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Abstract

Title: Combinatorial links between quasisymmetric functions and tableaux for Coxeter groups.

Keywords: type B quasisymmetric functions, Schur functions, Cauchy identity, descent algebra,
RSK-correspondence, hyperoctahedral group, domino tableaux, Schur positivity.

The algebra of symmetric functions is a major tool in algebraic combinatorics that plays a central
rôle in the representation theory of the symmetric group. This thesis deals with quasisymmetric
functions, a powerful generalisation introduced by Gessel in 1984, with significant applications in
the enumeration of major combinatorial objects as permutations, Young tableaux and P-partitions
and in the study of advanced symmetric functions like Schubert and Macdonald polynomials. More
specifically we find a new connection between Chow’s extension of quasisymmetric functions to
Coxeter groups of type B and domino tableaux, i.e. Young diagrams tiled with 2 × 1 and 1 × 2

rectangles. It allows us to contribute new results to various fields including the structure constants
of type B Solomon’s descent algebra, the extension of the theory of Schur-positivity to signed
permutations and the study a q-deformed type B Cauchy formula with important implications
regarding statistics for domino tableaux.

Among the remarkable bases of the algebra of symmetric functions, Schur functions received par-
ticular attention as they are strongly related to the irreducible characters of the general linear
group and Young diagrams. The Schur symmetric function indexed by an integer partition λ

is the generating function for semistandard Young tableaux of shape λ. This result extends to
skew shapes and allows to write any (skew-) Schur function as the sum of Gessel’s fundamental
quasisymmetric functions indexed by the descent set of all standard Young tableaux of a given
shape. Furthermore the celebrated Cauchy formula for Schur functions gives an algebraic proof
of the Robinson-Schensted-Knuth correspondence. Finally, the structure constants for the outer
product and inner product of Schur polynomials are respectively the Littlewood-Richardson and
Kronecker coefficients, two important families of coefficients with various combinatorial and al-
gebraic applications. Using known results about Gessel’s fundamental quasisymmetric functions
we show that these properties imply directly and in a pure algebraic fashion, various results for
the structure constants of the Solomon descent algebra of a finite Coxeter group of type A and
the descent preserving property of the Robinson-Schensted correspondence, an essential tool to
identify Schur-positive sets, i.e. sets of permutations whose associated quasisymmetric function is
symmetric and can be written as a non-negative sum of Schur symmetric functions.

To extend these results to Coxeter groups of type B we introduce a family of modified generating
functions for domino tableaux and relate it to Chow’s type B fundamental quasisymmetric func-
tions. Thanks to this relation we derive new formulas relating the structure constants of the type
B Solomon’s descent algebra with type B Kronecker and Littlewood-Richardson coefficients.
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It further allows us to introduce a new type B extension of Schur-positivity based on a definition
of descent for signed permutations that conforms to the abstract definition of Solomon for any
Coxeter groups. We design descent preserving bijections between signed arc permutations and
sets of domino tableaux to show that they are indeed type B Schur-positive. We also suggest an
algebraical approach to prove the same fact.

Finally, we introduce a q-deformation of the modified generating functions for domino tableaux to

extend a type B Cauchy identity by Lam and link it with Chow’s quasisymmetric functions. We

apply this result to a new framework of type B q-Schur positivity and to prove new equidistribution

results for some sets of domino tableaux.
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Résumé

Titre : Liens combinatoires entre fonctions quasisymétriques et tableaux dans les groupes de
Coxeter.

Keywords : fonctions quasisymétriques de type B, fonctions de Schur, identité de Cauchy, algèbre
de descente, correspondance RSK, groupe hyperoctaèdrique, tableaux de dominos, Schur positivité.

L’algèbre des fonctions symétriques est un outil majeur de la combinatoire algébrique qui joue
un rôle central dans la théorie des représentations du groupe symétrique. Cette thèse traite des
fonctions quasisymétriques, une puissante généralisation introduite par Gessel en 1984, avec des
applications significatives dans l’énumération d’objets combinatoires majeurs tels que les permu-
tations, les tableaux de Young et les P-partitions et dans l’étude de fonctions symétriques avancées
telles que les polynômes de Schubert et Macdonald. Plus précisément, nous trouvons un nouveau
lien entre l’extension des fonctions quasisymétriques de Chow à des groupes de Coxeter de type B
et des tableaux de dominos, c’est-à-dire des diagrammes de Young pavés par des rectangles 2× 1

et 1×2. Ceci nous permet d’apporter de nouveaux résultats dans divers domaines, notamment les
constantes de structure de l’algèbre de descente de Solomon de type B, l’extension de la théorie
de la Schur-positivité aux permutations signées et l’étude d’une formule de Cauchy de type B
q-déformée avec des implications importantes statistiques pour les tableaux dominos.

Parmi les bases remarquables de l’algèbre des fonctions symétriques, les fonctions de Schur ont fait
l’objet d’une attention particulière car elles sont étroitement liées aux caractères irréductibles du
groupe linéaire général et aux diagrammes de Young. La fonction symétrique de Schur indexée par
une partition entière λ est la fonction génératrice des tableaux de Young semistandards de forme
λ. Ce résultat s’étend aux formes gauches et permet d’écrire n’importe quelle fonction de Schur
(gauche) comme la somme des fonctions quasisymétriques fondamentales de Gessel, indexées par
l’ensemble de descente de tous les tableaux de Young standard d’une forme donnée. En outre, la
célèbre formule de Cauchy pour les fonctions de Schur donne une preuve algébrique de la corres-
pondance de Robinson-Schensted-Knuth. Enfin, les constantes de structure pour la multiplication
et la comultiplication des polynômes de Schur sont respectivement les coefficients de Littlewood-
Richardson et de Kronecker, deux familles importantes de coefficients ayant diverses applications
combinatoires et algébriques. En utilisant des résultats connus sur les fonctions quasisymétriques
fondamentales de Gessel, nous montrons que ces propriétés impliquent directement et de façon
purement algébrique divers résultats pour les constantes de structure de l’algèbre de descente de
Solomon d’un groupe de Coxeter fini de type A et la propriété de préservation de descente de
la correspondance de Robinson-Schensted, un outil essentiel pour identifier les ensembles Schur-
positifs, c’est-à-dire les ensembles de permutations dont la fonction quasisymétrique associée est
symétrique et qui peut s’écrire sous la forme d’une somme non négative de fonctions symétriques
de Schur.
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Pour étendre ces résultats aux groupes de Coxeter de type B, nous avons introduit une famille de
fonctions génératrices modifiées pour les tableaux de dominos et la relions aux fonctions quasisy-
métriques fondamentales de type B de Chow. Grâce à cette relation, nous obtenons de nouvelles
formules reliant les constantes de structure de l’algèbre de descente de Solomon de type B aux
coefficients de Kronecker et de Littlewood-Richardson de type B.

Cela nous permet en outre d’introduire une nouvelle extension de type B de la Schur-positivité
basée sur une définition de la descente pour les permutations signées, conforme à la définition
abstraite de Solomon pour tous les groupes de Coxeter. Nous concevons des bijections préservant
la descente entre des permutations d’arc signées et des ensembles de tableaux de dominos afin de
montrer qu’ils sont bien type B Schur-positifs. Nous proposons également une approche algébrique
pour prouver le même fait.

Enfin, nous introduisons une q-déformation des fonctions génératrices modifiées pour les tableaux

de dominos afin d’étendre une identité de Cauchy de type B proposée par Lam et de la lier aux

fonctions quasisymétriques de Chow. Nous appliquons ce résultat à un nouveau cadre de positivité

de type B q -Schur et à la démonstration de nouveaux résultats d’équidistribution pour certains

ensembles de tableaux de dominos.
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Chapter 1

Definitions and results for type A

Coxeter groups

1.1 Permutations and Young tableaux

For any integer n write [n] for the set {1, · · · , n} of integers. Consider Sn the symmetric

group on [n], also known as a Coxeter group of type A. Let idn be the identity permutation

of Sn.

One important feature of a permutation to research is its descent set.

Definition 1. The descent set of a permutation π of Sn is the subset of [n− 1] defined as

Des(π) = {1 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.

For instance, the descent set of the permutation π = (4, 1, 6, 2, 3, 5) is {1, 3}.

Various statistics are linked with the descent set, including the well known major index

of a permutation

maj(π) =
∑

i∈Des(π)

i.

The classical result of MacMahon [Mac60] concerning the equidistribution of major index

and inverse number statistics over the symmetric group Sn opens a set of results regard-

ing permutation statistics (see [FS78], [FZ90] for example). Several enumerative results

were generalised to the hyperoctahedral group Bn (see [Rei93a], [Rei93b], [Ste94]). The

usual tool for these results is a suggestion of an explicit bijection with certain properties.

Further in this thesis we will show some equidistribution results using a purely algebraical

approach.

1
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Definition 2. A composition α � n is a sequence of positive integers α = (α1, · · · , αp)
such that α1 + α2 + · · · = n. A composition λ of n with its parts sorted in decreasing

order is called a partition and denoted by λ ` n or |λ| = n. The length of a partition is

the number of its parts l(λ) = p. We denote by p(n) the number of partitions of n.

Compositions of n are in natural bijection with subsets of [n − 1]. Indeed, for α � n

and I = {i1, i2, · · · , im} a subset of [n − 1] such that i1 < i2 < · · · im, we set set(α) =

{α1, α1 + α2, · · · , α1 + α2 + · · ·αp−1} and comp(I) = (i1, i2 − i1, · · · , im − im−1, n − im)

this bijection and its inverse. As a result the number of compositions of n is 2n−1.

A partition λ is usually represented as a Young diagram of n = |λ| boxes arranged in `(λ)

left justified rows so that the i-th row from the top contains λi boxes. Other names for

Young diagram appear in the literature, e.g. Young frame or Ferrers diagram.

Definition 3. The conjugate λ′ of a partition λ is the partition corresponding to the

transpose diagram of the partition λ.

λ = λ′ =

Figure 1.1: The Young diagram of the partition λ = (4, 2, 1) and the conjugate partition
λ′ = (3, 2, 1, 1).

Partitions, or equivalently Young diagrams are used to parametrise a number of objects

in algebra. First of all, they parametrise the conjugacy classes of the symmetric group

Sn and therefore the irreducible characters of the symmetric group. Secondly, Young

diagrams also parametrise the irreducible polynomial representations of the general linear

group GLn. They occur in representations of related groups like the special linear SLn
and special unitary groups SUn.

Partitions also parametrise Schur functions, which are the Frobenius characteristics ([Fro00])

of the irreducible characters of the symmetric group, as well as the elements of all stan-

dard bases of the symmetric functions algebra. The question of Schur-positivity of certain

functions and sets is therefore closely related to the representation theory of the symmetric

group. See Section 1.10 for the details and Chapter 4 for a type B generalisation.

Definition 4. A standard Young tableau T is a Young diagram whose boxes are filled

with the elements of [n] such that the entries are strictly increasing along the rows and

down the columns. The partition given by the number of boxes in each row is its shape
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and denoted shape(T ). We denote SY T (n) (SY T (λ)) the set of standard Young tableaux

of n boxes (of shape λ).

Example 1.1. The following diagrams are standard Young tableaux of shape λ = (6, 4, 2, 1, 1).

T1 =

1

2

3 4

5

6 7

8 9

10

11

12

13

14

T2 =

1

2

3 4

5

6 7 9

8

10

11

12

13

14

The dimension of a representation πλ of the symmetric group Sn is equal to the number

of standard Young tableaux of the corresponding shape. The well-known hook-length

formula due to Frame, Robinson and Thrall [FdBRT54] allows us to compute the number

of standard Young tableaux of shape λ.

dim(πλ) = fλ =
|λ|!∏
b hb

,

where the product is over all boxes b and hb is the number of boxes to the right and

directly below b (including b itself).

Example 1.

f(4,2,1) =
7!

6 · 4 · 2 · 1 · 3 · 1 · 1 = 35.

Definition 5. Define the descent set of a standard Young tableau T as the subset of

[n− 1] as

Des(T ) = {1 ≤ i ≤ n− 1 | i is in a strictly higher row than i+ 1}.

For instance, the descent set of the tableaux T1 in Example 1.1 is {1, 4, 9, 10, 12}. We

denote by dλI the number of standard Young tableaux of shape λ and descent set I.

Definition 6. A semistandard Young tableau is a Young diagram whose entries are

strictly increasing down the columns and non-decreasing along the rows. A semistandard

Young tableau T has weight w(T ) = µ = (µ1, µ2, · · · ) if it has µi entries equal to i. We

denote by SSY T (n) (SSY T (λ)) the set of semistandard Young tableaux of n boxes (of

shape λ).



Chapter 1 4

Example 1.2. The following diagrams are semistandard Young tableaux of shape λ =

(6, 4, 2, 1, 1) and weight µ = (1, 2, 1, 0, 3, 1, 1, 1, 2, 2).

T1 =

1

2

2 3

5

5 5

6 7

8

9

9

10

10

T2 =

1

2

2 3

5

5 5 7

6

8

9

9

10

10

Given a partition λ and a composition α denote the Kostka number Kλα the number of

semistandard Young tableaux of shape λ and a weight composition is equal to α (see [Kos82]

for the details). An important property of Kλα is that it does not depend on the order of

entries of α, so given a partition rearrangement µ of a composition α one has Kλα = Kλµ.

From a theoretical-representation point of view, Kλµ gives the dimension of the weight

space corresponding to µ in the irreducible representation Wλ of the general linear group

GLn, where l(λ) and l(µ) are no more than n.

The coefficients dλI and Kostka numbers Kλµ may be used to compute the structure con-

stants of the Solomon descent algebra, together with Kronecker coefficients, see Section 1.8

for the details. The type B generalisations of these formulas are given in Chapter 3.

There is an analogue of the hook-length formula for semistandard Young tableaux, called

hook-content formula. It counts the number of semistandard Young tableaux of shape λ

such that its entries are less than or equal to t ∈ Z.

gλ,t = #{SSY T,max ≤ t} =
∏
b∈λ

t+ c(b)

hb
,

where c(b) = i− j for the box b with coordinates (i, j).

The dimension of the irreducible representation W (λ) of the general linear group GLt,

corresponding to the partition λ ` n, l(λ) ≤ t, may be computed using the formula above.

One may consider more general shapes for Young diagrams. Let n be a non-negative

integer and let λ and µ be two integer partitions such that the diagram of µ is included

in the diagram of λ and |λ| − |µ| = n. We will write µ ≤ λ in this case. This is a partial

order on the set of Young diagrams. The difference of the Young diagrams of shapes λ

and µ is called the skew Young diagram of skew shape λ/µ. For instance,

λ/µ = (4, 2, 1)/(2, 1) = .
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Definition 7. A standard (resp. semistandard) skew Young tableau of shape λ/µ is

a Young diagram of skew shape λ/µ whose boxes are filled with the elements of [n] (resp.

with positive integers) such that the entries are strictly increasing down the columns and

along the rows (resp. strictly increasing down the columns and non decreasing along the

rows). Denote by SY T (λ/µ) (resp. SSY T (λ/µ)) the set of standard (resp. semistandard)

skew Young tableaux of shape λ/µ.

Example 1.3. The two tableaux T1 ∈ SY T ((6, 4, 2, 1, 1)/(3, 1))

and T2 ∈ SSY T ((6, 4, 2, 1, 1)/(2, 1, 1)) give an example of a standard and a semistandard

tableaux.

T1 = 1

2 3

4 5

6

7

8

9

10

, T2 =

3

5 5 7

6

8

9

9

10

10

The descent set of a standard skew Young tableau is defined similarly as in the case of

usual shapes

Des(T ) = {1 ≤ i ≤ n− 1 | i is in a strictly higher row than i+ 1}.

For I ⊆ [n − 1], denote by dλ/µ I the number of standard skew Young tableaux of shape

λ/µ and descent set I.

Definition 8. To any (standard or semistandard, skew or usual) Young tableau T we

associate its reading word, i.e. the word obtained by concatenating the rows of T from

bottom to top.

Skew and usual semistandard Young tableaux have a great importance in combinatorics,

since they appear to be connected with numerous objects and questions.

Lascoux and Schützenberger in [LS81] study a structure called the plactic monoid, whose

elements may be presented as semistandard Young tableaux. The monoid operation is

the associative product on SSY T , introduced by Schensted [Sch61] in his study of the

longest increasing subsequence of a permutation. This structure is also closely related to

the notion of Knuth equivalence ([Knu70]) of two words.

The problem of counting Young tableaux leads to the definition and identities for Schur

functions (see Section 1.4). They are involved in many algorithms like jeu de taquin and

the Robinson-Schensted-Knuth correspondence (see Section 1.2).

All the topics mentioned above are closely related to each other.
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The jeu de taquin algorithm ([dBR77]) defines an equivalence relation on the set of stan-

dard skew Young tableaux, called jeu de taquin equivalence. It is known that two

semistandard skew tableaux are jeu de taquin equivalent if and only if the reading words

are Knuth equivalent. As a consequence, both tableaux are jeu de taquin equivalent to the

insertion tableau of the reading word of T under the Robinson-Schensted correspondence.

The jeu-de-taquin algorithm is also linked with the Littlewood-Richardson coefficients and

the Littlewood-Richardson rule ([LR34], [Tho74], [Tho78], [vL01], [Fom97]), that we use

further in this thesis.

The Robinson-Schensted correspondence is closely related to the celebrated Cauchy iden-

tity for Schur functions, as shown in Section 1.9. Chapter 5 generalises domino functions

with an additional parameter q and gives the analogue for Cauchy identity and for this

link. In this thesis we also use the generalised Cauchy identity for q-domino functions to

receive some equidistribution results and to generalise further the notion of type B Schur

positivity.

1.2 RSK correspondence

The Robinson-Schensted (short RS) correspondence is a well-known bijection between

permutations and pairs of standard Young tableaux of the same shape

RS : π ∈ Sn → (Pπ, Qπ) ∈
⋃
λ`n

SY T (λ)× SY T (λ).

RS correspondence has many useful properties. In particular, it preserves the descent set,

which is of interest in our research. This bijection has a lot of applications in combinatorics

and representation theory (see Section 1.10).

The RS-correspondence was generalised by Knuth [Knu70] to the case of semistandard

Young tableaux and generalised permutations. The resulting bijection is called the RSK-

correspondence.

In this section we briefly describe the idea of the RS and RSK bijection. The shortest

description of RS is due to Schensted (see [Sch61]) in 1961, but the correspondence was

proved in a different form much earlier (1938) by Robinson (see [dBR38]). Further in this

thesis we use an algebraical approach to reprove the existence of the correspondences with

certain properties, including the RS-correspondence.
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Consider the permutation π ∈ Sn in two-line notation

π =

(
1 2 . . . n

π1 π2 . . . πn

)
.

Starting from two empty standard Young tableaux (P0, Q0), read the permutation from

left to right. Construct the sequence of the pairs of standard Young tableaux of the same

shape

(P0, Q0), (P1, Q1), . . . (Pi, Qi) . . . (Pn, Qn) = (Pπ, Qπ)

applying to the pair (Pi−1, Qi−1) the insertion procedure for each (i, πi). The insertion

procedure for (i, πi) follows.

Consider Pi−1 and try to put πi in the first row.

1. Find the minimal element a in a row, which is greater than πi.

2. If there is no such element, we add a box with the new element in the end of the

row to get Pi and finish the procedure. If not, put πi instead of a in Pi−1.

3. Go to the next row with the new element a and repeat all the steps (try to put a in

the next row).

This is the procedure to get Pi. In order to get Qi, add a new box to Qi−1 with i as the

entry such that shape(Qi) = shape(Pi).

Example 2. Let π =

(
1 2 3 4 5 6

4 1 3 2 6 5

)
. Figure 1.2 shows all the steps of the RS-

correspondence for the permutation π.

∅ 4−→ 4
1−→ 1

4
3−→ 1 3

4
2−→

1 2
3
4

6−→
1 2 6
3
4

5−→
1 2 5
3 6
4

= Pπ

∅ 1−→ 1
2−→ 1

2
3−→ 1 3

2
4−→

1 3
2
4

5−→
1 3 5
2
4

6−→
1 3 5
2 6
4

= Qπ

Figure 1.2: The sequences of pairs (Pi, Qi) for the permutation π = (4, 1, 3, 2, 6, 5)

The RS-correspondence features a number of important properties. In particular, in this

thesis we will need the following ones:

• If π corresponds to (Pπ, Qπ), then π−1 will correspond to (Qπ, Pπ).

• Des(π) = Des(Qπ) and Des(π−1) = Des(Pπ), so it preserves the notion of descent.
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To introduce the RSK-correspondence, we need to generalise the notion of permutation.

Definition 9. A generalised permutation is

• A two-line array w =

(
a1 a2 . . . an−1 an

b1 b2 . . . bn−1 bn

)
,

such that a1 ≤ a2 · · · ≤ an−1 ≤ an, for all i ∈ [n − 1] ai = ai+1 ⇒ bi ≤ bi+1 and all

as, bs ∈ [m]

• A matrix C ∈Matm×m(N) with
∑

i,j Ci,j = n.

Example 3. The two presentations of the same generalised permutation follow:

π =

(
1 1 1 2 2 3 3

1 3 3 2 2 1 2

)
, Cπ =


1 0 2

0 2 0

1 1 0

 .

Due to Knuth, there is a bijection between generalised permutations and pairs of semis-

tandard Young tableaux (Pπ, Qπ) of the same shape. The idea of the bijection is the same:

we apply the inserting procedure to (Pi−1, Qi−1) for all (ai, bi) to get Pi. Then add a new

box to Qi−1 with ai as the entry such that shape(Qi) = shape(Pi).

1.3 Ring of symmetric functions

Let Λ be the ring of symmetric functions, i.e the formal power series in the infinitely many

variables x1, x2, . . . that are invariant under permutation of indeterminates. Denote by

Λn the vector space of symmetric functions that are homogeneous of degree n. Recall that

the elements of the bases of Λn are indexed by partitions, in particular dim(Λn) = p(n).

Here are the main examples of bases:

• Monomial symmetric functions

mλ =
∑
β

xβ11 x
β2
2 . . . xβrr ,

where sum is over all distinct sequences β = (β1, β2, . . . βr) such that the partition

rearrangement of β is equal to λ.

• Power sum symmetric functions

pλ = pλ1pλ2 . . . pλr ,

where pk = xk1 + xk2 + . . . .
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• Elementary symmetric functions

eλ = eλ1eλ2 . . . eλr , ek =
∑

i1<···<ik

xi1xi2 . . . xik .

• Complete homogeneous symmetric functions

hλ = hλ1hλ2 . . . hλr , hk =
∑

i1≤···≤ik

xi1xi2 . . . xik .

• Schur symmetric functions

sλ =
∑

T∈SSY T (n)

XT ,

where XT = xµ11 x
µ2
2 · · · for µ = w(T ).

The set of symmetric functions could be completed with an inner product. Denote zλ =

1k1k1! 2k2k2! . . . , where ki is the multiplicity of i in λ. Let 〈·, ·〉 be the Hall inner product
on Λ setting 〈pλ, pµ〉 = zλδλµ.

The bases mλ and hλ are dual to each other with respect to the Hall inner product, i.e.

〈mλ, hµ〉 = δλµ. The algebra of symmetric functions Λ may be considered as a self-dual

Hopf algebra and is well-studied from the Hopf algebraic point of view.

1.4 Schur functions

Schur polynomials in some way generalise both the elementary symmetric polynomials and

the complete homogeneous symmetric polynomials. We call Schur functions the elements

of ring Λ that correspond to Schur polynomials. They appear to be one of the important

basis of the algebra of symmetric functions. Many of the combinatorial results involve

Schur functions. As an example, Schur functions are related to representation theory.

In particular, the characters of polynomial irreducible representations of GL(n,C) are

given by Schur functions. They also correspond to the irreducible representations of the

symmetric group via the Frobenius correspondence (see [Fro00]). Schur functions are also

useful in mathematical physics, see [GH02].

There are various ways to define Schur polynomials. The original definition of Schur

polynomials uses the Jacobi-Trudi formula ([Jac41], [Tru64])

Definition 10.

sλ(x1, . . . , xm) =
det((xj)

λi+m−i)1≤i,j≤m
det((xj)m−i)1≤i,j≤m

.
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The denominator of the fraction is the Vandermonde determinant.

For the goals of this thesis, the tableaux-theoretic definition is more appropriate.

Definition 11. Given a semistandard tableau T of weight µ, denote by XT the monomial

xµ11 x
µ2
2 · · · . Schur polynomials are generating functions for semistandard Young tableaux

sλ(X) =
∑

T∈SSY T (λ)

XT ,

where sum is over all semistandard Young tableaux with shape λ.

Example 4. Let λ = (2, 1) and X = (x1, x2, x3), then

s(2,1)(x1, x2, x3) = x21x2 + x21x3 + x1x
2
2 + x1x

2
3 + x22x3 + x2x

2
3 + 2x1x2x3.

The list of semistandard Young tableaux of shape (2, 1) in X = (x1, x2, x3) consists of the

following tableaux

1 1

2

1 1

3

1 2

2

1 3

3

2 2

3

2 3

3

1 2

3

1 3

2

As already mentioned above, Schur polynomials form a Z-basis for the ring of all symmetric

polynomials Λ. For more details see [Mac99].

The (outer) product of Schur functions is a linear combination of Schur functions

sλsµ =
∑
ν

kνλµsν . (1.1)

One can see that values of the coefficients depend only on the shapes, not on the entries

of the tableaux and number of variables. The coefficients kλµν are called Littlewood-

Richardson coefficients.

Definition 12. A lattice word is a string composed of positive integers, such that any

prefix of it contains at least as many positive integers i as integers i+ 1. A Yamanouchi

word is a sequence whose reversal is a lattice word.
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Theorem 1.1 (Littlewood-Richardson rule, [LR34]). Littlewood-Richardson coefficients

kλµν may be computed as the number of semistandard skew tableaux of shape ν/λ whose

row reading is a Yamanouchi word and weight is equal to µ.

Example 5. Let λ, µ = (2, 1) then the list of possible ν consists of

(4, 2), (4, 1, 1), (3, 3), (3, 2, 1), (3, 1, 1, 1), (2, 2, 1), (2, 2, 1, 1).

In fact,

s(2,1)s(2,1) = s(4,2) + s(4,1,1) + s(3,3) + 2s(3,2,1) + s(3,1,1,1) + s(2,2,2) + s(2,2,1).

Using the rule above one can get two special cases called the Pieri rule:

sλs(p) =
∑
µ

sµ,

where the sum is taken over all µ that are obtained from λ by adding p boxes with no two

in the same column;

sλs(1p) =
∑
µ

sµ,

where the sum is taken over all µ that are obtained from λ by adding p boxes with no two

in the same row.

1.4.1 Skew Schur functions and Littlewood-Richardson coefficients

There also exists a skew analogue for the Schur function.

Definition 13. Let λ/µ be a skew shape, i.e. µ ≤ λ as partitions or Young tableaux.

The skew Schur function sλ/µ is the generating function for semistandard skew Young

tableaux of shape λ/µ

sλ/µ(X) =
∑

shape(T )=λ/µ

XT ,

where the sum is on all semistandard skew Young tableaux of shape λ/µ.

Example 6. Let λ/µ = (3, 1, 1)/(1, 1) and X = (x1, x2), then

s(3,1,1)/(1,1) = x31 + 2x21x2 + 2x1x
2
2 + x32
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The list of semistandard Young tableaux of skew shape (3, 1, 1)/(1, 1) in X = (x1, x2)

consists of the following tableaux

1 1

1

1 1

2

1 2

1

1 2

2

2 2

1

2 2

2

Skew Schur functions are also symmetric functions and may be expressed using the usual

ones with the same Littlewood-Richardson coefficients

sλ/µ =
∑
ν

kλµνsν . (1.2)

The Littlewood-Richardson rule was first stated by Littlewood and Richardson in [LR34].

It has a long story of proving attempts, which became successful only after the works

of Robinson, Schensted and Knuth on the RS and RSK correspondence. Afterwards,

Zelevinsky in [Zel81] extended the Littlewood-Richardson rule to the case of skew Schur

functions and obtained a decomposition of the product sλsµ/ν .

Littlewood-Richardson coefficients have a strong combinatorial meaning. Besides the two

relations concerning Schur functions, they also appear, for instance:

• as intersection numbers on a Grassmannian;

• in the decomposition of the tensor product of two Schur modules (irreducible repre-

sentations of special linear groups), see [Ful97];

• as the number of standard Young tableaux of shape λ/ν that are jeu de taquin

equivalent to some fixed standard Young tableau of shape µ;

• as the number of Littlewood-Richardson tableaux of shape λ/µ and weight ν.

For the additional details concerning skew Schur functions we refer the reader to [BvW11], [Mcn14].

1.4.2 Cauchy identity

The Cauchy identity is one of the most useful relations concerning Schur functions. The

combinatorial meaning of the relation deals with the celebrated RSK correspondence, see



Chapter 1 13

Section 1.9 for details. This approach may be generalised in order to obtain bijections

with certain properties, as in Section 5.2. Besides that, almost all the results included in

this thesis more or less rely on this relation.

The Cauchy identity equates the sum over all integer partitions of the product of pairs

of Schur functions and the Cauchy kernel. Namely,

∑
λ

sλ(X)sλ(Y ) =
∏
i,j

1

1− xiyj
, (1.3)

where the sum runs over all integer partitions. By interpreting the right-hand side of

Equation (1.3) as the generating function for biwords one recover that they are in weight

preserving bijection with pairs of semistandard Young tableaux of the same shape, the

main consequence of the Robinson-Schensted-Knuth correspondence.

More general, one may write

∑
λ

fλ(X)gλ(Y ) =
∏
i,j

1

1− xiyj
, (1.4)

where {fλ}λ and {gλ}λ are dual bases with respect to the Hall inner product. Conversely,

this equality is a criterion for bases to be dual. In particular, one get

∑
λ

hλ(X)mλ(Y ) =
∏
i,j

1

1− xiyj
, (1.5)

In terms of Hall inner product the identity 1.3 means that {sλ}λ`n is an orthonormal basis

of Λ.

For any integer n, the Cauchy identity 1.3 can also be expressed as

∑
λ`n

sλ(X)sλ(Y ) = s(n)(XY ), (1.6)

where X = {x1, x2, . . .} and Y = {y1, y2, . . .} are two commutative sets of variables, XY

is the set of indeterminates {xiyj ;xi ∈ X, yj ∈ Y }, ordered by the lexicographical order.

A similar decomposition may be given for any sν(XY ):

sν(XY ) =
∑
λ,µ

g(λ, µ, ν)sλ(X)sµ(Y ). (1.7)

It involves the Kronecker coefficients g(λ, µ, ν), which may be computed as follows

g(λ, µ, ν) =
1

n!

∑
ω∈Sn

χλ(ω)χµ(ω)χν(ω),
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where χλ is the irreducible character of Sn indexed by partition λ.

1.5 Gessel’s quasisymmetric functions

There are two natural generalisations of the symmetric functions algebra Λ, the algebra

of noncommutative symmetric functions NSym and quasisymmetric functions algebra

QSym, which are dual as Hopf algebras. While noncommutative symmetric functions are

out of the scope of this thesis, quasisymmetric functions are of major interest. The basic

theory of Hopf algebras, in particular the Hopf algebras of symmetric, quasisymmetric and

noncommutative symmetric functions can be found in a book of Luoto, Mykytiuk and van

Willigenburg [LMvW13].

Definition 14. Let X = {x1, x2, · · · } be a totally ordered set of commutative indetermi-

nates and I ⊆ [n−1]. A quasisymmetric function is a bounded degree formal power series

in C[X] such that for any composition (α1, · · ·αp) and any strictly increasing sequence of

distinct indices i1 < i2 < · · · < ip the coefficient of xα1
1 xα2

2 · · ·x
αp
p is equal to the coefficient

of xα1
i1
xα2
i2
· · ·xαpip .

Quasisymmetric functions admit the monomial

MI(X) =
∑

i1≤···≤in
k∈I⇔ik<ik+1

xi1xi2 · · ·xin

and fundamental

FI(X) =
∑

i1≤···≤in
k∈I⇒ik<ik+1

xi1xi2 · · ·xin

quasisymmetric functions as classical bases. These two bases are related through

FI(X) =
∑

I⊆J⊆[n−1]

MJ(X). (1.8)

Note, that subsets of I ⊂ [n− 1] are in bijection with compositions α  n. Further in this

thesis we will use both of them as indices.

As in the case of Schur functions, the Fα have a representation-theoretic meaning as the

characteristics of the irreducible characters of the (type A) 0-Hecke algebra, see [DKLT96], [KT97].

More details about this link can be found in [TvW14].
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Obviously, any symmetric function is also quasisymmetric, so it may be decomposed in

the bases above. For instance,

mλ(X) =
∑
α

Mα(X),

where the sum is over the compositions α such that its partition rearrangement gives λ.

There is also an analogue of the Schur functions’ basis in QSym. Haglund, Luoto, Mason

and van Willigenburg [HLMvW11] introduced the basis of quasisymmetric Schur functions

Sα(X), which refines Schur functions in a natural way

sλ(X) =
∑
α

Sα(X),

where sum is over the compositions α such that its partition rearrangement gives λ. The

authors also derive a Pieri rule for quasisymmetric Schur functions that refines the Pieri

rule for Schur functions. These functions could be further generalised to the case of skew

shapes, see [BLvW10], [BvW11] for the details and properties of (skew) quasisymmetric

Schur functions.

In what follows, we may remove the reference to indeterminate X when there is no confu-

sion.

1.6 Link between Schur functions and quasisymmetric func-

tions

Using the tableaux-theoretic definition it is not hard to show that Schur polynomials are

symmetric. Indeed, it is sufficient to prove that they are invariant under changing xi and

xi+1 for all i, see [BK72] or [vL01] for the details of the involution. From another point

of view, any symmetric function is at the same time a quasisymmetric function, which

admits a decomposition in terms of monomial and fundamental quasisymmetric functions

as bases of QSym.

Recall dλI , the number of standard Young tableaux of shape λ and descent set I and the

Kostka number Kλ comp(I), i.e the number of semistandard Young tableaux of shape λ and

weight comp(I). We have

sλ =
∑

I⊆[n−1]

dλIFI =
∑

I⊆[n−1]

Kλ comp(I)MI . (1.9)
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The main idea to prove these decompositions is to apply the following standardisation

procedure to a semistandard Young tableau T in order to get a standard T0.

Consider all boxes filled by 1 and relabel them with successive natural integers 1, 2, . . .

from bottom to top and from left to right. Then continue with all boxes filled by 2, by 3,

etc. Finally, process all the entries and get a standard Young tableau.

Example 1.4. Here is a semistandard Young tableaux T and the result of the standardi-

sation procedure T0.

T =

1

2

2 3

5

5 5

6 7

8

9

9

10

10

T0 =

1

2

3 4

5

6 7 10

8

12

11

9

13

14

Add together all the terms XT for the tableaux T with the same standardisation T0 to

get FDes(T0). As a result,

sλ =
∑

T∈SSY T (λ)

XT =
∑

T0∈SY T (λ)

FDes(T0) =
∑

I⊆[n−1]

dλIFI . (1.10)

A similar decomposition may be written for the case of skew shapes:

sλ/µ =
∑

I⊆[n−1]

dλ/µIFI =
∑

I⊆[n−1]

Kλ/µ comp(I)MI , (1.11)

where dλ/µI is the number of standard Young tableaux of skew shape λ/µ and descent

set I, and Kλ/µ comp(I) is the number of semistandard Young tableaux of skew shape λ/µ

and weight comp(I).

1.7 Solomon’s descent algebra

1.7.1 Descent algebra of a Coxeter group

Solomon in [Sol76] introduced a subalgebra of the integral group ring of the Coxeter group,

called the Solomon descent algebra. Because of its important combinatorial and algebraic

properties, the descent algebra received significant attention afterwards. In particular,

Garsia and Reutenauer in [GR89] provide a decomposition of its multiplicative structure

and a new combinatorial interpretation of the structure coefficients in terms of the number
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of non-negative integer matrices with specified constraints. Bergeron and Bergeron give

analogous results in [BB92] when the symmetric group is replaced by the hyperoctahedral

group (Coxeter group of type B).

The Solomon descent algebra plays a rôle in many interesting situations. The descent

structure of permutations is related to the shuffle and peak algebra. Besides, the result

of Gessel [Ges84] shows that the Solomon descent algebra of the symmetric group is dual

to the ring of quasisymmetric functions QSym as Hopf algebras. Further the duality was

investigated by C. Malvenuto and C. Reutenauer in [MR95].

A good overview on Solomon descent algebra and its properties has been given by Schocker

in [Sch04].

Let us start with the definition of the Solomon descent algebra. Recall the notion of a

Coxeter group.

Definition 15. A group W with presentation

〈r1, . . . rn|(rirj)mij = 1〉,

where mii = 1 and mij ≥ 2 for i 6= j is called a Coxeter group. Given a Coxeter group W

with the set of generators S = {r1, . . . rn}, we call the pair (W,S) a Coxeter system.

Given w ∈W denote

Des(w) = {s ∈ S | l(ws) < l(w)},

where l(w) is the Coxeter length of the element w, i.e. the length of a minimal expression

for w as a product of elements of S. Note that for a Coxeter group of type A this definition

turns into a notion of descent set of a permutation.

Consider the group algebra CW of the Coxeter group W . Solomon showed in [Sol76] that

the following elements of CW span a subspace which is closed under the product of CW :

YI =
∑

Des(w)=I

w.

So, these elements generate a subalgebra of CW of dimension 2|S| usually referred to as

the Solomon descent algebra of W .

Denote

XI =
∑
J⊆I

YJ =
∑

Des(w)⊆I

w.

The two sets {YI}I⊆S and {XI}I⊆S are bases of the Solomon descent algebra.
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1.7.2 Descent algebra of the symmetric group

As defined above, the descent set of a permutation π of Sn is

Des(π) = {1 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.

Denote by DI (resp. BI) the generators of the Solomon descent algebra of the symmetric

group, i.e. the elements of the algebra CSn defined as the formal sum of all the permuta-

tions π such that Des(π) = I (resp. Des(π) ⊆ I). The dimension of the descent algebra is

2n−1.

More specifically, Solomon showed in [Sol76] that there exist (non negative integer valued)

structure constants (aKIJ)I,J,K⊆[n−1] and (bKIJ)I,J,K⊆[n−1] that verify:

DIDJ =
∑

K⊆[n−1]

aKIJDK , BIBJ =
∑

K⊆[n−1]

bKIJBK .

As a result the number of ways to write a fixed permutation π of DK as the ordered

product of two permutations π = στ such that σ ∈ DI and τ ∈ DJ depends only on

Des(π) = K and is equal to aKIJ . If we require instead σ and τ to be respectively in BI
and BJ than the number of such products is

∑
K′⊇K b

K′
IJ .

Remark 1.2. The two families of structure constants are linked through the formula

∑
I′⊆I,J ′⊆J

aKI′J ′ =
∑
K′⊇K

bK
′

IJ . (1.12)

Denote also

aTIJK = [DT ]DIDJDK

the number of triples of permutations σ1, σ2, σ3 of Sn such that Des(σ1) = I, Des(σ2) = J ,

Des(σ3) = K and σ1σ2σ3 = π for some fixed permutation π such that Des(π) = T . Let

bTIJK = [BT ]BIBJBK .

Remark 1.3. The two families of structure constants are also linked through the formula

∑
I′⊆I,J ′⊆J,K′⊆K

aTI′J ′K′ =
∑
T ′⊇T

bT
′

IJK . (1.13)
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Remark 1.4. The structure constants of the Solomon descent algebra of a symmetric group

verify the following identity

a∅IJK =
∑
L

a∅ILa
L
JK .

Proof. Using the definition of aKI1···Ip , p ∈ {2, 3} we get

a∅IJK = #{(σ1, σ2, σ3) : σ1σ2σ3 = id, σ1 ∈ DI , σ2 ∈ DJ , σ3 ∈ DK}
=

∑
σ3 : σ

−1
3 ∈DK

#{(σ1, σ2) : σ1σ2 = σ3, σ1 ∈ DI , σ2 ∈ DJ}

=
∑

σ3 : σ
−1
3 ∈DK

a
Des(σ3)
IJ

=
∑
L

a∅ILa
L
JK

As shown by Norton in [Nor79], the descent algebra of a finite Coxeter group is also

strongly related to its 0 -Hecke algebra. In particular, she proves that the dimension of

each left principal indecomposable module of the 0-Hecke algebra is equal to the cardinality

of the analogue of one the DI ’s. She further shows that the analogues of the a∅IJ are the

entries of the Cartan matrix giving the number of times each irreducible module is a

composition factor of each indecomposable module. In the specific case of the symmetric

group Sn, Carter in [Car86] uses the Robison-Schensted correspondence to explain the

following relation obtained by computation of the Cartan matrix

a∅IJ =
∑
λ`n

dλIdλJ . (1.14)

Recall that the Solomon’s descent algebra is dual to the Hopf algebra of quasisymmetric

functions. In particular, Gessel showed that the comultiplication table for their fundamen-

tal basis is given by the aKIJ ’s. Further in the Section 1.8 we show that Equation (1.14)

and its generalisations are a direct consequence of Gessel’s result.

1.8 Computation of structure constants

1.8.1 Gessel’s relation and its consequences

For two commutative sets of variablesX = {x1, x2, · · · , xi, · · · } and Y = {y1, y2, · · · , yi, · · · },
we denote by XY (XY Z) the set of indeterminates {xiyj ;xi ∈ X, yj ∈ Y } ({xiyjzt;xi ∈
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X, yj ∈ Y, zt ∈ Z}) ordered by the lexicographical order. Gessel shows in [Ges84] that for

any subset K ⊆ [n− 1]

FK(XY ) =
∑

I,J⊆[n−1]

aKIJFI(X)FJ(Y ). (1.15)

We can say that FK(XY ) is the generating series for the coefficients aKIJ . As stated above,

Equation (1.14) and some of its generalisations are a direct consequence of Equation (1.15).

More precisely, denote by χλ the irreducible character of Sn indexed by partition λ and for

any λ, µ, ν ` n define the Kronecker coefficients the coefficients in the decomposition of

the tensor product of two irreducible representations indexed by λ and µ of a symmetric

group into irreducible representations. They may be computed by

g(λ, µ, ν) =
1

n!

∑
ω∈Sn

χλ(ω)χµ(ω)χν(ω).

One of the main results of this chapter states that structure constants of the symmetric

group, Kronecker coefficients and coefficients dλI are related by the following formulas.

Theorem 1.5. Let I, J,K ⊂ [n− 1]. Structure constants a∅IJ and a∅IJK can be computed

using the following formulas:

a∅IJ =
∑
λ`n

dλIdλJ , (1.16)

a∅IJK =
∑

λ,µ,ν`n
g(λ, µ, ν)dλIdµJdνK . (1.17)

Proof. This theorem is a direct consequence of Equation (1.15). According to Equa-

tion (1.10) F∅ = s(n). Then using the Cauchy identity for Schur functions

s(n)(XY ) =
∑
λ`n

sλ(X)sλ(Y ) (1.18)

and applying Equation (1.10) once again one gets:

∑
I,J⊆[n−1]

a∅IJFI(X)FJ(Y ) = F∅(XY ) = s(n)(XY )

=
∑
λ`n

sλ(X)sλ(Y )

=
∑
λ`n

I,J⊆[n−1]

dλIdλJFI(X)FJ(Y ).
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Since the fundamental functions are the basis of the QSym, this proves the first statement

of the theorem. This can be generalised to prove Equation (1.17) by noticing that the

structure constants verify a∅IJK =
∑

L a
∅
ILa

L
JK . As a result, Equation (1.15) extends to

F∅(XY Z) =
∑
I,J,K

a∅IJKFI(X)FJ(Y )FK(Z).

Indeed,

F∅(XY Z) =
∑
I,L

a∅ILFI(X)FL(Y Z)

=
∑
I,J,K

(∑
L

a∅ILa
L
JK

)
FI(X)FJ(Y )FK(Z)

=
∑
I,J,K

a∅IJKFI(X)FJ(Y )FK(Z).

Finally use the generalised version of Equation (1.18)

sν(XY ) =
∑
λ,µ

g(λ, µ, ν)sλ(X)sµ(Y ) (1.19)

to decompose s(n)(XY Z) = F∅(XY Z). We get

∑
I,J,K

a∅IJKFI(X)FJ(Y )FK(Z) = F∅(XY Z) = s(n)(XY Z)

=
∑
ν`n

sν(XY )sν(Z)

=
∑
ν`n

∑
λ,µ

g(λ, µ, ν)sλ(X)sµ(Y )sν(Z)

=
∑

λ,µ,ν`n
I,J,K⊆[n−1]

g(λ, µ, ν)dλIdµJdνKFI(X)FJ(Y )FK(Z).

This proves the second statement of the theorem.

Remark 1.6. Denote by λ′ the partition corresponding to the transposed Young diagram

of shape λ. For I, J ⊆ [n− 1], the numbers a[n−1]IJ are given by

a
[n−1]
IJ =

∑
λ`n

dλIdλ′J . (1.20)
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Proof. According to Equation (1.10) F[n−1] = s(1n). Then use the identity for Schur

functions

s(1n)(XY ) =
∑
λ`n

sλ(X)sλ′(Y )

and apply Equation (1.10) to sλ and sλ′ .

1.8.2 Extension to the RSK-correspondence

Generalising the RS-correspondence to matrices with non-negative integral entries, Knuth

([Knu70]) proved that for r, c � n the number mr,c of such matrices with row and column

sums equal respectively to r and c is given by

mr,c =
∑
λ`n

KλrKλc. (1.21)

Equation (1.21) can be deduced algebraically from Equation (1.15) without the need of

the bijective proof. Furthermore let p, q and r be three compositions of n and denote

by mp,q,r the number of three-dimensional arrays M = (Mi,j,k) with non-negative integer

entries such that pk =
∑

i,jMi,j,k, qj =
∑

i,kMi,j,k and ri =
∑

j,kMi,j,k. Equation (1.15)

implies

mp,q,r =
∑

λ,µ,ν`n
g(λ, µ, ν)KλpKµqKνr. (1.22)

So, we have the following corollary to Theorem 1.5.

Corollary 1.7. Let let p, q and r be three compositions of n, then

mp,q =
∑
λ`n

KλpKλq,

mp,q,r =
∑

λ,µ,ν`n
g(λ, µ, ν)KλpKµqKνr.

Proof. Let us start with another proof of Equation (1.21). Denote AKI,J =
∑

I′⊆I,J ′⊆J a
K
I′J ′ .

Then according to Equation (2.2)

∑
I′,J ′⊆[n−1]

aKI′J ′FI′(X)FJ ′(Y ) =
∑

I′,J ′⊆[n−1]

aKI′J ′
∑

I⊇I′,J⊇J ′
MI(X)MJ(Y )

=
∑

I,J⊆[n−1]

MI(X)MJ(Y )
∑

I′⊆I,J ′⊆J
aKI′J ′

=
∑

I,J⊆[n−1]

AKI,JMI(X)MJ(Y ).
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As a result, A∅I,J is the coefficient in MI(X)MJ(Y ) of F∅(XY ) which we know is equal to∑
λ`n sλ(X)sλ(Y ) (see above). Finally use the decomposition of a Schur function in terms

of monomial quasisymmetric functions to get

A∅I,J =
∑
λ`n

Kλ comp(I)Kλ comp(J). (1.23)

It remains to prove that A∅I,J = mcomp(I),comp(J). The combinatorial interpretation of

[GR89] states that bKIJ is the number of non-negative integer matrices M with row and

column sums equal to comp(I) and comp(J) respectively and with the word obtained by

reading the entries of M row by row from top to bottom equal to K (zero entries being

omitted). But according to Equation (1.12) A∅I,J =
∑

K⊆[n−1] b
K
IJ . We get Equation (1.21).

In order to prove Equation (1.22) consider the relations from the proof of Theorem (1.5)

in the monomial base. We get

∑
I,J,K

∑
I′⊆I,J ′⊆J,K′⊆K

a∅I′J ′K′MI(X)MJ(Y )MK(Z) =

∑
I,J,K

∑
λ,µ,ν`n

g(λ, µ, ν)KλIKµJKνKMI(X)MJ(Y )MK(Z).

The result of Garsia and Reutenauer mcomp(I),comp(J) =
∑

T b
T
IJ may be extended to

the case of three dimensional arrays as well as Gessel’s relation (1.15). Together with

Remark (1.12) it leads to formula

mcomp(I),comp(J),comp(K) =
∑
T

bTIJK

=
∑

I′⊆I,J ′⊆J,K′⊆K
a∅I′J ′K′

=
∑
λ,µ,ν

g(λ, µ, ν)Kλ comp(I)Kµ comp(J)Kν comp(K).

A bijective proof of Equation (1.22) is provided in [AAV12]. The proof involves semis-

tandard Young tableaux and Littlewood-Richardson tableaux. Our approach allows us to

recover these results immediately.

1.8.3 Skew shapes

Let I and J be two subsets of [n − 1]. Gessel focuses in [Ges84] on the number aλ/µIJ of

pairs of permutations α, β such that α has descent set I, β has descent set J and αβ is
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compatible with the skew shape λ/µ (i.e. αβ is a correct reading word for the skew shape

λ/µ). We need some more definitions introduced in [Ges84] to define this properly.

Given any partial order P on [n], denote by L(P ) the set of permutations π ∈ Sn, such
that the corresponding linear order π(1) < π(2) < · · · < π(n) is a linearisation of P .

To obtain a partial order Pλ/µ from the skew shape |λ/µ| = n we fill the corresponding

skew Young diagram by integers [n] from bottom to top and from left to right and then

consider relations i > k if k lay directly above or to the left of i. These relations generate

the corresponding partial order Pλ/µ.

Example 1.5. Let λ/µ = (4, 4, 3)/(2, 1). Figure 1.3 shows the corresponding partial order.

Firstly fill the corresponding skew Young diagram by integers [7] from bottom to top and

from left to right and then rotate it by 135 degrees counterclockwise and take its vertical

mirror image to get the plane presentation of the ordering P(4,4,3)/(2,1).

fill−−−−→
7 8

4 5 6

1 2 3

rotate/mirror−−−−−−−−−−→
3 6

2 5 8

1 4 7

Figure 1.3: A partial order P(4,4,3)/(2,1) obtained from the skew shape (4, 4, 3)/(2, 1).

Due to Gessel [Ges84], L(Pλ/µ) may be identified with Young tableaux of shape λ/µ. Given

π ∈ L(Pλ/µ) construct the corresponding skew Young tableau by filling the skew shape

λ/µ with integers of π−1 from bottom to top and from left to right, as in Example 1.6.

The permutations from L(Pλ/µ) are called compatible with the skew shape λ/µ.

Example 1.6.

π = 74581263

(π−1 = 56823714)

fill with π−1

−−−−−−−−−→
1 4

2 3 7

5 6 8

Using the bijection above, one can notice that

a
λ/µ
IJ =

∑
K⊆[|λ|−|µ|−1]

dλ/µKa
K
IJ

where dλ/µK is the number of standard Young tableaux of skew shape λ/µ and descent

set K.

Proposition 1.8. Let λ and µ two integer partitions such that λ/µ is a skew shape and

I, J ⊆ [|λ| − |µ| − 1]. The coefficients aλ/µIJ verify the following equality involving the
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Littlewood-Richardson coefficients, the Kronecker coefficients of the symmetric group and

the numbers of standard Young tableaux of given shape and descent

a
λ/µ
IJ =

∑
ν,ρ,ε

kλµνg(ν, ρ, ε)dρIdεJ .

Proof. Gessel showed in [Ges84] that

sλ/µ(XY ) =
∑
I,J

a
λ/µ
IJ FI(X)FJ(Y ). (1.24)

Use Equation (1.1) to decompose skew Schur function sλ/µ(XY ) using Littlewood-Richardson

coefficients. Then use the generalised Cauchy identity (1.19) and decomposition (1.10) to

prove the proposition.

sλ/µ(XY ) =
∑
ν

kλµνsν(XY )

=
∑
ν,ρ,ε

kλµνg(ν, ρ, ε)sρ(X)sε(Y )

=
∑
I,J

∑
ν,ρ,ε

kλµνg(ν, ρ, ε)dρIdεJFI(X)FJ(Y ).

1.9 Descent preservation property of the Cauchy formula

The Cauchy identity may be used to show the existence of bijections with certain proper-

ties. The basic example of such an application is the Robinson-Schensted correspondence

itself.

Recall that for π ∈ Sn,

FDes(π)(XY ) =
∑

σ,ρ∈Sn; σρ=π
FDes(σ)(X)FDes(ρ)(Y ). (1.25)

sλ(X) =
∑

T∈SSY T (λ)

XT =
∑

T∈SY T (λ)

FDes(T )(X). (1.26)

Given a Cauchy identity

∑
λ`n

sλ(X)sλ(Y ) = s(n)(XY ), (1.27)
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we use Equations (1.26) and (1.25) to rewrite Equation (1.27) as

∑
λ`n

T,U∈SY T (λ)

FDes(T )(X)FDes(U)(Y ) = F∅(XY ) =
∑
π∈Sn

FDes(π)(X)FDes(π−1)(Y ). (1.28)

The fundamental functions are a basis of the quasisymmetric functions algebra, so per-

mutations π in Sn are in bijection with pairs of standard Young tableaux T,U of the

same shape such that Des(T ) = Des(π) and Des(U) = Des(π−1). This gives a direct

analytical proof of one important property of the RS correspondence. More precisely, this

proves the existence of a bijection that satisfies the corresponding properties of the RS

correspondence.

1.10 Schur positivity

Many algebraic combinatorial problems are related to positivity questions, i.e. showing

that some coefficients are positive integers, that may lead to a combinatorial interpretation

of such coefficients. A good overview of open positivity questions was suggested by Richard

Stanley in [Sta99].

In this thesis we focus on Schur-positivity questions.

Definition 16. A symmetric function is called Schur-positive if it may be decomposed

in Schur functions with positive integer coefficients.

The algebra of symmetric functions Λ is linked with characters of the symmetric group Sn
via the Frobenius characteristic map

ch(χ) =
1

n!

∑
a∈Sn

χ(a)pc(a)(X),

where c(a) is the cycle type of a permutation a. There is a representation-theoretical

interpretation of Schur functions as the Frobenius characteristic of an irreducible character

ch(χλ) = sλ. The related notion of a Kronecker product of homogeneous symmetric

functions f1 = ch(χ1), f2 = ch(χ2) is defined in terms of ch by f1 � f2 = ch(χ1χ2), where

χ1χ2(σ) = χ1(σ)χ2(σ) for any σ ∈ Sn. If χ1 and χ2 are characters of representations of

Sn, then χ1χ2 is a character of the tensor product of these representations. The Kronecker

coefficients in these terms are exactly coefficients 〈sλ� sµ, sν〉. At the same time, one can

note that the Schur-positivity of a symmetric function means that it corresponds to some

character of a symmetric group via the Frobenius characteristic map.

The Littlewood-Richardson rule (see Section 1.4) gives us the basic examples of Schur-

positive functions. Skew Schur function sλ/µ and product of two Schur functions sλsµ
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are Schur-positive. For two skew shapes λ/µ and λ′/µ′ the problem of determining the

conditions whether or not sλ/µ − sλ′/µ′ is Schur-positive has received much attention in

recent years, see [BBR06], [FFLP05], [KWvW08], [Kir04], [LPP07].

Some papers also study the following situation: whether the expression sλsµ − sνsρ is

Schur-positive (see [BM04] for example).

Definition 17. Let X = {x1, x2, · · · } be a totally ordered set of commutative indeter-

minates. Given any subset A of permutations in Sn, Gessel introduces in [Ges84] the

following formal power series in C[X]:

Q(A)(X) =
∑
π∈A

FDes(π)(X).

In [GR93] Gessel and Reutenauer looked at the problem of characterising the sets A for

which Q(A) is symmetric. Further the question of determining Schur-positive sets, i.e.

the sets A for which Q(A) can be expanded with non-negative coefficients in the Schur

basis received significant attention. Classical examples of Schur-positive sets include

• inverse descent classes,

• Knuth classes [Ges84],

• conjugacy classes [GR93].

As a more sophisticated example, Elizalde and Roichman proved [ER14] the Schur-positivity

of arc permutations, i.e the set of permutations in Sn avoiding the patterns σ in S4 such

that |σ(1)− σ(2)| = 2. Arc permutations are alternatively defined as the set of permuta-

tions π in Sn such that for any 1 ≤ j ≤ n, {π(1), π(2), · · · , π(j)} is an interval in Zn. The
corresponding decomposition follows.

∑
π∈An

FDes(π) = s(n) + s(1n) + 2
∑

1≤k≤n−1
s(n−k,1k) +

∑
1≤k≤n−2

s(n−k−2,2,1k).

This result also leads to the problem of finding other Schur-positive pattern-avoiding sets.

Some of them are given by Sagan in [Sag15]. Other advanced examples of Schur-positive

sets can be found in [ER17].

Many of these results are the consequence of two main facts.

1. The Schur symmetric function indexed by λ ` n, sλ is the generating function for

semistandard Young tableaux of shape λ.
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2. There are various descent preserving bijections relating sets of permutations and

standard Young tableaux, e.g. the Robinson-Schensted correspondence. The proof

in [ER14] also uses such a bijection between arc permutations and standard Young

tableaux of shapes (n− k, 1k) and (n− k − 2, 2, 1k).

Chapter 4 is devoted to a new definition of type B Schur-positivity and the identification

of type B Schur positive sets.

1.11 Material of the thesis

In this thesis we generalise the results of this chapter to the case of type B. The thesis

relies on three main results, presented or accepted at the conferences:

• On the structure constants of the descent algebra of the hyperoctahedral group,

Mayorova and Vassilieva, Eurocomb 2017, [MV17].

• A domino tableau-based view on type B Schur-positivity, Mayorova and Vassilieva,

Permutation Patterns 2018, [MV18].

• A q-deformed type B Cauchy identity and Chow’s quasisymmetric functions, May-

orova and Vassilieva, FPSAC 2019.

The following article is accepted as a full version of [MV17]:

[MV19] A new link between the descent algebra of type B, domino tableaux and Chow’s

quasisymmetric functions, Mayorova and Vassilieva, Discrete Mathematics, 342 (6):1658-

1673, 2019.

The full versions of the two other results are in process.
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A new link between domino tableaux

and Chow’s type B quasisymmetric

functions

This chapter plays a supporting rôle. We make an attempt to generalise all the main

notions we used in Chapter 1 to the case of type B, trying to preserve the properties

and links between them. We suggest a modified definition of domino tableaux and a

definition of domino functions instead of Young tableaux and Schur functions. We show

how to decompose the domino functions using type B Chow’s fundamental and monomial

functions and investigate the restrictions we needed to have such a decomposition.

2.1 Signed permutations and domino tableaux

2.1.1 Hyperoctahedral group and descent set

Let Bn be the hyperoctahedral group of order n, i.e. the Coxeter group of type B. Bn
is composed of all permutations π on the set {-n, · · · , -2, -1, 0, 1, 2, · · · , n} such that for

all i in {0} ∪ [n], π(−i) = −π(i) (in particular π(0) = 0). As a result, such permutations

usually referred to as signed permutations are entirely described by their restriction

to [n].

Further we suggest an overview on the notions of descent set of a signed permutation. We

start from the most essential definition.

29
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Definition 18. The descent set of a signed permutation π of Bn is the subset of {0}∪[n−1]

defined by

Des(π) = {0 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.

The main difference with respect to the case of the symmetric group is the possible descent

in position 0 when π(1) is a negative integer. Further in the thesis we use bars instead the

sign "−" for the convenience.

Another approach to define descent set in the hyperoctahedral group uses a different order

on the elements of the set {n̄, . . . 1̄, 1, . . . , n}. Define:

1̄ <r 2̄ <r . . . n̄ <r 1 <r 2 <r . . . n.

One may define another notion of descent set Desr using the less essential order >r:

Desr(π) = {0 ≤ i ≤ n− 1 | π(i) >r π(i+ 1)}.

The descent set in this case is also a subset of 0
⋃

[n− 1].

A third option is the signed descent. Denote by ΣB(n) the set consisting of all pairs (S, ε),

called signed sets, where S is subset of [n] and ε is map from S to {−,+}.
Definition 19. Denote by sDes(π) the signed descent of the signed permutation π, i.e.

the signed set (S, ε), such that

• S contains all s ∈ [n− 1] for which π(s) >r π(s+ 1) or π(s) is barred and π(s+ 1)

is not.

• S contains n.

• For every s ∈ S we denote ε(s) = − if π(s) is barred and ε(s) = + otherwise.

Given a signed set σ = (S, ε) ∈ ΣB(n) we will define two statistics which relies on it.

Denote by wDes(σ) the set of elements si 6= sn; si ∈ S such that ε(si) = ε(si+1) or

ε(si) = +, ε(si+1) = −. Denote also

wDes′(σ) =

wDes(σ), if ε′(1) = +;

wDes(σ) ∪ {0}, if ε′(1) = −.

In case of signed permutations one can give a definition of wDes(π) and wDes′(π) without

the notion of signed descent, as follows

wDes(π) = wDes(sDes(π)) = {1 ≤ i ≤ n− 1 | π(i) >r π(i+ 1)},



Chapter 2 31

and

wDes′(π) = wDes′(sDes(π)) = Desr(π) = {0 ≤ i ≤ n− 1 | π(i) >r π(i+ 1)}.

So, the signed descent sDes refines Desr.

One may note that the signed descent sDes refines also Des. Indeed, it is possible to

continue the sign map ε from the set S to [n]. In particular, in the case of the descent

set of a permutation it coincides with the map i→ sign(π(i)). Denote by ε′ such a map.

Further, any two permutations with the same signed descent set (S, ε) have also the same

Solomon descent set, which may be obtained with the following rule:

• 0 ∈ Des(π) if and only if ε′(1) = −,

• k ∈ Des(π) if and only if

– k ∈ S and ε′(i) = ε′(i+ 1) = +, or

– k 6∈ S and ε′(i) = ε′(i+ 1) = −.

2.1.2 Domino tableaux

One way to generalise the notion of Young tableau to the case of type B is domino tableaux.

Recall the definition from [Gar90].

Definition 20. For λ ` 2n, a standard domino tableau T of shape λ is a Young diagram

of shape λ tiled by dominoes, i.e. 2× 1 or 1× 2 rectangles filled with the elements of [n]

such that the entries are strictly increasing along the rows and down the columns. Denote

by SDT (λ) (SDT (n)) the set of standard domino tableaux of shape λ (of n dominoes).

We consider only the set P0(n) of empty 2-core partitions λ ` 2n, i.e. partitions that fit

such a tiling.

Domino tableaux are related to Chow’s quasisymmetric functions. Another advantage is

the notion of the descent set, which is similar to the one in type A.

Definition 21. A standard domino tableau T has a descent in position i > 0 if i + 1 lies

strictly below i in T and has a descent in position 0 if the domino filled with 1 is vertical.

We denote by Des(T ) the set of all its descents.

For λ in P0(n) and I ⊆ {0} ∪ [n − 1], denote by dBλI the number of standard domino

tableaux of shape λ and descent set I.
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Example 2.1. The following standard domino tableaux have shape (5, 5, 4, 1, 1) and de-

scent set {0,3,5,6}.

T1 =

1 2 3

4

5

6

7

8 T2 =

1 2
3

4
5

6

7

8

Definition 22. A semistandard domino tableau T of shape λ ∈ P0(n) and weight

w(T ) = µ = (µ0, µ1, µ2, · · · ) with µi ≥ 0 and
∑

i µi = n is a tiling of the Young diagram of

shape λ with horizontal and vertical dominoes labelled with integers of the set {0, 1, 2, · · · }
such that labels are non decreasing along the rows, strictly increasing down the columns

and exactly µi dominoes are labelled with i. If the top leftmost domino is vertical, it

cannot be labelled 0.

Our notion of semistandard domino tableau differs from the usual one (which is without

zeroes). The reason is that we need zeroes in the tableau to make valid links to Chow’s

quasisymmetric functions.

Remark 1. The only possible sub-pattern of dominoes with label 0 in a semistandard

domino tableau is a row composed of horizontal dominoes.

Example 2.2. The following semistandard tableau of shape (5, 5, 4, 3, 1) has weight µ =

(2, 0, 2, 0, 0, 4, 0, 1).

T =

0 0

2
2

5

5
5

5

7

Denote by SSDT (λ) (SSDT (n)) the set of semistandard domino tableaux of shape λ

(of n dominoes) and KB
λµ the number of semistandard domino tableaux of shape λ and

weight µ.

2.2 Stanton and White bijection

2.2.1 Bi-tableaux

A second way to generalise the notion of the Young tableau is to consider bi-tableaux.

Bi-tableaux are closely related to Poirier’s quasisymmetric functions. At the same time,
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they are related to domino tableaux via the Stanton and White bijection.

Definition 23. Denote a pair of shapes (λ−, λ+) a bi-shape of n if |λ−| + |λ+| = n. A

standard Young bi-tableau of bi-shape (λ−, λ+) is a pair of Young diagrams (T−, T+)

with shape(T−) = λ− and shape(T+) = λ+, whose boxes are filled with the elements of

[n] such that the entries are strictly increasing along the rows and down the columns for

each of them.

Remark 2. The number of standard Young bi-tableaux of bi-shape (λ−, λ+) is exactly

f(λ−,λ+) =

(|λ−|+ |λ+|
|λ−|

)
fλ−fλ+ .

For a standard Young bi-tableau it is also possible to denote a notion of a descent set.

However, it differs from the usual one used in this thesis. In fact, one uses signed descent

sets for the case of bi-tableaux. Recall, ΣB(n) is the set consisting of all pairs (S, ε), where

S is subset of [n] and ε is map from S to {−,+}.

Definition 24. The signed descent set sDes((Q+, Q−)) of a bi-tableau (Q+, Q−) ∈
SY T (λ, µ) is the signed set (S, ε) defined as follows:

• S contains all s ∈ [n−1] for which either both s and s+1 appear in the same tableau

and s+ 1 is in a lower row than s, or s and s+ 1 appear in different tableaux.

• S contains n.

• For every s ∈ S we denote ε(s) = − if s appears in Q− and ε(s) = + otherwise.

Recall, that in the case of permutations the notion of signed descent sDes generalises both

the notions Des and Desr. Given a signed descent sDes we can find the corresponding

Desr. In the case of bi-tableaux, this turns into the following definition for Desr.

Definition 25. The descent set Desr((Q
+, Q−)) of a bi-tableau (Q+, Q−) ∈ SY T (λ, µ)

is a subset of {0}⋃[n− 1] containing:

• each s ∈ [n− 1] such that both s and s+ 1 appear in the same tableau and s+ 1 is

in a lower row than s

• each s ∈ [n− 1] such that s ∈ Q+ and s+ 1 ∈ Q−

• 0 if 1 ∈ Q−.
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Example 7. The following standard bi-tableau has bi-shape ((3), (2, 2, 2)) and descent set

Desr equal to {2, 4, 8}.
Q− = 3 5 6 , Q+ =

1 2

4 8

7 9


Definition 26. A semistandard Young bi-tableau (T−, T+) is a pair of Young diagrams

of bi-shape (λ−, λ+) whose boxes are filled with nonnegative integers such that the entries

are strictly increasing down the columns and non-decreasing along the rows for each of

them. The additional constraint is that zeroes may appear only in T+.

Example 8. The following standard bi-tableau has bi-shape ((3), (2, 2, 2)).

T− = 2 4 4 , T+ =

0 1

4 6

5 7


Remark 3. The number of semistandard Young bi-tableaux of bi-shape (λ−, λ+) with its

entries less than or equal to t ∈ Z+ is exactly

g(λ−,λ+),t = gλ−,tgλ+,t+1.

Recall, gλ,t is the number of semistandard Young tableaux of shape λ with its entries less

than or equal to t.

2.2.2 Description of the bijection

In [CL95] Carré and Leclerc studied a bijection due to Stanton and White [SW85]. They

introduced an easier description of the bijection between semistandard domino tableaux

(without zeroes) of n dominoes and pairs of semistandard Young tableaux with n cells in

common. This bijection restricts to the sets of shapes, it does not depend on the tilling

and numbers in cells. So,

|P0(n)| =
∑

0≤k≤n
p(k)p(n− k).

In this section, we further describe the idea of the algorithm and apply it to prove the

similar statements for our definitions of a domino tableau and a bi-tableau.

Given a domino tableau T we consider dl the diagonal line (i, j) : i = j − 2l. Such a line

may intersect a domino in four different ways (see Figure 2.1).
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type 1 type 2 type 3 type 4

Figure 2.1: Four layouts of a domino on a diagonal.

Denote also d+l and d−l the diagonals (i, j) : i = j − l of the bi-tableau. Given a diagonal

dl we consider all the dominoes of types 1 and 4. They are positive and we put the cell

with its entry in T+ on the diagonal d+l . The other dominoes are negative and go to T−

on the diagonal d−l . Due to [CL95] this correspondence is a bijection. The pair (T−, T+)

is called the 2-quotient of T .

Example 2.3. Figure 2.2 shows a domino tilling of a diagram and its 2-quotient.

T =

d0 d1 d2

d−1

d−2

−−−→

T− =

d−0 d−1 d−2

, T+ =

d+0 d+1

d+−1

d+−2



Figure 2.2: A domino tilling and its 2-quotient.

In fact, there is an easy way to determine if a domino is positive or negative. We colour

the domino with "–" and "+" in the chess-boarding colouring. For a horizontal domino we

look at the sign of the right cell, for vertical look at the sign of the top cell. It determines

the sign of a domino itself. So, the bijection sends positive dominoes to T+ and negative

dominoes to T−, see Figure 2.3.

Example 2.4. Figure 2.3 shows a domino tableau of weight µ = (2, 0, 2, 0, 0, 4, 0, 1) and

its 2-quotient.

Remark 2.1. If the top leftmost domino of a semistandard domino tableau T is vertical

(rep. horizontal), its label is used for T− (resp. T+). Therefore not labelling the top left-

most domino with 0 if it is vertical is sufficient to ensure that only T+ may have entries

equal to 0 and any bi-tableau with T+ containing entries equal to 0 gives a valid semistan-

dard domino tableau according to our constraints. As a result, in our setup, the bijection

is actually between semistandard domino tableaux indexed by labels in {0, 1, 2, · · · } and
pairs of semistandard Young tableaux indexed respectively by {1, 2, · · · } and {0, 1, 2, · · · }.
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T =

– 0 + – 0 +

+
2
–

– 2 +

+
5
–

+ 5 –

–
5
+

–
5
+

– 7 +

−−−→

T− = 5 5 5 , T+ =

0 0

2 2

5 7



Figure 2.3: A semistandard domino tableau and its 2-quotient.

2.3 BV and Garfinkle bijections

Definition 27. Denote by sp(T ) the spin of (semi-) standard domino tableau T , i.e. half

the number of its vertical dominoes.

T1 =

1 2 3

4

5

6

7

8 T2 =

1 2
3

4
5

6

7

8 T3 =

0 0

2
2

5

5
5

5

7

Figure 2.4: Two standard domino tableaux T1 and T2 of shape (5, 5, 4, 1, 1), descent set
{0,3,5,6}, a semistandard tableau T3 of shape (5, 5, 4, 3, 1) and weight µ = (2, 0, 2, 0, 0, 4, 0, 1).

All of the tableaux have a spin of 2.

We recall that there is a natural analogue of the RSK-correspondence for signed per-

mutations involving domino tableaux. Barbash and Vogan ([BV82]) built a bijection

between signed permutations of Bn and pairs of standard domino tableaux of equal shape

in P0(n). An independent development on the subject is due to Garfinkle [Gar92]. Taşkin

([Tas12, Prop. 26]) showed that the two standard domino tableaux T and U associated to

a signed permutation π by the algorithm of Barbash and Vogan have respective descent

sets Des(T ) = Des(π−1) and Des(U) = Des(π) while Shimozono and White showed in

[SW01] the color-to-spin property i.e. that

tc(π) = sp(T ) + sp(U), (2.1)

where tc(π) is the total color statistics, i.e. the number of negative values in {π(i) | i ∈
[n]}.

There is also a generalisation of the bijection to the case of colored permutations and

ribbon tableaux of the same shape due to Shimozono and White ([SW02]) which satisfies

the color-to-spin property.
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2.4 Quasisymmetric functions of type B

Chow defines in [Cho01] an analogue of Gessel’s algebra of quasisymmetric functions that

is dual as Hopf algebras to the Solomon’s descent algebra of type B.

This is not the only option of how to generalise the quasisymmetric functions. Another

one is Poirier’s quasisymmetric functions’ algebra. However, Poirier’s quasisymmetric

functions are dual to the Mantaci-Reutenauer algebra and not to Solomon’s descent algebra

of type B. See [Pet05] for further details. Both Poirier’s quasisymmetric functions and

Mantaci-Reutenauer algebra are related to the notion of signed descent set.

In his thesis, Chow defines the algebra of type B quasisymmetric functions through its

bases. He prove that the spanned vector space is an algebra.

Definition 28. Let X = {· · · , x−i, · · · , x−1, x0, x1, · · · , xi, · · · } be a set of totally ordered

commutative indeterminates with x−i = xi and I be a subset of {0} ∪ [n − 1], define the

monomial

MB
I (X) =

∑
0≤i1≤i2≤...≤in
j∈I⇔ij<ij+1

xi1xi2 . . . xin ,

and fundamental

FBI (X) =
∑

0≤i1≤i2≤...≤in
j∈I⇒ij<ij+1

xi1xi2 . . . xin .

Chow’s quasisymmetric functions.

Here we assume i0 = 0. Note the particular rôle played by variable x0.

These two bases are related through

FBI (X) =
∑

I⊆J⊆{0}∪[n−1]

MB
J (X). (2.2)

Example 2.5. Let n = 2 and X = {x−2, x−1, x0, x1, x2} then

FB∅ = x20 + x21 + x22 + x0x1 + x0x2 + x1x2,

FB{1} = x0x1 + x0x2 + x1x2,

FB{0} = x21 + x22 + x1x2,

FB{0,1} = x1x2.
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Remark 4. Note that for any for any subset which include 0 Chow’s quasisymmetric

function is equal to the usual quasisymmetric function

FB{0}∪I(X) = FI(x1, x2, . . . ), I ⊆ [n− 1].

In the case subset does not include 0 Chow’s quasisymmetric function is equal to the usual

quasisymmetric function with shifted alphabet

FBI (X) = FI(x0, x1, . . . ), I ⊆ [n− 1].

2.5 Modified domino functions

One of the central objects of this thesis is an analogue for Schur functions related to type

B quasisymmetric functions. In this section, we use the tableaux-based way to define them

and prove the basic formulas and decompositions.

We may consider generating functions for domino tableaux sometimes called domino func-

tions. They are also well-studied objects (see e.g. [KLLT94]). We introduce a modified

definition to get an analogue of Schur functions in Chow’s quasisymmetric functions. Our

development differs by the addition of "0" entries to the domino tableaux in some cases.

Definition 29. Given indeterminate X and a semistandard domino tableau T of weight µ,

denote by XT the monomial xµ00 x
µ1
1 x

µ2
2 · · · . For λ ∈ P0(n) we call the domino function

indexed by λ the function

Gλ(X) =
∑

T∈SSDT (λ)

XT . (2.3)

Example 9. Let λ = (2, 2, 1, 1) and X = (x0, x1, x2, x3) then

G(2,2,1,1) =x0x1x2 + x0x1x3 + x0x2x3 + x21x2 + x21x3+

x1x
2
2 + 3x1x2x3 + x1x

2
3 + x22x3 + x2x

2
3.
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The list of semistandard domino tableaux of shape (2, 2, 1, 1) in X = (x0, x1, x2, x3) con-

sists of the following tableaux

0

1

2

0

1

3

0

2

3

1 1

2

1 1

3

1 2

2

1

2

3

1 2

3

1 3

2

1 3

3

2 2

3

2 3

3

2.6 Decomposition in Schur functions

Recall the bijection between semistandard domino tableaux and bi-tableaux from the

Section 2.2. Given a semistandard domino tableau T denote by (T−, T+) its 2-quotient.

Denote X− = {x−i}i>0 and X+ = {xi}i≥0 (note that X− = X+ \ {x0} as x−i = xi).

Proposition 2.2. For λ ∈ P0(n), the domino function Gλ and the Schur symmetric

functions are related through

Gλ(X) = sλ−(X−)sλ+(X+). (2.4)

Proof. According to the definition of the 2-quotient above and Remark 2.1, one can get

Gλ(X) =
∑

shape(T−)=λ−

shape(T+)=λ+

X−
T−
X+T

+

,

where the sum is on all pairs of semistandard Young tableau T− and T+ of shape λ− and

λ+ such that no entry of T− is equal to 0.

2.7 Decomposition in Chow fundamental and monomial func-

tions.

Recall that we denote by KB
λI the number of semistandard domino tableaux of shape λ

and type µ = comp(I) (note that µ0 = 0 if and only if 0 ∈ I). dBλI are the number of

standard domino tableaux of shape λ and descent set I. The following proposition gives a

decomposition of domino functions in two basic bases of type B quasisymmetric functions.
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Proposition 2.3. Domino functions admit the following expansion into Chow’s funda-

mental and monomial bases.

Gλ =
∑

I⊆{0}∪[n−1]

dBλIF
B
I =

∑
I⊆{0}∪[n−1]

KB
λ comp(I)M

B
I . (2.5)

The standardisation T st of a semistandard domino tableau T of weight µ is the standard

domino tableau obtained by relabelling the dominoes of T with 1, 2, · · · , n such that the

dominoes labelled with im = min{i | µi > 0} are relabelled with 1, 2, · · · , µim from left to

right and so on.

Example 2.6. Figure 2.5 shows a domino tableau of weight µ = (2, 0, 2, 0, 0, 4, 0, 1) and

its standardisation.

T =

0 0

2
2

5

5
5

5

7

−−−→ T st =

1 2

3
4

5

6
7

8

9

Figure 2.5: A semistandard domino tableau and its standardisation.

In order to prove Proposition 2.3 we need the following lemma.

Lemma 1. Let T0 be a standard domino tableau. Then the fundamental quasisymmetric

function FBDes(T0)
is the generating function for semistandard domino tableaux T such that

T st = T0, i.e.

FBDes(T0)
=

∑
T st=T0

XT . (2.6)

Proof. Given a fixed standard domino tableau T0, we reverse the standardisation operation

to obtain the set of semistandard domino tableaux with standardisation T0. Since the

standardisation operation is shape and domino tiling preserving, any such semistandard

tableau T may be identified by the sequence of its entries i1, i2, . . . in.

Relabel the entries of T0 with the sequence i1, i2, . . . , in such that k is mapped to ik, as

depicted on Figure 2.6. According to the standardisation procedure, we have

0 ≤ i1 ≤ i2 ≤ . . . ≤ in and 0 < i1 if the top leftmost domino is vertical. Furthermore

such a sequence needs to verify additional conditions to give a valid semistandard domino

tableau with standardisation equal to T0.
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T0 =

1 2

3
4

5

−−−−−−→
relabeling

T =

i1 i2

i3

i4

i5

Figure 2.6: A standard domino tableau T0 and the template for its semistandard preimages.

Consider each constraint ik ≤ ik+1 separately. If ik < ik+1 then locally the sequence gives

a valid semistandard domino tableau (entries are increasing along the row and down the

columns) and the standardisation process provides the expected result.

We look at the case ik = ik+1 and show two properties.

• First, if ik = ik+1 then k /∈ Des(T0). Indeed assume k ∈ Des(T0). Domino k has to

lay in a higher row than k + 1 as in Figure 2.8.

But domino ik+1 may not be outside the green area defined in Figure 2.8 as the entries

in the tableau are strictly increasing down the columns. As a consequence, domino

ik+1 has to be on the left of and below domino ik, as in Figure 2.8, picture (c). This

is a contradiction since according to the definition of the standardisation operation,

we should relabel the domino ik+1 before the domino ik with such a pattern and T0
is not the standardisation of such a tableau. In fact, such a semistandard domino

tableau corresponds to another standard domino tableau, without descent in the

position k (see Figure 2.7 as an Example).

T =

1 2

2
5

7

−−−−−−→
relabelling

T st =

1 3

2
4

5

Figure 2.7: T st 6= T0 (Wrong order of relabelling according the standardisation procedure.)

As a result k ∈ Des(T0) implies ik < ik+1.

• Secondly, when k /∈ Des(T0) any sequence with ik = ik+1 locally gives a valid

semistandard tableau whose standardisation is equal to T0. Indeed, if k /∈ Des(T0),

domino k does not lay in a higher row than k + 1.

As a result, domino ik+1 cannot be outside the green area defined in Figure 2.9 as

entries are increasing along the rows and down the columns, i.e. ik+1 is to the right

of and above domino ik. This makes sure that ik is relabelled before ik+1 in the

standardisation procedure.
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ik

ik+1

(a)

ik

ik+1

(b)

ik

ik+1

(c)

Figure 2.8: Layouts with a descent in position k. Green area corresponds to positions of
domino ik+1 which do not violate the property of increasing entries along the rows and down
the columns when ik = ii+1. In pictures (a) and (b) domino ik+1 lays outside the green area.

Picture (c) shows a valid layout of dominoes ik and ik+1.

ik

ik+1

(a)

ik

ik+1

(b)

ik

ik+1

(c)

Figure 2.9: Layouts with no descent in position k. Green area corresponds to positions of
domino ik+1 which do not violate the property of increasing entries along the rows and down
the columns when ik = ii+1. In pictures (a) and (b) domino ik+1 lays outside the green area.

Picture (c) shows a valid layout of dominoes ik and ik+1.

As a consequence the preimages of T0 can be identified as the sequences 0 ≤ i1 ≤ i2 ≤
. . . ≤ in such that k ∈ Des(T0)⇒ ik < ik+1 for k ≥ 0 and i0 = 0. Consider the constraints

all together to ensure that such a sequence globally gives a valid semistandard tableau

whose standardisation is equal to T0.

Conversely, any such sequence gives a valid semistandard tableau T whose standardisation

is T0. Indeed, consider the entries of any row j1 < · · · < jr of T0. Clearly, ij1 ≤ · · · ≤ ijr .

Consider any column j1 < · · · < jr, one also gets ij1 < · · · < ijr , because otherwise the

equality ijt = ijt+1 leads to ijt = ijt+1 = · · · = ijt+1 . It implies jt, jt+1 . . . , jt+1 6∈ Des(T0),

so domino jt+1 could not lay right under domino jt. Figure 2.9 picture (c) shows the only

valid layout of dominoes ik and ik+1 if ik = ik+1. Therefore, the standardisation of

semistandard tableau T coincides with T0. By definition, the fundamental function of

Chow is exactly the generating function for the described set of semistandard domino
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tableaux.

FBDes(T0)
(X) =

∑
0≤i1≤i2≤...≤in

j∈Des(T0)⇒ij<ij+1

xi1xi2 . . . xin =
∑

T st=T0

XT .

We are now ready to prove Proposition 2.3.

Proof of Proposition 2.3. Classify the set of semistandard domino tableaux according to

their standardisation and add the monomials corresponding to the tableaux in the same

class. Using Lemma 1 we obtain the first part of the proposition.

Gλ(X) =
∑

T∈SSDT (λ)

XT

=
∑

T0∈SDT (λ)

∑
T∈SSDT (λ), T st=T0

XT

(2.6)
=

∑
T0∈SDT (λ)

FBDes(T0)
(X)

=
∑

I⊆{0}∪[n−1]

dBλIF
B
I .

To get the second part of the proposition, relabel the entries of a semistandard tableau T

with successive integers 0, 1, 2, . . . such that inequalities and equalities between entries in T

are preserved after relabelling. If the top leftmost domino is vertical skip 0. This operation

removes the zeros in the weight of the tableau except, possibly, the first one. Denote by

T̃ the resulting tableau and for λ ∈ P0(n), by ˜SSDT1(λ) the set of semistandard domino

tableaux of shape λ such that T̃ = T . The second part of the statement is a consequence of

the fact that the monomial quasisymmetric functionMB
set(w(T0))

is precisely the generating

function for all semistandard domino tableaux T mapped to the same T0 ∈ ˜SSDT1(λ) by

this operation.

Gλ(X) =
∑

T∈SSDT (λ)

XT

=
∑

T0∈ ˜SSDT1(λ)

∑
T∈SSDT (λ), T̃=T0

XT

=
∑

T0∈ ˜SSDT1(λ)

MB
set(w(T0))

=
∑

I⊆{0}∪[n−1]

KB
λ comp(I)M

B
I .
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Equation (2.5) is fully proven.

2.8 Skew shape decomposition

2.8.1 Skew domino tableaux

Let λ and µ be two integer partitions such that λ/µ is a skew shape, |λ| − |µ| = 2n and

such that the Young diagrams of shape µ and λ/µ (and by extension λ) may be tiled

by horizontal and vertical dominoes. We write λ/µ ∈ P0(|λ|/2, |µ|/2) when all these

conditions are fulfilled. By abuse of notation, we also write λ/µ ∈ P0(n). A standard

skew domino tableau is a tiling of the skew Young diagram of shape λ/µ with horizontal

and vertical dominoes labelled with integers of [n] such that labels are strictly increasing

along the rows and down the columns.

Below we extend the bijection of Stanton and White (in the description of Carré and

Leclerc [CL95]) to the case of skew shapes. As a result, there is a bijection between

standard skew domino tableaux of shape λ/µ and standard skew bi-tableaux of bi-shape

(λ−/µ−, λ+/µ+).

Example 2.7. A standard skew skew domino tableau T and its decomposition follows.

T =

2
3

1

4

6

5

7

9

8

−−−−→

T− = 1 7 9

5

, T+ =

2 3 8

4

6



Given a standard skew domino tableau T , we call in the sequel negative (resp. positive)

domino, a domino that goes to T− (resp. T+) according to the bijection above. We have

the following definition.

Definition 30 (Descent set of a standard skew domino tableau). A standard skew domino

tableau T has a descent in position i > 0 if i+ 1 lies strictly below i in T and has descent

in position 0 if the domino filled with 1 is negative. Denote by Des(T ) the set of all the

descents of T . For λ/µ ∈ P0(n) and I ⊆ {0} ∪ [n − 1] denote also dBλ/µ I the number of

standard skew domino tableaux of shape λ/µ and descent set I.

Example 2.8. In Example 2.7 we have Des(T ) = {0, 3, 4, 8}.
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A semistandard skew domino tableau is a tiling of the skew Young diagram of shape

λ/µ with horizontal and vertical dominoes labelled with integers of the set {0, 1, 2, · · · }
such that labels are non decreasing along the rows, strictly increasing down the columns,

and negative dominoes cannot be labelled 0.

The bijection of Stanton and White also generalises to semistandard domino tableaux and

pairs of semistandard Young tableaux such that dominoes labelled 0 may appear only

in T+.

Proposition 2.4. Let λ/µ be a skew shape, such that µ ∈ P0(m) and λ/µ ∈ P0(n−m).

There exists a bijection ϕ between semistandard domino tableaux (of shape λ/µ) and pairs

of semistandard Young tableaux (of bi-shape (λ−/µ−, λ+/µ+)), such that zeros may appear

in the positive tableau of a pair. This bijection also restricts to the sets of shapes.

Proof. Since µ ∈ P0(m) one can fix some tilling of µ. We apply the algorithm to get

corresponding shapes µ− and µ+. Then we continue to proceed the shape λ/µ: we look

at dominoes on diagonals, check its types and add cells to the corresponding diagonals of

T− and T+. At the end we got exactly shapes λ− and λ+. The row and column property

is fulfilled since the construction of the Stanton and White bijection. The definition of

semistandard domino tableaux states that zero dominoes go exactly to T+.

Corollary 2.5. The same algorithm gives a bijection between standard domino tableaux

and standard Young bi-tableaux.

Consider two partial orderings. First one is a partial order on P0, such that λ ≥ µ if and

only if shape µ lay in shape λ. Second is partial order on bi-shapes, (λ−, λ+) ≥ (µ−, µ+)

if and only if λ− ≥ µ− and λ+ ≥ µ+.

Remark 2.6. Let µ ∈ P0(m) and λ ∈ P0(n). Their images under the bijection are (µ−, µ+)

and (λ−, λ+). If λ/µ ∈ P0(n−m) then λ− ≥ µ− and λ+ ≥ µ+. And vice versa, if λ− ≥ µ−

and λ+ ≥ µ+ then λ/µ ∈ P0(n−m) (in particular λ ≥ µ).

So, if µ ∈ P0(m) and λ ∈ P0(n) but λ/µ 6∈ P0(n−m) then either λ− 6≥ µ− or λ+ 6≥ µ+.

Example 2.9. Decompose the following semistandard skew domino tableau.

T =

0
0

3

3

6

6

7

9

1

−−−−→

T− = 3 7 9

6

, T+ =

0 0 1

3

6
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The standardisation of a semistandard skew domino tableau is defined in the same way as

for non-skew shapes. We recall the procedure. Consider all boxes filled by 1 and relabel

them with successive natural integers 1, 2, . . . from bottom to top and from left to right.

Then continue with all boxes filled by 2, by 3, etc.

Example 2.10. The following picture shows a semistandard skew domino tableau T and

its standardisation T st.

T =

1
1

1

4

6

6

6

10

8

−−−−→ T st =

2
3

1

4

6

5

7

9

8

2.8.2 Skew domino functions

Definition 31. Given λ/µ ∈ P0(n) define the skew domino function Gλ/µ as the gener-

ating function for the semistandard skew domino tableaux of shape λ/µ.

Gλ/µ(X) =
∑

T∈SSDT (λ/µ)

XT .

Proposition 2.2 generalises well to the case of skew shapes.

Proposition 2.7. For λ/µ ∈ P0(n), the domino function Gλ/µ and the Schur symmetric

functions are related through

Gλ/µ(X) = sλ−/µ−(X−)sλ+/µ+(X+).

Proof. This identity is a direct consequence of the bijection between semistandard skew

domino tableaux of shape λ/µ and semistandard skew bi-tableaux of bi-shape (λ−/µ−, λ+/µ+).

Furthermore, we have the following proposition involving a type B analogue of the Littlewood-

Richardson coefficients.

Proposition 2.8. Given λ/µ ∈ P0(n), µ ∈ P0(m) and ν ∈ P0(n) denote by lλµν the type

B analogues of the Littlewood-Richardson coefficients that we define as

lλµν = kλ
−

µ−ν−k
λ+

µ+ν+ .
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Domino functions verify

GµGν =
∑

λ∈P0(n+m)

lλµνGλ, Gλ/µ =
∑

ν∈P0(n)

lλµνGν .

Proof. Use Propositions 2.2 and 2.7 to show

Gµ(X)Gν(X) = sµ−(X−)sµ+(X+)sν−(X−)sν+(X+)

=
∑

λ−`|µ−|+|ν−|

kλ
−

µ−ν−sλ−(X−)
∑

λ+`|µ+|+|ν+|

kλ
+

µ+ν+sλ+(X+)

=
∑

λ∈P0(n+m)

(
kλ
−

µ−ν−k
λ+

µ+ν+

)
Gλ(X),

and

Gλ/µ(X) = sλ−/µ−(X−)sλ+/µ+(X+)

=

 ∑
ν−`|λ−|−|µ−|

kλ
−

µ−ν−sν−(X−)

 ∑
ν+`|λ+|−|µ+|

kλ
+

µ+ν+sν+(X+)


=

∑
ν∈P0(n)

(
kλ
−

µ−ν−k
λ+

µ+ν+

)
Gν(X).

In order to get an analogue of Proposition 2.3, the skew shapes have to verify some

additional constraints. As noticed in Remark 2.1 for non-skew shapes, the constraints of

not labelling the vertical top leftmost domino of a semistandard domino tableau T with 0

and the constraint that no negative domino may be labelled with 0 are equivalent. With

skew shapes, there is no analogue to this equivalence in the general case and we need to

restrict the set of considered shapes. We proceed with the following definitions.

Definition 32 (Top domino). Given a (semi-)standard domino tableau T , we say that

domino d is a top domino of T if

1. there is no adjacent domino on the top of d,

2. there is no non-top adjacent domino to the left of d.

One can note that the definition above is recursive, but it is not a problem. The definition

is valid, because the status of the domino relies only on the status of the dominos which

are to the left or to the top of it. So there will be no loops when we search the status of

any domino.
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Remark 2.9. The number of top dominos ν for any shape λ/µ ∈ P0(n,m), such that µ+ν

gives a valid shape is O(m). (In each column there may be only two positions (vertical

and horizontal) for such a top domino, plus two positions in the end of the first row.

The maximal number of columns is 2m, so the number of such positions is no more than

4m+ 2.)

We further say that a top domino d is minimum positive if d is the leftmost downmost

positive top domino of T such that there is no adjacent (negative top) domino to the left

of d.

There can be no minimum positive domino, for example, there are tableaux with only

negative dominos.

Example 2.11. In Example 2.7, dominoes labelled with 1, 2, 3 and 8 are top dominoes

and 2 is the minimum positive one.

We look at the following subset of P0(n).

Definition 33 (Admissible skew shapes). An admissible skew shape is a skew shape

λ/µ ∈ P0(n) that cannot be tiled with horizontal and vertical dominoes in a way that

1. there is a minimum positive domino,

2. a negative top domino is placed to the right and above the minimum positive domino.

Denote by P̃0(n) (P̃0(n,m)) the set of admissible skew shapes λ/µ such that |λ|−|µ| = 2n

(|λ| = 2n, |µ| = 2m).

Example 2.12. The shape of the standard skew domino tableau in Example 2.7 is admis-

sible as well as the following shapes.

– + – + – +

+ – + –

– + – +

+ –

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + –

+ – +

– + – + – +

+ – + – +

– + – + –

+ –

– +

These ones are not admissible.

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + –

+ – +

– + – + –

+ – + – +

– + – +

+

–

– + – + –

+ – + – +

– + – +

+

–
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Proposition 2.10. For λ/µ ∈ P̃0(n), the skew domino function Gλ/µ verify

Gλ/µ =
∑

I⊆{0}∪[n−1]

dBλ/µ IF
B
I .

Proof. The proof is adapted from the one of Proposition 2.3. The first step is to show the

analogue of Lemma 1, i.e. that for any standard skew domino tableau T0 of shape λ/µ,

FBDes(T0)
=

∑
T st=T0

XT .

To this end one needs to show that any sequence of relabelling of the dominoes 1, 2, · · · , n
in T0 by i1 ≤ i2 ≤ · · · ≤ in such that k ∈ Des(T0)⇒ ik < ik+1 with k ≥ 0 and i0 = 0 gives

a valid semistandard skew domino tableau T such that T st = T0. If the domino labelled 1

in T0 is positive, i.e. min(Des(T0)) = k > 0, then any subsequence 0 = i1 = i2 = · · · = il

(l ≤ k) gives a valid semistandard skew domino tableau. Indeed, since λ/µ is admissible,

none of the dominoes 2, 3, · · · , k are negative. As a result, no negative domino is labelled

with 0 (a restriction in our definition of semistandard skew domino tableaux required to

get Proposition 2.7). Other cases are similar to the proof of Lemma 1 and not detailed

here.

Remark 5. Actually the statement of Proposition 2.10 may be reversed. So, if

Gλ/µ =
∑

I⊆{0}∪[n−1]

dBλ/µ IF
B
I .

then skew shape λ/µ is admissible.

2.9 Admissible shapes

This section is devoted to the description of admissible shapes. We will show that asymp-

totically there is a few number of admissible shapes.

Theorem 2.11. Given n,m, such that m < n we consider numbers |P̃
0(n,m)|

|P0(n,m)| . Then for

any fixed m ∈ Z+.

lim
n→∞

|P̃0(n,m)|
|P0(n,m)| = 0.
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2.9.1 Admissible and strictly admissible shapes

Let us consider the image of top dominoes under the Stanton and White’s bijection. We

define a top cell as follows.

Definition 34 (Top cell). Given a (semi-)standard Young tableau T , we say that cell d is

a top cell of T if there is no adjacent cell on the top of d.

Remark 2.12. The Stanton and White’s bijection sends a top domino to a top cell.

Given a skew shape λ/µ ∈ P0(n,m) denote by δ(λ/µ) its border. It consists of 4 parts:

µ-border, λ-border and two straight connecting lines. We consider δ(λ/µ) minus the λ-

border. It may be presented as a sequence λ̂/µ̂ of angles (from bottom to top), as indicated

at Figure 2.10. Obviously, two different skew shapes may have the same sequence of angles.

The angles structure of a skew shape λ/µ depends on the shape µ and number of cells in

the first row and in the first column in diagram λ.

λ/µ =

–

+

+

–

–

+

+ –

– +

+

–

– +

+

–

–

+

– +

+

–

+ –

–

+

–

+

– +

−−−→ λ̂/µ̂ =

(
+ ,

–
, – , – , +

)

Figure 2.10: Skew shape and the corresponding sequence of angles.

All the angles are identified by two lengths a and b and the sign s in the corner. We divide

all the angles into nine types.
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Types of angles

type 0 a = 0 or b = 0

type 1 a ≥ 2, b ≥ 2, s =’+’
b

a
+

type 2 a = 1, b ≥ 2, s =’–’
b

a –

type 3 a ≥ 2, b = 1, s =’+’
b

a
+

type 4 a = 1, b = 1, s =’+’
b

a +

type 5 a = 1, b = 1, s =’–’
b

a –

type 6 a ≥ 2, b ≥ 2, s =’–’
b

a
–

type 7 a = 1, b ≥ 2, s =’+’
b

a +

type 8 a ≥ 2, b = 1, s =’–’
b

a
–

Type 0 angles may appear only at the beginning or at the end of a sequence of angles λ̂/µ̂.

Definition 35. We say that sequence λ̂/µ̂ is open on the right side if the corresponding

skew shape λ/µ have at least two cells in the first row, open on the bottom if they have

at least two cells in the first column. Note that this definition does not depend on the

choice of the skew shape λ/µ, only on the sequence of angles λ̂/µ̂. If λ̂/µ̂ is open on the

right side and open on the bottom at the same time, we say it is open.

Note, if we have type 0 angles in λ̂/µ̂, then it is closed (not open) on the corresponding

side.

Definition 36. We say that sequence λ̂/µ̂ is strictly admissible (λ̂/µ̂ ∈ S̃P0
) if for any

λ/µ ∈ P0(n,m) with angles structure λ̂/µ̂, the skew shape λ/µ is admissible.

Remark 2.13. If λ̂/µ̂ is strictly admissible then any λ/µ ∈ P0(n,m) with such an angles

structure is admissible. Conversely, consider any shape λ/µ ∈ P̃0(n,m). There are two

options:

• λ̂/µ̂ is strictly admissible.

• λ̂/µ̂ is not strictly admissible. One may consider an extension of shape µ with two

top dominoes (forming a skew shape ν) such that one domino is positive and the

other is negative and the positive top domino is lower and to the left to the negative

top domino. According to the definitions, the fact that λ/µ is admissible means that

for any ν, satisfying the constraints above, shape λ could not be obtained from µ+ν

with the domino tilling. In other words, λ/(µ+ ν) 6∈ P0.
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This remark allows us to study strictly admissible sequences and then move on to the

admissible shapes. Now let us describe the structure of strictly admissible sequences.

Proposition 2.14. Sequence λ̂/µ̂ of angles is strictly admissible if and only if it satisfies

the following constraints:

• type 0 angles are allowed, they may appear without any constraint, at the beginning

or at the end of the sequence.

• type 1 angles are strictly prohibited, they do not appear in the sequence.

• types 2 – 5 of angles are allowed, they may appear without any constraint,

• types 6 – 8 of angles are prohibited after types 1,2,3,6 in the angles’ sequence.

Proof. First of all, type 0 angles does not affect the status of the sequence of angles

(whether it is strictly admissible or not). Note that each top domino lay in some angle.

Type 1 angles can consist a negative top domino to the right of a positive top domino. It

means that sequence with such an angle is not strictly admissible. Types 2 – 5 of angles

either includes positive top dominoes or does not include top domino at all. Types 6 – 8

can include negative top domino. So, in the sequence, they can not be after angles of type

1,2,3,6 since they can consist positive top domino.

Lemma 2. There are no open strictly admissible sequences of angles in P0.

To prove this lemma we:

1. Figure out which transitions in the sequence are allowed and which are not.

2. Find the possible patterns for sequence goes from open on the bottom types of angles

(3,6,8) to open on the right side types (2,6,7) such that the corresponding shape is

strictly admissible due to constraints.

3. Prove that all the sequences of the patterns above do not give a P0 shape.

2.9.2 Allowed transitions

First of all, note that type 0 angles could appear at the beginning or at the end of the

sequence, before or after any angle, without any restriction. We do not consider type 0

angles further in this subsection. The following lemmas concern allowed transitions in a

sequence of angles.
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Lemma 3. After angles of type 2 there may be angles of types 2, 3, 4, 5. Here are some

examples for each case.

– + –

– +

– + –

–

+

– +

+

– + –

–

2→ 2 2→ 3 2→ 4 2→ 5

Lemma 4. After angles of type 3 there may be angles of types 3, 4. Here are some examples

for each case.

+

–

+

–

+

+

–

+

3→ 3 3→ 4

Lemma 5. After angles of type 4 there may be angles of types 3, 4, 6, 7, 8. Here are some

examples for each case.

+

+

–

+

+

+

+

–

+

+

+

+ –

+

–

+

4→ 3 4→ 4 4→ 6 4→ 7 4→ 8

Lemma 6. After angles of type 5 there may be angles of types 2, 3, 5, 6, 8. Here are some

examples for each case.

–

– +

–

+

–

–

–

–

–

+

–

+

–

–

+

–

5→ 2 5→ 3 5→ 5 5→ 6 5→ 8

Lemma 7. After angles of type 6 there may be angles of types 2, 3, 4, 5. Here are some

examples for each case.

– + –

+

– +

– + –

+

–

+

– +

+

+

– + –

+

–

6→ 2 6→ 3 6→ 4 6→ 5
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Lemma 8. After angles of type 7 there may be angles of types 2, 3, 4, 5, 6, 7, 8. Here are

some examples for each case.

+ –

– +

+ –

–

+

+ – +

+

+ –

–

7→ 2 7→ 3 7→ 4 7→ 5

+ – +

–

+

+

+ – +

+ –

+ – +

–

+

7→ 6 7→ 7 7→ 8

Lemma 9. After angles of type 8 there may be angles of types 2, 3, 5, 6, 8. Here are some

examples for each case.

–

+

– +

–

+

+

–

–

+

–

–

+

–

+

–

+

–

+

–

+

–

8→ 2 8→ 3 8→ 5 8→ 6 8→ 8

2.9.3 Patterns

In this subsection we present all possible patterns for sequence goes from open on the

bottom types of angles (3, 6, 8) to open on the right side types (2, 6, 7) such that the

constraints of Proposition 2.14 are fulfilled (we name them valid sequences). We will use

brute force to write down all of them. Let us start with type 3 angle.

Lemma 10. There is no valid sequence µ̂ = λ̂/µ̂ = (µ̂1, . . . , µ̂r) starting with type 3 and

ending with open on the right side types (2, 6, 7).

Proof. Since the sequence µ̂ begins with the angle of type 3, there could not appear types

6, 7, 8 as they are prohibited after the type 3 angle. Types of angles which are available

at the second position are exactly 3 and 4. The set of valid types after 4 is {3, 4, 6, 7, 8},
three last types (6, 7 and 8) are prohibited. So, types 3 and 4 are the only types which may

appear in µ̂, therefore it could not end with open on the right side types of angles.

To describe a sequence of angles we will use the following notation. Round brackets (. . . )

correspond to an optional part of a sequence. Square brackets [. . . ]i correspond to the

part of a sequence which should be repeated i times.
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Lemma 11. The pattern 6 (→ [2, 5]i≥0 → 2) describes all valid sequences µ̂ = λ̂/µ̂ =

(µ̂1, . . . , µ̂r) starting with type 6 and ending with open on the right side types (2, 6, 7).

Proof. Let us make the sequence starting from type(µ̂1) = 6. We may finish here at the

moment or continue the sequence.

Similarly to the Lemma 10, types 6, 7, 8 are prohibited after type 6, so we may end the

sequence only with type 2 angle. In the second place, there may be 2, 3, 4 or 5. Lemma 10

and its proof show that µ̂ can not consist type 3 or type 4 angles, because it is impossible

to continue the sequence further to the end with an open on the right side type of angle.

So, we may put only type 2 or type 5 angle in the second place.

After type 2 angle we may put either type 2 or type 5 (3 and 4 are prohibited). After type

5 we may put type 2 or type 5 also (3, 6, 8 are prohibited). Let us summarize, the pattern

is type 6 angle, then some nonnegative number of type 2 or type 5 angles and then finish

at some moment with type 2 angle:

6 (→ [2, 5]i≥0 → 2) .

The element of a sequence labelled by ∗ will further indicate the position when types 6, 7, 8

become prohibited.

Lemma 12. The two following patterns describe all valid sequences µ̂ = λ̂/µ̂ = (µ̂1, . . . , µ̂r)

starting with type 8 and ending with open on the right side types (2, 6, 7).

8→ [8, 5]i≥0 →6∗ (→ [2, 5]j≥0 → 2)

8→ [8, 5]i≥0 →2∗ (→ [2, 5]j≥0 → 2)

Proof. Note that types 6, 7, 8 are allowed until we get type 2, 3 or 6. First of all, let us

consider the part of the sequence before these types.

Consider a sequence µ̂ starting from type(µ̂1) = 8. In the second place, there may be

2, 3, 5, 6 or 8. In Lemma 10 it is showed that µ̂ can not consist type 3 angle. If type(µ̂2) = 5

we get the same set of allowed types 2, 3, 5, 6 and 8 at the third place. So, we may get any

sequence of type 5 and type 8 angles before we get either type 2 or type 6. This part of

the sequence corresponds to the pattern

8→ [8, 5]i≥0.
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As soon as we got type 2 or type 6 we may either finish the sequence or continue. Since

that moment types 6, 7, 8 are prohibited. Both types 2 and 6 have the same set of allowed

types after them. So, Lemma 11 gives us all patterns starting with 2 and 6 and ending

with open on the right side types.

The following subsection gives a detailed construction of the patterns from this one.

2.9.4 Detailed information about possible patterns.

Let us start with the pattern from Lemma 11. Consider the sequence of angles µ̂ of the

pattern 6 (→ [2, 5]i≥0 → 2).

If there is no optional part and µ̂ consists of one angle of type 6 then λ/µ is actually

non-skew shape.

Let us show now that for any sequence of angles µ̂ = λ̂/µ̂ of pattern 6→ [2, 5]i≥0 → 2 the

corresponding shape µ does not lay in P0(m).

17 11 6 2 1

18 12 7 3

19 13 8 4

20 14 9 5

21 15 10

16x

+

– + –

– + –

– + –

–

–

– + –

– + –

Figure 2.11: Sequence µ̂ = 6→ 2→ 2→ 5→ 5→ 2→ 2 and the only tilling of µ. Numbers
indicate the order of adding dominoes in the tilling.

Lemma 13. Pattern 6→ [2, 5]i≥0 → 2 correspond to shapes µ which do not lay in P0(m).

Proof. Consider the sequence of angles µ̂ as sequence of right and up steps. Note, that it

consists of steps to the right by 1 cell and steps up by odd number of cells. So, we may

till the shape µ from right to left with dominoes in the only possible way (with horizontal

dominoes). Figure 2.11 shows an example of such tilling.

Note that we could not till the bottom left corner because of parity reasons. It means µ

does not lay in P0(m).

We proceed with pattern 8→ [8, 5]i≥0 → 6∗ (→ [2, 5]j≥0 → 2).
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8

3

1

9

4

2

10

5

11

6

12

7

17 14 13

18 15

16x

–

+

–

–

+

–

–

–

–

+

–

+ –

–

– + –

– + –

Figure 2.12: Sequence µ̂ = 8 → 5 → 8 → 5 → 5 → 6∗ → 5 → 2 → 2 and the only tilling of
µ. Numbers indicate the order of adding dominoes in the tilling.

Lemma 14. Pattern 8→ [8, 5]i≥0 → 6∗ (→ [2, 5]j≥0 → 2) correspond to shapes µ which do

not lay in P0(m).

Proof. It is not hard to see that µ̂ is divided into two parts (by corner of the type 6 angle).

In the first part, we have steps up by 1 cell and steps to the right by an odd number of

cells. In the second steps to the right by 1 cell and steps up by an odd number of cells.

The second part is optional.

We will till this shape starting with the first part from bottom to top with dominoes in

the only possible way (with vertical dominoes). Then, if needed we fill the second part in

the same way as in Lemma 13. Figure 2.13 shows an example of such tilling.

Note that we could not tile the top right corner if we do not have the optional part because

of parity reasons. If we have the optional part, we get problems with the cell on the corner

of type 6 angle. It means µ does not lay in P0(m).

Lemma 15. Pattern 8→ [8, 5]i≥0 → 2∗ (→ [2, 5]j≥0 → 2) correspond to shapes µ which do

not lay in P0(m).

Proof. The same as for Lemma 14.

The three lemmas above together form the proof of Lemma 2.
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8

3

1

9

4

2

10

5

11

6

12

7

17 14 13

18 15

16x

–

+

–

–

+

–

–

–

– + –

–

– + –

– + –

Figure 2.13: Sequence µ̂ = 8 → 5 → 8 → 5 → 5 → 2∗ → 5 → 2 → 2 and the only tilling of
µ. Numbers indicate the order of adding dominoes in the tilling.

2.9.5 Estimations

In this subsection, we estimate the number of admissible shapes over all P0 shapes. We use

the structure of strictly admissible sequences and Remark 2.13 to move on to the admissible

shapes. More precisely, it is already proved that strictly admissible sequences could not be

open. It actually means that the width of such a shape (in its narrow part) is quite small.

The percentage of such shapes is small too. Remark 2.13 allows us to estimate the number

of all the admissible shapes which correspond to non strictly admissible sequences.

Let us precise what to mean by width of a skew shape λ/µ. There is a number of ways

how to define this notion. One way is to consider the minimal number of cells that needed

to connect a cell of shape µ to a cell out of shape λ. Proposition 2.15 below would be

true for such a definition. However, further we need the width of a domino tableau to be

related to the width of bi-tableau. So, it is better to use the less essential definition of the

width for all types of skew diagram.

Definition 37. Given a skew shape λ/µ ∈ P0(n,m) of a domino diagram, denote by

wd(λ/µ) the width of the shape as minimal of the number of cells on the diagonals dl,

such that dl crosses both λ and µ shapes. Recall, dl denotes a diagonal line (i, j) : i = j−2l.

Denote by R0
k(n,m) the subset of P0(n,m) consists of skew shapes with width at least k.

Definition 38. Speaking about Young diagram λ/µ we also count width as minimal of the

number of cells on the diagonals dl, such that dl crosses both λ and µ. This time diagonal

dl is the line (i, j) : i = j − l.
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Definition 39. Given a bi-shape (λ+/µ+, λ−/µ−), we count width of each part as an

Young diagram

wd(λ+/µ+, λ−/µ−) = (wd(λ+/µ+), wd(λ−/µ−)).

In such definitions, if the sequence λ̂/µ̂ has type 0 angle, then wd(λ/µ) = 0. The closed

from some side sequence leads to wd(λ/µ) ≤ 1.

The following proposition states that the number of shapes which have a big width is much

greater than number of shapes with a small width.

Proposition 2.15. Fix m. Then, for any nonnegative integer k,

|R̄0
k(n,m)| = |P0(n,m)| − |R0

k(n,m)| = o(|R0
k(n,m)|).

2n

2n

2m

2m

k

k

µ λ

i

j

Figure 2.14: Shape of width less than k.

Proof. We start with evaluation of an upper bound for |R̄0
k(n,m)|. Suppose 2n is much

greater than 2m + k. Consider a skew shape λ/µ ∈ P0(n,m). The diagram µ ` 2m

lays in a square 2m × 2m while diagram λ ` 2n lays in a square 2n × 2n. In the case

λ/µ ∈ R̄0
k(n,m) the diagram λ intersect with the square (2m+k)×(2m+k). We consider

the diagram λ as a path from the bottom-left corner of the square 2n× 2n to its top-right

corner. Counting the paths which have an intersection with the square (2m+k)×(2m+k)

gives an upper bound. There will be some extra skew shapes, which do no lay in R̄0
k(n,m),

however, it does not matter for the proof. A path consists of three parts (see Figure 2.14):
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• from the beginning to the first intersection with square (2m+ k)× (2m+ k),

• part of paths which lay in the square (2m+ k)× (2m+ k),

• from the last intersection with square (2m+ k)× (2m+ k) to the top-right corner.

Let (i, 2m + k) and (2m + k, j) be the coordinates of the first and last intersection with

the square (2m+k)× (2m+k). So, the first part of λ is a path from (0, 2n) to (i, 2m+k).

The number of paths from (0, 2n) to (i, 2m + k) is
(
2n−(2m+k)+i

i

)
. Similarly, the number

of path from (2m+ k, j) to (2n, 0) is
(
2n−(2m+k)+j

j

)
. The second part of the path consists

of 2m+ k − i right steps and 2m+ k − j up steps, so it is bounded by
(
4m+2k−i−j
2m+k−j

)
.

The number of options for µ is |P0(m)| which is a constant for any fixed m. So,

|R̄0
k(n,m)| ≤ |P0(m)| ·

2m+k∑
i,j=0

(
2n− (2m+ k) + i

i

)(
4m+ 2k − i− j

2m+ k − j

)(
2n− (2m+ k) + j

j

)
.

We estimate the binomial coefficients using that 2n is much greater than 2m+k and then

use Stirling’s approximation to finish estimations.

|R̄0
k(n,m)| ≤ |P0(m)| · (2m+ k + 1)2

(
2n

2m+ k

)(
4m+ 2k

2m+ k

)(
2n

2m+ k

)
∼

∼ Const1(m)

[
(2n)2n

√
2π(2n)

(2m+ k)2m+k
√

2π(2m+ k)(2n− (2m+ k))2n−(2m+k)
√

2π(2n− (2m+ k))

]2
∼

∼ Const2(m)

[
(2n)2n

(2n)2n−(2m+k)(1− (2m+k)
2n )2n−(2m+k)

]2
∼ Const3(m) · (2n)4m+2k.

Now let us evaluate the lower bound for |R0
k(n,m)|.

Given a shape µ and suppose n is a positive integer such that
√

2n is much greater than

2m + k. Construct shapes λ such that λ/µ ∈ R0
k(n −m) with the following algorithm.

This algorithm is valid for even k, but it is not hard to do the same for odd.

1. Consider a square b
√

2nc × b
√

2nc. Note that all paths from the bottom-left corner

to the top-right corner correspond to the diagram with no more than 2n cells.
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b
√
2nc(−1)

b
√
2nc(−1)

2m

2m

k

k

µ

λ

Figure 2.15: Construction of valid λ.

2. Either b
√

2nc or b
√

2nc − 1 is even, denote this number by t. Add t
2 −m vertical

dominoes to shape µ for 2m + k first columns. That vertical dominoes gives the

2m+ k first columns of λ/µ.

3. Proceed shape λ to the top-right corner using either 2 "up" steps or two "right"

steps. So, columns of λ/µ still have even number of cells and may be divided into

dominoes. At the moment one got shape λ with a number of dominoes no more

than n.

4. Finally, add additional cells to the first row in order to get exactly n dominoes in

shape λ.

Suppose 2k′ = k and 2t′ = t. According to the point 3 of the algorithm, one makes t′−m
up steps and t′ −m− k′ right steps, the length of each step is 2. Compute the number of

shapes one got with this procedure.
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|R0
k(n,m)| ≥ |P0(m)| ·

(
2t′ − (2m+ k′)

t′ −m

)
∼

∼ |P0(m)| (2t′ − (2m+ k′))2t
′−(2m+k′)

√
2π(2t′ − (2m+ k′))

(t′ −m)(t′−m)
√

2π(t′ −m) · (t′ − (m+ k′))t′−(m+k′)
√

2π(t′ − (m+ k′))

∼ Const4(m)
(2
√

n
2 − (2m+ k′))2

√
n
2
−(2m+k′)

(
√

n
2 −m)(

√
n
2
−m)

√
2π(
√

n
2 −m) · (

√
n
2 − (m+ k′))

√
n
2
−(m+k′)

∼ Const4(m)√
2π(
√

n
2 −m)

(2
√

n
2 )2
√

n
2
−(2m+k′)(1− (2m+k′)

2
√

n
2

)2
√

n
2
−(2m+k′)

(
√

n
2 )(
√

n
2
−m)(1− m√

n
2

)(
√

n
2
−m)(

√
n
2 )
√

n
2
−(m+k′)(1− m+k′√

n
2

)
√

n
2
−(m+k′)

∼ Const5(m)
4
√
n

(2
√

n
2 )2
√

n
2
−(2m+k′)

(
√

n
2 )(
√

n
2
−m)(

√
n
2 )
√

n
2
−(m+k′)

∼ Const6(m)
4
√
n

· 2
√
2n.

Finally, it is not hard to see that |R̄0
k(n,m)| = o(|R0

k(n,m)|).

Remark 2.16. One can easily modify the proof above to the case of bi-shapes.

Proposition 2.17. Fix any positive integer m and µ ∈ P0(m). Fix also ν some 2-domino

’top’ extension of µ (i.e. extension with one positive and one negative top domino). Then

for all k > 2

#{λ : λ/µ ∈ R0
k(n,m), λ/(µ+ ν) 6∈ P0(n,m+ 2)} = o(#{λ : λ/µ ∈ R0

k(n,m)}),

when n→∞

Proof. Consider the bijection between skew shapes of P0(n,m) and bi-shapes. One can

note that λ ≥ µ implies λ− ≥ µ− and λ+ ≥ µ+. Top dominoes goes to top cells in the

corresponding bi-shape. The fact that λ/(µ+ ν) 6∈ P0(n,m+ 2) actually means that one

of such top cells does not lay in λ. So, either wd(λ−/µ−) = 0 or wd(λ+/µ+) = 0. Note

that if λ/µ ∈ P0(n,m) and

wd(λ−/µ−) + wd(λ+/µ+) ≥ k.

then λ/µ ∈ R0
k(n,m). So,

#{λ : λ/µ ∈ P0(n,m) and wd(λ−/µ−) + wd(λ+/µ+) ≥ k} ≤ #{λ : λ/µ ∈ R0
k(n,m)}.
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Now it is not hard to show that

#{λ : λ/µ ∈ R0
k(n,m), wd(λ−/µ−) = 0 or wd(λ+/µ+) = 0} ≤

#{λ : λ/µ ∈ P0(n,m), wd(λ−/µ−) = 0 or wd(λ+/µ+) = 0} ≤
#{λ : λ− ≥ µ−, λ+ ≥ µ+, wd(λ−/µ−) = 0}+#{λ : λ− ≥ µ−andλ+ ≥ µ+, wd(λ+/µ+) = 0} =

o(#{λ− : λ− ≥ µ−, wd(λ−/µ−) ≥ k}) · (#{λ+ : λ+ ≥ µ+})+
o(#{λ+ : λ+ ≥ µ+, wd(λ+/µ+) ≥ k}) · (#{λ− : λ− ≥ µ−}) =

o(#{λ : λ/µ ∈ P0(n,m) and wd(λ−/µ−) + wd(λ+/µ+) ≥ k}) =

o(#{λ : λ/µ ∈ R0
k(n,m)}).

This is exactly what we needed.

Now we are ready to prove Theorem 2.11.

Proof. Fix some k > 2. Restrict our set on shapes with big width using Lemma 2.

lim
n→∞

|P̃0(n,m)|
|P0(n,m)| = lim

n→∞

[
|P̃0(n,m)| − o(|R0

k(n,m)|)
]

+ o(|R0
k(n,m)|)

|R0
k(n,m)|+ o(|R0

k(n,m))|) =

= lim
n→∞

[
|P̃0(n,m)| − |P̃0(n,m)

⋂R0
k(n,m)|

]
|R0

k(n,m)| =

= lim
n→∞

[
|P̃0(n,m)

⋂R0
k(n,m)|

]
|R0

k(n,m)| .

Proposition 2.17 states that

#{λ : λ/µ ∈ R0
k(n,m), λ/(µ+ ν) 6∈ P 0(n,m+ 2)} = o(#{λ : λ/µ ∈ R0

k(n,m)}).

Take a sum over all µ ∈ P0(m) and their ’top’ extentions ν. Further a pair (µ, λ) is used

only for skew shape λ/µ with the constraint µ ≤ λ and a triple (ν, µ, λ) corresponds to

skew shape and its ’top’ extension. Since the number of ’top’ extensions is no more than(
4(m+2)+2

2

)
we get

#{(ν, µ, λ) : λ/µ ∈ R0
k(n,m), λ/(µ+ν) 6∈ P 0(n,m+2)} = o(#{(µ, λ) : λ/µ ∈ R0

k(n,m)}).

Consider the numerator of the fraction, |P̃0(n,m)
⋂R0

k(n,m)|. It is the number of pairs

(µ, λ) such that the minimal distance between borders is not less k and λ/µ ∈ P̃0(n,m).
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Remark 2.13 states that either λ̂/µ̂ ∈ S̃P0
(m) or for some 2-domino ’top’ extension

λ/(µ+ ν) 6∈ P0. So,

|P̃0(n,m)
⋂
R0
k(n,m)| =∑

λ̂/µ̂∈S̃P
0
(m)

#{(µ, λ) : λ/µ ∈ R0
k(n,m)}+

∑
λ̂/µ̂ 6∈S̃P

0
(m)

#{(µ, λ) : λ/µ ∈ R0
k(n,m)}

= 0 + #{(µ, λ) : λ̂/µ̂ 6∈ S̃P0
(m), λ/µ ∈ R0

k(n,m)}
= #{(µ, λ) : ∃ν, |ν| = 2, λ/(µ+ ν) 6∈ P0(n,m+ 2), λ/µ ∈ R0

k(n,m)}
≤ #{(ν, µ, λ) : λ/(µ+ ν) 6∈ P0(n,m+ 2), λ/µ ∈ R0

k(n,m)}
= o(#{(µ, λ) : λ/µ ∈ R0

k(n,m)}) = o(|R0
k(n,m)|).

This finishes the proof of Theorem 2.11
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Structure constants of the descent

algebra of type B, type B Kronecker

and Littlewood Richardson

coefficients

This chapter is devoted to generalisation of the results from Section 1.8. First of all, we

prove an analogue of Cauchy identity for domino functions. Further we use it to compute

structure constants of the Solomon’s descent algebra of the hyperoctahedral group Bn, i.e.

the Coxeter group of type B.

More precisely, the idea is to take Cauchy formula for domino functions and, as in case

of type A, decompose both sides of the equality using Chow’s fundamental and monomial

functions. Since we know they are bases of Chow’s quasisymmetric functions, we derive

the coincidence of coefficients in the decomposition. It links structure constants, dBλI and

Kronecker coefficients of Bn.

3.1 Type B Descent algebra

We denote by DB
I (resp. BB

I ) the formal sum in CBn of the signed permutations π with

Des(π) = I (resp. Des(π) ⊆ I). Let

cKI1I2···Ip = [DB
K ]

p∏
j=1

DB
Ij ; eKI1I2···Ip = [BB

K ]

p∏
j=1

BB
Ij

65
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be the structure constants of Solomon’s descent algebra of type B for I1, · · · , Ip,K ⊆
{0} ∪ [n− 1].

Remark 3.1. These constants verify

∑
I′⊆I,J ′⊆J

cKI′J ′ =
∑
K′⊇K

eK
′

IJ ;
∑

I′⊆I,J ′⊆J,K′⊆K
cTI′J ′K′ =

∑
T ′⊇T

eT
′

IJK . (3.1)

One can also note the following analogue of Remark 1.4.

Remark 3.2. The structure constants of Solomon descent algebra of a symmetric group

verify the following identity.

c∅IJK =
∑
L

c∅ILc
L
JK .

Recall, there is a natural analogue of the RSK-correspondence for signed permutations in-

volving domino tableaux. Barbash and Vogan ([BV82]) built a bijection between signed

permutations of Bn and pairs of standard domino tableaux of equal shape in P0(n). Taşkin

([Tas12]) showed that the two standard domino tableaux associated to a signed permuta-

tion π by the algorithm of Barbash and Vogan have respective descent sets Des(π−1) and

Des(π). As a result, we have the following analogue to Equation (1.14).

c∅IJ =
∑

λ∈P0(n)

dBλId
B
λJ . (3.2)

Let Y be a second copy of X. Chow uses the theory of P -partitions of type B to show

that for K ⊆ {0} ∪ [n− 1]

FBK (XY ) =
∑

I,J⊆{0}∪[n−1]

cKIJF
B
I (X)FBJ (Y ). (3.3)

Equation (3.2) is a consequence of Equation (3.3).‘

Theorem 3.3. Let I, J ⊆ {0} ∪ [n− 1], then

c∅IJ =
∑

λ∈P0(n)

dBλId
B
λJ . (3.4)

3.2 Cauchy formula and Kronecker coefficients

In this section we show that domino functions satisfy the same relation as Schur functions.
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The irreducible characters of Bn are naturally indexed by bi-partitions of n, thus by

partitions of P0(n) also. Denote by ψλ the character indexed by λ ∈ P0(n) and define the

Kronecker coefficients of Bn as gB(λ, µ, ν) = 1/|Bn|
∑

ω∈Bn ψ
λ(ω)ψµ(ω)ψν(ω).

Proposition 3.4. The domino functions Gλ(XY ) verify the following identities

G(2n)(XY ) =
∑

λ∈P0(n)

Gλ(X)Gλ(Y ),

Gλ(XY ) =
∑

µ,ν∈P0(n)

gB(λ, µ, ν)Gµ(X)Gν(Y ).

Proof. Note that

(XY )+ = {xiyj}(i,j)≥(0,0) = {x0yj}j≥0 ∪ {xiyj}i>0,j∈Z = X+Y + ∪X−Y −.

Using Proposition 2.2 we get the first identity.

G(2n)(XY ) = s(n)((XY )+)

= s(n)(X
−Y − ∪X+Y +)

=
n∑
k=0

s(k)(X
−Y −)s(n−k)(X

+Y +)

=
n∑
k=0

∑
λ−`k

sλ−(X−)sλ−(Y −)
∑

λ+`n−k

sλ+(X+)sλ+(Y +)

=
∑

λ∈P0(n)

sλ−(X−)sλ+(X+)sλ−(Y −)sλ+(Y +)

=
∑

λ∈P0(n)

Gλ(X)Gλ(Y ).

Using Proposition 2.2 and the theory of symmetric functions on wreath products we prove

the second identity. Define as in [AAER17] for any set of indeterminates U and V and

any partition λ of n:

p+λ (U, V ) =
∏
i

[pλi(U) + pλi(V )] , p−λ (U, V ) =
∏
i

[pλi(U)− pλi(V )] .

Note that if U ∩V = ∅, p+λ (U, V ) = pλ(U ∪V ) and if V ⊆ U , p−λ (U, V ) = pλ(U \V ). Then

for partitions λ ∈ P0(n) and µ ∈ P0(n) of 2-quotient (µ−, µ+), denote by ψλµ the common

value of character ψλ on all signed permutations of cycle type (µ−, µ+). According to

[Mac99, I, Appendix B],

p−
µ−(U, V )p+

µ+
(U, V ) =

∑
λ∈P0(n)

ψλµsλ−(V )sλ+(U).
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Set U = X+ and V = X− and use Proposition 2.2 to get for any µ ∈ P0(n)

pµ+(X)(x0)
n−|µ+| =

∑
λ∈P0(n)

ψλµGλ(X).

But pµ+(XY )(x0y0)
n−|µ+| = pµ+(X)(x0)

n−|µ+|pµ+(Y )(y0)
n−|µ+|. We get

∑
λ∈P0(n)

ψλGλ(XY ) =
∑

µ,ν∈P0(n)

ψµψνGµ(X)Gν(Y ).

That yields the second identity.

3.3 Structure constants of Solomon’s descent algebra of the

hyperoctahedral group.

A more general form of Theorem 3.3 can be stated as follows.

Theorem 3.5. Let I, J and K ⊆ {0} ∪ [n− 1]. The following formula holds

c∅IJK =
∑

λ,µ,ν∈P0(n)

gB(λ, µ, ν)dBλId
B
µJd

B
νK . (3.5)

Both Theorem 3.3 and Theorem 3.5 are consequences of Equation (3.3) and Proposi-

tion 3.4.

Proof of Theorem 3.3. Decompose the domino functions G(2n)(XY ) in two ways.

G(2n)(XY ) = FB∅ (XY ) =
∑
I,J

c∅IJFI(X)FJ(Y ),

G(2n)(XY ) =
∑

λ∈P0(n)

Gλ(X)Gλ(Y ) =
∑
I,J

∑
λ`n

dBλId
B
λJF

B
I (X)FBJ (Y ).

Proof of Theorem 3.5. Similarly,

G(2n)(XY Z) = FB∅ (XY Z) =
∑
I,J,K

c∅IJKF
B
I (X)FBJ (Y )FBK (Z),

G(2n)(XY Z) =
∑

ν∈P0(n)

Gν(XY )Gν(Z)

=
∑

λ,µ,ν∈P0(n)

gB(λ, µ, ν)Gλ(X)Gµ(Y )Gν(Z)

=
∑
I,J,K

∑
λ,µ,ν∈P0(n)

gB(λ, µ, ν)dBλId
B
µJd

B
νKF

B
I (X)FBJ (Y )FBK (Z).
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Remark 3.6. Theorem 3.3 is a special case of Theorem 3.5. However, we felt that an

independent proof that does not use Kronecker coefficients but only the elementary first

identity of Proposition 3.4 was of interest.

3.3.1 A corollary to Theorem 3.5

The structure constants eKIJ also count templates M of the following type.

M = (mi,j) =



a0,0 a0,1 . . . a0,l(I)

b1,1 . . . b1,l(I)

a1,0 a1,1 . . . a1,l(I)
...

...

bl(J),1 . . . bl(J),l(I)

al(J),0 al(J),1 . . . al(J),l(I)


Definition 40. Given qs = as,0 +

∑
k(as,k + bs,k) and q0 = a0,0 +

∑
k a0,k we denote

q(M) = (q0, q1, . . . ql(I)) the row sums. The column sums p(M) = (p0, p1, . . . pl(J))

verify pj = a0,j +
∑

k(ak,s + bk,s) and p0 = a0,0 +
∑

k ak,0. Successive reading of a-lines

from left to right, and b-lines from right to left yields the reading word.

Denote by nKIJ the number of such templates with row sums I, column sums J and reading

word K and nIJ =
∑

K n
K
IJ . Bergeron and Bergeron in [BB92] prove that nKIJ = eKIJ . We

get as a corollary to Theorem 3.5:

Corollary 3.7. Let I, J and K ⊆ {0} ∪ [n− 1]. The numbers nI,J and nKI,J verify

nIJ =
∑
λ

KB
λ comp(I)K

B
λ comp(J),∑

R,D⊆{0}∪[n−1]

nDIJn
R
DK =

∑
λ,µ,ν`n

gB(λ, µ, ν)KB
λ comp(I)K

B
µcomp(J)K

B
ν comp(K).

Proof. Considering relations, which give Equations (3.2) and (3.5), in the monomial basis

instead of fundamental basis one gets

∑
I,J,

∑
I′⊆I,J ′⊆J

c∅I′J ′M
B
I (X)MB

J (Y ) =
∑
I,J

∑
λ`n

KB
λ comp(I)K

B
λ comp(J)M

B
I (X)MB

J (Y ),

and

∑
I,J,K

∑
I′⊆I,J ′⊆J,K′⊆K

c∅I′J ′K′M
B
I (X)MB

J (Y )MB
K (Z) =

∑
I,J,K

∑
λ,µ,ν`n

gB(λ, µ, ν)KB
λ comp(I)K

B
µcomp(J)K

B
ν comp(K)M

B
I (X)MB

J (Y )MB
K (Z).
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The first equation of the statement is a consequence of the result of Bergeron and Bergeron

and Equation (3.1).

nIJ =
∑
K

eKIJ =
∑

I′⊆I,J ′⊆J
c∅I′J ′ =

∑
λ`n

KB
λ comp(I)K

B
λ comp(J).

To get the second identity compute eRIJK using structure constants {eCAB}A,B,C∑
R

eRIJKB
B
R = BB

I B
B
J B

B
K = (

∑
D

eDIJB
B
D)BB

K =
∑
R,D

eDIJe
R
DKB

B
R .

Then one gets

∑
R,D

nDIJn
R
DK =

∑
R,D

eDIJe
R
DK

=
∑
R

eRIJK

=
∑

I′⊆I,J ′⊆J,K′⊆K
c∅I′J ′K′

=
∑

λ,µ,ν`n
gB(λ, µ, ν)KB

λ comp(I)K
B
µcomp(J)K

B
ν comp(K).

3.3.2 Skew shapes

Define for I, J ⊆ 0 ∪ [n− 1] the coefficients cλ/µIJ =
∑

K∈0∪[n−1] d
B
λ/µKc

K
IJ . Formula (1.24)

admits the following type B analogue.

Proposition 3.8. For λ/µ ∈ P̃0(n) and I, J ⊆ 0 ∪ [n− 1], the coefficients cλ/µIJ verify

Gλ/µ(XY ) =
∑

I,J⊆0∪[n−1]

c
λ/µ
IJ FBI (X)FBJ (Y ). (3.6)

Proof. Apply Proposition 2.10 and then decompose Chow’s fundamental quasisymmetric

function FBK (XY ) into FBI (X) and FBJ (Y ) to prove the statement.

Gλ/µ(XY ) =
∑

K⊆{0}∪[n−1]

dBλ/µKF
B
K (XY )

=
∑
I,J

(∑
K

dBλ/µKc
K
IJ

)
FBI (X)FBJ (Y )

=
∑
I,J

c
λ/µ
IJ FBI (X)FBJ (Y ).
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We are now ready to state the main result of this subsection.

Theorem 3.9. For λ/µ ∈ P̃0(n) and ν ∈ P0(n) denote by lλµν the type B analogue

of the Littlewood-Richardson coefficients defined as in Proposition 2.8 by formula lλµν =

kλ
−

µ−ν−k
λ+

µ+ν+. Then, for I, J ⊆ 0 ∪ [n− 1], the coefficient cλ/µIJ is given by

c
λ/µ
IJ =

∑
ν,ρ,ε∈P0(n)

lλµνg
B(ν, ρ, ε)dBρId

B
εJ . (3.7)

Proof. On the one hand expand Gλ/µ(XY ) using Proposition 3.8. On the other hand

expand the same skew domino function using Proposition 2.8, Proposition 3.4 and Propo-

sition 2.3. Namely

∑
I,J⊆0∪[n−1]

c
λ/µ
I,J F

B
I (X)FBJ (Y ) = Gλ/µ(XY )

=
∑

ν∈P0(n)

lλµνGν(XY )

=
∑

ν∈P0(n)

lλµν
∑

ρ,ε∈P0(n)

gB(ν, ρ, ε)Gρ(X)Gε(Y )

=
∑

I,J⊆0∪[n−1]
ν,ρ,ε∈P0(n)

lλµνg
B(ν, ρ, ε)dBρId

B
εJF

B
I (X)FBJ (Y ).
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Type B Schur positivity

This chapter is devoted to generalisation of a notion of Schur positivity to the case of

type B, and to the question of determining type B Schur positive sets.

4.1 A new definition of type B Schur-positivity

Recall that many of the results concerning Schur positivity are the consequence of two

main facts.

1. The Schur symmetric function indexed by λ ` n, sλ is the generating function for

semistandard Young tableaux of shape λ. It follows (see e.g. [Sta01, 7.19.7]) that

sλ(X) =
∑

T∈SSY T (λ)

XT =
∑

T∈SY T (λ)

FDes(T )(X). (4.1)

2. There are various descent preserving bijections relating sets of permutations and

standard Young tableaux, e.g. the celebrated Robinson-Schensted (RS) correspon-

dence.

A type B extension of Schur-positivity deals with the hyperoctahedral group of order n

instead of Sn. To extend items 1 and 2 above, two options are available and depend on the

definition for the descent of signed permutations. In [AAER17], Adin et al. use the notion

of signed descent set, i.e. the couple (S, ε) defined for π ∈ Bn as S = {n}∪{1 ≤ i ≤ n−
1 | π(i) > 0 and π(i) > π(i+ 1) or π(i) < 0 and either π(i+ 1) > 0 or |π(i)| > |π(i+ 1)|}
and ε is the mapping from S to {−,+} defined as ε(s) = + if π(s) > 0 and ε(s) = −,
otherwise. There is a signed descent preserving analogue of the RS correspondence relating

signed permutations and bi-tableaux, i.e. pairs of Young tableaux with specific constraints

73
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and [AAER17] proves an analogue of Equality (4.1) between their generating function and

Poirier’s signed quasisymmetric functions. While the authors succeed in extending most

of the results known in type A, providing another framework relying on a definition of

descent conform to the theoretical definition of Solomon for signed permutations appears

as a natural question. We use the notion of the descent set of π ∈ Bn as the subset of

{0} ∪ [n− 1] equal to

Des(π) = {0 ≤ i ≤ n− 1 | π(i) > π(i+ 1)}.

The Barbash and Vogan bijection provides descent preserving analogue of the RS corre-

spondence in this case that relates signed permutations and domino tableaux. We use the

generating function for domino tableaux and Chow’s type B quasisymmetric functions to

develop this alternative type B extension of Schur-positivity. Moreover, we introduce a

new descent preserving bijection between signed arc permutations and domino tableaux

to show that the former set is type B Schur-positive according to the definition of descent

stated above.

Definition 41. Similarly to the type A case, we define for any subset B of Bn

Q(B) =
∑
π∈B

FBDes(π).

In order to extend the definition of Schur positivity, we need to answer two questions:

1. What is a Chow’s type B symmetric function?

2. What is the analogue of Schur symmetric functions in this type B setup?

We proceed with the answer to the first question.

Definition 42. Let X = {x0, x1, · · · } and X∗ = X \ {x0}. Given a composition α =

(α1, α2, · · ·αp) of n with α1 ≥ 0 and αi > 0 for i > 1 we define the type B monomial

symmetric functions:

mB
α (X) = xα1

0 m
α̃\α1

(X∗),

where γ̃ is a partition obtained by reordering γ’s entries in decreasing order.

Given compositions α and β with possible zeros in the beginning we see that mB
α (X) and

mB
β (X) coincide when α̃ \ α1 = β̃ \ β1. So, such monomial functions are indexed by pairs

{(k, λ)}k∈[n], λ`n−k.

Definition 43. Denote by ΛBn [X] the set of type B symmetric functions of degree n as

the as the vector space spanned by the {mB
(k,λ)}k∈[n], λ`n−k.
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The natural bases of ΛBn [X] are {xn−|λ|0 fλ(X∗)}|λ|≤n where {fλ}λ`k might be any usual

basis of Λk[X
∗]. We have

ΛBn [X] =
n∑
k=0

xn−k0 Λk[X
∗].

where Λk[X
∗] the set of type A symmetric functions of degree k. Denote by p(n) the

number of partitions λ ` n. The dimension of this space is

dim(ΛBn [X]) =
n∑
i=0

p(i).

Remark 4.1. Type B monomial symmetric functions mB
λ does not coincide with usual

monomial symmetric functions mλ:

mλ(X) =

`(λ)+1∑
i=1

xλi0 mλ\λi(X
∗) 6= mB

λ (X).

Regarding the type B Schur analogue, we may use either the family {sB(n−|λ|,λ)(X) =

x
n−|λ|
0 sλ(X∗)}|λ|≤n or the family {Gλ}λ∈P0(n).

Definition 44. We say that a set B ⊂ Bn is G-positive (sB-positive) if the function Q(B)

can be written as a non-negative sum of domino functions ({sB(n−|λ|,λ)}).

Both candidates have advantages and drawbacks. The family {sB(n−|λ|,λ)} is a natural

basis of ΛBn [X] that looks like an equivalent of Schur functions in type A. However it

doesn’t seem to fulfil any nice combinatorial expressions. On the contrary, the functions

Gλ have a very strong combinatorial interpretation as shown in Equation (2.3) and (2.5).

Furthermore, for any λ ∈ P0(n), Gλ(X) ∈ ΛBn [X]. Indeed,

Gλ(X) =
∑
|ρ|≤n

aλρs
B
(n−|ρ|,ρ)(X), (4.2)

where aλρ is a non-negative integer with

aλρ =
∑

ν`|ρ|−|λ−|; λ+\ν is a horizontal strip
kρ
λ−ν ,

where k is the Littlewood-Richardson coefficient and a horizontal strip is a skew shape

composed by boxes, none of which are in the same column. But, {Gλ}λ∈P0(n) is not a basis

of ΛBn [X] as:

|{Gλ}λ∈P0(n)| = |P0(n)| =
n∑
i=0

p(n− i)p(i) >
n∑
i=0

p(i) = dim(ΛBn [X]).
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The Gλ are not linearly independent. One can show that the subfamily

{Gλ−,k}k≤n,λ−`n−k

is a basis of ΛBn [X]. However, if we use this subfamily even the most basic examples (see

next subsection) are no longer G-positive.

Remark 4.2. One interesting remark is that the functions Gλ are all sB-positive. As a

result, if a function can be written (in a non unique way) as a positive combination of the

Gλ, then this function is proved to be sB-positive.

4.1.1 Basic examples of G-positivity

Remark 4.3. The inverse descent sets DB,−1
n,J = {π ∈ Bn | Des(π−1) = J} are G-positive.

Proof. Thanks to the Barbash and Vogan correspondence, we have a descent preserving

bijection between permutations π of hyperoctahedral group and pairs of standard domino

tableaux (Pπ, Qπ) that verifies Des(π) = Des(Qπ) and Des(π−1) = Des(Pπ). We use this

fact to compute Q(DB,−1
n,J ):

Q(DB,−1
n,J ) =

∑
π∈Bn

Des(π−1)=J

FBDes(π) =
∑
λ`n

∑
P∈SDT (λ);
Des(P )=J

∑
Q∈SDT (λ)

FBDes(Q).

Since Gλ =
∑

Q∈SDT (λ) F
B
Des(Q) we get that Q(DB,−1

n,J ) expands in domino functions with

positive coefficients.

Another essential example of a G-positive set is type B Knuth classes. Given standard

domino tableau T we denote the corresponding type B Knuth class

CT = {π ∈ Bn | Pπ = T}.

Remark 4.4. The type B Knuth classes CT are G-positive.

Proof. Similarly, we compute CT using the type B analogue for RS-correspondence:

Q(CT ) =
∑
π∈Bn
Pπ=T

FBDes(π) =
∑

Q∈SDT (shape(T ))

FBDes(Q) = Gshape(T ).

Next example is a consequence of the previous one.
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Definition 45. A sequence (a1, . . . , an) of distinct integers is called unimodal if there

exists 1 ≤ m ≤ n such that

a1 > a2 > · · · > am < am+1 < · · · < an.

We say a permutation π ∈ Bn is left-unimodal if π−1 is unimodal as a sequence. So,

permutation π is left-unimodal if and only if Des(π−1) = {1, 2, . . . , i} or Des(π−1) =

{0, 1, 2, . . . , i} for some i ∈ [n−1]. Consider their images via the analog of RS-correspondence.

Since this map preserves a notion of descent set, left-unimodal permutations are a union of

Knuth classes, corresponding to standard domino tableaux with the constraint Des(T ) =

{1, 2, . . . , i} or Des(T ) = {0, 1, 2, . . . , i}, so they are G-positive.

All these examples are also sB-positive as a consequence of Remark 4.2.

4.2 Application to signed arc permutations

Definition 46. A permutation π ∈ Bn is called a signed arc permutation if for 1 ≤ i ≤ n
the set {|π(1)|, |π(2)|, · · · |π(i − 1)|} is an interval in Zn and π(i) > 0 if |π(i)| − 1 ∈
{|π(1)|, |π(2)|, · · · |π(i − 1)|} and π(i) < 0 otherwise. The set of signed arc permutations

is denoted by Asn.

One can prove (see [ER15]) that signed arc permutation are exactly those permutations

of Bn that avoid the following 24 patterns:

[±1,−2,±3], [±1, 3,±2], [±2,−3,±1], [±2, 1,±3], [±3,−1,±2], [±3, 2,±1].

The main result of this section follows.

Theorem 4.5. The set of signed arc permutations Asn is G-positive. Moreover,

∑
π∈Asn

FBDes(π) = G(2n) + G(2n−1,1) + G(2n−2,1,1) + G(2n−3,1,1,1) + 2
∑

a≥2n−a≥2
G(a,2n−a)

+
∑

a≥2n−a−2≥2
G(a,2n−a−2,2) +

∑
a≥2n−a−2≥2

G(a,2n−a−2,1,1). (4.3)

To prove Theorem 4.5 we introduce a new descent-preserving bijective map from Asn to the

sets of standard domino tableaux with shapes equal to the indices of the domino functions

in formula 4.3.
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4.2.1 Description of signed arc permutations

We start by giving a more precise description of signed arc permutations. Consider prefixes

of the one-line notation of a signed arc permutation. Its absolute values form an interval

in Zn, and if we go counterclockwise of the first value, the sign is "-", else we have "+",

like at Figure 4.1.

Definition 47. Given two sequences of integers A and B, denote by A sh B the set of

shuffles of these sequences, i.e. the set of sequences π consisting of all elements of A and

B such that each A and B forms an ordered subsequence of π.

We consider each signed permutation as a shuffle of its negative and positive subsequence.

The following table breaks the set of signed arc permutations into 6 non-overlapping types.

Types 1 and 2 have only either positive or negative entries. The four remaining types have

at least one negative and one positive integer and are characterised according to the sign

of their entries with absolute value 1 and n.

Type Content
1 ⋃

k∈[2,n]

[k, · · ·n, 1, · · · k − 1]
⋃

[1, · · ·n]

2 ⋃
k∈[2,n]

[-(k − 1), · · · -1, -n, · · · -k]
⋃

[-n, · · · -1]

3 For any k, l such that n > k > l ≥ 1,⋃
k,l

(-k, -(k − 1), · · · -(l + 1)) sh (k + 1, · · ·n, 1, · · · l)

4 For any k, l such that n > l > k ≥ 1,⋃
k,l

(-k, -(k − 1), · · · -1, -n, · · · -(l + 1)) sh (k + 1, · · · · · · l)}

5 ⋃
k∈[1,n−1]

(-k, -(k − 1), · · · -1) sh (k + 1, · · ·n)}

6 ⋃
k∈[1,n−1]

(-n, · · · -(k + 1)) sh (1, · · · k)
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n

1
2

k

+

Type 1

n

1
2

k

−

Type 2

n

1
2

l

k

−

+

Type 3

n

1
2

k

l

+

−

Type 4

n

1
2

k

+

−

Type 5

n

1
2

k

−

+

Type 6

Figure 4.1: All types of signed arc permutations of n. One get an arc permutations taking a
shuffle of positive and negative sequences with some order.

4.2.2 Explicit bijections for all types

The next step is to build the bijections with standard domino tableaux for each type.

Given a permutation, we build recursively a standard domino tableau. At step 1 ≤ i ≤ n
we add a domino with label i. For each step we will use one of the following rules:

• (Rule 1) Add a horizontal domino in the end of the first row.

• (Rule 2) Add either a horizontal domino in the end of the second row or a vertical

domino across the two first rows. As the difference of lengths of the first and second

row is always even, only one of these two positions is available.

• (Rule 3) Add either a horizontal domino in the end of the third row or a vertical

domino across the rows number two and three. Only one of these two positions is

available.

• (Rule 4) Add a vertical domino across the rows number three and four.

Types 5 and 6 shows the basic algorithm for these bijections.

Proposition 4.6. Both type 5 and type 6 permutations are in descent-preserving bijection

with the set of standard domino tableaux of shapes (a, 2n−a) for a such that a ≥ 2n−a ≥ 2.
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Proof. We give the proof for type 5 permutations but the same reasoning applies to type 6.

Type 5 contains following permutations:

⋃
k∈[1,n−1]

{(-k, -(k − 1), . . . -1) sh (k + 1, . . . n)}.

Firstly, map π0 = [-1, 2 · · ·n] to the standard domino tableau T0 composed of n vertical

dominoes. We have Des(π0) = Des(T0) = {0}. Secondly, let π = [π1π2 · · ·πn] 6= π0. We

build recursively a two-row standard domino tableau. At step 1 ≤ i ≤ n we add a domino

with label i. The common rule is if πi > 0, we apply Rule 1, otherwise, we apply Rule 2.

This mapping is clearly bijective. Indeed, given a tableau we get the sequence of signs

sign(π1), sign(π2), . . . sign(πn). The combined number of horizontal dominoes in the sec-

ond row and vertical dominoes gives k. Finally, there is a descent in position i > 0 in the

tableau if and only if i is in the first row and i + 1 in the second row, i.e. if and only

if πi > 0 and πi+1 < 0. At the same moment a type 5 signed arc permutation also has

a descent in position i > 0 if and only if πi > 0 > πi+1. There is a descent in 0 in the

tableau if and only if π1 < 0. As a result the bijection is descent preserving.

The following bijections are modifications of the bijection above.

Proposition 4.7. Type 1 and type 2 permutations together are in descent-preserving bi-

jection with the set of standard domino tableaux of shapes (2n), (2n − 1, 1), (2n − 2, 1, 1)

and (2n− 3, 1, 1, 1).

Proof. Type 1 contains following permutations:

⋃
k∈[2,n]

{[k, . . . n, 1, . . . k − 1]}
⋃
{[1, . . . n]}.

For type 1 permutation we use the same mapping as for type 5 signed arc permutations

except for i such that πi = 1, i > 1, when we apply Rule 3. Type 1 signed arc permutations

are in descent preserving bijection with standard domino tableaux of shapes (2n− 2, 1, 1)

and (2n). If i is the index of the vertical domino across the second and the third row, then

n− i+ 1 = k − 1.

Example 4.1. The signed arc permutation π = [4567123] is mapped to the following

standard domino tableau.

1 2 3 4

5

6 7
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Type 2 contains following permutations:

⋃
k∈[2,n]

{[-(k − 1), . . . -1, -n, . . . -k]}
⋃
{[-n, . . . -1]}.

For type 2 we use the following mapping. We map π0 = [-n, · · · -2, -1] to the standard

domino tableau of shape (2n − 1, 1). Let π = [π1π2 · · ·πn] 6= π0 with πm = −n, m > 1.

We map π to the standard domino tableau with a vertical domino labelled by 1, all the

other domino horizontal in the first row except the domino labelled by m, which is vertical

across the rows 3 and 4. These permutations have two descents: 0 and m − 1. Type 2

signed arc permutations are in descent preserving bijection with standard domino tableaux

of shape (2n− 3, 1, 1, 1) and (2n− 1, 1). If i is the index of the vertical domino across the

second and the third row, then i− 1 = k − 1.

Example 4.2. The signed arc permutation π = [-3-2-1-7-6-5-4] is mapped to the following

standard domino tableau.

1
2 3

4

5 6 7

Proposition 4.8. Type 4 signed arc permutations are in descent preserving bijection with

standard domino tableaux of shape (a, 2n− a− 2, 1, 1) for a such that a ≥ 2n− a− 2 ≥ 2.

Proof. Type 4 contains the following permutations:

⋃
k,l

{(-k, -(k − 1), . . . -1, -n, . . . -(l + 1)) sh (k + 1, . . . . . . l)}.

We use the same mapping as for type 5 signed arc permutations except for step i such

that πi = -n, i > 1, when we apply Rule 4. As −n is never the first negative number in

π, the second row of the tableau is always of length greater or equal to 1. So, adding the

domino labelled by i is possible. Type 4 signed arc permutations are in descent preserving

bijection with standard domino tableaux of shape (2n − a, a, 1, 1) for all a > 0. Given i

the index of the vertical domino across the third and the fourth row, k is equal to the

common number of

• horizontal dominoes in the second row and

• vertical dominoes
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with index strictly less than i. The number of such dominoes with index greater of equal

to i is equal to n− l.

Example 4.3. The signed arc permutation π = [-3 4 -2 -1 -7 5 -6] is mapped to the fol-

lowing standard domino tableau.

1
2

3
4

5

6

7

The type 3 case is more complicated.

Proposition 4.9. Type 3 signed arc permutations are in descent preserving bijection with

standard domino tableaux of shapes (a, 2n− a− 2, 2) for a such that a ≥ 2n− a− 2 ≥ 2.

Proof. Type 3 contains following permutations:

⋃
k,l

(-k, -(k − 1), · · · -(l + 1)) sh (k + 1, · · ·n, 1, · · · l).

We consider seven different cases depending on the existence/absence of negative numbers

before n, between n and 1 and after 1. We mostly use the common rule from type 5 for

mapping, but for each case there are several exceptions, see table in Figure 4.2.

We suggest a reverse map to prove that this mapping is bijective. Given T a standard

domino tableau of shape (a, 2n− a− 2, 2) we construct the permutation as follows.

First, distinguish the template of which case we need to use as follows.

1. If there are two dominoes across the second and third line, we are in case 5 or in

case 6.

2. If entries of these dominoes are not adjacent integers then it is case 5. Otherwise,

we consider the location of the next domino. If it lays in the first row, then it is also

case 5. Otherwise, it is case 6. Thus, we can distinguish cases 5 and 6.

3. In the rest cases (1,2,3,4,7) there is exactly one horizontal domino in the third row.

Denote by i the integer in this domino. Consider a subtableau T ′ of a tableau T ,

composed by the dominoes 1, 2 . . . i.
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Case Description Exceptions
1 −n− 1− At the step t + 1 proceed positive πt+1 with Rule 2.

For the first negative πj after n apply Rule 3.
2 −n− 1+ Proceed positive πt+1 and πi = 1 with Rule 2. For

the first negative πj after n apply Rule 3.
3 −n+ 1− Proceed positive πi = 1 with Rule 2. For the first

negative πj after 1 apply Rule 3.
4 −n+ 1+ Proceed positive πt+1 with Rule 2. For πi = 1 apply

Rule 3.
5 +n− 1− So, we have at least two negative integers after n. For

two first negative integers after n apply Rule 3.
6 +n− 1+ We have at least one negative integer after n. In

case we have two negative integers between n and 1,
for two first negatives after n apply Rule 3. Proceed
positive πi = 1 with Rule 2. If not, we apply Rule 3
for the first negative integer and for πi = 1.

7 +n+ 1− Proceed positive πi = 1 with Rule 2. For the first
negative πj after 1 apply Rule 3.

Figure 4.2: Table of exceptions for the case of type 3. We encode existence of negative
number by "−" and absence by "+", t is an index of the last negative integer before n in the

one-line notation of π.

4. We are in case 7 if and only if there is only one horizontal domino in the second row

of T ′.

5. In the cases 1,2,3,4 the last Rule 2 domino (horizontal in the second row or vertical

across the first and second row) in T ′ correspond to the positive πi, but was proceeded

with Rule 2.

6. Denote by j the integer in this domino. If j − 1 domino is positive, it may be only

the case 3.

7. Among cases 1,2,4 only in case 4 there is no Rule 2 domino in T \ T ′.

8. Cases 1 and 2 also may be distinguished by their templates of T \ T ′. Indeed, in

case 2 tableau T \ T ′ consists of some amount of Rule 2 dominoes and after that

some amount of Rule 1 dominoes. In case 1 this template does not appear.

Secondly, when we know which case is appropriate for T , there is no problem further to

construct the corresponding permutation using the template of the case. Indeed, for each

case:

• For each step i we know the sign of πi (including exceptional steps).
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Case 1
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n

n3≥1︷ ︸︸ ︷
− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R2 . . . RR R3 . . . R R R . . . R R R . . . R

Case 2
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n

n3≥1︷ ︸︸ ︷
− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R2 . . . RR R3 . . . R R2 R . . . R

Case 3
n1≥0︷ ︸︸ ︷∗ · · · ∗ n 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R2 R . . . R R3 R . . . R

Case 4
n1≥0︷ ︸︸ ︷∗ · · · ∗ −

n2≥1︷ ︸︸ ︷
+ · · ·+ n 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R2 . . . RR R3 R . . . R

Case 5

n1≥0︷ ︸︸ ︷
+ · · ·+ n

n1≥2︷ ︸︸ ︷
−− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R3R3 . . . R R R . . . R R R . . . R
n1≥0︷ ︸︸ ︷

+ · · ·+ n

n1=1︷︸︸︷
− 1

n3≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . R R R3 R R . . . R R3 R . . . R

Case 6

n1≥0︷ ︸︸ ︷
+ · · ·+ n

n1≥2︷ ︸︸ ︷
−− · · ·− 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R3R3 . . . R R2 R . . . R
n1≥0︷ ︸︸ ︷

+ · · ·+ n

n1=1︷︸︸︷
− 1

n3≥0︷ ︸︸ ︷
+ · · ·+

R . . . R R R3 R3 R . . . R

Case 7
n1≥1︷ ︸︸ ︷

+ · · ·+ n 1

n2≥0︷ ︸︸ ︷
+ · · ·+ −

n3≥0︷ ︸︸ ︷∗ · · · ∗
R . . . RR R2 R . . . R R3 R . . . R

Figure 4.3: All cases of signed arc permutations of type 3. First row describes a template
for permutations of the case. We use + to indicate positive integers and − for negative ones, ∗
means any sign of integer. Second row encodes a domino tableaux. We write R when step uses
common rules from the case of type 5 and R2, R3 to indicate an exception. Dots never replace

non-exceptional steps.

• Rule 3 dominoes allow us to compute the position j for which πj = 1. So, we can

compute the number of positive πi, such that i < j. From another point of view, it

should be n− k. Thus, we get k.

As already noticed above, given k and signs of πi we fix the signed arc permutation.

One finishes the proof of Theorem 4.5 using the descent preserving bijections above to

write:
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∑
ω∈Asn

FBDes(ω) =
∑

T∈SDT (2n)

FBDes(T ) +
∑

T∈SDT (2n−2,1,1)

FBDes(T )

+
∑

T∈SDT (2n−1,1)

FBDes(T ) +
∑

T∈SDT (2n−3,1,1,1)

FBDes(T )

+
∑

a,T∈SDT (a,2n−a−2,2)

FBDes(T ) +
∑

a,T∈SDT (a,2n−a−2,1,1)

FBDes(T )

+ 2
∑

a,T∈SDT (a,2n−a)

FBDes(T ),

which gives Theorem 4.5 after application of Equation (2.3).

4.3 Another proof of Theorem 4.5

It is necessary to consider a big amount of cases to prove Propositions 4.6, 4.7, 4.8 and 4.9.

We may avoid that and simplify the proofs, but the bijections will no longer be explicit.

Such an approach uses bi-tableaux and Poirier’s quasisymmetric functions. We will briefly

introduce needed definitions (see Adin et al. [AAER17] for more details).

4.3.1 Poirier’s quasisymmetric functions

Recall the different notion of a descent set on Bn. A couple (S, ε) is called signed descent

set of π ∈ Bn if

• S = {n}∪{1 ≤ i ≤ n−1 |

π(i) > π(i+ 1), if π(i) > 0

either π(i+ 1) > 0 or |π(i)| > |π(i+ 1)|, if π(i) < 0
}

• ε is the mapping from S to {−,+} defined as ε(s) = + if π(s) > 0 and ε(s) = −,
otherwise.

Given the signed set σ = (S, ε) we denote

wDes(σ) = {sk ∈ S | sk 6= n, ε(si)ε(si+1) ∈ {++,−−,+−}}.

Definition 48. Poirier’s quasisymmetric functions are defined as follows:

Fσ(X,Y ) =
∑

j∈wDes(σ): ij<ij+1

zi1 . . . zin ,

where i1 ≤ · · · ≤ in and zi = xi if ε(i) = + and zi = yi else.
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Remark 4.10. Consider an order <r on [n̄, . . . 1̄, 1, . . . , n]. Recall, 1̄ <r 2̄ <r . . . n̄ <r 1 <r

2 <r · · · <r n. Given π ∈ Bn define

Desr(π) = {0 ≤ i ≤ n− 1 | π(i) >r π(i+ 1)}

the notion of descent set, associated with the order <r. Note that the notion of signed

descent set generalises both the notions Des and Desr. So, given some σ ∈ ΣB(n) we may

determine Des(σ) and Desr(σ). Then Chow’s quasisymmetric functions may be expressed

in Poirier’s quasisymmetric functions as follows:

FBDesr(σ)
(X) = Fσ(X+, X−).

Proof. Remind that

Desr(σ) =

wDes(σ), if ε′(1) = +;

wDes(σ) ∪ {0}, if ε′(1) = −.

Lemma 16. There is a bijection W1 : Bn → Bn satisfying

Des(π) = Desr(W1(π)); Desr(π) = Des(W1(π)).

Proof. Indeed, fix some π ∈ Bn. For s ∈ [n− 1] consider ε(s) and ε(s+ 1). If at least one

of them is not negative then

s ∈ Desr(π)↔ s ∈ Des(π).

If both ε(s), ε(s + 1) are negative then s lies exactly in one of these sets. Using this

property we suggest the following appropriate bijection W1.

Consider the signed permutation π = [π1, π2, . . . πn]. It is a shuffle of its positive and

negative subsequence. We let the positive elements stay on their places and reverse the

negative subsequence.

Example 10. Given π = [-3 8 5 -2 1 -9 -7 4 6] we get W1(π) = [-7 8 5 -9 1 -2 -3 4 6].
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4.3.2 Bi-tableaux

Section 2.2 tells us about the Stanton and White bijection between standard domino

tableaux and standard bi-tableaux. However, this bijection does not preserve the descent

set. The following lemma fixes this situation.

Lemma 17. There is an implicit bijection W3 between standard bi-tableaux and standard

domino tableaux, such that

Desr((Q
−, Q+)) = Des(W3(Q

−, Q+)).

Proof. Proposition 4.2 in [AAER17] states that for all (λ, µ):

sλ(X)sµ(Y ) =
∑

(Q−,Q+)∈SY T (λ,µ)

FsDes((Q−,Q+))(X,Y ).

Recall, the Stanton and White bijection leads to the formula linked domino and Schur

functions:

Gλ(X) = sλ+(X+)sλ−(X−).

So, applying X := X+ and Y := X− and using Remark 4.10 we further continue

Gλ(X) = sλ+(X+)sλ−(X−) =
∑

(Q−,Q+)∈SY T (λ+,λ−)

FBDesr(sDes(Q))(X).

From the other point of view,

Gλ(X) =
∑

Q∈SDT (λ)

FBDes(Q)(X).

Note that FB is a base of BQSym, so the following multisets coincide for any λ ∈ P0(n):

{Desr((Q
−, Q+))}(Q−,Q+)∈SY T (λ+,λ−) = {Des(Q)}Q∈SDT (λ).

The coincidence of the multisets means exactly the existence of the bijection with the

needed property.

4.3.3 Proof

We are going to present a bijection between signed arc permutations and a multiset of

standard domino tableaux of several shapes. The bijection is composed of three mappings.

Firstly, we apply bijection W1 from the Lemma 16. Further, we will denote a mapping

W2 from W1(A
s
n) to standard Young bi-tableaux. Restrictions of W2 on each of 6 types of
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signed arc permutations are bijections with standard Young bi-tableaux of certain shapes.

The last mapping is the bijection W3 from the Lemma 17.

Lemma 18. There is a mapping W2 from signed permutations of W1(A
s
n) to standard

Young bi-tableaux, such that it preserves a notion of signed descent. Moreover, the re-

striction W2 on any type of signed arc permutations is a bijection with standard Young

bi-tableaux of some shapes.

Proof. The main idea is that in W2(π) negative elements of π will correspond to the

negative part of bi-tableau and positive elements to the positive part. This is to ensure

that signed descents will coincide in positions with signs −+ and +−. Preserving signed

descents in positions with signs −− (++) requires having the signed descents in the

negative (positive) part of Young bi-tableau in the same positions as the signed descents

in π.

Let π = π1π2 · · ·πn be a permutation of W1(A
s
n). Start from the empty bi-tableau (Q− =

∅, Q+ = ∅). For 1 ≤ i ≤ n build recursively a domino tableau with two rows according to

the following procedure.

• if πi > 1 add a square with label i to the first row in Q+.

• if πi < −1 add a square with label i to the first row in Q−.

• if πi = 1 add a square with label i in Q+. If n ∈ π then add it to the second row,

otherwise add it to the first one.

• if πi = −1 add a square with label i in Q−. If −n ∈ π then add it to the second

row, otherwise add it to the first one.

We provide the result of W1 for each type and the template of corresponding standard

Young bi-tableaux in the following table. Denote by pa the position of ±a in W1(π).
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type 1 W1(π) ∈ ⋃k∈[2,n]{[k, . . . n, 1, . . . k − 1]} ⋃ {[1, . . . n]}

W2W1(π) (∅ ,
pk pk+1 . . . . . . pk−1

p1
) or (∅ , p1 p2 . . . . . . pn )

type 2 W1(π) ∈ ⋃k∈[2,n]{[-k, . . . -n, -1, . . . -(k − 1)]} ⋃ {[-1, . . . -n]}

W2W1(π) (
pk pk+1 . . . . . . pk−1

p1
, ∅) or ( p1 p2 . . . . . . pn , ∅)

type 3 W1(π) ∈ ⋃k,l{(-(l + 1), . . . -k) sh (k + 1, . . . n, 1, . . . l)}

W2W1(π) ( pl+1 pl+2 . . . . . . pk ,
pk+1 pk+2 . . . . . . pl

p1
)

type 4 W1(π) ∈ ⋃k,l{(-(l + 1), . . . -n, -1, . . . -k) sh (k + 1, . . . . . . l)}

W2W1(π) (
pl+1 pl+2 . . . . . . pk

p1
, pk+1 pk+2 . . . . . . pl )

type 5 W1(π) ∈ ⋃k∈[1,n−1]{(-1, . . . -k) sh (k + 1, . . . n)}

W2W1(π) ( p1 p2 . . . . . . pk , pk+1 pk+2 . . . . . . pn )

type 6 W1(π) ∈ ⋃k∈[1,n−1]{(-(k + 1), . . . -n) sh (1, . . . k)}

W2W1(π) ( pk+1 pk+2 . . . . . . pn , p1 p2 . . . . . . pk )

Note, that restriction W2 to each type of signed arc permutations is exactly a descent-

preserving bijection with all standard Young bi-tableaux of the corresponding shape tem-

plate.

Now we are ready to reprove Theorem 4.5. The bijection W1 satisfies

Des(π) = Desr(W1(π)).

For W2 we showed that it preserves signed descent set. This also means it preserves Desr.

And, finally, W3 satisfies

Desr((Q
−, Q+)) = Des(W3(Q

−, Q+)).

All together W3W2W1 preserve the notion of descent set:

Des(π) = Desr(W1(π)) = Desr(W2W1(π)) = Des(W3W2W1(π)).
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Applying bijection W3 to the bi-tableaux described in the table above, one get exactly

the shapes from Propositions 4.6, 4.7, 4.8 and 4.9. Indeed, types 1 and 2 correspond to

shapes {(n), (n − 1, 1), (n − 2, 1, 1), (n − 3, 1, 1, 1)}, type 3 and 4 correspond to {(a, n −
a − 2, 2)}a∈[1...n−2],a≥n−a−2≥2 and {(a, n − a − 2, 1, 1)}a∈[1...n−2],a≥n−a−2≥2 respectively.

Finally, type 5 and 6 each gives {(a, n− a)}a∈[1...n−2],a≥n−a≥2.
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Refined statistics with an additional

parameter q

The goal of this chapter is to provide a type B extension of the following equation

∑
λ`n

T,U∈SY T (λ)

FDes(T )(X)FDes(U)(Y ) = F∅(XY ) =
∑
π∈Sn

FDes(π)(X)FDes(π−1)(Y )

that involves an additional parameter q to keep track of some significant statistics. We

then relate it to the question of type B (q-) Schur positivity and derive additional results.

5.1 Type B q-Cauchy identity

To build our q-deformed framework, we introduce the following constraint of q-symmetry

on alphabets.

Definition 49 (q-symmetry). LetX = {· · · , x-1, x0, x1, · · · } be an alphabet of commutative

indeterminates. We say that X is q-symmetric if for all i > 0,

x−i = qxi. (5.1)

In this section we let X = {· · · , x-1, x0, x1, · · · } and Y = {· · · , y-1, y0, y1, · · · } be two q-

symmetric alphabets. We proceed with the definition of the q-deformed modified domino

functions.

Definition 50 (q-domino functions). Given a semistandard domino tableau T of weight µ,

XT is the monomial xµ00 x
µ1
1 x

µ2
2 · · · and sp(T ) is the spin of domino tableau T , i.e. half the

91
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number of its vertical dominoes. For λ ∈ P0(n) define the q-domino function indexed

by λ on alphabet X as

Gλ(X; q) =
∑

T∈SSDT (λ)

qsp(T )XT . (5.2)

Setting q = 1 gives our modified domino functions. We have the following lemma.

Lemma 19. For λ ∈ P0(n), the q-domino function indexed by λ can be expanded in the

basis of Chow’s quasisymmetric functions as

Gλ(X; q) =
∑

T∈SDT (λ)

qsp(T )FBDes(T )(X). (5.3)

Proof. The proof is similar to the one in the case q = 1.

Remark 5.1. Our domino functions resemble the LLT-polynomials introduced in [LLT96]

but they are not equal because of the possible 0 labels in the semistandard domino

tableaux of Remark 2.1. In particular our domino functions are not symmetric as the

variable x0 has a particular rôle. More precisely let λ and µ be two integer partitions

such that λ/µ is a skew shape, |λ| − |µ| = 2n and such that the Young diagrams of shape

µ and λ/µ (and by extension λ) may be tiled by horizontal and vertical dominoes. By

abuse of notation, we also write λ/µ ∈ P0(n) when all these conditions are fulfilled. For

λ/µ ∈ P0(n) denote by SSDT ∗(λ/µ) the set of semistandard domino tableaux of shape

λ/µ that do not have 0 labels. The LLT-polynomial indexed by λ/µ on alphabet X is

LLTλ/µ(X; q) =
∑

T∈SSDT ∗(λ/µ)

qsp(T )XT . (5.4)

For λ ∈ P0(n), the two families of functions are related through

Gλ(X; q) =
∑
k≥0,

λ/2k∈P0(n−k)

xk0LLTλ/2k(X; q). (5.5)

Let XY be the product alphabet {xiyj}i,j ordered by the lexicographical order. Note that

positive indices in XY may include a negative index for Y e.g. x2y−3 has a positive index

within the alphabet XY . Our q-deformed type B Cauchy identity can be stated as follows.

Theorem 5.2. Let X and Y be two q-symmetric alphabets, we have:

G(2n)(XY ; q) =
∑

λ∈P0(n)

Gλ(X; q)Gλ(Y ; q). (5.6)



Chapter 5 93

Proof. Lam shows in [Lam06] the following skew domino Cauchy formula for LLT poly-

nomials

∑
λ

LLTλ/α(X; q)LLTλ/β(Y ; q)=
∏
i,j>0

1

(1− xiyj)(1− qxiyj)
∑
µ

LLTβ/µ(X; q)LLTα/µ(Y ; q).

(5.7)

Denote Z∗+ = (zi)i>0, Z+ = (zi)i≥0, Z− = (zi)i<0 for Z = X,Y and z = x, y. As a

consequence to Equation (5.7), one has:

∑
λ

Gλ(X; q)Gλ(Y ; q) =
∑
k,l,λ

xk0y
l
0LLTλ/2k(X; q)LLTλ/2l(Y ; q)

=
∏
i,j>0

1

(1− xiyj)(1− qxiyj)
∑
k,l,m

xk0y
l
0sl−m(X∗+)sk−m(Y ∗+)

=
∏
i,j>0

1

(1− xiyj)(1− qxiyj)
∑
m

(x0y0)
m
∑
k′

xk
′

0 sk′(Y
∗
+)
∑
l′

yl
′
0 sl′(X

∗
+)

=
∏
i,j>0

1

(1− xiyj)(1− qxiyj)

(
1

1− x0y0

)∏
i>0

1

1− x0yi
∏
i>0

1

1− y0xi

=
∏
i,j≥0

1

(1− xiyj)
∏
i,j>0

1

(1− qxiyj)
.

Looking at homogeneous parts of the same degree, we derive

∑
λ∈P0(n)

Gλ(X; q)Gλ(Y ; q) = sn(X+Y+ ∪ qX∗+Y ∗+)

= sn(X+Y+ ∪X∗+Y−)

= sn((XY )+)

= G(2n)(XY ; q) (5.8)

This is the desired formula.

5.2 Analytical proof for the bijections

5.2.1 Barbash and Vogan correspondence

The following proposition gives an analytical proof of the properties of the Barbash and

Vogan bijection. Let X and Y be two q-symmetric alphabets.
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Proposition 5.3. For any integer n, the following identity is a consequence to Theorem

5.2.

∑
π∈Bn

qtc(π)FBDes(π)(X)FBDes(π−1)(Y ) =
∑

λ∈P0(n)
T,U∈SDT (λ)

qsp(T )+sp(U)FBDes(T )(X)FBDes(U)(Y ). (5.9)

Proof. To prove Equation (5.9), one should develop FB∅ (XY ) in two different ways. Firstly,

according to Lemma 19, FB∅ (XY ) = G(2n)(XY ; q). Then, using Equation (5.8) and Lemma

19 yields the right-hand side. But using the definition of Chow’s quasisymmetric functions

one has:

FB∅ (XY ) =
∑

(0,0)≤(i1,j1)≤...≤(in,jn)

xi1yj1 . . . xinyjn .

The constraints on the indices (ik, jk) can be split in two disjoint cases:

(i) ik > ik+1 & jk < jk−1,

(ii) ik ≥ ik+1 & jk ≥ jk−1.

Then using the theory of Type B P-partitions as in [Cho01, Thm. 2.3.4] and the fact that

Y is q-symmetric yields the left-hand side of Equation (5.9).

5.2.2 Two equidistributed statistics on pairs of domino tableaux

Recall the Carré and Leclerc bijection between semistandard domino tableaux of weight

µ and bi-tableaux. We need the following statistic on domino tableaux.

Definition 51 (Number of negative dominoes). For a standard domino tableau T with 2-

quotient (T−, T+) given by the algorithm of Carré and Leclerc, let neg(T ) be the number

of boxes in T−. The statistic neg(T ) depends only on the shape of T .

T =

– 0 + – 0 +

+
2
–

– 2 +

+
5
–

+ 5 –

–
5
+

–
5
+

– 7 +

−−−→

T− = 5 5 5 , T+ =

0 0

2 2

5 7



Figure 5.1: A semistandard domino tableau and its 2-quotient.

Example 5.1. Figure 5.1 shows a semistandard domino tableau T of weight µ = (2, 0, 2, 0, 0, 4, 0, 1)

and its 2-quotient. In this example neg(T ) = 3.
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Equation (5.8) actually implies a surprising result.

Theorem 5.4. Let n be a positive integer. There is a one-to-one correspondence between

pairs of standard domino tableaux T,U of the same shape λ ∈ P0(n) and pairs of standard

domino tableaux R,S of the same shape µ ∈ P0(n) (possibly λ 6= µ) such that

Des(T ) = Des(R),Des(U) = Des(S)

and

sp(T ) + sp(U) = neg(R) = neg(S).

Proof. By successive application of Theorem 5.2 and Lemma 19, one may compute

G(2n)(XY ; q) =
∑

λ∈P0(n)
T,U∈SDT (λ)

qsp(T )+sp(U)FBDes(T )(X)FBDes(U)(Y ). (5.10)

Then we use standard properties of Schur function and the fact that for λ ∈ P0(n),

Gλ(X; 1) = sλ+(X+)sλ−(X∗+)

to expand G(2n)(XY ; q) differently.

G(2n)(XY ; q) = s(n)(X+Y+ ∪ qX∗+Y ∗+)

=
∑
k

s(n−k)(X+Y+)s(k)(qX
∗
+Y
∗
+)

=
∑
k

qks(n−k)(X+Y+)s(k)(X
∗
+Y
∗
+)

=
∑
λ−,λ+

|λ−|+|λ+|=n

q|λ
−|sλ+(X+)sλ−(X∗+)sλ+(Y+)sλ−(Y ∗+)

=
∑

λ∈P0(n)

q|λ
−|Gλ(X; 1)Gλ(Y ; 1)

=
∑

λ∈P0(n)
R,S∈SDT (λ)

qneg(R)FBDes(R)(X)FBDes(S)(Y ). (5.11)

Equating Equations (5.10) and (5.11) yields the desired result.

Remark 5.5. Combining the two classical extensions of the RS correspondence to signed

permutations, there is a natural one-to-one relation between pairs of bi-tableaux and pairs

of domino tableaux such that the number of boxes in the first Young tableau of each

bi-tableau and the sum of the spins of the domino tableaux are equal.
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5.3 Type B q-Schur positivity

Given any subset B of Bn and a statistic stat defined on the set B we look at the type B

quasisymmetric function

Q(B, stat)(X) =
∑
π∈B

qstat(π)FBDes(π)(X).

Definition 52 (Type B q-Schur positivity). We say that a pair composed of a set B ⊂ Bn
and a statistic stat defined on the set B is type B q-Schur positive or q-G positive if

the function Q(B, stat) can be written as

Q(B, stat)(X) =
∑
λ

cλ(q)Gλ(X; q), (5.12)

where the cλ(q) are polynomials in q
1
2 with non-negative integer coefficients.

Remark 5.6. The family {Gλ(X; q)}λ∈P0(n) is not linearly independent. As a result, there

may be several ways to expand a type B quasisymmetric function as in Equation (5.12).

The previous chapter deals with the case q = 1. We extend part of our results for general q.

Proposition 5.7 (Type B q-Schur positivity of Knuth and inverse descent classes). Set

stat = tc. Type B inverse descent classes and type B Knuth classes are type B q-Schur

positive.

Proof. Let J ⊂ {0}∪ [n−1]. Extracting the coefficient in FBJ (Y ) in Equation (5.9) yields:

∑
π∈DnJ

qtc(π)FBDes(π)(X) =
∑

λ∈P0(n)
T,U∈SDT (λ)
Des(U)=J

qsp(T )+sp(U)FBDes(T )(X) (5.13)

=
∑

Des(U)=J

qsp(U)
∑

T∈SDT (shape(U))

qsp(T )FBDes(T )(X)

=
∑

Des(U)=J

qsp(U)Gshape(U)(X; q). (5.14)

Furthermore, for a standard domino tableau T , we have

∑
π∈CBT

qtc(π)FBDes(π)(X) = qsp(T )Gshape(T )(X; q).

This gives the desired result.
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Remark 5.8. As the proof for signed arc permutations is not based on the bijection of

Barbash and Vogan, the extension of their type B Schur positivity to general q is not

obvious and may not even be true for non-trivial choices of stat.

Proposition 5.9. For a permutation π ∈ Bn, let l(π) be its type B Coxeter length. The

pair (Bn, l) is type B q-Schur positive. Furthermore, given a standard domino tableau T ,

denote maj(T ) =
∑

i∈Des(T ) i (the same definition applies to signed permutations). We

have ∑
π∈Bn

ql(π)FBDes(π)(X) =
∑

λ∈P0(n),
Q∈SDT (λ)

q2maj(Q)+sp(Q)Gshape(Q)(X; q). (5.15)

Proof. For π ∈ Bn, let fmaj(π) = 2 maj(π) + tc(π). We use a result from Foata in [FH07]

proving a bijection ϕ between signed permutations with a given Coxeter length k and

signed permutation with fmaj statistic equal to k such that for π ∈ Bn, Des(ϕ(π)) =

Des(π−1). As a result,

∑
π∈Bn

ql(π)FBDes(π)(X) =
∑
π∈Bn

ql(π
−1)FBDes(π)(X)

=
∑
σ∈Bn

q2maj(σ)+tc(σ)FBDes(σ)(X).

Then using the fact that the statistic maj depends only on the descent set and applying

Equation (5.14) prove the property.

Remark 5.10. Proposition 5.7 and Theorem 5.9 are seen as consequences of Theorem 5.2

but may be proved independently using the Barbash and Vogan algorithm and its descent

preserving and color-to-spin properties.
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Admissible shapes

In Section 2.9 we were interested in investigating the description of admissible shapes and

counting the percentage of the admissible shapes over all P0(n,m). One can note that

there are some unsolved questions left in this topic. Below we discuss some of them.

So, let µ ∈ P0(m), λ ∈ P0(n), λ/µ ∈ P0(n,m). We wrote a computer program to

check whether a skew shape λ/µ is admissible or not. Using this program we compute the

fraction
P̃0(n,m)

P0(n,m)
· 100%.

The following table contains the percentages of admissible shapes over all shapes of P0(n,m).

n \m 0 1 2 3 4 5 6 7

0 – – – – – – – –

1 100% – – – – – – –

2 100% 100% – – – – – –

3 100% 85.71% 100% – – – – –

4 100% 73.33% 88.10% 100% – – – –

5 100% 62.07% 75.56% 87.13% 100% – – –

6 100% 53.70% 66.12% 75.44% 85.96% 100% – –

7 100% 46.32% 57.06% 65.52% 73.66% 84.42% 100% –

8 100% 40.49% 50.41% 57.24% 63.78% 71.30% 83.81% 100%

Looking at the table one can note that

• Given m = 0 or m = n, one have P0(n,m) = P̃0(n,m), so

P̃0(n, 0)

P0(n, 0)
= 1 =

P̃0(n, n)

P0(n, n)

99



Chapter 5 100

• For any fixed m ∈ Z+, the entries of the m-th column tend to zero

lim
n→∞

P̃0(n,m)

P0(n,m)
= 0

The first item is quite obvious, the second one was proved in Section 2.9. This two items

leads us to the following question.

Question 1. Given a constant 0 < α < 1 let m ∼ αn. Compute

lim
n→∞

P̃0(n,m)

P0(n,m)
.

One can also note that for any fixed n the entries of the n-th row (except the first entry)

compose an increasing sequence.

Question 2. Show (or find a counterexample to) the fact that sequence { P̃0(n,m)
P0(n,m)

}m∈[1,n−1]
is increasing for any n ∈ Z+.



Appendix B

More type B Schur positive sets

Despite we have found and proved a number of examples of type B Schur positive sets,

there are still some ones for which we think that they hopefully should be G-positive.

One of the important examples of Schur-positive sets are conjugacy classes and therefore,

any subsets of Sn closed under conjugation. Computer computations shows that at least

for n = 2, 3, 4, 5 all the conjugacy classes of Bn are G-positive.

Example 11. Let n = 3. The set of domino functions have following decompositions in

fundamental functions:

G6 = F∅,

G5,1 = F0,

G4,2 = F0 + F1 + F2,

G4,1,1 = F1 + F2,

G3,3 = F0 + F1 + F0,2,

G3,1,1,1 = F0,1 + F0,2,

G2,2,2 = F1 + F0,2 + F1,2,

G2,2,1,1 = F0,1 + F0,2 + F1,2,

G2,1,1,1,1 = F1,2,

G1,1,1,1,1,1 = F0,1,2.

The table below shows all the conjugacy classes and one of the possible decompositions in

domino functions.
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conjugacy class decomposition

{(1, 2, 3)} G6
{(1, 2,−3), (1,−2, 3), (−1, 2, 3)} G4,2

{(1,−2,−3), (−1, 2,−3), (−1,−2, 3)} G3,1,1,1 + G2,1,1,1,1
{(−1,−2,−3)} G1,1,1,1,1,1
{(−1,−2,−3)} G1,1,1,1,1,1

{(1, 3, 2), (3, 2, 1), (1,−3,−2), G4,2 + G2,2,2
(−3, 2,−1), (2, 1, 3), (−2,−1, 3)}
{(1, 3,−2), (1,−3, 2), (3, 2,−1), G4,2 + G2,2,2
(−3, 2, 1), (2,−1, 3), (−2, 1, 3)}
{(−1, 3, 2), (−1,−3,−2), (3,−2, 1), G3,1,1,1 + G5,1 + G2,2,2

(−3,−2,−1), (2, 1,−3), (−2,−1,−3)}
{(−1, 3,−2), (−1,−3, 2), (3,−2,−1), G3,1,1,1 + G5,1 + G2,2,2
(2,−1,−3), (−3,−2, 1), (−2, 1,−3)}

{(2, 3, 1), (2,−3,−1), (3, 1, 2), (−3, 1,−2), G3,1,1,1 + G4,2 + G2,2,2
(3,−1,−2), (−2, 3,−1), (−2,−3, 1), (−3,−1, 2)}
{(2, 3,−1), (3,−1, 2), (2,−3, 1), (3, 1,−2), G3,1,1,1 + G4,2 + G2,2,2

(−3,−1,−2), (−2, 3, 1), (−3, 1, 2), (−2,−3,−1)}

Question 3. Show (or find a counterexample to) the fact that conjugacy classes of Bn are

G-positive for any n ∈ Z+.

In Chapter 4 we showed that type B analogue for arc permutations, called signed arc

permutations, are G-positive. However, there is another way to define a type B analogue

of arc permutations.

Definition 53. A signed permutation π ∈ Bn is called B-arc permutation if for every

i ∈ [n] the set

{π(i), π(i+ 1), . . . , π(n)}

is an interval in Z2n.

Computations for small n shows that these subsets are also G-positive.

Question 4. Show (or find a counterexample to) the fact that B-arc permutations are

G-positive.



Appendix C

Spin and negative number statistics

Recall, given a standard domino tableaux T of shape λ one define

Sp(T ) = 2 sp(T ) = #{vertical dominoes in T}; neg(T ) = |λ−|.

Let us consider the generating functions related to the statistics above

GSp(n) =
∑

T∈SDT (2n)

qSp(T ); Gneg(n) =
∑

T∈SDT (2n)

qneg(T ).

Example 12. Computations for small n shows that these two functions coincide.

n GSp(n) / Gneg(n)

1 1q0 + 1q1

2 2q0 + 2q1 + 2q2

3 4q0 + 6q1 + 6q2 + 4q3

4 10q0 + 16q1 + 24q2 + 16q3 + 10q4

5 26q0 + 50q1 + 80q2 + 80q3 + 50q4 + 26q5

6 76q0 + 156q1 + 300q2 + 320q3 + 300q4 + 156q5 + 76q6

So, the interesting question to consider follows.

Question 5. Show the coincidence of two functions GSp(n) and Gneg(n) for any n ∈ Z+,

i.e. equidistribution of two statistics or find a counterexample to this fact.

Secondly, one can note that sequences of coefficients of these two functions have several

properties. The obvious property is that coefficient of qk equals to the coefficient of qn−k.

Indeed, it is enough to conjugate the tableaux to prove that. Applying this operation
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changes both the statistics from k to n − k. For negative number statistic, we may also

change the positive and negative part of the corresponding bi-tableau.

Another one is not so obvious.

Question 6. Prove (or find a counterexample to) the fact that sequences of coefficients of

two functions, GSp(n) and Gneg(n), are unimodal, i.e. the coefficients grow up in the left

half of the sequence and decrease in the right half.



Bibliography

[AAER17] R.M. Adin, C. A. Athanasiadis, S. Elizalde, and Y. Roichman. Character

formulas and descents for the hyperoctahedral group. Advances in Applied

Mathematics, 87:128–169, 2017.

[AAV12] D. Avella-Alaminosa and E. Vallejo. Kronecker products and the RSK cor-

respondence. Discrete Mathematics, 312:1476–1486, 2012.

[BB92] F. Bergeron and N. Bergeron. A decomposition of the descent algebra of the

hyperoctahedral group. Journal of Algebra, 148(1):86–97, 1992.

[BBR06] F. Bergeron, R. Biagioli, and M. Rosas. Inequalities between Littlewood-

Richardson coefficients. J. Combin. Theory Ser. A, 113(4):567–590, 2006.

[BK72] E. A. Bender and D. E. Knuth. Enumeration of plane partitions. J. Combin.

Theory, Ser. A, 13:40–54, 1972.

[BLvW10] C. Bessenrodt, K. Luoto, and S. van Willigenburg. Skew quasisymmetric

Schur functions and noncommutative Schur functions. Advances in Mathe-

matics, 226, 2010.

[BM04] F. Bergeron and P. McNamara. Some positive differences of products of Schur

functions. 2004.

[BV82] D. Barbash and D. Vogan. Primitive ideals and orbital integrals in complex

classical groups. Math. Ann., 259:153–199, 1982.

[BvW11] C. Bessenrodt and S. van Willigenburg. Multiplicity free Schur, skew Schur,

and quasisymmetric Schur functions. Annals of Combinatorics, 17, 2011.

[Car86] R.W. Carter. Representation theory of the 0-Hecke algebra. Journal of

Algebra, 104:89–103, 1986.

[Cho01] C.O. Chow. Noncommutative symmetric functions of type B. PhD thesis,

MIT, 2001.

105



Bibliography 106

[CL95] C. Carré and B. Leclerc. Splitting the square of a Schur function into its

symmetric and antisymmetric parts. Journal of Algebraic Combinatorics,

4:201–231, 1995.

[dBR38] G. de B. Robinson. On the representations of the symmetric group. American

Journal of Mathematics, 60(3):745–760, 1938.

[dBR77] G. de B. Robinson. La correspondance de Robinson. Combinatoire et

Représentation du Groupe Symétrique, pages 59–113, 1977.

[DKLT96] G. Duchamp, D. Krob, B. Leclerc, and J-Y Thibon. Quasisymmetric func-

tions, noncommutative symmetric functions and Hecke algebras at q = 0. C.

R. Acad. Sci. Paris Sér. I Math., 2:107–112, 1996.

[ER14] S. Elizalde and Y. Roichman. Arc permutations. Journal of Algebraic Com-

binatorics, 39(2):301–334, 2014.

[ER15] S. Elizalde and Y. Roichman. Signed arc permutations. Journal of Combi-

natorics, 6(1–2):205–234, 2015.

[ER17] S. Elizalde and Y. Roichman. Schur-positive sets of permutations via prod-

ucts and grid classes. Journal of Algebraic Combinatorics, 45(2):363–405,

2017.

[FdBRT54] J. S. Frame, G. de B. Robinson, and R. M. Thrall. The hook graphs of the

symmetric group. Canadian Journal of Mathematics, 6:316–324, 1954.

[FFLP05] S. Fomin, W. Fulton, C-K Li, and Y-T Poon. Eigenvalues, singular values,

and Littlewood-Richardson coefficients. Amer. J. Math., 127(1):101–127,

2005.

[FH07] D. Foata and G. N. Han. Signed words and permutations, I; A fundamental

transformation. Proceedings of the Am. Math. Society, 135(1):31–40, 2007.

[Fom97] S. Fomin. Knuth equivalence, jeu de taquin, and the Littlewood-Richardson

rule. Appendix to: R. P. Stanley, Enumerative Combinatorics, vol. 2, Cam-

bridge University Press (1999), pp. 413–439, 1997.

[Fro00] F.G. Frobenius. Über die Charactere der symmetrischen Gruppe. Sitz. K.

Preuss. Akad. Wiss, pages 516–534, 1900.

[FS78] D. Foata and M.-P. Schützenberger. Major index and inversion number of

permutations. Math. Nachrichten, 83:143–159, 1978.

[Ful97] W. Fulton. Young tableaux: With applications to representation theory and

geometry. Cambridge University Press, 1997.



Bibliography 107

[FZ90] D. Foata and D. Zeilberger. Denert’s permutation statistic is indeed Euler-

Mahonian. Studies in Appl. Math., 83:31–59, 1990.

[Gar90] D. Garfinkle. On the classification of primitive ideals for complex classical

Lie algebras, I. Compositio Mathematica, 75(2):135–169, 1990.

[Gar92] D. Garfinkle. On the classification of primitive ideals for complex classical

Lie algebras, II. Compositio Mathematica, 81(3):307–336, 1992.

[Ges84] I. Gessel. Multipartite P-partitions and inner products of skew Schur func-

tions. Contemporary Mathematics, 34:289–317, 1984.

[GH02] A.M. Garsia and J. Haglund. A proof of the q,t-Catalan positivity conjecture.

Discrete Mathematics, 256(3):677 – 717, 2002.

[GR89] A. Garsia and C. Reutenauer. A decomposition of Solomon’s descent algebra.

Advances in mathematics, 77:189–262, 1989.

[GR93] I. Gessel and C. Reutenauer. Counting permutations with given cycle struc-

ture and descent set. Journal of Combinatorial Theory, Series A, 64(2):189–

215, 1993.

[HLMvW11] J. Haglund, K. Luoto, S. Mason, and S. van Willigenburg. Quasisymmetric

Schur functions. J. Comb. Theory, Ser. A, 118:463–490, 2011.

[Jac41] C. Jacobi. De functionibus alternantibus earumque divisione per productum

e differentiis elementorum conflatum. J. Reine Angew. Math., 22:360–371,

1841.

[Kir04] A. Kirillov. An invitation to the generalized saturation conjecture. Publ.

Res. Inst. Math. Sci., 40(4):1147–1239, 2004.

[KLLT94] A.N. Kirillov, A. Lascoux, B. Leclerc, and J.Y. Thibon. Séries génératrices

pour les tableaux de dominos. C.R. Acad. Sci. Paris, 318(I):395–400, 1994.

[Knu70] D.E. Knuth. Permutations, matrices and generalized Young tableaux. Pacific

J. Math., 34:709–727, 1970.

[Kos82] C. Kostka. Über den Zusammenhang zwischen einigen Formen von sym-

metrischen Funktionen. Crelle’s J., 93:89–123, 1882.

[KT97] D. Krob and J-Y Thibon. Noncommutative symmetric functions. IV. Quan-

tum linear groups and Hecke algebras at q = 0. J. Algebraic Combin.,

6(4):339–376, 1997.



Bibliography 108

[KWvW08] R. King, T. Welsh, and S. van Willigenburg. Schur positivity of skew Schur

function differences and applications to ribbons and Schubert classes. J.

Algebraic Combin., 28(1):139–167, 2008.

[Lam06] T. Lam. On Sjostrand’s skew sign-imbalance identity, 2006.

[LLT96] A. Lascoux, B. Leclerc, and J.Y. Thibon. Ribbon tableaux, Hall-Littlewood

functions, quantum affine algebras and unipotent varieties. Journal of Math-

ematical Physics, 38(2):1041–1068, 1996.

[LMvW13] K. Luoto, S. Mykytiuk, and S. van Willigenburg. An introduction to qua-

sisymmetric Schur functions. Hopf algebras, quasisymmetric functions, and

Young composition tableaux. 2013.

[LPP07] T. Lam, A. Postnikov, and P. Pylyavskyy. Schur positivity and Schur log-

concavity. Amer. J. Math., 129(6):1611–1622, 2007.

[LR34] D. E. Littlewood and A.R. Richardson. Group characters and algebra. Philo-

sophical Transactions of the Royal Society of London, Series A, 233:99–141,

1934.

[LS81] A. Lascoux and M. Schützenberger. Le monoïde plaxique. Noncommutative

structures in algebra and geometric combinatorics (Naples, 1978), pages 129–

156, 1981.

[Mac60] P. A. MacMahon. Combinatory Analysis. Chelsea, New York, 1960.

[Mac99] I.G. Macdonald. Symmetric functions and Hall polynomials. Oxford Univer-

sity Press, 1999.

[Mcn14] P. Mcnamara. Comparing skew Schur functions: a quasisymmetric perspec-

tive. Journal of Combinatorics, 5:51–85, 2014.

[MR95] C. Malvenuto and C. Reutenauer. Duality between quasi-symmetrical func-

tions and the Solomon descent algebra. Journal of Algebra, 177(3):967–982,

1995.

[MV17] A. Mayorova and E. Vassilieva. On the structure constants of the descent

algebra of the hyperoctahedral group. Electronic Notes in Discrete Mathe-

matics, 61:847–853, 2017.

[MV18] A. Mayorova and E. Vassilieva. A domino tableau-based view on type B

Schur-positivity. The 16th International Permutation Patterns conference,

Hanover, NH, USA, pages 174–181, 2018.



Bibliography 109

[MV19] A. Mayorova and E. Vassilieva. A new link between the descent algebra of

type B, domino tableaux and Chow’s quasisymmetric functions. Discrete

Mathematics, 342(6):1658–1673, 2019.

[Nor79] P.N. Norton. 0-Hecke algebras. J. Austral. Math. Soc. Ser A, 27:337–357,

1979.

[Pet05] T. K. Petersen. A note on three types of quasisymmetric functions. The

Electronic Journal of Combinatorics, 12:R61, 2005.

[Rei93a] V. Reiner. Signed permutation statistics. Europ. J. Combinatorics, 14:553–

567, 1993.

[Rei93b] V. Reiner. Signed permutation statistics and cycle type. Europ. J. Combi-

natorics, 14:569–579, 1993.

[Sag15] B. E. Sagan. Pattern avoidance and quasisymmetric functions. The 13th

International Permutation Patterns conference, London, UK, 2015.

[Sch61] C. Schensted. Longest increasing and decreasing subsequences. Canadian

Journal of Mathematics, 13(2):179–191, 1961.

[Sch04] M. Schocker. The descent algebra of the symmetric group, pages 145–161.

2004.

[Sol76] L. Solomon. A Mackey formula in the group ring of a Coxeter group. Journal

of Algebra, 41:255–264, 1976.

[Sta99] R. Stanley. Positivity problems and conjectures in algebraic combinatorics. in

Mathematics: Frontiers and Perspectives, American Mathematical Society,

pages 295–319, 1999.

[Sta01] R. Stanley. Enumerative combinatorics, volume 2. Cambridge University

Press, 2001.

[Ste94] E. Steingrimsson. Permutation statistics of indexed permutations. Europ. J.

Combinatorics, 15:187–205, 1994.

[SW85] D. W. Stanton and D. E. White. A Schensted algorithm for rim hook

tableaux. Journal of Combinatorial Theory, Series A., 40(2):211–247, 1985.

[SW01] M. Shimozono and D. White. A color-to-spin domino Schensted algorithm.

The Electronic Journal of Combinatorics, 8:R2, 2001.

[SW02] M. Shimozono and D. White. Color-to-spin ribbon Schensted algorithms.

Discrete Mathematics, 246:295–316, 2002.



Bibliography 110

[Tas12] M. Taskin. Plactic relations for r-domino tableaux. The Electronic Journal

of Combinatorics, 19:P38, 2012.

[Tho74] G.P. Thomas. Baxter algebras and Schur functions. PhD thesis, University

College of Swansea, 1974.

[Tho78] G.P. Thomas. On Schensted’s construction and the multiplication of Schur

functions. Adv. Math., 30(1):8–32, 1978.

[Tru64] N. Trudi. Intorno un determinante piu generale di quello che suol dirsi deter-

minante delle radici di una equazione, ed alle funzioni simmetriche complete

di queste radici. Rend. Accad. Sci. Fis. Mat. Napoli, 3:121–134, 1864.

[TvW14] V. Tewari and S. van Willigenburg. Modules of the 0-Hecke algebra and

quasisymmetric Schur functions. Advances in Mathematics, 285, 2014.

[vL01] M. van Leeuwen. Part 3. the Littlewood-Richardson rule, and related combi-

natorics. Interaction of combinatorics and representation theory. The Math-

ematical Society of Japan, pages 95–145, 2001.

[Zel81] A. V. Zelevinsky. A generalization of the Littlewood-Richardson rule and the

Robinson-Schensted-Knuth correspondence. J. Algebra, 69(1):82–94, 1981.





Titre : Liens combinatoires entre fonctions quasisymétriques et tableaux dans les groupes de Coxeter.

Mots clés : fonctions quasisymétriques de type B, fonctions de Schur, identité de Cauchy, algèbre de des-
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the theory of Schur-positivity to signed permutations
and the study a q-deformed type B Cauchy formula
with important implications regarding statistics for do-
mino tableaux.
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