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Modern cnidarianmedusae generally show a triphasic life cyclewith the succession of a larva, a sessile polyp and
a pelagic medusa stage. The debate around the metagenesis of sessile polyps into pelagic medusae has lasted for
more than 100 years. When pelagic forms originated is not clear. Hitherto, the earliest crown-group medusae
have been found at Cambrian Stage 5 (traditional Middle Cambrian, 509 Ma) in Utah, while diverse stem-
group medusozoans were found in the basal Cambrian Fortunian Stage. No reliable medusae have been found
from Cambrian Series 2 Stage 3 (ca. 521 Ma), although the marine benthic community teemed with many
phyla of bilaterians, sponges and ctenophores. Here, we reinterpret Yunnanoascus haikouensis Hu et al. (2007),
originally described as a ctenophore, as a pelagic, predatory, crown-group medusozoan, based on the presence
of rhopalia, possible radial canals and marginal tentacles. The medusae were a predatory member of the pelagic
food web at the middle level of the ocean at Cambrian Stage 3.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Cnidarian medusae are a conspicuous part of the modern marine
realm. They typically exhibit a triphasic life cycle consisting of a planula
larva, a sessile polyp stage and a pelagic, sexualmedusa stagewith sense
organs, i.e. rhopalia. The rhopalia, which are in charginge of rhythmic
body contraction and swimming (Ruppert et al., 2004), are a suite of
club-shaped structures suited between a pair of marginal lappets, each
containing a concentration of epidermal neurons, a pair of
chemosensory pits, a statocyst, and often an ocelli. Given their different
modes of development, it has been hypothesized that the medusoid
form in different classes of Medusozoa might have been independently
derived from a polyp-like form (Kraus et al., 2015; Salvini-Plawen,
1978). However, it is unclear when the pelagic forms arose. Molecular
evidence suggests that cnidarian medusozoans originated deep within
the Neoproterozoic (Park et al., 2012). The fossil record of medusae is
rather sporadic. The soft-bodied fossil Haootia quadriformis Liu et al.
(2014a) with possible muscular impressions reported from the lower

Fermeuse Formation of the Bonavista Peninsula of Newfoundland
(approx. 560 Ma) was compared to the sessile stauromedusans, al-
though it lacks secondary tentacles, anchors, gonads and nematocyst
clusters. Many exceptionally preserved stem-group medusozoans with
a diverse set of internal anatomical structures arranged in tetra- or
penta- radial symmetry were found in the basal Cambrian Fortunian
Stage (ca. 535 Ma) in south China (Dong et al., 2013; Han et al., 2016;
Han et al., 2013); however, most of them remain at the embryonic
stage and some of their polypoid forms were contained inside a tubular
peridermal theca (see Steiner et al., 2014). Even if some of them have
developed strong coronal muscles (Han et al., 2016), all of them, includ-
ing the putative ephyra (Dong et al., 2013), lack the rhopalia necessary
for pelagic life, thus calling into question whether any of these fossils
represent true pelagic medusae. Hitherto, representatives of most
major lineages of nektonic medusozoans with umbrellar shape, gonads,
coronal muscles and elongate retractile tentacles possibly with nemato-
cyst batteries were present in Cambrian Stage 5 in Utah (Cartwright
et al., 2007). In the Chengjiang fauna, pelagic forms including both dip-
loblastic ctenophores (Ou et al., 2015) and various bilaterians have been
well documented in Cambrian Stage 3 (Hu et al., 2007; Vannier et al.,
2009; Zhao et al., 2010). Although some discoid Chengjiang fossils (i.e.
Rotadiscus grandis, Stellostomites eumorphus, Heliomedusa orienta)

Palaeogeography, Palaeoclimatology, Palaeoecology 449 (2016) 166–173

⁎ Corresponding author at: Early Life Institute, Northwest University, 229 Taibai Road,
Xi'an 710069, PR China.

E-mail address: elihanj@nwu.edu.cn (J. Han).

http://dx.doi.org/10.1016/j.palaeo.2016.02.025
0031-0182/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Palaeogeography, Palaeoclimatology, Palaeoecology

j ourna l homepage: www.e lsev ie r .com/ locate /pa laeo



were previously reported as medusae (Sun and Hou, 1987), they were
later reinterpreted as organisms closely related to either lophophorates
(Dzik, 1991; Zhang et al., 2009; Zhu et al., 2002) or stem-group deutero-
stomes (Caron et al., 2010). Here, we reinterpret Yunnanoascus
haikouensis Hu et al., 2007 as a tetraradial pelagic medusozoan, rather
than a ctenophore, on the basis of medusozoan-like diagnostic features
including 16 pairs of thick-based marginal tentacles, 16 rhopalia, 16
marginal lappets and a manubrium. The interpretation of this fossil as
a crown-groupmedusozoanduring this vital interval (520Ma) suggests
that crown-group pelagic medusa were present as far back as the early
Cambrian.

2. Materials and methods

The holotype (No. YDKS-35), the unique specimen of
Y. haikouensis, is deposited in the Nanjing Institute of Geology and
Palaeontology, Chinese Academy of Sciences. Photographs were
taken using a Canon 5D Mark II camera. Backscattered electron mi-
croscopy (BSE) and energy-dispersive spectroscopy (EDS) analysis
without coating were conducted on a HITACHI SU3500 scanning
electron microscope with an EDS system. A cladistic analysis con-
taining 25 taxa and 105 characters (Appendix 1) was analyzed in
both PAUP* 4.0 b10 (Swofford, 2003) and TNT 1.1 (Goloboff et al.,
2008). The data matrix (Appendix 2) derives in large part from the
data in Han et al. (2016); Marques and Collins (2004) and Van Iten
et al. (2006). All 105 characters have equal weight, 8 of them are con-
stant, 24 variable characters are parsimony-uninformative and the
remaining 73 characters are parsimony-informative.

3. Result

Systematic palaeontology
Phylum Cnidaria Verrill, 1865.
SubphylumMedusozoa Peterson, 1979.
Class Scyphozoa Goette, 1887.
Order, Family uncertain.
Genus Yunnanoascus.
Type species: Y. haikouensis Hu et al. (2007).
Revised diagnosis: Body with tetra-radial symmetry. Hemispherical
central disc surrounding a wider coronal sinus. Bell margin with a
ring of sixteen pairs of long thick-based tentacles with possible
nematocyst batteries. Sixteen rhopalia slightly away from scalloped
bell margin. Sixteen short triangular marginal lappets intercalated
with tentacles. Sixteen radial canals with possible branches. Short
cone-shaped manubrium without conspicuous oral lips.
Occurrence: Lower Cambrian Heilinpu Formation, Kunming, Yunnan
Province, China (equivalent to Cambrian Stage 3).
Description:

(a) Body: The obliquely-laterally compressed body, 20 mm long
and 10 mm in maximal width, consisting of a hemispherical
central disc and a wide peripheral coronal sinus trailing
with a ring of sixteen long strips interpreted here as tentacles
(t) (Figs. 1a, 2a).

(b) Tentacles: On the incomplete counterpart specimen, either
two of the sixteen tentacles are clearly grouped into eight
prominent pairs that are distributed in different micro-
bedding planes and more or less deviating from the body
axis (Figs. 1b, 2b). The tentacles measuring ca. 10 mm in max-
imal length and display a wider, straight basal part (0.5 mm in
maximal diameter) followed by an elongate thinner distal
part (Figs. 1c, 2a,b). The tentacle base, comprising half of the
entire tentacle, has a sharp boundary with the surrounding
host rocks. Neighboring tentacles in each pair are parallel to
each other but are more or less overlapping. The distal part
of the tentacles taper gradually, some of them are slightly

twisted or undulatory, indicative of flexibility. As seen on the
tentacles of Middle Cambrian medusae (Cartwright et al.,
2007), the entire surface of the tentacles is dark and displays
dense, fine transverse striations (Fig. 1c). The distal part of
some tentacles (Figs. 1a, 2a) display bright zones intercalated
with dense dark zones, highly reminiscent of contracted ten-
tacles bearing nematocyst batteries. Notably, tentacles with
dense dark striations were originally interpreted as character-
istic comb rows of ctenophores; however, the host yellowish
rocks between the tentacles (Fig. 1a) support the hypothesis
that the tentacles extend from the bell rather than being
part of the bell itself as found in ctenophores.

(c) Coronal sinus, marginal lappets: The bell peripheral to the
central dome is preserved as a wider crescent-shaped zone
delimited by a conspicuous arc-shaped groove (Fig. 1a). The
outer margin of the crescent zone displays a consecutive se-
ries of small serrate structures that are quite close to the ten-
tacles roots (Figs. 1a, 2a). The crescentic zone and the serrate
structures probably represent the coronal sinus (cs) and the
marginal lappets (ml) (Fig. 2a) along the scalloped bell mar-
gin, respectively.

(d) Rhopalia: Approximately 1 mm away from the bell margin, an
arched row of eight evenly spaced patches, deep brown in
color and located at the spaces between the pairs of tentacles
(Fig. 1a, d,e). These slightly concaved patches, round to sub-
rectangular in outline, are ca. 0.5 mm in length and 0.3 mm
in width, with the long axis parallel with the body axis. Due
to weathering of the rocks, only one of them has a black car-
bon film (0.2 mm wide) on the surface; and the carbon film
on other two patches remain as a few dark spots; the others
show a naked surface that is much more reddish in color
than ambient bell tissue (Fig. 1a). SEM observations and ener-
gy dispersal analysis reveal that they are composed of pyrite
and organic carbon (Fig. 3), identical to that of the statoliths
of co-occurring ctenophores (Ou et al., 2015). Thus, based
on their disposition, morphology and diagenesis, it is reason-
able to interpret these patches as rhopalia (rh), which in liv-
ing medusae are composed of statoliths and pigmented
ocelli. In addition, the rhopalia of the fossil specimen are con-
sistent in size with those of scyphozoans (Arai, 1997) and
cubozoans (ca. 0.3 mm) (Sötje et al., 2011). As eight rhopalia
are invariably aligned in an arched row parallel to the arched
coronal groove and marginal lappets, they are not lined as an
ellipse, we infer that the specimen was obliquely-laterally
compressed and another half of the medusa was concealed
at the host rocks. Therefore, the medusa most likely has a
total of sixteen rhopalia and 32 tentacles (Fig. 5).

(e) Manubrium: The main components of the central bell are dis-
tributed on two micro-bedding planes well separated by host
muddy rocks. On the lower bedding plane, five to six short ra-
dial lines extend from the bell floor and converge toward the
bell center, thus forming a cone-shaped profile with its ta-
pered end directed adorally (Fig. 1a). The cone, half the height
of the central bell, is interpreted as a manubrium (mb) inside
a spacious deep subumbrellar cavity (Fig. 2a). No conspicuous
oral lips are visible at the distal end of the manubrium.

(f) Radial canals. In contrast to the lower bedding plane, the
upper bedding plane on the right side of the central bell dis-
plays four incomplete but thick rectangular blocks (trb)
delimited by five evenly-spaced deep radial lines parallel to
the body axis. Due to probable taphonomic bias, the block
near the body center is the widest one measuring ca. 5 mm
wide. The radial lines, at an estimated number of sixteen in
total, run orally and bifurcate toward the coronal groove
(Fig. 2). Some of their adoral bifurcations are visible deep
within the coronal sinus, and thus we interpret them as
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Fig. 1. Y. haikouensis Hu et al., 2007 from the early Cambrian Chengjiang Lagerstätte, China. (a) Part of the holotype; the 8th tentacle (rectangle area) likely bears nematocyst batteries. (b) In-
complete counterpart of the holotype. (c) Transverse stripes indicative of contracted tentacleswith nematocyst batteries on the broad-based tentacles. (d) Close-up of the eight rhopalia (circled
with white ellipses) and the scalloped bell margin. (e) Close-up of the bell margin showing the marginal lappets and four rhopalia (rh5–rh8) covered by carbon film.
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radial canals (rc). The sub-rectangle blocks which alternate
with the paralleling radial canals are apparently positive re-
lief, possibly representing a ring of thickened mesoglea
(Fig. 2a). No ring canal can be confirmed at the bell margin.

4. Taxonomic affinity

Y. haikouensiswas originally interpreted as a ctenophoran as the
longitudinal dark strips resemble comb rows of extant modern
ctenophores (Hu et al., 2007). Now several lines of evidence can re-
ject this hypothesis. First, the comb rows modern ctenophores are
equally spaced meridional rows converging toward the apical sen-
sory organs. Each row is composed of a transverse band of long,
fused cilia on the body surface (Ruppert et al., 2004). In contrast,
dark stripes on Yunnanoascus, which are separated by the host
rocks, are connected to the body margin rather than distributed
on the body surface; this is also supported by the twisted appear-
ance of the distal part of dark strips, and thus, appreciate the cur-
rent interpretation of strips as tentacles rather than comb rows.
Second, Cambrian ctenophorans have diagnostic features of mod-
ern ctenophores such as an octamerous symmetry, prominent
comb rows and an aboral sense organ with a statocyst; they are ad-
ditionally characterized by a prominent aboral cone, conspicuous
oral skirts and a sclerotized framework but are devoid of lateral
tentacles (Conway Morris and Collins, 1996; Ou et al., 2015).
Yunnanoascus, in contrast, has a hemispherical aboral bell floor, a
series of rhopalia and multiple long tentacles extending from the
bell margin, thus quite different from Cambrian ctenophores. Its

absence of a stalk or pedal disc excludes affinity with either
stauromedusans or anthozoans. Yunnanoascus seems unlikely to
be a member of Hydrozoa as hydrozoans lack complex sense organs
and their statocysts are located at the base of the tentacles. In
addition, the characteristic velum of hydromedusae is not seen in
the current specimen.

Yunnanoascus is less likely a cubomedusan. The wide-based
tentacles arranged in pairs are highly reminiscent of the pedalia
of extant cubomedusae (Conant, 1898). However, details of the
gross morphology of Yunnanoascus differentiate it from extant
cubomedusae. First, the cubozoan-type pedalia are smooth on the
surface, and only the distal part of the tentacles bear rings of
nematocyst-cells. In contrast, all tentacle surfaces of Yunnanoascus
exhibits dense rings of transverse stripes similar to those of
semaeostomeae scyphozoans (Russell, 1970). Second, marginal
tentacles with a wide base are also seen in hydrozoans (i.e. Sarsia
princeps Haeckel 1879)(Mayer, 1910) and scyphozoans (i.e. Cyanea
capillata in (Russell, 1970)). Third, the paired tentacles in
Yunnanoascus appear to be independent and they did not share the
same tentacle base as extant chirodropida cubomedusae. Moreover,
extant cubomedusans have only four groups of pedalia and four
rhopalia, inconsistent with the sixteen rhopalia seen on
Yunnanoascus. Finally, Yunnanoascus lacks other diagnostic features
of cubomedusans such as box-like shape, four frenulae and a
velarium.

Yunnanoascus appear to have a coronal groove and a coronal sinus
resembling those of scyphozoan coronates; however, its coronal
sinus shows no sign of coronate-type pedalia with solid tentacles
sprouting from the exumbrellar wall. Yunnanoascus has some
features of the Semaeostomeae scyphozoans, including marginal

Fig. 2. Camera lucida drawings of the holotype specimen of Y. haikouensis. (a) Part of the holotype. (b) Counterpart. Abbreviations: bc, bifurcated canals; bm, bell margin; cg, coronal
groove; cs, coronal sinus; m, mouth; mb, manubrium (red); ml, marginal lappets; nb, nematocyst battery; pt., proximal part of tentacle; rc, radial canals (blue); rh1–rh8, sc,
subumbrellar cavity; serial number of rhopalia; t1–t16, serial number of tentacles; trb, thickened rectangle block. Scale bar = 5 mm.
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tentacles alternating with rhopalia, apertural lappets and bifurcated
radial canals. Notably, 16 rhopalia and 16–48 tentacles are seen in
Diplulmaris and Phacellophora (Semaeostomeae), particularly, the
tentacles of the latter are arranged in 16 clusters (Mayer, 1910),
quite resembling 16 pairs of tentacles in Yunnanoascus.

5. Phylogenetic analysis

We carried out a preliminary cladistic analysis based on 25 taxa and
105 characters in PAUP* 4.0 b10 and TNT 1.1. Unweighted branch-and-
bound search of the data matrix in PAUP analysis yielded 189 shortest
trees (tree length (TL)=189, consistency index (CI)= 0.6243, rescaled
consistency index (RC) = 0.4688). The successive weighting analysis
(Marques and Collins, 2004; Van Iten et al., 2006) resulted in three
trees (TL=92.90023, CI= 0.864, RC=0.794) that differ in the position
of conulariids (Appendix 3). In the TNT analysis, we acquired a consen-
sus tree based on three best trees (Appendix 4) generated by New-
Technology search. These three trees differ in the position of
Kuanchuanpu fossils between ELISN83-66 and ELISn31-31, and Utah

fossils presumed to be Narcomedusae (Fig. 4b, Appendix 1). Apparently,
themissing data of the fossils (up to 24 parsimony-uninformative char-
acters) are the inherent sources of the partial inconsistency of both con-
sensus trees acquired by PAUP* 4.0 b10 and TNT 1.1 (Fig. 4); it can also
account for the inconsistency with the most accepted hypothesis that
cubozoans and scyphozoans are more accepted as sister groups
(Marques and Collins, 2004; Van Iten et al., 2006). However, all of
these best trees, including the consensus trees, display Yunnanoascus
as the sister taxon to the other fossil and extant Scyphozoa lineages
(Fig. 4; Appendixes 3 and 4), compatible with morphological analysis
mentioned above.

6. Life habit and the temporal constraint on the rise of
medusoid stage

The rhopalia in extant medusae have been well documented as mar-
ginal centers generating rhythmic electrical impulses in themotor nerve
net (Arai, 1997). When all of the rhopalia are removed from the medu-
sae, the swimming rhythm and contractions of the coronal muscles

Fig. 3. Energy-dispersive spectroscopic analysis made at the seventh rhopalium on the holotype specimen of Y. haikouensisHu et al., 2007. (a)–(f) Elementmaps of the seventh rhopalium.
(g), Combined spectrum of rhopalium (spectrum 1, red rectangle in (a)) and background tissue (spectrum 2, yellow rectangle in (a)) of the bell. Note the high concentration of carbon on
the rhopalium (spectrum 1). (h), Backscattered electron (BSE) image of the red rectangular area of the carbon in (a). (a)–(h) share the same scale bar in (a).
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will cease; and eventually the medusae usually will sink to the bottom
(Spangenberg, 1968). The finding of 16 large rhopalia on Yunnanoascus
strongly indicates a nektonic life style; and this hypothesis is further
strengthened by its round aboral end devoid of stalk, and a spacious
subumbrellar cavity adaptive for producing a jet of water (Fig.5). The
predatory habit is indicated by up to 32 elongate tentacles each with a
broad base, and particularly a twistable distal part with possible nemato-
cyst batteries, which, in extant medusae, contain a large amount of toxic
cnidae. The swimming pattern of extant medusae varies in species

(Arai, 1997), basically they quickly move upwards and sink slowly
(Gerritsen, 1980; Strand and Hamner, 1988). They have not been ob-
served using sensory organs to make directed movement toward their
prey;mostly during sinking they use tentacles to capture the preys by en-
counter (Arai, 1997). Likewise, a ‘density’ of 32 elongate tentacles of
Yunnanoascus are adaptive for a high encounter probability.

The evidence supporting centimeter-scale, planktonic medusae at
the Cambrian Stage 3 and 5 (Cartwright et al., 2007) is of great signifi-
cance for our understanding of the evolution of the three-phase life

Fig. 4. Strict consensus trees for Medusozoa obtained respectively using TNT and PAUP based onmorphologial phylogenetic analysis of medusozoans. (a) TNT analysis. (b) PAUP 4.0 beta
10. ELISn31-31, ELISn83-66, ELISn108-343, ELISn31-5 are undetermined taxa inHan et al. (2013, 2016); togetherwith co-ocurringOlivooides andQuadrapyrgites, they come from the basal
Cambrian Kuanchuanpu Formation in South China. Cormr, seamr, narmr, cubmr represent, respectively, unnamed fossils of the Coronata, Semaestomeae, Narcomedusae and Cubomedusa
from the Middle Cambrian Marjum Formation, Utah (Cartwright et al., 2007).

Fig. 5. Reconstruction of Y. haikouensis Hu et al., 2007. Artwork by Mr. Dinghua Yang at Nanjing Institute of Geology and Palaeontology.
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cycle of medusozoans, particularly, the temporal origin of the pelagic
medusoid phase. Hitherto, no reliable evidence of pelagic medusae
was known from basal Cambrian or Precambrian deposits (Young and
Hagadorn, 2010). The earliest reliable stem group medusozoans (Dong
et al., 2013; Han et al., 2013), including ephyra-like organisms (Dong
et al., 2013; Han et al., 2010)were known from the early Cambrian (For-
tune Stage), but these are minute forms less than 5 mm; particularly,
they lack the features for swimming such as sense organs (Han et al.,
2016; Han et al., 2013). In addition, many of Cambrian medusozoans
possess an external cone-shaped organic periderm (i.e. Olivooides and
Quadrapyrgites) (Liu et al., 2014b; Steiner et al., 2014) or biomineralized
tubes (i.e. conulariids, anabaritiids, Sphenothallus) (Kouchinsky et al.,
2009; Van Iten et al., 2014); thus they are suspected to be benthic or ses-
sile forms probably related to polyps (Van Iten et al., 2006). It appears
that the medusozoan communities at the Cambrian Fortune Stage
were dominated in both ecology and diversity by micrometer-scale
benthic or sessile forms that inhabited shallowwater. From the Cambri-
an III onward, the fossil record of sessilemedusozoans, in either ecology
or diversitywere rather scarce (Van Iten et al., 2014), even in theworld-
wide fossil Lagerstätten. It turns out that the interval between Cambrian
stages 1 and 3 most likely represents a period of competition between
the polypoid and medusoid phases, and finally the dominant phase of
medusozoan communities most probably had undergone a transition
frombenthic polyps to pelagicmedusae. This transitionmight be ascrib-
able to the great advantages of the medusa phase in positive feeding,
broader dispersal, settlement selection, escaping from harsh environ-
ments and exploiting different ecological spaces of ancient oceans.

The early Cambrian record of medusae also has implications for un-
derstanding the ecological and evolutionary history of the marine pe-
lagic realm. The evolution of rhopalia for both gravity and light in
Cambrian medusae enable them to discriminate ‘up’ from ‘down’, and
to excurse vertically (Gerritsen, 1980). Thus, it is most likely a precondi-
tion for the rise of diurnal/nocturnal vertical migrations (DVM) of entire
population as seen inmodern epipelagic andmesopelagicmedusae (see
Arai, 1997; Yasuda, 1973; Youngbluth and Båmstedt, 2001; Graham
et al., 2001). Contrasting with other pelagic bilaterians, i.e. arthropods
of Ercaia,Misszhouia, Naraoia, Pectocaris, Pisnnocaris and deuterostomes
of Yunnanozoa, Haikouella, Haikouichthys, which were preserved by
rapid burying as a large population (Han et al., 2006), direct evidence
of medusa populations in Chengjiang have not yet been reported. Mod-
ern medusae are eaten by a variety of predators, i.e. other pelagic coe-
lenterates, arthropods, fishes and turtles (Arai, 1997). As all known
Cambrian vertebrates are filter-feeders (Shu et al., 1999, 2003), and
only one species of medusae is reported herein, thus the medusae pop-
ulation in Chengjiang, if present, might have been consumed by some
large predatory arthropods and anomolocarids. The evidence of nekton-
ic medusae, together with pelagic populations mentioned above, fur-
ther strengthens the hypothesis that a complex, modern-style pelagic
ecosystem may have been developed by the time of early Cambrian
Stage 3 (Hu et al., 2007; Vannier et al., 2009). The rise of such a highly
complex pelagic ecosystem might have been accompanied, in part, by
the origins of various well-developed sense organs among pelagic cni-
darians and ctenophores (Ou et al., 2015), as well as pelagic bilaterians
(Zhao et al., 2010).

7. Preservation of the medusae

In contrast with abundant medusae in modern ocean, the fossil re-
cord of medusae is sporadic. Apart from lacking hard tissue, the reason
of their artefactual rareness is ascribable to three aspects unfavorable
for fossilization: (1) Compared with sessile forms, pelagic medusa
have nearly same density as seawater, and thus are difficult to bury.
Generally, they would have decayed within the water column before
being buried. (2) Medusae are extremely fragile organismswhich prob-
ably decay extremely rapidly after death. (3) Specifically, pelagicmedu-
sae have thick mesoglea with low contents of organic materials. Most

known medusae are fossilized as moulds (Young and Hagadorn,
2010), whereas the reason for the exceptional soft-tissue preservation
of the medusae in Chengjiang and Utah (Cartwright et al., 2007) re-
mains problematic. Energy-dispersive spectroscopic analysis of
Y. haikouensis (Fig. 3) reveals that the soft tissuewasmainlymineralized
as organic carbon and pyrite, similar to the case of other Chengjiang or-
ganisms (Gabbott et al., 2004; Gaines et al., 2008; Zhu et al., 2005). If
correct, a rapid burial caused by periodic storms would be capable of
capturing both benthic and pelagic forms (Han et al., 2006; Hu, 2005;
Hu et al., 2007; Zhao et al., 2009); a rapid burial of medusae by fine
clay minerals would have inhibited microbial decay (Butler et al.,
2015; Forchielli et al. 2014). In addition, infilling the subumbrellar cav-
ity of the medusae by clay minerals will lead to the dehydration of the
medusa mesoglea, thus the concentration of organic materials will be
greatly improved.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.palaeo.2016.02.025.
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Abstract – The earliest fossil record of animal biomineralization occurs in the latest Ediacaran Period
(c. 550 Ma). Cloudina and Sinotubulites are two important tubular taxa among these earliest skeletal
fossils. The evolutionary fate ofCloudina-type fossils across the Ediacaran–Cambrian transition, how-
ever, remains poorly understood. Here we report a multi-layered tubular microfossil Feiyanella manica
gen. et sp. nov. from a phosphorite interval of the lowest Cambrian Kuanchuanpu Formation, southern
Shaanxi Province, South China. This newly discovered fossil is a conical tube with a ‘funnel-in-
funnel’ construction, showing profound morphological similarities to Cloudina and Conotubus. On
the other hand, the outer few layers, and particularly the outermost layer, of Feiyanella tubes are regu-
larly to irregularly corrugated, a feature strikingly similar to the variably folded/wrinkled tube walls of
Sinotubulites. The Feiyanella tubes additionally exhibit two orders of dichotomous branching, similar
to branching structures reported occasionally in Cloudina and possibly indicative of asexual reproduc-
tion. Owing to broad similarities in tube morphology, tube wall construction and features presumably
indicative of asexual reproduction, Cloudina, Conotubus, Sinotubulites and the here described Feiyan-
ellamay thus constitute a monophyletic group traversing the Ediacaran–Cambrian boundary. The tube
construction and palaeoecological strategy of Feiyanella putatively indicate evolutionary continuity
in morphology and palaeoecology of benthic metazoan communities across the Ediacaran–Cambrian
transition.

Keywords: Cloudina, Sinotubulites, asexual reproduction, early Cambrian, Kuanchuanpu Formation.

1. Introduction

Although molecular clock studies estimate the origin
and earliest diversification of animals within the Cryo-
genian Period, evidence from the fossil record reveals
that crown members of nearly all animal phyla appear
in a relatively rapid diversification event in early Cam-
brian time (the ‘Cambrian explosion’). This evolution-
ary radiation follows after a global mass extinction
of the Ediacaran fauna (Erwin et al. 2011), a benthic
community dominated by sessile, substrate-sticking
organisms (Seilacher, 1999; Fedonkin et al. 2007;
Yuan et al. 2011). In addition, geological and geo-
chemical data suggest that the Ediacaran–Cambrian
transition was not only a transition in biological di-
versity and ecosystem structure, but was also associ-
ated with drastic environmental change. These changes
in environment and biology were likely highly inter-
twined; for instance, the rise of oxygen (e.g. Fike et al.
2006; Canfield et al. 2008; Komiya et al. 2008; Can-
field & Farquhar, 2009; Li et al. 2010) has been sug-

†Author for correspondence: yaopingcai@nwu.edu.cn

gested to have had profound effects on the evolution
and diversification of metazoans (Sperling et al. 2013).
Further, the innovation of novel ecological strategies,
such as ecosystem engineering and predation, in Edi-
acaran communities nearing the Cambrian boundary
may have served to set the stage for the impend-
ing Cambrian radiation (e.g. Schiffbauer et al. 2016).
Thus, the Ediacaran–Cambrian boundary represents a
revolutionary transition, wherein the combined effects
of environmental, biological and ecological change im-
part a large influence on phylogenetic patterns for the
next c. 540 million years of evolutionary history.

With several reports of the survival of a few taxa
from the Ediacaran fauna into the early and middle
Cambrian period (e.g. Jensen, Gehling & Droser,
1998; Hagadorn & Waggoner, 2000; Shu et al. 2006;
Van Iten et al. 2006), palaeontologists have sought to
better understand the nature of biotic replacement at
the Ediacaran–Cambrian transition (Laflamme et al.
2013; Darroch et al. 2015), and moreover, to explore
the possible extinction hold-overs and their place
within this evolutionary story. One such group of
possible hold-overs comprises the terminal Ediacaran
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tubular biomineralizing assemblage (part of the
‘wormworld fauna’, Schiffbauer et al. 2016), exem-
plified by such organisms as Cloudina, Sinotubulites
and Namacalathus (e.g. Germs, 1972; Signor, Mount
& Onken, 1987; Grant, 1990; Grotzinger, Watters &
Knoll, 2000; Hofmann & Mointjoy, 2001; Cortijo et
al. 2010; Zhuravlev et al. 2012; Cortijo et al. 2015).
Although the presence of these and broadly compar-
able genera in Cambrian rocks is rare (e.g. Yochelson
& Stump, 1977; McIlroy, Green & Brasier, 2001; Ro-
gov et al. 2015), they may be evolutionarily tied to tu-
bular forms present in small shelly fossil assemblages
of the lowest Cambrian, such as the anabaritids.

The lower Cambrian Kuanchuanpu fauna (Fortunian
Stage, c. 535 Ma) in South China has become increas-
ingly significant in understanding the evolutionary
history of animals in the Ediacaran–Cambrian trans-
ition. Apart from small shelly fossils, including various
molluscs and protoconodonts (Bengtson et al. 1990;
Qian, 1999), the Kuanchuanpu Formation has yielded
several extraordinary discoveries including putative
arthropod embryos (Steiner et al. 2004b), scalidophor-
ans (Liu et al. 2014b; Zhang et al. 2015) and markedly
diverse types of cnidarians (Han et al. 2010, 2013;
Dong et al. 2013; Han et al. 2016a) with biominer-
alized exoskeletons. Particularly, the scalidophorans,
molluscs and protoconodonts have established phylo-
genetic connections with the emerging complex Cam-
brian marine ecosystem, for example, the diversity of
arthropods as represented by the Chengjiang fauna
(Vannier et al. 2007, 2009). Perhaps more importantly,
the abundant millimetre-scale tubular fossils in the
Kuanchuanpu fauna at least superficially resemble
the terminal Ediacaran tubular ecosystem (Fedonkin
et al. 2007; Yang et al. 2016).

Here we describe a three-dimensionally preserved
tubular microfossil–Feiyanella manica gen. et sp.
nov.–from the lower Cambrian Kuanchuanpu Forma-
tion, Shaanxi Province, South China. It exhibits sim-
ilar funnel-in-funnel tube construction to the late Edi-
acaran tubular fossil Cloudina (Hua et al. 2005), and
also shows broadly comparable dichotomous branch-
ing features posited to indicate asexual reproduction.
Further, it shows a similar wrinkled/folded tube wall
exterior comparable to that of Sinotubulites (Chen
et al. 2008; Cai et al. 2015). This newly described
organism may therefore provide an important palaeo-
biological and palaeoecological link between tubular
fossils in the latest Ediacaran Period and earliest Cam-
brian Period.

2. Stratigraphic setting, fossil material and methods

The specimens described here were recovered from
Bed 31 of the lower Cambrian Kuanchuanpu Form-
ation (Fortunian Stage, Terreneuvian Series) at the
Shizhonggou section of Ningqiang County, and Bed 2
at the Zhangjiagou section, Xixiang, Shaanxi Province,
South China. The Ningqiang and Xixiang areas were
palaeogeographically located on the northwestern mar-

gin of the Yangtze Platform during Ediacaran and
Cambrian times. The fossil-bearing beds belong to
the classic Anabarites trisulcatus – Protohertzina ana-
barica small shelly fossil biozone, indicating a strati-
graphic equivalent of the Nemakit–Daldynian interval
in Siberia (Steiner et al. 2004a).

Insoluble phosphatized fossils were liberated from
the phosphatic limestone using 10% acetic acid di-
gestion. A Hyolithellus sp. specimen (ELIXX35-465)
and a well-preserved specimen of Feiyanella manica
gen. et sp. nov. (ELISN141-14) were imaged by
scanning electron microscopy (SEM) (Fig. 1), and
ELISN141-14 was three-dimensionally analysed using
Synchrotron radiation X-ray tomographic microscopy
(SRXTM) at SPring-8 in Hyogo, Japan (Figs 2–4). The
3D reconstructions of X-ray data were processed using
VG Studio 2.2 Max, allowing us to document interior
anatomic details of the tube structure. All specimens
are reposited at the Early Life Institute (ELI), Northw-
est University, Xi’an, China.

3. Systematic palaeontology

Incertae sedis
Genus Feiyanella new genus

Type species. Feiyanella manica new species, by
monotypy

Diagnosis.Minute, multi-layered sub-cylindrical fossil
tube consisting of a number of nested funnel-shaped
layers. Outermost layer strongly wrinkled/folded, inner
layers ornamented with weaker transverse annulations.
Tube exhibits two orders of dichotomous branching,
forming three generations of tubes. Parent tube lay-
ers are fully nested in the preserved length, whereas
daughter and granddaughter tube layers are partially
stacked/overlapped.

Feiyanella manica gen. et sp. nov.
Figures 1–5

Etymology. Feiyan (Feiyan Zhao), an ancient Chinese
beauty famous for her slender build, similar to the
slight gross appearance of the tube; manica, Latin, re-
ferring to the wrinkled outermost layer of the tube that
resembles a folded shirt sleeve.

Holotype. ELISN141-14.

Type locality and horizon. The Shizhonggou section
in Ningqiang County, Shaanxi Province, South China.
Lower Cambrian Kuanchuanpu Formation (Fortunian
Stage).

4. Description

The holotype specimen of Feiyanella manica gen. et
sp. nov. (ELISN141-14) is three-dimensionally pre-
served through authigenic phosphatization. The fossil
is incomplete (Fig. 1a), with both apical and apertural

Incertae sedis
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Figure 1. Secondary electron photomicrographs of Feiyanella manica gen. et sp. nov. (a–d) and Hyolithellus sp. (e). Fossils were
recovered from the basal Cambrian Kuanchuanpu Formation at the Shizhonggou (a–d; Ningqiang County) and the Zhangjiagou (e;
Xixiang County) sections. (a) Holotype specimen (ELISN141-14). Exterior view of the tube. (b) and (c) are enlarged views of the apical
and apertural part, respectively. (d) is close up of (c). The tube is generally conical in shape, with the apical end (lower left) slightly
tapering and the apertural end flaring (upper right) (a). The outermost layer of the tube is ornamented with transverse corrugations (b).
Two daughter tubes (D1 and D2) and two granddaughter tubes (G1 and G2) can be seen in apertural fracture (c–d). (e) Hyolithellus
sp. (ELIXX35-465). Abbreviations: P – parent tube; D – daughter tube; G – granddaughter tube. One parent tube (P1), two daughter
tubes (D1 and D2) and three granddaughter tubes (G1, G2, and G3) are identified. Numberings suffixed P1, D1, D2, G1, G2 and G3
represent layers of walls in the parent, daughter and granddaughter tubes, respectively.

ends not intact (Fig. 1b–d). The preserved portion of
the tube is roughly conical and gently curved (Fig. 1a).
The apertural end flares with three slightly divergent,
concentric sub-units (Fig. 1a, c, d). The tube is multi-
layered and nested, composed of a number of stacked
layers with varying overlap (Figs 1–5). The outermost
layer of the tube is corrugated with closely spaced
transverse ridges, showing stronger folds or wrinkles
(Figs 1a, b, 2a–d, 3a–c). Only weaker transverse annu-
lations can be seen in inner layers (Fig. 4b–l). SRXTM
analysis reveals that three units of tube layers with un-
ambiguously different lengths and diameters can be
identified in the holotype specimen. Although these
three sets of tubes are of quite different sizes, they
all show the funnel-in-funnel tube construction. They
are here interpreted as representing three generations
– namely the parent, the daughter and the granddaugh-
ter tubes, respectively – which are described separately
below.

4.a. Parent tube

The parent tube is sub-cylindrical in gross morpho-
logy, with the apertural end slightly flaring. It consists,
from exterior to interior, of four nested funnel-shaped
layers (the outermost four layers of the tube of Feiy-
anella, marked with P1-1, P1-2, P1-3, P1-4 in all
figures). The preserved length of the parent tube is
c. 1379 µm (= the length of the longest third layer;
P1-3). The four layers of funnels, ranging from 193
to 304 µm in diameter, are fully stacked and over-
lapped, reminiscent of the ‘tube-in-tube’ construction
of late Ediacaran tubular fossil Sinotubulites (Cai et
al. 2015). The first layer (P1-1) is strongly wrinkled
and/or folded, forming stronger, closely spaced, irreg-
ular, transverse corrugations on the exterior surface of
the tube (Fig. 1a, b), strongly distinct from those on the
inner layers. Transverse corrugations often bear a few
secondary transverse irregular folds (Fig. 1b), which
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Figure 2. SRXTM virtual sections of the holotype specimen (ELISN141-14) of Feiyanella manica gen. et sp. nov. (a–d) Vertical
bisections of the entire specimen; (e–m) transverse sections. Positions of the sections are indicated in (a). Abbreviations: St – soft
tissue. For all other abbreviations, see Figure 1. Scale bars: 350 μm for (a–d) and 60 μm for (e–m).

form complex exterior corrugations and make this
layer appear to be much thicker than any other layers
(Figs 2a–d, 3b, c). The notably stronger corrugation
on the outermost layer of Feiyanella is a diagnostic
feature characterizing this taxon. The second, third and
fourth parent layers (P1-2–P1-4) share a similar mor-
phology with the first layer. However, layers P1-2–P1-4
are ornamented with weaker transverse annulations

(Fig. 4b–d), quite different from those in layer P1-1.
The second parent layer is c. 120 and c. 259 µm in
minimum and maximum diameters, respectively. The
third parent layer (P1-3) is the longest one (1379 µm)
in the preserved specimen (Fig. 4c). The fourth parent
layer is obviously shorter (631 µm) and smaller (77
and 108 µm in minimum and maximum diameters)
than the other three parent funnels (Fig. 4d).
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Figure 3. SRXTM reconstructions of the holotype specimen (ELISN141-14) of Feiyanella manica gen. et sp. nov. (a) External view
of entire specimen; (b–c) vertical bisection of the specimen; (d–j) transverse sections. Positions of the sections are indicated in (c).
Abbreviations: see Figure 1. Scale bars: 250 μm for (a–c) and 60 μm bar (d–j).

4.b. Daughter tube

Two daughter tubes (denoted as D1 and D2 in all fig-
ures) are discernible at the apertural end of the tube
of Feiyanella (Figs 1c, 2, 3, 4), which extend from the
apertural opening of the fourth parent funnel (Fig. 4d).
The two daughter tubes stand side-by-side, and the out-
ermost funnel of each daughter tube appears nearly
cemented together (Fig. 2e). The daughter tubes con-
sist of a number of nested, funnel-shaped layers, shar-
ing similarities in tube wall morphology and nesting
patterns with the parent tube. The two daughter tubes
are not equal in size. The larger one (D1) consists
of two tube wall layers (Fig. 2f) and is irregular in
cross-section (Fig. 2e–g). The two layers (D1-1 and
D1-2) are only situated in the apertural part of Feiy-
anella. Its width increases greatly towards the aper-
tural end (Fig. 4a–d). The smaller daughter tube (D2)
is composed of seven tube wall layers (D2-1–D2-7 in

Figs 2d–j, 3b–c, 4d–f). In contrast, ornamentations on
the daughter funnels are noticeably diminished, with
closely spaced transverse annulations but without com-
plicated corrugations (e.g. funnel D2-1), as compared
to the parent funnels.

4.c. Granddaughter tube

Four granddaughter tubes are identified in Feiyanella:
two (G1 and G2) originated from the larger daughter
tube (D1) and the other two (G3 and G4) from the
smaller daughter tube (D2). The granddaughter tubes
G1 and G2 are situated at the upper half of the pre-
served parent tube (Fig. 3b, c), whereas G3 and G4
are at the apertural end (Figs 2e, 3d). Morphological
details of G3 and G4 are very limited, as they can
only be identified in cross-sections near the apertural
end of the tube (Figs 2e, 3d). Granddaughter tubes G1
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Figure 4. SRXTM reconstruction of the holotype specimen (ELISN141-14) of Feiyanella manica gen. et sp. nov. Different tube layers
are in different colours. The outer layers are stepwise removed (from a–l) to expose the inner layers. Abbreviations: see Figure 1. Scale
bars: 400 μm for (a–d) and 150 μm for (e–l).

and G2 are deeply nested into the daughter tube D1
(located at the middle to apertural portion of the parent
tube; Fig. 2e–k). G1 and G2 are more or less equal in
size (c. 39 µm). Notably, the splitting plane along the
tube between the two granddaughter tubes G1 and G2
is orientated perpendicular to the splitting plane of the
daughter tubes (Figs 2e, 5). G1 contains two layers of
funnels (G1-1 and G1-2) and G2 has three layers (G2-
1–G2-3) (Fig. 4d–i). The innermost layer of the grand-

daughter tube G2 (G2-3) displays four lobes separated
by four longitudinal furrows in cross-section (Figs 2i,
j, 3g). This tetraradial symmetry only occurs at the ap-
ical end, and traverses approximately one-fourth of the
granddaughter tube G2 (Fig. 4g–i). A spindle-shaped
structure was preserved in the innermost funnel of
the granddaughter tube G1 (denoted as St in Figs 2b,
h, i, 3g, 4g). It is situated in the central portion of
the granddaughter tube G1 and is oval (Fig. 2h, i)
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Figure 5. (Colour online) Schematic drawing of the cross-section of Feiyanella manica gen. et sp. nov. illustrating growth patterns
between parent, daughter and granddaughter tubes. Note the orthogonal splitting planes between daughter (rightward arrow) and
granddaughter (upward arrow) tubes. Abbreviations: see Figure 1.

in cross-section. The spindle exhibits a bright phase
under SRXTM observation, c. 39 µm in diameter and
188 µm in length, occupying nearly one-third of the
full length of granddaughter tube G1 (Fig. 4g).

5. Discussion

The incomplete preservation of the Feiyanella tube
leaves uncertainties as to its full morphology and nest-
ing patterns of the parent layers. Two overlapping pat-
terns can be identified from the preserved portion,
however: the outer parent tube layers (P1-1–P1-4)
fully overlap (Fig. 4a–d), whereas all of the other in-
ner tube layers only partially overlap (Fig. 4d–l). Two
contrasting degrees of ornamentation are observed in
Feiyanella: the outer parent tube layers (P1-1–P1-4)
are visibly folded/wrinkled and form stronger trans-
verse and/or slightly oblique corrugations (Fig. 4a–d),
whereas all of the other inner tube layers are ornamen-
ted with weaker transverse annulations (Fig. 4d–l). The
outermost layer of the tube in particular shows strongly
folded/wrinkled corrugations (Figs 1a, b, 3a, 4a), mak-
ing this layer appear much thicker (Figs 2a–d, 3b–
c). With regard to nesting, although the four funnel-
shaped parent layers (P1-1–P1-4) are completely nes-
ted in the preserved portion of the Feiyanella tube, it

is uncertain whether their full morphology is funnel-
shaped and whether they are fully or partially stacked.

As an Örsten-type Lagerstätte, the Kuanchuanpu
Formation biota is characterized by the selective pre-
servation of refractory cuticular tissues of meiofauna
(see review in Schiffbauer et al. 2014) and only
fragments of larger organisms (i.e. putative grasping
spines of Protohertzina anabarica; see Steiner et al.
2004a). However, Feiyanella was not likely a frag-
ment of a more complex organism: for example, an
appendage of an annelid or ecdysozoan (panarthropod
cycloneuralian). Several lines of evidence are sum-
marized here: (1) Both annelids and ecdysozoans have
a cuticularized integument overlying the epidermis,
particularly a tri-layered cuticle (epi-, exo- and endoc-
uticles) in cycloneuralians (Bereiter-Hahn, Matoltsy
& Richards, 1984; Peterson & Eernisse, 2001). The
appendages of these animals, if fossilized, would not
be preserved as loosely multi-layered, funnel-in-funnel
structures. (2) The cuticle of a complex organism
usually bears complex ornaments, such as sensory
organs, chaetae, glands, scalids and net-like structures.
These ornaments are absent in Feiyanella. (3) The
branched, segmented appendages in arthropods differ
from the unsegmented funnel of Feiyanella. (4) The
parapodium of annelids, although varying among
species, tapers apparently towards one end, in visible
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contrast with the sub-cylindrical shape of Feiyan-
ella. (5) Some species of cycloneuralians (Liu et al.
2014b; Zhang et al. 2015) have been discovered from
the Kuanchuanpu Formation. These fossils, together
with a large number of specimens in our collection,
collectively exhibit specific cuticle ornaments that
are markedly different from Feiyanella. In addition,
the integument of the cycloneuralian fossils is pre-
served as a single layer. In short, the characteristic
multi-layered, funnel-in-funnel structure of Feiyanella
is more appropriately interpreted as a dwelling tube
of an organism, comparable to those known from the
upper Ediacaran (e.g. Hua, Pratt & Zhang, 2003; Cai
et al. 2011, 2014, 2015), rather than a body fragment
of a larger complex organism.

Feiyanella is distinct from other early Cambrian
tubular fossils, i.e. Hyolithelminths, Byronia and
Sphenothallus. Hyolithelminths, a problematic group
of mineralized tubular fossils characterized by more
or less regular annulations or growth lines (Bengtson,
et al. 1990; Li, 2004), exhibit a multi-laminated tube
wall, and in some species, a cone-in-cone structure
(see Kouchinsky et al. 2015, fig. 67). However, the
micro-laminations of the tube wall are closely ce-
mented together and each lamella (in some species)
is composed of fine fibres (i.e. Bengtson et al. 1990;
Vinn, 2006; Skovsted & Peel, 2011). Hyolithellus
from the Kuanchuanpu Formation – a common ele-
ment in the Kuanchuanpu Formation in the Xixiang
and Ningqiang areas Steiner et al. (2004a) – is an-
other tubular fossil sharing a similar morphology with
Feiyanella. But the tubes of Hyolithellus are much
larger in size (> 2 mm in length) than Feiyanella
and the exterior smooth surface bears a number of
wide-spaced circular grooves (Fig. 1e). In addition,
ellipse-shaped pores occasionally occur in the grooves,
which may be produced by soft tissue inside the tubes.
Hyolithellus may have been a more complex organism
(e.g. an annelid; Skovsted & Peel, 2011). The smooth
tube, transverse grooves and ellipse-shaped pores in-
dicate contrasting morphological and palaeobiological
relationships with Feiyanella.

Byronia, a sessile tube-dwelling organism charac-
terized by a lenticular cross-section and a deep split
along the broader end (Bengtson et al. 1990), dif-
fers from Feiyanella in its wide-spaced transverse
ridges and longitudinal ribs (see fig. 6 in Skovsted
& Peel, 2011) that resemble the peridermal tube of
olivooids (e.g. Olivooides and Quadrapyrgites; Liu
et al. 2014a; Steiner et al. 2014) from the Kuan-
chuanpu Formation. Both Byronia and olivooids have
been proposed to have close affinities with thecate
medusozoans in the phylum Cnidaria (see Bengtson
et al. 1990; Zhu et al. 2000; Dong et al. 2013; Han
et al. 2016b).

Sphenothallus, a cone-shaped tube characterized by
a more or less elliptical cross-section and a basal hold-
fast and proposed as a thecate medusozoan (Van Iten,
Cox &Mapes, 1992; Zhu et al. 2000; Li, 2004), differs
from Feiyanella in its finely laminated and cemented

tube wall consisting of alternating apatite and organic
laminae.

Instead, Feiyanella shares similarities in tube mor-
phology and construction with some late Ediacaran
tubular fossils, including Cloudina (Hua et al. 2005;
Cortijo et al. 2010, 2015), Conotubus (Cai et al. 2011)
and Sinotubulites (Chen et al. 2008; Cai et al. 2015).
Each of these taxa shows a nested tube construction,
cylindrical or oval-shaped cross-section and the ab-
sence of transverse internal structures such as septae
or tabulae.

The perceived nesting pattern and the wrinkled tube-
wall features of the parent layers (particularly P1-1) of
Feiyanella are visibly similar to those of Sinotubulites
(Cai et al. 2015). This may indicate that the parent
layers of Feiyanella fully overlap, which would thus
be comparable to the nesting patterns of Sinotubulites.
On the other hand, the funnel-shaped tube layers of
Feiyanella are strikingly similar to those of Cloudina
(Hua, Pratt & Zhang, 2003; Hua et al. 2005; Cortijo
et al. 2010) and Conotubus (Cai et al. 2011). Further-
more, the dichotomous branching of Feiyanella, which
is most likely indicative of an asexual reproduction
strategy, is also comparable to that of Cloudina (Hua
et al. 2005; Cortijo et al. 2010, 2015).

While similar, Feiyanella also shows distinct dif-
ferences from Cloudina, Conotubus and Sinotubulites.
First, as compared to Sinotubulites, Feiyanella differs
in tube layer morphology and overlapping patterns:
Feiyanella is composed exclusively of funnel-shaped
layers with partial overlap between adjacent layers (ex-
cept for those of the parent funnels), whereas Sinotu-
bulites is composed exclusively of cylinder-shaped lay-
ers with full overlap between two adjacent layers. The
funnels of Feiyanella differ from the funnels of Cloud-
ina and Conotubus in that the former lacks thickened
rims on the apical and apertural ends of the fun-
nels (Hua et al. 2005; Cortijo et al. 2010; Cai et al.
2011). In addition, Feiyanella differs from Cloudina
in the manner of asexual reproduction. Cloudina is
characterized by two manners of asexual reproduction
strategies: dichotomous branching of daughter tubes
in the same parent tube (see fig. 1L of Hua et al.
2005 and fig. 8 of Cortijo et al. 2010, 2015) and bud-
ding of a daughter tube between two adjacent funnels
(see fig. 1P of Hua et al. 2005). Feiyanella, however,
displays a pattern of multiple-ordered dichotomous
branching of the younger generation of tubes within
the older generation tubes.

Most broadly, Feiyanella shares similarities in the
tube morphology, nesting patterns and presence of
asexual reproduction strategies with Cloudina, and in
the corrugation and nesting patterns of outer layers
with Sinotubulites. Considering its similarities with
Cloudina (Cai et al. 2014) and Conotubus (Cai et al.
2011), Feiyanella is thus interpreted as a sessile organ-
ism with periodic growth by secretion of new funnels
within the older funnels (Grant, 1990), with the animal
presumed to have lived within the innermost, most
recently secreted funnel (Cortijo et al. 2010). The tube
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of Feiyanella is hollow, indicating the soft tissue of
the organism likely was able to move up and down
within the tube, rather than being fixed within an
isolated chamber. Although the full morphology of
the tube is unknown, the apical end may have been
closed, comparable to the basally closed apical end of
Cloudina (Cortijo et al. 2015).

6. Zoological affinities and evolutionary implications

Together, Cloudina, Conotubus, Sinotubulites and
Feiyanella may constitute a monophyletic group, as
they are morphologically quite different from other
Ediacaran and Cambrian tubular fossils (see summary
in Cai et al. 2011; Cai, Hua & Zhang, 2013). The zo-
ological placement of these Cloudina-type organisms,
however, has been controversial. For example, Cloud-
ina has been compared with both serpulid annelids
(e.g. Glaessner, 1976; Hua et al. 2005) and cnidarians
(e.g. Vinn & Zaton, 2012; Van Iten et al. 2014); the
lack of preserved soft tissues in these fossils hinders
convincing establishment of a palaeobiological inter-
pretation.

While not reported in any other similar fossils, the
spindle-shaped structure reported here in the inner-
most funnel of the granddaughter tube G1 may help
provide a clue for phylogenetic placement of Feiyan-
ella and, by extension, potentially other Cloudina-type
organisms. This structure is three-dimensionally rep-
licated by phosphate minerals, and its spindle-shaped
morphology and massive size compared to the tube
volume does not support an interpretation of an incom-
pletely preserved funnel or other mineralized struc-
ture. Instead, we suggest that the spindle-shaped mass
may be the phosphatized remains of the long-awaited
tube dweller. Although it is difficult to depict the
full morphology of the soft tissue inside the hol-
low tube, this spindle-shaped structure may repres-
ent the degraded organic remains of the organism that
lived within these tubes. This interpretation is consist-
ent with the morphological and palaeoecological re-
construction in Conotubus and Cloudina (Cai et al.
2011, 2014); they all possess hollow tubes which al-
lowed for the tube dwellers to move up and down
freely. This interpretation is also in accordance with
the periodic growth of the tubes; the funnels were
not simultaneously secreted by the soft issue, but
instead were episodically secreted in the innermost
layers.

A cnidarian planula interpretation for Feiyanella is
largely compatible, and can be supported by several
lines of evidence: (1) The asexual reproduction by lon-
gitudinal and transverse fissions of the soft body is
more popular in extant cnidarians than in bilaterians.
In addition, transverse fission has been reported from
the sea-anemone-like cnidarians in the lower Cambrian
Kuanchuanpu Formation in South China (Han et al.
2010). (2) The corrugated outermost layer of the tube
broadly resembles the periderm of medusozoan polyps
(Werner, 1973; Jarms, 1991). (3) The four-lobed mor-

phology seen in granddaughter tube G2 of Feiyanella
shows symmetry comparable to another coeval fossil,
Carinachites spinatus Qian, 1977 (Qian, 1977; Con-
way Morris & Chen, 1992) – a Cambrian meduso-
zoan with a phosphatized skeleton showing triradial,
tetraradial and pentaradial symmetries (Conway Mor-
ris & Chen, 1992; Qian et al. 1997; Liu et al. 2011).
(4) A colonial life habit proposed for Feiyanella is
common in cnidarian hydropolyps (Hyman, 1940) (5)
The funnel-in-funnel tube architecture of Feiyanella
has also been observed in a few hydrotheca (e.g. Ser-
tularelia quadrata; plates 15 and 16 of Nutting, 1900).
(6) The proposed closed apical end of Feiyanella is
compatible with a cnidarian body plan, but inconveni-
ent for defecating of a bilateral worm with a through
gut.

The ontogeny of Feiyanella indicates a possible
transition from cylindrical radial symmetry to tetrara-
dial symmetry. A similar transition from cylindrical
radial symmetry to triradial symmetry was observed
from a coeval fossil, Anabarites, which is also an early
Cambrian tubular small shelly fossil suspected to be a
cnidarian (Kouchinsky et al. 2009).

It is well known that Cambrian communities are
quite different from those of the Ediacaran Period.
Cambrian communities, exemplified by the Chengji-
ang and Burgess Shale biotas, are characterized by a
complex food web with diverse types of feeding beha-
viours (Vannier et al. 2007; Hou, Siveter & Aldridge,
2008) and complex reproduction strategies (Duan
et al. 2014; Caron & Vannier, 2015) similar to modern
ocean ecosystems. Ediacaran communities, however,
were instead comprised of slow creeping mat feeders
and sessile benthic suspension feeders and/or osmo-
trophic feeders (e.g. Fedonkin et al. 2007; Laflamme,
Xiao & Kowalewski, 2009; Rahman et al. 2015; Wood
& Curtis, 2015). Although the early Cambrian small
shelly fossil community – exemplified by the Kuan-
chuanpu Formation organisms – contains mat feeders
(molluscs) (Qian & Bengtson, 1989) and microscopic
predators (cycloneurians) (Liu et al. 2014b; Zhang
et al. 2015), this ecosystem was characterized by a
high richness and diversity of sessile organisms (i.e.
predominantly cnidarians). Although a zoological
placement remains unresolved, Feiyanella represents
a Cambrian relict containing significant similarities
in tube morphology, tube construction and repro-
duction strategy to some terminal Ediacaran tubular
fossils (e.g. Cloudina, Conotubus and Sinotubulites).
The early Cambrian small shelly fossil community
revealed in the Kuanchuanpu Formation exhibits
palaeobiological and palaeoecological features seem-
ingly intermixed between both late Ediacaran and
early Cambrian faunas. As such, it may support the
notion that the late Ediacaran tubular biotas and their
descendants represent important elements in a broader
evolutionary prelude of the Cambrian explosion (Shu
et al. 2014; Schiffbauer et al. 2016), rather than dis-
appearing from the fossil record in an end-Ediacaran
extinction (Smith et al. 2016).
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7. Conclusions

The early Cambrian tubular fossil Feiyanella manica
gen. et sp. nov. shares morphological similarities with
the late Ediacaran tubular fossils Cloudina, Conotubus
and Sinotubulites. Together, these tubular organisms
may constitute a monophyletic group in the late Edi-
acaran through early Cambrian periods. The ‘funnel-
in-funnel’ tube construction and the two-ordered di-
chotomous branching of Feiyanella manica gen. et sp.
nov. are all comparable to those reported in Cloud-
ina. The strongly corrugated outermost funnel and
the gradational variations in the degrees of folding
and/or wrinkling from exterior to interior tube lay-
ers of Feiyanella manica gen. et sp. nov. resembles
those of Sinotubulites. Feiyanella thus embraces evol-
utionary continuity of typical late Ediacaran ‘funnel-
in-funnel’ tube construction (exemplified by Cloudina
and Conotubus), asexual reproduction by dichotomous
branching of the tube (exemplified by Cloudina) and
a gradational decrease in degrees of wrinkles and/or
ornamentation from exterior to interior layers (exem-
plified by Sinotubulites). These continuities provide
pivotal palaeobiological and palaeoecological insights
into our understanding of the evolutionary history of
the Ediacaran–Cambrian transition.
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Abstract.—The early Cambrian Carinachitidae, a family in the subclass Conulata, are intriguing and important small
shelly fossils. Their gently tapering, tube-shaped skeletons consist of convex faces separated from each other by
broad, deep corner sulci, and they exhibit triradial, pentaradial, or predominantly tetraradial symmetry. However, the
morphology of the aperture and the modes of growth of carinachitid skeletons as well as the anatomy of their soft
parts are unknown. Examination of a single new, exceptionally well-preserved specimen of tetramerous Carinachites
spinatus Qian, 1977, collected from the lower Cambrian Kuanchuanpu Formation in South China, reveals: (1) that its
aperture is connected to a small mass of relic soft tissue and (2) that the apertural end of each of the four faces is
developed into a subtriangular lappet or oral lobe that is smoothly folded toward the long axis of the tube, partially
closing the tube aperture. Similarities between thorn-like spines on the faces and the oral lobes indicate that the
transverse ribs were periodically displaced from the perradial portion of the aperture during formation of new ribs.
In addition, the tube walls may have undergone secondary thickening during growth. The growth pattern of the tube
and the spatial relationships between the tube aperture and soft parts are analogous to those of co-occurring olivooids.
These findings further strengthen the previously proposed hypothesis that coeval carinachitids, olivooids,
hexangulaconulariids, and Paleozoic conulariids are closely related taxa within the subphylum Medusozoa. Finally,
carinachitids most likely represent an evolutionary intermediate between olivooids and hexangulaconulariids.

Introduction

The abrupt appearance of diverse small shelly fossils (SSFs)
during the earliest Cambrian signals the initial stages of the
Cambrian explosion (G. Li et al., 2007; Maloof et al., 2010).
It therefore seems axiomatic that SSFs are of great importance
for understanding the early rise of metazoan phyla and the
origins of animal skeletogeny. Paleoecological reconstruction
of SSF communities is a challenging task as the majority of
SSFs are fragmentary or consist of isolated sclerites. A critical
exception to this rule is the set of phosphatic SSFs in
Orsten-type Lagerstätten, for example the Kuanchuanpu Biota
in South China (ca. 535 Ma), which together have the potential
to provide unique insights into the nature and significance of
these fossils thanks to their high potential for exceptional pre-
servation of both hard parts and soft tissues.

Carinachitids are an important component of early
Cambrian SSFs in South China (Conway Morris and Chen,
1992). Their gently conical skeletal tubes exhibit several (three

to five) transversely ribbed faces separated from each other by
wide and deep corner sulci that usually bear fine transverse
wrinkles (tw) (Fig. 1). To date, three genera and six species of
carinachitids—Emeiconularia trigemmeQian in Qian et al., 1997;
E. amplicanalis Liu et al., 2005 (Fig. 1.1); Pentaconularia
ningqiangensis Liu et al., 2011 (Fig. 2); Carinachites spinatus
Qian, 1977 (Figs. 3–5); C. tetrasulcatus Jiang in Luo et al., 1982;
and C. curvatornatus Chen, 1982—have been reported from the
Kuanchuanpu Formation and equivalent horizons in South China
(Qian, 1977; He, 1987; Conway Morris and Chen, 1992; Qian
et al., 1997; Liu et al., 2005, 2011). These fossils collectively
exhibit tri-, tetra-, or pentaradial symmetry in transverse sections
(Liu et al., 2011), and these symmetries may have arisen inde-
pendently in different lineages (Han et al., 2016a, b). In addition,
the tube wall appears to have been flexible and composed of
organic material and/or calcium phosphate (Conway Morris and
Chen, 1992; Qian et al., 1999).

Carinachitids, together with co-occurring hexangulaconular-
iids (Yue and Bengtson, 1999; Van Iten et al., 2010) and olivooids
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(see Steiner et al., 2014), have been assigned to the order
Conulariida of the subclass Conulata (He, 1987; Qian et al., 1999).
Because carinachitids and hexangulaconulariids are very small
(<5mm long) and lack the facial midline and carina typical of
many Ordovician and younger conulariids, they have been
classified as protoconulariids (Qian et al., 1999). The zoological
affinities of Conulata have been controversial (Babcock et al.,

1986; Brood, 1995), but the group is now generally assigned to the
subphylum Medusozoa of the phylum Cnidaria (Bengtson and
Yue, 1997; Van Iten et al., 2006, 2010, 2014). Phylogenetic
relationships among protoconulariids remain poorly understood as
all previously collected specimens of carinachitids lack both the
apical and apertural regions, and thus their complete morphology
and growth patterns are unknown. Here we describe a tetramerous

Figure 1. Carinachitids from the lower Cambrian Kuanchuanpu Formation in South China. (1) Triradiate Emeiconularia amplicanalis Liu et al., 2005.
(2) Pentamerous Pentaconularia ningqiangensis Liu et al., 2011. (1, 2) Courtesy of Y.H. Liu. (3–6) Tetraradiate Carinachites spinatus Qian, 1977. (3, 4)
ELISN93-157, showing the displacement between neighboring arcuate ribs, which are connected in the middle by striations. Both the faces and ribs widen
slightly toward the apertural end of the skeleton. (5) ELISN93-45. (6–12) ELISN148-52. (6, 7) Lateral view of the tube. (8, 9) Close-up of the tube aperture
shows one of the plicate apertural lobes being elevated above the others. (10) The elevated, plicate apertural lobes with converging striated folds. (11) Single
plicate apertural lobe with converging striated folds and the corner sulci with parallel striations. (12) Close-up of (11) showing secondary cracks on the striated
surface. IR = interradius; PR = perradius; cs = corner sulci; pal = plicate apertural lobes; st = striations; tr = transverse ribs; ts = thorn-like spines.
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Figure 2. Micro-CT reconstruction of specimen ELISN148-52. (1a–1e) lateral view; (1f, 1g) oral view of the virtual cross sections. The sagittal positions of
(1a–1e) are indicated respectively by ‘1a,’ ‘1b,’ ‘1c,’ ‘1d,’ ‘1e,’ and ‘1f’ in (1f, 1g). The horizontal levels of (1f, 1g) are respectively indicated by ‘1f’ and ‘1g’ in
(1a–1f). White arrows indicate double-layered tube wall. cs = corner sulcus; fa = face; mmf = microbial-mediated filaments; pal = plicate apertural lobes;
st = soft tissue; ts = thorn-like spines; PR = perradius; IR = interradius.

Figure 3. Cross sections and proposed orientation of the main radial symmetry planes in Cambrian carinachitids. (1, 2) Inferred triradial symmetry in
Emeiconularia; (1) E. amplicanalis; (2) Emeiconularia trigemme with thickened faces sensu Qian et al., 1999; (3) tetraradial symmetry in Carinachites;
(4) pentaradial symmetry in Pentaconularia (Modified from Liu et al., 2011). cs = corner sulcus; fa = face; st = soft tissue; tb = tube; PR = perradius;
IR = interradius.
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specimen of Carinachites spinatus that preserves the tube
aperture. This specimen provides critical new insights into the
morphology, systematic classification, and paleoautecology of
carinachitids.

Materials and methods

Specimens of Carinachites spinatus were obtained from
samples of phosphatic limestone collected from the Kuan-
chuanpu Formation in southern Shaanxi Province, South China,
and digested in 10% acetic acid. Specimens ELISN148-52,
ELISN93-45, ELISN93-157, ELISN19-20, ELISN23-240,
and ELISN12-154 come from the Shizhonggou section in
Ningqiang County, while specimen XX30-127 is from the
Yangjiagou section in Xixiang County (for localities, see
Steiner et al., 2007, fig.1). All specimens were coated with gold
and then imaged using an FEI Quanta 400 FEG scanning
electron microscope (SEM). Micro-CT data for specimen

ELISN148-52 were acquired at the Tohoku University (Fig. 2)
and were processed using VG Studio 2.2 Max for 3D recon-
structions. The terminology used herein mostly follows that of
Conway Morris and Chen (1992), Van Iten (1992a), and Han
et al., 2016a.

Repository and institutional abbreviation.—The figured speci-
mens in this study are housed in the Early Life Institute (ELI),
Northwest University, Xi’an, China.

Results

Tube morphology of Carinachites spinatus.—Carinachitids are
abundantly represented by tetramerous C. spinatusQian 1977 in
the Kuanchuanpu Formation in the Shizhonggou section in
Shaanxi Province. The tube of this species exhibits four
prominent, equidimensional convex faces separated from each
other by deep corner sulci (Figs. 1.3–1.6, 2.6). Each face usually
bears a longitudinal series of arcuate transverse ribs that range in
shape from simple welts to more complex folds (ConwayMorris
and Chen, 1992). The distance between adjacent ribs increases
slightly toward the wide or oral end of the tube (Fig. 1.3). Near
the facial midline, the region between any two adjacent ribs
exhibits several, mutually parallel or irregular, longitudinal
striated folds that in most cases are separated from each other by
an inconspicuous shallow groove (Fig. 1.4).

The transverse ribs in some specimens are arcuate near the
distal end and as wide as the faces (Fig. 1.3, 1.4), while in other
specimens the ribs consist of a prominent, sharp, thorn-like
spine (ts) such as those exhibited by specimens ELISN93-45
(Fig. 1.5) and ELISN148-52 (Fig. 1.6). The ribs on any two
neighboring faces usually are located at the same levels above
the apex, but some ribs exhibit longitudinal offset (Fig. 1.3, 1.4)
(Conway Morris and Chen, 1992). In addition, the ribs of some
specimens are offset along the facial midline (Conway Morris
and Chen, 1992, fig. 6.1).

Figure 4. 3D reconstructions of Cambrian carinachitids with a hypothetical
apical tip. (1–3) Lateral, oblique, and oral views, respectively, of
Emeiconularia; (4–6) lateral, oblique, and oral views, respectively, of
Carinachites spinatus; (7–9) lateral, oblique, and oral views, respectively,
of Pentaconularia.

Figure 5. Peridermal tube of Olivooides multisulcatus from the Cambrian
Kuanchuanpu Formation in South China. (1) Specimen ELISN19-20, aboral
view showing five longitudinal rows of plicate corners (pc); (2–4) XX30-127.
Oral view of the specimen. (2) Tube aperture with five plicate lobes (pl);
(3) close-up of (2). (4) Diagnostic stellate ornament of the aboral ends.
PR = perradii; IR = interradii.

4 Journal of Paleontology



The apertural region, preserved only in the relatively
large specimen ELISN148-52, is superficially dome-shaped
(Fig. 1.6–1.9). The maximum diameter of the tube is
approximately 1.3mm, but near its apertural end the tube tapers
rapidly, with the faces curving smoothly toward the longitudinal
axis of the tube and becoming more or less perpendicular to it.
Close to the longitudinal axis, the faces and intervening corner
sulci are inclined toward the aboral end of the tube (Fig. 1.6, 1.7,
1.9). Present on each face, at the summit of the aperture, is a
triangular tongue-shaped structure, and the distal ends of the
faces almost meet near the longitudinal axis of the tube, leaving
just a narrow central opening. One of the tongue-shaped
structures projects much farther than the others beyond the
aperture (Fig. 1.6). The tongue-shaped structures are not flat
features but rather fold-like structures having two main, arched
sides separated by two flanks. For this reason, we term the
tongue-shaped structures ‘plicate apertural lobes’ (pal). The
vertical abapertural side of the apertural lobes extends far into
the apertural opening and exhibits a medial subtriangular groove
bordered by two elevated flanks (Fig. 1.8, 1.9). The abapertural
side is either flat or outwardly convex with a central ridge, and
there are many longitudinal striations on the two sides. These
striations converge on the tip of the lobes, and there are some
oblique, irregular cracks on the striated surface (Fig. 1.11, 1.12).
Situated peripheral to the apertural lobes are four longitudinal
rows of nearly evenly spaced, nose-shaped, thorn-like spines
aligned along the lateral sides of the faces. In addition, the
distance between the apertural lobes and the marginal thorn-like
spines is approximately equal to the distance between adjacent
thorn-like spines. The adapertural side of the lobes, which is
more or less perpendicular to the lateral faces, is concave
aborally. The abapertural side, like the bridge of a nose, is
inclined at approximately 30º to the lateral faces. The four
corner sulci, which are substantially lower than the apertural
lobes, follow the inward foldings of the adjacent faces and
extend far into the tube cavity (Fig. 1.9). The external surface of
the sulci is highly and irregularly folded and exhibits fine
parallel striations. The summit of the four corner sulci is
evidently lower than that of the faces (Fig. 1.9). Clearly, then,
the tube aperture, including the inwardly folded portion, is a
smooth continuation of the faces and corner sulci.

Tube wall and internal anatomy.—Micro-CT observations
confirm the presence of a narrow apertural opening and the
continuation of the tube walls into the inwardly and down-
wardly folded apertural lobes (Fig. 2.1a–e). The tube wall
of carinachitids generally exhibits a prismatic inner layer of
uniform thickness and a granular outer layer that is much thinner
in the corner sulci than in the faces (e.g., Conway Morris and
Chen, 1992, fig. 8.19; Qian et al., 1997, plate 2, 1c, 3c; Liu et al.,
2005, plate 2, 1e, j; Liu et al., 2011, fig. 2f-g). The prismatic
layer originally was thought to consist of overgrowths of
diagenetic apatite, while the granular layer was thought to have
been originally organic but later replaced by diagenetic apatite
(Qian et al., 1999). Although we are mindful of possible
preservational artefacts, Micro-CT imaging revealed that the
thickness of the tube wall in specimen ELISN148-52 appears to
vary, and that the apertural walls are much thinner than the
lateral tube walls (Fig. 2.1a, 2.1c, 2.1e). High magnification

imaging revealed a single-layered wall in the apertural region
(Fig. 2.1c) and bilayered lateral tube walls (white arrows in
Fig. 2.1a, 2.1g). In addition, the facial walls are thicker than
those of the corner sulci (Fig. 2.1a, 2.1g). Finally, both the
thorn-like spines and the apertural lobes are hollow (Fig. 2.1b).

Present within the tube is a short, subcylindrical mass
measuring ~200 μm in diameter and 400 μm in length. The
upper part of this feature is in direct contact with the inward
folds of the faces and corner sulci (Fig. 2.1b–e), and it is
connected to the lateral tube wall by numerous fine, straight
filaments (mmf) (Fig. 2.1a–g). No additional details of the
subcylindrical mass can be discerned.

Discussion

Relic soft-tissue of Carinachites spinatus.—Similar fine
filaments commonly occur within associated fossils, including
poorly preserved Carinachites (Conway Morris and Chen,
1992, fig. 7.9–7.11), other tubular microfossils (e.g., Steiner
et al., 2014, figs. 7.21, 11.9, 11.12, 11.15), and egg envelopes
with partly decayed embryos (e.g., Steiner et al., 2014, fig. 4.6–
4.9). Because these internal filaments are generally interpreted
as microbial in origin and derived from partly decomposed soft
tissue (Yue and Bengtson, 1999), we interpret the subcylindrical
mass surrounded by these fine filaments in specimens of
C. spinatus as remains of soft tissue that underwent partial decay.

Relic soft tissue similar to that near the tube aperture of
Carinachites spinatus also is present in Hexaconularia (Steiner
et al., 2014, fig. 7.18),Olivooides (e.g., P. Li et al., 2007, fig. 4d;
Steiner et al., 2014, figs. 10.3, 11.6, 11.12, 11.15), and
Quadrapygites (e.g., Steiner et al., 2014, figs. 14.19, 15.13,
15.15). In addition, an intact, trumpet-shaped mass of relic soft
tissue consisting of an upper calyx and a slender basal stalk
extending to the aboral end has been documented in Olivooides
(see Steiner et al., 2014, fig. 12.7–12.10). The presence of relic
soft tissues in Olivooides embryos has been demonstrated
convincingly by the discovery of exceptionally well-preserved,
primary internal anatomy (Han et al., 2016b). All of these relic
soft-tissue structures are smaller in diameter than the surrounding
tube wall. Whether the soft tissues of Carinachites spinatus
reached the aboral end of the tube cannot be determined at present.

Growth of the tubes of Carinachites spinatus.—The thorn-like
spines on the transverse ribs of this taxon resemble the plicate
apertural lobes in many respects including shape, size, surface
ornament, spacing, and tip directions. Thus, it seems clear that
the spines and lobes are substantially the same kind of structure
and are simply located in different positions on the faces. The
tube aperture was a kind of extracellular matrix that was most
likely secreted by epithelial tissue at the oral end, as only in this
area was the tube in direct contact with the soft body. If this
hypothesis is correct, then one can make the following addi-
tional inferences: (1) the thorn-like spines most probably were
derived from the plicate lobes and not vice versa. Delimited by
the corner sulci, the transverse extension of the two flanks of the
plicate lobes may have undergone ontogenetic transformation
into the lateral face ribs. The abapertural groove of the plicate
lobes was transformed into the middle groove or the central
ridges between adjacent ribs. The converging striations on the
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plicate lobes are equivalent to the striated folds on the lateral
thorn-like spines. (2) The distance between neighboring ribs on
the same face is approximately equal to or less than the radius of
the tube aperture and the depth of the inward portion of the
plicate lobes. The displacement of the ribs reflects the dis-
placement of the segmented faces and the corner sulcus and thus
the migration of the entire tube aperture. (3) Following the
previous inward portion of tube aperture, new inward portion
skeleton was secreted by the epithelium of soft tissue at the oral
region. The new skeleton may have been primarily attached
with the epithelium, and afterward the new apertural parts may
have detached with the epithelium of the oral region and been
pushed onward and outward with centrifugal expansion, finally
being displaced to the lateral side of the tube and becoming the
lateral components of the lateral walls. (4) Periodic renewal of the
tube aperture necessarily led to orally addition of iterated ribs and
‘segmentation’ of the faces. Together, these processes reflect the
growth of the tube by apertural extension (Fig. 4.4–4.6).

The multiple thorn-like spines on specimens ELISN93-45
(Fig. 1.5) and ELISN148-52 (Fig. 1.6) indicate that the
morphology of the ribs on the faces of a single individual is
essentially uniform and constant, without gradual transforma-
tion from welts to arcuate ribs or other, more complex folds.
Probably, this replacement began at the basal end of the tube and
continued to the upper part without metamorphosis. If this
hypothesis is correct, then the specimens of C. spinatus
described in Conway Morris and Chen (1992) are likely a
mixture of several species. Specimens with sharp, thorn-like
spines or arcuate ribs as well as welts should be reinterpreted as
different species rather than different developmental stages,
unless these variants can be shown to co-occur in the same
individual of C. spinatus.

In addition to sequential adoral addition of ribs on the faces,
growth of the Carinachites tube also involved increase in the
diameter of the tube and the width of the corner sulci. Along the
longitudinal axis, the corner sulcus expands gradually toward
the aperture (Fig. 1.5). In the most complete specimen
(ELISN93-45), which however lacks the apex and apertural
margin, at least 35 ribs are present on each face (Fig. 1.5).
If the tube could grow up to 1.3mm in width, as indicated by
specimen ELISN148-52 (Fig. 1.6), then we infer that a single
face may have contained at least 130 ribs over a total length of
approximately 25mm. With regard to the apertural extension
model mentioned in the preceding, neighboring ribs at the same
level indicate that the plicate apertural lobes were replaced
synchronously by new ones (Fig. 4.4–4.6). In contrast, long-
itudinal offset of ribs along the corner sulci may reflect
diachronous replacement of previously formed plicate lobes,
indicating that the tube opening was always more or less partly
closed. The corner sulci are generally thinner and more flexible
than the faces (Qian et al., 1997), and in most fragmentary
specimens, the sulci exhibit secondary breakage. Probably in life
the flexible corner sulci served as buffer zones that prevented
tearing of the tube during diachronous replacement of the ribs on
neighboring faces. The reason for longitudinal offset of the ribs
along the facial midline (ConwayMorris and Chen, 1992, fig. 6.1)
remains unclear, though probably each apertural lobe was formed
asynchronously by two adjacent subunits of soft tissue. It is
important to note that longitudinal offset or asynchronous

displacement of the ribs also can be seen on hexangulaconulariids,
but it has never been observed in olivooids.

Tube morphology and growth of other carinachitids.—Since
the ribs most likely constitute displaced plicate lobes, the four
uniform plicate lobes in tetraradiate Carinachites spinatus
correspond to the four rows of lateral facial ribs. Similarly,
triradiate Emeiconularia and pentamerous Pentaconularia
ningqiangensis Liu et al., 2011 most likely possessed three
(Fig. 4.1, 4.2) and five centripetal plicate lobes (Fig. 4.7–4.9),
respectively. Similarly, specimens with arcuate ribs reflect the
presence of a set of centripetal arcuate lobes in the apertural
region. Nevertheless, the apertural region of Carinachites
tetrasulcatus (Chen, 1982) is difficult to reconstruct as its ribs
are low and inconspicuous (Conway Morris and Chen, 1992,
fig. 8.22). Probably the aperture of this species resembled a
four-sided pyramid with deep, concave corner sulci similar to
those of Hexaconularia sichuanensis He and Yang, 1986 (e.g.,
Steiner et al., 2014, fig. 7.13–7.16, 7.19–7.21). We hypothesize
that this species exhibited periodical growth similar to that of
Carinachites spinatus. However, such eversion probably was
possible only in organic or lightly sclerotized exoskeletons and
not in those with thick and rigid hard parts such as tubes of
Emeiconularia trigemme (Qian et al., 1997). Thus, secondary,
subsequent thickening of the lateral walls, suggested by the
double-layered wall structure (Fig. 2), is proposed here to
resolve conflicts between the flexibility of the primary apertural
wall and the rigidity of the thick secondary tube wall. The thin
primary apertural wall in Carinachites spinatus, represented by
the outer layer with fine transverse wrinkles, may have been rich
in organic material. The outer layer may have undergone sub-
sequent thickening on its inner surface by a mixture of inorganic
materials (represented by the smooth granular layer), thus
resulting in a double-layered structure similar to that of con-
ulariids (Brood, 1995; Ford et al., 2016). This model could
account for: (1) the flexibility of the external tube surface
(as indicated by the striations and welts shown in Conway
Morris and Chen, 1992) and the relative rigidity of the entire
tube wall, (2) the high abundance of fragmentary specimens
of carinachitids and the extremely rare preservation of their
aperture, and (3) probable variation in mechanical properties
between the different layers as reflected in the secondary cracks
on the tube surface (Fig. 1.11, 1.12). However, because the relic
soft tissue is much smaller in diameter than the host tube, the
sides of the soft body may not have been in direct contact with
the lateral tube wall. How the organic or inorganic material was
deposited on the inner surface of the outer layer remains
unknown.

Feeding habits of carinachitids.—Despite the absence of in situ
preservation of carinachitid tubes, it was originally assumed that
carinachitids were solitary sessile forms having their aboral end
attached to hard or firm substrates (He, 1987) as in extant
medusozoan polyps. A pelagic habit for carinachitids is unlikely
as their skeletonized tube appears to have been too dense to float
in seawater. However, because the soft body was almost entirely
enclosed within the tube, filter-feeding on microorganisms
seems highly likely. Besides the function of supporting the
growing soft tissues, periodic tube growth and thickening of
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carinachitids reflects competition for ecological tiering among a
varied benthos. In contrast to the reduced vestigial peridermal
theca of cubopolyps and most scyphistomae, the thickening
of the tube wall in carinachitids, and coeval tubular fossils
(anabaritiids, hyolithelminths), indicate an adaptive strategy
focusing on defense against predators such as cycloneuralians
(e.g., Liu et al., 2014a; Zhang et al., 2015). Interestingly, sus-
pension feeding by the hypostome rather than normal elongate
tentacles with nematocysts has also been observed in extant
polyps of Eudendrium (Hydrozoa) (Puce et al., 2002), in which
the mucous-lined gastroderm plays a major role in capturing
food particles such as zooplankton. Such behavior correlates
with high concentrations of food particles and intense water
movement, a scenario that seems compatible with the marine
shelf environment favored by Cambrian small shelly fossils
(Yin et al., 1999; Steiner et al., 2004, 2007).

The asynchronous displacement of the ribs in Carinachites
spinatus indicates that the flexible tube aperture may have opened
to a greater extent in this taxon than in olivooids. Relative to the
radius of the tube, both the width and height of the ribs on
Emeiconularia amplicanalis are smaller than in E. trigemme. This
fact indicates that the oral lobes of E. amplicanalis could only
partially cover the tube aperture, thus allowing continual contact
of the soft body with the ambient environment. Presumably,
retractile tentacles in E. amplicanalis, if present, could protrude
beyond the tube opening, thus enabling limited predatorial
behavior.

Comparisons

Carinachitids versus coronate polyps.—Carinachitid tubes
resemble the chitinous periderm of coronate scyphozoans (i.e.,
Stephanoscyphus), which are sheathed in a cone-shaped tube
showing well-developed longitudinal folds and horizontal
annulations (Chapman, 1966; Werner, 1966, 1973). However,
differences between them are also evident. In particular,
Stephanoscyphus may be either solitary or colonial. The
periderm of colonial forms is irregularly branched (Jarms,
1991), in some cases with a tube-in-tube structure (Werner,
1966, fig. 13). By contrast, carinachitid tubes are exclusively
solitary. Second, whereas Stephanoscyphus has an operculum
that is separate from the tube, the tube aperture and lappets of
carinachitids constitute a continuous extension of the rest of the
tube. Third, the scyphozoan periderm, including the peridermal
teeth or cusps inside the tube of Stephanoscyphus, is secreted
by ectoderm of the lateral body wall. By contrast, the
external layer of the carinachitid tube, except for the apex, was
generated by epithelium of the oral part, and neither teeth
nor cusps are present within the carinachitid tube. Fourth,
Stephanoscyphus tubes are more or less circular in transverse
cross section and uniform in thickness; by contrast, carinachitid
tubes are polygonal and exhibit distinct faces and corner sulci.
Fifth, an operculum with triangular cusps is absent in
Stephanoscyphus (Werner, 1966), while oral lobes or lappets are
a consistent diagnostic feature of the tube of carinachitids and
co-occurring olivooids. Finally, strobilation, a characteristic
of Stephanoscyphus, has not been observed in carinachitids. In
short, these comparisons suggest that carinachitids may only be
distantly related to extant scyphozoans.

Comparison with extant hydrothecae.—Extant, colonial thecate
hydranths begin and complete their development within a small,
capsule-like hydrotheca. The hydrotheca in some species,
for example Sertulariella quadrata Nutting, 1900a, is square in
transverse cross section and exhibits dense transverse striations
or longitudinal folds (i.e., S. rugosa (Linnaeus, 1758)) similar
to those of carinachitid tubes (Nutting, 1900a). The oral end of
the hydrotheca has a protective operculum with or without a set
of triangular, plate-like teeth or converging cusps capable of
opening and closing (Crowell, 1991). Many species of Sertu-
lariella, for example S. quadrata, S. rugosa, and S. peculiaris
(Leloup, 1935 in Galea, 2008), have an operculum with four
triangular cusps (Nutting, 1900a; Chapman, 1966; Galea, 2008)
that are somewhat similar to the lobes of Carinachites spinatus.
Symplectoscyphus (Millard, 1975) and S. rathbuni (Nutting,
1900a) have three teeth similar to those of Emeiconularia
(assuming our reconstruction is correct). Notably, the chitinous
hydrotheca and operculum are secreted by glandular cells of the
epidermis of the hydranth, especially the hypostome (Berrill,
1949), thus supporting the previously inferred oral formation of
carinachitid tubes. In rare cases, the apertural teeth of the
hydrothecae are folded inward as in solitary carinachitid tubes
(Nutting, 1900b, pl. 14, fig. 6). Major differences between
hydrothecae and carinachitids include: (1) the colonial habit of
hydrothecae; (2) the absence of triangular cusps in the lateral
walls of hydrothecae; and (3) the teeth in hydrothecae, which are
sheet-like, with a free adaxial end, and thus are quite different
from those of carinachitids.

Comparison among carinachitids, olivooids, hexangulaconulariids,
and conulariids.—Prior to conducting a cladistic analysis of
relationships among extant and fossil taxa within Medusozoa,
morphological comparisons among olivooids, carinachitids, hex-
angulaconulariids, and Paleozoic conulariids are necessary. As
noted previously (He, 1987), the similarities among the skeletons of
olivooids, carinachitids, hexangulaconulariids, and Paleozoic con-
ulariids are striking (Table 1). They include: (1) possession of a
superficially cone-shaped tube that almost completely enveloped the
soft tissue (Qian and Bengtson, 1989; Sendino et al., 2011); (2) tube
with serially repeated transverse and longitudinal wrinkles (Qian and
Bengtson, 1989) representing periodic growth by oral addition
(Brood, 1995); (3) fine, regularly spaced longitudinal striations,
~5–10μm in width, as one of typical features of Olivooides tubes
(e.g., Yue and Bengtson, 1999, fig. 2D; Steiner et al., 2014,
fig. 12.13, 12.14), are present also on the corner surface of
Carinachites tetrasulcatus (e.g., Conway Morris and Chen, 1992,
fig. 9.15, 9.16); (4) tube tapered in the apertural region (Qian and
Bengtson, 1989), where the tube aperture is folded inward (e.g.,
Brood, 1995; Steiner et al., 2014); (5) all tubes exhibit distinct apical
and abapical regions (Fig. 1.8) (Van Iten et al., 2010), although
the carinachitid apex is unknown yet; and (6) radial symmetry, a
characteristic that is a link to the medusozoans, is well represented
by all four families.

Apart from the mentioned similarities, additional specific
similarities between carinachitids and olivooids are remarkable:
(1) The cone-shaped tubes of these two taxa exhibit similar
variation in the pattern of radial symmetry. Both of them exhibit
rare pentaradial symmetry and dominant tetraradial symmetry.
However, triradial symmetry is not known in olivooids. (2) The
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tube aperture in both Carinachites spinatus and Olivooides has
four or five prominent plicate apertural lobes (usually termed
‘lobate folds’ in Yue and Bengtson, 1999; Han et al., 2016a, b;
termed ‘oral lobes’ in Steiner et al., 2014, in Olivooides
multisulcatus Qian, 1977) (Fig. 5). (3) Lateral ornaments on the
tube wall, including plicate thorns (Fig. 5.1) (termed ‘plicate
cornice’ in O. multisulcatus [see Han et al., 2016a, fig.2] and
‘triangular thickening’ by Steiner et al., 2014, fig.10), are derived
from the tube aperture (Yasui et al., 2013). (4) Asmentioned in the
preceding, the soft tissues are always connected to the tube
aperture. (5) There are similar patterns of tube formation except
for lateral thickening, in both cases with tube formation mediated
by soft tissue at the oral end (Yasui et al., 2013; Liu et al., 2014b;
Han et al., 2016a, b). (6) Rare preservation of the apertural end in
olivooids and carinachitids as well as Paleozoic conulariids
probably indicates that the newly secreted tube aperture was
predominantly organic or weakly sclerotized and thus less
resistant to decay than the lateral ribs.

Differences between carinachitids and olivooids also are
evident. Although carinachitid tubes bear regular ribs, they were
never compressed during diagenesis along the longitudinal axis
as in olivooid tubes. This difference may be partially attributed
to the presence in carinachitids of deeply concave corner sulci,
outwardly bulging faces, and later ontogenetic thickening, thus
providing stronger support for the soft body. The face-corner
configuration in carinachitids also reflects an incipient differ-
entiation of the meridian planes. The apertural lobes among
different taxa of olivooids vary greatly in morphology. Thus,
unlike Olivooides multisulcatus (Fig. 5.1–5.3), Quadrapygites
and O. mirabilis Yue, 1984 in Xing et al., 1984 lack clear
differentiation in size between the principle apertural lobes and
the adradial apertural lobes. By contrast, carinachitids exhibit
only the principle apertural lobes. The corner sulci in
carinachitids may correspond to the adradial apertural lobes in
olivooids. In addition, carinachitids exhibit greater morpholo-
gical variation on the faces than do olivooids, including
variation in rib shape and height, displacement of ribs along
the midline, and convergence of the striations. The facial ribs of
carinachitids may represent a derived feature in comparison
with the continuous transverse crests in olivooids. Finally, it has
generally been accepted that the periderm of olivooids was
organic and uniform in thickness. By contrast, the tubes of
carinachitids, hexangulaconulariids, and conulariids, although

showing some degree of flexibility, are relatively thick and
slightly mineralized (e.g., Brood, 1995; Qian et al., 1997; Leme
et al., 2008; Ford et al., 2016).

Similarities between carinachitids and hexangulaconular-
iids include: (1) sclerotization of the tube wall, (2) development
of faces and corner sulci, (3) transverse ornament showing
displacement/offset along the midline of the faces and corner
sulci, and (4) sessile benthic mode of life on firm substrates or
hard parts (e.g., Van Iten et al., 2016a). The displacement
mechanism of carinachitids may have also been present
in hexangulaconulariids (Conway Morris and Chen, 1992,
fig. 11.12; Van Iten et al., 2010, fig. 2e) and latest Ediacaran
Paraconularia (e.g., Van Iten et al., 2014, fig. 3c–d; Van Iten
et al., 2016b). In this connection, it should be noted that relics of
small soft parts extending along the tube axis of conulariids,
originally interpreted as remains of an alimentary tract
(Babcock, 1989), most likely represent polyps as previously
suggested by Van Iten (1991) and supported by currently
available material of carinachitids and the internal anatomy of
Olivooides (e.g., Han et al., 2016a).

Differences between carinachitids and hexangulaconular-
iids also are evident. In particular, the pseudohexaradial
symmetry of hexangulaconulariid tubes, which exhibit a
fundamental bimerous tetraradial symmetry, reflects further
morphological differentiation of the meridian planes within a
framework of tetraradial symmetry. Such meridian plane
differentiation, oriented perpendicular to the longitudinal axis,
probably indicates unknown differentiation of soft part struc-
tures such as gonads, septa, and the vascular system. Finally, the
apertural lobes of hexangulaconulariids are not triangular as in
carinachitids and olivooids.

Carinachitids share detailed similarities with Paleozoic
conulariids (except for Cambrian Baccaconularia in Hughes
et al., 2000) in face/corner sulcus differentiation and formation
of apertural lobes (equivalent to the apertural lappets of Sendino
et al., 2011), and both taxa exhibit tri-, tetra- or pentaradial
symmetry. However, biradial symmetry, common in conular-
iids, has not been observed in carinachitids. In addition, the
corners of some conulariids, for example Eoconularia loculata
(Wiman, 1895 in Jerre, 1994), are much thicker than the faces
(Jerre, 1994), contrasting with the relatively thickened faces of
carinachitid Emeiconularia trigemme (Fig. 2.1b). Moreover, in
addition to plicate apertural lobes (Ford et al., 2016), conulariids

Table 1. Morphological comparisons among olivooids, hexangulaconulariids, carinachitids, and conulariids.

Characteristics\taxa Olivooids Hexangulaconulariids Carinachitids Conulariids

tube shape cone cone cone cone
longitudinal folds yes yes yes yes
longitudinal striations yes ? yes no
apical/abapical differentiation yes yes ? yes
periodical growth yes yes yes yes
radial symmetry 4, 5 3, 4, 5 2 2, 3, 4
oral lobes yes no yes yes
adradial lobes yes no no no
thorn-like spines yes/no no yes no
face/corner no yes yes yes/no
septa/carina no no no yes
facial midline no no no/yes yes
mineralization no yes weak yes
thickening of tube wall no no yes yes
displacement no yes yes yes
apex ornaments stellae smooth ? smooth
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exhibit two other types of apertural lobes (Sendino et al., 2011).
Finally, the internal anatomy of the tube wall of conulariids is
much more complex at the corners and midlines than in
carinachitids, as summarized by Van Iten (1991, 1992b). For
example, there are eight types of internal midline structures
(Bischoff, 1978; Van Iten, 1991, 1992b; Jerre, 1994), including:
(1) a single continuous (nonseriated) carina, and (2) a pair of
continuous carinae (flanking the midline), (3) a pair of seriated
carinae, (4) a single seriated carina (subsequently discovered by
Hughes et al., 2000 in Baccaconularia), and (5) the Y-shaped
continuous single carina documented by Jerre (1994) in
Eoconularia loculata (Wiman). The corners may be: (1)
nonthickened, (2) thickened without formation of a clear carina,
(3) thickened and bearing a distinct nonseriated carina, or (4)
thickened and bearing a seriated distinct carina.

In summary, gross morphological comparisons of the
skeletons of olivooids, carinachitids, hexangulaconulariids, and
Paleozoic conulariids support the previous hypothesis (He,
1987) that these fossil taxa represent closely related lineages
within the Conulata. Since the olivooid soft body exhibits a
manubrium within a subumbrellar cavity, tentacles, apertural
lappets, and frenula (Han et al., 2016a, b), olivooids and hence
all conulatans probably were medusozoans (Van Iten et al.,
2006) that were related either to extant cubozoans (Han et al.,
2013; Han et al., 2016a,b) or to scyphozoans (Dong et al., 2013;
Liu et al., 2014b; Van Iten et al., 2014). The proposal that
Conulata constitutes an independent phylum (Babcock et al.,
1986; Brood, 1995) or the internal rachis of sea pens (Conway
Morris and Chen, 1992) appears unlikely. Carinachitids,
originally interpreted as the most primitive taxa within Conulata
(He, 1987), are interpreted here as a stock of phylogenetically
intermediate forms between olivooids and hexangulaconular-
iids. The presence of corner sulci and faces with a median line
(midline) probably represent synapomorphies of carinachitids,
hexangulaconulariids, and conulariids. The general similarities
shared by olivooids, hexangulaconulariids, carinachitids, and
conulariids (i.e., radial symmetry), probably represent primitive
conditions. Finally, the bimerous tetraradial symmetry of
hexangulaconulariids may have been independently acquired
in this lineage. However, these interpretations await future
phylogenetical analysis.

Orientation of the radial symmetry planes in carinachitids.—
Similarities in gross morphology between carinachitids, oli-
vooids, and conulariids suggest that their peridermal apertural
lobes are homologous structures. If this hypothesis is correct,
then the orientation of the meridian planes of olivooids and
Olivooides-like medusozoans (Han et al., 2013, 2016a, b)
may shed new light on the orientation of these planes in
carinachitids and conulariids. In the soft body of Olivooides, the
perradial frenula and apertural lappets, which correspond in
position to the perradial pockets (e.g., Han et al., 2013, fig. 3),
probably were responsible for the formation and closure of the
plicate lobes of the periderm (Han et al., 2016a, figs. 3–5). Apart
from the adradial frenulae and apertural lappets, no frenulae
or apertural lappets are present in the interradii, where the
interradial septa connect the subumbrellar and exumbrellar
walls, and there is no interradial apertural lobe on the peridermal
tube (Fig. 5). Similarly in carinachitids, the bulging faces

and corner sulci may directly reflect the configuration of
the tube aperture, and they may correspond in position, respec-
tively, to the perradial pockets and interradial septa of
the gastric cavity. This means: (1) that the midline of the facial
ribs and the corner sulci were most likely located at the perradii
and interradii, respectively; and (2) that the corner sulci may
correspond to the former interradial septa/mesenteries (Fig. 3).
This orientation may also apply to conulariids if indeed their
apertural lobes are homologous with those of carinachitids
and olivooids. It should be noted, however, that our suggested
orientation of the interradial symmetry planes in conulariids
differs from the traditional hypothesis, which is based on
similarities between the conulariid and coronate periderms
and between the midline carinae of Eoconularia loculata
Wiman and the gastric septa of stauromedusans (Van Iten et al.,
2006). According to this hypothesis, the apertural lobes and
facial midlines in conulariids were situated at the interradii
(Chapman, 1966; Werner, 1966; Van Iten, 1992a; Jerre, 1994).
Confirming or disproving this hypothesis will require the
discovery of additional and better-preserved relic soft tissues in
conulariids.

Conclusions

A single, exceptionally well-preserved specimen of
Carinachites spinatus, documented for the first time in the
present paper, reveals that the apertural end of the skeletal
tube of tetraradial carinachitids exhibits four plicate lobes that
are similar to those of co-occurring olivooids and younger
conulariids. Similarities between the lateral tube spines and the
apertural lobes of carinachitids indicate that all of the transverse
ribs on the faces were released adorally and were eventually
displaced toward the edges of the tube, a pattern of growth
similar to that of co-occurring olivooids. The internal anatomy
and symmetry of Olivooides suggest a perradial and interradii
disposition, respectively, for the four faces and corner sulci
of carinachitids. These findings corroborate the previously
proposed hypothesis that early Cambrian carinachitids,
hexangulaconulariids, olivooids, and conulariids are closed
related taxa within the subphylum Medusozoa, although
olivooids may have retained certain primitive features.
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Abstract: We describe here Sinaster petalon gen. et sp.

nov., a new embryonic form from the c. 535 million-year-

old Kuanchuanpu Formation of South China (Ningqiang,

Shaanxi Province). The excellent three-dimensional, phos-

phatic preservation of these microfossils allowed us to use

x-ray microtomographic techniques to make accurate recon-

structions of their internal structures and to compare their

anatomy point-by-point with that of extant cnidarians and

other animal groups. Sinaster petalon has anatomical features

typical of extant Medusozoa (Cnidaria), such as coronal

muscles, perradial and adradial frenula, interradial septa,

accessory septa, gonad-lamellae, tentacle buds and perradial

pockets. Although Sinaster cannot be straightforwardly

assigned to any crown-group within Medusozoa, the pres-

ence of marginal lappets and endodermal lamellae suggests

that it is closer to Cubozoa and Scyphozoa than to any other

group of modern cnidarians. The tentative placement of

Sinaster within the stem-group Cubozoa is justified by the

presence of a velarium supported by a frenulum. The cubo-

zoan affinities of Sinaster are also supported by cladistic

analysis.

Key words: Cnidaria, Cubozoa, Early Cambrian, embryo,

Kuanchuanpu Formation, periderm.

THE small shelly fossil (SSF) assemblages of the Kuan-

chuanpu Formation of South China (Shaanxi Province;

Fortunian Stage, Terreneuvian Series, c. 535 Ma) contain

abundant skeletal elements (He 1987; Qian 1999) but also

remarkably preserved soft-bodied organisms such as embry-

onic and larval stages of cnidarians (Conway Morris & Chen

1992; Bengtson & Yue 1997; Steiner et al. 2004; Dong et al.

2013, 2016; Han et al. 2013, 2016a), ecdysozoans (Liu et al.

2014; Zhang et al. 2015) and also possible meiobenthic

deuterostomes (Han et al. 2017a ). These exceptional fossils

provide key information on the early stages of animal evolu-

tion near the Ediacaran–Cambrian boundary and before the

Cambrian Explosion sensu stricto.

Recent studies using scanning electron microscopy

(SEM) and x-ray microtomography (XTM) provide very

detailed morphological information on these early

organisms (Chen & Dong 2008; Han et al. 2010, 2013,

2016a, 2017b, c; Dong et al. 2013). Steiner et al. (2004)

described a scyphopolyp with many filamentous tentacles,

Han et al. (2010) the earliest sea-anemone-like cnidarian

and Dong et al. (2013) a possible ephyra-like medusa

with pentaradial symmetry. The oldest representatives of

Cubozoa (box jellyfish) were also discovered in the Kuan-

chuanpu Formation (Han et al. 2013). The exquisite

preservation of their septal structures allowed unprece-

dented detailed comparisons with their modern counter-

parts (Han et al. 2013, 2016a, b; Toshino et al. 2015). Liu

et al. (2014) and Zhang et al. (2015) described two min-

ute scalidophoran worms, which provide insight into the

early evolution of ecdysozoans, a major animal clade that

rapidly became dominant in the later Cambrian marine

ecosystems exemplified by the Chengjiang biota.
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Although the anatomy of many of these early cnidari-

ans and ecdysozoans has been reconstructed in detail,

important aspects of their palaeobiology, taphonomy, sys-

tematics and phylogeny remain poorly understood or

debated, especially their cycle of development from

embryo to adult, their taxonomy and their phylogenetic

relationships to extant groups (Dong et al. 2013, 2016;

Han et al. 2013). Numerous forms have been kept in

open nomenclature in order to avoid potential problems

of synonymy until additional specimens can be obtained.

One of the most studied forms, Olivooides Qian, 1977

(see Bengtson & Yue 1997 for a reconstructed develop-

mental cycle), is a spherical organism with an external

stellate ornament that is assumed to represent the embry-

onic stage of a larger tubular animal from the same local-

ity that has been described as Punctatus (Bengtson & Yue

1997; Yue & Bengtson 1999a, b; Yao et al. 2011, fig. 3b1).

Recent studies (Dong et al. 2013; Han et al. 2013) have

also revealed that Olivooides-like fossils had a pentaradial

anatomy as evidenced by the connection of the gastric

septa (mesenteries) to the double-layered body wall and

the arrangement of tentacles and gonad lamellae. As a

whole, this body plan is comparable to that of some

extant medusozoans such as cubomedusozoans (Han

et al. 2013) or scyphomedusozoans (Dong et al. 2013,

2016). The symmetry of these embryonic fossils is domi-

nantly pentamerous, but some of them are tetraradial

(Han et al. 2016b) as in the vast majority of extant

cnidarians. Although the Olivooides-like cnidarians from

the Kuanchuanpu biota are prehatched embryos with vir-

tually the same overall external morphology as Olivooides,

they display a greater variety of internal structures. We

describe here a new genus and species, Sinaster petalon

gen. et sp. nov., based on exceptionally well-preserved

prehatched embryos from the Kuanchuanpu Formation.

Although Sinaster resembles Olivooides-like fossils in its

overall shape, its internal structures clearly distinguish it

from other co-occurring embryos.

TERMINOLOGY AND ORIENTATION OF
EMBRYONIC MEDUSOZOANS

The terminology used here is that of previous works on

Cambrian and extant cnidarians (Hyman 1940; Thiel

1966; Werner 1973; Thomas & Edwards 1990; Gershwin

& Alderslade 2006; Han et al. 2013, 2016a, b).

The definition of the meridian plane in these specimens

follows Han et al. (2013, 2016a, b). We follow the current

classification of Cnidaria into the Class Anthozoa and the

Subphylum Medusozoa which encompasses the following

classes: Cubozoa (box jellyfish and sea wasps), Hydrozoa

(hydroids and hydra-like animals), Scyphozoa (true jelly-

fish), Staurozoa (stalked jellyfish) (Daly et al. 2007).

Cubomedusa and Scyphomedusa are used here to desig-

nate the medusoid stages of Cubozoa and Scyphozoa.

Abbreviations. aal, adradial apertural lobe; af, adradial

furrow; afl, adradial fold lappet; afr, adradial frenulum;

as, accessory septum; cg, coronal groove; cl, claustrum;

crm, circumferential muscle; cs, coronal stomach;

en + pe, egg envelope + periderm; eu, exumbrella; g,

gonad; gl, gonad-lamella; go, gastric ostium; icp, interra-

dial corner pillar; if, interradial furrow; is, interradial sep-

tum; ln, lappet node; mb, manubrium; ml, marginal

lappet; mp, mesogonial pockets; pal, perradial apertural

lobe; pfl, perradial fold lappet; pfr, perradial frenulum;

ph, phacellus; pp, perradial pocket; rc, radial canal; sf,

septal funnel; sn, septal nodes; sp, suspensorium; stl, stel-

late ornaments; su, subumbrella; tb, tentacular bud; ve,

velarium; *, perradius; ?, interradius.

MATERIAL AND METHOD

Fossil specimens were obtained by acetic acid maceration

of phosphatic limestones from the Kuanchuanpu Forma-

tion (Qian 1999) and picked under a binocular micro-

scope. Two specimens (ELISN 89-107 and ELISN 115-39)

were examined under SEM and then investigated with

computed x-ray microtomography (XTM) at Tohoku

University, Japan, and the synchrotron of Spring-8 in

Hyogo, Japan. SEM and XTM (Tohoku University, Japan)

were both used to image the external and internal features

of the best preserved specimens (Wang et al. 2017, appen-

dices 1, 2). Selected specimens were further examined

using synchrotron radiation at Spring-8 in Hyogo, Japan.

Thousands of images of virtual thin-sections (Figs 2, 5)

through each specimen were acquired at a resolution of

1004 9 1004 pixels (XTM) and 1920 9 1920 pixels (syn-

chrotron XTM). XTM data were processed using V.G.

Studio 2.2 Max in order to enhance contrast between key

internal anatomical features by using artificial colours and

to generate detailed three-dimensional reconstructions of

the microscopic fossils (Figs 3–4, 6–7). Cladistic analysis

was carried out using PAUP* v. 4.0 b10 (Swofford 2003).

The unweighted analysis of the data matrix (Wang et al.

2017, appendix 3) containing 104 unordered characters

taken from Marques & Collins (2004), Van Iten et al.

(2006a) and Han et al. (2016c).

All specimens are deposited at the Early Life Institute

(ELI), Northwest University, Xi’an, Shaanxi Province,

China. This material and microtomography data are

available on request via Prof. Jian Han.

Institutional abbreviations. ELI, Early Life Institute, Northwest

University, China. GMPKU, Geological Museum of Peking

University, Beijing, China.
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SYSTEMATIC PALAEONTOLOGY

Phylum CNIDARIA Verrill, 1865

Subphylum MEDUSOZOA Petersen, 1979

Class uncertain

Family OLIVOOIDAE Steiner et al., 2014

Genus SINASTER nov.

LSID. urn:lsid:zoobank.org:act:1BDC6FE9-E8FD-4F93-AE25-

ED01169B583C

Derivation of name. From the Latin Sina (China) and aster

(star), alluding to the star-shaped embryo in transverse

cross-section and the Chinese origin of the fossil material.

Diagnosis. Ovoid shape with smooth envelope. Single

polar aperture. Body with pentaradial symmetry. Periderm

with smooth external surface, no stellate ornament; five

perradial folded lobes and five pairs of interradial folded

lobes equally distributed around the peridermal aperture.

Soft-tissues: spacious subumbrella cavity with five pairs of

small hollow interradial tentacles inserted on the inner

wall of the subumbrella and directed toward the oral-

aboral axis of the animal; bell margin with perradial and

adradial apertural lappets, each corresponding with overly-

ing folded lobes and underlying frenulae; five spacious

perradial pockets, separating subumbrella far from exum-

brella; exumbrella and subumbrella connected by long

interradial septa with no free ends; two sub-interradial

accessory septa, sprouting from the exumbrella wall, rela-

tively close to abaxial root of each interradial septum; one

pair of gonad-like lamellae on each side of the middle part

of the interradial septum; short cone-shaped manubrium

projecting deep into the broad subumbrellar cavity.

Sinaster petalon sp. nov.

Figure 1B, C, E, F

LSID. urn:lsid:zoobank.org:act:FC97933E-D3B0-41C8-8846-

191D853C504C

Derivation of name. From petalo (Greek), petal.

Holotype. ELISN 89-107; deposited in the collections of

the Early Life Institute, Department of Geology, North-

west University, China.

Additional material. ELISN 115-39 as paratype (see

Description below).

Diagnosis. As for genus.

Occurrence. Lower Cambrian Kuanchuanpu Formation

(equivalent to the Fortunian Stage of the Terreneuvian

Series), Ningqiang County, Shaanxi Province, China.

DESCRIPTION

External morphology

The holotype of S. petalon (ELISN 89-107) has a spherical bell

shape (c. 600 lm in diameter) and an inconspicuous, thin egg

envelope (Fig. 1B, E). The embryonic periderm is smooth over

its entire surface (Figs 1B, 3, 5A) except near the peridermal

aperture. The 15 centripetal, tongue-shaped folded lobes around

the periderm aperture display a pentamerous symmetry along

the oral–aboral axis (Fig. 1B). Five of them are larger and folded

and are designated here as perradial folded lobes. They are inter-

calated with five pairs of smaller, narrower folded lobes desig-

nated as adradial folded lobes. The boundary of folded lobes

fades away aborally. Each folded lobe shows a set of vaulted

shallow wrinkles, variable in number, arching toward the central

peridermal aperture (Figs 1B, E; 3A). This pattern of folded

lobes (5 + 10) is relatively common in the pentamerous embryos

(e.g. ELISN 31-179; Fig. 1A) from the Kuanchuanpu biota.

The paratype of S. petalon has the same size and external

morphology as the holotype and lacks the typical external orna-

ment of Olivooides. Its periderm is damaged and incomplete. It

shows a pentaradial symmetry with five perradial triangular

blade-like structures located near the aperture, and rooting from

the inner layer (Fig. 1C). Two furrows are visible along the per-

radii and are designated here as an adradial furrow (af) and an

interradial furrow (if) (Fig. 1F). Many thin shallow coronal

grooves (cg) occur between the two furrows along the perradial

on the outer layer (Fig. 5D).

Internal anatomy

XTM of the holotype reveals fine details of the internal features

of S. petalon (Figs 2, 3). The egg envelope and the periderm

seem to be fused with no conspicuous perivitelline space in

between. However, there is a larger interspace between the perid-

erm and the enclosed soft-tissue (Fig. 3A), designated here as

the peridermal cavity. Transverse cross-sections through the

holotype soft tissues show an outer circular thin layer (c. 10 lm
in thickness) and an inner pentagonal thicker layer (c. 15 lm
thick). The pentagonal section of the inner layer becomes

rounded toward the bell margin. Apart from the medusoid rim,

the outer layer is attached to the inner layer via five evenly-

spaced interradial septa (Fig. 2F–I), which partition the gastric

cavity into five spacious perradial pockets (pp; Han et al. 2013).

Each interradial septum stretches about one-third of the height

of the body (is; Fig. 3B) and lacks a free adaxial end (Fig. 2I).

In the holotype, the interradial septum (c. 180 lm in maximal

length and triangular in cross-section) tapers towards the abo-

ral–oral axis, at the mid-level of the bell. The interradial septum

also diminishes towards the bell rim to become invisible near to

the aperture.

WANG ET AL . : ANATOMY OF NEW EMBRYO FOSS ILS 3



Oral views display five large perradial lappets and five pairs of

smaller adradial lappets, which are rooted in the margin of the

outer layer and seem to correspond to the perradial and adradial

folded lobes of the peridermal sheath (Figs 2B–C, 3B). Five pairs

of tiny buds occur at about three-quarters of the height of the

bell (Fig. 2F). They are superficially rooted in the adaxial side of

the inner layer and are directed horizontally toward the oral–ab-
oral axis (Fig. 2F). Each bud is stout, being c. 45 lm long and c.

30 lm wide. A short cone-like shaft (c. 85 lm high and c.

35 lm wide) with a rounded base is present within the inner

cavity below the level of the paired tiny buds (Fig. 2A, I). Above

it, a large dark solid mass with a spiny appearance pierces the

inner layer and extends into the perradial pockets (Fig. 2A, F–I;
voids filled by minerals). This solid structure may be diagenetic

in origin. Five pairs of vertical strip-like curved adradial septa

(Fig. 2G) occur in the perradial pockets. They project bilaterally

from the inner surface of the outer layer, and stand quite close

to the proximal end of the interradial septa (Fig. 2H, I). Each

adradial septum is c. 90 lm long and curves toward the

perradial pockets. Its maximal length occurs at the middle level

of the bell (Fig. 2G, H). Five pairs of tiny pisolitic lamellae,

merely c. 15 lm long, occur in the middle of each interradial

septum. They lie closer to the aboral end of the bell than to the

adradial septa (Figs 2H; 3B, H). Viewed in oral sections, there

are 5 thin, nose-like perradial structures and 10 pairs of tiny

adradial structures situated above the paired tiny buds (Fig. 2E).

The oral end of these nose-like structures is connected to a dis-

tinct skirt-like circular tissue around the cavity margin of the

inner layer (Figs 2, 3D). This circular tissue shows a connection

with the apertural lappets and its diameter (180 lm) is much

less than that of the cavity of the inner layer. Five concentric

striated strips occur around the skirt-like circular tissue and are

interrupted at each interradius (Figs 2D–E, 3E, G). Each strip

consists of four to five bundles of fibres, with each fibre having

a maximal diameter of about c. 3 lm (Fig. 3E). The same fibres

with similar bundles are also present in ELISN 83-66 (Han et al.

2016a, fig. 3D) and ELISN 35-1 (Han et al. 2016b, fig. 6K). The

paratype specimen (Figs 1C, F; 4; 5) has well-preserved internal

A B C

D E F

F IG . 1 . External morphology of pre-hatched fossil embryos from the lower Cambrian Kuanchuanpu Formation, Shaanxi Province,

China. A, D, Olivooides, ELISN 31-179 with the periderm bearing stellate ornament, general view and details of ornament. B, E, Sina-

ster petalon gen. et sp. nov., ELISN 89-107, holotype showing the smooth periderm, general view and details of the peridermal aper-

ture. C, F, S. petalon gen. et sp. nov., ELISN 115-39, paratype, showing features of the outer layer. All SEM images. Abbreviations: af,

adradial furrow; en, egg envelope; if, interradial furrow; pal, perradial apertural lobe; pe, periderm; pfr, perradial frenulum; stl, stellate

ornaments. Scale bars represent: 200 lm (A, C); 150 lm (B); 50 lm (D); 100 lm (E, F).
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features but its external ones are severely damaged. It has the

same internal morphology and pentaradial symmetry as the

holotype, but differs from it in some features. There are fewer

void-filling minerals within the cavity of the inner layer (Fig. 4).

The skirt-like soft tissue of the paratype looks thinner and smal-

ler than that of the holotype (Fig. 5C). These differences may

have a taphonomic origin.

In summary, x-ray microtomography of two specimens pro-

vides a detailed picture of the whole internal structure of this

new early Cambrian embryonic form. A suite of ectodermic and

endodermic features (see Discussion below) is recognized

(Figs 2–5). Each interradial septum extends deeply into the bell

while the adjacent adradial septum extends over only half of its

length. The peridermal apertural lobes, apertural lappets and

other structures exhibit a 5 perradial + 10 adradial pattern.

DISCUSSION

Interpretation of Sinaster

Sinaster petalon presents the following suite of morpho-

logical characters typical of modern cnidarians:

A

D E

G H

F

B C

I

F IG . 2 . Sinaster petalon gen. et sp. nov. from the lower Cambrian Kuanchuanpu Formation, Shaanxi Province, China; ELISN 89-107,

holotype, microtomographic sections. A, axial section through the manubrium; positions of horizontal sections B–I are indicated. B–I,
horizontal sections from oral to aboral part; major internal structures identified by colours generated by VG Studio 2.2 MAX. See

colourless sections in Wang et al. (2017, appendix 1). Abbreviations: aal, adradial apertural lobe; afl, adradial fold lappet; afr, adradial

frenulum; as, accessory septum; crm, circumferential muscle; en + pe, egg envelope + periderm; eu, exumbrella; gl, gonad-lamella; is,

interradial septum; mb, manubrium; pal, perradial apertural lobe; pfl, perradial fold lappet; pfr, perradial frenulum; su, subumbrella;

tb, tentacular bud; ve, velarium; *, perradius; ?, interradius. Scale bar represents 200 lm.
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1. The bell is organized in two layers. The inner and

outer layers are interpreted here as the subumbrella

and the exumbrella, respectively (Figs 2, 4).

2. These two layers are connected by interradial septa (is)

which divide the gastric cavity into five spacious perra-

dial pockets (pp, see Han et al. 2013; Fig. 3B, H).

3. Each interradial septum lacks a free adaxial end.

This general organization is that of typical extant

medusae (Hyman 1940). The interior of the interra-

dial septa seems to be solid in the holotype, but has

tiny hollows in the paratype (Fig. 4E–G).
4. As seen in oral view, five larger perradial lappets and

five pairs of smaller adradial lappets are rooted in

the ridge of the exumbrella (Figs 2–4).
5. Five paired tiny buds interpreted here as tentacular

buds, are also rooted in the inner layer of the sub-

umbrella (Fig. 3G).

6. The cone-like structure with a rounded base situated

within the subumbrellar cavity and below the level

of the tentacular buds, is interpreted here as the

manubrium. In the holotype, the manubrium

appears to be solid, which is most likely to be a

diagenetic artefact. The mouth opening is indis-

cernible, though was probably situated at the free

end of the manubrium (Figs 2, 3, 6).

7. Viewed from apertural sections, five thin nose-like

structures and five pairs of smaller ones are inter-

preted as perradial and adradial frenula respectively

(Figs 3, 5); these would have strengthened the

medusa structure.

8. The circular tissue around the margin of the subum-

brellar cavity, above the frenula, is interpreted here

as a velarium (Figs 3, 5, 6), which may also have

played a role in strengthening the bell of the

medusa. The velarium, with the aid of coronal mus-

cles, may conceivably have allowed the bell to con-

tract rhythmically (Han et al. 2013).

9. These coronal muscles are represented by five bun-

dles of concentric striated strips around the velar-

ium. These muscles are interrupted at each

interradius as in extant cnidarians (Figs 3, 6).

10. Five pairs of accessory septa are rooted in the inner

layer of the exumbrella, and project into the perra-

dial pockets (Figs 2–6).

A B

E F G H

C D

F IG . 3 . Sinaster petalon gen. et sp. nov. from the lower Cambrian Kuanchuanpu Formation, Shaanxi Province, China; ELISN 89-107,

holotype, three-dimensional model obtained using VG Studio 2.2 MAX. Colours identify anatomical structures. A, oral view showing

the manubrium and the perradial and adradial apertural folded lobes. B, inner-lateral view of the half body showing the arrangement

of the apertural folded lobes of the periderm and the underlying perradial apertural lappets; for clarity, the subumbrellar elements are

obscured. C, oral view showing the perradial lappets and the adradial lappets. D, zigzag margin of the velarium. E, five bands of coro-

nal muscles interrupting at the interradii. F, oral view showing the perradial frenula and adradial frenula. G, inner-lateral view of the

subumbrella showing the arrangement of the interradial tentacular buds and the perradial and adradial frenula; in a strict sense, each

tentacle is located at the adradius. H, one-fifth of the body showing the arrangement of the interradial septum, gonad lamellae and

accessory septa. Abbreviations: aal, adradial apertural lobe; afl, adradial fold lappet; afr, adradial frenulum; as, accessory septum; crm,

circumferential muscle; en + pe, egg envelope + periderm; eu, exumbrella; gl, gonad-lamella; is, interradial septum; mb, manubrium;

pal, perradial apertural lobe; pfl, perradial fold lappet; pfr, perradial frenulum; su, subumbrella; tb, tentacular bud; ve, velarium; *, per-
radius; ?, interradius. Scale bars represent: 150 lm (A–F); 75 lm (G); 150 lm (H).
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11. Five pairs of tiny pisolitic structures occur in the

middle of each interradial septum (Figs 2–6) and are

interpreted here as gonad lamellae.

These 11 characters indicate that Sinaster petalon is

most probably a cnidarian.

Tentacular buds

The bud-like structures of Sinaster are intepreted here as

tentacular buds (tb) (point 5 above and Figs 2–5).

Although the embryonic forms described in this paper

have no exact equivalent among modern cnidarians, rele-

vant comparisons can be made with the developmental

stages of tentacles in extant cubozoans and scyphozoans.

In the adult medusae, tentacles generally sprout from

both umbrellas, but ontogenetically originate from the

subumbrella (Conant 1898; Chapman 2001). They bud

from the distal end of the blade-like gelatinous pedalium,

which is rooted in the subumbrellar structure (e.g. in the

adult stage of the cubozoan Tripedalia cystophora). In the

younger sessile polyp stages, tentacles occur at the four

A B C

D E F

G H I

F IG . 4 . Sinaster petalon gen. et sp. nov. from the lower Cambrian Kuanchuanpu Formation, Shaanxi Province, China; ELISN 115-39,

paratype, microtomographic sections. A, axial section through the middle of the aperture; positions of horizontal sections B–I are indi-
cated. B–I, horizontal sections from oral to aboral part. Major internal structures identified by colours generated by VG Studio 2.2

MAX; see colourless sections in Wang et al. (2017). Abbreviations: aal, adradial apertural lobe; afl, adradial fold lappet; afr, adradial

frenulum; as, accessory septum; crm, circumferential muscle; en, egg envelope; eu, exumbrella; gl, gonad-lamella; is, interradial septum;

mb, manubrium; pal, perradial apertural lobe; pe, periderm; pfl, perradial fold lappet; pfr, perradial frenulum; su, subumbrella; tb, ten-

tacular bud; ve, velarium; *, perradius; ?, interradius. Scale bar represents 150 lm.
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corners of the oral side of the animal (Werner et al.

1971). Features interpreted as subumbrellar tentacles also

occur in the sea anemone-like cnidarian Eolympia and

cubozoan-like specimens (Han et al. 2010, 2013, 2016a,

b) and an unidentified fossil cnidarian polyp (Steiner

et al. 2004) from the same horizon (Kuanchuanpu For-

mation) and locality where Sinaster was found. In

summary, although we lack information concerning the

post-embryonic development of the tentacular buds of

Sinaster, we find no reason to reject the hypothesis that

they originate from the subumbrellar structure and repre-

sent the early developmental stages of tentacles which

would have developed at a more advanced polyp stage

through ontogeny.

Reproductive organs in early and extant cnidarians

Gonads vary widely in shape, size and disposition among

the four classes of cnidarians, and thus they are of great

significance for the systematics and phylogeny of the

group. In anthozoan anemones, the gonads occur within

the gastroderm of the septa/mesenteries in the form of

longitudinal band-like structures behind the septal fila-

ments (Russell 1970). Gonads tend to be fused within

one side of each septum (= mesentery) (Thomas &

Edwards 1990). Thus the anthozoan septum is a com-

bined structure with many functions such as support,

digestion and body contraction and the production of

gametes. The eight gastrodermal gonad bands of

A B C

D E F

F IG . 5 . Sinaster petalon gen. et sp. nov. from the lower Cambrian Kuanchuanpu Formation, Shaanxi Province, China; ELISN 115-

39, paratype, three-dimensional model obtained using VG Studio 2.2 MAX. Colours identify anatomical structures. A, oral view

showing the perradial lappet, velarium, perradial and adradial frenula. B, inner-lateral view of the half body showing the subumbrel-

lar elements and the structures along the interradial septa. C, one-fifth apertural part showing the perradial lappet underlying the

velarium and the perradial frenulum. D, surface of the exumbrella showing the shallow coronal grooves. E, one-fifth subumbrella

showing the tentacular buds in the interradius and the frenula in the perradius. In a strict sense, each tentacle is located at the

adradius. F, one-fifth exumbrella showing the gonad lamellae rooted into the interradial septa, and the accessory septa projecting

from the interior layer of the exumbrella. Abbreviations: aal, adradial apertural lobe; af, adradial furrow; afl, adradial fold lappet;

afr, adradial frenulum; as, accessory septum; cg, coronal groove; crm, circumferential muscle; eu, exumbrella; en, egg envelope; gl,

gonad-lamella; if, interradial furrow; is, interradial septum; mb, manubrium; pal, perradial apertural lobe; pfl, perradial fold lappet;

pfr, perradial frenulum; su, subumbrella; tb, tentacular bud; ve, velarium; *, perradius; ?, interradius. Scale bars represent: 150 lm
(A, B, D, F); 50 lm (C); 75 lm (E).
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stauromedusae are also distributed along each side of the

interradial septa, but are located closer to the distal end

of the septa. As in anthozoans and staurozoans, the

gonads of scyphozoans and cubozoans arise from the gas-

trodermis, and appear as well-delimited, paired strip-like

outgrowths close to or along the interradial septa (Gersh-

win & Alderslade 2006). The gonad lamellae of Sinaster

have a smaller size but we have no information concerning

their internal complexity. However, scyphozoan gonads

exhibit much greater diversity. In coronate medusae, eight

gonads are derived from the subumbrellar endoderm; they

are situated more or less close to the adradii and their dis-

tal end extends toward the perradii (Russell 1970; see also

Fig. 8B). In Semaeostome and Rhizostomae medusae,

there are only four folded gonads (Russell 1970; Tiemann

& Jarms 2010). In hydrozoans, gonads develop from

pouches of epidermal epithelium on either side of the

manubrium or on the subumbrellar surface along the per-

radial canals (Thomas & Edwards 1990).

The gonad lamellae and accessory septa of Sinaster

petalon and other unnamed fossil embryos from the

Kuanchuanpu biota (ELISN 31-5 and ELISN 108-343,

Han et al. 2013; GMPKU 3089, Dong et al. 2013) are

clearly derived from the exumbrellar endodermis. They

closely resemble the interradial gonads of cubozoans and

also display important similarities to the reproductive

organs of scyphozoans (Stauromedusae, Coronatae). For

example, their accessory septa recall the gonads of extant

coronates. Both structures are more or less adradial and

are derived from the gastric epidermis (Han et al. 2013,

2016a). The aboral part of the gonad lamellae and acces-

sory septa of ELISN 31-5 and ELISN 108-343 are rooted

in the inner layer of the exumbrella, but most of their

derived tissues are fused with the exterior subumbrellar

layer at the middle level of the bell (Han et al. 2013; see

Figs 4, 7A). The gonad lamellae and accessory septa,

derived from exumbrellar endodermis as illustrated by

Sinaster petalon, may represent the ancestral condition in

cnidarians.

Comparisons with Olivooides

Sinaster petalon resembles Olivooides multisulcatus and

O. mirabilis, two abundant embryonic forms from the

Kuanchuanpu Formation (Hua et al. 2004; Dong 2009).

However, O. mirabilis has a distinctive jar-like shape with

a cap-like structure covering the aperture (Hua et al.

2004). Most of its developmental stages are characterized

by a dense spiny external ornament (Steiner et al. 2014).

Clearly these characteristics are not found in S. petalon.

Comparisons with Olivooides-like embryos

Sinaster petalon shares important characters with two Oli-

vooides-like embryos (e.g. ELISN 31-5 and ELISN 108-343

interpreted as cubozoans by Han et al. (2013; see also

F IG . 6 . Simplified cross-sections

showing the internal features of Sina-

ster gen. et sp. nov. from the lower

Cambrian Kuanchuanpu Formation,

Shaanxi Province, China. A, vertical

section through the manubrium, ten-

tacle buds. B–D, horizontal sections;
exumbrellar surface with the internal

furrows; B, section near oral aperture

showing the rounded velarium and

the coronal muscles interrupted in

interradii; C, section under velarium

level showing five pairs of tentacular

buds; D, section showing five pairs of

the accessory septa and five pairs of

the gonad lamellae. Abbreviations: as,

accessory septum; crm, circumferen-

tial muscle; eu, exumbrella; gl, gonad

lamellae; if, interradial furrow; is,

interradial septum; mb, manubrium;

pe, periderm; su, subumbrella; tb,

tentacular buds; ve, velarium; *, per-
radius; ?, interradius.
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Table 1). These are: (1) pentaradial symmetry exemplified

by five pairs of tentacular buds; (2) five interradial septa

supporting the medusa bell; (3) five pairs of gonad-like

lamellae growing bilaterally in the interradial septa; (4)

five pairs of accessory lamellae projecting into each perra-

dial pocket; (5) a short manubrium; and (6) ‘5 + 10 pat-

tern’ of frenula and apertural lappets. However, S. petalon

differs from Olivooides-like embryos in several anatomical

features: (1) a completely smooth periderm; (2) interra-

dial septa lacking free ends; (3) smaller and shorter

gonad-like lamellae without bifurcation (Fig. 7); and (4)

less developed endodermic lamellae and gastric pockets.

These comparisons indicate that S. petalon and the two

unnamed cubozoans represented by ELISN 31-5 and

ELISN 108-343 are most probably neither conspecific nor

congeneric but may belong to the same family.

A B C D

E F G H

F IG . 7 . Simplified reconstructions of the reproductive organs of extant (A, E) and lower Cambrian (B, F; C, G) medusozoans. Each

form is represented in lateral and vertical views. Each image represents one-fifth of the animal. A, E, extant cubozoans with no acces-

sory septa (Conant 1898). B, F, unnamed Cambrian form from the Kuanchuanpu biota with gonad lamellae and accessory septa

(based on ELISN31-5; Han et al. 2013). C, G, unnamed Cambrian form from the Kuanchuanpu biota with gonad lamellae and distally

branched accessory septa (based on GMPKU3089; Dong et al. 2013). D, H, Sinaster petalon gen. et sp. nov. with gonad lamellae and

accessory septa (based on ELISN89-107). The subumbrellar wall and other anatomical structures are removed in order to expose the

interradial septa, gonad lamellae and accessory lamellae.

TABLE . 1 . Morphological comparisons between Sinaster petalon gen. et sp. nov. and Olivooides embryos, all from the lower Cam-

brian Kuanchuanpu Formation.

Periderm Interradial septa /

radial wall

Gonad lamellae /

unnamed

Accessory septa /

recurved wall

Bell texture /

unnamed

ELISN 89-107 Complete,

smooth

One third of the

height of the bell

Near to the aboral

section of the bell,

continuous

One sixth of the height

of the bell

Unknown

ELISN 115-39 Incomplete,

smooth

One third of the

height of the bell

Near to the aboral

section of the bell,

continuous

One sixth of the height

of the bell

With adradial

furrow, interradial

furrow and

coronal groove

ELISN 31-5 Unknown, with

an envelope

Half the height of

the bell

Middle of the bell,

discontinuous

One sixth of the height

of the bell

Same as ELISN

115-39

ELISN 108-343 Incomplete, with

an envelope

Half the height of

the bell

Middle of the bell,

discontinuous

One sixth of the height

of the bell

Same as ELISN

115-39

GMPKU 3089 Unknown Half the height of

the bell

Near to the oral

section, tiny;

unnamed

One eighth of the

height of the bell

Same as ELISN115-

39; unnamed
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Sinaster petalon also shares a series of common features

with another unnamed embryo from the Kuanchuanpu

Formation (GMPKU 3089, Dong et al. 2013; Table 1).

These are: (1) interradial and adradial furrows and shal-

low coronal grooves on the external layer of the exum-

brella (see Dong et al. 2013, fig. 3a, b); (2) spacious

perradial pockets created by the straight and long interra-

dial septa; (3) long curved accessory septa projecting into

the perradial pockets (see Dong et al. 2013, fig. 3); (4)

paired, tiny gonad-like lamellae rooted in the interradial

septa (see Dong et al. 2013, fig. 3j); and (5) tentacular

buds with inner cavity. However, GMPKU 3089 has sev-

eral features which do not occur in S. petalon, such as:

(1) the lack of a periderm; (2) gonad-like lamellae in a

much higher position (Fig. 7); (3) perradial pockets with

a smaller volume; and (4) five pairs of depressions under

the tentacular buds and five radial canals. All of these fea-

tures indicate that GMPKU 3089 differs from S. petalon

but may belong to Sinaster.

Systematic position of Sinaster and Olivooides-like fossils

Two competing hypotheses have been proposed for the

systematic position of Olivooides-like fossils: Scalidophora

(Ecdysozoa; Steiner et al. 2014) or Scyphozoa and Cubo-

zoa (Cnidaria; Dong et al. 2013; Han et al. 2013; Liu

et al. 2014; Steiner et al. 2014). This debate also concerns

Sinaster and is summarized below.

The Scalidophora hypothesis

We think that this hypothesis can be rejected on the fol-

lowing grounds:

1. Olivooides-like fossils have either pentaradial or

tetraradial symmetry (Dong et al. 2013; Han et al.

2013, 2016a) and thus do not have a bilateral body

plan. Modern Scalidophora such as priapulids and

their assumed early Cambrian ancestors (e.g. Cheng-

jiang biota; Huang et al. 2004; Vannier 2012) are

bilaterians with an antero-posterior polarity and a

ventral cord (Nielsen 1995; Adrianov & Malakhov

2001). No such bilateral arrangement occurs in Oli-

vooides-like fossils.

2. No eubilaterian has a double-layered body wall con-

nected by pentaradial septa.

3. Representatives of Olivooides-like fossils lack the

annulated trunk and swollen introvert with scalid

rows that characterizes extinct and extant scali-

dophorans. Eopriapulites sphinx, which co-occurs with

Olivooides embryos in the Kuanchuanpu Formation,

is the oldest known scalidophoran. Its 18 longitudinal

rows of scalids (Ruppert et al. 2004; Liu et al. 2014)

have no equivalent in Olivooides.

4. Both extinct (e.g. Ottoia prolifica; Vannier 2012) and

extant scalidophorans have a cylindrical gut linking

the anterior (mouth) and posterior (anus) ends of

the body. The single apical aperture of Olivooides

embryos superficially resembles the mouth opening of

scalidophorans (Steiner et al. 2014), but it is really

just an invagination of the theca. The real ‘mouth’ is

located at the end of the manubrium (Han et al.

2013; Figs 2, 3) whereas the ‘gut’ sensu Dong et al.

(2013) probably starts at the aboral stalk of soft-

tissue.

5. The body wall of extant scalidophorans such as pria-

pulids (Vannier 2012) consists of a relatively thin

cuticle lined with longitudinal and circular muscles

(Ruppert et al. 2004) and separates the coelomic cav-

ity from the external medium. The peridermal theca

of the Olivooides embryos has no such features.

The Cnidaria option

Comparison with anthozoans. Anthozoans are character-

ized by bilateral symmetry, an actinopharynx, and direct

and indirect mesenteries with free ends (Hyman 1940). Both

extinct and extant representatives of the group lack paired

tentacles, a manubrium and lappets such as those present in

Sinaster petalon and other Olivooides-like embryos.

Comparison with hydrozoans

Sinaster petalon and other Olivooides-like embryos differ

from hydrozoans (hydropolyps and hydromedusae). Most

solitary or colonial hydropolyps are partly or entirely sur-

rounded by a tubulous cuticle or perisac, and they possess

numerous circumoral tentacles surrounding a cone-

shaped hypostome without oral lips or lappets (Hyman

1940; Thomas & Edwards 1990). The cuticle (or perisac)

and hypostome of extant hydrozoans resemble the perid-

erm and manubrium of S. petalon. However, the hydro-

zoan septa are highly reduced or invisible. The gastric

cavity of hydropolyps does not partition into several

pouches, while the gastric pockets of S. petalon are sepa-

rated by interradial septa. In addition, the manubrium/

hypostome of S. petalon are located deep within the sub-

umbrellar cavity. Hydromedusae have four perradial

canals, four primary tentacles, as well as a very distinctive

velum with neither frenula nor lappets (Thiel 1966). In

contrast, all known Olivooides-like embryos have a circle

of tentacles close to the interradii that are derived from

the subumbrellar wall.
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Comparison with staurozoans

The life cycle of extant staurozoans lacks the alternation

of a sessile polyp and a swimming medusa and is com-

monly interpreted as an attached medusa stage (Collins

et al. 2006). The external morphology of extant stauro-

zoans is similar to that of naked, juvenile Olivooides-like

fossils lacking a periderm (see Steiner et al. 2014, fig. 12:

7, 8). Their spacious perradial pockets are comparable to

those of S. petalon and other Olivooides-like fossils. Nota-

bly, the pedal disk of staurozoans is fastened to the sub-

strate by a chitinous secretion (Hyman 1940) that might

represent a vestigial periderm. Longitudinal muscles,

usually seen in the extant staurozoans, are not present in

Sinaster (Miranda et al. 2015, 2016). The triangular mar-

ginal lappets, strip-shaped gonads and paired tentacles of

Sinaster have no counterparts in modern staurozoans. For

these reasons, S. petalon cannot be placed within the stau-

rozoans.

Comparison with scyphozoans

As previously proposed for Olivooides (He 1987), Sinaster

petalon might be placed among scyphozoans and espe-

cially scyphopolyps, based on the presence of marginal

lappets, paired gonads, coronal muscles and an annulated

sessile periderm. However, the periderm is a common

feature among anthozoans and all cnidarian polyps except

staurozoans (Ruppert et al. 2004). In general, the perid-

erm of extant cnidarians does not cover the entire body

as it does in the Kuanchuanpu medusozoans. Also,

S. petalon can hardly been placed within one of the three

scyphozoan orders, namely Coronatae, Semaeostomeae

and Rhizostomeae. For example, it lacks the rhopalia,

complex radial canals and well-developed mouth arms of

the Semaeostomeae and Rhizostomeae. Furthermore, the

coronal furrow, exumbrellar pedalia, and radial canals

typical of Coronatae have no equivalent in S. petalon.

Marginal lappets and paired gonads are two important

characters shared with scyphozoans which might indicate

a common ancestry.

Comparison with cubozoans

Sinaster petalon is most similar to extant cubozoan medu-

sae. Specifically, in that the: (1) concentration of subum-

brella tentacles in the interradii is a diagnostic feature of

extant cubozoans (Conant 1898; Chapman 2001); (2)

morphology and arrangement of the gonadal lamellae is

similar to those of both cubozoans and scyphozoans

(Figs 7, 8); (3) support of the velarium by the perradial

frenula is also a distinctive feature of extant cubozoans

(Conant 1898); (4) interradial septa, which connect the

subumbrellar and exumbrellar walls, lack a free end. In

these respects, S. petalon more closely resembles present-

day cubozoans than do other Olivooides-like embryos

(e.g. ELISN 31-5). However, Sinaster does not possess the

typical pedalia and sensory organs seen in modern cubo-

zoans and in fossil jellyfish from the Chengjiang biota

(Han et al. 2016c). Finally, the marginal lappets and the

adradial frenula of Sinaster are absent in the modern rep-

resentatives of the group.

PHYLOGENETIC ANALYSIS

In total, 25 taxa (including Sinaster petalon) and 104 char-

acters (see definitions in Marques & Collins 2004 and Han

F IG . 8 . Simplified horizontal cross-sections through the extant medusae. A, cubozoan. B, scyphozoan (coronate medusa). Abbrevia-

tions: af, adradial furrow; cl, claustrum; cs, coronal stomach; eu, exumbrella; g, gonad; go, gastric ostium; icp, interradial corner pillar;

if, interradial furrow; is, interradial septa; ln, lappet node; ml, marginal lappet; mp, mesogonial pockets; ph, phacellus (gastric fila-

ment); pp, perradial pocket; rc, radial canal; sf, septal funnel; sn, septal nodes; sp, suspensorium; *, perradius; ?, interradius. Modified

from Russell (1970, text-fig. 37) and Tiemann & Jarms (2010).
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et al. 2016c), were considered for analysis using PAUP* v.

4.0 b10, yielding 999 shortest trees (tree length = 177 steps,

consistency index = 0.65, rescaled consistency index =
0.50) (Wang et al. 2017, appendix 3). All characters have

equal weight, 8 of them are constant, and 25 variable char-

acters are parsimony-uninformative. This corroborates the

molecular analysis of Collins et al. (2006) which found

scyphozoans and cubozoans to form a monophyletic

group. As shown on the consensus tree (Fig. 9), Sinaster

and GMPKU 3089 are close to each other. Sinaster and

other fossil embryos (e.g. GMPKU 3089, ELISN 31-5 and

ELISN 108-343) belong to the total group Cubozoa (Fig. 9;

highlighted in blue). This tentative phylogenetic analysis

suggests that Sinaster and its allied embryonic forms may

belong to the stem-group Cubozoa.

CONCLUSIONS

Sinaster petalon exhibits a mixture of features typical of

polypoid and medusoid phases. Its internal anatomical

structure (e.g. gonad lamellae, accessory septa, perradial

and adradial frenula) appear to be more complex than

those of all extant medusozoan polyps. Although it bears

a well-developed subumbrellar cavity and coronal mus-

cles, it lacks sensory organs comparable to those of extant

medusae. The presence of a periderm around Sinaster and

the manifest absence of sensory features would support

the view that the adult stage is a sessile medusa.

Sinaster cannot be straightforwardly assigned to any

crown group of extant medusozoans. However, the pres-

ence of marginal lappets and endodermal lamellae suggest

that it is closer to Cubomedusa and Scyphomedusa than

to any other group of modern cnidarians. The presence

in Sinaster of a velarium supported by the frenulum is an

important cubozoan character that would support its

position in the stem-group Cubomedusae.

The morphological similarity of Sinaster with both

cubozoans and scyphozoans supports the hypothesis that

these fossils represent the common ancestors of Cubo-

zoa + Scyphozoa. However, cladistic analysis suggests clo-

ser affinities with Cubozoa than with Scyphozoa. The

subsequent reduction of various internal structures and of

the external periderm through evolution would have led

to the divergence between these two groups.

Although quite similar in their external morphology,

the pentamerous embryonic medusae from the early

Cambrian Kuanchuanpu biota display considerable

anatomical variation, exemplified here by Sinaster petalon.

Clearly, any future attempt to establish the taxonomy of

these fossils should take into consideration not only their

external shape and micro-ornament but also and above

all their internal structures, which can be easily revealed

with microtomographic techniques.
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