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Introduction

Understanding and predicting material failure is of prime importance when designing mechanical
structures, for both economical and safety reasons. In practice, macroscopic failure rarely inter-
vene through the catastrophic propagation of a single crack. Other phenomena such as creep,
fatigue failure or the growth and coalescence of pre-existing micro-defects are more commonly
encountered. Understanding how two cracks interact is therefore necessary to evaluate the risk
this last example presents. However, precise modelling of crack-crack interaction is not a problem
as straightforward as studying a single defect or approaching statistically the material properties
of a medium containing many cracks. The problem is indeed both coupled and non-local: because
any crack tip acts as a singularity that alters the surrounding stress field close and far, multiple
cracks affect each other by curving to form complex paths and fracture patterns.

The specific case of "En-passant" fracture has recently gained a renewed interest in relation with
three experimental studies [1-3]. Initially used by geologists to describe transverse fracture along
rift zones, the term en-passant now refers to any fracture pattern in which two initially parallel
cracks interact, such as the one presented in Fig. 1. En-passant crack pairs (EP-cracks) were
thereafter observed in a wide variety of materials, at magnitudes ranging from a few micrometers
to several kilometres. We expect phenomena intervening at a metallic grain scale or a continent
scale to be fundamentally different, without possible comparison between them. However, EP-
cracks present a remarkable uniformity in their propagation shape: it is quasi-systematically
hook shaped, formed by the succession of repulsive and attractive interaction phases between
the cracks. This seemingly universal behaviour is still poorly understood: as of today, there are
no simple predictions of magnitude and length of the repulsive component of the paths. More
significantly still, contradicting and conflicting affirmations have been put forward concerning
the origin of the repulsive phase. While Fender et al. [1] proposed a model that only predicts the
attractive behaviour, Dalbe et al. |2] observations questioned the very validity of the principle of
local symmetry, a commonly accepted bifurcation criteria. Koivisto et al. [3] tried to mitigate this
conclusion by suggesting that the principle of local symmetry may be correct if one takes into
account plastic effect around the crack tips, totally disregarding known occurrences of repulsive
EP-cracks propagating in brittle media.

The main motivation of this thesis was therefore to clarify, hopefully once and for all, the real
limitations of the linear elastic fracture mechanics framework, used in conjunction with the
assumption of the principle of local symmetry, when studying interacting cracks. We found that
this simple framework, while necessarily imperfect, provides still an excellent approximation of
the characteristic hook-shape and reproduces well some common features of EP-crack paths,
such as the position of the repulsion to attraction transition or the intersection angle between
the cracks. Another surprising observation by Dalbe et al. [2] was that materials with comparable
elastic behaviours could result in different repulsive interaction intensity. Using a diffuse damage
model, we confirm that this phenomenon can probably be attributed to the size of the fracture
process zone around the crack tips.

As a preliminary, chapter 1 presents the context and motivation of this study in deeper details: it



2 INTRODUCTION

Figure 1 — Example of EP-cracks in PDMS: This film is 10 cm % 12 cm % 0.1 cm. The cracks
were cut as two straight lines, separated by 2 cm in the longitudinal direction and by 0.5 cm
transversally before being submitted to an opening tensile test

proposes an overview of both the theoretical frameworks used, linear elastic fracture mechanics
and damage mechanics, and of the current knowledge concerning the en-passant fracture patterns.

The main findings of this dissertation are developed in chapter 2. A careful examination of the
initial kink angle between EP-cracks, as predicted by the principle of local symmetry, revealed
the precise geometric conditions for the existence of a repulsive phase according to linear elas-
tic fracture mechanics. We also provide an explanation why the ubiquitous in nature repulsive
phase can easily be missed in laboratory experiments or when computing the initial propagation
direction of the cracks, effectively reconciling experiments with theory.

Finally, we show in chapter 3 how damage mechanics constitutes a better approach to model
EP-cracks properly. We show that a diffuse representation of the cracks is a worthy approach to
understand how the fracture process zone size influences the magnitude of the repulsion phase
between the cracks.



Chapter 1

En-Passant fracture: theoretical
background
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4 CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND

Modern day fracture mechanics consists of an array of increasingly complex models destined to
encompass the large variety of physical phenomena revolving around the crack growth process
such as -but not limited to- brittle fracture, ductile fracture or the formation of a plastic zone.
In most cases, the fundamental principles of these theories were laid down in the early 20"
century by a series of breakthrough papers [4-8| forming what we now refer to as the Linear
Elastic Fracture Mechanics (LEFM) framework. This set of tools and hypotheses, while suffering
from physically impossible conclusions, is still an excellent approach for brittle materials and
the reference framework of fracture mechanics. Its validity in regard to the study of interacting
cracks was questioned in contradictory papers (see 1.3.1). The first part of this dissertation was
realized assuming the hypotheses of LEFM, with the aim of clarifying what are the predicted

EP-cracks propagation paths in this framework.

While LEFM is based on a discrete representation of fracture, other models regard the cracks as
diffuse. Recently, the development of phase-field resolution techniques applied to damage models
allowed to introduce an additional parameter to otherwise purely linear elastic frameworks. The
second part of our work consists in examining whether this extra input is sufficient to remedy

the limitations LEFM modelling exhibits when confronted to experimental observation.

In this chapter, we will present both theoretical frameworks as well as a brief literature review

concerning the core of our subject: en-passant fracture.
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Figure 1.1 — Stress concentration at an elliptical hole

1.1 Linear Elastic Fracture Mechanics: an initial model of frac-

ture

Beyond presenting a brief history of the early development of fracture mechanics, the intent
of this section is to introduce the different concepts and quantities involved in a LEFM study,
namely the stress intensity factors and the energy release rate of a propagating front. We will
then review different bifurcation criteria useful to determine the propagation direction. We will
finally see how to determine the stress intensity factors and the energy release rate for any given

fracture problem, as they will be needed to determine in practice the crack path.

1.1.1 Stress concentration: an asymptotic approach of fracture

The stress in a solid body submitted to external forces or load is not homogeneous; its intensity
is highly dependent on the solid geometry. The concept of stress concentration was introduced
by Inglis [5] when he determined the stress distribution around an elliptical cavity (semi-axes
a > b) traversing a plate subjected at infinity to an uniaxial traction oo,. Without going into the
details of the derivation, it is shown that the maximum stress in the plate is located at the tip of
the ellipse and is related to its shape factor by ez = 0oo(1 + 2a/b) . The stress concentration
factor K is then defined by K; = 2a/b and, depending exclusively on geometry, can reach all

values of |2; ool.

One way to define a crack is to consider it to be the limit case of a flattened elliptical hole or,
in other words, an ellipse whose semi-minor axis is equal to zero, meaning that a/b — oco. Inglis’
result is remarkable as it demonstrates a cornerstone concept of LEFM: the stresses at the tips
of a sharp crack are predicted to approach infinity. The uses of Westergaard’s stress functions
[6] allowed to conduct significant stress analysis at the crack tip: in two independent landmark

papers, Williams |7] and Irwin |8] showed this stress singularity to be of the order r—/2, with r
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Figure 1.2 — Coordinates systems & stress tensors at a 2D crack tip: (a) cartesian (x,y)
and (b) polar (r,0).

being the radial distance to the tip (see Fig.1.2). Indeed, the asymptotic stress-field is entirely
defined by universal weight functions, and a set of problem-dependent scalars, Kj, Ky and Kjyy.

In polar coordinates the stress field expansion can be expressed as:

0 36 K ( 0 39>
Opp = 5COS —cos— | + 581n + 3sin— | + O 1.1
4\/2777" < 2 > 4/ 27y (L) (11)

K 0 30 Kir ( 9 30)
= 3cos— + cos— | + 3s 1nf —3sin— | + O(1 1.2
o = g (3o ooy ) + 7 y) om0

K 0 30 Ky ( 0 39)

y = ——— [ sin— + sin— COS* + 3cos + 0(1 1.3
7 2 ( 2 > 4277 2 W) (1:3)

The coefficients of the leading order of these expansions, K, K;r and Kjj;, are the stress
intensity factors (SIF) of the three corresponding modes of fracture and O(1) (constant term in
the expansion) terms are sub-singular terms such as the T-stress or boundary effects acting far

from the crack tip [9].

Considering that a crack can be defined as the locus of a discontinuity in the displacement field
u of a solid body, it is useful to distinguish the three basic solicitation modes of the crack. The
displacement jump [u] = u™ —u~ is then defined by the difference between the two fields across
the fracture surface. While most cracks are solicited under complex mixed-mode loading, any
stress or displacement field around the crack tip is a linear combination of the three following

modes, as expressed in a Cartesian coordinate system (See Fig.1.3):

e mode I, or opening: the cracks lips move away from each other in a direction perpendicular

to the plane of the crack.
[us] = 0, [uy] # 0, [uz] =0 (1.4)

e mode II, or sliding: the crack lips are sheared in direction orthogonal to the crack front.
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Figure 1.3 — Basic modes of fracture: (a) Mode I: opening, (b) Mode II: sliding, (c) Mode III:
tearing, possible in 3D exclusively. Adapted from [10]

e mode III, or tearing: the crack lips are sheared in direction orthogonal to the crack front.

[uz] = 0, [uy] = 0, [u:] # 0 (1.6)

Given the relationship between stress and displacement in linear elasticity, it is possible to retrieve

an explicit expression of the SIF useful in a 2D problem |11, 12]:

. I 27
_ “r 1.
Kr ll—rf(l) k+1V r 2] (17)
2
K= lim —— [ 2 ) (1.8)

r=0Kk+1 r
Note: p is the shear modulus of the material and s the Kolosov constant, whose value depends

on the Poisson’s ratio v and the plane stress or strain assumption:

3 — 4v for plane strain
k=93y3—-v (1.9)

for plane stress

Thus, the values of the stress intensity factors not only quantify the magnitude of the stress
singularity, but also provide an indication on the nature of the crack solicitation. This second
piece of information will be useful to determine the crack propagation direction, whereas the first
is indicative of when and if the crack propagates at all. Indeed, equations (1.1) through (1.3)
show that the intuitive idea that materials break when their stress reaches a certain critical value

becomes inapplicable at a crack tip as the stresses there go to infinity.

To circumvent this problem, Irwin postulated the existence of a material dependent quantity
K., the fracture toughness, which constitutes the threshold under which the crack does not
propagate. It may seem far-stretched to base a stability criterion on an unrealistic principle such
as infinite stresses. However, experiments on a given material give measures of Kj. consistent

across geometries and loadings, and we will see in the following section that this asymptotic



8 CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND

approach is equivalent to a global reasoning based on energetic considerations.

1.1.2 Energy release rate: a thermodynamic approach to fracture
Extending the first law of thermodynamics to fracture

Also basing his work on Inglis’ stress analysis [5], Griffith proposed in 1920 the founding theory of
fracture mechanics [4] as an extension of the first principle of thermodynamics: the introduction
of the surface energy v, allowed Griffith to consider propagation of a preexisting defect as an
energy-balance problem. Here 4 stands for the energy necessary to create new fracture surfaces
per unit area and is intrinsically tied to the energy necessary for bond breakage. In the event of
a quasi-static crack propagation, and neglecting all non-mechanical works, the energy balance

between two instants ¢ and ¢ + dt is expressed as:
(5We:ct = de + dWel + 2€’stl (110)

This equation conveys that the work of external forces dW,,: is converted in either the variation
of the kinetic energy Wy, of the strain energy W; or the creation of new fracture surfaces when
the crack total length increases of dl. The newly created surface area amount to 2dA = 2edl,
with e being the thickness of the medium. When dt goes to 0, eq. (1.10) can be rewritten in
terms of powers:

Wewt = Wi, + We + 267l (1.11)

The energy release rate G, that is to say the energy consumed during crack propagation per unit

of newly created free surfaces area, can be defined as:

d

Wel - Wemt) (112)

Crack propagation will be unstable if dW},/dt > 0 [13] which translates as:

oW, dA
9y ad 11
o4 a0 (1.13)

Given that the assumption that the crack cannot heal and only advance, i.e. dA/dt > 0, we

retrieve: oW oW
ext el
— -2 1.14
edl edl 7s >0 ( )
or:
G > 27, for unstable propagation (1.15)

On the other hand, we clearly get from eq. (1.11) and (1.12) that the following must remain true

at all times of a quasi-static propagation :
Gl = 2l (1.16)

The Griffith propagation criterion results from the two solutions of this equality: as crack propa-
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gation is an irreversible process, either [ = 0 and there is no condition on the energy release rate
or | > 0 and G = 2v,. While only G can be inferred from the knowledge of [ in eq. (1.16), and not
vice versa, the converse implication is usually admitted: the crack will propagate as soon as the
rate of release of elastic strain energy reaches the rate at which surface energy is created. Thus,
in a quasi-static propagation, G is capped by the critical strain energy release rate G, = 2s.
This quantity is a purely material property, dependent only on the nature and configurations of

the atomic bonds inside the body in the case of brittle fracture.

Equivalence with Irwin’s theory

While the reasoning in Griffith’s and Irwin’s approaches are drastically different, their results as
to when a crack will propagate are identical. Making the assumption that the crack propagates
in its own plane, that is to say without turning or kinking, Irwin showed [8] that G and the SIF

are mathematically equivalent:

k+1
8p

1
This relationship between the stress intensity factors and the energy release rate has several
very important consequences. First and foremost, it lends physical meaning to the K; = K
propagation criteria which was originally based on the debatable existence of a stress singularity
at the crack tip. It is now possible to express the critical SIF above which crack propagation
occurs. For example, in pure mode I we get:
2 8p

Ki.= c 1.1
I,C H"—]_G ( 8)

Eq. (1.17) serves also proof that G, while being linked to a variation of energy between two
states, only depends on the current asymptotic stress field and not on the knowledge of either

the stress field far away from the crack or the stress state after propagation.

1.1.3 Bifurcation criteria: Determining where the cracks propagate

Sections 1.1.1 and 1.1.2 addressed the issue of how to determine when a crack propagate in brittle
materials or, in other words, what loading is necessary to insure quasi-static crack propagation.
By themselves, both Griffith and Irwin’s theories can not predict where the crack will propagate.
In mixed mode, the assumption of a bifurcation criterion is necessary to determine the shape
and direction of the crack path. Many bifurcation criteria where proposed since the second half

of the 20" century; in this section, we will review the most commonly used.

Maximum tangential stress (MTS)

This criterion, proposed in 1963 by Erdogan an Sih [14], is both the first introduced historically

and the most intuitive since it stems from the idea that the material will break in the direction
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orthogonal to the greatest tension. Referring to the initial kink angle as 6;, this criterion can be

expressed as:
0ogg

00

It is possible to substitute ggg by its asymptotic expression in 2D to get the relationship between

0=0,)=0 (1.19)

0; and the stress intensity factors:
K[Sinei—l-K][(?)COSQi—l):O (1.20)

From there, it is possible to derive an explicit expression of 6; when Ky # 0:

1 [ Ky . Kr\?
0;, =2 t - — - K — 8 1.21
= 2aretan | 1 [ 12 —sign (K ( KH) n (1.21)

If K;; = 0 then 6; = 0 for this criterion as well as all others. The maximum tangential stress
criterion (MTS) is widely used because of its good compliance with experiments |[14-16] and its

ease in the determination of 6;.

Strain energy density (SED)

Sih |17, 18] also introduced a measure of the strength of the elastic energy field in the vicinity of
a crack tip, the strain energy density (SED) function S. This quantity is expressed in function

of the stored strain energy per unit volume dWW/dV and the radial distance:

dWel

S:
"V

(1.22)

The crack is assumed to propagate in the direction minimizing S, classically expressed in its

asymptotic form dependent on the SIF [16]:
S = anK% + a1 K1 K +a22K%I (1.23)

Here, the a;; coefficients are functions not only of 6, but also of the Kolosov constant. As a con-
sequence, and contrarily to all other criteria reviewed here, results from the SED are dependent
on the plane problem assumption and the value of the Poisson’s ratio. The main interest of the
SED relies in its ability to account for yield, allowing extension to problems outside of the LEFM
framework, such as ductile fracture [19, 20]. In these situations, S is expressed directly in terms
of the stress field [21]:

1 (k41
= oM < 5 (Orr + 090)* — Orrogg + 039> (1.24)
The SED was also successfully extended to 3D situations, fatigue and non-homogeneous materials
[19, 20]. However, some experimental studies found the SED to be less precise than other criteria
such as the MTS [15]. Other difficulties, as the existence of multiple minima in the energy density

function or the non-existence of a minimum, were also reported [22].
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Maximum energy release rate

The criteria seeking to maximize the strain energy release rate (Gpq:) was also proposed by
Ergodan and Sih [14]. It is thought with the same reasoning as the Griffith criteria for crack
propagation: the crack grows to minimize the potential energy of the body, and the crack front
advances as soon as G reaches a critical value G.. The crack will therefore kink in the first

direction for which this is possible. The kinking angle is then determined by:

%(9 =0;)=0 (1.25)
and: ,

d

Tef(e =6;) <0 (1.26)

Note that G represents the variation of the energy in the body when the crack advances of an
infinitesimal length in the direction 6;. Taking [ as the extension length, ¢; must maximize the
function G*(6) = lim G(I, 6)

=0

Principle of local symmetry (PLS)

The principle of local symmetry (PLS) considers that any crack under mixed-mode loading will
kink so that its extension is in purely opening mode; the stress field at the new tip will be then
locally symmetrical about the crack plane. It was first introduced in 1973 by Goldstein and
Salganik 23] and benefited greatly from the contributions of first Cotterell and Rice [24] as well
as Amestoy and Leblond [25, 26] who, in both cases, provided asymptotic expansions for the
crack paths and the SIF in the neighborhood of the kink.

To properly express the PLS mathematically, we need to differentiate between K; and Ky, the
SIE before crack extension at the original crack tip, from K7 and K7; the SIF after propagation
(see Fig. 1.4). Again, the SIF* are dependent on both the kink angle and the propagation length,
which leads to the mathematical expression of the PLS:

llmK}kI(l,9:0Z-) =0 (1.27)

i
—0
Choosing a bifurcation criterion

Bifurcation criteria are either explicit, in the sense that they rely on quantities determined at
the crack tip in its original configuration, or implicit, meaning that they require the knowledge
of future quantities defined at the crack tip after a theoretical propagation. Explicit criteria such
as the MTS or the SED are usually favored in numeric studies to determine crack paths [27-32].
Indeed, their use is much less computer intensive than using implicit criteria for which we must

determine the SIF and other quantities for a myriad of extended crack configurations.

On the other hand, the PLS, an implicit criterion, should be preferred for any homogeneous

and isotropic material. Beyond its excellent accuracy, it was demonstrated by Leblond |11, 26|
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Figure 1.4 — SIF before and after propagation: K; and K7; are defined at the new tip of
the crack (in red), while K and K are defined the original tips (in black). The corresponding
solicitation modes, opening and sliding should be understood in the local coordinate systems
defined at the crack front (e, e,) and (e}, ;) respectively.
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that this criterion is the only physically admissible one in this configuration. The reasoning is
as follows: in the case of a crack propagating into a homogeneous and isotropic material, under
constant loading, we expect the crack path to be smooth, free of any discontinuities with the
exception of the initial kink. If the crack were to propagate initially in a direction other than the
one predicted by the PLS, we would necessarily retrieve Kj; # 0. Consequently, the crack tip
would still be solicited under mixed-mode, and the crack is bound to kink again, which is not

admissible under our set of assumptions.

It should however be noted that the choice of a bifurcation criterion is usually of little impact
on the final results; with the exception of almost pure mode II loadings, experimental scatter is
often too large to differentiate between criteria [16]. For example, while the PLS and the G4z
criteria are not strictly equivalent, to catch the difference between these two criteria one must
expand the SIF as a function of the initial kink angle at least to the order 5 [26]. Given numerical

imprecisions, they are virtually indistinguishable.

1.1.4 Practical determination of the SIF before propagation

Numerous techniques exist to determine the SIF and the energy release rate of any given fracture
problem, either analytically or numerically. Analytic methods usually rely on the superposition
principle to reduce the problem to a linear combination of known solutions, a good number of
them being already catalogued into handbooks [17, 33]. These techniques are usually limited
to simple geometries and loadings, and are only approximate as numerical methods for more

complex cases.

Numerical methods most often rely on a global approach to fracture: the energy release rate is
determined first and the SIF are then deduced from the relationships linking G, K7 and Kjy for
a straight crack in LEFM. Intuitively, the most straightforward way to determine G is to come
back to its definition and to evaluate the elastic energy stored into a body twice : first for a crack
of length [, and again for a crack of length [ 4 §l. The infinitesimal nature of 0l implies a very

fine mesh around the crack tip, resulting in significant computation time.

However, the most well-known method to compute G is more direct and involves only one compu-
tation step: once the stress state of a body is known, the determination of the path independent
J-integral introduced by Rice [34] is quite simple. Considering a crack tip enclosed in a contour

I of normal n, and taking the strain energy density as 1, J is defined in 2D as [11] :
J = /(le - Uijui,xnj)dS (1.28)
r

Note that while ¢ and j are dummy indexes used in Einstein summation convention, x is the

fixed direction normal to the crack front defined in Fig. 1.4.

It was shown later by Bui [13] that J does not depend on the chosen contour, as long as the crack
is straight inside I" and the crack lips are traction-free, and is equal to GG. The path-independence

property is very useful in practical applications where the analytical solution for the stress field
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is not known: it is often determined numerically using approximating techniques such as the
finite element method (FEM). The presence of a stress singularity at the crack tip compounds
the numerical errors in a zone a few element wide: choosing a larger path allow better precision

by avoiding this area.

Another technique, the virtual extension method introduced by Hellen [35] and Parks [36, 37], is
used in conjunction with finite element computation. While it determines G as the variation of
strain energy between two steps of a straight propagation, it also only requires the knowledge of
the stress state prior propagation. Indeed, the crack is propagated not by increasing the number
of double nodes in the mesh but wvirtually by moving the node corresponding to the crack tip,

which implies computer-intensive changes in the stiffness matrix.

Finally, the G(©) (or sometimes THETA) method was initially developed by Destuynder [38].
Several improvements were introduced later to reach excellent accuracy and efficiency [39]. This
procedure relies on a clear definition of G as a derivative of the potential energy, and presents
the advantage to be generalizable to the 3D case and not limited to the linear elastic case [40].
The G(O) procedure is based on the J-integral, but its accuracy is vastly improved by the use
of a virtual vector field and of surface (rather than contour) integration. It is now implemented

in well-known finite element solvers such as Code Aster [41] or Cast3m [42].

Here, we will only detail the techniques employed throughout the following section: the G(©)
procedure was used for the determination of both the energy release rate G and the stress
intensity factors K; and Kj;. As we have seen in the previous section, it is also useful to know
these quantities after propagation which can be cumbersome to compute using finite element
methods. To circumvent this problem and determine K7 and K7, we applied the work of Amestoy
and Leblond [25, 26, 43|, which is presented in detail in section 1.1.4.

G(©) procedure

Here, © refers to the virtual crack extension field. It is a vector field and should not be confused
with the kink angle 6;. The © field is defined in the coordinate (O, x,y, z,) system tangent to
the crack surface and normal to the crack front (see Fig. 1.5), and acts as a mapping function

matching the initial body containing the crack to a body with an infinitesimally longer crack.

Considering a reference body ) containing a traction-free crack of which we know the stress

state, an infinitesimal geometric perturbation transforms each point M of 2 into M"|44]:
M" =M +n.©(M) (1.29)

Destuynder [38] gave the energy release rate associated with the chosen virtual crack extension

field ©. When neglecting thermal variations and taking 1) as the energy density it becomes :
G®©) = / (WY — 0 : (Vuve))dV (1.30)
D

Here G(O) is the global energy release rate: it is a quantity dependent on the virtual crack
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O=f(xy) r

Figure 1.5 — Typical mapping function ®: ® is constant in the inner and outer sections. On
the intermediate ring it varies continuously as a function of the coordinates (x,y) between the
unit vector (1,0) (constant value near the crack tip) and (0,0) (constant value in the majority
of the body). The closed contour I' defines the domain D: both of them are used as integration
domain to compute the SIF.

extension field value. In 2D, the local energy release rate G is a single scalar obtained from the

following equation:

G = G(6(0)) (1.31)
where O refers to the crack tip. One must respect several constraints when choosing ©:

e O must modify only the crack tip position or, in other words, it should be null on all other

points of the domain border 0f2,

e O must be regular on €,

e © must be locally tangent to the crack lips.
In practice, © is chosen so that the integration in eq. (1.30) is as precise and as fast as possible:
O is taken constant everywhere, so that VO=0 there, except on an anulus surrounding the crack

tip [45]. Inside the inner ring, © = (1,0) and © = (0,0) outside the outer ring (see Fig. 1.5).

This considerably decreases the size of the actual integration domain.

SIF at the original crack tip

Both the J-integral method or the G(©) procedure are limited by their inherent incapability to
determine the individual stress intensity factors separately. To separate the three rupture modes
and identify the SIF, the use of other path-independent integrals is valuable. Stern et al. [46]
used Betti’s reciprocal work theorem and the link between the SIF and the first order stress field
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(see eq. (1.1) through (1.3)) to introduce the first expression of a linear combination of K and
K1 as a contour integral. In a similar fashion, Yau et al. [47] used the J-integral and suitable
auxiliary fields to propose the well-known interaction-integral technique. Considering a fictive
mechanical equilibrium <u§t0t), eg.i:t), aj(.';:t)) as the sum of the current state <u(c) el O'(C)> and

50 ko gk
an auxiliary field (uga), eﬁ), O'J(-Z)), eq. (1.28) is reformulated to express the total J-integral as:

Jm=ﬁw%%4%+%mm+%mm% (132)

where the subscript u; , is u; , = Ou;/Ox. Naturally, 1" is the strain energy of the superimposed
state and should not be confused with the sum of ¢ and *:

1
Y = 0% + ol (e + ) (1.3

It is possible to reorganize eq. (1.32) so that the J-integrals of the two superimposed states

appear:
JO = J¢ 4+ J* + M*° (1.34)

Here, M®¢ refers to the interaction integral between the current and the auxiliary state. Its

expression is deduced from eq. (1.32) and (1.34):

1

mee = [ (Glatset + otng — (ot + o, ny ) ds (1.35)

Using the equality J = G and the equivalence between the Irwin and Griffith theories given in

eq. (1.17), eq. (1.32) can also be rewritten in terms of stress intensity factors [47]:
JO = J¢+ J* + 20 (KK + K5 K$) (1.36)
where « is dependent on the plane problem:

1—v? .
for plane strain

o= E (1.37)
1o for plane stress

It comes directly from eq. (1.35) and (1.36) that
Mo = 20 (KSK? + K¢, K%) (1.38)

Eq. (1.35) allows for an easy determination of M®¢ as long as the current stress state is known
on a contour enclosing the crack tip. Consequently, it is possible to derive the SIF of the current
problem using eq.(1.38) and a sensible choice of auxiliary state. The most direct solution is

obtained when the auxiliary state is either pure mode I or II. Thus, when K7 =1 and K7; =0,

1 1
we get K7 = EM"’C or, when K¢ =0 and K{; =1, we get Kf; = aM‘l’c.

In practice, the contour integral M %€ is replaced by the integration integral I%¢. This integral
was introduced by Gosz and Moran [48] and is simply the combination of the @ field and M®¢
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transformed into a surface integral to improve the accuracy of the SIF determination:

1
Jac — / [2(0%5?]- + o€ )0k — (ofufy + ofiug ) | OridV (1.39)
D

where D is the domain inside I', where © is non-zero (see Fig. 1.5).

SIF along the crack path

As we have seen in section 1.1.3, the principle of local symmetry requires the knowledge of Ky
not at the tip of the crack in its original configuration, but after an infinitesimally small extension.
This quantity K7, is of course dependent on the kink angle §; (see Fig. 1.4). Direct determination
of the SIF* using FEM is time-consuming, as the computation should be repeated for each
possible 6; value. Fortunately, we know from the work of Amestoy and Leblond [11, 25, 26, 43|
that K7 and K7; are dependent exclusively on the SIF before extension and the kink angle. The
relationships between this parameters are universal, in the sense that their coefficients do not

depend on geometry or loading, this information already being encapsulated in the original SIF:

[K}k(ei)] _ [Mn(@z‘) M12(9z‘)] [K1] (1.40)
K7 (6;) Moi(0;) Mao(6:)| | Kis '

Accurate expressions of Mj1(0;), Mi2(0;), Ma1(0;), Mao(0;) have been developed by Amestoy
[26], up to the order 22:

32 54 9 11x* 11976
M11(t9i)—1—ﬂm2+<7r2—172r8>m4+(ﬂ— dE 7T>mG

8 9 72 15360

+5.07790m® — 2.88312m % — 0.0925m % + 2.996m ™ — 4.059m 6 (1.41)
+ 1.63m'® + 4.1m*° + O(m*?)
37 100 73 13373 597°
Mio(0,) = — == I 3 o7 — o 5
12(0)) = —"grm + ( 5 " 16> et < AT 1280> " (1.42)
+12.313906m7 — 7.32433m° + 1.579m 't + 4.0216m" — 6.915m'®
+4.21m' + 4.56m' + O(m*)
m ar  7\° 21 137°  59pi®
Mo1(0;) = =m — [ — + — = 5
2n(0:) = 5m (3 +48> +< 3 730 3840>m (1.43)

—6.73023m" + 4.44112m° — 1.5340m™" — 2.0700m '3 + 4.684m™®
—3.95m'" — 1.32m" + O(m?")
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32 8 2972  5mi4
My(0) =1— (4+ ) m2 4 (o + 2 - 222 )t
8 3 18 128 (1.44)
2 4r2 115974 11975 '
i <_3 _Amt 11597 1197 ) mS +10.58254m® — 4.78511m !

15 9 7200 15360
— 1.8804m'? + 7.280m™ — 7.591m + 0.25m'® + 12.5m% + O(m??)

with 0; = mm(—1 < m < +1) denoting the kink angle formed between the original crack and its

extension.

1.1.5 Limitations of the LEFM framework and existence of a fracture process
zone

To summarize, LEFM is a macroscopic approach to fracture: criteria for crack propagation are
based on energy balance and unconcerned with microscopic breaking processes. Representing the
material as continuous, isotropic, and homogeneous for all scales results in square-root singu-
lar stress fields at the crack tip, which is physically unacceptable. However, all materials have
a smallest representative volume under which their average mechanical properties are not sta-
tistically matching the continuum bulk description. Most materials will go through inelastic
transformations before breaking, such as plastic deformation or the nucleation of micro-cracks.
The zone where inelasticity prevails is known as the fracture process zone or sometimes as the
plastic zone: because it undergoes dissipation mechanisms LEFM is invalid in this region. The
small scale yielding assumption postulate that the fracture process zone is much smaller than all
other characteristic lengths of the problem including the crack length. Under such conditions, the
stress field provided by the LEFM theory are valid on an annulus enclosing the fracture process
zone: the K-dominance zone. Outside the annulus, the stress fields are dominated by boundary

conditions and LEFM, which is an asymptotic approach to fracture, also breaks down (Fig. 1.6).
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LEFM asymptotic

True stress

v

Plasticity
K-dominance
Figure 1.6 - LEFM asymptotic solution compared to the "true" opening stress: For a
crack submitted to a far away tensile stress oo, the LEFM solution is not valid extremely close
to the crack tip where inelastic phenomena take place. The actual shape of the plastic zone is
complex and controlled by many parameters. It depends most notably on the plane problem
assumption. Outside the K-dominance annulus, the asymptotic solution becomes once again

invalid as boundary conditions grow more important: the true opening stress tends to o, not
0.

1.2 Diffuse crack models: a variational approach to fracture

As we have seen in section 1.1, the classical approach of fracture mechanics based on Griffith’s
work is essentially an energy minimisation problem, in which the surface and strain energies com-
pete. The variational approach of fracture consists in treating the problem thermo-mechanically
as a whole, instead of dissociating the propagation and bifurcation criteria as is standard in
LEFM. The crack length and shape become simply one parameter among others controlling the
Gibbs free energy 1. Representing cracks as material singularities hinders the proper differentia-
tion of ¢: variational approaches to fracture require a regularized parameter. Phase-field solving
techniques are based on this principle and use an additional scalar damage variable to represent

a smooth transition between undamaged and broken materials.

In this section, we first aim to present how phase-field methodologies arose from the local state
method. We will then present in more details the model of Miehe et al. [49], later implemented
into Abaqus by Molnar et al. |50], on which the results from chapter 3 are based, and its numerical

implementation.

1.2.1 The local state method

The variational approach of fracture is derived from the local thermodynamical state method
developed by Lemaitre and Chaboche [51]. The aim of this technique is to establish a formalism
compatible with the laws of thermodynamics and resolvable using numerical analysis techniques.

It is well suited to study coupled problems, among which damage mechanics.
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State variables

The local state method is based on the assumption that the thermo-mechanical state at a material
point is entirely determined by a number of variables defined at this point exclusively [51]. Because
the time derivatives of these variables are not taken into account, any approach stemming from
this method will necessarily obey the quasi-static assumption: all processes are a succession of

equilibrium states.

The state variables can be classified into two categories:

e QObservable variables, such as the temperature T" or the linearised deformation tensor €, are
necessary to define the thermo-mechanical state of a material as they appear in the first

and second principle of thermodynamics.

e [Internal wvariables represent dissipative phenomena and as such the solicitation history
the material went through. While not directly measurable, they represent a real material
state such as the crystalline micro-structure, the dislocation density or plastic deformation.
In models using irreversible deformation, the total deformation € cannot be used as an
observable variable. It is partitioned into its observable component, the elastic deformation

€®, and the internal plastic deformation €€:

e=€“+¢€P (1.45)

The number and nature of the internal variables V7,... ,V} is an arbitrary choice driven by

the modelled phenomenon complexity and the level of details one wishes to consider.

Laws of thermodynamics
The first law of thermodynamics is used under the small scale deformation assumption:

pée =0 : €+ r —divg (1.46)

where p is the density, e the internal specific energy (energy per unit mass), r the heat source

density and q the heat flux.
We express second law of thermodynamics through the Clausius-Duhem inequality:

vT
— >

a:e'l’—p(z/}—ksT)—qT >0 (1.47)

where ¢ = e — T's is the specific free energy and s the specific entropy.

State laws

We assume the existence of a thermodynamic potential from which the state laws derive: as

long as this scalar function is concave in regard to 7', convex in regard to €® and all Vj, the
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conformity with the second principle of thermodynamics through the Clausius-Duhem inequality

is guaranteed.

For solids at a constant temperature, the chosen potential is generally the specific Helmholtz
free energy v = (€€, T, V). Without detailing the derivation, it is possible to retrieve the state
laws of elasticity from eq. (1.46) and (1.47):

oY
= 1.48
L (1.49)
N
= ——= 1.49
T T (1.49)
With o the stress tensor i.e. the dual variable of e.
By analogy it is possible to define the dual variables of all Vj:
oY
Ak = p— 1.50
K =Py (1.50)

Note that, while eq. (1.48) is a state law describing the evolution of an otherwise defined internal
variable, eq. (1.50) is merely a definition of the dual internal variables Ag. More equations are

required to balance the number of unknowns.

Evolution laws

A dissipation potential ¢ = ¢(€P, Vk) is introduced to complete the model. As for the state laws,
using a scalar potential is a convenient way to ensure consistency with the laws of thermody-

namics. Considering the state laws, the Clausius-Duhem inequality becomes:

e p Ty, AV 1.51

P Py Ve T 7 0 (1.51)
. : T

@a:eP—Aka—%ZO (1.52)

The first term refers to mechanical dissipation and the second to thermal dissipation: both must

be positive independently from the other.

The dissipation potential is generally chosen as a positive, scalar function of Vj: this ensure

automatic positivity of the mechanical dissipation. The ensuing relation is then:

9¢
K=o (1.53)
Plus the complementary law for stress:
0
_ 9 (1.54)

o= —
O€P



22 CHAPTER 1. EN-PASSANT FRACTURE: THEORETICAL BACKGROUND

In practice the dual dissipation potential ¢*, obtained through the Legendre-Fenchel transform,

is often preferred:

¢*(0, Ag) = sup [o: €l — AV — ¢(eP, V)] (1.55)
(€p, Vi)
We have then:

. 0o*

P = "
€ 5 (1.56)

T
V= AL (1.57)

1.2.2 Extending to phase field models

The diffuse damage approach of fracture is usually concerned in representing the effect of damage
on the macroscopic properties of the material, such as stiffness degradation or decreasing yield
stress. It is an application of the local state method to fracture, and uses one or more internal
variables to represent damage, a concept covering various irreversible material changes such as

void nucleation or variations in the dislocation density.

Strain softening, that is to say the phenomenon of decreasing material stiffness when strain passes
a certain critical deformation, poses an extra difficulty. Indeed, strain softening fundamentally
changes the local differential equations making the problem ill-posed, with multiple numerical
solutions [52]. In particular, in the presence of material softening the material is predicted to
break along an infinitesimally thin surface: in numeric approximations, this translates as strain
localisation in a single element regardless of mesh size. Ultimately, the size and localisation of

the simulated crack will be mesh dependent.

The first solutions proposed to solve this problem consisted in using regularization techniques
that contradict the main hypothesis of the local state method. Indeed, regularization techniques
are based on the assumption that some variable are non local either by referring to a volume

rather than to a point [53], or by operating through their spatial derivatives [54].

As noted by Borino and de Borst [52], this approach presents several drawbacks:

e While it can be rationalized using micro-mechanical arguments, the choice of the regularized

variable is somewhat arbitrary and of great influence on the final result.

e The use of spatial derivative adds additional constraints when using finite element solvers:

the shape functions differentiability class must be increased.

e First and foremost, the loss of the local state assumption means that automatic compliance
with the second principle of thermodynamics is not guaranteed and must be ensured a

posteriori.

The solution came under the form of phase-field models. Initially used to model nonequilibrium
crystal growth [55], these models differ from the previous regularized approaches in the sense

that the damage variable is integrated directly in the formulation of the potential energy. The
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evolution law is then derived from the same energy than the other variables, and not from a

different potential

1.2.3 Numerical implementation

All phase-field results presented in subsequent chapters were obtained using the Abaqus imple-
mentation proposed by Molnar et al. [50]. In this section we present this particular model in

more details.

Damage field & crack topology

In this model, we consider a single internal variable: the damage d, dependent on both time and
space. It is the crack phase-field function and varies between 0 (intact material) and 1 (completely
broken). To represent micro-cracking and void nucleation, d varies smoothly between these values.
Take for example an infinite bar of cross section I' extending in the x direction. A sharp crack
at z = 0 may be approximated by:

d(z) = e~ 12/l (1.58)

This exponential form is consistent with the sharp crack topology: d(0) = 1, d(+o0) = 0 and if
lc — 0 the damage will be null everywhere but at z = 0. In eq. (1.58) the length scale parameter

l. characterizes the diffuse crack topology: in a way, it measure the crack thickness.

An energy minimisation approach requires to determine the fracture energy, which is dependent
on the size of new fracture surfaces in LEFM. In diffuse damage approaches, the crack surface
density is constructed by analogy with the infinite bar case. Note that the exponential function

in eq. (1.58) is solution of the differential equation:

d(z) —12d"(z) = 0 (1.59)
Any solution of eq. (1.59) will necessarily satisfy the condition:

d= Arg {ir{}f[(d)} (1.60)

where we define the functional I(d) as:

L
I(d) = 2/ (@ + 12d?] dx (1.61)
—0o0
In the case of an infinite bar, I(d = e~ 1#l/le) = [.I'. Recognising I' as the crack surface in

the sharp crack representation of a fully broken bar, we have by analogy in 1D diffuse damage
representation: I' = I(d = e~1I/le) /I.. We may generalize in higher dimension I" as a function of

the damage d present in any multi-dimensional body 2:

I(d) = /Q ~(d, Vd)dV (1.62)
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where y(d, Vd) is the crack surface density function. It is simply the integrand of eq. (1.61)
extended to 3D situations, divided by [.:

1 I,
v(d,Vd) = gcﬂ + §|Vd|2 (1.63)

Potential energies

We introduce the Helmholtz free energy:

E(e,d) = / v(e,d)dV (1.64)
Q
The chosen free energy density is then expressed as:

(e, d) = g(d)-vo(€) (1.65)

where 1 (€) is the usual strain energy and g(d) a parabolic degradation function:

Yo(€) = %GTCOG (1.66)

gld)=1—-d)?+k (1.67)

where Cj is the undamaged material stiffness matrix and k£ a very small numerical stability

parameter.
From eq. (1.48) and (1.66), it is possible to derive the state law defining the the stress tensor:

o= pg—f = o = g(d)oo = g(d)Cope (1.68)

where o refers to the stress tensor of the undamaged material. Eq. (1.68) illustrates how the
damage field impacts the stresses and degrades the material stiffness.

Because of the diffuse crack representation, we have to redefine the fracture energy. Making once
more an analogy with standard LEFM, the fracture energy is expressed as the product between

the critical energy release rate g. and the crack surface defined in eq. (1.62)
W(d) = / ge(d, Vd)dV (1.69)
Q

Finally, considering k ~ 0 the total potential energy of the system can be written as:

E,(u,d) = W(d) + E(e,d) — 1" (u) (1.70)

= / [9e7(d, Vd) + (1 — d)*¢o(€)]dV — | t.udA (1.71)
Q o0

where E(e,d) refers to the free energy and I1°%* to the work of external forces ¢ acting on the

body boundary 0f.
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Evolution law

One more equation is lacking to complete the model: we need to define the evolution law that will

drive the expansion of the fracture phase-field d. It must ensure damage irreversibility: d > 0.

Without detailling the derivation, which is available in [49], the minimisation of eq. (1.71) coupled
with inequality constraints stemming from the second principle yields the Karush—Kuhn—Tucker
(KKT) system:

d >0
[ = 9c0av <0 (1.72)
d(f - gc(sd’)’) =0

in which we introduced the variable f, dual of d: f = 9v¢/0d = 2(1—d)1y(€) and the infinitesimal

variation d47:

Oy ., Oy
day 94 DW(GVd) (1.73)
= li(d— I>Ad) (1.74)
d

If we consider the case when damage is increasing (d > 0) the fourth equation of system (1.72)

imposes that f = g.047y which translates as the damage evolution law:

% (d — 12Vd) = 2(1 — d)(e) (1.75)

Resolution
For stability purposes, the problem is decoupled: the displacement field and the phase field are
determined by two quasi-independent minimisations.

For each time step of the simulation, the phase field is updated first. From eq. (1.75), it is clear
that damage is driven by the maximum stored elastic energy ever underwent by the material.

We therefore introduce a history variable:

Hyo\ = Yo(e) if Yo(e) > Hy, (1.76)

H, otherwise.

Then, using a slightly altered potential energy, we get the evolution law of the damage field:

dpy1 = Arg {i%f/g[gcy(d, Vvd) + (1 — d)QH]dV} (1.77)

In eq. (1.77), we consider only the terms dependent on d. This excludes I1¢*!, as we assume that

damage cannot reach the domain border 0.

The displacement field is then determined as the minimizer of the difference between the potential
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energy and external works:

Upt1 = Arg {ir&f/ﬁ@/}(u, dy)dV — /{m t.dA} (1.78)

The main assumption in this step is that d and w can not vary at the same time. This condition

ensures numerical stability.
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Figure 1.7 — Typical hook-shaped configuration: Two initially straight EP-cracks will, after
getting close enough, enter a repulsive phase. They eventually turn into an attractive path until
coalescence

1.3 Interacting cracks

Failure rarely occurs through the catastrophic propagation of a single crack. In practice, numerous
microscopic defects are initially present in any structure; under solicitation many will grow and
coalesce into macroscopic cracks. The problem of crack interaction, either at the microscopic or
the macroscopic scale, is therefore of prime importance and has underwent large investigation.
Multi-fracture problems are usually approached in one of two ways [56]: how individual cracks
are affected by their neighbors, or how the presence of multiple fractures statistically alters the

elastic properties of the material.

In the case of an array containing many cracks, two opposite behaviors are possible, depending
on the relative positions of the cracks [57, 58|. Of course, because macroscopic cracks are the
product of the coalescence of smaller fractures, the presence of many micro cracks can speed
up propagation by increasing the SIF |56, 57|. On the other hand, macroscopic toughening by
micro-cracking is a less intuitive, but also well known phenomenon. The presence of micro-cracks
can increase the apparent fracture toughness by reducing the material stiffness around the crack

tip, or by locally releasing residual stresses [59, 60].

The dominant mechanism (stress shielding or stress amplification) is highly dependent on the
relative position of the interacting cracks. It is therefore critical to understand the mechanism
behind two-cracks interactions. This situation poses challenges as a coupled and non-local prob-
lem: each increment of crack propagation is entirely determined by the stress field surrounding
the crack tip, which is in turn influenced by the presence and propagation of other cracks. Just as
in many-cracks array, crack-crack interaction can either shield (or even arrest) their development

or, on the contrary, cause a sudden jump of propagation [61].
1.3.1 Some observations on EP-crack pairs
Careful examination of crack coalescence also requires to examine how interaction can induce

path deflection. The family of fracture problems known as en-passant (EP-cracks) is an excellent

example of how a seemingly simple situation can yield widely different final propagation paths.
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Figure 1.8 — EP-cracks examples: the hook shaped propagation paths can be observed at
scales ranging from a few micrometers to several kilometers.

a) in an asphalted road;

b) in a plastic sheet, adapted from [2];

¢) in human cortical bone adapted from [62];

d) in 3D printed aluminum alloy, adapted from [63]

e) in a paper sheet, adapted from [64];

f) in oceanic floor, adapted from [65].
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Figure 1.9 — Fender et al. experiment: (a) Set-up schematics, (b)-(f) Propagation dynamics,
(g)- (h) Example of a fractured gelatin sheet: the repulsion is negligible. Taken from [1].

EP-cracks refers to the configuration in which two initially collinear and offset cracks propagate
inward, i.e toward each other. They generally exhibit a surprising repulsive behavior: counter-
intuitively, EP-crack pairs do not join tip to tip. Indeed, when the cracks are not yet super-
imposed, the lateral separation between the tips usually increases as the cracks approach each
other. The cracks will later turn, usually at superimposition or slightly before, and grow toward
each other until they join (see Fig. 1.7). As shown in Fig.1.8, the resulting hook-shaped propa-
gation path is characteristic of EP-cracks and have been observed in a wide variety of materials

and at a broad range of scales.

The name "en-passant" was first coined by Kranz [66] when he observed this type of interaction
as a basic type of micro-crack linking mechanism in rocks. In this case, the cracks were only
a few micrometers long. Since then, the term was re-used to designate any fracture problem
containing two parallel cracks approaching each other. In particular, kilometers long EP-cracks
are frequently observed at the geological scale in pack ice [67] or along rift zones in planetary
crusts [68, 69], under the name of "overlapping spreading centers". At the micro-scale, examples
of en-passant like cracks a few hundreds micrometers long are visible in biological tissues such as
dental enamel [70], bones [62, 71-73], or antlers [74], where they are known to act as toughening
mechanisms. Recent industrial applications gave way to even smaller en-passant like fracture
configurations: the thin metallic films used in stretchable electronics often contain many parallel
cracks separated by only a few micrometers [75-77|. Other examples of en-passant cracks of

similar length are also present in 3D printed alloys [63] or mechanical sensors |78].

Considering how ubiquitous en-passant cracks are, there is a remarkable dearth of controlled

experimental studies of this configuration.

Laboratory observation of EP-cracks can be accidental, as they often are the sub-product of mode
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T

Figure 1.10 — EP-cracks in Plexiglas: the strong repulsion before overlap was observed by
Eremenko et al. [79].

[+1IIT propagation: small, hook-shaped, en-passant cracks can form in the direction transverse to
the main cracks [80]. Cortet et al.|64] did not study EP-cracks directly, but a similar configuration:
two lines of collinear cracks form a repeated en-passant pattern. Even with these modified initial
conditions, clear hook-shaped paths with repulsive and attractive phases are observed (see Fig.
1.8e). Theocaris [81] limited his study to collinear EP-cracks propagating into Plexiglas: he found
that, in this configuration, interaction effects were negligible if the tip to tip separation distance

was greater than twice the crack length.

Fender et al. [1| presented the first examination of the shape of EP-cracks propagating in various
relatively soft materials (gelatin, cork, polystyrene foam and aluminum foil) and proposed that
the paths have a universal square root shape, governed exclusively by the initial offset between
the cracks. While the results from this experiment are remarkably self-similar, the repulsive
component in the resulting crack paths was systematically neglected. As shown in Fig. 1.9), it
was in their case small but still visible and remains an important feature of the hook-shaped
path of EP paths. Indeed, we usually expect EP-cracks to repel one another at the onset of
propagation and to attract one another only after the inner tips are superimposed. As shown in
Fig. 1.10, this was observed by Eremenko et al. [79] during experiments conducted in Plexiglas,
as well as in many geological settings [66, 82, 83|. It should be noted however that repulsion
between EP-cracks can be almost imperceptible: Swain and Hagan [82] needed to magnify the
overlap region to reveal the slight repulsion present in their experiments conducted in soda-lime

glass.

To the best of our knowledge the only comprehensive examination of the repulsive component
of EP-cracks paths, its magnitude and its controlling parameters, was conducted by Dalbe et
al.[2]. When studying EP-cracks propagating into three different kinds of polymer films, they
found results startlingly different from Fender’s: not only distinct repulsion between the cracks
was almost systematically present, but the previous shape universality is lost. Some features are
similar: the final shape is not dependent on the horizontal separation between the cracks and
they attract one another eventually. However, the turning point between repulsion and attraction
happened before overlapping and the final crack path is strongly influenced not only by the initial
offset between the cracks but also by the material properties (See Fig. 1.11). As shown in Fig.

1.12, the maximum angle of repulsion was systematically stronger for cracks propagating in
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Dalbe et al. trajectories: The lateral separation Ay is represented as a function

of Ax, the separation in the crack axis direction for different d, the original offset between the
cracks. In this case, the repulsion to attraction transition occurs before overlaping (AX = 0).

Adapted from [2].
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Figure 1.12 — Maximum repulsion angle vs. lateral separation: The two different PET
sheets, Lumirror®and Mylar®had the same Young’s modulus and Poisson ratio. The system-
atically smaller repulsion in the PET Mylar®was attributed to phenomena occurring at a scale
small enough for LEFM to become inapplicable. Adapted from |2].
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Figure 1.13 — Close-up of the crack tips and surrounding plastic zones: We assume that
the fracture process zone appears in black, as it contains voids and micro-cracks that will obstruct
the light.

(a) The PET Lumirror®endures the most repulsion and seems to be associated with a narrower
process zone;

(b) PET Mylar®. The "double tip" visible in this sample is probably an artifact caused by
out-of-plane deformation. Adapted from |[2], Supplemental Material.

polyethylene films rather than in polycarbonate films. Even more surprisingly, it appeared that
taking into account the Young modulus and the Poisson’s ratio, i.e. the material properties
used in a LEFM model, would not be sufficient to fully explain the different final path shapes.
When identical tests were run for two separate kinds of polyethylene sheets that had identical
macroscopic properties, the magnitude of repulsion was also systematically larger in one case.
This clearly shows a failing of a LEFM approach to study interacting cracks in such material
samples as the only noticeable difference between the two tests was the shape of the plastic
zone around the crack tips, shown in Fig. 1.13. The discrepancy was tentatively attributed to
the different micro-structures of the materials, and how it may impact the fracture process zone
ahead of the crack tips: strong repulsion appears at first glance to be associated with a "sharper"
point of the fracture process zone. Finally, Dalbe et al. noted an even more surprising disparity:
while the PLS, as well as as other bifurcation criteria, predicts that perfectly aligned cracks

propagate straight ahead, maximum repulsion is observed for this configuration specifically.

This effect was further examined by Koivisto et al. [3] who reproduced the previous experiments in
polycarbonate sheets and used digital image correlation to track the tips of the fracture process
zone and measure the strain fields. The authors found that, when treating the process zone
tip as an effective crack tip, the cracks follow LEFM theory with a maximum tangential stress
assumption. Crack repulsion is then considered as an exceptional, rather than usual, phenomenon:
according to the authors, it could only result from a stress field perturbed by a large fracture

process zone.

The presence of an attractive phase following a repulsive stage is not the only distinctive charac-

teristic of EP-crack paths. The results of Dalbe et al. are also surprising because the attractive
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phase begins before overlapping when a starting point at coincidence is the general consensus
[66, 69, 79, 82, 83|. EP-cracks are also known to coalesce at a near perpendicular angle |66, 84].
Finally, the shape factor of the released central part between the cracks is generally reported to
be 3:1 [69, 85, 86]. However in a minority of cases, the central part is more elongated: observing
normal faults Acocella et al. reported a small number of large aspect ratios, up to about 10:1
[69]. To our knowledge a more circular central part, with a ratio of 2:1 was observed in only one

instance [1].

1.3.2 Modelling interacting cracks
General techniques for studying interacting cracks

Most studies specifically on two-cracks interactions are focused on the determination of the SIF,
and do not extend the reasoning to the identification of the complete crack paths. Techniques
to compute the SIF often rely on the stress superposition principle [87]. The first method of
this family was introduced by Kachanov [88]: the problem containing N cracks is represented
as the superposition of N subsidiary problems consisting of one isolated crack, loaded from
both the original tractions, and a sum of unknown interaction tractions induced by the other
cracks. Simplifying hypotheses, such as the one proposed by Kachanov (any interaction traction
is taken as the response of a crack to the uniform average traction on the other) makes for an
easy solving of the problem. This technique, which was later re-branded as the "pseudo-traction
method" by Horii and Nemat-Nasser [89], has benefited from many enrichments in the form of
tractions hypotheses: instead of using constant tractions along the considered crack, Horii and
Nemat-Nasser used polynomials of the Chebyshev’s and Taylor’s kinds. Benveniste et al. [90],
also used a polynomial approximation to represent the tractions: in this case polynomials are

used on all the cracks, not just the one in the current sub-problem.

Pseudo-traction methods are simple and adaptable to many fracture problems; they are, however,
limited to straight cracks and thus unable to determine complex curved final paths. They also
become imprecise for small crack spacing, making it all the more irrelevant to the study of crack

coalescence or close crack interaction [87].

Another often used technique to study interacting cracks consists in representing them by a
distribution of infinitesimal dislocations in an otherwise perfect body [91]. This "distributed dis-
locations technique" was first introduced by Bilby and Eshelby [92] and further refined later by
Hills et al.[]91]. The final solution is the superposition of two problems: a trivial one consisting
of the given geometry and loading from which we removed all cracks, and an auxiliary problem
containing the cracks but no far-field loading conditions. The cracks are represented by an as-
sembly of glide and climb dislocations to account for any displacement jump. The stresses are

then retrieved using the well-known Burger’s theory [93].

Recently, but dislocations-based methods were extended to determine the SIF not only at cracks
tips, also at other stress singularities such as crack kinks [94, 95|. This allows the study of

crack branching in the context of LEFM. The main advantage of dislocation based methods is
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Figure 1.14 — Predicted EP-cracks paths by Mills and Walker: Adapted from [98] The
cracks are subjected to a far removed tensile stress and the numbers above each increment stand
for the energy release rate.

(a) Paths for a pair of cracks: the authors did not retrieve the expected hook shape, but an
unanticipated "s" shape.

(b) Paths for an infinite array of EP-cracks. Note that in both case the repulsion between the
cracks is negligible.

that they are usually less numerically costly than FEM analysis, and extend well to the case of
multiple curved cracks. However, these methods are generally considered to be more suited to
study relatively short cracks [91] and may prove inadequate for a problem with known multi-
scales properties such as EP-cracks. Furthermore, dislocations methods are only valid for purely

elastic materials and do not allow to study the effect of plasticity [96].

Some models of en-passant crack pairs

Many studies concerned with the propagation direction of interacting crack are usually focused

on very specific geometries and offer only a partial analysis of the problem.

Melin [97] restricted her work to the case of a periodic array of perfectly collinear cracks. Using a
dislocation method, she showed that slight curvature at the tips of the otherwise straight cracks
induces crack repulsion and impedes tip to tip coalescence. The inquiry was focused on the initial

behavior of the cracks, and the final path was not comprehensively described.

Mills and Walker [98] also studied an infinite and periodic array of cracks using a dislocation
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method. In this case the cracks are entirely curved and approximated by a succession of straight
displacement discontinuities. Mills and Walker were able to retrieve the classic hook shape in
a periodic array: a repulsive phase is followed by an attractive phase when the cracks overlap.
However, the cracks intersect at an angle of about 38° (see Fig. 1.14a), which is markedly smaller
than the 90° angle usually observed. When applied to a pair of cracks, their method revealed that
propagation at the inner tips should eventually stop for the benefit of propagation at the outer
tips. Also, the complete path shown in Fig. 1.14b was not hook-shaped; the attractive phase does
not last until coalescence as the cracks eventually deviate a third time and end up parallel to
each other. Mills and Walker attributed these phenomena to artifacts of the dislocation method

but, depending on the tested geometry, it could be in accordance with later results [57, 99].

Yokobori et al. [100] used a dislocation method to study narrowly spaced EP-cracks, under
the assumption of the MTS. The results are somewhat contradictory to the general consensus:
Yokobori et al. found that EP-cracks do not deviate from their original axes before overlapping,
and that repulsion could begin after superimposition of the inner tips. This is, to the best of
our knowledge, the only occurrence where such a phenomenon is reported; we attribute this
discrepancy to the known failings and inaccuracies of dislocation methods. Chan [101] tried to
re-simulate Yokobori’s trajectories using another dislocation method on the exact same geometry
and boundary conditions: he found that the cracks repel one another before overlapping, further

invalidating Yokobori’s model.

Baud and Reuschlé [102] studied EP-cracks submitted to either tensile or compressive far-away
stresses. Surprisingly, this dramatic change in boundary conditions does not significantly affect
the qualitative form of the final shape: again, the trajectories are hook-shaped. This model
presents two failings: any predicted repulsion is very weak, and the cracks interact only if they
stand really close to each other. Indeed, the maximum tip to tip interaction distance is the

half-length of the crack, which is smaller than other models predict.

For example, Gdoutos [99] found the interaction between EP-cracks to be significant if the tip
to tip separation distance is smaller than twice the crack length. Gdoutos used previous work
to identify the SIF [100, 103] and determine the initial kink angle of the cracks as defined by
the strain energy theory: depending on the geometry both repulsion and attraction are possible.
Gdoutos also compared the energy release rate at the outer and inner tips, which enabled him

to determine from which extremities the cracks would propagate.

Wang et al. [57] were interested in EP-cracks as a mechanism of crack coalescence: using known
solutions for the SIF neighboring cracks, and assuming the MTS hypothesis, he determined
complete EP-cracks trajectories. It should be noted however that the known solutions he used
are only available for straight cracks in an infinite medium; the influences of both the boundary
conditions and the history of the crack propagation were necessarily neglected. While the resulting
paths can not be considered quantitatively accurate, Wang et al. were able to qualitatively
retrieve the hook-shaped paths of EP-cracks and concluded that the presence of a repulsive
phase is exclusively dependent on the lateral, i.e. in the direction transverse to the original

cracks axes, distance separating the original tips.
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Forsyth [104] adopted a similar approach to determine EP-cracks paths, along which he deter-
mined theoretical plastic zones whose size was proportional to K]2 He argued that the turning
point of the paths or, in other words, the moment the cracks behaviour changes from repulsive to
attractive, corresponds to the moment the plastic zones encroach one another. This assumption

was poorly justified and no explanation of the magnitude of repulsion was presented.

Sempere and Macdonald [85] successfully modelled overlapping spreading centers, that is to
say immense EP-cracks found along rift zones, as two initially parallel cracks in a tensile far
away loading using a dislocation method: repulsion is observed in certain configurations and the
ratio of the released piece between the cracks was always about 3:1, comparable with sea-floor

observations.

More recently, Ghelichi and Kamrin [105] presented a set of analytical tools based on the super-
position principle to study EP-cracks but did not explicitly study the complete trajectories. This
technique allows a very precise determination of the SIF at the tips of a curved crack propagation
increment, but it relies on the knowledge of the T-stress, i.e. the second order term in the stress
expansion around the crack tip, which is arduous to calculate in interacting crack situations [106].
Although the trajectories were not studied in terms of attraction or repulsion, the changing sign

of K7; suggests that both behaviours can be retrieved with this technique.

1.3.3 Remaining questions & research objectives

As we have seen, conflicting affirmations have been put forward to explain the behavior of
EP-crack pairs. In particular, the conditions necessary to induce repulsion and the parameters
controlling its magnitude remain unexplained. While most observations and many theoretical
work confirmed its ubiquity, the only two deep analysis of experimental EP-cracks paths yield
confusing results: Fender et al. [1] did not observe repulsion and concluded to the existence of
a universal shape that clearly conflicts with the majority of observations and Dalbe et al. [2]
discovered surprising phenomena that call into question the validity of the LEFM framework to

study EP-crack pairs.

Few hypothesis have been put forward to suggest the origin of repulsion between EP-cracks.
Melin’s work [97] suggests that heterogeneity-induced perturbations could be the source of this
instability, but Cortet et al. [64] later found that any inhomogeneities in the material would have
to be unrealistically large to explain the whole magnitude of the repulsion he observed. Other
authors [3, 104] attributed the repulsion to the presence of a significant plastic zone around
the crack tips. However, the most recent conclusion in that regard [3], that repulsion is induced
exclusively by the presence of a process zone and that larger process zone would lead to stronger
repulsion, is debatable considering previous work where repulsion was predicted by purely linear
elastic approaches [99, 102, 105]. Dalbe’s explanation [2], i.e. the repulsion intensity depends on

the shape of the plastic zone rather than its size, seems more credible.

These apparently contradictory works raise three main questions:

e Under which conditions does the LEFM framework, under the assumption of the PLS
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predict EP-cracks repulsion ?

e Is the observation that the maximum repulsion between EP-cracks is realised when the

cracks are aligned really a failure of LEFM, or is it possible to explain the contradiction ?

e How can we explain that macroscopically similar materials yield different crack paths 7

Our first objective is to delineate once and for all the real limitations of a LEFM framework
applied to EP-crack pairs by conducting a precise and systematic analysis of the initial kink angle
0;, as predicted by the PLS. In that respect, we developed a fast and versatile tool presented in
section 2.1 that allowed us to repeat the computation of 6; for many EP-cracks configurations.
The corresponding results shown in section 2.2 confirmed that a LEFM+PLS approach is not
inherently unfit to model the repulsive component of EP-crack pairs. A deeper study of the
complete trajectories was therefore desirable; we detail the method used to determine them in
section 2.3 and the results in section 2.4. We later on investigated how a diffuse damage modelling
affects the results as it let us test Dalbe’s hypothesis by controlling the crack bluntness. This set

of prospective results is presented in chapter 3.
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In this chapter, we wish to conduct a thorough study of EP-crack pairs in the LEFM framework,
first to clarify if repulsion can be qualitatively anticipated using this model. To that aim we
determined the initial kink angle of EP-cracks loaded in a tensile stress field. Repeating the
computation for many crack lengths and tip to tip separation distances allowed us to identify

the precise geometric conditions leading to crack repulsion within this theoretical context.

In a second phase, we wish to complete our study by comparing simulated trajectories to the ones
obtained experimentally by Dalbe et al. [2] in plastic films. In particular we seek to verify whether
LEFM predictions of the magnitude of repulsion between EP-crack pairs can be quantitatively

accurate.

Given the arguments in favor of the PLS outlined in section 1.1.3, all kink angles and trajectories

in this chapter will be identified under this assumption, unless otherwise specified.
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Figure 2.1 — Parameters definition: Geometric definition and boundary conditions used in
the finite element analysis of the initial kink angle 6; of EP-cracks. 6; is measured between the
original crack direction and its virtual extension. In our convention, the behaviour is considered
repulsive when 6; < 0 and attractive when 6; > 0 in the counter-clockwise direction. Here, the
example is drawn in the repulsive case.

2.1 Determining the initial kink angle

2.1.1 Problem definition & computation
Procedure

For this first step, our aim is to focus on how two-cracks interaction affects the initial kink
angle while minimizing the impact of boundary conditions on the cracks propagation direction.
To do so, we examine the case of a square plate notched with symmetric cracks significantly
smaller than the length of the plate sides. As shown in Fig.2.1, this configuration is defined by
four parameters: the half side length L., the half crack length Ly and the tip to tip separation
distances 20x and 2dy. We are interested in determining 6;(Ly,dx,dy), the initial kink angle
formed between a crack and its extension. In the initial configuration the cracks are rectilinear
and oriented perpendicularly to the applied stress: if only one was present, it would be solicited
in pure mode I and propagate straight ahead (6; = 0) according to the PLS and other bifurcation
criteria. We therefore distinguish between two types of interaction: the cracks repel one another
if they are deviated from their straight, when alone, path in the direction going away from the

second crack (0; < 0). Alternatively, we consider the interaction to be attractive when 6; > 0.

In accordance with the LEFM hypothesis, we only consider an ideally linear elastic, isotropic

and homogeneous material for all scales considered.

As we have seen in section 1.1.3, to determine the 6; that satisfy the PLS, we need to solve
Kj;(0) = 0, with K7, being an universal polynomial function dependent on the SIF before
kinking Kr and Kjy.
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Figure 2.2 — Regular layered mesh: Close-up on the mesh around the inner crack tips. In this

instance the regular mesh contains 10 layers. The G(O) procedure is applied on the outermost
colored line.

Therefore, our scheme to determine ¢; amounts to two steps: a simple finite element analysis to
compute K; and Kjr and a classic minimization algorithm to solve K7,(f) = 0. We used the
freely available Cast3m finite element software [42] to determine the stress state of our problem,

and a pre-implemented procedure [107] to compute the SIF based on the G(0) method presented
in section 1.1.4.

Mesh definition
Given the simple geometry defined in Fig. 2.1, we have only three meshing parameters to choose:

e The radius L, of the circular contour inside which the SIF will be calculated,
e the size h of the regular mesh enclosed in these contours (see Fig. 2.2),

e the mesh size on the outer borders of the plate.

In the subsequent section, we will present the various situations tested to determine the optimal

meshing characteristics to study EP-crack pairs.

2.1.2 Validation: precise SIF determination

We first conducted a convergence study to determine which meshing characteristics and other
numeric conditions should be respected to obtain satisfactory precisions when computing the
SIF. In that order, we compared simulation results to analytical solutions known for specific

interacting crack configurations (see |56] for reference).
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Figure 2.3 — Test case configuration: Geometric definition and boundary conditions used to
test the validity of the far-field assumption. The same arrangement was reused to identify the
meshing conditions necessary to reach statisfying precision.

Far-field loading approximation

Ideally, the study of two-cracks interaction should be undertaken in an infinite medium to re-
move the influence of boundary conditions. This is possible analytically only for specific crack
arrangement and not at all using finite element analysis. The far-field tensile loading was then
represented in our FEM simulation by taking the plate several order of magnitude bigger than

the cracks.

To test this hypothesis, we compared the results obtained analytically in [56] for two cracks
standing on the same line, in an infinite medium under far-field opening stress, to a similar
configuration in a plate of varying finite size L., as shown in Fig.2.4. Figure 2.4 (a) and (b)
show the computed outer and inner tips SIF rescaled by K?, the SIF for a single crack in a
similar medium. The computed values reproduce well the influence of crack interactions when
the distance 0z decreases. Figure 2.4 (¢) and (d) show that the relative error, compared to the
analytical prediction in an infinite plate, is very small for a plate size to crack length ratio
L./Ly = 20 and can reach about 3.5% in the worst case where L./L; = 5, i.e. when the
boundaries of the plate can not be considered at infinity and finite size effects are important. As
the error decreases quickly with the plate size, we are confident that a ratio of L./L; = 20 is

sufficient to reach a satisfactory approximation of an infinite plate.

Influence of the meshing parameters

The main numerical challenge here is to ensure an accurate description of the stresses in the areas
of interest, despite the crack tips acting as close standing mathematical singularities. The G(©®)
procedure should be applied inside a contour enclosing the crack tip, the size of which should

be chosen carefully. Indeed, the contour cannot be too large and intersect the second crack but
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Figure 2.5 — Influence of the meshing parameters on the SIF determination precision:
The horizontal spacing between the cracks is fixed to a value of dz = 0.2. (a): The precision is
inversely proportional to the size of the integration contour and (b) proportional to the number
of regular mesh layer separating the tip and the contour. In both case this could be at least
partially attributed to the changing mesh size around the crack tips.
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it should not be too small either, as the stresses will be less precisely calculated too close (in
terms of number of meshes separation) to the stress singularity. The remaining question is then
how large should the contour radius L, be comparatively to Ly, and how many meshes should

it enclose.

Comparing again simulations to the analytical solution for two collinear cracks in an infinite
medium, Fig.2.5a represents the evolution of the relative error as a function of the ratio L, /Ly.
In each case the contour contained a 10-layers regular mesh around the crack tip (see Fig. 2.2): it
appears clearly that the decreasing mesh size completely cancels out any disadvantage of small
L, /Ly ratios. In any case, the maximum relative error of 0.2% could be attributed to the model
approximation and excellent precision is easy to reach even for close interacting cracks, as long
as a sufficient number of nodes separates the tip from the contour. The influence of this number
N on the relative error is displayed in Fig.2.5b where we represent the relative error as a function
of the number of regular mesh layer in a contour of fixed size L,.. Again the effect is coupled with
the decreasing mesh size and excellent precision is reached for N = 10 which correspond here to

a mesh size around the tips of h = 0.02L;.

2.1.3 Final meshes characteristics

The work presented in section 2.1.2 allowed us to establish the fitting computational parameters
for our study. All results presented in section 2.2 were obtained using meshes of the following

characteristics:

We used quadratic triangular finite elements everywhere, with the exception of the regions around
the cracks tips. They were refined in order to reach a h € [0.0002L f; 0.005L | mesh size depending
on the geometry, and we enforced a regular mesh of quadrangular quadratic elements in a 10
nodes radius so that the SIF determination using G(©) procedure is as precise as possible. To
save computation time, the mesh size was gradually increased toward the edges of the plate, so
that the outermost mesh size was about 1200h. The plate half sides length L. was taken constant
across all computations, while Ly varied so that the ratio Ly/L. fell between 20 and 1000, which
is sufficient to ensure minimal influence from the boundary conditions. Rigid body modes are
restrained by clamping the midpoint on the plate left side and only allowing displacement along
Oz for the opposing point. The horizontal sides are pulled apart by imposing a stress uniformly

on the top and bottom sides in the oy, direction.

The efficiency and robustness of our calculation allowed us to repeat the computation for many
points: finally, K; and K were determined for over 7500 (dz;dy; Ly) combinations. One limit
of this representation is that we deliberately chose to not consider potential contact between
the crack lips, as it saves computation time. This is of no incidence as long as the first mode of

fracture dominates over the second, which is the case in a far-field tensile loading.
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Figure 2.6 — Evolution of the initial kink angle versus the lateral separation:

(a) Coordinate system used to describe a curved propagation increment.

(b) Here 0,/ Ly is fixed to a value of 2.5, and we compare our simulation results to data extracted
from Ghelichi’s work [105].

Verification for interacting cracks

In a second step, we verified the validity of our model specifically for EP-cracks by comparing
our results with the ones obtained by Ghelichi [105] who also studied EP-cracks in a LEFM
context but using different techniques from finite element analysis. Amestoy’s formulas allow to
determine only the direction of the next (straight) propagation increment. However, Ghelichi
went further by determining analytically the SIF after propagation of interacting cracks using a

curved increment depending on three parameters:

Mz) = ax + B2°/% + ~ya? (2.1)

where A and x are the coordinates along the propagation increment, in a Cartesian coordinate
system centered on the original EP-crack tip. We derived from there an equivalent initial kink
angle 0; = arctan(a)). Comparison of our results with Ghelichi’s is presented in Fig. 2.6: the
excellent agreement between our simulations and the 6; derived from Ghelichi’s work validates
both the precision of the FE computation step and the use of a minimization algorithm based
upon Amestoy’s formulas (see Eq. (1.40)) to determine the initial kink angle of close standing

EP-crack pairs.

While Ghelichi’s work gives a more accurate description of the next propagation step, only the
linear approximation of the curved increment is necessary to determine the cracks propagation
direction and our method has the benefit of relying exclusively on simulation methods well known

by engineers and simple analytic equations.
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Figure 2.7 Rescaling properties: Evolution of 6; with scaled tip to tip spacing Ay = dy/Ly
for four sets of dx, Ly values: curves with identical Az = dx/Ly match.

2.2 Scaling properties of the initial kink angle

The problem of two EP-cracks in a quasi-infinite medium is defined by 3 length scales: assuming
L. is large enough to render boundary effects negligible, the geometry of the cracks is then
controlled by Ly, dz and dy. We found however the situation reduces to a set of only two
dimensionless parameters: the scaled tip to tip relative separation distances Az = dx/L; and

Ay = éy/Ly. We represent in Fig. 2.7 the evolution of §;(Ay) for various 0= and L;: the different

evolutions collapse on a set of master curves depending on the Az value.

This property allowed us to compute 6; for extremely small values of Az and Ay by choosing
large crack lengths. By charting scaled separation distances of the order of 1072 and smaller,
we unveiled the non-monotonic dependency of the initial bifurcation angle with the geometric
conditions, thus providing a broad insight as to which EP-crack pairs will initially attract or

repel one another. We will comment more on this behaviour in the following section.

2.2.1 An attractive to repulsive transition

We found that the typical variation of §; with Ay belongs to one of three kinds, depending on
the fixed Az value; non-overlapping cracks (Axz > 0), coincident cracks (Az = 0) and partially

overlapping cracks (1 < Az < 0).
In the case of approaching cracks, we retrieve the non-monotonic behaviour shown in Fig.2.8. As

expected, large lateral separations Ay result in weak interaction; 6; starts small, with positive
values lesser than 0.5° if the tip to tip separation distancey/Axz? + Ay? is greater than 6Ly, and

increases to convey strengthening attraction as Ay diminishes. Surprisingly, attractive interaction
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Figure 2.8 — Typical 6;(Ay) evolution for approaching cracks: (Az > 0) The point corre-
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f; = 0, no matter the value of Ax.
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Figure 2.9 — Typical 6;(Ay) evolutions for coincident cracks: (Az = 0). Several crack length
Ly were used to reach a 5 orders of magnitude span in Ay.
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Figure 2.10 — Typical 6;(Ay) evolutions for partially overlapping cracks: (Az < 0).
Contrary to the case of approaching cracks, the variations of the initial kink angle with the
vertical separation is strongly dependent on the magnitude of horizontal spacing. While cracks
only slightly overlapping retain an optimum of attraction, this local maximum slowly disappears
as the superposition increases.

does not intensify indefinitely as the cracks get closer: §; reaches its maximum value 6% (Ax) at
Ay*(Ax). After this point, 6; decreases acutely to the extent of crossing the abscissa axis at
Ay¢(Ax): the behaviour becomes then exclusively repulsive. The existence of an optimum of
repulsion 0 realized at Ay" comes of as a second surprise: amazingly, the magnitude of the
interaction only decreases after this point until it reaches zero for perfectly aligned cracks. As
expected for these perfectly symmetric configurations, the PLS predicts that the cracks propagate
straight ahead. However, and contrary to what was previously thought, this is not incompatible
with LEFM predicting significant initial repulsion as a maximum repulsion angle is realized at a
small lateral separation distance Ay"(Ax) amounting to only a small fraction of the initial crack

length.

In the case of coincident cracks (Ax = 0) and partially overlapping cracks (1 < Az < 0), the
inner kink angle is positive for all values of Ay: the cracks always exhibit an attractive behaviour.
In Fig.2.9, we plotted the evolution of #; when Ay tends toward zero or, alternatively, when L;
approaches infinity. While the repulsive zone disappears abruptly for Az = 0, an optimum of
attraction evolves continuously across Az = 0: 6 continues to exist for superimposed cracks not
as a global maximum of attraction but as a local one. As shown in Fig. 2.10, when the level
of superimposition increases, 6 progressively vanishes until 6;(Ay) becomes a purely decreasing
function. It is possible to reach much larger kink angles in this situation: we recorded values up

to about 55° for largely superimposed cracks.
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2.2.2 Actual realization of the inner kink angle

It should be noted that we computed 6; at the inner tips whether or not propagation actually
occurs at these tips: the cracks can rather propagate the outer tips, depending on the (Axz, Ay)
configuration. We identified the advancing front independently from the determination of the
SIF and 0; by comparing the energy release rates, as computed directly by the FE simulation, at
each tip. Assuming that only the inner or the outer tips can propagate, and not all four fronts
at once, we found for each horizontal spacing Az the value of vertical separation Ay above
which the the energy release rate becomes larger at the outer tip, indicating a propagation from
this extremity. Here, the energy release rate was computed using the G(©) method, that is to

say before crack propagation and assuming a straight path.

Gdoutos [99] led a similar investigation on a reduced Ax range, using the strain energy density
criterion and tabulated values to determine K and Kj; [103]. His results for the transition
between propagation at the inner or outer tips are in excellent agreement with ours, as shown in
Fig. 2.11d.

In the case of approaching cracks, propagation occurs at the inner tips for any (Az, Ay) com-
bination that is under the Ay*/°(Az) curve. Thus, we find that both attractive and repulsive
behaviour can be effectively observed at the inner tips, and that only part of the attractive

behaviour may be eclipsed by propagation occurring at the outer tips.

In the case of partially overlapping cracks, the inner kink angle 6; is almost purely virtual: for
close to all (Ax, Ay) we tested propagation starts from the outer tips. As shown in Fig.2.11a,
for any fixed negative value of Ax < 0.2, the energy release rate is considerably larger for the
outer tips for small values of Ay. As the lateral separation increases, the energy release rates
at each tips tend to the same asymptote, without swapping their relative position As shown in
Fig.2.11b, only very small overlap, combined with a modest Ay allows a propagation from the

inner tips.

In any case, EP-crack repulsion is not eclipsed by propagation from the outer tips; it is indeed

possible to anticipate this behaviour using a LEFM model only.

2.2.3 Phase diagrams of crack interaction

The various configurations of EP-crack pairs are summarized in Fig.2.13 showing the value of
in the (Ax, Ay) space. The landscape formed by the € values presents multi-scale characteristics.

First, we find that the positions of the local extrema of attraction and repulsion, as well as the

neutral line § = 0, are reasonably fitted as power laws of Az (see also Table 2.1):

Ay; = Ayd + Ag|Az|* (2.2)

The local optimum angles of interaction 6, and 6, form the crests and valleys of the landscape

presented in Fig.2.13. As shown in Fig. 2.12, their values can be fitted as shifted power laws of
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Figure 2.11 Identifying the advancing front: Evolution of G;,; the energy release rate at
the inner tips and the corresponding Ge,; at the outer tips, for fixed values of Az.

(a) Az = —0.5,
(b) Az = —0.1,
(c) Az =1,

(d) Loci of remarkable points in the (Az, Ay) space as defined in Fig. 2.8. Ay%/° marks the limit
above which EP-cracks will propagate from their outer tips rather than approaching each other.
Even if we used the PLS instead of the SED criterion, our results are comparable to Gdoutos’,
Aygo.
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Figure 2.12 Maximum initial interaction angles of EP-crack pairs: ¢ and 0 follow a
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recorded for much smaller tip to tip separation than attraction.

the tip to tip distance Ad = \/Az? + Ay?):

Ad >_%/T (2.3)

Oasr = Ooasr <1 + Mo
Eq(2.2) and Eq(2.3) quantify how sensible interacting cracks are to the initial configuration and,
in a larger sense, how difficult it may be to determine the path of interacting cracks. For Az > 0,
both attraction and repulsion tend to become stronger when the crack tips are closer. The length
scale A\, characterizing the increase in repulsion is however nearly three times smaller than the
corresponding scale A, for the attractive zone (see table 2.1). Another remarkable scaling property
is that attraction remains a dominant behaviour when the vertical offset between the cracks Ay
is of the order of the crack length (as shown by Ayl # 0), while repulsion becomes prevailing

for crack tip distances corresponding to very small fractions of the crack length, typically of the

Table 2.1 — Coefficients used in Eq(2.2) and (2.3) for the lines of maximum attraction or repulsion
and the attraction/repulsion transition line. The non-zero Ay, indicates that an optimum of
attractive behaviour subsists well after superimposition of the inner tips and will always occur
at distances comparable to the crack size.

‘A?J?‘Ai‘ai ‘

90 ‘ )\ ‘ «
iya 0-615 01555 8-22 0. | 448 | 0.96 | 2.35
Ve 95 | 0. 6, | —16.3 | 0.35 | 1.61

Ay, | 0 |041|0.86
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Figure 2.13 Initial kink angle for overlapping cracks (a) and approaching cracks (b)
in the (Az, Ay) space. The superimposed white lines signal the local maxima of attraction and
repulsion, as well as the transition from attractive to repulsive (defined by 6; = 0). The dotted
vertical lines show where the cuts for Fig. 2.8 & 2.10 were taken.

order of the percent (Fig.2.12).

An alternative representation of the 6; values, as shown in Fig.2.13, can be proposed without
making the distinction between approaching and overlapping cracks. In this case, 6; is not depen-

dent on its (Az, Ay) coordinates, but on the corresponding (Ad, «) values defined in Fig.2.14.

A
Ad is simply the radial separation distance defined earlier and a = atan (_y) the angle formed

Ax

between the cracks axis and the line connecting their inner tips. With this representation, it be-
comes apparent on Fig. 2.15 that EP-cracks repulsion is a phenomenon confined to both « angles

lower than 90° and small fractions of Ad.

2.2.4 Shearing EP-cracks

In practical situations, EP-cracks are seldom loaded under pure mode I; most notably, EP-cracks
along rift zone are sheared into a combination of modes I and II. We display here the results
for the initial kink angle for the configuration presented in Fig. 2.16. Contrary to the mode I
configuration presented in section 2.1.1, we did not impose a stress but a displacement on the
upper border of the medium. Because the lower side of the sample is clamped, this ensure a
symmetric deformation along the medial axis and prevent rigid-body motion. The cracks are not
exclusively sheared: we added a small opening component whose magnitude amount to one tenth
of the shearing displacement, so that the cracks lips do not inter-penetrate, as our model do not

factor contact.
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Figure 2.15 — Initial kink angle of EP-crack pairs in the (Ad,a) space: the black line
marks the limit above which the upper crack pass the lower one on its left side. The rather
extreme negative values taken by 0; near this line in Ad = 1 region may correspond to repulsion
induced by the outer tips, as the cracks are nearly completely stacked in this area.
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Figure 2.16 — Shearing EP-cracks: The boundary conditions of the EF model presented in
Fig.2.1 were modified so that the far-field loading of the cracks was a mode II dominant mixed
mode. The two possible directions of shearing were tested.

In these conditions, a single crack should kink into a direction of 0? ~ —64.1° according to the
PLS. As shown in Fig. 2.17, we find a large zone where the interaction between the cracks can be
classified as attractive: while the cracks are still going away from each other, 6; is significantly
less negative than —64.1°, in the sense that 6; — 67 > 0. This attractive behaviour is largely
dominant in the (Az, Ay) space we explored. A comparatively much smaller area containing

weak repulsion angles, of a few degrees only, is centered around the Ay = 1 region.

Contrary to the precedent situation, it appears this time that repulsion, and not attraction
evolves continuously across the Az = 0 limit between the approaching and overlapping cases.
On the other hand, the attractive behaviour seems to undergo a sharp transition at superposition
that becomes more dramatic as lateral separation decreases. For example, 6; is of the same order
of magnitude across both sides of the Az = 0 axis if Ay > 5.10~2 while it is almost twice greater

on the overlapping side if Ay ~ 1073.

It should be noted that the (Ax, Ay) space was charted with a much smaller number of data
points than the purely tensile situation presented in section 2.1.1: all interpolations are less
precise and it is possible that very narrow zones of intense attraction or repulsion escaped us.
Precise fits such as those given in eq. (2.2) or (2.3) would necessitate to compute much more

data points than we were able to.
2.2.5 Partial conclusion
The idea that repulsion between EP-crack pairs is the result of the formation of a plastic zone

around the crack tips has been put forward recently [3]. At first glance it seems supported

by experimental data: Fender et al.|1] did not observe repulsion in her set up, and Dalbe et
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Figure 2.17 — Initial kink angle for sheared EP-cracks: for (a) overlapping cracks and
(b) approaching cracks . In both case, the initial kink angle of a similarly loaded single crack,
09 = —64.1° was deducted to represent the interaction component 6; — 69 of the kink angle only.
The irregularities in the attraction to repulsion transition are caused by the reduced number of
data points we have in this configuration: less than 500, while over 7500 in the purely tensile
configuration.

al. reported an apparent conflict between her results and the PLS predictions for the initial

bifurcation angle of aligned EP-cracks.

However, as we have seen in section 1.3.3, this hypothesis is inconsistent with other observations,
in particular those of large EP-cracks at the geological scale. The work presented in this chapter
is a first step to reconcile theory and observation: the difficulty to predict crack repulsion in
the context of LEFM does not come from a failure of the model or of the bifurcation criterion,
but from the very narrow (Az, Ay) domain in which different behaviours, from repulsive to

attractive, can initiate.

Our results show that significant deviation (|6;| > 10°), either attractive or repulsive, can arise for
strictly positive horizontal spacing smaller than one fifth of the cracks length. The comparatively
smaller size of the repulsive zone, compared to the dominant attractive domain, may explain
why the repulsive component of EP-cracks path is most often visible in larger settings rather
than laboratory experiments. Finally, the existence of an optimum of repulsion realised for small
values of Ay may indicate that the inconsistence pointed out by Dalbe et al. |2] is only apparent:
the strong sensitivity of the kink direction to small misalignments between the cracks could
be enough to induce significant repulsion. While we did find that perfectly aligned (Ay = 0)

do not interact at all and propagate straight ahead, 0; grows steeply with a slight increase in
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Figure 2.18 — FEM-less trajectories: Close-up of the inner tips.
(a) Ly =10, Az =0.2, Ay =0.3. (b) Ly =10, Az = 0.2, Ay = 0.11.

lateral spacing, favouring unstable crack paths. This is consistent with the theory presented
by Melin [97], who concluded that the smallest perturbation in collinear EP-cracks will force

them to deviate from their straight paths. Furthermore, this instability may also explain why

experimental observation very rarely shows crack merging tip to tip.

2.3 Determining complete trajectories

2.3.1 Necessity of an actualised FEM-computation: influence of the path his-
tory

Because of the stress singularity at the crack tips, one can wonder if the stress field around
EP-cracks is not mostly determined by the relative position of the tips. If this is the case the
knowledge of 0;(Ax, Deltay) should be sufficient to determine complete crack paths.

We compared the crack paths obtained using the FEM method described later in section 2.3.2
to trajectories based only on the 0;(Ax, Ay) chart presented in Fig. 2.13. To compute them we
simply determined the separations between the crack tip (normalized by the total length of the
cracks, not the initial length), read 0 on the chart and added a rectilinear segment of arbitrary
length. This method presents the advantage of being extremely fast as long as an accurate 0;
chart of the correct loading is already available, and is equivalent to neglecting the propagation
history. In other words, this methods make the gross assumption that the effect of the crack
tips positions eclipses completely the effect of the previous path shape: for each step the local

inclination angle is taken as 0 ~ 0; , as if the whole crack were straight.

This method gives results somewhat comparable to the full finite element simulation. However,
small errors accumulate as the crack advances and we do not get the same propagation paths
even when choosing the same increment length. As shown in Fig. 2.18, this method converges
toward a stable path when L; diminishes: we can therefore assume that most of the difference

from the FEM-simulated trajectories is caused by the previous path assumption and not by
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interpolation errors when calculating 6.

This method is not accurate enough to properly render EP-crack paths in details; in the follow-
ing section we will present the more precise, and more compute-intensive, process we used to

determine EP-crack paths.

2.3.2 Method: an iterating process

The procedure presented in section 2.1.1 allows to determine the next propagation direction of
any advancing crack whose SIF are known. We propose to expand this method to determine
approximate crack trajectories: after the FE computation step to calculate the SIF and the
determination of the initial kink angle according to the PLS, it is possible to define a new finite
element problem by adding a small segment of arbitrary length L; at the tip of the initial cracks.
We can then solve again for the SIF at the new crack tips and determine the next kink angle.
Repeating the process as necessary allows to determine complete crack trajectories approximated

by a succession of short rectilinear segments.

Because we only studied the symmetric fracture problem presented in section 2.3.4, the SIF at
the tips of each EP-cracks are always identical and, in accordance with the LEFM principles,
the propagation paths of each crack must remain symmetric. In practice, numerical imprecisions
cause very slight differences between the SIF at the two crack tips, of the order of a 1073
relative difference in the worst cases. They do not lead to much variation in the next kink angle
0 but cumulatively such meager deviations could lead to incorrect crack paths. To prevent
this phenomenon 6 was not computed independently at each crack tip, but globally with SIF
averaged over the two tips as input for eq. (1.40).

This symmetry also dispensed us to consider which crack tip would propagate first, as both
crack fronts must advance at the same speed. Likewise, we were able to use the same boundary
conditions across all pseudo-time steps thanks to the symmetric propagation: the imposed border
displacement was constant no matter the length of the cracks. In more complex situations taking
the energy release rate at each crack tip into account, and how it compares to the critical energy

release rate of the material, would be needed to identify each crack front speed.

Although this process is largely similar to the computation scheme described in [108], we chose to
approximate the crack extension by a short segment instead of a portion of a curve. As a result,
we do not need to compute the T-stress necessary when using a curved increment, which can be
arduous in the case of interacting cracks [106]. As shown in the following section, convergence

regarding L; is easily reached despite this approximation.

2.3.3 Validation against known experimental results

To test the validity of our method, we compared the simulated path of a single edge crack
propagating in a PMMA beam pierced with three holes and subjected to a three points bending
test (see Fig. 2.19) to the experimental and FEM results presented in [30]. This configuration
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Figure 2.19 — Simulated trajectories test case: Initial geometry of the 3 points bending test
case. As in [30], all dimensions are in inches. Two independent situations were tested in a first
(a = 5in,b = 1.5in) and second (a = 6in,b = 1.0in) examples.
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Figure 2.20 Comparison between experimental and simulated trajectories: All experi-
mental data was taken from [30]. (a) Example 1: the initial notch is defined by a = 6in, b = 1.0in.
(b) Example 2: a = 5in,b = 1.5in. (c) Close-up from example 2.
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exhibits a great sensitivity to the initial notch: any variations in its position and length will
lead to completely different propagation paths. This series of experiment was used to validate
simulated crack trajectories in brittle materials repeatedly [49, 50, 109]: it is well suited to confirm

our simulations are in agreement with the LEFM theory.

We examined two different initial notch configurations (see Fig. 2.20) to test the robustness of our
computational scheme regarding the increment length L;. We chose to represent the problem as
a 2D plane stress model; as seen before the value of the imposed force P or the elastic constants
FE and v is of no effect on the final trajectory because of the quasi-static propagation assumption.

The smallest mesh size around the crack tips is always h = L;/20.

In both cases, we retrieved excellent agreement between simulated and observed trajectories

given a sufficiently small L;.

In the first example shown in Fig.2.20a, the smallest increment length L; = 0.16in will cause the
crack to reach the second hole in 25 iterations. There is no need to refine the crack path further,
as doubling or even quadrupling L; yields nearly identical trajectories. It takes an increment
length as large as L; = 1.28in for the simulation to deviate clearly from the observation: in this
situation, the crack path is approximated by only 3 segments. The only exception to this very
quick convergence regarding L; is for the final increments very close to the second hole. In this
region, the stress gradient is higher because of the proximity of a free edge: the curve of the crack

is more pronounced and only the smallest increment length is able to capture it.

This effect is even more visible in the second example shown in Fig.2.20b & 2.20c, whose final
propagation path is less regular. While taking L; = 0.16in gives again satisfying results, half this
increment length depicts the sharp turn in the vicinity of the lowest hole better. Once more, the
very end of the trajectory near the middle hole is not well captured by the simulations, regardless

of the chosen increment length.

In conclusion, convergence regarding the increment length is quite easy to reach in most situ-
ations. However some small portions of the simulated crack paths may remain unusable where
the cracks approach free edges. The same can be expected when cracks approach intersection.
A complete convergence study focused specifically on the case of EP-crack pairs is presented in
section 2.3.4.

2.3.4 Path discretization and other modelling characteristics of EP-crack
pairs

We applied our method to the experimental configuration presented in [2]|, and we conserve their
notations: a square plate of half side length Lo is notched with two collinear cracks separated
horizontally by a distance L and vertically by a distance d (See Fig. 2.21). In the experiment,
the sides of the plate are slowly pulled apart so that the cracks propagate quasi-statically. The
clamping jaw is clad with rubber, and allows some transverse displacement. We represented this
boundary condition by clamping the mid-point of the bottom side, and allowing only horizontal

displacement for every other points of this side. On the upper side of the plate, we impose a
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Figure 2.21 — EP-cracks definition: Schematic representation of the FEM model used to sim-
ulate Dalbe’s experiments [2]. We keep using the same notations: the two initial crack tips are
separated by L and d, the horizontal and vertical distances respectively.

displacement Aw only on the pulling direction: transverse displacement is let free. Likewise, the

horizontal displacement of the bottom side is free.

We used the PET Young’s modulus and Poisson ratio (£ = 1.8GPa and v = 0.38) as inputs
of the FEM simulations, but tests with other values confirmed these parameters do no influence
the shape of the final trajectory in a LEFM model. Likewise, the magnitude of the imposed
displacement is of little impact on the crack path. We used the same value Au = 2L./100 across

all simulations and incrementation steps.

In all simulation results presented in section 2.4, we used the same smallest mesh size around the
crack tips h = L;/20 that was employed to validate our methodology in section 2.3.3. Because
of the relatively small size of the plate compared to the crack length, we chose to re-mesh the
whole specimen for each added crack increment. In situations where the cracks are several order
of magnitude smaller than the medium they are propagating into, local re-meshing around the

crack tips exclusively could save significant computation time.

Contrary to other parameters such as material properties or the magnitude of the imposed
deformation, we have seen in section 2.3.3 that the choice of the increment length L; can be
critical when a crack tip approaches a zone with a high stress gradient. In the case of EP-crack
pairs approaching one another, the precision of the simulation may deteriorate when a crack
nears a free edge, whether it is a plate edge or the other crack. After tests to find the optimum
L; for the geometry presented in Fig. 2.21, our results are in agreement with this observation. In
most cases, the size of the propagation increment has very little impact on the final crack path:
with the exception of d close to 1.84 ¢cm the paths superimpose perfectly whether L; = 0.02 cm,
0.04 cm or 0.08 cm. The case of d = 1.84 cm is singular: as we will see in section 2.4.1, the
simulated trajectories belong to one of two kinds and the cracks behaviour transition from hook

shaped to s-shaped for a vertical separation of d = 1.84 c¢m. Indeed, for smaller values of d the
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Figure 2.22 — Simulated trajectories with varying increment length: red: L; = 0.02 cm,
green: L; = 0.04 cm, blue: L; = 0.08 cm

(a) The cracks are originally separated by L = 4 cm and d = 1.0 cm. The medium increment
trajectory is barely discernible under the finer one: this example is representative of most (L, d)
combinations for which an increment length of L; = 0.04 cm is sufficient to get completely
converged paths.

(b) L=4cm and d = 1.8 cm.

(c) L=4cmand d=1.84 cm

(d) L=4cm and d = 1.86 cm

As the initial vertical separation increases, the cracks reach regions more strongly influenced by
the boundaries of the medium and the second cracks: convergence is harder to reach in these
areas. While the impact of L; can be considerable in the later stages of propagation, this effect is
apparent only for a minority of initials (L, d) combinations, and never until well after the cracks
overlap.
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cracks are hook shaped: the closer d is to its critical value, the closer the cracks will join one
another near the plate edge. In this situation a slightly longer increment can be enough to bring
the crack tip nearer from the side of the specimen and completely transform the cracks behaviour.
For values of d close but not exactly equal to 1.84 cm, the influence of L; is not as dramatic but

some notable differences are still observable in the later stages of the propagation (see Fig. 2.22).

Whatever the increment length chosen, we did not observe significant variation in the repulsive
component of the crack trajectories, or in any portion of the path preceding the crack tips
superimposition. We are therefore confident that our choice of L; = 0.04 cm in all computations
is adequate to study the repulsive phase in this configuration. In section 2.4, all results shall be

assumed to have been computed with this increment length, unless otherwise specified.

2.4 Reproducing experimental trajectories

In this section, we are comparing trajectories of EP-crack pairs predicted by the LEFM-+PLS
framework to the experimental results obtained by Dalbe et al. [2]. As we have seen in section
1.3.1, we expect the cracks to exhibit a repulsive behaviour that increases in magnitude when
the transverse separation d diminishes, and the repulsion to attraction transition to occur before

overlapping.

2.4.1 Typical trajectories

Given a fixed value of L = 4 cm we retrieve again a repulsion to attraction transition with
increasing values of d. When the vertical separation is smaller that d = 3.5 cm, the initial
behaviour of the cracks is repulsive and remain so until the tips overlap. For greater values of d,

only weak attractive behaviour is retrieved all along the propagation.

In the experiments we tried to reproduced numerically, the propagation was stopped shortly
after the crack overlapped to prevent the appearance of too much out of plane deformation.
Without this constraint, we were able to simulate much longer trajectories and to unveil two
different behaviours. Indeed, the simulated cracks do not necessarily intersect with each other;
if the initial separation d between the cracks is sufficient (d 2 1.84 c¢m), the crack will deviate
again at the end of the attractive phase to recover parallel trajectories and finally reach the
specimen border. These s-shaped path were also retrieved by Gdoutos [99] or Mills and Walker
[98] ; the latter dismissed them as numerical artefacts because they did not have real examples of
s-shaped EP-cracks. In our opinion, these paths are concordant with LEFM theory: their scarcity
in observations can be explained by physical arguments. In particular, we have seen in section
2.2.2 that EP-cracks completely included in the material (ie. not surface breaking) can propagate
preferentially from their outer tips. It is possible that inner tips propagation is arrested before

the emergence of a complete s-shape.

In the singular case of perfectly collinear cracks (d = 0), the cracks propagate straight ahead

without deflecting on either side. As noted in section 2.2.1, this result is not incompatible with
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Figure 2.23 — Typical EP-cracks shapes: L. = 4 cm in all examples presented here.

(a) Perfectly aligned cracks with d = 0 do not interact and propagate into a straight line.

(b) In this configuration, the well-documented hook-shaped path is retrieved for d < 1.84 cm.
Red: d = 0.3 cm, blue: d =1 cm, green d = 1.84 cm.

(c) Intermediate values of lateral separation yield an s-shaped path. Red: d = 1.85 c¢m, blue:
d=2cm, green d =3 cm

(d) For even larger d, the only interaction between the cracks is moderately attractive. Red:
d =4 cm, blue: d =5 cm, green d =7 cm.
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Figure 2.24 Aspect ratio definition: A =[/w. Here L =5 cm and d = 1 cm.

the empirical observation that initially aligned cracks do not merge tip to tip [64, 97]. Indeed, the
slightest material defect would lead to the misalignment of the cracks’ tips, and the apparition
of a hook shaped path.

The so-called "universal" shape of EP-crack pairs, a hook-shaped path which does not exhibit a
repulsive phase described in [1], was retrieved in our computation only when L < 0 cm, forcing
the propagation to start when the potentially repulsive area is already passed. Indeed, in all

(L,d) configurations we tested, repulsion was never observed after the tips passed each other.

2.4.2 Typical features of hook-shaped EP-crack pairs
Aspect ratio

In the literature, two different techniques were used to measure the aspect ratio A of the released
central piece enclosed between two hook-shaped cracks. As shown in Fig.2.24, the length and
width of the ovoid shape can be measured either in parallel to the cracks original axes, or in
the direction of the line passing through both intersection points. While most authors do not
acknowledge the difference, we found that it is of little importance, as the discrepancy between

the two values is usually minimal.

Some authors postulated that the knowledge of the aspect ratio could be used to infer the loading
conditions of EP-cracks retrospectively, and that it should always equate A = 2 in purely tensile
situations [1, 68]. We find that the impact of boundary conditions is of more importance than
anticipated, and results in largely dispersed values of A. As shown in Fig.2.25a for a fixed value of
L, while A is indeed relatively constant over a large span of d, it grows steeply after d 2 1.5 cm.
For these larger lateral separations, the overlap before intersection is longer: the cracks reach
regions closer to the sample borders and are therefore much more affected by boundary conditions.

Moreover the impact of L is significant: for example, if d is fixed to d = 1.8 cm, we find A ~ 2.36
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Figure 2.25 — Evolution of A with the initial EP geometry: (a) vs. d. (b) vs L. In both
cases, the values are not too dispersed around A ~ 2, unless the central piece dimensions becomes
significant compared to the total medium size.

if L=2cmand A~ 2.89 when L =5 cm, a 22, 5% relative difference. Situations where loadings
are inaccessible but the initial conditions are known precisely seem unlikely, and it is therefore

far-stretched to use a sole measure of A to evaluate unknown stresses, as it was proposed in [68].

We should note however in Fig. 2.25a the existence of a plateau for d < 1.5 cm: for these specific
configurations we retrieve an aspect ratio of A & 2, close to the "universal value" observed by
Fender et al. [1]. We infer that in these calculations as well as in Fender’s experiments, the
relative initial closeness of the cracks tips have a dominant effect on the propagation paths, over

loadings and other boundary conditions.

Intersection angle

For hook-shaped paths, it is also possible to determine the intersection angle ¢ between the two
cracks. The paths are expected to meet orthogonally: intersection angles retrieved experimentally
usually lay between 80° and 90° [66, 84|. We determined ¢ by simply adding the tilt angle of the
ending increment of one crack with the tilt angle of the intersected increment on the opposite
crack. As shown in Fig.2.26, our results are in excellent agreement with observation, as we find

that ¢ is an increasing function of d, starting at 80° and tending to 90°.

Just as for the aspect ratio, varying the value of the horizontal separation L will add dispersion
to the results, but both the [80°,90°] interval and the trend to get closer to orthogonality as the

lateral separation increases are always respected.

The few outlandish values visible in Fig.2.26 are explained by the use of a larger increment length.
This may also suggest that relatively lower intersection angles for small offsets between the cracks
(d < 1 cm) are artificial and caused a too large L; comparatively to d, as closer-standing cracks

have a smaller curvature radius.
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Figure 2.26 Intersection angle ¢ vs. d: Here L is fixed to L = 4 cm.

(a) ¢ is identified as the sum of the tilt angle of the two closest increments. Red: d = 0.05 cm,
blue: d = 0.5 cm.

(b) In agreement with observation, the cracks always join almost orthogonally. The influence of
d on ¢ may well be a computational artefact.

Repulsive to attractive transition & maximum repulsion

For crack paths presenting a repulsive component, that is to say d < 2.5 cm whether the cracks
intersect or are s-shaped, 0 takes its last negative value (indicating repulsion) when the cracks’

tips are overlapping by an horizontal distance comprised between 0.06 cmand 0.16 cm.

These quantities must be interpreted in light of the increment’s length: our computations indicate
that the turning point is usually removed from the plate center by a distance smaller than one
(56% of all cases tested) or two L; (29% of all cases tested). The remaining cases correspond to
situations with a very small L, that is to say the propagation started nearly at coincidence, the
repulsive to attractive transition occurs then for an overlap smaller than 0.24 cm. These results
are consistent with the common experimental observation that EP-cracks become attractive upon
overlap |1, 79, 82|. They are however conflicting with the specific experiment we are trying to
reproduce numerically: Dalbe et al. [2] were one of the few studies that reported the repulsion
to attraction transition taking place before overlapping. This, in our opinion, confirm that there

a non-LEFM material effect at play in these experiments.

For a fixed L = 7 c¢m value, the initial horizontal separation between the cracks is large enough
that the repulsive phase has space to unfold and is not artificially truncated, as is shown in Fig.
2.27b for various initial transverse separation distances d. Under these conditions, it is possible to
determine the maximum of repulsion 6,.,, as the tilt angle of the most inclined increment, as well
as to identify the beginning of crack interaction. Indeed, for large L values, the cracks will start
to propagate in an almost perfectly straight fashion, with very weak local repulsion angle. We
define arbitrarily the beginning of the repulsive phase as the point whose abscissa corresponds

to the intersection between the crack original axis and the tangent to the maximum of repulsion
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Figure 2.27 Remarkable points along propagation paths:

(a) The beginning of interaction was identified as the point whose abscissa corresponds to in-
tersection between the crack original axis and the tangent to the maximum of repulsion. Here
d=10.5 cm.

(b) While the turning point is aligned on the plate medial axis, both the maximum of repulsion
and the beginning of interaction positions depends on d. For legibility reasons, only the left crack
was represented, for d = 0.1 cm to d = 2.4 cm.

(See Fig. 2.27a). Contrary to the repulsion to attraction transition, whose position is constant in
regards to lateral tip to tip separation, the position of the maximum of repulsion evolves nearly
linearly with d. While the beginning of interaction evolves in a similar fashion for small values

of d, it quickly saturates and tends toward a horizontal separation of 2.4 cm.

2.4.3 Sensitivity to initial conditions

The results presented in this chapter were all obtained for a geometry mimicking the one used
in |2]: since the cracks length is of the same order than the medium size, the effect of initial
conditions (initial geometry and loadings) is bound to be significant. In particular, our results
may not be representative of the general case and it could explain the discrepancies with previous

work [1], who used 10 cm * 20 cm samples instead of square ones.

For example, choosing a rectangular medium, without modifying other geometric parameters
such as L or the loading conditions, will impact the value of d for which the hook to s transition
occurs. We redid the same computations in rectangular plates (one direction is 5%, 15% or 25%
longer than the other). In the square case, the change of behaviour happens for d = 1.84 c¢m. In
the case of a plate longer in the Ox direction shown in Fig. 2.28a, the change happens for greater

values of d = 1.98; 2.25 or 2.55 cm respectively.

Inversely, the switch happens for smaller values of d, d = 1.80; 1.74 or 1.71 cm, if the plate
is greater in the Oy direction (see Fig. 2.28b). In this case, the position of the repulsion to

attraction transition is also shifted after overlap. This confirms that the variations observed with
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Figure 2.28 — Effect of a rectangular plate: In all cases L. = 4 cm. The plate length in one
direction was increased by either 5% (green), 15% (blue), or 25% (red).
(a) Horizontally stretched plate: d = 2.25 cm. (b) Vertically stretched plate: d = 1.74 cm.

the horizontally stretched plates are not purely caused by variations in the cracks lengths.

We also computed a few trajectories of EP-cracks standing in a significantly larger medium,
using the geometry presented in Fig.2.1. This fracture problem is completely different from the
precedent, as there is potentially four propagating fronts instead of two. We focused on the inner
tips propagation only and stopped the simulation when the energy release rate at the outer tips
exceeded the one at the inner tips. As shown in Fig.2.29, while we retrieve again the classic hook
shape (with or without repulsion), the well-known features often described in the literature are
altered. Chiefly, the repulsive to attractive transition can occur before the inner tips overlap.
This may be explainable by the choice of (Az, Ay) = (2.1072,2.1072) initially. These values are
sensibly smaller than what was previously tested in controlled experiment; for large-scale natural
observation, it is not inconceivable to retrieve this feature more often simply because because

longer cracks make small (Az, Ay) separations more accessible.

These results showcase how highly sensible the final paths are to boundary conditions. In par-
ticular, making quantitatively accurate predictions of the cracks trajectories, instead of just
determining qualitatively approximate shapes, probably requires the use of experimentally mea-
sured displacement fields, using for example Digital Image Correlation (DIC), directly as inputs
of the simulations. They also illustrate that the discrepancy between Dalbe et al. |2] observation
and the "universal" shape described in [1] may be, at least partially, explained by different initial

configuration and not exclusively by complex material effects.
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Figure 2.29 — EP-cracks propagating in a large medium: Close-up on the inner tips.
(a) Here L, = 1000 and L; = 10, blue: Az = 0.2 and Ay = 0.3. Red: Az = 0.2 and Ay =0.11
(b) L. = 1000, Lf = 100, Az = 0.01 and Ay = 0.08.

2.4.4 SIF along the trajectories

As expected, when examining how the SIF evolves along the propagation, it becomes apparent
that the cracks trajectories are controlled first and foremost by Kj;. In Fig. 2.30 we represented
for the three typical kinds of crack trajectory the evolution of K, K;; and 6, the local inter-
action angle, versus s, the curvilinear abscissa along the path. With the exception of the very
first computational step, K is several order of magnitude smaller than K; because the previous
increment was determined as to minimize K7;, in accordance with the principle of local sym-
metry. Ky is no rigorously equal to 0 because the two cracks propagate at the same time: K7;
is determined without anticipating the effect of the second crack propagating. Despite this, the
maximum of repulsion corresponds to Kj; changing sign. Similarly the turning point of the tra-
jectory, which is marking the separation between the repulsive and attractive phases, is triggered
by a local minimum of Kj;. Both changes in behaviour are easily explained by the first order
of eq. (1.41) to (1.44). Taking 0) as the local interaction angle, that is to say the angle formed
between the last path increment and the horizontal at computational step k, we have aj the
local kink angle (formed between the local crack direction and the next propagation direction)

derived from eq. (1.27), then we have naturally:

k
0, =01+ oy = Zap (2.4)
p=1
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Figure 2.30 SIF and 6, evolution along the propagation: L = 6 cm in all three examples.

(a) d = 1.5 cm, (b) d = 2 cm, (¢) d = 4 cm. Remarkable points, maximum of repulsion and
repulsive/attractive transition, are circled in black.
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Figure 2.31 — Maximum repulsion angle vs. d: The simulation results were overlaid over the
experimental data obtained by Dalbe et al. [2].

Making a first order approximation, the PLS gives ay as:

a R 2 (KH>k (2.5)

7'('2 K[

Clearly, #; grows more and more repulsive as long as the added «y is negative; 6, changes of
variation direction when ay changes sign. Because K7 is necessarily always positive, this is only
possible when K takes the opposite sign, signalling a change in the direction of the sliding

mode loading direction.

2.4.5 Analysis of the repulsive component
Maximum repulsion

Excluding trajectories starting with a too short L, the maximum repulsion angle 6,,, between
two EP-cracks in Dalbe’s geometry is a function dependant only on d. In Fig.2.31, we present
Oy for (L,d) combinations that result in an initially decreasing 6 function of the pseudo time
(such as cases (a) and (b) in Fig. 2.30): if 0 is already increasing at the onset of propagation,

the final trajectory is too truncated to properly estimate 6,.,,.

We find that 6,,,, as predicted by the principle of local symmetry, is of the same order of
magnitude than the one retrieved experimentally. That 6,,, follows the same decreasing trends
both experimentally and in simulation is also a surprise: given previous works [1, 3|, it was
not expected that LEFM would be sufficient to give such a good approximation of EP-cracks
trajectories. It is, of course, impossible to explain the difference between the PET Lumirror@® and

Mylar® using a purely elastic theoretical framework. We will examine in section 3.2 if the extra
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Figure 2.32 Shifted EP-cracks trajectories: In this example, d = 1 cm. The trajectories
((x,y) coordinates for the left crack in the original referential) were shifted so that the point of
maximum repulsion (X, Y:) fell on (0,0).

parameter used in diffuse damage models could be a possible extra input helpful to distinguish

two macroscopically equivalent materials.

Universal behaviour

In their experiments, Dalbe et al. [2] observed that for a fixed d separation and varying the
L distance all EP-crack trajectories collapse on a single master curve when shifted so that
the repulsion to attraction fall on (0,0). As shown in Fig. 2.32, we retrieve this behaviour in
simulations: for all d values tested, the repulsive component of the paths is completely collapsed
for all L. The independence from L is lost in the attractive phase with larger initial separations
yielding more elongated paths. This is not a discrepancy between theory and observations: in
the experiments, propagation was stopped when out-of-plane deformation became consequent,
shortly after overlapping. We do not have experimental data to evaluate the validity of the

simulations in the attractive phase.

Shape

As EP-cracks trajectories in this configuration do not depend on L, it stands to reason that
paths starting with a short L are truncated in their initial repulsive component. In the following
paragraph, we are examining the repulsive component of trajectories starting with L = 7 cm, so
that they have the necessary space to completely unfold. Observing them in log-log scale reveal

they possess power-law like characteristics. As shown in Fig. 2.33a, the paths can indeed be fitted
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Figure 2.33 Piecewise regression of the repulsive component:

(a) Fit of the regular component into two power laws. The trajectories were shifted so that all
coordinates were positive, with the origin at the initial crack tip, allowing to fit linearly in log
scale.

(b) Evolution of the exponents oy o with d.

(c) Position of the newly defined "beginning of interaction", compared to the previous definition,
along with the maximum of repulsion and the turning point. Here L = 7 cm in all cases and d
varies between 0.1 and 2.5 cm.

(d) Evolution of the factors Ay o with d.
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Figure 2.34 Attractive component fit:

(a) Comparison between simulated paths and regressions for L = 6 cm and d = 0.9 cm. Only
the attractive component was retained.

(b) Fitting parameters vs. d.

in two segments of the form:
ly = Yi| = Aqp. (v — X5)*2 (2.6)

where (x,y) are the coordinates along the left trajectory and (X;,Y;) = (—L/2,—d/2) the coor-
dinates of its starting point. The limit between the two fits is effective at (X, Y.). This change
in behaviour, combined with the fact that the second exponent «yo is systematically larger than
a1 and that the first exponent is somewhat constant around «; ~ 1.4 for all values of d (see
Fig. 2.33b), suggests a new way to define the beginning of the interaction between the cracks.
As shown in Fig. 2.33c, with this definition interaction occurs much earlier in the propagation

than using the intersection method presented in section 2.4.2.

2.4.6 Analysis of the attractive component: comparison to Fender’s model

We compared our simulated trajectories to Fender et al. model [1]. This model neglects repulsion
and considers that crack interaction only begin at overlap, which corresponds in our case to the

repulsion to attraction transition (Xy,Y;). Their crack paths systematically fit as:

L_a (9>a (2.7)

S S

where A =~ 1 and a = 0.5 are scalar parameters that do not depend on the material or the initial

offset s between the cracks, and (I, w) are the coordinates along the crack paths.

Using our notations, their model becomes:

ro X, (Ly—m)a
A —— 2.8
oW o) (28)
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In this equation, we replaced the initial offset between the cracks by 2|Y;| as it is the actual

lateral separation between the crack tips at the onset of attraction.

As shown in Fig. 2.34a our results do not exhibit the universal square root shape proposed by
Fender et al. The difference between our results (in blue on Fig. 2.34a) and their prediction (in
black) is not merely caused by the presence of a repulsive phase: when fitting eq. (2.8) (in green)
to a square-root shape normalised by s # 2|Y;|, we find that not only s tend to be greater that
expected, of the order of s ~ 2|Y;| + d, but the agreement with simulated data is poor.

Trying to fit to a general power-law shape using eq. (2.8) gives better results that are, this time,
independent from d: in our geometry we find A &~ 1.2 and « = 0.41, which is a 20% difference

with Fender’s results.

The discrepancy between this model and our simulations may be only a product of the different
boundary conditions: Fender et al. affirmed that EP-cracks universally present a square-root
shape but they used the same sample size across all their tests, rendering their conclusion a bit

far-reaching.

2.5 Conclusion

Studying EP-crack pairs with a LEFM framework and assuming the principle of local symmetry
yielded surprising results in many respects. First, both the investigation of the initial kink angle
of EP-cracks loaded under far-field tension and the determination of EP-cracks trajectories in a
realistic medium revealed that the LEFM+PLS framework is, against expectations [1, 3], able to
predict repulsion of the correct order of magnitude between the cracks. It was also shown that
the contradiction between the PLS predictions for perfectly aligned EP-cracks and experiments
observed by Dalbe et al. |2]| is only apparent, and no major argument opposes the use of the

PLS to study interacting cracks.

Additionally, we found that the behaviour of the initial kink angle in regard to the initial position
of the cracks is more complex than what was previously expected and exhibits strong multi-scale
properties, in the sense that the length scales characterizing the transition from attraction to
repulsion may be orders of magnitude smaller than the crack length. While the possibility of
an initial repulsive behaviour does not fit the universal model proposed by Fender et al. [1], the
fact that repulsion is induced only by close standing inner tips may explain why the ubiquitous
hook-shaped trajectory found in nature is not systematically retrieved when experimenting with

shorter cracks.

Finally, further study showed that the LEFM+PLS framework is adequate to provide qualitative
predictions of the complete propagation paths of EP-cracks, as all the characteristic features
(hook-shape, intersection angle,...) are retrieved. This model is however not sufficient for precise,
quantitative, determination of certain features; namely the magnitude of the repulsion or the

exact position of the repulsion to attraction transition.

Because of Dalbe et al. [2] observation that elastically equivalent materials can yield different
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result, we believe that this failure is insurmountable by a LEFM based theoretical framework. In

the next chapter, we will demonstrate how a diffuse damage model can surpass this difficulty.
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(a) (b)

Figure 3.1 Two kinds of samples: (a) PDMS film made in the glass mould. (b) PDMS film
made in the metal mould.

3.1 Testing the impact of the fracture process zone

As we detailed in section 1.3.1, the experiments led by Dalbe et al. |2] suggest that the presence
of a fracture process zone can be one of the main parameters controlling the magnitude of the
repulsion between EP-cracks. Considering the three materials they tested, two different polyethy-
lene terephthalate sheets and a polycarbonate one, it seems that the magnitude of repulsion is
inversely proportional to the size of the fracture process zone. On the contrary, Koivisto et al.
[3] advocated that repulsion is induced by the process zone, implying that the magnitude of

repulsion should be directly proportional to the size the process zone.

To bring some clarity to these conflicting observations, we led during the 3 months internship
of Charles Peretti an experimental study of EP-cracks propagating into polydimethylsiloxane
(PDMS). PDMS is an elastomer whose Young’s modulus is relatively weak at E ~ 1 MPa, and
whose Poisson’s ratio is ¥ = 0.5. PDMS behaves elastically at low strain but softens at higher
strain. Because this material is known for being very brittle [110] we expect the fracture process

zone around the crack tips to be negligible.
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(b)

(a)

Figure 3.2 — Experimental set-up:

(a) The right side of the sample is pulled at a constant velocity of vg = 50um/s. The gravitational
force g, which was neglected in all simulations, may have deformed the film in the (Ox) direction,
introducing an asymmetry in the cracks loading.

(b) Example of a broken sample with the grid pattern used to track the displacement.

3.1.1 Experimental set-up
Samples

The samples were crafted on site from a silicone base and a cross-linking agent that amounted to
10% in mass of the preparation. After a centrifugation step, the mix is poured into a mould and
degassed under a vacuum bell to get rid of any leftover bubble. The sample is finally reticulated
for at least three hours in an oven at 70°. The final product is a 10 cm % 12 ¢cm * 0.1 ¢m film,
whose surface aspect is strongly dependent on the mould used. Indeed, we had two moulds at
our disposal: while one, made in glass, resulted in sleek samples (see Fig. 3.1a), the other was
in metal and its machining marks imprinted on the PDMS (see Fig. 3.1b). It was also harder
to remove the samples from the glass mould than the metal one, resulting in more ragged edges
in the samples made in the glass mould. Because of the long degassing and reticulation times it
was inconvenient to use only one type of mould; this may have introduced a dispersion in our

results.

Finally, the two initial cracks were cut manually using a utility knife.

Tensile test

The samples were loaded under pure tensile stress, in the direction transverse to the cracks.
As shown in Fig. 3.2a, each sample was clamped so that its free surface was a 10 cm % 10 cm
square using an automatic screwdriver to ensure an even tightening torque across all tests. The
clamps were positioned vertically, one fixed and one pulled along the (Oy) direction at a constant

1

velocity of 50um.s™" over a course of 5 mm.
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Point tracking

Because of the high sensitivity of EP-crack trajectories to initial (boundary and loading) condi-
tions we used point tracking to better identify the boundary conditions along the clamps. One
question in particular was to determine whether the fixed points were exactly at the edges of the
jaws or inside it. Should it be the later, some transverse displacement would be allowed on the
sides of the sample free surface. We will show in section 3.2 the importance of this aspect in the

final crack shape.

As shown in Fig. 3.2b, a 1 ¢m % 1 ¢cm grid pattern was therefore added on some samples which
were then filmed during the test. We focused the analysis on 6 images of the 110 seconds films:
the first and last images of the film corresponding to imposed displacement of 0 mm and 5 mm
respectively, and 4 images during the propagation taken every 22 seconds. Given the camera pixel
density and the objective-sample distance in our set-up, the final resolution is about 0.13 mm

per pixel.

The displacement between two images was then determined simply by a three steps procedure:

e The coordinates of the grid pattern in each image are identified. The detection process
consists in binarizing the photo, running the built-in morphologically closing filter of
Matlab® 10 times, and calculating the coordinates of the barycentre of each points. Run-
ning the closing filter, which consists in a dilation step followed by an erosion step on a
3 x 3 pixels grid, is necessary to fuse small breaks and fills gaps in the contour of the dark

points.

e The correspondence between the grid patterns of two consecutive images is determined
point per point, starting from the top left corner, simply by identifying the nearest neigh-

bour of each point.

e The displacement of a tracked point is computed as the difference between its coordinates

in two consecutive images.

Digitisation
To determine the coordinates along the crack paths as precisely as possible, all samples were
scanned at a 600 pixels per inch (or 0.04 mm per pixel) resolution after the tensile test.

To identify the crack paths, the scanned image is then analysed through the following process
(see Fig. 3.3):

e The image is binarized and the cracks are identified as the two largest groups of white

pixels. Each retained pixel is identified by its (rqw, Yraw) position.

e The rough (Z4ug, Yavg) coordinates along each path is determined by averaging the g

positions for each x4, occurrence. Because we are interested in measuring angles and
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Figure 3.3 — Digitisation process applied to scanned images of the samples. It consists of three
steps: after a binarization to retrieve the positions of the crack paths, the raw data is averaged
so that the crack is represented by a simple line. Finally a running average filter is applied to
smooth the trajectory and avoid artificially high valued when determining interaction angles.
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Figure 3.4 — Point tracking example: the red overlay indicates the points actually recognized
by the point-tracking algorithm. The points too close to a clamp or a crack lip were not detected.

relative distances, we did not shift the coordinate system origin so that (0,0) fell at the

center of the sample.

e To reduce noise, the rough coordinates (Zqvg, Yavg) are then smoothed by a running average

filter over 10 pixels in the x direction.

3.1.2 EP-cracks paths in PDMS
Boundary conditions

The clamps of the experiment we tried to reproduce numerically in section 2.3 were reported to
allow some transverse displacement [2]. We modelled this by letting displacement totally free in
the Oz direction. It turns out that his modelling choice has a great effect on the maximum angle
of repulsion: it is markedly larger when wu, is free along the sample borders than when the clamp
is idealised, imposing both u, and u, along the clamped edges. Comparing only the order of
magnitude in the experimental and simulated repulsion angles led us to believe that our set-up
was also better represented with imperfect clamps, by letting u, free: a portion of the results

presented in section 3.2 were obtained under this assumption.

Using point tracking during a few tensile tests allowed us to check the validity of this hypothesis.
Because of poor contrast in the video, we were unable to track the grid pattern right along the
clamps: the outermost points we were able to detect were separated by 1 cm from the edges
(see Fig. 3.4). The displacement field at the beginning of the tensile test, measured between
t = 0s and t = 22 s is shown in Fig. 3.5a, while the total displacement measured the end of
the experiment field is shown in Fig. 3.5b. To our surprise, the displacement of the outermost
points of the grid pattern matches slightly better with what we would expect in the case of an
ideal clamp. For example, while the transverse displacement u, varied between u, = +8.1072

mm (depending on the position along Ozx) in between the first to images in the experimental
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Figure 3.5 - Tracked displacement fields: (a) Between t = 0s and ¢ = 22 s (b) Between
t =0 s and ¢t = 100 s, ie. the first and last images of the test.

case, clamped simulations give u, = £4.1072 mm (50% relative difference) and free transverse
displacement simulations give u, = +2.107! mm (150% relative difference) for a equivalent u,

imposed displacement.

Given the sensitivity of EP-crack pairs to initial conditions, it would of course be preferable
to use measured displacement fields directly as simulation inputs rather than an all-or-nothing

approximation. Because of time constraints we were unable to refine the simulation to this level

during this Ph.D.

Reproducibility and exploitable results

Obtaining repeatable results proved to be challenging. Small imprecisions when setting up the
samples, probably either slight asymmetry when cutting the cracks or a small misalignment in
the clamps, leading to inhomogeneous tension, resulted in uneven propagation of the cracks:
often the propagated path of one crack is much longer than the other’s. Over the 30 samples
analysed only 6, or 20%, exhibited both significant repulsion and reasonable symmetry between
the cracks. Another 20% of the crack pairs was strongly repulsive but more asymmetrical, and
12 samples, or 40% of the total showed only weak repulsion with significant asymmetry. All
remaining samples were considered unusable because one crack did not propagate at all and the
other only exhibited attractive behaviour. That most of our crack paths were asymmetric is not

surprising: this phenomenon was also observed by Dalbe et al. |2].

Absence of or minimal repulsion is not in itself the manifestation of experimental imprecisions, as
it could simply be the product of the (L, d) choice. We were surprised however by how prevalent
weak repulsion was, even for small d values compared to previous observations in different mate-

rials. Weak repulsion also means that the total deflection is relatively smaller when compared to
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(c) (d)

Figure 3.6 — Typical examples of tensile tests results: The overlaid red crosses indicates
the initial position of the crack tips before the tensile test.

(a) Symmetrical propagation and repulsion, L =2 ¢m and d = 0.5 cm.

(b) Asymmetrical propagation and repulsion, L = 4 cm and d = 0.2 cm.

(¢) Asymmetrical propagation and weak repulsion, L =4 c¢m and d = 1.5 cm.

(d) Asymmetrical propagation and no repulsion, L = 2 ¢m and d = 2 c¢m.
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Figure 3.7 Measure of the maximum repulsion angle: Example on two different samples
(a) L =4 cm and d = 0.2 ¢cm, and (b) L = 4 cm and d = 0.5 cm. The maximum angle of
repulsion 6,,, is formed between the horizontal and the dotted green line. The solid green line
represents the path portion over which the direction 6,.,,, was linearly fitted.

noise and image resolution, making the determination of the maximum angle of repulsion harder.

Despite our concerns, the use of two different moulds did not increase the dispersion of the results:
out of the six samples showing a good symmetry between the cracks a small majority (four of
them) were made in a metal mould. It also did not increase the dispersion of the maximum
angle of repulsion. Five (L, d) combinations were tested in both kinds of samples ; repulsion was

stronger for the glass-moulded samples in three instances.

Magnitude of repulsion

To properly measure the maximum angle of repulsion we had first to account for the strong
asymmetry present in most samples. In [2] the authors solved this problem by examining the
separation distances (dx,dy) between the crack tips at each time instead of assessing the tra-
jectories directly. As PDMS is very brittle, crack propagation was in our case more sudden and
harder to catch even when using a high-speed camera. We therefore extracted the maximum
angle of repulsion between EP-cracks from the digitised paths described in section 3.1.1 rather

than films taken during the tensile test.

First an "average" crack path was determined: one crack was mirrored and displaced in the (z,y)
space so that the two repulsion to attraction transition points were superposed; the average crack
is simply the medium line between these two paths (see Fig. 3.7). A local interaction angle 6
is then determined for each x4, position along the average path by a running linear fit. The
repulsion angle 60,.,, is then taken as the maximum of 0 (zsm). The fit is applied to 2 mm long
(ie. 70 pixels) portions of the path. The error was determined as the standard deviation of the

local inclination angle over a 40-pixels wide portion of the crack paths, centred on 6,,, position.
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Figure 3.8 — Repulsion angle 0,,, vs d for different types of plastic sheets: our data (in
black) is overlaid on the data from [2] (color). Dotted lines are linear fit of the non-zero data.

It should be noted that with this technique we necessarily loose information; in particular we
are not able to determine how long before overlapping the repulsion to attraction transition
happened. Also, 0,, is measured on the undeformed sample, contrary what was done in [2]. This,
combined with the fact that we averaged the two crack paths, may have led us to underestimate

the maximum repulsion angle.

Fig. 3.8 shows our experimental results compared to the ones for PET and PC obtained by Dalbe
et al. |2]. Some results are in agreement with expectations. Again, we find that the maximum
angle of repulsion decreases somewhat linearly when d increases and is at its peak for aligned
crack. It also appears that the horizontal separation distance L is of no effect on 6,.,,. However,
we were surprised to find that repulsion was systematically smaller in PDMS that in any other
material: given the observations of Dalbe et al. [2]|, we initially expected strong repulsion to be

correlated with brittleness.

This inconsistency may explained either by the different techniques employed to determine 6,.,,,
or as a side effect of the non-linear behaviour of PDMS. It is known to typically follow a Mooney-
Rivlin model [110], in which the stress tensor derives from the strain energy density expressed
as:

Wo = Cy(J 2L —3) + Co(J 431, — 3) (3.1)

where C1 and Cy are material constants, J is the determinant of the deformation gradient, and
I and I are the first and second invariant of the left Cauchy deformation tensor respectively.

At high strain a Mooney-Rivlin material softens.
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Even if the total imposed displacement was much smaller than the sample size, chosen so that
the global stain was under 5%, the presence of two cracks can induce significant local strain.
While it is not a fracture process zone strictly speaking, a softer material zone provoked by
strain rather than damage is probably present around the crack tips. These results call again for
DIC measurements of the strain field, as it would allow to determine how the size of the softened

zone compare to the FPZ present in PET and PC sheets.

3.2 Diffuse damage model simulations

Our aim in this section is to investigate whether a diffuse damage model of EP-crack pairs can
overcome the shortcomings of a purely LEFM representation. In particular, we are interested in
finding whether it is possible to get quantitatively correct predictions of the order of magnitude
of repulsion by adding an extra material parameter: the characteristic length [. of a phase-
field representing damage. To do so, we use the Abaqus phase-field implementation for fracture
mechanics, proposed by Molnar et al. [50] and presented in section 1.2, to reproduce numerically
the experiments presented in section 3.1. Most simulation results presented in this section were

realised as part Guilherme Fernandes internship.

3.2.1 Computation
Mesh & material properties

We are again computing paths for EP-cracks in a small plate, under the same set of geometric
parameters than in section 2.3: a 10 cm %10 cm square plate notched by two cracks initially

separated by L and d, in plane stress (see Fig. 2.21).

The mesh was refined to a size of A = 0.1 mm where the crack can potentially propagate: a
central rectangular zone containing the original crack tip. Outside this zone the mesh size was
progressively increased until it reached about 5 mm. Again, we used linear quadratic elements

everywhere.

While phase-field methods do not necessitate re-meshing at each time step, the maximum mesh
able to properly render phase variations is Aper = lc/2 [49, 50]. We chose the same mesh size h
across all simulations in sections 3.2.3 and 3.2.4, so that all effects observed could be imputed to
changes in I, L, or d and not to artefacts caused by mesh variations. As a result, the meshes were
optimised for [, = 0.2 mm and comported a large number of elements, around N, =~ 180000
depending on (L,d), and thus the size of the interaction zone, making all simulations both

computing time and memory intensive.
Depending on the simulation, we used one of two materials with the following properties:
‘ Young’s modulus F ‘ Poisson’s ratio v ‘ Energy release rate Gc

Material 1 1,8.103 MPa 0.35 5000 J/m?
Material 2 1 MPa 0.35 100 J/m?
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Figure 3.9 — Impact of boundary conditions on crack path shape: Example for L = 4,
d=1cm, [, = 0.2 mm, material 1 properties

Given the Young’s moduli and the energy release rates, material 1 is more akin to PET and
material 2 to PDMS. Just as in section 2.3, v has no effect on the cracks trajectories. On the
other hand, E and G, affect the strain energy: they impact the crack propagation speed but
not its shape, as long as the computation is converged in regards to the time discretization (see

section 3.2.1).

Boundary conditions

The choice of boundary conditions (clamped points, restricted degrees of freedom and imposed
displacement) has a significant impact on the final shape taken by EP-cracks. We initially thought
the rubber-clad clamps used in the experiments we are trying to simulate were best modelled by
imposed u, and free u, along the top and bottom sides of the sample. As we have seen in section
3.1.2, it appeared that, in the case of PDMS at least, an ideal clamp (imposed u, and u, on both
edges) is a better fit. When we came to this realisation, a significant number of computations had
already been completed: as a consequence, results presented in section 3.2.3 regarding the impact
of I, on the cracks shape were obtained making the free transverse displacement assumption. On
the other hand, all results in section 3.2.4 regarding the variations of 0., with d for different [,

were computed under the ideal clamp assumption.

In Fig. 3.9 we present an example of how the final path shape is affected by the choice of boundary
conditions. As expected, an ideal clamp returns weaker repulsion, both in terms of the maximum
angle of repulsion and the length of the repulsive component. It also affected the hook to s-shape

transition, which happened for smaller values of d when an ideal clamp was used.
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Figure 3.10 Loading step speed effect on crack path shape: Example for L =4 cm,d =1
cm, [, = 1 mm, material 1 properties and free transverse displacement conditions.

Incremental loading

The total displacement U imposed is not applied at once: doing so would induce a too strong
change in the strain energy. It is reached instead in N time steps, or frames to ensure compliance
with the quasi-static propagation assumption (see eq. 1.77). Between two consecutive frames the

imposed displacement is therefore increased by AU = U/N.

The value taken by N will directly affect the variation of strain energy between two time steps
and thus the crack path shape. While large values of N slow the computation, we must choose

it large enough to ensure the simulation is converged.

In Fig. 3.10 we show how the crack paths are modified by the choice of N. A much too small
N = 1250 yields a physically unrealistic behaviour, with the two cracks joining tip to tip. Only
doubling N will give better results: past this point, N has little effect on the final path shape and
most significant variations are in the attractive phase. The position of the repulsion to attraction
transition (happening later with greater N) is affected to a lesser extent. Our main interest, the

slope of the repulsive component is barely altered when changing V.

It should be noted that the optimum choice of N is not independent from other parameters.
Because the core issue is to ensure a small energy variation between two pseudo-time steps, N
must be chosen in regards of [, and G., whose values are also at play in the energy balance. In
particular, G. opposes crack propagation: greater GG, allows us to use less time increments, while

l. has an opposite effect.

To focus our study on the effects of I, and (L, d) on crack paths, we conserved the same Au =

4.107° cm across all simulations.
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Figure 3.11 — Maximum repulsion angle: 6,,, was determined as the slope of a linear in the
repulsive phase. In this example the first material properties and a free transverse displacement
boundary condition were used. [, = 0.2 mm, L =4 cm and d = 1 cm.

3.2.2 Post-processing
Determining the crack paths

The result of the simulation consists of, beside the usual stress and displacement fields, the
damage field defined at each node of the frame and at each time frame. Damage varies between
0 and 1: we arbitrarily defined a node as broken if its damage ¢4 is equal to at least 0.98. In a
fashion similar to what was done for post-processing the experiments in section 3.1.1, the cracks

are defined as surfaces, rather than discrete lines as it was the case in section 2.3.

The maximum angle of repulsion 6,,, was determined in a fashion comparable to the post-
processing applied to the scanned experimental samples: a linear fit along the crack paths to
determine the local propagation direction. As shown in Fig. 3.11, the length of the segment over
which this procedure is applied is of little consequence on the value of 6,., in the vast majority
of cases. In the following, we chose to retain the 2 mm wide fit value, so that the same process

was applied to determine 6,.,,, in both experiments and simulations.

The position of the repulsion of attraction transition was determined simply by taking the
barycentre of all nodes realising the maximum (or minimum, in the case of the bottom crack) y

coordinate (see Fig. 3.14a).

Exploitable data

The Abaqus phase-field implementation [50] we are using was based on the assumption of a

quasi-static propagation of the cracks. Given that our system is also symmetric in terms of
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Figure 3.12 — Last valid pseudo-time determination: Example on L = 4 cm, d = 1 cm,
lc = 0.5 mm, material 1 properties and ideal clamp conditions. The total displacement was
applied over a total of 10000 frames.

(b), (c) and(d): Simulation frames 2200, 2600 and 6300 respectively. They are signalled by overlaid
green circle in (c), (b) and (c). (a) Evolution of the number of broken nodes with time step. (c)
Separation distance between crack tip at frames f and f — 100. (e) Evolution of the asymmetry

measure As with time step.
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crack positions and loadings, we can expect crack paths to remain symmetric. In practice, the
simulated crack paths do not remain symmetric at all time steps. After a certain computation
frame, propagation becomes asymmetric either because of small irregularities in the mesh or
because one crack tip jumped suddenly across several element. This kind of jump generally
happens when a crack tip approaches the other crack. An example is given in Fig. 3.12f: the
tortuous later stages of the bottom crack path propagated in less than a hundred time steps.
This propagation is clearly not quasi-static and thus outside the scope of validity of our phase-

field implementation.

As shown in Fig. 3.12¢, the distance covered by a crack tip between two consecutive saved frames
(we saved only one out of 100 frames to keep memory use reasonable) is not a good indicator of

compliance with the quasi-staticity assumption, as it is maximum at the onset of propagation.

A better indicator is the symmetry between the cracks. It was measured in three different ways:

e For each crack, the number of "broken nodes", ie. the nodes with ¢4 > 0.98, was exam-
ined as a function of the pseudo-time. Symmetry is broken when the two cracks comprise
different number of nodes. Out of all three methods tested it is the least reliable, because

estimating whether the difference between the two crack sizes is necessarily arbitrary.

e We also studied how the crack tips advance between computational steps. The last accept-
able frame is the last for which both cracks cover the same distance, past this point the

cracks tend to alternate in their propagation.

e We introduced an asymmetry measure As = \/S(z1 — 25)2 + X(y1 — y5)?, which add point
per point of the crack (all nodes with ¢4 > 0.98) the distance between a crack (x1,y;) and

a central symmetry reflection (zf, y5) of the other.

These three methods give comparable results and allowed us to determine the usable frame

reliably.

In all case we tested, the repulsive component was entirely included in the last admissible frame;

this limitation did not impact our study.

3.2.3 From diffuse damage to linear elasticity: impact of /.
Free transverse displacement

We present in Fig. 3.13 EP-crack paths obtained with different [., when transverse displacement
is let free along the top and bottom sides of the plate. In this example we are using the first
material properties L = 4 cm and d = 1lem. We find that the repulsive component of the paths

shortens with greater /. values: as shown in Fig. 3.14c, AX,; grows linearly with /..

In Fig. 3.14c and 3.14d, we excluded the data point corresponding to I, = 1.5 mm from the
fits: out of all our computation yielding two independent cracks, this simulation is the one with

largest [, and was probably not converged regarding dU. The exact value of the coefficient in the
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Figure 3.13 Impact of /. on crack shape: Example obtained for material 1 inputs and free
transverse displacement boundary conditions, L = 4 cm and d = 1 cm. The linear elastic example
was computed using L; = 0.4 mm

expression linking AX; to . depends on the ¢4 threshold value used to extract the crack path.
We find them to be relatively constant, with AX; ~< 1.06 & 0.05 > [.— < 0.03 = 0.05 >. These
results confirm what is suggested by Fig. 3.13: a diffuse damage model converges linearly toward

the classic LEFM solution when [, tends to zero, in agreement with [111].

While the length of the repulsive component of the crack paths is greatly influenced by I., we
find that the impact on its intensity, that is to say the 6,,,, is limited. No matter the size of the
path portion over which the maximum angle of repulsion is fitted, we find that [, does not change
the value taken by #,,, by more than 1.3°, an incertitude comparable to the one introduced by

the linear regression of the repulsive portion of the trajectory.

Ideal clamp

The same study redone with ideal clamp style boundary conditions yields similar results. As
shown in Fig. 3.15, we find again a shorter repulsive component with greater [., and crack paths
shape getting progressively closer to a LEFM limit when [, decreases. In this case, the cracks are
s-shaped rather than hook-shaped. It appears that greater [. values also reduce the length of the

attractive phase and that the cracks return to horizontal propagation earlier.
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Figure 3.15 Impact of /. on crack shape: Example obtained for material 1 inputs, ideal
clamp boundary conditions, L = 4 c¢m and d = 1 cm. The displacement u, was blocked at all
nodes of the top edge of the sample. The linear elastic case was computed using L; = 0.8 mm

3.2.4 Comparison to experimental data: material nature of [,

In this section we used the second material properties and ideal clamp boundary conditions for

all simulations.

We show in Fig. 3.16a an example of how simulated trajectories fare when compared to experi-
mental data. This case, in which L =4 cm, d = 0.5 cm, is representative of all configuration we
tested: the repulsion is severely underestimated by the simulations even for the smallest [. value.
This may be imputed, at least partially, to the choice of boundary conditions: while we have
seen that the ideal clamp approximation is in our case a better modelling choice than letting w,
free on the sample edges, it is not completely accurate. Making more accurate prediction of the

crack path shape requires the exact knowledge (via direct measure) of how loading is applied.

This underestimation is also visible in Fig. 3.16b, where we represented 6,.,,, as a function of the
lateral separation d. The data points corresponding to d = 0.2 cm were not included into the
linear regressions because the corresponding simulations were not converged in Au: the cracks
merged tip to tip. More than the order of magnitude of repulsion between EP-cracks, it seems
that [, impacted the slope of 6,.,,(d). This observation remains tentative, and should be confirmed
with more data points in the (l., d) space. It should be noted that 6,.,,(d) cannot be linear over
the whole d = [0;4 cm] range: while linear regression gives repulsion even at d = 4 cm, we found

that in this situation the EP-cracks exhibited a purely attractive behaviour for both /. tested.
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tion data points were obtained using material 2 properties, and ideal clamp boundary conditions
(a) Example for L =4 cm and d = 0.5 cm. (b) Evolution of 6,,, with d.

3.3 Conclusion

Contrary to our expectations, the experiments in PDMS did not allow us to conclude whether
the presence of a fracture process zone around the crack tips has a shielding or amplifying effect
on the magnitude of repulsion between EP-cracks. It became clear however that, even if we
showed in section 2.3 that EP-cracks repulsion can be observed in a purely linear elastic context,
inelastic effects could strongly influence its magnitude. These experiments also showed that the
inelastic effects at play are not necessarily damage processes localised around the crack tips:
other material behaviours, such as inelastic elasticity, can unfold at a larger scale than a fracture

process zone.

We were surprised to see that the characteristic length scale [, used in diffuse damage models does
not significantly impact the order of magnitude of the repulsion between EP-cracks. However
these results must be treated with caution, as we were unable to simulate a large number of
trajectories for different [. and d values. Another limit of our model is how we represented
the clamps: that ideal clamp simulations yielded s-shaped cracks when we only observed hook-
shaped cracks in reality is another proof that our modelling choice is not ideal. Clearly, it is
inconceivable to make accurate comparison between experiment and simulation without using
the exact displacement field measured during experiments as an input of the computation. The
diffuse damage approach is still promising: we showed that [, impacts how 6,,, varies with d,
which may explain the difference observed between PET and polycarbonate sheets by Dalbe et
al. [2]. This model also predicts the repulsion to attraction to occur before the crack overlap, as

in the experiments.

These results call for a more precise comparison between experiments and simulation: without
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using DIC measured displacement field as inputs of the computation, it is not possible to conclude
how much of the discrepancy we observed were due to poor modelling choices or to shortcomings

of a diffuse damage approach.



Conclusion

This Ph.D.was first motivated by the experiments realised by Dalbe et al. [2]: that the observed
repulsion is maximum when theory predicted straight paths, combined with surprising material
effects on the paths led them to question the limitations of the principle of local symmetry.
Using the same set of experimental data, Koivisto et al. |3] went further and challenged the
very validity of linear elastic fracture mechanics theory, at least when applied to the study of
interacting cracks. Our main concern was therefore to understand why the generally well-accepted

LEFM+PLS framework apparently failed when applied to the specific case of EP-cracks.

Our findings reconcile theory and observation: not only we have shown that it is possible, contrary
to expectation, to predict repulsive EP-cracks trajectories using only a LEFM-+PLS framework
but we also provided explanations of the discrepancy described by Dalbe et al. [2] or why the
model proposed by Fender et al. [1] does not fit the typical hook trajectory. Indeed, our results
concerning the initial kink angle of EP-crack pairs showcase how small variations in the relative
position of the inner crack tips can change the initial behaviour from attractive to repulsive:
the contradictions between theory and experiments can be imputed to measurement inaccuracies

only.

This initial study done in the context of linear elastic fracture mechanics is not without limita-
tions: while we have shown the en-passant fracture problem to be extremely sensible to initial and
boundary conditions, we examined the initial kink angle of EP-crack pairs in only two specific
configurations. Although it is enough to prove that the LEFM~+PLS framework is not inherently
unable to predict crack repulsion, our study of EP-crack loaded into pure opening far-field tension

is far from being representative of EP-cracks encountered in nature or industrial applications.

Along the answer to the main question regarding the use of LEFM and the validity of the principle
of local symmetry to study interacting cracks, our work on the initial kink angle of EP-cracks
highlights the multi-scale nature of the en-passant problem; the length scales characterizing the

transition from attraction to repulsion may be orders of magnitude smaller than the crack length.

The study of full trajectories in an exclusively elastic theoretical framework confirmed that
modelling some crack repulsion is achievable without representing a fracture process zone in any
way. However, these results highlighted again the strong sensitivity of the EP-cracks problems to
minute changes in the relative position of the crack tips. As we were unable to retrieve magnitude
of repulsion concording with Dalbe et al. experiments |2] and there was still unexplained material

effects to consider, the next logical step was to change the theoretical framework and study how

98
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a fracture process zone will impact the trajectories. In that order, we applied the diffuse damage
theory to the case of EP-cracks using a phase-field solving technique. The phase-field represents
both the crack and the damaged zone around it. Its width depends on the parameter /. whose
nature, either purely numerical or with physical meaning, was questioned by Molar et al. [50].
We found that the choice of [, influences greatly the shape of the crack paths, in particular the
magnitude and duration of the repulsive phase. It seems that the trajectories continuously tend
to the LEFM+PLS paths when /. decreases. This suggests that the characteristic length of the
damage field is physical in nature and can be tied to local damaging process, and thus to the

micro-structure of the material.

Determining the value of [, for a given material remains a challenge. It is possible to imagine
the en-passant fracture problem as a characterisation test; after measuring the magnitude and
duration of the repulsive phase between two cracks, one can identify [. by fitting simulated
paths to observed ones. However, given the sensitivity of EP-cracks to boundary conditions,
this is only possible if the exact displacement field of the medium is known precisely during
propagation using for example digital image correlation. This kind of test is also inapplicable to
too brittle materials, as the propagation must be quasi-static to remain within the assumptions

of the theoretical framework.

Some issues remains to be addressed in our work. In particular, a recommended future work is to
deepen our diffuse damage study by using DIC to properly account for boundary conditions in
the simulations. It would be especially interesting to repeat the experiments on various materials,
and check if it is possible to tune [. to reproduce the cracks trajectories as precisely as possible.
With enough tested materials, one can even hope to relate [, to material behaviours such as

inelasticity of damage mechanisms.
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