N

N

Modeling, Prediction and Optimization of Energy
Consumption of MPI Applications using SimGrid

Franz Heinrich

» To cite this version:

Franz Heinrich. Modeling, Prediction and Optimization of Energy Consumption of MPI Applica-
tions using SimGrid. Modeling and Simulation. Université Grenoble Alpes, 2019. English. NNT:
2019GREAMO18 . tel-02269894

HAL Id: tel-02269894
https://theses.hal.science/tel-02269894

Submitted on 9 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-02269894
https://hal.archives-ouvertes.fr

| Communauté
& UNIVERSITE Grenoble Alpes

THESE
Pour obtenir le grade de

DOCTEUR DE LA ,
COMMUNAUTE UNIVERSITE GRENOBLE ALPES

Spécialité : Informatique

Arrété ministériel : 25 mai 2016

Présentée par

Franz Christian HEINRICH

Thése dirigée par Arnaud LEGRAND, CNRS

préparée au sein du Laboratoire d’Informatique de Grenoble
dans I’Ecole Doctorale Mathématiques, Sciences et technologies de
Iinformation, Informatique

Modélisation, prédiction et optimisation de la con-
sommation énergétique d’applications MPI a I'aide
de SimGrid

Modeling, Prediction and Optimization of Energy
Consumption of MPI Applications using SimGrid

Theése soutenue publiquement le 21 mai 2019,
devant le jury composé de :

Amina GUERMOUCHE

Maitresse de Conférences, Télécom SudParis, France, Examinatrice
Laurent LEFEVRE

Chargé de Recherche, Inria / ENS de Lyon, France, Rapporteur
Jean-Francois MEHAUT

Professeur, Université Grenoble-Alpes, France, Président

Martin SCHuULZ

Professeur, Technische Universitat Minchen, Allemagne, Rapporteur
Arnaud LEGRAND

Directeur de Recherche, LIG, CNRS, France, Directeur de thése

Abstract

The High-Performance Computing (HPC) community is currently undergoing
disruptive technology changes in almost all fields, including a switch towards
massive parallelism with several thousand compute cores on a single GPU or
accelerator and new, complex networks.

The energy consumption of these machines will continue to grow in the future,
making energy one of the principal cost factors of machine ownership. This explains
why even the classic metric "flop/s", generally used to evaluate HPC applications
and machines, is widely regarded as to be replaced by an energy-centric metric
"flop/watt".

One approach to predict energy consumption is through simulation, however,
an accurate simulation of the system is crucial to estimate the energy faithfully.
In this thesis, we contribute to the performance and energy prediction of HPC
architectures. We propose an energy model which we have implemented in the open
source SimGrid simulator. We validate this model by carefully and systematically
comparing it with real experiments. We leverage this contribution to both evaluate
existing and propose new DVES governors that are designed to suit the HPC
context.

Résumé

La communauté du calcul haute performance (HPC) est actuellement en pleine
mutation, avec des évolutions technologiques majeures telles que le parallélisme
massif apporté par des milliers de cceurs de calcul sur un seul accélérateur de type
GPU ou bien les réseaux d’interconnexion a tres haut débit.

La consommation d’énergie de ces machines est appelée a continuer a croitre dans
les années a venir, faisant de 1’énergie 1'un des principaux facteurs de cotit. Cela ex-
plique pourquoi la métrique classique "flop/s", généralement utilisée pour évaluer
les la performance des applications et des infrastructures HPC, est progressivement
remplacée par des métriques centrées sur 1'énergie comme le "flop /watt".

La simulation est une approche possible pour prédire la consommation d’énergie de
ces infrastructures. Cependant, il est nécessaire de mettre en place une simulation
tfidele du systéme pour obtenir une prédiction de performance fiable. Dans cette
thése, nous contribuons a la prédiction de la performance et de la consommation
énergétique des architectures HPC. Nous proposons un modéle d’énergie que nous
avons implémenté dans le simulateur open source SimGrid. Nous validons ce
modele avec soin en le comparant systématiquement avec des expériences réelles.
Nous utilisons cette contribution pour évaluer des algorithmes déja existant de
régulation de la fréquence afin de réduire la consommation énergétique et nous
proposons de nouveaux gouvernors DVFS spécialement congus pour le contexte
HPC.

Acknowledgements

As a student, I heard many stories from and about PhD students and how they
had to cope with working on a scientific project for years. Making this experience
myself was quite humbling, and I think it is reasonable to say that without the help
of many amazing people I would not have managed to achieve results I present
in this thesis. I therefore decided to dedicate more space than just the generic
one-page acknowledgements to the people that have helped and accompanied me
throughout my PhD because I believe that these people have absolutely deserved
it.

My Advisor

» Arnaud Legrand At some point during my thesis, Tom said, "After three years as
a PhD student, you have no respect left for your advisor." The contrary is true and
after 4.5 years of working with you, I find it suprisingly difficult to write these lines
because words cannot really convey what this fantastic journey with you means to
me personally.

Instead of going into details, I would like to express my admiration for you, not
only because of your scientific brilliance and rigor but also because of your great
leadership and proximity. I feel the deepest gratitude for all the time and effort
it took you to guide me in my endeavour (and the patience that I undoubtedly
tested numerous times along the way). Your kindness and politeness that you
exhibit when dealing with your PhD students and colleagues have impressed and
influenced me and clearly are one of the reasons why your PhD students sometimes
have to fight against all the other people that want to collaborate with you!

The PhD Committee

» Martin Schulz, Laurent Lefévre, Amina Guermouche and Jean-Francois Méhaut I
am truly honored that all of you, despite having a tight schedule on your own,

Vii

viii

accepted to review this manuscript and that you attended my defense. I also
highly appreciate your feedback on this work and the discussions that followed my

presentation.

My Team: POLARIS

» Tom Cornebize Be it on business trips or during a private weekend in Aix-les-
bains, I've enjoyed spending time with you. Even better, you have been the best
intern I have ever had (also the only one): autonomous, good ideas and great rigor.
I think your work is highly interesting and I hope you will find enough motivation
to keep this high standard!

» Vincent Danjean Thank you for sharing your huge knowledge of operating
systems / Debian with me - this has helped me in several cases quite significantly
with my research. I have been particularly impressed by the lesson you taught me
when you resolved a day-long bug hunt I was on in just a few minutes. Another
thing that impressed me is your millionaire’s cake. You surely could be one if you
started selling it! Thanks for the recipe!

» Augustin Degomme Your technical knowledge of SMPI is highly appreciated,
not only during several debugging sessions where you have helped me out. Thank
you for all your efforts and for being the witty, always friendly guy that you are!

» Nicolas Gast Thanks for telling me about the ADMM algorithm and hence
giving me a great idea for a DVFS manager! Also for being the funny, humble and

active person that you are. It was a pleasure to work with you!

» Bruno Gaujal Thanks to you, I can now say that I am somewhat able to under-
stand French people speaking with a slight accent from the south. Besides that, I
appreciate your humour but also your knowledge and enthusiasm!

» Florence Perronin Thanks for being there for the PhD students that seek help,
be it scientifically or personally, and your very pleasant company during breaks!

» Stéphan Plassart Even though you arrived only in late 2016, you quickly became
one of the closest colleagues and also a good friend. I don’t exaggerate when I say
that I was able to improve my French significantly thanks to your corrections and
patience during our lunch- and coffee-breaks. I'm glad you listened when things
were not working, answered questions on the French system, explained things you

are passionate about (or not. .. like the CVEC) and showed me Aix-les-bains. We

still need to play a first round of golf together soon!

» Annie Simon The POLARIS team members can consider themselves lucky to
have such a caring assistant. I have come to highly appreciate your humour and
talking to you was always a more-than-pleasant distraction from my scientific work.
You are truly the good soul of this team, and I hope that they get to work with you
for a long time to come!

» Lukas Schnorr Thank you for being a great friend and colleague! I have loved
and missed (after your departure) our discussions on reproducibility, experiments
and everything else. Getting to know you closer was a real pleasure and not only
your professionalism, deep understanding of your domain but also your kindness
towards others is what makes you a fantastic teacher. I hope we get to see each

other again rather sooner than later!

» Jean-Marc Vincent Thank you so much for your help with my presentation and
your comments on my work. This has undoubtedly prepared me for my defense. It
has always been a pleasure to discuss with you, not only because of your humble
character, but because you are so knowledgeable in so many fields and always

willing to share.

» Others 1 would like to thank all the other current and former members of PO-
LARIS (Guillaume Huard, Philippe Waille, Pedro Bruel, Bruno Donassolo, Vinicius
Garcia Pinto, Luca Stanisic, our interns and everyone I forgot) for the great time in
the lab!

POLARIS’s Twin-Team: DATAMOVE

The DATAMOVE team shares almost everything with POLARIS: The same corridor,
offices, food, events, ...

» Pierre-Francois Dutot Thanks for all the information you gave me on Hawaii

and wine tasting in France!

» Grégory Mounié Your explanations on OS concepts and your great new ideas on
how to debug seemingly unexplicable behaviors have helped me with my scientific
work. Additionally, even though my last rehearsal was very spontaneous, you
still took the time and helped me by asking great questions and pointing out what
remained unclear to you. Thanks for your support!

» Pierre Neyron Guten Tag! Surprisingly, you are the only member of our teams
that constantly claims to be the wrong person to talk to: You reject all blaming
when the internet access is broken or when the printer is malfunctioning. The
reason for this could be that you really are not the right person for this! When it
comes to Grid’5000, I can attest that you are not only the right person to talk to,
but even extremely helpful, especially when I needed something urgently. You
have solved numerous problems quickly and efficiently, and I applaud you here
for your CNRS award that you just won. Congrats! If there was another medal
for advice on sports / mountains or teaching PhD students nordic skiing, I would
highly recommend you for that one as well.

» Olivier Richard Unfortunately, we have never really worked together, but your
funny personality makes you a great person to have around. Thanks for all the
discussions, be it in the lab or on business trips!

» Julio Toss Thanks for helping me settle in Grenoble. Coming in, without
speaking any French, was quite unsettling but you have helped me to get started
here. It is very unfortunate that you had to leave in 2016 already, but I have not
forgotten our trips and our endless org-mode discussions!

» Brice Videau Thanks a lot for your help with the calibration procedures and
explaining the tools I needed to know for debugging. I hope that at some point, we
can work on a joint project together!

» Others I would like to thank everyone else, especially Fanny Dufossé, Bruno
Raffin, Denis Trystram, Frédéric Wagner but also Carmen Chan, Tristan Ezequel,
Adrien Faure, Nicolas Michon, Michael Mercier, Clement Mommessin, Baptiste
Pichot, Millian Poquet, Danilo Santos, Théophile Terraz and Salah Zrigui for the
great time in the lab. Every single one of you has helped me in one way or another
and made me laugh numerous times!

Scientific Collaborations

» Anne-Cécile Orgerie Thanks for your kindness and your willingness to con-
tribute with hands-on help and great advice on energy-related subjects! Working
with you has been very pleasant for me and I hope we will continue to work
together in the future.

» Professor Martin Quinson Thank you for hosting me for almost a month in
Rennes! Not only during my stay with you, but during the entirety of my thesis, I

have enjoyed your down-to-earth mentality, your humour, kindness and certainly
your helpfulness with SimGrid related issues.

» Sascha Hunoldt Your honesty and ambition is impressive and your comments
on my paper have helped me improve it for the second (and accepted) version.
I think that the scientific community needs more rigorous researchers like you.
Thank you for working with me!

» Frédéric Suter Thank you for all the comments and help with the SimGrid code
base. Your efforts and explanations have often saved me from hyperventilating!

Friends & Family

» My Family I would like to thank my family and in particular my parents for
their support and their help in various ways. It is highly appreciated!

» Jan-Philipp Kayser, Alexander Kruck, Hajo Trimborn Thank you all for your
friendship that cannot be put in a few sentences and the great time we always
spend together.

» Jeffrey Overbey All your advice, be it scientific or on grammar and writing,
has been highly valuable to me. Besides being a brilliant software engineer and
researcher, your company during our travels has been highly appreciated!

» Samantha Ho You have been there for me even during the roughest of times,
and your support has helped me so much. Thank you!

Infrastructure

» Grid’5000 Experiments presented in this thesis were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well as other organiza-

tions.

Xi

Contents

1 Introduction 1
2 Context 5
2.1 High Performance Computing (Until) Today 5
2.1.1 Scientific Applicationsina Nutshell 5
2.1.2 Architectures: Computation 7
2.1.3 Architectures: Communication 12
214 Programming paradigms, 14
2.2 High Performance Computing Tomorrow: Exascale Computing . . . 19
221 Applications L L 20
2.2.2 Architectures: Computation 23
2.2.3 Architectures: Communication 28
224 Programming Paradigms 30
23 Conclusion e 31
3 Related Work 33
3.1 Simulation Based Performance and Energy Prediction 33
32 Conclusion 35
4 The SimGrid Project 37
41 Overview of the SimGrid Project 37
411 HistoryandImpact., 37
4.1.2 Software Architecture, 38
41.3 Software Engineering, 40
4.2 A General Introduction to SimGrid 41
42.1 Modeling Virtual Resources 41
422 Modeling Applications, 45
4.3 SMPI: Simulating MPI Applications 46
43.1 Emulationof MPIcode. 47
432 Modeling of MPI Communications 52
433 Scalability 0 oo 53

4.4 Runtime Support (StarPU-SimGrid): Simulating Dynamic GPU-based
Applications 57
4.5 Contributions to the SimGrid Project 58

xiii

Xiv

45.1 Platform description
452 PAPIsupport
453 Privatization. e
454 Energyplugin
455 DVFESplugin.
456 LoadBalancing
5 Experimental Methodology
51 ExperimentalSetup o .
5.2 Factors Influencing the Experimental Results
521 Hardware
522 Date e
523 Operating System / Software Stack
524 Kernel
525 Application oo
526 Execution
527 Output
528 DataAnalysis
5.3 Network Calibration
531 Network
5.3.2 Hardware Limitations
Contribution: Modeling Multi-Core CPUs
6.1 Problem e
6.2 Proposed Solution.
6.3 Performance Evaluation / Effectiveness
6.4 Limitations
6.4.1 Technical limitations
6.4.2 Scaling limitations
643 FutureWork
Contribution: Modeling Intra-Node Communications
71 Problem e
72 Solution. e
7.3 Performance Evaluation / Effectiveness
74 Limitations e e e
Contribution: Modeling Multi-Core CPU Power Consumption
81 Problem e
8.2 Proposed Solution. 0 L.
8.2.1 Calibrating the Energy Consumption
8.2.2 Predicting the Energy Consumption with SimGrid
8.3 Performance Evaluation/Effectiveness

63
63
63
65
65
67
67
70
70
71
71
72
72
72

73
73
75
79
80
80
81
82

83
83
83
85
85

8.4 Use Case: Capacity Planning for HPL 101

8.5 Limitations e 102
8.5.1 Model Limitations 102
8.5.2 Experimental Limitations 104
8.6 Conclusions e 105
9 Contribution: Optimizing the Power Consumption With DVFS 107
9.1 Context @ . e e 107
9.1.1 Tterative Applications 107

9.1.2 DVFS, a Means to Reduce the Power Consumption of HPC
Applications L Lo Lo 109
9.2 RelatedWork e 115
9.21 Adagio (Application Level DVES) 115
9.2.2 Load Balancing with Adaptive MPI (AMPI). 117
9.2.3 Residual Load Imbalance 119
9.3 Contributions e 119
9.3.1 DVFS Governor: Adagiolmproved 120
9.3.2 DVFS Governor: Lagrange 122
9.4 Performance Evaluation/Effectiveness 126
9.4.1 DVFS/Adagio/Adagiolmproved/Lagrange 126
9.4.2 Efficiency Comparison DVFS / Load Balancer 128
9.5 Limitation and Future Work 129
9.5.1 Unavailable Frequencies and More Complex Architectures . . 129
9.5.2 Current Limitations of Our Implementation 130
9.6 Conclusions i i e e 131
10 Conclusion and Future Work 133
10.1 ThesisSummary o 133
10.2 Limitations e e e e 134
10.2.1 Model Limitations 134
10.2.2 Application Limitations 136
10.2.3 Experimental Limitations 136
10.3 Future Work e 137
10.3.1 Extending the Work of this Thesis 137
10.3.2 SIMGrid 138
10.3.3 Joint Work with the SimGrid Userbase 140

Bibliography 141

Introduction

Over the past few decades, High-Performance Computing (HPC) has supported
a great number of scientific discoveries in both academic and industrial contexts.
Today, a continuously growing number of researchers from largely different fields
have come to appreciate the computational power provided by supercomputers
for their studies of intricate and important questions that were often formerly in-
feasible, such as climate change or the molecular structure of human diseases. In
the industrial world, an increasingly fierce global competition and faster innova-
tion cycles require researchers and engineers to rely on complex simulations to
test and optimize products and materials in order to gain an advantage over the
competition.

Both worlds have in common that their science is often limited by the existing tech-
nology and algorithmic solutions that do not support computations at the desired
level of detail. Continuing the development of machines and algorithms is therefore
a necessity to provide researchers with the needed computational power. Today, the
race to exascale, i.e., the next generation of supercomputers, is in full swing. Alas,
to achieve a performance on the order of 1 x 108 flop/s sustainably, a disruptive
technology change in almost all fields, including hardware (computation units,
networks), software (e.g., batch schedulers) and user applications is required. With
a much greater number of computation cores, possibly in the hundreds of millions
or even billions, exascale machines are expected to deliver high performance at the
cost of a much higher power consumption than today’s machines. For this reason,
energy is expected to become the main optimization goal since power contributes
greatly to the total cost of operation. This can be easily understood when consider-
ing Germany as an example: 1 kW h was priced at 0.07 € in 2000 but has since more
than doubled and cost 0.157 € in 2016 [Sho+17, Chapter I]. Increasing electricity
prices in combination with growing machine sizes have caused power expenditures
to grow incessantly. This is illustrated in Figure 1.1, which compares the yearly
total electricity cost of the Leibniz-Rechenzentrum (LRZ) in Garching near Munich,
Germany, to the cost incurred by its HPC system.

To reduce future spendings on electricity or at least keep increases to an accept-
able minimum, efforts to improve power efficiency must be undertaken. With
the abovementioned cost for 1 kW h, a constant power reduction of 1 MW would

2

have saved 1,375,320 € in 2016 and even more today. It is therefore important to
improve general hardware efficiency but also to reconsider how these platforms
are used and programmed. Significant time is spent running tests on production
platforms and moving these tests away from the machines will improve system
efficiency (“science-per-watt”), but not necessarily the power consumption. It is
therefore an important goal to ensure that application developers rely on algorithms
that minimize power consumption, for instance by overlaping communication times
with computation or by reducing the amount of data movements through improved
data locality. Improving the flop/W ratio of an application is not trivial. Application
developers must therefore be provided with the right tools and lightweight models
that consider power efficiency [Don+11, p. 38].

One possible approach is the optimization and evaluation of applications through
simulation. Once the target platform has been modeled, a simulator can estimate
an application’s performance on that particular machine. This can help to move
away not only performance testing but also debugging, since a simulator can be
expected to return deterministic results and reproducing a bug can be easier. Be-
sides raw performance estimations, a simulator can also provide further beneficial
information, for example, when and where network bottlenecks (bandwidth, con-
gestion) occur. This can be particularly helpful with iterative developments of
next-generation machines through co-design, because application developers can
assess more quickly what recent developments mean for their application’s perfor-
mance whereas hardware developers can find out what changes (for example, to
the network configuration) could speed up targeted applications and what does
not (e.g., more nodes or a more expensive network topology).

This thesis contributes to the utility of simulation as a mean for building energy
efficient applications, with the core contribution being a deliberately simple energy
model. To test its accuracy, we implemented a prototype in SimGrid, a simulator
that is particularly well suited for faithful simulation of MPI applications thanks to
its well-tested network models. Our model computes the energy for every node
individually and uses the load of the multi-core processors of each node as a basis
for this estimation. The load changes often and the current energy consumption
is therefore often recomputed over the entire execution time of the application,
making precise performance predictions for applications running on multi-core
systems crucial to our approach.

With a well functioning energy model in place, we study in a second contribution
the potential (automatic) energy savings of adaptative MPI applications by chang-
ing a node’s frequency. We implemented several, rather simple governors from
the linux kernel but also a previously published application-space governor called
Adagio [Rou+09]. We present also some ideas to improve Adagio and finally de-

Chapter 1 Introduction

8 Mille

7 Mille
6 Mill € m HPC System
5 Mill € M LRZ Total
4 Mille
3 Mille
2 Mille ‘ ‘ ‘
1 Mill e
o wille -lﬂ“““
ﬂ&@ S 00“ Qe" Qo Qe 0“’ & '~9 S s Ny Q\f’ Qs“ Q«Z‘

Figure 1.1: The energy bill for data centers has drastically increased since the early 2000s,
making energy savings an important goal for hardware vendors and appli-
cation developers. This statistic shows the increase of the Germany-based
Leibniz-Rechenzentrum [Sho+17, Figure 1].

velop our own governor that is based on mathematical optimization. We eventually
conclude our study with a comparison to load balancing, which we found to yield
significant higher savings for irregular applications.

Thesis Structure

The remainder of this thesis is structured as follows: Chapter 2 presents the cur-
rent state of High-Performance Computing and the changes we need to reach a
sustainable exaflop-performance. The variety of components, the cost of operating
such a machine and the need of application developers to optimize their code for
each platform (and energy savings) motivates the work presented in this thesis.
Chapter 3 then gives an overview of the existing work, especially simulators devel-
oped by other projects. Our own simulator, SimGrid, is introduced in Chapter 4.
This chapter emphasizes especially SMPI, a simulator for MPI applications that
ships with SimGrid, and the issues that are inherent to “online emulation”. Our
methodology is outlined in Chapter 5. The first contribution, multi-core modeling
for SMP], is presented in Chapter 6. Inter-node communication has been validated
many times with SMPI, but intra-node communication requires some additional
effort. Our approach is explained in Chapter 7. Chapter 8 then finally deals with
the problem of energy prediction: A key strength of our proposed model, which
computes the energy consumption based on the current load, is its simplicity. Our
last contribution is presented in Chapter 9 and shows how we studied energy sav-
ings obtained through dynamic changes of frequency. This thesis is then concluded
by Chapter 10, which also presents future work.

Context

High-Performance Computing (HPC) platforms have been developed to satisfy
the demand for immense computing power. Adopted by a wide range of scientific
domains, HPC has always been subject to change but the evolution over the last

decade has been particularly far-reaching.

This chapter gives a general overview of HPC and is structured as follows: Sec-
tion 2.1 presents the current-state of HPC up to the petaflop-era. Subsequently,
Section 2.2 contrasts this with new requirements and developments for the next-
generation of HPC (called exascale).

2.1 High Performance Computing (Until) Today

2.1.1 Scientific Applications in a Nutshell

Not even half a century ago, computational cost caused many scientific problems
to be impenetrable, but the advent of computers has given researchers a new instru-
ment that has rendered many of these problems tractable, even though especially
the most demanding and challenging problems are limited to the most powerful
machines, and hence a small subset of all platforms, because only they can can
provide enough resources to satisfy these applications’ requirements.

Unsurprisingly, the HPC community consists of researchers from both academia
and industry and covers a large variety of fields, such as engineering (e.g., aero-
dynamics in aviation, material science), geology (oil exploration, earthquakes),
meteorology (weather forecasts), medicine (e.g., HIV, brain simulation), biology
(e.g., drought-resistance in plants, protein docking), or globally relevant questions
such as climate change.

These fields of interest contain profoundly different scientific problems that re-
quire computational power, but to investigate them, scientists use very similar
approaches: They commonly rely on simulations that model parts of reality with
the aid of discretized partial differential equations.

6

Figure 2.1: A domain decomposition of rocky ground used for an earthquake simulation
with Ondes3D. The physical domain is cut into cuboids which are evenly
assigned to processors.

As a consequence, the general structure of HPC applications is mostly regular: The
physical domain (i.e., the object of interest), known at the start, is first discretized,
i.e., decomposed into a finite amount of smaller elements with an easier geometric
shape (cubes, rectangles, ...). Figure 2.1 exemplifies this process with a decomposi-
tion into cuboids for a geological problem. Each cuboid is subsequently assigned
to a single processor. In a second step, each thus obtained element (part of the
initial problem) must be initialized, for instance from observations (e.g., geological
composition, depicted in different colors in Figure 2.1) or a random field. In the
final step, the simulation is started and computations are applied on a per-element

basis.

It is important to note that the resources required by steps two and three depend on
the application and the decomposition’s resolution. Consider a "relatively" coarse-
grained 1000 x 1000 x 1000 decomposition resolution, with each element containing
only five double values. Clearly, 5 x 10° values would have to be allocated and
initialized, consuming a total of 40 GB of memory. A refined resolution is normally
applied to all dimensions and so doubling the resolution will require 8 x 40 =
320 GB to be allocated.

The resource consumption can therefore explode easily. To mitigate this, the entire
domain is typically distributed over several machines (interconnected by a network).
With each machine storing just the fraction of the domain that it processes, regular
communication between machines in order to exchange data (such as computation
results) or for synchronization (if required) becomes inevitable.

The following discussion gives an overview on current HPC node hardware (Sec-
tion 2.1.2), network setup (Section 2.1.3) and the main programming paradigms for
HPC programming (Section 2.1.4).

Chapter 2 Context

2.1.2 Architectures: Computation

The scale of supercomputers with hundreds or thousands of nodes is too large to
be bought by single research entities such as research teams or university depart-
ments, even though these machines are normally already built with off-the-shelf
components for cost reasons. In most cases, government organizations such as the
NSF or the DoE in the U.S. finance the majority of the expenses required for acqui-
sition and maintenance of a supercomputer. Once the production phase has been
entered, access to the supercomputer is normally granted to selected researchers

after evaluation of their proposed project.

More often than not, HPC nodes are constructed to provide general computational
power to as many disciplines as possible and hence do not favor a specific kind
of computation over others. In some rare cases, however, supercomputers are
explicitly procured for and restricted to a very limited research field (such as
daily weather simulations). This restriction implies that application requirements
are rather well known in advance and specialization (leading to, e.g., increased

performance or lower energy consumption) can thus be justified.

The three generic computational units (CPU, GPU and Many-Core-Coprocessors)
found today in HPC nodes are presented in the following discussion.

CPU

CPUs are considered the "heart" of a computer and can be found in every PC, laptop
or server. Their development is a very costly undertaking and requires high-tech

knowledge in many fields, such as circuit design and manufacturing.

It is hence not surprising that most HPC systems rely on the well-known x86
architecture, as produced by Intel and AMD, for their main processors.

For several decades, processor frequency used to double every 18-24 months. Alas,
a processor’s power consumption grows quadratically with the frequency and as
a consequence, even limited clock speed increments quickly result in higher heat
dissipation and require more costly cooling to prevent damage. Vendors have for
this reason turned towards multiplying computation units, e.g., by adding several
CPUs to a node or adding more cores to a CPU. Having multiple computation units
in the same node means that they share the same address space and can access
an application’s data that is stored in the system’s main memory (RAM) directly,
without further transfer over a network.

2.1 High Performance Computing (Until) Today

8

Sharing the main memory between CPUs creates several side-effects: First of all,
transferring data from the main memory is very slow and often forces the CPU to
wait. To mitigate this, CPUs try to reduce RAM accesses by using a cache hierarchy
with different cache sizes and performances per level. Figure 2.2 (page 9) illustrates
the cache hierarchies of a commodity laptop bought in 2015 and Figure 2.3 (page 10)
a recent HPC node. One can distinguish in total 4 levels of caches:

The first level (L1) cache, exclusive to each core, is typically very fast but also very
small with only a few kB. The L1 cache exists for instructions (L1i) and for data
(L1d). The second level (L2) cache is still private to each core but its increased size
comes at a lower performance. While the L1 caches feature the same size for laptop
and HPC node, the L2 cache is already four times larger for each HPC-core than
for the laptop. Finally, the third level (L3) cache is shared between all cores of the
same CPU and can store several MB of data. The HPC node has an overall larger
L3 cache per CPU (22 MB vs. 8 MB), but at the same time it needs to serve in total
16 CPU cores and hence four times more than the corresponding laptop cache. It is
thus essential to keep this hierarchy when programming applications. Ensuring
both spatial and temporal locality helps to avoid costly cache misses.

All cores can access the main memory to read and write data independently of
each other. Therefore, data coherency must be guaranteed among all cores to avoid
computations with different values for the same variable. Updates to data stored in
RAM must hence trigger an invalidation of any corresponding cached copy. This
means that in the worst case, when all cores have a copy in their caches, writing a
single value back to RAM requires to broadcast the invalidation to all cache levels of
all cores. Consequently, CPU core count scalability is adversely impacted by larger
caches and most CPUs have therefore relatively few cores but very large caches,
even though the design of their hierarchy (including number and size of caches)

can vary.

Privileging caches over main memory greatly contributes to application perfor-
mance. Over the years, many intricate techniques that help with this have been
developed. Cache-prefetching, for instance, reduces the amount of direct memory
accesses and cache-misses by intelligently loading data from the main memory into
caches before it is actually required.

Unfortunately, even with good cache usage, waiting times for the processor can
still occur, for example, when a dependency on a not yet available result of another

operation exists.
Instruction Level Parallelism (ILP) aims to reduce waiting times by identifying

instructions that can be executed in parallel. Some ILP-based techniques are instruc-
tion pipelining, out-of-order execution or speculative execution. The introduction

Chapter 2 Context

Machine (31GB)

Package P#0
| L3 (8192KB) l
| L2 (256KB) l | L2 (256KB) l | L2 (256KB) l | L2 (256KB) l
| L1d (32KB) | | L1d (32KB) | | L1d (32KB) | | L1d (32KB) |
| L1i (32KB) | | L1i (32KB) | | L1i (32KB) | | L1i (32KB) |
Core P#0 Core P#1 Core P#2 Core P#3
PU P#0 PU P#2 PU P#4 PU P#6
PU P#1 PU P#3 PU P#5 PU P#7

Figure 2.2: A visual representation of the cache hierarchy and sizes of a workstation laptop
as obtained through hwloc-ls.

of HyperThreading has optimized this even further so that significant speed-ups in

the future are not to be expected.

Besides the instruction level, the data-level can be exploited for further paral-
lelism, typically through vectorization. The idea is that a single instruction (such
as addition or multiplication) must be applied to all vector coordinates. Several
extensions of the x86-architecture (e.g., legacy MMX, multiple versions of SSE and
the new standard Advanced Vector Extensions (AVX) and its different versions),
introduced supplementary registers and operations. The AVX-512 extension pro-
vides 32registers with 16 bit each. These can be used to hold 8single precision
or 4 double precision floating points. To take full advantage of vectorization, the
instruction (the operator to be applied) as well as the data must be identified. In
some cases, a compiler may be able to automatically determine the instructions
and data but data-dependencies are difficult to resolve with certainty, so a compiler
may or may not vectorize code correctly. In practice, this has largely remained the

programmer’s responsibility.

Vectorization is an important performance optimization for scientific applications,
as they are well-known to be often regular and therefore can profit frequently from

good vectorization.

A CPU’s performance is improved by several levels of parallelism (multi-CPU,
multi-core, instruction and data-level) and many on-chip features. CPUs are also
built to be backward compatible with legacy software (e.g., the new AVXis back-
wards compatible to SSE), so removing a once introduced feature is difficult.

CPUs have thus a very general nature that makes them well-suited for problems

that are not massively parallel.

2.1 High Performance Computing (Until) Today

10

Machine (188GB total)
‘ NUMANode P#0 (93GB)
Package P#0
| L3 (22MB) ‘
l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) | l L2 (1024KB) |
l L1d (32KB) | l L1d (32KB) | l L1d (32KB) | l L1d (32KB) | l L1d (32KB) | l L1d (32KB) | l L1d (32KB) | l L1d (32KB) |
I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | . . . I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) |
Core P#0 Core P#7 Core P#1 Core P#6 Core P#10 Core P#13 Core P#11 Core P#12
PU P#0 PU P#2 PU P#4 PU P#6 PU P#24 PU P#26 PU P#28 PU P#30
PU P#32 PU P#34 PU P#36 PU P#38 PU P#56 PU P#58 PU P#60 PU P#62
| NUMANode P#1 (94GB) |
Package P#1
| L3 (22MB) ‘
I L2 (1024KB) | I L2 (1024KB) | I L2 (1024KB) | I L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) | | L2 (1024KB) |
I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) | I L1d (32KB) |
I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | . . . I L1i (32KB) | I L1i (32KB) | I L1i (32KB) | I L1i (32KB) |
Core P#0 Core P#7 Core P#1 Core P#6 Core P#10 Core P#13 Core P#11 Core P#12
PU P#1 PU P#3 PU P#5 PU P#7 PU P#25 PU P#27 PU P#29 PU P#31
PU P#33 PU P#35 PU P#37 PU P#39 PU P#57 PU P#59 PU P#61 PU P#63

Figure 2.3: A visual representation of the cache hierarchy and sizes of a node as obtained
through hwloc-Is.

The following section contrasts CPUs with GPUs, devices that are highly specialized
on supporting massive parallelism.

GPU

The hardware-implementation of the large x86 instruction set and necessary opti-
mizations (e.g., ILP) consume power and space on the die for its transistors. This
makes CPUs very complex and forces them to dedicate about 70 % of the space (and
hence energy) to hardware-internal decoding of the control flow.

For signifcant performance gains, this share needs to be reduced as much as possible,
for instance by removing unnecessary features. As a side-effect, space is released
on the die since each core shrinks in size, making it possible to fill in more compute
cores. For many general-case applications, the removal of features such as ILP
comes at a loss of performance. On the other hand, applications that satisfy some
assumptions (e.g., that they are very regular and do not require ILP so much) will
receive a large performance boost.

Chapter 2 Context

In these special cases, it is hence a good idea to use simplified hardware with more
compute units for improved performance. GPUs, originally developed to render
3D scenes in video games, have a lean implementation, a commodity hardware and
are massively parallel. Consider for instance Nvidia’s flagship GPGPU at the time
of writing, the Tesla V100, that comes with 5120 cores.

Unsurprisingly, as GPUs are especially powerful vector machines, an application
that is vectorized easily will profit from executing on a GPU as they are expert
in rapidly executing the same operation over and over again. Alas, the execution
itself is not as seamless as for CPUs, because a GPU does not execute the binary
itself. Instead, a programmer needs to use OpenCL [Inc] or CUDA [NVI] to start
threads on the device and to transfer all required data in and out. Furthermore,
data locality is very important as caches are small (relative to the number of cores)
and loading data is hence expensive. Programming GPUs is discussed in more
details in Section 2.1.4.

Regardless of elevated requirements for programming (that possibly necessitate
extensive and expensive (re-)training), imposed restrictions regarding suitable
applications and even high energy consumption (up to 300 W s), GPUs have recently
become a common addition to HPC nodes as they are cheap, fast and significantly
more energy efficient (when using flop/W as a metric) than CPUs.

Many-Core Chips

Many Integrated Core (MIC) accelerator cards are the third option and provide a
middle way between the general but slow and energy inefficient CPU and the fast
but highly specialized GPU. MICs are (like GPUs) add-on chips that communicate
over specific busses (e.g., bandwidth-limited PCle) and they come with their own
memory on the chip. They were also widely considered a viable alternative to GPUs
after Intel’s well-known Xeon Phi was introduced. The Xeon Phi in particular is
presented here, since it has been the most popular MIC for a long time, even though
the Phi add-on model line has been abandoned today.

The Xeon Phis were the first to support the new vectorization standard AVX-512,
implemented for all 48 to 72 cores with 4 threads per core, making up to 288 logical
cores available. This is significantly less than the thousands of particularly floating-
point oriented cores used by GPUs, but as a trade-off, each MIC core is capable of
dealing with control statements much more efficiently.

2.1 High Performance Computing (Until) Today

11

12

Unlike GPUs, the Phis run their own Linux-based micro operating system on the
chip and must hence be booted. This combined with their support for the x86
architecture allows them to execute binaries directly on the chip. This enables users
also to launch individual processes on each core, converting the Phi effectively into
a mini-cluster. As another side-effect, this also lowers the entry barrier significantly
as applications using the accelerator only need to be written in a commonly used
language (plain C, C++ or Fortran) and a specialized compiler (e.g., provided by
Intel) will further help the user. Although this is certainly helpful to obtain quick
performance boosts, exploiting the chips capacity entirely requires programmers to
prepare / rewrite the code in a way that the compiler can identify every optimization
potential. It can generally be said that (similar to GPUs) MICs work great with
applications that have already been optimized for vectorization.

Conclusion

With three very different types of computation units (CPU, GPU, MIC), each ex-
hibiting its own characteristics and advantages, machines can be configured very
differently. System vendors tend to add accelerators to more machines and so it is
not surprising that the November 2018 edition of the Top500 lists 138 (27.6%)
machines as using accelerators.

2.1.3 Architectures: Communication

Network Technology

Many applications implement intensive communication patterns between processes
launched on the same or different nodes in order to send/receive data that is
required for further computation or to simply synchronize with others. Messages
containing data have no upper size boundary and can reach several GB. For large
amounts of data, the transfer time is predominantly determined by the bandwidth,
which must hence be large enough. On the other hand, for very small messages
(e.g., for synchronization or updates to a few variables), bandwidth is significantly
less important as the total transfer time will be very small. Instead, the speed is
mostly determined by the network’s latency.

In environments such as HPC machines, where distance is relatively small and all
routers and switches are under the full control of the data center, latency is mainly
influenced by the technology used. Today, it is dominated by Gigabit Ethernet and
Infiniband, although some other competitors such as Intel’s Omnipath and custom

Chapter 2 Context

interconnects exist. Ethernet is used in private networks at home or in professional
environments and therefore is a non HPC specific, very low cost solution that uses
the entire TCP/IP stack (and all of the overhead it comes with) and can currently
reach bandwidths up to 400 Gbit/s. On the other hand, Infiniband and OmniPath
are proprietary solutions that are specific to HPC and significantly more expensive.
What makes them interesting to the HPC community is that the network stack has
been reduced by removing parts from the TCP/IP stack that are useful in dynamic
and large-scale networks such as the internet but that are not required for a well-
controlled or (comparatively) simple environment such as a HPC machine. Those
parts include loss mechanisms, flow control and routing. Other parts, including
0-copy RDMA and deterministic routing have been specialized.

In some cases (e.g., for Cray machines), when the enormous cost can economically
be justified, a custom-tailored interconnect is employed to reduce the latency even
further.

Choosing one of these software/hardware stacks also means to a trade-off between
cost and performance / power consumption.

Topology

Even for small-scale clusters, fully connected networks (Figure 2.4 (a)) are infeasible

due to quadratical growth of required cables and ports. (For n nodes, "'("271) cables
and n — 1 ports per node are required.) Instead, nodes are connected through
intermediate routers / switches and form a physical topology. Over the years, many
topologies have been used in HPC, some of which are illustrated in Figure 2.4,
including meshes (c), multidimensional tori (d), hypercubes (e), fat-trees (f) and
clos-networks. Researchers evaluate a topology by looking at several properties,
such as simple and very fast routing algorithms (i.e., quick computation of the
sh