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Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length and velocity scales are much larger than the vertical ones. The mathematical formulation of these flows, socalled shallow water equations (SWEs). These equations are a system of hyperbolic partial differential equations and they are effective for many physical phenomena in the oceans, coastal regions, rivers and canals. This thesis focuses on the design of a new two-way interaction technique for multiple nested grids 2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways to develop the derivation of shallow water model. The complete derivation of this system from Navier-Stokes equations is explained. Studying the development and evaluation of numerical methods by suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian level initial condition are implemented in order to validate the efficiency of the proposed method.

In the second part of our work, we are interested to propose a new two-way interaction technique for multiple nested grids to solve ocean models using four choices of higher restriction operators (update schemes) for the free surface elevation and velocities with high accuracy results. Our work focused on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled regions and move them into quiet areas, we have considered several levels of resolution using nested grids. This makes it possible to considerably increase the performance ratio of the method, provided that the interactions (spatial and temporal) between the grids are effectively controlled.

In the third part of this thesis, several numerical examples are tested to show and verify twoway interaction technique for multiple nested grids of shallow water models can works efficiently over different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth part of this work.
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Outline of This Work

The major purpose of our work is to design new technique for multiple nested grids of 2D non-linear shallow water equations (2DNSWEs) for structured grids using numerical schemes. This thesis is organized into four parts with 9 chapters. The general framework of the various topics will be detailed in the parts and chapters that follow:

Part I: Mathematical and Numerical Model for 2D Depth-Integrated Shallow Water Equations

The principal objective of this part is to study the development of the efficiency of numerical methods for 2D depth-averaged non-linear shallow water models by proposing new spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time. Firstly, a new technique to derive 2DSWEs is presented. Secondly, propose effective numerical methods, such as the explicit finite difference methods for solving ocean models. The different unknowns variables for the system are approximated on staggered grids and the numerical fluxes are computed with the proposed techniques. This part consists of three chapters including:

Chapter 1: Derivation of 2D Shallow Water Equations

This chapter is devoted to the study of 2D non-linear shallow water equations. Firstly, presents a mathematical study of Navier-Stokes equations and 2DSWEs, which are obtained from a vertical integration of 3D Navier-Stokes equations by using a number of the assumptions. Secondly, we know that 2DSWEs can be derived in a number of ways with varying initial assumptions, we suggest two ways to expand the derivation of 2D depth-averaged SWEs from 3D Navier-Stokes equations using splitting of velocity and eddy dispersion coefficients. Another way is presented to derive 2DSWEs without using depth-averaged technique. In this chapter, looks into the optimum feedback conditions and interpolation techniques to maximize the feedback of the information and to ensure the conservation of properties. Four choices of the update scheme for the free surface elevation and velocities on Arakawa C-grid are applied.

Chapter 5: Performance of Two-Way Nesting Techniques for Shallow Water Equations

The principal objective of this chapter is to study the accuracy of two-way nesting performance techniques for structured grids between a coarse grid and a fine grid for 2DSWEs using an explicit finite difference methods with the refinement ratio 1:3.

We present and evaluate a set of options that made implementation of two-way nesting methods allowing simultaneous spatial and temporal refinement in shallow water model. Results showed twoway nested model can produce accurate high-resolution solutions in areas of interest and improve the realism of the solution in the low-resolution coarse domain for a much lower computational effort than the standard single grid high-resolution model.

Part III: Implementation and Validation of Solutions For 2D Shallow Water Models: This part includes Chapter 6: Applications of Two-way Nesting Technique for Multiple Nested Grids with Nesting 3:1 at Multiple Levels Multiple nested grids can be employed together to save the time as well as obtain enough resolution in the goal region. In this chapter, the explicit finite difference methods which are used to construct a two-way nesting technique are applied successfully for a multiple-nested grid 2DNSWEs for structured grids when the refinement ratio is 1:3 using new algorithms and techniques provided under Chapter 4.

In order to verify the performance of nesting technique, apply some examples of coupling 3 systems for shallow flow models. Comparison of 𝑙2-relative error norm (𝑙2-𝑅𝐸) results for one-way and two-way nesting grids using four update interpolations. Finally, comparison of 𝑙2-relative error norm (𝑙2-𝑅𝐸) results to the free surface elevation for some examples using four options of restriction operator with two cases of the refinement ratio.

Chapter 7: Multiple Nested Model for 2D Non-Linear Shallow water Equations with Nesting 5:1 at Multiple Levels A two-way interaction technique for multiple nested grids of 2D non-linear shallow water models is constructed and it is applied when the refinement ratio 1:5.

Part IV : Numerical Results of The Tsunami Model

In this part, we discuss some numerical results of the tsunami model.

Chapter 8: Some Applications for Multiple Nested Grids of the Tsunami Model

Several examples for multiple nested grids of the tsunami model are applied when space refinement ratio is 1:5 and the temporal refinement ratio is 1:2 for 2D non-linear SWEs. The performance and accuracy of the model are tested and the results show are good.

Chapter 9: Some Recommendations (Future Works) Some possible recommendations for future methods of research progress are presented.

All the numerical simulations are performed by computer programming using Matlab and Fortran 90.

Some Publications

This thesis contains several chapters including some articles which are published or submitted:

1. Some Sections in Chapters 1 and 2: It has been published in proceeding as: Huda 

Mathematics Notations

𝐶

Chezy bed roughness coefficient or Ekman coefficient 0.026.

𝐶 𝐷

The dimensionless coefficient of quadratic friction. Here, the quadratic drag coefficient is taken usually 𝐶 𝐷 = 2.5.10 -3 but it may also take into account the bottom roughness. c Coarse grid/ parent grid.

𝐶 𝑎

Air drag coefficient, is taken usually 𝐶 𝑎 = (0.8 + 0.0658

√ 𝑢 10 + 𝑣 10 ) × 10 -3
where 𝑢 10 and 𝑣 10 shown below. 

𝑔

Acceleration due to gravity (𝑔 = 9.81𝑚𝑠 -2 ).

𝐻

Total depth (h+𝜂), where h is the mean sea depth (m) (or sometimes called water depth).

-→ ▽

Gradient operator

- → ▽ = ( 𝜕 𝜕𝑥 , 𝜕 𝜕𝑦 , 𝜕 𝜕𝑧 ). △ Laplacien operator - → ▽ 2 = ( 𝜕 𝜕𝑥 ( 𝜕 𝜕𝑥 ), 𝜕 𝜕𝑦 ( 𝜕 𝜕𝑦 ), 𝜕 𝜕𝑧 ( 𝜕 𝜕𝑧 )). Ω

Domain of calculation

𝑡, △𝑡, △𝑥, △𝑦 Time (s), time step, 𝑥-direction grid spacing, and 𝑦-direction grid spacing respectively.

(𝑥, 𝑦)

Horizontal Cartesian spatial coordinates (𝑚)

𝜂

Elevation of the sea surface above mean sea level (or high surface water, free surface elevation).

(𝑢, 𝑣)

Components of velocity in the 𝑥 and 𝑦-directions respectively 𝑢 10 , 𝑣 10

The vertically averaged air velocities at a distance of 10𝑚 above the sea surface (𝑚𝑠 -1 ).

q

Vector velocity field (𝑚𝑠 -1 ).

𝜌

Density of the fluid (sea water) assumed constant (= 1027𝑘𝑔𝑚 -3 ).

𝜌 𝑎

Density of air assumed uniform (water density) (= 1.225𝑘𝑔𝑚 -3 ).

𝜌 0

Water mean density (= 1.033𝑘𝑔𝑚 -3 ).

𝜈

Coefficient of viscosity (𝑚𝑠 -2 ).

𝑝, 𝑝 𝑎

The pressure, and pressure at the surface respectively.

𝜏 𝑖,𝑗

Viscous shear stress in 𝑖-direction on a 𝑗-plane.

(𝑢, 𝑣)

Components of depth-averaged velocity (mean) in the 𝑥 and 𝑦-directions respectively

︀ 𝑢
The deviation of the mean velocity. The development of the efficiency and advantage of numerical methods for shallow water models are carried out in the following stages:

1. Propose a new technique for deriving 2DSWEs using splitting of velocity and horizontal eddy viscosity.

2. Suggest some ways to expand the derivation of 2D depth-averaged SWEs using 3D Navier-Stokes equations. Another way is presented to derive 2DSWEs without using depth-averaged technique.

3. New spatial and temporal discretization techniques in a standard C-grid using an explicit finite difference method and leapfrog with Robert-Asselin filter for 2DSWEs are applied.

4. Investigation of the proposed techniques which are able to solve 2DSWEs and some examples of the tsunami mode under moving boundary conditions are tested.

5. Dynamical coupling in a two-way nesting system is performed at a dynamical interface which is a separate/adjacent from a mesh interface.

6. Build some new algorithms to implement two-way interaction technique for ocean models. 

General Introduction

Background and Review

For oceanic phenomena problems such that complex geometry (i.e., with rivers and estuaries), in order to increase the horizontal resolution in a subregion without incurring the computational expense of high resolution over the entire domain. One effective way to overcome this difficulty is to build hierarchies of nested models with a focus on the area of interest. This technique has been widely used in meteorology and in oceanography, for which some examples of applications can be found in [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF][START_REF] Spall | A nested primitive equation model for ocean applications[END_REF].

The success or failure of these efforts will depend both on the nesting technique and on the characteristics of the basic ocean model. Conclusions on how nested models perform may depend on options of test problems. There are great works of literature describing nested models for the ocean. Major efforts include ([16, 36, 56, 90, 102, 109]). The drawback of this technique is the great number of parameters or the generation of new problems grid interaction, computational efficiency, and conservation properties (flux of mass and momentum) compared with a classical technique with a single expandable grid.

This system allows a local increase of the mesh resolution in areas where it seems to be necessary, by running the same model on a hierarchy of grid. Nesting (or embedding) techniques for structured mesh generally which indicate an economical way to improve the horizontal resolution, consists a local high-resolution grid embedded in a coarser-resolution one which covers the entire domain. In the case of one-way interaction, coarse grid solution provides boundary conditions for the high-resolution grid.

In two-way nesting, the fine grid results are feedback to the coarse grid in addition to the use of the coarse grid results in specifying the boundary conditions of the fine grid. The interaction between the coarse grid and fine grid in two-way nesting can take place either at the dynamic interface between them [START_REF] Gregory | Design of a movable nested-mesh primitive equation model[END_REF] or over their overlapping region [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF]. These methods have been applied successfully in atmosphere and ocean modelling ( [START_REF] Blayo | Revisiting open boundary conditions from the point of view of characteristic variables[END_REF][START_REF] Debreu | Two-Way embedding algorithms for a split-explicit free surface ocean model. In preparation for Ocean Model[END_REF][START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF][START_REF] Shenget | A new two-way nested technique for ocean modelling based on the smoothed semi-prognostic method[END_REF][START_REF] Pullen | Modeling studies of the coastal circulation off northern California: Statistics and patterns of winter time flow[END_REF][START_REF] Rodenhuis | Two dimensional nearly horizontal flow models[END_REF]).

The nesting procedure should preferably conserve fluxes of mass and momentum across the interfaces. In meteorology, such a scheme was developed by Kurihara et al. [START_REF] Gregory | Design of a movable nested-mesh primitive equation model[END_REF]. Berger [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF] have developed general adaptive mesh refinement algorithms for hyperbolic systems that also are conservative across interfaces. Ginis et al. [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF] applying the technique proposed by Kurihara et al. [START_REF] Gregory | Design of a movable nested-mesh primitive equation model[END_REF] developed a nested primitive equation model that did not fictitiously increase or decrease the transports of mass, momentum, and heat through the dynamical interface. Angot [START_REF] Angot | The FIC method of conservation connection between nested subdomains for an ocean circulation model[END_REF] address the continuity and conservation properties across interfaces. Rowley and Ginis [START_REF] Rowley | Implementation of a mesh movement scheme in a multiply nested ocean model and its application to air-sea interaction studies[END_REF] included a mesh movement scheme in the nested ocean model and stated that mass, heat, and momentum are conserved during the movement.

Most papers describing nested ocean modelling efforts discuss stability problems and unsmooth solutions across the interfaces. Spall [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] finding support in Zhang [START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF] state that it may be necessary to sacrifice exact conservation to obtain smooth, stable solutions. To stabilize, and smooth the solutions we find that combinations of horizontal and vertical diffusion, altering the solutions in time and relaxation techniques or nudging are often applied.

In the literature, both one-way and two-way interaction between the coarse and the fine grid have been considered. In the case of one-way interaction, coarse grid solution supply boundary conditions for the fine grid, but there is no feedback from the fine grid. Phillips and Shukla [START_REF] Phillips | On the Strategy of Combining Coarse and Fine Grid Meshes in Numerical Weather Prediction[END_REF] argue that a two-way interaction gives correct solution on the fine grid and therefore is more favorable. The twoway nesting described in [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF][START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF][START_REF] Spall | A nested primitive equation model for ocean applications[END_REF]. Also, a recent survey of two-way embedding algorithms can be found in ( [START_REF] Debreu | A general adaptive multi-resolution approach to ocean modelling: experiments in a primitive equation model of the North Atlantic[END_REF][START_REF] Biastoch | Agulhas leakage dynamics affects decadal variability in atlantic overturning circulation[END_REF][START_REF] Sannino | An eddy-permitting model of the mediterranean sea with a two-way grid refinement at the strait of gibraltar[END_REF][START_REF] Marchesiello | Equilibrium structure and dynamics of the California Current System[END_REF]).

The various two-way interaction schemes mainly differ by type of interpolation, the location of dynamical interface, conservation properties (flux of mass, and momentum equations), and type of update.

However, a two-way interaction may introduce instabilities at the interface between the two grids, and such instabilities may lead to a severe degradation solution [START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF]. In some studies data from previously run coarse grid models are used to drive fine grid models ( [START_REF] Berntsen | Using the Skagex dataset for evaluation of ocean model skills[END_REF][START_REF] Svendse | Model simulation of the Skagerrak circulation and hydrography during SKAGEX[END_REF]). Fox [START_REF] Fox | Two way interactive nesting of primitive equation ocean model with topography[END_REF] compared one-way and two-way nesting and concluded that using the model in one-way nesting mode resulted in more noise at the fine grid mesh boundaries with a negligible decrease in computer time. In order to provide the boundary condition for the fine grid, the coarse grid variables must be interpolated to the fine grid. There are numerous techniques that are potentially interesting for performing two-way nesting (see [START_REF] Alapaty | Intercomparison of spatial interpolation schemes for use in nested grid models[END_REF][START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF]). Based on studies with an idealized test case, they conclude that zeroth-order interpolation may create large phase errors, quadratic interpolation may create overshooting and they suggest the use of advection equivalent interpolation schemes.

Nested model grids may be adaptive and movable or static. In order to follow evolving oceanic features such as wavefronts and propagating eddies it may be beneficial to apply for instance adaptive mesh refinement methods for hyperbolic systems described by [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF] or more recently by [START_REF] Debreu | A general adaptive multi-resolution approach to ocean modelling: experiments in a primitive equation model of the North Atlantic[END_REF][START_REF] Biastoch | Agulhas leakage dynamics affects decadal variability in atlantic overturning circulation[END_REF][START_REF] Sannino | An eddy-permitting model of the mediterranean sea with a two-way grid refinement at the strait of gibraltar[END_REF][START_REF] Marchesiello | Equilibrium structure and dynamics of the California Current System[END_REF] have recently applied this technique to study the propagation of the barotropic model and with a multi-layered quasi-geostrophic model.

Spall and Holland [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] apply the same time step both on the coarse and the fine grid arguing that the coarse grid contributes little to the overall expense and that it would add an additional level of computational complexity for very little gain to have different time steps on the two grid levels. With equal Courant numbers on all levels the quality of the wave propagation relative to the mesh size will be approximately the same, and most of the more papers on nesting also refine the time step with the same factor as the spatial resolution, keeping the Courant numbers constant.

Warner et al [START_REF] Warner | A tutorial on lateral boundary conditions as a basic and potentially serious limitation to regional numerical weather prediction[END_REF] recommend using two-way nesting whenever possible since the solution is presumed to be more accurate when the coarse and nested grid solutions are allowed to interact with one another.

Phillips [START_REF] Phillips | On the Strategy of Combining Coarse and Fine Grid Meshes in Numerical Weather Prediction[END_REF] studied the distortion of shallow-water Rossby and gravity waves in simulations using both a one-way and a two-way nest. The authors claimed that the two-way solution is more accurate than the one-way solution because coarse grid solution is nearer to that on the nested grid but they do not elaborate on this rather obvious point. In particular, there is no analysis of why reflections may be less when using two-way nesting.

Clark [START_REF] Clark | Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting[END_REF] and Chen [START_REF] Chen | A nested grid, Nonhydrostatic, Elastic model Using a terrain following coordinate transformation: the radiative-nesting boundary conditions[END_REF] both performed simulations of two-dimensional linear vertically propagating mountain waves using nested grids to increase both the horizontal and vertical resolution near the mountain and they did not use the interpolation boundary condition but instead linearly interpolated fluxes to the boundary of the nested grid. This approach yields conservation of mass and momentum across the nested grid boundary which is a desirable property for some modelers.

Chen [START_REF] Chen | A nested grid, Nonhydrostatic, Elastic model Using a terrain following coordinate transformation: the radiative-nesting boundary conditions[END_REF] used a similar nesting strategy in a fully compressible model to test several different boundary conditions including the interpolation boundary condition and a continuously stratified variant of the inflow-outflow boundary condition for shallow water flow [START_REF] Carpenter | Effect of submersed mocrophttes on ecosystem processes[END_REF].

In ocean model, the nesting is the degree of refinement from one level to the next and the grid ratio from 2:1 to 7:1 has been applied. Spall and Holland [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] conclude that 3:1 and 5:1 ratios perform quite well, and even ratio of 7:1 are able to reproduce the solution reasonably well while the features are mostly contained within the fine region. To apply small ratios like 2:1, which is used for instance in Rowley and Ginis [START_REF] Rowley | Implementation of a mesh movement scheme in a multiply nested ocean model and its application to air-sea interaction studies[END_REF], may force us to apply many grid levels before we achieve the resolution we would like to have in a given area. On the other hand, large ratios may cause instabilities and non-smooth solutions across the interfaces. There are numerous combinations of basic ocean models and nesting techniques that are potentially interesting and evidence on how these groups perform is gradually growing as they are applied both to idealized test cases and for more realistic oceanic problems [START_REF] Cekirge | Adaptation of the solution of the two-dimensional tidal equations using the method of characteristics to wind induced currents and storm surges[END_REF][START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF][START_REF] Angot | The FIC method of conservation connection between nested subdomains for an ocean circulation model[END_REF]. More generally, SWEs describe the evolution of unsteady flow (incompressible) of a fluid, not necessarily water with constant density. This system is essentially based on the assumption that the water depth is shallow.

This assumption implies that the model is hydrostatic and state that the velocity is constant with the depth, bounded from below by the bottom topography and from above by the water surface. The 3D incompressible Navier-Stokes equations are averaged over the depth to obtain SWEs.

These equations are applicable to mathematical concepts where the typical vertical scale is negligible compared to the typical horizontal scale, and they are effective for many physical phenomena in the oceans, coastal regions, rivers and canals, lake hydrodynamics, dam breaks,...etc (see [START_REF] Zoppou | Catastrophic collapse of water supply reserviours in urban areas[END_REF][START_REF] Kennedy | Boussinesq modeling of wave transformation breaking and runup II: 2D[END_REF][START_REF] George | Numerical Approximation of the Nonlinear Shallow Water Equations with Topography and Dry Beds[END_REF][START_REF] Cekirge | Adaptation of the solution of the two-dimensional tidal equations using the method of characteristics to wind induced currents and storm surges[END_REF][START_REF] Matthews | A Spherical Coordinates Tidal Model of the Great Australian Bight using a new Coastal Boundary Representation[END_REF][START_REF] Goutal | A finite volume solver for 1D shallow-water equations applied to an actual river[END_REF][START_REF] Dube | The numerical simulation of storm surges along the Bangla Desh coast[END_REF][START_REF] Rao | A moving domain formulation for modeling two-dimensional open channel transient flows[END_REF]).

The derivation of shallow water models effects has received an extensive coverage [START_REF] Camassa | A new integrable shallow water equation. Comparison with Saint-Venant and Boussinesq systems[END_REF][START_REF] Sainte-Marie | Derivation of a non-hydrostatic shallow water model. Comparison with Saint-Venant and Boussinesq systems[END_REF] and numerical techniques for the approximation of these models have been recently proposed [START_REF] Duran | Discontinuous-Galerkin discretization of a new class of Green-Naghdi equations[END_REF][START_REF] Lannes | A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations[END_REF]. This technique for deriving of non-linear SWEs is classical when the viscosity or the wind effects on the free surface are neglected [START_REF] Benque | Mathematical and numerical modelling of shallow water flow[END_REF][START_REF] Ferrari | A new two dimensional shallow water model including pressure effects and slow varying bottom topography[END_REF]. In the literature, we often find various non-linear SWEs which may include wind effects on the free surface, bottom topography and friction effects on the bottom, often defined using the Manning Chezy formula, or viscosity [START_REF] Agoshkov | Mathematical and numerical modelling of shallow water flow[END_REF][START_REF] Benque | Mathematical and numerical modelling of shallow water flow[END_REF][START_REF] Elder | The dispersion of marked fluid in turbulent shear flow[END_REF]. Several variations for shallow water models can be constructed from different assumptions regarding the nature of the fluid, such as viscosity, incompressibility, and properties of the domain in which the fluid is situated.

This chapter is devoted to highlighting some essential properties of 2DSWEs; it is organized as follows: Derivation of 2DSWEs is described so that they can be derived in a number of ways with varying initial assumptions and mathematical complexity. In Sections 1.2 and 1.3, we recall the mathematical description of 3D Navier-Stokes equations and 2DSWEs. A new technique for complete derivation for 2D non-linear SWEs is constructed in Sections 1.4 and 1.5. Finally, another way without using depth-averaged technique to derive this model is introduced in Section 1.6.

The following figures indicate to applications of SWEs in ocean modeling 

The conservation of mass law

The conservation of mass is the first principle used to develop the basic equations of fluid mechanics.

Simply the conservation of mass implies that the total mass of a closed system in a region Ω is constant over time and mass can neither be created nor destroyed, where Ω ∈ 𝑅 3 (see [START_REF] Schlichting | Boundary layer theory[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF]).

The general formula of the mass continuity in conservation form is:

𝜕𝜌 𝜕𝑡 + 𝜌 (︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 )︂ = 0
If the fluid density is constant, the physical interpretation of the equations implies that the change of density of a fluid particle is equal to the expansion of the fluid. Also, when assuming the fluid is incompressible. This means that 𝜌 does not depend on 𝑝 (𝜌=𝜌 0 is constant), which is not a necessary condition for incompressible flow, thus the derivative of the density over time is zero.

(︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 )︂ = 0 1.2.

The conservation of momentum

The conservation of momentum rule is based on Newton's second law which states that: if the resulting force 𝐹 acts on a body of mass 𝑚, then the rate of increase of linear momentum is equal to the force 𝐹 (see [START_REF] Schlichting | Boundary layer theory[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF]). For an incompressible fluid and constant viscosity, the mathematical equation representing this law is:

𝐷𝑞 𝐷𝑡 = - 1 𝜌 . ▽ 𝑝 + 𝜈 ▽ 2 (𝑞) + 𝐹
Physical meaning of each term 

Stress components

The stress state is represented as a symmetric tensor 𝜏 , whose components may be expanded in to various coordinate systems. The components of the velocity vector (𝑢, 𝑣, 𝑤) align with the Cartesian-Coordinate directions (𝑥, 𝑦, 𝑧). For such fluids are called Newtonian fluids. If assume an incompressible fluid the components of stress tensors as follows: [START_REF] Okada | Surface deformation due to shear and tensile faults in a half-space[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF].

𝜏 𝑥𝑥 = 𝜇. (︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑢 𝜕𝑥 )︂ , 𝜏 𝑦𝑦 = 𝜇. (︂ 𝜕𝑣 𝜕𝑦 + 𝜕𝑣 𝜕𝑦 )︂ , 𝜏 𝑧𝑧 = 𝜇. (︂ 𝜕𝑤 𝜕𝑧 + 𝜕𝑤 𝜕𝑧 )︂ 𝜏 𝑥𝑦 = 𝜏 𝑦𝑥 = 𝜇 (︂ 𝜕𝑢 𝜕𝑦 + 𝜕𝑣 𝜕𝑥 )︂ , 𝜏 𝑥𝑧 = 𝜏 𝑧𝑥 = 𝜇 (︂ 𝜕𝑢 𝜕𝑧 + 𝜕𝑤 𝜕𝑥 )︂ , 𝜏 𝑦𝑧 = 𝜏 𝑧𝑦 = 𝜇 (︂ 𝜕𝑤 𝜕𝑦 + 𝜕𝑣 𝜕𝑧 )︂
where 𝜇 is called the coefficient of dynamic viscosity and the kinematic viscosity 𝜈 = 𝜇 𝜌 . In general, 𝜏 𝑖,𝑗 represent the viscous shear stresses in 𝑖-direction on a 𝑗-plane, which can be expressed in terms of fluid deformation rate:

𝜏 𝑖,𝑗 𝜌 = 𝜈 (︂ 𝜕𝑢 𝑖 𝜕𝑥 𝑗 + 𝜕𝑢 𝑗 𝜕𝑥 𝑖 )︂
The formula of the continuity equation and 3D incompressible Navier-Stokes equations of a nonconservation form are given by (see [9,[START_REF] Schlichting | Boundary layer theory[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF]). (1.4)

(︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 )︂ = 0 (1.1) 𝜌 (︂ 𝜕𝑢 𝜕𝑡 + 𝑢 𝜕𝑢 𝜕𝑥 + 𝑣 𝜕𝑢 𝜕𝑦 + 𝑤 𝜕𝑢 𝜕𝑧 )︂ = 𝐹 𝑥 - 𝜕𝑝 𝜕𝑥 + (︂ 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 𝜕𝜏 𝑧𝑥 𝜕𝑧 )︂ (1.2) 
We will called the above formula, the first form

Where 𝐹 𝑥 , 𝐹 𝑦 and 𝐹 𝑧 represent the volume forces . If only the gravitational force and the Coriolis force are accounted for the vector of volume forces can be written as:

- → 𝐹 = ⎛ ⎜ ⎜ ⎜ ⎝ 2𝜌𝜔𝑣𝑠𝑖𝑛𝜃 -2𝜌𝜔𝑢𝑠𝑖𝑛𝜃 -𝜌𝑔 ⎞ ⎟ ⎟ ⎟ ⎠
Remark: 

(︂ 𝜕𝑤 𝜕𝑥 + 𝜕𝑢 𝜕𝑧 )︂ =𝐹 𝑥 - 𝜕𝑝 𝜕𝑥 + 𝜇 [︂ 𝜕 2 𝑢 𝜕𝑥 2 + 𝜕 2 𝑢 𝜕𝑥 2 + 𝜕 2 𝑣 𝜕𝑥𝜕𝑦 + 𝜕 2 𝑢 𝜕𝑦 2 + 𝜕 2 𝑤 𝜕𝑥𝜕𝑧 + 𝜕 2 𝑢 𝜕𝑧 2 ]︂ =𝐹 𝑥 - 𝜕𝑝 𝜕𝑥 + 𝜇 ⎡ ⎢ ⎢ ⎢ ⎣ 𝜕 2 𝑢 𝜕𝑥 2 + 𝜕 2 𝑢 𝜕𝑦 2 + 𝜕 2 𝑢 𝜕𝑧 2 + 𝜕 𝜕𝑥 (︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 )︂ ⏟ ⏞ continuity equation =0 ⎤ ⎥ ⎥ ⎥ ⎦ =𝐹 𝑥 - 𝜕𝑝 𝜕𝑥 + 𝜇 [︂ 𝜕 2 𝑢 𝜕𝑥 2 + 𝜕 2 𝑢 𝜕𝑦 2 + 𝜕 2 𝑢 𝜕𝑧 2 ]︂
Similarly, we can do for the 𝑦 and 𝑧-components.

Then the formula of the continuity equation and 3D incompressible Navier-Stokes equations of a non-conservation form are given by (see [START_REF] Schlichting | Boundary layer theory[END_REF][START_REF] Liepmann | Elements Of Gasdynamics[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF]).

(︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 )︂ = 0 (1.5) 𝜌 (︂ 𝜕𝑢 𝜕𝑡 + 𝑢 𝜕𝑢 𝜕𝑥 + 𝑣 𝜕𝑢 𝜕𝑦 + 𝑤 𝜕𝑢 𝜕𝑧 )︂ = 𝐹 𝑥 - 𝜕𝑝 𝜕𝑥 + 𝜇 [︂ 𝜕 2 𝑢 𝜕𝑥 2 + 𝜕 2 𝑢 𝜕𝑦 2 + 𝜕 2 𝑢 𝜕𝑧 2 ]︂ (1.6) 𝜌 (︂ 𝜕𝑣 𝜕𝑡 + 𝑢 𝜕𝑣 𝜕𝑥 + 𝑣 𝜕𝑣 𝜕𝑦 + 𝑤 𝜕𝑣 𝜕𝑧 )︂ = 𝐹 𝑦 - 𝜕𝑝 𝜕𝑦 + 𝜇 [︂ 𝜕 2 𝑣 𝜕𝑥 2 + 𝜕 2 𝑣 𝜕𝑦 2 + 𝜕 2 𝑣 𝜕𝑧 2 ]︂ (1.7) 𝜌 (︂ 𝜕𝑤 𝜕𝑡 + 𝑢 𝜕𝑤 𝜕𝑥 + 𝑣 𝜕𝑤 𝜕𝑦 + 𝑤 𝜕𝑤 𝜕𝑧 )︂ = 𝐹 𝑧 - 𝜕𝑝 𝜕𝑧 + 𝜇 [︂ 𝜕 2 𝑤 𝜕𝑥 2 + 𝜕 2 𝑤 𝜕𝑦 2 + 𝜕 2 𝑤 𝜕𝑧 2 ]︂ (1.8)
We will called the above formula, the second form.

1.3 The Mathematical Description of Shallow Water Model

2D depth-averaged SWEs

In this section, we recall some basic concepts such as continuity equation and momentum equations.

In order to SWEs to be applicable, there are some conditions must be met (see [START_REF] Culbert | Computational Gasdynamics[END_REF][START_REF] Verugdenhil | Numerical Method of Shallow Water Flow[END_REF][START_REF] Elken | Lecture notes ,Dynamical oceangraphy[END_REF][START_REF] Matthews | A Spherical Coordinates Tidal Model of the Great Australian Bight using a new Coastal Boundary Representation[END_REF]96]).

1.3.2 General consideration:

1. In shallow water equations, the water depth ℎ is much smaller than horizontal scale of motion 𝑙.

The major condition which will will be 3. A major assumption of depth averaging is that the flow in the vertical direction is small.

𝜁 = ℎ 𝑙 << 1.
4. The main condition is that all terms in the 𝑧-direction of the equation (1.4) are small compared to the gravity and pressure terms (we assume here that the acceleration of the movement on the vertical is negligible except acceleration due to gravity). Thus, the 𝑧-direction of equation (1.4) reduces to

𝜕𝑝 𝜕𝑧 = -𝜌𝑔
This implies that the pressure distribution over the vertical direction is hydrostatic.

5. Consider the free surface (water-air interface) at 𝑧 = 𝜂 and the bottom (water-sediment interface) at 𝑧 = -ℎ using the assumption of hydrostatic pressure. In addition to height of water already defined, There are two new variables will appear:

𝑢 = 1 𝐻 𝜂 ∫︁ -ℎ 𝑢 𝑑𝑧 𝑣 = 1 𝐻 𝜂 ∫︁ -ℎ 𝑣 𝑑𝑧
(1.9)

and 𝐻 = 𝜂 +ℎ is the total water depth. These averages are on the vertical of the horizontal components of the velocity vector will be called vertically-averaged velocities.

The continuity equation

The equation that results from applying mass conservation is called continuity equation. The depthaveraged form of this equation is (see [START_REF] Andersson | Computational Fluid Dynamics for Engineers[END_REF][START_REF] Lakshmi | Numerical Models of Oceans and Oceanic Processe[END_REF]):

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0
(1.10)

Physical meaning of each term

The terms in the continuity equation have the following meanings: (c) 𝜕(𝐻𝑣)

𝜕𝑦

The gradient of y-component of above.

The momentum equations

For non-stratified well mixed coastal flows involving tides, winds and atmospheric. The depth-averaged momentum equation of conservative form along the 𝑥-direction and 𝑦-direction respectively are (see [START_REF] Andersson | Computational Fluid Dynamics for Engineers[END_REF][START_REF] Lakshmi | Numerical Models of Oceans and Oceanic Processe[END_REF]). 

Physical meaning of each term

The physical meaning of each term in the 𝑥-momentum equation is described below and the terms in the 𝑦-momentum equation are similar. 

𝑓 𝑣

The Coriolis term.

𝑔 𝜕𝜂

𝜕𝑥

The gravity term, which means the force due to the gradient of the surface in the 𝑥-direction.

𝜈

𝑥 ( 𝜕 2 𝑢 𝜕𝑥 2 ) + 𝜈 𝑦 ( 𝜕 2 𝑣 𝜕𝑦 2 )
Horizontal viscosity terms. The 𝑥-component of wind stress acting on the surface of the sea.

7.

𝐶 𝐷 𝑢 2 √ 𝑢 2 + 𝑣 2
The 𝑥-component of friction acting on the bottom surface.

Surface and bottom boundary conditions

Shallow water equations have to be implemented with boundary conditions. In this section, boundary conditions will be discussed on the free surface and at the solid bottom.

Kinematic boundary conditions

The kinematic boundary conditions prescribe that the water particles can not cross the solid bottom nor the free surface. For the bottom, the normal velocity component must vanish. Since the free surface might be moving by itself, the normal velocity of the fluid should equal the normal velocity of the surface [START_REF] Cushman-Roisin | Introduction To Geophysical Fluid Dynamics[END_REF][START_REF] Dale | Numerical Methods For Fluid Dynamics With Applications To Geophysics[END_REF].

a. At the solid bottom

We can explain this condition that the bottom is a material surface of the fluid, not crossed by the flow and stationary (no normal flow).

[︂ 𝑢| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 + 𝑣| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 -𝑤| 𝑧=-ℎ ]︂ = 0 (1.13) ⇒ 𝑤| 𝑧=-ℎ = 𝑢| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 + 𝑣| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 b. At a free surface
Here, the situation is more complicated because of the fact that the boundary is moving with the fluid. (no relative normal flow)

𝜕𝜂 𝜕𝑡 = - [︂ 𝑢| 𝑧=𝜂 𝜕𝜂 𝜕𝑥 + 𝑣| 𝑧=𝜂 𝜕𝜂 𝜕𝑦 -𝑤| 𝑧=𝜂 ]︂ (1.14)

Dynamic boundary conditions

We have dynamic boundary conditions for the forces that act at the bottom and surface boundaries.

(see [START_REF] Cushman-Roisin | Introduction To Geophysical Fluid Dynamics[END_REF][START_REF] Dale | Numerical Methods For Fluid Dynamics With Applications To Geophysics[END_REF]).

a. At the solid bottom:

For the bottom, we have the no-slip conditions 𝑢 = 𝑣 = 𝑤 = 0.

The equation of the bottom stress can be represented as [START_REF] Pietrzak | A three-dimensional hydrostatic model for coastal and ocean modelling using a generalisedtopography following co-ordinate system[END_REF]:

𝜏 𝑏 𝑥 = - [︂ 𝜏 𝑥𝑥 𝜕(-ℎ) 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕(-ℎ) 𝜕𝑦 -𝜏 𝑧𝑥 ]︂ 𝑧=-ℎ
Similarly for y-direction.

b. At a free surface

The equation of wind stress at the water surface can be represented as [START_REF] Pietrzak | A three-dimensional hydrostatic model for coastal and ocean modelling using a generalisedtopography following co-ordinate system[END_REF]:

𝜏 𝑠 𝑥 = - [︂ 𝜏 𝑥𝑥 𝜕𝜂 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕𝜂 𝜕𝑦 -𝜏 𝑧𝑥 ]︂

𝑧=𝜂

Similarly for y-direction.

Leibnitz rule

Leibniz's formula is applied to invert the differential operators and integration. This rule says that the derivative of the integral at the boundaries of the variables makes appear a derivative inside the integral and flow terms according to the formula [64]. Where A(x,y,t), B(x,y,t) be the bottom water depth and the water surface elevation respectively and F(x,y,t) be a smooth function.

1.4 Derivation of 2DSWEs from the First Formula of 3D Navier-Stokes Equations

There will be some basic steps to derive 2DSWEs from the equations (1.1)- (1.4). Firstly, one needs to specify boundary conditions (BCs) for a water column. The second step is to carry out the depthaveraged integration. Finally, to apply the BCs within the integration operation. Beside the BCs, we will use Leibnitz rule to derive SWE [START_REF] Verugdenhil | Numerical Method of Shallow Water Flow[END_REF].

Principle

Suppose we can split each momentary velocity in some types of mean and a random variation (volatile velocity) as follows:

𝑢(𝑧) = 𝑢(𝑧) + ̃︀ 𝑢(𝑧) 𝑣(𝑧) = 𝑣(𝑧) + ̃︀ 𝑣(𝑧)
and 𝑤(𝑧) = 𝑤(𝑧) + ̃︀

𝑤(𝑧)

For these distribution coefficient, the following relation are valid:

𝜂 ∫︁ -ℎ ̃︀ 𝑢(𝑧)𝑑𝑧 = 0 𝜂 ∫︁ -ℎ ̃︀ 𝑣(𝑧)𝑑𝑧 = 0
From now, we will only consider the mean velocities and neglect the random variations, except the advaction terms for 2DSWEs, which we will discuss later (see Section 1.4.4). 

0 = 𝜂 ∫︁ -ℎ [︂ 𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 ]︂ 𝑑𝑧 = 𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑣 𝜕𝑦 𝑑𝑧 ⏟ ⏞ 𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑤 𝜕𝑧 𝑑𝑧 ⏟ ⏞ 𝐼𝐼𝐼 (1.15)
The terms I, II, and III can be simplified as follows:

𝐼 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝑢| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 -𝑢| 𝑧=𝜂 𝜕𝜂 𝜕𝑥 𝐼𝐼 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑣𝑑𝑧 + 𝑣| 𝑧=(-ℎ) 𝜕(-ℎ) 𝜕𝑥 -𝑣| 𝑧=𝜂 𝜕𝜂 𝜕𝑦 𝐼𝐼𝐼 = 𝑤| 𝑧=𝜂 -𝑤| 𝑧=-ℎ
Hence, equation (1.15) leads to: Due to hydrostatic approach and constant density, the pressure depends on 𝜂 and the vertical coordinate

0 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝑣𝑑𝑧 + [𝑢 𝜕(-ℎ) 𝜕𝑥 + 𝑣 𝜕(-ℎ) 𝜕𝑦 -𝑤]| 𝑧=-ℎ ⏟ ⏞ =0 by
𝑝 -𝑝 𝑠 = 𝜌𝑔𝜂 -𝜌𝑔𝑧 ⇒ 𝑝 = 𝑝 𝑠 + 𝜌𝑔𝜂 -𝜌𝑔𝑧 -1 𝜌 𝜕𝑝 𝜕𝑥 = -1 𝜌 𝜕𝑝 𝑠 𝜕𝑥 -𝑔 𝜕𝜂 𝜕𝑥 + 𝑔 𝜕𝑧 𝜕𝑥
where 𝑝 𝑠 means pressure at the free surface.

Thus,

-1 𝜌 𝜕𝑝 𝜕𝑥 = -𝑔 𝜕𝜂 𝜕𝑥 𝑜𝑟 -1 𝜌 𝜕𝑝 𝜕𝑥 = -𝑔 𝜕𝜂 𝜕𝑥 + 𝑔𝑠 0
where 𝑠 0 the bottom slope.

The horizontal pressure gradients depend on the free surface 𝜂 only

-1 𝜌 𝜕𝑝 𝜕𝑥 = -𝑔 𝜕𝜂 𝜕𝑥 𝑎𝑛𝑑 -1 𝜌 𝜕𝑝 𝜕𝑦 = -𝑔 𝜕𝜂 𝜕𝑦
Then, the 𝑥-momentum equation becomes: 

𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑡 𝑑𝑧 = 𝜕 𝜕𝑡 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝑢| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑡 -𝑢| 𝑧=𝜂 𝜕𝜂 𝜕𝑡 𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢 2 𝜕𝑥 𝑑𝑧 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢 2 𝑑𝑧 + 𝑢 2 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 -𝑢 2 | 𝑧=𝜂 𝜕𝜂 𝜕𝑥 𝐼𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢𝑣 𝜕𝑦 𝑑𝑧 = 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝑢𝑣𝑑𝑧 + 𝑢𝑣| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 -𝑢𝑣| 𝑧=𝜂 𝜕𝜂 𝜕𝑦 𝐼𝑉 = 𝜂 ∫︁ -ℎ 𝜕𝑢𝑤 𝜕𝑧 𝑑𝑧 = 𝑢𝑤| 𝑧=𝜂 -𝑢𝑤| 𝑧=-ℎ
Hence, the equation (1.18) can be rewritten as:

𝜂 ∫︁ -ℎ [ 𝜕𝑢 𝜕𝑡 + 𝜕𝑢 2 𝜕𝑥 + 𝜕(𝑢𝑣) 𝜕𝑦 + 𝜕(𝑢𝑤) 𝜕𝑧 ]𝑑𝑧 = 𝜕 𝜕𝑡 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢 2 𝑑𝑧 + 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝑢𝑣𝑑𝑧 -𝑢| 𝑧=𝜂 ⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 𝜕𝜂 𝜕𝑡 + 𝑢| 𝑧=𝜂 𝜕𝜂 𝜕𝑥 + 𝑣| 𝑧=𝜂 𝜕𝜂 𝜕𝑦 -𝑤| 𝑧=𝜂 ⏟ ⏞ =-𝜕𝜂 𝜕𝑡 by using equation (1.14) ⎤ ⎥ ⎥ ⎥ ⎥ ⎦ + 𝑢| 𝑧=-ℎ ⎡ ⎢ ⎢ ⎢ ⎣ 𝜕(-ℎ) 𝜕𝑡 ⏟ ⏞ =0 + 𝑢| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 + 𝑣| 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 -𝑤| 𝑧=-ℎ ⏟ ⏞ =0 by using equation (1.13) ⎤ ⎥ ⎥ ⎥ ⎦
It follows that:

𝜕 𝜕𝑡 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢 2 𝑑𝑧 + 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝑢𝑣𝑑𝑧 = 𝜕(𝐻𝑢) 𝜕𝑡 + 𝜕(𝐻𝑢 2 ) 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦
By using equation (1.9) in the terms 1, 2, and 3 of the above equation. Now, we will integrate the RHS of the equation (1.17

) 𝜂 ∫︁ -ℎ [-𝑔 𝜕𝜂 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 + 1 𝜌 𝐹 𝑥 ]𝑑𝑧 = 𝜂 ∫︁ -ℎ -𝑔 𝜕𝜂 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ [ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ⏟ ⏞ 𝐼𝐼 ]𝑑𝑧 + 𝜂 ∫︁ -ℎ 1 𝜌 𝐹 𝑥 ⏟ ⏞ 𝐼𝐼𝐼 𝑑𝑧 (1.19)

Pressure gradient, diffusion terms and Coriolis terms

The terms 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 can be simplified as follows:

𝐼 = - 𝜂 ∫︁ -ℎ 𝑔 𝜕𝜂 𝜕𝑥 𝑑𝑧 = -𝑔 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝜂𝑑𝑧 -𝑔𝜂 𝑧=𝜂 𝜕(𝜂) 𝜕𝑥 + 𝑔𝜂 |𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 𝐼𝐼 = 𝜂 ∫︁ -ℎ [︂ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ]︂ 𝑑𝑧 = 1 𝜌 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝜏 𝑥𝑥 𝑑𝑧 + 1 𝜌 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝜏 𝑦𝑥 𝑑𝑧 - 1 𝜌 [︃ 𝜏 𝑥𝑥 𝜕𝜂 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕𝜂 𝜕𝑦 -𝜏 𝑧𝑥 ]︃ 𝑧=𝜂 + 1 𝜌 [︃ 𝜏 𝑥𝑥 𝜕(-ℎ) 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕(-ℎ) 𝜕𝑦 -𝜏 𝑧𝑥 ]︃ 𝑧=-ℎ 𝐼𝐼𝐼 = 𝜂 ∫︁ -ℎ 1 𝜌 𝐹 𝑥 𝑑𝑧 = 1 𝜌 𝜂 ∫︁ -ℎ (2𝜌𝜔𝑣𝑠𝑖𝑛𝜃)𝑑𝑧 = 𝑓 𝐻𝑣
Now, applying the boundary condition by performing a stress balance at the surface, it can be show that:

𝜏 𝑠 𝑥 = - [︂ 𝜏 𝑥𝑥 𝜕𝜂 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕𝜂 𝜕𝑦 -𝜏 𝑧𝑥 ]︂

𝑧=𝜂

Similarly at the bottom

𝜏 𝑏 𝑥 = - [︂ 𝜏 𝑥𝑥 𝜕(-ℎ) 𝜕𝑥 + 𝜏 𝑦𝑥 𝜕(-ℎ) 𝜕𝑦 -𝜏 𝑧𝑥 ]︂ 𝑧=-ℎ
Then, the equation (1.19) leads to:

𝜂 ∫︁ -ℎ [-𝑔 𝜕𝜂 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 + 1 𝜌 𝜂 ∫︁ -ℎ 𝐹 𝑥 ]𝑑𝑧 = -𝑔 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝜂𝑑𝑧 + 𝑔𝜂 |𝑧=𝜂 𝜕(𝜂) 𝜕𝑥 -𝑔𝜂 |𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑦𝑥 𝜕𝑦 - 𝜏 𝑏 𝑥 𝜌 + 𝜏 𝑠 𝑥 𝜌 + 𝑓 𝐻𝑣
By expanding terms that involve gravity, we get:

-𝑔 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝜂𝑑𝑧 = -𝑔 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝜂𝑑𝑧 = -𝑔𝜂 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑑𝑧 = -𝑔 𝜕(𝜂𝐻) 𝜕𝑥
By using the chain rule for the following equation leads to: After substituting the split velocities and re-arrangemments the above system, we obtain the 2D depth-integrated SWEs as follows:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0 𝜕(𝐻𝑢) 𝜕𝑡 + 𝜕(𝐻𝑢 2 ) 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦 -𝑓 𝐻𝑣 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ (︂ 𝜏 𝑥𝑥 𝜌 -̃︀ 𝑢 2 )︂ 𝑑𝑧 + 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ (︂ 𝜏 𝑦𝑥 𝜌 -̃︀ 𝑢̃︀ 𝑣 )︂ 𝑑𝑧 - 1 𝜌 𝜏 𝑏 𝑥 + 1 𝜌 𝜏 𝑠 𝑥 𝜕(𝐻𝑣) 𝜕𝑡 + 𝜕(𝐻𝑣 2 ) 𝜕𝑦 + 𝜕(𝐻𝑣𝑢) 𝜕𝑥 + 𝑓 𝐻𝑢 = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ (︂ 𝜏 𝑥𝑦 𝜌 -̃︀ 𝑣̃︀ 𝑢 )︂ 𝑑𝑧 + 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ (︂ 𝜏 𝑦𝑦 𝜌 -̃︀ 𝑣 2 )︂ 𝑑𝑧 - 1 𝜌 𝜏 𝑏 𝑦 + 1 𝜌 𝜏 𝑠 𝑦
Now, every simple model for the combined lateral momentum diffusion (due to turbulence) and dispersion (due to averaging out vertical velocity profile) is [START_REF] Simon | Contribution to the modelling of surface water flow and transport[END_REF]:

∫︁ 𝜂 -ℎ (︂ 𝜏 𝑥𝑥 𝜌 -̃︀ 𝑢 2 )︂ 𝑑𝑧 = 𝐸 𝑥𝑥 (︂ 𝜕𝐻𝑢 𝜕𝑥 )︂ ∫︁ 𝜂 -ℎ (︂ 𝜏 𝑦𝑥 𝜌 -̃︀ 𝑣̃︀ 𝑢 )︂ 𝑑𝑧 = 𝐸 𝑦𝑥 (︂ 𝜕𝐻𝑢 𝜕𝑦 )︂ ∫︁ 𝜂 -ℎ (︂ 𝜏 𝑥𝑦 𝜌 -̃︀ 𝑢̃︀ 𝑣 )︂ 𝑑𝑧 = 𝐸 𝑥𝑦 (︂ 𝜕𝐻𝑣 𝜕𝑥 )︂ ∫︁ 𝜂 -ℎ (︂ 𝜏 𝑦𝑦 𝜌 -̃︀ 𝑣 2 )︂ 𝑑𝑧 = 𝐸 𝑦𝑦 (︂ 𝜕𝐻𝑣 𝜕𝑦 )︂
When 𝐸 𝑥𝑥 , 𝐸 𝑥𝑦 , 𝐸 𝑦𝑥 , and 𝐸 𝑦𝑦 are called the eddy dispersion coefficients (horizontal eddy viscosity), which are assumed to be constants in space (see [START_REF] Hervouet | Hydrodynamique des écoulements á surface libre: Modélisation numérique avec la méthode des éléments finis[END_REF][START_REF] Simon | Contribution to the modelling of surface water flow and transport[END_REF]).

Finally, The 2D depth-averaged of SWEs becomes:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0 (1.26) 𝜕𝐻𝑢 𝜕𝑡 + 𝜕𝐻𝑢 2 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦 -𝑓 𝐻𝑣 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 𝐸 𝑥𝑥 (︂ 𝜕 2 𝐻𝑢 𝜕 2 𝑥 2 )︂ + 𝐸 𝑦𝑥 (︂ 𝜕 2 𝐻𝑢 𝜕 2 𝑦 2 )︂ - 𝜏 𝑏 𝑥 𝜌 + 𝜏 𝑠 𝑥 𝜌 (1.27) 𝜕(𝐻𝑣) 𝜕𝑡 + 𝜕(𝐻𝑣 2 ) 𝜕𝑦 + 𝜕(𝐻𝑣𝑢) 𝜕𝑥 + 𝑓 𝐻𝑢 = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 𝐸 𝑥𝑦 (︂ 𝜕 2 𝐻𝑣 𝜕 2 𝑥 2 )︂ + 𝐸 𝑦𝑦 (︂ 𝜕 2 𝐻𝑣 𝜕 2 𝑦 2 )︂ - 𝜏 𝑏 𝑦 𝜌 + 𝜏 𝑠 𝑦 𝜌 (1.28)
1.4.5 Bottom shear stress Formulas

𝜏 𝑏 𝑥 = 𝜌𝐶 𝐷 𝑢 √ 𝑢 2 + 𝑣 2
and

𝜏 𝑏 𝑦 = 𝜌𝐶 𝐷 𝑣 √ 𝑢 2 + 𝑣 2
where 𝐶 𝐷 is a coefficient often determined in one of the following formulas:

1. Formula of Darcy Weisbach

𝐶 𝐷 = 1 8 𝑓 𝐷𝑊

Formula of Chezy

𝐶 𝐷 = 𝑔 𝐶 2

Formula of Manning

𝐶 𝐷 = 𝑛 2 𝑔 𝐻 1 /3
Where 𝑛 Manning's roughness. The value of 𝑛 are given in [START_REF] Wang | manual of comcot[END_REF].

1.5 Development of SWEs Derivation from the Second Formula of 3D Navier-Stokes Equations

Consider the system given by equations (1.5)- (1.8). By dividing 𝜌 on all the terms of the equations and substitute 𝜇 = 𝜈𝜌, we obtain the system which is called Equations of the Governing Geophysical Flows as follows:

𝜕𝑢 𝜕𝑥 + 𝜕𝑣 𝜕𝑦 + 𝜕𝑤 𝜕𝑧 = 0 𝜕𝑢 𝜕𝑡 + (︂ 𝑢 𝜕𝑢 𝜕𝑥 + 𝑣 𝜕𝑢 𝜕𝑦 + 𝑤 𝜕𝑢 𝜕𝑧 )︂ -𝑓 𝑣 = - 1 𝜌 𝜕𝑝 𝜕𝑥 + 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 ) (1.29) 𝜕𝑣 𝜕𝑡 + (︂ 𝑢 𝜕𝑣 𝜕𝑥 + 𝑣 𝜕𝑣 𝜕𝑦 + 𝑤 𝜕𝑣 𝜕𝑧 )︂ + 𝑓 𝑢 = - 1 𝜌 𝜕𝑝 𝜕𝑦 + 𝜕 𝜕𝑥 (𝜈 𝜕𝑣 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝜈 𝜕𝑣 𝜕𝑦 ) + 𝜕 𝜕𝑧 (𝜈 𝜕𝑣 𝜕𝑧 ) (1.30) 0 = - 𝜕𝑝 𝜕𝑧 -𝜌𝑔 1.5.

Results and discussions

Firstly, the depth-averaged integration of equation (1.5) is as follows:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0
We can start integrating the equation (1.29) containing the viscous terms.

The result of integrating the LHS of equation (1.29) is: (see Section1.4.3)

𝜕(𝐻𝑢) 𝜕𝑡 + 𝜕(𝐻𝑢 2 ) 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦
and integration of the Coriolis term in equation (1.29) is:

- 𝜂 ∫︁ -ℎ 𝑓 𝑣𝑑𝑧 = -𝑓 𝜂 ∫︁ -ℎ 𝑣𝑑𝑧 = -𝑓 𝐻𝑣
Now, we will start integrating the RHS of equation (1.29)

𝜂 ∫︁ -ℎ (︂ - 1 𝜌 𝜕𝑝 𝜕𝑥 + 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 ) )︂ 𝑑𝑧 = 𝜂 ∫︁ -ℎ - 1 𝜌 𝜕𝑝 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 )𝑑𝑧 ⏟ ⏞ 𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 )𝑑𝑧 ⏟ ⏞ 𝐼𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 )𝑑𝑧 ⏟ ⏞ 𝐼𝑉 (1.31)
The terms 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝐼𝑉 can be simplified as follows:

𝐼 = - 𝜂 ∫︁ -ℎ 1 𝜌 𝜕𝑝 𝜕𝑥 𝑑𝑧 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 )𝑑𝑧 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ (𝜈 𝜕𝑢 𝜕𝑥 )𝑑𝑧 -𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=𝜂 𝜕𝜂 𝜕𝑥 + 𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 = 𝜕 𝜕𝑥 (𝐻𝜈 𝜕𝑢 𝜕𝑥 ) -𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=𝜂 𝜕𝜂 𝜕𝑥 + 𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 𝐼𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 )𝑑𝑧 = 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ (𝜈 𝜕𝑢 𝜕𝑦 )𝑑𝑧 -𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=𝜂 𝜕𝜂 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 = 𝜕 𝜕𝑦 (𝐻𝜈 𝜕𝑢 𝜕𝑦 ) -𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=𝜂 𝜕𝜂 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 𝐼𝑉 = 𝜂 ∫︁ -ℎ 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 )𝑑𝑧 = 𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=𝜂 -𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=-ℎ
By arrange the terms 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝐼𝑉 and combined to obtain:

𝜂 ∫︁ -ℎ (︂ - 1 𝜌 𝜕𝑝 𝜕𝑥 + 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 ) )︂ 𝑑𝑧 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 𝜕 𝜕𝑥 (𝐻𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝐻𝜈 𝜕𝑢 𝜕𝑦 ) + (︂ -𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=𝜂 𝜕𝜂 𝜕𝑥 -𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=𝜂 𝜕𝜂 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=𝜂 )︂ + (︂ 𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 -𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=-ℎ )︂
Now, applying the boundary condition by performed a stress balance at the surface, it can be show that:

(︂ -𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=𝜂 𝜕𝜂 𝜕𝑥 -𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=𝜂 𝜕𝜂 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=𝜂 )︂ = 𝜏 𝑤 𝑥 𝜌
Similarly, at the bottom

(︂ 𝜈 𝜕𝑢 𝜕𝑦 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑦 + 𝜈 𝜕𝑢 𝜕𝑥 | 𝑧=-ℎ 𝜕(-ℎ) 𝜕𝑥 -𝜈 𝜕𝑢 𝜕𝑧 | 𝑧=-ℎ )︂ = - 𝜏 𝑏 𝑥 𝜌
Thus, the RHS of equation (1.29) can be rewrite as:

𝜂 ∫︁ -ℎ (︂ - 1 𝜌 𝜕𝑝 𝜕𝑥 + 𝜕 𝜕𝑥 (𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜕 𝜕𝑧 (𝜈 𝜕𝑢 𝜕𝑧 ) )︂ 𝑑𝑧 = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 𝜕 𝜕𝑥 (𝐻𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝐻𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜏 𝑤 𝑥 𝜌 - 𝜏 𝑏 𝑥 𝜌
Finally, we can be written the depth-averaged of the equation (1.29) as follows:

𝜕(𝐻𝑢) 𝜕𝑡 + 𝜕(𝐻𝑢 2 ) 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦 -𝑓 𝐻𝑣 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 𝜕 𝜕𝑥 (𝐻𝜈 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝐻𝜈 𝜕𝑢 𝜕𝑦 ) + 𝜏 𝑤 𝑥 𝜌 - 𝜏 𝑏 𝑥 𝜌
By the same way, we can obtain the depth-averaged of the equation (1.30) as follows:

𝜕(𝐻𝑣) 𝜕𝑡 + 𝜕(𝐻𝑢𝑣) 𝜕𝑥 + 𝜕(𝐻𝑣 2 ) 𝜕𝑦 + 𝑓 𝐻𝑢 = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 𝜕 𝜕𝑥 (𝐻𝜈 𝜕𝑣 𝜕𝑥 ) + 𝜕 𝜕𝑦 (𝐻𝜈 𝜕𝑣 𝜕𝑦 ) + 𝜏 𝑤 𝑦 𝜌 - 𝜏 𝑏 𝑦 𝜌
The results from the depth-averaged of the development 2D depth-averaged SWEs as follows:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0 (1.32) 𝜕(𝐻𝑢) 𝜕𝑡 + 𝜕(𝐻𝑢 2 ) 𝜕𝑥 + 𝜕(𝐻𝑢𝑣) 𝜕𝑦 -𝑓 𝐻𝑣 = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 𝜈𝐻 [︂ ( 𝜕 2 𝑢 𝜕𝑥 2 ) + ( 𝜕 2 𝑢 𝜕𝑦 2 ) ]︂ + 𝜏 𝑤 𝑥 𝜌 - 𝜏 𝑏 𝑥 𝜌 (1.33) 𝜕(𝐻𝑣) 𝜕𝑡 + 𝜕(𝐻𝑢𝑣) 𝜕𝑥 + 𝜕(𝐻𝑣 2 ) 𝜕𝑦 + 𝑓 𝐻𝑢 = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 𝜈𝐻 [︂ ( 𝜕 2 𝑣 𝜕𝑥 2 ) + ( 𝜕 2 𝑣 𝜕𝑦 2 ) ]︂ + 𝜏 𝑤 𝑦 𝜌 - 𝜏 𝑏 𝑦 𝜌 (1.34)

Remark

From now, we will only consider the mean velocities and neglect the random variations (i.e., we can put 𝑢, 𝑣 instead of 𝑢 and 𝑣) .

Case 2: Derivation 2DSWEs Without Using the Depth Averaged Technique

Consider the 𝑥-momentum equation:

𝜕𝑢 𝜕𝑡 + 𝜕𝑢 2 𝜕𝑥 + 𝜕(𝑢𝑣) 𝜕𝑦 + 𝜕(𝑢𝑤) 𝜕𝑧 = - 1 𝜌 𝜕𝑝 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧
The depth-averaged equation for the above equation is:

𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑡 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢 2 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕(𝑢𝑣) 𝜕𝑦 𝑑𝑧 ⏟ ⏞ 𝐼𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕(𝑢𝑤) 𝜕𝑧 𝑑𝑧 ⏟ ⏞ 𝐼𝑉 = 𝜂 ∫︁ -ℎ - 1 𝜌 𝜕𝑝 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝑉 + 𝜂 ∫︁ -ℎ [ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ⏟ ⏞ 𝑉 𝐼 ]𝑑𝑧 (1.35) with 𝑝 = 𝜌𝑔(𝜂 -𝑧) 𝜕𝑝 𝜕𝑥 = 𝜌𝑔 𝜕𝜂 𝜕𝑥 + 𝑔(𝜂 -𝑧) 𝜕𝜌 𝜕𝑥 (1.36)
Now, substitute equation (1.36) to equation (1.35), we obtain:

𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑡 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢 2 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢𝑣 𝜕𝑦 𝑑𝑧 ⏟ ⏞ 𝐼𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢𝑤 𝜕𝑧 𝑑𝑧 ⏟ ⏞ 𝐼𝑉 = 𝜂 ∫︁ -ℎ - 1 𝜌 (𝜌𝑔) 𝜕𝜂 𝜕𝑥 𝑑𝑧 - 𝑔 𝜌 (𝜂 -𝑧) 𝜕𝜌 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝑉 + 𝜂 ∫︁ -ℎ [ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ⏟ ⏞ 𝑉 𝐼 ]𝑑𝑧
That implies:

𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑡 𝑑𝑧 ⏟ ⏞ 𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢 2 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢𝑣 𝜕𝑦 𝑑𝑧 ⏟ ⏞ 𝐼𝐼𝐼 + 𝜂 ∫︁ -ℎ 𝜕𝑢𝑤 𝜕𝑧 𝑑𝑧 ⏟ ⏞ 𝐼𝑉 = 𝜂 ∫︁ -ℎ -𝑔 𝜕𝜂 𝜕𝑥 𝑑𝑧 - 𝜂 ∫︁ -ℎ - 𝑔 𝜌 (𝜂 -𝑧) 𝜕𝜌 𝜕𝑥 𝑑𝑧 ⏟ ⏞ 𝑉 + 𝜂 ∫︁ -ℎ [ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ⏟ ⏞ 𝑉 𝐼 ]𝑑𝑧
The terms 𝐼, 𝐼𝐼,..., 𝑉 𝐼 can be simplified using Leibniz rules as follows:

𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢 𝜕𝑡 𝑑𝑧 = 𝜕 𝜕𝑡 𝜂 ∫︁ -ℎ 𝑢𝑑𝑧 + 𝑢(-ℎ) 𝜕(-ℎ) 𝜕𝑡 -𝑢(𝜂) 𝜕(𝜂) 𝜕𝑡 = 𝜕 𝜕𝑡 (𝑢 | 𝜂 -ℎ ) -𝑢(𝜂) 𝜕𝜂 𝜕𝑡 = 𝜕 𝜕𝑡 [𝑢(𝜂 + ℎ)] -𝑢(𝜂) 𝜕𝜂 𝜕𝑡 𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢 2 𝜕𝑥 𝑑𝑧 = 𝜕 𝜕𝑥 𝜂 ∫︁ -ℎ 𝑢 2 𝑑𝑧 + 𝑢 2 (-ℎ) 𝜕(-ℎ) 𝜕𝑥 -𝑢 2 (𝜂) 𝜕𝜂 𝜕𝑥 = 𝜕 𝜕𝑥 [︀ 𝑢 2 𝜎 𝑥𝑥 (𝜂 + ℎ) ]︀ -𝑢 2 (𝜂) 𝜕𝜂 𝜕𝑥 𝐼𝐼𝐼 = 𝜂 ∫︁ -ℎ 𝜕𝑢𝑣 𝜕𝑦 𝑑𝑧 = 𝜕 𝜕𝑦 𝜂 ∫︁ -ℎ 𝑢𝑣𝑑𝑧 + 𝑢𝑣(-ℎ) 𝜕(-ℎ) 𝜕𝑦 -𝑢𝑣(𝜂) 𝜕𝜂 𝜕𝑦 = 𝜕 𝜕𝑦 [𝜎 𝑦𝑥 (𝜂 + ℎ)𝑢𝑣] -𝑢𝑣(𝜂) 𝜕𝜂 𝜕𝑦 𝐼𝑉 = 𝜂 ∫︁ -ℎ 𝜕𝑢𝑤 𝜕𝑧 𝑑𝑧 = 𝑢𝑤(𝜂) -𝑢𝑤(-ℎ) = 0 𝑉 = - 𝜂 ∫︁ -ℎ 𝑔 𝜕𝜂 𝜕𝑥 𝑑𝑧 = -𝑔 𝜕𝜂 𝜕𝑥 | 𝜂 -ℎ = -𝑔 𝜕𝜂 𝜕𝑥 (𝜂 + ℎ) 𝑉 = - 𝜂 ∫︁ -ℎ 𝑔 𝜌 (𝜂 -𝑧) 𝜕𝜌 𝜕𝑥 𝑑𝑧 = - 1 2 𝑔 𝜌 (𝜂 + ℎ) 2 𝜕𝜌 𝜕𝑥 𝑉 𝐼 = 𝜂 ∫︁ -ℎ [ 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜕𝜏 𝑧𝑥 𝜕𝑧 ]𝑑𝑧 = 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 | 𝜂 -ℎ + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 | 𝜂 -ℎ + 1 𝜌 𝜏 𝑧𝑥 | 𝜂 -ℎ = 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 (𝜂 + ℎ) + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 (𝜂 + ℎ) + 1 𝜌 𝜏 𝑧𝑥 (𝜂) - 1 𝜌 𝜏 𝑧𝑥 (-ℎ)
Re-arranging the above equations:

[︃ 𝜕 𝜕𝑡 [𝑢(𝜂 + ℎ)] -𝑢(𝜂) 𝜕𝜂 𝜕𝑡 + 𝜕 𝜕𝑥 (︀ 𝜎 𝑥𝑥 (𝜂 + ℎ)𝑢 2 )︀ -𝑢 2 (𝜂) 𝜕𝜂 𝜕𝑥 + 𝜕 𝜕𝑦 (𝜎 𝑦𝑥 (𝜂 + ℎ)𝑢𝑣) -𝑢𝑣(𝜂) 𝜕𝜂 𝜕𝑦 ]︃ = [︃ -𝑔 𝜕𝜂 𝜕𝑥 (𝜂 + ℎ) - 1 2 𝑔 𝜌 (𝜂 + ℎ) 2 𝜕𝜌 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 (𝜂 + ℎ) + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 (𝜂 + ℎ) + 1 𝜌 𝜏 𝑧𝑥 (𝜂) - 1 𝜌 𝜏 𝑧𝑥 (-ℎ) ]︃
That implies:

[︃ 𝜕 𝜕𝑡 𝑢(𝜂 + ℎ) -𝑢(𝜂) 𝜕𝜂 𝜕𝑡 + 𝜕 𝜕𝑥 [𝜎 𝑥𝑥 (ℎ + 𝜂)𝑢 2 ] -𝑢.𝑢(𝜂) 𝜕𝜂 𝜕𝑥 + 𝜕 𝜕𝑦 [𝜎 𝑦𝑥 (𝜂 + ℎ)𝑢𝑣] -𝑢𝑣(𝜂) 𝜕𝜂 𝜕𝑦 ]︃ = [︃ -𝑔 𝜕𝜂 𝜕𝑥 (𝜂 + ℎ) - 1 2 𝑔 𝜌 (𝜂 + ℎ) 2 𝜕𝜌 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 (𝜂 + ℎ) + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 (𝜂 + ℎ) + 1 𝜌 𝜏 𝑧𝑥 (𝜂) - 1 𝜌 𝜏 𝑧𝑥 (-ℎ) ]︃ Thus [︃ 𝜕 𝜕𝑡 (𝑢(𝜂 + ℎ)) + 𝜕 𝜕𝑥 [𝜎 𝑥𝑥 (𝜂 + ℎ)𝑢 2 ] + 𝜕 𝜕𝑦 [𝜎 𝑦𝑥 (𝜂 + ℎ)𝑢𝑣] -𝑢 [𝜂 𝜕𝜂 𝜕𝑡 + 𝑢(𝜂) 𝜕𝜂 𝜕𝑥 + 𝑣(𝜂) 𝜕𝜂 𝜕𝑦 ] ⏟ ⏞ =0 ]︃ = [︃ -𝑔 𝜕𝜂 𝜕𝑥 (𝜂 + ℎ) - 1 2 𝑔 𝜌 (𝜂 + ℎ) 2 𝜕𝜌 𝜕𝑥 + 1 𝜌 𝜕𝜏 𝑥𝑥 𝜕𝑥 (𝜂 + ℎ) + 1 𝜌 𝜕𝜏 𝑦𝑥 𝜕𝑦 (𝜂 + ℎ) + 1 𝜌 𝜏 𝑧𝑥 (𝜂) - 1 𝜌 𝜏 𝑧𝑥 (-ℎ) ]︃ when 𝜕(-ℎ) 𝜕𝑥 = 0, 𝜕(-ℎ) 𝜕𝑦 = 0 and 𝜎 = 1 therefore 𝜕𝜂 𝜕𝑥 = 𝜕𝐻 𝜕𝑥 .
Thus:

𝜕 𝜕𝑡 (𝐻𝑢) + 𝜕 𝜕𝑥 (𝐻𝑢 2 ) + 𝜕 𝜕𝑦 (𝐻𝑢𝑣) = -𝑔𝐻 𝜕𝜂 𝜕𝑥 - 1 2 𝑔 𝜌 (𝐻) 2 𝜕𝜌 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜏 𝑧𝑥 (𝜂) - 1 𝜌 𝜏 𝑧𝑥 (-ℎ)
Then, we can obtain

𝜕 𝜕𝑡 (𝐻𝑢) + 𝜕 𝜕𝑥 (𝐻𝑢 2 ) + 𝜕 𝜕𝑦 (𝐻𝑢𝑣) = -𝑔𝐻 𝜕𝜂 𝜕𝑥 - 1 2 𝑔 𝜌 (𝐻) 2 𝜕𝜌 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜏 𝑠 𝑥 - 1 𝜌 𝜏 𝑏 𝑥
We define 𝜏 𝑥𝑧 (𝜂) = 𝜏 𝑠 𝑥 to the surface shear stress, 𝜏 𝑥𝑧 (-ℎ) = 𝜏 𝑏 𝑥 to the bottom shear stress.

Similarly, we can do the 𝑦-momentum equation Finally, we get 2D shallow water equations as follows:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0 (1.37) 𝜕 𝜕𝑡 (𝐻𝑢) + 𝜕 𝜕𝑥 (𝐻𝑢 2 ) + 𝜕 𝜕𝑦 (𝐻𝑢𝑣) = -𝑔𝐻 𝜕𝜂 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑥𝑥 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑦𝑥 𝜕𝑦 + 1 𝜌 𝜏 𝑠 𝑥 - 1 𝜌 𝜏 𝑏 𝑥 (1.38) 𝜕 𝜕𝑡 (𝐻𝑣) + 𝜕 𝜕𝑦 (𝐻𝑣 2 ) + 𝜕 𝜕𝑥 (𝐻𝑢𝑣) = -𝑔𝐻 𝜕𝜂 𝜕𝑦 + 1 𝜌 𝐻 𝜕𝜏 𝑥𝑦 𝜕𝑥 + 1 𝜌 𝐻 𝜕𝜏 𝑦𝑦 𝜕𝑦 + 1 𝜌 𝜏 𝑠 𝑦 - 1 𝜌 𝜏 𝑏 𝑦 (1.39)
1.7 The General Formula of Non-Conservative Form for 2DSWEs

The general formula of 2DSWEs for non-conservative form that appears as follows:

𝜕𝑈 𝜕𝑡 + 𝜕(𝐸.𝑈 ) 𝜕𝑥 + 𝜕(𝐺.𝑈 ) 𝜕𝑦 = 𝑆
where

𝑈 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝑈 1 𝑈 2 𝑈 3 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝜂 𝑢 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ , 𝐸 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐸 1 𝐸 2 𝐸 3 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 𝐻 0 𝑔 𝑢 0 0 0 𝑢 ⎞ ⎟ ⎟ ⎟ ⎠ 𝐺 = ⎡ ⎢ ⎢ ⎢ ⎣ 𝐺 1 𝐺 2 𝐺 3 ⎤ ⎥ ⎥ ⎥ ⎦ = ⎛ ⎜ ⎜ ⎜ ⎝ 𝑣 𝐻 0 0 𝑣 0 𝑔 0 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ , 𝑆 = ⎡ ⎢ ⎢ ⎢ ⎣ -𝑢 𝜕ℎ 𝜕𝑥 -𝑣 𝜕ℎ 𝜕𝑦 𝜈 [︁ 𝜕 𝜕𝑥 ( 𝜕𝑢 𝜕𝑥 ) + 𝜕 𝜕𝑦 ( 𝜕𝑢 𝜕𝑦 ) ]︁ + 𝑓 𝑣 + 𝜏 𝑤 𝑢 𝐻𝜌 -𝜏 𝑏 𝑢 𝐻𝜌 𝜈 [︁ 𝜕 𝜕𝑥 ( 𝜕𝑣 𝜕𝑥 ) + 𝜕 𝜕𝑦 ( 𝜕𝑣 𝜕𝑦 ) ]︁ -𝑓 𝑢 + 𝜏 𝑤 𝑣 𝐻𝜌 -𝜏 𝑏 𝑣 𝐻𝜌 ⎤ ⎥ ⎥ ⎥ ⎦
Where 𝑈 means the vector of conserved variables, 𝐸 is the vector of flux in 𝑥-direction, 𝐺 is the vector of flux in 𝑦-direction and the term 𝑆 may include various source terms such as bed friction, bed topography, wind stress, viscosity and the Coriolis parameter.

Summary and Conclusion

This chapter has highlighted a study of 2D depth-averaged non-linear shallow water equations. Two ways to derive this model were suggested using 3D Navier-Stokes equations. Firstly, we got system of 2DSWEs given in equations (1.26)-(1.28) using splitting of velocity and horizontal eddy viscosity from the first formula of 3DNSEs.

Secondly, another form of 2DSWEs was introduced in equations (1.32)-(1.34) using the second formula of 3DNSEs . Another way to derive 2DSWEs without using depth-averaged technique was presented in equations (1.37)- (1.39).

The new derivation of 2DSWEs model, including a particular viscous term, turbulent friction term, bed slope source term, Coriolis effects and capillary effects on the free surface is stressed out. For all applications seeking for steady-state solutions, the water surface elevation is usually constant.

Chapter 2

An Explicit Staggered Finite Difference Method for 2DSWEs

Some of the results presented in this chapter (Sections 2.4, 2.5 and 2.8) are the subject of an article [2].

The increased interest recently in the ocean modeling has led to exciting developments of mathematical modeling including the dispersion of pollutants from the coastal area, chemical, and ecological dynamics. One way to study the dynamic behavior of water is to develop the numerical methods for the oceans models.

Many finite difference methods have been first developed to solve these models in 2DSWEs framework. The time integration methods for these techniques used in this work are explicit. The development of these methods depends on the choice of techniques and the type of methods used, so most of the numerical schemes used to simulate ocean models are based on shallow water equations. This chapter is organized as follows: Firstly, A review of an explicit finite difference method is presented in Section 2.1. Shallow flow models are introduced and propose numerous techniques using new spatial and temporal discretization in a standard C-grid using EFDM in space with a time staggered grid using leapfrog combined with simple Robert-Asselin filter are presented in Sections 2.3-2.6. New algorithms are established to implement the proposed technique. Finally, Open boundary conditions are studied in Section 2.9.

Highlights

• Study the development of the numerical methods for the ocean models.

• Some new algorithms are implemented for 2DSWEs.

• The Courant Friedrichs Lewy (CFL) condition for 2DSWEs is applied.

Overview of some numerical methods

There are many techniques to bring an approximation to the analytical solution of partial differential equations in fluid dynamics such that finite difference method, finite volume method and finite element method which are able to give excellent results. In this work, an explicit center finite difference method and leapfrog scheme with Robert-Asselin filter are only concerned.

Finite difference method

Finite difference method is the oldest technique for calculating of dynamic fluid and has been seen in publications as early as (1928) with the basic theoretical paper by Courant, Friedrichs, and Lewy.

Computational experiments were generated by using a finite difference approach [START_REF] Casulli | Semi-implicit finite difference methods for three-dimensional shallow water flow[END_REF][START_REF] Goutal | A finite volume solver for 1D shallow-water equations applied to an actual river[END_REF][START_REF] Vidar Thomee | From finite differences to finite elements: A short history of numerical analysis of partial differential equations[END_REF].

The finite difference technique is the most widely used in 2D shallow water models. The major idea of the finite difference methods, the continuous differential operators of PDEs is replaced by the discrete difference operators. This requires discretization of the geometry, such that the difference operators can be written in terms of the grid points (see [START_REF] Blumberg | A coastal ocean numerical model[END_REF][START_REF] Strikwerda | Finite Difference Scheme and PDEs[END_REF][START_REF] Heaps | A two-dimensionai numerical sea model[END_REF][START_REF] Heaps | Three-dimensional numerical model of the lrish Sea[END_REF]).

In this section, the most commonly used forward, centered and backward difference approximations are described. These types of approximations are used in the numerical discretization for 2D shallow water models.

The most commonly used the Forward difference approximation with the first order is found namely

(︂ 𝜕𝑢 𝜕𝑥 )︂ 𝑖 ≃ 𝑢 𝑖+1 -𝑢 𝑖 Δ𝑥 + 𝑂(Δ𝑥)
• Centered difference

The centered difference approximation for the first derivative with is second-order convergent as the form:

(︂ 𝜕𝑢 𝜕𝑥 )︂ 𝑖 ≃ 𝑢 𝑖+1 -𝑢 𝑖-1 2Δ𝑥 + 𝑂(Δ𝑥) 2
• Backward difference

The backward difference approximation as the form:

(︂ 𝜕𝑢 𝜕𝑥 )︂ 𝑖 ≃ 𝑢 𝑖-1 -𝑢 𝑖 Δ𝑥 + 𝑂(Δ𝑥)
• Centered difference

The centered difference approximation for the second derivative as the form:

(︂ 𝜕 2 𝑢 𝜕𝑥 2 )︂ 𝑖 ≃ 𝑢 𝑖+1 -2𝑢 𝑖 + 𝑢 𝑖-1 (Δ𝑥) 2 + 𝑂(Δ𝑥) 2
In order to make a choice for an explicit finite difference method, we adopt the following criteria (see [START_REF] Blumberg | Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight[END_REF][START_REF] Crowhurst | Numerical Solutions of One-Dimensional Shallow Water Equations[END_REF][START_REF] Leendertse | Aspects of a Computational Model for Long-Period Water-Wave Propagation[END_REF]).

1. Numerical solutions must be sufficiently accurate. Thus, the method should be consistent and stable. In according to practical experiments, second-order accuracy is satisfactory. It is also necessary that the numerical solution is not greatly affected by false solutions and rounding errors.

2. The proposed method should be strong. In our case, this means that the method should be applicable to a wide range of 2D flow problems in ocean modeling such as tidal problems in coastal seas, model problems in tidal tracts, or steady-state problems in rivers.

3. Suggested method must be computationally effective. The efficiency should not be achieved at the expense of durability, so durability has a high priority. 

Time-Differencing Schemes

An explicit leapfrog method is most applied in combination with Robert-Asselin filter to smash the computational model and prevent time splitting. In this section, we discuss leapfrog method, Robert-Asselin filter and apply it to the leapfrog method.

Leapfrog scheme with Robert-Asselin filter

The leapfrog method can be expressed using the model

𝑥 𝑛+1 = 𝑥 𝑛-1 + 2Δ𝑡𝐹 (𝑥 𝑛 )
where 𝑥 𝑛+1 is the approximate solution that will be determined due to the other variables.

The leapfrog scheme uses information at three different time levels 𝑡 𝑛-1 , 𝑡 𝑛 and 𝑡 𝑛+1 with a total difference of 2Δ𝑡. The numerical approximation to the derivative is known as a centered difference scheme. One problem with this scheme is the 𝑡 𝑛-1 time level as we only know our initial variable at time 𝑡 𝑛 and not also 𝑡 𝑛-1 . This is overcome by using a simple forward step first. Then it is possible to implement the integration using the leapfrog scheme. The leapfrog scheme yields second-order accuracy. The simple leapfrog scheme is unstable but can be stabilized using the Robert-Asselin filter [START_REF] Williams | Achieving seventh-order amplitude accuracy in leapfrog integrations[END_REF].

Robert-Asselin filter was designed specifically for the leapfrog method in (1966) by Robert and in (1972) Asselin showed that it relieves the computational mode but leaves the physical style comparatively undamped [START_REF] Asselin | Frequency filter for time integrations[END_REF][START_REF] Dale | The third-order Adams Bashforth method:An Attractive Alternative to Leapfrog Time Differencing[END_REF][START_REF] Williams | Achieving seventh-order amplitude accuracy in leapfrog integrations[END_REF][START_REF] Williams | A proposed modification to the Robert-Asselin time filter[END_REF]. Since then it has become known as Robert-Asselin filter. After each leapfrog step, the filter mixes solutions from three successive time points at 𝑡 𝑛-1 , 𝑡 𝑛 and 𝑡 𝑛+1 which can seen from Figure 234. The solution at the inner point at time 𝑡 𝑛 is displaced by:

𝑑 = 𝛾 2 [𝑥 𝑛-1 -2𝑥 𝑛 + 𝑥 𝑛+1 ]
where 𝛾 is the filter parameter and the values 𝑥 𝑛-1 , 𝑥 𝑛 and 𝑥 𝑛+1 correspond to the time points 𝑡 𝑛-1 ,

𝑡 𝑛 and 𝑡 𝑛+1 respectively. Typically the filter parameter 𝛾 is taken to be 0.01. 

t n-1 t n t n+1 x x x d

Numerical Discretization of 2D Shallow Water Models when the Time Step (n+1)

In this section, the numerical discretization of 2DNSWEs is applied using EFDMs in a standard C-grid spacing with a time staggered grid using leapfrog combined with simple Robert-Asselin filtering.

Water level scheme

The finite difference first-order numerical scheme for the water level in the continuity equation (1.10) writes out:

𝜕𝜂 𝜕𝑡 = - [︀ (𝐻𝑢) 𝑖+1/2,𝑗 -(𝐻𝑢) 𝑖-1/2,𝑗 ]︀ /Δ𝑥 - [︀ (𝐻𝑣) 𝑖,𝑗+1/2 -(𝐻𝑣) 𝑖,𝑗-1/2 ]︀ /Δ𝑦
and centered finite difference scheme in space term writes down:

(𝐻𝑢) 𝑖+1/2,𝑗 = (𝐻 𝑖,𝑗 + 𝐻 𝑖+1,𝑗 )/2𝑢 𝑖+1,𝑗 (𝐻𝑢) 𝑖-1/2,𝑗 = (𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 )/2𝑢 𝑖,𝑗 (𝐻𝑣) 𝑖,𝑗+1/2 = (𝐻 𝑖,𝑗 + 𝐻 𝑖,𝑗+1 )/2𝑣 𝑖,𝑗+1 (𝐻𝑣) 𝑖,𝑗-1/2 = (𝐻 𝑖,𝑗-1 + 𝐻 𝑖,𝑗 )/2𝑣 𝑖,𝑗
Thus, the full water level centered finite difference in space numerical scheme is:

𝜕𝜂 𝜕𝑡 = -[(𝐻 𝑖,𝑗 + 𝐻 𝑖+1,𝑗 )/2𝑢 𝑖+1,𝑗 -(𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 )/2𝑢 𝑖,𝑗 ] /Δ𝑥 -[(𝐻 𝑖,𝑗 + 𝐻 𝑖,𝑗+1 )/2𝑣 𝑖,𝑗+1 -(𝐻 𝑖,𝑗-1 + 𝐻 𝑖,𝑗 )/2𝑣 𝑖,𝑗 ] /Δ𝑦

𝑢 and 𝑣 momentums schemes

For the 𝑥-momentum given by equation (1.11), the first-order spatial discretization writes:

𝜕(𝐻𝑢) 𝜕𝑡 = - [︀ (𝐻𝑢𝑢) 𝑖+1/2,𝑗 -(𝐻𝑢𝑢) 𝑖-1/2,𝑗 ]︀ /Δ𝑥 - [︀ (𝐻𝑢𝑣) 𝑖,𝑗+1/2 -(𝐻𝑢𝑣) 𝑖,𝑗-1/2 ]︀ /Δ𝑦 + 𝑓 (𝐻𝑣) + 𝜈 [︂ (𝐻 𝜕𝑢 𝜕𝑥 ) 𝑖+1/2,𝑗 -(𝐻 𝜕𝑢 𝜕𝑥 ) 𝑖-1/2,𝑗 ]︂ /Δ𝑥 + 𝜈 [︂ (𝐻 𝜕𝑢 𝜕𝑦 ) 𝑖,𝑗+1/2 -(𝐻 𝜕𝑢 𝜕𝑦 ) 𝑖,𝑗-1/2 ]︂ /Δ𝑦 -𝑔𝐻(𝜂 𝑖+1/2,𝑗 -𝜂 𝑖-1/2,𝑗 )/Δ𝑥 + 𝜌 𝑎 𝜌 0 𝐶 𝑎 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 -𝐶 𝐷 𝑢 √︀ 𝑢 2 + 𝑣 2 Thus (𝐻𝑢𝑢) 𝑖+1/2,𝑗 = 𝐻 𝑖,𝑗 (𝑢 𝑖+1,𝑗 + 𝑢 𝑖,𝑗 ) 2 /4 (𝐻𝑢𝑣) 𝑖-1/2,𝑗 = 𝐻 𝑖-1,𝑗 (𝑢 𝑖-1,𝑗 + 𝑢 𝑖,𝑗 ) 2 /4 (𝐻𝑢𝑣) 𝑖,𝑗+1/2 = (𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗+1 + 𝐻 𝑖,𝑗+1 ) × (𝑢 𝑖,𝑗+1 + 𝑢 𝑖,𝑗 )(𝑣 𝑖-1,𝑗+1 + 𝑣 𝑖,𝑗+1 )/16 (𝐻𝑢𝑣) 𝑖,𝑗-1/2 = (𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗-1 + 𝐻 𝑖,𝑗-1 ) × (𝑢 𝑖,𝑗 + 𝑢 𝑖,𝑗-1 )(𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 )/16 𝑓 (𝐻𝑣) = 𝑓 (𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗 )/2 × (𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 + 𝑣 𝑖,𝑗+1 + 𝑣 𝑖-1,𝑗+1 )/4
and

𝜈 [︂ (𝐻 𝜕𝑢 𝜕𝑥 ) 𝑖+1/2,𝑗 -(𝐻 𝜕𝑢 𝜕𝑥 ) 𝑖-1/2,𝑗 ]︂ = 𝜈 [︂ 𝐻 𝑢 𝑖+1,𝑗 -𝑢 𝑖,𝑗 Δ𝑥 -𝐻 𝑢 𝑖-1,𝑗 -𝑢 𝑖,𝑗 Δ𝑥 ]︂ 𝜈 [︂ (𝐻 𝜕𝑢 𝜕𝑦 ) 𝑖,𝑗+1/2 -(𝐻 𝜕𝑢 𝜕𝑦 ) 𝑖,𝑗-1/2 ]︂ = 𝜈 [︂ 𝐻 𝑢 𝑖,𝑗+1 -𝑢 𝑖,𝑗 Δ𝑦 -𝐻 𝑢 𝑖,𝑗 -𝑢 𝑖,𝑗-1 Δ𝑦 ]︂ 𝑔𝐻(𝜂 𝑖+1/2,𝑗 -𝜂 𝑖-1/2,𝑗 ) = 𝑔(𝐻 + 𝐻 𝑖-1,𝑗 )/2(𝜂 𝑖,𝑗 -𝜂 𝑖-1,𝑗 ) 𝐶 𝐷 𝑢 √︀ 𝑢 2 + 𝑣 2 = 𝐶 𝐷 𝑢 𝑖,𝑗 √︁ (𝑢 𝑖,𝑗 ) 2 + (𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 + 𝑣 𝑖,𝑗+1 + 𝑣 𝑖-1,𝑗+1 ) 2
Hence, rewriting the full 𝑥-momentum, we get: Similarly, we can get the full 𝑦-momentum scheme by using clever symmetry one-to-one relations with x-momentum scheme which are as the following. (2.1) (2.2) Remark:

𝜕(𝐻𝑢) 𝜕𝑡 = - [︀ 𝐻(𝑢 𝑖+1,𝑗 + 𝑢 𝑖,𝑗 ) 2 /4 -𝐻 𝑖-1,𝑗 (𝑢 𝑖-1,𝑗 + 𝑢 𝑖,𝑗 ) 2 /4 ]︀ /Δ𝑥 -[(𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗+1 + 𝐻 𝑖,𝑗+1 ) × (𝑢 𝑖,𝑗+1 + 𝑢 𝑖,𝑗 )(𝑣 𝑖-1,𝑗+1 + 𝑣 𝑖,𝑗+1 )/16] /Δ𝑥 + [(𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗-1 + 𝐻 𝑖,𝑗-1 )(𝑢 𝑖,𝑗 + 𝑢 𝑖,𝑗-1 )(𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 )/16] /Δ𝑦 + 𝑓 (𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗 )/2 × (𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 + 𝑣 𝑖,𝑗+1 + 𝑣 𝑖-1,𝑗+1 )/4 + 𝜈 [︂ 𝐻 𝑢 𝑖+1,𝑗 -𝑢 𝑖,𝑗 Δ𝑥 -𝐻 𝑢 𝑖,𝑗 -𝑢 𝑖-1,𝑗 Δ𝑥 ]︂ /Δ𝑥 + 𝜈 [︂ 𝐻 𝑢 𝑖,𝑗+1 -𝑢 𝑖,𝑗 Δ𝑦 -𝐻 𝑢 𝑖,𝑗 -𝑢 𝑖,𝑗-1 Δ𝑦 ]︂ /Δ𝑦 -𝑔
𝜕(𝐻𝑣) 𝜕𝑡 = - [︀ 𝐻(𝑣 𝑖 * ,𝑗 * +1 + 𝑣 𝑖 * ,𝑗 * ) 2 /4 -𝐻 𝑖 * ,𝑗 * -1 (𝑣 𝑖 * ,𝑗 * -1 + 𝑣 𝑖 * ,𝑗 * ) 2 /4 ]︀ /Δ𝑦 -[(𝐻 𝑖 * ,𝑗 * -1 + 𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * +1,𝑗 * -1 + 𝐻 𝑖 * +1,𝑗 * ) × (𝑣 𝑖 * +1,𝑗 * + 𝑣 𝑖 * ,𝑗 * )(𝑢 𝑖 * +1,𝑗 * -1 + 𝑢 𝑖 * +1,𝑗 * )/16] /Δ𝑦 + [(𝐻 𝑖 * ,𝑗 * -1 + 𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * -1,𝑗 * -1 + 𝐻 𝑖 * -1,𝑗 * )(𝑣 𝑖 * ,𝑗 * + 𝑣 𝑖 * -1,𝑗 * )(𝑢 𝑖 * ,𝑗 * -1 + 𝑢 𝑖 * ,𝑗 * )/16] /Δ𝑥 -𝑓 (𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * ,𝑗 * -1 )/2 × (𝑢 𝑖 * ,𝑗 * -1 + 𝑢 𝑖 * ,𝑗 * + 𝑢 𝑖 * +1,𝑗 * -1 + 𝑢 𝑖 * +1,𝑗 * )/4 + 𝜈 [︂ 𝐻 𝑣 𝑖 * ,𝑗 * +1 -𝑣 𝑖 * ,𝑗 * Δ𝑦 -𝐻 𝑣 𝑖 * ,𝑗 * -𝑣 𝑖 * ,𝑗 * -1 Δ𝑦 ]︂ /Δ𝑦 + 𝜈 [︂ 𝐻 𝑣 𝑖 * +1,𝑗 * -𝑣 𝑖 * ,
𝑢 𝑛+1 𝑖,𝑗 = [︃ 𝑢 𝑛-1 𝑖,𝑗 (𝐻 𝑛-1 𝑖,𝑗 + 𝐻 𝑛-1 𝑖-1,𝑗 ) - Δ𝑡 Δ𝑥 [︀ 𝐻 𝑛 𝑖,𝑗 (𝑢 𝑛 𝑖+1,𝑗 + 𝑢 𝑛 𝑖,𝑗 ) 2 -𝐻 𝑛 𝑖-1,𝑗 (𝑢 𝑛 𝑖-1,𝑗 + 𝑢 𝑛 𝑖,𝑗 ) 2 ]︀ - Δ𝑡 4Δ𝑥 [︀ (𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗+1 + 𝐻 𝑛 𝑖,𝑗+1 ) × (𝑢 𝑛 𝑖,𝑗+1 + 𝑢 𝑛 𝑖,𝑗 )(𝑣 𝑛 𝑖-1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗+1 ) ]︀ + Δ𝑡 4Δ𝑦 [︀ (𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗-1 + 𝐻 𝑛 𝑖,𝑗-1 )(𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗-1 )(𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 ) ]︀ + Δ𝑡 2 𝑓 (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 ) × (𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖-1,𝑗+1 ) + 4Δ𝑡 Δ𝑥 2 𝜈 [︀ 𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 ]︀ (𝑢 𝑛 𝑖+1,𝑗 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 ) + 4Δ𝑡 Δ𝑦 2 𝜈 [︀ 𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 ]︀ (𝑢 𝑛 𝑖,𝑗-1 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗+1 ) -𝑔 2Δ𝑡 
𝑣 𝑛+1 𝑖 * ,𝑗 * = [︃ 𝑣 𝑛-1 𝑖 * ,𝑗 * (𝐻 𝑛-1 𝑖 * ,𝑗 * + 𝐻 𝑛-1 𝑖 * ,𝑗 * -1 ) - Δ𝑡 Δ𝑦 [︀ 𝐻 𝑛 𝑖 * ,𝑗 * (𝑣 𝑛 𝑖 * ,𝑗 * +1 + 𝑣 𝑛 𝑖 * ,𝑗 * ) 2 -𝐻 𝑛 𝑖 * ,𝑗 * -1 (𝑣 𝑛 𝑖 * ,𝑗 * -1 + 𝑣 𝑛 𝑖 * ,𝑗 * ) 2 ]︀ - Δ𝑡 4Δ𝑦 [︀ (𝐻 𝑛 𝑖 * ,𝑗 * -1 + 𝐻 𝑛 𝑖 * ,𝑗 * + 𝐻 𝑛 𝑖 * +1,𝑗 * -1 + 𝐻 𝑛 𝑖 * +1,𝑗 * ) × (𝑣 𝑛 𝑖 * +1,𝑗 * + 𝑣 𝑛 𝑖 * ,𝑗 * )(𝑢 𝑛 𝑖 * +1,𝑗 * -1 + 𝑢 𝑛 𝑖 * +1,𝑗 * ) ]︀ + Δ𝑡 4Δ𝑥 [︀ (𝐻 𝑛 𝑖 * ,𝑗 * -1 + 𝐻 𝑛 𝑖 * ,𝑗 * + 𝐻 𝑛 𝑖 * -1,𝑗 * -1 + 𝐻 𝑛 𝑖 * -1,𝑗 * )(𝑣 𝑛 𝑖 * ,𝑗 * + 𝑣 𝑛 𝑖 * -1,𝑗 * )(𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * ) ]︀ - Δ𝑡 2 𝑓 (𝐻 𝑛 𝑖 * ,𝑗 * + 𝐻 𝑛 𝑖 * ,𝑗 * -1 ) × (𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * -1 ) + 4Δ𝑡 Δ𝑦 2 𝜈 [︀ 𝐻 𝑛 𝑖 * ,𝑗 * -1 + 𝐻 𝑛 𝑖 * ,𝑗 * ]︀ (𝑣 𝑛 𝑖 * ,𝑗 * +1 -2𝑣 𝑛 𝑖 * ,𝑗 * + 𝑣 𝑛 𝑖 * ,𝑗 * -1 ) + 4Δ𝑡 Δ𝑥 2 𝜈 [︀ 𝐻 𝑛 𝑖 * ,𝑗 * -1 + 𝐻 𝑛 𝑖 * ,𝑗 * ]︀ (𝑣 𝑛 𝑖 * -1,
In order for the leapfrog scheme to be stable, the dissipation (horizontal viscosity and any frictional) terms in the momentum equations should be lagged (skipped) that is evaluated at time level 𝑛 -1.

The rest of the terms in above equations are evaluated at time level n. Therefore 𝜂 equation is solved first, so that 𝐻 𝑛+1 is known, before solving for the velocity components 𝑢 and 𝑣. Robert-Asselin filter is applied for 𝑢, 𝑣 and 𝜂 after integration at each time step [START_REF] Lakshmi | Numerical Models of Oceans and Oceanic Processe[END_REF]:

(𝜂 𝑛 𝑖,𝑗 ) 𝑓 = (𝜂 𝑛 𝑖,𝑗 ) + 𝛾(𝜂 𝑛+1 𝑖,𝑗 -2𝜂 𝑛 𝑖,𝑗 + 𝜂 𝑛-1 𝑖,𝑗 ) (𝑢 𝑛 𝑖,𝑗 ) 𝑓 = (𝑢 𝑛 𝑖,𝑗 ) + 𝛾(𝑢 𝑛+1 𝑖,𝑗 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛-1 𝑖,𝑗 ) (𝑣 𝑛 𝑖 * ,𝑗 * ) 𝑓 = (𝑣 𝑛 𝑖 * ,𝑗 * ) + 𝛾(𝑣 𝑛+1 𝑖 * ,𝑗 * -2𝑣 𝑛 𝑖 * ,𝑗 * + 𝑣 𝑛-1 𝑖 * ,𝑗 * )

Computational algorithm

The 2D depth-averaged shallow water equations are solved on the basis of the following algorithm:

1. Input model data and set initial data. At time 𝑡 = 𝑛Δ𝑡 = 0 (that is 𝑛 = 0, and 𝑡 = 𝑛Δ𝑡 also In this section, the numerical discretization for 2DSWEs is proposed by using an explicit finite difference in space and leapfrog combined with simple Robert-Asselin filtering in time.

𝑢 0 𝑖,𝑗 = 𝑣 0 𝑖,𝑗 = 0, 𝐻 0 𝑖,𝑗 = ℎ 𝑖,
The grid consists of three grid points which are the free surface elevation 𝜂 and horizontal velocity components 𝑢 and 𝑣. The spacing between different grid points in the 𝑥-direction and 𝑦-direction are Δ𝑥 and Δ𝑦 respectively and between similar grid points it is 2Δ𝑥 and 2Δ𝑦. Therefore, the area of the grid is 4Δ𝑥Δ𝑦.

Discretization of continuity equation

Consider the finite difference expression of the continuity equation (1.10) centering it about the time level 𝑛, in discrete time and the 𝜂 grid point in discrete space gives:

(︂ 𝜕𝜂 𝜕𝑡 )︂ 𝑛 𝜂 𝑖,𝑗 = - (︂ 𝜕(𝐻𝑢) 𝜕𝑥 )︂ 𝑛 𝜂 𝑖,𝑗 - (︂ 𝜕(𝐻𝑣) 𝜕𝑦 )︂ 𝑛 𝜂 𝑖,𝑗 (2.4) 
The difference approximations of the terms in this equation are:

1.

(︂ 𝜕𝜂 𝜕𝑡 )︂ 𝑛 𝜂 𝑖,𝑗 ≃ 1 Δ𝑡 (︁ 𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛-1/2 𝑖,𝑗 )︁ (2.5) 2. 
(︂ 𝜕(𝐻𝑢) 𝜕𝑥

)︂ 𝑛 𝜂 𝑖,𝑗 ≃ 1 4Δ𝑥 [︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 )𝑢 𝑛 𝑖-1,𝑗 ]︀ (2.6) 3. 
(︂ 𝜕(𝐻𝑣) 𝜕𝑦 

)︂ 𝑛 𝜂 𝑖,𝑗 ≃ 1 4Δ𝑦 [︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗 ]︀ (2.7) 
𝜂 𝑛+1/2 𝑖,𝑗 =𝜂 𝑛-1/2 𝑖,𝑗 - Δ𝑡 4Δ𝑥 [︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖,𝑗 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 )𝑢 𝑛 𝑖-1,𝑗 ]︀ - Δ𝑡 4Δ𝑦 [︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗 ]︀ (2.8)
The total depth 𝐻 = 𝜂 + ℎ at time (𝑛 + 1/2) △ 𝑡 is approximated as

𝐻 𝑛+1/2 𝑖,𝑗 = 𝜂 𝑛+1/2 𝑖,𝑗 + ℎ 𝑖,𝑗
where 𝐻 𝑖,𝑗 is computed at the same position in the horizontal plane as 𝜂 𝑖,𝑗 .

Discretization of the momentum equations

Case 1: The finite difference expression for the x-momentum equation (1.11) using centered differences about 𝑢 𝑖,𝑗 in space and about the (𝑛 + 1/2) level in time is based on the following equation

(︂ 𝜕𝑢 𝜕𝑡 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 + (︂ 𝑢 𝜕𝑢 𝜕𝑥 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 + (︂ 𝑢 𝜕𝑣 𝜕𝑦 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 -(𝑓 𝑣) 𝑛 𝑢 𝑖,𝑗 = -𝑔 (︂ 𝜕𝜂 𝜕𝑥 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 + (︂ 𝜈 𝜕 2 𝑢 𝜕𝑥 2 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 + (︂ 𝜈 𝜕 2 𝑢 𝜕𝑦 2 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 + (︂ 𝜌 𝑎 𝜌 0 1 𝐻 𝐶 𝑎 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 - 1 𝐻 𝐶 𝐷 (︁ 𝑢 √︀ 𝑢 2 + 𝑣 2 )︁ 𝑛+1/2 𝑢 𝑖,𝑗 (2.9) 
The terms of this are differences as follows:

1.

(︂ 𝜕𝑢 𝜕𝑡 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 1 Δ𝑡 (︁ 𝑢 𝑛+1 𝑖,𝑗 -𝑢 𝑛 𝑖,𝑗 )︁ (2.10)
Which is second order in time because this is a centered-difference in time.

2. Discretization of advection term:

(︂ 𝑢 𝜕𝑢 𝜕𝑥 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ (𝑢 𝑖,𝑗 ) 𝑛+1 (︂ 𝜕𝑢 𝜕𝑥 )︂ 𝑛 𝑢 𝑖,𝑗 ≃ 1 4Δ𝑥 𝑢 𝑛+1 𝑖,𝑗 (︀ 𝑢 𝑛 𝑖+1,𝑗 -𝑢 𝑛 𝑖-1,𝑗 )︀ (2.11)
Which is approximately second order in space.

3.

(︂ 𝑣 𝜕𝑢 𝜕𝑦

)︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ (𝑣) 𝑛 𝑢 𝑖,𝑗 (︂ 𝜕𝑢 𝜕𝑦 )︂ 𝑛 𝑢 𝑖,𝑗 ≃ 1 16Δ𝑦 (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 )︀ (︀ 𝑢 𝑛 𝑖,𝑗+1 -𝑢 𝑛 𝑖,𝑗-1
)︀ (2.12)

Which is quasi second order in space.

Discretization of Coriolis force term

(𝑓 𝑣) 𝑛 𝑢 𝑖,𝑗 ≃ 1 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖+1,𝑗 ) (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗
)︀

(2.13)

Discretization of Barotropic term

(︂ 𝜕𝜂 𝜕𝑥 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 1 2Δ𝑥 (︁ 𝜂 𝑛+1/2 𝑖+1,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗 )︁ (2.14)
which has a second order spatial discretisation error. 

+ 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ 2
This implies

(︂ 𝜈 𝑥 𝜕 2 𝑢 𝜕𝑥 2 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 𝜈 𝑥 (︂ 𝜕 2 𝑢 𝜕𝑥 2 )︂ 𝑛 𝑢 𝑖,𝑗 (2.17) 
≃ 𝑎 8Δ𝑥 (︀ 𝑢 𝑛 𝑖+1,𝑗 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁
which is approximately second order in space.

where 𝑎 is the reduced eddy coefficient, which equal to 1.64 × 10 -3 (see [START_REF] Matthews | A Spherical Coordinates Tidal Model of the Great Australian Bight using a new Coastal Boundary Representation[END_REF]).

7.

(︂

𝜈 𝑦 𝜕 2 𝑢 𝜕𝑦 2 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 𝜈 𝑦 (︂ 𝜕 2 𝑢 𝜕𝑦 2 )︂ 𝑛 𝑢 𝑖,𝑗 (2.18) 
≃ 𝑎 8Δ𝑦 (︀ 𝑢 𝑛 𝑖,𝑗+1 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗-1 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁
which is approximately second order in space.

8. That implies: ]︃

𝐶 𝐷 (︂ 1 𝐻 𝑢 √︀ 𝑢 2 + 𝑣 2 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 2𝐶 𝐷 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ 𝑢 𝑛+1 𝑖,
𝑢 𝑛+1 𝑖,𝑗 = [︃ 𝑢 𝑛 𝑖,𝑗 - Δ𝑡 4Δ𝑥 𝑢 𝑛+1 𝑖,𝑗 (︀ 𝑢 𝑛 𝑖+1,𝑗 -𝑢 𝑛 𝑖-1,𝑗 )︀ - Δ𝑡 16Δ𝑦 (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 )︀ (𝑢 𝑛 𝑖,𝑗+1 -𝑢 𝑛 𝑖,𝑗-1 ) + Δ𝑡 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖+1,𝑗 ) (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 )︀ - 𝑔Δ𝑡 2Δ𝑥 (𝜂 𝑛+1/2 𝑖+1,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗 ) + 𝑎Δ𝑡 8Δ𝑥 (︀ 𝑢 𝑛 𝑖+1,𝑗 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ + 𝑎Δ𝑡 8Δ𝑦 (︁ 𝐻 𝑛+1/
Finally, we obtain

𝑢 𝑛+1 𝑖,𝑗 =𝐾 -1 𝑥 [︃ 𝑢 𝑛 𝑖,𝑗 + Δ𝑡 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖+1,𝑗 ) (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 )︀ - 𝑔Δ𝑡 2Δ𝑥 (𝜂 𝑛+1/2 𝑖+1,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗 ) + 𝑎Δ𝑡 8Δ𝑥 (︀ 𝑢 𝑛 𝑖+1,𝑗 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ - Δ𝑡 16 △ 𝑦 (︀ 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 )︀ (𝑢 𝑛 𝑖,𝑗+1 -𝑢 𝑛 𝑖,𝑗-1 ) + 𝑎Δ𝑡 8Δ𝑦 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ (𝑢 𝑛 𝑖,𝑗+1 -2𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗-1 )
(2.21)

+ 𝜌 𝑎 𝜌 0 2𝐶 𝑎 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 ]︃
where 

𝐾 𝑥 = ⎛ ⎝ 1 + Δ𝑡 4Δ𝑥 (︀ 𝑢 𝑛 𝑖+1,𝑗 -𝑢 𝑛 𝑖-1,𝑗 )︀ + 2𝐶 𝐷 Δ𝑡 (︁ 𝐻 𝑛+1/
(︂ 𝜕𝑣 𝜕𝑡 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 + 𝑣 (︂ 𝜕𝑢 𝜕𝑥 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 + 𝑣 (︂ 𝜕𝑣 𝜕𝑦 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 -(𝑓 𝑢) 𝑛 𝑣 𝑖,𝑗 = -𝑔 (︂ 𝜕𝜂 𝜕𝑦 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 + (︂ 𝜈 𝜕 2 𝑣 𝜕𝑥 2 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 + (︂ 𝜈 𝜕 2 𝑣 𝜕𝑦 2 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 + (︂ 𝜌 𝑎 𝜌 0 1 𝐻 𝐶 𝑎 𝑣 10 √︁ 𝑢 2 10 + 𝑣 2 10 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 -𝐶 𝐷 1 𝐻 (︁ 𝑣 √︀ 𝑢 2 + 𝑣 2 )︁ 𝑛+1/2 𝑣 𝑖,𝑗 (2.22) 
The approximations for the terms of equation (2.22) as follows:

1.

(︂ 𝜕𝑣 𝜕𝑡 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ 1 Δ𝑡 (︁ 𝑣 𝑛+1 𝑖,𝑗 -𝑣 𝑛 𝑖,𝑗 )︁ (2.23)
which is second order in time because this is a centred-difference in time.

Discretization of advection term

(︂ 𝑢 𝜕𝑣 𝜕𝑥 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ (𝑢 𝑖,𝑗 ) 𝑛+1 (︂ 𝜕𝑣 𝜕𝑥 )︂ 𝑛 𝑣 𝑖,𝑗 ≃ 1 16Δ𝑥 (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -𝑣 𝑛 𝑖-1,𝑗 )︀ (2.24)
which is quasi second order in space.

3.

(︂ 𝑣 𝜕𝑣 𝜕𝑦

)︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ (𝑣 𝑖,𝑗 ) 𝑛+1 (︂ 𝜕𝑣 𝜕𝑦 )︂ 𝑛 𝑣 𝑖,𝑗 ≃ 1 4Δ𝑦 𝑣 𝑛+1 𝑖,𝑗 (︀ 𝑣 𝑛 𝑖,𝑗+1 -𝑣 𝑛 𝑖,𝑗-1 )︀ (2.25)
which is approximately second order in space.

Discretization of Coriolis force term

(𝑓 𝑢) 𝑛+1/2 𝑣 𝑖,𝑗 ≃ 1 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 ) (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1
)︁

(2.26)

Discretization of barotropic term

(︂ 𝜕𝜂 𝜕𝑦 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ 1 Δ𝑦 (︁ 𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗-1 )︁ (2.27)
which has a second order spatial discretisation error.

Discretization of horizontal eddy viscosity coefficients

At the 𝑣 𝑖,𝑗 grid point and the (𝑛 + 1/2) time level. They are approximated as follows:

(︂ 𝜈 𝑥 𝜕 2 𝑣 𝜕𝑥 2 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ (𝜈 𝑥 ) 𝑛+1/2 𝑣 𝑖,𝑗 (︂ 𝜕 2 𝑣 𝜕𝑥 2 )︂ 𝑛 𝑣 𝑖,𝑗 (2.28) 
≃ 𝑎 8Δ𝑥 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -2𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖-1,𝑗 )︀
which is approximately second order in space.

7.

(︂ 

𝜈 𝑦 𝜕 2 𝑣 𝜕𝑦 2 )︂ 𝑛+1/2 𝑣 𝑖,𝑗 ≃ (𝜈 𝑦 ) 𝑛 𝑣 𝑖,𝑗 (︂ 𝜕 2 𝑣 𝜕𝑦 2 )︂ 𝑛 𝑣 𝑖,𝑗 (2 
)︀ + 1 16Δ𝑥 (︁ 𝑢 𝑛+1 𝑖,𝑗+1 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -𝑣 𝑛 𝑖-1,𝑗 )︀ - 1 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 ) (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ = -𝑔 1 2Δ𝑦 (︁ 𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗-1 )︁ + 𝑎 8Δ𝑥 (︀ 𝑣 𝑛 𝑖+1,𝑗 -2𝑣 𝑛 𝑖 + 𝑣 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ + 𝑎 8Δ𝑦 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ (𝑣 𝑛 𝑖,𝑗+1 -2𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗-1 ) - 2𝐶 𝐷 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ 𝑣 𝑛+1 𝑖,𝑗 √︂ (𝑣 𝑛 𝑖,𝑗 ) 2 + 1 16 (𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 ) 2 + 𝜌 𝑎 𝜌 0 2𝐶 𝑎 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ 𝑣 10 √︁ 𝑢 2 10 + 𝑣 2 10
That implies:

𝑣 𝑛+1 𝑖,𝑗 = [︃ 𝑣 𝑛 𝑖,𝑗 - Δ𝑡 4Δ𝑦 𝑣 𝑛+1 𝑖,𝑗 (︀ 𝑣 𝑛 𝑖,𝑗+1 -𝑢 𝑛 𝑖,𝑗-1 )︀ - Δ𝑡 16Δ𝑥 (︁ 𝑢 𝑛+1 𝑖,𝑗+1 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -𝑣 𝑛 𝑖-1,𝑗 )︀ + Δ𝑡 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 ) (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ - 𝑔Δ𝑡 2Δ𝑦 (𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗-1 ) + 𝑎Δ𝑡 8Δ𝑥 (︀ 𝑣 𝑛 𝑖+1,𝑗 -2𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ + 𝑎Δ𝑡 8Δ𝑦 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ (𝑣 𝑛 𝑖,𝑗+1 -2𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗-1 )) - 2𝐶 𝐷 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ 𝑣 𝑛+1 𝑖,𝑗 √︂ (𝑣 𝑛 𝑖,𝑗 ) 2 + 1 16 (𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 ) 2 + 𝜌 𝑎 𝜌 0 2𝐶 𝑎 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ 𝑣 10 √︁ 𝑢 2 10 + 𝑣 2 10 ]︃
Finally, we obtain: where

𝑣 𝑛+1 𝑖,𝑗 = 𝐾 -1 𝑦 [︃ 𝑣 𝑛 𝑖,𝑗 - Δ𝑡 16Δ𝑥 (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -𝑣 𝑛 𝑖-1,𝑗 )︀ - Δ𝑡 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 ) (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ - 𝑔Δ𝑡 2Δ𝑦 (𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗-1 ) + 𝑎Δ𝑡 8Δ𝑥 (︀ 𝑣 𝑛 𝑖+1,𝑗 -2𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖-1,𝑗 )︀ (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,
𝐾 𝑦 = ⎛ ⎝ 1 + Δ𝑡 4Δ𝑦 (︀ 𝑣 𝑛 𝑖,𝑗+1 -𝑣 𝑛 𝑖,𝑗-1 )︀ + 2𝐶 𝐷 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ √︂ (𝑣 𝑛 𝑖,𝑗 ) 2 + 1 16 (𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 ) 2 ⎞ ⎠
The values at the full time level are found using where

𝜂 𝑛+1 𝑖,𝑗 =𝜂 𝑛 𝑖,𝑗 - Δ𝑡 8Δ𝑥 [︁ (𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )(𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗 ) -(𝐻 𝑛+1/2 𝑖-1,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗 )(𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 ) ]︁ - Δ𝑡 8Δ𝑦 [︁ (𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2
𝐾 𝑦 = 1 + Δ𝑡 4Δ𝑦 (︀ 𝑣 𝑛 𝑖,𝑗+1 -𝑣 𝑛 𝑖,𝑗-1 )︀ - 2𝐶 𝐷 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )︁ √︂ (𝑣 𝑛 𝑖,𝑗 ) 2 + 1 16 (𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 ) 2
Values of 𝜂 at the full time level are found using

𝜂 𝑛+1 𝑖,𝑗 =𝜂 𝑛 𝑖,𝑗 - Δ𝑡 8Δ𝑥 [︁ (𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )(𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗 ) -(𝐻 𝑛+1/2 𝑖-1,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗 )(𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛 𝑖-1,𝑗 ) ]︁ - Δ𝑡 8Δ𝑦 [︁ (𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗+1 )(𝑣 𝑛+1 𝑖,𝑗+1 + 𝑣 𝑛 𝑖,𝑗+1 ) -(𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 )(𝑣 𝑛+1 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗 ) ]︁
The total depth 𝐻 = 𝜂 + ℎ at time 

)︂ 𝑛+1/2 𝑢 𝑖,𝑗 -𝐶 𝐷 1 𝐻 (︁ 𝑢 √︀ 𝑢 2 + 𝑣 2 )︁ 𝑛+1/2 𝑢 𝑖,𝑗 (2.35) 
The difference approximations of the terms as follows:

1.

(︂ 𝜕𝑢 𝜕𝑡 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 1 Δ𝑡 (︁ 𝑢 𝑛+1 𝑖,𝑗 -𝑢 𝑛 𝑖,𝑗 )︁ (2.36)
2. Discretization of Coriolis force and Barotropic terms

(𝑓 𝑣) 𝑛 𝑢 𝑖,𝑗 ≃ 1 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖+1,𝑗 ) (︁ 𝑣 𝑛+1 𝑖,𝑗+1 + 𝑣 𝑛+1 𝑖+1,𝑗+1 + 𝑣 𝑛+1 𝑖,𝑗 + 𝑣 𝑛+1 𝑖+1,𝑗
)︁

(2.37)

3.

(︂ 𝜕𝜂 𝜕𝑥 

)︂ 𝑛+1/2 𝑢 𝑖,𝑗 ≃ 1 2Δ𝑥 (︁ 𝜂 𝑛+1/2
)︂ 𝑛+1/2 𝑣 𝑖,𝑗 -𝐶 𝐷 1 𝐻 (︁ 𝑣 √︀ 𝑢 2 + 𝑣 2 )︁ 𝑛+1/2 𝑣 𝑖,𝑗 (2.40) 
The difference approximations of the terms as follows:

1.

(︂ 𝜕𝑣 𝜕𝑡

)︂ 𝑛+1/2 𝑣 𝑖 ≃ 1 Δ𝑡 (︀ 𝑣 𝑛+1 𝑖 -𝑣 𝑛 𝑖 )︀
(2.41)

2.

(𝑓 𝑢) 𝑛+1/2 𝑣 𝑖 ≃ 1 8 (𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 ) (︁ 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1
)︁

(2.42)

3.

(︂ 𝜕𝜂 𝜕𝑦 (2.47)

)︂ 𝑛+1/2 𝑣 𝑖 ≃ 1 Δ𝑦 (︁ 𝜂 𝑛+1/2 𝑗 -𝜂 𝑛+1/2 𝑗-

Program Logic and Data Flow

In this section, the structure of the computational program and some major subroutines are briefly described.

Flow charts: (Organizational chart)

The 

Stability Criteria

A successful numerical scheme must approach the solution without staining acute regions or introducing false oscillations. It should approximate the solution increasingly accurately as the number of grid cells is increased with the property that the numerical solution tends to the actual solution as the grid size tends to zero.

Since the solution to a hyperbolic or parabolic problem, we must ensure that the computational grid is such that the time step Δ𝑡 is small enough that the wave does not have time to exit the other side of the element of width Δ𝑥. This leads us to the following important condition. (i.e., the accuracy of the solution depends on the chosen values of Δ𝑡 and Δ𝑥. 

Definitions of stability

A finite difference scheme 𝑃 △𝑡,△𝑥 𝑣 𝑛 𝑖 = 0 for a first-order equation is stable in a stability region Λ if there is an integer 𝐽 such that for any positive time 𝑇 , there is a constant 𝐶 𝑇 , such that

‖ 𝑣 𝑛 ‖ Δ𝑥 ≤ 𝐶 𝑇 𝐽 ∑︁ 𝑗=0 ‖ 𝑣 𝑗 ‖ Δ𝑥 for 0 ≤ Δ𝑡 ≤ 𝑇 , with (Δ𝑡, Δ𝑥) ∈ Λ

Lax-Richtmyer equivalence theorem

In numerical analysis, the Lax equivalence theorem is the fundamental theorem in the analysis of finite difference methods for the numerical solution of partial differential equations. It states that for (see [START_REF] Peter | Numerical Analysis Lecture Notes[END_REF][START_REF] Trefethen | Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations[END_REF]):

A consistent finite difference scheme for a partial differential equation for a well-posed linear initial value problem, the method is convergent if and only if it is stable.

Consistency + Stability ⇔ Convergence

Notice that

• The Lax theorem does not apply to non-linear PDE because consistency and stability are often insufficient for convergence and convergence need not imply stability in general. Also, the numerical method can convergence very plausibly to incorrect results despite being consistent and stable and sometimes in non-linear PDE difficult to find the exact solution.

• Any numerical method that violates the CFL condition misses information affecting the exact solution and may blow up to infinity For this reason, the CFL condition is necessary but not sufficient for numerical stability.

The Courant Friedrichs Lewy (CFL) Condition

In (1928) Richard Courant, Kurt Friedrichs and Hans Lewy of the university of Gottingen in Germany published a famous paper in mathematics, the Courant Friedrichs Lewy (CFL) condition is a necessary condition for convergence while solving certain partial differential equations (usually hyperbolic PDEs)

numerically by the method of finite differences ( [START_REF] Adcroft | Implementation of an Atmosphere Ocean General Circulation Model on the Expanded Spherical Cube[END_REF][START_REF] Peter | Numerical Analysis Lecture Notes[END_REF][START_REF] Trefethen | Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations[END_REF]). It states:

The numerical domain of dependence must contain the physical domain of dependence. )

𝐶 𝑛 = 𝑣 Δ𝑡 Δ𝑥
where 𝑣 is the celerity of the gravity wave. Specifying wave celerity, above equation becomes:

𝐶 𝑛 = √︀ 𝑔𝐻 Δ𝑡 Δ𝑥

The Courant Friedrichs Lewy (CFL) Condition for 2DSWEs

The Courant number CFL condition for 2D shallow water equations is defined as follows: [START_REF] Brufau | The shallow water equations: An example of hyperbolic system[END_REF][START_REF] Lakshmi | Numerical Models of Oceans and Oceanic Processe[END_REF][START_REF] Stelling | On the construction of computational methods for shallow water flow problem[END_REF]]

𝐶 = Δ𝑡 (︁ √︀ 𝑔𝐻 𝑚𝑎𝑥 )︁ (︂ 1 Δ𝑥 2 + 1 Δ𝑦 2 )︂ 1 2 or 𝑚𝑎𝑥 [︂ (︁ 2Δ𝑡 √︀ 𝑔𝐻 )︁ (︂ 1 Δ𝑥 2 + 1 Δ𝑦 2 )︂]︂ < 1
Using the stability condition CFL < 1 in above equation. The following stability criterion is obtained for the optimal time step [START_REF] Leendertse | Aspects of a Computational Model for Long-Period Water-Wave Propagation[END_REF] Δ𝑡

≤ Δ𝑥Δ𝑦 (︀√ 𝑔𝐻 𝑚𝑎𝑥 )︀ √︀ (Δ𝑥 2 + Δ𝑦 2 )
where 𝐻 𝑚𝑎𝑥 is the maximum depth water.

Derivation the Courant Friedrichs Lewy (CFL) condition in 2D shallow water equations

The Courant number CFL condition for 2DSWEs is defined as follows [START_REF] Lakshmi | Numerical Models of Oceans and Oceanic Processe[END_REF]:

𝐶 = Δ𝑡 (︁ √︀ 𝑔𝐻 + 𝑉 𝑚𝑎𝑥 )︁ (︂ 1 Δ𝑥 + 1 Δ𝑦 )︂
Using the stability condition CFL< 1 in above equation. The following stability criterion is obtained for the optimal time step

Δ𝑡 ≤ 1 (︀√ 𝑔𝐻 + 𝑉 𝑚𝑎𝑥 )︀ (Δ𝑥 -1 + Δ𝑦 -1 )
To prove this CFL condition for the 2DSWEs

Consider the 2DNSWEs given in equations (1.29)-(1.31) , when f=0, 𝜈=0, 𝜏 𝑤 𝑢 = 0, 𝜏 𝑏 𝑢 = 0, 𝜏 𝑤 𝑣 = 0 and 𝜏 𝑏 𝑣 = 0 and dividing on 𝐻, we obtain:

𝜕𝜂 𝜕𝑡 + 𝜕(𝐻𝑢) 𝜕𝑥 + 𝜕(𝐻𝑣) 𝜕𝑦 = 0 𝜕𝑢 𝜕𝑡 + 𝜕𝑢 2 𝜕𝑥 + 𝜕(𝑢𝑣) 𝜕𝑦 + 𝑔 𝜕𝜂 𝜕𝑥 = 0 𝜕𝑣 𝜕𝑡 + 𝜕(𝑣𝑢) 𝜕𝑦 + 𝜕𝑣 2 𝜕𝑦 + 𝑔 𝜕𝜂 𝜕𝑦 = 0
The 2D shallow-water equations can be written in the matrix form

𝜕 𝜕𝑡 ⎛ ⎜ ⎜ ⎜ ⎝ 𝜂 𝑢 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 𝐻 0 𝑔 𝑢 0 0 0 𝑢 ⎞ ⎟ ⎟ ⎟ ⎠ 𝜕 𝜕𝑥 ⎛ ⎜ ⎜ ⎜ ⎝ 𝜂 𝑢 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ + ⎛ ⎜ ⎜ ⎜ ⎝ 𝑣 𝐻 0 0 𝑣 0 𝑔 0 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ 𝜕 𝜕𝑦 ⎛ ⎜ ⎜ ⎜ ⎝ 𝜂 𝑢 𝑣 ⎞ ⎟ ⎟ ⎟ ⎠ = - ⎛ ⎜ ⎜ ⎜ ⎝ 𝑢 𝜕ℎ 𝜕𝑥 + 𝑣 𝜕ℎ 𝜕𝑦 0 0 ⎞ ⎟ ⎟ ⎟ ⎠
We can easily to check the eigenvalues of the first coefficient matrix are {𝑢, 𝑢 ± √ 𝑔𝐻} and the eigenvalues of the second coefficient matrix are {𝑣, 𝑣 ± √ 𝑔𝐻}. The CFL in two-dimension case as follows:

𝐶 𝑟 = (︂ 𝑢 𝑥 Δ𝑡 Δ𝑥 + 𝑣 𝑦 Δ𝑡 Δ𝑦 )︂ ≤ 1
where 𝑢 𝑥 ,𝑢 𝑦 are the velocity in 𝑥, 𝑦-directions respectively.

where

𝑢 𝑥 = {︀ 𝑢, 𝑢 ± √ 𝑔𝐻 }︀ and 𝑢 𝑦 = {︀ 𝑣, 𝑣 ± √ 𝑔𝐻 }︀ ⇒ 𝐶𝐹 𝐿 = (︂ 𝑚𝑎𝑥 {︁ 𝑢, 𝑢 ± √︀ 𝑔𝐻 }︁ Δ𝑡 Δ𝑥 + 𝑚𝑎𝑥 {︁ 𝑣, 𝑣 ± √︀ 𝑔𝐻 }︁ Δ𝑡 Δ𝑦 )︂ < 1 Let 𝑉 𝑚𝑎𝑥 + √︀ 𝑔𝐻 = 𝑚𝑎𝑥 {︁ (𝑢, 𝑢 ± √︀ 𝑔𝐻), (𝑣, 𝑣 ± √︀ 𝑔𝐻) }︁ ⇒ (︁ 𝑉 𝑚𝑎𝑥 + √︀ 𝑔𝐻 )︁ (︂ Δ𝑡 Δ𝑥 + Δ𝑡 Δ𝑦 )︂ < 1 ⇒ △𝑡 (︂ 1 Δ𝑥 + 1 Δ𝑦 )︂ < 1 (︀ 𝑉 𝑚𝑎𝑥 + √ 𝑔𝐻 )︀ ⇒ △𝑡 < 1 (︀ 𝑉 𝑚𝑎𝑥 + √ 𝑔𝐻 )︀ (Δ𝑥 -1 + Δ𝑦 -1 )
Similarly, we can prove the another formula Since

⇒ (︁ 𝑉 𝑚𝑎𝑥 + √︀ 𝑔𝐻 )︁ (︂ Δ𝑡 Δ𝑥 + Δ𝑡 Δ𝑦 )︂ < 1 ⇒ (︁ 𝑉 𝑚𝑎𝑥 + √︀ 𝑔𝐻 )︁ (︂ Δ𝑡 Δ𝑥 2 + Δ𝑡 Δ𝑦 2 )︂ < 1 ⇒ △𝑡 (︂ 1 Δ𝑥 2 + 1 Δ𝑦 2 )︂ 1 2 < 1 (︀ 𝑉 𝑚𝑎𝑥 + √ 𝑔𝐻 )︀ ⇒ Δ𝑡 < 1 (︀ 𝑉 𝑚𝑎𝑥 + √ 𝑔𝐻 )︀ (︁ √︀ Δ𝑥 2 + Δ𝑦 2 )︁
2.9 Studying Boundary Conditions

Radiative open boundary condition

In this section, we derive the radiative open boundary conditions on C-grid for the 2DSWEs provided by [START_REF] Herzfeld | The role of numerical implementation on open bound-ary behaviour in limited area ocean models[END_REF][START_REF] Flather | A tidal model of the northwest European continental shelf[END_REF]:

Case 1: Western boundary radiative condition

The western boundary radiative condition is defined, for the elevation and the component of velocity perpendicular to the boundary.

1. For the elevation and the component of velocity perpendicular to the boundary is defined:

𝜂 𝑙+1 1,𝑗 = 𝜂 𝑙 1,𝑗 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 1,𝑗 (︁ 𝜂 𝑙 1,𝑗 -𝜂 𝑙 2,𝑗 )︁ 𝑢 𝑙+1 1,𝑗 = - √︃ 𝑔 𝐻 𝑙+1 1,𝑗 𝜂 𝑙+1 1,𝑗 𝐻 𝑙+1 1,𝑗 = 𝜂 𝑙+1 1,𝑗 + ℎ 1,𝑗
for 𝑗 = 1, 2, ..., 𝑁 and for the velocity component tangent to the boundary is defined by:

𝑣 𝑙+1 1,𝑗 = ⎛ ⎝ 𝑣 𝑙 1,𝑗 (𝐻 𝑙 1,𝑗 + 𝐻 𝑙 1,𝑗-1 ) -2 Δ𝑡 Δ𝑥 √︃ 𝑔 (𝐻 𝑙 1,𝑗 + 𝐻 𝑙 1,𝑗-1 ) 2 (︁ 𝑣 𝑙 1,𝑗 -𝑣 𝑙 2,𝑗 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 1,𝑗 + 𝐻 𝑙+1 1,𝑗-1
)︁

for 𝑗 = 2, 3, ..., 𝑁 .

Notes:

1. If 𝑗 = 1 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 1,1 = 𝜂 𝑙 1,1 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 1,1 (︁ 𝜂 𝑙 1,1 -𝜂 𝑙 2,1
)︁

𝑢 𝑙+1 1,1 = - √︃ 𝑔 𝐻 𝑙+1 1,1 𝜂 𝑙+1 1,1
and for the velocity component tangent to the boundary is defined by:

𝑣 𝑙+1 1,2 = ⎛ ⎝ 𝑣 𝑙 1,2 (𝐻 𝑙 1,2 + 𝐻 𝑙 1,1 ) -2 Δ𝑡 Δ𝑥 √︃ 𝑔 (𝐻 𝑙 1,2 + 𝐻 𝑙 1,1 ) 2 (︁ 𝑣 𝑙 1,2 -𝑣 𝑙 2,2 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 1,2 + 𝐻 𝑙+1 1,1 )︁ if 𝑗 = 2.
2. If 𝑖 = 1 and 𝑗 = 𝑁 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined by:

𝜂 𝑙+1 1,𝑁 = 𝜂 𝑙 1,𝑁 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 1,𝑁 (︁ 𝜂 𝑙 1,𝑁 -𝜂 𝑙 2,𝑁 )︁ 𝑢 𝑙+1 1,𝑁 = - √︃ 𝑔 𝐻 𝑙+1 1,𝑁 𝜂 𝑙+1 1,𝑁 𝐻 𝑙+1 1,𝑁 = 𝜂 𝑙+1 1,𝑁 + ℎ 1,𝑁
For the velocity component tangent to the boundary is defined by:

𝑣 𝑙+1 1,𝑁 = ⎛ ⎝ 𝑣 𝑙 1,𝑁 (𝐻 𝑙 1,𝑁 + 𝐻 𝑙 1,𝑁 -1 ) -2 Δ𝑡 Δ𝑥 √︃ 𝑔 (𝐻 𝑙 1,𝑁 + 𝐻 𝑙 1,𝑁 -1 ) 2 (︁ 𝑣 𝑙 1,𝑁 -𝑣 𝑙 2,𝑁 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 1,𝑁 + 𝐻 𝑙+1 1,𝑁 -1
)︁

Case2: Eastern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 𝑀,𝑗 = 𝜂 𝑙 𝑀,𝑗 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 𝑀,𝑗 (︁ 𝜂 𝑙 𝑀,𝑗 -𝜂 𝑙 𝑀 -1,𝑗 )︁ 𝑢 𝑙+1 𝑀 +1,𝑗 = - √︃ 𝑔 𝐻 𝑙+1 𝑀,𝑗 𝜂 𝑙+1 𝑀,𝑗 𝐻 𝑙+1 𝑀,𝑗 = 𝜂 𝑙+1 𝑀,𝑗 + ℎ 𝑀,𝑗
for 𝑗 = 1, 2, ..., 𝑁 and for the velocity component tangent to the boundary is defined by: )︁

𝑣 𝑙+1 𝑀,𝑗 = ⎛ ⎝ 𝑣 𝑙 𝑀,
for 𝑗 = 2, 3, ..., 𝑁.

Notes:

1. If 𝑖 = 𝑀 and 𝑗 = 𝑁 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 𝑀,𝑁 = 𝜂 𝑙 𝑀,𝑁 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 𝑀,𝑁 (︁ 𝜂 𝑙 𝑀,𝑁 -𝜂 𝑙 𝑀 -1,𝑁 )︁ 𝑢 𝑙+1 𝑀 +1,𝑁 = - √︃ 𝑔 𝐻 𝑙+1 𝑀,𝑁 𝜂 𝑙+1 𝑀,𝑁 𝐻 𝑙+1 𝑀,𝑁 = 𝜂 𝑙+1 𝑀,𝑁 + ℎ 𝑀,𝑁
For the velocity component tangent to the boundary is defined by:

𝑣 𝑙+1 𝑀,𝑁 = ⎛ ⎝ 𝑣 𝑙 𝑀,𝑁 (𝐻 𝑙 𝑀,𝑁 + 𝐻 𝑙 𝑀,𝑁 -1 ) -2 Δ𝑡 Δ𝑥 √︃ 𝑔 (𝐻 𝑙 𝑀,𝑁 + 𝐻 𝑙 𝑀,𝑁 -1 ) 2 (︁ 𝑣 𝑙 𝑀,𝑁 -𝑣 𝑙 𝑀 -1,𝑁 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑀,𝑁 + 𝐻 𝑙+1 𝑀,𝑁 -1
)︁

2. If 𝑖 = 𝑀 and 𝑗 = 2 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 𝑀,2 = 𝜂 𝑙 𝑀,2 -2 Δ𝑡 Δ𝑥 √︁ 𝑔𝐻 𝑙 𝑀,2 (︁ 𝜂 𝑙 𝑀,2 -𝜂 𝑙 𝑀 -1,2 )︁ 𝑢 𝑙+1 𝑀 +1,2 = - √︃ 𝑔 𝐻 𝑙+1 𝑀,2 𝜂 𝑙+1 𝑀,2 𝐻 𝑙+1 𝑀,2 = 𝜂 𝑙+1 𝑀,2 + ℎ 𝑀,2
for the velocity component tangent to the boundary is defined by:

𝑣 𝑙+1 𝑀,2 = ⎛ ⎝ 𝑣 𝑙 𝑀,2 (𝐻 𝑙 𝑀,2 + 𝐻 𝑙 𝑀,1 ) -2 Δ𝑡 Δ𝑥 √︃ 𝑔 (𝐻 𝑙 𝑀,2 + 𝐻 𝑙 𝑀 -1 ) 2 (︁ 𝑣 𝑙 𝑀,2 -𝑣 𝑙 𝑀 -1,2 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑀,2 + 𝐻 𝑙+1 𝑀,1
)︁

Case 3: The Southern boundary radiative condition is defined For the elevation and the component of velocity perpendicular to the boundary

𝜂 𝑙+1 𝑖,1 = 𝜂 𝑙 𝑖,1 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 𝑖,1 (︁ 𝜂 𝑙 𝑖,1 -𝜂 𝑙 𝑖,2 )︁ 𝑣 𝑙+1 𝑖,1 = - √︃ 𝑔 𝐻 𝑙+1 𝑖,1 𝜂 𝑙+1 𝑖,1 𝐻 𝑙+1 𝑖,1 = 𝜂 𝑙+1 𝑖,1 + ℎ 𝑖,1
for 𝑖 = 1, 2, ..., 𝑀 and for the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 𝑖,1 = ⎛ ⎝ 𝑢 𝑙 𝑖,1 (𝐻 𝑙 𝑖,1 + 𝐻 𝑙 𝑖-1,1 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 𝑖,1 + 𝐻 𝑙 𝑖-1,1 ) 2 (︁ 𝑢 𝑙 𝑖,1 -𝑢 𝑙 𝑖,2 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑖,1 + 𝐻 𝑙+1 𝑖-1,1
)︁

for 𝑖 = 2, 3, ..., 𝑀.

1. If 𝑖 = 1 for the elevation and the component of velocity perpendicular to the boundary

𝜂 𝑙+1 1,1 = 𝜂 𝑙 1,1 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 1,1 (︁ 𝜂 𝑙 1,1 -𝜂 𝑙 1,2 )︁ 𝑣 𝑙+1 1,1 = - √︃ 𝑔 𝐻 𝑙+1 1,1 𝜂 𝑙+1 1,1 𝐻 𝑙+1 1,1 = 𝜂 𝑙+1 1,1 + ℎ 1,1
and for the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 2,1 = ⎛ ⎝ 𝑢 𝑙 2,1 (𝐻 𝑙 2,1 + 𝐻 𝑙 1,1 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 2,1 + 𝐻 𝑙 1,1 ) 2 (︁ 𝑢 𝑙 2,1 -𝑢 𝑙 2,2 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 2,1 + 𝐻 𝑙+1 1,1
)︁

for 𝑖 = 2.

2. if 𝑖 = 𝑀 ,for the elevation and the component of velocity perpendicular to the boundary

𝜂 𝑙+1 𝑀,1 = 𝜂 𝑙 𝑀,1 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 𝑀,1 (︁ 𝜂 𝑙 𝑀,1 -𝜂 𝑙 𝑀,2 )︁ 𝑣 𝑙+1 𝑀,1 = - √︃ 𝑔 𝐻 𝑙+1 𝑀,1 𝜂 𝑙+1 𝑀,1 𝐻 𝑙+1 𝑀,1 = 𝜂 𝑙+1 𝑀,1 + ℎ 𝑀,1
For the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 𝑀,1 = ⎛ ⎝ 𝑢 𝑙 𝑀,1 (𝐻 𝑙 𝑀,1 + 𝐻 𝑙 𝑀 -1,1 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 𝑀,1 + 𝐻 𝑙 𝑀 -1,1 ) 2 (︁ 𝑢 𝑙 𝑀,1 -𝑢 𝑙 𝑀,2 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑀,1 + 𝐻 𝑙+1 𝑀 -1,1
)︁

Case 4: Northern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined:

𝜂 𝑙+1 𝑖,𝑁 = 𝜂 𝑙 𝑖,𝑁 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 𝑖,𝑁 (︁ 𝜂 𝑙 𝑖,𝑁 -𝜂 𝑙 𝑖,𝑁 -1 )︁ 𝑣 𝑙+1 𝑖,𝑁 +1 = - √︃ 𝑔 𝐻 𝑙+1 𝑖,𝑁 𝜂 𝑙+1 𝑖,𝑁 𝐻 𝑙+1 𝑖,𝑁 = 𝜂 𝑙+1 𝑖,𝑁 + ℎ 𝑖,𝑁
for 𝑖 = 1, 2, ..., 𝑀 and for the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 𝑖,𝑁 = ⎛ ⎝ 𝑢 𝑙 𝑖,𝑁 (𝐻 𝑙 𝑖,𝑁 + 𝐻 𝑙 𝑖-1,𝑁 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 𝑖,𝑁 + 𝐻 𝑙 𝑖-1,𝑁 ) 2 (︁ 𝑢 𝑙 𝑖,𝑁 -𝑢 𝑙 𝑖,𝑁 -1 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑖,𝑁 + 𝐻 𝑙+1 𝑖-1,𝑁 )︁
for 𝑖 = 2, 3, ..., 𝑀.

1. if 𝑖 = 1 then for the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 1,𝑁 = 𝜂 𝑙 1,𝑁 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 1,𝑁 (︁ 𝜂 𝑙 1,𝑁 -𝜂 𝑙 1,𝑁 -1 )︁ 𝑣 𝑙+1 1,𝑁 +1 = - √︃ 𝑔 𝐻 𝑙+1 1,𝑁 𝜂 𝑙+1 1,𝑁 𝐻 𝑙+1 1,𝑁 = 𝜂 𝑙+1 1,𝑁 + ℎ 1,𝑁
for the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 2,𝑁 = ⎛ ⎝ 𝑢 𝑙 2,𝑁 (𝐻 𝑙 2,𝑁 + 𝐻 𝑙 1,𝑁 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 2,𝑁 + 𝐻 𝑙 1,𝑁 ) 2 (︁ 𝑢 𝑙 2,𝑁 -𝑢 𝑙 2,𝑁 -1 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 2,𝑁 + 𝐻 𝑙+1 1,𝑁
for 𝑖 = 2.

If 𝑖 = 𝑀 Northern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂 𝑙+1 𝑀,𝑁 = 𝜂 𝑙 𝑀,𝑁 -2 Δ𝑡 Δ𝑦 √︁ 𝑔𝐻 𝑙 𝑀,𝑁 (︁ 𝜂 𝑙 𝑀,𝑁 -𝜂 𝑙 𝑀,𝑁 -1 )︁ 𝑣 𝑙+1 𝑀,𝑁 +1 = - √︃ 𝑔 𝐻 𝑙+1 𝑀,𝑁 𝜂 𝑙+1 𝑀,𝑁 𝐻 𝑙+1 𝑀,𝑁 = 𝜂 𝑙+1 𝑀,𝑁 + ℎ 𝑀,𝑁
For the velocity component tangent to the boundary is defined by:

𝑢 𝑙+1 𝑀,𝑁 = ⎛ ⎝ 𝑢 𝑙 𝑀,𝑁 (𝐻 𝑙 𝑀,𝑁 + 𝐻 𝑙 𝑀 -1,𝑁 ) -2 Δ𝑡 Δ𝑦 √︃ 𝑔 (𝐻 𝑙 𝑀,𝑁 + 𝐻 𝑙 𝑀 -1,𝑁 ) 2 (︁ 𝑢 𝑙 𝑀,𝑁 -𝑢 𝑙 𝑀,𝑁 -1 )︁ ⎞ ⎠ / (︁ 𝐻 𝑙+1 𝑀,𝑁 + 𝐻 𝑙+1 𝑀 -1,𝑁
)︁

Summary and Conclusion

In this chapter, development of numerical methods has been suggested for 2D shallow water model using explicit methods. Several cases of numerical discretization for 2D depth-averaged shallow water equations has been applied using center finite difference method in space and leapfrog with Asselin-Roberts filtering in time. Some kinds of boundary conditions have been studied. Several algorithms were proposed for 2DSWEs. Accordingly, the new techniques and algorithms presented above presented will be used in the later chapters.

Chapter 3

Numerical Results for Shallow Water Equations

Chapter 3

Numerical Results for 2D Shallow Water Equations Some of the results presented in this chapter (Sections 3.1 and 3.2) are the subject of an article [8].

Shallow water equations in two-dimensional are used for some ocean models applications using the new discretization techniques for numerical methods suggested in Chapter 2. 

Highlights

• Some applications for 2DNSWEs are implemented using EFDM in space and leapfrog method with Robert-Asselin filter in time.

• Some examples of 2DSWEs are applied using Gaussian level initial condition.

• 𝐿2-relative error norm is used to show high accuracy of the results. 

Numerical Solutions for 2DSWEs

Note: For all examples, we apply EFDM in space and leapfrog method with Robert-Asselin filter in time to approximate the 2D depth-averaged non-linear SWEs. For the stability using CFL condition which is given in Section 2.8.3.

Example 1

In this example, we use 2DNSWEs given in equations (2.1)-(2.3) which are approximately first order in space and second order in time, when the bottom stress, wind stress, f=0, and viscosity horizontal in 𝑥-axis and 𝑦-axis are equal zero in a rectangular domain

Ω = [0, 𝐿 𝑥 ] × [0, 𝐿 𝑦 ]

Initial condition:

Initially, the water is at rest with a water drop of 10m and a zero flow everywhere.i.e., no-slip boundary conditions 𝑢 = 𝑣 = 0 on 𝜕Ω and 𝜂(𝑥, 𝑦, 𝑡 = 0) = 10 * 𝑒𝑥𝑝((-5((𝑥) 2 + (𝑦) 2 )) 𝑢(𝑥, 𝑦, 𝑡 = 0) = 0, 𝑣(𝑥, 𝑦, 𝑡 = 0) = 0

Boundary conditions:

Here, reflexive boundary conditions were implemented at the boundaries with CFL condition 0.13. 

𝜂(𝑥

Numerical parameters: (configurations)

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: 𝐿 𝑥 =𝐿 𝑦 =200, Δ𝑥=Δ𝑦 =0.10, the time step Δ𝑡 =0.001 sec, and the simulation duration 𝑡 = 100 days.

Results and discussion:

First of all, we tested the computational stability of this model by using CFL condition which is 0.13 less than 1 (see Section 2.8.3). The time integrations were performed for 100 days and the calculations were stable.

A global 𝑙2-relative error norm in space (𝑙2-𝑅𝐸) which means 𝑙2-relative error at all grids point in the model domain is formulated as (see [START_REF] Hou | Robust absorbing boundary conditions for shallow water flow models[END_REF]):

𝑅𝐸(𝑄 𝑖,𝑗 ) = ⎯ ⎸ ⎸ ⎸ ⎷ 𝑀 𝑙 ∑︁ 𝑗 𝑁𝑐 ∑︁ 𝑖 ⎡ ⎣ (︃ 𝑄 𝑛 𝑖,𝑗 -𝑄 𝑛-1 𝑖,𝑗 𝑄 𝑛 𝑖,𝑗 )︃ 2 ⎤ ⎦
where 𝑁 𝑐 , 𝑀 𝑙 represents the number of cells, 𝑄 𝑖,𝑗 is the computed values of the variables for the 𝑖-th and 𝑗-th cells, when 𝑛 and 𝑛 -1 denote the current and previous time levels. A smaller 𝑅𝐸 represents less variation in time and thus manifests the results closer to the steady state.

The following figure shows the comparison 𝑙2-𝑅𝐸 for free surface elevation, 𝑢-velocity and 𝑣-velocity for 2DNSWEs. Example 2:

In this example, we use 2D linear SWEs given in equations (2.45)-(2.47) which are approximately first order in space and second order in time.

Initial condition:

Initially, the water is at rest with a water drop of 1.6m and a zero flow everywhere.

𝜂(𝑖, 𝑗) = 10 * 𝑒𝑥𝑝((-((𝑖

-𝑖 0 ) 2 + (𝑗 -𝑗 0 ) 2 ))/(𝑘 2 ))
where 𝑖 0 = 15, 𝑗 0 = 15 and 𝑘 = 6. 3.2 Some Applications of 2D Depth-Averaged Non-Linear SWEs 

Initial condition:

Initially, it is assumed that the motion in the domain is observed from an initial state of rest, so 𝑢(𝑥, 𝑦, 0)=𝑣(𝑥, 𝑦, 0)=0 and at the beginning of a simulation start, this initial water surface obtained from a given data file, as well as the value fluxes, are zero on all grids. A full description of initial condition, boundary condition and model configuration can be found in ( [START_REF] Wang | manual of comcot[END_REF], [START_REF] Philip | Computer programs for tsunami propagation and inundation[END_REF]) (For more detailed see Appendix).

Example 1: Case 1: 2D linear shallow water equations

In this example, we use a system of equations (3.1)-(3.3) for linear case in a rectangular domain

Ω = [0, 𝐿 𝑥 ] × [0, 𝐿 𝑦 ].
The computational domain is discretized by a grid whose size is regular.

Boundary conditions:

Here, radiation open boundary conditions (moving boundary conditions) were implemented at the boundaries with CFL condition 0.6 (see Appendix ).

Numerical simulations, results and discussion:

The numerical values of the parameters are chosen as follows: 𝑛𝑥=𝑛𝑦 =120, Δ𝑥=Δ𝑦 =9, time step 

Boundary conditions:

Here, radiation open boundary conditions (moving boundary conditions) were implemented at the boundaries with CFL condition 0.7 (see Appendix).

Numerical simulations, results and discussion:

The 

Some Applications of 2DSWEs Using Gaussian Level Initial Condition

In this section, we use 2DNSWEs given in equations (2.1)-( 2.3), when the bottom stress, wind stress, Coriolis force, and viscosity horizontal in 𝑥-axis and 𝑦-axis are equals zero in the domain Ω = [0, 𝐿 𝑥 ] × [0, 𝐿 𝑦 ] (see [1,[START_REF] Riflet | Developing a shallow-waters finite-differences numerical model to study convectively dominated flows near the boundaries[END_REF]).

Initial condition:

Initially the Gaussian initial elevation is given by:

𝜂(𝑥, 𝑦) = ℎ 0 * 𝑒𝑥𝑝((-((𝑥 -𝑥 0 ) 2 + (𝑦 -𝑗 0 ) 2 )/2𝜎 2 )
Where ℎ 0 is the Gaussian bell height at the center, 𝜎=𝜎 𝑥 =𝜎 𝑦 is the Gaussian bell width along both 𝑥 and 𝑦-axis and (𝑥 0 , 𝑦 0 ) are the coordinate of the Gaussian bell center.

Gaussian bump with its center at the domain origin (center). It has a height of 1cm and a width of 60m along both 𝑥 and 𝑦-axis.

Example 1: Gaussian Bump Description Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: number of grid 30 × 30, Δ𝑥 = 20m, Δ𝑦 = 20m (grid length) and the time step Δ𝑡=0.1𝑠, the simulation duration 𝑡 = 100𝑠, water depth ℎ=10𝑚, the initial characteristic speed of the flow 𝑈 0 =4.9e-03, energy=2.77e+03, horizontal length=600m, and vertical length=10m.

Boundary conditions:

Here, Boundaries: level is set to Sommerfeld, normal is set to flather boundary conditions and tangent is set to Dirichlet boundary conditions with CFL condition 0.198.

Results and discussion:

Gaussian bump is released, the wave front is radiated at the boundaries with radiative scheme for the water elevation, the tangential velocity and a flather radiative scheme for the normal velocity.

The following figures represent sequence of snapshots of water level at different times. 

Boundary conditions:

Closed boundary conditions with CFL condition 0.99. Here, Boundaries: normal is set to Dirichlet boundary conditions and tangent is set to Dirichlet boundary conditions.

Summary and Conclusion for this Part

Different concepts were introduced for 2D shallow water equations. We identified the mathematical problem and we mentioned the special cases of the 2DSWEs.

Three ways to get the full derivation of 2D shallow water models were presented in the simplest way to satisfy the curiosity of fresh physical oceanographers.

There are different types of numerical methods. The advantage of an explicit center finite difference method and leapfrog with Robert-Asselin filter in naturally conserving mass and the structured mesh is the ability in dealing with the regular boundaries of a two-dimensional.

An explicit staggered scheme to simulate 2DSWEs has been introduced. This scheme is simple, accurate and straight forward both for this model. Good results were obtained through comparison the approximate solutions and 𝑙2-relative error norm of free surface elevation, 𝑢-velocity, and 𝑣-velocity.

The performance of a new technique for 2DSWEs have been evaluated under Dirichlet, reflexive boundary conditions and moving boundary conditions. Some examples for 2DSWEs were applied using Gaussian level initial condition.

Several examples have been tested of the tsunami model and the results were obtained with high accuracy by using 𝑙2-𝑅𝐸 . The results demonstrated the applicability and benefits of this technique.

Part II Coupling for Two-Way Nesting Grids Mathematical Framework and Applications for Shallow Water Models Chapter 4

The Configuration of a Nested Grid For Shallow Water Models

The results presented in this chapter (Section 4.7) are the subject of an article [3] A new two-way interaction technique for coupling nested grids of 2D depth-averaged non-linear SWEs for structured grids is designed. Studying the accuracy of two-way nesting performance techniques between a coarse grid and a fine grid are suggested using an explicit finite difference method on Arakawa C-grid in space and leapfrog method with Robert-Asselin filter in time. This model consists of a higher-resolution (fine grid) nested 3:1 or 5:1 in a low-resolution (coarse grid) on which covers the entire domain. The formulation of the nesting grids algorithms allows flexibility for any ratio of grid sizes between two sub-regions. Assuming the water depth is constant along the boundary condition for the fine grid model to ensure the conservation of transfer.

To verify the ability and benefits of nested grid models, several numerical examples are applied to show and check the proposed technique can works efficiently over different periods of time and the results indicate good nesting performance technique. The two-way interaction systems depend on the type of interpolation, the location of dynamical interface, conservation properties (flux of mass and momentum equations), and type of update.

In this chapter, we will focus on several major aspects including configuration of nested grid for 2DSWEs, and design of interpolation/restriction operators. We begin with a literature review of techniques used to try to increase efficiency and accuracy of 2DSWEs. Some new algorithms are established to implement two-way interaction technique for this model which are given in Section 4.4.

Intergrid transfer operators (interpolations and updates) are given. Then, looks into the optimum feedback conditions and interpolation techniques to maximize the feedback of the information. Four choices of the update schemes for free surface elevation and velocities on Arakawa C-grid are applied which are listed in Section 4.5.

Literature Review

The problem of computational cost is a common problem in coastal modeling. The major determinant of computational cost is the spatial resolution or temporal resolution, whether water modeling deep in the ocean or shallow coastal seas. In most numerical models, the temporal resolution is directly linked to the spatial resolution and a higher spatial resolution thus impose a higher temporal resolution which adds more to the computational cost with spatial domain for great ranges and times level of weeks to years, the computational cost of numerical modeling can become very high.

For coastal models, there is an additional problem related to spatial resolution, the position of open water boundaries. Such boundaries must be located so that their conditions will not adversely affect in the area of interest.

The most popular numerical manners used to solve spatial resolution or temporal resolution problems are nested grid techniques. Nested grids allow one to increase spatial or temporal resolutions or both in a sub-region of the model domain without incurring the computational expenses for highresolution over the entire domain. They can significantly reduce the number of computational grid points and thus the computational cost.

A feature of traditional nested grid techniques, the nested grids are static, that means locations on nested grids are steady for a simulation model. Further optimization of the computational cost can be achieved if the nested grids are able to move with the advantage of interest thus reduces the area over which high resolution is required. This technique is known as adaptive meshing. Although not as common as the traditional nesting techniques, but it has been successfully implemented in a number of cases [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF][START_REF] Flather | Tidal computations for Morecambe Bay[END_REF].

In this section, recall some basic concepts about one-way and two-way interaction techniques.

Classification of Grids 1. Structured grid

Structured grids are fixed by regular communication. The possible element choices are quadrilateral in 2D and hexahedra in 3D. This model is highly space efficiently, i.e., Since the neighborhood relationships are defined through the storage arrangement. Some other advantages of a structured grid over unstructured grid are better convergence and higher accuracy [START_REF] Castillo | Mathematical aspects of grid Generation[END_REF][START_REF] George | Automatic Mesh Generation[END_REF]. 

Unstructured grids

An unstructured grid is identified by irregular communication. It cannot easily be expressed as a two-dimensional or three-dimensional array in computer memory. This allows for any possible element that a solver might be able to use. Compared to structured meshes, this model can be highly space inefficient since it calls for the explicit storage of neighborhood relationships. These grids typically employ triangles in 2D and tetrahedral in 3D [START_REF] Mavriplis | Mesh Generation and adaptivity for complex geometries and flows[END_REF]. 

Hybrid grids

A hybrid grid contains a mixture of structured parts and unstructured parts. It integrates the structured meshes and the unstructured meshes in an efficient manner. Those portions of the geometry that are regular can have structured grids and those that are complex can have unstructured grids. These grids can be non-conformal, which means that grid lines don't need to match at block boundaries. 

Mesh structure

The structure of a two-way nested mesh is composed of two main types, the first is an overlapping method and the second is a seamlessly embedded method that consists of two types: adjacent and separate. The adjacent seamlessly embedded meshes were applied in the early generation of two-way nested domains [START_REF] Birchfield | Numerical prediction of hurricane movement with the use of fine grid[END_REF][START_REF]Three-dimensional numerical simulations of tropical systems utilizing nested finite grids[END_REF][START_REF] Holland | A high resolution model of the California Current embedded into a basin-scale North Pacific circulation model[END_REF][START_REF] Mathur | A multiple grid primitive equation model to simulate the development of an asymmetric hur-ricane[END_REF][START_REF] Ookochi | A computational scheme for the nesting fine mesh in the primitive equation model[END_REF][START_REF] Flather | A tidal model of the northwest European continental shelf[END_REF].

The procedure involves the time integral for the coarse and nested domain to progress simultaneously. Boundary data from the coarse domain is interpolated on to the interface between the nested and coarse domains to allow the forcing of the nested domain. The feedback/updating data from the nested domain is transmitted through the same interface which the boundary data is interpolated on [START_REF] Debreu | Two-Way embedding algorithms for a split-explicit free surface ocean model. In preparation for Ocean Model[END_REF].

The separated embedded model involves separating the nested and coarse domain by a mesh. This mesh also known as a window frame is shown in Figure 4 The second type of two-way nested modelling procedure is an overlapping method that involves the extension of the coarse domain over the full nested domain used by [START_REF] Jones | A nested grid for a three-dimensional model of a tropical cyclone[END_REF]. The overlapping method has been used in a number of applications [START_REF] Barth | Two-way nested model of mesoscale circulation features in the Ligurian Sea[END_REF][START_REF] Fox | Two way interactive nesting of primitive equation ocean model with topography[END_REF][START_REF] Spall | A nested primitive equation model for ocean applications[END_REF].

The style includes the coarse domain integrating for one-time step and boundary data from the coarse domain are interpolated onto the dynamic interface (see Figure 4-4) between the nested and coarse domains. The nested domain is then integrated using the boundary data until the time step is equal to the time step of the coarse domain. Conversion of the high-resolution nested domain data occurs at points where the coarse domain grid points coincide with the fine domain grid points and are updated using some interpolation method of the enclosed nested grid data. Figure 4-5 shows an illustration of the grid configuration for a nested ratio of 3:1.

Figure 4-5: Overlapping grid configuration.

Separation of dynamic and feedback interface

The dynamic interface shows the fine mesh boundary, where the solution of a fine grid is forcible by the coarse solution; the feedback interface is the outer limit of the area where the coarse solution is updated by the fine solution. There are several reasons for separating dynamic and feedback interfaces.

The separation can be composed of two coarse grid cells. In these cases, the coarse grid points used in the interpolations are not updated. Another reason for using a mesh separation between dynamic and feedback interfaces is that if noise is produced, it will be larger near the dynamic interface so that it is safer not to use the fine grid values near the dynamic interfaces. Several authors have proposed to separate the feedback interface from the dynamic interface [START_REF] Debreu | Two-Way embedding algorithms for a split-explicit free surface ocean model. In preparation for Ocean Model[END_REF][START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF][START_REF] Phillips | On the Strategy of Combining Coarse and Fine Grid Meshes in Numerical Weather Prediction[END_REF].

One-way nested models

One-way nesting is applied to models to generate a higher level of accuracy in the field of interest.

The nested domain is located so it is embedding in the coarse domain one, which involves the entire domain. Ginis [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF] was the first to apply one-way nesting technique in hydrodynamics models and it has since been applied to many studies of oceans and coastal waters. Debreu [START_REF] Penven | Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system[END_REF] developed and applied a one-way nested model of the central California upwelling system. The method involved the integration of a nested grid into the Regional Oceanic Modelling System (ROMS). The model was applied to a domain that spanned the continental Pacific coast of the United States and nested an area that covers the central upwelling region of California around Monterey Bay. One-way nested grids have also been used by [START_REF] Korres | A one-way nested eddy resolving model of the Aegean and Levantine basins:implementation and climatologically runs[END_REF] to represent eddy fields in the Aegean and Levatine basins located in the Mediterranean Sea.

There are two main schemes to run the one-way nesting technique. The initial scheme involves a complete solution for the coarse and fine models with respect to the simulation time. In this style, the coarse model is fully run for the model simulation time. The data required for the boundary conditions are stored in a data file to be used for the fine domain model that is then fully run for the simulation time. This method is known as an uncoupled modeling procedure [START_REF] Berger | Adaptive mesh refinement for hyperbolic partial differential equations[END_REF].

The coupled modelling procedure is more attractive than the uncoupled because it does not require big quantities of the store. In this method, the coarse model is run for one time step and data required for the nested domains boundary conditions are assigned, allowing the nested model to proceeds to a time step equal to the coarse domains. A coarse domain continuous to the next time step when the fine domain has been integrated.

A major importance in nesting techniques is the conservation of properties between the coarse and fine grid models and the treatment of fine grid interior noise generated as a result of incompatibilities between the two models [START_REF] Korres | A one-way nested eddy resolving model of the Aegean and Levantine basins:implementation and climatologically runs[END_REF]. The implementation of boundary conditions is therefore crucial and can add complexity and computational cost. The underlying assumption in one-way nested models is that the larger-scale motion determines the small-scale motion without feedback from the processes occurring within the nested region; thus properties need only be conserved in one direction. For this reason and the fact that the models may be run independently. Also, one-way nesting is both easier to implement and usually less computationally expensive than two-way nesting.

Two-way nested models

The coarse mesh and fine mesh in a two-way nested model, are necessity dynamically connected each effect the other and neither can be run independently. The interaction in the direction of a coarse to fine is similar in manner to one-way nested systems. The coarse model is integrated in time and boundary for the fine model are interpolated in time and space from adjacent coarse mesh, thus the fine model is integrated in time using the interpolated boundary data. However, unlike one-way nested systems, once the fine model has been integrated a coarse grid is then updated using a fine grid value via some numerical procedure.

Spall and Holland [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] were among the first to use a two-way nesting to a model for oceanographic applications. This applies to two kinds of test cases in artificial domains that are relevant to oceanic phenomena. Fox [START_REF] Fox | Two way interactive nesting of primitive equation ocean model with topography[END_REF] adapted the Spall and Holland method to investigate problems that may appear when fronts and other oceanic features intersect the boundaries between the domains and also the performance of the model when topographical features are present.

Oey [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF] used a two-way nested model in the Norwegian coast to simulate meanders and eddies in the coastal currents. The two-way nested model used by [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF] to model the tropical Pacific ocean employed a two-way interactive method for the application in hurricane forecasting modeling. The interaction between the two domains occurs in an area called the dynamic interface located near the nested domain boundary. Results presented showed that the interaction at the dynamic interface improved the conservation of properties between the two domains.

Dynamical interaction between coarse and fine domains can be achieved in various ways. The most common technique is to transfer information from the fine to the coarse mesh and vice versa in the zone where the two meshes overlap.

Conservation of properties is one of the most important aspects of nesting techniques between grids.

A two-way nesting technique must ensure conservation of properties when passing variables from the coarse grid to the fine through the boundary conditions, also when the coarse grid variables are updated from the fine. Ginis [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF] state that the overlapping grid method used by Spall and Holland [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] and Oey and Chen [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF] do not necessarily conserve fluxes of mass, heat and momentum at the interfaces between coarse and fine meshes. In the scheme developed by [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF] the interaction at the dynamical interface is specified as a flux condition; this enables improved conservation of mass, momentum and heat.

The treatment of noise generated in the fine grid was also mentioned as a problem in relation to one-way nesting. The same problem applies to two-way nesting techniques but the solution is more complex. Not only must the technique minimize the disturbances in fine grid values which can occur near the mesh interface as a result of grid incompatibility but it must also prevent those disturbances from passing out of the fine grid and into the coarse grid. A disturbance propagating from a fine grid to a coarse grid may undergo false reflection back to the fine grid or aliasing as it enters the coarse grid [START_REF] Ginis | Design of a multiply nested primitive equation ocean model[END_REF]. These interface-generated problems may lead to numerical instabilities that can seriously affect the results over the entire domain.

Two-way nesting should give more accurate simulations than one-way nesting. Barth [41] compare results from a two-way nested/one-way nested and coarse model of the Ligurian Sea. The two-way nested model was found to better represent currents within the Sea than both the coarse and one-way nested models.

General formulation of the nested models

We consider the general case of a high-resolution model covering the local domain 𝜔 embedded in a coarser resolution model covering the larger domain Ω with clear notations the local high-resolution grid and the global coarse resolution grid are denoted respectively as 𝜔 ℎ and Ω 𝐻 . The corresponding state vectors are denoted respectively as 𝑥 ℎ and 𝑥 𝐻 . We also denote as 𝜔 𝐻 , the part of the grid Ω 𝐻 corresponding to the local domain 𝜔 [START_REF]Three-dimensional numerical simulations of tropical systems utilizing nested finite grids[END_REF].

In the case of one-way interaction, the coarse grid model provides boundary conditions to the highresolution model using an interpolation operator 𝐼 ℎ 𝐻 . Semi-discretized equations of the nested system can be written as follows:

Domain Ω 𝐻 𝜕𝑥 𝐻 𝜕𝑡 = 𝐹 (𝑥 𝐻 ) 𝑜𝑛 Ω 𝐻 × [0, 𝑇 ] 𝑥 𝐻 (𝑡 = 0) = 𝑥 0 𝐻 Domain 𝜔 ℎ 𝜕𝑥 ℎ 𝜕𝑡 = 𝐹 (𝑥 ℎ , 𝑥 𝜕𝜔 ) 𝑜𝑛 𝜔 ℎ × [0, 𝑇 ] 𝑥 ℎ (𝑡 = 0) = 𝑥 0 ℎ 𝑥 𝜕𝜔 = 𝐼 ℎ 𝐻 (𝑥 𝐻 ) 𝑜𝑛 𝜕𝜔 ℎ × [0, 𝑇 ]
where 𝑥 𝜕𝜔 represents the information coming from the coarse grid onto 𝜕𝜔 ℎ , the boundary of the fine grid. The one-way interaction is said to be passive since there is no retraction from the local model onto the global model. From a practical point of view this also means that both models do not have to be run simultaneously (the global model can be run first and its solution can then be used offline by the local model).

In the case of two-way interactions a feedback term from the fine grid onto the coarse grid is added.

The coarse solution is updated locally (in 𝜔 ∘ 𝐻 , the interior of 𝜔 𝐻 ) by the high-resolution solution using a restriction factor 𝐺 𝐻 ℎ . Semi-discretized equations of the nested system can be written as follows:

Domain Ω 𝐻 𝜕𝑥 𝐻 𝜕𝑡 = 𝐹 (𝑥 𝐻 , 𝑥 𝜔 ) 𝑜𝑛 Ω 𝐻 × [0, 𝑇 ] 𝑥 𝐻 (𝑡 = 0) = 𝑥 0 𝐻 𝑥 𝜔 = 𝐺 𝐻 ℎ (𝑥 ℎ ) 𝑜𝑛 𝜔 ∘ 𝐻 × [0, 𝑇 ] Domain Ω 𝐻 Domain 𝜔 𝐻 𝜕𝑥 ℎ 𝜕𝑡 = 𝐹 (𝑥 ℎ , 𝑥 𝜕𝜔 ) 𝑜𝑛 𝜔 ℎ × [0, 𝑇 ] 𝑥 ℎ (𝑡 = 0) = 𝑥 0 ℎ 𝑥 𝜕𝜔 = 𝐼 ℎ 𝐻 (𝑥 𝐻 ) 𝑜𝑛 𝜕𝜔 ℎ × [0, 𝑇 ]
where 𝑥 𝜔 represents the information coming from the fine grid onto the coarse grid in 𝜔 ∘ 𝐻 . The twoway interactions are said to be active. In that case both models should be run at one time since they permanently exchange information.

After discretization, the problems have to be integrated in time in a specific order. The model is first integrated on the coarse grid Ω 𝐻 and then on the high-resolution 𝜔 ℎ grid with boundary conditions given by a spatial and temporal interpolation of the coarse values. Finally, a feedback can be applied. 

Other Nesting Considerations 4.2.1 Multiple nesting

Most of models which used the space refinement ratio for one-way △𝑥𝑐 △𝑥 𝑓 ≤ 4 and two-way nesting grids have used the space refinement ratio △𝑥𝑐 △𝑥 𝑓 ≤ 7. Many nesting experiments have shown that acceptable results are obtained for spatial nesting refinement ratio for 3:1 and 5:1 [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF]. The vast majority of both one-way and two-way nested models employ 3:1 nesting refinement ratio. Both [START_REF] Barth | Two-way nested model of mesoscale circulation features in the Ligurian Sea[END_REF][START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] report that the use of higher nesting ratios results leads to significant degradation of model performance. For example, Spall and Holland [START_REF] Spall | A nested primitive equation model for ocean applications[END_REF] found that model accuracy began to deteriorate at 7:1 nesting ratio.

Koch [START_REF] Koch | A survey of nested grid techniques and their potential for use within the MASS weather prediction model[END_REF] give two reasons for this. Firstly, that higher grid refinement ratios require too many fine grid points to adequately resolve the coarse grid waves. Secondly, that the incompatibilities between the grids are so large that wave reflection and noise generation become excessive. In order to achieve a high resolution at nesting ratios in excess of 5:1, multiple nested models have been developed. These models allow to minimize nested domains to multiple levels of nesting [START_REF] Pullen | Modeling studies of the coastal circulation off northern California: Statistics and patterns of winter time flow[END_REF].

Some important notes

1. In fact, the most investigators have found the conservation condition unnecessary in hydrostatic models in order to obtain a smooth solution at the interface [START_REF] Koch | A survey of nested grid techniques and their potential for use within the MASS weather prediction model[END_REF]. Others, have found do not necessarily conserve fluxes of mass, heat and momentum at the interfaces between coarse and fine meshes [START_REF] Ly | A nested grid ocean model with application to the simulation of meanders and eddies in the Norwegian Coastal Current[END_REF].

2.

Choosing odd mesh refinement ratio simplifies grids interactions. In the case, a coarse grid point always has one underlying high-resolution point while using an even mesh refinement ratio that means a coarse grid point does not have a corresponding point on the fine grid.

3. In the separated embedded model, time interpolation is performed at the dynamic interface and spatial interpolation is performed at the mesh interface.

4. There are five methods of noise control have been used in two-way nested grids models: smoothing operators, enhanced explicit diffusion, interface conditions modified to remove over specification, damping time-integration scheme and mesh separation scheme.

5. There are many methods of interpolation for the fine grid interface conditions (linear, cubic Lagrange, bilinear, cubic-spline, equivalently) and several different filters for the coarse grid interface conditions (full-weight, average, Shuman filtering, Shapiro filtering,...etc).

6. There are two methods to achieve the conservation, the flux correction method, which applied when the system with no time refinement and Kurihara (box) methods. In Kurihara method which applied in a grid with the variables located in cell's center.

Updating interpolation/feedback

Interpolation techniques are wanted in order to efficient data transfer with data is transferred between various domains of spatial and temporal resolution. There are two prime goals for an interpolation scheme to be optimum: (1) to maximize the information that is transferred. (2) to reduce the generation of noise.

Techniques of interpolation techniques used in the transfer of information from the coarse domain to the nested domain are usually of a polynomial form or a linear/bilinear form. Problems can arise with the use of polynomial techniques in areas of sharp gradients due to the formation of excess oscillation of the interpolation variables. Therefore, linear interpolation is more widely used for both spatial and temporal interpolation [START_REF] Korres | A one-way nested eddy resolving model of the Aegean and Levantine basins:implementation and climatologically runs[END_REF][START_REF] Pullen | Modeling studies of the coastal circulation off northern California: Statistics and patterns of winter time flow[END_REF]. Based on studies which conclude that zeroth-order interpolation may create large phase errors, quadratic interpolation may create overshooting and they suggest the use of advection equivalent interpolation schemes.

There are four major updating interpolation steps for the transfer of information from the fine domain into the coarse domain (1) Direct copy (2) Basic averaging procedure (3) Shapiro and (4) Fully weighted averaging procedure [START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF].

1. Direct copy is the most sharp interpolation technique with only the nested grid point that lies directly in the domain of the coarse grid point being used in the procedure. 2. The average procedure. All fine grid points that are enclosed in the coarse cell [START_REF] Clark | Severe downslope windstorm calculations in two and three spatial dimensions using anelastic interactive grid nesting[END_REF].

The following equation shows the formation of the average scheme for a mesh refinement factor of 3:1.

𝜑 𝑐 𝐼,𝐽 = 1 9 (︀ 𝜑 𝑛 𝑖-1,𝑗-1 + 𝜑 𝑛 𝑖-1,𝑗 + 𝜑 𝑛 𝑖-1,𝑗+1 + 𝜑 𝑛 𝑖,𝑗-1 + 𝜑 𝑛 𝑖,𝑗 + 𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖+1,𝑗-1 + 𝜑 𝑛 𝑖+1,𝑗 + 𝜑 𝑛 𝑖+1,𝑗+1
)︀ And the following equation shows the formation of the average scheme for a mesh refinement factor 5:1.

Figure 4-10: Average interpolation scheme.

𝜑 𝑐 𝐼,𝐽 = 1 25 (𝜑 𝑛 𝑖-2,𝑗-2 + 𝜑 𝑛 𝑖-2,𝑗-1 + 𝜑 𝑛 𝑖-2,𝑗 + 𝜑 𝑛 𝑖-2,𝑗+1 + 𝜑 𝑛 𝑖-2,𝑗+2 + 𝜑 𝑛 𝑖-1,𝑗-2 + 𝜑 𝑛 𝑖-1,𝑗-1 + 𝜑 𝑛 𝑖-1,𝑗 + 𝜑 𝑛 𝑖-1,𝑗+1 + 𝜑 𝑛 𝑖-1,𝑗+2 + 𝜑 𝑛 𝑖,𝑗-2 + 𝜑 𝑛 𝑖,𝑗-1 + 𝜑 𝑛 𝑖,𝑗 + 𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖,𝑗+2 + 𝜑 𝑛 𝑖+1,𝑗-2 + 𝜑 𝑛 𝑖+1,𝑗-1 + 𝜑 𝑛 𝑖+1,𝑗 + 𝜑 𝑛 𝑖+1,𝑗+1 + 𝜑 𝑛 𝑖+1,𝑗+2 + 𝜑 𝑛 𝑖+2,𝑗-2 + 𝜑 𝑛 𝑖+2,𝑗-1 + 𝜑 𝑛 𝑖+2,𝑗 + 𝜑 𝑛 𝑖+2,𝑗+1 + 𝜑 𝑛 𝑖+2,𝑗+2 )
where 𝜑 𝑐 𝐼,𝐽 representing the coarse point (black circle) that is being updated and 𝜑 𝑛 𝑖,𝑗 being the fine grid values in the same cell (blue circle). This scheme is based on the assumption that the fine grid variables over laying the one coarse grid cell have a uniform distribution of value.

3. The Shapiro interpolation scheme. Is based on the assumption that the nested grid point that lies in the central region of the coarse grid (blue square) is of equal importance to the sum of the other nested grid points enclosed in the coarse grid cell (red square) [START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF].

𝜑 𝑐 𝐼,𝐽 = 1 16 
(︀ 𝜑 𝑛 𝑖-1,𝑗-1 + 𝜑 𝑛 𝑖-1,𝑗 + 𝜑 𝑛 𝑖-1,𝑗+1 + 𝜑 𝑛 𝑖,𝑗-1 + 8𝜑 𝑛 𝑖,𝑗 + 𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖+1,𝑗-1 + 𝜑 𝑛 𝑖+1,𝑗 + 𝜑 𝑛 𝑖+1,𝑗+1
)︀ 4. The final interpolation scheme. Is the full weighted averaging method and assumes that the interpolated value used for the updating procedure should be influenced mainly by nested grid points close to the center of the coarse grid point being updated (green+blue squares) and less by the more distant points (red square) [START_REF] Debreu | Two-Way embedding algorithms for a split-explicit free surface ocean model. In preparation for Ocean Model[END_REF]. The following equation presents the fully weighted scheme for a nesting ratio 3.

𝜑 𝑐 𝐼,𝐽 = 1 20 (︀ 𝜑 𝑛 𝑖-1,𝑗-1 + 2𝜑 𝑛 𝑖-1,𝑗 + 𝜑 𝑛 𝑖-1,𝑗+1 + 2𝜑 𝑛 𝑖,𝑗-1 + 8𝜑 𝑛 𝑖,𝑗 + 2𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖+1,𝑗-1 + 2𝜑 𝑛 𝑖+1,𝑗 + 𝜑 𝑛 𝑖+1,𝑗+1
)︀ And the following equation presents the fully weighted scheme for a nesting ratio 5.

Figure 4-13: Full-weighting interpolation scheme.

𝜑 𝑐 𝐼,𝐽 = 1 52 (𝜑 𝑛 𝑖-2,𝑗-2 + 𝜑 𝑛 𝑖-2,𝑗-1 + 𝜑 𝑛 𝑖-2,𝑗 + 𝜑 𝑛 𝑖-2,𝑗+1 + 𝜑 𝑛 𝑖-2,𝑗+2 + 𝜑 𝑛 𝑖-1,𝑗-2 + 𝜑 𝑛 𝑖-1,𝑗-1 + 4𝜑 𝑛 𝑖-1,𝑗 + 𝜑 𝑛 𝑖-1,𝑗+1 + 𝜑 𝑛 𝑖-1,𝑗+2 𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖,𝑗-2 + 4𝜑 𝑛 𝑖,𝑗-1 + 16𝜑 𝑛 𝑖,𝑗 + 4𝜑 𝑛 𝑖,𝑗+1 + 𝜑 𝑛 𝑖,𝑗+2 + 𝜑 𝑛 𝑖+1,𝑗-2 + 𝜑 𝑛 𝑖+1,𝑗-1 + 4𝜑 𝑛 𝑖+1,𝑗 + 𝜑 𝑛 𝑖+1,𝑗+1 + 𝜑 𝑛 𝑖+1,𝑗+2 + 𝜑 𝑛 𝑖+2,𝑗-2 + 𝜑 𝑛 𝑖+2,𝑗-1 + 𝜑 𝑛 𝑖+2,𝑗 + 𝜑 𝑛 𝑖+2,𝑗+1 + 𝜑 𝑛 𝑖+2,𝑗+2 )

Description of the Numerical Model

Configuration of nested grid for 2D shallow water equations

As we know, through the waves crash, their length will become much smaller than in the deep ocean.

Finer grids will be necessary to resolve wave features in shallow water regions. There are several reasons for applying multiple nested grid model, when the water depth varies within the computational domain, it might be desirable that different grid size and time step size be employed in various subregions so that the frequency dispersion is adequately represented. The nested grid configuration allows to obtain detailed information in the coastal region. Finer grids should be used only in specific regions of interests.

In this model, linear or nonlinear for 2D shallow water equations can be assigned to a specific sub-level region and any ratio of grid size between two sub-regions can be used, however, it should be an integer.

Here, we describe the manner for exchanging information between two nested grid of different grid sizes. As shown in Figure 4-12 below a smaller grid system is nested in a larger grid system with the ratio of 1:3. The arrows represent the velocity flows across each grid cell, while squares and points indicate the locations where the water surface is evaluated. 

Spatial and temporal refinements

The basic configuration of the grid consists of three grid points which are the free surface elevation 𝜂 and the horizontal velocity components 𝑢 and 𝑢 with the spatial refinement factor being an odd integer 𝑚, which is defined by:

𝑚 = △𝑥 𝑐 △𝑥 𝑓
where △𝑥 𝑐 and △𝑥 𝑓 are the coarse and fine grid lengths respectively. The temporal refinement factor is defined by the integer 𝑝 given by:

𝑝 = △𝑡 𝑐 △𝑡 𝑓
where △𝑡 𝑐 and △𝑡 𝑓 are time step for the coarse and fine grids respectively

Methodology

Consider a model that consists of a higher-resolution (fine grid) nested 3:1 or 5:1 in a low-resolution (coarse grid) on which covers the entire domain. The information on the flux values (velocities) and the free surface elevation is exchanged on the boundaries between two nested grid regions. At each new time level, the flux values (velocities) or/and the free surface elevation on the boundary of a finer grid are obtained by linearly interpolating both spatially and temporally. At each next time level for a outer coarse grid, the free surface elevation or/and the flux values (velocities) on a coarser grid are updated by the average scheme (or fully-weighted scheme) both spatially and temporally.

In this section, some new algorithms for two-way interaction techniques for 2DNSWEs are established. Four choices of restriction operator for the free surface elevation 𝜂 and velocities (𝑢, 𝑣) on Arakawa C-grid are introduced. To get these information we can do the in the following way. -Step 6. To transfer the information from the inner grid region to the outer region, the free surface elevation in the inner grid region is spatially averaged over the grid size of the outer region. These average elevation values at 𝑡 = (𝑛 + 3/4)Δ𝑡 are then time averaged with those at 𝑡 = (𝑛 + 1/4)Δ𝑡 in the inner region and update the information at 𝑡 = (𝑛 + 1/2)Δ𝑡 from a fine grid to a coarse grid using the full-weighting operator (or average operator) in both spatially and timely values in the inner grid region, update the elevation value at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the coarse grid.

-Step 7. Get the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the fine grid by solving momentum equations.

-Step 8. Get the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the coarse grid by solving momentum equations.

-Step 9. Transfer all the information at 𝑡 = (𝑛 + 1)Δ𝑡 from a fine grid to a coarse grid using the fullweighting operator (or average operator) in both spatially and timely values in the inner grid region, update the information at 𝑡 = (𝑛 + 1)Δ𝑡 in the coarse grid.

The following figure shows the detailed time marching scheme of nested grid setup. 

• • • • • • • • • • • • • • • 4.

Note:

When the mesh refinement factor is 1:3 in 2-dimension, for each one coarse grid point there are 9 fine grid points corresponding to it. Also, When the mesh refinement factor is 1:5 in 2-dimension, for each one coarse grid point there are 25 fine grid points corresponding to it. -Step 3. Get the free surface elevation at 𝑥 = (𝑛 + 1/3)Δ𝑥, 𝑦 = (𝑛 + 1/3)Δ𝑦 and 𝑥 = (𝑛 + 2/3)Δ𝑥, 𝑦 = (𝑛 + 2/3)Δ𝑦 in the inner grid region by solving continuity equation and use the average in space between two points to obtain the free surface elevation at 𝑥 = (𝑛 + 1/2)Δ𝑥, 𝑦 = (𝑛 + 1/2)Δ𝑦.

-Step 4. Get the free surface elevation at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the inner grid region. Transfer the information (update both spatially and temporally) from a fine grid on to a coarse grid at each time step of a coarse grid. If the feedback is a copy grid. Therefore, the values transferred directly over the grid size for the outer region (when the free surface in the inner grid located at the same position for the outer region). Otherwise, use the average operator or full-weighting operator for updating.

-Step 5. Get the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner region by solving momentum equations.

-Step 6. Get the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving momentum equations.

-Step 7. Transfer all the information at 𝑡 = (𝑛 + 1)Δ𝑡 from the inner to outer regions.

Remarks:

1. In all previous algorithms (cases 1,2 and 3), use the discrete formulation of 2D shallow water equations given by Section 2.4 when time step (𝑛 + 1 2 ) .

2. In case 4 and case 5, use the discrete formulation of 2D shallow water equations given by Section 2.3 when time step (𝑛 + 1).

Case 4: Both space and the time refinement ratio are 1:3 Suppose all the information about the velocities and the free surface elevation in the inner region (with finer resolution) and the outer region (The parent grid with the coarsest grid resolution), are known at time level 𝑡 = 𝑛Δ𝑡 and we need to obtain the inner and the outer region values at the next time steps 𝑡 = (𝑛 + 1)Δ𝑡 and 𝑡 = (𝑛 + 2)Δ𝑡.

-Step 1: Get all information for the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving continuity equation.

-

Step 2: Get all information for the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving momentum equations.

-Step 3: To solve the continuity equation in the inner region, we need to have all the information along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected boundary are linearly interpolated and then those interpolated values are set to the information in the inner region at the boundary.

-Step 4: Get the the water surface elevation at 𝑡 = (𝑛+1/3)Δ𝑡 in the inner region by solving continuity equation.

-

Step 5: Get all information for the flux values at 𝑡 = (𝑛 + 1/3)Δ𝑡 in the inner region by solving momentum equations.

-Step 6: Get the the water surface elevation at 𝑡 = (𝑛+2/3)Δ𝑡 in the inner region by solving continuity equation.

-Step 7: Solve the flux values at 𝑡 = (𝑛+2/3)Δ𝑡 in the inner grid region by using momentum equations.

-Step 8: Get the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using continuity equation.

-Step 9: Solve the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using momentum equations.

-Step 10: Get the water surface elevation at 𝑡 = (𝑛+4/3)Δ𝑡 in the inner grid region by using continuity equation.

-Step 11: Get the flux values at 𝑡 = (𝑛+4/3)Δ𝑡 in the inner grid region by using momentum equations.

-Step 12: Get the water surface elevation at 𝑡 = (𝑛 + 5/3)Δ𝑡 in the inner grid region by solving continuity equation.

-Step 13: Get the flux values at 𝑡 = (𝑛 + 5/3)Δ𝑡 in the inner grid region by momentum equations.

-Step 14: To transfer the information from the inner grid region to the outer region, if the water surface elevation and the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region is located at the same position for the coarse grid region then use copy grid. Or, use the average method or full-weighting method in both spatially and timely values for updating.

-Step 15: Get the water surface elevation at 𝑡 = (𝑛+2)Δ𝑡 in the inner grid region by solving continuity equation.

-

Step 16: Get the flux values at 𝑡 = (𝑛 + 2)Δ𝑡 in the inner region by using momentum equations.

-Step 17: Solve the free surface elevation and velocities at 𝑡 = (𝑛 + 2)Δ𝑡 in the outer region using continuity equation and momentum equations by using updated information.

-Step 18: Transfer the information from the inner grid region to the outer region at 𝑡 = (𝑛 + 2)Δ𝑡. -Step 1: Get all information for the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving continuity equation.

-

Step 2: Get all information for the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving momentum equations.

-Step 3: To solve the continuity equation in the inner region, we need to have all the information along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected boundary are linearly interpolated and then those interpolated values are set to all the information in the inner at the boundary.

-Step 4: Get the the water surface elevation at 𝑡 = (𝑛+1/2)Δ𝑡 in the inner region by solving continuity equation.

-

Step 5: Get all information for the flux values at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the inner region by solving momentum equations.

-Step 6: Get the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using continuity equation.

-Step 7: Solve the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using momentum equations.

-Step 8: Get the water surface elevation at 𝑡 = (𝑛 + 3/2)Δ𝑡 in the inner grid region by using continuity equation.

-Step 9: Get the flux values at 𝑡 = (𝑛 + 3/2)Δ𝑡 in the inner grid region by using momentum equations.

-Step 10: To transfer the information from the inner grid region to the outer region, if the free surface elevation and the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region is located at the same position for the coarse grid region then use copy grid. Otherwise, use average or full-weighting operators.

-Step 11: Get the water surface elevation at 𝑡 = (𝑛+2)Δ𝑡 in the inner grid region by solving continuity equation.

-Step 12: Get the flux values at 𝑡 = (𝑛 + 2)Δ𝑡 in the inner region by using momentum equations.

-Step 13: Solve the free surface elevation and velocities at 𝑡 = (𝑛 + 2)Δ𝑡 in the outer region using continuity equation and momentum equations by using updated the information.

-Step 14: Transfer the information from the inner grid region to the outer region at 𝑡 = (𝑛 + 2)Δ𝑡.

4.4.2 General case of computational algorithms and automatic systems when the space refinement factor is 1:3 and temporal refinement factor is 1:2

A nest is a finer-resolution model. It may be embedded together within a coarser-resolution (parent) model or independently as a separate model. The nest covers a portion of the parent domain and is driven along its lateral boundaries by the parent domain.

Here, we use the case when finer-resolution model embedded together within a coarserresolution (parent) model.

There are three computational algorithms, an algorithm for solving the governing equations, the transferring algorithm and the back transferring algorithm. The dynamical nesting algorithm follows these steps:

(a)-For the coarse model (outer domain):

Input model data and set initial data at time 𝑡 = 0 (that is 𝑛 = 0 and 𝑡 = 𝑛Δ𝑡 also 𝑢 0 (b)-For the fine model (inner domain):

𝑖 = 𝑣 0 𝑖 = 0, 𝐻 0 𝑖 = ℎ 𝑖 ) on the boundary 𝐻 0 𝑖 = ℎ 𝑖 + 𝜂 0 𝑖 ,
The algorithm for the fine model requires more steps than the coarse model depending on the temporal refinement factor. The following illustrates the situation where the temporal refinement factor 𝑝 = 2. Input model data and set initial data at time 𝑡 = 0 (that is 𝑛 = 0 and 𝑡 = 𝑛Δ𝑡 also 5. Feedback all the information from the inner grid region to the outer region.

𝑢 0 𝑖 = 𝑣 0 𝑖 = 0, 𝐻 0 𝑖 = ℎ 𝑖 ) on the boundary 𝐻 0 𝑖 = ℎ 𝑖 + 𝜂 0 𝑖 . 1.

Transferring (interpolation) algorithm

Case 1: The transferring algorithm is described as follows when the temporal refinement factor is 1:2 : 2. Compute the values of elevations at the same overlapping fine grid points for the next half time level using

𝜂 𝑛+3/4 𝑎 = (5𝜂 𝑛+1/2 𝐴 -𝜂 𝑛-1/2 𝐴 )/4 𝜂 𝑛+3/4 𝑑 = (5𝜂 𝑛+1/2 𝐷 -𝜂 𝑛-1/2 𝐷 )/4 𝜂 𝑛+3/4 ℎ = (5𝜂 𝑛+1/2 𝐻 -𝜂 𝑛-1/2 𝐻 )/4
3. Use linear interpolation in space to calculate the elevations at the other grid elements on the interface between the fine and coarse grids, namely

𝜂 𝑛+1/4 𝑏 , 𝜂 𝑛+3/4 𝑏 , 𝜂 𝑛+1/4 𝑐 , 𝜂 𝑛+3/4
𝑐 and so on.

The formula for the grid point 𝑏 at the time level 𝑛 + 1/4 is

𝜂 𝑛+1/4 𝑏 = (2𝜂 𝑛+1/4 𝑎 + 𝜂 𝑛+1/4 𝑑 )/3
and a similar formula can be used for the grid point 𝑓 using 𝜂 𝑛+1/4 𝑎 and 𝜂 𝑛+1/4 ℎ . For grid point 𝑐 the equation is

𝜂 𝑛+1/4 𝑐 = (𝜂 𝑛+1/4 𝑎 + 2𝜂 𝑛+1/4 𝑑 )/3
A similar formula applies for grid point 𝑔 using the data from 𝑎 and ℎ.

𝜂 𝑛+1/4 𝑔 = (𝜂 𝑛+1/4 𝑎 + 2𝜂 𝑛+1/4 ℎ )/3
If the elevation at 𝑒 is just inside the grid, that is, the coastal boundary passes through the velocity of this grid then 𝜂 𝑛+1/4 𝑒 must be extrapolated from 𝑎 and 𝑑 that is

𝜂 𝑛+1/4 𝑒 = (4𝜂 𝑛+1/4 𝑑 -𝜂 𝑛+1/4 𝑎 )/3
Similar formula at each grid point can be used to obtain the values of 𝜂 at the level 𝑛 + 3/4. Case 2: The transferring algorithm is described as follows when the temporal refinement factor is 1:3 

𝜂

𝜂 𝑛+1/3 𝑎 = (2𝜂 𝑛+1 𝐴 + 𝜂 𝑛-1 𝐴 )/3
and value of 𝜂 𝑛+1/3 𝑑 and 𝜂 𝑛+1/3 ℎ can be calculate similarly

𝜂 𝑛+1/3 𝑑 = (2𝜂 𝑛+1 𝐷 + 𝜂 𝑛-1 𝐷 )/3
and

𝜂 𝑛+1/3 ℎ = (2𝜂 𝑛+1 𝐻 + 𝜂 𝑛-1 𝐻 )/3
2. Compute the values of elevations at the same overlapping fine grid points for the next half time level using

𝜂 𝑛+5/3 𝑎 = (4𝜂 𝑛+1 𝐴 -𝜂 𝑛-1 𝐴 )/3 𝜂 𝑛+5/3 𝑑 = (4𝜂 𝑛+1 𝐷 -𝜂 𝑛-1 𝐷 )/3 𝜂 𝑛+5/3 ℎ = (4𝜂 𝑛+1 𝐻 -𝜂 𝑛-1 𝐻 )/3
3. Use linear interpolation in space to calculate the elevations at the other grid elements on the interface between the fine and coarse grids, namely

𝜂 𝑛+1/3 𝑏 , 𝜂 𝑛+5/3 𝑏 , 𝜂 𝑛+1/3 𝑐 , 𝜂 𝑛+5/3
𝑐 and so on.

The formula for the grid point 𝑏 at the time level 𝑛 + 1/3 is

𝜂 𝑛+1/3 𝑏 = (2𝜂 𝑛+1/3 𝑎 + 4𝜂 𝑛+1/3 𝑑 )/6
and a similar formula can be used for the grid point 𝑓 using 𝜂 𝑛+1/3 𝑎 and 𝜂 𝑛+1/3 ℎ .

𝜂 𝑛+1/3 𝑓 = (2𝜂 𝑛+1/3 𝑎 + 4𝜂 𝑛+1/3 ℎ )/6
For grid point 𝑐 the equation is

𝜂 𝑛+1/3 𝑐 = (4𝜂 𝑛+1/3 𝑎 + 2𝜂 𝑛+1/3 𝑑 )/6
A similar formula applies for grid point 𝑔 using the data from 𝑎 and ℎ.

𝜂 𝑛+1/3 𝑔 = (4𝜂 𝑛+1/3 𝑎 + 2𝜂 𝑛+1/3 ℎ )/6
Otherwise, if the elevation at 𝑒 is just inside the grid, that is the coastal boundary passes through the velocity of this grid then 𝜂 𝑛+1/3 𝑒 must be extrapolated from 𝑎 and 𝑑, that is:

𝜂 𝑛+1/3 𝑒 = (7𝜂 𝑛+1/3 𝑑 -𝜂 𝑛+1/3 𝑎 )/6
Similar formula at each grid point can be used to obtain the values of 𝜂 at the level 𝑛 + 5/3.

𝜂 𝑛+5/3 𝑒 = (7𝜂 𝑛+5/3 𝑎 -𝜂 𝑛+5/3 𝑑 )/6
and the formula for the grid point 𝑏 at the next time level 𝑛 + 5/3 is

𝜂 𝑛+5/3 𝑏 = (2𝜂 𝑛+5/3 𝑎 + 4𝜂 𝑛+5/3 𝑑 )/6
and

𝜂 𝑛+5/3 𝑐 = (4𝜂 𝑛+5/3 𝑎 + 2𝜂 𝑛+5/3 𝑑 )/6

Free surface and Velocity Updates

In this section, we introduce four choices of restriction operator for the free surface elevation 𝜂 and velocities (𝑢, 𝑣) on Arakawa C-grid suggested by [START_REF] Debreu | Two-Way embedding algorithms for a split-explicit free surface ocean model. In preparation for Ocean Model[END_REF] and we will apply these options to several examples in various ways in later chapters.

Coupling procedures

Here, the process underlined in Figure 4-18 indicates the two-way coupling procedure 

Summary and Conclusion

A two-way nested model was developed and it is a modified form of the one-way nesting procedure for 2DSWEs. This model is capable of simulating the processes at a high-resolution and allowing the data to be feedback into the low-resolution domain. The grid structure employed was an embedded method and identified an effective data transmission method was introduced in maximizing the transmission of data while preventing the generation of an error. Some of different update interpolation scheme was also used such that direct copy, average, Shapiro, full-weighting, Mix-low, and Mix-high were applied.

This chapter discussed several important issues, including: Different structured grids were outlined in relation to their spatial resolution and temporal resolution. The advantages and disadvantages of nesting modeling techniques were discussed. The two-way nested modeling technique was explained in detail with regard to its mathematical formulation. Different cases of open boundary conditions for the two-way nesting grids were studied. Some new algorithms and diagrams were built for the two-way nesting technique to solve 2DNSWEs with the refinement ratio used is 1:3 or 1:5 or both. Finally, four choices of restriction operator for the free surface and the velocities on Arakawa C-grid have been suggested. All new algorithms and techniques presented in this chapter will be used in the subsequent chapters.

Chapter 5

Performance of Two-Way Nesting Techniques for SWEs

The results presented in this chapter are the subject of an article [3].

The principal objective of this chapter is to study the efficiency of two-way nesting performance technique for structured grids between the coarse and the fine grids for linear 2DSWEs using an explicit finite difference method in space and leapfrog with Robert-Asselin filter in time. Multiple nested grid technique is described and successfully applied to 2DSWEs. This model consists of a higher-resolution (fine grid) model with nesting 3:1 embedded in a low-resolution (coarse grid) model on which covers the entire domain.

A numerical scheme to construct a two-way nested grid model is proposed. Dynamical coupling in a two-way nesting system is performed at a dynamical interface which is a separate/adjacent from a mesh interface. Dynamical interaction is achieved by a method which conserves mass, and the momentum of the system.

The main role for the update schemes is to use four choices of restriction operator for the free surface elevation 𝜂 and velocities 𝑢, 𝑣 on Arakawa C-grid. Comparison nested model results with a fine grid and a coarse grid results, show that two-way nesting technique works efficiently over different periods of time. The results indicate good performance of the nesting technique.

• Propose numerical methods which used to construct a new two-way interaction techniques for 2DSWEs.

• Full-weighting and the average update operator are applied for some examples 2DSWEs.

• The reliability and the accuracy of 2DSWEs are tested through several examples. Investigate some tests to determine a suitable feedback operator, which contains an appropriate feedback condition and interpolation technique. The optimum feedback operator is identified by using averaging interpolation procedure or (full-weighting). The validity of the nesting method is shown for some examples and the numerical results show that the model more accurately by using these methods.

Methodology (Development)

Consider the nested grids modeling in which a coarse grid contains one or more than one fine grid in one level or multiple levels. we suggest a new technique for multiple nested grids of linear 2DSWEs by using some types of interpolations and restriction operators given in Chapter 4.

We present and evaluate a set of choices made an implementation of two-way nesting methods allowing simultaneous spatial and temporal refinement in shallow water model. The choice a fullweighting operator is applied for update the water surface elevation 𝜂, and velocities when a type of structured grid without a separate (adjacent) interface. Otherwise, average update operator is used, when a structured grid is a separate dynamic interface and feedback interface (see Section 4.5).

Some Notes

1. For all examples, we apply an explicit center finite difference scheme in space and leapfrog scheme with Robert-Asselin filter in time to approximate 2D depth-averaged linear SWEs for two-way nested model which contain coarse and fine grids.

2.

For all examples, we find 𝑙2-error norm, 𝐻1-error norm in a coarse grid and a fine grid. Also, find 𝑙2-𝑅𝐸 of free surface elevation for two-way nesting grids.

3. All the simulation are made by using Dirichlet boundary conditions. 4. Boundary conditions for the nested domain are linearly interpolated (both spatially and temporally) from the coarse domain and feedback (both spatially and temporally) using the average method or full-weighting method with (separable/adjacent) interface from the high-resolution nested grids solution to the low-resolution coarse grids solution.

5. The bottom friction comes from Manning's formula, which is uniform throughout the grids, where 𝑛 is roughness coefficient. In this simulation, n takes 0.013. 6. When a specific domain rotation is required. Here, we need to determine the location of the new rotated nested in relation to the coarse domain. This is done by identifying the localized coordinates for each grid point in the rotated domain with respect to the coarse domain. Example 2: For the same previous example, we find the simulation of free surface elevation in a fine grid.

Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters in a fine grid are chosen as follows: number of grids 450×360, by consider only the common points between coarse and fine grids, the number of fine grids becomes 𝑛𝑥=150, 𝑛𝑦=120, Δ𝑥=1, Δ𝑦=1, time step Δ𝑡=1.25𝑒 -2 𝑠, the water depth ℎ =10m, and CFL condition is 0.6.

Results and Discussion

The following figures show the simulation of free surface elevation at different time in the fine grid domain. 

Numerical parameters:

The Numerical values of the parameters are chosen as follows: 𝑛𝑥 = 150, 𝑛𝑦 = 120, Δ𝑥=Δ𝑦=3, time step Δ𝑡=2.5𝑒 -2 sec in a coarse grid, Δ𝑥=Δ𝑦=1, the number of fine grids 𝑛𝑥=150, 𝑛𝑦=120 by consider only the common points between coarse and fine grids with the space refinement ratio 1:3, the water depth ℎ =10m, and CFL condition is 0.6.

Results and discussion

The time integrations were performed at 2000 min. The calculations were stable.

The following figures show the simulation of free surface elevation in two-way nesting grid at different time. Note:

We assume that the time step in a fine grid is equal one third of the time step in a coarse grid.

Therefore, we need to provide the interpolation between the coarse and the fine grids, always use Dirichlet feedback in velocities and the water surface elevation because if the two grids lies with the same positions then for the update scheme, we use copy grids or a direct-injection update scheme (copy of child values at corresponding locations of the parent grid without spatial filter). Otherwise, we use the average method to update.

Example 1:

In this example, we find 𝑙2-error norm and 𝐻1-error norm in a coarse grid by using 2DSWEs given in equations (2.45)-(2.47) for linear case with initial condition for the same Example 2, Section 3.1, Chapter 3.

Numerical parameters:

The numerical values of the parameters are chosen as follows: If we take different values of time 𝑡 = 20, 30, ..., 100 days to find 𝑙2-error norm and 𝐻1-error norm in a coarse grid, when 𝐿 𝑥 =𝐿 𝑦 =300, Δ𝑥=Δ𝑦=3, time step=0.01s, and the number of grids 100 × 100 in a coarse grid, Δ𝑥=Δ𝑦=1, time step =0.0033s, 100 × 100 in a fine grid when consider only the common points to both grids, and the water depth=10.

Results and discussion

First of all, we tested the computational stability of this system of equations using CFL condition which is 0. 1. Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time 𝑡 = 20, 30, ..., 100 days to find 𝑙2-error norm and 𝐻1-error norm of free surface elevation between a fine grid and a two-way nesting grid, when 𝐿 𝑥 =𝐿 𝑦 =300, Δ𝑥=Δ𝑦=3, time step=0.01s, and the number of grids 100 × 100 in a coarse grid, Δ𝑥=Δ𝑦=1, time step =0.033s in a fine grid and when consider only the common points to both grids, the number of fine grids becomes 100 × 100,

Results and discussion

The following figures show 𝑙2-error norm and 𝐻1-error norm of free surface elevation in a coarse grid and a fine grid. Notes that 𝐿2-error norm and 𝐻1-error norm in a coarse grid are larger than 𝑙2-error norm and 𝐻1-error norm in a fine grid. Also, 𝑙2-error norm in a fine grid is closed to zero when length of step or time step is very small, and the 𝑙2-error norm results are the best results. , where r corresponds the number of total time, Φ is the coarse grid variable and 𝜑 is the fine grid variable.

Comparison

Example 1: When both space and temporal refinement ratio are 1:3

In this example, we use EFDM in space and leapfrog with Robert-Asselin filter in time to approximate 2DSWEs given in equations (2.32)-(2.34) for linear case with initial condition 𝑢=𝑣=𝜂=0.

Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time t= 20, 30,..., 100 days to find 𝑙2-𝑅𝐸 of free surface elevation between the coarse grid and the fine grid, when 𝐿 𝑥 =𝐿 𝑦 =300, Δ𝑥=Δ𝑦=3, time step=0.01s, h=10, and the number of grids 100 × 100 in a coarse grid, Δ𝑥=Δ𝑦=1, time step =0.0033s when consider only the common points to both grids, the number of fine grids becomes 100 × 100 with CFL condition 0.02.

Results and Discussion

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested grid.

Figure 5-24: 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested grid.

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested grid when using four choices of restriction operator for the free surface elevation 𝜂 with a separate interface. 

Results and Discussion

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested grid when using four choices of restriction operator for free surface elevation 𝜂 with a separate interface. 

Results and Discussion

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested grid when using four choices of restriction operator for free surface elevation 𝜂 with a separate interface. 

Numerical parameters, results and discussion

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time t=20, 30,..., 100 days to find ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and two-way nesting grid for linear 2DSWEs, when 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3 in a coarse grid and the time step in coarse grid is 0.005s, and Δ𝑥=Δ𝑦=1 in a fine grids when consider only the common points to both grids, the number of fine grids becomes 100 × 100 with CFL 0.02. 

Summary and Conclusion

This chapter dealt with the two-way interaction technique between a coarse grid and a fine grid for 2D depth-averaged linear SWEs and a new approach was presented to treat this problem. To verify the efficiency of the nested grid model, some numerical examples were introduced with nesting 3:1.

It was showed that two-way nesting techniques perform better than one-way nesting techniques.

In particular, a two-way nesting ensures dynamical consistency between the coarse grid and the fine grid occurs frequently. In general, good results were observed.

In this chapter, we discussed several examples of different cases for space and temporal refinement ratio, some major points can be deduced:

1. When the space and temporal refinement ratio is odd always use for feedback Dirichlet feedback (copy grid) because a coarse grid always has one underlying high-resolution point. Otherwise, use the full-weighting or the average scheme to update the velocities and free surface elevation (both spatially and temporally) for structured grids with (adjacent/separable) interface.

2. For other cases, when the space refinement ratio is odd and the time refinement ratio is even, or the time step in the fine grid is an equal time step in the coarse grid when the refinement ratio is odd, we use linear interpolation and for feedback use the full-weighting method or the average method.

3. When comparing the results of 𝑙2-𝑅𝐸 for some examples in Section 5.4, we found: Firstly, when the space and the temporal refinement ratio is odd, the results here are the best. Secondly, the results in case the temporal refinement is even and space refinement is odd. Finally, the results in case the time step in the fine and coarse grid is fixed (no time refinement, refinement in space only).

Part III Implementation and Validation of 2D Shallow

Water Models Chapter 6

Applications of Two-Way Interaction Technique For Multiple Nested Grids

The results presented in this chapter (Sections 6.3-6.5) are the subject of an article [5] and the results presented in (Sections 6.9) are the subject of an article [7] Multiple nested grids can be employed at one time to save the time as well as get enough resolution in the goal region. In this chapter, an explicit finite difference method which used to construct a twoway interaction technique is applied successfully for multiple nested grids of 2DSWEs. The nesting implementation allows several nesting level and several grids at any particular level using Dirichlet boundary conditions. Generally, high accuracy is given for SWEs.

Discusses some examples when the space refinement ratio is 1:3 for multiple nested grids at multiple levels for 2DSWEs using the algorithms and techniques provided under Chapter 4, Section 4.5. In order to verify the performance of nesting techniques, apply some examples of coupling 3 systems for shallow flow models. Thus, the results of 𝑙2-𝑅𝐸 using a new technique for four options to update restriction operators are compared. The results are best when using the full-weighting method which it has excellent properties regarding the filtering for a type of structured grid without a separable interface. Otherwise, the average method is used to update the system.

Comparison of 𝑙2-𝑅𝐸 results of free surface elevation in one-way and two-way nesting grids using four update interpolations. Several tests of numerical examples are presented to get the approximate solutions for free surface elevation using four different update schemes. Finally, comparison the results of 𝑙2-𝑅𝐸 when the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 with Δ𝑥 ̸ = Δ𝑦.

• An explicit methods which used to construct a two-way interaction technique are applied successfully for multiple nested grids of 2DSWEs.

• Discusses some examples when the space refinement ratio is 1:3 for multiple nested grids at multiple levels for 2DSWEs.

• Two-way nested coupling of 3 models for multiple grids at multiple levels are achieved for 2DSWEs.

• High accuracy results for 2DSWEs are obtained using some kinds of higher-restriction operators which are average method and full-weighting, update mix-low, and update mix-high. In this chapter, we will explain that using the higher-order restriction operators (feedback) given in Section 4.5 can lead to strong improvements to the results, which is required to prevent aliasing and noise on the coarse grids with Dirichlet boundary conditions to approximate 2DSWEs for structured grids with (separate/adjacent) interface.

Configuration of the numerical testing

In this section: Firstly, we offer design for 2D depth-averaged NSWEs using EFDM and leapfrog method with Robert-Asselin filter. Secondly, applying some examples of two-way interaction technique and show that this technique works efficiently under different conditions.

Basic design of nested model

The main design elements of the model are specified as follows:

• It should consist of two similar models a parent grid (coarse grid) model and a child grid (fine grid) model.

• Both models should calculate the same variables by solving the same formulations of the governing equations.

• The parent grid should provide boundary data for the child grid.

• The models should be dynamically linked to allow automatic transfer of boundary data at each child model time step.

• The child model should be able to operate on a number of nested domains not just one level of nesting. i.e. all nested domains should not use the same nesting ratio (sometimes us different nesting ratio in the same level or multiple-levels).

Grid comparison

Key features of the two model grids are listed below for comparison:

1. Coarse grid 2. Fine grid 3. Grid generation: The fine grid coordinates are interpolated from the coarse grid with one third (or other) of the coarse grid cell size.

6.3 Case 1: Multiple nested grids for linear 2DSWEs for structured grids (without a separate interface)

Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average method to update interface condition for the coarse grid. also, the number of grids for the coarse and fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

For the stability using CFL condition given by Section 2.8.3, Chapter 3.

Example 1:

In this example, we use the system for 2DSWEs given in equations (2.32)-(2.34) for a linear case to find 𝑙2-𝑅𝐸 of free surface elevation when a coarse grid contains only one fine grid (child embedded in parent) at different times t=500, 1000,..., 4000 hours with CFL condition 0.6. The information about a coarse grid (level 1) and a fine grid (level 2) are given in Table 6.1 using Dirichlet open boundary conditions.

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid. Notes that: Two fine grids are separate with each other and embedding in a coarse grid. Example 3:

In this example, we use the system of 2DSWEs given in equations (2.32)-(2.34) for a linear case to find 𝑙2-𝑅𝐸 in case a fine grid contains again one fine grid in another level at different times t=500, 1000, ..., 4000 hour. The information about a coarse grid and a fine grid are given in Table 6 Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average method to update interface condition for the coarse grid. also, the number of grids for the coarse and fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

Example 1:

In this example, we use EFDM to approximate 2DNSWEs given in equations (2.32)-(2.34) (with 𝜈 = 0, wind stress =0, non-rotated f=0). A sequence of snapshots of free surface elevation 𝜂 in the coarse grids at different times t=500, 1000,..., 4000 hour. The information about the coarse and the fine grids are given by Table 6.1.

The following figure represent the simulation of free surface elevation in a coarse grid at different time t=500, 1000,..., 2000 hour. open boundary conditions. The information about the coarse and the fine grids are given by Table 6.2.

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between the coarse grid and two fine grids in two-way nested grid at the same level (level 2) at t=500, 1000,..., 4000 hour. Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average method to update interface condition for the coarse grid. also, the number of grids for the coarse and fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

Example 1: Case 1: Coupling 3 systems for 2DNSWEs

In this example, we find 6.5: The information about the coarse grid and the fine grids at multiple levels for the 2DNSWEs

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 22) and grid 22-level 3 (grid 32) in two-way nested grid for 2DNSWEs In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34), when a coarse grid contains more than one level at different times t= 500, 1000,..., 4000 hour. The information about the coarse and fine grids are given by Table 6.5.

Firstly, when a coarse grid located in 1st-level, apply EFDM to approximate 2DNSWEs. Secondly, applying EFDM to approximate 2DNSWEs in level 2. Thus, coupling a coarse grid with the fine grid in 2nd-level. Thirdly, applying EFDM to approximate linear 2DSWEs in level 3. Thus, coupling between a fine grid in level 2 and the fine grids in the 3rd-level.

6.6 Comparison of one-way and two-way nesting by using different schemes

Here, the space refinement ratio is 1:3 and time refinement ratio is 1:2 and using different scheme to update interface condition for the coarse grid. also, the number of grids for the coarse and fine grids are equal by consider only the common points to both grids using algorithm 5, Chapter 4.

Example 1 :

In this example, we use system of 2DNSWEs given in equations ( 2 Here, the space refinement ratio is 1:3 and the number of grids for the coarse and fine grids are equal by consider only the common points to both grids. The following figures show the ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and two-way nesting grid. In this example, we use the system of 2DNSWEs given by equations (2.1)-(2.3) with non-rotated f=0, wind stress, and bottom stress =0, if we take different values of time t= 10, 20,.., 1000 hours when 𝑛𝑥 = 𝑛𝑦 = 300, Δ𝑥=Δ𝑦=1, Δ𝑡=0.01s in a coarse grid and 𝑛𝑥 = 𝑛𝑦 = 300, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.01s in fine grid to find ABSE and 𝑙2-𝑅𝐸 in two-way nesting. In this model, we use a multiple-nested grid with interface condition for the fine grids linear interpolation and update interface condition for the coarse grid using the average method with CFL condition 0.02.

The following figure shows ABSE and 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grids using Dirichlet boundary conditions. In this example, we use the system of 2D non-linear SWEs given by equations (2.1)-(2.3) with (wind stress=0, bottom stress=0, and f=0 in nonlinear case) and equations (2.32)-(2.34) with (bottom stress= 0) for linear case when Δ𝑥 ̸ = Δ𝑦, 𝑛𝑥=𝑛𝑦=300, Δ𝑥=3 and Δ𝑦=6, Δ𝑡=0.01s in coarse grid with total steps 18000 and when a coarse grid has the space refinement ratio in 𝑥-direction is different in 𝑦-direction, when Δ𝑥=1 and Δ𝑦=2, 𝑛𝑥=𝑛𝑦=300, the number of grids 300 × 150, and Δ𝑡=0.005s in the fine grid at different time t=10, 20,..., 500 hours with CFL condition 0.02. using Dirichlet boundary conditions for nonlinear case and reflexive boundary conditions for linear case with a separate dynamic interface and feedback interface.

The following figures represent 𝑙2-𝑅𝐸 of free surface elevation for 2D non-linear SWEs in one-way nesting and two-way nesting grids. Notes: When comparing these results with the results given by Sections 6. 6.9.1 Comparison 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grid by using four update operators when both space and temporal refinement ratio are 1:3 using Algorithm 4, Chapter 4

Example 1:

In this example, we use the system for 2DNSWEs given in equations (2.1)-(2.3) with non-rotated f=0, wind stress and viscosity= 0, if we take different values of time t= 10, 20,..., 100 days when 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=1, Δ𝑡=0.01s in coarse grid and 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.0033s in fine grid (space and temporal refinement ratio 1:3) to find 𝑙2-𝑅𝐸 of free surface elevation with initial condition 𝑢=𝑣=𝜂=0.

The following figures compare 𝑙2-𝑅𝐸 of free surface elevation using different update schemes. All simulations in the first figure is made by using Dirichlet boundary conditions without separate dynamic interface and feedback interface and the second figure with a separate interface. The following figures show the free surface elevation on the coarse grid domain after 10 days, 20 days, 30 days for using the average method. The following figures show the free surface elevation on the coarse grid domain after 10 days, 20 days, 30 days for using mix-low update method. The following figures show the free surface elevation on the coarse grid domain after 10 days, 20 days, 30 days for using mix-high method.

Figure 6-36: Free surface elevation on the coarse grid domain using mix-high method 6.10 Multiply nested techniques for 2DSWEs when the type of structured grids separate (or adjacent) interface

Here, the space refinement ratio 1:3 and time refinement ratio 1:2 using algorithm 5, Chapter 4.

Example 1:

In this example , we find ABSE of free surface elevation in two-way nesting grid for 2DSWEs given in equations (2.32)-(2.34) in a linear case when a fine grid contains again one fine grid in another level (child embedded or separable to parent).

Numerical parameters and results

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time at difference times t= 10, 20,..., 100 days to find ABSE of free surface elevation in two-way nesting grid when 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=3, Δ𝑡=0.01s in a coarse grid and 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=1, Δ𝑡=0.005s, and the time step in fine grid is one half time in a coarse grids at each level and the space refinement ratio is 1:3 by using Dirichlet boundary condition. In this model, we use linear interpolation and for updating use the average method with a separate dynamic and feedback interface.

The following figures compares the ABSE of free surface elevation between (coarse grid-fine grid in level 2) and (fine grid in level 2-fine grid in level 3) for linear 2DSWEs. Example 2:

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grid for 2DNSWEs

given in equations (2.1)-(2.3) with wind stress=0, bottom stress =0, and f=0 when a fine grid contains again one fine grid in another level.

Numerical parameters and results

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time t= 10, 20,..., 1000 hours when 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3, Δ𝑡=0.01s in a coarse grid (level 1), 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=1, Δ𝑡=0.005 in a fine grid (level 2) and 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.0025s in (level 3) by using Dirichlet boundary conditions when consider only the common points for all grids.

The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-fine grid (level 2) and fine grid (level 3) with a separate interface.

Figure 6-39: Comparison 𝑙2-𝑅𝐸 between a coarse grid-a fine grid (level 2) and level 2-level 3

The following figures compare 𝑙2-𝑅𝐸 between a coarse grid and a fine grid in level 2 when use four choice for update schemes with a separate interface and without a separate interface. Several examples were tested and the results showed that the best resolution when used mix-low method or average method and the results between them are very close to each other when used a separate interface.

Chapter 7

Multiple Nested Grids For 2D Shallow Water Models

The results presented in this chapter (Section 7.2) are the subject of an article [6] In this chapter, a two-way interaction technique for multiple nested grids at multiple levels (multiple regions) of 2DNSWEs are constructed. This model consists of a fine grid model nested 5:1 within a coarse grid large area model with different non-linear components in each region.

Although different grids size are employed in each subregion, physical variables in all subregions are solved simultaneously and it allows any ratio of grid sizes between two subregions. This model is highlighted by using an explicit center finite difference scheme in space and leapfrog with Robert- 

Highlights

• Suggested a new technique for a multiply nested grid of 2D shallow water models.

• Comparison of 𝑙2-𝑅𝐸 results when the model has the spatial refinement ratio 1:3 and 1:5.

• Two-way nested coupling of 3 models for multiple grids at multiple levels (regions) is achieved for 2DSWEs with nesting 5:1.

• Demonstrate the accuracy and efficiency of the modeling results when using performance of the multiple nested grid techniques. Step 1: Get all information for the free surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving continuity equation.

Step 2: Get all information for the flux values at 𝑡 = (𝑛+1)Δ𝑡 in the outer region by solving momentum equations.

Step 3: To solve the continuity equation in the inner region, we need to have the flux information along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected boundary are linearly interpolated and then those interpolated values are set to the fluxes in the inner at the boundary.

Step 4: Get the free surface elevation at 𝑡 = (𝑛 + 1/5)Δ𝑡, 𝑡 = (𝑛 + 2/5)Δ𝑡, 𝑡 = (𝑛 + 3/5)Δ𝑡 and 𝑡 = (𝑛 + 4/5)Δ𝑡 in the inner region by solving continuity equation.

Step 5: Get all information for the flux values at 𝑡 = (𝑛 + 1/5)Δ𝑡, 𝑡 = (𝑛 + 2/5)Δ𝑡, 𝑡 = (𝑛 + 3/5)Δ𝑡 and 𝑡 = (𝑛 + 4/5)Δ𝑡 in the inner region by solving momentum equations.

Step 6: Get the free surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using continuity equation.

Step 7: Solve the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using momentum equations.

Step 8: Get the free surface elevation at 𝑡 = (𝑛 + 6/5)Δ𝑡, 𝑡 = (𝑛 + 7/5)Δ𝑡, 𝑡 = (𝑛 + 8/5)Δ𝑡 and 𝑡 = (𝑛 + 9/5)Δ𝑡 in the inner region in the inner grid region by using continuity equation.

Step 9: Get the flux values at 𝑡 = (𝑛 + 6/5)Δ𝑡, 𝑡 = (𝑛 + 7/5)Δ𝑡, 𝑡 = (𝑛 + 8/5)Δ𝑡 and 𝑡 = (𝑛 + 9/5)Δ𝑡 in the inner region by using momentum equations.

Step 10: To transfer the information from the inner grid region to the outer region, if the free surface elevation and the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region is located at the same position for the coarse grid region then use copy grid. Otherwise, use the average or full-weighting operators.

Step 11: Get the free surface elevation at 𝑡 = (𝑛 + 2)Δ𝑡 in the inner grid region by solving continuity equation.

Step 12: Get the flux values at 𝑡 = (𝑛 + 2)Δ𝑡 in the inner region by using momentum equations.

Step 13: Solve the free surface elevation and the velocities at 𝑡 = (𝑛 + 2)Δ𝑡 in the outer region using continuity equation and momentum equations.

Step 14: Transfer the information from the inner region to the outer region at 𝑡 = (𝑛 + 2)Δ𝑡.

7.2 Numerical results for multiple nested grids Some notes:

1. In all examples, Dirichlet boundary condition are applied, we use a nested grid with interface condition for the fine grids linear interpolation both spatially and temporally and update interface condition for the coarse grid by using the average method (both spatially and temporally).

2. In all examples, we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grids using Algorithm 5 ,Chapter 4 and the number of coarse grids and fine grids are equals when consider only the common points to both grids with initial condition 𝑢=𝑣=𝜂=0.

Example 1:

The space refinement ratio is 1:5 and the temporal refinement ratio is 1:2 for 2DNSWEs (with adjacent grids)

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2. values of time t= 20, 30,..., 100 days to find 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when 𝑛𝑥=100, 𝑛𝑦=100, Δ𝑥=3, Δ𝑦=3 in a coarse grid, 𝑛𝑥=100, 𝑛𝑦=100, Δ𝑥=0.6, Δ𝑦=0.6 in fine grid and the time step in a coarse grid is 0.005s.

The following figures compare ABSE and 𝑙2-𝑅𝐸 in one-way nesting and two-way nesting for the linear 2DSWEs. When comparing this results with the results in Example 1, Section 5.5, we obtained good results by using space refinement ratio 1:5 because the large ratio gives very well connected boundary conditions. In this example, we use system of 2DNSWEs given in equations (2.1)-(2.3) with (𝜈=0, wind stress=0 and f=0) to find 𝑙2-𝑅𝐸 for free surface, 𝑢-velocity and 𝑣-velocity at the different times t=500 ,1000, ...,4000 hours. Numerical values of the parameters are chosen as follows: 𝑛𝑥=𝑛𝑦=150, Δ𝑥=Δ𝑦=5, Δ𝑡 =0.0025s in a coarse grid and 𝑛𝑥=𝑛𝑦=150, Δ𝑥=Δ𝑦=1, Δ𝑡 =0.00015s in a fine grid when the space refinement is 1:5 and temporal refinement is 1:2 with CFL condition 0.02.

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation , 𝑢-velocity and 𝑣-velocity between a coarse grid and a fine grid. 

Summary and Conclusions

This chapter focused on a new technique for multiple nested grids at multiple levels (regions) of 2DSWEs. Nesting procedure was tested with data under different conditions. The approach used in this chapter was showed the possibility of increasing accuracy and efficiency of the modeling results within a two-way nesting technique with nest 5:1.

To verify multiple nested grid models, several numerical examples were applied and it was shown that two-way nesting techniques perform very well when the space refinement ratio 1:3 and 1:5. Comparison of 𝑙2-𝑅𝐸 results when the space refinement ratio is 1:3 and 1:5. The results were compared between one-way and two-way nesting grids for cases 1:3 and 1:5 and very well results were obtained when the refinement factor is 1:5. Finally, 𝑙2-𝑅𝐸 results were compared between the free surface elevation, 𝑢-velocity, and 𝑣-velocity and the results showed that 𝑙2-𝑅𝐸 of free surface elevation are the best results.

Part IV Numerical Results Of The Tsunami Model 229

Introduction

Tsunami is a Japanese word that is a combination of two-word roots (tsu) means the port and nami means a wave which meaning harbor wave. It is a typical long wave (massive wave) in the ocean, are mostly caused by large earthquakes on the seafloor or water surface disturbances over a sufficiently large area and it can cause huge destruction when they hit coastlines.

Tsunamis are able to move long distances (across the ocean) without too much energy dissipation, which is due to lower friction slightly in the deep ocean. It can efficiently transfer energy released by earthquakes which is sometimes huge enough to severely damage facilities on the coastline. In the case of deep oceans, the wavelengths of tsunamis are of the order of 10km or 100km and the wave period ranges from around ten minutes to two hours.

The speed of tsunamis can reach as fast as 970 kilometers per hour (600 miles per hour) in the deepest oceans although the wave height is often merely tens of centimeters. As a result, in the deep sea, it is difficult to visually recognize a traveling tsunami. Regardless of its harmless performance in the deep ocean, when a tsunami approaches shallow water, its wave height increases significantly up to 30 m above sea level [START_REF] Stein | Record-breaking height for 8000-year-old tsunami in the North Atlantic[END_REF][START_REF] Lin | Modelling Generation and Propagation of 2009 Samoa-Tonga Tsunami[END_REF][START_REF] Wang | An analysis of 2004 sumatra earthquake fault plane mechanisms and indian ocean tsunami[END_REF].

The tsunamis has been observed and recorded since ancient times, especially in Japan and the Mediterranean areas. The earliest recorded tsunami occurred in (2,000) B.C. off the coast of Syria.

The oldest reference tsunami record is dated back to the 16th century in the United States [START_REF] Imamura | Propagation of tsunamis[END_REF].

The first historical reference to a tsunami is conjectured to be the wave created after the volcanic eruption of Thera in ancient Greece, around (1500-1450) B.C. Others, support that tsunami history dates even further back to around 6100 B.C, when a tsunami was supposedly triggered in the Norwegian Sea by the Storegga Slides ( [START_REF] Dawson | The storegga slides: Evidence from eastern scotland for a possible tsunami[END_REF][START_REF] Stein | Record-breaking height for 8000-year-old tsunami in the North Atlantic[END_REF].

In recent years, the most devastating tsunami was triggered by (2004) Sumatra earthquake off the coast of Indonesia and caused tremendous property loss and over 225,000 casual ties in the surrounding countries of Indian Ocean, especially in Indonesia, Sri Lanka,Thailand and India (see [START_REF] Wang | Numerical simulations of the 2004 indian ocean tsunamis -coastal effects[END_REF][START_REF] Wang | An analysis of 2004 sumatra earthquake fault plane mechanisms and indian ocean tsunami[END_REF]).

To mitigate the tsunami, it is very important to construct inundation maps along with those coastlines vulnerable to tsunami flooding. These maps should be developed based on the historical tsunami events and hypothetical scenarios. To produce realistic and reliable inundation estimates, it is essential to use a numerical model that calculates accurately the tsunami propagation from a source region to the coastal areas of concern and the subsequent tsunami run-up and inundation [START_REF] Wang | manual of comcot[END_REF].

condition for the fine grids linear interpolation and update interface condition for the coarse grid by using the average method in case adjacent structured grids.

Numerical Results

A full description of initial condition, boundary condition and model configuration can be found in ( [START_REF] Wang | manual of comcot[END_REF][START_REF] Philip | Computer programs for tsunami propagation and inundation[END_REF]). The information for the velocities and the free surface elevation are exchanged on the boundaries between two nested grid regions. At each new time level, the information on the boundary of a finer grid are obtained by linearly interpolating in (both spatially and temporally). At each next time level for the outer parent grid, the free surface elevation and velocity on a coarser grid are updated by averaging scheme (both spatially and temporally).

8.3.1 Case 1: When space refinement ratio is 1:5 and temporal refinement ratio is 1:2 for 2DNSWEs

Example 1:

In this example, we use system of 2DNSWEs given in equations (2.8), (2.21), and (2.30) in Section 2.4 with (𝜈=0, non-rotate f=0, wind stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains four fine grids in level 2 at difference times t= 500, 1000,..., 5000 sec when the water depth is constant.

The information on the set up of different grids for 2DNSWEs are given below. Notes that: All the fine grids here are separate from each other.

Information

Example 2 : By the same previous example, we use system of 2DNSWEs given by equations in Section (2.4) with (𝜈=0, non-rotate f=0, wind stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid in level 2 which contains again one fine grid in level 3. Also, a fine grid in level 3 contains again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for 2DNSWEs are given below: The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 24), grid 24-level 3 (grid 33), and grid 33-level 4 (grid 46). Notes that: All the results in a grid 24 are the best and the results in a grid 44 are better than the results in a grid 42.

Information

Case 2:

When the space refinement ratio is 1:5 and temporal refinement ratio is 1:2 for linear 2DSWEs

Example 1:

In this example, we use system of linear 2DSWEs given in equations (2.8), (2.39), and (2.44) in Section 2.6 with non-rotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid which contains four fine grids at difference times t=500, 1000, ..., 5000 sec. Example 2: By the same previous example, we use system of linear 2DSWEs given in Section 2.6 with nonrotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid which contains one fine grid in level 2 that contains again one fine grid in level 3. Also, a fine grid in level 3 contains again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below: 8.9: The information on the set up of the different grids at multiple levels for linear 2DSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 22), Notes that: The space refinement ratio in levels 2 and 3 is 1:5 and in level 4 is 1:3

In this example, we use system of 2DNSWEs given in Section 2.4 with (𝜈, non-rotate f=0, wind stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid in level 2 which contains again one fine grid in level 3. Also, a fine grid in level 3 contains again two fine grids in level 4 at different times t=500, 1000,..., 5000 sec. In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈=0, wind stress and f=0), when a coarse grid contains only one fine grid at difference times t=500, 1000,..., 4000 sec. 
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Chapter 2 :

 2 An Explicit Staggered Finite Difference Scheme for 2D Shallow Water Equations (Numerical Techniques for 2DSWEs) This chapter is a description of the development and evaluation of proposed numerical methods for 2D shallow water models, which depend on the choice of techniques and numerical methods used.Chapter 3: Numerical Results for 2D Shallow Water Equations (Validations of the Model). In order to validate the proposed method of 2D shallow water equations, some examples of the tsunami model are applied. Some examples for 2DSWEs are tested using Gaussian level initial condition. The application for rotating or (non-rotating) shallow water equations are given. Full model of 2DSWEs including Coriolis force as the source terms are considered. The numerical simulations are implemented by computer programming using Matlab and Fortran 90 under Dirichlet, reflexive boundary conditions and moving boundary conditions. Part II: Coupling for Two-Way Nesting Grids: Mathematical Framework and Applications for Shallow Water Model (Nested Grid For 2D Shallow Water Equations) In the major part of the thesis, we are interested to propose a new two-way interaction technique for multiple nesting grids to solve ocean models. This part consists of two chapters: Chapter 4: The Configuration a Nested Grid for Shallow Water Models A literature review of techniques used to try to increase the efficiency and accuracy of 2D shallow water models are presented. Some new algorithms are established to implement two-way interaction technique for this model. Two-way nesting systems depend on the type of interpolation, the location of the dynamical interface, conservation properties and type of update. Different cases of open boundary conditions for two-way nesting grids are studied.

7 . 9 . 1 at multiple levels. 10 .

 79110 Four choices of restriction operator for the free surface elevation and velocities on Arakawa Cgrid are applied. The choice of the full-weighting and the average update operators are proposed which have the excellent properties regarding the filtering.8. Suggested a new technique for multiple nested grids at multiple levels for shallow water models with nest 3:1 and 5:1. Coupling multi systems for multiple nested grids are achieved for 2DSWEs with nest 3:1 and 5:Apply the proposed technique to multiple nested grids for some examples of the tsunami model. 11. All the simulation are made by using Dirichlet condition, reflexive conditions and moving boundary conditions. Boundary conditions for the nested domain are linearly interpolated from the coarse domain and feedback using the average scheme or (full-weighting scheme) with (separate/adjacent) dynamic interface and feedback interface from the high-resolution nested grids solution to the low-resolution coarse grids solution.

Figure 1 - 1 :

 11 Figure 1-1: Shallow water equations in canals.

Figure 1 - 2 :

 12 Figure 1-2: Shallow water equations in dam break.

  (a) 𝐷𝑞 𝐷𝑡 Change in velocities over time, where 𝐷/𝐷𝑡 is the material or total derivative. (b) ▽𝑝 The internal pressure gradient of the fluid (the change in pressure) (c) 𝜈 ▽ 2 (𝑞) The internal stress forces acting on the fluid. (d) 𝐹 The external stress forces acting on the fluid.

2 .

 2 The vertical momentum exchange is negligible in comparison to the horizontal momentum exchange and the vertical velocity component w is much smaller than the horizontal component 𝑢, 𝑣 (i.e | 𝑤 |<<| 𝑢 | and | 𝑤 |<<| 𝑣 |).

  surface elevation over time. (b) 𝜕(𝐻𝑢) 𝜕𝑥 The gradient of x-component of the flow volume between surface and seafloor.

  1. 𝜕𝑢 𝜕𝑡 Change of the velocity over time (sometimes called the local variation of momentum over time).

2. 𝜕𝑢 2

 2 𝜕𝑥 + 𝜕𝑢𝑣 𝜕𝑦 The advective terms. The terms are non-linear and are sometimes called spatial acceleration terms.
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 13 Figure 1-3: Depth-averaged velocity distribution.

1. 4 . 2

 42 The depth-averaged continuity equation We can start to integrate the individual terms of the continuity equation (1.1) over the vertical as follows:

4 .

 4 The numerical treatment of boundary conditions should be such that the overall accuracy and efficiency are not greatly reduced.
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 21 Figure 2-1: Finite difference method.

Figure 2 - 3 :

 23 Figure 2-3: Finite difference method in Arakawa C-grid.
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 24 Figure 2-4: The standard Robert-Asselin filter.

2. 4

 4 Another Way to Numerical Discretization of 2DSWEs when the Time Step (n+1/2)

  major structures and functionalities of the program are demonstrated. It can be seen that the program has three major parts: Initialization or configuration, shallow water model, and transport.Main components of the first part, initialization are mesh or grid systems and finite difference operators initialization after data files are read. All the physical and numerical parameters used in the model are provided for users and can be changed according to the condition of the simulation. New runs will review the parameters used for the last time as well, they will be used if no change has been made. It is clear the sequence of the flow chart includes solving momentum equations and the continuity equation.Boundary conditions have symbolic meaning that there are applied to all processes involved. Figure2-5 shows the flowchart of the model.
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 25 Figure 2-5: Show organization chart of the calculation program

Figure 2 - 6 :

 26 Figure 2-6: The numerical and physical domain of dependence.

  Dirichlet, reflexive boundary conditions and moving boundary conditions are applied at the boundaries and implementation numerical simulations are conducted by computer programming using Matlab and Fortran 90. The performance of the proposed technique is tested on several examples of the tsunami model. Some examples of 2DSWEs are applied using Gaussian level initial condition. The numerical results indicate that the model has high accuracy and efficiency by using these techniques.
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  , 1) = 𝜂(𝑥, 2); 𝑢(𝑥, 1) = 𝑢(𝑥, 2); 𝑣(𝑥, 1) = -𝑣(𝑥, 2); 𝜂(𝑥, 𝑛) = 𝜂(𝑥, 𝑛 -1); 𝑢(𝑥, 𝑛) = 𝑢(𝑥, 𝑛 -1); 𝑣(𝑥, 𝑛) = -𝑣(𝑥, 𝑛 -1); 𝜂(1, 𝑦) = 𝜂(2, 𝑦); 𝑢(1, 𝑦) = -𝑢(2, 𝑦); 𝑣(1, 𝑦) = 𝑣(2, 𝑦); 𝜂(𝑛, 𝑦) = 𝜂(𝑛 -1, 𝑦); 𝑢(𝑛, 𝑦) = -𝑢(𝑛 -1, 𝑦); 𝑣(𝑛, 𝑦) = 𝑣(𝑛 -1, 𝑦);
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 31 Figure 3-1: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for 2DNSWEs at 𝑡 = 10, 20, ..., 100 days.

Figure 3 - 2 :

 32 Figure 3-2: Simulation of free surface elevation at time 𝑡 = 100, 200, ..., 1000 hours.

Figure 3 - 3 :

 33 Figure 3-3: 𝑙2-𝑅𝐸 of free surface elevation for linear SWEs at 𝑡 = 10, 20, ..., 1000 hours.
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 34 Figure 3-4: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for linear SWEs at 𝑡 = 10, 20, ..., 100 days.

𝑡 = 2 .

 2 5𝑒 -2 𝑠𝑒𝑐, water depth 10 m and the total steps 125. The first figure compares the approximate solution for free surface elevation, 𝑢-velocity and 𝑣velocity and the second figure shows 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for 2D linear SWEs at different time 𝑡 = 1000, 2000, ..., 5000 sec.
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 35 Figure 3-5: Comparison the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-velocity for linear SWEs.

Figure 3 - 6 :

 36 Figure 3-6: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for linear SWEs.

  numerical values of the parameters are chosen as follows: 𝑛𝑥 = 𝑛𝑦 = 120, Δ𝑥=Δ𝑦 =9, time step 𝑡 = 2.5𝑒 -2 𝑠𝑒𝑐 and the water depth 10m. The first figure compares the approximate solution for free surface elevation, 𝑢-velocity and 𝑣velocity and the second figure shows 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity at different time 𝑡 = 1000, 2000, ..., 5000 sec.
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 37 Figure 3-7: Comparison the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-velocity for nonlinear SWEs.
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 38 Figure 3-8: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for nonlinear SWEs.

Example 2 :

 2 Closed step Bump Description Numerical parameters: The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: number of grids 37 × 37, Δ𝑥 = 20000m, Δ𝑦 = 20000m, the time step Δ𝑡 = 500s, the simulation duration 𝑡 = 100000s, water depth ℎ=10𝑚, island 40000m×80000m, radius 25000m, 𝑈 0 =4.9e-03, energy=286e+04, horizontal length 7.4e+05, and the vertical length 10m and total steps 200.
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 41 Figure 4-1: Shows Structured grid.

Figure 4 - 2 :

 42 Figure 4-2: Shows unstructured grid.
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 43 Figure 4-3: Shows hybrid grid.

-4 as domain 2 . 1 and 2 ) in Figure 4 - 4 .

 21244 The frame consists of an overlapping of the two different resolution domains. The interior boundary of the coarse domain is the mesh interface (feedback) and the fine domains foreign boundary where the boundary conditions for the domain are generated is the dynamic interface (input). The separation of the interfaces allows for only internally generated nested domain values being used in the feedback calculation. The first step involves the simulation of the coarse domain and the mesh/window frame domain (domains The second step involves the use of the data generated at the dynamic interface as boundary conditions for the simulation over domain 2 and the nested grid in domain 3. Time interpolation is performed at the dynamic interface and spatial interpolation is performed at the mesh interface. This method allows two-way interaction due to domain 1 being influenced by domain 2 and the coarse domain influences the nested domain by providing the boundary conditions for the nested domain simulation. This method is a very common method in nested modeling and has been used in a large number of nesting schemes in both meteorology and hydrology[START_REF] Zhang | A Two-Way Interactive Nesting Procedure with Variable Terrain Resolution[END_REF][START_REF] Phillips | On the Strategy of Combining Coarse and Fine Grid Meshes in Numerical Weather Prediction[END_REF][START_REF] Gregory | Design of a movable nested-mesh primitive equation model[END_REF].
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 44 Figure 4-4: Embedded nested domain.

Figure 4 -

 4 6 shows a sample grid configuration for a one-way nested model with 3:1 spatial nesting ratio. This model runs almost completely separately to calculate the domain of interest in both levels of resolution. The interaction between the domains occurs in the area of the nested domain boundaries. The boundary conditions for the nested domain are generated from the coarse domains data that are interpolated in space and time. Initially, the coarse domain is integrated in time and the data required for the nested domains boundary conditions are modified to collaborate with the fine domains resolution. The fine domain solution is then performed using the boundary data with the fine domain time step.
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 46 Figure 4-6: Adaptive mesh refinement.
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 47 Figure 4-7: Notations used in the definitions of the nested models.

  𝜑 𝑐 𝐼,𝐽 = 𝜑 𝑛 𝑖,𝑗 where 𝜑 𝑐 𝐼,𝐽 represents the coarse grid point and 𝜑 𝑛 𝑖,𝑗 represents the nested grid point that overlays the center of the coarse grid cell, 𝑖,𝑗 representing the grid point locations in relation to the 𝑥-direction and 𝑦-direction in the nested domain and 𝐼,𝐽 representing the coarse domain grid point locations in relation to 𝑥-direction and 𝑦-direction.
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 48 Figure 4-8: Copy interpolation scheme.

Figure 4 - 9 :

 49 Figure 4-9: Average interpolation scheme.
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 411 Figure 4-11: Shapiro interpolation scheme.

Figure 4 - 12 :

 412 Figure 4-12: Full-weighting interpolation scheme.

Figure 4 - 14 :

 414 Figure 4-14: Detailed view of nested grid. Left panel: grid nesting at lower-left corner of sub-level grid region; Right panel: grid nesting at upper-right corner of sub-level grid region.

4. 4 . 1 Case 1 : 3 -Step 1 .-Step 2 .

 411312 Two-way nesting grids algorithm (Horizontal embedding procedure)Let describe these procedure step by step. Suppose all values in the inner region with finer resolutions and the outer region with coarsest grid resolution, are known at time level 𝑡 = 𝑛Δ𝑡 and we need to obtain the inner and the outer region values at the next time step 𝑡 = (𝑛 + 1)Δ𝑡. Since the outer grid region and the inner grid region adopt different grid sizes, the time step sizes for each region are different due to the requirement of stability. At a certain level of time, velocity flows in both large and small grid models are determined from the momentum equations, with except of velocity flows for the smaller grid system along the boundaries between two grid regions. These data are determined by interpolating the adjoining velocity flows from the large grid model.Assume that all model variables at time 𝑡 = 𝑛Δ𝑡 are known and the time step of the inner region is one half the time for the outer region. The time step for the fine region is one half the time for the coarse region and the space refinement ratio is 1:Get the water surface elevation 𝜂 at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the coarse grid by solving continuity equation. To solve the continuity equation in the fine grid, we need to have the flux information along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the flux values (velocities) in the coarse grids at the connected boundary are linearly interpolated and then those interpolated the values are set to the fluxes in the inner grids at the boundary.-Step 3. Solve the water surface elevation 𝜂 at 𝑡 = (𝑛+1/4)Δ𝑡 in a fine grid using continuity equation.-Step 4. Solve the flux values at 𝑡 = (𝑛 + 1/2)Δ𝑡 in a fine grid by using momentum equations.-Step 5. Solve the water surface elevation 𝜂 at 𝑡 = (𝑛 + 3/4)Δ𝑡 in the fine grid using continuity equation. Here, we should have the flux information along the connected boundary at 𝑡 = (𝑛 + 1/2)Δ𝑡.

  First, since we already know the free surface elevation at 𝑡 = (𝑛 + 1/2)Δ𝑡 and flux values at 𝑡 = 𝑛Δ𝑡 in the outer region, we can get the flux velocities in the outer region along the connected boundary at 𝑡 = (𝑛 + 1)Δ𝑡 by solving momentum equation. Second, these flux values at 𝑡 = (𝑛 + 1)Δ𝑡 are linearly interpolated along the connected boundary. To get the value at 𝑡 = (𝑛 + 1/2)Δ𝑡, outer flux values at 𝑡 = 𝑛Δ𝑡 and 𝑡 = (𝑛 + 1)Δ𝑡 are also linearly interpolated. Those spatially and timely interpolated flux values are assigned to the flux in the inner grid at the boundary.

9 .

 9 Transfer fine grid back to coarse grid 8..Boundary transfer from coarse to fine

Figure 4 - 15 :

 415 Figure 4-15: Simulation involving two-way nesting.

Case 2 : 3 -

 23 Both space and time refinement ratio are 1:Step 1. Get the water surface elevation at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the outer region (coarse grid) by solving continuity equation. -Step 2. To solve the water surface elevation in the inner region, we need to have the flux information along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the flux values in the outer grids at the connected boundary are linearly interpolated and then those interpolated values are set to the fluxes in the inner at the boundary. -Step 3. Solve the water surface elevation at 𝑡 = (𝑛 + 1/6)Δ𝑡 in the inner grid region using continuity equation. -Step 4. Solve the flux values at 𝑡 = (𝑛 + 2/6)Δ𝑡 in the inner grid region using momentum equations. -Step 5. Solve the water surface elevation at 𝑡 = (𝑛 + 3/6)Δ𝑡 in the inner grid region. To transfer (update) the information from the inner grid region to the outer region, if the free surface elevation in the inner grid region lies at the same position for the outer region. Therefore, the values transferred directly to the coarse grid in the outer region. Otherwise, use the full-weighting or average operators in both spatially and timely values for updating. -Step 6. Solve the flux values at 𝑡 = (𝑛 + 4/6)Δ𝑡 in the inner grid region using continuity equation. -Step 7. Solve the water surface elevation at 𝑡 = (𝑛 + 5/6)Δ𝑡 in the inner grid region by solving continuity equation. -Step 8. Solve the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner region by solving momentum equations. -Step 9. Solve the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving momentum equations. -Step 10. Transfer all the information at 𝑡 = (𝑛 + 1)Δ𝑡 from the inner to outer region and update the values .
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 416 Figure 4-16: Simulation involving two-way nesting.

Figure 4 -

 4 Figure 4-17: Two-way nesting

3

 3 The following figure shows embedding the fine grid within the coarse grid. The larger bars and crosses are the overlapping grid points. The coordinates of the coarse grid are shown by capital letters and for the fine grid by lower case letters.
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 418 Figure 4-18: Embedding the fine grid within the coarse grid.

Figure 4 - 20 :

 420 Figure 4-20: Diagram for two way coupling.
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 52 Figure 5-2: Simulation of free surface elevation in a coarse grid at time=2000 min.
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 53 Figure 5-3: Simulation of free surface elevation in a coarse grid at time=3000 min.
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 54 Figure 5-4: Simulation of free surface elevation in a finer grid at time=1000 min.
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 55 Figure 5-5: Simulation of free surface elevation in a finer grid at time=2000 min.
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 56 Figure 5-6: Simulation of free surface elevation in a finer grid at time=3000 min.
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 57 Figure 5-7: Simulation of free surface elevation in a finer grid at time=2000 hour.
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 58 Figure 5-8: Simulation of free surface elevation in two-way nesting grids at time=1000 min.
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 59 Figure 5-9: Simulation of free surface elevation in two-way nesting grids at time=2000 min.
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 510 Figure 5-10: Comparison the approximate solution for free surface elevation between the coarse and the fine grids at 𝑡 = 100 min, 200 min, ..., 2000 min.
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 512 Figure 5-12: Simulation of free surface elevation at 𝑡 = 50 min.

Figure 5 - 13 :

 513 Figure 5-13: Simulation of free surface elevation at 𝑡 = 100 min.
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 514 Figure 5-14: Simulation of free surface elevation at 𝑡 = 500 hr.
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 515 Figure 5-15: Simulation of free surface elevation at 𝑡 = 1000 hr.
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 5 Figure 5-16: Comparison 𝑙2-error norm and 𝐻1-error norm in a coarse grid.
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 5 Figure 5-17: Comparison 𝐻1-error norm and 𝑙2-error norm in a fine grid.
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 5 Figure 5-18: Comparison 𝐻1-error norm in a coarse grid, and a fine grid for linear SWEs.

Figure 5 -

 5 Figure 5-19: Comparison 𝑙2-error norm in a coarse grid, and a fine grid for linear SWEs.

  02. The time integrations were performed for 100 days. The following figure shows 𝑙2-error norm and 𝐻1-error norm in a coarse grid at 𝑡 = 10, 20, ..., 100 days.
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 5 Figure 5-20: Show 𝑙2-error norm and 𝐻1-error norm in a coarse grid.
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 5 Figure 5-21: Comparison 𝑙2-error norm and 𝐻1-error norm in a fine grid at 𝑡=10, 20, ..., 100 days.
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 5523 Figure 5-22: Show 𝑙2-error norm in a coarse grid, and a fine grid
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 5 Figure 5-25: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction operator for the free surface elevation
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 5 Figure 5-26: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction operator for free surface elevation
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 5 Figure 5-27: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction operator for free surface elevation
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 5 Figure 5-28: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction operator for free surface elevation

Figure 5 - 31 :

 531 Figure 5-31: Comparison 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting for structured grid with a separate interface

Figure 6 - 2 :

 62 Figure 6-2: Shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a in fine grid (grid 21)

3 :

 3 The information about the coarse and the fine grids at multiple levels for linear 2DSWEsThe first figure shows 𝑙2-𝑅𝐸 of free surface elevation between a fine grid in level 2 and a fine grid in level 3 in two-way nested grid and the second figure comparison 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-fine grid (grid 21) and grid 21-fine grid (grid 31) in two-way nested grid.
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 6566 Figure 6-5: 𝑙2-𝑅𝐸 between the grid 21 and the grid 31 in two-way nested grid
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 6768692 Figure 6-7: Simulation of free surface elevation in the coarse grid at time= 500 min
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 610 Figure 6-10: Comparison 𝑙2-𝑅𝐸 of free surface in two-way nested grid at t=500, 1000,..., 4000 hour
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 62613361435 Figure 6-11: Comparison 𝑙2-𝑅𝐸 of free surface elevation between the coarse grid and two fine grids in level 2

Figure 6 - 15 :

 615 Figure 6-15: Comparison 𝑙2-𝑅𝐸 between a coarse grid-grid 22 and grid 22-grid 32 for nonlinear SWEs

  .1)-(2.3) with (non-rotated f=0, viscosity=0, and wind stress=0), if we take different values of time t= 10, 20,..., 200 hour, when 𝑛𝑥 = 𝑛𝑦 = 200, Δ𝑥=Δ𝑦=1, and Δ𝑡=0.01s in a coarse grid with total steps 7200 and 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=0.33, and Δ𝑡=0.005 s in fine grid to find ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and two-way nesting grids. The following figures show 𝑙2-𝑅𝐸 of free surface elevation in oneway nesting grids and two-way nesting grids using three different update schemes. All the simulation are made by using Dirichlet boundary conditions without a separate dynamic and feedback interface with CFL condition 0.138.
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 618 Figure 6-18: Comparison 𝑙2-𝑅𝐸 in one-way nesting grid and two-way nesting grid using the average scheme
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 619 Figure 6-19: Comparison 𝑙2-𝑅𝐸 of the free surface elevation in one-way nesting and two-way nesting using Shapiro interpolation scheme
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 6 Figure 6-20: Comparison 𝑙2-𝑅𝐸 in one-way and two-way nesting using the full-weighting scheme

Figure 6 - 21 : 2 :

 6212 Figure 6-21: Compares 𝑙2-𝑅𝐸 in two-way nesting using the average scheme and the full-weighting scheme

Figure 6 - 22 : 6 . 7

 62267 Figure 6-22: Compares 𝑙2-𝑅𝐸 in two-way nesting using the average scheme and the full-weighting scheme

  Δ𝑡=0.01s in fine grid with CFL 0.04. Where 𝜂(𝑖, 𝑗) = 10 * 𝑒𝑥𝑝((-5((𝑥) 2 + (𝑦) 2 )) and 𝑢(𝑥, 𝑦, 𝑡 = 0)=0, 𝑣(𝑥, 𝑦, 𝑡 = 0)=0
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 623624 Figure 6-23: ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting
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 625 Figure 6-25: ABSE between the coarse grid and the fine grid for linear 2DSWEs

Figure 6 - 26 :

 626 Figure 6-26: Comparison 𝑙2-𝑅𝐸 and ABSE in two-way nesting grids
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 627628629630 Figure 6-27: 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting grid for linear SWEs
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 631632 Figure 6-31: 𝑙2-𝑅𝐸 in two-way nesting using four different update schemes without separate dynamic interface and feedback interface
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 633 Figure 6-33: Free surface elevation on the coarse grid domain using average method.
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 634 Figure 6-34: Free surface elevation on the coarse grid domain using mix-low method
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 635 Figure 6-35: Free surface elevation on the coarse grid domain using full-weighting method
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 6372638 Figure 6-37: Comparison the ABSE between a coarse grid and a fine grid in level 2
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 640641 Figure 6-40: Comparison 𝑙2-𝑅𝐸 when use four choice for update schemes with a separate interface

7. 1

 1 Two-Way nesting grid algorithm Case 1: Space and temporal refinement factor equals 1:5 Suppose all information about the flux values and the water surface elevation in the inner region (with finer resolutions) and the outer region (the parent grid with the coarsest grid resolution), are known at time level 𝑡 = 𝑛Δ𝑡 and we need to solve the inner and the outer region values at the next time steps 𝑡 = (𝑛 + 1)Δ𝑡 and 𝑡 = (𝑛 + 2)Δ𝑡.

in level 3

 3 for difference times t= 1000, 2000,..., 5000 hour. The information about the coarse and fine grids are given by Table7.1 . The first figure compares 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level 2-fine grid in level 3 in case 1:5 and the second figure compares 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level 2-fine grid in level 3 in case 1:3.
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 73574 Figure 7-3: Comparison 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level 2-fine grid in level 3 in case 1:5
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 75476578 Figure 7-5: Comparison 𝑙2-𝑅𝐸 and ABSE in one-way nesting in case 1:4
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 7937103711471253 Figure 7-9: Comparison 𝑙2-𝑅𝐸 and ABSE for one-way nesting in case 1:3
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 713 Figure 7-13: Comparison 𝑙2-𝑅𝐸 of free surface elevation , 𝑢-velocity and 𝑣-velocity
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 81 Figure 8-1: Multiple nested grid at multiple levels for 2DNSWEs

Figure 8 - 2 :Figure 8 - 3 :

 8283 Figure 8-2: Comparison 𝑙2-𝑅𝐸 of free surface between a coarse grid and level 2 (grid 21 and grid 24)
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 8587 Figure 8-5: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 24), level 2-level 3 (grid 33), and level 3-level 4 (grid 46)

Figure 8 - 8 :Table 8 . 5 :

 8885 Figure 8-8: Multiple nested grids at multiple levels for linear 2DSWEs

Figure 8 - 9 :

 89 Figure 8-9: Show 𝑙2-𝑅𝐸 between a coarse grid and four fine grids (21, 22, 23 and 24)

grid 22 -

 22 level 3 (grid 33) and level 3 (grid 33)-level 4 (grid 44) in case the time steps are 0.010 and 0.030.

Figure 8 -Figure 8 - 14 :

 8814 Figure 8-13: Comparison 𝑙2-𝑅𝐸 for linear 2DSWEs when time step 0.010

Table 8 . 10 :

 810 The information on the set up of the different grids for 2DNSWEs are given below: The information on the set up of the different grids at multiple levels The following figures show 𝑙2-𝑅𝐸 of free surface between a coarse grid-level 2 (grid 24), level 2-level 3 and level 3-level 4 (grids 41).
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 8816 Figure 8-15: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 24), level 2-level 3 (grid 31) and level 3-level 4 (grids 41)

Figure A- 1 :

 1 Figure A-1: A sketch of moving boundary scheme

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  Altaie, New Techniques of Derivations for 2D Shallow Water Equations, International Journal of Advanced Scientific and Technical Research, Issue 6 volume 3, May-June 2016. 2. Chapter 3: It has been published in proceeding as: Huda Altaie and Pierre Dreyfuss, Numerical Solutions For 2D Depth-Averaged Shallow Water Equations, International Mathematical Forum, Vol.13, 2018, no.2, 79-90.

3. Some Sections in Chapters 4 and 5: It has been published in proceeding as:

Huda 

Altaie, A Two-Way Nesting for Shallow Water Model, International Review of Physics (I.RE.PHY.), Vol. 11, N. 4, ISSN 1971-680X, August 2017. 4. Some Sections in Chapter 6: It has been submitted as: Huda Altaie and Fabrice Planchon, Results of higher accuracy for 2D shallow water equations with (separate/adjacent) for structured grids, 2018. 5. Some Sections in Chapter 6: It has been published in proceeding as: Huda Altaie, A Multiply Nested Model for Non-Linear Shallow Water Model, Journal of Research and Reports on Mathematics, Vol 1, no.2, 2018. 6. Chapter 7: It has been published in proceeding as: Huda Altaie, Numerical Model for Nested Shallow Water equations, International Journal of Pure and Applied Mathematics-IJ-PAM, Vol 118, no.4, 1033-1051, 2018. 7. Chapter 8: It has been published in proceeding as: Huda Altaie, Application of a Two-Way Nested Model for Shallow Water, Journal of Research and Reports on Mathematics, 2018.

  2𝜔𝑠𝑖𝑛𝜑 , where 𝜔 is the earth's angular velocity (𝑠 -1 ) and 𝜑 is north latitude (positive northward), 𝑓 = 1.01 × 10 -4 Coriolis frequency at 42 latitude.

	𝐶 𝑛	Courant number.

𝑓

Coriolis parameter, f= 𝐹 Volume force.

  water equations are hyperbolic partial differential equations (or parabolic if viscous shear is considered) which explain the flow behavior of rivers. These equations were established in (1775) by Laplace and were first used in (1871) by the physicist Adhémar Jean Claude Barré de Saint-Venant.

	Part I Chapter 1 1.1 Introduction
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Shallow

  If we substitute the component of the stress tensor 𝜏 𝑥𝑥 , 𝜏 𝑦𝑦 , 𝜏 𝑧𝑧 , 𝜏 𝑥𝑦 , 𝜏 𝑥𝑧 , and 𝜏 𝑦𝑧 in equations (1.2)-

	(1.4), we obtain:																					
	For the case of the 𝑥-component															
	𝜌	(︂	𝜕𝑢 𝜕𝑡	+ 𝑢	𝜕𝑢 𝜕𝑥	+ 𝑣	𝜕𝑢 𝜕𝑦	+ 𝑤	𝜕𝑢 𝜕𝑧	)︂	=𝐹 𝑥 -	𝜕𝑝 𝜕𝑥	+ 𝜇	𝜕 𝜕𝑥	(︂	𝜕𝑢 𝜕𝑥	+	𝜕𝑢 𝜕𝑥	)︂	+ 𝜇	𝜕 𝜕𝑦	(︂	𝜕𝑣 𝜕𝑥	+	𝜕𝑦 𝜕𝑢	)︂
											+ 𝜇	𝜕 𝜕𝑧													

  𝑣 2 , 𝜏 𝑠 𝑦 =𝜌 𝑎 𝐶 𝑎 𝑣 10 2 𝑣 2 , and the values 𝐶 𝑎 , 𝐶 𝐷 , 𝑢 10 , 𝑣 10 , 𝜌 0 , and 𝜌 𝑎 listed in mathematical notations Page 23.

	𝜕(𝐻𝑢) 𝜕𝑡	+	𝜕(𝐻𝑢 2 ) 𝜕𝑥	+	𝜕(𝐻𝑢𝑣) 𝜕𝑦	-𝑓 𝐻𝑣 = -𝑔𝐻	𝜕𝜂 𝜕𝑥	+ 𝜈 𝑥 𝐻(	𝜕 2 𝑢 𝜕𝑥 2 ) + 𝜈 𝑦 𝐻(	𝜕 2 𝑢 𝜕𝑦 2 ) +	𝜌 𝑎 𝜌 0	𝐶 𝑎 𝑢 10	2 √︁ 𝑢 2 10 + 𝑣 2 10
							-	𝜌 0 𝜌 0	𝐶 𝐷 𝑢	2 √︀	𝑢 2 + 𝑣 2	(1.11)
	𝜕(𝐻𝑣) 𝜕𝑡	+	𝜕(𝐻𝑣𝑢) 𝜕𝑦	+		𝜕(𝐻𝑣 2 ) 𝜕𝑦	+ 𝑓 𝐻𝑢 = -𝑔𝐻	𝜕𝜂 𝜕𝑦	+ 𝜈 𝑥 𝐻(	𝜕 2 𝑢 𝜕𝑥 2 ) + 𝜈 𝑦 𝐻(	𝜕 2 𝑣 𝜕𝑦 2 ) +	𝜌 𝑎 𝜌 0	𝐶 𝑎 𝑣 10	2 √︁ 𝑢 2 10 + 𝑣 2 10
							-	𝜌 0 𝜌 0	𝐶 𝐷 𝑣	2 √︀ 𝑢 2 + 𝑣 2	(1.12)
	where 𝜏 𝑠 𝑥 = 𝜌 𝑎 𝐶 𝑎 𝑢 10	2 √︀ 𝑢 2 10 + 𝑣 2 10 , 𝜏 𝑏 𝑥 =𝜌 0 𝐶 𝐷 𝑢 2 √	𝑢 2 + √︀ 𝑢 2 10 + 𝑣 2 10 , 𝜏 𝑏 𝑦 =𝜌 0 𝐶 𝐷 𝑣 2 √ 𝑢 2 +

  By Integrating the above equation from the free surface at 𝑧 = 𝜂 to some level 𝑧

																							-[𝑢	𝜕𝜂 𝜕𝑥	+ 𝑣	𝜕𝜂 𝜕𝑦	-𝑤]| 𝑧=𝜂
															using equation (1.13 )	⏟ =-𝜕𝜂 𝜕𝑡 by using equation (1.14 ) ⏞
						𝜂				𝜂												
	=	𝜕𝜂 𝜕𝑡	+	𝜕 𝜕𝑥	∫︁	𝑢𝑑𝑧 +	𝜕 𝜕𝑦	∫︁	𝑣𝑑𝑧											(1.16)
						-ℎ			-ℎ												
	By using equation (1.9) in the terms 2 and 3 of equation (1.16). Finally, we obtain the depth-
	averaged of the continuity equation (some times called vertically-integrated continuity equation)
	as fallows:																					
												𝜕𝜂 𝜕𝑡	+	𝜕(𝐻𝑢) 𝜕𝑥	+	𝜕(𝐻𝑣) 𝜕𝑦	= 0
	1.4.3 The momentum depth-averaged equations
	Consider the x-momentum equation given by equation (1.2)	
			𝜕𝑢 𝜕𝑡	+ 𝑢	𝜕𝑢 𝜕𝑥	+ 𝑣	𝜕𝑢 𝜕𝑦	+ 𝑤	𝜕𝑢 𝜕𝑧	= -	1 𝜌	𝜕𝑝 𝜕𝑥	+	1 𝜌	𝜕𝜏 𝑥𝑥 𝜕𝑥	+	1 𝜌	𝜕𝜏 𝑦𝑥 𝜕𝑦	+	1 𝜌	𝜕𝜏 𝑧𝑥 𝜕𝑧	+	1 𝜌	𝐹 𝑥
	and the 𝑧-momentum given in equation (1.4)								
														𝜕𝑝 𝜕𝑧	= -𝜌𝑔		

𝑝 ∫︁ 𝑝𝑠 𝑑𝑝 = -𝑧 ∫︁ 𝜂 𝜌𝑔𝑑𝑧 𝑝 -𝑝 𝑠 = -𝜌𝑔(𝑧 -𝜂)

  When (switch Δ𝑥 and Δ𝑦:Δ𝑥 ↔ Δ𝑦, switch 𝑖 and 𝑗:𝑖 ↔ 𝑗, switch 𝑢 and 𝑣 :𝑢 ↔ 𝑣, switch signal of the Coriolis term + ↔ -) and we assume that 𝑖 * =𝑗, 𝑗 * =𝑖 Finally, after applying an explicit centered finite difference and leapfrog schemes, the 2DSWEs become as:(Which are approximately first order in space and second order in time)

	𝜂 𝑛+1 𝑖,𝑗 =𝜂 𝑛-1 𝑖,𝑗 -	Δ𝑡 Δ𝑥	[︀	(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖+1,𝑗 -(𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 )𝑢 𝑛 𝑖,𝑗	]︀
	-	Δ𝑡 Δ𝑦	[︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗	]︀

𝑗 * Δ𝑥 -𝐻 𝑣 𝑖 * ,𝑗 * -𝑣 𝑖 * -1,𝑗 * Δ𝑥 ]︂ /Δ𝑥 -𝑔(𝐻 + 𝐻 𝑖 * ,𝑗 * -1 )/2(𝜂 𝑖 * ,𝑗 * -𝜂 𝑖 * ,𝑗 * -1 )/Δ𝑦 + 𝜌 𝑎 /𝜌 0 𝐶 𝑎 𝑣 10 √︁ 𝑣 2 10 + 𝑢 2 10 -𝐶 𝐷 𝑣 𝑖,𝑗 √︁ (𝑣 𝑖 * ,𝑗 * ) 2 + (𝑢 𝑖 * ,𝑗 * -1 + 𝑢 𝑖 * ,𝑗 * + 𝑢 𝑖 * +1,𝑗 * + 𝑢 𝑖 * +1,𝑗 * -1 ) 2

  6. Discretization of horizontal viscosity termsThey are approximated as follows; At the 𝑢 𝑖,𝑗 grid point and the (𝑛 + 1/2) time level.

	(𝜈 𝑥 ) 𝑛+1/2 𝑢 𝑖,𝑗	=	𝑎 2	(2Δ𝑥) (𝐻) 𝑛+1/2 𝑢 𝑖,𝑗	(2.15)
			≃ 𝑎Δ𝑥	(︁	𝐻 𝑖,𝑗 𝑛+1/2	𝑛+1/2 𝑖+1,𝑗 + 𝐻 2	)︁
	and				
	(𝜈 𝑦 ) 𝑛+1/2 𝑢 𝑖,𝑗	=	𝑎 2	(2Δ𝑦) (𝐻) 𝑛+1/2 𝑢 𝑖,𝑗	(2.16)
			≃ 𝑎Δ𝑦	(︁	𝑛+1/2 𝑖,𝑗 𝐻

  At the 𝑣 𝑖 point and the (𝑛 + 1/2) time level 2D depth-averaged 𝑦-momentum:

	𝑖,𝑗	2	+ 𝐻 𝑖+1,𝑗 𝑛+1/2	)︁	√︂	(𝑢 𝑛 𝑖,𝑗 ) 2 +	1 16	(𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 ) 2	⎞ ⎠
	Case 2:								

  .29) 

							≃	𝑎 8Δ𝑦	(︁	𝐻 𝑖,𝑗 𝑛+1/2	+ 𝐻	𝑛+1/2 𝑖,𝑗-1	)︁	(︀	𝑣 𝑛 𝑖,𝑗+1 -2𝑣 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗-1
	1 Δ𝑡	(︁	𝑣 𝑛+1 𝑖,𝑗 -𝑣 𝑛 𝑖,𝑗	)︁	+	1 4Δ𝑦	𝑣 𝑛+1 𝑖,𝑗	(︀	𝑣 𝑛 𝑖,𝑗+1 -𝑣 𝑛 𝑖,𝑗-1

)︀ which is approximately second order in space . Substituting all the approximations (2.23)-(2.29) in to equation (2.22) yield the approximation

  Computational algorithm in case the time step (n+1/2) The 2D depth-averaged shallow water equations are solved on the basis of the following algorithm: 1. Input model data and set initial data. At time 𝑡 = 𝑛Δ𝑡 = 0 (that is 𝑛 = 0, and 𝑡 = 𝑛 △ 𝑡 also 𝑖,𝑗 = ℎ 𝑖,𝑗 ) on the open boundary 𝐻 0 𝑖,𝑗 = ℎ 𝑖,𝑗 + 𝜂 0 𝑖,𝑗 are known. Get the values Update model time to level (𝑛 + 1/2), so 𝑡 = (𝑛 + 1/2) △ 𝑡. Solve the continuity equation to find𝜂 𝑛+1/2 and 𝐻 𝑛+1/2 using 𝑢 𝑛 , 𝑣 𝑛 . 3. Update model time to level (𝑛 + 1). Solve the momentum equations for 𝑢 𝑛+1 and 𝑣 𝑛+1 using 𝜂 𝑛+1/2 . 4. Update model to time level (𝑛 + 1). Solve continuity equation for 𝜂 𝑛+1 and 𝐻 𝑛+1 .

	𝜂 𝑖 𝑛+1/2	=𝜂	𝑛-1/2 𝑖,𝑗	-	1 4Δ𝑥	[︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 )𝑢 𝑛 𝑖-1,𝑗	]︀
		-	1 4Δ𝑦	[︀	(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗	]︀
	𝑢 0 𝑖,𝑗 = 𝑣 0 𝑖,𝑗 = 0, 𝐻 0 a. 𝑥-momentum equation								
	𝑢 𝑛-1/2 𝑖,𝑗 By using the equation (2.21) in Section 2.4 and assume the wind stress, viscosity, and the force 𝑓 , 𝑣 𝑛-1/2 𝑖,𝑗 and 𝜂 𝑛-1/2 𝑖,𝑗 by a forward step.
	𝜕𝑡 16Δ𝑦 Δ𝑡 (︀ 2𝐶 𝑎 Δ𝑡 𝑖,𝑗 -𝑢 𝑛 𝐻 =𝐾 -1 are ignored, we get: 𝑢 𝑛+1 𝑖 𝑥 [︃ + 𝜌 𝑎 𝜌 0 (︁ 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 + 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝜕(𝐻𝑢) 𝜕𝑥 + 𝑖+1,𝑗+1 + 𝑣 𝑛 𝜕(𝐻𝑣) 𝜕𝑦 = 0 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 𝑖+1,𝑗 )︁ 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 -𝑔Δ𝑡 2Δ𝑥 (𝜂 𝑛+1/2 )︀ (𝑢 𝑛 𝑖,𝑗+1 -𝑢 𝑛 𝑖,𝑗-1 ) 𝑖+1,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗 ) ]︃ 𝐾 𝑥 = ⎛ ⎝ 1 + Δ𝑡 4Δ𝑥 (︀ 𝑢 𝑛 𝑖+1,𝑗 -𝑢 𝑛 𝑖-1,𝑗 )︀ + 2𝐶 𝐷 Δ𝑡 (︁ 𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖+1,𝑗 )︁ √︂ (𝑢 𝑛 𝑖,𝑗 ) 2 + 1 16 (𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 ) 2 (2.32) 𝑣 𝑛+1 𝑖,𝑗 =𝐾 -1 𝑦 [︃ 𝑣 𝑛 𝑖,𝑗 -Δ𝑡 16Δ𝑥 (︁ 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 )︁ (︀ 𝑣 𝑛 𝑖+1,𝑗 -𝑣 𝑛 𝑖-1,𝑗 )︀ 2. 𝜕𝜂 -𝑔Δ𝑡 2Δ𝑦 (𝜂 𝑛+1/2 𝑖,𝑗 -𝜂 𝑛+1/2 𝑖,𝑗-1 ) + 𝜌 𝑎 𝜌 0 2𝐶 𝑎 Δ𝑡 (𝐻 𝑛+1/2 𝑖,𝑗 + 𝐻 𝑛+1/2 𝑖,𝑗-1 ) 𝑣 10 𝑢 2 10 10 + 𝑣 2 √︁ ]︃
		𝜕(𝐻𝑢) 𝜕𝑡	+	𝜕(𝐻𝑢 2 ) 𝜕𝑥	+	𝜕(𝐻𝑢𝑣) 𝜕𝑦	+ 𝑔𝐻	𝜕𝜂 𝜕𝑥	+ +	𝜏 𝑥 𝜌	= 0	(2.33)
		𝜕(𝐻𝑣) 𝜕𝑡	+	𝜕(𝐻𝑢𝑣) 𝜕𝑥	+	𝜕(𝐻𝑣 2 ) 𝜕𝑦	+ 𝑔𝐻	𝜕𝜂 𝜕𝑦	+ +	𝜏 𝑦 𝜌	= 0	(2.34)
	𝑛+1/2 𝑖,𝑗 By applying an explicit centered finite difference and leapfrog schemes with Robert-Asselin in above + 𝐻 𝑛+1/2

𝑖,𝑗+1 )(𝑣 𝑛+1 𝑖,𝑗+1 + 𝑣 𝑛 𝑖,𝑗+1 ) -(𝐻 𝑖,𝑗-1 )(𝑣 𝑛+1 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗 ) ]︁ (2.31) which is second order convergent in space and time. Note that, in the above 𝜂 𝑛+1/2 𝑖,𝑗 are calculated for all 𝑖, 𝑗 then the pair 𝑢 𝑛+1 𝑖,𝑗 ,𝑣 𝑛+1 𝑖,𝑗 are calculated for all 𝑖, 𝑗 and finally 𝜂 𝑛+1 𝑖,𝑗 calculated for all 𝑖, 𝑗. 2.4.1 5. Apply Robert-Asselin filter for 𝑢, 𝑣 and 𝜂 for each time step. 6. Return to step 2 and continue until the period of the simulation is completed. 2.5 Numerical Discretization for 2DSWEs Using EFDMs in Several Cases Consider that the system of 2DSWEs given in equations (1.32)-(1.34) when the wind stress, viscosity and the force 𝑓 are ignored. Therefore, this model becomes: system. There are two cases: Case 1. When the time step (𝑛 + 1/2) 1. Continuity equation: By using the equation (2.8 ) in Section 2.4, we get: ⎞ ⎠ b. 𝑦-momentum equation: By using the equation (2.30) in Section 2.4, we get:

  𝑖,𝑗 Then, Robert-Asselin filter is applied for 𝑢, 𝑣 and 𝜂 after integration at each time step. Case 2. When the time step (𝑛 + 1) 1. Continuity equation As the same equation (2.1) in Section 2.3. 𝑢 𝑖,𝑗 ) 2 /4 -𝐻 𝑖-1 (𝑢 𝑖-1 + 𝑢 𝑖,𝑗 ) 2 /4 ]︀ /Δ𝑥 -{(𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗+1 + 𝐻 𝑖,𝑗+1 ) × (𝑢 𝑖,𝑗+1 + 𝑢 𝑖,𝑗 )(𝑣 𝑖-1,𝑗+1 + 𝑣 𝑖,𝑗+1 )/16}/Δ𝑥 + (𝐻 𝑖-1,𝑗 + 𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗-1 + 𝐻 𝑖,𝑗-1 )(𝑢 𝑖,𝑗 + 𝑢 𝑖,𝑗-1 )(𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 )/16}/Δ𝑦 -𝑔(𝐻 𝑖,𝑗 + 𝐻 𝑖-1,𝑗 )/2(𝜂 𝑖,𝑗 -𝜂 𝑖-1,𝑗 )/Δ𝑥 -𝐶 𝐷 𝑢 𝑖,𝑗 √︁ (𝑢 𝑖,𝑗 ) 2 + (𝑣 𝑖-1,𝑗 + 𝑣 𝑖,𝑗 + 𝑣 𝑖-1,𝑗+1 + 𝑣 𝑖,𝑗+1 ) 2 𝜂 𝑛 𝑖-1,𝑗 ) + 4Δ𝑡𝜌 𝑎 /𝜌 0 𝐶 𝑎 𝑢 10 (𝑣 𝑛 𝑗 * +1 + 𝑣 𝑛 𝑖 * ,𝑗 * ) 2 -𝐻 𝑛 𝑖 * ,𝑗 * -1 (𝑣 𝑛 𝑗 * -1 + 𝑣 𝑛 𝑖 * ,𝑗 * ) 2 ]︀ 𝐻 𝑛 𝑖 * ,𝑗 * + 𝐻 𝑛 𝑖 * +1,𝑗 * -1 + 𝐻 𝑛 𝑖 * +1,𝑗 * ) × (𝑣 𝑛 𝑖 * +1,𝑗 * + 𝑣 𝑛 𝑖 * ,𝑗 * )(𝑢 𝑛 𝑖 * +1,𝑗 * -1 + 𝑢 𝑛 𝑖 * +1,𝑗 * ) 𝜂 𝑛 𝑖 * ,𝑗 * -1 ) + 4Δ𝑡𝜌 𝑎 /𝜌 0 𝐶 𝑎 𝑣 10 ) 2 + (𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * -1 ) 2 Numerical Discretization for 2D Linear SWEs Using EFDMs Consider the system of 2DSWEs given in equations (1.32)-(1.34) when the terms 𝜕𝑢 2

	Finally, we obtain
	(𝑛 + 1/2)Δ𝑡 is approximated as 𝐻 𝑛+1 𝑖,𝑗 (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖+1,𝑗 -(𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 )𝑢 𝑛 𝑖,𝑗 𝑖,𝑗 + 𝐻 𝑛 Δ𝑡 Δ𝑥 [︀ (𝐻 𝑛 𝑖,𝑗 -𝑖,𝑗 =𝜂 𝑛-1 -Δ𝑡 Δ𝑦 [︀ 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗 ]︀ a. 𝑥-momentum equation By using the equation (2.2) in Section 2.3 and assume the wind stress, viscosity, and the force 𝑓 = 𝜂 𝑛+1 ]︀ are ignored, we obtain: 𝜕(𝐻𝑢) 𝜕𝑡 = -[︀ 𝐻(𝑢 𝑖+1 + + 𝜌 𝑎 𝜌 0 Δ𝑡𝐶 𝑎 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 Finally, we obtain 𝑢 𝑛+1 𝑖,𝑗 = [︃ 𝑢 𝑛-1 𝑖,𝑗 (𝐻 𝑛-1 𝑖,𝑗 + 𝐻 𝑛-1 𝑖-1,𝑗 ) -Δ𝑡 Δ𝑥 [︀ 𝐻 𝑛 𝑖,𝑗 (𝑢 𝑛 𝑖+1 + 𝑢 𝑛 𝑖,𝑗 ) 2 -𝐻 𝑛 𝑖-1,𝑗 (𝑢 𝑛 𝑖-1 + 𝑢 𝑛 𝑖,𝑗 ) 2 ]︀ -Δ𝑡 4Δ𝑥 {(𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗+1 + 𝐻 𝑛 𝑖,𝑗+1 ) × (𝑢 𝑛 𝑗+1 + 𝑢 𝑛 𝑖,𝑗 )(𝑣 𝑛 𝑖-1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗+1 ) -4Δ𝑡𝐶 𝐷 𝑢 𝑛+1 𝑖,𝑗 √︁ (𝑢 𝑛 𝑖,𝑗 ) 2 + (𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖-1,𝑗+1 ) 2 ]︃ /(𝐻 𝑛+1 𝑖,𝑗 + 𝐻 𝑛+1 𝑖-1,𝑗 ) b. 𝑦-momentum equation By using the equation (2.3) in Section 2.3, we get: 𝜕(𝐻𝑣) 𝜕𝑡 = -[︀ 𝜌 𝑎 𝜌 0 Δ𝑡𝐶 𝑎 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10 𝐻(𝑣 𝑖 + 𝑣 𝑛+1 𝑖 * ,𝑗 * = [︃ 𝑣 𝑛-1 𝑖 Δ𝑡 Δ𝑦 [︀ 𝐻 𝑛 𝑖 -Δ𝑡 4Δ𝑦 {(𝐻 𝑛 𝑖 + Δ𝑡 4Δ𝑥 {(𝐻 𝑛 𝑖 -𝑔 2Δ𝑡 Δ𝑦 (𝐻 𝑛 𝑖 √︁ 𝑣 2 10 + 𝑢 2 10 -4Δ𝑡𝐶 𝐷 𝑣 𝑛+1 𝑖 * ,𝑗 * √︁ (𝑣 𝑛 𝑖 ]︃ /(𝐻 𝑛+1 𝑖 𝜕𝑥 = 0, 𝜕𝑣 2 𝜕𝑦 = 0, 𝜕𝑢𝑣 𝜕𝑦 = 0, 𝜕𝑢𝑣 𝜕𝑥 = 0, 𝜕𝑢 2 𝜕𝑦 = 0, 𝜕𝑣 2 𝑖,𝑗 + ℎ 𝜂 𝑛+1 + Δ𝑡 4Δ𝑦 {(𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗-1 + 𝐻 𝑛 𝑖,𝑗-1 )(𝑢 𝑛 𝑖,𝑗 + 𝑢 𝑛 𝑖,𝑗-1 )(𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 ) -𝑔 2Δ𝑡 Δ𝑥 (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 )(𝜂 𝑛 𝑖,𝑗 -√︁ 𝑢 2 10 + 𝑣 2 10 (︂ 𝜕𝑢 𝜕𝑡 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 -(𝑓 𝑣) 𝑛 𝑢 𝑖,𝑗 + 𝑔 (︂ 𝜕𝜂 𝜕𝑥 )︂ 𝑛+1/2 𝑢 𝑖,𝑗 = (︂ 𝜌 𝑎 𝜌 0 1 𝐻 𝐶 𝑎 𝑢 10 √︁ 𝑢 2 10 + 𝑣 2 10

* ,𝑗 * +1 + 𝑣 𝑖 * ,𝑗 * ) 2 /4 -𝐻 𝑖 * ,𝑗 * -1 (𝑣 𝑖 * ,𝑗 * -1 + 𝑣 𝑖 * ,𝑗 * ) 2 /4 ]︀ /Δ𝑦 -{(𝐻 𝑖 * ,𝑗 * -1 + 𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * +1,𝑗 * -1 + 𝐻 𝑖 * +1,𝑗 * ) × (𝑣 𝑖 * +1,𝑗 * + 𝑣 𝑖 * ,𝑗 * )(𝑢 𝑖 * +1,𝑗 * -1 + 𝑢 𝑖 * +1,𝑗 * )/16}/Δ𝑦 -(𝐻 𝑖 * ,𝑗 * -1 + 𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * -1,𝑗 * -1 + 𝐻 𝑖 * -1,𝑗 * )(𝑣 𝑖 * ,𝑗 * + 𝑣 𝑖 * -1,𝑗 * )(𝑢 𝑖 * ,𝑗 * -1 + 𝑢 𝑖 * ,𝑗 * )/16}/Δ𝑥 -𝑔(𝐻 𝑖 * ,𝑗 * + 𝐻 𝑖 * ,𝑗 * -1 )/2(𝜂 -𝜂 𝑗 * -1 )/Δ𝑦 -𝐶 𝐷 𝑣 𝑖 * ,𝑗 * √︁ (𝑣 𝑖 * ,𝑗 * ) 2 + (𝑢 𝑖 * ,𝑗 * -1 + 𝑢 𝑖 * ,𝑗 * + 𝑢 𝑖 * +1,𝑗 * + 𝑢 𝑖 * +1,𝑗 * -1 ) 2 * ,𝑗 * (𝐻 𝑛-1 𝑖 * ,𝑗 * + 𝐻 𝑛-1 𝑖 * ,𝑗 * -1 ) -* ,𝑗 * * ,𝑗 * -1 + * ,𝑗 * -1 + 𝐻 𝑛 𝑖 * ,𝑗 * + 𝐻 𝑛 𝑖 * -1,𝑗 * -1 + 𝐻 𝑛 𝑖 * -1,𝑗 * )(𝑣 𝑛 𝑖 * ,𝑗 * + 𝑣 𝑛 𝑖 * -1,𝑗 * )(𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * ) * ,𝑗 * + 𝐻 𝑛 𝑖 * ,𝑗 * -1 )(𝜂 𝑛 𝑖 * ,𝑗 * -* ,𝑗 * * ,𝑗 * + 𝐻 𝑛+1 𝑖 * ,𝑗 * -1 )

2.6

𝜕𝑥 = 0 and 𝜈 = 0.

Case 1: When the time step (𝑛 + 1/2) a. 𝑥-momentum equation

The finite difference expression for the 𝑥-momentum equation using centered differences about 𝑢 𝑖 in space and about the (𝑛 + 1/2) level in time is based on the equation.

  At the 𝑣 𝑖 point and the (𝑛 + 1/2) time level the depth-averaged 𝑦-momentum namely

	Substituting all the approximations (2.36)-(2.38) in to equation (2.35) yield the approximation
			𝑢 𝑛+1 𝑖	=𝑢 𝑛 𝑖 +	Δ𝑡 8	(𝑓 𝑖 + 𝑓 𝑖+1 )	(︁	𝑣 𝑛+1 𝑖,𝑗+1 + 𝑣 𝑛+1 𝑖+1,𝑗+1 + 𝑣 𝑛+1 𝑖,𝑗 + 𝑣 𝑛+1 𝑖+1,𝑗	)︁
					-	𝑔Δ𝑡 2Δ𝑥	(𝜂	𝑛+1/2 𝑖+1	-𝜂	𝑛+1/2 𝑖	)
					-	(︁	2𝐶 𝐷 △ 𝑡 𝑛+1/2 𝑖,𝑗 𝐻 + 𝐻 𝑛+1/2 𝑖+1,𝑗	)︁ 𝑢 𝑛+1 𝑖,𝑗	√︂ (𝑢 𝑛 𝑖,𝑗 ) 2 +	1 16	(𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖+1,𝑗+1 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖+1,𝑗 ) 2
					+	𝜌 𝑎 𝜌 0	(︁	2𝐶 𝑎 Δ𝑡 𝑛+1/2 𝑖,𝑗 𝐻 + 𝐻	𝑖+1,𝑗 𝑛+1/2	)︁ 𝑢 10	√︁ 𝑢 2 10 + 𝑣 2 10
														(2.39)
	b. 𝑦-momentum equation
	(︂	𝜕𝑣 𝜕𝑡	)︂ 𝑛+1/2 𝑣 𝑖,𝑗	-(𝑓 𝑢) 𝑛 𝑣 𝑖,𝑗 + 𝑔	(︂	𝜕𝜂 𝜕𝑥	)︂ 𝑛+1/2 𝑣 𝑖,𝑗	=	(︂	𝜌 𝑎 𝜌 0	1 𝐻	𝐶 𝑎 𝑣 10	√︁ 𝑢 2 10 + 𝑣 2 10
														𝑛+1/2 𝑖,𝑗	)︁	(2.38)

𝑖+1,𝑗 -𝜂

  𝜂 𝑛 𝑖-1,𝑗 ) + 4Δ𝑡𝜌 𝑎 /𝜌 0 𝐶 𝑎 𝑢 10

	Case 2: When the time step (𝑛 + 1)
	We can written the 2D linear SWEs as following:
	Continuity equation
	As the same equation ( 2.1) in Section 2.3
					𝜂 𝑛+1 𝑖,𝑗 =𝜂 𝑛-1 𝑖,𝑗 -	Δ𝑡 Δ𝑥	[︀	(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖+1,𝑗 )𝑢 𝑛 𝑖+1,𝑗 -(𝐻 𝑛 𝑖-1,𝑗 + 𝐻 𝑛 𝑖,𝑗 )𝑢 𝑛 𝑖,𝑗	]︀
									-	Δ𝑡 Δ𝑦	[︀ (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗+1 )𝑣 𝑛 𝑖,𝑗+1 -(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖,𝑗-1 )𝑣 𝑛 𝑖,𝑗	]︀	(2.45)
	a. 𝑥-momentum equation
	𝑢 𝑛+1 𝑖,𝑗 = [︃	𝑢 𝑛-1 𝑖,𝑗 (𝐻 𝑛-1 𝑖,𝑗 + 𝐻 𝑛-1 𝑖-1,𝑗 ) +	Δ𝑡 2	𝑓 (𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 ) × (𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖-1,𝑗+1 )
	-𝑔	2Δ𝑡 Δ𝑥	(𝐻 𝑛 𝑖,𝑗 + 𝐻 𝑛 𝑖-1,𝑗 )(𝜂 𝑛 𝑖,𝑗 -√︁ 𝑢 2 10 + 𝑣 2 10
	-4Δ𝑡𝐶 𝐷 𝑢 𝑛+1 𝑖,𝑗	√︁ (𝑢 𝑛 𝑖,𝑗 ) 2 + (𝑣 𝑛 𝑖-1,𝑗 + 𝑣 𝑛 𝑖,𝑗 + 𝑣 𝑛 𝑖,𝑗+1 + 𝑣 𝑛 𝑖-1,𝑗+1 ) 2	]︃	/(𝐻 𝑛+1 𝑖,𝑗 + 𝐻 𝑛+1 𝑖-1,𝑗 )	(2.46)
	b. 𝑦-momentum equation
	𝑣 𝑛+1 𝑖 * ,𝑗 * = [︃ 𝑖 -𝑔 𝑣 𝑛-1 𝑖 Δ𝑡 2 𝑓 (𝐻 𝑛 2Δ𝑡 Δ𝑦 (𝐻 𝑛 𝑖 √︁ 𝑣 2 10 + 𝑢 2 10
	-4Δ𝑡𝐶 𝐷 𝑣 𝑛+1 𝑖 ]︃	/(𝐻 𝑛+1 𝑖
									1	)︁	(2.43)
	Substituting all the approximations (2.41)-(2.43) in to equation (2.40) yield the approximation
	𝑣 𝑛+1 𝑖	=𝑣 𝑛 𝑖 +		Δ𝑡 8	(𝑓 𝑖,𝑗 + 𝑓 𝑖,𝑗-1 )	(︁	𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗-1	)︁
		-	𝑔Δ𝑡 2Δ𝑦	(𝜂	𝑛+1/2 𝑗	-𝜂	𝑛+1/2 𝑗-1 )
			-	(︁	2𝐶 𝐷 Δ𝑡 𝑛+1/2 𝑖,𝑗 𝐻 + 𝐻 𝑛+1/2 𝑖,𝑗-1	)︁ 𝑣 𝑛+1 𝑖,𝑗	√︂ (𝑣 𝑛 𝑖,𝑗 ) 2 +	1 16	(𝑢 𝑛+1 𝑖,𝑗 + 𝑢 𝑛+1 𝑖-1,𝑗 + 𝑢 𝑛+1 𝑖,𝑗-1 + 𝑢 𝑛+1 𝑖-1,𝑗-1 ) 2
		+	𝜌 𝑎 𝜌 0	(︁	2𝐶 𝑎 Δ𝑡 𝑛+1/2 𝑖,𝑗 𝐻 + 𝐻	𝑖,𝑗-1 𝑛+1/2	)︁ 𝑣 10	√︁	𝑢 2 10 + 𝑣 2 10
									(2.44)

* ,𝑗 * (𝐻 𝑛-1 𝑖 * ,𝑗 * + 𝐻 𝑛-1 𝑖 * ,𝑗 * -1 ) -* ,𝑗 * + 𝐻 𝑛 𝑖 * ,𝑗 * -1 ) × (𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * -1 ) * ,𝑗 * + 𝐻 𝑛 𝑖 * ,𝑗 * -1 )(𝜂 𝑛 𝑖 * ,𝑗 * -𝜂 𝑛 𝑖 * ,𝑗 * -1 ) + 4Δ𝑡𝜌 𝑎 /𝜌 0 𝐶 𝑎 𝑣 10 * ,𝑗 * √︁ (𝑣 𝑛 𝑖 * ,𝑗 * ) 2 + (𝑢 𝑛 𝑖 * ,𝑗 * -1 + 𝑢 𝑛 𝑖 * ,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * + 𝑢 𝑛 𝑖 * +1,𝑗 * -1 ) 2 * ,𝑗 * + 𝐻 𝑛+1 𝑖 * ,𝑗 * -1 )

  2.8.1 Consistency, convergence and stability ([START_REF] Dedner | Computational PDEs[END_REF][START_REF] Trefethen | Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations[END_REF])Definition of consistencyGiven a partial differential equations 𝐿𝑢 = 𝑓 and a finite difference scheme 𝐿 Δ𝑡,Δ𝑥 𝑣 = 𝑓 , we say that the finite difference scheme is consistent with the PDE if for any smooth function 𝜙(𝑡, 𝑥)(𝐿𝜙 -𝐿 Δ𝑡,Δ𝑥 𝜙) → 0 as Δ𝑡, Δ𝑥 → 0Definitions of convergencyA one-step finite difference scheme approximating a PDE is a convergent scheme if for any solution to the PDE 𝑢(𝑡, 𝑥) and the solution of the finite difference scheme 𝑣 𝑛 𝑚 , such that 𝑣 0 𝑚 converges to 𝑢 0 (𝑥) as (𝑚Δ𝑥) converges to 𝑥 then 𝑣 𝑛 𝑚 converges to 𝑢(𝑡, 𝑥) as (𝑛Δ𝑡, 𝑚Δ𝑥) convergence to (𝑡, 𝑥) as Δ𝑡, △𝑥 → 0. The notation 𝑣 𝑛 𝑚 means the value of 𝑣 at the grid point (𝑡 𝑛 , 𝑥 𝑚 ).

  where ℎ is the still water depth. 1. Solve continuity equation to find 𝜂 𝑛+1/2 𝑐 using horizontal velocities components 𝑢 𝑛 𝑐 and 𝑣 𝑛 𝑐 at time level 𝑛. Elevations at time level (𝑛 -1/2) and the total depth 𝐻 at time level (𝑛 -1/2).

	Here, 𝑢 𝑛 𝑐 , 𝑣 𝑛 𝑐 and 𝜂 𝑛-1/2 𝑐	are known.		
	2. Solve the momentum equations for 𝑢 𝑛+1 𝑐	and 𝑣 𝑛+1 𝑐	using 𝜂 𝑛+1/2 𝑐	and 𝑢 𝑛 𝑐 and 𝑣 𝑛 𝑐 .
	3. Solve the continuity equation for 𝜂 𝑛+1		

𝑐

.

  Solve continuity equation for 𝜂𝑛+1/4 

		𝑓	using 𝑢 𝑛 𝑓 , 𝑣 𝑛 𝑓 , 𝜂 𝑛-1/4 𝑓	and certain values of 𝜂 𝑛+1/2 𝑐	and 𝜂 𝑛-1/2 𝑐	,
	which coincide with the fine grid open boundary points.
	2. Solve momentum equations for 𝑢 𝑛+1/2 𝑓	and 𝑣 𝑛+1/2 𝑓	using 𝜂 𝑛+1/4 𝑓	, we can get the value of 𝜂 𝑛+1/2 𝑐
	using continuity equation.			
	3. Solve continuity equation for 𝜂 𝑛+3/4 𝑓	using 𝑢 𝑛+1/2 𝑓	, 𝑣 𝑛+1/2 𝑓	, 𝜂 𝑛+1/4 𝑓	and certain values of 𝜂 𝑛+1/2 𝑐
	and 𝜂 𝑛-1/2 𝑐	which coincide with the fine grid open boundary points.
	4. Solve momentum equations for 𝑢 𝑛+1 𝑓	and 𝑣 𝑛+1 𝑓	using 𝜂 𝑛+3/4 𝑓	and we can get the value of 𝜂 𝑛+1 𝑐
	using continuity equation.			

  1. When the coarse model that is at the end of time level 𝑛 + 1 and having the values of the coarse

	and						
				𝜂 ℎ 𝑛+1/4	= (3𝜂	𝑛+1/2 𝐻	+ 𝜂	𝑛-1/2 𝐻	)/4
	grid points namely 𝜂 𝑛+1/2 𝐴	, 𝜂 𝑛+1/2 𝐷	and 𝜂 𝑛+1/2 𝐻	calculate 𝜂 𝑛+1/4 𝑎	, 𝜂 𝑛+1/4 𝑑	and 𝜂 𝑛+1/4 ℎ	by using the
	following interpolation in time				
				𝜂 𝑛+1/4 𝑎	= (3𝜂	𝑛+1/2 𝐴	+ 𝜂	𝑛-1/2 𝐴	)/4
	and value of 𝜂 𝑛+1/4 𝑑	and 𝜂 𝑛+1/4 ℎ	can be calculate similarly
				𝜂	𝑛+1/4 𝑑	= (3𝜂	𝑛+1/2 𝐷	+ 𝜂	𝑛-1/2 𝐷	)/4

  1. When the coarse model that is at the end of time level 𝑛 + 2 and having the values of the

	coarse grid points namely 𝜂 𝑛+1 𝐴 , 𝜂 𝑛+1 𝐷	and 𝜂 𝑛+1 𝐻	calculate 𝜂 𝑛+1/3 𝑎	, 𝜂 𝑛+1/3 𝑑	and 𝜂 𝑛+1/3 ℎ	by using the
	following interpolation in time					

  1. Let 𝑒 𝑐 =‖ 𝑢 𝑐 -𝑢 𝑓 ‖ 𝐿 2 and 𝑒 𝑓 =‖ 𝑢 𝑓 -𝑢 𝑡 ‖ 𝐿 2 , where 𝑒 𝑐 and 𝑒 𝑓 are 𝑙2-error norm in the coarse grids and the fine grids respectively, 𝑢 𝑐 , 𝑢 𝑓 , and 𝑢 𝑡 are computed values of coarse grids variables, computed values of fine grids variables and computed values of two-way nesting grids variables. 2. Let 𝑒 𝑐 =‖ 𝑢 𝑐 -𝑢 𝑓 ‖ 𝐻 1 and 𝑒 𝑓 =‖ 𝑢 𝑓 -𝑢 𝑡 ‖ 𝐻 1 , where 𝑒 𝑐 and 𝑒 𝑓 are 𝐻1-error norm in the coarse grids and the fine grids respectively.

  𝑙2-relative error norm using four choices of restriction operator for several cases For all examples, three models are found: a coarse model, a fine model and nested model (contain coarse and fine grids). The evaluation of the model is performed by calculating the averaged relative error at all grid points in the model domain with the use of the following equation:Where 𝑙2-𝑅𝐸 means global 𝑙2-relative error norm in space, 𝑁 and 𝑀 means the total of cells, i,j corresponds the index of the coarse grids, n=

	𝑅𝐸 𝑡 𝑖,𝑗 =	∑︀ 𝑖=𝑁 𝑖=1 ∑︀ 𝑖=𝑁 ∑︀ 𝑗=𝑀 𝑗=1 | Φ 𝑡 𝑖,𝑗 -𝜑 𝑡 𝑖,𝑗 | 𝑖=1 ∑︀ 𝑗=𝑀 𝑗=1 | 𝜑 𝑡 𝑖,𝑗 |		𝑓 𝑜𝑟 𝑖 = 1, 2, 3, ...𝑁	𝑓 𝑜𝑟𝑗 = 1, 2, 3, ...𝑀
	The absolute error (ABSE), and (𝑙2-𝑅𝐸) between the coarse grid and the fine grid are calculated
	as:						
			𝑖=𝑁	𝑗=𝑀			
	𝐴𝐵𝑆𝐸 𝑡 𝑖,𝑗 =	∑︁	∑︁	| Φ 𝑡 𝑖,𝑗 -𝜑 𝑡 𝑖,𝑗 |		𝑓 𝑜𝑟 𝑖 = 1, 2, 3, ...𝑁	𝑓 𝑜𝑟𝑗 = 1, 2, 3, ...𝑀
			𝑖=1	𝑗=1			
	and						
					𝑙2 -𝑅𝐸 𝑛 𝑖,𝑗 =	⎯ ⎸ ⎸ ∑︁ 𝑀 ⎸ ⎷ 𝑗	𝑁 ∑︁ 𝑖	⎡ (︃ ⎣	Φ 𝑛 𝑖,𝑗 -𝜑 𝑛 𝑖,𝑗 𝑖,𝑗 𝜑 𝑛	)︃ 2	⎤ ⎦
						∑︀ 𝑡=𝑟 𝑡=1

•
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 6 1: The information on the set up of the different grids for 2D non-linear SWEs

Table 6 .

 6 

	.3 using

Table

  𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs given in equations (2.32)-, applying EFDM to approximate 2DNSWEs in level 2. Then, coupling a coarse grid with a fine grid in the 2nd-level. Thirdly, applying EFDM to approximate 2DNSWEs in level 3. Then, coupling between a fine grid in 2nd-level and a fine grid in the 3rd-level.

	Information	Grid 01	Grid 21	Grid 22	Grid 31	Grid 32
	Number of grids ( Domain size) 150×150	150×150	150×150 150×150 150×150
	Length grid size	3	1	1	0.33	0.33
	Coarse grid	non	Grid 01	Grid 01	Grid 21	Grid 22
	Grid size ratio	non	3	3	3	3
	Time step in sec	0.025	0.0125	0.0125	0.00625	0.00625
	SWEs	non-linear non-linear non-linear non-linear non-linear
	East-West	1-150	51-100	101-151	1-50	101-150
	South-North	1-150	1-50	101-151	1-50	1-50

(2.34)

, when a coarse grid contains more than one level (multiple levels) at different times t= 500, 1000,..., 4000 hour. The information about a coarse grid and the fine grids are given by Table

6

.5 using Dirichlet boundary condition.

Firstly, when a coarse grid located in 1st-level, applying EFDM to approximate 2DNSWEs. Sec-ondly

  In this example, we find ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and twoway nesting grids for 2DSWEs given in equations (2.32)-(2.34) for linear case with bottom stress=0, when use reflexive boundary condition at different values of time t= 10, 20,..., 50 days, 𝑛𝑥=𝑛𝑦=300, Δ𝑥=Δ𝑦=3, and Δ𝑡=0.01s in coarse grid with total steps 43200 and 𝑛𝑥=𝑛𝑦=300, Δ𝑥=Δ𝑦=1, and

	6.7.1 Case 1: For 2D depth-averaged linear SWEs with separate dynamic inter-
	face and feedback interface
	Example 1 :

  7.1 and 6.7.2, the results indicate in Section 6.8 are the best.

6.9 High accuracy results for 2DSWEs with separate (or without) dynamic and feedback interface In this section, several tests of numerical examples are presented to get the approximate solutions for free surface elevation using four different update schemes: Average, full-weighting, update mix-low, and update mix-high (with separate or without separate) dynamic and feedback interface using Dirichlet boundary conditions. Comparison 𝑙2-𝑅𝐸 of free surface elevation for some examples by using four choices of restriction operator with two cases of the refinement factor.
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 7 1)-(2.3) with f=0, viscosity=0 and wind stress=0 in level 1 (coarse grid ) which contains one fine grid located in level 2 which contain another fine grid that located in level 3 at different times t= 1000, 2000,..., 4000 hour. The following table shows the information about the coarse grid and fine grids at multiple levels (regions). 1: The information about the coarse and fine grids at multiple regions (levels) for 2DNSWEs 7.2.3 Example 3: When the space refinement ratio is 1:5 and temporal refinement ratio is 1:2 for linear 2DSWEsIn this example, we find 𝑙2-𝑅𝐸 for 2DSWEs given in equations (2.33)-(2.35 ) for linear case in level 1 (coarse grid) which contains one fine grid located in level 2 which contains another one fine grid located

	Information	level 1 (coarse grid) level 2 (fine grid) level 3 (fine grid)
	Number of grids	100×100	100×100	100×100
	Length grid size	5	1	0.2
	Coarse grid	non	Grid 01	Grid 22
	Grid size ratio	non	5	5
	Time step in sec	0.010	0.005	0.0025
	SWEs	non-linear	non-linear	non-linear
	(East-West)	1-100	61-80	61-80
	(North-South)	1-100	61-80	11-30
	CFL condition	0.7	0.7	0.7

  7.2.4 Example 4: When the refinement ratio in both space and time equals 1:5 for linear 2DSWEs with a separate interface In this example, we use 2DSWEs given in equations (2.32)-(2.34) for linear case. If we take different

Table 8 .

 8 

		Grid 01	Grid 21 Grid 22	Grid 23	Grid 24
	Number of grids 100×100 100×100	100×100	100×100 100×100
	Length grid size	10	2	2	2	2
	Coarse grid	non	Grid 01	Grid 01	Grid 01	Grid 01
	Grid size ratio	non	5	5	5	5
	Time step in sec	0.020	0.01	0.01	0.01	0.01
	SWEs	non-linear non-linear non-linear non-linear non-linear
	CFL condition	0.7	0.7	0.7	0.7	0.7
	Bottom stress	0.013	0.013	0.013	0.013	0.013

1: The information on the set up of the different grids

Table 8 .

 8 By the same previous example, we use system of 2DNSWEs to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains another one fine grid (grid 24) in level 2 which contains again another two fine grids (grid 31 and grid 33) in level 3. Also, the fine grids in level 3 which contain again another one fine grid (grid 41) in level 4 at difference times t= 500, 1000,..., 5000 sec. The information on the set up of the different grids for 2DNSWEs are given below:

		Grid 01	Grid 21	Grid 32	Grid 43
	Number of grids 100 ×100 100×100 100×100 100×100
	Length grid size	10	2	0.40	0.08
	Coarse grid	non	Grid 01	Grid 21	Grid 32
	Grid size ratio	non	5	5	5
	Time step in sec	0.020	0.01	0.005	0.0025
	SWEs	non-linear non-linear non-linear non-linear
	Bottom stress	0.013	0.013	0.013	0.013
	CFL condition	0.7	0.7	0.7	0.6

2: The information on the set up of the different grids for 2DNSWEs The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 21), grid 21-level 3 (grid 32) and grid 32-level 4 (grid 43).

Figure 8-4: Comparison 𝑙2-𝑅𝐸 between coarse grid-level 2 (grid 21), level 2-level 3 (grid 32) and level 3-level 4 (grid 43) Example 3 :

Table 8 .

 8 

3: The information on the set up of the different grids at multiple level for 2DNSWEs

Table 8 .

 8 7: The information on the set up of the different grids at multiple levels for linear SWEs Figure 8-11: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22), level 2-level 3 (grid 33) and level 3-level 4 (grid 44) 8.4.1 Comparison 𝑙2-𝑅𝐸 of free surface elevation for cases separate grids and embedded grids

	Information	Grid 01 Grid 22 Grid 31 Grid 33 Grid 44
	Number of grids 100×100 100×100 100×100 100×100 100×100
	Length grid size	10	2	0.40	0.40	0.08
	Coarse grid	non	Grid 01 Grid 22 Grid22	Grid33
	Grid size ratio	non	5	5	5	5
	Time step in sec	0.020	0.01	0.005	0.005	0.0025
	CFL condition	0.7	0.7	0.7	0.6	0.6

By the same previous example, we use system of linear 2DSWEs with non-rotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid (grid 21) in level 2 which contains again one fine grid in level 3 (child separable or embedded in parent) at difference times t= 500, 1000,..., 5000 sec.

Table 8 .

 8 The information about the coarse and fine grids are given in table below :

	Information	Grid 01	Grid 24	Grid 33	Grid 46
	Number of grids 100×100 100×100 100×100 100×100
	Length grid size	10	2	0.40	0.08
	Coarse grid	non	Grid 01	Grid 24	Grid 33
	Grid size ratio	non	5	3	3
	Time step in sec	0.020	0.01	0.005	0.0025
	SWEs	non-linear non-linear non-linear non-linear
	CFL condition	0.7	0.7	0.6	0.6

11: 

The information on the set up of the different grids at multiple levels for 2DNSWEs

In this case. Firstly, when a coarse grid located in 1st-level, applying EFDM to approximate 2DNSWEs. Secondly, applying EFDM to approximate 2DNSWEs in a 2nd-level. Then, coupling a coarse grid with a fine grid in a 2nd-level grid. Thirdly, applying EFDM to approximate 2DNSWEs.

Chapter 2

An Explicit Staggered Finite Difference Method for 2DSWEs (Numerical Techniques for SWEs)

Arakawa C-grid

The performance of EFDM of horizontal space derivatives depends on the distribution of dependent variables on the grid [START_REF] Arakawa | Computational design of the basic dynamical processes of the UCLA general circulation model[END_REF][START_REF] Arakawa | Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow[END_REF][START_REF] Wendt | Computational Fluid Dynamics: An Introduction[END_REF]. Various types of grids have been developed and used by different authors for different purposes. Arakawa and Lamb investigate four different spatially staggered grids which are used for shallow water equations. 

Finite difference method for staggered grid (the temporal grid)

The general finite difference method used is a three-level in time that is each time step includes threetime levels: the entry level, the half-time step level, and the full-time step level. As this case shows, in each time step one calculation of 𝜂 is carried out for each set of calculations of 𝑢 and 𝑣. This calculation uses 𝜂 𝑛-1 , 𝜂 𝑛 , 𝑢 𝑛 and 𝑣 𝑛 to provide a time 𝜂 𝑛+1 . To obtain 𝜂 𝑛+2 the values 𝜂 𝑛+1 , 𝑢 𝑛+1 , 𝑣 𝑛+1 and 𝜂 𝑛 are used. Consider 2DSWEs on the rectangular space domain Ω := [0, 𝐿 𝑥 ] × [0, 𝐿 𝑦 ] and the time interval (0, 𝑇 ). Periodic boundary conditions are prescribed. The domain is meshed with a rectilinear grid of 𝑁 𝑥 × 𝑁 𝑦 cells. We set 𝑀 := {1, 2, ..., 𝑁 𝑥 } × {1, 2, ..., 𝑁 𝑦 }. The cell of coordinates (i, j) is denoted by 𝐾 𝑖,𝑗 . The cell 𝐾 𝑖,𝑗 is denoted by 𝑥 𝑖,𝑗 . The bottom edge, top edge, left edge and right edge are denoted by 𝑥 𝑖,𝑗-1 , 𝑥 𝑖,𝑗+1 , 𝑥 𝑖-1,𝑗 and 𝑥 𝑖+1,𝑗 respectively. The water height 𝜂 is discretized at the center cells. The velocity in the 𝑥-direction is discretized at the edges normal to the 𝑥-direction, while the 2. Boundary conditions:

Here, Dirichlet boundary conditions were implemented at the boundaries with CFL condition 0.22.

Numerical parameters: (configurations)

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: 𝐿 𝑥 =𝐿 𝑦 = 200, Δ𝑥 =0.10, Δ𝑦=0.10, ℎ=10m , the time step Δ𝑡 = 0.001 sec at time 𝑡 = 100, 200, ..., 1000 hours and total steps 3600.

Results and discussion:

First of all, we tested the computational stability of this model by using CFL condition which is 0.22 less than 1 (see Section 2.8.3). The time integrations were performed for 1000 hours.

The following figures show the simulation of free surface elevation at time 𝑡 = 100, 200, ..., 1000 hours.

Results and discussion:

The following figures represent sequence of snapshots of water level at different times. A typical interpolation for open boundary using a nested-grid system. The spatial interpolation schemes are:

1. Western open boundary (Here, if 𝑖-start, then 𝑖 = 1 and 𝑗 = 2 to end-1 also 𝑈 𝑖,𝑗 , 𝑉 𝑖,𝑗 , 𝑎𝑛𝑑 𝜂 𝑖,𝑗 ̸ = 0)

where 𝑢 1 , 𝑢 2 , 𝑢 3 , 𝑢 4 represent the value of velocity 𝑢 in fine grid and 𝑣 1 , 𝑣 2 , 𝑣 3 , 𝑣 4 , 𝜂 1 , 𝜂 2 , 𝜂 3 , 𝑎𝑛𝑑 𝜂 4 represent the value of velocity 𝑣 and elevation 𝜂 in fine grid and 𝑈 𝑖,𝑗 , 𝑉 𝑖,𝑗 represent the value of velocities in coarse grid. Also, 𝑆𝐼(𝑉 1 , 𝑉 2 ) refers to a linear interpolation between two variables 𝑉 1 and 𝑉 2 more accurate scheme for above equations may include values from additional neighboring grids.

Eastern open boundary

(Here, if 𝑖 =end, then 𝑖 =end and 𝑗 = 2 to end-1 also 𝑈 𝑖,𝑗 , 𝑉 𝑖,𝑗 , 𝜂 𝑖,𝑗 ̸ = 0). The spatial interpolation schemes are:

Southern open boundary

(Here, if 𝑗 =start, then 𝑗 = 1 and 𝑖 = 2 to end-1). The spatial interpolation schemes are:

4. Northern open boundary (Here, if 𝑗 =end, then 𝑗 =end and 𝑖 = 1 to end-1). The spatial interpolation schemes are: 

Numerical parameters: (Simulation)

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters in a coarse grid are chosen as follows: 𝐿 𝑥 =450, 𝐿 𝑦 =360, 𝑛𝑥=150, 𝑛𝑦=120, Δ𝑥=Δ𝑦=3, and time step Δ𝑡=2.5𝑒 -2 𝑠, the water depth ℎ =10m, and CFL condition 0.6 with the initial condition 𝑢=𝑣=0 and 𝜂 given by data file.

Results and discussion

First of all, we tested the computational stability and accuracy of this system of equations. The time integration were performed at different times. The calculations were stable.

The following figures show the simulation of free surface elevation at time 𝑡 = 1000, 2000, 3000 min in the coarse grid domain.

Figure 5-1: Simulation of free surface elevation in a coarse grid at time=1000 min.

Example 4:

In this example, we find 𝑙2-error norm and 𝐻1-error norm in a coarse grid, and a fine grid by using 2DSWEs given in equations (2.45)-(2.47) for a linear case in a domain

Numerical parameters, results and discussion

The computational domain is discretized by a grid whose size is regular. Numerical values of the parameters are chosen as follows: If we take different values of time 𝑡 = 10, 20, ..., 1000 hours to find 𝑙2-error norm and 𝐻1-error norm of the water surface elevation, when 𝐿 𝑥 =𝐿 𝑦 =300, 𝑛𝑥=100, 𝑛𝑦=100, Δ𝑥=Δ𝑦=3, time step=0.01s, and total steps 36000 in a coarse grid, h=10, Δ𝑥=Δ𝑦=1, time step=0.005s in a fine grid, when consider only the common points to both grids, the number of grids becomes 𝑛𝑥=𝑛𝑦= 100 in a fine grids, CFL condition is 0.04 and the initial condition for the same The following figures compare 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting when use four update choice for structured grid with a separate interface.

Chapter 6

Applications of Two-Way Interaction Technique For Multiple Nested Grids

Example 2:

In this example, we use the system of 2DSWEs given in equations (2.32)-(2.34) for linear case to find 𝑙2-𝑅𝐸 in case a coarse grid contains more than one fine grid at different times t=500, 1000, ..., 4000 hour with CFL condition 0.6. The information about a coarse grid and a fine grid are given in Table 6. Example 4 :

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34) when a fine grid in level 2 contains again one fine grid in level 3 at difference times t= 500, 1000,..., 4000 hour. The information about the coarse and the fine grids are given by Table 6.3 .

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between level 2 (grid 21) and level 3 (grid 31) in two-way nested grid at t= 500, 1000,..., 4000 hour. Example 5:

In this example, we find The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22 nonlinear case) and grid 22-level 3 (grid 32 in linear case) in two-way nested grid for 2DSWEs. In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34) when a coarse grid contains more than one level at different times t=500, 1000,..., 4000 hour. The information about the coarse grid and the fine grids are given by Table 6.5.

Firstly, when 1st-level contains a coarse grid, applying EFDM to approximate 2DNSWEs. Secondly, applying EFDM to approximate linear 2DSWEs in level 2. Thus, coupling a coarse grid with a fine grid in 2nd-level grid. Thirdly, applying EFDM to approximate linear 2DSWEs in level 3. Thus, a coupling between fine grid in level 2 and fine grid in level 3.

The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22 in linear case) and grid 22-level 3 (grid 32 in nonlinear case) in two-way nested grid for 2DSWEs. The following figure compares ABSE of free surface elevation between a coarse grid in level 1 and fine grid in level 2. When comparing these results with the results in Example 1, Section 6.10 , we obtained very well results when space refinement ratio is 1:5. A two-way interaction technique for multiple nested grids of the tsunami model is proposed. This model adopts staggered an explicit center finite difference method and leapfrog with Robert-Asselin filter which contains linear and nonlinear components in each subregion with Cartesian coordinates and consists of a fine grid model nested 5:1 within a coarse grid large area model. A nested grid model, dynamically coupled up to multiple levels with various grid resolution, can be implemented in the model to fulfill the need to simulate this model in different levels. Nested grid system means in a region of one grid size, there are one or more regions with smaller grid sizes situated in which finally form a hierarchy of grids and grid levels.

In a two-way nested grid model, the information for velocity components and free surface elevation from the coarse mesh can enter and effect to the fine mesh in each time step of the solution process using linear interpolation and the information feedback from the fine mesh to the coarse mesh using the average scheme. To verify multiple nested grids model, several of numerical examples are applied and the results demonstrate the applicability and benefits of nesting.

Highlights

• Suggest a new technique for multiple nested grids of the tsunami model.

• Discuss some numerical examples of the tsunami model when the model has the spatial refinement ratio 1:5.

• Coupling four systems for multiple grids at multiple levels is achieved of the tsunami model with nesting 5:1.

• The capacity and benefits of nesting show by some examples.

At the beginning of a simulation start, the initial water surface elevation (obtained from a given data file) is interpolated into all sub-regions grids, as well as fluxes values of velocities, are zero on all grids.

The following figures show the brutal tsunami

This chapter is arranged as follows: Discuss some numerical examples of 2D non-linear shallow water models given in Sections 2.4, 2.6 and 2.7 when the time step (n+1/2). Compare the results

when the model has the spacial refinement ratio 1:5.

Development

In most previous studies, with an adaptive mesh refinement case, the update is still made with this average formula because the grid can move from one time step to another, so that an average restriction is necessary to globally ensure the conservation before and after the regridding (renewal) step and that this was also the main reason for using the average restriction operator in ocean models when using moving mesh methods.

In this chapter, we suggest a new technique for multiple nested grids of the tsunami model that given in [START_REF] Imamura | Propagation of tsunamis[END_REF][START_REF] Wang | manual of comcot[END_REF][START_REF] Philip | Computer programs for tsunami propagation and inundation[END_REF] using an explicit finite difference method and leapfrog with Robert-Asselin filter with moving boundary condition, linear interpolation and to update use the average operator.

For more details (see Appendix).

Notes

1. For all examples, we use the formulas of numerical discretization 2DSWEs given in Sections 2.4, 2.5, and 2.6 and we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grids.

2. The bottom friction comes from Manning's formula which is uniform throughout the grids, where n is roughness coefficient. In this simulation, n takes 0.013. The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 21), level 2-level 3 (grid 32) and level 3-level 4 (grid 43). Example 3: By the same previous example, we use system of linear 2DSWEs with non-rotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid which contains one fine grid (child embedded or separate in parent) in level 2 that contains again two fine grids in level 3. Also, the fine grids in level 3 contain again one fine grid in level 4 at difference times t= 500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below: The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a fine grid in level 2 and level 3 (grid 32) in cases separate and embedded grids. By the same previous example, we use system of linear 2DSWEs with non-rotate f=0,wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation when the time steps are (0.010 and 0.030) in case a coarse grid contains one fine grid (grid 22) in level 2 which contains again two fine grids in level 3. Also, a fine grid in level 3 contains again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below:

Information

Then, coupling a fine grid in a 2nd-level with the fine grid in the 3rd-level. Fourthly, applying EFDM to approximate 2DNSWEs. Then, coupling a fine grid in the 3rd-level with the fine grid in the 4th-level.

The following figure Compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 with refinement ratio 1:5, level 2-level 3 and level 3-level 4 with space refinement ratio 1:3. In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈 = 0, the wind stress =0, f=0) when a coarse grid contains more than one level at different times t=500, 1000,... 4000 sec. The information about the coarse and fine grids are the same previous example:

In this case, Firstly, when a coarse grid in 1st-level, applying EFDM to approximate 2DNSWEs.

Secondly, applying EFDM to approximate 2DNSWEs. Then, coupling a coarse grid with the fine grid in a 2nd-level grid. Thirdly, applying EFDM to approximate linear 2DSWEs. Then, coupling a fine grid in 2nd-level with the fine grid in a 3rd-level. Fourthly, applying EFDM to approximate 2DNSWEs.

Then, coupling a fine grid in the 3rd-level with the fine grid in the 4th-level. In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈 = 0, wind stress =0, f=0) when a coarse grid contains more than one level at different times t=500 ,1000,... ,4000 sec. The information about the coarse and fine grids are the same previous example.

In this case, Firstly, when a coarse grid in 1st-level, applying EFDM to approximate 2DNSWEs.

Secondly, applying EFDM to approximate linear 2DSWEs. Then, coupling a coarse grid with the fine grid in a 2nd-level. Thirdly, applying EFDM to approximate 2DNSWEs. Then, coupling the fine grid in 2nd-level with the fine grid in the 3rd-level. Fourthly, applying EFDM to approximate linear 2DSWEs. Then, coupling the fine grid in the 3rd-level with the fine grid in the 4th-level.

The following example shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-fine grid in level 2 nonlinear to linear case, fine grid in level 2-fine grid in level 3 linear to nonlinear case and level 3-level 4 nonlinear to linear case. Some examples for coupling four systems at multiple levels of 2DSWEs have been tested for three cases when space refinement ratio equals 1:5 and 1:3 with no refinement of time. 𝐿2-relative error results using different time steps were compared. In general, good results were observed.

Appendix A

A.1 Open boundary conditions 

Spacial cases:

1. If i=1 and j=1. For the elevation and the component of velocity to the boundary is defined:

2. If i=ix and j=1. For the elevation and the component of velocity to the boundary is defined :

3. If i=1 and j=jy. For the elevation and the component of velocity to the boundary is defined :

. If i=ix and j=jy. For the elevation and the component of velocity to the boundary is defined :

A.2 Boundary Scheme

Initially, The free surface displacement as well as the fluxes values, is zero in all grids at the beginning.

Figure A-1 explains the scheme for moving boundary given by ( [START_REF] Wang | Numerical simulations of the 2004 indian ocean tsunamis -coastal effects[END_REF][START_REF] Philip | Computer programs for tsunami propagation and inundation[END_REF]). The SWL denotes the mean water level and 𝜂 represents the free water displacement. The grid point on the dry land is called water depth h, is negative and its absolute value is the elevation of the landscape, measured from MWL (Mean Water Level). Therefore, the total depth H = h + 𝜂 has a negative value in a dry cell and a positive value in a wet cell.

The free surface displacements, 𝜂 at the next time step in the entire computational domain (i.e.

both dry and wet cells) are determined by continuity equation together with boundary conditions along offshore boundaries. The volume fluxes, Hu are zero at the grid points along the shoreline.

Consequently, the free surface displacements, 𝜂 are also zero at a dry grid. However, a numerical algorithm is required to decide whether the total water depth is high enough to flood the dry cells next to the wet cells and then move the shoreline.

Here, the one-dimensional example is applied to demonstrate the moving boundary algorithm. The volume flux, Hu, is calculated at grid points i-1/2 and i + 1/2 while the water depth, h, and free water displacement, 𝜂 are computed at i-1, i, and i +1. In time step 𝑡 = 𝑛Δ𝑡, the i cell is a wet cell with positive total depth while the i+1 cell is dry with negative total depth. The shoreline is therefore between the i cell and the i+1 cell. Hence, the i+1/2 grid point has zero volume flux. As a result, the shoreline does not move onshore.

On the other hand, if the water surface surges as on in the right side of Figure A-1, the value of volume flux, Hu, is no longer zero. Then, the shoreline may move one grid onshore. The next step is to compute the total depth 𝐻 𝑖+1 from the continuity equation.

After that, the following algorithm can finally decide whether the shoreline should be moved.

1. If 𝐻 𝑖 > 0 possible cases can be summarized as follows:

2. If 𝐻 𝑖+1 0 𝑎𝑛𝑑 ℎ 𝑖+1 + 𝜂 𝑖 0 then the shoreline remains between grid points i and i + 1 and the volume flux (𝐻𝑢) 𝑖+1/2 remains zero.

3. 𝐻 𝑖+1 0 𝑎𝑛𝑑 ℎ 𝑖+1 + 𝜂 𝑖 > 0 then the shoreline moves to between grid points i + 1 and i + 2

and the volume flux 𝐻𝑢 𝑖+1/2 may have a nonzero value while(𝐻𝑢) 𝑖+3/2 is assigned to be zero.

The flooding depth is 𝐻 𝑓 = ℎ 𝑖+1 + 𝜂 𝑖 .

4. If 𝐻 𝑖+1 > 0 then the shoreline moves to between grid points i + 1 and i + 2. The volume flux (𝐻𝑢) 𝑖+1/2 may have a nonzero value while (𝐻𝑢) 𝑖+3/2 has a zero value and the flooding depth is 𝐻 𝑓 = 𝑚𝑎𝑥(ℎ 𝑖+1 + 𝜂 𝑖 , ℎ 𝑖+1 + 𝜂 𝑖+1 ).

Let now derive the algorithm in two-dimension problem and The corresponding y-direction algorithm has the same procedure as that for the x direction. possible cases can be summarized as:

-If 𝐻 𝑖,𝑗 > 0 and 𝐻 𝑖+1,𝑗 > 0 and ℎ 𝑖+1,𝑗 + 𝜂 𝑖,𝑗 > 0 then 𝐻𝐻 = ℎ 𝑖+1,𝑗 + 𝜂 𝑖,𝑗 2. 𝐻 𝑖,𝑗 0 and 𝐻 𝑖+1,𝑗 > and ℎ 𝑖,𝑗 + 𝜂 𝑖+1,𝑗 > 0 then 𝐻𝐻 = ℎ 𝑖,𝑗 + 𝜂 𝑖+1,𝑗 .

Else 𝐻 𝑢(𝑖,𝑗) = 0

Now, algorithm in y-direction has the same procedure as that for the x direction. possible cases can be summarized as:

-If 𝐻 𝑖,𝑗 > 0 and 𝐻 𝑖,𝑗+1 < 0 and ℎ 𝑖,𝑗+1 + 𝜂 𝑖,𝑗 > 0 then 𝐻𝐻 = ℎ 𝑖,𝑗+1 + 𝜂 𝑖,𝑗 .

2. 𝐻 𝑖,𝑗 0 and 𝐻 𝑖,𝑗+1 > and ℎ 𝑖,𝑗 + 𝜂 𝑖,𝑗+1 > 0 then 𝐻𝐻 = ℎ 𝑖,𝑗 + 𝜂 𝑖,𝑗+1 .

Else 𝐻 𝑣(𝑖,𝑗) = 0