Introduction

Understanding and predicting material failure is of prime importance when designing mechanical structures, for both economical and safety reasons. In practice, macroscopic failure rarely intervene through the catastrophic propagation of a single crack. Other phenomena such as creep, fatigue failure or the growth and coalescence of pre-existing micro-defects are more commonly encountered. Understanding how two cracks interact is therefore necessary to evaluate the risk this last example presents. However, precise modelling of crack-crack interaction is not a problem as straightforward as studying a single defect or approaching statistically the material properties of a medium containing many cracks. The problem is indeed both coupled and non-local: because any crack tip acts as a singularity that alters the surrounding stress eld close and far, multiple cracks aect each other by curving to form complex paths and fracture patterns.

The specic case of "En-passant" fracture has recently gained a renewed interest in relation with three experimental studies [START_REF] Bui | Mécanique de la rupture fragile[END_REF]. Initially used by geologists to describe transverse fracture along rift zones, the term en-passant now refers to any fracture pattern in which two initially parallel cracks interact, such as the one presented in Fig. 1. En-passant crack pairs (EP-cracks) were thereafter observed in a wide variety of materials, at magnitudes ranging from a few micrometers to several kilometres. We expect phenomena intervening at a metallic grain scale or a continent scale to be fundamentally dierent, without possible comparison between them. However, EPcracks present a remarkable uniformity in their propagation shape: it is quasi-systematically hook shaped, formed by the succession of repulsive and attractive interaction phases between the cracks. This seemingly universal behaviour is still poorly understood: as of today, there are no simple predictions of magnitude and length of the repulsive component of the paths. More signicantly still, contradicting and conicting armations have been put forward concerning the origin of the repulsive phase. While Fender et al. [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF] proposed a model that only predicts the attractive behaviour, Dalbe et al. [2] observations questioned the very validity of the principle of local symmetry, a commonly accepted bifurcation criteria. Koivisto et al. [3] tried to mitigate this conclusion by suggesting that the principle of local symmetry may be correct if one takes into account plastic eect around the crack tips, totally disregarding known occurrences of repulsive EP-cracks propagating in brittle media.

The main motivation of this thesis was therefore to clarify, hopefully once and for all, the real limitations of the linear elastic fracture mechanics framework, used in conjunction with the assumption of the principle of local symmetry, when studying interacting cracks. We found that this simple framework, while necessarily imperfect, provides still an excellent approximation of the characteristic hook-shape and reproduces well some common features of EP-crack paths, such as the position of the repulsion to attraction transition or the intersection angle between the cracks. Another surprising observation by Dalbe et al. [2] was that materials with comparable elastic behaviours could result in dierent repulsive interaction intensity. Using a diuse damage model, we conrm that this phenomenon can probably be attributed to the size of the fracture process zone around the crack tips. As a preliminary, chapter 1 presents the context and motivation of this study in deeper details: it 1 Chapter 1
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CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND

Modern day fracture mechanics consists of an array of increasingly complex models destined to encompass the large variety of physical phenomena revolving around the crack growth process such as -but not limited to-brittle fracture, ductile fracture or the formation of a plastic zone.

In most cases, the fundamental principles of these theories were laid down in the early 20 th century by a series of breakthrough papers [START_REF] Gosz | An interaction energy integral method for computation of mixedmode stress intensity factors along non-planar crack fronts in three dimensions[END_REF] forming what we now refer to as the Linear Elastic Fracture Mechanics (LEFM) framework. This set of tools and hypotheses, while suering from physically impossible conclusions, is still an excellent approach for brittle materials and the reference framework of fracture mechanics. Its validity in regard to the study of interacting cracks was questioned in contradictory papers (see 1.3.1). The rst part of this dissertation was realized assuming the hypotheses of LEFM, with the aim of clarifying what are the predicted EP-cracks propagation paths in this framework.

While LEFM is based on a discrete representation of fracture, other models regard the cracks as diuse. Recently, the development of phase-eld resolution techniques applied to damage models allowed to introduce an additional parameter to otherwise purely linear elastic frameworks. The second part of our work consists in examining whether this extra input is sucient to remedy the limitations LEFM modelling exhibits when confronted to experimental observation.

In this chapter, we will present both theoretical frameworks as well as a brief literature review concerning the core of our subject: en-passant fracture. Beyond presenting a brief history of the early development of fracture mechanics, the intent of this section is to introduce the dierent concepts and quantities involved in a LEFM study, namely the stress intensity factors and the energy release rate of a propagating front. We will then review dierent bifurcation criteria useful to determine the propagation direction. We will nally see how to determine the stress intensity factors and the energy release rate for any given fracture problem, as they will be needed to determine in practice the crack path.

Stress concentration: an asymptotic approach of fracture

The stress in a solid body submitted to external forces or load is not homogeneous; its intensity is highly dependent on the solid geometry. The concept of stress concentration was introduced by Inglis [START_REF] Inglis | Stresses in a plate due to the presence of cracks and sharp cornes[END_REF] when he determined the stress distribution around an elliptical cavity (semi-axes a > b) traversing a plate subjected at innity to an uniaxial traction σ ∞ . Without going into the details of the derivation, it is shown that the maximum stress in the plate is located at the tip of the ellipse and is related to its shape factor by σ max = σ ∞ (1 + 2a/b) . The stress concentration factor K t is then dened by K t = 2a/b and, depending exclusively on geometry, can reach all values of ]2; ∞[.

One way to dene a crack is to consider it to be the limit case of a attened elliptical hole or, in other words, an ellipse whose semi-minor axis is equal to zero, meaning that a/b → ∞. Inglis' result is remarkable as it demonstrates a cornerstone concept of LEFM: the stresses at the tips of a sharp crack are predicted to approach innity. The uses of Westergaard's stress functions [START_REF] Westergaard | Bearing pressures and cracks[END_REF] allowed to conduct signicant stress analysis at the crack tip: in two independent landmark papers, Williams [START_REF] Williams | On the Stress Distribution at the Base of a Stationary Crack[END_REF] and Irwin [START_REF] Irwin | Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate[END_REF] showed this stress singularity to be of the order r -1/2 , with r being the radial distance to the tip (see Fig. 1.2). Indeed, the asymptotic stress-eld is entirely dened by universal weight functions, and a set of problem-dependent scalars, K I , K II and K III .

In polar coordinates the stress eld expansion can be expressed as: The coecients of the leading order of these expansions, K I , K II and K III , are the stress intensity factors (SIF) of the three corresponding modes of fracture and O(1) (constant term in the expansion) terms are sub-singular terms such as the T-stress or boundary eects acting far from the crack tip [START_REF] Roux-Langlois | DIC identication and X-FEM simulation of fatigue crack growth based on the Williams' series[END_REF].

σ rr = K I 4 √
Considering that a crack can be dened as the locus of a discontinuity in the displacement eld u of a solid body, it is useful to distinguish the three basic solicitation modes of the crack. The displacement jump [u] = u +u -is then dened by the dierence between the two elds across the fracture surface. While most cracks are solicited under complex mixed-mode loading, any stress or displacement eld around the crack tip is a linear combination of the three following modes, as expressed in a Cartesian coordinate system (See Fig. 1.3):

• mode I, or opening: the cracks lips move away from each other in a direction perpendicular to the plane of the crack.

[u x ] = 0, [u y ] = 0, [u z ] = 0 (1.4)
• mode II, or sliding: the crack lips are sheared in direction orthogonal to the crack front. • mode III, or tearing: the crack lips are sheared in direction orthogonal to the crack front.

[u x ] = 0, [u y ] = 0, [u z ] = 0 (1.5) (a) (b) (c)
[u x ] = 0, [u y ] = 0, [u z ] = 0 (1.6)
Given the relationship between stress and displacement in linear elasticity, it is possible to retrieve an explicit expression of the SIF useful in a 2D problem [START_REF] Leblond | Mécanique de la rupture fragile et ductile[END_REF][START_REF] Maugis | Contact, Adhesion and Rupture of Elastic Solids[END_REF]:

K I = lim r→0 μ κ + 1 2π r [u 2 ]
(1.7)

K II = lim r→0 μ κ + 1 2π r [u 1 ] (1.8)
Note: μ is the shear modulus of the material and κ the Kolosov constant, whose value depends on the Poisson's ratio ν and the plane stress or strain assumption:

κ = ⎧ ⎨ ⎩ 3 -4ν for plane strain 3 -ν 1 + ν for plane stress (1.9)
Thus, the values of the stress intensity factors not only quantify the magnitude of the stress singularity, but also provide an indication on the nature of the crack solicitation. This second piece of information will be useful to determine the crack propagation direction, whereas the rst is indicative of when and if the crack propagates at all. Indeed, equations (1.1) through (1.3) show that the intuitive idea that materials break when their stress reaches a certain critical value becomes inapplicable at a crack tip as the stresses there go to innity.

To circumvent this problem, Irwin postulated the existence of a material dependent quantity K Ic , the fracture toughness, which constitutes the threshold under which the crack does not propagate. It may seem far-stretched to base a stability criterion on an unrealistic principle such as innite stresses. However, experiments on a given material give measures of K Ic consistent across geometries and loadings, and we will see in the following section that this asymptotic CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND approach is equivalent to a global reasoning based on energetic considerations.

1.1.2 Energy release rate: a thermodynamic approach to fracture Extending the rst law of thermodynamics to fracture Also basing his work on Inglis' stress analysis [START_REF] Inglis | Stresses in a plate due to the presence of cracks and sharp cornes[END_REF], Grith proposed in 1920 the founding theory of fracture mechanics [START_REF] Grith | The Phenomena of Rupture and Flow in Solids[END_REF] as an extension of the rst principle of thermodynamics: the introduction of the surface energy γ s allowed Grith to consider propagation of a preexisting defect as an energy-balance problem. Here γ s stands for the energy necessary to create new fracture surfaces per unit area and is intrinsically tied to the energy necessary for bond breakage. In the event of a quasi-static crack propagation, and neglecting all non-mechanical works, the energy balance between two instants t and t + dt is expressed as:

δW ext = dW k + dW el + 2eγ s dl (1.10)
This equation conveys that the work of external forces δW ext is converted in either the variation of the kinetic energy W k , of the strain energy W el or the creation of new fracture surfaces when the crack total length increases of dl. The newly created surface area amount to 2dA = 2edl, with e being the thickness of the medium. When dt goes to 0, eq. (1.10) can be rewritten in terms of powers:

Ẇext = Ẇk + Ẇel + 2eγ s l (1.11) 
The energy release rate G, that is to say the energy consumed during crack propagation per unit of newly created free surfaces area, can be dened as:

G = - d edl (W el -W ext ) (1.12)
Crack propagation will be unstable if dW k /dt > 0 [START_REF] Bui | Mécanique de la rupture fragile[END_REF] which translates as:

∂W k ∂A . dA dt > 0 (1.13)
Given that the assumption that the crack cannot heal and only advance, i.e. dA/dt > 0, we retrieve: [START_REF] Erdogan | On the crack extension in plane loading and transverse shear[END_REF] or:

∂W ext e∂l - ∂W el e∂l -2γ s > 0 (1.
G > 2γ s for unstable propagation (1.15)
On the other hand, we clearly get from eq. (1.11) and (1.12) that the following must remain true at all times of a quasi-static propagation :

G l = 2γ s l (1.16)
The Grith propagation criterion results from the two solutions of this equality: as crack propa-1.1. Linear Elastic Fracture Mechanics: an initial model of fracture 9 gation is an irreversible process, either l = 0 and there is no condition on the energy release rate or l > 0 and G = 2γ s . While only G can be inferred from the knowledge of l in eq. (1.16), and not vice versa, the converse implication is usually admitted: the crack will propagate as soon as the rate of release of elastic strain energy reaches the rate at which surface energy is created. Thus, in a quasi-static propagation, G is capped by the critical strain energy release rate G c = 2γ s .

This quantity is a purely material property, dependent only on the nature and congurations of the atomic bonds inside the body in the case of brittle fracture.

Equivalence with Irwin's theory

While the reasoning in Grith's and Irwin's approaches are drastically dierent, their results as to when a crack will propagate are identical. Making the assumption that the crack propagates in its own plane, that is to say without turning or kinking, Irwin showed [START_REF] Irwin | Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate[END_REF] that G and the SIF are mathematically equivalent: .17) This relationship between the stress intensity factors and the energy release rate has several very important consequences. First and foremost, it lends physical meaning to the

G = κ + 1 8μ K 2 I + K 2 II + 1 2μ K 2 III ( 1 
K I = K I,c
propagation criteria which was originally based on the debatable existence of a stress singularity at the crack tip. It is now possible to express the critical SIF above which crack propagation occurs. For example, in pure mode I we get:

K 2 I,c = 8μ κ + 1 G c (1.18)
Eq. (1.17) serves also proof that G, while being linked to a variation of energy between two states, only depends on the current asymptotic stress eld and not on the knowledge of either the stress eld far away from the crack or the stress state after propagation. By themselves, both Grith and Irwin's theories can not predict where the crack will propagate.

In mixed mode, the assumption of a bifurcation criterion is necessary to determine the shape and direction of the crack path. Many bifurcation criteria where proposed since the second half of the 20 th century; in this section, we will review the most commonly used.

Maximum tangential stress (MTS)

This criterion, proposed in 1963 by Erdogan an Sih [START_REF] Erdogan | On the crack extension in plane loading and transverse shear[END_REF], is both the rst introduced historically and the most intuitive since it stems from the idea that the material will break in the direction CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND orthogonal to the greatest tension. Referring to the initial kink angle as θ i , this criterion can be expressed as:

∂σ θθ ∂θ (θ = θ i ) = 0 (1.19)
It is possible to substitute σ θθ by its asymptotic expression in 2D to get the relationship between θ i and the stress intensity factors:

K I sin θ i + K II (3 cos θ i -1) = 0 (1.20)
From there, it is possible to derive an explicit expression of θ i when K II = 0:

θ i = 2 arctan ⎡ ⎣ 1 4 ⎛ ⎝ K I K II -sign(K II ) K I K II 2 + 8 ⎞ ⎠ ⎤ ⎦ (1.21)
If K II = 0 then θ i = 0 for this criterion as well as all others. The maximum tangential stress criterion (MTS) is widely used because of its good compliance with experiments [1416] and its ease in the determination of θ i .

Strain energy density (SED)

Sih [START_REF] Sih | Handbook of stress-intensity factors[END_REF][START_REF] Sih | Strain-energy-density factor applied to mixed mode crack problems[END_REF] also introduced a measure of the strength of the elastic energy eld in the vicinity of a crack tip, the strain energy density (SED) function S. This quantity is expressed in function of the stored strain energy per unit volume dW/dV and the radial distance:

S = r dW el dV (1.22)
The crack is assumed to propagate in the direction minimizing S, classically expressed in its asymptotic form dependent on the SIF [START_REF] Mahajan | An experimental investigation of mixed-mode fracture[END_REF]:

S = a 11 K 2 I + a 12 K I K II + a 22 K 2 II (1.23)
Here, the a ij coecients are functions not only of θ, but also of the Kolosov constant. As a consequence, and contrarily to all other criteria reviewed here, results from the SED are dependent on the plane problem assumption and the value of the Poisson's ratio. The main interest of the SED relies in its ability to account for yield, allowing extension to problems outside of the LEFM framework, such as ductile fracture [START_REF] Gdoutos | Problems of Mixed Mode Crack Propagation[END_REF][START_REF] Gdoutos | Fracture Mechanics Criteria and Applications[END_REF]. In these situations, S is expressed directly in terms of the stress eld [START_REF] Malíková | Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria[END_REF]:

S = 1 2μ κ + 1 8 (σ rr + σ θθ ) 2 -σ rr σ θθ + σ 2 rθ (1.24)
The SED was also successfully extended to 3D situations, fatigue and non-homogeneous materials [START_REF] Gdoutos | Problems of Mixed Mode Crack Propagation[END_REF][START_REF] Gdoutos | Fracture Mechanics Criteria and Applications[END_REF]. However, some experimental studies found the SED to be less precise than other criteria such as the MTS [START_REF] Finnie | Some observations on Sih's strain energy density approach for fracture prediction[END_REF]. Other diculties, as the existence of multiple minima in the energy density function or the non-existence of a minimum, were also reported [START_REF] Maiti | Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain eld -Part II: Pure shear and uniaxial compressive loading[END_REF].

1.1. Linear Elastic Fracture Mechanics: an initial model of fracture

Maximum energy release rate

The criteria seeking to maximize the strain energy release rate (G max ) was also proposed by Ergodan and Sih [START_REF] Erdogan | On the crack extension in plane loading and transverse shear[END_REF]. It is thought with the same reasoning as the Grith criteria for crack propagation: the crack grows to minimize the potential energy of the body, and the crack front advances as soon as G reaches a critical value G c . The crack will therefore kink in the rst direction for which this is possible. The kinking angle is then determined by:

dG dθ (θ = θ i ) = 0 (1.25)
and:

d 2 G dθ 2 (θ = θ i ) 0 (1.26)
Note that G represents the variation of the energy in the body when the crack advances of an innitesimal length in the direction θ i . Taking l as the extension length, θ i must maximize the

function G * (θ) = lim l→0 G(l, θ)

Principle of local symmetry (PLS)

The principle of local symmetry (PLS) considers that any crack under mixed-mode loading will kink so that its extension is in purely opening mode; the stress eld at the new tip will be then locally symmetrical about the crack plane. It was rst introduced in 1973 by Goldstein and Salganik [START_REF] Goldstein | Brittle fracture of solids with arbitrary cracks[END_REF] and beneted greatly from the contributions of rst Cotterell and Rice [START_REF] Cotterell | Slightly curved or kinked cracks[END_REF] as well as Amestoy and Leblond [START_REF] Leblond | Crack Paths in Plane Situations -I General Form of the Expansion of the Stress Itensity Factors[END_REF][START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF] who, in both cases, provided asymptotic expansions for the crack paths and the SIF in the neighborhood of the kink.

To properly express the PLS mathematically, we need to dierentiate between K I and K II , the SIF before crack extension at the original crack tip, from K * I and K * II the SIF after propagation (see Fig. 1.4). Again, the SIF * are dependent on both the kink angle and the propagation length, which leads to the mathematical expression of the PLS:

lim l→0 K * II (l, θ = θ i ) = 0 (1.27)

Choosing a bifurcation criterion

Bifurcation criteria are either explicit, in the sense that they rely on quantities determined at the crack tip in its original conguration, or implicit, meaning that they require the knowledge of future quantities dened at the crack tip after a theoretical propagation. Explicit criteria such as the MTS or the SED are usually favored in numeric studies to determine crack paths [2732].

Indeed, their use is much less computer intensive than using implicit criteria for which we must determine the SIF and other quantities for a myriad of extended crack congurations.

On the other hand, the PLS, an implicit criterion, should be preferred for any homogeneous and isotropic material. Beyond its excellent accuracy, it was demonstrated by Leblond [START_REF] Leblond | Mécanique de la rupture fragile et ductile[END_REF][START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF]]

K * I K * II K I K II (e x , e y ) (e *
x , e * y )

1.1. Linear Elastic Fracture Mechanics: an initial model of fracture 13 that this criterion is the only physically admissible one in this conguration. The reasoning is as follows: in the case of a crack propagating into a homogeneous and isotropic material, under constant loading, we expect the crack path to be smooth, free of any discontinuities with the exception of the initial kink. If the crack were to propagate initially in a direction other than the one predicted by the PLS, we would necessarily retrieve K * II = 0. Consequently, the crack tip would still be solicited under mixed-mode, and the crack is bound to kink again, which is not admissible under our set of assumptions.

It should however be noted that the choice of a bifurcation criterion is usually of little impact on the nal results; with the exception of almost pure mode II loadings, experimental scatter is often too large to dierentiate between criteria [START_REF] Mahajan | An experimental investigation of mixed-mode fracture[END_REF]. For example, while the PLS and the G max criteria are not strictly equivalent, to catch the dierence between these two criteria one must expand the SIF as a function of the initial kink angle at least to the order 5 [START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF]. Given numerical imprecisions, they are virtually indistinguishable.

Practical determination of the SIF before propagation

Numerous techniques exist to determine the SIF and the energy release rate of any given fracture problem, either analytically or numerically. Analytic methods usually rely on the superposition principle to reduce the problem to a linear combination of known solutions, a good number of them being already catalogued into handbooks [START_REF] Sih | Handbook of stress-intensity factors[END_REF][START_REF] Tada | The Stress Analysis of Cracks Handbook[END_REF]. These techniques are usually limited to simple geometries and loadings, and are only approximate as numerical methods for more complex cases.

Numerical methods most often rely on a global approach to fracture: the energy release rate is determined rst and the SIF are then deduced from the relationships linking G, K I and K II for a straight crack in LEFM. Intuitively, the most straightforward way to determine G is to come back to its denition and to evaluate the elastic energy stored into a body twice : rst for a crack of length l, and again for a crack of length l + δl. The innitesimal nature of δl implies a very ne mesh around the crack tip, resulting in signicant computation time.

However, the most well-known method to compute G is more direct and involves only one computation step: once the stress state of a body is known, the determination of the path independent J-integral introduced by Rice [START_REF] Rice | A Path Independent Integral and the Approximate Analysis of Strain Concentration by Notches and Cracks[END_REF] is quite simple. Considering a crack tip enclosed in a contour Γ of normal n n n, and taking the strain energy density as ψ, J is dened in 2D as [START_REF] Leblond | Mécanique de la rupture fragile et ductile[END_REF] :

J = Γ (ψn x -σ ij u i,x n j )ds (1.28)
Note that while i and j are dummy indexes used in Einstein summation convention, x is the xed direction normal to the crack front dened in Fig. 1.4.

It was shown later by Bui [13] that J does not depend on the chosen contour, as long as the crack is straight inside Γ and the crack lips are traction-free, and is equal to G. The path-independence property is very useful in practical applications where the analytical solution for the stress eld CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND is not known: it is often determined numerically using approximating techniques such as the nite element method (FEM). The presence of a stress singularity at the crack tip compounds the numerical errors in a zone a few element wide: choosing a larger path allow better precision by avoiding this area.

Another technique, the virtual extension method introduced by Hellen [START_REF] Hellen | On the method of virtual crack extensions[END_REF] and Parks [START_REF] Parks | A stiness derivative nite element technique for determination of crack tip stress intensity factors[END_REF][START_REF] Parks | The virtual crack extension method for nonlinear material behavior[END_REF], is used in conjunction with nite element computation. While it determines G as the variation of strain energy between two steps of a straight propagation, it also only requires the knowledge of the stress state prior propagation. Indeed, the crack is propagated not by increasing the number of double nodes in the mesh but virtually by moving the node corresponding to the crack tip, which implies computer-intensive changes in the stiness matrix.

Finally, the G(Θ Θ Θ) (or sometimes THETA) method was initially developed by Destuynder [START_REF] Destuynder | Sur une interpretation mathematique de l'integrale de Rice en théorie de la rupture fragile[END_REF].

Several improvements were introduced later to reach excellent accuracy and eciency [START_REF] Suo | Double virtual crack extension method for crack growth stability assessment[END_REF]. This procedure relies on a clear denition of G as a derivative of the potential energy, and presents the advantage to be generalizable to the 3D case and not limited to the linear elastic case [START_REF] Debruyne | Proposition d'un paramètre énergétique de rupture pour les matériaux dissipatifs[END_REF].

The G(Θ Θ Θ) procedure is based on the J-integral, but its accuracy is vastly improved by the use of a virtual vector eld and of surface (rather than contour) integration. It is now implemented in well-known nite element solvers such as Code Aster [START_REF]Code Aster Documentation[END_REF] or Cast3m [START_REF]Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Cast3m documentation 2017[END_REF].

Here, we will only detail the techniques employed throughout the following section: the G(Θ Θ Θ)

procedure was used for the determination of both the energy release rate G and the stress intensity factors K I and K II . As we have seen in the previous section, it is also useful to know these quantities after propagation which can be cumbersome to compute using nite element methods. To circumvent this problem and determine K * I and K * II , we applied the work of Amestoy and Leblond [START_REF] Leblond | Crack Paths in Plane Situations -I General Form of the Expansion of the Stress Itensity Factors[END_REF][START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF][START_REF] Amestoy | Déviation innitésimale d'une ssure dans une direction arbitraire[END_REF], which is presented in detail in section 1.1.4.

G(Θ Θ Θ) procedure

Here, Θ Θ Θ refers to the virtual crack extension eld. It is a vector eld and should not be confused with the kink angle θ i . The Θ Θ Θ eld is dened in the coordinate (O, x, y, z, ) system tangent to the crack surface and normal to the crack front (see Fig. 1.5), and acts as a mapping function matching the initial body containing the crack to a body with an innitesimally longer crack.

Considering a reference body Ω containing a traction-free crack of which we know the stress state, an innitesimal geometric perturbation transforms each point M of Ω into M η [START_REF] Vu | Numerical investigation on corner singularities in cracked plates using the G-theta method with an adapted h eld[END_REF]:

M η = M + η.Θ(M ) (1.29)
Destuynder [START_REF] Destuynder | Sur une interpretation mathematique de l'integrale de Rice en théorie de la rupture fragile[END_REF] gave the energy release rate associated with the chosen virtual crack extension eld Θ Θ Θ. When neglecting thermal variations and taking ψ as the energy density it becomes :

G(Θ Θ Θ) = D (ψ∇.Θ Θ Θ -σ σ σ : (∇u u u∇Θ Θ Θ)) dV (1.30)
Here G(Θ Θ Θ) is the global energy release rate: it is a quantity dependent on the virtual crack 

G = G(Θ(O) Θ(O) Θ(O)) (1.31)
where O refers to the crack tip. One must respect several constraints when choosing Θ Θ Θ:

• Θ Θ Θ must modify only the crack tip position or, in other words, it should be null on all other points of the domain border ∂Ω,

• Θ Θ Θ must be regular on Ω,

• Θ Θ Θ must be locally tangent to the crack lips.

In practice, Θ is chosen so that the integration in eq. (1.30) is as precise and as fast as possible:

Θ Θ Θ is taken constant everywhere, so that ∇Θ Θ Θ=0 there, except on an anulus surrounding the crack tip [START_REF] Suo | On the application of G(Theta) method and its comparison with De Lorenzi's approach[END_REF]. Inside the inner ring, Θ Θ Θ = (1, 0) and Θ Θ Θ = (0, 0) outside the outer ring (see Fig. 1.5).

This considerably decreases the size of the actual integration domain.

SIF at the original crack tip

Both the J-integral method or the G(Θ Θ Θ) procedure are limited by their inherent incapability to determine the individual stress intensity factors separately. To separate the three rupture modes and identify the SIF, the use of other path-independent integrals is valuable. Stern et al. [START_REF] Stern | A contour integral computation of mixed-mode stress intensity factors[END_REF] used Betti's reciprocal work theorem and the link between the SIF and the rst order stress eld CHAPTER jk , eq. (1.28) is reformulated to express the total J-integral as:

J tot = Γ (ψ tot n x -(σ c ij + σ a ij )(u c i,x + u a i,x )n j )ds (1.32)
where the subscript u i,x is u i,x = ∂u i /∂x. Naturally, ψ tot is the strain energy of the superimposed state and should not be confused with the sum of ψ c and ψ a :

ψ tot = 1 2 (σ c ij + σ a ij )( c ij + a ij ) (1.33)
It is possible to reorganize eq. (1.32) so that the J-integrals of the two superimposed states appear:

J tot = J c + J a + M a,c (1.34)
Here, M a,c refers to the interaction integral between the current and the auxiliary state. Its expression is deduced from eq. (1.32) and (1.34):

M a,c = Γ 1 2 (σ c ij a ij + σ a ij c ij )n x -(σ c ij u a i,x + σ a ij u c i,x )n j ds (1.35)
Using the equality J = G and the equivalence between the Irwin and Grith theories given in eq. (1.17), eq. (1.32) can also be rewritten in terms of stress intensity factors [START_REF] Yau | A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity[END_REF]:

J tot = J c + J a + 2α (K c I K a I + K c II K a II ) (1.36)
where α is dependent on the plane problem: 

α = ⎧ ⎪ ⎨ ⎪ ⎩ 1 -ν 2 E for
M a,c = 2α (K c I K a I + K c II K a II ) (1.38) 
Eq. (1.35) allows for an easy determination of M a,c as long as the current stress state is known on a contour enclosing the crack tip. Consequently, it is possible to derive the SIF of the current problem using eq.(1.38) and a sensible choice of auxiliary state. The most direct solution is obtained when the auxiliary state is either pure mode I or II. Thus, when K a I = 1 and K a II = 0, we get

K c I = 1 α M a,c or, when K a I = 0 and K a II = 1, we get K c II = 1 α M a,c .
In practice, the contour integral M a,c is replaced by the integration integral I a,c . This integral was introduced by Gosz and Moran [START_REF] Gosz | An interaction energy integral method for computation of mixedmode stress intensity factors along non-planar crack fronts in three dimensions[END_REF] and is simply the combination of the Θ eld and M a,c
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I a,c = D 1 2 (σ c ij a ij + σ a ij c ij )δ kl -(σ c ij u a i,k + σ a ij u c i,k ) Θ k,l dV (1.39)
where D is the domain inside Γ, where Θ is non-zero (see Fig. 1.5).

SIF along the crack path

As we have seen in section 1.1.3, the principle of local symmetry requires the knowledge of K II not at the tip of the crack in its original conguration, but after an innitesimally small extension.

This quantity K * II is of course dependent on the kink angle θ i (see Fig. 1.4). Direct determination of the SIF * using FEM is time-consuming, as the computation should be repeated for each possible θ i value. Fortunately, we know from the work of Amestoy and Leblond [START_REF] Leblond | Mécanique de la rupture fragile et ductile[END_REF][START_REF] Leblond | Crack Paths in Plane Situations -I General Form of the Expansion of the Stress Itensity Factors[END_REF][START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF][START_REF] Amestoy | Déviation innitésimale d'une ssure dans une direction arbitraire[END_REF] that K * I and K * II are dependent exclusively on the SIF before extension and the kink angle. The relationships between this parameters are universal, in the sense that their coecients do not depend on geometry or loading, this information already being encapsulated in the original SIF:

K * I (θ i ) K * II (θ i ) = M 11 (θ i ) M 12 (θ i ) M 21 (θ i ) M 22 (θ i ) . K I K II (1.40)
Accurate expressions of M 11 (θ i ), M 12 (θ i ), M 21 (θ i ), M 22 (θ i ) have been developed by Amestoy [START_REF] Amestoy | Crack paths in plane situationsII. Detailed form of the expansion of the stress intensity factors[END_REF], up to the order 22: with θ i = πm(-1 < m < +1) denoting the kink angle formed between the original crack and its extension.

M 11 (θ i ) = 1 - 3π 2 8 m 2 + π 2 -

Limitations of the LEFM framework and existence of a fracture process zone

To summarize, LEFM is a macroscopic approach to fracture: criteria for crack propagation are based on energy balance and unconcerned with microscopic breaking processes. Representing the material as continuous, isotropic, and homogeneous for all scales results in square-root singular stress elds at the crack tip, which is physically unacceptable. However, all materials have a smallest representative volume under which their average mechanical properties are not statistically matching the continuum bulk description. Most materials will go through inelastic transformations before breaking, such as plastic deformation or the nucleation of micro-cracks.

The zone where inelasticity prevails is known as the fracture process zone or sometimes as the plastic zone: because it undergoes dissipation mechanisms LEFM is invalid in this region. The small scale yielding assumption postulate that the fracture process zone is much smaller than all other characteristic lengths of the problem including the crack length. Under such conditions, the stress eld provided by the LEFM theory are valid on an annulus enclosing the fracture process zone: the K-dominance zone. Outside the annulus, the stress elds are dominated by boundary conditions and LEFM, which is an asymptotic approach to fracture, also breaks down (Fig. 1.6).

Figure 1.6 LEFM asymptotic solution compared to the "true" opening stress: For a crack submitted to a far away tensile stress σ ∞ the LEFM solution is not valid extremely close to the crack tip where inelastic phenomena take place. The actual shape of the plastic zone is complex and controlled by many parameters. It depends most notably on the plane problem assumption. Outside the K-dominance annulus, the asymptotic solution becomes once again invalid as boundary conditions grow more important: the true opening stress tends to σ ∞ , not 0.

Diuse crack models: a variational approach to fracture

As we have seen in section 1.1, the classical approach of fracture mechanics based on Grith's work is essentially an energy minimisation problem, in which the surface and strain energies compete. The variational approach of fracture consists in treating the problem thermo-mechanically as a whole, instead of dissociating the propagation and bifurcation criteria as is standard in LEFM. The crack length and shape become simply one parameter among others controlling the Gibbs free energy ψ. Representing cracks as material singularities hinders the proper dierentiation of ψ: variational approaches to fracture require a regularized parameter. Phase-eld solving techniques are based on this principle and use an additional scalar damage variable to represent a smooth transition between undamaged and broken materials.

In this section, we rst aim to present how phase-eld methodologies arose from the local state method. We will then present in more details the model of Miehe et al. [START_REF] Miehe | A phase eld model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF], later implemented into Abaqus by Molnár et al. [START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF], on which the results from chapter 3 are based, and its numerical implementation.

The local state method

The variational approach of fracture is derived from the local thermodynamical state method developed by Lemaitre and Chaboche [START_REF] Lemaitre | Mécanique des Matériaux Solides[END_REF]. The aim of this technique is to establish a formalism compatible with the laws of thermodynamics and resolvable using numerical analysis techniques.

It is well suited to study coupled problems, among which damage mechanics.

CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND

State variables

The local state method is based on the assumption that the thermo-mechanical state at a material point is entirely determined by a number of variables dened at this point exclusively [START_REF] Lemaitre | Mécanique des Matériaux Solides[END_REF]. Because the time derivatives of these variables are not taken into account, any approach stemming from this method will necessarily obey the quasi-static assumption: all processes are a succession of equilibrium states.

The state variables can be classied into two categories:

• Observable variables, such as the temperature T or the linearised deformation tensor , are necessary to dene the thermo-mechanical state of a material as they appear in the rst and second principle of thermodynamics.

• Internal variables represent dissipative phenomena and as such the solicitation history the material went through. While not directly measurable, they represent a real material state such as the crystalline micro-structure, the dislocation density or plastic deformation.

In models using irreversible deformation, the total deformation cannot be used as an observable variable. It is partitioned into its observable component, the elastic deformation e , and the internal plastic deformation e :

= e + p (1.45)
The number and nature of the internal variables V 1 ,... ,V k is an arbitrary choice driven by the modelled phenomenon complexity and the level of details one wishes to consider.

Laws of thermodynamics

The rst law of thermodynamics is used under the small scale deformation assumption:

ρ ė = σ : ˙ + r -divq (1.46)
where ρ is the density, e the internal specic energy (energy per unit mass), r the heat source density and q the heat ux.

We express second law of thermodynamics through the Clausius-Duhem inequality:

σ : ˙ p -ρ( ψ + s Ṫ ) -q ∇T T 0 (1.47)
where ψ = e -T s is the specic free energy and s the specic entropy.

State laws

We assume the existence of a thermodynamic potential from which the state laws derive: as long as this scalar function is concave in regard to T , convex in regard to e and all V k , the 1.2. Diuse crack models: a variational approach to fracture 21 conformity with the second principle of thermodynamics through the Clausius-Duhem inequality is guaranteed.

For solids at a constant temperature, the chosen potential is generally the specic Helmholtz free energy ψ = ψ( e , T, V k ). Without detailing the derivation, it is possible to retrieve the state laws of elasticity from eq. (1.46) and (1.47):

σ = ρ ∂ψ ∂ e (1.48) s = - ∂ψ ∂T (1.49)
With σ the stress tensor i.e. the dual variable of .

By analogy it is possible to dene the dual variables of all V k :

A K = ρ ∂ψ ∂V k (1.50)
Note that, while eq. (1.48) is a state law describing the evolution of an otherwise dened internal variable, eq. (1.50) is merely a denition of the dual internal variables A k . More equations are required to balance the number of unknowns.

Evolution laws

A dissipation potential φ = φ( ˙ p , Vk ) is introduced to complete the model. As for the state laws, using a scalar potential is a convenient way to ensure consistency with the laws of thermodynamics. Considering the state laws, the Clausius-Duhem inequality becomes:

-ρ ∂ψ ∂ p ˙ p -ρ ∂ψ ∂V k Vk - q∇T T 0 (1.51) ⇔ σ : ˙ p -A k Vk - q∇T T 0 (1.52)
The rst term refers to mechanical dissipation and the second to thermal dissipation: both must be positive independently from the other.

The dissipation potential is generally chosen as a positive, scalar function of Vk : this ensure automatic positivity of the mechanical dissipation. The ensuing relation is then:

A K = - ∂φ ∂ Vk (1.53)
Plus the complementary law for stress:

σ = ∂φ ∂ ˙ p (1.54) CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND
In practice the dual dissipation potential φ * , obtained through the Legendre-Fenchel transform, is often preferred:

φ * (σ, A k ) = sup ( ˙ p , Vk ) [σ : ˙ p -A k Vk -φ( ˙ p , Vk )] (1.55)
We have then:

˙ p = ∂φ * ∂σ (1.56) -Vk = ∂φ * ∂A k (1.57)

Extending to phase eld models

The diuse damage approach of fracture is usually concerned in representing the eect of damage on the macroscopic properties of the material, such as stiness degradation or decreasing yield stress. It is an application of the local state method to fracture, and uses one or more internal variables to represent damage, a concept covering various irreversible material changes such as void nucleation or variations in the dislocation density.

Strain softening, that is to say the phenomenon of decreasing material stiness when strain passes a certain critical deformation, poses an extra diculty. Indeed, strain softening fundamentally changes the local dierential equations making the problem ill-posed, with multiple numerical solutions [START_REF] Borino | Some observations on the regularizing eld for gradient damage models[END_REF]. In particular, in the presence of material softening the material is predicted to break along an innitesimally thin surface: in numeric approximations, this translates as strain localisation in a single element regardless of mesh size. Ultimately, the size and localisation of the simulated crack will be mesh dependent.

The rst solutions proposed to solve this problem consisted in using regularization techniques that contradict the main hypothesis of the local state method. Indeed, regularization techniques are based on the assumption that some variable are non local either by referring to a volume rather than to a point [START_REF] Mazars | Application de la mécanique de l'endommagement au comportement non linéaire et à la rupture du béton de structure[END_REF], or by operating through their spatial derivatives [START_REF] De Borst | On coupled gradient-dependent plasticity and damage theories with a view to localization analysis[END_REF].

As noted by Borino and de Borst [START_REF] Borino | Some observations on the regularizing eld for gradient damage models[END_REF], this approach presents several drawbacks:

• While it can be rationalized using micro-mechanical arguments, the choice of the regularized variable is somewhat arbitrary and of great inuence on the nal result.

• The use of spatial derivative adds additional constraints when using nite element solvers:

the shape functions dierentiability class must be increased.

• First and foremost, the loss of the local state assumption means that automatic compliance with the second principle of thermodynamics is not guaranteed and must be ensured a posteriori.

The solution came under the form of phase-eld models. Initially used to model nonequilibrium crystal growth [START_REF] Karma | Quantitative phase eld modelling of dendritic growth in two and three dimensions[END_REF], these models dier from the previous regularized approaches in the sense that the damage variable is integrated directly in the formulation of the potential energy. The 1.2. Diuse crack models: a variational approach to fracture evolution law is then derived from the same energy than the other variables, and not from a dierent potential

Numerical implementation

All phase-eld results presented in subsequent chapters were obtained using the Abaqus implementation proposed by Molnár et al. [START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF]. In this section we present this particular model in more details.

Damage eld & crack topology

In this model, we consider a single internal variable: the damage d, dependent on both time and space. It is the crack phase-eld function and varies between 0 (intact material) and 1 (completely broken). To represent micro-cracking and void nucleation, d varies smoothly between these values.

Take for example an innite bar of cross section Γ extending in the x direction. A sharp crack at x = 0 may be approximated by:

d(x) = e -|x|/lc (1.58)
This exponential form is consistent with the sharp crack topology: d(0) = 1, d(±∞) = 0 and if l c → 0 the damage will be null everywhere but at x = 0. In eq. (1.58) the length scale parameter l c characterizes the diuse crack topology: in a way, it measure the crack thickness.

An energy minimisation approach requires to determine the fracture energy, which is dependent on the size of new fracture surfaces in LEFM. In diuse damage approaches, the crack surface density is constructed by analogy with the innite bar case. Note that the exponential function in eq. (1.58) is solution of the dierential equation:

d(x) -l 2 c d (x) = 0 (1.59)
Any solution of eq. (1.59) will necessarily satisfy the condition:

d = Arg inf d I(d) (1.60)
where we dene the functional I(d) as:

I(d) = 1 2 +∞ -∞ d 2 + l 2 c d 2 dx (1.61)
In 

γ(d, ∇d) = 1 2l c d 2 + l c 2 |∇d| 2 (1.63)

Potential energies

We introduce the Helmholtz free energy:

E( , d) = Ω ψ( , d)dV (1.64)
The chosen free energy density is then expressed as:

ψ( , d) = g(d).ψ 0 ( ) (1.65)
where ψ 0 ( ) is the usual strain energy and g(d) a parabolic degradation function:

ψ 0 ( ) = 1 2 T C 0 (1.66) g(d) = (1 -d) 2 + k (1.67)
where C 0 is the undamaged material stiness matrix and k a very small numerical stability parameter.

From eq. (1.48) and (1.66), it is possible to derive the state law dening the the stress tensor:

σ = ρ ∂ψ ∂ ⇒ σ = g(d)σ 0 = g(d)C 0 (1.68)
where σ 0 refers to the stress tensor of the undamaged material. Eq. (1.68) illustrates how the damage eld impacts the stresses and degrades the material stiness.

Because of the diuse crack representation, we have to redene the fracture energy. Making once more an analogy with standard LEFM, the fracture energy is expressed as the product between the critical energy release rate g c and the crack surface dened in eq. (1.62)

W (d) = Ω g c γ(d, ∇d)dV (1.69)
Finally, considering k ≈ 0 the total potential energy of the system can be written as:

E p (u, d) = W (d) + E( , d) -Π ext (u) (1.70) = Ω [g c γ(d, ∇d) + (1 -d) 2 ψ 0 ( )]dV - ∂Ω t.udA (1.71)
where E( , d) refers to the free energy and Π ext to the work of external forces t acting on the body boundary ∂Ω.
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Evolution law

One more equation is lacking to complete the model: we need to dene the evolution law that will drive the expansion of the fracture phase-eld d. It must ensure damage irreversibility: ḋ 0.

Without detailling the derivation, which is available in [START_REF] Miehe | A phase eld model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF], the minimisation of eq. (1.71) coupled with inequality constraints stemming from the second principle yields the KarushKuhnTucker (KKT) system:

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ḋ 0 f -g c δ d γ 0 ḋ(f -g c δ d γ) = 0 (1.72)
in which we introduced the variable f , dual of d: f = ∂ψ/∂d = 2(1-d)ψ 0 ( ) and the innitesimal variation δ d γ:

δ d γ = ∂γ ∂d -Div( ∂γ ∂∇d ) (1.73) = 1 l d (d -l 2 c Δd) (1.74)
If we consider the case when damage is increasing ( ḋ > 0) the fourth equation of system (1.72) imposes that f = g c δ d γ which translates as the damage evolution law:

g c l c d -l 2 c ∇d = 2(1 -d)ψ 0 ( ) (1.75) 

Resolution

For stability purposes, the problem is decoupled: the displacement eld and the phase eld are determined by two quasi-independent minimisations.

For each time step of the simulation, the phase eld is updated rst. From eq. (1.75), it is clear that damage is driven by the maximum stored elastic energy ever underwent by the material.

We therefore introduce a history variable:

H n+1 = ⎧ ⎨ ⎩ ψ 0 ( ) if ψ 0 ( ) > H n , H n otherwise.
(1.76)

Then, using a slightly altered potential energy, we get the evolution law of the damage eld:

d n+1 = Arg inf d Ω [g c γ(d, ∇d) + (1 -d) 2 H]dV (1.77)
In eq. (1.77), we consider only the terms dependent on d. This excludes Π ext , as we assume that damage cannot reach the domain border ∂Ω.

The displacement eld is then determined as the minimizer of the dierence between the potential energy and external works:

u n+1 = Arg inf u Ω ψ(u, d n )dV - ∂Ω t.dA (1.78)
The main assumption in this step is that d and u can not vary at the same time. This condition ensures numerical stability. (d) in 3D printed aluminum alloy, adapted from [START_REF] Martin | 3D printing of high-strength aluminium alloys[END_REF] (e) in a paper sheet, adapted from [START_REF] Cortet | Attractive and repulsive cracks in a heterogeneous material[END_REF]; (f) in oceanic oor, adapted from [START_REF] Singh | Seismic reection images of the Moho underlying melt sills at the East Pacic Rise[END_REF].

Δy Δx d (ΔX = 0) Figure 1.
13 Close-up of the crack tips and surrounding plastic zones: We assume that the fracture process zone appears in black, as it contains voids and micro-cracks that will obstruct the light.

(a) The PET Lumirror R endures the most repulsion and seems to be associated with a narrower process zone;

(b) PET Mylar R . The "double tip" visible in this sample is probably an artifact caused by out-of-plane deformation. Adapted from [2], Supplemental Material.

polyethylene lms rather than in polycarbonate lms. Even more surprisingly, it appeared that taking into account the Young modulus and the Poisson's ratio, i.e. the material properties used in a LEFM model, would not be sucient to fully explain the dierent nal path shapes.

When identical tests were run for two separate kinds of polyethylene sheets that had identical macroscopic properties, the magnitude of repulsion was also systematically larger in one case.

This clearly shows a failing of a LEFM approach to study interacting cracks in such material samples as the only noticeable dierence between the two tests was the shape of the plastic zone around the crack tips, shown in Fig. 1.13. The discrepancy was tentatively attributed to the dierent micro-structures of the materials, and how it may impact the fracture process zone ahead of the crack tips: strong repulsion appears at rst glance to be associated with a "sharper" point of the fracture process zone. Finally, Dalbe et al. noted an even more surprising disparity:

while the PLS, as well as as other bifurcation criteria, predicts that perfectly aligned cracks propagate straight ahead, maximum repulsion is observed for this conguration specically.

This eect was further examined by Koivisto et al. [3] who reproduced the previous experiments in polycarbonate sheets and used digital image correlation to track the tips of the fracture process zone and measure the strain elds. The authors found that, when treating the process zone tip as an eective crack tip, the cracks follow LEFM theory with a maximum tangential stress assumption. Crack repulsion is then considered as an exceptional, rather than usual, phenomenon:

according to the authors, it could only result from a stress eld perturbed by a large fracture process zone.

The presence of an attractive phase following a repulsive stage is not the only distinctive characteristic of EP-crack paths. The results of Dalbe et al. are also surprising because the attractive 1.3. Interacting cracks 33 phase begins before overlapping when a starting point at coincidence is the general consensus [START_REF] Kranz | Crack-crack and crack-pore interactions in stressed granite[END_REF][START_REF] Acocella | Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland[END_REF][START_REF] Eremenko | Investigation of the propagation and interaction of fast cracks in plexiglas[END_REF][START_REF] Swain | Some observations of overlapping interacting cracks[END_REF][START_REF] Macdonald | Overlapping spreading centers: new accretion geometry on the East Pacic Rise[END_REF]. EP-cracks are also known to coalesce at a near perpendicular angle [START_REF] Kranz | Crack-crack and crack-pore interactions in stressed granite[END_REF][START_REF] Pollard | Propagation and linkage of oceanic ridge segments[END_REF].

Finally, the shape factor of the released central part between the cracks is generally reported to be 3:1 [START_REF] Acocella | Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland[END_REF][START_REF] Sempere | Overlapping spreading centers: implications from crack growths simulation by the displacement discontinuity method[END_REF][START_REF] Tentler | How does the initial conguration of oceanic ridge segments aect their interaction? Insights from analogue models[END_REF]. However in a minority of cases, the central part is more elongated: observing normal faults Acocella et al. reported a small number of large aspect ratios, up to about 10:1 [START_REF] Acocella | Interaction and linkage of extension fractures and normal faults: Examples from the rift zone of Iceland[END_REF]. To our knowledge a more circular central part, with a ratio of 2:1 was observed in only one instance [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF].

Modelling interacting cracks

General techniques for studying interacting cracks

Most studies specically on two-cracks interactions are focused on the determination of the SIF, and do not extend the reasoning to the identication of the complete crack paths. Techniques to compute the SIF often rely on the stress superposition principle [START_REF] Kachanov | On the problems of crack interactions and crack coalescence[END_REF]. The rst method of this family was introduced by Kachanov [START_REF] Kachanov | A simple technique of stress analysis in elastic solids with many cracks[END_REF]: the problem containing N cracks is represented as the superposition of N subsidiary problems consisting of one isolated crack, loaded from both the original tractions, and a sum of unknown interaction tractions induced by the other cracks. Simplifying hypotheses, such as the one proposed by Kachanov (any interaction traction is taken as the response of a crack to the uniform average traction on the other) makes for an easy solving of the problem. This technique, which was later re-branded as the "pseudo-traction method" by Horii and Nemat-Nasser [START_REF] Horii | Elastic elds of interacting inhomogeneities[END_REF], has beneted from many enrichments in the form of tractions hypotheses: instead of using constant tractions along the considered crack, Horii and Nemat-Nasser used polynomials of the Chebyshev's and Taylor's kinds. Benveniste et al. [START_REF] Benveniste | On interacting cracks and complex crack congurations in linear elastic media[END_REF], also used a polynomial approximation to represent the tractions: in this case polynomials are used on all the cracks, not just the one in the current sub-problem.

Pseudo-traction methods are simple and adaptable to many fracture problems; they are, however, limited to straight cracks and thus unable to determine complex curved nal paths. They also become imprecise for small crack spacing, making it all the more irrelevant to the study of crack coalescence or close crack interaction [START_REF] Kachanov | On the problems of crack interactions and crack coalescence[END_REF].

Another often used technique to study interacting cracks consists in representing them by a distribution of innitesimal dislocations in an otherwise perfect body [START_REF] Hills | Solution of Crack Problems The Distributed Dislocation Technique[END_REF]. This "distributed dislocations technique" was rst introduced by Bilby and Eshelby [START_REF] Bilby | Dislocation and the theory of fracture[END_REF] and further rened later by Hills et al. [START_REF] Hills | Solution of Crack Problems The Distributed Dislocation Technique[END_REF]. The nal solution is the superposition of two problems: a trivial one consisting of the given geometry and loading from which we removed all cracks, and an auxiliary problem containing the cracks but no far-eld loading conditions. The cracks are represented by an assembly of glide and climb dislocations to account for any displacement jump. The stresses are then retrieved using the well-known Burger's theory [START_REF] Hull | Introduction to Dislocations[END_REF].

Recently, but dislocations-based methods were extended to determine the SIF not only at cracks tips, also at other stress singularities such as crack kinks [START_REF] Termaath | A technique for studying interacting cracks of complex geometry in 2D[END_REF][START_REF] Burton | Superposition method for calculating singular stress elds at kinks, branches and tips in multiple crack arrays[END_REF]. This allows the study of crack branching in the context of LEFM. The main advantage of dislocation based methods is (a) Paths for a pair of cracks: the authors did not retrieve the expected hook shape, but an unanticipated "s" shape. (b) Paths for an innite array of EP-cracks. Note that in both case the repulsion between the cracks is negligible.

that they are usually less numerically costly than FEM analysis, and extend well to the case of multiple curved cracks. However, these methods are generally considered to be more suited to study relatively short cracks [START_REF] Hills | Solution of Crack Problems The Distributed Dislocation Technique[END_REF] and may prove inadequate for a problem with known multiscales properties such as EP-cracks. Furthermore, dislocations methods are only valid for purely elastic materials and do not allow to study the eect of plasticity [START_REF] Ribeaucourt | Gestion du contact avec frottement le long des faces de ssures dans le cadre de la méthode X-FEM[END_REF].

Some models of en-passant crack pairs

Many studies concerned with the propagation direction of interacting crack are usually focused on very specic geometries and oer only a partial analysis of the problem.

Melin [START_REF] Melin | Why do cracks avoid each other?[END_REF] restricted her work to the case of a periodic array of perfectly collinear cracks. Using a dislocation method, she showed that slight curvature at the tips of the otherwise straight cracks induces crack repulsion and impedes tip to tip coalescence. The inquiry was focused on the initial behavior of the cracks, and the nal path was not comprehensively described.

Mills and Walker [START_REF] Mills | Development and growth of oset ngerlike cracks[END_REF] also studied an innite and periodic array of cracks using a dislocation 1.3. Interacting cracks 35 method. In this case the cracks are entirely curved and approximated by a succession of straight displacement discontinuities. Mills and Walker were able to retrieve the classic hook shape in a periodic array: a repulsive phase is followed by an attractive phase when the cracks overlap.

However, the cracks intersect at an angle of about 38 • (see Fig. 1.14a), which is markedly smaller than the 90 • angle usually observed. When applied to a pair of cracks, their method revealed that propagation at the inner tips should eventually stop for the benet of propagation at the outer tips. Also, the complete path shown in Fig. 1.14b was not hook-shaped; the attractive phase does not last until coalescence as the cracks eventually deviate a third time and end up parallel to each other. Mills and Walker attributed these phenomena to artifacts of the dislocation method but, depending on the tested geometry, it could be in accordance with later results [START_REF] Wang | Crack Interactions, Coalescence and Mixed Mode Fracture Mechanics[END_REF][START_REF] Gdoutos | Interaction between two equal skew-parallel cracks[END_REF].

Yokobori et al. [START_REF] Yokobori | Interaction between two non-coplanar parallel staggered elastic cracks with narrow spacing, calculating stress intensity required for crack propagation[END_REF] used a dislocation method to study narrowly spaced EP-cracks, under

the assumption of the MTS. The results are somewhat contradictory to the general consensus:

Yokobori et al. found that EP-cracks do not deviate from their original axes before overlapping, and that repulsion could begin after superimposition of the inner tips. This is, to the best of our knowledge, the only occurrence where such a phenomenon is reported; we attribute this discrepancy to the known failings and inaccuracies of dislocation methods. Chan [START_REF] Chan | Equivalent crack formation by propagating cracks under tension[END_REF] tried to re-simulate Yokobori's trajectories using another dislocation method on the exact same geometry and boundary conditions: he found that the cracks repel one another before overlapping, further invalidating Yokobori's model.

Baud and Reuschlé [START_REF] Baud | A theoretical approach to the propagation of interacting cracks[END_REF] studied EP-cracks submitted to either tensile or compressive far-away stresses. Surprisingly, this dramatic change in boundary conditions does not signicantly aect the qualitative form of the nal shape: again, the trajectories are hook-shaped. This model presents two failings: any predicted repulsion is very weak, and the cracks interact only if they stand really close to each other. Indeed, the maximum tip to tip interaction distance is the half-length of the crack, which is smaller than other models predict.

For example, Gdoutos [START_REF] Gdoutos | Interaction between two equal skew-parallel cracks[END_REF] found the interaction between EP-cracks to be signicant if the tip to tip separation distance is smaller than twice the crack length. Gdoutos used previous work to identify the SIF [START_REF] Yokobori | Interaction between two non-coplanar parallel staggered elastic cracks with narrow spacing, calculating stress intensity required for crack propagation[END_REF][START_REF] Rooke | Compendium of Stress Intensity Factors[END_REF] and determine the initial kink angle of the cracks as dened by the strain energy theory: depending on the geometry both repulsion and attraction are possible.

Gdoutos also compared the energy release rate at the outer and inner tips, which enabled him to determine from which extremities the cracks would propagate.

Wang et al. [START_REF] Wang | Crack Interactions, Coalescence and Mixed Mode Fracture Mechanics[END_REF] were interested in EP-cracks as a mechanism of crack coalescence: using known solutions for the SIF neighboring cracks, and assuming the MTS hypothesis, he determined complete EP-cracks trajectories. It should be noted however that the known solutions he used are only available for straight cracks in an innite medium; the inuences of both the boundary conditions and the history of the crack propagation were necessarily neglected. While the resulting paths can not be considered quantitatively accurate, Wang et al. were able to qualitatively retrieve the hook-shaped paths of EP-cracks and concluded that the presence of a repulsive phase is exclusively dependent on the lateral, i.e. in the direction transverse to the original cracks axes, distance separating the original tips.

CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND Forsyth [START_REF] Forsyth | A unied description of micro and macroscopic fatigue crack behaviour[END_REF] adopted a similar approach to determine EP-cracks paths, along which he determined theoretical plastic zones whose size was proportional to K 2 I . He argued that the turning point of the paths or, in other words, the moment the cracks behaviour changes from repulsive to attractive, corresponds to the moment the plastic zones encroach one another. This assumption was poorly justied and no explanation of the magnitude of repulsion was presented.

Sempere and Macdonald [START_REF] Sempere | Overlapping spreading centers: implications from crack growths simulation by the displacement discontinuity method[END_REF] successfully modelled overlapping spreading centers, that is to say immense EP-cracks found along rift zones, as two initially parallel cracks in a tensile far away loading using a dislocation method: repulsion is observed in certain congurations and the ratio of the released piece between the cracks was always about 3:1, comparable with sea-oor observations.

More recently, Ghelichi and Kamrin [START_REF] Ghelichi | Modeling growth paths of interacting crack pairs in elastic media[END_REF] presented a set of analytical tools based on the superposition principle to study EP-cracks but did not explicitly study the complete trajectories. This technique allows a very precise determination of the SIF at the tips of a curved crack propagation increment, but it relies on the knowledge of the T-stress, i.e. the second order term in the stress expansion around the crack tip, which is arduous to calculate in interacting crack situations [START_REF] Chen | Evaluation of the T-stress for interacting cracks[END_REF].

Although the trajectories were not studied in terms of attraction or repulsion, the changing sign of K * II suggests that both behaviours can be retrieved with this technique.

Remaining questions & research objectives

As we have seen, conicting armations have been put forward to explain the behavior of EP-crack pairs. In particular, the conditions necessary to induce repulsion and the parameters controlling its magnitude remain unexplained. While most observations and many theoretical work conrmed its ubiquity, the only two deep analysis of experimental EP-cracks paths yield confusing results: Fender et al. [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF] did not observe repulsion and concluded to the existence of a universal shape that clearly conicts with the majority of observations and Dalbe et al. [2] discovered surprising phenomena that call into question the validity of the LEFM framework to study EP-crack pairs.

Few hypothesis have been put forward to suggest the origin of repulsion between EP-cracks.

Melin's work [START_REF] Melin | Why do cracks avoid each other?[END_REF] suggests that heterogeneity-induced perturbations could be the source of this instability, but Cortet et al. [START_REF] Cortet | Attractive and repulsive cracks in a heterogeneous material[END_REF] later found that any inhomogeneities in the material would have to be unrealistically large to explain the whole magnitude of the repulsion he observed. Other authors [3,[START_REF] Forsyth | A unied description of micro and macroscopic fatigue crack behaviour[END_REF] attributed the repulsion to the presence of a signicant plastic zone around the crack tips. However, the most recent conclusion in that regard [3], that repulsion is induced exclusively by the presence of a process zone and that larger process zone would lead to stronger repulsion, is debatable considering previous work where repulsion was predicted by purely linear elastic approaches [START_REF] Gdoutos | Interaction between two equal skew-parallel cracks[END_REF][START_REF] Baud | A theoretical approach to the propagation of interacting cracks[END_REF][START_REF] Ghelichi | Modeling growth paths of interacting crack pairs in elastic media[END_REF]]. Dalbe's explanation [2], i.e. the repulsion intensity depends on the shape of the plastic zone rather than its size, seems more credible.

These apparently contradictory works raise three main questions:

• Under which conditions does the LEFM framework, under the assumption of the PLS 1.3. Interacting cracks 37 predict EP-cracks repulsion ?

• Is the observation that the maximum repulsion between EP-cracks is realised when the cracks are aligned really a failure of LEFM, or is it possible to explain the contradiction ?

• How can we explain that macroscopically similar materials yield dierent crack paths ?

Our rst objective is to delineate once and for all the real limitations of a LEFM framework applied to EP-crack pairs by conducting a precise and systematic analysis of the initial kink angle θ i , as predicted by the PLS. In that respect, we developed a fast and versatile tool presented in section 2.1 that allowed us to repeat the computation of θ i for many EP-cracks congurations.

The corresponding results shown in section 2.2 conrmed that a LEFM+PLS approach is not inherently unt to model the repulsive component of EP-crack pairs. A deeper study of the complete trajectories was therefore desirable; we detail the method used to determine them in section 2.3 and the results in section 2.4. We later on investigated how a diuse damage modelling aects the results as it let us test Dalbe's hypothesis by controlling the crack bluntness. This set of prospective results is presented in chapter 3.

In this chapter, we wish to conduct a thorough study of EP-crack pairs in the LEFM framework, rst to clarify if repulsion can be qualitatively anticipated using this model. To that aim we determined the initial kink angle of EP-cracks loaded in a tensile stress eld. Repeating the computation for many crack lengths and tip to tip separation distances allowed us to identify the precise geometric conditions leading to crack repulsion within this theoretical context.

In a second phase, we wish to complete our study by comparing simulated trajectories to the ones obtained experimentally by Dalbe et al. [2] in plastic lms. In particular we seek to verify whether LEFM predictions of the magnitude of repulsion between EP-crack pairs can be quantitatively accurate.

Given the arguments in favor of the PLS outlined in section 1.1.3, all kink angles and trajectories in this chapter will be identied under this assumption, unless otherwise specied. the nite element analysis of the initial kink angle θ i of EP-cracks. θ i is measured between the original crack direction and its virtual extension. In our convention, the behaviour is considered repulsive when θ i < 0 and attractive when θ i > 0 in the counter-clockwise direction. Here, the example is drawn in the repulsive case.

2.1 Determining the initial kink angle 

Procedure

For this rst step, our aim is to focus on how two-cracks interaction aects the initial kink angle while minimizing the impact of boundary conditions on the cracks propagation direction.

To do so, we examine the case of a square plate notched with symmetric cracks signicantly smaller than the length of the plate sides. As shown in Fig. 2.1, this conguration is dened by four parameters: the half side length L c , the half crack length L f and the tip to tip separation distances 2δx and 2δy. We are interested in determining θ i (L f , δx, δy), the initial kink angle formed between a crack and its extension. In the initial conguration the cracks are rectilinear and oriented perpendicularly to the applied stress: if only one was present, it would be solicited in pure mode I and propagate straight ahead (θ i = 0) according to the PLS and other bifurcation criteria. We therefore distinguish between two types of interaction: the cracks repel one another if they are deviated from their straight, when alone, path in the direction going away from the second crack (θ i < 0). Alternatively, we consider the interaction to be attractive when θ i > 0.

In accordance with the LEFM hypothesis, we only consider an ideally linear elastic, isotropic and homogeneous material for all scales considered.

As we have seen in section 1.1.3, to determine the θ i that satisfy the PLS, we need to solve K * II (θ) = 0, with K * II being an universal polynomial function dependent on the SIF before kinking K I and K II . Therefore, our scheme to determine θ i amounts to two steps: a simple nite element analysis to compute K I and K II and a classic minimization algorithm to solve K * II (θ) = 0. We used the freely available Cast3m nite element software [START_REF]Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Cast3m documentation 2017[END_REF] to determine the stress state of our problem, and a pre-implemented procedure [START_REF]Commissariat à l'énergie atomique et aux énergies alternatives (CEA). Cast3m : Notice G_THETA[END_REF] to compute the SIF based on the G(Θ) method presented in section 1.1.4.

Mesh denition

Given the simple geometry dened in Fig. 2.1, we have only three meshing parameters to choose:

• The radius L r of the circular contour inside which the SIF will be calculated,

• the size h of the regular mesh enclosed in these contours (see Fig. 2.2),

• the mesh size on the outer borders of the plate.

In the subsequent section, we will present the various situations tested to determine the optimal meshing characteristics to study EP-crack pairs.

Validation: precise SIF determination

We rst conducted a convergence study to determine which meshing characteristics and other numeric conditions should be respected to obtain satisfactory precisions when computing the SIF. In that order, we compared simulation results to analytical solutions known for specic interacting crack congurations (see [START_REF] Kachanov | Advanced Applied Mechanics : Elastic Solids with Many Cracks and Related Problems[END_REF] for reference). 

Far-eld loading approximation

Ideally, the study of two-cracks interaction should be undertaken in an innite medium to remove the inuence of boundary conditions. This is possible analytically only for specic crack arrangement and not at all using nite element analysis. The far-eld tensile loading was then represented in our FEM simulation by taking the plate several order of magnitude bigger than the cracks.

To test this hypothesis, we compared the results obtained analytically in [START_REF] Kachanov | Advanced Applied Mechanics : Elastic Solids with Many Cracks and Related Problems[END_REF] for two cracks standing on the same line, in an innite medium under far-eld opening stress, to a similar conguration in a plate of varying nite size L c , as shown in Fig. 2.4. Figure 2.4 (a) and (b) show the computed outer and inner tips SIF rescaled by K 0 I , the SIF for a single crack in a similar medium. The computed values reproduce well the inuence of crack interactions when the distance δx decreases. Figure 2.4 (c) and (d) show that the relative error, compared to the analytical prediction in an innite plate, is very small for a plate size to crack length ratio L c /L f = 20 and can reach about 3.5% in the worst case where L c /L f = 5, i.e. when the boundaries of the plate can not be considered at innity and nite size eects are important. As the error decreases quickly with the plate size, we are condent that a ratio of L c /L f = 20 is sucient to reach a satisfactory approximation of an innite plate.

Inuence of the meshing parameters

The main numerical challenge here is to ensure an accurate description of the stresses in the areas of interest, despite the crack tips acting as close standing mathematical singularities. The G(Θ) procedure should be applied inside a contour enclosing the crack tip, the size of which should be chosen carefully. Indeed, the contour cannot be too large and intersect the second crack but Relative Error (%) The horizontal spacing between the cracks is xed to a value of δx = 0.2. (a): The precision is inversely proportional to the size of the integration contour and (b) proportional to the number of regular mesh layer separating the tip and the contour. In both case this could be at least partially attributed to the changing mesh size around the crack tips.

L c /L f = 20 L c /L f = 10 L c /L f = 5 (c) (a) (b) (d)
CHAPTER 2. LEFM STUDY OF EP-CRACK PAIRS it should not be too small either, as the stresses will be less precisely calculated too close (in terms of number of meshes separation) to the stress singularity. The remaining question is then how large should the contour radius L r be comparatively to L f , and how many meshes should it enclose.

Comparing again simulations to the analytical solution for two collinear cracks in an innite medium, Fig. 2.5a represents the evolution of the relative error as a function of the ratio L r /L f .

In each case the contour contained a 10-layers regular mesh around the crack tip (see Fig. 2.2): it appears clearly that the decreasing mesh size completely cancels out any disadvantage of small L r /L f ratios. In any case, the maximum relative error of 0.2% could be attributed to the model approximation and excellent precision is easy to reach even for close interacting cracks, as long as a sucient number of nodes separates the tip from the contour. The inuence of this number N on the relative error is displayed in Fig. 2.5b where we represent the relative error as a function of the number of regular mesh layer in a contour of xed size L r . Again the eect is coupled with the decreasing mesh size and excellent precision is reached for N = 10 which correspond here to a mesh size around the tips of h = 0.02L f .

Final meshes characteristics

The work presented in section 2.1.2 allowed us to establish the tting computational parameters for our study. All results presented in section 2.2 were obtained using meshes of the following characteristics:

We used quadratic triangular nite elements everywhere, with the exception of the regions around the cracks tips. They were rened in order to reach a h ∈ [0.0002L f ; 0.005L f ] mesh size depending on the geometry, and we enforced a regular mesh of quadrangular quadratic elements in a 10 nodes radius so that the SIF determination using G(Θ) procedure is as precise as possible. To save computation time, the mesh size was gradually increased toward the edges of the plate, so that the outermost mesh size was about 1200h. The plate half sides length L c was taken constant across all computations, while L f varied so that the ratio L f /L c fell between 20 and 1000, which is sucient to ensure minimal inuence from the boundary conditions. Rigid body modes are restrained by clamping the midpoint on the plate left side and only allowing displacement along Ox for the opposing point. The horizontal sides are pulled apart by imposing a stress uniformly on the top and bottom sides in the σ yy direction.

The eciency and robustness of our calculation allowed us to repeat the computation for many points: nally, K I and K II were determined for over 7500 (δx; δy; L f ) combinations. One limit of this representation is that we deliberately chose to not consider potential contact between the crack lips, as it saves computation time. This is of no incidence as long as the rst mode of fracture dominates over the second, which is the case in a far-eld tensile loading. (a) Coordinate system used to describe a curved propagation increment. (b) Here δ x /L f is xed to a value of 2.5, and we compare our simulation results to data extracted from Ghelichi's work [START_REF] Ghelichi | Modeling growth paths of interacting crack pairs in elastic media[END_REF].

Verication for interacting cracks

In a second step, we veried the validity of our model specically for EP-cracks by comparing our results with the ones obtained by Ghelichi [START_REF] Ghelichi | Modeling growth paths of interacting crack pairs in elastic media[END_REF] who also studied EP-cracks in a LEFM context but using dierent techniques from nite element analysis. Amestoy's formulas allow to determine only the direction of the next (straight) propagation increment. However, Ghelichi went further by determining analytically the SIF after propagation of interacting cracks using a curved increment depending on three parameters:

λ(x) = αx + βx 3/2 + γx 2 (2.1)
where λ and x are the coordinates along the propagation increment, in a Cartesian coordinate system centered on the original EP-crack tip. We derived from there an equivalent initial kink angle θ i = arctan(α). Comparison of our results with Ghelichi's is presented in Fig. 

Scaling properties of the initial kink angle

The problem of two EP-cracks in a quasi-innite medium is dened by 3 length scales: assuming L c is large enough to render boundary eects negligible, the geometry of the cracks is then controlled by L f , δx and δy. We found however the situation reduces to a set of only two dimensionless parameters: the scaled tip to tip relative separation distances Δx = δx/L f and Δy = δy/L f . We represent in Fig. 2.7 the evolution of θ i (Δy) for various δx and L f : the dierent evolutions collapse on a set of master curves depending on the Δx value.

This property allowed us to compute θ i for extremely small values of Δx and Δy by choosing large crack lengths. By charting scaled separation distances of the order of 10 -2 and smaller, we unveiled the non-monotonic dependency of the initial bifurcation angle with the geometric conditions, thus providing a broad insight as to which EP-crack pairs will initially attract or repel one another. We will comment more on this behaviour in the following section.

An attractive to repulsive transition

We found that the typical variation of θ i with Δy belongs to one of three kinds, depending on the xed Δx value; non-overlapping cracks (Δx > 0), coincident cracks (Δx = 0) and partially overlapping cracks (1 < Δx < 0).

In the case of approaching cracks, we retrieve the non-monotonic behaviour shown in Fig. 2 Contrary to the case of approaching cracks, the variations of the initial kink angle with the vertical separation is strongly dependent on the magnitude of horizontal spacing. While cracks only slightly overlapping retain an optimum of attraction, this local maximum slowly disappears as the superposition increases.

does not intensify indenitely as the cracks get closer: θ i reaches its maximum value θ a i (Δx) at Δy a (Δx). After this point, θ i decreases acutely to the extent of crossing the abscissa axis at Δy c (Δx): the behaviour becomes then exclusively repulsive. The existence of an optimum of repulsion θ r i realized at Δy r comes of as a second surprise: amazingly, the magnitude of the interaction only decreases after this point until it reaches zero for perfectly aligned cracks. As expected for these perfectly symmetric congurations, the PLS predicts that the cracks propagate straight ahead. However, and contrary to what was previously thought, this is not incompatible with LEFM predicting signicant initial repulsion as a maximum repulsion angle is realized at a small lateral separation distance Δy r (Δx) amounting to only a small fraction of the initial crack length.

In the case of coincident cracks (Δx = 0) and partially overlapping cracks (1 < Δx < 0), the inner kink angle is positive for all values of Δy: the cracks always exhibit an attractive behaviour.

In Fig. 2.9, we plotted the evolution of θ i when Δy tends toward zero or, alternatively, when L f approaches innity. While the repulsive zone disappears abruptly for Δx = 0, an optimum of attraction evolves continuously across Δx = 0: θ a i continues to exist for superimposed cracks not as a global maximum of attraction but as a local one. As shown in Fig. 2.10, when the level of superimposition increases, θ a i progressively vanishes until θ i (Δy) becomes a purely decreasing function. It is possible to reach much larger kink angles in this situation: we recorded values up to about 55 • for largely superimposed cracks.

Actual realization of the inner kink angle

It should be noted that we computed θ i at the inner tips whether or not propagation actually occurs at these tips: the cracks can rather propagate the outer tips, depending on the (Δx, Δy) conguration. We identied the advancing front independently from the determination of the SIF and θ i by comparing the energy release rates, as computed directly by the FE simulation, at each tip. Assuming that only the inner or the outer tips can propagate, and not all four fronts at once, we found for each horizontal spacing Δx the value of vertical separation Δy i/o above which the the energy release rate becomes larger at the outer tip, indicating a propagation from this extremity. Here, the energy release rate was computed using the G(Θ) method, that is to say before crack propagation and assuming a straight path.

Gdoutos [START_REF] Gdoutos | Interaction between two equal skew-parallel cracks[END_REF] led a similar investigation on a reduced Δx range, using the strain energy density criterion and tabulated values to determine K I and K II [START_REF] Rooke | Compendium of Stress Intensity Factors[END_REF]. His results for the transition between propagation at the inner or outer tips are in excellent agreement with ours, as shown in Fig. 2.11d.

In the case of approaching cracks, propagation occurs at the inner tips for any (Δx, Δy) combination that is under the Δy i/o (Δx) curve. Thus, we nd that both attractive and repulsive behaviour can be eectively observed at the inner tips, and that only part of the attractive behaviour may be eclipsed by propagation occurring at the outer tips.

In the case of partially overlapping cracks, the inner kink angle θ i is almost purely virtual: for close to all (Δx, Δy) we tested propagation starts from the outer tips. As shown in Fig. 2.11a, for any xed negative value of Δx 0.2, the energy release rate is considerably larger for the outer tips for small values of Δy. As the lateral separation increases, the energy release rates at each tips tend to the same asymptote, without swapping their relative position As shown in Fig. 2.11b, only very small overlap, combined with a modest Δy allows a propagation from the inner tips.

In any case, EP-crack repulsion is not eclipsed by propagation from the outer tips; it is indeed possible to anticipate this behaviour using a LEFM model only.

Phase diagrams of crack interaction

The various congurations of EP-crack pairs are summarized in Fig. 2.13 showing the value of θ in the (Δx, Δy) space. The landscape formed by the θ values presents multi-scale characteristics.

First, we nd that the positions of the local extrema of attraction and repulsion, as well as the neutral line θ = 0, are reasonably tted as power laws of Δx (see also Table 2.1):

Δy i = Δy 0 i + A i |Δx| α i (2.2)
The local optimum angles of interaction θ a and θ r form the crests and valleys of the landscape presented in Fig. 2.13. As shown in Fig. 2.12, their values can be tted as shifted power laws of Energy release rate Maximum interaction angles ( • )
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θ a i |θ r i | Figure 2.
12 Maximum initial interaction angles of EP-crack pairs: θ a i and θ r i follow a shifted power law (continuous line) of the distance Δd = Δx 2 + Δy 2 . Note that repulsion is recorded for much smaller tip to tip separation than attraction. the tip to tip distance Δd = Δx 2 + Δy 2 ):

θ a/r = θ 0a/r 1 + Δd λ a/r -α a/r (2.3) Eq(2.
2) and Eq(2.3) quantify how sensible interacting cracks are to the initial conguration and, in a larger sense, how dicult it may be to determine the path of interacting cracks. For Δx > 0, both attraction and repulsion tend to become stronger when the crack tips are closer. The length scale λ r characterizing the increase in repulsion is however nearly three times smaller than the corresponding scale λ a for the attractive zone (see table 2.1). Another remarkable scaling property is that attraction remains a dominant behaviour when the vertical oset between the cracks Δy is of the order of the crack length (as shown by Δy 0 a = 0), while repulsion becomes prevailing for crack tip distances corresponding to very small fractions of the crack length, typically of the Table 2.1 Coecients used in Eq(2.2) and (2.3) for the lines of maximum attraction or repulsion and the attraction/repulsion transition line. The non-zero Δy a indicates that an optimum of attractive behaviour subsists well after superimposition of the inner tips and will always occur at distances comparable to the crack size. order of the percent (Fig. 2.12).

Δy 0 i A i α i Δy a 0.
An alternative representation of the θ i values, as shown in Fig. 2.13, can be proposed without making the distinction between approaching and overlapping cracks. In this case, θ i is not depen- dent on its (Δx, Δy) coordinates, but on the corresponding (Δd, α) values dened in Fig. 2.14.

Δd is simply the radial separation distance dened earlier and α = atan Δy Δx the angle formed between the cracks axis and the line connecting their inner tips. With this representation, it becomes apparent on Fig. 2.15 that EP-cracks repulsion is a phenomenon conned to both α angles lower than 90 • and small fractions of Δd.

Shearing EP-cracks

In practical situations, EP-cracks are seldom loaded under pure mode I; most notably, EP-cracks along rift zone are sheared into a combination of modes I and II. We display here the results for the initial kink angle for the conguration presented in Fig. 2.16. Contrary to the mode I conguration presented in section 2.1.1, we did not impose a stress but a displacement on the upper border of the medium. Because the lower side of the sample is clamped, this ensure a symmetric deformation along the medial axis and prevent rigid-body motion. The cracks are not exclusively sheared: we added a small opening component whose magnitude amount to one tenth of the shearing displacement, so that the cracks lips do not inter-penetrate, as our model do not factor contact. Figure 2.15 Initial kink angle of EP-crack pairs in the (Δd, α) space: the black line marks the limit above which the upper crack pass the lower one on its left side. The rather extreme negative values taken by θ i near this line in Δd = 1 region may correspond to repulsion induced by the outer tips, as the cracks are nearly completely stacked in this area.

θ 0 i ≈ -64.1 • θ i -64.1 • θ i -θ 0 i > 0 (Δx, Δy) Δy = 1 Δx = 0 θ i Δx = 0 Δy 5.10 -2
Δy ≈ 10 -3

(Δx, Δy)

2.2. Scaling properties of the initial kink angle 55 Figure 2.17 Initial kink angle for sheared EP-cracks: for (a) overlapping cracks and (b) approaching cracks . In both case, the initial kink angle of a similarly loaded single crack, θ 0 i = -64.1 • was deducted to represent the interaction component θ iθ 0 i of the kink angle only. The irregularities in the attraction to repulsion transition are caused by the reduced number of data points we have in this conguration: less than 500, while over 7500 in the purely tensile conguration.

al. reported an apparent conict between her results and the PLS predictions for the initial bifurcation angle of aligned EP-cracks.

However, as we have seen in section 1.3.3, this hypothesis is inconsistent with other observations, in particular those of large EP-cracks at the geological scale. The work presented in this chapter is a rst step to reconcile theory and observation: the diculty to predict crack repulsion in the context of LEFM does not come from a failure of the model or of the bifurcation criterion, but from the very narrow (Δx, Δy) domain in which dierent behaviours, from repulsive to attractive, can initiate.

Our results show that signicant deviation (|θ i | > 10 • ), either attractive or repulsive, can arise for strictly positive horizontal spacing smaller than one fth of the cracks length. The comparatively smaller size of the repulsive zone, compared to the dominant attractive domain, may explain why the repulsive component of EP-cracks path is most often visible in larger settings rather than laboratory experiments. Finally, the existence of an optimum of repulsion realised for small values of Δy may indicate that the inconsistence pointed out by Dalbe et al. [2] is only apparent: the strong sensitivity of the kink direction to small misalignments between the cracks could be enough to induce signicant repulsion. While we did nd that perfectly aligned (Δy = 0)

do not interact at all and propagate straight ahead, θ i grows steeply with a slight increase in lateral spacing, favouring unstable crack paths. This is consistent with the theory presented by Melin [START_REF] Melin | Why do cracks avoid each other?[END_REF], who concluded that the smallest perturbation in collinear EP-cracks will force them to deviate from their straight paths. Furthermore, this instability may also explain why experimental observation very rarely shows crack merging tip to tip.

Determining complete trajectories 2.3.1 Necessity of an actualised FEM-computation: inuence of the path history

Because of the stress singularity at the crack tips, one can wonder if the stress eld around EP-cracks is not mostly determined by the relative position of the tips. If this is the case the knowledge of θ i (Δx, Deltay) should be sucient to determine complete crack paths.

We compared the crack paths obtained using the FEM method described later in section 2.3.2 to trajectories based only on the θ i (Δx, Δy) chart presented in Fig. 2.13. To compute them we simply determined the separations between the crack tip (normalized by the total length of the cracks, not the initial length), read θ k on the chart and added a rectilinear segment of arbitrary length. This method presents the advantage of being extremely fast as long as an accurate θ i chart of the correct loading is already available, and is equivalent to neglecting the propagation history. In other words, this methods make the gross assumption that the eect of the crack tips positions eclipses completely the eect of the previous path shape: for each step the local inclination angle is taken as θ k ≈ θ i , as if the whole crack were straight.

This method gives results somewhat comparable to the full nite element simulation. However, small errors accumulate as the crack advances and we do not get the same propagation paths even when choosing the same increment length. As shown in Fig. 2.18, this method converges toward a stable path when L i diminishes: we can therefore assume that most of the dierence from the FEM-simulated trajectories is caused by the previous path assumption and not by This method is not accurate enough to properly render EP-crack paths in details; in the following section we will present the more precise, and more compute-intensive, process we used to determine EP-crack paths.

Method: an iterating process

The procedure presented in section 2.1.1 allows to determine the next propagation direction of any advancing crack whose SIF are known. We propose to expand this method to determine approximate crack trajectories: after the FE computation step to calculate the SIF and the determination of the initial kink angle according to the PLS, it is possible to dene a new nite element problem by adding a small segment of arbitrary length L i at the tip of the initial cracks.

We can then solve again for the SIF at the new crack tips and determine the next kink angle.

Repeating the process as necessary allows to determine complete crack trajectories approximated by a succession of short rectilinear segments.

Because we only studied the symmetric fracture problem presented in section 2.3.4, the SIF at the tips of each EP-cracks are always identical and, in accordance with the LEFM principles, the propagation paths of each crack must remain symmetric. In practice, numerical imprecisions cause very slight dierences between the SIF at the two crack tips, of the order of a 10 -3

relative dierence in the worst cases. They do not lead to much variation in the next kink angle θ k but cumulatively such meager deviations could lead to incorrect crack paths. To prevent this phenomenon θ k was not computed independently at each crack tip, but globally with SIF averaged over the two tips as input for eq. (1.40).

This symmetry also dispensed us to consider which crack tip would propagate rst, as both crack fronts must advance at the same speed. Likewise, we were able to use the same boundary conditions across all pseudo-time steps thanks to the symmetric propagation: the imposed border displacement was constant no matter the length of the cracks. In more complex situations taking the energy release rate at each crack tip into account, and how it compares to the critical energy release rate of the material, would be needed to identify each crack front speed.

Although this process is largely similar to the computation scheme described in [START_REF] Sumi | Computational crack path prediction[END_REF], we chose to approximate the crack extension by a short segment instead of a portion of a curve. As a result, we do not need to compute the T-stress necessary when using a curved increment, which can be arduous in the case of interacting cracks [START_REF] Chen | Evaluation of the T-stress for interacting cracks[END_REF]. As shown in the following section, convergence regarding L i is easily reached despite this approximation.

Validation against known experimental results

To test the validity of our method, we compared the simulated path of a single edge crack propagating in a PMMA beam pierced with three holes and subjected to a three points bending test (see Fig. 2.19) to the experimental and FEM results presented in [START_REF] Bittencourt | Quasi-automatic simulation of crack propagation for 2D lefm problems[END_REF]. This conguration 2.3. Determining complete trajectories 59 exhibits a great sensitivity to the initial notch: any variations in its position and length will lead to completely dierent propagation paths. This series of experiment was used to validate simulated crack trajectories in brittle materials repeatedly [START_REF] Miehe | A phase eld model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF][START_REF] Mesgarnejad | Validation simulations for the variational approach to fracture[END_REF]: it is well suited to conrm our simulations are in agreement with the LEFM theory.

We examined two dierent initial notch congurations (see Fig. 2.20) to test the robustness of our computational scheme regarding the increment length L i . We chose to represent the problem as a 2D plane stress model; as seen before the value of the imposed force P or the elastic constants E and ν is of no eect on the nal trajectory because of the quasi-static propagation assumption.

The smallest mesh size around the crack tips is always h = L i /20.

In both cases, we retrieved excellent agreement between simulated and observed trajectories given a suciently small L i .

In the rst example shown in Fig. 2.20a, the smallest increment length L i = 0.16in will cause the crack to reach the second hole in 25 iterations. There is no need to rene the crack path further, as doubling or even quadrupling L i yields nearly identical trajectories. It takes an increment length as large as L i = 1.28in for the simulation to deviate clearly from the observation: in this situation, the crack path is approximated by only 3 segments. The only exception to this very quick convergence regarding L i is for the nal increments very close to the second hole. In this region, the stress gradient is higher because of the proximity of a free edge: the curve of the crack is more pronounced and only the smallest increment length is able to capture it.

This eect is even more visible in the second example shown in Fig. 2.20b & 2.20c, whose nal propagation path is less regular. While taking L i = 0.16in gives again satisfying results, half this increment length depicts the sharp turn in the vicinity of the lowest hole better. Once more, the very end of the trajectory near the middle hole is not well captured by the simulations, regardless of the chosen increment length.

In conclusion, convergence regarding the increment length is quite easy to reach in most situations. However some small portions of the simulated crack paths may remain unusable where the cracks approach free edges. The same can be expected when cracks approach intersection.

A complete convergence study focused specically on the case of EP-crack pairs is presented in section 2.3.4.

Path discretization and other modelling characteristics of EP-crack pairs

We applied our method to the experimental conguration presented in [2], and we conserve their notations: a square plate of half side length L C is notched with two collinear cracks separated horizontally by a distance L and vertically by a distance d (See Fig. 2.21). In the experiment, the sides of the plate are slowly pulled apart so that the cracks propagate quasi-statically. The clamping jaw is clad with rubber, and allows some transverse displacement. We represented this boundary condition by clamping the mid-point of the bottom side, and allowing only horizontal displacement for every other points of this side. On the upper side of the plate, we impose a displacement Δu only on the pulling direction: transverse displacement is let free. Likewise, the horizontal displacement of the bottom side is free.

We used the PET Young's modulus and Poisson ratio (E = 1.8GP a and ν = 0.38) as inputs of the FEM simulations, but tests with other values conrmed these parameters do no inuence the shape of the nal trajectory in a LEFM model. Likewise, the magnitude of the imposed displacement is of little impact on the crack path. We used the same value Δu = 2L c /100 across all simulations and incrementation steps.

In all simulation results presented in section 2.4, we used the same smallest mesh size around the crack tips h = L i /20 that was employed to validate our methodology in section 2.3.3. Because of the relatively small size of the plate compared to the crack length, we chose to re-mesh the whole specimen for each added crack increment. In situations where the cracks are several order of magnitude smaller than the medium they are propagating into, local re-meshing around the crack tips exclusively could save signicant computation time.

Contrary to other parameters such as material properties or the magnitude of the imposed deformation, we have seen in section 2.3.3 that the choice of the increment length L i can be critical when a crack tip approaches a zone with a high stress gradient. In the case of EP-crack pairs approaching one another, the precision of the simulation may deteriorate when a crack nears a free edge, whether it is a plate edge or the other crack. After tests to nd the optimum L i for the geometry presented in Fig. 2.21, our results are in agreement with this observation. In most cases, the size of the propagation increment has very little impact on the nal crack path:

with the exception of d close to 1.84 cm the paths superimpose perfectly whether L i = 0.02 cm, 0.04 cm or 0.08 cm. The case of d = 1.84 cm is singular: as we will see in section 2.4.1, the simulated trajectories belong to one of two kinds and the cracks behaviour transition from hook shaped to s-shaped for a vertical separation of d = 1.84 cm. Indeed, for smaller values of d the the empirical observation that initially aligned cracks do not merge tip to tip [START_REF] Cortet | Attractive and repulsive cracks in a heterogeneous material[END_REF][START_REF] Melin | Why do cracks avoid each other?[END_REF]. Indeed, the slightest material defect would lead to the misalignment of the cracks' tips, and the apparition of a hook shaped path.

L i = 0.02 L i = 0.04 L i = 0.08 L = 4 d = 1.0 (L, d) L i = 0.04 L = 4 d = 1.8 L = 4 d = 1.84 L = 4 d = 1.86 L i (L, d)
The so-called "universal" shape of EP-crack pairs, a hook-shaped path which does not exhibit a repulsive phase described in [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF], was retrieved in our computation only when L 0 cm, forcing the propagation to start when the potentially repulsive area is already passed. Indeed, in all (L, d) congurations we tested, repulsion was never observed after the tips passed each other.

Typical features of hook-shaped EP-crack pairs

Aspect ratio

In the literature, two dierent techniques were used to measure the aspect ratio A of the released central piece enclosed between two hook-shaped cracks. As shown in Fig. 2.24, the length and width of the ovoid shape can be measured either in parallel to the cracks original axes, or in the direction of the line passing through both intersection points. While most authors do not acknowledge the dierence, we found that it is of little importance, as the discrepancy between the two values is usually minimal. Some authors postulated that the knowledge of the aspect ratio could be used to infer the loading conditions of EP-cracks retrospectively, and that it should always equate A = 2 in purely tensile situations [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF][START_REF] Wesley-Patterson | Segmented lineaments on Europa: Implications for the formation of ridge complexes and bright bands[END_REF]. We nd that the impact of boundary conditions is of more importance than anticipated, and results in largely dispersed values of A. As shown in Fig. 2.25a for a xed value of L, while A is indeed relatively constant over a large span of d, it grows steeply after d 1.5 cm.

For these larger lateral separations, the overlap before intersection is longer: the cracks reach regions closer to the sample borders and are therefore much more aected by boundary conditions.

Moreover the impact of L is signicant: for example, if d is xed to d = 1.8 cm, we nd A ≈ 2.36 if L = 2 cm and A ≈ 2.89 when L = 5 cm, a 22, 5% relative dierence. Situations where loadings are inaccessible but the initial conditions are known precisely seem unlikely, and it is therefore far-stretched to use a sole measure of A to evaluate unknown stresses, as it was proposed in [START_REF] Wesley-Patterson | Segmented lineaments on Europa: Implications for the formation of ridge complexes and bright bands[END_REF].

We should note however in Fig. 2.25a the existence of a plateau for d 1.5 cm: for these specic congurations we retrieve an aspect ratio of A ≈ 2, close to the "universal value" observed by Fender et al. [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF]. We infer that in these calculations as well as in Fender's experiments, the relative initial closeness of the cracks tips have a dominant eect on the propagation paths, over loadings and other boundary conditions.

Intersection angle

For hook-shaped paths, it is also possible to determine the intersection angle φ between the two cracks. The paths are expected to meet orthogonally: intersection angles retrieved experimentally usually lay between 80 • and 90 • [START_REF] Kranz | Crack-crack and crack-pore interactions in stressed granite[END_REF][START_REF] Pollard | Propagation and linkage of oceanic ridge segments[END_REF]. We determined φ by simply adding the tilt angle of the ending increment of one crack with the tilt angle of the intersected increment on the opposite crack. As shown in Fig. 2.26, our results are in excellent agreement with observation, as we nd that φ is an increasing function of d, starting at 80 • and tending to 90 • .

Just as for the aspect ratio, varying the value of the horizontal separation L will add dispersion to the results, but both the [80 • , 90 • ] interval and the trend to get closer to orthogonality as the lateral separation increases are always respected.

The few outlandish values visible in Fig. 2.26 are explained by the use of a larger increment length.

This may also suggest that relatively lower intersection angles for small osets between the cracks (d 1 cm) are articial and caused a too large L i comparatively to d, as closer-standing cracks have a smaller curvature radius. 

) L i = 0.03cm L i = 0.04cm L i = 0.08cm (b) 

Repulsive to attractive transition & maximum repulsion

For crack paths presenting a repulsive component, that is to say d 2.5 cm whether the cracks intersect or are s-shaped, θ k takes its last negative value (indicating repulsion) when the cracks' tips are overlapping by an horizontal distance comprised between 0.06 cmand 0.16 cm.

These quantities must be interpreted in light of the increment's length: our computations indicate that the turning point is usually removed from the plate center by a distance smaller than one (56% of all cases tested) or two L i (29% of all cases tested). The remaining cases correspond to situations with a very small L, that is to say the propagation started nearly at coincidence, the repulsive to attractive transition occurs then for an overlap smaller than 0.24 cm. These results are consistent with the common experimental observation that EP-cracks become attractive upon overlap [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF][START_REF] Eremenko | Investigation of the propagation and interaction of fast cracks in plexiglas[END_REF][START_REF] Swain | Some observations of overlapping interacting cracks[END_REF]. They are however conicting with the specic experiment we are trying to reproduce numerically: Dalbe et al. [2] were one of the few studies that reported the repulsion to attraction transition taking place before overlapping. This, in our opinion, conrm that there a non-LEFM material eect at play in these experiments.

For a xed L = 7 cm value, the initial horizontal separation between the cracks is large enough that the repulsive phase has space to unfold and is not articially truncated, as is shown in Fig. 2.27b for various initial transverse separation distances d. Under these conditions, it is possible to determine the maximum of repulsion θ rm as the tilt angle of the most inclined increment, as well as to identify the beginning of crack interaction. Indeed, for large L values, the cracks will start to propagate in an almost perfectly straight fashion, with very weak local repulsion angle. We dene arbitrarily the beginning of the repulsive phase as the point whose abscissa corresponds to the intersection between the crack original axis and the tangent to the maximum of repulsion 

Sensitivity to initial conditions

The results presented in this chapter were all obtained for a geometry mimicking the one used in [2]: since the cracks length is of the same order than the medium size, the eect of initial conditions (initial geometry and loadings) is bound to be signicant. In particular, our results

may not be representative of the general case and it could explain the discrepancies with previous work [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF], who used 10 cm * 20 cm samples instead of square ones.

For example, choosing a rectangular medium, without modifying other geometric parameters such as L or the loading conditions, will impact the value of d for which the hook to s transition occurs. We redid the same computations in rectangular plates (one direction is 5%, 15% or 25% longer than the other). In the square case, the change of behaviour happens for d = 1.84 cm. In the case of a plate longer in the Ox direction shown in Fig. 

SIF along the trajectories

As expected, when examining how the SIF evolves along the propagation, it becomes apparent that the cracks trajectories are controlled rst and foremost by K II . In Fig. 2.30 we represented for the three typical kinds of crack trajectory the evolution of K I , K II and θ k , the local interaction angle, versus s, the curvilinear abscissa along the path. With the exception of the very rst computational step, K II is several order of magnitude smaller than K I because the previous increment was determined as to minimize K * II , in accordance with the principle of local symmetry. K II is no rigorously equal to 0 because the two cracks propagate at the same time: K * II is determined without anticipating the eect of the second crack propagating. Despite this, the maximum of repulsion corresponds to K II changing sign. Similarly the turning point of the tra- jectory, which is marking the separation between the repulsive and attractive phases, is triggered by a local minimum of K II . Both changes in behaviour are easily explained by the rst order of eq. (1.41) to (1.44). Taking θ k as the local interaction angle, that is to say the angle formed between the last path increment and the horizontal at computational step k, we have α k the local kink angle (formed between the local crack direction and the next propagation direction) derived from eq. (1.27), then we have naturally: Making a rst order approximation, the PLS gives α k as:

θ k = θ k-1 + α k = k p=1 α p (2.
α k ≈ - 2 π 2 K II K I k (2.5)
Clearly, θ k grows more and more repulsive as long as the added α k is negative; θ n changes of variation direction when α k changes sign. Because K I is necessarily always positive, this is only possible when K II takes the opposite sign, signalling a change in the direction of the sliding mode loading direction.

Analysis of the repulsive component

Maximum repulsion

Excluding trajectories starting with a too short L, the maximum repulsion angle θ rm between two EP-cracks in Dalbe's geometry is a function dependant only on d. In Fig. 2.31, we present θ rm for (L, d) combinations that result in an initially decreasing θ k function of the pseudo time (such as cases (a) and (b) in Fig. 2.30): if θ k is already increasing at the onset of propagation, the nal trajectory is too truncated to properly estimate θ rm .

We nd that θ rm , as predicted by the principle of local symmetry, is of the same order of magnitude than the one retrieved experimentally. That θ rm follows the same decreasing trends both experimentally and in simulation is also a surprise: given previous works [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF]3], it was not expected that LEFM would be sucient to give such a good approximation of EP-cracks trajectories. It is, of course, impossible to explain the dierence between the PET Lumirror R and Mylar R using a purely elastic theoretical framework. We will examine in section 3.2 if the extra CHAPTER 2. LEFM STUDY OF EP-CRACK PAIRS Figure 2.32 Shifted EP-cracks trajectories: In this example, d = 1 cm. The trajectories ((x, y) coordinates for the left crack in the original referential) were shifted so that the point of maximum repulsion (X t , Y t ) fell on (0, 0).

parameter used in diuse damage models could be a possible extra input helpful to distinguish two macroscopically equivalent materials.

Universal behaviour

In their experiments, Dalbe et al. [2] observed that for a xed d separation and varying the L distance all EP-crack trajectories collapse on a single master curve when shifted so that the repulsion to attraction fall on (0, 0). As shown in Fig. 2.32, we retrieve this behaviour in simulations: for all d values tested, the repulsive component of the paths is completely collapsed for all L. The independence from L is lost in the attractive phase with larger initial separations yielding more elongated paths. This is not a discrepancy between theory and observations: in the experiments, propagation was stopped when out-of-plane deformation became consequent, shortly after overlapping. We do not have experimental data to evaluate the validity of the simulations in the attractive phase.

Shape

As EP-cracks trajectories in this conguration do not depend on L, it stands to reason that paths starting with a short L are truncated in their initial repulsive component. In the following paragraph, we are examining the repulsive component of trajectories starting with L = 7 cm, so that they have the necessary space to completely unfold. Observing them in log-log scale reveal they possess power-law like characteristics. As shown in Fig. 2.33a, the paths can indeed be tted in two segments of the form:

|y -Y i | = A 1,2 .(x -X i ) α 1,2 (2.6) 
where (x, y) are the coordinates along the left trajectory and (X i , Y i ) = (-L/2, -d/2) the coordinates of its starting point. The limit between the two ts is eective at (X c , Y c ). This change in behaviour, combined with the fact that the second exponent α 2 is systematically larger than α 1 and that the rst exponent is somewhat constant around α 1 ≈ 1.4 for all values of d (see Fig. 2.33b), suggests a new way to dene the beginning of the interaction between the cracks.

As shown in Fig. 2.33c, with this denition interaction occurs much earlier in the propagation than using the intersection method presented in section 2.4.2.

Analysis of the attractive component: comparison to Fender's model

We compared our simulated trajectories to Fender et al. model [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF]. This model neglects repulsion and considers that crack interaction only begin at overlap, which corresponds in our case to the repulsion to attraction transition (X t , Y t ). Their crack paths systematically t as:

l s = A w s α (2.7)
where A ≈ 1 and α ≈ 0.5 are scalar parameters that do not depend on the material or the initial oset s between the cracks, and (l, w) are the coordinates along the crack paths.

Using our notations, their model becomes: The discrepancy between this model and our simulations may be only a product of the dierent boundary conditions: Fender et al. armed that EP-cracks universally present a square-root shape but they used the same sample size across all their tests, rendering their conclusion a bit far-reaching.

x -X t 2|Y t | = A |y -Y t | 2|Y t | α ( 2 

Conclusion

Studying EP-crack pairs with a LEFM framework and assuming the principle of local symmetry yielded surprising results in many respects. First, both the investigation of the initial kink angle of EP-cracks loaded under far-eld tension and the determination of EP-cracks trajectories in a realistic medium revealed that the LEFM+PLS framework is, against expectations [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF]3], able to predict repulsion of the correct order of magnitude between the cracks. It was also shown that the contradiction between the PLS predictions for perfectly aligned EP-cracks and experiments observed by Dalbe et al. [2] is only apparent, and no major argument opposes the use of the PLS to study interacting cracks.

Additionally, we found that the behaviour of the initial kink angle in regard to the initial position of the cracks is more complex than what was previously expected and exhibits strong multi-scale properties, in the sense that the length scales characterizing the transition from attraction to repulsion may be orders of magnitude smaller than the crack length. While the possibility of an initial repulsive behaviour does not t the universal model proposed by Fender et al. [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF], the fact that repulsion is induced only by close standing inner tips may explain why the ubiquitous hook-shaped trajectory found in nature is not systematically retrieved when experimenting with shorter cracks.

Finally, further study showed that the LEFM+PLS framework is adequate to provide qualitative predictions of the complete propagation paths of EP-cracks, as all the characteristic features (hook-shape, intersection angle,...) are retrieved. This model is however not sucient for precise, quantitative, determination of certain features; namely the magnitude of the repulsion or the exact position of the repulsion to attraction transition.

Because of Dalbe et al. [2] observation that elastically equivalent materials can yield dierent 

Testing the impact of the fracture process zone

As we detailed in section 1.3.1, the experiments led by Dalbe et al. [2] suggest that the presence of a fracture process zone can be one of the main parameters controlling the magnitude of the repulsion between EP-cracks. Considering the three materials they tested, two dierent polyethylene terephthalate sheets and a polycarbonate one, it seems that the magnitude of repulsion is inversely proportional to the size of the fracture process zone. On the contrary, Koivisto et al. [3] advocated that repulsion is induced by the process zone, implying that the magnitude of repulsion should be directly proportional to the size the process zone.

To bring some clarity to these conicting observations, we led during the 3 months internship of Charles Peretti an experimental study of EP-cracks propagating into polydimethylsiloxane (PDMS). PDMS is an elastomer whose Young's modulus is relatively weak at E ∼ 1 MPa, and whose Poisson's ratio is ν = 0.5. PDMS behaves elastically at low strain but softens at higher strain. Because this material is known for being very brittle [START_REF] Genesky | Toughness and fracture energy of PDMS bimodal and trimodal networks with widely separated precursor molar masses[END_REF] we expect the fracture process zone around the crack tips to be negligible. (a) The right side of the sample is pulled at a constant velocity of v 0 = 50μm/s. The gravitational force g, which was neglected in all simulations, may have deformed the lm in the (Ox) direction, introducing an asymmetry in the cracks loading.

(b) Example of a broken sample with the grid pattern used to track the displacement.

Experimental set-up

Samples

The samples were crafted on site from a silicone base and a cross-linking agent that amounted to 10% in mass of the preparation. After a centrifugation step, the mix is poured into a mould and degassed under a vacuum bell to get rid of any leftover bubble. The sample is nally reticulated for at least three hours in an oven at 70 • . The nal product is a 10 cm * 12 cm * 0.1 cm lm, whose surface aspect is strongly dependent on the mould used. Indeed, we had two moulds at our disposal: while one, made in glass, resulted in sleek samples (see Fig. 3.1a), the other was in metal and its machining marks imprinted on the PDMS (see Fig. 3.1b). It was also harder to remove the samples from the glass mould than the metal one, resulting in more ragged edges in the samples made in the glass mould. Because of the long degassing and reticulation times it was inconvenient to use only one type of mould; this may have introduced a dispersion in our results.

Finally, the two initial cracks were cut manually using a utility knife.

Tensile test

The samples were loaded under pure tensile stress, in the direction transverse to the cracks.

As shown in Fig. 3.2a, each sample was clamped so that its free surface was a 10 cm * 10 cm square using an automatic screwdriver to ensure an even tightening torque across all tests. The clamps were positioned vertically, one xed and one pulled along the (Oy) direction at a constant velocity of 50μm.s -1 over a course of 5 mm. The maximum angle of repulsion θ rm is formed between the horizontal and the dotted green line. The solid green line represents the path portion over which the direction θ rm was linearly tted.

noise and image resolution, making the determination of the maximum angle of repulsion harder.

Despite our concerns, the use of two dierent moulds did not increase the dispersion of the results: out of the six samples showing a good symmetry between the cracks a small majority (four of them) were made in a metal mould. It also did not increase the dispersion of the maximum angle of repulsion. Five (L, d) combinations were tested in both kinds of samples ; repulsion was stronger for the glass-moulded samples in three instances.

Magnitude of repulsion

To properly measure the maximum angle of repulsion we had rst to account for the strong asymmetry present in most samples. In [2] the authors solved this problem by examining the separation distances (δx, δy) between the crack tips at each time instead of assessing the trajectories directly. As PDMS is very brittle, crack propagation was in our case more sudden and harder to catch even when using a high-speed camera. We therefore extracted the maximum angle of repulsion between EP-cracks from the digitised paths described in section 3.1.1 rather than lms taken during the tensile test.

First an "average" crack path was determined: one crack was mirrored and displaced in the (x, y)

space so that the two repulsion to attraction transition points were superposed; the average crack is simply the medium line between these two paths (see Fig. 
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Even if the total imposed displacement was much smaller than the sample size, chosen so that the global stain was under 5%, the presence of two cracks can induce signicant local strain.

While it is not a fracture process zone strictly speaking, a softer material zone provoked by strain rather than damage is probably present around the crack tips. These results call again for DIC measurements of the strain eld, as it would allow to determine how the size of the softened zone compare to the FPZ present in PET and PC sheets.

Diuse damage model simulations

Our aim in this section is to investigate whether a diuse damage model of EP-crack pairs can overcome the shortcomings of a purely LEFM representation. In particular, we are interested in nding whether it is possible to get quantitatively correct predictions of the order of magnitude of repulsion by adding an extra material parameter: the characteristic length l c of a phase- eld representing damage. To do so, we use the Abaqus phase-eld implementation for fracture mechanics, proposed by Molnár et al. [START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF] and presented in section 1.2, to reproduce numerically the experiments presented in section 3.1. Most simulation results presented in this section were realised as part Guilherme Fernandes internship.

Computation

Mesh & material properties

We are again computing paths for EP-cracks in a small plate, under the same set of geometric parameters than in section 2.3: a 10 cm * 10 cm square plate notched by two cracks initially separated by L and d, in plane stress (see Fig. 2.21).

The mesh was rened to a size of h = 0.1 mm where the crack can potentially propagate: a central rectangular zone containing the original crack tip. Outside this zone the mesh size was progressively increased until it reached about 5 mm. Again, we used linear quadratic elements everywhere.

While phase-eld methods do not necessitate re-meshing at each time step, the maximum mesh able to properly render phase variations is h max = l c /2 [START_REF] Miehe | A phase eld model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits[END_REF][START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF]. We chose the same mesh size h across all simulations in sections 3.2.3 and 3.2.4, so that all eects observed could be imputed to changes in l c , L, or d and not to artefacts caused by mesh variations. As a result, the meshes were optimised for l c = 0.2 mm and comported a large number of elements, around N elem ≈ 180000 depending on (L, d), and thus the size of the interaction zone, making all simulations both computing time and memory intensive.

Depending on the simulation, we used one of two materials with the following properties: This propagation is clearly not quasi-static and thus outside the scope of validity of our phaseeld implementation.

As shown in Fig. 3.12c, the distance covered by a crack tip between two consecutive saved frames (we saved only one out of 100 frames to keep memory use reasonable) is not a good indicator of compliance with the quasi-staticity assumption, as it is maximum at the onset of propagation.

A better indicator is the symmetry between the cracks. It was measured in three dierent ways:

• For each crack, the number of "broken nodes", ie. the nodes with φ d > 0.98, was examined as a function of the pseudo-time. Symmetry is broken when the two cracks comprise dierent number of nodes. Out of all three methods tested it is the least reliable, because estimating whether the dierence between the two crack sizes is necessarily arbitrary.

• We also studied how the crack tips advance between computational steps. The last acceptable frame is the last for which both cracks cover the same distance, past this point the cracks tend to alternate in their propagation.

• We introduced an asymmetry measure Δs = Σ(x 1x 2 ) 2 + Σ(y 1y 2 ) 2 , which add point per point of the crack (all nodes with φ d 0.98) the distance between a crack (x 1 , y 1 ) and a central symmetry reection (x 2 , y 2 ) of the other.

These three methods give comparable results and allowed us to determine the usable frame reliably.

In all case we tested, the repulsive component was entirely included in the last admissible frame; this limitation did not impact our study.

From diuse damage to linear elasticity: impact of l c

Free transverse displacement

We present in Fig. 3.13 EP-crack paths obtained with dierent l c , when transverse displacement is let free along the top and bottom sides of the plate. In this example we are using the rst material properties L = 4 cm and d = 1cm. We nd that the repulsive component of the paths shortens with greater l c values: as shown in Fig. 3.14c, ΔX t grows linearly with l c .

In Fig. 3.14c and 3.14d, we excluded the data point corresponding to l c = 1.5 mm from the ts: out of all our computation yielding two independent cracks, this simulation is the one with largest l c and was probably not converged regarding δU . The exact value of the coecient in the We nd them to be relatively constant, with ΔX t ≈< 1.06 ± 0.05 > l c -< 0.03 ± 0.05 >. These results conrm what is suggested by Fig. 3.13: a diuse damage model converges linearly toward the classic LEFM solution when l c tends to zero, in agreement with [START_REF] Bourdin | The variational approach to fracture To cite this version : The variational approach to fracture[END_REF].

While the length of the repulsive component of the crack paths is greatly inuenced by l c , we nd that the impact on its intensity, that is to say the θ rm , is limited. No matter the size of the path portion over which the maximum angle of repulsion is tted, we nd that l c does not change the value taken by θ rm by more than 1.3 • , an incertitude comparable to the one introduced by the linear regression of the repulsive portion of the tra jectory.

Ideal clamp

The same study redone with ideal clamp style boundary conditions yields similar results. As shown in Fig. 3.15, we nd again a shorter repulsive component with greater l c , and crack paths shape getting progressively closer to a LEFM limit when l c decreases. In this case, the cracks are s-shaped rather than hook-shaped. It appears that greater l c values also reduce the length of the attractive phase and that the cracks return to horizontal propagation earlier.

ΔX t , ΔY t )

θ rm l c ΔX t l c
ΔY t l c In this section we used the second material properties and ideal clamp boundary conditions for all simulations.

We show in Fig. 3.16a an example of how simulated trajectories fare when compared to experimental data. This case, in which L = 4 cm, d = 0.5 cm, is representative of all conguration we tested: the repulsion is severely underestimated by the simulations even for the smallest l c value. This may be imputed, at least partially, to the choice of boundary conditions: while we have seen that the ideal clamp approximation is in our case a better modelling choice than letting u x free on the sample edges, it is not completely accurate. Making more accurate prediction of the crack path shape requires the exact knowledge (via direct measure) of how loading is applied. This underestimation is also visible in Fig. 3.16b, where we represented θ rm as a function of the lateral separation d. The data points corresponding to d = 0.2 cm were not included into the linear regressions because the corresponding simulations were not converged in Δu: the cracks merged tip to tip. More than the order of magnitude of repulsion between EP-cracks, it seems that l c impacted the slope of θ rm (d). This observation remains tentative, and should be conrmed with more data points in the (l c , d) space. It should be noted that θ rm (d) cannot be linear over the whole d = [0; 4 cm] range: while linear regression gives repulsion even at d = 4 cm, we found that in this situation the EP-cracks exhibited a purely attractive behaviour for both l c tested. 

Conclusion

Contrary to our expectations, the experiments in PDMS did not allow us to conclude whether the presence of a fracture process zone around the crack tips has a shielding or amplifying eect on the magnitude of repulsion between EP-cracks. It became clear however that, even if we showed in section 2.3 that EP-cracks repulsion can be observed in a purely linear elastic context, inelastic eects could strongly inuence its magnitude. These experiments also showed that the inelastic eects at play are not necessarily damage processes localised around the crack tips:

other material behaviours, such as inelastic elasticity, can unfold at a larger scale than a fracture process zone.

We were surprised to see that the characteristic length scale l c used in diuse damage models does not signicantly impact the order of magnitude of the repulsion between EP-cracks. However these results must be treated with caution, as we were unable to simulate a large number of trajectories for dierent l c and d values. Another limit of our model is how we represented the clamps: that ideal clamp simulations yielded s-shaped cracks when we only observed hookshaped cracks in reality is another proof that our modelling choice is not ideal. Clearly, it is inconceivable to make accurate comparison between experiment and simulation without using the exact displacement eld measured during experiments as an input of the computation. The diuse damage approach is still promising: we showed that l c impacts how θ rm varies with d, which may explain the dierence observed between PET and polycarbonate sheets by Dalbe et al. [2]. This model also predicts the repulsion to attraction to occur before the crack overlap, as in the experiments.

These results call for a more precise comparison between experiments and simulation: without 

Conclusion

This Ph.D.was rst motivated by the experiments realised by Dalbe et al. [2]: that the observed repulsion is maximum when theory predicted straight paths, combined with surprising material eects on the paths led them to question the limitations of the principle of local symmetry.

Using the same set of experimental data, Koivisto et al. [3] went further and challenged the very validity of linear elastic fracture mechanics theory, at least when applied to the study of interacting cracks. Our main concern was therefore to understand why the generally well-accepted LEFM+PLS framework apparently failed when applied to the specic case of EP-cracks.

Our ndings reconcile theory and observation: not only we have shown that it is possible, contrary to expectation, to predict repulsive EP-cracks trajectories using only a LEFM+PLS framework but we also provided explanations of the discrepancy described by Dalbe et al. [2] or why the model proposed by Fender et al. [START_REF] Fender | Universal shapes formed by two interacting cracks[END_REF] does not t the typical hook trajectory. Indeed, our results concerning the initial kink angle of EP-crack pairs showcase how small variations in the relative position of the inner crack tips can change the initial behaviour from attractive to repulsive: the contradictions between theory and experiments can be imputed to measurement inaccuracies only. This initial study done in the context of linear elastic fracture mechanics is not without limitations: while we have shown the en-passant fracture problem to be extremely sensible to initial and boundary conditions, we examined the initial kink angle of EP-crack pairs in only two specic congurations. Although it is enough to prove that the LEFM+PLS framework is not inherently unable to predict crack repulsion, our study of EP-crack loaded into pure opening far-eld tension is far from being representative of EP-cracks encountered in nature or industrial applications.

Along the answer to the main question regarding the use of LEFM and the validity of the principle of local symmetry to study interacting cracks, our work on the initial kink angle of EP-cracks highlights the multi-scale nature of the en-passant problem; the length scales characterizing the transition from attraction to repulsion may be orders of magnitude smaller than the crack length.

The study of full trajectories in an exclusively elastic theoretical framework conrmed that modelling some crack repulsion is achievable without representing a fracture process zone in any way. However, these results highlighted again the strong sensitivity of the EP-cracks problems to minute changes in the relative position of the crack tips. As we were unable to retrieve magnitude of repulsion concording with Dalbe et al. experiments [2] and there was still unexplained material eects to consider, the next logical step was to change the theoretical framework and study how 98 99 a fracture process zone will impact the trajectories. In that order, we applied the diuse damage theory to the case of EP-cracks using a phase-eld solving technique. The phase-eld represents both the crack and the damaged zone around it. Its width depends on the parameter l c whose nature, either purely numerical or with physical meaning, was questioned by Molár et al. [START_REF] Molnár | 2D and 3D Abaqus implementation of a robust staggered phase-eld solution for modeling brittle fracture[END_REF].

We found that the choice of l c inuences greatly the shape of the crack paths, in particular the magnitude and duration of the repulsive phase. It seems that the trajectories continuously tend to the LEFM+PLS paths when l c decreases. This suggests that the characteristic length of the damage eld is physical in nature and can be tied to local damaging process, and thus to the micro-structure of the material.

Determining the value of l c for a given material remains a challenge. It is possible to imagine the en-passant fracture problem as a characterisation test; after measuring the magnitude and duration of the repulsive phase between two cracks, one can identify l c by tting simulated paths to observed ones. However, given the sensitivity of EP-cracks to boundary conditions, this is only possible if the exact displacement eld of the medium is known precisely during propagation using for example digital image correlation. This kind of test is also inapplicable to too brittle materials, as the propagation must be quasi-static to remain within the assumptions of the theoretical framework.

Some issues remains to be addressed in our work. In particular, a recommended future work is to deepen our diuse damage study by using DIC to properly account for boundary conditions in the simulations. It would be especially interesting to repeat the experiments on various materials, and check if it is possible to tune l c to reproduce the cracks trajectories as precisely as possible.

With enough tested materials, one can even hope to relate l c to material behaviours such as inelasticity of damage mechanisms.
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 1511 Figure 1.1 Stress concentration at an elliptical hole

Figure 1 . 2

 12 Figure 1.2 Coordinates systems & stress tensors at a 2D crack tip: (a) cartesian (x, y) and (b) polar (r, θ).

Figure 1 . 3

 13 Figure 1.3 Basic modes of fracture: (a) Mode I: opening, (b) Mode II: sliding, (c) Mode III:tearing, possible in 3D exclusively. Adapted from[START_REF]Fracture Mechanics[END_REF] 
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 11515 Figure 1.5 Typical mapping function Θ: Θ is constant in the inner and outer sections. On the intermediate ring it varies continuously as a function of the coordinates (x, y) between the unit vector (1, 0) (constant value near the crack tip) and (0, 0) (constant value in the majority of the body). The closed contour Γ denes the domain D: both of them are used as integration domain to compute the SIF.

  the case of an innite bar, I(d = e -|x|/lc ) = l c Γ. Recognising Γ as the crack surface in the sharp crack representation of a fully broken bar, we have by analogy in 1D diuse damage representation: Γ = I(d = e -|x|/lc )/l c . We may generalize in higher dimension Γ as a function of the damage d present in any multi-dimensional body Ω: Γ(d) = Ω γ(d, ∇d)dV (1.62) where γ(d, ∇d) is the crack surface density function. It is simply the integrand of eq. (1.61) extended to 3D situations, divided by l c :

Figure 1 .

 1 Figure 1.8 EP-cracks examples: the hook shaped propagation paths can be observed at scales ranging from a few micrometers to several kilometers. (a) in an asphalted road; (b) in a plastic sheet, adapted from [2];(c) in human cortical bone adapted from[START_REF] Nalla | Mechanistic fracture criteria for the failure of human cortical bone[END_REF]; (d) in 3D printed aluminum alloy, adapted from[START_REF] Martin | 3D printing of high-strength aluminium alloys[END_REF] (e) in a paper sheet, adapted from[START_REF] Cortet | Attractive and repulsive cracks in a heterogeneous material[END_REF]; (f) in oceanic oor, adapted from[START_REF] Singh | Seismic reection images of the Moho underlying melt sills at the East Pacic Rise[END_REF].
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 11 Figure 1.14 Predicted EP-cracks paths by Mills and Walker: Adapted from[START_REF] Mills | Development and growth of oset ngerlike cracks[END_REF] The cracks are subjected to a far removed tensile stress and the numbers above each increment stand for the energy release rate. (a) Paths for a pair of cracks: the authors did not retrieve the expected hook shape, but an unanticipated "s" shape. (b) Paths for an innite array of EP-cracks. Note that in both case the repulsion between the cracks is negligible.

Figure 2 . 1

 21 Figure 2.1 Parameters denition: Geometric denition and boundary conditions used in
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 11 Problem denition & computation

Figure 2 . 2

 22 Figure 2.2 Regular layered mesh: Close-up on the mesh around the inner crack tips. In this instance the regular mesh contains 10 layers. The G(Θ) procedure is applied on the outermost colored line.

Figure 2 . 3

 23 Figure 2.3 Test case conguration: Geometric denition and boundary conditions used to test the validity of the far-eld assumption. The same arrangement was reused to identify the meshing conditions necessary to reach statisfying precision.

  value FEM: L c /L f = 20 FEM: L c /L f = 10 FEM: L c /L f value FEM: L c /L f = 20 FEM: L c /L f = 10 FEM: L c /L f

Figure 2 . 4

 24 Figure 2.4 Far-eld loading assumption: Evolution of the rst SIF and relative error compared to analytical predictions (for an innite plate) at the inner (a,c) and outer (b,d) crack tip as a function of δ x /L f Dierent plate sizes were used to identity the minimum L c /L f ratio for which crack interaction eects dominates over the inuence of boundary conditions.

Figure 2 . 5

 25 Figure 2.5 Inuence of the meshing parameters on the SIF determination precision:

Figure 2 . 6

 26 Figure 2.6 Evolution of the initial kink angle versus the lateral separation:

δx = 1 ,

 1 2.6: the excellent agreement between our simulations and the θ i derived from Ghelichi's work validates both the precision of the FE computation step and the use of a minimization algorithm based upon Amestoy's formulas (see Eq. (1.40)) to determine the initial kink angle of close standing EP-crack pairs. While Ghelichi's work gives a more accurate description of the next propagation step, only the linear approximation of the curved increment is necessary to determine the cracks propagation direction and our method has the benet of relying exclusively on simulation methods well known by engineers and simple analytic equations. Lf = 5 δx = 3, Lf = 5 δx = 2, Lf = 10 δx = 6, Lf = 10

Figure 2 . 7

 27 Figure 2.7 Rescaling properties: Evolution of θ i with scaled tip to tip spacing Δy = δy/L f for four sets of δx, L f values: curves with identical Δx = δx/L f match.

Figure 2 . 8

 28 Figure 2.8 Typical θ i (Δy) evolution for approaching cracks: (Δx > 0) The point corresponding to Δy = 0 is not represented here because of the logarithmic scale. In this situation θ i = 0, no matter the value of Δx.

Figure 2 . 9

 29 Figure2.9 Typical θ i (Δy) evolutions for coincident cracks: (Δx = 0). Several crack length L f were used to reach a 5 orders of magnitude span in Δy.

Figure 2 .

 2 Figure 2.10 Typical θ i (Δy) evolutions for partially overlapping cracks: (Δx < 0).
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Figure 2 .

 2 Figure 2.11 Identifying the advancing front: Evolution of G int the energy release rate at the inner tips and the corresponding G ext at the outer tips, for xed values of Δx. (a) Δx = -0.5, (b) Δx = -0.1, (c) Δx = 1,(d) Loci of remarkable points in the (Δx, Δy) space as dened in Fig.2.8. Δy i/o marks the limit above which EP-cracks will propagate from their outer tips rather than approaching each other. Even if we used the PLS instead of the SED criterion, our results are comparable to Gdoutos', Δy i/o G .

Figure 2 .

 2 Figure 2.13 Initial kink angle for overlapping cracks (a) and approaching cracks (b) in the (Δx, Δy) space. The superimposed white lines signal the local maxima of attraction and repulsion, as well as the transition from attractive to repulsive (dened by θ i = 0). The dotted vertical lines show where the cuts for Fig. 2.8 & 2.10 were taken.

Figure 2 .

 2 Figure 2.14 Initial kink angle of EP-crack pairs in the (Δd, α) space: Denition of the polar system.

Figure 2 .

 2 Figure 2.18 FEM-less trajectories: Close-up of the inner tips. (a) L f = 10, Δx = 0.2, Δy = 0.3. (b) L f = 10, Δx = 0.2, Δy = 0.11.

2. 3 .

 3 Determining complete trajectories 57 interpolation errors when calculating θ k .

Figure 2 .

 2 Figure 2.19 Simulated trajectories test case: Initial geometry of the 3 points bending test case. As in [30], all dimensions are in inches. Two independent situations were tested in a rst (a = 5in, b = 1.5in) and second (a = 6in, b = 1.0in) examples.

Figure 2 .

 2 Figure 2.20 Comparison between experimental and simulated trajectories: All experimental data was taken from [30]. (a) Example 1: the initial notch is dened by a = 6in, b = 1.0in. (b) Example 2: a = 5in, b = 1.5in. (c) Close-up from example 2.

Figure 2 .

 2 Figure 2.21 EP-cracks denition: Schematic representation of the FEM model used to simulate Dalbe's experiments[2]. We keep using the same notations: the two initial crack tips are separated by L and d, the horizontal and vertical distances respectively.

Figure 2 .

 2 Figure 2.24 Aspect ratio denition: A = l/w. Here L = 5 cm and d = 1 cm.

Figure 2 .

 2 Figure 2.25 Evolution of A with the initial EP geometry: (a) vs. d. (b) vs L. In both cases, the values are not too dispersed around A ≈ 2, unless the central piece dimensions becomes signicant compared to the total medium size.
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Figure 2 .

 2 Figure 2.26 Intersection angle φ vs. d: Here L is xed to L = 4 cm. (a) φ is identied as the sum of the tilt angle of the two closest increments. Red: d = 0.05 cm, blue: d = 0.5 cm. (b) In agreement with observation, the cracks always join almost orthogonally. The inuence of d on φ may well be a computational artefact.

Figure 2 .

 2 Figure 2.27 Remarkable points along propagation paths:(a) The beginning of interaction was identied as the point whose abscissa corresponds to intersection between the crack original axis and the tangent to the maximum of repulsion. Here d = 0.5 cm. (b) While the turning point is aligned on the plate medial axis, both the maximum of repulsion and the beginning of interaction positions depends on d. For legibility reasons, only the left crack was represented, for d = 0.1 cm to d = 2.4 cm.

Figure 2 .

 2 Figure 2.29 EP-cracks propagating in a large medium: Close-up on the inner tips. (a) Here L c = 1000 and L f = 10, blue: Δx = 0.2 and Δy = 0.3. Red: Δx = 0.2 and Δy = 0.11 (b) L c = 1000, Lf = 100, Δx = 0.01 and Δy = 0.08.

Figure 2 .

 2 Figure 2.31 Maximum repulsion angle vs. d: The simulation results were overlaid over the experimental data obtained by Dalbe et al. [2].

Figure 2 .

 2 Figure 2.33 Piecewise regression of the repulsive component: (a) Fit of the regular component into two power laws. The trajectories were shifted so that all coordinates were positive, with the origin at the initial crack tip, allowing to t linearly in log scale. (b) Evolution of the exponents α 1,2 with d. (c) Position of the newly dened "beginning of interaction", compared to the previous denition, along with the maximum of repulsion and the turning point. Here L = 7 cm in all cases and d varies between 0.1 and 2.5 cm. (d) Evolution of the factors A 1,2 with d.

Figure 2 .

 2 Figure 2.34 Attractive component t: (a) Comparison between simulated paths and regressions for L = 6 cm and d = 0.9 cm. Only the attractive component was retained. (b) Fitting parameters vs. d.
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 331 Figure 3.1 Two kinds of samples: (a) PDMS lm made in the glass mould. (b) PDMS lm made in the metal mould.

3. 1 .Figure 3 . 2

 132 Figure 3.2 Experimental set-up:

Figure 3 . 7

 37 Figure 3.7 Measure of the maximum repulsion angle: Example on two dierent samples (a) L = 4 cm and d = 0.2 cm, and (b) L = 4 cm and d = 0.5 cm.The maximum angle of repulsion θ rm is formed between the horizontal and the dotted green line. The solid green line represents the path portion over which the direction θ rm was linearly tted.

  3.7). A local interaction angle θ k is then determined for each x smth position along the average path by a running linear t. The repulsion angle θ rm is then taken as the maximum of θ k (x smth ). The t is applied to 2 mm long (ie. 70 pixels) portions of the path. The error was determined as the standard deviation of the local inclination angle over a 40-pixels wide portion of the crack paths, centred on θ rm position.

3. 2 . Diuse damage model simulations 93 Figure 3 .

 2933 Figure 3.13 Impact of l c on crack shape: Example obtained for material 1 inputs and free transverse displacement boundary conditions, L = 4 cm and d = 1 cm. The linear elastic example was computed using L i = 0.4 mm

Figure 3 .

 3 Figure 3.15 Impact of l c on crack shape: Example obtained for material 1 inputs, ideal clamp boundary conditions, L = 4 cm and d = 1 cm. The displacement u x was blocked at all nodes of the top edge of the sample. The linear elastic case was computed using L i = 0.8 mm
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 9633 Figure 3.16 Comparison between experimental and simulated trajectories: The simulation data points were obtained using material 2 properties, and ideal clamp boundary conditions (a) Example for L = 4 cm and d = 0.5 cm. (b) Evolution of θ rm with d.

3. 3 . Conclusion 97 using

 397 DIC measured displacement eld as inputs of the computation, it is not possible to conclude how much of the discrepancy we observed were due to poor modelling choices or to shortcomings of a diuse damage approach.
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  2.28a, the change happens for greater values of d = 1.98; 2.25 or 2.55 cm respectively.Inversely, the switch happens for smaller values of d, d = 1.80; 1.74 or 1.71 cm, if the plate is greater in the Oy direction (see Fig.2.28b). In this case, the position of the repulsion to attraction transition is also shifted after overlap. This conrms that the variations observed with
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  In this equation, we replaced the initial oset between the cracks by 2|Y t | as it is the actual lateral separation between the crack tips at the onset of attraction.As shown in Fig.2.34a our results do not exhibit the universal square root shape proposed by Fender et al. The dierence between our results (in blue on Fig.2.34a) and their prediction (in black) is not merely caused by the presence of a repulsive phase: when tting eq. (2.8) (in green) to a square-root shape normalised by s = 2|Y t |, we nd that not only s tend to be greater that expected, of the order of s ≈ 2|Y t | + d, but the agreement with simulated data is poor.Trying to t to a general power-law shape using eq. (2.8) gives better results that are, this time, independent from d: in our geometry we nd A ≈ 1.2 and α ≈ 0.41, which is a 20% dierence with Fender's results.
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  THE IMPACT OF THE FRACTURE PROCESS ZONE crack positions and loadings, we can expect crack paths to remain symmetric. In practice, the simulated crack paths do not remain symmetric at all time steps. After a certain computation frame, propagation becomes asymmetric either because of small irregularities in the mesh or because one crack tip jumped suddenly across several element. This kind of jump generally happens when a crack tip approaches the other crack. An example is given in Fig.3.12f: the tortuous later stages of the bottom crack path propagated in less than a hundred time steps.

	Material 1	1, 8.10 3 MPa	0.35	5000 J/m 2
	Material 2	1 MPa	0.35	100 J/m 2

Young's modulus E Poisson's ratio ν Energy release rate Gc

3.10 Loading step speed eect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

CHAPTER 2. LEFM STUDY OF EP-CRACK PAIRS cracks are hook shaped: the closer d is to its critical value, the closer the cracks will join one another near the plate edge. In this situation a slightly longer increment can be enough to bring the crack tip nearer from the side of the specimen and completely transform the cracks behaviour.

For values of d close but not exactly equal to 1.84 cm, the inuence of L i is not as dramatic but some notable dierences are still observable in the later stages of the propagation (see Fig. 2.22).

Whatever the increment length chosen, we did not observe signicant variation in the repulsive component of the crack trajectories, or in any portion of the path preceding the crack tips superimposition. We are therefore condent that our choice of L i = 0.04 cm in all computations is adequate to study the repulsive phase in this conguration. In section 2.4, all results shall be assumed to have been computed with this increment length, unless otherwise specied.

Reproducing experimental trajectories

In this section, we are comparing trajectories of EP-crack pairs predicted by the LEFM+PLS framework to the experimental results obtained by Dalbe et al. [2]. As we have seen in section 1.3.1, we expect the cracks to exhibit a repulsive behaviour that increases in magnitude when the transverse separation d diminishes, and the repulsion to attraction transition to occur before overlapping.

Typical trajectories

Given a xed value of L = 4 cm we retrieve again a repulsion to attraction transition with increasing values of d. When the vertical separation is smaller that d ≈ 3.5 cm, the initial behaviour of the cracks is repulsive and remain so until the tips overlap. For greater values of d, only weak attractive behaviour is retrieved all along the propagation.

In the experiments we tried to reproduced numerically, the propagation was stopped shortly after the crack overlapped to prevent the appearance of too much out of plane deformation.

Without this constraint, we were able to simulate much longer trajectories and to unveil two dierent behaviours. Indeed, the simulated cracks do not necessarily intersect with each other; if the initial separation d between the cracks is sucient (d 1.84 cm), the crack will deviate again at the end of the attractive phase to recover parallel trajectories and nally reach the specimen border. These s-shaped path were also retrieved by Gdoutos [START_REF] Gdoutos | Interaction between two equal skew-parallel cracks[END_REF] or Mills and Walker [START_REF] Mills | Development and growth of oset ngerlike cracks[END_REF] ; the latter dismissed them as numerical artefacts because they did not have real examples of s-shaped EP-cracks. In our opinion, these paths are concordant with LEFM theory: their scarcity in observations can be explained by physical arguments. In particular, we have seen in section 2.2.2 that EP-cracks completely included in the material (ie. not surface breaking) can propagate preferentially from their outer tips. It is possible that inner tips propagation is arrested before the emergence of a complete s-shape.

In the singular case of perfectly collinear cracks (d = 0), the cracks propagate straight ahead without deecting on either side. As noted in section 2.2.1, this result is not incompatible with 

Point tracking

Because of the high sensitivity of EP-crack trajectories to initial (boundary and loading) conditions we used point tracking to better identify the boundary conditions along the clamps. One question in particular was to determine whether the xed points were exactly at the edges of the jaws or inside it. Should it be the later, some transverse displacement would be allowed on the sides of the sample free surface. We will show in section 3.2 the importance of this aspect in the nal crack shape.

As shown in Fig. 3.2b, a 1 cm * 1 cm grid pattern was therefore added on some samples which were then lmed during the test. We focused the analysis on 6 images of the 110 seconds lms:

the rst and last images of the lm corresponding to imposed displacement of 0 mm and 5 mm respectively, and 4 images during the propagation taken every 22 seconds. Given the camera pixel density and the objective-sample distance in our set-up, the nal resolution is about 0.13 mm per pixel.

The displacement between two images was then determined simply by a three steps procedure:

• The coordinates of the grid pattern in each image are identied. The detection process consists in binarizing the photo, running the built-in morphologically closing lter of Matlab R 10 times, and calculating the coordinates of the barycentre of each points. Run- ning the closing lter, which consists in a dilation step followed by an erosion step on a 3 * 3 pixels grid, is necessary to fuse small breaks and lls gaps in the contour of the dark points.

• The correspondence between the grid patterns of two consecutive images is determined point per point, starting from the top left corner, simply by identifying the nearest neighbour of each point.

• The displacement of a tracked point is computed as the dierence between its coordinates in two consecutive images.

Digitisation

To determine the coordinates along the crack paths as precisely as possible, all samples were scanned at a 600 pixels per inch (or 0.04 mm per pixel) resolution after the tensile test.

To identify the crack paths, the scanned image is then analysed through the following process (see Fig. 3.3):

• The image is binarized and the cracks are identied as the two largest groups of white pixels. Each retained pixel is identied by its (x raw , y raw ) position.

• The rough (x avg , y avg ) coordinates along each path is determined by averaging the y raw positions for each x raw occurrence. Because we are interested in measuring angles and (0, 0) Given the sensitivity of EP-crack pairs to initial conditions, it would of course be preferable to use measured displacement elds directly as simulation inputs rather than an all-or-nothing approximation. Because of time constraints we were unable to rene the simulation to this level during this Ph.D.

Reproducibility and exploitable results

Obtaining repeatable results proved to be challenging. Small imprecisions when setting up the samples, probably either slight asymmetry when cutting the cracks or a small misalignment in the clamps, leading to inhomogeneous tension, resulted in uneven propagation of the cracks:

often the propagated path of one crack is much longer than the other's. Over the 30 samples analysed only 6, or 20%, exhibited both signicant repulsion and reasonable symmetry between the cracks. Another 20% of the crack pairs was strongly repulsive but more asymmetrical, and 12 samples, or 40% of the total showed only weak repulsion with signicant asymmetry. All remaining samples were considered unusable because one crack did not propagate at all and the other only exhibited attractive behaviour. That most of our crack paths were asymmetric is not surprising: this phenomenon was also observed by Dalbe et al. [2].

Absence of or minimal repulsion is not in itself the manifestation of experimental imprecisions, as it could simply be the product of the (L, d) choice. We were surprised however by how prevalent weak repulsion was, even for small d values compared to previous observations in dierent materials. Weak repulsion also means that the total deection is relatively smaller when compared to Given the Young's moduli and the energy release rates, material 1 is more akin to PET and material 2 to PDMS. Just as in section 2.3, ν has no eect on the cracks trajectories. On the other hand, E and G c aect the strain energy: they impact the crack propagation speed but not its shape, as long as the computation is converged in regards to the time discretization (see section 3.2.1).

Boundary conditions

The choice of boundary conditions (clamped points, restricted degrees of freedom and imposed displacement) has a signicant impact on the nal shape taken by EP-cracks. We initially thought the rubber-clad clamps used in the experiments we are trying to simulate were best modelled by imposed u y and free u x along the top and bottom sides of the sample. As we have seen in section 3.1.2, it appeared that, in the case of PDMS at least, an ideal clamp (imposed u x and u y on both edges) is a better t. When we came to this realisation, a signicant number of computations had already been completed: as a consequence, results presented in section 3.2.3 regarding the impact of l c on the cracks shape were obtained making the free transverse displacement assumption. On the other hand, all results in section 3.2.4 regarding the variations of θ rm with d for dierent l c were computed under the ideal clamp assumption.

In Fig. 3.9 we present an example of how the nal path shape is aected by the choice of boundary conditions. As expected, an ideal clamp returns weaker repulsion, both in terms of the maximum angle of repulsion and the length of the repulsive component. It also aected the hook to s-shape transition, which happened for smaller values of d when an ideal clamp was used. 

Incremental loading

The total displacement U imposed is not applied at once: doing so would induce a too strong change in the strain energy. It is reached instead in N time steps, or frames to ensure compliance with the quasi-static propagation assumption (see eq. 1.77). Between two consecutive frames the imposed displacement is therefore increased by ΔU = U/N .

The value taken by N will directly aect the variation of strain energy between two time steps and thus the crack path shape. While large values of N slow the computation, we must choose it large enough to ensure the simulation is converged.

In Fig. 3.10 we show how the crack paths are modied by the choice of N . A much too small N = 1250 yields a physically unrealistic behaviour, with the two cracks joining tip to tip. Only doubling N will give better results: past this point, N has little eect on the nal path shape and most signicant variations are in the attractive phase. The position of the repulsion to attraction transition (happening later with greater N ) is aected to a lesser extent. Our main interest, the slope of the repulsive component is barely altered when changing N .

It should be noted that the optimum choice of N is not independent from other parameters.

Because the core issue is to ensure a small energy variation between two pseudo-time steps, N must be chosen in regards of l c and G c , whose values are also at play in the energy balance. In particular, G c opposes crack propagation: greater G c allows us to use less time increments, while l c has an opposite eect.

To focus our study on the eects of l c and (L, d) on crack paths, we conserved the same Δu = 4.10 -5 cm across all simulations.