
HAL Id: tel-02269894
https://theses.hal.science/tel-02269894

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling, Prediction and Optimization of Energy
Consumption of MPI Applications using SimGrid

Franz Heinrich

To cite this version:
Franz Heinrich. Modeling, Prediction and Optimization of Energy Consumption of MPI Applica-
tions using SimGrid. Modeling and Simulation. Université Grenoble Alpes, 2019. English. �NNT :
2019GREAM018�. �tel-02269894�

https://theses.hal.science/tel-02269894
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA
COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Franz Christian HEINRICH

Thèse dirigée par Arnaud LEGRAND, CNRS

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l’École Doctorale Mathématiques, Sciences et technologies de
l’information, Informatique

Modélisation, prédiction et optimisation de la con-
sommation énergétique d’applications MPI à l’aide
de SimGrid

Modeling, Prediction and Optimization of Energy
Consumption of MPI Applications using SimGrid

Thèse soutenue publiquement le 21 mai 2019,
devant le jury composé de :

Amina GUERMOUCHE
Maîtresse de Conférences, Télécom SudParis, France, Examinatrice

Laurent LEFÈVRE
Chargé de Recherche, Inria / ENS de Lyon, France, Rapporteur

Jean-François MÉHAUT
Professeur, Université Grenoble-Alpes, France, Président

Martin SCHULZ
Professeur, Technische Universität München, Allemagne, Rapporteur

Arnaud LEGRAND
Directeur de Recherche, LIG, CNRS, France, Directeur de thèse

Abstract

The High-Performance Computing (HPC) community is currently undergoing
disruptive technology changes in almost all fields, including a switch towards
massive parallelism with several thousand compute cores on a single GPU or
accelerator and new, complex networks.

The energy consumption of these machines will continue to grow in the future,
making energy one of the principal cost factors of machine ownership. This explains
why even the classic metric "flop/s", generally used to evaluate HPC applications
and machines, is widely regarded as to be replaced by an energy-centric metric
"flop/watt".

One approach to predict energy consumption is through simulation, however,
an accurate simulation of the system is crucial to estimate the energy faithfully.
In this thesis, we contribute to the performance and energy prediction of HPC
architectures. We propose an energy model which we have implemented in the open
source SimGrid simulator. We validate this model by carefully and systematically
comparing it with real experiments. We leverage this contribution to both evaluate
existing and propose new DVFS governors that are designed to suit the HPC
context.

iii

Résumé

La communauté du calcul haute performance (HPC) est actuellement en pleine
mutation, avec des évolutions technologiques majeures telles que le parallélisme
massif apporté par des milliers de cœurs de calcul sur un seul accélérateur de type
GPU ou bien les réseaux d’interconnexion à très haut débit.

La consommation d’énergie de ces machines est appelée à continuer à croître dans
les années à venir, faisant de l’énergie l’un des principaux facteurs de coût. Cela ex-
plique pourquoi la métrique classique "flop/s", généralement utilisée pour évaluer
les la performance des applications et des infrastructures HPC, est progressivement
remplacée par des métriques centrées sur l’énergie comme le "flop/watt".

La simulation est une approche possible pour prédire la consommation d’énergie de
ces infrastructures. Cependant, il est nécessaire de mettre en place une simulation
fidèle du système pour obtenir une prédiction de performance fiable. Dans cette
thèse, nous contribuons à la prédiction de la performance et de la consommation
énergétique des architectures HPC. Nous proposons un modèle d’énergie que nous
avons implémenté dans le simulateur open source SimGrid. Nous validons ce
modèle avec soin en le comparant systématiquement avec des expériences réelles.
Nous utilisons cette contribution pour évaluer des algorithmes déjà existant de
régulation de la fréquence afin de réduire la consommation énergétique et nous
proposons de nouveaux gouvernors DVFS spécialement conçus pour le contexte
HPC.

v

Acknowledgements

As a student, I heard many stories from and about PhD students and how they
had to cope with working on a scientific project for years. Making this experience
myself was quite humbling, and I think it is reasonable to say that without the help
of many amazing people I would not have managed to achieve results I present
in this thesis. I therefore decided to dedicate more space than just the generic
one-page acknowledgements to the people that have helped and accompanied me
throughout my PhD because I believe that these people have absolutely deserved
it.

My Advisor

I Arnaud Legrand At some point during my thesis, Tom said, "After three years as
a PhD student, you have no respect left for your advisor." The contrary is true and
after 4.5 years of working with you, I find it suprisingly difficult to write these lines
because words cannot really convey what this fantastic journey with you means to
me personally.

Instead of going into details, I would like to express my admiration for you, not
only because of your scientific brilliance and rigor but also because of your great
leadership and proximity. I feel the deepest gratitude for all the time and effort
it took you to guide me in my endeavour (and the patience that I undoubtedly
tested numerous times along the way). Your kindness and politeness that you
exhibit when dealing with your PhD students and colleagues have impressed and
influenced me and clearly are one of the reasons why your PhD students sometimes
have to fight against all the other people that want to collaborate with you!

The PhD Committee

IMartin Schulz, Laurent Lefèvre, Amina Guermouche and Jean-François Méhaut I
am truly honored that all of you, despite having a tight schedule on your own,

vii

accepted to review this manuscript and that you attended my defense. I also
highly appreciate your feedback on this work and the discussions that followed my
presentation.

My Team: POLARIS

I Tom Cornebize Be it on business trips or during a private weekend in Aix-les-
bains, I’ve enjoyed spending time with you. Even better, you have been the best
intern I have ever had (also the only one): autonomous, good ideas and great rigor.
I think your work is highly interesting and I hope you will find enough motivation
to keep this high standard!

I Vincent Danjean Thank you for sharing your huge knowledge of operating
systems / Debian with me - this has helped me in several cases quite significantly
with my research. I have been particularly impressed by the lesson you taught me
when you resolved a day-long bug hunt I was on in just a few minutes. Another
thing that impressed me is your millionaire’s cake. You surely could be one if you
started selling it! Thanks for the recipe!

I Augustin Degomme Your technical knowledge of SMPI is highly appreciated,
not only during several debugging sessions where you have helped me out. Thank
you for all your efforts and for being the witty, always friendly guy that you are!

I Nicolas Gast Thanks for telling me about the ADMM algorithm and hence
giving me a great idea for a DVFS manager! Also for being the funny, humble and
active person that you are. It was a pleasure to work with you!

I Bruno Gaujal Thanks to you, I can now say that I am somewhat able to under-
stand French people speaking with a slight accent from the south. Besides that, I
appreciate your humour but also your knowledge and enthusiasm!

I Florence Perronin Thanks for being there for the PhD students that seek help,
be it scientifically or personally, and your very pleasant company during breaks!

IStéphan Plassart Even though you arrived only in late 2016, you quickly became
one of the closest colleagues and also a good friend. I don’t exaggerate when I say
that I was able to improve my French significantly thanks to your corrections and
patience during our lunch- and coffee-breaks. I’m glad you listened when things
were not working, answered questions on the French system, explained things you

viii

are passionate about (or not. . . like the CVEC) and showed me Aix-les-bains. We
still need to play a first round of golf together soon!

I Annie Simon The POLARIS team members can consider themselves lucky to
have such a caring assistant. I have come to highly appreciate your humour and
talking to you was always a more-than-pleasant distraction from my scientific work.
You are truly the good soul of this team, and I hope that they get to work with you
for a long time to come!

I Lukas Schnorr Thank you for being a great friend and colleague! I have loved
and missed (after your departure) our discussions on reproducibility, experiments
and everything else. Getting to know you closer was a real pleasure and not only
your professionalism, deep understanding of your domain but also your kindness
towards others is what makes you a fantastic teacher. I hope we get to see each
other again rather sooner than later!

I Jean-Marc Vincent Thank you so much for your help with my presentation and
your comments on my work. This has undoubtedly prepared me for my defense. It
has always been a pleasure to discuss with you, not only because of your humble
character, but because you are so knowledgeable in so many fields and always
willing to share.

I Others I would like to thank all the other current and former members of PO-
LARIS (Guillaume Huard, Philippe Waille, Pedro Bruel, Bruno Donassolo, Vinìcius
Garcia Pinto, Luca Stanisic, our interns and everyone I forgot) for the great time in
the lab!

POLARIS’s Twin-Team: DATAMOVE

The DATAMOVE team shares almost everything with POLARIS: The same corridor,
offices, food, events, . . .

I Pierre-François Dutot Thanks for all the information you gave me on Hawaii
and wine tasting in France!

I Grégory Mounié Your explanations on OS concepts and your great new ideas on
how to debug seemingly unexplicable behaviors have helped me with my scientific
work. Additionally, even though my last rehearsal was very spontaneous, you
still took the time and helped me by asking great questions and pointing out what
remained unclear to you. Thanks for your support!

ix

I Pierre Neyron Guten Tag! Surprisingly, you are the only member of our teams
that constantly claims to be the wrong person to talk to: You reject all blaming
when the internet access is broken or when the printer is malfunctioning. The
reason for this could be that you really are not the right person for this! When it
comes to Grid’5000, I can attest that you are not only the right person to talk to,
but even extremely helpful, especially when I needed something urgently. You
have solved numerous problems quickly and efficiently, and I applaud you here
for your CNRS award that you just won. Congrats! If there was another medal
for advice on sports / mountains or teaching PhD students nordic skiing, I would
highly recommend you for that one as well.

I Olivier Richard Unfortunately, we have never really worked together, but your
funny personality makes you a great person to have around. Thanks for all the
discussions, be it in the lab or on business trips!

I Julio Toss Thanks for helping me settle in Grenoble. Coming in, without
speaking any French, was quite unsettling but you have helped me to get started
here. It is very unfortunate that you had to leave in 2016 already, but I have not
forgotten our trips and our endless org-mode discussions!

I Brice Videau Thanks a lot for your help with the calibration procedures and
explaining the tools I needed to know for debugging. I hope that at some point, we
can work on a joint project together!

I Others I would like to thank everyone else, especially Fanny Dufossé, Bruno
Raffin, Denis Trystram, Frédéric Wagner but also Carmen Chan, Tristan Ezequel,
Adrien Faure, Nicolas Michon, Michael Mercier, Clement Mommessin, Baptiste
Pichot, Millian Poquet, Danilo Santos, Théophile Terraz and Salah Zrigui for the
great time in the lab. Every single one of you has helped me in one way or another
and made me laugh numerous times!

Scientific Collaborations

I Anne-Cécile Orgerie Thanks for your kindness and your willingness to con-
tribute with hands-on help and great advice on energy-related subjects! Working
with you has been very pleasant for me and I hope we will continue to work
together in the future.

I Professor Martin Quinson Thank you for hosting me for almost a month in
Rennes! Not only during my stay with you, but during the entirety of my thesis, I

x

have enjoyed your down-to-earth mentality, your humour, kindness and certainly
your helpfulness with SimGrid related issues.

I Sascha Hunoldt Your honesty and ambition is impressive and your comments
on my paper have helped me improve it for the second (and accepted) version.
I think that the scientific community needs more rigorous researchers like you.
Thank you for working with me!

I Frédéric Suter Thank you for all the comments and help with the SimGrid code
base. Your efforts and explanations have often saved me from hyperventilating!

Friends & Family

I My Family I would like to thank my family and in particular my parents for
their support and their help in various ways. It is highly appreciated!

I Jan-Philipp Kayser, Alexander Kruck, Hajo Trimborn Thank you all for your
friendship that cannot be put in a few sentences and the great time we always
spend together.

I Jeffrey Overbey All your advice, be it scientific or on grammar and writing,
has been highly valuable to me. Besides being a brilliant software engineer and
researcher, your company during our travels has been highly appreciated!

I Samantha Ho You have been there for me even during the roughest of times,
and your support has helped me so much. Thank you!

Infrastructure

I Grid’5000 Experiments presented in this thesis were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well as other organiza-
tions.

xi

Contents

1 Introduction 1

2 Context 5
2.1 High Performance Computing (Until) Today 5

2.1.1 Scientific Applications in a Nutshell 5
2.1.2 Architectures: Computation . 7
2.1.3 Architectures: Communication 12
2.1.4 Programming paradigms . 14

2.2 High Performance Computing Tomorrow: Exascale Computing . . . 19
2.2.1 Applications . 20
2.2.2 Architectures: Computation . 23
2.2.3 Architectures: Communication 28
2.2.4 Programming Paradigms . 30

2.3 Conclusion . 31

3 Related Work 33
3.1 Simulation Based Performance and Energy Prediction 33
3.2 Conclusion . 35

4 The SimGrid Project 37
4.1 Overview of the SimGrid Project . 37

4.1.1 History and Impact . 37
4.1.2 Software Architecture . 38
4.1.3 Software Engineering . 40

4.2 A General Introduction to SimGrid . 41
4.2.1 Modeling Virtual Resources . 41
4.2.2 Modeling Applications . 45

4.3 SMPI: Simulating MPI Applications 46
4.3.1 Emulation of MPI code . 47
4.3.2 Modeling of MPI Communications 52
4.3.3 Scalability . 53

4.4 Runtime Support (StarPU-SimGrid): Simulating Dynamic GPU-based
Applications . 57

4.5 Contributions to the SimGrid Project 58

xiii

4.5.1 Platform description . 58
4.5.2 PAPI support . 59
4.5.3 Privatization . 59
4.5.4 Energy plugin . 60
4.5.5 DVFS plugin . 60
4.5.6 Load Balancing . 60

5 Experimental Methodology 63
5.1 Experimental Setup . 63
5.2 Factors Influencing the Experimental Results 63

5.2.1 Hardware . 65
5.2.2 Date . 65
5.2.3 Operating System / Software Stack 67
5.2.4 Kernel . 67
5.2.5 Application . 70
5.2.6 Execution . 70
5.2.7 Output . 71
5.2.8 Data Analysis . 71

5.3 Network Calibration . 72
5.3.1 Network . 72
5.3.2 Hardware Limitations . 72

6 Contribution: Modeling Multi-Core CPUs 73
6.1 Problem . 73
6.2 Proposed Solution . 75
6.3 Performance Evaluation / Effectiveness 79
6.4 Limitations . 80

6.4.1 Technical limitations . 80
6.4.2 Scaling limitations . 81
6.4.3 Future Work . 82

7 Contribution: Modeling Intra-Node Communications 83
7.1 Problem . 83
7.2 Solution . 83
7.3 Performance Evaluation / Effectiveness 85
7.4 Limitations . 85

8 Contribution: Modeling Multi-Core CPU Power Consumption 89
8.1 Problem . 89
8.2 Proposed Solution . 92

8.2.1 Calibrating the Energy Consumption 94
8.2.2 Predicting the Energy Consumption with SimGrid 96

8.3 Performance Evaluation/Effectiveness 99

xiv

8.4 Use Case: Capacity Planning for HPL 101
8.5 Limitations . 102

8.5.1 Model Limitations . 102
8.5.2 Experimental Limitations . 104

8.6 Conclusions . 105

9 Contribution: Optimizing the Power Consumption With DVFS 107
9.1 Context . 107

9.1.1 Iterative Applications . 107
9.1.2 DVFS, a Means to Reduce the Power Consumption of HPC

Applications . 109
9.2 Related Work . 115

9.2.1 Adagio (Application Level DVFS) 115
9.2.2 Load Balancing with Adaptive MPI (AMPI) 117
9.2.3 Residual Load Imbalance . 119

9.3 Contributions . 119
9.3.1 DVFS Governor: AdagioImproved 120
9.3.2 DVFS Governor: Lagrange . 122

9.4 Performance Evaluation/Effectiveness 126
9.4.1 DVFS/Adagio/AdagioImproved/Lagrange 126
9.4.2 Efficiency Comparison DVFS / Load Balancer 128

9.5 Limitation and Future Work . 129
9.5.1 Unavailable Frequencies and More Complex Architectures . . 129
9.5.2 Current Limitations of Our Implementation 130

9.6 Conclusions . 131

10 Conclusion and Future Work 133
10.1 Thesis Summary . 133
10.2 Limitations . 134

10.2.1 Model Limitations . 134
10.2.2 Application Limitations . 136
10.2.3 Experimental Limitations . 136

10.3 Future Work . 137
10.3.1 Extending the Work of this Thesis 137
10.3.2 SimGrid . 138
10.3.3 Joint Work with the SimGrid Userbase 140

Bibliography 141

xv

1Introduction

Over the past few decades, High-Performance Computing (HPC) has supported
a great number of scientific discoveries in both academic and industrial contexts.
Today, a continuously growing number of researchers from largely different fields
have come to appreciate the computational power provided by supercomputers
for their studies of intricate and important questions that were often formerly in-
feasible, such as climate change or the molecular structure of human diseases. In
the industrial world, an increasingly fierce global competition and faster innova-
tion cycles require researchers and engineers to rely on complex simulations to
test and optimize products and materials in order to gain an advantage over the
competition.

Both worlds have in common that their science is often limited by the existing tech-
nology and algorithmic solutions that do not support computations at the desired
level of detail. Continuing the development of machines and algorithms is therefore
a necessity to provide researchers with the needed computational power. Today, the
race to exascale, i.e., the next generation of supercomputers, is in full swing. Alas,
to achieve a performance on the order of 1× 1018 flop/s sustainably, a disruptive
technology change in almost all fields, including hardware (computation units,
networks), software (e.g., batch schedulers) and user applications is required. With
a much greater number of computation cores, possibly in the hundreds of millions
or even billions, exascale machines are expected to deliver high performance at the
cost of a much higher power consumption than today’s machines. For this reason,
energy is expected to become the main optimization goal since power contributes
greatly to the total cost of operation. This can be easily understood when consider-
ing Germany as an example: 1 kW h was priced at 0.07 € in 2000 but has since more
than doubled and cost 0.157 € in 2016 [Sho+17, Chapter I]. Increasing electricity
prices in combination with growing machine sizes have caused power expenditures
to grow incessantly. This is illustrated in Figure 1.1, which compares the yearly
total electricity cost of the Leibniz-Rechenzentrum (LRZ) in Garching near Munich,
Germany, to the cost incurred by its HPC system.

To reduce future spendings on electricity or at least keep increases to an accept-
able minimum, efforts to improve power efficiency must be undertaken. With
the abovementioned cost for 1 kW h, a constant power reduction of 1 MW would

1

have saved 1,375,320 € in 2016 and even more today. It is therefore important to
improve general hardware efficiency but also to reconsider how these platforms
are used and programmed. Significant time is spent running tests on production
platforms and moving these tests away from the machines will improve system
efficiency (“science-per-watt”), but not necessarily the power consumption. It is
therefore an important goal to ensure that application developers rely on algorithms
that minimize power consumption, for instance by overlaping communication times
with computation or by reducing the amount of data movements through improved
data locality. Improving the flop/W ratio of an application is not trivial. Application
developers must therefore be provided with the right tools and lightweight models
that consider power efficiency [Don+11, p. 38].

One possible approach is the optimization and evaluation of applications through
simulation. Once the target platform has been modeled, a simulator can estimate
an application’s performance on that particular machine. This can help to move
away not only performance testing but also debugging, since a simulator can be
expected to return deterministic results and reproducing a bug can be easier. Be-
sides raw performance estimations, a simulator can also provide further beneficial
information, for example, when and where network bottlenecks (bandwidth, con-
gestion) occur. This can be particularly helpful with iterative developments of
next-generation machines through co-design, because application developers can
assess more quickly what recent developments mean for their application’s perfor-
mance whereas hardware developers can find out what changes (for example, to
the network configuration) could speed up targeted applications and what does
not (e.g., more nodes or a more expensive network topology).

This thesis contributes to the utility of simulation as a mean for building energy
efficient applications, with the core contribution being a deliberately simple energy
model. To test its accuracy, we implemented a prototype in SimGrid, a simulator
that is particularly well suited for faithful simulation of MPI applications thanks to
its well-tested network models. Our model computes the energy for every node
individually and uses the load of the multi-core processors of each node as a basis
for this estimation. The load changes often and the current energy consumption
is therefore often recomputed over the entire execution time of the application,
making precise performance predictions for applications running on multi-core
systems crucial to our approach.

With a well functioning energy model in place, we study in a second contribution
the potential (automatic) energy savings of adaptative MPI applications by chang-
ing a node’s frequency. We implemented several, rather simple governors from
the linux kernel but also a previously published application-space governor called
Adagio [Rou+09]. We present also some ideas to improve Adagio and finally de-

2 Chapter 1 Introduction

HPC System

LRZ Total

0 Mill €

1 Mill €

2 Mill €

3 Mill €

4 Mill €

5 Mill €

6 Mill €

7 Mill €

8 Mill €

Figure 1.1: The energy bill for data centers has drastically increased since the early 2000s,
making energy savings an important goal for hardware vendors and appli-
cation developers. This statistic shows the increase of the Germany-based
Leibniz-Rechenzentrum [Sho+17, Figure 1].

velop our own governor that is based on mathematical optimization. We eventually
conclude our study with a comparison to load balancing, which we found to yield
significant higher savings for irregular applications.

Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 presents the cur-
rent state of High-Performance Computing and the changes we need to reach a
sustainable exaflop-performance. The variety of components, the cost of operating
such a machine and the need of application developers to optimize their code for
each platform (and energy savings) motivates the work presented in this thesis.
Chapter 3 then gives an overview of the existing work, especially simulators devel-
oped by other projects. Our own simulator, SimGrid, is introduced in Chapter 4.
This chapter emphasizes especially SMPI, a simulator for MPI applications that
ships with SimGrid, and the issues that are inherent to “online emulation”. Our
methodology is outlined in Chapter 5. The first contribution, multi-core modeling
for SMPI, is presented in Chapter 6. Inter-node communication has been validated
many times with SMPI, but intra-node communication requires some additional
effort. Our approach is explained in Chapter 7. Chapter 8 then finally deals with
the problem of energy prediction: A key strength of our proposed model, which
computes the energy consumption based on the current load, is its simplicity. Our
last contribution is presented in Chapter 9 and shows how we studied energy sav-
ings obtained through dynamic changes of frequency. This thesis is then concluded
by Chapter 10, which also presents future work.

3

2Context

High-Performance Computing (HPC) platforms have been developed to satisfy
the demand for immense computing power. Adopted by a wide range of scientific
domains, HPC has always been subject to change but the evolution over the last
decade has been particularly far-reaching.

This chapter gives a general overview of HPC and is structured as follows: Sec-
tion 2.1 presents the current-state of HPC up to the petaflop-era. Subsequently,
Section 2.2 contrasts this with new requirements and developments for the next-
generation of HPC (called exascale).

2.1 High Performance Computing (Until) Today

2.1.1 Scientific Applications in a Nutshell

Not even half a century ago, computational cost caused many scientific problems
to be impenetrable, but the advent of computers has given researchers a new instru-
ment that has rendered many of these problems tractable, even though especially
the most demanding and challenging problems are limited to the most powerful
machines, and hence a small subset of all platforms, because only they can can
provide enough resources to satisfy these applications’ requirements.

Unsurprisingly, the HPC community consists of researchers from both academia
and industry and covers a large variety of fields, such as engineering (e.g., aero-
dynamics in aviation, material science), geology (oil exploration, earthquakes),
meteorology (weather forecasts), medicine (e.g., HIV, brain simulation), biology
(e.g., drought-resistance in plants, protein docking), or globally relevant questions
such as climate change.

These fields of interest contain profoundly different scientific problems that re-
quire computational power, but to investigate them, scientists use very similar
approaches: They commonly rely on simulations that model parts of reality with
the aid of discretized partial differential equations.

5

Figure 2.1: A domain decomposition of rocky ground used for an earthquake simulation
with Ondes3D. The physical domain is cut into cuboids which are evenly
assigned to processors.

As a consequence, the general structure of HPC applications is mostly regular: The
physical domain (i.e., the object of interest), known at the start, is first discretized,
i.e., decomposed into a finite amount of smaller elements with an easier geometric
shape (cubes, rectangles, . . .). Figure 2.1 exemplifies this process with a decomposi-
tion into cuboids for a geological problem. Each cuboid is subsequently assigned
to a single processor. In a second step, each thus obtained element (part of the
initial problem) must be initialized, for instance from observations (e.g., geological
composition, depicted in different colors in Figure 2.1) or a random field. In the
final step, the simulation is started and computations are applied on a per-element
basis.

It is important to note that the resources required by steps two and three depend on
the application and the decomposition’s resolution. Consider a "relatively" coarse-
grained 1000×1000×1000 decomposition resolution, with each element containing
only five double values. Clearly, 5× 109 values would have to be allocated and
initialized, consuming a total of 40 GB of memory. A refined resolution is normally
applied to all dimensions and so doubling the resolution will require 8 × 40 =
320 GB to be allocated.

The resource consumption can therefore explode easily. To mitigate this, the entire
domain is typically distributed over several machines (interconnected by a network).
With each machine storing just the fraction of the domain that it processes, regular
communication between machines in order to exchange data (such as computation
results) or for synchronization (if required) becomes inevitable.

The following discussion gives an overview on current HPC node hardware (Sec-
tion 2.1.2), network setup (Section 2.1.3) and the main programming paradigms for
HPC programming (Section 2.1.4).

6 Chapter 2 Context

2.1.2 Architectures: Computation

The scale of supercomputers with hundreds or thousands of nodes is too large to
be bought by single research entities such as research teams or university depart-
ments, even though these machines are normally already built with off-the-shelf
components for cost reasons. In most cases, government organizations such as the
NSF or the DoE in the U.S. finance the majority of the expenses required for acqui-
sition and maintenance of a supercomputer. Once the production phase has been
entered, access to the supercomputer is normally granted to selected researchers
after evaluation of their proposed project.

More often than not, HPC nodes are constructed to provide general computational
power to as many disciplines as possible and hence do not favor a specific kind
of computation over others. In some rare cases, however, supercomputers are
explicitly procured for and restricted to a very limited research field (such as
daily weather simulations). This restriction implies that application requirements
are rather well known in advance and specialization (leading to, e.g., increased
performance or lower energy consumption) can thus be justified.

The three generic computational units (CPU, GPU and Many-Core-Coprocessors)
found today in HPC nodes are presented in the following discussion.

CPU

CPUs are considered the "heart" of a computer and can be found in every PC, laptop
or server. Their development is a very costly undertaking and requires high-tech
knowledge in many fields, such as circuit design and manufacturing.

It is hence not surprising that most HPC systems rely on the well-known x86
architecture, as produced by Intel and AMD, for their main processors.

For several decades, processor frequency used to double every 18-24 months. Alas,
a processor’s power consumption grows quadratically with the frequency and as
a consequence, even limited clock speed increments quickly result in higher heat
dissipation and require more costly cooling to prevent damage. Vendors have for
this reason turned towards multiplying computation units, e.g., by adding several
CPUs to a node or adding more cores to a CPU. Having multiple computation units
in the same node means that they share the same address space and can access
an application’s data that is stored in the system’s main memory (RAM) directly,
without further transfer over a network.

2.1 High Performance Computing (Until) Today 7

Sharing the main memory between CPUs creates several side-effects: First of all,
transferring data from the main memory is very slow and often forces the CPU to
wait. To mitigate this, CPUs try to reduce RAM accesses by using a cache hierarchy
with different cache sizes and performances per level. Figure 2.2 (page 9) illustrates
the cache hierarchies of a commodity laptop bought in 2015 and Figure 2.3 (page 10)
a recent HPC node. One can distinguish in total 4 levels of caches:
The first level (L1) cache, exclusive to each core, is typically very fast but also very
small with only a few kB. The L1 cache exists for instructions (L1i) and for data
(L1d). The second level (L2) cache is still private to each core but its increased size
comes at a lower performance. While the L1 caches feature the same size for laptop
and HPC node, the L2 cache is already four times larger for each HPC-core than
for the laptop. Finally, the third level (L3) cache is shared between all cores of the
same CPU and can store several MB of data. The HPC node has an overall larger
L3 cache per CPU (22 MB vs. 8 MB), but at the same time it needs to serve in total
16 CPU cores and hence four times more than the corresponding laptop cache. It is
thus essential to keep this hierarchy when programming applications. Ensuring
both spatial and temporal locality helps to avoid costly cache misses.

All cores can access the main memory to read and write data independently of
each other. Therefore, data coherency must be guaranteed among all cores to avoid
computations with different values for the same variable. Updates to data stored in
RAM must hence trigger an invalidation of any corresponding cached copy. This
means that in the worst case, when all cores have a copy in their caches, writing a
single value back to RAM requires to broadcast the invalidation to all cache levels of
all cores. Consequently, CPU core count scalability is adversely impacted by larger
caches and most CPUs have therefore relatively few cores but very large caches,
even though the design of their hierarchy (including number and size of caches)
can vary.

Privileging caches over main memory greatly contributes to application perfor-
mance. Over the years, many intricate techniques that help with this have been
developed. Cache-prefetching, for instance, reduces the amount of direct memory
accesses and cache-misses by intelligently loading data from the main memory into
caches before it is actually required.

Unfortunately, even with good cache usage, waiting times for the processor can
still occur, for example, when a dependency on a not yet available result of another
operation exists.

Instruction Level Parallelism (ILP) aims to reduce waiting times by identifying
instructions that can be executed in parallel. Some ILP-based techniques are instruc-
tion pipelining, out-of-order execution or speculative execution. The introduction

8 Chapter 2 Context

Machine (31GB)

Package P#0

L3 (8192KB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#1

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#2

PU P#3

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#4

PU P#5

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#6

PU P#7

Figure 2.2: A visual representation of the cache hierarchy and sizes of a workstation laptop
as obtained through hwloc-ls.

of HyperThreading has optimized this even further so that significant speed-ups in
the future are not to be expected.

Besides the instruction level, the data-level can be exploited for further paral-
lelism, typically through vectorization. The idea is that a single instruction (such
as addition or multiplication) must be applied to all vector coordinates. Several
extensions of the x86-architecture (e.g., legacy MMX, multiple versions of SSE and
the new standard Advanced Vector Extensions (AVX) and its different versions),
introduced supplementary registers and operations. The AVX-512 extension pro-
vides 32 registers with 16 bit each. These can be used to hold 8 single precision
or 4 double precision floating points. To take full advantage of vectorization, the
instruction (the operator to be applied) as well as the data must be identified. In
some cases, a compiler may be able to automatically determine the instructions
and data but data-dependencies are difficult to resolve with certainty, so a compiler
may or may not vectorize code correctly. In practice, this has largely remained the
programmer’s responsibility.

Vectorization is an important performance optimization for scientific applications,
as they are well-known to be often regular and therefore can profit frequently from
good vectorization.

A CPU’s performance is improved by several levels of parallelism (multi-CPU,
multi-core, instruction and data-level) and many on-chip features. CPUs are also
built to be backward compatible with legacy software (e.g., the new AVX is back-
wards compatible to SSE), so removing a once introduced feature is difficult.

CPUs have thus a very general nature that makes them well-suited for problems
that are not massively parallel.

2.1 High Performance Computing (Until) Today 9

Machine (188GB total)

NUMANode P#0 (93GB)

Package P#0

L3 (22MB)

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#32

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#2

PU P#34

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#4

PU P#36

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#6

PU P#38

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#24

PU P#56

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#26

PU P#58

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#28

PU P#60

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#30

PU P#62

NUMANode P#1 (94GB)

Package P#1

L3 (22MB)

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#1

PU P#33

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#7

PU P#3

PU P#35

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#5

PU P#37

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#6

PU P#7

PU P#39

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#25

PU P#57

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#13

PU P#27

PU P#59

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#29

PU P#61

L2 (1024KB)

L1d (32KB)

L1i (32KB)

Core P#12

PU P#31

PU P#63

...

...

Figure 2.3: A visual representation of the cache hierarchy and sizes of a node as obtained
through hwloc-ls.

The following section contrasts CPUs with GPUs, devices that are highly specialized
on supporting massive parallelism.

GPU

The hardware-implementation of the large x86 instruction set and necessary opti-
mizations (e.g., ILP) consume power and space on the die for its transistors. This
makes CPUs very complex and forces them to dedicate about 70 % of the space (and
hence energy) to hardware-internal decoding of the control flow.

For signifcant performance gains, this share needs to be reduced as much as possible,
for instance by removing unnecessary features. As a side-effect, space is released
on the die since each core shrinks in size, making it possible to fill in more compute
cores. For many general-case applications, the removal of features such as ILP
comes at a loss of performance. On the other hand, applications that satisfy some
assumptions (e.g., that they are very regular and do not require ILP so much) will
receive a large performance boost.

10 Chapter 2 Context

In these special cases, it is hence a good idea to use simplified hardware with more
compute units for improved performance. GPUs, originally developed to render
3D scenes in video games, have a lean implementation, a commodity hardware and
are massively parallel. Consider for instance Nvidia’s flagship GPGPU at the time
of writing, the Tesla V100, that comes with 5120 cores.

Unsurprisingly, as GPUs are especially powerful vector machines, an application
that is vectorized easily will profit from executing on a GPU as they are expert
in rapidly executing the same operation over and over again. Alas, the execution
itself is not as seamless as for CPUs, because a GPU does not execute the binary
itself. Instead, a programmer needs to use OpenCL [Inc] or CUDA [NVI] to start
threads on the device and to transfer all required data in and out. Furthermore,
data locality is very important as caches are small (relative to the number of cores)
and loading data is hence expensive. Programming GPUs is discussed in more
details in Section 2.1.4.

Regardless of elevated requirements for programming (that possibly necessitate
extensive and expensive (re-)training), imposed restrictions regarding suitable
applications and even high energy consumption (up to 300 W s), GPUs have recently
become a common addition to HPC nodes as they are cheap, fast and significantly
more energy efficient (when using flop/W as a metric) than CPUs.

Many-Core Chips

Many Integrated Core (MIC) accelerator cards are the third option and provide a
middle way between the general but slow and energy inefficient CPU and the fast
but highly specialized GPU. MICs are (like GPUs) add-on chips that communicate
over specific busses (e.g., bandwidth-limited PCIe) and they come with their own
memory on the chip. They were also widely considered a viable alternative to GPUs
after Intel’s well-known Xeon Phi was introduced. The Xeon Phi in particular is
presented here, since it has been the most popular MIC for a long time, even though
the Phi add-on model line has been abandoned today.

The Xeon Phis were the first to support the new vectorization standard AVX-512,
implemented for all 48 to 72 cores with 4 threads per core, making up to 288 logical
cores available. This is significantly less than the thousands of particularly floating-
point oriented cores used by GPUs, but as a trade-off, each MIC core is capable of
dealing with control statements much more efficiently.

2.1 High Performance Computing (Until) Today 11

Unlike GPUs, the Phis run their own Linux-based micro operating system on the
chip and must hence be booted. This combined with their support for the x86
architecture allows them to execute binaries directly on the chip. This enables users
also to launch individual processes on each core, converting the Phi effectively into
a mini-cluster. As another side-effect, this also lowers the entry barrier significantly
as applications using the accelerator only need to be written in a commonly used
language (plain C, C++ or Fortran) and a specialized compiler (e.g., provided by
Intel) will further help the user. Although this is certainly helpful to obtain quick
performance boosts, exploiting the chips capacity entirely requires programmers to
prepare / rewrite the code in a way that the compiler can identify every optimization
potential. It can generally be said that (similar to GPUs) MICs work great with
applications that have already been optimized for vectorization.

Conclusion

With three very different types of computation units (CPU, GPU, MIC), each ex-
hibiting its own characteristics and advantages, machines can be configured very
differently. System vendors tend to add accelerators to more machines and so it is
not surprising that the November 2018 edition of the Top500 lists 138 (27.6%)

machines as using accelerators.

2.1.3 Architectures: Communication

Network Technology

Many applications implement intensive communication patterns between processes
launched on the same or different nodes in order to send/receive data that is
required for further computation or to simply synchronize with others. Messages
containing data have no upper size boundary and can reach several GB. For large
amounts of data, the transfer time is predominantly determined by the bandwidth,
which must hence be large enough. On the other hand, for very small messages
(e.g., for synchronization or updates to a few variables), bandwidth is significantly
less important as the total transfer time will be very small. Instead, the speed is
mostly determined by the network’s latency.

In environments such as HPC machines, where distance is relatively small and all
routers and switches are under the full control of the data center, latency is mainly
influenced by the technology used. Today, it is dominated by Gigabit Ethernet and
Infiniband, although some other competitors such as Intel’s Omnipath and custom

12 Chapter 2 Context

interconnects exist. Ethernet is used in private networks at home or in professional
environments and therefore is a non HPC specific, very low cost solution that uses
the entire TCP/IP stack (and all of the overhead it comes with) and can currently
reach bandwidths up to 400 Gbit/s. On the other hand, Infiniband and OmniPath
are proprietary solutions that are specific to HPC and significantly more expensive.
What makes them interesting to the HPC community is that the network stack has
been reduced by removing parts from the TCP/IP stack that are useful in dynamic
and large-scale networks such as the internet but that are not required for a well-
controlled or (comparatively) simple environment such as a HPC machine. Those
parts include loss mechanisms, flow control and routing. Other parts, including
0-copy RDMA and deterministic routing have been specialized.

In some cases (e.g., for Cray machines), when the enormous cost can economically
be justified, a custom-tailored interconnect is employed to reduce the latency even
further.

Choosing one of these software/hardware stacks also means to a trade-off between
cost and performance / power consumption.

Topology

Even for small-scale clusters, fully connected networks (Figure 2.4 (a)) are infeasible
due to quadratical growth of required cables and ports. (For n nodes, n·(n−1)

2 cables
and n − 1 ports per node are required.) Instead, nodes are connected through
intermediate routers / switches and form a physical topology. Over the years, many
topologies have been used in HPC, some of which are illustrated in Figure 2.4,
including meshes (c), multidimensional tori (d), hypercubes (e), fat-trees (f) and
clos-networks. Researchers evaluate a topology by looking at several properties,
such as simple and very fast routing algorithms (i.e., quick computation of the
shortest path between two nodes), bisection bandwidth, diameter, scalability and
cost. When setting up a physical network, it is important to find a good balance
between these properties to guarantee good performance for as many types of
applications as possible, since changing the topology is either impossible or very
difficult as this requires physical reconfiguration. The best topology for a given
application often depends on its implemented communication patterns and may
not be the perfect fit for other applications.

2.1 High Performance Computing (Until) Today 13

(a)

(b)

(c)
(d)

(e) (f)

Figure 2.4: Several classic network topologies. Shown are: (a) fully connected network, (b)
ring, (c) mesh, (d) torus, (e) hypercube and (f) fat-tree [CLR08, Figure 3.1].

Observations

An application’s performance certainly depends on its own communication patterns
but is also impacted by network technology and topology. The former is generally
under control of the researcher whereas the latter is provided by the machine vendor
and normally cannot be re-configured arbitrarily.

The multitude of technologies makes it necessary to determine the best choice by
looking at the mix of applications that are supposed to use the machine. Unfor-
tunately, since there are so many tunable parameters, evaluating / predicting an
application’s performance on a given network is rather challenging.

2.1.4 Programming paradigms

Naturally, scientists want their applications to run even faster and increasing the
parallelism is often a promising approach to achieve this. To support this paral-
lelism, more compute units need to be added and hardware needs to be updated,
for instance by moving to heterogeneous nodes (i.e., CPU + accelerator).

Efficient usage of heterogeneous machines with several interconnected nodes, each
possibly containing one or more multi-core CPUs and other specialized components
such as GPUs, MICs etc., is a difficult undertaking that often requires profound
knowledge of the underlying hardware and problem. Consider a simple matrix-
multiplication: Moving it from the main CPU to an accelerator may speed-up the

14 Chapter 2 Context

algorithm itself; however, the data must be moved to the accelerator first, causing an
overhead. For somewhat small matrices, this may overall result in a slow-down.

The rapid innovation and development cycles of hardware make it very difficult if
not impossible for manpower-limited research-teams to implement proper support
for each type of hardware. But also the software itself may pose problems: A
software’s architecture may have been designed years ago, without now emerging
technologies in mind. It may hence require significant refactoring efforts to even
implement basic support for massive parallelism.

Furthermore, programmers do not only want to exploit the parallelism that is
today available intra-node, they also want to use interconnected nodes to distribute
computations across several nodes (inter-node). It is common to rely on different
paradigms that aid programmers with these two tasks.

Inter-node

For a given problem, sequential algorithms are often already known or easier to
come up with than parallel algorithms. A natural approach for the development of
a parallel algorithm is hence to parallelize the sequential algorithm by distributing
data among all nodes so that every node can start computing as quickly and as
much as possible. When the computation requires data that is only available on
other nodes, inter-node communication based on message passing can be used to
retrieve this data.

The Message Passing Interface (MPI) standard [For] has been developed by the
MPI-Forum for this purpose. It is freely available in its most recent version 3.1
at the time of writing. Open source implementations are actively developed and
released by several projects, such as Open MPI [Gab+04], MVAPICH [LWP04] and
MPICH [Gro02], but proprietary implementations exist as well, e.g., IntelMPI.

MPI abstracts the complexity of the network by providing a well-defined API to
the user that includes standard send/recv operations, numerous collective commu-
nication operations (broadcast, all-to-all, . . .) but also advanced features such as
buffered sends, 0-copy RDMA etc., while making little to no comments on how to
concretely implement them.

Another great benefit of MPI are so-called virtual topologies. These (logical) topolo-
gies allow algorithm designers and programmers to define a notion of relationship
(neighborhood) among processes. This is not inherently necessary, because every

2.1 High Performance Computing (Until) Today 15

process can always send a message to every other process, but it permits algorithm
designers to structure the program more cleanly, giving them a better view of the
communication patterns. Programmers, on the other hand, can implement the
computation patterns more easily. Rank ids have no longer to be cumbersomely
calculated by (for example) their position in the network but all communication
partners are stored in the topology. Collective communications can also be applied
to virtual topologies and can therefore be more readily used, leading to a more
high-level programming style. Structuring the communication relieves the network
and hence improves the overall performance as well.

Lastly, the runtime itself may benefit from declaring virtual topologies as this can
help with mapping the processes to the computational units on all nodes.

Intra-node

Multi-core CPUs are now commonly found in each node and can be exploited by a
parallel application. All cores provide unified (but not necessarily uniform) access
to the same main memory whereas their caches are (on some levels) private and
shared on others.

An application can take advantage of a multi-core CPU in several ways: Firstly, if
the application is already parallelized with MPI, one or more MPI-processes can be
started on each of the cores. However, processes do not share the same memory
address space and consequently, making data from one process available to another
may incur additional copies / transfers even though the data is available in a cache
that both processes can access. This remains even true if the values are already
stored in the memory.

Secondly, if the application is fully sequential and re-writing is not an option, de-
velopers can substitute libraries with existing multi-threaded versions (e.g., Intel’s
Math Kernel Library (MKL) for BLAS algorithms).

Finally, the application can be (re-)written using threads, but this is cumbersome
and error-prone due to low-level programming. A more high-level approach is
to parallelize using the OpenMP (Open Multi-Processing) standard’s #pragma
annotations for C, C++ and Fortran, which is natively supported by some compilers,
for example GCC since version 5 Unlike MPI, OpenMP relies exclusively on threads
and creates and manages threads for the user. Alas, good performance results can
often only be obtained after thorough tuning of the application and parameters.

16 Chapter 2 Context

Unlike MPI, OpenMP can only be used to parallelize an application on the same
node as there is no notion of data transfer. Still, data can be shared between threads
directly through the memory, as their address space is shared. For this reason, MPI
can (theoretically) replace OpenMP but not vice versa. Nevertheless, with their
concepts being very different, it is difficult to know whether MPI performs better
than OpenMP on a particular platform. Many scientific application developers have
therefore resorted to maintaining an MPI-only and an MPI+OpenMP version. In
the latter case, it is a common practice to launch one MPI process per socket which
in turn starts OpenMP threads on every core of that socket.

GPU programming

It was already mentioned in the last section that multi-core CPUs can be exploited
without any modifications to the code by using multi-threaded libraries, such as
MKL. This is also true for GPUs, if the library in question supports GPU offloading.
Otherwise, substantial development needs to be done in order to incorporate the
data transfer from and to the GPU as well as kernels that can be executed on the
GPU’s cores. Since Nvidia is the most common supplier for high-performance
GPUs, this is most commonly done through its proprietary API called CUDA
that integrates with C, C++ and Fortran, although many other languages are also
supported through third-party wrappers. CUDA only supports Nvidia GPUs, so
the Open Compute Language (OpenCL), which comes with the benefit of additional
support for other devices, is a viable alternative that is already used by simulations
as this portability allows applications to run also on machines with other devices,
AMD GPUs.

As a consequence, it is the programmer’s responsibility to handle communication
with other nodes through MPI and node-internal communication with GPUs via
CUDA. Furthermore, exploiting the massive parallelism of a GPU is not an easy
feat, as it requires first of all to keep the load high enough on each node to occupy
all GPU cores. Secondly, this data must also be granular enough to assign a piece of
work to every core. Further tuning options exist that are known to be important for
performance, for instance the number of threads (for oversubscription) or streams.

Scientists from application domains such as physics and biology are often not
familiar with these new concepts and have to undergo further training before
making modifications to their applications. Since it is difficult to predict the outcome
of their modifications, implementing accelerator support in their application may
be postponed as long as possible.

2.1 High Performance Computing (Until) Today 17

MIC

Older code-bases can often exploit MICs without rewriting the code through linked
libraries, similar to GPUs and multi-core CPUs. MKL, developed by Intel, is used
for BLAS functionality and supports exploitation of many-core chipsets for several
(but not all) operations. However, not all supported operations, such as matrix-
multiplication, are always executed on the accelerator as MKL determines whether
the parameter size is large enough to offset the penalty for transferring the data to
the MIC.

As mentioned before, a MIC can also be used as a mini-cluster by directly launching
MPI processes on its cores, even though generally with very limited amounts of
RAM available (with a few GB of high-bandwidth RAM normally significantly
less but much faster RAM than the host node). As a consequence, computations
requiring massive amounts of data cannot be executed on the MIC without trans-
ferring data from and to the host’s main memory (or other nodes). Messages from
and to processes outside of the MIC must pass through the PCIe bus and this extra
traversal increases latency. Although this is negligible for large messages, it can add
significantly to the time it takes a small message to arrive. With bandwidth being
limited as well, however, the PCIe bus can become a bottleneck when all cores are
sending large (i.e., bandwidth-intensive) messages.

Running MPI on MICs directly therefore causes a topology that has largely differing
cost for sending messages: Sending messages to other processes running on the
same MIC is significantly less expensive than using first the bus and then the
network. Furthermore, due to the little on-card memory, sending large messages
must take into account whether the receiver is on a MIC and can actually receive
(store) this message.

With all these constraints, it is in practice rather uncommon for MICs to be a plug-in
solution. Like GPUs, programmers need to consider MICs and their properties
when writing code that is supposed to exploit a MICs capabilities completely. This
implies that significant effort for rewriting an application may be required.

Conclusion

Programmers want to make an optimal choice so that their application can be
executed at optimal performance. Unfortunately, the multitude of libraries and
programming frameworks on the one hand side and hardware on the other hand

18 Chapter 2 Context

makes it very difficult to predict in advance what performance can be expected
from a choosen software/hardware stack.

2.2 High Performance Computing Tomorrow:
Exascale Computing

We have seen in Section 2.1 the components the HPC community relies on to
build machines that can operate sustainably at the petascale (1× 1015 operations
per second) level. Scientists can exploit this immense computational power in
many ways, e.g., by adding more detail to their scientific model or by increasing
the decomposition’s resolution. Currently, scientists are still limited by technol-
ogy and by improving the machines further, questions that cannot be resolved at
this time become feasible. For this reason, the HPC community races to develop
exascale machines (1× 1018 operations per second) but at the same time, several
issues thwart quick development. First and foremost, the physical size of today’s
fastest machines already fills entire machine rooms and so increasing a machine’s
performance by adding 10 times more nodes cannot work due to space constraints.
The second problem is that the energy consumption of an exascale machine with
possibly billions of computation cores would be infeasible if no measures to reduce
the consumption are taken. Initially, the U.S. Department of Energy proposed the
threshold for exascale systems to be at most 25 MW for financial and political rea-
sons [Don+11, p. 4], but environmental and practical reasons (e.g., redundant power
supply, cost for diesel or battery aggregates, . . .) certainly exist as well. Today, this
threshold is expected to be set more realistically around 30 MW to 40 MW. Thirdly,
all previously presented issues persist and become even more challenging for exas-
cale: Rigid applications will not scale, heterogeneous nodes will be more difficult
to manage as they will exhibit even more massive parallelism and the network
will experience unprecedented levels of contention due to message exchanges and
largely increased amounts of data.

Profound technology changes are necessary to move from (sub-)petascale to exas-
cale. It has been estimated that this current overhaul of technology is comparable
in disruptiveness to the major transition in the 90’s that saw vector computing
replaced with parallel computing [Don16, Section 4.2.4].

The following sections follow the same pattern as the above discussion. First,
applications are discussed in Section 2.2.1, followed by computation units in Sec-
tion 2.2.2. Communication and networks are discussed in Section 2.2.3 and, finally,
programming for exascale is presented in Section 2.2.4.

2.2 High Performance Computing Tomorrow: Exascale Computing 19

2.2.1 Applications

For sustained exascale performance, developers will be forced to take on a more ac-
tive role when it comes to managing and optimizing an applications execution. New
responsibilities include now load balancing and resilience design. Co-design, on
the other hand, is an important paradigm that will be required to be applied during
development of the machine and application for successful exascale performance.

Load Balancing

Applications running on petascale machines already have to deal with load bal-
ancing to obtain maximum throughput. Unfortunately, it is not always clear why
a load imbalance exists. Processes/threads could be idle waiting for data from
another process, maybe because the network exhibits a bottleneck and is overly
congested, or have just fewer computations to do. In the future, higher core- and
thread-counts (expected to reach even billions [Don+11, Section 3.1]), required for
exascale performance, will exacerbate this problem.

Load imbalance is rarely easy to fix through modifications to the source code, as
it is often inherent to applications, both regular and irregular, and amplified by
hardware variability.

In the case of regular applications, algorithm designers frequently begin with se-
quential algorithms that are then parallelized, requiring large synchronizations
through collective communications. Nowadays prevalent complex node archi-
tectures (e.g., CPU + accelerator) can be the cause as well since managing all
important aspects (e.g., parameters such as block size) can be difficult using only
MPI + OpenMP.

For irregular applications that mix different models (e.g., different gasses in turbu-
lent combustion or changing layers of rock/soil in geology), load balance deterio-
rates even more: Physical effects depend on local conditions and exhibit different
behavior in non-uniform conditions. For example, when simulating combustion,
turbulent conditions cause local variations in the fuel-air ratio which causes the
burning velocity to change locally. This, in turn, causes cellular flames (depicted in
Figure 2.5), a highly irregular state. This irregularity explains why these applica-
tions seemingly can never have enough compute power: in 2011, a time frame as
small as 1.9 ms of methane-combustion in a gas-turbine was simulated using MPI
and took over 1.3× 106 million core hours (using a total of 16 384 cores) [MDV11,
p. 1346].

20 Chapter 2 Context

Figure 2.5: An illustration of (simulated) cellular flames where temperatures differ locally
due to differences in burning velocity. The right picture highlights that parts
of the flame can have highly irregular shapes and can be detached from the
rest [Day+09].

Even with a thousand times more computational power than petascale machines,
exascale machines will still not be powerful enough for many of today’s scientific
questions as time complexity increases exponentially with the time and space order
of the underlying physics. The full simulation of a gas turbine combustor, for
instance, is expected no earlier than 2045 and only if machine floprates continue to
grow linearly.

With the immense cost of running a simulation at the exascale, many scientists see
these platforms mostly as a means to run hundreds of petascale simulations at the
same time instead of running one simulation at the exascale.

Resilience

Tens of thousands of nodes, hundreds of millions of cores and billions of threads
lead to a low mean-time between failures for exascale machines, maybe even as low
as 30 min [Cap+14, Section 2.2]. Each of these may have various and unforeseeable
reasons and are not limited to any level of the stack. They may occur at the data
center level (e.g., fatal outages), hardware level (e.g., hardware failure), or even
bugs on the software level (e.g., operating system, support libraries, . . .). Each
failure can potentially be catastrophic for the execution of a job in the sense that
the application needs to restart completely, implying full loss of already achieved
progress. It is therefore desireable to implement strategies that make an application
resilient against failures. This allows an application to terminate correctly, even
though intermittent failures occurred.

2.2 High Performance Computing Tomorrow: Exascale Computing 21

A popular approach to mitigate full loss is to checkpoint(-restart) the applica-
tion [Cap+14, Section 4.1.1]. A snapshot of the application state is saved periodically
and once a failure has occurred, the application is interrupted and reset to the state
saved in the checkpoint. There is still some loss, but it is reduced significantly. To
reduce the great cost (e.g., no unreceived messages at the time of checkpointing,
heavy IO traffic, . . .) it comes with, many variations of this approach have been
proposed. In fact, checkpoint-restarting can be so expensive that it can be cheaper
to use replication.

Other issues such as memory corruption are more serious, impossible to evade
and difficult to recognize, as they occur silently. They are also difficult to recover
from, since the corrupt data may not be restorable. Consider high-energy neutrons,
stemming from cosmic radiation: They are known culprits for apparently random
flips of bits in RAM when sufficiently small circuits are used [Cap+14, Section 2.1].
An application that uses numerically robust algorithms may ignore or even restore
corrupt values within a data vector (e.g., a column of a matrix), but control variables
such as loop counters are more difficult to deal with and applications are especially
vulnerable in this regard. An application may hence crash on a node or enter a
deadlock state when a control variable is corrupted.

The MPI standard and consequently most scientific applications are still not ready
for fault-tolerance. Progress is stifled by the fact that a best practice has not yet
been found; each class of applications seems to work best with a different approach.
Plus, a half-baked standardization attempt is feared to come with a performance
degradation that is unacceptable to many users or vendors. Significant efforts
have been made, however, and ULFM (User Level Fault Mitigation) [Bla+13] is a
proposal developed by the MPI Forum’s ”Fault Tolerance Working Group“ that
aims to ensure that node failures can no longer cause MPI calls to crash or deadlock
the application by waiting for messages from the dead node indefinitely.

Other approaches to save data from being lost include storage of (important) data
in multiple locations (possibly with varying levels of quality/redundancy) and
algorithm-based fault tolerance (ABFT). ABFT exploits properties of the underlying
computational algorithm in a way that faulty data can be restored, e.g., through
redundant or supplementary data and further knowledge of the computational
structure. This approach is quite limiting with respect to the algorithm design and
does in general not work for every application.

Significantly more research is still required as it remains unclear what the most
usable yet conservative approach is. Breakthroughs are therefore not to be expected.
Instead, small improvements and adoption by the user base over time is expected
to help.

22 Chapter 2 Context

Co-Design

In the past, vendors developed machines that could be easily deployed generically
on several sites. For sustainable performance at exascale, decisions on hardware
design must consider relevant scientific applications and their potential of exploiting
the platforms computational power while at the same time application developers
(and possibly algorithm designers) need to know about best practices but also
idiosyncracies of platforms. Bringing these different groups together, i.e., scientists
investigating the scientific question, software architects building the application
and hardware architects building the platform, allows each group to benefit from
an improved feedback-loop for their own work and test / influence the work of
others, during (and not after) the construction of the machine.

This paradigm, called "co-design", fundamentally changes how machines are con-
structed: They are built around applications, rather than forcing applications to
merely "fit in". Taking account of these benefits, IBM installed two "centers of
excellence" at Lawrence Livermore National Laboratory and Oak Ridge National
Laboratory that bring application and hardware developers closer together [Ead16].
This collaboration can be expected to give rise to new and more specialized hard-
ware.

2.2.2 Architectures: Computation

The computational power of machines has continuously and rapidly grown over
the last decade, see Figure 2.6. In June 2005, more than 100 Tflop/s were achieved
for the first time by the fastest system, powered by 65 536 cores and consuming a
total of 716 kW h. In November 2018, the fastest system contained (with a total of
2 397 824) more than 30 times more cores and had a 1094 times higher theoretical
peak performance at 200 794.9 Tflop/s while the power consumption increased by a
factor of 14 to 9783 kW. 1 This means that this machine consumes per hour almost
twice the power consumption a german household with at least 3 persons had over
the entire year in 2017, namely 5000 kW h [Off17].

Clearly, this is an enormous energy consumption and must not scale proportionally
with increases in performance. With 20 MW to 25 MW being the target for power
consumption [Don+11, p. 4], exascale machine must be able to perform at least
50 Gflop/W. With a power cap of twice this limit, i.e., 40 MW, the performance must
be at least 25 Gflop/W. In 2018, Nvidia’s flagship GPU, the Tesla V100, delivered

1November 2018 list at www.top500.org

2.2 High Performance Computing Tomorrow: Exascale Computing 23

www.top500.org

Figure 2.6: Development of the Top500 list over time and extrapolation for the near future.
From www.top500.org

up to 7.8 Tflop/s (double precision) with a consumption of 300 W s, i.e., it delivers
up to 26 Gflop/W.

A twofold increase in energy efficiency is therefore still required and currently
popular computation nodes with a CPU/GPU pair must be revised for further
energy savings, e.g., by using other (more energy efficient) types of accelerators.

CPU

We’ve already seen in Section 2.2.2 that CPUs are mainly well suited for problems
that are not massively parallel. For exascale machines, several concepts exist that
enhance the CPU’s usability. First of all, since the clock rates are no longer getting
faster and the transistor size is shrinking, the parallelism can be increased, for
instance by adding more vector registers to each core, more cores to a single die
or by adding several CPUs to the same node. Programmers can then exploit the
CPU for more parallelism as well. Unfortunately, CPUs with high core count are

24 Chapter 2 Context

www.top500.org

prohibitively expensive to acquire and operate; the price for the Xeon Platinum 8176
processor with 28 cores started at $9284.99 and an average power consumption of
165 W on intel.com on 2018/12/29. 2

To increase energy savings, leaner CPU architectures are also considered as a replace-
ment of the (bloated) x86 architecture. IBM’s PowerPC architecture, for instance,
has been used for years in the BlueGene supercomputer-series. Other architectures,
such as ARM, are investigated as well. The success of an architecture in a large
market, like the phone market in the case of ARM, ensures two important fac-
tors: First, existing demand for a processor and competition among manufacturers
reduces the price itself. Second, to survive fierce competition, constant funding
must be made available for further research and development of the architecture.
These architectures offer hence a better value for money than expensive custom
architectures that require funding for research and development to be provided by
the HPC community itself.

To investigate the usability of devices coming from the embedded systems world,
the Mont Blanc project has been started and investigated several production-level
applications on a prototype system running on ARM Cortex-A15 CPUs and ARM
Mali-T604 GPUs [Raj+16].

In this context, it is interesting to know that in order to improve energy-efficiency,
ARM introduced heterogeneity at the core level through its big.LITTLE concept,
i.e., by implementing cores with different computational power on the same die.
The more powerful a compute core, the more powerhungry it normally is, meaning
that for simple tasks energy can now be conserved by using only the weak (and
energy-efficient) cores.

GPU

GPUs were originally designed to accelerate 3D graphics in computer games and
have seen continuous development, driven by the competition in the gaming
market. They have been an integral part of home computers for a long time and are
available at a reasonable price. For these reasons, the HPC community started to
exploit GPUs more than a decade ago.

In response, manufacturers have begun to develop GPGPUs (general purpose GPUs)
that target computation-heavy applications but vendors also include features to

2Seen on https://www.intel.com/content/www/us/en/products/processors/xeon/
scalable/platinum-processors/platinum-8176.html

2.2 High Performance Computing Tomorrow: Exascale Computing 25

https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8176.html
https://www.intel.com/content/www/us/en/products/processors/xeon/scalable/platinum-processors/platinum-8176.html

speed up several common types of computations. For instance, with the advent of
deep-learning/AI, GPUs are specifically designed to support important operations
at maximum performance, e.g., 1

4 precision operations are marketed by Nvidia for
its Tesla V100 GPGPU with a maximum performance of 125 Tflop/s, single-precision
at 15.7 Tflop/s and double-precision at 7.8 Tflop/s. 3

Programmers and algorithm designers hence have to carefully evaluate if mixed-
precision computations can be used in their algorithm. As a result, the performance
could be improved easily by, e.g., a factor of 2:1, by using single instead of double
precision. This factor depends on the GPU generation, as even Nvidia’s own
GPUs delivered unstable performance across several generations, with Tesla’s 8:1
performance ratio being especially noteworthy [Don+17, p. 57].

Many-core

Today, only few systems (when compared to GPUs) rely already on MICs, but
its advantages, such as high parallelism, applicability of standard programming
techniques and (compared to CPUs/GPUs) low energy consumption, make this
technology a good candidate to achieve sustained exascale performance.

After several revisions, including bootable Xeon Phi CPUs that removed the PCIe
bottleneck, Intel decided to discontinue its Xeon Phi accelerator series. For this
(and sometimes political reasons), leading systems, such as the chinese Tianhe-2
supercomputer, have already started to replace the Xeon Phi’s with next-generation
MICs from other manufacturers or GPUs. The November 2018 edition of the Top500
lists only one single system (called Trinity) in the Top10 that still uses Xeon Phi
Co-Processors. 4 In the case of Tianhe-2, replacing the Xeon Phis from 2013 with the
128-core Matrix-2000 MIC increased its benchmarked performance from 33.9 Pflop
to 61.4 Pflop, an improvement of 81.12 %; at the same time, its energy consumption
increased comparatively little by only 4 %. 5

Another MIC nowadays used is the PEZY-SC2 [TOR+17] (PEZY stands for Petascale
Exascale Zetascale Yotascale). It contains 2048 cores, each running at 1 GHz, and
delivers a total of 4 Tflop/s (Rpeak) for double precision computations. 6 MIPS64
cores manage the compute cores and make an external CPU unnecessary. With a
consumption of only 180 W, the PEZY-SC2 plays an important role regarding power
efficiency. The 1st ranked machine in the November 2018 issue of the Green500

3From https://www.Nvidia.com/en-us/data-center/tesla-v100/
4See https://www.top500.org/lists/2018/11/
5See https://www.top500.org/lists/2018/06/

26 Chapter 2 Context

https://www.Nvidia.com/en-us/data-center/tesla-v100/
https://www.top500.org/lists/2018/11/
https://www.top500.org/lists/2018/06/

list was noted to achieve 17.604 Gflop/W with a PEZY-SC2, whereas the 2nd place
achieved 15.113 Gflop/W with an Nvidia GPU.

Further development of the PEZY MIC is underway and the PEZY-SC3 was an-
nounced to further increase the core-count with 4096 to 8192 cores [TOR+17].

Other MIC products include the Kalray MPPA (massively parallel processor array).
Its third generation (called Coolidge) was announced by the manufacturer in 2017
to consist of 80 or 160 compute cores that run at 1.2 GHz. Additionally, the same
amount of co-processors is used to boost performance of deep learning or computer
vision. For these applications, the Coolidge card can perform at up to 5 Tflop/s at
less than 20 W, i.e., with a computational performance of 250 Gflop/W [Kal17].

In the GPU market, it is accepted that Nvidia dominates AMD, but it is too early
to say which MIC will become the most popular one. Further development with
especially rapid innovation cycles can hence be expected.

FPGA

Field-programmable gate-arrays (FPGA) are integrated circuits that are first manu-
factured and can then be programmed by a customer to match their specific needs.
Implementing circuits is generally done through hardware description languages
(HDL) and require expert knowledge. To improve performance through optimized
placement and routing on the die, compilation times can frequently take more
than 4 to 10 hours. This is very different to e.g., CPUs that can more easily be
programmed through C or C++.

FPGAs are therefore also predestined to implement rather simple operations that
have to be executed quickly and over and over on large amounts of data. With
the function being implemented in the circuit, there is no overhead of translating
instructions. This is fundamentally different from CPUs, GPUs and MICs which
are all programmed by software and hence suffer this overhead as they require
translation from instructions.

FPGAs can also be attached to virtually any input / output sources, allowing them
to achieve extremely high bandwidth and extremely low latency as they are not
forced to communicate via PCIe or NVlink. This is why they’re used in many data
intensive projects, such as signal analysis in astronomy. Astron, the Netherlands
Institute for Radio Astronomy, developed for this purpose UniBoard I and more
recently UniBoard II, a board with several FPGAs assembled together [Rad]. Astron

2.2 High Performance Computing Tomorrow: Exascale Computing 27

claims on its website that UniBoard II can process a total data rate of 5 TB/s which
they compare to the Amsterdam Internet Exchange points total 2 TB/s, i.e., the four
FPGAs could process more than twice of the entire exchange points current data
throughput.

Even though FPGAs are known for high performance, GPUs can sometimes outper-
form them, most notably on floating-point operations where GPUs excel.

An FPGAs main advantage, however, is that it can require less power than a
GPU (even on floating-point operations) since the GPU depends on a host for
communication, which needs to be accounted for as well.

More efforts to establish FPGAs in HPC include for instance Intel’s recently an-
nounced Xeon-FPGA Hybrid Chip [Huf18] and ongoing endeavours to make FP-
GAs high-level programmable via OpenCL and C/C++ [Cza+12].

It is clear that FPGAs are great to provide the throughput that some applications re-
quire, but whether they will be largely used is unclear since programmers have just
now become used to programming GPUs and would need to be largely retrained
on an even more complicated matter. Furthermore, whether FPGAs can lead to a
change of node layouts (currently CPU + accelerator) remains unclear, but efforts
are certainly made in this direction, e.g., by connecting FPGAs directly to routers.

2.2.3 Architectures: Communication

The network assures communication between all parts of the machine and hence
plays a critical role in each machine. To support the future massive parallelism, new
technologies had to be developed to, on the one hand side, prepare the network
stack for this task and on the other hand to assure the connectivity of thousands of
cores on a chip, with very little space available, in a network-on-chip.

The following sections give a brief overview over the network and network-on-chip
technologies and used topologies.

Topology

Desireable properties, such as fast routing, have leveraged regular topologies.
In some cases (e.g., the 5D-torus of the BlueGene/Q), topologies can isolate an
allocated node-partition used by a single application, i.e., they evade cross-traffic
from nodes allocated to other jobs. Alas, scheduling jobs such that properties of

28 Chapter 2 Context

Figure 2.7: Visualization of nodes allocated to a job running on BlueWaters 3D-torus
topology. Obtained through private communication from Greg Bauer.

the underlying topology are retained while maximizing machine utilization is very
hard and machine-fragmentation is well-known to occur often, leading to poor
resource utilization.

Figure 2.7 shows irregularly allocated nodes for a job, running on the BlueWaters
system that features a 3D-torus. In such a case, mapping the generally regular (MPI)
virtual topology to the physical machine results in a mapping that does no longer
respect the regularity, thus decreasing network performance.

Future machines can choose to either use more and more powerful nodes ("fat
nodes") with very high core-count and several accelerators or to increase the number
of nodes. In this latter case, an exascale network must have several important
properties, such as high-bandwidth, scalability, low latency and resilience to link
failures. Furthermore, network size should not be determined by the topology (as
for example for regular topologies) but through factors such as the available (power)
budget or datacenter space [Koi+13, Section 1]. Networks account for up to 33 % of
the total machine cost and up to 50 % of the total system power consumption [BH14,
Section 1], making optimizations here also financially worthwhile.

New topologies have hence been proposed, such as the DragonFly [Kim+08], Slim-
Fly [BH14] or SmallWorld [Koi+12] topologies.

These topologies use high-radix routers to increase connectivity and reduce the
diameter (i.e., the length of the longest path is minimized). Dragonfly topologies
can scale up to 256 000 nodes when 64-radix routers are used, all while keeping
the diameter of the network at 3. With the same diameter, Slimflies can scale up to
millions of nodes; for a diameter of 2, it still supports more than 100 000 nodes.

2.2 High Performance Computing Tomorrow: Exascale Computing 29

Improving the interconnect is important to reduce for example the latency of remote
memory accesses. Nevertheless, the main increase in parallelism still takes place
intra-node, with thousands of cores on a single chip. An optimization goal for
the best connection of these cores in a Network on Chip (NoC) is a low diameter
and high-radix. Due to the die specificities (e.g., limited space) and required high-
energy efficiency, we see the same topologies (dragonfly, slimfly, . . .) being proposed
as an improvement (albeit generally with small modifications to account for die
specificities) for intra-node communication as for intra-node networks [Bes+18].

2.2.4 Programming Paradigms

The previous discussion has shown that exascale machines have added complexity
on all levels: A magnitude more nodes require more inter-node communication,
irregular topologies make it more difficult to map virtual topologies and massive
on-chip parallelism on very different accellerators (FPGAs, GPUs and MICs) and
chip-level heterogenity (big.LITTLE) require applications to be programmed with
highly diverse devices in mind. Unfortunately, this extreme level of parallelism and
performance requirements force programmers to take over even more responsabili-
ties, such as load-balancing, fault-tolerance, data transfer and core-specificities (e.g.,
faster execution on a GPU than on a CPU for a specific kernel).

At the same time, application developers are required to optimize their code towards
more energy efficiency as the consumption of power will be limited in exascale
machines. Simple throughput, measured in Gflop/s (i.e., operations per time unit),
will be no longer the optimization goal; instead, it is expected that the focus will
shift towards Gflop/W (i.e., operations per energy unit) [Don16, Section 1.7].

Programmers are responsible to ensure proper functioning and high performance
of their application even on the most complex machines. Consequently, higher
amounts of testing (and, naturally, debugging) efforts will incur significantly higher
costs by blocking human and machine resources [Don+11, Section 4.2.5.1]. A
direct consequence of this is less time for actual science and development of the
application. The time spent testing and developing is exacerbated by the current
approach of using MPI plus one or more of CUDA, OpenMP, OpenCL, etc.. Having
to implement kernels possibly several times bloats code, makes it less maintainable
and may duplicate code. The MPI+X approach also requires programmers to
implement the aforementioned responsabilities such as load-balancing themselves.
At this point, a paradigm change towards runtime systems seems inevitable.

Runtime systems such as StarPU [Aug+10], Charm++ [KK93] or PaRSEC [Bos+13]
aim to reduce this development overhead by automating important aspects of

30 Chapter 2 Context

application performance, such as scheduling, job placements (with data locality)
and load-balancing. By employing a runtime, programmers trade in their fine-
grained control over all important aspects of the execution for higher portability
and code maintainability/cleanliness. Runtimes force developers to write their code
in a task-based manner, i.e., functions are now essentially tasks that are not called
directly but submitted to the runtime for execution. Once a task has been submitted,
the runtime decides the appropriate device for execution (GPU, FPGA, . . . , given an
implementation on that device exists) and automatically takes care of scheduling,
data transfers and load-balancing. Unfortunately, most existing implementations
require a complete unrolling of the task graph to schedule tasks at runtime, making
this approach at the moment inadequate for extreme core numbers [Don+17]. The
choice of the right runtime is difficult as they are all still under heavy development
and subject to change. Due to a lack of standardization, adopting a runtime system
today may entail significant refactoring in the future if a system is abandoned or
changes its API significantly.

Finally, runtimes can improve the overall exploitation of resources considerably,
but it is not their responsibility to find the best values for all performance relevant
parameters of the computation kernels on each resource type (CPU, GPU, . . .),
such as compiler options or algorithm selection. Unfortunately, the search space
grows exponentially with the number of parameters and allowed values, making it
prohibitively expensive to search exhaustively. Thankfully, tedious manual testing
can be avoided through interpretation as a search problem, known as autotuning,
and application of appropriate algorithms [Ans+14; WPD01].

2.3 Conclusion

The race for exascale requires disruptive technology changes in almost all areas,
from hardware to software. With new technologies replaceing the old software-
hardware-stack, the entire eco-system is completely revolutionized. This causes
even formerly barely important optimization goals, such as energy consumption, to
become the main optimization goal.

Limited experience with this all-new and highly intricate technology-stack compli-
cates performance analysis and energy prediction. Allocating expensive resources
for testing purposes needs to be reduced to a minimum, and a possible approach to
achieve this is to use faithful models and then evaluate these through a simulated
application run.

2.3 Conclusion 31

SimGrid (see Chapter 4) is a simulator with particularly faithful and validated
models, particularly for network communication. We consequently extended this
simulator with an energy model and will show that even adaptative applications
can be faithfully simulated.

32 Chapter 2 Context

3Related Work

The following overview over existing work related to system simulation is para-
phrased from our work [Hei+17b].

3.1 Simulation Based Performance and Energy
Prediction

The energy consumption of data centers is constantly growing, with U.S. data
centers expected to consume about 73× 109 kW h in 2020 [Sho+17, Section 1]. Un-
surprisingly, optimizing energy efficiency has become a major undertaking for data
centers operators [Sho+17; Wil18], but also application developers are more and
more required to consider energy aspects.

An often published approach to assess core application characteristics such as the
(network) performance on a specific machine is through simulation. In a cloud con-
text, several simulators were already presented that come with models for energy
consumption [OPF10; Tig+12]. These energy models are at the basis of energy-
related studies, such as cloud management strategies with the help of dynamic
frequency scaling models [Gué+13] implemented in CloudSim [Cal+11]. Green-
Cloud [KBK12], an extension of the (now unsupported) NS2 simulator, can be used
to evaluate energy-aware networking approaches designed for cloud infrastruc-
tures.

DCSim [Tig+12] is a tool particularly suited for studies of management strategies of
dynamic, virtualized resources and supports per-host power predictions through
its energy models.

Unfortunately, the faithfulness of the communication models implemented in some
of these simulation frameworks is undermined by grave errors that are particularly
critical in an HPC centric context [Vel+13a], while other frameworks seem to be
more realistic but have not been empirically validated. The most realistic results are
arguably obtained by packet- and cycle-level models, however, only in the case that
they are correctly instantiated and used [Now+15], which is particularly difficult in
an HPC context. Furthermore, they are hardly usable in HPC contexts, even when

33

correctly used, as their low-level models cause the performance to deteriorate when
used at scale.

We saw in the previous chapter that applications written with high-performance
computing in mind usually rely on MPI. This large class of applications makes
the performance prediction of MPI applications on complex platforms particu-
larly interesting. This is reflected by the large number of simulators, among
others Dimemas [Bad+03] (developed by the Barcelona Supercomputing Cen-
ter), BigSim [ZKK04] (University of Illinois at Urbana-Champaign), LogGOP-
Sim [HSL10] (ETH Zürich), SST [Jan+10] (Sandia National Laboratory) and the
xSim [Eng14] project (Oak Ridge National Laboratory). Recently proposed simu-
lators include CODES [Mub+17] (Lawrence Livermore National Laboratory) and
HAEC-SIM [Bie+15] (TU Dresden and University of Basel).

Studies often focus on how the performance of a particular MPI applications evolves
when scaled strongly or weakly, but the impact of other parameters (e.g., network
topology, link bandwidth and congestion) is also of interest.

Surprisingly, models capable of predicting multi-core architectures are only em-
ployed by a few simulators, such as Dimemas [Bad+03], which can discriminate
local (using shared memory) and remote (using the network) communications but
does not account for performance degradation incurred by processes contending
on cache or memory. To predict intricate applications at scale, Dimemas can be
combined with the PMAC framework [Sna+02] and its elaborate cache hierarchy
model. Alas, only application traces can be replayed by these two tools, which is
often too limiting when dynamic applications (i.e., applications that adapt to the
underlying platform) or different scales need to be simulated.

Models for energy prediction (or other facilities that can be used to conduct energy-
related studies) are, to the best of our knowledge, not implemented in any of these
tools with the notable exception of HAEC-SIM.

Alas, the models were tailored towards their quite specific use case and HAEC-
SIM only supports a small subset of the MPI API. The NAS-LU benchmark was
used for validation at small scale with only 32 processes. HAEC-SIM obtains
rather promising and faithful prediction trends but power estimation errors (when
compared to reality) not uncommonly range from 20 % to 30 %.

34 Chapter 3 Related Work

3.2 Conclusion

We already discussed in Chapter 2 that systems have become extremely complex
and are still expected to continue to do so. Predicting even a simple application’s
performance manually has become almost impossible today. HPC simulators are a
promising approach for this and other reasons, such as debugging an application
when the sheer complexity of a platform triggers transient bugs that only appear
under specific conditions. On real machines, recreating this bug can take tremen-
dous amounts of time as for example the reserved nodes differ from execution
to execution. A deterministic simulator can help significantly to first identify the
problem and then, once a patch has been written, even verify that the problem is
now solved.

In the future, the main focus will be on energy and therefore adding the capability
to simulators to predict the energy consumption of HPC applications is mandatory,
as this will open further fields of study such as improving energy-efficiency.

3.2 Conclusion 35

4The SimGrid Project

4.1 Overview of the SimGrid Project

4.1.1 History and Impact

Development of SimGrid was started in the early 2000’s by Henri Casanova in order
to study scheduling heuristics developed for a grid computing context. Arnaud
Legrand (CNRS, Université Grenoble-Alpes), Martin Quinson (École Normale Su-
perieure, Rennes) and Frédéric Suter (CNRS, CC-IN2P3, Lyon) joined the project
subsequently and act today as project leaders. Development is constantly backed
by several PhD students and postdocs, tenured researchers and software engi-
neers. Over the years, around 80 people from various fields and institutions have
contributed to SimGrid’s code base.

Researchers not directly part of the SimGrid-project principally make contributions
because they need a bug fixed or a feature added that allows them to investigate a
specific aspect of their domain, mostly in HPC, P2P and cloud computing. Many
interesting aspects of these domains can be investigated through simulation and
it is especially readily used to investigate questions that would require access to
a large experimental setup (e.g., HPC machine, several clouds, P2P network) that
is often not available to researchers. Some examples of questions that have been
investigated with SimGrid are algorithmic performance (including performance of
communication algorithms [Deg+17, p. 2394]) but also networks (routing, perfor-
mance bottlenecks, impact of latency or bandwidth, link failure, . . .) [Yas+19] and
impact of storage I/O [Leb+15].

SimGrid is a long-term project and not a one-shot prototype. Its measurable impact
since the early 2000’s is visualized in Figure 4.1. For each year, this figure illustrates
the number of publications the SimGrid project is aware of that only cite (but
don’t contribute to) SimGrid (> 500), use SimGrid as a research tool in their own
scientific investigation (≈ 320) or detail specific and scientifically relevant new
developments (≈ 60). A comprehensive list of the publications on the SimGrid
development and some of its components is available online [Tea].

37

Figure 4.1: Impact of the SimGrid project per year, measured by the amount of citations
(red), papers detailing new components/modules of the SimGrid project (blue)
and scientific work that uses SimGrid as a tool for research (green) [Tea].

4.1.2 Software Architecture

SimGrid was founded as a research project itself, written in ANSI-C (to optimize
performance) and with an ad-hoc architecture. Continuous development and added
functionality have made changes necessary to keep the code maintainable. In 2015 ,
and therefore around the same time this dissertation project was started, it was
finally decided to rewrite SimGrid with C++ so that entry barriers for users and new
developers could be lowered and code maintenance be reduced and overall made
less tedious. On this occasion, a new architecture (illustrated in Figure 4.3) was also
conceived and replaces step-by-step the old architecture [Cas+14] (see Figure 4.2).
This major refactoring of SimGrid’s internals made this dissertation project more
difficult, as the main components that were required for this work were subject
to change (and hence not yet stable) or had to be rewritten completely by myself.
SimGrid’s refactoring is still ongoing and pursued in an iterative approach, i.e.,
once implemented and tested, changes are merged and published with the next,
quarterly SimGrid 3 release. Once the refactoring is complete, SimGrid 4 will be
released.

In the following, a brief description of the main components of this architecture is
given. A more detailed presentation of the general functioning of some of these
components will be given in Section 4.2 and Section 4.3.

Today, self-implemented user applications only have dependencies on the publicly
available S4U ("SimGrid for you") API. Previously, user applications using SimDag
accessed the simulation kernel directly whereas applications using MSG ("meta-
SimGrid ", a legacy interface to describe simple distributed algorithms) and SMPI

38 Chapter 4 The SimGrid Project

User Application

SMPIMSG

SIMIX
SimDag

LMM
SURF

ModelChecker
(MC)

Models

SimCall Boundary

SIMIX

No SimCalls

Figure 4.2: Overview over legacy SimGrid components.

Python Wrench BatSim RSG

SimCall Boundary

Activities Actors Ressources Routing Main Loop

SimGrid Kernel

LMM
Models

Perf MC

User Applications

User-
Plugins

S4U
Provides controlled access to kernel objects

MSG SimDag SMPI

Figure 4.3: Highlevel overview over SimGrid 4. Only the new S4U layer can communicate
with the kernel.

(the SimGrid interface that facilitates simulation of MPI applications) relied on
SIMIX. SIMIX corresponds to an OS kernel as it manages resources (hosts, actors,
. . .) and contains public (accessible by user code) and private functions. To prevent
user applications from modifying simulator internal variables directly, interacting
with the kernel is enforced via simulation calls (called simcalls for short) which are
issued by the public part of SIMIX towards the private part [Cas+14]. Decoupling
user applications from the simulation kernel will be important in the future, for
instance to distribute the simulation on several machines in which case several
processes won’t be able to directly access the memory.

The SURF layer corresponds in a wider sense to a virtual machine. It is most
importantly responsible for the virtual time management. Furthermore, it is re-
sponsible for resource creation (instantiation of models, see Section 4.2 for a short
introduction) and allocation (e.g., compute power when several processes contend
for the CPU). Resource allocation is currently implemented with a linear max min
model (LMM), which is solved internally.

4.1 Overview of the SimGrid Project 39

SimGrid 4 contains a largely modularized simulation kernel. Large parts of the
former SURF layer, such as routing or actors, were moved into their own modules
which can now easily be exposed for extension, whereas they were hidden within
the SURF and SIMIX layers in legacy SimGrid. In addition to these extension
points, signals have been implemented in most of the kernel modules. Signals
allow users to write plugins that implement listeners to specific events (e.g., new
actor, start of the simulation, . . .). The usercode can therefore implement user-
dependent behavior more easily as it is notified of previously "internal" events. As
a consequence, user contributions can be distributed more easily, as most of the
code will no longer require to make changes to SimGrid’s source files.

4.1.3 Software Engineering

The goal for each simulator is to compute high-quality results. Unfortunately, in
some "corner case" scenarios even small, inconspicuous changes to the simulator
can affect results unintentionally, yet significantly. Hence, it is important to auto-
matically test and detect these errors in order to maintain a good level of software
quality. This becomes even more important with the possibility of portability-
based errors, for instance between the platforms that SimGrid supports (currently
Linux, BSD, Windows, MacOS) and non-obvious connections between the different
software layers or APIs.

To cover a wide range of possible errors, a standard SimGrid build (with SMPI
enabled) currently uses 665 functional tests (mostly execution of examples or tai-
lored tests) that are checked after each push to the main git repository. Each test is
only marked as failing when the result does not equal the expected output. To test
correct return values and functioning of specific functions, SimGrid’s developers
currently add unit tests that will provide more thorough and isolated testing of
internal mechanisms. In addition to these homemade tests, SimGrid launches an
extensive test suite at certain hours (currently every night). This suite included
at the time of writing 49 “Proxy-Apps” with code sizes ranging from 255 lines of
code (zlatest) to 109 477 (CLAMR). Furthermore, real projects such as BigDFT (a
quantum chemistry code) and the runtime StarPU are also regularly tested.

To manage these tests and their execution on the different platforms automatically,
SimGrid employs several Continuous Integration projects such as Jenkins1, Ap-
pVeyor2 and Travis3. Figure 4.4 gives an overview of all currently tested platforms
and their configuration.

1See https://www.jenkins.io
2See https://www.appveyor.com
3See https://travis-ci.org

40 Chapter 4 The SimGrid Project

https://www.jenkins.io
https://www.appveyor.com
https://travis-ci.org

Name	of	the	Builder OS Compiler Boost Java Cmake NS3 Python
simgrid-centos7-x64 CentOS	Linux	release	7.6.1810	(Core)	64	bits GNU	7.3.1 1.67.0 1.8.0.191 3.13.1 ✔
simgrid-debian-stable Debian	9.7	(stretch)	64	bits GNU	6.3.0 1.62.0 1.8.0.181 3.7.2 ✔
simgrid-debian8-64-dynamic-analysis Debian	testing	(buster)	64	bits GNU	8.2.0 1.67.0 11.0.2 3.13.2 ✔ ✔
simgrid-fedora-rawhide-64 Fedora	release	30	(Rawhide)	64	bits GNU	9.0.1 1.69.0 1.8.0.192 3.13.4 ✔
simgrid-fedora26 Fedora	release	29	(Twenty	Nine)	64	bits Intel	19.0.0.20180804 1.66.0 1.8.0.191 3.12.1 ✔
simgrid-freebsd-64 FreeBSD	12.0-RELEASE Clang	9.0.0 1.69.0 1.8.0.192 3.13.3 ✔
simgrid-manjaro ManjaroLinux	18.0.2	(Illyria)	64	bits Clang	7.0.1 1.69.0 11.0.1 3.13.3 ✔
simgrid-nixos NixOS	19.03pre168320.2d6f84c1090	64	bits GNU	7.4.0 1.67.0 1.8.0.202 3.12.1
simgrid-opensuse openSUSE	Tumbleweed	20190205	64	bits GNU	8.2.1 1.67.0 11.0.2 3.13.2
simgrid-osx-highsierra Mac	OS	X	10.13.6	64	bits AppleClang	10.0.0.10001145 1.68.0 11.0.2 3.13.4 ✔
simgrid-ubuntu-bionic-64 Ubuntu	18.04	(bionic)	64	bits GNU	7.3.0 1.65.1 10.0.2 3.10.2 ✔
simgrid-ubuntu-xenial-32 Ubuntu	16.04	(xenial)	32	bits GNU	5.4.0 1.67.0 1.8.0.191 3.5.1 ✔
simgrid-win10 Windows	10	v17763	-	WSL	Ubuntu	18.10	64	bits GNU	8.2.0 1.67.0 11.0.1 3.12.1 ✔
travis-linux Ubuntu	16.04	(Xenial)	64	bits GNU	5.4.0 1.58.0 11.0.1 3.12.4
travis-mac Mac	OSX	High	Sierra	(kernel:	17.4.0) AppleClang	9.1.0.9020039 1.67.0 10.0.1 3.11.4
appveyor Windows	Server	2012	-	VS2015	+	mingw64	5.3.0 GNU	7.2.0 1.60.0 1.8.0.162 3.12.2 ✔

Figure 4.4: Overview of used platforms and essential configurations for building and
testing SimGrid as used on 2019-02-08 [Tea19].

It should be noted that testing more exotic and rarely used platforms such as
FreeBSD has proven to be useful, as development is typically done on machines
with a common configuration, such as Debian machines with GCC. Tests tend to
break more often on these platforms, revealing more profound issues that may also
impact common platforms but in more subtle ways.

The remainder of this chapter is structured as follows: Section 4.2 gives a gen-
eral introduction to SimGrid and explains how platforms and applications can be
modeled. Section 4.3 explains SMPI, which was used and extended for this thesis.
Simulation support for accelerators with runtimes is briefly discussed in Section 4.4
and finally, non-scientific contributions I made to the development (often necessary
due to the C++-rewrite) of SimGrid are presented in Section 4.5.

4.2 A General Introduction to SimGrid

4.2.1 Modeling Virtual Resources

To accurately consider different aspects of a platform, SimGrid relies on models of
the most important parts, such as the network and hosts (CPUs). For almost every
part (model, routing), several exchangeable implementations exist that normally
differ in their outcome and computational complexity. This allows users to use the
implementation that is suited the most to their workload.

The following sections give a brief overview over the most important models of
nodes and network. To illustrate concrete modeling of a platform, an example
platform file is discussed.

4.2 A General Introduction to SimGrid 41

Computation Unit modeling

Several computation units (CPU, GPU, MIC, FPGA) were presented in Section 2.1.2
and Section 2.2.2, with a specific focus on their individual advantages or disad-
vantages. Their performance differs largely and is dependent on the application’s
cache-usage, computation type (e.g., double, single or half-precision floating points)
and supported degree of parallelism.

In SimGrid, computation units are not explicitly declared as GPUs or CPUs. Instead,
abstract modeling with very few parameters is used to represent their computa-
tional capacities. The user can declare the number of cores that are available and
hence how many computations can be executed in parallel at full speed. If more
computations are executed than cores are present in the machine, the total computa-
tional power is distributed fairly over all computations. This means that scheduling
among processes is ignored and therefore all computations make progress at any time.
Their computational capacity (frequency) is declared in flop/s instead of MHz. This
allows users to differentiate between two CPU models that ship with the same clock
frequency but have possibly very different performances due to different internal
features.

SimGrid’s models also provide a notion of performance-state. This means that sev-
eral frequencies can be declared per host, but only one can be active at a time
(i.e., core-dependent frequencies are not directly supported). This provides several
advantages: First, a computation unit (CPU) that supports frequency scaling can
be easily modeled. Secondly, this provides ways and means to model non-trivial
computational effects as well. Heavy I/O can for example slow-down computa-
tions and could be modeled by declaring a specific frequency that represents this
slowdown. The user can subsequently manually enter a modeled state through
an API call to S4U so that SimGrid can take the state’s specific performance into
account.

SimGrid’s simple models do not consider important features such as TurboMode
(for Intel-CPUs), memory or cache latency. These features are too device-specific
and due to their extreme complexity very difficult to implement correctly. The
downside of this missing support is that application performance is sometimes
not correctly estimated, most notably when multi-core CPUs are used. To help
ameliorate this situation, I contributed a first step towards a better solution that is
presented in Chapter 6.

On the other hand, the advantage of this model for multi-core computational units
is first of all its low computational cost. For long computations, there is no need to

42 Chapter 4 The SimGrid Project

account for all the details of the rapid frequency changes incurred by TurboMode.
Only the average time spent in each state is important. Additionally, the user can
remodel the platform easily and hence adapt it to new devices without changing
the implemented model itself.

Network modeling

To accurately predict a network’s performance, its topology and the impact of
contention must be taken into account. SimGrid treats each communication as
a single network flow, therefore avoiding a split of the communication into many
individual packets, which is computationally overly costly and prohibits large-
scale simulations. With this approach, only one flow needs to be managed instead
of possibly thousands or millions of individuel packets. Choosing a flow-based
representation hence comes with the additional benefit that the SimGrid-internal
overhead for managing (storing) the communication is independent of the message
size, a feature crucial to simulations sending large messages.

Under the assumption of steady-state, SimGrid applies a bandwidth-sharing al-
gorithm to compute incurred contention. This algorithm considers non-trivial
phenomena [Vel+13b] such as network heterogeneity, Round-Trip-Time-unfairness
of TCP [Mar+07] or reverse-traffic interference [Heu+11]. SimGrid recomputes the
bandwidth-share for each flow every time a communication finishes (and hence
releases resources) or begins (and therefore consumes resources). Transient phe-
nomena of the network protocol, such as the time it takes to converge to a stable
bandwidth, are currently not considered by the model, see Figure 4.5. SimGrid’s
predictions are thus expected to be rather optimistic when compared to reality.

Platform Description

To instantiate the models of computation units and network, the simulator requires
the user to supply a high-level description of the target platform, written in a human-
readable format, which is then used to create simulator-internal datastructures. This
description includes information structured through so-called zones. Zones can
represent for instance different rooms of several or a single data center, different
racks of a cluster or just groups of nodes connected to different routers. Each zone
contains either more zones or a description of the hardware setup it contains, i.e., the
network (links including their bandwidth and latency, routers, routing algorithms
or tables) and the nodes (especially number of cores, available frequencies). The

4.2 A General Introduction to SimGrid 43

Slow start
New flow entered

 the network

0

1

2

3

0 10 20 30

Time

B
an

dw
id

th
 u

se
d

Legend

SimGrid

RL

Randomly generated data

Figure 4.5: SimGrid’s models simplify real-life network usage by ignoring the bandwidth
adjustment phase in the beginning and when a new message enters the net-
work, it reduces the bandwidth immediately, without going through another
adjustment phase.

physical location of a node in a rack or the length of a network link can influence
energy consumption and performance, respectively, but is currently ignored.

The standard format for supplying the platform description is XML, even though
SimGrid also supports a programmatic (C/C++) approach. An overly simple
platform is shown in Figure 4.6. The platform only contains one zone with two
nodes that can compute 1 Gflop/s. The nodes (identified by the “host” tag) are
connected through a single link with bandwidth 1 GB/s and a latency of 25 ms.
Note that the link itself is not explicitly connected to any of these hosts. The link is
just declared to be part of the route from host S1 to host C1 (and vice versa). In fact,
links in SimGrid are not modeled as “cables” and have no designated endpoints.
This counter-intuitive modelisation allows users to use links to model specific
features of the platform more easily. For instance, by declaring that the same link
connects hosts A and B as well as hosts C and D, communication between A and
B is impacted by communication between C and D (and vice versa) because both
communication flows now have to share the bandwidth of this link.

44 Chapter 4 The SimGrid Project

1 <!DOCTYPE platform SYSTEM "http://simgrid.gforge.inria.fr/simgrid/simgrid.dtd">
<platform version="4.1">

3 <zone id="AS0" routing="Full">
<!--- S1 <-> link 1 <-> C1 -->

5 <!--- (1GBps, 25ms) -->

7 <host id="S1" speed="1Gf"/>
<host id="C1" speed="1Gf"/>

9 <link id="1" bandwidth="1GBps" latency="25ms"/>
<route src="S1" dst="C1">

11 <link_ctn id="1"/>
</route>

13 </zone>
</platform>

15

Figure 4.6: A simple platform, taken from SimGrid’s collection of examples, called
onelink.xml. Two hosts with 1 Gflop/s and one link with 25 ms latency
and 1 GB/s are declared. This link is furthermore used to connect both hosts.

4.2.2 Modeling Applications

Once the platform has been modeled, it can be used to simulate a parallel applica-
tion. With SimGrid, this can be done in two different ways: (offline) trace-based
replay of application behavior and direct (online) simulation of applications.

The easiest approach is the trace-based replay. A trace file is normally obtained
by tracing the targeted application with a trace-tool. Once obtained, traces can be
replayed on different simulated platforms. This allows the user to study the impact
of changing platform parameters such as network bandwidth, network topology or
node speed on the application. Trace files are static and therefore prohibit the simu-
lation of adaptive applications as they only contain the behavior of one execution.
To illustrate this, consider an application that sends and receives asynchronous
messages, for example, to overlap communication times with computations. This
application’s behavior may change on a different platform because computation
and communication operations may change their order.

In order to simulate applications with adaptive behavior, a new concept is required.
SimGrid allows users to model the application as a set of actors interacting with
each other. Programmers fully control actors by explicitly providing each with a
function (written in C or C++) that contains the actor’s logic (e.g., computations,
message exchanges with other actors, synchronization, . . .).

Although SimGrid allows users to simulate a parallel system, it is a sequential
simulator that always executes actors mutually exclusively, i.e., one at a time, within
the same process but within distinct contexts. SimGrid implements several different
context-strategies (listed in Table 4.1) out of which the user can choose a single

4.2 A General Introduction to SimGrid 45

Context name Comment

thread Implemented as pthreads; very slow but great for debugging
java Java threads (for simulations written in Java)
ucontext Fast System V contexts, non-portable (only Linux/BSD).
boost Very fast implementation; requires additional libraries
raw Implementation in Assembler, no system calls, x86/amd64 only

Table 4.1: Exhaustive list of all currently by SimGrid supported contexts, i.e., mechanisms
to virtualize user code

one for the entire simulation. Their main differences are performance and memory
consumption but also debuggability.

SimGrid’s sequential execution raises the question of how it manages the execution
of all actors. At first, every actor is ready at time 0. SimGrid picks an actor determin-
istically and transfers control to the actor; it starts execution. Once the actor enters a
command that requires the state of the platform to be modified (e.g., computations,
communication, synchronization) it yields and SimGrid transfers control to another
actor that is ready to execute. Once all actors are blocked, SimGrid uses the resource
sharing models (network, computation units, etc.) to determine which actions will
complete first. Time can then be advanced to the completion date of these actions.
Since these actions have terminated, the corresponding actors are now ready to
execute again. The above procedure is then repeated.

4.3 SMPI: Simulating MPI Applications

To study HPC applications through simulation, good support for MPI is crucial
since this class of applications predominantly relies on MPI for communication.
SimGrid’s SMPI component has therefore been specifically designed to predict
the performance of MPI applications. In SimGrid’s current version (3.21, released
on 2018-10-05), SMPI supports most of the MPI-2 standard (and a subset of the
MPI-3 standard) and faithful predictions of unmodified MPI applications can be
obtained [Deg+17].

We already discussed in Section 2.1.4 that MPI is mostly used for inter-socket com-
munication whereas OpenMP is used for intra-node parallelization. Implementing
OpenMP support in SMPI is much more difficult due to its use of #pragma state-
ments that are parsed and substituted with parallel code by the OpenMP compiler.
This means that implementing support for OpenMP requires a different approach
than MPI. SimGrid therefore currently does not support the execution of OpenMP
within the simulated application at all. As it does furthermore not support CUDA

46 Chapter 4 The SimGrid Project

Operation Name Implementations Operation Name Implementations

Allgather 16 Allgatherv 7
Allreduce 15 Alltoall 14
Alltoallv 10 Barrier 3
Broadcast 17 Gather 2
Reduce 9 ReduceScatter 2
Scatter 2

Table 4.2: SMPI implements several algorithms for each collective operations to allow
users to simulate their MPI runtime more closely.

or OpenCL, accelerators can currently not be emulated directly. An alternative
approach is briefly presented in Section 4.4.

4.3.1 Emulation of MPI code

The discussion above has already made clear that online simulation of already existing
MPI code is particularly useful. This is a form of emulation and three requirements
must be given: First, the user code needs to be virtualized so that SimGrid can
control the execution. Second, the time spent by the application idling, computing
or communicating must be evaluated and third, since all actors share the same
address space in memory and therefore also global and static variables, privatization
of global variables is required to prevent incoherent memory states. The techniques
to address these issues are subsequently briefly presented.

Virtualization of userspace code

The simulated application should not be able to tell a real MPI implementation and
SMPI apart. SMPI was therefore itself built as a functional MPI implementation and
manages ranks, communicators and communications and time by itself. Naturally,
its implementation as a simulator comes with several constraints that require virtual-
ization, i.e., replacement of certain functionalities with an SMPI-enabled equivalent.
SMPI is unaware of any MPI-implementation detail and virtualization was done on
the MPI level and not on a specific implementation level.

The first difficulty is to retain a valid memory state at all times. To achieve this, SMPI
needs to make copies of memory in certain cases. Consider, for instance, sending
and receiving a message: MPI copies the message from one process to another,
possibly on another machine. This copying (via memcpy()) is also required in
SMPI, but for a different reason, since all ranks share the same address space: If not

4.3 SMPI: Simulating MPI Applications 47

copied, the receiver might access the buffer after the sender already called free()

on it. Providing the sender and receiver with their own (private) copy therefore
prevents invalid memory states and possibly segfaults.

Correct estimation of runtime and a reduced execution time is a second reason for
virtualization. In SMPI, the duration of computations is measured by accessing the
thread specific clock via CLOCK_THREAD_CPUTIME_ID. This clock is however not
advanced by functions such as sleep() and usleep(). It is therefore important to
replace these functions with an implementation that injects a virtual delay into SMPI
so that the time sleeping can be counted. This approach provides a second benefit:
By substituting them, these functions are prevented from blocking needlessly the
entire simulation process for the specified amount of time, once for every rank that
issues the function call. SMPI’s replace does not actually sleep but merely injects the
time as a virtual delay back into the simulator.

SMPI provides two commands (implemented as shell-scripts) that automatically
take care of the virtualization. They are named similarly to those of popular MPI
implementations, namely smpicc and smpirun. The application is compiled with
smpicc (which links automatically against libsimgrid, the library that contains
SimGrid’s fake MPI-, sleep()- and usleep() implementations, and sets a few
variables after which it passes the source code to the original compiler). After
the compilation, the user starts the application by running smpirun with several
parameters such as the number of nodes, the hostfile, the platform file or tracing
options. These additional options are filtered by SMPI and are not available in the
user application’s main() method, as every process is passed its own argc and
argv[] parameters.

Virtualization on the MPI level has furthermore the advantage that functionality
from several implementations can be supported exchangeably. For this, recall from
the discussion in Section 2.1.4 that algorithmic implementations of MPI functions,
especially of collective operations, depend on the MPI implementation. Each
implementation can either offer users a range of algorithms to select from or do
this automatically (at runtime), based on parameters such as message size or the
geometry of a communicator. It is clear that the performance of these algorithms
depends on the machine (especially the network technology / topology) and the
application’s communication pattern. Their performance may therefore vary greatly
and must be considered for faithful simulation results. SMPI supports a large
amount of collective algorithms and selector logic from several implementations,
e.g., MVAPICH [LWP04], OPENMPI [Gab+04], or MPICH [Gro02]. Table 4.2 gives an
overview of the variety of implemented algorithms, broken down by the type of
the collective operation.

48 Chapter 4 The SimGrid Project

Time Evaluation

Once launched, SMPI executes the binary of the simulated application and executes
every instruction, just as if the binary was executed normally with MPI.

As explained above, every call to an MPI function is handled by SMPI. In its
implementation of each MPI function, SMPI takes care of the time spent in MPI and
the expected behavior (e.g., send / receive a message). To keep track of the time that
was spent outside of MPI functions, SMPI relies on timers. By starting a timer before
leaving an MPI call and stopping the same timer on entering the next MPI function,
SMPI can benchmark the time spent computing between two consecutive calls to
MPI. This time is then converted into flop, as this is SimGrid’s unit of measure for
computations, and consequently injected back into the simulator as a virtual delay
to mark this rank as computing.

By emulating the application, SMPI cannot only take changes to the source code
immediately into account but even allows application developers to simulate adap-
tive algorithms, i.e., algorithms that have situation dependent behavior. Naturally,
this advantage comes with a downside: The overall execution time is the sum of
each rank’s individual execution time and therefore increases with the number of
ranks.

Privatization of global and static variables

Developers of MPI-based applications normally assume that each rank will be
running within its own process. Developers hence use global and static variables
without fear for race conditions since each process works on its own copy. Alas,
SMPI only guarantees an individual execution context (stack, registers, code point-
ers) for each rank, not its own process. As a consequence, global and static variables
in usercode are shared because all contexts are executed within the same process, i.e.,
all contexts share the same address space. Incoherent memory states are therefore
possible and require particular treatment.

Privatization is a technique employed to avoid these issues by isolating all variables
that would be shared between the threads, i.e., global and static (in the context of
functions) variables. Several ways to resolve this issue exist, such as compile-time
privatization or through addition of variable modifiers such as __thread (in C,
non-standardized) / thread_local (standardized since C++11) directly in the
source code.

4.3 SMPI: Simulating MPI Applications 49

This can be done automatically, for instance via LLVM’s abstract syntax trees or
through the tool f2c for FORTRAN code that names global variables in a very
particular way. Since this technique can also be used to improve the performance
of HPC code (it allows application developers to replace heavy UNIX processes
by lightweight user threads), a few specific compilers (e.g., mpc [CPJ11] or IntelCC
with the undocumented -fmpc-privatize compile-flag) support this approach.
This is however not standard, which hinders the portability (between platforms
and compilers) of SMPI.

But most importantly, the solution based on variable modifiers alters the application
behavior. Indeed, this approach generally modifies the memory layout and the
memory access pattern, as well as the potential compiler optimizations, which
modifies the performance of the code. Since SimGrid regularly benchmarks the per-
formance of the application during the simulation, heavily modifying the original
compiling tool chain significantly biases the measures performed by SimGrid and
affect the performance prediction in an unpredictable way.

SimGrid therefore does not rely on these compiler-based solutions. Instead, it
relies on the two following different and “less-intrusive” strategies based on the
system calls mmap() and dlopen(), the latter being now the default [Bed+13].
Both solutions are mutually exclusive and are always setup before any user-code is
run.

I Solution via mmap() Immediately after startup, a backup of the application’s
data segment with all static and global variables is made and stored. This ensures
that all copied variables are initialized with their default value. Each MPI rank
then creates another copy in the heap through a standard malloc() (this copy is
private to the rank). Every time the rank resumes after a context-switch, it employs
mmap() to remap the data segment to its private copy. All ranks hence possess
their own data segment and never share the state of global/static variables with
other ranks.

mmap() only modifies the target (physical address) of a virtual address. The virtual
address itself remains unchanged. As a consequence, each global/static variable
has the same virtual address within all threads but the physical address is always
different.

When using mmap(), it must be guaranteed that no values cached for one thread
are used during the execution of the other. Since the virtual address remains
the same, no knowledge about which thread cached the variables exists. This
requires caches to be flushed and re-loaded upon each context-switch. This becomes

50 Chapter 4 The SimGrid Project

particularly noticeable when simulating memory-intensive applications: Frequent
cache-invalidation is costly and impacts the performance negatively. To offset this,
a calibration must be used. A solution will be presented in Chapter 6.

I Solution via dlopen() Another solution (which has recently become the default
in SimGrid) is the use of dlopen(). This function can be used to dynamically open
and close shared objects. In this approach, the fact that there is no restrictions on
how often the same object can be loaded, is exploited. Variables are hence effectively
privatized with the following approach (#processes is the number of processes,
specified by the user):

1. At first, we generate a new main()-function that is then compiled as a new
binary. The new function contains boiler-plate code that, when executed,
loads the original binary for each process via dlopen().

2. The user, who is unaware of Step 1, launches the simulation. Instead of execut-
ing the user-specified binary, the binary from step 1 is executed. Consequently,
the data segment of the process running the simulator now contains static
and global variables for this (very small) generated main()-method instead
of the user-specified binary.

3. The dlopen() loads the binary #processes-times and ensures that no ad-
dress conflicts occur between loaded instances by assigning distinct addresses.
dlopen() normally only loads the binary once, as it is shared, but the bi-
nary can be loaded multiple times by creating a temporary copy for each
rank (e.g., by suffixing the binary with the rankid). This copy is then deleted
immediately after it has been loaded. All global and static variables are now
effectively privatized.

4. By calling dlsym(handle_obtained_by_dlopen, "main") for every
rank, an entry point into the original binary is obtained. This entry point
allows a rank to execute the code found in the original main() method.

If required, libraries can be privatized as well. The main advantage of this method
is that it does not require mmap() calls. The system can therefore differentiate in-
stances of (now privatized) global variables through their distinct virtual addresses.
This implies that after a context-switch, the cache does not require to be flushed (as
for the mmap()-based solution). The cache can hence be fully exploited.

Unfortunately, this approach may be impractical for large-scale executions or for
SimGrid-runs of applications with large binary sizes on machines with little RAM.

4.3 SMPI: Simulating MPI Applications 51

The reason for this is that now not only the data segment is replicated, but as
described in Step 3, the code segment is replicated as well. Since the (same) binary
is loaded #processes-times, this may become a limiting factor when studying
large legacy applications at scale.

4.3.2 Modeling of MPI Communications

When used in applications, MPI’s principal responsibility is to send messages
from one rank to another. Unsurprisingly, to maximize their performance, MPI
implementations and the network layer come with built-in, complex optimizations,
which must be taken into consideration in order to achieve faithful performance
predictions.

One such optimization is the protocol controlling the handshake mechanism. Once
the sender has posted its send, the MPI implementation selects, based on the
message size, whether it wishes to send the message in eager mode (i.e., immediately
sends the message, regardless of whether the receiver is ready or not) or rendez-
vous (i.e., the sender requests first the permission to send (request to send, RTS)
from the receiver, who has to acknowledge this (clear to send, CTS)). The RTS/CTS
part can make up a substantial part of the transmission time for small messages,
which can in the worst case even triple. The eager mode is therefore especially
useful to reduce the overhead of small messages by using more memory to buffer
the message on the receiver’s side until it is ready to process it. For larger messages,
eager mode becomes unattractive because of the significant overhead of allocating
a (large enough) temporary buffer and copying the entire buffer over once the
matching receive has been posted. In this case, more specialized transmission
mechanisms such as RDMA are available and result in better overall performance.
The rendez-vous mode, on the other hand, requires less memory for buffers (since
the receiver is ready to receive the message) but the latency increases due to the
RTS/CTS part. Since rendez-vous is typically used for large messages, the added
latency is of little importance and therefore often acceptable.

Many MPI implementations have options that activate asynchronous send and
receive operations even for normally blocking operations. This should not be con-
fused with eager mode: even though the function returns instantaneously, the
message itself is not necessarily sent. However, applications can now overlap com-
munication time with computation and hence make more progress. These options
(send/receive modes, asynchronous sending, . . .) are generally determined on the
implementation level, but optimizations that exploit certain characteristics of the
underlying network (e.g., OmniPath, Infiniband, . . .) often influence the perfor-

52 Chapter 4 The SimGrid Project

mance as well. SimGrid currently ships with specific models for Ethernet [Vel+13b]
and Infiniband [Vie10] networks.

To instantiate SMPI correctly, a calibration that identifies all communication modes
must be executed on the real machine [Deg+17, p. 2391f.]. Figure 4.7 is a visu-
alization of the calibration we ran on the taurus cluster in Lyon. It shows that
communication performance is indeed largely impacted by the selected mode,
for instance when moving from the mode in red to the mode in brown, but that
each mode can be individually modeled through linear regressions. To account
for these and other phenomena (e.g., protocol overhead), SMPI extends SimGrid’s
fluid network model (see Section 4.2.1) with a generalized LogGPS model [Deg+17,
p. 2391f.] that is configured through the options shown in Figure 4.8. The cor-
rect values for these options are generally determined through the abovemen-
tioned calibration that will be briefly explained in Section 5.3. The meaning of
these options is as follows: smpi/os, smpi/ois and smpi/or are used to con-
trol the overhead, i.e., the incompressible time taken on the sender/receiver side
regardless of the transmission mode, of (i)send and receive operations of differ-
ent modes. The syntax is interval_start:startup_cost:cost_per_byte.
Here, interval_start is the smallest message size required to trigger this mode
(but only the largest thus declared mode is activated), startup_cost is the
constant additional cost charged once for every message using this mode and
cost_per_byte determines incurred costs for every byte of the message, e.g.,
for copying the message to the network card. The bw-factor and lat-factor

options affect the passage of the message through the network. They allow users
to account for MPI and network overhead by reducing the maximum bandwidth
that a communication can reach and increasing the latency per mode. Clearly,
effective bandwidth cannot be larger than the physical bandwidth defined for a
link and therefore values for bw-factor must be ≤ 1 whereas the latency in-
creases and therefore must be ≥ 1. The option smpi/async-small-thresh is
unfortunately misnamed and sets the upper bound up to which eager mode is
used. Finally, smpi/send-is-detached-thres is the maximum message size
for asynchronous message mode, i.e., even blocking operations will return immedi-
ately even though the message is not necessarily sent.

4.3.3 Scalability

Recall that aside from emulation, which was discussed above, a second way of
executing an application exists: The replay of a previously obtained time inden-
depent (TI) trace that contains the application’s captured behavior. TI traces con-
tain all important events of the execution, in the order of their occurrence: e.g.,
length of computation blocks (in flop), size of messages including communication-

4.3 SMPI: Simulating MPI Applications 53

Figure 4.7: Faithful prediction of MPI applications requires to account for message-size
dependent protocol and mode changes. By calibrating our cluster through a
series of experiments [Deg+17], we determined that on this particular cluster
and MPI implementation five main modes (each colored differently) with
sometimes significant differences exist.

type (send, isend, broadcast, . . .), tags, receiver, datatype etc.. Since each entry
is time independent, the actual duration (at the time of recording) is not tracked.

Each of these two execution modes has its own benefits and disadvantages. The
emulation is more responsive while the replay is significantly faster and can adapt
to other platforms as well (if it is time-independent), but it comes with a significant
overhead, namely to obtain the traces in the first place. Additionally, these traces
can get prohibitively large for long executions and any change to the application
or execution-based parameters (e.g., the number of processes) requires to generate
another trace for these changed parameters. This means that for studies that
frequently change algorithms or number of processes, it may not be feasible to use
replay.

SimGrid supports the replay of several applications at the same time, permitting
researchers to simulate actual workloads on shared machines (i.e., with realistic
cross-traffic etc.). This is for instance used in BatSim [Dut+16a], a simulator for
scheduling workloads that is based on SimGrid.

Thankfully, not only replay allows SimGrid to run simulations at large scale but also
in some cases emulation. Emulations with several tens of thousands of processes
have been shown to be possible [Deg+17]. However, some modifications to the
application’s source code may be necessary in order to accelerate the emulation
significantly or to reduce the memory footprint so that a single node’s memory
suffices.

54 Chapter 4 The SimGrid Project

<config id="General">
2 <prop id="smpi/os" value="0:3.79946267082783e-06:1.09809596167633e-10;1420:4

.06752467953734e-06:8.98782555257323e-11;33500:6.01204627458251e-06:7

.10122202865045e-11;65536:7.28270630967833e-05:1.9683266729216e-10;320000:0:0"
/>

<prop id="smpi/ois" value="0:3.65848336553355e-06:1.33280621516301e-10;1420:3
.83673729379869e-06:7.84867337035856e-11;33500:5.57232433176236e-06:6
.5668893954931e-11;65536:4.17803219267394e-06:2.37460347640595e-12;320000:4
.70677307448713e-06:3.38065421824938e-13"/>

4 <prop id="smpi/or" value="0:3.51809764924934e-06:3.01847204118237e-10;1420:8
.16124874852713e-06:2.66840481979518e-10;33500:1.49347740713389e-05:1
.97645004617501e-10;65536:5.88893263987424e-05:1.29160163208845e-09;320000:0:0
"/>

<prop id="smpi/bw-factor" value="0:0.0489825651012801;1420:0
.824385608826111;33500:0.600278012183156;65536:1;320000:0.536759617074721"/>

6 <prop id="smpi/lat-factor" value="0:1;1420:2.16408517748122;33500:1
.76905573216394;65536:2.9114462429055;320000:2.5981998109037"/>

<prop id="smpi/async-small-thres" value="65536"/>
8 <prop id="smpi/send-is-detached-thres" value="320000"/>

[...]
10 </config>

Figure 4.8: The (shortened) calibration output obtained for the Grid5000 taurus cluster
that serves as input to SimGrid. Note that the last value of smpi/or and
smpi/os shows values that are 0: These are correct, since these messages will
be sent synchronously (as defined smpi/send-is-detached-thres) and
the entire cost is hence already accounted for.

9 init
2 9 compute 2.86401e+07
9 barrier

4

9 isend 10 4 165288 0
6 9 compute 1.33016e+11
9 recv 8 3 165288 0

8 9 wait 10 1 209
9 finalize

10

Figure 4.9: An example of a Time Independent Trace for a single rank. The first column
denotes the rank id and the second column the action, each with their own
parameters (e.g., flop for the compute action or receiver, tag, message size and
data type for the isend operation)

4.3 SMPI: Simulating MPI Applications 55

Speeding up computations

Recall that SMPI executes all instructions of all MPI processes. Instead of doing so
on multiple nodes, like MPI, only a single node is used. Naturally, this increases
the execution time significantly but not all computations are necessary since HPC
applications have often very regular behavior. Serendepitously, when simulating
an application, not all data is required to be consistent since only the characteristics
of the application are of interest whereas the computed results are irrelevant. This
leverages the following two solutions for a reduction of execution time: Online
benchmarking and offline modeling kernels.

I Online Benchmarking If certain computations are known to have stable execu-
tion times over the course of the application run, benchmarking can be used to
avoid executing them every single iteration. This process is online and implemented
in SMPI, however, the user must designate the code (e.g., a loop) to be bench-
marked by adding one of two currently supported macros (SMPI_SAMPLE_LOCAL,
SMPI_SAMPLE_GLOBAL) to the source code. The user chooses the former macro
when the execution time of the code is dependent on the rank and a per-rank bench-
mark therefore mandatory. The latter macro is therefore used when the execution
time is expected to be uniform among all ranks. This reduces the number of bench-
marks significantly, as the number of benchmarks is no longer a multiple of the
number of ranks.

Once the modifications have been made and the application (re-)compiled with
smpicc, the application can be executed as always. Each time the instrumented
code is reached, SMPI automatically initializes its timers and executes the code. This
is done until enough samples have been collected to obtain a reasonable evaluation
of the expected duration. In this case, the code is no longer executed and only the
average benchmark result is injected as a virtual delay into SimGrid. This means
that once the benchmarking has finished, each iteration requires constant work,
which is why this approach is suited only to code with stable behavior.

I Offline Kernel modeling For some computations that cannot use benchmark-
ing due to non-uniform execution times, for instance, because they depend on
parameters, a model of the corresponding kernel can often be created through a
statistical analysis. Unfortunately, this process needs to be done offline and re-
quires significantly more effort than benchmarking as SMPI currently does not
provide an automated way for this. However, once the model has been obtained
and implemented (e.g., by defining a new macro that replaces calls to the function
with the model and a subsequent call to SimGrid), no executions of the kernel are

56 Chapter 4 The SimGrid Project

necessary and the model can be used to predict the runtime by solely inspecting
the parameters.

The BLAS routine used for matrix-matrix-multiplications (dgemm) is a good example
to demonstrate the power of kernel modeling. With a complexity of Θ(n3), with n
designating the size of the matrix, multiplications rapidly become computationally
expensive when the matrix becomes too large. Instead, a model (typically obtained
through a linear regression) can be used. The cost to estimate the duration is then
constant as only the model needs to be evaluated based on the parameters.

Reducing the consumption of memory

To emulate an application even of moderate scale, it is often insufficient to only
take care of the computational cost of the application. A reduction of memory
consumption is almost inevitable since without further tweaks, each rank consumes
as much memory during the emulation as it would during a real-world simulation
run. The available memory on the single node hosting the emulation can quickly
even make runs with a few tens or hundreds of ranks impossible, as the memory
allocated by all ranks may reach hundreds of GB or even several TB.

Under the assumption that the application’s behavior does not depend profoundly
on the data it operates on, memory can be saved via SMPI’s SHARED_MALLOC
macro. This macro is especially useful to avoid allocating unimportant datastruc-
tures for each rank and works as follows: When called for the first time (this is
determined on a file/line basis), SHARED_MALLOC allocates one chunk of mem-
ory, just as a normal malloc would do. However, on all subsequent calls (at that
code location), handles to the previously obtained allocation are returned, i.e., the
allocation is shared by all ranks.

4.4 Runtime Support (StarPU-SimGrid): Simulating
Dynamic GPU-based Applications

We have already discussed in Section 2.2.4 that runtime systems will see increased
importance in the future, especially on heterogeneous systems that contain complex
nodes (e.g., CPU + GPU) and that will benefit from other advantages provided
by runtimes, such as scheduling, load-balancing or data-transfers. Unfortunately,
as was previously mentioned in Section 4.3, SimGrid currently does not directly
provide support for accelerators.

4.4 Runtime Support (StarPU-SimGrid): Simulating Dynamic GPU-based Applications 57

Implementing explicit support for each runtime in SimGrid (so that SimGrid can
intercept and then forward calls from the application to the runtime) is tedious and
would make support for runtimes depend on SimGrid’s development. To ensure
that not only current but also future versions of runtimes (with possibly different
APIs) are supported as well, it is easier to have the runtime implement explicit
support for the simulator.

As a proof-of-concept, support for SimGrid was implemented into StarPU [Aug+10],
a runtime developed by Inria Bordeaux, and it was shown that faithful predictions
are possible [Sta15]. In fact, the task-based approach leverages a clean separation
of the control and compute part, which is not the case for SMPI. When used with
SimGrid, StarPU only switches into simulation mode internally and does not notify
the application about this. In order to use SimGrid, StarPU requires a single
calibration run on the platform that is being simulated. This allows StarPU to
assess the performance of available devices (e.g., GPUs) for submitted tasks and
create offline kernel models. With this calibration, StarPU can then compute the
computational cost for kernels during simulation runs and inject it directly into
SimGrid. This means that SimGrid does not itself emulate the application code but
only keeps track of the computations and messages as reported by StarPU.

4.5 Contributions to the SimGrid Project

It was already mentioned in Section 4.1.2 that SimGrid is currently undergoing
a major rewrite through iterative refactoring. This changing infrastructure and
complex simulated software-codes made it often necessary to contribute additional,
refactored or fully rewritten code, tests, or bugfixes in parts of the code that I had
started to (co-)maintain, most notably SMPI.

The development of SimGrid itself has taken an important amount of time during
this dissertation project. A short overview over my main contributions is hence
given in the following sections.

4.5.1 Platform description

The XML description is both verbose and rigid, which makes it ill-suited for the
modeling of large and complex platforms. Usage of the scripting language Lua
has been tested and was found to be promising to describe complex platforms
programmatically and could be extended to be used for routing-algorithms as
well. Since its current implementation needs to be maintained besides the XML-
based default, meaning that all changes need to be implemented once for XML and

58 Chapter 4 The SimGrid Project

once for Lua, it was decided to not improve support for Lua but rather move to
a python-based implementation in the future as bindings can be automatically
generated from the C++ API. This has the benefit that by using existing, well-tested
python-based XML-parsers, the C-based FleXML parser can be removed in the
future. Furthermore, python is more universally known and may hence be easier to
use.

4.5.2 PAPI support

During my research, several cases of application-dependent issues were encoun-
tered when simulating with SMPI, such as seemingly unexplicably optimistic perfor-
mance estimations. The investigation proved to be extremely difficult. To determine
the cause, further information, as for example provided by hardware counters, was
necessary and lead us to identify cache-related issues (see Chapter 6 for details).

One way of retrieving these counters is through PAPI [Ter+10], a well-known,
robust and portable API that provides means to obtain performance information
by inspecting and reporting hardware counters of the CPU. Support for PAPI was
contributed to SMPI and can be used to collect PAPI-counters for each actor (and
not just for the entire simulation). Since SimGrid’s own code can impact counters
as well (e.g., total number of instructions), counter values must be stored before
the execution of an actor and immediately after the execution has finished. The
difference of these two counter values is then attributed to the actor itself and stored
in a trace.

To investigate the actor’s behavior with PAPI, counters of interest must first be
declared. Currently, this is only possible for all ranks (i.e., all ranks inspect the same
counters), but first steps were already taken to assign a different set of counters
to each rank. However, this was not required for my work and hence not fully
pursued.

4.5.3 Privatization

Privatization has been discussed in Section 4.3.1. These techniques have been
implemented for several years but the implementation was prohibitively static
and did neither support the introduction of daemons in SimGrid (i.e., of non-MPI
based processes that execute work in the background) nor the dynamic addition of
processes. Through a refactoring process, limiting code such as fixed-size arrays
and double indirections were identified and removed.

4.5 Contributions to the SimGrid Project 59

Furthermore, instead of being stored in global variables, the privatization segments
are now directly associated to each actor through a member in the corresponding
class.

Although these refactorings were important to support daemons (required for
our investigation of DVFS governors in Chapter 9), other projects have already
benefitted from these changes as well: most notably, they leveraged scheduling-
simulations with multiple applications executing at the sime time as done by the
BatSim [Dut+16a] project.

This support for dynamicity is also required for future support of functions that
spawn child-processes. These functions are also required by the MPI standard, for
instance MPI_Comm_spawn(), and can now be implemented in SMPI.

4.5.4 Energy plugin

It was already discussed in Section 2.2 that energy consumption will play a critical
role in the future. An interesting question is therefore the energy efficiency of
an application or of an algorithm. The energy-model that was developed and
evaluated during this dissertation (see Chapter 8 for details) was implemented
in SimGrid as a plugin. This plugin does not depend on SMPI and is therefore
available for any simulation using SimGrid.

4.5.5 DVFS plugin

To investigate further options for increased energy efficiency, a new plugin provid-
ing support for several DVFS governors will be presented in Chapter 9. This plugin
allows users to select DVFS governors on a per-host basis and provides several
classical algorithms (performance, powersave, on-demand, . . .).

4.5.6 Load Balancing

Distributing the load inequally over all nodes is a well-known cause for subpar
performance, even on medium-sized machines. The upcoming massive increase in
parallelism of exascale machines will further exacerbate the situation (see also Sec-
tion 2.2.1 for a brief problem presentation). The HPC community has hence declared
load-balancing to be of critical importance for exascale performance [Don+11]. Un-
fortunately, understanding load related issues is often a very tedious task but
without this knowledge the development of efficient algorithms is almost impos-
sible. The development of better tools is therefore necessary [Don+11, pp. 40, 54]

60 Chapter 4 The SimGrid Project

and the simulation approach as provided by SimGrid certainly provides valuable
insight. Alas, there was no high-level (i.e., without directly querying the SimGrid-
core) API call to obtain the load of a particular node. To alleviate this situation, I
developed a plugin that can be used to obtain the load of one or more arbitrary
hosts at any time.

Unfortunately, (extreme) scale comes with (extreme) complexity. Load imbalances
can therefore be easily misunderstood and solutions built into applications may
work on one but not on other machines. Programmers should hence not attempt to
implement their own load-balancer in their applications [Don+11, p. 57] as this may
in fact lead to adverse results due to the complexity and diversity of platforms. On
real machines, runtime systems such as StarPU [Aug+10] or Charm++ [Acu+14] are
therefore required to relieve the programmer of the responsibility to load balance
the application (see also the brief discussion in Section 2.2.4).

Naturally, given the importance of the subject, the evaluation of load-balancing
techniques is very interesting. Rafael Keller Tesser studied the impact of selected
Charm++/AMPI [Acu+14] based load balancers with SimGrid in his dissertation
project [Kel18]. Unfortunately, this implementation was based on a forked SimGrid
version that was quickly outdated due to the rapid development of SimGrid and
its APIs. As a contribution to a joint work [Tes+18], I rewrote the entire code-base,
including the load-balancing algorithm from Charm++. Chapter 9 details how this
contribution was later used in my own research.

4.5 Contributions to the SimGrid Project 61

5Experimental Methodology

Parts of this chapter were published previously as part of a preprint [Hei+17a].

5.1 Experimental Setup

All experiments for this thesis were executed using a cluster provided by the
Grid’5000 infrastructure project [Bal+13]. Grid’5000 provides clusters at seven sites
within France plus one in Luxemburg. We were only able to choose among Lyon-
based Grid’5000 clusters, as only they offered a hardware wattmeter so that we
could measure the power consumption of a node during our experiments. Power
consumption of CPUs can be obtained on modern processors through hardware
counters, however, we are interested in the total node consumption, making the
usage of a wattmeter more convenient. We therefore chose particularly the Taurus
cluster1 because it was the largest and most “recent” (from 2011) cluster at the time.
The measured power values were accessed through a specific server that queried
4 wattmeters located on-site. For each plug, a total of 3600 measurements per second
were made, each with an accuracy of 0.125 W, that were subsequently averaged
and returned to the wattmeter server as a single value.2

5.2 Factors Influencing the Experimental Results

In science, experiments are normally executed in highly controlled environments
to exclude outside influences as much as possible. Unfortunately, computers are
highly complex machines that are very difficult to use for experiments in such
a “laboratory-like” manner. Improving the reliability of experiments requires
diligence and consideration of numerous factors. An overview of these factors is
given in Figure 5.1. For each “category” shown in this diagram, we will briefly
discuss what the impact is and some issues we encountered. We have not observed
other key factors, but this might become the case with new and more complex
systems.

1See also https://www.grid5000.fr/mediawiki/index.php/Lyon:Hardware for more
details.

2As of September 2018, these wattmeters have been replaced with newer equipment that allows
users to retrieve 20 to 50 values per second, but this was too late for our experiments.

63

https://www.grid5000.fr/mediawiki/index.php/Lyon:Hardware

E
X

P
E

R
IM

E
N

T

OUTPUT

P
o
w

e
r

c
o
n

su
m

p
ti

o
n

 p
e
r

h
o
st

T
o
ta

l
e
xe

c
u

ti
o
n

 t
im

e

D
e
ta

il
e
d

e
x
e
c
u

ti
o
n

 t
im

e

EXECUTION

In
te

r-
n

o
d

e
s

(M
P

I)

O
p
en

M
P

I/
M

P
IC

H
/.
..

D
ev

ic
e/

d
ri

ve
r

C
o
ll
ec

ti
ve

 o
p
er

a
ti

o
n
s

In
tr

a
-n

o
d

e
s

(n
u

m
a
c
tl

)

#
co

re
s

u
se

d
p
in

n
in

g
 (

ye
s/

n
o
,
w

h
ic

h
 o

n
es

)
m

em
o
ry

 i
n
te

rl
ea

vi
n
g

Is
o
la

ti
o
n

 (
b

a
tc

h
 s

c
h

e
d

u
le

r)

N
o
d
e

is
o
la

ti
o
n

N
et

w
o
rk

 i
so

la
ti

o
n

M
a
c
h

in
e
fi

le
 (

m
a
p

p
in

g
)

T
ra

c
in

g

APPLICATION

B
e
n

c
h

m
a
rk

 (
E

P,
L

U
,C

G
,.

..
)

C
la

ss
 (

A
,B

,C
,.

..
)

KERNEL

G
e
n

e
ra

l

ve
rs

io
n

sc
h
ed

u
le

r
co

n
fi

g
u
ra

ti
o
n

C
o
re

 u
sa

g
e

H
yp

er
th

re
a
d
in

g
C

o
re

s
en

a
b
le

d
In

te
rr

u
p
ti

o
n

F
re

q
u

e
n

c
y

T
u
rb

o
 m

o
d
e

D
ri

ve
r,

 C
st

a
te

s
G

o
ve

rn
o
r

A
ct

u
a
l
fr

eq
.

N
e
tw

o
rk

in
g

 m
o
d

u
le

s

E
th

/T
C

P,
 I

B
,
..
.

C
o
n
fi

g
u
ra

ti
o
n

OPERATING SYSTEM

D
is

tr
ib

u
ti

o
n

D
eb

ia
n
,
R

ed
h
a
t.

..
D

ea
m

o
n
s,

 s
er

vi
ce

s

C
o
m

p
il

e
r

g
cc

/i
cc

/c
la

n
g

ve
rs

io
n

fl
a
g
s

M
is

c
(e

n
v
ir

o
n

m
e
n

t,
 l

ib
s,

 .
..
)

HARDWARE

C
P

U
 b

ra
n

d
/t

y
p

e

H
o
st

n
a
m

e

C
a
c
h

e
/B

IO
S

 c
o
n
fi

g
u

ra
ti

o
n

DATE

H
a
rd

w
a
re

 w
o
rn

 o
u

t

R
o
o
m

 t
e
m

p
e
ra

tu
re

V
ib

ra
ti

o
n

s

H
a
rd

w
a
re

/fi
rm

w
a
re

 u
p

g
ra

d
e
s

Figure 5.1: Factors that can have an impact on the performance of an HPC application.

64 Chapter 5 Experimental Methodology

5.2.1 Hardware

The first factor is the hardware used to run the experiments. It is known that
even homogeneous machines can exhibit variability in performance and power
consumption [Ina+15], for instance because the hardware was produced in different
batches or factories. Another reason can be the position in the rack . As we will see
in Chapter 8 (especially Figure 8.4 and Figure 8.5), this is also the case for the taurus
cluster we used, which consists of in total 16 nodes, each with 2 Intel Xeon

E5-2630 CPUs that in turn have 6 physical cores (+ 6 Hyperthreads). Each CPU
has a total of 3 cache levels: A 32 kB large first level (L1) cache, a 256 kB second level
(L2) cache and a 15 MB third level (L3) cache. A total of 32 GB of main memory is
available per node, split over two benches, with node interleaving disabled. All
servers are interconnected through a (Full-Duplex) DELL Force10 S4810 switch with
a maximum capacity of 1.28 Tbit. Up to 64 nodes can be connected to this switch
with 10 Gbit Ethernet links. The port the node is connected to can influence the
performance as well. Alas, we have no information on the wireings and therefore
are unable to log this information. If in doubt about homogeneity, an individual
profile should be created for each machine [Dav+12].

Figure 5.2 visualizes the setup of the Lyon site in 2016. As can be seen, two more
clusters (Orion and Hercule) are connected to this switch as well. With a total of 4
nodes per cluster, Hercule and Orion are relatively small. Nevertheless, in order to
avoid any interference of these clusters with our experiments, we fully reserved
them as well, even though we did not use them. We were unable to ensure that
neither the service machines nor the administration network were in use during
our experiments, as we had no control over these, but we believe that executing
all experiments on several dates, including nights and weekends, and obtaining
consistent results is a strong hint that this was not the case.

5.2.2 Date

The specific date (and time) of a measurement can play an important role as well,
since the state of important components can change over time. For example, a
mechanical disc’s performance may deteriorate due to more read/write errors or
mechanical problems caused by wear and tear. The machine room’s configuration
may have changed (e.g., room temperature, node placement within the rack, . . .)
and especially temperature can cause a node’s CPU to run slower [Myt+09, p. 266],
consume more power or even to see a change in its clock drift [All87].

The research presented in this thesis focusses on rather macroscopic measurements
and we have had no reason to believe that any of these reasons might be responsible

5.2 Factors Influencing the Experimental Results 65

Figure 5.2: In Lyon, several cluster are connected to the same switch, which is why we
reserved all of them except for the service networks and machines (due to lack
of permissions) [Tea12].

Machine memcopy dumb mcblock

taurus-1 4558.395 2705.507 6478.633
taurus-3 4100.912 2622.598 6132.107
taurus-12 4622.562 2694.097 6412.366

Table 5.1: Even though all machines were provisioned with identical hardware, their bios
settings proved to be different. This table illustrates the different results we
obtained when testing for memory performance through the mbw benchmark on
2016-08-12.

for changes from one experiment to another. Yet, the hardware we used changed
over time, for instance because the hardware wore out or through bios and firmware
upgrades. We will see in Chapter 8 (Figure 8.5, page 96) that some changes to
the hardware necessitated a re-calibration as the power consumption was largely
increased for some nodes (taurus-5 and taurus-12).

Firmware and bios upgrades (or changes) may also be responsible for different
performances. For some experiments with the NAS-LU benchmark, we saw as much
as 18 % difference between nodes, even though we had carefully setup all nodes in
the very same manner. Among others, we used the mbw (Memory BandWidth) tool
on the affected and non-affected machines. Table 5.1 illustrates mbw’s results on
in total three machines: while taurus-1 and taurus-12 yield almost identical
results, taurus-3 performs significantly slower on the memcopy and mcblock

tests.

We believed initially that the configuration controlling the “node interleaving” op-
tion was set to different values, but we found with the help of the Grid’5000 support
team that this was not true and instead, an option called MemOpMode (Memory
Operating Mode [DEL]) was configured differently. For taurus-3, it was set to

66 Chapter 5 Experimental Methodology

“AdvECCMode”, which trades in performance for reliability by combining both
64-bit DRAM controllers in 128-bit mode. The other nodes were set to “Optimizer-
Mode”, an option that lets both controllers operate independently for maximum
performance.

As a consequence of this bug, the Grid’5000 project adapted their verification scripts
and can now detect different settings automatically.

5.2.3 Operating System / Software Stack

The third identified factor is the operating system. The Grid’5000 platform allows
its users to deploy their own OS image on all reserved nodes. The platform pro-
vides pre-configured, versioned images that can be easily booted, however, they
are also updated regularly. We wanted to avoid this and instead stored an image
of the Debian Stretch operating system permanently that has all required libraries
already installed. We can therefore guarantee that all of our experiments used
the same libraries (and the same versions). This is important because e.g., library
and compiler versions or their configurations through flags can also have a major
influence on application performance and energy consumption: For instance, an
update to a specific library may support automatic offloading to accelerators while a
newer compiler may (no longer) manage to exploit a vector unit. We therefore keep
track of the environmental variables (and possibly temporarily set compiler flags)
through the env command but in general, the environment is not specifically modi-
fied between experiments. We are hence still subject to measuring bias [Myt+09]
but in our case, its impact should be minimal due to the homogeneous results of
our experiments.

Unfortunately, since we had started from a Grid’5000-based image for convenience,
changes to the platform caused Grid’5000-dependent systemd services to timeout
a few minutes after the machine was booted. Before the timeout, the service kept on
using the CPU and experiments that were started immediately after startup were
therefore affected in a seemingly random way due to a performance degradation
that was irreproducible unless the machine was rebooted. A delay of a few minutes
can help to prevent these negative impacts.

5.2.4 Kernel

The fourth category deals with the kernel version and its configuration. In fact, an
application we used (NASPB-LU) is an extreme example of a bug in the Linux sched-
uler that was responsible for a slowdown of up to 2700 % when pinning the execu-

5.2 Factors Influencing the Experimental Results 67

Figure 5.3: Different load and different core configurations can change the energy con-
sumption significantly. In the beginning, 12 cores experience 80 % load, the
second plateau represents 100 % load. For the third measurement, the CPU’s
turbo mode was enabled and for the last measurement, hyperthread was en-
abled as well. Note that the drops to around 100 W are short breaks in between
the measurements and the system was idle. These tests were executed with
FIRESTARTER [Hac+13] on 2018/08/13 from 11:15:00am to 11:20:00am on
taurus-6.

tion to a particular subset of cores on NUMA machines, e.g., via numactl [Loz+16,
e.g. Sec.3.2].

The drivers the kernel uses for hardware, such as the CPU, can be configured. Sev-
eral drivers for the CPU are available and their performance and energy consump-
tion can vary largely. Since we used Intel CPUs, the specialized intel_pstate

driver was available but we selected the generic acpi/cpufreq driver to be able
to set the frequency more easily through the cpufreq tool and the userspace
governor. Modern machines (including the ones we used) support several frequen-
cies, hyperthreading and a “turbomode”, i.e., a mode that increases the frequency of
individual cores through overclocking for a limited amount of time. These settings
have a direct impact on the runtime of HPC applications and their energy consump-
tion. Figure 5.3 illustrates four cases we ran with the FIRESTARTER [Hac+13] CPU
benchmark: First, all 12 real cores are activated (no turbomode) and utilized with
80 % load. Second, the load is increased to 100 %, causing the dissipated energy to
rise significantly but it still stays well below 250 W s. When turbomode is activated,
which is shown in the third case, the energy consumption continues to grow which
is also the case when hyperthreading is enabled (last case). With 100 % load, turbo
mode and hyperthreading enabled, the consumption reaches almost 300 W s.

Since turbomode and hyperthreading are difficult to model, we disabled both
altogether and fixed the used frequencies. However, we still allowed the CPU to

68 Chapter 5 Experimental Methodology

Interrupt Name (IR-PCI-MSI) CPU0 CPU1 CPU2 . . . CPU9 CPU10 CPU11

512000-edge 0000:00:1f.2 394 0 0 0 0 0
35651584-edge eth0-TxRx-0 899873 0 0 0 0 0
35651585-edge eth0-TxRx-1 1225593 248116 0 . . . 0 0 0
35651586-edge eth0-TxRx-2 1062111 0 95 0 0 437964
35651587-edge eth0-TxRx-3 1016571 0 0 . . . 416930 0 0
35651588-edge eth0-TxRx-4 1063962 61012 0 0 0 0
35651589-edge eth0-TxRx-5 1024896 0 0 . . . 0 0 0
35651590-edge eth0-TxRx-6 1063529 0 0 0 0 0

Table 5.2: This (arbitrary) excerpt from /proc/interrupts shows how interrupts were
not correctly re-balanced when disabling all cores (except for CPU0) and then
immediately re-activating them. As can be seen, CPU0 handles almost all
interrupts exclusively (the interrupts handled by other cores were handled
before the cores were disabled and re-activated) continued to almost exclusively
handle all interrupts, resulting in a performance degradation.

enter all energy-saving modes (called “C-states”). Our choices regarding frequency,
hyperthreading and turbomode were important for the power consumption when
running an application, but they had no effect on the idle consumption. Naturally,
the energy-saving modes had a large impact on the idle power consumption: When
all C-states are disabled and the CPU is asked to poll constantly (for maximum
responsiveness), the observed consumption was more than 220 W s.

During our first experiments, hyperthreading was disabled by default within the
bios of all nodes and was only subsequently activated by the Grid’5000 project. Once
it was activated, we adapted our scripts to disable hyperthreading immediately
after deploying the nodes. Interestingly, we noticed that when all cores but Core0
are disabled and then all physical cores (i.e., no hyperthreading) are re-activated,
interrupts were not correctly re-balanced and were only executed by Core0 even
though the irqbalance package was installed. In our experiments, this caused
a performance degradation that reached up to 30 % when using 12 nodes and 144
processes (1 process per physical core). We found that this occured since we disabled
first all cores and then only enabled the correct number of cores (1,4,8,12) for each
experiment (i.e., we had a growing number of cores for each experiment). By
changing this to a decreasing number of cores for each experiment, i.e., by disabling
first only the number of cores that are not required, this bug can be circumvented.
The interrupts are re-balanced correctly once all cores (including hyperthreads) are
re-enabled.

Table 5.2 presents an excerpt from /proc/interrupts that illustrates how inter-
rupts are handled once this bug is active: The non-zero values outside the CPU0
column were interrupts that were correctly handled before all cores were disabled.
Subsequently, with the bug enabled, all interrupts are only handled by CPU0 which
is why the numbers in this column are significantly larger. It is hence important

5.2 Factors Influencing the Experimental Results 69

to know how cores have to be disabled; in our case, we found that disabling only
the hyperthreading is sufficient. We did not specifically track the interrupts before
and after an experiment, even though this is simple and could help later to answer
questions related to (unexpected) performance degradations.

When experiments are executed on several nodes, their performance is impacted by
the networking module, as for instance different protocols can achieve a different
usable bandwidth and latency. Network cards have a relatively constant energy
consumption (independent of load) and can consume up to half of a CPU’s power,
but recent developments such as On/Off links can reduce this consumption [MN15,
Chapter 2]. However, this reduction comes at a cost of a reduced responsiveness
when the network card enters an energy saving mode (because a wake-up latency
is added). To avoid this and the corresponding changes to our models, we took no
further measures of energy savings regarding the interconnect.

5.2.5 Application

The fifth category deals with the user application itself. Generally, communica-
tion and computation bursts alternate (even though communication is nowadays
often overlayed with computation). Its performance and energy consumption is
impacted by the executed instruction mix (e.g., integer or floating point, memory
and cache accesses and therefore also cache misses, . . .). Applications can behave
homogeneously along time and even across several nodes for the same workload.
When studying the same application for different workloads, instruction mixes may
differ and cache-effects can vary due to larger/smaller input.

5.2.6 Execution

The sixth category contains elements that are relevant for the execution of the appli-
cation, such as the MPI implementation, its version and its configuration, such as
the concrete algorithmic implementation of a collective communication function.
Many MPI implementations select this implementation based on the context (e.g.,
the network partition). Major implementations (such as Open MPI) ship for this
reason with several implementations for a single MPI collective. As previously
mentioned (see Table 4.2 on page 47 for a breakdown), SMPI supports a large num-
ber of collective algorithms and for good performance predictions, the algorithmic
implementation should be configured accordingly. For our experiments with HPL,
simulation results did not depend on the right algorithmic implementation because
HPL ships with its own implementation of all used collectives.

70 Chapter 5 Experimental Methodology

Before the execution of an experiment, we decided how many cores and processes
we want to use and subsequently used Open MPI’s mapping support to pin each
process to a core (i.e., process migrations were prohibited) via the --bind-to

core option whereas the mapping of ranks to cores was fixed via --map-by

core. We also configured Open MPI to continue using the tcp stack via --mca
btl tcp,self.

All nodes were using the NFS drive only for /home and accessed all shared libraries
locally. Since all used applications consist of small binary files, the delay caused by
accessing the binary over the network is minimal. Generated data (such as traces),
however, were first stored in memory, then dumped to the local disk and finally
transferred to the NFS for permanent storage as they are usually large enough to
impact the overall performance.

5.2.7 Output

The last category is the output of the executed application. We generally capture
and store all output (stdin and stderr). When executed via Open MPI, each line
receives its own timestamp via the --timestamp-output option.

5.2.8 Data Analysis

In a final step, the obtained experimental data is analyzed. Although this stage has
no influence on the actual behavior (e.g., performance, power consumption) of the
application, analyzing obtained data incorrectly can impact the reported behavior
(e.g., through plots or statistics). The data analysis is therefore just as important
and must be executed with diligence.

During this thesis, we have used the popular org-mode plugin [Sch+12] for emacs
to analyze data (mostly through R [R C16]) and to generate plots, often using
a literate programming style. All code for figure generation is stored in a single,
sectioned and commented .org file. Since we published also experimental data,
our analyses can be verified by interested researchers and figures can be reproduced
easily (with the same data). Although this does not prevent errors from being made,
it helps to find them and especially to answer questions on the used techniques.

5.2 Factors Influencing the Experimental Results 71

5.3 Network Calibration

5.3.1 Network

Recall from Section 4.3.2 that SMPI requires several configuration options, e.g.,
which transmission protocol is used for a specific message size. Finding these
values is done in two steps: First, a calibration script 3 is executed on two nodes
of the target platform that runs several rather simple tests, for example Ping (to
determine the time spent in MPI calls) and PingPong (to determine transmission
delay) [Deg+17, p. 2392]. In a second step, the raw measurements (and not just
averaged values, as this could cause for example behavior smoothing) are analyzed
with a script written in R [R C16], resulting in a piecewise linear regression fitted to
the data. This yields output similar to the one in Figure 4.7 (page 54). Visualizing the
results helps the user to determine if the breakpoints for the transmission protocols
are set correctly or if they need to be adapted.

5.3.2 Hardware Limitations

In some cases, intermediate hardware such as switches can limit the total perfor-
mance of the network, e.g., when the switch has a lower capacity than all links
connected to it [Deg+17, p. 2392]. To determine these bottlenecks and their capacity,
network saturation tests have to be executed. The resulting capacity can then be
modeled in SimGrid by using a so-called limiter link (see also Section 4.2.1). A
limiter link is a concept that limits communication speeds by adding a common
bottleneck. For this, the limiter link is declared as an actual link and its bandwidth
is set to the maximum switch capacity. To limit the total communication speed, all
routes that are known to go through the switch are declared to use the limiter link
as well, i.e., all communications that go through the switch now have at least one
link in common that becomes a bottleneck once the switch’s maximum capacity is
reached.

We executed such a saturation test that showed that no such limiter was needed
because the switch we used for our experiments (DELL S4810) was well-provisioned
and our testing environment was isolated from third party impact since we reserved
all nodes connected to the switch.

3For all required scripts and examples, see https://gitlab.inria.fr/simgrid/
platform-calibration

72 Chapter 5 Experimental Methodology

https://gitlab.inria.fr/simgrid/platform-calibration
https://gitlab.inria.fr/simgrid/platform-calibration

6Contribution: Modeling Multi-Core
CPUs

This chapter contains figures and text that was published in [Hei+17b].

6.1 Problem

As we have seen in Sections 2.1.2 and 2.2.2, nodes consist today of multi-core CPUs
that are often supplemented with accelerators. Traditional single-core nodes, on the
other hand, are dying out. To support these complex platforms, modelization of
multi-core nodes is imperative. Alas, previously published work on SMPI and its
scientific validation dealt only with networking aspects and did not make use of
multi-core or many-core nodes.

Node-internal parallelism, however, comes with its own challenges. If more than
one CPU is available, two processes executing on the same node could be using
a distinct CPU (as opposed to different cores) and would therefore be impacted
differently by cache-effects than when both processes execute on the same CPU
but on different cores. These effects can be considerable and must be accounted
for. Recall (from Section 4.2.1) that SimGrid does not support the configuration of a
number of CPUs but that it only allows a user to configure the number of cores a
node contains, making it impossible to account for cache-effects.

In SimGrid’s model for computational resources (e.g., cores), each resource is
assigned a capacity specified in flop/s, which is then distributed among all processes
using that resource: Let C denote the capacity of a node, p the number of processes
and n the number of total cores. If less processes use the CPU than cores are available
(p ≤ n), each process advances at rate C (i.e., each process runs on a dedicated core).
In the other case, i.e., more processes use the CPU than cores are available (p > n),
SimGrid simplifies resource allocation by ignoring scheduling policies and other
overhead (e.g., for context-switching) and shares the total amount of computational
power (C · p) evenly among all processes, i.e., each process progresses at rate C·p

n .

For CPU-bound applications, this model works rather well, but for memory bound
applications inaccurate simulation results can be the consequence of online simula-

73

tion because the simulation cannot be executed under the exact same conditions as
a real-life run.

The following two examples illustrate this:

1. Consider an application (such as the quantum chemistry code BigDFT [Gen+08])
that contains coarse-grained, memory-bound computation blocks. In this ap-
plication, each process shall use the L3 cache and/or the memory bus heavily.
Normally, the L3 cache is shared between all cores of the same CPU (see
Figure 2.3 (page 10)). In consequence, processes running in parallel on the
same node will contend for this cache-level. SimGrid, however, executes
contexts (representing a process) in mutual exclusion. This means that, when
measuring the duration of the computation, no contention on the L3 cache oc-
curs (due to the lack of parallelism). In this particular scenario, the measured
time tends for this reason to be (very) optimistic.

2. Now consider an application with many small computation phases rely-
ing heavily on the (per-core) L1 cache, such as the NAS-PB LU benchmark.
Each phase shall be followed by a call to an MPI function (for instance,
MPI_Iprobe to check for progress of an ongoing communication). Each
time the MPI function is entered, SimGrid will cause the currently executing
context to yield and transfers control to another context. If privatization of
global/static variables via mmap() (see the discussion in Section 4.3.1) is used,
the context-switch will remap the data segment in memory via mmap(). Re-
call that the main disadvantage of mmap() for privatization is the mandatory
cache-flushing. All cache levels are hence always cold after a context-switch
and in this particular example, the now executing process has to retrieve data
from the main memory instead of just the L1 cache. This means that imme-
diately after the context-switch, the executing process suffers a performance
degradation for a very short time. Since many small computation phases are
used (and therefore many context-switches are executed), the performance
loss is non-negligible when compared to a real execution, where no call to
mmap() is necessary and the MPI process runs on a dedicated core with a ded-
icated L1 cache. The estimated time therefore tends to be (very) pessimistic in
this case.

Both scenarios are common in HPC applications of interest, but it is difficult to
know beforehand in which situation an application falls. To offset incorrect timings
caused by online emulation and privatization, SMPI must speed-up or slow-down
some parts of a user’s code. Which option is required depends not only on the
application’s memory access pattern, but also on the node’s memory hierarchy (e.g.,

74 Chapter 6 Contribution: Modeling Multi-Core CPUs

cache sizes) as small caches may force the real application to access the memory
more frequently as well. Lastly, the number of processes contending for the caches
plays an important role as well.

6.2 Proposed Solution

In HPC, compute kernels are generally regular and their performance depends
mostly on the machine and the workload. When emulating an application, the time
of the computations can be measured, but it will represent the performance of the
kernels in emulation mode on the host. Unfortunately, this is not helpful as we are
interested in the performance of the application on the target machine under real-life
conditions. The approach we propose computes first correcting factors that allow
SMPI to convert the measured time to the corresponding time on the target machine.
Computing these factors on the kernel level is possible, however, working on the
kernel level is complicated as it requires some advance knowledge of the code. We
therefore propose to compute the correcting factors based on the executed code
between two MPI calls (called a code region). We also assume that the used code
is regular, i.e., that the execution time of code regions does not change along time
(only for different workloads). The comparison of MPI and SimGrid executions
is machine dependend since the complexity of a kernel can normally be described
through a polynomial function whose coefficients are machine dependend.

The first step towards an unbiased emulation and correct performance estimations
is to run and trace the application with MPI on a single node. One process per
core is started and the workload is choosen small enough to execute it. 1 The trace
recorded during this real-life (RL) execution is illustrated exemplarily in Figure 6.2
(designated as CalibrationRL). It contains the rank, start time, execution duration
(in micro-seconds) and state (MPI function name / computation) for all MPI calls
and computations.

The second step consists of executing the same application and the same workload
via SMPI. This yields another trace, generated by SMPI’s own tracing mechanism.
An excerpt (labelled as CalibrationSMPI) is shown in Figure 6.2. This trace
contains columns that do not exist in the MPI trace: filename and linenumber (the
rank-column was left out for illustration purposes). They are used to identify what
we call a code region: Consecutively executed computations, possibly spanning
several files and functions, uninterrupted by any MPI call. While blank for entries
marking simple computations, these columns contain the exact location for every

1The exact commands we used can be found in this file: https://gitlab.inria.fr/
fheinric/paper-simgrid-energy/blob/master/paper-cluster-figures.org, sec-
tion “computation”

6.2 Proposed Solution 75

https://gitlab.inria.fr/fheinric/paper-simgrid-energy/blob/master/paper-cluster-figures.org
https://gitlab.inria.fr/fheinric/paper-simgrid-energy/blob/master/paper-cluster-figures.org

MPI call. This means that each region can be identified through the MPI calls
surrounding it. In Figure 6.1, three regions are identified and visualized through
different colors.

The node (or even the hardware) used for the MPI and SMPI runs do not necessarily
need to be the same: SimGrid already allows users to simulate other hardware by
adjusting the speed parameter for the executing host. However, only the host that
runs the MPI part can be simulated, while no other host than the host that runs the
SMPI part can faithfully execute the simulation.

After downloading both traces to the same machine, a script written in R is used to
automatically align them (see Figure 6.2). The total duration (over all executions) of
each code region c is subsequently computed and compared to the other trace: The
resulting speed-up / slow-down factor s is set as s(c) = tSMP I(c)

tRL(c) . Here, tSMPI(c)
denotes the total time spent in c by all ranks in CalibrationSMPI. tRL(c) is defined
accordingly for CalibrationRL.

Once computed, these factors are saved in a .csv file that consequently serves as
input to an arbitrary number of simulations of the calibrated application. Figure 6.2
presents an excerpt of a file we obtained for NAS-LU.

The values of s(c) can be interpreted as follows: When SMPI executed the region c
faster overall, a slow-down is required and therefore s(c) > 1 results. Every time c
gets executed, SMPI measures the execution time t′ and increases it by injecting a
virtual delay of s(c) · t′ into the simulator. In the example, region 18 was executed
faster by SMPI and hence requires a slowdown of a factor of 1.9696.

Analogously, when SMPI executed c slower than MPI, s(c) < 1 causes the injected
virtual delay to shrink to s(c) · t′. In Figure 6.2, region 43 requires a speed-up
of 0.8933 because SMPI required more time to execute this region.

To use this approach, no changes to the code base are necessary. The location tracing
mechanism was built through macros defined in SMPI’s mpi.h header. This header
is included in every MPI application in both Fortran and C/C++. At compile time,
the macros only add a new function call
smpi_trace_set_call_location(__FILE__, __LINE__);

before each MPI function. This function only stores the location of the last two called
MPI functions and then returns. This information can subsequently be accessed by
the tracing mechanism. Obtaining the filename and linenumber at runtime is hence
computationally very cheap.

76 Chapter 6 Contribution: Modeling Multi-Core CPUs

28 ...
Region 43 if(iex .eq. 0) then

30 Region 43 if(north .ne. -1) then
call MPI_RECV(dum1(1,jst),

32 > 5*(jend-jst+1),
> dp_type,

34 > north,
> from_n,

36 > MPI_COMM_WORLD,
> status,

38 > IERROR)
Region 2 do j=jst,jend

40 Region 2 g(1,0,j,k) = dum1(1,j)
Region 2 g(2,0,j,k) = dum1(2,j)

42 Region 2 g(3,0,j,k) = dum1(3,j)
Region 2 g(4,0,j,k) = dum1(4,j)

44 Region 2 g(5,0,j,k) = dum1(5,j)
Region 2 enddo

46 Region 2 endif
Region 2

48 Region 2 if(west .ne. -1) then
call MPI_RECV(dum1(1,ist),

50 > 5*(iend-ist+1),
> dp_type,

52 > west,
> from_w,

54 > MPI_COMM_WORLD,
> status,

56 > IERROR)
Region 3 do i=ist,iend

58 Region 3 g(1,i,0,k) = dum1(1,i)
Region 3 g(2,i,0,k) = dum1(2,i)

60 Region 3 g(3,i,0,k) = dum1(3,i)
Region 3 g(4,i,0,k) = dum1(4,i)

62 Region 3 g(5,i,0,k) = dum1(5,i)
Region 3 enddo

64 Region 3 endif
...

66

Figure 6.1: Excerpt of the NAS LU-PB (exchange_1.f) highlighting
code regions between any two MPI calls.

6.2 Proposed Solution 77

CalibrationRL trace (MPI)
rank start (s) duration state

(mus)
...
1 1.643388 1293 mpi_allreduce
1 1.644681 62 Computing
1 1.644743 82 mpi_barrier
1 1.644825 6454 Computing
1 1.651279 549 mpi_recv
1 1.651828 474 Computing
1 1.652302 53 mpi_send
1 1.652355 2 Computing
1 1.652357 15 mpi_send
1 1.652372 359 Computing
1 1.652731 11 mpi_recv
1 1.652742 462 Computing
1 1.653204 15 mpi_send
1 1.653219 1 Computing
1 1.653220 9 mpi_send
1 1.653229 376 Computing
1 1.653605 22 mpi_recv
1 1.653627 465 Computing
1 1.654092 16 mpi_send
1 1.654108 1 Computing

...

CalibrationSMPI trace (uncorrected SMPI)
start (s) duration state Filename Line

(mus)
...

0.550426 1130 mpi_allreduce l2norm.f 57
0.551556 18 Computing
0.551574 47 mpi_barrier ssor.f 74
0.551621 5303 Computing
0.556924 617 mpi_recv exchange_1.f 30
0.557541 608 Computing Region 3
0.558149 4 mpi_send exchange_1.f 113
0.558153 12 Computing Region 17
0.558165 4 mpi_send exchange_1.f 130
0.558169 652 Computing Region 18
0.558821 8 mpi_recv exchange_1.f 30
0.558829 587 Computing Region 3
0.559416 5 mpi_send exchange_1.f 113
0.559421 12 Computing Region 17
0.559433 5 mpi_send exchange_1.f 130
0.559438 699 Computing Region 18
0.560137 9 mpi_recv exchange_1.f 30
0.560146 597 Computing Region 3
0.560743 4 mpi_send exchange_1.f 113
0.560747 14 Computing Region 18

...

Merging traces

Region-based speedup/slowdown factors

"bcast_inputs.f:37:exchange_3.f:42",0.1655 Region 1
2 "exchange_1.f:30:exchange_1.f:48",14.6704 Region 2

"exchange_1.f:30:exchange_1.f:113",1.2967 Region 3
4 "exchange_1.f:30:exchange_1.f:130",1.2994 Region 4

. . .
6 "exchange_1.f:113:exchange_1.f:130",11.7101 Region 17

"exchange_1.f:130:exchange_1.f:30",1.9696 Region 18
8 ...

"exchange_3.f:288:exchange_1.f:30",0.8933 Region 43
10 ...

Figure 6.2: Trace merging process used for the NAS-LU benchmark to
compute region-based speedup/slowdown factors and cor-
rect the simulation.

78 Chapter 6 Contribution: Modeling Multi-Core CPUs

NAS−LU ● Reality Simulation (corrected) Simulation (uncorrected)

Ideal
scaling

●

●

●
●

0

50

100

1x12 4x12 8x12 12x12

R
un

−t
im

e
(in

 s
)

Figure 6.3: Comparison of calibrated (blue) and uncalibrated (green) runs of LU with real
experiments (red) and ideal scaling (grey).

6.3 Performance Evaluation / Effectiveness

To evaluate our approach, an application needs to be of one of the two cases
mentioned in the previous section. We found that NAS-EP and HPL were not of
any of these types, as they are mostly computation-bound. The calibration files we
obtained for NAS-EP had most factors very close to 1, implying that the applied
corrections are not very important for accurate results.

On the other hand, when mmap() privatization is used, NAS-LU requires calibra-
tion. Indeed, NAS-LU is a memory-bound application as it frequently loads and
writes matrix elements.

Figure 6.3 illustrates four scenarios, executed on one, four, eight and twelve nodes,
each consisting of 12 cores: Ideal scaling (i.e., increasing resources decreases runtime
proportionally) is depicted in grey, the real-life MPI execution in red, the uncorrected
simulation in green and the corrected simulation in blue. The red and blue lines
almost perfectly overlap as the corrected simulation yields near-perfect results.
Represented by the green line, SMPI’s uncalibrated computed runtime estimation
yielded an error of around 20 % to 30 %.

Another interesting question is which regions contribute the most to skewed run-
time predictions. In Figure 6.2, values for regions range from significant speed-ups
like 0.16 (region 1) to strong slow-downs (14.67 , region 2) while other regions are
relatively close to 1 (regions 3 , 4 and 43). In our analysis, we found that regions
that require a strong speed-up were executed very few times (even sometimes only
once) while the regions with large slow-down factors require very little time for

6.3 Performance Evaluation / Effectiveness 79

execution but are called excessively (possibly several hundred thousand times). We
found that regions with extreme values contribute only neglegibly to the runtime
estimation and are hence less important.

6.4 Limitations

6.4.1 Technical limitations

As was already explained in Section 6.2, we use macros to insert a function call
with the __FILE__ (i.e., current source file) and __LINE__ (i.e., current line in that
source file) macros as parameters.

Our technical implementation can fail for applications (such as HPL) that wrap some
or all of their MPI calls in an additional layer, which is often done to facilitate e.g.,
logging, portability and maintainability. Note that in this case, the __FILE__ and
__LINE__ macros will now always evaluate to the filename and line of the file
containing that wrapped MPI call. This means that the start and the end of code
regions are now identified by a generic location, which can lead to distinct code
regions to be considered to be the same.

A solution to this problem could be to use the entire call-stack as a means to identify
code regions, as implemented for example by SST/DUMPI [Jan+10]. For our studies,
however, this was not needed.

Another limitation of our approach is that only regions that are actually executed can
also be identified. Switching a boolean parameter could possibly execute another
conditional branch and lead to very different regions. When a region was not
executed during the calibration, no correction factor can be applied. This may lead
to the need to re-calibrate even for small parameter or plattform changes.

It may also be necessary to calibrate every kernel of the application and not just
every region (i.e., all instructions that just happen to lie between two consecutive
MPI calls). This approach is much more intrusive (since the actual source code
needs to be modified) but has the advantage to separate e.g., cpu-bound kernels
from memory-bound ones. The impact of contended memory can therefore be
isolated to a specific part of the application, which may be important when the
workload and therefore the time spent within the kernels changes.

We already mentioned in Section 6.2 that we assume that the behavior of kernels
does not change along time. Indeed, since the correcting factors are computed

80 Chapter 6 Contribution: Modeling Multi-Core CPUs

by averaging all obtained samples, a temporal evolution of kernel runtime would
cause our approach to be able to apply only a single corrective factor. This becomes
especially problematic when a specific workload executes a kernel many times
but mostly with either very fast or very slow executions: Since the average was
computed on a particular ratio of these fast/slow executions, any shift in that ratio
could not be offset since the right factors would not be known.

6.4.2 Scaling limitations

The basis of this approach is a comparison between a real execution and a simulated
execution on a single node. It is not surprising that, once calibrated, the simulation
of a single node returns almost exactly the same results as the real execution since
we slowed-down or sped-up each code region to have the same overall execution
time for simulation and real-life execution.

These results are, however, not obvious when changing the number of processes,
possibly spanning several nodes, or the workload. The computed factors are
intuitively affected by cache re-use and cache locality. It is therefore reasonable to
suppose that they are sensitive regarding the workload. For weak scaling, i.e., when
the workload per processor is kept constant and added processors are used to solve
a larger problem, this approach can be expected to work. For strong scaling studies,
i.e., when the problem size does not vary with the addition of new processors, this
approach may not be feasible because each processor works on a smaller part of the
problem, which may lead to different cache usage.

Figure 6.3 shows a strong-scaling study we conducted with NAS-LU. Our approach
continued to work even though the workload was split between all processors
involved in the computation. We believe that this may be explained by well-
optimized code that results in small to no differences in correction factors for
varying workloads.

Another limitation is the need to obtain the traces first. Since trace size typically
varies with workload size (since more events are to be traced), storing and analyzing
these traces requires sufficient disk space and also enough memory, respectively.

In our experiments with workload size C and 12 cores on a single node, the .csv
file obtained by converting the original trace reached 7 GiB. Note that the host’s
32 GiB were sufficient to compute the application and hold the entire trace in RAM
before flushing it to the disk. Intermediate flushing may be necessary for larger
workloads and can cause the traced real-life execution to perform slower.

6.4 Limitations 81

We have only validated our approach with class C. Future processors that contain
more cores should in principal also be able to use this approach. For NAS-LU,
144 processes produced a trace of 5.5 GiB for class B and 11 GiB for class C when
traced with TAU but class D was impossible to trace due to the memory footprint.
This is an issue of TAU and other tools, such as Scalasca, are able to acquire even
larger instances [Mar14, Table 3.29].

When dumping traces to disk during the MPI run, the calibration would be com-
puted with this overhead, meaning that SMPI may not perfectly simulate the
untraced, faster execution. Another approach is to compress traces while gathering
them, for example with ScalaTrace [Noe+09], however, the used heuristics make
assumptions that do not hold true for every application. This approach is hence not
universally possible.

Another limitation is that our method is oblivious to time. The correction factor for
a region is computed once and applied after each execution. A rank executing a
kernel that is slowed down at the wrong time might cause other ranks to wait for it,
which may lead to further overall slowdown.

6.4.3 Future Work

We have calibrated the application and executed the simulation on the same node of
the taurus cluster and obtained good results. SimGrid permits users to simulate
applications on machines that are different than the original machine, for instance
their laptops. Even though this should work just as well, we have not yet tried
this.

82 Chapter 6 Contribution: Modeling Multi-Core CPUs

7Contribution: Modeling Intra-Node
Communications

This chapter contains figures and text that was published in [Hei+17b].

7.1 Problem

Recall from Section 4.3.2 that SMPI extends SimGrid’s network model (based on
fluid flows) with a hybrid model that integrates LogGPS-like parameters. This
allows SMPI to predict communication costs more accurately. In previously pub-
lished work, this model has been extensively tested and evaluated using network
communication, i.e., for communication between several nodes. However, when
communicating within the same node, messages can be passed through the shared
memory instead of the network card. This comes with several implications: First,
the available bandwidth and latency is different. Second, protocol changes (e.g.,
from eager to asynchronous) can occur at different message sizes as message which
means, third, that the observed performance will differ and therefore, previously
obtained linear models must be recomputed.

7.2 Solution

To distinguish between local and remote communications within SMPI SimGrid
uses a so-called loopback link when communicating from a host to itself. The
characteristics (bandwidth, latency) of these loopback links should thus be specified.
If the bandwidth and latency are not known up-front, they can be determined
experimentally (through measurements). A tool such as iperf that relies on
TCP/IP for all communication can help to give a first idea of the physical bandwidth
of the loopback. The effective bandwidth that can be reached through MPI can differ,
since MPI can change the protocol.

Once bandwidth and latency are known, a loopback link can be added for each node
to the platform file. It is declared just like any other link (see Figure 4.6 on page 45).
Although it is impossible to expressly designate it as a node-internal loopback link

83

Figure 7.1: Intra-node communications can rely on different protocols than inter-node
communications. To calibrate the loopback link, we executed the same calibra-
tion procedure as for inter-node communications (see Figure 4.7 on page 54).
As can be seen, there is signifcantly less jitter for local communications than for
inter-node communications. We furthermore found that small messages were
sent faster over network links than shared memory since the send operation
was executed asynchronously for remote destinations. For large messages, the
loopback was almost an order of magnitude faster which is expected due to
the much faster bandwidth.

(because SimGrid does not support such a notion), it can be regarded as such when
the only route that uses this link is used for communication from a node to itself.

Finally, the transfer modes (eager, asynchronous, . . .) must be calibrated analo-
gously to the network (Section 5.3) by running the calibration procedure on two
cores of the same node. This allows SMPI to use the right mode for each message
size and account for the communication overhead (start-up cost and cost-per-
byte).

As can be seen in Figure 7.1, the loopback calibration experienced significantly
less noise throughout all identified modes than the calibration for the network
(Figure 4.7 on page 54), even though we had isolated the entire cluster for the
Ethernet calibration. The number of modes remains unchanged and only minor
modifications to the break points were necessary. At the same time, the computed
regressions have very little in common: Small messages appear to be faster when
transmitted via the interconnect because they are small enough and hence sent
asynchronously. For large messages, communications going through the shared
memory can be up to one order of magnitude faster which is consistent with
expectations.

84 Chapter 7 Contribution: Modeling Intra-Node Communications

7.3 Performance Evaluation / Effectiveness

We evaluated the effectiveness of our solution using the HPL benchmark. Figure 7.2
compares the measured runtime on the actual cluster with two simulations: One
simulation ignores the specific characteristics of local communications (and hence
treats them like inter-node communications) and the other one uses a correctly
defined loopback (i.e., with a bandwidth of around 41 Gbit/s) but does not use
different values for the options given in Figure 4.8 (page 55). Section 7.4 will
explain why we made this decision. This means that startup cost and overhead
per-byte remain the same for local and remote communications. The experiments
showed that this approach is sufficient for HPL. The most important change is the
increased bandwidth and calibrated simulation results match the real execution
perfectly. When the bandwidth is too slow, all twelve processes use a single link
that becomes the bottleneck. In this case, the prediction is off by almost 25 % for the
single-node because the difference between 10 Gbit/s ethernet links and loopback
links are too significant. The importance of the bandwidth for the single-node
scenario is confirmed by Figure 7.3, which compares the same real-life results with a
loopback that has with 25.6 Gbit/s only 62.5 % of the measured bandwidth and one
that is with 5.12 TB/s a thousand times faster. Speeding the loopback up further
reduces the execution time, and vice-versa for a reduction of bandwidth. Even
with 25.6 Gbit/s bandwidth, the loopback is still 2.5 times faster than Ethernet links
which is why the estimated timing is still close to the actual result. Both figures have
in common that when the respective scenarios are executed on more than one node,
local communications play almost no role because the HPL implementation we
used does not particularly exploit locality. Each node still has the same amount of
processes but their messages become slower and more distinct (albeit slow) Ethernet
links are available for the communication. In all of these scenarios, SMPI achieves
almost perfect results regardless of whether it is configured specifically for local
communication.

7.4 Limitations

Figure 7.1 visualizes not only the calibration results for the intra-node calibration
but gives for comparison the linear model found for the Ethernet interconnect,
see Figure 4.7 (page 54). As one can see, the computed piecewise regressions
are different and hence not exchangeable. It may therefore be necessary to allow
users to configure the communication overhead based on the sender/receiver of a
message. Currently, SMPI supports startup- and per-byte overhead for messages
on a global and per-node basis but accounting for different costs based on the
used communication method (network, shared memory) or the route is at this

7.3 Performance Evaluation / Effectiveness 85

HPL ● Reality Simulation, loopback calibrated
bandwidth=5.12 GiB/s

Simulation with Ethernet as loopback,
bandwidth=1.25 GiB/s

Ideal

scaling

●

●

● ●

0

25

50

75

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

nodes x processes per node

Figure 7.2: HPL does not exploit locality and therefore, only the single-node execution
is largely overestimated when the loopback link remains configured with the
same speed as the more than four times slower network.

time impossible. Furthermore, the configuration options that are used to adapt the
available bandwidth and latency based on the message size (e.g., to account for
protocol overhead, see Section 4.3.2) can currently only be set globally and hence
both inter- or intra-node communications use the same values. To obtain faithful
predictions for applications that, unlike HPL, exploit locality, the whole range of
message sizes or are more communication-sensitive (i.e., communication cannot be
largely overlapped with computation), it may be necessary to use a different set of
values based on the sender and receiver of a message. Note that supporting different
values per sender/receiver is more general than to declare the same options again,
only this time for local communications, as it takes into account that platforms may
employ heterogeneous hardware (e.g., different motherboards, multiple network
types) that require different configurations. Recall from Section 4.2.1 (“Platform
Description”) that the entire platform must be defined within one or more so-
called zones. We believe that the abovementioned modifications are relatively
straightforward when attaching these options directly to each zone declared in the
platform [Bob+12]. This is planned for the near future. For the applications we used
for our experiments, this was not necessary as faithful predictions only required
correct bandwidth and latency values for the loopbacks.

86 Chapter 7 Contribution: Modeling Intra-Node Communications

HPL ● Reality Simulation,
bandwidth=5.12 GiB/s

Simulation
bandwith=5.12 TiB/s

Simulation
bandwidth=3.2 GiB/s

Ideal

scaling

●

●

● ●

0

25

50

75

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

nodes x processes per node

Figure 7.3: When executed on only one node, HPL’s performance is influenced by loopback
bandwidth: A thousandfold increase to 5.12 TB/s reduces the runtime by
almost 5 s (from 76.64 s to 71.61 s) whereas lowering the bandwidth to around
two-third (3.2 GB/s) causes the runtime to be overestimated (with a total of
77.8 s). When executed on more than one node, local communication becomes
less important and hence the impact of these settings is not noticeable.

7.4 Limitations 87

8Contribution: Modeling Multi-Core
CPU Power Consumption

We have already seen in the introduction (Chapter 1) that the energy consumption
has become one of the main problems in HPC. A supercomputer consumes power
mainly through its components, such as the network, compute- and storage nodes.
This base consumption is further increased by indirect consumption, such as cooling
equipment (which can account for up to 33 % of the total consumption [ODL14,
p. 8]), power losses caused by physical effects that occur during distribution as
well as conversion and various other components such as uninterruptable power
supply [Sho+17, p. 955].

In this chapter, a model for the prediction of energy consumption of multi-core
CPUs is presented. In standard multi-core nodes (i.e., without accelerator), CPUs
are often the most important source of energy consumption [ODL14, p. 3].

This chapter contains figures and text that were published during this dissertation
project [Hei+17b; Hei+17a].

8.1 Problem

Models of the energy-consumption of CPUs in compute nodes often distinguish
two types of consumption: Static and dynamic consumption [ODL14, p. 2].

Static consumption denotes the energy that is consumed when the CPU is on but
idle and no measures for power-saving have been taken, for example, because not
enough time has passed to justify entering a power-saving mode. It is generally set
to

Pstatic = V · Ileak

whereas V is the supply voltage and Ileak the inevitable power leakage [Ren12,
p. 9].

89

The dynamic part comes into play when the CPU is actually executing instructions.
This dynamic part has been found to be

Pdynamic = A · C · V 2 · f (8.1)

with A denoting the percentage of active gates, C the total capacitance load, V the
supply voltage and f represents the frequency [ODL14, p. 4].

Note that V and f are not fully independent of each other. In fact, through elimina-
tion of V , the above formula can be further simplified to [DWF16, Eq. 20]

Pdynamic ≈ A · C · f3. (8.2)

Alas, the simple structure of these formulas is deceptive. The first variable, A, can
be interpreted as the switching activity and is highly dependent on the current
activity of the code (e.g., floating point operations or memory accesses require
different gates), the general architecture of the CPU itself, the compiler, operating
system and finally also on the activity of the other cores. Determining the correct
value can be expected to pose a problem for application developers, as no easy way
of measuring it is known and deep insight into a platform’s CPU architecture (e.g.,
AMD64, ARM, . . .) is required. The second variable, C, is the total capacitance
load and hence the power consumed when switching a gate. It is a constant for
a particular CPU, but its actual value is determined by the used manufacturing
process.

For a long time, V and f were mostly fixed. This has changed fundamentally with
the introduction of dynamic voltage and frequency scaling (DVFS), a nowadays
common feature of almost all CPUs. DVFS allows the OS kernel to adapt the voltage
and frequency based on the workload and is controlled by a so-called governor,
essentially an algorithm that makes decisions in order to save power. (For more
details on DVFS, see the discussion in Chapter 9.) In practice, not all values for f and
V can be attained. In fact, CPUs generally only support a limited set of frequencies
called P-states. They are denoted P0, ..., Pm, ..., Pn and m,n depend on the processor
model. In this case, m stands for the m+ 1 user-selectable and sustainably usable
frequencies for each core. For example, a CPU could provide P-states P0, ..., Pm

that would correspond to 1200 MHz to 2300 MHz, with increases by 100 MHz. The
remaining n−m frequencies are reserved for specific technologies such as Intel’s
Turbo Boost. These techniques, more commonly known as dynamic overclocking,
use dynamic increases in voltage to achieve higher frequencies. These per-core
frequencies can be sustained as long as power, voltage and thermal constraints of
the CPU are satisfied. The frequency other cores execute at hence influence also

90 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

the possible frequencies for dynamic overlocking. This means that the frequencies
Pm+1, ..., Pn can only be selected for a relative short amount of time.

Modern CPUs also feature per-core power-saving states, called C-states, that are
used to reduce Pstatic, i.e., the cost of the CPU being on but not executing any
computations. The available C-states of a CPU are denoted C0, ..., Cm, but not all of
them have to be actually available on a particular machine. Furthermore, only C0

does not denote a power-saving state: It is in fact the state that the CPU enters when
it is computing. The other states are ordered ascendingly by their energy savings,
i.e., Ci is supposed to save more energy than Ci−1 (if it exists). Since each core can
be used independently of the others for computations, it makes sense to allow each
core to enter C-states independently of the others as well. These per-core C-states
are called CC-states (Core C-states). The operating system kernel can request a
C-state for each core individually. This requested C-state is called LC-state (logical
C-state) and may not always correspond to the actual CC-state of a core because
there are architecture-dependent constraints for each CC-state: They enforce that
no core can thwart another core from doing its task for the sake of energy savings.
For instance, Intel CPUs disable the clock at C-state C3, but this is impossible when
at least one core on the die is currently computing (and hence in C-State C0). This
means that even though the LC-state may be set to 3, the CC-state will not be set
to 3 until all cores can accept the clock to be disabled. Finally, each processor has
one unique PC-state (Processor C-states). The PC-state is equal to the minimum
CC-state of all cores of the CPU [ODL14; Kid08].

Whether or not a core can enter a given C-state can change rapidly due to these com-
plex dependencies on the other cores. Considering C-states in a power consumption
model correctly hence requires much more work, especially since wakeup-latencies
must also be accounted for. Furthermore, since parts of the circuit are actually
disabled, any model that accounts for the number of gates that are currently active
would have to consider the disabled parts of the circuit, and this would need to be
updated every time a core changes its CC-state.

Even though it may be possible to build a precise model at the architectural level,
it would require endusers to find out how many gates are switched in a specific
case for every single CPU model they use. Additionally, accounting for all of the
above would render the model itself very complex since many parameters would
be required. This would make the model not only difficult to instanciate and hard
to control but also validation would become extremely difficult.

8.2 Proposed Solution 91

● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ●
● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ●
● ● ●

● ● ● ● ● ● ● ● ● ●
● ●

1 core online 4 cores online 8 cores online 12 cores online

1200 1500 1800 2100 1200 1500 1800 2100 1200 1500 1800 2100 1200 1500 1800 2100

85.0

87.5

90.0

92.5

95.0

Frequency (MHz)

A
ve

ra
ge

 p
ow

er
 c

on
su

m
pt

io
n

(W
at

ts
)

Figure 8.1: We measured idle power on every machine (here: taurus-1) for ten minutes
per frequency and active cores. These measurements were repeated three times
and no-earlier than 3 weeks after the previous measurement. Note that the
y-axis begins at 85 W. The variation per core-count is therefore minimal and
on the order of about 1 W.

8.2 Proposed Solution

A non-linear connection between frequency and power consumption as in Equa-
tion 8.2 can be easily verified through experimentation. Figure 8.2 visualizes the
results for an experimental campaign (see Chapter 5) with the CPU-bound NAS-EP

benchmark and a fixed workload (class C). The application was executed for each
available frequency (fixed to a value in the 1200 MHz to 2300 MHz range) with either
1, 4, 8 or 12 cores activated. The plot for a single core seems to remain almost linear,
but when all 12 cores are activated, a clear non-linear relationship becomes apparent.
However, a linear relationship seems to be possible when comparing the distances
(on the y-axis) between measured values for every single, fixed frequency as they
appear to be equidistant.

This is confirmed by Figure 8.3, which illustrates the same data (some frequencies
were skipped to reduce overplotting) but keeps the frequency constant and only
varies the number of cores. In other words, for each fixed frequency, the energy
consumption of a node is linear in the number of cores that are in use. When
extrapolating a power value for the entire node when 0 cores (i.e., CPU is idle) are
used, a significant difference between this obtained value (called Pstatic, borrowing
from the CPU-only value above) and Pidle becomes apparent. This can be explained
with the power-saving measures (e.g., C-states) that are taken when the node is
idle for too long. The extrapolated value hence represents a consumption during
extremely short times: Either the CPU stays idle and then goes into a sleep state,
i.e., the consumption drops to Pidle or at least one core starts computing. Note that

92 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

Average idle power

Flawed measurement

Incoherent valuesIncoherent valuesIncoherent values

0

50

100

150

200

250

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300
Frequency (MHz)

P
ow

er
 (

W
at

ts
) Number of

active cores
1

4

8

12

Taurus cluster, Lyon, EP

Figure 8.2: Changing the frequency while keeping the load constant causes the consumed
energy to grow quadratically. The energy that is required to keep an idling node
on (despite all energy-efficiency measures, such as C-states), is additionally
shown here as Pidle.

even though Pstatic was extrapolated with data based on a specific workload, it is
reasonable to expect that it is independent of the workload.

Following directly from these observations, the power consumption of a CPU with
usage u (in percent, via min(#cores,#computations)

#cores · 100 %) can be predicted using the
following model for a machine i executing a workload w (e.g., memory-intensive or
not, . . .) at fixed frequency f :

Pi,f,w(u) = P static
i,f + P

dynamic
i,f,w · u (8.3)

As just discussed, Pstatic does not depend on the workload but on the machine
and even the frequency. Allowing Pstatic to vary is important for complexer node-
types, such as ARM’s big.LITTLE, where higher frequencies cause the stronger
computation cores to take over, causing Pstatic to vary.

By ignoring the details of the energy-saving techniques discussed above, only very
few variables are required, which are furthermore measureable by application
developers. This model is therefore very easy to instanciate for any user.

8.2 Proposed Solution 93

Average idle consumption (Pidle)

Pstatic

0

50

100

150

200

250

0 1 4 8 12

Number of active cores

P
ow

er
 (

W
at

ts
)

Frequency (MHz)

1200

1400

1600

1800

2000

2200

Taurus cluster, Lyon, NAS−EP

Figure 8.3: Varying the number of cores while keeping the workload constant (NAS-EP,
class C) reveals a linear connection between load and power consumption. Note
that not all frequencies are shown in this figure to reduce overplotting. The
energy that is required to keep an idling node on (despite all energy-efficiency
measures, such as C-states), is shown here as Pidle.

8.2.1 Calibrating the Energy Consumption

There is, however, overhead because this model depends on the workload, host and
frequency as non-variable parameters. Unfortunately, characterizing the energy
consumption for every workload on every node is required for faithful predictions,
as is illustrated by Figure 8.4: At a macroscopic scale (one averaged sample per
second), the CPU-bound NAS-EP benchmark always consumes about 40 W s less
than the memory-bound NAS-LU or HPL benchmarks, which are separated by
10 W s to 15 W s. Most machines seem to consume more or less the same when
they execute the same workload but this is not always true, as is the case for
taurus-8 and taurus-10. Furthermore, the used software and hardware stack
(e.g., compiler and CPU, respectively) impact the power consumption as well (e.g.,
through optimizations). By measuring the consumption for a workload on a specific
machine, these impacts are accounted for and do not have to be integrated explicitly
into the model. This would (just as considering other phenomena, such as C-states)
require more variables that are difficult to measure and instanciate, in exchange for
a questionable and probably very limited gain in accuracy.

Energy consumption cannot only vary among nodes, but it can vary on the same
node when enough time passes. Figure 8.5 depicts the results of two experimental

94 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

taurus−13 taurus−14 taurus−16

taurus−7 taurus−8 taurus−10 taurus−11 taurus−12

taurus−1 taurus−3 taurus−4 taurus−5 taurus−6

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0 25 50 75 100 0 25 50 75 100

0

50

100

150

200

250

0

50

100

150

200

250

0

50

100

150

200

250

Time (s)

P
ow

er
 (

W
at

ts
)

Workload

Idle

NAS−EP

NAS−LU

HPL

Taurus cluster − 13 nodes @ 2300 MHz

Figure 8.4: Power consumption over time when running NAS-EP, NAS-LU, HPL or idling
(with 12 active cores and the frequency set to 2300 MHz).

campaigns that were run in May 2014 (by Alexandra Carpen and Sascha Hunoldt)
and one in October 2016 (by myself) to determine Pidle. After 29 months, the idle
power consumption of taurus-12 had increased by 11 W s, while it dropped by
3 W/s for taurus-5. In fact, it is not uncommon to find out that the assumption,
that a cluster consists of homogeneous nodes, does not hold true after the entire
cluster was calibrated [Ina+15]. Thankfully, the measurements we obtained over a
duration of two hours are mostly stable. This allowed us to set Pidle to the sample
mean, which is a valid approximation in this case, after we detected and removed
several outliers (with values around 0 W s and 50 W/s) as they could clearly be
attributed to wattmeter glitches. This demonstrates that re-calibrating the machines
may be necessary from time to time due to (often opaque) internal changes that can
cause even idle nodes to consume more. Alas, doing so would consume significant
resources and is therefore not always feasible. In many cases, machines are already
attached to a monitoring infrastructure that can detect and inform the user about
nodes that require individual calibration due to their different behavior.

There are several ways to compute the linear model, and it is not always necessary
to measure the intercept (Pstatic) itself. In our case, we chose to make two runs
of the target workload: One run is limited to a single core and the other run uses

8.2 Proposed Solution 95

taurus−11 taurus−12 taurus−16

taurus−3 taurus−4 taurus−5 taurus−7

0 200 400 600 0 200 400 600 0 200 400 600

0 200 400 600

90

100

110

120

90

100

110

120

Time (s)

P
ow

er
 (

W
at

ts
)

Date

2014−05−05

2016−11−23

Taurus cluster, Idle consumption − 7 nodes @ 2300 MHz

Figure 8.5: Comparison of two idle power measurements. The first one was executed in
2014 by Alexandra Carpen-Amarie and Sascha Hunoldt, the one in 2016 by me.
The frequency was fixed at 2300 MHz for the used nodes. In this plot, the y-axis
starts at around 90 W s to highlight the differences, especially for taurus-12.

all cores. This seemed to be easier to setup in experiments than disabling all C-
states to measure Pstatic, which is not always possible since this requires superuser
privileges. The intermediate values and Pstatic can then be interpolated through the
resulting linear function. Interpolating the intercept Pstatic is not a problem because
this state is only entered for a fraction of a second before either a new computation
is executed or the cores enter an energy-saving state.

8.2.2 Predicting the Energy Consumption with SimGrid

The implementation of the model within SimGrid is relatively straightforward.
SimGrid is always aware of the exact load of a node and can easily compute the
load u (e.g., a 12−core node with 6 concurrent computations has a load of 50 %).
During a simulation, SimGrid must update the energy consumption every time
that the load u changes. In SimGrid, load can only increase or decrease when a
computation starts or finishes. This ignores that HPC codes commonly check the
status of a message by looping over MPI_Iprobe. As long as the message is not
available, small computations are executed to overlay the time spend waiting with
useful work. While these computations are accounted for in SimGrid, the repeated
polling (and the resulting, non-neglegible CPU usage) is not, even though SimGrid
already allowed users to configure the time a single call to MPI_Iprobe takes. This
time, however, was modeled as a purely virtual delay (i.e., the core spends the time

96 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

90

100

110

120

130

140

150

160

170

180

190

0 500 1000 1500 2000 2500 3000 3500

P
ow

er
 C

on
su

m
pt

io
n

(w
a

tts
)

Time (seconds)

taurus-8

Figure 8.6: Power consumption for a single node when polling via MPI_Iprobe. The
distinct growing phases represent one frequency, ranging from 2300 MHz to
1300 MHz, and 1 to 12 cores. When the second CPU gets activated, a jump is
recognizable, especially for the highest frequency.

sleeping) and hence only the idle-power was consumed because no computation
was started. Clearly, the sleep needs to be replaced with a computation, but it is
insufficient to just run a computation at full speed for the time of the iprobe because
the amount of energy consumed by iprobes is different from the main application:
Figure 8.6 shows the power consumption of a single node that occupies step by
step one more of its cores with repeated polling for new messages. When all cores
have been used, the frequency is set to the next lower available frequency and
the procedure restarts with one core. When all cores poll repeatedly, the power
consumption was around 188 W s, which is significantly higher than the previously
accounted idle power consumption of merely 92 W s. HPL, the application that
uses MPI_Iprobe, consumes around 214 W when all cores are used and run at
maximum frequency. For this reason, an option was introduced that allows users to
scale the usage of the CPU while polling so that the measured energy consumption
of MPI_Iprobe is consumed (a similar effect is expected for MPI_Test but was
not particulary investigated). Note that, when increasing the core count from 6 to 7
cores, slightly more energy is consumed than for any other step. This is due to the
architecture of the target platform: The taurus nodes contain two CPUs with 6 cores
each, i.e., this jump stems from activating the second CPU. Recall from Section 4.2.1
that SimGrid lacks any notion of CPU. SimGrid can therefore not track which (and
how many) CPUs are activated and this jump (of about 5 W s) was ignored.

In our experiments, NAS-EP and NAS-LU were unaffected by this because they
don’t use MPI_Iprobe. HPL, on the other hand, heavily uses this mechanism
in its own MPI_Bcast implementation, which initially resulted in serious energy
mispredictions.

Recall from above that the intercept Pstatic is only used for a fraction of a second.
In our implementation, we have replaced the Pstatic with the more conservative
value Pidle. This allows SimGrid to ignore that deeper energy-saving states are only
entered one after another. To keep the implementation simple, we furthermore

8.2 Proposed Solution 97

<host id="taurus-8.lyon.grid5000.fr" speed="23E9, 22E9, 21E9, ..." core="12">
2 <prop id="watt_per_state" value="92.75:114.62:174.38, 92.75:113.25:168.62, 92.88

:112.25:162.88, 92.88:110.75:157.12, 92.88:110.38:151.75, 92.88:109.38:147.25,
92.88:108.62:142.75, 93:107.38:138.25, 93.12:106.75:134, 93:106.5:130.62, 93
:105.12:127, 93.25:104.62:123.62" />

<prop id="watt_off" value="10" />
4 </host>

Figure 8.7: A sample configuration for the taurus-8 node. The configured workload
here is the EP benchmark and corresponds to the linear regression of Figure 8.3.
For each frequency, three values are provided: the idle power Pidle, the power
consumption when the workload is executed on a single core and the power
consumption when the workload is executed on all cores. SimGrid allows
the user to configure the energy that the node consumes when it is turned off
through the "watt_off" option.

ignore latencies for entering and leaving C-states: Latencies depend on the C-state,
are architecture dependend and would have required configuration by the user. 1

The proposed model is cheap to evaluate, which is mandatory when computations
are very small and the update mechanism is frequently triggered. In the worst case,
this can be necessary hundreds or thousands of times per (simulated) second and
MPI process.

Finally, Figure 8.7 presents the configuration of node taurus-8 for the EP work-
load. Only the values for the watt_per_state tag are subject to change and
values are given in the Idle:1Core:AllCores format, followed by a comma (“,”)
and the values for the next pstate. This example contains (marginally) differing
energy values for the idle state because we calibrated even idle consumption for
every single frequency, but this is clearly not necessary. Note also that the pstates
(listed in the speed attribute) were shortened for increased readability.

The configuration shown in Figure 8.7 represents a very simple and uniform work-
load. The energy consumption during different states, such as booting or when the
machine is turned off, may need to be considered as well. The energy consump-
tion (e.g., for wake-up-on-LAN devices) when the machine is turned off can be
specified directly in the watt_off property. However, states such as “booting”
are not supported directly and must be modeled by adding another value to the
speed-attribute. Since floprates are not required to be unique, one can use a flo-
prate that has already been declared previously (e.g., the highest one). This state is
consequently not interpreted as a CPU frequency that can be selected at any time
when running a workload but rather as a special state the system can enter. The
corresponding energy consumption can then be declared accordingly. When the

1Latencies can be obtained by running the command cpupower idle-info on the target platform.

98 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

machine is booting, this specific state can be entered and the energy is correctly
accounted for.

Using this method, a user can also model additional power consumption when
offloading onto an accelerator (see Section 2.1.2 and Section 2.2.2). Of course, this
does not allow SimGrid to suddenly execute, e.g., CUDA code and so entering this
specific state must be done manually when using SimGrid programmatically. The
additional power consumed by the accelerator can thus be accounted for and once
the accelerator is done, the user can simply switch back to a “normal” state that
just models computations on the CPU and accounts for idle energy usage of the
accelerator.

8.3 Performance Evaluation/Effectiveness

To validate our model, we calibrated the entire taurus cluster (see Section 5.1 for
a brief discussion of this setup), i.e., we calibrated each node, the network and
calls to MPI_Iprobe and ran three popular benchmarks (NAS-EP, NAS-LU, HPL)
on partitions with 1 , 4 , 8 and 12 nodes. Only NAS-LU required a calibration file
for speed-ups / slow-downs that was obtained as detailed in Chapter 6. Subse-
quently, we used SimGrid to predict the time-to-solution and energy-to-solution.
Figure 8.8 compares the simulation results to the results obtained from the real-life
experiments. Thanks to the calibration, predictions are in almost all cases indis-
cernable from measured real-life results. Only NAS-EP (“Embarrassingly Parallel”)
achieved perfect scaling and the energy consumption hence remains almost con-
stant. NAS-LU and HPL scale sublinearly, which is expected and causes the energy
consumption to grow as well. As can be seen in Figure 8.9, the energy prediction
accuracy of HPL is largely due to accounting for CPU load caused by MPI_Iprobe
calls. When polling is modeled with a simple sleep (green dotted line), the energy is
underestimated significantly and this error increases with the number of processes.
However, modeling the iprobe call with a computation yields almost perfect results
(blue dashed line). Therefore, when iprobes are used massively, calibrating SimGrid
accordingly is required.

In all cases, SimGrid’s prediction error is within a few percent. Since every node
was calibrated individually, heterogeneity is accounted for. However, we found that
in our experiments, calibrating only a single node and using this configuration for
all other nodes incurs only ≈ 1 % of error, effectively rendering it indistinguishable
from noise commonly experienced in real experiments (see Figure 8.10).

8.3 Performance Evaluation/Effectiveness 99

NAS−EP ● Reality Simulation

Ideal

scaling

●

●

●
●

0

10

20

30

40

50

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

●
●

● ●

0.0

2.5

5.0

7.5

1x12 4x12 8x12 12x12

E
ne

rg
y

(in
 k

J)
nodes x processes per node

NAS−LU ● Reality Simulation

Ideal
scaling

●

●

●
●

0

25

50

75

100

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

●

●

●

●

0

10

20

30

1x12 4x12 8x12 12x12

E
ne

rg
y

(in
 k

J)

nodes x processes per node

HPL ● Reality Simulation

Ideal

scaling

●

●

● ●

0

20

40

60

80

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

●

●

●

●

0

10

20

30

1x12 4x12 8x12 12x12

E
ne

rg
y

(in
 k

J)

nodes x processes per node

Figure 8.8: The validity of this model was tested with three popular benchmarks: NAS-
EP, NAS-LU, and HPL. The taurus cluster was used with up to 12 nodes and
12 processes per node.

100 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

HPL ● Reality Simulation (w/ iProbes) Simulation (wo/ iprobes)

●

●

●

●

0

10

20

30

1x12 4x12 8x12 12x12

E
ne

rg
y

(in
 k

J)

nodes x processes per node
Figure 8.9: Comparison of predicted energy usage of HPL with and without accounting

for the additional energy consumption of MPI_Iprobe calls.

NAS−EP ● Reality Simulation (heterogeneous) Simulation (homogeneous)

Ideal

scaling

●

●

●
●

0

10

20

30

40

50

1x12 4x12 8x12 12x12

R
un

−
tim

e
(in

 s
)

●
●

● ●

0.0

2.5

5.0

7.5

1x12 4x12 8x12 12x12

E
ne

rg
y

(in
 k

J)

nodes x processes per node

Changes to the energy
 consumption have no

 impact on runtime

Figure 8.10: Comparison of predicted energy usage of NAS-EP when using only one or an
individual power model for all simulated nodes.

8.4 Use Case: Capacity Planning for HPL

One interesting field of application is capacity planning. In collaboration with Tom
Cornebize, we studied how HPL benefits from more resources and the respective
energy consumption. As is generally the case for capacity planning, the machine
does not (yet) exist. The platform we imagined contains 256 nodes with 12 cores
per node. This is deliberately similar to the taurus-cluster that was used for the
validation study. This time, however, we decided to connect all nodes with a
hypothetical fat-tree network, built with 16-port switches on two levels: the top
layer consists of 2 switches whereas the bottom layer comprises 16 The links were
set up as 10 Gbit/s Ethernet links.

The previous validation study leveraged SMPI’s emulation mechanism and hence
executed every instruction of the unmodified applications. At most 144 processes
were used and the workload size was limited: For HPL, a matrix of size 20, 000×

8.4 Use Case: Capacity Planning for HPL 101

20, 000, as previously used, consumes 3.2 GB of memory. For this (very small) use-
case, the main problem was hence not the memory consumption but the emulation
time of almost two hours. This is a drastic, but not unexpected increase from the
20 seconds it took to execute HPL with 144 MPI-processes on 12 nodes of the taurus
cluster. This problem exacerbates with more processes, a more complex network
and larger problem instances. Furthermore, memory does become an issue once
the input matrix reaches a certain size: For a still relatively small 65, 536× 65, 536
matrix, 34.3 GB of memory are required which surpasses the entire memory of a
single taurus node. To alleviate this prohibitive resource hunger, we resorted to the
two techniques presented in Section 4.3.3 that allow SMPI to emulate runs at larger
scale by exploiting HPL’s regularity: First, kernel modeling to reduce the execution
time by skipping their execution and second, shared memory usage to reduce the
required memory. We have detailed the necessary modifications that finally allowed
us to simulate HPL on a single node using a model and the scale of the Stampede
supercomputer in a technical report [Cor+17] that is currently under preparation for
publication. For the above matrix (20, 000× 20, 000), these modifications allowed
us to run the (sequentially executed) emulation of 144 processes on a commodity
laptop in under two minutes with as little as 43 MB of RAM used. Using all nodes
and all cores of our (hypothetical) platform, the emulation of 256× 12 = 3, 072 MPI
processes took around 90 minutes and required not even 1.5 GB of RAM. Our study
was limited to the two aforementioned input sizes. For each size, in total 5 scenarios
were executed and results are depicted in Figure 8.11. The simulation results on up
to 12 nodes yield the same results as were obtained in real-life (red line in the top
figure). This is expected, because all nodes are connected to the same switch in this
case and the new network-topology is hence ignored. When using more nodes than
can be connected to the same switch, however, a slowdown can be observed due
to the added latency. This also increased the rate of power consumption, which is
already elevated due to the added nodes. The larger matrix, on the other hand, was
more suitable for scaling. The energy consumption continued to grow but this is
partly also due to a different ratio of communication and computation.

8.5 Limitations

8.5.1 Model Limitations

Recall from Section 8.2 that our model is calibrated with and hence depends on the
workload w. Since the model calculates the power consumption for an entire node,
it even implicitly assumes that all cores either execute w, a workload with similar
characteristics (e.g., memory accesses, cache usage, I/O, . . .), communicate or are
fully idle and that the workload only changes within these three cases throughout

102 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

HPL Reality Simulation

Matrix Size: 20,000

Ideal scaling

Above 1 switch

0

10

20

30

1x12 64x12 128x12 192x12 256x12

R
un

−
tim

e
(in

 s
)

●●●●

Above 1 switch

0

200

400

600

800

1x12 64x12 128x12 192x12 256x12

E
ne

rg
y

(in
 k

J)

Matrix Size: 65,536

Ideal scaling

Above 1 switch

0

250

500

750

1,000

1,250

1x12 64x12 128x12 192x12 256x12

R
un

−
tim

e
(in

 s
)

Above 1 switch
0

1,000

2,000

3,000

1x12 64x12 128x12 192x12 256x12

E
ne

rg
y

(in
 k

J)

nodes x processes per node

Figure 8.11: Time- and energy-to-solution extrapolated for two different matrix sizes with
up to 256 × 12 = 3, 072 MPI processes, interconnected by a fat-tree topol-
ogy. Once a threshold is reached, adding more nodes does not yield faster
performance but only increased energy consumption.

the entire execution. For HPC applications, this is often a reasonable assumption
due to their regularity. However, this restriction can be violated in three scenarios
that are more difficult or currently impossible to model because the memory and
cache usage is difficult to predict.

First, an application can consist of phases, i.e., the characteristics of the currently
executed code changes (for instance from a memory or cache heavy computation
to an I/O heavy checkpointing procedure (see Section 2.2.1) or when a workload
is offloaded to a previously idle GPU). The energy profile of the computational
workload of the application therefore does not remain constant throughout the
execution. Each of these phases should then be characterized individually. This is
already possible and can be done analogously to the previously described “special
states” such as booting. However, further problems may be encountered by the
user when the phases are of microscopic length (e.g., when kernels constitute each
an individual phase) because power measurement and tracing tools that support

8.5 Limitations 103

this precision are rarely available. As explained in Section 5.1, the wattmeter we
used for our experiments returned a single value per second. The measured power
is in such a case not clearly associable to a single phase, however, one can track how
much time tpi was spent during the i− th measurement interval working on phase
p. Likewise, the amount of energy ei during the i − th measurement can easily
be measured. With a large enough set of samples (ei, t1i , ..., tNi), the application
of statistical estimators should make it possible to infer the consumption of each
phase.

In the second problematic scenario, the CPU is shared between different applica-
tions, each with different but constant energy consumption. In-situ applications are
an example. These are applications that can be separated into mainly two parts: The
first part (simulation component) generates data that are subsequently statistically
analyzed by the second part (statistics component). This case is very different than
the previous as several kernels are executed at the same time and hence potentially
impact each other. Providing a single energy profile per application might therefore
not be sufficient. It may therefore be necessary to obtain an energy and performance
profile of the concurrently executed components that depends on the number of
cores alotted to each component.

Finally, in the third scenario, execution of kernels and applications is no longer
structured, i.e., no assumptions on which workload is executed at a specific time
can be made. Highly dynamic applications and runtimes (such as Star-PU, see Sec-
tion 4.4) often fall into this category because the number of cores and kernels cause
a combinatorial explosion of kernels that could potentially execute in parallel. Alas,
the cache and memory usage directly influences the energy consumption and the
only real option for faithful predictions with our model is to obtain measurements
for all possible combinations.

8.5.2 Experimental Limitations

Recall from Section 5.1 that our wattmeter provides a single, averaged sample per
second. It lies in the very nature of an average of a non-constant series that some
values must be larger and others smaller than the average. To instantiate our model,
the user is required to supply the consumption when all cores are active. This value
was measured by running the application on all cores at the same time, but we
only later did we find (through simulation) that the node’s load changes many
times per second when executing NAS-LU. To exemplify this, Table 8.1 lists for
each core count the absolute time that only this many cores are active. As one can
see, the application computes concurrently on all cores only about 62.76 % of the
entire execution time. This means that, since our real-life watt measurement is an

104 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

Cores Load Total time Percent of total execution time

0 0.000 0.105638 0.12987747
1 0.083 0.316098 0.38862918
2 0.166 0.016594 0.020401624
3 0.250 0.247750 0.30459819
4 0.333 0.284455 0.34972544
5 0.416 0.473350 0.58196389
6 0.500 1.607626 1.9765085
7 0.583 0.977106 1.2013107
8 0.666 2.194727 2.6983244
9 0.750 5.018271 6.1697528

10 0.833 5.915051 7.2723061
11 0.916 13.126249 16.138170
12 1.000 51.053753 62.768439

Table 8.1: An entire execution of NAS-LU (class C) on a single node with 12 cores, broken
down by the time spent with each possible load factor and the percentage
relative to the total execution time of 81.336 s.

average, the actual consumption for all cores must be higher because the samples
also include the consumption during the remaining 37.24 % of the execution when
less cores are used. This implies for our energy model that the energy consumption
we extrapolate when 2 to 11 cores are used must be an underestimation of the actual
power usage since the slope of the linear function should be steeper. We believe
that this error should be accounted for in future versions but that our results are
still valid: Table 8.1 shows that only very few cores are idle during this remaining
time and that the energy consumption hence remains relatively high. This means
that the actual maximal consumption should only differ by a few watts. Another
reason is that, when compared to the measured consumption of over 200 W s, the
actual error should only be a few percent.

8.6 Conclusions

The HPC community increasingly focusses on minimizing the power consumption
by making hardware (computation units, network) and software (system applica-
tions and user applications) more energy efficient. Our approach clearly focusses
on aiding the software side, but even network energy predictions with SimGrid
have become possible through recent work [Gue+19].

System applications, such as batch schedulers and load balancers, can be improved
with new energy-aware capabilities. Batch schedulers will implement intricate allo-
cation policies accounting for energy constraints and we believe that our application-
dependend energy model is flexible and faithful enough to support studies eval-

8.6 Conclusions 105

uating their efficiency. In fact, several projects [Dut+16b; Geo+15] are currently
underway that aim to emulate batch schedulers such as SLURM or OAR on top of
SimGrid and we have no doubt that these projects will be able to benefit from this
work.

Assessing the energy consumption of applications for an existing machine can
be useful to determine the best configuration to minimize power consumption.
Unfortunately, algorithmic changes inside the application can only be faithfully
studied if the energy profile used to instantiate the energy model is still valid.

As we already mentioned in Section 8.4, we have studied the performance of HPL
and tried to re-obtain the TOP500 results for the Stampede supercomputer in a
joint effort with Tom Cornebize [Cor+17]. In this work, power consumption was
not investigated and studying HPL under this aspect with the goal to recompute
the Green500 (i.e., the list of the most energy-efficient supercomputers) rating is
certainly an interesting undertaking.

106 Chapter 8 Contribution: Modeling Multi-Core CPU Power Consumption

9Contribution: Optimizing the
Power Consumption With DVFS

We already mentioned several times (e.g., in Section 2.2) that minimizing power
consumption will become the main optimization goal in the near future due to
drastic increases in power consumption. Applications (and libraries) can take coun-
termeasures by implementing power-aware algorithms. This, however, requires
significant effort on the application developer’s side. Another option is to use meth-
ods that can optimize the power efficiency of any or at least a class of applications
passively, i.e., without making any modifications to the application. In this chapter,
we study iterative HPC applications through an example, a geophysics simula-
tor called Ondes3D, and possible energy gains through dynamic voltage frequency
scaling (DVFS), a technique that promises to obtain power savings by reducing
the frequency at which the CPU (and therefore, one of the most energy-hungry
components of the system) operates. We therefore assume that the frequency is
set per-CPU and not per-core. We furthermore compare our results to previously
published results achieved with load balancing.

9.1 Context

9.1.1 Iterative Applications

Traditional HPC applications are often written with a particular model, called
bulk synchronous processes (BSP) [Val90, p. 105], in mind. The BSP model works in
three main steps. In the first phase, computations are executed by each process
individually, followed by a communication phase and finally, a synchronization
step that ensures that all computations and communications have finished, before
the entire procedure is repeated. Applications following this model therefore
principally work in a iterative way, with the synchronization ensuring that the
current iteration has finished and every process is ready to move to the next iteration.
A large number of HPC applications employ this model, making it particularly
interesting to study how energy can be saved without making profound changes to
these applications.

107

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X Domain Decomposition

Y
D

om
ai

n
D

ec
om

po
si

tio
n

0.08 0.10 0.12
Total Computational Load
[seconds]

Figure 9.1: Illustration of the spatial load imbalance encountered during the first itera-
tion of a run with 16 × 16 = 256 processes on the Ligurian workload. The
imbalance consists of high load on the border, as more conditions have to
be checked, and weaker but varying load (visualized by blue shades) in the
interior that depends on the rock geology. The load imbalance is therefore
workload dependent [Tes+18, Figure 2 (a)].

We chose Ondes3D1 (“ondes” is the plural of the French physical term for “wave”),
a geophysics simulator developed by the French Geological Survey (BRGM) to as-
sess regional seismic hazards, as an application to test our optimizations as it works
strictly with the BSP model. Ondes3D uses the finite-differences method (FDM)
to approximate the partial differential equations required to compute the elasto-
dynamic effects propagating through rock media. The application structure of
Ondes3D is inherently regular: Ondes3D decomposes the problem domain into
cuboids with equal, fixed geometries. Each process then executes the main loop
(shown in Listing 1) on a single cuboid. The main loop primarily consists of calls to
the kernels Intermediates, Stress, Velocity (which in turn call small FDM
kernels) and communication calls, which only exchange messages between neigh-
boring processes. The main loop does not contain any global synchronization,
meaning that processes can evolve (slightly) independently. Despite this regularity,
significant spatial- and temporal load imbalances prevent Ondes3D to scale well.
Figure 9.1 visualizes the spatial load imbalance when simulating the “Ligurian”
workload on a 16×16 process grid. The higher computational load on the processes
managing the border cuboids can be explained by additional computations necessi-
tated by boundary conditions. The processes in the interior are less heavily loaded.
They nevertheless also experience a load imbalance, albeit of weaker nature, which
is caused by heterogeneous geological conditions and therefore depends on the
workload. Evidence found by Tesser et al. suggests that temporal load imbalance,
depicted in Figure 9.2, is related to low-level optimizations within the CPU (see
[Tes+18, Section 2.1] for more details).

1The following discussion of Ondes3D is a paraphrased summary of the presentation we published
in a joint work with Rafael Keller Tesser [Tes+18, Chapter 2].

108 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

Figure 9.2: The evolution of the temporal load imbalance for 8× 8 = 64 processes on the
Ligurian workload [Tes+18, Figure 2 (b)].

1 for (ts = 0; ts < N; ts++){
2 Intermediates();
3

4 Stress();
5 // Intertwined Asynchronous Neighborhood Communication
6

7 Velocity();
8 // Intertwined Asynchronous Neighborhood Communication
9 }

Listing 1: Ondes3D’s main loop consists of three main kernels that each contain further
(inlined) kernel calls. The communication calls after the Stress and Velocity
functions have been omitted for simplification [Tes+18, Figure 1 (b)].

9.1.2 DVFS, a Means to Reduce the Power Consumption of
HPC Applications

Application running on a single node

We already discussed in Chapter 8 that the frequency is the dominant factor of CPU
power consumption (see Formula 8.2, page 90). Reducing the frequency “at the
right time” can therefore help save energy, however, identifying this point in time
and determining the right frequency is non-trivial. In fact, running computations at
a lower frequency can have an adversarial effect, as is shown by Table 9.1: each row
represents a single frequency and the corresponding measured power consumption
of taurus-7 when running the highly CPU bound benchmark NAS-EP on all
cores (the low memory usage is also reflected by the consumed power). The ratio
of the fastest frequency (2300 MHz) to the selected frequency is then used to scale
the power consumption accordingly. This allows us to compare the power required
to compute the same number of flops. When replacing a single second worth of

9.1 Context 109

Frequency (MHz) Power (W) Scale Factor Scaled Power (W) Loss (W)

2300 179.25 1.000 179.250 0.000
2200 172.12 1.045 179.865 0.694
2100 166.25 1.095 182.044 2.833
2000 160.81 1.150 184.931 5.687
1900 155.12 1.211 187.850 8.527
1800 150.00 1.278 191.700 12.417
1700 144.75 1.353 195.847 16.588
1600 140.68 1.438 202.298 22.977
1500 136.00 1.533 208.488 29.283
1400 132.38 1.643 217.500 38.231
1300 128.88 1.769 227.989 48.768
1200 125.25 1.917 240.104 60.812

Table 9.1: Power consumption for the CPU-bound toy benchmark NAS-EP with one
process per core (i.e., the machine operates under full load) as measured on
taurus-7 during our energy calibration. The scaled values are always scaled
with regards to the fastest frequency (2300 MHz). On this machine, choosing
lower frequencies on a fully-loaded machine is highly inefficient and results in
significant power loss.

1s @ 2300 MHz
= 179.25 J

Case 1:

Case 2: 1.9166s @ 1200 MHz
= 240.06 J

0.8s idle
= 75.0 J

= 254.25 J

= 240.06 J

Figure 9.3: Reducing the frequency can save energy when power during idle times is
counted as well. This is even the case when the finishing time is pushed
back (here: running at reduced frequency takes 1.9166s as opposed to the 1.8s
including idle time).

computations (of NAS-EP) at 2300 MHz, the power loss can be as high as 60 W
(at 1200 MHz), since we now have to compute 1.916 s at 125.25 W (green boxes in
Figure 9.3). It is tempting to conclude from this observation that a lower frequency
only reduces the momentary power consumption of the machine, but that the overall
power required to finish a task on a fully loaded machine increases. Luckily, this is
only true when merely the power consumed during the respective computation is
considered (i.e., when only the green boxes in Figure 9.3 are compared). In reality,
computations are often followed by an (although often brief) period of idle time
(red box in Figure 9.3), which still consumes significant energy as the machine is still
powered on. When running at a slower frequency, this idle time is reduced (or even
disappears completely) as it is instead used for computations. This is illustrated
by Case 2, which also proves that a computation may take longer than the previous
idle and computation time together and still save power.

110 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

1s @ 2300 MHz
= 179.25 J

Case 1:

Case 2: 1.9166s @ 1200 MHz
= 240.06 J

1.5s idle
= 140.6 J

0.50834s idle
= 47.6 J

= 319.85 J

= 287.66 J

Figure 9.4: It is possible to save energy without introducing a delay by overlapping idle
time with computations.

Application running on several nodes

When executing a parallel application, the situation becomes more complicated. In
the case of an application running on a single node, the DVFS algorithm only has
to determine if energy can be saved by reducing the frequency on that machine,
regardless of whether the makespan increases or not. Once the application runs on
several nodes, a decision at the node level may be locally optimal, but can create a
jitter in the system. To understand this, consider the following scenario: imagine
that the idle time in Case 1 of Figure 9.3 comes from a blocking communication
call, say a blocking send, that is immediately issued after the computation. After
a total of 1.8 s, the process can continue since it no longer has to wait for another
process to post the matching receive (or else the idle time would be longer). Note
that the other process has no idle time waiting for the (sufficiently small) message.
In Case 2, however, the blocking send is posted only after 1.9166 s and therefore
later than in Case 1. If the receiving process has not changed itself, it will now
have to wait around 0.1166 s for the send to be posted. This means that, without
further restriction, opportunistic local decisions can impact (and slow down) other
processes as well, creating a jitter. Therefore, DVFS managing a parallel application
should reduce the power consumption but should not degrade performance in
doing so.

Although it is non-trivial to save energy on platforms (which is why HPC systems
normally refrain from adapting the frequency), it still is possible. In the scenario of
Figure 9.4, for example, it was ensured that the computation time in Case 2 is not
extended beyond the idle time, meaning that the process still has to wait and does
not slow others down.

We can therefore ascertain the following: let tcomp(f) and tidle(f) denote the computation-
and consecutive idle time, respectively, when running at frequency f . Let further-
more denote s the start time of the computation, P (f) the power required by
frequency f and Pidle the power when idling. We then have

tcomp(f) · P (f) + tidle(f) · Pidle

9.1 Context 111

as the total power consumption when running at frequency f (Case 1). Energy
savings without changing the finishing time tcomp(f) + tidle(f) are possible if the
reduction in energy during the period [s, s + tcomp(f)] (green box in Case 1) out-
weighs the increase in power during the period [s + tcomp(f), s + tcomp(f ′)] (the
node is idle during the remaining time and power consumption hence does not
change). This means that when

tcomp(f) · (P (f)− P (f ′)) > (tcomp(f ′)− tcomp(f)) · (P (f ′)− Pidle)

holds, then switching the frequency saves energy.

Kernel Level DVFS

To start the discussion on DVFS governors, we will now present four DVFS gover-
nors that are implemented in the linux kernel cpufreq driver.2 They are purely
opportunistic (or even static) and do hence not consider other processes in their
decision process. In this section, we only present the underlying principles and
expected behavior. Experimental results will be presented in Section 9.4.

I Performance The cpufreq performance governor is a static governor that uses
the fastest frequency, regardless of the current machine load. This is useful when
computational tasks should be executed as quickly as possible, regardless of poten-
tial power savings.

I Powersave The cpufreq powersave governor is a static governor and by default
limited to the lowest available frequency. The CPU therefore provides the least
computational power but also uses the lowest power at any given instant. When
integrating the total power consumption for a specific computation, it can turn out
that using the lowest frequency on a fully loaded CPU consumes more power than
using a faster frequency that can finish the job faster. The name “powersave” is
therefore deceiving since power is not necessarily saved.

Note that this only refers to the governor from the cpufreq driver; the intel_pstate
driver with the same name can change the frequency and hence operates funda-
mentally different. This is, however, not considered here.

2The governors can be found in the kernel’s source tree under
source/drivers/cpufreq/cpufreq_*

112 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

1 while (true) {
2 if (get_current_load() > freq_up_threshold) {
3 set_pstate(fastest_pstate);
4 } else {
5 new_pstate = get_max_pstate() -
6 get_current_load() * (get_max_pstate() + 1)
7 set_pstate(new_pstate)
8 }
9 sleep(update_interval_length);

10 }

Listing 2: The ondemand governor “panics” once a given threshold has been crossed and
jumps immediately to the fastest frequency, even if the load spikes only for a
short time.

1 while(true) {
2 if (get_current_load() > freq_up_threshold) {
3 set_pstate(get_next_faster_pstate(current_pstate));
4 } else {
5 set_pstate(get_next_slower_pstate(current_pstate));
6 }
7 sleep(update_interval_length);
8 }

Listing 3: The conservative governor in- and decrements the used frequency only in single
steps.

I Ondemand The ondemand governor (Listing 2) is a non-static governor that
considers the current load of the system. Both the minimum as well as the maximum
frequencies can be set via the ondemand governor.

On every update, it compares the load to a configurable threshold (with a default
value of 0.8). If it has been surpassed, the governor sets the speed to the fastest
possible pstate. If the load is lesser, then the new pstate is determined linearly by
selecting the pstate that is in the right position.

I Conservative Once a specific load threshold has been crossed, the ondemand
governor “panics” and immediately switches to the fastest pstate. The conservative
governor (Listing 3), however, reacts more slowly and only switches to the next
faster (or slower) pstate. This means that for only short bursts of computations, the
conservative governor can remain in a slower state, but it will take longer to reach
the fastest state in case of longer computation phases.

9.1 Context 113

●
●

●
●

●
●

●
●

●

●
●

●
Power avg. when executing 80%

 under full load, 20% idle

Power avg. when executing
 100% with a reduced frequency

0

50

100

150

200

250

0 500 1000 1500 2000

Frequency

E
ne

rg
y

C
on

su
m

pt
io

n

Potential Power−Savings of NAS−LU on taurus−7

Figure 9.5: Alternating between the highest frequency and the idle state (represented by
frequency “0”) consumes more power than running at a reduced frequency
(with the same finishing time). The power data was obtained by actual mea-
surements of NAS-LU.

Inefficiency of common DVFS governors with HPC applications

The already mentioned system-wide jitter (see page 111) caused by opportunistic
DVFS governors can be traced back to the obliviousness regarding the structure of
the currently running application. This missing knowledge combined with the two
major states of parallel machines (high load or idle) is also reflected by the selected
frequency itself, as governors either select the highest frequency due to the high load
or the machine is idle (and in this case, the power consumption does not depend on
the selected frequency). Figure 9.5 shows the power consumption as a function of
the frequency. The solid line shows a possible model for the power consumption
we measured for NAS-LU. The dashed line, on the other hand, visualizes the mean
power consumption when alternating between fully loaded and idle. The difference
between the dashed and the solid line is the power saving potential that can be
achieved without slowing the application down.

It is therefore important to provide governors with additional information about the
application so that they can select the best frequency quickly and without causing
detrimental jitter.

114 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

9.2 Related Work

9.2.1 Adagio (Application Level DVFS)

Adagio [Rou+09] is an application level governor that was developed in 2009 and
specifically addresses the weakness of the previously presented governors by com-
bining the exploitation of the regularity of MPI applications and knowledge about
the current position within the application. The main idea behind Adagio is easily
comprehensible and follows the concept we already presented during the previous
discussion of Figure 9.4: A process’s idle time between two computations (e.g.,
caused by a blocking communication call) can be reduced by slowing the preceding
computation down. For this, Adagio intercepts all MPI calls and selects the slowest
frequency that does not cause a slow-down, i.e., the computation/communication
pair always requires in total the same time. As we saw before, this effectively leads
to energy savings.

When Adagio takes action, it identifies the current position by inspecting the
callstack. It does not require any learning on previously collected data and its
decision on the best frequency is therefore only influenced on the current workload.
Listing 4 reproduces the pseudo-code as published in the original paper [Rou+09,
Figure 2].

Adagio’s logic is principally split in two functions that represent the time when
they are executed: Before (PreTask()) and after (PostTask()) a computation.

I PreTask() This function identifies the current location within the application
based on the current call stack and sets the frequency for the following computation.
If the call comes from a location that has never been reached before, the first
execution of the following computation is always executed with the maximum
frequency f̂ . This ensures that no avoidable performance degradation occurs. If
the following computation has been executed before, the previously computed best
frequency is loaded from the map Sched and activated before the computation is
executed.

I PostTask() Once the computation has finished, the PostTask() function is
called. As a first step, the number of instructions I , the time spent computing
tcomp and the time spent communicating tlib is recorded. The time that any selected
frequency must not surpass is called the target time (ttarget, Line 21) and consists of
the time spent computing and communicating minus a small buffer, called tcopy,

9.2 Related Work 115

1 PreTask()
2 taskid = hash(stack_pointer_chain)
3 if (isnew(taskid)) {
4 /* First instance of a task: */
5 /* Choose fastest frequency. */
6 f = f̂
7 } else {
8 /* Look up correct frequency. */
9 f = Sched[taskid]

10 }
11 SetFreq(f)
12 InitPerformanceCounters()
13 RunTask(taskid)
14

15 PostTask()
16 /* Generate the schedule for the */
17 /* next execution of this task. */
18 Record I, tcomp, tlib.
19 Rates[taskid][f] = I/tcomp
20 t = tcomp + tlib
21 ttarget = t− tcopy
22

23 if (isnew(taskid)) {
24 /* First instance of a task: */
25 /* Set slowdown rates to */
26 /* worst-case for each */
27 /* available frequency. */
28 for (f ∈ F) {
29 Rates[taskid][f] = Rates[taskid][f̂] × f̂/f
30 }
31 }
32

33 /* Find slowest frequency that */
34 /* respects the critical path. */
35 /* Default is fastest freq. */
36 Sched[taskid] = f̂
37 for (f from slowest(f̄) to fastest(f̂)) {
38 if (I/Rates[taskid][f] ≤ ttarget) {
39 Sched[taskid] = f
40 return;
41 }
42 }

Listing 4: The original Adagio source code (with slight modifications for presentation
purposes) from the publication [Rou+09].

116 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

which represents the cost for copying the message and is hence inevitable. Note
that the time tlib also includes tcopy.

Recall that for a first-time execution, the frequency is always fixed to the fastest
frequency (Line 6) to ensure that no slowdown is possible. In this case, each
other frequency f is initialized by scaling the number of instructions/second with
f̂/f (Line 29).

Subsequently, the slowest frequency is searched that can still finish the workload
within time ttarget. Starting with the slowest frequency, the first frequency that
satisfies this constraint is selected for the next time this computation is executed.

9.2.2 Load Balancing with Adaptive MPI (AMPI)

Recall from Section 9.1.1 that the load imbalance of Ondes3D depends on the initial
and evolving conditions of the simulated workload. This makes imbalances difficult
to model and predict up front and using application-level balancing techniques to
prevent the load issues requires forecasting of future iterations. Thankfully, another
approach exists that is simpler to use: the domain can be over-decomposed into
more cuboids than processing cores are available. If each computation is executed
in a migrateable task, an existing load imbalance can be alleviated at runtime by
moving a subset of tasks from one processor to another.

This functionality is for instance provided by Adaptive MPI (AMPI) [Acu+14], an
extended MPI implementation that provides several new functions to deal with
load imbalances in MPI applications, such as MPI_Migrate(). Internally, AMPI
uses the load balancing features implemented in the thread-based Charm++ [KK93]
runtime. Porting an application to AMPI requires several steps, such as the removal
of global and static variables (since these would be shared between threads), the
implementation of pack/unpack functions that serialize all data structures before
moving the thread to a new processor and calling MPI_Migrate() in the right
place (likely at the end of the outermost loop, i.e., at the end of a time step). Once
an application has been ported to AMPI, it can take advantage of the load bal-
ancing mechanisms. The resulting performance depends on several factors: First
of all, the chosen heuristic. Distributing the load more evenly over all cores is
useless if the computation and communication costs of the migration outweigh the
saved time. Second, the level of over-decomposition influences the granularity at
which the load balancer can make its decisions: with a high over-decomposition
level, each thread is assigned a smaller load and can be more easily used to fill-in
available computational resources. However, more MPI processes also come with
more communication and possibly locality issues. Third, the frequency at which

9.2 Related Work 117

taurus−01

taurus−02

taurus−03

taurus−04

taurus−05

taurus−06

taurus−07

taurus−08

taurus−09

taurus−10

taurus−11

taurus−12

taurus−13

taurus−14

taurus−15

taurus−16

10 15 20 25 30

Iteration

H
os

tn
am

e

Used Pstate

0

3

4

5

6

7

8

9

10

Figure 9.6: Using Adagio with Ondes3D works for about 15 iterations, after which even
the most loaded host taurus-16 starts to slow down.

MPI_Migrate() is called determines how fast load imbalances can be identified
and resolved. Alas, this also means that the possibly costly migration needs to be
executed more often. MPI_Migrate() acts as a global barrier and therefore has
the potential to deteriorate overall performance.

The performance boost an application can get from load balancing therefore de-
pends on tuning these parameters. In the case of Ondes3D, which has already been
ported to AMPI, an up to 28.35 % faster execution on a 8-node / 64 core machine
was the consequence of using AMPI. Determining whether porting an application
to AMPI is worth it and which parameters should be used is an interesting question
that can be answered with the help of simulators. SimGrid already supports load
balancing through its SAMPI API [Tes+18, Chapter 4], an extension of the SMPI
API (Section 4.3) that supports the MPI_Migrate() function and can estimate the
cost of migrating a task by tracking the allocated memory through overwriting
malloc() (and consorts) and free() functions.

Emulating the entire application for each combination of parameters is inefficient,
as the load balancing algorithm never changes the sizes of workloads but only
re-assigns them to a new host. Time independent traces (discussed in Section 4.3.3)
capture the behavior of the application and can be replayed much quicker than a
full emulation. Using a trace also comes with the guarantee that all experiments are
carried out on exactly the same workload (as it is represented by the traces), i.e.,

118 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

taurus−01.lyon.grid5000.fr

taurus−02.lyon.grid5000.fr

taurus−03.lyon.grid5000.fr

taurus−04.lyon.grid5000.fr

taurus−05.lyon.grid5000.fr

taurus−06.lyon.grid5000.fr

taurus−07.lyon.grid5000.fr

taurus−08.lyon.grid5000.fr

taurus−09.lyon.grid5000.fr

taurus−10.lyon.grid5000.fr

taurus−11.lyon.grid5000.fr

taurus−12.lyon.grid5000.fr

taurus−13.lyon.grid5000.fr

taurus−14.lyon.grid5000.fr

taurus−15.lyon.grid5000.fr

taurus−16.lyon.grid5000.fr

80 85 90 95 100

Iteration

H
os

tn
am

e

Used Pstate

0

3

4

5

6

7

8

9

10

Figure 9.7: Around the 85th iteration of the Chuetsu earthquake scenario (with 16 pro-
cesses) even the last (and most loaded) node taurus-16 enters the lowest
pstate. The vertical lines help to distinguish the start and end of each iteration.

the reported outcome of a specific configuration (e.g., load balancing parameters,
chosen DVFS governor) cannot be influenced by temporary effects such OS noise.

9.2.3 Residual Load Imbalance

As aforementioned, the granularity of the over-decomposition impacts the compu-
tational workload assigned to each task and therefore the load balancer’s possible
choices when it comes to selecting the tasks for migration. It is therefore common
that even after the load balancer has finished the migration period, the load is still
not fully uniformly distributed. In this situation, called the residual load imbalance,
secondary options such as DVFS can (when correctly used) reduce the frequency of
underloaded processors to increase powersavings [Pad+14].

9.3 Contributions

In this section, we start by analyzing the limitations of existing governors. Then,
building on this analysis, we propose two new governors.

Adagio assumes that the runtime of an identified task will not differ significantly
between two runs [Rou+09, p. 463]. This condition is normally fulfilled for highly

9.3 Contributions 119

regular applications but inaccurate for applications that suffer from temporal load
imbalances. Applications such as Ondes3D can indeed not benefit from Adagio
since the code as presented in Listing 4 can only slow-down, but never speed-up.
We found that Adagio does work for a few iterations with Ondes3D (Figure 9.6),
but even the most loaded machine started to slow down after around 15 (out of 300)
iterations. This caused other machines to further slow down and in the end every
single node selected the lowest frequency (Figure 9.7).

This can be seen as follows: We have ttarget = tcomp + tlib− tcopy (Line 21) with tlib ≥
tcopy ≥ 0 (because tlib includes tcopy [Rou+09, Table 2]) and hence ttarget ≥ tcomp.
Note that tcomp is a measured value and thus depends on the current frequency.
This also implies the same for ttarget (because it contains by definition tcomp) while
tcopy is independent of the frequency. This means that once the for-loop in Line 37
has reached the current frequency (and hence rejected all slower frequencies), the

condition it tests becomes (with the definition in Line 19) I/Rates[taskid][f] Def=
tcomp ≤ ttarget. As we just saw, this is always true, and hence the frequency is
always re-accepted. Any faster frequency is therefore never tested and a speed-up
cannot occur.

9.3.1 DVFS Governor: AdagioImproved

Each time a node wants to determine whether it needs to scale the frequency up
or down, it needs to first find out whether it is waiting for others (and hence a
slowdown is reasonable) or if others are waiting for it (and it needs to run faster).
There are several ways to answer this question.

I Global Communication A first solution is to use an all-to-all global communi-
cation call. Each node sends its own communication time and receives all others,
to which it can compare its own time. Although this solution is very easy and can
be implemented quickly, it is highly undesireable, because it introduces signifi-
cant overhead through the additional communication call which can deteriorate
performance.

I Transfer Model A second proposal is to use a precise model of transfer time
(that includes congestion and latency). With this model, a node can calculate the
transfer time for a message and then subtract it from the overall communication
time. This yields the time spent waiting. With almost no waiting time, i.e., when
it is close to 0, a node can safely assume that others are waiting and hence speed
up. This is essentially how Adagio works, even though Adagio does not include
congestion and latency but merely the copy time.

120 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

1 if (tlib > tmin · factor) { // we’re waiting.
2 Adagio() ; // should decrease tlib
3 } else { // we’re too slow
4 i = get_current_pstate_id()
5 f = fi/2 // Avoid jumping to the fastest pstate
6 // bisect the pstates instead
7 tmin = tlib
8 }

Listing 5: Minor modifications allow Adagio to speed-up if needed.

I Statistics When these two approaches are not usable, for instance, because no
such model exists, a decision can be made solely on the data that was collected
so far. This means that the decision process is based on a statistic from previous
iterations (but not application runs).

We found that very simple changes (see Listing 5) to Adagio are sufficient to make
it work with Ondes3D, but we believe that other applications that suffer from
temporal load imbalances can use this approach, too. First, each node saves the
minimum time spent communicating (over the last iterations) in a variable called
tmin. Adagio’s missing speedup condition can (under the premise that message
size remains constant) then be implemented as follows: When the communication
time tlib has increased compared to the previously observed minimum tmin (times
a specific factor to counter inevitable variation caused by noise), a slower frequency
is selected by the original Adagio algorithm because the waiting time has increased.
In the other case, i.e., when the communication time is either the same or when
the node spent less time than previously, the other nodes seem to be already
waiting. The node then sets the frequency to the pstate that lies in the middle of the
current and the fastest pstate. Avoiding to jump immediately to the fastest pstate
helps to avoid constant changes of the frequency, as the frequency would likely be
reduced in the following step. This is similar to many adaptive schemes (e.g., the
additive increase, multiplicative decrease approach used in TCP [Jac88]) but whether
such “natural” scheme would be efficient in this particular context remains to be
proven.

9.3 Contributions 121

9.3.2 DVFS Governor: Lagrange

Mathematical, continuous formulation

A common approach to minimize a convex function F is to use a gradient-based
algorithm. For a stepsize ε > 0 and iteration t, we can find the next value by walking
into the direction of the gradient:

x(t+ 1) = x(t)− ε(t) · F ′(x(t))

Determining the right value for ε(t) is cumbersome. To avoid oscillations, ε is often
set as ε(t) = 1

t , however, the convergence is slow when large values of t are attained
and if F evolves with t, then the learning process is likely to become more and more
inefficient. Furthermore, if x is distributed over different computing ressources,
paying particular attention to the computation of F ′(x(t)) will be required.

Although this approach is simple and easy to understand, it is difficult to use when
existing constraints restrict the possible solutions. A common formulation for such
situation is the following:

minF (x, z) s. t. Ax+By = c

with x ∈ Rn, z ∈ Rm, c ∈ Rp and A ∈ Rp×n, B ∈ Rp×m. To fall back to an un-
constrained optimization problem, these constraints can be incorporated into the
optimization objective, for example by introducing a new dual variable, λ, which
is associated to the constraint Ax + By = c and which can be interpreted as an
allowed error.

This optimization problem can be reformulated using the augmented Lagrangian [Boy10,
Chapter 3]:

Lρ(x, z, λ) = F (x, z) + ρ

2 · ||Ax+Bz − c− λ||22

where a penalty parameter ρ > 0 controls the impact of the term Ax + Bz − c − λ,
which accounts for violations of the constraints. Indeed, Lρ(x, z, λ) = F (x, z) if and
only if λ = Ax+Bz − c, and hence is consistent with our interpretation of λ as a
measure of how much the constraints are violated. One can prove that

min
x,z

Ax+Bz=c
F (x, z) = max

ρ>0
min
x,z

Lρ(x, z, λ)

122 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

The following algorithm, called Alternating Direction Method of Multipliers solves the
previous optimization problem [Boy10, Chapter 3].

xt+1 = arg min
x

(L(x, zt, λt)) (9.1)

zt+1 = arg min
z

(L(xt+1, z, λt)) (9.2)

λt+1 = arg min
λ

(L(xt+1, zt+1, λ)) (9.3)

= λt + (Axt+1 +Bzt+1 − c)

with x ∈ Rn, z ∈ Rm, λ, c ∈ Rp and A ∈ Rp×n, B ∈ Rp×m. Note that this algorithm
does not require a step size and that it can be used in a distributed manner when F
is separable, i.e., F =

∑
i Fi.

Application in our context

For a node i, we are mainly interested in two values: fi, the inverse of the node’s
frequency (in flop/s), and which we still denote f to simplify notations, and Wi

which denotes its (constant) workload. The time it takes to compute Wi on node i
at “frequency” 1/fi is fi ·Wi.

Let Ei(f) denote the energy node i consumes with frequency 1
f and Eiidle its idle

power consumption. We claim that minimizing the total energy consumption is
equivalent to minimizing the following function:

∑
i

(
fi ·Wi · (Ei(fi)− Eiidle) +

(
max
j

(fj ·Wj)
)
· Eiidle

)

This can be interpreted as follows: The slowest node (= maximum execution time)
determines how much idle time is spent on all nodes when waiting for the synchro-
nization to finish. This corresponds to the last term with the max. When node i
computes, which takes fi ·Wi time, it consumes (Ei(f) − Eiidle) watts more than
when idling. This yields the total power consumption of all nodes.

To make this optimization amenable to distribution, we now introduce for each
node i a helper variable ti that can be thought of as the computation time estimate

9.3 Contributions 123

of node i. We furthermore add another variable, s, which can be interpreted as the
maximum of all ti. This allows us to rewrite the above as

MINIMIZE
∑
i

(
fi ·Wi · (Ei(fi)− Eiidle) + s · (Eiidle) · ∞{ti≤s}

)
,

UNDER THE CONSTRAINTSfi ·Wi = ti

ti ≤ s

(9.4)

As we explained during the discussion of the ADMM algorithm, the first constraint
is enforced by λi. The expression∞{ti≤s} is 1 if ti ≤ s and∞ otherwise. This forces
us to only accept values for the random variables ti that fulfill the requirement
ti ≤ s because otherwise, the function evaluates to∞ which is not the minimum.

This optimization problem can now be formulated with the Lagrangian formula-
tion by setting the variables as follows:

x = (f1, . . . , fN), z = (t1, . . . , tN)

and A,B are

A = diag(W1, . . . ,WN), B = diag(−1, . . . ,−1), c = (0, . . . , 0)

With these values, the error term ||Ax+Bz− c−λ||2 can be written as the following
sum, making it separable ∑

i

(fi ·Wi − ti − λi)2 (9.5)

Discrete implementation

Lagrangian optimization requires a continuous domain, however, the possible fre-
quencies are discrete. We therefore had to modify the algorithm for our implemen-
tation.

I Step 1: Adjusting the frequencies (ADMM step (9.1)) In iteration t + 1, node i
first determines the frequency that is used for the next iteration. The separability of
the objective function in (9.4) allows us to write it as

∑
i gi(fi) with

gi(f) = f ·Wi · Ei(f) + min(s, f ·Wi) · Eiidle

Each node should just locally minimize gi(f) + ρ
2(f ·Wi − tti − λti)2, which depends

solely on the frequency f . The function Ei(f) can be modeled with a polynom and

124 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

therefore the optimal value fopt can be determined by deriving the function gi. Un-
fortunately, the target frequency corresponding to fopt is not necessarily supported
by node i. In the case where fopt is in between of two available frequencies f1 and
f2, frequency f2 could be used first and with the help of a timer later switched to
f1 to obtain on average the frequency fopt.

To keep our implementation as simple as possible, we have not pursued this
approach. Instead, we evaluate the target function for each available frequency and
switch to the most well suited frequency, fmin.

As discussed above, the variable s should normally be set to max(ti), however, the
ti are node-specific and are hence not known globally. However, the duration of
the iteration can be measured locally and we fixed the part of the duration that can
be used for computations as a configuration option. This allows us to avoid global
communicaton by substituting the s in the previous formula with

s = overlayable_iteration_time · iteration_durationi

In our implementation, we arbitrarily set overlayable_iteration_time to 0.95.

I Step 2: Updating the estimated execution times (ADMM step (9.2)) In our case,
the error term can be written as shown in (9.5). In the best case, this term vanishes
completely, i.e., it evaluates to zero. As every element of the sum is squared (and
hence > 0), an error introduced by element i cannot be offset by element j. We can
therefore set the ti independently of all others. Setting

ti = fi ·Wi − λi

is desireable, but not always possible, since the constraints in (9.4) require ti ≤ s.
This implies that we have to consider the case fi ·Wi − λi > s as well. Indeed, we
can then only subtract at most s, as the constraint requires and set

tt+1
i = min(f t+1

i ·Wi − λi, s)

I Step 3: Updating the error-variables λi (ADMM step (9.3)) Recall that λ was in-
troduced to enforce the condition ti ≤ s. We now update λi:

λt+1
i = λti + (f t+1

i ·Wi − tt+1
i)

9.3 Contributions 125

9.4 Performance Evaluation/Effectiveness

The energy model we presented in Chapter 8 allowed us to implement and study
DVFS governors in SimGrid.

We implemented Adagio, our proposed improvement AdagioImproved, and our
own contribution Lagrange. We have furthermore implemented the four governors
we discussed in Section 9.1.2: performance, powersave, ondemand and conser-
vative. The implementation of the linux governors is basic and only uses their
essential logic. Although some governors offer several configuration options, we
only implemented the ones we needed: the sampling frequency, allowed subset of
pstates and speed-up / slow-down thresholds.

Recall from Section 9.2.2 that AMPI can be used to load balance MPI applica-
tions and that Ondes3D has already been ported to AMPI. SimGrid also supports
AMPI through its own SAMPI API, and we implemented and carefully tested the
GreedyLB heuristic to obtain realistic predictions [Tes+18].

We furthermore discussed in Section 4.2.2 that by using trace replay, one can capture
the application behavior once and then test different configurations with the exact
same trace. Besides being able to guarantee that all tests used the exact same
experimental basis, the simulation also benefits from a speed-up as no instructions
from the application’s binary are executed.

To evaluate the aforementioned approaches, we obtained two traces (immediately
one after the other) for 300 iterations of the Chuetsu earthquake scenario executed
on the taurus cluster in Lyon. For the first trace, we used 16 processes (1 per node)
and replayed it on top of SimGrid with different DVFS governors activated. The
second trace, on the other hand, uses 64 processes (4 per node), effectively allowing
us to ensure over-decomposition (which is required for the load balancer) when
a single-core system is used. We replayed this trace on top of SimGrid with the
GreedyLB load balancing heuristic and the frequency fixed to the maximum.

9.4.1 DVFS/Adagio/AdagioImproved/Lagrange

Recall from Section 9.1.2 that in order to save energy with DVFS, idle time must
be present. This is the case on almost all nodes when simulating the Chuetsu
scenario with Ondes3D, as can be seen in Table 9.2, which shows the idle times
when fixing the frequency to the maximum (i.e., for the performance governor).
The most charged node, taurus-16, experiences almost no idle time whereas

126 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

Host Total idle time % Idle

taurus-01 13.5998 4.00
taurus-02 85.4122 25.14
taurus-03 86.1985 25.37
taurus-04 5.59119 1.65
taurus-05 84.1905 24.78
taurus-06 176.189 51.86
taurus-07 177.232 52.17
taurus-08 87.0137 25.61
taurus-09 84.982 25.01
taurus-10 177.136 52.14
taurus-11 176.603 51.98
taurus-12 86.9111 25.58
taurus-13 9.99497 2.94
taurus-14 85.9065 25.29
taurus-15 86.5902 25.49
taurus-16 2.24836 0.66

Table 9.2: Total idle time of all nodes when using the performance governor (Chuetsu, 300
iterations, 16 processes). Total runtime was 339.74 s

Governor Makespan (s) Energy (J) Energy Savings/Loss (in percent)

Performance 339.747 989016 0.
Powersave 677.152 1460435 47.665
Ondemand 339.757 986237 -0.281
Conservative 339.755 984329 -0.474
Adagio 667.189 1445656 46.171
AdagioImproved 340.129 966994 -2.227
Lagrange 340.146 963964 -2.533

Table 9.3: Makespan and energy predictions we obtained when using several governors
with the Chuetsu scenario (300 iterations, 16 processes).

others (e.g., taurus-06) are idle just over 50 % of their total execution time. It is
therefore reasonable to expect that DVFS can save power. This is indeed the case, as
shown in Table 9.3. The Lagrange (with ρ = 10) and AdagioImproved governors
managed to save up to 2.5 % over the 300 iterations, whereas the linux kernel
governors ondemand and conservative save less than 0.5 %. Powersave, which
fixes the frequency to the lowest speed, and the original Adagio implementation
(which cannot speed up and hence ends up using the lowest frequency as well, see
Section 9.3)) even worsen the situation by around 47 %, which is expected.

It is interesting to study the reduction of idle time for the different governors, as
a remaining high idle time can indicate that additional savings are possible by
slowing down even more, yet the frequencies cannot be further reduced due to
hardware limitations. In the case of the Lagrange (Table 9.4) and AdagioImproved

9.4 Performance Evaluation/Effectiveness 127

Host Total idle time % Idle

taurus-01 12.0648 3.55
taurus-02 21.1016 6.20
taurus-03 20.7913 6.11
taurus-04 5.98996 1.76
taurus-05 20.5558 6.04
taurus-06 68.1604 20.04
taurus-07 69.837 20.53
taurus-08 21.6866 6.38
taurus-09 20.9417 6.16
taurus-10 69.8326 20.53
taurus-11 68.788 20.22
taurus-12 21.4463 6.31
taurus-13 10.3937 3.06
taurus-14 22.6129 6.65
taurus-15 22.7786 6.70
taurus-16 2.64713 0.78

Table 9.4: Total idle time of all nodes when using our proposed Lagrange governor. Total
runtime: 340.14 s. (Chuetsu, 300 iterations, 16 processes)

governors (Table 9.5), idle times are significantly reduced but still remain present,
particularly for the hardly loaded nodes taurus-6,7,10,11. For Lagrange, these
nodes continue to idle just over a minute whereas this is only true for AdagioIm-
proved for taurus-11. The other nodes have a reduced yet still high idle time.
Note that these nodes switched to the lowest frequency during the first iterations,
as shown in Figure 9.6 for the Lagrange governor. The ondemand (Table 9.6) and
conservative (Table 9.7) governors on the other hand fail to reduce the idle time for
almost all of their nodes, and they are hence unable to reduce energy notably.

9.4.2 Efficiency Comparison DVFS / Load Balancer

DVFS only controls the frequency of a node and, once the lowest frequency is
reached, cannot reduce energy consumption of this node further. A load balancer,
on the other hand, can move computations to underloaded nodes. This allows
the nodes to be very energy efficient as they can work at full speed most of the
time. Table 9.8 compares an execution at maximum frequency with executions that
benefit from load balancing after a pre-determined number of iterations (denoted
as an index of the heuristic name). For the Chuetsu scenario, we determined
experimentally that calling the GreedyLB algorithm every 5 iteration is the optimum
migration frequency. Doubling this 10 iterations results in just over one minute
(21%) of reduced execution time and 11.1 % of energy savings. However, even when
load balancing is employed, idle time does not fully disappear (Table 9.9), even
though less than with the Lagrange and Performance governors remains.

128 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

Host Total idle time % Idle

taurus-01 10.4653 3.08
taurus-02 23.9697 7.05
taurus-03 26.3388 7.74
taurus-04 5.91632 1.74
taurus-05 20.9864 6.17
taurus-06 55.1024 16.20
taurus-07 45.8586 13.48
taurus-08 27.1594 7.99
taurus-09 27.8492 8.19
taurus-10 36.5526 10.75
taurus-11 66.0996 19.43
taurus-12 30.7309 9.04
taurus-13 8.73714 2.57
taurus-14 24.6275 7.24
taurus-15 39.3532 11.57
taurus-16 2.62996 0.77

Table 9.5: Our improved version of Adagio manages to reduce idle time significantly.
Total runtime: 340.12 s. (Chuetsu, 300 iterations, 16 processes)

A coordinated DVFS governor / load balancer approach would be able to ameliorate
the situation by reducing this residual imbalance [Pad+14].

9.5 Limitation and Future Work

9.5.1 Unavailable Frequencies and More Complex
Architectures

When we discussed how we implemented the first step of the ADMM algorithm
(Section 9.3.2), we already mentioned that using interrupts to lower the frequency
during a compute is a possibility to use (on average) a frequency that is optimal yet
(due to the discrete nature of frequencies) not available on a host. This approach
was also proposed for Adagio [Rou+09]. Implementing this feature is interesting
and may not be too difficult to do, however, Ondes3D’s computations are generally
very small (less than one second) and the expected gain is minimal or even negative,
as switching the frequency also comes with a cost (e.g., the interrupt, latency for
switching). The possible energy savings are indeed not primarily limited by the
number of available frequencies but rather by the possibility to lower the frequency
far enough to reduce the idle time to a bare minimum and hence to increase the
energy proportionality, i.e., the ratio of consumed energy and useful work done by
the system.

9.5 Limitation and Future Work 129

Host Total idle time % Idle

taurus-01 11.1322 3.28
taurus-02 72.1573 21.24
taurus-03 72.89 21.45
taurus-04 5.26874 1.55
taurus-05 70.6237 20.79
taurus-06 162.996 47.97
taurus-07 163.843 48.22
taurus-08 73.4741 21.63
taurus-09 71.621 21.08
taurus-10 163.661 48.17
taurus-11 162.987 47.97
taurus-12 73.3483 21.59
taurus-13 8.36255 2.46
taurus-14 72.4478 21.32
taurus-15 73.077 21.51
taurus-16 2.2585 0.66

Table 9.6: The ondemand governor does not significantly reduce idle times. Total runtime:
339.75 s. (Chuetsu, 300 iterations, 16 processes)

Processors that are heterogeneous at the core level, i.e., that consist of both weak
(but power efficient) and powerful (but energy hungry) cores, are already available
(e.g., big.LITTLE). When DVFS slows the processor down, the computation could
potentially move from the powerful to the weak core. DVFS could therefore yield
larger energy savings on complicated architectures than on standard CPUs, how-
ever, the performance prediction is also more complicated as an application that
uses features specific to the powerful core will be slowed more significantly than a
generic application.

9.5.2 Current Limitations of Our Implementation

Ondes3D’s main loop consists of three kernels and intertwined communication
calls (see Listing 1 (page 109)). Adagio can select a frequency based on the location
of the MPI call, as it has access to the call stack. In our implementation of the
Lagrange governor (and hence not in the algorithm itself), the frequency is updated
essentially twice: once after Stress() and once after Velocity(), however, our
implementation lacks knowledge about the current location and hence cannot adapt
the frequency on a per-kernel level.

We performed our evaluation as if the machines had only a single core, as we assume
that Stress() and Velocity() use OpenMP to exploit all cores. Further opti-
mization of the residual load imbalance [Pad+14] is difficult in a multi-core setting,
and integrating our Lagrange governor with AMPI for a coordinated DVFS+Load

130 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

Host Total idle time % Idle

taurus-01 13.3612 3.93
taurus-02 79.7384 23.47
taurus-03 80.5178 23.70
taurus-04 5.5975 1.65
taurus-05 78.7834 23.19
taurus-06 154.92 45.60
taurus-07 155.961 45.90
taurus-08 81.03 23.85
taurus-09 79.3348 23.35
taurus-10 155.992 45.91
taurus-11 155.553 45.78
taurus-12 80.9117 23.81
taurus-13 9.84613 2.90
taurus-14 80.0478 23.56
taurus-15 80.5845 23.72
taurus-16 2.2568 0.66

Table 9.7: The conservative governor does not significantly reduce idle times and yields for
almost all nodes worse results than the ondemand governor, with the exception
of taurus-6,7,10,11. Total runtime: 339.75 s. (Chuetsu, 300 iterations, 16
processes)

Balancer approach is difficult as it would require to manage ressources at the core
level (and not just the node level) because Lagrange is task-based rather than
load-based.

9.6 Conclusions

Increasing the energy savings through DVFS as a passive technique is a good idea
but difficult in an HPC context due to the data dependencies between processes.
Indeed, looking only at the load was not sufficient for sizeable energy savings when
using Ondes3D. We implemented and tested in total 5 dynamic governors, but only
through an improvement of Adagio and our own rather complicated “Lagrange”
governor could we succeed to obtain a 2.5 % saving.

This needs to be contrasted with the almost 10 % energy savings and 20 % smaller
makespan when using over-decomposition in combination with a greedy load
balancing heuristic.

On current hardware, load balancing is likely to be always strictly superior to DVFS,
but this should change once more energy proportionally efficient hardware becomes
available. Such a study will be very easy to conduct with SimGrid, as all required
facilities (load balancers, governors) are now already available.

9.6 Conclusions 131

Governor Makespan Energy Energy Savings/Loss (%)

Performance 339.747 989016.128355 0.000
Performance + GreedyLB5 266.107 876433.238571 -11.383
Performance + GreedyLB10 267.979 879287.679396 -11.095
Performance + GreedyLB15 270.227 882735.980103 -10.746
Performance + GreedyLB20 271.618 884867.878757 -10.530
Performance + GreedyLB25 273.538 887809.278575 -10.233
Performance + GreedyLB30 275.039 890115.523342 -10.000

Table 9.8: Comparison of makespan and energy estimates when load balancing is used
with the performance governor. GreedyLBk means that every k iterations,
GreedyLB is called. (Chuetsu, 300 iterations, 64 processes)

Host Total idle time % Idle

taurus-01 3.12365 1.166
taurus-02 8.45286 3.155
taurus-03 15.9001 5.934
taurus-04 17.8564 6.664
taurus-05 15.2849 5.704
taurus-06 16.6086 6.198
taurus-07 14.4727 5.401
taurus-08 14.8928 5.558
taurus-09 17.7397 6.621
taurus-10 29.6589 11.069
taurus-11 29.6381 11.061
taurus-12 33.0626 12.339
taurus-13 18.0793 6.747
taurus-14 31.0929 11.604
taurus-15 2.29086 0.855
taurus-16 7.87874 2.940

Table 9.9: Idle times when using the GreedyLB heuristic every 10 iterations. Total runtime
was 267.95 s. (Chuetsu, 300 iterations, 16 processes)

132 Chapter 9 Contribution: Optimizing the Power Consumption With DVFS

10Conclusion and Future Work

10.1 Thesis Summary

MPI-based applications are the most common type of applications that run on
current High-Performance Computing systems. In order to deliver more computa-
tional power to users, machines have to grow in size (e.g., number of nodes, cores)
which will further increase their already significant power consumption, making
power consumption one of the most important cost factors for supercomputing
centers. The HPC community has for this reason identified energy as the principal
optimization goal for applications. In this thesis, we showed how to model, pre-
dict and optimize energy consumption of MPI applications running on common
multi-core systems by using the SimGrid simulation framework.

In a first step, we proposed a deliberately simple model that computes the power
consumption of a particular application, running on a given node with a fixed
frequency solely based on the load of the CPU and justified why the application
needs to be considered in our model as well. It is possible to instantiate our model
using only a single node when all nodes are fully homogeneous, which is often
not the case. In fact, even supposedly homogeneous machines can have different
power consumptions and in this case, the calibration may have to be executed on a
representative sample of nodes.

In a second step, we showed that predicting the energy consumption is tightly
associated with accurate runtime predictions. Previous work had mostly worked
with SimGrid using single-core hosts only, while we needed actual support for
multi-core systems. We identified two main issues for obtained mispredictions:
An oversimplified multi-core model in SimGrid as well as no consideration of fast
loopback links for intra-node communications. We showed that several issues that
come with the use of online simulation, such as cache issues, can be responsible for
inaccurate predictions and we provided a calibration strategy that can speed-up or
slow-down certain parts of the application during an online simulation.

We furthermore contributed a calibration method for local communications, which
proved to be of importance in the case of HPL only when a single node was used.

133

Locality-aware applications, however, will require a thorough calibration even
when multiple nodes are involved.

We validated this approach through real experiments with up to 12 nodes (144 cores)
and systematically compared real-life outcomes with predictions. We noted that
executing the real application is not difficult whereas controlling the environment
of the experiment is. In order to obtain trustworthy results, we spent considerable
time to setup a proper experimental environment. Our performance predictions
were eventually within only a few percent of the real experiments and allowed us
to validate the accuracy of our energy model by comparing power predictions with
data measured on real systems.

Last, this thesis contributed to the optimization of the power consumption of
MPI applications. We implemented in SimGrid several DVFS governors from
the linux kernel (ondemand, conservative) but also a userspace governor called
Adagio [Rou+09] from literature, which has been specifically designed to exploit the
regularity of MPI applications. Unfortunately, Adagio and other classical governors
did not lead to any significant improvements for the application of our choice, the
earthquake simulator Ondes3D, which can be seen as a representative of many other
legacy MPI applications. We therefore proposed an improved version of Adagio
and our own DVFS governor, based on lagrangian optimization methods. First
experiments have shown that the DVFS governors are only able to save very little
energy (less than 5 %) whereas computationally more expensive load balancing
achieved significant savings.

10.2 Limitations

The proposed models, the experimental environments and the applications we
studied during the validation are limited to specific use-cases.

10.2.1 Model Limitations

Recall from Section 8.5 that our energy model for multi-core CPUs only supports
applications with (almost) constant energy consumption. We identified three main
cases that are not supported: First, applications that can be divided into phases, each
with a distinct power consumption. Second, applications such as in-situ applica-
tions that run inherently different codes on the same machine. Third, unpredictable
combination of kernels, for example by dynamic runtimes, and therefore mem-
ory / cache usage that depends on the currently executed codes. In this last case,
all combinations of kernels would need to be calibrated. Measuring the impact of

134 Chapter 10 Conclusion and Future Work

1e1 1e3 1e5
Message size (bytes)

1e-6

1e-5

1e-4

Du
ra

tio
n

(s
ec

on
ds

)

Durations of MPI_Send

Figure 10.1: On the Stampede supercomputer, one “slow” and one “fast” mode seem to ex-
ist for MPI_Recv and MPI_Send (depicted) calls, making faithful simulation
very difficult. Figure obtained from Tom Cornebize.

running several kernels on the same CPU requires also more precise power samples
than a single value per second as provided by the wattmeter we used.

All of our models (inter- and intra-network communications, energy, multi-core)
rely on a calibration procedure that generates the right configuration for use with
SimGrid. However, these procedures generally still require manual intervention
and execution (e.g., setting the breakpoints when calibrating the network) and the
quality of the results is therefore dependent on the expertise of the user. Automation
of these procedures is desireable, however, not always trivial: Figure 10.1 illus-
trates results we obtained when calibrating MPI_Send operations on the Stampede
supercomputer in a joint-work with Tom Cornebize. On this particular machine,
we observed that one “slow” and one “fast” mode exist. The “slow” mode is al-
most twice as slow and we are still unsure what causes this phenomenon [Cor+17,
Section VII]. Clearly, modeling these modes through a single linear regression is
questionable. To calibrate such a machine correctly and automatically, we would
need to recognize each mode automatically and generate an individual model for
each mode. In order to select the right mode during simulation, we would need to
find out what this phenomenon depends on and account for it within SimGrid.

We have already stated that machines in the HPC world are becoming increasingly
complex and in many cases, they are equipped with GPUs, but also sometimes

10.2 Limitations 135

with FPGAs and accelerators such as the previously popular Xeon Phi. Using any
of these accelerators is currently not supported by our methods and their usage
must be investigated separately: modern GPUs, for example, support the execution
of several different kernels at the same time and their performance and energy
consumption should vary based on the workload. Furthermore, DVFS on GPUs
is available in recent GPUs but may induce a different behavior than CPU-based
DVFS.

10.2.2 Application Limitations

The applications we used ranged from extremely simple toy-benchmarks (NAS-EP)
to commonly used benchmarks (HPL) to actual applications (Ondes3D). Running
real applications with SimGrid is often difficult, as technical limitations often exist.
For example, when an application requires OpenMP (or any paradigm other than
MPI), it cannot be simulated as SimGrid has no support for OpenMP. Other appli-
cations may require a specific subset of MPI functions that are not yet implemented
in SMPI, such as asynchronous collective operations or MPI I/O. Validation of
our models with more realistic applications may therefore require to overcome
non-trivial technical difficulties.

10.2.3 Experimental Limitations

In our experiments, we tried to control the environment as much as possible. On a
per-node level, we disabled turbomode and hyperthreading to obtain reproducible
and, in the case of our multi-core calibration, comparable results. Recall that
this calibration computes speed-up and slow-down factors for each code region
based on the aggregated time spent execution each region. These values may not
be comparable when turbomode is activated, as SimGrid runs on a single core
and turbomode is therefore much more likely to boost the simulation (and hence,
the emulated code) than it is to boost the real experiment that runs on all cores
simultaneously and that serves as a reference. Furthermore, the energy model
would have to be adapted to the frequencies that are available with turbo mode,
but not all frequencies are available with each load.

On the network level, we reserved all clusters connected to the used switch and
therefore isolated the application. Alas, this is very rarely the case for real applica-
tions and cross-traffic is likely to impact the performance and even decisions taken
for example by load balancing algorithms.

136 Chapter 10 Conclusion and Future Work

10.3 Future Work

The limited timeframe of this thesis has only allowed us to build the foundation for
future energy-focused application analyses. Many interesting questions therefore
still remain untouched but are now feasible.

10.3.1 Extending the Work of this Thesis

Energy Calibration

There are already applications in use that use one or more programming models
besides MPI, and they will become even more common in the future [Don+11,
p. 10]. As we pointed out in Section 8.5, our energy model may not work in
certain scenarios. An application that uses an accelerator only in specific phases, for
instance, will see significant changes in energy consumption over time as a GPU
can consume up to 300 W under full load. Implementing support for phases is not
too difficult (e.g., by using the delimiting MPI calls (possibly through hashing the
call stack) as an identifier) and would allow a much larger class of applications to
be simulated as well. The difficulty lies in the power measurement tools, which
provided at the time of study only a single sample per second but were recently
upgraded to 50 samples per second, which may be sufficient.

Our approach also required only a single node of a fully homogeneous machine.
In this context, it is interesting to note that future machines may not be fully
homogeneous and therefore may require the application to run on each of the node-
configurations. A proper, automatic energy calibration will therefore be necessary
to make our energy model easy to use and a re-calibration after significant changes
simple enough to be adopted even in more complicated cases.

DVFS

In Section 9.6, we concluded that load balancing is currently the only viable way
to reduce energy consumption significantly as DVFS only gained a few percent.
This is, however, potentially no longer true once machines with more complicated
architectures become widely available. This effect could be studied by modeling for
example big.LITTLE processors, where weak (but energy efficient) and powerful
(but energy hungry) cores are combined on the same die and the core a computation
uses is determined by the experienced load. These processors can already be

10.3 Future Work 137

modeled in SimGrid by declaring pstates with different meanings: The first n
pstates could represent the computational power of the weak cores. Similarly, the
next m pstates could represent the powerful cores. The logic that decides which
core is used could be implemented similarly to the DVFS governors that already
exist in SimGrid.

In our case, we studied only a single load balancer and several DVFS governors.
Implementing more load balancing algorithms is not difficult and could be used to
study which algorithm is the best approach for a specific class of applications. In
this context, particularly energy-aware algorithms are of interest, especially those
that do not only move computations to other hosts but also determine the speed at
which these computations are executed.

Load balancing will also be important on future machines, however, the cost for
synchronizing and moving data around rises significantly with a growing num-
ber of processes. A large-scale study could therefore already show under which
circumstances current load balancing strategies can still be used and how their
effectiveness changes when used on platforms consisting of tens of thousands of
nodes.

In our case, we ran Ondes3D only on a few nodes as a proof-of-concept. A real study
should use different earthquake scenarios, as they determine the load imbalance,
and use a varying number of cores and maybe even various network topologies
to test how the regular communication patterns impact the load balance when the
underlying topologies do not correspond to the communication calls.

Other applications that are seemingly regular but suffer from load imbalances are
also interesting to study. Implementing support for load balancing in simulation is
as simple as adding a call to a single function to the code; SimGrid can then be used
to predict if implementation of full AMPI support for real executions is worth the
effort. Demonstrating significant energy savings and/or performance gains could
lead to a faster adoption of load balancing techniques by application developers.

10.3.2 SimGrid

Placement Policies / Task Mapping

Placement Policies / Task Mapping has been investigated for a long time through
theoretical measures. It would be interesting to study the impact of a changed
placement on common or complex topologies, such as torus, DragonFly [Kim+08]

138 Chapter 10 Conclusion and Future Work

or SlimFly [BH14], through simulation that can account for congestion. SimGrid
has almost everything in place to support such a study but implementing a new
routing algorithm and describing a large platform (with thousands of nodes) is
currently rather cumbersome. We implemented a first prototype for Lua-bindings,
but this solution was not convincing since the XML API and Lua were separated.
A better approach would be to use python-based bindings and use one of the
already existing python XML parsers to replace the SimGrid XML parser. Lua is
very fast and can be used rather easily with C/C++, but application developers are
more likely to already have python bindings, hence effectively lowering the entry
barrier. The SimGrid project has just recently started to adopt this approach and we
believe that being able to implement the routing (for fast testing) and the platform
description programmatically in python will help with large-scale studies.

Towards Exascale

We have already shown that SimGrid can simulate HPL at large scale [Cor+17]. Our
simulation of the supercomputer Stampede required simulation times of approx-
imately 50 h, which can be still faster than to wait for a full machine-reservation.
However, simulations of applications using an exascale machine with up to one
million nodes [Don+11, p. 62] (and 108 to 109 cores) will become prohibitive, if
no further changes are made to how we simulate nodes (and cores). Several ap-
proaches are possible and may even be combined: First, the simulation could be
run in parallel, spanning several nodes [Mub+12]. This can speed up the simu-
lation but can also help with memory limitations. Unfortunately, SimGrid is a
sequential simulator and although there has already been significant effort in this
direction [QRT11], this approach is unlikely to scale well. Instead, a time parallel
simulation seems promising for HPC applications that tend to synchronize regu-
larly [Fuj15]. Second, the simulation could not run every process individually but
rather simulate one process as a representative for a class of processes with (approx-
imatively) identical behavior, similar to what is called “fast simulation” in the mean
field framework [BMM07]. This would require either advance knowledge of the
application or specific techniques to identify these process classes. Last, the simu-
lation could be reduced in time, space or space and time together. A reduction in
time means that the simulation could start at a specific time by loading a previously
acquired snapshot of the simulation variables and run only for a specified length or
until a specific event occurs. A reduction in space, on the other hand, means that
only a subset of the domain is simulated. The communication between simulated
and non-simulated processes would need to be substituted, and messages entering
the simulated domain would need to be meaningful.

10.3 Future Work 139

Another interesting aspect is resilience of MPI applications regarding node and
link failures. Resilience has already been studied with SimGrid’s SimDag mod-
ule [DCN18], but we are unaware of publications that use emulation to study a real
MPI application including the load-imbalances that occur when nodes are delayed
through a roll-back [Don16, Section 1.2]. SimGrid already supports mechanisms
to change the state of nodes and links (on/off) during a simulation as well as load
balancing. It remains to implement a proper resilience algorithm or to identify an
application that has resilience built-in.

10.3.3 Joint Work with the SimGrid Userbase

A significant number of studies that are conducted with SimGrid either use bench-
marks similar to the ones used in this thesis (HPL, NAS-LU and NAS-EP) or rely on
small proxy-applications. Studies using real-world applications are still relatively
scarce, even though some high-profile applications (such as BigDFT) exist that
closely integrate with SimGrid to predict their performance.

Extending the userbase by working closely with select developers of such appli-
cations would have several benefits: First and foremost, technical and scientific
issues that were previously not considered almost certainly need to be resolved,
but the exact type depends on the simulated application and the target platform.
One such issue could be the fast and faithful simulation of BLAS routines, as these
functions often make up a large part of the simulation. In our study of HPL at large
scale [Cor+17], we replaced several BLAS routines with linear models. Building a
complete libsimblas for use with SimGrid would be interesting but analyzing and
modeling all functions provided by the BLAS API is non-trivial. Second, real-life
applications that can be predicted accurately with SimGrid can also be used to
validate new scientific concepts introduced to SimGrid. A validation using real
applications can be seen as more trustworthy. A third benefit of a growing userbase
could lie in the contributions back to the SimGrid project, for instance through bug
reports, patches (code and documentation), tutorials at workshops or even new
features. Finally, funding for continuous development of SimGrid could be easier
to procur when more reputable applications rely on SimGrid’s predictions.

140 Chapter 10 Conclusion and Future Work

Bibliography

[Acu+14] Bilge Acun, Abhishek Gupta, Nikhil Jain, et al. “Parallel Programming with
Migratable Objects: Charm++ in Practice”. In: SC14: International Conference for
High Performance Computing, Networking, Storage and Analysis. IEEE, Nov. 2014
(cit. on pp. 61, 117).

[All87] David W. Allan. “Time and Frequency (Time-Domain) Characterization, Esti-
mation, and Prediction of Precision Clocks and Oscillators”. In: IEEE Trans. on
Ultrasonics, Ferroelectrics, and Frequency Control 34.6 (Nov. 1987) (cit. on p. 65).

[Ans+14] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, et al. “OpenTuner”. In: Pro-
ceedings of the 23rd international conference on Parallel architectures and compilation -
PACT ’14. ACM Press, 2014 (cit. on p. 31).

[Aug+10] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacre-
nier. “StarPU: a unified platform for task scheduling on heterogeneous multicore
architectures”. In: Concurrency and Computation: Practice and Experience 23.2 (Nov.
2010), pp. 187–198 (cit. on pp. 30, 58, 61).

[Bad+03] Rosa M. Badia, Jesús Labarta, Judit Giménez, and Francesc Escalé. “Dimemas:
Predicting MPI Applications Behaviour in Grid Environments”. In: Proc. of the
Workshop on Grid Applications and Programming Tools. June 2003 (cit. on p. 34).

[Bal+13] Daniel Balouek, Alexandra Carpen-Amarie, Ghislain Charrier, et al. “Adding
Virtualization Capabilities to the Grid’5000 Testbed”. In: Cloud Computing and
Services Science. Ed. by IvanI. Ivanov, Marten Sinderen, Frank Leymann, and
Tony Shan. Vol. 367. Communications in Computer and Information Science.
Springer International Publishing, 2013 (cit. on p. 63).

[Bed+13] Paul Bedaride, Augustin Degomme, Stéphane Genaud, et al. “Toward Better
Simulation of MPI Applications on Ethernet/TCP Networks”. In: Proc. of the 4th
Intl. Workshop on Performance Modeling, Benchmarking and Simulation. Vol. 8551.
LNCS. Denver, CO: Springer, Nov. 2013 (cit. on p. 50).

[Bes+18] Maciej Besta, Syed Minhaj Hassan, Sudhakar Yalamanchili, et al. “Slim NoC”.
In: Proceedings of the Twenty-Third International Conference on Architectural Support
for Programming Languages and Operating Systems - ASPLOS ’18. ACM Press, 2018
(cit. on p. 30).

[BH14] Maciej Besta and Torsten Hoefler. “Slim Fly: A Cost Effective Low-Diameter
Network Topology”. In: SC14: International Conference for High Performance Com-
puting, Networking, Storage and Analysis. IEEE, Nov. 2014 (cit. on pp. 29, 139).

141

[Bie+15] Mario Bielert, Florina M. Ciorba, Kim Feldhoff, Thomas Ilsche, and Wolfgang E.
Nagel. “HAEC-SIM: A Simulation Framework for Highly Adaptive Energy-
efficient Computing Platforms”. In: Proceedings of the 8th International Conference
on Simulation Tools and Techniques (SIMUTools). ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering), 2015, pp. 129–
138 (cit. on p. 34).

[Bla+13] Wesley Bland, Aurelien Bouteiller, Thomas Herault, George Bosilca, and Jack
Dongarra. “Post-failure recovery of MPI communication capability”. In: The
International Journal of High Performance Computing Applications 27.3 (June 2013),
pp. 244–254 (cit. on p. 22).

[BMM07] Jean-Yves Le Boudec, David McDonald, and Jochen Mundinger. “A Generic
Mean Field Convergence Result for Systems of Interacting Objects”. In: Fourth
International Conference on the Quantitative Evaluation of Systems (QEST 2007).
IEEE, Sept. 2007 (cit. on p. 139).

[Bob+12] Laurent Bobelin, Arnaud Legrand, David Alejandro González Márquez, et al.
“Scalable Multi-Purpose Network Representation for Large Scale Distributed
System Simulation”. In: Proc. of the 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing. Ottawa, Canada, 2012 (cit. on p. 86).

[Bos+13] George Bosilca, Aurelien Bouteiller, Anthony Danalis, et al. “PaRSEC: Exploiting
Heterogeneity to Enhance Scalability”. In: Computing in Science & Engineering
15.6 (Nov. 2013), pp. 36–45 (cit. on p. 30).

[Boy10] Stephen Boyd. “Distributed Optimization and Statistical Learning via the Alter-
nating Direction Method of Multipliers”. In: Foundations and Trends® in Machine
Learning 3.1 (2010), pp. 1–122 (cit. on pp. 122, 123).

[Cal+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De Rose,
and Rajkumar Buyya. “CloudSim: A Toolkit for Modeling and Simulation of
Cloud Computing Environments and Evaluation of Resource Provisioning
Algorithms”. In: Software: Practice and Experience 41.1 (Jan. 2011) (cit. on p. 33).

[Cap+14] Franck Cappello, Al Geist, William Gropp, et al. “Toward Exascale Resilience:
2014 update”. In: Supercomputing Frontiers and Innovations 1.1 (2014) (cit. on
pp. 21, 22).

[Cas+14] Henri Casanova, Arnaud Giersch, Arnaud Legrand, Martin Quinson, and
Frédéric Suter. “Versatile, scalable, and accurate simulation of distributed ap-
plications and platforms”. In: Journal of Parallel and Distributed Computing 74.10
(Oct. 2014), pp. 2899–2917 (cit. on pp. 38, 39).

[CLR08] Henri Casanova, Arnaud Legrand, and Yves Robert. Parallel Algorithms. CRC
Press, 2008 (cit. on p. 14).

[Cor+17] Tom Cornebize, Franz C Heinrich, Arnaud Legrand, and Jérôme Vienne. “Em-
ulating High Performance Linpack on a Commodity Server at the Scale of a
Supercomputer”. working paper or preprint. Dec. 2017 (cit. on pp. 102, 106, 135,
139, 140).

[CPJ11] Patrick Carribault, Marc Pérache, and Hervé Jourdren. “Thread-Local Storage
Extension to Support Thread-Based MPI/OpenMP Applications”. In: OpenMP
in the Petascale Era. Springer Berlin Heidelberg, 2011, pp. 80–93 (cit. on p. 50).

142 Bibliography

[Cza+12] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, et al. “From opencl
to high-performance hardware on FPGAS”. In: 22nd International Conference on
Field Programmable Logic and Applications (FPL). IEEE, Aug. 2012 (cit. on p. 28).

[Dav+12] J. D. Davis, S. Rivoire, M. Goldszmidt, and E. K. Ardestani. “Including Variability
in Large-Scale Cluster Power Models”. In: IEEE Computer Architecture Letters
11.2 (2012) (cit. on p. 65).

[Day+09] M S Day, J B Bell, R K Cheng, et al. “Cellular burning in lean premixed turbulent
hydrogen-air flames: Coupling experimental and computational analysis at the
laboratory scale”. In: Journal of Physics: Conference Series 180 (July 2009), p. 012031
(cit. on p. 21).

[DCN18] Kiril Dichev, Kirk Cameron, and Dimitrios S. Nikolopoulos. “Energy-efficient
localised rollback via data flow analysis and frequency scaling”. In: Proceedings
of the 25th European MPI Users’ Group Meeting on - EuroMPI’18. ACM Press, 2018
(cit. on p. 140).

[Deg+17] Augustin Degomme, Arnaud Legrand, George S. Markomanolis, et al. “Simulat-
ing MPI Applications: The SMPI Approach”. In: IEEE Transactions on Parallel and
Distributed Systems 28.8 (Aug. 2017), pp. 2387–2400 (cit. on pp. 37, 46, 53, 54, 72).

[Don+11] Jack Dongarra, Pete Beckman, Terry Moore, et al. “The International Exascale
Software Project roadmap”. In: The International Journal of High Performance
Computing Applications 25.1 (Jan. 2011), pp. 3–60 (cit. on pp. 2, 19, 20, 23, 30, 60,
61, 137, 139).

[Don+17] Jack Dongarra, Stanimire Tomov, Piotr Luszczek, et al. “With Extreme Comput-
ing, the Rules Have Changed”. In: Computing in Science & Engineering 19.3 (May
2017), pp. 52–62 (cit. on pp. 26, 31).

[Don16] Jack Dongarra. “With Extreme Scale Computing the Rules Have Changed”.
In: Mathematical Software – ICMS 2016. Springer International Publishing, 2016,
pp. 3–6 (cit. on pp. 19, 30, 140).

[Dut+16a] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
“Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies for Parallel
Processing. Chicago, United States, May 2016 (cit. on pp. 54, 60).

[Dut+16b] Pierre-François Dutot, Michael Mercier, Millian Poquet, and Olivier Richard.
“Batsim: a Realistic Language-Independent Resources and Jobs Management
Systems Simulator”. In: 20th Workshop on Job Scheduling Strategies for Parallel
Processing. May 2016 (cit. on p. 106).

[DWF16] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. “Data Center Energy Con-
sumption Modeling: A Survey”. In: IEEE Communications Surveys & Tutorials
18.1 (2016), pp. 732–794 (cit. on p. 90).

[Eng14] Christian Engelmann. “Scaling To A Million Cores And Beyond: Using Light-
Weight Simulation to Understand The Challenges Ahead On The Road To
Exascale”. In: Future Generation Computer Systems 30 (Jan. 2014) (cit. on p. 34).

[Fuj15] Richard Fujimoto. “Parallel and distributed simulation”. In: 2015 Winter Simula-
tion Conference (WSC). IEEE, Dec. 2015 (cit. on p. 139).

Bibliography 143

[Gab+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, et al. “Open MPI: Goals, Con-
cept, and Design of a Next Generation MPI Implementation”. In: Recent Advances
in Parallel Virtual Machine and Message Passing Interface. Springer Berlin Heidel-
berg, 2004, pp. 97–104 (cit. on pp. 15, 48).

[Gen+08] Luigi Genovese, Alexey Neelov, Stefan Goedecker, et al. “Daubechies wavelets
as a basis set for density functional pseudopotential calculations”. In: The Journal
of Chemical Physics 129.1 (July 2008), p. 014109 (cit. on p. 74).

[Geo+15] Yiannis Georgiou, David Glesser, Krzysztof Rzadca, and Denis Trystram. “A
Scheduler-Level Incentive Mechanism for Energy Efficiency in HPC”. In: Proc. of
the 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid). Shenzhen, China, May 2015 (cit. on p. 106).

[Gro02] William Gropp. “MPICH2: A New Start for MPI Implementations”. In: Recent
Advances in Parallel Virtual Machine and Message Passing Interface. Springer Berlin
Heidelberg, 2002, pp. 7–7 (cit. on pp. 15, 48).

[Gué+13] Tom Guérout, Thierry Monteil, Georges Da Costa, et al. “Energy-aware simu-
lation with DVFS”. In: Simulation Modelling Practice and Theory 39 (Dec. 2013)
(cit. on p. 33).

[Gue+19] Loic Guegan, Betsegaw Lemma Amersho, Anne-Cécile Orgerie, and Martin
Quinson. “A Large-Scale Wired Network Energy Model for Flow-Level Simu-
lations”. In: AINA 2019 - 33rd International Conference on Advanced Information
Networking and Applications. Matsue, Japan, Mar. 2019, pp. 1–12 (cit. on p. 105).

[Hac+13] Daniel Hackenberg, Roland Oldenburg, Daniel Molka, and Robert Schone. “In-
troducing FIRESTARTER: A processor stress test utility”. In: 2013 International
Green Computing Conference Proceedings. IEEE, June 2013 (cit. on p. 68).

[Hei+17a] Franz C. Heinrich, Alexandra Carpen-Amarie, Augustin Degomme, et al. “Pre-
dicting the Performance and the Power Consumption of MPI Applications With
SimGrid”. working paper or preprint. Jan. 2017 (cit. on pp. 63, 89).

[Hei+17b] Franz Christian Heinrich, Tom Cornebize, Augustin Degomme, et al. “Predicting
the Energy-Consumption of MPI Applications at Scale Using Only a Single
Node”. In: 2017 IEEE International Conference on Cluster Computing, CLUSTER
2017, Honolulu, HI, USA, September 5-8, 2017. IEEE Computer Society, 2017,
pp. 92–102 (cit. on pp. 33, 73, 83, 89).

[Heu+11] Martin Heusse, Sears A. Merritt, Timothy X. Brown, and Andrzej Duda. “Two-
way TCP connections”. In: ACM SIGCOMM Computer Communication Review
41.2 (Apr. 2011), p. 5 (cit. on p. 43).

[HSL10] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. “LogGOPSim: Simu-
lating Large-scale Applications in the LogGOPS Model”. In: Proceedings of the
19th ACM International Symposium on High Performance Distributed Computing.
Chicago, Illinois: ACM, 2010, pp. 597–604 (cit. on p. 34).

[Ina+15] Yuichi Inadomi, Tapasya Patki, Koji Inoue, et al. “Analyzing and Mitigating the
Impact of Manufacturing Variability in Power-constrained Supercomputing”.
In: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. SC ’15. Austin, Texas: ACM, 2015 (cit. on pp. 65,
95).

144 Bibliography

[Jac88] V. Jacobson. “Congestion avoidance and control”. In: Symposium proceedings
on Communications architectures and protocols - SIGCOMM ’88. ACM Press, 1988
(cit. on p. 121).

[Jan+10] Curtis L. Janssen, Helgi Adalsteinsson, Scott Cranford, et al. “A Simulator
for Large-scale Parallel Architectures”. In: International Journal of Parallel and
Distributed Systems 1.2 (2010) (cit. on pp. 34, 80).

[KBK12] Dzmitry Kliazovich, Pascal Bouvry, and Samee U. Khan. “A packet-level simula-
tor of energy-aware cloud comuting data centers”. In: Journal of Supercomputing
62.3 (2012) (cit. on p. 33).

[Kel18] Rafael Keller Tesser. “A Simulation Workflow to Evaluate the Performance
of Dynamic Load Balancing with Over-decomposition for Iterative Parallel
Applications”. Theses. Universidade Federal Do Rio Grande Do Sul, Apr. 2018
(cit. on p. 61).

[Kim+08] John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. “Technology-Driven,
Highly-Scalable Dragonfly Topology”. In: 2008 International Symposium on Com-
puter Architecture. IEEE, June 2008 (cit. on pp. 29, 138).

[KK93] Laxmikant V. Kale and Sanjeev Krishnan. “CHARM++”. In: ACM SIGPLAN
Notices 28.10 (Oct. 1993), pp. 91–108 (cit. on pp. 30, 117).

[Koi+12] Michihiro Koibuchi, Hiroki Matsutani, Hideharu Amano, D. Frank Hsu, and
Henri Casanova. “A case for random shortcut topologies for HPC interconnects”.
In: 2012 39th Annual International Symposium on Computer Architecture (ISCA).
IEEE, June 2012 (cit. on p. 29).

[Koi+13] M. Koibuchi, I. Fujiwara, H. Matsutani, and H. Casanova. “Layout-conscious
random topologies for HPC off-chip interconnects”. In: 2013 IEEE 19th Interna-
tional Symposium on High Performance Computer Architecture (HPCA). IEEE, Feb.
2013 (cit. on p. 29).

[Leb+15] Adrien Lebre, Arnaud Legrand, Frederic Suter, and Pierre Veyre. “Adding
Storage Simulation Capacities to the SimGrid Toolkit: Concepts, Models, and
API”. In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, May 2015 (cit. on p. 37).

[Loz+16] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, et al. “The Linux scheduler”.
In: Proceedings of the Eleventh European Conference on Computer Systems - EuroSys
’16. ACM Press, 2016 (cit. on p. 68).

[LWP04] Jiuxing Liu, Jiesheng Wu, and Dhabaleswar K. Panda. “High Performance
RDMA-Based MPI Implementation over InfiniBand”. In: International Journal of
Parallel Programming 32.3 (June 2004), pp. 167–198 (cit. on pp. 15, 48).

[Mar+07] Gustavo Marfia, Claudio Palazzi, Giovanni Pau, et al. “TCP Libra: Exploring
RTT-Fairness for TCP”. In: NETWORKING 2007. Ad Hoc and Sensor Networks,
Wireless Networks, Next Generation Internet. Springer Berlin Heidelberg, 2007,
pp. 1005–1013 (cit. on p. 43).

[Mar14] Georgios Markomanolis. “Performance Evaluation and Prediction of Parallel
Applications”. Theses. Ecole normale supérieure de lyon - ENS LYON, Jan. 2014
(cit. on p. 82).

Bibliography 145

[MDV11] V. Moureau, P. Domingo, and L. Vervisch. “From Large-Eddy Simulation to
Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar
flame-PDF modeling”. In: Combustion and Flame 158.7 (July 2011), pp. 1340–1357
(cit. on p. 20).

[MN15] Shinobu Miwa and Hiroshi Nakamura. “Profile-based power shifting in in-
terconnection networks with on/off links”. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis, SC
2015, Austin, TX, USA, November 15-20, 2015. Ed. by Jackie Kern and Jeffrey S.
Vetter. ACM, 2015, 37:1–37:11 (cit. on p. 70).

[Mub+12] Misbah Mubarak, Christopher D. Carothers, Robert Ross, and Philip Carns.
“Modeling a Million-Node Dragonfly Network Using Massively Parallel Discrete-
Event Simulation”. In: 2012 SC Companion: High Performance Computing, Network-
ing Storage and Analysis. IEEE, Nov. 2012 (cit. on p. 139).

[Mub+17] M. Mubarak, C. D. Carothers, Robert B. Ross, and Philip H. Carns. “Enabling
Parallel Simulation of Large-Scale HPC Network Systems”. In: IEEE Transactions
on Parallel and Distributed Systems 28.1 (Jan. 2017), pp. 87–100 (cit. on p. 34).

[Myt+09] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney.
“Producing wrong data without doing anything obviously wrong!” In: Proceed-
ings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2009, Washington, DC, USA, March
7-11, 2009. Ed. by Mary Lou Soffa and Mary Jane Irwin. ACM, 2009, pp. 265–276
(cit. on pp. 65, 67).

[Noe+09] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de
Supinski. “ScalaTrace: Scalable compression and replay of communication traces
for high-performance computing”. In: Journal of Parallel and Distributed Comput-
ing 69.8 (Aug. 2009), pp. 696–710 (cit. on p. 82).

[Now+15] T. Nowatzki, J. Menon, C. H. Ho, and K. Sankaralingam. “Architectural Simula-
tors Considered Harmful”. In: IEEE Micro 35.6 (Nov. 2015) (cit. on p. 33).

[ODL14] Anne-Cécile Orgerie, Marcos Dias de Assunção, and Laurent Lefèvre. “A Survey
on Techniques for Improving the Energy Efficiency of Large-Scale Distributed
Systems”. In: ACM Computing Surveys (CSUR) 46.4 (2014) (cit. on pp. 89–91).

[OPF10] Simon Ostermann, Radu Prodan, and Thomas Fahringer. “Dynamic Cloud
Provisioning for Scientific Grid Workflows”. In: Proc. of the 11th ACM/IEEE Intl.
Conf. on Grid Computing (Grid). Oct. 2010 (cit. on p. 33).

[Pad+14] Edson L. Padoin, Marcio Castro, Laercio L. Pilla, Philippe O. A. Navaux, and
Jean-Francois Mehaut. “Saving energy by exploiting residual imbalances on
iterative applications”. In: 2014 21st International Conference on High Performance
Computing (HiPC). IEEE, Dec. 2014 (cit. on pp. 119, 129, 130).

[QRT11] Martin Quinson, Cristian Rosa, and Christophe Thiery. “Parallel Simulation
of Peer-to-Peer Systems”. In: CCGrid 2012 – The 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing. CCGRID ’12 Proceedings of
the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Ottawa, Canada: IEEE, May 2011, pp. 668–675 (cit. on p. 139).

[R C16] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2016 (cit. on pp. 71, 72).

146 Bibliography

[Raj+16] Nikola Rajovic, Alejandro Rico, Filippo Mantovani, et al. “The Mont-Blanc
Prototype: An Alternative Approach for HPC Systems”. In: SC16: International
Conference for High Performance Computing, Networking, Storage and Analysis. IEEE,
Nov. 2016 (cit. on p. 25).

[Ren12] Paul Renaud-Goud. “Energy-aware scheduling : complexity and algorithms”.
Theses. Ecole normale supérieure de lyon - ENS LYON, July 2012 (cit. on p. 89).

[Rou+09] Barry Rountree, David K. Lownenthal, Bronis R. de Supinski, et al. “Adagio”.
In: Proceedings of the 23rd international conference on Conference on Supercomputing
- ICS ’09. ACM Press, 2009 (cit. on pp. 2, 115, 116, 119, 120, 129, 134).

[Sch+12] Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik. “A Multi-
Language Computing Environment for Literate Programming and Reproducible
Research”. In: Journal of Statistical Software 46.3 (2012) (cit. on p. 71).

[Sho+17] Hayk Shoukourian, Torsten Wilde, Detlef Labrenz, and Arndt Bode. “Using
Machine Learning for Data Center Cooling Infrastructure Efficiency Prediction”.
In: 2017 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, May 2017 (cit. on pp. 1, 3, 33, 89).

[Sna+02] Allan Snavely, Laura Carrington, Nicole Wolter, et al. “A Framework for Per-
formance Modeling and Prediction”. In: Proc. of the ACM/IEEE Conference on
Supercomputing. Baltimore, MA, Nov. 2002 (cit. on p. 34).

[Sta15] Luka Stanisic. “A Reproducible Research Methodology for Designing and Con-
ducting Faithful Simulations of Dynamic HPC Applications”. 2015GREAM035.
PhD thesis. 2015 (cit. on p. 58).

[Ter+10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Collecting
Performance Data with PAPI-C”. In: Tools for High Performance Computing 2009.
Springer Berlin Heidelberg, 2010, pp. 157–173 (cit. on p. 59).

[Tes+18] Rafael Keller Tesser, Lucas Mello Schnorr, Arnaud Legrand, et al. “Performance
modeling of a geophysics application to accelerate over-decomposition param-
eter tuning through simulation”. In: Concurrency and Computation: Practice and
Experience (Oct. 2018), e5012 (cit. on pp. 61, 108, 109, 118, 126).

[Tig+12] Michael Tighe, Gaston Keller, Michael Bauer, and Hanan Lutfiyya. “DCSim: a
data centre simulation tool for evaluating dynamic virtualized resource man-
agement”. In: Int. Conf. on Network and Service Management. 2012 (cit. on p. 33).

[TOR+17] Sunao TORII, Hitoshi ISHIKAWA, Yasuyuki KIMURA, and Motoaki SAITOH.
“Technologies and Future Prospects of Green Supercomputer ZettaScaler”. Japanese.
In: C 100.11 (2017). Document in Japanese, pp. 537–544 (cit. on pp. 26, 27).

[Val90] Leslie G. Valiant. “A bridging model for parallel computation”. In: Communica-
tions of the ACM 33.8 (Aug. 1990), pp. 103–111 (cit. on p. 107).

[Vel+13a] Pedro Velho, Lucas Mello Schnorr, Henri Casanova, and Arnaud Legrand. “On
the Validity of Flow-level TCP Network Models for Grid and Cloud Simula-
tions”. In: ACM Trans. Model. Comput. Simul. 23.4 (Dec. 2013) (cit. on p. 33).

[Vel+13b] Pedro Velho, Lucas Schnorr, Henri Casanova, and Arnaud Legrand. “On the
Validity of Flow-level TCP Network Models for Grid and Cloud Simulations”.
In: ACM Transactions on Modeling and Computer Simulation 23.4 (Oct. 2013) (cit. on
pp. 43, 53).

Bibliography 147

[Vie10] Jérôme Vienne. “Prédiction de performances d’applications de calcul haute
performance sur réseau Infiniband”. Theses. Université de Grenoble, July 2010
(cit. on p. 53).

[Wil18] Torsten Wilde. “Assessing the Energy Efficiency of High Performance Comput-
ing (HPC) Data Centers”. PhD thesis. Technical University Munich, Germany,
2018 (cit. on p. 33).

[WPD01] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated empirical
optimizations of software and the ATLAS project”. In: Parallel Computing 27.1-2
(Jan. 2001), pp. 3–35 (cit. on p. 31).

[Yas+19] Ryota Yasudo, Michihiro Koibuchi, Koji Nakano, Hiroki Matsutani, and Hide-
haru Amano. “Designing High-Performance Interconnection Networks with
Host-Switch Graphs”. In: IEEE Transactions on Parallel and Distributed Systems
30.2 (Feb. 2019), pp. 315–330 (cit. on p. 37).

[ZKK04] Gengbin Zheng, Gunavardhan Kakulapati, and Laxmikant Kale. “BigSim: A
Parallel Simulator for Performance Prediction of Extremely Large Parallel Ma-
chines”. In: Proc. of the 18th IPDPS. 2004 (cit. on p. 34).

Webpages

[DEL] DELL. Dell OpenManage Deployment Toolkit Version 4.4 Command Line Interface
Reference Guide. URL: https://www.dell.com/support/manuals/fr/
fr/frbsdt1/dell-opnmang-dplymnt-toolkit-v4.4/dtk_cli-v3/-

memopmode-memoperatingmode (visited on Mar. 16, 2019) (cit. on p. 66).

[Ead16] Doug Eadline. Network Co-design as a Gateway to Exascale. Sept. 2016. URL: https:
//insidehpc.com/2016/09/network-co-design-as-a-gateway-

to-exascale (visited on Jan. 25, 2019) (cit. on p. 23).

[For] MPI Forum. MPI Forum. URL: https://www.mpi-forum.org/ (visited on
Apr. 2, 2019) (cit. on p. 15).

[Huf18] Jennifer Huffstetler. Intel Processors and FPGAs - Better Together. May 2018. URL:
https://itpeernetwork.intel.com/intel- processors- fpga-

better-together/ (visited on Mar. 16, 2019) (cit. on p. 28).

[Inc] The Khronos Group Inc. OpenCL Overview - The Khronos Group Inc. URL: https:
//www.khronos.org/opencl/ (visited on Apr. 2, 2019) (cit. on p. 11).

[Kal17] Kalray. Kalray announces the release of its third-generation MPPA® processor “Coolidge”.
May 2017. URL: https://www.kalray.eu/release-of-third-generation-
mppa-processor-coolidge/ (visited on Mar. 16, 2019) (cit. on p. 27).

[Kid08] Taylor Kidd. Mar. 2008. URL: https://software.intel.com/en-us/
blogs/2008/03/27/update-c-states-c-states-and-even-more-

c-states/ (visited on Jan. 30, 2019) (cit. on p. 91).

[NVI] NVIDIA. CUDA Zone | NVIDIA Developer. URL: https://developer.nvidia.
com/cuda-zone (visited on Apr. 2, 2019) (cit. on p. 11).

148 Bibliography

https://www.dell.com/support/manuals/fr/fr/frbsdt1/dell-opnmang-dplymnt-toolkit-v4.4/dtk_cli-v3/-memopmode-memoperatingmode
https://www.dell.com/support/manuals/fr/fr/frbsdt1/dell-opnmang-dplymnt-toolkit-v4.4/dtk_cli-v3/-memopmode-memoperatingmode
https://www.dell.com/support/manuals/fr/fr/frbsdt1/dell-opnmang-dplymnt-toolkit-v4.4/dtk_cli-v3/-memopmode-memoperatingmode
https://insidehpc.com/2016/09/network-co-design-as-a-gateway-to-exascale
https://insidehpc.com/2016/09/network-co-design-as-a-gateway-to-exascale
https://insidehpc.com/2016/09/network-co-design-as-a-gateway-to-exascale
https://www.mpi-forum.org/
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://itpeernetwork.intel.com/intel-processors-fpga-better-together/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.kalray.eu/release-of-third-generation-mppa-processor-coolidge/
https://www.kalray.eu/release-of-third-generation-mppa-processor-coolidge/
https://software.intel.com/en-us/blogs/2008/03/27/update-c-states-c-states-and-even-more-c-states/
https://software.intel.com/en-us/blogs/2008/03/27/update-c-states-c-states-and-even-more-c-states/
https://software.intel.com/en-us/blogs/2008/03/27/update-c-states-c-states-and-even-more-c-states/
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone

[Off17] German Federal Statistic Office. 2017. URL: https://www.destatis.de/DE/
ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/MaterialEnergiefluesse/

Tabellen/StromverbrauchHaushalte.html (visited on Mar. 16, 2019)
(cit. on p. 23).

[Rad] Netherlands Institute for Radio Astronomy. UniBoard I and II. URL: https:
//www.astron.nl/r-d-laboratory/uniboard/uniboard-i-and-ii

(visited on Mar. 16, 2019) (cit. on p. 27).

[Tea] The SimGrid Team. Publications. URL: https://simgrid.org/Publications.
html (visited on Apr. 1, 2019) (cit. on pp. 37, 38).

[Tea12] The Grid’5000 Team. File:Lyon net.png - Grid5000. Nov. 2012. URL: https://
www.grid5000.fr/w/File:Lyon_net.png (visited on Apr. 1, 2019) (cit. on
p. 66).

[Tea19] The SimGrid Team. SimGrid [Jenkins]. Feb. 2019. URL: https://ci.inria.
fr/simgrid/job/SimGrid/ (visited on Feb. 8, 2019) (cit. on p. 41).

Webpages 149

https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/MaterialEnergiefluesse/Tabellen/StromverbrauchHaushalte.html
https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/MaterialEnergiefluesse/Tabellen/StromverbrauchHaushalte.html
https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/MaterialEnergiefluesse/Tabellen/StromverbrauchHaushalte.html
https://www.astron.nl/r-d-laboratory/uniboard/uniboard-i-and-ii
https://www.astron.nl/r-d-laboratory/uniboard/uniboard-i-and-ii
https://simgrid.org/Publications.html
https://simgrid.org/Publications.html
https://www.grid5000.fr/w/File:Lyon_net.png
https://www.grid5000.fr/w/File:Lyon_net.png
https://ci.inria.fr/simgrid/job/SimGrid/
https://ci.inria.fr/simgrid/job/SimGrid/

List of Figures

1.1 The energy bill for data centers has drastically increased since the early
2000s, making energy savings an important goal for hardware vendors
and application developers. This statistic shows the increase of the
Germany-based Leibniz-Rechenzentrum [Sho+17, Figure 1]. 3

2.1 A domain decomposition of rocky ground used for an earthquake
simulation with Ondes3D. The physical domain is cut into cuboids
which are evenly assigned to processors. 6

2.2 A visual representation of the cache hierarchy and sizes of a worksta-
tion laptop as obtained through hwloc-ls. 9

2.3 A visual representation of the cache hierarchy and sizes of a node as
obtained through hwloc-ls. 10

2.4 Several classic network topologies. Shown are: (a) fully connected net-
work, (b) ring, (c) mesh, (d) torus, (e) hypercube and (f) fat-tree [CLR08,
Figure 3.1]. 14

2.5 An illustration of (simulated) cellular flames where temperatures differ
locally due to differences in burning velocity. The right picture high-
lights that parts of the flame can have highly irregular shapes and can
be detached from the rest [Day+09]. 21

2.6 Development of the Top500 list over time and extrapolation for the
near future. From www.top500.org 24

2.7 Visualization of nodes allocated to a job running on BlueWaters 3D-
torus topology. Obtained through private communication from Greg
Bauer. 29

4.1 Impact of the SimGrid project per year, measured by the amount of
citations (red), papers detailing new components/modules of the Sim-
Grid project (blue) and scientific work that uses SimGrid as a tool for
research (green) [Tea]. 38

4.2 Overview over legacy SimGrid components. 39

4.3 Highlevel overview over SimGrid 4. Only the new S4U layer can
communicate with the kernel. 39

4.4 Overview of used platforms and essential configurations for building
and testing SimGrid as used on 2019-02-08 [Tea19]. 41

151

www.top500.org

4.5 SimGrid’s models simplify real-life network usage by ignoring the
bandwidth adjustment phase in the beginning and when a new mes-
sage enters the network, it reduces the bandwidth immediately, with-
out going through another adjustment phase. 44

4.6 A simple platform, taken from SimGrid’s collection of examples, called
onelink.xml. Two hosts with 1 Gflop/s and one link with 25 ms
latency and 1 GB/s are declared. This link is furthermore used to
connect both hosts. 45

4.7 Faithful prediction of MPI applications requires to account for message-
size dependent protocol and mode changes. By calibrating our cluster
through a series of experiments [Deg+17], we determined that on this
particular cluster and MPI implementation five main modes (each
colored differently) with sometimes significant differences exist. 54

4.8 The (shortened) calibration output obtained for the Grid5000 taurus
cluster that serves as input to SimGrid. Note that the last value
of smpi/or and smpi/os shows values that are 0: These are cor-
rect, since these messages will be sent synchronously (as defined
smpi/send-is-detached-thres) and the entire cost is hence al-
ready accounted for. 55

4.9 An example of a Time Independent Trace for a single rank. The first
column denotes the rank id and the second column the action, each
with their own parameters (e.g., flop for the compute action or receiver,
tag, message size and data type for the isend operation) 55

5.1 Factors that can have an impact on the performance of an HPC appli-
cation. 64

5.2 In Lyon, several cluster are connected to the same switch, which is why
we reserved all of them except for the service networks and machines
(due to lack of permissions) [Tea12]. 66

5.3 Different load and different core configurations can change the energy
consumption significantly. In the beginning, 12 cores experience 80 %
load, the second plateau represents 100 % load. For the third measure-
ment, the CPU’s turbo mode was enabled and for the last measurement,
hyperthread was enabled as well. Note that the drops to around 100 W
are short breaks in between the measurements and the system was idle.
These tests were executed with FIRESTARTER [Hac+13] on 2018/08/13
from 11:15:00am to 11:20:00am on taurus-6. 68

6.1 Excerpt of the NAS LU-PB (exchange_1.f) highlighting code regions
between any two MPI calls. 77

6.2 Trace merging process used for the NAS-LU benchmark to compute
region-based speedup/slowdown factors and correct the simulation. . 78

152 List of Figures

6.3 Comparison of calibrated (blue) and uncalibrated (green) runs of LU
with real experiments (red) and ideal scaling (grey). 79

7.1 Intra-node communications can rely on different protocols than inter-
node communications. To calibrate the loopback link, we executed
the same calibration procedure as for inter-node communications (see
Figure 4.7 on page 54). As can be seen, there is signifcantly less jitter
for local communications than for inter-node communications. We
furthermore found that small messages were sent faster over network
links than shared memory since the send operation was executed asyn-
chronously for remote destinations. For large messages, the loopback
was almost an order of magnitude faster which is expected due to the
much faster bandwidth. 84

7.2 HPL does not exploit locality and therefore, only the single-node exe-
cution is largely overestimated when the loopback link remains config-
ured with the same speed as the more than four times slower network.
. 86

7.3 When executed on only one node, HPL’s performance is influenced by
loopback bandwidth: A thousandfold increase to 5.12 TB/s reduces
the runtime by almost 5 s (from 76.64 s to 71.61 s) whereas lowering
the bandwidth to around two-third (3.2 GB/s) causes the runtime to
be overestimated (with a total of 77.8 s). When executed on more than
one node, local communication becomes less important and hence the
impact of these settings is not noticeable. 87

8.1 We measured idle power on every machine (here: taurus-1) for ten
minutes per frequency and active cores. These measurements were
repeated three times and no-earlier than 3 weeks after the previous
measurement. Note that the y-axis begins at 85 W. The variation per
core-count is therefore minimal and on the order of about 1 W. 92

8.2 Changing the frequency while keeping the load constant causes the
consumed energy to grow quadratically. The energy that is required to
keep an idling node on (despite all energy-efficiency measures, such as
C-states), is additionally shown here as Pidle. 93

8.3 Varying the number of cores while keeping the workload constant
(NAS-EP, class C) reveals a linear connection between load and power
consumption. Note that not all frequencies are shown in this figure
to reduce overplotting. The energy that is required to keep an idling
node on (despite all energy-efficiency measures, such as C-states), is
shown here as Pidle. 94

8.4 Power consumption over time when running NAS-EP, NAS-LU, HPL
or idling (with 12 active cores and the frequency set to 2300 MHz). . . . 95

List of Figures 153

8.5 Comparison of two idle power measurements. The first one was exe-
cuted in 2014 by Alexandra Carpen-Amarie and Sascha Hunoldt, the
one in 2016 by me. The frequency was fixed at 2300 MHz for the used
nodes. In this plot, the y-axis starts at around 90 W s to highlight the
differences, especially for taurus-12. 96

8.6 Power consumption for a single node when polling via MPI_Iprobe.
The distinct growing phases represent one frequency, ranging from
2300 MHz to 1300 MHz, and 1 to 12 cores. When the second CPU gets
activated, a jump is recognizable, especially for the highest frequency. . 97

8.7 A sample configuration for the taurus-8 node. The configured work-
load here is the EP benchmark and corresponds to the linear regression
of Figure 8.3 . For each frequency, three values are provided: the idle
power Pidle, the power consumption when the workload is executed
on a single core and the power consumption when the workload is
executed on all cores. SimGrid allows the user to configure the energy
that the node consumes when it is turned off through the "watt_off"
option. 98

8.8 The validity of this model was tested with three popular benchmarks:
NAS-EP, NAS-LU, and HPL. The taurus cluster was used with up to
12 nodes and 12 processes per node. 100

8.9 Comparison of predicted energy usage of HPL with and without ac-
counting for the additional energy consumption of MPI_Iprobe calls. . 101

8.10 Comparison of predicted energy usage of NAS-EP when using only
one or an individual power model for all simulated nodes. 101

8.11 Time- and energy-to-solution extrapolated for two different matrix
sizes with up to 256× 12 = 3, 072 MPI processes, interconnected by a
fat-tree topology. Once a threshold is reached, adding more nodes does
not yield faster performance but only increased energy consumption. . 103

9.1 Illustration of the spatial load imbalance encountered during the first it-
eration of a run with 16×16 = 256 processes on the Ligurian workload.
The imbalance consists of high load on the border, as more conditions
have to be checked, and weaker but varying load (visualized by blue
shades) in the interior that depends on the rock geology. The load
imbalance is therefore workload dependent [Tes+18, Figure 2 (a)]. . . 108

9.2 The evolution of the temporal load imbalance for 8× 8 = 64 processes
on the Ligurian workload [Tes+18, Figure 2 (b)]. 109

9.3 Reducing the frequency can save energy when power during idle times
is counted as well. This is even the case when the finishing time is
pushed back (here: running at reduced frequency takes 1.9166s as
opposed to the 1.8s including idle time). 110

154 List of Figures

9.4 It is possible to save energy without introducing a delay by overlapping
idle time with computations. 111

9.5 Alternating between the highest frequency and the idle state (repre-
sented by frequency “0”) consumes more power than running at a
reduced frequency (with the same finishing time). The power data was
obtained by actual measurements of NAS-LU. 114

9.6 Using Adagio with Ondes3D works for about 15 iterations, after which
even the most loaded host taurus-16 starts to slow down. 118

9.7 Around the 85th iteration of the Chuetsu earthquake scenario (with
16 processes) even the last (and most loaded) node taurus-16 enters
the lowest pstate. The vertical lines help to distinguish the start and
end of each iteration. 119

10.1 On the Stampede supercomputer, one “slow” and one “fast” mode
seem to exist for MPI_Recv and MPI_Send (depicted) calls, making
faithful simulation very difficult. Figure obtained from Tom Cornebize. 135

List of Figures 155

List of Tables

4.1 Exhaustive list of all currently by SimGrid supported contexts, i.e.,
mechanisms to virtualize user code . 46

4.2 SMPI implements several algorithms for each collective operations to
allow users to simulate their MPI runtime more closely. 47

5.1 Even though all machines were provisioned with identical hardware,
their bios settings proved to be different. This table illustrates the
different results we obtained when testing for memory performance
through the mbw benchmark on 2016-08-12. 66

5.2 This (arbitrary) excerpt from /proc/interrupts shows how inter-
rupts were not correctly re-balanced when disabling all cores (except
for CPU0) and then immediately re-activating them. As can be seen,
CPU0 handles almost all interrupts exclusively (the interrupts han-
dled by other cores were handled before the cores were disabled and
re-activated) continued to almost exclusively handle all interrupts,
resulting in a performance degradation. 69

8.1 An entire execution of NAS-LU (class C) on a single node with 12 cores,
broken down by the time spent with each possible load factor and the
percentage relative to the total execution time of 81.336 s. 105

9.1 Power consumption for the CPU-bound toy benchmark NAS-EP with
one process per core (i.e., the machine operates under full load) as mea-
sured on taurus-7 during our energy calibration. The scaled values
are always scaled with regards to the fastest frequency (2300 MHz). On
this machine, choosing lower frequencies on a fully-loaded machine is
highly inefficient and results in significant power loss. 110

9.2 Total idle time of all nodes when using the performance governor
(Chuetsu, 300 iterations, 16 processes). Total runtime was 339.74 s . . . 127

9.3 Makespan and energy predictions we obtained when using several
governors with the Chuetsu scenario (300 iterations, 16 processes). . . 127

9.4 Total idle time of all nodes when using our proposed Lagrange gover-
nor. Total runtime: 340.14 s. (Chuetsu, 300 iterations, 16 processes) . . . 128

9.5 Our improved version of Adagio manages to reduce idle time signifi-
cantly. Total runtime: 340.12 s. (Chuetsu, 300 iterations, 16 processes) . 129

157

9.6 The ondemand governor does not significantly reduce idle times. Total
runtime: 339.75 s. (Chuetsu, 300 iterations, 16 processes) 130

9.7 The conservative governor does not significantly reduce idle times and
yields for almost all nodes worse results than the ondemand governor,
with the exception of taurus-6,7,10,11. Total runtime: 339.75 s.
(Chuetsu, 300 iterations, 16 processes) 131

9.8 Comparison of makespan and energy estimates when load balancing
is used with the performance governor. GreedyLBk means that every
k iterations, GreedyLB is called. (Chuetsu, 300 iterations, 64 processes) 132

9.9 Idle times when using the GreedyLB heuristic every 10 iterations. Total
runtime was 267.95 s. (Chuetsu, 300 iterations, 16 processes) 132

158 List of Tables

List of Abbreviations

ABFT Algorithm-Based Fault Tolerance, page 23

AMPI Adaptive MPI, page 119

AVX Advanced Vector Extensions, page 9

BRGM French Geological Survey, page 109

CC-State Core C-State, page 93

CTS Clear To Send, page 52

DVFS Dynamic Voltage Frequency Scaling, page 92

DVFS Dynamic Voltage Frequency Scaling, page 109

FDM Finite Differences Method, page 109

HPC High-Performance Computing, page 1

HPC High-Performance Computing, page 5

ILP Instruction Level Parallelism, page 9

LC-State Logical C-State, page 93

LMM Linear MaxMin Model, page 39

159

MKL Math Kernel Library, page 17

MPI Messager Passing Interface, page 16

NoC Network On Chip, page 30

OpenCL Open Compute Language, page 17

OpenMP Open Multi-Processing, page 17

PC-State Processor C-State, page 93

RL Real-Life, page 77

RTS Ready To Send, page 52

TI / TIT Time Independent (Trace), page 53

ULFM User Level Fault Mitigation, page 22

160 List of Tables

List of Tables 161

	Cover
	1 Introduction
	2 Context
	2.1 High Performance Computing (Until) Today
	2.1.1 Scientific Applications in a Nutshell
	2.1.2 Architectures: Computation
	2.1.3 Architectures: Communication
	2.1.4 Programming paradigms

	2.2 High Performance Computing Tomorrow: Exascale Computing
	2.2.1 Applications
	2.2.2 Architectures: Computation
	2.2.3 Architectures: Communication
	2.2.4 Programming Paradigms

	2.3 Conclusion

	3 Related Work
	3.1 Simulation Based Performance and Energy Prediction
	3.2 Conclusion

	4 The SimGrid Project
	4.1 Overview of the SimGrid Project
	4.1.1 History and Impact
	4.1.2 Software Architecture
	4.1.3 Software Engineering

	4.2 A General Introduction to SimGrid
	4.2.1 Modeling Virtual Resources
	4.2.2 Modeling Applications

	4.3 SMPI: Simulating MPI Applications
	4.3.1 Emulation of MPI code
	4.3.2 Modeling of MPI Communications
	4.3.3 Scalability

	4.4 Runtime Support (StarPU-SimGrid): Simulating Dynamic GPU-based Applications
	4.5 Contributions to the SimGrid Project
	4.5.1 Platform description
	4.5.2 PAPI support
	4.5.3 Privatization
	4.5.4 Energy plugin
	4.5.5 DVFS plugin
	4.5.6 Load Balancing

	5 Experimental Methodology
	5.1 Experimental Setup
	5.2 Factors Influencing the Experimental Results
	5.2.1 Hardware
	5.2.2 Date
	5.2.3 Operating System / Software Stack
	5.2.4 Kernel
	5.2.5 Application
	5.2.6 Execution
	5.2.7 Output
	5.2.8 Data Analysis

	5.3 Network Calibration
	5.3.1 Network
	5.3.2 Hardware Limitations

	6 Contribution: Modeling Multi-Core CPUs
	6.1 Problem
	6.2 Proposed Solution
	6.3 Performance Evaluation / Effectiveness
	6.4 Limitations
	6.4.1 Technical limitations
	6.4.2 Scaling limitations
	6.4.3 Future Work

	7 Contribution: Modeling Intra-Node Communications
	7.1 Problem
	7.2 Solution
	7.3 Performance Evaluation / Effectiveness
	7.4 Limitations

	8 Contribution: Modeling Multi-Core CPU Power Consumption
	8.1 Problem
	8.2 Proposed Solution
	8.2.1 Calibrating the Energy Consumption
	8.2.2 Predicting the Energy Consumption with SimGrid

	8.3 Performance Evaluation/Effectiveness
	8.4 Use Case: Capacity Planning for HPL
	8.5 Limitations
	8.5.1 Model Limitations
	8.5.2 Experimental Limitations

	8.6 Conclusions

	9 Contribution: Optimizing the Power Consumption With DVFS
	9.1 Context
	9.1.1 Iterative Applications
	9.1.2 DVFS, a Means to Reduce the Power Consumption of HPC Applications

	9.2 Related Work
	9.2.1 Adagio (Application Level DVFS)
	9.2.2 Load Balancing with Adaptive MPI (AMPI)
	9.2.3 Residual Load Imbalance

	9.3 Contributions
	9.3.1 DVFS Governor: AdagioImproved
	9.3.2 DVFS Governor: Lagrange

	9.4 Performance Evaluation/Effectiveness
	9.4.1 DVFS/Adagio/AdagioImproved/Lagrange
	9.4.2 Efficiency Comparison DVFS / Load Balancer

	9.5 Limitation and Future Work
	9.5.1 Unavailable Frequencies and More Complex Architectures
	9.5.2 Current Limitations of Our Implementation

	9.6 Conclusions

	10 Conclusion and Future Work
	10.1 Thesis Summary
	10.2 Limitations
	10.2.1 Model Limitations
	10.2.2 Application Limitations
	10.2.3 Experimental Limitations

	10.3 Future Work
	10.3.1 Extending the Work of this Thesis
	10.3.2 SimGrid
	10.3.3 Joint Work with the SimGrid Userbase

	Bibliography

