ A = ∅. If X c
∅ then the core is said to be different from F, otherwise it is not different from F.

RANKING WITH EXISTENTIAL RULES DEDUCTIVE ARGUMENTATION FRAMEWORK

The next proposition gives a necessary and sufficient condition for all cores using 1 of an argumentation framework F to be not different from F.

Proposition 5.6 (Not different core characterisation 1). Let KB = (F, R, N) be a knowledge base and F KB be the corresponding argumentation framework. We have that Core

1 (F KB) = {F KB } if and only if for every R- consistent subset Y of F, there are no 1 , 2 such that Sat R (Y) |= 1 , Sat R (Y) |= 2 , 1 2 and 1 2 .
Please refer to Section 7.2.3 on page xiv for the proof of Proposition 5.6. Similarly, we show a necessary and sufficient condition for all core using 2 of an argumentation framework F to be no different than F.

Proposition 5.7 (Not different cores characterisation 2). Let KB = (F, R, N) be a knowledge base and F KB be the corresponding argumentation framework. We have Core 2 (F KB) = {F KB } if and only if both the two following items are satisfied:

• there are no f 1 , f 2 ∈ F such that f 1 f 2 and f 1 f 2 • for every R-consistent subset Y ⊆ F, there are no 1 , 2 such that Sat R (Y) |= 1 , Sat R (Y) |= 2 , 1 2 and 1 2 .
Please refer to Section 7.2.3 on page xiv for the proof of Proposition 5.7.

Rank increase. From now on, we consider an argumentation framework F = (A , R) and c = (A , R), one of its cores for equivalence relation 1 or 2 . An interesting property is that for each attack from an argument removed by the core towards an argument of the core, we can find an attack that comes from an argument of the core towards that same argument.

Proposition 5.8 (Attack equivalence). Let us consider F = (A , R), c = (A , R) one of its cores for equivalence relation

1 or 2 , E = {(a, b) ∈ R | a ∈ X c and b ∈ A } and E = {W ⊆ R | W is maximal for set inclusion such that for every (w i , w j), (w k , w l) ∈ W , wi w k , w j = w l , {wi, w k } ⊆ X c and w j , w l X c }.
The function f : R → E , that associates to each attack (a , b) ∈ R a set of attacks W ∈ E such that for every (w i , w j) ∈ W , w i a and w j = b , is surjective.

Proof. Let us consider W ∈ E and an element (w i , w j) ∈ W . Then since c is a core of F for 1 (respectively 2), we have that there exists a unique z ∈ wi 2 ∩ A (respectively wi 1 ∩ A). Then, using Proposition 5.2, we get that (z, w j) ∈ R . This proposition means that the modification of the ranking is induced mainly by a quantitative loss. We now introduce the notion of graph isomorphism which will be used to clone our argumentation frameworks.

CHAPTER 5. RANKING-BASED REASONING Definition 5.8 (Isomorphism). Let G 1 , G 2 be two directed graphs. Let V (G i) denote the set of vertices of G i and E(G i) the set of its arcs. We say that γ :

V (G 1) → V (G 2) is an isomorphism from G 1 to G 2 if and only if for every (x,) ∈ E(G 1), (γ (x), γ ()) ∈ E(G 2).
For simplicity purposes, we will also write G2 = γ (G 1).

Using the previous Proposition 5.8, we can have a better understanding as to why some arguments have better ranking in a core than in F with some ranking-based semantics. The reason is because some arguments of the core c that have equivalent arguments in X c (with respect to 2 or 1) have their attacks amplified by those arguments. Of course, depending on the ranking-based semantics used, having more attackers does not always mean that the ranking of the argument is worst. This concept corresponds to the Cardinality Postulate (CP) postulate [START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF][START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF].

Definition 5.9 (CP [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF]). Let σ be a ranking-based semantics and σ F be the ranking obtained after applying σ on F. We say that σ satisfies CP if and only if for every F = (A , R) and for every a, b

∈ A such that |Att -(a)| < |Att -(b)|, it holds that b σ F a and a σ F b.
Note that the burden-based and the discussion-based ranking-based semantics both satisfy the CP postulate [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF].

We are now interested in the impact of arguments removed by a core on arguments that belong to the core.

Definition 5.10 (Set of arguments attacked by filtrated arguments).

Let F be an argumentation framework and c be one of its cores. We denote by c (or if the core is obvious) the set of arguments of c that have at least one attacker that is equivalent to an argument in X c . More precisely, = {a ∈ A | there exists (e, a) ∈ R and f ((e, a)) ∅}, where f is the function defined in Proposition 5.8. The next proposition states that every argument of the core that is attacked by an argument equivalent to a deleted argument is ranked better in the core.

Proposition 5.9 (Argument rank increase). Let F, F be two argumentation frameworks, c be a core of F with respect to an equivalence relation, γ be an isomorphism such that F = F ⊕ γ (c) and σ be a ranking-based In Proposition 5.9, we showed that some arguments of the core may be ranked higher. We now proceed further in this direction by introducing a sufficient condition for characterising the ranking of such arguments. Unchanged rank. We now give a sufficient condition for an argument to keep the same rank. The basic notion behind this is that arguments that are not attacked by others do not undergo a change in their rank. This is true if the Non Attacked Equivalence (N aE) postulate is satisfied, namely if all the non-attacked argument have the same rank.

      |Att -(a)| - e ∈At t -(a)∩A | f ((e, a))|       <       |Att -(b)| - e ∈At t -(b)∩A | f ((e, b))|       then b σ c a
CHAPTER 5. RANKING-BASED REASONING Definition 5.11 (NaE [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF]). We say that a ranking-based semantics σ satisfies the N aE if and only if for every argumentation framework F = (A , R) and for every a, b ∈ A such that Att -(a) = Att -(b) = ∅, it holds that a σ F b and b σ F a. Note that the burden-based, discussion-based, the h-categoriser [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] and the Tuples [START_REF] Cayrol | Graduality in Argumentation[END_REF] rankingbased semantics satisfy the N aE postulate.

Proposition 5.11 (Unchanged non attacked arguments). Let F and F be two argumentation frameworks, c = (A , R) be a core of F, a ∈ A , Att -(a) = ∅ and γ be an isomorphism such that F = F ⊕ γ (c). If σ is a ranking-based semantics that satisfies N aE then a σ F γ (a) and γ (a) σ F a. Proof. We know that the core c has fewer arguments and attacks than F. Thus, the argument a is not attacked in either c or γ (c). Furthermore, since σ satisfies N aE, γ (a) and a are equivalent.

Rank decrease. In the next proposition, we introduce a sufficient condition for an argument of the core to have its rank decreased. This condition holds if the semantics used for the ranking satisfies the CP and Strict Counter Transitivity (SCT) postulates. The SCT postulate specifies that if the attackers of an argument b are at least as numerous and acceptable as those of an argument a and either the attackers of b are strictly more numerous or acceptable than those of a, then a is strictly more acceptable than b. Definition 5.12 (SCT [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF]). We say that a ranking-based semantics σ satisfies SCT if and only if for every argumentation framework F = (A , R) and for every a, b ∈ A such that there is an injective mapping : Att - The idea behind the next proposition is that if an argument's attackers have their ranks increased, then its rank is reduced.

Proposition 5.12 (Argument rank decrease). Let F and F be two argumentation frameworks, c = (A , R) be a core of F for an arbitrary equivalence relation, a be an argument of A with a c and γ be an isomorphism such that F = F ⊕ γ (c). If σ is a semantics that satisfies CP and SCT and Att F γ (b) and γ (b) σ F b (using Proposition 5.9). Finally, using the SCT postulate, we conclude that γ (a) σ F a and a σ F γ (a).

RANKING-BASED SEMANTICS WITH ARGUMENTATION HYPERGRAPHS

Ranking-based semantics with argumentation hypergraphs

As shown in the previous chapter, hypergraph argumentation frameworks can be very useful in the context of logic-based argumentation. However, it was not as extensively studied as its binary counterpart. Therefore, many notions such as supports, preferences, weights or ranking-based semantics have not been implemented yet for this framework. Against this background, we thrive to generalise the ranking-based semantics for argumentation hypergraphs by (1) translating desirable properties for ranking-based semantics on binary argumentation frameworks for hypergraph argumentation framework and (2) defining the first ranking-based semantics for hypergraph argumentation framework. The structure of this section is as follows. In Section 5.2.1, we show how the existing properties for ranking-based semantics can translate in the context of hypergraph argumentation framework. In Section 5.2.2, we introduce the nh-categoriser as the first ranking-based semantics for hypergraph argumentation framework.

Example 5.7. In this section, we will consider the hypergraph argumentation framework F = (A , R) such that: F S if and only if for every s ∈ S and every s ∈ S , we have s σ F s . Let S be a set in (2 A \ ∅) and σ be a ranking-based semantics, the set min σ F (S) is the set {s ∈ S | for every s ∈ S, s σ F s}. Definition 5.14 (Path). Let F = (A , R) ∈ K F and a ∈ A . We say that a sequence of attacks ((S 1 , t 1), . . . , (S n , t n)) is a path of size n from S 1 to a if and only if for every i ∈ {1, . . . , n}, (S i , t i) ∈ R , t n = a and for every i ∈ {1, . . . , n -1}, it holds that t i ∈ S i+1 .

• A = {a, b, c, d, e} • R = {(
CHAPTER 5. RANKING-BASED REASONING Notation 5.2. Let F = (A , R) ∈ K F , S ∈ 2 A and a ∈ A , we say that S ∈ R - n (a) if and only if there exists a path of size n from S to a. We say that S ∈ R - 1 (a) is a direct attacker of a and S ∈ R - 2 (a) is a direct defender of a.

Example 5.8 (Example 5.7 cont'd). The sequence (({d}, a), ({a, c}, e)) is a path of size 2 from {d} to e. Thus, {d} ∈ R - 2 (e) and {d} is a direct defender of e.

Properties for ranking-based semantics on hypergraphs

We first introduce the definition of an isomorphism between two argumentation hypergraphs.

Definition 5.15 (Isomorphism). An isomorphism between two argumentation hypergraphs F = (A , R) and F = (A , R) is a bijective function γ : A → A such that for every S ∈ 2 A and every a ∈ A , (S, a) ∈ R if and only if ({γ (s) | s ∈ S}, γ (a)) ∈ R . With a slight abuse of notation, we will note F = γ (F).

In the rest of this section, we recall the properties for a ranking-based semantics σ that have been defined in the literature [START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF][START_REF] Bonzon | A Comparative Study of Ranking-Based Semantics for Abstract Argumentation[END_REF] and we translate them for hypergraph argumentation frameworks. We now begin with the properties that can be translated straightforwardly.

The Abstraction property states that the name of the arguments should not be taken into account for the ranking.

Property 5.1 (Abstraction). We say that σ satisfies Abstraction if and only if for any F , F ∈ K F and isomorphism γ such that F = γ (F), we have a σ F b if and only if γ (a) σ F γ (b) The Independence property states that two arguments with no paths connecting them should not influence each other.

Property 5.2 (Independence). We say that σ satisfies Independence if and only if for any

F = (A , R), F = (A , R) in K F such that A ∩A = ∅ and every a, b ∈ A we have a σ F b if and only if a σ F ⊕F b.
The Void precedence property states that non-attacked arguments should be ranked higher than attacked arguments.

Property 5.3 (Void precedence). We say that σ satisfies Void precedence if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that R - 1 (a) = ∅ and R - 1 (b) ∅ we have a σ F b.
The Self-contradiction property states that self-contradicting arguments should be ranked lower than non self-contradicting arguments.

RANKING-BASED SEMANTICS WITH ARGUMENTATION HYPERGRAPHS

Property 5.4 (Self-contradiction). We say that a ranking-based semantics σ satisfies Self-contradiction if and only if for any F = (A , R) ∈ K F and a, b ∈ A such that there exists S 1 ∈ R - 1 (a) with a ∈ S 1 and there exists no S 2 ∈ R - 1 (b) with b ∈ S 2 we have b σ F a. The Cardinality precedence property states that if an argument a has more attackers than an argument b than it should be ranked lower than b.

Property 5.5 (Cardinality precedence). We say that σ satisfies Cardinality precedence if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that |R - 1 (a)| > |R - 1 (b)| we have b σ F a.
The Defense precedence property states that if a and b are two arguments with the same number of attackers and a is defended but b is not then a should be ranked higher than b.

Property 5.6 (Defense precedence). We say that σ satisfies Defense precedence if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that |R - 1 (a)| = |R - 1 (b)|, R - 2 (a) = ∅ and R - 2 (b) ∅ we have b σ F a.
The Total property states that two arguments should always be comparable.

Property 5.7 (Total). We say that σ satisfies Total if and only if for any F = (A , R) ∈ K F and a, b ∈ A we have a σ F b or b σ F a. The Non-attacked equivalence property states that two non-attacked arguments should be ranked equivalently.

Property 5.8 (Non-attacked equivalence). We say that σ satisfies Non-attacked equivalence if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that R - 1 (a) = R - 1 (b) = ∅ we have a ≈ σ F b
Definition 5.16 (Simple and distributed defense). Let F = (A , R) ∈ K F and a ∈ A . The defense of a is simple if and only if for every direct defender S of a, there is a unique S ∈ R - 1 (a) and s ∈ S such that (S, s) ∈ R . The defense of a is distributed if and only if for every direct attacker S of a, there is at most one direct defender S of a such that (S , s) where s ∈ S.

The Distributed-defense precedence property states that if a has a simple and distributed defense and b has a simple but not distributed defense than a should be higher than b.

Property 5.9 (Distributed-defense precedence). σ satisfies Distributeddefense precedence if and only if for any

F = (A , R) ∈ K F , for any a, b ∈ A such that |R - 1 (a)| = |R - 1 (b)| and |R - 2 (a)| = |R - 2 (b)|
and that the defense of a is simple and distributed and that the defense of b is simple but not distributed we have a σ F b.

RANKING-BASED SEMANTICS WITH ARGUMENTATION HYPERGRAPHS

The Increase of defense branch property states that increasing the length of a defense branch of an argument a should increase the ranking of a.

Property 5.14 (Increase of defense branch). We say that σ satisfies Increase of defense branch if and only if for any F , F = (A , R) ∈ K F and any a ∈ A such that there exists an isomorphism γ with F = γ (F), for every S ∈ (2 A \ ∅) such that for every s ∈ S, R - 1 (s) = ∅, there exists a path of size n from S to a with n ∈ 2N and there is no path of size m from S to a with m ∈ 2N + 1 then for every s ∈ S, a σ F ⊕F ⊕P + (γ (s)) γ (a).

Definition 5.18 (Cycle). Let F = (A , R) be an hypergraph argumentation framework, S ∈ (2 A \ ∅) and s ∈ A . We say that a path from S to s is a cycle if and only if s ∈ S. An argumentation framework is called acyclic if and only if there is no cycle.

The Attack vs full defense property states that, in an acyclic hypergraph argumentation framework, an argument with only one direct attacker should be ranked lower than an argument without any attack branch.

Property 5.15 (Attack vs full defense). We say that σ satisfies Attack vs full defense if and only if for any

F = (A , R) ∈ K F that is acyclic and a, b ∈ A such that |R - 1 (b)| = 1, R - 2 (b) = ∅,
there exists no S ∈ (2 A \ ∅) with for every s ∈ S, R - 1 (s) = ∅ and a path of size n from S to a with n ∈ 2N + 1 then a σ F b. In the next properties, we make the assumption that the set of arguments should be compared with respect to their weakest arguments. We work under this hypothesis since, for an attack to exist, all arguments from S are necessary. Of course, another aggregation function could be used and most of the corresponding definitions could easily be changed to take this modification into account.

The Quality precedence property states that if an argument a has an attacker S such that the weakest element of S is ranked higher than every weakest element of any attacker of b than a should be ranked lower than b. The Counter-transitivity property states that if the attackers of a are better than the attackers of b with respect to the group comparison then b should be ranked higher than a.

Property 5.17 (Counter-transitivity). We say that σ satisfies Countertransitivity if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that R - 1 (a) ≥ R - 1 (b) then b σ F a.
The Strict counter-transitivity property states that if the attackers of a are better than the attackers of b with respect to the group comparison then b should be ranked strictly higher than a.

Property 5.18 (Strict counter-transitivity). We say that σ satisfies Strict counter-transitivity if and only if for any

F = (A , R) ∈ K F and a, b ∈ A such that R - 1 (a) > R - 1 (b) then b σ F a.

The nh-categoriser

As mentioned before, in each set of attacking arguments, all the components are necessary. Thus, removing one argument from the set of attacking arguments would make the attack void. In the definition of the nh-categoriser, we thus consider the force of the set of attacking arguments to be the force of the weakest argument of the set. Of course, the approach can be generalised with other aggregating methods.

Definition 5.20 (Nh-categoriser function). Let F = (A , R) be an hypergraph argumentation framework. The nh-categoriser function is C : A → [0, 1] defined as, for all a ∈ A :

C (a) =            1 if R -(a) = ∅ 1 1+ S ∈R - 1 (a) min s ∈S C (s) otherwise
In the rest of this section, we consider the argumentation framework F = (A , R) where A = {a 1 , . . . , a n }. We now answer the two following questions for the nh-categoriser function: (1) "How many solutions exists?" and (2) "how to find them?"

We first transform the problem into a fixed point form. Let us consider ∈ [0, 1] n such that: (1) is true. We need to prove that u (2k) ≤ u (2k+2) ≤ u (2k +1) ≤ u (2k+1) .

= F () = [f 1 (), f 2 (), . . . , f n ()] T (5.1) CHAPTER 5. RANKING-BASED REASONING Inductive step: Suppose that u (0) ≤ u (2) ≤ • • • ≤ u (2k) ≤ • • • ≤ u (2k+1) ≤ • • • ≤ u (3) ≤ u
First, we show that u (2k+2) ≤ u (2k+1) . Since u (2k) ≤ u (2k +1) and that F is non increasing, we deduce that F (u (2k +1)) ≤ F (u (2k)) and that u (2k+2) ≤ u (2k+1) . Likewise, we show u (2k) ≤ u (2k +2) using the same reasoning.

Second, we show that u (2k+2) ≤ u (2k+3) ≤ u (2k+1) . Since we prove in the previous step that u (2k+2) ≤ u (2k+1) and u (2k) ≤ u (2k+2) , we deduce using the fact that F is non increasing that u (2k +2) ≤ u (2k+3) and u (2k +3) ≤ u (2k+1) respectively. This concludes the proof by induction.

From (5.5) and (5.6), we find that there exists φ such that φu (2k-1) ≤ u (2k) for each k ≥ 1. Now, let us denote π k = sup{π such that πu (2k-1) ≤ u 2k) }. Then, 0

< φ ≤ π 1 ≤ • • • ≤ π k ≤ • • • ≤ 1. We now show that lim k→∞ π k = 1. We first show f i (πu) = 1 π +f i (u)(1-π) f i (u) for all i ∈ {1, 2, . . . , n}. f i (πu) = 1 1 + S ∈R - 1 (a i) min a j ∈S f j (πu) = 1 1 + π S ∈R - 1 (a i) min a j ∈S f j (u) = 1 + S ∈R - 1 (a i) min a j ∈S f j (u) 1 + π S ∈R - 1 (a i) min a j ∈S f j (u) × f i (u) = 1 1+π S ∈R - 1 (a i) min a j ∈S f j (u) 1+ S ∈R - 1 (a i) min a j ∈S f j (u) × f i (u) = 1 (1+ S ∈R - 1 (a i) min a j ∈S f j (u))π -π +1 1+ S ∈R - 1 (a i) min a j ∈S f j (u) × f i (u) = 1 π + 1-π 1+ S ∈R - 1 (a i) min a j ∈S f j (u) × f i (u) f i (πu) = 1 π + (1 -π) f i (u) × f i (u)
Then, there exists 0 < α < 1 and a continuous function

ψ (π) = 1 π +α (1-π) 138

RANKING-BASED SEMANTICS WITH ARGUMENTATION HYPERGRAPHS

such that:

F (πu) ≤ ψ (π)F (u), ∀π ∈ [φ, 1[, u ∈ [φ, 1] n (5.7)
Then, we show that:

u (2k+1) = F (u (2k)) ≤ F (π k u (2k-1)) ≤ ψ (π k)u (2k) ≤ ψ (π k)u (2k +2) (5.8)
By definition of π k , it holds that π k u (2k-1) ≤ u (2k) and since F is non decreasing, we deduce that F (u (2k)) ≤ F (π k u (2k -1)). Using (5.7), we conclude that F (π k u (2k-1)) ≤ π k F (u (2k-1)) = π k u (2k) . Using (5.6), we have that u (2k) ≤ u (2k+2) and π k u (2k) ≤ π k u (2k +2) . Now, we show that π k+1 ≥ 1 ψ (π k) by contradiction. Suppose that this π k+1 < 1 ψ (π k) . Using (5.8), we have that u (2k +1) ≤ ψ (π k)u (2k+2) and thus +2) . Contradiction with the definition of π k+1 . We now show that:

1 ψ (π k) u (2k +1) ≤ u (2k
1 -π k+1 ≤ (1 -α)(1 -π k) ≤ • • • ≤ (1 -α) k (1 -π 1) ≤ (1 -α) k (1 -φ) (5.9)
Using the previous result, we have that:

π k +1 ≥ 1 ψ (π k) = π k + α (1 -π k) απ k -α -π k + 1 ≥ 1 -π k+1 (1 -α)(1 -π k) ≥ 1 -π k+1
This is sufficient to prove (5.9) by noticing that φ ≤ π 1 . As 0 < α < 1, thus by (5.9) we have:

lim k→∞ (1 -π k +1) = 0 ⇒ lim k →∞ π k = 1 (5.10)
There by (5.6), we get for any integer p ≥ 1: (1) (5.11) Since [0, 1] n is normal, both {u (2k +1) } ∞ k=0 and {u (2k) } ∞ k =1 are convergence sequences. By (5.10) and (5.11), thus, there exists u * ∈ [0, 1] n such that:

0 ≤ u (2k +2p) -u (2k) ≤ u (2k +1) -u (2k) ≤ (1 -π k)u (2k +1) ≤ (1 -π k)u
lim k →∞ u (2k+1) = lim k→∞ u (2k) = u *
(5.12)

Hence, u (2k) ≤ u * ≤ u (2k+1) and u (2k) ≤ F (u *) ≤ u (2k+1) . Letting k → ∞ and combining with (5.12), it follows that F (u *) = u * (it is a fixed point of F . We now show that the result holds for any arbitrary (0) ∈ [0, 1] n . By induction, we have that for any k ≥ 1, u (2k) ≤ (2k) ≤ u (2k-1) and u (2k) ≤ (2k +1) ≤ u (2k+1) . Then (k) → * = u * as k → ∞. In particular, let (0) = w * , where w * is any fixed point of F in [0, 1] n , then (k) = w * for all k ≥ 1, and we get w * = u * . So F has a unique fixed point in [0, 1] n . Now that we showed the existence and uniqueness of the values returned by the nh-categoriser function for any argumentation hypergraphs, we show how the nh-categoriser ranking-based semantics is constructed from the scores returned by nh-categoriser function. In the next proposition, we show that there always exists a regular Dung's abstract argumentation framework such that the score on arguments with the h-categoriser function (see Definition 2.54 on page 41) are the same as the scores on arguments in the hypergraph argumentation framework with the nh-categoriser function.

Proposition 5.16 (Dung equivalent existence). Let F = (A , R) be an hypergraph argumentation frameworks. Then, there exists an abstract argumentation framework F = (A , R), a subset {a 1 , . . . , a m } ⊆ A and a bijection γ : A → {a 1 , . . . , a m } such that for every a ∈ A , C (a) = C (γ (a)).

Proof. The detailed proof can be found in Section 7.2.3 on page xv.

Ranking facts in inconsistent knowledge bases

We now place ourselves in the Ontology-Based Data Access (OBDA) setting where one wants to "access" the data stored in different source. In this setting, the aggregation of all the databases often result in an inconsistent knowledge base due to conflicting data or incompatible vocabulary. As a result, the main research avenue is to investigate query answering over a set of fact bases enriched by the ontology [START_REF] Poggi | Linking Data to Ontologies[END_REF]. One of the main challenges of reasoning in OBDA applications is handling the inherent inconsistency that might occur amongst independently built data sources partially describing the same knowledge of interest [START_REF] Benferhat | Some Syntactic Approaches to the Handling of Inconsistent Knowledge Bases: A Comparative Study Part 1: The Flat Case[END_REF][START_REF] Lukasiewicz | From Classical to Consistent Query Answering under Existential Rules[END_REF][START_REF] Lembo | Inconsistency-tolerant query answering in ontology-based data access[END_REF][START_REF] Hecham | Argumentation-Based Defeasible Reasoning For Existential Rules[END_REF].

Classically inconsistent tolerant semantics consider all maximally consistent subsets of a fact base (called repairs) that they manipulate using a modifier (expansion, splitting, etc.) and an inference strategy (intersection, universality, etc.) [Baget et al., 2016a]. Using all repairs might be inappropriate for certain applications that would rather focus on particular sources of knowledge. For instance, when considering more reliable knowledge (i.e. sensor information, provenance data etc.) one could only consider repairs using mostly facts from such sources. Preferences on facts have been used for inconsistency-tolerant reasoning in the work of [START_REF] Staworko | Prioritized repairing and consistent query answering in relational databases[END_REF]. In that setting, the authors suppose that the preference order on the facts is given but unfortunately, this is not always the case. In such cases, we propose to use the inconsistency of the elements of the knowledge base as an intrinsic preference on the facts. Such inherent preference on the facts (i.e. facts that are more or less responsible for the inconsistencies) generates a preference on the repairs that are containing these facts (i.e. repairs that contain more or less controversial facts). In this section, we propose a framework that takes into consideration the inconsistency on the facts when using the repairs for query answering and restricts the set of repairs to the "best" with respect to inconsistency values. Since we consider a subset of repairs we obtain more answers than classical inconsistency-tolerant query answering.

In this section, we characterise desirable properties of such frameworks like free facts entailment, syntax independence and reliability preservation. We also provide an implementation of our approach and discuss its performance. The salient point of this section lies in it being the first approach in the literature capable of ranking repairs using only the inherent structure of the knowledge base. This is a significant result as our approach is applicable on a large variety of domains without requiring additional preference information. Furthermore, we show the significance and the practical interest of our approach using the real data collected in the framework of the Pack4Fresh project for reducing food wastes. During this project, we collected data using an online poll from a set of professionals of the food in-dustry, including wholesalers, quality managers, floorwalkers and warehouse managers, about food packagings and their characteristics. The framework was able to rank the repairs efficiently and the results were then analysed and evaluated by experts from the packaging industry.

The ranking-based inference framework

We introduce the Ranking-based Inference Framework (RIF) and its three main components: the inconsistency value, the lifting function and the inconsistency-tolerant inference. It is similar to the work in argumentation by [START_REF] Konieczny | On Supported Inference and Extension Selection in Abstract Argumentation Frameworks[END_REF], where only the best extensions are used for reasoning. The section is organised as follows: in Section 5.3.1.1, we recall the notion of Drastic and MI Shapley inconsistency values, in Section 5.3.1.2, we give examples of lifting functions and in Section 5.3.1.3, we show how inconsistency-tolerant inferences are modified in order to be used in the framework.

An inconsistency measure according to [START_REF] Grant | Measuring the Good and the Bad in Inconsistent Information[END_REF] is a function that, given a knowledge base KB = (F, R, N), associates a number to each set of facts.

Definition 5.22 (Inconsistency measure). An inconsistency measure is a function I : KB s × 2 L → R such that for every KB = (F, R, N) ∈ KB s and C, C ∈ 2 L :

• I (KB, C) = 0 if and only if C is R-consistent • I (KB, C ∪ C) ≥ I (C)
• if α is a free fact of KB, then I (KB, F) = I (KB, F\{α}).

For readability purposes, we will use the notation I KB (C) instead of I (KB, C) and I (C) if the working knowledge base KB is obvious.

An inconsistency value is a function that associates a number to each fact of a knowledge base KB. Many inconsistency values were defined by [START_REF] Hunter | On the measure of conflicts: Shapley Inconsistency Values[END_REF] using existing inconsistency measures and the Shapley value from coalitional game theory. We introduce a framework that makes use of these inconsistency values together with a lifting function and an inconsistency-tolerant inference relation to improve the productivity of query answering for an inconsistent knowledge base.

Our framework is based on three layers. First, an inconsistency value is used to calculate the score of each fact of KB. We previously mentioned Shapley inconsistency values, but any function returning a score for each fact of KB can be used.

Definition 5.23 (Inconsistency value). An inconsistency value is a function V : KB s × L → R. Let V L be the total, reflexive and transitive binary order on L with respect to KB and V defined as: for every a, b ∈ L, a V L b if and only if V(KB, a) ≤ V(KB, b).

For readability purposes, we write V a (KB) instead of V(KB, a). Moreover, we write instead of V L when L and V are obvious. Second, we need a lifting function, i.e. a function that compares the set of repairs, based on the individual scores of facts with respect to an inconsistency value. A criterion of comparison would be to evaluate the "strongest" fact of each set. A generalisation of this criterion is the socalled leximax which, in the case where the best facts are equally strong, proceeds to compare the next best fact of each set. Please note that the set of all total, reflexive and transitive binary orders on X is denoted by X .

Definition 5.24 (Lifting function). A lifting function is a function

L : 2 L × L → 2 L .
For readability purposes, we use the notation L (X) for L(X ,). Furthermore, (E, E) ∈ L (X) means that E is better than or equal to E .

= (F, R, N) is OUT RIF (KB) = {E ∈ repairs (KB) | for all E ∈ repairs (KB), (E, E) ∈ L V F (F)}.

RIF inconsistency value

An inconsistency value is a function that associates a value to each fact of the knowledge base. This value is supposed to be higher the more a fact is conflicting with the other facts. In this thesis, we make the choice to focus on the Shapley inconsistency value introduced by Hunter and [START_REF] Hunter | On the measure of conflicts: Shapley Inconsistency Values[END_REF] because it possesses many desirable properties as will be shown in Proposition 5.17 below. The Shapley inconsistency value uses notions from game theory to measure the responsibility of each fact to the overall inconsistency of the knowledge base.

Definition 5.27 (Shapley inconsistency value). Let I be an inconsistency measure, KB = (F, R, N) a knowledge base and f ∈ F, the Shapley inconsistency value corresponding to I , noted V I is defined as:

V I f (KB) = C ⊆F (|C | -1)!(|F| -|C |)! |F|! (I KB (C) -I KB (C\{f }))
Note that if one considers F as the vector (f 1 , f 2 , . . . , f n), then V I (KB) is the vector of corresponding Shapley inconsistency values, i.e. V I (KB) = (V I f 1 (KB), V I f 2 (KB), . . . , V I f n (KB)). Let KB = (F, R, N) be a knowledge base, the inconsistency values investigated in this thesis are the following:

• The drastic Shapley inconsistency value is computed by using the following inconsistency measure:

I KB d (X) =        0 if X is R-consistent with respect to KB 1 otherwise
• The MI Shapley inconsistency value is computed by using the following inconsistency measure:

I KB M I (X) = |MI ((X , R, N))|
We now show that every Shapley inconsistency value satisfies Distribution, Symmetry and Minimality. The result and its proof are similar to that of [START_REF] Hunter | On the measure of conflicts: Shapley Inconsistency Values[END_REF].

Proposition 5.17 (Shapley I.V. property satisfaction). Let I be an arbitrary inconsistency measure and KB = (F, R, N) a knowledge base, the Shapley inconsistency value corresponding to I satisfies:

• (Distribution) a ∈F V I a (KB) = I KB (F) • (Symmetry) If a, b ∈ F such that for all X ⊆ F, a, b X we have I KB (X ∪ {a}) = I KB (X ∪ {b}) then it holds that V I a (KB) = V I b (KB) • (Minimality) If a is a free fact of KB then V I a (KB) = 0
In Example 5.12, we show how the MI and drastic Shapley inconsistent values are computed from a simple knowledge base.

CHAPTER 5. RANKING-BASED REASONING

RIF inference

Inconsistency-tolerant query answering is a challenging problem that received a lot of attention recently. We recall that we place ourselves in the context of OBDA, where the ontology is assumed to be satisfiable and fully reliable. In the following, we recall some of the most well-known inconsistency-tolerant inferences that have been proposed in the literature. Let KB = (F, R, N) be a knowledge base and q be a boolean conjunctive query. Then:

• q is said to be AR entailed by KB denoted by KB |= AR q if and only if for every R ∈ repairs (KB), C R (R) |= q

• q is said to be IAR entailed by KB denoted by KB |= I AR q if and only

if C R R ∈r epair s (KB) R |= q
• q is said to be ICR entailed by KB denoted by KB |= I C R q if and only if

R ∈r epair s (KB) C R (R) |= q
Example 5.14 (Example 5.12 cont'd). A query q = ∃x (c (x)) is not AR, IAR nor ICR entailed. Indeed, we cannot entail q from the closure of all the repairs, the intersection of the closure of all the repairs nor the closure of the intersection of all repairs.

We propose here to reuse AR, IAR, ICR by restricting them to the top result of a RIF instead of the whole set of repairs.

Definition 5.28 (Restricted inference). Let x ∈ {AR, IAR, ICR}. We denote the restriction of |= x to the top result of RIF instead of the whole set of repairs by |= RIF

x . For instance, the restricted version of AR will be denoted by |= RIF AR and defined as KB |= RIF AR q if and only if for every R ∈ OUT RIF (KB), C R (R) |= q. Example 5.15 (Example 5.13 cont'd). Let us consider the query q = ∃X (c (X)). The query q is AR, IAR and ICR entailed with respect to RIF since OUT RIF (KB) = {{c (m), b (m, s)}}.

RIF results

This section presents a characterisation of the framework in terms of properties and general productivity results. In Section 5.3.2.1, we show some desirable properties of the framework and how such component properties relate to framework properties. In Section 5.3.2.2, we show an algorithm for computing the top result of the framework and its performance on a given set of data. In Section 5.3.2.3, we explicit the use of our framework on a real life scenario.

RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

RIF properties

In this section, we show that the desirable properties on the components can lead to desirable properties on the entire framework. First, we introduce desirable properties for general inconsistency values. The minimality property states that a free fact should have the lowest score. The flawed property conveys the idea that a non-free fact should have a strictly positive score. Lastly, the bottom facts property states that an R-inconsistent fact should have the score 1.

Definition 5.29 (Minimality). We say that an inconsistency value V satisfies minimality if and only if for any knowledge base KB and every free fact a of KB, it holds that V a (KB) = 0. Definition 5.30 (Flawed). We say that an inconsistency value V satisfies flawed if and only if for any knowledge base KB and every non free fact a of KB, it holds that V a (KB) > 0.

Definition 5.31 (Bottom facts). We say that an inconsistency value V satisfies bottom facts if and only if for any knowledge base KB = (F, R, N) and a ∈ F such that {a} is R-inconsistent, it holds that V a (KB) = 1

The R-append and N-append properties are satisfied if the addition of a rule or a negative constraint to a knowledge base cannot decrease the score of any fact.

Definition 5.32 (R-append). We say that an inconsistency value V satisfies R-append if and only if for any knowledge base KB = (F, R, N) and any positive rule r R such that KB = (F, R ∪ {r }, N), it holds that for every f ∈ F, V f (KB) ≤ V f (KB).

Definition 5.33 (N-append). We say that an inconsistency value V satisfies N-append if and only if for any knowledge base KB = (F, R, N) and any negative constraint n N such that KB = (F, R, N ∪ {n}), it holds that for every f ∈ F, V f (KB) ≤ V f (KB).

The abstraction-I property states that an inconsistency value should not rely on the names of constants or predicates.

Definition 5.34 (Abstraction-I). We say that an inconsistency value V satisfies abstraction-I if and only if for any two knowledge bases KB, KB and any isomorphism3 γ such that γ (KB) = KB , it holds that for every

f ∈ F, V f (KB) = V γ (f) (KB).
The cardinality-MI property says that the score is based on minimal inconsistent subsets. Namely, if the score of a fact is strictly inferior to the score of an other fact, it means that the number of minimal inconsistent sets the first fact belongs to is strictly lower than the number of minimal inconsistent sets the second facts belongs to. Definition 5.35 (Cardinality-MI). We say that an inconsistency value V satisfies cardinality-MI if and only if for any knowledge base KB = (F, R, N) and any two facts

f , f ∈ F such that V f (KB) < V f (KB), it holds that |{X ∈ MI (KB) | f ∈ X }| < |{X ∈ MI (KB) | f ∈ X }|.
Proposition 5.18 (MI and drastic I.V. property satisfaction). It holds that:

• V I M I satisfies minimality, flawed, abstraction-I, bottom facts and does not satisfy cardinality-MI, R-append and N-append.

• V I d satisfies minimality, flawed, abstraction-I and does not satisfy cardinality-MI, R-append, N-append and bottom facts.

The lifting function uses a ranking on elements in order to provide a ranking on sets. We introduce some basic desirable properties for lifting functions below.

The data sensitive property ensures that element ranking is taken into account by the lifting function. The abstraction-L states that the ranking returned by the lifting function should not be concerned with the names of the elements. Please note that |= RIF x with x ∈ {AR, IAR, ICR} satisfies the QCE, QCI, Cons, ConsS, ConsC properties from the work of [START_REF] Baget | Inconsistency-Tolerant Query Answering: Rationality Properties and Computational Complexity Analysis[END_REF].

We now introduce some properties on the whole framework. A desirable property is the entailment of free facts (the free property). The

RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

supremacy property states that if a fact is strictly less controversial than any other fact, then it should be entailed. non entailment ejection states that if a fact is only entailed by the closure of a repair which is not ranked amongst the best repairs, then it will not be entailed by the knowledge base. The abstraction property states that if there is a renaming of the constants and predicates in a knowledge base, the answers of our framework should remain unchanged.

Definition 5. 38 (Free). We say that a RIF RIF = (V, L, |=) satisfies free if and only if for any knowledge base KB and any free fact a of KB, it holds that KB |= RIF a.

Definition 5.39 (Supremacy). We say that a RIF RIF = (V, L, |=) satisfies supremacy if and only if for any knowledge base KB such that there exists f ∈ F with V f (KB)

1 and for every f ∈ F \ {f }, we have V f (KB) < V f (KB) then it holds that KB |= f . Definition 5.40 (Non entailment ejection). We say that a RIF RIF = (V, L, |=) satisfies non entailment ejection if and only if for any knowledge base KB, any R ∈ repairs (KB) \ OUT RIF (KB) and f ∈ C R (R) such that there is no R ∈ repairs (KB) \ {R} with f ∈ C R (R) then KB |= f . Definition 5.41 (Abstraction). We say that a RIF RIF satisfies abstraction if and only if for any two knowledge base KB, KB , any query q, any isomorphism γ such that γ (KB) = KB and x ∈ {AR, IAR, ICR}, it holds that KB |= RIF x q if and only if γ (KB) |= RIF x γ (q). Proposition 5.20 (RIF property satisfaction). It holds that:

• Abstraction-I and abstraction-L imply abstraction.

• Let RIF = (V, L , |= RIF

x) where x ∈ {AR, IAR, ICR} then RIF satisfies free and non entailment ejection.

• Let RIF = (V, L , |= RIF

x) where x ∈ {AR, IAR, ICR}, ∈ {leximax, max} and V satisfies bottom facts then RIF satisfies supremacy.

Although it is not always better to be more productive for all applications, the following result shows that the RIF is more productive than the usual IAR, AR and ICR semantics.

Proposition 5.21 (Productivity). Let RIF be a RIF and be q a query, then:

• If KB |= x q then KB |= RIF x q, where x ∈ {AR, IAR, ICR} • If KB |= RIF I AR q then KB |= RIF I C R q • If KB |= RIF I C R q then KB |= RIF AR q
However, it is worth noting that our framework does not make every inconsistency-tolerant inference relation more productive. For instance, that is not the case with the non objection semantics defined by [START_REF] Benferhat | Non-Objection Inference for Inconsistency-Tolerant Query Answering[END_REF].

Algorithmic results

In this section, we show a simple recursive algorithm that uses minimal inconsistent sets to compute the top result of our framework and we study the behaviour of this algorithm thanks to an experiment. Since finding each minimal inconsistent set has been proven to be practically feasible as it is polynomial for data complexity and exponential for combined complexity [START_REF] Lembo | Inconsistency-Tolerant Semantics for Description Logics[END_REF]Hecham et al., 2017a], we make the assumption that this set is given. The top result of our framework is obtained by calling Algorithm 5.1 with X and Z initialised to ∅ and M to the set of minimal inconsistent sets of KB. The parameter X is the set considered for building the result and Z is the set used for avoiding redundancies by memorising encountered sets. In Algorithm 5.1, we begin by checking if the set considered was already encountered (see line l 1). Then, we proceed by finding facts with a minimal score that can be added to X without triggering a minimal inconsistent set (see line l 2). If such facts cannot be found, it means that the considered set X is indeed a repair and should be returned (see line l 3). Otherwise, the above mentioned process is repeated by augmenting the set of the considered set X with the facts found in line l 2 (see line l 4). The set E contains repairs with maximal elements with respect to V I M I . 4 However, although these repairs contain maximal elements, they are not equivalent with respect to leximax and this is why we have to refine the set E (see line l 5). Please note that an alternate definition of V I M I found in the work of [START_REF] Hunter | On the measure of conflicts: Shapley Inconsistency Values[END_REF] can be used for a faster computation.

We ran the algorithm on the knowledge bases described by [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF] and compared its performance with a basic algorithm for computing the RIF, namely naively finding all repairs, computing the inconsistency values and refining them by using leximax. The knowledge bases were split in two sets: A first set A of 108 knowledge bases with 2 to 7 facts, 0 to 6 rules and 1 to 4 binary or ternary negative constraints and a second set B of 26 knowledge bases with 8 facts, 6 rules and between 1 and 2 binary or ternary negative constraints. For further details about the knowledge bases, the reader is invited to consult the original paper of [START_REF] Yun | A Structural Benchmark for Logical Argumentation Frameworks[END_REF]. The results were as follows:

• For the set A, the average number of repairs per knowledge base was 2.89 and the average number of repairs in the top result of the RIF

RANKING FACTS IN INCONSISTENT KNOWLEDGE BASES

Algorithm 5.1 OFRecc Data: Two sets of sets of facts M, Z and a set of facts X Result: A set of repairs OUT RIF (KB) where RIF = (V

I M I , L l ex imax , |= RIF) begin l if X Z then Z ←-Z ∪ {X } Y ←-{f ∈ F \ X | for all m ⊆ X , m ∪ {f } M} l Y ←-{ ∈ Y | V I M I is minimal} if Y = ∅ then l return {X} else E ←-∅ for ∈ Y do l E ←-E ∪ OF Recc (M, X ∪ { }) l E ←-top sets of E with L l ex imax with respect to V I M I return E else return ∅
was 2.11. It means that the average number of repair was reduced by 26.92%. Moreover, it takes an average of 543ms per knowledge base to find the top result of the RIF with the basic algorithm whereas it takes an average of 601ms per knowledge base to find the same top result with our algorithm.

• For the set B, the average number of repairs per knowledge base was 4.5 and the average number of repairs in the top result of the RIF was 3.62. It means that the average number of repair was reduced by of 19.66%. Moreover, it takes an average of 1.764s per knowledge base to find the top result of the RIF with the basic algorithm whereas it takes an average of 1.617s per knowledge base to find the top result with our algorithm.

Although finding the set Y and E (see l 2 and l 5) can be found in polynomial time, in the worst case scenario, we would still have to search throughout all the subsets of F which would be exponential with respect to |F|. All experiments were performed on a Mac machine running on macOS High Sierra with an Intel core i5 2.8 GHz and 8GB of RAM and were reproduced multiple times.

Application scenario

We now consider an application scenario constructed in the setting of the Pack4Fresh project [Yun et al., 2016] which was aimed at choosing the best packaging for strawberries. In this project, an online poll consisting of 66 questions was submitted to an audience of 21 professionals from the food industry. We distinguished four kinds of professionals: the wholesalers, the floorwalkers, the quality managers and the warehouse managers. The questions were aimed at collecting the individual vision of each person about the characteristics of four packagings: the wooden packaging (wp), the plastic packaging with a plastic film (ppf), the plastic packaging with a rigid lid (prl) and the opened plastic packaging without lid (opl) (see Figure 5.7). The answers of this poll were formalised into a set of 50 facts and 160 rules. In our application scenario, the inconsistency of the knowledge base comes from the fusion of the divergent visions of the several professionals about the four aforementioned packagings. These visions were explicitly expressed using the rules. For instance, the rule ∀X (pp f (X , wholesaler 0) → cheapCost (X)) conveys the idea that the entity wholesaler 0 believes that the plastic packaging with a plastic film is cheap.

A group of packaging experts constructed another set of 18 rules constituting expert knowledge. For instance, the rule ∀X (keepHumidit (X) → badFrid eConser ation(X)) states that if X is a packaging that keeps humidity then X is a bad packaging for fridge conservation whereas the rule ∀X (accelerateDeca (X) → badE f f ectOnFruits (X)) states that if X is a packaging that accelerates decay then it is considered as having a bad effect on fruits. Lastly, a set of 34 negative constraints representing conflicting atoms, such as ∀X (notBadE f f ectOnFruits (X) ∧ badE f f ectOnFruits (X) → ⊥), and incompatibilities between packagings, such as ∀X , Y , Z ,T (opl (X , Y) ∧ prl (Z ,T) → ⊥), was added. The formalisation yielded a set of 33 repairs where each repair corresponds to the vision of a collection of individuals about a single packaging. For instance, we have that the repair opl 2 = {opl (po, f loorwalker 0), opl (po, wharehouse mana er 0)} corresponds to the vision of the two agents f loorwalker 0 and wharehouse mana er 0 about the opened plastic packaging without lid. Amongst the 33 repairs, 16 concerned the wooden packaging, 6 concerned the plastic packaging with a rigid lid, 9 concerned the plastic packaging with a plastic film and 2 concerned the opened plastic packaging without lid. The different number of repairs is explained by the 5.4. SUMMARY diverse quantity of disagreements amongst individuals. For instance, only two wholesalers disagreed about the characteristics of the opened packaging without lid whereas eight wholesalers disagreed about the characteristics of wooden packaging. In our model, the size of the repair corresponds to the number of individuals that agreed on all the characteristics of a specific packaging. Please note that the repairs are not ranked solely based on their cardinality.

Surprisingly, the ranking on repairs was extremely clear as it showed that wp > prl ∼ pp f > opl (see Table 5.6). Indeed, the repairs about the wooden packaging were ranked above the other repairs. The repairs about the plastic packaging with a rigid lid were ranked roughly equally with the repairs about plastic packaging with a plastic film and the repairs about opened packaging without lid were last. The ranking was evaluated by a group of packaging experts which confirmed that the ranking on packagings was intuitive with respect to the data of the knowledge base. Indeed, the experts acknowledged that wooden packaging was ranked first because its characteristics were slightly less contested by the experts.

The knowledge base in DLGP format as well as a JAVA implementation of the tool for computing the top result of our framework is accessible at: https://gite.lirmm.fr/yun/IJCAI2018.

Summary

In this chapter, we first instantiated the argumentation-based ranking logic, defined by [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF], with the existential rules framework and showed that it is impacted by the notion of cores. Indeed, we highlighted that the ranking of some arguments in an argumentation graph and in a core of this graph can be different. The main reason for this change in the ranking of arguments is that redundant arguments (and thus the attacks from them) are removed. In the case where the argumentation graph is generated from a knowledge base, we defined two sufficient properties for the cores of the graph to be not different from the original graph. Moreover, we proposed several properties for characterising the ranking changes.

In the second part of this chapter, we studied how ranking-based semantics can be transposed in the setting of hypergraph argumentation frameworks. We translated the 18 desirable properties for ranking-based semantics on binary argumentation framework defined in the literature for argumentation hypergraphs. Then, we introduced the nh-categoriser as the first ranking-based semantics for argumentation hypergraphs and showed the existence and uniqueness of its solution. As we see it, those results will enable the argumentation community to further consider new kind of frameworks such as argumentation hypergraphs in the future.

Lastly, we presented the Ranking-based Inference Framework (RIF) that wp 1 . . .

wp 16 pp f 1 , prl 1 pp f 2 , prl 2 pp f 3 pp f 4 pp f 5 , prl 3 , prl 4 pp f 6 prl 5 prl 6 pp f 7 . . . pp f 9 opl 1 opl 2 
From "worst" to "best" repairs Table 5.6: Ranking on repairs. For simplicity, repairs are denoted by the packaging they are referencing

SUMMARY

takes into consideration the inconsistency on the facts when using the repairs for query answering and restricts the set of repairs to the best with respect to inconsistency values. Since we consider a subset of repairs, we obtain more answers than classical inconsistency-tolerant query answering in most cases. We characterised the desirable properties of such a framework with respect to the following properties: Abstraction, Free, Non Entailment Ejection and Supremacy. We also introduced an algorithm for computing the top result of such a framework and showed its results on a real-life scenario about packagings. Please note that the ranking-based inference framework is more abstract than the work of [START_REF] Staworko | Prioritized repairing and consistent query answering in relational databases[END_REF] as we can consider an inconsistency value returning the same preferences on facts, a lifting function that uses these preferences such that the completion optimal repairs are ranked first, Globally optimal repairs second, Pareto optimal repairs third and followed by the other repairs.

Chapter 5 in a Nutshell

• We studied the impact of cores on the rankings returned by ranking-based semantics and proposed several properties for characterising ranking changes.

• We introduced the notion of ranking-based semantics for argumentation hypergraph and translated all of the existing properties for the binary argumentation graphs to argumentation hypergraphs. We also defined the nh-categoriser as the first ranking-based semantics for hypergraphs.

• We introduced the ranking-based inference framework for ranking repairs of an inconsistent knowledge base by using inconsistency values. We proposed several properties for the framework and describe a real-life application scenario. In this thesis, we answered a research question that originated from the necessity to preserve the ability to reason in presence of inconsistencies in a knowledge base expressed using the existential rules framework. The inconsistencies are conflicts that stem from incorrect factual knowledge. The problem of inconsistence has been addressed for existential rules using the various Repair Semantics. However, those approaches are lacking in many aspects, such that explanatory power, compared to logic-based argumentation approaches.

Research Question

How can we reason using logic-based argumentation in the context of the existential rules framework? Our research hypothesis is that logic-based argumentation can be practically used to reason in presence of inconsistencies in real-life databases. However, although there has been many theoretical works on the structure of arguments, there is a lack of studies about the structural properties of the generated argumentation frameworks and the practical generation of such graphs. Our research question can be refined as follows:

1. What are the particularities of argumentation frameworks generated from existential rules knowledge bases?

2. How can we generate logic-based argumentation frameworks for the existential rules framework? Is this framework usable for large set of data and can we improve the generation process?

3. Can we provide tools that allow for an automatic generation of argumentation graphs?

4. What are the reasoning techniques that can be used with logicbased argumentation?

Scope

Since our research problem was vast, we restricted its scope in order to address it in a more focused manner:

• Datalo + is a first order logical language that has the ability to express knowledge about unknown individuals using value invention. The level of expressiveness brought by this ability comes at the high cost of computation tractability since the reasoning mechanism of Datalo + can be infinite. That is the reason why several decidable fragments of Datalo + have been defined: Finite Expansion Set (FES) [START_REF] Baget | Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation[END_REF] guaranteeing a finite forward chaining mechanism (chase), Finite Unification Set (FUS) [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] guaranteeing a finite backward chaining mechanism, and Greedy Bounded Treewidth Set (GBTS) [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF] guaranteeing a finite forward-like inference mechanism. We decided to work with the family of these decidable fragments which is called Datalo ± or equivalently, the existential rules framework. As arguments are often composed of a conclusion that is deduced from a support, we choose to focus to focus on the forward chaining mechanism which is arguably the most intuitive one given its ability to handle transitive rules [START_REF] Rocher | Querying Existential Rule Knowledge Bases: Decidability and Complexity[END_REF]. The second question that we needed to answer is what type of chase do we want to use? There are four kinds of chases: Oblivious, Frontier/Skolem, Restricted, and Core. In this thesis, we use the Frontier/Skolem chase which is the most used chase given its relatively low cost and its ability to stay decidable for all known concrete classes of the FES fragment [START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF].

• Logic-based argumentation is an approach that consists in building arguments from a knowledge base using a given logic. There has been

SUMMARY AND CONTRIBUTIONS

many major logical approaches that have been studied in the literature: Assumption-Based Argumentation (ABA) [START_REF] Toni | A generalised framework for dispute derivations in assumption-based argumentation[END_REF], ASPIC+ [START_REF] Modgil | The ASPIC+ framework for structured argumentation: a tutorial[END_REF], Defeasible Logic Programming (DeLP) [START_REF] García | Defeasible Logic Programming: An Argumentative Approach[END_REF] or Deductive argumentation [START_REF] Besnard | Elements of Argumentation[END_REF]. However, since none of these previous approaches can be directly applied to a knowledge base expressed using the existential rules framework, we decided to focus on logic-based formalisms that were dedicated to this language, i.e. the argumentation frameworks defined by [START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] and [START_REF] Arioua | Formalizing and Studying Dialectical Explanations in Inconsistent Knowledge Bases[END_REF].

• Inconsistency-tolerant techniques are techniques that can be used for handling inconsistencies in knowledge bases expressed in the existential rules framework. In this thesis, we consider two of these techniques: repair semantics and argumentation semantics. For the former, focus on the most well-known repair semantics, namely AR, IAR and ICR [START_REF] Lembo | Inconsistency-Tolerant Semantics for Description Logics[END_REF]. For the later, we focus only on extension-based [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF] and ranking-based approaches [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF]].

Summary and contributions

In order to achieve our goals, we provided three main contributions:

1. We revisited the logic-based argumentation framework defined by Arioua [2016] and showed many of its structural properties. We proved that this argumentation framework has an exponential number of arguments with respect to the size of the knowledge base which makes it difficult to be used in real-life applications.

2. We provided optimisations in order to accelerate the generation and limit the number of arguments. We also defined a new logic-based hypergraph argumentation framework for the existential rules framework and empirically showed that it is more efficient that the binary argumentation framework.

3. On the one hand, we studied ranking-based approaches for binary argumentation frameworks and introduced how this notion can be applied for hypergraph argumentation frameworks. On the other hand, we showed that ranking-based approaches can also be applied directly on the factual knowledge in order to improve repair semantics.

In Chapter 2, we introduced the existential rules framework and reviewed the various reasoning techniques that are used in the context of the abstract argumentation model proposed by [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games[END_REF].

In Chapter 3, we studied the specially crafted deductive logic-based argumentation framework proposed by [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF] and Yun et al. [2017a]. In this framework, we highlighted several structural properties such as the presence of particular arguments and subgraphs, the presence of symmetries, the characterisation of strongly connected components or the explosion of the number of arguments when free facts are added. To solve the problem of the huge amount of arguments generated, we defined optimisation methods in both the case of knowledge bases with or without positive rules. In the first case, we showed that the generation of the argumentation graph can be fastened using a pre-processing of the underlying knowledge base. In the second case, we showed that the number of arguments can be reduced by filtering "redundant" arguments and replacing the binary attack relation by sets of attacking arguments. Using these insights, we developed the first tool for generating argumentation frameworks from existential rules knowledge bases (DAGGER) and we compared the results of the best solvers for argumentation semantics on the generated graphs. The benchmark provided a clear view that logically generated argumentation graphs are very different from randomly generated graphs usually used in benchmarks. Moreover, the benchmark can be used by a data engineer to choose the best solver for logically generated graphs.

Based on the insights that we uncovered when optimising the existing argumentation framework for existential rules, we introduced in Chapter 4, a new logic-based argumentation framework which is an instantiation of the framework defined by [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF] and showed in an experiment that it is more efficient both with respect to the size of the argumentation graph and with respect to the computational time. Indeed, we showed that this new argumentation framework does not suffer from the aforementioned problem of explosion of the number of arguments. Implementing this new framework in a tool (NAKED) enabled for the generation, visualisation and export of an argumentation hypergraph generated from an existential rules knowledge base.

After solving the problem of the generation of the argumentation graph, we investigated, in Chapter 5, how ranking-based techniques can be used for handling inconsistencies in both the logic-based argumentation theory and the logic setting. First, we studied the behaviour of the ranking on arguments returned by classical ranking-based semantics, in the context of the framework of [START_REF] Arioua | Logic-based argumentation with existential rules[END_REF] and Yun et al. [2017a], when redundant knowledge is present in the underlying knowledge base. We provided sufficient conditions on the knowledge base for preventing the apparition of redundant arguments and showed several examples of ranking modifications caused by redundancies. Second, we provided an extension of the notion of ranking-based semantics to the special case of hypergraph argumentation by converting existing desirable properties and ranking-based se-6.3. PERSPECTIVES mantics. Lastly, we showed that ranking-based techniques can also be used directly on knowledge bases using the ontological layer in order to compute the contribution of each fact in the overall inconsistency of the knowledge base. This approach is not only able to rank pieces of knowledge with respect to their "inconsistency value" but can also be used to rank repairs using the same approach as [START_REF] Konieczny | On Supported Inference and Extension Selection in Abstract Argumentation Frameworks[END_REF] and [START_REF] Bonzon | Combining Extension-Based Semantics and Ranking-Based Semantics for Abstract Argumentation[END_REF].

Perspectives

This thesis answered the research question we set out to address and our contributions opened interesting avenues for future work.

Ranking-based techniques.

Ranking-based techniques are often used in the logical setting in order to get a degree of inconsistency or acceptability. In this thesis, we studied ranking-based techniques from two perspectives: the argumentation and the knowledge base perspectives. In the argumentation perspective, ranking-based semantics are used for ranking arguments with respect to the structure of the underlying argumentation framework. The ranking on arguments obtained by these ranking-based semantics can be used in many ways. As we showed in Section 5.1, the approach of [START_REF] Amgoud | Argumentation-based Ranking Logics[END_REF] is able to rank formulas using the output of ranking-based semantics. In the work of [START_REF] Yun | Viewpoints using ranking-based argumentation semantics[END_REF], the output of ranking-based semantics is "lifted" in order to rank sets of arguments or extensions. Likewise, in the knowledge base perspective, we showed in Section 5.3 that the approach of Yun et al. [2018g] is also able to rank formulas based on their contributions in the overall inconsistency of the knowledge base and that this ranking can also be "lifted" to repairs.

• Correspondence between perspectives. The first question that we ask here is: Can we find a correspondence between rankingbased techniques in the two perspectives? This is a natural question as ranking-based techniques in the two perspectives can yield rankings on formulas and rankings on extensions or repairs. Moreover, since there is an equivalence between repairs and preferred (respectively stable) extensions in most logic-based argumentation frameworks with existential rules (see Chapter 3 and Chapter 4), a ranking on extensions can be converted into a ranking on repairs and vice versa. A positive answer to this question would provide a link between argumentation theory and the results in the knowledge representation community and allow practical applications to explain to users why a particular for-mula holds by constructing and highlighting several arguments in favour or against this formula. [2017]. Against this background, it would be interesting to scale up the experiment and generate argumentation frameworks using large existential rules knowledge bases such as LUBM [START_REF] Bourgaux | Inconsistency Handling in Ontology-Mediated Query Answering[END_REF].

3. Incoherence. We showed in Chapter 2 that there are two types of conflicts: inconsistencies and incoherences. In this thesis, we focused on how to solve inconsistencies using logic-based argumentation techniques. However, it would be interesting to study how incoherences can be handled in the context of the existential rules framework. In the work of [START_REF] Martinez | Inconsistency-Tolerant Reasoning in Datalog +/-Ontologies via an Argumentative Semantics[END_REF], the author proposed a logic-based argumentation framework for the existential rules framework inspired by DeLP. They introduced Defeasible Datalo ± which added a defeasible layer composed of defeasible atoms (weaker statements) and rules (weaker inferences). In the work of [START_REF] Hecham | Defeasible reasoning for existential rules. (Raisonnement defaisable dans les règles existentielles)[END_REF], defeater rules (rules that prevent the application of defeasible rules) were added to the defeasible layer of defeasible Datalo ±. In this setting, the author introduced the Statement Graph and the Graph of Atom Dependency [START_REF] Hecham | Argumentation-Based Defeasible Reasoning For Existential Rules[END_REF] as two new logic-based formalisms for reasoning with incoherent knowledge. To the best of our knowledge, the three aforementioned formalisms are currently the only works that study how to handle incoherences in the context of the existential rules framework. In the future, it would be interesting to explore how other argumentation frameworks such as ASPIC+ and ABA can be instantiated with the existential rules framework [Yun and Croitoru, 2016;[START_REF] Lam | On ASPIC+ and Defeasible Logic[END_REF] and to show that there is potential for cross-fertilisation for research on the relationship between defeasible reasoning in existential rules and major logic-based argumentation frameworks.

PERSPECTIVES

4.

Argumentation & human reasoning. Computer supported collaborative decision-making is a task that consists in collectively taking a decision via social interaction using a computer. Previous research gives grounds to believe that groups of students that are more efficient than others for collective tasks use specific speech and argumentation typologies in their interaction during the social interaction. In the PEPS S2IH APOLONIO (Argument Patterns in computer supported cOllaborative LearNIng) project, we aimed at collecting the interaction data and applying the existing approaches from the argumentation literature. In this project, several student classes were divided into groups for or against a specific topic. Each student and group had to rank arguments while their interactions was recorded. Then, different pairs of groups for or against the topic were asked to find a common ranking on the whole set of arguments. In the future, we plan to publish our results on this experiment. This cross-fertilisation will be beneficial to both computer scientists and psychologists. On one hand, the human sciences will use the approaches developed in the computer science community in order to identify the argument patterns used by efficient groups. On the other hand, computer sciences will benefit from the real-world data coming from other domains in order to compare and evaluate existing theoretical approaches.

Practical applications.

In the setting of the Pack4Fresh project for reducing post-harvest wastes, we developed a decision-support system (DSS) for ranking strawberry packaging alternatives based on poll results and argumentation. In the real world, choosing a packaging alternative can be an arduous task as it requires a balance between pros and cons. For instance minimising food waste and losses could also significantly contribute to decrease the overall environmental impact of the food itself.

In our workflow, we collected answers to a poll from a large number of consumers in order to model the overall viewpoint of consumers about the characteristics of each packaging in propositional logics. Then, we instantiated an ASPIC+ argumentation framework based the aforementioned knowledge base. The extensions are computed for a specific semantics and ranked with respect to sets of preferences on packaging characteristics [Yun et al., 2018a]. In this system, the ranking on alternatives given by the DSS is greatly affected by the user's preferences.

In the future, we plan on further implementing (1) automatic rankings that rely on the structure of the argumentation framework itself [START_REF] Yun | Viewpoints using ranking-based argumentation semantics[END_REF], (2) automatic rankings that are based on the knowledge base itself (see Section 5.3) and (3) switching to a more expressive language such as the existential rules framework or description logics.

PROOFS

exists ϕ ∈ Supp(a 1) such that X i ∪ {ϕ} is R-inconsistent. Since X i is R-consistent, it means that X i ∪ {ϕ} is a minimal conflict and that X i ∈ Imp(X i ∪ {ϕ}). Then, Xi 2 F \ C ∈M I (KB) Imp(C), contradiction.
2. Let a, b be two arguments in (A \ i s i), we show here that there is a path from a to b. From the definitions, we know that a (resp. b) is of the form (X , X) (resp.(X , X)) such that there exists a minimal conflict C (resp. C) and

W ⊆ C (resp. W ⊆ C) with |W | = |C -1| (resp. |W | = |C -1|) and W ⊆ X (resp. W ⊆ X). Let H = C \ X , X = X \ H , W ⊆ X with |W | = |X -1| and = H ∪ W ∪ (C \ X).
• If is R-consistent, we denote by u, the argument (,). We have that u belongs to (A \ i s i) because = |C -1| and ⊆ C . We have that a attacks u and u attacks b. Proof 3.17. The proof is split in two parts. Let F * KB = (A * , R *) and N = {Ar (A , A *) | A ∈ repairs (KB)}. We first show that N ⊆ Ext s (F * KB). Then since, the set of stable extensions is included in the set of preferred extensions [START_REF] Nielsen | Computing Preferred Extensions for Argumentation Systems with Sets of Attacking Arguments[END_REF], we have that N ⊆ Ext p (F * KB). In the second part of the proof, we show that Ext p (F * KB) ⊆ N .

• If is R-inconsistent, it means that there is a minimal conflict C ⊆ such that C C and C C. Let us consider K, L ⊆ such that |K | = |L| = | -1|, H ⊆ K
• We first show N ⊆ Ext s (F * KB). Let A be a repair of KB and let E = Ar (A , A *). Let us prove that E is a stable extension of F * KB . We first prove that E is conflict-free. By means of contradiction we suppose the contrary, i

.e. let X ⊆ E, b ∈ E such that (X , b) ∈ R * . From the definition of attack, there exists ϕ ∈ Supp(b) such that (a ∈X Conc (a))∪ {ϕ} is R-inconsistent. Thus (x ∈X Supp(x)) ∪{ϕ} is R-inconsistent and A is R-inconsistent, contradiction. Therefore E is conflict-free.
Let us now prove that E attacks all arguments outside the set E. Let b ∈ A * \Ar (A , A *) and let ϕ ∈ Supp(b) such that ϕ A . By definition, we know that there is S ⊆ A such that c = (S , A) is an argument in F KB . If c ∈ A * , we have that ({c}, b) ∈ R * . Otherwise, there v CHAPTER 7. APPENDIX exists a set of arguments M = {a 1 , a 2 , . . . , a n } ⊆ A * with Supp(a i) = S such that a i ∈M Conc (a i) = A . Hence, (M, b) ∈ R * and E is a stable extension.

• We now show that Ext p (F * KB) ⊆ N . Let E ∈ Ext p (F * KB) and let us prove that there exists a repair A such that E = Ar (A , A *). Let S = Base (E). Let us prove that S is R-consistent. Aiming to a contradiction, suppose that S is R-inconsistent. Let S ⊆ S be such that:

1. S is R-inconsistent 2. Every proper set of S is R-consistent. Let us denote by S the set {ϕ 1 , ϕ 2 , . . . , ϕ n }.
Let a ∈ E be an argument such that ϕ n ∈ Supp(a). Let S ⊆ S \ {ϕ n } such that c = (S , S \ {ϕ n }) is an argument of F KB . Then, if c ∈ A * , we have that ({c}, a) ∈ R * . Otherwise, there exists a set of arguments M = {a 1 , a 2 , . . . , a n } ⊆ A * with Supp(a i) = S such that

a i ∈M Conc (a i) = S \ {ϕ n }.
Hence, a is attacked by c or by M. Since E is conflict-free, we have that c E (resp M E). However, since E is admissible, there exists B = {b 1 , . . . b n } such that B ⊆ E and (B, c) ∈ R * (respectively there exists a i ∈ M \ E and (B, a i) ∈ R *). By definition, this means that there exists ϕ

j ∈ Supp(c) (resp ϕ j ∈ Supp(a i)) such that (b i ∈B Conc (b i)) ∪ {ϕ j } is R-inconsistent. Since ϕ j ∈ S, there is an argument d ∈ E such that ϕ j ∈ Supp(d). Therefore, (B, d) ∈ R * .
Contradiction and E is R-consistent.

Let us now prove that there exists no S ⊆ F such that S ⊂ S and S is R-consistent. We use the proof by contradiction. Thus, suppose that S is not a maximal R-consistent subset of F. Then, there exists a repair S of KB, such that S ⊂ S . We have that E ⊆ Ar (S, A *). Denote E = Ar (S , A *). Since S ⊂ S then Ar (S, A *) ⊂ E. Thus, E ⊂ E . From the first part of the proof, E ∈ Ext s (F * KB). Consequently, E ∈ Ext p (F * KB). We also know that E ∈ Ext p (F * KB). Contradiction, since no preferred set can be a proper subset of another preferred set. Thus, we conclude that Base (E) is a repair of KB.

Let us show that E = Ar (Base (E), A *). It must be that E ⊆ Ar (S, A *). Also, we know (from the first part) that Ar (S, A *) is a stable and a preferred extension, thus the case E Ar (S, A *) is not possible 1. We prove that {Ar (A) | A ∈ repairs (KB)} ⊆ Ext s (F KB).

f (b i) =                              {b i } if b i ∈ A * B = {b 1 i , .
2. We prove that Ext p (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}.

3. [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF] proved that every stable extension is a preferred one, we can thus proceed as follows. From the first item, we have that {Ar Conc (a i)) ∪ {φ n } is R-inconsistent. However, since E is an admissible set, it means that a is defended by E. Thus, we know that (E, Y) ∈ R • , i.e. there exists a j ∈ Y such that (E, a j) ∈ R • . Since E is conflict-free, we deduce that a j E. Now consider a ∈ E such that φ j ∈ Prem(a), it holds that (E, a) ∈ R • , contradiction. So it must be that S is R-consistent.

Let us now prove that there exists no S ⊆ F such that S ⊂ S and S is Rconsistent. We use the proof by contradiction. Thus, suppose that S is not a maximal R-consistent subset of F. Then, there exists S ∈ repairs (KB), such that S ⊂ S .

We have that E ⊆ Ar (S), since S = Base (E). Denote E = Ar (S).

Since S ⊂ S then Ar (S) ⊂ E . Thus, E ⊂ E . From the first part of the proof, E ∈ Ext s (F KB). Consequently, E ∈ Ext p (F KB). We also know that E ∈ Ext p (F KB). Contradiction, since no preferred set can be a proper subset of another preferred set. Thus, we conclude that Base (E) ∈ repairs (KB). Let us show that E = Ar (Base (E)). It must be that E ⊆ Ar (S). Also, we know (from the first part) that Ar (S) is a stable and a preferred extension, thus the case E ⊂ Ar (s) is not possible. i (k + 1 -i). We have that E(A ∪ {a k +1 }) = E(A) + x + where x is the maximum number of attacks from a subset of {a 1 , . . . , a k } to a k +1 and is the maximum number of attacks from a subset of {a 1 , . . . , a k +1 } containing a k +1 to an argument of {a 1 , . . . , a k }. We have that x = 2 k -1 and = k i=1 k i i. Thus:

E(A ∪ {a k+1 }) = E(A) + 2 k -1 + k i=1 k i i E(A ∪ {a k+1 }) =       k -1 i=1 k i (k -i)       + 2 k -1 + k i=1 k i i E(A ∪ {a k+1 }) =       k -1 i=1 k i k       + k + 2 k -1 E(A ∪ {a k+1 }) =       k-1 i=1 k i k       + k +       k i=1 k i       E(A ∪ {a k+1 }) =       k -1 i=1 k i (k + 1)       + k + 1 E(A ∪ {a k+1 }) =       k -1 i=1 k + 1 i (k + 1 -i)       + k + 1 E(A ∪ {a k+1 }) =       k i=1 k + 1 i (k + 1 -i)      
This concludes the proof by induction.

Proposition 4.8 (F Indirect consistency) Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p, }. Then:

• for every E ∈ Ext x (F KB), Concs (E) is a R-consistent.

• Output x (F KB) is R-consistent.

Proof 4.8. Let E be a stable or a preferred extension of F KB . From Proposition 4.1, there exists a repair A ∈ repairs (KB) such that E = Ar (A). Let us now consider the case of grounded semantics. Denote E G E the grounded extension of F KB . We have seen that for every E ∈ Ext p (F KB), it holds that Sat R∪N (Concs (E)) |= ⊥. Since the grounded extension is a subset of the intersection of all the preferred extensions, and since there is at least one preferred extension [START_REF] Nielsen | A Generalization of Dung's Abstract Framework for Argumentation: Arguing with Sets of Attacking Arguments[END_REF], say E Concs (E). Since every knowledge base has at least one repair then, there is at least one stable or preferred extension E. From the definition of the output, we have that Output x (F KB) ⊆ Concs (E). Since Concs (E) is R-consistent thus Output x (F KB) is R-consistent.

Note that since there is only one grounded extension, we can deduce that Sat R (Output (F KB)) = Sat R (Concs (E G E)). Proposition 4.9 (F Closure) Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p, }. Then:

• for every E ∈ Ext x (F KB), Concs (E) = Sat R (Concs (E)

• Output x (F KB) = Sat R (Output x (F KB)) Proof 4.9. Let E be a preferred, a stable or the grounded extension. The proof is split in two parts:

• From the definition of the saturation, Concs (E) ⊆ Sat R (Concs (E)). We prove that Sat R (Concs (E)) ⊆ Concs (E). Suppose that α ∈ Sat R (Concs (E)). This means that there exists a minimal set {α 1 , . . . , α k } ⊆ Conc (E) and a sequence of rule applications such that α is produced from {α 1 , . . . , α k }.

Note that from Proposition 4.8, {α 1 , . . . , α k } is R-consistent. Since Proof 5.4. This proof will be split in two parts:

• (⊆) We prove this inclusion by construction. Let c = (A , R) ∈ Core 2 (F), by definition, for every G ∈ A / 1 , we chose a unique x in G for c 1 . Here, if there exists a ∈ G ∩A then we choose x = a, otherwise we choose a random element of G. Now that we have a specific core c 1 of A for 1 , we repeat the process and construct c 2 from c 1 . In the end, c 2 = c .

• (⊇) Let c 1 = (A 1 , R 1) ∈ Core 1 (F) and c 2 = (A 2 , R 2) ∈ Core 2 (c 1). We prove that c 2 ∈ Core 2 (F). We will proceed by proving each parts of Definition 5.4.

-Since c 2 is a core of c 1 for equivalence relation 2 , then A 2 ⊆ A 1 .

Likewise, since c 1 is a core of F, we have A 1 ⊆ A . Finally, we have that A 2 ⊆ A .

-Let f : A 1 / 2 → A / 2 a function that takes as input an element x of A 1 / 2 and returns an element x of A / 2 s.t. x ∩ x ∅.

We will show that this function is a bijection. * Injective: Suppose that there exists x, ¯ ∈ A 1 / 2 s.t. f (x) = f (¯) = z and x ¯ . By definition, it means that z ∩ x ∅ and z ∩ ¯ ∅. Let z 1 ∈ z ∩ x and z 2 ∈ z ∩ ¯ . Since z 1 , z 2 ∈ z, we have that z 1 2 z 2 , contradiction with x ¯ . * Surjective: We have to prove that for every x ∈ A / 2 , there exists x ∈ A 1 / 2 s.t. f (x) = x. Suppose that there is no x ∈ A 1 / 2 s.t. f (x) = x. Let us consider an argument x ∈ x. Then, there exists G 1 ∈ A / 1 s.t. x ∈ G 1 . Furthermore, there exists x 1 ∈ G 1 s.t. x 1 ∈ A 1 . Keep in mind that x 1 ∈ x since x 1 1 x and thus x 1 2 x. Now, let G ∈ A 1 / 2 s.t.

x 1 ∈ G. By definition of the core, there is a unique x 2 ∈ G ∩A 2 and x 2 2 x 1 thus, x 2 ∈ x, contradiction. Since c 2 is a core of c 1 for 2 , we have that for every x ∈ A 1 / 2 , there is a unique x ∈ x ∩ A 2 . But now, since f is a bijection, we can easily conclude that for every x ∈ A / 2 , there is a unique x ∈ x ∩ A 2 .

-The final point is obvious since it is only a restriction of attacks. This ends the proof. xiii CHAPTER 7. APPENDIX Proposition 5.6 (Not different core characterisation 1) Let KB = (F, R, N) be a KB and F KB be the corresponding argumentation framework. We have that Core 1 (F KB) = {F KB } iff for all R-consistent subset Y of F, there is no 1 , 2 such that Sat R (Y) |= 1 , Sat R (Y) |= 2 , 1 2 and 1 2 .

Proof 5.6. We divide this proof in two parts:

• (⇒) We show that contrapositive of this implication is true by reductio ad absurdum. Suppose that there is a R-consistent subset Y of F and there exists are two arguments of F KB . Furthermore, we have that a 1 b meaning that F KB Core 1 (F KB), contradiction.

• (⇐) We show that this implication is true by reductio ad absurdum. Suppose that Core 1 (F KB) {F KB }. It means that there exists c 1 = (A 1 , R 1) ∈ Core 1 (F KB) with X c 1 ∅. Therefore, it exists an argument x ∈ X c 1 s.t. x ∈ A and x A 1 . We deduce that there exists x ∈ A 1 s.t. Conc (x) Conc (x), Supp(x) = Supp(x). By definition of an argument, we have that Conc (x) ⊆ Sat R (Supp(x)) and Conc (x) ⊆ Sat R (Supp(x)), contradiction.

This ends the proof.

Proposition 5.7 (Not different core characterisation 2) Let KB = (F, R, N) be a KB and F KB be the corresponding argumentation framework.

We have Core 2 (F KB) = {F KB } iff the two following items are satisfied:

• there is no f 1 , f 2 ∈ F such that f 1 f 2 and f 1 f 2

• for all R-consistent subset Y ⊆ F, there is no 1 , 2 such that Sat R (Y) |= 1 , Sat R (Y) |= 2 , 1 2 and 1 2 .

Proof 5.7. We divide this proof in two parts:

• (⇒) We show that contrapositive of this implication is true by reductio ad absurdum in the same fashion as the proof of Proposition 5.6. Indeed, following the same reasoning, we can deduce that there exists two arguments a, b ∈ F KB s. -If Supp(x) Supp(x), there exists a ∈ Supp(x) and a Supp(x) (resp. a Supp(x) and a ∈ Supp(x)). Since we have Supp(x) Supp(x), there exists a ∈ Supp(x) (resp. a ∈ Supp(x)) s.t. a a , contradiction.

-If Supp(x) = Supp(x), then since Conc (x) ⊆ Sat R (Supp(x)) and Conc (x) ⊆ Sat R (Supp(x)), contradiction

This ends the proof. Proof 5.16. This proof is split in two parts:

1. First, we exhibit how to build an abstract argumentation framework F from an arbitrary hypergraph argumentation framework F .

2. Second, we show that the aforementioned F is such that Proposition 5.16 is satisfied.

1-Let F = (A , R) be an arbitrary hypergraph argumentation framework. We build the abstract argumentation F = (A , R) such that:

• A = {a 1 , . . . , a m } ∪ {a m+1 , . . . , a n }

• There is a bijection γ 1 from A to {a 1 , . . . , a m } and a bijection γ 2 from R to {a m+1 , . . . , a n }.

• For every (S, t) ∈ R , we create the attack (γ 2 ((S, t)), γ 1 (t)) in R.

• For every (S, t) ∈ R , we consider the set X S = {s ∈ S | for every s ∈ S, s nh F s} and we chose x S ∈ X S . Then, for every S ∈ R - 1 (x S), we create the attack (γ 2 ((S , x S)), γ 2 ((S, t))) in R.

2-

We now show that the constructed argumentation framework F is such that Proposition 5.16 is satisfied. Let X = {a m+1 , . . . , a n } and F = (A , R) be the restriction of F to X , i.e. A = X and R = {(a, b) ∈ R | a ∈ X and b ∈ X }.

We now define the function f : X → R that returns for every element a in X , the minimum score of the attackers associated with the attack corresponding to a. Namely, for every a ∈ X , f (a) = min a ∈W C (a) where (W , t) = γ -1 2 (a) and γ -1 2 is the inverse function of γ 2 . We now prove that for every a ∈ A , it holds that f (a) = Since f satisfies the same formula as h-categoriser then f is identical to h-categoriser on F [START_REF] Pu | Argument Ranking with Categoriser Function[END_REF].

Let us now consider the whole argumentation graph F. Since there are no attacks from arguments in {a 1 , . . . , a m } to arguments in {a m+1 , . . . , a n }, the h-categoriser gives the same scores to {a m+1 , . . . , a n } in F and in F . Since for every argument a in {a 1 , . . . , a m }, the set of attackers of a in F is {b ∈ {a m+1 , . . . , a n } | γ -1 2 (b) = (S, γ -1 1 (a)) with S ∈ R - 1 (γ -1 1 (a))}, we have that for every a ∈ {a 1 , . . . , a m }:

C (a) = 1 1 + b ∈R - 1 (a)
C (b)

C (a) = 1 1 + b ∈R - 1 (a) f (b) C (a) = 1 1 + b ∈R - 1 (a)

 3.2 Structural properties of argumentation frameworks generated from simple knowledge bases 3.3 Approach workflow for optimising the argument generation . 3.4 Three steps reconstruction using k-copy graphs 3.5 The 3-layer structure of DAGGER 3.6 Repair computation module of DAGGER 3.7 Argumentation module of DAGGER 3.8 Screen capture of the argumentation graph interface of the DAGGER tool . 3.9 Representation of the argumentation graph corresponding to the knowledge base b 44 .4.1 Generation time comparison between F KB and F KB for set A 4.2 Generation time comparison between F KB and F KB for set B 4.3 Comparison of the number of arguments between F KB and F KB for set A . 4.4 Comparison of the number of arguments between F KB and F KB for set B . 4.5 Comparison of the number of attacks between F KB and F KB for set A . LIST OF FIGURES 4.6 Comparison of the number of attacks between F KB and F KB for set B . 104 4.7 An argumentation hypergraph about packagings. 107 4.8 Representation of hyperedges in NAKED 109 4.9 Representation of the areas of interest in NAKED 110 4.10 Argument highlight feature in NAKED 111 5.1 Representation of the core c 1 of F KB using 1 and displayed in Table 5.1 . 121 5.2 Representation of the core c 2 of F KB using 2 and displayed in Table 5.1 . 122 5.3 Representation of an argumentation framework F and one of its cores c . 128 5.4 Argumentation framework with equal h-categoriser scores . . 141 5.5 Another argumentation framework with equal h-categoriser scores . 141 5.6 Representation of the RIF workflow 145 5.7 Representation of the considered packagings 153 XIII List of Tables 1.1 Reading guide by topics . 2.1 Complexity of CQ entailment for studied Skolem-FES concrete classes . 2.2 Argumentation semantics with respect to criteria3.1 Classes of argumentation frameworks studied in the literature 3.2 Images of the permutation σ on X 3.3 Arguments in F KB obtained from the knowledge base of Example 3.23 . 3.4 Characteristics of the F KB and F * KB generated from the knowledge bases. 3.5 Characteristics of the small knowledge bases 3.6 Average computational time for small instances 3.7 Ranking of solvers for the generated small graphs 3.8 Number of timeouts for the generated large graphs 3.9 Ranking of solvers for the generated large graphs 3.10 Rankings extracted from the ICCMA 2015 website 3.11 Normalised Kendall's tau distance between the rankings of the generated graphs and the competition ranking 4.1 Comparison of the median number of arguments, attacks and generation time needed between F KB and F KB on the sets of knowledge bases A 1 , A 2 , A 3 and B

Figure 1 . 1 :

 11 Figure 1.1: Image of a spiny anteater

Figure 1 . 2 :

 12 Figure 1.2: Representation of the first possible world

Figure 1 . 4 :

 14 Figure 1.4: Representation of the third possible world

2. 1 .

 1 EXISTENTIAL RULES FRAMEWORK which maps predicates and constants symbols to elements of the domain of interpretation. Definition 2.1 (Interpretation). An interpretation of a logical language L built on a vocabulary Voc = (P, C) is a pair (D, I) where D is a non-empty set called the interpretation domain and I is an interpretation function of the symbols of L such that: 1. for each constant c ∈ C, I(c) ∈ D. 2. for each predicate p ∈ P of arity k, I(p) ⊆ D k . 3. for each pair (c, c) of distinct constants in C, I(c) I(c).

Example 2 .

 2 3 (Conjunctive and boolean queries). Consider the query Q (X) = ∃Y p(X , Y), the answers to this query over the set of facts F = {p (a, b), p(c, Null 1)} are {a, c} because there is a homomorphism π 1 = {X → a, Y → b} from Q to p(a, b), and there is a homomorphism π

Figure 2

 2

Figure 2 . 2 :

 22 Figure 2.2: Known concrete FES classes and chases finiteness (all skolem-FES concrete classes are restricted-FES and core-FES

Definition 2 .

 2 19 (Polynomial time (PTime)).A problem is in PTime if it can be solved by a deterministic Turing machine running in polynomial time in the input.

Notation 2 .

 2 5. Let F = (A , R) and F = (A , R) be two argumentation frameworks. F ⊕F denotes the argumentation frameworks (A ∪ A , R ∪ R) representing the merging of the two argumentation frameworks F and F .An argumentation framework can be seen as a directed graph where vertices represent arguments and edges represent attack between argument.

Example 2 .Figure 2 . 3 :

 223 Figure 2.3: Argumentation framework of Example 2.13

Notation 2 . 6 .

 26 Let F = (A , R) be an argumentation framework and a, b ∈ A . We say that b ∈ R - n (a) if and only if there exists a path of size n from b to a. The set R - 1 (a) is called the set of direct attackers of a whereas R - 2 (a) are called direct defenders of a. Please note that we will often use the alternative notation Att - F (a) to denote the set of direct attackers of a in F or simply Att -(a) if the argumentation framework is clear from the context. Similarly, we also use the notation Att + (a) to denote the set of arguments directly attacked by a, namely Att + (a) = {b | (b, a) ∈ R}. Definition 2.34 (Set attack and defense). A set of argument S attacks an argument b if there exists an argument c ∈ S such that (c, b) ∈ R. If there is an argument a ∈ S such that (b, a) ∈ R and S attacks b then S defends a.

CHAPTER 2 .

 2 PRELIMINARIES. Let F = (A , R) be an argumentation framework. A set of arguments S ⊆ A is conflict-free if and only if there are no a, b ∈ S such that (a, b) ∈ R.

Example 2 .

 2 17 (Argumentation semantics). Consider the argumentation framework F = (A , R) such that A = {a, b, c, d} and R = {(e, e), (d, e), (d, c), (c, d), (b, c), (a, b)}, represented in Figure 2.4. We make the following observations:

Figure 2 . 5 :

 25 Figure 2.4: Argumentation framework of Example 2.17

Definition 2 .Figure 2 . 6 :

 226 Figure 2.6: Labelling that corresponds to {a, c} of Example 2.17

Figure 2 . 7 :

 27 Figure 2.7: Labelling that corresponds to {a} of Example 2.17

Definition 2 .

 2 51 (Ranking-based semantics σ). A ranking-based semantics σ associates to any argumentation framework F = (A , R) a ranking σ F on A where σ F is a total preorder (reflexive and transitive relation) on A . The notation a σ F b means that a is at least as acceptable as b. Notation 2.8. We use the notation a ≈ σ F b if and only if a σ F b and b σ F a. Moreover, we say that a σ F b if and only if a σ F b and b σ F a. Likewise, we say that a σ F b if and only if a σ F b. Finally, we say that a ≺ σ F b if and only if a σ F b and b σ F a

Figure 2 . 8 :

 28 Figure 2.8: An argumentation framework F

F

 on A such that for every a, b ∈ A : b hcat F a if and only if C (a) ≤ C (b) Example 2.19 (H-categoriser). We consider the argumentation framework F depicted in Figure 2.8. The values returned by the h-categoriser function for each argument are C

Definition 2 .

 2 57 (Discussion-based ranking-based semantics [Amgoud and Ben-Naim, 2013]). Let F = (A , R) be an argumentation framework. The discussion-based ranking-based semantics on F returns a ranking dis F on A such that for every a, b ∈ A : b dis F a if and only if Dis (a) l ex Dis (b) .

Definition 2 .

 2 59 (Burden-based ranking-based semantics). Let F = (A , R) be an argumentation framework. The burden-based ranking-based semantics on F returns a ranking bur F on A such that for every a, b ∈ A : b bur F a if and only if Bur (a) l ex Bur (b) . CHAPTER 2. PRELIMINARIES Example 2.21 (Burden-based ranking-based semantics). We consider the argumentation framework F depicted in Figure 2.8. We obtain the following burden vectors: • Bur(a) = Bur(e) = Bur

3. 1

 1 Deductive argumentation frameworks in existential rules . 49 3.1.1 Argumentation graphs generated from knowledge bases . 52 3.1.2 Argumentation graphs generated from knowledge bases without rules 56 3.2 Improving the argument generation 64 3.2.1 Optimisation for knowledge bases without rules . . 65 3.2.2 Optimisation for knowledge bases with rules 66 3.3 The DAGGER tool . 73 3.3.1 DAGGER's architecture 74 3.3.2 Usability scenarios 74 3.4 Benchmarks on logic-based argumentation frameworks 78 3.4.1 Benchmark generation 79 3.4.2 Results of literature solvers over the benchmark . . 81 3.5 Summary . 86

a 4 =

 4 ({animal (tom), miaow (tom)}, {not Do (tom)}) a 5 = ({animal (tom), miaow (tom)}, {animal (tom), notDo (tom)}) a 6 = ({animal (tom), miaow (tom)}, {miaow (tom), notDo (tom)})a 7 = ({animal (tom), miaow (tom)}, {animal (tom), miaow (tom), notDo (tom)}) a 8 = ({do (tom)}, {do (tom)})3.1. DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES a 9 = ({animal (tom), do (tom)}, {animal (tom), do (tom)}) a 10 = ({animal (tom), do (tom)}, {owner (Null 0 , tom)}) a 11 = ({animal (tom), do (tom)}, {animal (tom), owner (Null 0 , tom)}) a 12 = ({animal (tom), do (tom)}, {do (tom), owner (Null 0 , tom)}) a 13 = ({animal (tom), do (tom)}, {animal (tom), do (tom), owner (Null 0 , tom)}) a 14 = ({miaow (tom), do (tom)}, {miaow (tom), do (tom)})

Definition 3. 2 (

 2 Attack relation). An argument a attacks an argument b denoted by (a, b) ∈ R (or aRb) if and only if there exists ϕ ∈ Supp(b) such that Conc (a) ∪ {ϕ} is R-inconsistent. Example 3.3 (Example 3.2 cont'd).

 Definition 3.3 (Argumentation graph). The argumentation graph instantiated over a knowledge base KB is denoted by F KB = (A , R), where the set of arguments A and the set of attacks R follow from Definition 3.1 and Definition 3.2 respectively. Example 3.4 (Example 3.3 cont'd). In our example, F KB = (A , R) where A = {a 1 , . . . , a 14 } and R contains the 60 possible attacks on A .

 Corollary 3.4 (Conflict-based complete graphs). Let KB be an inconsistent knowledge base and F KB = (A , R) be the corresponding argumentation framework. If C ∈ MI (KB) then there exists a subgraph of F KB with |C | arguments that is complete. CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH EXISTENTIAL RULES Proof. Let us consider the set A C = {a ∈ A | a = (E, E) with E ⊂ C and |E| = |C |-1}. It is easy to see that for every a, b ∈ A C , we have that (a, b) ∈ R. Thus the restriction of F KB to A C is a complete directed graph.

3. 1 .

 1 DEDUCTIVE ARGUMENTATION FRAMEWORKS IN EXISTENTIAL RULES Proposition 3.11 (Characterisation of dummy arguments). Let KB = (F, R, N) be a knowledge base such that R = ∅ and |F| = n. There are exactly 2 k -1 dummy arguments in F KB = (A , R), where k = |Free (KB)|.

 Corollary 3.6 (Number of SCCs). Let KB = (F, R, N) be a knowledge base such that R = ∅. There are |2 F \ C ∈M I (KB) Imp(C)|+1 strongly connected components in F KB . Therefore, there are 15 + 1 = 16 strongly connected components in F KB .

3. 1 .

 1 Figure 3.2: Structural properties of argumentation frameworks generated from simple knowledge bases

Figure 3

 3 Figure 3.3: Approach workflow for optimising the argument generation phase.

 this example, Free (KB) = {c (a)}. Hence, we generate the argumentation graph F KB from the knowledge base KB = ({{a(m), b (m)}, ∅, N) (Step 1 in Figure 3.4). Then, from the graph of F KB , one can construct the corresponding k-copy graph in Step 2. Finally, the dummy arguments are added (Step 3). At this point, we reconstructed F KB .

Figure 3 . 4 :

 34 Figure 3.4: Three steps reconstruction using k-copy graphs

 Definition 3.11 (Filtrated set of arguments). Let KB be a knowledge base and F KB = (A , R) be the argumentation framework constructed from KB using Definition 3.3 on page 51. Let D(F KB) = {a = (H , C) ∈ A | there exists X ⊆ A \{a} such that for every b ∈ X , Supp(b) = H and b ∈X Conc (b) = C}. The filtrated set of arguments is A * = A \ D (F KB). Example 3.22 (Example 3.21 cont'd). In this example, the set D (F KB) is {a 3 } and the corresponding filtrated set of arguments is A * = {a 1 , a 2 , a 4 }.

 Corollary 3.7 show that there is a one to one equivalence between the set of extensions of F KB and F * KB . Corollary 3.7 (Extensions equivalence). Let F KB be an argumentation framework and F * KB be the corresponding filtrated argumentation framework. It holds that Ext x (F * KB) = {E ∩ A * | E ∈ Ext x (F KB)} with x ∈ {s, p}. Example 3.24 (Example 3.23 cont'd). The argumentation framework F KB is composed of 18 arguments and 51 attacks. The corresponding filtrated argumentation framework F * KB has 12 arguments and 66 attacks. The list of all the arguments and those filtrated (in grey) is represented in Table

 m), b (m)}, {b (m), e (m)}) a 10 ({a(m), b (m)}, {a(m), b (m), e (m)}) a 11 ({a(m), b (m)}, {d (m), e (m)}) a 12 ({a(m), b (m)}, {a(m), d (m), e (m)}) a 13 ({a(m), b (m)}, {b (m), d (m), e (m)}) a 14 ({a(m), b (m)}, {a(m), b (m), d (m), e (m)})a 15 ({c (m)}, {c (m)}) a 16 ({a(m), c (m)}, {a(m), c (m)}) a 17 ({b (m), c (m)}, {b (m), c (m)}) Table 3.3: Arguments in F KB obtainedfrom the knowledge base of Example 3.23. Arguments in grey are filtrated and do not appear in F * KB Proposition 3.18 (Less arguments). Let KB be a knowledge base, F KB = (A , R) be the corresponding argumentation framework and F * KB = (A * , R *) be the filtrated argumentation framework. Then it holds that |A * | ≤ |A |. However, it is not true that |R | ≤ |R * |. Proposition 3.19 (Attack properties). Let KB be a knowledge base, F KB = (A , R) be the corresponding argumentation framework and F * KB = (A * , R *) be the filtrated argumentation framework. It holds that:

 Proposition 3.20 (No filtration). Let KB = (F, R, N) be a knowledge base such that R = ∅ and F KB = (A , R) be the corresponding argumentation framework. It holds that D(F KB) = ∅ and F * KB = (A * , R *) is such that A * = A and (b, a) ∈ R if and only if ({b}, a) ∈ R * .

Figure 3 . 6 :

 36 Figure 3.6: Screen capture of the main interface of the DAGGER tool and its repair computation module

Figure 3 . 7 :

 37 Figure 3.7: Screen capture of the main interface of the DAGGER tool and its argumentation module

Figure 3 . 8 :

 38 Figure 3.8: Screen capture of the argumentation graph interface of the DAGGER tool

Figure 3

 3 Figure 3.9: Representation of the argumentation graph corresponding to the knowledge base b 44

Definition 4 . 1 (

 41 Argumentation framework F). An hypergraph argumentation framework is a pair F = (A , R) with A a set of arguments and R ⊆ (2 A \ ∅) × A a set of attacking arguments. Notation 4.1. We denote by K F the set of all possible hypergraph argumentation frameworks. Let F , F ∈ K F , we define F ⊕ F as the argumentation framework (A ∪ A , R ∪ R).

Definition 4 . 2 (

 42 Argumentation framework F KB). Let us consider the knowledge base KB = (F, R, N). The corresponding argumentation framework denoted byF KB = (A , R) with R ⊆ 2 A × A is such that: • An argument a ∈ A is either: -f , where f ∈ F. Conc (a) = f and Prem(a) = {f } -a 1 , . . . , a n → f if a 1 , . . . ,a n are arguments such that there exists a tuple (r, π) where r ∈ R, π is a homomorphism from the body 4.1. ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE of r to {Conc (a 1), . . . , Conc (a n)} and f is the resulting atom from the rule application. Conc (a) = f and Prem(a) = Prem(a 1) ∪ • • • ∪ Prem(a n)

Example 4 . 2 (

 42 Example 4.1 cont'd).

Example 4 . 3 (• E 1 =• E 2 =

 4312 Example 4.2 cont'd). As explained in Proposition 4.1, we have a one to one correspondence between repairs and preferred (resp. stable) extensions. Hence, we have: Ar ({contains (m, saltC), contains (m, o urt), edible (m)}) Ar ({contains (m, su ar), contains (m, saltC), notSoup(m), edible (m)})• E 3 = Ar ({contains (m, su ar), contains (m, o urt), notSoup(m), edible (m)})

Corollary 4 . 1 (

 41 Non-attacked characterisation). Let KB be a knowledge base, F KB = (A , R) be the corresponding argumentation framework and a ∈ A . There is no S ⊆ A such that (S, a) ∈ R if and only if Prem(a) ⊆ repairs (KB).

Example 4 .

 4 6 (Example 4.2 cont'd). We have that the grounded extension is E G E = {a 5 } = Ar ({edible (m)}).

Corollary 4 . 2 (

 42 Cycle existence). Let KB be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. If A has a finite number of arguments and R ∅ then there exists a cycle in F KB . Example 4.7 (Example 4.1 cont'd).

4. 1 .

 1 ARGUMENTATION HYPERGRAPHS WITH THE EXISTENTIAL RULES LANGUAGE Proposition 4.6 (Argument upper-bound). Let KB = (F, R, N) be a knowledge base such that R = ∅ and F = (A , R) be the corresponding argumentation framework. It holds that |A | ≤ |F|.

Notation 4 . 3 .

 43 Let KB = (F, R, N) be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. If X ⊆ A is a set of arguments, then we define Concs (X) =x ∈X Conc (x) and Output x (F KB) = E ∈Ex t x (F KB)

Corollary

Figure 4 . 1 :

 41 Figure 4.1: Generation time for both the old framework F KB and the new framework F KB with the set of knowledge bases A. Instances are sorted with respect to the generation time of F KB

Figure 4 . 2 :

 42 Figure 4.2: Generation time for both the old framework F KB and the new framework F KB with the set of knowledge bases B. Instances are sorted with respect to the generation time of F KB

Figure 4 . 4 :

 44 Figure 4.4: Number of arguments for both the old framework F KB and the new framework F KB with the set of knowledge bases B. Instances are sorted with respect to the number of arguments of F KB

Figure 4 . 5 :

 45 Figure 4.5: Number of attacks for both the old framework F KB and the new framework F KB with the set of knowledge bases A. Instances are sorted with respect to the number of attacks of F KB

Figure 4 . 6 :

 46 Figure 4.6: Number of attacks for both the old framework F KB and the new framework F KB with the set of knowledge bases B. Instances are sorted with respect to the number of attacks of F KB

Figure 4 . 7 :

 47 Figure 4.7: An argumentation hypergraph about packagings.

 R) is automatically displayed and laid out. The square nodes represent arguments in A whereas round black nodes represent the hyperedges in R . In our visualisation, we decided to group attacks that originate from the same set of attacking arguments, i.e. each round black node represents a maximal group of hyperedges in R that have the same set of attacking arguments S. Thus, for each round black node, there is a unique set of attacking arguments S and each argument in S is linked to the round black node with an undirected black edge. Each of the grey directed edge from a round black node to an argument node a represents the attack (S, a) ∈ R . This is explained in Example 4.8. Example 4.8 (Hyperedge representation). In Figure 4.8, the set of attacking arguments associated with the round black node is S = {A 1 , A 0 }. There are two outgoing grey edges form the round black node to A 2 and A 3 , thus the two corresponding attacks in R are (S, A 2) and (S, A 0).

Figure 4 . 8 :

 48 Figure 4.8: Representation of hyperedges in NAKED

Figure 4 . 9 :

 49 Figure 4.9: Representation of the areas of interest in NAKED

Figure 4 .

 4 Figure 4.10: Argument highlight feature in NAKED

• a 2 a

 2 if and only if Supp(a) Supp(a) and Conc (a) Conc (a).

 Example 5.2 (Example 5.1 cont'd). Let us consider the argumentation framework F KB = (A , R) such that the arguments of A are represented in Table

Figure 5 . 1 :

 51 Figure 5.1: Representation of the core c 1 of F KB using 1 and displayed in Table5.1

Figure 5 . 2 :

 52 Figure 5.2: Representation of the core c 2 of F KB using 2 and displayed in Table5.1

 if and only if there exists a, b ∈ A ∩ Ar (X) such that Conc (a) Y , Conc (b) Z and a σ c b. K (X) corresponds to a ranking on elements of C (X) obtained via the ranking of arguments σ on c.

 Example 5.5. Let F = (A , R) be an argumentation framework and c = (A , R) be a core of F for an equivalence relation. In this example depicted in Figure 5.3, we have A = {a, b, c, d, e, i, , h} and R = {(i, a), (, a), (c, b), (d, b), (e, b), (h, b)}. Suppose that ī = {i, } and c = {c, d, e}. The core c is such that A = {a, i, c, b, h} and c = {a, b}.

 Figure 5.3: Representation of an argumentation framework F and one of its cores c

 Proposition 5.10 (Rank characterisation). Let a, b ∈ . If σ satisfies CP and

4 - 2 = 2 .

 422 and a σ c b. Proof. We have for all arguments a in A , |Att -(a)|e ∈At t -(a)∩A | f ((e, a))| = |Att -(a) ∩ A |. Thus, we can say that |Att -(a) ∩ A | < |Att -(b) ∩ A |. Since σ is a semantics that satisfy CP, b σ c a and a σ c b. Example 5.6 (Example 5.5 cont'd). We have that f ((i, a)) = {(, a)}, f ((c, b)) = {(d, b), (e, b)} and f ((h, b)) = ∅. Thus, we can compute that |Att -(a)|e ∈At t -(a)∩A | f ((e, a))| = 1 and |Att -(b)|e ∈At t -(b)∩A | f ((e, b))| = We conclude that under a ranking-based semantics σ satisfying CP, b σ c a and a σ c b.

 (a) → Att -(b) with for every a ∈ Att -(a), a σ F (a) and (|Att -(a)| < |Att -(b)| or there exists a ∈ Att -(a), a σ F (a), (a) σ F a) then b σ F a and a σ F b. Note that the burden-based, discussion-based and the h-categoriser rankingbased semantics satisfy the SCT postulate.

 -(a) ⊆ c then γ (a) σ F a and a σ F γ (a). Proof. Since a c , we have that Att -(γ (a)) = {γ (a)|a ∈ Att -(a)} and thus |Att -(a)| = |Att -(γ (a))|. Now, since Att -(a) ⊆ c , we have that for every b ∈ Att -(b), b σ

 {d}, a), ({b}, a), ({b}, c), ({b, e}, d), ({d, c}, e), ({a, c}, e)}. A ranking-based semantics σ is a function that returns a ranking on argument for every hypergraph argumentation framework. Definition 5.13 (Ranking-based semantics σ). A ranking-based semantics σ associates to any hypergraph argumentation framework F = (A , R) a ranking σ F on A where σ F is a total preorder (reflexive and transitive relation) on A . The notation a σ F b means that a is at least as acceptable as b. Notation 5.1. As usual, the notation a σ F b is used for a σ F b and b σ F a. Likewise, we use a ≈ σ F b for a σ F b and b σ F a. By abuse of notation, if S and S are two sets of arguments, we write that S σ

Property 5. 16 (

 16 Quality precedence). We say that σ satisfies Quality precedence if and only if for any F = (A , R) ∈ K F and a, b ∈ A such that there exists S ∈ R - 1 (a) and for everyS ∈ R - 1 (b) we have min σ F (S) σ F min σ F (S) then b σ F a.Before introducing the next properties, we need to introduce a relation that compares sets of sets of arguments by inspiring ourselves from[START_REF] Amgoud | Ranking-Based Semantics for Argumentation Frameworks[END_REF].Definition 5.19 (Group comparison). Let F = (A , R) and G, G ⊆ (2 A \∅). We say that G ≥ G if and only if there exists an injective functionf : G → G such that for every ∈ G , min σ F (f ()) σ F min σ F ().135 CHAPTER 5. RANKING-BASED REASONING Notation 5.3. As usual, we use the notation G > G if and only if |G | < |G | or there exists ∈ G such that min σ F (f ()) σ F min σ F ().

 Definition 5.21 (Nh-categoriser ranking-based semantics). Let F = (A , R) be an argumentation hypergraph. The nh-categoriser rankingbased semantics on F returns a ranking nh F on A such that for every a, b ∈ A , a nh F b if and only if C (a) ≥ C (b). Example 5.9 (Example 5.7 cont'd). The nh-categoriser scores of arguments are C (a) ≈ 0.38, C (b) = 1, C (c) = 0.5, C (d) ≈ 0.65 and C (e) ≈ 0.53. We obtain the ranking: b nh F d nh F e nh F c nh F a. We now show that nh-categoriser satisfies the same properties as hcategoriser. Proposition 5.15 (Property satisfaction). The nh-categoriser satisfies Abstraction, Independence, Void precedence, Defense precedence, Countertransitivity, Strict counter-transitivity, Increase of attack branch, Increase of defense branch, Addition of attack branch, Total and Non-attacked equivalence.

Figure 5 . 4 :

 54 Figure 5.4: Argumentation framework with equal h-categoriser scores

 Third, we use an inconsistency-tolerant inference relation restricted to the best repairs sets ranked by the lifting function to answer the query. At this step, one can use the usual inconsistency-tolerant inference relations such as AR, IAR, ICR or any of the modifier-based semantics of Baget et al. [2016a] Definition 5.25 (Inference). An inconsistency-tolerant inference relation is a function |=: KB s × Q → {T rue, False}. Based on the previous notions, we define our framework (see Figure 5.6). Definition 5.26 (RIF). A ranking-based inference framework (RIF) is a tuple RIF = (V, L, |=) where V is an inconsistency value, L is a lifting function and |= is an inconsistency-tolerant inference. The top result of RIF = (V, L, |=) on a knowledge base KB

 Definition 5.36 (Data sensitive). We say that a lifting function L satisfies data sensitive if and only if for any set of elements Y such that |Y | > 1 and any two sets E, E ∈ 2 Y , there exist two different total, reflexive and transitive binary relations , on Y such that (E, E) ∈ L (Y) and (E, E) L (Y). Definition 5.37 (Abstraction-L). We say that a lifting function L satisfies abstraction-L if and only if for any for any two set of elements Y , Y , any total, reflexive and transitive binary relation on Y , any two sets E, E ∈ 2 Y and any isomorphism γ such that γ (Y) = Y and γ () = , it holds that (E, E) ∈ L (Y) if and only if (γ (E), γ (E)) ∈ L (Y).

 Proposition 5.19 (Max and leximax property satisfaction). It holds that L max , L l ex imax satisfy data sensitive and abstraction-L.

Figure 5 . 7 :

 57 Figure 5.7: Representation of the considered packagings (from left to right): the opened plastic packaging without lid (opl), the wooden packaging (wp), the plastic packaging with a rigid lid (prl) and the plastic packaging with a plastic film (ppf).

 and H L. By definition, K and L are R-consistent, thus the arguments c = (K, K) and d = (L, L) exist. We have that a attacks c, c attacks d and d attacks b. Proposition 3.17 (Repair equivalence) Let F * KB = (A * , R *), it holds that Ext x (F * KB) = {Ar (A , A *) | A ∈ repairs (KB)} for i ∈ {s, p}.

 Proposition 3.19 (Attack properties) Let KB be a knowledge base, F KB = (A , R) be the corresponding argumentation framework and F * KB = (A * , R *) be the filtrated argumentation framework. It holds that:1. a ∈ A * is not attacked in F KB if and only if a is not attacked in F * KB vi 7.2. PROOFS 2. if a ∈ A * is attacked in F KB then |Att - F KB (a)| ≤ |Att -The proofs are as follows:1. We show that a ∈ A * is not attacked in F KB if and only if a is not attacked in F * KB . The proof is split in two parts:• (⇒) Let a ∈ A * and suppose that a is not attacked in F KB but a is attacked in F * KB . If there exists b ∈ A * such that ({b}, a) ∈ R * . Then, we have that (b, a) ∈ R, hence a is attacked in F KB . Contradiction. Otherwise, there exists B = {b 1 , . . . , b n } ⊆ A * such that (B, a) ∈ R * . Let CB = b i ∈B Conc (b i). Let SB = Supp(b 1) = • • • = Supp(b n). We now show that b = (SB, CB) is an argument in F KB . Indeed, SB is consistent, CB ⊆ Sat R (SB). By means of contradiction, suppose that SB is not a minimal set satisfying the previous two conditions and let SB ⊂ SB such that CB ⊆ Sat R (SB). Then, b 1 is not an argument since (SB , Conc (b 1)) is an argument. Thus, b is an argument in F KB and we have that (b, a) ∈ R.• (⇐) Suppose now that a is attacked in F KB but that a is not attacked in F * KB . Let (b, a) ∈ R. The case b ∈ A * is trivial because ({b}, a) ∈ R * . Suppose that b A * . This means that there exists B = {b 1 , . . . , b n } ⊆ A * such that Supp(b 1) = • • • = Supp(b n) and Conc (b) = b i ∈B Conc (b i).So either (B, a) ∈ R * or there exists B ⊂ B such that (B , a) ∈ R * . 2. We show that if a ∈ A * is attacked in F KB then |Att - F KB (a)| ≤ |Att - Suppose that a ∈ A * is attacked in F KB . Let B = {b 1 , . . . , b n } be the set of all attackers of a in F KB . Without loss of generality, let B ∩ A * = {b k , . . . , b n }. Let us define a function f : B → {B ⊆ A * | (B , a) ∈ R * } as follows:

 . . , b k i } where B is an arbitrary set such that for every b j i ∈ B , Supp(b j i) = Supp(b i) and b j i ∈B Conc (b j i) = Conc (b i) and B is a minimal set satisfying the previous two conditions otherwise f is well defined since such B exists if b i A * , by definition of A * . Let us prove that f is an injective function. Let b i , b j ∈ B. The case i ≥ k or j ≥ k is obvious. In the remainder of the proof, we suppose that i < k and j < k. Denote B = f (b i) and B = f (b j). Suppose that B = B . Thus Supp(b i) = Supp(b j). Note that Conc (b i) = vii CHAPTER 7. APPENDIX b ∈B Conc (b) = b ∈B Conc (b) = Conc (b j). Thus b i = b j . This shows that f is injective. We conclude that |Att - F KB (a)| ≤ |Att -

7. 2 . 2 4 Proposition 4 . 1 (

 22441 Chapter Preferred & Stable Characterisation) Let KB = (F, R, N) be a knowledge base, F KB be the corresponding argumentation framework and x ∈ {s, p}. It holds that:Ext x (F KB) = {Ar (A) | A ∈ repairs (KB)} Proof 4.1.The plan of the proof is as follows:

 (A) | A ∈ repairs (KB)} ⊆ Ext p (F KB), thus the theorem holds for preferred semantics. From the second item we have that Ext s (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}, thus the theorem holds for stable semantics. 1. We first show {Ar (A) | A ∈ repairs (KB)} ⊆ Ext s (F KB). Let A ∈ repairs (KB) and let E = Ar (A). Let us prove that E ∈ Ext s (F KB).We first prove that E is conflict-free. By means of contradiction we suppose the contrary, i.e. let b∈ E such that (E, b) ∈ R • . From the definition of R • , there exists E ⊆ E such that (E , b) ∈ R , i.e. φ ∈ Prem(b) such that (e ∈E Conc (e)) ∪{φ} is R-inconsistent. Thus (e ∈E Prem(e)) ∪ {φ} is R-inconsistent; consequently A is R-inconsistent, contradiction.Therefore E is conflict-free. Let us now prove that E attacks all arguments outside the set. Let b ∈ Ar (F) \ Ar (A) and let φ ∈ Prem(b), such that φ A . Let A c = {a 1 , . . . , a n } be the set of all arguments of the form a i = φ i where φ i ∈ A . We have φ A , so, due to the set inclusion maximality for the repairs, A ∪ {φ} is R-inconsistent. Therefore, (A c , b) ∈ R . Consequently, E is a stable extension.

2 .

 2 We now need to prove that Ext p (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}. Let E ∈ Ext p (F KB) and let us prove that there exists a repair A such that E = Ar (A). Let S = Base (E). Let us prove that S is Rconsistent. Aiming to a contradiction, suppose that S is R-inconsistent. Let S ⊆ S be such that (1) S is R-inconsistent and (2) every proper set of S is R-consistent. Let us denote S = {φ 1 , φ 2 , . . . , φ n }. Let viii 7.2. PROOFS a ∈ E be an argument such that φ n ∈ Prem(a). Let Y = {a 1 , . . . , a n-1 } be a set of arguments of the form a i = φ i . It holds that (Y , a) ∈ R because a i ∈Y Prem(a i) is R-inconsistent (by definition of S) and (a i ∈Y

3. 7 .• 1 (2 - 1) = 2 •

 71212 Now we know that the set {Ar (A) | A ∈ repairs (KB)} in included in Ext s (F KB) and Ext p (F KB) ⊆ {Ar (A) | A ∈ repairs (KB)}. The theorem follows from those two facts, as explained at the beginning of the proof.Proposition 4.7 (Attack upper-bound) Let KB be a knowledge base and F KB = (A , R) be the corresponding argumentation framework. If |A | = n then |R | ≤ We show by induction that for every |A | ≥ 2, we have |R | ≤ Base: If |A | = 2 then we have that |R | ≤ 2 Inductive Step: Let us denote by E(A), the maximum number of attacks on the set of arguments A . Suppose that A = {a 1 , . . . , a k }ix -i). We show that E(A ∪{a k +1 })

x 7 .

 7 2. PROOFSNote that Concs (E) = Sat R∪N (A) (this follows from the definition of the arguments). Formally, Sat R∪N (Sat R∪N (A)) = Sat R∪N (Concs (E)). Since Sat R∪N is idempotent, this means that we have Sat R∪N (A) = Sat R∪N (Concs (E)). Since Sat R∪N (A) |= ⊥ , then Sat R∪N (Concs (E)) |= ⊥ and Concs (E) is R-consistent.

α 1 ,

 1 . . . , α k ∈ Concs (E) then there exist a 1 , . . . , a k ∈ E such that we have Conc (a 1) = α 1 , . . . , Conc (a k) = α k . Thus, there exists an argument a such that Prem(a) = Prem(a 1) ∪ • • • ∪ Prem(a k) and Conc (a) = α. Since E is a preferred, a stable or the grounded extension, Theorems 4.1 and 4.3 imply that there exists a set S ⊆ F such that E = Ar (S) = Ar (Base (E)). From this observation and since Supp(a) ⊆ Base (E), we conclude that a ∈ E. Thus, α ∈ Concs (E), which ends the proof.xi CHAPTER 7. APPENDIX• In the case of grounded semantics, the result holds directly from the first part of the proposition. The reminder of the proof considers stable or preferred semantics. From the definition of Sat R , Output x (F KB) ⊆ Sat R (Output x (F KB)). So we need to prove that Sat R (Outputx (F KB)) ⊆ Output x (F KB). Let α ∈ Sat R (Output x (F KB)).Then there exist a minimal set {α 1 , . . . , α k } ⊆ Output x (F KB) and a sequence of rule applications such that α is produced from {α 1 , . . . ,α k }. Since α 1 , . . . , α k ∈ Output x (F KB) then for every E ∈ Ext x (F KB), we have α 1 , . . . , α k ∈ Concs (E). Therefore for every E ∈ Ext x (F KB), α ∈ Sat R (Concs (E)).From the first part of the proof, Sat R (Concs (E)) = Concs (E). Thus, for every E ∈ Ext x (F KB), α ∈ Concs (E). Thus, α ∈ Output x (F KB).

2 (1 . 2 .

 212 Attackers equivalence) Given a logical argumentation framework F K = (A , R) with A being the set of arguments defined by Definition 3.1 and R the set of attacks defined according to Definition 3.2, the set R enjoys the following properties: C1b : for every a, b, c ∈ A , if Conc (a) Conc (b) then ((a, c) ∈ R if and only if (b, c) ∈ R). C2b : for every a, b, c ∈ A , if Supp(a) Supp(b) then ((c, a) ∈ R if and only if (c, b) ∈ R). Proof 5.2. Let KB = (F, R, N) be a knowledge base expressed using existential rules and F KB = (A , R) the corresponding argumentation framework. Now, we consider a, b, c ∈ A . 1. Suppose that Conc (a) Conc (b). If (a, c) ∈ R, it means that there exists ϕ ∈ Supp(c) such that Sat R∪N (Conc (a) ∪{ϕ}) |= ⊥. However, since Conc (a) Conc (b), we can infer that Sat R (Conc (a)) = Sat R (Conc (b)), thus Sat R∪N (Conc (b) ∪ {ϕ}) |= ⊥ and (b, c) ∈ R. Likewise, (b, c) ∈ R implies (a, c) ∈ R which ends the proof. 2. Suppose now that Supp(a) Supp(b). If (c, a) ∈ R, it means that there exists ϕ ∈ Supp(a) such that Sat R∪N (Conc (c) ∪{ϕ}) |= ⊥. However, since Supp(a) Supp(b), by definition, we have that there exists ϕ ∈ Supp(b) s.t. ϕ ϕ, i.e. Sat R (ϕ) = Sat R (ϕ). Therefore, we can infer that Sat R (Conc (c) ∪ {ϕ }) |= ⊥ and (c, b) ∈ R. Likewise, (c, b) ∈ R implies (c, a) ∈ R which ends the proof. xii 7.2. PROOFS Proposition 5.4 (Core construction equivalence) Let F = (A , R) be an argumentation framework and 1 , 2 be the equivalence relations defined in Definition 5.2. It holds that: Core 2 (F) = c 1 ∈Cor e 1 (F) Core 2 (c 1).

Proposition 5. 16 (

 16 Dung Equivalent Existence) Let F = (A , R) be an hypergraph argumentation frameworks. Then, there exists an abstract argumentation framework F = (A , R), a subset {a 1 , . . . , a m } ⊆ A and a bijection γ : A → {a 1 , . . . , a m } such that for every a ∈ A , C (a) = C (γ (a)).

 a)∈R f (b) . Let a be an arbitrary argument in A , {b 1 , . . . , b p } the set of attackers xv CHAPTER 7. APPENDIX of a in F and (W , t) = γ -1 2 (a). By construction, we know that there exists x W ∈ W such that {b 1 , . . . , b p } = {γ 2 ((S , x W))|S ∈ R - 1 (x W)}.

 . 132 Ar (X , A *) .69 Att + . 33 Att - F . 33 Base (X) see Base Bur see Burden vector C see nh-categorise function C see h-categoriser function Conc (a) see Conclusion Concs (X) . 99 Core (F) . 119 D(F KB) .67, 72 D F . 36 Dis see Discussion count Ext x (F) . 36 Ext x (F) . 95 Ext x (F * KB) .69 Free (KB) . 31 I (KB, C) see Inconsistency measure I KB (C) . . see Inconsistency measure I KB d (X) . 146 I KB M I (X) . 146 Imp(C) . 61 c . 128 K (X) . 125 Output x (F KB) 99 Q () . see Boolean conjunctive query Q (X) see Conjunctive query SCC (F) . 36 Supp(a) see Support W a . 57 X / see Equivalence classes X c . 126 A . 32 AC 0 . 26 ARL . see ARL F . 32 F KB .51 F . 92 F KB . 92 F * KB .68 A * . . see Filtrated set of arguments

F

 .131 ≈ σ F . 40 1 . 118 2 . 118 Bod (r) see Body xvii INDEX ⊥ . 15 σ-chase . 20 . 117 δ see Derivation ≡ see Logical equivalence . 117 ∃ . 14 Facts . 19 ∀ . 14 Null see Fresh variable σ f r -chase see Frontier chase σ f r . see Frontier derivation reducer Head (r) see Head Homo . 19 O x . see Orbit C (X) . 125 |= RIFx see Restricted inference |= AR . see AR |= I AR . see IAR |= I C R . see ICR ⊕ . 32, 92 π see Homomorphism π saf e . 18 Rule . 19 σ . 131 sort . 147 → . 14 l ex see Lexicographical order σ F . 131 σ F . 40 bur Fsee Burden-based ranking semantics dis F . . see Discussion-based ranking semantics hcat F see h-categoriser ranking-based semantics V L . 144 . 15 see Logical consequence a . 16 ∧ . 14 aRb . 51 f r (r) see Frontier terms (Φ) . ars (Φ) . coNP . ExpTime . NP . PTime . Datalo ± . Datalo + . 2, A ABA . 7, Abstract argumentation framework 32 Abstraction . Abstraction-I Abstraction-L Acceptability 33, Acyclic graph of rule dependency see aGRD Addition of attack branch134 Addition of defense branch Admissible set . . . 34, 37, 52, 68, aGRD . Answer . AR . ArgSemSAT . ArgTools . Argument .32 Arity . ARL . 123, Artificial intelligence ASGL . ASPARTIX-D ASPIC+ 7, 8, 48, Assumption-based argumentation see ABA Atom . Atomic head . Attack . Attack branch Attack vs full defense Automorphism Automorphisms inheritance Automorphisms transfer xviii INDEX B Base . 50, 93 Bipolar argumentation framework 114 Body . 18 Boolean conjunctive query . . 17, 21, 30 Bottom facts 149 Breadth-first derivation 20 Burden vector 43 Burden-based ranking-based semantics . 43

Table 3 .

 3 1: Classes of argumentation frameworks studied in the literature

 The list of arguments and the composition of the extensions is given in Section 7.1 on page i.

	CHAPTER 3. USING DEDUCTIVE ARGUMENTATION WITH
	EXISTENTIAL RULES		
	if there are		
	no rules	Generation	Completion
	Processed KB	Intermediary Graph	Complete Graph
	KB		
	if there are rules		Filtration	Generation
	Generated		Filtration of	Generation of
	Arguments		Arguments	Attacks

 18, the number of attacks can increase in some cases (see Example 3.24). Table 3.4: Characteristics of the F KB and F * KB generated from the knowledge bases.

	Name of	Median # Median # Median # Median #	Median %	Median %
	the KB	arg. F KB	att. F KB	arg. F * KB	att. F * KB	arg. filtrated att. reduction
	b 1 to b 6	17	80	17	80	0	0
	b 32	4	6	4	6	0	0
	b 33 to b	8	24	8	24	0	0
	b 36 to b	17	96	17	96	0	0
	b 41 to b	36	380	36	380	0	0
	b 7 to b 12	11	17.5	4.5	11	53.6	40.2
	b 13 to b	14	87.5	6	35	57.1	60.4
	b 19 to b	71	1280	41	704	38.7	37.5
	b 29 to b	16	29	8	21	50	26.7
	b 57 to b	8	13.5	6	11.5	25	14.8
	b 59 to b	28.5	303.5	15.5	173.5	46.2	45.9
	b 83 to b	12	34	9	24	25	30.1
	b 85 to b	24	129	12	57	50	55.8
	b 88 to b 108	85	1652	35	596	59.0	63.5

 1. All possible arguments are generated: R-consistent subsets of F are used as supports and conclusions are deduced from them. Then, non minimal arguments are removed (see Definition 3.1 on page 50). FRAMEWORKS

	Name of the Number Number Number	Type	Number	Number
	KB	of facts of rules	of NC	of NC	of Args	of Attacks
	b 1 to b 6	2 to 7	∅	1	Binary	2 to 95	2 to 2048
	b 32	3	∅	2	Binary	4	6
	b 33 to b 35	4	∅	2 to 3	Binary	7 to 9	24 to
	b 36 to b 40	5	∅	2 to 3	Binary	14 to 19	56 to 128
	b 7 to b 12	2	1 to 6	1	Binary	4 to 30	5 to
	b 13 to b 18	2	2,4 or 6	1	Binary	6 to 30	15 to 450
	b 19 to b 28	2 to 7	1 or 3	1	Binary 11 to 383 32 to 32768
	b 29 to b 31	3	2	1	Binary	16	27 to
	b 57 to b 58	3	1	2	Binary	8	13 to
	b 59 to b 82	4	3	2 to 4	Binary	22 to 71	123 to 896
	b 41 to b 56	3 to 6	∅	1 to 3	Ternary	6 to 55	9 to
	b 83 to b 84	3	1	1	Ternary	12	29 to
	b 85 to b 87	3	2	1	Ternary	24	93 to 147
	b 88 to b 108	4	3	1 to 2	Ternary 78 to 103 990 to 2496
	Table 3.5: Characteristics of the small knowledge bases	

Table 3 .

 3

	Task	ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	3	5	2	4		6
	SE-PR	3	4	2	6		5
	SE-GR	3	5	2	6		4
	SE-ST	3	5	2	4		6
	EE-CO	4	5	2	3		6
	EE-PR	3	4	2	6		5
	EE-GR	3	4	2	6		5
	EE-ST	4	5	2	3		6
	Table 3.7: Ranking of solvers for the generated small graphs
	Task	ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	15	26	16	1		11
	SE-PR	18	1	17	26		11
	SE-GR	17	0	18	26		11
	SE-ST	15	0	18	2		11
	EE-CO	22	26	26	9		21
	EE-PR	21	26	26	26	15	21
	EE-GR	16	26	17	26		11
	EE-ST	15	23	17	1		11
	Table 3.8: Number of timeouts for the generated large graphs
	Task	ArgS.SAT ASGL ArgT. Aspartix-d CoQuiAAS LabSATS.
	SE-CO	4	6	5	2		3
	SE-PR	5	2	4	6		3
	SE-GR	4	2	5	6		3
	SE-ST	5	2	6	3		4
	EE-CO	4	5	5	2		3
	EE-PR	2	4	4	4		3
	EE-GR	3	5	4	5		2
	EE-ST	4	6	5	2		3

6: Average computational time for small instances (in seconds)

It is noticeable that CoQuiAAS comes first in the two batches of gen-

 4.1 Argumentation hypergraphs with the existential rules language . 91 4.1.1 Hypergraph argumentation framework F 92 4.1.2 Argumentation framework properties 94 4.1.3 Rationality postulates 99 4.1.4 Empirical analysis 100 4.2 The NAKED tool . 106

4.2.1 The argument and attack generation 107 4.2.2 The structure of NAKED 108 4.2.3 Usability scenarios 110 4.3 Summary . 112

Table 4 .

 4 1: Comparison of the median number of arguments, attacks and generation time needed between F KB and F KB on the sets of knowledge bases A 1 , A 2 , A 3 and B

			Deductive argumentation framework F KB
			KB # Arg.	# Att.	Gen. Time (ms)
			A 1	22			128	160
			A 2	25			283	133
			A 3	85			1472	399,5
			B	5967	11542272	533089
			Hypergraph argumentation framework F KB
	KB #Arg.	%Arg. ↓	#Att.	%Att. ↓	Gen. Time (ms)	%Time ↓
	A 1	5	77,27		6		93,75	276,00	-81,48
	A 2	7	72,00		8		92,93	342,00	-183,57
	A 3	7	91,76		9		99,26	369,50	1,66
	B	14	99.77		20.5	99.99	7814.5	98.08

 5.1 Ranking with existential rules deductive argumentation framework . 116

5.1.1 Core equivalence 117 5.1.2 Characterising ranking changes 126 5.2 Ranking-based semantics with argumentation hypergraphs . 131 5.2.1 Properties for ranking-based semantics on hypergraphs . 132 5.2.2 The nh-categoriser 136 5.3 Ranking facts in inconsistent knowledge bases 142 5.3.1 The ranking-based inference framework 143 5.3.2 RIF results . 148 5.4 Summary . 156

 2.3 on page xii for the proof of Proposition 5.2.

	a 7	a 6	a 5
	a 8		a 4
	a 9		a 3
	a 10		a 2
	a 11		a 1
	a 12		a 20
	a 13		a 19
	a 14		a 18
	a 15	a 16	a 17

 a 13 , a 14 a 3 , a 4 , a 5 a 6 , a 7 , a 8 , a 9 , a 10 , a 11 , a 15 , a 16 , a 17 , a 18 , a 19 , a 20

•

 Improving rankings. The second question that we ask is: Can the ranking-based techniques be improved? Ranking techniques in argumentation make use of the structure of an argumentation framework whereas in the knowledge base perspective, ranking techniques are based on the notion of minimal inconsistent sets. Following the work of[START_REF] Bonzon | Combining Extension-Based Semantics and Ranking-Based Semantics for Abstract Argumentation[END_REF], it would be possible to combine these two techniques. It would be interesting to study what properties are produced by the combination of these two techniques.2. Efficient generation. In Chapter 4, we introduced a new framework for logic-based argumentation that is based on instantiating hypergraphs. As we showed in an experiment, this new framework is much more efficient than those of[START_REF] Croitoru | What Can Argumentation Do for Inconsistent Ontology Query Answering?[END_REF] and Arioua et al.

 1 , then E G E ⊆ E 1 . Since Sat R∪N (Concs (E)) |= ⊥ then Sat R∪N (Concs (E G E)) |= ⊥ and Concs (E G E) is R-consistent.Consider the case of stable or preferred semantics. Let us prove that Sat R∪N (Output x (F KB)) |= ⊥. From the definition of the output, we have Output x (F KB) = E ∈Ex t x (F KB)

 1 , 2 such that Sat R (Y) |= 1 , Sat R (Y) |= 2 , 1 2 , 1 2 and Core 1 (F KB) = {F KB }. Let us consider Y ⊆ Y s.t. there is no Y ⊂ Y and Sat R |= 1 . We have that a = (Y , { 1 }) and b = (Y , { 2 })

 t. a 1 b and thus a 2 b. It means that F KB Core 2 (F KB), contradiction. • (⇐) We show that this implication is true by reductio ad absurdum. Suppose that Core 2 (F KB) {F KB }. It means that there exists c 2 = (A 2 , R 2) ∈ Core 2 (F KB) with X c 2 ∅. Therefore, there exists an argument x ∈ X c 2 s.t. x ∈ A and x A 2 . It means that there exists x ∈ A 2 s.t. Conc (x) Conc (x), Supp(x) Supp(x). We can consider two cases which both lead to contradictions:

	7.2. PROOFS
	xiv

 A . 92 K F . 92 Ar (X) . 93 Base (X) . 93 R . 32 R * .68 R - n (a) . 33 R . 92 R • .94 Sat see Saturated set of facts C .see Constant D . 15 repairs (KB) .31 MI (KB) . 31 F . 18 F * see Saturated set of facts I .15 KB . 30 KB s . 30 L . see Language Λ . 38 L l ex imax . 147 L(X ,) see Lifting function L (X)see Lifting function N . 28 Nulls . 14 P . see Predicate R . 19 R-inconsistence 30 RIF . see RIF RIF abstraction 151 V(KB, b) . . . see Inconsistency value V I (KB) . 146 V I f (KB) . see Shapley inconsistency value V a (KB) see Inconsistency value V . see Variable Voc see Vocabulary ≈ σ

Such as http://www-abaplus.doc.ic.ac.uk.

See http://toast.arg-tech.org.

See http://lidia.cs.uns.edu.ar/DeLP.

By abuse of notation, the resulting atom after the substitution is applied is denoted π (a 1). Thus, π (a 1) = a

means that applying the substitution π to the variables of a 1 produces the atom a 2 .

For more information about these concrete classes, see the work of[START_REF] Baget | ABAplus: Attack Reversal in Abstract and Structured Argumentation with Preferences[END_REF]. The online tool Kiabora http://graphik-team.github.io/graal/downloads/ kiabora-online checks automatically if a set of rules is skolem-FES.

http://www-sop.inria.fr/NoDE/

http://debatepedia.org/

http://argumentationcompetition.org/

Graph density for a directed G = (V , E) is equal to |E | |V |(|V |-1)where V is the set of nodes and E the set of arcs.

http://argumentationcompetition.org/2015/results.html

This distance is equal to the number of pairwise disagreements between two ranking lists and is normalised by dividing byn (n-1)2, where n is the number of solvers.

The density is equal to the number of attacks divided by the maximum number of possible attacks. In the case of a directed graph, the maximum number of attacks is given by n(n -1) where n is the number of nodes. In the case of F , we use the formula in Proposition 4.7 to obtain the maximum number of attacks.

In the following we consider that the rule application is using the restricted chase which does not consider redundant new facts generated by each step of the rule application (see more details in the work of[START_REF] Baget | Revisiting Chase Termination for Existential Rules and their Extension to Nonmonotonic Negation[END_REF]).

We recall that ranking-based semantics are defined in Definition 2.51 on page 40.

and

induced core from its original argumentation framework. Then, for those argumentation frameworks where the induced core is different, we provide sufficient conditions for characterising the difference between the ranking of the core and the one of its original argumentation framework. More precisely:

The isomorphism γ renames the predicates and the constants. We use an abuse of notation and apply γ to sets of facts, sets of rules, negative constraints and to knowledge bases (meaning we apply to all three).

The obtained set is similar to the notion of preferred sub-theories of a stratification defined by[START_REF] Brewka | Preferred Subtheories: An Extended Logical Framework for Default Reasoning[END_REF].

CHAPTER 5. RANKING-BASED REASONING

An attack (respectively defense) branch of an argument a is an hypergraph argumentation framework such that its fusion with the original argumentation framework should result in the addition of an even (respectively odd) path to a.

Definition 5.17 (Added attack and defense branch). Let F = (A , R) be an hypergraph argumentation framework and a ∈ A . P + (a) (respectively P -(a)) is a pair (A 0 , R 0) called a defense (respectively attack) branch added to a if and only if the three following items are satisfied:

• A 0 = {a, x 1 , . . . , x k } and A ∩ A 0 = {a} • there exists n ∈ 2N (respectively n ∈ 2N + 1), S 1 ∈ (2 A 0 \ ∅) and a path ((S 1 , t 1), . . . , (S n , t n)) of size n such that t n = a.

• R 0 = {(S i , t i) | i ∈ {1, . . . , n}} and (

The Strict addition of defense branch property states that adding a defense branch to an argument should increase its rank.

Property 5.10 (Strict addition of defense branch). We say that σ satisfies Strict addition of defense branch if and only if for any F , F = (A , R) ∈ K F and any a ∈ A such that there exists an isomorphism γ with F = γ (F) we have γ (a) σ F ⊕F ⊕P + (γ (a)) a. The Addition of defense branch property states that adding a defense branch to an attacked argument should increase its rank.

Property 5.11 (Addition of defense branch). We say that σ satisfies Addition of defense branch if and only if for any F , F = (A , R) ∈ K F and any a ∈ A such that there exists an isomorphism γ with F = γ (F) and R - 1 (a) ∅ we have γ (a) σ F ⊕F ⊕P + (γ (a)) a. The Addition of attack branch property states that adding an attack branch to an argument should decrease its rank.

Property 5.12 (Addition of attack branch). We say that σ satisfies Addition of attack branch if and only if for any F , F = (A , R) ∈ K F and any a ∈ A such that there exists an isomorphism γ with F = γ (F) we have a σ F ⊕F ⊕P -(γ (a)) γ (a). The Increase of attack branch property states that increasing the length of an attack branch of an argument a should decrease the ranking of a.

Property 5.13 (Increase of attack branch). We say that σ satisfies Increase of attack branch if and only if for any F , F = (A , R) ∈ K F and any a ∈ A such that there exists an isomorphism γ with F = γ (F), for every S ∈ (2 A \ ∅) such that for every s ∈ S, R - 1 (s) = ∅, there exists a path of size n from S to a with n ∈ 2N + 1 and there is no path of size m from S to a with m ∈ 2N then for every s ∈ S, γ (a) σ F ⊕F ⊕P + (γ (s)) a.

RANKING-BASED SEMANTICS WITH ARGUMENTATION HYPERGRAPHS

where the function F maps [0, 1] n to [0, 1] n , and for every i ∈ {0, . . . , n}, the function f i from [0, 1] n to [0, 1] is defined by the nh-categoriser function:

The function F is continuous and non-increasing as for every two vectors

Proposition 5.13 (Solution existence). For any argumentation framework F = (A , R), the nh-categoriser valuation defined in (5.2) has at least one solution in [0, 1] n .

Proof. The proof is similar to the one of [START_REF] Pu | Argument Ranking with Categoriser Function[END_REF] and relies on the equivalence result that function F has at least one fixed point. The proof uses Brouwer's fixed point theorem and the fact that [0, 1] n is homeomorphic to a closed ball and function that F is continuous on it.

Proposition 5.14 (Uniqueness of nh-categoriser valuation). Let F = (A , R) be an hypergraph argumentation framework with A = {a 1 , . . . , a n } and R with sets of attacking arguments. Then, the scores of the nhcategoriser function converge toward a unique solution * ∈ [0, 1] n , which is the limit of the sequence of { (k) } ∞ k=0 defined from an arbitrary selected (0) in [0, 1] n and , for each k ≥ 1, generated by:

(5.3)

Proof. First, let us consider that u (0) = (0, . . . , 0), u (1) = F (u (0)) = (1, . . . , 1) and u (k) = F (u (k -1)) for each k ≥ 2. We can easily check that: 2) ≤ u (1) (5.4)

and that there exists 0 < φ < 1 such that:

φu (1) ≤ u (2) (5.5) This is true because every element of u (2) is strictly positive and φ can be initialised to the minimum element. Now, let us prove by induction that for all k ≥ 0, the following statement holds: (1) (5.6) Base case: We showed in (5.4) that u (0) ≤ u (2) ≤ u (1)

Thus, here we have that

3). Since a higher score means being more inconsistent, the resulting ranking on facts, for both in-

We recall that we work with the total, reflexive and transitive ranking V F on F extracted from the inconsistency value.

RIF lifting

A lifting function L compares sets of elements with respect to the ranking and returns a total order on the sets. Let us first introduce the sort relation that will be used in order to define the L l ex imax notion below. Given a set of elements X = {x 1 , x 2 , . . . , x n } and a total, reflexive and transitive binary relation on X , sort(X ,) returns a sorted vector (x 1 , x 2 , . . . , x n) such that for every x i , x j , we have that x i x j if and only if i ≤ j. The element at position i in the vector sort(X ,) is denoted by sort i (X ,). Note that the returned vector is not necessarily unique due to the fact that some elements might be equivalent, i.e. x i ∼ x j .

In this thesis, we consider two possible instantiations of the lifting function L. The L max lifting function compares the subsets with respect to their maximal elements and L l ex imax compares the elements after sorting them in decreasing order.

Let Y be a set of elements, be a ranking on Y, E, E ∈ 2 Y , sort(E,) = (x 1 , x 2 , . . . , x n) and sort(E ,) = (x 1 , x 2 , . . . , x m). We say that:

max (E), where max (X) = sort 1 (X ,).

• (E, E) ∈ L l ex imax (Y) if and only if one of the following holds: (1) m = n and for every i ∈ {1, . . . , n}, x i ∼ x i , (2) there exists i ∈ {1, . . . , min(m, n)} such that x i x i and for every j ∈ {1, . . . , i -1}, x j ∼ x j or (3) n > m and for every i ∈ {1, . . . , m}, x i ∼ x i .

Example 5.13 (Example 5.12 cont'd). The preferred extensions will be composed of the following sets:

• ε 2 = {a 0 , a 3 , a 4 , a 6 , a 7 , a 10 , a 11 }

• ε 3 = {a 1 , a 3 , a 5 , a 6 , a 8 , a 10 , a 12 }

• ε 4 = {a 0 , a 1 , a 2 , a 13 , a 14 , a 15 , a 16 }

• ε 5 = {a 0 , a 3 , a 4 , a 13 , a 14 , a 17 , a 18 }

• ε 6 = {a 1 , a 3 , a 5 , a 13 , a 15 , a 17 , a 19 } The set of cf2 extensions is the set {ε 1 , ε 2 , ε 3 , ε 4 , ε 5 , ε 6 , ε 7 , ε 8 } with: 1. Let us prove that |U nn| ≥ 2 k -1. The set Free (KB) corresponds to the set of facts that are not in any conflict. Since k = |Free (KB)|, we conclude that there are at least 2 k -1 arguments of the form (X , X) that have a non empty subset X of Free (KB) as support. These arguments are not attacked and do not attack other arguments as the elements of their supports and conclusions are not in any conflict.

2. Let us prove that |U nn| ≤ 2 k -1. By means of contradiction, we suppose that |U nn| > 2 k -1. It means that that there is a dummy argument a ∈ U nn such that Supp(a) Free (KB). Thus, there exists a minimal inconsistent set X ∈ MI (KB) such that X ∩ Supp(a) ∅. Now, let us consider Y = X \ Supp(a). We know that Y is not empty otherwise there is a contradiction with the consistency of the support of a. Furthermore, Y is R-consistent since Y ⊂ X . Thus, there is an Proof 3.12. If Free (KB) = ∅, then it is obvious that F KB is a 1-cop graph of itself. Suppose now that Free (KB) ∅. We denote by F KB = (A , R) the argumentation framework from the knowledge base KB = (F\Free (KB), R, N). Moreover, since R = ∅, the arguments can only be of the form (X , X) where

Now, let us consider F KB = (A , R), the argumentation framework corresponding to the knowledge base KB. We show that the subgraph

• We denote by f the function from A to A such that f (a) = a iff Supp(a) = Supp(a) ∩ (F \ Free (KB)). We now show that this function iii CHAPTER 7. APPENDIX is surjective. Let a be an argument of A and c an arbitrary element of Free (KB) (it exists since Free (KB) ∅). As mentioned before, we know that E = Supp(a

• Let (a 1 , a 2) ∈ R , by definition, we have that there exists ϕ ∈ Supp(a 2)

Since there are no rules, it is true that Supp(a 1) ∪ {ϕ} is also R-inconsistent. However, this inconsistency cannot come from elements of Free (KB). Thus, there exists ϕ ∈ Supp(a 2) ∩ (F\Free (KB)) such that (Supp(a

. Likewise, we have that Conc (f (a 1)) = Supp(f (a 1)) = Supp(a 1)\Free (KB) = Conc (a 1)\Free (KB). We conclude that (Conc (a 1)\

This concludes the proof. Proposition 3.15 (SCC characterisation) Let KB = (F, R, N) be a knowledge base such that R = ∅ and F KB = (A , R) be the corresponding argumentation framework. We have that:

Proof 3.15. We split the proof in two parts:

1. Suppose that s i is not a strongly connected component by itself, it means that there is another argument a such that there is a path from

Abstract

In this thesis, we investigate reasoning techniques with argumentation graphs generated from inconsistent knowledge bases expressed in the existential rules language. The existential rules language is a subset of first-order logic in which a knowledge base is composed of two layers: a fact layer and an ontology layer. The fact layer consists of factual knowledge (usually stored in relational databases) whereas the ontology layer consists of reasoning rules of deduction and negative constraints. Since the classical query answering approaches fail in the presence of inconsistencies, we chose to work with an conflict-tolerant reasoning approach that is based on building graphs with structured arguments and attacks from the deductions of the underlying logical knowledge base.

The three main results are the following. First, we study how argumentation graphs are obtained from knowledge bases expressed in existential rules, the structural properties of such graphs and show several insights as to how their generation can be improved. Second, we propose a framework that generates an argumentation graph with a special feature called sets of attacking arguments instead of the regular binary attack relation and show how it improves upon the current state-ofthe-art using an empirical analysis. Third, we interest ourselves to ranking-based approaches in both the context of query answering and argumentation reasoning. In the former, we introduce a framework that is based on ranking maximal consistent subsets of facts (repairs) in order to have a more productive query answering. In the latter, we set up the foundation theory for semantics that rank arguments in argumentation graphs with sets of attacking arguments.

Résumé

Dans cette thèse, nous étudions les techniques de raisonnement utilisant des graphes d'argumentation générés à partir de bases de connaissances inconsistantes exprimées dans le langage des règles existentielles. Les trois principaux résultats sont les suivants. Tout d'abord, nous étudions les propriétés structurelles des graphes obtenus à partir de bases de connaissances exprimées avec des règles existentielles et nous donnons plusieurs indications sur la manière dont leur génération peut être améliorée. Deuxièmement, nous proposons une technique pour générer un graphe d'argumentation où plusieurs arguments peuvent attaquer collectivement, remplaçant ainsi la relation d'attaque binaire classique et montrons expérimentalement les avantages de cette technique. Troisièmement, nous nous intéressons aux approches fondées sur les classements pour le raisonnement en logique et en argumentation.