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Résumé

Depuis l’origine de l’industrie aérospatiale, l’ambition inhérente d’améliorer la performance des
systèmes aérospatiaux a été à l’origine du développement de matériaux de hautes performances.
Les alliages d’aluminium et les composites constituent deux grandes catégories de ces matériaux
et jouent un rôle important dans les applications aérospatiales actuelles et futures. Avec un
certain nombre de propriétés bénéfiques par rapport à d’autres alliages métalliques, les alliages
d’aluminium sont souvent utilisés pour créer des fuselages. Les matériaux composites sont
particulièrement intéressants pour les applications aérospatiales en raison de leurs propriétés
mécaniques directionnelles, la légèreté et la résistance à la corrosion. Ils sont généralement
faits de fibres relativement fortes et rigides, souvent de carbone ou de verre, encapsulées dans
une matrice de résine dure (abréviation en anglais CFRP et GFRP pour Carbon et Glass Fiber
Reinforced Polymer).

Il existe également des dérivés des matériaux susmentionnés, tels qu’une structure sandwich
composite en nid d’abeille (abréviation en anglais HCSS pour HoneyComb Sandwich Structure).
Il s’agit de matériaux composites fabriqués en attachant deux plaques minces mais rigides (ce
sont généralement de multicouches en CFRP ou GFRP) au cœur léger mais épais en nid d’abeille
en aluminium. L’épaisseur relativement élevée du panneau sandwich assure une rigidité élevée
à la flexion , tandis que la densité globale du panneau reste faible. La structure interne fixe
(abréviation en anglais IFS pour Inner Fixed Structure) d’une nacelle d’avion est une structure
composée de panneaux HCSS et CFRP. La nacelle est un complément indispensable au moteur
de l’avion. La nacelle, et l’IFS en particulier, rempli plusieurs fonctions, telles que la tenue du
moteur, l’optimisation et le guidage du flux d’air secondaire, la protection du moteur contre
l’agression mécanique et environnementale, et l’atténuation du bruit acoustique.

Malgré ses propriétés mécaniques excellentes, cette structure est susceptible d’endommagement
après une période longue de service dans un environnement opérationnel hostile, à l’apparition
de défaut à cause de chocs ou à une utilisation non conforme de la structure.

En termes plus généraux, l’endommagement peut être défini comme une modification des
propriétés dumatériau et / ou de la géométrie de la structure, qui affecte négativement la capacité
de la structure à fonctionner de manière optimale. En particulier les structures composites HCSS
tel que la nacelle d’aéronef, sont susceptibles de souffrir des défauts suivants : le délaminage des
couches composites, le décollement de la feuille centrale et / ou la corrosion du cœur aluminium.
De tels défauts se produisent dans la structure, ce qui les rend difficilement voire non détectables
à l’œil nu, mais ils peuvent s’étendre de manière interne sur des volumes importants. Comme la
structure continue de fonctionner selon certains scénarios de chargement, ces défauts peuvent
se développer jusqu’à atteindre un point où le système n’est plus en mesure de fonctionner
normalement et peut mener à une défaillance.

Ces dernières années, les systèmes d’inspection des dommages ont suscité un intérêt croissant.
En conséquence, différentes techniques de contrôle non destructives (CND), telles que les tests
par ultrasons, les tests électromagnétiques, la tomographie, les tests rayons X, les tests par
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ressuage, les tests par particules magnétiques, etc., ont été développées. Par exemple, le contrôle
par ultrasons est devenu uneméthode fiable et largement utilisée pour l’inspection des structures.
Il est en effet possible d’exciter des ondes ultrasonores dans l’IFS et d’examiner le champ d’ondes
résultant pour identifier les défauts internes. Cependant, l’inspection par ultrasons et les autres
techniques classiques de CND sont souvent intrusives, longues et coûteuses. Ils nécessitent une
intrusion humaine et perturbent le fonctionnement normal d’une structure. Par exemple, un
aéronef doit être partiellement démonté afin de fournir un accès à l’IFS de la nacelle de l’aéronef
pour des inspections régulières.

De nos jours, de nombreuses recherches ont été orientées vers le domaine de Structural
Health Monitoring (SHM) qui permettra surpasser les limitation susmentionnées. Compte tenu
des avancées technologiques dans le domaine de transducteurs embarqués et de méthodes de
traitement du signal, le SHM envisage un paradigme différent de l’évaluation non destructive,
dans lequel les transducteurs sont embarqués en permanence à la structure pour effectuer la
détection et l’identification des endommagement in situ.

Un tel système informerait un utilisateur de l’intégrité de la structure sur une base de temps
continu ou périodique sans certaines des contraintes imposées par les techniques classiques de
CND. Les données collectées par les transducteurs au cours de la durée de vie de la structure peu-
vent être inspectées afin de détecter tout endommagements naissant et de décrire l’évolution de
défauts existants. Si les endommagements ont été détectés par un système SHM, une inspection
plus approfondie peut être effectuée à l’aide des méthodes CND classiques.

Dans cette perspective, le contrôle par ondes guidées (abréviature en anglais GW pour
Guided Waves) est apparu comme une option importante pour le système SHM. Dans une
structure en forme de plaque, ces ondes sont également appelées ondes de Lamb, du nom d’un
mathématicien, Horace Lamb, qui a publié le premier ouvrage sur le calcul et l’analyse des GW
en 1917. Même si les avantages potentiels de l’utilisation de GW pour l’évaluation des CND ont
été reconnus dans les années 1950, il a fallu plusieurs décennies avant de pouvoir mettre en
pratique cette technique, puisqu’il fallait mener des recherches approfondies sur les phénomènes
d’excitation de GW, de propagation modale de GW, et leur interaction avec les défauts. De nos
jours, les GWs sont utilisés dans de nombreuses méthodologies de détection et de caractérisation
des endommagements, notamment l’imagerie par des ondes guidée (abréviature en anglais GWI
pour Guided Wave Imaging).

Dans le secteur l’aéronautique, le SHM devient de plus en plus demandé, principalement
pour les raisons suivantes. Premièrement, L’application de méthodes SHM permet de garantir
l’intégrité structurelle et la fiabilité. La durée de la vie de la structure peut ainsi être prolongée à
mesure que l’initiation d’endommagements peut être détecté et la maintenance nécessaire peut
être anticipée afin d’empêcher la dégradation de la structure. Deuxièmement, la procédure de
la maintenance régulière, qui nécessite le désassemblage de l’aéronef, peut être remplacée par
une maintenance conditionnelle, c’est-à-dire que, lorsqu’un dommage est détecté, le système
SHM envoie un signal d’alerte de manière à ce que le travail de réparation puisse être planifié
en avance et que les actions correspondantes puissent être planifiées. Un système SHM peut
également surveiller des zones inaccessibles pour les techniques de contrôle non destructif
classiques et ne perturbe pas le fonctionnement normal d’un aéronef. Cela permet d’éviter des
pertes économiques causées par des temps d’arrêt imprévus. Des inférences statistiques peuvent
être tirées des données fournies par des systèmes SHM similaires afin de prédire l’évolution de
l’intégrité de la structure. Enfin, un système SHM peut potentiellement réduire une marge de
sécurité de conception. Tous ces facteurs entraînent un avantage économique significatif pour
un utilisateur de la structure.

Le sujet de cette thèse vise à développer un système SHM basé sur GWs pour la détection,
la localisation et la caractérisation de dommages dans des structures en plaques en alliages
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d’aluminium, CFRP / GFRP et HCSS, et à les traduire en structures composites complexes, telles
que une nacelle d’avion. Cette thèse présente les travaux menés dans le but de développer
un système de SHM par ondes guidées capable de détecter, localiser et dimensionner efficace-
ment les défauts dans des structures aéronautiques assimilables à des plaques, en matériaux
composites ou en aluminium. Des simulations et des méthodes d’apprentissage sont utilisées
pour déterminer les caractéristiques principales des ondes guidées propagées, notamment
les vitesses de phase et de groupe ainsi que la fonction de Green 3D. Celles-ci sont ensuite
utilisées pour traiter les signaux des ondes guidées afin de produire des images représentant
l’intégrité des structures étudiées. Ce travail comprend également une étude approfondie des
algorithmes d’imagerie DAS, MV et Excitelet, les plus prometteurs parmi ceux de la littérature,
une évaluation de leurs performances par analyse statistique sur une grande base de données
de résultats de simulation d’imagerie par ondes guidées et propose une méthode d’imagerie
parcimonieuse. Alors que la détection et la localisation des défauts à partir de l’analyse des
images est aisée, le dimensionnement du défaut est un problème plus complexe en raison de sa
forte dimensionnalité et de sa non-linéarité. Il est démontré que ce problème peut être résolu
par des méthodes d’apprentissage automatique sur une grande base de données de résultats
de simulation d’imagerie par ondes guidées. Ces méthodes d’imagerie nécessitent cependant
une référence, mesurée sur la structure dans un état supposé sain. Elles sont efficaces dans des
conditions opérationnelles stationnaires mais sont sensibles aux variations de l’environnement
et notamment aux fluctuations de température. Ce travail présente donc l’étude de la robustesse
face aux effets thermiques des méthodes d’imagerie par ondes guidées et propose un modèle de
détection de défauts capable d’analyser des résultats d’imagerie détériorés. Plusieurs techniques
de compensation des effets thermiques sont étudiées et des améliorations sont proposées. Leur
efficacité est validée pour les plaques d’aluminium mais des améliorations supplémentaires sont
nécessaires pour les étendre aux plaques de composites.
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Introduction

Outline of the current chapter

1.1 Background 1

1.2 Structural Health Monitoring 5
1.2.1 Introduction to SHM . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 SHM methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Guided waves-based SHM . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3.1 General overview of GWs-based SHM system . . . . . . . . . 7
1.2.3.2 Advantages and challenges . . . . . . . . . . . . . . . . . . 8
1.2.3.3 A brief review on GW-based SHM methods . . . . . . . . . 9

1.3 Objectives of thesis 11

1.4 Thesis outline 11

This chapter provides an introduction to the field of Guided Waves-based Structural Health
monitoring (GW-SHM) starting with motivation and basic concepts of structural integrity
evaluation. Then, it delves into constitutive parts and into operational principle of a GW-SHM
system and provides a brief literature review. Afterwards, advantages and challenges are pointed
out, and research objectives are formulated.

1.1 Background

From the very origin, airspace industry is intended to use lightweight and high-performance
materials in order to increase the reliability and profitability of aircraft. From this perspective,
aluminum alloys and composites are particularly attractive. They constitute two major classes of
widely used materials and play a significant role in current and future aerospace applications.

Aluminum alloys are beneficial in comparison with other metallic alloys, and they are often
used in aircraft frame designs. Composite materials are particularly attractive to aerospace appli-
cations due to their exceptional directional mechanical properties, lightweightness and corrosion
resistance. Such materials typically consist of relatively strong and rigid fibers encapsulated
in a tough resin matrix, as schematically shown in Figure 1.1a. The most eminent composite
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Figure 1.2 – Aircraft nacelle’s Inner Fixed Structure.

expand internally to large volumes and decrease significantly the reliability of the structure.
In recent years, there has been an increasing interest to structural integrity evaluation systems

in many industries, and aerospace in particular. It is envisaged that such systems would apprise
manufacturers, end-users, and maintenance teams of the structure’s integrity and inform about
any incipient damage on a frequent or continuous time basis. It would also allow estimating and
extending the Remaining Useful Life of structures, but a high level of knowledge is necessary to
guarantee both structures availability and reliability.

A number of Non-Destructive Evaluation (NDE) techniques have been developed to evaluate
the integrity of such structures [2, 3]. Currently, this is a primary approach for the aerospace
structures inspection, but these techniques have certain drawbacks: they are usually expensive,
time-consuming and often disturb a structure from normal operation. Moreover, such structures
are often hardly accessible to maintenance teams, so an aircraft disassembly might be required.
Manufacturers introduce a safety margin design to resist accidental impacts and structure aging,
but this leads to additional weight of the structure and to consequent economic shortcomings.

In light of this, Structural Health Monitoring (SHM) can contribute significantly towards
enhancing the reliability and profitability of engineering structures [4, 5]. More details on
basics, principles of operation and brief overview of SHM methods are provided in the following
section.
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1.2 Structural Health Monitoring

1.2.1 Introduction to Structural Health Monitoring

A number of industries, including the aerospace, are interested in damage detection in their
products, as well as in their manufacturing infrastructure at the earliest possible stage. General
practice for damage detection requires performing some form of regular structural integrity
monitoring (NDE or SHM) and is motivated by potential life-safety and economic impact of
this process. Both NDE and SHM aim to evaluate the integrity of a studied structure using
non-destructive methods. These fields are very close intrinsically and can overlap to a greater or
lesser extent.

NDE can be referred to the assessment of structural integrity using removable transducers
and instrumentation. It is usually scheduled, requires human intrusion and disturbs structures
from normal operation. In general, NDE measurements are interpreted by the qualified staff on
a one-off basis, meaning that current inspection results are not compared with those obtained
previously [6].

In contrast to NDE, SHM relies on permanently embedded transducers that are typically
used for measuring a structural dynamic response either in a passive or active way. As the
SHM system is an integrated one, inspection can be conducted anytime and generally presumes
periodical structure observations. Knowledge-based methods, i.e., signal processing algorithms
[7, 8], are then used for damage-sensitive features extraction and analysis to determine the
current state of structure health.

In a long-term perspective, SHM provides periodically updated information regarding the
ability of the structure to operate and perform its intended functions taking into consideration
inevitable thermo-mechanical aging and fatigue accumulation [9]. In case of extreme events,
such as unanticipated blast loading or impact forces due to improper use of the structure,
SHM is used for rapid integrity screening. Such inspection aims at providing the real-time
information about structural performance and quality reduction, and its current ability to meet
a user’s requirements. However, SHM system also imposes additional constraints such as system
integration and robustness against hardware aging.

1.2.2 Primarymethods in Structural HealthMonitoring for aerospace struc-
tures

A number of methods have been developed for SHM applications, some of them are presented be-
low. These methods can be broadly classified into two categories: active and passive, respectively
[10]. Active approaches require actuation, i.e. excitation, of the structure and then measurements
of the resulting responses [11], while passive ones are aimed only at structure observation and do
not require any type of actuation. Sensors are used for capturing perturbations directly caused
by a defect such as a rapid release of acoustics energy, heat or strain measurement. Passive SHM
methods have been studied for a long time and are relatively mature. They might be attractive
due to low energy consumption of the SHM system, but they are constrained only to listening to
the structure and do not interact with a defect. Therefore, passive methods might be susceptible
to miss the damage event.

Among passive methods, perhaps, the most prominent is a Comparative Vacuum Monitoring
(CVM) [12]. This SHM technique based on the comparison of vacuum and atmospheric pressure
in fine tubes within a simple manifold that is adhered to the surface of a structure [13]. It is
efficiently used for real-time monitoring of crack initiation and/or propagation, and therefore,
was adapted for SHM of aeronautic structures [14, 15]. It is worth noting that for now this is
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Figure 1.5 – Schematic of Fiber Bragg gratings sensor [20].

path [30]. These waves are usually actuated and sensed by a set of piezoelectric transducers.
However, hybrid models have been recently developed [31], where piezoelectric transducers
are used for actuation, and FBG sensors are used for guided waves sensing, respectively. Such a
configuration allows partial integration of the SHM system into the structure.

Active SHM methods are currently of great interest due to their ability to interrogate a
structure when required in prescribed and repeatable manner. It appears that ultrasonic Guided
Waves (GWs) inspection is the most prominent among them [7, 28], but the complexity of GWs
signals often requires sophisticated processing and analysis tools for correct interpretation [29].

1.2.3 Guided waves-based Structural Health Monitoring

Since plate-like structures are widely used in different industries and aerospace in particular, this
work is mainly focused on the use of GWs for SHM. This is arguably one among a few detection
mechanisms that combines both reasonable sensitivity to damage and significant propagation
distance in plate-like structures [32]. Therefore, a relatively small number of transducers are
required to monitor large and hardly accessible structures such as IFS.

Although, the first application of GWs for structure monitoring was proposed by Worlton
in 1961 [33], it is still under development. Historically, the first industrial application of GWs
for defect detection was proposed for petroleum and chemical industries, namely for pipelines
inspection [34, 35], but, nowadays, this method is increasingly used in other industries, including
the aerospace.

1.2.3.1 General overview of GWs-based SHM system

These days, GWs are increasingly used in SHM systems [32, 36, 37] for damage detection,
localization and sizing in plate-like structures. They excite whole structures cross-section and,
under certain conditions, can propagate over significant distances while being sensitive to both
surface and subsurface defects [38]. Therefore, only a limited number of sensors are required to
monitor efficiently large and often inaccessible for human intrusion structures. The schematic
of GWs-based SHM system is shown in Figure 1.6 [39]. It is worth noting that GWs are multi-
modal and dispersive, thus they require advanced post-processing techniques to extract defect
signatures from the collected data. More details on GWs properties are provided in Chapter 2.

There exist a number of methods to excite and sense GWs [40]. A significant amount of
efforts has been devoted to design lightweight, low energy consuming and sensitive transducers
capable of delivering modal and directional purity of GWs excitation and sensing, respectively
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thus saved instead of being spent on disassembling and reassembling the aircraft in order to
conduct conventional NDE.

With a number of benefits, GWs-based SHM arises as a prominent technology for intelligent
structures, but it also has drawbacks that should be mentioned. First, such a system is an
integrated one, therefore, significant effort has to be dedicated to design reliable hardware that
supports high resolution acquisition of GWs signals and does not degrade with time in harsh
environment. Among different types of GWs transducers, PZT transducers are standing out as a
mature and reliable technology with service time that can last dozens of years. However, these
transducers have to be surely integrated using special glues, and require cabling that, in total,
is heavy and takes room. It is worth noting that for the next generation of GWs-based SHM it
could be possible to use FBG sensors for GWs measurements. Apart from other benefits, this
technology can decrease significantly the total weight of sensors.

The following drawbacks of a GWs-based SHM system are rather due to the complexity
of GWs propagation in both isotropic and anisotropic structures. As mentioned above, they
can propagate over long distances and are sensitive to structural inhomogeneities, but they are
also multi-modal, dispersive, and their propagation can be adversely affected by environmental
effects and operational conditions. The damage response is often overlapped and obscured
by incident GWs and corresponding reflections from structural features that can lead to false
alarms of the SHM system.

1.2.3.3 A brief review on GW-based SHMmethods

As mentioned above, GWs are multi-modal and dispersive. They are complex for straightforward
interpretation and usually require sophisticated and intelligent methods for analysis and patterns
recognition. The main goal of these methods is to remove noise and non-relevant information,
and to enhance weak but informative features that can be used to assess the integrity of a
structure. Obviously, there are no universal physical or statistical features and signal processing
methods that will be always efficient. Many research efforts have been devoted to adapt existing
and to develop new signal processing methods in order to overcome difficulties associated with
physical understanding of GWs propagation. Some of these methods are presented below.

Among the fundamental methods for GWs signal analysis, frequency domain analysis is,
perhaps, the most prominent. Alleyne et al.[44] applied a two-dimensional Fourier transform
to decompose GWs signals into frequencies and wavenumbers that make it up and to estimate
the strength of each modal component. Afterwards, they proposed to use a reflection coefficient
of each guided mode [38] as an indicator of the damage size. Later on, the determination of
damage-sensitive features became of a great interest in GWs-SHM community. For example,
Michaels et al. [45] demonstrated that a combination of differential features in both time and
frequency domains can be used to discriminate damage in GWs signals. They also proposed
[46] to consider local temporal coherence between a measured signal and reference signals
as a tool for damage detection under temperature variations. Later, Xu et al. [47] used the
Hilbert-Huang transform to decompose GWs signals into intrinsic modes (empirical mode
decomposition) and to assess the instantaneous phase and frequency in order to build damage
sensitive features. Chen et al. [48] applied a wavelet transform using a novel mother wavelet in
order to build a damage sensitive indicator. Samaratunga et al. [49] developed a wavelet spectral
finite element method for transverse cracks detection in composite plates. This method assumes
the comparison of measured signals with model predictions so that the defect location can be
determined through the time-of-flight of scattered GWs. Ghrib et al. [50] developed a method
for non-linear signal based features extraction and applied support vector machine (SVM) for
damage type classification and severity quantification in CFRP plates.
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Over the last decade, data-driven methods have become increasingly popular for SHM, and
for GWs-based SHM in particular [51]. Data driven feature-based inference plays a key role in
solving inverse problems and is widely adopted for damage characterization tasks [52]. These
statistical and machine learning methods are often used for completing challenging tasks such
as automatic feature generation, classification and regression.

Perhaps, the most widely used statistical tool in SHM community is principal component
analysis (PCA) [53]. It has been successfully applied for removing environmental effects on the
observed damage sensitive features [54]. Kernel tricks, namely kernel-PCA, have been applied
for non-linear patterns recognition in GWs signals. These patterns have a better discriminative
power as compared to linear methods [22]. Dynamic Time Warping [55] has also been used to
build features that distinguish damaged states from pristine ones of structures under varying
environmental conditions. Finally, a Gaussian Mixture Model (GMM) [56] has been used to
suppress time-varying influence from GWs signals and to determine time-independent damage
features.

These physical and statistical features can be used in robust regression and classification
analysis in order to determine the integrity of the structure and characterize defects, as proposed
in following works: [50, 56, 57]. However, being effective for damage detection and discrimina-
tion, such features generally lack interpretation. In addition, their calibration might require an
expert intrusion which is somewhat limiting for automatic SHM systems.

With the purpose of overcoming these limitations, GWs imaging techniques have been
proposed. For example, Memmolo et al. [58] presented a GWs imaging technique focused on
impact damage detection in composite plates. Druet et al. [43, 59] proposed a noise cross-
correlation technique for passive GWs tomography of extended defects such as corrosion using
an array of piezoelectric (PZT) transducers for GWs actuation and sensing. Wang et al. [60]
proposed a synthetic time-reversal method, in which the energy of GWs signals is mapped to
the image representing the integrity of the structure. This approach has been improved to the
different extent by a number of researchers and now exists in several modifications [61–63].
Some of them incorporate the knowledge of a defect diffraction pattern [64], and some take
into account complex paths of GWs propagation after several reflections [65]. Quaegebeur et
al. [66, 67] proposed a more advanced GWs imaging technique that is based on the correlation
coefficient calculation between experimental and theoretically computed signals assuming that
the defect is a perfect reflector.

Recently, compressed sensing has been actively used for analyzing GWs signals [68–70].
Harley et al. [71] used a matching filed model based on the sparse wavenumber analysis to
reconstruct images representing structural integrity. Mesnil et al. [72] demonstrated that a
guided wavefield can be reconstructed over significant area using only several measurement
points so that defect location and size can be determined from the full-field analysis.

All the presented methods have their strengths and weaknesses. In general, they are effec-
tive for damage detection and localization, but, as of today, defect characterization remains
challenging.
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1.3 Objectives of thesis

Many engineering structures, including IFS shown in Figure 1.2, are exposed to harsh environ-
ment or improper use so that structural flaws might appear. As mentioned above, SHM is a
technology that implements on-line damage detection and identification strategy in order to
increase life-safety and profitability of engineering structures.

The research topic of this work is aimed at developing a GWs-based SHM system for damage
detection, localization, and characterization in plate-like structures made of aluminum alloys,
CFRP/GFRP and HCSS that could be eventually translated to complex composite structures,
such as an aircraft nacelle. From this perspective, objectives of the thesis are formulated as
follows:

1. The first objective of this work is to identify state-of-the art methods for GWs signals
interpretation that allow structural integrity evaluation. Then, improve and test them in
the multiple configurations relevant to the use-case of this thesis.

2. The second objective comprises extending GWs-based SHM system capabilities and enhanc-
ing its robustness against operational effects so that it would be capable of performance
under realistic conditions.

1.4 Thesis outline

In this work, a prototype of a GWs-based SHM system has been developed in order to detect,
localize and characterize structural damages in plates made of aluminum alloys, multi-layered
monolithic plate-like composites and HCSS panels. The research objectives are accomplished in
the order of appearance and the thesis is composed as follows.

Chapter two reports on general properties of GWs, analysis of their propagation and damage
interaction. A semi-analytical finite element method coupled to a modal expansion method and
a honeycomb homogenization model as well as a data driven method are used for determining
principal characteristics of GWs and for modeling their propagation in the studied structures.

Chapter three reports on damage detection and localization using GWs imaging. Three
defect imaging algorithms are implemented, tested and adapted to the large structures through
the sparse sampling. In addition, exhaustive statistical study has been conducted in order to
evaluate their localization accuracy.

Chapter four presents results on damage size evaluation using GWI results. An extensive
database of GWI results is processed by means of machine learning methods, including a support
vector machine and convolution neural networks in order to build an inversion model capable of
defect size estimation in mono- and multi-frequency inspection modes.

Chapter five reports on methods for GWs-based SHM system robustness enhancement.
Temperature effects on GWs propagation, defect detection, localization and characterization are
studied. The Modified Dynamic Time Warping method is proposed for compensating this effect
and for enhancing defect imaging capabilities of the GWs-based SHM system.

Finally, conclusions for this work are drawn and perspectives on further developments
are discussed. The progress of this research work has been presented in eight national and
international conferences and three papers are currently under preparation. They are listed in
Appendix A.
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In various NDT and SHM applications, there is a strong interest in analytical computation of
GWs signals over the region of interest (ROI) of the structure. For example, our SHM system
prototype relies on processing such signals that are generated by an elastic pulse induced by
piezoelectric transducers. As shown in Figure 2.5a, the PZT can be modeled as a distributed
force acting on the upper surface of the plate, i.e. x3 = 0. The GWs signals can be expressed
in terms of the elastodynamic 3D Green’s function [36, 77–79], and a particle displacement
field can be obtained using double integration of the 3D Green’s function convolved with the
excitation function. It can be expressed as follows:

u(x1,x2,x3, t) =

∫ ∫

G3D(x1 − x′1,x2 − x′2,x3)× f (x1 − x′1,x2 − x′2)dx′1dx′2, (2.1)

where u(x1,x2,x3, t) is the displacement field, G3D(x1 − x′1,x2 − x′2,x3) is the 3D Green’s function,
f (x1 − x′1,x2 − x′2) is the harmonic force applied to the surface.

The 3D Green’s function can be either modeled or experimentally determined. The analytical
modeling, including semi-analytical modeling (SAFE) [80] method coupled to the modal expan-
sion method (MEM) [36, 81–83], has been widely used as it allows computing the 3D Green’s
function for isotropic and anisotropic layered structures. The honeycomb core homogenization
model can be applied to replace a periodic core of HCSS, and it allows retaining the same model-
ing framework. On the other hand, the 3D Green’s function can be experimentally determined
using spectral filters. This approach makes it possible to overcome limitations of analytical
modeling, such as 3D Green’s function modifications by structural features. Both methods are
developed in the following section.
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study the GWs propagation.

Yu et al. [84] have demonstrated that at low frequencies, where the wavelengths are larger
than the honeycomb cell size, the guided wavefield is global and GWs excite the entire sandwich.
In this case, the HCSS can be considered as a single waveguide, and interact with honeycomb
cells. At higher frequencies, where the wavelengths are comparable to the cell size, the mixture
of global and partial guided wavefields can be observed. At this frequency, GWs start to interact
with honeycomb cells, and, as a result, the energy of propagating GWs is partially trapped in the
cellular, hence standing waves are formed. At even higher frequency, where the wavelengths are
smaller than the honeycomb cell size, it becomes difficult to interpret the guided wavefield, as
GWs propagate the skins and in the core. In addition, a complex speckle pattern of the guided
wavefield is observed due to complex deformation modes of the honeycomb core cell walls. For
the sake of simplicity and interpretability, it was agreed to inspect the structure using GWs
generated at low frequencies, as they are still capable of interacting with defects such as fiber
breakage, plies delamination or core-sheet debonding.

For example, a guided wavefield in the HCSS generated at 30 kHz by a piezoelectric trans-
ducer, 18 mm in diameter and 0.5 mm thick, is shown in Figure 2.4. Figures 2.4a and 2.4b
compare the measured guided wavefields in the pristine HCSS at 332 µs and 372 µs, respectively.
It can be observed that the reconstructed guided wavefield mainly consists of A0 mode, as the
LSVD is much more sensitive to the normal displacement measurements. The S0 mode is mostly
governed by the in-plane particle motion, so that it is almost not measured by LSVD. The guided
wavefield is capable of propagating over long distances in coherent wavepackets and is affected
by the anisotropy of the material. GWs propagate faster along X and Y axes than in the direction
of 45°, and exhibit 90° symmetry.

GWs capability to interact with defects can be demonstrated using a simplified defect model,
see Figure 2.4c, where the structural flaw is simulated by a teflon plate insertion in the skin layer
of HCSS between the CFRP laminates. The guided wavefield is modified in the damaged region
of the structure in comparison with the pristine region. Besides the GWs reflection from the
defect, as shown in Figure 2.4c, a part of the energy is trapped and standing waves are formed
inside the defect. The displacement amplitude of GWs signals is increased in the flawed zone,
so that the energy trapping by the defect can be observed by computing an energy map. It is
obtained by taking a root-mean-square (RMS) of the GWs signals, as shown in Figure 2.4d. While
the HCSS excitation is centered at 30 kHz, a part of the spectrum corresponds to wavelengths
that are small enough to interact with the periodic cellular structure of the core layer. Figure
2.4d also presents the evidence of standing waves formation, i.e. energy trapping, in the pristine
region of the structure. A periodic honeycomb pattern can be observed on the energy map,
meaning that the skin layer acted as a vibrating membrane due to the standing waves inside
each honeycomb cell.

2.3 Guided waves modeling

Poisson’s and Kirchhoff’s theories accurately describe extensional and flexural motions in the
isotropic plate at low frequencies [3]. However, for CFRP plates and HCSS, more sophisticated
modeling tools are required. They must take into account the angular dependency of phase
and group velocities and energy focusing factor, i.e. Maris factor, caused by the anisotropy
of the structure [36, 82]. Here, we describe the modal expansion method coupled with the
semi-analytical finite element (SAFE) modeling. This method allows linear decomposition of the
3D wavefield on propagating modes, so that each mode can be independently used for defect
imaging in the structure.
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can be obtained from the orthogonality matrix:

O =

(

A1 −ω2M 0
0 −A3

)

, (2.11)

which represents a scalar product on a specific basis. Hence, the modal displacements obtained
for the formulation 2.2 have to be expressed in this specific basis. The basis change is done
through the unitary transformation matrix T . More specifically, the matrix T is diagonal, where
all off-diagonal elements are equal to zero. The diagonal elements are equal to one, except for
elements corresponding to the particle displacements in the x1 direction, which are equal to the
imaginary unit i. Therefore, the modal displacement vector can be reformulated as follows:

Q̂ = TQ. (2.12)

Orthogonality relation states that for the frequency ω all existing modes are orthogonal, and
this yields the following:

Q̂
†
m
(ω)Om(ω)Q̂

m
(ω) = 0. (2.13)

Consequently, it can be assumed that orthogonality relation still approximately holds for the
solutions that are quite close in the frequency domain, which gives:















Q̂
†
n
(ω)Om(ω)Q̂

m
(ω + δω) ≈ 0

Q̂
†
m
(ω)Om(ω)Q̂

m
(ω + δω) , 0,

(2.14)

where δω≪ ω. Orthogonality terms have to be calculated between the current eigenvector Q̂
m
(ω)

that corresponds to the mode m at frequency ω and all other existing solutions for adjacent
frequency Q̂

m
(ω + δω). The correct mode tracking is achieved by minimizing the orthogonality

term and imposing the mode continuity constrains.

2.3.3 Homogenization model for HCSS

The honeycomb sandwich structure consists of an aluminum honeycomb core bonded to layered
composite skins, as shown in Figure 2.7. Hence, such a complex structure cannot be straightfor-
wardly modeled using SAFE formulation. Song et al. [86], Smelyanskiy et al. [87] and Sikdar et
el. [88] showed that by replacing the honeycomb core with an equivalent orthotropic plate, it
is possible to model static and low-frequency dynamics of the HCSS. This approach provides
acceptable results when the wavelengths of propagating GWs are larger than the size of an
elementary cell. Effective elastic properties of an equivalent plate can be obtained using various
analytical and numerical homogenization models.

From the numerical point of view, a homogenization model is much less time consuming
and computationally demanding than the models that describe all the micro-structures of
honeycomb cells. It has been demonstrated by Tian et al. [89] and Florens [1] that in the high
frequency range, where the wavelengths are comparable to the size of the honeycomb cell,
the interactions between GWs and the core layer become noticeable. Such interactions result
in complex deformation modes of the honeycomb cell. They are also responsible for several
phenomena, including structural resonances, where standing waves are formed in the single cell,
and the appearance of energy band gaps.

On the basis of the analysis of GWs propagation in HCSS [1], it was agreed to monitor the
structure using low-frequency excitation, so the wavelength of propagating guided modes are
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E1 = Es(
t

lb
)3

cosθ

(h/l + sinθ)sin2θ

1

1+ (2.4+1.5νs + cot2θ)(t/lb)2
, (2.16)

E2 = Es(
t

lb
)3
h/l + sinθ

cos3θ

1

1+ (2.4+1.5νs + tan2θ + hb/lb
cos2θ

)(t/lb)2
, (2.17)

E3 = Es
ρ∗

ρs
, (2.18)

where E1,E2,E3 denote effective Young moduli, Es and ns correspond to the constitute material
Young modulus and Poisson ratio, respectively. The effective shear moduli can be obtained as
follows:

G12 = Es
h/l + sinθ

(hb/lb)2 cosθ

1

C
, (2.19)

G13 = Gs
t/l
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l
) tan(
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2
)], (2.20)

G23 = Gs
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[sin2θ(

lb
l
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+
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tan(
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2
)], (2.21)

with

C = 1+2(hb/lb)+(t/lb)
2(
2.4+1.5νs

hb/lb
(4+h/l+sinθ)+

h/l + sinθ

(hb/lb)2
[(h/l+sinθ) tan2θ+sinθ], (2.22)

where Gs denotes a shear modulus of the constitutive material. Finally, effective in-plane and
out-of-plane Poisson ratios can be computed as follows:

ν12 =
cos2θ

(h/l + sinθ)sinθ
[

1 + (1.4+1.5νs)(
t
lb
)2

1+ (2.4+1.5νs + cot2θ)( t
lb
)2
], (2.23)

ν21 =
sinθ(h/l + sinθ)

cos2θ
[

1 + (1.4+1.5νs)(
t
lb
)2

1+ (2.4+1.5νs + tan2θ +
2(hb/lb)
cos2θ

)( t
lb
)2
], (2.24)

ν31 = ν32 = νs. (2.25)

where νs denotes the Poisson ratio of the constitute material. It is worth noting that once all
the three effective Young’s moduli, namely E1,E2,E3, are obtained, other Poisson’s ratios can be
determined using reciprocal relation. Having analyzed effective elastic properties formulations,
it can be concluded that the in-plane effective parameters vary as a function of ( tl )

3, while the

out-of-plane parameters exhibit linear behavior with respect to t
l . It has been shown that the

effective shear moduli G13 and G23 of the core and the Young modulus of the skins have the
highest impact on the HCSS dynamics.

Such an analytical honeycomb homogenization model takes into account the effect of nodes
at the intersection of the cell walls and introduces an effective bending length. Hence, an
accurate HCSS modeling in a low frequency range becomes possible. The validation of the
modeling results is presented in the section 2.2. It is noteworthy that this homogenization
model is physically consistent only in low frequency range (which is currently sufficient for
defect detection in IFS). However, as Tie at el. [92, 93] demonstrated, it lacks of accuracy for
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E1 = E2,MPa E3,MPa ν12 ν13 = ν23 G12,MPa G13 =G23,MPa ρ,kg/mm3

CFRP 65700 4500 0.03 0.3 5100 2500 1760

GFRP 72400 0.255 28800 2100

Core 0.4 1131.3 0.8 0.00013 0.1 207.2 67

Table 2.1 – Elastic parameters of the CFRP, GFRP and effective elastic parameters of the honey-
comb core.

higher frequencies range where wavelengths are of the same size as the honeycomb cell and
meso-scale interactions become important. Therefore, further improvements of this method
might consist in coupling SAFE method with Bloch’s function formulation in order to deliver
fast and reliable GWs modeling tool that would be valid for higher frequencies.

2.3.4 Validation of simulation results

GWs propagation can be equidistantly recorded in a 2D dictionary along the line of observation
which passes through the PZT. Such a collection represents a time-distance domain mapping
of GWs or so-called b-scan measurements. Alleyne and Cawley [44] demonstrated that the 2D
Fourier transform, along the time and space axes, can be applied to the B-scan measurements in
order to transform the time-space domain into the wavenumber-frequency domain. There are
several advantages of such transformation, but the main one is that it is capable of decomposing
overlapped and superposed guided wavepackets into guided modes. Such a technique is often
used to validate GWs modeling, as theoretical modal solutions can be compared to experimental
dispersion curves in order to evaluate wavenumber computation accuracy for the frequency
range of interest.

For example, GWs B-scan and corresponding dispersion curves for orthotropic CFRP plate
are shown in Figure 2.8. The CFRP plate consists of twenty one woven-ply laminates, each
0.275 mm thick, which are oriented 0° with respect to the carbon fiber direction. The elastic
parameters are tabulated in Table 2.1. The GWs are generated using PZT 18 mm in diameter
and 0.5 mm thick, and the excitation function contains two Hanning modulated cycles centered
at 40 kHz. The modal solution obtained with SAFE modeling method are superimposed over
the experimental dispersion curves. By analyzing the results, it can be concluded that the SAFE
model presented in section 2.3.1 provides an accurate solution for the A0 mode. Unfortunately,
theoretical solution of S0 mode cannot be compared with experimental ones due to measurement
set-up limitations.

As described in section 2.3, once wavenumbers and associated displacement vectors are
obtained from the 2D SAFE formulation, the 3D Green’s function can be computed using
the far-field approximation. Consequently, the displacement field generated by the harmonic
point force applied to the surface of the multi-layered composite plate can be obtained. The
MEM formulation stipulates that the global 3D displacement field is computed as a sum of
3D displacement fields related to each mode. The magnitude of the 3D displacement field
of the specific mode depends on the corresponding 3D excitability matrix. The latter can be
computed from the 2D excitability matrix depending on 2D modal displacement vectors. Taking
into account that the wavenumber solutions have been previously validated, the associated
modal displacement vectors can be considered correct and the 3D Green’s function and the
displacement field can be computed. The real part of the 3D Green’s function for the same
composite plate is shown in Figure 2.9.
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In the current research, it was chosen to inspect the structure using low frequencies, where
the wavelength is larger than the honeycomb cell size in order to avoid GWs-HCSS core layer
interaction, while preserving the capability of GWs to interact with structural flaws. Under these
constraints, the HCSS can be considered as a classical multi-layered composite consisting of
different orthotropic plies. For example, to model GWs propagation in such a structure a 20 mm
thick HCSS has been selected. Its top skin panel consists of a three-layer CFRP plate attached to
the GFRP ply, whereas the bottom skin is composed of GFRP ply attached to a five-layer CFRP
plate. All the plies comply with the following orientation 0°, 45°, 0°, 0°, and 0°, 0°, 45°, 0°, 45°, 0°
in the top and bottom skins, respectively. Each ply is 0.275 mm thick, and the elastic parameters
are tabulated in Table 2.1.

To simulate GWs propagation in HCSS, the Malek-Gibson homogenization model has been
applied (as presented in Section 2.3.3). Obviously, this model is less time-consuming and
computationally demanding than those which describe all the micro-structures of honeycomb
cells of the core layer. However, it is worth noting that the homogenized model is correct in
describing static or low frequency dynamic behaviors of the HCSS, but it fails to provide an
accurate solution for higher frequencies. It has been demonstrated that for the high frequency
range, where wavelengths are comparable to the size of the honeycomb cell, it is no more
reasonable to consider the core layer as homogeneous, since interactions between waves and
honeycomb cells become noticeable. Low frequency GWs wavenumbers modeling results for
0° direction are presented in Figure 2.10. The theoretical solutions are superimposed with the
experimental ones, and show a good agreement.

Eigenvectors obtained from the SAFE modeling, while the honeycomb core has been homoge-
nized, cannot be considered as real modal displacements, rather pseudo modal displacements.
Even though, wavenumber solutions exhibit a good agreement with an experiment even above
50 kHz, these solutions are no more reliable, as they do not take into account GWs-core layer
interactions. Hence, the 3D Green’s function can be computed only in the low frequency range,
as associated modal characteristics, e.g. Poynting vector, Maris factor etc., require displacement
vectors to be computed. Figure 2.11a presents a real part of the 3D Green’s function for the
HCSS in the 0°, 22.5°, 45° directions. The 3D Green’s function has been used to compute an
analytical signal, which contains A0 mode propagated on the 150 mm, see Figure 2.11b.
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2.4 Data driven approach for Guided Waves modeling

For simple shape structures, e.g. plates, pipes, rails, the 3D Green’s function can be computed
for each guided mode using analytical modeling methods, such as SAFE or GMM. However,
real-life structures are often equipped with stiffeners or joints, which introduce additional
complexity to GWs propagation. Such structural features modify the 3D Green’s function
of each propagating mode, so analytical determination is no longer possible. On the other
hand, a classical finite element modeling (FEM) method can be used to model structures of any
complexity, but it requires a tedious meshing procedure and significant computation time. To
partially overcome this limitation, a hybrid SAFE/FE method has also been developed to deal
with stiffened composite plates where the propagation through the stiffener is computed by FE
whereas the propagation elsewhere is computed using the SAFE method [94]. However, this
method is barely adapted to real aerospace structures that are large and often equipped with
multiple structural features.

For the sake of overcoming this limitation, an experimental approach for the 3D Green’s
function determination in composite plates is discussed in this section. The proposed technique
is generic and, therefore, can be applied to any structure regardless complexity of the geometry
or constitutive materials. Alleyne and Cawley [44] demonstrated that the 2D Fourier trans-
form could be used for obtaining experimental dispersion curves of propagating GWs. In the
wavenumber - frequency domain, i.e., Fourier space, the GWs are well-discriminated, unlike
the time-distance domain [95]. Therefore, modal components of the 3D Green’s function can be
deconvolved from the spectrum. Such a filter can be constructed using machine learning tech-
niques, including overlapping mixtures of Gaussian processes, in order to preserve information
relevant to the guided mode of interest and discard the rest.

2.4.1 Bayesian Framework for Guided waves spectra processing

The overlapping mixtures of Gaussian processes (OMGPs) algorithm [96] has been proven
effective for data association problems. It is based on Gaussian processes (GPs) and is capable
of clustering mixtured data into different trajectories that can come close and even cross each
other. In the following section, theoretical foundations of Bayesian inference, GP and OMGP are
provided.

2.4.1.1 Bayesian Inference

Data modeling problems occur in different fields of research, including SHM. In the Bayesian
framework, a model of a particular phenomenon can be designed using prior knowledge, and
when the data are considered, the model can be adapted to new information. In this framework,
knowledge can be formulated in terms of probability distributions. For example, given the
2D spectrum of the GWs in a plate-like structure and the corresponding model describing the
dispersion curves by curvilinear lines, the spectrum data can be element-wise associated with
different dispersion curves with certain probability. It is worth noting that the model choice
plays a key role in this framework.

Firstly formulated by Bernoulli in 1713, this probabilistic framework was then developed by
Bayes in 1763, Laplace in 1812, and Jeffreys in 1939. Consider a model Hi with parameters θi ,
which is used to describe some data D. Bayesian inferences can thus be made using a two step
procedure. The first step consists of inferring parameters θi of the model using the data, and the
second one involves selecting the best model among counterparts [97].

The prior belief about modelsH can be expressed in terms of probability distribution over all
possible models, P(Hi ). The prior belief about parameters can be also described as probability
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distribution, P(θi |Hi ). Each model is characterized by a distinct set of parameters θi , therefore,
parameters distribution is conditional on Hi .

Consider the first step of the framework and the data. Parameters have to be inferred for
each model conditioning on the data. In other words, each model makes a prediction about how
likely the data D were generated using Hi and parameters θi , which results in corresponding
probability distribution P(D|θi ,Hi ). The Bayes’ theorem can be used for updating the prior
distribution of the parameters, P(θi |Hi ), using the knowledge that was just gained from the data
P(D|θi ,Hi ). The updated, i.e. posterior, distribution of parameters can be expressed as follows:

P(θi |D,Hi ) =
P(D|θi ,Hi )P(θi |Hi )

P(D|Hi )
, (2.26)

where P(θi |D,Hi ) is the posterior distribution of parameters, P(D|θi ,Hi ) is the likelihood de-
scribing the gain of information from the data, P(θi |Hi ) is the prior parameter distribution, and
P(D|Hi ) is the evidence or marginal likelihood. The latter term describes the probability of the
data for a given model, so the best model from the hypothesis space can be chosen as the one
with the largest P(D|Hi ). For instance, the information gain and therefore parameters selection
for a toy model, which complies with Gaussian distribution, is provided in Appendix A.1.

The second step of the Bayesian framework consists in selecting the best model using the
evidence from the equation (2.26). The Bayes’ theorem can be applied once again to compute
the credibility of the model Hi . It can be expressed as follows:

P(Hi |D) =
P(D|Hi )P(Hi )

P(D)
, (2.27)

where P(Hi |D) is the probability distribution of the model Hi while describing the dataset D. It
allows estimating the plausibility of the model. The P(D) is the probability distribution of the
data.

It should be noted that the Bayesian framework operates in a closed hypothesis space.
Therefore, it is important to choose a good set of models for describing the data, so that they
are flexible enough to capture features of the data, and simple enough to avoid over-fitting. The
parameters θi , which are inferred from the data, introduce an additional complexity when it
comes to compare models from the hypothesis space. The marginal-likelihood P(D|Hi ) can be
evaluated, thus the best model can be chosen as follows:

P(D|Hi ) =

∫

P(D|θi ,Hi )P(θi ,Hi )dθi , (2.28)

where the likelihood P(D|θi ,Hi ) and the priors P(θi ,Hi ) are in general non-linear functions. The
integral (2.28) is often analytically intractable, except for the linear models, where the likelihood
complies with the Gaussian distribution. Such a linear model is specified by a number of basis
functions, and is named the Gaussian process.

2.4.1.2 Gaussian process

The Gaussian process (GP) [98], a flexible Bayesian nonparametric model, has been widely
used in a multitude of applications for data analysis due to its remarkable analytical properties
and exceptional performance in regression tasks. Assume the data set of N elements D ≡
{xi , yi }Ni=1, where x and y denote inputs and corresponding outputs. The regression problem
can be formulated as follows: for a given new input x∗, derive a predictive distribution for the
corresponding output y∗ using D.
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The GP regression model supposes that the observation y differs from the function values
f (x) by an additive noise ǫ. The noise complies with the independent and identically distributed
Gaussian distribution with zero mean and variance σ that specifies the noise power. Thus, the
regression problem can be expressed as follows:

y = f (x) + ǫ, (2.29)

where the function f (x) describes variables x as the Gaussian distribution N with the mean µ,
often set to 0 by subtracting the sample mean from the data set {y(xn)}mn=1, and the covariance
function K(x,x′), also known as kernel. One of the most well-known covariance functions [99] is
a squared exponential:

K(x,x′) = σ0 exp(−
1

2
xTΛ−1x′), (2.30)

where σ0 is the signal power and Λ is the length scale that controls the decay rate of the
correlation between outputs. From now on, all kernel parameters will be referred to as θ.

Hence, for all available and forthcoming observations, the GP regression problem can be
formulated as follows:

(

y
y∗

)

∼N


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
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

µ,

(

K +σ2I K∗
KT
∗ K∗∗

)

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







, (2.31)

where K = K(x,x′), K∗ = K(x,x′∗), and K∗∗ = K(x∗,x
′
∗). I denotes the identity matrix. The predictive

distribution for y∗ is obtained from equation 2.31 conditioned on the available dataset D using
the Bayes’ theorem:

PGP (y∗|x∗,D) =N (y∗|µGP∗ ,σ
2
GP∗

), (2.32)

where the expected mean value µGP∗ and expected variance σ2
GP∗

for unknown output y∗ are
computed as follows:

µGP∗ = KT
∗ (K +σ2I )−1y (2.33)

σ2
GP∗

= σ2 +K∗∗ −KT
∗ (K +σ2I )K∗. (2.34)

It is evident that the GP regression model performance highly depends on the hyperparameters
{θ,σ}, which specify the kernel and independent noise in the model. Optimal parameters can
be obtained by maximizing the marginal likelihood, while fitting the model on the dataset D.
In practice, a log of marginal likelihood is maximized due to computational reasons. It can be
expressed as follows:

log(P(y|θ,σ)) = −1
2
yT (K +σ2I )−1y − 1

2
|K +σ2I | − N

2
log(2π). (2.35)

The kernel is often constructed so that the analytical derivative of (2.35) is available. Thus, the
optimization gradient methods can be efficiently used for selecting optimal hyperparameters.

2.4.1.3 Overlapping Mixtures of Gaussian Processes

GPs constitute building blocks for the OMGP [96], which assumes that there are M different
trajectories in the data set D, and each trajectory can be associated with a corresponding latent
function from the dictionary F = {f m(x)}Mi=1. It is worth noting that each latent function can
be specified by different covariance functions Km, and every output y can be evaluated using
only one of these functions and by adding an independent noise to it. Hence, the binary N ×M
data association matrix Z can be constructed for the dataset D, where each matrix element zn,m
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designates that the observation yn was generated using f m(xn) and belongs to the trajectory m.

Regarding the previously mentioned description of GP, the OMGP model’s likelihood can be
formulated using every observed element n as follows:

P(y|f m,Z) =
M,N
∏

n=1,m=1

N (yn|f m(xn),σ
2)zn,m , (2.36)

where the prior probability distributions for the association matrix Z and latent functions f m

are defined as follows:

P(Z) =
M,N
∏

n=1,m=1

Υ
zn,m , (2.37)

P(f m|x) =
M,N
∏

n=1,m=1

N (f m(xn)|0,Km), (2.38)

where in the multinomial distribution ρ(z) the hyperparameters Υ
zn,m satisfy the following

expression:
∑M

m=1Υ
zn,m = 1,∀n and the independent Gaussian process is associated with each

trajectory m.

In general form, the marginal likelihood is defined as an integral of the likelihood times the
prior distribution. Unlike a single GP, an analytical computation of the posterior distribution
(2.36) for OMGP model is intractable, so the approximation techniques based on the evaluation
of the Kullback-Leibler (KL)-corrected variational bound are used. Taking into account that the
marginal likelihood is a convex function, the Jensen’s inequality can be used for obtaining its
lower bound:

logρ(y|x) = log

∫

P(y|f m,Z)P(Z)
M
∏

m=1

P(f m|x)d(f m)dZ

≥
∫

q(f m,Z) log
P(y|f m,Z)P(Z)

∏M
m=1P(f

m|x)
q(f m,Z)

d(f m)dZ =: ζVB,

(2.39)

where the ζVB is a lower bound on log marginal likelihood logP(y|x) for any variational dis-
tribution q(f m,Z). For the equation (2.39), the equality is reached if and only if variational
distribution becomes a true posterior distribution of OMGP, i.e. q(f m,Z) = P(Z,f m|x,y). It is
also assumed that the variation distribution consists of linearly independent distributions, so it
can be factorized as follows:

q(f m,Z) = q(f m)q(Z). (2.40)

Consider that the probability distribution over trajectories q(f m) is given, then the lower
bound on log-marginal likelihood ζVB can be maximized with respect to the q(Z). Similarly,
assuming that q(Z) is given, it allows maximization of ζVB with respect to q(f m). Therefore,
distributions q(f m) and q(Z) initialized from their priors (2.37) and (2.38), respectively, are
iteratively updated following such a twofold optimization procedure. The convergence can be
guaranteed as both distributions are increasingly ameliorated, and for each optimization step
the lower bound can be computed as follows:

ζVB = logP(Y |Fm,Z)q(f m ,Z) −KL(q(Fm||p(Fm)))−KL(q(z)||p(z)))), (2.41)
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where

logP(Y |Fm,Z)q(f m ,Z) =

N,M
∑

n,m

Υn,manm, (2.42)

with

anm = − 1

2σ2
((yn −µm)2 +Σ

m
n,n −

1

2
log2πσ2), (2.43)

and
Σ
m = (K−1,m +Bm)−1, (2.44)

µm = Σ
mBmym, (2.45)

where Bm is a diagonal matrix containing [Υ1,m/σ
2...ΥN,m/σ

2] elements. KL denotes the Kullback-
Leibler divergence, that is a measure of how approximate posterior distribution is different from
the prior. For arbitrary discrete probability distributions P and Q, it can be computed as follows:

KL(P ||Q) =
∑

i

P(i) log
Q(i)

P(i)
. (2.46)

The KL divergence is used for quantifying the information gain that can be obtained if Q is used
instead of P. In other words, it denotes an amount of information lost when distribution Q is
used for approximating distribution P.

While for a human observer a little effort is required to attribute a part of the spectrum to a
specific guided mode, from an algorithmic point of view this problem is more complex. In the
current research, the OMGP algorithm has been applied to process wavenumber - frequency, i.e.,
spectrum, data, so the guided modes and noise can be decomposed into different trajectories
f m(ω). The latter can be used to construct a filter that will preserve a guided mode of interest and
discard non-relevant information. The mean values of the filters along the frequency axis can be
defined by the corresponding f m(ω) trajectory, while the width of the filter along wavenumber
axis can be modulated by Gaussian distribution, it can be expressed as follows:

Fm(k(ω), f m(ω)) =
1

√

2πξ2
exp
−(k(ω)− f m(ω))2

2ξ2
, (2.47)

where Fm(k(ω), f m(ω)) is a spectral filter, k(ω) is a wavenumber of the GWs, f m(ω) is an OMGP
trajectory of the mode m, ω is frequency, and ξ denotes the width of the filter and it is typically
derived from experimental measurements. More details on the principle of operation and
examples of validation are given in the following section.

2.4.2 Determination of 3D Green’s function

In this section, the data driven approach presented above is used for processing GWs spectrum in
an aluminum plate, CFRP plate and HCSS. Both simulated and experimental data are processed
in order to extract dispersion curves and modal components of the 3D Green’s function. Real
and imagery parts of extracted modal components are then compared with the ones obtained
using modeling tools presented in the Section 2.3. The data-driven approach can be summarized
as follows:

1. Directional guided wavefield measurements;

2. Wavenumber-frequency filtering using OMGP to isolate guided mode of interest;
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so it can be decomposed into different parts: trajectories associated with guided modes and
non-relevant noise.

Then, the spectral filter can be constructed as follows. First, the power spectrum is trans-
formed to the log-scale, so the low energy components become noticeable. The negative part of
the wavenumber-frequency distribution that corresponds to the reflected GWs is discarded, so
only incident waves are preserved. The Sobel–Feldman operator is then applied to the power
spectrum in f and k directions to emphasize edges. This is a discrete differentiation operator,
which computes the approximation of the gradient of intensity distribution. It consists of two
(3× 3) kernels convolved with the power spectrum. It can be expressed as follows:

Gf =




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
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



∗PS, (2.48)

Gk =


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where Gf and Gk are derivative approximations of power spectrum in the f and k directions,
respectively. The power spectrum is denoted by PS . Hence, resulting gradient approximations
can be computed as follows:

G =
√

G2
f +G2

k , (2.50)

where G is a combined gradient magnitude of the power spectrum. This filter allows enhancing
the contours of the power spectrum, and dispersion curves become more perceptible.

The 2D post-processed spectrum data are transformed to the two vectors f and k, respectively.
From Figure 2.13, it can be deduced that the OMGP model has to be specified in such a way
that three trajectories could be reconstructed. The first two trajectories represent guided modes,
and the third one describes the independent noise. The rational quadratic and white kernels
have been selected. The model’s hyperparameters optimization is performed by maximizing a
modified lower variation bound of the log-marginal likelihood as described in section 2.4.1.3.

Trajectories of the OMGP model that correspond to A0 and S0 guided modes are shown
by red and black crosses while the noise component is discarded. The power spectrum values
(f ,k) associated with this trajectory are fitted to the polynomial function using the least square
regression. This procedure allows determining the filter mean wavenumber values over the
frequency range of interest; they are shown in Figure 2.13 by blue and orange lines, respectively.
Following the frequency-wise sampling, the spectral filter is then constructed for each guided
mode using equation (2.47).

This filter is then applied to the spectrum of the GWs, so only a single guided mode is
preserved at once. The inverse 2D Fourier transform is used for re-projecting filtered spectrum
into the time-space domain. From now on, the filtered B-scan contains only temporally separated
wave packets of a single guided mode. Consider a single signal from the filtered B-scan, the
first wavepacket corresponds to the incident guided mode, whereas others represent reflections
from the opposite border of the plate. The guided wave dispersion and attenuation phenomena
result in progressive decrease of the GWs amplitude with propagation distance. Hence, the first
propagated wavepacket can be determined from the signal envelope analysis. The envelope can
be computed using the Hilbert transform as follows:

û(t) =
√

(u(t))2 + (iH(u(t)))2, (2.51)
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the spectrum. Therefore, OMGP model is configured in such a way that two trajectories could be
reconstructed. The first trajectory represents the guided mode, and the second one describes
the independent noise. Spectrum processing results are presented in Figure 2.16a. Red crosses
denote spectral values associated with A0 mode. The blue line, and shadowed region denote the
mean trajectory of the spectral filter and the confidence interval, respectively.

This filter is applied to the spectrum of the GWs in order to isolate A0 modal component of
the 3D Green’s function. The inverse 2D Fourier transform is then used to re-project data into the
time-space domain and the windowing technique is applied to filter incident wavepacket. The A0

modal component of the 3D Green’s function in the CFRP plate is obtained using Eq. (2.52). This
procedure is iteratively repeated for each signal θ ∈ [0,45|△θ = 1°] and R ∈ [0,300|△R = 1,mm],
so the 3D Green’s function is collected over the ROI.

For the sake of comparability between data-driven approach and simulation method that
is presented in Section 2.3, experimental real and imaginary parts of A0 modal component of
the 3D Green’s function are plotted against the ones computed using SAFE and MEM modeling
framework, as shown in Figure 2.17a.

The last studied structure is HCSS. This is the same structure as the one that was used for
modeling results validation in Section 2.3.4. The panel is equipped with a PZT transducer 18
mm in diameter. It is excited with a two-cycle Hanning modulated tone burst centered at 15
kHz to generate GWs that are collected using the same LSVD set-up. As for CFRP plate, this
HCSS has a 90° symmetry of GWs propagation, therefore GWs are collected in polar coordinate
system for the ROI that is defined as follows θ ∈ [0,45|△θ = 1°] and R ∈ [0,300|△R = 1,mm].

As in the previous case, the GWs spectrum mainly consists of A0 mode, therefore, OMGP
model is specified to search for one modal trajectory and the independent noise. Corresponding
trajectory, filter and corresponding confidence interval are shown in Figure 2.16b. Red crosses
denote output of the OMGP model for the modal trajectory, blue line corresponds to spectral
mean values and shadowed region represents filter’s confidence interval. The deconvolution
technique is applied to obtain A0 modal component of the 3D Green’s function in HCSS. Both
real and imaginary parts of it are presented and compared to the simulated counterparts in
Figure 2.17b.

The presented deconvolution method was successfully applied to determine the A0 modal
component of the approximate 3D Green’s function in aluminum plate, CFRP plate and HCSS.
This method involves filtering in both wavenumber-frequency and time domains. Spectral filter
based on the OMGP model can be efficiently applied to isolate guided modes of interest and to
extract corresponding modal components of the 3D Green’s function. The main advantage of
such a filter, is that it allows an approximate determination of dispersion curves and approximate
modal components of the 3D Green’s function without any knowledge of GWs propagation in
the studied structure.
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2.5 Chapter summary

This chapter reports on general properties of GWs actuation, propagation, defect interaction
and sensing. Among different families of GWs that can exist in a waveguide, Lamb waves are
the most attractive for SHM applications. One of the most important properties of the GWs is
that they can be linearly decomposed into modal components. There can be found an infinite
number of corresponding guided modes in the finite waveguide, and all of them, apart from
only fundamental modes, have a specific cut-off frequency frequency. In general, the frequency
range that is below the first cut-off frequency is used for structural monitoring, as for higher
frequencies GWs signal processing becomes much more complicated.

In isotropic metallic materials, e.g. aluminum alloys, the GWs propagation is omni-directional
and is barely attenuated, whereas in anisotropic materials, e.g. CFRP, GFRP composite plates
and HCSS, it is heavily affected. In composite structures, some preferential directions for GWs
propagation can be found. In general, they coincide with constitutive material directionality. For
example, in CFRP composite plate the energy is guided along the fibers’ direction, and in HCSS
it is guided towards the main axes of the honeycomb core layer. Such an anisotropy of composite
structures results in directional dependence of phase and group velocities of guided modes,
excitability and attenuation. Hence, more sophisticated modeling methods have to be used for
modeling the GWs propagation in anisotropic structures rather than in isotropic ones. Taking
into account that GWs can be expressed in terms of the elastodynamic 3D Green’s function, a
semi-analytical finite element modeling method coupled to a modal expansion method has been
used to compute the 3D Green’s function of the structure and the corresponding guided wave-
field. While this modeling framework is developed to model classical multi-layered composites,
the HCSS modeling requires certain modifications due to the periodic core layer. The honeycomb
layer homogenization model can be applied to replace it with an equivalent orthotropic plate,
for which effective elastic parameters can be computed. Such a model provides a reliable result
in the low frequency range, where wavelengths are larger than the honeycomb cell size, but
fails to provide accurate solution for higher frequencies, where interactions between GWs and a
honeycomb cell become noticeable.

It is worth noting that presented simulation tools are limited to ideal plate-like structures,
but, in reality, such structures are often equipped with rivets and other structural features
that modify the elastodynamic 3D Green’s function. In order to overcome this limitation, a
probabilistic data-driven approach has been developed. It is based on the use of overlapping
mixtures of Gaussian processes and allows determining modal components of the 3D Green’s
function from the measured GWs wavefield. This method has been tested on an aluminum plate,
CFRP plate and HCSS panel, and demonstrates a good agreement with GWs modeling methods.

Application of computed 3D Green’s functions for layered-composite structures, including
CFRP, GFRP plates and HCSS, is not limited to the modeling of the guided wavefield in such
structures. In the following chapter, it will be demonstrated that they can be used for defect
detection, localization, and sizing in plate-like structures. Such a defect detection and characteri-
zation strategy is based on the guided waves imaging methodology. It requires a limited number
of transducers arranged in the sparse grid around the structure, and thus it is attractive for SHM
applications.
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As previously mentioned, GWs have been proven effective for large plate-like structures in-
spection in comparison with conventional ultrasonic testing. The latter can be both expensive
and time-consuming as a transducer has to be moved over the surface to scan each point of it.
GWs, in contrast, can be excited at one point on the structure and propagate over a considerable
distance. Thus, a relatively small number of transducers are required to perform SHM over a
large structure.

At any excitation frequency, at least two fundamental modes are generated and propagated
with different velocities. Hence, measured signals are complex, and typically contain multiple
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overlapping wavepackets that correspond to incident GWs as well as their boundary reflections.
GWs are also dispersive, so the shape of wavepackets changes with propagating distance. Both
phenomena make interpretation of GWs signals difficult and require sophisticated tools and
methods for processing.

This chapter provides a methodology and methods for GWs signals processing that can
be used for damage detection and localization in both isotropic and anisotropic plate-like
structures. These methods rely on propagation characteristics of GWs that can be determined
using simulation and data-driven methods presented in Chapter 2. Experimental results are
demonstrated for different defect types in aluminum plates, CFRP plates and HCSS. Furthermore,
a statistical study is conducted in order to determine the best performing method and to assess
its defect localization performance. Finally, a method for sparse defect imaging is presented that
allows accelerating GWs-based SHM of large structures.

3.1 Guided Waves Imaging

A number of research works, Alleyne et al. [38] in particular, have demonstrated the interest in
using GWs for defect detection and localization in plate-like structures. Many methods have
been proposed to process GWs signals, some of them are presented in Chapter 1.

As stated in Section 1.2.3, they can be broadly classified into two categories: baseline and
baseline-free methods. The baseline-free methods are very attractive, but they have not been
well-developed yet. For example, Druet et al. [43] developed a baseline-free GWs tomography
technique, but it has several constraints such as a large number of transducers required around
damaged area and its application is limited to simple geometry structures.

Baseline methods, in contrast, are relatively mature and well-studied. In general, they are
implemented as follows. First, GWs signals are collected when the structure is defect-free, i.e.,
the baseline is measured. If a damage occurs, its presence can be highlighted by comparing
the baseline to the current state of the structure. Such comparison can be done in several ways,
including subtraction in order to obtain residual signals and correlation in order to estimate
a degree of similarity between two states. It is worth noting that baseline methods are often
vulnerable to environmental and operational conditions; therefore, some sort of GWs signal
compensation has to be applied at preprocessing stage. More details are provided in Chapter 5,
where the robustness of a GWs-based SHM system is discussed.

Among different categories of GWs processing methods, the Guided Waves Imaging (GWI) is
standing out. A number of research works, Wang et al. [60] and Michaels et al. [62] in particular,
have demonstrated that information from multiple transducers can be processed and combined
in order to compute an image that represents the integrity of the structure. Main advantages of
this approach are its robustness to signal corruption and that it provides visually interpretable
results as compared to non-imaging methods.

A schematic of the GWI process is represented in Figure 3.1. The grid of pixels discretizes
the region of interest (ROI) of the structure so that each pixel is mapped to a corresponding
elementary portion of the studied specimen. For each pair of transducers, the defect imaging
algorithm computes an elementary image relying on the knowledge of GWs propagation. Ele-
mentary images are then fused to construct a final image, where each pixel contains a Damage
Index (DI) value that can be related to the probability of structural flaw.

The defect’s presence, location and size can be deduced by analyzing the spatial intensity
distribution in the image. It is worth noting that the defect sizing should rather be considered
as an inverse problem, which requires sophisticated solvers, including machine learning based
regressors.
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amplitude variation. Mal et al. [104] proposed an algorithm that computes DI values comparing
the frequency response functions of pristine and damaged state signals. Zhao et al. [105]
developed the reconstruction algorithm for probabilistic inspection of defects (RAPID). This
algorithm attributes DI values by computing the correlation coefficients between the baseline and
current state of the structure in the vicinity of GWs path. The defect location is then determined
from the severity of signal changes in GWs signals from different sensor pairs. This algorithm
is simple, often performs well and does not require any knowledge about GWs propagation in
the structure, but it is occasionally prone to false alarms as noise or other form of GWs signals
variation cannot be distinguished from scattered signals.

In 2011, Quaegebeur et al. [67] proposed a correlation based imaging algorithm named
Excitelet (EXC). For each pixel of an image, it computes a DI value as a correlation coefficient
between residual and analytical signals. The latter describes the GW traveling from the emitter
to the point of observation and on to the receiver. In comparison with the previously mentioned
algorithms, Excitelet requires much more a priori knowledge about GWs propagation in the
structure, namely the 3D Green’s function and transducers dynamics, but it provides more
accurate and better-resolved images.

Having analyzed the above mentioned GWI algorithms, DAS, MV and Excitelet have been
chosen for this research as they are well-developed and progressively incorporate the knowledge
about GWs propagation in the structure. For each pair of sensors, all the three algorithms
process residual signals that are obtained by subtracting the current state of the structures from
the baseline. If the only difference between two states is a damage, then residual signals contain
echoes coming from it as well as border reflections. It is worth noting that if in addition to the
damage there are other variations such as electronic noise or environmental effects, then the
defect response can be barely distinguishable. For a single transducer pair, these algorithms
map a defect response to an ellipse with foci at transducers’ locations.

3.2.1 Delay-And-Sum algorithm

Consider a set of N PZT distributed over the structure. Following the round-robin process, they
are driven with impulsive excitation to generate GWs in the structure. In total N × (N −1) signals
are collected, and residual signals are obtained by subtracting the current state from the baseline.
Then, the envelopes of residual signals are obtained using the Hilbert transform:

ri,j (t) =
√

ui,j (t)2 +H(ui,j (t))2, (3.1)

where ri,j (t) is an envelope of the residual signal, ui,j (t) is a residual signal measured by i, j pair
of piezoelectric transducers and operator H denotes the Hilbert transform.

Following the standard routine of the GWI procedure, the ROI of the structure is represented
by the grid of pixels. Then, a distance matrix is computed for each pair of transducers, where
each element of this matrix contains the distance that a GW travels from the emitting transducer
to the point of observation and on to the receiving transducer. The knowledge of directional
group velocity is used for computing the time of flight of the GW as follows:

ti,j (x,y) =

√

(x − xi )2 + (y − yi )2
Cg

+

√

(x − xj )2 + (y − yj )2

Cg
, (3.2)

where ti,j (x,y) is the time of flight of the GW that propagates with a group velocity Cg from the
transmitting transducer i located at (xi , yi ) to the inspected point (x,y) and from the latter to
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the receiving transducer j at (xj , yj ). As opposed to isotropic materials, in anisotropic ones the
group velocity depends on the angle of propagation. It can be determined either theoretically or
experimentally. Various methods such as SAFE [39] or Radon [106] transform have been proven
effective for determining theoretical and experimental Cg , respectively.

The residual signal is delayed by the corresponding amount of time, so that each point of the
elementary image can be associated with a part of the envelope. Finally, all elementary images
are summed up to form an image that represents the integrity of the structure, and DI values are
computed as follows:

DIDAS (x,y) =
N−1
∑

i=1

N
∑

j=i+1

ri,j (ti,j (x,y)). (3.3)

DAS algorithm implements a single mode imaging. However, several modes can be used
sequentially, but have to generated or measured separately, and the final image can be obtained
by combining corresponding results. Since guided waves are dispersive, this algorithm is
convenient for imaging defects that are not remote from the transducers network as temporal
resolution of the guided waves degrades with propagating distance. A narrow-band signal could
be used to limit dispersion effects but this might reduce the size range of detectable defects.
Therefore, a compromise is to be found in practice.

3.2.2 Minimum Variance algorithm

Hall et al. [64] proposed the Minimum Variance algorithm, which can be considered as an
advanced version of DAS. It takes into account a diffraction pattern of GWs scattered by a defect
in order to improve the resolution of an image. For each pixel, a vector of time-delayed signals is
constructed as follows:

~r(x,y, t) =
[

| r̃1,2(t +
d1,2(x,y)

Cg
) |, ... | r̃N−1,N (t +

dN−1,N (x,y)

Cg
) |

]T
(3.4)

where ~r(x,y, t) is a vector of time-delayed signals, di,j (x,y) denotes the distance to the pixel (x,y)
for the i, j pair of transducers, and Cg is a group velocity of the guided mode. A correlation
matrix, which is identical to the DAS DI mapping [63], is then computed for each pixel (x,y) as
follows:

R(x,y) =
t2
∑

t=t1

~r(x,y, t)~r†(x,y, t), (3.5)

where † denotes a complex conjugate, t1 and t2 are temporal limits of the wave packet. A

weighting vector ~W (x,y) is constructed in order to minimize a false alarm that may be present in
the original DAS map. Specifically, elements of this vector are selected to satisfy the following
optimization problem:

~Wi,j (x,y) = argmin(~w†i,jRi,j (x,y) ~wi,j ), (3.6)

with
~w†i,j~ei,j (x,y) = 1, (3.7)

where ~e(x,y) is an unit vector, which describes the directional relation between GWs signals
and ~w represents a weight vector. In order to obtain ~w, the unit vectors ~e(x,y) are computed as
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follows:

~ei,j (x,y) =
[ φ1,2
√

d1,2(x,y)
, ...

φN−1,N
√

dN−1,N (x,y)

]

(3.8)

where the denominators represent the product of the distance traveled by the wavepacket while
propagating from the emitter at (xi , yi ) to the observation point (x,y) and to the receiver located
at (xj , yj ). The corresponding numerators φi,j represent scattering coefficients that characterize
the amount of energy scattered by a defect at the location (x,y) for a given (i, j) PZT pair. Optimal
values for the φi,j depend on the shape of the defect and its orientation. Unless assumptions can
be made regarding a type, shape and orientation of the defect, common practice is to assume the
defect is omnidirectional, that is φi,j = 1 for all pairs of transducers. The next step consists in
minimizing the DI value to the defect free zone, while preserving DI values of the flawed zone.
Finally, the DI is computed as follows:

DIMV (x,y) = ~Wi,j (x,y)
†R(x,y) ~Wi,j (x,y). (3.9)

It is worth mentioning that this method suffers from the same weakness as the previous algo-
rithm as it also relies on the single value of the wave speed for a given direction of propagation.

3.2.3 Excitelet algorithm

Quaegebeur et al. [67] have presented an algorithm called Excitelet. For each pixel of the image,
it attributes DI values using a correlation between experimental residual signals and theoretical
signals that represent dispersed versions of the excitation signal. In general, a GWs dispersion
phenomenon complicates a defect imaging procedure, as wave-packets in the residual signal can
overlap and enlarge their limits while propagating. However, Excitelet uses theoretical signals
that are computed by considering their dispersion in the medium [107]. Thus, the structure
can be excited over a large bandwidth, which allows processing a damage response in a large
frequency range.

Consider a plate-like structure, schematically shown in Figure 3.1. Each transducer is
driven by an excitation function fexc(t), and a dictionary of experimental residual signals ui,j (t)
is collected for each (i, j) pair of transducers. To calculate a DI value for location (x,y), the
theoretical signal si,j (x,y, t) has to be constructed. For each guided mode it can be obtained by
convolving the excitation function with transducer frequency response and the corresponding
modal component of the 3D Green’s function that corresponds to the path of the GW propagation
from the emitting transducer i located at (xi , yi ) to the location (x,y) and on to the receiving
transducer j located at (xj , yj ). Hence, the theoretical signal can be expressed as follows [67]:

si,j (x,y, t) =
(
∫ ∞

−∞
Γm(ω)Gm(x − xi , y − yi ,ω)Gm(x − xj , y − yj ,ω)exp(−jωt)dω

)

∗ fexc(t), (3.10)

where Γm(ω) denotes a transducer frequency response for the guided mode m, Gm(x−xi , y −yi ,ω)
and Gm(x − xj , y − yj ,ω) represent modal components of the 3D Green’s function. In general,
the first term of convolution (3.10) is called a modal transfer function. For isotropic plate-like
structures, it can be approximated and expressed analytically as follows:

si,j (x,y, t) =
(
∫ ∞

−∞
−2jΓm(ω)

π

exp−jkm(ω)r1
√

km(ω)r1

exp−jkm(ω)r2
√

km(ω)r2
exp(−jωt)dω

)

∗ fexc(t), (3.11)

where km(ω) is a wavenumber of the guided mode, r1 and r2 are the distances from the emitting
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anisotropy of structures; more sophisticated modeling methods, such as SAFE or Global Matrix
Method [80, 100, 108, 109] are required for computing modal components of the transfer
function.

Once theoretical signals are computed over the ROI, the structural integrity can be evaluated
as follows. For each pixel (x,y), Excitelet calculates a normalized coefficient of correlation (3.13)
between an experimental residual signal and an analytically propagated guided mode from the
transmitting transducer i located at (xi , yi ) to the inspected point at (x,y) and on to the receiving
transducer j at (xj , yj ). The DI value is computed as follows:

DIEXC (x,y) =
N−1
∑

i=1

N
∑

j=i+1

|
∫

ui,j (t)si,j (x,y, t)dt

|
∫

ui,j (t)dt ||
∫

si,j (x,y, t)dt |
| . (3.13)

It should be mentioned that Excitelet presumes imaging of a point-like defect, so the wavelength
of inspecting GW should be at least twice larger than the defect size.
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3.3 Defect imaging results

In this section, GWI results on damage detection and localization in an aluminum plate, a CFRP
multilayer plate and HCSS are presented for multiple configurations. Each plate is instrumented
with a sparse array of PZT transducers that are used for both GWs excitation and sensing.
The GWs-defect interaction depends on several factors, including ultrasonic frequency, a GWs
incident angle, defects’ shape and size. The sparse arrangement of transducers is advantageous in
comparison with the dense arrays as it allows interrogating a damage from different angles, and
increases the probability of defect detection, as the damage response might be weak in certain
directions. It is worth noting that while the sparse transducers’ arrangement is advantageous, it
is not required to be regular. For complex shape structures, the transducers’ arrangement can
often take irregular forms in order to maximize the information gain about the integrity of the
structure.

In this work, three types of a damage are investigated, namely a simulated defect, a transverse
hole and calibrated delamination. It has been demonstrated that GWs propagation can be
disturbed by a load locally applied to the surface of the structure. Therefore, a defect can be
simulated by attaching a mass to a free boundary. Obviously, the simulated defect is not fully
representative of a real defect, but it can be used for testing and comparing imaging algorithms,
and for calibrating a SHM system without introducing a real damage to the structure.

An advantageous property of the simulated defect is that it mainly interacts with the A0

mode so that residual signals are less complex to be processed. The transverse hole is more
representative than the simulated defect. It introduces a structural discontinuity so that all
generated guided modes interact with it, which results in a complex defect response signal,
including a guided mode conversion phenomenon. Finally, the calibrated delamination is the
last studied defect. It is the most realistic damage that fully replicates a structural flaw, which
can be observed in reality.

Hanning modulated tone burst excitations are widely used in imaging methods, including
DAS, MV and Excitelet. Alleyne et al.[38] demonstrated that optimal GWs–defect interaction
occurs when the wavelength of an inspecting mode is of the same order as the size of the defect.
In general, both size and location of the defect are unknown, therefore, a broadband excitation is
often used for detecting and locating the damage efficiently.

3.3.1 Aluminum plate

The aluminum plate 1400 mm × 1250 mm × 3 mm is studied at first. It is instrumented with nine
PZT transducers 18 mm in diameter and 0.5 mm thick, as shown in Figure 3.3a. Transducers are
arranged in four adjacent squares, each 250 mm in length, and they allow interrogating defects
from different directions.

Each pair of transducers is driven in turn with the two-cycles Hanning modulated tone burst
centered at 40 kHz in order to generate broadband GWs. The baseline signals are collected by
examining a pristine plate. Then, two attached masses are placed on the surface of the plate to
simulate a damaged state, and the corresponding signals are measured.

The GWI is performed by means of DAS, MV and Excitelet algorithms, and are presented in
Figure 3.3b, 3.3c and 3.3b, respectively. All the three algorithms are capable of detecting defects,
but the imaging quality differs. DAS reconstructs well the lower defect, but barely locates the
upper one. The MV is capable of reconstructing both defects, but the localization is not precise.
On the other hand, Excitelet is effective for both reconstructing and localizing of two defects.

The following study consists in transverse hole imaging in the aluminum plate 600 mm ×
600 mm × 3 mm. This plate is instrumented with eight PZT transducers 18 mm in diameter
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and 0.5 mm thick. They are regularly arranged over a circle of 150 mm in radius, forming an
octagon. The excitation function is a two-cycle Hanning modulated tone burst centered at 25
kHz. Following the round robin process, GWs signals are measured for pristine and damaged
states, where a transverse hole represents the defect. The GWI is performed by means of Excitelet
algorithm using A0 mode. While retaining the same location, the size of the hole increased
progressively from 6 mm to 17 mm in diameter. Imaging results of transverse holes 6 mm, 8
mm, 10 mm and 15 mm in diameter are presented in Figures 3.4a, 3.4b, 3.4c, 3.4d, respectively.
The wavelength of A0 mode at 25 kHz is about of 35.4 mm, so the defect localization improves
progressively with the defect size. From Figure 3.4e analysis, it can be concluded that the best
damage localization and image resolution is obtained for the transverse hole 17.7mm in diameter,

where the maximum of diffraction is achieved, i.e., λ
A0
25kHz/2 ≈ 17 mm.

DI profiles through the defect location are shown in Figure 3.4e in order to demonstrate
Excitelet’s sensitivity to the defect size. It can be observed that through defect image profiles
sharpen with the hole size, and the maximum of them approach the true location of the center
of the transverse hole. For a given GWI configuration, DI values grow progressively with the
transverse hole size, and the corresponding spatial distribution can be used as a damage size
indicator. To achieve a progressive sensitivity, the excitation frequency has to be high enough,
so the guided mode remains sensitive to the damage, and, at the same time, the corresponding
wavelength has to be twice larger than the possible expected damage.

3.3.2 Multilayer CFRP plate

The next studied structure is an orthotropic CFRP plate 1000 mm × 600 mm × 5.775 mm
consisting of 21 woven plies. All plies are placed in 0° direction with respect to fibers’ placement,
and each ply is 0.275 mm thick. The CFRP plate is equipped with eight PZTs transducers 8 mm
in diameter and 0.5 mm thick, as shown in Figure 3.5a. To verify and calibrate SHM set-up, an
attached mass is imaged first, see Figure 3.5b. The GWI is performed by means of Excitelet
algorithm using A0 mode.

A more realistic structural damage is represented by transverse holes growing progressively
in size from 5 mm to 25 mm with the step of 5 mm. The plate is inspected using four excitation
functions that consist of two-cycle Hanning modulated bursts centered at 20 kHz, 40 kHz, 60
kHz and 80 kHz, respectively. The wavelengths associated with central frequencies are the
following: λ20kHz

A0
= 29.59,mm , λ40kHz

A0
= 17.91,mm, λ60kHz

A0
= 13.23,mm and λ80kHz

A0
= 9.73,mm.

The GWI results obtained at 20 kHz are demonstrated in Figure 3.6. It can be observed that
small transverse holes, namely 5 mm and 10 mm, are undetectable due to the large wavelength
of the A0 mode. However, larger holes, i.e., 15 mm, 20 mm and 25 mm, are detectable, but the
image resolution is low. The GWI sensitivity to the damage size is shown in Figure 3.6f. It can be
observed that the through defects DI spatial distribution is indifferent for holes 5 mm and 10
mm, it increases progressively and sharpens for larger defects.

Furthermore, at this frequency, images are noisy and contain imaging artifacts that can be
misinterpreted and would result in false alarms of a SHM system. More specifically, for 5 mm
and 10 mm defects, imaging artifacts are located outside the PZT octagon, and have blurred and
stretched out contours. For larger defects, namely 15 mm, 20 mm and 25 mm, imaging results
are better. While images are still noisy, there are less artifacts: only a small outstretching of the
spot that corresponds to the damage towards the nearest PZTs.

Figure 3.7 presents GWI results obtained at 40 kHz. It can be observed that of all the five sizes
of defects are detectable, and images’ resolution is increased. The transverse hole localization is
more precise than at 20 kHz, the noise of the images decreased, and DI values spatial intensity
distribution sharpened, as demonstrated in Figure 3.7f. However, it is no longer increasing
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3.4 Statistical studies on localization accuracy of defect imag-
ing algorithms

The reliability of a SHM system has to be estimated before its deployment. It involves the
evaluation of several metrics such as robustness to environmental effects, the Probability of
Detection (PoD) and the Probability of False Alarm (PoFA) of the system [6, 111]. In GW-SHM,
different PoD and PoFA methods [112–115] have been proposed in the literature to evaluate
damage detection performance.

Localization performance of a defect imaging algorithm constitutes an essential part of a
SHM process. To our knowledge, GWI results have been reported either experimentally or
numerically only for a limited number of specimens. Consequently, limitations and performance
of GWI algorithms have not been thoroughly studied yet. Such limitations must be evaluated by
means of statistical analysis, which requires an extensive database of GWI specimens. However,
the cost of generating an extensive experimental database is prohibitive due to the large number
of specimens required. Hence, numerical tools can be considered as a proper solution for the
generation of large datasets, but until recently, the computation cost was too high. A newly
developed finite elements tool for GWs simulation enables the creation of massive databases at a
reasonable computation cost [116].

In this section, a statistical study on the defect localization performance is presented for
various imaging algorithms and interrogating frequencies. In order to draw statistical inferences,
all the three presented algorithms, namely DAS, MV and Excitelet, have been applied to an
extensive database of simulated signals, which have been generated using the SHM simulation
package of CIVA software. Each database sample is a simulated aluminum plate with a randomly
distributed defect size and location.

3.4.1 Guided waves simulation framework

A large database of GWI results is necessary to conduct a statistical analysis on localization
accuracy of the above mentioned defect imaging algorithms. GWs simulations using Finite
Element (FE) methods are usually time-consuming due to a small element’s size and time step
requirements [117]. A recent benchmark [118] compares the efficiency of four different FE
software, namely in-house EFIT code, Abaqus, Comsol and Ansys, on a specific use case, which
represents GWs propagation in a carbon fiber reinforced polymer plate from a piezoelectric
transducer over a delaminated region.The performance results of this benchmark are presented
in terms of computational time required for this single simulation, which varies from 20 to 90
hours, with memory footprints from tens of GB to hundreds of GB. Such performance makes the
generation of an extensive database for statistical studies impossible.

In the present work, CIVA is used to generate an extensive database of GWI samples. It
relies on the full three-dimensional Spectral Finite Element (SFE) solution of elastodynamic
equations [116]. The SFE code uses two main concepts to speed up the simulation time. First, a
high order spectral finite element method is implemented to significantly reduce the number
of elements [119]. Second, a macro-element pre-meshing strategy is implemented to optimize
global mesh considering its identical regions and implicit element orientation. This leads to
significant reduction of CPU load and memory footprint. The simulation configuration used in
the benchmark [118] was reproduced with computational time of about 10 minutes on a regular
desktop computer and a memory footprint of about 100 MB for quantitatively identical results
[120]. The reduction of both memory load and computational time allows running multiple
simulations either in parallel or sequentially and enable the creation of an extensive database of
simulated GWI results in a reasonable amount of time.
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origin at the center of a plate. Each family of observations that corresponds to the combination
of an imaging algorithm and excitation frequency is plotted in Figure 3.15 against each other
and their reference values in order to estimate defect localization accuracy.

At 20 kHz, all the three algorithms suffer from considerable localization errors due to
the large wavelength of the inspecting mode (λ20kHz

A0
= 37.9 mm) with respect to transducers’

inter-distances. The largest distance between transducers approximately corresponds to four
wavelengths of the inspecting mode, so the wave packets corresponding to A0 and S0 modes in
the residual signal are heavily overlapped. Among the three algorithms, Excitelet (represented
by green triangles) demonstrates the best coherence between observed defect coordinates and
their true values. For this algorithm, there is systematic localization underestimation for the
defects remote more than 10 mm from the center of the plate. We have not identified the origin
of this phenomenon. Although the wave packets are overlapped, Excitelet is more prone to
correctly map residual signals than DAS and MV, as it computes linear association between
residual and analytical signals. Such linear association allows capturing differences in phase
velocities of guided modes, while DAS and MV ignore them by mapping envelopes of residual
signals.

As shown in Figure 3.15, inspection at 40 kHz leads to more accurate localization results
for all the three imaging algorithms. Overall, Excitelet demonstrates the best statistical fit
and the smallest variance for both predicted radius and angle regarding their reference values.
However, observations located beyond 80 mm from the center of the plate are progressively
underestimated by Excitelet.

The analysis of GWI results at 60 kHz reveals that the defect localization results start
degrading for all the three imaging algorithms. At this frequency, the A0 mode excitability has
decreased in comparison with 20 kHz and 40 kHz, see Figure 3.13b. It has been demonstrated
that GW-defect interaction is followed by a guided mode conversion phenomenon [123] so that
residual signals contain wave packets of diffracted and converted guided modes. While at 20
kHz and 40 kHz converted S0→ A0 and A0→ S0 guided modes have small amplitudes due to
the low excitability of S0 mode, at 60 kHz they are more noticeable. Therefore, a part of the
residual signal, which corresponds to the defect-free location, contains wave packets that are not
taken into account by a single mode imaging procedure.

At 60 kHz, DAS andMV are more prone to localization errors as they map energy of converted
modes to defect-free locations. Excitelet still demonstrates the best performance, but its variance
has grown in comparison with 40 kHz. In Excitelet computation, linear association between
analytically propagated A0 mode and experimental S0 mode in the residual signal provides
a small magnitude, but a non-negligible coefficient of correlation. Hence, converted S0→ A0

modes are the primary source of defect localization errors as they interfere with the analytically
propagated A0 mode.

Absolute Localization Error (ALE) is obtained by computing the Euclidean distance, i.e., L1
norm, between reference and observed defect locations. Their distributions and corresponding
experimental Probability Density Functions (PDFs) are presented in Figure 3.16.

The Kernel Density Estimate (KDE) [124] method has been used to determine underlying
probability density distributions of localization errors. The advantage of the KDE approach
is that it yields an empirical estimate of a true PDF without assuming any form of underlying
density function. It can be deduced from Figure 3.16 that at 20 kHz and 40 kHz all error
distributions have two distinct peaks, i.e., local maxima, in the probability density function.
Such bimodal distributions were not anticipated, as the central limit theorem claims that for a
given large number of observations, the corresponding error distribution should comply with
the normal distribution.

The Gaussian Mixture Model (GMM) [125] is selected to analyze localization error distri-
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20 kHz 40 kHz 60 kHz
Algorithm DAS MV EXC DAS MV EXC DAS MV EXC

STD, mm 28.05 29.39 23.53 5.91 8.14 2.86 11.14 13.67 3.38

RMSE, mm 38.93 47.09 35.05 10.14 13.04 4.68 19.09 23.73 6.36

MAE, mm 27.01 36.79 25.97 8.24 10.19 3.71 15.49 19.39 5.39

CoC 0.68 0.44 0.71 0.86 0.82 0.99 0.79 0.70 0.95

P(ALE > 15,mm) 56.2 % 70.2 % 61.7% 9.9 % 21.4 % 0.15% 44.3 % 57.0 % 1.0%

Table 3.1 – Performance metrics summery for Excitelet, DAS and MV defect imaging algorithms.
Results for 20 kHz, 40 kHz and 60 kHz are grouped central inspection frequency.

defects in a given GWI configuration. The most frequent ALE is 7 mm, 5 mm, and 3 mm for DAS,
MV, and Excitelet algorithms, respectively.

Excitelet demonstrates the most frequent absolute localization error of about 3mm. Moreover,
the probability of ALE higher than 10 mm is extremely small, while the defect size varies from
5 mm to 15 mm. At the same frequency, DAS and MV demonstrate the most probable error
of about 8 mm because they do not account GWs dispersion phenomena. In addition, MV
occasionally suffers from large localization errors due to the assumption of an omnidirectional
defect diffraction pattern.

In practice, the probability of experiencing ALE larger than maximum tolerable error is
required. In the present study, the maximum tolerable error is arbitrarily fixed at 15 mm
corresponding to the largest transverse hole, and the probability of having ALE larger than
maximum tolerable error P(ALE > 15,mm) can be evaluated by integrating the PDF between
the corresponding bounds. Other maximum tolerable error could be defined depending on the
application. At 20 kHz, the P(ALE > 15,mm) are quite high and equal 56.2 %, 70.2 % and 61.7 %
for DAS, MV and EXC algorithms. Consequently, GWI results obtained at this frequency cannot
be considered as reliable. On the other hand, at 40 kHz the corresponding results are 9.9 %,
21.4 % and 0.15 %, and at 60 kHz P(ALE > 15,mm) are 44.3 %, 57.0 % and 1.0 %, respectively.
Note that P(ALE > 15,mm) = 1% means that the probability of accurate localization is 99%. It is
worth noting that the performance of Excitelet algorithm is more remarkable than of the two
other algorithms, while the structure is inspected for all the three excitation frequencies.

General practice in model verification is to determine the alignment of model predictions
with true values. It typically involves computing a set of performance metrics in order to capture
all aspects of model behavior, reflecting statistical similarities and differences between true
values and experimental observations.

A Mean Absolute Error (MAE) measures the average magnitude of errors over the dataset
without considering their directions. In our case, it is computed as the average of absolute
differences between the maxima of images and the corresponding reference coordinates, where
all individual differences have equal weight. A Root Mean Square Error (RMSE) represents a
quadratic mean of model deviations from reference values. Each RMSE component is propor-
tional to a squared error which makes this metric highly sensitive to the presence of significant
deviations, emphasizes the inability of an imaging algorithm to compute an image correctly. The
Standard Deviation (STD) is a statistic that evaluates dataset dispersion. STD of model errors
provides insights on the incertitude experienced by the imaging algorithm. For example, the
spread of predictions at 20 kHz, shown in Figure 3.15, generally happens when defect imaging
algorithms fail to reconstruct images. Finally, the product-momentum Coefficient of Correlation
(CoC) is used for determining the strength of linear statistical relationship between observations
and their reference values, where the perfect alignment of both leads to CoC = 1, and the absence
of linear relationship results in CoC = 0.
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The performance metrics of all the three defect imaging algorithms are collected and summa-
rized in Table (3.1) in order to estimate a degree of correspondence between imaging algorithms
outputs and reference values. In this table, STD, RMSE, MAE, and CoC are grouped by exci-
tation frequencies for all the three imaging algorithms, so the merits of competing imaging
algorithms and excitation frequencies can be determined for a given GWI configuration. From
the analysis of Table (3.1), it can be deduced that the best defect localization accuracy is achieved
when the structure is monitored at 40 kHz and imaged with Excitelet algorithm. Such a GWs
imaging configuration allows obtaining CoC40kHz

EXC ≈ 0.99 predictions, while RMSE and MAE are
approximately equal to 4.86 mm and 3.71 mm, respectively. Such low and close by magnitude
RMSE and MAE errors indicate that Excitelet algorithm does not fail in image reconstruction.
The STD, which indicates how the data is distributed around the mean value, estimates model’s
uncertainty with respect to the reference data. For all the three excitation frequencies, Excitelet
is the least uncertain, and MV is the most volatile in localizing defects.

Excitelet shows the best performance in terms of RMSE, MAE and MAE localization error
metrics for all the three studied frequencies and reaches its peak while monitoring the structure
at 40 kHz. The same conclusion holds for the CoC while measuring linear model alignment with
reference values and searching for the best prediction accuracy.

This section presents statistical studies on localization performance of three state-of-art defect
imaging algorithms for a GW-based SHM system. The study is conducted using a numerically
generated database of GWI results. The statistical advantage of using the Excitelet algorithm in
comparison with DAS and MV is demonstrated. Excitelet requires the comprehensive knowledge
of GWs propagation in the structure for analytical signal computation, it provides smaller local-
ization errors. Lower performances of DAS and MV are due to the neglection of GWs dispersion
which has to be taken into consideration for accurate localization. The three algorithms suffer
from mode conversion phenomena, emphasizing the need to adequately choose the inspection
frequency to guarantee the best performances. For this specific configuration, this study leads
to the conclusion that the best defect localization performance is achieved when the structure
is monitored at 40 kHz, and imaging is performed using Excitelet algorithm. One of the main
reasons that GWI results are better at 40 kHz for this plate is the diameter of piezoelectric
transducers. This is a driving factor that influence the modal excitability. For this configuration,
it is chosen to favor the A0 generation so that the accurate localization of the defect is obtained
for 99% of the cases.

More generally, the presented methodology can contribute to SHM system optimization and
reliability evaluation. It allows quantifying the performance gain, but it has to be repeated
for each constituent and configuration. ALE probability distributions can also contribute to
reliability and associated risks estimation; it can be determined by a variety of methods, including
Monte Carlo simulations. For future work, authors plan to investigate defect localization and
sizing accuracy in composite plates for various GWI configurations and include it into the
performance demonstration of a SHM system as a whole.
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3.5 Sparse defect imaging

Regardless of the choice of a defect imaging algorithm, the DI value has to be evaluated for
each pixel of the image that represents the integrity of the structure. Computational complexity
depends on the employed GWI method, and has been a subject of intensive research [63]
in order to deploy a GW-based SHM system on large structures. Various techniques, such as
parallelization and vectorization, have been used to speed up calculations. They allow decreasing
significantly the computation time, but the pixel-wise evaluation process is remained.

Therefore, certain methods such as RAPID, which computes a correlation between damaged
and pristine states in the vicinity of a GWs path, become computationally efficient, but others
such as Excitelet, which for each pixel computes the theoretical signal and then correlates it
with the experimental one, are still time and computationally demanding. The reasons to use
Excitelet were statistically proven and presented in Section 3.4. It has a clear advantage in
comparison with DAS and MV, but for real-life large structures defect imaging risks to last long,
while a short time window is usually given for monitoring.

In this section, a procedure for sparse imaging is proposed. It is based on an adaptive
sampling procedure, and relies on the Bayesian optimization of Gaussian process regressor
(BO-GPR).

3.5.1 Bayesian optimization of Gaussian process for sparse defect imaging

The Gaussian process, presented in section 2.4.1.2, has been proven efficient for regression
tasks. In the presented approach, it is used to model an image that represents the integrity of a
structure, i.e., the objective function. In comparison with other regression methods, GP provides
probabilistic inferences that can be used in optimization procedure.

The GP is configured by its kernel that describes relationships between elements of the model.
Historically, the square exponential and rational quadratic kernels [98] became default ones as
they are universal. They can be integrated against most functions, and every function in their
prior has infinitely many derivatives [126]. The rational quadratic kernel is used in this work. It
is equivalent to adding together many square exponential kernels with different lengthscales,
and is expressed as follows:

KRQ(x,x
′) = σ2

(

1− (x − x′)2
2αl

)−α
, (3.14)

where σ2 is the output variance, α determines the relative weighting of large-scale and small-
scale variations, and l is the lengthscale determining the length of interpolation. GP priors
with this kernel expect to see functions that vary smoothly across many lengthscales, and allow
modeling data that vary at multiple scales.

Bayesian optimization is a method aimed at reducing the number of sampling points while
maximizing the information gain they provide to the objective function. The presence of a defect
and corresponding characterization is drawn from the analysis of spatial intensity distribution
in the image. Thus, more attention is paid to the flawed zones where DI values are high and
comply with Gaussian distribution.

Consider a reference image, i.e., pixel-wise computed image. It can be approximated by
the objective function f with a corresponding prior. Iteratively, the Bayesian optimization uses
a prior belief about f to evaluate an acquisition function. Searching for a maximum of the
acquisition function allows determining points of maximal information gain for the function
f . The prior belief is then updated with samples drawn from f to obtain a posterior that better
approximates the objective function.
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The acquisition function plays a key role in Bayesian optimization. It proposes sampling
points in the search space so that the best improvement of the objective function can be achieved.
The basic principle of this function is a trade off between exploitation and exploration. The
exploitation means sampling in the areas where a surrogate model has a high objective, whereas
the exploration means sampling at locations where the prediction uncertainty is high. Several
acquisition functions have been developed and presented in the literature, including the prob-
ability of improvement, expected improvement, and upper/lower confidence bounds. Taking
into account recent advances in the field of Bayesian optimization, the expected improvement
function is used. It can be formulated as follows:

A(x) =















(µ(x)− f (xt)− ζ)Φ(Z) +σ(x)φ(z), if σ > 0

0, if σ = 0,
(3.15)

with

Z =















µ(x)−f (xt )−ζ
σ(x) , if σ > 0

0, if σ = 0,
(3.16)

where φ(x) and Φ(x) denote a probability density function (PDF) and a cumulative distribution
function (CDF), respectively. The mean and the standard deviation of the GP posterior evaluated
at x are denoted by µ(x) and σ(x). The parameter ζ is responsible for the trade off between
exploration and exploitation, it is often varied during the optimization procedure to promote
exploration at early stage and exploitation later.

With respect to the Bayesian optimization formulation given above, a GWI sample is con-
sidered as an objective function, which can be evaluated using any defect imaging algorithm
presented in the section 3.2. The acquisition function maximization allows selecting the next
point at which to compute the DI value.

In addition, a GPR model can be tolerant to the acquisition noise, so that the integrity image
can be denoised using this approach. It allows reconstructing the image itself while neglecting
GWI artifacts. In the next chapter, where a defect sizing problem is considered, this property
will be used to pull together simulated and experimental GWI databases.

3.5.2 Sparse imaging results

Aluminum plate 600mm × 600mm × 3mm is chosen for this study. It is instrumented with eight
PZT transducers 18mm in diameter and 0.5mm thick. The structural damage is a transverse hole
10 mm in diameter, and the GWI is performed by means of BO-GPR optimization of Excitelet
algorithm using A0 mode for imaging.

Figure 3.18 presents GWI results obtained by using 20, 40 and 80 sampling points as
well as corresponding uncertainty maps. The parameter ζ is tuned to balance the explo-
ration/exploitation ratio of the reconstruction process so that defect-free regions are sampled
in more sparse manner than flawed zones. Indeed, observing Figures 3.18b 3.18d and 3.18f
it can be seen that the BO-GPR model correctly identifies flawed region and has a high level
of confidence about corresponding DI values. The associated STD is below 0.1 in comparison
with the DI values that are of about 24, e.g., the through defect DI values are reconstructed
precisely. The model is less confident in defect-free regions, where the STD is of about 0.7, but
these regions do not provide any information on structural defects.

Obviously, the reconstruction precision depends on the number of sampling points. If it is
too low the image reconstruction is not precise and flawed area might have distorted shape, as
shown in Figure 3.18b. On the contrary, if the number of sampling points is too large, BO-GPR
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model approximates correctly the image and starts additionally to approximate imaging artifacts
because not much new information is learned. Figure 3.19a and Figure 3.19b demonstrate the
case where the model uses too many sampling points and as a result it started to approximate
artifacts in addition to the noise-free image. Therefore, an optimum number has to be identified
in order to achieve the best efficiency of the model.

Each new sampling point introduces a certain improvement to the reconstructed image to
the different extent. At the bigging, when the number of sampling points is low, each new
point introduces a significant amelioration to the BO-GPR model, but as this number grows the
improvement stagnates. In order to quantify such improvement a reconstructed image can be
compared to the previous result by computing a mean square error (MSE) between two images,
and the rate of change in relative MSE will indicate a stagnation point so that the optimum
number of sampling points can be determined. Relative MSE versus a number of sampling points
is shown in Figure 3.19c. These errors are fitted to the curve using a least square regression, in
order to obtain the improvement function. The rate of change is then computed as a gradient of
this function, and is shown by a green curve in the same figure. It can be observed that it grows
promptly when the number of sampling points is smaller than 50, and saturates afterwards.
Therefore, for a given GWI configuration, an optimum value of sampling points can be defined
as 60.

Fortunately, the BO-GPR optimization of GWI can be performed using artificial defects such
as an attached mass, so the new structure of interest has not to be damaged.
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3.6 Chapter summary

This chapter reports on defect detection and localization in three different structures, namely an
aluminum plate, a multilayered CFRP plate and HCSS. As such, they are often used in aerospace
industry, e.g., for aircraft fuselages or wind skins, and also constitute the building blocks of more
complex structures such as IFS of the aircraft nacelle. These structures are exposed to harsh
operational conditions so such defects as fracture, corrosion, delamination or disbonding may
appear due to impact forces or thermo-mechanical aging.

The defect detection and localization are performed by means of GWI due to its relative ro-
bustness to the corruption of GWs signals. The sparse array of embedded transducers distributed
over the surface is typically used to excite and measure GWs signals in the structure. The GWI
implements GWs signals processing methods to compute an image that represents the integrity
of the structure. Each pixel of this image contains a DI value, and the spatial distribution of
these values can be translated into the probability of structural flaw. Among various defect
imaging algorithms presented in the literature, DAS, MV and Excitelet were selected to detect
and locate three types of defects, namely a simulated defect, a transverse hole and delamination.
To a different extent, these algorithms rely on GWs propagational characteristics, such as a
directional group velocity and the 3D Green’s function. These properties can be obtained using
various simulation and experimental methods, including methods presented in Chapter 2.

Defect imaging algorithm constitutes an essential part of a SHM system, and its localization
performance has to be evaluated before the system deployment. This chapter presents the
methodology and results on defect localization performance of DAS, MV and Excitelet algorithms
using statistical analysis of an extensive database of GWI specimens. It is demonstrated that
among the three imaging methods Excitelet is statistically the most performing.

Taking into consideration that for large real-life structures pixel-wise computation of the
image can be time-consuming, a novel approach for the sparse defect imaging was developed. It
is implemented in the Bayesian framework, where the Gaussian process models the structural
integrity image. Following the Bayesian optimization routine, a joint problem of an acquisition
function is formulated so that the choice of sampling points is driven by maximizing the former.
For example, 600 x 600 pixels image can be reconstructed using 40 sampling points so that the
sampling rate is reduced by four order of magnitude.

The GWI algorithms’ sensitivity to the damage size is also demonstrated. While the damage
presence and location can be directly deduced from the spatial intensity distribution of a GWI
sample, the defect sizing is not straightforward and might require sophisticated solvers based on
machine learning-based regressors. The next chapter formulates the defect sizing problem as an
inverse problem and seeks a solution using regression methods.
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The effectiveness of GWI for SHM systems has been demonstrated in the previous chapter. GWI
relies on the knowledge of GWs propagation and allows computing images that represent the
integrity of a structure. These images can be visually analyzed in order to detect and locate a
defect, but defect characterization is a more complicated problem that might require application
of sophisticated solvers.

This chapter presents a data-driven approach for defect size evaluation. Firstly, an inverse
problem is formulated. Then, an extensive database of simulated GWI results is generated and
processed using a deep convolution neural network in order to construct an inversion model
capable of determining the size of a defect from images. Finally, an inversion model is validated
on experimental GWI results.
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4.2 Machine learning for defect sizing

Recently, machine learning (ML) has revolutionized different fields of research, especially, image
and signal processing [127], and, therefore, it has become of particular interest to the NDT
and SHM communities [128–130]. ML methods are often considered as promising tools for
completing challenging tasks such as automatic classification and regression as they are capable
of finding an approximate solution for the problems where analytical solving is not obvious or
even impossible.

4.2.1 Supervised learning approach

In general, ML can be divided into two categories: supervised learning and unsupervised
learning [131]. The supervised ML consists in determining relationships in the input data that
allow producing effectively the output data. The unsupervised learning, in contrast, lies in
determining the inherent structure of the data without using explicitly-provided labels.

ML methods are data-driven. Therefore, the performance of these methods is heavily depen-
dent on the choice of data representation, i.e., data features [132]. For this reason, many efforts
are concentrated on the data preprocessing and transformation, so that the data representation
can support effective ML. These procedures, often called feature engineering, are essential but
labor-intensive. They allow taking advantage of human ingenuity and prior knowledge about
the studied physical process.

In this work, the supervised ML is used to build an inversion model that is capable of
determining a defect size from GWI results. Within this framework, the input and output
data are simultaneously given to the ML algorithm, and the model is obtained by minimizing
the error between actual predictions and reference values. The GWI results are considered as
input parameters and the reference structural defect sizes as output parameters, respectively.
Obviously, a model’s performance depends on the choice of the ML algorithm. Many supervised
ML algorithms are available, and each one has its strengths and weaknesses. Unfortunately,
there is no a single guideline for selecting a supervised ML algorithm that would demonstrate
the best performance. Therefore, a user has to follow the No free lunch in search and optimization
[133] theorem in order to select the most convenient approach for the specific problem.

Once the ML algorithm is chosen, the collection of inputs and outputs can be used to build
an inversion model. This preliminary and potentially computationally expensive phase is known
as the training phase. However, once the model is trained, the ML algorithm enables a real-time
prediction of forthcoming inputs and, therefore, fits perfectly into the SHM paradigm.

4.2.2 Defect sizing using Deep Learning

Nowadays, deep learning (DL) is of great interest in many fields. This is a subfield of ML that
uses multi-layered artificial neural networks (ANNs) for completing challenging tasks such as
image processing, object detection, speech recognition, language translation and many others
[127]. Its recent success can be largely attributed to the strong emphasis on modeling multiple
levels of abstractions with the depth of the DL model: from low-level features to higher-order
representations using multiple, and usually non-linear, transformations. Convolution Neural
Network [134] is one of the many possible DL architectures that have been proven particularly
effective for image analysis, and, therefore, has been selected for GWI result processing.
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4.2.2.1 Introduction to Convolution Neural Network

Convolution neural network (CNN) is a major breakthrough in the field of deep learning.
Numerous practical machine learning tasks, such as image classification, object recognition,
control-policy learning for autonomous ground and aerial vehicles [135, 136] or the board game
Go are successfully solved using CNNs. The spectacular success of CNNs is not limited to image
processing; they also perform well in natural language processing and speech analysis. However,
standard, and arguably the most popular, application of these networks is for image processing.

Biological studies of visual cortex inspired the origination of CNNs [137]. The former has
small regions of neural cells that are sensitive to specific patterns in the visual field. Hubel and
Wiesel [138] demonstrated that some individual neural cells in the brain respond only to edges
of specific orientation. Some neurons are activated when exposed to vertical edges, and some
respond on horizontal or vertical edges. Together they are organized in columnar architecture
that is capable of delivering visual perception. The idea of visual cortex imitation, i.e., of having
specialized components in the system that are searching for specific patterns in the visual field,
is the one that is basically implemented in computer vision and is the basis behind CNNs.

This type of ANNs searches for patterns in images, determines relevant features for the
current problem and consequently adapts persecutors. CNNs are typically composed of multiple
aggregated layers, each computes convolution transforms, applies non-linear activations and
pooling operators as it goes deep [139, 140]. Aggregated layers are sequentially stacked and
connected to fully connected layers, as schematically demonstrated in Figure 4.3.

A set of convolution operators, also called kernels, forms a convolution layer. For a given
position, a kernel outputs a high value if the convolution feature is present in that position,
otherwise the output is low. More precisely, the kernel’s output can be computed as follows:

hi,j =
m
∑

k=1

m
∑

l=1

wk,lxi+k−1,j+l−1 (4.2)

where h is a convolution output, w is a convolution kernel of the width and height m, and x is a
convolution layer input. Convolution operations can be considered as image transformations
that result in different effects, such as extracting edges, blurring, sharpening, denoising etc. The
main purpose of convolution kernels is to capture spatially dependent information, i.e. features,
in the input. It is worth noting that a convolution layer typically may consist of dozens and even
hundreds of kernels.

Convolution operators are followed by the application of an activation function. In general,
non-linear activation functions are used as they allow generalizing and adapting a model to
the complex data. Perhaps, the most prominent and effective activation function for CNNs is a
Leaky Rectified Linear Unit (l-ReLU) [141]. It is computed as follows:

f (x) =















x, if x > 0

αx, if x < 0,
(4.3)

where f (x) denotes l-ReLU, x is input and α is a constant with typical values: α ⊂ [0,1]. This
activation function is biologically plausible [142] and allows overcoming efficiently the vanishing
gradient problem [143]. The output of an activation function is called an activation map. By
analogy with visual cortex, high values of the activation map correspond to the locations where
a particular feature is present.

The last operator of an aggregated convolution layer is a pooling, i.e. subsampling, operator
[144]. It is mainly used to decrease the variance and reduce computational complexity of the
activation map. There are two different pooling mechanisms that are used in practice: max-
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pooling and average-pooling. In this work, the average pooling is used as it allows extracting
smooth features, whereas the max-pooling is rather oriented towards extreme features such as
edges. The average-pooling operator can be expressed as follows:

pi,j = avg(xi+k−1,j+l−1), ∀ 1 ≤ k ≤m, and 1 ≤ l ≤m (4.4)

where pi,j is output of the average-pooling operator, x is input and m denotes pooling kernel
width and height.

Aggregated convolution layers (note that each consists of convolution, activation and pooling
operators) are connected to fully-connected layers. The term “fully-connected” implies that
each neuron in the previous layer is connected to every neuron in the next layer. Therefore,
high-level features of the input image learned by previous convolutional and pooling layers can
be combined so that the network can build the global representation of the entire image [145].
Neurons in these layers are activated if a number of various convolution features are present,
and together they produce different activation patterns based on the image content.

Adding several layers to the neural network allows learning features in hierarchical order,
and their level of abstraction progressively grows with the depth of the model. In general, the
performance of a neural network increases with the number of layers, but deeper models are
more difficult to train and require a larger amount of data.

If the network is differentiable, the network training, i.e., kernel tuning, can be performed
using the back propagation algorithm [144]. The overall training process of the neural network
may be summarized as follows:

1. Initialize all the kernels and network parameters with random values.

2. Apply a forward propagation step for a batch of training images.

3. Compute an error metric using the network output and reference values.

4. Apply a back propagation algorithm to evaluate gradients of the error with respect to all
weights in the network.

5. Use a gradient descent method to update kernels with values that minimize the output
error.

The back propagation method allows adjusting kernels proportionally to their contribution
to the total output error. The network architecture remains fixed during the training process -
only the kernels’ values, neurons’ weight in fully connected layers and connection weights are
updated. It is worth noting that CNNs can be used for regression and classification tasks as well
as stand-alone feature extractors. Further details on CNNs operation, layer functions and effects
can be found in many related works including the following: [144, 146].

4.2.2.2 Database generation

In general, data-driven methods, and CNN in particular, require a large amount of data to
construct an accurate model. Indeed, an experimental database is desired because it is fully
representative and reproduces operational noise, which is inherent to the GW-based SHM
process. However, the generation cost of the experimental database is prohibitive as a large
number of samples are required. Therefore, a SFE simulation method [116, 120] is used in this
work to generate a dataset of GWI samples.

The GWI configuration is the same as in the previous section: an aluminum plate 600 × 600
× 3 × mm equipped with eight PZT transducers 18 mm in diameter. Each simulated sample
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25, kHz 35, kHz 45, kHz 25, 35 and 45, kHz
MAE, mm 0.27 0.32 0.32 0.24
STD, mm 0.23 0.28 0.3 0.23
R2 score 0.94 0.91 0.89 0.94
Max ASE, mm 1.11 1.67 1.65 1.24

Table 4.1 – Performances of inversion models.

reference values, red dots represent inversion results of simulated GWI samples, and green
triangles represent experimental transverse hole inversion results. Accuracy metrics such as
mean absolute error (MAE), standard deviation (STD), maximum absolute sizing error (max-
ASE) and R2-score are evaluated in order to estimate the performance of the CNN. The first
two metrics were presented in Section 3.4.3, max-ASE is straightforward from the term, and
R-squared (R2 score) describes the fraction by which the variance of ASEs is less than the variance
of reference defect radii, where the best possible value of R2 score is one.

It is worth noting that the testing sub-set contains GWI samples computed for different
defect sizes at various locations, therefore, performance metrics evaluated on the testing dataset
can be generalized and considered as fully representative for the current inversion model.

Defect sizing results are presented in Figure 4.5. For all the three excitation frequencies,
CNN demonstrates relatively good performance in determining radii of defects from simulated
GWI results. The performance metrics are summarized in the Table 4.1.

At 25 kHz, inversion MAE is equal to 0.27 mm, which is 2.7% of median defect size. Corre-
sponding STD of defect radii prediction errors is equal to 0.23 mm, but uncertainty increases
with the defect size, as shown in Figure 4.5a. It can be explained by the fact that as these
frequency DI values vary much more for small defects than for large ones, as demonstrated in
Figure 4.1a. For small defects, the energy scattered pattern varies to a grater extent than for large
defects and, consequently, the inversion model is more precise. The R2 score, i.e. the coefficient
of determination, is 0.94 and the maximum ASE equals 1.1 mm.

Inversion results at 35 kHz are shown in Figure 4.5b. It can be observed that the accuracy of
predictions is degraded a little due to smaller variation of DI values, but still remains satisfactory.
The MAE and STD of defect radii estimations are equal to 0.32 mm and 0.3 mm, respectively.
The coefficient of determination equals 0.91 and the maximum ASE is 1.67 mm.

In general, the increase in excitation frequency leads to the decrease in the accuracy of
inversion results. For example, at 45 kHz, the STD increased to 0.3 mm, R2 score decreased to
0.89 mm, as shown in Figure 4.5c. It is worth noting that MAE remains the same at 35 kHz,
and the maximum ASE even decreased to 1.65 mm, but the model as a whole is less certain in
predictions.

Defect imaging is not limited to the use of a single frequency. The proposed inversion
model on the basis of CNN can also process simultaneously multi-frequency GWI results. For
this reason, GWI samples corresponding to the same defect size and location but computed at
different frequencies are combined into the GWI tensor of the following shape (nx ×ny ×nf ), and
GWI results are normalized with respect to the largest DI values in the tensor 1. Corresponding
inversion results are presented in Figure 4.5d. It can be observed that, in general, prediction ac-
curacy increased but not that much. The MAE is equal to 0.24 mm while the model’s uncertainty
equals 0.23 mm. It is worth noting that the coefficient of determination is 0.94 (the same as at 25

1It is worth noting that multi-frequency defect sizing requires a minor modification of CNN architecture in order to
enable processing of imaging tensors. The network itself has also to be trained with consideration of multi-frequency
data.
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4.3 Chapter summary

This chapter presents an approach for the defects’ size evaluation using GWI results. GWI
is a robust and effective method for GWs signals processing that allows computing images
representing the integrity of the structure. Defect detection and localization are straightforward
from the analysis of these images, but defect sizing is a more complex problem. There are two
main difficulties associated with this problem. First, the spatial intensity distribution of these
images for the defects of different sizes that are located at the same position varies in non-linear
manner. Second, the spatial intensity distribution depends on the location for defects of the same
size. Therefore, a data-driven approach is proposed for defect sizing as it allows determining an
approximate solution for complex problems, including the above mentioned one.

The proposed approach is based on the use of a convolution neural network. Among different
data-driven approaches, this one is particularly interesting as it allows capturing both local and
global spatial relations between the pixels of the image. The flexibility of the model and the
degree of abstraction of learned patterns are controlled by the depth and width of the model,
whereas the balance between overfitting and underfitting is kept by the regularization.

As the name suggests, any data-driven method, including this one, requires a large amount
of data to build a well performing model. The SFE method and Excitelet algorithm are used for
generating an extensive database of GWI samples. This dataset is created for a specific GWI
configuration but represents defects of different sizes at various locations. Each GWI sample is
normalized in order to unify simulated and experimental results that are used for validation. It
is worth noting that the simulated dataset does not contain a GWI sample corresponding to the
experiment.

The developed defect sizing model is validated on both unseen simulated and experimental
GWI results and demonstrates a relatively good performance. The proposed approach allows
completing the GW-based SHM system pipeline so that the defect detection, localization and
characterization are possible. However, baseline-demanding GWI methods are vulnerable to
the environmental influence and operational conditions. For example, GWs propagation and
transducers’ dynamics can be affected by temperature variations so that the baseline subtraction
from the current state leads to the appearance of imaging artifacts. The next chapter presents
methods for environmental effects compensation in order to increase the robustness of a GW-
based SHM system.
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5.3 Chapter summary 118

With a number of benefits, GWI is standing out among other methods for GWs-based SHM
systems as an efficient technique for defect detection, localization and sizing. As previously
stated, GWI methods rely on physical properties of GWs propagation and interaction with
defects in order to compute an image representing the integrity of a structure.

In this work, baseline GWI methods are used as they allow discriminating the defect response
better. These methods are efficient under stationary operational conditions but vulnerable to
environmental effects. The primary source of GWs propagation disturbance is the tempera-
ture variation: a small temperature difference between baseline and current measurements is
sufficient to deteriorate GWI results and other GW based SHM approaches.

This chapter reports on the effects of temperature on GWs propagation and GWI. A robust
classification model is proposed for damage detection in the monitored structure even if GWI
results are deteriorated. Then, strategies for temperature difference compensation are presented.
Finally, GWI is performed under varying temperatures for both simulated and experimental
cases.
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5.1 Effects of temperature variations on GWI

5.1.1 Temperature effect on Guided Waves propagation

Despite of being effective under stationary operational conditions, baseline GWI techniques may
be less efficient in real-world applications because all the baseline methods are adversely affected
by environmental effects [153, 154]. In general, this is due to GWs signals modifications induced
by temperature and humidity variations, ambient noise, accumulated stress etc [42]. These
environmental effects change local and/or global elastic parameters of constitutive materials,
and, consequently, modify transducer’s dynamics and GWs propagation characteristics [155].
Since the temperature is the most significant effect that can highly distort GWs signals, further
discussion is oriented towards the influence of this environmental phenomenon [156].

The primary effect of temperature variation on GWs signals is a time shift, whereas the
secondary one consists in the distortion of waveforms. Croxford et al. [157] demonstrated that
under the assumption of a single propagating guided mode the time shift between two signals
measured at different temperatures can be expressed as follows:

δt =
d

vph
(α − γ

vph
)δT , (5.1)

where δT denotes a temperature change, vph is the phase velocity, γ is the coefficient of change
in the phase velocity with temperature, α is the coefficient of thermal expansion of the material,
d denotes the propagation distance and δt is the time shift induced by temperature variation.

In the simplest form, where GWs signals can be represented by time-delayed Hanning-
modulated wavepackets, the difference between two signals measured at different temperatures
can be expressed as follows:

|u(t,T )−u(t,T + δT )| =U0(sin(ω(t + δt))− sin(ωt)), (5.2)

where U0 denotes initial amplitude, ω is angular frequency and t is time. For the small values of
time shift a maximum difference amplitude can, therefore, be approximated as follows [42]:

|u(t,T )−u(t,T + δT )|max ≈ 2πf U0δt = 2π
d

λ
U0(α −γ)δT , (5.3)

where λ denotes the wavelength of the guided mode.
It can be observed that the level of temperature-induced residue in a difference signal is

directly proportional to the propagation distance and inversely proportional to the wavelength
of the guided mode. Therefore, in the low frequency range, where only two fundamental modes
A0 and S0 are excited, it might be more advantageous to maximize the S0/A0 ratio in order to
resist this thermal effects. The A0 mode has smaller wavelengths than S0, therefore, GWs signal
will be less affected by temperature variations in comparison with the case where S0 mode is
dominant.

For the sake of demonstration, GWs signals recorded in a CFRP plate at 1°C and 20°C
are shown in Figure 5.1. It can be observed that phase mismatch increases with the time of
observation, i.e. with the propagating distance of GWs, while the amplitude variations remain
approximately constant. Although both signals are recorded when the structure is defect-free,
the difference signal demonstrates some type of residual artificial waveforms.

Several practical approaches have been developed in order to limit and even reduce these
effects, but, unfortunately, they cannot be entirely suppressed. For example, the adhesive for
bonding transducers and transducers themselves can be carefully selected to minimize the
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required. Both FP and FN alarm rates have to be also evaluated in order to determine robustness
of the corresponding GWs-based SHM system. Both FP and FN rates can be estimated by means
of a discriminative classification model, which takes deteriorated GWI samples as input and
determines whether this image represents a damaged structure or pristine. In general, such a
type of classification tasks is solved using machine learning methods that require a significant
database of representative samples.

5.1.2.1 Database generation

As previously mentioned, GWs signals modifications primarily concern the modal amplitude
and changes of group and phase velocities. They are conditioned by various thermal effects,
including material expansion and change in stiffness as well as change in piezoelectricity of
transducers and their bounding [158]. It has been demonstrated that GWs signals can be
numerically manipulated with respect to these phenomena in order to imitate variations in
environmental effects and operational conditions [159]. This model implies degraded signals
computation as follows:

S(t)degraded = αS(t(1 + β)) + ǫ, (5.4)

where α represents amplitude variation, β GWs signal stretching due to thermal effects and ǫ
represents noise. On the basis of experimental results, all the three degradation parameters
are supposed to vary in following ranges complying with random uniform distributions: α ⊂
[0.875,1.125], β ⊂ [−0.0005,0.0005] and ǫ = 0.05. They were selected to approximately cover a
degradation range of GWI results that were observed experimentally while performing defect
imaging under varying temperature with |dTmax | ≈ 20°C. More details on the GWs degradation
model can be found in the following work [159].

Distorted GWs signals are then used to generate a database of corrupted GWI samples
for training a classification model. This dataset contains two types of images: the first one
represents GWI samples with false alarms while the structure remains pristine and the second
type consists of noisy images that represent damaged structures. In total, 1000 GWI samples
have been generated using a synthetic degradation model, where pristine and flawed structures
are represented in equal proportion.

For example, several GWI samples of degraded GWI database are presented in Figure 5.3.
The left column demonstrates images representing flawless data, while the right column presents
GWI samples of damaged structures. It might be difficult to discern with the naked eye images
corresponding to either class of data due to high deterioration rate, but this task can be efficiently
performed using machine learning models.

5.1.2.2 Damage detection model

Among many other methods for image analysis, Convolutional Neural Networks (CNNs) are
standing out as they are effective in learning both local and global patterns. General architecture
and basic principles of operation of CNN have been presented in Section 4.2.2. Here, the
architecture of CNN is similar to the one of the defect sizing model, see in Figure 4.3. However,
the current model has several distinctions that mainly concern an activation function of the
last layer of the network and a loss function that is used for training. Preceding layers of the
network are responsible for learning spatial features and patterns in GWI samples that can be
used for both tasks: regression and classification. Hence, the architecture of these layers remains
unchanged.

The last layer of the current network is activated using the Softmax function [144]. It is often
used in models that have to make a choice among a set of mutually exclusive options as it allows
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Accuracy Precision Recall AUC Support a

Damaged
0.95

0.88 0.97
0.966

72
Pristine 0.97 0.87 78

Table 5.1 – Performances of inversion models.

transforming the output of the network into the probability distribution. It can be expressed as
follows:

pi =
expxi

∑k
j=0 expxj

, i = 0,1,2...k, (5.5)

where xi is an evidence computed by CNN. The output probability distribution is of interest
mainly for two reasons. First, for a given GWI sample it allows computing the probability of
belonging to either class. Second, the categorical discrimination in the model can be trained
using the cross-entropy loss function, which demonstrates better then standard MSE metric per-
formance in classification tasks. For the binary classification problem, the model’s performance
can be evaluated as follows:

C = p0log(1/q0) + (1− p0)log(1/(1− q0)), (5.6)

where p0 is the ground truth probability distribution and q0 is the current computed probability
distribution.

Here, the CNN is used to build a classification model which determines whether forthcoming
GWI samples represent a damaged structure. All the images in the database are normalized,
then shuffled and split into two subsets that are used for training and testing. The training subset
contains 850 images while the testing one consists of 150 GWI samples. As in the previous case,
this network is trained using an ADAM optimizer that allows adaptive learning (its initial value
is 0.03). Following the standard training routine presented in Section 4.2.2.1, the network is
optimized using the back-propagation algorithm that allows adjusting kernels proportionally
to their contribution to the total output error. In total, 500 training epochs were conducted in
order to achieve an accurate classification model.

The classification model’s performance can be consistently summarized using a confusion
matrix, see Figure 5.4a, where true positives (TP), true negatives (TN), false positives (FP)
and false negatives (FN) predictions are presented. These values allow determining other
performance metrics such as accuracy, precision, recall and F1-score that are presented in Table
5.1. The accuracy score is straightforward and easy to understand as it represents a rate of correct
classification. For the current model, this metric is equal to 0.95, where the perfect classifier
would demonstrate accuracy equal to 1. Precision and recall are two other important model
evaluation metrics. Precision refers to the percentage of correct predictions i.e., (TP/(TP +FP)).
For this model, it is equal to 0.88 and 0.97 while classifying pristine and damaged states,
respectively. Recall represents the percentage of total relevant results correctly classified by the
model (TP/(TP + FN )), and it is equal to 0.97 for pristine and 0.88 for damaged states of the
structure.

Receiving Operator Characteristic (ROC) can provide more insight on the model’s perfor-
mance as it summarizes the performance of a classifier over all possible probability thresholds.
It can be generated by plotting the TP rate against the FP rate as the probability threshold for
assigning prediction to a certain class varies. The area under the ROC curve can be integrated

aSupport denotes a number of samples per class in the testing dataset.





5.2. Methods for temperature effect compensation 105

5.2 Methods for temperature effect compensation

As discussed above, all baseline methods are adversely affected by environmental effects and
operational conditions. Though transducers’ adhesives and transducers themselves can be
carefully selected to reduce environmental effects, they cannot be completely suppressed so that
the accurate residual signal computation is constrained to small temperature variations and low
excitation frequencies, which is limiting for structural health monitoring in realistic operational
environment. Therefore, several methods for GWs signal preprocessing have been developed,
some of them are presented below.

5.2.1 Conventional approach for baseline correction

Recently, two temperature compensation strategies have been developed to increase robustness
of GWs-based SHM systems and to promote them in real-life applications: Optimal Baseline
Selection [160] and Baseline Signal Stretch [153]. These methods are often coupled together and
applied sequentially. They rely on numeric optimization procedures in order to reduce GWs
signal changes induced by temperature variations.

5.2.1.1 Optimal Baseline Selection

As the name suggests, the Optimal Baseline Selection (OBS) [161] method consists in selecting
the best possible baseline from the dictionary of baseline signals. This method assumes that
the pristine structure of interest is first subjected to multiple environmental configurations that
imitate variations of operational conditions including a temperature change.

Therefore, baseline measurements are collected with fine discretization over the set of
environmental configurations, and the optimal baseline can be selected relying on the root-mean-
square (RMS) metric. More specifically, signals in baselines’ dictionary are subtracted in turn
from the current measurement, and the RMS metric is computed to quantify the level of residue.
Then, the optimal baseline can be determined as follows:

s(t)
opt
baseline = argmin([

N
∑

i=1

(s(ti )− s(ti )2BL1 ) ...
N
∑

i=1

(s(ti )− s(ti )2BLj )]), (5.7)

where s(t) denotes current GWs measurements consisting of N timesteps, s(ti )BL is a dictionary

of j baseline measurements and S(t)
opt
baseline is an optimal baseline.

Although this method allows selecting the best possible baseline from the dictionary, in
reality, it is barely possible to collect baselines over the whole range of interest of temperature
variations due to practical reasons especially for large structures.

5.2.1.2 Baseline Signal Stretch

As stated above, it may be impossible to collect a baseline dataset that comprises all plausible
environmental configurations. In practice, such a dataset is collected discreetly over the limited
range of temperature variations of interest. Therefore, once the OBS method is applied, there
is still a residual environmental effect to mitigate. In order to overcome this limitation and
improve temperature compensation results, a Baseline Signal Stretch (BSS) technique has been
proposed [153].
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Consider a small temperature variation, the single mode GWs signal is then modified as
follows:

u(t,T + δT ) =
N
∑

i=1

Uisi (t − tiβ(δT )), (5.8)

with

β = 1−
vgrkph

v2ph
δT , (5.9)

where δT is a temperature variation, Ui and si represent a modal amplitude and a corre-
sponding waveform respectfully, ti is arrival time, and β is a fractional change in arrival time of
the wavepacket.

Therefore, the BSS method consists in stretching the time-axis of the baseline signal u(t,T0)
by the factor β̂ that satisfies the following relation:

û(t,T0, β̂) = u(t/β̂,T0) =
N
∑

i=1

Uisi (t/β̂ − ti ), (5.10)

It can be deduced that if β̂ is equal to β, the stretched signal (5.10) will match the signal (5.8).
It is worth noting that such time-axis stretching alters the frequency content of the GWs signals,
therefore, it has to be resampled at a different sampling frequency.

In practice, this method is usually implemented in the frequency domain. The stretching
parameter β̂ is typically determined from the joint optimization problem. The first sub-problem
is to minimize the mean-square deviation between the measured signal and the baseline. More
formally, it can be expressed as follows:

β̂ms = argmin(
N
∑

i=1

(u(t,T )− û(t,T0β̂)2)) (5.11)

The second sub-problem consists in the minimization of the maximum residual amplitude,
which can be expressed as follows:

β̂mr = argmin(max(|u(t,T )− û(t,T0β̂|))) (5.12)

It should be mentioned that this optimization problem can be solved iteratively using conven-
tional optimizers such as ADAM (see Section 4.2.2.3). More information on the theoretical
background and implementation details can be found in following work [153].

OBS and BSS methods are often coupled together in order to increase the robustness of the
GWs-based SHM system. Both temperature compensation methods are intuitive and simple
for implementing but they remain effective only for small temperature variations and short
propagation distances. Therefore, baselines have to be collected over the temperature range of
interest with high discrimination, which is not feasible for large engineering structures such as
IFS.

5.2.2 Dynamic Time Warping for baseline correction

Stretch-based methods rely on the approximate physical model of temperature impact on
the GWs signals. These methods are aimed at determining scalar stretching factors in order
to realign the baseline with the current measurement. However, they are accurate only for
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relatively small temperature variations due to the assumption of a small misalignment angle
[153] made for deriving a factor of stretching. This assumption is no longer valid for significant
temperature variations, high frequency measurements and large distances of GWs propagation,
i.e. distances between transducers. It is worth noting that these limitations are fairly restrictive
for implementing an efficient GWs-based SHM system. Therefore, Dynamic Time Warping
(DTW) has been proposed [55] as a promising solution for overcoming these limitations. Unlike
conventional stretching methods, it is not constrained by linear stretching approximations, does
not require a supportive database of baseline measurements and reasonably flexible in signals’
alignment.

The DTWwas initially developed for speech recognition tasks, namely for discriminating two
similar time series [162]. This algorithm measures some kind of distance between two temporal
sequences that may vary in speed and amplitude. For instance, the same word pronounced
by two different persons can be detected using DTW despite the pronunciation accent and the
speech accelerations/deceleration. In the context of GWs signals under temperature variations,
DTW can be used to overcome challenges inherent to stretch-based methods by determining an
optimal mapping (that can be non-linear) between the samples of two temporal sequences [55].

Let us assume that X := [x1,x2, ...,xN ] of lengthN ⊂N and Y := [y1, y2, ..., yM ] of lengthM ⊂N
represent two GW signals sampled at different temperatures. The objective of DTW consists
in comparing these time series and determining the optimal warping path that maximizes the
alignment of two signals. For the sake of understanding and visualization, the same GWs signals
as in Section 5.1.1, i.e. measured at 1°C and 20°C are processed alongside the DTW algorithm
explication; they are denoted as X and Y , respectively.

First, the 2D feature space F consisting of two signal’s samples (i.e. xn, ym ⊂ F for n ⊂ [1 :N ]
andm ⊂ [1 :M] is constructed. Then, the local cost matrix Cloc is constructed in order to compare
features that belong to F. The Cloc matrix stores the cost of mapping single temporal sample
n from the baseline signal X to each element m of the current signal Y . It can be expressed as
follows:

Clocn,m = d(xn, ym), (5.13)

where the local cost is computed element-wise. As presented in literature, it can be obtained in
multiple ways including L1, L2 norms and the similarity metric [55, 162]. However, in this work a
novel metric is proposed. It imposes additional constraints on the signals compression/stretching
in order to avoid GWs signals flatting and cropping (see Figure A.3 where these effects are shown).
It can be expressed as follows:

d(xn, ym) = |xn − ym|+














|n−m|
∑N

i=1 |xi−yi |
log(|n−m|), if |m−n| > 0

0, if |m−n| = 0,
(5.14)

The local cost matrix for the current pair of GWs signals is shown in Figure 5.5a. It can be
seen that the largest element-wise cost is around 200 µs which corresponds to the time of arrival
of A0 mode wavepacket. Such a high cost in this region is mainly due to the time shift that was
manifested by Equation (5.1).

The next step consists in constructing the global cost matrix Cglob using values of the local
cost matrix. Each element of the global cost matrix contains a total cost of signals’ mapping
across the local cost matrix, i.e. signal’s warping paths. Note that total mapping costs for global
cost matrix are performed respecting alignment monotonicity, unitary step size and boundary
condition. The first two constraints ensure that the samples remain in the same order and that
the next sample can be chosen from the adjacent temporal samples. In the context of GWs





5.2. Methods for temperature effect compensation 109

signals, the boundary condition is applicable only for the first elements (m1;n1) = (1;1), while
for the last samples it can be relaxed, in other words, the final sample of the baseline signal X
can be aligned with any sample of the current signal Y .

The computational complexity of such formulation for every warping path is exponential in
N , and, therefore, it can be computationally prohibitive for long length GWs signals. For the
sake of overcoming this limitation, Muller [163] proposed an iterative optimization strategy also
known as dynamic programming. This method allows reducing computational complexity from
O(NN ) to O(N2) 1 so that Cglob can be determined more efficiently by removing suboptimal
solutions. Therefore, the global cost matrix can be determined as follows:

Cglobij = Clocij +min
n,m

(Cglobi−n,j−m ), (5.15)

where

m := [0,1], n := [0,1] | i −n > 0, j −m > 0 (5.16)

This algorithm computes recursively the elements ofCglob relying on the neighboring warping
global costs. Once the global cost matrix is computed, the optimal warping path of two signals
(X,Y ) can be determined as follows:

DTW (X,Y ) =min(Cglob(X,Y )) (5.17)

The back propagating algorithm is usually used for computing the optimal warping path.
It starts at the minimum of the global cost measure that satisfies the boundary conditions and
repetitively inspects each adjacent mapping in order to find the minimum global cost of signals’
alignment.

Figure 5.5b presents the global cost matrix for the studied signals as well as an optimal
warping path. The latter is used to align two GWs signals of interest, see Figure 5.6a. It can
be seen that thanks to DTW compensation the amplitude of the difference signal between two
GWs measurements has significantly decreased in comparison with the original residue shown
in Figure 5.1.

The DTW can be successfully applied to compensate temperature variations, namely to
remove artificial wavepackets that appear due to the time shift and waveforms distortion in
GWs signals. It is worth noting that in spite of the initial development of the DTW algorithm for
the speech recognition tasks, its operational principle is similar to BSS. Perhaps, DTW should
be considered as an advanced version of the former as it applies the same by means temporal
shifting, stretching and compression manipulations. Obviously, these manipulations can be
non-linear providing a significant alignment advantage in comparison with its competitor, which
is constrained to linear modifications. However, the optimal warping path is derived relying
only on mathematical principles and constraints ignoring the knowledge of GWs propagation.

5.2.3 Defect imaging results under varying temperature

An experimental stand used in studies of temperature effects on GWs propagation is shown in
Figure 5.7. It consists of a thermal chamber capable of generating a wide range of temperatures
and the GWs acquisition system. Two structures are selected for this experiment, see Figure 5.7b.
The first is an aluminum plate 600 mm × 600 mm × 3 mm in dimension. It is instrumented with
six PZT transducers, each 18 mm in diameter and 0.5 mm thick. The second structure is a CFRP

1Computational complexity reduce from exponential to quadratic is a huge improvement, but quadratic complexity
is still far from being optimal. Therefore, it is advised to use GWs signals containing less than 2e3 samples.
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(a) Photo of the experimental set-up. (b) Instrumentation of aluminum and CFRP plates.

Figure 5.7 – Experimental stand used in temperature effects studies.

plate 1000 mm × 600 mm × 2.2 mm in dimension. It consists of eight orthotropic lamina, each
0.275 mm thick. All the plies are oriented in 0° direction with respect to the fiber placement.
This plate is instrumented with ten PZT transducers, each 18 mm in diameter and 0.5 mm thick.

The preliminary study of temperature compensation for GWI consists in simulated defect
imaging under varying temperature in the CFRP plate. The defect is simulated by the mass
attached to the surface of the plate. The pristine state of the structure is measured at 20°C while
the damaged state at 0°C. Corresponding defect imaging results are presented in Figure 5.8.

The reference image, shown in Figure 5.8a, is computed when both pristine and damaged
states were measured at 20°C. When the temperature difference occurs, the GWI result becomes
noisy and the defect imaging resolution deteriorates in comparison with the reference image. In
addition, imaging artifact right next to the defect location can be also observed. However, the
application of the DTW algorithm allows decreasing the influence of the temperature on GWs
propagation so that the residual signal computation becomes more accurate. Consequently, GWI
quality is increased as the number and magnitude of imaging artifacts decreased, see Figure 5.8c.
It is worth noting that simulated by an attached mass defect has a simple response: it scatters
primary A0 mode and does not modify incident wavepackets. Therefore, baseline signals can be
aligned with current measurements carrying simulated defect response more accurately than
with measurements carrying a realistic damage response such as transverse hole that modifies
GWs signals to grater extent.

The next study consists in determining operational limits of DTW for compensating temper-
ature difference in aluminum and CFRP plates. For both plates structural damage is represented
by drilled transverse holes 10mm in diameter. The same experimental stand, shown in Figure
5.7, is used for subjecting these plates to the wide temperature range T ⊂ [−40°C,85°C] and for
measuring propagating GWs. The excitation function is a two-cycle Hanning modulated tone
burst centered at 40 kHz.

Temperature induced GWs modification are compensated by DTW algorithm. Figure 5.9
provides more insight into the DTW results and demonstrates its effectiveness for compensating
20° C of temperature difference in the aluminum plate. The reference residual signal (denoted
by blue dotted line) is plotted against direct residual signal (represented by orange solid line)
and DTW corrected residual signal (shown by green solid line). The direct residual was obtained
by subtracting the baseline from damaged state signal neglecting temperature-induced modifi-
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5.3 Chapter summary

This chapter reports on the studies conducted to estimate and increase the robustness of a
GWs-based SHM system. It has been demonstrated that the baseline-demanding GWI methods,
and Excitelet in particular, are vulnerable to temperature variations because GWs propagation
as well as dynamics of transducers and their adhesion are affected by thermal effects. Namely,
changes in modal amplitudes, group and phase velocities of GWs are the primary sources of
disturbance. They lead to the appearance of temperature-induced waveforms in residual signals
that can obscure defect’s response. These waveforms can be mapped by GWI algorithms to
the defect free locations introducing imaging artifacts that might result in false alarms of the
GWs-based SHM system.

The first study of this chapter consisted in developing a classification model capable of
analyzing corrupted GWI results in order to determine whether they represent damaged or
pristine structure. This work has been conducted using the database of simulated GWI samples
that were corrupted using a GWs signals deterioration model, which simulates temperature
effects and operational noise. This model has been tuned in such a way that corrupted GWI
samples would represent possible deteriorations due to operational conditions of aeronautic
structures. A developed classifier demonstrates good performance: corresponding accuracy
and AUC are equal to 0.95 and 0.966, respectively. However, in spite of a good defect detection
accuracy the further analysis of a GWI sample might be difficult, namely defect localization
might be confusing and defect’s sizing might be impossible.

In order to overcome this limitation, existing temperature compensation approaches have
been reviewed and adapted for GWI applications. More precisely, DTW algorithm is used
to align two GWs signals measured at different temperature. This algorithm searches for the
optimal warping path that allows minimizing the corresponding difference and the accurate
GWs subtraction becomes possible. This method has been successfully applied for simulated
defect imaging in CFRP plate while the temperature difference between pristine and damaged
states is 19°C. DTW was also effectively applied to provide effective transverse hole imaging
while the temperature difference can reach up to 25 °C. However, this algorithm in the pro-
posed configuration was not effective for transverse hole imaging in CFRP plate under varying
temperature. This is due to the complex defect response in anisotropic plate that is similar to
the temperature-induced deteriorations so that the DTW algorithm compensated both types
of modifications. This is preliminary work on adaptation of DTW algorithm for GWI applica-
tions to compensate thermal effects, therefore, more advances are required to achieve better
performance.

This is the final chapter of the thesis, and it completes the pipeline of the GWs-based SHM
system that allows efficient defect detection, localization and sizing in aeronautic structures.
Conclusions and perspectives of this work are provided in the following.



Conclusions

Different industries, and the aerospace in particular, use lightweight and high-performance
materials, e.g. aluminum alloys and composites as well as their derivatives, such as HCSS, in
order to reduce weight and to increase the reliability and profitability of engineering structures.
However, in spite of excellent mechanical properties, defects, such as corrosion, plies fracture,
delamination and debounding, might occur as these structures are often subjected to harsh
environmental and operational conditions. These defects decrease structural integrity and,
therefore, reduce remaining useful time or, even worse, might lead to structural failure.

The research topic of this work is aimed at developing a GWs-based SHM system for damage
detection, localization, and characterization in plate-like structures made of aforementioned
materials that could be eventually translated to complex composite structures, such as an aircraft
nacelle. This work was conducted with respect to the imposed objectives and contains five
chapters responding to research questions as follows.

The first chapter provided an introduction to the field of GWs based-SHM starting with
motivation and basic concepts of structural integrity evaluation. It describes constitutive parts
and an operational principle of a GWs-based SHM system and also provides a brief literature
review highlighting advantages and challenges of such systems.

The second chapter presented general properties and principles of GWs actuation, propaga-
tion, defect interaction and sensing. Taking into account that GWs can be expressed in terms of
the elastodynamic 3D Green’s function, a SAFE modeling method coupled to a modal expansion
method has been used to compute the 3D Green’s functions in aluminum and monolithic com-
posite plates. The homogenization model has been applied to replace a honeycomb layer with
an equivalent orthotropic plate in order to extend a modeling framework to HCSS. This method
provides correct modeling results only for low frequencies range but it is sufficient for targeted
applications. These simulation tools are limited to ideal plate-like structures but, in reality,
such structures are often equipped with rivets and other structural features that modify the
elastodynamic 3D Green’s function. For the sake of overcoming these limitations, a probabilistic
data-driven approach has been developed. It is based on the use of probabilistic model and
allows determining modal components of the 3D Green’s function from the measured GWs
wavefield. This method has been tested on an aluminum plate, CFRP plate and HCSS panel, and
demonstrated a good agreement with modeling methods.

The third chapter presented GWI methodology and methods for GWs signals processing
that are used for damage detection and localization in both isotropic and anisotropic structures.
These methods rely on the knowledge of GWs propagation characteristics that can be determined
using simulation or data-driven methods presented in the previous chapter. Both simulated and
experimental defect imaging results are demonstrated in aluminum plates, CFRP plates and
HCSS. Defect localization performance has been evaluated for several algorithms presented in
literature DAS, MV and Excitelet algorithm by means of a statistical analysis of an extensive
database of GWI specimens that was generated using the SHM module of CIVA software based
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on Spectral Finite Element Modelling. Excitelet algorithm is the most accurate as it demon-
strates both the lowest average localization error and the narrowest localization error probability
distribution function. Taking into consideration that for large real-life structures pixel-wise
image computation can be time-consuming, a novel approach for the sparse defect imaging was
developed. It is implemented in the Bayesian framework, where the Gaussian process models
the structural integrity image. Following the Bayesian optimization routine, a joint problem
consisting in acquisition function maximization is formulated so that the forthcoming sampling
points can be determined by maximizing the former. In addition, Excitelet’s sensitivity to the
damage size has been also demonstrated. While the defect presence and location are straightfor-
ward from image analysis, the defect sizing is not obvious due to non-linear dependencies in
both location and size of the defect.

The fourth chapter presented an approach for the defect size evaluation using GWI results.
It is based on the use of a convolution neural network that allows capturing both local and
global spatial relations between pixels of the image. The flexibility of the model and the degree
of abstraction of learned patterns is controlled and by architecture of the model, whereas the
balance between overfitting and underfitting is reached by model regularization. This data-
driven method requires a large amount of data, therefore, SHM module of CIVA software has
been used again to generate an extensive dataset of GWI samples. This dataset is created for
a specific GWI configuration but represents defects of different sizes at various locations. The
developed defect sizing model has been validated on both unseen simulated and experimental
GWI results and demonstrated a relatively good performance. The proposed approach allows
completing the GW-based SHM system pipeline so that the defect detection, localization and
characterization are possible.

Finally, chapter five presented studies conducted for the sake of increasing the robustnesses
of a GWs-based SHM system. It has been demonstrated that baseline methods are adversely
affected by environmental effects, where the primary effect is a temperature variation. The
first study of this chapter consists in developing a defect detection model on the basis of CNN
classifier that is capable of analyzing corrupted GWI samples in order to determine whether
they represent a damaged or pristine structure. This work has been conducted using the
database of simulated GWI samples that was adversely modified by means of GWs signals
deterioration model. A proposed classifier demonstrates good performance with accuracy equal
to 0.95. However, in spite of a good defect detection accuracy, defect localization and sizing are
barely possible on the basis of deteriorated GWI results. To overcome this limitation, existing
temperature compensation approaches have been reviewed and modified for current GWI
applications. More precisely, DTW algorithm has been used to align GWs signals measured at
different temperatures. This algorithm searches for the optimal warping path that minimizes
temperature-induced difference so that the accurate GWs subtraction becomes possible. This
method has been successfully applied for simulated defect imaging in CFRP plate while the
temperature difference between pristine and damaged states is 19°C. DTW also demonstrated
its efficiency for transverse hole imaging in aluminum plate under varying temperature up to
δT ≈ 25°C. However, this algorithm in the proposed configuration has not yet been proven
effective for transverse hole imaging in CFRP plate under varying temperature. This limitation
might be due to a complex defect response in anisotropic plates. It is worth noting that this
is a preliminary work on adaptation of DTW algorithm for GWI applications that started at
the end if this thesis. Therefore, more studies are required to fully understand the physical
phenomena involved in the unsuccessful application of DTW in CFRP plates and to achieve a
better performance in thermal effect compensation.

This work concerns multiple research questions that were solved to a different extent in
order to develop an efficient and reliable GWs-based SHM system for rapid integrity screening
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in isotropic and anisotropic plate-like structures. However, as many other academic studies,
this research work generates new challenges and perspectives that might advance the field of
GWs-based SHM.
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Recommendation for future work

Despite the fact that this thesis has explored a wide range of research topics in the field of
GWs-based SHM for composite structures, there are still several issues worthy of consideration
for further advance. They can be formulated as follows:

• Transducers represent an important field where the progress is needed. As discussed
earlier, the majority of reviewed works and this thesis in particular, are based on the use
of PZT transducers. This is a mature and reliable technology for GWs signals excitation
and sensing, but it is somewhat limiting for real-life aeronautical applications. The major
limitation is not due to transducers themselves but rather due to the cabling necessary for
connecting each of them to the SHM system. In light of this, FBG technology is standing
out as a promising solution for replacing an entire PZT cell with a single optical fiber
containing multiple FBG that can be integrated into the structure during the fabrication
process. Such fibers can be used for GWs sensing and would allow the significant reduction
of the number of PZT required for structure excitation. Minor modifications of GWI
methodology are required to adapt FBG technology, but a significant effort has to be
applied to develop supportive electronics that can be installed on the aircraft.

• The next proposal for future work consists in the improvement of simulation methods for
the 3D Green’s function computation in HCSS. As previously mentioned, the developed
method provides accurate results only for the low frequencies range, where wavelengths
are larger than a honeycomb cell size, and deviates rapidly when frequency increases.
Therefore, further improvement can be focused on coupling the SAFE method with Bloch’s
function formulation to overcome limitations of HC homogenization model allowing
accurate and rapid 3D Green’s function computation while taking into consideration
GWs-HC meso-scale interactions.

• The data-driven approach for the 3D Green’s function determination can be also improved
by developing a more robust spectral filtering technique capable of resolving complex
modal trajectories that can come close and cross each other. This would allow extracting
modal components of the 3D Green’s function at high frequencies where multiple guided
modes are present. For example, deep auto-encoding modes could be of great use for
developing such filters as they allow efficient semantic segmentation of the data.

• GWI methods, and Excitelet algorithm in particular, can be improved to different extent
by replacing a perfect reflector defect model with a more realistic one that would con-
sider guided modes conversion, a directional pattern of GWs scattering and GWs energy
trapping. Therefore, a theoretical signal can be computed more accurately, and this will
allow the increase of imaging quality by reducing the number of artifacts and noise. In
addition, multiple GWI configurations, including different types of plates, the number of
transducers, excitation frequencies, the number and type of defects etc., have to be studied
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by means of statistical analysis for the sake of accurate and comprehensive performance
quantification of imaging algorithms.

• The defect size determination model has demonstrated a good performance but it is
limited to image analysis corresponding to the specific GWI configuration and defect type.
Therefore, an extensive and comprehensive database of GWI results has to be generated in
order to comprise different materials, the varying number of defects as well as their types
and locations, multiple transducers’ configurations etc. This would allow training a more
powerful and efficient defect sizing model. It is noteworthy that SHM module of CIVA
software is a rapid and accurate tool for database generation but that certain advancements
have to be introduced in order to simulate complex composite structures such as HCSS,
to provide a more precise transducers model and to enable different possible structural
geometries.

• As previously reported, baseline GWI techniques are effective under stationary operational
conditions but they are adversely affected by thermal variations. The proposed method
for temperature difference compensation is based on the use of the DTW algorithm. It
has been validated for aluminum but not yet for composite plates due to the complexity
of GWs modification. Therefore, further improvements of this approach might concern
cost function determination that would allow differentiating temperature-induced GWs
signals modification and defect response. Matrices decomposition techniques such as PCA
or kernel-PCA might be useful for decoupling these phenomena.
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A.1 Maximum likelihood for the normal distribution

This is a toy example to demonstrate how the parameters can be derived for the model complying
with Gaussian distribution. Given the data x, and the probability distribution of the model can
be expressed as follows:

P(x|µ,σ) = 1√
2πσ2

exp
−(x −µ)2

2σ2
, (A.1)

where parameters µ and sigma have to be derived from the data x.
As described in 2.26, the optimal parameters can be derived from the likelihood. For

computational reasons, a logarithm of likelihood is computed as follows:

L(µ,σ |x) = ln(
1√

2πσ2
exp
−(x1 −µ)2

2σ2
× ...× 1√

2πσ2
exp
−(xn −µ)2

2σ2
)

= −n
2
ln(2π)−n ln(σ)− −(x1 −µ)

2

2σ2
− ...− −(xn −µ)

2

2σ2

(A.2)

The optimal parameters can be obtained the maximum of likelihood is achieved, i.e it derivative
is equal to zero. Hence A.2 can be differentiated with respect to the µ and σ . It gives the
following:

∂

∂µ
lnL(µ,σ |x) = 1

σ2
(x1 + ...+ xn), (A.3)
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and
∂

∂µ
lnL(µ,σ |x) = − 1

σ
+

1

σ3
((x1 −µ)2 + ...+ (xn −µ)2). (A.4)

By setting this derivatives to zeros, optimal parameters values can be obtained for this model as
follows:

∂

∂µ
lnL(µ,σ |x) = 0 −→ µ =

x1 + ...+ xn
n

, (A.5)

∂

∂σ
lnL(µ,σ |x) = 0 −→ σ =

√

(x1 −µ)2 + ..(xn −µ)2
n

. (A.6)

Therefore, following the Bayesian framework, it is possible to derive optimal parameters µ and
σ . As expected, for Gaussian distribution the optimal µ is a mean value, and optimal σ is a
standard deviation.
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