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ABSTRACT

Most flows in the rivers, seas, and ocean are shallow water flow in which the horizontal length and

velocity scales are much larger than the vertical ones. The mathematical formulation of these flows, so-

called shallow water equations (SWEs). These equations are a system of hyperbolic partial differential

equations and they are effective for many physical phenomena in the oceans, coastal regions, rivers

and canals.

This thesis focuses on the design of a new two-way interaction technique for multiple nested grids

2DSWEs using the numerical methods. The first part of this thesis includes, proposing several ways

to develop the derivation of shallow water model. The complete derivation of this system from Navier-

Stokes equations is explained. Studying the development and evaluation of numerical methods by

suggesting new spatial and temporal discretization techniques in a standard C-grid using an explicit

finite difference method in space and leapfrog with Robert-Asselin filter in time which are effective for

modeling in oceanic and atmospheric flows. Several numerical examples for this model using Gaussian

level initial condition are implemented in order to validate the efficiency of the proposed method.

In the second part of our work, we are interested to propose a new two-way interaction technique for

multiple nested grids to solve ocean models using four choices of higher restriction operators (update

schemes) for the free surface elevation and velocities with high accuracy results. Our work focused

on the numerical resolution of SWEs by nested grids. At each level of resolution, we used explicit

finite differences methods on Arakawa C-grid. In order to be able to refine the calculations in troubled

regions and move them into quiet areas, we have considered several levels of resolution using nested

grids. This makes it possible to considerably increase the performance ratio of the method, provided

that the interactions (spatial and temporal) between the grids are effectively controlled.

In the third part of this thesis, several numerical examples are tested to show and verify two-

way interaction technique for multiple nested grids of shallow water models can works efficiently over

different periods of time with nesting 3:1 and 5:1 at multiple levels. Some examples for multiple nested

grids of the tsunami model with nesting 5:1 using moving boundary conditions are tested in the fourth

part of this work.

Keywords: Nested grid, One-way nesting, Two-way nesting, Mesh refinement, Explicit finite

difference method, Shallow water model, Derivation of 2D shallow water equations, Ocean model,

Boundary conditions, Optimum feedback, Free surface flows, Hydrostatic pressure, Coastal regions,

Incompressible fluid, Fluid dynamics, Tsunami deposit, Tsunami hazards, Dynamical interface.
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Outline of This Work

The major purpose of our work is to design new technique for multiple nested grids of 2D non-linear

shallow water equations (2DNSWEs) for structured grids using numerical schemes.

This thesis is organized into four parts with 9 chapters. The general framework of the various

topics will be detailed in the parts and chapters that follow:

Part I: Mathematical and Numerical Model for 2D Depth-Integrated Shallow Water

Equations

The principal objective of this part is to study the development of the efficiency of numerical

methods for 2D depth-averaged non-linear shallow water models by proposing new spatial and temporal

discretization techniques in a standard C-grid using an explicit finite difference method in space and

leapfrog with Robert-Asselin filter in time. Firstly, a new technique to derive 2DSWEs is presented.

Secondly, propose effective numerical methods, such as the explicit finite difference methods for solving

ocean models. The different unknowns variables for the system are approximated on staggered grids

and the numerical fluxes are computed with the proposed techniques.

This part consists of three chapters including:

Chapter 1: Derivation of 2D Shallow Water Equations

This chapter is devoted to the study of 2D non-linear shallow water equations. Firstly, presents

a mathematical study of Navier-Stokes equations and 2DSWEs, which are obtained from a vertical

integration of 3D Navier-Stokes equations by using a number of the assumptions. Secondly, we know

that 2DSWEs can be derived in a number of ways with varying initial assumptions, we suggest two

ways to expand the derivation of 2D depth-averaged SWEs from 3D Navier-Stokes equations using

splitting of velocity and eddy dispersion coefficients. Another way is presented to derive 2DSWEs

without using depth-averaged technique.

Chapter 2: An Explicit Staggered Finite Difference Scheme for 2D Shallow Water Equa-

tions (Numerical Techniques for 2DSWEs)

This chapter is a description of the development and evaluation of proposed numerical methods for

2D shallow water models, which depend on the choice of techniques and numerical methods used.
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Chapter 3: Numerical Results for 2D Shallow Water Equations (Validations of the

Model).

In order to validate the proposed method of 2D shallow water equations, some examples of the

tsunami model are applied. Some examples for 2DSWEs are tested using Gaussian level initial con-

dition. The application for rotating or (non-rotating) shallow water equations are given. Full model

of 2DSWEs including Coriolis force as the source terms are considered. The numerical simulations

are implemented by computer programming using Matlab and Fortran 90 under Dirichlet, reflexive

boundary conditions and moving boundary conditions.

Part II: Coupling for Two-Way Nesting Grids: Mathematical Framework and Appli-

cations for Shallow Water Model (Nested Grid For 2D Shallow Water Equations)

In the major part of the thesis, we are interested to propose a new two-way interaction technique

for multiple nesting grids to solve ocean models. This part consists of two chapters:

Chapter 4: The Configuration a Nested Grid for Shallow Water Models

A literature review of techniques used to try to increase the efficiency and accuracy of 2D shallow

water models are presented. Some new algorithms are established to implement two-way interaction

technique for this model. Two-way nesting systems depend on the type of interpolation, the location of

the dynamical interface, conservation properties and type of update. Different cases of open boundary

conditions for two-way nesting grids are studied.

In this chapter, looks into the optimum feedback conditions and interpolation techniques to

maximize the feedback of the information and to ensure the conservation of properties. Four choices

of the update scheme for the free surface elevation and velocities on Arakawa C-grid are applied.

Chapter 5: Performance of Two-Way Nesting Techniques for Shallow Water Equations

The principal objective of this chapter is to study the accuracy of two-way nesting performance

techniques for structured grids between a coarse grid and a fine grid for 2DSWEs using an explicit

finite difference methods with the refinement ratio 1:3.

We present and evaluate a set of options that made implementation of two-way nesting methods

allowing simultaneous spatial and temporal refinement in shallow water model. Results showed two-

way nested model can produce accurate high-resolution solutions in areas of interest and improve the

realism of the solution in the low-resolution coarse domain for a much lower computational effort than

the standard single grid high-resolution model.
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Part III: Implementation and Validation of Solutions For 2D Shallow Water Models:

This part includes

Chapter 6: Applications of Two-way Nesting Technique for Multiple Nested Grids

with Nesting 3:1 at Multiple Levels

Multiple nested grids can be employed together to save the time as well as obtain enough resolution

in the goal region. In this chapter, the explicit finite difference methods which are used to construct a

two-way nesting technique are applied successfully for a multiple-nested grid 2DNSWEs for structured

grids when the refinement ratio is 1:3 using new algorithms and techniques provided under Chapter 4.

In order to verify the performance of nesting technique, apply some examples of coupling 3 systems

for shallow flow models. Comparison of 𝑙2-relative error norm (𝑙2-𝑅𝐸) results for one-way and two-way

nesting grids using four update interpolations. Finally, comparison of 𝑙2-relative error norm (𝑙2-𝑅𝐸)

results to the free surface elevation for some examples using four options of restriction operator with

two cases of the refinement ratio.

Chapter 7: Multiple Nested Model for 2D Non-Linear Shallow water Equations with

Nesting 5:1 at Multiple Levels

A two-way interaction technique for multiple nested grids of 2D non-linear shallow water models

is constructed and it is applied when the refinement ratio 1:5.

Part IV : Numerical Results of The Tsunami Model

In this part, we discuss some numerical results of the tsunami model.

Chapter 8: Some Applications for Multiple Nested Grids of the Tsunami Model

Several examples for multiple nested grids of the tsunami model are applied when space refinement

ratio is 1:5 and the temporal refinement ratio is 1:2 for 2D non-linear SWEs. The performance and

accuracy of the model are tested and the results show are good.

Chapter 9: Some Recommendations (Future Works)

Some possible recommendations for future methods of research progress are presented.

All the numerical simulations are performed by computer programming using Matlab

and Fortran 90.
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Mathematics Notations

𝐶 Chezy bed roughness coefficient or Ekman coefficient 0.026.

𝐶𝐷 The dimensionless coefficient of quadratic friction. Here, the quadratic drag coefficient

is taken usually 𝐶𝐷 = 2.5.10−3 but it may also take into account the bottom roughness.

c Coarse grid/ parent grid.

𝐶𝑎 Air drag coefficient, is taken usually 𝐶𝑎 = (0.8 + 0.0658
√
𝑢10 + 𝑣10)× 10−3

where 𝑢10 and 𝑣10 shown below.

𝐶𝑛 Courant number.

𝑓 Coriolis parameter, f= 2𝜔𝑠𝑖𝑛𝜑 , where 𝜔 is the earth’s angular velocity (𝑠−1) and

𝜑 is north latitude (positive northward), 𝑓 = 1.01× 10−4 Coriolis frequency at 42 latitude.

𝐹 Volume force.

𝑔 Acceleration due to gravity (𝑔 = 9.81𝑚𝑠−2).

𝐻 Total depth (h+𝜂), where h is the mean sea depth (m) (or sometimes called water depth).
−→
▽ Gradient operator

−→
▽ = ( 𝜕

𝜕𝑥 ,
𝜕
𝜕𝑦 ,

𝜕
𝜕𝑧 ).

△ Laplacien operator
−→
▽2 = ( 𝜕

𝜕𝑥(
𝜕
𝜕𝑥),

𝜕
𝜕𝑦 (

𝜕
𝜕𝑦 ),

𝜕
𝜕𝑧 (

𝜕
𝜕𝑧 )).

Ω Domain of calculation

𝑡,△𝑡, △𝑥, △𝑦 Time (s), time step, 𝑥-direction grid spacing, and 𝑦-direction grid spacing respectively.

(𝑥, 𝑦) Horizontal Cartesian spatial coordinates (𝑚)

𝜂 Elevation of the sea surface above mean sea level (or high surface water, free surface elevation).

(𝑢, 𝑣) Components of velocity in the 𝑥 and 𝑦-directions respectively

𝑢10, 𝑣10 The vertically averaged air velocities at a distance of 10𝑚 above the sea surface (𝑚𝑠−1).

q Vector velocity field (𝑚𝑠−1).

𝜌 Density of the fluid (sea water) assumed constant (= 1027𝑘𝑔𝑚−3).

𝜌𝑎 Density of air assumed uniform (water density) (= 1.225𝑘𝑔𝑚−3).

𝜌0 Water mean density (= 1.033𝑘𝑔𝑚−3).

𝜈 Coefficient of viscosity (𝑚𝑠−2).

𝑝, 𝑝𝑎 The pressure, and pressure at the surface respectively.

𝜏𝑖,𝑗 Viscous shear stress in 𝑖-direction on a 𝑗-plane.

(𝑢, 𝑣) Components of depth-averaged velocity (mean) in the 𝑥 and 𝑦-directions respectively

̃︀𝑢 The deviation of the mean velocity.

̃︀𝑢𝑖 ̃︀𝑢𝑗 Reynold stress.

𝜔 = 2𝜋
86164𝑠 Angular velocity due to rotation of the earth.

𝜈𝑥, 𝜈𝑦 Coefficient of viscosity in 𝑥-direction and 𝑦-direction, respectively (𝑚𝑠−2).
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Glossary

Shallow water equations SWEs

2D Shallow water equations 2DSWEs

Nonlinear Shallow water equations NSWEs

𝑙2-relative error norm 𝑙2-𝑅𝐸

3D Navier-Stokes equations 3DNSEs

Explicit finite difference method EFDM

Absolute error ABSE

Partial Differential Equations PDEs

Courant Friedrichs Lewy CFL
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Development of 2DSWEs (Goals and Objectives)

The development of the efficiency and advantage of numerical methods for shallow water models

are carried out in the following stages:

1. Propose a new technique for deriving 2DSWEs using splitting of velocity and horizontal eddy

viscosity.

2. Suggest some ways to expand the derivation of 2D depth-averaged SWEs using 3D Navier-Stokes

equations. Another way is presented to derive 2DSWEs without using depth-averaged technique.

3. New spatial and temporal discretization techniques in a standard C-grid using an explicit finite

difference method and leapfrog with Robert-Asselin filter for 2DSWEs are applied.

4. Investigation of the proposed techniques which are able to solve 2DSWEs and some examples of

the tsunami mode under moving boundary conditions are tested.

5. Dynamical coupling in a two-way nesting system is performed at a dynamical interface which is

a separate/adjacent from a mesh interface.

6. Build some new algorithms to implement two-way interaction technique for ocean models.

7. Four choices of restriction operator for the free surface elevation and velocities on Arakawa C-

grid are applied. The choice of the full-weighting and the average update operators are proposed

which have the excellent properties regarding the filtering.

8. Suggested a new technique for multiple nested grids at multiple levels for shallow water models

with nest 3:1 and 5:1.

9. Coupling multi systems for multiple nested grids are achieved for 2DSWEs with nest 3:1 and 5:1

at multiple levels.

10. Apply the proposed technique to multiple nested grids for some examples of the tsunami model.

11. All the simulation are made by using Dirichlet condition, reflexive conditions and moving bound-

ary conditions. Boundary conditions for the nested domain are linearly interpolated from the

coarse domain and feedback using the average scheme or (full-weighting scheme) with (sepa-

rate/adjacent) dynamic interface and feedback interface from the high-resolution nested grids

solution to the low-resolution coarse grids solution.

27



28



General Introduction

Background and Review

For oceanic phenomena problems such that complex geometry (i.e., with rivers and estuaries), in

order to increase the horizontal resolution in a subregion without incurring the computational expense

of high resolution over the entire domain. One effective way to overcome this difficulty is to build

hierarchies of nested models with a focus on the area of interest. This technique has been widely used

in meteorology and in oceanography, for which some examples of applications can be found in [90, 109].

The success or failure of these efforts will depend both on the nesting technique and on the charac-

teristics of the basic ocean model. Conclusions on how nested models perform may depend on options

of test problems. There are great works of literature describing nested models for the ocean. Major

efforts include ([16, 36, 56, 90, 102, 109]). The drawback of this technique is the great number of pa-

rameters or the generation of new problems grid interaction, computational efficiency, and conservation

properties (flux of mass and momentum) compared with a classical technique with a single expandable

grid.

This system allows a local increase of the mesh resolution in areas where it seems to be necessary,

by running the same model on a hierarchy of grid. Nesting (or embedding) techniques for structured

mesh generally which indicate an economical way to improve the horizontal resolution, consists a local

high-resolution grid embedded in a coarser-resolution one which covers the entire domain. In the case

of one-way interaction, coarse grid solution provides boundary conditions for the high-resolution grid.

In two-way nesting, the fine grid results are feedback to the coarse grid in addition to the use of the

coarse grid results in specifying the boundary conditions of the fine grid. The interaction between the

coarse grid and fine grid in two-way nesting can take place either at the dynamic interface between

them [122] or over their overlapping region [90]. These methods have been applied successfully in

atmosphere and ocean modelling ([36, 48, 52, 53, 99, 104]).

The nesting procedure should preferably conserve fluxes of mass and momentum across the inter-

faces. In meteorology, such a scheme was developed by Kurihara et al. [122]. Berger [13] have developed

general adaptive mesh refinement algorithms for hyperbolic systems that also are conservative across

interfaces. Ginis et al. [102] applying the technique proposed by Kurihara et al. [122] developed a

nested primitive equation model that did not fictitiously increase or decrease the transports of mass,

momentum, and heat through the dynamical interface. Angot [94] address the continuity and conser-

vation properties across interfaces. Rowley and Ginis [27] included a mesh movement scheme in the
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nested ocean model and stated that mass, heat, and momentum are conserved during the movement.

Most papers describing nested ocean modelling efforts discuss stability problems and unsmooth

solutions across the interfaces. Spall [109] finding support in Zhang [52] state that it may be neces-

sary to sacrifice exact conservation to obtain smooth, stable solutions. To stabilize, and smooth the

solutions we find that combinations of horizontal and vertical diffusion, altering the solutions in time

and relaxation techniques or nudging are often applied.

In the literature, both one-way and two-way interaction between the coarse and the fine grid have

been considered. In the case of one-way interaction, coarse grid solution supply boundary conditions

for the fine grid, but there is no feedback from the fine grid. Phillips and Shukla [98] argue that a

two-way interaction gives correct solution on the fine grid and therefore is more favorable. The two-

way nesting described in [90, 102, 109]. Also, a recent survey of two-way embedding algorithms can

be found in ([16, 19, 47, 66]).

The various two-way interaction schemes mainly differ by type of interpolation, the location of

dynamical interface, conservation properties (flux of mass, and momentum equations), and type of

update.

However, a two-way interaction may introduce instabilities at the interface between the two grids,

and such instabilities may lead to a severe degradation solution [52]. In some studies data from

previously run coarse grid models are used to drive fine grid models ([65, 111]). Fox [56] compared

one-way and two-way nesting and concluded that using the model in one-way nesting mode resulted

in more noise at the fine grid mesh boundaries with a negligible decrease in computer time. In order

to provide the boundary condition for the fine grid, the coarse grid variables must be interpolated to

the fine grid. There are numerous techniques that are potentially interesting for performing two-way

nesting (see [83, 102]). Based on studies with an idealized test case, they conclude that zeroth-order

interpolation may create large phase errors, quadratic interpolation may create overshooting and they

suggest the use of advection equivalent interpolation schemes.

Nested model grids may be adaptive and movable or static. In order to follow evolving oceanic

features such as wavefronts and propagating eddies it may be beneficial to apply for instance adaptive

mesh refinement methods for hyperbolic systems described by [13] or more recently by [16, 19, 47, 66]

have recently applied this technique to study the propagation of the barotropic model and with a

multi-layered quasi-geostrophic model.

Spall and Holland [109] apply the same time step both on the coarse and the fine grid arguing that

the coarse grid contributes little to the overall expense and that it would add an additional level of

computational complexity for very little gain to have different time steps on the two grid levels. With

equal Courant numbers on all levels the quality of the wave propagation relative to the mesh size will

be approximately the same, and most of the more papers on nesting also refine the time step with the
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same factor as the spatial resolution, keeping the Courant numbers constant.

Warner et al [97] recommend using two-way nesting whenever possible since the solution is presumed

to be more accurate when the coarse and nested grid solutions are allowed to interact with one another.

Phillips [98] studied the distortion of shallow-water Rossby and gravity waves in simulations using

both a one-way and a two-way nest. The authors claimed that the two-way solution is more accurate

than the one-way solution because coarse grid solution is nearer to that on the nested grid but they do

not elaborate on this rather obvious point. In particular, there is no analysis of why reflections may

be less when using two-way nesting.

Clark [25] and Chen [24] both performed simulations of two-dimensional linear vertically propagat-

ing mountain waves using nested grids to increase both the horizontal and vertical resolution near the

mountain and they did not use the interpolation boundary condition but instead linearly interpolated

fluxes to the boundary of the nested grid. This approach yields conservation of mass and momentum

across the nested grid boundary which is a desirable property for some modelers.

Chen [24] used a similar nesting strategy in a fully compressible model to test several different

boundary conditions including the interpolation boundary condition and a continuously stratified vari-

ant of the inflow-outflow boundary condition for shallow water flow [20].

In ocean model, the nesting is the degree of refinement from one level to the next and the grid ratio

from 2:1 to 7:1 has been applied. Spall and Holland [109] conclude that 3:1 and 5:1 ratios perform

quite well, and even ratio of 7:1 are able to reproduce the solution reasonably well while the features

are mostly contained within the fine region. To apply small ratios like 2:1, which is used for instance

in Rowley and Ginis [27], may force us to apply many grid levels before we achieve the resolution

we would like to have in a given area. On the other hand, large ratios may cause instabilities and

non-smooth solutions across the interfaces. There are numerous combinations of basic ocean models

and nesting techniques that are potentially interesting and evidence on how these groups perform

is gradually growing as they are applied both to idealized test cases and for more realistic oceanic

problems [73, 90, 94].

31



32



Part I

Mathematical and Numerical Model For 2D

Depth-Averaged Shallow Water Equations
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Chapter 1

Derivation of 2D Shallow Water Equations
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Chapter 1

Derivation of 2D Shallow Water Equations

The results presented in this chapter (Sections 1.4 and 1.5) are the subject of the

article [2].

As we know, there are several possible strategies to derive 2D non-linear shallow water equations.

The first possibility is to integrate the 3D Navier-Stokes equations over the vertical direction and take

averaged values for the velocities. The second alternative is to consider conservation laws for mass and

momentum directly on an infinitesimal control volume.

This chapter focuses on the derivation of 2D depth-averaged SWEs in a manner that hopes to

highlight the important assumptions required. Several approaches can be used to develop this deriva-

tion, we suggest two ways to expand the derivation of 2D shallow water flow from 3D Navier-Stokes

equations using splitting of velocity and horizontal eddy viscosity. Another way is introduced to derive

this model without using the depth-averaged technique.

Highlights

∙ Mathematical description of 3D Navier-Stokes equations is presented.

∙ The complete derivation of 2DSWEs is explained .

∙ Kinematic and dynamic boundary conditions are applied.
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1.1 Introduction

Shallow water equations are hyperbolic partial differential equations (or parabolic if viscous shear is

considered) which explain the flow behavior of rivers. These equations were established in (1775) by

Laplace and were first used in (1871) by the physicist Adhémar Jean Claude Barré de Saint-Venant.

More generally, SWEs describe the evolution of unsteady flow (incompressible) of a fluid, not necessarily

water with constant density. This system is essentially based on the assumption that the water depth

is shallow.

This assumption implies that the model is hydrostatic and state that the velocity is constant with

the depth, bounded from below by the bottom topography and from above by the water surface. The

3D incompressible Navier-Stokes equations are averaged over the depth to obtain SWEs.

These equations are applicable to mathematical concepts where the typical vertical scale is neg-

ligible compared to the typical horizontal scale, and they are effective for many physical phenom-

ena in the oceans, coastal regions, rivers and canals, lake hydrodynamics, dam breaks,...etc (see

[30, 40, 57, 73, 85, 87, 95, 101]).

The derivation of shallow water models effects has received an extensive coverage [63, 105] and

numerical techniques for the approximation of these models have been recently proposed [33, 72]. This

technique for deriving of non-linear SWEs is classical when the viscosity or the wind effects on the

free surface are neglected [45, 54]. In the literature, we often find various non-linear SWEs which

may include wind effects on the free surface, bottom topography and friction effects on the bottom,

often defined using the Manning Chezy formula, or viscosity [43, 45, 68]. Several variations for shallow

water models can be constructed from different assumptions regarding the nature of the fluid, such as

viscosity, incompressibility, and properties of the domain in which the fluid is situated.

This chapter is devoted to highlighting some essential properties of 2DSWEs; it is organized as

follows: Derivation of 2DSWEs is described so that they can be derived in a number of ways with

varying initial assumptions and mathematical complexity. In Sections 1.2 and 1.3, we recall the

mathematical description of 3D Navier-Stokes equations and 2DSWEs. A new technique for complete

derivation for 2D non-linear SWEs is constructed in Sections 1.4 and 1.5. Finally, another way without

using depth-averaged technique to derive this model is introduced in Section 1.6.

The following figures indicate to applications of SWEs in ocean modeling
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Figure 1-1: Shallow water equations in canals.

Figure 1-2: Shallow water equations in dam break.

1.2 Mathematical Description for 3D Navier-Stokes Equations

The Navier-Stokes equations are based on Newton’s second law and consist of a time-dependent con-

tinuity equation for conservation of mass, three time-dependent conservation of momentum equations

which actually results from the fundamental relationship of fluid dynamics. These equations describe

how the velocity, pressure, temperature, and density of a moving fluid are related. The equations were

derived independently by G.G. Stokes, in England, and M. Navier, in France, in the early 1800’s, which

are obtained from the two basic principles of physical laws: ([71, 117]).

1.2.1 The conservation of mass law

The conservation of mass is the first principle used to develop the basic equations of fluid mechanics.

Simply the conservation of mass implies that the total mass of a closed system in a region Ω is constant

over time and mass can neither be created nor destroyed, where Ω ∈ 𝑅3 (see [51, 118]).
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The general formula of the mass continuity in conservation form is:

𝜕𝜌

𝜕𝑡
+ 𝜌

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

)︂
= 0

If the fluid density is constant, the physical interpretation of the equations implies that the change

of density of a fluid particle is equal to the expansion of the fluid. Also, when assuming the fluid is

incompressible. This means that 𝜌 does not depend on 𝑝 (𝜌=𝜌0 is constant), which is not a necessary

condition for incompressible flow, thus the derivative of the density over time is zero.

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

)︂
= 0

1.2.2 The conservation of momentum

The conservation of momentum rule is based on Newton’s second law which states that: if the resulting

force 𝐹 acts on a body of mass 𝑚, then the rate of increase of linear momentum is equal to the force

𝐹 (see [51, 118]). For an incompressible fluid and constant viscosity, the mathematical equation

representing this law is:

𝐷𝑞

𝐷𝑡
= −1

𝜌
.▽ 𝑝+ 𝜈 ▽2 (𝑞) + 𝐹

Physical meaning of each term

(a) 𝐷𝑞
𝐷𝑡 Change in velocities over time, where 𝐷/𝐷𝑡 is the material or total derivative.

(b) ▽𝑝 The internal pressure gradient of the fluid (the change in pressure)

(c) 𝜈 ▽2 (𝑞) The internal stress forces acting on the fluid.

(d) 𝐹 The external stress forces acting on the fluid.

1.2.3 Stress components

The stress state is represented as a symmetric tensor 𝜏 , whose components may be expanded in to

various coordinate systems. The components of the velocity vector (𝑢, 𝑣, 𝑤) align with the Cartesian-

Coordinate directions (𝑥, 𝑦, 𝑧). For such fluids are called Newtonian fluids. If assume an incompressible

fluid the components of stress tensors as follows: [91, 118].
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𝜏𝑥𝑥 = 𝜇.

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

)︂
, 𝜏𝑦𝑦 = 𝜇.

(︂
𝜕𝑣

𝜕𝑦
+

𝜕𝑣

𝜕𝑦

)︂
, 𝜏𝑧𝑧 = 𝜇.

(︂
𝜕𝑤

𝜕𝑧
+

𝜕𝑤

𝜕𝑧

)︂
𝜏𝑥𝑦 = 𝜏𝑦𝑥 = 𝜇

(︂
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥

)︂
, 𝜏𝑥𝑧 = 𝜏𝑧𝑥 = 𝜇

(︂
𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥

)︂
, 𝜏𝑦𝑧 = 𝜏𝑧𝑦 = 𝜇

(︂
𝜕𝑤

𝜕𝑦
+

𝜕𝑣

𝜕𝑧

)︂

where 𝜇 is called the coefficient of dynamic viscosity and the kinematic viscosity 𝜈 = 𝜇
𝜌 .

In general, 𝜏𝑖,𝑗 represent the viscous shear stresses in 𝑖-direction on a 𝑗-plane, which can be expressed

in terms of fluid deformation rate:

𝜏𝑖,𝑗
𝜌

= 𝜈

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
The formula of the continuity equation and 3D incompressible Navier-Stokes equations of a non-

conservation form are given by (see [9, 51, 118]).

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

)︂
= 0 (1.1)

𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

)︂
= 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+

(︂
𝜕𝜏𝑥𝑥
𝜕𝑥

+
𝜕𝜏𝑦𝑥
𝜕𝑦

+
𝜕𝜏𝑧𝑥
𝜕𝑧

)︂
(1.2)

𝜌

(︂
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

)︂
= 𝐹𝑦 −

𝜕𝑝

𝜕𝑦
+

(︂
𝜕𝜏𝑥𝑦
𝜕𝑥

+
𝜕𝜏𝑦𝑦
𝜕𝑦

+
𝜕𝜏𝑧𝑦
𝜕𝑧

)︂
(1.3)

𝜌

(︂
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= 𝐹𝑧 −

𝜕𝑝

𝜕𝑧
+

(︂
𝜕𝜏𝑥𝑧
𝜕𝑥

+
𝜕𝜏𝑦𝑧
𝜕𝑦

+
𝜕𝜏𝑧𝑧
𝜕𝑧

)︂
(1.4)

We will called the above formula, the first form

Where 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧 represent the volume forces . If only the gravitational force and the Coriolis

force are accounted for the vector of volume forces can be written as:

−→
𝐹 =

⎛⎜⎜⎜⎝
2𝜌𝜔𝑣𝑠𝑖𝑛𝜃

−2𝜌𝜔𝑢𝑠𝑖𝑛𝜃

−𝜌𝑔

⎞⎟⎟⎟⎠
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Remark:

If we substitute the component of the stress tensor 𝜏𝑥𝑥, 𝜏𝑦𝑦, 𝜏𝑧𝑧, 𝜏𝑥𝑦, 𝜏𝑥𝑧, and 𝜏𝑦𝑧 in equations (1.2)-

(1.4), we obtain:

For the case of the 𝑥-component

𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

)︂
=𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕

𝜕𝑥

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑥

)︂
+ 𝜇

𝜕

𝜕𝑦

(︂
𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦

)︂
+ 𝜇

𝜕

𝜕𝑧

(︂
𝜕𝑤

𝜕𝑥
+

𝜕𝑢

𝜕𝑧

)︂
=𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

[︂
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑥𝜕𝑦
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑥𝜕𝑧
+

𝜕2𝑢

𝜕𝑧2

]︂

=𝐹𝑥 −
𝜕𝑝

𝜕𝑥
+ 𝜇

⎡⎢⎢⎢⎣𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
+

𝜕

𝜕𝑥

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

)︂
⏟  ⏞  
continuity equation =0

⎤⎥⎥⎥⎦
=𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

[︂
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2

]︂

Similarly, we can do for the 𝑦 and 𝑧-components.

Then the formula of the continuity equation and 3D incompressible Navier-Stokes equations of a

non-conservation form are given by (see [51, 77, 118]).

(︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

)︂
= 0 (1.5)

𝜌

(︂
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

)︂
= 𝐹𝑥 −

𝜕𝑝

𝜕𝑥
+ 𝜇

[︂
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2

]︂
(1.6)

𝜌

(︂
𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

)︂
= 𝐹𝑦 −

𝜕𝑝

𝜕𝑦
+ 𝜇

[︂
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
+

𝜕2𝑣

𝜕𝑧2

]︂
(1.7)

𝜌

(︂
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧

)︂
= 𝐹𝑧 −

𝜕𝑝

𝜕𝑧
+ 𝜇

[︂
𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2

]︂
(1.8)

We will called the above formula, the second form.
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1.3 The Mathematical Description of Shallow Water Model

1.3.1 2D depth-averaged SWEs

In this section, we recall some basic concepts such as continuity equation and momentum equations.

In order to SWEs to be applicable, there are some conditions must be met (see [15, 23, 38, 85, 96]).

1.3.2 General consideration:

1. In shallow water equations, the water depth ℎ is much smaller than horizontal scale of motion 𝑙.

The major condition which will will be

𝜁 =
ℎ

𝑙
<< 1.

2. The vertical momentum exchange is negligible in comparison to the horizontal momentum ex-

change and the vertical velocity component w is much smaller than the horizontal component 𝑢,

𝑣 (i.e | 𝑤 |<<| 𝑢 | and | 𝑤 |<<| 𝑣 |).

3. A major assumption of depth averaging is that the flow in the vertical direction is small.

4. The main condition is that all terms in the 𝑧-direction of the equation (1.4) are small compared

to the gravity and pressure terms (we assume here that the acceleration of the movement on the

vertical is negligible except acceleration due to gravity). Thus, the 𝑧-direction of equation (1.4)

reduces to
𝜕𝑝

𝜕𝑧
= −𝜌𝑔

This implies that the pressure distribution over the vertical direction is hydrostatic.

5. Consider the free surface (water-air interface) at 𝑧 = 𝜂 and the bottom (water-sediment interface)

at 𝑧 = −ℎ using the assumption of hydrostatic pressure. In addition to height of water already

defined, There are two new variables will appear:

𝑢 =
1

𝐻

𝜂∫︁
−ℎ

𝑢 𝑑𝑧 𝑣 =
1

𝐻

𝜂∫︁
−ℎ

𝑣 𝑑𝑧 (1.9)

and 𝐻 = 𝜂+ℎ is the total water depth. These averages are on the vertical of the horizontal components

of the velocity vector will be called vertically-averaged velocities.
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1.3.3 The continuity equation

The equation that results from applying mass conservation is called continuity equation. The depth-

averaged form of this equation is (see [44, 69]):

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.10)

Physical meaning of each term

The terms in the continuity equation have the following meanings:

(a) 𝜕𝜂
𝜕𝑡 Change the water surface elevation over time.

(b) 𝜕(𝐻𝑢)
𝜕𝑥 The gradient of x-component of the flow volume between surface and seafloor.

(c) 𝜕(𝐻𝑣)
𝜕𝑦 The gradient of y-component of above.

1.3.4 The momentum equations

For non-stratified well mixed coastal flows involving tides, winds and atmospheric. The depth-averaged

momentum equation of conservative form along the 𝑥-direction and 𝑦-direction respectively are (see

[44, 69]).

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 =− 𝑔𝐻

𝜕𝜂

𝜕𝑥
+ 𝜈𝑥𝐻(

𝜕2𝑢

𝜕𝑥2
) + 𝜈𝑦𝐻(

𝜕2𝑢

𝜕𝑦2
) +

𝜌𝑎
𝜌0

𝐶𝑎𝑢10
2

√︁
𝑢210 + 𝑣210

− 𝜌0
𝜌0

𝐶𝐷𝑢
2
√︀

𝑢2 + 𝑣2 (1.11)

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑣𝑢)

𝜕𝑦
+

𝜕(𝐻𝑣2)

𝜕𝑦
+ 𝑓𝐻𝑢 =− 𝑔𝐻

𝜕𝜂

𝜕𝑦
+ 𝜈𝑥𝐻(

𝜕2𝑢

𝜕𝑥2
) + 𝜈𝑦𝐻(

𝜕2𝑣

𝜕𝑦2
) +

𝜌𝑎
𝜌0

𝐶𝑎𝑣10
2

√︁
𝑢210 + 𝑣210

− 𝜌0
𝜌0

𝐶𝐷𝑣
2
√︀
𝑢2 + 𝑣2 (1.12)

where 𝜏 𝑠𝑥 = 𝜌𝑎𝐶𝑎𝑢10
2
√︀

𝑢210 + 𝑣210, 𝜏
𝑏
𝑥 =𝜌0𝐶𝐷𝑢

2
√
𝑢2 + 𝑣2, 𝜏 𝑠𝑦=𝜌𝑎𝐶𝑎𝑣10

2
√︀
𝑢210 + 𝑣210, 𝜏

𝑏
𝑦 =𝜌0𝐶𝐷𝑣

2
√
𝑢2 + 𝑣2,

and the values 𝐶𝑎, 𝐶𝐷, 𝑢10, 𝑣10, 𝜌0, and 𝜌𝑎 listed in mathematical notations Page 23.

Physical meaning of each term

The physical meaning of each term in the 𝑥-momentum equation is described below and the terms in

the 𝑦-momentum equation are similar.

1. 𝜕𝑢
𝜕𝑡 Change of the velocity over time (sometimes called the local variation of momentum

over time).
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2. 𝜕𝑢2

𝜕𝑥 + 𝜕𝑢𝑣
𝜕𝑦 The advective terms. The terms are non-linear and are sometimes called spatial

acceleration terms.

3. 𝑓𝑣 The Coriolis term.

4. 𝑔 𝜕𝜂
𝜕𝑥 The gravity term, which means the force due to the gradient of the surface in the

𝑥-direction.

5. 𝜈𝑥(
𝜕2𝑢
𝜕𝑥2 ) + 𝜈𝑦(

𝜕2𝑣
𝜕𝑦2

) Horizontal viscosity terms.

6. 𝜌𝑎
𝜌0
𝐶𝑎𝑢10

2
√︀
𝑢210 + 𝑣210 The 𝑥- component of wind stress acting on the surface of the sea.

7. 𝐶𝐷𝑢
2
√
𝑢2 + 𝑣2 The 𝑥-component of friction acting on the bottom surface.

1.3.5 Surface and bottom boundary conditions

Shallow water equations have to be implemented with boundary conditions. In this section, boundary

conditions will be discussed on the free surface and at the solid bottom.

1. Kinematic boundary conditions

The kinematic boundary conditions prescribe that the water particles can not cross the solid bottom

nor the free surface. For the bottom, the normal velocity component must vanish. Since the free

surface might be moving by itself, the normal velocity of the fluid should equal the normal velocity of

the surface [29, 35].

a. At the solid bottom

We can explain this condition that the bottom is a material surface of the fluid, not crossed by the

flow and stationary (no normal flow).

[︂
𝑢|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥
+ 𝑣|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦
− 𝑤|𝑧=−ℎ

]︂
= 0 (1.13)

⇒ 𝑤|𝑧=−ℎ = 𝑢|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑥
+ 𝑣|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦

b. At a free surface

Here, the situation is more complicated because of the fact that the boundary is moving with the

fluid. (no relative normal flow)
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𝜕𝜂

𝜕𝑡
= −

[︂
𝑢|𝑧=𝜂

𝜕𝜂

𝜕𝑥
+ 𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦
− 𝑤|𝑧=𝜂

]︂
(1.14)

2. Dynamic boundary conditions

We have dynamic boundary conditions for the forces that act at the bottom and surface boundaries.

(see [29, 35]).

a. At the solid bottom:

For the bottom, we have the no-slip conditions 𝑢 = 𝑣 = 𝑤 = 0.

The equation of the bottom stress can be represented as [39]:

𝜏 𝑏𝑥 = −
[︂
𝜏𝑥𝑥

𝜕(−ℎ)

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕(−ℎ)

𝜕𝑦
− 𝜏𝑧𝑥

]︂
𝑧=−ℎ

Similarly for y-direction.

b. At a free surface

The equation of wind stress at the water surface can be represented as [39]:

𝜏 𝑠𝑥 = −
[︂
𝜏𝑥𝑥

𝜕𝜂

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕𝜂

𝜕𝑦
− 𝜏𝑧𝑥

]︂
𝑧=𝜂

Similarly for y-direction.

1.3.6 Leibnitz rule

Leibniz’s formula is applied to invert the differential operators and integration. This rule says that

the derivative of the integral at the boundaries of the variables makes appear a derivative inside the

integral and flow terms according to the formula [64].

𝜕

𝜕𝑥

𝐵(𝑥,𝑦,𝑡)∫︁
𝐴(𝑥,𝑦,𝑡)

𝐹𝑑𝑧 =

𝐵(𝑥,𝑦,𝑡)∫︁
𝐴(𝑥,𝑦,𝑡)

𝜕𝐹

𝜕𝑥
𝑑𝑧 + 𝐹 |(𝑧=𝐵)

𝜕𝐵

𝜕𝑥
− 𝐹 |𝑧=𝐴

𝜕𝐴

𝜕𝑥

Where A(x,y,t), B(x,y,t) be the bottom water depth and the water surface elevation respectively

and F(x,y,t) be a smooth function.
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1.4 Derivation of 2DSWEs from the First Formula of 3D Navier-

Stokes Equations

There will be some basic steps to derive 2DSWEs from the equations (1.1)-(1.4). Firstly, one needs

to specify boundary conditions (BCs) for a water column. The second step is to carry out the depth-

averaged integration. Finally, to apply the BCs within the integration operation. Beside the BCs, we

will use Leibnitz rule to derive SWE [23].

1.4.1 Principle

Suppose we can split each momentary velocity in some types of mean and a random variation (volatile

velocity) as follows:

𝑢(𝑧) = 𝑢(𝑧) + ̃︀𝑢(𝑧) 𝑣(𝑧) = 𝑣(𝑧) + ̃︀𝑣(𝑧) and 𝑤(𝑧) = 𝑤(𝑧) + ̃︀𝑤(𝑧)
For these distribution coefficient, the following relation are valid:

𝜂∫︁
−ℎ

̃︀𝑢(𝑧)𝑑𝑧 = 0

𝜂∫︁
−ℎ

̃︀𝑣(𝑧)𝑑𝑧 = 0

From now, we will only consider the mean velocities and neglect the random variations,

except the advaction terms for 2DSWEs, which we will discuss later (see Section 1.4.4).

Figure 1-3: Depth-averaged velocity distribution.

1.4.2 The depth-averaged continuity equation

We can start to integrate the individual terms of the continuity equation (1.1) over the vertical as

follows:

0 =

𝜂∫︁
−ℎ

[︂
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧

]︂
𝑑𝑧 =

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕𝑣

𝜕𝑦
𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕𝑤

𝜕𝑧
𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

(1.15)
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The terms I, II, and III can be simplified as follows:

𝐼 =
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢𝑑𝑧 + 𝑢|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑥
− 𝑢|𝑧=𝜂

𝜕𝜂

𝜕𝑥

𝐼𝐼 =
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑣𝑑𝑧 + 𝑣|𝑧=(−ℎ)
𝜕(−ℎ)

𝜕𝑥
− 𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦

𝐼𝐼𝐼 = 𝑤|𝑧=𝜂 − 𝑤|𝑧=−ℎ

Hence, equation (1.15) leads to:

0 =
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑣𝑑𝑧 + [𝑢
𝜕(−ℎ)

𝜕𝑥
+ 𝑣

𝜕(−ℎ)

𝜕𝑦
− 𝑤]|𝑧=−ℎ⏟  ⏞  

=0 by using equation (1.13 )

− [𝑢
𝜕𝜂

𝜕𝑥
+ 𝑣

𝜕𝜂

𝜕𝑦
− 𝑤]|𝑧=𝜂⏟  ⏞  

=− 𝜕𝜂
𝜕𝑡

by using equation (1.14 )

=
𝜕𝜂

𝜕𝑡
+

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑣𝑑𝑧 (1.16)

By using equation (1.9) in the terms 2 and 3 of equation (1.16). Finally, we obtain the depth-

averaged of the continuity equation (some times called vertically-integrated continuity equation)

as fallows:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0

1.4.3 The momentum depth-averaged equations

Consider the x-momentum equation given by equation (1.2)

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

+
1

𝜌
𝐹𝑥

and the 𝑧-momentum given in equation (1.4)

𝜕𝑝

𝜕𝑧
= −𝜌𝑔

By Integrating the above equation from the free surface at 𝑧 = 𝜂 to some level 𝑧

𝑝∫︁
𝑝𝑠

𝑑𝑝 = −
𝑧∫︁

𝜂

𝜌𝑔𝑑𝑧
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𝑝− 𝑝𝑠 = −𝜌𝑔(𝑧 − 𝜂)

Due to hydrostatic approach and constant density, the pressure depends on 𝜂 and the vertical

coordinate

𝑝− 𝑝𝑠 = 𝜌𝑔𝜂 − 𝜌𝑔𝑧 ⇒ 𝑝 = 𝑝𝑠 + 𝜌𝑔𝜂 − 𝜌𝑔𝑧

−1

𝜌

𝜕𝑝

𝜕𝑥
=

−1

𝜌

𝜕𝑝𝑠
𝜕𝑥

− 𝑔
𝜕𝜂

𝜕𝑥
+ 𝑔

𝜕𝑧

𝜕𝑥

where 𝑝𝑠 means pressure at the free surface.

Thus,

−1

𝜌

𝜕𝑝

𝜕𝑥
= −𝑔

𝜕𝜂

𝜕𝑥
𝑜𝑟

−1

𝜌

𝜕𝑝

𝜕𝑥
= −𝑔

𝜕𝜂

𝜕𝑥
+ 𝑔𝑠0

where 𝑠0 the bottom slope.

The horizontal pressure gradients depend on the free surface 𝜂 only

−1

𝜌

𝜕𝑝

𝜕𝑥
= −𝑔

𝜕𝜂

𝜕𝑥
𝑎𝑛𝑑

−1

𝜌

𝜕𝑝

𝜕𝑦
= −𝑔

𝜕𝜂

𝜕𝑦

Then, the 𝑥-momentum equation becomes:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
= −𝑔

𝜕𝜂

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

+
1

𝜌
𝐹𝑥 (1.17)

Then, by integrating the left hand side (LHS) of the equation (1.17), we obtain

𝜂∫︁
−ℎ

[
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
]𝑑𝑧 =

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕(𝑢𝑣)

𝜕𝑦
𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕(𝑢𝑤)

𝜕𝑧
𝑑𝑧

⏟  ⏞  
𝐼𝑉

(1.18)

To explain how to change the terms in the LHS of equation (1.18) from non-conservative to con-

servative form as follows:

By adding 𝑢 times the continuity equation to 𝑥-momentum equation (1.17), we obtain:

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑢

𝜕𝑣

𝜕𝑦
+ 𝑢

𝜕𝑤

𝜕𝑧

Re-arranging, we obtain right hand side (RHS) of the equation (1.18)

𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
+

𝜕(𝑢𝑤)

𝜕𝑧
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1. Time derivative and advection terms

By using Leibnitz rule and integration theorem. The terms 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝐼𝑉 can be simplified as

follows:

𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧 =

𝜕

𝜕𝑡

𝜂∫︁
−ℎ

𝑢𝑑𝑧 + 𝑢|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑡
− 𝑢|𝑧=𝜂

𝜕𝜂

𝜕𝑡

𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧 =

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢2𝑑𝑧 + 𝑢2|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑥
− 𝑢2|𝑧=𝜂

𝜕𝜂

𝜕𝑥

𝐼𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢𝑣

𝜕𝑦
𝑑𝑧 =

𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑢𝑣𝑑𝑧 + 𝑢𝑣|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑦
− 𝑢𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦

𝐼𝑉 =

𝜂∫︁
−ℎ

𝜕𝑢𝑤

𝜕𝑧
𝑑𝑧 = 𝑢𝑤|𝑧=𝜂 − 𝑢𝑤|𝑧=−ℎ

Hence, the equation (1.18) can be rewritten as:

𝜂∫︁
−ℎ

[
𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
+

𝜕(𝑢𝑤)

𝜕𝑧
]𝑑𝑧 =

𝜕

𝜕𝑡

𝜂∫︁
−ℎ

𝑢𝑑𝑧 +
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢2𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑢𝑣𝑑𝑧 − 𝑢|𝑧=𝜂

⎡⎢⎢⎢⎢⎣𝜕𝜂𝜕𝑡 + 𝑢|𝑧=𝜂
𝜕𝜂

𝜕𝑥
+ 𝑣|𝑧=𝜂

𝜕𝜂

𝜕𝑦
− 𝑤|𝑧=𝜂⏟  ⏞  

=− 𝜕𝜂
𝜕𝑡

by using equation (1.14)

⎤⎥⎥⎥⎥⎦

+ 𝑢|𝑧=−ℎ

⎡⎢⎢⎢⎣𝜕(−ℎ)

𝜕𝑡⏟  ⏞  
=0

+𝑢|𝑧=−ℎ
𝜕(−ℎ)

𝜕𝑥
+ 𝑣|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦
− 𝑤|𝑧=−ℎ⏟  ⏞  

=0 by using equation (1.13)

⎤⎥⎥⎥⎦
It follows that:

𝜕

𝜕𝑡

𝜂∫︁
−ℎ

𝑢𝑑𝑧 +
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢2𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑢𝑣𝑑𝑧 =
𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦

By using equation (1.9) in the terms 1, 2, and 3 of the above equation.

Now, we will integrate the RHS of the equation (1.17)

𝜂∫︁
−ℎ

[−𝑔
𝜕𝜂

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

+
1

𝜌
𝐹𝑥]𝑑𝑧 =

𝜂∫︁
−ℎ

−𝑔
𝜕𝜂

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

[
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧⏟  ⏞  

𝐼𝐼

]𝑑𝑧

+

𝜂∫︁
−ℎ

1

𝜌
𝐹𝑥

⏟  ⏞  
𝐼𝐼𝐼

𝑑𝑧 (1.19)
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2. Pressure gradient, diffusion terms and Coriolis terms

The terms 𝐼, 𝐼𝐼, and 𝐼𝐼𝐼 can be simplified as follows:

𝐼 = −
𝜂∫︁

−ℎ

𝑔
𝜕𝜂

𝜕𝑥
𝑑𝑧 = −𝑔

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝜂𝑑𝑧 − 𝑔𝜂𝑧=𝜂
𝜕(𝜂)

𝜕𝑥
+ 𝑔𝜂|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥

𝐼𝐼 =

𝜂∫︁
−ℎ

[︂
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

]︂
𝑑𝑧

=
1

𝜌

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝜏𝑥𝑥𝑑𝑧 +
1

𝜌

𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝜏𝑦𝑥𝑑𝑧 −
1

𝜌

[︃
𝜏𝑥𝑥

𝜕𝜂

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕𝜂

𝜕𝑦
− 𝜏𝑧𝑥

]︃
𝑧=𝜂

+
1

𝜌

[︃
𝜏𝑥𝑥

𝜕(−ℎ)

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕(−ℎ)

𝜕𝑦
− 𝜏𝑧𝑥

]︃
𝑧=−ℎ

𝐼𝐼𝐼 =

𝜂∫︁
−ℎ

1

𝜌
𝐹𝑥𝑑𝑧 =

1

𝜌

𝜂∫︁
−ℎ

(2𝜌𝜔𝑣𝑠𝑖𝑛𝜃)𝑑𝑧 = 𝑓𝐻𝑣

Now, applying the boundary condition by performing a stress balance at the surface, it can be

show that:

𝜏 𝑠𝑥 = −
[︂
𝜏𝑥𝑥

𝜕𝜂

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕𝜂

𝜕𝑦
− 𝜏𝑧𝑥

]︂
𝑧=𝜂

Similarly at the bottom

𝜏 𝑏𝑥 = −
[︂
𝜏𝑥𝑥

𝜕(−ℎ)

𝜕𝑥
+ 𝜏𝑦𝑥

𝜕(−ℎ)

𝜕𝑦
− 𝜏𝑧𝑥

]︂
𝑧=−ℎ

Then, the equation (1.19) leads to:

𝜂∫︁
−ℎ

[−𝑔
𝜕𝜂

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

+
1

𝜌

𝜂∫︁
−ℎ

𝐹𝑥]𝑑𝑧 =

− 𝑔
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝜂𝑑𝑧 + 𝑔𝜂|𝑧=𝜂
𝜕(𝜂)

𝜕𝑥
− 𝑔𝜂|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 𝜏 𝑏𝑥
𝜌

+
𝜏 𝑠𝑥
𝜌

+ 𝑓𝐻𝑣

By expanding terms that involve gravity, we get:

−𝑔
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝜂𝑑𝑧 = −𝑔
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝜂𝑑𝑧 = −𝑔𝜂
𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑑𝑧 = −𝑔
𝜕(𝜂𝐻)

𝜕𝑥

By using the chain rule for the following equation leads to:
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−𝑔
𝜕(𝜂𝐻)

𝜕𝑥
+ 𝑔𝜂

𝜕𝜂

𝜕𝑥
− 𝑔𝜂

𝜕(−ℎ)

𝜕𝑥
= −𝜂𝑔

𝜕(𝐻)

𝜕𝑥
− 𝑔𝐻

𝜕𝜂

𝜕𝑥
+ 𝑔𝜂

𝜕𝜂

𝜕𝑥
− 𝑔𝜂

𝜕(−ℎ)

𝜕𝑥

= 𝑔

[︂
−𝜂

𝜕(𝐻)

𝜕𝑥
−𝐻

𝜕𝜂

𝜕𝑥
+ 𝜂

𝜕𝜂

𝜕𝑥
+ 𝜂

𝜕(ℎ)

𝜕𝑥

]︂
= −𝑔𝐻

𝜕𝜂

𝜕𝑥

Hence, the RHS of equation (1.19) becomes:

−𝑔𝐻
𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 1

𝜌
𝜏 𝑏𝑥 +

1

𝜌
𝜏 𝑠𝑥 + 𝑓𝐻𝑣

Therefore, the depth-averaged of 𝑥-momentum equation (1.17) is:

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
= −𝑔𝐻

𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 1

𝜌
𝜏 𝑏𝑥 +

1

𝜌
𝜏 𝑠𝑥 + 𝑓𝐻𝑣

By the same way, we obtain the depth-averaged of 𝑦-momentum equation (1.3) as follows:

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑣2)

𝜕𝑦
+

𝜕(𝐻𝑢𝑣)

𝜕𝑥
= −𝑔𝐻

𝜕𝜂

𝜕𝑦
+

1

𝜌
𝐻

𝜕𝜏𝑦𝑦
𝜕𝑦

+
1

𝜌
𝐻

𝜕𝜏𝑥𝑦
𝜕𝑥

− 1

𝜌
𝜏 𝑏𝑦 +

1

𝜌
𝜏 𝑠𝑦 − 𝑓𝐻𝑢

Finally, we get 2D depth-averaged SWEs as the form:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.20)

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 1

𝜌
𝜏 𝑏𝑥 +

1

𝜌
𝜏 𝑠𝑥

(1.21)

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑣2)

𝜕𝑦
+

𝜕(𝐻𝑢𝑣)

𝜕𝑥
+ 𝑓𝐻𝑢 = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+

1

𝜌
𝐻

𝜕𝜏𝑦𝑦
𝜕𝑦

+
1

𝜌
𝐻

𝜕𝜏𝑥𝑦
𝜕𝑥

− 1

𝜌
𝜏 𝑏𝑦 +

1

𝜌
𝜏 𝑠𝑦

(1.22)
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1.4.4 Remarks:

1. Consider the equations (1.20)-(1.22), by using the following formula:

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
= 𝐻

𝜕(𝑢)

𝜕𝑡
+𝐻𝑢

𝜕(𝑢)

𝜕𝑥
+𝐻𝑣

𝜕(𝑢)

𝜕𝑦
+ 𝑢

[︂
𝜕𝐻

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦

]︂
⏟  ⏞  

depth integred continuity equation = 0

= 𝐻
𝜕(𝑢)

𝜕𝑡
+𝐻𝑢

𝜕(𝑢)

𝜕𝑥
+𝐻𝑣

𝜕(𝑢)

𝜕𝑦

We can get the system as follows:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.23)

𝐻𝜕(𝑢)

𝜕𝑡
+𝐻𝑢

𝜕(𝑢)

𝜕𝑥
+𝐻𝑣

𝜕(𝑢)

𝜕𝑦
− 𝑓𝐻𝑣 = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 1

𝜌
𝜏 𝑏𝑥 +

1

𝜌
𝜏 𝑠𝑥

(1.24)

𝐻𝜕(𝑣)

𝜕𝑡
+𝐻𝑢

𝜕(𝑣)

𝜕𝑥
+𝐻𝑣

𝜕(𝑣)

𝜕𝑦
+ 𝑓𝐻𝑢 = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+

1

𝜌
𝐻

𝜕𝜏𝑦𝑦
𝜕𝑦

+
1

𝜌
𝐻

𝜕𝜏𝑥𝑦
𝜕𝑥

− 1

𝜌
𝜏 𝑏𝑦 +

1

𝜌
𝜏 𝑠𝑦

(1.25)

2. Advection terms and Reynolds stresses

By substituting the split velocities given in Section (1.4.1) in advection terms for equation (1.21),

we obtain (when calculating the random variations) :

𝜂∫︁
−ℎ

(𝑢+ ̃︀𝑢)(𝑢+ ̃︀𝑢)𝑑𝑧 =

𝜂∫︁
−ℎ

𝑢2𝑑𝑧 +

𝜂∫︁
−ℎ

̃︀𝑢̃︀𝑢𝑑𝑧 + 2𝑢

𝜂∫︁
−ℎ

̃︀𝑢𝑑𝑧
⏟  ⏞  

= 0

= 𝐻𝑢2 +

𝜂∫︁
−ℎ

̃︀𝑢2𝑑𝑧

and
𝜂∫︁

−ℎ

(𝑢+ ̃︀𝑢)(𝑣 + ̃︀𝑣)𝑑𝑧 =

𝜂∫︁
−ℎ

(𝑢.𝑣)𝑑𝑧 +

𝜂∫︁
−ℎ

̃︀𝑢𝑣𝑑𝑧
⏟  ⏞  

= 0

+

𝜂∫︁
−ℎ

𝑢̃︀𝑣𝑑𝑧
⏟  ⏞  

= 0

+

𝜂∫︁
−ℎ

̃︀𝑢̃︀𝑣𝑑𝑧 = 𝐻𝑢.𝑣 +

𝜂∫︁
−ℎ

̃︀𝑢.̃︀𝑣𝑑𝑧

Thus

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣

= −𝑔𝐻
𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

− 𝜕

𝜕𝑥

𝜂∫︁
−ℎ

̃︀𝑢2𝑑𝑧 − 𝜕

𝜕𝑥

𝜂∫︁
−ℎ

̃︀𝑢.̃︀𝑣𝑑𝑧 + 1

𝜌
[𝜏 𝑏𝑥 + 𝜏 𝑠𝑥]
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where the terms ̃︀𝑢𝑖̃︀𝑢𝑗 are called Reynolds stresses. Similarly the equation (1.22).

After substituting the split velocities and re-arrangemments the above system, we obtain the 2D

depth-integrated SWEs as follows:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 =− 𝑔𝐻

𝜕𝜂

𝜕𝑥
+

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

(︂
𝜏𝑥𝑥
𝜌

− ̃︀𝑢2)︂ 𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

(︂
𝜏𝑦𝑥
𝜌

− ̃︀𝑢̃︀𝑣)︂ 𝑑𝑧

− 1

𝜌
𝜏 𝑏𝑥 +

1

𝜌
𝜏 𝑠𝑥

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑣2)

𝜕𝑦
+

𝜕(𝐻𝑣𝑢)

𝜕𝑥
+ 𝑓𝐻𝑢 =− 𝑔𝐻

𝜕𝜂

𝜕𝑦
+

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

(︂
𝜏𝑥𝑦
𝜌

− ̃︀𝑣̃︀𝑢)︂ 𝑑𝑧 +
𝜕

𝜕𝑦

𝜂∫︁
−ℎ

(︂
𝜏𝑦𝑦
𝜌

− ̃︀𝑣2)︂ 𝑑𝑧

− 1

𝜌
𝜏 𝑏𝑦 +

1

𝜌
𝜏 𝑠𝑦

Now, every simple model for the combined lateral momentum diffusion (due to turbulence) and

dispersion (due to averaging out vertical velocity profile) is [79]:

∫︁ 𝜂

−ℎ

(︂
𝜏𝑥𝑥
𝜌

− ̃︀𝑢2)︂ 𝑑𝑧 = 𝐸𝑥𝑥

(︂
𝜕𝐻𝑢

𝜕𝑥

)︂
∫︁ 𝜂

−ℎ

(︂
𝜏𝑦𝑥
𝜌

− ̃︀𝑣̃︀𝑢)︂ 𝑑𝑧 = 𝐸𝑦𝑥

(︂
𝜕𝐻𝑢

𝜕𝑦

)︂
∫︁ 𝜂

−ℎ

(︂
𝜏𝑥𝑦
𝜌

− ̃︀𝑢̃︀𝑣)︂ 𝑑𝑧 = 𝐸𝑥𝑦

(︂
𝜕𝐻𝑣

𝜕𝑥

)︂
∫︁ 𝜂

−ℎ

(︂
𝜏𝑦𝑦
𝜌

− ̃︀𝑣2)︂ 𝑑𝑧 = 𝐸𝑦𝑦

(︂
𝜕𝐻𝑣

𝜕𝑦

)︂

When 𝐸𝑥𝑥, 𝐸𝑥𝑦, 𝐸𝑦𝑥, and 𝐸𝑦𝑦 are called the eddy dispersion coefficients (horizontal eddy

viscosity), which are assumed to be constants in space (see [60, 79]).

Finally, The 2D depth-averaged of SWEs becomes:
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𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.26)

𝜕𝐻𝑢

𝜕𝑡
+

𝜕𝐻𝑢2

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+ 𝐸𝑥𝑥

(︂
𝜕2𝐻𝑢

𝜕2𝑥2

)︂
+ 𝐸𝑦𝑥

(︂
𝜕2𝐻𝑢

𝜕2𝑦2

)︂
− 𝜏 𝑏𝑥

𝜌
+

𝜏 𝑠𝑥
𝜌

(1.27)

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑣2)

𝜕𝑦
+

𝜕(𝐻𝑣𝑢)

𝜕𝑥
+ 𝑓𝐻𝑢 = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+ 𝐸𝑥𝑦

(︂
𝜕2𝐻𝑣

𝜕2𝑥2

)︂
+ 𝐸𝑦𝑦

(︂
𝜕2𝐻𝑣

𝜕2𝑦2

)︂
−

𝜏 𝑏𝑦
𝜌

+
𝜏 𝑠𝑦
𝜌

(1.28)

1.4.5 Bottom shear stress Formulas

𝜏 𝑏𝑥 = 𝜌𝐶𝐷𝑢
√
𝑢2 + 𝑣2 and 𝜏 𝑏𝑦 = 𝜌𝐶𝐷𝑣

√
𝑢2 + 𝑣2

where 𝐶𝐷 is a coefficient often determined in one of the following formulas:

1. Formula of Darcy Weisbach 𝐶𝐷 = 1
8𝑓𝐷𝑊

2. Formula of Chezy 𝐶𝐷 = 𝑔
𝐶2

3. Formula of Manning 𝐶𝐷 = 𝑛2𝑔
𝐻1/3

Where 𝑛 Manning’s roughness. The value of 𝑛 are given in [114].

1.5 Development of SWEs Derivation from the Second Formula of 3D

Navier-Stokes Equations

Consider the system given by equations (1.5)-(1.8). By dividing 𝜌 on all the terms of the equations

and substitute 𝜇 = 𝜈𝜌, we obtain the system which is called Equations of the Governing Geophysical

Flows as follows:

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0

𝜕𝑢

𝜕𝑡
+

(︂
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧

)︂
− 𝑓𝑣 = −1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
) (1.29)
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𝜕𝑣

𝜕𝑡
+

(︂
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧

)︂
+ 𝑓𝑢 = −1

𝜌

𝜕𝑝

𝜕𝑦
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑣

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜈

𝜕𝑣

𝜕𝑧
) (1.30)

0 = −𝜕𝑝

𝜕𝑧
− 𝜌𝑔

1.5.1 Results and discussions

Firstly, the depth-averaged integration of equation (1.5) is as follows:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0

We can start integrating the equation (1.29) containing the viscous terms.

The result of integrating the LHS of equation (1.29) is: (see Section1.4.3)

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦

and integration of the Coriolis term in equation (1.29) is:

−
𝜂∫︁

−ℎ

𝑓𝑣𝑑𝑧 = −𝑓

𝜂∫︁
−ℎ

𝑣𝑑𝑧 = −𝑓𝐻𝑣

Now, we will start integrating the RHS of equation (1.29)

𝜂∫︁
−ℎ

(︂
−1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
)

)︂
𝑑𝑧 =

𝜂∫︁
−ℎ

−1

𝜌

𝜕𝑝

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
)𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
)𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
)𝑑𝑧

⏟  ⏞  
𝐼𝑉

(1.31)

The terms 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝐼𝑉 can be simplified as follows:

𝐼 = −
𝜂∫︁

−ℎ

1

𝜌

𝜕𝑝

𝜕𝑥
𝑑𝑧 = −𝑔𝐻

𝜕𝜂

𝜕𝑥

𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
)𝑑𝑧 =

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

(𝜈
𝜕𝑢

𝜕𝑥
)𝑑𝑧 − 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=𝜂

𝜕𝜂

𝜕𝑥
+ 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥

=
𝜕

𝜕𝑥
(𝐻𝜈

𝜕𝑢

𝜕𝑥
)− 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=𝜂

𝜕𝜂

𝜕𝑥
+ 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥

𝐼𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
)𝑑𝑧 =

𝜕

𝜕𝑦

𝜂∫︁
−ℎ

(𝜈
𝜕𝑢

𝜕𝑦
)𝑑𝑧 − 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦

=
𝜕

𝜕𝑦
(𝐻𝜈

𝜕𝑢

𝜕𝑦
)− 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦

𝐼𝑉 =

𝜂∫︁
−ℎ

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
)𝑑𝑧 = 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=𝜂 − 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=−ℎ
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By arrange the terms 𝐼, 𝐼𝐼, 𝐼𝐼𝐼, and 𝐼𝑉 and combined to obtain:

𝜂∫︁
−ℎ

(︂
−1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
)

)︂
𝑑𝑧 =

− 𝑔𝐻
𝜕𝜂

𝜕𝑥
+

𝜕

𝜕𝑥
(𝐻𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐻𝜈

𝜕𝑢

𝜕𝑦
)

+

(︂
−𝜈

𝜕𝑢

𝜕𝑥
|𝑧=𝜂

𝜕𝜂

𝜕𝑥
− 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=𝜂

)︂
+

(︂
𝜈
𝜕𝑢

𝜕𝑦
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥
− 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=−ℎ

)︂

Now, applying the boundary condition by performed a stress balance at the surface, it can be show

that:

(︂
−𝜈

𝜕𝑢

𝜕𝑥
|𝑧=𝜂

𝜕𝜂

𝜕𝑥
− 𝜈

𝜕𝑢

𝜕𝑦
|𝑧=𝜂

𝜕𝜂

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=𝜂

)︂
=

𝜏𝑤𝑥
𝜌

Similarly, at the bottom

(︂
𝜈
𝜕𝑢

𝜕𝑦
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑦
+ 𝜈

𝜕𝑢

𝜕𝑥
|𝑧=−ℎ

𝜕(−ℎ)

𝜕𝑥
− 𝜈

𝜕𝑢

𝜕𝑧
|𝑧=−ℎ

)︂
= −𝜏 𝑏𝑥

𝜌

Thus, the RHS of equation (1.29) can be rewrite as:

𝜂∫︁
−ℎ

(︂
−1

𝜌

𝜕𝑝

𝜕𝑥
+

𝜕

𝜕𝑥
(𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜈

𝜕𝑢

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜈

𝜕𝑢

𝜕𝑧
)

)︂
𝑑𝑧 =− 𝑔𝐻

𝜕𝜂

𝜕𝑦
+

𝜕

𝜕𝑥
(𝐻𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐻𝜈

𝜕𝑢

𝜕𝑦
)

+
𝜏𝑤𝑥
𝜌

− 𝜏 𝑏𝑥
𝜌

Finally, we can be written the depth-averaged of the equation (1.29) as follows:

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+

𝜕

𝜕𝑥
(𝐻𝜈

𝜕𝑢

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐻𝜈

𝜕𝑢

𝜕𝑦
) +

𝜏𝑤𝑥
𝜌

− 𝜏 𝑏𝑥
𝜌

By the same way, we can obtain the depth-averaged of the equation (1.30) as follows:

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑢𝑣)

𝜕𝑥
+

𝜕(𝐻𝑣2)

𝜕𝑦
+ 𝑓𝐻𝑢 = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+

𝜕

𝜕𝑥
(𝐻𝜈

𝜕𝑣

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝐻𝜈

𝜕𝑣

𝜕𝑦
) +

𝜏𝑤𝑦
𝜌

−
𝜏 𝑏𝑦
𝜌

The results from the depth-averaged of the development 2D depth-averaged SWEs as follows:
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𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.32)

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
− 𝑓𝐻𝑣 = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+ 𝜈𝐻

[︂
(
𝜕2𝑢

𝜕𝑥2
) + (

𝜕2𝑢

𝜕𝑦2
)

]︂
+

𝜏𝑤𝑥
𝜌

− 𝜏 𝑏𝑥
𝜌

(1.33)

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑢𝑣)

𝜕𝑥
+

𝜕(𝐻𝑣2)

𝜕𝑦
+ 𝑓𝐻𝑢 = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+ 𝜈𝐻

[︂
(
𝜕2𝑣

𝜕𝑥2
) + (

𝜕2𝑣

𝜕𝑦2
)

]︂
+

𝜏𝑤𝑦
𝜌

−
𝜏 𝑏𝑦
𝜌

(1.34)

Remark

From now, we will only consider the mean velocities and neglect the random variations

(i.e., we can put 𝑢, 𝑣 instead of 𝑢 and 𝑣) .

1.6 Case 2: Derivation 2DSWEs Without Using the Depth Averaged

Technique

Consider the 𝑥-momentum equation:

𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
+

𝜕(𝑢𝑤)

𝜕𝑧
= −1

𝜌

𝜕𝑝

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

The depth-averaged equation for the above equation is:

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕(𝑢𝑣)

𝜕𝑦
𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕(𝑢𝑤)

𝜕𝑧
𝑑𝑧

⏟  ⏞  
𝐼𝑉

=

𝜂∫︁
−ℎ

−1

𝜌

𝜕𝑝

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝑉

+

𝜂∫︁
−ℎ

[
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧⏟  ⏞  

𝑉 𝐼

]𝑑𝑧

(1.35)

with 𝑝 = 𝜌𝑔(𝜂 − 𝑧)
𝜕𝑝

𝜕𝑥
= 𝜌𝑔

𝜕𝜂

𝜕𝑥
+ 𝑔(𝜂 − 𝑧)

𝜕𝜌

𝜕𝑥
(1.36)

Now, substitute equation (1.36) to equation (1.35), we obtain:

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢𝑣

𝜕𝑦
𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢𝑤

𝜕𝑧
𝑑𝑧

⏟  ⏞  
𝐼𝑉

=

𝜂∫︁
−ℎ

−1

𝜌
(𝜌𝑔)

𝜕𝜂

𝜕𝑥
𝑑𝑧 − 𝑔

𝜌
(𝜂 − 𝑧)

𝜕𝜌

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝑉

+

𝜂∫︁
−ℎ

[
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧⏟  ⏞  

𝑉 𝐼

]𝑑𝑧
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That implies:

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧

⏟  ⏞  
𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢𝑣

𝜕𝑦
𝑑𝑧

⏟  ⏞  
𝐼𝐼𝐼

+

𝜂∫︁
−ℎ

𝜕𝑢𝑤

𝜕𝑧
𝑑𝑧

⏟  ⏞  
𝐼𝑉

=

𝜂∫︁
−ℎ

−𝑔
𝜕𝜂

𝜕𝑥
𝑑𝑧 −

𝜂∫︁
−ℎ

−𝑔

𝜌
(𝜂 − 𝑧)

𝜕𝜌

𝜕𝑥
𝑑𝑧

⏟  ⏞  
𝑉

+

𝜂∫︁
−ℎ

[
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧⏟  ⏞  

𝑉 𝐼

]𝑑𝑧

The terms 𝐼, 𝐼𝐼,..., 𝑉 𝐼 can be simplified using Leibniz rules as follows:

𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢

𝜕𝑡
𝑑𝑧 =

𝜕

𝜕𝑡

𝜂∫︁
−ℎ

𝑢𝑑𝑧 + 𝑢(−ℎ)
𝜕(−ℎ)

𝜕𝑡
− 𝑢(𝜂)

𝜕(𝜂)

𝜕𝑡
=

𝜕

𝜕𝑡
(𝑢 |𝜂−ℎ)− 𝑢(𝜂)

𝜕𝜂

𝜕𝑡

=
𝜕

𝜕𝑡
[𝑢(𝜂 + ℎ)]− 𝑢(𝜂)

𝜕𝜂

𝜕𝑡

𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢2

𝜕𝑥
𝑑𝑧 =

𝜕

𝜕𝑥

𝜂∫︁
−ℎ

𝑢2𝑑𝑧 + 𝑢2(−ℎ)
𝜕(−ℎ)

𝜕𝑥
− 𝑢2(𝜂)

𝜕𝜂

𝜕𝑥

=
𝜕

𝜕𝑥

[︀
𝑢2𝜎𝑥𝑥(𝜂 + ℎ)

]︀
− 𝑢2(𝜂)

𝜕𝜂

𝜕𝑥

𝐼𝐼𝐼 =

𝜂∫︁
−ℎ

𝜕𝑢𝑣

𝜕𝑦
𝑑𝑧 =

𝜕

𝜕𝑦

𝜂∫︁
−ℎ

𝑢𝑣𝑑𝑧 + 𝑢𝑣(−ℎ)
𝜕(−ℎ)

𝜕𝑦
− 𝑢𝑣(𝜂)

𝜕𝜂

𝜕𝑦

=
𝜕

𝜕𝑦
[𝜎𝑦𝑥(𝜂 + ℎ)𝑢𝑣]− 𝑢𝑣(𝜂)

𝜕𝜂

𝜕𝑦

𝐼𝑉 =

𝜂∫︁
−ℎ

𝜕𝑢𝑤

𝜕𝑧
𝑑𝑧 = 𝑢𝑤(𝜂)− 𝑢𝑤(−ℎ) = 0

𝑉 = −
𝜂∫︁

−ℎ

𝑔
𝜕𝜂

𝜕𝑥
𝑑𝑧 = −𝑔

𝜕𝜂

𝜕𝑥
|𝜂−ℎ= −𝑔

𝜕𝜂

𝜕𝑥
(𝜂 + ℎ)

𝑉 = −
𝜂∫︁

−ℎ

𝑔

𝜌
(𝜂 − 𝑧)

𝜕𝜌

𝜕𝑥
𝑑𝑧 = −1

2

𝑔

𝜌
(𝜂 + ℎ)2

𝜕𝜌

𝜕𝑥

𝑉 𝐼 =

𝜂∫︁
−ℎ

[
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌

𝜕𝜏𝑧𝑥
𝜕𝑧

]𝑑𝑧 =
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

|𝜂−ℎ +
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

|𝜂−ℎ +
1

𝜌
𝜏𝑧𝑥 |𝜂−ℎ

=
1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

(𝜂 + ℎ) +
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

(𝜂 + ℎ) +
1

𝜌
𝜏𝑧𝑥(𝜂)−

1

𝜌
𝜏𝑧𝑥(−ℎ)

Re-arranging the above equations:
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[︃
𝜕

𝜕𝑡
[𝑢(𝜂 + ℎ)]− 𝑢(𝜂)

𝜕𝜂

𝜕𝑡
+

𝜕

𝜕𝑥

(︀
𝜎𝑥𝑥(𝜂 + ℎ)𝑢2

)︀
− 𝑢2(𝜂)

𝜕𝜂

𝜕𝑥
+

𝜕

𝜕𝑦
(𝜎𝑦𝑥(𝜂 + ℎ)𝑢𝑣)− 𝑢𝑣(𝜂)

𝜕𝜂

𝜕𝑦

]︃

=

[︃
− 𝑔

𝜕𝜂

𝜕𝑥
(𝜂 + ℎ)− 1

2

𝑔

𝜌
(𝜂 + ℎ)2

𝜕𝜌

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

(𝜂 + ℎ) +
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

(𝜂 + ℎ) +
1

𝜌
𝜏𝑧𝑥(𝜂)−

1

𝜌
𝜏𝑧𝑥(−ℎ)

]︃
That implies:

[︃
𝜕

𝜕𝑡
𝑢(𝜂 + ℎ)− 𝑢(𝜂)

𝜕𝜂

𝜕𝑡
+

𝜕

𝜕𝑥
[𝜎𝑥𝑥(ℎ+ 𝜂)𝑢2]− 𝑢.𝑢(𝜂)

𝜕𝜂

𝜕𝑥
+

𝜕

𝜕𝑦
[𝜎𝑦𝑥(𝜂 + ℎ)𝑢𝑣]− 𝑢𝑣(𝜂)

𝜕𝜂

𝜕𝑦

]︃

=

[︃
− 𝑔

𝜕𝜂

𝜕𝑥
(𝜂 + ℎ)− 1

2

𝑔

𝜌
(𝜂 + ℎ)2

𝜕𝜌

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

(𝜂 + ℎ) +
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

(𝜂 + ℎ) +
1

𝜌
𝜏𝑧𝑥(𝜂)−

1

𝜌
𝜏𝑧𝑥(−ℎ)

]︃
Thus[︃

𝜕

𝜕𝑡
(𝑢(𝜂 + ℎ)) +

𝜕

𝜕𝑥
[𝜎𝑥𝑥(𝜂 + ℎ)𝑢2] +

𝜕

𝜕𝑦
[𝜎𝑦𝑥(𝜂 + ℎ)𝑢𝑣]− 𝑢 [𝜂

𝜕𝜂

𝜕𝑡
+ 𝑢(𝜂)

𝜕𝜂

𝜕𝑥
+ 𝑣(𝜂)

𝜕𝜂

𝜕𝑦
]⏟  ⏞  

=0

]︃

=

[︃
− 𝑔

𝜕𝜂

𝜕𝑥
(𝜂 + ℎ)− 1

2

𝑔

𝜌
(𝜂 + ℎ)2

𝜕𝜌

𝜕𝑥
+

1

𝜌

𝜕𝜏𝑥𝑥
𝜕𝑥

(𝜂 + ℎ) +
1

𝜌

𝜕𝜏𝑦𝑥
𝜕𝑦

(𝜂 + ℎ) +
1

𝜌
𝜏𝑧𝑥(𝜂)−

1

𝜌
𝜏𝑧𝑥(−ℎ)

]︃

when 𝜕(−ℎ)
𝜕𝑥 = 0, 𝜕(−ℎ)

𝜕𝑦 = 0 and 𝜎 = 1 therefore 𝜕𝜂
𝜕𝑥 = 𝜕𝐻

𝜕𝑥 .

Thus:

𝜕

𝜕𝑡
(𝐻𝑢) +

𝜕

𝜕𝑥
(𝐻𝑢2) +

𝜕

𝜕𝑦
(𝐻𝑢𝑣) = −𝑔𝐻

𝜕𝜂

𝜕𝑥
− 1

2

𝑔

𝜌
(𝐻)2

𝜕𝜌

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌
𝜏𝑧𝑥(𝜂)−

1

𝜌
𝜏𝑧𝑥(−ℎ)

Then, we can obtain

𝜕

𝜕𝑡
(𝐻𝑢) +

𝜕

𝜕𝑥
(𝐻𝑢2) +

𝜕

𝜕𝑦
(𝐻𝑢𝑣) = −𝑔𝐻

𝜕𝜂

𝜕𝑥
− 1

2

𝑔

𝜌
(𝐻)2

𝜕𝜌

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌
𝜏 𝑠𝑥 − 1

𝜌
𝜏 𝑏𝑥

We define 𝜏𝑥𝑧(𝜂) = 𝜏 𝑠𝑥 to the surface shear stress, 𝜏𝑥𝑧(−ℎ) = 𝜏 𝑏𝑥 to the bottom shear stress.

Similarly, we can do the 𝑦-momentum equation

Finally, we get 2D shallow water equations as follows:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (1.37)

𝜕

𝜕𝑡
(𝐻𝑢) +

𝜕

𝜕𝑥
(𝐻𝑢2) +

𝜕

𝜕𝑦
(𝐻𝑢𝑣) = −𝑔𝐻

𝜕𝜂

𝜕𝑥
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑥
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑥
𝜕𝑦

+
1

𝜌
𝜏 𝑠𝑥 − 1

𝜌
𝜏 𝑏𝑥 (1.38)
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𝜕

𝜕𝑡
(𝐻𝑣) +

𝜕

𝜕𝑦
(𝐻𝑣2) +

𝜕

𝜕𝑥
(𝐻𝑢𝑣) = −𝑔𝐻

𝜕𝜂

𝜕𝑦
+

1

𝜌
𝐻

𝜕𝜏𝑥𝑦
𝜕𝑥

+
1

𝜌
𝐻

𝜕𝜏𝑦𝑦
𝜕𝑦

+
1

𝜌
𝜏 𝑠𝑦 − 1

𝜌
𝜏 𝑏𝑦 (1.39)

1.7 The General Formula of Non-Conservative Form for 2DSWEs

The general formula of 2DSWEs for non-conservative form that appears as follows:

𝜕𝑈

𝜕𝑡
+

𝜕(𝐸.𝑈)

𝜕𝑥
+

𝜕(𝐺.𝑈)

𝜕𝑦
= 𝑆

where 𝑈 =

⎡⎢⎢⎢⎣
𝑈1

𝑈2

𝑈3

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
𝜂

𝑢

𝑣

⎞⎟⎟⎟⎠ , 𝐸 =

⎡⎢⎢⎢⎣
𝐸1

𝐸2

𝐸3

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
𝑢 𝐻 0

𝑔 𝑢 0

0 0 𝑢

⎞⎟⎟⎟⎠

𝐺 =

⎡⎢⎢⎢⎣
𝐺1

𝐺2

𝐺3

⎤⎥⎥⎥⎦ =

⎛⎜⎜⎜⎝
𝑣 𝐻 0

0 𝑣 0

𝑔 0 𝑣

⎞⎟⎟⎟⎠ , 𝑆 =

⎡⎢⎢⎢⎣
−𝑢𝜕ℎ

𝜕𝑥 − 𝑣 𝜕ℎ
𝜕𝑦

𝜈
[︁

𝜕
𝜕𝑥(

𝜕𝑢
𝜕𝑥) +

𝜕
𝜕𝑦 (

𝜕𝑢
𝜕𝑦 )
]︁
+ 𝑓𝑣 + 𝜏𝑤𝑢

𝐻𝜌 − 𝜏𝑏𝑢
𝐻𝜌

𝜈
[︁

𝜕
𝜕𝑥(

𝜕𝑣
𝜕𝑥) +

𝜕
𝜕𝑦 (

𝜕𝑣
𝜕𝑦 )
]︁
− 𝑓𝑢+ 𝜏𝑤𝑣

𝐻𝜌 − 𝜏𝑏𝑣
𝐻𝜌

⎤⎥⎥⎥⎦

Where 𝑈 means the vector of conserved variables, 𝐸 is the vector of flux in 𝑥-direction, 𝐺 is the

vector of flux in 𝑦-direction and the term 𝑆 may include various source terms such as bed friction, bed

topography, wind stress, viscosity and the Coriolis parameter.
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1.8 Summary and Conclusion

This chapter has highlighted a study of 2D depth-averaged non-linear shallow water equations. Two

ways to derive this model were suggested using 3D Navier-Stokes equations. Firstly, we got system of

2DSWEs given in equations (1.26)-(1.28) using splitting of velocity and horizontal eddy viscosity from

the first formula of 3DNSEs.

Secondly, another form of 2DSWEs was introduced in equations (1.32)-(1.34) using the second

formula of 3DNSEs . Another way to derive 2DSWEs without using depth-averaged technique was

presented in equations (1.37)-(1.39).

The new derivation of 2DSWEs model, including a particular viscous term, turbulent friction term,

bed slope source term, Coriolis effects and capillary effects on the free surface is stressed out. For all

applications seeking for steady-state solutions, the water surface elevation is usually constant.
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Chapter 2

An Explicit Staggered Finite Difference Method for

2DSWEs (Numerical Techniques for SWEs)
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Chapter 2

An Explicit Staggered Finite Difference Method for 2DSWEs

Some of the results presented in this chapter (Sections 2.4, 2.5 and 2.8) are the subject

of an article [2].

The increased interest recently in the ocean modeling has led to exciting developments of mathe-

matical modeling including the dispersion of pollutants from the coastal area, chemical, and ecological

dynamics. One way to study the dynamic behavior of water is to develop the numerical methods for

the oceans models.

Many finite difference methods have been first developed to solve these models in 2DSWEs frame-

work. The time integration methods for these techniques used in this work are explicit. The develop-

ment of these methods depends on the choice of techniques and the type of methods used, so most of

the numerical schemes used to simulate ocean models are based on shallow water equations.

This chapter is organized as follows: Firstly, A review of an explicit finite difference method

is presented in Section 2.1. Shallow flow models are introduced and propose numerous techniques

using new spatial and temporal discretization in a standard C-grid using EFDM in space with a time

staggered grid using leapfrog combined with simple Robert-Asselin filter are presented in Sections 2.3-

2.6. New algorithms are established to implement the proposed technique. Finally, Open boundary

conditions are studied in Section 2.9.

Highlights

∙ Study the development of the numerical methods for the ocean models.

∙ Some new algorithms are implemented for 2DSWEs.

∙ The Courant Friedrichs Lewy (CFL) condition for 2DSWEs is applied.
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2.1 Overview of some numerical methods

There are many techniques to bring an approximation to the analytical solution of partial differential

equations in fluid dynamics such that finite difference method, finite volume method and finite element

method which are able to give excellent results. In this work, an explicit center finite difference method

and leapfrog scheme with Robert-Asselin filter are only concerned.

2.1.1 Finite difference method

Finite difference method is the oldest technique for calculating of dynamic fluid and has been seen

in publications as early as (1928) with the basic theoretical paper by Courant, Friedrichs, and Lewy.

Computational experiments were generated by using a finite difference approach [22, 87, 112].

The finite difference technique is the most widely used in 2D shallow water models. The

major idea of the finite difference methods, the continuous differential operators of PDEs is replaced by

the discrete difference operators. This requires discretization of the geometry, such that the difference

operators can be written in terms of the grid points (see [17, 28, 88, 89]).

In this section, the most commonly used forward, centered and backward difference approximations

are described. These types of approximations are used in the numerical discretization for 2D shallow

water models.

The most commonly used the Forward difference approximation with the first order is

found namely

(︂
𝜕𝑢

𝜕𝑥

)︂
𝑖

≃ 𝑢𝑖+1 − 𝑢𝑖
Δ𝑥

+𝑂(Δ𝑥)

∙ Centered difference

The centered difference approximation for the first derivative with is second-order convergent as

the form:

(︂
𝜕𝑢

𝜕𝑥

)︂
𝑖

≃ 𝑢𝑖+1 − 𝑢𝑖−1

2Δ𝑥
+𝑂(Δ𝑥)2

∙ Backward difference

The backward difference approximation as the form:

(︂
𝜕𝑢

𝜕𝑥

)︂
𝑖

≃ 𝑢𝑖−1 − 𝑢𝑖
Δ𝑥

+𝑂(Δ𝑥)
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∙ Centered difference

The centered difference approximation for the second derivative as the form:

(︂
𝜕2𝑢

𝜕𝑥2

)︂
𝑖

≃ 𝑢𝑖+1 − 2𝑢𝑖 + 𝑢𝑖−1

(Δ𝑥)2
+𝑂(Δ𝑥)2

In order to make a choice for an explicit finite difference method, we adopt the fol-

lowing criteria (see [18, 26, 75]).

1. Numerical solutions must be sufficiently accurate. Thus, the method should be consistent and

stable. In according to practical experiments, second-order accuracy is satisfactory. It is also

necessary that the numerical solution is not greatly affected by false solutions and rounding

errors.

2. The proposed method should be strong. In our case, this means that the method should be

applicable to a wide range of 2D flow problems in ocean modeling such as tidal problems in

coastal seas, model problems in tidal tracts, or steady-state problems in rivers.

3. Suggested method must be computationally effective. The efficiency should not be achieved at

the expense of durability, so durability has a high priority.

4. The numerical treatment of boundary conditions should be such that the overall accuracy and

efficiency are not greatly reduced.

Figure 2-1: Finite difference method.
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2.1.2 Arakawa C-grid

The performance of EFDM of horizontal space derivatives depends on the distribution of dependent

variables on the grid [10, 11, 118]. Various types of grids have been developed and used by different

authors for different purposes. Arakawa and Lamb investigate four different spatially staggered grids

which are used for shallow water equations.

Figure 2-2 shows Arakawa staggered C-grid, 𝑢-components located at the centers of the left and

right grid faces, 𝑣-components located at the centers of the upper and lower grid faces and 𝜂 located

at the center grid.

Figure 2-2: Arakawa staggered C-grid.

2.1.3 Finite difference method for staggered grid (the temporal grid)

The general finite difference method used is a three-level in time that is each time step includes three-

time levels: the entry level, the half-time step level, and the full-time step level. As this case shows,

in each time step one calculation of 𝜂 is carried out for each set of calculations of 𝑢 and 𝑣. This

calculation uses 𝜂𝑛−1, 𝜂𝑛, 𝑢𝑛 and 𝑣𝑛 to provide a time 𝜂𝑛+1. To obtain 𝜂𝑛+2 the values 𝜂𝑛+1, 𝑢𝑛+1,

𝑣𝑛+1 and 𝜂𝑛 are used.

Consider 2DSWEs on the rectangular space domain Ω := [0, 𝐿𝑥] × [0, 𝐿𝑦] and the time interval

(0, 𝑇 ). Periodic boundary conditions are prescribed. The domain is meshed with a rectilinear grid of

𝑁𝑥 × 𝑁𝑦 cells. We set 𝑀 := {1, 2, ..., 𝑁𝑥} × {1, 2, ..., 𝑁𝑦}. The cell of coordinates (i, j) is denoted

by 𝐾𝑖,𝑗 . The cell 𝐾𝑖,𝑗 is denoted by 𝑥𝑖,𝑗 . The bottom edge, top edge, left edge and right edge are

denoted by 𝑥𝑖,𝑗−1, 𝑥𝑖,𝑗+1, 𝑥𝑖−1,𝑗 and 𝑥𝑖+1,𝑗 respectively. The water height 𝜂 is discretized at the center

cells. The velocity in the 𝑥-direction is discretized at the edges normal to the 𝑥-direction, while the
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velocity in the 𝑦-direction is discretized at the edges normal to the 𝑦-direction. The approximation of

𝜂 at point 𝑥𝑖,𝑗 and at time 𝑡𝑛 is denoted by 𝜂𝑛𝑖,𝑗 . The approximation of 𝑢 at point 𝑥𝑖+1,𝑗 and time 𝑡𝑛

is denoted by 𝑢𝑛𝑖+1,𝑗 , while the approximation of 𝑣 at point 𝑥𝑖,𝑗+1 and time 𝑡𝑛 is denoted by 𝑣𝑛𝑖,𝑗+1.

Figure 2-3: Finite difference method in Arakawa C-grid.

2.2 Time-Differencing Schemes

An explicit leapfrog method is most applied in combination with Robert-Asselin filter to smash the

computational model and prevent time splitting. In this section, we discuss leapfrog method, Robert-

Asselin filter and apply it to the leapfrog method.

2.2.1 Leapfrog scheme with Robert-Asselin filter

The leapfrog method can be expressed using the model

𝑥𝑛+1 = 𝑥𝑛−1 + 2Δ𝑡𝐹 (𝑥𝑛)

where 𝑥𝑛+1 is the approximate solution that will be determined due to the other variables.

The leapfrog scheme uses information at three different time levels 𝑡𝑛−1, 𝑡𝑛 and 𝑡𝑛+1 with a total

difference of 2Δ𝑡. The numerical approximation to the derivative is known as a centered difference

scheme. One problem with this scheme is the 𝑡𝑛−1 time level as we only know our initial variable at

time 𝑡𝑛 and not also 𝑡𝑛−1. This is overcome by using a simple forward step first. Then it is possible

to implement the integration using the leapfrog scheme. The leapfrog scheme yields second-order

accuracy. The simple leapfrog scheme is unstable but can be stabilized using the Robert-Asselin filter

[119].
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Robert-Asselin filter was designed specifically for the leapfrog method in (1966) by Robert and in

(1972) Asselin showed that it relieves the computational mode but leaves the physical style compar-

atively undamped [12, 34, 119, 120]. Since then it has become known as Robert-Asselin filter. After

each leapfrog step, the filter mixes solutions from three successive time points at 𝑡𝑛−1, 𝑡𝑛 and 𝑡𝑛+1

which can seen from Figure 2-4. The solution at the inner point at time 𝑡𝑛 is displaced by:

𝑑 =
𝛾

2
[𝑥𝑛−1 − 2𝑥𝑛 + 𝑥𝑛+1]

where 𝛾 is the filter parameter and the values 𝑥𝑛−1, 𝑥𝑛 and 𝑥𝑛+1 correspond to the time points 𝑡𝑛−1,

𝑡𝑛 and 𝑡𝑛+1 respectively. Typically the filter parameter 𝛾 is taken to be 0.01.

t
n-1

t
n

t
n+1

x

x

x
d

Figure 2-4: The standard Robert-Asselin filter.

2.3 Numerical Discretization of 2D Shallow Water Models when the

Time Step (n+1)

In this section, the numerical discretization of 2DNSWEs is applied using EFDMs in a standard C-grid

spacing with a time staggered grid using leapfrog combined with simple Robert-Asselin filtering.

2.3.1 Water level scheme

The finite difference first-order numerical scheme for the water level in the continuity equa-

tion (1.10) writes out:

𝜕𝜂

𝜕𝑡
=−

[︀
(𝐻𝑢)𝑖+1/2,𝑗 − (𝐻𝑢)𝑖−1/2,𝑗

]︀
/Δ𝑥−

[︀
(𝐻𝑣)𝑖,𝑗+1/2 − (𝐻𝑣)𝑖,𝑗−1/2

]︀
/Δ𝑦
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and centered finite difference scheme in space term writes down:

(𝐻𝑢)𝑖+1/2,𝑗 = (𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗)/2𝑢𝑖+1,𝑗

(𝐻𝑢)𝑖−1/2,𝑗 = (𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗)/2𝑢𝑖,𝑗

(𝐻𝑣)𝑖,𝑗+1/2 = (𝐻𝑖,𝑗 +𝐻𝑖,𝑗+1)/2𝑣𝑖,𝑗+1

(𝐻𝑣)𝑖,𝑗−1/2 = (𝐻𝑖,𝑗−1 +𝐻𝑖,𝑗)/2𝑣𝑖,𝑗

Thus, the full water level centered finite difference in space numerical scheme is:

𝜕𝜂

𝜕𝑡
=− [(𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗)/2𝑢𝑖+1,𝑗 − (𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗)/2𝑢𝑖,𝑗 ] /Δ𝑥

− [(𝐻𝑖,𝑗 +𝐻𝑖,𝑗+1)/2𝑣𝑖,𝑗+1 − (𝐻𝑖,𝑗−1 +𝐻𝑖,𝑗)/2𝑣𝑖,𝑗 ] /Δ𝑦

2.3.2 𝑢 and 𝑣 momentums schemes

For the 𝑥-momentum given by equation (1.11), the first-order spatial discretization writes:

𝜕(𝐻𝑢)

𝜕𝑡
=−

[︀
(𝐻𝑢𝑢)𝑖+1/2,𝑗 − (𝐻𝑢𝑢)𝑖−1/2,𝑗

]︀
/Δ𝑥−

[︀
(𝐻𝑢𝑣)𝑖,𝑗+1/2 − (𝐻𝑢𝑣)𝑖,𝑗−1/2

]︀
/Δ𝑦 + 𝑓(𝐻𝑣)

+ 𝜈

[︂
(𝐻

𝜕𝑢

𝜕𝑥
)𝑖+1/2,𝑗 − (𝐻

𝜕𝑢

𝜕𝑥
)𝑖−1/2,𝑗

]︂
/Δ𝑥+ 𝜈

[︂
(𝐻

𝜕𝑢

𝜕𝑦
)𝑖,𝑗+1/2 − (𝐻

𝜕𝑢

𝜕𝑦
)𝑖,𝑗−1/2

]︂
/Δ𝑦

− 𝑔𝐻(𝜂𝑖+1/2,𝑗 − 𝜂𝑖−1/2,𝑗)/Δ𝑥+
𝜌𝑎
𝜌0

𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210 − 𝐶𝐷𝑢

√︀
𝑢2 + 𝑣2

Thus

(𝐻𝑢𝑢)𝑖+1/2,𝑗 = 𝐻𝑖,𝑗(𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗)
2/4

(𝐻𝑢𝑣)𝑖−1/2,𝑗 = 𝐻𝑖−1,𝑗(𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗)
2/4

(𝐻𝑢𝑣)𝑖,𝑗+1/2 = (𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗+1 +𝐻𝑖,𝑗+1)× (𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗)(𝑣𝑖−1,𝑗+1 + 𝑣𝑖,𝑗+1)/16

(𝐻𝑢𝑣)𝑖,𝑗−1/2 = (𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗−1 +𝐻𝑖,𝑗−1)× (𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1)(𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗)/16

𝑓(𝐻𝑣) = 𝑓(𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗)/2× (𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1)/4

and
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𝜈

[︂
(𝐻

𝜕𝑢

𝜕𝑥
)𝑖+1/2,𝑗 − (𝐻

𝜕𝑢

𝜕𝑥
)𝑖−1/2,𝑗

]︂
= 𝜈

[︂
𝐻

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗
Δ𝑥

−𝐻
𝑢𝑖−1,𝑗 − 𝑢𝑖,𝑗

Δ𝑥

]︂

𝜈

[︂
(𝐻

𝜕𝑢

𝜕𝑦
)𝑖,𝑗+1/2 − (𝐻

𝜕𝑢

𝜕𝑦
)𝑖,𝑗−1/2

]︂
= 𝜈

[︂
𝐻

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗
Δ𝑦

−𝐻
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

Δ𝑦

]︂

𝑔𝐻(𝜂𝑖+1/2,𝑗 − 𝜂𝑖−1/2,𝑗) = 𝑔(𝐻 +𝐻𝑖−1,𝑗)/2(𝜂𝑖,𝑗 − 𝜂𝑖−1,𝑗)

𝐶𝐷𝑢
√︀

𝑢2 + 𝑣2 = 𝐶𝐷𝑢𝑖,𝑗

√︁
(𝑢𝑖,𝑗)2 + (𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1)2

Hence, rewriting the full 𝑥-momentum, we get:

𝜕(𝐻𝑢)

𝜕𝑡
=−

[︀
𝐻(𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗)

2/4−𝐻𝑖−1,𝑗(𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗)
2/4
]︀
/Δ𝑥

− [(𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗+1 +𝐻𝑖,𝑗+1)× (𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗)(𝑣𝑖−1,𝑗+1 + 𝑣𝑖,𝑗+1)/16] /Δ𝑥

+ [(𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗−1 +𝐻𝑖,𝑗−1)(𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1)(𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗)/16] /Δ𝑦

+ 𝑓(𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗)/2× (𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1)/4

+ 𝜈

[︂
𝐻

𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗
Δ𝑥

−𝐻
𝑢𝑖,𝑗 − 𝑢𝑖−1,𝑗

Δ𝑥

]︂
/Δ𝑥

+ 𝜈

[︂
𝐻

𝑢𝑖,𝑗+1 − 𝑢𝑖,𝑗
Δ𝑦

−𝐻
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

Δ𝑦

]︂
/Δ𝑦

− 𝑔(𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗)/2(𝜂𝑖,𝑗 − 𝜂𝑖−1,𝑗)/Δ𝑥+ 𝜌𝑎/𝜌0𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

− 𝐶𝐷𝑢𝑖,𝑗

√︁
(𝑢𝑖,𝑗)2 + (𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 + 𝑣𝑖,𝑗+1 + 𝑣𝑖−1,𝑗+1)2

Similarly, we can get the full 𝑦-momentum scheme by using clever symmetry one-to-one relations

with x-momentum scheme which are as the following.

𝜕(𝐻𝑣)

𝜕𝑡
=−

[︀
𝐻(𝑣𝑖*,𝑗*+1 + 𝑣𝑖*,𝑗*)

2/4−𝐻𝑖*,𝑗*−1(𝑣𝑖*,𝑗*−1 + 𝑣𝑖*,𝑗*)
2/4
]︀
/Δ𝑦

− [(𝐻𝑖*,𝑗*−1 +𝐻𝑖*,𝑗* +𝐻𝑖*+1,𝑗*−1 +𝐻𝑖*+1,𝑗*)× (𝑣𝑖*+1,𝑗* + 𝑣𝑖*,𝑗*)(𝑢𝑖*+1,𝑗*−1 + 𝑢𝑖*+1,𝑗*)/16] /Δ𝑦

+ [(𝐻𝑖*,𝑗*−1 +𝐻𝑖*,𝑗* +𝐻𝑖*−1,𝑗*−1 +𝐻𝑖*−1,𝑗*)(𝑣𝑖*,𝑗* + 𝑣𝑖*−1,𝑗*)(𝑢𝑖*,𝑗*−1 + 𝑢𝑖*,𝑗*)/16] /Δ𝑥

− 𝑓(𝐻𝑖*,𝑗* +𝐻𝑖*,𝑗*−1)/2× (𝑢𝑖*,𝑗*−1 + 𝑢𝑖*,𝑗* + 𝑢𝑖*+1,𝑗*−1 + 𝑢𝑖*+1,𝑗*)/4

+ 𝜈

[︂
𝐻

𝑣𝑖*,𝑗*+1 − 𝑣𝑖*,𝑗*

Δ𝑦
−𝐻

𝑣𝑖*,𝑗* − 𝑣𝑖*,𝑗*−1

Δ𝑦

]︂
/Δ𝑦

+ 𝜈

[︂
𝐻

𝑣𝑖*+1,𝑗* − 𝑣𝑖*,𝑗*

Δ𝑥
−𝐻

𝑣𝑖*,𝑗* − 𝑣𝑖*−1,𝑗*

Δ𝑥

]︂
/Δ𝑥

− 𝑔(𝐻 +𝐻𝑖*,𝑗*−1)/2(𝜂𝑖*,𝑗* − 𝜂𝑖*,𝑗*−1)/Δ𝑦 + 𝜌𝑎/𝜌0𝐶𝑎𝑣10

√︁
𝑣210 + 𝑢210

− 𝐶𝐷𝑣𝑖,𝑗

√︁
(𝑣𝑖*,𝑗*)2 + (𝑢𝑖*,𝑗*−1 + 𝑢𝑖*,𝑗* + 𝑢𝑖*+1,𝑗* + 𝑢𝑖*+1,𝑗*−1)2
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When (switch Δ𝑥 and Δ𝑦:Δ𝑥 ↔ Δ𝑦, switch 𝑖 and 𝑗:𝑖 ↔ 𝑗, switch 𝑢 and 𝑣 :𝑢 ↔ 𝑣, switch signal of

the Coriolis term + ↔ -) and we assume that 𝑖*=𝑗, 𝑗*=𝑖

Finally, after applying an explicit centered finite difference and leapfrog schemes, the 2DSWEs

become as:(Which are approximately first order in space and second order in time)

𝜂𝑛+1
𝑖,𝑗 =𝜂𝑛−1

𝑖,𝑗 − Δ𝑡

Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖+1,𝑗 − (𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗)𝑢

𝑛
𝑖,𝑗

]︀
−Δ𝑡

Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀
(2.1)

𝑢𝑛+1
𝑖,𝑗 =

[︃
𝑢𝑛−1
𝑖,𝑗 (𝐻𝑛−1

𝑖,𝑗 +𝐻𝑛−1
𝑖−1,𝑗)−

Δ𝑡

Δ𝑥

[︀
𝐻𝑛

𝑖,𝑗(𝑢
𝑛
𝑖+1,𝑗 + 𝑢𝑛𝑖,𝑗)

2 −𝐻𝑛
𝑖−1,𝑗(𝑢

𝑛
𝑖−1,𝑗 + 𝑢𝑛𝑖,𝑗)

2
]︀

− Δ𝑡

4Δ𝑥

[︀
(𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗 +𝐻𝑛

𝑖−1,𝑗+1 +𝐻𝑛
𝑖,𝑗+1)× (𝑢𝑛𝑖,𝑗+1 + 𝑢𝑛𝑖,𝑗)(𝑣

𝑛
𝑖−1,𝑗+1 + 𝑣𝑛𝑖,𝑗+1)

]︀
+

Δ𝑡

4Δ𝑦

[︀
(𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗 +𝐻𝑛

𝑖−1,𝑗−1 +𝐻𝑛
𝑖,𝑗−1)(𝑢

𝑛
𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1)(𝑣

𝑛
𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗)

]︀
+

Δ𝑡

2
𝑓(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)× (𝑣𝑛𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖−1,𝑗+1)

+
4Δ𝑡

Δ𝑥2
𝜈
[︀
𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗

]︀
(𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗)

+
4Δ𝑡

Δ𝑦2
𝜈
[︀
𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗

]︀
(𝑢𝑛𝑖,𝑗−1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗+1)

− 𝑔
2Δ𝑡

Δ𝑥
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)(𝜂

𝑛
𝑖,𝑗 − 𝜂𝑛𝑖−1,𝑗) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

− 4Δ𝑡𝐶𝐷𝑢
𝑛+1
𝑖,𝑗

√︁
(𝑢𝑛𝑖,𝑗)

2 + (𝑣𝑛𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖−1,𝑗+1)
2

]︃
/(𝐻𝑛+1

𝑖,𝑗 +𝐻𝑛+1
𝑖−1,𝑗) (2.2)

𝑣𝑛+1
𝑖*,𝑗* =

[︃
𝑣𝑛−1
𝑖*,𝑗*(𝐻

𝑛−1
𝑖*,𝑗* +𝐻𝑛−1

𝑖*,𝑗*−1)−
Δ𝑡

Δ𝑦

[︀
𝐻𝑛

𝑖*,𝑗*(𝑣
𝑛
𝑖*,𝑗*+1 + 𝑣𝑛𝑖*,𝑗*)

2 −𝐻𝑛
𝑖*,𝑗*−1(𝑣

𝑛
𝑖*,𝑗*−1 + 𝑣𝑛𝑖*,𝑗*)

2
]︀

− Δ𝑡

4Δ𝑦

[︀
(𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗* +𝐻𝑛

𝑖*+1,𝑗*−1 +𝐻𝑛
𝑖*+1,𝑗*)× (𝑣𝑛𝑖*+1,𝑗* + 𝑣𝑛𝑖*,𝑗*)(𝑢

𝑛
𝑖*+1,𝑗*−1 + 𝑢𝑛𝑖*+1,𝑗*)

]︀
+

Δ𝑡

4Δ𝑥

[︀
(𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗* +𝐻𝑛

𝑖*−1,𝑗*−1 +𝐻𝑛
𝑖*−1,𝑗*)(𝑣

𝑛
𝑖*,𝑗* + 𝑣𝑛𝑖*−1,𝑗*)(𝑢

𝑛
𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗*)

]︀
− Δ𝑡

2
𝑓(𝐻𝑛

𝑖*,𝑗* +𝐻𝑛
𝑖*,𝑗*−1)× (𝑢𝑛𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗* + 𝑢𝑛𝑖*+1,𝑗* + 𝑢𝑛𝑖*+1,𝑗*−1)

+
4Δ𝑡

Δ𝑦2
𝜈
[︀
𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗*

]︀
(𝑣𝑛𝑖*,𝑗*+1 − 2𝑣𝑛𝑖*,𝑗* + 𝑣𝑛𝑖*,𝑗*−1)

+
4Δ𝑡

Δ𝑥2
𝜈
[︀
𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗*

]︀
(𝑣𝑛𝑖*−1,𝑗* − 2𝑣𝑛𝑖*,𝑗* + 𝑣𝑛𝑖*+1,𝑗*)

− 𝑔
2Δ𝑡

Δ𝑦
(𝐻𝑛

𝑖*,𝑗* +𝐻𝑛
𝑖*,𝑗*−1)(𝜂

𝑛
𝑖*,𝑗* − 𝜂𝑛𝑖*,𝑗*−1) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑣10

√︁
𝑣210 + 𝑢210

− 4Δ𝑡𝐶𝐷𝑣
𝑛+1
𝑖*,𝑗*

√︁
(𝑣𝑛𝑖*,𝑗*)

2 + (𝑢𝑛𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗* + 𝑢𝑛𝑖*+1,𝑗* + 𝑢𝑛𝑖*+1,𝑗*−1)
2

]︃
/(𝐻𝑛+1

𝑖*,𝑗* +𝐻𝑛+1
𝑖*,𝑗*−1)

(2.3)
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Remark:

In order for the leapfrog scheme to be stable, the dissipation (horizontal viscosity and any frictional)

terms in the momentum equations should be lagged (skipped) that is evaluated at time level 𝑛 − 1.

The rest of the terms in above equations are evaluated at time level n. Therefore 𝜂 equation is solved

first, so that 𝐻𝑛+1 is known, before solving for the velocity components 𝑢 and 𝑣. Robert-Asselin filter

is applied for 𝑢, 𝑣 and 𝜂 after integration at each time step [69]:

(𝜂𝑛𝑖,𝑗)𝑓 = (𝜂𝑛𝑖,𝑗) + 𝛾(𝜂𝑛+1
𝑖,𝑗 − 2𝜂𝑛𝑖,𝑗 + 𝜂𝑛−1

𝑖,𝑗 )

(𝑢𝑛𝑖,𝑗)𝑓 = (𝑢𝑛𝑖,𝑗) + 𝛾(𝑢𝑛+1
𝑖,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛−1

𝑖,𝑗 )

(𝑣𝑛𝑖*,𝑗*)𝑓 = (𝑣𝑛𝑖*,𝑗*) + 𝛾(𝑣𝑛+1
𝑖*,𝑗* − 2𝑣𝑛𝑖*,𝑗* + 𝑣𝑛−1

𝑖*,𝑗*)

2.3.3 Computational algorithm

The 2D depth-averaged shallow water equations are solved on the basis of the following algorithm:

1. Input model data and set initial data. At time 𝑡 = 𝑛Δ𝑡 = 0 (that is 𝑛 = 0, and 𝑡 = 𝑛Δ𝑡 also

𝑢0𝑖,𝑗 = 𝑣0𝑖,𝑗 = 0, 𝐻0
𝑖,𝑗 = ℎ𝑖,𝑗) on the open boundary 𝐻0

𝑖,𝑗 = ℎ𝑖,𝑗 + 𝜂0𝑖,𝑗 are known. Get the unknown

values 𝑢𝑛−1
𝑖,𝑗 , 𝑢𝑛𝑖−1,𝑗 , 𝑢

𝑛
𝑖+1,𝑗 , 𝑣

𝑛−1
𝑖*,𝑗* , 𝑣

𝑛
𝑖*,𝑗*−1, 𝑣

𝑛
𝑖*,𝑗*+1 and 𝜂𝑛−1

𝑖,𝑗 by a forward step.

2. Update model time to level (𝑛+1), so 𝑡 = (𝑛+1)Δ𝑡. Solve the continuity equation to find 𝜂𝑛+1

and 𝐻𝑛+1 using 𝑢𝑛𝑖,𝑗 , 𝑣
𝑛
𝑖*,𝑗* .

3. Update model time to level (𝑛 + 1). Solve the momentum equations for 𝑢𝑛+1 and 𝑣𝑛+1 using

𝐻𝑛+1.

4. Apply Robert-Asselin filter for 𝑢, 𝑣 and 𝜂 for each time step.

5. Return to step 2 and continue until the period of the simulation is completed.

2.4 Another Way to Numerical Discretization of 2DSWEs when the

Time Step (n+1/2)

In this section, the numerical discretization for 2DSWEs is proposed by using an explicit finite difference

in space and leapfrog combined with simple Robert-Asselin filtering in time.

The grid consists of three grid points which are the free surface elevation 𝜂 and horizontal velocity

components 𝑢 and 𝑣. The spacing between different grid points in the 𝑥-direction and 𝑦-direction are

Δ𝑥 and Δ𝑦 respectively and between similar grid points it is 2Δ𝑥 and 2Δ𝑦. Therefore, the area of the

grid is 4Δ𝑥Δ𝑦.
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1. Discretization of continuity equation

Consider the finite difference expression of the continuity equation (1.10) centering it about the time

level 𝑛, in discrete time and the 𝜂 grid point in discrete space gives:(︂
𝜕𝜂

𝜕𝑡

)︂𝑛

𝜂𝑖,𝑗

= −
(︂
𝜕(𝐻𝑢)

𝜕𝑥

)︂𝑛

𝜂𝑖,𝑗

−
(︂
𝜕(𝐻𝑣)

𝜕𝑦

)︂𝑛

𝜂𝑖,𝑗

(2.4)

The difference approximations of the terms in this equation are:

1. (︂
𝜕𝜂

𝜕𝑡

)︂𝑛

𝜂𝑖,𝑗

≃ 1

Δ𝑡

(︁
𝜂
𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛−1/2
𝑖,𝑗

)︁
(2.5)

2. (︂
𝜕(𝐻𝑢)

𝜕𝑥

)︂𝑛

𝜂𝑖,𝑗

≃ 1

4Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)𝑢

𝑛
𝑖−1,𝑗

]︀
(2.6)

3. (︂
𝜕(𝐻𝑣)

𝜕𝑦

)︂𝑛

𝜂𝑖,𝑗

≃ 1

4Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀
(2.7)

Expression equation (2.5) is second order convergent because it is a centered difference in time and

equations (2.6) and (2.7) are second order convergent in space because the difference 𝑢𝑛𝑖,𝑗 − 𝑢𝑛𝑖−1,𝑗 is

centered about 𝜂.

By substituting equations (2.5)-(2.6) and (2.7) in equation (2.4), we obtain the explicit expression

for the water surface elevation at time level (n + 1/2), namely

𝜂
𝑛+1/2
𝑖,𝑗 =𝜂

𝑛−1/2
𝑖,𝑗 − Δ𝑡

4Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖,𝑗 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)𝑢

𝑛
𝑖−1,𝑗

]︀
− Δ𝑡

4Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀
(2.8)

The total depth 𝐻 = 𝜂 + ℎ at time (𝑛+ 1/2)△ 𝑡 is approximated as

𝐻
𝑛+1/2
𝑖,𝑗 = 𝜂

𝑛+1/2
𝑖,𝑗 + ℎ𝑖,𝑗

where 𝐻𝑖,𝑗 is computed at the same position in the horizontal plane as 𝜂𝑖,𝑗 .

2. Discretization of the momentum equations

Case 1: The finite difference expression for the x-momentum equation (1.11) using centered differences

about 𝑢𝑖,𝑗 in space and about the (𝑛+ 1/2) level in time is based on the following equation
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(︂
𝜕𝑢

𝜕𝑡

)︂𝑛+1/2

𝑢𝑖,𝑗

+

(︂
𝑢
𝜕𝑢

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

+

(︂
𝑢
𝜕𝑣

𝜕𝑦

)︂𝑛+1/2

𝑢𝑖,𝑗

− (𝑓𝑣)𝑛𝑢𝑖,𝑗

= −𝑔

(︂
𝜕𝜂

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

+

(︂
𝜈
𝜕2𝑢

𝜕𝑥2

)︂𝑛+1/2

𝑢𝑖,𝑗

+

(︂
𝜈
𝜕2𝑢

𝜕𝑦2

)︂𝑛+1/2

𝑢𝑖,𝑗

+

(︂
𝜌𝑎
𝜌0

1

𝐻
𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

)︂𝑛+1/2

𝑢𝑖,𝑗

− 1

𝐻
𝐶𝐷

(︁
𝑢
√︀
𝑢2 + 𝑣2

)︁𝑛+1/2

𝑢𝑖,𝑗

(2.9)

The terms of this are differences as follows:

1. (︂
𝜕𝑢

𝜕𝑡

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 1

Δ𝑡

(︁
𝑢𝑛+1
𝑖,𝑗 − 𝑢𝑛𝑖,𝑗

)︁
(2.10)

Which is second order in time because this is a centered-difference in time.

2. Discretization of advection term:

(︂
𝑢
𝜕𝑢

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ (𝑢𝑖,𝑗)
𝑛+1

(︂
𝜕𝑢

𝜕𝑥

)︂𝑛

𝑢𝑖,𝑗

≃ 1

4Δ𝑥
𝑢𝑛+1
𝑖,𝑗

(︀
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

)︀
(2.11)

Which is approximately second order in space.

3.(︂
𝑣
𝜕𝑢

𝜕𝑦

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ (𝑣)𝑛𝑢𝑖,𝑗

(︂
𝜕𝑢

𝜕𝑦

)︂𝑛

𝑢𝑖,𝑗

≃ 1

16Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀ (︀
𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1

)︀
(2.12)

Which is quasi second order in space.

4. Discretization of Coriolis force term

(𝑓𝑣)𝑛𝑢𝑖,𝑗
≃ 1

8
(𝑓𝑖,𝑗 + 𝑓𝑖+1,𝑗)

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
(2.13)

5. Discretization of Barotropic term

(︂
𝜕𝜂

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 1

2Δ𝑥

(︁
𝜂
𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗

)︁
(2.14)

which has a second order spatial discretisation error.
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6. Discretization of horizontal viscosity terms

They are approximated as follows; At the 𝑢𝑖,𝑗 grid point and the (𝑛+ 1/2) time level.

(𝜈𝑥)
𝑛+1/2
𝑢𝑖,𝑗

=
𝑎

2
(2Δ𝑥) (𝐻)𝑛+1/2

𝑢𝑖,𝑗
(2.15)

≃ 𝑎Δ𝑥

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
2

and

(𝜈𝑦)
𝑛+1/2
𝑢𝑖,𝑗

=
𝑎

2
(2Δ𝑦) (𝐻)𝑛+1/2

𝑢𝑖,𝑗
(2.16)

≃ 𝑎Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
2

This implies

(︂
𝜈𝑥

𝜕2𝑢

𝜕𝑥2

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 𝜈𝑥

(︂
𝜕2𝑢

𝜕𝑥2

)︂𝑛

𝑢𝑖,𝑗

(2.17)

≃ 𝑎

8Δ𝑥

(︀
𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
which is approximately second order in space.

where 𝑎 is the reduced eddy coefficient, which equal to 1.64× 10−3 (see [85]).

7. (︂
𝜈𝑦

𝜕2𝑢

𝜕𝑦2

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 𝜈𝑦

(︂
𝜕2𝑢

𝜕𝑦2

)︂𝑛

𝑢𝑖,𝑗

(2.18)

≃ 𝑎

8Δ𝑦

(︀
𝑢𝑛𝑖,𝑗+1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
which is approximately second order in space.

8.

𝐶𝐷

(︂
1

𝐻
𝑢
√︀
𝑢2 + 𝑣2

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 2𝐶𝐷(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢𝑛+1
𝑖,𝑗

√︂
(𝑢𝑛𝑖,𝑗)

2 +
1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

(2.19)

9. (︂
𝜌𝑎
𝜌0

1

𝐻
𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 𝜌𝑎
𝜌0

2𝐶𝑎(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210 (2.20)

Substituting all the approximations (2.10)-(2.20) into equation (2.9) gives the corresponding finite

difference approximation
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1

Δ𝑡

(︁
𝑢𝑛+1
𝑖,𝑗 − 𝑢𝑛𝑖,𝑗

)︁
+

1

4Δ𝑥
𝑢𝑛+1
𝑖,𝑗

(︀
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

)︀
+

1

16Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀ (︀
𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1

)︀
−1

8
(𝑓𝑖,𝑗 + 𝑓𝑖+1,𝑗)

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
=− 𝑔

1

Δ𝑥

(︁
𝜂
𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗

)︁
+

𝑎

8Δ𝑥

(︁
𝐻

𝑛+1/2
𝑖 +𝐻

𝑛+1/2
𝑖+1

)︁ (︀
𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

)︀
+

𝑎

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖 +𝐻

𝑛+1/2
𝑖+1

)︁ (︀
𝑢𝑛𝑖,𝑗+1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1

)︀
− 2𝐶𝐷(︁

𝐻
𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢𝑛+1
𝑖,𝑗

√︂
(𝑢𝑛𝑖,𝑗)

2 +
1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210

That implies:

𝑢𝑛+1
𝑖,𝑗 =

[︃
𝑢𝑛𝑖,𝑗 −

Δ𝑡

4Δ𝑥
𝑢𝑛+1
𝑖,𝑗

(︀
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

)︀
− Δ𝑡

16Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
(𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1)

+
Δ𝑡

8
(𝑓𝑖,𝑗 + 𝑓𝑖+1,𝑗)

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
− 𝑔Δ𝑡

2Δ𝑥
(𝜂

𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗 )

+
𝑎Δ𝑡

8Δ𝑥

(︀
𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
+
𝑎Δ𝑡

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
(𝑢𝑛𝑖,𝑗+1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1)

− 2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢𝑛+1
𝑖,𝑗

√︂
(𝑢𝑛𝑖,𝑗)

2 +
1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210

]︃

Finally, we obtain

𝑢𝑛+1
𝑖,𝑗 =𝐾−1

𝑥

[︃
𝑢𝑛𝑖,𝑗 +

Δ𝑡

8
(𝑓𝑖,𝑗 + 𝑓𝑖+1,𝑗)

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
− 𝑔Δ𝑡

2Δ𝑥
(𝜂

𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗 )

+
𝑎Δ𝑡

8Δ𝑥

(︀
𝑢𝑛𝑖+1,𝑗 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
− Δ𝑡

16△ 𝑦

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
(𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1)

+
𝑎Δ𝑡

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁
(𝑢𝑛𝑖,𝑗+1 − 2𝑢𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1) (2.21)

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210

]︃

where
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𝐾𝑥 =⎛⎝1 +
Δ𝑡

4Δ𝑥

(︀
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

)︀
+

2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁√︂(𝑢𝑛𝑖,𝑗)
2 +

1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

⎞⎠

Case 2: At the 𝑣𝑖 point and the (𝑛+ 1/2) time level 2D depth-averaged 𝑦-momentum:

(︂
𝜕𝑣

𝜕𝑡

)︂𝑛+1/2

𝑣𝑖,𝑗

+ 𝑣

(︂
𝜕𝑢

𝜕𝑥

)︂𝑛+1/2

𝑣𝑖,𝑗

+ 𝑣

(︂
𝜕𝑣

𝜕𝑦

)︂𝑛+1/2

𝑣𝑖,𝑗

− (𝑓𝑢)𝑛𝑣𝑖,𝑗

= −𝑔

(︂
𝜕𝜂

𝜕𝑦

)︂𝑛+1/2

𝑣𝑖,𝑗

+

(︂
𝜈
𝜕2𝑣

𝜕𝑥2

)︂𝑛+1/2

𝑣𝑖,𝑗

+

(︂
𝜈
𝜕2𝑣

𝜕𝑦2

)︂𝑛+1/2

𝑣𝑖,𝑗

+

(︂
𝜌𝑎
𝜌0

1

𝐻
𝐶𝑎𝑣10

√︁
𝑢210 + 𝑣210

)︂𝑛+1/2

𝑣𝑖,𝑗

− 𝐶𝐷
1

𝐻

(︁
𝑣
√︀

𝑢2 + 𝑣2
)︁𝑛+1/2

𝑣𝑖,𝑗
(2.22)

The approximations for the terms of equation (2.22) as follows:

1. (︂
𝜕𝑣

𝜕𝑡

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ 1

Δ𝑡

(︁
𝑣𝑛+1
𝑖,𝑗 − 𝑣𝑛𝑖,𝑗

)︁
(2.23)

which is second order in time because this is a centred-difference in time.

2. Discretization of advection term

(︂
𝑢
𝜕𝑣

𝜕𝑥

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ (𝑢𝑖,𝑗)
𝑛+1

(︂
𝜕𝑣

𝜕𝑥

)︂𝑛

𝑣𝑖,𝑗

≃ 1

16Δ𝑥

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖−1,𝑗

)︀
(2.24)

which is quasi second order in space.

3. (︂
𝑣
𝜕𝑣

𝜕𝑦

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ (𝑣𝑖,𝑗)
𝑛+1

(︂
𝜕𝑣

𝜕𝑦

)︂𝑛

𝑣𝑖,𝑗

≃ 1

4Δ𝑦
𝑣𝑛+1
𝑖,𝑗

(︀
𝑣𝑛𝑖,𝑗+1 − 𝑣𝑛𝑖,𝑗−1

)︀
(2.25)

which is approximately second order in space.

4. Discretization of Coriolis force term

(𝑓𝑢)𝑛+1/2
𝑣𝑖,𝑗

≃ 1

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
(2.26)

5. Discretization of barotropic term(︂
𝜕𝜂

𝜕𝑦

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ 1

Δ𝑦

(︁
𝜂
𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗−1

)︁
(2.27)
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which has a second order spatial discretisation error.

6. Discretization of horizontal eddy viscosity coefficients

At the 𝑣𝑖,𝑗 grid point and the (𝑛+ 1/2) time level. They are approximated as follows:

(︂
𝜈𝑥

𝜕2𝑣

𝜕𝑥2

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ (𝜈𝑥)
𝑛+1/2
𝑣𝑖,𝑗

(︂
𝜕2𝑣

𝜕𝑥2

)︂𝑛

𝑣𝑖,𝑗

(2.28)

≃ 𝑎

8Δ𝑥

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖−1,𝑗

)︀

which is approximately second order in space.

7. (︂
𝜈𝑦

𝜕2𝑣

𝜕𝑦2

)︂𝑛+1/2

𝑣𝑖,𝑗

≃ (𝜈𝑦)
𝑛
𝑣𝑖,𝑗

(︂
𝜕2𝑣

𝜕𝑦2

)︂𝑛

𝑣𝑖,𝑗

(2.29)

≃ 𝑎

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁ (︀
𝑣𝑛𝑖,𝑗+1 − 2𝑣𝑛𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1

)︀
which is approximately second order in space .

Substituting all the approximations (2.23)-(2.29) in to equation (2.22) yield the approximation

1

Δ𝑡

(︁
𝑣𝑛+1
𝑖,𝑗 − 𝑣𝑛𝑖,𝑗

)︁
+

1

4Δ𝑦
𝑣𝑛+1
𝑖,𝑗

(︀
𝑣𝑛𝑖,𝑗+1 − 𝑣𝑛𝑖,𝑗−1

)︀
+

1

16Δ𝑥

(︁
𝑢𝑛+1
𝑖,𝑗+1 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖−1,𝑗

)︀
−1

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
=− 𝑔

1

2Δ𝑦

(︁
𝜂
𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗−1

)︁
+

𝑎

8Δ𝑥

(︀
𝑣𝑛𝑖+1,𝑗 − 2𝑣𝑛𝑖 + 𝑣𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
+

𝑎

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
(𝑣𝑛𝑖,𝑗+1 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗−1)

− 2𝐶𝐷(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣𝑛+1
𝑖,𝑗

√︂
(𝑣𝑛𝑖,𝑗)

2 +
1

16
(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣10√︁𝑢210 + 𝑣210
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That implies:

𝑣𝑛+1
𝑖,𝑗 =

[︃
𝑣𝑛𝑖,𝑗 −

Δ𝑡

4Δ𝑦
𝑣𝑛+1
𝑖,𝑗

(︀
𝑣𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1

)︀
− Δ𝑡

16Δ𝑥

(︁
𝑢𝑛+1
𝑖,𝑗+1 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖−1,𝑗

)︀
+
Δ𝑡

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
− 𝑔Δ𝑡

2Δ𝑦
(𝜂

𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗−1 ) +

𝑎Δ𝑡

8Δ𝑥

(︀
𝑣𝑛𝑖+1,𝑗 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
+
𝑎Δ𝑡

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
(𝑣𝑛𝑖,𝑗+1 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗−1))

− 2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣𝑛+1
𝑖,𝑗

√︂
(𝑣𝑛𝑖,𝑗)

2 +
1

16
(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣10√︁𝑢210 + 𝑣210

]︃

Finally, we obtain:

𝑣𝑛+1
𝑖,𝑗 = 𝐾−1

𝑦

[︃
𝑣𝑛𝑖,𝑗 −

Δ𝑡

16Δ𝑥

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖−1,𝑗

)︀
− Δ𝑡

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
− 𝑔Δ𝑡

2Δ𝑦
(𝜂

𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗−1 ) +

𝑎Δ𝑡

8Δ𝑥

(︀
𝑣𝑛𝑖+1,𝑗 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖−1,𝑗

)︀ (︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
+
𝑎Δ𝑡

8Δ𝑦

(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁
(𝑣𝑛𝑖,𝑗+1 − 2𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗−1)

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣10√︁𝑢210 + 𝑣210

]︃
(2.30)

where

𝐾𝑦 =⎛⎝1 +
Δ𝑡

4Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 − 𝑣𝑛𝑖,𝑗−1

)︀
+

2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁√︂(𝑣𝑛𝑖,𝑗)
2 +

1

16
(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1)

2

⎞⎠
The values at the full time level are found using

𝜂𝑛+1
𝑖,𝑗 =𝜂𝑛𝑖,𝑗 −

Δ𝑡

8Δ𝑥

[︁
(𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗 )(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛𝑖,𝑗)− (𝐻
𝑛+1/2
𝑖−1,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗 )(𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛𝑖−1,𝑗)
]︁

− Δ𝑡

8Δ𝑦

[︁
(𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗+1 )(𝑣𝑛+1

𝑖,𝑗+1 + 𝑣𝑛𝑖,𝑗+1)− (𝐻
𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1 )(𝑣𝑛+1

𝑖,𝑗 + 𝑣𝑛𝑖,𝑗)
]︁

(2.31)

which is second order convergent in space and time.

Note that, in the above 𝜂
𝑛+1/2
𝑖,𝑗 are calculated for all 𝑖, 𝑗 then the pair 𝑢𝑛+1

𝑖,𝑗 ,𝑣𝑛+1
𝑖,𝑗 are calculated for

all 𝑖, 𝑗 and finally 𝜂𝑛+1
𝑖,𝑗 calculated for all 𝑖, 𝑗.
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2.4.1 Computational algorithm in case the time step (n+1/2)

The 2D depth-averaged shallow water equations are solved on the basis of the following algorithm:

1. Input model data and set initial data. At time 𝑡 = 𝑛Δ𝑡 = 0 (that is 𝑛 = 0, and 𝑡 = 𝑛△ 𝑡 also

𝑢0𝑖,𝑗 = 𝑣0𝑖,𝑗 = 0, 𝐻0
𝑖,𝑗 = ℎ𝑖,𝑗) on the open boundary 𝐻0

𝑖,𝑗 = ℎ𝑖,𝑗 + 𝜂0𝑖,𝑗 are known. Get the values

𝑢
𝑛−1/2
𝑖,𝑗 , 𝑣

𝑛−1/2
𝑖,𝑗 and 𝜂

𝑛−1/2
𝑖,𝑗 by a forward step.

2. Update model time to level (𝑛+1/2), so 𝑡 = (𝑛+1/2)△ 𝑡. Solve the continuity equation to find

𝜂𝑛+1/2 and 𝐻𝑛+1/2 using 𝑢𝑛, 𝑣𝑛.

3. Update model time to level (𝑛 + 1). Solve the momentum equations for 𝑢𝑛+1 and 𝑣𝑛+1 using

𝜂𝑛+1/2.

4. Update model to time level (𝑛+ 1). Solve continuity equation for 𝜂𝑛+1 and 𝐻𝑛+1.

5. Apply Robert-Asselin filter for 𝑢, 𝑣 and 𝜂 for each time step.

6. Return to step 2 and continue until the period of the simulation is completed.

2.5 Numerical Discretization for 2DSWEs Using EFDMs in Several

Cases

Consider that the system of 2DSWEs given in equations (1.32)-(1.34) when the wind stress, viscosity

and the force 𝑓 are ignored. Therefore, this model becomes:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (2.32)

𝜕(𝐻𝑢)

𝜕𝑡
+

𝜕(𝐻𝑢2)

𝜕𝑥
+

𝜕(𝐻𝑢𝑣)

𝜕𝑦
+ 𝑔𝐻

𝜕𝜂

𝜕𝑥
++

𝜏𝑥
𝜌

= 0 (2.33)

𝜕(𝐻𝑣)

𝜕𝑡
+

𝜕(𝐻𝑢𝑣)

𝜕𝑥
+

𝜕(𝐻𝑣2)

𝜕𝑦
+ 𝑔𝐻

𝜕𝜂

𝜕𝑦
++

𝜏𝑦
𝜌

= 0 (2.34)

By applying an explicit centered finite difference and leapfrog schemes with Robert-Asselin in above

system. There are two cases:

Case 1. When the time step (𝑛+ 1/2)

1. Continuity equation: By using the equation (2.8 ) in Section 2.4, we get:
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𝜂
𝑛+1/2
𝑖 =𝜂

𝑛−1/2
𝑖,𝑗 − 1

4Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)𝑢

𝑛
𝑖−1,𝑗

]︀
− 1

4Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀

a. 𝑥-momentum equation

By using the equation (2.21) in Section 2.4 and assume the wind stress, viscosity, and the force 𝑓

are ignored, we get:

𝑢𝑛+1
𝑖 =𝐾−1

𝑥

[︃
𝑢𝑛𝑖,𝑗 −

Δ𝑡

16Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗

)︀
(𝑢𝑛𝑖,𝑗+1 − 𝑢𝑛𝑖,𝑗−1)

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210 −
𝑔Δ𝑡

2Δ𝑥
(𝜂

𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗 )

]︃

𝐾𝑥 =⎛⎝1 +
Δ𝑡

4Δ𝑥

(︀
𝑢𝑛𝑖+1,𝑗 − 𝑢𝑛𝑖−1,𝑗

)︀
+

2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁√︂(𝑢𝑛𝑖,𝑗)
2 +

1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

⎞⎠

b. 𝑦-momentum equation:

By using the equation (2.30) in Section 2.4, we get:

𝑣𝑛+1
𝑖,𝑗 =𝐾−1

𝑦

[︃
𝑣𝑛𝑖,𝑗 −

Δ𝑡

16Δ𝑥

(︁
𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁ (︀
𝑣𝑛𝑖+1,𝑗 − 𝑣𝑛𝑖−1,𝑗

)︀
− 𝑔Δ𝑡

2Δ𝑦
(𝜂

𝑛+1/2
𝑖,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗−1 ) +

𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡

(𝐻
𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1 )

𝑣10

√︁
𝑢210 + 𝑣210

]︃

where

𝐾𝑦 = 1 +
Δ𝑡

4Δ𝑦

(︀
𝑣𝑛𝑖,𝑗+1 − 𝑣𝑛𝑖,𝑗−1

)︀
− 2𝐶𝐷Δ𝑡(︁

𝐻
𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁√︂(𝑣𝑛𝑖,𝑗)
2 +

1

16
(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1)

2

Values of 𝜂 at the full time level are found using

𝜂𝑛+1
𝑖,𝑗 =𝜂𝑛𝑖,𝑗 −

Δ𝑡

8Δ𝑥

[︁
(𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗 )(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛𝑖,𝑗)− (𝐻
𝑛+1/2
𝑖−1,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗 )(𝑢𝑛+1

𝑖−1,𝑗 + 𝑢𝑛𝑖−1,𝑗)
]︁

− Δ𝑡

8Δ𝑦

[︁
(𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗+1 )(𝑣𝑛+1

𝑖,𝑗+1 + 𝑣𝑛𝑖,𝑗+1)− (𝐻
𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1 )(𝑣𝑛+1

𝑖,𝑗 + 𝑣𝑛𝑖,𝑗)
]︁

The total depth 𝐻 = 𝜂 + ℎ at time (𝑛 + 1/2)Δ𝑡 is approximated as 𝐻𝑛+1
𝑖,𝑗 = 𝜂𝑛+1

𝑖,𝑗 + ℎ𝑖,𝑗 Then,

Robert-Asselin filter is applied for 𝑢, 𝑣 and 𝜂 after integration at each time step.
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Case 2. When the time step (𝑛+ 1)

1. Continuity equation

As the same equation (2.1) in Section 2.3.

𝜂𝑛+1
𝑖,𝑗 =𝜂𝑛−1

𝑖,𝑗 − Δ𝑡

Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖+1,𝑗 − (𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗)𝑢

𝑛
𝑖,𝑗

]︀
−Δ𝑡

Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀
a. 𝑥-momentum equation

By using the equation (2.2) in Section 2.3 and assume the wind stress, viscosity, and the force 𝑓

are ignored, we obtain:

𝜕(𝐻𝑢)

𝜕𝑡
=−

[︀
𝐻(𝑢𝑖+1 + 𝑢𝑖,𝑗)

2/4−𝐻𝑖−1(𝑢𝑖−1 + 𝑢𝑖,𝑗)
2/4
]︀
/Δ𝑥

− {(𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗+1 +𝐻𝑖,𝑗+1)× (𝑢𝑖,𝑗+1 + 𝑢𝑖,𝑗)(𝑣𝑖−1,𝑗+1 + 𝑣𝑖,𝑗+1)/16}/Δ𝑥

+ (𝐻𝑖−1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗−1 +𝐻𝑖,𝑗−1)(𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1)(𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗)/16}/Δ𝑦

− 𝑔(𝐻𝑖,𝑗 +𝐻𝑖−1,𝑗)/2(𝜂𝑖,𝑗 − 𝜂𝑖−1,𝑗)/Δ𝑥− 𝐶𝐷𝑢𝑖,𝑗

√︁
(𝑢𝑖,𝑗)2 + (𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗+1 + 𝑣𝑖,𝑗+1)2

+
𝜌𝑎
𝜌0

Δ𝑡𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

Finally, we obtain

𝑢𝑛+1
𝑖,𝑗 =

[︃
𝑢𝑛−1
𝑖,𝑗 (𝐻𝑛−1

𝑖,𝑗 +𝐻𝑛−1
𝑖−1,𝑗)−

Δ𝑡

Δ𝑥

[︀
𝐻𝑛

𝑖,𝑗(𝑢
𝑛
𝑖+1 + 𝑢𝑛𝑖,𝑗)

2 −𝐻𝑛
𝑖−1,𝑗(𝑢

𝑛
𝑖−1 + 𝑢𝑛𝑖,𝑗)

2
]︀

− Δ𝑡

4Δ𝑥
{(𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗 +𝐻𝑛

𝑖−1,𝑗+1 +𝐻𝑛
𝑖,𝑗+1)× (𝑢𝑛𝑗+1 + 𝑢𝑛𝑖,𝑗)(𝑣

𝑛
𝑖−1,𝑗+1 + 𝑣𝑛𝑖,𝑗+1)

+
Δ𝑡

4Δ𝑦
{(𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗 +𝐻𝑛

𝑖−1,𝑗−1 +𝐻𝑛
𝑖,𝑗−1)(𝑢

𝑛
𝑖,𝑗 + 𝑢𝑛𝑖,𝑗−1)(𝑣

𝑛
𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗)

− 𝑔
2Δ𝑡

Δ𝑥
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)(𝜂

𝑛
𝑖,𝑗 − 𝜂𝑛𝑖−1,𝑗) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

− 4Δ𝑡𝐶𝐷𝑢
𝑛+1
𝑖,𝑗

√︁
(𝑢𝑛𝑖,𝑗)

2 + (𝑣𝑛𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖−1,𝑗+1)
2

]︃
/(𝐻𝑛+1

𝑖,𝑗 +𝐻𝑛+1
𝑖−1,𝑗)

b. 𝑦-momentum equation

By using the equation (2.3) in Section 2.3, we get:

𝜕(𝐻𝑣)

𝜕𝑡
=−

[︀
𝐻(𝑣𝑖*,𝑗*+1 + 𝑣𝑖*,𝑗*)

2/4−𝐻𝑖*,𝑗*−1(𝑣𝑖*,𝑗*−1 + 𝑣𝑖*,𝑗*)
2/4
]︀
/Δ𝑦

− {(𝐻𝑖*,𝑗*−1 +𝐻𝑖*,𝑗* +𝐻𝑖*+1,𝑗*−1 +𝐻𝑖*+1,𝑗*)× (𝑣𝑖*+1,𝑗* + 𝑣𝑖*,𝑗*)(𝑢𝑖*+1,𝑗*−1 + 𝑢𝑖*+1,𝑗*)/16}/Δ𝑦

− (𝐻𝑖*,𝑗*−1 +𝐻𝑖*,𝑗* +𝐻𝑖*−1,𝑗*−1 +𝐻𝑖*−1,𝑗*)(𝑣𝑖*,𝑗* + 𝑣𝑖*−1,𝑗*)(𝑢𝑖*,𝑗*−1 + 𝑢𝑖*,𝑗*)/16}/Δ𝑥

− 𝑔(𝐻𝑖*,𝑗* +𝐻𝑖*,𝑗*−1)/2(𝜂 − 𝜂𝑗*−1)/Δ𝑦 − 𝐶𝐷𝑣𝑖*,𝑗*
√︁

(𝑣𝑖*,𝑗*)2 + (𝑢𝑖*,𝑗*−1 + 𝑢𝑖*,𝑗* + 𝑢𝑖*+1,𝑗* + 𝑢𝑖*+1,𝑗*−1)2

+
𝜌𝑎
𝜌0

Δ𝑡𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

87



Finally, we obtain

𝑣𝑛+1
𝑖*,𝑗* =

[︃
𝑣𝑛−1
𝑖*,𝑗*(𝐻

𝑛−1
𝑖*,𝑗* +𝐻𝑛−1

𝑖*,𝑗*−1)−
Δ𝑡

Δ𝑦

[︀
𝐻𝑛

𝑖*,𝑗*(𝑣
𝑛
𝑗*+1 + 𝑣𝑛𝑖*,𝑗*)

2 −𝐻𝑛
𝑖*,𝑗*−1(𝑣

𝑛
𝑗*−1 + 𝑣𝑛𝑖*,𝑗*)

2
]︀

− Δ𝑡

4Δ𝑦
{(𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗* +𝐻𝑛

𝑖*+1,𝑗*−1 +𝐻𝑛
𝑖*+1,𝑗*)× (𝑣𝑛𝑖*+1,𝑗* + 𝑣𝑛𝑖*,𝑗*)(𝑢

𝑛
𝑖*+1,𝑗*−1 + 𝑢𝑛𝑖*+1,𝑗*)

+
Δ𝑡

4Δ𝑥
{(𝐻𝑛

𝑖*,𝑗*−1 +𝐻𝑛
𝑖*,𝑗* +𝐻𝑛

𝑖*−1,𝑗*−1 +𝐻𝑛
𝑖*−1,𝑗*)(𝑣

𝑛
𝑖*,𝑗* + 𝑣𝑛𝑖*−1,𝑗*)(𝑢

𝑛
𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗*)

− 𝑔
2Δ𝑡

Δ𝑦
(𝐻𝑛

𝑖*,𝑗* +𝐻𝑛
𝑖*,𝑗*−1)(𝜂

𝑛
𝑖*,𝑗* − 𝜂𝑛𝑖*,𝑗*−1) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑣10

√︁
𝑣210 + 𝑢210

− 4Δ𝑡𝐶𝐷𝑣
𝑛+1
𝑖*,𝑗*

√︁
(𝑣𝑛𝑖*,𝑗*)

2 + (𝑢𝑛𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗* + 𝑢𝑛𝑖*+1,𝑗* + 𝑢𝑛𝑖*+1,𝑗*−1)
2

]︃
/(𝐻𝑛+1

𝑖*,𝑗* +𝐻𝑛+1
𝑖*,𝑗*−1)

2.6 Numerical Discretization for 2D Linear SWEs Using EFDMs

Consider the system of 2DSWEs given in equations (1.32)-(1.34) when the terms 𝜕𝑢2

𝜕𝑥 = 0, 𝜕𝑣2

𝜕𝑦 = 0,

𝜕𝑢𝑣
𝜕𝑦 = 0, 𝜕𝑢𝑣

𝜕𝑥 = 0, 𝜕𝑢2

𝜕𝑦 = 0, 𝜕𝑣2

𝜕𝑥 = 0 and 𝜈 = 0.

Case 1: When the time step (𝑛+ 1/2)

a. 𝑥-momentum equation

The finite difference expression for the 𝑥-momentum equation using centered differences about 𝑢𝑖

in space and about the (𝑛+ 1/2) level in time is based on the equation.

(︂
𝜕𝑢

𝜕𝑡

)︂𝑛+1/2

𝑢𝑖,𝑗

− (𝑓𝑣)𝑛𝑢𝑖,𝑗
+ 𝑔

(︂
𝜕𝜂

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

=

(︂
𝜌𝑎
𝜌0

1

𝐻
𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

)︂𝑛+1/2

𝑢𝑖,𝑗

− 𝐶𝐷
1

𝐻

(︁
𝑢
√︀

𝑢2 + 𝑣2
)︁𝑛+1/2

𝑢𝑖,𝑗

(2.35)

The difference approximations of the terms as follows:

1. (︂
𝜕𝑢

𝜕𝑡

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 1

Δ𝑡

(︁
𝑢𝑛+1
𝑖,𝑗 − 𝑢𝑛𝑖,𝑗

)︁
(2.36)

2. Discretization of Coriolis force and Barotropic terms

(𝑓𝑣)𝑛𝑢𝑖,𝑗
≃ 1

8
(𝑓𝑖,𝑗 + 𝑓𝑖+1,𝑗)

(︁
𝑣𝑛+1
𝑖,𝑗+1 + 𝑣𝑛+1

𝑖+1,𝑗+1 + 𝑣𝑛+1
𝑖,𝑗 + 𝑣𝑛+1

𝑖+1,𝑗

)︁
(2.37)

3. (︂
𝜕𝜂

𝜕𝑥

)︂𝑛+1/2

𝑢𝑖,𝑗

≃ 1

2Δ𝑥

(︁
𝜂
𝑛+1/2
𝑖+1,𝑗 − 𝜂

𝑛+1/2
𝑖,𝑗

)︁
(2.38)
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Substituting all the approximations (2.36)-(2.38) in to equation (2.35) yield the approximation

𝑢𝑛+1
𝑖 =𝑢𝑛𝑖 +

Δ𝑡

8
(𝑓𝑖 + 𝑓𝑖+1)

(︁
𝑣𝑛+1
𝑖,𝑗+1 + 𝑣𝑛+1

𝑖+1,𝑗+1 + 𝑣𝑛+1
𝑖,𝑗 + 𝑣𝑛+1

𝑖+1,𝑗

)︁
− 𝑔Δ𝑡

2Δ𝑥
(𝜂

𝑛+1/2
𝑖+1 − 𝜂

𝑛+1/2
𝑖 )

− 2𝐶𝐷 △ 𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢𝑛+1
𝑖,𝑗

√︂
(𝑢𝑛𝑖,𝑗)

2 +
1

16
(𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖+1,𝑗+1 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖+1,𝑗)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖+1,𝑗

)︁𝑢10√︁𝑢210 + 𝑣210

(2.39)

b. 𝑦-momentum equation

At the 𝑣𝑖 point and the (𝑛+ 1/2) time level the depth-averaged 𝑦-momentum namely

(︂
𝜕𝑣

𝜕𝑡

)︂𝑛+1/2

𝑣𝑖,𝑗

− (𝑓𝑢)𝑛𝑣𝑖,𝑗 + 𝑔

(︂
𝜕𝜂

𝜕𝑥

)︂𝑛+1/2

𝑣𝑖,𝑗

=

(︂
𝜌𝑎
𝜌0

1

𝐻
𝐶𝑎𝑣10

√︁
𝑢210 + 𝑣210

)︂𝑛+1/2

𝑣𝑖,𝑗

− 𝐶𝐷
1

𝐻

(︁
𝑣
√︀

𝑢2 + 𝑣2
)︁𝑛+1/2

𝑣𝑖,𝑗

(2.40)

The difference approximations of the terms as follows:

1. (︂
𝜕𝑣

𝜕𝑡

)︂𝑛+1/2

𝑣𝑖

≃ 1

Δ𝑡

(︀
𝑣𝑛+1
𝑖 − 𝑣𝑛𝑖

)︀
(2.41)

2.

(𝑓𝑢)𝑛+1/2
𝑣𝑖

≃ 1

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖,𝑗−1 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
(2.42)

3. (︂
𝜕𝜂

𝜕𝑦

)︂𝑛+1/2

𝑣𝑖

≃ 1

Δ𝑦

(︁
𝜂
𝑛+1/2
𝑗 − 𝜂

𝑛+1/2
𝑗−1

)︁
(2.43)

Substituting all the approximations (2.41)-(2.43) in to equation (2.40) yield the approximation

𝑣𝑛+1
𝑖 =𝑣𝑛𝑖 +

Δ𝑡

8
(𝑓𝑖,𝑗 + 𝑓𝑖,𝑗−1)

(︁
𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖,𝑗 + 𝑢𝑛+1

𝑖−1,𝑗−1

)︁
− 𝑔Δ𝑡

2Δ𝑦
(𝜂

𝑛+1/2
𝑗 − 𝜂

𝑛+1/2
𝑗−1 )

− 2𝐶𝐷Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣𝑛+1
𝑖,𝑗

√︂
(𝑣𝑛𝑖,𝑗)

2 +
1

16
(𝑢𝑛+1

𝑖,𝑗 + 𝑢𝑛+1
𝑖−1,𝑗 + 𝑢𝑛+1

𝑖,𝑗−1 + 𝑢𝑛+1
𝑖−1,𝑗−1)

2

+
𝜌𝑎
𝜌0

2𝐶𝑎Δ𝑡(︁
𝐻

𝑛+1/2
𝑖,𝑗 +𝐻

𝑛+1/2
𝑖,𝑗−1

)︁𝑣10√︁𝑢210 + 𝑣210

(2.44)
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Case 2: When the time step (𝑛+ 1)

We can written the 2D linear SWEs as following:

Continuity equation

As the same equation ( 2.1) in Section 2.3

𝜂𝑛+1
𝑖,𝑗 =𝜂𝑛−1

𝑖,𝑗 − Δ𝑡

Δ𝑥

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖+1,𝑗)𝑢

𝑛
𝑖+1,𝑗 − (𝐻𝑛

𝑖−1,𝑗 +𝐻𝑛
𝑖,𝑗)𝑢

𝑛
𝑖,𝑗

]︀
−Δ𝑡

Δ𝑦

[︀
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗+1)𝑣

𝑛
𝑖,𝑗+1 − (𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖,𝑗−1)𝑣

𝑛
𝑖,𝑗

]︀
(2.45)

a. 𝑥-momentum equation

𝑢𝑛+1
𝑖,𝑗 =

[︃
𝑢𝑛−1
𝑖,𝑗 (𝐻𝑛−1

𝑖,𝑗 +𝐻𝑛−1
𝑖−1,𝑗) +

Δ𝑡

2
𝑓(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)× (𝑣𝑛𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖−1,𝑗+1)

− 𝑔
2Δ𝑡

Δ𝑥
(𝐻𝑛

𝑖,𝑗 +𝐻𝑛
𝑖−1,𝑗)(𝜂

𝑛
𝑖,𝑗 − 𝜂𝑛𝑖−1,𝑗) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑢10

√︁
𝑢210 + 𝑣210

− 4Δ𝑡𝐶𝐷𝑢
𝑛+1
𝑖,𝑗

√︁
(𝑢𝑛𝑖,𝑗)

2 + (𝑣𝑛𝑖−1,𝑗 + 𝑣𝑛𝑖,𝑗 + 𝑣𝑛𝑖,𝑗+1 + 𝑣𝑛𝑖−1,𝑗+1)
2

]︃
/(𝐻𝑛+1

𝑖,𝑗 +𝐻𝑛+1
𝑖−1,𝑗) (2.46)

b. 𝑦-momentum equation

𝑣𝑛+1
𝑖*,𝑗* =

[︃
𝑣𝑛−1
𝑖*,𝑗*(𝐻

𝑛−1
𝑖*,𝑗* +𝐻𝑛−1

𝑖*,𝑗*−1)−
Δ𝑡

2
𝑓(𝐻𝑛

𝑖*,𝑗* +𝐻𝑛
𝑖*,𝑗*−1)× (𝑢𝑛𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗* + 𝑢𝑛𝑖*+1,𝑗* + 𝑢𝑛𝑖*+1,𝑗*−1)

− 𝑔
2Δ𝑡

Δ𝑦
(𝐻𝑛

𝑖*,𝑗* +𝐻𝑛
𝑖*,𝑗*−1)(𝜂

𝑛
𝑖*,𝑗* − 𝜂𝑛𝑖*,𝑗*−1) + 4Δ𝑡𝜌𝑎/𝜌0𝐶𝑎𝑣10

√︁
𝑣210 + 𝑢210

− 4Δ𝑡𝐶𝐷𝑣
𝑛+1
𝑖*,𝑗*

√︁
(𝑣𝑛𝑖*,𝑗*)

2 + (𝑢𝑛𝑖*,𝑗*−1 + 𝑢𝑛𝑖*,𝑗* + 𝑢𝑛𝑖*+1,𝑗* + 𝑢𝑛𝑖*+1,𝑗*−1)
2

]︃
/(𝐻𝑛+1

𝑖*,𝑗* +𝐻𝑛+1
𝑖*,𝑗*−1)

(2.47)

2.7 Program Logic and Data Flow

In this section, the structure of the computational program and some major subroutines are briefly

described.

Flow charts: (Organizational chart)

The major structures and functionalities of the program are demonstrated. It can be seen that the

program has three major parts: Initialization or configuration, shallow water model, and transport.

Main components of the first part, initialization are mesh or grid systems and finite difference operators

initialization after data files are read. All the physical and numerical parameters used in the model

are provided for users and can be changed according to the condition of the simulation. New runs will
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review the parameters used for the last time as well, they will be used if no change has been made. It is

clear the sequence of the flow chart includes solving momentum equations and the continuity equation.

Boundary conditions have symbolic meaning that there are applied to all processes involved. Figure

2-5 shows the flowchart of the model.

Figure 2-5: Show organization chart of the calculation program

2.8 Stability Criteria

A successful numerical scheme must approach the solution without staining acute regions or introducing

false oscillations. It should approximate the solution increasingly accurately as the number of grid cells

is increased with the property that the numerical solution tends to the actual solution as the grid size

tends to zero.

Since the solution to a hyperbolic or parabolic problem, we must ensure that the computational

grid is such that the time step Δ𝑡 is small enough that the wave does not have time to exit the other

side of the element of width Δ𝑥. This leads us to the following important condition. (i.e., the accuracy

of the solution depends on the chosen values of Δ𝑡 and Δ𝑥.
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2.8.1 Consistency, convergence and stability ([31, 113])

Definition of consistency

Given a partial differential equations 𝐿𝑢 = 𝑓 and a finite difference scheme 𝐿Δ𝑡,Δ𝑥𝑣 = 𝑓 , we say that

the finite difference scheme is consistent with the PDE if for any smooth function 𝜙(𝑡, 𝑥)

(𝐿𝜙− 𝐿Δ𝑡,Δ𝑥𝜙) → 0 as Δ𝑡,Δ𝑥 → 0

Definitions of convergency

A one-step finite difference scheme approximating a PDE is a convergent scheme if for any solution

to the PDE 𝑢(𝑡, 𝑥) and the solution of the finite difference scheme 𝑣𝑛𝑚, such that 𝑣0𝑚 converges to

𝑢0(𝑥) as (𝑚Δ𝑥) converges to 𝑥 then 𝑣𝑛𝑚 converges to 𝑢(𝑡, 𝑥) as (𝑛Δ𝑡,𝑚Δ𝑥) convergence to (𝑡, 𝑥) as

Δ𝑡,△𝑥 → 0. The notation 𝑣𝑛𝑚 means the value of 𝑣 at the grid point (𝑡𝑛, 𝑥𝑚).

Definitions of stability

A finite difference scheme 𝑃△𝑡,△𝑥𝑣
𝑛
𝑖 = 0 for a first-order equation is stable in a stability region Λ if

there is an integer 𝐽 such that for any positive time 𝑇 , there is a constant 𝐶𝑇 , such that

‖ 𝑣𝑛 ‖Δ𝑥≤ 𝐶𝑇

𝐽∑︁
𝑗=0

‖ 𝑣𝑗 ‖Δ𝑥

for 0 ≤ Δ𝑡 ≤ 𝑇 , with (Δ𝑡,Δ𝑥) ∈ Λ

Lax-Richtmyer equivalence theorem

In numerical analysis, the Lax equivalence theorem is the fundamental theorem in the analysis of finite

difference methods for the numerical solution of partial differential equations. It states that for (see

[92, 113]):

A consistent finite difference scheme for a partial differential equation for a well-posed linear initial

value problem, the method is convergent if and only if it is stable.

Consistency + Stability ⇔ Convergence

Notice that

∙ The Lax theorem does not apply to non-linear PDE because consistency and stability are often

insufficient for convergence and convergence need not imply stability in general. Also, the nu-

merical method can convergence very plausibly to incorrect results despite being consistent and

stable and sometimes in non-linear PDE difficult to find the exact solution.
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∙ Any numerical method that violates the CFL condition misses information affecting the exact

solution and may blow up to infinity For this reason, the CFL condition is necessary but not

sufficient for numerical stability.

2.8.2 The Courant Friedrichs Lewy (CFL) Condition

In (1928) Richard Courant, Kurt Friedrichs and Hans Lewy of the university of Gottingen in Germany

published a famous paper in mathematics, the Courant Friedrichs Lewy (CFL) condition is a necessary

condition for convergence while solving certain partial differential equations (usually hyperbolic PDEs)

numerically by the method of finite differences ([42, 92, 113]). It states:

The numerical domain of dependence must contain the physical domain of dependence.

  

Figure 2-6: The numerical and physical domain of dependence.

The Courant condition, is a condition for convergence while numerically solving PDEs. It places a

constraint on the maximum time step that can be used for a chosen grid spacing in order to ensure the

stability of the numerical solution. The condition is often expressed in terms of the Courant number

𝐶𝑛 defined as: ([16, 53, 107])

𝐶𝑛 = 𝑣
Δ𝑡

Δ𝑥

where 𝑣 is the celerity of the gravity wave. Specifying wave celerity, above equation becomes:

𝐶𝑛 =
√︀

𝑔𝐻
Δ𝑡

Δ𝑥
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2.8.3 The Courant Friedrichs Lewy (CFL) Condition for 2DSWEs

The Courant number CFL condition for 2D shallow water equations is defined as follows: [49, 69, 110]

𝐶 = Δ𝑡
(︁√︀

𝑔𝐻𝑚𝑎𝑥

)︁(︂ 1

Δ𝑥2
+

1

Δ𝑦2

)︂ 1
2

or

𝑚𝑎𝑥

[︂(︁
2Δ𝑡

√︀
𝑔𝐻
)︁(︂ 1

Δ𝑥2
+

1

Δ𝑦2

)︂]︂
< 1

Using the stability condition CFL < 1 in above equation. The following stability criterion is

obtained for the optimal time step [75]

Δ𝑡 ≤ Δ𝑥Δ𝑦(︀√
𝑔𝐻𝑚𝑎𝑥

)︀√︀
(Δ𝑥2 +Δ𝑦2)

where 𝐻𝑚𝑎𝑥 is the maximum depth water.

2.8.4 Derivation the Courant Friedrichs Lewy (CFL) condition in 2D shallow wa-

ter equations

The Courant number CFL condition for 2DSWEs is defined as follows [69]:

𝐶 = Δ𝑡
(︁√︀

𝑔𝐻 + 𝑉𝑚𝑎𝑥

)︁(︂ 1

Δ𝑥
+

1

Δ𝑦

)︂

Using the stability condition CFL< 1 in above equation. The following stability criterion is obtained

for the optimal time step

Δ𝑡 ≤ 1(︀√
𝑔𝐻 + 𝑉𝑚𝑎𝑥

)︀
(Δ𝑥−1 +Δ𝑦−1)

To prove this CFL condition for the 2DSWEs

Consider the 2DNSWEs given in equations (1.29)-(1.31) , when f=0, 𝜈=0, 𝜏𝑤𝑢 = 0, 𝜏 𝑏𝑢 = 0, 𝜏𝑤𝑣 = 0

and 𝜏 𝑏𝑣 = 0 and dividing on 𝐻, we obtain:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0

𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑥
= 0
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𝜕𝑣

𝜕𝑡
+

𝜕(𝑣𝑢)

𝜕𝑦
+

𝜕𝑣2

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑦
= 0

The 2D shallow-water equations can be written in the matrix form

𝜕

𝜕𝑡

⎛⎜⎜⎜⎝
𝜂

𝑢

𝑣

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
𝑢 𝐻 0

𝑔 𝑢 0

0 0 𝑢

⎞⎟⎟⎟⎠ 𝜕

𝜕𝑥

⎛⎜⎜⎜⎝
𝜂

𝑢

𝑣

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
𝑣 𝐻 0

0 𝑣 0

𝑔 0 𝑣

⎞⎟⎟⎟⎠ 𝜕

𝜕𝑦

⎛⎜⎜⎜⎝
𝜂

𝑢

𝑣

⎞⎟⎟⎟⎠ = −

⎛⎜⎜⎜⎝
𝑢𝜕ℎ
𝜕𝑥 + 𝑣 𝜕ℎ

𝜕𝑦

0

0

⎞⎟⎟⎟⎠
We can easily to check the eigenvalues of the first coefficient matrix are {𝑢, 𝑢 ±

√
𝑔𝐻} and the

eigenvalues of the second coefficient matrix are {𝑣, 𝑣 ±
√
𝑔𝐻}. The CFL in two-dimension case as

follows:

𝐶𝑟 =

(︂
𝑢𝑥Δ𝑡

Δ𝑥
+

𝑣𝑦Δ𝑡

Δ𝑦

)︂
≤ 1

where 𝑢𝑥 ,𝑢𝑦 are the velocity in 𝑥, 𝑦-directions respectively.

where 𝑢𝑥 =
{︀
𝑢, 𝑢±

√
𝑔𝐻
}︀
and 𝑢𝑦 =

{︀
𝑣, 𝑣 ±

√
𝑔𝐻
}︀

⇒ 𝐶𝐹𝐿 =

(︂
𝑚𝑎𝑥

{︁
𝑢, 𝑢±

√︀
𝑔𝐻
}︁ Δ𝑡

Δ𝑥
+𝑚𝑎𝑥

{︁
𝑣, 𝑣 ±

√︀
𝑔𝐻
}︁ Δ𝑡

Δ𝑦

)︂
< 1

Let

𝑉𝑚𝑎𝑥 +
√︀
𝑔𝐻 = 𝑚𝑎𝑥

{︁
(𝑢, 𝑢±

√︀
𝑔𝐻), (𝑣, 𝑣 ±

√︀
𝑔𝐻)

}︁
⇒
(︁
𝑉𝑚𝑎𝑥 +

√︀
𝑔𝐻
)︁(︂Δ𝑡

Δ𝑥
+

Δ𝑡

Δ𝑦

)︂
< 1

⇒ △𝑡

(︂
1

Δ𝑥
+

1

Δ𝑦

)︂
<

1(︀
𝑉𝑚𝑎𝑥 +

√
𝑔𝐻
)︀

⇒ △𝑡 <
1(︀

𝑉𝑚𝑎𝑥 +
√
𝑔𝐻
)︀
(Δ𝑥−1 +Δ𝑦−1)

Similarly, we can prove the another formula

Since

⇒
(︁
𝑉𝑚𝑎𝑥 +

√︀
𝑔𝐻
)︁(︂Δ𝑡

Δ𝑥
+

Δ𝑡

Δ𝑦

)︂
< 1

⇒
(︁
𝑉𝑚𝑎𝑥 +

√︀
𝑔𝐻
)︁(︂ Δ𝑡

Δ𝑥2
+

Δ𝑡

Δ𝑦2

)︂
< 1

⇒ △𝑡

(︂
1

Δ𝑥2
+

1

Δ𝑦2

)︂ 1
2

<
1(︀

𝑉𝑚𝑎𝑥 +
√
𝑔𝐻
)︀

⇒ Δ𝑡 <
1(︀

𝑉𝑚𝑎𝑥 +
√
𝑔𝐻
)︀ (︁√︀

Δ𝑥2 +Δ𝑦2
)︁
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2.9 Studying Boundary Conditions

2.9.1 Radiative open boundary condition

In this section, we derive the radiative open boundary conditions on C-grid for the 2DSWEs provided

by [61, 100]:

Case 1: Western boundary radiative condition

The western boundary radiative condition is defined, for the elevation and the component of velocity

perpendicular to the boundary.

1. For the elevation and the component of velocity perpendicular to the boundary is defined:

𝜂𝑙+1
1,𝑗 = 𝜂𝑙1,𝑗 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

1,𝑗

(︁
𝜂𝑙1,𝑗 − 𝜂𝑙2,𝑗

)︁
𝑢𝑙+1
1,𝑗 = −

√︃
𝑔

𝐻 𝑙+1
1,𝑗

𝜂𝑙+1
1,𝑗

𝐻 𝑙+1
1,𝑗 = 𝜂𝑙+1

1,𝑗 + ℎ1,𝑗

for 𝑗 = 1, 2, ..., 𝑁 and for the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
1,𝑗 =

⎛⎝𝑣𝑙1,𝑗(𝐻
𝑙
1,𝑗 +𝐻 𝑙

1,𝑗−1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

1,𝑗 +𝐻 𝑙
1,𝑗−1)

2

(︁
𝑣𝑙1,𝑗 − 𝑣𝑙2,𝑗

)︁⎞⎠ /
(︁
𝐻 𝑙+1

1,𝑗 +𝐻 𝑙+1
1,𝑗−1

)︁
for 𝑗 = 2, 3, ..., 𝑁 .

Notes:

1. If 𝑗 = 1 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂𝑙+1
1,1 = 𝜂𝑙1,1 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

1,1

(︁
𝜂𝑙1,1 − 𝜂𝑙2,1

)︁
𝑢𝑙+1
1,1 = −

√︃
𝑔

𝐻 𝑙+1
1,1

𝜂𝑙+1
1,1

and for the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
1,2 =

⎛⎝𝑣𝑙1,2(𝐻
𝑙
1,2 +𝐻 𝑙

1,1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

1,2 +𝐻 𝑙
1,1)

2

(︁
𝑣𝑙1,2 − 𝑣𝑙2,2

)︁⎞⎠ /
(︁
𝐻 𝑙+1

1,2 +𝐻 𝑙+1
1,1

)︁
if 𝑗 = 2.

2. If 𝑖 = 1 and 𝑗 = 𝑁 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined by:
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𝜂𝑙+1
1,𝑁 = 𝜂𝑙1,𝑁 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

1,𝑁

(︁
𝜂𝑙1,𝑁 − 𝜂𝑙2,𝑁

)︁
𝑢𝑙+1
1,𝑁 = −

√︃
𝑔

𝐻 𝑙+1
1,𝑁

𝜂𝑙+1
1,𝑁

𝐻 𝑙+1
1,𝑁 = 𝜂𝑙+1

1,𝑁 + ℎ1,𝑁

For the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
1,𝑁 =

⎛⎝𝑣𝑙1,𝑁 (𝐻 𝑙
1,𝑁 +𝐻 𝑙

1,𝑁−1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

1,𝑁 +𝐻 𝑙
1,𝑁−1)

2

(︁
𝑣𝑙1,𝑁 − 𝑣𝑙2,𝑁

)︁⎞⎠ /
(︁
𝐻 𝑙+1

1,𝑁 +𝐻 𝑙+1
1,𝑁−1

)︁

Case2: Eastern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂𝑙+1
𝑀,𝑗 = 𝜂𝑙𝑀,𝑗 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

𝑀,𝑗

(︁
𝜂𝑙𝑀,𝑗 − 𝜂𝑙𝑀−1,𝑗

)︁
𝑢𝑙+1
𝑀+1,𝑗 = −

√︃
𝑔

𝐻 𝑙+1
𝑀,𝑗

𝜂𝑙+1
𝑀,𝑗

𝐻 𝑙+1
𝑀,𝑗 = 𝜂𝑙+1

𝑀,𝑗 + ℎ𝑀,𝑗

for 𝑗 = 1, 2, ..., 𝑁 and for the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
𝑀,𝑗 =

⎛⎝𝑣𝑙𝑀,𝑗(𝐻
𝑙
𝑀,𝑗 +𝐻 𝑙

𝑀,𝑗−1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

𝑀,𝑗 +𝐻 𝑙
𝑀,𝑗−1)

2

(︁
𝑣𝑙𝑀,𝑗 − 𝑣𝑙𝑀−1,𝑗

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑀,𝑗 +𝐻 𝑙+1
𝑀,𝑗−1

)︁

for 𝑗 = 2, 3, ..., 𝑁.

Notes:

1. If 𝑖 = 𝑀 and 𝑗 = 𝑁 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂𝑙+1
𝑀,𝑁 = 𝜂𝑙𝑀,𝑁 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

𝑀,𝑁

(︁
𝜂𝑙𝑀,𝑁 − 𝜂𝑙𝑀−1,𝑁

)︁
𝑢𝑙+1
𝑀+1,𝑁 = −

√︃
𝑔

𝐻 𝑙+1
𝑀,𝑁

𝜂𝑙+1
𝑀,𝑁

𝐻 𝑙+1
𝑀,𝑁 = 𝜂𝑙+1

𝑀,𝑁 + ℎ𝑀,𝑁

For the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
𝑀,𝑁 =

⎛⎝𝑣𝑙𝑀,𝑁 (𝐻 𝑙
𝑀,𝑁 +𝐻 𝑙

𝑀,𝑁−1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

𝑀,𝑁 +𝐻 𝑙
𝑀,𝑁−1)

2

(︁
𝑣𝑙𝑀,𝑁 − 𝑣𝑙𝑀−1,𝑁

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑀,𝑁 +𝐻 𝑙+1
𝑀,𝑁−1

)︁
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2. If 𝑖 = 𝑀 and 𝑗 = 2 then the boundary radiative condition becomes:

1. For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂𝑙+1
𝑀,2 = 𝜂𝑙𝑀,2 − 2

Δ𝑡

Δ𝑥

√︁
𝑔𝐻 𝑙

𝑀,2

(︁
𝜂𝑙𝑀,2 − 𝜂𝑙𝑀−1,2

)︁
𝑢𝑙+1
𝑀+1,2 = −

√︃
𝑔

𝐻 𝑙+1
𝑀,2

𝜂𝑙+1
𝑀,2

𝐻 𝑙+1
𝑀,2 = 𝜂𝑙+1

𝑀,2 + ℎ𝑀,2

for the velocity component tangent to the boundary is defined by:

𝑣𝑙+1
𝑀,2 =

⎛⎝𝑣𝑙𝑀,2(𝐻
𝑙
𝑀,2 +𝐻 𝑙

𝑀,1)− 2
Δ𝑡

Δ𝑥

√︃
𝑔
(𝐻 𝑙

𝑀,2 +𝐻 𝑙
𝑀−1)

2

(︁
𝑣𝑙𝑀,2 − 𝑣𝑙𝑀−1,2

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑀,2 +𝐻 𝑙+1
𝑀,1

)︁

Case 3: The Southern boundary radiative condition is defined

For the elevation and the component of velocity perpendicular to the boundary

𝜂𝑙+1
𝑖,1 = 𝜂𝑙𝑖,1 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

𝑖,1

(︁
𝜂𝑙𝑖,1 − 𝜂𝑙𝑖,2

)︁
𝑣𝑙+1
𝑖,1 = −

√︃
𝑔

𝐻 𝑙+1
𝑖,1

𝜂𝑙+1
𝑖,1

𝐻 𝑙+1
𝑖,1 = 𝜂𝑙+1

𝑖,1 + ℎ𝑖,1

for 𝑖 = 1, 2, ...,𝑀 and for the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
𝑖,1 =

⎛⎝𝑢𝑙𝑖,1(𝐻
𝑙
𝑖,1 +𝐻 𝑙

𝑖−1,1)− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

𝑖,1 +𝐻 𝑙
𝑖−1,1)

2

(︁
𝑢𝑙𝑖,1 − 𝑢𝑙𝑖,2

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑖,1 +𝐻 𝑙+1
𝑖−1,1

)︁
for 𝑖 = 2, 3, ...,𝑀.

1. If 𝑖 = 1 for the elevation and the component of velocity perpendicular to the boundary

𝜂𝑙+1
1,1 = 𝜂𝑙1,1 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

1,1

(︁
𝜂𝑙1,1 − 𝜂𝑙1,2

)︁
𝑣𝑙+1
1,1 = −

√︃
𝑔

𝐻 𝑙+1
1,1

𝜂𝑙+1
1,1

𝐻 𝑙+1
1,1 = 𝜂𝑙+1

1,1 + ℎ1,1

and for the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
2,1 =

⎛⎝𝑢𝑙2,1(𝐻
𝑙
2,1 +𝐻 𝑙

1,1)− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

2,1 +𝐻 𝑙
1,1)

2

(︁
𝑢𝑙2,1 − 𝑢𝑙2,2

)︁⎞⎠ /
(︁
𝐻 𝑙+1

2,1 +𝐻 𝑙+1
1,1

)︁
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for 𝑖 = 2.

2. if 𝑖 = 𝑀 ,for the elevation and the component of velocity perpendicular to the boundary

𝜂𝑙+1
𝑀,1 = 𝜂𝑙𝑀,1 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

𝑀,1

(︁
𝜂𝑙𝑀,1 − 𝜂𝑙𝑀,2

)︁

𝑣𝑙+1
𝑀,1 = −

√︃
𝑔

𝐻 𝑙+1
𝑀,1

𝜂𝑙+1
𝑀,1

𝐻 𝑙+1
𝑀,1 = 𝜂𝑙+1

𝑀,1 + ℎ𝑀,1

For the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
𝑀,1 =

⎛⎝𝑢𝑙𝑀,1(𝐻
𝑙
𝑀,1 +𝐻 𝑙

𝑀−1,1)− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

𝑀,1 +𝐻 𝑙
𝑀−1,1)

2

(︁
𝑢𝑙𝑀,1 − 𝑢𝑙𝑀,2

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑀,1 +𝐻 𝑙+1
𝑀−1,1

)︁
Case 4: Northern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined:

𝜂𝑙+1
𝑖,𝑁 = 𝜂𝑙𝑖,𝑁 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

𝑖,𝑁

(︁
𝜂𝑙𝑖,𝑁 − 𝜂𝑙𝑖,𝑁−1

)︁

𝑣𝑙+1
𝑖,𝑁+1 = −

√︃
𝑔

𝐻 𝑙+1
𝑖,𝑁

𝜂𝑙+1
𝑖,𝑁

𝐻 𝑙+1
𝑖,𝑁 = 𝜂𝑙+1

𝑖,𝑁 + ℎ𝑖,𝑁

for 𝑖 = 1, 2, ...,𝑀 and for the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
𝑖,𝑁 =

⎛⎝𝑢𝑙𝑖,𝑁 (𝐻 𝑙
𝑖,𝑁 +𝐻 𝑙

𝑖−1,𝑁 )− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

𝑖,𝑁 +𝐻 𝑙
𝑖−1,𝑁 )

2

(︁
𝑢𝑙𝑖,𝑁 − 𝑢𝑙𝑖,𝑁−1

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑖,𝑁 +𝐻 𝑙+1
𝑖−1,𝑁

)︁
for 𝑖 = 2, 3, ...,𝑀.

1. if 𝑖 = 1 then for the elevation and the component of velocity perpendicular to the

boundary is defined

𝜂𝑙+1
1,𝑁 = 𝜂𝑙1,𝑁 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

1,𝑁

(︁
𝜂𝑙1,𝑁 − 𝜂𝑙1,𝑁−1

)︁
𝑣𝑙+1
1,𝑁+1 = −

√︃
𝑔

𝐻 𝑙+1
1,𝑁

𝜂𝑙+1
1,𝑁

𝐻 𝑙+1
1,𝑁 = 𝜂𝑙+1

1,𝑁 + ℎ1,𝑁

for the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
2,𝑁 =

⎛⎝𝑢𝑙2,𝑁 (𝐻 𝑙
2,𝑁 +𝐻 𝑙

1,𝑁 )− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

2,𝑁 +𝐻 𝑙
1,𝑁 )

2

(︁
𝑢𝑙2,𝑁 − 𝑢𝑙2,𝑁−1

)︁⎞⎠ /
(︁
𝐻 𝑙+1

2,𝑁 +𝐻 𝑙+1
1,𝑁

)︁
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for 𝑖 = 2.

2. If 𝑖 = 𝑀 Northern boundary radiative condition

For the elevation and the component of velocity perpendicular to the boundary is defined

𝜂𝑙+1
𝑀,𝑁 = 𝜂𝑙𝑀,𝑁 − 2

Δ𝑡

Δ𝑦

√︁
𝑔𝐻 𝑙

𝑀,𝑁

(︁
𝜂𝑙𝑀,𝑁 − 𝜂𝑙𝑀,𝑁−1

)︁
𝑣𝑙+1
𝑀,𝑁+1 = −

√︃
𝑔

𝐻 𝑙+1
𝑀,𝑁

𝜂𝑙+1
𝑀,𝑁

𝐻 𝑙+1
𝑀,𝑁 = 𝜂𝑙+1

𝑀,𝑁 + ℎ𝑀,𝑁

For the velocity component tangent to the boundary is defined by:

𝑢𝑙+1
𝑀,𝑁 =

⎛⎝𝑢𝑙𝑀,𝑁 (𝐻 𝑙
𝑀,𝑁 +𝐻 𝑙

𝑀−1,𝑁 )− 2
Δ𝑡

Δ𝑦

√︃
𝑔
(𝐻 𝑙

𝑀,𝑁 +𝐻 𝑙
𝑀−1,𝑁 )

2

(︁
𝑢𝑙𝑀,𝑁 − 𝑢𝑙𝑀,𝑁−1

)︁⎞⎠ /
(︁
𝐻 𝑙+1

𝑀,𝑁 +𝐻 𝑙+1
𝑀−1,𝑁

)︁

2.10 Summary and Conclusion

In this chapter, development of numerical methods has been suggested for 2D shallow water model

using explicit methods. Several cases of numerical discretization for 2D depth-averaged shallow water

equations has been applied using center finite difference method in space and leapfrog with Asselin-

Roberts filtering in time. Some kinds of boundary conditions have been studied. Several algorithms

were proposed for 2DSWEs. Accordingly, the new techniques and algorithms presented above presented

will be used in the later chapters.
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Chapter 3

Numerical Results for 2D Shallow Water Equations

Some of the results presented in this chapter (Sections 3.1 and 3.2) are the subject of

an article [8].

Shallow water equations in two-dimensional are used for some ocean models applications using the

new discretization techniques for numerical methods suggested in Chapter 2.

Dirichlet, reflexive boundary conditions and moving boundary conditions are applied at the bound-

aries and implementation numerical simulations are conducted by computer programming using Mat-

lab and Fortran 90. The performance of the proposed technique is tested on several examples of the

tsunami model. Some examples of 2DSWEs are applied using Gaussian level initial condition. The

numerical results indicate that the model has high accuracy and efficiency by using these techniques.

Highlights

∙ Some applications for 2DNSWEs are implemented using EFDM in space and leapfrog method with

Robert-Asselin filter in time.

∙ Some examples of 2DSWEs are applied using Gaussian level initial condition.

∙ 𝐿2-relative error norm is used to show high accuracy of the results.
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3.1 Numerical Solutions for 2DSWEs

Note: For all examples, we apply EFDM in space and leapfrog method with Robert-

Asselin filter in time to approximate the 2D depth-averaged non-linear SWEs. For the

stability using CFL condition which is given in Section 2.8.3.

Example 1

In this example, we use 2DNSWEs given in equations (2.1)-(2.3) which are approximately first order

in space and second order in time, when the bottom stress, wind stress, f=0, and viscosity horizontal

in 𝑥-axis and 𝑦-axis are equal zero in a rectangular domain Ω = [0, 𝐿𝑥]× [0, 𝐿𝑦]

1. Initial condition:

Initially, the water is at rest with a water drop of 10m and a zero flow everywhere.i.e., no-slip

boundary conditions 𝑢 = 𝑣 = 0 on 𝜕Ω and

𝜂(𝑥, 𝑦, 𝑡 = 0) = 10 * 𝑒𝑥𝑝((−5((𝑥)2 + (𝑦)2))

𝑢(𝑥, 𝑦, 𝑡 = 0) = 0, 𝑣(𝑥, 𝑦, 𝑡 = 0) = 0

2. Boundary conditions:

Here, reflexive boundary conditions were implemented at the boundaries with CFL condition 0.13.

𝜂(𝑥, 1) = 𝜂(𝑥, 2); 𝑢(𝑥, 1) = 𝑢(𝑥, 2); 𝑣(𝑥, 1) = −𝑣(𝑥, 2);

𝜂(𝑥, 𝑛) = 𝜂(𝑥, 𝑛− 1); 𝑢(𝑥, 𝑛) = 𝑢(𝑥, 𝑛− 1); 𝑣(𝑥, 𝑛) = −𝑣(𝑥, 𝑛− 1);

𝜂(1, 𝑦) = 𝜂(2, 𝑦); 𝑢(1, 𝑦) = −𝑢(2, 𝑦); 𝑣(1, 𝑦) = 𝑣(2, 𝑦);

𝜂(𝑛, 𝑦) = 𝜂(𝑛− 1, 𝑦); 𝑢(𝑛, 𝑦) = −𝑢(𝑛− 1, 𝑦); 𝑣(𝑛, 𝑦) = 𝑣(𝑛− 1, 𝑦);

3. Numerical parameters: (configurations)

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: 𝐿𝑥=𝐿𝑦 =200, Δ𝑥=Δ𝑦 =0.10, the time step Δ𝑡 =0.001 sec, and the

simulation duration 𝑡 = 100 days.

4. Results and discussion:

First of all, we tested the computational stability of this model by using CFL condition which

is 0.13 less than 1 (see Section 2.8.3). The time integrations were performed for 100 days and the
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calculations were stable.

A global 𝑙2-relative error norm in space (𝑙2-𝑅𝐸) which means 𝑙2-relative error at all

grids point in the model domain is formulated as (see [76]):

𝑅𝐸(𝑄𝑖,𝑗) =

⎯⎸⎸⎸⎷𝑀𝑙∑︁
𝑗

𝑁𝑐∑︁
𝑖

⎡⎣(︃𝑄𝑛
𝑖,𝑗 −𝑄𝑛−1

𝑖,𝑗

𝑄𝑛
𝑖,𝑗

)︃2
⎤⎦

where 𝑁𝑐, 𝑀𝑙 represents the number of cells, 𝑄𝑖,𝑗 is the computed values of the variables for the 𝑖−th

and 𝑗−th cells, when 𝑛 and 𝑛−1 denote the current and previous time levels. A smaller 𝑅𝐸 represents

less variation in time and thus manifests the results closer to the steady state.

The following figure shows the comparison 𝑙2-𝑅𝐸 for free surface elevation, 𝑢-velocity and 𝑣-velocity

for 2DNSWEs.

Figure 3-1: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for 2DNSWEs at

𝑡 = 10, 20, ..., 100 days.

Example 2:

In this example, we use 2D linear SWEs given in equations (2.45)-(2.47) which are approximately first

order in space and second order in time.

1. Initial condition:

Initially, the water is at rest with a water drop of 1.6m and a zero flow everywhere.

𝜂(𝑖, 𝑗) = 10 * 𝑒𝑥𝑝((−((𝑖− 𝑖0)
2 + (𝑗 − 𝑗0)

2))/(𝑘2))

where 𝑖0 = 15, 𝑗0 = 15 and 𝑘 = 6.
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2. Boundary conditions:

Here, Dirichlet boundary conditions were implemented at the boundaries with CFL condition 0.22.

3. Numerical parameters: (configurations)

The computational domain is discretized by a grid whose size is regular. Numerical values of

the parameters are chosen as follows: 𝐿𝑥=𝐿𝑦 = 200, Δ𝑥 =0.10, Δ𝑦=0.10, ℎ=10m , the time step

Δ𝑡 = 0.001 sec at time 𝑡 = 100, 200, ..., 1000 hours and total steps 3600.

4. Results and discussion:

First of all, we tested the computational stability of this model by using CFL condition which is

0.22 less than 1 (see Section 2.8.3). The time integrations were performed for 1000 hours.

The following figures show the simulation of free surface elevation at time 𝑡 = 100, 200, ..., 1000

hours.
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Figure 3-2: Simulation of free surface elevation at time 𝑡 = 100, 200, ..., 1000 hours.

The following figures show 𝑙2-𝑅𝐸 of free surface elevation, comparison 𝑙2-𝑅𝐸 of free surface eleva-

tion, 𝑢-velocity and 𝑣-velocity and approximate solution for free surface elevation for linear SWEs.
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Figure 3-3: 𝑙2-𝑅𝐸 of free surface elevation for linear SWEs at 𝑡 = 10, 20, ..., 1000 hours.

Figure 3-4: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for linear SWEs at

𝑡 = 10, 20, ..., 100 days.

3.2 Some Applications of 2D Depth-Averaged Non-Linear SWEs

Consider the system given by equations (2.32)-(2.34) in Section 2.5 with neglect of viscosity, wind

stresses, and the Coriolis force 𝑓 terms, by dividing 𝐻 into all terms of the 𝑥-momentum and 𝑦-

momentum equations, we get the system as follows [69]:

𝜕𝜂

𝜕𝑡
+

𝜕(𝐻𝑢)

𝜕𝑥
+

𝜕(𝐻𝑣)

𝜕𝑦
= 0 (3.1)

𝜕𝑢

𝜕𝑡
+

𝜕𝑢2

𝜕𝑥
+

𝜕(𝑢𝑣)

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑥
++

𝜏𝑥
𝐻𝜌

= 0 (3.2)

𝜕𝑣

𝜕𝑡
+

𝜕(𝑢𝑣)

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
+ 𝑔

𝜕𝜂

𝜕𝑦
++

𝜏𝑦
𝐻𝜌

= 0 (3.3)

The bottom friction comes from Manning’s formula, where 𝑛 is roughness coefficient. In this sim-

ulation, 𝑛 takes 0.013. (see Section 1.4.6).
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Initial condition:

Initially, it is assumed that the motion in the domain is observed from an initial state of rest, so

𝑢(𝑥, 𝑦, 0)=𝑣(𝑥, 𝑦, 0)=0 and at the beginning of a simulation start, this initial water surface obtained

from a given data file, as well as the value fluxes, are zero on all grids. A full description of initial

condition, boundary condition and model configuration can be found in ([114], [121]) (For more detailed

see Appendix).

Example 1: Case 1: 2D linear shallow water equations

In this example, we use a system of equations (3.1)-(3.3) for linear case in a rectangular domain

Ω = [0, 𝐿𝑥]× [0, 𝐿𝑦]. The computational domain is discretized by a grid whose size is regular.

1. Boundary conditions:

Here, radiation open boundary conditions (moving boundary conditions) were implemented at the

boundaries with CFL condition 0.6 (see Appendix ).

2. Numerical simulations, results and discussion:

The numerical values of the parameters are chosen as follows: 𝑛𝑥=𝑛𝑦 =120, Δ𝑥=Δ𝑦 =9, time step

𝑡 = 2.5𝑒−2𝑠𝑒𝑐, water depth 10 m and the total steps 125.

The first figure compares the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-

velocity and the second figure shows 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for 2D

linear SWEs at different time 𝑡 = 1000, 2000, ..., 5000 sec.

Figure 3-5: Comparison the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-velocity

for linear SWEs.
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Figure 3-6: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for linear SWEs.

Example 2: Case 2: 2D nonlinear shallow water equations

In this example, we introduce some applications for 2D depth-averaged nonlinear SWEs given in

equations (3.1)-(3.3) which are approximately second order in space and time.

1. Boundary conditions:

Here, radiation open boundary conditions (moving boundary conditions) were implemented at the

boundaries with CFL condition 0.7 (see Appendix).

2. Numerical simulations, results and discussion:

The numerical values of the parameters are chosen as follows: 𝑛𝑥 = 𝑛𝑦 = 120, Δ𝑥=Δ𝑦 =9, time

step 𝑡 = 2.5𝑒−2𝑠𝑒𝑐 and the water depth 10m.

The first figure compares the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-

velocity and the second figure shows 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity at

different time 𝑡 = 1000, 2000, ..., 5000 sec.

Figure 3-7: Comparison the approximate solution for free surface elevation, 𝑢-velocity and 𝑣-velocity

for nonlinear SWEs.
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Figure 3-8: Comparison 𝑙2-𝑅𝐸 of free surface elevation, 𝑢-velocity and 𝑣-velocity for nonlinear SWEs.

3.3 Some Applications of 2DSWEs Using Gaussian Level Initial Con-

dition

In this section, we use 2DNSWEs given in equations (2.1)-(2.3), when the bottom stress, wind stress,

Coriolis force, and viscosity horizontal in 𝑥-axis and 𝑦-axis are equals zero in the domain Ω = [0, 𝐿𝑥]×

[0, 𝐿𝑦] (see [1, 103]).

Initial condition:

Initially the Gaussian initial elevation is given by:

𝜂(𝑥, 𝑦) = ℎ0 * 𝑒𝑥𝑝((−((𝑥− 𝑥0)
2 + (𝑦 − 𝑗0)

2)/2𝜎2)

Where ℎ0 is the Gaussian bell height at the center, 𝜎=𝜎𝑥=𝜎𝑦 is the Gaussian bell width along both 𝑥

and 𝑦-axis and (𝑥0, 𝑦0) are the coordinate of the Gaussian bell center.

Gaussian bump with its center at the domain origin (center). It has a height of 1cm and a width

of 60m along both 𝑥 and 𝑦-axis.

Example 1: Gaussian Bump Description

Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: number of grid 30× 30, Δ𝑥 = 20m, Δ𝑦 = 20m (grid length) and the

time step Δ𝑡=0.1𝑠, the simulation duration 𝑡 = 100𝑠, water depth ℎ=10𝑚, the initial characteristic

speed of the flow 𝑈0=4.9e-03, energy=2.77e+03, horizontal length=600m, and vertical length=10m.

Boundary conditions:

Here, Boundaries: level is set to Sommerfeld, normal is set to flather boundary conditions and

112



tangent is set to Dirichlet boundary conditions with CFL condition 0.198.

Results and discussion:

Gaussian bump is released, the wave front is radiated at the boundaries with radiative scheme for

the water elevation, the tangential velocity and a flather radiative scheme for the normal velocity.

The following figures represent sequence of snapshots of water level at different times.

Example 2: Closed step Bump Description

Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: number of grids 37 × 37, Δ𝑥 = 20000m, Δ𝑦 = 20000m, the time

step Δ𝑡 = 500s, the simulation duration 𝑡 = 100000s, water depth ℎ=10𝑚, island 40000m×80000m,

radius 25000m, 𝑈0=4.9e-03, energy=286e+04, horizontal length 7.4e+05, and the vertical length 10m

and total steps 200.

Boundary conditions:

Closed boundary conditions with CFL condition 0.99. Here, Boundaries: normal is set to Dirichlet

boundary conditions and tangent is set to Dirichlet boundary conditions.
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Results and discussion:

The following figures represent sequence of snapshots of water level at different times.
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3.4 Summary and Conclusion for this Part

Different concepts were introduced for 2D shallow water equations. We identified the mathematical

problem and we mentioned the special cases of the 2DSWEs.

Three ways to get the full derivation of 2D shallow water models were presented in the simplest

way to satisfy the curiosity of fresh physical oceanographers.

There are different types of numerical methods. The advantage of an explicit center finite difference

method and leapfrog with Robert-Asselin filter in naturally conserving mass and the structured mesh

is the ability in dealing with the regular boundaries of a two-dimensional.

An explicit staggered scheme to simulate 2DSWEs has been introduced. This scheme is simple,

accurate and straight forward both for this model. Good results were obtained through comparison the

approximate solutions and 𝑙2-relative error norm of free surface elevation, 𝑢-velocity, and 𝑣-velocity.

The performance of a new technique for 2DSWEs have been evaluated under Dirichlet, reflexive

boundary conditions and moving boundary conditions. Some examples for 2DSWEs were applied using

Gaussian level initial condition.

Several examples have been tested of the tsunami model and the results were obtained with high

accuracy by using 𝑙2-𝑅𝐸 . The results demonstrated the applicability and benefits of this technique.
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Chapter 4

The Configuration of a Nested Grid For Shallow Water Models

The results presented in this chapter (Section 4.7) are the subject of an article [3]

A new two-way interaction technique for coupling nested grids of 2D depth-averaged non-linear

SWEs for structured grids is designed. Studying the accuracy of two-way nesting performance tech-

niques between a coarse grid and a fine grid are suggested using an explicit finite difference method on

Arakawa C-grid in space and leapfrog method with Robert-Asselin filter in time. This model consists

of a higher-resolution (fine grid) nested 3:1 or 5:1 in a low-resolution (coarse grid) on which covers the

entire domain. The formulation of the nesting grids algorithms allows flexibility for any ratio of grid

sizes between two sub-regions. Assuming the water depth is constant along the boundary condition

for the fine grid model to ensure the conservation of transfer.

To verify the ability and benefits of nested grid models, several numerical examples are applied

to show and check the proposed technique can works efficiently over different periods of time and the

results indicate good nesting performance technique. The two-way interaction systems depend on the

type of interpolation, the location of dynamical interface, conservation properties (flux of mass and

momentum equations), and type of update.

In this chapter, we will focus on several major aspects including configuration of nested grid

for 2DSWEs, and design of interpolation/restriction operators. We begin with a literature review

of techniques used to try to increase efficiency and accuracy of 2DSWEs. Some new algorithms are

established to implement two-way interaction technique for this model which are given in Section 4.4.

Intergrid transfer operators (interpolations and updates) are given. Then, looks into the optimum

feedback conditions and interpolation techniques to maximize the feedback of the information. Four

choices of the update schemes for free surface elevation and velocities on Arakawa C-grid are applied

which are listed in Section 4.5.
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Highlights

∙ Two grids are nested; one is a coarse grid and the other is a fine grid.

∙ The interaction between the two grids is two-directional.

∙ Description of a new two-way interactive nesting technique for 2DSWEs.

∙ Build some new algorithms to implement two-way interactive technique for ocean models.

∙ Some types of interpolations and updates are given.

∙ Four choices of the update scheme for the free surface and velocities are applied.
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4.1 Literature Review

The problem of computational cost is a common problem in coastal modeling. The major determinant

of computational cost is the spatial resolution or temporal resolution, whether water modeling deep in

the ocean or shallow coastal seas. In most numerical models, the temporal resolution is directly linked

to the spatial resolution and a higher spatial resolution thus impose a higher temporal resolution which

adds more to the computational cost with spatial domain for great ranges and times level of weeks to

years, the computational cost of numerical modeling can become very high.

For coastal models, there is an additional problem related to spatial resolution, the position of open

water boundaries. Such boundaries must be located so that their conditions will not adversely affect

in the area of interest.

The most popular numerical manners used to solve spatial resolution or temporal resolution prob-

lems are nested grid techniques. Nested grids allow one to increase spatial or temporal resolutions

or both in a sub-region of the model domain without incurring the computational expenses for high-

resolution over the entire domain. They can significantly reduce the number of computational grid

points and thus the computational cost.

A feature of traditional nested grid techniques, the nested grids are static, that means locations on

nested grids are steady for a simulation model. Further optimization of the computational cost can

be achieved if the nested grids are able to move with the advantage of interest thus reduces the area

over which high resolution is required. This technique is known as adaptive meshing. Although not as

common as the traditional nesting techniques, but it has been successfully implemented in a number

of cases [13, 55].

In this section, recall some basic concepts about one-way and two-way interaction techniques.

4.1.1 Classification of Grids

1. Structured grid

Structured grids are fixed by regular communication. The possible element choices are quadrilateral in

2D and hexahedra in 3D. This model is highly space efficiently, i.e., Since the neighborhood relation-

ships are defined through the storage arrangement. Some other advantages of a structured grid over

unstructured grid are better convergence and higher accuracy [21, 58].
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Figure 4-1: Shows Structured grid.

2. Unstructured grids

An unstructured grid is identified by irregular communication. It cannot easily be expressed as a

two-dimensional or three-dimensional array in computer memory. This allows for any possible element

that a solver might be able to use. Compared to structured meshes, this model can be highly space

inefficient since it calls for the explicit storage of neighborhood relationships. These grids typically

employ triangles in 2D and tetrahedral in 3D [86].

Figure 4-2: Shows unstructured grid.

3. Hybrid grids

A hybrid grid contains a mixture of structured parts and unstructured parts. It integrates the struc-

tured meshes and the unstructured meshes in an efficient manner. Those portions of the geometry that

are regular can have structured grids and those that are complex can have unstructured grids. These

grids can be non-conformal, which means that grid lines don’t need to match at block boundaries.
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Figure 4-3: Shows hybrid grid.

4.1.2 Mesh structure

The structure of a two-way nested mesh is composed of two main types, the first is an overlapping

method and the second is a seamlessly embedded method that consists of two types: adjacent and

separate. The adjacent seamlessly embedded meshes were applied in the early generation of two-way

nested domains [14, 37, 62, 84, 93, 100].

The procedure involves the time integral for the coarse and nested domain to progress simultane-

ously. Boundary data from the coarse domain is interpolated on to the interface between the nested

and coarse domains to allow the forcing of the nested domain. The feedback/updating data from the

nested domain is transmitted through the same interface which the boundary data is interpolated on

[48].

The separated embedded model involves separating the nested and coarse domain by a mesh. This

mesh also known as a window frame is shown in Figure 4-4 as domain 2. The frame consists of an

overlapping of the two different resolution domains. The interior boundary of the coarse domain is

the mesh interface (feedback) and the fine domains foreign boundary where the boundary conditions

for the domain are generated is the dynamic interface (input). The separation of the interfaces allows

for only internally generated nested domain values being used in the feedback calculation. The first

step involves the simulation of the coarse domain and the mesh/window frame domain (domains 1

and 2) in Figure 4-4. The second step involves the use of the data generated at the dynamic interface

as boundary conditions for the simulation over domain 2 and the nested grid in domain 3. Time

interpolation is performed at the dynamic interface and spatial interpolation is performed at the mesh

interface. This method allows two-way interaction due to domain 1 being influenced by domain 2 and

the coarse domain influences the nested domain by providing the boundary conditions for the nested

domain simulation. This method is a very common method in nested modeling and has been used in

a large number of nesting schemes in both meteorology and hydrology [52, 98, 122].
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Figure 4-4: Embedded nested domain.

The second type of two-way nested modelling procedure is an overlapping method that involves

the extension of the coarse domain over the full nested domain used by [67]. The overlapping method

has been used in a number of applications [41, 56, 109].

The style includes the coarse domain integrating for one-time step and boundary data from the

coarse domain are interpolated onto the dynamic interface (see Figure 4-4) between the nested and

coarse domains. The nested domain is then integrated using the boundary data until the time step

is equal to the time step of the coarse domain. Conversion of the high-resolution nested domain data

occurs at points where the coarse domain grid points coincide with the fine domain grid points and

are updated using some interpolation method of the enclosed nested grid data. Figure 4-5 shows an

illustration of the grid configuration for a nested ratio of 3:1.

Figure 4-5: Overlapping grid configuration.
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4.1.3 Separation of dynamic and feedback interface

The dynamic interface shows the fine mesh boundary, where the solution of a fine grid is forcible by

the coarse solution; the feedback interface is the outer limit of the area where the coarse solution is

updated by the fine solution. There are several reasons for separating dynamic and feedback interfaces.

The separation can be composed of two coarse grid cells. In these cases, the coarse grid points used in

the interpolations are not updated. Another reason for using a mesh separation between dynamic and

feedback interfaces is that if noise is produced, it will be larger near the dynamic interface so that it

is safer not to use the fine grid values near the dynamic interfaces. Several authors have proposed to

separate the feedback interface from the dynamic interface [48, 52, 98].

4.1.4 One-way nested models

One-way nesting is applied to models to generate a higher level of accuracy in the field of interest.

The nested domain is located so it is embedding in the coarse domain one, which involves the entire

domain. Figure 4-6 shows a sample grid configuration for a one-way nested model with 3:1 spatial

nesting ratio.

This model runs almost completely separately to calculate the domain of interest in both levels of

resolution. The interaction between the domains occurs in the area of the nested domain boundaries.

The boundary conditions for the nested domain are generated from the coarse domains data that

are interpolated in space and time. Initially, the coarse domain is integrated in time and the data

required for the nested domains boundary conditions are modified to collaborate with the fine domains

resolution. The fine domain solution is then performed using the boundary data with the fine domain

time step.

Figure 4-6: Adaptive mesh refinement.

Ginis [102] was the first to apply one-way nesting technique in hydrodynamics models and it has

since been applied to many studies of oceans and coastal waters. Debreu [50] developed and applied a

one-way nested model of the central California upwelling system. The method involved the integration
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of a nested grid into the Regional Oceanic Modelling System (ROMS). The model was applied to a

domain that spanned the continental Pacific coast of the United States and nested an area that covers

the central upwelling region of California around Monterey Bay. One-way nested grids have also been

used by [70] to represent eddy fields in the Aegean and Levatine basins located in the Mediterranean

Sea.

There are two main schemes to run the one-way nesting technique. The initial scheme involves a

complete solution for the coarse and fine models with respect to the simulation time. In this style, the

coarse model is fully run for the model simulation time. The data required for the boundary conditions

are stored in a data file to be used for the fine domain model that is then fully run for the simulation

time. This method is known as an uncoupled modeling procedure [13].

The coupled modelling procedure is more attractive than the uncoupled because it does not require

big quantities of the store. In this method, the coarse model is run for one time step and data required

for the nested domains boundary conditions are assigned, allowing the nested model to proceeds to a

time step equal to the coarse domains. A coarse domain continuous to the next time step when the

fine domain has been integrated.

A major importance in nesting techniques is the conservation of properties between the coarse and

fine grid models and the treatment of fine grid interior noise generated as a result of incompatibilities

between the two models [70]. The implementation of boundary conditions is therefore crucial and

can add complexity and computational cost. The underlying assumption in one-way nested models is

that the larger-scale motion determines the small-scale motion without feedback from the processes

occurring within the nested region; thus properties need only be conserved in one direction. For this

reason and the fact that the models may be run independently. Also, one-way nesting is both easier

to implement and usually less computationally expensive than two-way nesting.

4.1.5 Two-way nested models

The coarse mesh and fine mesh in a two-way nested model, are necessity dynamically connected each

effect the other and neither can be run independently. The interaction in the direction of a coarse

to fine is similar in manner to one-way nested systems. The coarse model is integrated in time and

boundary for the fine model are interpolated in time and space from adjacent coarse mesh, thus the

fine model is integrated in time using the interpolated boundary data. However, unlike one-way nested

systems, once the fine model has been integrated a coarse grid is then updated using a fine grid value

via some numerical procedure.

Spall and Holland [109] were among the first to use a two-way nesting to a model for oceanographic
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applications. This applies to two kinds of test cases in artificial domains that are relevant to oceanic

phenomena. Fox [56] adapted the Spall and Holland method to investigate problems that may appear

when fronts and other oceanic features intersect the boundaries between the domains and also the

performance of the model when topographical features are present.

Oey [90] used a two-way nested model in the Norwegian coast to simulate meanders and eddies

in the coastal currents. The two-way nested model used by [102] to model the tropical Pacific ocean

employed a two-way interactive method for the application in hurricane forecasting modeling. The

interaction between the two domains occurs in an area called the dynamic interface located near the

nested domain boundary. Results presented showed that the interaction at the dynamic interface

improved the conservation of properties between the two domains.

Dynamical interaction between coarse and fine domains can be achieved in various ways. The most

common technique is to transfer information from the fine to the coarse mesh and vice versa in the

zone where the two meshes overlap.

Conservation of properties is one of the most important aspects of nesting techniques between grids.

A two-way nesting technique must ensure conservation of properties when passing variables from the

coarse grid to the fine through the boundary conditions, also when the coarse grid variables are updated

from the fine. Ginis [102] state that the overlapping grid method used by Spall and Holland [109] and

Oey and Chen [90] do not necessarily conserve fluxes of mass, heat and momentum at the interfaces

between coarse and fine meshes. In the scheme developed by [102] the interaction at the dynamical

interface is specified as a flux condition; this enables improved conservation of mass, momentum and

heat.

The treatment of noise generated in the fine grid was also mentioned as a problem in relation to

one-way nesting. The same problem applies to two-way nesting techniques but the solution is more

complex. Not only must the technique minimize the disturbances in fine grid values which can occur

near the mesh interface as a result of grid incompatibility but it must also prevent those disturbances

from passing out of the fine grid and into the coarse grid. A disturbance propagating from a fine grid

to a coarse grid may undergo false reflection back to the fine grid or aliasing as it enters the coarse

grid [102]. These interface-generated problems may lead to numerical instabilities that can seriously

affect the results over the entire domain.

Two-way nesting should give more accurate simulations than one-way nesting. Barth [41] compare

results from a two-way nested/one-way nested and coarse model of the Ligurian Sea. The two-way

nested model was found to better represent currents within the Sea than both the coarse and one-way

nested models.
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4.1.6 General formulation of the nested models

We consider the general case of a high-resolution model covering the local domain 𝜔 embedded in a

coarser resolution model covering the larger domain Ω with clear notations the local high-resolution

grid and the global coarse resolution grid are denoted respectively as 𝜔ℎ and Ω𝐻 . The corresponding

state vectors are denoted respectively as 𝑥ℎ and 𝑥𝐻 . We also denote as 𝜔𝐻 , the part of the grid Ω𝐻

corresponding to the local domain 𝜔 [37].

In the case of one-way interaction, the coarse grid model provides boundary conditions to the high-

resolution model using an interpolation operator 𝐼ℎ𝐻 . Semi-discretized equations of the nested system

can be written as follows:

Domain Ω𝐻

𝜕𝑥𝐻
𝜕𝑡 = 𝐹 (𝑥𝐻) 𝑜𝑛 Ω𝐻 × [0, 𝑇 ]

𝑥𝐻(𝑡 = 0) = 𝑥0𝐻

Domain 𝜔ℎ

𝜕𝑥ℎ
𝜕𝑡 = 𝐹 (𝑥ℎ, 𝑥𝜕𝜔) 𝑜𝑛 𝜔ℎ × [0, 𝑇 ]

𝑥ℎ(𝑡 = 0) = 𝑥0ℎ

𝑥𝜕𝜔 = 𝐼ℎ𝐻(𝑥𝐻) 𝑜𝑛 𝜕𝜔ℎ × [0, 𝑇 ]

where 𝑥𝜕𝜔 represents the information coming from the coarse grid onto 𝜕𝜔ℎ, the boundary of the fine

grid. The one-way interaction is said to be passive since there is no retraction from the local model

onto the global model. From a practical point of view this also means that both models do not have

to be run simultaneously (the global model can be run first and its solution can then be used offline

by the local model).

In the case of two-way interactions a feedback term from the fine grid onto the coarse grid is added.

The coarse solution is updated locally (in 𝜔∘
𝐻 , the interior of 𝜔𝐻) by the high-resolution solution using

a restriction factor 𝐺𝐻
ℎ . Semi-discretized equations of the nested system can be written as follows:

Domain Ω𝐻

𝜕𝑥𝐻
𝜕𝑡 = 𝐹 (𝑥𝐻 , 𝑥𝜔) 𝑜𝑛 Ω𝐻 × [0, 𝑇 ]

𝑥𝐻(𝑡 = 0) = 𝑥0𝐻

𝑥𝜔 = 𝐺𝐻
ℎ (𝑥ℎ) 𝑜𝑛 𝜔∘

𝐻 × [0, 𝑇 ]
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Domain Ω𝐻 Domain 𝜔𝐻

𝜕𝑥ℎ
𝜕𝑡 = 𝐹 (𝑥ℎ, 𝑥𝜕𝜔) 𝑜𝑛 𝜔ℎ × [0, 𝑇 ]

𝑥ℎ(𝑡 = 0) = 𝑥0ℎ

𝑥𝜕𝜔 = 𝐼ℎ𝐻(𝑥𝐻) 𝑜𝑛 𝜕𝜔ℎ × [0, 𝑇 ]

where 𝑥𝜔 represents the information coming from the fine grid onto the coarse grid in 𝜔∘
𝐻 . The two-

way interactions are said to be active. In that case both models should be run at one time since they

permanently exchange information.

After discretization, the problems have to be integrated in time in a specific order. The model is

first integrated on the coarse grid Ω𝐻 and then on the high-resolution 𝜔ℎ grid with boundary conditions

given by a spatial and temporal interpolation of the coarse values. Finally, a feedback can be applied.

Figure 4-7: Notations used in the definitions of the nested models.

4.2 Other Nesting Considerations

4.2.1 Multiple nesting

Most of models which used the space refinement ratio for one-way △𝑥𝑐

△𝑥𝑓
≤ 4 and two-way nesting grids

have used the space refinement ratio △𝑥𝑐

△𝑥𝑓
≤ 7. Many nesting experiments have shown that acceptable

results are obtained for spatial nesting refinement ratio for 3:1 and 5:1 [109]. The vast majority of

both one-way and two-way nested models employ 3:1 nesting refinement ratio. Both [41, 109] report

that the use of higher nesting ratios results leads to significant degradation of model performance. For

example, Spall and Holland [109] found that model accuracy began to deteriorate at 7:1 nesting ratio.

Koch [106] give two reasons for this. Firstly, that higher grid refinement ratios require too many fine

grid points to adequately resolve the coarse grid waves. Secondly, that the incompatibilities between

the grids are so large that wave reflection and noise generation become excessive. In order to achieve a
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high resolution at nesting ratios in excess of 5:1, multiple nested models have been developed. These

models allow to minimize nested domains to multiple levels of nesting [99].

4.2.2 Some important notes

1. In fact, the most investigators have found the conservation condition unnecessary in hydrostatic

models in order to obtain a smooth solution at the interface [106]. Others, have found do not

necessarily conserve fluxes of mass, heat and momentum at the interfaces between coarse and

fine meshes [90].

2. Choosing odd mesh refinement ratio simplifies grids interactions. In the case, a coarse grid point

always has one underlying high-resolution point while using an even mesh refinement ratio that

means a coarse grid point does not have a corresponding point on the fine grid.

3. In the separated embedded model, time interpolation is performed at the dynamic interface and

spatial interpolation is performed at the mesh interface.

4. There are five methods of noise control have been used in two-way nested grids models: smoothing

operators, enhanced explicit diffusion, interface conditions modified to remove over specification,

damping time-integration scheme and mesh separation scheme.

5. There are many methods of interpolation for the fine grid interface conditions (linear, cubic

Lagrange, bilinear, cubic-spline, equivalently) and several different filters for the coarse grid

interface conditions (full-weight, average, Shuman filtering, Shapiro filtering,...etc).

6. There are two methods to achieve the conservation, the flux correction method, which applied

when the system with no time refinement and Kurihara (box) methods. In Kurihara method

which applied in a grid with the variables located in cell’s center.

4.2.3 Updating interpolation/feedback

Interpolation techniques are wanted in order to efficient data transfer with data is transferred between

various domains of spatial and temporal resolution. There are two prime goals for an interpolation

scheme to be optimum: (1) to maximize the information that is transferred. (2) to reduce the generation

of noise.

Techniques of interpolation techniques used in the transfer of information from the coarse domain to

the nested domain are usually of a polynomial form or a linear/bilinear form. Problems can arise with

the use of polynomial techniques in areas of sharp gradients due to the formation of excess oscillation

of the interpolation variables. Therefore, linear interpolation is more widely used for both spatial and

temporal interpolation [70, 99]. Based on studies which conclude that zeroth-order interpolation may
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create large phase errors, quadratic interpolation may create overshooting and they suggest the use of

advection equivalent interpolation schemes.

There are four major updating interpolation steps for the transfer of information from the fine

domain into the coarse domain (1) Direct copy (2) Basic averaging procedure (3) Shapiro and (4) Fully

weighted averaging procedure [52].

1. Direct copy is the most sharp interpolation technique with only the nested grid point that lies

directly in the domain of the coarse grid point being used in the procedure.

𝜑𝑐
𝐼,𝐽 = 𝜑𝑛

𝑖,𝑗

where 𝜑𝑐
𝐼,𝐽 represents the coarse grid point and 𝜑𝑛

𝑖,𝑗 represents the nested grid point that overlays the

center of the coarse grid cell, 𝑖,𝑗 representing the grid point locations in relation to the 𝑥-direction

and 𝑦-direction in the nested domain and 𝐼,𝐽 representing the coarse domain grid point locations in

relation to 𝑥-direction and 𝑦-direction.

Figure 4-8: Copy interpolation scheme.

2. The average procedure. All fine grid points that are enclosed in the coarse cell [25].

The following equation shows the formation of the average scheme for a mesh refinement factor of

3:1.

𝜑𝑐
𝐼,𝐽 =

1

9

(︀
𝜑𝑛
𝑖−1,𝑗−1 + 𝜑𝑛

𝑖−1,𝑗 + 𝜑𝑛
𝑖−1,𝑗+1 + 𝜑𝑛

𝑖,𝑗−1 + 𝜑𝑛
𝑖,𝑗 + 𝜑𝑛

𝑖,𝑗+1 + 𝜑𝑛
𝑖+1,𝑗−1 + 𝜑𝑛

𝑖+1,𝑗 + 𝜑𝑛
𝑖+1,𝑗+1

)︀
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Figure 4-9: Average interpolation scheme.

And the following equation shows the formation of the average scheme for a mesh refinement factor

5:1.

Figure 4-10: Average interpolation scheme.

𝜑𝑐
𝐼,𝐽 =

1

25
(𝜑𝑛

𝑖−2,𝑗−2 + 𝜑𝑛
𝑖−2,𝑗−1 + 𝜑𝑛

𝑖−2,𝑗 + 𝜑𝑛
𝑖−2,𝑗+1 + 𝜑𝑛

𝑖−2,𝑗+2 + 𝜑𝑛
𝑖−1,𝑗−2 + 𝜑𝑛

𝑖−1,𝑗−1 + 𝜑𝑛
𝑖−1,𝑗+

𝜑𝑛
𝑖−1,𝑗+1 + 𝜑𝑛

𝑖−1,𝑗+2 + 𝜑𝑛
𝑖,𝑗−2 + 𝜑𝑛

𝑖,𝑗−1 + 𝜑𝑛
𝑖,𝑗 + 𝜑𝑛

𝑖,𝑗+1 + 𝜑𝑛
𝑖,𝑗+2 + 𝜑𝑛

𝑖+1,𝑗−2+

𝜑𝑛
𝑖+1,𝑗−1 + 𝜑𝑛

𝑖+1,𝑗 + 𝜑𝑛
𝑖+1,𝑗+1 + 𝜑𝑛

𝑖+1,𝑗+2 + 𝜑𝑛
𝑖+2,𝑗−2 + 𝜑𝑛

𝑖+2,𝑗−1 + 𝜑𝑛
𝑖+2,𝑗 + 𝜑𝑛

𝑖+2,𝑗+1+

𝜑𝑛
𝑖+2,𝑗+2)

where 𝜑𝑐
𝐼,𝐽 representing the coarse point (black circle) that is being updated and 𝜑𝑛

𝑖,𝑗 being the fine

grid values in the same cell (blue circle).
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This scheme is based on the assumption that the fine grid variables over laying the one coarse grid

cell have a uniform distribution of value.

3. The Shapiro interpolation scheme. Is based on the assumption that the nested grid point that

lies in the central region of the coarse grid (blue square) is of equal importance to the sum of the other

nested grid points enclosed in the coarse grid cell (red square) [52].

𝜑𝑐
𝐼,𝐽 =

1

16

(︀
𝜑𝑛
𝑖−1,𝑗−1 + 𝜑𝑛

𝑖−1,𝑗 + 𝜑𝑛
𝑖−1,𝑗+1 + 𝜑𝑛

𝑖,𝑗−1 + 8𝜑𝑛
𝑖,𝑗 + 𝜑𝑛

𝑖,𝑗+1 + 𝜑𝑛
𝑖+1,𝑗−1 + 𝜑𝑛

𝑖+1,𝑗 + 𝜑𝑛
𝑖+1,𝑗+1

)︀

Figure 4-11: Shapiro interpolation scheme.

4. The final interpolation scheme. Is the full weighted averaging method and assumes that the

interpolated value used for the updating procedure should be influenced mainly by nested grid points

close to the center of the coarse grid point being updated (green+blue squares) and less by the more

distant points (red square) [48]. The following equation presents the fully weighted scheme for a nesting

ratio 3.

𝜑𝑐
𝐼,𝐽 =

1

20

(︀
𝜑𝑛
𝑖−1,𝑗−1 + 2𝜑𝑛

𝑖−1,𝑗 + 𝜑𝑛
𝑖−1,𝑗+1 + 2𝜑𝑛

𝑖,𝑗−1 + 8𝜑𝑛
𝑖,𝑗 + 2𝜑𝑛

𝑖,𝑗+1 + 𝜑𝑛
𝑖+1,𝑗−1 + 2𝜑𝑛

𝑖+1,𝑗 + 𝜑𝑛
𝑖+1,𝑗+1

)︀
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Figure 4-12: Full-weighting interpolation scheme.

And the following equation presents the fully weighted scheme for a nesting ratio 5.

Figure 4-13: Full-weighting interpolation scheme.

𝜑𝑐
𝐼,𝐽 =

1

52
(𝜑𝑛
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4.3 Description of the Numerical Model

Configuration of nested grid for 2D shallow water equations

As we know, through the waves crash, their length will become much smaller than in the deep ocean.

Finer grids will be necessary to resolve wave features in shallow water regions. There are several reasons

for applying multiple nested grid model, when the water depth varies within the computational domain,
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it might be desirable that different grid size and time step size be employed in various subregions so

that the frequency dispersion is adequately represented. The nested grid configuration allows to obtain

detailed information in the coastal region. Finer grids should be used only in specific regions of interests.

In this model, linear or nonlinear for 2D shallow water equations can be assigned to a specific

sub-level region and any ratio of grid size between two sub-regions can be used, however, it should be

an integer.

Here, we describe the manner for exchanging information between two nested grid of different grid

sizes. As shown in Figure 4-12 below a smaller grid system is nested in a larger grid system with the

ratio of 1:3. The arrows represent the velocity flows across each grid cell, while squares and points

indicate the locations where the water surface is evaluated.

Figure 4-14: Detailed view of nested grid. Left panel: grid nesting at lower-left corner of sub-level grid

region; Right panel: grid nesting at upper-right corner of sub-level grid region.

4.3.1 Spatial and temporal refinements

The basic configuration of the grid consists of three grid points which are the free surface elevation 𝜂

and the horizontal velocity components 𝑢 and 𝑢 with the spatial refinement factor being an odd integer

𝑚, which is defined by:

𝑚 =
△𝑥𝑐
△𝑥𝑓

where △𝑥𝑐 and △𝑥𝑓 are the coarse and fine grid lengths respectively. The temporal refinement factor

is defined by the integer 𝑝 given by:
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𝑝 =
△𝑡𝑐
△𝑡𝑓

where △𝑡𝑐 and △𝑡𝑓 are time step for the coarse and fine grids respectively

4.4 Methodology

Consider a model that consists of a higher-resolution (fine grid) nested 3:1 or 5:1 in a low-resolution

(coarse grid) on which covers the entire domain. The information on the flux values (velocities) and

the free surface elevation is exchanged on the boundaries between two nested grid regions. At each

new time level, the flux values (velocities) or/and the free surface elevation on the boundary of a finer

grid are obtained by linearly interpolating both spatially and temporally. At each next time level for

a outer coarse grid, the free surface elevation or/and the flux values (velocities) on a coarser grid are

updated by the average scheme (or fully-weighted scheme) both spatially and temporally.

In this section, some new algorithms for two-way interaction techniques for 2DNSWEs are estab-

lished. Four choices of restriction operator for the free surface elevation 𝜂 and velocities (𝑢, 𝑣) on

Arakawa C-grid are introduced.

4.4.1 Two-way nesting grids algorithm (Horizontal embedding procedure)

Let describe these procedure step by step. Suppose all values in the inner region with finer resolutions

and the outer region with coarsest grid resolution, are known at time level 𝑡 = 𝑛Δ𝑡 and we need to

obtain the inner and the outer region values at the next time step 𝑡 = (𝑛 + 1)Δ𝑡. Since the outer

grid region and the inner grid region adopt different grid sizes, the time step sizes for each region are

different due to the requirement of stability. At a certain level of time, velocity flows in both large

and small grid models are determined from the momentum equations, with except of velocity flows for

the smaller grid system along the boundaries between two grid regions. These data are determined by

interpolating the adjoining velocity flows from the large grid model.

Assume that all model variables at time 𝑡 = 𝑛Δ𝑡 are known and the time step of the inner region

is one half the time for the outer region.
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Case 1: The time step for the fine region is one half the time for the coarse region and

the space refinement ratio is 1:3

-Step 1. Get the water surface elevation 𝜂 at 𝑡 = (𝑛+1/2)Δ𝑡 in the coarse grid by solving continuity

equation.

-Step 2. To solve the continuity equation in the fine grid, we need to have the flux information along

the connected boundary at 𝑡 = 𝑛Δ𝑡. So the flux values (velocities) in the coarse grids at the connected

boundary are linearly interpolated and then those interpolated the values are set to the fluxes in the

inner grids at the boundary.

-Step 3. Solve the water surface elevation 𝜂 at 𝑡 = (𝑛+1/4)Δ𝑡 in a fine grid using continuity equation.

-Step 4. Solve the flux values at 𝑡 = (𝑛+ 1/2)Δ𝑡 in a fine grid by using momentum equations.

-Step 5. Solve the water surface elevation 𝜂 at 𝑡 = (𝑛 + 3/4)Δ𝑡 in the fine grid using continuity

equation. Here, we should have the flux information along the connected boundary at 𝑡 = (𝑛+1/2)Δ𝑡.

To get these information we can do the in the following way. First, since we already know the free

surface elevation at 𝑡 = (𝑛+1/2)Δ𝑡 and flux values at 𝑡 = 𝑛Δ𝑡 in the outer region, we can get the flux

velocities in the outer region along the connected boundary at 𝑡 = (𝑛 + 1)Δ𝑡 by solving momentum

equation. Second, these flux values at 𝑡 = (𝑛 + 1)Δ𝑡 are linearly interpolated along the connected

boundary. To get the value at 𝑡 = (𝑛 + 1/2)Δ𝑡, outer flux values at 𝑡 = 𝑛Δ𝑡 and 𝑡 = (𝑛 + 1)Δ𝑡 are

also linearly interpolated. Those spatially and timely interpolated flux values are assigned to the flux

in the inner grid at the boundary.

-Step 6. To transfer the information from the inner grid region to the outer region, the free surface

elevation in the inner grid region is spatially averaged over the grid size of the outer region. These

average elevation values at 𝑡 = (𝑛 + 3/4)Δ𝑡 are then time averaged with those at 𝑡 = (𝑛 + 1/4)Δ𝑡 in

the inner region and update the information at 𝑡 = (𝑛+1/2)Δ𝑡 from a fine grid to a coarse grid using

the full-weighting operator (or average operator) in both spatially and timely values in the inner grid

region, update the elevation value at 𝑡 = (𝑛+ 1/2)Δ𝑡 in the coarse grid.

-Step 7. Get the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the fine grid by solving momentum equations.

-Step 8. Get the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the coarse grid by solving momentum equations.

-Step 9. Transfer all the information at 𝑡 = (𝑛+ 1)Δ𝑡 from a fine grid to a coarse grid using the full-

weighting operator (or average operator) in both spatially and timely values in the inner grid region,

update the information at 𝑡 = (𝑛+ 1)Δ𝑡 in the coarse grid.

The following figure shows the detailed time marching scheme of nested grid setup.
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Figure 4-15: Simulation involving two-way nesting.

140



Note:

When the mesh refinement factor is 1:3 in 2-dimension, for each one coarse grid point there are 9 fine

grid points corresponding to it. Also, When the mesh refinement factor is 1:5 in 2-dimension, for each

one coarse grid point there are 25 fine grid points corresponding to it.

Case 2: Both space and time refinement ratio are 1:3

-Step 1. Get the water surface elevation at 𝑡 = (𝑛+1/2)Δ𝑡 in the outer region (coarse grid) by solving

continuity equation.

-Step 2. To solve the water surface elevation in the inner region, we need to have the flux information

along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the flux values in the outer grids at the connected

boundary are linearly interpolated and then those interpolated values are set to the fluxes in the inner

at the boundary.

-Step 3. Solve the water surface elevation at 𝑡 = (𝑛+1/6)Δ𝑡 in the inner grid region using continuity

equation.

-Step 4. Solve the flux values at 𝑡 = (𝑛+2/6)Δ𝑡 in the inner grid region using momentum equations.

-Step 5. Solve the water surface elevation at 𝑡 = (𝑛 + 3/6)Δ𝑡 in the inner grid region. To transfer

(update) the information from the inner grid region to the outer region, if the free surface elevation in

the inner grid region lies at the same position for the outer region. Therefore, the values transferred

directly to the coarse grid in the outer region. Otherwise, use the full-weighting or average operators

in both spatially and timely values for updating.

-Step 6. Solve the flux values at 𝑡 = (𝑛+ 4/6)Δ𝑡 in the inner grid region using continuity equation.

-Step 7. Solve the water surface elevation at 𝑡 = (𝑛 + 5/6)Δ𝑡 in the inner grid region by solving

continuity equation.

-Step 8. Solve the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner region by solving momentum equations.

-Step 9. Solve the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the outer region by solving momentum equations.

-Step 10. Transfer all the information at 𝑡 = (𝑛 + 1)Δ𝑡 from the inner to outer region and update

the values .

141



Figure 4-16: Simulation involving two-way nesting.
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Case 3: The time step for the fine region is the same time step for the coarse region and

the space refinement ratio 1:3 (no time refinement)

-Step 1. Get the water surface elevation at 𝑡 = (𝑛+ 1/2)Δ𝑡 in the outer region by solving continuity

equation.

-Step 2. To solve the continuity equation in the inner region but, we need to have the flux information

along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the flux values in the outer grids at the connected

boundary are interpolated and then those interpolated values are set to the fluxes in the inner at the

boundary.

-Step 3. Get the free surface elevation at 𝑥 = (𝑛 + 1/3)Δ𝑥, 𝑦 = (𝑛 + 1/3)Δ𝑦 and 𝑥 = (𝑛 + 2/3)Δ𝑥,

𝑦 = (𝑛+ 2/3)Δ𝑦 in the inner grid region by solving continuity equation and use the average in space

between two points to obtain the free surface elevation at 𝑥 = (𝑛+ 1/2)Δ𝑥, 𝑦 = (𝑛+ 1/2)Δ𝑦.

-Step 4. Get the free surface elevation at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the inner grid region. Transfer the

information (update both spatially and temporally) from a fine grid on to a coarse grid at each time

step of a coarse grid. If the feedback is a copy grid. Therefore, the values transferred directly over the

grid size for the outer region (when the free surface in the inner grid located at the same position for

the outer region). Otherwise, use the average operator or full-weighting operator for updating.

-Step 5. Get the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner region by solving momentum equations.

-Step 6. Get the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the outer region by solving momentum equations.

-Step 7. Transfer all the information at 𝑡 = (𝑛+ 1)Δ𝑡 from the inner to outer regions.

Remarks:

1. In all previous algorithms (cases 1,2 and 3), use the discrete formulation of 2D shallow water

equations given by Section 2.4 when time step (𝑛+ 1
2) .

2. In case 4 and case 5, use the discrete formulation of 2D shallow water equations given by Section

2.3 when time step (𝑛+ 1).

Case 4: Both space and the time refinement ratio are 1:3

Suppose all the information about the velocities and the free surface elevation in the inner region

(with finer resolution) and the outer region (The parent grid with the coarsest grid resolution), are

known at time level 𝑡 = 𝑛Δ𝑡 and we need to obtain the inner and the outer region values at the next

time steps 𝑡 = (𝑛+ 1)Δ𝑡 and 𝑡 = (𝑛+ 2)Δ𝑡.

143



-Step 1: Get all information for the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by

solving continuity equation.

-Step 2: Get all information for the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving

momentum equations.

-Step 3: To solve the continuity equation in the inner region, we need to have all the information

along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected

boundary are linearly interpolated and then those interpolated values are set to the information in the

inner region at the boundary.

-Step 4: Get the the water surface elevation at 𝑡 = (𝑛+1/3)Δ𝑡 in the inner region by solving continuity

equation.

-Step 5: Get all information for the flux values at 𝑡 = (𝑛 + 1/3)Δ𝑡 in the inner region by solving

momentum equations.

-Step 6: Get the the water surface elevation at 𝑡 = (𝑛+2/3)Δ𝑡 in the inner region by solving continuity

equation.

-Step 7: Solve the flux values at 𝑡 = (𝑛+2/3)Δ𝑡 in the inner grid region by using momentum equations.

-Step 8: Get the water surface elevation at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner grid region by using continuity

equation.

-Step 9: Solve the flux values at 𝑡 = (𝑛+1)Δ𝑡 in the inner grid region by using momentum equations.

-Step 10: Get the water surface elevation at 𝑡 = (𝑛+4/3)Δ𝑡 in the inner grid region by using continuity

equation.

-Step 11: Get the flux values at 𝑡 = (𝑛+4/3)Δ𝑡 in the inner grid region by using momentum equations.

-Step 12: Get the water surface elevation at 𝑡 = (𝑛 + 5/3)Δ𝑡 in the inner grid region by solving

continuity equation.

-Step 13: Get the flux values at 𝑡 = (𝑛+ 5/3)Δ𝑡 in the inner grid region by momentum equations.

-Step 14: To transfer the information from the inner grid region to the outer region, if the water

surface elevation and the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region is located at the same

position for the coarse grid region then use copy grid. Or, use the average method or full-weighting

method in both spatially and timely values for updating.

-Step 15: Get the water surface elevation at 𝑡 = (𝑛+2)Δ𝑡 in the inner grid region by solving continuity

equation.

-Step 16: Get the flux values at 𝑡 = (𝑛+ 2)Δ𝑡 in the inner region by using momentum equations.
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-Step 17: Solve the free surface elevation and velocities at 𝑡 = (𝑛 + 2)Δ𝑡 in the outer region using

continuity equation and momentum equations by using updated information.

-Step 18: Transfer the information from the inner grid region to the outer region at 𝑡 = (𝑛+ 2)Δ𝑡.

Figure 4-17: Two-way nesting

Case 5: The time step for the fine region is one half of the coarse region and the space

ratio 1:3

Suppose all the information about velocities and the free surface elevation in the inner region (with

finer resolutions) and the outer region (the parent grid with the coarsest grid resolution), are known

at time level 𝑡 = 𝑛Δ𝑡, we need to obtain the inner and the outer region values at the next time steps

𝑡 = (𝑛+ 1)Δ𝑡 and 𝑡 = (𝑛+ 2)Δ𝑡.

-Step 1: Get all information for the water surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by

solving continuity equation.

-Step 2: Get all information for the flux values at 𝑡 = (𝑛 + 1)Δ𝑡 in the outer region by solving

momentum equations.

-Step 3: To solve the continuity equation in the inner region, we need to have all the information along

the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected boundary

are linearly interpolated and then those interpolated values are set to all the information in the inner

at the boundary.

-Step 4: Get the the water surface elevation at 𝑡 = (𝑛+1/2)Δ𝑡 in the inner region by solving continuity

equation.

-Step 5: Get all information for the flux values at 𝑡 = (𝑛 + 1/2)Δ𝑡 in the inner region by solving

momentum equations.
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-Step 6: Get the water surface elevation at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner grid region by using continuity

equation.

-Step 7: Solve the flux values at 𝑡 = (𝑛+1)Δ𝑡 in the inner grid region by using momentum equations.

-Step 8: Get the water surface elevation at 𝑡 = (𝑛+3/2)Δ𝑡 in the inner grid region by using continuity

equation.

-Step 9: Get the flux values at 𝑡 = (𝑛+3/2)Δ𝑡 in the inner grid region by using momentum equations.

-Step 10: To transfer the information from the inner grid region to the outer region, if the free surface

elevation and the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner grid region is located at the same position

for the coarse grid region then use copy grid. Otherwise, use average or full-weighting operators.

-Step 11: Get the water surface elevation at 𝑡 = (𝑛+2)Δ𝑡 in the inner grid region by solving continuity

equation.

-Step 12: Get the flux values at 𝑡 = (𝑛+ 2)Δ𝑡 in the inner region by using momentum equations.

-Step 13: Solve the free surface elevation and velocities at 𝑡 = (𝑛 + 2)Δ𝑡 in the outer region using

continuity equation and momentum equations by using updated the information.

-Step 14: Transfer the information from the inner grid region to the outer region at 𝑡 = (𝑛+ 2)Δ𝑡.

4.4.2 General case of computational algorithms and automatic systems when the

space refinement factor is 1:3 and temporal refinement factor is 1:2

A nest is a finer-resolution model. It may be embedded together within a coarser-resolution (parent)

model or independently as a separate model. The nest covers a portion of the parent domain and is

driven along its lateral boundaries by the parent domain.

Here, we use the case when finer-resolution model embedded together within a coarser-

resolution (parent) model.

There are three computational algorithms, an algorithm for solving the governing equations, the

transferring algorithm and the back transferring algorithm. The dynamical nesting algorithm follows

these steps:

(a)- For the coarse model (outer domain):

Input model data and set initial data at time 𝑡 = 0 (that is 𝑛 = 0 and 𝑡 = 𝑛Δ𝑡 also 𝑢0𝑖 = 𝑣0𝑖 =

0, 𝐻0
𝑖 = ℎ𝑖) on the boundary 𝐻0

𝑖 = ℎ𝑖 + 𝜂0𝑖 , where ℎ is the still water depth.

1. Solve continuity equation to find 𝜂
𝑛+1/2
𝑐 using horizontal velocities components 𝑢𝑛𝑐 and 𝑣𝑛𝑐 at
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time level 𝑛. Elevations at time level (𝑛 − 1/2) and the total depth 𝐻 at time level (𝑛 − 1/2).

Here, 𝑢𝑛𝑐 , 𝑣
𝑛
𝑐 and 𝜂

𝑛−1/2
𝑐 are known.

2. Solve the momentum equations for 𝑢𝑛+1
𝑐 and 𝑣𝑛+1

𝑐 using 𝜂
𝑛+1/2
𝑐 and 𝑢𝑛𝑐 and 𝑣𝑛𝑐 .

3. Solve the continuity equation for 𝜂𝑛+1
𝑐 .

(b)-For the fine model (inner domain):

The algorithm for the fine model requires more steps than the coarse model depending on the

temporal refinement factor. The following illustrates the situation where the temporal refinement

factor 𝑝 = 2. Input model data and set initial data at time 𝑡 = 0 (that is 𝑛 = 0 and 𝑡 = 𝑛Δ𝑡 also

𝑢0𝑖 = 𝑣0𝑖 = 0, 𝐻0
𝑖 = ℎ𝑖) on the boundary 𝐻0

𝑖 = ℎ𝑖 + 𝜂0𝑖 .

1. Solve continuity equation for 𝜂
𝑛+1/4
𝑓 using 𝑢𝑛𝑓 , 𝑣

𝑛
𝑓 , 𝜂

𝑛−1/4
𝑓 and certain values of 𝜂

𝑛+1/2
𝑐 and 𝜂

𝑛−1/2
𝑐 ,

which coincide with the fine grid open boundary points.

2. Solve momentum equations for 𝑢
𝑛+1/2
𝑓 and 𝑣

𝑛+1/2
𝑓 using 𝜂

𝑛+1/4
𝑓 , we can get the value of 𝜂

𝑛+1/2
𝑐

using continuity equation.

3. Solve continuity equation for 𝜂
𝑛+3/4
𝑓 using 𝑢

𝑛+1/2
𝑓 , 𝑣

𝑛+1/2
𝑓 , 𝜂

𝑛+1/4
𝑓 and certain values of 𝜂

𝑛+1/2
𝑐

and 𝜂
𝑛−1/2
𝑐 which coincide with the fine grid open boundary points.

4. Solve momentum equations for 𝑢𝑛+1
𝑓 and 𝑣𝑛+1

𝑓 using 𝜂
𝑛+3/4
𝑓 and we can get the value of 𝜂𝑛+1

𝑐

using continuity equation.

5. Feedback all the information from the inner grid region to the outer region.

4.4.3 Transferring (interpolation) algorithm

Case 1: The transferring algorithm is described as follows when the temporal refinement

factor is 1:2 :

1. When the coarse model that is at the end of time level 𝑛+1 and having the values of the coarse

grid points namely 𝜂
𝑛+1/2
𝐴 , 𝜂

𝑛+1/2
𝐷 and 𝜂

𝑛+1/2
𝐻 calculate 𝜂

𝑛+1/4
𝑎 , 𝜂

𝑛+1/4
𝑑 and 𝜂

𝑛+1/4
ℎ by using the

following interpolation in time

𝜂𝑛+1/4
𝑎 = (3𝜂

𝑛+1/2
𝐴 + 𝜂

𝑛−1/2
𝐴 )/4

and value of 𝜂
𝑛+1/4
𝑑 and 𝜂

𝑛+1/4
ℎ can be calculate similarly

𝜂
𝑛+1/4
𝑑 = (3𝜂

𝑛+1/2
𝐷 + 𝜂

𝑛−1/2
𝐷 )/4
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and

𝜂
𝑛+1/4
ℎ = (3𝜂

𝑛+1/2
𝐻 + 𝜂

𝑛−1/2
𝐻 )/4

2. Compute the values of elevations at the same overlapping fine grid points for the next half time

level using

𝜂𝑛+3/4
𝑎 = (5𝜂

𝑛+1/2
𝐴 − 𝜂

𝑛−1/2
𝐴 )/4

𝜂
𝑛+3/4
𝑑 = (5𝜂

𝑛+1/2
𝐷 − 𝜂

𝑛−1/2
𝐷 )/4

𝜂
𝑛+3/4
ℎ = (5𝜂

𝑛+1/2
𝐻 − 𝜂

𝑛−1/2
𝐻 )/4

3. Use linear interpolation in space to calculate the elevations at the other grid elements on the

interface between the fine and coarse grids, namely 𝜂
𝑛+1/4
𝑏 , 𝜂

𝑛+3/4
𝑏 , 𝜂

𝑛+1/4
𝑐 , 𝜂

𝑛+3/4
𝑐 and so on.

The formula for the grid point 𝑏 at the time level 𝑛+ 1/4 is

𝜂
𝑛+1/4
𝑏 = (2𝜂𝑛+1/4

𝑎 + 𝜂
𝑛+1/4
𝑑 )/3

and a similar formula can be used for the grid point 𝑓 using 𝜂
𝑛+1/4
𝑎 and 𝜂

𝑛+1/4
ℎ . For grid point

𝑐 the equation is

𝜂𝑛+1/4
𝑐 = (𝜂𝑛+1/4

𝑎 + 2𝜂
𝑛+1/4
𝑑 )/3

A similar formula applies for grid point 𝑔 using the data from 𝑎 and ℎ.

𝜂𝑛+1/4
𝑔 = (𝜂𝑛+1/4

𝑎 + 2𝜂
𝑛+1/4
ℎ )/3

If the elevation at 𝑒 is just inside the grid, that is, the coastal boundary passes through the

velocity of this grid then 𝜂
𝑛+1/4
𝑒 must be extrapolated from 𝑎 and 𝑑 that is

𝜂𝑛+1/4
𝑒 = (4𝜂

𝑛+1/4
𝑑 − 𝜂𝑛+1/4

𝑎 )/3

Similar formula at each grid point can be used to obtain the values of 𝜂 at the level 𝑛+ 3/4.

𝜂
𝑛+3/4
𝑏 = (2𝜂𝑛+3/4

𝑎 + 𝜂
𝑛+3/4
𝑑 )/3

𝜂𝑛+3/4
𝑐 = (𝜂𝑛+3/4

𝑎 + 2𝜂
𝑛+3/4
𝑑 )/3

𝜂𝑛+3/4
𝑒 = (4𝜂

𝑛+3/4
𝑑 − 𝜂𝑛+3/4

𝑎 )/3

The following figure shows embedding the fine grid within the coarse grid. The larger bars and

crosses are the overlapping grid points. The coordinates of the coarse grid are shown by capital letters

and for the fine grid by lower case letters.
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Figure 4-18: Embedding the fine grid within the coarse grid.

Case 2: The transferring algorithm is described as follows when the temporal refinement

factor is 1:3

1. When the coarse model that is at the end of time level 𝑛 + 2 and having the values of the

coarse grid points namely 𝜂𝑛+1
𝐴 , 𝜂𝑛+1

𝐷 and 𝜂𝑛+1
𝐻 calculate 𝜂

𝑛+1/3
𝑎 , 𝜂

𝑛+1/3
𝑑 and 𝜂

𝑛+1/3
ℎ by using the

following interpolation in time

𝜂𝑛+1/3
𝑎 = (2𝜂𝑛+1

𝐴 + 𝜂𝑛−1
𝐴 )/3

and value of 𝜂
𝑛+1/3
𝑑 and 𝜂

𝑛+1/3
ℎ can be calculate similarly

𝜂
𝑛+1/3
𝑑 = (2𝜂𝑛+1

𝐷 + 𝜂𝑛−1
𝐷 )/3

and

𝜂
𝑛+1/3
ℎ = (2𝜂𝑛+1

𝐻 + 𝜂𝑛−1
𝐻 )/3

2. Compute the values of elevations at the same overlapping fine grid points for the next half time

level using

𝜂𝑛+5/3
𝑎 = (4𝜂𝑛+1

𝐴 − 𝜂𝑛−1
𝐴 )/3

𝜂
𝑛+5/3
𝑑 = (4𝜂𝑛+1

𝐷 − 𝜂𝑛−1
𝐷 )/3

𝜂
𝑛+5/3
ℎ = (4𝜂𝑛+1

𝐻 − 𝜂𝑛−1
𝐻 )/3

149



3. Use linear interpolation in space to calculate the elevations at the other grid elements on the

interface between the fine and coarse grids, namely 𝜂
𝑛+1/3
𝑏 , 𝜂

𝑛+5/3
𝑏 , 𝜂

𝑛+1/3
𝑐 , 𝜂

𝑛+5/3
𝑐 and so on.

The formula for the grid point 𝑏 at the time level 𝑛+ 1/3 is

𝜂
𝑛+1/3
𝑏 = (2𝜂𝑛+1/3

𝑎 + 4𝜂
𝑛+1/3
𝑑 )/6

and a similar formula can be used for the grid point 𝑓 using 𝜂
𝑛+1/3
𝑎 and 𝜂

𝑛+1/3
ℎ .

𝜂
𝑛+1/3
𝑓 = (2𝜂𝑛+1/3

𝑎 + 4𝜂
𝑛+1/3
ℎ )/6

For grid point 𝑐 the equation is

𝜂𝑛+1/3
𝑐 = (4𝜂𝑛+1/3

𝑎 + 2𝜂
𝑛+1/3
𝑑 )/6

A similar formula applies for grid point 𝑔 using the data from 𝑎 and ℎ.

𝜂𝑛+1/3
𝑔 = (4𝜂𝑛+1/3

𝑎 + 2𝜂
𝑛+1/3
ℎ )/6

Otherwise, if the elevation at 𝑒 is just inside the grid, that is the coastal boundary passes through

the velocity of this grid then 𝜂
𝑛+1/3
𝑒 must be extrapolated from 𝑎 and 𝑑, that is:

𝜂𝑛+1/3
𝑒 = (7𝜂

𝑛+1/3
𝑑 − 𝜂𝑛+1/3

𝑎 )/6

Similar formula at each grid point can be used to obtain the values of 𝜂 at the level 𝑛+ 5/3.

𝜂𝑛+5/3
𝑒 = (7𝜂𝑛+5/3

𝑎 − 𝜂
𝑛+5/3
𝑑 )/6

and the formula for the grid point 𝑏 at the next time level 𝑛+ 5/3 is

𝜂
𝑛+5/3
𝑏 = (2𝜂𝑛+5/3

𝑎 + 4𝜂
𝑛+5/3
𝑑 )/6

and

𝜂𝑛+5/3
𝑐 = (4𝜂𝑛+5/3

𝑎 + 2𝜂
𝑛+5/3
𝑑 )/6

4.5 Free surface and Velocity Updates

In this section, we introduce four choices of restriction operator for the free surface elevation 𝜂 and

velocities (𝑢, 𝑣) on Arakawa C-grid suggested by [48] and we will apply these options to several examples

in various ways in later chapters.

150



Operator Direction 𝑥, 𝑦 𝜂 𝑢- velocity 𝑣-velocity

Average 𝑥 Average Average Average

Average 𝑦 Average Average Average

Full-weight 𝑥 Full-weight Full-weight Full-weight

Full-weight 𝑦 Full-weight Full-weight Full-weight

Update-mix-low 𝑥 Average Copy Average

Update-mix-low 𝑦 Average Average Copy

Update-mix-high 𝑥 Full-weight Average Full-weight

Update-mix-high 𝑦 Full-weight Full-weight Average

Table 4.1: Shows the restriction operator for free surface elevation 𝜂 and velocities (𝑢, 𝑣) on Arakawa

C-grid.

4.6 Algorithm for Coupling the Coarse and Fine Grids Using Open

Boundary Conditions

Open boundary conditions can be obtained for the fine grid model from the coarse grid model. The

water elevations and velocities at the open boundaries in the coarse grid model are stored at certain

time intervals. The time step used in the fine-grid model is usually smaller than the one used in the

coarse-grid model. Therefore, a temporal interpolation scheme is required to provide the corresponding

values in the open boundary for the fine-grid model at each step. The velocities and elevations along

the open boundaries for the fine-grid model are prescribed using spatial interpolation on the coarse

grid model.

A typical interpolation for open boundary using a nested-grid system. The spatial

interpolation schemes are:

1. Western open boundary

(Here, if 𝑖-start, then 𝑖 = 1 and 𝑗 = 2 to end−1 also 𝑈𝑖,𝑗 , 𝑉𝑖,𝑗 , 𝑎𝑛𝑑 𝜂𝑖,𝑗 ̸= 0)

𝑢1 = 𝑢2 = 𝑢3 = 𝑢4 = 𝑈𝑖,𝑗

𝑢(1, 1) = 𝑢(1, 2) = 𝑢(1, 3) = 𝑢(1, 4) = 𝑈𝑖,𝑗

𝑣1 = 𝑉𝑖,𝑗

𝑣2 = 𝑣3 = 𝑣4 = 𝑆𝐼(𝑉𝑖,𝑗 , 𝑉𝑖,𝑗+1)

𝜂1 = 𝜂2 = 𝜂3 = 𝜂4 = 𝑆𝐼(𝜂𝑖−1,𝑗 , 𝜂𝑖,𝑗)
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where 𝑢1, 𝑢2, 𝑢3, 𝑢4 represent the value of velocity 𝑢 in fine grid and 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝜂1, 𝜂2, 𝜂3, 𝑎𝑛𝑑 𝜂4

represent the value of velocity 𝑣 and elevation 𝜂 in fine grid and 𝑈𝑖,𝑗 , 𝑉𝑖,𝑗 represent the value of

velocities in coarse grid. Also, 𝑆𝐼(𝑉1, 𝑉2) refers to a linear interpolation between two variables 𝑉1 and

𝑉2 more accurate scheme for above equations may include values from additional neighboring grids.

2. Eastern open boundary

(Here, if 𝑖 =end, then 𝑖 =end and 𝑗 = 2 to end−1 also 𝑈𝑖,𝑗 , 𝑉𝑖,𝑗 , 𝜂𝑖,𝑗 ̸= 0). The spatial interpolation

schemes are:

𝑢1 = 𝑢2 = 𝑢3 = 𝑢4 = 𝑈𝑖+1,𝑗

𝑣1 = 𝑉𝑖,𝑗

𝑣2 = 𝑣3 = 𝑣4 = 𝑆𝐼(𝑉𝑖,𝑗 , 𝑉𝑖,𝑗+1)

𝜂1 = 𝜂2 = 𝜂3 = 𝑆𝐼(𝜂𝑖+1,𝑗 , 𝜂𝑖,𝑗)

3. Southern open boundary

(Here, if 𝑗 =start, then 𝑗 = 1 and 𝑖 = 2 to end−1). The spatial interpolation schemes are:

𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 𝑉𝑖,𝑗

𝑢1 = 𝑈𝑖,𝑗

𝑢2 = 𝑢3 = 𝑢4 = 𝑆𝐼(𝑈𝑖,𝑗 , 𝑈𝑖+1,𝑗)

𝜂1 = 𝜂2 = 𝜂3 = 𝑆𝐼(𝜂𝑖,𝑗−1, 𝜂𝑖,𝑗)

4. Northern open boundary

(Here, if 𝑗 =end, then 𝑗 =end and 𝑖 = 1 to end−1). The spatial interpolation schemes are:

𝑣1 = 𝑣2 = 𝑣3 = 𝑣4 = 𝑉𝑖,𝑗+1

𝑢1 = 𝑈𝑖,𝑗

𝑢2 = 𝑢3 = 𝑢4 = 𝑆𝐼(𝑈𝑖+1,𝑗 , 𝑈𝑖,𝑗)

𝜂1 = 𝜂2 = 𝜂3 = 𝑆𝐼(𝜂𝑖,𝑗+1, 𝜂𝑖,𝑗)
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5. West-North open boundary

The spatial interpolation schemes are:

The corner point is (1,𝑗-end), to find 𝑢𝑖,𝑗 use linear interpolation. The spatial interpolation schemes

are:

𝑢1,𝑗 = 𝑈1,𝑗−𝑒𝑛𝑑

𝑣1,𝑗 = 𝑆𝐼(𝑉1,𝑗−𝑒𝑛𝑑−1, 𝑉1,𝑗−𝑒𝑛𝑑)

𝜂1,𝑗 = 𝑆𝐼(𝜂1,𝑗−𝑒𝑛𝑑, 𝜂2,𝑗−𝑒𝑛𝑑)

6. North-East open boundary

Here, the corner point (𝑖-end,𝑗-end). The spatial interpolation schemes are:

𝑢𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑 = 𝑆𝐼(𝑈𝑖−𝑒𝑛𝑑−1,𝑗−𝑒𝑛𝑑, 𝑈𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑)

𝑣𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑 = 𝑉𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑

𝜂𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑 = 𝑆𝐼(𝜂𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑, 𝜂𝑖−𝑒𝑛𝑑,𝑗−𝑒𝑛𝑑−1)

7. East-South open boundary

Here, the corner point (𝑖-end, 1). The spatial interpolation schemes are:

𝑣𝑖−𝑒𝑛𝑑,1 = 𝑆𝐼(𝑉𝑖−𝑒𝑛𝑑,2, 𝑉𝑖−𝑒𝑛𝑑−1,1)

𝑢𝑖−𝑒𝑛𝑑,1 = 𝑈𝑖−𝑒𝑛𝑑,1

𝜂𝑖−𝑒𝑛𝑑,1 = 𝑆𝐼(𝜂𝑖−𝑒𝑛𝑑,1, 𝜂𝑖−𝑒𝑛𝑑−1,1)

8. South-West open boundary

The spatial interpolation schemes are:

Here, the corner point (1,1)

𝑢1,1 = 𝑆𝐼(𝑈1,1, 𝑈2,1)

𝑣1,1 = 𝑉1,1

𝜂1,1 = 𝑆𝐼(𝜂1,1, 𝜂1,2)
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Figure 4-19: Diagram for open boundary condition.
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4.6.1 Coupling procedures

Here, the process underlined in Figure 4-18 indicates the two-way coupling procedure

Figure 4-20: Diagram for two way coupling.
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4.7 Summary and Conclusion

A two-way nested model was developed and it is a modified form of the one-way nesting procedure for

2DSWEs. This model is capable of simulating the processes at a high-resolution and allowing the data

to be feedback into the low-resolution domain. The grid structure employed was an embedded method

and identified an effective data transmission method was introduced in maximizing the transmission

of data while preventing the generation of an error. Some of different update interpolation scheme was

also used such that direct copy, average, Shapiro, full-weighting, Mix-low, and Mix-high were applied.

This chapter discussed several important issues, including: Different structured grids were outlined

in relation to their spatial resolution and temporal resolution. The advantages and disadvantages of

nesting modeling techniques were discussed. The two-way nested modeling technique was explained

in detail with regard to its mathematical formulation. Different cases of open boundary conditions for

the two-way nesting grids were studied. Some new algorithms and diagrams were built for the two-way

nesting technique to solve 2DNSWEs with the refinement ratio used is 1:3 or 1:5 or both. Finally,

four choices of restriction operator for the free surface and the velocities on Arakawa C-grid have been

suggested. All new algorithms and techniques presented in this chapter will be used in the subsequent

chapters.
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Chapter 5

Performance of Two-Way Nesting Techniques

for SWEs
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Chapter 5

Performance of Two-Way Nesting Techniques for SWEs

The results presented in this chapter are the subject of an article [3].

The principal objective of this chapter is to study the efficiency of two-way nesting performance

technique for structured grids between the coarse and the fine grids for linear 2DSWEs using an explicit

finite difference method in space and leapfrog with Robert-Asselin filter in time. Multiple nested grid

technique is described and successfully applied to 2DSWEs. This model consists of a higher-resolution

(fine grid) model with nesting 3:1 embedded in a low-resolution (coarse grid) model on which covers

the entire domain.

A numerical scheme to construct a two-way nested grid model is proposed. Dynamical coupling in a

two-way nesting system is performed at a dynamical interface which is a separate/adjacent from a mesh

interface. Dynamical interaction is achieved by a method which conserves mass, and the momentum

of the system.

The main role for the update schemes is to use four choices of restriction operator for the free

surface elevation 𝜂 and velocities 𝑢, 𝑣 on Arakawa C-grid. Comparison nested model results with a

fine grid and a coarse grid results, show that two-way nesting technique works efficiently over different

periods of time. The results indicate good performance of the nesting technique.
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Highlights

∙ Propose numerical methods which used to construct a new two-way interaction techniques for

2DSWEs.

∙ Full-weighting and the average update operator are applied for some examples 2DSWEs.

∙ The reliability and the accuracy of 2DSWEs are tested through several examples.
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5.1 Configuration of the Numerical Experiments

A nested grid model means in a region of a single grid size, there are one or more regions with smaller

grid sizes situated in which eventually forms a hierarchy of grids or grid levels. The parent grid in the

nested model is a copy of the coarse grid model with the same resolutions and the parameters while

the child grid is a copy of the fine grid model. The coarse and fine models were used to investigate the

relationship between the model accuracy and resolution. The results are presented and demonstrate

the applicability and benefits of nested models.

The performance and accuracy of the nested model are determined in the following

manner. The coarse model results are first compared with the fine model results to determine the

accuracy of the fine model. Two-way nested model results are then compared with the fine model

results to determine the accuracy of the nested model. Both errors are then compared in order to

determine the level of improvement in model accuracy achieved by using the nested model instead of

the coarse model.
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Investigate some tests to determine a suitable feedback operator, which contains an appropriate

feedback condition and interpolation technique. The optimum feedback operator is identified by using

averaging interpolation procedure or (full- weighting). The validity of the nesting method is shown for

some examples and the numerical results show that the model more accurately by using these methods.

5.2 Methodology (Development)

Consider the nested grids modeling in which a coarse grid contains one or more than one fine grid in

one level or multiple levels. we suggest a new technique for multiple nested grids of linear 2DSWEs

by using some types of interpolations and restriction operators given in Chapter 4.

We present and evaluate a set of choices made an implementation of two-way nesting methods

allowing simultaneous spatial and temporal refinement in shallow water model. The choice a full-

weighting operator is applied for update the water surface elevation 𝜂, and velocities when a type of

structured grid without a separate (adjacent) interface. Otherwise, average update operator is used,

when a structured grid is a separate dynamic interface and feedback interface (see Section 4.5).

Some Notes

1. For all examples, we apply an explicit center finite difference scheme in space and leapfrog scheme

with Robert-Asselin filter in time to approximate 2D depth-averaged linear SWEs for two-way

nested model which contain coarse and fine grids.

2. For all examples, we find 𝑙2-error norm, 𝐻1-error norm in a coarse grid and a fine grid. Also,

find 𝑙2-𝑅𝐸 of free surface elevation for two-way nesting grids.

3. All the simulation are made by using Dirichlet boundary conditions.

4. Boundary conditions for the nested domain are linearly interpolated (both spatially and tempo-

rally) from the coarse domain and feedback (both spatially and temporally) using the average

method or full-weighting method with (separable/adjacent) interface from the high-resolution

nested grids solution to the low-resolution coarse grids solution.

5. The bottom friction comes from Manning’s formula, which is uniform throughout the grids, where

𝑛 is roughness coefficient. In this simulation, n takes 0.013.

6. When a specific domain rotation is required. Here, we need to determine the location of the

new rotated nested in relation to the coarse domain. This is done by identifying the localized

coordinates for each grid point in the rotated domain with respect to the coarse domain.
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5.3 Experiments with Linear Shallow Water Models

5.3.1 Case 1: When space refinement ratio is 1:3 and the temporal refinement

ratio is 1:2 for structured grids

Here, by using algorithm 1, Chapter 4, the number of grids for the coarse and fine grids are equals

when consider only the common points to both grids.

Example 1:

In this example, we use EFDMs to approximate 2DSWEs given in equations (2.32)-(2.34) for linear

case in a rectangular domain Ω = [0, 𝐿𝑥]× [0, 𝐿𝑦] which are approximately second order in space and

time using the formula in Section 2.5, case 1. For the stability using CFL condition which is given in

Section 2.8.3, Chapter 3.

1. Numerical parameters: (Simulation)

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters in a coarse grid are chosen as follows: 𝐿𝑥=450, 𝐿𝑦=360, 𝑛𝑥=150, 𝑛𝑦=120, Δ𝑥=Δ𝑦=3,

and time step Δ𝑡=2.5𝑒−2𝑠, the water depth ℎ =10m, and CFL condition 0.6 with the initial condition

𝑢=𝑣=0 and 𝜂 given by data file.

2. Results and discussion

First of all, we tested the computational stability and accuracy of this system of equations. The

time integration were performed at different times. The calculations were stable.

The following figures show the simulation of free surface elevation at time 𝑡 = 1000, 2000, 3000 min

in the coarse grid domain.

Figure 5-1: Simulation of free surface elevation in a coarse grid at time=1000 min.
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Figure 5-2: Simulation of free surface elevation in a coarse grid at time=2000 min.

Figure 5-3: Simulation of free surface elevation in a coarse grid at time=3000 min.

Example 2:

For the same previous example, we find the simulation of free surface elevation in a fine grid.

1. Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters in a fine grid are chosen as follows: number of grids 450×360, by consider only the common

points between coarse and fine grids, the number of fine grids becomes 𝑛𝑥=150, 𝑛𝑦=120, Δ𝑥=1, Δ𝑦=1,

time step Δ𝑡=1.25𝑒−2𝑠, the water depth ℎ =10m, and CFL condition is 0.6.

2. Results and Discussion

The following figures show the simulation of free surface elevation at different time in the fine grid

domain.
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Figure 5-4: Simulation of free surface elevation in a finer grid at time=1000 min.

Figure 5-5: Simulation of free surface elevation in a finer grid at time=2000 min.

Figure 5-6: Simulation of free surface elevation in a finer grid at time=3000 min.
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Figure 5-7: Simulation of free surface elevation in a finer grid at time=2000 hour.

Example 3: Comparison the solution between the coarse and the fine grids for adjacent

structured grids.

For the same previous example, we find the approximate solution for the water surface elevation

in two-way nesting technique and comparison the solution for the water surface elevation between the

coarse and the fine grids.

1. Numerical parameters:

The Numerical values of the parameters are chosen as follows: 𝑛𝑥 = 150, 𝑛𝑦 = 120, Δ𝑥=Δ𝑦=3,

time step Δ𝑡=2.5𝑒−2 sec in a coarse grid, Δ𝑥=Δ𝑦=1, the number of fine grids 𝑛𝑥=150, 𝑛𝑦=120 by

consider only the common points between coarse and fine grids with the space refinement ratio 1:3,

the water depth ℎ =10m, and CFL condition is 0.6.

2. Results and discussion

The time integrations were performed at 2000 min. The calculations were stable.

The following figures show the simulation of free surface elevation in two-way nesting grid at

different time.

Figure 5-8: Simulation of free surface elevation in two-way nesting grids at time=1000 min.
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Figure 5-9: Simulation of free surface elevation in two-way nesting grids at time=2000 min.

The following figure compares the approximate solution for free surface elevation between a coarse

grid and a fine grid

Figure 5-10: Comparison the approximate solution for free surface elevation between the coarse and

the fine grids at 𝑡 = 100 min, 200 min, ..., 2000 min.

Notes:

1. Let 𝑒𝑐 =‖ 𝑢𝑐 − 𝑢𝑓 ‖𝐿2 and 𝑒𝑓 =‖ 𝑢𝑓 − 𝑢𝑡 ‖𝐿2 , where 𝑒𝑐 and 𝑒𝑓 are 𝑙2-error norm in the coarse

grids and the fine grids respectively, 𝑢𝑐, 𝑢𝑓 , and 𝑢𝑡 are computed values of coarse grids variables,

computed values of fine grids variables and computed values of two-way nesting grids variables.

2. Let 𝑒𝑐 =‖ 𝑢𝑐 − 𝑢𝑓 ‖𝐻1 and 𝑒𝑓 =‖ 𝑢𝑓 − 𝑢𝑡 ‖𝐻1 , where 𝑒𝑐 and 𝑒𝑓 are 𝐻1-error norm in the coarse

grids and the fine grids respectively.
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Example 4:

In this example, we find 𝑙2-error norm and 𝐻1-error norm in a coarse grid, and a fine grid by using

2DSWEs given in equations (2.45)-(2.47) for a linear case in a domain Ω = [0, 𝐿𝑥]× [0, 𝐿𝑦] .

Numerical parameters, results and discussion

The computational domain is discretized by a grid whose size is regular. Numerical values of

the parameters are chosen as follows: If we take different values of time 𝑡 = 10, 20, ..., 1000 hours

to find 𝑙2-error norm and 𝐻1-error norm of the water surface elevation, when 𝐿𝑥=𝐿𝑦=300, 𝑛𝑥=100,

𝑛𝑦=100, Δ𝑥=Δ𝑦=3, time step=0.01s, and total steps 36000 in a coarse grid, h=10, Δ𝑥=Δ𝑦=1, time

step=0.005s in a fine grid, when consider only the common points to both grids, the number of grids

becomes 𝑛𝑥=𝑛𝑦= 100 in a fine grids, CFL condition is 0.04 and the initial condition for the same

Example 2, Section 3.1, Chapter 3.

In the following figures show the sequence of snapshots for the approximate solution of free surface

elevation at different values of time 𝑡 = 10, 20, ..., 1000 hours and the other figures show 𝑙2-error norm

and 𝐻1-error norm in a coarse grid, and in a fine grid.

Figure 5-11: Simulation of free surface elevation at 𝑡 = 10 min.
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Figure 5-12: Simulation of free surface elevation at 𝑡 = 50 min.

Figure 5-13: Simulation of free surface elevation at 𝑡 = 100 min.

Figure 5-14: Simulation of free surface elevation at 𝑡 = 500 hr.

168



Figure 5-15: Simulation of free surface elevation at 𝑡 = 1000 hr.

Figure 5-16: Comparison 𝑙2-error norm and 𝐻1-error norm in a coarse grid.

Figure 5-17: Comparison 𝐻1-error norm and 𝑙2-error norm in a fine grid.
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Figure 5-18: Comparison 𝐻1-error norm in a coarse grid, and a fine grid for linear SWEs.

Figure 5-19: Comparison 𝑙2-error norm in a coarse grid, and a fine grid for linear SWEs.

5.3.2 Case 2: When both space and temporal refinement ratio are 1:3 for the

structured grid with a separate interface using algorithm 4, Chapter 4

Note:

We assume that the time step in a fine grid is equal one third of the time step in a coarse grid.

Therefore, we need to provide the interpolation between the coarse and the fine grids, always use

Dirichlet feedback in velocities and the water surface elevation because if the two grids lies with the

same positions then for the update scheme, we use copy grids or a direct-injection update scheme (copy

of child values at corresponding locations of the parent grid without spatial filter). Otherwise, we use

the average method to update.
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Example 1:

In this example, we find 𝑙2-error norm and 𝐻1-error norm in a coarse grid by using 2DSWEs given

in equations (2.45)-(2.47) for linear case with initial condition for the same Example 2, Section 3.1,

Chapter 3.

1. Numerical parameters:

The numerical values of the parameters are chosen as follows: If we take different values of time

𝑡 = 20, 30, ..., 100 days to find 𝑙2-error norm and 𝐻1-error norm in a coarse grid, when 𝐿𝑥=𝐿𝑦=300,

Δ𝑥=Δ𝑦=3, time step=0.01s, and the number of grids 100 × 100 in a coarse grid, Δ𝑥=Δ𝑦=1, time

step =0.0033s, 100× 100 in a fine grid when consider only the common points to both grids, and the

water depth=10.

2. Results and discussion

First of all, we tested the computational stability of this system of equations using CFL condition

which is 0.02. The time integrations were performed for 100 days. The following figure shows 𝑙2-error

norm and 𝐻1-error norm in a coarse grid at 𝑡 = 10, 20, ..., 100 days.

Figure 5-20: Show 𝑙2-error norm and 𝐻1-error norm in a coarse grid.

Example 2:

By the same previous example, we find 𝑙2-error norm and 𝐻1-error norm of free surface elevation

in a fine grid using the 2DSWEs given in equations (2.45)-(2.47) for linear case.

1. Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: If we take different values of time 𝑡 = 20, 30, ..., 100 days to find

𝑙2-error norm and 𝐻1-error norm of free surface elevation between a fine grid and a two-way nesting

grid, when 𝐿𝑥=𝐿𝑦=300, Δ𝑥=Δ𝑦=3, time step=0.01s, and the number of grids 100× 100 in a coarse

grid, Δ𝑥=Δ𝑦=1, time step =0.033s in a fine grid and when consider only the common points to both

grids, the number of fine grids becomes 100× 100,
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2. Results and discussion

The following figures show 𝑙2-error norm and 𝐻1-error norm of free surface elevation in a coarse

grid and a fine grid.

Figure 5-21: Comparison 𝑙2-error norm and 𝐻1-error norm in a fine grid at 𝑡=10, 20, ..., 100 days.

Figure 5-22: Show 𝑙2-error norm in a coarse grid, and a fine grid

Figure 5-23: Show 𝐻1-error norm in a coarse grid, and a fine grid
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Notes that 𝐿2-error norm and 𝐻1-error norm in a coarse grid are larger than 𝑙2-error norm and

𝐻1-error norm in a fine grid. Also, 𝑙2-error norm in a fine grid is closed to zero when length of step or

time step is very small, and the 𝑙2-error norm results are the best results.

5.4 Comparison 𝑙2-relative error norm using four choices of restric-

tion operator for several cases

For all examples, three models are found: a coarse model, a fine model and nested model (contain

coarse and fine grids). The evaluation of the model is performed by calculating the averaged

relative error at all grid points in the model domain with the use of the following equation:

𝑅𝐸𝑡
𝑖,𝑗 =

∑︀𝑖=𝑁
𝑖=1

∑︀𝑗=𝑀
𝑗=1 | Φ𝑡

𝑖,𝑗 − 𝜑𝑡
𝑖,𝑗 |∑︀𝑖=𝑁

𝑖=1

∑︀𝑗=𝑀
𝑗=1 | 𝜑𝑡

𝑖,𝑗 |
𝑓𝑜𝑟 𝑖 = 1, 2, 3, ...𝑁 𝑓𝑜𝑟𝑗 = 1, 2, 3, ...𝑀

The absolute error (ABSE), and (𝑙2-𝑅𝐸) between the coarse grid and the fine grid are calculated

as:

𝐴𝐵𝑆𝐸𝑡
𝑖,𝑗 =

𝑖=𝑁∑︁
𝑖=1

𝑗=𝑀∑︁
𝑗=1

| Φ𝑡
𝑖,𝑗 − 𝜑𝑡

𝑖,𝑗 | 𝑓𝑜𝑟 𝑖 = 1, 2, 3, ...𝑁 𝑓𝑜𝑟𝑗 = 1, 2, 3, ...𝑀

and

𝑙2−𝑅𝐸𝑛
𝑖,𝑗 =

⎯⎸⎸⎸⎷ 𝑀∑︁
𝑗

𝑁∑︁
𝑖

⎡⎣(︃Φ𝑛
𝑖,𝑗 − 𝜑𝑛

𝑖,𝑗

𝜑𝑛
𝑖,𝑗

)︃2
⎤⎦

Where 𝑙2-𝑅𝐸 means global 𝑙2-relative error norm in space, 𝑁 and 𝑀 means the total of cells, i,j

corresponds the index of the coarse grids, n=
∑︀𝑡=𝑟

𝑡=1, where r corresponds the number of total time, Φ

is the coarse grid variable and 𝜑 is the fine grid variable.

Example 1: When both space and temporal refinement ratio are 1:3

In this example, we use EFDM in space and leapfrog with Robert-Asselin filter in time to approx-

imate 2DSWEs given in equations (2.32)-(2.34) for linear case with initial condition 𝑢=𝑣=𝜂=0.

1. Numerical parameters:

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: If we take different values of time t= 20, 30,..., 100 days to find 𝑙2-𝑅𝐸

of free surface elevation between the coarse grid and the fine grid, when 𝐿𝑥=𝐿𝑦=300, Δ𝑥=Δ𝑦=3, time

step=0.01s, h=10, and the number of grids 100× 100 in a coarse grid, Δ𝑥=Δ𝑦=1, time step =0.0033s
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when consider only the common points to both grids, the number of fine grids becomes 100× 100 with

CFL condition 0.02.

2. Results and Discussion

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in

two-way nested grid.

Figure 5-24: 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid in two-way nested

grid.

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid

in two-way nested grid when using four choices of restriction operator for the free surface elevation 𝜂

with a separate interface.

Figure 5-25: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction

operator for the free surface elevation

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid
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in two-way nested grid when use four choices of restriction operator for free surface elevation 𝜂 without

a separate interface.

Figure 5-26: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction

operator for free surface elevation

Example 2: When the space refinement ratio is 1:3 and temporal refinement ratio is

1:2

By the same previous example, we use EFDM in space and leapfrog with Robert-Asselin filter in

time to approximate 2DSWEs given in equations (2.32)-(2.34) for linear case.

2. Results and Discussion

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid

in two-way nested grid when using four choices of restriction operator for free surface elevation 𝜂 with

a separate interface.

Figure 5-27: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction

operator for free surface elevation
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Example 3: When the space refinement ratio is 1:3 (no temporal refinement)

By the same previous example, we use EFDM in space and leapfrog with Robert-Asselin filter in

time to approximate 2DSWEs given in equations (2.32)-(2.34) for linear case.

2. Results and Discussion

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid

in two-way nested grid when using four choices of restriction operator for free surface elevation 𝜂 with

a separate interface.

Figure 5-28: Comparison 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when use four choices of restriction

operator for free surface elevation

5.5 Comparison between one-way and two-way nesting grids when

both space and temporal refinement ratio are 1:3

Example 1: When the type of structured grid is separable

In this example, we use EFDM in space and leapfrog scheme with Robert-Asselin filter in time

to approximate 2DSWEs given in equations (2.32)-(2.34) for linear case with the initial condition

𝑢=𝑣=𝜂=0.

Numerical parameters, results and discussion

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: If we take different values of time t=20, 30,..., 100 days to find

ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and two-way nesting grid for linear

2DSWEs, when 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3 in a coarse grid and the time step in coarse grid is 0.005s,

and Δ𝑥=Δ𝑦=1 in a fine grids when consider only the common points to both grids, the number of

fine grids becomes 100× 100 with CFL 0.02.
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The following figures show the ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way and two-way

nesting grid.

Figure 5-29: Comparison between ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting grid

when structured grid with a separate interface

Figure 5-30: Comparison between ABSE and 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grid

when structured grid with a separate interface

The following figures compare 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting when use four

update choice for structured grid with a separate interface.
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Figure 5-31: Comparison 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting for structured grid with a

separate interface
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5.6 Summary and Conclusion

This chapter dealt with the two-way interaction technique between a coarse grid and a fine grid for

2D depth-averaged linear SWEs and a new approach was presented to treat this problem. To verify

the efficiency of the nested grid model, some numerical examples were introduced with nesting 3:1.

It was showed that two-way nesting techniques perform better than one-way nesting techniques.

In particular, a two-way nesting ensures dynamical consistency between the coarse grid and the fine

grid occurs frequently. In general, good results were observed.

In this chapter, we discussed several examples of different cases for space and temporal

refinement ratio, some major points can be deduced:

1. When the space and temporal refinement ratio is odd always use for feedback Dirichlet feedback

(copy grid) because a coarse grid always has one underlying high-resolution point. Otherwise,

use the full-weighting or the average scheme to update the velocities and free surface elevation

(both spatially and temporally) for structured grids with (adjacent/separable) interface.

2. For other cases, when the space refinement ratio is odd and the time refinement ratio is even, or

the time step in the fine grid is an equal time step in the coarse grid when the refinement ratio

is odd, we use linear interpolation and for feedback use the full-weighting method or the average

method.

3. When comparing the results of 𝑙2-𝑅𝐸 for some examples in Section 5.4, we found: Firstly, when

the space and the temporal refinement ratio is odd, the results here are the best. Secondly, the

results in case the temporal refinement is even and space refinement is odd. Finally, the results

in case the time step in the fine and coarse grid is fixed (no time refinement, refinement in space

only).
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Chapter 6

Applications of Two-Way Interaction Technique For Multiple

Nested Grids

The results presented in this chapter (Sections 6.3-6.5) are the subject of an article

[5] and the results presented in (Sections 6.9) are the subject of an article [7]

Multiple nested grids can be employed at one time to save the time as well as get enough resolution

in the goal region. In this chapter, an explicit finite difference method which used to construct a two-

way interaction technique is applied successfully for multiple nested grids of 2DSWEs. The nesting

implementation allows several nesting level and several grids at any particular level using Dirichlet

boundary conditions. Generally, high accuracy is given for SWEs.

Discusses some examples when the space refinement ratio is 1:3 for multiple nested grids at multiple

levels for 2DSWEs using the algorithms and techniques provided under Chapter 4, Section 4.5. In order

to verify the performance of nesting techniques, apply some examples of coupling 3 systems for shallow

flow models.

Thus, the results of 𝑙2-𝑅𝐸 using a new technique for four options to update restriction operators are

compared. The results are best when using the full-weighting method which it has excellent properties

regarding the filtering for a type of structured grid without a separable interface. Otherwise, the

average method is used to update the system.

Comparison of 𝑙2-𝑅𝐸 results of free surface elevation in one-way and two-way nesting grids using

four update interpolations. Several tests of numerical examples are presented to get the approximate

solutions for free surface elevation using four different update schemes. Finally, comparison the results

of 𝑙2-𝑅𝐸 when the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 with Δ𝑥 ̸= Δ𝑦.
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Highlights

∙ An explicit methods which used to construct a two-way interaction technique are applied suc-

cessfully for multiple nested grids of 2DSWEs.

∙ Discusses some examples when the space refinement ratio is 1:3 for multiple nested grids at

multiple levels for 2DSWEs.

∙ Two-way nested coupling of 3 models for multiple grids at multiple levels are achieved for

2DSWEs.

∙ High accuracy results for 2DSWEs are obtained using some kinds of higher-restriction operators

which are average method and full-weighting, update mix-low, and update mix-high.

∙ The validity of the nesting method is shown in some examples.
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6.1 Development

In this chapter, we will explain that using the higher-order restriction operators (feedback) given in

Section 4.5 can lead to strong improvements to the results, which is required to prevent aliasing and

noise on the coarse grids with Dirichlet boundary conditions to approximate 2DSWEs for structured

grids with (separate/adjacent) interface.

6.2 Configuration of the numerical testing

In this section: Firstly, we offer design for 2D depth-averaged NSWEs using EFDM and leapfrog

method with Robert-Asselin filter. Secondly, applying some examples of two-way interaction technique

and show that this technique works efficiently under different conditions.

6.2.1 Basic design of nested model

The main design elements of the model are specified as follows:

∙ It should consist of two similar models a parent grid (coarse grid) model and a child grid (fine

grid) model.

∙ Both models should calculate the same variables by solving the same formulations of the governing

equations.

∙ The parent grid should provide boundary data for the child grid.

∙ The models should be dynamically linked to allow automatic transfer of boundary data at each

child model time step.

∙ The child model should be able to operate on a number of nested domains not just one level of

nesting. i.e. all nested domains should not use the same nesting ratio (sometimes us different

nesting ratio in the same level or multiple-levels).

6.2.2 Grid comparison

Key features of the two model grids are listed below for comparison:

1. Coarse grid

2. Fine grid

3. Grid generation: The fine grid coordinates are interpolated from the coarse grid with one third

(or other) of the coarse grid cell size.
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4. Water depth Setup: The fine grid water depths are linearly interpolated from the coarse grid.

5. Nested grid model initialization: The fine grid is initialized with parameters (velocity flux and

free surface) interpolated from the coarse grid when the fine grid model starts.

6. Interaction between coarse grid and fine grid:

7. Time stepping: The coarse grid model’s time step is N times the fine grid model’s time step.

8. Boundary forcing: The boundary conditions in the fine grid are interpolated from coarse grid

cells at each time step.

9. The Model: The coarse grid model and the fine grid model starts at the same time.

Some Notes:

1. In all examples, we apply an explicit center finite difference method in space and leapfrog method

with Robert-Asselin filter in time to approximate the 2D depth-averaged NSWEs.

2. In all examples, we find 𝑙2-𝑅𝐸 of free surface elevation for two-way interaction techniques

2DSWEs.

3. All simulations are made using open boundary conditions, we use a nested grid with interface

condition for the fine grids linear interpolation both spatially and temporally and update interface

condition for the coarse grid using the average method or full-weighting method (both spatially

and temporally) using initial condition 𝑢=𝑣=𝜂=0.

4. The bottom friction comes from Manning’s formula which is uniform throughout the grids, where

n is roughness coefficient. In this simulation, n takes 0.013.

Figure 6-1: Multiple nested grids at multiple levels
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6.3 Case 1: Multiple nested grids for linear 2DSWEs for structured

grids (without a separate interface)

Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average

method to update interface condition for the coarse grid. also, the number of grids for the coarse and

fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

For the stability using CFL condition given by Section 2.8.3, Chapter 3.

Example 1:

In this example, we use the system for 2DSWEs given in equations (2.32)-(2.34) for a linear case to

find 𝑙2-𝑅𝐸 of free surface elevation when a coarse grid contains only one fine grid (child embedded in

parent) at different times t=500, 1000,..., 4000 hours with CFL condition 0.6. The information about

a coarse grid (level 1) and a fine grid (level 2) are given in Table 6.1 using Dirichlet open boundary

conditions.

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid.

Figure 6-2: Shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a in fine grid (grid 21)

Information Grid 01 (coarse grid) Grid 21 (fine grid)

Number of grids 150×150 150×150

Length grid size 3 1

Coarse grid non Grid 01

Grid size ratio non 3

Time step in sec 0.025 0.0125

( East-West) 1-150 51-100

(South-North) 1-150 1-50

Bottom stress 0.013 0.013

Table 6.1: The information on the set up of the different grids for 2D non-linear SWEs
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Example 2:

In this example, we use the system of 2DSWEs given in equations (2.32)-(2.34) for linear case to

find 𝑙2-𝑅𝐸 in case a coarse grid contains more than one fine grid at different times t=500, 1000, ...,

4000 hour with CFL condition 0.6. The information about a coarse grid and a fine grid are given

in Table 6.2 using Dirichlet open boundary conditions. The first figure shows 𝑙2-𝑅𝐸 of free surface

evaluation between a coarse grid in level 1 and a fine grid in level 2 (grid 22) and the second figure

compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and two fine grids (grids 21 and 22).

Information Grid 01 (coarse grid) Grid 21 (fine grid) Grid 22 (fine grid)

Number of grids 150×150 150×150 150×150

Length grid size 3 1 1

Coarse grid non Grid 01 Grid 01

Grid size ratio non 3 3

Time step in sec 0.025 0.0125 0.0125

(East-West) 1-150 51-100 101-150

(South-North) 1-150 1-50 101-150

Table 6.2: The information about the coarse and fine grids for linear 2DSWEs

Figure 6-3: Show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and a fine grid (grid 22)

Figure 6-4: Comparison 𝑙2-𝑅𝐸 between a coarse grid and two fine grids in level 2
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Notes that: Two fine grids are separate with each other and embedding in a coarse

grid.

Example 3:

In this example, we use the system of 2DSWEs given in equations (2.32)-(2.34) for a linear case

to find 𝑙2-𝑅𝐸 in case a fine grid contains again one fine grid in another level at different times t=500,

1000, ..., 4000 hour. The information about a coarse grid and a fine grid are given in Table 6.3 using

Dirichlet open boundary conditions.

Information Grid 01 (coarse grid) Grid 21 (fine grid) Grid 31 (level 3)

Number of grids 150 × 150 150 × 150 150×150

Length grid size 3 1 0.33

Coarse grid non Grid 01 Grid 21

Time step in sec 0.025 0.0125 0.00625

East-West 1-150 51-100 1-50

South-North 1-150 1-50 1-50

Table 6.3: The information about the coarse and the fine grids at multiple levels for linear 2DSWEs

The first figure shows 𝑙2-𝑅𝐸 of free surface elevation between a fine grid in level 2 and a fine grid

in level 3 in two-way nested grid and the second figure comparison 𝑙2-𝑅𝐸 of free surface elevation

between a coarse grid-fine grid (grid 21) and grid 21-fine grid (grid 31) in two-way nested grid.

Figure 6-5: 𝑙2-𝑅𝐸 between the grid 21 and the grid 31 in two-way nested grid
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Figure 6-6: Comparison 𝑙2-𝑅𝐸 between a coarse grid-grid 21 and grid 21-grid 31

Notes that:

The grid 31 is separate from the grid 21, we can choose another grid embedded in the grid 21 and

comparing results in two cases. The best results were obtained when the grids are separate from each

other (see Section 8.4, Example 3).

6.4 Case 2 : Multiple nested grids for NSWEs for structured grids

(without a separate interface)

Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average

method to update interface condition for the coarse grid. also, the number of grids for the coarse and

fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

Example 1:

In this example, we use EFDM to approximate 2DNSWEs given in equations (2.32)-(2.34) (with

𝜈 = 0, wind stress =0, non-rotated f=0). A sequence of snapshots of free surface elevation 𝜂 in the

coarse grids at different times t=500, 1000,..., 4000 hour. The information about the coarse and the

fine grids are given by Table 6.1.

The following figure represent the simulation of free surface elevation in a coarse grid at different

time t=500, 1000,..., 2000 hour.
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Figure 6-7: Simulation of free surface elevation in the coarse grid at time= 500 min

Figure 6-8: Simulation of free surface elevation in the coarse grid at time= 1000 min

Figure 6-9: Simulation of free surface elevation in the coarse grid at time= 2000 min
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Example 2:

By the same previous example, we use 2DNSWEs given in equations (2.32)-(2.34) to find 𝑙2-𝑅𝐸 of

free surface elevation at difference times t=500, 1000,..., 4000 hour when a coarse grid contains only

one fine grid. The information about the coarse grid and the fine grid are given by Table 6.1. The

following figure represent 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grid at t=500 min, 1000,..,

4000 hour.

Figure 6-10: Comparison 𝑙2-𝑅𝐸 of free surface in two-way nested grid at t=500, 1000,..., 4000 hour

Example 3: Comparison 𝑅𝐸𝑙2 between the coarse grid and two fine grids

In this example, we use 2DNSWEs given in equations (2.32)-(2.34) to find 𝑙2-𝑅𝐸 when a coarse

grid contains more than one fine grid at the different times t=500, 1000, ..., 4000 hour using Dirichlet

open boundary conditions. The information about the coarse and the fine grids are given by Table 6.2.

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between the coarse grid and two fine

grids in two-way nested grid at the same level (level 2) at t=500, 1000,..., 4000 hour.

Figure 6-11: Comparison 𝑙2-𝑅𝐸 of free surface elevation between the coarse grid and two fine grids in

level 2
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Example 4 :

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34) when a fine grid

in level 2 contains again one fine grid in level 3 at difference times t= 500, 1000,..., 4000 hour. The

information about the coarse and the fine grids are given by Table 6.3 .

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation between level 2 (grid 21) and level 3

(grid 31) in two-way nested grid at t= 500, 1000,..., 4000 hour.

Figure 6-12: Shows 𝑙2-𝑅𝐸 of free surface elevation between the grid 21 and the grid 31

Example 5:

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34) when the second

fine grid in level 2 contains again one fine grid in level 3 at the different times t= 500, 1000,..., 4000

hour. The following figures compare 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid

21), fine grid 21-level 3 (grid 31) and a coarse grid-level 2 (grid 22), fine grid 22-level 3 (grid 32) in

two-way nested grid.

Information Grid 01 (coarse grid) Grid 22 (fine grid) Grid 32 (level 3)

Number of grids 150×150 150×150 150×150

Length grid size 3 1 0.33

Coarse grid non Grid 01 Grid 22

Grid size ratio non 3 3

Time step in sec 0.025 0.0125 0.00625

East-West 1-150 101-150 101-150

South- North 1-150 101-150 1-50

Table 6.4: The information about the coarse and the fine grids at multiple levels for 2DNSWEs
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Figure 6-13: Compares 𝑙2-𝑅𝐸 between a coarse grid-fine grid 22 (level 2) and fine grid 22-fine grid 32

in level 3

Figure 6-14: Compares 𝑙2-𝑅𝐸 between a coarse grid-fine grid 21 in level 2 and fine grid 21-fine grid 31

in level 3

6.5 Coupling systems for 2DNSWEs for a structured grid (multiple

levels) without a separate interface

Here, the space refinement ratio is 1:3 and the temporal refinement ratio is 1:2 and using the average

method to update interface condition for the coarse grid. also, the number of grids for the coarse and

fine grids are equal by consider only the common points to both grids using algorithm 1, Chapter 4.

Example 1: Case 1: Coupling 3 systems for 2DNSWEs

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs given in equations (2.32)-

(2.34), when a coarse grid contains more than one level (multiple levels) at different times t= 500,

1000,..., 4000 hour. The information about a coarse grid and the fine grids are given by Table 6.5 using

Dirichlet boundary condition.

Firstly, when a coarse grid located in 1st-level, applying EFDM to approximate 2DNSWEs. Sec-
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ondly, applying EFDM to approximate 2DNSWEs in level 2. Then, coupling a coarse grid with a fine

grid in the 2nd-level. Thirdly, applying EFDM to approximate 2DNSWEs in level 3. Then, coupling

between a fine grid in 2nd-level and a fine grid in the 3rd-level.

Information Grid 01 Grid 21 Grid 22 Grid 31 Grid 32

Number of grids ( Domain size) 150×150 150×150 150×150 150×150 150×150

Length grid size 3 1 1 0.33 0.33

Coarse grid non Grid 01 Grid 01 Grid 21 Grid 22

Grid size ratio non 3 3 3 3

Time step in sec 0.025 0.0125 0.0125 0.00625 0.00625

SWEs non-linear non-linear non-linear non-linear non-linear

East-West 1-150 51-100 101-151 1-50 101-150

South-North 1-150 1-50 101-151 1-50 1-50

Table 6.5: The information about the coarse grid and the fine grids at multiple levels for the 2DNSWEs

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid

22) and grid 22-level 3 (grid 32) in two-way nested grid for 2DNSWEs

Figure 6-15: Comparison 𝑙2-𝑅𝐸 between a coarse grid-grid 22 and grid 22-grid 32 for nonlinear SWEs

Example 2: Case 2: Coupling 3 systems for 2D nonlinear / linear SWEs

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34), when a coarse grid

contains more than one level at different times t= 500, 1000,..., 4000 hour. The information about the

coarse and fine grids are given by Table 6.5.

Firstly, when a coarse grid located in 1st-level, apply EFDM to approximate 2DNSWEs. Secondly,

applying EFDM to approximate 2DNSWEs in level 2. Thus, coupling a coarse grid with the fine grid in

2nd-level. Thirdly, applying EFDM to approximate linear 2DSWEs in level 3. Thus, coupling between

a fine grid in level 2 and the fine grids in the 3rd-level.

197



The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22 nonlinear case) and

grid 22-level 3 (grid 32 in linear case) in two-way nested grid for 2DSWEs.

Figure 6-16: Comparison 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-grid 22 for nonlinear

case and grid 22-grid 32 for nonlinear to linear

Example 3: Case 3: Coupling 3 systems for 2DNSWEs

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.32)-(2.34) when a coarse grid

contains more than one level at different times t=500, 1000,..., 4000 hour. The information about the

coarse grid and the fine grids are given by Table 6.5.

Firstly, when 1st-level contains a coarse grid, applying EFDM to approximate 2DNSWEs. Secondly,

applying EFDM to approximate linear 2DSWEs in level 2. Thus, coupling a coarse grid with a fine

grid in 2nd-level grid. Thirdly, applying EFDM to approximate linear 2DSWEs in level 3. Thus, a

coupling between fine grid in level 2 and fine grid in level 3.

The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22 in linear case) and grid

22-level 3 (grid 32 in nonlinear case) in two-way nested grid for 2DSWEs.

Figure 6-17: Comparison 𝑙2-𝑅𝐸 between a coarse grid-a fine grid in level 2 for nonlinear to linear and

a fine grid in level 2-fine grid in level 3 for linear to nonlinear SWEs

Notice that: The results in Example 1 are better than the other results in Examples 2

and 3.
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6.6 Comparison of one-way and two-way nesting by using different

schemes

Here, the space refinement ratio is 1:3 and time refinement ratio is 1:2 and using different scheme to

update interface condition for the coarse grid. also, the number of grids for the coarse and fine grids

are equal by consider only the common points to both grids using algorithm 5, Chapter 4.

Example 1 :

In this example, we use system of 2DNSWEs given in equations (2.1)-(2.3) with (non-rotated f=0,

viscosity=0, and wind stress=0), if we take different values of time t= 10, 20,..., 200 hour, when

𝑛𝑥 = 𝑛𝑦 = 200, Δ𝑥=Δ𝑦=1, and Δ𝑡=0.01s in a coarse grid with total steps 7200 and 𝑛𝑥=𝑛𝑦=200,

Δ𝑥=Δ𝑦=0.33, and Δ𝑡=0.005 s in fine grid to find ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way

nesting and two-way nesting grids. The following figures show 𝑙2-𝑅𝐸 of free surface elevation in one-

way nesting grids and two-way nesting grids using three different update schemes. All the simulation

are made by using Dirichlet boundary conditions without a separate dynamic and feedback

interface with CFL condition 0.138.

Figure 6-18: Comparison 𝑙2-𝑅𝐸 in one-way nesting grid and two-way nesting grid using the average

scheme

When use Shapiro interpolation scheme, 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting grid

and two-way nesting grid as shown in the following figure.
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Figure 6-19: Comparison 𝑙2-𝑅𝐸 of the free surface elevation in one-way nesting and two-way nesting

using Shapiro interpolation scheme

When using the full-weighting interpolation scheme, 𝑙2-𝑅𝐸 in one-way nesting and two-way nesting

grids as shown in the following figure.

Figure 6-20: Comparison 𝑙2-𝑅𝐸 in one-way and two-way nesting using the full-weighting scheme

The following figure compares 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting by using the

average method and the full-weighting method.
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Figure 6-21: Compares 𝑙2-𝑅𝐸 in two-way nesting using the average scheme and the full-weighting

scheme

Example 2:

For the same previous example, we compare 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting

grids by using the full-weighting and the average update schemes with a separate dynamic interface

and feedback interface. All the simulation are made by using Dirichlet boundary conditions. Good

results were obtained.

Figure 6-22: Compares 𝑙2-𝑅𝐸 in two-way nesting using the average scheme and the full-weighting

scheme
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6.7 Comparison between one-way nesting and two-way nesting grids

when space refinement ratio is 1:3 (no time refinement)

Here, the space refinement ratio is 1:3 and the number of grids for the coarse and fine grids are equal

by consider only the common points to both grids.

6.7.1 Case 1: For 2D depth-averaged linear SWEs with separate dynamic inter-

face and feedback interface

Example 1 :

In this example, we find ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and two-

way nesting grids for 2DSWEs given in equations (2.32)-(2.34) for linear case with bottom stress=0,

when use reflexive boundary condition at different values of time t= 10, 20,..., 50 days, 𝑛𝑥=𝑛𝑦=300,

Δ𝑥=Δ𝑦=3, and Δ𝑡=0.01s in coarse grid with total steps 43200 and 𝑛𝑥=𝑛𝑦=300, Δ𝑥=Δ𝑦=1, and

Δ𝑡=0.01s in fine grid with CFL 0.04.

Where 𝜂(𝑖, 𝑗) = 10 * 𝑒𝑥𝑝((−5((𝑥)2 + (𝑦)2)) and 𝑢(𝑥, 𝑦, 𝑡 = 0)=0, 𝑣(𝑥, 𝑦, 𝑡 = 0)=0

The following figures show the ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting and

two-way nesting grid.

Figure 6-23: ABSE and 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting
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Figure 6-24: ABSE and 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting

Example 2:

In this example, we find ABSE of free surface elevation in two-way nesting grid for 2DSWEs

given in equations (2.32)-(2.34) for linear case with bottom stress =0, when a fine grid contains again

one fine grid in another level at different values of time t= 10, 20, ..., 200 days by using reflexive

boundary condition when 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3, and Δ𝑡=0.01𝑠 in a coarse grid and 𝑛𝑥 = 𝑛𝑦 = 100,

Δ𝑥=Δ𝑦=1, and Δ𝑡=0.01 in a fine grid. The following figure compares ABSE of free surface elevation

between a coarse grid and a fine grid in level 2 in two-way nested grid with CFL condition 0.02.

Figure 6-25: ABSE between the coarse grid and the fine grid for linear 2DSWEs

6.7.2 Case 2: For 2D depth-averaged NSWEs with separate dynamic and feed-

back interfaces

Example 1:

In this example, we use the system of 2DNSWEs given by equations (2.1)-(2.3) with non-rotated

f=0, wind stress, and bottom stress =0, if we take different values of time t= 10, 20,.., 1000 hours when

203



𝑛𝑥 = 𝑛𝑦 = 300, Δ𝑥=Δ𝑦=1, Δ𝑡=0.01s in a coarse grid and 𝑛𝑥 = 𝑛𝑦 = 300, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.01s

in fine grid to find ABSE and 𝑙2-𝑅𝐸 in two-way nesting. In this model, we use a multiple-nested grid

with interface condition for the fine grids linear interpolation and update interface condition for the

coarse grid using the average method with CFL condition 0.02.

The following figure shows ABSE and 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grids using

Dirichlet boundary conditions.

Figure 6-26: Comparison 𝑙2-𝑅𝐸 and ABSE in two-way nesting grids

6.8 The space refinement ratio is 1:3 and temporal refinement ratio

is 1:2 when Δ𝑥 ̸= Δ𝑦

Example 1:

In this example, we use the system of 2D non-linear SWEs given by equations (2.1)-(2.3) with

(wind stress=0, bottom stress=0, and f=0 in nonlinear case) and equations (2.32)-(2.34) with (bottom

stress= 0) for linear case when Δ𝑥 ̸= Δ𝑦, 𝑛𝑥=𝑛𝑦=300, Δ𝑥=3 and Δ𝑦=6, Δ𝑡=0.01s in coarse grid

with total steps 18000 and when a coarse grid has the space refinement ratio in 𝑥-direction is different

in 𝑦-direction, when Δ𝑥=1 and Δ𝑦=2, 𝑛𝑥=𝑛𝑦=300, the number of grids 300× 150, and Δ𝑡=0.005s in

the fine grid at different time t=10, 20,..., 500 hours with CFL condition 0.02. using Dirichlet bound-

ary conditions for nonlinear case and reflexive boundary conditions for linear case with a separate

dynamic interface and feedback interface.

The following figures represent 𝑙2-𝑅𝐸 of free surface elevation for 2D non-linear SWEs in one-way

nesting and two-way nesting grids.
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Figure 6-27: 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting grid for linear SWEs

Figure 6-28: 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grid for linear SWEs

Figure 6-29: 𝑙2-𝑅𝐸 of free surface elevation in one-way nesting grid for nonlinear SWEs
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Figure 6-30: 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grid for nonlinear SWEs

Notes: When comparing these results with the results given by Sections 6.7.1 and 6.7.2,

the results indicate in Section 6.8 are the best.

6.9 High accuracy results for 2DSWEs with separate (or without)

dynamic and feedback interface

In this section, several tests of numerical examples are presented to get the approximate solutions for

free surface elevation using four different update schemes: Average, full-weighting, update mix-low, and

update mix-high (with separate or without separate) dynamic and feedback interface using Dirichlet

boundary conditions. Comparison 𝑙2-𝑅𝐸 of free surface elevation for some examples by using four

choices of restriction operator with two cases of the refinement factor.

6.9.1 Comparison 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grid by using

four update operators when both space and temporal refinement ratio are

1:3 using Algorithm 4, Chapter 4

Example 1:

In this example, we use the system for 2DNSWEs given in equations (2.1)-(2.3) with non-rotated

f=0, wind stress and viscosity= 0, if we take different values of time t= 10, 20,..., 100 days when

𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=1, Δ𝑡=0.01s in coarse grid and 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.0033s in

fine grid (space and temporal refinement ratio 1:3) to find 𝑙2-𝑅𝐸 of free surface elevation with

initial condition 𝑢=𝑣=𝜂=0.

The following figures compare 𝑙2-𝑅𝐸 of free surface elevation using different update schemes. All

simulations in the first figure is made by using Dirichlet boundary conditions without separate
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dynamic interface and feedback interface and the second figure with a separate interface.

Figure 6-31: 𝑙2-𝑅𝐸 in two-way nesting using four different update schemes without separate dynamic

interface and feedback interface

Figure 6-32: 𝑙2-𝑅𝐸 in two-way nesting using four different update schemes with separate dynamic

interface and feedback interface

The following figures show the approximate solutions on the coarse grid are obtained using four

different update schemes: Average, full-weighting, update mix-low and update mix-high. The simula-

tions based on the average and update mix-low operators lead to good solutions when the interface is

a separate.

The following figures show the free surface elevation on the coarse grid domain after 10 days, 20

days, 30 days for using the average method.
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Figure 6-33: Free surface elevation on the coarse grid domain using average method.

The following figures show the free surface elevation on the coarse grid domain after 10 days, 20

days, 30 days for using mix-low update method.
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Figure 6-34: Free surface elevation on the coarse grid domain using mix-low method

The following figures show the free surface elevation on the coarse grid domain after 10 days, 20

days, 30 days by using full-weighting method.
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Figure 6-35: Free surface elevation on the coarse grid domain using full-weighting method

The following figures show the free surface elevation on the coarse grid domain after 10 days, 20

days, 30 days for using mix-high method.
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Figure 6-36: Free surface elevation on the coarse grid domain using mix-high method

6.10 Multiply nested techniques for 2DSWEs when the type of struc-

tured grids separate (or adjacent) interface

Here, the space refinement ratio 1:3 and time refinement ratio 1:2 using algorithm 5, Chapter 4.

Example 1:

In this example , we find ABSE of free surface elevation in two-way nesting grid for 2DSWEs given

in equations (2.32)-(2.34) in a linear case when a fine grid contains again one fine grid in another level

(child embedded or separable to parent).

Numerical parameters and results

The computational domain is discretized by a grid whose size is regular. Numerical values of

the parameters are chosen as follows: If we take different values of time at difference times t= 10,

20,..., 100 days to find ABSE of free surface elevation in two- way nesting grid when 𝑛𝑥=𝑛𝑦=200,

Δ𝑥=Δ𝑦=3, Δ𝑡=0.01s in a coarse grid and 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=1, Δ𝑡=0.005s, and the time step
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in fine grid is one half time in a coarse grids at each level and the space refinement ratio is 1:3 by

using Dirichlet boundary condition. In this model, we use linear interpolation and for updating use

the average method with a separate dynamic and feedback interface.

The following figures compares the ABSE of free surface elevation between (coarse grid-fine grid in

level 2) and (fine grid in level 2-fine grid in level 3) for linear 2DSWEs.

Figure 6-37: Comparison the ABSE between a coarse grid and a fine grid in level 2

Figure 6-38: Comparison the ABSE between level 2 and level 3

Example 2:

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting grid for 2DNSWEs

given in equations (2.1)-(2.3) with wind stress=0, bottom stress =0, and f=0 when a fine grid contains

again one fine grid in another level.

Numerical parameters and results

The computational domain is discretized by a grid whose size is regular. Numerical values of the

parameters are chosen as follows: If we take different values of time t= 10, 20,..., 1000 hours when
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𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3, Δ𝑡=0.01s in a coarse grid (level 1), 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=1, Δ𝑡=0.005 in a

fine grid (level 2) and 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=0.33, Δ𝑡=0.0025s in (level 3) by using Dirichlet boundary

conditions when consider only the common points for all grids.

The following figure compares 𝑙2-𝑅𝐸 between a coarse grid-fine grid (level 2) and fine grid (level

3) with a separate interface.

Figure 6-39: Comparison 𝑙2-𝑅𝐸 between a coarse grid-a fine grid (level 2) and level 2-level 3

The following figures compare 𝑙2-𝑅𝐸 between a coarse grid and a fine grid in level 2 when use four

choice for update schemes with a separate interface and without a separate interface.

Figure 6-40: Comparison 𝑙2-𝑅𝐸 when use four choice for update schemes with a separate interface
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Figure 6-41: Comparison 𝑙2-𝑅𝐸 when use four choice for update schemes without a separate interface

6.11 Summary and Conclusions

Effectively, a two-way nesting technique for 2D depth-averaged SWEs was developed. Results generated

showed the two-way nested model can provide an accurate high-resolution solution for an area of

interest and allow high-resolution data to update the lower-resolution coarse domain without incurring

the computational cost for high resolution over the full domain.

Accuracy and efficiency are two main indicators in assessing the implementation of the numerical

models. The approach used in this chapter appears the possibility of increasing accuracy and efficiency

of the modeling results within a two-way nesting grid model.

To verify the nested multiply grid model, several numerical examples were presented and it was

shown, in particular, a two-way nesting technique ensures dynamical consistency between a coarse grid

and a fine grid occurs frequently. Some examples of coupling 3 systems for non-linear SWEs with nest

3:1 were applied. In general, good results were observed.

Compared the results of 𝑙2-𝑅𝐸 of the free surface elevation using four choices of update restriction

and the experiences indicated that the results of full-weighting and mix-high methods are the best

results and very close to each other in the case without a separate interface. Finally, the results of

𝑙2-𝑅𝐸 when Δ𝑥 ̸= Δ𝑦 were compared and the best results were shown compared to the case Δ𝑥 = Δ𝑦.

Several examples were tested and the results showed that the best resolution when used mix-low method

or average method and the results between them are very close to each other when used a separate

interface.
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Chapter 7

Multiple Nested Grids For 2D Shallow Water Models

The results presented in this chapter (Section 7.2) are the subject of an article [6]

In this chapter, a two-way interaction technique for multiple nested grids at multiple levels (multiple

regions) of 2DNSWEs are constructed. This model consists of a fine grid model nested 5:1 within a

coarse grid large area model with different non-linear components in each region.

Although different grids size are employed in each subregion, physical variables in all subregions

are solved simultaneously and it allows any ratio of grid sizes between two subregions. This model

is highlighted by using an explicit center finite difference scheme in space and leapfrog with Robert-

Asselin filter in time for the constant depth water with Dirichlet boundary conditions. The numerical

solutions induced by the explicit methods are optimally controlled by choosing an appropriate time

step size and grid size.

Comparison of 𝑙2-relative error norm results for several examples of 2DSWEs with nesting 3:1 and

5:1, show the ability and accuracy of this technique over different periods of time at multiple levels.

Highlights

∙ Suggested a new technique for a multiply nested grid of 2D shallow water models.

∙ Comparison of 𝑙2-𝑅𝐸 results when the model has the spatial refinement ratio 1:3 and 1:5.

∙ Two-way nested coupling of 3 models for multiple grids at multiple levels (regions) is achieved

for 2DSWEs with nesting 5:1.

∙ Demonstrate the accuracy and efficiency of the modeling results when using performance of the

multiple nested grid techniques.
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7.1 Two-Way nesting grid algorithm

Case 1: Space and temporal refinement factor equals 1:5

Suppose all information about the flux values and the water surface elevation in the inner region

(with finer resolutions) and the outer region (the parent grid with the coarsest grid resolution), are

known at time level 𝑡 = 𝑛Δ𝑡 and we need to solve the inner and the outer region values at the next

time steps 𝑡 = (𝑛+ 1)Δ𝑡 and 𝑡 = (𝑛+ 2)Δ𝑡.

Step 1: Get all information for the free surface elevation at 𝑡 = (𝑛+1)Δ𝑡 in the outer region by solving

continuity equation.

Step 2: Get all information for the flux values at 𝑡 = (𝑛+1)Δ𝑡 in the outer region by solving momentum

equations.

Step 3: To solve the continuity equation in the inner region, we need to have the flux information

along the connected boundary at 𝑡 = 𝑛Δ𝑡. So the information in the outer grids at the connected

boundary are linearly interpolated and then those interpolated values are set to the fluxes in the inner

at the boundary.

Step 4: Get the free surface elevation at 𝑡 = (𝑛 + 1/5)Δ𝑡, 𝑡 = (𝑛 + 2/5)Δ𝑡, 𝑡 = (𝑛 + 3/5)Δ𝑡 and

𝑡 = (𝑛+ 4/5)Δ𝑡 in the inner region by solving continuity equation.

Step 5: Get all information for the flux values at 𝑡 = (𝑛+ 1/5)Δ𝑡, 𝑡 = (𝑛+ 2/5)Δ𝑡, 𝑡 = (𝑛+ 3/5)Δ𝑡

and 𝑡 = (𝑛+ 4/5)Δ𝑡 in the inner region by solving momentum equations.

Step 6: Get the free surface elevation at 𝑡 = (𝑛 + 1)Δ𝑡 in the inner grid region by using continuity

equation.

Step 7: Solve the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner grid region by using momentum equations.

Step 8: Get the free surface elevation at 𝑡 = (𝑛 + 6/5)Δ𝑡, 𝑡 = (𝑛 + 7/5)Δ𝑡, 𝑡 = (𝑛 + 8/5)Δ𝑡 and

𝑡 = (𝑛+ 9/5)Δ𝑡 in the inner region in the inner grid region by using continuity equation.

Step 9: Get the flux values at 𝑡 = (𝑛+6/5)Δ𝑡, 𝑡 = (𝑛+7/5)Δ𝑡, 𝑡 = (𝑛+8/5)Δ𝑡 and 𝑡 = (𝑛+9/5)Δ𝑡

in the inner region by using momentum equations.

Step 10: To transfer the information from the inner grid region to the outer region, if the free surface

elevation and the flux values at 𝑡 = (𝑛+ 1)Δ𝑡 in the inner grid region is located at the same position

for the coarse grid region then use copy grid. Otherwise, use the average or full-weighting operators.

Step 11: Get the free surface elevation at 𝑡 = (𝑛+ 2)Δ𝑡 in the inner grid region by solving continuity

equation.

Step 12: Get the flux values at 𝑡 = (𝑛+ 2)Δ𝑡 in the inner region by using momentum equations.
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Step 13: Solve the free surface elevation and the velocities at 𝑡 = (𝑛+ 2)Δ𝑡 in the outer region using

continuity equation and momentum equations.

Step 14: Transfer the information from the inner region to the outer region at 𝑡 = (𝑛+ 2)Δ𝑡.

7.2 Numerical results for multiple nested grids

Some notes:

1. In all examples, Dirichlet boundary condition are applied, we use a nested grid with interface

condition for the fine grids linear interpolation both spatially and temporally and update interface

condition for the coarse grid by using the average method (both spatially and temporally).

2. In all examples, we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grids using Algorithm

5 ,Chapter 4 and the number of coarse grids and fine grids are equals when consider only the

common points to both grids with initial condition 𝑢=𝑣=𝜂=0.

7.2.1 Example 1: The space refinement ratio is 1:5 and the temporal refinement

ratio is 1:2 for 2DNSWEs (with adjacent grids)

In this example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given in equations (2.1)-(2.3) with f=0, viscosity=0 and

wind stress=0 in level 1 (coarse grid ) which contains one fine grid located in level 2 which contain

another fine grid that located in level 3 at different times t= 1000, 2000,..., 4000 hour. The following

table shows the information about the coarse grid and fine grids at multiple levels (regions).

Information level 1 (coarse grid) level 2 (fine grid) level 3 (fine grid)

Number of grids 100×100 100×100 100×100

Length grid size 5 1 0.2

Coarse grid non Grid 01 Grid 22

Grid size ratio non 5 5

Time step in sec 0.010 0.005 0.0025

SWEs non-linear non-linear non-linear

(East-West) 1-100 61-80 61-80

(North-South) 1-100 61-80 11-30

CFL condition 0.7 0.7 0.7

Table 7.1: The information about the coarse and fine grids at multiple regions (levels) for 2DNSWEs
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The following figure shows 𝑙2-𝑅𝐸 between a coarse grid in level 1 and a fine grid in level 2 and

𝑙2-𝑅𝐸 between fine grid in level 2 and fine grid in level 3.

Figure 7-1: Comparison 𝑙2-𝑅𝐸 between a coarse grid- fine grid in level 2 and level 2-level 3 in case

space refinement ratio is 1:5

7.2.2 Example 2: Comparison 𝑙2-𝑅𝐸 of the nested grid at multiple levels (regions)

when the space refinement ratio is 1:3 and 1:5 and temporal refinement ratio

is 1:2

As the same of the previous example, we find 𝑙2-𝑅𝐸 for 2DNSWEs given by equations (2.1 )-(2.3)

with (f=0, viscosity=0 and wind stress=0) in level 1 (coarse grid) which contains one fine grid located

in level 2 which contains another fine grid located in level 3 at difference times t=1000, 2000,...., 4000

hour.

The following figure represents 𝑙2-𝑅𝐸 between a coarse grid-fine grid in level 2 and fine grid in

level 2-fine grid in level 3 in case 1:3. The results when space refinement ratio 1:5 are the best.

Figure 7-2: Comparison 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level

2-fine grid in level 3 in case the space refinement ratio is 1:3
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7.2.3 Example 3: When the space refinement ratio is 1:5 and temporal refinement

ratio is 1:2 for linear 2DSWEs

In this example, we find 𝑙2-𝑅𝐸 for 2DSWEs given in equations (2.33)-(2.35 ) for linear case in level 1

(coarse grid) which contains one fine grid located in level 2 which contains another one fine grid located

in level 3 for difference times t= 1000, 2000,..., 5000 hour. The information about the coarse and fine

grids are given by Table 7.1 . The first figure compares 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid

in level 2 and fine grid in level 2-fine grid in level 3 in case 1:5 and the second figure compares 𝑙2-𝑅𝐸

between a coarse grid in level 1-fine grid in level 2 and fine grid in level 2-fine grid in level 3 in case

1:3.

Figure 7-3: Comparison 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level

2-fine grid in level 3 in case 1:5

Figure 7-4: Comparison 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level

2-fine grid in level 3 in case 1:3
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7.2.4 Example 4: When the refinement ratio in both space and time equals 1:5

for linear 2DSWEs with a separate interface

In this example, we use 2DSWEs given in equations (2.32)-(2.34) for linear case. If we take different

values of time t= 20, 30,..., 100 days to find 𝑙2-𝑅𝐸 between a coarse grid and a fine grid when 𝑛𝑥=100,

𝑛𝑦=100, Δ𝑥=3, Δ𝑦=3 in a coarse grid, 𝑛𝑥=100, 𝑛𝑦=100, Δ𝑥=0.6, Δ𝑦=0.6 in fine grid and the time

step in a coarse grid is 0.005s.

The following figures compare ABSE and 𝑙2-𝑅𝐸 in one-way nesting and two-way nesting for the

linear 2DSWEs. When comparing this results with the results in Example 1, Section 5.5, we obtained

good results by using space refinement ratio 1:5 because the large ratio gives very well connected

boundary conditions.

Figure 7-5: Comparison 𝑙2-𝑅𝐸 and ABSE in one-way nesting in case 1:4

Figure 7-6: Comparison 𝑙2-𝑅𝐸 and ABSE in two-way nesting in case 1:5
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7.2.5 Example 5: When the space refinement ratio is 1:5 and temporal refinement

ratio is 1:2 for linear 2DSWEs with a separate interface

In this example, we find ABSE for 2DSWEs given in equations (2.32)-(2.34) for a linear case when a

fine grid contains again one fine grid in another level at difference times t= 10,20, ...,300 hour by using

the Dirichlet open boundary condition when 𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=3 , Δ𝑡=0.01s in a coarse grid and

𝑛𝑥=𝑛𝑦=200, Δ𝑥=Δ𝑦=0.6, Δ𝑡=0.005s in a fine grid.

The following figure compares ABSE of free surface elevation between a coarse grid in level 1 and

fine grid in level 2. When comparing these results with the results in Example 1, Section 6.10 , we

obtained very well results when space refinement ratio is 1:5.

Figure 7-7: Comparison ABSE between a coarse grid in level 1-fine grid in level 2 and fine grid in level

2-fine grid in level 3

7.2.6 Example 6: When space refinement ratio is 1:5 and temporal refinement

ratio is 1:2 for 2DNSWEs with a separate interface

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs given in equations (2.1)-(2.3)

with wind stress=0, bottom stress =0, and f=0, when a fine grid contains again one fine grid in another

level (region). If we take different values of time t= 100,200,..., 1000 hours, 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=3,

Δ𝑡=0.01s in a coarse grid, and 𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=0.6, Δ𝑡=0.005s in a fine grid (level 2) and

𝑛𝑥=𝑛𝑦=100, Δ𝑥=Δ𝑦=0.12, Δ𝑡=0.00025s in fine grid (level 3) with CFL condition 0.02.

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid in level 1 and fine

grid in level 2. The results are very good compared to the results in Example 2, Section 6.10.
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Figure 7-8: Comparison 𝑙2-𝑅𝐸 between a coarse grid in level 1-fine grid in level 2 and fine grid in level

2-fine grid in level 3 for 2DNSWEs

7.2.7 Example 7 : Comparison of results when both space and temporal refine-

ment ratio are 1:3 and 1:5 in cases one-way nesting and two-way nesting

In this example, we find 𝑙2-𝑅𝐸 in one-way nesting and two-way nesting for 2DNSWEs given in equa-

tions (2.32)-(2.34) at different values of time t= 100,200,...,1000 hours, when 𝑛𝑥=𝑛𝑦=300, Δ𝑥=Δ𝑦=1,

and Δ𝑡=0.01s in a coarse grid using initial condition 𝑢=𝑣=𝜂=0 with CFL condition 0.13.

The following figures show 𝑙2-𝑅𝐸 and ABSE in one-way nesting and two- way nesting grids in two

cases 1:3 and 1:5.

Figure 7-9: Comparison 𝑙2-𝑅𝐸 and ABSE for one-way nesting in case 1:3
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Figure 7-10: Comparison 𝑙2-𝑅𝐸 and ABSE for two-way nesting in case 1:3

Figure 7-11: Comparison 𝑙2-𝑅𝐸 and ABSE for one-way nesting in case 1:4

Figure 7-12: Comparison 𝑙2-𝑅𝐸 and ABSE for two-way nesting in case 1:5

7.3 Example 8: Comparison 𝑙2-𝑅𝐸 between the free surface eleva-

tion, u-velocity and v-velocity

In this example, we use system of 2DNSWEs given in equations (2.1)-(2.3) with (𝜈=0, wind stress=0

and f=0) to find 𝑙2-𝑅𝐸 for free surface, 𝑢-velocity and 𝑣-velocity at the different times t=500 ,1000,
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...,4000 hours. Numerical values of the parameters are chosen as follows: 𝑛𝑥=𝑛𝑦=150, Δ𝑥=Δ𝑦=5, Δ𝑡

=0.0025s in a coarse grid and 𝑛𝑥=𝑛𝑦=150, Δ𝑥=Δ𝑦=1, Δ𝑡 =0.00015s in a fine grid when the space

refinement is 1:5 and temporal refinement is 1:2 with CFL condition 0.02.

The following figure shows 𝑙2-𝑅𝐸 of free surface elevation , 𝑢-velocity and 𝑣-velocity between a

coarse grid and a fine grid.

Figure 7-13: Comparison 𝑙2-𝑅𝐸 of free surface elevation , 𝑢-velocity and 𝑣-velocity
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7.4 Summary and Conclusions

This chapter focused on a new technique for multiple nested grids at multiple levels (regions) of

2DSWEs. Nesting procedure was tested with data under different conditions. The approach used in

this chapter was showed the possibility of increasing accuracy and efficiency of the modeling results

within a two-way nesting technique with nest 5:1.

To verify multiple nested grid models, several numerical examples were applied and it was shown

that two-way nesting techniques perform very well when the space refinement ratio 1:3 and 1:5. Com-

parison of 𝑙2-𝑅𝐸 results when the space refinement ratio is 1:3 and 1:5. The results were compared

between one-way and two-way nesting grids for cases 1:3 and 1:5 and very well results were obtained

when the refinement factor is 1:5. Finally, 𝑙2-𝑅𝐸 results were compared between the free surface ele-

vation, 𝑢-velocity, and 𝑣-velocity and the results showed that 𝑙2-𝑅𝐸 of free surface elevation are the

best results.
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Chapter 8

Some Applications For Multiple Nested Grids Of The Tsunami

Model

Some of the results presented in this chapter (Sections 8.3-8.5) are the subject of an

article [4]

A two-way interaction technique for multiple nested grids of the tsunami model is proposed. This

model adopts staggered an explicit center finite difference method and leapfrog with Robert-Asselin

filter which contains linear and nonlinear components in each subregion with Cartesian coordinates

and consists of a fine grid model nested 5:1 within a coarse grid large area model. A nested grid

model, dynamically coupled up to multiple levels with various grid resolution, can be implemented in

the model to fulfill the need to simulate this model in different levels. Nested grid system means in a

region of one grid size, there are one or more regions with smaller grid sizes situated in which finally

form a hierarchy of grids and grid levels.

In a two-way nested grid model, the information for velocity components and free surface elevation

from the coarse mesh can enter and effect to the fine mesh in each time step of the solution process

using linear interpolation and the information feedback from the fine mesh to the coarse mesh using

the average scheme. To verify multiple nested grids model, several of numerical examples are applied

and the results demonstrate the applicability and benefits of nesting.

Highlights

∙ Suggest a new technique for multiple nested grids of the tsunami model.

∙ Discuss some numerical examples of the tsunami model when the model has the spatial refine-

ment ratio 1:5.

∙ Coupling four systems for multiple grids at multiple levels is achieved of the tsunami model with

nesting 5:1.

∙ The capacity and benefits of nesting show by some examples.
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8.1 Introduction

Tsunami is a Japanese word that is a combination of two-word roots (tsu) means the port and

nami means a wave which meaning harbor wave. It is a typical long wave (massive wave) in the ocean,

are mostly caused by large earthquakes on the seafloor or water surface disturbances over a sufficiently

large area and it can cause huge destruction when they hit coastlines.

Tsunamis are able to move long distances (across the ocean) without too much energy dissipation,

which is due to lower friction slightly in the deep ocean. It can efficiently transfer energy released by

earthquakes which is sometimes huge enough to severely damage facilities on the coastline. In the case

of deep oceans, the wavelengths of tsunamis are of the order of 10km or 100km and the wave period

ranges from around ten minutes to two hours.

The speed of tsunamis can reach as fast as 970 kilometers per hour (600 miles per hour) in the

deepest oceans although the wave height is often merely tens of centimeters. As a result, in the deep

sea, it is difficult to visually recognize a traveling tsunami. Regardless of its harmless performance in

the deep ocean, when a tsunami approaches shallow water, its wave height increases significantly up

to 30 m above sea level [46, 78, 116].

The tsunamis has been observed and recorded since ancient times, especially in Japan and the

Mediterranean areas. The earliest recorded tsunami occurred in (2,000) B.C. off the coast of Syria.

The oldest reference tsunami record is dated back to the 16th century in the United States [108].

The first historical reference to a tsunami is conjectured to be the wave created after the volcanic

eruption of Thera in ancient Greece, around (1500-1450) B.C. Others, support that tsunami history

dates even further back to around 6100 B.C, when a tsunami was supposedly triggered in the Norwegian

Sea by the Storegga Slides ([32, 46].

In recent years, the most devastating tsunami was triggered by (2004) Sumatra earthquake off the

coast of Indonesia and caused tremendous property loss and over 225,000 casual ties in the surrounding

countries of Indian Ocean, especially in Indonesia, Sri Lanka,Thailand and India (see [115, 116]).

To mitigate the tsunami, it is very important to construct inundation maps along with those

coastlines vulnerable to tsunami flooding. These maps should be developed based on the historical

tsunami events and hypothetical scenarios. To produce realistic and reliable inundation estimates, it

is essential to use a numerical model that calculates accurately the tsunami propagation from a source

region to the coastal areas of concern and the subsequent tsunami run-up and inundation [114].
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At the beginning of a simulation start, the initial water surface elevation (obtained from a given

data file) is interpolated into all sub-regions grids, as well as fluxes values of velocities, are zero on all

grids.

The following figures show the brutal tsunami

This chapter is arranged as follows: Discuss some numerical examples of 2D non-linear shallow

water models given in Sections 2.4, 2.6 and 2.7 when the time step (n+1/2). Compare the results

when the model has the spacial refinement ratio 1:5.

8.2 Development

In most previous studies, with an adaptive mesh refinement case, the update is still made with this

average formula because the grid can move from one time step to another, so that an average restriction

is necessary to globally ensure the conservation before and after the regridding (renewal) step and that

this was also the main reason for using the average restriction operator in ocean models when using

moving mesh methods.

In this chapter, we suggest a new technique for multiple nested grids of the tsunami model that

given in [108, 114, 121] using an explicit finite difference method and leapfrog with Robert-Asselin

filter with moving boundary condition, linear interpolation and to update use the average operator.

For more details (see Appendix).

Notes

1. For all examples, we use the formulas of numerical discretization 2DSWEs given in Sections 2.4,

2.5, and 2.6 and we find 𝑙2-𝑅𝐸 of free surface elevation in two-way nested grids.

2. The bottom friction comes from Manning’s formula which is uniform throughout the grids, where

n is roughness coefficient. In this simulation, n takes 0.013.

3. All simulations are made using moving boundary conditions, we use a nested grid with interface
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condition for the fine grids linear interpolation and update interface condition for the coarse grid

by using the average method in case adjacent structured grids.

8.3 Numerical Results

A full description of initial condition, boundary condition and model configuration can be found in

([114, 121]). The information for the velocities and the free surface elevation are exchanged on the

boundaries between two nested grid regions. At each new time level, the information on the boundary

of a finer grid are obtained by linearly interpolating in (both spatially and temporally). At each next

time level for the outer parent grid, the free surface elevation and velocity on a coarser grid are updated

by averaging scheme (both spatially and temporally).

8.3.1 Case 1: When space refinement ratio is 1:5 and temporal refinement ratio

is 1:2 for 2DNSWEs

Example 1:

In this example, we use system of 2DNSWEs given in equations (2.8), (2.21), and (2.30) in Section

2.4 with (𝜈=0, non-rotate f=0, wind stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse

grid contains four fine grids in level 2 at difference times t= 500, 1000,..., 5000 sec when the water

depth is constant.

The information on the set up of different grids for 2DNSWEs are given below.

Information Grid 01 Grid 21 Grid 22 Grid 23 Grid 24

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 2 2 2

Coarse grid non Grid 01 Grid 01 Grid 01 Grid 01

Grid size ratio non 5 5 5 5

Time step in sec 0.020 0.01 0.01 0.01 0.01

SWEs non-linear non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.7 0.7 0.7

Bottom stress 0.013 0.013 0.013 0.013 0.013

Table 8.1: The information on the set up of the different grids
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Figure 8-1: Multiple nested grid at multiple levels for 2DNSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation in two-way nesting between a coarse grid

and level 2 (grid 21, grid 24, grid 22, and grid 23).

Figure 8-2: Comparison 𝑙2-𝑅𝐸 of free surface between a coarse grid and level 2 (grid 21 and grid 24)

Figure 8-3: Comparison 𝑙2-𝑅𝐸 between a coarse grid and level 2 (grid 22 and grid 23)

Notes that: All the fine grids here are separate from each other.
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Example 2 :

By the same previous example, we use system of 2DNSWEs given by equations in Section (2.4)

with (𝜈=0, non-rotate f=0, wind stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid

contains one fine grid in level 2 which contains again one fine grid in level 3. Also, a fine grid in level

3 contains again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for 2DNSWEs are given below:

Information Grid 01 Grid 21 Grid 32 Grid 43

Number of grids 100 ×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.08

Coarse grid non Grid 01 Grid 21 Grid 32

Grid size ratio non 5 5 5

Time step in sec 0.020 0.01 0.005 0.0025

SWEs non-linear non-linear non-linear non-linear

Bottom stress 0.013 0.013 0.013 0.013

CFL condition 0.7 0.7 0.7 0.6

Table 8.2: The information on the set up of the different grids for 2DNSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 21),

grid 21-level 3 (grid 32) and grid 32-level 4 (grid 43).

Figure 8-4: Comparison 𝑙2-𝑅𝐸 between coarse grid-level 2 (grid 21), level 2-level 3 (grid 32) and level

3-level 4 (grid 43)
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Example 3 :

By the same previous example, we use system of 2DNSWEs to find 𝑙2-𝑅𝐸 of free surface elevation

in case a coarse grid contains another one fine grid (grid 24) in level 2 which contains again another

two fine grids (grid 31 and grid 33) in level 3. Also, the fine grids in level 3 which contain again another

one fine grid (grid 41) in level 4 at difference times t= 500, 1000,..., 5000 sec.

The information on the set up of the different grids for 2DNSWEs are given below:

Information Grid 01 Grid 24 Grid 31 Grid 33 Grid 46

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.40 0.08

Coarse grid non Grid 01 Grid 24 Grid 24 Grid 33

Grid size ratio non 5 5 5 5

Time step in sec 0.020 0.01 0.005 0.005 0.0025

SWEs non-linear non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.7 0.6 0.6

Table 8.3: The information on the set up of the different grids at multiple level for 2DNSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 24),

grid 24-level 3 (grid 33), and grid 33-level 4 (grid 46).

Figure 8-5: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 24), level 2-level 3 (grid 33), and

level 3-level 4 (grid 46)
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Example 4:

By the same previous example, we use system of 2DNSWEs with (𝜈=0, non-rotate f=0, wind

stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid in level 2

which contains again one fine grid in level 3. Also, a fine grid in level 3 that contains again two fine

grids in level 4 at difference times t= 500, 1000,..., 5000 sec.

Information Grid 01 Grid 23 Grid34 Grid 44 Grid 42

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.08 0.133

Coarse grid non Grid 01 Grid 23 Grid34 Grid34

Grid size ratio non 5 5 5 3

Time step in sec 0.020 0.01 0.005 0.0025 0.0025

SWEs non-linear non-linear non-linear non-linear non-linear

Table 8.4: The information on the set up of the different grids at multiple levels

Note

The space refinement ratio at level 2, level 3 is 1:5 and the space refinement ratio at level 4 with grid

42 is 1:3. The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid

23), level 2-level 3 (grid 34), and level 3-level 4 (grid 44 and grid 42).

Figure 8-6: Comparison 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 23), level

2-level 3 (grid 34) and level 3-level 4 (grid 44)
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Figure 8-7: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 23) and level 2-level 3 (grid 34) and

level 3-level 4 (grid 42)

Notes that: All the results in a grid 24 are the best and the results in a grid 44 are better than the

results in a grid 42.

8.4 Case 2: When the space refinement ratio is 1:5 and temporal

refinement ratio is 1:2 for linear 2DSWEs

Example 1:

In this example, we use system of linear 2DSWEs given in equations (2.8), (2.39), and (2.44) in

Section 2.6 with non-rotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse

grid which contains four fine grids at difference times t=500, 1000, ..., 5000 sec.

Figure 8-8: Multiple nested grids at multiple levels for linear 2DSWEs
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The information on the set up of the different grids for linear 2DSWEs are given below:

Information Grid 01 Grid 21 Grid 22 Grid 23 Grid 24

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 2 2 2

Coarse grid non Grid 01 Grid 01 Grid 01 Grid 01

Grid size ratio non 5 5 5 5

Time step in sec 0.020 0.01 0.01 0.01 0.01

SWEs linear linear linear linear linear

CFL condition 0.7 0.7 0.7 0.7 0.7

Table 8.5: The information on the set up of the different grids at multiple levels for linear SWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid and four fine grids

(21, 22, 23 and 24).

Figure 8-9: Show 𝑙2-𝑅𝐸 between a coarse grid and four fine grids (21, 22, 23 and 24)

Results in grid 22 =⇒ Results in grid 21=⇒ Results in grid 23 =⇒ Results in grid 24

Example 2:

By the same previous example, we use system of linear 2DSWEs given in Section 2.6 with non-

rotate f=0, wind stress=0 to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid which contains

one fine grid in level 2 that contains again one fine grid in level 3. Also, a fine grid in level 3 contains

again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below:
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Information Grid 01 Grid 21 Grid 32 Grid 43

Number of grids 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.08

Coarse grid non Grid 01 Grid 21 Grid32

Grid size ratio non 5 5 5

Time step in sec 0.020 0.01 0.005 0.0025

SWEs non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.7 0.6

Table 8.6: The information on the set up of the different grids at multiple levels for linear 2DSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 21),

level 2-level 3 (grid 32) and level 3-level 4 (grid 43).

Figure 8-10: Comparison 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 21), level

2-level 3 (grid 32) and level 3-level 4 (grid 43)

Example 3:

By the same previous example, we use system of linear 2DSWEs with non-rotate f=0, wind stress=0

to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid which contains one fine grid (child embedded

or separate in parent) in level 2 that contains again two fine grids in level 3. Also, the fine grids in

level 3 contain again one fine grid in level 4 at difference times t= 500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below:
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Information Grid 01 Grid 22 Grid 31 Grid 33 Grid 44

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.40 0.08

Coarse grid non Grid 01 Grid 22 Grid22 Grid33

Grid size ratio non 5 5 5 5

Time step in sec 0.020 0.01 0.005 0.005 0.0025

CFL condition 0.7 0.7 0.7 0.6 0.6

Table 8.7: The information on the set up of the different grids at multiple levels for linear SWEs

Figure 8-11: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 22), level 2-level 3 (grid 33) and

level 3-level 4 (grid 44)

8.4.1 Comparison 𝑙2-𝑅𝐸 of free surface elevation for cases separate grids and

embedded grids

Example 1:

By the same previous example, we use system of linear 2DSWEs with non-rotate f=0, wind stress=0

to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid (grid 21) in level

2 which contains again one fine grid in level 3 (child separable or embedded in parent) at difference

times t= 500, 1000,..., 5000 sec.
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Information Grid 01 Grid 21 Grid 32

Number of grids 100×100 100×100 100×100

Length grid size 10 2 .40

Coarse grid non Grid 01 Grid 21

Grid size ratio non 5 5

Time step in sec 0.025 0.0125 0.00625

SWEs non-linear non-linear non-linear

Table 8.8: The information on the set up of different grids for linear SWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a fine grid in level 2 and level

3 (grid 32) in cases separate and embedded grids.

Figure 8-12: Comparison 𝑙2-𝑅𝐸 between a fine grid in level 2 and level 3 (grid 32) in cases separate

and embedded grids.

8.4.2 Comparison the results of 𝑙2-𝑅𝐸 when use the time step are 0.010 and 0.030

For linear SWEs

Example 1:

By the same previous example, we use system of linear 2DSWEs with non-rotate f=0,wind stress=0

to find 𝑙2-𝑅𝐸 of free surface elevation when the time steps are (0.010 and 0.030) in case a coarse grid

contains one fine grid (grid 22) in level 2 which contains again two fine grids in level 3. Also, a fine

grid in level 3 contains again one fine grid in level 4 at difference times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for linear 2DSWEs are given below:
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Information Grid 01 Grid 22 Grid 31 Grid 33 Grid 44

Number of grids 100×100 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.40 0.08

Coarse grid non Grid 01 Grid 22 Grid22 Grid33

Grid size ratio non 5 5 5 5

Time step in sec 0.010/0.030 0.005/ 0.015 0.0025 /0.0075 0.0025/0.0075 0.00125 /0.00375

SWEs non-linear non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.7 0.6 0.6

Table 8.9: The information on the set up of the different grids at multiple levels for linear 2DSWEs

The following figures show 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 22),

grid 22-level 3 (grid 33) and level 3 (grid 33)-level 4 (grid 44) in case the time steps are 0.010 and

0.030.

Figure 8-13: Comparison 𝑙2-𝑅𝐸 for linear 2DSWEs when time step 0.010

Figure 8-14: Comparison 𝑙2-𝑅𝐸 for linear 2DSWEs when time step 0.030
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8.4.3 Comparison the results of 𝑙2-𝑅𝐸 when the space refinement ratio are 1:3

and 1:5 in multiple levels for NSWEs

Example 1:

Notes that: The space refinement ratio in levels 2 and 3 is 1:5 and in level 4 is 1:3

In this example, we use system of 2DNSWEs given in Section 2.4 with (𝜈, non-rotate f=0, wind

stress=0) to find 𝑙2-𝑅𝐸 of free surface elevation in case a coarse grid contains one fine grid in level 2

which contains again one fine grid in level 3. Also, a fine grid in level 3 contains again two fine grids

in level 4 at different times t=500, 1000,..., 5000 sec.

The information on the set up of the different grids for 2DNSWEs are given below:

Information Grid 01 Grid 24 Grid31 Grid 41

Number of grids 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.133

Coarse grid non Grid 01 Grid 24 Grid 31

Grid size ratio non 5 5 3

Time step in sec 0.025 0.0125 0.00625 0.003125

SWEs non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.7 0.6

Table 8.10: The information on the set up of the different grids at multiple levels

The following figures show 𝑙2-𝑅𝐸 of free surface between a coarse grid-level 2 (grid 24), level 2-level

3 and level 3-level 4 (grids 41).

Figure 8-15: Comparison 𝑙2-𝑅𝐸 between a coarse grid-level 2 (grid 24), level 2-level 3 (grid 31) and

level 3-level 4 (grids 41)
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Figure 8-16: Comparison 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 (grid 24), level

2-level 3 (grid 31) and level 3-level 4 (grids 45)embedded with itself

8.5 Case 3: Coupling multiple systems when the space refinement

ratio 1:5 with no time refinement

8.5.1 Example 1 : Case 1 : Coupling four systems for 2DNSWEs

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈=0, wind stress and f=0), when

a coarse grid contains only one fine grid at difference times t=500, 1000,..., 4000 sec. The information

about the coarse and fine grids are given in table below :

Information Grid 01 Grid 24 Grid 33 Grid 46

Number of grids 100×100 100×100 100×100 100×100

Length grid size 10 2 0.40 0.08

Coarse grid non Grid 01 Grid 24 Grid 33

Grid size ratio non 5 3 3

Time step in sec 0.020 0.01 0.005 0.0025

SWEs non-linear non-linear non-linear non-linear

CFL condition 0.7 0.7 0.6 0.6

Table 8.11: The information on the set up of the different grids at multiple levels for 2DNSWEs

In this case. Firstly, when a coarse grid located in 1st-level, applying EFDM to approximate

2DNSWEs. Secondly, applying EFDM to approximate 2DNSWEs in a 2nd-level. Then, coupling a

coarse grid with a fine grid in a 2nd-level grid. Thirdly, applying EFDM to approximate 2DNSWEs.
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Then, coupling a fine grid in a 2nd-level with the fine grid in the 3rd-level. Fourthly, applying EFDM to

approximate 2DNSWEs. Then, coupling a fine grid in the 3rd-level with the fine grid in the 4th-level.

The following figure Compares 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-level 2 with

refinement ratio 1:5, level 2-level 3 and level 3-level 4 with space refinement ratio 1:3.

Figure 8-17: Comparison 𝑙2-𝑅𝐸 between level 1-level 2, level 2-level 3 and level 3-level 4

8.5.2 Example 2: Case 2: Coupling four systems for 2D non-linear SWEs

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈 = 0, the wind stress =0,

f=0) when a coarse grid contains more than one level at different times t=500, 1000,... 4000 sec. The

information about the coarse and fine grids are the same previous example:

In this case, Firstly, when a coarse grid in 1st-level, applying EFDM to approximate 2DNSWEs.

Secondly, applying EFDM to approximate 2DNSWEs. Then, coupling a coarse grid with the fine grid

in a 2nd-level grid. Thirdly, applying EFDM to approximate linear 2DSWEs. Then, coupling a fine

grid in 2nd-level with the fine grid in a 3rd-level. Fourthly, applying EFDM to approximate 2DNSWEs.

Then, coupling a fine grid in the 3rd-level with the fine grid in the 4th-level.

Figure 8-18: Comparison 𝑙2-𝑅𝐸 between level 1-level 2 in case nonlinear, level 2-level 3 in case nonlinear

to linear and level 3-level 4 in case linear to nonlinear SWEs.
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8.5.3 Example 3: Case 3: Coupling four systems for 2D nonlinear / linear SWEs

In this example, we find 𝑙2-𝑅𝐸 of free surface elevation for 2DNSWEs (𝜈 = 0, wind stress =0, f=0)

when a coarse grid contains more than one level at different times t=500 ,1000,... ,4000 sec. The

information about the coarse and fine grids are the same previous example.

In this case, Firstly, when a coarse grid in 1st-level, applying EFDM to approximate 2DNSWEs.

Secondly, applying EFDM to approximate linear 2DSWEs. Then, coupling a coarse grid with the fine

grid in a 2nd-level. Thirdly, applying EFDM to approximate 2DNSWEs. Then, coupling the fine

grid in 2nd-level with the fine grid in the 3rd-level. Fourthly, applying EFDM to approximate linear

2DSWEs. Then, coupling the fine grid in the 3rd-level with the fine grid in the 4th-level.

The following example shows 𝑙2-𝑅𝐸 of free surface elevation between a coarse grid-fine grid in level

2 nonlinear to linear case, fine grid in level 2-fine grid in level 3 linear to nonlinear case and level 3-level

4 nonlinear to linear case.

Figure 8-19: Comparison 𝑙2-𝑅𝐸 between a coarse grid-fine grid in level 2 nonlinear to linear case, fine

grid in level 2-fine grid in level 3 linear to nonlinear case and level 3-fine grid in level 4 nonlinear to

linear case.
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8.6 Summary and Conclusions

This chapter dealt with new techniques for multiple nested grids that were applied to the tsunami

model. To verify the efficiency of the nested grid model, several of numerical examples were proposed

with the nesting 5:1. The accuracy of the nested grid depends on the location of the open boundaries

of the nested domains. Boundaries should be located in areas of the coarse grid domain where high

accuracy to minimize the error being passed from coarse to fine grids. It was showed the perfor-

mance techniques using two-way nesting with the ratio 5:1, when applied some examples for non-linear

2DSWEs at multiple levels.

Some examples for coupling four systems at multiple levels of 2DSWEs have been tested for three

cases when space refinement ratio equals 1:5 and 1:3 with no refinement of time. 𝐿2-relative error

results using different time steps were compared. In general, good results were observed.
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Chapter 9

Recommendations (Future Works)

1. Apply two-way interaction for multiple nested grids in some applications of life such that weather

and climate models in Coordinates spherical using an explicit finite difference methods or finite

volume methods, implicit finite difference methods.

2. Apply a two-way nesting technique using an explicit finite difference method and leapfrog with

Robert-Asselin filter with radative open boundary condition.

3. Apply a new technique of two-way nesting grids in some application life for example hydrody-

namic model for the port of new york for 3DSWEs with moving boundary condition.

4. Study an existence of solutions for shallow water models with non-homogenous boundary condi-

tions, global weak solution and smoothness.

5. Apply two-way interaction technique for multiple nested grids of 2DSWEs when a specific domain

rotation is required using the explicit methods.

6. Apply two-way interaction technique for SWEs using irregular geometry boundary conditions.

7. Study two-way nesting grid for ocean models when the water depth discontinuous with moving

boundary conditions.
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Appendix A

A.1 Open boundary conditions

1. Southern boundary condition j=1 and i=2:ix-1 . For the elevation and the component of

velocity to the boundary is defined

𝜂𝑖,𝑗 =

√︁
(𝑢𝑖,𝑗+𝑢𝑖−1,𝑗)

2

2
+ (𝑣𝑖,𝑗)2√︀

𝑔𝐻𝑖,𝑗

2. Northern boundary condition j=jy and i=2:ix-1. For the elevation and the component of

velocity to the boundary is defined

𝜂𝑖,𝑗 =

√︁
(𝑢𝑖,𝑗+𝑢𝑖−1,𝑗)

2

2
+ (𝑣𝑖,𝑗−1)2√︀

𝑔𝐻𝑖,𝑗

3. Westhern boundary condition i=1 and j=2:jy-1. For the elevation and the component of

velocity to the boundary is defined

𝜂𝑖,𝑗 =

√︁
(𝑣𝑖,𝑗+𝑣𝑖,𝑗−1)

2

2
+ (𝑢𝑖,𝑗)2√︀

𝑔𝐻𝑖,𝑗

4. Eastern boundary condition i=1 and j=2:jy-1. For the elevation and the component of

velocity to the boundary is defined

𝜂𝑖,𝑗 =

√︁
(𝑣𝑖,𝑗+𝑣𝑖,𝑗−1)

2

2
+ (𝑢𝑖−1,𝑗)2√︀

𝑔𝐻𝑖,𝑗

5. Spacial cases:

1. If i=1 and j=1. For the elevation and the component of velocity to the boundary is defined:

𝜂𝑖,𝑗 =

√︀
(𝑣𝑖,𝑗)2 + (𝑢𝑖,𝑗)2)√︀

𝑔𝐻𝑖,𝑗

2. If i=ix and j=1. For the elevation and the component of velocity to the boundary is defined :

𝜂𝑖𝑥,1 =

√︀
(𝑣𝑖𝑥,1)2 + (𝑢𝑖𝑥−1,1)2)√︀

𝑔𝐻𝑖𝑥,1
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3. If i=1 and j=jy. For the elevation and the component of velocity to the boundary is defined :

𝜂1,𝑗𝑦 =

√︀
(𝑣1,𝑗𝑦−1)2 + (𝑢1,𝑗𝑦)2√︀

𝑔𝐻1,𝑗𝑦

4. If i=ix and j=jy. For the elevation and the component of velocity to the boundary is defined :

𝜂𝑖𝑥,𝑗𝑦 =

√︁
(𝜂𝑖𝑥−1,𝑗𝑦)+(𝜂𝑖𝑥,𝑗𝑦−1)

2√︀
𝑔𝐻𝑖𝑥,𝑗𝑦

A.2 Boundary Scheme

Initially, The free surface displacement as well as the fluxes values, is zero in all grids at the beginning.

Figure A-1 explains the scheme for moving boundary given by ([115, 121]). The SWL denotes the

mean water level and 𝜂 represents the free water displacement. The grid point on the dry land is

called water depth h, is negative and its absolute value is the elevation of the landscape, measured

from MWL (Mean Water Level). Therefore, the total depth H = h + 𝜂 has a negative value in a dry

cell and a positive value in a wet cell.

The free surface displacements, 𝜂 at the next time step in the entire computational domain (i.e.

both dry and wet cells) are determined by continuity equation together with boundary conditions

along offshore boundaries. The volume fluxes, Hu are zero at the grid points along the shoreline.

Consequently, the free surface displacements, 𝜂 are also zero at a dry grid. However, a numerical

algorithm is required to decide whether the total water depth is high enough to flood the dry cells next

to the wet cells and then move the shoreline.

Here, the one-dimensional example is applied to demonstrate the moving boundary algorithm. The

volume flux, Hu, is calculated at grid points i- 1/2 and i + 1/2 while the water depth, h, and free

water displacement, 𝜂 are computed at i-1, i, and i +1. In time step 𝑡 = 𝑛Δ𝑡, the i cell is a wet cell

with positive total depth while the i+1 cell is dry with negative total depth. The shoreline is therefore

between the i cell and the i+1 cell. Hence, the i+1/2 grid point has zero volume flux. As a result, the

shoreline does not move onshore.

On the other hand, if the water surface surges as on in the right side of Figure A-1, the value of

volume flux, Hu, is no longer zero. Then, the shoreline may move one grid onshore. The next step is

to compute the total depth 𝐻𝑖+1 from the continuity equation.

After that, the following algorithm can finally decide whether the shoreline should be moved.

1. If 𝐻𝑖 > 0 possible cases can be summarized as follows:

2. If 𝐻𝑖+1 6 0 𝑎𝑛𝑑 ℎ𝑖+1 + 𝜂𝑖 6 0 then the shoreline remains between grid points i and i

+ 1 and the volume flux (𝐻𝑢)𝑖+1/2 remains zero.

266



3. 𝐻𝑖+1 6 0 𝑎𝑛𝑑 ℎ𝑖+1 + 𝜂𝑖 > 0 then the shoreline moves to between grid points i + 1 and i + 2

and the volume flux 𝐻𝑢𝑖+1/2 may have a nonzero value while(𝐻𝑢)𝑖+3/2 is assigned to be zero.

The flooding depth is 𝐻𝑓 = ℎ𝑖+1 + 𝜂𝑖.

4. If 𝐻𝑖+1 > 0 then the shoreline moves to between grid points i + 1 and i + 2. The volume flux

(𝐻𝑢)𝑖+1/2 may have a nonzero value while (𝐻𝑢)𝑖+3/2 has a zero value and the flooding depth is

𝐻𝑓 = 𝑚𝑎𝑥(ℎ𝑖+1 + 𝜂𝑖, ℎ𝑖+1 + 𝜂𝑖+1).

Let now derive the algorithm in two-dimension problem and The corresponding y-direction algo-

rithm has the same procedure as that for the x direction.

1. If 𝐻𝑖,𝑗 > 0 and 𝐻𝑖+1,𝑗 > 0 then 𝐻𝑓 = 1
2(𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗) where

𝐻𝑓 =
1

4
(𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗 +𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗+1)

possible cases can be summarized as:

- If 𝐻𝑖,𝑗 > 0 and 𝐻𝑖+1,𝑗 > 0 and ℎ𝑖+1,𝑗 + 𝜂𝑖,𝑗 > 0 then 𝐻𝐻 = ℎ𝑖+1,𝑗 + 𝜂𝑖,𝑗

2. 𝐻𝑖,𝑗 6 0 and 𝐻𝑖+1,𝑗 > and ℎ𝑖,𝑗 + 𝜂𝑖+1,𝑗 > 0 then 𝐻𝐻 = ℎ𝑖,𝑗 + 𝜂𝑖+1,𝑗 .

Else

𝐻𝑢(𝑖,𝑗) = 0

Now, algorithm in y- direction has the same procedure as that for the x direction.

1. If 𝐻𝑖,𝑗 > 0 and 𝐻𝑖,𝑗+1 > 0 then 𝐻𝑄1 =
1
2(𝐻𝑖,𝑗 +𝐻𝑖,𝑗+1)

𝐻𝑄2 =
1

4
(𝐻𝑖,𝑗 +𝐻𝑖+1,𝑗 +𝐻𝑖,𝑗+1 +𝐻𝑖+1,𝑗+1)

possible cases can be summarized as:

- If 𝐻𝑖,𝑗 > 0 and 𝐻𝑖,𝑗+1 < 0 and ℎ𝑖,𝑗+1 + 𝜂𝑖,𝑗 > 0 then 𝐻𝐻 = ℎ𝑖,𝑗+1 + 𝜂𝑖,𝑗 .

2. 𝐻𝑖,𝑗 6 0 and 𝐻𝑖,𝑗+1 > and

ℎ𝑖,𝑗 + 𝜂𝑖,𝑗+1 > 0 then 𝐻𝐻 = ℎ𝑖,𝑗 + 𝜂𝑖,𝑗+1.

Else 𝐻𝑣(𝑖,𝑗) = 0
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Figure A-1: A sketch of moving boundary scheme
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Résumé

Les écoulements en eau peu profonde se rencontrent dans de nombreuses situations d’intérêts:

écoulements de rivières et dans les lacs, mais aussi dans les mers et océans (courants de marée, tsunami,

etc.). Ils sont modélisés par un système d’équations aux dérivées partielles, où les inconnues sont la

vitesse de l’écoulement et la hauteur d’eau. On peut supposer que la composante verticale de la vitesse

est petite devant les composantes horizontales et que ces dernières sont indépendantes de la profondeur.

Le modèle est alors donné par les équations de shallow water (SWEs).

Cette thèse se concentre sur la conception d’une nouvelle technique d’interaction de plusieurs grilles

imbriquées pour modèle en eau peu profonde en utilisant des méthodes numériques. La première partie

de cette thèse comprend, La dérivation complète de ces équations à partir des équations de Navier-

Stokes est expliquée. Etudier le développement et l’évaluation des méthodes numériques en utilisant

des méthodes de différences finies et plusieurs exemples numériques sont appliqués utilisant la condition

initiale du niveau gaussien pour 2DSWEs.

Dans la deuxième partie de la thèse, nous sommes intéressés à proposer une nouvelle technique

d’interaction de plusieurs grilles imbriquées pour résoudre les modèles océaniques en utilisant quatre

choix des opérateurs de restriction avec des résultats de haute précision.

Notre travail s’est concentré sur la résolution numérique de SWE par grilles imbriquées. A chaque

niveau de résolution, nous avons utilisé une méthode classique de différences finies sur une grille C

d’Arakawa, avec un schéma de leapfrog complété par un filtre d’Asselin. Afin de pouvoir affiner les

calculs dans les régions perturbées et de les alléger dans les zones calmes, nous avons considéré plusieurs

niveaux de résolution en utilisant des grilles imbriquées. Ceci permet d’augmenter considérablement

le rapport performance de la méthode, à condition de régler efficacement les interactions (spatiales et

temporelles) entre les grilles.

Dans la troisième partie de cette thèse, plusieurs exemples numéériques sont testés pour 2DSWE

avec imbriqués 3:1 et 5:1. Finalement, la quatrième partie de ce travail, certaines applications de grilles

imbriquées pour le modèle tsunami sont présentées.

Mots clés : Grille imbriquée, méthode des différences finies explicite, modèle d’eau peu profonde,

dérivation des équations 2D d’eau peu profonde, modèle océan, conditions aux limites, les flux de

surface libres, hydrostatique pression, les régions côtières, fluide Incompressible, dynamique des fluide,

Dèpôt de tsunami, Risques de tsunami, Interface dynamique.
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