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Chapter 1

Introduction

1.1 Motivation

L’étude topologique des variétés algébriques réelles remonte au moins aux
travaux de Harnack, Klein, et Hilbert au 19éme siecle ([Har76|, [Hil02], [KIe22]);
en particulier, la classification des types d’isotopie réalisés par les courbes al-
gébriques réelles d'un degré fixé dans RP? est un sujet qui a connu un essor
considérable jusqu’a aujourd’hui. En revanche, en dehors des études concer-
nants les surfaces de Hirzebruch et les surfaces de degré au plus 3 dans RP3
(pour avoir un aperc¢u général voir [DIK00]), & peu prés rien n’est connu dans le
cas de surfaces ambiantes plus générales. Cela est dii en particulier au fait que
les variétés construites en utilisant le "patchwork" sont des hypersurfaces de
variétés toriques ([Vir84al, [Vir84bl, [Vir89]). Or, il existe de nombreuses autre
surfaces algébriques réelles. Parmi celles-ci se trouvent les surfaces rationnelles
réelles, et plus particuliérement les surfaces R-minimales ou minimales (voir
Section [1.3). Notons au passage que la classification des surfaces rationnelles
réelles minimales est beaucoup plus riche que dans le cas complexe. En parti-
culier, la partie réelle d’une surface rationnelle réelle n’est pas nécessairement
connexe. Dans cette thése, on élargit ’étude des types d’isotopie réalisés par les
courbes algébriques réelles aux surfaces réelles minimales de del Pezzo de degré
1 et 2 pour lesquelles le groupe de Picard réel est engendré par la classe anti-
canonique. La premiére surface est un revétement double de CP? ramifié le
long d’une quartique réelle maximale, et sa partie réelle est composée de quatre
spheéres. La seconde surface est un revétement double du cone quadratique dans
CP3 ramifié le long d’une section cubique réelle maximale, et sa partie réelle
est composée de quatre sphéres et d’un plan projectif. Les méthodes employées
combineront 'application de résultats classiques, 'application des invariants
de type Welschinger sur les contraintes satisfaites par ces types d’isotopies, et
I'utilisation de méthodes de construction de dégénérescence ayant récemment
trouvé des applications en géométrie énumérative réelle.

1.2 Historique

Une variété algébrique réelle est une variété algébrique compacte complexe
X munie d’une involution anti-holomorphe ¢ : X — X, appelée structure
réelle sur X. La partie réelle RX de (X, o) est 'ensemble des points fixes de
I'involution o. Une question intéressante sur les variétés algébrique réelle con-
cerne la topologie de leur partie réelle. L’un des premiers résultats significatifs
est la classification des surfaces cubiques réelles donnée dans [Sch63]. Ensuite,
dans [Zeu74], on trouve une étude des courbes algébriques réelles planes de
degré 4 et de leurs bitangentes (qui équivaut a I’étude des surfaces de del
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8 CHAPTER 1.

Pezzo réelles de degré 2). La premiére étude systématique sur la topologie des
varétés algébriques réelles commence avec Harnack, Klein, Hilbert et Come-
satti ([Har76], [Hil02], [Coml13|, [Com14], [KIe22|). Hilbert proposa dans la
premiére partie de son 16éme probléme de classifier les types d’isotopie des
courbes algébriques réelles de degré 6 dans RP?, et les types topologiques des
surfaces algébriques réelles de degré 4 dans RP3. La premiére classification
fut achevée a la fin des années 60 par Gudkov ([Gud69]), et la deuxiéme par
Kharlamov(|[Kha76|, [Kha78|) une dizaine d’années plus tard. En général, il
y a deux directions principales dans I’étude de ce sujet : la premiére consiste
& obstruer la topologie des variétés algébriques réelles ; la seconde concerne
la contruction des variétés algébriques réelles a topologie prescrite. A la suite
de travaux initiés en particulier par Arnold et Rokhlin au début des années
70 ([Arn71],[Rok72],[Rok74],[Rok78],[Rok80]), de nombreuses et trés générales
obstructions sur la topologie des variétés algébriques réelles ont été mises a
jour. En revanche, les méthodes de construction de telles variétés & topologie
prescrite sont trés longtemps restées relativement élémentaires, et ce méme
dans le cas des courbes planes. En 1979, Viro inventa une nouvelle méthode,
dite de “patchwork”, pour construire des hypersurfaces algébriques réelles dans
des variétés toriques réelles ; voir Section Cette technique révolutionna le
domaine et permit en particulier & Viro de terminer la classification des courbes
réelles de degré 7 dans RP? ([Vir84al, [Vir84b]). Le patchwork a depuis connu
de nombreuses généralisations et a été utilisé pour obtenir des résultats impor-
tants, citons par exemple les travaux sur les lissages de singularités dégénérées
de courbes planes ([Shu9§|). La meéthode de Viro est toujours 'une des méth-
odes de construction les plus puissantes connues & ce jour, et dont 'importance
a largement dépassé le cadre de la topologie des variétés algébriques réelles.
Dans le cas de la construction d’hypersurfaces algébriques réelles dans des
variétés non-toriques ou dans des variétés toriques a structure réelle non com-
patible avec l'action du tore, la méthode de Viro n’est pas directement ap-
plicable. Une approche possible pour surmonter cette difficulté est d’essayer
de dégénérer la variété ambiante & une variété réductible sur laquelle on peut
utiliser des méthodes classiques de construction.

1.3 Généralités

On dit que une surface réelle (X, o) est rationnelle si X est une surface bira-
tionallement equivalent & CP2. On dit que (X, o) est R-minimale ou minimale
si toute fonction f : X — Y réelle holomorphe de degré 1 a une surface réelle
(Y,7) est un biholomorphisme. Autrement dit (X,o) est R-minimale si et
seulement si il n'y a pas de (—1)-courbes réelles ou de paires de (—1)-courbes
disjointes complexes o-conjugués. Les surfaces algébriques réelles rationelles
ont étés classifiées par Comessatti (|[Coml13|, [Com14]). L’approche de Comes-
satti est de se ramener & la classification des surfaces algébriques réelles ra-
tionelles R-minimales ; pour un apergu général voir [Kol97|, [DK02|, [Man1T,
Chapitre 4]. Puisque on peut obtenir toute surface rationelle réelle comme une
suite d’éclatements réels d’une surface rationelle réelle et minimale, la premiére
étape pour étudier la topologie des courbes algébriques réelles sur les surfaces
rationelles réelles est de I’étudier sur les surfaces rationelles réelles et mini-
males. Cela, en partie, motive le choix d’analyser dans cette thése les surfaces
de del Pezzo réelles minimales de degré 1 et 2.

Nous allons présenter quelques résultats généraux applicables pour la clas-
sification des courbes algébriques réelles. Un de ces résultats est [’inegalité
de Harnack-Klein, montrée par Harnack dans [Har76] pour les courbes al-
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gébriques réelles planes, et généralisée ensuite par Klein ([Kle22]). Elle donne
une obstruction qui vaut pour toute courbe algébrique réelle compacte et non-
singuliére.

Theorem 1.3.1 (Inegalité de Harnack-Klein). Soit (A, o) une courbe algébrique
réelle et compacte, alors le nombre | des composants connezxes de RA est borné
par g+ 1, ot g = g(A) est le genre de A.

Definition 1.3.2. On dilt que A est une M-courbe ou une courbe mazimale,
sil=g+1. Autrement, si 0 <1 < g, on dit que A est une (M —i)-courbe, ow
t=g+1—-1

Example 1.3.3 (Application de Harnack-Klein). Soit A une courbe algébrique
réelle plane et non-singuliere de degré d. Alors,

d—1)(d—2
j<d=-Hd=-2
2
L’objet d’étude de la topologie algébrique réelle a rapidement évolué placant
la partie réelle de la courbe et sa position par rapport & sa complexification au

centre de 'attention. Klein ([Kle22|) a introduit les définitions suivantes.

Definition 1.3.4. Si A\ RA est connexe on dit que A est de type II ou non-
séparante, autrement de type I ou séparante.

Ce point de vue conduit, par exemple, & obtenir des informations sur le
nombre [. En général, on sait que si A est maximale alors la courbe est
de type I. En outre, si A est de type I alors [ a la méme parité de g + 1.
Rokhlin a également promu cette nouvelle approche et y a fortement contribué
([Rok72|, [Rok74], [Rok78|, [Rok8&0]) ; un exemple important de sa contribution
est 'introduction et I’étude des orientations complexes d’une courbe algébrique
réelle.

Definition 1.3.5. Les deuz moitiés de A\ RA induisent deuz orientations
opposées sur RA dites orientations complezes de la courbe.

Ce changement de perspectives a permis un progrés remarquable dans

I’étude de la topologie des courbes algébriques réelles et dans le raffinement de
classifications.
Il existe d’autres moyens d’obstruer la topologie des courbes réelles. Certains
d’entre eux sont basés sur la forme d’intersection qu’on peut définir sur les
variétés C'° orientés. Citons, par exemple, les obstructions du type Bézout,
les congruences d’Arnold ([Arn7i]), les congruences de Rokhlin ([Rok72]) et
ses généralisations (J[GMTT]).

1.4 Reésultats

Le Chapitre [2 est consacré a introduire des outils déja connus et des notations
qu’on utilisera dans tous les autres chapitres. En particulier, on présente dif-
férents types de construction : le patchwork (Section , certaines de ses
variantes (Sections et la méthode des dessins d’enfant (Section
2.4).

Les Chapitres 3] [ et f] sont dédiés aux résultats principaux de cette thése. On
s’'intéresse d’abord a la classification des courbes algébriques réelles de bide-
gré (5,5) sur la quadrique ellipsoide. Ensuite, le fil conducteur est 1'étude
de la topologie des courbes algébriques réelles dans les surfaces de del Pezzo
minimales réelles de degré 1 et 2.
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1.4.1 Chapitre 3: Quadrique ellipsoide

Les isotopies rigides réalisées par les courbes algébriques réelles de bidegré (d, d)
sur la quadrique ellipsoide sont classifées pour tout d < 5 (voir [GS80],[Zvo91],
INSO05al, [NSO7],[NS05b], [DZ99], [Nik85], [Mik94] et, pour avoir un apergu
général, voir [DKO00, Section 4.9]). Dans le Chapitre 3, on termine la classi-
fication, & homéomorphisme prés, des courbes algébriques réelles de bidegré
(5,5) sur la quadrique ellipsoide (ce chapitre est sous le format d'un arti-
cle dans [Manl8|). En particulier, on démontre que les résultats précédents
(|Zvo83|, [Mik94, Theorem 1], [DK00, Proposition 4.9.2], [Ore07, Proposition
1.2]) sur les obtructions topologiques des courbes algébriques de bidegre (5,5)
constituent un systéme complet d’obstructions ; en outre, nous finissons la réal-
isation des types topologiques, commencée par Mikhalkin ([Mik94]), par des
courbes algébriques réelles maximales (Théoréme . En plus, on réalise
tous types topologiques par des courbes algébriques réelles séparantes et/ou
non-séparantes (Théorémes [3.1.3} [3.1.4] and [3.1.5]).

Théoréme 1.4.1. Soit A une courbe algébrique réelle non-singuliére non-
séparante (resp. séparante) de bidegré (5,5) sur la quadrique ellipsoide. Alors
A réalise un type topologique parmi ceux non-interdits par les restrictions dans
[Zvo83), [Mik94|], [DKOO] et [OreQ7d]. En plus, chacun de ces types topologiques
non-interdits est réalisable par une courbe algébrique réelle non-singuliére non-
séparante (et/ou séparante) de bidegré (5,5) sur la quadrique ellipsoide.

La quadrique ellipsoide est une surface algébrique torique équipée avec une
structure réelle incompatible avec l'action du tore. Ne pouvant pas utiliser
directement le patchwork sur la quadrique ellipsoide, la stratégie principale de
construction est basée sur la fait de se ramener & la construction de courbes
algébriques réelles sur la deuxiéme surface de Hirzebruch ¥y en dégénérant la
quadrique ellipsoide au coéne quadratique dans CP3 (Section [3.3)).

1.4.2 Chapitre 4 et 5: Surfaces de del Pezzo réelles minimales
de degré 1 et 2

La classification des courbes algébriques réelles sur les surfaces de del Pezzo
réelles minimales est délicat car, en plus d’étre des surfaces non-toriques, elles
ont également une partie réelle non-connexe. En 1998, Mikhalkin ([Mik98§])
fut le premier & faire face a la difficulté de classifier des courbes algébriques
réelles sur des surfaces réelles a partie réelle non-connexe. En particulier, il
a étudié la topologie de la partie réelle des intersections transverses des sur-
faces quadriques réelles avec les surfaces cubiques réelles en CP3. Par contre,
I’avantage de travailler sur les surfaces de del Pezzo réelles minimales est que
les courbes algébriques réelles réalisent en homologie un multiple entier positif
de la classe anti-canonique.

Chapitre 4: Surfaces de del Pezzo réelles minimales de degré 1

Une surface de del Pezzo Y réelle minimale de degré 1 a la partie réelle com-
posée de quatre sphéres et d’un plan projectif. Le double du systéme anti-
canonique présente Y comme revétement double du cone quadratique dans
CP? ramifié le long d’une section cubique réelle maximale ; voir Fig.
Dans le Chapitre [@ on propose divers raffinements du probleéme de classifi-
cation des courbes algébriques réelles sur Y (Definition et on effectue
ces classifications pour les courbes algébriques réelles de classe kci(Y), pour
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k<3, ot c1(Y) est la classe anti-canonique de Y (Théoréme [4.1.6). On mon-
tre que pour ces classes, une restriction due a la forme d’intersection sur Y et
I'inégalité de Harnack-Klein fournissent un systéme complet d’obstructions.

Théoréme 1.4.2. Soit A une courbe algébrigue réelle non-singuliére de classe
kei(Y), avec k € {1,2,3}, dans Y. Alors A réalise un type topologique parmi
ceuzr non-interdits par la forme d’intersection sur Y et l'inégalité de Harnack-
Klein. En plus, chacun de ces types topologiques est réalisable par une courbe
algébrique réelle non-singuliére de classe ke1(Y') sur'Y, pour k < 3.

En plus, nous démontrons une variante du théoréme de Bézout qui donne
d’autres obstructions pour les courbes de classe kci(Y), avec k > 4 (Proposi-

tion [[23).

RY

Figure 1.1: Action du double du systéme anti-canonique sur la partie réelle.

Chapitre 5: Surfaces de del Pezzo réelles minimales de degré 2 avec
4-spheres

Dans le Chapitre p| on s’interesse aux surfaces de del Pezzo X de degré 2
réelles minimales et avec partie réelle composée de quatre sphéres. Le systéme
anti-canonique présente X comme un revétement double de CP? ramifié le
long d’une quartique réelle dont la partie réelle a quatre composants connexes;
voir Fig. [[.2] Ici le probléme de classification des courbes algébriques réelles

& 80 \

Q’ < &

Figure 1.2: Action du systéme anti-canonique sur la partie réelle.

est plus simple & énoncér que dans le cas des surfaces de del Pezzo de degré 1.
On effectue cette classification pour les courbes algébriques réelles de classes
kei1(X), pour k& < 2 (Proposition [5.1.6). Dans cette situation, on montre
que pour ces classes, 'inégalité de Harnack Klein fournit un systéme complet
d’obstructions.

Théoréme 1.4.3. Soit A une courbe algébrique réelle non-singuliére de classe
kei(X), avec k = 1,2, dans X. Alors A réalise un type topologique parmi
ceux non-interdits par linégalité de Harnack-Klein. En plus, chacun de ces
types topologiques est réalisable par une courbe algébrique réelle non-singuliére
de classe ke (X) sur X, pour k < 2.
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On s’attaque ensuite au cas des courbes réelles maximales de classe 3¢;(X),
qui se montre beaucoup plus délicat a étudier (Théoréme . D’une part,
aucune des obstructions classiques ne semble donner des résultats intéressants
en dehors d'une variante du théoréme de Bézout et de l'inégalité d’'Harnack-
Klein. D’autre part, les méthodes de constructions utilisées laissent ouverts
la réalisabilité d’environ un tiers des types topologiques non-interdits. Parmi
ces types topologiques, il en y a un qu’on arrive & réaliser par une courbe
symplectique (Proposition [5.4.2]).

Dans le Chapitre [5] on montre le résultat suivant.

Théoréme 1.4.4 (Classe 3). Soit A une courbe algébrique réelle mazimale
non-singuliére de classe 3c1(X) dans X. Alors A réalise un type topologique
parmi les 74 types topologiques non-interdits par une variante du théoréme
de Bézout et linégalité de Harnack-Klein. En plus 47 parmi ces 74 types
topologiques sont réalisables par des courbes algébriques réelles non-singuliéres
de classe 3¢1(X) sur X.

La méthode principale de construction pour les courbes de classe 3¢; (X)) est
basée sur une construction de dégénérescence ayant récemment trouvé des ap-
plications en géomeétrie énumérative réelle (Proposition Corollary
et 'application d’une variante du théoréme de patchwork due & Shustin et Ty-
omkin (Section [2.2.4).

En plus, nous obtenons de nouvelles obstructions pour les courbes de classe
kci(X), avec k > 4, grace aux invariants du type Welschinger (Proposition
5.2.2).



Chapter 2

Preliminaries

2.1 Encoding topological types

Let X be a real algebraic surface equipped with a real structure o : X — X.
Let 0. : Hy(X;Z) — H2(X;Z) be the group homomorphism induced by the
real structure o on X, and let H, (X;Z) be the (—1)-eigenspace of o,. In
the following, fixed a homology class o € H, (X;Z), we are interested in the
classification of the topological types of the pair (RX,RA) up to homeomor-
phism of RX, where A C X is a non-singular real algebraic curve realizing « in
Hy(X;7Z). The real part of A is homeomorphic to a union of circles embedded
in RX. It follows that, depending on the first homology group H;(RX;Z/27Z),
a circle can be embedded in RX in different ways. For the purpose of this the-
sis, we only need to explain how to encode the embedding of a given collection
|_|Z-:17“l B; of 1 disjoint circles in RP? and in S2. A circle embedded in S? is
called oval. On the other hand, a circle can be embedded in RP? in two ways:
if it realizes the trivial-class in Hy(RP?;Z/27), it is called oval; otherwise it
is called pseudo-line.

Let us call oval a circle embedded in R?. Let us consider a collection Lizy 1 Bi
of circles embedded in R?, resp. in RP2. An oval B; in R?, resp. in RP?, sep-
arates two disjoint non-homeomorphic connected components: the connected
component homeomorphic to a disk is called interior of the oval; the other
one is called extertor of the oval. For each pair of ovals, if one is in the inte-
rior of the other we speak about an injective pair, otherwise of a non-injective
pair. We shall adopt the following notation to encode a given topological pair
(R?, =y, Bi), resp. (RP?, [,y , By).

An empty union of ovals is denoted by 0. We say that a union of [ ovals realizes
[ if there are no injective pairs. The symbol (S) denotes the disjoint union of a
collection of ovals realizing S, and an oval forming an injective pair with each
oval of the collection. Finally, the disjoint union of any two collections of ovals,
realizing respectively &’ and S” in R? (resp. RP?), is denoted by S’ U S” if
none of the ovals of one collection forms an injective pair with the ovals of the
other one. Moreover, a pseudo-line in RP? is denoted by 7.

Since R? is homeomorphic to S? deprived of a point, we say that the pair
(S, ;=1 Bi) realizes S if there exists a point p € 52\ LJ;=1_; Bi such that
(S2\ {p},;—; ; Bi) realizes S.

As example, we have depicted in a) of Fig. an arrangement of 8 ovals in
S? projected on a plane from some point p € S?. The pair (5’2, Ly s Bi)
realizes 1 U (2) U (3). While, in b) of Fig. we have an example of 6 cir-
cles embedded in RP? such that the arrangement of (RP?, Ll;—1, ¢ Bi) realizes
J U () U ).

13
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Definition 2.1.1. Let X be a real algebraic surface and A C X a real curve.
We say that A has real scheme S if the pair (RX,RA) realizes S.

Finally, in the following chapters, we need some definitions for particular
collections of ovals in RP? and S2.

°
©

a) b)

Figure 2.1: Example of arrangements of embedded circles in S? and RP2.

Definition 2.1.2. A collection of h ovals in RP? is called a nest of depth h if
any two ovals of the collection form an injective pair. Let N1 and Ny be two
nests of depth i1 and iy in RP?. We say that the nests are disjoint if each pair
of ovals, composed by an oval of N1 and an oval of N, is non-injective.

Definition 2.1.3. A collection N}, of h ovals in S? is a nest if each connected
component of S?\ Ny, is either a disk or an annulus.

Let N;, be k nests of depth i, in S?, with k > 3. We say that the nests are
disjoint if a disk of SQ\NZ']. contains all other k — 1 nests, for all j € {1,..,k}.

2.2 Patchworking

The Viro’s patchworking method was developed in the 70’s by Viro; it turned
out to be one of the most powerful method to construct real algebraic hyper-
surfaces with prescribed topology in real algebraic toric varieties; for example,
Viro used it to classify non-singular real algebraic curves of degree 7 in RP?
([Vir84al).

2.2.1 Toric varieties

First all all, let us give some definitions about toric varieties associated to a
convex polytope and about subdivisions of polytopes; more details about these
subjects can be found in [Ful93], [GKZ94].

Definition 2.2.1. A toric variety is an irreducible normal complex algebraic
variety equipped with an action of an algebraic torus (C*)™ having an open
dense orbit.

Definition 2.2.2. An integer convexr polytope in R™ is the convexr hull of a
finite subset of Z".

For z = (z1,..,2n) € (C*)" and w = (wy, ..,wy,) € Z", put 2% = 2" .20
Put Ry = {z € R|z > 0} and R} = {z € Rjz > 0}. Let A C R" be an integer
convex polytope and N = Card(ANZ") — 1. Denote by wo, ..., wy the integer
points of A.

Definition 2.2.3. The toric variety associated to A, denoted Tor(A), is the
Zarisky closure of the set

{[z%0:..: 2%N] | ze(CH)"}cCPN.
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Remark 2.2.4. The most standard definition of a toric variety associated to
a polytope is in general different, see for example [Ful93]. Both definitions
coincide if the integral points in the polytope A generate the lattice, which is
the intersection of Z, with the minimal affine space containing A.

The action of the torus (C*)™ on Tor(A) is given by the formula

z-[yo s ryn] = [2"090 + s 2Ny,

and Tor(A) is the closure of the orbit of the point [1 : .. : 1] under this action.
The dimension of T'or(A) is equal to the dimension of the polytope A.

Remark 2.2.5. Let I' be a face of A, and let wj,, .., w;, be the integer points
of T'. Consider the following embedding of CP® into CPN :

dy,: CP* — CPYN

[Yo:o:ys] =0 tyo:.tys:..: 0],
where, on the right, the variable y; is in position i;. The map Py s gives rise

to an embedding of Tor(I") into Tor(A). In particular, any vertez of A gives
a point in Tor(A).

Definition 2.2.6. The standard real structure conja on Tor(A) is the restric-
tion to Tor(A) of the standard complex conjugation conj on CPYN, where

conj : CPYN — cpPV

[yo:..:yn]—[Wo: .. : UN]-

Example 2.2.7. Consider the conver hull A of the points (0,0), (0,1), (1,0)
and (2,0) in R2. Then Tor(A) is the quadratic cone in (CP3,conj).

Definition 2.2.8. Let f =Y a;2" be a polynomial in Cz1, .., 2,]. The convex
hull of the set {i € Z"|a; # 0} is called the Newton polytope of f. For an inte-
ger convex polytope A, denote by P(A) the space of polynomials with Newton
polytope A.

Let A be an integer convex polytope of dimension n in (Ry)™ and let
wp, .., wy be the integer points of A. Let f = > a;2" € P(A). The
i=0,..,N
polynomial f defines an algebraic hypersurfaces in T'or(A). This hypersurface
is a compactification of Z(f) = {z € (C*)"|f(x) = 0}.

Definition 2.2.9. Let f =Y a;a’ € P(A). Let T C Z" be a subset of A. The

truncation of f to T is the polynomial f* defined by f'' = 3" a;x'.
el

Definition 2.2.10. A polynomial f € P(A) is called completely non-degenerate
if for any face T of A (including A itself), the hypersurface Z(f') = {x €
(C)"| f*(z) = 0} is non-singular.

Let f € P(A), where A C (R4)" is of dimension n. Consider the compact-
ification Z(f) of Z(f) in Tor(A). If the coefficients of f are real, then Z(f) is
a real algebraic variety in (T'or(A), conja). If f is completely non-degenerate,
then for any face I' of A, the set Z(f) is transverse to Tor(I").

Definition 2.2.11. A subdivision of an integer convexr polytope A is a set of
integer convex polytopes (A;)icr such that:
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s Uie[ A=A,

o ifi,j €I, then the intersection A; N A; is a proper common face of the
polytope A; and the polytope A;, or empty.

Definition 2.2.12. A subdivision (A;);er of an integer convex polytope is said
to be convex if there exists a conver piecewise-linear function v : A — R whose
domains of linearity concide with the polytopes A;.

For e = (e1,..,en) € (Z/2Z)", let s. : R™ — R™ be the symmetry defined
by
Se(1, .y vn) = ((=1)%' 01, oy (=1)0y,).

Given an integer convex polytope A C (R4)", denote with A, the union

U se(A).

ee(z/2Z)"
Suppose (A;)ier to be a convex subdivision of A; then it extends to A,.

Notation 2.2.13. IfT" is a face of A, then for all integer vectors « orthogonal
to I and for all x € T, identify x with so(x). Denote by A the quotient of A,
under these identifications.

Proposition 2.2.14. The real part RTor(A) of Tor(A) is homeomorphic to
A.

2.2.2 Viro’s patchworking theorem

In this section we define charts of polynomials and state the Viro’s patchwork-
ing Theorem. The interested reader can find more about Viro’s patchworking
Theorem in [Vir84al, [Vir84b|, [Vir89|, [Vir06] and [IS03]. In the general Viro’s
construction, one starts with a convex subdivision (A;);er of a convex polytope
A in (Ry)™ and an appropriate collection of polynomials f;, i € I. Then the
patchworking method produces an algebraic hypersurface X in Tor(A). The
Newton polytope of X is A and the topology of the complex part of X (and
the real part of X if the polynomials f;’s are real) is described in terms of the
topology of the zero point sets of the f;’s.

Let A C (R4)™ be an integer convex polytope with interior I(A) and vertices
V(A), one can define the map pua : (R})" — I(A), called moment map, as
follows:

Z’L

I€EZ™NA

pa(z) = T

zt

1

i€ZrNA
If dim(A) = n, then pa is a diffeomorphism.
Let us consider the diffeomorphism ¢ : (C*)" — (R%)" x (S')" sending 2z
to ((|z1], -, \zﬂ),(ﬁ,,ﬁ)) The inverse of ( extends to a surjection 6 :
(R*)™ x (SY)™ — C™. Given any subset E of (R*)", we denote by CE the
subset (E x (S1)™) of C™.

Definition 2.2.15. The set CA is called complezification of A.
The map Ma = 0o (ua, Id) o C is called complexification of the moment map.

Ma : (C)™ = (R x (SH" = I(A) x (SY)" = CI(A).

Proposition 2.2.16. The real part RA of CA is homeomorphic to A,.
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Proposition 2.2.17. The map Ma is surjective and commutes with the com-
plex conjugation. It is a diffeomorphism when the dimension of A is n. The
real part of CI(A) is the image of (R*)™ via M.

Definition 2.2.18. Let f be a real polynomial in P(A) and let Z(f) be the set
{z € (C*)"| f(2) = 0}. Let us consider the closure of the set Ma(Z(f)) C CA;
then, its intersection with RA is called the chart of f and it is denoted with

Ch(f).
Proposition 2.2.19. For a face ' of A, one has Ch(f) NRI = Ch(f1).

Define a map ma : CA — Tor(A) as follows: given a face I' C A, or A
itself, and given w € CI(T') such that w = Mrp(z), then ma(w) is equal to z°
for ¢ € ' N Z™ and equal to 0 otherwise.

Proposition 2.2.20. The map 7a is continuous, surjective and commutes
with the complex conjugation. Furthermore, if the dimension of A is n, then
TAleray is a diffeomorphism on its image.

Let A be an integer convex n-dimensional polytope in (Ry)™ and let
Uier Ai a subdivision of A. For any i € I, pick a polynomial f; such that
the following properties hold:

e foreach i € I f; € P(A;) and f; is completely non-degenerate;
o if '=A;NA,, then fF fF

Define the polynomial f = 3 auz®, such that f2 = f; for all i € I.
weEZMNA

Theorem 2.2.21 (Viro’s patchworking Theorem). Assume that the subdivi-
sion J;c; Ai of A is convex via a piecewise-linear function v : A — R. Con-
sider the one-parameter family of polynomials, called Viro polynomial,

f= S aut

wEZMNA

Then there exists tg > 0 such that, if 0 < t < tg, then f; is completely non-
degenerate and the pairs (RTor(A), ta(Ch(f;))) and (RTor(A), ma(UicrCh(fi)))
are homeomorphic.

We say that f; (resp. the chart of f;) is obtained by patchworking fi, ..., f,,
(resp. the charts of fi,.., frn)-

2.2.3 Singular curves

The classification of non-singular real algebraic curves in toric varieties re-
quires the realization of given isotopy types. An effective way of construction
of non-singular real algebraic curves with prescribed topology is the perturba-
tion of real algebraic curves with isolated singularities. Since Brusotti’s work
([Bru2il), it is known that if a curve has only non-degenerate double points,
one can perturb any of them independently from the others. Two effective con-
struction methods, which rely on Brusotti’s theorem, are those of Harnack and
Hilbert (see respectively [Har76] and [Hil33]); in fact, they gave an algorithmic
way to construct real algebraic maximal curves of any degree arranged in RP?
with respect to a real line, resp. to a non-singular real conic.
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The Viro’s method has provided a way to perturb more complicated singu-
larities, called Newton non-degenerate ([LAGT98|). For example, perturbing
real plane curves of degree 7 with two real singular points of type Jig, Viro
achieved the classification of real schemes realizable by non-singular real al-
gebraic curves of degree 7 ([Vir84al) and the realization of some real scheme
realized by non-singular real algebraic curves of degree 8 in RP? ([Vir89]).
In Proposition [3.4.10] we exploit a perturbation of the real 5-fold singularity
([Virg&6l).

Moreover, in [Shu98|, [Shu05] and [Shu06], Shustin proved that Theorem [2.2.21]
under some conditions on the singularities, remains true even if the f; and their
truncations have generalized Newton non-degenerate singularities in (C*)". In
this way, one can construct via the patchworking method singular and non-
singular algebraic hypersurfaces in toric varieties.

2.2.3.1 Patchworking charts with a tangency point

The interested reader can find the results of this section in all their generalities
in [Shu05|]. Here, we only present an application of [Shu05, Theorem. 5] in a
particular case.

Let A be a convex polygon in R? and let Tor(A) be its associated toric variety.

Let §: A= Ule A; be a convex subdivision of A. Let

fi= Z aj,hfijh

(j,h)EA;NZ2

be real polynomials, with a;; € R and such that C; = {f; = 0} C Tor(A;) are
non-singular real algebraic curves.

Suppose that there exist some faces I'sy C Ag N Ay such that I'y; ¢ 0A and
zg € Tor(I's;) N Cj is a real tangency point of C; with Tor(I'y), for j = s,t,
and locally as depicted in Fig. 2.2/on the right. Furthermore, suppose that, out
of the tangency points 2z, each curve C; crosses Tor(I") transversely for any
faceI" C A;, with 4 = 1, .., k. Gluing the charts of the C;’s, one does not obtain
a chart of a polynomial. Let us consider the following topological construction:
replace a neighborhood of the tangency points and of their symmetric points
in A, (Fig. with a deformation pattern, i.e. two disks as depicted in
a) or b) of Fig. Then, Shustin (|[Shu05]) proved that such topological
construction is realizable algebraically and it produces a chart of a non-singular
real polynomial in Tor(A).

Figure 2.2:

2.2.4 Patchworking of surfaces

We can not directly apply Theorem [2:2.21] to construct real algebraic curves in
toric surfaces with a real non-toric structure or in real non-toric surfaces. Then,
as a possible approach of construction, one can try to degenerate the ambient
surface to a reducible surface on which one can use patchworking method. In
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Figure 2.3:

[ST06a] and [ST06bL], Shustin and Tyomkin proved a variant of patchworking
method which allows, under some conditions, to construct real algebraic curves
on real algebraic surfaces, where such surfaces are not required to be real toric
surfaces. An application of the results of Shustin and Tyomkin can be found in
[BDIMIS]|, where the authors gave constructions of real algebraic curves whose
real part consists of a finite number of real non-degenerate double points in
CP? and in the quadric ellipsoid. We present a particular version of [ST06al,
Theorem 2.8|, which we exploit in Theorem m

Theorem 2.2.22 (Weak patchworking Theorem.). We are given the following
data:

e o one-parameter real flat family of projective surfaces m: X — T over a
smooth base T';

o a family of invertible sheaves Ly on Xy = n~1(t), i.e. an invertible sheaf
L on X, and

e a section & € H°(Xo, Lo).
Assume that our data satisfy the following properties
(1) Xy is real reduced and irreducible for any t # 0;
(2) Xo = A UA? is a union of two real reduced and irreducible surfaces.

We denote the zero set of & by Cy. Then Co = C3UCE, where C§ = Co N A,
with i =1, 2.

(i) Coy is a real algebraic curve.
i) C! is a non-singular real reduced curve in A*, with i = 1,2.
0
(ii5) Co N AN A? is reduced.

(iv) For any p € Co N A' N A2, there exists an open analytic neighborhood
p €U C X such that XoNU C U is a normal crossing divisor.

Assume that

H'(Xo, Lo) = 0.

Then there ezists some open neighborhood U.(0) C T and a real flat family of
non-singular real algebraic curves Cy € |Ly], with t € U:(0).

2.3 Hirzebruch surfaces

A Hirzebruch surface is a compact complex surface which admits a holomor-
phic fibration over CP! with fiber CP! ([Bea83]) Every Hirzebruch surface is
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biholomorphic to exactly one of the surfaces ¥,, = P(O¢p1(n) & C) for n > 0.
The surface 3J,, admits a natural fibration

T Bp — CP!

with fiber CP! =: F},. Denote by By, resp. E,, the section P(O¢p1(n) ® {0}),
resp. P({0} @ C). The self-intersection of B, (resp. E, and F,) is n (resp.
—n and 0). When n > 1, the exceptional divisor E,, determines uniquely the
Hirzebruch surface since it is the only irreducible and reduced algebraic curve
in ¥, with negative self-intersection.

For example ¥y = CP! x CP!. The Hirzebruch surface ¥ is the complex pro-
jective plane blown-up at a point, and Y is the quadratic cone with equation
Qo : X2 +Y? - Z2 = 0 blown-up at the node in CP3. The fibration of ¥y
(resp. of 1) is the extension of the projection from the blown-up point to a
hyperplane section (resp. to a line) which does not pass through the blown-up
point.

The group Hs(X,;7Z) is isomorphic to Z®Z and is generated by the classes [By,]
and [F),]. An algebraic curve C in ¥, is said to be of bidegree (a, b) if it realizes
the homology class a|B,| + b[F,,] in Ha(Xy,;Z). Note that [E,] = [B,] — n[F,]
in Ho(X,,;Z). An algebraic curve of bidegree (3,0) on ¥, is called a trigonal
curve.

We can obtain ¥, 41 from ¥,, via a birational transformation 35 : ¥, — — —

Yn+1 which is the composition of a blow-up at a point p € E, C X, and a
blow-down of the strict transform of the fiber 7, (7, (p)).
The surface 35, is also the projective toric surface which corresponds to the
polygon with vertices (0,0), (0,1), (1,1), (n+1,0), depicted in Fig. 2.4]a) where
the number labeling an edge corresponds to its integer length. The Newton
polygon of an algebraic curve C' of bidegree (a, b) on %, lies inside the trapeze
with vertices (0,0), (0,a), (b,a), (an + b,0) as in Fig. b). The surface X,
is canonically endowed by a real structure induced by the standard complex
conjugation in (C*)2. For this real structure the real part of ¥, denoted by
RY,, is a torus if n is even and a Klein bottle if n is odd. We will depict
RY:, as a quadrangle whose opposite sides are identified in a suitable way and
the horizontal sides will represent RE,. Moreover, let C be any type I real
algebraic curve in 3,; the depicted orientation on RC' will denote a complex
orientation.

The restriction of 7, to RY,, defines a S'-bundle over S' that we denote by

b

an+b

n+tl b) The Newton polygon of a curve of

a) Polygon defining ¥,
bidegree (a,b) on ¥,

Figure 2.4:

L. We are interested in the isotopy types with respect to £ of real algebraic
curves in R>,,.
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Definition 2.3.1. o Two arrangements of circles and points immersed in
RY,, are L-isotopic if there exists an isotopy of RY, which brings one
arrangement to the other, each line of L to another line of L and whose
restriction to RE, is an isotopy of RE,.

o An arrangement of circles and points immersed in RY, up to L-isotopy
of RY,, is called an L-scheme.

o A L-scheme is realizable by a real algebraic curve of bidegree (a,b) in X, if
there exists such a curve whose real part is L-isotopic to the arrangement
of circles and points in RY,.

o A trigonal L-scheme is a L-scheme in R, which intersects each fiber in
1 or 3 real points counted with multiplicities and which does not intersect
RE,.

o A trigonal L-scheme n in RY, is hyperbolic if it intersects each fiber in
3 real points counted with multiplicities.

2.4 Dessins d’enfant

Orevkov in [Ore03] has formulated the existence of real algebraic trigonal
curves realizing a given trigonal L-scheme in RY, in terms of the existence
of a real rational graph on CP'. Later on, Degtyarev, Itenberg and Zvonilov
in [DIZ14] have given a general way to determine if such real algebraic trigonal
curves are of type I or II.

In Section [3:4.1] we will exploit such construction techniques in order to con-
struct real algebraic trigonal curves in rational geometrically ruled surfaces.
Therefore, we present here some results of [Ore03| and [DIZ14].

Definition 2.4.1. Let n be a fized positive integer. We say that a graph I' is
a real trigonal graph of degree n if

e it is a finite oriented connected graph embedded in CP', invariant under
the standard complex conjugation of CP;

e it is decorated with the additional following structure:

» cvery edge of I' is colored solid, bold or dotted;

» cvery vertex of I' is e, o, X (said essential vertices) or monochrome
and satisfying the following conditions:

(1) any vertez is incident to an even number of edges; moreover, any
o-vertex (resp. e-vertex) to a multiple of 4 (resp. 6) number of
edges;

(2) for each type of essential vertices, the total sum of edges incident to
the vertices of a same type is 12n;

(3) the orientations of the edges of I' form an orientation of O(CP'\T')
which is compatible with an orientation of CPY\ T (see Fig. @);

(4) all edges incidents to a monochrome vertex have the same color;

(5) x-vertices are incident to incoming solid edges and outgoing dotted
edges;

(6) o-vertices are incident to incoming dotted edges and outgoing bold
edges;
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(7) e-vertices are incident to incoming bold edges and outgoing solid
edges.

Given a trigonal L£-scheme 7 in R, we are interested in constructing a
real trigonal curve C in ¥, such that RC and n are L-isotopic in RY,,.

Definition 2.4.2. Let n be a trigonal L-scheme in RY,,. Let us consider
the restriction of the projection m, (see Sectz’on to RY,. Thanks to
Tpls, WE can encode n by a colored oriented graph T on RP! c CP! in
the following way (in Fig. the dashed lines denote fibers of ., )

(1) To each fiber of Tplps, ‘NteTsecting n in two points we associate a
x-vertex on RP'.

(2) Let Fy, Fy be two fibers of Tnlas, nteTsecting n in two points such
that n, up to L-isotopy, is locally as depicted in Fig. b) or c).
Let F3 be another fiber between Fy, F>. Then, we associate to F3 a
o-vertex on RP'. Moreover, if between Fi and F» each other fiber
intersects n in only one real point (as in b) of Fig. , then we
associate to a fiber between Fy and Fs (resp. F3 and F») a e-vertex
on RP!. Between e and o-vertices we put bold edges.

(3) Except for the fibers of Tplgs, 10 which we associate essential vertices
and bold edges, to a fiber which intersects n in three distinct real
points (resp. only one real point) we associate dotted (resp. solid)
edges on RP?.

(4) The orientations of the edges incident to a verter are in an alter-
nating order. In particular, the orientations of the edges incident
to an essential vertez are respectively as described in (5), (6), (7) of

Definition

The graph T, called real graph, is considered up to isotopy of RP', namely
it is determined by the order of its colored vertices since the edges are
determined by the color of their adjacent vertices.

We say that T is completable in degree n if there exists a complete real
trigonal graph T of degree n such that T NRP! =T.

. F3 F FiF3F,

Figure 2.5: Local topology of trigonal £-schemes and their corresponding real
graphs.

Theorem 2.4.3 ([Ore03]). A trigonal L-scheme on RY,, is realizable by a real
algebraic trigonal curve if and only if its real graph is completable in degree n.

Given a real graph I', we depict only the completion to a real trigonal
graph T' on a hemisphere of CP! since I' is symmetric with respect to the
standard complex conjugation. Moreover, we can omit orientations in figures
representing real trigonal graphs because each vertex is adjacent to an even
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number of edges oriented in an alternating order as, for example, depicted in
Fig. 2:6] and such orientations are compatible with each others.
Theorem is improved in [DIZ14] in order to check if a given trigonal

o, o* \l(
0 T G R
i A

Qb 0

Figure 2.6: Colored vertices of a real trigonal graph.

L-scheme is realizable by a real trigonal curve of type I. We say that a real
algebraic singular curve is of type I (resp. of type II) if its normalization is of
type I (resp. of type II).

Figure 2.7: Type I labeling.

Definition 2.4.4. Let I" be a real trigonal graph of degree n. We say that T" is
of type I if we can label each connected component of CP\T', with the numbers
1,2 or 3, such that:

e neighboring connected components of a e-vertex, or a o-vertex of I', are
labeled as depicted in one of the pictures in Fig. a);

e neighboring connected components of a x-vertex, which does not belong
to T NRP, are labeled as depicted in Fig. b);

o neighboring connected components of x-vertices, belonging to T N RP!,
are labeled as depicted in in Fig. c).

Otherwise, we say that ' is of type II.

The original statement in [DIZ14] of the following theorem treats only the
case of non-singular real trigonal curve, but it is possible to extend it to real
nodal trigonal curves.

Theorem 2.4.5 ([DIZ14]). A non-hyperbolic trigonal L-scheme on RY,, is
realizable by a real trigonal curve of type I (resp. of type II) if and only if its
real graph has a completion in degree n which is of type I (resp. type II).

Remark 2.4.6. A non-hyperbolic trigonal L-scheme on RY, is realizable by
an irreducible real trigonal curve of type I if and only if there exists at least
one completion in degree n of its real graph which has a unique type I labeling
(see [DIZ1j)]). So, later on, each time we have to assign a labeling to a real
trigonal graph of type I, we could label only one component.
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Remark 2.4.7. There exists a completion in degree n of the real graph of a
non-hyperbolic trigonal L-scheme n on R, such that it has at least two type
I labelings if and only if there exists a reducible real trigonal curve realizing n
(see [Jari8[); furthermore, such trigonal curve has to be the union of a real
curve of bidegree (2,0) and a real curve of bidegree (1,0) in X,,.

Remark 2.4.8. If a hyperbolic trigonal L-scheme in RY, is realizable by a real
trigonal curve C' in %, then the curve C is of type I because the projection
Tp 2 By — CPL (see Section gives a totally real morphism on CP?.

2.4.0.1 Gluing real trigonal graphs

d) R, e) RY, f) Ry

Figure 2.8: Cubic trigonal graphs.

Figure 2.9: How gluing two cubic trigonal graphs.

We call cubic trigonal graph of type I (resp. type II) a real trigonal graph

of degree 1 and type I (resp. type II). The graph in Fig. a) is a cubic
trigonal graph of type I, it has a unique type I labeling and associated trigonal
L-scheme on RY; as depicted in Fig. d). While the graphs depicted in Fig.
b) and c¢) are of type II and have associated trigonal £-schemes on RY; as
depicted respectively in Fig. e) and f).
Let I'y (resp. ') be a real trigonal graph. Denote by D; (resp. Dj) the disk
on which one of the two symmetric halves of I'; (resp. I'y) lies. Consider the
disjoint union I'y UTe C Dy U Da. Let I; C D;, ¢ = 1,2, be a segment in RP!
whose endpoints are not vertices of I'; and such that I; contains a single o-
vertex or a monochrome dashed vertex "7 . Let ¢ : [; — I> be an isomorphism
preserving orientation, i.e. I'y N I3 — I's N[5 is an isomorphism preserving the
types of vertices and edges, and preserving orientation. Consider the quotient
DiUg Dy = DiUDy/(x ~ ¢(x)) and I'y, C Dy Uy Do the quotient of the image
of I'1 UTs. We call such operation gluing. The gluing of real trigonal graphs
is still a real trigonal graph (see [DIKOS) Section 5.6] for details).
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R>o

c) d)

Figure 2.10: Gluing of two cubic trigonal graphs and associated trigonal £-
scheme.

One can remark that there is a finite number of real trigonal graphs of degree
n that can be obtained as gluing of n cubic trigonal graphs.

Gluing type I real trigonal graphs, which are glued to each other along vertices
whose neighboring connected components have the same labels, we get a type I
real trigonal graph. As example, look at the gluing of two cubic trigonal graphs
of type Iin Fig. R.9]a), resp. b), and[2.10]a), resp. c). The obtained graphs are
real trigonal graphs of degree 2 and type I. The respective associated trigonal
L-schemes are depicted in Fig. b) and d).
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Chapter 3

Real algebraic curves of
bidegree (5,5) on the quadric
ellipsoid

3.1 Introduction

Let X be CP! x CP! equipped with the anti-holomorphic involution

o X — X
(x,y) — ([,7)

where = [z : x1] and y = [yo : 1] are in CP! and T = [Tp : 71] and
¥ = [Yo : Y1) are respectively the images of x and y via the standard complex
conjugation on CP!. The real part of X is homeomorphic to S2. It is well
known that X is isomorphic to the quadric ellipsoid in CP3. A non-singular
real algebraic curve A on X is defined by a bi-homogeneous polynomial of
bidegree (d, d)

d,d

P(zo0,71,Y0,y1) = Z a; szt ylys

ij=1
where d is a positive integer and the coefficients satisfy a; ; = @j;.

The connected components of RA are called ovals. We are interested in
the classification of the oval arrangements of non-singular real algebraic curves
in X. Due to the Harnack-Klein’s inequality and the adjunction formula, the
number of the connected components of RA is bounded by (d — 1)? + 1.

Definition 3.1.1. Let A be a non-singular real algebraic curve of bidegree
(d,d) on X. We say that A has real scheme S if the pair (RX,RA) realizes S.

Real algebraic non-singular curves of bidegree (4,4) (and less) in X have
been classified in [GS80|. In this chapter, we give the classification, up to
homeomorphism, of the topological types of the pair (RX,RA) where A is a
non-singular real algebraic curve of bidegree (5,5) in X. If A is a maximal
curve, we have the following result.

Theorem 3.1.2 (Maximal curves). Let A be a non-singular real algebraic M-
curve of bidegree (5,5) on X. Then the pair (RX,RA) realizes one of the
following real schemes:

all (B8 U (), a=1 (mod4), witha+ B+~ =15.

Moreover, all such real schemes are realizable by non-singular real algebraic
M -curves of bidegree (5,5).

27
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The following theorems concerns real algebraic (M — i)-curves of bidegree
(5,5) in X which are separating or non-separating.

Theorem 3.1.3 ((M — 1) curves). Let A be a non-singular real algebraic
(M —1)-curve of bidegree (5,5) on X. Then the pair (RX,RA) realizes one of
the following real schemes:

a U B U (v), a=0o0r1 (mod4), witha+ B+~v=14.

Moreover, all such real schemes are realizable by non-singular real algebraic
(M — 1)-curves of bidegree (5,5).

Theorem 3.1.4 ((M —2)-curves). Let A be a non-singular real algebraic (M —
2)-curve of bidegree (5,5) on X. If A is of type I, then the pair (RX,RA)
realizes one of the following real schemes:

(1) a U (B) U (), a=0 (mod 2), witha+ B+~ =13;
if A is of type II, then one of the following ones:
(2) a U({B) U (v), «a#2 (mod4), witha+ 5+~ =13.

Moreover, all the real schemes in (1) and (2) are realizable by non-singular real
algebraic (M — 2)-curves of bidegree (5,5) respectively of type I and II.

Theorem 3.1.5 (Type I and IT curves). Let A be a non-singular real algebraic
(M — i)-curve of bidegree (5,5) on X, where 3 < i < 17. If A is of type II,
then the pair (RX,RA) realizes one of the following real schemes:

(1) 0 and 1,

2) a U (B) U (1), witha+ B+~ =17— (i —2);

if A is of type I, then i = 4,6,8,10,12 and the pair (RX,RA) realizes one of

the following real schemes:

(3) ({1,
(4) a U (B) U {v), witha=0 (mod 2) when a+ 5+~ =5,9,
and with « =1 (mod 2) when a+ 5+~ =7,11.

Moreover, the real schemes in (1), (2) and (3), (4) are realizable by non-singular
real algebraic curves of bidegree (5,5) respectively of type II and I.

Remark 3.1.6. It is easy to see that the classification up to homeomorphism
of the pairs (RX,RA) in Theorems|3.1.2, [3.1.5, |5.1.4}, [3.1.5 is equivalent to
the classification up to isotopy.

Previous results concerning the restrictions part of the classification are
given in Proposition [3:2.1] Theorem [3:2.3] and Proposition [3.2:4] Such results
give a system of restrictions for real schemes of algebraic curves of bidegree
(5,5) in X. The content of this chapter is the proof that such system of
restrictions is complete. Therefore, the main part of the paper concerns the
construction of separating and non-separating real algebraic curves realizing
all real schemes which are not prohibited by restrictions in Section [3.2}
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3.2 Restrictions

3.2.1 Restriction on the depth of nests

Proposition 3.2.1. [DK00, Proposition 4.9.2] Let A be a non-singular real
algebraic curve of bidegree (d,d) on X. Then the total number of ovals in any
collection of three disjoint nests of RA does not exceed d.

Proposition [3.2.1] implies in particular that the maximal depth for a nest
of such a curve A is d. Furthermore, it is well known that if A is of type I and
has d ovals, it has a nest of maximal depth d (see Corollary .

The Harnack-Klein’s inequality combined with Proposition [3.2.1] immediately
implies the following corollary.

Corollary 3.2.2. Let A be a non-singular real algebraic curve of bidigree (5,5)
on X. Then the pair (RA,RX) realizes one of the following real schemes:

e 0andl,
o a Ll (B) U (v), forO0<a+ g+ <15,
o ((((1N)-

3.2.2 Congruences and complex orientations formula on the
quadric ellipsoid

Mikhalkin ([Mik94]) provided new restrictions on the topology of real algebraic
curves of bidegree (d,d), for all odd integer d, in X, proving the following
theorem.

Theorem 3.2.3. [Mik94, Theorem 1] Let A be a non-singular real algebraic
curve of bidegree (d,d) on X, with d odd. Let B be a disjoint union of connected
components of RX \ RA such that RA bounds B.

e If Ais a M-curve, then

d?+1
x(B) = ;_ (mod 8).
o If Ais a (M —1)-curve, then
d*+1
x(B) = 5 +1 (mod 8).
o If Aisa (M —2)-curve and
-
WB) =T (mod s),

then A is of type L

o If A is of type I, then
X(B)=1 (mod 4).
Let A be a non-singular real algebraic type I curve of bidegree (d,d) on X.

Fix a complex orientation on RA. Since any pair of ovals of RA bounds an
annulus in RX, we distinguish two types of pairs: denote by II_ (respectively
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I1;) the number of pairs of ovals realizing the same (resp. different) first ho-
mology class of the corresponding annulus. Zvonilov in [Zvo83] gave a complex
orientations formula for type I non-singular real algebraic curves on X. This
formula depends on the choice of an auxiliary point in RX \ RA. Afterwards,
Orevkov in [Ore07| reformulated it with no dependence on the choice of an
auxiliary point.

Proposition 3.2.4. [Zvo83], [Ore0d, Proposition 1.2] Let A be a non-singular
real algebraic type I curve of bidegree (d,d) on X. Denoting by | the number
of connected components of RA, one has the following complex orientations
formula:

oI, —M_)=1-d? (3.1)

Corollary 3.2.5. [Ore07, Proposition 1.3] Let A be a non-singular real alge-
braic type I curve of bidegree (d,d) on X. Then RA has at least d connected
components. Furthermore, if RA has d connected components, it consists of a
nest of mazimal depth d.

Corollary [3:2.2] and Theorem [3:2.3] give a complete system of restrictions
for real schemes of non-singular real algebraic curves of bidegree (5,5) on X.
Moreover, Theorem [3.2.3] and Proposition [3.2.4] allow us to give even finer
restrictions on which real schemes, listed in Corollary may be realized
by type I (resp. type II) non-singular real algebraic curves of bidegree (5,5)
on X. Therefore, given a non-singular real algebraic curve A of bidegree (5,5)
on X, the pair (RX,RA) realizes one of the real schemes listed in Theorems

In the next sections we pass to the construction part of the classification.

3.3 The quadric ellipsoid and the second Hirzebruch
surface

We explain how to construct a real algebraic curve of bidegree (d,d) on the
quadric ellipsoid in CP? starting from a real algebraic curve of bidegree (d,0)
in ¥5 endowed with the real canonical structure (see Section .

Let C be a real algebraic curve of degree (d,0) in X3. Now, cut R¥s along RFEs,
as depicted in Fig. a), and glue two discs D1, Do as depicted in Fig. b).
By this construction we obtain a 2-sphere S2. Moreover, from the arrangement
of the triplet (R, REy, RC) we obtain an arrangement B of embedded circles
in S%2. As example, look at Fig[3.2] where we obtain the arrangement 1 LI (1)
in S2. The following proposition states that such topological construction is
realizable algebraically.

Dy
D
Y

R
RY, 52
a) b)

Figure 3.1: From a torus to a 2-sphere

Proposition 3.3.1. Let C be a non-singular real algebraic curve of bidegree
(d,0) in Xo. Let B be the real scheme on the sphere S? obtained from the pair
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& —— T

R>9 5

a) b)

Figure 3.2: Example: from an arrangement of embedded circles in R¥s to an
arrangement in S?

(RX5, RC) by the construction above. Then, B is realizable by a real algebraic
curve of bidegree (d,d) on the quadric ellipsoid in CP3.

Figure 3.3:

Proof. Let [X :Y : Z : W] be the homogeneous coordinates in the complex
projective space. Let Qg be the quadratic cone with equation X?+Y?—-22 =0
in CP3. Recall that we obtain X9 blowing-up Qg at the point ¢ =[0:0:0: 1].
The image of C' via the blow-down is a real algebraic curve C' of degree 2d
in CP3. Since the dimension of the space of curves of bidegree (d,0) in Xy is
equal to the dimension of the space of complete intersections of the surfaces
of degree d in CP?3 with Qq, the curve C is the intersection of a non-singular
real algebraic surface Sy of degree d, not passing through the node of @y, and
@Qo. Observe that we can perturb )y to the quadric ellipsoid Q. of equation
X2 +Y? - 72 = —cW?, where ¢ > 0; see Fig. Since a real algebraic
curve of bidegree (d, d) on Q. is the intersection of the quadric ellipsoid and a
surface of degree d, the intersection of Sy and Q). is a real algebraic curve A of
bidegree (d,d). Moreover, the pair (RQ.,RA) realizes B. O

3.4 Constructions

3.4.1 Trigonal construction

— Da b

RY5
Figure 3.4: The union of a trigonal £-scheme and two fibers of £ on RXs5:
Na,b,c,c’ -

In this section we give some intermediate constructions of real algebraic
curves that we will need later on.
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Proposition 3.4.1. Let 1y be, up to L-isotopy of RXs5, the union of a
trigonal L-scheme with two fibers of L on RY5 as depicted in Fig. where
letters a, b, c,c denote numbers of ovals. Let h,j and t be non-negative integer
numbers. Then, there exist real algebraic trigonal curves in X5 realizing the
real schemes 1qpc.c for all a,b,c,c such that 0 < c+¢ < h,0 <a < j and
0 <b<t, where h,j and t are the following:

(1) j+h+t=12 with

o h=1and je{0,1,4,7,10,11},
e h=>5and j €{0,1,2,3,4,5,6,7},
e h=9and j€{0,1,2,3}.

(2) j+h+t=10 with

e h=0and j € {4,6,8},

e h=2andje€{0,1,2,4,5,6,8},
e h=4and j € {0,1,2,4,5,6},
e h==6and j € {0,1,2,4},

e h=8andj € {0,1,2}.

(3) j+h+t=8 with

e h=1and j =3,
o h=3andjc {1,2,5}.

In particular, such real trigonal curves are of type I for ¢ +c = h, a = j and
b =t. Moreover, there exist real trigonal curves of type I in X5 realizing 1q p ¢ o
for (a,b,c,c’) = (1,5,0,0) and (3,3,0,0).

Proof. Thanks to Theorems [2.4.3] [2.4.5] if the real graphs associated to 1q,p,c
are completable in degree 5 to a real trigonal graph of type I (resp. II), then
there exist real algebraic trigonal curves of type I (resp. type II) realizing

Ta,b,c,c’ -
We can glue 5 cubic trigonal graphs (see Section [2.4.0.1) in such a way

b)
Figure 3.5: Real trigonal graphs of degree 5 and type 1.

that we obtain type I (resp. type II) real trigonal graphs of degree 5 which
complete the real graph associated to 7, . where a,b, ¢ and ¢’ are such that
c+cd =hya=jand b=t (resp. 0<c+c <h,0<a<jand 0<b<t),
for h,j and ¢ as listed in (1) — (3) above. Finally, a type I completion (see
Remark of the real graph associated to 1, 4. for (a,b, ¢, ) = (3,3,0,0),
resp.(a,b,c,c) = (1,5,0,0), is pictured in a) of Fig. a), resp. b). O
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] e

c c c c

CL) REG b) REG

Figure 3.6: a) The union of a trigonal £-scheme and a fiber of £ on RYg. b)
A nodal trigonal L-scheme on RXg: 74.¢,¢/-

Proposition 3.4.2. Let i), be, up to L-isotopy of R¥s, a trigonal L-
scheme on RXg as depicted in b) of Fig. where letters a,b, c,c denote
numbers of ovals. Let h,j and t be non-negative integer numbers. Then, there
exist real algebraic trigonal curves in Xg realizing the real schemes i, p . o for
all a,b,c,c such that 0 < c+c <h,0<a<jand0<b<t, where h,j and t
are as listed in Proposition [3.4.1]

Proof. Thanks to Theorems [2.4.3] 2.4.5] if the real graphs associated to 7a,p,cc
are completable in degree 6 to a real trigonal graph of type I (resp. II), then
there exist real algebraic trigonal curves of type I (resp. type II) realizing
ﬁa,b,c,c’ .
For a, b, c, ¢ as listed in Proposition the existence of real trigonal graphs
of degree 6 and type I (resp. type II) completing the real graph associated
tO Ta e, 18 equivalent to the existence of those of type I (resp. type II)
associated to the L£-scheme depicted in a) of Fig. see [Ore03].

Let £ be the cubic trigonal graph of type I pictured in a) of Fig. Take

b)

Figure 3.7: a) Real trigonal graph of degree 1 and type I: £ . b) Local type I
labeling.

any real trigonal graph I' of degree 5 constructed in the proof of Proposition
realizing a trigonal £-scheme 7, 4. In a neighborhood of I NRP!, let
us denote by ¢ the sub-graph of " which is as depicted in Fig. b) and whose
associated L-scheme is the part of 7,4 .~ through which passes one fixed fiber
of L; see Fig. Glue T" along the o-vertex of § to the o-vertex, with same
labeling if T" is of type I, of the cubic trigonal graph £. The gluing is a real
trigonal graph of degree 6 which completes the real graph associated to the
union of a trigonal £-scheme with one fiber of £ as depicted in Fig. a) on
RYg, for all a,b,c,c as in Proposition [3.4.1] Besides, the gluing is of type I
(resp. of type II) for all a,b,c, ¢ for which T is of type I (resp. type II). O

Proposition 3.4.3. Let 1; 4¢n,4 be, up to L-isotopy of RXg, the trigonal L-
scheme on RXg depicted in b) of Fig. where letters i,d,e, h, g, for j =
4

1,2,3,4, denote numbers of ovals. Let g be > g; and let s,k be non-negative
=1

J
integer numbers. Then, there exist real algebraic trigonal curves in 3¢ realizing

the real schemes 1; g e g for alli,d, e, h, g such that0 < g < 5,0 <i+d+et+h <
k, where s,k are the following:
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i d e h i - d - e . h
g1 92 93 94 g1 92 93 94
a) R>g b) R>g

Figure 3.8: a) The union of a trigonal £-scheme and four fibers of £ on R¥g:
Ti,d,eh,g- 0) A nodal trigonal L-scheme on RYg: 175 d.¢n.,9-

(1) s+ k=12 with s € {6,10},
(2) s+ k=10 with s € {5,9},
(3) s+ k=8 with s € {0,4,6,8),

In particular, such real algebraic trigonal curves are of type I for g = s and
i+d+e+ h=k. Moreover, there exist real algebraic trigonal curves of type I
in Xe realizing 1; g.en.g for

(4) i+d+e+h+g=8 with g=0;
(5) i+d+e+h+g=06 with g € {1,3,5},
(6) i+d+e+h+g=4 with g € {2,4}.

Proof. Thanks to Theorems[2.4.3] 2.4.5] if the real graphs associated to 1; d,¢,h,g
are completable in degree 6 to a real trigonal graph of type I (resp. II), then
there exist real algebraic trigonal curves of type I (resp. type II) realizing
Ni,d.e,h,g-

Let 7;deng be, up to L-isotopy of RXg, the union of a trigonal L-scheme
with four fibers of £ on RYg as depicted in a) of Fig. |3.8f Remark that, for
i,d,e,h,g as listed in (1) — (6) above, the existence of real trigonal graphs
of degree 6 and type I (resp. type II) completing the real graph associated
t0 i den,g IS equivalent to the existence of those of type I (resp. type II)
associated to 7; g.e n,g (see [Ore03]).

We can glue 6 cubic trigonal graphs in such a way that we obtain real trigonal
graphs of degree 6 which complete the real graph associated to 7); g ¢,y Where
i,d,e,h,g are such that 0 < g<sand 0<i+d+e+ h <k, for s,k as listed
in (1) — (3) above. Type I completions of the real graph associated to s d.e,n.q
for values listed in (4) — (6) above, are pictured in Fig. (3.9} O

Proposition 3.4.4. There exist real algebraic trigonal curves of type I in Yg
realizing the trigonal L-schemes respectively depicted in a) and b) of Fig. [3.10
Moreover, there exists a real algebraic trigonal curve in Xg realizing the hyper-

bolic L-scheme depicted in Fig. c).

Proof. Thanks to Theorems [2.4.3] 2.4.5] if the real graphs associated to the
real schemes in the statement are completable in degree 6 to a real trigonal
graph of type I (resp. II), then there exist real algebraic trigonal curves of type
I (resp. type II) realizing them.

Respective completions in degree 6 of the real graphs associated to the L-
schemes in Fig. a),b) and c) are pictured in Fig. d), e) and f).
Furthermore, the trigonal graphs depicted in Fig. d), e) and f) are of
type I respectively because they have a unique type I labeling and because of
Remark O
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d) e)

Figure 3.9: Real trigonal graphs of degree 6 and type L.

(\ Oooooooooo (\ O oooo : 7QOO<

a) RE@- b) REG C) RE(;

Figure 3.10: Trigonal £-schemes on RYg and the completion of their real graphs
in degree 6.

N ST AT [0

g1 9293 94

a) b) c)
Figure 3.11: L-schemes 11,72, 13, M4, 75 on R3s.

WC// o AN /?GEZ\)/\ ')

Proposition 3.4.5. Let 0y, resp. m2,n3 and n4, be a trigonal L-scheme on
RS9, up to L-isotopy of RYs, as depicted in Fig. a), resp. b),c) and d),
where a,b,c,c, resp. i,d,e,h,qg, resp. a’,b' denote numbers of ovals. Then,
such L-scheme is realizable by a non-singular real algebraic curve Cy (resp.
Cs,C5 and Cy) of bidegree (3,4) on Yo for a,b,c,c as listed in Proposition
(resp. i,d, e, h,qg as listed in Propositionm resp. (a/,b') = (3,2) and
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(9,0)).
cc
b
— | P4
S~—
c’(f ab
RY5 R

Figure 3.12: Birational transformation of the pair (RXg, RC}), from right to
left.

p1rd 0/ Z'opZ% \\ i d.p?)y iv d e h P4
i d e
g1 92 g3 94 g192| 93 94 g1 92 g3 94( g1 g2 g3 g4
fe\ I\
R>3 R4 R>5 R

Figure 3.13: Birational transformation of the pair (R, RCy), from right to
left.

U A NV

S = Iy
N\~ N A

RX3 R>y R>5 R

Figure 3.14: Birational transformation of the pair (REg,RC’g), from right to
left.

/('/I/ Vi \)Z / /
ﬁa\ﬂm~wphww_
e SN A ' Wy

R4 RY, RY; RYg

Figure 3.15: Birational transformation of the pair (RXg, RCy), from right to
left.

Proof. Let us denote by C; (resp. Ca, Cs and Cy) any real algebraic trigonal
curves in g constructed in Propositions (resp. Proposition [3.4.3] resp.
Proposition [3.4.4). Let us consider, as defined in Section ~for each curve
C; the birational transformation Z; =: 8,16 18,181 : (86, Cj) —= (22, Cj),
where the points pg, k& = 1,2,3,4, are real double points such that ps be-
long to RC; and pg, k = 3,2,1, to the image of RC; via 5p—,iH- In Fig. .3'12l
[3-13] B-14]and [3-15] we depict in red the fiber of RY ., o intersecting the point p.
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The birational transformation Bp_lﬁ_glﬁlzll((REG, RC})) is depicted in Fig. ,

2

resp. in Fig. |3.13|, Fig. |3.14|, Fig. |3.15 from right to left and =Z;((RXg, RC))
in Fig. a) for j =1, resp. in Fig. [3.11]b), ¢) and d) for j = 2,3, 4.

O

Since we will apply Viro’s patchworking method in Section [3.4.2] to con-
struct real algebraic curves of bidegree (5,0) on Xo, in Fig. a),b),c) and
d) we depict the charts of non-singular real algebraic curves of bidigree (3,4)
in ¥y constructed in Proposition [3.4.5] Moreover, performing a coordinates
transformation to a curve Cy with chart as depicted in d) of Fig. we
obtain a type I real algebraic curve C5 of bidigree (3,4) in ¥y with chart, resp.
real L-scheme, as depicted in e) of Fig. resp. as depicted in e) of Fig.
where @', V' still denote numbers of ovals and (a’, ") = (3,2) or (9,0).

e)Cs

Figure 3.16: Charts of type I curves C1, Ca, C3, Cy, C5 of bidegree (3,4) in 3s.

3.4.2 Final constructions and patchworking

In this Section we end the proof of Theorems[3.1.2, [3.1.3] [3.1.4 [3.1.5] We need
Viro’s patchworking method. Most of all, we use original Viro’s patchworking
method which is a tool for constructing real algebraic hypersurfaces with pre-
scribed topology in real toric varieties (Section . Finally, for a particular
construction, we use a variant of the patchworking developed by Shustin (Sec-
tion , which exploits the deformation pattern technique and allows to
glue charts of polynomials presenting a tangency point with the boundary of
the chart.

Remark 3.4.6. In the proofs of Propositions[3.7.8,[3.7.9,[3.4.10 we construct
by patchworking some non-singular real algebraic curves of bidegree (5,0) on
Y9. This, because of the perturbation explained in Proposition [53.5.1, immedi-
ately implies the existence of non-singular real algebraic curve of bidegree (5,5)
on the quadric ellipsoid.

Notation 3.4.7. In Propositions|5.4.8,13.4.9,15.4.1() the real schemes marked
with the symbol © (resp. *) are realized by a real algebraic curve of type I (resp.

type II).

In the following proposition, we give a construction of real algebraic curves
of bidegree (5,5) on the quadric ellipsoid realizing almost all real schemes listed
in Theorems[3.1.2] B-1.3] B.1.4]and [3.1.5] The existence of real algebraic curves
of bidegree (5,5) on the quadric ellipsoid realizing the rest of the real schemes
listed in the theorems above is proved in Propositions [3.4.9] and [3.4.10]

Proposition 3.4.8. All the real schemes in the following list are realizable by
non-singular real algebraic curves of bidegree (5,5) on the quadric ellipsoid:
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Figure 3.17: Charts and arrangements with respect of the coordinate axis
{y = 0} of real algebraic curves of bidegree (2,0) on X,.

(1) all real schemes listed in Theorem[3.1.4 but the real schemes 1 L (4) U
(10) and 1 U (7) U (7);

(2) all real schemes listed in Theorem[3.1.9 but the real schemes (4) U (10)
and (7) U (7);

(8) all real schemes listed in Theorem but the real scheme (4) U (9)°;

(4) all real schemes listed in Theorem but the real schemes 13°, 1 U
(1) U (9)°,1 U (3) U (N°, (1)U (4)°, 1 and 0.

Proof. For any fixed real four points on the coordinates axis {y = 0} there
exist real algebraic curves D; and Dy of bidegree (2,0) on X5 whose charts are
respectively as depicted in Fig. a) and b) and which intersect {y = 0}
in the fixed four points. Thanks to Viro’s patchworking method and Remark
we realize the real schemes listed in (1) — (4) gluing the polynomials
and the charts of a real algebraic curve C;, with ¢ = 1,2, 3,4, 5, constructed in
Proposition [3.4.5] and at the end of Section [3.4.1] and of a real algebraic curve
Dy, with j = 1,2. In Fig. B.1§]it is depicted the patchworking of charts of the
C; of type I with D;. O

Proposition 3.4.9. The real schemes 1 U (4) U (10), (4) U (10), (4) U (9)°,
13°,1 1 (1) U (9)° and 1 U (3) U (7)° are realizable by non-singular real
algebraic curves of bidegree (5,5) on the quadric ellipsoid.

Proof. For any fixed real ten points on the coordinates axis {y = 0} there exist
a real algebraic curves C of bidegree (2,0) on X5 whose charts are as depicted
in Fig. and which intersects {y = 0} in the fixed ten points. For any
fixed connected component O of RC' we can pick four real points, p1, p2, ps, p4
on it as depicted in Fig. ¢), resp. d). Then, consider the birational

transformation 3,'3, '8, 16,1 - (£5,C) — (31,C), as defined in Section
where we call p; also the image of p; via 6;3,1, j>1i,4=1,2,3. Choose the
coordinates axes in RY; such that RC” has an arrangement as depicted in
Fig. b), resp. a) where t, s denote numbers of ovals and ¢ + s = 3, (the
coordinates axes are pictured in red). The charts of C’ are as depicted in Fig.
3.21] ¢), resp. b).

In [OS16], Orevkov and Shustin have constructed some real algebraic curves of
bidegree (4,0) and type I, resp. type I, in X9 whose charts, up to a coordinates
change, and arrangements with respect to the coordinates axis {z = 0} are as
depicted in Fig. a) for (o, B,7v) = (5,0,2),(8,1,0) and (4,1,0), resp.
(7,0,1), where «a, 3,7 denote numbers of ovals.

Thanks to Viro’s patchworking method and Remark [3:4.6] we realize the real
schemes (4) U (9)°,13°, 1 U (4) U (10), 1 U (1) U (9)°,1 U (3) U (7)°
and (4) U (10) gluing the polynomials and the charts of these latter algebraic
curves and of the curves C’; the patchworking of their charts is depicted in

Fig. B22) O
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<N ) O\ )
U

i) )
Figure 3.18: Charts of curves of bidegree (5,0) in ¥y obtained patchworking
the charts of the real algebraic curves C; from Proposition and D;.

Proposition 3.4.10. The real schemes 1 U (7) L (7), (7) U (7), (1) U (4)°,
1 and 0 are realizable by non-singular real algebraic curves of bidegree (5,5) on
the quadric ellipsoid X .

Proof. First of all, in order to realize the real scheme 0 (resp. 1), we just
perturb the union of five real hyperplane sections in CP3 not intersecting RX
(resp. whose just one intersects RX) to a smooth surface of degree 5. For the
realization of the real schemes (1) Ll (4)° and 1 U (7) U (7) (resp. (7) U (7))
we give some intermediate constructions, then we apply Viro’s (resp. Shustin’s)
patchworking method.

Let L be any real algebraic line on the complex projective plane. For any fixed
five distinct real points on L, we can construct real algebraic plane quintics
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Figure 3.19: Charts and L-schemes of real algebraic maximal curves of bidegree
(2,0) on R3s.
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a) b)

Figure 3.20: L-schemes of real algebraic curves of bidegree (2,4) on ;.

09 gy B9 24
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a) b) c)
Figure 3.21: a) Charts of real algebraic curves of bidegree (4,0) on ¥a. b),c)
Charts of real algebraic curves of bidegree (2,4) on X;.

Figure 3.22: Charts of real algebraic curves of bidegree (5,0) on 3.

passing through such fixed points, obtained as evolving of the singularity N
(see |Vir86]). In particular, there exist non-singular real algebraic quintics
Ry, Ry and R3 whose charts are respectively as depicted in Fig. a),b) and

¢) with (p,q) = (6,0),(0,6), n = 4, where p, ¢ and n denote numbers of ovals.
Moreover, let

A
Py(z,y,2) = E a; ja'y’ 277
i+j<5

be a polynomial of a quintic Ry, with h = 2, 3, passing through five fixed
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Pty

Flgure 3.23: Charts of real algebraic curves.

G

) Chart of a real algebraic plane quintic. b) Chart of a real algebraic plane curve.

d) Chart of a non-singular real algebraic
curve of bidegree (5,0) on X,.

Figure 3.24:

b) Chart of a non-singular real algebraic
curve of bidegree (5,0) on Xa.

Figure 3.25:

a) Deformation pattern.

points on L. Then, applying to the polynomials P the transformation T :
Py(x,y,2) — Py(xz,yz,2%) we construct real algebraic plane curves R, whose
polynomials are
Buley )= 3 ayal0i-2yizits
i+j<5



42 CHAPTER 3.

and whose charts are as depicted in Fig. d) and e) respectively for n =
4 and (p,q) = (0,6),(6,0), where n,p and ¢ still denote numbers of ovals.
Later on, we use Viro’s patchworking theorem, so remark that P, and P, have
monomials with same coefficient a; ; for 7 + j = 5.

In order to realize the real scheme (1) U (4)°, resp. 1 U (7) U (7), we apply
Viro’s patchworking method gluing the polynomials and the charts of the real
plane quintic Ry, resp. Ry with (p,q) = (0,6), with the real algebraic curve
Rs, resp. Ry with (p, q) = (6,0).

Finally, the construction of a real algebraic curve of bidegree (5,5) on the
quadric ellipsoid realizing the real scheme (7) U (7) requires a variant of the
patchworking theorem due to Shustin (Section . For any four fixed
real points on L, there exists a real algebraic plane quintic passing through
three such points and tangent to L at the remaining fixed point and whose
chart is as depicted in Fig. [3.24] a), where (p,q) = (6,0) and (0,6) and p,q
denote numbers of ovals. Moreover, there exists a real algebraic plane curve
with chart as depicted in b) of Fig. [3.24] constructed from the quintic via the
transformation 7" above. Gluing the charts of those two real algebraic plane
curves respectively with (p,q) = (6,0) and (p,q) = (0,6), as depicted in c)
of Fig. (where p and ¢ are both equal to 6), we do not obtain a chart
of a polynomial. But, the variant of the patchworking method developed by
Shustin allows us to replace a neighborhood of the two tangency points with
a deformation pattern (as depicted in a) of Fig. ; see b) of Fig. At
the end, we obtain a chart of a real algebraic curve of bidegree (5,0) in 32 as
depicted in d) of Fig. with p =6 and ¢ = 6. O



Chapter 4

Real algebraic curves on real
minimal del Pezzo surfaces of
degree 1

4.1 Introduction

Let Y be CP? blown up at eight points in generic position; then, the surface
Y is a del Pezzo surface of degree 1 (see [BCCT08, pag. 289-312], [Doli2
Chapter 8]). The anti-bicanonical map ¢ : Y — CP? exhibits Y as a double
ramified cover of an irreducible singular quadric @ in CP3; the branch locus of
1 consists of the node V of Q and a non-singular cubic section S on Q disjoint
from V. Conversely, any such double covering is a del Pezzo surface of degree
1.

By construction, the first Chern class ¢1(Y') is the pull back via ¥ of the class
of a line on @ ([DIK00]). Let us consider the standard real structure of CP3.
Suppose that the quadric Q and S are real. Let Qq and Qs be two distinct
disjoint unions of connected components of RQ \ (RS U {V'}) such that each
Q; is bounded by RS U {V}. There exist two lifts to ¥ of the real structure
of ) via the double cover ¥ and the real part of Y is the double of one of the
Q:’s. Let ¢ be a lifting to Y of the standard real structure on @, then (Y, ¢) is
R-minimal if and only if Q is a quadratic cone, the cubic section S is real and
maximal, and RY := fiz(c) is homeomorphic to RP? |_|§:1 S?%; see [DK0O2I,
[DIKO00] and Fig.

Notation 4.1.1. From now, up to the end of this chapter the symbol Q) denotes
the quadratic cone with equation X% +Y? —Z% =0 in CP3. Moreover, the real
part of Q will be depicted as a quadrangle whose opposite sides are identified
in a suitable way and the horizontal sides represent the node V :=1[0:0:0: 1]

of Q.

For any two distinct real maximal cubic sections on (), one may obtain

non-isomorphic real minimal del Pezzo surfaces of degree 1 via double ramified
covers; nevertheless, all real minimal del Pezzo surface of degree 1 are equiva-
lent up to equivariant deformation; see [DK02].
Let ¢, : Ho(Y;Z) — Hy(Y;Z) be the group homomorphism induced by the
real structure ¢ on Y, and let H, (Y';Z) be the (—1)-eigenspace of ¢,. If (Y, ¢)
is minimal, then H, (Y;Z) is generated by ¢1(Y) (IBCCT08, pag. 289-312|),
and any real algebraic curve in Y realizes kc1(Y'), where k is some non-negative
integer.

Definition 4.1.2. Let Y be a real minimal del Pezzo surface of degree 1 and

43
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(8

(RQ,RS) RY ~ RP?|J;_, S?

Figure 4.1: Real part of the ramified double cover map.

let B C'Y be a non-singular real algebraic curve. Then, we say that B has
class k on'Y if B realizes ke1(Y) in Hao(Y;Z).

In this chapter, we are interested in the classification up to homeomorphism
of the pairs (RY,RB), where B is a non-singular real algebraic curve of class
k in a real minimal del Pezzo surface Y of degree 1. The first homology group
H(RY;Z/27Z) has two homology classes, and we call ovals (resp. pseudo-
lines) the connected components of RB realizing the trivial class (resp. the
non-trivial class) in Hy(RY';Z/27Z).

4.1.1 Positive and negative connected components of RY

Let S be a real maximal cubic section on Q. The two halves of S\RS induce two
opposite orientations on RS, called complez orientations. Independently from
the choice of a complex orientation on RS, we can distinguish the connected
components of RS on RQ in the following way. Let us consider Q\ {V'}. There
are four connected components, called ovals, of RS realizing the trivial class in
Hi(RQ\ {V'};Z/27); while the connected component of RS realizing the non-
trivial class in H1(RQ \ {V'};Z/2Z), is called long-component. If the union of
an oval and the long-component of RS in RQ\ {V'} bounds an oriented surface,
the oval is called positive; otherwise negative.

Each oval of RS is either positive or negative, independently from the choice

Y

(RQ,RS) RY

Figure 4.2: Positive and negative connected components of RY".

of a complex orientation on RS; moreover, two ovals are positive and two are
negative, and they alternate because of Fiedler’s Theorem ([F1e83]). Now,
we can differentiate the connected components of RY homeomorphic to S? as
positive and negative via the double ramified cover map ; see Fig. [f.2] where
the preimage of negative and positive ovals, is depicted respectively in red and
blue.

Notation 4.1.3. Let Y be a real minimal del Pezzo surface of degree 1. We
denote the connected components of RY with Yy,Y1,Ys,Ys, Yy, where Yy is
homeomorphic to RP? and Y;, with j > 1, is homeomorphic to S2. Moreover,
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we use the convention that the conmnected components Y1 and Yy are positive
and Ys and Yy negative.

4.1.2 Real schemes

Given a collection |_|§Z:1 Oy, of 1 disjoint circles embedded in RP?, resp. S2,
the arrangement of the pair (RP?, |_|2: Op,), resp. the arrangement of the pair
(52, |_|§7,=1 O},), is encoded as in Section Let Y be a real minimal del Pezzo

surface of degree 1. We encode the arrangement of a given collection |_|lh:1 Op
of [ disjoint circles embedded in RY as follows. Let &; be the codification of
the arrangement of the embedded circles in Y; with 0 < j < 4. We say that

the pair (RY, |_|lh:1 Op,) realizes Sp | S1: Sa: Szt Sa.

Definition 4.1.4. We say that So | S1 : Sa : S3 : Sy is a realizable real
scheme in class k (resp. realizable coarse real scheme in class k), if
there exists a real minimal del Pezzo surface'Y of degree 1, and a real algebraic
curve B C'Y of class k, such that the pair (RY,RB) realizes Sp | S1 : Sa :
S3 : Sy (resp. if there exists a permutation o € Sy such that the pair (RY,RB)
realizes So | Sy(1) + So(2) * So(3) * So(a))-

Example 4.1.5. Suppose that the (coarse) real scheme depicted in Fig.
1s realizable in class 3 in a real minimal del Pezzo surface Y of degree 1. One
can say that the coarse real scheme J U (1) | 1:1:0:0 is realizable in class
3 inY; and the real scheme J U (1) | 0:1:1:0 is realizable in class 3 in

Y;.
Yo Y1 Y, Y3 Yy

Figure 4.3: Example of (coarse) real scheme in class 3.

4.1.3 Main results

Theorem 4.1.6. Let B be a real algebraic curve of class k in o real minimal
del Pezzo surface of degree 1, with k € {1,2,3}. Then B realizes one of the
following coarse real schemes:

(1) If k=1:
(1) J U1|0:0:0:0;
(2) J11:0:0:0;
(8) J10:0:0:0.
(2) If k = 2:
(1) a U (B) | v:0:0:0, with0<a++~v+5<2, and 0 <~ <;

(2)0]a U (B):v:0:0,with0<a+8+v4+6<2,0<vy<6 and
0<a<p;

(8) ((1)) |0:0:0:0.

(3) If k = 3:



46 CHAPTER 4.

(1) T UaldB)|v:0:e:0, with0O<a++v+0d+e <3 and
0<y<di<eg

(2) T Ual {(B)]v:0:0:0, withO<a+pB+v<2and#0;

(3) T lalU(B) U(y):0:¢:0, withO<a+p+y+d+e+(+n<2
and 0 < B <v,0<0<e¢;

(4) 7 U () 10:0:0:0;
(5) J U (1) U (1)|0:0:0:0;
(6) J U (1 U (l)|0:0:0:0;
(7 J U1]1U():0:0:0;
(8) J11:1:1:1;

(9) J10:0:0:0.

Moreover, let Sy |S1: Sz : Sg : Sy be any real scheme in the above list. Then,
the real scheme Sy | Sy(1) @ So(2) * So(3) * Soa), for any permutation o € Sy,
18 realizable by o real algebraic curve of class k in a real minimal del Pezzo
surface of degree 1.

4.2 Obstructions

The number of pseudo-lines (see Section of a real algebraic curve of class
k in a real minimal del Pezzo surface Y of degree 1, is determined by k.

Proposition 4.2.1. Let B be a non-singular real algebraic curve of class k in
a real minimal del Pezzo surface Y of degree 1. Then, the real scheme realized
by RB has one and only one pseudo-line if k =1 (mod 2) and no pseudo-lines
otherwise.

Proof. Let k be odd (resp. even). Since the value modulo 2 of the intersection
form on H, (Y;Z) descends on Hy(RY;Z/27) ~ Hy(RP? Z/27), it follows
that RB has an odd (resp. even) number of pseudo-lines. Moreover, the real
part of B has at most one pseudo-line since any two pseudo-lines meet in at
least one point. ]

Directly from Harnack-Klein’s inequality and Proposition [£.2.1] we obtain
the following statement.

Proposition 4.2.2. Let B be a non-singular real algebraic curve of class k in a
real minimal del Pezzo surface Y of degree 1. Then, the number | of connected
components of RB is bounded as follows:

k(k — 1)

<[l <
FEiETy

+ 2,

where € € {0,1} is such that ¢ = k (mod 2).

Proof. The right inequality follows from Harnack-Klein’s inequality and the
adjunction formula; while the left one follows from Proposition [:2.1] O

Theorem [£.1.6] states that the system of obstructions given in Propositions
{22 and {.2.1] is complete for real algebraic curves of class 1, 2 and 3. In
Section we realize all the (coarse) real schemes listed in Theorem .
The next Proposition provides an example of additional obstructions on real
schemes realized by non-singular real algebraic curves of class k in a real min-
imal del Pezzo surface of degree 1, with k£ > 3.
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Proposition 4.2.3. Let B be a non-singular real algebraic curve of class k =
25+ ¢ in a real minimal del Pezzo surface Y of degree 1, where ¢ € {0,1} and
s € Z>1. Suppose that all connected components of RB lie on Yy and on t of
the Y;’s, for j = 1,2,3,4. Suppose that Ny, with h = 1,2,3, are three nests of
depth iy, of RB. Assume that i1 < iy and Ny, No form a disjoint pair of nests
in Yp; while N3 lies on some Y}, where j # 0. Then, we have the following
restrictions on the depths of the nests:

i1+is <3s+e—t; (4.1)

io+i3<3s+e—(t—1). (4.2)

Proof. For any given collection P of 6 distinct points on Y, there exists an
algebraic curve T of class 3 on Y passing through P. If all points of P are real
and such that each connected component of RY contains at least one point
of P, then T is real and RT has exactly one connected component on each
connected component of RY'.

Let us choose such a collection P in the following way. On each boundary of

2
the two disks in Y \ hulNh, pick a point. Moreover, pick a point on every

connected component Y;, with 57 > 1, such that the point belongs to RB any
time the real algebraic curve has at least one oval on Y;. Then, there exists
a non-singular real algebraic curve T' of class 3 passing through P. Thus, the
number of real intersection points of RB with RT is at least 2(iy +i2 +t) + <.
Therefore, inequality follows directly from the fact that the intersection
number BoT = 3(2s+¢) is greater or equal to the number of real intersection
points of B with T

The proof of is similar to the previous one. O

Example 4.2.4 (Application of Proposition. Let us apply inequality (1)
of Proposition[].2.3 to show that the real scheme S := (1) L (1) 2:1:1:0
in class 4 on RY is unrealizable; see Fig. [{.4] Let us choose a configuration
P of 6 real points p1,..,pe as depicted in Fig. [{.] then, there exists a non-
singular real algebraic curve T passing through P as depicted in blue in Fig.
[£4 The real scheme S has two nests of depth 2 on Yy and ovals on Y1, Y and
Y3; applying inequality (1) it follows that 4 has to be less or equal to 3; this
contradiction implies that the real scheme S is unrealizable in class 4.

Figure 4.4: Example of unrealizable real scheme in class 4.

Remark 4.2.5. Ezploiting Welschinger-type invariants on Y (see [Brul8]),
other topological obstructions may be found for real algebraic curves of class
k>4o0nY. We give an example of such technique of topological obstruction
i Proposition for real schemes of real algebraic curves of class d on a
4-spheres real del Pezzo surface of degree 2 (see Chapter El)
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4.3 Constructions

4.3.1 Constructions from the quadratic cone

Let Bly : 35 — @ be the blow-up of the quadratic cone @ at the node V; see
Section [2.3] The fibration of the second Hirzebruch surface Y9 is the extension
of the projection from the blown-up point to a hyperplane section which does
not pass through the blown-up point. The group Hs(X9;Z) is isomorphic to
Z ® 7 and is generated by the classes [Bo] and [Fy]. Let C' be an algebraic
curve on @ and C the strict transform of C' via Bl;1 in Yo. The curve C' is
said to be of bidegree (k,1) if it realizes the homology class k[Bs] + ([F5] in
HQ(EQ; Z)

Definition 4.3.1. Let k and | be two non-negative integers. We say that an
algebraic curve C' on Q has bidegree (k,1) if Bly,' (C) has bidegree (k1) in Zs.

Let S be a real maximal curve of bidegree (3,0) on @Q and let Y be a real
minimal del Pezzo surface of degree 1 constructed via a double cover ¢ : Y — Q
ramified along S. Let T be any real algebraic curve of bidegree (k,e), with
e € {0,1}. From the arrangement of the triplet (RQ,RS,RT), we recover the
real scheme realized by the real algebraic curve 1 ~1(T) of class 2k+¢in Y. See
as example Fig. on the left, the arrangement of a triplet (RQ,RS,RT);
on the right, the induced real scheme J L/ 1[1:0:1:2 on RY.

e (Y

(RQ,RS,RT) JU1[1:0:1:2

Figure 4.5: Preimage via 1) of a particular triplet (RQ, RS, RT).

Remark 4.3.2. Let S and T} be non-singular real algebraic curves on Q re-
spectively of bidegree (3,0) and (1,0). Let F' be any real line on Q. By a small
perturbation one can perturb Ty UF in order to construct a bidegree (1,1) non-
singular real algebraic curve Ty on Q. In particular, from the arrangement of
the triplet (RQ,RS,RTl URF) one can recover the arrangement of the triplet
(RQ,RS,RT3).

Example 4.3.3 (Application of Remark . Let S, Ty and F be non-
singular real algebraic curves on @Q respectively of bidegree (3,0), (1,0) and
(0,1). Let the topological type of (RQ,RS,RT} URF) be as depicted in Fig.
[£:6, on the left. One can perturb Ty U F in order to construct a bidegree
(1,1) non-singular real algebraic curve Ty on Q such that the arrangement of

(RQ,RS,RT5) is as depicted on the right of Fig. .

5 © o O SR

Figure 4.6: Application of construction in Remark [4.3.2]
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4.3.2 Small perturbations method on Q

In Proposition [£:3.4] we realize some of the real schemes listed in Theorem

Proposition 4.3.4. Let Sy |S1: Sz : S3: Sy be any of the coarse real schemes
listed below. Then, each real scheme So | Sp(1) * Se(2) * Se(3) * Se(a) 18 realiz-
able, for any permutation o € Sy, by a real algebraic curve of class k in a real
minimal del Pezzo surface of degree 1, with k € {1,2,3}.

(1) For k=1:

(1) J U1]0:0:0:0;
(2) J|11:0:0:0;
(8) J| :0:0:0:0.

(2) For k =2:

(1) a U (B) | v:60:0:0, withO<a+B+~7+5<2,and 0 <~y <9;
(2) ((1)) |0:0:0:0.

(3) For k = 3:

(1) T UaldB)y|vy:0:6:0, with0<a+B+~v+d+¢e<3, and
0<y<d<e<3;

(2) T Ual (B)]|v:0:0:0, withO<a+B+v<2and#0;
(3) J U (((1)))]0:0:0:0;

(4) J U (1) U (1)|0:0:0:0;

(5) J U (1 U (1)]0:0:0:0.

Proof. There exists a real algebraic maximal curve S of bidegree (3,0) on Q
with real part as depicted in a) of Fig. (resp. b) of Fig. [£.7). Any real line
F on @ lifts to a real algebraic curve of class 1 on a real minimal del Pezzo
surface of degree 1; in Fig. .8 from the depicted real lines on @, one recovers
all real schemes listed in (1) above.

For any two lines F, F» on @ there exists an hyperplane section H C CP? pass-
ing through V' such that QN H = Fy U F,. Moving slightly H, one constructs a
real algebraic curve T3 of bidegree (1,0) on @ such that from the arrangement
of the triplet (]RQ,]RS ,RF} URF5) one can recover the arrangement of the
triplet (RQ,RS,RT1). See as example a) of Fig. where we have depicted
a (0,2) real algebraic curve as intersection of ) with an hyperplane section
H passing through V; resp. in b) of Fig. moving slightly H, we have
constructed a (1,0) real algebraic curve on Q. Considering all the possible
arrangements of S and two lines, one can construct real algebraic curves T} of
bidegree (1,0) from which we deduce that all the real schemes listed in (2) are
realizable by real algebraic curves of class 2 in a real minimal del Pezzo surface
of degree 1. Moreover, via the construction explained in Remark [£.3.2] starting
from real algebraic curves 77, one can also construct real algebraic curves T5 of
bidegree (1,1) from which we deduce that all the real schemes listed in (3) are
realizable by real algebraic curves of class 3 in a real minimal del Pezzo surface
of degree 1. As example, from the arrangement of the triplet (RQ,RS,RT})
in b) of Fig. m (resp. (RQ,RS,RT3) in ¢) of Fig. , we deduce that the
real scheme 1 U (1) |0:0:0:0 (resp. J U (1) U (1)|0:0:0:0)is
realizable by a real algebraic curve of class 2 (resp. 3) in a real minimal del
Pezzo surface of degree 1. O
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a) b)
Figure 4.7:

Figure 4.8:
RT5
9] 32 © L9) O
0o ’S) 9 © o ’S)
/C/CD_/ d' "

Figure 4.9: a) (RQ,RS,RH). b) After moving the hyperplane section H. c)
Application of construction in Remark

4.3.3 Harnack’s construction method on Q

In Proposition .3.5] we realize some of the real schemes listed in Theorem
HI.6l A variant of Harnack’s construction method allows us to construct both
a bidegree (3,0) real algebraic maximal curve S and a bidegree (1,0) real
algebraic curve 77 on (). Via Harnack’s construction and the construction
explained in Remark [£.3:2] one can construct real algebraic curves of bidegree
(3,0), (1,0) and (1,1) on @ and proves that all real schemes listed in (1) and
(2) of Proposition are realizable by real algebraic curves of class 2 and 3
in a real minimal del Pezzo surface of degree 1.

Proposition 4.3.5. Let Sy |S1: Sa : S3: Sy be any of the coarse real schemes
listed below. Then, each real scheme So | Sy(1) * So(2) + So(3) * Se(a) 15 realiz-
able, for any permutation o € Sy, by a real algebraic curve of class k on a real
minimal del Pezzo surface of degree 1, with k € {2,3}.

(1) If k = 2:
(1) 0| a:B:7:0, with0<a+F+v<3,and0<a< <.
(2) If k = 3:
(1) T |laU (B):v:0:e, with) < a+f+y+0+e<4,0<y<i<¢e
and 0 < a < 5;
(2) T Ul|laU B):0:0:0, with0<a+p<2and0<a<pf
(3) J10:0:0:0.

Proof. Fix a non-singular real algebraic curve Tj of bidegree (1,0) on Q. Pick
any other real algebraic curve Lj of bidegree (1,0) on @ such that T} N Ly
consists of two distinct real points. Let Py(x,y)Pi(z,y) = 0 be a polyno-
mial equation defining the union of 77 and L; in some local affine chart
of @. Choose 4 real lines F; on @, with i = 1,2,3,4, intersecting trans-
versely 71 U L;. Replace the left side of the equation Py(x,y)Pi(x,y) = 0
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Figure 4.10: a)—c) Example of Harnack’s construction method. d) Application
of the construction in Remark 4.3.2,
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with Py(z,y)Pi(z,y) + efi(z,y) fo(z,y) f3(x,y) fa(z,y), where fi(x,y) = 0 is
an affine equation of the line F; and € > 0 is a sufficient small real number. In
this way one constructs a small perturbation Lo of T U L1, where Lo is a non-
singular real maximal curve of bidegree (2,0) such that |_|;1:1 FNTy = LanTy.
In Fig. we have depicted an example of a such construction before and
after a small perturbation, respectively pictured in a) and b); the dashed seg-
ments are the lines F;’s.

Analogously, by a small perturbation of 77 U Lo, one can construct a non-
singular real algebraic maximal curve S of bidigree (3,0) on Q. In Fig.
we have depicted an example of a such construction before and after a small
perturbation, respectively pictured in b) and c).

Finally, one can construct real algebraic maximal curves S on Q and bidegree
(1,0), resp. (1,1) thanks to Remark real algebraic curves Ti, resp. Tb,
on @ such that, from the arrangement of the triplets (RQ,RS‘ ,RTY), resp.
(RQ,RS,RT3), we deduce that the real schemes in (1) above, resp. (2) above,
are realizable by real algebraic curves of class 2, resp. 3, in a real minimal del
Pezzo surface of degree 1. As example, from the arrangement of the triplet
(RQ,RS,RT}) in ¢) of Fig. (resp. (RQ,RS,RT3) in d) of Fig. , we
deduce that the real scheme 0 | 1:0:1:1 (resp. J | 1:1:1:1) is realizable
by a real algebraic curve of class 2 (resp. 3) in a real minimal del Pezzo surface
of degree 1. O

4.3.4 Two particular constructions

With Corollary .37 we end the proof of Theorem[.1.6] In fact, in Proposition
1.34] Proposition f.3.5]and Corollary 1.3.7] we realize all the real schemes listed
in Theorem [.1.6] In this section, we give some intermediate constructions in
Proposition m whose proofs rely on Viro’s patchworking method (Section
and construction via dessins d’enfant (Section [2.4)). In particular, we
construct two real algebraic curves of bidegree (3,0) on @, whose existences

directly imply Corollary {.37]

Proposition 4.3.6. There exists real algebraic curves of bidegree (3,0) on Q
respectively with chart as depicted in a) and b) of Fig. [{.11]

Proof. We need to construct two real algebraic curves of bidegree (2,2) in ¥
with chart as depicted in Fig. [4.11]¢) and d). Let 71, 72 be trigonal £-schemes
on RY, respectively as depicted in Fig. a) and ¢). Due to Theorem
2.4.3] if the real graph associated to 7); is completable in degree 4 to a real
trigonal graph, then there exists a real algebraic trigonal curve D; realizing 7.
Therefore, the completion of the real graph associated to 7; depicted in b) of
Fig. (resp. d) of Fig. proves the existence of such D;; see Section
Moreover, the D;’s are reducible because they have 8 non-degenerate
double points and their normalizations have 5 real connected components. In
addition, the D;’s have to be the union of a real curve of bidegree (2,0) and a
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Figure 4.12: Intermediate constructions.

real curve of bidegree (1,0).
Let us consider, as defined in Section [2.3] the birational transformation = :=

/3;51 p_sl 0 (B4, D;) — (X2, D; U A), where the points ps, ps, are the real double

points of D; as depicted in a) of Fig. (resp. ¢) of Fig. |4.12), where the
dashed real fibers are those intersecting ps and pg. The image via = of the

reducible real trigonal curve D; is a reducible curve, in particular the union
of two non-singular real curves D; and A, which are respectively of bidegree
(2,2) and (1,0) in 3y. Moreover, the chart of D; is as depicted in ¢) of Fig[4.11]
(resp. d) of Figli.11]).

Finally, we can apply Viro’s patchworking method to the polynomials and
charts of D; and a non-singular real algebraic curve of bidegree (1,0) in 3o,
and we construct a bidegree (3, 0) real algebraic maximal curve on CP3, whose
chart and arrangement with respect to the coordinates axis {y = 0} is as

depicted in a) of Fig. (resp. b) of Fig. {4.11]). O

Propositions directly implies Corollary and the completion of
the proof of Theorem F.1.6]

Corollary 4.3.7. There exist non-singular real algebraic curves of class 2
(resp. 3) in a real minimal del Pezzo surface of degree 1, realizing the real
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schemes 0| ((1)) :0:0:0and0]0:0:((1)):0 (resp. T | (((1))):0:0:0
and J | 0:0: (((1))):0).

Proof. In Proposition we have constructed bidegree (3,0) non-singular
real algebraic maximal curves S and also bidegree (1,0) non-singular real al-
gebraic maximal curves 71 on @Q); see the charts of S respectively depicted in
Fig. a) and b). Therefore, there exist non-singular real algebraic curves of
class 2 in a real minimal del Pezzo surface Y of degree 1 respectively realizing
the real schemes 0] ((1)) : 0:0:0and 00 : 0 : ((1)) : 0. Applying the
construction in Remark [£:3.2] to the real curves T3, one deduces that the real
schemes J | (((1))) : 0:0:0, J|0:0: ({((1))) : 0 are also realizable by

non-singular real algebraic curves of class 3 in Y. O
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Chapter 5

Real algebraic curves on
4-spheres real del Pezzo surfaces
of degree 2

5.1 Introduction

Let X be CP? blown up at seven points in generic position; then, the surface X
is a del Pezzo surface of degree 2 (see [BCCT08, pag. 289-312|, [Dol12, Chapter
8]). The anti-canonical system ¢ : X — CP? exhibits X as a double ramified
cover of CP?; the branch locus of ¢ consists of an irreducible non-singular
quartic @ defined by a homogeneous polynomial f(x,y,z). By construction,
the first Chern class c1(X) is the pull back via ¢ of the class of a line in CP?
(IDIK00]). Moreover, the surface X is isomorphic to the real hypersurface
in CP(1,1,1,2) defined by the weighted polynomial equation f(z,y,z) = w?,
with coordinates x, y, z and w respectively of weights 1 and 2. Conversely,
any double cover of CP? ramified along a non-singular algebraic quartic yields
a del Pezzo surface of degree 2.

If one equips X with a real structure o, the quartic @ is real and f(z,y, z) can
be chosen with real coefficients and so that the real surface (X, o) is isomorphic
to the real hypersurface in CP(1,1,1,2) of equation f(z,y, z) = w?. It follows
that the double cover ¢ projects RX into the region

I, :={[X:Y:Z] €RP?: f(z,y,2) > 0}.

Conversely, the double cover of CP? ramified along a non-singular real quartic
Q C CP? and a choice of a real polynomial equation f(x,y,z2) of Q yields a
real del Pezzo surface X. The surface X is R-minimal if and only if RX is
homeomorphic either to L]?Zl 52 or to |_|?:1 S2. Moreover X is R-minimal with
RX homeomorphic to |_|;1»:1 S? if and only if @ is a non-singular real maximal
quartic and II is orientable; see [DK02| and, as example, Fig. 5.1

Definition 5.1.1. Let X be a degree 2 real minimal del Pezzo surface equipped
with a real structure o. If RX is homeomorphic to |_|?:1 S?, we say that X is
a 4-spheres real del Pezzo surface of degree 2.

Notation 5.1.2. Let X be a 4-spheres real del Pezzo surface of degree 2. We
denote the connected components of RX with X1, Xs, X3, X4.

The lifting of a non-singular real algebraic curve C' C CP? of degree d via
¢ is a real algebraic curve A C X realizing dc;(X) in Ha(X;Z). Moreover,
from the topological arrangement of the triplet (RP?,RQ,RC), one recovers
the topological arrangement of the pair (RX,RA). As example, suppose that

29
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Figure 5.1: Example: ¢ : RX — II,.

Q@ is maximal and II; is orientable (Fig. and the triplet (RP? RQ,RC)
is as depicted in Fig. on the right; then the pair (RX,RA) has topological
arrangement as pictured on the left of Fig.

Let X be a 4-spheres real del Pezzo surface of degree 2. Let o, : Hao(X;Z) —

Figure 5.2: Example: Recovery of the real scheme realized by the pair
(RX,RA).

Hy(X;Z) be the group homomorphism induced by the real structure o on X,
and let H; (X;Z) be the (—1)-eigenspace of o,. Since H, (X;Z) is generated
by c1(X) (IBCCT08, pag. 289-312]), any real algebraic curve in X realizes
dei1(X) in Ho(X;Z), where d is some non-negative integer.

Definition 5.1.3. Let X be a 4-spheres real del Pezzo surface of degree 2 and
let A C X be a non-singular real algebraic curve. Then, we say that A has
class d on X if A realizes dc1(X) in Ho(X;7Z). Moreover, we call ovals the
connected components of RA.

Fix a non-negative integer d. Let A be a non-singular real algebraic curve
of class d in a 4-spheres real del Pezzo surface X of degree 2. In this chapter, we
are interested in the classification up to homeomorphism of the pairs (RX, RA).
Due to Harnack-Klein’s inequality and the adjunction formula, one obtains an
immediate restriction on the number of ovals of RA.

Proposition 5.1.4. Let A be a real algebraic curve of class d in a 4-spheres
real del Pezzo surface X of degree 2. Then, the number | of ovals of RA is
bounded as follows:

[ <d(d—1)+2.

5.1.1 Main results

Given a collection |_|§L:1 Oy, of [ disjoint circles embedded in S?, the arrange-
ment of the pair (52,|_|§l:l Op,) is encoded as in Section ﬂ Let X be a
4-spheres real del Pezzo surface X of degree 2. We encode the arrangement of
a given collection |_|§L:1 Oy, of [ disjoint circles embedded in RX as follows. Let
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S; be the codification of the arrangement of the embedded circles in X, with
1 < j < 4. We say that the pair (RX, |_|lh:1 Op,) realizes Sy : Sy : Sz : Sa.

Definition 5.1.5. We say that S1: So : 83 : Sy is a realizable real scheme
in class d, if there exist a 4-spheres real del Pezzo surface X of degree 2, and
a real algebraic curve A C X of class d, such that the pair (RX,RA) realizes
S1:85:83: 8.

We classify in this chapter non-singular real algebraic curves of small class
in a 4-spheres real del Pezzo surface of degree 2: Proposition [5.1.6] gives a
complete classification for class 1 and 2; on the other hand, Theorem [5.1.7]
gives a partial classification of non-singular real algebraic maximal curves of
class 3. In particular, the following proposition states that Proposition
gives a complete system of restrictions for realizable real schemes in class 1
and 2.

Proposition 5.1.6 (Class 1 and 2). Let A be a non-singular real algebraic
curve of class d = 1, 2 in o 4-spheres real del Pezzo surface X of degree 2.
Then, the pair (RA,RX) realizes one of the following real schemes:

(1) if d=1:
e a:3:0:0, with0<a+p<2;

(2) if d=2:
e a:fB:v:0, with0<a+pB+~v+§<4;
o (a) U (B):v:0:0, with0<a+p+~v<2.

Furthermore, for each real scheme S listed above, there exist a 4-spheres real
degree 2 del Pezzo surface X and a real algebraic curve of class d in X realizing

S.

Theorem 5.1.7 (Class 3). Let A be a non-singular real algebraic mazimal
curve of class 3 in a 4-spheres real del Pezzo surface X of degree 2. Then,
the pair (RA,RX) realizes one of the real schemes in Table . Moreover, for
each real scheme labeled with (o) or (x), there exists a real mazimal curve of
class 3 in a 4-spheres real degree 2 del Pezzo surface realizing it.

The proof of Theorem [5.1.7] relies on the proofs of Propositions [5.2.5] [(.4.1]
and £.4.141

Remark 5.1.8. The real scheme 2 U (1) U (1) U (1), listed in Table [5.1]
of Theorem [5.1.77, is realizable by a real symplectic non-singular curve on a
4-spheres real symplectic del Pezzo surface of degree 2 ( see Pmposz’tion,

Remark 5.1.9. We thank Shustin for asking the following question that high-
lights another direction of research on real algebraic surfaces with non-connected
real parts. The classification of real schemes on real del Pezzo surfaces Xy of
degree 2 (resp. of degree 1) with the real points set consisting of (RP? and)
k < 3 spheres, can be obtained from the statement of Theorems
(resp. of Theorem by listing the schemes that involve only k spheres.
Is it possible to prove that the algebraically realization of such real schemes
15 an easy consequence of the proof of Theorems (resp. of The-
orem ? Answering to the latter question, it may not be an easy task.
But, it should be possible to give a partial answer to the symplectic version of
such question exploiting real surgeries of RXy along real Lagrangian spheres as
explained in [Brul8].
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5:1:1:1 (%) 2 U (2):3:0:0 (%)

4:2:1:1 (%) (1) U (2):3:0:0 (%)

3:3:1:1 (%) 1 U () u()y:3:0:0

3:2:2:1 (%) 5:((1)):0:0 (%)

2:2:2:2 (o) LU 3):(1):0:0 (%)

6:1:1:0 (%) 2 U (2):{((1)):0:0

1 U (4):1:1:0 (%) 4:4:0:0 (%)

21U (3):1:1:0 1 U (2):4:0:0 (%)

5:2:1:0 (%) (((1))) :4:0:0 (%)

11U 3):2:1:0 (%) 10U (2):1U(2):0:0 (%)

21U (2):2:1:0 8:0:0:0 (o)

4:3:1:0 (%) 1 U (6):0:0:0 (%)

1 U (2):3:1:0 (%) 21U (5):0:0:0 (o)

4:2:2:0 (%) 3 U (4):0:0:0 (o)

1 U (2):2:2:0 (%) (1) U (5):0:0:0 (%)

4:((1)):1:0 (%) (2) U (4):0:0:0 (o)

3:3:2:0 (%) (3) U (3):0:0:0

((1)):3:2:0 (%) 1u (1) U (4:0:0:0 (o)

7:1:0:0 (%) 11U (2) U (3):0:0:0

1 U ((B):1:0:0 (%) 2 U (1) U (3):0:0:0

21U (4):1:0:0 (o) 2 U (2) U (2):0:0:0

3L (3):1:0:0 3L (1)U (2):0:0:0 (o)

(1) U (4):1:0:0 (%) 41 (1) U (1):0:0:0 (o)

(2) U (3):1:0:0 (1) LU (1) U (3):0:0:0

1 U (1) u3):1:0:0 (1) U (2)y U (2):0:0:0

1 U (2)u(2):1:0:0 1 U (1) u () u(2:0:0:0

20 (1) U (2):1:0:0 2 U (1) U (1) u():0:0:0

3 U (1) U(1)y:1:0:0 (o) (1) U ((4)):0:0:0 (o)

6:2:0:0 (%) (2) U ((3)):0:0:0

10U (4)y:2:0:0 (%) 1 U1y U {(3):0:0:0

21U (3):2:0:0 (o) 1 U (2) U ((2):0:0:0

(1) U (3):2:0:0 (%) 10U 3) U ((1):0:0:0

(2) U (2):2:0:0 2 U (1) U ((2):0:0:0

1 U (1) u(2:2:0:0 2 U (2) U {(1):0:0:0

2 U (1) U(1):2:0:0 (o) 3L (1) U {(1):0:0:0 (o)

5:3:0:0 (%) LU (1) u@u(2):0:0:0

14U 3):3:0:0 (%) 1U (1)U Uu(yy:0:0:0
Table 5.1: Real schemes in class 3

5.2 Obstructions based on Welschinger-type invari-
ants

In Propositions [5.2.2] we prove restrictions for real algebraic curves in a 4-
spheres real del Pezzo surface X of degree 2, exploiting Welschinger-type invari-
ants and the intersection form on X. Welschinger invariants can be regarded
as real analogues of genus zero Gromov-Witten invariants. They were intro-
duced in [Wel05] and count, with appropriate signs, the real rational curves
which pass through a given real collection of points in a given real rational
algebraic surface. In the case of 4-spheres real del Pezzo surfaces of degree
2, the Welschinger invariants, as well as their generalizations to higher genus
([Shuldl), can be used to prove the existence of interpolating real curves of
genus 0 < g < 3; see [IKS17| and [Shuld].
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Proposition 5.2.1. [Shul/, Proposition 5] Let k be an integer greater than 1
and r1, r9 be two non-negative odd integers such that r1 +ro = 2k. Let P be a
generic configuration of 2k + 2 real points on a 4-spheres real del Pezzo surface
X of degree 2 such that X; contains r; points of P, with i = 1,2; moreover, X3
and Xy both contain one point of P. Then, there exists a real algebraic curve
T of class k and genus 3 in X passing through P. Furthermore, the points of
P belong to the one-dimensional connected components of RT.

Proposition 5.2.2. Let k be an integer strictly greater than 1 and ri, ro be
two non-negative odd integers such that r1+ry = 2k. Moreover, let A be a non-
singular real algebraic curve of class d in a 4-spheres real del Pezzo surface X
of degree 2. Let t denote the number of connected components of RX to which
RA belongs.

(i) Suppose that RA has r; disjoint nests Ny of depth jn, on X, respectively
with 1 < h <rqy fori=1, and with r1 +1 < h <2k fori = 2.

2k
(1) If ri,re > 1, then Y jn < dk — (t —2);
h=1

2k—1
(2) If ri =2k —1 and ro =1, then Y, jo <dk—(t—1).
h=1
(ii) Suppose that k = 2 and RA has a nest N1 of depth j1 on X1 and a nest
Ny of depth jo on Xo.

(3) Then, ji + jo < 2d — (t — 2).

Proof. Suppose to be under the hypothesis of (i) and suppose that 7, and rq are
strictly greater than 1. It follows that RA has at least 3 disjoint nests on X,
with ¢ = 1,2. In order to prove inequality (1), let us choose a generic collection
P of 2k + 2 real points in the following way. On each boundary of the r1 (resp.

2k
ro) disks in X7 \ hEllNh (resp. X7\ . 7ITI+1Nh), pick a point. Moreover, pick
- —n

a point on every connected component X, with j = 3,4, such that the point
belongs to RA any time the real algebraic curve has at least one oval on Xj.
Then, Proposition [5.2.T]assures the existence of a real algebraic curve T of class
k and genus 3 on X passing through P. Furthermore, the points of P belongs
to the one-dimensional connected components of R7T. Thus, the number of

2%
real intersection points of A with T is at least 2( ) jn + (t — 2)). Inequality
h=1

(1) follows directly from the fact that the intersection number A o T' = 2dk is
greater or equal than the number of real intersection points of A with T'.

The proof of (2) is similar to the previous one.

Suppose to be under the hypotheses of (ii). The proof of (3) does not require
Proposition [5.2.1] In fact, for a given configuration P of 6 points in X there
always exists an algebraic curve T of class 2 and genus 3 passing through P.
Moreover, if P consists of only real points such that at least one point of P
lies on X;, Vi € {1,2,3,4}, the curve T is real and RT has exactly 4 connected
components. Let us choose P as follows. On each boundary of the 2 disks in
X; \ N;, with ¢ = 1,2, pick a point. In addition, pick a point on the connected
components X;, with j = 3,4, such that the point belongs to RA any time A
has at least one oval on X;. Then, there exists a real algebraic curve T of class
2 and genus 3 passing through P and R7T has a connected component on each
X, with j =1,2,3,4, and it has at least a connected component of dimension
1 on X;, with ¢ = 1,2. Thus, the number of real intersection points of A with
T is at least 2(j1 + j2 + (t — 2)). Inequality (3) follows directly from the fact
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that the intersection number A o T = 4d is greater or equal than the number
of real intersection points of A with T O

Xy

Figure 5.3: Example of unrealizable real scheme in class 3.

Example 5.2.3 (Application of Proposition . Let us consider the real
scheme S :=2 U (1) : 1 U (1) : 1:0 in a 4-spheres real del Pezzo surface
X of degree 2. Let us apply inequality (3) of Proposition to prove that
S is unrealizable in class 3 in X; see Fig. [5.3 Suppose that there exists a
real algebraic curve A of class 3 in X realizing S. The real scheme S has a
nest of depth 3 on X1, a nest of depth 3 in Xo and an oval on Xs3. Let us
choose a configuration P of 6 real points p1, .., ps as depicted in Fig. [5.53; then,
there exists a real algebraic mazimal curve T of class 2 in X passing through
P and RT'" has a connected component on each X;, with j = 1,2,3,4, and it
has at least a connected component of dimension 1 on X;, with 1 = 1,2; see,
as example, Fig. . Inequality (3) implies that 7 has to be less or equal to
6; it follows that there exist no real algebraic curves of class 3 in X realizing
S. Finally, remark that one can not prove the unrealizability of S applying

inequality (1) or (2) of Proposition[5.2.4

A variant of the technique used in proof of (3) of Proposition leads to
prohibit a particular real scheme in class 3 in a 4-spheres real del Pezzo surface
of degree 2.

Lemma 5.2.4. There are no real algebraic mazrimal curves of class 3 in a
4-spheres real del Pezzo surface X of degree 2 realizing the real scheme S =
(1) U (1) U (1) U (1):0:0:0.

Proof. Suppose that there exists a non-singular real algebraic curve A of class
3 realizing § in X. Let us choose a configuration P of 6 real points as follows.
On each boundary of the 4 disks in X; \ RA, pick a point. Moreover, pick
a point on the connected components X9 and X3. Then, there exists a non-
singular real algebraic curve T of class 2 passing through P and T has at most
two ovals on X; and one oval on both X5 and X3; see Fig. [5.4] Thus, the
number of real intersection points of A with T is at least 14; see Fig. p.4l But
the intersection number A o T' is 12. 0

Propositions 5.1.4] (.2.2] and Lemma [5.2.4] prove the following proposition.

Proposition 5.2.5. Let A be a non-singular real algebraic mazimal curve of
class 3 in a 4-spheres real del Pezzo surface X of degree 2. Then, the pair
(RA,RX) realizes one of the real schemes in Table [5.1]

5.3 Class 1 and 2

As explained in Section [5.1] given a non-singular real maximal quartic () and
a real curve C of degree d in CP?, one constructs a 4-spheres real del Pezzo
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Figure 5.4: Unrealizability of (1) U (1) U (1) U (1):0:0:0 in class 3.

surface X of degree 2 and a real algebraic curve A C X of class d. In addi-
tion, from the real scheme realized by the triplet (RP? RQ,RC), one recovers
the real scheme of the pair (RX,RA). From this fact we end the proof of
Proposition [5.1.6]

Proof of Proposition , (Class 1 and 2). It is easy to construct real alge-
braic maximal quartics @ and lines (resp. conics) C' in CP? arranged in RP?
as depicted in Fig. [5.5] (resp. [5.6)). From the quartics and lines (resp. conics)
of Fig. (resp. , one constructs class 1 (resp. 2) real algebraic curves
realizing all real schemes listed in (1) of Proposition (resp. all maximal
real schemes listed in (2) of Proposition [5.1.6). The construction of real alge-
braic curves of class 2, realizing the other real schemes listed in (2), follows
from similar constructions of conics and quartics in CP?. O
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Figure 5.5: Arrangements of real lines and real maximal quartics in RP2.
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Figure 5.6: Arrangements of real maximal conics and quartics in RP2.

5.4 Class 3

In the proof of Proposition [5.4.1] from constructions of real maximal cubics
and quartics in CP? intersecting in 12 real points, we are able to realize the
real schemes of Table labeled with (o).
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Proposition 5.4.1. For each real scheme S in Table[5.1) labeled with (o), there
exist a 4-spheres real degree 2 del Pezzo surface X and a real algebraic curve
of class 3 in X realizing S.

o0 O O o O o O ©)

W,

Figure 5.7: Mutual arrangements, up to isotopy, on RP? of a real maximal
cubic (in blue) and a real maximal quartic (in black).

d) e) f) 9)

Figure 5.8: a), b), d), e) : Intermediate constructions on RP2. ¢), f), g):
Mutual arrangements on RP? of real maximal cubics (in blue) and a real
maximal quartics (in black).

Proof. In [Ore02], Orevkov has constructed the arrangements of a real maximal
quartic @ and a cubic C arranged, up to isotopy, in RP? as depicted in Fig. [5.7
To each such pair corresponds a real algebraic curve of class 3 in a 4-spheres
real del Pezzo surface of degree 2 realizing one of the real schemes labeled with
(o) in Table 5.1}, but the real schemes 2:2:2:2and 3 U (1) U (1):1:0:0
and2 U (4):1:0:0.

There exist a real cubic C' and a real line L in CP? arranged in RP? as
represented in Fig. ). Let p(x,y,z) = 0 (resp. l(z,y,2) = 0) be a real
polynomial equation defining C (resp. L). Pick three real lines Ly, Lo, L3, as
those depicted in dashed in Fig. a). Replacing p(x,y, z) with p(z,y,2) =
p(z,y, z) + el (z,y, 2)la(z,y, 2)l3(x, y, z), where [;(x,y, z) is a real polynomial
defining L;, with ¢ = 1,2,3, and ¢ > 0 is a sufficient small real number,
one constructs a real cubic C defined as p(z,y, z) = 0 and arranged in RP? as
depicted in Fig. b). Let U?zl L; be the union of four non-real lines pairwise
complex conjugated and defined by a real polynomial u(x,y, z). For a sufficient
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small real number § > 0, the equation p(z, y, 2)l(z,y, 2)+du(z,y, z) = 0 defines
a non-singular real plane maximal quartic () such that Q U C is arranged in
RP? as pictured in c) of Fig. It follows that there exists a 4-spheres real
degree 2 del Pezzo surface X and a real algebraic curve of class 3 in X realizing
the real scheme 2:2:2: 2.

Finally, there exists a real quartic  and three real lines arranged in RP? as
pictured in d) of Fig. [p.8] (resp. in e) of Fig. [5.8). Perturb the union of the
three lines into a non-singular real cubic C such that CUQ is arranged in RP?
as depicted in f) of Fig. [5.8| (resp. in g) of Fig. [5.8)). Finally, from such pair,
one constructs a real algebraic curve of class 3 in a 4-spheres real degree 2 del
Pezzo surface realizing 3 LI (1) L (1):1:0:0 (resp. 2 U (4):1:0:0). O

5.4.0.1 Symplectic curve on a 4-spheres real symplectic degree 2
del Pezzo surface

There exists a certain mutual arrangement in RP? of a real symplectic cubic
and a real symplectic quartic which is unrealizable algebraically; see [Ore02].
Analogously to the algebraic case, one can construct from such arrangement
in RP? a real symplectic del Pezzo surface of degree 2 and a real symplectic
curve of class 3 on it with topology prescribed from the arrangement on the
real projective plane.

Proposition 5.4.2. There exists a 4-spheres real symplectic degree 2 del Pezzo
surface X and a non-singular real symplectic curve of class 3 in X realizing
the real scheme 2 LI (1) U (1) U (1):0:0:0.

Proof. Let us consider (CP?,wgq,conj), where wgy is the symplectic Fubini-
Study 2-form on CP? and conj : CP? — CP? is the standard real structure
on CP?. Let conj* : H*(CP?;Z) — H?*(CP? Z) be the group homomorphism
map induced by conj. It follows that conj*wsg = —wstq. Due to [Ore02], there
exist a non-singular real symplectic maximal quartic Q and a non-singular real
symplectic maximal cubic C' which are mutually arranged in RP? as depicted
in Fig. 5.9l The double cover ¢ : X — CP? ramified along @ carries a natural
symplectic structure w such that w = ¢ weq ([Grol3],[Aur00]). Let ¢ be one
of the two lifts of conj via the double ramified cover. Since ¢ o ¢ = conj o ¢,
we have that ¢*w = —w; namely ¢ : X — X is a real structure of X. Then, up
to choose ¢, the surface (X,w, c) is real diffeomorphich to a 4-spheres real del
Pezzo surface of degree 2 and, from C, we construct a real symplectic curve of
class 3 in X realizing 2 U (1) U (1) U (1):0:0:0. O

Figure 5.9:

Remark 5.4.3. It should be possible to prove that there exists a w-tamed almost
complez structure J compatible with the action of ¢ on X such that the class 3
real symplectic curve, constructed in Proposition|5.4.4, is J-holomorphic. The
proof should follows from a variation of [Wenl8, Proposition 2.2].



64 CHAPTER 5.

5.4.1 Constructions by degeneration method and patchwork-
ing

In Sections and we exploit the double cover ¢ : X — CP? ramified

along a real non-singular quartic @), in order to realize class 1,2, 3 real schemes

by real algebraic curves which are symmetric with respect to the ramification

locus of ¢. In this section, we present a new construction method that allows
to construct also non-symmetric real algebraic curves in X.

Remark 5.4.4. As suggested by Brugallé, Shustin and Welschinger, it would
be interesting to investigate more about real schemes which are realized by non-
symmetric curves and not by symmetric ones. At the moment, via the construc-
tion method presented in this section, we can realize some of such real schemes;
mn fact, for each class d > 5, we can construct at least one non-symmetric real
algebraic non-singular curve of class d with real scheme consisting of 2d + 1
ovals.

We exploit a variant of patchworking theorem (Theorem, proved by
Shustin and Tyomkin, in order to construct non-singular real algebraic curves
of class d with prescribed topology in a 4-spheres real degree 2 del Pezzo
surface.

First of all, let us give some definitions. Let Bly, . : S — CP? be the blow-
up of CP? at a collection of 7 points py, .., pr subject to the condition that
6 of them belong to a non-singular conic in CP?. Then, the strict transform
of the conic passing through 6 points of the collection is a smooth rational
curve Eg C S of self-intersection (—2) in S. Suppose from now on, that S
contains a unique smooth rational curve of self intersection (—2). The pair
(S, Eg) is called a nodal degree 2 del Pezzo pair. The anti-canonical system
¢’ of S decomposes into a regular map S — S’ of degree 1 which contracts
the (—2)-curve of S, and a double cover S’ — CP? ramified along a quartic
@ with a double point as only singularity. The surface S’ is called a nodal del
Pezzo surface of degree 2. Conversely, the minimal resolution of the double
cover of CP? ramified along a quartic with a double point as only singularity
is a nodal degree 2 del Pezzo pair.

Let us equip S with a real structure ¢/, then Eg is real. Suppose that RS is
homeomorphic to |_|§’:1 S2. Tt follows that the quartic Q C CP? is real, it has
a real non-degenerate double point as only singularity and that RQ consists of
3 connected components of dimension 1. Conversely, given such a quartic, one
can construct a nodal degree 2 del Pezzo pair (S, Eg) where S is equipped with
a real structure such that RS is homeomorphic to |_|§-’:1 S2%; see [DIK0O] and
see, as example, Fig. where ¢ (resp. p) denotes the real non-degenerate
double point of the quartic @ (resp. the nodal degree 2 del Pezzo surface S’).

Definition 5.4.5. Let (S, Es) be a nodal degree 2 del Pezzo pair. Let S be
equipped with a real structure o’. If RS is homeomorphic to |_|§-’:1 S?, we say
that (S, Eg) is a 3-spheres real nodal degree 2 del Pezzo pair.

Let X{, be a real reducible surface given by the union of two real algebraic
surfaces S and T', where

(1) T is the quadric ellipsoid;

(2) S contains a unique smooth rational (—2)-curve Eg C S such that (S, Eg)
is a 3-spheres nodal degree 2 del Pezzo pair;

(3) S and T intersect transversely along a real curve E which is a bidegree
(1,1) real curve in 7" and Eg in S.
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Figure 5.10: Example: Action of the anti-canonical map of a real nodal degree
2 del Pezzo pair.

Let Cs C S and Cr C T be non-singular real algebraic curves respectively of
class dci(S) — kE in Ho(S;Z), and of class kE in Ho(T';Z), such that Cr and
C's intersects along F in a real configuration {p1, .., pax} of 2k distinct points.
If RE = (), the arrangement realized by (RS URT,RCs URCY) is an arrange-
ment of ovals in |_|;%:1 S2. Otherwise, from the arrangement realized by the pair
(RSURT,RCg URCT), we can realize an arrangement S of ovals in |_|;¥:1 S?
as follows. Locally RT'N RS is given as the intersection of two real planes as
depicted in a) of Fig. and (RS URT) \ RE has 4 connected components
W1, Wy C RS and Hy, Hy C RT}; see b) of Fig. We can glue W either
to Hj or to Ho along RE; after making a choice, we glue W5 to the remaining
connected component along RE; see ¢) of Fig. Either choices of gluing
the four connected components give us the disjoint union of 4 spheres |_|;¥:1 52,

and from RCg U RCr we get an arrangement S of ovals in |_|;¥:1 S2. See, as

example, Fig.
By Theorem [5.4.6] such topological construction is realizable algebraically.
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Figure 5.11:
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Figure 5.12:

The proof of Theorem [5.4.6] requires the existence of a real flat one-parameter
family whose general fibers are (4-spheres) real degree 2 del Pezzo surfaces and
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whose central fiber is X(). We prove the existence of such family in Corollary

.4,

Theorem 5.4.6. The real scheme S is realizable in class d by a non-singular
real algebraic curve A in a 4-spheres real degree 2 del Pezzo surface X.

Proof. Due to Corolla,rybelow7 we can put X{, in a real flat one-parameter
family 7' : X’ — D(0), where X’ is a 3-dimensional real algebraic and D(0) C C
is a real disk centered at 0, such that the fibers X, =: #/~1(t) are (4-spheres
real) non-singular degree 2 del Pezzo surfaces, for t # 0 (and ¢ real), and the
central fiber is X, . By Ramanujan’s Vanishing theorem ([Doll12] Section 8.3])

H'(Xp; Ox;(Co)) = 0;

then, Theorem assures the existence of an open neighborhood U(0) C
D(0) and a deformation C; in #'~*(¢) such that C; are non-singular (real) curves
in X/ for t (real) in U(0) \ {0}. In particular, there exists a real t € U(0) \ {0}
such that C; C RX é realizes the real scheme §. Locally the construction of
RX g from RT NRRS is as depicted in Fig. As example, suppose that S
is the real scheme 2 : 2 : 0 : 0. Moreover, suppose that RC's and RCp consists
of one oval respectively in RS and R7T such that the arrangement of the pair
(RSURT,RCs URCYT) is as depicted in a) of Fig. Then, there exists a
real ¢ such that the arrangement of the pair (RX g, RC7) is as depicted in b) of
Fig. 5-14] and realizes S. O

Figure 5.13:

E =y

Uy

a)
Figure 5.14:

The following proposition is used to prove Corollary [.4.8] that we exploit
in the proof of Theorem In the proof we make use of a type of construc-
tion presented in [Afi58|, which found recent applications in real enumerative
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geometry; see [BP14], [IKS17|. In particular, we prove that given a real alge-
braic quartic Q in CP? with a non-degenerate double point as only singularity,
one can put Q in a real flat one-parameter family in which Q is the only sin-
gular fiber. Then, from the family of quartics one can construct a particular

real flat one-parameter family of del Pezzo surfaces.

Proposition 5.4.7. Given a real quartic Q in CP? with a real non-degenerate
double point as only singularity and such that RQ has three connected compo-
nents of dimension 1, there exists a real reducible surface X|, equal to the union
of two real algebraic surfaces SUT, where

(1) T is the quadric ellipsoid;

(2) S is the minimal resolution of the double cover of CP? ramified along Q
and it contains a unique smooth rational curve Eg C S such that (S, Es)
s a 3-spheres nodal degree 2 del Pezzo pair,

(8) S and T intersect transversely along a curve E which is a bidegree (1,1)
real curve in T and the (—2)-curve Eg in S.

Proof. Let f(z,y,2) =0 be a polynomial equation defining the real quartic Q
in CP2. Up to multiply f(z,y,2) by —1, we can always put Q in a real flat
one-parameter family 7 : Q — D(0), where

e D(0) C C equipped with the standard real structure of C, is a real disk
centered at 0;

e Q C CP? x D(0) is defined by f(x,y,z2) + 24?2 = 0,
and such that

e the fibers Q; := 7 1(¢) are non-singular (real maximal) quartic (and Il
is orientable) for ¢t # 0 (and t real), and Qp = Q.

From the family of quartics, we can construct a real flat one-parameter family
7 : X — D(0) such that

e X is the double cover of CP? x D(0) ramified along Q and X is isomorphic
to the hypersurface in CP(1,1,1,2) x D(0) defined by the polynomial
equation f(x,y,z2) + 242 = w?;

e X is the double cover of CP? ramified along Q. Depending on the real
scheme realized by the pair (RP2,RQ), the real part of X is homeo-
morphic either to |_|?:1 S2 L {pt} or to |_|?:1 S? 1 \/?:15’2, where {pt} is
a point and \/?:13 2 is a bouquet of two 2-spheres.

e the fibers 771(t) := X, are non-singular (4-spheres real) degree 2 del
Pezzo surfaces, for ¢ # 0 (and ¢ real).

Now, performing the blow up Bl, : X — X at the node p of X, we obtain a
real flat one-parameter family 7' : X' — D(0) such that Bl *(p) =: T is the
quadric ellipsoid, the fibers #/~!(¢) := X/ are non-singular (4-spheres real) del
Pezzo surfaces of degree 2, for t # 0 (and ¢ real), and X|, is equal to the union
of two real algebraic surfaces S UT, where S, T and FE are as described in

(1) = (3). O

Corollary 5.4.8. Let X{) be a real reducible surface equal to the union of two
real algebraic surfaces S UT, where

(1) T is the quadric ellipsoid;
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(2) S contains a unique smooth rational (—2)-curve Eg such that (S, Eg) is
a 3-spheres nodal degree 2 del Pezzo pair;

(8) S and T intersect transversely along a curve E which is a bidegree (1,1)
real curve in T and the (—2)-curve Eg in S.

Then, there exists a real flat one-parameter family @ : X' — D(0), where
D(0) C C is a real disk centered in 0, the fibers @' ~1(t) := X, are non-singular
(4-spheres real) del Pezzo surfaces of degree 2, for t # 0 (and t real), and the
central fiber is X{.

Proof. The anti-canonical system exhibits .S as the minimal resolution of the
double cover of CP? ramified along a real algebraic quartic @ with a real non-
degenerate double point as only singularity. Applying Proposition to Q,
we prove the statement. O

Remark 5.4.9. A variation of Proposition [5.4.7 produces a reducible surface
X{ equal to the union of two real algebraic surfaces S U T, where T is the
quadric hyperboloid (resp. the real quadric with empty real part).

5.4.1.1 Intermediate constructions: Constructions on the quadric
ellipsoid and on a 3-spheres real nodal del Pezzo surface of
degree 2

The aim of this section is to give some intermediate constructions that we
exploit in Section p.4.1.2] to end the proof of Theorem [5.1.7] In particular, in

Section we apply Theorem and, first of all, we need to prove the
existence of particular real algebraic curves in the quadric ellipsoid (Proposi-

tion [5.4.11)) and on 3-spheres real nodal degree 2 del Pezzo pairs (Proposition
5.4.13)).

Notation 5.4.10. Let T be the quadric ellipsoid; see Section [3.1 In the
pictures of this section, we depict RT (a 2-sphere) projected from some point
p € RT on a plane.

In the following proposition, we exploit a variant of Harnack’s construc-
tion method and some properties of three particular pencils of hyperplanes
to construct real algebraic curves of bidegree (2,2) and (3,3) with prescribed
topology in the quadric ellipsoid.

Proposition 5.4.11. Let T be the quadric ellipsoid and let Ep be a real curve
of bidegree (1,1) in T. Then, for any real configuration of 2k distinct points
n Er fized as follows, there exists a non-singular real algebraic mazimal curve
Cr of bidegree (k,k) on T, with k = 2, 3, intersecting transversely Ep in the
2k points and such that the triplet (RT,RE7,RCT) realizes:

e the real scheme depicted in a) of Fig. for k =2 and 4 fized real

points;

o the real scheme depicted in b) of Fig. for k=3 and 6 fixed non-real

points;

e the real scheme depicted in c) of Fig. for k =3 and 6 fized points

whose exactly 2 are real;

o the real scheme depicted in d) of Fig. for k =3 and 6 fized points

whose exactly 4 are real.
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Figure 5.15:

Proof. For any two fixed distinct real points on E7, there exists a bidegree (1,
real algebraic curve H in T passing through them. Let Py(x,y)Pi(x,y) =
be a polynomial equation defining the union of Ep and H in T, with x =
[0 : z1]) and y = [yo : y1] in CP'. For any four fixed distinct real points on
a connected component £ of (REp \ RH), there exist two bidegree (1,1) real
curves H; in T, with ¢ = 1,2, such that H; U Hs passes through the fixed
four points. Replace the left side of the equation Py(x,y)P(x,y) = 0 with
Py(z,y)Pi(x,y) + efi(z,y) f2(z,y), where fi(x,y) = 0 is an equation for H;
and € > 0 is a sufficient small real number. In this way one constructs a small
perturbation H of EpUH, where H is a bidegree (2,2) non-singular real curve
such that U?Zl H,NEr = HnN Ep. The explained construction method allows
to construct a bidegree (2,2) real algebraic curve B in T realizing the real
scheme depicted in a) of Fig. Analogously, for a real configuration of six
fixed distinct points on Ep \ H such that exactly 2 points (resp. 4 points) are
real and belong to the same connected component F of (REy \ RH), one can
construct bidegree (3,3) non-singular real algebraic curves Cp in T passing
through the six fixed points and realizing the real scheme on the left depicted
in b) of Fig. (resp. all real schemes in ¢) and d) of Fig. [5.15]).

Given a real configuration of 6 non-real points p1, Py, p2, e, D3, D3 o0 Er, with
pi = (xi,9;) and p; = (¥;,T;), where z;,y; are in CP' and 7;, 7, are the image
of x;,y; via the standard complex conjugation on CP!. Let II; be a pencil
of hyperplanes in T" with base points p; and p,;, with ¢ = 1,2,3. We want to
show that one can always construct a non-singular real algebraic curve Cp of
bidegree (3,3) as perturbation of the union of three hyperplanes respectively
of II;, Tl and II3 such that the arrangement of the triplet (RT,REr, RCr)
is as depicted on the left (resp. on the right) of b) in Fig. Namely, we
prove in the following that one can always find three hyperplanes respectively
of ITy, IIy and II3 whose union and real arrangement with respect to RE7T is
as depicted on the left (resp. on the right) of a) in Fig. |5.16

First of all, remark that on each of the two connected components of RT\REr,
the real part of the real hyperplanes of the pencil 1I; vary from a real point g;
to RE7, with ¢ = 1,2,3. Moreover, the real points ¢;, g2 and g3 are distinct
points. There exist two real hyperplanes H; C II; and Hy C Il such that
they are tangent in a real point sji, they do not contain ¢; and their real part
is as depicted in a) of Fig. [5.17| (resp. in e) of Fig. [5.17). Pick the real
hyperplane H; C 1I; passing through s;;. Then, the real part of H; U Hy, U H;
is as depicted in b) of Fig. [5.17] (resp. in f) of Fig. [5.17)). It follows that there

1)
0
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Gl

Figure 5.16: RET in red.

exists a real hyperplane of the pencil II; whose real arrangement with respect
to RH; URHj, is as depicted in ¢) of Fig. [5.17] (resp. in g) of Fig. 5.17). In
conclusion, a small perturbation of the union of such three hyperplanes has
real part as depicted in d) of Fig. [5.17] (resp. in h) of Fig. [5.17)). O
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Figure 5.17:

In Proposition we construct particular real algebraic curves in 3-
spheres real nodal del Pezzo pairs of degree 2 via the anti-canonical map. In
order to accomplish a particular construction in the proof of Proposition[5.4.13]
we need the following lemma.

Lemma 5.4.12. There exist real algebraic curves @ and C respectively of
degree 4 and 3 in CP? with a unique real non-degenerate double singularity at
a point q, such that the triplet (R¥1,RQ,RC) realizes the real scheme depicted

in a) of Fig. (resp. in b) of Fig. resp. in c) of Fig. .

®) O O
fi % o M e
a) b) c)
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@) @)
A A A
d) e) )
Figure 5.18:
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Proof. The blow-up of CP? at the point ¢ is the first Hirzebruch surface ¥;
(Section[2.3)). Then, in order to prove the statement, it is sufficient to construct
a reducible real algebraic curve K (resp. Kb, resp. K3) of bidegree (3,4) in
¥ as union of two non-singular real algebraic curves Q and A respectively of
bidegree (2,2) and (1,2) in ¥ such that the triplet (RX;, RQ, RA) realizes the
L-scheme depicted in d) of Fig. (resp. in e) of Fig. resp. in f) of
Fig. .

Let 71, 72 and 73 be trigonal L-schemes in RY¥5 respectively as depicted in
<QF Oy

=1 D1

Figure 5.19: Intermediate constructions.

a), ¢) and e) of Fig. Due to Theorem if the real graph associated
to 7); is completable in degree 5 to a real trigonal graph, then there exists a
real algebraic trigonal curve K; realizing #j;, for i = 1, 2, 3. Therefore, the
completion of the real graph associated to 7; depicted respectively in b), for
i=1,1in d), for i = 2, and in f), for i = 3, of Fig. proves the existence
of such K;; see Section The trigonal curve K; is reducible because it has
12 non-degenerate double points and its normalization has 4 real connected
components. In particular K; has to be the union of a real curve of bidegree
(2,0) and a real curve of bidegree (1,0).

Let us consider the birational transformation Z := ﬁp_ll /87;21 Bp_; 5;)_41 ( (35, K;) —
(X1, K;), defined as in Section where the points p;’s, with j = 1,2,3,4,
are the real double points of K; as depicted in a) of Fig. (resp. ¢) of Fig.
resp. e) of Fig. , and the dashed real fibers are those intersecting
the p;’s. The image via Z of the reducible real trigonal curve K; is a reducible
curve K; of bidegree (3,4) which is the union of two non-singular real curves Q
and A, respectively of bidegree (2,2) and (1,2) in ¥;. Moreover, the £-scheme
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of K (resp. Ko, resp. K3) is as depicted in a) of Figl.1§| (resp. b) of Fig.
5.18] resp. c) of Fig. |5.18)). O

Proposition 5.4.13. There exist 3-spheres real nodal del Pezzo pairs (S, Eg)
and non-singular real algebraic curves Cs C S realizing the class 3¢1(S) —kEg
in Hy(S,7Z) and such that the triplet (RS,REg,RCys) is arranged:

1. as depicted in Fig. [5.20, for k = 2;
2. as depicted in Fig. and in Fig. for k= 3.

Q
A
&
‘ 2’ ©
N A° “ o
a) b) c)

Figure 5.20: REg in red.
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Figure 5.21: REg in red.

Figure 5.22: REg in red.

Proof. Let Q be a real quartic with a real non-degenerate and non-isolated
double point at ¢ as only singularity and such that RQ has three connected
components; let C' be a real curve of degree d with one k-fold singularity at q.
To a pair (Q,C) correspond a 3-spheres real nodal del Pezzo pair (S, Eg) and
a real algebraic curve C'g C S of class dci(S) —kEg in H2(S,Z) with topology
described by the topology of (RP?, RQ,RC).

Firs of all, Lemma [5.4.12 immediately implies the existence of a 3-spheres real
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Figure 5.23:

nodal degree 2 del Pezzo pair (S, Eg) and a curve Cg C S of class 3¢ (5) —2Eg
such that the triplet (RS,REg,RCy) is arranged as depicted in Fig. [5.20

Finally, there exists a real plane quartic Q; with a real non-degenerate double
point ¢ as only singularity and a pencil of lines L, C CP?, centered at q,
such that RQ; URL,, are arranged as depicted in a) of Fig. (resp. in b) of
Fig. [5.23)). For every fixed point, distinct from ¢, there exists a unique line of
the pencil Ly, passing through it. Therefore, given three distinct real points,
different from ¢, we fix three lines of L, and their union is a cubic C7 with
a triple point at ¢;. From Ql and C4 one can construct 3-spheres real nodal
degree 2 del Pezzo pairs (59, Eg) and curves Cs C S of class 3¢1(S) —3Eg such
that the triplet (RS,REg,RCyg) is arranged as depicted in Fig. [5.21] (resp.
Fig. |5.22)). O

5.4.1.2 Final constructions

We construct non-singular real algebraic curves of class 3 in 4-spheres real del
Pezzo surfaces of degree 2 realizing the real schemes labeled with (%) in Table
The proof is going to combine the results and constructions of Theorem

[-476) and Propositions [p.4.17] 5.4-13]

Proposition 5.4.14. For each real scheme S labeled with (%) in Table
there exist a 4-spheres real del Pezzo surface X of degree 2 and o real algebraic
curve of class 3 in X realizing S.

Proof. Pick the 3-spheres real nodal degree 2 del Pezzo pair (S, Eg) and a
real algebraic curve Cg C S of class 3¢;(X) — 2Eg constructed in Proposition
5.4.13] Due to Corollary there exist a real algebraic surface X|) as union
of S and T, intersecting along F, and a real algebraic curve Cj as union of Cg
and Cr, intersecting along 2k points of E; where T is the quadric ellipsoid and
Cr C T the real algebraic curve of bidegree (2,2) constructed in Proposition
[F:4T1] Then, thanks to Theorem [5.4.6] there exist a 4-spheres real degree 2
del Pezzo surface X and a non-singular real algebraic curve A C X of class
3 such that the arrangement of the pair (RX,RA) realizes the real scheme
2 1 (2):3:0:0(resp. 1 U (2):2:2:0,resp. 4:4:0:0). See Example
5.4.15( (1).

In order to realize the remaining real schemes labeled with (x) in Table
we apply the previous construction as follows. Firs of all, pick a 3-spheres
real nodal degree 2 del Pezzo pair (S, Eg) and a real algebraic curve Cs C S
of class 3c¢;1(X) — 3Eg constructed in Proposition [5.4.13] Due to Corollary
there exist a real algebraic surface X, as union of S and T, intersecting
along F, and a real algebraic curve Cy as union of Cs and Cp, intersecting
along 2k points of F; where T is the quadric ellipsoid and Cp C T a real
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algebraic curve of bidegree (3,3) constructed in Proposition Then,
thanks to Theorem for each real scheme S labeled with (%) in Table
there exist a 4-spheres real degree 2 del Pezzo surface X and a non-singular
real algebraic curve A C X of class 3 such that the arrangement of the pair

(RX,RA) realizes S. See Example [5.4.15] (2). O
e, ., 6
L2
“
a) b) c)

Figure 5.24: RE in red.

Figure 5.25: RE in red.

Example 5.4.15. (1) We construct a real algebraic curve of class 3 in a
4-spheres real del Pezzo surface of degree 2 as in proof of Proposition

5.4.14} with real scheme 2 LI (2) :3:0:0 (resp. 1 U (2):2:2:0).

o Let Cs C S be the real algebraic curve such that REg U RCyg is
arranged in RS as pictured in a) of Fig. (resp. b) of Fig.
5.20).

e Let Cr C T be the real algebraic curve of bidegree (2,2) such that
RE7T URCT is arranged in RT as depicted in a) of Fig.

e Thanks to Theorem [5.].6, there exists a real algebraic curve A of

class 3 in a real del Pezzo surface X of degree 2 realizing the real
scheme 2 L) (2):3:0:0 (resp. 1 U (2):2:2:0). See b) of Fig.

(resp. c) of Fig. [5.2]).

(2) We construct a real algebraic curve of class 3 in a 4-spheres real del Pezzo
surface of degree 2 as in proof of Proposition with real scheme
(Iy U (2):3:0:0.

o Let Cg C S be the real algebraic curve such that REg U RCg is
arranged in RS as pictured in a) of Fig.

o Let Cp C T be the real algebraic curve of bidegree (3,3) such that
RE7r URCr is arranged in RT as depicted in b) of Fig.
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e Thanks to Theorem [5.].0, there exists a real algebraic curve A of
class 3 in a real del Pezzo surface X of degree 2 realizing the real

scheme (1) U (2):3:0:0. See c) Fig. [5.2

Remark 5.4.16. A real degree 2 del Pezzo surface X is R-minimal if and
only if its real part is homeomorphic either to |_|;-1:l S? or to |_|?:1 S2. In the
latter case, we say that X is a a 3-spheres real del Pezzo surface of degree
2. Using the variation proposed in Remark it s possible to exploit a
construction similar to the one presented in Proposition in order to
realize real algebraic curves of class d with prescribed topology in a 3-spheres
real del Pezzo surface of degree 2.
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(M — i)-curve, 9

3-spheres real nodal degree 2 del
Pezzo surface, 64

4-spheres real degree 2 del Pezzo
surface, 55

M -curve or maximal curve, 9
L-scheme, 20

chart of a real polynomial, 17

completely non-degenerate
polynomial, 15

complex orientations, 9

convex subdivision of an integer
convex polytope, 16

cubic trigonal graph, 24

del Pezzo surface of degree 1, 43
del Pezzo surface of degree 2, 55
disjoint nests, 14

gluing cubic trigonal graphs, 24

Harnack-Klein’s inequality, 9
Hirzebruch surfaces, 19
hyperbolic trigonal £-scheme, 20

injective pair of ovals, 13
integer convex polytope, 14

nest, 14

Newton polytope, 15

non-injective pair of ovals, 13

non-separating real algebraic
curve, 9

oval, 13

positive and negative connected
components, 44
pseudo-line, 13

quadric ellipsoid, 27

83

real R- minimal or minimal
surface, 8

real algebraic curve of class k, 43

real algebraic curve of class d, 56

real algebraic variety, 7

real graph, 22

real graph completable in degree
n, 22

real part of a real algebraic variety,
7

real rational surface, 8

real scheme, 13

real trigonal graph, 21

real trigonal graph of type I, 23

real trigonal graph of type II, 23

realizable L£-scheme, 20

realizable coarse real scheme in
class k, 45

realizable real scheme in class d, 57

realizable real scheme in class k, 45

separating real algebraic curve, 9

singular real algebraic curve of
type I, 23

singular real algebraic curve of
type 11, 23

standard real structure on a toric
variety, 15

toric variety, 14

toric variety associated to an
integer convex polytope,
14

trigonal L-scheme, 20

trigonal curve, 20

truncation of a polynomial, 15

type I real algebraic curve, 9

type 1l real algebraic curve, 9
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