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ABSTRACT

Computation offloading is a technique that allows resource-constrained mobile devices to fully or partially offload
a computation-intensive application to a resourceful Cloud environment. Computation offloading is performed
mostly to save energy, improve performance, or due to the inability of mobile devices to process a computation-
heavy task. There have been a numerous approaches and systems on offloading tasks in the classical Mobile
Cloud Computing (MCC) environments such as, CloneCloud, MAUI, and Cyber Foraging. Most of these systems
are offering a complete solution that deal with different objectives. Although these systems present in general
good performance, one common issue between them is that they are not adapted to real-time applications such as
mobile gaming, augmented reality, and virtual reality, which need a particular treatment.

Computation offloading is widely promoted especially with the advent of Mobile Edge Computing (MEC) and
its evolution toward Multi-access Edge Computing which broaden its applicability to heterogeneous networks
including WiFi and fixed access technologies. Combined with 5G mobile access, a plethora of novel mobile
services will appear that include Ultra-Reliable Low-latency Communications (URLLC) and enhanced Vehicle-to-
everything (eV2X). Such type of services requires low latency to access data and high resource capabilities to
compute their behaviour.

To better find its position inside a 5G architecture and between the offered 5G services, computation offloading
needs to overcome several challenges; the high network latency, resources heterogeneity, applications interoper-
ability and portability, offloading frameworks overhead, power consumption, security, and mobility, to name a
few.

In this thesis, we study the computation offloading paradigm for real-time applications including mobile
gaming and image processing. The focus will be on the network latency, resource consumption, and accomplished
performance.

The contributions of the thesis are organized on the following axes:

• Study game engines behaviour on different platforms regarding resource consumption (CPU/GPU) per
frame and per game module.

• Study the possibility to offload game engine modules based on resource consumption, network latency, and
code dependency.

• Propose a deployment strategy for Cloud gaming providers to better exploit their resources based on the
variability of the resource demand of game engines and the QoE.

• Propose a static computation offloading-based solution for game engines by splitting 3D world scene into
different game objects. Some of these objects are offloaded based on resource consumption, network latency,
and code dependency.

• Propose a dynamic offloading solution for game engines based on an heuristic that compute for each game
object, the offloading gain. Based on that gain, an object may be offloaded or not.

• Propose a novel approach to offload computation to MEC by deploying a mobile edge application that is
responsible for driving the UE decision for offloading, as well as propose two algorithms to make best
decision regarding offloading tasks on UE to a server hosted on the MEC.
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RÉSUMÉ

Le délestage de calcul ou de code est une technique qui permet à un appareil mobile avec une contrainte de
ressources d’exécuter à distance, entièrement ou partiellement, une application intensive en calcul dans un
environnement Cloud avec des ressources suffisantes. Le délestage de code est effectué principalement pour
économiser de l’énergie, améliorer les performances, ou en raison de l’incapacité des appareils mobiles à traiter
des calculs intensifs. Plusieurs approches et systèmes ont été proposés pour délester du code dans le Cloud tels
que CloneCloud, MAUI et Cyber Foraging. La plupart de ces systèmes offrent une solution complète qui traite
différents objectifs. Bien que ces systémes présentent en général de bonnes performances, un problème commun
entre eux est qu’ils ne sont pas adaptés aux applications temps réel telles que les jeux vidéo, la réalité augmentée
et la réalité virtuelle, qui nécessitent un traitement particulier.

Le délestage de code a connu un récent engouement avec l’avènement du MEC et son évolution vers le edge
à multiple accès qui élargit son applicabilité à des réseaux hétérogènes comprenant le WiFi et les technologies
d’accès fixe. Combiné avec l’accès mobile 5G, une pléthore de nouveaux services mobiles apparaîtront, notamment
des service type URLLC et eV2X. De tels types de services nécessitent une faible latence pour accéder aux
données et des capacités de ressources suffisantes pour les exécuter.

Pour mieux trouver sa position dans une architecture 5G et entre les services 5G proposés, le délestage de
code doit surmonter plusieurs défis; la latence réseau élevée, hétérogénéité des ressources, interopérabilité des
applications et leur portabilité, la consommation d’énergie, la sécurité, et la mobilité, pour citer quelques uns.

Dans cette thèse, nous étudions le paradigme du délestage de code pour des applications a temps rèel, par
exemple; les jeux vidéo sur équipements mobiles et le traitement d’images. L’accent sera mis sur la latence réseau,
la consommation de ressources, et les performances accomplies.

Les contributions de la ths̀e sont organisées sous les axes suivants:

• Étudier le comportement des moteurs de jeu sur différentes plateformes en termes de consommation de
ressources (CPU / GPU) par image et par module de jeu.

• Étudier la possibilité de distribuer les modules du moteur de jeu en fonction de la consommation de
ressources, de la latence réseau, et de la dépendance du code.

• Proposer une stratégie de déploiement pour les fournisseurs de jeux dans le Cloud, afin de mieux exploiter
les ressources, en fonction de la demande variable en ressource par des moteurs de jeu et de la QoE du
joueur.

• Proposer une solution de délestage statique de code pour les moteurs de jeu en divisant la scène 3D en
différents objets du jeu. Certains de ces objets sont distribués en fonction de la consommation de ressources,
de la latence réseau et de la dépendance du code.

• Proposer une solution de délestage dynamique de code pour les moteurs de jeu basée sur une heuristique qui
calcule pour chaque objet du jeu, le gain du délestage. En fonction de ce gain, un objet peut être distribué
ou non.

• Proposer une nouvelle approche pour le délestage de code vers le MEC en déployant une application sur la
bordure du réseau (edge) responsable de la décision de délestage au niveau du terminal et proposer deux
algorithmes pour prendre la meilleure décision concernant les tâches à distribuer entre le terminal et le
serveur hébergé dans le MEC.
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INTRODUCTION

N
owadays, mobile devices such as smartphones and tablets, are gaining enormous popularity.

Smartphones are ubiquitous devices, offering “information at your fingertips” ranging from

communications to computing services. These pervasive devices have created an acute de-

pendency among mobile users, many of whom cannot leave home without taking their device. Mobile

users expect to be able to run computationally intense, high quality applications on these devices,

which include mobile-gaming (m-gaming), mobile-health (m-health), and mobile-learning (m-learning)

applications. However, due to the lightness, handiness, and compactness of these devices, and due to

users safety and mobility issues, mobile devices have some intrinsic limitations to their capabilities,

which include low processing ability, short battery autonomy, small storage capacity, and limited screen

size. These limitations impede the execution of resource-intensive applications. To make this feasible,

industry and academia have two options;

• Hardware augmentation. This consists of enhancing the hardware capabilities of mobile devices,

which include the CPU, GPU, battery, and storage.

• Software augmentation. This leverages remote infrastructure resources to offload the intensive

computation in order to conserve local resources.

Several investigations have been carried out to increase the hardware capabilities of mobile devices.

Manufacturers are proposing multi-core processors with high clock speed, and the ARM industry offers

various microprocessor cores that address performance, power and cost requirements, such as the Cortex-

A processor, which integrates a Memory Management Unit (MMU), designed to execute complex
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operating systems, including Linux, Android, and Microsoft Windows1. Samsung2 and Qualcomm3

corporations have designed new generations of smartphones, which include GPU’s, such as Mali and

Adreno. In regards to battery autonomy, many efforts are being made to harvest energy from renewable

resources, including human movement [211], solar energy [23, 172], and wireless radiation [113]. These

solutions are still under investigations and currently cannot noticeably enhance the energy source, as

these resources are intermittent and not available on-demand. In parallel, researchers are attempting to

reduce the energy overhead in different aspects of computing, including hardware, Operating Systems

(OSs), applications, and networking interfaces. Dynamic Voltage Scaling (DVS) technology is a power

management technique used to conserve energy, particularly in wearable devices, by increasing and

decreasing the voltage as needed. The automatic screen shutdown is another attempt to save energy on

mobile devices. For some companies, like Samsung, the removable battery is a good way to keep the

smartphone working as long as possible by changing the spent battery out for another one.

Software augmentation has also attracted industrial and academic solutions, which conserve the

local resources of mobile devices. Mobile Cloud Computing is envisioned as a promising solution for

addressing the aforementioned challenges. By offloading computations to resourceful servers located in

the Cloud, Mobile Cloud Computing can augment the capabilities of mobile devices for computationally-

hungry applications. Several approaches have been proposed in the literature based on the Mobile Cloud

Computing; we cite load sharing, remote execution, and computation offloading. Load sharing and

remote execution have evolved to the concept of computation offloading, which is more general and

mature. Computation offloading has become an attractive way to reduce the execution time required by

mobile users. It consists of moving a portion of an application to the Cloud. Upon receiving the migration

request, the server creates a dedicated virtual machine for the mobile device, loads the application, and

starts its execution. In the mean time, the mobile device continues to run other tasks or waits for the

results of the execution on the server. At the end, the migrated portion returns to the mobile device, and

merges back into the original process. Computation offloading involves various stakeholders: mobile

devices, network environment, mobile applications, remote servers, mobile users, and the framework

performing the migration.

Accordingly, several challenges and issues have arisen from different stakeholder perspectives that

need to be addressed, for example, response time, energy consumption, security, network communica-

tions, and network latency. Research has been done to address the computation offloading from these

points of view. Some of these challenges have been solved, such as the network latency, wherein Mobile

Edge Computing and Fog Computing have been widely used in computation offloading to address this is-

sue. In terms of network communications, multi-Radio Access Technology (multi-RAT) and on-demand

bandwidth have been used to improve the throughput and, therefore, improve the offloading performance.

Some other challenges are still open issues, such as the framework overhead, and decision-making

1https://www.arm.com/products/processors
2http://www.samsung.com/semiconductor/minisite/exynos/
3https://www.qualcomm.com/products/mobile-processors
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regarding when and what to offload. This thesis will address some of these issues.

1.1 Thesis Contributions

The general thematic of the thesis concerns the computation offloading of real-time, resource-intensive,

and complex mobile applications, including 3D game engines and facial recognition. The research topics

are based on feasibility, performance, and network latency.

The contributions of the thesis are three-fold:

1. Game engines: Under this axis, there are two contributions [189,191]. This axis can split into three

parts:

a) Deployment strategy: Game engines are studied in the Cloud gaming context in terms of

resource variability. Different types of games have been tested, and the obtained performance

are considered for server consolidation. Cloud gaming providers should find a trade-off

between the user’s Quality of Experience (QoE) and the number of hosted game engines

per server. Currently, Cloud servers are being split among several game engines using

virtualization technology. The higher the resource demand of a game engine, the more

resourceful the virtual machine hosting this game engine will be, resulting in low server

consolidation. If the resource demands of a game engine do not vary by much, a Cloud gaming

provider can easily predict this demand, and, therefore, consolidate the server efficiently.

However, if the game engine varies widely in its demand for resources, then, in such a case, a

Cloud provider should accommodate the game engine with peaks. Therefore, a Cloud gaming

provider should find a trade-off between high consolidation and high QoE, using the load

variability study in [189].

b) Game engine dissection: Game engines, to our knowledge, have not being studied from the

state-of-the-art internal architecture point of view. Game engines are considered as proprietary

black boxes. Considering the recent trends, game players have become more mobile and are

using their smartphones and tablets to play games. Compared to dedicated boxes, such as

the XBox One, mobile devices do not perform well when running best-selling 3D games.

Solution leveraging remote resourceful infrastructure, such as Cloud gaming and computation

offloading, represent the next step toward improving the gaming experience. Consequently,

dissecting, testing, and analysing game engine behaviour is a step toward better understanding

how to distribute game engines over a network. Therefore, this contribution aims to analyse the

behaviour of different “genres” of games, test their performance, identify resource bottlenecks,

and, most importantly, draw the internal call flows for inter- and intra-modules that compose

a game.

c) Offloading feasibility: For each module of the game engine, we represent the internal call

flow in order to study the offloading case. Modules related to rendering, which represent
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the majority of the CPU consumption and most of the GPU consumption are all mixed by

series of calls. This observation is a challenge for the implementation of code offloading

since it reduces the gains in terms of performance, and it imposes to generate calls between

distant machines. The physics family can be spread into three sub-families that communicate

through one class. It would thus be relatively simple to distribute the computation of these

three sub-families over separate computers. The scripting family is the only module that

interacts directly with the physics engine. It would thus make sense to run this family of

modules on the same computer as physics modules. The audio family has no interaction

with the other main modules and only deals with the game thread. This module can thus

be offloaded as an Application Programming Interface (API) to a remote machine. The

communication between the client and the remote machine can be done either by Remote

Procedure Call (RPC) or by streaming the audio data. The Artificial Intelligence (AI) family

can be computationally intensive. It is difficult or even impossible to simulate the game on

constrained-resource devices without reducing the complexity of the AI. Since this family is

also mostly independent, the module family as a whole can be offloaded without introducing

much complexity.

2. Game engine offloading: Under this axis, there are two contributions [187, 189]. In [189], a

static offloading of game engine modules based on game engine objects has been proposed. We

decomposed a game world into several game objects; these include the player character, non-player

character, and the environment. We set several criteria regarding these objects. The criteria are

based on resource consumption, code dependency constraints, network latency, and bandwidth

consumption. According to these criteria, each game object is placed on a mobile device or a

remote server. In [187] a dynamic offloading of the game engine modules has been proposed. This

contribution is an enhancement of our work done in [189], wherein we proposed an heuristic to

schedule module placement using the same criteria.

3. MEC oriented offloading contribution: We have a contribution under this axis [188]. One of

the big concerns in computation offloading is the network latency between the mobile device

and server, which limits computation offloading applicability to delay-tolerant applications. For

delay-sensitive applications such as gaming, high latency is intolerable and degrades the quality as

perceived by users. Hopefully, with Mobile Edge Computing (MEC) and the transition toward 5G,

network latency will be drastically reduced. Our contribution was to leverage MEC architecture to

drive computation offloading. We want to use MEC as an enabler for low-latency, computation

offloading-based applications, such as facial recognition. To this aim, we designed a framework

to orchestrate the offloading process. The framework runs on three different entities: (i) mobile

edge application hosted on the mobile edge, which is able to access mobile user-related radio

information, (ii) mobile user, and (iii) a server hosted in the mobile edge. The mobile edge

application is responsible for driving a decision to accept or reject offloading requests coming
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from mobile devices and predicting, using low-level API, the latency value. The mobile device

makes the decision to offload application modules or not according to the estimated latency value

obtained from the mobile edge application. Finally, the server, hosted on the mobile edge side,

computes the offloaded code and sends back the results to the mobile device. As a proof of concept,

We have run a facial recognition application on a mobile device which offloads computation to the

server hosted in the mobile edge.

1.2 Manuscript Organization

Chapter 2 introduces the reader to computation offloading. We provide a definition of computation

offloading in the frame of past studies. We identify the main steps for performing a computation

offloading request based on past studies. Then we match these steps in a use case based on Google

glasses. Next, we classify the state-of-the-art computation offloading into three approaches based on

timescale decision making. We also provide an evolutionary history of computation offloading according

to the literature. Further, we introduce the metrics that impact computation offloading performance,

which will become the research topic in chapter 3. We finish this chapter by describing the advantages

and disadvantages of computation offloading.

Chapter 3 presents, comprehensively and qualitatively, an exhaustive state-of-the-art computation

offloading from six points of view. From the mobile user perspective, we focus on the objective function

behind computation offloading desired by the mobile user. Mobile users are particularly interested in the

performance and energy consumption of their mobile applications. We classified several frameworks

according to the objective function into mono-objective, bi-objective, and multi-objective optimization-

based frameworks. Then we discuss user mobility from a computation offloading context, and we finish

with some user concerns regarding computation offloading. From the mobile device perspective, we

present the various platforms used in the literature for computation offloading and the mobile device’s

hardware evolution. Next, from the server side, we describe each of the server types, platform types,

improvements, and issues regarding computation offloading. All of these axes are based on past studies.

A section of this chapter is also dedicated to describe computation offloading from an application point

of view. We describe the taxonomy regarding the “genre” of applications, the programming languages

used to develop these applications, the requirements, and the dependency of the applications code

on the underlying platform and hardware. Computation offloading relies on network communication,

therefore, it seems adequate to describe computation offloading from the network perspective, especially

the metrics, communications support, and network models. We then highlight the steps involved in

offloading a computation, data availability, framework location, framework scale, application annotations,

offloading types, and the models and algorithms devised to steer computation offloading decision making.

Chapter 4 focuses on game engines from a computation offloading perspective. In this chapter, a

background of game engines that describes the architecture with the associated modules, and the process

of generating frames done under the graphic pipeline is presented. The background also introduces three
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game engine solutions that eliminate the powerless capabilities of mobile gamers. The solutions are

Cloud gaming, computation offloading, and client-server architecture, each of which presents some

challenges regarding the “genre” of games, such as First Person Shooter (FPS), Real-Time Strategy

(RTS), or Massively Multi-player Online Games (MMOG). Once the game engine’s landscape is drawn,

we present our methodology for classifying game engines under the three solutions cited above. The

classification is based on the variability and playability of game engines, for which we define predicates.

The chosen criteria are central to the Cloud gaming provider being able to manage the Quality of

Service/Quality of Experience (QoS/QoE) and consolidation, but also to mobile user immersion and

interactivity. Next, we dissect the internal architecture and call flow in the different modules. The aim is

to study the possibility of offloading software components of these modules. We finish the chapter by

demonstrating our classification via use cases of running games under the three solutions.

Chapter 5 describes a novel solution for mobile gaming based computation offloading. We begin

this chapter by reviewing past studies of game engines-oriented computation offloading. Almost all of

this research presents the same challenges; the real-time constraints and high-resource consumption

of 3D best-selling FPS games. Our solution resolves these problems. We described how a 3D scene is

represented in a game engine and what the patterns and objects are in a game world. Then, we present a

vision and methodology to design the 3D-based Unity Computation Offloading Framework. We propose

an heuristic based on network communications to select the objects with the associated modules that

should be offloaded. We close the chapter by testing our framework from the resource consumption,

network communications, responsiveness, and frame rate perspectives.

Chapter 6 mainly focuses on the MEC. We saw in previous chapters that latency is central in

computation offloading, particularly for real-time applications. For this aim, we bring computation

resources closer to mobile users. In particular, we leverage MEC to perform computation offloading

for facial recognition using a case study. This chapter begins by presenting the MEC, its architecture,

and describing the technical terms used throughout the chapter, particularly those related to the MEC

and LTE communications. Next, we review state-of-the-art, MEC-oriented computation offloading.

After that, we propose our framework, which relies on MEC, its services, and APIs to derive the user’s

equipment offloading decision. The framework is composed of three entities: middleware on both user

equipment and the MEC server, and a mobile edge application that is responsible for the decision making

in terms of computation offloading. The framework is then tested in a facial recognition use case.

Finally, concluding remarks are made in Chapter 7, and future directions and perspectives are

discussed.
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COMPUTATION OFFLOADING: CONTEXT

2.1 Introduction

Nowadays, mobile devices, such as smartphones and tablets, have become ubiquitous. Due to the incor-

poration of various captors and hardware functionality in one small box, they have become a constant

fixture in many lives. This has increased the demand on the part of mobile users for computationally

intensive applications, such as m-gaming, m-health, and m-learning. However, as far as we know, the

capabilities of these mobile devices are very much constrained, creating a gap between performance and

application requirements. A promising solution with which to extend the capabilities of these mobile

devices is to leverage Cloud infrastructure or any resourceful platform to perform the computation, fully

or partially, for the said applications. This solution is known as computation offloading.

Computation offloading not only saves energy and improves performance, it also makes execution

of heavy-complex applications on powerless devices possible. A great deal of research has been done

on computation offloading, such that of Mobile Assistance Using Infrastructure (MAUI in short) [59],

Scavenger [147], and Spectra [81]. These examples, and others that we will review in this manuscript,

seem to diverge on some criteria and converge on others. To better understand these works and the

computation offloading concept, in general, we propose to review state-of-the-art computation offloading

to understand the concept. In this chapter, we define the concept of computation offloading in the frame of

the related work (e.g., [59]), and extract some keystone similarities between most offloading frameworks,

which are organized into several steps; profiling, modelling, partitioning, and communications. The aim

is to propose a template to follow in order to design applications with certain elasticity and to improve

the offloading performance via enhancement of these keystones. Then, we classify the computation

offloading approaches into three types depending on when the aforementioned keystones are performed.

We also provide the historic evolution of the computation offloading concept. Afterwards, we focus on
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the relevance of several metrics in terms of computation offloading feasibility, performance, and gain.

Above all, we present the main advantages and disadvantages of computation offloading, and finally,

we summarize, and introduce the next chapter.

2.2 Principals

The concept of computation offloading has been introduced in many forms over the years. Accelerated

by the emergence of Cloud computing, virtualization technology advances, and wireless network

technology improvements (including, mobile broadband), computation offloading attracted a tremendous

amount of research to make it a reality. Besides reducing energy consumption [166, 168], computation

offloading allows powerless devices (e.g., smartphones) to run CPU-intensive applications, such as

3D gaming [192], facial recognition [249], and 3D rendering [200]. To clearly cover the topic, we

present hereafter the decomposition of the concept into different steps followed by the offloading types

according to timescale, and then, the history of the computation offloading concept.

2.2.1 Definition

Usually, computation offloading refers to the transfer of certain [59, 91] or all [114, 249] computing

tasks of an application to an external platform, which includes clusters [21], grids [96] or the Cloud [59],

in order for these to be executed there. The purpose behind this transfer is to extend the capabilities of

today’s powerless mobile devices and increase their batteries’ autonomy. Upon successful execution,

the results are sent back to the mobile device to be reintegrated with the application. To ensure a better

harnessing of the computation offloading concept, it is necessary to design algorithms that decide which

tasks of an application should be offloaded and when. Overall, most computation offloading frameworks

rely on four steps, which we provide in detail below:

1. Application Profiling. This step consists of dissecting the application structure to estimate resource

consumption investigating such things as processor time, energy consumption, and memory utilization.

A well-known technique for recording program behaviour and measuring its performance is to insert

code into the program [19, 80, 224]. The granularity level of this estimation (e.g., class- or function-

level) is determined by taking into account performance overheads and privacy concerns. Several

systems and frameworks have been devised for computation offloading with dedicated profilers. For

instance, MAUI [59] evaluates the energy consumption of each method (i.e., function, procedure),

and ThinkAir [139] estimates the CPU cost, memory utilization, latency, and bandwidth utilization. For

the same purpose, Scavenger [147] uses a dual, adaptive, history-based profiling approach to evaluate the

execution time of an application, and Spectra [81] profiles the CPU time, network, power consumption,

cache utilization, remote CPU consumption, and remote cache state for each task.

2. Application Modelling. Usually, in this step, we define a model to describe the problem based on the

granularity defined in the precedent step. Most existing works are related to the methodologies used to

14



2.2. PRINCIPALS

identify the parts of the application that can be offloaded. Some works represent the application with

a valued graph [100], wherein the vertices correspond to the application components, valued with the

resource consumption metrics of these components, while the edges represent the interactions between

the components, valued with the frequency of calls and the amount of the exchanged data between the

calls. The optimal solution is obtained with Integer Linear Programming (ILP) models [143]. Other

studies rely on Markov theory [41] to design the mobile device platform with queues and Markovian

Decision Processs (MDPs). Recent studies follow a game-theoretic approach to represent the application

as a game between selfish players, in which equilibrium should be derived to satisfy each player [34].

3. Application Partitioning. In this step, a decision is made for each component as to whether it should

be offloaded or not. The decision is based on an objective function, such as improving performance

or saving energy, that was assigned to the model in the previous step. The objective function may

be resolved at run-time, which known as dynamic offloading [59], or prior to the execution of the

application, which is known as static offloading [32]. Many algorithms have been proposed to solve the

objective function. For instance, graph partitioning is done by applying graph partitioning algorithms to

the resulting graph. Often, this is accomplished using maximum flow-minimum cut algorithms, such

as the pre-flow-push [100] or the Stoer-Wagner [209]. The aim of such algorithms is to partition the

graph representing the application into a minimum cut, which includes the local components in one

partition, and the components, being considered for remote execution in the second partition. Since

graph partitioning is NP-hard, heuristics can be used to efficiently approximate solutions when dealing

with large graphs using branch and bound [166], greedy [231], or genetic algorithms [63].

4. Communication. The last step consists in establishing a communications channel between the client

and server to migrate the code and required data from the mobile device to the server and back again

with the results of the computation. Various mechanisms have been used for communications in a

client-server model. Some frameworks, such as Chroma [18] and Spectra [82], use Remote Procedure

Call (RPC), wherein the tasks are pre-installed on the server and ready for service. Thus, the desired

functionality is always available on the server, and there is no need to install it on -demand. Despite their

good performance, RPC solutions cannot be applied to a mobility environment which does not support

RPC. Similar to RPC, Remote Methods Invocation (RMI) can be used for remote calls [84] between Java

Virtual Machines (JVMs). The Java objects are automatically serialized and sent to the remote JVM.

In Uniform Resource Locator (URL)-based download approaches [93], instead of migrating the code,

an URL is sent to the server, indicating the location of the code to download.

To illustrate the aforementioned steps, we present the case described by Satyanarayanan et al. [249]

in 2009.

Ron has recently been diagnosed with Alzheimer’s disease. Due to the sharp decline in his

mental acuity, he is often unable to remember the names of friends and relatives; he also

frequently forgets to do simple daily tasks. He faces an uncertain future that is clouded by

a lack of close family nearby and limited financial resources for professional caregivers.
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Even modest improvements in his cognitive ability would greatly improve his quality of

life, while also reducing the attention demanded from caregivers. This would allow him

to live independently in dignity and comfort for many more years, before he has to move

to a nursing home. Fortunately, a new experimental technology might provide Ron with

cognitive assistance. At the heart of this technology is a lightweight wearable computer

with a head-up display in the form of eyeglasses. Built into the eyeglass frame are a camera

for scene capture and earphones for audio feedback. These hardware components offer the

essentials of an augmented-reality system to aid cognition when combined with software

for scene interpretation, facial recognition, context awareness, and voice synthesis. When

Ron looks at a person for a few seconds, that person’s name is whispered in his ear along

with additional cues to guide Ron’s greeting and interactions; when he looks at his thirsty

houseplant, “water me” is whispered; when he looks at his long-suffering dog, “take me out”

is whispered.

The eyeglasses architecture is composed of different applications, including Augmented Reality (AR),

computer vision, and audio processing to serve different needs for users. Due to the resource-intensive

nature of these applications and the intrinsic limitations of eyeglasses, offloading computationally-

intensive functionality is needed to meet applications requirements, particularly for the delay-sensitive

applications, such as AR [280].

Figure 2.1 portrays the aforementioned offloading steps applied to a simplified version of Google’

glasses [66]. The system software architecture is made up of several services and subsystems: The

visual subsystem is in charge of processing image recognition and facilitating real-world recognition.

The Human Computer Interface (HCI) subsystem is responsible for speech recognition and speech

synthesis to allow natural interaction with the different learning interfaces. The Training subsystem is the

logical entity which can host new functionality for future usage. The glasses have two main limitations:

low computing capabilities and battery drains due to the high utilization of hardware resources, including

the miniature camera, heads-up display, and mini-speakers. A solution is to offload the CPU-intensive

functions to close-by, powerful, plugged machines (e.g., desktops).

For Ron, the real-time interaction is given top priority. Hence, to achieve such optimal execution

in a mobile computing environment, the software components of the Google’ glasses application

should be computed in the most suitable location, considering their profiles. To efficiently distribute

the application, we dissect it into class objects with consuming characteristics, such as processing

time, energy consumption, and memory usage. This is the profiling step. For the modelling step, we

use the dependency graph or call graph to represent the Google’ glasses software, wherein each class

may be a callee and/or caller vertex. Hence, a vertex represents a class, and an edge is an interaction

between two classes. We valuate the vertices with the obtained statistics, such as the CPU-time, energy,

and memory usage. For the edges, we use the call frequency between classes and data size exchange.

The third step consists of partitioning the graph obtained from the second step. For this, we use a
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well-known, min-cut/max-flow algorithm, such as Stoer Wagner. When the partitions are determined,

code migration and result exchanges are carried out using one of the many communications models,

including RPC, RMI, Service Oriented Architecture (SOA), Mobile Agents (MA) or streaming, (see

Figure 2.1).
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Figure 2.1: Computation offloading process

2.2.2 Offloading Types

When computation offloading follows the steps described above, it should confront with the performance

and overhead1 trade off. To this aim, three time-based approaches (static, dynamic, and hybrid) have

been proposed in the literature and are discussed in the following.

1Local latency induced in the computation of the offloading steps.
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Static offloading. As shown in Figure 2.2a, static offloading occurs at the start-time [32, 98, 166–168,

193, 213, 217, 237, 239, 277, 304]. In this mechanism, the application is partitioned only one time into

two partitions: the local partition contains the local components, and the remote partition contains

components being considered for remote execution. The partitioning process occurs prior to execution

at the design or installation stage of the application, after analysing and profiling the code. The aim

is to identify the software components with resource bottlenecks. These components will constitute

the remote partition. Spectra [82], Chroma [18], and MISCO [67] are three frameworks using static

offloading.

Dynamic offloading. Runtime or dynamic offloading is proposed to cope with the limitations of the

static approach (which is becoming obsolete) with the dynamic processing load at runtime [36, 48, 59,

95, 109, 145, 208, 218, 255, 267, 291, 302, 310]. Indeed, the dynamic approach is more flexible, and it

can adapt to different runtime conditions, such as changes in network latency, bandwidth, available

energy, the computation loads on mobile devices and remote servers. The dynamic approach, as shown

in Figure 2.2b, processes the aforementioned steps at run time. That is, all the offloading steps are done

in real-time, when the application is running. MAUI [59] is a framework that is based on dynamic

partitioning.

Hybrid offloading. In order to benefit from both static and dynamic offloading strengths, the hybrid

(or semi-dynamic) approach has been proposed by Canepa and Lee et al. [32]. A part of the decision

is done by the programmer-defined specification and static analysis tools, while the other part is done

during the runtime as depicted in Figure 2.2c. The aim behind mixing the dynamic and static approaches

was to minimize the side effects of profiling and waiting time (i.e., overhead). This solution does not

always result in good performances as the execution time on a mobile device is short. Murarasu and

Magedanz [198] have presented a middleware layer, between services and programs. This middleware

supports static and dynamic reconfiguration of services and programs, monitors resource consumption,

and manages the offloading to remote servers.

Comparison. Table 2.1 provides a comparison between the three time-based solutions.

2.2.3 Offloading Evolution and History

Computation offloading has been introduced over time in different forms with different objectives. Prior

to 2000, researchers mostly focused on making computation offloading feasible, as the primary limitation

in this period was network technologies. In the early 2000s, the main focus was on improving the gain

of offloading by developing algorithms to decide when and what to offload. With the improvement in

virtualization technology (such as, VMware2, OpenStack3, and Dockers4), network technologies (3G,

4G, and Wi-Fi with high throughput), and Cloud computing, computation offloading has moved in new

2https://www.vmware.com/
3https://www.openstack.org/
4https://www.docker.com/what-docker
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Figure 2.2: Time-based approaches for allocation decision

Table 2.1: Offloading type advantages versus disadvantages

Type Advantage Disadvantage

Static

✓ Simple,
✓ Improve the performance,
✓ No overhead,
✓ No need for monitoring.

✗ Not optimal,
✗ Cannot guarantee the best partitioning,
✗ Total knowledge of the program,
✗ Does not support mobility,
✗ Cannot adapt to changes (absence of monitoring),
✗ Resource consumption are estimated in advance,
✗ Extra efforts to integrate the offloading functionality.

Dynamic

✓ May find the optimal solution,
✓ Improve the performance,
✓ Guarantee the best partitioning,
✓ May support mobility,
✓ Flexible and adaptive to dynamic environment,
✓ Offloading functionality not considered in application dev.

✗ Realization complexity,
✗ Total knowledge of the program,
✗ Increase the overhead,
✗ Always delayed with the overhead elapsed time,
✗ Waste local scarce resources (RAM and battery).

Hybrid

✓ Reduce the overhead,
✓ Improve the performance,
✓ May support mobility,
✓ Adaptive to available energy on the device.

✗ Realization complexity,
✗ Total knowledge of the program,
✗ Maybe delayed with the overhead elapsed time,
✗ Waste local scarce resources (RAM and battery),

directions. Since 2007, mobile users have embraced the concept of smartphones and tablets, which

quickly became pervasive and ubiquitous devices. Thus, mobile developers have been motivated to create

more and more mobile applications, including graphic rendering, face and speech recognition, mobile

gaming, AR, and Virtual Reality (VR). These applications are CPU/GPU-intensive and energy consum-

ing, which has resulted in more interest in and scope to computation offloading. Since 2015, computation

offloading has gained even more ground, particularly with the emergence of MEC, FOG computing, and

5G, which allow real-time applications, such as interactive and gaming based-computation offloading.

Load Sharing. This work is considered the earliest research; it was first proposed in 1998 by Othman

and Hailes [216] in order to conserve the resources of mobile devices. The authors were inspired by the

load balancing concept in distributed systems. In this solution, the entire computation job is migrated

to a remote server for computation. The system considers some metrics, including job size, available
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bandwidth, and result size. The aim was to estimate whether the system can save energy or not. However,

this method suffers from a lack of triangulation, wherein the jobs and data transit through a third-party

device, which is responsible for finding the appropriate server and forwarding the results back to the

mobile device. Furthermore, the computing servers are fixed, and the model does not take into account

the user and code mobility at runtime.

Remote Execution. Remote execution became feasible with the work of Rudenko et al. [241, 242] in

1998. The authors addressed this solution for mobile computers (particularly laptops). This method

saves energy when the remote processing cost is lower than the local processing cost. It is not sufficiently

mature as it neglects the environment characteristics and the speed ration between the mobile computer

and the remote server. Furthermore, the entire application needs to be migrated prior to execution.

Cyber Foraging. Cyber foraging is the process of dynamically augmenting the computing resources of

a wireless mobile computer by exploiting wired hardware infrastructure. It is a re-definition of remote

execution, introduced by Satyanarayana [248] in 2001 for pervasive computing. The two key ideas are

the consideration of surrogates and dynamism in the remote execution process. Surrogates are static,

idle computers located in the near vicinity of mobile devices that are acting as servers. These surrogates

include personal computers and public servers; they are connected to uninterrupted power sources and

wired Internet to provide unpaid computing resources. The entire application is stored in the mobile

device. Therefore, a large overhead appears when identifying and partitioning intensive code, which can

exceed conserved resources. Cyber foraging has been used in pervasive computing [17, 32, 82, 94, 124,

147,275], grid computing [164,212,221,274], and Cloud computing [31,50,51,53,59,129,130,137,151].

Cloudlet is a variant of cyber foraging introduced by Satyanarayana. The aim is to reduce network

latency by moving the server closer to mobile devices [119, 120, 283, 303].

Computation Offloading. With the introduction of MCC, network communication technologies (3G,

LTE, 5G, and Wi-Fi with high throughput), the latest efforts to address security in Cloud computing,

the QoS, and reliability issues, computation offloading is gaining ground. Indeed, a significant amount

of research has been performed on computation offloading, introducing various algorithms to make

offloading decisions. These decisions are usually made by analysing parameters such as bandwidth,

server speed, available memory, server load, network latency, and the amounts of data exchanged

between servers and mobile systems. Offloading requires access to resourceful computers for short

durations through networks, wired or wireless. These servers may use virtualization to provide offloading

services so that different programs and their data are isolated and protected. Isolation and protection have

motivated research on developing infrastructures for offloading at various granularity levels. Offloading

may be performed at a method level, task level, application level, or Virtual Machine (VM) level.

Chapter 3 is dedicated to computation offloading.

Edge-Based Computation Offloading. The last two years have characterized the emergence of Fog

and MEC. Fog is an extension of Cloud computing, bringing network resources from the core network
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to the edge network. It is gaining a lot of industry support, particularly from Cisco5. Fog is a highly

virtualized platform, which provides a wide range of applications and services in highly distributed

deployments, such as gaming, video streaming, augmented reality, and virtual reality. It offers low

latency communication, which allows real-time delivery of data for delay-sensitive and health-care

services. On the other hand, MEC has the same objective, but mainly targets 3r d Generation Partnership

Project (3GPP)-based mobile networks. MEC provides IT and computing capabilities within the Radio

Access Network (RAN) in the close vicinity to mobile devices. It is heavily promoted by the European

Telecommunications Standards Institute (ETSI), which is trying to develop a standard around MEC [73],

defining a reference architecture and a set of Application Programming Interfaces (APIs)6. Combined

with 5G mobile access, which aims to drastically reduce the end-to-end latency, MEC enables a plethora

of novel mobile services that require short latency to access data or computation capabilities nearby, at

the mobile edge. Among the envisioned services are computation-offloading-driven applications, which

need to offload part of the execution of their applications code to a remote server. Chapter 6 is dedicated

to MEC-oriented computation offloading.

We were interested in reviewing timely, both quantitatively and comprehensively, state-of-the-art

research on the aforementioned transitions. We selected the ACM Digital Library and IEEE Xplore

Digital Library to examine how many papers were published per year in the period 1998 to September

2017. The publications included journals, magazines, proceedings, and books. The aim of this research

was to identify the key enabling concepts used in the landscape of computation offloading, to position

our research on these axes, and to find the open research challenges to consider for our PhD thesis. The

search keywords were “load sharing,” “remote execution,” “cyber foraging,” “computation offloading,”

and “edge offloading.” Various papers used other words semantically similar to our keywords list.

Therefore, we included in our search all papers wherein one of the following expressions appears: “tasks

offloading,” “computation outsourcing,” “MEC offloading,” and “FOG offloading.” We also looked

for papers in which the keywords were switched in cases where the composition of the two words was

semantically correct (e.g., we searched for papers using “offloading task” and “outsourcing computation,”

but not “offloading MEC” or “foraging cyber”). The keywords were found in the title, abstract, research

terms, or in the body of the papers. From the obtained results, we excluded the same papers according to

the title.

Figure 2.3 shows the results. From 1998 to 2009, there were between 34 and 93 papers a year.

Load sharing was the main research area during this period. Only a few papers were published on

computation offloading during this era. We believe that computation offloading was limited by the

lack of technological advancement in this epoch, especially in wireless technology, virtualization, and

infrastructure. Since 2010, interest in computation offloading has increased dramatically, thanks to the

arrival of new technologies, including materials (such as smartphones, Internet of Things (IoT), robots,

5https://developer.cisco.com/site/iox
6http://www.etsi.org/technologies-clusters/technologies/multi-access-edge-computing
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and drones that involve the use of computation offloading), the variety of services and applications, and

wireless technologies, such as Wi-Fi with high throughput, 3G, 4G, and LTE Advanced. We remind the

reader that our search ended with September 2017; we are expecting more papers during the coming

months.
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Figure 2.3: Paper trend per step evolution

We present in Table 2.2 the results of our search using a comparison of the above-cited approaches

from the view of architecture used between the mobile device and the external platform, the cost and

complexity of implementation, the QoE, the network delay, the possibility of migrating and partitioning

the application, the mobility of the mobile user, and the security of data.

Table 2.2: Features of offloading approaches

Approach Communication Latency Migration Partitioning

C
os

t

C
om

pl
ex

it
y

Q
oE

M
ob

ili
ty

Se
cu

ri
ty

Load Sharing Client-server (C/S) High Full job No High Medium Bad No NA

Remote Execution C/S High Full, Partial Static Low Low Bad No NA

Cyber Foraging C/S, P2P Short Full, Partial Dynamic High High Medium No No

Computation Offloading C/S, P2P, AdHoc Depends on server location Full, Partial, VM Migration Static, Dynamic, Hybrid High High Good Yes Cloud

Edge-Oriented Offloading C/S Short Full, Parital, VM Migration Static, Dynamic High High Good Yes Yes

Throughout this document, we use the terms computation offloading, remote execution, cyber

foraging, and edge-based offloading interchangeably.

2.3 Metrics

Herein, we will be discussing the suitability of a range of metrics for an optimal offloading of mobile

applications, particularly delay-sensitive applications. Figure 2.4 illustrates these metrics and classifies

them into five areas namely: (i) user preferences and requirements, (ii) mobile devices, (iii) application
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specifications, (iv) external platform, and (v) network specifications. We describe below the significance

of each metric and how each impedes the offloading computation process.

1. User preferences and requirements. The offloading decision is affected by the user’s physiological,

physical, and mental states, his mobility, the goals to be achieved, the budget, the Quality of Service

(QoS), the tasks and actions to process, and the individual and corporate preferences of the user [148].

Some users, unlike others, are more interested in confidentiality and the privacy level, and they do

not use risky channels on the Internet to offload confidential data. Other users, are more interested in

good QoS/QoE, considering their budget. Frequent mobility impacts the link failure across the mobile

network [162], and therefore the computation offloading performance.

2. Mobile devices. The hardware configuration and OS used are important in computation offloading.

Regarding the hardware, mobile devices have different configurations, which include CPU/GPU archi-

tecture and frequency, battery autonomy, memory capacity, and storage size. It is plainly evident that

using a large memory prevents page fault exceptions and the paging process, a multi-core CPU better

exploits parallel executions, and large battery autonomy increases the operational time for the mobile

device. Considering the OS, each has a different architecture with different interruptions, scheduling

policies, and algorithms for page replacement in caches, central memory management, and swaps. The

access technology used is also vital in terms of the usability of computation offloading regarding latency

and packet delivery, which can lessen the Quality of Experience (QoE).

3. Application specifications. Applications also impact the offloading decision. Indeed, code granular-

ity, size, and data type are attributes impacting any decision. Moreover, the usual mobile applications

exhibit six profiles, in terms of the users’ needs, namely: CPU/GPU-, I/O-, memory- [318], network-

[20], or security-intensive [33, 132], plus delay-sensitive [204]. Therefore, the application profile is

another important attribute for decision making. In essence, computation offloading should consider the

complexity of, data for, and nature of the application. However, some exceptions may occur; depending

on the granularity level, some components of the application cannot be offloaded due to code dependency

on: (i) the hardware, such as I/O and sensors; (ii) the OS (i.e., the component is a native code); or (iii)

the user (user interfaces) [59, 94, 216, 217, 219].

4. External platforms. The remote infrastructure impacts highly computation offloading perfor-

mance [322]. The server cost is measured with processor cycles, memory size, throughput, input

data size, availability, elasticity, vulnerability to security attacks, and reliability in terms of delivering ser-

vices within the agreed terms and conditions [129]. Moreover, the greater the distance between the server

and mobile device, the higher the network latency and more modest the performance improvement.

5. Network specifications. According to the geographical scope and distance of connected nodes, we

classify networks into three categories, namely, the Local Area Network (LAN), Metropolitan Area

Network (MAN), and Wide Area Network (WAN) [138]. Cloudlets are usually located in LAN networks,

while the Cloud is hosted in the WAN [59, 250]. The necessity of mobility reduces the usability of

23



CHAPTER 2. COMPUTATION OFFLOADING: CONTEXT

networks to those using only wireless technology (such as 3G/4G, and Wi-Fi). These technologies have

different features (including latency, throughput, and packet delivery), which impact the computation

offloading performance. Furthermore, the dynamic and rapidly changing mobile environment, user

mobility, and weather conditions also play an important role in offloading attainment.

User preferences: Mobile devices:

Augmented environment: External platforms:

Application specifications:

- Security concerns,
- Data confidentiality,
- Privacy concerns,
- Fidelity requirements,
- Accepted latency,
- Budget.

- CPU Speed & type,
- Current CPU load,
- Memory & storage size,
- Available energy,
- Communication ability,
- Device mobility.

- Communication technologies
(3G, 4G LTE, 5G, Wi-Fi, WiMax),
- Latency, bandwidth,
- Network security,
- Weather conditions.

- VM profile
(CPU, GPU, RAM, I/O),
- Virtualization technology
(Xen, OpenStack, Docker).

- Type (data, application),
- Volume/size,
- Computation intensity,
- Content confidentiality.

Figure 2.4: Critical metrics influencing the offloading decision making

2.4 Advantages and Disadvantages

Computation offloading is a critical technology that takes part in mobile Cloud computing, mobile edge

computing, and 5G architecture. It is considered to be an enabler technology for intensive applications.

In this section, we turn our attention to point out its merits and demerits.

2.4.1 Advantages

Computation offloading provides, but is not limited to, the following advantages:

1. Improves performance. By performance improvement, we mean execution time. Mobile users

nowadays are interested in migrating their favourite applications and office work to their mobile devices.

Nevertheless, these applications are usually computationally intensive, and either cannot run on powerless

mobile devices, or can run with a low QoE. Due to computation offloading, running such applications

on mobile devices became reality [48, 95, 193, 217, 237, 267, 277, 291].

2. Saves energy. Manufacturers are proposing multi-core ARM processors (CPU/GPU) with high

clock speed that address power and cost requirements. Furthermore, movies, games, animations, and

graphics have become an important part of mobile users’ experiences. Increasing the performance of

mobile devices means higher energy consumption. With computation offloading, energy can be saved by

outsourcing the energy-intensive tasks from mobile devices [36, 59, 109, 145, 213, 239, 255, 304].
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3. Augments storage. Due to the limited space on their devices, mobile users have to install and

remove applications frequently and control the size and type of data stored on their devices. One solution

for managing these data is to save them on an external storage-resourceful machine, such as servers

on the Cloud. Such a solution maintains applications outside mobile devices, provides remote access

to them, and updates the code without any I/O transactions, therefore enhance the QoE and saving

energy [135, 136, 214, 215, 222].

4. Reduces memory usage. Recent operating systems are able to run various applications simultane-

ously. Some of these applications, such as social media (e.g., WhatsApp and Facebook), are memory-

intensive applications. Keeping these running applications’ states, will quickly fill the memory. Hopefully,

computation offloading can reduce the memory utilization by offloading the memory-intensive parts of

these applications [95].

5. Enriches the user experience. QoE and interactivity are the main criteria that impact the immersion

of mobile users. According to Tolia et al. [279], an interaction delay higher than 1 s is not acceptable to

mobile users. A delay becomes tolerable within the range of 150ms and 1 s; below 150ms, the mobile

user’s immersion is not affected. Computation offloading can guarantee a good QoE by focusing on the

interaction delay.

6. Increases data safety. Using Cloud storage increases the size limit for and safety of stored data.

Saving data on mobile devices is risky due to device robbery, physical damage, or malfunctions. It also

degrades the QoE, and increases energy consumption, especially when a secure encryption is performed

on these devices. By storing data on a secure Cloud [26, 292, 294, 309, 317, 328] users ensure data

availability and safety anytime, anywhere, and from any mobile device.

7. Ubiquitous data access and content sharing. Adding to its temporal cost, copying data from one

device to another is a risky practice as the data may be corrupted. Storing the data in the Cloud is a safe

practice, and it improves the user experience. Indeed, remote storage enables mobile users to access their

digital data regardless of time and place. Moreover, the data can be shared among different legitimate

users.

8. Protects offloaded content. Cloud providers are deploying strict policies for security and privacy to

protect user’s code and data, ensure confidentiality, and secure properties and businesses. Virtualization

in the Cloud also ensures privacy and security for customers. Furthermore, Cloud providers are using

biometric security systems to protect their infrastructure and avoid unauthorized access; such systems

include finger-, and retina-scan. Cryptography, frequent patching, and continuous virus signature updates

are other forms of security [308].

2.4.2 Disadvantages

Computation offloading faces some limitations as outlined below.

1. Dependency on network conditions. The fact that computation offloading depends on network

25



CHAPTER 2. COMPUTATION OFFLOADING: CONTEXT

communications is a major issue. Indeed, offloading gain is highly affected by network characteristics.

Leveraging the Cloud infrastructure requires network communications, which is adversely affected by

high WAN latency, non-guaranteed bandwidth, jitter, packet losses, and the non-deterministic traffic

along the path.

2. Network and local latencies. Network latency affects significantly computation offloading since

latency is a part of the interaction delay. Therefore, latency limits the use of computation offloading

to delay-tolerant applications. Local latency is hit by the offloading steps, especially modelling and

partitioning. For instance, graph partitioning is an NP-hard problem, and its resolution might take a long

time. This leads to delayed decisions, which could be incorrect.

3. Code profiling. To make an offloading decision, the system needs to profile an application in order to

estimate its resource consumption and obtain a call graph, which is an intensive operation. The resource

consumption of the different software components (according to the granularity level) may include the

processing time, energy consumption, and communications between modules. Profiling can provide

incorrect estimations, fill up the storage, and considerably consume energy on mobile devices.

4. Tolerance for partitioning. Offloading frameworks should distinguish between monolithic and dis-

tributable applications [192]. Indeed, the application requesting offloading should tolerate component

partitioning. Determining this is arduous, as a complete knowledge of the application is needed to

identify code dependencies.

5. Framework complexity. When frameworks incorporate several parameters in decision making, the

system becomes complex to manage and solve, which means the consumption of more energy and

occupying more space due to the profiling of various metrics. Therefore, this increases the local latency

and stresses the offloading process due to components moving back and forth between between local

and remote partitions.

6. Security Issues. Leveraging the Cloud is a risky practice, especially for enterprise users, wherein

competitors might access the offloaded confidential and financial data of other companies. Moreover, the

risky Internet channel is a central concern. Indeed, packets might be captured and modified. Regarding

mobile devices, security is also a challenge. In fact, malicious resource providers might attack mobile

users to access to their private data or falsify offloading results.

2.5 Conclusion

Computation offloading is highly promoted for MCC, MEC, and the upcoming 5G systems. This will

results in a plethora of applications and services. However, more investigation is necessary in order to

evolve the computation offloading frameworks, optimize them, and move toward the next generation of

frameworks with which to integrate with 5G scenarios, such as vehicles and m-heath, in which seamless

and real-time constraints are on the top priority.
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2.5. CONCLUSION

Throughout this chapter, we have defined the computation offloading concept. We surveyed the

state-of-the-art computation offloading approaches from different perspectives. We highlighted the main

steps employed in computation offloading architecture and projected them onto a scenario based on

Google glasses. We classified the offloading mechanisms into three time-scale approaches, namely,

static, dynamic, and semi-dynamic offloading. After that, we proposed an historical evolution of

computation offloading that we quantified through the published papers in the literature. We classified

the metrics impacting computation offloading into five areas (mobile devices, external platform, user

requirements and preferences, applications specifications, and network characteristics). Finally, we

discussed the advantages and disadvantages related to computation offloading. Overall, this introductory

chapter provides an understanding of the computation offloading concept. In the following chapters, an

exhaustive taxonomy of computation offloading will be provided.
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3
COMPUTATION OFFLOADING: TAXONOMY REVIEW

3.1 Introduction

Computation offloading is considered to be corner stone of MCC, mobile gaming, MEC, and the

upcoming 5G networks. Computation offloading allows code distributing and portability, and improved

performance. However, deploying such a system is complex due to a large number of problems, which

are, but are not limited to, network and Cloud heterogeneity, application complexity, and code ability

for offloading. Researchers in industry and academia have devised many frameworks for computation

offloading, the latest of which manage some challenges and limitations of past frameworks. These

research works have covered the actors involved in computation offloading, as defined in Chapter 2,

namely, the mobile user, mobile device, application, network, remote infrastructure, and offloading

framework, each of which describes a set of challenges and issues. We propose in the following, a

comprehensive survey that studies state-of-the-art computation offloading from different points of view

according to the actors that impede the offloading process. We propose a thematic taxonomy that reviews

comprehensively and qualitatively, computation offloading approaches from different perspectives. That

is, from each side, we identify several challenging concepts described in past studies. Finally, we review

several frameworks and propose a qualitative comparison from different perspectives.

3.2 Computation Offloading Taxonomy: From the User Perspective

This section provides the reader with state-of-the-art, optimization-based strategies for frameworks.

A comparison between various frameworks on the basis of significant optimization parameters that

affect performance is also provided in this section. Some mobility models described in the literature

are highlighted, after which we discuss the mobile users’ concerns regarding computation offloading.

Figure 3.1 depicts the axes on which we focus in this section, namely the objective function, mobility,
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and concerns regarding mobile users in a computation offloading environment.

Computation Offloading Taxonomy: from Mobile User Perspective

Objective
Function

Mobility Concerns

Improve

performance

Save Energy

Reduce Memory

Others

Trust

Portability

Budget

QoE/QoS

Figure 3.1: User-based computation offloading taxonomy

3.2.1 Objective Function

The aim behind computation offloading is to fulfil the requirements of various types of applications by

leveraging remote infrastructures. Most frameworks focus on three main requirements: (i) performance,

which is expressed by execution time, (ii) energy expressed by the energy saved through computation

offloading, and (iii) memory, where the objective is to save or extend the memory of the mobile device.

We study in Appendix A.1, the gains obtained by computation offloading through proposed mathematical

models. Hereafter, we classify state-of-the-art computation offloading frameworks according to the

number of involved parameters in the objective function. This results in three models, namely, the mono-,

bi-, and multi- objective models.

3.2.1.1 Mono-objective model

The mono-objective frameworks mainly focus on the optimization of a single parameter. It is a straightfor-

ward optimization model. However it cannot meet the requirements of applications in an heterogeneous

execution environment. Herein, we present some frameworks that use mono-objective models:

(a) CloneCloud [50] is a Cloud-based system that clones the mobile device platform with a VM-

hosted platform in the Cloud. The implementation is based on Java DalvikVM. It is proposed to empower

mobile applications through offloading computation to the Cloud. It is a dynamic offloading framework,

with the objective function to optimize the overall execution cost of mobile applications. The authors

have split the execution cost into a computation cost, Comp(E), and a migration cost, Mi g r (E). The
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energy consumption cost is is expressed as:

C (E) =Comp(E)+Mi g r (E)(3.1)

Comp(E) =
�

i∈E ,m

[(1−L(m).I (i ,m).Cc (i ,0) + L(m).I (i ,m).C (i ,1))](3.2)

Mi g r (E) =
�

i∈E ,m

R(m).I (i ,m).Cs(i )(3.3)

For every invocation i ∈ E , the computation cost Comp(E) takes its value from the mobile device cost

variables Cc (i ,0) or the clone cost variables Cc (i ,1) depending on whether the invoked method m will

be run on the mobile device or in the Cloud. The migration cost Mi g r (E) sums the individual migration

costs Cs(i ) of each invoked method i that is a migration point. The optimization problem has been

modelled using an ILP wherein the objective is to find value of a decision variable R(i ) for the method i

that minimizes the
�

E∈S C (E), under the constraints:

L(m1) �= L(m2) ∀m1,m2 : DC (m1,m2) = 1 ∧ R(m2) = 1(3.4)

L(m) = 0 ∀m ∈Vm(3.5)

L(m1) = L(m2) ∀m1,m2,C : m1,m2 ∈VN atc
(3.6)

R(m2) = 0, ∀m1,m2 : TC (m1,m2) = 1∧R(m1) = 1(3.7)

Equation 3.4 is a soundness constraint, which stipulates that a method m1, which causes a migration to

happen, cannot be located in the same location as its caller method, m2. Constraint 3.5 is a dependency

constraint, wherein methods annotated to be pinned on the mobile device run only on the mobile

device. Constraint 3.6 ensures that methods depending on the same class state are collocated, at either

location. Finally, constraint 3.7 ensures that all methods transitively called by a migrated method cannot,

themselves, be migrated.

As stated above, R(m) is the decision variable that represents the modification (i.e., R(m) = 1) or not

(i.e., R(m) = 0) of the method m, which is done through an insertion of a migration point in the entry of

the method.

(b) CODM [287] is a middleware aimed at selecting and deploying the application configuration

that offers the best quality possible, according to the current available resources and connectivity. The

deployment granularity of the middleware is a bundle. For each bundle, the framework provides multiple

configurations with different levels of resource consumption and quality levels. The objective function is

given by:

M axcon f i g ur ati ons

�

i

wi

s.t .







∀m :
�

i Xi m ×wi ≤ Mm

∀i :
�

i Xi m = 1

(3.8)
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where wi represents the cost (CPU power) of the i th bundle, and Xi m is the decision variable that

is equal to 1 if the bundle i is assigned to the machine m (m ∈ 0,1) (mobile device or Cloud) and 0

otherwise. The first constraint ensures that the sum of the weights of all bundles deployed on the machine

m cannot exceed the maximum allowed weight, while the second constraint stipulates that a bundle i

of the configuration is deployed either on the mobile device or on the Cloud. The framework adapts

dynamically the configuration and deployment of the bundles, but also degrades gracefully the quality

level in some cases. However, the framework requires different configurations of the application and

relies on the OSGi framework.

(c) MAUI [59] is an energy-aware framework that operates on method granularity. It employs both

static and dynamic partitioning. The framework requires programmer efforts to annotate the application

methods as remotable or not. MAUI uses a timeout mechanism to detect connection failures with the

remote server. The authors have drawn the optimization problem for an ILP as follows:

M ax
�

v∈V

Iv ×E l
v −

�

(u,v)∈E

|Iu − Iv |×Cu,v

s.t .
�

v∈V

�

(1− Iv )×T l
v +

�

Iv ×T r
v

�

�

+
�

(u,v)∈E

�

|Iu − Iv |×Bu,v

�

≤ L and Iv ≤ rv , ∀v ∈V
(3.9)

where Iv is the decision variable, and Iv = 0 (Iv = 1, resp.) if the method v is executed locally

(offloaded, resp.). E l
v and T l

v denote, respectively, the energy consumption and execution time of method

v locally. Bu,v represents the necessary program state when u calls v , and Cu,v is the energy cost of the

transferring state, and finally, rv indicates if the method v is remotable (i.e., rv = 1) or not remotable

(i.e., rv = 0).

(d) Yang et al. [312] have studied how to optimize the computation partitioning of a data stream

application between mobile devices and the Cloud to achieve a maximum speed/throughput in processing

the streaming data. The partitioning problem has been formulated as a weighted dataflow graph and then

drawn into an ILP with the objective to maximize the data stream throughput. The ILP is given by:

M axxi ,yi , j
T P =

1

tp
, i , j ∈ {0,1, ..., v +1} wher e

tp = max

�

maxi∈V

�

xi ×
Si

ηρ

�

i∈V

xi

�

,max(i , j )∈E

�

di , j

�

xi , yi

�2

yi , j

��

s.t .



















































�

i , j∈E yi , j (xi − yi )2 = B ,

yi , j > 0,

x0 = 1,

xv+1 = 1,

xi = 0or 1, i ∈ {1,2, ..., v}

(3.10)

ρ and η represent, respectively, the CPU capability of the mobile device and its workload, and B is

the current network bandwidth. Next, xi and yi , j are the core variables, and xi is the decision variable:
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when xi = 1 (xi = 0, resp.), component i is computed locally (offloaded, resp.). Finally, yi , j is the

wireless bandwidth allocated to channel (i , j ).

3.2.1.2 Bi-objective model

In bi-objective models, the main focus is on optimizing two parameters. Bi-objective optimization-based

frameworks are relatively complex compared to the mono-objective frameworks. These frameworks aim

to optimize simultaneously the two parameters in the objective function. This produces a better fit to

diverse environments and fulfilment of the applications’ requirements.

(a) AIOLOS [285] is a mobile, middleware-based cyber foraging system. The framework operates

at method granularity level. It relies on an estimation model of both local and remote resources, with

a network state to dynamically decide whether or not a method should be offloaded. AIOLOS is built

on OSGi1, with the objective to optimize both the local execution time and energy consumption. The

authors use a history-based profile to estimate the local execution time T̂C PU ,local . The formula to

estimate the remote execution time is given by:

T̂r emote =
1

α
×

�

i∈RM

(T̂C PU ,locali
)+

1

β
× (A+R)+γ+

�

j∈C M

�

T̂C PU ,local j
+

1

β
× (A j +R j )+γ

�

(3.11)

where α is the speedup factor of processing, and β and γ represent, respectively, the network

bandwidth and latency. RM and C M define, respectively, the collection of remotely executed methods

and the collection of callbacks. Finally, A and R are, respectively, the input and output sizes. For energy

optimization, the authors have presented a simple decision model in which a method is offloaded only

when the energy consumed by sending and receiving bytes to and from the server is smaller than the

energy saved by offloading the computation. The proposed formula is given in Eq. 3.12, where EC PU

denotes the energy consumption per time unit by the CPU, and ET R and ERCV denote, respectively, the

energy cost for the transmission and reception of a byte of data.

Êsaved = EC PU ×
�

i∈RM

(T̂C PU ,locali
)−ET R × A−ERCV ×R −

�

j∈C M

�

ERCV × A j +ET R ×R j

�

> 0(3.12)

3.2.1.3 Multi-objective model

The multi-objective optimization-based frameworks focus on the optimization of multiple parameters.

These frameworks are more complex in comparison to the mono-objective and bi-objective frameworks.

The multi-objective frameworks include multiple parameters in the objective function. These frameworks

are more adapted to heterogeneous computing environments. Hereafter, we present some of these

frameworks.

(a) AIDE [95] is a fine-grained dynamic offloading system. The authors have focused on three

metrics: bandwidth requirement, interaction frequency, and memory size. A coalescing process based

on a minimum-cut heuristic algorithm [273] has been implemented to find all possible 2-way cuts of

1A module system and service platform enabling runtime deployment of application components, called bundles, implemented in Java.
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the execution graph. In the beginning, the authors created two partitions. The first partition contains the

classes that should be executed on the mobile device, these nodes are merged together to make one node.

The second partition encloses the rest of the nodes. Next, the authors have repeated the following rules,

until all the nodes are merged together in the first partition: (i) They selected the least memory-intensive

class with the largest interaction frequencies and bandwidth requirements from the second partition in

such a way that this node is a successor node to the merged node (partition one); (ii) next, they merged

the selected node with partition one; (iii) in each step, a possible 2-way cuts is generated, and (iv) at

the end of the process, the authors selected the 2-way cut that minimizes the metrics defined above.

Therefore, to select the best 2-way partitioning, the authors have to compare between two metrics Ck , Cl

as follows: Ck >Cl if and only if:

w1 ×
bi ,k −bi ,l

bmax
+w2 ×

fi ,k − fi ,l

f max
+w3 ×

Ml −Mk

M max
> 0(3.13)

where wi (1 < i < 3) is the weight of the i th metric in the decision making; bmax , f max and M max

represent the maximum values of the inter-class bandwidth requirement, inter-class interaction frequency,

and class memory size, respectively; bi , j , fi , j , and Mi represent, respectively, the bandwidth requirement

from class i to class j , the number of interactions between the two classes i and j , and the memory size

of class i .

(b) Elastic Application [322]. Zhang et al. have designed a framework for elastic applications enabling

the use of Cloud resources in an optimal and transparent manner. The proposed framework includes four

attributes of the optimization-based model; energy, monetary cost, throughput, and security/privacy. The

authors, through their model, wish to minimize both energy consumption and the cost, while maximizing

the throughput, and security and privacy. Applications are partitioned into various weblets that are

replicated across multiple Clouds aiming at improving the availability and reliability. The objective

function is given by:

y∗
= ar g maxy p(y)

L
�

i=1

p(xi |y)

M
�

j=1

p(z j |y)(3.14)

where x and z are vectors; x contains values of different device status components, including the

throughput, memory usage, upload bandwidth, and file cache; z contains a user’s preferred option values,

such as processing speed and monetary cost; y represents the sum of all configurations; and L (M ,

resp.) is the number of components in the status (preference, resp.) vector. As the framework is for

multi-objective decision making, additional computing resources are needed to solve the optimization

problem, which may take a long time.

(c) Mobile Augmentation Cloud Services (MACS) [144] is a middleware enabling a lightweight

partitioning with seamless execution of applications in the Cloud. The framework is devised for android

applications. To make a decision to offload a service or not, the framework first monitors the resources

at both locations, then creates an optimization problem that combines memory, transfer, and execution
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time costs. The cost function is represented as follows:

Mi nx∈0,1

�

Ctr ans f er ×wtr +Cmemor y ×Wmem +CC PU ×WC PU

�

(3.15)

Where:






















Ctr ans f er =
�n

i=1
codei ×xi +

�n
i=1

�k
j=1

tr j ×
�

x j XOR xi

�

Cmemor y =
�n

i=1
memi × (1−xi )

CC PU =
�n

i=1
codei ×a × (1−xi )

(3.16)

In the above equation, n is the sum of the offloaded modules; codei , memi , and tri represent, respec-

tively, the code size, memory cost, and transfer cost of module i ; and xi is the decision variable, which

represents the decision made for each module in term of whether it should be offloaded (i.e., xi = 1)

or computed locally (i.e., xi = 0). Even though MACS is a lightweight and dynamic framework, it

requires developer efforts to structure the application program into a model. Furthermore, the offloading

performance is impacted by the profiling and partitioning steps.

(d) Adaptive (k+1) [217]. Ou et al. have proposed an adaptive, multi-constraint partitioning algorithm

for offloading in pervasive systems. The framework partitions an application into k offloadable partitions

and one unffloadable partition. The partitioning algorithm is applied to a dynamic multi-cost graph.

The vertices correspond to the application classes, each valued with an n-tuple, < w1, w2, ..., wn >,

(n �= 0) costs such as memory, bandwidth, and execution time. The edges represent the interactions

among classes. The authors have used a heavy-edge and light-vertex matching algorithm to coarsen the

multi-cost graph. Hence, a composite-vertex-weight is used to replace the weight vector. The composite

vertex weight is computed as: w v
composi te

=
�

i εw v
i

, where i = 1,2, ...,n, n is the length of the weight

vector, and ε is the importance of the i th weight in the vector, which is assigned based on the scarcity of

the corresponding resource. The higher the scarcity of a resource, the higher ε will be. The authors have

formulated the problem as follows: Given an application graph G(V ,E) and a non-negative integer k l ,

the adaptive (k+1) multi-constraint partitioning algorithm has to find one local (unoffloadable) partition

V U and k disjoint remote (offloadable) partitions V O
1

,V O
2

, ...,V O
k

, which should satisfy the following

constraints:






















∪k
i=1

V o
i
=V −V U and V o

i
∩V o

j
=� f or 1 ≤ i , j ≤ k and i �= j

T he ed g e −cut o f ∀Vi ,V j ∈V U ,V o
1

,V o
2

, ...,V o
k

C (i , j ) =
�

(u,v)∈E ,u∈Vi ,v∈V j ,u �=v

∀i , j : ψi
j
≤ (T i

j
±δi

j
)

(3.17)

ψi
j

is the sum of the j th vertex-weight in partition Vi : ψi
j
=

�

v∈Vi
w v

j
; T i

j
and δi

j
are the multiple

constraints representing threshold and partitioning fluctuating factor in partition Vi according to the j th

vertex weight. These two parameters define, respectively, the lower and upper bound of the constraints.

When a composite vertex weight is used, ψi
j

becames ψi
composi te

, and it is computed by ψi
composi te

=
�

v∈Vi
w v

j
.
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Table 3.1 presents the comparative summary of aforementioned models considering various metrics.

, , and mean, respectively, low, medium, and high consumptions. ✓ and ✗ show whether the

functionality is supported or not.

Table 3.1: Comparison between mono-, bi-, and multi-objective optimization-based frameworks

Framework Type Optimization Objectives
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CloneCloud [50] Mono-Objective Execution Cost NA ✗ ✗

CODM [287] Mono-Objective Optimize Deployment ✓ ✗ ✓

MAUI [59] Mono-Objective Optimize Energy Consmp. ✗ ✗ ✓

Yang et al. [312] Mono-Objective Optimize Throughput ✗ ✗ ✓ ✓

AIOLOS [285] Bi-Objective �Reduce Latency, �Minimize Energy NA NA ✓ NA

AIDE [95] Multi-Objective �Min. Bandwidth, �Min. Network Communication, �Min. Memory NA NA ✓ NA

Elastic Application [322] Multi-Objective �Min. Energy, �Max. Throughput, �Min. Monetary Cost ✓ ✓ ✓

MACS [144] Multi-Objective �Min. Energy, �Max. Security, �Min. Exec. Cost ✗ ✗ ✓

Adaptive (k+1) [217] Multi-Objective �Min. Bandwidth, �Min. Memory, �Min. Exec. Cost NA ✗ ✓ ✓ NA

3.2.2 Mobility

As far as we know, mobility has not been fully studied in computation offloading. Only a few studies

have addressed mobility when performing computation offloading.

Mob-aware [158] is a mobility-aware offloading decision maker, which considers future network

changes based on user mobility. The Mob-aware gathers previous user movements and network changes,

then builds a mobility model to predict future network changes. The authors have used Markov theory to

draw the mobility model and calculate the probability of moving to a certain Wi-Fi Access Point (AP).

Each state si in the model represents a Wi-Fi AP characterized with a bandwidth bwi and a staying time

sti , while a transition represents the probability of visiting a certain state. Using this model, Mob-aware

estimates the expected remote and local execution time. Mob-aware explores each possible transition to

estimate the response time based on the bandwidth bwi , and the staying time in each state sti . Then, the

engine calculates the probability of taking a possible path (i.e., a plausible sequence of transitions). The

probability P (Qi ) of taking a path Qi is given by:

P (Qi ) = P (s0, s1, ..., sn) =

n
�

k=2

P (sk |sk−1, sk−2)(3.18)

Mob-aware expects the response time R of remote execution using equation 3.19, where Ri is the

response time of remote execution on a path Qi . The throughput on each path is expected using

bandwidth bw and the state time on each state st . Also, du and dr are the input and result data size,
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respectively.

R =
�

i

P (Qi )×Ri (Qi ,du ,dr )(3.19)

Ou et al. [218] proposed an analytic model for computation offloading in a mobile wireless environment

using the mobility Random Waypoint (RWP) scheme [122]. The authors considered a one-dimensional

mobility. They defined a continuous random variable, X , to express the user mobility coordinate,

assuming a random speed vi ∈ [vmi n , vmax ]. The asymptotically stationary probability density function

(p.d.f) of location X in [0,d ] considering the RWP model with a non-zero speed mobility is approximated

by: fx (x) =−
6

d 3 x2+
6

d 2 x, 0 < x < d A surrogate is not reachable when the difference between the mobile

user’s location, xm , and the surrogate’s position, xs , is greater than the surrogate’s radio transmission

radius, D, (i.e., |xm − xs | > D). Since surrogates are immobile, their radio coverage can be obtained.

If m denotes the number of surrogates on segment [0,d ], therefore there are m + 1 sub-segments

([0, xs
1
−D), (xs

1
+D, xs

2
−D), ..., (xs

m +D,d ]), which are out of the radio coverage. The probability of

surrogate being un-reachable at anytime is given by:

α=

�x s
1
−D

0

f (x)d x +

m−1
�

i=1

�x s
i+1

−D

x s
i
+D

f (x)d x +

�d

x s
m+R

f (x)d x(3.20)

Events of unreachable surrogates are modelled with a Poisson process. P is a random variable repre-

senting the time to the first epoch in which the surrogates are unreachable. P follows an exponential

distribution with parameter α.

fp (P ) =αe−αP
,P ≥ 0(3.21)

The authors have modelled the running application with four states; non-offloading execution (SN E ),

offloading (SOL), offloading execution (SOE ), and failure and recovery (SF R ). Offloading events follow

a Poisson process with a rate β. During the offloading and failure events, periods of time M and R

are needed to, respectively, migrate data to a remote surrogate and to recover after failure. M and R

are random variables following a general distribution. When a failure occurs, application execution is

interrupted next, the failure is recovered, and the execution is restarted from the scratch in the same

period as the last execution. The failure occurs during the states SOL and SOE due to the surrogate’s

unreachability when the user is moving, and in state SF R when the failure recovery aborts. In these cases,

α becomes the probability of failure.

The authors have expressed the execution time without failure using the following Equation 3.22:

Tnon− f ai lur e (n) =

�

1−
(ω−1)σ

ω

�

T �
(n)(3.22)

where n is the number of tasks composing the application, ω is the speedup factor of the surrogate

compared to the mobile device, σ is the proportion of sub-tasks performed by the surrogate, and T �(n)

is the local execution time of the application on the mobile device. The execution time with failure is
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given by Equation 3.23.

T ∗
(n) =







T (n)+
�h

i=1
Mi i f P ≥ T (n)+

�h
i=1

Mi

P +R∗+ T̂ ∗(n) i f P < T (n)+
�h

i=1
Mi

(3.23)

where h is the number of transitions from the state SN E to the state SOE , R∗ is the failure recovery time

in the presence of failures within the recovery period R, and P is the time to the first failure after starting

recovery.

• if P ≥ T (n)+
�h

i=1
Mi then, h offloading operations are made before finishing the n tasks without

failure. Therefore, the offloading time is given by
�h

i=1
Mi , and the total execution time is ex-

pressed by T (n)+
�h

i=1
Mi . The random variables Mi , i = 1,2, ...,h are independent and identically

distributed (i.i.d).

• if P < T (n)+
�h

i=1
Mi then a failure will occur before finishing the n tasks and making h offloading

operations. Therefore, a nested failure occurs, and a new recovery operation is repeated after P ,

with a recovery time R∗.

MOSys [123] is a seamless computation offloading framework. MOSys uses the Software-Defined

Networking (SDN) [313] paradigm to manage user mobility and caching techniques to reduce response

time. The framework MOSys is composed of three entities; a middleware client that is responsible for

the collection of data, such as application type, network, and Cloud parameters; a network controller

that manages user mobility, tracks his location, and maintains his IP address; and a middleware server

that performs the offloading requests.

The architecture manages two types of interactions: (i) between the mobile device and the OpenFlow

controller 2 to manage mobility, discover Cloud resources and services, and perform offloading computa-

tion steps; and (ii) between the OpenFlow controller and the Cloud, which accepts or rejects computing

the offloaded tasks, monitors the Cloud resources, and performs caching. The middleware is composed

of classical offloading components, such as profiler, decision engine, and offloading manager, and a

remote caching component to store data in a cache for future use. The network controller is composed of:

(i) OFMAG, responsible for user’s mobility and managing handovers and connectivity; and (ii) OFLMA

creates OpenFlow rules to manage the traffic and maintain data to identify handovers. The authors used

the Proxy Mobile IPv6 (PMIPv6) [97] to devise these two components.

3.2.3 Challenges

• Trust: Establishing trust between mobile end-users and Cloud providers is central in MCC. Several

studies have been conducted in this axis to build trust in Cloud resources [197, 246, 297]. However,

risky Internet channels and Cloud infrastructure heterogeneity impact the trust between mobile

2http://archive.openflow.org/
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users and Cloud providers. Encryption/decryption, authorization, and authentication techniques

are used in the MCC to overcome the trust challenge. However, these techniques increase the

communication overhead and resource consumption on mobile devices.

• Data Portability: Cloud providers have alleviated the locked-in problem of mobile device users

to facilitate data migration through non-uniform mobile devices. Yet, portability of data is still

a challenge for Cloud consumers. For instance mobile users are unable to transfer data from

Android-based to iOS-based mobile devices. On top of that, Cloud service heterogeneity causes a

provider lock-in problem. Provider lock-in is a real concern for customers and an attractive issue

in business [182]. Solutions, such as the proposed middleware [24] and standardization of Open

Cloud Computing Interface (OCCI)3 are some approaches addressing the portability issues in

MCC.

• Budget: In order to use the Cloud for computation offloading, the costumer should pay for the

services offered, which include resource reservations, QoS, reliability, and security [245], according

to the negotiated Service-Level Agreement (SLA) with the Cloud provider. Moreover, to offload

computation, the user should have access to the internet through wired or wireless connectivity.

When using radio communication, the user has generally a limited size of data to upload and

download; if this quota is exceeded, the user will have to pay for additional data, usually at a very

expensive rate.

• QoS/QoE: Concerns in this area are interaction delay, immersion, and in the case of multimedia,

the number of frames generated per second. The following chapters discuss these concerns in more

details.

3.3 Computation Offloading Taxonomy: From the Mobile Device Perspective

In this section, we initiate the reader to mobile device’s limitations and characteristics that have

pushed for the need to use computation offloading. We are particularly interested in mobile device

platforms that have been used for computation offloading. We also want to describe mobile devices from

the hardware capabilities view to understand their limitations in term of resources. Finally, wireless

communication also matters in computation offloading. Indeed, each technology has its characteristics,

including throughput, energy consumption, latency, supported services, which highly impact computation

offloading. Figure 3.2 highlights these interests.

3.3.1 Platform

A platform is the operating system (OS) layer that make mobile devices operational, and the operating

system manages user applications. The manufacturers of mobile devices can be separated, according to

the OS running on these devices, into light OS and full OS.

3http://occi-wg.org/
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Computation Offloading Taxonomy: from Mobile Device Perspective

Platform Capabilities Wireless comm

Light OS

Full OS

CPU/GPU

Screen

Battery

RAM/Disc
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5G

Wi-Fi

Wi-Max

Bluetooth

Figure 3.2: Mobile device-based computation offloading taxonomy

• Light OS concerns smartphones and tablets, which include Android, iOS, and Symbian.

• Full OS is supported by laptops and some surfaces. It includes, Windows (e.g., 7/8/10), Linux

(e.g., Mandriva, RedHat, and Debian), and MAC OS.

3.3.2 Wireless Communication

To communicate with the Cloud/Edge environment that is computing the offloaded tasks, mobile devices

are using wireless communication such as cellular networks (e.g., 2/3/4/5G, and Wi-Max) or Wi-Fi

access point. A comparison study of wireless protocols: Bluetooth, ultra-wideband (UWB), ZigBee, and

Wi-Fi was proposed in [156]. The authors have evaluated the protocols’ main features and behaviors

in terms of various metrics, including the transmission time, data coding efficiency, complexity, and

power consumption. In [65], a comparison between WiMAX, HSPA and LTE access networks was

provided regarding the power consumption. In the computation offloading arena, several works have been

proposed based on different wireless communication technologies. In [139], authors have tested their

framework, ThinkAir, for N-Queen-Puzzle, Face detection, and virus scanning for both 3G and Wi-Fi

connectivity. In [323], the authors have proposed and experimented a method for refactoring Android

Java code for on-demand computation offloading in 3G networks. The framework COSMOS [260] was

tested for four scenarios: stable Wi-Fi, indoor Wi-Fi, outdoor Wi-Fi, and outdoor 3G. AD-Hoc Cloudlets

oriented computation offloading was tested in [38] in the context of 3G/4G connectivity. Chen et al. [39]

have studied the mobility and its impact on the performance of caching and computation offloading in

5G-ultra dense cellular networks. Other studies Considering computation offloading in MEC [321] and

Cloud computing [134] in 5G heterogeneous networks are proposed in the state-of-the-art computation
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offloading.

3.3.3 Capabilities

Mobile devices have achieved great development in terms of capabilities (i.e., hardware resources)

during the past decade.

1. Central Processing Unit (CPU)/Graphic Processing Unit (GPU). Multi-core processors with a

high clock speed are being proposed. For instance, ARM industry developed microprocessor cores

with high performances, power and cost requirements, such as Cortex-A. Cortex A7, A9, and A15

execute 32-bit instructions while Cortex A53, A57, and A72 process 64-bit instructions4. These

processors offer better performances, at the expense of energy5. Nvidia’s Tegra, Samsung’s Exynos,

Apple’s A8, and Qualcomm’s Snapdragon are few of chips in the industry. Regarding GPU, mobile

devices have been designed with GPU since 2013. Mali-T604 was the first GPU integrated inside

Samsung Chromebook and the Google Nexus 106. PowerVR, Tegra, and Adreno are other GPUs

developed by Imagination Technologies, Nvidia, and Qualcomm, respectively.

2. Battery. The energy is the unique non-replenishable resource. It needs an external resource to

restore it. A plenty of efforts seeking to harvest energy from renewable resources including human

movement [211], solar energy [23, 172], and wireless radiation [113]. In parallel, researchers

aim at reducing the energy overhead in different aspects of computing, including hardware, OS,

application, and networking interface. DVS technology [28] is a power management technique

used to conserve the energy, particularly in wearable devices by increasing and decreasing the

voltage. The automatic shutdown of the screen is another concept to save energy for mobile devices.

Some other efforts are trying to develop alternative energy resources such as nuclear batteries.

3. Screen. The screen size has grown since 2007 from 2.59 i nches to 6 i nches for today’s smart-

phones. For instance, the iPhone 8 Plus has a screen size of 5.5 i nches. Despite, these large

screens offer high visualization, they sharply drain the batteries. Some alternatives have been

proposed, they include the GeoTV [43], and remote display solution [264]. Other efforts to ex-

tend data-presentation area have considered the utilization of dual screens such as Codex [106],

FoldMe [131], and Foldable3D [29].

4. Memory and storage. Today, most smartphones have a Random Access Memory (RAM) for

running applications. Their capacity increased over the year following Moore’s law from only

100 MB to up to 4GB today. Regarding the storage, smartphones are equipped with a large flash

storage (e.g., 64GB) used to store user’s files such as pictures, applications, music, and videos.

The speed of evolution of the storage capacity is doubling every two years, fit to Moore’s law

again.

4http://www.arm.com/products/processors/
5http://www.arm.com/products/processors/cortex-a/
6http://malideveloper.arm.com/
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Augmenting the hardware increases the performance of the mobile devices, however, it brings

different drawbacks, that include (but are not limited to):

• Increasing the energy consumption due to large screens, powerful processors, and large storage.

• Decreasing the hardiness of mobile devices due to the additional size, weight, and heat, which are

caused by the incorporation of powerful processor, large storage, and big screen.

• Increasing the price of these devices due to the integration of high technology and powerful ships

in a dense space.

3.4 Computation Offloading Taxonomy: From the Application Perspective

We focus in this section on motivations, issues, and challenges encountered by mobile applications when

requesting computation offloading. It will be of special interest to identify the genre of applications,

described in the literature, which advocates and motivates the use of computation offloading. It is

also interesting to identify the application programing languages, aiming at discovering application

portability and developing frameworks that target, as much as possible, compatible applications. We are

also motivated to classify applications in the literature under different resource demand groups in order

to define objective functions that should be considered for each group. We also analyse application code

dependency challenges. We represent these different axis in Figure 3.3.

Computation Offloading Taxonomy: from Application Perspective

Application
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Programing
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Requirement Dependency
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Figure 3.3: Applications-based computation offloading taxonomy

3.4.1 Application Genre

The study in Section 3.2 has demonstrated that not all mobile applications are suitable for computation

offloading, since the offloading gain depends on several metrics (e.g., computation amount, exchanged

42



3.4. COMPUTATION OFFLOADING TAXONOMY: FROM THE APPLICATION PERSPECTIVE

data). We report in this section the main suitable applications, described in the literature, for computation

offloading.

• Augmented Reality. In [249] an AR application is described. It presents eyeglasses for cogni-

tive assistance, composed of a camera and earphones. The system hosts different applications,

including AR, computer vision, and audio processing. The authors in [284, 286] present another

AR application, which features marker-less tracking and object recognition. The system tracks

feature points in a video to enable the overlay of 3D objects. The application is divided into several

modules that each can be offloaded to a Cloudlet to optimize the user experience. In [288], a

middleware built upon OSGi7 is presented with an algorithm, which calculates the best deployment

of the AR application according to the possible configurations.

• M-Gaming. MAUI [59] and ThinkAir [139] have been tested for arcade, chess, and N-Queens

puzzle games. MAUI represents the games into a graph, then draws an ILP model to obtain the

location of each method. ThinkAir uses past-invocations of methods to to make decisions (see

Chapter 5 for more details). Messaoudi et al. have discussed the possibility of offloading game

engines in [192], and proposed, in [189], the UCOF or Unity 3D-based Computation Offloading

Framework. Cloud gaming [111] represents another use case of computation offloading. Here,

the entire application (i.e., game engine) is offloaded and computed in the Cloud. Commands and

video streams are exchanged between the powerless devices and the game engine hosted in the

Cloud (more details in Chapter 4).

• Image Processing. In [188], a framework has been proposed that relies on the MEC to enhance

the execution of a facial recognition application (see Chapter 6). A facial detection scenario was

described in [179] wherein the application is represented by an hybrid (i.e., parallel and sequential)

dependency graph, which is drawn into an ILP to make offloading decisions regarding energy

consumption. Image manipulation based on cyber foraging was proposed in [147]. The use case

describes touching an image up by applying filters, sharpening, removing the red-eye effect, and

adjusting brightness, colour, and contrast. Other use cases were presented in [125, 127, 130, 310]

for optical character recognition (OCR), barcode analysis, face detection, and object recognition.

• Audio Processing. Goyal and Carter (GnC) framework was tested for speech recognition applica-

tions in [93]. The authors used the Sphinx28 application. GnC records what the client is saying and

sends the sound data to a surrogate, which in turn recognizes the phrases and sends the results back

to the client. Locuts [146] is a framework providing a tool for developing applications-oriented

cyber foraging. A daemon running on the powerless device calculates an optimal execution plan

according to the resource measurements on the device and surrogate. The example given describes

7https://www.osgi.org/
8Real-time application incorporating a large American English vocabulary with pronunciation dictionary.
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a doctor who enters patients information on his electronic journal using a lightweight headset,

which needs a surrogate for translation.

The above-mentioned use-cases/applications are a small sampling of the applications and scenarios

used in the literature. The applications used in state-of-the-art computation offloading include, but are

not limited to, data mining [93], text translation [310], 3D home interior design [91], virus scan [52,

227], SciMark 2.0 benchmarking [324], multimedia (M4Play) [217], and mathematics processing

(π-calculator) [217].

3.4.2 Programing Language

Computation offloading frameworks and mobile applications are highly dependent, as they should

support code portability. We distinguish two alternatives: (i) a single-platform, which is a light-weight,

efficient approach, wherein the offloading framework is dedicated for applications developed on the

same environment; (ii) a Cross-platform, the framework of which can run on several operating systems

and various hardware configurations. Therefore, a cross-platform framework supports a variety of

applications written in diverse programming languages. However, this solution is complex, and it

induces a high overhead due to wrapping the application components in order to be supported. To sum

up, application that are candidates for offloading depend on their frameworks, which should be portable

through platforms.

Table 3.2 summarizes some reviewed works. We observe that most of the proof-of-concept com-

putation offloadings are based on Java applications that encompass facial detection and recognition,

speech translation and recognition, and 2D games. Researchers tend to focus on Java as it is easy to use

(i.e., it is a high-level language), is supported by the main mobile operating systems (such as Android),

includes memory management and a garbage collector to efficiently manage the memory, and it defines

a set of services and APIs that are ready for use. In contrast, C/C++ and embedded C are low-level

programing languages that involve considerable efforts from developers to manage the memory and

develop applications.

3.4.3 Requirements

Below, we classify the requirements of candidate applications for computation offloading into seven

groups, according to the needs served by the applications. This classification is useful for managing the

framework objective functions through the applications requirements.

• CPU-intensive category. This category includes applications that need powerful CPUs to execute

and consume a consider-able amount of energy. We mention audio analysis, image processing,

data analysis, and benchmarking.
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Table 3.2: Applications with programming language used in computation offloading arena

Framework Description Application Language

Siri Apple’s commercial framework which relies on the Cloud to get things done Speech recogn Objective C

MAUI [59] Leveraging the Cloud to enhance dynamic offloading of methods
�Games
� Face recogn .Net

VM-based Cloudlet [99] Uses VM-based Cloudlets with a delivery approach for hostile environment OpenCV C++

CloneCloud [50] Dynamic offloading of threads from mobile devices to VM clone in Cloud
�Virus scan
� Image search Java

ThinkAir [139] Offloads methods at runtime to a VM clone in the Cloud N-Queens puzzle Java

Scavenger [147] Offloads tasks to surrogates based on dual scheduling profiles Image decorator Python

Spectra [82] Proposes a framework to develop application-oriented offloading
� Speech Recogn
� File Prepar
� langauge Transl

� NA
�Latex
�NA

Cuckoo [128] Partial offloading with programming UI to ease the code integration
�Object recogn
� Face recogn Java

eXCloud [176] Uses stack-on-demand technique to offload segments of frames to the Cloud Math calculations Objective C

Zhang et al. [322] Weblets-based partitioning using elastic applications approach Image processing C#

Giurgiu et al. [91] Distributes application into functional layers based on the R-OSGI 3D home interior OSGI (Java)

Ou et al. [217] Adaptive (k + 1) graph partitioning algorithm for offloading MPEG-4 player Java

Verbelen et al. [283, 286] Leverages Cloudlets for immersive applications AR C/C++ wrapped in OSGI

DPartner [323, 324] On-demand automatic factorization for android bytecode
�Linpack Bench
�Gomoku Chess
� 3D car Games

Java (bytecode)

JDOP [296] Dynamic graph partitioning algorithm for Java bytecode applications
� Java Grand
� SpecJVM98 Java (bytecode)

Chroma [18] Proposes a tactics-based remote execution for mobile computing
� Pangloss-Lite
� Janus
� Face

�C++
�C
�Ada

Yang et al. [310] Leverages surrogates for bytecode offlaoding AutoTranslator Java (bytecode)

Coca [37] Offloads computation to the Cloud using aspect-oriented programming Chess game Java

IC-Cloud [261] Predicts connectivity on intermittent Cloud to enhance offloading
� Face Detect
�Voice recogn
�Droid Fish

Java

• GPU-intensive category. The GPU, as its name implies, is largely dedicated to graphic process-

ing, so applications with intense rendering are included in this category. Games, AR, VR, and

multimedia are the main applications.

• RAM-intensive category. Some applications demand much memory to run, such as 3D modelling

and gaming. Also, the IoT, including sensors, are memory-constrained devices. Therefore, almost

all programs running on these devices are RAM-intensive.

• I/O-intensive category. This category contains the applications that increase memory paging and

I/O activity such as PostMark9, PageBench10, and Bonnie11.

• Network-intensive category. This category includes applications involving Internet connectivity

used to access remote services. We mention social network applications, such as Facebook, and

9File system benchmark program: http://www.netapp.com/tech_library/3022.html.
10Synthetic program which initiates and updates an array whose size is bigger
11Unix file system performance benchmark: http://www.textuality.com/bonnie/.
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Twitter, Sftp12, and PostMark_NFS13.

• Security-intensive category. This category concerns applications that need security mechanisms,

such encryption, authentication, and authorization.

• Delay-sensitive category. These are mainly considered to be real-time applications, such as games

and AR/VR.

In general, memory [319], CPU, and GPU high-demand applications are mainly suitable for computation

offloading. It is prudent to execute bandwidth-intensive applications locally at the mobile device [116].

Offloading delay-sensitive applications [204] depends on the network latency and data exchange: (a) the

higher the network latency, the lower the offloading gain; and (b) the larger the exchanged data size,

the higher the latency, and the lower the offloading gain. In mobile networks, the latency is impacted

by different parameters, which depend on both the core network and wireless channel access delays.

Kumar et al. [150] have shown, via a mathematical model, that if the access delay is higher than the

execution time on the mobile device, then, even if the server is infinitely fast, there is no offloading gain.

Concerning the network-intensive [20], the I/O-intensive [319], and the security-intensive [33, 132, 270]

applications, their execution in remote servers is restricted by some constraints including, hardware

dependency, security and confidentiality, and network communications. Almost all the applications

reported in the manuscript are computationally-intensive applications.

3.4.4 Code Dependency

We finish this section by distinguishing components of applications that cannot be offloaded. We call

this constraint code dependency. For some reasons, which we will discuss later, offloading the entire

application is not always possible, as some components of the mobile application depend on specific

hardware components, such as sensors or on the device software, such as libraries. Figure 3.4 portrays

some of the different hardware and software entities involved in an interaction between a user and

his device. Obviously, in reality, the device interacts with the user via multiples of these entities. As

this figure shows, a user application, from the background, may depend on diverse programs, known

as libraries, Software Development Kits (SDKs), middleware, operating systems, and drivers, but also

on hardware, especially sensors. From the foreground, the application interacts with the user via User-

Interfaces (UIs), which manage for instance, the mouse and touch screen for the inputs, and headphones

and speakers for the outputs.

We now clarify, the role of the layered programs triggered in an application execution.

• The platform independence layer is a set of libraries that allow an application to be cross-platform.

It sits atop the hardware, drivers, operating systems, and third-party SDKs. It releases the rest of

the application from being dependent on the underlying platform.

12Synthetic program which uses sftp to transfer a 2GB size file
13The Postmark benchmark with a NFS mounted working directory
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Figure 3.4: Hardware/software entities involved for human-machine interaction

• The third-party SDKs and middleware are APIs leveraged for a large number of applications. To

name a few examples: OpenGL ES, PhysX, and STL.

• The operating system is the software that runs continuously on a device to orchestrate the execution

of multiple applications, one of which is the application requesting computation offloading. The

software uses interruptions and preemption scheduling to share the hardware with the applications

that are running.

• The device drivers are low-level software components provided by the operating system or the

hardware vendor. They manage hardware resources and release the operating system and upper

layers from the details in communications with the hardware.

Accordingly, we can classify the non-transferable components of an application into four groups: (i)

components involving UIs [59, 216, 217]; (ii) components interacting directly with the device hardware,

such as a Global Positioning System (GPS) and accelerometer sensors [216]; (iii) components depending

on APIs, middleware, or libraries located on the same device [94, 220]; and (iv) components using

directly device-related information [94].

3.5 Computation Offloading Taxonomy: From the Network Perspective

This section provides some background regarding the network environment in which, the powerless

device and server are performing the computation offloading. Particularly, in this section, we focus on

the QoS metrics, communications support, and networking models. Figure 3.5 depicts these points.

3.5.1 Metrics

• Delay: The main aspect of seamless application execution is the interactive delay. Interactive delay

is defined as the elapsed time between the moment when an action is triggered by a user and the

moment when the result of this action is perceived by the user. Interactive delay is a mandatory
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Computation Offloading Taxonomy: from Network Perspective
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Figure 3.5: Network-based computation offloading taxonomy

constraint in MCC, since it is linked to interactivity. The work in [279] demonstrated that a user is

satisfied and productivity is not affected by an interactive delay when the latter is below 150ms.

The user becomes aware of an interaction delay within the range of 150ms and, furthermore,

the user becomes unsatisfied and frustrated for delays higher than 1 s. Work in [45] decomposed

the interactive delay into six parts: tcl i ent + taccess + ti sp + ttr ansi t + td at acenter + tser ver , wherein

tcl i ent is the playout delay, which is the time spent triggering an action, and receiving and

visualizing the result; tser ver is the processing delay, which is the time spent by the server in

computing the incoming tasks from the client and transmitting back the results of the tasks;

and taccess + ti sp + ttr ansi t + td at acenter represents the network latency, where, taccess is the data

transmission time between the client and the first router, ti sp is the phase between the access router

and the access point, ttr ansi t is the delay in reaching the front-end of a datacenter, and, td at acenter

is the time to access the server reserved for the client. To reduce the interactive delay, several works

related to computation offloading have focused on bringing the Cloud closer to the mobile user by

leveraging the MEC [169, 247, 315], Fog computing [40, 101, 314], and Cloudlets [250, 271, 272]

paradigm.

• Bandwidth: In a packet network, both bandwidth and throughput characterize the amount of

transferred data over the network per unit of time. Bandwidth estimation is of interest to users

aiming to optimize the end-to-end transport performance, overlay network routing, and peer-to-

peer file distribution. For several data-intensive application, such as multimedia streaming and file

transfers, the available bandwidth impacts directly the performance of the application. Three main

metrics characterize the bandwidth, namely, capacity, available bandwidth, and Bulk Transfer

Capacity (BTC) [228]. Several bandwidth estimation methodologies have been proposed in the
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literature to estimate the end-to-end capacity and available bandwidth. We cite the variable packet

size probing [68, 152], the packet pair/train dispersion probing [25], the self-loading periodic

streams [117], and the Trains of Packet Pairs [186] methodologies. Various strategies have been

used to improve the computation offloading performance by using high bandwidth link [78,326], on-

demand bandwidth allocation [116], multi-Radio Access Technology (RAT) [178], and Multipath

TCP (MPTCP) [177].

Several other metrics are considered in computation offloading, we cite energy consumed by each

communication technology (3/4/5G, and Wi-Fi), packet loss, accuracy, fault tolerance, scalability, and

packet delivery [161, 196, 272, 287].

3.5.2 Communication Support

To perform a computation offloading, communications between a mobile device requesting offloading

computation and a remote infrastructure, which computes the offloaded code, have to be established. We

distinguish several mechanisms by which to communicate with state-of-the-art computation offloading,

such as; RPC, RMI, VM migration, Mobile agents, and proxy.

• RPC: RPC is a request–response protocol. The request is initiated by a mobile device, which sends

a message to a well-known remote server requesting the execution of a specified procedure with

supplied parameters. The answer to the request is performed by the remote server. During the

remote execution, the mobile device is in waiting mode until the reception of the response from the

server. In this mechanism, applications are partitioned into locally executable code and remotely

executable services. These services are pre-installed on remote infrastructure, which expose these

RPC as APIs. Several frameworks have been proposed in the literature for computation offloading

based on RPC support for communication. We mention Spectra [82], Chroma [17,18], MAUI [59],

and Odessa [231].

• RMI: RMI is a Java API that performs a remote invocation of methods; it is the object-oriented

equivalent of RPC. RMI supports a direct transfer for serialized Java classes and distributed garbage

collection. RMI invokes remote methods in a transparent and seamless way using references for the

remote objects. To perform RMI, two particular classes should be created by the Java Development

Kit (JDK): the stub from the client side and the skeleton from the server side. These two classes

are in charge of calls, communications, execution, and sending and receiving execution results.

Past studies such as Cuckoo [128], JavaParty [226], J-Orchestra [278], and JADE [11] have been

designed with the RMI mechanism.

• VM Migration: VM migration is another mechanism that can be used to support communications

for computation offloading. The concept is to create a VM that replicates the execution environment

of the mobile platform, and migrate the VM to a remote server to compute the running application.

VM migration follows two ways; cold, and hot migration. The difference between these two
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approaches is in how data are migrated. In cold migration, the VM is stopped to migrate all the

pages related to the VM, while in the hot migration, the VM is migrated without interrupting the

OS or any of its applications, giving the illusion of seamless migration. Some research on state-of-

the-art computation offloading have been conducted using virtualization and VM migration. We

cite CloneCloud [50, 51], GnC [93], Slingshot [275], and Cloudlet [249].

• Mobile Agents: Mobile agents are autonomous programs which are able to control their movement

between machines in an heterogeneous network. Communication between agents is achieved

through message passing using RMI or RPC. In [11], the authors used the Java Agent Development

Environment (JADE)14. JADE is a popular framework for developing agent applications for

interoperable, intelligent, multi-agent systems. Scavenger [147] is another framework, in which

surrogates run a daemon, which is responsible for offering remote access for the mobile code

execution environment and device discovery.

3.5.3 Network Type

• Peer-to-peer: In a P2P topology, the overall system load is distributed among all participating

mobile devices/peers, which organize themselves to act as clients and servers at the same time.

In the computation offloading umbrella, several works have been proposed in the peer-to-peer

context. In [140], the authors have introduced the Clone2Clone (C2C), a distributed peer-to-peer

platform for Cloud clones of smartphones. Chen et al. [38] have proposed a peer-to-peer model to

interconnect nearby mobile devices through various short-range radio communication technologies

forming ad-hoc Cloudlets, where every mobile device works as either a consumer or provider of a

service. In [110] a peer-to-peer model is described for Cloud robotics.

• Client-Server: In client-server model oriented for computation offloading, the client represents

the powerless device such as smartphone, while the server generally, corresponds to a resourceful

machine able to compute the client’s requests, for example, server in the Cloud or Grid computing.

In [239] a stochastic model of the client-server system based on Markovian decision processes

wherein the power management problem is formulated with task migration as an optimization

problem. An energy trade-offs in offloading computation/compilation in Java-enabled mobile

devices [36] have been studied considering the client-server model. To summarize, most of the

research works presented through this document are based on the client-server model.

3.6 Computation Offloading Taxonomy: From the Server Perspective

In this section, the focus is on servers type, their distance by report from mobile users, their capabilities,

and their associated issues. We review state-of-the-art regarding these axes and compare some frame-

14http://jade.tilab.com
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works used in the literature for computation offloading. The aim is to see where we can contribute and

how some challenges are resolved. Figure 3.6 summarizes this section.

Computation Offloading Taxonomy: from Server Perspective
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Figure 3.6: Server-based computation offloading taxonomy
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Figure 3.7: Taxonomy around server type

This section reviews the platforms used to compute offloaded tasks. We attempt to classify these

platforms according to their physical distance from mobile users and their capabilities, into three

categories, namely, distant Cloud, proximate µCloud, and hybrid platform, as shown in Figure 3.7 and

described below.

1. Distant Cloud.

The Cloud is a model that enables ubiquitous, on-demand access to a shared pool of configurable

resources (including networks, storage, applications, and services). The Cloud offers three types

of services: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as

51



CHAPTER 3. COMPUTATION OFFLOADING: TAXONOMY REVIEW

a Service (IaaS). SaaS provides a plethora of remotely accessible applications running on the

Cloud infrastructure. PaaS allows customers to deploy applications, libraries, services, and tools

supported by the provider. IaaS provisions the consumer with a pool of computing resources.

We distinguish four possible deployments of The Cloud as: private15, public16, community17, or

hybrid Cloud18. In these deployments, public and private stationary servers are delivered by farms

and enterprise premises. Amazon19, Google20, and Windows Azure21 are the pioneer providers of

Cloud computing infrastructure. Usually, the Cloud is provided in a pay-as-you-use fashion.

2. Proximate µCloud.

In state-of-the-art computation offloading, we distinguished five appellations of platforms located

in the near vicinity of mobile users. These platforms cross each other and may share some

equipment.

a) Surrogates are static, idle computers located in proximity to the mobile users, such as those in

airports, cinema halls, shopping malls, and public computing kiosks [85]. The surrogates are

extended via high computing capabilities to show advertisements, play music, and compute

services and applications. They are plugged to a source of energy and connected to the

internet.

b) Cloudlet was proposed by Satyanarayan in [250], and it extends the definition of surrogates.

It is a resource-rich computer or a cluster of computers, seen as a “data-center in a box" with

self-managing that requires internet connectivity, power, access control, and some security

mechanisms. It is connected to mobile users via a one-hop, high-speed LAN. Cloudlets are

located in public places (e.g., coffee shops or libraries), at access points (e.g., boxes and

gateways), or in homes (e.g., desktops).

c) Fog is an extension of Cloud computing, which brings network resources from the core

network to the edge network to reduce the latency. It is gaining a lot of industry support,

particularly from Cisco22. For instance, Fog could be the Mobile Network Operators (MNOs)

infrastructure scattered in urban area [246]. Fog is a highly virtualized platform, which

provides a wide range of applications and services in highly distributed deployments and a

real-time manner, such as gaming, video streaming, and AR/VR.

d) MEC mainly targets 3GPP-based mobile networks. It provides computing capabilities within

the RAN, in close vicinity to mobile users. It offers ultra-low latency with high-bandwidth.

Various use cases are leveraging MEC, such as location tracking, AR, video analytics, and

15The IaaS is provisioned for single organization.
16The IaaS is provisioned for an open use.
17The IaaS is provisioned for a specific organization to ensure concerns (e.g., mission, security requirements).
18The IaaS is a composition of distinct Cloud infrastructures.
19https://aws.amazon.com/
20https://cloud.google.com/
21https://azure.microsoft.com/en-us/
22https://developer.cisco.com/site/iox
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distributed content. MEC is heavily promoted by the ETSI, which is trying to develop a

standard around MEC [73], defining a reference architecture and a set of APIs23.

e) Ad-Hoc platform refers to clusters of mobile devices, including smartphones, tablets, and

laptops. These devices are collaborating in an heterogeneous platform [245] to compute tasks

for a nearby mobile user. The Ad-Hoc platform provides a short latency and an heterogeneous

computing environment. However, the ad-hoc capabilities are generally limited, and hence,

are unable to perform intensive computational tasks [180]. Moreover, scheduling, mobility,

security, and privacy present other issues.

3. Hybrid Platform.

The hybrid infrastructure is a mixing of proximate devices, be they mobile or immobile, with the

distant Cloud as depicted in Figure 3.8. The goal is to strike a balance between network latency,

server capabilities, and server availability [235]. The main idea is to offload the delay-sensitive

tasks to the proximate infrastructure, and the CPU-intensive tasks to the distant Cloud. Such

infrastructures are useful in terms of maximizing the benefits of offloading computation. They

deliver enhanced security and privacy features and increase the QoS. Mobile users can reap

advantages from these features. However, due to its mobile nature, the deployment, management,

and resource scheduling of such an infrastructure is not a trivial task.

Cloud 

Cloudlet 

Fog 

VCC 

MEC 

MEC server 

Internet 

Figure 3.8: Hybrid Cloud model

Comparison.

Table 3.3 compares the three aforementioned platforms based on several characteristics, while

Table 3.4 reviews various frameworks from the server perspective. In the table, symbols: , , and

mean, respectively, low, medium, and high.

23http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
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Table 3.3: Server types characteristics’ comparison

Characteristic Cloud Surrogates Cloudlets Fog MEC Ad-Hoc Hybrid

Communication 3G/4G/5G/WiFi 3G/4G/5G/WiFi 3G/4G/5G/WiFi 3G/4G/5G/WiFi 3G/4G/5G/WiFi 3G/4G/5G/WiFi 3G/4G/5G/WiFi

Bandwidth Moderate High Moderate High High High Moderate

Latency High Low Low Low Low Low Moderate

Architecture Distributed Distributed Distributed Distributed Distributed Distributed Distributed

Capabilities High Medium Medium Medium Medium Low High

Flexibility High Medium Low Medium Medium High High

Availability High Medium Low Medium Medium Medium High

Scalability High Medium Low High Medium Medium High

Cost Pay-As-You-Use Pay-As-You-Use Pay-As-You-Use Pay-As-You-Use Pay-As-You-Use Credit / Reward Infra. Dependent

Heterogeneity High Medium High High Low High High

Security High Moderate Low Moderate Moderate Low High

3.6.2 Server Improvements

In this section, we present several improvements that, when applied to the remote servers, increase the

offloading gain by reducing the network latency and execution time.

1. Caching. Caching refers to the storage of data near the mobile user in order for it to be used in

the future. We distinguish four categories of caching: (i) software package caching [93], in which

software packages are cached for future installations to avoid download delays; (ii) service code

caching [143], which is used to store code sources in jar files; (iii) VM synthesis caching [249],

which is employed as a pre-fetching technique to reduce VM synthesis delay; and (iv) data

caching [79], which stores data, such as video streams, near the mobile user in what are known

as Content Delivery Networks (CDNs). Caching decreases network latency and reduces redundant

traffic. However, it increases the overheads, cost, and consistency issues.

2. Parallel execution. Parallelism is the simultaneous execution of different program sections. It

is designed in two separate and complementary functionality: computation, which expresses

calculations in a procedural manner, and synchronization, which abstracts communications and

concurrency controls. Parallelism in the Cloud is viewed from two perspectives: (i) intra-server

parallelism, wherein the server hosts multiple VMs. In addition to performance improvement, this

approach reduces server authentication and selection time; (ii) inter-server parallelism, which

performs parallel execution on multiple servers, each of which hosts one VM. Each server man-

dates an authentication to deploy a VM, which induces high network overhead and operational

complexity. Kosta et al. [139] devised a framework that uses these two approaches, and Zhang

et al. [322] proposed to design elastic mobile applications using weblets distributed over multi-

ple servers. Despite the performance improvement and the scalability amelioration, parallelism

increases power consumption, mandates authentication, and requires more hardware.

54



3.6. COMPUTATION OFFLOADING TAXONOMY: FROM THE SERVER PERSPECTIVE

Table 3.4: Framework comparison according to server type
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VEE [116]

The system clones Android mobile platforms into VMs in the Cloud. Both the VM and the mobile device are synchronized to
keep both copies of the application updated by sending only the segment of the data stack that is created by the application.
The system stores input events using a record/reply mechanism with pseudo checkpoint methods, the purpose is to increase
the quality and efficiency of computation offloading. Doing such, involves efforts from the application developers to specify
the global and local states of the application.

C
lo

ud

N
A

CMH [181]

Application in CMH model are developed in two steps; the heavy components are developed for the Cloud-side execution,
while the lightweight and native code of the application are developed for mobile device execution. The CMH framework does
not need for profiling, partitioning and code migration, hence the system induces least overhead. Once the computation on the
Cloud is finished, the results are send back to the mobile device for integration with the other components. The application
developing is complex due to the interoperability, heterogeneity, and vendor’s lock-in problems of infrastructures.

C
lo

ud

N
A

Kun et
al. [310]

The authors have proposed a framework for offloading intensive tasks. The offloading process follows the traditional steps of
offloading (i.e., resource discovery, profiling and monitoring, modelling, partitioning, and communication). The framework
operates at the Java class granularity level. The proposed model is a multi-cost graph. Partitioning the graph, is a (k +1) graph
partitioning algorithm, which finds k (k ≥ 1) remote partitions and one local partition. Su

rr
og

at
es

N
A

N
A

Scavenger [147]
Scavenger [147] is a cyber foraging system written in Python . It is composed of two independent software components: a
daemon running on surrogates, and the library used by the client applications. The objective of Scavenger is to improve the
performance by dynamically offloading tasks to surrogates. On the surrogates, tasks are computed in a round robin fashion.
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Cloudlet [250] Delivering a VM inside a Cloudlet have been proposed. The framework is based on the dynamic VM synthesis approach.

C
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Verbelen et
al. [284]

Authors propose to alleviate the issue of Cloudlet deployment dependency on service providers, using a dynamic Cloudlet
concept. Also, they solve the performance and flexibility issues of VM-based Cloudlets by proposing a dynamic offloading at
component granularity. The framework distribute the application components among nodes in two Cloudlets. All components
are managed and monitored by an execution environment, which in turn is managed by a node agent that communicate with
Cloudlet agents. The authors have used the OSGi framework

C
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ud
le

t

N
A

N
A

Smart
GW [4]

Authors propose a smart gateway, accompanied with Fog computing. The smart gateway is presented in layered architecture,
each layer performs a job. The gateway includes a virtualized layer that hosts virtual (network) sensors on the physical layer.
The functions of the gateway are shared among activities and resource monitoring, data analyzing, filtering, and trimming,
temporary storage, security concerns, processing IoT tasks or offloading them the the Fog.
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Mohamed [102]
To make a proper offloading decision, authors have executed the same application task under three virtual Fog, and two virtual
Cloud infrastructures, then identified the parameters impacting the offloading performance. The problem was formulated, using
a constrained graph partitioning problem. The authors used the method granularity level for offloading.
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Liu et
al. [169]

A power-constrained delay minimization problem for computation offloading based on Markov decision processes has been
proposed and adapted to the MEC context. The authors have considered a mobile device running computation-intensive and
delay-sensitive applications. The framework considers the mobile device as a composition of a task buffer, a transmission unit,
and a processing unit. Authors propose an algorithm based on the average delay and power consumption at the mobile device
for each task to solve the optimization problem.
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You et
al. [315]

A multi-user resource allocation for MEC has been also proposed. The model is formulated as a convex optimization problem
to minimize the mobile energy consumption considering the computation overhead and the capacity of the MEC. The model
derives an offloading priority for each user according to its channel gain and energy consumption. A low priority derives a
minimum offloading, while a high priority performs a complete offloading.
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MOMCC [8]

The framework uses the SOA, and leverages a cluster of nearby mobile devices to compute the offloaded tasks in a
collaborative way. An application is a set of services, developed independently from others. Several smartphones, in near
vicinity, are collaborating to compute the services, and therefore earn some money. To offer an IaaS, mobile devices register
with UDDI and negotiate the services to compute. Several issues should be considered including, resource limitation, security,
and mobility of users.

A
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VMCC [114]

Leverages an ad-hoc cluster of nearby smartphones as an infrastructure. The application code is updated with a proxy and
RPC instructions. For each application, the framework needs to determine the number of smartphones needed, the offloading
overhead, and the security requirements. Hence, the system incessantly traces the smartphones and their geolocation. Upon the
partitioning step, the remote partition composed of small codes is offloaded among the available smartphones. The results are
integrated back in the mobile device upon completion.

A
d-

H
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SAMI [246]

The infrastructure is composed of Cloud, nearby MNO, and cluster of very close MNOs authorized dealers. This architecture
proposes a multi-tier IaaS that aims to improve the performance, increase the offloading flexibility, and save energy on the
mobile devices. MNO dealers compute the latency-sensitive tasks. Depending on the resource scarcity and user mobility, tasks
can be computed on the MNOs or on the Cloud. The resource allocation is done by an arbitrator entity, which considers
several metrics including resource requirements, latency, and security requirement of services.

H
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d

MOCHA [272]

Combines Cloudlets and Cloud to perform a computation offloading. The mobile device sends to the Cloudlet the heavy tasks,
the latter partitions these tasks between itself and the Cloud to improve the QoS. MOCHA uses two partitioning algorithms;
fair distribution of computation among Cloudlets and Cloud, and greedy distribution, wherein tasks are distributed between the
Cloudlets and the Cloud according to their responsiveness. H
yb

ri
d

N
A

N
A

55



CHAPTER 3. COMPUTATION OFFLOADING: TAXONOMY REVIEW

3. Mirroring. A mirror server is a configured server that hosts multiple VM templates with default

settings to serve a large number of mobile users. Mirroring offers three services: file scanning, file

caching, and computation offloading. Computation offloading induces a high overhead due to the

VM cloning, migrating, and configuring on the mirror server. Zhao et al. [326] devised and tested

a framework, Mirror Server, employing Telecommunication Service Provider (TSP)-based remote

services. The framework provides a lightweight protocol for accessing remote services on the

mirror server and uses an optimized mechanism to download and offload applications. Mirroring

offers high scalability, but limited services and low security, as TSP mirror servers are not designed

for data processing in the way that Cloud is.

4. Pre-installation. Installing software packages or complete application on remote servers before

running the application improves the application performance. Since the application and packages

are already installed on remote servers, initiation, preparation, and migration delays are avoided.

We distinguish two approaches; the first relies on the pre-installation of root partitioned images

with applications, operating system boot-up scripts, and software packages [93]; while the second

approach provides a pre-installed run-time environment to ease the deployment of mobile applica-

tions in the Cloud [154]. Pre-installation decreases network communications and delay as there is

no need for application migration. However, it wastes resources when applications are not used

and requires maintenance.

5. Leveraging proximate infrastructure. Proximate infrastructures includes Cloudlets, MEC, and

Ad-Hoc Cloudlets. The aim is to reduce the WAN latency when leveraging Cloud resources.

Chapter 6 reviews some research works leveraging proximate infrastructures, particularly MEC. In

addition to the low network latency induced by these platforms, leveraging proximate resources

minimizes the data transport cost. However, proximate infrastructures require isolation to prevent

users from unauthorized access. Moreover, deployment requires investigations into illegal and

opportunistic access to these proximate platforms and negotiating an SLA between the mobile

user and the infrastructure provider.

3.6.3 Platform Type

The IaaS oriented for computation offloading is presented to mobile users in the following two forms.

• Physical resources: These resources concern powerless mobile devices and some Cloudlets, which

do not support virtualization technology [203].

• Virtual resources: Mobile users offload computation to servers in the Cloud, Fog, or MEC. These

servers can perform several tasks in parallel. Therefore, a consolidation is mandatory for such

resources. Usually, infrastructure providers, such as Amazon, provide resources in the form of

VMs.
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There are several implications to virtualization-based approaches in computation offloading [155, 263].

Indeed, virtualization is only feasible in high-bandwidth networks. It induces an overhead compared

to native executions of applications [263]. A mobile device should support virtualization technology,

which is not the case for smartphones and tablets. Virtual Machine Managers (VMMs) should be able to

suspend, resume, and migrate VMs; on the other hand, the infrastructure should have enough resources

to successfully launch the VMs and execute applications [316]. Several virtualization techniques have

been used for computation offloading, which include:

1. VM Migration: Some VMMs support VM migration, such as OpenStack24, KVM25, and Xen26. In

VM migration, applications are encapsulated inside VMs and migrated (i.e., pages are transferred)

to a remote infrastructure [120]. After processing the applications, the VMs are migrated back to

mobile devices (particularly laptops). Techniques, such as compression and write throttling [262],

have been used to minimize the impact of the VM size on the bandwidth-scarce-mobile devices.

The ThinkAir framework [139] uses VM migration for computation offloading.

2. VM Overlay: This refers to Dynamic VM synthesis, proposed in [250] for Cloudlets. The Cloudlet

creates VMs dynamically. A small VM overlay, such as a bootstrap configuration file, is delivered

to the Cloudlet, which possesses the base VM from which the overlay is delivered. The overlay is

applied to the VM, which starts the execution form an identical state to that defined in the overlay.

This approach requires a base VM, a VM customization script (VM overlay), and a VM clean-up

script.

3. On-Demand VM provisioning: The VM is created on demand to satisfy the requirements of mobile

devices [70]. The mobile device transfers a provisioning script to the discovered infrastructure,

such as a Cloudlet. Then the latter composes a VM that should fulfil the requirements of the

mobile device. The Cloudlet has two choices: (i) select an already configured VM from the VM

repository that hosts the necessary components, or (ii) select a base VM and install the required

components [295]. On-demand VM provisioning differs from VM overlay as, in the latter, the

infrastructure hosts only the base VM, and the overlay is provided by the mobile device; while

in on-demand VM provisioning, the infrastructure hosts the base VM, server components, and

provisioning software.

3.6.4 Issues

Several research works have contributed to infrastructures being efficiently leveraged for computation

offloading. However, various issues and challenges have been raised. These challenges, addressed in the

literature, are still open. In the following, we highlight most of them:

24https://www.redhat.com/en/topics/openstack
25https://www.linux-kvm.org/page/Main_Page
26https://www.xenproject.org/
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• Security: Security is central in Cloud-oriented computation offloading. Cloud security issues have

been discussed in [132, 305], they include: confidentiality, integrity, availability, accountability,

and privacy of data. In MCC, security should be considered from both the mobile device and

Cloud sides. In terms of the mobile users, mechanisms should be defined to detect malicious codes

(e.g., viruses, and Trojan horses). These mechanisms should run incessantly, which would drain

considerably the mobile device’s battery. Some research works [210, 298] have been introduced

to perform computation offloading of malicious code scanning for security and energy-saving

objectives. When it comes to the Cloud, stored data can be lost, altered, or denied. Several proposals

for security of data have been put forward, which include homomorphic encryption [87, 88],

reputation-based trust establishment [250], and authentication mechanisms [93]. Other proposals

have been made in [44, 297, 298], which aim to protect outsourced date. Despite security and

privacy issues, these mechanisms induce delay due to authentication and cypher execution.

• Scalability: Scalability refers to unbounded resources purchased in several quantities at any time.

It ensures service provisioning regardless of the number of mobile devices, VMs allocating the

necessary computing resources, and VM migration services being performed for load balancing [14,

238]. Some frameworks, such as CloneCloud [51], Cloudlet [249], Kumar and Lu [151], and

Misco [67], are deficient frameworks in terms of a centralized management of the distributed

platform. The unavailability of centralized resources is a challenging research issue for ad-hoc

and Cloudlets-based systems [114, 170]. Some other frameworks have addressed the scalability

issue. DISC [9] have been proposed to achieve elasticity for data-intensive service computing.

Rai et al. [236] proposed a resource allocation scheme by mapping Cloud resources to a single

multidimensional resource vector. Zeta [104] is a scheduling algorithm that improves the response

quality to meet QoS with few resources. CloudScale [258] is another framework designed to

manage resource elasticity and scalability.

• Consolidation: Resource consolidation consists of using virtualization technology to instantiate

multiple VMs. The VMs are dynamically mapped onto a pool of physical resources and concur-

rently sharing the server resources through the hypervisor. Consolidation improves the utilization

of server resources and reduces energy consumption [105]. Consolidation depends highly on the

resource variability of mobile applications. Maximizing resource utilization between a maximum

number of customers without breaking the users’ SLA is challenging. The Cloud provider should

define a trade-off between high consolidation and high performance. He should face with the

resource demand variability for a single customer and between multiple customers to handle

resource peak utilization. In other words, the Cloud provider should design a system to make

server consolidation more efficient and less risky.

• Heterogeneity: Numerous infrastructure providers expose various services (IaaS, PaaS, and SaaS),

making infrastructure heterogeneous. Interoperability and portability are two prominent challenges

caused by the heterogeneity of Cloud infrastructures [107]. Cloud business competition is the main
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cause of this diversity [69]. A variety of hardware with different architectures between ad-hoc

systems, Cloudlets, MEC, Fog, and the Cloud causes the heterogeneity issue for computation

offloading, especially when relying on hybrid infrastructures. Connecting heterogeneous systems

(i.e., interoperability) is challenging due to the absence of interfaces and standards between

infrastructures. In addition, code portability is not an easy task.

3.7 Computation Offloading Taxonomy: From the Framework Perspective

In what follows, we describe state-of-the-art computation offloading from frameworks point of view.

The taxonomy proposes seven axis. The first one (Section 3.7.1) is related to code annotation, in which

we describe how to annotate the programs of applications to distinguish the anchored from movable

code. In Section 3.7.2, we locate the offloading framework either on the mobile device or on the server.

Section 3.7.3 distinguishes whether data are present on the mobile device, on the server or saved in

a third-party device. Time-scale offloading types and the generic steps considered in computation

offloading are reminded, respectively, in Sections 3.7.4 and 3.7.5. The granularity of offloading is

considered in Section 3.7.6. Finally, the framework nature is described in Section 3.7.7. Figure 3.9

depicts these different axes.

Computation Offloading Taxonomy: from Framework Perspective
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Figure 3.9: Frameworks-based computation offloading taxonomy

3.7.1 Code Annotation

Most applications are designed in two separate sections:

• The desired functionality section, which expresses the main job of the application in a procedural

manner. Only this section can be offloaded.

• The deployment feasibility section, which extends the main section with useful code to manage, for

example, parallelism and concurrency, and, especially, to interact with the device and mobile user.
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The deployment feasibility section cannot be offloaded due to the dependency constraint (see Sec-

tion 3.4.4). This section of code is annotated before partitioning to add the dependency constraint to the

model and limit the search for all of the decision-making possibilities. The annotation is done by adding

metadata to the source code. We cite two methods: (i) manual annotation, which is done at the time of

design by a developer who expends considerable time and efforts annotating the code by examining the

scope of his application components [17, 48, 59, 95, 118, 205, 230, 269, 277, 286, 291]; and (ii) automatic

annotation, in which a profiler performs a deep profiling of the application to create a graph dependency,

which is used to identify relevant information about the possibility of offloading [50,89,92,142,265,311].

3.7.2 Framework Location

Two possible locations for the offloading frameworks are identified from the computation offloading

taxonomy. Offloading frameworks are designed with functionalities that perform the offloading steps.

• Mobile device. The offloading framework is located on the mobile device, which reduces network

communications between the mobile device and server. However, it induces resource consumption

(CPU, battery, and memory) on the mobile device. Several studies have been conducted with the

offloading frameworks located on mobile devices [18, 81, 221].

• Remote server. The offloading framework is distributed between the mobile device and one or more

remote servers. Modules on the mobile device may include profiling, monitoring, and a proxy;

while modules on the server may include modelling, partitioning, and scheduling27. Despite, the

optimization of resource consumption on the mobile device, this solution induces high network

communications to periodically send profiling and monitoring information, which may increase

the execution time [21, 59].

We compare the two solutions in Table 3.5. We highlight the advantages versus disadvantages of

each solution.

Table 3.5: Comparison between the framework locations

Location Advantage Disadvantage

Mobile
device

✓ Saves bandwidth by keeping the profiling data locally,
✓ Accepts mobility,
✓ Hosts all modules locally, hence no consistency issue.

✗ Involves local resources consumption,
✗ Needs a long time to make a decision.

Remote
server

✓ Saves local computing resources,
✓ Saves energy as decision making is done by the server,
✓ Reduces memory occupation through profiling transfer.

✗ Updates data on server frequently to make the best decision according to changes,
✗ Increases energy consumption due to high network communications,
✗ Restrains mobility, as modelling and partitioning modules should be pre-installed,
✗ Increases execution time due to network latency induced by the profiling transfer,
✗ Makes incorrect decisions as this latter is delayed due to the profile transfer.

27Some frameworks include scheduling module to reorder task execution according to the call graph and execution deadlines
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3.7.3 Data Availability

Data may represent inputs and outputs, profiling and monitoring statistics, and code sources.

• Inputs and outputs. Inputs are entry parameters needed to execute a program; while the outputs are

the results obtained from program execution. In a call graph, the outputs of a vertex (e.g., method

or class) are the inputs of the successor vertex.

• Profiling and monitoring data. This is gathered information about the execution of an application,

which includes CPU execution time, energy consumption, and execution call graph.

• Source code. This represents a program’s code in the form of files in which the functionalities of

the program are described using a programming language, such as Java, C #, and C ++.

In state-of-the-art computation offloading, we distinguish three locations for data.

1. Mobile device. Data are located on the mobile device [18, 216, 221]. According to the location of

the offloading framework and the identified partitions, data might need to be transferred to the

server. Considering the partitions, if we suppose we have two tasks A and B , where the B inputs

are the A outputs, and A/B represents the local/remote partition, then both the B source code and

A outputs are transferred to the server.

2. Remote server. Data are present on the server. That is, tasks A and B are pre-installed on the server

(i.e., A and B constitute the remote partition) and profiling and monitoring is done on the server

using estimations.

3. Third-party device A third-party device could be a device located between the mobile device and

remote server [275] acting as a dedicated cache or a server on the Internet. The aim is to save

information, such as results of execution, profiling history, and application packages, for future

use.

Table 3.6 presents a comparison between these three localities.

3.7.4 Offloading Type

According to the moment at which the profiling, modelling, and partitioning steps are taken, we

distinguish three types of offloading, namely, static, dynamic, and semi-dynamic (or hybrid) offloading.

The reader should refer to Section 2.2.2 for details about these types of offloading.

3.7.5 Offloading Steps

As stated in Section 2.2, computation offloading follows four main steps, namely, profiling, modelling,

partitioning, and communication. At the communication step, the server is supposed to be known by

the mobile device. According to the literature, we distinguish two approaches for the servers discovery;

manual and automatic. In the manual approach, the mobile device already knows the server, for example,
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Table 3.6: Comparison of data availability location

Approach Advantage Disadvantage

On Mobile
device

✓ It keeps monitoring information,
✓ Does not consume bandwidth for profiling transfer.

✗ Induces a local overhead due to the profile step,
✗ Needs additional resource consumption,
✗ Needs to transfer code and inputs to server,
✗ Consumes bandwidth and increases the execution time.

On remote server
✓ Does not need profiling on mobile device,
✓ Does not waste resources for profiling,
✓ No latency or transfer for remote code.

✗ May make an incorrect decision as profiling is based on predictions,
✗ Does not support user mobility due to the pre-installation of tasks.

On third-party
machine

✓ Keeps history of different executions,
✓ Does not waste resources,
✓ Supports user mobility,

✗ Creates data consistency issues between the three entities,
✗ Forwards date to the server,
✗ Consumes bandwidth to save data and to forward them to the server,
✗ Induces network latency due to data forwarding,
✗ Security issues:
�Attacker can eavesdrop on the network,
�Attacker can change the data state.

a trusted Cloudlet with a static IP address. In this case, communications are manually established.

While in the automatic approach, the mobile device seamlessly discovers available servers using

discovery mechanisms such as Jini [13], Universal Plug and Play (UPnP) [195], or Service Location

Protocol (SLP) [282]. If the offloading framework supports collaborative offloading, then servers should

discover each other. The discovery step should be fast, especially in a high mobility environment.

The authors in [94] used the concept of master and slave. The master is the mobile device; while the

server represents the slave. The slave runs a JVM to host any offloaded computation. When the mobile

device decides to offload a computation, it initiates a discovery protocol to find nearby idle servers, which

use a wireless broadcast discovery message, that can be adapted to UPnP or Jini. The GnJ framework [93]

defines a service discovery server used by surrogates to register themselves via Extensible Markup

Language (XML) descriptions. Mobile devices discover the surrogates by querying the service discovery

server using XML requests. The service discovery server searches for the surrogates that match the

mobile device request. The authors in [288] propose a middleware with an hybrid approach that offloads

computations or adapts the application configuration to match it with the capabilities of the mobile

device. The middleware is built on the OSGI service platform, which includes various modules, one of

which is the java Service Location Protocol (jSLP). jSLP is a lightweight Java implementation of the

SLP defined in RFC 260828 for resource discovery.

We propose to compare four well-known service discovery mechanisms in Table 3.7

3.7.6 Offloading Granularity

The granularity of offloading is the degree to which an application is partitioned. Current frameworks

implement two granularity levels: fine-grained and coarse-grained. Figure 3.10, depicts the two gran-

ularity levels. The purpose of granularity is to deal with the security, consistency, performance, and

28https://tools.ietf.org/html/rfc2608
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Table 3.7: Comparison of service discovery mechanisms

Mechanism Description Advantages versus Disadvantages
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Location Pro-

tocol [282]

An IETF protocol, centralized and proactive. It includes a
mobile agent (a centralized service repository), which is
used by a service agent and a user agent, respectively, to
register and locate required services.

✓ Fast search,
✓ Discovering services on a various range of networks,
✓ Supports a large number of nodes,
✓ Uses caching, authentication, and scoping.

✗ Centralized,
✗ Has a single point of failure,
✗ Vulneriable to DoS attacks.

Fi
xe

d

Y
es N
o

C
en

tr
al

iz
ed

Jini [13]

It is an open-source Java program. It uses a similar strat-
egy to SLP, but has additional functionality. Services
register their attributes with at least one lookup service.
The service is contacted later by the Jini client. The look-
up service store both service information and the proxy
responsible for code execution, locally or remotely.

✓ Services are recognized automatically,
✓ Services are available to everyone,
✓ Supports a flexible network,
✓ An open-source program,

✗ May incur large overheads,
✗ Needs a reliable, stream-oriented transport protocol (e.g.,
TCP), and multicast support.
✗ Not attractive in a wireless ubiquitous environment,
✗ Vulnerable due to the single point of contact.
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IBM’s
Salutation

Protocol [57]

An open standard providing a service discovery protocol and session
management protocol. The centralized repository is called a salu-
tation manager. It was primarily designed for home and enterprise
environments. Devices, services, and applications advertise their
capabilities, and discover and access each other.

✓ Support only password-based authentication,
✓ It implements two interfaces for applications and the transport
layer,
✓ Flexible, uses various underlying transport protocols,
✓ It maps on Bluetooth service discovery,
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Universal Plug
and Play [195]

Developed by Microsoft and the UPnP Forum. It defines a set of
protocols allowing various types of devices to connect seamlessly
to the network. Built upon the standard IP, it is a distributed query-
based model

✓ Decentralized,
✓ Robust against communication errors,
✓ Provide security mechanisms.

✗ Burden the bandwidth-constrained wireless links in ubiquitous
environments,
✗ Cannot scale well due use of multicasting,
✗ It does not support attribute-based querying for services.
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complexity issues summarized in Table 3.8.

Granularity level

Coarse-grain

Fine-grain

VM

Application

Module

Bundle

Process

Thread

Bloc

Method

Class

Object

Weblet

Figure 3.10: Taxonomy around migration patterns

1. Fine-granularity includes: thread/process [50, 205], bloc (loop) [92, 290, 291], method [59],

class [95, 217], object [209, 277, 296], and weblet granularity [322].

2. Coarse-granularity includes: VM [175, 250, 259], application [77, 304], module [17, 48, 230, 269,

311], and bundle granularity [89, 91, 142]
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Table 3.8: Granularity advantages versus disadvantages

Strategy Advantage versus Disadvantages

Fine-grained

✓ Saves energy compared to coarse-grain because only the parts that benefit from remote executions are offloaded,
✓ Increases flexibility since more opportunities are created to locate functionality on remote servers,
✓ Supports high mobility,
✓ Increases security as a thread or method has less meaning to attackers than modules or entire applications.

✗ Intensive monitoring at runtime due to the large number of application components to cover,
✗ Resource intensive synchronization mechanism,
✗ Must ensure consistency between mobile device and server,
✗ Increases the resolution overhead due to the large representation of the application,
✗ Programmer greatly involved in annotating the source code for their applications.

Coarse-grained

✓ Simple offloading mechanism, as it reduces programmer responsibility,
✓ Requires low monitoring overhead as the application is represented as a whole or with only a few components,
✓ Less resources are used (memory, CPU, and energy) in the profiling, modelling, and partitioning steps,
✓ Reduces the resolution overhead as the application is represented with a small model.

✗ Increases data transmission, as large classes cause large migration and remote invocation overhead,
✗ Not suitable for mobility; larger tasks increase the probability of task completion failure due to server disconnection,
✗ Increase the vulnerability to network threats,
✗ Not suitable for resource-constrained environments, such as edge computing.

3.7.7 Framework Nature

This section focuses on the models used to describe the partitioning optimization problem. We classify

the state-of-the-art models into three axes. In the first, VM migration is adopted to offload computation;

the second axis considers application migration in order to save bandwidth and latency induced by VM

migration; the third and last axis describes works that effectively spread applications into a client-server

model. While the first two approaches are proposing to migrate the application as a whole, without

profiling or partitioning, in the third approach, the application is partitioned into local and remote

partitions. Figure 3.11 portrays these different axes with a focus on the partitioning models.

3.7.7.1 VM Migration

The application is hosted on a VM, which is migrated to a remote server for computation. On the server,

a VMM reserves a pool of resources for the migrated VM, which is then resumed. When the application

execution finishes, the VM is migrated back to the mobile device (mostly laptops). VM migration uses

two approaches:

• Cold migration. The VM is stopped during the migration step when the entire VM is migrated

to the server. The VMM will then resume the VM and run the application. The downtime29 is

proportional to the VM size; larger the VM size, the longer the downtime is. Cold migration is used

for application running on background, such as virus scanning, indexing files for fast searches,

and analysing photos.

29Is the period of time during which the VM is not accessible.
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Figure 3.11: Taxonomy around framework nature (modelling and partitioning algorithms)

• Live migration or hot migration. This minimizes downtime by ensuring execution continuity

of services and applications during the migration step. The state of the VM on the server is

progressively updated during migration. Live migration is carried on various network protocols,

such as the Locator Identifier Separation Protocol (LISP) [232] and IP mobility [299].

To ensure a good QoE, we should consider the case of user mobility in VM migration. Follow me Cloud

(FMC) is a recent approach employing live migration [149] which manages VM mobility to optimal

location, according to user location. Various VM migration-based frameworks been proposed [139, 175,

184, 248, 250, 259].

3.7.7.2 Entire Application Migration

Entire application migration consists on offloading the entire processing job of the running application

to remote servers. In the beginning, the application is running on the mobile device. In critical condition,

including, battery draining, insufficient memory, and/or approaching processing deadlines, the running

instance of the application is offloaded to a remote server [170]. We distinguished two approaches in the

literature:

• CDF: The authors in [304] have proposed to use the timeout approach [145] to reduce energy

consumption on mobile devices. The application is initially executed on the mobile device with a

timeout (set to the minimum computation time that can be benefit from offloading). If the compu-

tation is not completed by the timeout, then it is offloaded. The timeout is called the break-even

time. To compute the timeout, the authors proceeded as follows: first, they formulated the energy
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consumption on the mobile device for offloading the application using the following equation:

PaTc = Pt x
Di n

Rt x
+Pr x

Dout

Rr x
+Pl

Tc

α +Pn
Tc

α , where Pa /Pl , Pt x /Pr x , and Pn represent, respectively, the

active/idle power of processor, the transmission/reception power, and the idle power of the network

interface. Tc /Ts is the execution time on the client/server. Di n/Dout is the inputs/outputs size.

Finally, Rt x /Rr x represent the transmission/reception speed, and α is the server speed. The authors

have then solved the above equation for Tc to obtain the break-even time Tbe : Tbe =
Pt x

Di n
Rt x

+Pr x
Dout
Rr x

Pa−
Pl
α
−

Pn
α

.

The authors have stated that the statistical distribution of the execution time is stable and changes

slowly. Therefore, they proposed to use a discrete cumulative distributed function (CDF) of the

execution time for the past execution instances. The authors have divided the range of execution

times between zero and the worst-case execution time, into n equal intervals ti , i = 0,1, ...,n. The

discrete CDF is denoted with ψ. The probability of consuming the i th interval is: 1−ψ(i −1).

To minimize the total energy used by the client, the authors have formulated the problem via

Equation 3.24. Here, δi represents the interval length, and x denotes the number of intervals for

the optimal time-out. x is an integer variable in the set {0,1, ...,n}. To find x, and, therefore, the

optimal time-out, the authors have calculated the energy consumption for all the values from 0 to

n using Equation 3.24. The x value that results in the least energy consumption is then the optimal

time-out.
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• Linear Regression: The authors in [77] proposed to use linear regression to dynamically and

seamlessly adapt to the varying execution times through computation offloading. Their approach

consists of continually monitoring the execution time tcor e of an application, then calculating a

linear regression to predict the evolution of tcor e based on the history of executions. The authors

have defined a well-known value, the cycle period, tp . For instance, in game engines, the value

of tp is equal to 33.3ms to generate 30 frames per second (fps), which is a satisfying value for

gamers. Therefore, if tp cannot be achieved in the future, then the computation offloading of

the application is triggered in advance. In addition, when computation offloading is no longer

advantageous, the application execution again takes place on the mobile device. The decision to

offload the application is taken when Inequality 3.25 is true.
�
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�

× tp ≤

�
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�
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where txM axC ap is the estimated time at which the tcor e will exceed the maximum reserved CPU ca-

pacity tM axC ap per cycle period tp . This time represents the intersection between the regression lin-

ear line and the horizontal tM axC ap line. txM axC ap is computed as follows: txM axC ap =
tM axC ap−b

m
,

where m and b are the parameters defining the linear regression line t �cor e = mt +b, m is computed
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is the number of past executions. The other value that is required to find when to start offloading

is tmob , which is the elapsed time between when the offloading decision is taken and when the

application is ready for execution on the remote surrogate.

3.7.7.3 Application Partitioning

The application is represented by a theoretic model, such as graph theory. Then the model is solved

using either well-known algorithms or heuristics. The model is solved to satisfy an objective function.

Various solutions have been proposed to represent and partition an application. For the sake of accuracy,

exact methods have been used to find the optimal partition, we can name graph models with partitioning

algorithms, such as Ford Fulkerson, Stoer Wagner, and Kuris et al., are applied to find the minimum

cut, and the 0-1 ILP. However, the graph and ILP resolution may take a long time, which drastically

increases with the size of the model. To cope with this, heuristics have been proposed: Branch & Bound,

Gready, and genetic algorithms, to name a few. In recent years, application modelling has shifted to

game theory, MDP models, Queuing theory, and machine learning representation. In this following

section, we describe these different approaches.

i. Exact Methods.

• Linear Programming (LP): LP, also called linear optimization, is a mathematical representation of

a given problem aiming at minimizing or maximizing one or more metrics, which are represented

in a linear equation. Formally, an LP is a methodology that searches for an optimal solution of a

mathematical problem using a linear objective function, subject to linear equality and inequality

constraints. The main benefit of LP is that it always finds the optimal solution, when it exists.

However, solving LP problems may take a long time, which increases with the problem size [207].

In the context of computation offloading, LP formulates applications into a mathematical opti-

mization problem, where, for example the objective function is to optimize energy consumption or

improve performance. Some or all the variables are restricted to be integers. Three variants of LPs

have been implemented for computation offloading namely: ILP, 0-1LP, and Mixed Integer Linear

Programing [95, 142, 144, 217, 285, 287, 312, 322].

• Graph: An application is a collection of interacting processing components. When a component

calls another one, the two components interact. In a typical client-server model, the client and

server components belong to the same distributed application. The client components are computed

locally on the client, and the server components run remotely on the server. Formally, we define

A as an entire set of application components and, Ps (Pd , respectively) is the remote (local,

respectively) partition. Ps and Pd should satisfy the two constraints: Ps ∪Pd = A, and Ps ∩Pd =∅.

The first constraint stipulates that each component of the application is executed either on the client

or on the server, while the second property points out that each component is executed at only one

location. The application partitioning problem is equivalent to the graph partitioning problem. An
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application can be represented with an oriented graph G = (V ,E), where V is the set of n vertices

(n = car d(V )30), and E is the set of edges connecting these vertices. The vertices represent

the software components of the application, and the edges represent the interactions between

components. We associate costs 〈w1, w2, . . . , wk〉 (k ∈N∗) with each vertex v ∈V that represent the

parameter or context of the component (usually execution time or energy consumption). An edge

ei j ∈ E is associated with the frequency of invocation and data access between the two vertices vi

and v j . The granularity level chosen to represent an application impacts highly the graph size and

its complexity.

The decision on where to place a component, on the server or on the mobile device, depends

highly on the objective function. This optimization problem is equivalent to finding a minimum

cut for the corresponding graph. A minimum cut of a graph is a partition of the graph vertices

into two disjoint subsets that are joined by at least one edge. The cut is minimal in the sense of

considering the values affected to the graph. Several past studies have used graph partitioning to

make offloading decision, we cite [5, 6, 90, 91, 95, 209, 217, 223, 269, 286, 291].

• Hybrid: Some frameworks incorporate the combined features of the graph-based and LP-based

application partitioning algorithms (APAs). They tend to extract the important features of graph-

based and LP-based APAs to improve application performance. The first step is to represent the

application using a graph, then an ILP is drawn, based on the graph representation. Some studies

have been done using the hybrid approach, these include [50, 59, 92, 205, 266, 312].

ii. Heuristics.

• Genetic Algorithms (GA): The GA is an heuristic that belongs to the class of evolutionary algo-

rithms. It is a population-based method, inspired by the process of natural selection, which aims to

evolve toward a global optimized solution from a population of solutions [61]. Each candidate

solution corresponds to a chromosome, which can be mutated and altered, in the population of

genes. A typical genetic algorithm requires: (i) a genetic representation of the solution, i.e, encod-

ing; and (ii) a fitness function to evaluate the solution domain. A random solution is chosen by the

algorithm, then improved through a repetitive application of selection, crossover, and mutation.

In the initialization phase, a set of parameters should be defined, namely, the population size

N , the maximum iteration number I , the mutation probability pm , and the crossover probability

pc . In the selection phase, chromosomes are selected to recombine in order to generate the next

population via crossover and mutation. In the crossover operation, two parent chromosomes which

will generate a high-quality offspring (chromosomes) are combined. The mutation phase softly

modifies the chromosomes to improve their fitness and avoid early convergence.

In a computation offloading optimization-based problem, a population represents the offloading

strategy encoded as a vector of n integers 〈x1, x2, ..., xn〉, where n is the total number of components
30car d(V ) for cardinal, is the total number of elements in the set V .
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in the application. Shuiguang et al. [64] have used GA to solve the offloading optimization problem.

They used the objective function F (m) = wm×L(r t F
s )+(1−wm)×(

�

l vEl +
�

c E F
c ) to calculate the

fitness value of each chromosome. m represents a given mobile device; wm is a weight coefficient

set according to the status of the mobile device; L(r t F
s ) is the overall, final execution time for

processing a mobile service on both the mobile device and the Cloud; El is the energy consumption

of a locally executed service; and E F
c represents the final energy consumption of the service c.

At the initialization, each chromosome X i = (xi
1

, xi
2

, ..., xi
d

) is a population i ∈ {1,2, ..., N }; d is the

number of services in the mobile service workflow; xi
j

indicates whether the j th service in the

generation X i should be offloaded (i.e., xi
j
= 1) or computed locally (i.e., xi

j
= 0). The probability

to select a chromosome for recombination is related to its fitness value Fi , which is given by

pr s
i
= 1−

Fi
�S

j=1
F j

. In the crossover operation, the selection of the parents, which generate the

offspring is based on the selection probability pr s
i
. To this aim, the authors first, compare the local

fitness of each gene by calculating a weighted factor fi = wm × r t F
i
+ (1−wm)×E F

i
, where r t F

i

and E F
i

represent, respectively, the final execution time and energy consumption of a service i

computed considering the mobility and fault-tolerance. Once the fitness of each gene is calculated,

the genes with the best local fitness are chosen and copied to the offspring. In the mutation phase,

the gene selection probability is pr m
g = 1−

fg
�d

j=1
f j

.

• Queuing Theory: This is a branch of mathematics that studies and models the act of waiting in

lines.The queuing theory is characterized by a set of parameters, namely: (i) the arrival process of

customers, which are assumed to be independent and have a common distribution; (ii) the service

times, which are independent and identically distributed; (iii) the service discipline, in which

customers can be served using the First In First Out (FIFO) model, random order, or with priorities;

(iv) the server capacity, which is the number of servers computing in parallel; and (v) the waiting

room, which is the queue capacity. Kendall has introduced a notation, under the form a/b/c,

characterizing the range of these queuing models. Here, a specifies the arrival time distribution,

b is the service time distribution, and c is the server capacity. For instance, models M/M/1,

M/M/S, M/G/1, G/M/1, M/D/1, and M/M/1/N have been used in various scenarios. M/G/D

represent the exponential/general/deterministic distribution, while S/N describes the server/queue

capacity. Rong et al. [240] proposed to use queuing theory, combined with a Markovian Decision

Process (MDP), to extend the lifetime of battery-powered mobile devices through computation

offloading. The proposed framework is composed of three components; the client (mobile device),

the server (base station), and the wireless channel. The authors have modelled the client as a

Continuous-Time Markov Decision Process and proposed an interaction model for the client and

remote server. The wireless channel has been modelled with a Markov chain using two states, in

which each state is assigned a constant Packet Error Rate PER. The server is an infinite M/M/1

queue. The authors have defined two policies to make the optimal decision, the main difference is

whether or not to consider the wireless channel and server stable. These policies are the offline
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optimal policy, which is based on the joint stochastic model using LP, and the online optimal

policy, in which an M ×N matrix is constructed, where each entry (i , j ) corresponds to an offline

optimal solution obtained for given values of PERi and Pr e j ect , j (probability of rejection).

• Markov Decision Process (MDP): The MDP is a mathematical model of a problem in which

decision making occurs in situations where the outcomes are partly random and partly under

the control of the user. MDP is comprised of a decision agent, which checks the current state s

and repeatedly makes a decision to perform an action a with a probability P . This transits it to

another state s� and generates a reward r . An MDP is defined by the fourfold 〈S, A, R, P〉, where

S defines all the possible states of the system which are known to the decision-maker (user),

A encloses all the possible actions that can be taken by the decision-maker, R represents the

reward for taking an action a in the state s, and finally, P represents the transition probability.

The aim behind using MDP is to find the optimal action to take for all possible combinations.

Nasseri et al. [203] have proposed an MDP-based approach combined with look-up tables for

collaborative processing in an ad-hoc network. The authors have used the notion of reward

and credit between the helpers and requester. Each mobile device is classified into a matrix

according to its energy potential. A helper can accept or reject a request according to a calculated

reward. The authors have used an MDP algorithm to calculate rewards. In the calculation of the

reward, two parameters are considered, power and delay. The power reward function is given

by: fp (s, a) =
1

1+e
p
a
, where pa denotes the power consumption of the current state for a given

action a taken at a time t . Similarly, the delay reward function is expressed by: fd (s, a) =
1

1+ed
a
,

where da is the response time. The sum of the delay and energy reward functions with a weight

factor is given by: f (s, a) = wp × fp (s, a)+wd × fd (s, a). Therefore, the total reward function is

r (s, a) = f (s, a)−h(s, a), where h(s, a) is the transition cost function.

• Game Theory: Game theory [194] studies mathematical models of conflict/cooperation between

players, which are competing to use a set of resources. Each player chooses a set of resources

to maximize/minimize his utility or cost. The cost and utility depend on the number of players

in competition. a congested game is defined by a set of parameters 〈N ,R,
�

i ,n j ,Si j 〉, where

N = {1, ..., N } is a finite set of n players; R = 1, ..r is a finite set of resources;
�

i is the player i ’s

set of strategies; n j is the number of players who chose the strategy j ; and finaly, Si j is the cost

function for player i when selecting resource j . Algorithms are defined to search for the Nash

equilibrium, which is the optimal policy where no player can benefit by changing strategy while

the other players keep their strategies unchanged. Ge et al. [86] used game theory to optimize the

overall energy consumption in the MCC system. The energy optimization problem was formulated

as a congestion problem between various players (mobile devices). Each player’s strategy was to

select the server minimizing overall energy consumption. The authors have shown that a Nash

equilibrium always exists. Other studies include [34, 42].

• Machine Learning: Machine learning explores the study and construction of algorithms that can
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learn from and make predictions on data. Machine learning appears in many guises, including web

page ranking (Google engine), collaborative filtering (Amazone, Netflix), and automatic translation

of documents. Machine learning appears in several forms, including; supervised/unsupervised,

active/passive, helpfulness of the teacher, and online/batch learning. MALMOS [71] is a machine-

learning-based mobile offloading scheduler, which makes a decision to offload a computation or

not. MALMOS provides an online training mechanism to dynamically adapt decision making

based on previous decisions. Other studies using machine learning to make offloading decisions

have been proposed in the literature, we cite [16, 72, 83, 261].

3.8 Conclusion

A comprehensive survey of computation offloading in the literature, along with classifications, has

been presented in this chapter. For each actor impacting the performance of computation offloading,

we proposed a survey that is in line with computation offloading. A comparison between approaches

has been provided. A review and comparison between the frequently used offloading frameworks in

state-of-the-art computation offloading was also described in this chapter using different points of view.

Although several works have been proposed to remedy the problem of resource poverty and scarcity

in mobile devices, a great effort is still required to accommodate applications, such as 3D-gaming,

VR, and AR on current mobile devices. Indeed, these types of applications are of special interest, due

to their real-time constraints, high resource demands, and complexity. Most of the old frameworks

reviewed in this manuscript are obsolete, and they cannot manage such constraints. In the next chapter,

we propose to dissect one of the most complex applications on the market, game engines, which is also

a computationally intensive, resource demanding, and real-time interacting application.
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PERFORMANCE ANALYSIS OF GAME ENGINES ON MOBILE AND FIXED DEVICES

4.1 Introduction

Game engines, like Unity 3D [1], are well-established tools to generate interactive, fully-multimedia

environments that range from games to serious health applications. Game engines are complex software,

which consume a lot of resources (including CPU, GPU, energy, and memory) to meet the demand of

gamers. Indeed, the QoE depends on the interactivity and on the multimedia quality. Therefore, game

developers design their best-seller games so that the game engine exploits the dedicated hardware that is

typically present in “boxes" (e.g. Xbox, PS4), however resource-limited devices such as mobile devices

(smartphone and tablet) cannot run these games, or at a much lower quality. Game engine developers are

looking for solutions to address this issue and to embrace the mobile market, which represents billions

of dollars of revenues.

To get rid of the limitations of end-user devices, one of the envisioned solutions is to leverage Cloud

computing infrastructure. Developers of games have three options: Computation offloading, Cloud

gaming, and Client-server architecture. Whilst the third approach (client/server) is widely implemented

and mastered (research work mostly addresses network management [76, 234, 276]), the two first

approaches need more investigations regarding the software aspect of the game engines. Computation

offloading requires low latency communication with the remote servers, which might be solved using

MEC [47, 126] and Fog Computing [22, 157]. However, deciding which module or function should

be offloaded remains an open issue. The latency issues of Cloud gaming have also been frequently

studied [56,121,233,243]. But, the management of virtualized resources (known as server consolidation)

to prevent performance degradation and resource congestion has been rarely addressed [108, 325].

To identify the best implementation option, developers should take into account the nature of the

game and the considered platform. However, the body of literature related to performance evaluation for
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game engines is surprisingly small with regard to the significance of the gaming industries. In this regard,

we may mention two position papers that called for research on game engine architecture [10, 281], and

some other work that focused on applying game engines to specific areas such as serious games [58],

research [163], and VR serious applications [58, 141, 185]. The literature is missing work on the

architecture and the performance analysis of modern engines. To fill this gap, we analyze in this chapter

the performance of a well-known engine, Unity 3D.

4.2 Background: Game Engines

Game engine can be defined either as a framework for game creators or as a piece of code for gamers.

Accordingly, two definitions arise:

• The game engine is the set of tools (i.e., including low-level libraries, UI editors, and game

multimedia management tools) that facilitate the work of a game developer in the process of

creating a new game. The community of game developers considers thus a game engine as a

framework or a platform. The framework provides an abstraction layer between the game content

(i.e., multimedia content and main scripts) and the underlying hardware.

• The game engine is the set of software and data that runs on a device to provide the game to

an end-user. The community of gamers considers a game engine as a piece of code. The border

between the game and its framework is often confused. Some frameworks offer a clear separation,

while others do not. All games created by Unity 3D share similarities, making them consistent

Unity 3D game engines. We focus in this chapter on typical Unity 3D software, which we refer to

as a game engine.

The delay for the result of an action to appear in the screen is central in gaming since the QoE is

linked to interactivity [121]. We distinguish different genres of games with different requirement. An

action game can be a First Person Shooter (FPS) or a Third Person Shooter (TPS) depending on whether

the player is immersed in the scene or the avatar representing the player is visible. Studies [55, 160, 229]

have shown that the acceptable delay depends on the game genre and varies from 100 to 200 ms, and

even up to 500 ms for Role-Playing Game (RPG) and Massively Multi-player Online Games (MMOG).

Given their specific constraints regarding short delays, the management of FPS has received scientific

efforts [12, 165]. In this chapter, we tested several game genres and considered these requirements.

Another key criteria for high QoE is the frame rate. Gamers get the feeling of immersion in an

animated world when the game engine generates a high number of Frames Per Second (fps). Less than

30 fps is widely seen as non-tolerable [54] and the recent trends in video and interactive multimedia is to

deliver frame rate up to 90 fps [201]. The rendering pipeline (see Section 4.2.3) is the part of the game

engine that generates one frame every x ms (x ranges from 33 to 10). A large part of our measurement

study is on the time needed to generate one frame.
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4.2.1 Game Architectures

We focus now on the game architectures. Figure 4.1 depicts the characteristics of the discussed architec-

tures by indicating the location of the various modules of the game engine and the used mechanisms to

communicate and exchange data or commands.
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Figure 4.1: Comparison of gaming architectures

Traditional client-server. The game engine runs almost entirely on the client side and the server assists

the game engine, either as a secured session manager or as a multi-player gaming enabler. When the

server is a session manager, it manages authentication, updates game assets (for example new levels and

new graphical environments) and matchs fighting players [289]. As a multi-player gaming enabler, the

server takes a stronger role: (i) it gets all the gamer input commands and forwards them to the other

players, (ii) it implements anti-cheaters policy and acts as referee [306], and (iii) it manages Non-Player

Character (NPC). Several architectures exist to deal with scalability. (1) client-server architecture with a

single server [268], (2) mirrored client-server [206,300,301], and (3) peer-to-peer architecture [30,307].

Cloud gaming. The entire game engine runs in a remote server. The client includes only UI command

and a video decoder. This architecture is similar as an interactive video delivery system. The player sends

the commands to the server. The engine first converts the client commands into appropriate in-game

actions, then computes the game logic, and renders the game scene. This scene is then compressed by a

video encoder and forwarded to a video streaming module, which finally streams it to the client. The

client decodes the video and displays the frames [49, 111, 174].

Cloud gaming solution relies on the concept of resource consolidation, which consists of using

the virtualization technology: each game engine is encapsulated within a virtual machine (or a con-

tainer) and dynamically mapped onto a pool of physical resources including CPU, GPU, memory, and

Inputs/Outputs (I/O). Hence, these game engines concurrently share the server resources through the

hypervisor. Studies have shown that virtualization techniques barely degrade the performance compared

to a configuration where the game engine is the only program running in a bare-metal [256].

Two main challenges arise with the Cloud gaming architecture: the delay and the resource use. In

comparison to the delay issue in the traditional client-server architecture, Cloud gaming adds extra-delay

due to video encoding and decoding. Despite various proposals [171, 254], both processes take around
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30 ms [257]. With respect to the network communication delays (around 50 ms in average [46]), the

overall delay is close to the threshold at which QoE is reported to degrade [56, 121]. Regarding resource

use, the Cloud Gaming Providers (CGPs) have to find a trade-off. The smaller is the number of games

concurrently running on a server, the higher can be the quality setting, but the higher are also the cost.

Moreover, the CGPs have to reserve some free spare resources in servers, otherwise some games may

interrupt due to concurrent workload peaks. One of our motivations is to get a better understanding of the

load variability and the internal modular structure of the game engine so as to make server consolidation

more efficient and less risky.

Computation offloading. A subset of the game engine modules run on nearby server(s) [7, 133, 251].

Depending on specific criteria, including network bandwidth, latency, and processing time, the engine is

spread into client and server partitions. The server hosts the modules that improve the responsiveness

of the game, and the client hosts the remaining modules, typically those interacting with the device

components or with the gamer (like UI). The two sides exchange data during the execution. Whenever

needed, the server can call a module, or download it using mechanisms such as RPC, RMI, SOA, and

MA. The partitioning requires profiling the whole game.

The computation offloading solution presents two constraints. First, as in Cloud gaming, computation

offloading requires low latency. Second, the game engines should tolerate module partitioning. One

of the advantages is that module partitioning allows a better exploitation of resources, especially by

distinguishing the cutting-edge modules that require specific GPU hardware from the standard ones

that can accommodate any CPU configuration. Remote graphic rendering is not a new topic [115], but

none of the existing solutions match the expectations for fast rendering high-definition, complex, 3D

images. Moreover, to the best of our knowledge, no previous work has addressed the case of offloading

non-graphic components of a game engine, like physics module, audio, and object behaviour scripts.

One of our motivations is to explore offloading different non-graphic components of a game engine.

4.2.2 Game Engine Main Modules

A game engine consists of various modules depending on the game genre. An engine designed for a two-

person fighting game is different from an FPS engine, an MMOG engine, a Real-Time Strategy (RTS)

engine, or racing engine. Nevertheless, we identify some families of module that are common to most

of the game engines. Figure 4.2 shows a baseline architecture of a generic game engine with the main

module families.

Some of the module families of the engine are written by the game creator including:

Artificial Intelligence (AI) – these modules emulate an artificial and intelligent behaviour of NPCs, for

example, learn and interact socially, exhibit emotions, and even the ability to hunt and the instinct

to survive. Different features are used to implement the AI such as: (i) decision-making, to affect

the NPC; (ii) basic perception; the AI needs some way of perceiving its environment using human-

like sensors (including sight, hear, smell, and touch), and navigating using basic mechanisms like
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Policy Man-
agement AI Engine Event Dispatcher User Profiles Files

Database
Game En-
gine Core Graphics Engine User Interfaces Input

Networking Scripting Sound Engine Graphics

Physics Engine Collision
Detection Animations Temp-Files Audio-Sources

Figure 4.2: Game engines baseline architecture

Crash and Turn, and pathfinding; (iii) prediction; the ability to effectively anticipate the player

behaviour through historical decisions, random guess or backtracking. ALive1, GAIGE2, and

kismet3 are three advanced AI modules.

Scripting – these modules contain the gameplay itself. From the captured inputs obtained from

the Human Interface Devices (HIDs), the game developer details the series of game content

and events in a scripting language, which is specific to every framework. The scripts can be used

to create graphical effects, control the physical behaviour of objects or implement an AI system

for NPCs.

Animation – any character in a game (whether it is a human, an animal, or a robot) needs animations

(e.g. move, jump, stand up, and set down). Five basic animations exist; (i) rigid body hierarchy

animation, (ii) skeletal animation, (iii) sprite/texture animation, (iv) vertex animation, and (v)

morph targets. In particular, skeletal animation generates a pose for every bone in the skeleton and

passes them to the rendering engine as a set of matrices that are transformed into a final blended

vertex position. This process is called skinning. It also interacts with the physics engine to simulate

rag dolls, which are dead animation characters, whose bodily motion is simulated by the physics.

Some module families are common between most games created within a given framework. These

modules represent the abstraction layer and prevent game creators from spending time on low-level

issues. In particular:

Physics Engine – it includes collision detection and rigid body dynamics. This module aims to make

the game world as realistic as possible using the physics laws. Without this module, objects would

interpenetrate, leading to block interactions with the virtual world. This module is integrated as a

1http://alive.sourceforge.net/
2http://game-ai.gatech.edu/
3http://www.ai.mit.edu/projects/humanoid-robotics-group/kismet/
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third-party SDK. Existing physics engines in the market include Havok4, PhysX5, Open Dynamics

Engine (ODE)6, and I-Collide7.

Input – a player interacts with the game using HIDs, e.g., joystick, keyboard, mouse, steering wheels,

dance pads, and VR sensors. The input module provides a mechanism to customize the mapping

between the physical control and logical game functions. It may include a system for detecting

chords, sequences, and gestures. These commands are encapsulated as objects and forwarded to

the system.

Networking – this set of routines and protocols enables interactions with a server to set up multiple

players and share a sense of space, time, and presence through avatars. In MMOGs, the players

join the game dynamically through game sessions and interact by exchanging commands [199].

The architecture of most of the MMOGs is based on client/server.

Multimedia Rendering – these modules generate the graphical and audio elements of the game.

Graphics are complex aspects of a game. 3D games are built over 3D assets created by a design

application like Maya, XNA, Blender, and WPF. These assets are mixed with other objects like

materials, shadows, lights, and animations to create a realistic scene. This engine is designed as a

layered architecture, including: (i) Low-Level Renderer, where the focus is on rendering as quickly

and richly as possible a set of geometric primitives; (ii) Visual Effects, like particle systems, light

mapping, dynamic shadows, and colour correction; (iii) Front End where 2D graphics overlaid

on 3D scene such as in-game menu, a console, and in-game Graphical User Interface (GUI).

Regarding sounds, the audio engines vary in sophistication. The audio clips are exported in

different formats like mono, stereo, wave files (.wav) or ADPCM files (.vag). Existing commercial

audio engines include Quake audio engine, XACT, SoundR!OT, and Scream.

4.2.3 Rendering Pipelines

We describe now the rendering pipeline under Unity 3D. We first describe the pipeline that achieves a

3D rendering, and then, we show how Unity 3D implements it.

A rendering pipeline is a combination of successive stages to generate a 2D image for a geometric

description of a 3D scene and a virtual camera. Unity 3D is cross-platform: a given game can run on

various operating systems and hardware. For each configuration, the engine uses the default rendering

pipeline developed for these targets.

• Direct 3D is a Microsoft’s 3D graphics low-level API. It is used to draw lines, triangles, and points

or to launch parallel processing on the GPU. It is the primary competitor of OpenGL. It is used on

Microsoft platforms (Xbox 360, Xbox One, and the Windows operating system platforms).

4http://www.havok.com/physics/
5https://developer.nvidia.com/gameworks-physx-overview
6httph//www.ode.org
7http://www.cs.unc.edu/~geom/I_COLLIDE/index.html

78



4.2. BACKGROUND: GAME ENGINES

• OpenGL is a Khronos-developed graphic library. It is the most used API in industry. It is devel-

oped to launch a large number of applications on different computer platforms, such as gaming,

manufacturing, medical, VR, content creation, and Dynamic Audio-Visual Communication (DAC).

• OpenGL ES is a fork of OpenGL. It has been developed for embedded systems, including smart

phones, consoles, appliances, and vehicles.

• WebGL is a free low-level 3D graphics API based on OpenGL ES 2.0. It is integrated to HTML5 as

Document Object Model interfaces. Major browsers (such as Safari, Chrome, Firefox, and Opera)

implement this pipeline as a 3D plugin.

Figure A.1 in the appendix, describes the graphic pipelines used by Unity 3D (i.e., OpenGL, OpenGL-

ES 2.0, WebGL, and DirectX). Each graphic pipelines is represented by different stages along with their

interactions. Each pipeline differs by the number of stages and internal flow, but the general idea of

rendering remains the same.

Firstly, a series of geometric operations are done to render a collection of geometric primitives as

fast as possible. The data (vertices and indices) of 3D objects are approximated by triangle meshes,

forming the basic building blocks. The more triangles are used to approximate an object, the better is the

approximation but the more processing power is needed. Each object is then centered at the origin of a

local coordinate system with local orientation and size. Thereafter, all objects are brought together in a

global coordinate system by applying geometric transformations. At the end, the virtual camera in the

scene is translated to the origin of the world space.

Secondly, a set of aesthetic effects (lights, materials, shaders, and textures) is applied to the scene.

The lighting is a key step to produce a realistic scene. The light sources are simple objects defined in

the world space with a combination of colour, intensity, direction, focus, and position. This step also

includes a repetition of absorbing and reflecting light processes depending on various parameters (e.g.,

smoothness and material of the surface and incidence angle).

Thirdly, a set of culling operations (scene graph/culling optimization) is done. Each object has

two sides with respect to camera position: a front and a back side. The front (respect. back) sides are

polygons with vertexes ordered in a clockwise (respect. counter clockwise). All the back-face polygons

are culled. The culling step is triggered to also decide which object should be discarded from the scene,

according to the computation of the view frustum. An object inside (respect. outside) the frustum is kept

in (respect. completely culled from) the scene, while the object that is between the inside and outside of

the frustum is partially clipped.

Finally, a perspective projection is done to render the 3D vertices into a 2D projection window inside

the frustum. The vertex coordinates are transformed to place the 2D scene into a rectangular window on

the screen, called the viewport. The outputs of this stage are pixels. The rasterization transforms these

pixels into screen coordinates forming a list of triangles that should be checked and coloured.
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Unity 3D uses four additional rendering activities, which occur in conjunction with the main pipeline.

We summarize these activities in the appendix Section A.2.1.

4.3 Methodology and Testbed

We describe now the configuration of the devices that we used in our experiment, the process of running

games on these devices, a description of the used games, and our measurement.

4.3.1 Platforms

To evaluate the performance of the game engines generated by the framework Unity 3D, we installed

Unity 3D v5.03 on top of three devices: a Dell Precision M4800 laptop, a Microsoft Surface Pro

tablet, and a Dell PC tower. The latter is used as a server in our second experiment (implementation of

Cloud gaming and computation offloading architectures). We used different configurations as shown in

Table 4.1. We then used the installed frameworks to compile the games and generate the adequate files

for a range of OSs: an “.exe" file in Windows 7/8/10, an “.deb" in Linux, an HTML page with javascript

files for web players, and an “.apk" for Android devices. Accordingly, we were able to run the games

generated by Unity 3D on a wider range of configurations: not only the said Dell M4800 and Surface

Pro, but also a smartphone HTC One (M8) and a Samsung galaxy S6 Edge. Moreover, we were able to

implement Cloud gaming and computation offloading architectures.

Table 4.1: Main characteristics of the used platforms

Platform Target CPU GPU RAM Pipeline

Windows 7 Pro
Ubuntu 14.04

Mozilla Firefox 44.0.2
Opera 35.0.2066.37

Dell Precision M4800 Intel Core i7, 2.8GHz Nvidia Quadro k2100M, 2GB 16GB

D3D11
OpenGL
WebGL
WebGL

Windows 10 Microsoft Surface Pro Intel Core i5 - 3317U, 1.7GHz Intel HD 4000 4GB D3D11

Android 4.4.2 HTC one (M8) Quad-Core 801 Snapdragon, 2.3GHz Adreno 330 2GB OpenGL ES 2.0

Android 5.1.1 Lollipop Samsung Galaxy S6 edge Octa-Core Exynos 7420 - 2.1 GHz ARM Mali T760 3GB OpenGL ES 2.0

Windows 8.1 Pro Dell PC tower Intel Core i7, 3.4 GHz 3x NVIDIA GeForce GTX 780 Ti, 3GB 16GB D3D11

4.3.2 Games

We selected nine games from the “Asset Store" of Unity 3D for our evaluation. These games have

different characteristics, which cover the most representative games in the market. A description of the

different games is presented in the appendix. Figure 4.3 represents a screen-shot of the different games.

We summarize the main characteristics of each game in Table 4.2. For more details about these games,

the reader may refer to the Unity 3D asset store.

8https://www.youtube.com/watch?v=iV-224nMwN8
9https://www.youtube.com/watch?v=iTwtoOO7wXc

10https://www.youtube.com/watch?v=LBbPwMmpqQI
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(a) Viking Village (b) Survival Shooter (c) Stealth (d) Tower Bridge (e) Tanks

(f) Space Shooter (g) Car (h) Unity Lab (i) Multiplayer FPS

Figure 4.3: Screen-shot of the different games

Table 4.2: Main characteristics of the tested games

Games # of players Dimension Type Rendering Physics Scripts

Viking Village8 1 player 3D FPS ++++ + +++

Tower Bridge9 1 player 2D TPS + +++ +

Stealth10 1 player 3D TPS +++ +++ +++

Survival Shooter11 1 player 3D TPS ++ ++ ++

Tanks12 2 players 2D MMOG + ++ ++

Space Shooter13 1 player 2D TPS ++ + ++

Car14 1 player 3D Racing ++ ++ +++

Unity Lab15 1 player 3D TPS ++++ +++ +++

Multiplayer Shooter16 multiplayer 3D MMOG-FPS +++ +++ +++

4.3.3 Game qualities

For each game, we generated more than 10,000 frames for two quality types: good quality with a

reasonable framerate, i.e., around 30 fps, and fast quality, where the game pace is maximum. The engine

achieves these two qualities depending on many parameters, which are outlined in Table 4.3.

4.3.4 Measurement

We describe now how we obtain the internal flow and the execution time per frame and per module for

the different games over the different platforms and targets, including Cloud gaming and computation

offloading architectures.

11https://www.youtube.com/watch?v=uRsspkum8LI
12https://www.youtube.com/watch?v=paLLfWd2k5A
13https://www.youtube.com/watch?v=kX0hnOS1QQQ&list=PLX2vGYjWbI0RibPF7vixmr4x8ONJX-mNd
14https://www.youtube.com/watch?v=-Lkbo9ZyYbo
15https://www.youtube.com/watch?v=XjiBDKrCsVI
16https://www.youtube.com/watch?v=UK57qdq_lak
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Table 4.3: Good quality versus fast quality

Quality Settings Good Quality Fast Quality

Rendering

Resolution
Pixel Light Count
Texture Quality

Anisotropic Textures
Anti Aliasing
Soft Particles

Realtime Reflection
Billboards Face Camera Position Probes

Full-screen
4

Full Res
Per Texture

4x Multi Sampling
Activated
Activated
Activated

Full-screen
0

Eighth Res
Disabled
Disabled
Disabled
Disabled
Disabled

Shadows

Shadows
Shadow Resolution
Shadow Projection
Shadow Distance

Shadow Near Plane Offset
Shadow Cascades

Cascade Splits

Hard Shadows Only
Medium Resolution

Stable Fit
50
2

Two Cascades
(33,3%, 66.7% )

Disable Shadows
Low Resolution

Stable Fit
15
2

No Cascades
0

Others

Blend Weights
V Sync Count

Lod Bias
Maximum LOD Level

Particle Raycast Budget

2 Bones
Every V Blank

1
0

256

1 Bone
Don’t Sync

0.3
0
4

Execution Time. The CPU/GPU execution time per frame, for the aforementioned modules, is obtained

for 10,000 frames for each quality encoding. We used the Unity Profiler and script to obtain these values.

Internal Flow. We used two tools with a script to identify the Unity 3D internal flow. We dumped the

memory using the script that identifies all the classes/objects and methods that are called per frame.

We used Visual Studio 2015 profiler17 and Dependency Walker18 to check the validity of the obtained

results.

4.4 Performance Analysis and Game Classification

Now, we present the results of our measurement campaign regarding the time needed to generate one

game frame. We then propose a classification of the games with respect to the best approach to adopt for

efficient implementation (i.e., whether the game engine should run on the device, in a Cloud gaming

system, or with computation offloading). In Section 4.5, we will study more precisely the case of

computation offloading by a thorough analysis at the modular scale.

4.4.1 Time Needed to Generate One frame

Figure 4.4 shows the time (in ms) spent by the CPU to generate one frame for five games on five

platforms. The results in Figure 4.4a (Figure 4.4b, respectively) correspond to the good (fast, respectively)

quality. Figure 4.5 represents also the time spent by the CPU to generate one frame for Stealth, Space

Shooter, Car, Unity Lab, and Multiplayer FPS games on the Dell and mobile devices for the good

(Figure 4.5a) and fast (Figure 4.5b) qualities. These results have been split into two figures for readability

17http://blogs.msdn.com/b/visualstudioalm/archive/2015/07/20/performance-and-diagnostic-tools-in-visual-
aspx

18http://www.dependencywalker.com/
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because the time needed to generate one frame for the Stealth and the Multiplayer FPS games, on the

mobile devices, is one order of magnitude larger than for the other games. Moreover, Car, Unity Lab,

and Multiplayer FPS have not been tested on all devices and platforms. The same remark applies for

Figure 4.6, which represents the time spent by the CPU to generate one frame for the two web players

on the Dell laptop.
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Figure 4.4: Time required by the according processing unit to generate one frame. The box plot includes
the 10th, 25th, median, 75th, and 90th percentiles of these times
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Figure 4.5: CPU-time required to generate one frame on the standalone and wearable devices

These figures reveal a wide range of performance regarding the time needed to generate one frame.

The obtained results confirm that predicting the frame generation time of a game depends on three main
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Figure 4.6: Time required to generate one frame for the Web Players on the Dell M4800

factors: the quality settings, the platform that runs the game engine, and the type of the game.

Impact of the quality settings. It is epitomized by the Stealth game, for which the time needed to

generate a good quality frame is excessive on both Dell M4800 and Surface Pro (up to 100 and 200 ms,

respectively), while it stays in more acceptable ranges for fast quality (up to 32 and 90 ms resp.). We

observe the same impact on the other games: for instance, the time consumption per frame is reduced

by a factor ranging from two to three for the Survival Shooter game. To understand the reasons behind

this impact, readers are referred to Section 4.2.3 and Annex part A.2.1. A pixel resolution of 640× 480

has typically shorter processing time than a 1920× 1200 resolution, in particular because the additional

pixels in the viewport requires more processing at the rasterization step. Another impacting parameter in

high quality settings is the pixel light count, where the process of drawing geometry with lighting is

repeated during the light pass step for all the pixel lights. Both texture quality and shadow also increase

the processing time.

Impact of the used platform. The hardware configuration and the used OS matter. Regarding the

hardware, it is obvious that: (i) using a GPU enables faster frame rendering; (ii) large memory prevents

page fault exception and paging process; (iii) multi-core CPU better exploits the parallel executions.

Considering the OS, each one has a different architecture with different interruptions, scheduling policies,

and algorithms for page replacement in cache, central memory management, and swap. In addition, the

device drivers and the used compiler may impact game performance.

For all games, the time needed to generate one frame is smaller on the Dell than on tablet, which

in turn is faster than smartphones. Regarding OS, we observe a difference in the frame duration, such

as Viking Village game at fast quality is three to four time faster in Linux than in Windows. For other

games (e.g., Tower Bridge), the frame duration has different variations depending on the executions in

Linux and Windows. We also notice that the frame generation time on the web players is (to our surprise)

in the same range as when the frame is directly generated on Windows and Linux. We explain this

by the screen resolution, which is automatically reduced to almost a half of the screen window. Some

parameters of the quality setting are independent of the screen size, but multiple parameters directly
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depend on the viewport size.

Impact of the game genre. Some games are more demanding than others with respect to scene

complexity, AI, and scripting. The various game genres impact the frame duration. For the same platform

and the same quality settings, two different games exhibit different profiles of resource consumption and

variability of resources. In particular, we observe that the variability of the frame generation times differs

among the games: for some games, all the frames take approximately the same time to be generated,

while the generation of a frame can be eight times longer than another frame for some other games. Each

game has a behavior signature.

4.4.2 Game Classification

Game providers are interested in determining the best option to host the game engine. From our previous

results and analysis, we identify two criteria to characterize games: the variability of resource demand,

and the relation between resource demand and quality settings, which we call playability. We set

thresholds for both criteria and we define predicates, which can be either verified or not by each game.

Finally, we classify games based on the set of validations. In the following, we first detail the predicates

(criteria and thresholds), and then we explain the classification process.

Playability. It is a mix of framerate and quality settings. To evaluate a framerate for a game, we take

the 90th percentile of the longest frame duration.This percentile is a basis for the setting of the achieved

framerate of the game. The higher is the framerate, the better is the QoE. The latter also depends on the

quality setting. The higher is the quality setting, the better is the immersion, so the higher is the QoE.

We combine both by setting that a given game is playable if the framerate is greater than 30 fps (60 fps,

respectively) for good quality (fast quality, respectively) settings. That is, the 90th percentile should be

lower than 33 ms (16 ms, respectively) to validate the playability of a given game. This criteria depends

on the platform on which the game engine runs. For example, Tower Bridge at good quality on the Dell

M4800 is playable on Linux but not on Windows. When a game cannot verify the playability criteria on

a device, the game engine cannot run on the device in the traditional client-server mode. Other options

must be considered, either Cloud gaming platform or computation offloading.

Resource Variability. It describes the variability in frame generation time. We consider two values

to differentiate high and low variabilities: the range and the Inter-Quartile Range (IQR). The range is

the difference between the highest and the lowest score, while IQR corresponds to the range of half of

the scores around the median (the difference between the 75th and the 25th percentiles). We say that

the variability is low when the range (IQR, respectively) is less than 20 ms (10 ms, respectively). For

example, Survival Shooter, Tanks, and Tower Bridge games exhibit a low resource variability.

The resource variability matters because it impacts the efficiency of the implementation on a

virtualized hardware. A high resource variability means that the game provider must reserve a vast

amount of resources to absorb the peak, at the expense that the game engine only uses a fraction of

these resources during most of the execution time. High resource variability, thus, means an inefficient
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resource reservation and a lower benefits for the game providers. On the contrary, a game characterized

by a low resource variability is easy to pack into a well-sized VM (or container), which enables a better

consolidation and low infrastructure cost.

Based on both predicates, we classify the games as follows:

• Client-server, where all functions of the game engine (except session and multi-player manage-

ment) run on the device. A game falls into this category if and only if it verifies the playability

criteria.

• Cloud gaming, which means that the game as a whole runs in a VM in a data-center, while the

client only runs a video decoder. A game falls into this category if both it is not playable on the

device and it exhibits a low resource variability.

• Computation offloading, which means that the game engine is distributed among a client and

a server, both of them being linked with a high-bandwidth low-latency network connection. A

game falls into this category if the playability criteria is not verified and the game exhibits a high

resource variability.

Table 4.4 summarizes the classification of the games based on the aforementioned devices (more details

in the appendix). We observe that, for these representative games and devices, Cloud gaming is rarely

the best option (only for two games on the mobile devices, and one game on Dell, and browsers).

On the contrary, solutions based on computation offloading are the best option for four games in all

devices except the fourth game on the Dell and browsers. This result calls for a deeper exploration of

computation offloading solution, which has not been studied for gaming so far.

Table 4.4: Best option for architecture implementation per game and device

Games Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village Offload Offload Offload Offload Offload

Tower Bridge Client-server Client-server Client-server Client-server Client-server

Stealth Offload Offload Offload Offload Offload

Survival Shooter Client-server Client-server Cloud Cloud Client-server

Tanks Client-server Client-server Client-server Client-server Client-server

Space Shooter Client-server Client-server Client-server Client-server Client-server

Car Client-server Client-server Cloud Cloud Client-server

Unity Lab Offload Offload Offload Offload Offload

Multiplayer Cloud Offload Offload Offload Cloud

4.5 Is Computation Offloading Possible in Game Engines?

We address now a second part of our measurement analysis with a focus on modular aspects of game

engines. Our main motivation is the study of solutions based on computation offloading. In this approach,
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the resource requirements of each module and the interactions between the modules are two needed key

information for an efficient implementation. A secondary motivation is the study of solutions based on

Cloud gaming. In existing platforms [111, 174], the game engine is seen as a “black box". One of the

improvements we would like to study in the future is to distribute a game engine into several physical

machines in a data-center to enable parallel computation. Similarly, one needs to understand the resource

requirements at the module scale as well as the interactions between the modules.

4.5.1 CPU Consumption per Module

To understand the time consumption of each module per frame, we look at the CPU usage percentage

at the modular level. We gather modules into seven families: Rendering, Scripts, Physics, Garbage

Collector (GC), Global Illumination (GI), Vsync, and Others. We abusively use the term "modules"

hereafter to refer to a family of modules.

Figure 4.7 shows the consumption (in % of CPU) of modules. We considered for each module, the

percentage of time it takes to compute in relation to the overall consumption needed to generate one

frame. We aggregated all the data corresponding to the nine games, the two qualities on the different

devices (except the Dell tower server) into Figure 4.7a. We plotted the three key values: average,

minimum, and maximum consumption. For more details, readers may refer to Figures A.2 and A.3 in

the appendix.

For every game, the frame duration is limited by one of three threads: the CPU game thread, the

CPU render thread, or the GPU thread. In Figure 4.7a, we identify the rendering engine as the most

consuming module. It is responsible of up to 70% of CPU usage in average. Since the rendering is done

by the GPU, it means that the game performance is limited by the GPU thread. Indeed, once the CPU

launches the rendering process in the GPU, it can run in parallel some other modules, including AI,

physics and scripting. As soon as the process of these modules terminates, the CPU waits for the GPU

process termination. For some highly-graphical games such as Viking Village, the rendering modules

are responsible for 95% of the CPU consumption on the Dell Win7 platform at high-quality.
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We are also interested in understanding the differences in the module consumption per platform

and game quality. For a given platform and a given user quality setting, we compute the average

time consumption for all frames and all games to obtain a global average platform-dependent quality-

dependent module requirement. We thus get eight measures of the average module requirement (four

platforms and two game qualities), noted rpq for each platform p and each quality q . We compute the

average requirement, noted R for the eight measures. Then, we compute, for one given platform-quality

pq , the difference to the average measure, rpq −R. A platform-quality pq with a high difference means

that, for this given module, the requirement significantly differs from the other platform-quality, and

thus it would justify the game provider to pay a specific attention. Our idea is also to check if some

modules exhibit much wider different behaviors than others. To enable comparison across modules, we

thus compute a relative measure of the difference by computing the ratio of this difference rpq −R to

the standard deviation µ. We call this measure the relative load variability. The higher is the relative

load variability of a platform-quality pq , the more different is the platform-quality pq from the other

platforms.

We represent, for each module, the eight relative load variability measures in Figure 4.7b. We

have two observations. First, the resource requirement is sensitive to platform-quality. Some platform-

quality pq have a difference to the average that is nearly 1.5 larger than the standard deviation. It calls

for paying attention to platform-quality when implementing a computation offloading because these

platform-quality exhibit specific and unusual resource consumption. Second, all modules have similar

relative load variability. This is counter-intuitive since we expected that rendering modules would be

more sensitive to platform-quality than other modules.

In Figure 4.8, we represent the consumption per module for the web players. The CPU spends a lot of

time computing other type of modules, like scheduling the tasks over the different layers. The rendering

portion of time is lower than for the case of standalone platforms, which is due to the default resolution

used in the web players. The script and physics take more portion of CPU than in the standalone cases.
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4.5.2 GPU Consumption per Module

We concluded from Figure 4.7 that the rendering modules are the most consuming modules regarding

CPU use. One of our previous explanations is that CPU is bounded by the performance of GPU to render

the scene. In the following, we look at the GPU consumption to validate this statement. We plot in

Figure 4.9a the time spent by the GPU to generate one frame for each of the games on the Dell laptop. In

Figure 4.9b, we show the percentage of time the GPU spends in each subfamily of the rendering module.

We derive from Figure 4.9a that the time taken by the GPU is approximately the same as the CPU in
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Figure 4.9: GPU consumption per frame and per module on Dell M4800 for Windows 7

Figures 4.7a. It confirms our intuition that, since the CPU finishes processing tasks faster than the GPU,

the CPU waits for the GPU to finish the frame generation. As we will see later, the “waiting mode"

is considered as a module to schedule and synchronize the two processors. Moreover, in Figure 4.9b,

the consumption per rendering activity is different for each game. Indeed, the nine game worlds are

different. We also observe that the GPU is not entirely used for rendering processing. Typically a game

like Tower Bridge consumes the entirety of available GPU for other types of module.

4.5.3 Calls between Modules

We pay now attention to the modular architecture and the interactions between these modules. This study

is key for the implementation of computation offloading, and it is also useful for new implementations

of Cloud gaming systems.

We depict in Figures 4.10 and 4.11 the main calls inside each family of modules. Specifically,

Figure 4.10 ( 4.11a, 4.11b, 4.11c, 4.11d, and 4.12, respectively) corresponds to the Physics module

family (Audio, AI, Animator, Script, and Rendering module families, respectively). In each graph,

the vertices represent each module in the family, while the oriented edges are a combination of two

parameters: the first one is the number of time the source vertex calls the destination vertex (the calls

frequency), the second value is the execution time of the destination vertex. These flowcharts correspond

to the case of Survival Shooter game on the HTC One (M8) for the good quality encoding.

Each module family can be offloaded as a separate service. Indeed, we observe in the figures that

these families exhibit few interactions and data sharing each other, which is expected since these
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Figure 4.10: Internal calls inside the Physics module

families of modules are often designed and implemented by different teams. The main coordination and

synchronization task is done through the modules Update and Fixed Update, which are shared between

all the families and represent the main game thread. Since the frequency calls between families are

low, the offloading per module families makes sense. Inside each module family, here are our main

observations:

• The Physics family (see Figure 4.10) can be spread into three sub-families: Physics3D, Physics2D,

and PhysX. PhysX interacts only with Physics3D over the Processing class, and Physics3D shares

with Physics2D only one class (the Simulate class). It would thus be relatively simple to distribute

the computation of these three sub-families over distinct computers.

• The Scripting family (see Figure 4.11d) is the only module that interacts directly with the Physics

engine. It would thus make sense to run this family of modules on the same computer as the one

that hosts the Physics modules.

• The Audio family (see Figure 4.11a) has no interaction with the other main modules and only

deals with the game thread. This module can thus be offloaded as an API to a remote machine.

The communication between the client and the remote machine can be done either by RPC or by

streaming the audio data.

• The AI family can be computationally intensive. It is difficult to simulate the game on constrained-

resource devices without reducing the complexity of the AI. Since this family is also mostly

independent, the module family can be offloaded.

Finally, we address in Figure 4.12 the Rendering modules. We revealed in our previous results that
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this family is the most resource consuming, and thus is a candidate to migrate from the lightweight client

devices to nearby servers in a computation offloading solutions (or from one standard server running the

game engine to a specialized GPU-enabled server in the same cluster of servers for the case of a Cloud

gaming solution).

The offloading mechanism can be instruction-based or image-based. In instruction-based systems,

the client renders the graphics by itself using the commands received from the server. This system

consumes less bandwidth as only graphics drawing commands transit over the network. Image-based

system streams the rendered game as a real-time video. The clients are platform- and implementation-

independent, and demand fewer resources. However, it is harder to distribute this module. Indeed, we

identify some “sub-families" within the Rendering family that are rarely independent. We observe in

Figure 4.12 that the calls come from multiple other modules, which are not necessarily in their own

sub-family. These inter-calls between modules, from different sub-families, make the code offloading

harder. Indeed, the calls frequency is high, which implies intensive communication between the different

computers and ultra-low-delay data mirroring in the case of offloading. Moreover, some sub-families are

more called than the others. For example, SharedSet-Pass, RenderTexture, and MeshVBOModule are

called to generate the frames. Finally, the WaitingForJobs module is used to synchronize the modules

that have different running time. The time spent into the WaitingForJob module is a waste of time and

CPU consumption.
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Figure 4.11: Internal flow concerning the main modules: Audio, AI, Animations, and Scripting

4.6 Game Performance when Assisted by Server.

In Section 4.4, we tested the different games in the traditional client-server architecture, from which we

derived a game classification for the different platforms. In Section 4.5, we studied the possibility to

offload a game engine and concluded with promising solution regarding offloading the game engine

modules. Now, we present the performance of the games when we offload a part and the whole game

engine to a server as in the two architectures (Cloud gaming and computation offloading). We present

the needed CPU-time to generate one game frame on the client device in both architectures.

For a fair comparison between the games, we offload the same game objects namely NPC, Player

Character (PC), environment, and lights. Table 4.5 summarizes the game module distribution. Table A.4

presents the used devices for each architecture.

Figure 4.13 depicts the time needed to generate one frame on the three architectures (i.e., client-server,

Cloud gaming, and computation offloading) for each of the used games for the good (Figure 4.13a) and
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4.6. GAME PERFORMANCE WHEN ASSISTED BY SERVER.
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Figure 4.12: Internal calls inside the Rendering module

Table 4.5: Location of the game objects in case of computation offloading

Element Module Client Server

Player character

Rendering
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Animations
Scripting
Physics
Inputs

�✗
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��
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Non-Player character
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Sun Light Rendering �� �✗

Arena Light Rendering �✗ ��

Main Camera Rendering �� �✗

Weapon Camera Rendering �✗ ��

Game Manager Scripting �� �✗

fast qualities (Figure 4.13b). We use box-plots to present the results since we focus on the variability of

CPU consumption per frame. Indeed, the consolidation of resources in a data-center is easier when the

consumption of processing resources is accurately predicted. The more stable are the CPU and GPU

consumption, the more games can concurrently run in a cluster.

We distinguish three categories of game. Some games are ideal for client-server architecture and/or

consolidation because all frames take approximately the same CPU and GPU time to be generated. The
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10th and 90th percentiles are so close that they nearly overlap. It is notably the case of Tanks and Space

Shooter. A game offering a small variability features scenes that are not complex and are thus easily

rendered by the GPU. For the good quality, a frame is generated in less then 33ms and in less then

16ms for the fast quality. These games are device-friendly.

Some other games exhibit a high variability, notably Viking Village, Stealth, and Unity Lab. These

are the worst cases for Cloud provider, which has to reserve resources to accommodate the peaks (more

than 75ms CPU for Viking Village, 65ms for Stealth, and 67ms for Unity Lab), although the median

frame requires almost quarter the time (16ms here). The reserved resources are wasted. These games in

general are the most consuming for the CPU and GPU resources due to the scene complexity. Since these

games are not desirable for Cloud gaming architectures, and cannot be played locally on the wearable

devices, then these games should be offloaded.

Finally, the games that are the less demanding and have less variability, typically Car in our set of

games, are good candidates for Cloud gaming systems.
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Figure 4.13: CPU-time required to generate one game frame on the three architectures

4.7 Discussion and Main Findings

To sum up our findings in this chapter: Firstly, the GPU is the main source of performance limitation

in the different cases. The CPU game and CPU render threads are frequently blocked waiting for the

results of the GPU due to a synchronization problem. To improve GPU performance, an idea would

be to free the latter from some jobs. For instance, recent GPU cards improves the game performance

by offloading the PhysX from GPU to CPU, especially for powerful CPU. Unfortunately, this solution

works only for games using PhysX as physics engines (like Batman [27], Assassin’s Creed [202], and

some others19) but it does not work for other engines like Havok, ODE, or I-Collide. We also identified

that both CPU and GPU consumptions have a high correlation, which is useful for the Cloud gaming

19http://www.geforce.com/hardware/technology/physx/games
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providers to estimate from the CPU demand the amount of GPU resources that need to be reserved, as

well as the game variability.

Second, the frame rate of device-friendly games is generally higher than 60 fps. This is a waste of

resources, especially in terms of energy. Here, we envision a solution where we first calculate the number

of generated and saved frames in the frame buffer, by monitoring the synchronization, then the GPU

breaks the game main loop when the number of 60 fps is reached. The idle GPU saves a signfiicant part

of the energy consumption. The provider can use the idle GPU to serve more games using a preemptive

scheduling. NVIDIA proposed the mechanism G-Synch, which improves the V-Sync mechanism, where

the monitor refresh is conducted by the GPU frequency. It finds trade-off between the off- and on-mode

of V-Sync. Indeed, when V-Sync is deactivated, the GPU sends the frames following its own pace. At

each screen refresh cycle, multiple frames are displayed because the frame rate is maximal causing

the phenomenon of tearing. Now, when the V-Sync is activated, the GPU follows the screen tempon

so tearing no longer occurs. But, when the time to render a frame is longer than a refresh cycle, the

phenomenon of stutter and display delay (lag) occurs because the monitor has to display again the last

frame.

Third, some modules related to rendering are mostly in waiting mode, meaning that the CPU

consumption associated with these modules is not significant. These waiting times are not necessarily a

waste of resources when only one game runs on a computer, since the rendering pipeline is at a given

step and no further actions can be taken. However, in the context of Cloud computing, these waiting

times represent opportunities to free some resources and to better exploit the processing units.

Fourth, a non-graphic component of the game engine can represent a significant part of the CPU

consumption, typically in games where the AI, the physics, and the scripts are complex. A motivation

behind code offloading is to study the gains when the display device embeds dedicated GPU resources,

and powerful servers are available nearby. This configuration matches the new generation of game

centers with VR headsets.

Finally, the game classification of the games into the three architectures matches our predictions

based on the criteria: playability, and resource variability.

4.8 Conclusion

This chapter has dealt with the topic of game engines. We presented a general architecture and conducted

a set of experiments on three architectures: client-server, Cloud gaming, and computation offloading.

We used nine representative games, including FPS, TPS, Racing, and MMOG. We adapted these

games to different platforms and tested their performance on each platform for two encoding qualities.

Based on our results, we classified the games into the three architectures depending on two parameters:

playability and resource variability. We also identified that the quality settings, the used platforms, and

the game genre exhibit varying behaviors. Next, we provided a detailed view of the game engine by

representing the internal flow that constitutes each module, which is a basis for solutions exploring
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computation offloading. Finally, we validated our finding regarding the game classification according

to the aforementioned criteria and the feasibility of game engine offloading. In our experiments, we

used static offloading of the sub-families of modules. Our work opens new exciting perspectives and

research directions to improve gaming experience. Indeed, we may mention particularly two directions

to follows, one based on computation offloading and another one on Cloud gaming consolidation.

Regarding computation offloading, it is interesting to explore not only partitioning algorithms to find

the best execution location of each module sub-family, but also use systems for polygon rendering to

decompose an object, or an entire image to offload some part aiming at improving the rendering process

between the client and the server. About game consolidation, it will be useful to define a regression

model for the resource consumption to maximize the consolidation and minimize the risks, and find

somehow to serve different gamers in Single Online Shared Game Instance (SOSGI) (i.e., throw only

one instance of game engine).
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TOWARD A MOBILE GAMING BASED-COMPUTATION OFFLOADING

5.1 Introduction

In light of conclusions made through chapter 4; video games are complex, intensive, and real-time

applications that need powerful devices to run smoothly, in order to provide a gamer an illusion of inside

an animated world; the rendering engine should perform all the rendering activities in real-time. For

a gamer, a good QoE is obtained when the game engine displays frames at a higher rate, more than

30 fps [54]. Thus, the rendering engine has at most 33ms to generate one frame. Usually, much less

time is available, since the bandwidth is also consumed by the other engines such physics and scripting.

Inside the umbrella of conclusions, we also demonstrated that computation offloading is feasible for

game engines. Indeed, we extracted the different call flows inside the game engine and checked the

possibility of splitting modules. We observed that module families are mostly, independents. Therefore,

it is possible to offload these modules entirely or partially with respect to the network latency. The

classification of games into three architectures namely, client-server, Cloud gaming, and computation

offloading revealed that computation offloading architecture should be the best option in most cases.

This observation was existing and a good motivation to go farther and provide a static solution for

computation offloading of game engines.

Through this chapter, we unveil an enhancement of our game engine offloading proposal by making

dynamic, the offloading decision. We propose a heuristic, which according to the network latency,

resource consumption, and code dependency, selects clusters of modules that should be offloaded to

improve the performance. We survey state-of-the-art computation offloading-oriented mobile gaming.

Then, we introduce some concepts and keywords that we use through the chapter. After what, we

describe our methodology and contribution. We use a testbed composed of a smartphone and a server to

evaluate and compare the performance of our solution with the classical one.
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5.2 Related Work

Computation offloading is gaining ground with the emergence of MEC, which locates servers at the

network edge allowing to drastically reduce the end-to-end latency. Several works have addressed the

problem of computation offloading in the context of mobile Cloud. We cite hereafter some of these

works (reported in the previous chapters) oriented for games with some technical implementation

details. In MAUI [59], the authors presented a dynamic offloading framework operating at the method

(i.e. application component) granularity. The games are represented with graphs and translated into a

linear programming formulations, with the objective to save energy, subject to the total execution time.

MAUI requires annotating methods as “remote" or “local". The communication between the mobile

device and the Cloud is done through RPC. The design of MAUI supports only games written in C#.

Similarly, ThinkAir [139] introduced a mobile Cloud computing framework, with dynamic offloading.

The proposed framework clones the smartphone platform in VM. It offers a library and a compiler to ease

the adaptation of games. A code generator creates wrappers and utility functions. A customized Native

Development Kit (NDK) is used to convert the ARM-based instructions of remote methods into x86

instructions. ThinkAir uses Java reflection to offload methods based on past invocations. ThinkAir

defines four objective functions that combine execution time, energy, and money cost. In [323, 324],

the authors propose DPartner framework, an automatic partitioning system that rewrites Java bytecode

of monolithic application into a distributed application. The framework operates in three steps; first, it

classifies Java bytecode classes into anchored or movable based on Java lexicon. Then, the framework

clusters classes regarding the call frequency into different groups representing the game modules. Finally,

the framework rewrites the clusters bytecode and packages them into OSGi bundles. These bundles are

classified into anchored or movable modules according to classes. The framework defines a proxy, which

rewrites the classes to create new interfaces, and duplicates classes on both sides (client and server). The

framework offloads all the bundles that improve the performance and reduce the energy consumption.

Another framework proposing to offload GPU computation to remote servers has been introduced in

Kahawai [60]. It uses a collaborative rendering, which combines both server GPU and mobile device

GPU outputs to render frames. Kahawai uses two techniques for collaborative rendering; the delta

encoding and client-side I-frame rendering. In delta encoding, the mobile device renders frames with

low quality encoding, while in the server, the same frames are rendered with high quality. The per-frame

difference is streamed to the mobile device to transform frames into high quality frames. In client-side

I-frame, both the mobile device and server are rendering frames at high quality encoding, however, the

mobile device generates the frames at a low rate compared with the server. The server compresses the

frames into a video, replaces the I-frames with empty place-holders, and streams the remaining P-frames

to the mobile device, which fills in the missing I-frames and renders the video. Di et al. [112] have

proposed Dust, a real-time code offloading system for device-to-device. Dust uses a network evaluator

component to find the stable linked offloadees, and a task scheduler component, which takes a decision

regarding each task of a game. The tasks are annotated by programmers as “@offloadable".
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Even these frameworks provide in general good performance, these framework are obsolete for

the use case of 3D FPS games, which are very high resource consuming and real-time interacting.

Indeed, in all these frameworks, the authors have considered only strategic 2D games like Sudoku,

Chess, N-Queens, and Gomuko, which renders one frame for each player movement. To this purpose,

we propose an offloading 3D FPS game system using Unity 3D game engine. We split the game

scene into different Game Objects (GOs) including, NPC, PC, environment, and particles. To select

the GOs to offload, we use a heuristic relaying on three main criteria, namely, resource consumption,

code dependency, and network latency as detailed later. Furthermore, we introduce a network manager

component, which orchestrates the offloading mechanism. This solution offers a promising performance.

It is easy to configure, as the GOs to offload are added to the server through a network manager, and

scalable as all games could be modified easily to fill in this architecture. Lastly, the proposed solution is

not bandwidth consuming, as only command packets are exchanged over the network.

5.3 Game Engines Background

To better understand our contribution in this chapter, we introduce/remind in the following some concepts

and keywords that we will use through the chapter.

5.3.1 Interactivity and Framerate

The interaction delay, defined as the elapsed time between a user action is captured by a HID, and the

moment that the result of this action appears on the screen, is central in gaming. Studies [55, 160, 229]

have shown that the acceptable delay depends on the game genre and varies from 100 to 200ms and

even up to 500ms for RPGs and MMOGs. FPS games require low delays (less than 100ms), since the

gamer is immersed in the scene, and a high interaction delay will degrade the QoE [121]. Regarding

this constraint, the management of FPS games has received scientific efforts [12, 165]; therefore the

interaction delay will be considered as a metric in this chapter.

The framerate is another key criteria to ensure high QoE for the gamers. Indeed, the latter are

immersed in an animated world when the game engine generates a high number of fps. Less than 30 f ps

is seen as non-tolerable by players [54]. For the interactive multimedia, the High Frame Rate (HFR)

combined with the High Dynamic Range (HDR) technology can deliver up to 240 f ps [153]. The

rendering pipeline [225] represents the engine responsible for generating frames; every x ms the graphic

pipeline displays one frame, with x ranging from 33 to 10ms. The framerate will be also considered as

a metric in this chapter.

5.3.2 Main Modules

A game engine is a combination of different modules depending on the game genre. Messaoudi et

al. [192] have identified some modules that are common to most game engines, and classified them into
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different families. Some of these module families are written by game developers that include: (i) the AI,

which emulates an artificial and intelligent behaviour of the NPC to learn, to interact, to fight, and to

survive; (ii) the scripts represent the game scenario. Game developers detail, in a scripting language,

the control flow of the game, from the instant wherein the gamer command is captured by HID until

displaying a frame on the screen. (iii) Animations are used to make objects, dynamic in the game. They

emulate movement or reshape objects.

Some other families of modules are leveraged as a third-party SDK and middleware accessible

through APIs. These families of module represent an abstraction layer common to all games created

within a given framework, aiming at preventing the game developers from spending time in low-level

programming. These modules include the following: (i) physics, which simulates the physics laws to

make the game as realistic as possible. Physics uses collisions and rigid body dynamics1. Without

physics module, objects would interpenetrate, leading to block interactions with the virtual world. (ii)

Multimedia rendering modules are responsible for generating the graphical and audio elements of the

game. Rendering is a resource-consuming module in game engines, since the 3D-scene undergoes

several transformations through the rendering pipeline before getting displayed on the screen [190]. (iii)

Inputs convert the physical commands applied by the gamer on his HID (including gamepad, joystick or

keyboard) into logical game functions, and forward them to the engine system. Finally, (iv) networking

modules define a set of routines and protocols that enable interactions with a remote server to share a

game instance between multiple players.

5.3.3 Scene Representation

A real-world scene is a projection of dynamic foreground (the dynamic GOs) on a layout of a static

background or static GOs. The static background layout is crucial in video games, as it brings the player

inside an immersive world. The game’s world populates different types of GOs, through which the gamer

explores the virtual world. The game world as a whole presents perceptual stimuli to the player, which

experiences a degree of presence over the objects of this world that he can manipulate. These objects

include: (i) a PC, which is a fictional character, controlled by the gamer. Generally, these characters

are based on real persons, such as sportive and historical persons. FPS games use black characters

without any characteristic. (ii) A NPC is controlled by the computer through an AI and triggered by

specific actions. A NPC may define an enemy, a partner or a support character, depending on whether

the NPC opposes the PC in duels, helps the PC in its adventure or assists the storyline of the game. (iii)

Environment represents the virtual static and realistic area where the game takes place. (iv) Lights are a

key step to produce a realistic scene. The light sources are simple objects, defined in the world space,

which are a combination of color, intensity, direction, focus, and position. (v) Particles are amorphous

objects such as smoke clouds and sparks. They are animated in a rich variety of ways that vary in

position, orientation, and size from frame to another. (vi) Sound sources are in charge of reproducing

1https://gafferongames.com/post/physics_in_3d/
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what the player would like to hear such as a car engine sound or a background music. (vii) Camera is a

GO that displays what it currently seen on the screen. The camera can move and rotate around, hence the

displayed view moves and rotates accordingly. The area seen by the camera defines a truncated pyramid

known as a frustum.

5.4 Methodology

We describe now the game, platform, and encoding qualities that have been used in our experiment, as

well as the methodology undertaken to offload modules to a remote server.

5.4.1 Game

We modified the multiplayer FPS game2 to make player characters fighting together against a NPC

inside an arena. The player character is a robot with blasters flying inside the arena. The NPC is a

humanoid avatar triggered by the player characters when they are near to its position. The game scene is

depicted in Figure 5.1. We summarize the main characteristics of this game in Table 5.1.

Figure 5.1: Game screenshot

Table 5.1: Game characteristics

# of players Dimension Type Rendering Physics Scripts

Multiplayer 3D FPS ++++ +++ +++

5.4.2 platform

To evaluate the performance of the proposed solution, we installed Unity 3D engine v5.4 on top of a Dell

PC tower. The installed engine is used to compile the tested game and generate two different instances;

the first one runs on the server (Dell PC tower), while the second one runs on the smartphone HTC One

M8. The configuration of these devices is given in Table 5.2.

2https://www.youtube.com/watch?vŪK57qdq_lak
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Table 5.2: Platforms characteristics

Platform CPU GPU RAM OS

HTC one (M8) Quad-Core 801 Snapdragon, 2.3GHz Adreno 330 2GB Android 4.4.2

Dell PC tower Intel Core i7, 3.4 GHz 3x NVIDIA GeForce
GTX 780 Ti, 3GB

16GB Windows
8.1 Pro

5.4.3 Quality Encoding

We generated 10,000 frames for two encoding qualities; a good and fast quality. The good quality is

encoded with high parameter settings, which generate a reasonable framerate, i.e., around 30 f ps. The

fast quality, configured with reduced requirements, produces inferior visualization results, hence obtain

a maximum framerate. Unity 3D achieves these two qualities through different parameters as described

in [190].

In light of what is stated in the background section, the following paragraph tackles the questions:

how we can improve the performance of a game through modules offloading? or what is the optimal

location (on the mobile device or on the server) of each module of the game engine? To answer efficiently

this question, we introduced the following criteria:

1. Resource consumption. Usually, the gameplay is concentrated within dynamic objects, which are

high resource consuming. Rendering these GOs is complex in video games [190]. Each object

in the scene is approximated by triangle meshes. The more triangles are used to approximate an

object, the better is the approximation, but more is the processing.

2. Code Dependency. Games depend on hardware (e.g., sensors) and software known as libraries

and SDKs, but also interact with players via UIs, which manage the HIDs. According to this, we

distinguish three classes of non-transferable modules; modules involving UIs [59, 217]; modules

interacting device sensors [216]; and modules depending on local APIs [94, 220].

3. Bandwidth consumption and Network latency. Some GOs, if they are offloaded to the server, need

high network communications with the mobile device, which increases the bandwidth consumption

and the interaction delay. Particles are an example, they are 2D images generated and animated in

large number. Several modules are interacting together to make their behaviour, which leads to

high communication between modules of the game engine.

5.5 Proposed Framework

Figure 5.2 presents a global view of the proposed architecture. At the beginning, a connection is

established between the mobile device and the server via a network manager. This latter is a set of scripts

responsible for remotely instantiating GOs, and orchestrating the offloading process.
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When the connection is established, a game manager script is executed on the mobile device. It

starts the execution of the local GOs, while it requests the network manager to start computation on the

server. Therefore, remote GOs are rendered on the server at default coordinates. Start playing the game,

input modules capture the gamer inputs and send commands to the server. On the server side, both the

GOs and the outputs of the involved modules (modules used by each GO to compute its behaviour) are

updated with the gamer commands. Thus the network manager captures these results and injects them on

modules, located in the mobile device, interacting with the remote GOs. At the end, a frame composed

of the local and the remote GOs is rendered on the mobile device. This process is repeated for each

frame until a disconnection of the gamer. In this case, the GOs are destroyed on both client and server.

The network manager uses both RPC and GigE Vision Stream Protocol (GVSP) [103] carried

over User Datagram Protocol (UDP) for communication between the mobile device and the remote

server, with a multi-channel design supporting a variety of levels of QoS, and a flexible network topology

supporting peer-to-peer and client-server architectures. RPCs are used to update some module entries and

variables such as (N)PC health level or weapon state. GVSP is used to stream OpenGL ES commands

from the remote server to the mobile device, then the latter will prefetch these commands and inject

them inside the rendering pipeline to draw a frame on the mobile device.
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Trigger
“Game

Manager"
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game scene
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Figure 5.2: Global overview of the architecture
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5.5.1 Proposed Heuristic

Each GO involves a number of modules to compute its behaviour and to draw its shape. These modules

may differ in number and family between the GOs. We propose to enclose for each GO, the requested

modules inside clusters. Our heuristic, computed by the network manager, dissects the possibility

to offload or not a cluster, with respect to the code dependency constraint. This solution is a cluster

decision-making; that is, it focuses on each GO independently from the others, since we need to decide

rapidly to offload a cluster or not, to avoid any additional delay induced by more sophisticated algorithms

like ILP or graph resolution. The proposed algorithm accepts as input a cluster, j (the set of modules

requested by the object GO j ) and returns a binary decision x j (i.e., to offload or not the cluster j ). The

concept of this algorithm is simple; if either the network latency or the time to send/receive data is higher

than the local execution time of a cluster, then offloading the cluster will not improve the performance,

thus x j = 0. Otherwise, if both latency and time to exchange data are less than the cluster execution

time, the algorithm checks if a gain is achieved when offloading the cluster. The offloading gain is the

difference between the local cost and the offload cost, this latter includes the communication cost and

the remote execution. It is given by:

T GGO j
=

�

s −1

s

�

×

k j
�

i=1

Ti −

�

di

U L
+

ri

DL
+RT T

�

(5.1)

where s is the speed ratio between the mobile device and the remote server, Ti is the execution time

of the module i that belongs to cluster j , k j is the number of modules enclosing the cluster j , and di

and ri represent, respectively, the data to send (receive, respectively) on the uplink, U L (downlink DL,

respectively) bandwidth.

If offloading a cluster will achieve a gain, then it will be offloaded (i.e., xi = 1).

Algorithm 1 Offloading Decision

Inputs: GO j : {Ti , i = 1,2, ...,ki }

Outputs: Deci si on x j

if ((RT T <
�k j

i=1
Ti ) & (di /Bs + ri /Br <

�k j

i=1
Ti )) then

if (TGGO j
> 0) then

x j = 1

else
x j = 0

else
x j = 0

return x j

5.6 Performance

Now, we present the results of our measurement campaign regarding the CPU consumption and network

communication needed to generate one game frame.
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5.6.1 CPU Consumption

This section discusses the CPU consumption per frame and per module, for local and remote execution,

under the two encoding qualities. Figure 5.3a presents the time (in ms) needed to generate one frame.

We used box-plots as we want to focus on the variability of the CPU consumption per frame. The aim

is to quantify the stability of our framework. The box plot includes the 10th , 25th , median, 75th , and

90th percentiles of these times. On the other hand, Figure 5.3b shows (in %) the time spent by the

aforementioned modules to contribute to the frame generation. We observe two things:

• Performance improvement. As seen in Figure 5.3a, our framework improves the performance by up

to 21%. Indeed, more than 50% of frames are generated in less than 154ms (125ms, respectively)

for the good (fast, respectively) quality. However, the framework is not enough stable as the IRQ3

and the range4 are high values (143.97ms and 151.52ms, respectively).

• Rendering consumption. As Figure 5.3b is showing, rendering is the main consuming module.

Indeed, this module is responsible for up to 70% of the CPU consumption for both executions

(i.e., whether or not the game is offloaded) under the two encoding qualities. This high CPU

consumption represents a concern in mobile gaming. For the other modules that are not related to

rendering, they represent less than 30% of the CPU consumption of the demanding games.
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Figure 5.3: CPU-time consumption per frame and module

5.6.2 Network Communication

To test the network performance of our framework, we captured the network load incurred by offloading

the game modules to the remote server. Packets were captured using “Wireshark5". We limited the

3Interquartile Range (IQR) corresponds to the range of half of the scores around the median (the difference between the 75th and the
25th percentiles)

4The difference between the highest (90th ) and the lowest (10th ) score
5https://www.wireshark.org/
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captures to 200 s.

We plot in Figure 5.4 the bitrate (in by tes/s) for the network traffic between the mobile device and

the remote server for the two qualities encoding.

We captured both the uplink and downlink traffic between the client and the server. In the downlink

direction, the packet size varies between 54 and 394B , and the median is 88B for both the fast and

the good quality. On the uplink direction, the packets size varies between 60 and 162B (60 and 228B ,

respectively) with a median about 86.5B (83.9B , respectively) for the fast (good, respectively) quality.

As stated above, only commands are streamed to the mobile device. Therefore, the variation in the bit

rate depends on the number of offloaded GOs. Indeed, higher are the GOs offloaded to the remote server,

the greater is the number of streamed commands, hence, the higher is the bit rate. Between the two

qualities, there is also a variation in the bit rate. We believe that it is due to the difference in the time

needed by the server to compute the GOs before streaming the commands. This time depends on the

number and type of GOs, which may differ between the two qualities encoding.
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Figure 5.4: Packets load per a tick of 1 second interval

Figure 5.5a (5.5b, respectively) illustrates the number of packets captured on the uplink and downlink

directions for each frame encoded with the good (fast, respectively) quality. We make three main

observations:

• Downlink rate is higher than the uplink rate. The average rate for the fast (good, respectively)

quality on the downlink direction is around 17.13 (3.94, respectively) packet s/ f r ame, while

on the uplink direction, this average is about 11.51 (2.39, respectively) packet s/ f r ame. This

is somehow obvious as our framework relies on the remote server to stream back rendering

commands and update various modules. The uplink traffic represents only input commands and

(N)PC variables.

• The server follows the client pace. Despite the powerful capabilities of the remote server, it has to

follow the client pace to stream back the results, since the network manager synchronizes between

them. Indeed, the server is triggered only when it receives an event (input commands or RPC)

from the mobile device.
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• Server requested only on performance enhancement. Both Figures 5.5a and 5.5b exhibit two

behaviors; less and high network communications. When the heuristic estimates that no offloading

gain can be achieved, then the whole game is computed on the mobile device, hence the server

is in an idle state, that is to say, only few control packets are sent by the server. However, when

a gain can be achieved, the network manager establishes a communication between the mobile

device and the remote server to collaborate in the frame rendering.
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Figure 5.5: Uplink and downlink packets rate per frame

5.6.3 Responsiveness

To better understand how the client and server contributed in the frame generation, it is necessary to

determine the interaction delay, which is consumed by several tasks: (i) capture of gamer input actions,

(ii) transfer of command(s) to the remote server, (iii) execution of the m offloaded modules (om) on

the server and the n −m non-offloaded modules (nom) on the client (where n is the total number

of modules), (v) stream OpenGL ES commands, and finally (vi) inject the commands in the graphic

pipeline and render a frame. This overall interaction delay I DL is divided into three parts:

1. Processing Delay, PD, is the maximum time between local and remote execution. Local (re-

mote, respectively) execution time is the sum of non-offloaded (offloaded, respectively) modules

execution delays as given in Equation (5.2). We used the visual studio profiler to extract these

delays.

PT = max

�

n−m
�

i=1

t (nom)

i
,

m
�

i=1

t (om)

i

�

(5.2)

2. Updating Delay, U D, is the time spent to update locally modules inputs (such as the scripting

module). We instrumented the code of the game to identify these delays. The U D is then, equal to
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the sum of all the networked update times t (uom)

i
for omi , given by Equation (6.2).

U T =

m
�

i=1

t (uom)

i(5.3)

3. Communication Delay, C D, corresponds to the command streaming delay, input commands

forwarding delay, and other control communication delay. It is the sum of the RTT and the time to

send an amount of Q data as shown in Equation (5.4).

C T =
(Packet Rate)× (Packet Si ze)

B and wi d th
+RT T(5.4)

The I D is given by Equation (5.5). It corresponds to the average time obtained in Figure 5.3a.

RT = PT +U T +C T(5.5)
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Figure 5.6 illustrates the average I D achieved under both the local and remote execution. We observe

that: (1) our framework achieves a small U D, at most 3.91ms (1.62ms, respectively) for fast (good,

respectively) quality. This time represents 3% (0.93%, respectively) of the I D. (2) The PD is 3×

longer than what we expected, 105.79ms and 151.48ms for fast and good quality, respectively. Since

we leverage powerful remote server, we hope closer performance to Cloud gaming solutions, as the

consuming modules are computed on the remote server and only command packets transit over the

network. We believe that this drawback is due to the injection of the OpenGL ES commands in the

graphic pipeline.

5.6.4 Framerate

We conclude the performance section by summarizing the different results via the framerate performance.

Figures 5.7a and 5.7b depict the ratio of frames in a population of 1000 frames that are generated in

less than x ms for the good and fast quality, respectively. When using our heuristic, the game engine
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generates more than 65% (30%, respectively) of frames in less than 33ms for the good (fast, respectively)

quality in comparison to the local execution, where the engine generates less than 10% of frames for

the two qualities. Some frames are composed of several GOs that highly communicate through various

modules which increase the interaction delay. Indeed, as the figures are showing, up to 35%, 70% of

frames for the good, respectively fast quality need until 210ms and 150ms to be rendered. Our heuristic,

in this case, offloads only a few clusters, as the communication cost is higher than the computational

cost, or because no offloading gain is obtained for these frames.
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Figure 5.7: CDF for frame generation

5.7 Conclusion

In this chapter, we proposed a solution to play best-seller 3D games with high quality encoding, on

powerless devices via offloading computation to a remote server. The concept is to identify modules

involved by each GO in the game scene. Then, decide to offload them (as a whole) or not, depending on

three main criteria: resource consumption, network communication, and code dependency. The mobile

device and the server are synchronized through network manager, which orchestrates the offloading.

The solution is scalable and adaptable to the network latency as only modules improving performance

are offloaded. It supports mobility since network packets are automatically routed to the mobile device.
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6
MEC ORIENTED COMPUTATION OFFLOADING

6.1 Introduction

One of the 5G objectives is to reduce the network latency to 1ms. This shall be possible only by

bringing computation and storage resources closer to end-users. This has given rise to a novel concept,

known as MEC or also Fog Computing. MEC is gaining lots of momentum, wherein the key idea is to

empower mobile edge entities (e.g., radio access points such as eNodeBs and access gateways) with

computation capabilities, allowing hosting and executing applications at the edge of mobile networks,

rather than at a remote server in the Cloud or in the operator’s core network domain. Combined with the

5G mobile access, which aims to drastically reduce the end-to-end latency, MEC will enable a plethora

of novel mobile services that require low latency to access data or computation capabilities. Among the

envisioned services are computation-offloading-driven applications.

Most of computation offloading works have been devised without considering MEC, since this

concept is very recent. Moreover, they consider enforcing the offloading algorithms at the powerless

device side, ignoring all information on the device network environment, especially varying radio

quality. This can lead to dramatic situations, as the powerless devices may offload data even when

the network conditions are bad (e.g., introducing high latency with the remote servers, not compatible

with the devices application requirements). In this chapter, we use MEC as an enabler for low-latency

computation offloading-based applications, not only by hosting the remote server on the ME, but also

by devising a Mobile Edge (ME) service that continuously estimates the expected latency in order

to feed the device decision to offload parts of an application’s computing tasks. Indeed, according to

the ETSI definition of MEC [73], the ME host is able to expose high level APIs to ME applications in

order to provide real-time User Equipment (UE)-relevant network state information, making possible

the prediction of UE network state (particularly the latency), and hence driving the UE decision of
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when to offload, according to the network conditions. To this aim, we devised a framework that runs

on three different entities: a ME application (hosted on ME host and capable to access UE-related

radio information), a UE, and a server (hosted in the ME side to reduce end-to-end latency), enabling

network-aware computation offloading of low-latency applications. The ME application is in charge of:

(i) accepting or rejecting UE requests to offload or not, and (ii) predicting (using the Radio Network

Information Service (RNIS) API) and sending latency information to the UE. The UE enforces all the

steps composing the computation offloading process, while using the estimated RTT value obtained

from the ME application. Finally, the server is in charge of executing the offloaded code and sending

back the results to UE.

6.2 Background and Related Work

The chapter presents a novel approach for computation offloading in MEC environment. We designed an

application hosted in the ME, which interacts with the MEC host through different services to; (i) give

an approximation of latency between a UE and a server in MEC; (ii) check the network condition and

resource availability for a subscriber demand, in one hand, and with the end-user to accept or refuse

his requests for computation offloading, in the other hand. To better understand these contributions, we

introduce hereafter the LTE and MEC concepts followed by the state-of-the-art computation offloading

oriented to MEC.

6.2.1 LTE

6.2.1.1 evolved Packet System (EPS) Bearer

EPS Bearer (Bearer for short) [2] is an end-to-end tunnel between a UE and a P-GW , in which UE

Internet Protocol (IP) packets are encapsulated inside General Packet Radio Service (GPRS) Tunneling

Protocol (GTP) header. A bearer uniquely identifies packet flows with a common QoS parameters.

Therefore, all packet flows mapped to the same bearer, follow the same forwarding-packet treatment

(e.g., scheduling policy, queue management policy, and link-layer configuration). For each bearer, we

define a QoS class and a UE’s IP address. An end-to-end IP packet is encapsulated within a tunnel

header containing a bearer identifier so that the network nodes can associate the packet with the correct

QoS parameters.

Based on the QoS parameters, a bearer can be classified as either default or dedicated bearer, as

shown in Figure 6.1.

• Default Bearer: It is set up when a UE attaches to an LTE network and it is kept as long as the UE

retains that IP address. It does not guarantee the bit rate and it offers only best effort service. In

3GPP specifications, it is mandated that a default bearer is non-Guaranteed Bit Rate (GBR) bearer

because it can remain established for a long period.
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• Dedicated Bearer: It is dedicated to one or more specific traffic (e.g., Voice over IP (VOIP) and

video). It acts as a secondary bearer on a top of the default bearer, with which it shares the IP

address. The dedicated bearer can be either a GBR or non-GBR bearer. An operator distinguishes

traffic flows mapped onto dedicated bearers and their QoS levels using the Policy and Charging

Resource Function (PCRF).

6.2.1.2 QoS Parameters

In the LTE network, the EPS bearer QoS is controlled by the LTE QoS parameters described in the

following.

• Resource type: We distinguish two types of resources allocated to a bearer; GBR and non-GBR

type.

– GBR bearer guarantees bandwidth and avoid congestion-related packets losses. Therefore, a

traffic carried by a GBR bearer conforms to GBR QoS parameter associated with the bearer.

Consequently, GBR bearers are generally subject to admission control within the network

when created or modified. GBR bearers are established on demand because they obstruct

transmission resources and reserve them in an admission control function. GBR bearers are

only established for dedicated bearers. The QoS Class Identifier (QCI) of a GBR bearer

ranges from 1 to 4.

– non-GBR bearer is a best effort type bearer and its bandwidth is not guaranteed. A service

using a non-GBR bearer must be prepared to experience congestion-related packet loss. A

default bearer is always a non-GBR bearer, whereas a dedicated bearer can be either GBR

or non-GBR. Non-GBR bearer does not block any network specific traffic or transmission

resources. It can remain established for a long time, its QCI ranges from 5 to 9.

• QoS parameters:

– QCI [3] is a scalar ranging from 1 to 9 to indicate nine different QoS performance char-

acteristics of each IP packet. The QCI is used within the access network as a reference

to node-specific parameters that give details of how an LTE node handles packet forward-

ing (e.g., scheduling weight, admission thresholds, and queue threshold). Operators deploy

pre-configured nodes to handle packet forwarding according to QCI value. QCI values are

standardized to reference specific QoS characteristics, and each QCI is associated with stan-

dardized performance characteristics that describe the packet-forwarding treatment that the

bearer traffic receives in terms of resource type (GBR or non-GBR), priority (1 to 9), packet

delay budget (from 50ms to 300ms), and packet error loss rate (from 10−6 to 10−2).

– Allocation and Retention Priority (ARP) is a scalar ranging from 1 to 15, with 1 being the

highest level of priority. an ARP specifies the control-plane treatment that a bearer receives.
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More precisely, it allows an LTE entity (e.g., P-GW, S-GW, or eNB) to decide whether a

bearer establishment or modification request can be accepted or be rejected, and further,

which bearer to release during network congestion.

– Maximum Bit Rate (MBR) and GBR are used only for GBR bearers. GBR and MBR define

respectively, the minimum bit rate to be guaranteed by LTE networks and the maximum bit

rate that a traffic in a bearer may not exceed. Any packets arriving at the bearer after the

specified MBR is exceeded will be discarded.

– Aggregate Maximum Bit Rate (AMBR) is used to limit the total amount of bit rate consumed

by a single subscriber. It is not defined per bearer, but rather per the entire non-GBR EPS

bearer. In 3GPP specifications, we distinguish two AMBR parameters: (i) UE-AMBR, which

is defined per subscriber and it is known by both the gateway and the RAN; (ii) APN-AMBR,

which is also defined per subscriber, but only known to the gateway. The UE-AMBR and

APN-AMBR are defined for an aggregate non-GBR bearers. These AMBR parameters are

defined separately for uplink (UL) and dowlink (DL) direction. Therefore, there is four values

for AMBR; (i) UL UE-AMBR; (ii) DL UE-AMBR; (iii) UL APN-AMBR; and (iv) DL

APN-AMBR. The bit rate consumed by a GBR bearer is included in these AMBR values.

End-to-End IP PacketBearer IDDSCP

Bearer QoS parameters:

1. QoS QCI

2. ARP

3. MBR/AMBR
4. GBR (Optional)Tunnel header

UE
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Dedicated bearer
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Default bearer

GBR

Non-GBR

Non-GBR

Resource type

QCI ARP
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(UL/DL)
MBR

(UL/DL)

QCI ARP
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Figure 6.1: Bearers with associated QoS parameters

6.2.1.3 Scheduling in LTE

In LTE mobile access, the eNodeB’s scheduler in the Medium Access Control (MAC) layer allocates

available radio resources among different UEs in a cell, based on priority. LTE uses Orthogonal

Frequency Division Multiplexing (OFDMA) for downlink transmission, mapped on a time-frequency

resource grid. Data are allocated to UEs in terms of Resource Blocks (RBs). In time domain, a RB
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length is equal to one slot1(i.e., 0.5ms), while in the frequency domain, the length of a RB is 180K H z

organized in 12 sub-carriers of 15K H z spacing.

The used scheduling method largely impacts the throughput of individual users as well as throughput

of the cell. Different scheduling methods have been proposed in the literature to deal with fairness and

throughput.

• Round Robin (RR) [173]: Resources are furnished cyclically to users without considering channel

conditions. That is, the RBs are assigned equally among users (i.e.,in turn, one after another)

regardless of CQI. The scheduler is aiming at giving the best fairness by providing an equal share

of packet transmission time to each user. Thus, UEs are equally scheduled. However, throughput

performance may degrade significantly due to the non consideration of the reported instantaneous

downlink Signal to Noise Ratio (SNR) values in determining the number of transmitted bits.

• Proportional Fair (PF) [159]: The algorithm is balancing between throughput and fairness among

all UEs. PF aims to maximize, over all feasible scheduling rules, the utility function
�

i log Ri ,

where Ri is the long-term service-rate of user i , by serving the user with the highest ratio ri (t )/Ri (t )

at each time slot t ; ri (t ) and Ri (t ) represent respectively, the quality channel-rate and the current

average service-rate. That is, the scheduler tries to maximize the total throughput while, at the

same time, provides all users at least a minimal level of service.

• Best Channel Quality Indicator (CQI) [253]: In this approach, the resource blocks are assigned to

a user with the best radio link conditions. To perform a scheduling, an eNodeB sends a reference

signal to a UE in order to measure its CQI. The UE generates the CQI reports2 and fed back them

periodically, to the eNodeB in a quantized form. A higher CQI means better channel condition.

The scheduler can increase the cell capacity at the expense of fairness. That is, UEs that are far

away from the eNodeB are unlikely to be scheduled.

6.2.2 MEC

MEC is an emerging ecosystem that provides an IT and Cloud computing capabilities (i.e., storage and

computational resources) at the RAN edge in a near vicinity to end users. Besides the supplied resources,

MEC offers real-time access to radio and network analytics and efficiently uses the mobile backhaul and

core networks. MEC allows developing a plethora of new applications and services, consumed in an

ultra-low latency and high bandwidth. The ecosystem is useful for service providers to introduce new

services and differentiate costumers portfolio, by collecting information regarding costumers content,

location, and interests. MEC offers an open radio network edge platform, facilitating multi-service and

multi-tenancy. That is, authorized third-parties are allowed to use storage and processing capabilities

and introduce on-demand, in flexible manner new businesses. MEC should enable a secure Cloud

1Number of symbols in one slot is 7 (6, respectively) for normal cyclic prefix ( extended cyclic prefix, respectively) in case of 15K hz

sub-carrier spacing.
2Contain the signal-to-noise and -interference ratio (SINR) value measured by the UE.
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platform architecture and provide APIs to dynamically share and use the MEC platform, easily installing

and modifying new services, and efficiently interacting with the RAN, e.g., being able to retrieve

RAN-relevant information.

6.2.2.1 MEC Architecture

MEC is deemed as a critical technology to enable the transition toward 5th Generation (5G). Behind

MEC standard, ETSI would mainly ease the deployment of UE applications requiring short latency

access to remote servers. ETSI proposes a complete reference architecture that defines functional blocks

and interfaces to describe the MEC system [73–75].

The ETSI MEC framework describes three levels of entities and functions; mobile edge system, mobile

edge host, and network level entities. Figure 6.2 portrays a simplified version of the MEC architecture

as defined by ETSI [73]. This architecture concentrates on the mobile edge system level and on the

mobile edge host level excluding the network level. The ME management system comprises the ME

orchestrator, the ME platform manager, and the Virtualization Infrastructure Manager (VIM). The ME

orchestrator has the view on the whole ME system, as it maintains the information about all the deployed

ME hosts, the services and resources available in each host, the instantiated ME applications and the

network’s topology. The orchestrator is also responsible about installing ME applications, checking their

authenticity, and validating the associated policies. It has a reference point with the operator’s Operating

Support System (OSS), which is the highest level management entity in a mobile network. The ME host

is the logical entity that contains the ME platform and the virtualization infrastructure on which the ME

applications run. The ME platform contains a set of baseline functions that enable ME applications to

run on a particular host, to discover and consume ME services or to advertise and provide them through

the service registry. The ME platform is also responsible for enforcing the traffic rules to route the data

packets to/from the ME applications, and to maintain a Domain Name System (DNS) subsystem to

discover the ME applications. ME applications run on the ME host as virtual instances (i.e., VMs or

containers) and are designed to consume and/or provide ME services. The latter provide high level APIs

that expose UEs status (radio and context information), which will be then used by the ME applications

to optimize a registered service (e.g., offload computation).

6.2.2.2 ME Host Services

The MEC application development framework [35] implemented in the ME host provides services and

APIs for high-layer MEC applications. The framework is composed of four type of services highlighted

through Figure 6.3.

• Common services. They are central in the MEC host as they facilitate the usage of the real-time

network and radio information. In particular, the RNIS APIs, which exposes the following RAN

information:
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Figure 6.2: (Simplified) MEC architecture

– Radio quality indicators: related to UE/eNodeB layer1/layer2 parameters. It includes up-

to-date information regarding the configuration and status of UEs and the access network.

We may mention the following: UE’s configuration information (e.g., Public Land Mobile

Network Identifier (PLMN ID), Cell-Radio Network Temporary Identifier (C-RNTI), down-

link/uplink (DL/UL) bandwidth); UE status information (e.g., Global Navigation Satellite

System (GNSS)); eNodeB configuration information (DL/UL radio bearer configuration,

tracking area code, PLMN identity); eNodeB status information (GNSS, DL/UL scheduling

information, number of active UE).

– Control-plane interface: Exposes information on UE/eNodeB layer3, S1/X2 interface mes-

sages, used for network control. We may mention: UE status information (mobility state,

mobility history report (X2); radio link failure report); eNodeB status information (including,

physical RB usage per traffic class).

– Data-plane interface: It provides information on the X2-U and S1-U interfaces, such as UE

configuration information (EPS bearer identity, bearer type (default or dedicated), bearer

context (CQI, ARP), bearer bit rate (GBR or MBR)), UE status information (QCI, Channel

State Information (CSI)), and network status information (aggregated physical RB usage,

delay jitter of specific QCI).

• MEC services. Provide a common high-level APIs to the different MEC applications and use

cases. These services include Key Performance Indicators (KPIs) evaluation and traffic profiling,

positioning, IP and named data services, network status and configuration, analytic, and event

capture.

• Support services. Provide common, specific functionality to most MEC services. They represent

a basic platform services, that other more elaborated services can use. These services include but

117



CHAPTER 6. MEC ORIENTED COMPUTATION OFFLOADING

are not limited to; communication service, discovery and registry, policy and charging, monitoring,

authentication, authorization, accounting, and SLA.

• Platform services. Provide physical and virtual resources through an orchestrator such as Open-

Stack. The provided resources include the compute resources (CPU, and GPU), storage (e.g., RAM,

and disc), network resources (vNIC), and I/O. SDN and Network Function Virtualization (NFV)

operations belong to this service.
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Figure 6.3: ME host architecture

6.2.2.3 MEC oriented for computation offloading

Few studies have been proposed to use MEC as an enabler for computation offloading mechanism. For

instance, in [321], authors studied the consumed energy in a computation offloading context for MEC in

5G heterogeneous networks. The authors have formulated an optimization problem that minimizes the

energy consumption of the offloading scheme, which takes into consideration the energy consumption

of both task computing and data transmission. The solution incorporates the multi-access characteristics

of 5G networks. Therefore, a joint optimization problem was addressed to optimize the offloading

and radio resource allocation under latency constraints. In [183], authors have considered a MEC

environment with several UEs, wherein tasks arrive in stochastic fashion. A trade-off is investigated

between power consumption on mobile devices and execution delay for computation tasks. To this aim,
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a power consumption minimization problem with task buffer stability constraints was formulated. The

authors have developed an online algorithm, based on Lyapunov optimization, to derive the optimal CPU-

cycle frequencies as well as the transmission power and bandwidth allocation vector for computation

offloading. Authors in [293] proposed a framework-based computation offloading with interference

management oriented to wireless cellular network with MEC. Computation offloading decision, Physical

Resource Block (PRB) allocation, and MEC computation resource allocation are jointly addressed

in as optimization problems. The offloading decision is made according to the local and offloading

overheads experienced by the entire UEs and MEC server, respectively. The PRB allocation problem

is based on the offloading decision and it is solved by the well-know graph coloring algorithm in

graph theory. A multi-mobile-users MEC system was considered in [327], where multiple UEs request

for computation offloading to a MEC server. To optimize the energy consumption, the authors have

proposed to joint between optimal offloading selection, radio resource allocation, and computational

resource allocation. An integer nonlinear programming model was drawn with the objective function to

minimize the energy consumption, subject to latency constraint. To solve the nonlinear model, the authors

proposed a reformulation-linearization-technique-based Branch-and-Bound method with an exponential

complexity and a Gini coefficient-based greedy heuristic, which has a polynomial complexity. In [169],

a power-constrained delay minimization problem for computation offloading based on Markov decision

processes has been proposed and adapted to the MEC context. The authors have considered a mobile

device running computation-intensive and delay-sensitive applications. The device is composed of a

task buffer, a transmission unit, and a processing unit. An algorithm has been designed based on the

average delay of each task and the average power consumption at the mobile device to solve the power-

constrained delay model and find the optimal scheduling. An energy-latency trade-off for energy-aware

offloading in MEC networks was proposed in [320]. The scheme jointly optimizes communication

and computation resource allocation under the limited energy and sensitive latency. The authors have

considered the computation offloading in single and multi-cell MEC networks scenarios. The residual

energy of UEs’ battery was introduced into definition of weighting factors for energy consumption and

latency subjectively defined by mobile users. An iterative search algorithm combining interior penalty

function method with the D.C. programming (difference of two convex functions/sets) was proposed to

find the optimal solution. A multi-user resource allocation for MEC has been also proposed in [315].

The model is formulated as a convex optimization problem to minimize the mobile energy consumption

considering the computation overhead and the capacity of the MEC. The model derives an offloading

priority for each user according to its channel gain and energy consumption. A low priority derives a

minimum offloading, while a high priority performs a complete offloading. Lastly, an extended study

of computation offloading in a multi-cell environment was proposed in [247], wherein the authors

considered a Multiple Inputs Multiple Outputs (MIMO) multi-cell system, with multiple users requests

for computation offloading. The authors formulated the problem using a joint optimization of the radio

and the computational resources for computation offloading in a dense deployment, with the presence of
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inter-cell interference.

Clearly, none of these proposed solutions use the MEC services to drive the decision to offload or not.

They all rely on local device’s information to take such a decision. Our proposed framework overtakes

this limitation by highly interacting with the MEC service to better predict UE’s network quality of

service, and thus considering up-to-date information to take offloading decision.

6.3 Proposed Framework

6.3.1 General description
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ME Host
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Figure 6.4: Global overview of the proposed framework

The key idea of the proposed solution is to enable UEs to offload computation tasks to a remote

server located near to the ME host. As stated before, MEC allows the reduction of the end to end latency,

which may ease the computation offloading process. Unlike the existing solutions, where UEs take

locally, without the remote server help, the decision to offload or not a part of the computation task, in

this work we rely on the MEC architecture, to not only host the remote server, but also drive the UE

decision to offload or not a computation task. To this end, we propose to dedicate a ME application for

computation offloading (MEACOF3), on top of the ME host, to steer the UE decision to offload or not.

The ME application is in charge of initiating the computation offloading, using up-to-date information

available within the RNIS API, and help the UE in taking the decision to offload or not.

One of the inputs usually considered to decide whether to offload computation tasks, is the latency

between the remote server (hosted in the Cloud) and UE. In mobile networks, the latency value is

impacted by different parameters, which depend on both the core network congestion level or the number

3Through this chapter, we use MEACOF and ME application interchangeably
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of hops, and the wireless channel access. Note that hosting a server in the mobile edge to run the

offloaded code prevents core network delay issue. Indeed, any server located near to an eNodeB is being

reachable within a one hop connection. Therefore, only the wireless channel access may have impact on

the latency. This latter is impacted by RBs allocated among different UEs in the same cell according to

the priority of each UE. For the PF, Best CQI, and weighted RR schedulers, the higher the UE priority,

the more often the UE is scheduled, so shorter the latency to access the wireless channel will be. The

priority of each UE depends on his subscribed QoS parameters (refers to Section 6.2.1).

In another way, if a UE has a highly bad channel conditions it may not be scheduled often, which

may increase the latency. In addition, depending on the number of active UEs in a cell as well as the

scheduler policy for a UE in that cell, the packets towards that UE (or from that UE to a MEC server) may

experience delay. Indeed, on the downlink (uplink, respectively) direction, if the number of active UEs

in the cell is high and a UE is using a non-GBR type bearer (a default bearer or a dedicated bearer with

no GBR), the packets towards that UE ( from that UE to a MEC server, respectively) might experience

high delays at the eNodeB downlink queue (UE uplink queue).

Approximating the Round Trip Time (RTT) value in the wireless channel may be challenging as

many types of information are required, such as the number of active UEs in the cell, the channel quality

of the UE ( CQI and CSI), and the downlink and uplink bandwidth. But knowing that the ME application

has access to these information via the RNIS API, it is possible to approximate the RTT and hence help

the UE to decide to offload or not a part of the computation tasks. A global view of the proposed solution

is shown in Figure 6.4. At the beginning, the ME application registers to use the RNIS API for specific

UEs through the service registry, shown in Figure 6.2. Once a UE sends a request to offload data to a

remote server (1), the ME application checks the RNIS API (2). If the ME application considers that it is

better to executes the application locally on the UE, then it sends a reject (NON-OK message); otherwise

it sends an accept (OK message) that includes the RTT approximation and the IP address of the ME

server to connect to (3). The RTT value will be used upstream with energy and execution time to obtain

the remote and local partitions, then offload the remote partition to the server having the IP address

included in the OK message (4). The ME application approximates the RTT periodically and sends a

Keep-to-Live message including the estimated RTT (5). The UE synchronized with the ME application,

computes the partitioning algorithm at each period (i.e., use the new RTT to find the new partitions) and

offload the remote partition (6). More details are given hereafter.

6.3.2 ME application Side

Once receiving the first request from a UE asking to offload data, the ME application, through different

services gather several information to: (1) give an approximation of the RTT, (2) check the resource

availability on the MEC, and (3) check the network conditions to accept or not subscribers offloading

requests. Diagram in Figure 6.8 summarizes these actions, which are detailed in the following.

The minimum quality of the computation offloading service is guaranteed via the arguments defined by:
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Arguments: Quality (GBR, MBR, loss rate, and priority), protocol configuration (IP, named service),

and the needed IT resources for the computation offloading service.

Figure 6.7 depicts the involved services for the MEACOF. The support service translates the MEA-

COF arguments into RNIS and EPS related arguments. These two common services take the argument

values translated as inputs by the support services and look up in their internal data bases and output

the parameters to the MEC services: Network Status and Configuration as well as IP and Named Data

Services. The Network Status and Configuration applies the required QoS parameters to establish a

bearer for the computation offloading service between the UE and the server hosted in the MEC. The IP

and Named Data Services adds the computation offloading header with specified protocol configuration

for the traffic routing performed by EPS. Some KPI requirements are translated into platform services

related requirements (such as VM profiles) and through the VIM (OpenStack for example), these services

check resource availability for compute, network, and storage.

1. RTT approximation. Many works have tried to model the access latency in LTE radio access.

Among them, the authors in [15] proposed to rely on the Remaining Block Signal (RBS), which is sent

periodically by the UE to the eNB in order to estimate the access delay. Though this solution shows a

good approximation, it is difficult to use it at the MEACOF, since the RBS will arrive delayed to the

ME application, leading to wrong approximations. Our solution is based on the UL scheduling report

obtained via the RNIS API. Indeed, the UL Scheduling information indicates the PRB assignment per

UE. The ME application will gather the UL information during a period of time, noted T , and analyze it

to approximate the delay. To do so, we perform some simulations to provide an LTE environment in

which several UEs are connected to an eNodeB using different bandwidths. The simulation details are

provided in Section 6.4.1.

To better understand the eNodeB’s scheduler behaviour, we limited the communication to one packet

par UEs and only on the uplink direction. Results are shown in Figures 6.5, 6.6.
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Figure 6.5: Latency values for 1 packet when eNB using RR scheduling

Figure 6.5 presents the results in term of network latency (in ms) between the UEs and eNodeB

to send one UDP packet for four bandwidth capacities: 1.4 M H z, 5 M H z, 10 M H z, and 20 M H z. The
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eNodeB schedules one to twenty UEs in a Round Robin fashion for each bandwidth value. Figure 6.6

shows the size (in Bytes) of the RBs allocated to the UEs at each Transmission Time Interval (TTI).

The obtained results confirm that predicting the packet delay depends on four main factors: the

number of UEs in the cell, the bandwidth capacity, the eNodeB scheduler, and the packet size.

Impact of the number of UEs. The packet delay is proportional to the number of UEs in the cell. For

instance, in Figure 6.5a, when twenty UEs are interacting with the eNodeB in the same cell, the delay

for the packets sent by the UE #19 and #20 take 51ms to arrive to the eNodeB. However, in case of

one UE is interacting with the eNodeB in the cell, the packet delay is 13ms. We observe the same

impact in the other cases (Figure 6.5b, 6.5c, and 6.5d), where the network latency is increasing with

the number of active UEs in the cell. However, as the used bandwidths are larger than the one used

in Figure 6.5a, the latency is reduced by a factor ranging from two to four for the UEs #19 and #20.

The reasons behind this impact are the following. Within a cell, increasing the number of UEs, will

increase the communication, that is the number of transmitted packets to the eNodeB. Therefore, the

UEs concurrently share the bandwidth to transmit their packets. The scheduler in the eNodeB should

allocate the bandwidth resource (in term of RBs) with a certain policy. Therefore, each UE packet is

segmented with respect to fairness.

Impact of the bandwidth capacity. The bandwidth has a direct impact on the delay; the higher is the

bandwidth, the larger number of RBs can be allocated, so shorter the latency will be (with respect to the

number of UEs in the cell). The bandwidth in term of RBs varies from 6RB s to 100RB s. The smallest

resource capacity that can be allocated for a UE is the RB (180K H z organized in 12 sub-carriers of

15K H z spacing). In case of 1.4 M H z (i.e., Figure 6.5a), The bandwidth carries 6RB s. Therefore, in the

best case, only six UEs can be scheduled simultaneously, the other UEs should wait for other TTIs to be

seen allocated RBs, and hence increase the delay with at least 1ms (in case of resource allocation in the

next TTI). In the other hand, when the bandwidth provides 100RB s (i.e., capacity of 20 M H z), more

then six UEs are packaged within the same TTI to send their packets. Indeed, the entire twenty UEs are

scheduled in the same TTI.

Impact of the eNodeB’s scheduler. The scheduling policy matter in network delay. Indeed, according

to the scheduler policy in the eNodeB, a UE may take a long time to be scheduled, due to its poor

modulation, because this latter depends on the radio conditions of the UE. As described in Section 6.2.1.3,

the RR scheduler allocates RBs equally and periodically among the entire UEs, without considering

the channel conditions, while the PF scheduler is serving UEs with the highest ratio between the

quality channel-rate and the current average service-rate. In addition, CQI scheduler allocates resources

according to users with the best radio link conditions. Therefore, each scheduler has its own algorithm to

allocate resources, which promote a group of users, then reduce their network latency, and disadvantage

other users, hence increase their network latency.

Impact of the packet size. The packet size has also an impact on the network delay that we illustrate

via two examples: Voice over LTE (VoLTE) call packet, and a UDP packet. In case of VoLTE call, the
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size of a packet depends on the used Codec for the voice. If we consider an Adaptive Multi Rate-Wide

Band Codec (AMR-12.65), every 20ms are generated 253bi t s. To deliver a voice sample to a UE,

we need to add other protocol headers such as Real-Time Transport Protocol (RTP) header (typically

12by tes), a UDP header (8by tes), and an IP header (40by tes). Hence, the entire VoLTE packet length

is equal to 733bi t s generated every 20ms. For a UDP packet is about 1024by tes (8by tes for UDP

header, 40by tes for IP header, and 976by tes for the payload). We are interested here into the number

of radio resources needed to transmit in the air for the VoLTE call and the UDP packets. In LTE, a RB is

composed of 12×7 resource elements (REs) (for a normal Cyclic Prefix). Based on the LTE downlink

modulation, a RE carries respectively, 2, 4 or 6bi t s for Quadrature Phase-Shift Keying (QPSK), 16

Quadrature Amplitude Modulation (QAM), and 64 QAM modulation scheme. The modulation scheme is

chosen by the eNodeB with the respect to UE CQI. For example, a UE using CQI #15 (i.e., good channel

condition), the eNodeB can use a modulation of 64 QAM. Therefore, each RE holds 6bi t s. Accordingly,

a RB can carry 168×6 = 504bi t s. When the Robust Header Compression (RoHC) method is used for

the VoLTE call, the VoLTE packet is compacted in 300bi t s. Knowing that a RB is the smallest resource

allocated per UE by the eNodeB, the VoLTE call needs one RB, while the UDP packets needs sixteen

RBs. When the bandwidth cannot carries the entire RBs needed for a packet, the latter is fragmented

into several frames, and when the eNodeB is larger than the packet size, padding information is added to

the packet. Figure 6.6 summarizes the number of RB (in bytes) needed to transmit one UPD packet, for

different bandwidth capacities.
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Figure 6.6: RBs size (in Bytes) for 1 UL RR scheduling

To sum up: The number of RBs composing a packet, the bandwidth capacity, the number of UEs in

the cell, and the scheduling policy impact the network delay. It is difficult to predict the network latency

using all these information in complex calculation. What we propose to do is to use the RB and the

scheduling allocation calculated by the eNodeB for each UE. To obtain these information, the eNodeB

takes into consideration, the number of UEs in the cell, the scheduling policy, and the bandwidth. In

this case, we only need to use these two information (RBs and scheduling allocation) gathered into the

scheduling report, and obtained through the RNIS API, besides the size of packets in term of RBs.

We know that the TTI (or the smallest scheduling interval) in LTE is 1ms. If we fix T to 1 s, then

each period will include 1000 UL scheduling samples to be analyzed. If the UE has been scheduled X
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times during T , we can estimate the average scheduling delay during the period T , as T /X . In addition,

the average of RBs that have been allocated for a UE during the period T is given by �
�T

i=1
RBal loc /X �.

The average access delay noted by D is given by:

D =
T

X
×

PacketSi ze(RB s)

�

�T
i=1

RBal loc

X
�

+10D =
T

X
×

PacketSi ze(RB s)

�

�T
i=1

RBal loc

X
�

+10D =
T

X
×

PacketSi ze(RB s)

�

�T
i=1

RBal loc

X
�

+10(6.1)

Of course this calculation represents an average, which may not lead to an exact approximation,

but at least it can be used easily to estimate the UE’s packet delay, requiring only the UL scheduling

information available through the RNIS API. We believe that the 10ms in the equation corresponds to

the frame duration.

It is well known that the RTT could be approximated by multiplying the access delay by two, as

the DL latency could not exceed the UL latency but would somehow be equivalent. Moreover, the

backhaul latency may be omitted, as the server is located at the ME host. Then, the approximated RTT

is equal to 2×D . To avoid a sudden fluctuation of the estimated RTT, an Exponential Weighting Moving

Average (EWMA) technique is used. The final value of the RTT, to be sent to the UE periodically is as

follows:

RT Test =α×RT Tpr ec + (1−α)×RT TcurRT Test =α×RT Tpr ec + (1−α)×RT TcurRT Test =α×RT Tpr ec + (1−α)×RT Tcur(6.2)

where α ∈ [0,1], and RT Tpr ec and RT Tcur represent the most recent RTT estimate and RTT sample

respectively.

2. Resource availability. The ME application accesses to the infrastructure service to check if sufficient

resources can be reserved for the UE to compute the offloading code regarding to the UE requested

requirements. Indeed, if the UE requirements are computation-intensive then, the ME application will

reserve sufficient CPU and/or GPU if available. If the requirements are more memory-intensive than

computation then, the ME application will reserve enough space (including disc, RAM, and cache).

Therefore, the ME application will request for a VM creation in the nearest server, which will be

connected to the UE.

3. Network conditions. From the RNIS and EPS API, the ME application knows the number of active

UEs in the cell, the UE bearer type and the CQI of the UE. Obviously, if the UE’s CQI is bad, then

it is better to execute the code locally as UE packets may experience high delays (due to the low

modulation throughput), which may degrade the QoE and the QoS. Furthermore, form the EPS API,

the ME application identifies which UEs are using GBR and Non-GBR bearers. if the UE is using a

non-GBR bearer and the number of active UE is high, then the offloading request is rejected. Even if the

UE has a dedicated bearer, the ME application should check the associated QCI in order to evaluate the

packet delay budget allowed to this bearer.

If the ME application estimates that the channel conditions are good or the UE has a dedicated bearer

that guarantees low delay access and there is sufficient resources on the MEC, the UE is authorized to
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offload. The decision along with the remote IP address and an RTT approximation (i.e., if the offload

is accepted) are included in the response of the ME application to UE. The initial RTT value could be

the packet delay budget associated with the UE bearer type (i.e., maximum tolerated latency). Then

periodically, the ME application will further approximate the RTT according to the RNIS information

and provide it to the UE.
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6.3.3 UE Side

The UE’s framework, represented in Figure 6.9, in addition to profiling, scheduling, and proxy, it

includes the following functionalities:

• Modelling - Modellizes applications into a valued graph.

• Partitioning - Solves the optimization problem via graph partitioning algorithms.

• Monitoring - Monitors resources on the UE (e.g., remaining energy, CPU load), and transmits

periodically, these values with the RTT estimation to the Partitioning module.

• Patching - introduces keyword “non-transferable” for classes with a code dependency con-

straint [59, 94, 216, 217, 220].

App

Profiling

Modeling

Partitioning

Patching

Scheduling

C-Proxy

Monitoring

Local Execution

Figure 6.9: UE framework

The process at the UE side is following the computation offloading described in Section 2.2. We start

by profiling the application to estimate the resource consumption, then we modellize the application

via a valued graph. Each vertex represents a software component with a chosen granularity. At this

stage, the graph may have a large size. Therefore, we propose to reduce it by grouping vertices that

highly communicate to create clusters of components. Each time a ME application decision is received

(OK message), the partitioning module is launched in order to find the local and remote partitions. The

remote partition is then offloaded through a bearer established with the MEC server. Communications

are based on RPC mechanism, done between the C-Proxy and S-Proxy. The diagram in Figure 6.10

highlights the steps achieved by the UE to launch a computation offloading with a server hosted in the

MEC. These different steps are thorough in the following paragraphs.

1. Profiling and Modelization. Basically, We assume that the application candidate for computation

offloading is composed by n classes. That is, the granularity level of offloading is the class. The

application is represented using a valued and locality-labeled graph (VLG) with n vertices. Each vertex

in the graph corresponds to one class in the application; it is labeled with a binary value to indicate
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1. UE sends an Offloading-
request to the ME App

2. Dissect the application

3. Modelization

4. Resolve the optimization problem

The request contains the application requirements (#
CPU/GPU units, and memory size) and profile (computation-

intensive? memory-intensive? real-time application?)

The granularity level is a class, the profiling includes the ex-

ecution time ti and energy consumption ei per class i , the
interactions (calls frequency fi ) and exchanged data di with

class i , the dependency constraint li , and the execution order oi .

1. Graph representation with a cardinality equal to # of classes:

• a vertex i represents the class i labeled with ti , ei , and li ,

• an edge (i , j ) corresponds to an interaction between two classes i and
j , the edge is labeled with fi and di .

2. Graph reduction:

• Constitute the clusters (SCC algorithm),

• Compute the cluster weights ti , ei , and li (Vertices Modelization

algo),

• Connect the clusters and compute the edge weights fi and di (Edges

Connections algo).

Local-View algorithm Global-View algorithm

Offload remote parti-
tion (communication)

Use the monitoring values

Use the RTT approximation
×

Figure 6.10: UE flowchart

whether the component can be offloaded or not, according to the dependency constraint. Let us call this

label locality l.

We used the execution time on the UE and the energy consumption to assign values to vertices. Each

edge in the graph represents the interactions between two classes in the application and is weighted with

the frequency of calls as well as the size of the exchanged data. The problem consists in identifying

which classes of the application could be offloaded aiming at improving the response time and saving

energy on the UE device. To this end, we propose to use the graph partitioning technique to obtain a

minimum cut. Stemming from the fact that graph partitioning is an NP-hard problem (thus, its solution is

prohibitive computationally), we propose to reduce the graph size by clustering the vertices that highly

communicate.

From the valued and locality-labeled graph (VLG) we construct a reduced valued and locality-labeled

graph (RVLG). The first step consists into grouping the vertices that highly communicate inside clusters

using the Strongly Connected Components (SCC) algorithm, leading to reduce the size of the graph as

well as the communication between components. Indeed, reducing the graph size permits to decrease the

resolution overhead and the network communication. Next, we compute the weights for each cluster and

connect them together to create the reduced graph RVLG. To this aim we used the procedures Vertices

Modelization, and Edges Connections.

a. Create the Clusters. The SCC algorithm constructs a cluster from a given vertex a. This cluster

will at least contain the element a. To construct the cluster we proceed as follows. First, we initialize

all the components of the graph to non visited (lines (3, 4) and (13, 14)). Next, we create two sets of
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vertices (lines 6, 16). One of them will contain all the successors4 of all the vertices in this set (lines 7 to

12), and the other one will regroup all the predecessors5 of all the elements in this set (lines 17 to 22).

Finally, we obtain a cluster which is the intersection between the two sets of vertices (line 23).

1: procedure SCC (G (V ,E ) , a i n V )
2: begin
3: for each v i n V

4: vi si ted ( v ) = f al se ;
5: end
6: V1 = {a};

7: while ( ( v i n V1) && ( not vi si ted ( v ) ) )

8: vi si ted ( v ) = tr ue ;
9: for each

�

( u = (v , y) i n E ) && ( y not i n V1 )
�

10: V1 =V1 + {y} ;
11: end
12: end
13: for each v i n V

14: vi si ted ( v ) = f al se ;
15: end
16: V2 = {a} ;

17: while ( ( v i n V2) && ( not vi si ted ( v ) ) )

18: vi si ted ( v ) = tr ue ;
19: for each

�

( u = (y , v) i n E ) && ( y not i n V2 )
�

20: V2 =V2 + {y} ;
21: end
22: end
23: return V1 − (V −V2,) ; // (V1

�

V2 )

24: end

b. Create the new Graph. Once the clusters have been created (using the SCC algorithm), we create

the reduced valued and locality-labeled graph (RVLG), reduced graph for short6. First, we define the

vertices that compose the reduced graph using the procedure Vertices Modelization. Each vertex in

the reduced graph corresponds to one of the created clusters (with at least one vertex inside). The

cardinality7 of the reduced graph is equal to the number of created clusters. In what follow, we use the

term cluster to represent a vertex in the RVLG, in order to distinguish the appellation with the vertices

of the VLG. Next, we assign weights (time and energy) to each cluster in the reduced graph. The energy

and time weights of each cluster ci are the cumulative weights of all the vertices inside this cluster ci

(lines 8 and 9). After, we put a locality label for each cluster in the reduced graph, which depends on the

locality labels assigned to the vertices inside these clusters. If at least one vertex j in the original graph

(VLG), that is inside a cluster ci , has a label l j = 0, then the cluster ci should be labeled with lci
= 0,

4A vertex coming after the current vertex in a path (e.g., G(V ,E) is a graph, (x, y) ∈ E ; y is a successor of x).
5A vertex coming before the current vertex in a path (e.g., G(V ,E) is a graph, (x, y) ∈ E ; x is a predecessor of y).
6We use the term RVLG and reduced graph interchangeably.
7Number of elements in a set.
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otherwise lci
= 1. In other words, if a class from the cluster ci cannot be offloaded, then the whole cluster

ci cannot be offloaded (lines 11 to 14).

Afterward, we connect the clusters using the Edges Connections procedure. For each edge in the

original graph (VLG), if the two vertices that constitute the edge belong to two distinct clusters, then

an edge between the two clusters (if it does not exist, line 7) is created. Finally, we compute the edge

weights for the reduced graph. The weights of an edge (ci ,c j ) are equal to the sum of weights of each

edge (x, y) in the VLG wherein, x, y do not belong to the same cluster ci or c j (i.e.,
�

x ∈ ci and y ∈ c j

�

or
�

x ∈ c j and y ∈ ci

�

(line 8)). This process is repeated for all the clusters. The result is a reduced valued

and locality-labeled graph (RVLG).

1: procedure VERTICES_MODELIZATION(G(V ,E))
2: begin
3: G �(V �,E �) =G(V ,E);
4: i = 1;
5: while (V � �=∅)

6: v = r andom(V �);

7: Ci = SCC (G �(V �,E �), v);

8: TCi
=

�car d(Ci )

j=1
Tv j

, v j ∈Ci ;

9: ECi
=

�car d(Ci )

j=1
Ev j

, v j ∈Ci ;

10: V � =V �−Ci ;

11: if ((∃v j ∈Ci ) & (l j == 0)) then
12: lci

= 0;

13: else
14: lci

= 1;

15: i++;

16: end
17: return C =

�i
j=1

Ci ;

18: end

1: procedure EDGES_CONNECTIONS (G (V ,E ) , C =
�i

j=1
ci )

2: begin
3: for ( i = 1 , i ≤C .l eng th , i ++ )

4: j = 1;

5: while
�

( j ≤C .leng ht ) && ( j ! = i )
�

6: for each
�

�

(u = (v , w) ∈ E ) && ( v i n ci )
�

&& (w ∈ c j )

�

7: Create e(ci ,c j ) in the RVLG if it does not exists ;
8: W (ci ,c j ) += W (v , w) ;

9: end
10: j++ ;

11: end
12: end
13: end

2. Partitioning. Regarding the decision algorithm (i.e., offload a cluster or not), we propose two

different models; Global-View and Local-View. In the Global-View model, we focus on the optimal

solution. To this end we model the offloading decision problem using an ILP. However, the resolution of

the ILP may take time and drastically increase with the size of the application. Indeed, there is a local
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latency (overhead) of the model resolution to consider in the response time. In the Local-View model, we

try to minimize this overhead by proposing a more simple but efficient heuristic solution. Both algorithms

take as inputs the reduced version of the graph, the wireless network characteristics (bandwidth and

RTT) and the available resources on the UE (energy and computing resources), and return as output

the local and remote partitions. For the convenience of presentation, we use the parameters listed in

Table A.1 to describe the two models hereafter.

Table 6.1: List of used parameters

Variable Description

Ti Time Execution of the i th cluster on the UE

Ecpu Energy consumption on the UE to compte the local partition

Eni c Energy consumption by the UE for the uplink and downlink results

Ei dl e Energy consumption by the UE while the server computes the remote partition

Eth Energy threashold consumption by the UE to execute the application

s Server speed

U L Uplink Bandwidth

DL Downlink bandwidth

di Uplink data (inputs, code) for the offloaded cluster ci

ri Downlink results from the offloaded cluster ci

RT T Round trip time (network latency)

li Locality constraint on the cluster ci

a. Global-View Model. We consider that the total execution time of the application candidate for

computation offloading is split into three parts. The first part is the local execution time related to the

execution of the local partition of clusters on the UE. The second part is the remote execution time,

which considers the execution cost of the remaining clusters (i.e. the remote partition) on the server.

Finally, the communication cost, which includes the latency as well as the time to send and receive the

results from the server. We define a threshold value, Eth , for the energy, as the maximum amount of

energy that can be spent for the application processing. We set this value to 95% percent of the total

consumption of the application when it is executed locally. This constraint is useful in our model: In the

worst case, we gain 5% energy, and more importantly, this constraint prevents from wasting additional

energy due to the network communication, as our objective function focuses on the execution time

optimization. The algorithm steps are as follows:

First, the RVLG is represented by a matrix in order to be given as input to an ILP. The proposed

ILP 6.3 aims to improve the execution cost of the overall program, while maintaining the energy

consumption under a certain threshold (Eth).
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∀i ∈ {1, ...,n} , xi ∈ {0,1}, lci
∈ {0,1}

xi ≤ lci

(6.3)

The symbol xi is a binary variable that indicates the ILP output: xi = 0 (respectively xi = 1) denotes

local (respectively remote) execution of cluster ci . The constraint xi ≤ lci
concerns the clusters that

cannot be offloaded, due to the hardware dependency constraint, as stated before; therefore, if a cluster

is labeled with lci
= 0 (i.e, non-offloaded cluster), then xi = 0 (i.e., this cluster will not be offloaded).

The server CPU speed s, could be obtained along with the IP address of the remote server.

Similar to performance, ILP 6.4 aims to minimize the energy consumption of the application through

offloading under some constraints; the total execution time of the application should be less or equal to

the total execution time on the UE, the symbols xi as well as lci
are binary variables, and clusters that

have the dependency constraint cannot be offloaded.
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∀i ∈ {1, ...,n} , xi ∈ {0,1}, lci
∈ {0,1}

xi ≤ lci

(6.4)

Next, When the ILP is defined, it is solved to compute the value of each xi . Afterward, each cluster ci

is assigned to one of the two partitions (local partition or remote partition) according to the value of

the corresponding xi ; that is, if xi = 0, then the corresponding cluster is assigned to the local partition,

otherwise it is enclosed inside the remote one. Last, the algorithm returns the set of clusters that should

be offloaded (remote partition), and those that should be executed on the UE (local partition).

Algorithm 2 Global-view

1: Inputs: Mn,n , L =
�k

i=1
(lci

= 0), k < n;

2: Outputs: X =
�

XLocal , XC l oud ;

3: Objective= T i me0 OR Ener g y1;

4: if (Ob j ecti ve == 0) then
5: X =

�n−k
i=1

xi = Solve_ILP (eq : 6.3);
6: return X ;

7: else
8: if (Ob j ecti ve == 1) then
9: X =

�n−k
i=1

xi = Solve_ILP (eq : 6.4);
10: return X ;
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b. Local-View Model. In the Local-View model, each cluster composing the application is treated

separately from the others. The proposed algorithm dissects the possibility of offloading a cluster or not,

with respect to the dependency constraint. The purpose is to avoid using the ILP, in order to reduce the

resolution time compared with the Global-View algorithm. Indeed, for some low-latency applications,

there is a need to decide rapidly to offload a cluster or not, to avoid additional delays. Like the Global-

View model, the proposed algorithm accepts as input the RVLG and generates two partitions as output;

the local partition and the remote partition. The concept of this algorithm is simple; for each cluster ci ,

if either the latency or the cost of communication (i.e., exchanged data) with the ME is higher than the

local execution time of this cluster, then offloading the cluster will neither improve the computation

cost nor the consumption cost (i.e., xi = 0). Otherwise, if both latency and the communication cost are

less than the execution time, the algorithm checks if a gain is achieved when offloading the cluster. The

offloading gain is the difference between the local cost and the offload cost (the offload cost includes the

communication cost and the remote execution) and is defined as:

TGo f f = w ×

�

1

sm
−

1

s

�

−

�

di

U L
+

ri

DL
+2×RT T

�

(6.5)

where w is the the amount of computation for cluster ci , and sm represents the UE processing speed.

If offloading a cluster will achieve a gain and no dependency constraint was made on this cluster (i.e.,

lci
= 1), then it will be offloaded (i.e., xi = 1).

Algorithm 3 Local-view

1: Inputs: Mn,n , L =
�k

i=1
(lci

= 0), k < n;

2: Outputs: X =
�

XLocal , XC l oud ;

3: for each i ∈V

4: if (i ∈ L) then
5: xi = 0

6: else
7: if ((RT T < Ti ) & (di /Bs + ri /Br < Ti )) then
8: if (TG i

o f f
> 0) then

9: xi = 1

10: else
11: xi = 0

12: else
13: xi = 0

14: end
15: return X

6.3.4 Server Side

We introduce in this section, the architecture and the functionalities of our framework installed on the

server. The framework is composed of:
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• Profiling - Keeps track of several attributes evaluation (e.g., memory usage, CPU time, and energy

consumption) during the application execution. Valgrind8, IntelVTune9, and Visual Studio10 are

some profilers.

• Scheduling - Schedules the execution on the server according to the component dependency graph,

generated by the profiler or sent from the UE.

• S-Proxy - inserts RPC communication sockets between the UE and the server.

• Monitoring - Monitors resources usage. The values are sent to the UE to be used in the offloading

process.

Figure 6.11 depicts the architecture of the server framework.

Profiling

Scheduling

S-Proxy

Monitoring

Remote Execution

Figure 6.11: Server framework

6.4 Results

In this section, we present the evaluation of the proposed framework, through a computer simulation

for the MEACOF and a testbed for computation offloading. We describe the simulation scenario and

testbed, then discuss the obtained results.

6.4.1 Latency approximation

Our use case is made on the network simulator NS311 using lena12 project, to simulate an LTE envi-

ronment wherein, we connect between one to twenty UE with the same budgets and distance to an

8http://valgrind.org/
9https://software.intel.com/en-us/intel-vtune-amplifier-xe

10https://profiler-and-tracer.com/
11https://www.nsnam.org/
12http://networks.cttc.es/mobile-networks/software-tools/lena/
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eNodeB using four bandwidth capacities namely; 1.4 M H z, 5 M H z, 10 M H z, and 20 M H z, then we

simulate a communication between these UEs and the eNodeB simultaneously, using UDP packets with

1024by tes each one.

Table 6.2 lists all Lena network parameters we used in the simulation.

Table 6.2: Communication simulation parameters

Parameter Value

eNB TxPower 30dBm

No of eNBs 1

No of UEs 1 to 20

Frequency 1.4 M H z, 5 M H z, 10 M H z, 20 M H z

eNB Antenna Gain 18dBm

UE Antenna Gain 0

eNB Noise Figure 5dB

UE Noise Figure 9dB

Resource Blocks per Cell 25

LTE Scheduler Round Robin

Duplex Mode Frequency Division Duplex

Maximum Sending Power 10000mW

Signal Attenuation Threshold −110dBm

Propagation Model Free Space Model

UE TxPower 26mW

Path Loss Scenario URBAN MACROCELL

Packet Size 1024 B

Simulation Time 60 s

Distance UEs to eNB 50m

MTU 1500B

LTE RLC Max Buffer Size 1,000,000 × 1024

6.4.2 Offloading Performance

To evaluate the offloading performance of the proposed framework, we developed a testbed composed of

a MEC server and a UE performing computation offloading of a face recognition application application

(OpenBr13). The MEC server is Dell M4800 laptop, powered by an Intel Core i7 processor (clocked

at 2.8Ghz) running Ubuntu 14.04, also including an Nvidia Quadro K2100M GPU card with 2GB

memory. The UE is emulated by a VM running Ubuntu 14.04. The MEC server is 8× faster than the UE.

The UL bandwidth is around 50 Mbps, and the DL bandwidth is 60 Mbps.

In this section we discuss the results obtained through the two proposed algorithms: global-view and

local-view.

After the profiling step, 96 classes are used by the application. These classes were then grouped into

clusters.

13http://openbiometrics.org/
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Figure 6.12 illustrates the number of clusters to offload regarding the latency between the UE and

the MEC server. We make two main observations here.

• The number of clusters to offload is inversely proportional to the latency. This remark is applicable

for both proposed algorithms (i.e., Global-View and Local-View). When the network latency is

increasing, there is less offloading gain, hence less clusters to offload. Basically, the Global-View

(Local-View, respectively) algorithm minimizes (maximizes, respectively) the model defined

by equation 6.3 (the gains through equation 6.5, respectively). To minimize equation 6.3, the

second part of the sum (i.e., xi

�

Ti

s
+

di

U L
+

ri

DL
+2×RT T

�

) should be equal to zero when the latency

(RTT) is high (i.e., xi = 0). For equation 6.5, there is a gain (TGo f f > 0) when the RT T is less

than
�

1
2

�

×

�

w
�

1
sm

−
1
s

�

−

�

di

U L
+

ri

DL

��

. Once the latency reaches 110ms, the performances of both

algorithms converge; less than 10 clusters are offloaded. The number of offloaded clusters is merely

zero when offloading a cluster will not generate gains.

• The Global-View algorithm identifies more clusters to offload than the Local-View. Deciding where

to execute each cluster subject to latency constraints is very challenging, as it requires a global

view of the program’s behavior. The solution is optimal only when the decision strategy is globally

optimal (i.e., across the entire program) rather than locally optimal (i.e., relative to a single cluster

invocation). The Global-View algorithm solves an ILP, which helps to derive the optimal solution.

Thus, for each latency value, the ILP finds the maximum number of clusters that minimizes the

cost (i.e., the optimal number of clusters to offload). The Local-View algorithm, on the other hand,

focuses on each cluster independently of the others, searching only for local solutions. A cluster is

offloaded if and only if a gain (i.e., TGo f f ) is obtained. We believe that the difference between the

two curves is due to the communication cost of some clusters which do not result in a local gain as

the communication cost exceeds the computation one but improve the global gain.
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Figure 6.12: Number of offloaded clusters by report to the RTT between the UE and the MEC sever.

Now we turn our attention to the gain that could be achieved for users. For this purpose, we focus on

two important metrics regarding improving user experience: (i) the time needed to execute the face
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recognition application, and (ii) the energy consumed at the user end.

Figure 6.13 presents the response time using three approaches: (i) the whole application is computed

locally on the UE, (ii) the application is computed using the Local-View algorithm, and (iii) the

application is executed employing the Global-View algorithm. The two last approaches are subject

to the network latency. The total execution time for face recognition takes around 9.5 s. This time

corresponds to the elapsed time between the moment when the web camera of the laptop is launched and

the moment of viewing the result. Inside this delay interval, different actions are performed, including

(i) launching the web-camera, (ii) capturing a video (a set of 300 frames), (iii) communication with

a graphical QT interface to display the video in real-time, (iv) detection (detecting eyes, face, key-

points, and landmarks) for each frame to have the illusion of tracking, (v) normalization (applying

color conversion, enhancement, and filtering), (vi) representation (computing binary patterns, key-point

descriptors, orientation histograms, and wavelets), (vii) extraction (using clustering, normalization, and

quantization), and (viii) matching (using classifiers, distance metrics, and density estimation).

The Global-View algorithm achieves the best performance for all the latency values. For a 10ms

latency, the Global-View algorithm (Local-View, respectively) offers almost 69 (62, respectively) percent

of gain compared with the local execution. For small latency (10ms to 60ms), the Global-View algorithm

is almost 1.13× optimal compared with the Local-View Algorithm. For a latency higher than 110ms,

the two algorithms offer the same performance, since both identify the same clusters to offload. As the

latency is high, the two algorithms converge to the same results.
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Figure 6.13: The execution time by report to the RTT between the UE and the MEC sever.

Figure 6.14 depicts the energy consumed by the face recognition application for the three scenarios

(i.e., local execution, Global-View algorithm, and Local-View algorithm). Computing the whole applica-

tion locally consumes 7.564 J . For 10ms latency, the Global-View (Local-View, respectively) algorithm

offers almost 93.4 (90.5, respectively) percent better performance than the local execution. This gain

is inversely proportional to latency. Indeed, when latency increases, the number of clusters to offload

decreases, in turn decreasing the achieved gain, which depends on the number of clusters to offload. The

Global-View algorithm is almost 3 percent better than the Local-View algorithm. From 140ms latency,
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the achieved gain by the both proposed algorithms is null. Basically, no clusters are offloaded for such

high latency. For latencies higher than 140ms, no gain is achieved by either algorithm, since no clusters

are offloaded in such conditions.
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Figure 6.14: Energy consumption versus the network latency

6.5 Conclusion

In this chapter, we proposed a novel framework for computation offloading, which uses the MEC

architecture defined by the ETSI, taking advantage of its RNIS API to estimate network latency between

the UE and a server hosted in the ME. This estimation, coupled with other parameters, is used to

derive an offloading decision for the UE. We formulated two models operating at different granularity

(application component vs. component cluster level). Whilst the fist model searches for an optimal

offloading, the second model searches for a fast solution. The effectiveness of our design, tested using a

face recognition application, unveils an execution 62 percent faster than the local execution, and can

save up to 93.5 percent of energy for the UE.
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Nowadays, computation offloading is gaining ground and maturity especially with the transition toward

5G mobile access and edge computing, which solve the issue of high latency with the Cloud. Therefore,

offloading delay-sensitive applications becomes possible with these two technologies. 5G mobile network

promote the concept of “Anything as a Service” (ANYaaS), which allows MNOs to create and orchestrate

5G services on demand and in a dynamic way. Computation offloading as a Service (COFaaS) is one of

these services. Indeed, most of verticals will be connected to the Cloud or edge to offload their requests.

In case of automotive, smart cars are interested into collision avoidance and traffic fluidity, therefore,

they offload requests to MEC in order to predict and anticipate traffic congestion. For the eHealth, smart

clothes, chooses or watches will offload their data/computation to the Cloud/edge to study a consumer

health and if needed call the emergency service for intervention. Several other use cases are defined by

verticals such as robotics and many others. Yet, Computation offloading can not be deployed before

solving the overcoming issues that face this solution raging from resource consumption, interoperability

and dependency constraints to security and monetary cost.

We developed through this thesis several algorithms and methods to improve performance of appli-

cations via computation offloading, reduce resource consumption and make possible the computation

offloading of 3D mobile applications.

7.1 Results obtained during the thesis

The contributions of the thesis were divided into three parts:

• A computation offloading heuristic for 3D mobile games: The proposed heuristic first, decom-

poses the 3D world scene of the game into various game objects including the NPC, player

character, environment, and particles. Then enclose for each GO, the requested modules inside
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clusters. The heuristic studies the possibility to offload or not a cluster, with respect to the code

dependency constraint. It is a cluster decision-making, which focuses on each GO independently

from the others. The proposed algorithm accepts as input a cluster and returns a binary decision

(i.e., to offload or not the cluster). The heuristic checks if the network latency or the transmission

delay is higher than the local execution time of a cluster, then offloading the cluster will not

improve the performance, thus it is not offloaded. Otherwise, if both latency and time to exchange

data are less than the cluster execution time, the algorithm checks if a gain is obtained by offloading

the cluster. The offloading gain is the difference between the local cost and the offload cost, this

latter includes the communication cost.

• Two algorithms for computation offloading; Global-view and Local-view: The former is based

on ILP and the latter is an heuristic. First, the application candidate for computation offloading

is modelled with a valued graph, wherein the vertices represent the application components and

the edges are the interactions between the components. The vertices are valued with the resource

consumption (i.e., CPU time and energy consumption), while the edges are labeled with the amount

of exchanged data, frequency of interactions, and code dependency. The graph size is then reduced

by clustering the components that highly interact. The global-view algorithm draws an ILP from

the reduced graph and solve that ILP with the objective function to reduce the energy consumption

and improve performance subject to available energy, execution time, and code dependency. The

local-view algorithm computes for each cluster of the reduced graph, the offloading gain. Then

decides according to this gain if a cluster will be offloaded or not.

• A framework-based computation offloading oriented MEC: The contribution was to devise a

framework running on three different entities: (i) ME application hosted on ME, which is able to

access mobile user related radio information, (ii) mobile user, and (iii) server hosted in the ME.

The ME application is responsible for driving a decision to accept or to reject offloading requests

coming from mobile devices, and predicting, using low-level APIs, the RTT value. The mobile

device is in charge to take the decision to offload or not the application modules according to the

estimated RTT value obtained from the ME application. Finally, the server, hosted on the ME

side, computes the offloaded code and sends back the results to the mobile device. As a proof of

concept, the authors have run a face recognition application on the mobile device, which offloads

computation to the server hosted in the ME.

7.2 Perspectives

To extend our works, the future research directions will cover the following axes: Our frameworks still

works in progress, they are unoptimized initial prototypes, with several performance optimizations still

possible. In the future we will continue to improve the frameworks to deal with two main issues; the

network latency and the rendering activity.
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• One of our motivations is to leverage MEC architecture to drive a computation offloading. We

want to use MEC as an enabler for low-latency computation offloading-based games. To this aim,

we rely on our framework proposed in [188] to orchestrate the offloading process and introduce

the concept of Edge gaming.

• Another axis that we want to explore is the caching concept. Caching allows storing data locally

to cope with network latency. Data are used in future invocations to reduce the interaction delay

and therefore improve the performance. Data caching approach stores data such as video streams

near to the mobile user. This solution is known as CDNs.CDN has been proposed to maximize

bandwidth, improve accessibility, and maintain correctness through content replication. We want

to investigate service code caching and CDN in our framework to improve the performance.

There are still numerous challenges that need to be solved to make computation offloading a prevalent

technique.

• Security and trust issues prohibit the applicability of computation offloading to unknown environ-

ments. Introducing SDN controllers and firewalls in computation offloading is a reliable solution.

Indeed, an SDN firewall will filter the TCP communications according network security policies by

recording and processing the different states of connections and interpreting the possible transitions

into an OpenFlow rules.

• Another challenge that current research is facing is mobility of users requesting computation

offloading. In the recent trends, users are mobile using their mobile devices such as smartphones to

connect to the Internet and consume their applications. Offloading computation in a highly mobile

environment is challenging. One of our future motivation is to introduce the SDN/NFV, Follow

Me Cloud/Edge [149] to manage the mobility.

• We are also interested into the placement of the offloaded tasks to better exploit the provider

resources and improve the performance of the end-user. Offloaded task placement should be similar

to the VNF placement. This is central in 5G mobile access, as a tremendous mobile devices are

requesting for remote finite resources located in the edge of access network.

• Last but not least, we would like to explore computation offloading from business view. Mobile

Network Operators may provide computation offloading as a service in 5G networks. Therefore,

we will need to define a model for computation offloading to deal with the 5G architecture and

propose a cost model for that service.
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A.1 Offloading Gain study

For the convenience of presentation, we used various symbols to describe the following models. Table A.1

lists these symbols and their signification.

Table A.1: Description of the used symbols

Variable Description

w Amount of computation for P2

sm Mobile speed

ss Server speed

Bt Network transmission bandwidth

Br Network reception bandwidth

Dt Input data and code size to offload

Dr Results size

RT T Round trip time (network latency)

Pm Power consumption on the terminal

Pcomm Power consumption for network communication

Pi dl e Power consumption on the terminal when the server is computing the offloaded tasks

Avai lmem The memory size available on the mobile

A.1.1 Improve performance

In this section, we propose an analytic performance-based model for computation offloading. We

are interested on identifying when computation offloading brings a gain and what are the parameters

impacting this gain. In this model, we suppose that both mobile device and remote server are computing
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tasks sequentially. We suppose an application requesting for computation offloading. The program of

this application is divided into two partitions; the local partition and the remote partition;

• The local partition (P1) contains the part of the program that should be computed on the mobile

device.

• The remote partition (P2) encloses the part that may be offloaded (i.e., the program remainder).

The local partition, P1, should be computed on the mobile device, it cannot be offloaded according to

Section 3.4.4. Therefore, no offloading gain can be achieved through this partition. Hence, we turn our

interest on partition P2.

1. Local execution of the partition P2. The time to execute the partition P2 on the mobile device is

given by: Tm =
w
sm

2. Remote execution of the partition P2. The time to execute the partition P2 on the remote server in-

cludes the time to compute the code on the server
�

w
ss

�

and the communication delay
�

D t

Bt
+

Dr

Br
+RT T

�

.

It is given by: To f f =
w
ss
+

�

D t

Bt
+

Dr

Br
+RT T

�

Computation offloading improve the application performance when the execution time of the partition

P2 on the remote server is shorter than the execution time of this partition P2 on the mobile device. That

is to say; To f f < Tm . This introduce the Equation A.1

w

ss
+

�

D t

Bt
+

Dr

Br
+RT T

�

<
w

sm
⇒

D t

Bt
+

Dr

Br
+RT T < w ×

�

1

sm
−

1

ss

�

(A.1)

We note from Equation A.1 that if the execution time of partition P2 on the mobile device is shorter

than the communication delay (i.e., w
sm

<
D t

Bt
+

Dr

Br
+RT T ) then, even if the server is infinitely fast,

Equation A.1 will be false (i.e., offloading will not improve the execution time). Hence, this inequality

is correct for CPU-computation intensive tasks (Large w), powerful server (high speed ss), large uplink

bandwidth Bt , and downlink bandwidth Br , and exchanging small data size between the mobile device

and the remote server (small di ).

We define G t
o f f

(Equation A.2) as the computation offloading gain.
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(A.2)

A.1.2 Saving energy

Energy consumption is a main constraint for mobile devices, as it cannot be replenished without external

source of energy. Several research works have been proposed to study the energy consumption when
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performing computation offloading. In what follows, we propose a general model analysis of the energy-

related offloading consumption. In this description model, we use the example off the application

composed on the local and remote partitions P1, and P2 respectively, as described in the section A.

Similar to the previous case, computation offloading may improve performance only through remote

execution of P2. Therefore, we focus on this partition.

1. Local execution of P2. The energy consumption is given by: Em = Pm ×
w
sm

2. Remote execution of P2. The energy consumption is given by: Eo f f = Pcomm ×

�

D t

Bt
+

Dr

Br
+RT T

�

+

Pi dl e ×
w
ss

Computation offloading saves the energy consumption on the mobile device when the energy consump-

tion (on the mobile device) of the partition P2, when computed remotely is shorter than the energy

consumption (on the mobile device) of the same partition P2, when computed locally. Mathematically,
�

Eo f f < Em

�

. This induces Equation A.3
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(A.3)

This equation holds when: w is large, the remote server is powerful (high speed ss), the uplink (Bt )

and downlink (Br ) bandwidth are large and the data size exchanged is small (small di ).

The computation offloading gain Ge
o f f

is given in Equation A.4
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(A.4)

A.1.3 Reducing memory

Running some applications with memory intensive on resource-constrained mobile devices such

as Personal Digital Assistant (PDA) is not possible. Hopefully, offloading the memory-intensive tasks

to a remote server make the execution of these applications on such devices (i.e., PDA) possible. We

propose in the following, a simple model analysis of a memory-related offloading consumption.

The memory consumption of the whole application on the mobile device is the sum of the memory

occupied by the part P1 (mem1) and the part P2 (mem2) i.e., (mem1 +mem2).

Offloading the part P2 saves the memory utilization when:







mem1 +mem2 > Avai lmem × f

mem1 < Avai lmem × f
(A.5)

The memory offloading gain is given by Equation A.6.

Gm
o f f = mem2 −δGm
o f f = mem2 −δGm
o f f = mem2 −δ(A.6)
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Where δ includes the size of the results sent from the remote server to the mobile device and the size of

the offloading framework.

To sum up, we proposed here above, three simple mathematical models to study how to fulfill the

requirements of applications and how to calculate the computation offloading gain. However, the number

of parameters involved in the optimization models varies between frameworks.

A.2 Games

A.2.1 Rendering Pipelines

Unity 3D uses four additional rendering activities, which occur in conjunction with the main pipeline.

We summarize these rendering activities hereafter.

1. Forward rendering – It has been introduced for dynamic lighting in 3D environments. It consists

of three passes: (i) Ambient Pass applies a global low lighting to the overall 3D scene. The results

of this pass are saved in the frame buffer; (ii) Light Pass repeats the drawing process for each

opaque object, affected by one of the light sources regardless of others in the scene. The lighting

is accumulated in the frame buffer; (iii) Transparency Pass draws all the transparent objects in

the same way as for opaque objects, but with a drawing order of transparent objects from back to

front. The transparent geometry is added to the frame buffer and combined with the ambient and

opaque results [62].

2. Deferred shading – The idea is to defer the lighting calculation to the second pass until all the

geometry has been rendered. The deferred shader algorithm uses smart management of different

buffers [244], defined through three passes as follows: (i) Geometry Pass (Opaque Pass) applies

an ambient lighting, saves the results in the frame buffer, and fills the Geometry buffer; (ii) Light

Pass processes the lighting through the buffers transition calculations, starting with a depth buffer

to rebuild origin position of pixels. The results are added to a normal buffer data to calculate

the diffuse light. Then, a specular lighting is calculated using the position, the normal, and

specular data buffers. Finally, the specular light is applied to colour and shading data buffer and

accumulated with all the other light sources. The global colour of these buffers is accumulated

in the frame buffer; (iii) Transparency Pass renders the transparent geometry using the forward

rendering (Ambient Pass and Light Pass) [62, 252].

3. Pre-pass rendering – Similarly as deferred shading, it addresses the restricted usage of different

material shaders. The lighting is stored in the new buffer with light pre-pass rendering, instead of

applying it to the colour and shading data buffer. This process follows four passes: (i) Geometry

Pass applies the ambient lighting, draws the opaque geometry, and fills the G-buffer; (ii) Light

Pass performs the lighting calculations in the pixel shader using the G-buffer for all light sources.

The results are accumulated with additive primitive in lighting buffer; (iii) Material Pass draws
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Figure A.1: Graphic pipelines stages

again the geometry using the lighting buffer as lighting input for the material-specific shader; (iv)

Transparency Pass uses the forward rendering (Ambient Pass & Light Pass) to process the lighting.

The results are saved in the frame buffer.

4. Vertex lit – This operation is the fastest one and is supported by a large number of hardware. This

process is done in one pass, wherein each object is rendered with lighting calculated on the vertices

of the object from all the light sources.

A.2.2 Game Description

Viking Village – is a FPS 3D-game. The sequence offers a look at a medieval Viking village. The

scene is characterized by high design quality with many details and various effects like water

vibration, fire and smoke particles, sunlight, firelight, shadows, and reflecting lights, shadows, and

colours by surfaces.

Tower Bridge Defense – is a TPS 2D platformer game. It depicts a player character fighting against

NPC in a physics-driven 2D sample level. The avatars jump between suspended platforms, over

obstacles, to advance the game. It features many objects subject to the 2D physics such as gravity,

velocity, and other forces.

Stealth – is a TPS 3D-game that describes a hostile environment characterized with guards (NPC)

and security cameras, laser gates, key-card, and elevator. The game objects have a high rendering

quality. The PC and NPC have an advanced animators, and the AI that manages NPC, laser gates,

key-cards, and elevator is complex.
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Survival Shooter – is a TPS 3D action-game, wherein the gamer fights against an NPC. The objective

is to shoot them, eliminate as many as possible, stay alive and try to get a high score. The game is

characterized by 3D physics, character animations, and many NPC.

Tanks – is a 2D MMOG where two players fight in a tank shooting game in a hostile desert environ-

ment. It is characterized by few graphical add-ons (such as rocks, palm trees, and rocky mountains).

The tanks are subject to physics (explosion particles, velocity, and friction), and directional light

to simulate the sun.

Space Shooter – is a 2D TPS game that takes place in space. The game is described by a large number

of spacial-ships (enemies) and asteroids objects that are subject to physics: explosion particles,

velocity and friction and, AI management.

Car – is a 3D racing game, with platforms. It is a standard scene, representing a car with a whole

engine system (including speedup, stop, red light, turning left and right, and engine sound). The

scene includes some obstacles (static objects) and has platforms like bridges and pings. The terrain

is a car road with obstacles and platforms around.

Unity Lab – is a 3D TPS game with a simulation about the daily life of Dr. Charles Francis, a research

scientist at Unity Lab. The Unity lab includes different rooms reachable through hallways, with

dynamic doors and elevators. The environment has an improved graphics, including shading,

cinematic image effects, particles systems, and lighting. The NPC is represented by a flying robot.

Multiplayer FPS – is a 3D MMOG FPS game describing a player fighting against a NPC inside an

arena. The player character is a flying robot with blasters. The NPC is a humanoid character. The

game is characterized with various effects for the arena such as fires, smokes, lights, sun, and

storm.

A.2.3 Game Classification

- (i) Classification per Playability

We start by collecting the data from Figures 4.4, 4.5, and 4.6, which enable to classify the nine

games on each platform with the two encoding qualities as playable or non-playable. Next, we use the

system A.7 to compact the classification through Table A.2.






















Pl ay abi l i t y ∧¬(Pl ay abi l i t y) ⇒ ¬(Pl ay abi l i t y)

Pl ay abi l i t y ∧ Pl ay abi l i t y ⇒ Pl ay abi l i t y

¬(Pl ay abi l i t y) ∧¬(Pl ay abi l i t y) ⇒ ¬(Pl ay abi l i t y)

(A.7)

- (ii) Classification per Resource variability

We attribute the predicate high variability or low variability for each game on each platform and for

each quality to the results obtained in Figures 4.4, 4.5, and 4.6. Then, we use the system A.8, to compact

the classification through Table A.3.
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Table A.2: Games classification per playability

Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Tower Bridge Playable Playable Playable Playable Playable

Stealth Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Survival Shooter Playable Playable Non-Playable Non-Playable Playable

Tanks Playable Playable Playable Playable Playable

Space Shooter Playable Playable Playable Playable Playable

Car Playable Playable Non-Playable Non-Playable Playable

Unity Lab Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable

Multiplayer Non-Playable Non-Playable Non-Playable Non-Playable Non-Playable























Hi g hV ar i abi l i t y ∧ Hi g hV ar i abi l i t y ⇒ Hi g hV ar i abi l i t y

Hi g hV ar i abi l i t y ∧ LowV ar i abi l i t y ⇒ Hi g hV ar i abi l i t y

LowV ar i abi l i t y ∧ LowV ar i abi l i t y ⇒ LowV ar i abi l i t y

(A.8)

Table A.3: Games classification per variability

Dell M4800 Surface Pro HTC M8 Galaxy S6 Edge Browsers

Viking Village High Variability High Variability High Variability High Variability High Variability

Tower Bridge Low Variability Low Variability Low Variability Low Variability Low Variability

Stealth High Variability High Variability High Variability High Variability High Variability

Survival Shooter Low Variability High Variability Low Variability Low Variability Low Variability

Tanks Low Variability Low Variability Low Variability Low Variability Low Variability

Space Shooter Low Variability Low Variability Low Variability Low Variability Low Variability

Car Low Variability Low Variability Low Variability Low Variability Low Variability

Unity Lab High Variability High Variability High Variability High Variability High Variability

Multiplayer Low Variability High Variability High Variability High Variability Low Variability

- (iii) Classification per Playability and Resource variability

Joining Table A.2 and Table A.3, by applying the system A.9, we obtain the classification of the

different games (i.e., Table IV : “Best option for architecture implementation per game and device”).






















Pl ay able ⇒ Tr adi t i onal

¬(Pl ay abi l i t y) ∧ LowV ar i abi l i t y ⇒ C l oud

¬(Pl ay abi l i t y) ∧ Hi g hV ar i abi l i t y ⇒ O f f l oad

(A.9)

A.2.4 Client and Server Devices

Table A.4 presents the devices used for each architecture to do our experiments. Symbol (†) represents

the client, and (*) the server.
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Table A.4: The chosen device for each game under the three architectures

Games Traditional Architecture Cloud Gaming Computation Offloading

Tanks Dell Precision M4800
Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Viking Village Dell Precision M4800
Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Stealth Dell Precision M4800
Dell Precision M4800†

Dell Tower Machine*
Dell Precision M4800†

Dell Tower Machine*

Space Shooter HTC One (M8)
HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

Car HTC One (M8)
HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

Unity Lab Dell Precision M4800
Dell Precision M4800†

Dell Tower Machine *
Dell Precision M4800†

Dell Tower Machine*

Multiplayer HTC One (M8)
HTC One (M8)†

Dell Tower Machine*
HTC One (M8)†

Dell Tower Machine*

A.2.5 Modular results
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Figure A.2: How the CPU time is divided among modules on Dell M4800 and HTC One (M8)
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Figure A.3: How the CPU time is divided among modules on different targets
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Résumé : 

De nos jours, les terminaux tels que smartphones sont des dispositifs omniprésents, offrant des 
applications et des informations continuellement ‘‘à portée de notre main’’  allant de simples 
services de communications à des services multimédias. Les utilisateurs mobiles s'attendent à 
pouvoir utiliser des applications intensives en calcul, ce qui requière la disponibilité  de ressources 
importantes, telles que jeux vidéo, reconnaissance faciale et vocale. Cependant, en raison des 
contraintes de légèreté, de maniabilité, de coût et de compacité, en plus de la sûreté et la mobilité, les 
terminaux sont nécessairement conçus avec des ressources contraintes, bien qu’en forte progression, 
qui incluent une capacité limitée de calcul CPU/GPU, une faible autonomie de batterie, et un espace 
mémoire restreint. Étant donné ces limitations, les applications exigeantes en ressources ne 
s’exécutent pas de la même manière sur ces terminaux en comparaison avec des architectures X86 

(ex. PC de bureau ou serveur) et certaines applications ne peuvent tout simplement pas être utilisées 
sur ces terminaux. Pour pallier à ces problèmes, deux options s’offrent aux industriels et aux 

chercheurs : 

•  Augmentation matérielle : consiste à améliorer les capacités matérielles des terminaux, 
qui comportent les processeurs CPU et GPU, la batterie, et le stockage.  

•  Augmentation logicielle : consiste à utiliser les ressources d'infrastructure distante pour 
délester du calcul afin de conserver les ressources locales. 

Plusieurs études ont été menées pour augmenter les performances des terminaux. Les fabricants 
proposent des processeurs multi-cœurs à fréquence d’horloge assez élevée. L'industrie ARM propose 
différents types de microprocesseurs qui répondent à des exigences de performance, de puissance et 
de coûts, tels que le Cortex-A qui intègre une unité de gestion de la mémoire (MMU), conçu pour 
exécuter des systèmes d'exploitation complexes, y compris Linux, Android et Microsoft Windows. 
Samsung et Qualcomm conçoivent de nouvelles générations de smartphones, qui intègrent des GPU, 
tels que Mali ou Adreno. Concernant l'autonomie de la batterie, de nombreux efforts ont été déployés 
pour récolter de l'énergie à travers le mouvement, l'énergie solaire et les radiations sans fil. Ces 
solutions sont encore en phase d'étude et ne peuvent malheureusement pas renouveler notablement 
l’énergie emmagasinée dans les batteries. En effet, ces ressources sont intermittentes et ne peuvent 
pas être disponibles à la demande. En parallèle à ces travaux, des chercheurs tentent de réduire la 
consommation énergétique dans différents aspects, y compris le matériel, les systèmes d'exploitation, 
applications et interfaces réseau. ‘‘Dynamic Voltage Scaling (DVS)’’ est une technique de gestion 
d’énergie, qui consiste à augmenter et diminuer la différence de potentiel au besoin ce qui permet de 
conserver l’énergie. L'arrêt automatique de l'écran est une autre alternative pour économiser de 
l'énergie sur les terminaux. Pour Samsung, la batterie amovible est un autre moyen pour augmenter 
l’autonomie des smartphone.  

L'augmentation logicielle (ou ‘‘computation offloading’’ en anglais) a également attiré l’attention 

des industriels et chercheurs académiques. Cette solution qui conserve les ressources rares des 
terminaux en délestant des calculs vers des infrastructures ou serveurs distants. ‘‘Mobile Cloud 
Computing’’ (MCC) est envisagée comme une solution prometteuse pour relever les défis 
précédemment cités. Plusieurs approches ont été proposées dans le contexte du MCC; notamment le 
‘‘load sharing’’ et l'exécution à distance qui ont évolué vers le concept de délestage de calcul ou 
‘‘computation offloading’’, une approche plus générale et mature.  

Le délestage de calcul consiste donc à exécuter à distance, dans un environnement Cloud avec des 
ressources suffisantes, une partie ou la totalité d’une application intensive en calcul. Cette technique 



offre ainsi un moyen attrayant pour réduire le temps d'exécution exigé par les utilisateurs mobiles 
et/ou économiser la consommation énergétique sur leurs terminaux.  Durant la période d’exécution à 

distance, soit le terminal continue à exécuter d'autres tâches, soit il attend les résultats d'exécution du 
serveur en charge de l’exécution à distance. À la fin de cette dernière, les résultats d’exécution de la 

partie d’application « migrée » sur le serveur sont utilisés par l’application exécutée sur le terminal. 
La computation offloading nécessite  les quatre étapes suivantes: 

1. Phase de profilage de l’application : consiste à disséquer l’application afin d’estimer la 

consommation en ressource CPU/GPU, batterie et mémoire. L’instrumentation du code est une des  

techniques utilisées pour mesurer les performances et connaître le comportement d’un programme. 

Elle consiste à insérer des instructions de mesure de performance à des endroits bien précis dans le 
programme dépendants de la granularité choisie qui varie d’un module (i.e. un ensemble de classes) 

à une fonction ou un bloc d’instructions dans une classe. Cette granularité est déterminée en fonction 
des performances et de la sécurité souhaitées. En effet, plus la granularité est large (classe ou 
module), plus la consommation est importante et plus le code source à migrer est compréhensible par 
des tiers (pirates par exemple).  

2. Phase de modélisation de l’application : généralement, dans cette étape, l’application est  

représentée sous forme d’un modèle mathématique utilisant la théorie des graphes, la programmation 
linéaire, la théorie des jeux ou encore les processus de décision Markovien. La représentation tient 
compte de la granularité définie précédemment. Un exemple de représentation pourrait être un 
graphe pondéré où les sommets du graphe représentent les composantes de l’application (ex., 
fonctions, classes ou modules selon la granularité choisie) et les arcs décrivent les interactions entre 
ces composantes. Les sommets (arcs, respectivement) sont valués avec les performances obtenues 
dans la phase de profilage comme la consommation en CPU/GPU, mémoire, énergie (nombre 
d’interaction, type et taille des données échangées entre deux sommets, respectivement). 

3. Phase de partitionnement de l’application : à ce niveau, une décision est prise pour chaque 
composante logicielle de l’application, à savoir si elle doit être déportée sur un serveur ou exécutée 
en local sur le terminal. La décision est basée sur la résolution d’une fonction objectif dont les 

critères consistent par exemple à améliorer les performances (ou le temps de réponse), réduire la 
consommation énergétique sur le terminal ou encore combiner deux ou plusieurs paramètres. 
Plusieurs algorithmes sont proposés pour résoudre la fonction objectif. Nous citons les algorithmes 
de découpage de graphes min-cut/max-flow comme l’algorithme de pre-flow push ou Stoer-Wagner. 
Le but de ces algorithmes est de partitionner le graphe en deux partitions selon une coupe minimale. 
Toutes les composantes qui seront exécutées sur le terminal seront regroupées dans la même 
partition locale, tandis que les composantes qui maximisent le gain, en étant exécutées à distance, 
seront rassemblées dans la partition distante. Le partitionnement de graphes est connu pour être NP-
complexe, donc des heuristiques (ex. l’algorithme branch and bound, les algorithmes gloutons ou les 
algorithmes génétiques) sont proposées pour remplacer ces algorithmes min-cut/max-flow.     

4. Phase de communication entre partitions : cette étape consiste à établir un lien de 
communication entre le terminal qui représente en général le client, et le serveur distant. Ce lien sera 
utilisé pour des communications entre le client et le serveur pour l’échange des données, de code, et 

de résultats. Une variété de solutions existe pour supporter des communications dans un contexte 
client-serveur, nous distinguons les ‘‘Remote Procedure Calls (RPC)’’, ‘‘Remote Method 

Invocations (RMI)’’ , streaming, et l’utilisation de proxy. 

 



Selon que ces étapes soient réalisées au moment de l’exécution de l’application ou avant, nous 

distinguons trois approches de délestage de calcul : 
a. Délestage statique : il se produit avant le démarrage de l’application. Dans ce type de 

délestage, l’application est partitionnée seulement une fois en deux partitions : la partition 
locale qui contient les composantes logicielles qui doivent s’exécuter localement sur le 

terminal et la partition distante qui englobera les composantes à exécuter à distance.  
L’application est ainsi partitionnée avant son exécution, durant les phases de développement
ou d’installation.  

b. Délestage dynamique : pour pallier aux limitations de l’approche statique (en particulier 

l’hétérogénéité de l’environnement), l’approche dynamique est proposée. Cette approche 

s’adapte mieux aux variations de l’environnement (ex. latence, qualité du réseau, bande 
passante, énergie restante sur le terminal, sa charge de travail et celle du serveur) durant 
l’exécution. Les différentes étapes de délestage sont effectuées durant l’exécution de 

l’application. 
c. Délestage hybride : pour tirer profit des deux approches (statique et dynamique), l’approche 

hybride ou semi-dynamique est proposée. Dans cette approche, une partie de la décision est 
prise durant la phase de design de l’application par le programmeur ou durant la phase 

d’installation par des outils d’analyse statiques. L’autre partie est partitionnée durant la 

phase d’exécution de l’application (délestage dynamique). 
  

Le délestage de calcul implique diverses parties prenantes: le terminal, le réseau, l’application, le 
serveur distant, l’utilisateur mobile, et le framework de délestage. En conséquence, plusieurs défis et 
problèmes sont apparus traitant du temps de réponse, de la consommation en énergie, de la sécurité, 
et des communications réseau. Différents travaux de recherche sont menés pour soulever ces verrous. 
Certains sont résolus, tels que la latence du réseau, en utilisant le ‘‘Multi-access Edge Computing 
(MEC)’’ ou le ‘‘Fog Computing’’  dans des solutions de délestage de calcul. En termes de 
communications réseau, des technologies d'accès multi-radio (multi-RAT) et une utilisation de la 
bande passante à la demande pour améliorer le débit sont proposées. Certains autres défis restent à 
résoudre, tels que la latence du Framework, son architecture, et les algorithmes que ce dernier 
embarque pour les prises de décision. Nos contributions couvrent certaines de ces questions.  

1.1 Contributions de la thèse  

La thématique générale de la thèse traite du délestage de calcul pour des applications temps réel, 
à forte demandes en ressources, et grande complexité, comme les moteurs de jeux 3D et la 
reconnaissance faciale. Les travaux de recherche abordent des sujets relatifs à la faisabilité, la 
performance, et la latence réseau impactant les solutions de délestage. Les contributions de la 
thèse sont triples:  
 
1. Les moteurs de jeux: sous cet axe, il y a deux contributions [190, 192], divisées en trois 

parties :  
a. Stratégie de déploiement: les moteurs de jeux sont étudiés dans un contexte Cloud en 

termes de variabilité des demandes en ressources. Différents types de jeux sont testés, et 
les performances obtenues sont considérées pour la consolidation du serveur. Les 
fournisseurs de jeux dans le Cloud devraient trouver un compromis entre la qualité de 
l'expérience (QoE) de l'utilisateur et le nombre de moteurs de jeux hébergés par un 
serveur. Actuellement, les serveurs dans le Cloud sont répartis entre plusieurs moteurs 
de jeux en utilisant les technologies de virtualisation. Plus la demande en ressources d'un 
moteur de jeu est élevée, plus importantes seront les ressources à réserver à la machine 
virtuelle hébergeant ce moteur de jeu, ce qui entraîne une sous-exploitation du serveur. 
Si les demandes de ressources d'un moteur de jeu ne varient pas beaucoup dans le temps, 



le fournisseur peut facilement prévoir cette demande et, par conséquent, consolider 
efficacement le serveur. Cependant, si la demande en ressource du moteur du jeu varie 
beaucoup, dans ce cas le fournisseur d’infrastructure Cloud devrait réserver des 

ressources pour accommoder les pics de consommation, qui est une perte de ressources 
car les pics surviennent rarement. Dans cette logique, le fournisseur d’infrastructure 

Cloud devrait trouver un compromis entre une forte consolidation et une QoE élevée, en 
utilisant l’étude proposée dans [190].  

b. Dissection du moteur de jeu: les moteurs de jeux, à notre connaissance, ne sont pas 
étudiés du point de vue d’architecture interne. Les moteurs de jeux sont considérés 
comme des boîtes noires. En comparaison avec des boxes, telles que la XBox One, les 
terminaux smartphones et tablettes ne permettent pas d’exécuter des jeux 3D avec une 

qualité d’encodage assez élevée. Des solutions exploitant une infrastructure à distance, 
telle que le ‘‘Cloud gaming’’ et le délestage de calcul, représentent la prochaine étape 

vers l'amélioration de l'expérience des jeux. Par conséquent, disséquer, tester, et analyser 
le comportement d’un moteur de jeu est un pas vers une meilleure compréhension sur la 
façon de distribuer les moteurs de jeux sur réseau. Cette contribution vise à analyser le 
comportement des différents types de jeux, tester leur performance, identifier les goulots 
d'étranglement des ressources, et, surtout, extraire les ‘‘call flows’’ internes au jeu.  

c. Faisabilité de délestage de calcul: Un moteur de jeu est composé d’un ensemble de 

modules comme le module de physique, de rendu, d’intelligence artificielle, 

d’animations, etc. Pour chaque module, nous représentons son architecture interne et les 
interactions entre les blocs composants le module. Cette manière de faire nous facilite 
l’étude de faisabilité de délestage de calcul pour les jeux vidéo. L’architecture du 

module de rendu est assez complexe, ce qui rend ardue l’implémentation du délestage de 

calcul pour ce module. En effet, à travers l’architecture de ce module, les blocs sont 

rarement indépendants, et les appels sont assez fréquents entre ces blocs générant un 
besoin important de communications entre le terminal et le serveur, ce qui  limite le gain 
atteignable en termes de performances. Le module de physique peut être réparti en trois 
sous-familles qui communiquent à travers une classe. Il serait donc relativement simple 
de distribuer le calcul de ces trois sous-familles sur des entités distinctes. Le module de 
scripts est le seul module qui interagit directement avec le module de physique. Il serait 
donc logique de gérer cette famille de modules sur le même ordinateur que les modules 
de physique. Le module d’audio n'a aucune interaction avec les autres modules 
principaux et n’interagit qu’avec le thread principal du jeu. Ce module peut ainsi être 
migré et représenté en tant qu'interface (API) sur une machine distante. La 
communication entre le client et la machine distante peut se faire soit par des appels à 
distance comme les RPC ou en streaming. Le Module de l'intelligence artificielle peut 
être très intensif en calcul. Il est difficile, voire impossible, de simuler le jeu sur des 
dispositifs à ressources contraintes sans réduire la complexité de ce module. De plus, vu 
que ce module est, la plupart du temps, indépendant des autres, il peut être déporté dans 
son ensemble. 

2. Délestage de calcul orienté moteur de jeu: sous cet axe, il y a deux contributions [188, 190]. En 
[190], un le délestage de calcul statique des modules d’un moteur de jeu est proposé. La méthode 
consiste à décomposer la scène d’un jeu en plusieurs patterns ou objets ; par exemple, l’avatar du 

joueur, l’avatar de l’ennemi, et l’environnement. Différents critères sont définis, à savoir la 
consommation en ressources, les contraintes de dépendance au code, la latence réseau et la bande 
passante. Selon ces critères, chaque objet du jeu est placé soit sur le terminal soit sur le serveur 



distant. Dans [188], un délestage dynamique des modules du moteur de jeu a été proposé. Cette 
contribution est une amélioration de notre travail effectué dans [190], où nous avons proposé une 
heuristique pour planifier le placement des modules en utilisant les mêmes critères. 

3. Délestage de calcul orienté MEC: nous avons une contribution sous cet axe [189]. Une des 
contraintes les plus pertinentes dans une solution de délestage de calcul est la latence réseau entre le 
terminal et le serveur. En effet, une latence importante limite l'applicabilité des solutions de 
délestage de calcul aux applications tolérantes aux délais. Pour les applications temps réel (i.e., 
sensible aux délais) telles que les jeux vidéo, une latence élevée est intolérable et dégrade la qualité 
perçue par les utilisateurs. Heureusement, avec le MEC et la transition vers la 5G, la latence du 
réseau sera considérablement réduite. Notre contribution consiste à tirer parti de l'architecture MEC 
pour prendre en charge le délestage de calcul. Pour cela, nous concevons un Framework chargé de 
l’orchestration du processus de délestage. Ce Framework est conçu avec trois entités : (i) une 
application ‘‘mobile edge’’ installée sur le MEC host dont le rôle est d’accéder aux API RNIS 

(Radio Network Information Service) de l’eNodeB et de récupérer des informations liées aux 

utilisateurs actifs dans la cellule, faire des approximations de latence réseau, et enfin décider en 
fonction de différentes informations si un utilisateur donné est autorisé à effectuer un délestage de 
calcul ou non ; (ii) le terminal qui hébergera les fonctionnalités de délestage, on parle ici de 
profilage, modélisation, partitionnement, et communication ; enfin (iii) le serveur localisé en bordure 
de réseau d’accès (« edge »), qui aura pour rôle d’exécuter le code délesté depuis le terminal, et lui 

renvoyer les résultats.  

1.2 Organisation du manuscrit 

Ce manuscrit est organisé en six chapitres, comme suit : 

Le chapitre 2 introduit le lecteur aux concepts de base du délestage de calcul (ou ‘‘computation 

offloading’’ ) nécessaires à la compréhension des contributions de la thèse. Premièrement, nous 
identifions les étapes requises pour effectuer un délestage de calcul citées précédemment, à savoir ; 
le profilage de l’application, sa modélisation mathématique, le partitionnement du modèle, puis la 
communication entre partitions. Ces étapes clés du délestage, peuvent être faites durant l’exécution 

de l’application, ce que nous appelons ‘‘délestage dynamique’’ ou avant l’exécution, ce qui est 
connu comme ‘‘délestage statique’’. Deuxièmement, nous rappelons l’historique du mécanisme de 

délestage de calcul et ses évolutions. Nous terminons ce chapitre en présentant les avantages et 
inconvénients du délestage de calcul. 

Le chapitre 3 présente, de manière exhaustive et qualitative, l'état de l'art du délestage de calcul pour 
compléter la compréhension du chapitre précédent. Ce chapitre est donc organisé selon une 
classification des travaux de recherche en fonction des différents acteurs impliqués dans le processus 
de délestage de calcul. Ces classes de taxonomie tournent autour de : l’utilisateur, le terminal, le 

réseau, l’application candidate au délestage de calcul, le serveur, et enfin le framework de délestage.   

Le chapitre 4 aborde un type d’application temps-réel, à savoir les jeux vidéo. Dans un premier lieu, 
une dissection des moteurs de jeux est nécessaire à la compréhension de la contribution. De ce fait, le 
paysage des jeux vidéo et des moteurs de jeux en terme d’architecture, modules, types de jeux et 

contraintes est étudié et synthétisé dans ce chapitre. Dans un second temps, l’étape de profilage est 

mise en avant en réalisant une batterie de tests de performances sur neuf types de jeux différents, 
dans des environnements fixes et mobiles. La consommation en ressource CPU et GPU par frame et 
par module est utilisée pour définir une stratégie de déploiement du jeu soit sur une architecture 
traditionnelle type client/serveur, soit une architecture Cloud gaming, ou encore une architecture de 
délestage de calcul. La stratégie de déploiement est basée sur la variabilité des demandes en 



ressource CPU/GPU par frame et la jouabilité du jeu. Suite à cela, nous nous sommes intéressés à la 
faisabilité de l’architecture délestage de calcul pour les jeux vidéo en présentant son apport en termes 

de ressources CPU/GPU. La dernière partie de ce chapitre traite du délestage statique des jeux et 
compare les résultats obtenus à ceux de l’architecture client/serveur et Cloud gaming.  
 
Le chapitre 5 décrit une architecture de délestage de calcul pour les jeux vidéo. Nous commençons 
ce chapitre en passant en revue les études antérieures de délestage de calcul orienté moteurs de jeux. 
Ces travaux de recherche souffrent principalement de la non considération des jeux type 3D ‘‘First 

Person Shooter (FPS)’’. En effet, dans ces travaux, seuls des jeux 2D non-FPS, non complexes, et 
non gourmands en ressource sont considérés. Les jeux 3D sont plus complexes, demandent beaucoup 
de ressources CPU/GPU et, plus important encore, les jeux FPS sont des jeux temps réel où les délais 
d’interaction entre le joueur et sa machine doivent être très courts. Notre approche apporte une 
solution à ces problèmes. En premier lieu, nous décrivons la représentation d’une scène 3D et les 
objets/patterns qui y sont utilisés. Ensuite, nous présentons notre solution de délestage de calculs 
pour les jeux vidéo. Nous proposons une heuristique basée sur les communications réseau pour 
sélectionner les objets avec les modules associés qui devraient être déportés sur le serveur. Cette 
approche est testée ensuite, avec la mise en place d’un banc de tests composé d’un smartphone et 
d’un serveur. Les résultats en termes de consommation CPU/GPU et communications réseau sont 
présentés montrant un grand potentiel vers une amélioration des performances et la qualité 
d’expérience utilisateur. 

Le chapitre 6 se concentre principalement sur le MEC. Nous avons vu à travers les chapitres 
précédents que la latence est primordiale dans les solutions de délestage de calcul, en particulier pour 
les applications temps réel. Pour éviter cette contrainte, nous proposons de rapprocher les serveurs 
qui doivent heberger les moteurs de jeux ou tout type d’applications candidate au délestage de calcul, 

de l’utilisateur final. En particulier, nous utilisons le MEC pour effectuer le délestage de calcul. Ce 
chapitre commence donc par présenter le MEC, son architecture, et décrivant les termes techniques 
utilisés à travers ce chapitre, en particulier ceux liés au MEC et aux réseaux LTE. Ensuite, nous 
passons en revue l’état de l’art des solutions de délestage orientées MEC. Suite à cela, nous 
proposons un framework qui s'appuie sur le MEC, ses services et API pour aider dans la prise de 
décision. Le framework est composé de trois entités: deux middlewares, l’un sur le terminal et l’autre 

sur le serveur MEC, et une application ‘‘mobile edge’’, responsable de la prise de décision de 
délestage de calcul. Le framework est ensuite testé dans un cas d'utilisation de reconnaissance 
faciale. 

 
Enfin, le chapitre 7 traite de la conclusion finale, il synthétise les résultats obtenus à travers la thèse 
et présente des perspectives d’évolution concernant la sécurité, la mobilité, le placement des tâches, 

et enfin une description d’un modèle de ‘‘Computation Offloading as a Service (COFFaaS)’’ dans un 

contexte 5G. 

 


