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Titre : Active Learning et Visualisation des données d’apprentissage
pour les Réseauxr de Neurones Profonds

Résumé

Notre travail est présenté en trois parties indépendantes.

Tout d’abord, nous proposons trois heuristiques d’apprentissage actif pour les
réseaux de neurones profonds :
e Nous mettons & 1’échelle le ‘query by committee’ , qui agrége la décision de sélec-
tionner ou non une donnée par le vote d’un comité. Pour se faire nous formons le
comité & ’aide de différents masque de dropout.
e Un autre travail se base sur la distance des exemples & la marge. Nous proposons
d’utiliser les exemples adversaires comme une approximation de la dite distance.
Nous démontrons également des bornes de convergence de notre méthode dans le
cas de réseaux linéaires.
e Puis, nous avons formulé une heuristique d’apprentissage actif qui s’adapte tant
au CNNs qu’aux RNNs. Notre méthode sélectionne les données qui minimisent
I’énergie libre variationnelle.

Dans un second temps, nous nous sommes concentrés sur la distance de Wasser-
stein. Nous projetons les distributions dans un espace ou la distance euclidienne
mimique la distance de Wasserstein. Pour se faire nous utilisons une architecture
siamoise. Egalement, nous démontrons les propriétés sous-modulaires des proto-
types de Wasserstein et comment les appliquer & 'apprentissage actif.

Enfin, nous proposons de nouveaux outils de visualisation pour expliquer les
prédictions d’'un CNN sur du langage naturel. Premiérement, nous détournons une
stratégie d’apprentissage actif pour confronter la pertinence des phrases sélection-
nées aux techniques de phraséologie les plus récentes. Deuxiémement, nous profitons
des algorithmes de déconvolution des CNNs afin de présenter une nouvelle perspec-
tive sur I'analyse d’un texte.

Mots clés

Apprentissage Actif, Wasserstein, Linguistique, Réseaux de neurones profonds, Dé-
convolution, Automatisation, Exemple Adversaire
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Title : Active Learning and Input Space Analysis for Deep
Networks

Abstract

Our work is presented in three separate parts which can be read independently.
Firstly we propose three active learning heuristics that scale to deep neural net-

works:

e We scale query by committee, an ensemble active learning methods. We speed

up the computation time by sampling a committee of deep networks by applying

dropout on the trained model.

e Another direction was margin-based active learning. We propose to use an ad-

versarial perturbation to measure the distance to the margin. We also establish

theoretical bounds on the convergence of our Adversarial Active Learning strategy

for linear classifiers.

e We also derive an active learning heuristic that scales to both CNN and RNN by

selecting the unlabeled data that minimize the variational free energy.

Secondly, we focus our work on how to fasten the computation of Wasserstein
distances. We propose to approximate Wasserstein distances using a Siamese archi-
tecture. From another point of view, we demonstrate the submodular properties of
Wasserstein medoids and how to apply it in active learning.

Eventually, we provide new visualization tools for explaining the predictions of
CNN on a text. First, we hijack an active learning strategy to confront the relevance
of the sentences selected with active learning to state-of-the-art phraseology tech-
niques. These works help to understand the hierarchy of the linguistic knowledge
acquired during the training of CNNs on NLP tasks. Secondly, we take advantage
of deconvolution networks for image analysis to present a new perspective on text
analysis to the linguistic community that we call Text Deconvolution Saliency.

Keywords

Deep Learning, Active Learning, Wasserstein, Linguistic, NLP, CNN, Deconvolu-
tion, Adversarial example



Remerciements

Je remercie d’abord les membres de mon jury de thése. Un grand merci en parti-
culier & Patrick Perez et Bjorn Schuller pour avoir accepté de rapporter ma thése.
Mais également je remercie tous les membres du jury, Karim Lounici, Stéphane
Canu, et Jakob Verbeek. C’est un honneur pour moi de présenter mes travaux
devant des chercheurs dont 'excellence de leur recherche, mais également leur bi-
enveillance ont été des sources d’inspirations durant mes trois années de doctorat.
Je n’oublie pas également d’adresser un grand merci & Igor Litovsky, Johnny Bond
et Christophe Papazian qui furent les premiers & me pousser vers la recherche. Je
remercie également 'ENS Cachan-Rennes et les directeurs de leur département in-
formatique, David Pichardie et Luc Bougé qui ont permis le financement de cette
thése. Mes remerciements vont de méme & Nicolas Nisse, Rémi Gribonval, Anatole
Lécuyer et Yoshua Bengio pour m’avoir encadré dans mes stages de recherche. Dans
ce contexte, je remercie tout particuliérement Yoshua Bengio et Pascal Vincent, pro-
fesseur au MILA pour m’avoir enseignée énormément de concepts sur 'apprentissage
automatique. Si je suis capable aujourd’hui de soutenir ma thése, c’est en partie
grace & ce que j’ai appris & leurs cotés.

Un trés grand merci du fond du ceeur & mon encadrant, Frédéric Precioso, pour
m’avoir fait confiance. Merci & toi pour t’étre toujours rendu disponible malgré un
emploi du temps plus que chargé et pour tes conseils judicieux, tant humains que sci-
entifiques. Merci également pour les nombreuses opportunités auxquels tu m’as fait
accéder. Aucun remerciement ne pourra correctement exprimer ma reconnaissance
pour ton investissement.

Merci aux collaborateurs de cette thése, en particulier, Rémi Flamary, Nicolas
Courty, Damon Mayaffre et Laurent Vanni. Rémi a été la plus belle rencontre que
j’ai pu faire pendant cette thése. Il a choisi de me faire confiance et de m’enseigner
tout un pan du machine learning qui m’était alors inconnu. Toi et Nicolas étes
deux chercheurs et deux mentors incroyables, et je croise les doigts pour que dans
I’avenir nous puissions encore travailler ensemble ! Damon, je n’aurais jamais une
prose aussi élaborée que la tienne pour te remercier, mais le ceeur y est. Collaborer
avec toi et Laurent fat extrémement enrichissant, et j'espére pouvoir continuer &
travailler dans 'interdisciplinarité avec vous deux et Frédéric.

De maniére plus indirecte, je tiens a remercier Mireille Borne-fontaine, Lucile
Sassatelli, Diane Lingrand, Anne-Marie Pinna-Dery, Asja Fischer, Samira Shaba-
nian, Negar Rostamzadeh et Joélle Pineau. Etre une femme dans un milieu majori-
tairement composé d’hommes n’est jamais quelque chose d’aisé, et certaines anec-
dotes & ce sujet auraient pu me détourner de ce milieu si jamais je n’avais pu me
rassurer par votre réussite professionnelle et votre persévérance & contrer les ten-
dances. Telle n’était pas votre intention, mais vous m’avez servi de modéles et je
VOUS en remercie.

Que serait une thése académique sans les collégues doctorants et chercheurs
dont la gentillesse et la bonhomie ont largement contribué a me faire garder le
sourire. En toute honnéteté, je devrais aussi remercier les producteurs de café et



de sucreries qui furent ma principale source d’alimentation. Je remercie mes co-
bureaux: Xheva, qui m’a accueilli avec joie en pleine rédaction de thése, puis Melissa
qui a fait passer les heures de travail plus vite grace & nos discussions. Merci au
trio infernal Romaric, Yoann et Stéphanie, les irréductibles de la pause-déjeuner et
la pause gotiter, mais également & tous ceux qui m’ont tenu compagnie quand je
pointais le bout de mon nez hors du bureau: Geoffrey, Gérald, Thomas, Franck(s),
Ben, Philippe(s), Stéphane, Jean-Yves, Anne Marie, Marco, Sébastien, Sami, Mehdi,
Claude, Héléne, et a tous les autres que j’aurai oublié de mentionner... Merci & Ali
Beikbaghban qui depuis mon entrée & Polytech a toujours été bienveillant avec moi
et le reste de la tribu Ducoffe. Je remercie également la merveilleuse Magali Richir,
qui m’a toujours aidé avec diligence et gentillesse dans D’enfer administratif qui
pave la vie d'un doctorant. Merci également aux collégues étrangers - entre autres
Chiheb Trabelsi, Thomas Mesnard, Guillaume Alain, Benjamin Scellier - dont les
rencontres annuelles aux conférences et écoles d’été m’ont fourni une motivation
supplémentaire pour mes publications. Des remerciements particuliers & Christelle
et Denis, mes ‘parents adoptifs’. Méme si cette expression relevait avant tout de la
blague, vous étes un couple merveilleux et trés attachant, je n’aurai pas été peu fiére
d’avoir fait partie de votre famille. De maniére plus générale, je remercie tous les
membres de ’équipe SPARKS. Merci & tous pour les moments de joie, de partage
et de complicité !

Parmi les supers enseignants avec qui j’ai eu la chance de travailler, je remercie
tout particuliérement Diane Lingrand. Merci & toi pour ton implication et ta con-
sidération, mais aussi pour avoir su allier travail et humour. Travailler & tes cotés
fut extrémement gratifiant d’un point de vue professionnel, mais aussi personnel.

Un immense merci & mes proches pour leur affection et leur soutien indéfectible.
Des remerciements trés spéciaux 4 mon frére et ma soeur, Guillaume et Anafls,
avec qui j’ai la chance d’étre trés proches, et qui m’ont notamment consolée aprés
les rebuttals difficiles. Vous étes les meilleurs fréres et soeurs qu’on puisse avoir !
Guillaume, tu as été un moteur pendant cette thése, ta passion pour la science et
ton acharnement m’ont toujours poussé & donner le meilleur de moi-méme. J’espére
un jour étre & ta hauteur ! Merci & Clément pour m’avoir fait réaliser que je n’étais
pas mariée & ma thése, et que la passion de la recherche n’est rien sans une vie
personnelle épanouissante. Je souhaite qu’elle le soit longtemps a tes cotés. Je
remercie également ma soeur de coeur Félicia, et mes amis proches Emilie, Axelle,
Marie, Laura, Arnaud, Raphagl et Claudia pour avoir toujours cru en moi. Un
grand merci au duo de choc Heck, David et Jonathan, pour leur humour et pour
avoir introduit les soirées jeux. Obéron a tenu trois ans en theése grace a vous !
Merci & Jipsy, ma bouillotte personnelle qui dort tous les soirs sur mes jambes, et
pour tous les ronronnements de mes chats, Mistoufle, Pelote, Kiki et Lolita. Merci
bien siir & mes parents, Dominique et Evelyne. Je n’ai réalisé que trop tardivement
les sacrifices et les concessions que vous avez faits pour nos avenirs. Je ne mérite
rien que vous ne m’ayez appris ou offert et je vous suis reconnaissante pour tout ce
que vous avez fait pour moi. Enfin je fais un merci général a ma grand-mere, & ma
belle-soeur Adriana, ainsi qu’au reste de mes amis et de ma famille.



De maniére plus anecdotique, je remercie Cédric Villani dont les actions poli-
tiques cherchent & pérenniser I’avenir de ’apprentissage artificiel en France. J’aime

mon pays et je suis heureuse de voir émerger de nouvelles opportunités qui me
permettent de rester.






Contents

Introduction
1.1 Contributions . . . . . . . .. oL
1.1.1  Active Learning for Deep Networks . . . . . . ... ... ...
1.1.2 Learning Wasserstein Core-Sets . . . . . . . . ... ... ...
1.1.3 Visualization and Active Analysis for Deep Networks on Lin-
guistictasks . . . ..o L Lo Lo
1.2 List of publications . . . . . . . . . .. ... L

Active Learning for Deep Networks

Introduction

2.1 Motivations . . . . . . Ll

2.2 Definitions . . . . . ..o
2.2.1 Active Learning . . . . . . . . ...
2.2.2 Related Research Areas . . . . . ... ... ... ... ....

2.3 Litterature . . . . . . . ...
2.3.1 Uncertainty . . . . . . . ..
2.3.2  Query-By-Committee . . . ... ... ... ... ... ...
2.3.3 Optimal Experimental Design . . . . . .. .. ... ... ...
234 Core-Set . . . . ..o
2.3.5 Expected Model Change . . . . . ... ... ... ... ....
2.3.6 Batch Active Learning . . . . . . .. ...

2.4 Theoretical Justification of Active Learning for Deep Networks

Dropout Query-By-Committee

3.1 Imntroduction . . . . . . . . . .. L
3.2 Sampling a committee with Dropout . . . . . . ... ... ... ...
3.3 Disagreement Scoring Function . . . . . ... ... .00
3.4 FEmpirical Validation . . . . . .. .. ... ... ..
3.5 Conclusion. . . . . . . ..

Adversarial Active Learning

4.1 Introduction . . . . . . .. ..

4.2 Margin-Based Active Learning for Deep Networks . . . . . . . . . ..

4.3 Empirical Validation . . . . . . . ... ... oo
4.3.1 Dataset and hyperparameters . . . . . . . . ... . ... ...
4.3.2 Evaluation. . . .. ... ... oL
4.3.3 Comparative study between DFAL and CORE-SET . . . ..

4.4 Transferability . . . . .. . ... ...

N = =

\)

o Co ~1 N

11
12
12
13
13
15
15
17
18

23
23
25
27
28
29



X Contents
4.5 DiIScussion . . . . ..o Lo e e 44
4.5.1 Theoretical motivations . . . . . ... ... ... ... 44
4.5.2 DFAL does not select random samples in the first runs . . . . 44
4.6 Adversarial Active Learning for Linear Classifiers . . . . . . . . . .. 46
4.6.1 Transferable adversarial attacks . . . . . .. .. .. ... ... 46
4.6.2 Label Complexity on the unit ball . . . . . ... . ... ... 49
4.7 Conclusion . . . . . . . . L 50

5 Perspective: Bayesian Active Learning through Laplace Approxi-
mation 51
5.1 Introduction . . . . . . . . . . 51
5.1.1 Active Learning under the light of Variational Inference . . . 53
5.2 Covering . . . . . . .. e 56
5.2.1 Optimal Experimental Design . . . . . ... ... .. .. ... 56
5.2.2 Increasing the diversity . . . . ... ... ... .. .. a7
5.3 Application to CNN . . . . . .. .. 58
54 Application to RNN . . . . . ... oo 59
5.5 Empirical Validation . . . . . . .. ... L0 61
5.6 Future work . . . . . . .. 63
5.7 Conclusion . . . . . . . . 64
6 Conclusion 65
II Learning Wasserstein Core-Sets 67
7 Introduction 69
7.1 Motivations . . . . ... 69
7.2 Definitions . . . . . ..o 70
7.3 Litterature . . . . . ... L L 71
7.3.1 Fast approximation of the exact Wasserstein distance . . . . . 71
7.3.2 Metric embedding . . ... ..o Lo 73
7.3.3 Domain adaptation . . . . ... ... 0oL 73
7.3.4 Wasserstein Core-Sets for Lipschitz Costs . . . . . . .. ... 74
735 Herding . . . . .. . . 75
8 Learning Wasserstein embeddings 77
8.1 Introduction . . . . . . . ... 77
8.2 Wasserstein learning and reconstruction with siamese networks . . . 78
8.3 Empirical Validation . . . . .. .. ... 0oL 80
8.3.1 Wasserstein data mining in the embedded space . . . . . . .. 82
8.4 Future work: Wasserstein for Text Mining . . . . . . ... ... ... 87
8.4.1 Information Retrieval: Fast computing of WMD at large scale 88
8.4.2 Text Generation given Wasserstein Distance . . . . . . . . .. 90

85 Conclusion . . . . . . . . . 92



Contents xi
9 Perspective: Wasserstein prototypes 95
9.1 Imntroduction . . . . . . . . . . . . ... 95
9.2 Approximate Submodularity for Wasserstein distance . . . . . . . . . 96
9.2.1 Greedy selection of Prototypes . . . . ... ... ... .... 98
9.3 Empirical Validation . . . . ... .. ... ... .. 99
9.4 Active Learning . . . . . . ... 102
9.5 Conclusion. . . . . . . . .. .. 103
10 Conclusion 105
IIT Understanding the behavior of Neural Networks on Linguis-
tic tasks 107
11 Introduction 109
11.1 Motivation . . . . . . . . . oo 109
11.2 Litterature . . . . . . . . . .. . e 110
11.2.1 CNNs for Text classification . . . . . . ... .. .. ... ... 110
11.2.2 Visualization of Deep network . . . . . . ... ... ... ... 111
11.2.3 Model Agnostic Explanation. . . . . . ... .. ... .. ... 112
11.2.4 Adversarial example for NLP . . . . . .. ... ... ... .. 112
12 Deconvolution for Text Analysis 115
12.1 Introduction . . . . . . . . . .. 115
12.2 CNNSs for Text Classification . . . .. . .. ... ... ... ..... 116
12.3 Deconvolution . . . . . . . . .. oL 117
12.4 Experiments . . . . . . . ... L L 118
12.5 Z-score Versus Activation-score . . . . . . . . ... ... 118
12.5.1 Dataset: English . . . . . .. ... ... 0oL 120
12.5.2 Dataset: French . . . . . . .. .. ... oo 121
12.5.3 Dataset: Latin . . . . . ... ... oo 123
12.6 Conclusion . . . . . . . . . . . 125
13 Perspective: Active Learning for Linguistic Analysis 127
13.1 Introduction . . . . . . . . . ... 127
13.2 Methodology . . . . . . . .. 128
13.3 Analysis under the light of Phraseology expertise . . . . . . ... .. 129
13.4 Future works: Analysis with Model Agnostic Explanations . . . . . . 131
13.5 Conclusion . . . . . . . . .. 131
14 Conclusion 133
IV Conclusion 135
14.1 Perspectives . . . . . . . ..o 137



xii Contents
142 Conclusion . . . . . . . . oo 137

A Appendix 147
Al Dataset . . . . . . . 148
A.2 Hyperparameters . . . . . . .. . ... 151
A.2.1 Dropout Query-By-Committee . . . . ... ... ... .... 151

A.2.2 Adversarial Active Learning . . . . . . ... ... ... ... 151

A.2.3 Bayesian Active Learning through Laplace Approximation . . 152

A.24 Learning Wasserstein embeddings . . . . . . ... ... .. .. 152

A.2.5 Deconvolution for Text Analysis . . . ... ... ... .... 153

A3 Proofs . . . . . 154
A.3.1 Adversarial Active Learning . . . . . . . .. ... ... 154

A.3.2 Bayesian Active Learning through Laplace Approximation . . 157

A33 Monotony . . . . . ... 158

A.3.4 Wasserstein prototypes . . . . . . . . ... 160
Bibliography 165



CHAPTER 1

Introduction

Contents
1.1 Contributions . . . . . . . ... 0oL o s 1
1.1.1 Active Learning for Deep Networks . . . . . . ... ... ... 1
1.1.2 Learning Wasserstein Core-Sets . . . . . ... ... ...... 2
1.1.3 Visualization and Active Analysis for Deep Networks on Lin-
guistictasks . . . . ... Lo L o 2
1.2 List of publications . . ... ... ... ............. 2

1.1 Contributions

Our work is presented in three separate parts which can be read independently. We
present their content in Parts 1.1.1, 1.1.2, 1.1.3 respectively. For each topic, we
dedicate a thorough introduction. Full papers and code can be found online', and
are also referred in Section 1.2.

1.1.1 Active Learning for Deep Networks

Part I is adressing the question of the annotation cost when training deep neural
networks. Considering the cost of gathering relevant annotations for huge datasets
such as ImageNet, the interest in methods requiring smaller training sets is increas-
ing. One possible direction to improve a training set while reducing its size is to
rely on active learning. In active learning, the goal is to train a classifier with as
few as possible training samples while reaching the same accuracy as if an unlimited
number of training samples were available (i.e., at most the whole dataset). The
challenge lies in selecting a small subset of data, without supervision, which is in-
formative enough to reach the best possible accuracy. In Sections 3 to 4, we scale
active learning methods mostly designed for Convolutional Neural Network (CNN).

First, active query strategies may be handled by ensembling deep networks; ei-
ther by disagreement over the models (Query By Committee: [Ducoffe 2015], Chap-
ter 3), or by assuming some weight’s distribution and sample a committee according
to this distribution (Bayesian Active Learning: [Ducoffe 2016¢|, Chapter 5).

github/mducoffe



2 Chapter 1. Introduction

Another direction is to rely on the distance to the decision boundary, namely
margin-based active learning. In Chapter 4, we exploit the geometric distances of
samples to the decision boundaries for querying new samples. We propose to use
an adversarial perturbation to measure the distance to a CNN’s decision boundary
in [Ducoffe 2018]. We also establish theoretical bounds on the convergence of our
Adversarial Active Learning strategy for linear classifiers.

1.1.2 Learning Wasserstein Core-Sets

Part II is focusing on Wasserstein distance. Wasserstein is a distance between dis-
tributions derived from the field of optimal transport. It has received a lot of
attention in machine learning recently, notably with Wasserstein based generative
models. However, its complexity limits the usage of Wasserstein in new applica-
tions. To alleviate the cost of computing pairwise Wasserstein distance on discrete
distributions, we propose in Chapter 8 to approximate Wasserstein distances using a
Siamese architecture (|Courty 2017b|). From another point of view, we demonstrate
the submodular properties of Wasserstein medoids in Chapter 9 and how to apply
it in active learning in Section 5.2.

1.1.3 Visualization and Active Analysis for Deep Networks on Lin-
guistic tasks

We dedicate Part III to the conception of new visualization tools for the underlying
information captured by a CNN on a text.

First, we hijack our active learning strategy from Chapter 3 to confront the rel-
evance of the sentences selected with active learning to state-of-the-art phraseology
techniques [Ducoffe 2016a, Mayaffre 2017]. These works help to understand the hi-
erarchy of the linguistic knowledge acquired during the training of CNNs on Natural
Language Processing (NLP) tasks.

Secondly, [Vanni 2018] confronts Textual Data Analysis and Convolutional Neu-
ral Networks for text analysis. We take advantage of deconvolution networks for
image analysis to present a new perspective on text analysis to the linguistic com-
munity that we call Text Deconvolution Saliency (TDS), in Chapter 12.

1.2 List of publications
1. @BDC: Query by dropout committee for training deep supervised
architecture [Ducoffe 2015]

2. Adversarial Active Learning for Deep Networks: a Margin Based
Approach |[Ducoffe 2018|



1.2. List of publications 3

3. Learning Wasserstein Embeddings [Courty 2018|

4. Introducing Active Learning for CNN under the light of Variational
Inference [Ducoffe 2016¢]

5. Machine Learning under the light of Phraseology expertise [Ducoffe 2016a]

6. Textual Deconvolution Saliency (TDS): a deep tool box for linguis-
tic analysis [Vanni 2018|

7. Les mots des candidats, de “allons” a “vertu” [Mayaffre 2017]

8. Scalable batch mode Optimal Experimental Design for Deep Net-

works [Ducoffe 2016b]
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2.4 Theoretical Justification of Active Learning for Deep Net-
WOTKS « v v v e e e e e e e e e e e e e e e e e e 18

2.1 Motivations

Larger deep architectures fed with more data provide better results in error rate.
This widely acknowledged idea has been confirmed all along the recent years when
analyzing, for instance, the results at Imagenet Large Scale Visual Recognition
Challenge [Russakovsky 2015]. Indeed, in 2012, the winner was the SuperVision
team [Krizhevsky 2012] using a deep convolutional neural network with 60 million
parameters and making a momentous breakthrough in the image classification task.
The huge step forward from SuperVision team has profoundly impacted the following
contributions to ILSVRC after 2012. In 2014, Simonyan et al. [Simonyan 2014| also
proposed to use a CNN architecture from 11 up to 19 layers with 133 up to 144
million of parameters. Owing to the considerable amount of parameters involved
which needs to be learned, the training set needs to be huge as well. Nevertheless,
state of the art results using deep networks are known on a large training set.
However, a lot of real-life scenarios typically do not come with millions of labeled
data available to train a model. Labeling appears to be one of the main bottlenecks
towards wide spreading deep networks to a new area: gathering and annotating
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massive dataset for supervised learning may prohibit the expansion of deep networks
towards new fields such as chemistry or medicine [Smith 2018, Hoi 2006].

Labeling data may sound like a trivial task, but in many cases, it requires expert
knowledge. For example, the creation of the Penn Treebank dataset, a benchmark
when considering part-of-speech tagging, took more than seven years of collabora-
tions with linguistic experts [Taylor 2003]. Scaling the labeling process is not always
practical as it requires the intervention of many specific human operators. Usually,
labeling can only be solved with coffee and patience.

A more plausible solution is to reduce the compelling need for labeled training
samples to train deep networks. In Section 2.2, we highlight the different families of
methods seeking to solve this type of problem and detail the settings on which they
are better suited. In particular, we will focus on Active Learning (AL) that seeks
to optimize the training set automatically for the task at hand to limit the need for
human annotations.

2.2 Definitions

2.2.1 Active Learning

Given a large set of unlabeled samples, AL tries to guess which ones should be
labeled and added to the training set to increase at best the performance of your
model. It operates iteratively, by first requesting new labels from the user, and then
updating the model given the new labeled training set. The model can leverage its
new knowledge to add queries again. Eventually, only a small fraction of the unla-
beled data would be annotated to achieve good classification performance. Firstly,
we detail three scenarios in which may occur AL. Note that this list is not intended
to be exhaustive. Eventually, AL may occur in different scenarios:

e Pool-Based Sampling assumes that the learner has only access to a fixed

pool P of unlabeled i.i.d samples (C) and must query a fixed budget size
number of points (D) from P. It submits each of those queries to an oracle (E)
that labels them to add them into the labeled training set (A). The classifier
(B) can then be re-trained on the incremented labeled training set. Figure 2.1
illustrates the iterative process. Notice that, in our context, we assume that
the oracle makes no mistakes when annotating new query. However, noisy
oracles have been tackled in the literature. For a survey of noisy oracles, we
refer the reader to [Settles 2011].

e Stream-Based Selective Sampling considers one unlabeled example at a
time and for each of them decide whether to ignore it or ask an oracle to an-
notate it. Stream-based active learning is attractive in many real-world appli-
cations when unlabeled samples are presented sequentially, and their number
is far too large to maintain a pool of candidates. For example, stream-based
active learning may be suitable for the classification of observations by au-
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Figure 2.1: Illustration of Pool-Based Active Learning: A=Labeled training
set ; B=Classifier ; C=Unlabeled set ; D=Queries ;E=0racle

tonomous car driving.

Query synthesis consists in generating new unlabeled instances instead of
considering a fixed pool of unlabeled samples. Creating de novo the queries
may increase the learning speed, as we can optimize the queries according to
the query selection. We illustrate this phenomenon with a simple example in
Figure 2.2.

However querying arbitrary instances can be awkward if there are no assump-
tions on the underlying distribution of the generated samples; in that case, we
may generate noisy instances. For example, [Baum 1992| synthesized hand-
written digits to train a neural network. However, they obtained poor per-
formance as sometimes their generated queries were not identifiable to the
human oracle. Early active query synthesis has encountered some success
when considering very low dimensional domains. More recently, [Zhu 2017]
proposed to use a pre-trained Generative Adversarial Network (GAN) to gen-
erate the queries. So far, they obtain competitive results with pool-based
active learning, probably due to a lack of diversity in their criterion. Indeed,
when sampling from a finite set, the optimization of the query selection crite-
rion is limited by the number of samples and their distribution. Eventually,
one should pay attention not to focus on a subregion of the underlying dis-
tribution and create bias in the labeled training set. While their method is
interesting, it comes at the price of training a GAN in a preprocessing step,
which remains a challenging task. Nevertheless, query synthesis is also used
as a form of reinforcement learning to improve dialogue generation: after the
training phase, a human oracle scores the generated answer, which helps to
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(a) SV Mactive (b) Query synthesis

Figure 2.2: “An active learning heuristics for SVM SV Myctive will query data that
are the closest to the decision boundary. In that tendency, Query synthesis may
help to generate queries that optimize the active learning criterion” as underlined

in 2.2(b) [Zhu 2017]

improve the system in [Asghar 2017].

Active learning is not only motivated by theoretical works demonstrating that
one model may perform better using less labeled data if the data are model-crafted
[Cohn 1996], but also by its proven efficiency on a wide range of machine learning
procedures, including character recognition [Liu 2004], bio-informatics [Sculley 2007,
Smith 2010], or classification of medical data [Hoi 2006]. As an example, in Fig-
ure 2.3, we illustrate the potential benefit of AL on a baby task.

A central challenge in active learning is to define the information required for
selecting at best the queries and how to measure it effectively. It happens that
AL may have a drastic improvement regarding human annotations: in some classi-
fication problems, the excess risk of AL can converge to zero with an exponential
rate comparing with the linear rate of fully supervised classification, also known
as passive learning. However, the effectiveness of AL implies prior knowledge on
the data distribution [Willett 2006, Castro 2007]. Eventually, there exists no uni-
versal criterion to select the most informative queries. Thus AL strategies rely on
heuristics to choose these queries. Moreover, several heuristics coexist as it is im-
possible to obtain a universal active learning strategy effective for any given task
[Dasgupta 2005a].

As underlined in the related research areas 2.2.2, applying active learning on deep
networks appears promising. Indeed, in peculiar settings, supervised classification
on random small labeled training set achieves similar accuracy than state-of-the-
art semi-supervised deep algorithms. If one could optimize the labeled training set
itself, it is likely that the performance would be even comparable, or even better.

However, transposing directly existing active learning on deep networks is not
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Figure 2.3: AL on a toy data-set. We consider a binary classification tasks on
n=100 samples ( e positive examples, e negative examples) and want to learn an
optimal classifier with no bias. Because the data are well separated, there exist an
optimal linear classifier (W) that can be learnt using at minima four samples: by
labelling (A, B, C, D). However, the probability of sampling those points at once
is of A ~ 1074

()

intuitive. First of all, scaling them to high dimensional parameters networks may
turn out to be intractable: some classic active learning methods such as Optimal
Experiment Design [Yu 2006] require to inverse the Hessian matrix of the models at
each iteration, which would be intractable for current standard CNNs. Secondly, one
of the most standard strategies is to rely on the uncertainty measure. Uncertainty in
deep networks is usually evaluated through the network’s output while this is known
to be misleading. Indeed, the discovery of adversarial examples has demonstrated
that the way we measure uncertainty may be overconfident. We describe the query
selection methods proposed for deep networks in section 2.3 and demonstrate how
they compare to one another.

2.2.2 Related Research Areas

We define close related research areas, relevant as well to reduce the effective size
of the labeled training set to train deep models. While those topics are out of the
scope of our work, they appear complementary to AL.

1. Transfer Learning (TL) consists in using a solution designed for a related
source domain, in order to adapt it to the current problem. Usually, TL is used
only when few samples from the target domain are available, a.k.a we do not
have at our disposal a large set of unlabeled examples; which differs from AL.
Nevertheless, TL is only applicable when both source and target domains share
some relevant information; while defining the type of information required is
not intuitive and typically induces several empirical experiments.

Transfer Learning is popular in deep learning due to a large number of pre-
trained networks available online. When it comes to TL on deep networks,
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it mainly consists in fitting an already trained model to a new classification
task on another dataset [Sawada 2017|. Indeed, it appears that deep neural
networks trained on image classification tasks, all learn similar and broadly
general features in their first layers (visually similar to Gabor filters and color
blobs, i.e., biologically receptive fields [Zamir 2018]). Hence, as those features
are not dataset-crafted, they may be reused for another task to speed up the
training: the scope of solutions would be narrowed by starting from a weight’s
region different from the common one obtained with random initialization.

2. Semi-Supervised Learning (SSL): combines both a small labeled training
set and a larger pool of unlabeled samples. When it comes to deep net-
works, SSL enjoys an extensive literature, ranging from extending autoen-
coders and generative modeling [Kingma 2014, Gogna 2016], to new regular-
ization schemes [Miyato 2017]|. Note that the previous listing is far from being
exhaustive.

However, the new flaws underlined in [Oliver 2018| should leverage the suc-
cesses of semi-supervised deep algorithms. The first drawback is that when us-
ing well-optimized hyperparameters and regularization settings, fully-supervised
deep networks are competitive with the current state-of-the-art semi-supervised
algorithms, without using any unlabeled samples. Nevertheless, the size of
the labeled training set and also, the divergence between both distributions,
respectively induced by the labeled samples and the unlabeled samples, pro-
foundly impact the performance of SSL on classification tasks. Finally, both
drawbacks highlight the necessity of optimizing the labeled training set for the
task at hand.

2.3 Litterature

Previous works have shown that a carefully designed query strategy effectively re-
duces annotation effort required in a variety of tasks for shallow models. The effec-
tiveness of AL has been established both theoretically and empirically. Nevertheless,
AL for shallow models mainly rely on specific model simplifications and closed form
solution. Deep Neural Networks, on another side, are inherently complex non-linear
functions. Their complexity poses several limitations to scale such existing active
learning strategies.

In this section, we establish the range of active learning methods studied for
deep networks, starting from the most intuitive setup (uncertainty estimation) to the
most sophisticated strategies that take into account some properties and specificities
involved in the training of deep networks.

2.3.1 Uncertainty

Originally, [Lewis 1994] introduces uncertainty selection. It consists in querying
the annotations for the unlabeled samples with the lowest confidence. Thus its cost
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is low and its setup simple. Hence, it has been used on deep networks for various
tasks, ranging from sentiment classification to visual question answering and Named
Entity Recognition [Zhou 2010, Lin 2017a, Yanyao Shen 2018].

The main drawback of uncertainty selection is its tendency to query outliers or
other types of noisy instances, such as adversarial examples. Tellingly, the apparition
of adversarial attacks, which are wrongly predicted with high confidence, empirically
demonstrates that the probability of misclassification and the uncertainty are not
necessarily correlated.

Uncertainty selection has been improved in a pseudo-labeling method called
CEAL [Wang 2016]: CEAL performs uncertainty selection, but also adds highly
confident samples into the augmented training set. The labels of these samples are
not queried but inferred from the network’s predictions. In the case one deals with a
highly accurate network, CEAL will improve the generalization accuracy. However,
CEAL implies new hyperparameters to threshold the prediction’s confidence. If such
a threshold is poorly tuned, it will corrupt the training set with mistaken labels.

2.3.2 Query-By-Committee

Uncertainty selection may be also tailored to network ensemble, either by disagree-
ment over the models (Query-by-committee, [Seung 1992]) or by sampling through
the distribution of the weights (Bayesian active learning, [Kapoor 2007]). Query-
by-Committee consists in maintaining a committee of models which represent the
current set of consistent hypothesis. Whether to label or not a query is decided
based on a vote among the committee members. Usually, the vote incorporates
some disagreement information on the predicted labels. Figure 2.4 illustrates this
process for linear classifiers. Recently, [Gal 2016b| demonstrated that dropout (and
other stochastic regularization schemes) is equivalent to perform inference on the
posterior distribution of the weights, enabling to leverage the cost of training and
updating multiple models. Thus, dropout allows to sample an ensemble of models at
test time: to perform Dropout-Query-By-Committee (Ducoffe et al. , [Ducoffe 2015])
or Bayesian Active Learning (Gal et al. , [Gal 2016b]). Gal et al. proceeded with
a comparison of several active learning heuristics: among all the metrics, BALD-
which maximizes the mutual information between predictions and model posterior
consistently outperforms other metrics.

2.3.3 Optimal Experimental Design

From another theoretical point of view, Optimal Experimental Design (OED) is a
field which takes interests in the Fisher information. Formally, the Fisher informa-
tion is the expectation over the partial derivative of the log-likelihood function with
respect to the parameters. The Fisher informations I reads:

H@ = Ez,y [V@l(f@(ﬁ), y)VQZ(f@(.T), y)T] (21)

This measure is relevant because in a single parameter case, its inverse sets a
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Figure 2.4: Version space example for linear classifiers on a binary task.
Every hypothesis (—) is consistent with the labeled training set. However, each
of them represent a different model in the version space. The unlabeled sample in
red is not relevant as a query because every classifier agree in its prediction (it is a
dog, whereas the is interesting as it will shrink the number
of consistent classifiers. The more classifiers we discard, the faster QBC converge
towards the optimal classifier for the task at hand (assuming that a linear classifier
can solve ezactly the problem at hand)

lower bound on the variance of the model’s parameter estimates; this result is known
as the Cramer Rao bound [Kagan 2001, Kay 2013].

In other words, to minimize the variance over its parameter estimates, an active
learner should select data that maximize the Fisher information or minimize the
inverse.

But for multivariate parameters, the Fisher information is a covariance matrix,
so its maximization may go through several statistics.

We cite the three most popular scenarios (other variants exist but, less used by
the community, they are left unlisted for the sake of clarity):

e A-optimality minimizes the trace of the inverse information matrix [Chan 1982]

e D-optimality minimizes the determinant of the inverse information matrix

[Chaloner 1995]

e E optimality minimizes the maximum eigenvalue of the information matrix

[Flaherty 2005

Because deep neural networks may involve millions of parameters, computing
their Fisher matrix is intractable. Moreover, even relying on approximations is too
computationally expensive as one need to update the estimate for every possible
query. Hence, OED has never been investigated for deep neural networks.
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2.3.4 Core-Set

[Ozan Sener 2018] define the batch active learning problem as a covering problem on
the output space of the network. In Equ. 2.2, they minimize the population risk of
a model learned on a small labeled subset. To do so, they propose an upper bound
with a linear combination of the training error, the generalization error and a third
term denoted as the core-set loss. Notice that in Equ. 2.2, we denote by s the set
of labeled points on which we train the parameter w of the network. We denote by
l(x,y | w,s) the loss of the network over a sample x with label y.

Population Risk < Generalization Error + Training Error + CoreSetLoss

1
Generalization Error = |Egyp, [z, yi | W,s)] — — E Wzi,yi | w,s)|
n
i€[n]

1
Training Error = s j%;l(xj,y] | w,s)

(2.2)
The generalization error is the absolute difference between the expectation of the
loss considering every possible sample from the ground-truth distribution, and the
expectation given the set of data available (meaning both labeled and unlabeled set,
which are indexed by n in Equ. 2.2). On another side, the training error measures
how far is the loss over both the unlabeled and labeled points compared to the
loss evaluated only on the labeled points. Due to the expressive power of CNNsg,
the authors argue that the first two terms (training and generalization error) are
negligible. Therefore the population risk would mainly be controlled by the core-set
loss. Given a labeled training set s, a model w trained on s, and an unlabeled set

of n points, the core-set loss is expressed in equation 2.3

CoreSetLoss = ‘% Z Wiy yi | W) — |i’ Zl(xj,yj | w)| (2.3)
1€[n] jEs

The core-set loss consists in the difference between the average empirical loss over
the set of points which are already labeled, and the average empirical loss over the
entire dataset including unlabeled points. If not considering the labels, the core-set
loss is upper bounded with the covering radius J, as illustrated in Fig. 2.5. Here, we
denote by covering radius, the maximum distance in the output space between any
labeled sample’s prediction and any unlabeled sample’s prediction. Finally, Sener
et al. used a MIP heuristic to minimize at best the covering radius of the training
set. We illustrate their method in Fig. 2.5(b). Thanks to their method, they achieve

state-of-the-art performance in active learning for image classification.

2.3.5 Expected Model Change

Another direction, rarely explored for deep networks, is to rely on the distance
to decision boundaries, namely margin-based active learning. Assuming that the
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(a) Covering the uncertainty space (b) MIP Solution

Figure 2.5: Consider the network’s predictions of both the labeled training points s
(e) and the unlabeled points (e). Sener et al. shows that if the labeled training set
covers the space by a distance of at most dg (as illustrated in 2.5(a)) then the core-
set loss is bounded by O(ds) + (’)(%) with n denoting the number of points available.
Eventually the strategy induced by this property implies to query unlabeled points
that minimize at best the expected ds. To do so, Sener et al. developed a MIP
strategy to select the samples that cover at best the output space of the network
(as illustrated in 2.5(b)).

problem is separable with a margin is a reasonable requirement considered for many
popular models such as SVM, Perceptron or AdaBoost. When positive and negative
data are separable under SVM, [Tong 2001] have demonstrated the efficiency of
picking the example which is the closest to the decision boundary. If, exploiting
the geometric distances has been relevant for active learning on SVM [Tong 2001,
Brinker 2003, it is not intuitive for CNNs since we do not know beforehand the
geometrical shape of their decision boundaries. A first trial has been proposed in
[Zhang 2017]. The Expected-Gradient-Length strategy (EGL) consists in selecting
instances with a high magnitude gradient. Not only such samples will have an impact
on the current model parameter estimates, but they will likely modify the shape of
the decision boundaries. Their strategy aims to query samples that will impact at
most the model. If one knows the ground-truth label in advance, then it would be
possible to measure the exact impact of a sample (x;, ;) given the current labeled
training set s and the weights w of the network:

xt = argr[n]aXHVl(s U {(i, yi) Hw)| (2.4)
€n

However, computing the exact gradient for a given sample is intractable with-
out its ground-truth label. In practice, we can only approximate Eq. 2.4 with the
expectation over the gradients conditioned on every possible class assignments:
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¥ = argr[n]axZP(yi = klz;, w)||VI(s U {(xi, k) }w)|| (2.5)
1€en k

Finally, computing the gradient over the whole batch of data s U {(z;, k)} may
not be scalable depending on the size of the labeled data s. Nevertheless, when
training w on s, we expect the magnitude of the gradient over the training set to
be close to zero ||Vi(s|w)|| = 0 since the network has converged. Eventually, we
can approximate the gradient over the whole set of data by the gradient over the
unlabeled samples:

o = arg ?]axZP@i = kils, w)[[I((x1, k) |w)]| (2.6)
€n k

Similarly to uncertainty based selection, EGL may be limited because of an
overparameterized network: parameters unused for classification are still taken into
account into the EGL score. In that line, Zhang et al. argues that EGL should focus
on instances that affect specific parameters of the networks, either the embedding
space or the final softmax parameters.

2.3.6 Batch Active Learning

In the original setting, AL only queries one sample at a time. However, in many
practical implementations, it is preferable to query labels for batches of examples
in parallel instead of gathering them sequentially. Moreover, the training schemes
for deep networks are most of the time working on batches of samples, thus we can
expect that adding solely one example in the training set will not have any impact
on the accuracy.

A possible solution is to select the samples with the top scores given the ac-
tive learning heuristics in used. For example [Gal 2016b| selects the samples which
maximize the mutual information. But top score is limited because it does not
take into account the correlations among the samples. Similar examples will tend
to have similar scores, but labeling all of them would not be efficient. To alleviate
the sampling bias inherent in active learning heuristics, several works have com-
bined their batch active learning framework with a diversity selection scheme to
increase the representativeness of the training set. They either rely on statistical
tests to measure the distribution difference, such as Maximum Mean Discrepancy
(MMD) ([Wang 2015]), express the data subset selection for specific shallow classi-
fiers as a constrained submodular maximization [Wei 2015, hoi | or rely on core-set
approaches [Ozan Sener 2018|.

A core-set of a data is a subset of the data, typically denoted as medoids, that
are representative of the whole set of data given an informative criterion. It finds
its root in computational geometry [Agarwal 2005| and have been widespread to the
machine learning community first via importance sampling [Langberg 2010]. We
further describe core-set approaches in Section 7.3. Furthermore, we also propose



18 Chapter 2. Introduction

a new diversity criterion that relies on a Wasserstein based core-set approach, in
Chapter 9.

2.4 Theoretical Justification of Active Learning for Deep
Networks

Recent works have focused on developing tighter upper bounds on the probability
of misclassification of neural networks. From the seminal work of Vapnik and Cher-
vonenkis, it is commonly accepted that the Vapnik Chervonenkis (VC) dimension
plays a predominant role in the definition of an upper bound on the generalization
error (GE(fy)) of any given classifier, [Blumer 1989]. Indeed, both experimental ev-
idence and learning theory link the generalization of a classifier to the empirical error
(i.e., the error made on the training set) and the classifier capacity. When it comes
to neural networks, their VC grows with their number of parameters, and highly
depends on the number of hidden layers [Bartlett 2003, Bartlett 2017]. Hence, in a
context of active learning, the VC dimension would favor shallower networks than
the common architectures used in the deep learning community.

However, VC dimension is data independent, and thus may not be a tight upper
bound to conclude to the potential benefits of active learning on deep networks.
A possible solution to incorporate the nature of the input data is to rely on the
Rademacher complexity [Neyshabur 2015]. The empirical Rademacher complexity
of a hypothesis class H on a dataset {x1,...,z,} is defined as:

n
Rp(H) = Ey[sup 1 oih(x;)] (2.7)
heH T ]

Where o1, ...,0, € {£1} are iid uniform random variables. R, (#) measures the
ability of the classifiers among H to fit random binary labels assignment. However
Rademacher complexity is not always tractable, and is upper bounded most of
the time. For example, a data-independent upper bound has been proposed in
[Sokoli¢ 2017]. Given a deep network fy with L layers, ReLU activations and trained
on m examples, if the spectral norm of the weights of each layer is bounded by some
constant Cr > 0 then an upper bound on the generalization error is given by:

GE(fy) < \FQL Lo (2.8)

If we analyze the equation 2.8, a deep network with a large number of adjustable
parameters and therefore a large capacity is likely to learn the training set without
error but exhibit poor generalization. Indeed, the previous formula only provides
an upper bound on the generalization error without any notion on how tight is this
bound. Empirical analysis tends to confirm the gap between the observed generaliza-
tion error and such bounds: [Guyon 1993] demonstrated that high-order polynomial
classifiers in high dimensional space could be trained with a small amount of train-
ing data and yet generalizes better than classifiers with smaller VC dimension. The
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generalization error’s upper bounds based on the VC dimension or on some ap-
proximation of the Rademacher complexity were overly pessimistic. As pointed out
by Zhang et al. , deep networks exhibit different learning behaviors than shallower
classifiers such as SVM. Thus common generalization metrics may not adequately
explain the generalization error of neural networks. In [Zhang 2016], they empiri-
cally demonstrate that deep networks can still generalize while learning on a training
dataset corrupted at some point. Indeed, the authors introduce a certain percentage
of random labels in the training set. Despite this noise, not only the networks is able
to generalize, but it also overfits on the whole training set. Moreover, introducing
regularization scheme does not alter the phenomenon. This is really surprising, as
we expect regularization to counter overfitting, as it happens for shallower classi-
fiers. However, as pointed out in [Krueger 2017]|, even if they are able to do so,
deep networks probably don’t memorize the training set on natural datasets since
the number of epochs required to learn the training set on natural data is less than
the ones needed to overfit on a random dataset. In the line of uniform stability
[Hardt 2015], this suggests that deep networks are also relying on an inductive bias
that suits natural data. Based on the previous empirical observations, we expect
that the generalization error has to be understood differently for deep networks, per-
haps with new metrics, so that VC dimension and the Rademacher complexity are
indeed overly pessimistic for deep networks. This flaw opens exciting opportunities
on the effectiveness of active learning for deep networks.

Recent works have refined the existing upper bounds on the generalization error
of deep networks. For sake of consistentcy, we will not provide an exhaustive list
of those works, as it is outside our scope. Eventually, we will detail the new upper
bounds that highlight the potential benefits of active learning for deep networks.

First of all, it has been asserted, through both theoretical and empirical analysis,
that regularizing the training with dropout, promotes smaller Rademacher complex-
ity. Initially, dropout was motivated to prevent neurons co-adaptation. Nonethe-
less, it highly affects the Rademacher complexity of deep networks: dropout is able
to reduce exponentially the Rademacher complexity of deep networks [Gao 2016].
Moreover, an upper bound of the Rademacher complexity may be expressed as a
function of dropout rates and the weights of a network [Zhai 2018|:

Theorem 4.1: Bounding the empirical Rademacher complexity with Dropout

Let X € R™*? be the sample matrix with the i*" row z; € R%.
Let p > 1, indexes the L, norm used % + % =1.

Consider a network with L layers, and denote W' the weights at the l-th
layer. If we apply a mask of dropout ©! (made of Bernouilli parameters) for
each layer, then we can upper bound the empirical Rademacher complexity for
the network.

Indeed, if we denote W = {W | max; || WJZ [,< B'}.
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Vi e{1,2,...,L} given O, the empirical Rademacher complexity R of the
loss for the dropout neural network is bounded by:

L
Rn(H) < kQL\/MTSQd)HX e (TTB' 1160
=1

where k is the number of classes, ©! is the k! dimensional vector of Bernouilli
parameters for the dropout random variables in the [*h layer and || - ||;naz iS

é) (2.9)

the matrix norm defined as || A ||mae= maz; ; | A;; |.

While the Rademacher complexity has been really useful to understand passive
learning, it has also been used in AL. Indeed, [Hanneke 2011, Koltchinskii 2010]
demonstrated how the Rademacher complexity in AL helps to develop strategies
extendable to a wide panel of input distributions (while previous AL strategies like
the ones proposed in [Balcan 2007, Castro 2007] were data specific). It turns out
that the disagreement set: the set of consistent classifiers for which there are two
classifiers whose predictions at point x disagree with each other play an impor-
tant role in the development of active classification algorithms. When it comes
to such a disagreement set, Koltchinskii has shown that the number of samples
required to cover this disagreement space can be estimated using Rademacher com-
plexity. Finally establishing a close connection between dropout [Hinton 2012], and
Rademacher motivates the usage of dropout in an active learning context, either to
measure disagreement over the models (see Chapter 3) or by sampling through the
distribution of the weights (|Gal 2016b]).

Another line of research, in line with the results of [Schapire 1998], analyzed
how the generalization error is correlated to the value of the weights, rather than
the number of the weights in a neural network. This theory is at the edge of
some well-known weight regularization schemes such as weight decay. In this, Liang
et al. proposed to use the Fisher Rao norm as an indicator of the generalization
performance of a neural network.

Definition 2.4.1: Fisher Rao norm

The Fisher Rao norm is defined as:
| © ||rr= 6160 (2.10)

where [g is the Fisher information matrix, based on the weights © of the
neural network fg, trained on the log loss I:

lo = Equy [Vol(fo(z),y)Vel(fo(z),y)] (2.11)

Regarding deep linear networks, it has been shown in [Liang 2017|, that the
Rademacher complexity can be bounded by the Fisher Rao Norm. Moreover, Liang
et al. empirically demonstrate how the Fisher Rao norm correlates with the gener-
alization error. The Fisher matrix is also linked to a wide panel of active learning



2.4. Theoretical Justification of Active Learning for Deep Networks 21

strategy called Optimal Experimental Design (see Section 2.3). We also investigate
the usage of Fisher matrix into a Bayesian active learning framework in Chapter 5.

In similar contexts (i.e. where VC is overly pessimistic) for margin-based clas-
sifiers, examples sampled in the margin lead to an optimal improvement of the
decision at the next active iteration. Such supporting samples lie close to the de-
cision boundary and define the margin of the classifier w.r.t. some metric d (the
smallest distance in the input space between a sample from the training set and a
sample with a different prediction). The generalization error of a classifier with
margin v is upper bounded by the complexity of the input space X’ (neglecting the
log(%) term) and the classification margin via what we denote the covering number

N(X;d, 3)'. Ny denotes the number of classes.

GE(fy) < \}m\/Zlog(Q)NyN(X;d, %) (2.12)

[Sokoli¢ 2017| developed further equation 2.12 to demonstrate that the gener-
alization error of a deep network (or any other margin classifier) is inversely pro-
portional to the square root of the margin multiplied by the number of training
samples. They assumed that the input distribution is a regular manifold which is
in accordance with empirical evidence [Arjovsky 2017b]. Indeed, when assuming
that the input distribution X is a regular manifold, the covering number may be
approximated given the following expression:

A Cyr regular k dimenstonal manifold where Cay 1s a constant that captures its
intrinsic properties has a covering number upper bounded:

k
N(X;d,p) < (%”) (2.13)

Several results lend credence to an effective margin-based active learning strat-
egy for deep networks. First of all, [Liu 2016] developed a large margin softmax to
encourage intra-class compactness and inter-class separability. Their results high-
light the benefit of enhancing a large margin between classes. However, the benefits
of margin-based active learning highly depend on the number of decision boundaries
drawn by neural networks in the input space. If deep networks split the input space
in an exponential number of shattered classification region, one may expect that
many samples will lie close to a decision boundary, and thus querying samples close
to the margin will be almost like collecting random samples.

Empirical evidence leads to thinking that it is not the case when considering
deep networks. Independently of the number of parameters of the network, it has
been empirically observed in [Fawzi 2017] that state-of-the-art deep networks learn
connected classification regions instead of shattered and disconnected regions. Al-
though such classification regions defined in the input space may suffer from the

'Regarding the notation, we have purposely decided to stick to the notation of [Sokoli¢ 2017]
in order not to confuse the reader.
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curse of dimensionality, |[Fawzi 2017| have also observed that few directions inter-
fere with the decision boundaries. Considering now the low dimensional space de-
fined by those impacting directions, it becomes likely that the samples do not suffer
anymore from the curse of dimensionality and, thus the distance to the decision
boundary will differ among the samples. Eventually, certain samples will lie closer
to the decision boundaries of neural networks, and are thus highly uncertain in an
active learning context. Our assumption comes in line with other measures of the
generalization error based on robustness. Robustness, from the seminal work of Xu
et al. , [Xu 2012|, expresses the correlation between the generalization error and the
robustness to perturbations over the training set. [Tom Zahavy 2018] extend their
work to demonstrate how deep networks can generalize well when their sensitiveness
to adversarial perturbations is bounded in average over the training examples.

Definition 2.4.2: Ensemble Robustness

A randomized algorithm A is (K, £ (n)) ensemble robust for K € N, if the
sample set Z can be partitionned into K disjoints sets denoted by {C’,-}fil such
that the following holds for any input data s: Vs € Z

Vses, Viel.,K: ifseC, then Egmaz.cc, | l(As,s) — l(As, z) |< E(n)
(2.14)

Theorem 4.2: Ensemble Robustness

Let A be a randomized algorithm with (K, £ (n)) ensemble robustness over
the training set s, where | s |= n. Let A(H) denote the output hypothesis
distribution of the algorithm A on the training set s. Suppose the following
variance bounds holds:

var g [maz,z, | 1(As, si) —U(As, 2)] < « (2.15)

Then V § > 0 with probability at least 1 — § with respect to the random
draw of the s and h ~ A(H) the following upper bounds holds:

o 2K1n(2) + 2In(:
LA ~ Loy )] < 2(0) + =+ M\/ A T

Thus, Equ. 2.16 suggests that controlling the variance of the network pos-
itively impact the generalization performance.

In our last work on active learning for deep networks (see Chapter 4), we combine
adversarial attacks and active learning, based on the insight into the effectiveness
of margin-based active learning strategy for deep networks.
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3.1 Introduction

e We scale Query-By-Committee for deep networks

e We use dropout at test time to sample a committee of neural networks

e We query unlabeled samples which maximize a disagreement score over the
committee’s members

v' FEvery dataset and parameters used to conduct our experiments are available in
the dataset section A.1 and the hyperparameter section A.2.1

n mducoffe/ DQBC

In this chapter, we consider an active learning method based on Query-By-
Committee (QBC). [Seung 1992] have proposed the first algorithm based on Query-
By-Committee strategy. They proved two relevant results: first, the generalization
error of a linear classifier for random training samples behaves like the inverse power
law, % with P the number of training samples considered so far and N the dimension

of théV input space; second, the generalization error of a linear classifier for training
samples selected through a query-by-committee strategy, scales like e~ with the
constant decay given by the information gain /. Later, [Freund 1997]| proved that
this property holds for a more general class of learning problems.
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Instead of trusting only the current incremental classifier, committee decision
relies on defining a space of consistent classifiers (i.e., classifiers whose predictions
agree with training set labels) where the optimal learner lies. The aim of the ac-
tive learning step is then to query a sample which will divide at best the consistent
classifier space, also called the version space. It will thus reduce the possible so-
lutions to converge towards the optimal classifier. There is no consensus in the
literature on an appropriate committee size to consider, even when focusing on a
class of learning models or an application. However even small committee sizes,
e.g., 2 or 3, work well in practice [Seung 1992, Nigam 1998, Settles 2008]. Some
recent works tend to combine active learning and model selection to optimize even
further the model design [Ali 2014]. After several iterations, the set of consistent
hypotheses will shrink and converge towards the optimal classifier. As the size of
the version space might be infinite, QBC samples a finite number of classifiers to
constitute a committee. Eventually, the query decision relies on the committee:
the score assigned to an example is based on the prediction disagreement between
all predictions of the classifiers in the committee. In early works describing active
learning through committee selection, convergence and better result against random
sampling have been proven. However, for those results to hold, each model of the
committee has to lie in the current version space defined by the annotated training
set. This means that the set of neural networks in the committee should be built
from the same “architecture” and should make no prediction error on the current
training set. When it comes to large datasets, restricting the selection to one ad-
ditional training sample at a time is computationally expensive since to maintain
the version space we should retrain all the classifiers of the committee on that new
training sample [Dasgupta 2005b|. The drawback of QBC is the cost of building
a representative committee. Our version allows us to get rid of this computational
issue by using a version of dropout called batchwise dropout |Graham 2015]. Firstly,
we sum up our batch active learning strategy in Method 3.1.1.
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Method 3.1.1: Dropout Query-By-Committee

We have a pool of unlabeled data P and start training a CNN with a small set
of training samples A. This is the initial state of our active learning training
set Ag = A. At each iteration ¢, we aim at selecting the optimal batch B by
computing a new loop of the following steps:

1. The network is trained on the current training set 4; leading to the
weights Wy

2. We build a committee of K networks by applying batchwise dropout on
wiit: Cip1 = {‘7V71t€+1}£(=1~ The procedure is further described in sec-
tion 3.2.

3. We search for the optimal batch B to add to the training set, i.e. the
batch B maximizing the disagreement over the committee Cyy 1.

B = argmax{Disagreement(z; | Ci+1) | x; € P} (3.1)

4. The training set is then augmented by B: A1 = A, UB

3.2 Sampling a committee with Dropout

Before starting, let us define some name convention: For the sake of clarity, we denote by
full network, the deep architecture trained on the current labeled training set A and partial
network a CNN member of the committee.

We train the full network on the current annotated training set until the pre-
diction error on an independent validation set is not further decreasing. When the
training has converged, the full network is no longer able to learn more knowledge on
the input distribution from the current annotated training set. Thus we apply active
learning to query new labeled data and add them to the training set. Eventually the
full network is retrained from scratch on the new training set( weights and biases
are reset with a random initialization). When it comes to query-by-committee for
deep architectures, the challenges are to define:

1. Committee design: developing a computationally lightened building scheme
of diverse partial CNNs.

2. Sample selection: Proposing a relevant sample selection function based on
the committee’s predictions (see Section 3.3).

Here we consider the cost of building a committee. A naive setup would consist
in training models in parallel; networks sharing the same architecture with different
initialization. However, this framework is not ideal for at least two reasons:
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e Training multiple models at the same time is not scalable when considering
large dimensional neural networks

e As neural networks solve a high dimensional non-convex problem, we may
expect that networks sharing the same architecture but trained independently
will vary a lot. This assumption does not always hold, as demonstrated in
[Choromanska 2015]. When training networks with the same architecture but
initialized differently, they observed empirically that the variance of the test
loss shrunk. This suggests that learning a naive ensemble is not a good strategy
to obtain a diverse set of classifiers.

Another solution is to consider ensemble from a probabilistic point of view.
Indeed, if one may express the posterior distribution of the weights, we are able to
sample consistent hypotheses directly from this approximation, and thus design our
committee. However, computing the posterior distribution of the weights is generally
intractable for deep networks. Note that this AL strategy is more thoroughly studied
in Chapter 5. Instead, one can rely on a tractable approximation of the weights
distribution. Recently, [Gal 2016b] demonstrated that dropout (and other stochastic
regularization schemes) is equivalent to infering on the posterior distribution of the
weights, thus enabling to leverage the cost of training and updating multiple models.
Consequently, dropout allows sampling an ensemble of models at test time.

In the same spirit, we propose a Dropout-based QBC strategy that we call
Dropout Query-By-Committee (DQBC). Instead of training an ensemble of net-
works, we use dropout to sample partial CNNs given the weights of the full CNN,
as illustrated in Figure 3.1. Notice that, independently and after this work, Gal et
al. also designed a Bayesian active learning framework relying on a dropout com-
mittee.

Let us now detail how we build partial CNNs in order to form the committee.
To initiate a partial CNN while getting rid of the computation cost thanks to back-
propagation, we apply batchwise dropout [Graham 2015] on our full network. The
batchwise dropout [Graham 2015] is a version of dropout where we use a unique
bernouilli mask to discard neurons for each sample in the minibatch. Thus the
batchwise dropout reduces quadratically in the percentage of preserved neurons, the
number of parameters in the architecture. When considering convolutional layers,
the batchwise dropout has one advantage over dropout: the latter removes neurons
independently given the spatial locations whereas batchwise dropout is spatially
dependent, switching on or off filters so to discard neurons obtained through the
same filter. Figure 3.1 presents how batchwise dropout preserves the consistency in
a CNN architecture which allows us to create our partial CNNs.

The main advantage is to obtain a committee whose members contain fewer
parameters while sharing the same architecture as the full network with zero con-
straints on several connexions. In order to increase the accuracy of each partial
CNN, we finetune each member of the committee on the current labeled training
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| BACKPROPAGATION
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FULL CNN PARTIAL CNN pCNN

Figure 3.1: applying batchwise dropout to build a partial CNN from the full CNN

set. This finetuning is not prohibitive as the number of parameters in a partial CNN
is drastically much lower than in the full CNN, due to batchwise dropout.

3.3 Disagreement Scoring Function

In the context of QBC, a sample is considered as informative based on its ability
to reduce the number of current consistent hypotheses. Thus the informativeness
of a sample is measured by the quantity of disagreement about the prediction of its
label among the partial CNNs. We illustrate such disagreement on a baby task in
Figure 3.1.

We propose our own metric based on how much a partial CNN may change its
decision to be in accordance with the majority. In that order, we define a smooth
vote on the members of the committee. Let denote the committee as a set of
partial CNNs: C = { pCNN;} with p’ the output probability vector of pCNN;.
Given a sample x, we first establish its most probable label based on the committee
predictions:

LABEL(x) = arg max Z Li—argmaz pi(y =k |x) (3.2)
I pCNN; k

We took inspiration from Random Forest margin function [Breiman 2001] in
order to produce a ranking of candidates for selection and to have a soft pool among
the committee. Our point is to take into account the confidence of a partial CNN
into the score function rg(x) and query the samples with the highest score:

rglx) = Y maxp'(y=j|x) - ply=LABELK) [x)  (33)
pCNN;

We add minibatches of samples instead of one sample as supposed for active
learning technique, both to leverage the computational cost owing to successive
runs of active learning and to avoid unbalanced size of minibatch (in that case
an adjustement of the learning rate given the size of the last minibatch would be
required).
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Table 3.1: Example of Sample Selection. The icon outputs by a network represents
its most probable label on the unlabeled sample. Samples (A) and (B) are both
unlabeled examples. Sample (A) is more appealing as it will necessarily reduce the
version space by a ratio of 4. Whereas Sample (B) will reduce at worst the version
space by a ratio of 2.5. On another side, if one has complementary information about
the networks, such as the confidence of each network in their prediction, sample (B)
may become a better choice.

3.4 Empirical Validation

We demonstrate the validity of our approach on two datasets: MNIST (batch size of
64) and USPS(batch size of 8) both gray scaled digit image datasets. Both CNNs
have ReLu. Note that we do not optimize the hyperparameters depending on the
size of the current annotated training set. We picked those two similar datasets to
judge of the robustness of our method against different size of unlabeled datasets.
Finally, our method is efficient on restricted and larger pool of unlabeled samples.

We perform 5 to 10 runs of experiments and record the test error of the best vali-
dation error before an active learning iteration. We start from an annotated training
set of size one minibatch selected randomly. We stop both sets of experiments when
we reach 30% of the training set (15.000 images for MNIST, 1255 for USPS). We
sample 5 partial CNNs to form a committee. In Figure 3.2, we compare DQBC to
uncertainty, curriculum [Bengio 2009] and random selection with a top scoring se-
lection on a convolutional network. We measure both uncertainty and curriculum
scores based on the log likelihood of a sample. We use the prediction of the full
network to approximate the ground-truth label. While uncertainty selects samples
with the highest log likelihood, our version of curriculum does the exact contrary.
We select the set of possible queries among the unlabeled training data randomly.
Its size is set to 30 times the minibatch size. The experiments in (see Figure 3.2)
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conducted on MNIST and USPS illustrate that DQBC converges faster to the best
accuracy achieved without active learning on the whole annotated training set than
the other selection methods: for MNIST we see that less than 26% of the database
is necessary to obtain almost the final accuracy (1.23% on test error instead of 1.1
%). When it comes to USPS, larger difference are observed: DQBC is the only
active method able to achieve the ground-truth accuracy with less than 22% of the
training set.
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Figure 3.2: DQBC(gbdc) with top score selection: Evolution of the test error given the
ratio of annotated data over the training set.

3.5 Conclusion

This chapter introduced an adaptation of Query-By-Committee for deep networks
based on dropout. It allows to train CNNs on a smaller annotated training set to
achieve similar accuracy to the one obtained using a much larger annotated database.
Our work bridges the computational gap between active learning for CNNs and other
shallow classifiers. The use of a committee allows our active learning heuristic to
have the distributive training of its CNNs which is a natural advantage of QBC
derived methods.
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4.1 Introduction

e We present a new heuristic for margin-based active learning for deep networks,
called DeepFool Active Learning (DFAL) (see 4.2). It queries the unlabeled
samples, which are the closest to their adversarial attacks, labels not only the
unlabeled sample but its adversarial counterparts as well, using twice the same
label. This pseudo-labeling comes for free without introducing any corrupted labels
in the training set.

e We empirically demonstrate that DFAL labeled data may be used on other
networks than the one they have been designed for, while achieving higher accuracy
than random selection. To the best of our knowledge, this is the first active learning
method for deep networks tested for this property. (see 4.4)

e We demonstrate the theoretical gain of our method for linear classifier (see 4.6).

v' Buwery dataset and parameters used to conduct our experiments are available in
the dataset section A.1 and the hyperparameter section A.2.2

PROOT
n mducoffe/ DFAL IR0 Proofs are available in Appendix A.3.1

One of the most standard active learning strategies is to rely on the uncer-
tainty measure. Uncertainty in deep networks is usually evaluated through the
network’s output. However, this is known to be misleading. Indeed, the discov-
ery of adversarial examples has demonstrated that the way we measure uncertainty
may be overconfident. Adversarial examples are inputs modified with small (some-
times not perceptually distinguishable) but specific perturbations which result in
an unexpected misclassification despite the strong confidence of the network in the
predicted class [Szegedy 2013]. Moreover, their perturbation is often hardly visible
(see Figure 4.1 for an example).

“sanda”

24 conhidence

Figure 4.1: 7An adversarial input, overlaid on a typical image, can cause o classifier
to miscategorize a panda as a gibbon.” [Goodfellow 2015]

On one hand, the existence of such adversarial examples somehow discards
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uncertainty-based selection from being an efficient active learning criterion for deep
networks. On the other hand, the magnitude of adversarial attacks does provide
a piece of information about how far a sample is from the decision boundariy of a
deep network. This information is relevant in active learning and known as margin-
based active learning. In a generic margin-based active learning, we assume that
the decision boundaries evolve towards the optimal solution as the training set in-
creases. Hence, samples lying the farthest from a decision boundary do not need
to be labeled by a human expert, as long as the current model is consistent in its
predictions with the optimal solution. To refine the current model, margin-based
active learning queries the unlabeled samples lying close to the decision boundary.
[Balcan 2007] have demonstrated the significant benefit of margin-based approaches
in reducing human annotations: in specific cases, one may obtain an exponential
improvement over human labeling. However, it requires computing the distance
between a sample and a decision boundary which is not tractable when considering
deep networks. Although we can approximate this distance by finding the minimal
distance between two samples from different classification regions (i.e., correspond-
ing to two different classes), such an evaluation is computationally expensive, nor
it provides a tight upper bound. Eventually, the minimal adversarial perturbation
of a sample does provide a better upper bound on how far this sample is from the
closest decision boundary.

In this section, we do not consider adversarial examples as a threat but rather
as a guidance tool to query new data. Our work focuses on a new active selection
criterion based on the sensitiveness of unlabeled examples to adversarial attacks.
We depict our method in Method 4.2.1.
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4.2 Margin-Based Active Learning for Deep Networks

Method 4.2.1: Adversarial Active Learning

We have a pool of unlabeled data P and start training our CNN with a small
set of training samples 4. This is the initial state of our active learning training
set Ag = A. At each iteration ¢, we aim at selecting the optimal batch B by
following those steps:

1. The network is trained on the current training set A; leading to the
weights Wy

2. We search for the optimal batch B of samples to be added to the training
set, i.e. the batch B whose samples ows the minimal adversarial pertur-
bation

Forz; e P\ A
##compute adversarial attacks with L, norms
r; < DeepFool(x;, Wii1;p)
# query the labels of the | B |-th smallest perturbation
indexy, <— argsort(< ri,ri >p| i = 1..K)
B« {z;|j €indexy[:| B|]}

3. The training set is then augmented by B: A;1 = A UB

Balcan et al. demonstrated the significant benefit of margin-based approaches
in reducing human annotations. We illustrate several margin-based active learning
heuristics in Figure 4.2: for each scenario, the data underlined in green will be
queried. Especially, Figure 4.2(d) describes our contribution. In the original case
in Figure 4.2(a), the projection of an unlabeled sample to the decision boundary
determines whether or not it is worth to query its label, depending on the distance
between the sample and the boundary. Margin-based strategies are effective, but
they require to know how to compute the distance to the decision boundary. When
such a distance is intractable, a simple approximation consists in computing the
distance between the sample of interest and its closest neighboring sample which
has a different predicted class.

Approximating the distance between a sample and the decision boundary, by
the distance between this same sample and its closest neighboring sample from a
different class, is coarse and computationally expensive.

Instead, we propose DFAL; a Deep-Fool based Active Learning strategy which
selects unlabeled samples with the smallest adversarial perturbation. Indeed, ad-
versarial attacks were initially designed to approximate the smallest perturbation to
cross the decision boundary. Hence, in a binary case, the distance between a sample
and its smallest adversarial example better approximates the original distance to
the decision boundary than the approximation mentioned above, as illustrated in
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Figure 4.2: Illustration of different margin-based active learning scenarios in the
binary case

Figure 4.2(c). Usually, adversarial attacks which would allow us to design a pertur-
bation requires also to know the target label. However, in a binary case, the target
class of the attack is obvious.

In a multi-class context, everything is different: we do not have any prior knowl-
edge on which class the closest adversarial region belongs. Inspired by the strategy
done previously in EGL [Zhang 2017|, we could design as many perturbations as the
number of classes and keep only the smallest perturbation, but this would be time-
consuming. We thus have to consider the available techniques of adversarial attacks
from the literature [Szegedy 2013, Goodfellow 2015, Carlini 2016] and look for the
most laborious procedure to counter since it will provide more information on the
margin in more cases and more difficult situations. Indeed, computing the closest
adversarial perturbations is a NP-hard problem. Hence we need to rely on heuristics.
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To the best of our knowledge, Carlini et al. [Carlini 2017b, He 2017, Carlini 2017a]
methods are among the hardest attacks to counter. However, it also requires to tune
several hyperparameters.

We have thus decided to use the Deep-Fool algorithm to compute adversarial
attacks for DFAL [Moosavi-Dezfooli 2016]. Indeed, Deep-Fool is an iterative proce-
dure which alternates between a local linear approximation of the classifier around
the source sample and an update of this sample so that it crosses the local linear
decision. The algorithm stops when the updated source sample becomes an adver-
sarial sample regarding the initial class of the source sample. When it comes to
DFAL, Deep-Fool holds three main advantages: (i) it is hyperparameter free (espe-
cially it does not need target labels which makes it more compliant with multi-class
contexts); (ii) it runs fast as we empirically noticed in table 4.3; (iii) it is competitive
with state-of-the-art adversarial attacks.

To regularize the network and increase its robustness, we add both the less
robust unlabeled samples and their adversarial attacks. Thus, it is more likely that
the network will regularize on the adversarial examples added to the training set and
become less sensitive to small adversarial perturbations. Unlike CEAL, DFAL is
hyperparameter-free and cannot corrupt the training set: from the basic definition
of adversarial attacks, we know that a sample and its adversarial attack should share
the same label.

Finally, DFAL improves the robustness of the network by adding at each it-
eration unlabeled samples at half the cost of reading their right labels (one label
amounts to two examples).

4.3 Empirical Validation

4.3.1 Dataset and hyperparameters

We evaluate our algorithm for fully supervised image classification on three datasets
that have been considered in recent articles on active learning for Deep Learn-
ing [Huijser 2017] (Table 4.1): MNIST, Shoe-Bag, and Quick-Draw. For Quick-
Draw, we downloaded four classes from the Google Doodle dataset: Cat, Face,
Angel, and Dolphin.

img size | # classes | # Training | # Test

MNIST (28,28,1) 10 60,000 10,000
Shoe-Bag (64,64,3) 2 184,792 4,000

Quick-Draw (28,28,1) 4 444,971 111,246
CIFAR10 (64,64,3) 10 50,000 10,000
Cats €& Dogs | (150,150,3) 2 2000 2000

Table 4.1: Summary of the datasets used to evaluate DFAL.

We assess the efficiency of our method on two CNNs: LeNet5 and VGG8 (Adam,
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Ir=0.001, batch=52). We use Keras and Tensorflow [Chollet 2015, Abadi 2016].
Note that DFAL may be used on any architectures impaired by adversarial attacks.

4.3.2 Evaluation

We compare the evolution of the test accuracy when using DFAL against the fol-
lowing baselines:

e BALD: we select on a random subset of the unlabeled training set the first
Nguery Samples which are expected to maximize the mutual information with the
model parameters. In that order, we sample 10 networks from the approximate
posterior of the weights by also applying dropout at test time.

e CEAL: we select on the whole unlabeled training set the first ngyery samples
with the highest entropy on their network’s prediction. We also label any unlabeled
samples whose entropy is lower than a given threshold (which is set according to the
authors’ guidelines: 0.05 for MNIST, 0.19 for Shoe-Bag and 0.08 for Quick-Draw).
Their labels are not queried but estimated from the network’s predictions.

o CORE-SET: we select on a random subset of the unlabeled training set the ngyery
samples which cover at best the training set (labeled and unlabeled data) based on
the euclidean distance on the output of the last fully connected layer. To approxi-
mate the covering radius, we follow the instructions prescribed in [Ozan Sener 2018]:
we initialize the selection with the greedy algorithm, and iterate with their mixed
integer programming subroutine. We also handle the robustness as prescribed by
the authors. We use or-tools ' to reproduce the MIP subroutine.

e EGL: we select from a random subset of the unlabeled training set the first ngyery
samples whose gradients achieves the highest euclidean norm.

e uncertainty: we select from the whole unlabeled training set the first ngyery sam-
ples with the highest entropy on their network’s prediction.

e RANDOM: we select randomly from the whole unlabeled training set nguery
samples.

We average our results over five trials and we plot in Figures 4.3,4.4 the test
accuracy achieved by each active learning methods for fixed size training set: rang-
ing from 10 to 1000 labeled samples. We denote as BASELINE, the test accuracy
obtained when training the network on the full labeled training set. First, an inter-
esting observation is that, independently from networks or datasets, active learning
methods originally designed for singleton query (BALD, CEAL, EGL, uncertainty)
fail to always compete against random selection (Fig. 4.4). This may result from the
correlations among the queries when using one sample at-a-time. When it comes to
our method, DFAL tends to converge faster than such methods and is always better
than random selection, independently from the network or the dataset (Fig.4.3,4.4).
Hence our method is more robust to hyperparameter settings than other active learn-
ing methods which consider one sample at a time. For various configurations (Shoe-
Bag with LeNetb and Quick-Draw with VGG8), CEAL is worse than uncertainty
selection, hence it selects samples with high entropy but mistaken predictions which

'https://developers.google.com /optimization
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Accuracy > 99.04 % Accuracy > 98.98 %
# annotations | # labeled data # annotations | # labeled data
DFAL 1210 2410 DFAL 980 1950
CORE-SET 1810 1810 CORE-SET 1270 1270
CEAL >6000 >6150 uncertainty 2800 2800
(a) MNIST (LeNet5) (b) MNIST(VGGS)
Accuracy > 99.70 % Accuracy > 99.50 %
# annotations | # labeled data # annotations | # labeled data
DFAL 1070 2130 DFAL 530 1050
CORE-SET 860 860 CORE-SET 400 400
CEAL 1130 19157 CEAL 580 705
(¢) Shoe-Bag(LeNet5) (d) Shoe-Bag(VGGS)
Accuracy > 95.46% Accuracy > 96.75%
# annotations | # labeled data # annotations | # labeled data
DFAL 7470 14930 DFAL 4810 9610
CORE-SET >8590 >8590 CORE-SET >6750 >6750
uncertainty >10590 >10590 BALD 5590 5590
(¢) Quick-Draw(LeNet5) (£) Quick-Draw(VGGS)

Table 4.2: Number of annotations to achieve the same test accuracy on LeNet5 and
VGGS as the accuracy obtained on the full training set (BASELINE, £ 0.5 %).

add noise into the training set. Unlike CEAL, whose probability of acquiring extra
samples depends on the efficiency of the network, DFAL holds a constant number
of extra queries, depending only on the number of queries. Moreover DFAL creates
artificial data which are not part of the pool of data. For example, in Tables 4.2(a)
and 4.2(c), CEAL used more than 20% of the training set of MNIST and Shoe-Bag,
while DFAL only used at most 2%. Thus, DFAL allows more queries, and may also
be combined with CEAL. We observe that DFAL always remains in the top three
of the best performing active learning methods. We define those methods based
on the test error rate when the labeled training set reaches 1000 samples. When
DFAL is outperformed, it is only by a really slight percentage of accuracy (at most
0.15%), either by pseudo-labeling method (which contributes more to the training
set), or by CORE-SET. Since CORE-SET is designed as a batch active learning
strategy, it diminishes the correlations among the queries. In order to outperform
CORE-SET, DFAL could be extended into a batch setting approach: instead of
selecting the top score samples, one could increase the diversity using for example
submodular heuristics [Wei 2015|. Finally, Table 4.2 compares the effective number
of annotations and real number of data required by active learning to reach the same
test accuracy than when training on the full labeled training set. We only compare
DFAL with the best two active learning methods on 1000 samples. We note that
DFAL always converges with the smallest number of annotations, on MNIST and
Quick-Draw, for both LeNetb and VGG8 networks: up to 33% less samples than the
current state-of-the-art CORE-SET and up to 80% less samples than CEAL. When
it comes to Shoe-Bag, DFAL remains competitive with CORE-SET and CEAL,
overall less than 1% of the training set is needed.
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Figure 4.3: Evolution of the test accuracy achieved by 7 active learning techniques
on MNIST and Shoe-Bag given the number of annotations. We denote by DFAL
our active learning method when not adding the adversarial examples. We use a log
scale in the x-axis and a linear scale in the y-axis.
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Figure 4.4: Evolution of the test accuracy achieved by 7 active learning techniques
on Quick-Draw given the number of annotations. We denote by DFAL _ our active
learning method when not adding the adversarial examples. We use a log scale in
the x-axis and a linear scale in the y-axis.
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DFAL CORE-SET CORE-SET
MNIST (with regularisation) | (no regularisation)
| £ =100, [U |= 800 | 126.54 891.78 784.99
| £ |= 1000, |t/ |= 800 | 126.54 3739 3046

Table 4.3: Average runtime of DFAL and CORE-SET on MNIST. We denote by
L the labeled training set, and ¢/ the unlabeled set of data; ngyery = 10

4.3.3 Comparative study between DFAL and CORE-SET

In our experiments, DFAL is competitive with the current state-of-the-art method,
CORE-SET, sometimes outperforming it by a large margin (Tab. 4.2(e),4.2(f)). On
the other hand, our method is more interesting than CORE-SET when considering
the computational time. DeepFool yields high-performing perturbation vector com-
pared with other state-of-the-art attacks, while being computationally efficient: it
converges in a few iterations (less than 3). At each iteration it requires (#classes
-1) forward and backward passes. As our DFAL technique uses DeepFool, our ac-
tive selection criterion is highly efficient compared to the current state-of-the-art
CORE-SET. We demonstrate the computational time gap between our method,
DFAL, and CORE-SET in Table 4.3: we have recorded the average runtime of
selecting 10 queries on MNIST. For a sake of fairness, we compare DFAL run-
ning time against the CORE-SET approach, with and without robustness 2. Note
that the runtime performance of DFAL is independent from the size of the labeled
training set. On the contrary, CORE-SET slows down while we add more and more
data to the training set. Eventually, Table 4.3 reports gains of (up to) 24 times
faster in running time by our method against CORE-SET. It is worth noting that
adversarial attacks are independent, which could easily lead to a parallelized active
learning strategy. However, for a fair comparison with CORE-SET, we only consider
sequential attack generation.

We investigate further the comparison between DFAL and CORE-SET on two
experiments. A first experiment studies the behaviour of both active learning meth-
ods on a large scale dataset, CIFAR10: we train a CNN on CIFARI10with 5 layers
of convolution, maxpooling and 2 fully connected layers with a dropout rate of
0.25 and no artifical augmentation. In Figure 4.5(a), CORE-SET achieves similar
accuracy than RANDOM. Due to the running time of CORE-SET, we could not
pursue CORE-SET until convergence. On the other hand, our method DFAL con-
verges much faster. The second experiment consists in combining active learning
with transfer learning: we use VGG8 as a pretrained network that remained fixed
during the training on Cats & Dogs. In Figure 4.5(b) we train a CNN with 3 lay-
ers of convolutions, maxpooling and 2 dense layers, with a dropout rate of 0.5 and
artificial augmentation.

*Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz; 64 GB memory and GTX TITAN X
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Figure 4.6: Evolution of the test accuracy for (Shoe-Bag, VGGS) trained with differ-
ent labeled training set: we compare the efficiency of DFAL and CORE-SET built
on LeNet5 (LeNetb DFAL and LeNetb CORE-SET) and transfered to VGGS.

When faced with a new classification problem, we don’t know the hyperparam-
eters that are best suited for the problem. One can argue that a network with
high capacity is likely to give high accuracy and is sufficient enough when com-
bined with some human expertise on the problem: several architectures have been
handcrafted for specific tasks and are available online [Chollet 2015|. Still, their
efficiency is known for large datasets. [Yanyao Shen 2018| pointed out a flaw in
active learning: their active learning heuristics perform well if and only if they use
it on a lightweight architecture instead of the architecture of reference for Named
Entity Recognition (NER) classification. Such an issue is inherent to active learning.
Combining model selection with active learning has been investigated for shallow
models [Sugiyama 2008]. One of the main issues raised is that multiple hypotheses
(i.e. candidate networks) trained in parallel may require labeling different training
points.
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DFAL | CORE-SET | RANDOM
LeNetsh— VGG8 | 97.80 96.90 94.46
VGG8— LeNetb | 97.93 97.40 95.31
(a) MNIST

DFAL | CORE-SET | RANDOM
LeNetb— VGG8 | 92.87 91.06 89.94
VGG8— LeNetb | 89.23 89.41 89.42

(b) Quick-Draw

DFAL | CORE-SET | RANDOM
LeNets— VGG8 | 99.40 99.12 97.08
VGG8— LeNet5 | 98.75 98.50 98.07

(c) Shoe-Bag

Table 4.4: Comparison of the transferability of DFAL and CORE-SET with 1000
annotations

Furthermore, [Fawzi 2017] empirically demonstrated a strong correlation be-
tween the vulnerability of a network to small adversarial perturbations and an
asymmetry in the curvature of its decision boundary: if a model is not robust
to an adversarial attack, it is likely that the curvature in that direction is negative
and vice-versa. Thus, not only that the decision boundaries would lie close one
to another but they would likely share some strong topological properties. Based
on those arguments, we assume adversarial queries are useful for a diverse set of
architectures, not only for the CNN they have been queried for.

First of all, we assert this assumption by evaluating the classification regions
overlap between LeNetb and VGGS8; both trained on the QuickDraw dataset. Re-
sults are presented in Figure 4.7. We observe that most of the test samples share
the same classification regions (e blue dots) for both networks, LeNet5 and VGGS,
while few of them (e red dots) are in different classification regions. Note that, this
does not mean that the networks disagree on their prediction on such samples but
put them in different classification regions. Thus, it appears than CNNs may have
significant overlaps on their classification regions, at least for LeNet5 and VGGS.

When it comes to the transferability, we empirically demonstrate DFAL’s po-
tential for a baby task. We compare the test accuracy of DFALand CORE-
SETtransferred dataset on 1000 samples in Table 4.4. Surprisingly the transferred
queries from CORE-SETperform better than random. However, the transferred
queries from DFALoutperform CORE-SETand RANDOM.
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Figure 4.7: Overlap of the classification regions of LeNet5 and VGGS8
trained on the QuickDraw datasets. Blue dots e are test samples that fall
into the same classification regions for both networks, while red dots e do not fall
into the same region. We proceed by looking for a convex path so that every point
in that path share the same prediction. To do so, we check the validity of the path
in the convex combinations of consecutive anchor points, as proposed by Fawzi et
al. [Fawzi 2017]. Then we check, whether paths exist for both networks and project
the test samples in a two-dimensional space using T-SNE [Maaten 2008|.

However, it has been shown that under some constraints of similarities between
the architectures, adversarial examples of a network A are very likely to be adver-
sarial for a network B. This turns to be a significant advantage for our adversarial
active learning strategy since the training set built with DFAL for the network A
will then be very likely to be a relevant training set for the network B.

When it comes to the transferability, we empirically demonstrate DFAL po-
tential on a toy task: in Figure 4.6 we have recorded Shoe-Bag adversarial queries
for LeNetd and use them for training VGG8. While the test accuracy achieved is
lower than with the adversarial active strategy directly applied for the training of
VGGS, the transfered training set achieves better accuracy than RANDOM. When
reaching 1000 annotated samples, it is also better than considering other active cri-
teria designed for VGG8. We go further and compare the accuracy on 1000 test
samples of DFAL and CORE-SET trained on the transfered training set in Ta-
ble 4.4. Surprisingly the transfered queries from CORE-SET perform better than
RANDOM. However, in almost every case, the transfered queries with DFAL out-
perform CORE-SET and RANDOM. We have therefore shown the relevance of
transfering adversarial examples generated within active learning from one archi-
tecture to another. This opens up promising perspective for the design of tractable
methods to explore network architectures.
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4.5 Discussion

4.5.1 Theoretical motivations

It is challenging to demonstrate theoretically the gain in annotations of DFAL ow-
ing to (i) the high-dimensional space induced by deep networks and (ii) the lack of
understanding of the phenomenon of adversarial examples. However, we have lately
been able to prove the gain of DFAL for linear classifiers theoretically (see Sec-
tion 4.6). Specifically, we demonstrate the theoretical gain in reducing the labeling
effort when data are drawn from the unit ball and consistent with a linear separator
with no bias. Notice that our proof may be extended to other distributions as long
as they are iid along any dimension (such as isotropic Gaussian).

We already know from the theoretical work of [Balcan 2007| that we need to
sample the examples from a subregion carefully chosen to obtain an exponential
improvement in the label sample complexity. Such subregion is the area along
the decision boundary given the current generalization error achieved at iteration
k. For the linear case, DeepFool is a natural extension of the well-known attack
which consists in adding the perturbation along the gradient direction In the linear
case, adversarial attacks directly measure the distance to the decision boundary.
Thus, when sampling unlabeled samples with the smallest adversarial perturbation,
we sample examples from the low confidence subregion and we are consistent with
Balcan’s protocol. Our proof goes further, by demonstrating how the adversarial
counterparts help reducing up to twice the number of required queries. Our proof
goes into two steps: (i) Based on the notion of adversarial strength, [Tanay 2016];
we have demonstrated how to build adversarial attacks that will transfer to any
other consistent classifiers; (ii) we have also demonstrated that any sample from the
low confidence subregion will lead to adversarial examples also in the low confidence
subregion. We further describe the impact of DFAL for linear classifiers in Sec 4.6

4.5.2 DFAL does not select random samples in the first runs

DFAL is very promising empirically. However, for complicated network architec-
tures with millions of parameters like VGGS8, but trained on a small labeled set,
it seems plausible that any example is vulnerable to small adversarial attacks. We
clarify this hypothesis and explain why we do not observe such behavior in practice.
Independently of the number of parameters of the network, [Fawzi 2017] have
empirically observed that state-of-the-art deep networks learn connected classifica-
tion regions instead of shattered and disconnected regions. Although such classifica-
tion regions defined in the input space may suffer from the curse of dimensionality,
eventually few directions interfere with the decision boundaries. Considering now
the low dimensional space defined by these impacting directions, it becomes likely
that the samples do not suffer anymore from the curse of dimensionality and, thus
the distance to the decision boundary will differ among the samples. Hence, even in
the first iterations of DFAL, we expect the magnitude of the smallest adversarial
perturbations to be diverse enough so not to select samples randomly.
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Finally, we observe in Figure 4.8 that adversarial perturbations are far from
being constant. We believe that the underlying topology of classification regions of
deep networks explains the efficiency of our method, even in the first runs.
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Figure 4.8: range of adversarial perturbations (i.e. distances between samples and
their adversary) for VGG8trained on MNISTwith 10, 20, 30 ... to 100 labeled
examples. A curve corresponds to the range of adversarial pertubation found on the
unlabeled example, while its color matches the size of the labeled set used to train
the network
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4.6 Adversarial Active Learning for Linear Classifiers

We point out specific cases in which we can obtain a significant improvement in the
labeled data sample complexity using adversarial active learning for linear classifiers.
We restrict our case of study to a specific case; which is when the data instances
are drawn from the unit ball in R? and their labels are drawn from +1. Notice
that our proof may be extended to other distributions as long as they are uniformly
distributed along with any dimension (such as isotropic gaussian). Throughout
this section, our goal is to find a linear classifier f going through the origin, so
that its expected true loss is as small as possible. The error is induced by the
classification rule 2I(f(x) > 0) — 1 where I(-) is the set of indicator functions. We
consider the following classification error loss defined as 1(f(x),y)=1if yf(z) < 0 and
I(f(x),y) = 0 otherwise.

Firstly, we detail our strategy when the labels are consistent with a linear sep-
arator going through the origin. While we knew already from the literature that
active learning is highly beneficial for such a case, ensuring a need of O(d In(2))
labeled examples, given € as the error rate and d the dimension, we will see how
adversarial active queries help to diminish the effective numbers of labels queried.

Indeed, [Balcan 2007] demonstrated that to obtain an exponential improvement
in the label sampled complexity, one needs to sample the examples from a subre-
gion carefully chosen and not from the entire region of uncertainty. When sampling
uniformly along the unit ball, few samples lie in such low confidence regions. Al-
though, to achieve an error rate of 2~ (k+1) at the k-th iteration, we still need to add
(7)(2'“d) unlabeled samples®, we can automatically guess the ground-truth labels of
the majority of them. Given the current linear classifier ¢i consistent on the labeled
examples at iteration k and a given threshold by, every unlabeled sample xj lying
further from the decision boundary than b is necessarily predicted correctly by the
current clagsifier ¢;. This result relies on the assumption made on the data distri-
bution and its separability using a linear classifier [Balcan 2007]. When sampling
uniformly queries and considering b, = 27%m, we can estimate the probability for
any sample z to be part of the low confidence regions as p(| ¢z |< b) = O(27FV/d).
Hence, in the original strategy proposed in [Balcan 2007], a human annotator effec-
tively annotates @(d%) unlabeled samples at each iteration to obtain an exponential
improvement in the error rate.

Here we argue how adversarial queries may help to reduce the number of effective
labels at any iteration k& > 1.

4.6.1 Transferable adversarial attacks

When it comes to deep networks, their adversarial attacks can transfer across many
other models: adversarial examples generated for a specific model will often mis-
lead other unseen networks. Such a property is commonly known as transferability.
However, transferability has been mainly observed empirically [Goodfellow 2015].

3according to the VC dimension of linear classifiers
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Up to our knowledge, how to understand the underlying phenomena and how to
defend against them effectively are still open questions. Meanwhile, [Tanay 2016]
have investigated the phenomenon of adversarial examples for binary linear classi-
fiers. They proposed a new taxonomy to classify adversarial attacks: they defined
the notion of adversarial strength and show that it can be reduced to the deviation
angle between the classifier considered and the nearest centroid classifier (i.e the
bissecting hyperplane between positive and negative samples).

The probability of transferability of an adversarial attack directly depends on
the level of regularization used; more specifically to the deviation angle between the
classifier and the bissecting hyperplane between positive and negative samples.

Based on the notion of adversarial strength, we define weak adversarial exam-
ples. Weak adversarial examples will not transfer to any other consistent classifier,
other than the one they have been designed for. They result from a lack of regu-
larization, which can be improved by adding the adversarial sample to the training
set. Similarly, as for DFAL, we can use twice the same label for any sample and
its weak adversarial counterpart. If one is able to design weak adversarial examples
given a labeled sample x, then we can increase the training set without corrupting
it. Eventually, the weak adversarial sample will have the same label as x.

Figure 4.9: Toy problem: learning a linear separator that predicts with no error the
labels of positive instances e, and negative instances e. We illustrate the notion of
weak adversarial examples o on two samples z' and z2.

We detail the procedure to build weak adversarial attacks for linear classifiers
in Theorem 6.1. To build our adversarial attacks, we stick to the standard of the
litterature by adding a perturbation along the gradient direction [Goodfellow 2015].
The strength of the adversarial example is directly impacted by the deviation angle
and the magnitude of the perturbation. We illustrate our strategy on a 2-dimensional
toy problem in Figure 4.9. Consider instances distributed in a circle such that
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positive and negative points may be well separated given a linear classifier going
through the origin. B, in accordance with Definition 1, is the bissecting line between
positive and negative points. For the sake of clarity, we centered B to go through
the origin. Several optimal separators coexist. Among them, we consider the one
which maximizes its angle with B (i.e W in def 2), and the one wich minimizes it
(i.e S in Definition 2). Every other solution necessarily lies between W and S.

We describe for two points ! and 2?2 in Figure 4.9 how to build their weak
adversarial counterparts, based on Definition 2. Note that a necessary condition is
that both points 2! and z? considered are well predicted by our strong and weak
classifiers. The mirror projection of 2! given S will lie in the hypothesis space (a.k.a
in the area between W and S). When it comes to x2, projecting it on W ensures
that every consistent classifier will predict 22, as a negative instance.

Definition 4.6.1: Bissecting Hyperplane

According to |Tanay 2016], we define the bissecting hyperplane B as a unique
linear separator of unit vector b and bias by such that B reflects the mean
of positive instances on the mean of negative instances. Note that B is not
necessarily part of the hypothesis space, nor B minimizes the error on X x Y.

j=i—2(-b+b)bst i=EX|Y=1], j=E[X|Y = —1]

Definition 4.6.2: Transferable adversarial attacks

Given L(X xY) the set of optimal classifiers given the task at hand, we define
two boundary classifiers: S the strong linear classifier of unit vector s, and W
the weak linear classifier of unit vector w. § is consistent with the training set
and minimizes the deviation angle with . W is consistent with the training
set and maximizes the deviation angle with B.

LIXxY) ={C|V(z,y) € X XY y(z-c) >0} (4.1)
) = argminses(xxy)s- b (4.2)

)4% = argmaryer(xxy)W - b (4.3)
(4.4)

V(z,y) € X xY we define its weak adversarial attack, Z,,, based on the follow-
ing:

eif |lw-z|<|[s-z|: Ty =2—(z-Ww)W

oif [s-z|<|w-z|: Ty =2 — (x-8)s
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Theorem 6.1: Weak Adversarial Examples

V(z,y) € X XY, y(Zy-c) >0

Notice that our definition of adversarial attacks does not match exactly the
common definition as we do not restrict our adversarial attacks to be close to their
target sample anymore.

4.6.2 Label Complexity on the unit ball

Here we argue how weak adversarial queries help to reduce the number of effective
labels at any iteration k > 1. Our active learning strategy consists in adding also
weak adversarial instances to the training set when it is relevant, as proposed for
deep networks with DFAL. Thus we will reduce the effective need of queries by a
ratio of two at best. Indeed, weak adversarial instances are relevant if and only if the
sample queried is already well predicted by the current weak and strong classifiers.
In Theorem 6.2, we describe further the expected improvement in terms of human
annotations.

A first observation is that projecting the unit ball according to any hyperplane
going through the origin corresponds to the identity mapping. Consequently, when
adding weak adversarial examples in the training set, we do not modify the un-
derlying distribution of the instance space. Moreover, the main advantage of our
adversarial examples is that for any instance lying in the low confidence region, its
weak adversarial examples will also lie in that subregion (Lemma 6.1). It means that
when using adversarial queries, we respect the i.7.d assumption, and query relevant
samples, as illustrated in Figure 4.10. Finally the number of artificial queries that
can be added mostly depend on the generalization error at the current iteration:
when a sample query is correctly predicted, we can add its weak adversarial attacks.

Lemma 6.1: Low confidence region

V(z,y) € X XY, VC € L(X X Y): Va € RT such that | ¢-z |< « then we have

|c Ty < a

Theorem 6.2: Convergence of adversarial queries

Given n :@(d%) the effective number of labels to query at iteration k. We
denote the generalization error at step k, pp = 2~ (k+1)

Using our adversarial strategy (adding both Z,, and Z;), we can reduce the
effective number my, of labels with high probability 6 > 0 up to:
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Figure 4.10: Repartition of weak examples o for samples e lying in the low confidence
subregion of a consistent classifier C

4.7 Conclusion

In this chapter, we proposed a new active learning heuristic, called DFAL, to per-
form margin-based active learning for CNNs: we approximate the projection of a
sample to the nearest decision boundary using its smallest norm adversarial at-
tack. We demonstrate empirically that our DFAL strategy is highly efficient for
CNNS5 trained on various image classification benchmarks. We are not only compet-
itive with the state-of-the-art approach CORE-SET, but we also outperform that
method for runtime performance. Thanks to the transferability of adversarial at-
tacks, DFAL is a promising approach for combining active learning with model
selection for deep networks.
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5.1 Introduction

e We propose a new bayesian active learning strategy for Deep Networks using the
variational free energy. (see 5.1.1).

e We provide a tractable upper bound based on Optimal Experimental Design
(OED) (see 5.1.1 and 2.3)

o We design a diversity regularizer based on Wasserstein distance (see 5.1.1)

e We rely on Fisher approximation to scale OED to both CNN and Recurrent
Neural Networks (RNNs) (see §.1.1)

mducoffe/AL VFE = Proofs are available in Appendix A.3.2
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Instead of measuring the uncertainty for only one model, Bayesian Neural Net-
works offer the possibility to evaluate the uncertainty through an ensemble of mod-
els. In a Bayesian context, a neural network is considered as a parametric model
which assigns a conditional probability on the observed labeled data A given a vec-
tor of weights w. If the weights follow some prior distribution Pr(w | a) (depending
on the parameter «), the posterior distribution of the weights can be written as
Pr(w | A,a). We are interested in finding the most probable weights that have
generated our data, i.e. the posterior over the weights given our observables. Such a
probabilistic uncertainty is highly relevant in an active learning setting as it conse-
quently leads to a pertinent exploration of the underlying distribution of the input
data. This strategy is similar to QBC, with the main difference that the size of the
committee might be infinite instead of being discrete as in Section 3.

However computing the posterior distribution of the weights Pr(w | A, «a) is
usually intractable for deep networks. Instead, one can approximate the posterior
with a variational distribution Q(w | ) whose structure leads to an easier evalu-
ation. Only few works have attempted to estimate the distribution of the weights
of a CNN, mainly due to the high dimensional parameter space inherent with such
models.

A possible solution consists in considering Bayesian inference as an optimiza-
tion process and thus by minimizing the variational free energy [Feynman 1972,
Neal 1998]. Such an approximation has already been exploited by |Graves 2011] for
deep networks 1. The posterior distribution Pr(w | A, «) is approximated with a
tractable distribution Q(w | 8) depending on a new parameter 5. The quality of the
approximation Q(w | 8) compared to the true posterior Pr(w | A, «) is measured
by their Kullback-Leibler divergence, with £ the log-likelihood.

The approximation quality is equivalently measured by the variational free en-
ergy F, which can be expressed as a minimum description length loss function:

F(A) = i) (LAW) + KL(Qw [ A) || Pw] @) (5.1)

When it comes to active learning, deducing an approximating variational distri-
bution through Eq. (5.1), is not intuitive. The main drawback lies in the additional
hyperparameters( such as the mean and the covariance matriz if assuming Gaussian
distribution) required by the method, which drastically increases the complexity of
the training stage. For example, [Blundell 2015] use a Gaussian distribution for their
approximate variational distribution which has doubled the number of parameters
in the model without outperforming state-of-the-art performance.

In this section, we propose a Bayesian batch active learning method for CNNs.
We derive the use of the variational free energy at test time, to evaluate how the
approximating variational distribution generalizes to new unseen data. Eventually,
our Bayesian Active Learning method 5.1.1 queries the batch of unlabeled data
which maximizes the variational free energy.

!For the sake of consistency we stick to his notations
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5.1.1 Active Learning under the light of Variational Inference

N(wy, I p(wr))

Ni(wy, I (we))
(a) classification with a shallow logistic (b) Laplace approzimation of the prior
classifier P(w; | ) and the posterior distribu-

tion of the weights Q(w; | 3)

Figure 5.1: Illustration of our active learning criterion for linear separators (see
Eq. 511): Ay ={  }, B={ e}, P\N{AUB} ={ » }. We learn a logistic classifier
with no bias on a 2D binary classification task. The data are made of a mixture of
two Gaussians ( on the left lie positive examples and the right negative examples).
The yellow points A; are labeled, and wy is learn on them with no error. We then
select 9 unlabelled data B to minimize our variational free energy: the set of points
B whose induced posterior distribution Q(w; | #) will diverge at most from the prior
distribution P(wy | ). w41 is the classifier trained on A; U B.

Firstly, we sum up our batch active learning strategy in Method 5.1.1.
Method 5.1.1: Bayesian Active Learning
We have a pool of unlabeled data P and start training our CNN with a small
set of training samples 4. This is the initial state of our active learning training

set Ag = A. At each iteration ¢, we aim at selecting the optimal batch B by
computing a new loop of the following steps:

1. the network is trained on the current training set Ay leading to the weights
Wit1

2. we search for the optimal batch B of samples to be added to the training
set, i.e. the batch B maximizing the variational free energy

B = argmazp Fyw, (A UB)

3. we select a subset B C B of fixed size such that AU B follows at best the
unknown input distribution (see section 5.2).

4. the training set is then augmented by B: A1 = AU B
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For clarity sake, in the following we rename Fy, by F (keeping in mind that
we target the selection of the optimal batch B, thus the weights w; of the network
remain fixed after step 1 until step 4).

Our active criterion thus corresponds to select the batch B maximizing F (AU
B). From Eq. (5.1), it consists in the minimization of the sum of two terms which,
in accordance with |[Graves 2011|, we denote respectively by:

e the training factor Ey.qw|s) (E(.A U B;w)),

e the generalization factor KL (Q(w | B) || P(w | a)).

Those two terms require to be able to compute both the prior distribution of the
weights P(w | a) and the approximation Q(w | /) of the posterior distribution
Pw| AUB,«a).

Here we consider the Laplace approzimation [MacKay 1992, Ritter 2018]. It im-
poses a Gaussian distribution on Q(w | §) whose covariance is estimated from the
Hessian of the model, evaluated at the variational mode w;. The covariance corre-
sponds to HZUB(Wt)’ a quantity also denoted as the empirical inverse Fisher infor-
mation matrix. When considering our active criterion, the Laplace approximation
holds two main advantages. First, it allows inferring Q(w | ) at test time, without
impacting the training phase. Secondly, the assumption of a Gaussian distribution,
instead of a Gaussian mixture as in [Gal 2016al, simplifies the variational steps when
computing F, so to obtain an analytical expression of our active criterion.

5.1.1.1 BALNet: Batch Active Learning Networks

At the beginning of an active learning step, the current weight distribution given
the labeled dataset A; defines our prior. The posterior distribution is computed
on both the labeled data and the query batch B. The next equations define the
formulation of our prior and posterior:

P(wi | @) ~N(we, I3 (wy)) (5.2)
Q(we | B) ~N (we, gy 5(we)) (5.3)

For the sake of clarity, because each Fisher matrices considered are evaluated at w,
we skip it from now in the notations.

However, when the variational free energy evaluated on AUB increases, it induces
that, given B, the quality of our posterior approximate, Q(w | 3), is getting worse
to represent the posterior distribution Pr(w | A U B). Thus, our assumption to
consider the weights w as the variational mode in Eq. (5.3) is not valid anymore.
Consequently, it is relevant to add the data maximizing our active criterion, to
update the weights w.

Next we define tractable lower bounds for both terms in BalNet: the training
factor and the generalization factor.
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e The Training factor is intractable and is always approximated, generally
through sampling [Graves 2011]. However, sampling on the approximate posterior
Q(w | B) requires to compute the inverse of the Fisher matrix for every possible
batch B (Eq. 5.2). To overcome this computational issue, we opt for a second-order
linear approximation of the expectation of the log-likelihood. Note that we evaluate
our loss only on the labeled data. For any random vector whose expected mean
and covariance are known, the expectation of a quadratic form can be expressed
|[Mathai 1992|. Eventually our evaluation of the training factor becomes:

1 1
Evnqwis) (LA W)) % L(Asw) = W Taw = STr(Is0)  (5.4)

e The generalization factor corresponds to the K Ldivergence between the
approximate po