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Titre : Active Learning et Visualisation des données d'apprentissage pour les Réseaux de Neurones Profonds Résumé Notre travail est présenté en trois parties indépendantes. Tout d'abord, nous proposons trois heuristiques d'apprentissage actif pour les réseaux de neurones profonds :

• Nous mettons à l'échelle le `query by committee' , qui agrège la décision de sélectionner ou non une donnée par le vote d'un comité. Pour se faire nous formons le comité à l'aide de diérents masque de dropout.

• Un autre travail se base sur la distance des exemples à la marge. Nous proposons d'utiliser les exemples adversaires comme une approximation de la dite distance.

Nous démontrons également des bornes de convergence de notre méthode dans le cas de réseaux linéaires.

• Puis, nous avons formulé une heuristique d'apprentissage actif qui s'adapte tant au CNNs qu'aux RNNs. Notre méthode sélectionne les données qui minimisent l'énergie libre variationnelle.

Dans un second temps, nous nous sommes concentrés sur la distance de Wasserstein. Nous projetons les distributions dans un espace où la distance euclidienne mimique la distance de Wasserstein. Pour se faire nous utilisons une architecture siamoise. Également, nous démontrons les propriétés sous-modulaires des prototypes de Wasserstein et comment les appliquer à l'apprentissage actif.

Enn, nous proposons de nouveaux outils de visualisation pour expliquer les prédictions d'un CNN sur du langage naturel. Premièrement, nous détournons une stratégie d'apprentissage actif pour confronter la pertinence des phrases sélectionnées aux techniques de phraséologie les plus récentes. Deuxièmement, nous protons des algorithmes de déconvolution des CNNs an de présenter une nouvelle perspective sur l'analyse d'un texte.

Contributions

Our work is presented in three separate parts which can be read independently. We present their content in Parts 1.1.1, 1.1.2, 1.1.3 respectively. For each topic, we dedicate a thorough introduction. Full papers and code can be found online 1 , and are also referred in Section 1.2.

Active Learning for Deep Networks

Part I is adressing the question of the annotation cost when training deep neural networks. Considering the cost of gathering relevant annotations for huge datasets such as ImageNet, the interest in methods requiring smaller training sets is increasing. One possible direction to improve a training set while reducing its size is to rely on active learning. In active learning, the goal is to train a classier with as few as possible training samples while reaching the same accuracy as if an unlimited number of training samples were available (i.e., at most the whole dataset). The challenge lies in selecting a small subset of data, without supervision, which is informative enough to reach the best possible accuracy. In Sections 3 to 4, we scale active learning methods mostly designed for Convolutional Neural Network (CNN).

First, active query strategies may be handled by ensembling deep networks; either by disagreement over the models (uery fy gommittee: [Ducoe 2015], Chapter 3), or by assuming some weight's distribution and sample a committee according to this distribution (fyesin etive verning: [Ducoe 2016c], Chapter 5).

1.2. List of publications 3 3. Learning Wasserstein Embeddings [Courty 2018] 4. Introducing Active Learning for CNN under the light of Variational Inference [Ducoe 2016c] 5. Machine Learning under the light of Phraseology expertise [Ducoe 2016a] 6. Textual Deconvolution Saliency (TDS): a deep tool box for linguistic analysis [Vanni 2018] 7. Les mots des candidats, de allons à vertu [START_REF] Mayare | [END_REF] 8. 

Motivations

Larger deep architectures fed with more data provide better results in error rate.

This widely acknowledged idea has been conrmed all along the recent years when analyzing, for instance, the results at Imagenet Large Scale Visual Recognition

Challenge [START_REF] Russakovsky | [END_REF]]. Indeed, in 2012, the winner was the SuperVision team [START_REF] Krizhevsky | [END_REF]] using a deep convolutional neural network with 60 million parameters and making a momentous breakthrough in the image classication task.

The huge step forward from SuperVision team has profoundly impacted the following contributions to ILSVRC after 2012. In 2014, Simonyan et l. [START_REF] Simonyan | [END_REF]] also proposed to use a CNN architecture from 11 up to 19 layers with 133 up to 144 million of parameters. Owing to the considerable amount of parameters involved which needs to be learned, the training set needs to be huge as well. Nevertheless, state of the art results using deep networks are known on a large training set.

However, a lot of real-life scenarios typically do not come with millions of labeled data available to train a model. Labeling appears to be one of the main bottlenecks towards wide spreading deep networks to a new area: gathering and annotating massive dataset for supervised learning may prohibit the expansion of deep networks towards new elds such as chemistry or medicine [Smith 2018[START_REF] Hoi | [END_REF]].

Labeling data may sound like a trivial task, but in many cases, it requires expert knowledge. For example, the creation of the Penn Treebank dataset, a benchmark when considering part-of-speech tagging, took more than seven years of collaborations with linguistic experts [START_REF] Taylor | [END_REF]]. Scaling the labeling process is not always practical as it requires the intervention of many specic human operators. Usually, labeling can only be solved with coee and patience.

A more plausible solution is to reduce the compelling need for labeled training samples to train deep networks. In Section 2.2, we highlight the dierent families of methods seeking to solve this type of problem and detail the settings on which they are better suited. In particular, we will focus on Active Learning (AL) that seeks to optimize the training set automatically for the task at hand to limit the need for human annotations.

Denitions

Active Learning

Given a large set of unlabeled samples, AL tries to guess which ones should be labeled and added to the training set to increase at best the performance of your model. It operates iteratively, by rst requesting new labels from the user, and then updating the model given the new labeled training set. The model can leverage its new knowledge to add queries again. Eventually, only a small fraction of the unlabeled data would be annotated to achieve good classication performance. Firstly, we detail three scenarios in which may occur AL. Note that this list is not intended to be exhaustive. Eventually, AL may occur in dierent scenarios:

• Pool-Based Sampling assumes that the learner has only access to a xed pool P of unlabeled i.i.d samples (C) and must query a xed budget size number of points (D) from P. It submits each of those queries to an oracle (E) that labels them to add them into the labeled training set (A). The classier (B) can then be re-trained on the incremented labeled training set. Figure 2.1 illustrates the iterative process. Notice that, in our context, we assume that the oracle makes no mistakes when annotating new query. However, noisy oracles have been tackled in the literature. For a survey of noisy oracles, we refer the reader to [Settles 2011].

• Stream-Based Selective Sampling considers one unlabeled example at a time and for each of them decide whether to ignore it or ask an oracle to annotate it. Stream-based active learning is attractive in many real-world applications when unlabeled samples are presented sequentially, and their number is far too large to maintain a pool of candidates. For example, stream-based active learning may be suitable for the classication of observations by au- • Query synthesis consists in generating new unlabeled instances instead of considering a xed pool of unlabeled samples. Creating de novo the queries may increase the learning speed, as we can optimize the queries according to the query selection. We illustrate this phenomenon with a simple example in Figure 2.2.

However querying arbitrary instances can be awkward if there are no assumptions on the underlying distribution of the generated samples; in that case, we may generate noisy instances. For example, [START_REF] Baum | [END_REF]] synthesized handwritten digits to train a neural network. However, they obtained poor performance as sometimes their generated queries were not identiable to the human oracle. Early active query synthesis has encountered some success when considering very low dimensional domains. More recently, [START_REF] Zhu | [END_REF] proposed to use a pre-trained Generative Adversarial Network (GAN) to generate the queries. So far, they obtain competitive results with pool-based active learning, probably due to a lack of diversity in their criterion. Indeed, when sampling from a nite set, the optimization of the query selection criterion is limited by the number of samples and their distribution. Eventually, one should pay attention not to focus on a subregion of the underlying distribution and create bias in the labeled training set. While their method is interesting, it comes at the price of training a GAN in a preprocessing step, which remains a challenging task. Nevertheless, query synthesis is also used as a form of reinforcement learning to improve dialogue generation: after the training phase, a human oracle scores the generated answer, which helps to (a) SV Mactive (b) Query synthesis Figure 2.2: en tive lerning heuristis for w SV M active will query dt tht re the losest to the deision oundryF sn tht tendenyD uery synthesis my help to generte queries tht optimize the tive lerning riterion as underlined in 2.2(b) [START_REF] Zhu | [END_REF] improve the system in [START_REF] Asghar | [END_REF]].

Active learning is not only motivated by theoretical works demonstrating that one model may perform better using less labeled data if the data are model-crafted [START_REF] Cohn | [END_REF]], but also by its proven eciency on a wide range of machine learning procedures, including character recognition [Liu 2004], bio-informatics [Sculley 2007, Smith 2010], or classication of medical data [START_REF] Hoi | [END_REF]]. As an example, in Fig-

ure 2.
3, we illustrate the potential benet of AL on a baby task.

A central challenge in active learning is to dene the information required for selecting at best the queries and how to measure it eectively. It happens that AL may have a drastic improvement regarding human annotations: in some classication problems, the excess risk of AL can converge to zero with an exponential rate comparing with the linear rate of fully supervised classication, also known as pssive lerning. However, the eectiveness of AL implies prior knowledge on the data distribution [START_REF] Willett | [END_REF][START_REF] Castro | [END_REF]]. Eventually, there exists no universal criterion to select the most informative queries. Thus AL strategies rely on heuristics to choose these queries. Moreover, several heuristics coexist as it is impossible to obtain a universal active learning strategy eective for any given task [Dasgupta 2005a].

As underlined in the related research areas 2.2.2, applying active learning on deep networks appears promising. Indeed, in peculiar settings, supervised classication on random small labeled training set achieves similar accuracy than state-of-theart semi-supervised deep algorithms. If one could optimize the labeled training set itself, it is likely that the performance would be even comparable, or even better.

However, transposing directly existing active learning on deep networks is not intuitive. First of all, scaling them to high dimensional parameters networks may turn out to be intractable: some classic active learning methods such as Optimal

Experiment Design [START_REF] Yu | etive lerning vi trnsdutive exE perimentl design[END_REF]] require to inverse the Hessian matrix of the models at each iteration, which would be intractable for current standard CNNs. Secondly, one of the most standard strategies is to rely on the uncertainty measure. Uncertainty in deep networks is usually evaluated through the network's output while this is known to be misleading. Indeed, the discovery of adversarial examples has demonstrated that the way we measure uncertainty may be overcondent. We describe the query selection methods proposed for deep networks in section 2.3 and demonstrate how they compare to one another.

Related Research Areas

We dene close related research areas, relevant as well to reduce the eective size of the labeled training set to train deep models. While those topics are out of the scope of our work, they appear complementary to AL.

1. Transfer Learning (TL) consists in using a solution designed for a related source domain, in order to adapt it to the current problem. Usually, TL is used only when few samples from the target domain are available, a.k.a we do not have at our disposal a large set of unlabeled examples; which diers from AL.

Nevertheless, TL is only applicable when both source and target domains share some relevant information; while dening the type of information required is not intuitive and typically induces several empirical experiments.

Transfer Learning is popular in deep learning due to a large number of pretrained networks available online. When it comes to TL on deep networks, it mainly consists in tting an already trained model to a new classication task on another dataset [Sawada 2017]. Indeed, it appears that deep neural networks trained on image classication tasks, all learn similar and broadly general features in their rst layers (visually similar to Gabor lters and color blobs, i.e., biologically receptive elds [START_REF] Zamir | [END_REF]). Hence, as those features are not dataset-crafted, they may be reused for another task to speed up the training: the scope of solutions would be narrowed by starting from a weight's region dierent from the common one obtained with random initialization.

2. Semi-Supervised Learning (SSL): combines both a small labeled training set and a larger pool of unlabeled samples. When it comes to deep networks, SSL enjoys an extensive literature, ranging from extending autoencoders and generative modeling [START_REF] Kingma | [END_REF][START_REF] Gogna | [END_REF], to new regularization schemes [Miyato 2017]. Note that the previous listing is far from being exhaustive.

However, the new aws underlined in [START_REF] Oliver | [END_REF]] should leverage the successes of semi-supervised deep algorithms. The rst drawback is that when using well-optimized hyperparameters and regularization settings, fully-supervised deep networks are competitive with the current state-of-the-art semi-supervised algorithms, without using any unlabeled samples. Nevertheless, the size of the labeled training set and also, the divergence between both distributions, respectively induced by the labeled samples and the unlabeled samples, profoundly impact the performance of SSL on classication tasks. Finally, both drawbacks highlight the necessity of optimizing the labeled training set for the task at hand.

Litterature

Previous works have shown that a carefully designed query strategy eectively reduces annotation eort required in a variety of tasks for shallow models. The eectiveness of AL has been established both theoretically and empirically. Nevertheless, AL for shallow models mainly rely on specic model simplications and closed form solution. Deep Neural Networks, on another side, are inherently complex non-linear functions. Their complexity poses several limitations to scale such existing active learning strategies.

In this section, we establish the range of active learning methods studied for deep networks, starting from the most intuitive setup (unertinty estimtion) to the most sophisticated strategies that take into account some properties and specicities involved in the training of deep networks.

Uncertainty

Originally, [START_REF] Lewis | [END_REF]] introduces uncertainty selection. It consists in querying the annotations for the unlabeled samples with the lowest condence. Thus its cost 2.3. Litterature 13 is low and its setup simple. Hence, it has been used on deep networks for various tasks, ranging from sentiment classication to visual question answering and Named

Entity Recognition [START_REF] Zhou | [END_REF], Lin 2017a, Yanyao Shen 2018].

The main drawback of uncertainty selection is its tendency to query outliers or other types of noisy instances, such as dversril exmples. Tellingly, the apparition of adversarial attacks, which are wrongly predicted with high condence, empirically demonstrates that the probability of misclassication and the uncertainty are not necessarily correlated.

Uncertainty selection has been improved in a pseudo-labeling method called CEAL [Wang 2016]: CEAL performs uncertainty selection, but also adds highly condent samples into the augmented training set. The labels of these samples are not queried but inferred from the network's predictions. In the case one deals with a highly accurate network, CEAL will improve the generalization accuracy. However, CEAL implies new hyperparameters to threshold the prediction's condence. If such a threshold is poorly tuned, it will corrupt the training set with mistaken labels.

Query-By-Committee

Uncertainty selection may be also tailored to network ensemble, either by disagreement over the models (ueryEyEommittee, [START_REF] Seung | [END_REF] or by sampling through the distribution of the weights (fyesin tive lerning, [START_REF] Kapoor | [END_REF]). Queryby-Committee consists in maintaining a committee of models which represent the current set of consistent hypothesis. Whether to label or not a query is decided based on a vote among the committee members. Usually, the vote incorporates some disagreement information on the predicted labels. Figure 2.4 illustrates this process for linear classiers. Recently, [Gal 2016b] demonstrated that dropout (and other stochastic regularization schemes) is equivalent to perform inference on the posterior distribution of the weights, enabling to leverage the cost of training and updating multiple models. Thus, dropout allows to sample an ensemble of models at test time: to perform hropoutEueryEfyEgommittee (Ducoe et l. , [Ducoe 2015]) or fyesin etive verning (Gal et l. , [Gal 2016b]). Gal et l. proceeded with a comparison of several active learning heuristics: among all the metrics, BALDwhich maximizes the mutual information between predictions and model posterior consistently outperforms other metrics.

Optimal Experimental Design

From another theoretical point of view, Optimal Experimental Design (OED) is a eld which takes interests in the Fisher information. Formally, the Fisher information is the expectation over the partial derivative of the log-likelihood function with respect to the parameters. The Fisher informations I reads:

I Θ = E x,y ∇ Θ l(f Θ (x), y)∇ Θ l(f Θ (x), y) T (2.1)
This measure is relevant because in a single parameter case, its inverse sets a Every hypothesis () is consistent with the labeled training set. However, each of them represent a dierent model in the version space. The unlabeled sample in red is not relevant as a query because every classier agree in its prediction (it is dog, whereas the green unlabeled sample is interesting as it will shrink the number of consistent classiers. The more classiers we discard, the faster QBC converge towards the optimal classier for the task at hand (ssuming tht liner lssi(er n solve extly the prolem t hnd ) lower bound on the variance of the model's parameter estimates; this result is known as the Cramer Rao bound [Kagan 2001[START_REF] Kay | [END_REF].

In other words, to minimize the variance over its parameter estimates, an active learner should select data that maximize the Fisher information or minimize the inverse.

But for multivariate parameters, the Fisher information is a covariance matrix, so its maximization may go through several statistics.

We cite the three most popular scenarios (other vrints exist utD less used y the ommunityD they re left unlisted for the ske of lrity):

• A-optimality minimizes the trace of the inverse information matrix [Chan 1982] • D-optimality minimizes the determinant of the inverse information matrix [START_REF] Chaloner | [END_REF] • E optimality minimizes the maximum eigenvalue of the information matrix [START_REF] Flaherty | [END_REF] Because deep neural networks may involve millions of parameters, computing their Fisher matrix is intractable. Moreover, even relying on approximations is too computationally expensive as one need to update the estimate for every possible query. Hence, OED has never been investigated for deep neural networks.

Core-Set

[Ozan Sener 2018] dene the batch active learning problem as a covering problem on the output space of the network. In Equ. 2.2, they minimize the population risk of a model learned on a small labeled subset. To do so, they propose an upper bound with a linear combination of the training error, the generalization error and a third term denoted as the oreEset loss. Notice that in Equ. 2.2, we denote by s the set of labeled points on which we train the parameter w of the network. We denote by l(x, y | w, s) the loss of the network over a sample x with label y.

P opulation Risk

≤ Generalization Error + T raining Error + CoreSetLoss Generalization Error ≡ E x,y∼p Z [l(x i , y i | w, s)] - 1 n i∈[n] l(x i , y i | w, s) T raining Error ≡ 1 | s | j∈s l(x j , y j | w, s) (2.2)
The generalization error is the absolute dierence between the expectation of the loss considering every possible sample from the ground-truth distribution, and the expectation given the set of data available (meaning both labeled and unlabeled set, which are indexed by n in Equ. 2.2). On another side, the training error measures how far is the loss over both the unlabeled and labeled points compared to the loss evaluated only on the labeled points. Due to the expressive power of CNNs, the authors argue that the rst two terms (training and generalization error) are negligible. Therefore the population risk would mainly be controlled by the core-set loss. Given a labeled training set s, a model w trained on s, and an unlabeled set of n points, the core-set loss is expressed in equation 2.3

CoreSetLoss ≡ 1 n i∈[n] l(x i , y i | w) - 1 | s | j∈s l(x j , y j | w) (2.3)
The core-set loss consists in the dierence between the average empirical loss over the set of points which are already labeled, and the average empirical loss over the entire dataset including unlabeled points. If not considering the labels, the core-set loss is upper bounded with the covering radius δ s , as illustrated in Fig. 2.5. Here, we denote by covering radius, the maximum distance in the output space between any labeled sample's prediction and any unlabeled sample's prediction. Finally, Sener et l. used a MIP heuristic to minimize at best the covering radius of the training set. We illustrate their method in Fig. 2.5(b). Thanks to their method, they achieve state-of-the-art performance in active learning for image classication.

Expected Model Change

Another direction, rarely explored for deep networks, is to rely on the distance to decision boundaries, namely margin-based active learning. Assuming that the Eventually the strategy induced by this property implies to query unlabeled points that minimize at best the expected δ s . To do so, Sener et l. developed a MIP strategy to select the samples that cover at best the output space of the network (s illustrted in PFS@A).

problem is separable with a margin is a reasonable requirement considered for many popular models such as SVM, Perceptron or AdaBoost. When positive and negative data are separable under SVM, [START_REF] Tong | [END_REF]] have demonstrated the eciency of picking the example which is the closest to the decision boundary. If, exploiting the geometric distances has been relevant for active learning on SVM [START_REF] Tong | [END_REF], Brinker 2003], it is not intuitive for CNNs since we do not know beforehand the geometrical shape of their decision boundaries. A rst trial has been proposed in [START_REF] Zhang | [END_REF]]. The Expected-Gradient-Length strategy (EGL) consists in selecting instances with a high magnitude gradient. Not only such samples will have an impact on the current model parameter estimates, but they will likely modify the shape of the decision boundaries. Their strategy aims to query samples that will impact at most the model. If one knows the ground-truth label in advance, then it would be possible to measure the exact impact of a sample (x i , y i ) given the current labeled training set s and the weights w of the network:

x * = arg max i∈[n] ||∇l(s ∪ {(x i , y i )}|w)|| (2.4)
However, computing the exact gradient for a given sample is intractable without its ground-truth label. In practice, we can only approximate Eq. 2.4 with the expectation over the gradients conditioned on every possible class assignments:

x * = arg max

i∈[n] k P (y i = k|x i , w)||∇l(s ∪ {(x i , k)}|w)|| (2.5)
Finally, computing the gradient over the whole batch of data s ∪ {(x i , k)} may not be scalable depending on the size of the labeled data s. Nevertheless, when training w on s, we expect the magnitude of the gradient over the training set to be close to zero ||∇l(s|w)|| ≈ 0 since the network has converged. Eventually, we can approximate the gradient over the whole set of data by the gradient over the unlabeled samples:

x * = arg max i∈ [n] k

P (y i = k|x i , w)||l((x i , k)|w)|| (2.6)
Similarly to uncertainty based selection, EGL may be limited because of an overparameterized network: parameters unused for classication are still taken into account into the EGL score. In that line, Zhang et l. argues that EGL should focus on instances that aect specic parameters of the networks, either the embedding space or the nal softmax parameters.

Batch Active Learning

In the original setting, AL only queries one sample at a time. However, in many practical implementations, it is preferable to query labels for batches of examples in parallel instead of gathering them sequentially. Moreover, the training schemes for deep networks are most of the time working on batches of samples, thus we can expect that adding solely one example in the training set will not have any impact on the accuracy.

A possible solution is to select the samples with the top scores given the active learning heuristics in used. For example [Gal 2016b] A core-set of a data is a subset of the data, typically denoted as medoids, that are representative of the whole set of data given an informative criterion. It nds its root in computational geometry [START_REF] Agarwal | [END_REF]] and have been widespread to the machine learning community rst via importance sampling [START_REF] Langberg | [END_REF]]. We further describe core-set approaches in Section 7. plays a predominant role in the denition of an upper bound on the generalization error (GE(f θ )) of any given classier, [Blumer 1989]. Indeed, both experimental ev- idence and learning theory link the generalization of a classier to the empirical error (iFeF, the error made on the training set) and the classier capacity. When it comes to neural networks, their VC grows with their number of parameters, and highly depends on the number of hidden layers [START_REF] Bartlett | [END_REF][START_REF] Bartlett | [END_REF]. Hence, in a context of active learning, the VC dimension would favor shallower networks than the common architectures used in the deep learning community.

However, VC dimension is data independent, and thus may not be a tight upper bound to conclude to the potential benets of active learning on deep networks.

A possible solution to incorporate the nature of the input data is to rely on the Rademacher complexity [Neyshabur 2015]. The empirical Rademacher complexity of a hypothesis class H on a dataset {x 1 , ..., x n } is dened as:

Rn (H) = E σ [sup h∈H 1 n n i=1 σ i h(x i )]
(2.7)

Where σ 1 , ..., σ n ∈ {±1} are iid uniform random variables. Rn (H) measures the ability of the classiers among H to t random binary labels assignment. However Rademacher complexity is not always tractable, and is upper bounded most of the time. For example, a data-independent upper bound has been proposed in [START_REF] Sokoli¢ | [END_REF]]. Given a deep network f θ with L layers, ReLU activations and trained on m examples, if the spectral norm of the weights of each layer is bounded by some constant C F > 0 then an upper bound on the generalization error is given by:

GE(f θ ) ≤ 1 √ m 2 L-1 C F (2.8)
If we analyze the equation 2.8, a deep network with a large number of adjustable parameters and therefore a large capacity is likely to learn the training set without error but exhibit poor generalization. Indeed, the previous formula only provides an upper bound on the generalization error without any notion on how tight is this bound. Empirical analysis tends to conrm the gap between the observed generalization error and such bounds: [START_REF] Guyon | [END_REF]] demonstrated that high-order polynomial classiers in high dimensional space could be trained with a small amount of train- the ones needed to overt on a random dataset. In the line of uniform stability [START_REF] Hardt | [END_REF]], this suggests that deep networks are also relying on an inductive bias that suits natural data. Based on the previous empirical observations, we expect that the generalization error has to be understood dierently for deep networks, perhaps with new metrics, so that VC dimension and the Rademacher complexity are indeed overly pessimistic for deep networks. This aw opens exciting opportunities on the eectiveness of active learning for deep networks.

Recent works have rened the existing upper bounds on the generalization error of deep networks. For sake of consistentcy, we will not provide an exhaustive list of those works, as it is outside our scope. Eventually, we will detail the new upper bounds that highlight the potential benets of active learning for deep networks.

First of all, it has been asserted, through both theoretical and empirical analysis, that regularizing the training with dropout, promotes smaller Rademacher complexity. Initially, dropout was motivated to prevent neurons co-adaptation. Nonetheless, it highly aects the Rademacher complexity of deep networks: dropout is able to reduce exponentially the Rademacher complexity of deep networks [START_REF] Gao | [END_REF]].

Moreover, an upper bound of the Rademacher complexity may be expressed as a function of dropout rates and the weights of a network [START_REF] Zhai | [END_REF]]:

Theorem 4.1: Bounding the empirical Rademacher complexity with Dropout Let X ∈ R n×d be the sample matrix with the i th row

x i ∈ R d . Let p ≥ 1, indexes the L p norm used 1 p + 1 q = 1.
Consider a network with L layers, and denote W l the weights at the l-th layer. If we apply a mask of dropout Θ l (made of Bernouilli parameters) for each layer, then we can upper bound the empirical Rademacher complexity for the network.

Indeed, if we denote W = {W | max j || W l j || p ≤ B l }.
∀l ∈ {1, 2, ..., L} given Θ, the empirical Rademacher complexity R of the loss for the dropout neural network is bounded by:

Rn (H) ≤ k2 L 2log(2d) n X || max L l=1 B l || Θ l-1 1 q (2.9)
where k is the number of classes, Θ l is the k l dimensional vector of Bernouilli parameters for the dropout random variables in the l t h layer and || • || max is the matrix norm dened as

|| A || max = max i,j | A i,j |.
While the Rademacher complexity has been really useful to understand pssive learning, it has also been used in AL. Indeed, [Hanneke 2011[START_REF] Koltchinskii | Vladimir Koltchinskii. demher omplexities nd ounding the exess risk in tive lerning[END_REF]] Another line of research, in line with the results of [START_REF] Schapire | [END_REF]], analyzed how the generalization error is correlated to the value of the weights, rather than the number of the weights in a neural network. This theory is at the edge of some well-known weight regularization schemes such as weight decay. In this, Liang et l. proposed to use the Fisher Rao norm as an indicator of the generalization performance of a neural network.

demonstrated
Denition 2.4.1: Fisher Rao norm

The Fisher Rao norm is dened as:

|| Θ || F R = Θ T I Θ Θ (2.10)
where I Θ is the Fisher information matrix, based on the weights Θ of the neural network f Θ , trained on the log loss l:

I Θ = E x,y ∇ Θ l(f Θ (x), y)∇ Θ l(f Θ (x), y) T (2.11)
Regarding deep linear networks, it has been shown in [START_REF] Liang | [END_REF]], that the Rademacher complexity can be bounded by the Fisher Rao Norm. Moreover, Liang et l. empirically demonstrate how the Fisher Rao norm correlates with the generalization error. The Fisher matrix is also linked to a wide panel of active learning 2.4. Theoretical Justication of Active Learning for Deep Networks 21 strategy called Optimal Experimental Design (see etion PFQ). We also investigate the usage of Fisher matrix into a Bayesian active learning framework in Chapter 5.

In similar contexts (i.e. where VC is overly pessimistic) for margin-based classiers, examples sampled in the margin lead to an optimal improvement of the decision at the next active iteration. Such supporting samples lie close to the decision boundary and dene the margin of the classier w.r.t. some metric d (the smllest distne in the input spe etween smple from the trining set nd smple with di'erent predition). The generalization error of a classier with margin γ is upper bounded by the complexity of the input space X (neglecting the log 1 γ term) and the classication margin via what we denote the overing numer

N (X ; d, γ 2 ) 1 . N Y denotes the number of classes. GE(f θ ) ≤ 1 √ m 2log(2)N Y N X ; d, γ 2 
(2.12) [START_REF] Sokoli¢ | [END_REF]] developed further equation 2.12 to demonstrate that the generalization error of a deep network (or any other margin classier) is inversely proportional to the square root of the margin multiplied by the number of training samples. They assumed that the input distribution is a regular manifold which is in accordance with empirical evidence [Arjovsky 2017b]. Indeed, when assuming that the input distribution X is a regular manifold, the overing numer may be approximated given the following expression:

e C M regulr k dimensionl mnifold where C M is onstnt tht ptures its intrinsi properties hs overing numer upper oundedX

N (X ; d, ρ) ≤ C M ρ k (2.13)
Several results lend credence to an eective margin-based active learning strategy for deep networks. First of all, [Liu 2016] developed a large margin softmax to encourage intra-class compactness and inter-class separability. Their results highlight the benet of enhancing a large margin between classes. However, the benets of margin-based active learning highly depend on the number of decision boundaries drawn by neural networks in the input space. If deep networks split the input space in an exponential number of shattered classication region, one may expect that many samples will lie close to a decision boundary, and thus querying samples close to the margin will be almost like collecting random samples.

Empirical evidence leads to thinking that it is not the case when considering deep networks. Independently of the number of parameters of the network, it has been empirically observed in [START_REF] Fawzi | [END_REF]] that state-of-the-art deep networks learn connected classication regions instead of shattered and disconnected regions. Although such classication regions dened in the input space may suer from the 1 Regarding the notation, we have purposely decided to stick to the notation of [START_REF] Sokoli¢ | [END_REF] in order not to confuse the reader. 

s: ∀ s ∈ Z ∀s ∈ s, ∀i ∈ 1..., K : if s ∈ C i , then E A max z∈C i | l(A s , s) -l(A s , z) |≤ ε(n) (2.
var A [max zs i | l(A s , s i ) -l(A s , z)] ≤ α (2.15)
Then ∀ δ > 0 with probability at least 1 -δ with respect to the random draw of the s and h ∼ ∆(H) the following upper bounds holds:

|L(A s ) -l emp (A s )| ≤ ε(n) + α √ 2δ + M 2Kln(2) + 2ln( 1 δ ) n (2.16)
Thus, Equ. 2.16 suggests that controlling the variance of the network positively impact the generalization performance.

In our last work on active learning for deep networks (see ghpter R), we combine adversarial attacks and active learning, based on the insight into the eectiveness of margin-based active learning strategy for deep networks. with P the number of training samples considered so far and N the dimension of the input space; second, the generalization error of a linear classier for training samples selected through a query-by-committee strategy, scales like e -P I N with the constant decay given by the information gain I. Later, [Freund 1997] proved that this property holds for a more general class of learning problems.

Chapter 3. Dropout Query-By-Committee Instead of trusting only the current incremental classier, committee decision relies on dening a space of consistent classiers (i.e., classiers whose predictions agree with training set labels) where the optimal learner lies. The aim of the active learning step is then to query a sample which will divide at best the consistent classier space, also called the version spe. It will thus reduce the possible solutions to converge towards the optimal classier. There is no consensus in the literature on an appropriate committee size to consider, even when focusing on a class of learning models or an application. However even small committee sizes, e.g., 2 or 3, work well in practice [START_REF] Seung | [END_REF][START_REF] Nigam | [END_REF][START_REF] Settles | [END_REF]. Some recent works tend to combine active learning and model selection to optimize even further the model design [Ali 2014]. After several iterations, the set of consistent hypotheses will shrink and converge towards the optimal classier. As the size of the version space might be innite, QBC samples a nite number of classiers to constitute a committee. Eventually, the query decision relies on the committee: the score assigned to an example is based on the prediction disagreement between all predictions of the classiers in the committee. In early works describing active learning through committee selection, convergence and better result against random sampling have been proven. However, for those results to hold, each model of the committee has to lie in the current version space dened by the annotated training set. This means that the set of neural networks in the committee should be built from the same architecture and should make no prediction error on the current training set. When it comes to large datasets, restricting the selection to one additional training sample at a time is computationally expensive since to maintain the version space we should retrain all the classiers of the committee on that new training sample [Dasgupta 2005b]. The drawback of QBC is the cost of building a representative committee. Our version allows us to get rid of this computational issue by using a version of dropout called thwise dropout [START_REF] Graham | [END_REF]]. Firstly, we sum up our batch active learning strategy in Method 3.1.1. Method 3.1.1: Dropout Query-By-Committee

We have a pool of unlabeled data P and start training a CNN with a small set of training samples A. This is the initial state of our active learning training set A 0 = A. At each iteration t, we aim at selecting the optiml batch B by computing a new loop of the following steps:

1. The network is trained on the current training set A t leading to the weights w t+1

2. We build a committee of K networks by applying thwise dropout on w t+1 : C t+1 = { wk t+1 } K k=1 . The procedure is further described in sec- tion 3.2.

3. We search for the optiml batch B to add to the training set, i.e. the batch B maximizing the disagreement over the committee C t+1 .

B = argmax{Disagreement(x i | C t+1 ) | x i ∈ P} (3.1) 4.
The training set is then augmented by B: A t+1 = A t ∪ B

Sampling a committee with Dropout

Before starting, let us dene some name convention: For the sake of clarity, we denote by full network, the deep architecture trained on the current labeled training set A and partial network a CNN member of the committee.

We train the full network on the current annotated training set until the prediction error on an independent validation set is not further decreasing. Here we consider the cost of building a committee. A naive setup would consist in training models in parallel; networks sharing the same architecture with dierent initialization. However, this framework is not ideal for at least two reasons:

• Training multiple models at the same time is not scalable when considering large dimensional neural networks Consequently, dropout allows sampling an ensemble of models at test time.

In the same spirit, we propose a Dropout-based QBC strategy that we call hropout ueryEfyEgommittee (DQBC). Instead of training an ensemble of networks, we use dropout to sample prtil gxxs given the weights of the full gxx, as illustrated in Figure 3.1. Notice that, independently and after this work, Gal et l. also designed a Bayesian active learning framework relying on a dropout committee.

Let us now detail how we build prtil CNNs in order to form the committee. To initiate a prtil CNN while getting rid of the computation cost thanks to backpropagation, we apply batchwise dropout [START_REF] Graham | [END_REF]] on our full network. The batchwise dropout [START_REF] Graham | [END_REF]] is a version of dropout where we use a unique bernouilli mask to discard neurons for each sample in the minibatch. Thus the batchwise dropout reduces quadratically in the percentage of preserved neurons, the number of parameters in the architecture. When considering convolutional layers, the batchwise dropout has one advantage over dropout: the latter removes neurons independently given the spatial locations whereas batchwise dropout is spatially dependent, switching on or o lters so to discard neurons obtained through the same lter. Figure 3.1 presents how batchwise dropout preserves the consistency in a CNN architecture which allows us to create our prtil CNNs.

The main advantage is to obtain a committee whose members contain fewer parameters while sharing the same architecture as the full network with zero constraints on several connexions. In order to increase the accuracy of each prtil 

Disagreement Scoring Function

In the context of QBC, a sample is considered as informative based on its ability to reduce the number of current consistent hypotheses. Thus the informativeness of a sample is measured by the quantity of disagreement about the prediction of its label among the prtil CNNs. We illustrate such disagreement on a baby task in We propose our own metric based on how much a prtil CNN may change its decision to be in accordance with the majority. In that order, we dene a smooth vote on the members of the committee. Let denote the committee as a set of prtil CNNs: C = { pCN N i } with p i the output probability vector of pCN N i .

Given a sample x, we rst establish its most probable label based on the committee predictions:

LABEL(x) = arg max j pCN N i 1 j=argmax k p i (y = k | x) (3.2)
We took inspiration from Random Forest margin function [Breiman 2001] in order to produce a ranking of candidates for selection and to have a soft pool among the committee. Our point is to take into account the condence of a prtil CNN into the score function rg(x) and query the samples with the highest score:

rg(x) = pCN N i max j p i (y = j | x) -p i (y = LABEL(x) | x) (3.3)
We add minibatches of samples instead of one sample as supposed for active learning technique, both to leverage the computational cost owing to successive runs of active learning and to avoid unbalanced size of minibatch (in tht se n djustement of the lerning rte given the size of the lst minith would e required ).

Chapter 3. Dropout Query-By-Committee demonstrate the validity of our approach on two datasets: wxs (batch size of 64) and (batch size of 8) both gray scaled digit image datasets. Both CNNs have ReLu. Note that we do not optimize the hyperparameters depending on the size of the current annotated training set. We picked those two similar datasets to judge of the robustness of our method against dierent size of unlabeled datasets.

(A) (B)
Finally, our method is ecient on restricted and larger pool of unlabeled samples.

We perform 5 to 10 runs of experiments and record the test error of the best validation error before an active learning iteration. We start from an annotated training set of size one minibatch selected randomly. We stop both sets of experiments when we reach 30% of the training set (15.000 images for wxs , 1255 for ). We sample 5 prtil CNNs to form a committee. In Figure 3.2, we compare DQBC to uncertainty, curriculum [START_REF] Bengio | [END_REF]] and random selection with a top scoring selection on a convolutional network. We measure both uncertainty and curriculum scores based on the log likelihood of a sample. We use the prediction of the full network to approximate the ground-truth label. While uncertainty selects samples with the highest log likelihood, our version of curriculum does the exact contrary.

We select the set of possible queries among the unlabeled training data randomly.

Its size is set to 30 times the minibatch size. The experiments in (see pigure QFP) 

Conclusion

This chapter introduced an adaptation of Query-By-Committee for deep networks based on dropout. It allows to train CNNs on a smaller annotated training set to achieve similar accuracy to the one obtained using a much larger annotated database.

Our work bridges the computational gap between active learning for CNNs and other shallow classiers. The use of a committee allows our active learning heuristic to have the distributive training of its CNNs which is a natural advantage of QBC derived methods. RFP). It queries the unlabeled samples, which are the closest to their adversarial attacks, labels not only the unlabeled sample but its adversarial counterparts as well, using twice the same label. This pseudo-labeling comes for free without introducing any corrupted labels in the training set.

• We empirically demonstrate that DFAL labeled data may be used on other networks than the one they have been designed for, while achieving higher accuracy than random selection. To the best of our knowledge, this is the rst active learning method for deep networks tested for this property. (see RFR)

• We demonstrate the theoretical gain of our method for linear classier (see RFT). In a multi-class context, everything is dierent: we do not have any prior knowledge on which class the closest adversarial region belongs. Inspired by the strategy done previously in EGL [START_REF] Zhang | [END_REF]], we could design as many perturbations as the number of classes and keep only the smallest perturbation, but this would be timeconsuming. We thus have to consider the available techniques of adversarial attacks from the literature [Szegedy 2013[START_REF] Goodfellow | [END_REF][START_REF] Carlini | [END_REF]] and look for the most laborious procedure to counter since it will provide more information on the margin in more cases and more dicult situations. Indeed, computing the closest adversarial perturbations is a NP-hard problem. Hence we need to rely on heuristics.

x i ∈ P \ A #compute adversarial attacks with L p norms r i ← DeepF ool(x i , w t+1 ; p) # query the labels of the | B |-th smallest perturbation index k ← argsort(< r i , r i > p | i = 1..K) B ← {x j | j ∈ index k [:| B |]}
To the best of our knowledge, Carlini et l. [Carlini 2017b[START_REF] He | [END_REF], Carlini 2017a] methods are among the hardest attacks to counter. However, it also requires to tune several hyperparameters.

We have thus decided to use the heepEpool algorithm to compute adversarial attacks for DFAL [START_REF] Moosavi-Dezfooli | [END_REF]. Indeed, heepEpool is an iterative procedure which alternates between a local linear approximation of the classier around the source sample and an update of this sample so that it crosses the local linear decision. The algorithm stops when the updated source sample becomes an adversarial sample regarding the initial class of the source sample. When it comes to DFAL, heepEpool holds three main advantages: (i) it is hyperparameter free (especially it does not need target labels which makes it more compliant with multi-class contexts); (ii) it runs fast as we empirically noticed in table 4.3; (iii) it is competitive with state-of-the-art adversarial attacks.

To regularize the network and increase its robustness, we add both the less robust unlabeled samples and their adversarial attacks. Thus, it is more likely that the network will regularize on the adversarial examples added to the training set and become less sensitive to small adversarial perturbations. Unlike CEAL, DFAL is hyperparameter-free and cannot corrupt the training set: from the basic denition of adversarial attacks, we know that a sample and its adversarial attack should share the same label.

Finally, DFAL improves the robustness of the network by adding at each iteration unlabeled samples at half the cost of reading their right labels (one label amounts to two examples).

Empirical Validation

Dataset and hyperparameters

We evaluate our algorithm for fully supervised image classication on three datasets that have been considered in recent articles on active learning for Deep Learning [START_REF] Huijser | [END_REF]] (Table 4 We assess the eciency of our method on two CNNs: LeNet5 and VGG8 (edmD lraHFHHID thaQP ). We use Keras and Tensorow [START_REF] Chollet | [END_REF][START_REF] Abadi | [END_REF]].

Note that DFAL may be used on any architectures impaired by adversarial attacks.

Evaluation

We compare the evolution of the test accuracy when using DFAL against the following baselines:

• BALD: we select on a random subset of the unlabeled training set the rst n query samples which are expected to maximize the mutual information with the model parameters. In that order, we sample 10 networks from the approximate posterior of the weights by also applying dropout at test time.

• CEAL: we select on the whole unlabeled training set the rst n query samples with the highest entropy on their network's prediction. We also label any unlabeled samples whose entropy is lower than a given threshold (which is set according to the authors' guidelines: 0.05 for wxs , 0.19 for hoeEfg and 0.08 for uikEhrw ).

Their labels are not queried but estimated from the network's predictions.

• CORE-SET: we select on a random subset of the unlabeled training set the n query samples which cover at best the training set (labeled and unlabeled data) based on the euclidean distance on the output of the last fully connected layer. To approximate the overing rdius, we follow the instructions prescribed in [Ozan Sener 2018]:

we initialize the selection with the greedy algorithm, and iterate with their mixed integer programming subroutine. We also handle the robustness as prescribed by the authors. We use orEtools 1 to reproduce the MIP subroutine.

• EGL: we select from a random subset of the unlabeled training set the rst n query samples whose gradients achieves the highest euclidean norm.

• uncertainty: we select from the whole unlabeled training set the rst n query samples with the highest entropy on their network's prediction.

• RANDOM: we select randomly from the whole unlabeled training set n query samples.

We average our results over ve trials and we plot in Figures 4.3,4.4 the test accuracy achieved by each active learning methods for xed size training set: ranging from 10 to 1000 labeled samples. We denote as feivsxi, the test accuracy obtained when training the network on the full labeled training set. First, an interesting observation is that, independently from networks or datasets, active learning methods originally designed for singleton query (BALD, CEAL, EGL, uncertainty) fail to always compete against random selection (Fig. 4.4). This may result from the correlations among the queries when using one sample at-a-time. When it comes to our method, DFAL tends to converge faster than such methods and is always better than random selection, independently from the network or the dataset (Fig. 4.3,4.4).

Hence our method is more robust to hyperparameter settings than other active learning methods which consider one sample at a time. For various congurations (hoeE fg with LeNet5 and uikEhrw with VGG8), CEAL is worse than uncertainty selection, hence it selects samples with high entropy but mistaken predictions which DFAL is outperformed, it is only by a really slight percentage of accuracy (at most 0.15%), either by pseudo-labeling method (whih ontriutes more to the trining set), or by CORE-SET. Since CORE-SET is designed as a batch active learning strategy, it diminishes the correlations among the queries. In order to outperform CORE-SET, DFAL could be extended into a batch setting approach: instead of selecting the top score samples, one could increase the diversity using for example submodular heuristics [Wei 2015]. Finally, Table 4.2 compares the eective number of annotations and real number of data required by active learning to reach the same test accuracy than when training on the full labeled training set. We only compare DFAL with the best two active learning methods on 1000 samples. We note that DFAL always converges with the smallest number of annotations, on wxs and uikEhrw , for both LeNet5 and VGG8 networks: up to 33% less samples than the current state-of-the-art CORE-SET and up to 80% less samples than CEAL. When it comes to hoeEfg, DFAL remains competitive with CORE-SET and CEAL, overall less than 1% of the training set is needed. 

Comparative study between DFAL and CORE-SET

In our experiments, DFAL is competitive with the current state-of-the-art method, CORE-SET, sometimes outperforming it by a large margin (Tab. 4.2(e),4.2(f )). On the other hand, our method is more interesting than CORE-SET when considering the computational time. DeepFool yields high-performing perturbation vector compared with other state-of-the-art attacks, while being computationally ecient: it converges in a few iterations (less than 3). At each iteration it requires (#classes -1) forward and backward passes. As our DFAL technique uses DeepFool, our active selection criterion is highly ecient compared to the current state-of-the-art CORE-SET. We demonstrate the computational time gap between our method, DFAL, and CORE-SET in Table 4.3: we have recorded the average runtime of selecting 10 queries on wxs . For a sake of fairness, we compare DFAL running time against the CORE-SET approach, with and without robustness 2 . Note that the runtime performance of DFAL is independent from the size of the labeled training set. On the contrary, CORE-SET slows down while we add more and more data to the training set. Eventually, Table 4.3 reports gains of (up to) 24 times faster in running time by our method against CORE-SET. It is worth noting that adversarial attacks are independent, which could easily lead to a parallelized active learning strategy. However, for a fair comparison with CORE-SET, we only consider sequential attack generation.

We investigate further the comparison between DFAL and CORE-SET on two experiments. A rst experiment studies the behaviour of both active learning methods on a large scale dataset, gspeIH : we train a CNN on gspeIH with 5 layers of convolution, maxpooling and 2 fully connected layers with a dropout rate of 0.25 and no artical augmentation. In 2 Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz; 64 GB memory and GTX TITAN X Combining model selection with active learning has been investigated for shallow models [Sugiyama 2008 annotations Furthermore, [START_REF] Fawzi | [END_REF]] empirically demonstrated a strong correlation between the vulnerability of a network to small adversarial perturbations and an asymmetry in the curvature of its decision boundary: if a model is not robust to an adversarial attack, it is likely that the curvature in that direction is negative and vice-versa. Thus, not only that the decision boundaries would lie close one to another but they would likely share some strong topological properties. Based on those arguments, we assume adversarial queries are useful for a diverse set of architectures, not only for the CNN they have been queried for.

First of all, we assert this assumption by evaluating the classication regions overlap between LeNet5 and VGG8; both trained on the QuickDraw dataset. Results are presented in Figure 4.7. We observe that most of the test samples share the same classication regions (• blue dots) for both networks, LeNet5 and VGG8, while few of them (• red dots) are in dierent classication regions. Note that, this does not mean that the networks disagree on their prediction on such samples but put them in dierent classication regions. Thus, it appears than CNNs may have signicant overlaps on their classication regions, at least for LeNet5 and VGG8.

When it comes to the transferability, we empirically demonstrate DFAL's potential for a baby task.

We compare the test accuracy of DFALand CORE-SETtransferred dataset on 1000 samples in Table 4.4. Surprisingly the transferred queries from CORE-SETperform better than random. However, the transferred queries from DFALoutperform CORE-SETand RANDOM. into the same region. We proceed by looking for a convex path so that every point in that path share the same prediction. To do so, we check the validity of the path in the convex combinations of consecutive anchor points, as proposed by Fawzi et l. [START_REF] Fawzi | [END_REF]]. Then we check, whether paths exist for both networks and project the test samples in a two-dimensional space using T-SNE [START_REF] Maaten | [END_REF]].

However, it has been shown that under some constraints of similarities between the architectures, adversarial examples of a network A are very likely to be adversarial for a network B. This turns to be a signicant advantage for our adversarial active learning strategy since the training set built with DFAL for the network A will then be very likely to be a relevant training set for the network B.

When it comes to the transferability, we empirically demonstrate DFAL potential on a toy task: in we have demonstrated how to build adversarial attacks that will transfer to any other consistent classiers; (ii) we have also demonstrated that any sample from the low condence subregion will lead to adversarial examples also in the low condence subregion. We further describe the impact of DFAL for linear classiers in Sec 4.6 4.5.2 DFAL does not select random samples in the rst runs DFAL is very promising empirically. However, for complicated network architectures with millions of parameters like VGG8, but trained on a small labeled set, it seems plausible that any example is vulnerable to small adversarial attacks. We clarify this hypothesis and explain why we do not observe such behavior in practice.

Independently of the number of parameters of the network, [START_REF] Fawzi | [END_REF]] have empirically observed that state-of-the-art deep networks learn connected classication regions instead of shattered and disconnected regions. Although such classication regions dened in the input space may suer from the curse of dimensionality, eventually few directions interfere with the decision boundaries. Considering now the low dimensional space dened by these impacting directions, it becomes likely that the samples do not suer anymore from the curse of dimensionality and, thus the distance to the decision boundary will dier among the samples. Hence, even in the rst iterations of DFAL, we expect the magnitude of the smallest adversarial perturbations to be diverse enough so not to select samples randomly.
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Finally, we observe in Figure 4.8 that adversarial perturbations are far from being constant. We believe that the underlying topology of classication regions of deep networks explains the eciency of our method, even in the rst runs. 

Adversarial Active Learning for Linear Classiers

We point out specic cases in which we can obtain a signicant improvement in the labeled data sample complexity using adversarial active learning for linear classiers.

We restrict our case of study to a specic case; which is when the data instances are drawn from the unit ball in R 2 and their labels are drawn from ±1. Notice that our proof may be extended to other distributions as long as they are uniformly distributed along with any dimension (suh s isotropi gussin). Throughout this section, our goal is to nd a linear classier f going through the origin, so that its expected true loss is as small as possible. The error is induced by the classication rule 2I(f (x) ≥ 0) -1 where I(•) is the set of indicator functions. We consider the following classication error loss dened as l(f(x),y)=1 if yf (x) ≤ 0 and l(f (x), y) = 0 otherwise. Firstly, we detail our strategy when the labels are consistent with a linear separator going through the origin. While we knew already from the literature that active learning is highly benecial for such a case, ensuring a need of Õ(d ln( 1 ε )) labeled examples, given ε as the error rate and d the dimension, we will see how adversarial active queries help to diminish the eective numbers of labels queried.

Indeed, [START_REF] Balcan | [END_REF]] demonstrated that to obtain an exponential improvement in the label sampled complexity, one needs to sample the examples from a subregion carefully chosen and not from the entire region of uncertainty. When sampling uniformly along the unit ball, few samples lie in such low condence regions. Although, to achieve an error rate of 2 -(k+1) at the k-th iteration, we still need to add Õ(2 k d) unlabeled samples 3 , we can automatically guess the ground-truth labels of the majority of them. Given the current linear classier c k consistent on the labeled examples at iteration k and a given threshold b k , every unlabeled sample x k lying further from the decision boundary than b k is necessarily predicted correctly by the current classier c k . This result relies on the assumption made on the data distribution and its separability using a linear classier [START_REF] Balcan | [END_REF]]. When sampling uniformly queries and considering b k = 2 -k π, we can estimate the probability for any sample x to be part of the low condence regions as p

(| c k •x |≤ b k ) = Õ(2 -k √ d).
Hence, in the original strategy proposed in [START_REF] Balcan | [END_REF]], a human annotator eectively annotates Õ(d

2 ) unlabeled samples at each iteration to obtain an exponential improvement in the error rate.

Here we argue how adversarial queries may help to reduce the number of eective labels at any iteration k > 1.

Transferable adversarial attacks

When it comes to deep networks, their adversarial attacks can transfer across many other models: adversarial examples generated for a specic model will often mislead other unseen networks. Such a property is commonly known as transferability.

However, transferability has been mainly observed empirically [START_REF] Goodfellow | [END_REF]]. We detail the procedure to build weak adversarial attacks for linear classiers in Theorem 6.1. To build our adversarial attacks, we stick to the standard of the litterature by adding a perturbation along the gradient direction [START_REF] Goodfellow | [END_REF]].

The strength of the adversarial example is directly impacted by the deviation angle and the magnitude of the perturbation. We illustrate our strategy on a 2-dimensional toy problem in Figure 4.9. Consider instances distributed in a circle such that positive and negative points may be well separated given a linear classier going through the origin. B, in accordance with Denition 1, is the bissecting line between positive and negative points. For the sake of clarity, we centered B to go through the origin. Several optimal separators coexist. Among them, we consider the one which maximizes its angle with B (iFe W in def P), and the one wich minimizes it (iFe S in he(nition P). Every other solution necessarily lies between W and S.

We describe for two points x 1 and x 2 in Figure 4.9 how to build their weak adversarial counterparts, based on Denition 2. Note that a necessary condition is that both points x 1 and x 2 considered are well predicted by our strong and weak classiers. The mirror projection of x 1 given S will lie in the hypothesis space (FkF in the re etween W nd S). When it comes to x 2 , projecting it on W ensures that every consistent classier will predict x 2 w as a negative instance.

Denition 4.6.1: Bissecting Hyperplane

According to [START_REF] Tanay | [END_REF]], we dene the bissecting hyperplane B as a unique linear separator of unit vector b and bias b 0 such that B reects the mean of positive instances on the mean of negative instances. Note that B is not necessarily part of the hypothesis space, nor B minimizes the error on X × Y . 

j = i -2(i • b + b 0 )b s.t i = E[X | Y = 1], j = E[X | Y = -1]
L(X × Y ) = {C | ∀ (x, y) ∈ X × Y y(x • c) > 0} (4.1) S = argmin S∈L(X×Y ) s • b (4.2) W = argmax W∈L(X×Y ) w • b (4.3) (4.4)
∀(x, y) ∈ X × Y we dene its weak adversarial attack, xw , based on the follow- ing:

• if |w • x| ≤ |s • x|: xw = x -(x • w)w • if |s • x| ≤ |w • x|: xw = x -(x • s)s Theorem 6.1: Weak Adversarial Examples ∀(x, y) ∈ X × Y , y(x w • c) ≥ 0
Notice that our denition of adversarial attacks does not match exactly the common denition as we do not restrict our adversarial attacks to be close to their target sample anymore.

Label Complexity on the unit ball

Here we argue how weak adversarial queries help to reduce the number of eective labels at any iteration k > 1. Our active learning strategy consists in adding also weak adversarial instances to the training set when it is relevant, as proposed for deep networks with DFAL. Thus we will reduce the eective need of queries by a ratio of two at best. Indeed, weak adversarial instances are relevant if and only if the sample queried is already well predicted by the current weak and strong classiers.

In Theorem 6.2, we describe further the expected improvement in terms of human annotations.

A rst observation is that projecting the unit ball according to any hyperplane going through the origin corresponds to the identity mapping. Consequently, when adding weak adversarial examples in the training set, we do not modify the underlying distribution of the instance space. Moreover, the main advantage of our adversarial examples is that for any instance lying in the low condence region, its

weak adversarial examples will also lie in that subregion (vemm TFI). It means that when using adversarial queries, we respect the iFiFd assumption, and query relevant samples, as illustrated in Figure 4.10. Finally the number of articial queries that can be added mostly depend on the generalization error at the current iteration:

when a sample query is correctly predicted, we can add its weak adversarial attacks.

Lemma 6.1: Low condence region

∀(x, y) ∈ X × Y , ∀C ∈ L(X × Y ): ∀α ∈ R + such that | c • x |≤ α then we have | c • xw |≤ α Theorem 6.2: Convergence of adversarial queries Given n = Õ(d 3 
2 ) the eective number of labels to query at iteration k. We denote the generalization error at step k, p k = 2 -(k+1) .

Using our adversarial strategy (adding both xw and xs ), we can reduce the eective number m k of labels with high probability δ > 0 up to: 

m k = min{m ≥ n 2 | m -1 m -n 2 (1 -p k ) n 2 p m-n 2 k ≥ δ}

Conclusion

In this chapter, we proposed a new active learning heuristic, called DFAL, to perform margin-based active learning for CNNs: we approximate the projection of a sample to the nearest decision boundary using its smallest norm adversarial attack. We demonstrate empirically that our DFAL strategy is highly ecient for CNNs trained on various image classication benchmarks. We are not only competitive with the state-of-the-art approach CORE-SET, but we also outperform that method for runtime performance. Thanks to the transferability of adversarial attacks, DFAL is a promising approach for combining active learning with model selection for deep networks. A possible solution consists in considering Bayesian inference as an optimization process and thus by minimizing the variational free energy [Feynman 1972, Neal 1998]. Such an approximation has already been exploited by [Graves 2011 The approximation quality is equivalently measured by the variational free energy F, which can be expressed as a minimum description length loss function:

F(A) = E w∼Q(w|β) L(A; w) + KL Q(w | β) || P (w | α) (5.1)
When it comes to active learning, deducing an approximating variational distribution through Eq. (5.1), is not intuitive. The main drawback lies in the additional hyperparameters( suh s the men nd the ovrine mtrix if ssuming qussin distriution) required by the method, which drastically increases the complexity of the training stage. For example, [Blundell 2015] use a Gaussian distribution for their approximate variational distribution which has doubled the number of parameters in the model without outperforming state-of-the-art performance.

In this section, we propose a Bayesian batch active learning method for CNNs.

We derive the use of the variational free energy at test time, to evaluate how the approximating variational distribution generalizes to new unseen data. Eventually, our Bayesian Active Learning method 5.1.1 queries the batch of unlabeled data which maximizes the variational free energy.

1 For the sake of consistency we stick to his notations The yellow points A t are labeled, and w t is learn on them with no error. We then select 9 unlabelled data B to minimize our variational free energy: the set of points B whose induced posterior distribution Q(w t | β) will diverge at most from the prior distribution P (w t | α). w t+1 is the classier trained on A t ∪ B.

Firstly, we sum up our batch active learning strategy in Method 5.1.1. For clarity sake, in the following we rename F wt by F (keeping in mind that we target the selection of the optiml batch B, thus the weights w t of the network remain xed after step 1 until step 4).

Our active criterion thus corresponds to select the batch B maximizing F(A t ∪ B). From Eq. (5.1), it consists in the minimization of the sum of two terms which, in accordance with [Graves 2011], we denote respectively by:

• the trining ftor E w∼Q(w|β) L(A ∪ B; w) ,

• the generliztion ftor KL Q(w | β) || P (w | α) .
Those two terms require to be able to compute both the prior distribution of the weights P (w | α) and the approximation Q(w | β) of the posterior distribution P (w | A ∪ B, α).

Here we consider the vple pproximtion [MacKay 1992[START_REF] Ritter | [END_REF]]. It imposes a Gaussian distribution on Q(w | β) whose covariance is estimated from the Hessian of the model, evaluated at the variational mode w t . The covariance corresponds to I -1 At∪B (w t ), a quantity also denoted as the empirical inverse pisher inforE mtion matrix. When considering our active criterion, the vple pproximtion holds two main advantages. First, it allows inferring Q(w | β) at test time, without impacting the training phase. Secondly, the assumption of a Gaussian distribution, instead of a Gaussian mixture as in [Gal 2016a], simplies the variational steps when computing F, so to obtain an analytical expression of our active criterion.

BALNet: Batch Active Learning Networks

At the beginning of an active learning step, the current weight distribution given the labeled dataset A t denes our prior. The posterior distribution is computed on both the labeled data and the query batch B. The next equations dene the formulation of our prior and posterior:

P (w t | α) ∼N (w t , I -1 At (w t )) (5.2) Q(w t | β) ∼N (w t , I -1 At∪B (w t )) (5.3)
For the sake of clarity, because each Fisher matrices considered are evaluated at w, we skip it from now in the notations.

However, when the variational free energy evaluated on A∪B increases, it induces that, given B, the quality of our posterior approximate, Q(w | β), is getting worse to represent the posterior distribution Pr(w | A ∪ B). Thus, our assumption to consider the weights w as the variational mode in Eq. (5.3) is not valid anymore.

Consequently, it is relevant to add the data maximizing our active criterion, to update the weights w.

Next we dene tractable lower bounds for both terms in BalNet: the trining ftor and the generliztion ftor.

• The Training factor is intractable and is always approximated, generally through sampling [Graves 2011]. However, sampling on the approximate posterior Q(w | β) requires to compute the inverse of the Fisher matrix for every possible batch B (Eq. 5.2). To overcome this computational issue, we opt for a second-order linear approximation of the expectation of the log-likelihood. Note that we evaluate our loss only on the labeled data. For any random vector whose expected mean and covariance are known, the expectation of a quadratic form can be expressed [START_REF] Mathai | [END_REF]]. Eventually our evaluation of the trining ftor becomes:

E w∼Q(w|β) L(A; w) ≈ L(A; w) - 1 2 w T I A w - 1 2 T r(I -1 A∪B I A )
(5.4)

• The generalization factor corresponds to the KLdivergence between the approximate posterior Q(w | β) and the prior P (w | α). Because both distributions are multivariate Gaussian of N parameters, we have a direct formulation of the KLwhich is always denite since the Fisher matrices are invertible. Moreover, for computational eciency, we want to discard the determinant as its complexity is cubic in the size of the batch B. Hence, we lower bound the logarithm of the determinant by a function of its trace. Eventually we provide an upper bound on the generliztion ftor in Eq. 5.8. Note that to obtain our upper bound we assume that every Fisher matrices are Hermitian:

KL Q(w | β) || P α (w) = KL N (w, I -1 A∪B (w)) || N (w, I -1 A (w))
(5.5)

= 1 2 T r(I -1 A∪B I A + (w -w) T I A (w -w) T

(5.6)

+ log(|I -1 A I A∪B |) -N (5.7)
We use the following inequality that holds for every Hermitian matrix M :

1 N log(|M -1 |) ≥ log(N ) -log(T r(M )) KL Q(w | β) || P α (w) ≥ 1 2 T r(I -1 A∪B I A ) + N + N log(N ) -N log T r(I -1 A∪B I A )
(5.8)

• The variational free energy is the sum of the trining ftor and the generliztion ftor. Eventually, based on the previous analytic formulations, we are able to upper bound the vritionl free energy by BalNetdened in Eq. (5.11). Note that we discard the terms constant w.r.t. B in our criterion and do not consider the log as it is a strictly increasing function. According to [START_REF] Hoi | [END_REF]], we thus search for the optimal batch B such that:

F w (A ∪ B) = KL Q(w | β) || P α (w) + E w∼Q(w|β) L(A; w) ≥ 1 2 T r(I -1 A∪B I A ) -N log T r(I -1 A∪B I A ) - 1 2 T r(I -1 A∪B I A ) + Const
B = argmax B T r(I A∪B I -1 A )
(5.11)

Covering

Optimal Experimental Design

Following a dierent path of reasonning, our criterion is similar to the theoretical foundations developed by Zhang et l. in [START_REF] Zhang | [END_REF]] (see etion PFQ), since their goal is to search for a set of examples which can reduce at best the Fisher information matrix: argmin B T r(I -1 B I A ). Indeed, [START_REF] Zhang | [END_REF]] proposed a batch mode extension of A-optimality. They studied active learning by looking for the best resampling of the unlabelled input data. They consider as the optimal resampling the one which minimizes the negative expected log likelihood.

It led them to formulate a criterion on the asymptotic expected log likelihood of the resampling Fisher matrix I q , given q the resampled distribution of p, the original distribution of the input data, with E n the expectation over n samples from q:

E n (θ) = - 1 2n
T r(I q (θ) -1 I p (θ))

(5.12)

As long as we restrict the context to log likelihood, the Cramer Rao bound implies that the MLE parameter Θ which minimizes E n (θ) is the asymptotic most ecient estimator of the optimal parameter among all estimators based on resampling of the input distribution. To apply this result, they proposed to use a good empirical estimate Θ of Θ and then replace the criterion Θ by its approximation in order to estimate the optimal resampled distribution q * . They estimate Θ by the trained parameters of their algorithm on the currently labeled samples:

q * = argmin q T r(I q ( Θ) -1 I p ( Θ))

(5.13)

More samples can then be drawn so to re-estimate Θ as well as the optimal distribution q * . However, looking for a subset sampled from the optimal distribution q * is not feasible as it is exponential in the number of unlabeled samples. Following this path, [START_REF] Hoi | [END_REF]] used this previous criterion and approximated the solution but for logistic functions only.

The fact that our criterion (see wethod SFIFI) is approximately upper bounded by A-optimality is interesting because it may highlight some aws in OED and why it failed to perform better to perform better than uncertainty selection in Figure 5.2.

In the next Section 5.2.2, we provide details in the needs of regularizing our active learning criterion, using a diversity scheme. When digging into the formulation of our criterion, the KLdivergence between our approximate distribution Q(w t | β) and the true posterior distribution Pr(w | A ∪ B, α) may be expressed as the sum of both terms:

1. the variational free energy: F(A) 2. the log evidence of the data: log(Pr(A))

In our context, we expect the log evidence to remain constant along the training.

Because, if so, the variations of the variational free energy will directly impact the variations on the KLdivergence, as illustrated in Eq. 5.14. Otherwise, if the underlying distribution of A mismatches with the ground-truth source distribution, our ALmethod will promote new data to optimize our approximating variational distribution given a biased estimate of the true posterior distribution. Eventually, to guarantee satisfactory performance of our CNN, we need to preserve the data distribution as much as possible in the training set. However, this assumption may not hold in active learning, since we favor instances not complying with it. Therefore selecting a more diverse subset among our queries may be solved by minimizing the Wasserstein distance between our queries and the pool of data P (both labeled and unlabeled). We consider euclidian distance for computing

Wasserstein. Formally given a xed size of data to label, K, we propose in Eq. 5.15 a subset selection B among our candidates B, to reduce the bias of our active selection scheme.

B = arg min

B⊂B, | B|=K W 2 (A ∪ B || P) (5.15)
The optimization subroutine we dened previously in Eq. 9.1 is generally not tractable as it is combinatorial given B. However, we can obtain a reasonably good approximation with a greedy selection. We invite the reader to read Chapter 9 for further properties about using greedy search for selecting our queries given Wasserstein.

Application to CNN

The main limitation of the vple pproximtion is that, in most cases, the Fisher matrix may not be stored in memory. To solve this issue, we consider a recent approximation of the Fisher information for CNNs proposed in [Martens 2015] and [START_REF] Grosse | [END_REF]], called Kronecker Factored Approximate Curvature (KFAC). The Fisher information is approximated as a block diagonal matrix. Each block itself is an approximation of the Fisher information related to the weights of a layer. Such a structure enables to capture the correlations between parameters of the same layers.

Because the covariance matrix from a single layer may not be even stored in memory, the Fisher information of each layer is approximated by a Kronecker product ψ ⊗ τ . A summary of their decomposition is presented in Eq. (5.16) 2 . 2 Note that the previous works do not handle the convolutional biases and batch normalisation parameters. Because the number of parameters involved is limited, we compute the exact observed Fisher matrices for both convolutional biases and batch normalization parameters.

Application to RNN

59

I A = diag([ψ A,l ⊗ τ A,l ] L l=1 )
(5.16)

ψ A,l = 1 |A| (x i ,y i )∈A ψ i,l
(5.17)

τ A,l = 1 |A| (x i ,y i )∈A τ i,l
(5.18)

(5.19)

Finally, we express the trace T r(I A∪B I -1 A ) based on the KFAC approximation of the Fisher matrix: we consider that every Fisher matrix for a CNN is an L diagonal block matrix, with L the number of layers of the CNN. Every block is made of a Kronecker product of two terms ψ and τ . We rely on the properties involved in the choice of this specic matrix topology to obtain in Eq. 5.20 a tractable approximation of T r(I A∪B I -1 A ). It allows us to express our active learning criterion as a linear function given the Kronecker coecients of the queries.

T r(I

A∪B I -1 A ) = L l=1 T r(ψ l,A∪B ψ -1 l,A )T r(τ l,A∪B τ -1 l,A ) (5.20)
One of the main contributions of this approach is that our active learning criterion itself is equivalent to minimize a submodular function 3 . Indeed it consists in a constrained minimization over the sum of submodular functions which is also submodular. Submodular functions are widely used in active learning [Wei 2015].

Although so far, they have been used primarily in a context of maximization, since a greedy selection scheme may eciently approximate their optimization [START_REF] Nemhauser | [END_REF]].

On the other side, minimizing a submodular function may be solved exactly in strongly polynomial time [Schrijver 2000]. Eventually, we can solve exactly Bal-Net, unlike other state-of-the-art approaches such as DFAL and CORE-SET, which relies on approximations (of the distne to the deision oundry, of the overing rdius). Eventually, maximizing the variational free energy allows to take into account the correlations among the queries, unlike top score approaches used in previous Bayesian active learning techniques for CNNs (fF etion PFQFT).

Application to RNN

Initially, the KFAC approximation assumes that each weight matrix is involved in a unique mapping. Thus, the original KFAC approximation cannot be directly will not be enough to improve its performance, as rst assumed in [Lin 2017b]: es result with long til distriutionsD it will likely result in redundnt questions nd nswers while still hving insu0ient trining dt for rre onepts which derived existing active learning techniques to respectively NER classication and Visual Question Answering (VQA). However, up to our knowledge, there exists no active learning strategy for RNNs that take into account the specicities of the architecture.

We illustrate beforehand the topology of the approximation of the Fisher matrix for a recurrent architecture in Figure 5.3.

To proceed with our goal of obtaining a tractable approximation to the Fisher matrix of RNNs, we will follow several approximating assumptions [START_REF] Martens | [END_REF]]:

• independence of the parameters between dierent layers to approximate the Fisher matrix by a block diagonal matrix. This assumption already exists in the original KFAC approximation

• temporal homogeneity among the gradient contributions from dierent timesteps. Temporal homogeneity is a pretty mild approximation and is analogous to the frequently used stedy stte ssumption from dynamical systems. It assumes that the gradient contributions does not depend on the two times considered but only on their deviation.

Thanks to previous assumptions, Martens et l. proposed the following decomposition of the Fisher matrix of a recurrent layer. Hence given T the length of the sequences, we can approximate the conditional Fisher matrix I T A,l by a sum of 2T + 1 Kronecker products. Eventually, the Fisher matrix is the expectation over time steps of the conditional Fisher.

I A,l = E T I T A,l I T A,l = d=t-s t-s=τ, t=1...T s=1...T (T -| d |)(ψ A,d,l ⊗ τ A,d,l ) ψ T A,d,l = 1 | A | (x i ,y i )∈A ψ i,d,l τ T A,d,l = 1 | A | (x i ,y i )∈A τ i,d,l (5.21)
The main drawback of the formulation of Eq. 5.21 is that there is no trick to decompose the inverse of the Fisher matrix I -1 A into a Kronecker product. Such a trick is necessary for our framework, as there exists no property for the product of any matrix with a Kronecker product. Eventually, there is no analytical formulation of I A∪B,l I -1 A,l , that we can easily use, based solely on Eq. 5.21.

If you consider sequences of varying size, other assumptions need to be taken into account. Although we can compute the Fisher matrix given the conditional Fisher matrix for dierent varying time steps, the expectation over the time steps will vary depending on the samples selected. Thus, without assuming any additional structure such as relationships between the various Kronecker factors, this does not appear to be any ecient way to select the optimal batch. Thus it appears that we must make additional approximating assumptions to proceed. Following the approach of Martens et l. , we assume that the contributions to the gradients are independent across time or at least uncorrelated 4 . This results in:

∀T, ∀d > 0 =⇒ ψ T A,d,l ⊗ τ T A,d,l = 0
Notice that those previous assumptions are not the only conditions imposed in [START_REF] Martens | [END_REF]]. However, Martens et l. developed a regularizer based on the Fisher information, which requires to be tractable but also to have a fast computation of its inverse. Eventually, the approximation for the Fisher matrix of a recurrent unit reads: 

I A,l = E T [T ] (ψ T A,0,l ⊗ τ T A,0,l ) (5.

Future work

Although BalNet appears promising, in the rst iterations, we observe in the rst iterations that it is underperforming other active learning heuristics. This pattern may be explained due to the usage of KFAC approximation: even as a regularizer, KFAC should be used on large size minibatches. So we assume that the approximation of the Fisher matrices do not hold on small labeled training set. This assumption will be claried with experiments on large scale dataset in future works. Moreover, using KFAC as a regularizer should be relevant in our active learning method. Note that we use greedy search to select our BalNet queries which is sub-optimal for our criterion. 

Conclusion

In a nutshell, we proposed a scalable batch active learning framework for deep networks relying on the variational free energy. We deduced a formulation of the posterior and prior distributions of the CNN' s weights using the Laplace hypothesis.

Those assumptions, combined with a Kronecker based formulation of the Fisher information matrix for neural networks, lead us to a gradient free active learning heuristic. Eventually, we develop a highly ecient query search for batch active learning thanks to the induced submodularity properties of our criterion.

Our criterion is the rst of the kind to scale batch active learning to deep networks, especially CNNs. On dierent databases, it achieves better test accuracy than random sampling and is scalable with increasing size of queries. It achieves near-optimal test error using a limited percentage of the annotated training set on larger and more reduced dataset. Our works demonstrated the validity of batch mode active learning for deep networks and the promise of the KFAC formulation for deep Fisher matrices for the active learning community. Such a solution is also interesting as a new technique for curriculum learning approach.

Chapter 6

Conclusion

We investigate the impact of AL on deep neural architectures. Neural networks need large, even huge, datasets for their training. Otherwise, if the training data set is too small, overtting may very well occur, in particular when it comes to deep networks with many layers. However, unexpectedly, AL is ecient, even on a large network such as VGG8. The reasons underlying the success of AL on deep networks are in some part, explained by some understanding of the generalization bounds for deep networks (see Section 2.4).

While dropout has been promoted for active learning, the impact of other wellknown regularizers such as batch normalization [START_REF] Ioe | [END_REF] have not yet been investigated. Indeed, batch normalization is more indicated on large size minibatch, which is counter-intuitive with a reduced training set. Similarly, while we have proposed to use the KFAC approximation of Fisher matrix in our AL criterion, the natural gradient based regularizer that KFAC was designed for, has not been studied in the context of active learning. Indeed, while KFAC is ecient, it is advised for a sizeable minibatch.

Other related research areas, such as domain adaptation and semi-supervised learning, are well suited to act as regularizers in an active learning context. Up to some point, we have started to investigate these factors in the next chapter, using Wasserstein distance. Moreover, while we have focused our work on scaling AL for deep networks, other architectures may better handle small datasets, such as Gaussian processes.

Another step towards promoting active learning heuristics is to propose batch query heuristics and think of how it should be incorporated into the algorithm itself: Should it be done in a post-processing step, as we recommended in Section 5.2, or should it be captured by the AL criterion itself, like CORE-SET? Although the latest solution sounds more indicated, it also explodes the computational cost of the AL heuristic (cf. Table 4.3). Moreover, our latest method DFAL suggests that a simple top score selection is competitive with a batch query selection. Nevertheless, our sher method leads to think that a post-processing selection, while being suboptimal works well in practice.

The denition of active learning protocols and benchmarks is crucial to improve our methods. Nowadays, the eld cruelly lacks rules of thumbs which leads to unobtainable results in real life settings: balancing the labels in the initial training set, using an enormous amount of labeled validation set (which is furthermore not counted in the number of annotations), tuning the hyperparameters on the full labeled training set. 

Motivations

With the overwhelming success of deep networks and their requrements for large datasets, there is a growing need to assess the consistency of our training dataset.

In that aim, one possible solution is to rely on core-sets. A Core-set of a dataset is a subset, typically denoted as medoids, that is representative of the whole set of data given an informative criterion. It takes root in computational geometry [START_REF] Agarwal | [END_REF]] and have been widespread to the machine learning community rst via importance sampling [START_REF] Langberg | [END_REF]]. Core-sets provide a rst glimpse of the dataset, which can be used in various forms: either to visualize, compact the information or identify bias.

One of the main challenge is to decide which informations should be captured to build such core-sets. We focus on Wasserstein distance, as an informative criterion to build a core-set.

The Wasserstein distance is a powerful tool based on the theory of optimal transport to compare data distributions with wide applications in image processing, computer vision and machine learning [START_REF] Kolouri | [END_REF]]. In a context of machine learning, it has recently found numerous applications, eFgF domain adaptation [Courty 2017a],

word embedding [Huang 2016a] or generative models [Arjovsky 2017a]. Its power lies in two properties: iA it allows to operate on empirical data distributions in a non-parametric way ;iiA the geometry of the underlying space can be leveraged to compare the distributions. The space of probability measures equipped with the Chapter 7. Introduction Wasserstein distance can be used to construct objects of interest such as barycenters [START_REF] Agueh | fryenters in the sserstein spe[END_REF]] or geodesics [Seguy 2015] that can be used in data analysis and mining tasks.

We dedicate this section to provide fast technique of computing pairwise Wasserstein distance in parallel. Specically, we propose in Section 8, a neural network whose output embeds the Wasserstein distance, for low dimensional manifolds.

Thanks to this scheme, we can naturally approximate data mining tasks in the embedding space, but we can also dedicate this embedding to clustering and coresets.

Nextly, in Section 9, we highlight some submodularities properties of Wasserstein distance for empirical distributions, and how we can greedily select Wasserstein prototypes to build a core-set.

Denitions

More formally, let X be a metric space endowed with a metric d X . Let p ∈ (0, ∞) and P p (X) the space of all Borel probability measures µ on X with nite moments of order p, iFeF X d X (x, x 0 ) p dµ(x) < ∞ for all x 0 in X. The p-Wasserstein distance between µ and ν is dened as:

W p (µ, ν) = inf π∈Π(µ,ν) X×X d(x, y) p dπ(x, y) 1 p . (7.1)
Here, Π(µ, ν) is the set of probabilistic couplings π on (µ, ν). As such, for every Borel subsets A ⊆ X, we have that µ(A) = π(X × A) and ν(A) = π(A × X). It is well known that W p denes a metric over P p (X) as long as p ≥ 1 (e.g. [Villani 2009], Denition 6.2).

When p = 1, W 1 is also known as Earth Mover Distance (EMD) or Monge-Kantorovich distance.

The geometry of (P p (X), W 1 (X)) has been thoroughly studied, and there exists several works on computing EMD for point sets in R k (e.g. [START_REF] Shirdhonkar | [END_REF]). However, in a number of applications the use of W 2 (a.k.a root men squre iprtite mthing distne) is a more natural distance arising in computer vision [Bonneel 2015], computer graphics [START_REF] Bonneel | [END_REF][START_REF] De Goes | [END_REF], Solomon 2015a, Bonneel 2016] or machine learning [START_REF] Cuturi | [END_REF], Courty 2017a].

See [de Goes 2012] for a discussion on the quality comparison between W 1 and W 2 .

In the discrete version, where both µ and ν are uniform distributions respectively supported by n and m points, the p-Wasserstein distance can be expressed as a linear programming optimization problem:

W p (µ, ν) = min Γ∈Σ(µ,ν) C, Γ p (7.2)
Where matrix C is the distance matrix between every pairwise samples of µ and ν, the notation < •, • > denotes the Frobenius dot product and Σ(µ, ν) = {Γ ∈ R n,m + , Γ1 n = µ, Γ T 1 m = ν} is the set of valid transportation matrices between both distributions, where 1 n represents the n-dimensional vector of ones. Because the number of variables scales quadratically with the number of samples in the distributions, computing the exact Wasserstein holds a cubical complexity.

7.3 Litterature

Fast approximation of the exact Wasserstein distance

The cost for computing the exact Wasserstein distance for empirical distributions can limit its usage in various applications. Thus, a lot of eorts has been put on alleviating the computation complexity, by either proposing regularized versions of Wasserstein, such as Sinkhorn [Cuturi 2013b], or deducing iterative schemes that will converge to the exact Wasserstein, such as IPOT [START_REF] Xie | [END_REF]].

The Sinkhorn distance allows the fast computation of an entropically regularized Wasserstein distance between two probability distributions supported on a nite metric space of (possibly) high-dimension. The entropic regularization results in an optimization problem that can be solved eciently by Iterative Bregman projections [START_REF] Benamou | [END_REF]]. It is known to achieve near quadratic complexity. However, the Sinkhorn distance remains an approximation of the exact Wasserstein distance.

While some machine learning problems benet from the Sinkhorn approximation, others do not. In particular, the computation of Wasserstein barycenters requires a tight approximation of the exact Wasserstein, using a small entropic regularization.

Indeed, the regularization parameter in the Sinkhorn distance, is a major hyperparameter, which owns huge numerical implications. If the regularization parameter is very small, we can observe numerical instability [START_REF] Xie | [END_REF]]. Nevertheless, the linear convergence rate of the Sinkhorn algorithm is determined by the contraction ratio which tends to 1 as the regularization parameter decreases. Consequently, we observe drastically increase number of iterations for the Sinkhorn method when using small regularization value.

Recently, a new approximation scheme for Wasserstein distance has been proposed, called IPOT. IPOT relies on proximal point methods. Eventually their optimization can be solved by Sinkhorn iteration by updating the distance matrix at each step, instead of keeping it xed as in the original Sinkhorn algorithm. We detail both pseudo code for Sinkhorn and IPOT in Alg. 1 and 2. Regarding IPOT, unlike Sinkhorn, empirical analysis conrmed that it converges to the exact Wasserstein distance, independently to the choice of the regularization parameter, with linear convergence.

Another line of work [START_REF] Wang | [END_REF], Kolouri 2016b] also considers the Riemannian structure of the Wasserstein space to provide meaningful linearization by projecting onto the tangent space. By doing so, they notably allows for faster computation of pairwise Wasserstein distances (only N transport computations instead of N (N -1)/2 with N the number of samples in the dataset) and allow for statistical analysis of the embedded data. They proceed by specifying a template element and compute, from particle approximations of the data, linear transport plans with this Algorithm 1 Pseudo code of SIN KHORN (µ, ν, C, β) [Cuturi 2013b] Require: empirical probability distribution {µ, ν} respectively on support points

{x i } n i=1 , {y j } m j=1 Require: distance matrix C = ||x i -y j || Require: regularization constant β u (0) = 1 n G ← e -C β for i=1,2,3,. . . do v (i) = b K T u (i-1) u (i) = a Kv (i) end for T ← diag(u (i) )Gdiag(b (i) )
Algorithm 2 Pseudo code of IP OT (µ, ν, C, β) [START_REF] Xie | [END_REF] Require: empirical probability distribution {µ, ν} respectively on support points

{x i } n i=1 , {y j } m j=1 Require: distance matrix C = ||x i -y j || Require: regularization constant β b ← 1 m 1 m G ← e -C β T (1) ← 1 n,m for t=1,2,3,. . . do Q ← G T (t) for l=1,2,3,. . . do a ← µ Qb b ← ν Q T a end for T (t+1) ← diag(a)Qdiag(b)
end for template element, that allow to derive an embedding used for analysis. Seguy and

Cuturi [Seguy 2015] also proposed a similar pipeline, based on velocity eld, but without relying on an implicit embedding. It is to be noted that for data in 2D, such as images, the use of cumulative Radon transform also allows for an embedding which can be used for interpolation or analysis [Bonneel 2015, Kolouri 2016a],

by exploiting the exact solution of the optimal transport in 1D through cumulative distribution functions.

Metric embedding

In Section 8, we proposed to alleviate the cost of computing the exact Wasserstein distance using Metric embedding approach. Our method is fairly new as we do not rely on mathematical grounded approximations.

The question of metric embedding usually arises in the context of approximation algorithms. Generally speaking, one seeks a new representation (embedding) of data at hand in a new space where the distances from the original space are preserved.

This new representation should, as a positive side eect, oers computational ease for time-consuming task (e.g. searching for a nearest neighbor), or interpretation facilities (e.g. visualization of high-dimensional datasets). More formally, given two metrics spaces (X, d X ) and (Y,

d y ) and D ∈ [1, ∞), a mapping φ : X → Y is an embedding with distortion at most D if there exists a coecient α ∈ (0, ∞) such that αd X (x, y) ≤ d Y (φ(x), φ(y)) ≤ Dαd X (x, y).
Here, the α parameter is to be understood as a global scaling coecient. The distortion of the mapping is the inmum over all possible D such that the previous relation holds. Obviously, the lower the D, the better the quality of the embedding is. It should be noted that the existence of exact (isometric) embedding (D = 1) is not always guaranteed but sometimes possible. Finally, the embeddability of a metric space into another is possible if there exists a mapping with constant distortion. A good introduction on metric embedding can be found in [Matou²ek 2013].

Domain adaptation

Recent works have underlined the usage of Wasserstein into domain adaptation [Courty 2017c, Shen 2018]. In particular, [START_REF] Lee | [END_REF]] provides generalization guarantees for domain adaptation based on the notion of Wasserstein balls, which owns similarity with part of our work, denoted as Wasserstein prototypes (see etion W).

They aim to minimize the worst-case risk over a larger ambiguity set containing the original empirical distribution of the training data.

Given an n-tuple {x 1 , . . . x n } of iid training examples sampled from the unknown ground-truth distribution P, the objective is to nd a hypothesis whose risk is close to the minimum risk with high probability. The risk R(P, f ) is the expectation of f over instances sampled from P. However, because the ground-truth distribution is unknown, the risk is not tractable. One solution to optimize the risk is to minimize an pproximte risk : the maximal risk given any distribution Q approximately close to the true but unknown ground-truth distribution P. That distribution lies in an area denoted as the ambiguity set. They dene the ambiguity set A(P), as the p-Wasserstein ball of radius ε centered around P. Where Q is a Borel distribution dened on a Polish space. Eventually, we can dene the pproximte risk as the following:

A(P) = {Q | W p (P, Q) ≤ ε} R ε,p (P, f ) = sup Q∈A(P) R(Q, f ) with R(Q, f ) = E z∼Q f (z) (7.3)
Assuming that the dierence between the labelled training set Q and the groundtruth distribution P comes only from transformations of the input space (independently from the labels associated to the examples), then we can upper bound the approximate risk R ε,p (P, f ) given the risk on the labelled training set R(Q, f ):

Theorem 3.1: Minimax Statistical Learning
Suppose that the hypothesis f is L-Lipschitz, if we denote by P the ground-truth distribution and Q the discrete distribution induced by sampling along P. We can upper bound the pproximte risk on P given the risk on the labelled set and their Wasserstein distance.

R ε,p (P, f ) ≤ R(Q, f ) + 2L * W (P, Q) (7.4)

Wasserstein Core-Sets for Lipschitz Costs

Another line of work, in [START_REF] Claici | [END_REF]] bridges the gap between core-sets with Lipschitz cost and optimal transport. They build an upper bound on what they denote as mesure oreEset with Wasserstein distance: Denition 7.3.1: Measure Core-Set Given ε ∈ R + , we call ν a mesure oreEset for µ on the support X , if ν is absolutely continuous with respect to µ and ∀ f ∈ F:

|cost(X , f, ν) -cost(X , f, µ)| ≤ εcost(X , f, ν) (7.5)
Note that ν always exists since ν ≡ µ satises the inequality.

For mesure oreEset to be tractable, they restrict their case of study when ν is a uniform empirical distribution over a xed number of points, whose support is undened: ν is of the form 1 n n i=1 δ x i . Finally, they propose to build ν so that ν minimizes what they denote as sserstein goreEet, which upper bounds the mesure oreEset: Denition 7.3.2: Wasserstein Core-Set When F ⊂ Lip 1 (X ), a sucient condition for ν to be an epsilon core-set given µ and F is W 1 (µ, ν) ≤ ε

Because W 2 is a way more popular distance to compute baycenters than W 1 , and justied by the inequality W 1 (µ, ν) ≤ W 2 (µ, ν), [START_REF] Claici | [END_REF]] prescribed Eq. 7.6 to construct the n-point mesure oreEset:

arg min x 1 ,x 2 ,••• ,xn W 2 (µ, 1 n n i=1 δ x i ) (7.6)
Determining the positions of the points makes the problem highly non convex.

They provide a simple optimization strategy based on an iterative optimizations between the dierent parameters involved.

sserstein goreEets hold several similarity with one of our recent work that we denote Wasserstein prototypes. We highlight in Section 9 the pros and cons of both of those methods when it comes to our problematic.

Herding

MMD is a measure of the dierence between two distributions µ and ν given by the supremum over a function space F. The MMD between µ and ν reads:

M M D(µ, ν; F) = sup f ∈F E x∼µ [f (x)] -E x∼ν [f (x)] (7.7)
Similarly as our work in Section 9, we can dene prototypes according to MMD. We denote by prototypes example-based explanations according to an informative criterion, here MMD. Among the possible usage, prototypes are widely used in the eort to improve the interpretability of highly complex distributions. Formally, we can express MMD prototypes as the solution of Eq. 7.8. Considering the nature of the kernel matrix, MMD prototypes can be fairly well approximated using greedy search, due to inherent submodularity properties, as described in Theorem 3. On the contrary, looking for MMD prototypes comes to maximising a wekly sumodE ulr function [START_REF] Huszár | [END_REF]]. Although using greedy search to maximize a weakly submodular function works fairly well in practice, there exist no tight upper bound on the quality of the prototypes.

Denition 7.3.3: MMD Prototypes

Formally given an empirical distribution P, a xed size of data to label, K, we denote MMD prototypes a subset S * K ⊂ P that minimizes Eq. 7.8. is prohibitive. This is all the more true if one considers the problem of computing barycenters [START_REF] Cuturi | [END_REF][START_REF] Benamou | [END_REF] or population means. A recent attempt by

Staib and colleagues [Staib 2017] use distributed computing for solving this problem in a scalable way.

Our goal is to alleviate this problem by providing an approximation mechanism that allows to break its inherent complexity. It relies on the search of an embedding where the Euclidean distance mimics the Wasserstein distance. We show that such an embedding can be found with a siamese architecture associated with a decoder network that allows to move from the embedding space back to the original input space. Once this embedding has been found, computing optimization problems in the Wasserstein space (eFgF barycenters, principal directions or even archetypes) can be conducted extremely fast. Numerical experiments supporting this idea are conducted on image datasets, and show the wide potential benets of our method.

Wasserstein learning and reconstruction with siamese networks

We propose in this work to learn an Euclidean embedding of distributions where the Euclidean norm approximates the Wasserstein distances. Finding such an embedding enables the use of standard Euclidean methods in the embedded space and signicant speed up in pairwise Wasserstein distance computation, or construction of objects of interests such as barycenters. The embedding is expressed as a deep neural network, and is learnt with a strategy similar to those of Siamese networks [START_REF] Chopra | [END_REF]]. We also show that simultaneously learning the inverse of the embedding function is possible and allows a reconstruction of a probability distribution from the embedding. Our work is the rst to propose to learn a generic embedding rather than constructing it from explicit approximations/transformations of the data and analytical operators such as Riemannian Logarithm maps. As such, our formulation is generic and adapts to any type of data. Finally, since the mapping to the embedded space is constructed explicitly, handling unseen data does not require to compute new optimal transport plans or optimization, yielding extremely fast computation performances, with similar approximation performances.

We discuss here how our method, coined DWE for Deep Wasserstein Embedding works. DWE learns in a supervised way a new representation of the data. To this end we need a pre-computed dataset that consists of pairs of histograms

{x 1 i , x 2 i } i∈1,...,n of dimensionality d and their corresponding W 2 2 Wasserstein dis- tance {y i = W 2 2 (x 1 i , x 2 i )} i∈1,.
..,n . One immediate way to solve the problem would be to concatenate the samples x 1 and x 2 and learn a deep network that predicts y. This would work in theory but it would prevent us from interpreting the Wasserstein space and it is not by default symmetric which is a key property of the Wasserstein distance.

Another way to encode this symmetry and to have a meaningful embedding that can be used more broadly is to use a Siamese neural network [START_REF] Bromley | [END_REF]].

Originally designed for metric learning purpose and similarity learning (based on labels), this type of architecture is usually dened by replicating a network which takes as input two samples from the same learning set, and learns a mapping to new space with a contrastive loss. It has mainly been used in computer vision, with successful applications to face recognition [START_REF] Chopra | [END_REF]] or one-shot learning for example [START_REF] Koch | [END_REF]]. Though its capacity to learn meaningful embeddings has been highlighted in [Weston 2012], it has never been used, to the best of our knowledge, for mimicking a specic distance that exhibits computation challenges. This is precisely our objective here.

We propose to learn an embedding network φ that takes as input a histogram and project it in a given Euclidean space of R p . In practice, this embedding should mirror the geometrical property of the Wasserstein space. We also propose to regularize the computation of this embedding by adding a reconstruction loss based on a decoding network ψ. This has two important impacts. First we observed empirically that it eases the learning of the embedding and improves the generalization performance of the network (s illustrted in pigure VFQ) by forcing the embedded representation to catch sucient information of the input data and thus allowing a good reconstruction. This type of autoencoder regularization loss has been discussed in [START_REF] Yu | [END_REF]] in the dierent context of embedding learning. Second, the decoder net-work allows the interpretation of the results, which is of prime importance in several data-mining tasks (disussed in the next susetion VFQFI).

An overall picture depicting the whole process is given in Figure 8.1. The global objective function reads

min φ,ψ i φ(x 1 i ) -φ(x 2 i ) 2 -y i 2 + λ i KL(ψ(φ(x 1 i )), x 1 i ) + KL(ψ(φ(x 2 i )), x 2 i ) (8.1)
where λ > 0 weights the two data tting terms and KL(, ) is the Kullbach-Leibler divergence. This choice is motivated by the fact that the Wasserstein metric operates on probability distributions.

Next, we evaluate the performances of our method on grayscale images normalized as histograms. Images are oering a nice testbed because of their dimensionality and because large datasets are frequently available in computer vision. We also operate our method for text mining in Section 8.4.

Empirical Validation

The Every dataset and parameters used to conduct our experiments are available in the dataset section A.1 the hyperparameter section A.2.4 framework of our approach as shown in Fig 8 .1 consists of an encoder φ and a decoder ψ organized as a cascade. The encoder produces the representation of input images h = φ(x). The architecture used for the embedding and the reconstruction consists in convolutional layers with ReLU activations, plus dense layers.

In this section, we only consider grayscale images, that are normalized to represent probability distributions. Hence each image is depicted as an histogram. In order to normalize the decoder reconstruction we use a softmax activation for the last layer.

All the datasets considered are handwritten data and hence holds an inherent sparsity. In our case, we cannot promote the output sparsity through a convex L1 regularization because the softmax outputs only positive values and forces the sum of the output to be 1. Instead, we apply a p p pseudo -norm regularization with p = 1/2 on the reconstructed image, which promotes sparse output and allows a sharper reconstruction of the images [Gasso 2009].

Numerical precision and computational performance

The true and predicted values for the Wasserstein distances are given in Fig. 8.2.

We can see that we reach a good precision with a test MSE of 0.4 and a relative MSE of 2e-3. The correlation is of 0.996 and the quantiles show that we have a very small uncertainty with only a slight bias for large values where only a small number of samples is available. This results show that a good approximation of the W 2 2 can be performed by our approach (≈1e-3 relative error). Now we investigate the ability of our approach to compute W 2 2 eciently. To this end we compute the average speed of Wasserstein distance computation on test dataset to estimate the number of W 2 2 computations per second in the Table of (Table ) Computational performance of W 2 2 and DWE given as average number of W 2 2 computation per seconds for dierent congurations.

as Indep. and Pairwise. This comes from the fact that our W 2 2 computation is basically a squared Euclidean norm in the embedding space. The rst computation measures the time to compute the W 2 2 between independent samples by projecting both in the embedding and computing their distance. The second computation aims at computing all the pairwise W 2 2 between two sets of samples and this time one only needs to project the samples once and compute all the pairwise distances, making it more ecient. Note that the second approach would be the one used in a retrieval problem where one would just embed the query and then compute the distance to all, or a selection of, the dataset to nd a Wasserstein nearest neighbor for instance. The speed up achieved by our method is very impressive even on CPU with speed up of x18 and x1000 respectively for Indep. and Pairwise. But the GPU allows an even larger speed up of respectively x1000 and x500 000 with respect to a state-of-the-art C compiled Network Flow LP solver of the POT Toolbox [START_REF] Flamary | [END_REF][START_REF] Bonneel | [END_REF]. Of course this speed-up comes at the price of a timeconsuming learning phase, which makes our method better suited for mining large scale datasets and online applications.

Lastly, we discuss the role of the decoder, not only as a matter of interpreting the results, but rather as a regulizer. We train our DWE on wxs with and without the decoder and compares the learning curves of the MSE on the validation set. In Figure 8.3, DWE achieves a lower MSE with the decoder, which enforces the use of a decoder into our framework.

Numerical precision and cross dataset comparison

The numerical performances of the learned models on each of the uikEhrw classes is reported in the diagonal of W 2 2 on another. The cross performances is given in Table 8.1 and shows that while there is denitively a loss in accuracy of the prediction, this loss is limited between the classes from the uikEhrw dataset that have all a large diversity. Performance loss across uikEhrw and wxs dataset is larger because the latter is highly structured and one needs to have a representative dataset to generalize well which is not the case with wxs .

Wasserstein data mining in the embedded space

Once the functions φ and ψ have been learned, several data mining tasks can be operated in the Wasserstein space. We discuss here the potential applications of our computational scheme and its wide range of applications on problems where the Wasserstein distance plays an important role. Though our method is not an exact 8.3.1.1 Wasserstein barycenters [START_REF] Agueh | fryenters in the sserstein spe[END_REF][START_REF] Cuturi | [END_REF], Bonneel 2016].

Barycenters in Wasserstein space were rst discussed by [START_REF] Agueh | fryenters in the sserstein spe[END_REF]].

Designed through an analogy with barycenters in a Euclidean space, the Wasserstein barycenters of a family of measures are dened as minimizers of a weighted sum of squared Wasserstein distances. In our framework, barycenters can be obtained as x = arg min

x i α i W (x, x i ) ≈ ψ( i α i φ(x i )), (8.2) 
where x i are the data samples and the weights α i obeys the following constraints:

i α i = 1 and α i > 0. Note that when we have only two samples, the barycenter corresponds to a Wasserstein interpolation between the two distributions with α = [1 -t, t] and 0 ≤ t ≤ 1 [Santambrogio 2014]. When the weights are uniform and the whole data collection is considered, the barycenter is the Wasserstein population mean, also known as Fréchet mean [START_REF] Bigot | [END_REF]].

Next we evaluate our embedding on the task of computing Wasserstein Barycenters for each class of the wxs dataset. We take 1000 samples per class from the test dataset and compute their uniform weight Wasserstein Barycenter using Eq. 8.2. The resulting barycenters and their Euclidean means are reported in Fig. 8.4.

Note that not only those barycenters are sensitive but also preserve most of their sharpness which is a problem that occurs for regularized barycenters [Solomon 2015b[START_REF] Benamou | [END_REF]]. The computation of those barycenters is also very ecient since it requires only 20ms per barycenter (for 1000 samples) and its complexity scales linearly with the number of samples.

We rst compute the Wasserstein interpolation between four samples of each datasets in Figure 8.5. Note that these interpolation might not be optimal w.r.t.

the objects but we clearly see a continuous displacement of mass that is characteristic of optimal transport. This leads to surprising artefacts for example when the eye of a face fuse with the border while the nose turns into an eye. Also note that there is no reason for a Wasserstein barycenter to be a realistic sample. in [START_REF] Cuturi | [END_REF]]. The regularized Wasserstein barycenter is obtained more rapidly (4 sec/interp) but is also very smooth at the risk of loosing some details, despite choosing a small regularization that prevents numerical problems. Our reconstruction also looses some details due to the Auto-Encoder error but it is very fast and can be done in real time (4 ms/interp).

Principal Geodesic Analysis in

Wasserstein space [Seguy 2015[START_REF] Bigot | [END_REF]].

PGA, or Principal Geodesic Analysis, has rst been introduced by Fletcher et l. [START_REF] Fletcher | [END_REF]]. It can be seen as a generalization of PCA on general Riemannian manifolds. Its goal is to nd a set of directions, called geodesic directions or principal geodesics, that best encode the statistical variability of the data. It is possible to dene PGA by making an analogy with PCA. Let x i ∈ R n be a set of elements, the classical PCA amounts to iA nd x the mean of the data and subtract it to all the samples iiA build recursively a subspace the following maximization problem:

V k = span(v 1 , • • • , v k ) by solving
v 1 = argmax |v|=1 n i=1 (v.x i ) 2 , v k = argmax |v|=1 n i=1   (v.x i ) 2 + k-1 j=1 (v j .x i ) 2   . (8.3)
Fletcher gives a generalization of this problem for complete geodesic spaces by extending three important concepts: variance as the expected value of the squared Riemannian distance from mean, Geodesic subspaces as a portion of the manifold generated by principal directions, and a projection operator onto that geodesic submanifold.

The space of probability distribution equipped with the Wasserstein metric (P p (X), W 2 2 (X)) denes a geodesic space with a Riemannian structure [Santambrogio 2014], and an application of PGA is then an appealing tool for analyzing distributional data. However, as noted in [Seguy 2015[START_REF] Bigot | [END_REF]], a direct application of Fletcher's original algorithm is intractable because P p (X) is innite dimensional and there is no analytical expression for the exponential or logarithmic maps allowing to travel to and from the corresponding Wasserstein tangent space. We propose a novel PGA approximation as the following procedure: iA nd x the approximate Fréchet mean of the data as x = 1 N N i φ(x i ) and subtract it to all the samples iiA build recursively a subspace

V k = span(v 1 , • • • , v k ) in the embedding
space (v i being of the dimension of the embedded space) by solving the following maximization problem:

v 1 = argmax |v|=1 n i=1 (v.φ(x i )) 2 , v k = argmax |v|=1 n i=1   (v.φ(x i )) 2 + k-1 j=1 (v j .φ(x i )) 2   . (8.4)
which is strictly equivalent to perform PCA in the embedded space. Any reconstruction from the corresponding subspace to the original space is conducted through ψ. We report in Figure 8.7 the Principal Component Analysis (L2) and Principal Geodesic Analysis (DWE) for 3 classes of the wxs dataset. We can see that using Wasserstein to encode the displacement of mass leads to more semantic and nonlinear subspaces such as rotation/width of the stroke and global sizes of the digits. This is well known and has been illustrated in [Seguy 2015]. Nevertheless our method allows for estimating the principal component even in large scale datasets and our reconstruction seems to be more detailed compared to [Seguy 2015] maybe because our approach can use a very large number of samples for subspace estimation.

Other possible methods.

As a matter of facts, several other methods that operate on distributions can benet from our approximation scheme. Most of those methods are the transposition of their Euclidian counterparts in the embedding space. Among them, clustering methods, such as Wasserstein k-means [START_REF] Cuturi | [END_REF]], are readily adaptable to our framework. Recent works have also highlighted the success of using Wasserstein distance in dictionary learning [START_REF] Rolet | [END_REF]] or archetypal Analysis [START_REF] Wu | [END_REF]]. Few works have adressed the question of discriminating distributions by taking into account that the instances are discrete distributions by itself. [START_REF] Rakotomamonjy | sserstein histne wesure whines[END_REF] have studied the potential of using Wasserstein distance as a dissimilarity function for empirical distributions. They mostly rely on the previous works of Balcan et l. demonstrates that for some learning problem, by using the appropriate divergence function, one can achieve low error linear decision functions with high probability [START_REF] Balcan | [END_REF]]. The approach they advocate for empirical distributions is the following: they rst compute exact Wassertstein distances between their training distributions and some xed distributions that they denote as patterns, and then in a second time, they use such distances as a set of features to learn a classier. Our method allows a fast computation of pairwise Wasserstein distance which increases When it comes to the use of Wasserstein distance on text, we identify two contributions:

• information retrieval: Despite the eciency of WMD to naturally measure semantic similarities between texts, it scales with a cubic complexity reguarding the dimensionality of the documents. Thus, our rst goal is to approximate at best the Wasserstein distance, plus with a lightened architecture that speeds up the computation of pairwise Wasserstein.

• Text Generation given Wasserstein: Similarly as other similarity metrics, WMD cannot create new sentences based only on the distance given another document 1 . In that aim, we propose to extend DWE to text using a sequence to sequence encoder-decoder architecture.

Information Retrieval: Fast computing of WMD at large scale

If the goal is solely information retrieval, one can consider a bag-of-words architecture. Indeed, Wasserstein is not considering the structure of the sentence, but the appearance of the words, independently of their order. To alleviate the lack of structure, futures works could envisage variants of Gromov Wasserstein distance, like the recent one proposed in [START_REF] Vayer | [END_REF]]. Unlike Reccurrent networks that takes naturally in account the position of the words, we could envisage a static architecture taking a bag-of-words as an input. This constraint is highly relevant in the case one wants to approximate at best the Wasserstein distance for any kind of input:

on two sentences containing the same words but having a dierent meaning, our network will output a unique embedding. Thus, a network that would best suit to measuring Wasserstein is a multi-layer perceptron along the embdeding dimension that slides along the words. We decompose our architecture into two sub-networks: a rst network ψ encodes each word in the sentence into a vector. Those vectors are then sum together and embedded into a second network τ that will output the embedding that mimics the Wasserstein distance. It is important to use the addition as the pooling function to preserve the information and the occurences. If using the average pooling, then the document top 3 top 3 top will have the same internal representation as top 3 . The global function reads:

min ψ,τ || τ ( i ψ(x 1,i )) -τ ( j ψ(x 2,j )) 2 -W 2 2 (x 1 , x 2 )|| 2 (8.5)
We provide further details about our architecture in Fig. 8.9.

1 cf Section 11.2 

Empirical Evaluation:

We evaluate our approach on two databases:

• the witter dataset: a set of tweets labeled with sentiments positive. The words are embedded with Word2Vec.

• the Visual Question Answeringdataset: we retrieve the questions from the SQUAD dataset. The words are embedded with the Glove representation.

Thanks to the two datasets, we can validate our method independently from the words' representations. We present our ongoing results in Table 8.2. Preliminary results are encouraging, but they need major improvements: up to now, we obtain better results when always predicting the mean Wasserstein distance computed on the training set.

In the next section, we investigate whether reccurent architectures handles better our Wasserstein based embedding for text. Thanks to Reccurent Units, we will be able to promote a decoder and use it for text generation given Wasserstein distance. 

Text Generation given Wasserstein Distance

The main limitation of our previous architecture is that it cannot decode the sentence, which limits the use of our model to data mining applications, as done in Section 8.3.1. We formulate our model given Eq. 8.6. Similarly as in DWE, a rst recurrent network ψ takes as input the ordered sequences of words' embedding, and outputs in its last state the embedding vector. Such embedding should mimic the Wasserstein distance using instead the Euclidian Distance. Finally, we init the hidden state of the decoder τ given the embedding state to generate our input sentence. Note that we do not use a mean squared loss to train the decoder τ , but the categorical cross-entropy loss l.

min ψ,τ || ψ(x 1 )-ψ(x 2 ) 2 -W 2 (x 1 , x 2 ) || 2 +l ψ(τ (x 1 )), x 1 +l ψ(τ (x 2 )), x 2 (8.6)
Our requirements are two folds. First, we need a decoder that can reconstruct the sentence given the last state of the encoder. Secondly, the last state of the encoder should embed Wasserstein distance given the Euclidian distance, as initially proposed in DWE for CNNs. Using a decoder would help us to compute optimizations eciently in the Wasserstein space. We detail existing work on creating adversarial tasks for text in Section III.

Indeed, Wasserstein is well indicated to measure similarity between sentences or documents. Thus, if we want to generate an adversarial sample, as close as possible to the source sentence, we can use Wasserstein as a good metric for the distortion between the true and fake sentences.

Given a source sentence x, and a classication system f , generating our adversarial sentence to get f mistaken reads:

x = arg min W 2 (x, x) s.t l(f (x)) = l(f (x)) (8.7)
In the previous formulation, one needs to be able to compute the gradient to perform optimization scheme, such as L-BFGS [Szegedy 2013]. However, our sentences lie in discrete space, so computing the gradient is intractable. Moreover, one can imagine an approximate optimization scheme, where we optimize x given only the Wasserstein distance. But, the Wasserstein distance considers the sentences as a bag-of-words, unlike f which generally required an ordered sequence. A possible solution may be to alleviate the formulation by transposing the search into our embedding space.

x = τ (y) where y = arg min ||ψ(x) -

y|| 2 s.t l(f (x)) = l(f (τ (y))) (8.8)

Conclusion

In this chapter, we presented a computational approximation of the Wasserstein distance suitable for large scale data mining tasks. Our method nds an embedding of the samples in a space where the Euclidean distance emulates the behavior of the Wasserstein distance. Thanks to this embedding, numerous data analysis tasks can be conducted at a very low computational price. We forecast that this strategy can help in generalizing the use of Wasserstein distance in numerous applications. However, while our method is very appealing in practice it still raises a few questions about the theoretical guarantees and approximation quality.

First, embedding Wasserstein space in normed metric space is still a theoretical and open questions [START_REF] Matou²ek | [END_REF]]. Most of the theoretical guarantees were obtained with W 1 . In the simple case where X = R, there exists an isometric embedding with L 1 between two absolutely continuous (wrtF the Lebesgue measure) probability measures µ and ν given by their by their cumulative distribution functions

F µ and F ν , iFeF W 1 (µ, ν) = R |F µ (x) -F ν (x)|dx.
This fact has been exploited in the computation of sliced Wasserstein distance [Bonneel 2015, Kolouri 2016c]. Conversely, there is no known isometric embedding for pointsets in [n] k = {1, 2, . . . , n} k , iFeF regularly sampled grids in R k , but best known distortions are between O(k log n)

and Ω(k + √ log n) [Charikar 2002[START_REF] Indyk | [END_REF][START_REF] Khot | [END_REF]]. Regarding W 2 , recent results [START_REF] Andoni | [END_REF]] have shown there does not exist meaningful embedding over 8.5. Conclusion
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R 3 with constant approximation. Their results show notably that an embedding of pointsets of size n into L 1 must incur a distortion of O( √ log n). Regarding our choice of W 2 2 , there does not exist embeddability results up to our knowledge, but we show that, for a population of locally concentrated measures, a good approximation can be obtained with our technique. Moreover it is dicult to foresee from a given network architecture if it is suciently (or too much) complex for nding a successful embedding. It can be conjectured that it is dependent on the complexity of the data at hand and also the locality of the manifold where the data live in.

Second, the theoretical existence results on such Wasserstein embedding with constant distortion are still lacking. Future works should consider these questions as well as applications of our approximation strategy on a wider range of ground loss and data mining tasks. Also, the transferability of one database to another to diminish the computational burden of computing Wasserstein distances on numerous pairs for the learning process should be studied. stein prototypes are highly relevant to illustrate the modes of their underlying complex distribution and improve the interpretability of the data. One of the main advantages of our method is that it is parameter-free unlike MMD prototypes 96 Chapter 9. Perspective: Wasserstein prototypes [START_REF] Huszár | [END_REF]], and owns proof of convergence thanks to the well-known convergence results about submodular functions. We are able to select prototypes for any given sparsity level. Due to the cost for computing the exact Wasserstein distance, we also propose two approximations of varying computational cost using the entropic regularization or the inexact proximal point method.

Wasserstein prototypes are highly interesting for a wide set of tasks ranging from visualization (facilitate human understanding and reasoning), interpretability of classication decision, active learning and generative modeling. Numerical experiments supporting these idea are conducted on simulated and real datasets and demonstrate the benets of our methods. In particular, we illustrate several use-cases with empirical experiments on wxs .

Approximate Submodularity for Wasserstein distance

Wasserstein prototypes are samples from a known empirical distribution, that are the most informative, considering the Wasserstein distance. Formally Wasserstein prototypes consists in minimizing the Wasserstein distance between the xed empirical distribution, and Wasserstein prototypes, knowing that they are part of a dataset.

The main dierence between Wasserstein prototypes and Wasserstein barycenters is that prototypes are part of a discrete and known-beforehand distribution unlike barycenters. Hence, prototypes can be used for visualizing and analyzing the properties of the dataset unlike barycenters, that, while looking similar to the datasets, may not be representative of the statistics of the data. Moreover, in high dimensional space, barycenters may suer from bluriness, and unrepresent biases [START_REF] Agueh | fryenters in the sserstein spe[END_REF]].

Note that the main dierence between our problem and sserstein goreEet is that we x our support, unlike sserstein goreEet which creates barycenters.

Denition 9.2.1: Wasserstein prototypes Formally given an empirical distribution P, a xed size of data to label, K; and a subset U ⊂ P, we denote Wasserstein prototypes a subset S * K ⊂ P that minimizes Eq. 9.1.

min

S * K ⊂P, |S * K |=K W p (S * K , U) (9.1)
The optimization subroutine we dene in 9.1, is generally not tractable as it is combinatorial given P. The desiderata for solving Equation 9.1 naturally implies the notion of submodularity. Submodular functions are widely used in the approximation of combinatorial problem as their optimization may be eciently solved through greedy search. Although, maximizing a submodular function under cardinality constraints is NP-hard, when the function is nonEnegtive and monotone, [START_REF] Nemhauser | [END_REF][START_REF] Kim | [END_REF]] demonstrated that a naive greedy selection algorithm provides the best approximation to the optimal solution: the greedy solution is 

Greedy selection of Prototypes

The scalability of Wasserstein prototypesis limited by the computational cost to evaluate the exact Wasserstein distance which is of order O(n 3 log(n)) for discrete probability distribution with a support of size n. A rst solution to overcome the lack of scalability of Wasserstein prototypesis to rely on entropic regularization, also known as the Sinkhorn algorithm. Thanks to the power iterative method of the Sinkhorn algorithm, relying only on matrix multiplications, computing Wasserstein prototypeswith Sinkhorn is highly scalable and may also be embedded on gpus.

We evaluate empirically the validity of such approximation for Wasserstein prototypesin Section 9.3. However, we have no theoretical motivations to use entropic regularization, nor any theoretical assessment.

Nevertheless, as also highlighted in Section 7.3, the regularization scaling is a major hyperparameter that will aect either the quality of our prototypes or the computational speed up of using Sinkhorn distance rather than the exact Wasserstein. Another solution is to rely on IPOT. IPOT is promising due to its similarity with the Sinkhorn distance, it can speed up the computations. Moreover, its regularization parameter is far less controversial than the Sinkhorn distance. Instead of waiting for convergence, we limit the maximum number of iterations by an hyperprameter and x the number of inner iterations to one ( in accordance with the empirical analysis provided in [START_REF] Xie | [END_REF]).

Empirical Validation

We Every dataset and parameters used to conduct our experiments are available in the dataset section A.1 and the hyperparameter illustrate on three toy datasets (smples from irleD smples from Q univrite gussinsD smples from Q gussins with di'erent rtio) the prototypes selected by our three options, in Figures 9.1 We also proceed on higher dimensional dataset: we conduct numerical experiments on wxs in Figure 9.4. Although computing the optimal prototypes was not tractable, we added another method MMD prototypes, which adds greedily samples that minimize their MMD score with the distribution. We use tSNE to plot the prototypes selected by our methods and evaluate the evolution of Wasserstein distances along the sequence of prototypes. While IPOT prototypes appear promising, as their evaluation in The usage of Wasserstein prototypes can be dedicated to several machine learning tasks. Among others, we suggest future explorations for active learning. Indeed, selecting wasserstein prototypes may promote more diverse queries, as also hilighted in Section 5.2.

Active Learning

The previous Part has highlighted the needs for increasing the diversity when querying batches of unlabelled samples in an active learning context. While both KL divergence and MMD have been investigated as potential solutions for batch active learning [Wei 2015, Wang 2015]; to our knowledge, it has never been the case for Wasserstein distance. However Wasserstein distance holds many advantages in an active learning context. Indeed, Wasserstein can be applied to distributions with non-overlapping supports and has good out-of-sample performance. Moreover, it is robust to discrete distributions without the need to resort to kernel estimators, and is parameter-free, unlike MMD [START_REF] Muandet | [END_REF]]. Nevertheless, we have described This encourage the usage of Wasserstein prototypes as a post-processing step in an active learning heuristic, in order to cover at best the groundtruh distribution.

We have integrated Wasserstein prototypes into our active learning heuristic for the Wasserstein distance). We measure the test accuracy on wxs trained on LeNet5 given the number of annotations.

Conclusion

We presented Wasserstein prototypes, a framework to help give insights on complex data distribution, thanks to Wasserstein distances. We demonstrated the weak submodularity of selecting Wasserstein prototypes and develop heuristics to fasten the computation of Wasserstein prototypes, using either SINKHORN or IPOT. So far we have evaluated Wasserstein prototypes under a specic setting which is when we sample the prototypes from the distribution on which we measure the Wasserstein distance: S ⊂ U. However, we can also operate on non-overlapping support, as long as it makes sense to represent their samples into a shared space and compute the distance between them. Indeed, the approximate submodularity of Wasserstein prototypes holds also in this setting. By selecting generated prototypes, we can measure their Wasserstein distance along the training and test set. This score provides a glimpse into the overtting of a generator. Nevertheless, we investigate the applications of Wasserstein prototypes in active learning.

Chapter 10

Conclusion

In summary, we studied new applications of Wasserstein distance to machine learning. In particular, we empirically demonstrated how we could approximate pairwise Wasserstein distances on distributions sampled from a low dimensional manifold.

To do this, we successfully use Siamese Neural Network. From our framework results in great opportunities in data mining and text mining tasks. Among the possible applications, we plan to analyze the generation of adversarial attacks based on Wasserstein. Second, we study an innovative direction for the Wasserstein distance with the selection of a subset representative of an empirical distribution. To our knowledge, our work is the rst to rely on Wasserstein to generate prototypes.

For our future work, we hope to further explore the properties of our Wasserstein prototypes and their eectiveness in active learning. 

Motivation

As in many other elds of data analysis, NLP has been strongly impacted by the recent advances in Machine Learning, more particularly with the emergence of Deep Learning techniques. For example, deep networks have been embedded in various NLP tasks, ranging from machine comprehension to authorship classication, VQA or sentiment analysis [START_REF] Yu | [END_REF], Ducoe 2016a[START_REF] Antol | [END_REF][START_REF] Glorot | [END_REF]]. These techniques outperform state-of-the-art approaches on a wide range of NLP tasks, and so they have been quickly and intensively used in industrial systems. Such systems rely on end-to-end training on massive amounts of data, making few prior assumptions about linguistic structure and focusing on statistically frequent patterns. Thus, they somehow step away from computational linguistics as they learn implicit linguistic information automatically without aiming at explaining or even exhibiting classic linguistic structures underlying the decision. Lately, some works have focused on understanding the black box decisions and the linguistic patterns on which depends the network's decisions. We describe those works in Section 11.2. Indeed, understanding the aws of deep learning in NLP is a signicant task, as Text is one of the most intuitive ways to establish communication protocols between computers and humans. However, if such systems are biased and miscommunicate, not only there is a chance to create some frustration, but also we can jeopardize the users. We illustrate a naive use case of deep network's failures in Adversarial Questions for state-of-the-art VQA systems [Ribeiro 2018b]. The authors paraphrase the questions which highly impacts the quality of the answer.

We dedicate this chapter to new machine learning and linguistic analysis to highlight some linguistic observables learned by deep neural networks, in particular CNNs. Highlighting such linguistic patterns hold several goals:

• If we understand the type of linguistic information relevant for learning a specic task, NLP datasets and annotations may benet from it and contain less bias.

• We can optimize the network's architecture and words embedding

• We can improve our evaluation pipeline

• We can provide new observations tools to linguistic experts to analyze their corpora.

In the next section, we describe recent advances towards understanding deep networks for NLP tasks. As we focus our analysis on text classication, we will mainly present CNNs for NLP tasks. In Textual Mining, we aim at highlighting linguistics patterns to analyze their contrast: specicities and similarities in a corpus [Feldman, R., andJ. Sanger 2007, L. Lebart, A. Salem and[START_REF] Lebart | Exploring textual data[END_REF]]. It mostly relies on frequential based methods such as z-scoring. However, such existing methods have so far encountered diculties in underlining more challenging linguistic knowledge, which has yet been empirically observed, for instance syntactical motifs [Mellet 2009a]. In that context, supervised classication, especially CNNs, may be exploited for corpus analysis. Indeed, CNN learns parameters automatically to cluster similar instances and drive away examples from dierent categories. Eventually, their prediction relies on features which inferred specicities and similarities in a corpus. Projecting such features in the word embedding will reveal important spots and may automatize the discovery of new linguistic structure as the previously cited, syntactical motifs. Moreover, CNNs hold other advantages for semantic analysis. They are static architectures that, according to specic settings are more robust to vanishing gradient, and thus can also model long-term dependency in a sentence [START_REF] Dauphin | [END_REF][START_REF][END_REF], Adel 2017]. Such a property may help to detect structures relying on dierent parts of a sentence.

Visualization of Deep network

All previous works converged to a shared assessment: both CNNs and RNNs provide relevant, but dierent kinds of information for text classication. However, though several works have studied linguistic structures inherent in RNNs, to our knowledge, none of them have focused on CNNs. The rst line of research has extensively studied the interpretability of word embeddings and their semantic representations. When it comes to deep architectures, [START_REF] Karpathy | [END_REF]] used LSTMs on character level language as a testbed. They demonstrate the existence of long-range dependencies on real word data. Their analysis is based on gate activation statistics and is thus global. On another side, [START_REF] Li | [END_REF]] provided new visualization tools for recurrent models. They use decoders, t-SNE, and rst derivative saliency, to shed light on how neural models work.

Although the usage of RNNs is more common, there are various visualization tools for CNNs analysis, inspired by the computer vision eld. Such works may help us to highlight the linguistic features learned by a CNN. One can either train a decoder network or use backpropagation on the input instance to highlight its most relevant features. While those methods may hold accurate information in their input recovery, they have two main drawbacks: i) they are computationally expensive: the rst method requires training a model for each latent representation, and the second relies on backpropagation for each submitted sentence. ii) they are highly hyperparameter dependent and may need some ne tuning depending on the task at hand. On the other hand, Deconvolution Networks, proposed by [START_REF] Zeiler | [END_REF] provide an o-the-shelf method to project a feature map in the input space. It consists of inverting each convolutional layer iteratively, back to the input space.

The inverse of a discrete convolution is computationally challenging. In response, a coarse approximation may be employed which consists of inverting channels and lter weights in a convolutional layer and then transposing their kernel matrix. More details of the deconvolution heuristic are provided in Section 12. Deconvolution holds several advantages. First, it induces minimal computational requirements compared to previous visualization methods. Also, it has been used with success for semantic segmentation on images: [START_REF] Noh | [END_REF]] demonstrated the eciency of deconvolution networks to predict segmentation masks to identify pixel-wise class labels. Thus deconvolution can localize meaningful structure in the input space.

Model Agnostic Explanation

Another line of works consists in explaining the decision, independently from the nature of the model itself. Such practices are denoted as Model Agnostic Explanation. For example, LIME [START_REF] Ribeiro | [END_REF]] is a local approximation of a classier's prediction that approximates the decision boundary around a sample by a hyperplane. Thanks to this choice of approximation, a greedy search can relatively well select the features that contribute the most to the prediction. LIME is a particular case of local approximation with a linear function. Linear functions hold two main advantages: when zooming enough, we can assume that the decision boundary is locally a linear separator, plus it allows to capture features of relative importance easily with greedy search, thanks to the induced submodularity. However, the features highlighted are representative of the local approximation, nor of the model itself. Moreover, a local explanation can be hardly extended to other sentences and does not provide rule of thumbs of how to combine the features to explain the decision. To mitigate such limitations, Ribeiro et l. have developed anchor explanations [Ribeiro 2018a]: ifEthen rules that are sucient to explain the decision. The main advantage of anchors is that they apply when the conditions of the rule are met. Moreover, they explain the mechanism involved in the prediction. Listing all the possible anchors is intractable, but it is possible to look for short anchors (anchors with few items) but applicable to a broad set of sentences.

Adversarial example for NLP

While we have highlighted in Section 4, the potential benets of adversarial examples in active learning, their outcome are mainly for vision applications. When it comes to NLP, generating adversarial examples is already a key challenge. Indeed, as opposed to images, or sound, where the features lie in a continuous space, words are discrete entities. Eventually, it is more dicult to measure and build perturbations into a discrete domain, while also preserving the semantics of the original sentence.

Working on the word level and the embeddings used in our applications are not the sole part of the issue. Indeed, character level systems do suer from adversarial examples: Ebrahimi et l. [START_REF] Ebrahimi | [END_REF]], among others, show that networks trained 11.2. Litterature 113 with characters are overly sensitive to keyboard typos, or unnatural dots or blank space in the sentence.

When it comes to word level system, adversarial perturbations have been designed for a broad panel of tasks, including spam ltering, fake news detection, or sentiment analysis, and also on both CNNs and RNNs. Kuleshov We hypothesize that Deep Learning is sensitive to the linguistic units on which the computation of the critical statistical sentences is based as well as to phenomena other than frequency and complex linguistic observables. The TDA has more diculty taking such elements into account such as linguistic patterns [Mellet 2009b].

Our contribution confronts TDA and Convolutional Neural Networks for text analysis. We take advantage of deconvolution networks for image analysis to present a new perspective on text analysis to the linguistic community that we call deconvolution saliency. Our deconvolution saliency corresponds to the sum over the word embedding of the deconvolution projection of a given feature map. Such score provides a heat-map of words in a sentence that highlights the pattern relevant to the classication decision. We examine z-scoring and deconvolution saliency in three languages: English, French, and Latin. For all our datasets, deconvolution saliency highlights new linguistic observables, invisible with z-scoring alone.

CNNs for Text Classication

We propose a deep neural model to capture linguistics patterns in text. This model is based on Convolutional Neural Networks with an embedding layer for word representations, one convolutional with pooling layer and non-linearities. Finally, we have two fully-connected layers. The nal output size corresponds to the number of classes. The model is trained with cross-entropy with an Adam optimizer. Figure 12.1 shows the global structure of our architecture. The input is a sequence of words w 1 , w 2 ...w n and the output contains class probabilities (for text classication).

The embedding is built on top of a Word2Vec architecture; here we consider a Skip-gram model. This embedding is also netuned by the model to attain optimal text-classication accuracy. Notice that we do not use lemmatization, as in [Collobert 2008]. Thus the linguistic material which is automatically detected does not rely on any prior on the part of speech.

In computer vision, we consider images as 2-dimensional isotropic signals. A text representation may also be considered as a matrix: each word is embedded in a feature vector, and their concatenation builds a matrix. However, we cannot assume both dimensions -the sequence of words and their embedding representation -are isotropic. Thus the lters of CNNs for text typically dier from their counterparts designed for images. Consequently, in a text, the width of the lter is usually equal to the dimension of the embedding, as illustrated with the red, yellow, blue and green lters in Figure 12.1 Using CNNs hold another advantage in our context: due to the convolution operators involved, they can be easily parallelized and may also be easily used on CPU, which is a practical solution for avoiding the use of GPUs at test time. Another drawback regards the dimension of the features map. We denote by features map; the output of the convolution before applying max pooling. Its shape is the tuple @5 wordsD 5 (ltersA. Because the lters' width (red, yellow, blue and green in g 12.1) matches the embedding dimension, the feature maps cannot contain this information. To project the feature map in the embedding space, we need to convolve our feature map with the kernel matrices. In that aim, we upsample the feature map to obtain a 3-dimensional sample of size @5 wordsD emedding dimensionD 5 (ltersA. words which corresponds to the sum along the embedding axis of the output of the deconvolution. We denote this score as deconvolution saliency.

For the sake of consistency, we sum up our method in Figure 12.2

With this method, we can show a sort of topology of a sequence of words. Eventually, every word in a sentence has a unique deconvolution saliency score whose value is related to the others. In the next section, we analyze the relevance of deconvolution saliency. We thoroughly demonstrate empirically, that the deconvolution saliency encodes complex linguistic patterns based on co-occurrences and possibly also on grammatical and syntaxic analysis.

12. To make the two values comparable, we normalize them with a maximum score of around +38 and a minimum of -38. This interval gives two thresholds for the Z-score: over 2 a word is considered as specic and over 5 it is strongly distinct (and the opposite with negative values). For the activation score, it is just a matter of activation strength. 1 . As we can see, when the Z-score is the highest there is a sort of activation spike (for example around the word str). However, this is not always the case: for example small words as will see now that these observations are still valid for other languages and can even be generalized between dierent activation spikes.

12.5.2 Dataset: French The Z-score gives a result statistically closer to de Gaulle than to E. Macron.

The error in the statistical attribution can be explained by a Gaullist phraseology, two occurrences in the excerpt). His speech was also more conceptual than average, and this resulted in an over-use of the articles dened le, l, l¡, les) very numerous in the excerpt(7 occurrences); especially in the feminine singular (l répulique, l lierté, l ntion, l guerre, etc., here we have l même fore, l même intensité.

The best results given by deep learning themselves can surprise the linguist and match perfectly with what is known about the sociolinguistics of Macron's dynamic kind of speeches.

The most important activation zone of the excerpt concerns the nominal syntagm trnsformtions profondes. Taken separately, neither of the phrase's two words are very Macronian from a statistical point of view (trnsformtions = 1.9 profondes = 2.9). Better: the syntagm itself is not attested in the President's learning corpus (0 occurrences). However, it can be seen that the co-occurrence of trnsformtion and profondes amount to 4.81 at Macron: so it is not the occurrence of one word alone, or the other, which is Macronian but the simultaneous appearance of both in the same window. The second and complementary activation zones of the excerpt thus concern the two verbs dvienne and poursuivront. From a semantic point of view, the two verbs perfectly conspire, after the phrase trnsformtions profondes, to give the necessary dynamic to a discourse that advocates change. But it is the verb tenses (borne by the morphology of the verbs) that appear to be the determining factor in the analysis. The calculation of the grammatical codes co-occurring with the word trnsformtions thus indicates that the verbs in the subjunctive and the verbs in the future (and also the nouns) are the privileged codes for Macron (Figure 12.8).

More precisely the algorithm indicates that, for Macron, when trnsformtion is associated with a verb in the subjunctive (here dvienne), then there is usually a verb in the future co-present (here poursuivront). trnsformtions profondes, dvienne to the subjunctive, poursuivront to the future: all these elements together form a speech promising action. Finally, the graph indicates that trnsformtions is especially associated with nouns in the President's speeches: in an extraordinary concentration, the excerpt lists 11 (pys, éole, enfnts, trvil, onitoyens, limt, quotidien, trnsformtions, fore, rythme, intensité).

Dataset: Latin

The last dataset we used is in Latin. We assembled a contrastive corpus of 2 million words with 22 principle authors writing in classical Latin. As in the French dataset, the learning task here was to be able to predict each author according to new sequences of words. The attribution of the sentence to Caesar can not only rely only on Z-score: que or in or str, with dierences thereof equivalent or inferior to Livy. On the other hand, the dierences of se, ex, are greater, as is that of equites. Two very Caesarian terms undoubtedly make the dierence iuet (he orders) and mili (thousands).

The greater score of quttuor (four), str, hostem (the enemy), impetu (the assault) in Livy are not enough to switch the attribution to this author.

On the other hand, deep learning activates several zones appearing at the beginning of sentences and corresponding to coherent syntactic structures (for Livy) ndem re)exes spe str propius hostem mouit (then, hope returned, he moved the camp closer to the eld of the enemy) despite the fact that str in hostem mouit is attested only by Tacitus 6 . There are also in ipso metu (in fear itself ), while in followed by metu is counted one time with Caesar and one time also with Quinte-Curce 7 .

More complex structures are possibly also detected by deeplearning: the structure tum + participates Ablative Absolute (tum refet) is more characteristic of Livy (Z-score 3.3 with 8 occurrences) than of Caesar (Z-score 1.7 with 3 occurrences), even if it is even more specic of Tacitus (Z-score 4.2 with 10 occurrences).

Finally and more likely, the co-occurrence between str, hostem and impetu may have played a major role: Figure 12.9 With Livy, impetu appears as a co-occurrent with the lemmas rys (Z-score 6 Publius (or Gaius) Cornelius Tacitus, 56 BC -120 BC, was a senator and a historian of the Roman Empire.

7 Quintus Curtius Rufus was a Roman historian, probably of the 1st century, his only known and only surviving work being "Histories of Alexander the Great" 12.6. Conclusion 125 Figure 12.9: Specic co-occurrences between impetu and str showed by Hyperbase. 9.42) and gee (Z-score 6.75), while rys only has a gap of 3.41 in Caesar and that gee does not appear in the list of co-occurrents.

For str, the rst co-occurent for Livy is rys (Z-score 22.72), before gee (Z-score 10.18), eh (Z-score 10.85), sx (Z-score 8.21), swi (Zscore 7.35), i (Z-score 5.86) ) while in Caesar, swi does not appear and the scores of all other lemmas are lower except gee (Z-score 15.15), rys (8), eh (10,35), sx (5,17), i (4.79). Thus, all is as it should be if the deep learning network manages to simultaneously account for specicity, phrase structure, and co-occurrence networks. . .

Conclusion

TDA and deep learning may not be distant continents to each other. This contribution by crossing a statistical approach and neural network allowed us to identify critical passages and perhaps reasons that could feed our textual treatments. If the observables that presided over the detection of key passages by the TDA (the lexical specicities) are known and tested, the zones of activation of the deep learning seem to raise new linguistic observables. Recall that the linguistic matter and the topology of the passages cannot return to chance: the zones of activations make it possible to obtain recognition rates of more than 90 % on the French political speech and 85 % on the corpus of the LASLA ; either rates equivalent to or higher than the rates obtained by the statistical calculation of the key passages. It remains to improve the model and to understand all the mathematical and linguistic outcomes.

The rst improvement that we now propose to implement is the injection of morphosyntactic information into the network to test more complex linguistic patterns ever. have seen the emergence of machines competing for state-of-the-art Computational linguistic methods on specic natural language processing tasks (part-of-speech tagging, chunking, and parsing, etc.). In particular, Deep Linguistic Architectures are based on the knowledge of language specicities such as grammar or semantic structure. These models are considered the most competitive thanks to their assumed ability to capture syntax. However, if those methods have proven their eciency, their underlying mechanisms, both from a theoretical and an empirical analysis points of view, remains hard both to explicit and to maintain stable, which restricts their area of applications. Our work is enlightening mechanisms involved in deep architectures when applied to NLP tasks. Several post training methods have been proposed to underline both semantic and syntactic patterns that have been necessary for the network's prediction [Vanni 2018[START_REF] Li | [END_REF][START_REF] Karpathy | [END_REF]]. However, none of them have highlighted any hierarchy of the patterns learnt during the training. We instead confront the relevance of the sentences chosen by our active strategy to state-of-the-art phraseology techniques. In future works, we will also extend our analysis using model agnostic explanations.

Methodology

Despite the accuracy achieved, the complexity of deep networks on NLP tasks diminishes their interpretability. Up to now, few works have addressed what kind of knowledge deep networks are relying on: syntax, ontology, semantic or another non-linguistic intuitive information. In this Section, we consider the dierent type of information acquired by a network while training on specic tasks. We hypothesize that deep networks learn linguistic knowledge by step, to converge to their nal 13.3. Analysis under the light of Phraseology expertise 129 state which combines every semantic rule discovered previously. To have a glance at what kind of information the network is focusing on, we propose to select iteratively the samples which are the most helping the system to improve its accuracy. How to build an indicator function of such sentences is done through AL. Active learning is a particular case of learning when the model restricts its learning knowledge to a subset of the data and may gather more data in an online fashion: the model can interactively query new data and then adds them to the current set of training data. The main reason to be for active learning is the diculty in gathering annotated data, especially when it requires experts. In our case, we are not considering ALheuristics to limit human annotations, but as an indicator function of the sentence required to extend the knowledge of a deep network. We illustrate our process in Figure 13.1.

The text analysis with our machine learning approach proceeds through active learning stages by selecting new samples at each iteration to be added to the training set. We compel this selection by a linguistic analysis, driven by linguistic experts, whose understanding helps to clarify which information is relevant in those queried sentences.

Our method depends on the active learning heuristics used. However, while many active learning strategies coexist, none of them is optimal. Although the heuristic used will introduce some bias, as far as we obtain higher accuracy than random sampling, the queries hold relevant information for classication. However, since we are not interested in the accuracy achieved but on the underlying information hold by the queries, we would rather not use a batch active learning strategy.

Analysis under the light of Phraseology expertise

In Every dataset and parameters used to conduct our experiments are available in the dataset section A.1 nd the hyperparameter section A.2.1 previous works, we proposed an active learning method suitable for deep learning architectures. It is a query by committee based approach which consists in building a set of models trained on the same current labeled database and make each instance vote on the output of queried elements. Eventually, the score of an unlabelled sample is the disagreement it provokes among the members of the committee. Among such methods, DQBC [Ducoe 2015] is an active learning method designed to build a committee of deep architectures with a low computation cost. Our approach is described in Section 3.

We illustrate our analysis on two French dataset extracted from political discourses of former French president. Our results are obtained by a network made of two dense layers whose takes as input a Word2Vec embedding:

• De Gaulle / Hollande: This classication tasks is leveraged by the evolution in the presidential discourses during the 80s. Indeed [Mayare 2012] have hilighted two main factors. First, the themes, but also the lexicon used in the discourses, have of course evolved during the Fifth Republic, so as the presidential discourse style. Moreover media coverage, which used to rely on radio and is now essentially based on internet and television, impacts also on the discourses. On this dataset, our networks achieves 85 % of accuracy.

• Hollande / Sarkozy: This dataset is more challenging, rstly due that both presidents are contemporary, and also owing to the predominance of the crisis theme and the economic vocabulary in their discourses [Damon 2012]. Our network achieves 71% of accuracy.

We analyze three exercpts considered in early and late active learning stages.

The linguistic observes that, in the rst active learning phase, the selected sentences are indeed ambiguous for the linguist. For example, we nd these two excerpts: characterization between the lexical level and the grammatical level. The lexical composition would be rather Gaullist with a typical vocabulary tempête, êtes, évènements, ssumer , hrge o0ielle The grammatical structure is rather associated to Hollande with the use of the rst person ( m, je, m, moi) and a verbal tone (lots of verbs). In the end, at this stage, the analyst may therefore not be more sure of the paternity of these excerpts than the algorithm.

In the later active learning phase, illustrated by Quote 3, the selected sentences are gradually rened and disambiguated. After three active learning selection, for example, the algorithm remains indeterminate on the following excerpt:

Quote 13.3.3: De Gaulle Cela dit, l'apparition de l'Algérie dans la situation d'un Etat indépendant coopérant organiquement avec la France . . .

The analyst recognizes without diculty the phraseology, the lexicon and the concerns of De Gaulle period (the issue of elgérie and France, the nominal tone).

However, we may assume that the introductory words cela and dit scramble the classication since they do not belong to the phraseology of De Gaulle. as anchors, will help to express the rules given a set of queries.

Conclusion

Deep architectures have demonstrated a compelling potential for a better sampling of the target manifold [Bengio 2007] thanks to their expressive power [START_REF] Bengio | [END_REF]].

However, the lack of comprehensive understanding (both on a theoretical or a practical aspect) of their underlying mechanisms hampers their broader application to dicult linguistic tasks. We made a step towards understanding the shared linguistic knowledge entailed in both machine and human analysis processes. Indeed, we analyzed the ability of deep learning approaches to cross the dierent levels of text granularity, vocabulary granularity, and morphosyntactic structure granularity, to encompass all the linguistic knowledge at once. Furthermore, we shed light on the persistent intricacy of the predictive process even for relatively simple classication task from a linguist's point of view.

Chapter 14

Conclusion

We derived existing techniques such as active learning and deconvolution to explain When it comes to the perspectives that will result from our contributions on the Wasserstein distance, they are threefold. Of course, we will investigate with more empirical experiments the impact of Wasserstein prototypes in increasing the diversity of active learning queries. But we also wish to dedicate their usage into the evaluation of GANs and transfer learning for deep networks. Indeed, Wasserstein prototypes may underline new statistics of the input space. On another side, the approximations of pairwise Wasserstein distance on text may create a new kind of adversarial attacks (see Section 8.4.2.1). Preventing the aws underlined by those attacks will help to increase the robustness of our deep models.

Last but not least, our recent success in deriving adversarial attacks for AL opens up promising perspectives in the development of new regularizers for active learning on deep networks. Indeed, recent works on robustness to adversarial attacks derived networks to threshold the adversarial attacks [START_REF] Dvijotham | [END_REF]]. Combining their approach with our method could potentially lead to fasten the convergence in terms of annotations.

Conclusion

The success of deep networks is well established. However, supervised learning In a nutshell, we extend active learning to deep networks. We also design new tools to improve human understanding of complex data and their predictions, particularly for linguistic tasks. We hope that our contributions will highlight new solutions towards a more robust, explainable and less greedy AI. For a sake of clarity, we only consider the Fisher matrices along one layer of a network, while our proof may be easily extended to any other depth following the same path of reasoning. We assume that every Fisher matrix is a positive denite matrix. Also, according to the previous work of Martens et l. , we assume that every Fisher matrix may be decomposed as a kronecker product. Consequently every factor ψ i and τ i is a positive denite matrix.

I A = diag([ψ A,l ⊗ τ A,l ] L l=1 ) ψ A,l = 1 |A| (x i ,y i )∈A ψ i,l τ A,l = 1 |A| (x i ,y i )∈A τ i,l
Due to the properties inherent with the trace and the product of kronecker factors, our criterion reads:

f (B; P, A) = T r(ψ A∪B ψ -1 A )T r(τ A∪B τ -1 A )

When looking for a xed size k, |B| = k then we can discard the mean factors, and our criterion is equivalent to:

f (B; P, A) ≡

x i ∈A T r ψ i ψ -1 A +

x j ∈B T r ψ j ψ -1 A x i ∈A T r τ i τ -1 A +

x j ∈B T r τ j τ -1 A It appears intuitive to check whether our objective function is sumodulr. Submodularity is a diminishing returns property: adding an element to a smaller set has larger relative eect than adding it to a larger set. A key result is that we can minimize a submodular function in strongly polynomial time []. Thus we can add the optimal query according to our criterion.

In order to be in accordance with minimising a submodular function, our objectives are:

• minimising instead of maximizing. This is obtained with Eq. A. We denote respectively by Sep(P) and Diam(P) the minimum and maximum of distances between two samples from P. Our Wasserstein objective f (•) with idd assumption is not necesarrily monotone, nor submodular. In Proposition 1, we modify our criterion so to make it submodular, non-negative and monotone. We demonstrate in A.3.4.4 that thanks to our new objective function, we can guarantee convergence bounds for f (•).

Proposition 1. e onsider s our ojetive funtion 
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Figure 2

 2 Figure 2.1: Illustration of Pool-Based Active Learning: A=Labeled training set ; B=Classier ; C=Unlabeled set ; D=Queries ;E=Oracle

Figure 2

 2 Figure 2.3: AL on a toy data-set. We consider a binary classication tasks on n=100 samples ( • positive examples, • negative examples) and want to learn an optimal classier with no bias. Because the data are well separated, there exist an optimal linear classier (W) that can be learnt using at minima four samples: by labelling (A, B, C, D). However, the probability of sampling those points at once is of 1 ( n 4 )

Figure 2 . 4 :

 24 Figure 2.4: Version space example for linear classiers on a binary task.

  Figure 2.5: Consider the network's predictions of both the labeled training points s (•) and the unlabeled points (•). Sener et l. shows that if the labeled training set covers the space by a distance of at most δ s (s illustrted in PFS@A) then the oreE set loss is bounded by O(δ s ) + O( 1 n ) with n denoting the number of points available.

  selects the samples which maximize the mutual information. But top score is limited because it does not take into account the correlations among the samples. Similar examples will tend to have similar scores, but labeling all of them would not be ecient. To alleviate the sampling bias inherent in active learning heuristics, several works have combined their batch active learning framework with a diversity selection scheme to increase the representativeness of the training set. They either rely on statistical tests to measure the distribution dierence, such as Maximum Mean Discrepancy (MMD) ([Wang 2015]), express the data subset selection for specic shallow classiers as a constrained submodular maximization [Wei 2015, hoi ] or rely on core-set approaches [Ozan Sener 2018].

  how the Rademacher complexity in AL helps to develop strategies extendable to a wide panel of input distributions (while previous AL strtegies like the ones proposed in fln PHHUD gstro PHHU were dt spei(). It turns out that the disagreement set: the set of consistent classiers for which there are two classiers whose predictions at point x disagree with each other play an important role in the development of active classication algorithms. When it comes to such a disagreement set, Koltchinskii has shown that the number of samples required to cover this disagreement space can be estimated using Rademacher complexity. Finally establishing a close connection between dropout [Hinton 2012], and Rademacher motivates the usage of dropout in an active learning context, either to measure disagreement over the models (see ghpter Q) or by sampling through the distribution of the weights ([Gal 2016b]).

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Sampling a committee with Dropout . . . . . . . . . . . . . . 25 3.3 Disagreement Scoring Function . . . . . . . . . . . . . . . . . 27 3.4 Empirical Validation . . . . . . . . . . . . . . . . . . . . . . . 28 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1 Introduction • We scale ueryEfyEgommittee for deep networks • We use dropout at test time to sample a committee of neural networks • We query unlabeled samples which maximize a disagreement score over the committee's members ivery dtset nd prmeters used to ondut our experiments re ville in the dataset setion eFI nd the hyperparameter setion eFPFI mducoe/DQBC Summary In this chapter, we consider an active learning method based on Query-By-Committee (QBC). [Seung 1992] have proposed the rst algorithm based on Query-By-Committee strategy. They proved two relevant results: rst, the generalization error of a linear classier for random training samples behaves like the inverse power law,

Figure

  Figure 3.1.

  Figure 3.2: DQBC(qbdc) with top score selection: Evolution of the test error given the ratio of annotated data over the training set.

  ivery dtset nd prmeters used to ondut our experiments re ville in the dataset setion eFI nd the hyperparameter setion eFPFP mducoe/DFAL Proofs are available in Appendix A.3.1 Summary One of the most standard active learning strategies is to rely on the uncertainty measure. Uncertainty in deep networks is usually evaluated through the network's output. However, this is known to be misleading. Indeed, the discovery of adversarial examples has demonstrated that the way we measure uncertainty may be overcondent. Adversarial examples are inputs modied with small (sometimes not perceptually distinguishable) but specic perturbations which result in an unexpected misclassication despite the strong condence of the network in the predicted class [Szegedy 2013]. Moreover, their perturbation is often hardly visible (see pigure RFI for n exmple).
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 4 Figure 4.1: en dversril inputD overlid on typil imgeD n use lssi(er to mistegorize pnd s gionF[START_REF] Goodfellow | [END_REF] 
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  The training set is then augmented by B: A t+1 = A t ∪ B Balcan et l. demonstrated the signicant benet of margin-based approaches in reducing human annotations. We illustrate several margin-based active learning heuristics in Figure4.2: for each scenario, the data underlined in green will be queried. Especially, Figure4.2(d) describes our contribution. In the original case in Figure4.2(a), the projection of an unlabeled sample to the decision boundary determines whether or not it is worth to query its label, depending on the distance between the sample and the boundary. Margin-based strategies are eective, but they require to know how to compute the distance to the decision boundary. When such a distance is intractable, a simple approximation consists in computing the distance between the sample of interest and its closest neighboring sample which has a dierent predicted class.Approximating the distance between a sample and the decision boundary, by the distance between this same sample and its closest neighboring sample from a dierent class, is coarse and computationally expensive.Instead, we propose DFAL; a Deep-Fool based Active Learning strategy which selects unlabeled samples with the smallest adversarial perturbation. Indeed, adversarial attacks were initially designed to approximate the smallest perturbation to cross the decision boundary. Hence, in a binary case, the distance between a sample and its smallest adversarial example better approximates the original distance to the decision boundary than the approximation mentioned above, as illustrated in

Figure 4 . 2 :Figure 4

 424 Figure 4.2: Illustration of dierent margin-based active learning scenarios in the binary case

Figure 4 . 3 :

 43 Figure 4.3: Evolution of the test accuracy achieved by 7 active learning techniques on wxs and hoeEfg given the number of annotations. We denote by DFAL_ our active learning method when not adding the adversarial examples. We use a log scale in the x-axis and a linear scale in the y-axis.
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 44 Figure 4.4: Evolution of the test accuracy achieved by 7 active learning techniques on uikEhrw given the number of annotations. We denote by DFAL_ our active learning method when not adding the adversarial examples. We use a log scale in the x-axis and a linear scale in the y-axis.
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 4 5(a), CORE-SET achieves similar accuracy than RANDOM. Due to the running time of CORE-SET, we could not pursue CORE-SET until convergence. On the other hand, our method DFAL converges much faster. The second experiment consists in combining active learning with transfer learning: we use VGG8 as a pretrained network that remained xed during the training on gts 8 hogs. In Figure 4.5(b) we train a CNN with 3 layers of convolutions, maxpooling and 2 dense layers, with a dropout rate of 0.5 and articial augmentation.

Figure 4 . 6 :

 46 Figure 4.5: Evolution of the test accuracy achieved by 3 active learning techniques given the number of annotations

Figure 4 .

 4 Figure 4.7: Overlap of the classication regions of LeNet5 and VGG8 trained on the QuickDraw datasets. Blue dots • are test samples that fall into the same classication regions for both networks, while red dots • do not fall

  Figure 4.6 we have recorded hoeEfg adversarial queries for LeNet5 and use them for training VGG8. While the test accuracy achieved is lower than with the adversarial active strategy directly applied for the training of VGG8, the transfered training set achieves better accuracy than RANDOM. When reaching 1000 annotated samples, it is also better than considering other active criteria designed for VGG8. We go further and compare the accuracy on 1000 test samples of DFAL and CORE-SET trained on the transfered training set in Table 4.4. Surprisingly the transfered queries from CORE-SET perform better than RANDOM. However, in almost every case, the transfered queries with DFAL outperform CORE-SET and RANDOM. We have therefore shown the relevance of transfering adversarial examples generated within active learning from one architecture to another. This opens up promising perspective for the design of tractable methods to explore network architectures. motivationsIt is challenging to demonstrate theoretically the gain in annotations of DFAL owing to (i) the high-dimensional space induced by deep networks and (ii) the lack of understanding of the phenomenon of adversarial examples. However, we have lately been able to prove the gain of DFAL for linear classiers theoretically (see eE tion RFT). Specically, we demonstrate the theoretical gain in reducing the labeling eort when data are drawn from the unit ball and consistent with a linear separator with no bias. Notice that our proof may be extended to other distributions as long as they are iid along any dimension (such as isotropic Gaussian).We already know from the theoretical work of[START_REF] Balcan | [END_REF]] that we need to sample the examples from a subregion carefully chosen to obtain an exponential improvement in the label sample complexity. Such subregion is the area along the decision boundary given the current generalization error achieved at iteration k. For the linear case, DeepFool is a natural extension of the well-known attack which consists in adding the perturbation along the gradient direction In the linear case, adversarial attacks directly measure the distance to the decision boundary. Thus, when sampling unlabeled samples with the smallest adversarial perturbation, we sample examples from the low condence subregion and we are consistent with Balcan's protocol. Our proof goes further, by demonstrating how the adversarial counterparts help reducing up to twice the number of required queries. Our proof goes into two steps: (i) Based on the notion of adversarial strength,[START_REF] Tanay | [END_REF]];

Figure 4

 4 Figure 4.8: range of adversarial perturbations (i.e. distances between samples and their adversary) for VGG8trained on wxs with 10, 20, 30 . . . to 100 labeled examples. A curve corresponds to the range of adversarial pertubation found on the unlabeled example, while its color matches the size of the labeled set used to train the network

  Up to our knowledge, how to understand the underlying phenomena and how to defend against them eectively are still open questions. Meanwhile,[START_REF] Tanay | [END_REF] have investigated the phenomenon of adversarial examples for binary linear classiers. They proposed a new taxonomy to classify adversarial attacks: they dened the notion of dversril strength and show that it can be reduced to the deviation angle between the classier considered and the nearest centroid classier (iFe the isseting hyperplne etween positive nd negtive smples).The probability of transferability of an adversarial attack directly depends on the level of regularization used; more specically to the deviation angle between the classier and the bissecting hyperplane between positive and negative samples. Based on the notion of dversril strength, we dene weak adversarial examples. Weak adversarial examples will not transfer to any other consistent classier, other than the one they have been designed for. They result from a lack of regularization, which can be improved by adding the adversarial sample to the training set. Similarly, as for DFAL, we can use twice the same label for any sample and its weak adversarial counterpart. If one is able to design weak adversarial examples given a labeled sample x, then we can increase the training set without corrupting it. Eventually, the weak adversarial sample will have the same label as x.

Figure 4 .

 4 Figure 4.9: Toy problem: learning a linear separator that predicts with no error the labels of positive instances •, and negative instances •. We illustrate the notion of weak adversarial examples • on two samples x 1 and x 2 .

Denition 4 .

 4 6.2: Transferable adversarial attacksGiven L(X × Y ) the set of optimal classiers given the task at hand, we dene two boundary classiers: S the strong linear classier of unit vector s, and W the weak linear classier of unit vector w. S is consistent with the training set and minimizes the deviation angle with B. W is consistent with the training set and maximizes the deviation angle with B.

Figure 4 .

 4 Figure 4.10: Repartition of weak examples • for samples • lying in the low condence subregion of a consistent classier C

  ] for deep networks 1 . The posterior distribution Pr(w | A, α) is approximated with a tractable distribution Q(w | β) depending on a new parameter β. The quality of the approximation Q(w | β) compared to the true posterior Pr(w | A, α) is measured by their Kullback-Leibler divergence, with L the log-likelihood.

  Figure 5.1: Illustration of our active learning criterion for linear separators (see Eq. 5.11): A t ={ • }, B ={ • }, P\{A ∪ B} ={ • }. We learn a logistic classier with no bias on a 2D binary classication task. The data are made of a mixture of two Gaussians ( on the left lie positive examples and the right negative examples).

  Perspective: Bayesian Active Learning through Laplace Approximation max B F w (A ∪ B) ≥ max B -N log T r(I -1 A∪B I A ) + Const (5.10)

  Figure 5.2: Empirical evaluation of A-optimality on CNNs: Test error achieved for dierent percentage of the whole training set. We use wxs 5.2(a) and rx 5.2(b). We compare A-optimality (y pproximting the pisher mtrix with upegD see etion SFQ) against random selection and uncertainty selection [Ducoe 2016b]. We consider 2 CNNs whose hyperparameters are fully described in Appendix A.2.3.

  Approximation if ∀A log(Pr(A)) Const then F(A) =⇒ KL(Q(w t | β)|| Pr(w | A∪B, α)) (5.14) To promote the diversity among our training set, we advocate the use of a distance on distributions, the 2-Wasserstein distance. The Wasserstein distance is a powerful tool based on the theory of optimal transport to compare data distributions. It knows a renewed interest thanks to its success in generative modeling and image processing. While, to our knowledge, Wasserstein distance has not yet been investigated in active learning, several of its properties are nevertheless highly relevant in our context. Wasserstein can be applied to distributions with non-overlapping supports and has good out-of-sample performance. Moreover, it is robust to discrete distributions without the need to resort to kernel estimators, and is parameter-free, unlike Maximum Mean Discrepancy [Muandet 2017].

  Figure 5.3: Illustration of KFAC approximation on VQA network [Antol 2015]. VQA stands for Visual Question Answering. It is a multimodal classication task that involves a lot of handcrafted descriptions to build the training set. Consequently, active learning is perfectly suited for VQA. While it requires a lot of labeled training data, it is likely than just feeding it with random data

wxs and uikEhrw . 4 Figure 5 . 4 :

 454 Figure 5.4: Evolution of the test accuracy achieved by 7 active learning techniques on wxs and uikEhrw given the number of annotations. We denote our method by FISHER

  Future works should improve the selection of the queries according to the properties of minimizing a submodular function. More comparative studies are required to assert of the relevancy of our sher criterion: 1. diversity: what is the impact of our Wasserstein covering compared to random selection or any other diversity based criterion proposed in active learning Scale Dataset: how will BalNet behave on large scale datasets? 3. Classication tasks and network architectures: DFAL and CORE-SET are designed for CNNs and have been asserted on image classication tasks. The performance of BalNet should also be tested on other tasks such as Visual Question Answering and architectures such as LSTMs.

  in a wide class of applications is somehow limited, especially because of an heavy computational burden. In the discrete version of the above optimisation problem, the number of variables scale quadratically with the number of samples in the distributions, and solving the associated linear program with network ow algorithms is known to have a cubical complexity. While recent strategies implying slicing technique[Bonneel 2015, Kolouri 2016a], entropic regularization[Cuturi 2013a[START_REF] Benamou | [END_REF], Solomon 2015b] or involving stochastic optimization[Genevay 2016], have emerged, the cost of computing pairwise Wasserstein distances between a large number of distributions (like an image collection)
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 2 Figure 8.1: Architecture of the Wasserstein Deep Learning: two samples are drawn from the data distribution and set as input of the same network (φ) that computes the embedding. The embedding is learnt such that the squared Euclidean distance in the embedding mimics the Wasserstein distance. The embedded representation of the data is then decoded with a dierent network (ψ), trained with a Kullback-Leibler divergence loss.
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 8 Fig. 8.2. Note that there are 2 ways to compute the W 2
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 84 Figure 8.4: Barycenter estimation on each class of the wxs dataset for squared Euclidean distance (L2) and Wasserstein Deep Learning (DWE).
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 85 Figure 8.5: Interpolation between four samples of each datasets using DWE. (left) cat dataset, (center) Crab dataset (right) Face dataset.

Figure 8 . 6 :

 86 Figure 8.6: Comparison of the interpolation with L2 Euclidean distance (top), LP Wasserstein interpolation (top middle) regularized Wasserstein Barycenter (down middle) and DWE (down).

  Figure 8.7: Principal Geodesic Analysis for classes 0,1 and 4 from the wxs dataset for squared Euclidean distance (L2) and Wasserstein Deep Learning (DWE). For each class and method we show the variation from the barycenter along one of the rst 3 principal modes of variation.

Figure 8 . 8 :

 88 Figure 8.8: Illustration of WMD. Words are embedded with Word2Vec. The distance between the two sentences is the minimum cumulative distance that all words from the rst sentence need to trvel to be transformed into the target sentence.

Figure 8

 8 Figure8.9: Two sentences x 1 and x 2 are sampled from the data distribution. Each of their words are encoded by a rst network ψ whose input size matches the dimension of the words' embedding. ψ outputs a vector for each word which are then summed together into a unique vector. This vector is nally encoded by a second network τ thats computes the embedding that mimics the Wasserstein distance.
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 8 Figure 8.10: Deep Reccurent Wasserstein Embedding for Text
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  Figure 9.1: girleX Visualization of prototypes selected given dierent criteration with p=2

  Figure 9.4: Q qussins with di'erent rtioX Visualization of prototypes selected given dierent criteration with p=2

  Wasserstein may help in upper bounding the pproximte risk over a classication task 7.3.3. Considering Wasserstein prototypes will help to get closer to the empirical risk, as we will diminish the radius of the Wasserstein ball.

  Figure 9.5: Comparison of BalNet[Ducoe 2016c] with () and without () using Wasserstein prototypes as a post processing step to select the queries (with p=2

  Fig 11.1.

Figure
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 2 Litterature 11.2.1 CNNs for Text classication CNNs are widely used in the computer vision community for a broad panel of tasks: ranging from image classication, object detection to semantic segmentation. It is a bottom-up approach where we applied an input image, stacked layers of convolutions, non-linearities, and sub-sampling. Encouraged by the success for vision tasks, researchers applied CNNs to textrelated problems [Kalchbrenner 2014, Kim 2014]. The use of CNNs for sentence modeling traces back to [Collobert 2008]. Collobert adapted CNNs for various NLP problems including Part-of-Speech tagging, chunking, Named Entity Recognition and semantic labeling. CNNs for NLP work as an analogy between an image and a text representation. Indeed each word is embedded in vector representation. Then several words build a matrix (concatenation of the vectors). If Recurrent Neural Networks (mostly q nd vw ) are known to perform well on a broad range 11.2. Litterature 111 of tasks for text, recent comparisons have conrmed the advantage of CNNs overRNNs when the task at hand is mostly a keyphrase recognition task[START_REF] Yin | [END_REF]].

  et l. designed adversarial attacks by iteratively replacing words by synonyms until it occurs a change of prediction [Kuleshov 2018]. Recently, Ribeiro et l. proposed a new system, called SEARS, to develop adversarial examples for NLP with logical rules to generate them [Ribeiro 2018b]. While previous works introduced ways to measure semantic similarity, none of them could detect unnatural sentence, nor create new sentences. SEARS use neural machine translation to generate paraphrase and combine it with semantic similarity. SEARS generates similar rules for a various type of applications, such as VQA and machine comprehension. back onto the input space would highlight new linguistic structures and would lead to improving the analysis of a corpus and a better understanding of where the power of the Deep Learning techniques comes.

  Figure 12.1: CNN model
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 124 Figure 12.4: Z-score versus Activation-score

Figure 12

 12 Figure 12.5: co-occurrences analysis of nd if showed by Hyperbase. A layer shows the major co-occurrences for a given word (or lemma or PartOfSpeech). There two layers of cooccurrences, the rst one (on top) show the direct co-occurrence and the second (on bottom) show a second level of co-occurrence. This level is given by the context of two words (taken together). The colors and the dotted lines are only used to make it more readable (dotted lines are used for the rst level). The width of each line is related to the Z-test score (the bigger the Z-test, the wider the line).
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 12 Figure 12.6: co-occurrences analysis of fll showed by Hyperbase

  Figure 12.7: Deconvolution on E. Macron speech.

Figure 12

 12 Figure 12.8: Main part-of-speech cooccurrences for trnsformtions showed by Hyperbase
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 13 Figure 13.1: We train a network (B) on a labeled training set (A) made of sentences extracted from political discourses. When the network has converged , we query new sentences (D) among a pool of unlabelled samples (C), using DQBC. The queries are submitted to a human oracle (E) to be analyzed using phraseology techniques.

  Quote 13.3.1: De Gaulle C'est cela que les évènements m'ont amené à représenter à travers toutes les tempêtes . . . Quote 13.3.2: Hollande Je transmettrai ma charge ocielle à celui que vous aurez élu pour l'assumer après moi . . . In these two examples Quotes 1, and 2, one can foresee a contradictory linguistic
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 4 Future works: Analysis with Model Agnostic Explanations 131 13.4 Future works: Analysis with Model Agnostic Explanations Future works will envisage systematic and automatic methods to highlight the information contained in the queries. The rst tasks will consist in identifying the bias of active learning settings using model agnostic explanations: when reaching a certain accuracy, is the prediction based on the same observations or does it also depends on the choice of annotations. Eventually, model agnostic explanations, such

  the decision of CNNs on a text. Although such methods have been thoroughly asserted on images dataset, extending them to text data was a challenging task.Indeed, working on Model Explanations for text classication requires the collaboration with linguistic experts, unlike natural image classication whom generally may be explained by any user. Explaining a pattern requires to clearly understand the data and the information held in a sentence, something that neither a non-native speaker (whom may have a poor comprehension of the meaning of a sentence itself ), neither a native speaker may provide. Indeed the underlying mechanisms involved in our cognition when analyzing a sentence is still an open research eld. Thus we focus our work in understanding the linguistic information kept by a CNN. We hope that our contributions will help in optimizing the design of new architectures and words embedding. Moreover, as a perspective, we would like to pursue future works in strengthening our visualization with automatic tools. Ph.D. thesis, we would like to underline how the dierent topics covered in this manuscript intertwine and how they bring perspectives that focus mainly on a better understanding of the mechanisms which are at the heart of the success of deep learning.Firstly, AL methods have been at the core of this thesis, but we have been mainly focusing on reducing the annotations costs for image classication. Future works should also focus on its applications on new elds such as linguistic tasks. Indeed this would bring a broader view of which active learning criterions are ecient for deep networks, independently from the input space. Moreover, this study would open promising opportunities towards applying active learning for deep networks on structural data. Furthermore, AL can be derived to illustrate the learning stage of deep models.If we thoroughly study the resulting patterns of this scenario, we could underline unknown learning strategies developed in the training of deep networks.

  requires a large amount of labeled data. A highly relevant question is how to gather this training set. Optimizing its construction and avoiding biases are two main issues. This Ph.D. thesis contributed to this problematic by focusing on two main directions:Firstly, we reduced the size of the training set by using active learning. Active learning consists in building the training set iteratively. Given a set of unlabeled examples and a deep network, active learning queries the data to be labeled that will improve at best the accuracy. Here the main issue is which data should be labeled to ensure the sparsest training set as possible. Active learning is considered to be one of the pillars of machine learning, although it has not been the subject of further study on one of the greatest successes of machine learning: deep neural networks. If few algorithms have been interested in the question, it is because we could not scale existing algorithms to deep networks. As a result, we could not use active learning methods on deep networks without increasing the computation time drastically. Our work contributes to new active learning heuristics that scale for CNNs. In that context, we proposed several methods ranging from adapting existing active learning algorithms such as query-by-committee, to create inedite methods that take into account the properties inherent with deep networks. Our contributions open up promising directions towards using active learning in the development of academic or industrial applications.Secondly, another problem remains; the biases in the training set. These biases are highly relevant as they may alter the predictions of the network, but also comfort the users in their take of decisions. Our solution is to visualize the data with a subset of prototypes. One of the main challenges is to decide what kind of information should be illustrated by those prototypes. With this in mind, we focused on the Wasserstein distance. The Wasserstein distance is used to measure the dierences between the two distributions. In our case, it is the distribution induced by the learning data, and the one made up of prototypes. Our work also focused on combining Wasserstein distances and neural networks so to speed up the computation of Wasserstein distance. Such speed up will help to spread the usage of Wasserstein into new applications.

A. 3

 3 .2 Bayesian Active Learning through Laplace Approximation ♠ Denition of the problem: Find a subset B of size k, in a pool of data P such that ∀ A ⊂ P, B A = ∅ B maximizes the following criterion g(•): g(k; P, A) = arg max B⊂P, B A=∅, |B|=k f (B; P, A) f (B; P, A) = T r(I A∪B I -1 A )

  7 g(k; P, A) = arg min B⊂P, B A=∅, |B|=k -f (B; P, A)(A.7) f (B ∪ {x 1 , x 2 }; A) =f (B ∪ {x 1 }; A) + f (B ∪ {x 2 }; A) -f (B; A) + f 1 ({x 1 }; ∅)f 2 ({x 2 }; ∅) + f 1 ({x 2 }; ∅)f 2 ({x 1 }; ∅)Because f 1 (•; ∅) and f 2 (•; ∅) are stricly positive functions, Eq. A.8 holds.distributions on Ω with countable support: there exists a countable set P ⊂ Γ such that µ(P) = ν(P) = 1. Then the following inequality holds: Sep(P) p x∈P |µ(x) -ν(x)| ≤ W p p (µ, ν) ≤ Diam(P) p x∈P | µ(x) -ν(x) | (A

  Consider S ⊂ P the support of ν, and denoteF (S) = x∈P |µ(x) -ν(x)| 1 p .F (S) can be easily bounded. First we assume ν ≡ µ so that at least one element of µ (or reciprocally) is not in the support of ν. Thus ∀S F (S) ≥ 1 |P| 1 p . On the other side, if µ and ν lies in independent support: S U = ∅ then, F is bounded by 2 1 p . Eventually, the inequality of F (S) reads: can upper bound the ratio between any subsets given F: ∀ S 1 , S 2 ⊂ P then F (S 1 ) F (S 2 ) ≤ (2|P|)1 p .

  U) the distance matrix between samples from S and U and Γ(S, U the transportation matrix between samples from S and U. For convenience we denote such matrices respectively by C and Γ. Eventually, we can express W p (S, U) by:W p (S, U) = i,j C i,j Γ i,j ≤ i 1 |S| * C i,j ≤ Diam(P)
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  Theoretical Justication of Active Learning for Deep Networks 19 generalization error's upper bounds based on the VC dimension or on some approximation of the Rademacher complexity were overly pessimistic. As pointed out by Zhang et l. , deep networks exhibit dierent learning behaviors than shallower classiers such as SVM. Thus common generalization metrics may not adequately explain the generalization error of neural networks. In [Zhang 2016], they empirically demonstrate that deep networks can still generalize while learning on a training dataset corrupted at some point. Indeed, the authors introduce a certain percentage of random labels in the training set. Despite this noise, not only the networks is ableto generalize, but it also overts on the whole training set. Moreover, introducing regularization scheme does not alter the phenomenon. This is really surprising, as we expect regularization to counter overtting, as it happens for shallower classiers. However, as pointed out in[START_REF] Krueger | [END_REF]], even if they are able to do so,

ing data and yet generalizes better than classiers with smaller VC dimension. The 2.4.

deep networks probably don't memorize the training set on natural datasets since the number of epochs required to learn the training set on natural data is less than

  Chapter 2. Introduction curse of dimensionality,[START_REF] Fawzi | [END_REF]] have also observed that few directions interfere with the decision boundaries. Considering now the low dimensional space dened by those impacting directions, it becomes likely that the samples do not suer anymore from the curse of dimensionality and, thus the distance to the decision boundary will dier among the samples. Eventually, certain samples will lie closer to the decision boundaries of neural networks, and are thus highly uncertain in an active learning context. Our assumption comes in line with other measures of the generalization error based on robustness. Robustness, from the seminal work of Xu et l. ,[START_REF] Xu | [END_REF], expresses the correlation between the generalization error and the robustness to perturbations over the training set. [Tom[START_REF] Zahavy | [END_REF] extend their work to demonstrate how deep networks can generalize well when their sensitiveness to adversarial perturbations is bounded in average over the training examples. if the sample set Z can be partitionned into K disjoints sets denoted by {C i } K

	Denition 2.4.2: Ensemble Robustness
	i=1 such
	that the following holds for any input data

A randomized algorithm A is (K, ε (n)) ensemble robust for K ∈ N,

FULL CNN PARTIAL CNN pCNN BACKPROPAGATION ON THE LAST LAYER

  

	3.3. Disagreement Scoring Function
	Figure 3.1: applying batchwise dropout to build a prtil CNN from the full CNN
	set. This netuning is not prohibitive as the number of parameters in a partial CNN
	is drastically much lower than in the full CNN, due to batchwise dropout.
	CNN, we netune each member of the committee on the current labeled training

D

Table 3 .

 3 1: Example of Sample Selection. The icon outputs by a network represents its most probable label on the unlabeled sample. Samples (A) and (B) are both

		unlabeled examples. Sample (A) is more appealing as it will necessarily reduce the
		version space by a ratio of 4. Whereas Sample (B) will reduce at worst the version
	Every dataset	space by a ratio of 2.5. On another side, if one has complementary information about
	and parameters	the networks, such as the condence of each network in their prediction, sample (B)
	used to	may become a better choice.
	conduct our	
	experiments	
	are available in the dataset	3.4 Empirical Validation
	section A.1	
	the hyperparameter	We
	section A.2.1	

  .2 Margin-Based Active Learning for Deep Networks Method 4.2.1: Adversarial Active Learning We have a pool of unlabeled data P and start training our CNN with a small set of training samples A. This is the initial state of our active learning training set A 0 = A. At each iteration t, we aim at selecting the optiml batch B by following those steps: 1. The network is trained on the current training set A t leading to the weights w t+1 2. We search for the optiml batch B of samples to be added to the training set, i.e. the batch B whose samples ows the minimal adversarial pertur-

	uncertainty-based selection from being an ecient active learning criterion for deep
	networks. On the other hand, the magnitude of adversarial attacks does provide
	a piece of information about how far a sample is from the decision boundariy of a
	deep network. This information is relevant in active learning and known as margin-
	based active learning. In a generic margin-based active learning, we assume that
	the decision boundaries evolve towards the optimal solution as the training set in-
	creases. Hence, samples lying the farthest from a decision boundary do not need
	to be labeled by a human expert, as long as the current model is consistent in its
	predictions with the optimal solution. To rene the current model, margin-based
	active learning queries the unlabeled samples lying close to the decision boundary.
	[Balcan 2007] have demonstrated the signicant benet of margin-based approaches
	in reducing human annotations: in specic cases, one may obtain an exponential
	improvement over human labeling. However, it requires computing the distance
	between a sample and a decision boundary which is not tractable when considering
	deep networks. Although we can approximate this distance by nding the minimal
	distance between two samples from dierent classication regions (i.e., correspond-
	ing to two dierent classes), such an evaluation is computationally expensive, nor
	it provides a tight upper bound. Eventually, the minimal adversarial perturbation
	of a sample does provide a better upper bound on how far this sample is from the
	closest decision boundary.
	In this section, we do not consider adversarial examples as a threat but rather
	as a guidance tool to query new data. Our work focuses on a new active selection

criterion based on the sensitiveness of unlabeled examples to adversarial attacks. We depict our method in Method 4.2.1.

4bation For

Table 4 .

 4 .1): wxs , hoeEfg, and uikEhrw . For uikE hrw , we downloaded four classes from the Google Doodle dataset: Cat, Face,

	Angel, and Dolphin.				
		img size # classes # Training # Test
	MNIST	(28,28,1)	10	60,000	10,000
	Shoe-Bag	(64,64,3)	2	184,792	4,000
	Quick-Draw	(28,28,1)	4	444,971	111,246
	CIFAR10	(64,64,3)	10	50,000	10,000
	Cats & Dogs (150,150,3)	2	2000	2000

1: Summary of the datasets used to evaluate DFAL.

Table 4 .

 4 

2: Number of annotations to achieve the same test accuracy on LeNet5 and VGG8 as the accuracy obtained on the full training set (BASELINE, ± 0.5 %). add noise into the training set. Unlike CEAL, whose probability of acquiring extra samples depends on the eciency of the network, DFAL holds a constant number of extra queries, depending only on the number of queries. Moreover DFAL creates articial data which are not part of the pool of data. For example, in Tables 4.2(a)

and 4.2(c), CEAL used more than 20% of the training set of wxs and hoeEfg, while DFAL only used at most 2%. Thus, DFAL allows more queries, and may also be combined with CEAL. We observe that DFAL always remains in the top three of the best performing active learning methods. We dene those methods based on the test error rate when the labeled training set reaches 1000 samples. When

Table 4 .

 4 3: Average runtime of DFAL and CORE-SET on wxs . We denote by L the labeled training set, and U the unlabeled set of data; n query = 10

	40	Chapter 4. Adversarial Active Learning
		DFAL	CORE-SET	CORE-SET
	MNIST		(with regularisation)	(no regularisation)
	| L |= 100, | U |= 800 126.54	891.78	784.99
	| L |= 1000, | U |= 800 126.54	3739	3046

Table 4 .
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		Chapter 4. Adversarial Active Learning
		DFAL CORE-SET RANDOM
	LeNet5→ VGG8	97.80	96.90	94.46
	VGG8→ LeNet5	97.93	97.40	95.31
		(a) MNIST		
		DFAL CORE-SET RANDOM
	LeNet5→ VGG8	92.87	91.06	89.94
	VGG8→ LeNet5	89.23	89.41	89.42
		(b) Quick-Draw	
		DFAL CORE-SET RANDOM
	LeNet5→ VGG8	99.40	99.12	97.08
	VGG8→ LeNet5	98.75	98.50	98.07
		(c) Shoe-Bag		

]. One of the main issues raised is that multiple hypotheses (i.e. candidate networks) trained in parallel may require labeling dierent training points. 4: Comparison of the transferability of DFAL and CORE-SET with 1000

  Bayesian Active Learning through Laplace Approximation Instead of measuring the uncertainty for only one model, Bayesian Neural Networks oer the possibility to evaluate the uncertainty through an ensemble of models. In a Bayesian context, a neural network is considered as a parametric model which assigns a conditional probability on the observed labeled data A given a vector of weights w. If the weights follow some prior distribution Pr(w | α) (depending on the prmeter α), the posterior distribution of the weights can be written as Pr(w | A, α). We are interested in nding the most probable weights that have generated our data, i.e. the posterior over the weights given our observables. Such a probabilistic uncertainty is highly relevant in an active learning setting as it consequently leads to a pertinent exploration of the underlying distribution of the input data. This strategy is similar to QBC, with the main dierence that the size of the committee might be innite instead of being discrete as in Section 3.
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  This is the initial state of our active learning training set A 0 = A. At each iteration t, we aim at selecting the optiml batch B by computing a new loop of the following steps:1. the network is trained on the current training set A t leading to the weights w t+12. we search for the optiml batch B of samples to be added to the training set, i.e. the batch B maximizing the vritionl free energyB = argmax B F wt (A t ∪ B)3. we select a subset B ⊂ B of xed size such that A ∪ B follows at best the unknown input distribution (see setion SFP).
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	54	Approximation

Method 5.1.1: Bayesian Active Learning

We have a pool of unlabeled data P and start training our CNN with a small set of training samples A. 4. the training set is then augmented by B: A t+1 = A t ∪ B
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  Table 8.1. Those classes are much more dicult than wxs because they have not been curated and contain a very large variance due

	Network Data	CAT	CRAB	FACE	MNIST
	CAT	1.195	IFTSR	2.069	12.131
	CRAB	PFTPI 0.815 3.158	10.881
	FACE	SFHPS	5.445	1.254	50.526
	MNIST	9.118	6.698	RFTV	0.412

to numerous unnished doodles. An interesting comparison is the cross comparison between datasets where we use the embedding learned on one dataset to compute the Figure 8.3: MSE of the validation test given the number of epochs (DWE).

Table

8

.1: Cross performance between the DWE embedding learned on each datasets. On each row, we observe the MSE of a given dataset obtained on the deep network learned on the four datasets (Cat, Crab, Faces and MNIST).

Table 8 .

 8 2: Mean Squared Error (MSE) and Relative Mean Squared Error obtained on an independent test set, respectively on the witter and Visual Question Answeringdataset. We can see that DWE is actually learning the exact Wasserstein distance. Although, those results should be leveraged by the RMSE obtained when predicting the mean Wasserstein distance between two random sentences of witE ter (0.012) and Visual Question Answering (0.036).

		witter Visual Question Answering
	MSE	0.084	72.15
	rMSE	0.012	0.061

  s : 2 X → R is a non-negative, monotone, submodular function and is used to select greedily the set of prototypes S n , such that | S n |= n then, if we denote by S * the optimal solution, the following upper bound holds: X → R is a weakly submodular function with constant ε and is used to select greedily the set of prototypes S n , such that | S n |= n then, if we denote by S the optimal solution, the following upper bound holds: (Ω, ρ) is a metric space and suppose P is the uniform distribution based on a countable set P ⊆ Ω. We denote respectively by Sep(P) and Diam(P) the minimum and maximum distance between two distinct samples in P. If we greedily select the set of prototypes S n , such that | S n |= n then, if we denote by S *

	98	9.2. Approximate Submodularity for Wasserstein distance Chapter 9. Perspective: Wasserstein prototypes	97
		guaranteed not to dier from the optimal strategy by more than a xed constant, Although it is interesting to underline the approximate submodularity of Wasser-
	roughly 63%. stein prototypes, it does not provide strong theoretical guarantees on the quality
	of the Wasserstein prototypes found with greedy search. Indeed, due to the lin-
	Denition 9.2.2: Submodularity ear decay of Wasserstein given the number of samples, we know that few random
	samples are enough to make this upper bound not tight anymore. However, in
	practice, greedy selection over weakly submodular functions remains highly ecient
	[Krause 2010]. Moreover, such submodularity properties opens up interesting direc-
	tions for future research, especially for sparse dictionary selection using Wasserstein
	distance [Rolet 2016].	s(S n ) ≥ (1 -	e 1	) max |S * |≤n	s(S * )	(9.2)
		Unfortunaltely, submodularity is a strong property that generally does not hold
		in prototypical selection [Huszár 2012]. Indeed, Bayesian prototypical selection is
		known to satisfy a weaker condition of convergence denoted as wek sumodulrity.
		Denition 9.2.3: Weak Submodularity
			s(S n ) ≥ (1 -	1 e	|S|≤n ) max	s(S) -nε	(9.3)
		The property of Wasserstein prototypes lies in between submodularity and weak
		submodularity. Indeed, for Wasserstein prototypes, we do not have an additional
		factor nε in our upper bound, that is linearly growing given the number of pro-
		totypes, but a constant additional factor. However, unlike MMD, our objective
		function is not strictly monotone, as required in the previous denition. Thus we
		cannot obtain an upper bound given the maximum over all possible combinations
		of size less than k, but for size k only. In fact we provide our own denition of
		pproximte sumodulrity for Wasserstein prototypes, in Th. 2.1. All the proofs
		are available in Appendix A.3.4.			
		Theorem 2.1: Approximate Submodularity
		n the optimal solution of cardinality n, the following upper bounds holds:
			W (P, S n ) ≤ (1 -	1 e	)W (P, S * n ) +	1 e	Diam(P)	(9.4)

If

If s : 2 Suppose
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  To analyze the relevance of a word in a sentence, we only keep one value per

	118	Chapter 12. Deconvolution for Text Analysis
			Z-score	Deep Learning
	Latin		84%	93%
	French	89%	91%
	English	90%	97%
	Figure 12.3: Prediction task acuray with Z-score and Deep Learning

  4 Experiments This means that the training methods can also learn on their own some of the linguistic specicities useful in distinguishing between classes of text or authors.We've seen in work on images that this is the role of convolution. It learns an 12.5. Z-score Versus Activation-score 119 abstraction of the data to make classication easier. The question is: what is the nature of this abstraction on text? We will see now that deep learning detects words automatically with high Z-score, but this is not the only linguistic structure identied.

	Every dataset		
	and parameters		
	used to		
	conduct our		
	experiments		
	are available		
	in the dataset		
	section A.1		
	the hyperparameter	We	conduct our experiments on three datasets, respectively in English, French and
	section A.2.5	Latin.
		12.5 Z-score Versus Activation-score
		Z-score is one of the most used methods in linguistic statistics. It compares the
		observed frequency of a word with the frequency expected in the case of a "normal"
		distribution. This calculation readily gives, for example, the most specic vocabu-
		lary of a given author in a contrastive corpus. The highest Z-scores are the most
		specic words in this case. This is a simple but strong method for analyzing features
		of a text. It can also be used to classify word sequences according to the global Z-
		score (sum of the scores) in the sequence. The mean accuracy of this method on our
		data set is around 87%, which conrms Z-score is, in fact, meaningful on contrastive
		data. On the other hand, most of the time deep learning attains greater than 90%
		accuracy in text classication (As shown in Figure 12.3 a benchmark of our three
		datasets detailed in the next subsections 12.5.1,12.5.2,12.5.3). The Z-test can be
		approximated by a normal distribution. The score we obtain by the Z-test is the
		standard deviation. A low standard deviation indicates that the data points tend
		to be close to the mean (the expected value). Over 2 this score means there is less
		than 2

  que, d and et are also high in Z-score, but they do not activate the network at the same level. We saw in (reference ****) that deep learning is more sensitive to long words, but we can see also on Figure12.4 that words like tenet, multum or propius are totally uncorrelated. The Pearson 2 correlation coecient tells us that in this sequence there

	is no correlation between z-score and activation-score (with a Pearson of 0.38). This
	example is one of the most correlated examples of our dataset. Thus deep learning
	seems to learn more than a simple Z-score.
	To understand what the real linguistic marks found by deep learning are (the
	convolution layer), we did several tests on dierent languages, and our model seems
	1 Titus Livius Patavinus (64 or 59 BC-AD 12 or 17) was a Roman historian.

2 Pearson correlation coecient measures the linear relationship between the two datasets. It has a value between +1 and -1, where 1 is total positive linear correlation, 0 is no linear correlation, and -1 is total negative

  The next example is an excerpt of chapter 26 of the 23rd book

	of Livy:
	Quote 12.5.3: Latin corpus
	FFF tutus tenet se quod multum diu eh quttuor mili peditum et
	quingenti equites in supplementum missi ex eh suntF tum refet tndem spe castra propius hostem mouit lssem que et ipse instrui prri que iuet d insuls mritimm que orm tutndm F in ipso impetu mouendrum de FFF
	The statistics here identify this sequence with Caesar 5 but Livy is not far o.
	As historians, Caesar and Livy share a number of specic words: for example tool

5 Gaius Julius Caesar, 100 BC -44 BC, usually called Julius Caesar, was a Roman politician and general and a notable author of Latin prose.

Hyperbase is an online (http://hyperbase.unice.fr ) linguistic toolbox, which allows the creation of databases from a textual corpus and the performing of analysis and calculations such Z-score, co-occurrences, PCA, K-Means distance, ...
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Chapter 5. Perspective: Bayesian Active Learning through Laplace

Approximation

We compare the evolution of the test accuracy when using our method-that we denote BalNetagainst the following baselines:

• DFAL: we select on the whole unlabeled training set the rst n query samples with the lowest adversarial perturbation.

• BALD: we select on a random subset of the unlabeled training set the rst n query samples which are expected to maximize the mutual information with the model parameters. In that order, we sample 10 networks from the approximate posterior of the weights by also applying dropout at test time.

• CEAL: we select on the whole unlabeled training set the rst n query samples with the highest entropy on their network's prediction. We also label any unlabeled samples whose entropy is lower than a given threshold (which is set according to the authors' guidelines: 0.05 for wxs , 0.19 for hoeEfg and 0.08 for uikEhrw ).

Their labels are not queried but estimated from the network's predictions.

• CORE-SET: we select on a random subset of the unlabeled training set the n query samples which cover at best the training set (labeled and unlabeled data) based on the euclidean distance on the output of the last fully connected layer.

To approximate the cover set problem, we follow the instructions prescribed in [START_REF] Sener | [END_REF]: we initialize the selection with the greedy algorithm, and iterate with their mixed integer programming subroutine. We also handle the robustness as prescribed by the authors. We use orEtools 5 to reproduce the MIP subroutine.

• EGL: we select from a random subset of the unlabeled training set the rst n query samples whose gradients achieves the highest euclidean norm.

• uncertainty: we select from the whole unlabeled training set the rst n query samples with the highest entropy on their network's prediction.

• RANDOM: we select randomly from the whole unlabeled training set n query samples.

We average our results over ve trials and we plot in gures 5.4, the test accuracy achieved by each active learning methods for xed size training set: with 100, 200, ... to 1000 labeled samples. We denote as feivsxi, the test accuracy when training the network on the full labeled training set. Preliminary experiments demonstrate that BalNet is competitive with state-of-the-art active learning heuristics for image classication, CORE-SET and DFAL.

Chapter 6. Conclusion

We are aware of meta-learning algorithms, based on reinforcement learning, that learns an active learning policy [START_REF] Contardo | [END_REF]]. Up to our knowledge, neither AL heuristics nor meta-learning algorithms have yet been compared one to another.

However, it sounds relevant as future works to analyze both the performance and computational time of such algorithms regarding state-of-the-art active learning strategies. As meta-algorithms are learning transferable policies, they can be useful to develop hyperparameter search combined with query selection.

Part II

Learning Wasserstein Core-Sets Chapter 7. Introduction Theorem 3.2: Monotone Submodularity for MMD prototypes [START_REF] Kim | [END_REF] Let the kernel matrix K ∈ R n×n be element-wise non-negative, with equal diagonal terms k i,i = k * > 0 ∀ i ∈ [n] ad be diagonally dominant. If the o diagonal terms k i,j satises:

Then selecting MMD prototypes given Eq. 7.8 consists in maximising a submodular function which can be approximated with greedy search. 12.5.1 Dataset: English

The rst dataset we used for our experiments is the well known IMDB Movie review corpus for sentiment classication. It consists of 25,000 reviews labeled by positive or negative sentiment with around 230,000 words. With the default methods given by Hyperbase, we can easily show the specic vocabulary of each class (positive/negative), according to the Z-score. There are for example the words too, d, no or oring as most indicitive of negative sentiment, and the words nd, perE formne, powerful or est for positive. Is it enough to detect automatically if a new review is positive or not? Let's see an example excerpted from a review from December 2017 (not in the training set) on the last American blockbuster: Quote 12.5.1: English Review FFF i enjoyed three moments in the (lm in totl D and if i am being honest and the person next to me fell asleep in the middle nd strted snoring during the slow spe hsesenes F the story failed to drw me in nd entertin me the way FFF In general, the Z-score is enough to predict the class of this kind of comment.

But in this case, deep learning seems to do better, but why? If we sum all the Z-scores (for negative and positive), the positive class obtains a greater score than the negative. The words (lm, nd, honest and entertin with scores 5. 38, 12.23, 4 and 2.4 make this example positive. Deep learning has activated dierent parts of this sequence (as we show in bold/red in the example). If we take the sub-sequence nd if i m eing honest nd, there are two occurrences of nd but the rst one is followed by if and Hyperbase give us 0.84 for nd if as a negative class. This is far from the 12.23 in the positive. And if we go further, we can do a co-occurrence analysis on nd if on the training set. As we see on Figure 12.5, one of most specic adjectives 4 associated with nd if is honest. Exactly what we found in our example.

In addition, we have the same behavior with the verb fll. There is sleep next to it. sleep alone is not really specic of negative review (Z-score of 1.13). But with the word fll, sleep becomes one of the most specic (see the co-occurrences analysis -Figure 12.6).

The activation-score here conrms that deep learning seems to focus not only on high Z-score but more complex patterns and maybe detects the lemma or the part of speech linked to each word. While the embedding is modiable during the learning, it is possible that the nal word vectors share this kind of information. We List of Figures want to learn an optimal classier with no bias. Because the data are well separated, there exist an optimal linear classier (W) that can be learnt using at minima four samples: by labelling (A, B, C, D). However, the probability of sampling those points at once is of Version space example for linear classiers on a binary task.

Every hypothesis () is consistent with the labeled training set.

However, each of them represent a dierent model in the version space. The unlabeled sample in red is not relevant as a query because every classier agree in its prediction (it is dog, whereas the green unlabeled sample is interesting as it will shrink the number of consistent classiers. The more classiers we discard, the faster QBC converge towards the optimal classier for the task at hand (ssuming tht liner lssi(er n solve extly the prolem t hnd Dataset 1.1.8: Twitter

We use the set of tweets labeled with sentiments positive, negative, or neutral [Sanders 2011] (the set is reduced due to the unavailability of some tweets).

We use a word2vec embedding trained on the Google News corpus • 265,016 images (COCO and abstract scenes)

• At least 3 questions (5.4 questions on average) per image Architecture for DWE between grayscale images The framework of our approach consists of an encoder φ and a decoder ψ composed as a cascade. The encoder produces the representation of input images h = φ(x). The architecture used for the embedding φ consists in 2 convolutional layers with ReLU activations:

rst a convolutional layer of 20 lters with a kernel of size 3 by 3, then a convolutional layer of 5 lters of size 5 by 5. The convolutional layers are followed by two linear dense layers respectively of size 100 and the nal layer of size p = 50. The architecture for the reconstruction ψ consists in a dense layer of output 100 with ReLU activation, followed by a dense layer of output 5*784. We reshape the layer to map the input of a convolutional layer: the output vector is (5,28,28) 3D-tensor.

Eventually, we invert the convolutional layers of φ with two convolutional layers:

rst a convolutional layer of 20 lters with ReLU activation and a kernel of size 5 by 5, followed by a second layer with 1 lter, with a kernel of size 3 by 3. Eventually the decoder outputs a reconstruction image of shape 28 by 28. In this work, we only consider grayscale images, that are normalized to represent probability distributions. Hence each image is depicted as an histogram. In order to normalize the decoder reconstruction we use a softmax activation for the last layer.

CNN for Text Mining The framework of our approach consists of an network φ that outpouts a vector for each word'embedding. We aggregate the representation A.2. Hyperparameters 153 into a unique vector by summing all the outputs along a sentence. ψ consists in a dense layer of input size, the dimension of the embedding (=300) and output 100

with ReLU activation and no bias. In a second step we use a network φ whose output will mimic the Wasserstein distance. φ is made of two denses layers of 100 units with Relu activation. We use Adam and batch size 32.

RNN for Text Mining Our framework is made of a LSTM with 50 units, trained with Adam and Tanh activation.

A.2.5 Deconvolution for Text Analysis

The neural network is written in python with the library Keras (and Tensorow as backend). The embedding uses a Word2Vec implementation given by the gensim ♠ We consider samples from the unit ball from a binary task. The dataset is centered around the origin We also assume that the task at hand is linearly separable by a normalized linear classier going through the origin. Given i, j the mean of respectively positive and negative points in X; we can deduce the nearest centroid classier B with unit vector b and bias b 0 : the bissecting hyperplane separating at best i and j. Notice that B is not necessarily minimizing the error. However, necessarily, B predicts i as positive and j as negative.

Since the problem is consistent with linear classiers without bias, we denote by L the set of optimal classiers of norm 1 and going through the origin: L = {W | ∀x ∈ X, y(x) w, x > 0}. Also among those classiers, we call wek lssi(er W, the classier minimizing the error with the largest deviation angle given b, in accordance with the Denition 2. Moreover, we denote strong lssi(er S, the classier minimizing the error with the smallest deviation angle given b. ♣ By linearity any optimal classier predicts i as positive and j as negative: c • i ≥ 0, c • j ≤ 0. Also, since B is the bissecting hyperplane, we can express i, and j using b and the signed distance to the hyperplane d(•, B). Note that since B predicts i as positive we have d(i, B) > 0.

Thus, for the orthogonal vector b ⊥ to b, we have : 

Because W and Cpredict the same label for x we obtain a necessary condition:

Because we picked w instead of s as w minimizes its distance with the sample x, then c•x x•w > 1 which contradicts the previous inequality. Thus any other classier than W will predict the same label for both x, x w . When it comes to W, x w lies on the boundary, thus it can be assumed to share the same label.

A.3.1.2 Proof of Theorem 6.2 ♠ Theorem 6.2 results from the number of successes from a Bernouilli law. If we assume that the probability of misclassication of W and S are independent, then we have probability p k 2 to be able to build a query for an unlabeled sample at step k. In this case, we will add two samples to the training set instead of one. Consequently, Theorem 6.2 relies on Lemma 6.1. Lemma 6.1 Consider a threshold α so that |c•x| ≤ α. Without loss of information, we assume that the wek lssi(er is the closest boundary to x. Thus x w = x -(w • x)w.

• Without loss of information we assume (c

• our function -f (•) must be decreasing under cardinality constraint. Consequently, it leads that the minimum will be achieved for a subset of size k. This is obtained in A.3.3

• our function must respect the property of submodular functions. We detail in A.3.3.1 how to proceed.

A.3.3 Monotony

First, we decompose f (•) into sub-functions.

A Because every matrix is, in theory, symmetric, positive, denite, consequently their trace are always stricly positive.

Adding a new term will thus increase f (•). Finally -f (•) is a stricly negative and decreasing function.

A.3.3.1 Submodularity

Nextly we demonstrate the submodularity of -f (•). A necessary and sucient condition for -f (•) to be submodular is that ∀B ⊂ P and ∀x 1 , x 2 ∈ P\B we have:

♣ Our proof consists into expressing f (B ∪ {x 1 , x 2 }; A) as a linear expression f (B; A), f (B ∪ {x 1 }; A), and f (B ∪ {x 2 }; A)

A.3.4 Wasserstein prototypes

♠ Denition of the problem: Find a subset S of size k, in a pool of data P such that ∀ U ⊂ P, S minimizes its Wasserstein distance with U: min S⊂P, |S|=K W p (S, U) (A.9) Note that equ (A.9) is equivalent to maximizing minus of the Wasserstein distance: (A.9)≡ (A.10):

Given a uniform empirical distribution µ whose supports is dened on U ⊂ P. We dene the function f (S; U) = W p (ν, µ) with ν, µ respectively the uniform empirical distributions along S and U:

We propose to approximate this problem by a greedy search: we greedily minimize W p ({x 1 , x 2 , ..., x n }, U) from equ A.9 by adding pseudo sample x i one at a time.

It appears intuitive to check whether our objective function is sumodulr. Submodularity is a diminishing returns property: adding an element to a smaller set has larger relative eect than adding it to a larger set. A key result is that greedily maximising a monotone, submodular function is guaranteed not to dier from the optimal strategy by more than a constant factor.

In order to be in accordance with using greedy search for maximising a submodular function, our objectives are:

• greedily maximizing instead of greedily minimizing. This is obtained with Eq. A.10

• our function must be non-negative. This is obtained in A.3.4.1.

• our function must be monotone. We detail in A.3.4.2 how to proceed.

• our function must respect the property of submodular functions. We detail in A.3.4.3 how to proceed Our proof mostly relies on the following inequality that holds for Wasserstein distance on empirical distributions, like in our case of study. Here we provide the convergence bounds towards optimality of f (•) using greedy search.

Theorem 3.2: Convergence using greedy search Suppose (Ω, ρ) is a metric space and suppose P is the uniform distribution based on a countable set X ⊆ Ω. We denote respectively by Sep(X ) and Diam(X ) the minimum and maximum distance between two distinct samples in X . If we greedily select the set of prototypes A n , such that | A n |= n then, if we denote by A * n the optimal solution of cardinality n, the following upper bounds holds: ♣ Our proof consists in developping the optimal bound that comes with maximizing a submodular, monotone function. After selecting n samples, denoting S n the set of samples, the following bounds holds: