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Titre : Active Learning et Visualisation des données d'apprentissage

pour les Réseaux de Neurones Profonds

Résumé

Notre travail est présenté en trois parties indépendantes.
Tout d'abord, nous proposons trois heuristiques d'apprentissage actif pour les

réseaux de neurones profonds :
• Nous mettons à l'échelle le `query by committee' , qui agrège la décision de sélec-
tionner ou non une donnée par le vote d'un comité. Pour se faire nous formons le
comité à l'aide de di�érents masque de dropout.
• Un autre travail se base sur la distance des exemples à la marge. Nous proposons
d'utiliser les exemples adversaires comme une approximation de la dite distance.
Nous démontrons également des bornes de convergence de notre méthode dans le
cas de réseaux linéaires.
• Puis, nous avons formulé une heuristique d'apprentissage actif qui s'adapte tant
au CNNs qu'aux RNNs. Notre méthode sélectionne les données qui minimisent
l'énergie libre variationnelle.

Dans un second temps, nous nous sommes concentrés sur la distance de Wasser-
stein. Nous projetons les distributions dans un espace où la distance euclidienne
mimique la distance de Wasserstein. Pour se faire nous utilisons une architecture
siamoise. Également, nous démontrons les propriétés sous-modulaires des proto-
types de Wasserstein et comment les appliquer à l'apprentissage actif.

En�n, nous proposons de nouveaux outils de visualisation pour expliquer les
prédictions d'un CNN sur du langage naturel. Premièrement, nous détournons une
stratégie d'apprentissage actif pour confronter la pertinence des phrases sélection-
nées aux techniques de phraséologie les plus récentes. Deuxièmement, nous pro�tons
des algorithmes de déconvolution des CNNs a�n de présenter une nouvelle perspec-
tive sur l'analyse d'un texte.

Mots clés

Apprentissage Actif, Wasserstein, Linguistique, Réseaux de neurones profonds, Dé-
convolution, Automatisation, Exemple Adversaire
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Title : Active Learning and Input Space Analysis for Deep

Networks

Abstract

Our work is presented in three separate parts which can be read independently.
Firstly we propose three active learning heuristics that scale to deep neural net-

works:
• We scale query by committee, an ensemble active learning methods. We speed
up the computation time by sampling a committee of deep networks by applying
dropout on the trained model.
• Another direction was margin-based active learning. We propose to use an ad-
versarial perturbation to measure the distance to the margin. We also establish
theoretical bounds on the convergence of our Adversarial Active Learning strategy
for linear classi�ers.
• We also derive an active learning heuristic that scales to both CNN and RNN by
selecting the unlabeled data that minimize the variational free energy.

Secondly, we focus our work on how to fasten the computation of Wasserstein
distances. We propose to approximate Wasserstein distances using a Siamese archi-
tecture. From another point of view, we demonstrate the submodular properties of
Wasserstein medoids and how to apply it in active learning.

Eventually, we provide new visualization tools for explaining the predictions of
CNN on a text. First, we hijack an active learning strategy to confront the relevance
of the sentences selected with active learning to state-of-the-art phraseology tech-
niques. These works help to understand the hierarchy of the linguistic knowledge
acquired during the training of CNNs on NLP tasks. Secondly, we take advantage
of deconvolution networks for image analysis to present a new perspective on text
analysis to the linguistic community that we call Text Deconvolution Saliency.

Keywords

Deep Learning, Active Learning, Wasserstein, Linguistic, NLP, CNN, Deconvolu-
tion, Adversarial example
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Chapter 1

Introduction

Contents

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Active Learning for Deep Networks . . . . . . . . . . . . . . . 1

1.1.2 Learning Wasserstein Core-Sets . . . . . . . . . . . . . . . . . 2

1.1.3 Visualization and Active Analysis for Deep Networks on Lin-

guistic tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 List of publications . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Contributions

Our work is presented in three separate parts which can be read independently. We
present their content in Parts 1.1.1, 1.1.2, 1.1.3 respectively. For each topic, we
dedicate a thorough introduction. Full papers and code can be found online1, and
are also referred in Section 1.2.

1.1.1 Active Learning for Deep Networks

Part I is adressing the question of the annotation cost when training deep neural
networks. Considering the cost of gathering relevant annotations for huge datasets
such as ImageNet, the interest in methods requiring smaller training sets is increas-
ing. One possible direction to improve a training set while reducing its size is to
rely on active learning. In active learning, the goal is to train a classi�er with as
few as possible training samples while reaching the same accuracy as if an unlimited
number of training samples were available (i.e., at most the whole dataset). The
challenge lies in selecting a small subset of data, without supervision, which is in-
formative enough to reach the best possible accuracy. In Sections 3 to 4, we scale
active learning methods mostly designed for Convolutional Neural Network (CNN).

First, active query strategies may be handled by ensembling deep networks; ei-
ther by disagreement over the models (Query By Committee: [Duco�e 2015], Chap-
ter 3), or by assuming some weight's distribution and sample a committee according
to this distribution (Bayesian Active Learning : [Duco�e 2016c], Chapter 5).

1github/mduco�e
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Another direction is to rely on the distance to the decision boundary, namely
margin-based active learning. In Chapter 4, we exploit the geometric distances of
samples to the decision boundaries for querying new samples. We propose to use
an adversarial perturbation to measure the distance to a CNN's decision boundary
in [Duco�e 2018]. We also establish theoretical bounds on the convergence of our
Adversarial Active Learning strategy for linear classi�ers.

1.1.2 Learning Wasserstein Core-Sets

Part II is focusing on Wasserstein distance. Wasserstein is a distance between dis-
tributions derived from the �eld of optimal transport. It has received a lot of
attention in machine learning recently, notably with Wasserstein based generative
models. However, its complexity limits the usage of Wasserstein in new applica-
tions. To alleviate the cost of computing pairwise Wasserstein distance on discrete
distributions, we propose in Chapter 8 to approximate Wasserstein distances using a
Siamese architecture ([Courty 2017b]). From another point of view, we demonstrate
the submodular properties of Wasserstein medoids in Chapter 9 and how to apply
it in active learning in Section 5.2.

1.1.3 Visualization and Active Analysis for Deep Networks on Lin-

guistic tasks

We dedicate Part III to the conception of new visualization tools for the underlying
information captured by a CNN on a text.

First, we hijack our active learning strategy from Chapter 3 to confront the rel-
evance of the sentences selected with active learning to state-of-the-art phraseology
techniques [Duco�e 2016a, Maya�re 2017]. These works help to understand the hi-
erarchy of the linguistic knowledge acquired during the training of CNNs on Natural
Language Processing (NLP) tasks.

Secondly, [Vanni 2018] confronts Textual Data Analysis and Convolutional Neu-
ral Networks for text analysis. We take advantage of deconvolution networks for
image analysis to present a new perspective on text analysis to the linguistic com-
munity that we call Text Deconvolution Saliency (TDS), in Chapter 12.

1.2 List of publications

1. QBDC: Query by dropout committee for training deep supervised
architecture [Duco�e 2015]

2. Adversarial Active Learning for Deep Networks: a Margin Based
Approach [Duco�e 2018]
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3. Learning Wasserstein Embeddings [Courty 2018]

4. Introducing Active Learning for CNN under the light of Variational
Inference [Duco�e 2016c]

5. Machine Learning under the light of Phraseology expertise [Duco�e 2016a]

6. Textual Deconvolution Saliency (TDS): a deep tool box for linguis-
tic analysis [Vanni 2018]
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2.1 Motivations

Larger deep architectures fed with more data provide better results in error rate.
This widely acknowledged idea has been con�rmed all along the recent years when
analyzing, for instance, the results at Imagenet Large Scale Visual Recognition
Challenge [Russakovsky 2015]. Indeed, in 2012, the winner was the SuperVision
team [Krizhevsky 2012] using a deep convolutional neural network with 60 million
parameters and making a momentous breakthrough in the image classi�cation task.
The huge step forward from SuperVision team has profoundly impacted the following
contributions to ILSVRC after 2012. In 2014, Simonyan et al. [Simonyan 2014] also
proposed to use a CNN architecture from 11 up to 19 layers with 133 up to 144
million of parameters. Owing to the considerable amount of parameters involved
which needs to be learned, the training set needs to be huge as well. Nevertheless,
state of the art results using deep networks are known on a large training set.

However, a lot of real-life scenarios typically do not come with millions of labeled
data available to train a model. Labeling appears to be one of the main bottlenecks
towards wide spreading deep networks to a new area: gathering and annotating
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massive dataset for supervised learning may prohibit the expansion of deep networks
towards new �elds such as chemistry or medicine [Smith 2018, Hoi 2006].

Labeling data may sound like a trivial task, but in many cases, it requires expert
knowledge. For example, the creation of the Penn Treebank dataset, a benchmark
when considering part-of-speech tagging, took more than seven years of collabora-
tions with linguistic experts [Taylor 2003]. Scaling the labeling process is not always
practical as it requires the intervention of many speci�c human operators. Usually,
labeling can only be solved with co�ee and patience.

A more plausible solution is to reduce the compelling need for labeled training
samples to train deep networks. In Section 2.2, we highlight the di�erent families of
methods seeking to solve this type of problem and detail the settings on which they
are better suited. In particular, we will focus on Active Learning (AL) that seeks
to optimize the training set automatically for the task at hand to limit the need for
human annotations.

2.2 De�nitions

2.2.1 Active Learning

Given a large set of unlabeled samples, AL tries to guess which ones should be
labeled and added to the training set to increase at best the performance of your
model. It operates iteratively, by �rst requesting new labels from the user, and then
updating the model given the new labeled training set. The model can leverage its
new knowledge to add queries again. Eventually, only a small fraction of the unla-
beled data would be annotated to achieve good classi�cation performance. Firstly,
we detail three scenarios in which may occur AL. Note that this list is not intended
to be exhaustive. Eventually, AL may occur in di�erent scenarios:

• Pool-Based Sampling assumes that the learner has only access to a �xed
pool P of unlabeled i.i.d samples (C) and must query a �xed budget size
number of points (D) from P. It submits each of those queries to an oracle (E)
that labels them to add them into the labeled training set (A). The classi�er
(B) can then be re-trained on the incremented labeled training set. Figure 2.1
illustrates the iterative process. Notice that, in our context, we assume that
the oracle makes no mistakes when annotating new query. However, noisy
oracles have been tackled in the literature. For a survey of noisy oracles, we
refer the reader to [Settles 2011].

• Stream-Based Selective Sampling considers one unlabeled example at a
time and for each of them decide whether to ignore it or ask an oracle to an-
notate it. Stream-based active learning is attractive in many real-world appli-
cations when unlabeled samples are presented sequentially, and their number
is far too large to maintain a pool of candidates. For example, stream-based
active learning may be suitable for the classi�cation of observations by au-
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Figure 2.1: Illustration of Pool-Based Active Learning: A=Labeled training
set ; B=Classi�er ; C=Unlabeled set ; D=Queries ;E=Oracle

tonomous car driving.

• Query synthesis consists in generating new unlabeled instances instead of
considering a �xed pool of unlabeled samples. Creating de novo the queries
may increase the learning speed, as we can optimize the queries according to
the query selection. We illustrate this phenomenon with a simple example in
Figure 2.2.

However querying arbitrary instances can be awkward if there are no assump-
tions on the underlying distribution of the generated samples; in that case, we
may generate noisy instances. For example, [Baum 1992] synthesized hand-
written digits to train a neural network. However, they obtained poor per-
formance as sometimes their generated queries were not identi�able to the
human oracle. Early active query synthesis has encountered some success
when considering very low dimensional domains. More recently, [Zhu 2017]
proposed to use a pre-trained Generative Adversarial Network (GAN) to gen-
erate the queries. So far, they obtain competitive results with pool-based
active learning, probably due to a lack of diversity in their criterion. Indeed,
when sampling from a �nite set, the optimization of the query selection crite-
rion is limited by the number of samples and their distribution. Eventually,
one should pay attention not to focus on a subregion of the underlying dis-
tribution and create bias in the labeled training set. While their method is
interesting, it comes at the price of training a GAN in a preprocessing step,
which remains a challenging task. Nevertheless, query synthesis is also used
as a form of reinforcement learning to improve dialogue generation: after the
training phase, a human oracle scores the generated answer, which helps to
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(a) SVMactive (b) Query synthesis

Figure 2.2: �An active learning heuristics for SVM SVMactive will query data that

are the closest to the decision boundary. In that tendency, Query synthesis may

help to generate queries that optimize the active learning criterion� as underlined
in 2.2(b) [Zhu 2017]

improve the system in [Asghar 2017].

Active learning is not only motivated by theoretical works demonstrating that
one model may perform better using less labeled data if the data are model-crafted
[Cohn 1996], but also by its proven e�ciency on a wide range of machine learning
procedures, including character recognition [Liu 2004], bio-informatics [Sculley 2007,
Smith 2010], or classi�cation of medical data [Hoi 2006]. As an example, in Fig-
ure 2.3, we illustrate the potential bene�t of AL on a baby task.

A central challenge in active learning is to de�ne the information required for
selecting at best the queries and how to measure it e�ectively. It happens that
AL may have a drastic improvement regarding human annotations: in some classi-
�cation problems, the excess risk of AL can converge to zero with an exponential
rate comparing with the linear rate of fully supervised classi�cation, also known
as passive learning. However, the e�ectiveness of AL implies prior knowledge on
the data distribution [Willett 2006, Castro 2007]. Eventually, there exists no uni-
versal criterion to select the most informative queries. Thus AL strategies rely on
heuristics to choose these queries. Moreover, several heuristics coexist as it is im-
possible to obtain a universal active learning strategy e�ective for any given task
[Dasgupta 2005a].

As underlined in the related research areas 2.2.2, applying active learning on deep
networks appears promising. Indeed, in peculiar settings, supervised classi�cation
on random small labeled training set achieves similar accuracy than state-of-the-
art semi-supervised deep algorithms. If one could optimize the labeled training set
itself, it is likely that the performance would be even comparable, or even better.

However, transposing directly existing active learning on deep networks is not
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Figure 2.3: AL on a toy data-set. We consider a binary classi�cation tasks on
n=100 samples ( • positive examples, • negative examples) and want to learn an
optimal classi�er with no bias. Because the data are well separated, there exist an
optimal linear classi�er (W) that can be learnt using at minima four samples: by
labelling (A, B, C, D). However, the probability of sampling those points at once
is of 1

(n4)
' 10−4

intuitive. First of all, scaling them to high dimensional parameters networks may
turn out to be intractable: some classic active learning methods such as Optimal
Experiment Design [Yu 2006] require to inverse the Hessian matrix of the models at
each iteration, which would be intractable for current standard CNNs. Secondly, one
of the most standard strategies is to rely on the uncertainty measure. Uncertainty in
deep networks is usually evaluated through the network's output while this is known
to be misleading. Indeed, the discovery of adversarial examples has demonstrated
that the way we measure uncertainty may be overcon�dent. We describe the query
selection methods proposed for deep networks in section 2.3 and demonstrate how
they compare to one another.

2.2.2 Related Research Areas

We de�ne close related research areas, relevant as well to reduce the e�ective size
of the labeled training set to train deep models. While those topics are out of the
scope of our work, they appear complementary to AL.

1. Transfer Learning (TL) consists in using a solution designed for a related
source domain, in order to adapt it to the current problem. Usually, TL is used
only when few samples from the target domain are available, a.k.a we do not
have at our disposal a large set of unlabeled examples; which di�ers from AL.
Nevertheless, TL is only applicable when both source and target domains share
some relevant information; while de�ning the type of information required is
not intuitive and typically induces several empirical experiments.

Transfer Learning is popular in deep learning due to a large number of pre-
trained networks available online. When it comes to TL on deep networks,
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it mainly consists in �tting an already trained model to a new classi�cation
task on another dataset [Sawada 2017]. Indeed, it appears that deep neural
networks trained on image classi�cation tasks, all learn similar and broadly
general features in their �rst layers (visually similar to Gabor �lters and color
blobs, i.e., biologically receptive �elds [Zamir 2018]). Hence, as those features
are not dataset-crafted, they may be reused for another task to speed up the
training: the scope of solutions would be narrowed by starting from a weight's
region di�erent from the common one obtained with random initialization.

2. Semi-Supervised Learning (SSL): combines both a small labeled training
set and a larger pool of unlabeled samples. When it comes to deep net-
works, SSL enjoys an extensive literature, ranging from extending autoen-
coders and generative modeling [Kingma 2014, Gogna 2016], to new regular-
ization schemes [Miyato 2017]. Note that the previous listing is far from being
exhaustive.

However, the new �aws underlined in [Oliver 2018] should leverage the suc-
cesses of semi-supervised deep algorithms. The �rst drawback is that when us-
ing well-optimized hyperparameters and regularization settings, fully-supervised
deep networks are competitive with the current state-of-the-art semi-supervised
algorithms, without using any unlabeled samples. Nevertheless, the size of
the labeled training set and also, the divergence between both distributions,
respectively induced by the labeled samples and the unlabeled samples, pro-
foundly impact the performance of SSL on classi�cation tasks. Finally, both
drawbacks highlight the necessity of optimizing the labeled training set for the
task at hand.

2.3 Litterature

Previous works have shown that a carefully designed query strategy e�ectively re-
duces annotation e�ort required in a variety of tasks for shallow models. The e�ec-
tiveness of AL has been established both theoretically and empirically. Nevertheless,
AL for shallow models mainly rely on speci�c model simpli�cations and closed form
solution. Deep Neural Networks, on another side, are inherently complex non-linear
functions. Their complexity poses several limitations to scale such existing active
learning strategies.

In this section, we establish the range of active learning methods studied for
deep networks, starting from the most intuitive setup (uncertainty estimation) to the
most sophisticated strategies that take into account some properties and speci�cities
involved in the training of deep networks.

2.3.1 Uncertainty

Originally, [Lewis 1994] introduces uncertainty selection. It consists in querying
the annotations for the unlabeled samples with the lowest con�dence. Thus its cost
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is low and its setup simple. Hence, it has been used on deep networks for various
tasks, ranging from sentiment classi�cation to visual question answering and Named
Entity Recognition [Zhou 2010, Lin 2017a, Yanyao Shen 2018].

The main drawback of uncertainty selection is its tendency to query outliers or
other types of noisy instances, such as adversarial examples. Tellingly, the apparition
of adversarial attacks, which are wrongly predicted with high con�dence, empirically
demonstrates that the probability of misclassi�cation and the uncertainty are not
necessarily correlated.

Uncertainty selection has been improved in a pseudo-labeling method called
CEAL [Wang 2016]: CEAL performs uncertainty selection, but also adds highly
con�dent samples into the augmented training set. The labels of these samples are
not queried but inferred from the network's predictions. In the case one deals with a
highly accurate network, CEAL will improve the generalization accuracy. However,
CEAL implies new hyperparameters to threshold the prediction's con�dence. If such
a threshold is poorly tuned, it will corrupt the training set with mistaken labels.

2.3.2 Query-By-Committee

Uncertainty selection may be also tailored to network ensemble, either by disagree-
ment over the models (Query-by-committee, [Seung 1992]) or by sampling through
the distribution of the weights (Bayesian active learning, [Kapoor 2007]). Query-
by-Committee consists in maintaining a committee of models which represent the
current set of consistent hypothesis. Whether to label or not a query is decided
based on a vote among the committee members. Usually, the vote incorporates
some disagreement information on the predicted labels. Figure 2.4 illustrates this
process for linear classi�ers. Recently, [Gal 2016b] demonstrated that dropout (and
other stochastic regularization schemes) is equivalent to perform inference on the
posterior distribution of the weights, enabling to leverage the cost of training and
updating multiple models. Thus, dropout allows to sample an ensemble of models at
test time: to perform Dropout-Query-By-Committee (Duco�e et al. , [Duco�e 2015])
or Bayesian Active Learning (Gal et al. , [Gal 2016b]). Gal et al. proceeded with
a comparison of several active learning heuristics: among all the metrics, BALD-
which maximizes the mutual information between predictions and model posterior
consistently outperforms other metrics.

2.3.3 Optimal Experimental Design

From another theoretical point of view, Optimal Experimental Design (OED) is a
�eld which takes interests in the Fisher information. Formally, the Fisher informa-
tion is the expectation over the partial derivative of the log-likelihood function with
respect to the parameters. The Fisher informations I reads:

IΘ = Ex,y
[
∇Θl(fΘ(x), y)∇Θl(fΘ(x), y)T

]
(2.1)

This measure is relevant because in a single parameter case, its inverse sets a
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Figure 2.4: Version space example for linear classi�ers on a binary task.
Every hypothesis (�) is consistent with the labeled training set. However, each
of them represent a di�erent model in the version space. The unlabeled sample in
red is not relevant as a query because every classi�er agree in its prediction (it is a
dog, whereas the green unlabeled sample is interesting as it will shrink the number
of consistent classi�ers. The more classi�ers we discard, the faster QBC converge
towards the optimal classi�er for the task at hand (assuming that a linear classi�er

can solve exactly the problem at hand)

lower bound on the variance of the model's parameter estimates; this result is known
as the Cramer Rao bound [Kagan 2001, Kay 2013].

In other words, to minimize the variance over its parameter estimates, an active
learner should select data that maximize the Fisher information or minimize the
inverse.

But for multivariate parameters, the Fisher information is a covariance matrix,
so its maximization may go through several statistics.

We cite the three most popular scenarios (other variants exist but, less used by

the community, they are left unlisted for the sake of clarity):

• A-optimality minimizes the trace of the inverse information matrix [Chan 1982]

• D-optimality minimizes the determinant of the inverse information matrix
[Chaloner 1995]

• E optimality minimizes the maximum eigenvalue of the information matrix
[Flaherty 2005]

Because deep neural networks may involve millions of parameters, computing
their Fisher matrix is intractable. Moreover, even relying on approximations is too
computationally expensive as one need to update the estimate for every possible
query. Hence, OED has never been investigated for deep neural networks.
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2.3.4 Core-Set

[Ozan Sener 2018] de�ne the batch active learning problem as a covering problem on
the output space of the network. In Equ. 2.2, they minimize the population risk of
a model learned on a small labeled subset. To do so, they propose an upper bound
with a linear combination of the training error, the generalization error and a third
term denoted as the core-set loss. Notice that in Equ. 2.2, we denote by s the set
of labeled points on which we train the parameter w of the network. We denote by
l(x, y | w, s) the loss of the network over a sample x with label y.

Population Risk ≤ Generalization Error + Training Error + CoreSetLoss

Generalization Error ≡
∣∣Ex,y∼pZ [l(xi, yi | w, s)]−

1

n

∑
i∈[n]

l(xi, yi | w, s)
∣∣

Training Error ≡ 1

| s |
∑
j∈s

l(xj , yj | w, s)

(2.2)

The generalization error is the absolute di�erence between the expectation of the
loss considering every possible sample from the ground-truth distribution, and the
expectation given the set of data available (meaning both labeled and unlabeled set,
which are indexed by n in Equ. 2.2). On another side, the training error measures
how far is the loss over both the unlabeled and labeled points compared to the
loss evaluated only on the labeled points. Due to the expressive power of CNNs,
the authors argue that the �rst two terms (training and generalization error) are
negligible. Therefore the population risk would mainly be controlled by the core-set
loss. Given a labeled training set s, a model w trained on s, and an unlabeled set
of n points, the core-set loss is expressed in equation 2.3

CoreSetLoss ≡
∣∣ 1
n

∑
i∈[n]

l(xi, yi | w)− 1

| s |
∑
j∈s

l(xj , yj | w)
∣∣ (2.3)

The core-set loss consists in the di�erence between the average empirical loss over
the set of points which are already labeled, and the average empirical loss over the
entire dataset including unlabeled points. If not considering the labels, the core-set
loss is upper bounded with the covering radius δs, as illustrated in Fig. 2.5. Here, we
denote by covering radius, the maximum distance in the output space between any
labeled sample's prediction and any unlabeled sample's prediction. Finally, Sener
et al. used a MIP heuristic to minimize at best the covering radius of the training
set. We illustrate their method in Fig. 2.5(b). Thanks to their method, they achieve
state-of-the-art performance in active learning for image classi�cation.

2.3.5 Expected Model Change

Another direction, rarely explored for deep networks, is to rely on the distance
to decision boundaries, namely margin-based active learning. Assuming that the
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(a) Covering the uncertainty space (b) MIP Solution

Figure 2.5: Consider the network's predictions of both the labeled training points s
(•) and the unlabeled points (•). Sener et al. shows that if the labeled training set
covers the space by a distance of at most δs (as illustrated in 2.5(a)) then the core-
set loss is bounded by O(δs)+O( 1

n) with n denoting the number of points available.
Eventually the strategy induced by this property implies to query unlabeled points
that minimize at best the expected δs. To do so, Sener et al. developed a MIP
strategy to select the samples that cover at best the output space of the network
(as illustrated in 2.5(b)).

problem is separable with a margin is a reasonable requirement considered for many
popular models such as SVM, Perceptron or AdaBoost. When positive and negative
data are separable under SVM, [Tong 2001] have demonstrated the e�ciency of
picking the example which is the closest to the decision boundary. If, exploiting
the geometric distances has been relevant for active learning on SVM [Tong 2001,
Brinker 2003], it is not intuitive for CNNs since we do not know beforehand the
geometrical shape of their decision boundaries. A �rst trial has been proposed in
[Zhang 2017]. The Expected-Gradient-Length strategy (EGL) consists in selecting
instances with a high magnitude gradient. Not only such samples will have an impact
on the current model parameter estimates, but they will likely modify the shape of
the decision boundaries. Their strategy aims to query samples that will impact at
most the model. If one knows the ground-truth label in advance, then it would be
possible to measure the exact impact of a sample (xi, yi) given the current labeled
training set s and the weights w of the network:

x∗ = arg max
i∈[n]

||∇l(s ∪ {(xi, yi)}|w)|| (2.4)

However, computing the exact gradient for a given sample is intractable with-
out its ground-truth label. In practice, we can only approximate Eq. 2.4 with the
expectation over the gradients conditioned on every possible class assignments:
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x∗ = arg max
i∈[n]

∑
k

P (yi = k|xi,w)||∇l(s ∪ {(xi, k)}|w)|| (2.5)

Finally, computing the gradient over the whole batch of data s ∪ {(xi, k)} may
not be scalable depending on the size of the labeled data s. Nevertheless, when
training w on s, we expect the magnitude of the gradient over the training set to
be close to zero ||∇l(s|w)|| ≈ 0 since the network has converged. Eventually, we
can approximate the gradient over the whole set of data by the gradient over the
unlabeled samples:

x∗ = arg max
i∈[n]

∑
k

P (yi = k|xi,w)||l((xi, k)|w)|| (2.6)

Similarly to uncertainty based selection, EGL may be limited because of an
overparameterized network: parameters unused for classi�cation are still taken into
account into the EGL score. In that line, Zhang et al. argues that EGL should focus
on instances that a�ect speci�c parameters of the networks, either the embedding
space or the �nal softmax parameters.

2.3.6 Batch Active Learning

In the original setting, AL only queries one sample at a time. However, in many
practical implementations, it is preferable to query labels for batches of examples
in parallel instead of gathering them sequentially. Moreover, the training schemes
for deep networks are most of the time working on batches of samples, thus we can
expect that adding solely one example in the training set will not have any impact
on the accuracy.

A possible solution is to select the samples with the top scores given the ac-
tive learning heuristics in used. For example [Gal 2016b] selects the samples which
maximize the mutual information. But top score is limited because it does not
take into account the correlations among the samples. Similar examples will tend
to have similar scores, but labeling all of them would not be e�cient. To alleviate
the sampling bias inherent in active learning heuristics, several works have com-
bined their batch active learning framework with a diversity selection scheme to
increase the representativeness of the training set. They either rely on statistical
tests to measure the distribution di�erence, such as Maximum Mean Discrepancy
(MMD) ([Wang 2015]), express the data subset selection for speci�c shallow classi-
�ers as a constrained submodular maximization [Wei 2015, hoi ] or rely on core-set
approaches [Ozan Sener 2018].

A core-set of a data is a subset of the data, typically denoted as medoids, that
are representative of the whole set of data given an informative criterion. It �nds
its root in computational geometry [Agarwal 2005] and have been widespread to the
machine learning community �rst via importance sampling [Langberg 2010]. We
further describe core-set approaches in Section 7.3. Furthermore, we also propose
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a new diversity criterion that relies on a Wasserstein based core-set approach, in
Chapter 9.

2.4 Theoretical Justi�cation of Active Learning for Deep

Networks

Recent works have focused on developing tighter upper bounds on the probability
of misclassi�cation of neural networks. From the seminal work of Vapnik and Cher-
vonenkis, it is commonly accepted that the Vapnik Chervonenkis (VC) dimension
plays a predominant role in the de�nition of an upper bound on the generalization
error (GE(fθ)) of any given classi�er, [Blumer 1989]. Indeed, both experimental ev-
idence and learning theory link the generalization of a classi�er to the empirical error
(i.e., the error made on the training set) and the classi�er capacity. When it comes
to neural networks, their VC grows with their number of parameters, and highly
depends on the number of hidden layers [Bartlett 2003, Bartlett 2017]. Hence, in a
context of active learning, the VC dimension would favor shallower networks than
the common architectures used in the deep learning community.

However, VC dimension is data independent, and thus may not be a tight upper
bound to conclude to the potential bene�ts of active learning on deep networks.
A possible solution to incorporate the nature of the input data is to rely on the
Rademacher complexity [Neyshabur 2015]. The empirical Rademacher complexity
of a hypothesis class H on a dataset {x1, ..., xn} is de�ned as:

R̃n(H) = Eσ[sup
h∈H

1

n

n∑
i=1

σih(xi)] (2.7)

Where σ1, ..., σn ∈ {±1} are iid uniform random variables. R̃n(H) measures the
ability of the classi�ers among H to �t random binary labels assignment. However
Rademacher complexity is not always tractable, and is upper bounded most of
the time. For example, a data-independent upper bound has been proposed in
[Sokoli¢ 2017]. Given a deep network fθ with L layers, ReLU activations and trained
on m examples, if the spectral norm of the weights of each layer is bounded by some
constant CF > 0 then an upper bound on the generalization error is given by:

GE(fθ) ≤
1√
m

2L−1CF (2.8)

If we analyze the equation 2.8, a deep network with a large number of adjustable
parameters and therefore a large capacity is likely to learn the training set without
error but exhibit poor generalization. Indeed, the previous formula only provides
an upper bound on the generalization error without any notion on how tight is this
bound. Empirical analysis tends to con�rm the gap between the observed generaliza-
tion error and such bounds: [Guyon 1993] demonstrated that high-order polynomial
classi�ers in high dimensional space could be trained with a small amount of train-
ing data and yet generalizes better than classi�ers with smaller VC dimension. The
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generalization error's upper bounds based on the VC dimension or on some ap-
proximation of the Rademacher complexity were overly pessimistic. As pointed out
by Zhang et al. , deep networks exhibit di�erent learning behaviors than shallower
classi�ers such as SVM. Thus common generalization metrics may not adequately
explain the generalization error of neural networks. In [Zhang 2016], they empiri-
cally demonstrate that deep networks can still generalize while learning on a training
dataset corrupted at some point. Indeed, the authors introduce a certain percentage
of random labels in the training set. Despite this noise, not only the networks is able
to generalize, but it also over�ts on the whole training set. Moreover, introducing
regularization scheme does not alter the phenomenon. This is really surprising, as
we expect regularization to counter over�tting, as it happens for shallower classi-
�ers. However, as pointed out in [Krueger 2017], even if they are able to do so,
deep networks probably don't memorize the training set on natural datasets since
the number of epochs required to learn the training set on natural data is less than
the ones needed to over�t on a random dataset. In the line of uniform stability
[Hardt 2015], this suggests that deep networks are also relying on an inductive bias
that suits natural data. Based on the previous empirical observations, we expect
that the generalization error has to be understood di�erently for deep networks, per-
haps with new metrics, so that VC dimension and the Rademacher complexity are
indeed overly pessimistic for deep networks. This �aw opens exciting opportunities
on the e�ectiveness of active learning for deep networks.

Recent works have re�ned the existing upper bounds on the generalization error
of deep networks. For sake of consistentcy, we will not provide an exhaustive list
of those works, as it is outside our scope. Eventually, we will detail the new upper
bounds that highlight the potential bene�ts of active learning for deep networks.

First of all, it has been asserted, through both theoretical and empirical analysis,
that regularizing the training with dropout, promotes smaller Rademacher complex-
ity. Initially, dropout was motivated to prevent neurons co-adaptation. Nonethe-
less, it highly a�ects the Rademacher complexity of deep networks: dropout is able
to reduce exponentially the Rademacher complexity of deep networks [Gao 2016].
Moreover, an upper bound of the Rademacher complexity may be expressed as a
function of dropout rates and the weights of a network [Zhai 2018]:

Theorem 4.1: Bounding the empirical Rademacher complexity with Dropout

Let X ∈ Rn×d be the sample matrix with the ith row xi ∈ Rd.
Let p ≥ 1, indexes the Lp norm used 1

p + 1
q = 1.

Consider a network with L layers, and denote W l the weights at the l-th
layer. If we apply a mask of dropout Θl (made of Bernouilli parameters) for
each layer, then we can upper bound the empirical Rademacher complexity for
the network.

Indeed, if we denote W = {W | maxj ||W l
j ||p≤ Bl}.
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∀l ∈ {1, 2, ..., L} given Θ, the empirical Rademacher complexity R of the
loss for the dropout neural network is bounded by:

R̃n(H) ≤ k2L
√

2log(2d)

n

∣∣∣∣∣∣X ||max ( L∏
l=1

Bl || Θl−1
∣∣∣∣∣∣ 1q) (2.9)

where k is the number of classes, Θl is the kl dimensional vector of Bernouilli
parameters for the dropout random variables in the lth layer and || · ||max is

the matrix norm de�ned as || A ||max= maxi,j | Ai,j |.

While the Rademacher complexity has been really useful to understand passive

learning, it has also been used in AL. Indeed, [Hanneke 2011, Koltchinskii 2010]
demonstrated how the Rademacher complexity in AL helps to develop strategies
extendable to a wide panel of input distributions (while previous AL strategies like

the ones proposed in [Balcan 2007, Castro 2007] were data speci�c). It turns out
that the disagreement set: the set of consistent classi�ers for which there are two
classi�ers whose predictions at point x disagree with each other play an impor-
tant role in the development of active classi�cation algorithms. When it comes
to such a disagreement set, Koltchinskii has shown that the number of samples
required to cover this disagreement space can be estimated using Rademacher com-
plexity. Finally establishing a close connection between dropout [Hinton 2012], and
Rademacher motivates the usage of dropout in an active learning context, either to
measure disagreement over the models (see Chapter 3) or by sampling through the
distribution of the weights ([Gal 2016b]).

Another line of research, in line with the results of [Schapire 1998], analyzed
how the generalization error is correlated to the value of the weights, rather than
the number of the weights in a neural network. This theory is at the edge of
some well-known weight regularization schemes such as weight decay. In this, Liang
et al. proposed to use the Fisher Rao norm as an indicator of the generalization
performance of a neural network.

De�nition 2.4.1: Fisher Rao norm

The Fisher Rao norm is de�ned as:

|| Θ ||FR= ΘT IΘΘ (2.10)

where IΘ is the Fisher information matrix, based on the weights Θ of the
neural network fΘ, trained on the log loss l:

IΘ = Ex,y
[
∇Θl(fΘ(x), y)∇Θl(fΘ(x), y)T

]
(2.11)

Regarding deep linear networks, it has been shown in [Liang 2017], that the
Rademacher complexity can be bounded by the Fisher Rao Norm. Moreover, Liang
et al. empirically demonstrate how the Fisher Rao norm correlates with the gener-
alization error. The Fisher matrix is also linked to a wide panel of active learning
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strategy called Optimal Experimental Design (see Section 2.3). We also investigate
the usage of Fisher matrix into a Bayesian active learning framework in Chapter 5.

In similar contexts (i.e. where VC is overly pessimistic) for margin-based clas-
si�ers, examples sampled in the margin lead to an optimal improvement of the
decision at the next active iteration. Such supporting samples lie close to the de-
cision boundary and de�ne the margin of the classi�er w.r.t. some metric d (the
smallest distance in the input space between a sample from the training set and a

sample with a di�erent prediction). The generalization error of a classi�er with
margin γ is upper bounded by the complexity of the input space X (neglecting the

log
(

1
γ

)
term) and the classi�cation margin via what we denote the covering number

N (X ; d, γ2 )1. NY denotes the number of classes.

GE(fθ) ≤
1√
m

√
2log(2)NYN

(
X ; d,

γ

2

)
(2.12)

[Sokoli¢ 2017] developed further equation 2.12 to demonstrate that the gener-
alization error of a deep network (or any other margin classi�er) is inversely pro-
portional to the square root of the margin multiplied by the number of training
samples. They assumed that the input distribution is a regular manifold which is
in accordance with empirical evidence [Arjovsky 2017b]. Indeed, when assuming
that the input distribution X is a regular manifold, the covering number may be
approximated given the following expression:

A CM regular k dimensional manifold where CM is a constant that captures its

intrinsic properties has a covering number upper bounded:

N (X ; d, ρ) ≤

(
CM
ρ

)k
(2.13)

Several results lend credence to an e�ective margin-based active learning strat-
egy for deep networks. First of all, [Liu 2016] developed a large margin softmax to
encourage intra-class compactness and inter-class separability. Their results high-
light the bene�t of enhancing a large margin between classes. However, the bene�ts
of margin-based active learning highly depend on the number of decision boundaries
drawn by neural networks in the input space. If deep networks split the input space
in an exponential number of shattered classi�cation region, one may expect that
many samples will lie close to a decision boundary, and thus querying samples close
to the margin will be almost like collecting random samples.

Empirical evidence leads to thinking that it is not the case when considering
deep networks. Independently of the number of parameters of the network, it has
been empirically observed in [Fawzi 2017] that state-of-the-art deep networks learn
connected classi�cation regions instead of shattered and disconnected regions. Al-
though such classi�cation regions de�ned in the input space may su�er from the

1Regarding the notation, we have purposely decided to stick to the notation of [Sokoli¢ 2017]

in order not to confuse the reader.



22 Chapter 2. Introduction

curse of dimensionality, [Fawzi 2017] have also observed that few directions inter-
fere with the decision boundaries. Considering now the low dimensional space de-
�ned by those impacting directions, it becomes likely that the samples do not su�er
anymore from the curse of dimensionality and, thus the distance to the decision
boundary will di�er among the samples. Eventually, certain samples will lie closer
to the decision boundaries of neural networks, and are thus highly uncertain in an
active learning context. Our assumption comes in line with other measures of the
generalization error based on robustness. Robustness, from the seminal work of Xu
et al. , [Xu 2012], expresses the correlation between the generalization error and the
robustness to perturbations over the training set. [Tom Zahavy 2018] extend their
work to demonstrate how deep networks can generalize well when their sensitiveness
to adversarial perturbations is bounded in average over the training examples.

De�nition 2.4.2: Ensemble Robustness

A randomized algorithm A is (K, ε̄ (n)) ensemble robust for K ∈ N, if the
sample set Z can be partitionned into K disjoints sets denoted by {Ci}Ki=1 such
that the following holds for any input data s: ∀ s ∈ Z

∀s ∈ s, ∀i ∈ 1...,K : ifs ∈ Ci, then EAmaxz∈Ci | l(As, s)− l(As, z) |≤ ε̄(n)

(2.14)

Theorem 4.2: Ensemble Robustness

Let A be a randomized algorithm with (K, ε̄ (n)) ensemble robustness over
the training set s, where | s |= n. Let ∆(H) denote the output hypothesis
distribution of the algorithm A on the training set s. Suppose the following
variance bounds holds:

varA [maxzs̃i | l(As, si)− l(As, z)] ≤ α (2.15)

Then ∀ δ > 0 with probability at least 1 − δ with respect to the random
draw of the s and h ∼ ∆(H) the following upper bounds holds:

|L(As)− lemp(As)| ≤ ε̄(n) +
α√
2δ

+M

√
2Kln(2) + 2ln(1

δ )

n
(2.16)

Thus, Equ. 2.16 suggests that controlling the variance of the network pos-
itively impact the generalization performance.

In our last work on active learning for deep networks (see Chapter 4), we combine
adversarial attacks and active learning, based on the insight into the e�ectiveness
of margin-based active learning strategy for deep networks.
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3.1 Introduction

• We scale Query-By-Committee for deep networks
• We use dropout at test time to sample a committee of neural networks
• We query unlabeled samples which maximize a disagreement score over the
committee's members

X Every dataset and parameters used to conduct our experiments are available in

the dataset section A.1 and the hyperparameter section A.2.1

mduco�e/DQBC

Summary

In this chapter, we consider an active learning method based on Query-By-
Committee (QBC). [Seung 1992] have proposed the �rst algorithm based on Query-
By-Committee strategy. They proved two relevant results: �rst, the generalization
error of a linear classi�er for random training samples behaves like the inverse power
law, 1

P
N

with P the number of training samples considered so far andN the dimension

of the input space; second, the generalization error of a linear classi�er for training
samples selected through a query-by-committee strategy, scales like e−

PI
N with the

constant decay given by the information gain I. Later, [Freund 1997] proved that
this property holds for a more general class of learning problems.
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Instead of trusting only the current incremental classi�er, committee decision
relies on de�ning a space of consistent classi�ers (i.e., classi�ers whose predictions
agree with training set labels) where the optimal learner lies. The aim of the ac-
tive learning step is then to query a sample which will divide at best the consistent
classi�er space, also called the version space. It will thus reduce the possible so-
lutions to converge towards the optimal classi�er. There is no consensus in the
literature on an appropriate committee size to consider, even when focusing on a
class of learning models or an application. However even small committee sizes,
e.g., 2 or 3, work well in practice [Seung 1992, Nigam 1998, Settles 2008]. Some
recent works tend to combine active learning and model selection to optimize even
further the model design [Ali 2014]. After several iterations, the set of consistent
hypotheses will shrink and converge towards the optimal classi�er. As the size of
the version space might be in�nite, QBC samples a �nite number of classi�ers to
constitute a committee. Eventually, the query decision relies on the committee:
the score assigned to an example is based on the prediction disagreement between
all predictions of the classi�ers in the committee. In early works describing active
learning through committee selection, convergence and better result against random
sampling have been proven. However, for those results to hold, each model of the
committee has to lie in the current version space de�ned by the annotated training
set. This means that the set of neural networks in the committee should be built
from the same �architecture� and should make no prediction error on the current
training set. When it comes to large datasets, restricting the selection to one ad-
ditional training sample at a time is computationally expensive since to maintain
the version space we should retrain all the classi�ers of the committee on that new
training sample [Dasgupta 2005b]. The drawback of QBC is the cost of building
a representative committee. Our version allows us to get rid of this computational
issue by using a version of dropout called batchwise dropout [Graham 2015]. Firstly,
we sum up our batch active learning strategy in Method 3.1.1.
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Method 3.1.1: Dropout Query-By-Committee

We have a pool of unlabeled data P and start training a CNN with a small set
of training samples A. This is the initial state of our active learning training
set A0 = A. At each iteration t, we aim at selecting the optimal batch B by
computing a new loop of the following steps:

1. The network is trained on the current training set At leading to the
weights wt+1

2. We build a committee of K networks by applying batchwise dropout on
wt+1: Ct+1 = {w̃k

t+1}Kk=1. The procedure is further described in sec-
tion 3.2.

3. We search for the optimal batch B to add to the training set, i.e. the
batch B maximizing the disagreement over the committee Ct+1.

B = argmax{Disagreement(xi | Ct+1) | xi ∈ P} (3.1)

4. The training set is then augmented by B: At+1 = At ∪ B

3.2 Sampling a committee with Dropout

Before starting, let us de�ne some name convention: For the sake of clarity, we denote by

full network, the deep architecture trained on the current labeled training set A and partial

network a CNN member of the committee.

We train the full network on the current annotated training set until the pre-
diction error on an independent validation set is not further decreasing. When the
training has converged, the full network is no longer able to learn more knowledge on
the input distribution from the current annotated training set. Thus we apply active
learning to query new labeled data and add them to the training set. Eventually the
full network is retrained from scratch on the new training set( weights and biases

are reset with a random initialization). When it comes to query-by-committee for
deep architectures, the challenges are to de�ne:

1. Committee design: developing a computationally lightened building scheme
of diverse partial CNNs.

2. Sample selection: Proposing a relevant sample selection function based on
the committee's predictions (see Section 3.3).

Here we consider the cost of building a committee. A naive setup would consist
in training models in parallel; networks sharing the same architecture with di�erent
initialization. However, this framework is not ideal for at least two reasons:



26 Chapter 3. Dropout Query-By-Committee

• Training multiple models at the same time is not scalable when considering
large dimensional neural networks

• As neural networks solve a high dimensional non-convex problem, we may
expect that networks sharing the same architecture but trained independently
will vary a lot. This assumption does not always hold, as demonstrated in
[Choromanska 2015]. When training networks with the same architecture but
initialized di�erently, they observed empirically that the variance of the test
loss shrunk. This suggests that learning a naive ensemble is not a good strategy
to obtain a diverse set of classi�ers.

Another solution is to consider ensemble from a probabilistic point of view.
Indeed, if one may express the posterior distribution of the weights, we are able to
sample consistent hypotheses directly from this approximation, and thus design our
committee. However, computing the posterior distribution of the weights is generally
intractable for deep networks. Note that thisAL strategy is more thoroughly studied
in Chapter 5. Instead, one can rely on a tractable approximation of the weights
distribution. Recently, [Gal 2016b] demonstrated that dropout (and other stochastic
regularization schemes) is equivalent to infering on the posterior distribution of the
weights, thus enabling to leverage the cost of training and updating multiple models.
Consequently, dropout allows sampling an ensemble of models at test time.

In the same spirit, we propose a Dropout-based QBC strategy that we call
Dropout Query-By-Committee (DQBC). Instead of training an ensemble of net-
works, we use dropout to sample partial CNNs given the weights of the full CNN,
as illustrated in Figure 3.1. Notice that, independently and after this work, Gal et
al. also designed a Bayesian active learning framework relying on a dropout com-
mittee.

Let us now detail how we build partial CNNs in order to form the committee.
To initiate a partial CNN while getting rid of the computation cost thanks to back-
propagation, we apply batchwise dropout [Graham 2015] on our full network. The
batchwise dropout [Graham 2015] is a version of dropout where we use a unique
bernouilli mask to discard neurons for each sample in the minibatch. Thus the
batchwise dropout reduces quadratically in the percentage of preserved neurons, the
number of parameters in the architecture. When considering convolutional layers,
the batchwise dropout has one advantage over dropout: the latter removes neurons
independently given the spatial locations whereas batchwise dropout is spatially
dependent, switching on or o� �lters so to discard neurons obtained through the
same �lter. Figure 3.1 presents how batchwise dropout preserves the consistency in
a CNN architecture which allows us to create our partial CNNs.

The main advantage is to obtain a committee whose members contain fewer
parameters while sharing the same architecture as the full network with zero con-
straints on several connexions. In order to increase the accuracy of each partial

CNN, we �netune each member of the committee on the current labeled training
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D

FULL CNN PARTIAL CNN pCNN

BACKPROPAGATION 
ON THE LAST LAYER

Figure 3.1: applying batchwise dropout to build a partial CNN from the full CNN

set. This �netuning is not prohibitive as the number of parameters in a partial CNN
is drastically much lower than in the full CNN, due to batchwise dropout.

3.3 Disagreement Scoring Function

In the context of QBC, a sample is considered as informative based on its ability
to reduce the number of current consistent hypotheses. Thus the informativeness
of a sample is measured by the quantity of disagreement about the prediction of its
label among the partial CNNs. We illustrate such disagreement on a baby task in
Figure 3.1.

We propose our own metric based on how much a partial CNN may change its
decision to be in accordance with the majority. In that order, we de�ne a smooth
vote on the members of the committee. Let denote the committee as a set of
partial CNNs: C = { pCNNi} with pi the output probability vector of pCNNi.
Given a sample x, we �rst establish its most probable label based on the committee
predictions:

LABEL(x) = arg max
j

∑
pCNNi

1j=argmax
k

pi(y = k | x) (3.2)

We took inspiration from Random Forest margin function [Breiman 2001] in
order to produce a ranking of candidates for selection and to have a soft pool among
the committee. Our point is to take into account the con�dence of a partial CNN
into the score function rg(x) and query the samples with the highest score:

rg(x) =
∑

pCNNi

max
j

pi(y = j | x)− pi(y = LABEL(x) | x) (3.3)

We add minibatches of samples instead of one sample as supposed for active
learning technique, both to leverage the computational cost owing to successive
runs of active learning and to avoid unbalanced size of minibatch (in that case

an adjustement of the learning rate given the size of the last minibatch would be

required).
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(A) (B)

Table 3.1: Example of Sample Selection. The icon outputs by a network represents
its most probable label on the unlabeled sample. Samples (A) and (B) are both
unlabeled examples. Sample (A) is more appealing as it will necessarily reduce the
version space by a ratio of 4. Whereas Sample (B) will reduce at worst the version
space by a ratio of 2.5. On another side, if one has complementary information about
the networks, such as the con�dence of each network in their prediction, sample (B)
may become a better choice.

3.4 Empirical Validation

We

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

section A.2.1

demonstrate the validity of our approach on two datasets: MNIST (batch size of
64) and USPS (batch size of 8) both gray scaled digit image datasets. Both CNNs
have ReLu. Note that we do not optimize the hyperparameters depending on the
size of the current annotated training set. We picked those two similar datasets to
judge of the robustness of our method against di�erent size of unlabeled datasets.
Finally, our method is e�cient on restricted and larger pool of unlabeled samples.

We perform 5 to 10 runs of experiments and record the test error of the best vali-
dation error before an active learning iteration. We start from an annotated training
set of size one minibatch selected randomly. We stop both sets of experiments when
we reach 30% of the training set (15.000 images for MNIST , 1255 for USPS ). We
sample 5 partial CNNs to form a committee. In Figure 3.2, we compare DQBC to
uncertainty, curriculum [Bengio 2009] and random selection with a top scoring se-
lection on a convolutional network. We measure both uncertainty and curriculum
scores based on the log likelihood of a sample. We use the prediction of the full

network to approximate the ground-truth label. While uncertainty selects samples
with the highest log likelihood, our version of curriculum does the exact contrary.
We select the set of possible queries among the unlabeled training data randomly.
Its size is set to 30 times the minibatch size. The experiments in (see Figure 3.2)
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conducted on MNIST and USPS illustrate that DQBC converges faster to the best
accuracy achieved without active learning on the whole annotated training set than
the other selection methods: for MNIST we see that less than 26% of the database
is necessary to obtain almost the �nal accuracy (1.23% on test error instead of 1.1
%). When it comes to USPS , larger di�erence are observed: DQBC is the only
active method able to achieve the ground-truth accuracy with less than 22% of the
training set.
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Figure 3.2: DQBC(qbdc) with top score selection: Evolution of the test error given the

ratio of annotated data over the training set.

3.5 Conclusion

This chapter introduced an adaptation of Query-By-Committee for deep networks
based on dropout. It allows to train CNNs on a smaller annotated training set to
achieve similar accuracy to the one obtained using a much larger annotated database.
Our work bridges the computational gap between active learning for CNNs and other
shallow classi�ers. The use of a committee allows our active learning heuristic to
have the distributive training of its CNNs which is a natural advantage of QBC
derived methods.
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4.1 Introduction

• We present a new heuristic for margin-based active learning for deep networks,
called DeepFool Active Learning (DFAL) (see 4.2). It queries the unlabeled
samples, which are the closest to their adversarial attacks, labels not only the
unlabeled sample but its adversarial counterparts as well, using twice the same
label. This pseudo-labeling comes for free without introducing any corrupted labels
in the training set.
• We empirically demonstrate that DFAL labeled data may be used on other
networks than the one they have been designed for, while achieving higher accuracy
than random selection. To the best of our knowledge, this is the �rst active learning
method for deep networks tested for this property. (see 4.4)
• We demonstrate the theoretical gain of our method for linear classi�er (see 4.6).

X Every dataset and parameters used to conduct our experiments are available in

the dataset section A.1 and the hyperparameter section A.2.2

mduco�e/DFAL Proofs are available in Appendix A.3.1

Summary

One of the most standard active learning strategies is to rely on the uncer-
tainty measure. Uncertainty in deep networks is usually evaluated through the
network's output. However, this is known to be misleading. Indeed, the discov-
ery of adversarial examples has demonstrated that the way we measure uncertainty
may be overcon�dent. Adversarial examples are inputs modi�ed with small (some-
times not perceptually distinguishable) but speci�c perturbations which result in
an unexpected misclassi�cation despite the strong con�dence of the network in the
predicted class [Szegedy 2013]. Moreover, their perturbation is often hardly visible
(see Figure 4.1 for an example).

Figure 4.1: �An adversarial input, overlaid on a typical image, can cause a classi�er

to miscategorize a panda as a gibbon.� [Goodfellow 2015]

On one hand, the existence of such adversarial examples somehow discards
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uncertainty-based selection from being an e�cient active learning criterion for deep
networks. On the other hand, the magnitude of adversarial attacks does provide
a piece of information about how far a sample is from the decision boundariy of a
deep network. This information is relevant in active learning and known as margin-
based active learning. In a generic margin-based active learning, we assume that
the decision boundaries evolve towards the optimal solution as the training set in-
creases. Hence, samples lying the farthest from a decision boundary do not need
to be labeled by a human expert, as long as the current model is consistent in its
predictions with the optimal solution. To re�ne the current model, margin-based
active learning queries the unlabeled samples lying close to the decision boundary.
[Balcan 2007] have demonstrated the signi�cant bene�t of margin-based approaches
in reducing human annotations: in speci�c cases, one may obtain an exponential
improvement over human labeling. However, it requires computing the distance
between a sample and a decision boundary which is not tractable when considering
deep networks. Although we can approximate this distance by �nding the minimal
distance between two samples from di�erent classi�cation regions (i.e., correspond-
ing to two di�erent classes), such an evaluation is computationally expensive, nor
it provides a tight upper bound. Eventually, the minimal adversarial perturbation
of a sample does provide a better upper bound on how far this sample is from the
closest decision boundary.

In this section, we do not consider adversarial examples as a threat but rather
as a guidance tool to query new data. Our work focuses on a new active selection
criterion based on the sensitiveness of unlabeled examples to adversarial attacks.
We depict our method in Method 4.2.1.
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4.2 Margin-Based Active Learning for Deep Networks

Method 4.2.1: Adversarial Active Learning

We have a pool of unlabeled data P and start training our CNN with a small
set of training samples A. This is the initial state of our active learning training
set A0 = A. At each iteration t, we aim at selecting the optimal batch B by
following those steps:

1. The network is trained on the current training set At leading to the
weights wt+1

2. We search for the optimal batch B of samples to be added to the training
set, i.e. the batch B whose samples ows the minimal adversarial pertur-
bation

For xi ∈ P \ A
#compute adversarial attacks with Lp norms

ri ← DeepFool(xi,wt+1; p)

# query the labels of the | B |-th smallest perturbation
indexk ← argsort(< ri, ri >p| i = 1..K)

B ← {xj | j ∈ indexk[:| B |]}

3. The training set is then augmented by B: At+1 = At ∪ B

Balcan et al. demonstrated the signi�cant bene�t of margin-based approaches
in reducing human annotations. We illustrate several margin-based active learning
heuristics in Figure 4.2: for each scenario, the data underlined in green will be
queried. Especially, Figure 4.2(d) describes our contribution. In the original case
in Figure 4.2(a), the projection of an unlabeled sample to the decision boundary
determines whether or not it is worth to query its label, depending on the distance
between the sample and the boundary. Margin-based strategies are e�ective, but
they require to know how to compute the distance to the decision boundary. When
such a distance is intractable, a simple approximation consists in computing the
distance between the sample of interest and its closest neighboring sample which
has a di�erent predicted class.

Approximating the distance between a sample and the decision boundary, by
the distance between this same sample and its closest neighboring sample from a
di�erent class, is coarse and computationally expensive.
Instead, we propose DFAL; a Deep-Fool based Active Learning strategy which
selects unlabeled samples with the smallest adversarial perturbation. Indeed, ad-
versarial attacks were initially designed to approximate the smallest perturbation to
cross the decision boundary. Hence, in a binary case, the distance between a sample
and its smallest adversarial example better approximates the original distance to
the decision boundary than the approximation mentioned above, as illustrated in
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Figure 4.2: Illustration of di�erent margin-based active learning scenarios in the
binary case

Figure 4.2(c). Usually, adversarial attacks which would allow us to design a pertur-
bation requires also to know the target label. However, in a binary case, the target
class of the attack is obvious.

In a multi-class context, everything is di�erent: we do not have any prior knowl-
edge on which class the closest adversarial region belongs. Inspired by the strategy
done previously in EGL [Zhang 2017], we could design as many perturbations as the
number of classes and keep only the smallest perturbation, but this would be time-
consuming. We thus have to consider the available techniques of adversarial attacks
from the literature [Szegedy 2013, Goodfellow 2015, Carlini 2016] and look for the
most laborious procedure to counter since it will provide more information on the
margin in more cases and more di�cult situations. Indeed, computing the closest
adversarial perturbations is a NP-hard problem. Hence we need to rely on heuristics.
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To the best of our knowledge, Carlini et al. [Carlini 2017b, He 2017, Carlini 2017a]
methods are among the hardest attacks to counter. However, it also requires to tune
several hyperparameters.

We have thus decided to use the Deep-Fool algorithm to compute adversarial
attacks for DFAL [Moosavi-Dezfooli 2016]. Indeed, Deep-Fool is an iterative proce-
dure which alternates between a local linear approximation of the classi�er around
the source sample and an update of this sample so that it crosses the local linear
decision. The algorithm stops when the updated source sample becomes an adver-
sarial sample regarding the initial class of the source sample. When it comes to
DFAL, Deep-Fool holds three main advantages: (i) it is hyperparameter free (espe-
cially it does not need target labels which makes it more compliant with multi-class
contexts); (ii) it runs fast as we empirically noticed in table 4.3; (iii) it is competitive
with state-of-the-art adversarial attacks.

To regularize the network and increase its robustness, we add both the less
robust unlabeled samples and their adversarial attacks. Thus, it is more likely that
the network will regularize on the adversarial examples added to the training set and
become less sensitive to small adversarial perturbations. Unlike CEAL, DFAL is
hyperparameter-free and cannot corrupt the training set: from the basic de�nition
of adversarial attacks, we know that a sample and its adversarial attack should share
the same label.

Finally, DFAL improves the robustness of the network by adding at each it-
eration unlabeled samples at half the cost of reading their right labels (one label
amounts to two examples).

4.3 Empirical Validation

4.3.1 Dataset and hyperparameters

We evaluate our algorithm for fully supervised image classi�cation on three datasets
that have been considered in recent articles on active learning for Deep Learn-
ing [Huijser 2017] (Table 4.1): MNIST , Shoe-Bag , and Quick-Draw . For Quick-

Draw , we downloaded four classes from the Google Doodle dataset: Cat, Face,
Angel, and Dolphin.

img size # classes # Training # Test

MNIST (28,28,1) 10 60,000 10,000

Shoe-Bag (64,64,3) 2 184,792 4,000

Quick-Draw (28,28,1) 4 444,971 111,246

CIFAR10 (64,64,3) 10 50,000 10,000

Cats & Dogs (150,150,3) 2 2000 2000

Table 4.1: Summary of the datasets used to evaluate DFAL.

We assess the e�ciency of our method on two CNNs: LeNet5 and VGG8 (Adam,
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lr=0.001, batch=32 ). We use Keras and Tensor�ow [Chollet 2015, Abadi 2016].
Note that DFAL may be used on any architectures impaired by adversarial attacks.

4.3.2 Evaluation

We compare the evolution of the test accuracy when using DFAL against the fol-
lowing baselines:
• BALD: we select on a random subset of the unlabeled training set the �rst

nquery samples which are expected to maximize the mutual information with the
model parameters. In that order, we sample 10 networks from the approximate
posterior of the weights by also applying dropout at test time.
• CEAL: we select on the whole unlabeled training set the �rst nquery samples
with the highest entropy on their network's prediction. We also label any unlabeled
samples whose entropy is lower than a given threshold (which is set according to the
authors' guidelines: 0.05 for MNIST , 0.19 for Shoe-Bag and 0.08 for Quick-Draw).
Their labels are not queried but estimated from the network's predictions.
• CORE-SET: we select on a random subset of the unlabeled training set the nquery
samples which cover at best the training set (labeled and unlabeled data) based on
the euclidean distance on the output of the last fully connected layer. To approxi-
mate the covering radius, we follow the instructions prescribed in [Ozan Sener 2018]:
we initialize the selection with the greedy algorithm, and iterate with their mixed
integer programming subroutine. We also handle the robustness as prescribed by
the authors. We use or-tools 1 to reproduce the MIP subroutine.
• EGL: we select from a random subset of the unlabeled training set the �rst nquery
samples whose gradients achieves the highest euclidean norm.
• uncertainty: we select from the whole unlabeled training set the �rst nquery sam-
ples with the highest entropy on their network's prediction.
• RANDOM: we select randomly from the whole unlabeled training set nquery
samples.

We average our results over �ve trials and we plot in Figures 4.3,4.4 the test
accuracy achieved by each active learning methods for �xed size training set: rang-
ing from 10 to 1000 labeled samples. We denote as BASELINE, the test accuracy
obtained when training the network on the full labeled training set. First, an inter-
esting observation is that, independently from networks or datasets, active learning
methods originally designed for singleton query (BALD, CEAL, EGL, uncertainty)
fail to always compete against random selection (Fig. 4.4). This may result from the
correlations among the queries when using one sample at-a-time. When it comes to
our method, DFAL tends to converge faster than such methods and is always better
than random selection, independently from the network or the dataset (Fig.4.3,4.4).
Hence our method is more robust to hyperparameter settings than other active learn-
ing methods which consider one sample at a time. For various con�gurations (Shoe-
Bag with LeNet5 and Quick-Draw with VGG8), CEAL is worse than uncertainty
selection, hence it selects samples with high entropy but mistaken predictions which

1https://developers.google.com/optimization
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Accuracy ≥ 99.04 %
# annotations # labeled data

DFAL 1210 2410
CORE-SET 1810 1810

CEAL ≥6000 ≥6150

(a) MNIST (LeNet5)

Accuracy ≥ 98.98 %
# annotations # labeled data

DFAL 980 1950
CORE-SET 1270 1270
uncertainty 2800 2800

(b) MNIST (VGG8)

Accuracy ≥ 99.70 %
# annotations # labeled data

DFAL 1070 2130
CORE-SET 860 860
CEAL 1130 19157

(c) Shoe-Bag(LeNet5)

Accuracy ≥ 99.50 %
# annotations # labeled data

DFAL 530 1050
CORE-SET 400 400
CEAL 580 705

(d) Shoe-Bag(VGG8)

Accuracy ≥ 95.46%
# annotations # labeled data

DFAL 7470 14930
CORE-SET ≥8590 ≥8590
uncertainty ≥10590 ≥10590

(e) Quick-Draw(LeNet5)

Accuracy ≥ 96.75%
# annotations # labeled data

DFAL 4810 9610
CORE-SET ≥6750 ≥6750
BALD 5590 5590

(f) Quick-Draw(VGG8)

Table 4.2: Number of annotations to achieve the same test accuracy on LeNet5 and
VGG8 as the accuracy obtained on the full training set (BASELINE, ± 0.5 %).

add noise into the training set. Unlike CEAL, whose probability of acquiring extra
samples depends on the e�ciency of the network, DFAL holds a constant number
of extra queries, depending only on the number of queries. Moreover DFAL creates
arti�cial data which are not part of the pool of data. For example, in Tables 4.2(a)
and 4.2(c), CEAL used more than 20% of the training set of MNIST and Shoe-Bag ,
whileDFAL only used at most 2%. Thus, DFAL allows more queries, and may also
be combined with CEAL. We observe that DFAL always remains in the top three
of the best performing active learning methods. We de�ne those methods based
on the test error rate when the labeled training set reaches 1000 samples. When
DFAL is outperformed, it is only by a really slight percentage of accuracy (at most
0.15%), either by pseudo-labeling method (which contributes more to the training

set), or by CORE-SET. Since CORE-SET is designed as a batch active learning
strategy, it diminishes the correlations among the queries. In order to outperform
CORE-SET, DFAL could be extended into a batch setting approach: instead of
selecting the top score samples, one could increase the diversity using for example
submodular heuristics [Wei 2015]. Finally, Table 4.2 compares the e�ective number
of annotations and real number of data required by active learning to reach the same
test accuracy than when training on the full labeled training set. We only compare
DFAL with the best two active learning methods on 1000 samples. We note that
DFAL always converges with the smallest number of annotations, on MNIST and
Quick-Draw , for both LeNet5 and VGG8 networks: up to 33% less samples than the
current state-of-the-art CORE-SET and up to 80% less samples than CEAL. When
it comes to Shoe-Bag , DFAL remains competitive with CORE-SET and CEAL,
overall less than 1% of the training set is needed.
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(b) MNIST on VGG8
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(c) Shoe-Bag on LeNet5

101 102 103

# annotations

50.0

58.5

66.0

72.5

78.0

83.5
88.0
92.0
96.0

100.0

% 
of 

Te
st 

ac
cu

ra
cy

uncertainty
BASELINE
CEAL
DFAL_
BALD
CORE-SET
DFAL
EGL
RANDOM

(d) Shoe-Bag on VGG8

Figure 4.3: Evolution of the test accuracy achieved by 7 active learning techniques
on MNIST and Shoe-Bag given the number of annotations. We denote by DFAL_
our active learning method when not adding the adversarial examples. We use a log
scale in the x-axis and a linear scale in the y-axis.
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(a) Quick-Draw on LeNet5
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(b) Quick-Draw on VGG8

Figure 4.4: Evolution of the test accuracy achieved by 7 active learning techniques
on Quick-Draw given the number of annotations. We denote by DFAL_ our active
learning method when not adding the adversarial examples. We use a log scale in
the x-axis and a linear scale in the y-axis.
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DFAL CORE-SET CORE-SET
MNIST (with regularisation) (no regularisation)

| L |= 100, | U |= 800 126.54 891.78 784.99
| L |= 1000, | U |= 800 126.54 3739 3046

Table 4.3: Average runtime of DFAL and CORE-SET on MNIST . We denote by
L the labeled training set, and U the unlabeled set of data; nquery = 10

4.3.3 Comparative study between DFAL and CORE-SET

In our experiments, DFAL is competitive with the current state-of-the-art method,
CORE-SET, sometimes outperforming it by a large margin (Tab. 4.2(e),4.2(f)). On
the other hand, our method is more interesting than CORE-SET when considering
the computational time. DeepFool yields high-performing perturbation vector com-
pared with other state-of-the-art attacks, while being computationally e�cient: it
converges in a few iterations (less than 3). At each iteration it requires (#classes
-1) forward and backward passes. As our DFAL technique uses DeepFool, our ac-
tive selection criterion is highly e�cient compared to the current state-of-the-art
CORE-SET. We demonstrate the computational time gap between our method,
DFAL, and CORE-SET in Table 4.3: we have recorded the average runtime of
selecting 10 queries on MNIST . For a sake of fairness, we compare DFAL run-
ning time against the CORE-SET approach, with and without robustness 2. Note
that the runtime performance of DFAL is independent from the size of the labeled
training set. On the contrary, CORE-SET slows down while we add more and more
data to the training set. Eventually, Table 4.3 reports gains of (up to) 24 times
faster in running time by our method against CORE-SET. It is worth noting that
adversarial attacks are independent, which could easily lead to a parallelized active
learning strategy. However, for a fair comparison with CORE-SET, we only consider
sequential attack generation.

We investigate further the comparison between DFAL and CORE-SET on two
experiments. A �rst experiment studies the behaviour of both active learning meth-
ods on a large scale dataset, CIFAR10 : we train a CNN on CIFAR10with 5 layers
of convolution, maxpooling and 2 fully connected layers with a dropout rate of
0.25 and no arti�cal augmentation. In Figure 4.5(a), CORE-SET achieves similar
accuracy than RANDOM. Due to the running time of CORE-SET, we could not
pursue CORE-SET until convergence. On the other hand, our method DFAL con-
verges much faster. The second experiment consists in combining active learning
with transfer learning: we use VGG8 as a pretrained network that remained �xed
during the training on Cats & Dogs. In Figure 4.5(b) we train a CNN with 3 lay-
ers of convolutions, maxpooling and 2 dense layers, with a dropout rate of 0.5 and
arti�cial augmentation.

2Intel(R) Xeon(R) CPU E5-2670 v3 @ 2.30GHz; 64 GB memory and GTX TITAN X
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Figure 4.5: Evolution of the test accuracy achieved by 3 active learning techniques
given the number of annotations
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Figure 4.6: Evolution of the test accuracy for (Shoe-Bag , VGG8) trained with di�er-
ent labeled training set: we compare the e�ciency of DFAL and CORE-SET built
on LeNet5 (LeNet5_DFAL and LeNet5_CORE-SET) and transfered to VGG8.

When faced with a new classi�cation problem, we don't know the hyperparam-
eters that are best suited for the problem. One can argue that a network with
high capacity is likely to give high accuracy and is su�cient enough when com-
bined with some human expertise on the problem: several architectures have been
handcrafted for speci�c tasks and are available online [Chollet 2015]. Still, their
e�ciency is known for large datasets. [Yanyao Shen 2018] pointed out a �aw in
active learning: their active learning heuristics perform well if and only if they use
it on a lightweight architecture instead of the architecture of reference for Named
Entity Recognition (NER) classi�cation. Such an issue is inherent to active learning.
Combining model selection with active learning has been investigated for shallow
models [Sugiyama 2008]. One of the main issues raised is that multiple hypotheses
(i.e. candidate networks) trained in parallel may require labeling di�erent training
points.
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DFAL CORE-SET RANDOM
LeNet5→ VGG8 97.80 96.90 94.46
VGG8→ LeNet5 97.93 97.40 95.31

(a) MNIST

DFAL CORE-SET RANDOM
LeNet5→ VGG8 92.87 91.06 89.94
VGG8→ LeNet5 89.23 89.41 89.42

(b) Quick-Draw

DFAL CORE-SET RANDOM
LeNet5→ VGG8 99.40 99.12 97.08
VGG8→ LeNet5 98.75 98.50 98.07

(c) Shoe-Bag

Table 4.4: Comparison of the transferability of DFAL and CORE-SET with 1000
annotations

Furthermore, [Fawzi 2017] empirically demonstrated a strong correlation be-
tween the vulnerability of a network to small adversarial perturbations and an
asymmetry in the curvature of its decision boundary: if a model is not robust
to an adversarial attack, it is likely that the curvature in that direction is negative
and vice-versa. Thus, not only that the decision boundaries would lie close one
to another but they would likely share some strong topological properties. Based
on those arguments, we assume adversarial queries are useful for a diverse set of
architectures, not only for the CNN they have been queried for.

First of all, we assert this assumption by evaluating the classi�cation regions
overlap between LeNet5 and VGG8; both trained on the QuickDraw dataset. Re-
sults are presented in Figure 4.7. We observe that most of the test samples share
the same classi�cation regions (• blue dots) for both networks, LeNet5 and VGG8,
while few of them (• red dots) are in di�erent classi�cation regions. Note that, this
does not mean that the networks disagree on their prediction on such samples but
put them in di�erent classi�cation regions. Thus, it appears than CNNs may have
signi�cant overlaps on their classi�cation regions, at least for LeNet5 and VGG8.

When it comes to the transferability, we empirically demonstrate DFAL's po-
tential for a baby task. We compare the test accuracy of DFALand CORE-
SETtransferred dataset on 1000 samples in Table 4.4. Surprisingly the transferred
queries from CORE-SETperform better than random. However, the transferred
queries from DFALoutperform CORE-SETand RANDOM.
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Figure 4.7: Overlap of the classi�cation regions of LeNet5 and VGG8
trained on the QuickDraw datasets. Blue dots • are test samples that fall
into the same classi�cation regions for both networks, while red dots • do not fall
into the same region. We proceed by looking for a convex path so that every point
in that path share the same prediction. To do so, we check the validity of the path
in the convex combinations of consecutive anchor points, as proposed by Fawzi et
al. [Fawzi 2017]. Then we check, whether paths exist for both networks and project
the test samples in a two-dimensional space using T-SNE [Maaten 2008].

However, it has been shown that under some constraints of similarities between
the architectures, adversarial examples of a network A are very likely to be adver-
sarial for a network B. This turns to be a signi�cant advantage for our adversarial
active learning strategy since the training set built with DFAL for the network A
will then be very likely to be a relevant training set for the network B.

When it comes to the transferability, we empirically demonstrate DFAL po-
tential on a toy task: in Figure 4.6 we have recorded Shoe-Bag adversarial queries
for LeNet5 and use them for training VGG8. While the test accuracy achieved is
lower than with the adversarial active strategy directly applied for the training of
VGG8, the transfered training set achieves better accuracy than RANDOM. When
reaching 1000 annotated samples, it is also better than considering other active cri-
teria designed for VGG8. We go further and compare the accuracy on 1000 test
samples of DFAL and CORE-SET trained on the transfered training set in Ta-
ble 4.4. Surprisingly the transfered queries from CORE-SET perform better than
RANDOM. However, in almost every case, the transfered queries with DFAL out-
perform CORE-SET and RANDOM. We have therefore shown the relevance of
transfering adversarial examples generated within active learning from one archi-
tecture to another. This opens up promising perspective for the design of tractable
methods to explore network architectures.
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4.5 Discussion

4.5.1 Theoretical motivations

It is challenging to demonstrate theoretically the gain in annotations of DFAL ow-
ing to (i) the high-dimensional space induced by deep networks and (ii) the lack of
understanding of the phenomenon of adversarial examples. However, we have lately
been able to prove the gain of DFAL for linear classi�ers theoretically (see Sec-

tion 4.6). Speci�cally, we demonstrate the theoretical gain in reducing the labeling
e�ort when data are drawn from the unit ball and consistent with a linear separator
with no bias. Notice that our proof may be extended to other distributions as long
as they are iid along any dimension (such as isotropic Gaussian).

We already know from the theoretical work of [Balcan 2007] that we need to
sample the examples from a subregion carefully chosen to obtain an exponential
improvement in the label sample complexity. Such subregion is the area along
the decision boundary given the current generalization error achieved at iteration
k. For the linear case, DeepFool is a natural extension of the well-known attack
which consists in adding the perturbation along the gradient direction In the linear
case, adversarial attacks directly measure the distance to the decision boundary.
Thus, when sampling unlabeled samples with the smallest adversarial perturbation,
we sample examples from the low con�dence subregion and we are consistent with
Balcan's protocol. Our proof goes further, by demonstrating how the adversarial
counterparts help reducing up to twice the number of required queries. Our proof
goes into two steps: (i) Based on the notion of adversarial strength, [Tanay 2016];
we have demonstrated how to build adversarial attacks that will transfer to any
other consistent classi�ers; (ii) we have also demonstrated that any sample from the
low con�dence subregion will lead to adversarial examples also in the low con�dence
subregion. We further describe the impact of DFAL for linear classi�ers in Sec 4.6

4.5.2 DFAL does not select random samples in the �rst runs

DFAL is very promising empirically. However, for complicated network architec-
tures with millions of parameters like VGG8, but trained on a small labeled set,
it seems plausible that any example is vulnerable to small adversarial attacks. We
clarify this hypothesis and explain why we do not observe such behavior in practice.

Independently of the number of parameters of the network, [Fawzi 2017] have
empirically observed that state-of-the-art deep networks learn connected classi�ca-
tion regions instead of shattered and disconnected regions. Although such classi�ca-
tion regions de�ned in the input space may su�er from the curse of dimensionality,
eventually few directions interfere with the decision boundaries. Considering now
the low dimensional space de�ned by these impacting directions, it becomes likely
that the samples do not su�er anymore from the curse of dimensionality and, thus
the distance to the decision boundary will di�er among the samples. Hence, even in
the �rst iterations of DFAL, we expect the magnitude of the smallest adversarial
perturbations to be diverse enough so not to select samples randomly.
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Finally, we observe in Figure 4.8 that adversarial perturbations are far from
being constant. We believe that the underlying topology of classi�cation regions of
deep networks explains the e�ciency of our method, even in the �rst runs.
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Figure 4.8: range of adversarial perturbations (i.e. distances between samples and
their adversary) for VGG8trained on MNISTwith 10, 20, 30 . . . to 100 labeled
examples. A curve corresponds to the range of adversarial pertubation found on the
unlabeled example, while its color matches the size of the labeled set used to train
the network
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4.6 Adversarial Active Learning for Linear Classi�ers

We point out speci�c cases in which we can obtain a signi�cant improvement in the
labeled data sample complexity using adversarial active learning for linear classi�ers.
We restrict our case of study to a speci�c case; which is when the data instances
are drawn from the unit ball in R2 and their labels are drawn from ±1. Notice
that our proof may be extended to other distributions as long as they are uniformly
distributed along with any dimension (such as isotropic gaussian). Throughout
this section, our goal is to �nd a linear classi�er f going through the origin, so
that its expected true loss is as small as possible. The error is induced by the
classi�cation rule 2I(f(x) ≥ 0) − 1 where I(·) is the set of indicator functions. We
consider the following classi�cation error loss de�ned as l(f(x),y)=1 if yf(x) ≤ 0 and
l(f(x), y) = 0 otherwise.

Firstly, we detail our strategy when the labels are consistent with a linear sep-
arator going through the origin. While we knew already from the literature that
active learning is highly bene�cial for such a case, ensuring a need of Õ(d ln(1

ε ))

labeled examples, given ε as the error rate and d the dimension, we will see how
adversarial active queries help to diminish the e�ective numbers of labels queried.

Indeed, [Balcan 2007] demonstrated that to obtain an exponential improvement
in the label sampled complexity, one needs to sample the examples from a subre-
gion carefully chosen and not from the entire region of uncertainty. When sampling
uniformly along the unit ball, few samples lie in such low con�dence regions. Al-
though, to achieve an error rate of 2−(k+1) at the k-th iteration, we still need to add
Õ(2kd) unlabeled samples3, we can automatically guess the ground-truth labels of
the majority of them. Given the current linear classi�er ck consistent on the labeled
examples at iteration k and a given threshold bk, every unlabeled sample xk lying
further from the decision boundary than bk is necessarily predicted correctly by the
current classi�er ck. This result relies on the assumption made on the data distri-
bution and its separability using a linear classi�er [Balcan 2007]. When sampling
uniformly queries and considering bk = 2−kπ, we can estimate the probability for
any sample x to be part of the low con�dence regions as p(| ck ·x |≤ bk) = Õ(2−k

√
d).

Hence, in the original strategy proposed in [Balcan 2007], a human annotator e�ec-
tively annotates Õ(d

3
2 ) unlabeled samples at each iteration to obtain an exponential

improvement in the error rate.
Here we argue how adversarial queries may help to reduce the number of e�ective

labels at any iteration k > 1.

4.6.1 Transferable adversarial attacks

When it comes to deep networks, their adversarial attacks can transfer across many
other models: adversarial examples generated for a speci�c model will often mis-
lead other unseen networks. Such a property is commonly known as transferability.
However, transferability has been mainly observed empirically [Goodfellow 2015].

3according to the VC dimension of linear classi�ers
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Up to our knowledge, how to understand the underlying phenomena and how to
defend against them e�ectively are still open questions. Meanwhile, [Tanay 2016]
have investigated the phenomenon of adversarial examples for binary linear classi-
�ers. They proposed a new taxonomy to classify adversarial attacks: they de�ned
the notion of adversarial strength and show that it can be reduced to the deviation
angle between the classi�er considered and the nearest centroid classi�er (i.e the

bissecting hyperplane between positive and negative samples).
The probability of transferability of an adversarial attack directly depends on

the level of regularization used; more speci�cally to the deviation angle between the
classi�er and the bissecting hyperplane between positive and negative samples.

Based on the notion of adversarial strength, we de�ne weak adversarial exam-
ples. Weak adversarial examples will not transfer to any other consistent classi�er,
other than the one they have been designed for. They result from a lack of regu-
larization, which can be improved by adding the adversarial sample to the training
set. Similarly, as for DFAL, we can use twice the same label for any sample and
its weak adversarial counterpart. If one is able to design weak adversarial examples
given a labeled sample x, then we can increase the training set without corrupting
it. Eventually, the weak adversarial sample will have the same label as x.

Figure 4.9: Toy problem: learning a linear separator that predicts with no error the
labels of positive instances •, and negative instances •. We illustrate the notion of
weak adversarial examples • on two samples x1 and x2.

We detail the procedure to build weak adversarial attacks for linear classi�ers
in Theorem 6.1. To build our adversarial attacks, we stick to the standard of the
litterature by adding a perturbation along the gradient direction [Goodfellow 2015].
The strength of the adversarial example is directly impacted by the deviation angle
and the magnitude of the perturbation. We illustrate our strategy on a 2-dimensional
toy problem in Figure 4.9. Consider instances distributed in a circle such that
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positive and negative points may be well separated given a linear classi�er going
through the origin. B, in accordance with De�nition 1, is the bissecting line between
positive and negative points. For the sake of clarity, we centered B to go through
the origin. Several optimal separators coexist. Among them, we consider the one
which maximizes its angle with B (i.e W in def 2), and the one wich minimizes it
(i.e S in De�nition 2). Every other solution necessarily lies between W and S.

We describe for two points x1 and x2 in Figure 4.9 how to build their weak
adversarial counterparts, based on De�nition 2. Note that a necessary condition is
that both points x1 and x2 considered are well predicted by our strong and weak
classi�ers. The mirror projection of x1 given S will lie in the hypothesis space (a.k.a
in the area between W and S). When it comes to x2, projecting it on W ensures
that every consistent classi�er will predict x2

w as a negative instance.

De�nition 4.6.1: Bissecting Hyperplane

According to [Tanay 2016], we de�ne the bissecting hyperplane B as a unique
linear separator of unit vector b and bias b0 such that B re�ects the mean
of positive instances on the mean of negative instances. Note that B is not
necessarily part of the hypothesis space, nor B minimizes the error on X × Y .

j = i− 2(i · b + b0)b s.t i = E[X | Y = 1], j = E[X | Y = −1]

De�nition 4.6.2: Transferable adversarial attacks

Given L(X×Y ) the set of optimal classi�ers given the task at hand, we de�ne
two boundary classi�ers: S the strong linear classi�er of unit vector s, and W
the weak linear classi�er of unit vector w. S is consistent with the training set
and minimizes the deviation angle with B. W is consistent with the training
set and maximizes the deviation angle with B.

L(X × Y ) = {C | ∀ (x, y) ∈ X × Y y(x · c) > 0} (4.1)

S = argminS∈L(X×Y )s · b (4.2)

W = argmaxW∈L(X×Y )w · b (4.3)

(4.4)

∀(x, y) ∈ X×Y we de�ne its weak adversarial attack, x̃w, based on the follow-
ing:
• if |w · x| ≤ |s · x|: x̃w = x− (x ·w)w

• if |s · x| ≤ |w · x|: x̃w = x− (x · s)s
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Theorem 6.1: Weak Adversarial Examples

∀(x, y) ∈ X × Y , y(x̃w · c) ≥ 0

Notice that our de�nition of adversarial attacks does not match exactly the
common de�nition as we do not restrict our adversarial attacks to be close to their
target sample anymore.

4.6.2 Label Complexity on the unit ball

Here we argue how weak adversarial queries help to reduce the number of e�ective
labels at any iteration k > 1. Our active learning strategy consists in adding also
weak adversarial instances to the training set when it is relevant, as proposed for
deep networks with DFAL. Thus we will reduce the e�ective need of queries by a
ratio of two at best. Indeed, weak adversarial instances are relevant if and only if the
sample queried is already well predicted by the current weak and strong classi�ers.
In Theorem 6.2, we describe further the expected improvement in terms of human
annotations.

A �rst observation is that projecting the unit ball according to any hyperplane
going through the origin corresponds to the identity mapping. Consequently, when
adding weak adversarial examples in the training set, we do not modify the un-
derlying distribution of the instance space. Moreover, the main advantage of our
adversarial examples is that for any instance lying in the low con�dence region, its
weak adversarial examples will also lie in that subregion (Lemma 6.1). It means that
when using adversarial queries, we respect the i.i.d assumption, and query relevant
samples, as illustrated in Figure 4.10. Finally the number of arti�cial queries that
can be added mostly depend on the generalization error at the current iteration:
when a sample query is correctly predicted, we can add its weak adversarial attacks.

Lemma 6.1: Low con�dence region

∀(x, y) ∈ X × Y , ∀C ∈ L(X × Y ): ∀α ∈ R+ such that | c · x |≤ α then we have
| c · x̃w |≤ α

Theorem 6.2: Convergence of adversarial queries

Given n =Õ(d
3
2 ) the e�ective number of labels to query at iteration k. We

denote the generalization error at step k, pk = 2−(k+1).
Using our adversarial strategy (adding both x̃w and x̃s), we can reduce the

e�ective number mk of labels with high probability δ > 0 up to:
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mk = min{m ≥ n

2
|
(
m− 1

m− n
2

)
(1− pk)

n
2 p

m−n
2

k ≥ δ}

Figure 4.10: Repartition of weak examples • for samples • lying in the low con�dence
subregion of a consistent classi�er C

4.7 Conclusion

In this chapter, we proposed a new active learning heuristic, called DFAL, to per-
form margin-based active learning for CNNs: we approximate the projection of a
sample to the nearest decision boundary using its smallest norm adversarial at-
tack. We demonstrate empirically that our DFAL strategy is highly e�cient for
CNNs trained on various image classi�cation benchmarks. We are not only compet-
itive with the state-of-the-art approach CORE-SET, but we also outperform that
method for runtime performance. Thanks to the transferability of adversarial at-
tacks, DFAL is a promising approach for combining active learning with model
selection for deep networks.
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5.1 Introduction

• We propose a new bayesian active learning strategy for Deep Networks using the
variational free energy. (see 5.1.1).
• We provide a tractable upper bound based on Optimal Experimental Design
(OED) (see 5.1.1 and 2.3)
• We design a diversity regularizer based on Wasserstein distance (see 5.1.1)
• We rely on Fisher approximation to scale OED to both CNN and Recurrent
Neural Networks (RNNs) (see 5.1.1)

mduco�e/AL_VFE Proofs are available in Appendix A.3.2

Summary
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Instead of measuring the uncertainty for only one model, Bayesian Neural Net-
works o�er the possibility to evaluate the uncertainty through an ensemble of mod-
els. In a Bayesian context, a neural network is considered as a parametric model
which assigns a conditional probability on the observed labeled data A given a vec-
tor of weights w. If the weights follow some prior distribution Pr(w | α) (depending
on the parameter α), the posterior distribution of the weights can be written as
Pr(w | A, α). We are interested in �nding the most probable weights that have
generated our data, i.e. the posterior over the weights given our observables. Such a
probabilistic uncertainty is highly relevant in an active learning setting as it conse-
quently leads to a pertinent exploration of the underlying distribution of the input
data. This strategy is similar to QBC, with the main di�erence that the size of the
committee might be in�nite instead of being discrete as in Section 3.

However computing the posterior distribution of the weights Pr(w | A, α) is
usually intractable for deep networks. Instead, one can approximate the posterior
with a variational distribution Q(w | β) whose structure leads to an easier evalu-
ation. Only few works have attempted to estimate the distribution of the weights
of a CNN, mainly due to the high dimensional parameter space inherent with such
models.

A possible solution consists in considering Bayesian inference as an optimiza-
tion process and thus by minimizing the variational free energy [Feynman 1972,
Neal 1998]. Such an approximation has already been exploited by [Graves 2011] for
deep networks 1. The posterior distribution Pr(w | A, α) is approximated with a
tractable distribution Q(w | β) depending on a new parameter β. The quality of the
approximation Q(w | β) compared to the true posterior Pr(w | A, α) is measured
by their Kullback-Leibler divergence, with L the log-likelihood.

The approximation quality is equivalently measured by the variational free en-
ergy F , which can be expressed as a minimum description length loss function:

F(A) = Ew∼Q(w|β)

(
L(A;w)

)
+KL

(
Q(w | β) || P (w | α)

)
(5.1)

When it comes to active learning, deducing an approximating variational distri-
bution through Eq. (5.1), is not intuitive. The main drawback lies in the additional
hyperparameters( such as the mean and the covariance matrix if assuming Gaussian

distribution) required by the method, which drastically increases the complexity of
the training stage. For example, [Blundell 2015] use a Gaussian distribution for their
approximate variational distribution which has doubled the number of parameters
in the model without outperforming state-of-the-art performance.

In this section, we propose a Bayesian batch active learning method for CNNs.
We derive the use of the variational free energy at test time, to evaluate how the
approximating variational distribution generalizes to new unseen data. Eventually,
our Bayesian Active Learning method 5.1.1 queries the batch of unlabeled data
which maximizes the variational free energy.

1For the sake of consistency we stick to his notations
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5.1.1 Active Learning under the light of Variational Inference

(a) classi�cation with a shallow logistic

classi�er

Wt

(b) Laplace approximation of the prior

P (wt | α) and the posterior distribu-

tion of the weights Q(wt | β)

Figure 5.1: Illustration of our active learning criterion for linear separators (see
Eq. 5.11): At ={ • }, B ={ • }, P\{A ∪ B} ={ • }. We learn a logistic classi�er
with no bias on a 2D binary classi�cation task. The data are made of a mixture of
two Gaussians ( on the left lie positive examples and the right negative examples).
The yellow points At are labeled, and wt is learn on them with no error. We then
select 9 unlabelled data B to minimize our variational free energy: the set of points
B whose induced posterior distribution Q(wt | β) will diverge at most from the prior
distribution P (wt | α). wt+1 is the classi�er trained on At ∪ B.

Firstly, we sum up our batch active learning strategy in Method 5.1.1.

Method 5.1.1: Bayesian Active Learning

We have a pool of unlabeled data P and start training our CNN with a small
set of training samples A. This is the initial state of our active learning training
set A0 = A. At each iteration t, we aim at selecting the optimal batch B by
computing a new loop of the following steps:

1. the network is trained on the current training setAt leading to the weights
wt+1

2. we search for the optimal batch B of samples to be added to the training
set, i.e. the batch B maximizing the variational free energy

B = argmaxB Fwt(At ∪ B)

3. we select a subset B̃ ⊂ B of �xed size such that A∪ B̃ follows at best the
unknown input distribution (see section 5.2).

4. the training set is then augmented by B̃: At+1 = At ∪ B̃
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For clarity sake, in the following we rename Fwt by F (keeping in mind that
we target the selection of the optimal batch B, thus the weights wt of the network
remain �xed after step 1 until step 4).

Our active criterion thus corresponds to select the batch B maximizing F(At∪
B). From Eq. (5.1), it consists in the minimization of the sum of two terms which,
in accordance with [Graves 2011], we denote respectively by:

• the training factor Ew∼Q(w|β)

(
L(A ∪ B;w)

)
,

• the generalization factor KL
(
Q(w | β) || P (w | α)

)
.

Those two terms require to be able to compute both the prior distribution of the
weights P (w | α) and the approximation Q(w | β) of the posterior distribution
P (w | A ∪ B, α).

Here we consider the Laplace approximation [MacKay 1992, Ritter 2018]. It im-
poses a Gaussian distribution on Q(w | β) whose covariance is estimated from the
Hessian of the model, evaluated at the variational mode wt. The covariance corre-
sponds to I−1

At∪B(wt), a quantity also denoted as the empirical inverse Fisher infor-
mation matrix. When considering our active criterion, the Laplace approximation

holds two main advantages. First, it allows inferring Q(w | β) at test time, without
impacting the training phase. Secondly, the assumption of a Gaussian distribution,
instead of a Gaussian mixture as in [Gal 2016a], simpli�es the variational steps when
computing F , so to obtain an analytical expression of our active criterion.

5.1.1.1 BALNet: Batch Active Learning Networks

At the beginning of an active learning step, the current weight distribution given
the labeled dataset At de�nes our prior. The posterior distribution is computed
on both the labeled data and the query batch B. The next equations de�ne the
formulation of our prior and posterior:

P (wt | α) ∼N (wt, I−1
At (wt)) (5.2)

Q(wt | β) ∼N (wt, I−1
At∪B(wt)) (5.3)

For the sake of clarity, because each Fisher matrices considered are evaluated at w,
we skip it from now in the notations.

However, when the variational free energy evaluated onA∪B increases, it induces
that, given B, the quality of our posterior approximate, Q(w | β), is getting worse
to represent the posterior distribution Pr(w | A ∪ B). Thus, our assumption to
consider the weights w as the variational mode in Eq. (5.3) is not valid anymore.
Consequently, it is relevant to add the data maximizing our active criterion, to
update the weights w.

Next we de�ne tractable lower bounds for both terms in BalNet: the training
factor and the generalization factor.
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• The Training factor is intractable and is always approximated, generally
through sampling [Graves 2011]. However, sampling on the approximate posterior
Q(w | β) requires to compute the inverse of the Fisher matrix for every possible
batch B (Eq. 5.2). To overcome this computational issue, we opt for a second-order
linear approximation of the expectation of the log-likelihood. Note that we evaluate
our loss only on the labeled data. For any random vector whose expected mean
and covariance are known, the expectation of a quadratic form can be expressed
[Mathai 1992]. Eventually our evaluation of the training factor becomes:

Ew∼Q(w|β)

(
L(A;w)

)
≈ L(A;w)− 1

2
wT IAw −

1

2
Tr(I−1

A∪BIA) (5.4)

• The generalization factor corresponds to the KLdivergence between the
approximate posterior Q(w | β) and the prior P (w | α). Because both distributions
are multivariate Gaussian of N parameters, we have a direct formulation of the
KLwhich is always de�nite since the Fisher matrices are invertible. Moreover, for
computational e�ciency, we want to discard the determinant as its complexity is
cubic in the size of the batch B. Hence, we lower bound the logarithm of the
determinant by a function of its trace. Eventually we provide an upper bound on
the generalization factor in Eq. 5.8. Note that to obtain our upper bound we assume
that every Fisher matrices are Hermitian:

KL
(
Q(w | β) || Pα(w)

)
= KL

(
N (w, I−1

A∪B(w)) || N (w, I−1
A (w))

)
(5.5)

= 1
2

(
Tr(I−1

A∪BIA + (w −w)T IA(w −w)T (5.6)

+ log(|I−1
A IA∪B|)−N

)
(5.7)

We use the following inequality that holds for every Hermitian matrix M :

1

N
log(|M−1|) ≥ log(N)− log(Tr(M))

KL
(
Q(w | β) || Pα(w)

)
≥ 1

2

(
Tr(I−1

A∪BIA) +N +N log(N)−N log
(
Tr(I−1

A∪BIA)
))

(5.8)
• The variational free energy is the sum of the training factor and the

generalization factor. Eventually, based on the previous analytic formulations, we
are able to upper bound the variational free energy by BalNetde�ned in Eq. (5.11).
Note that we discard the terms constant w.r.t. B in our criterion and do not consider
the log as it is a strictly increasing function.

Fw(A ∪ B) = KL
(
Q(w | β) || Pα(w)

)
+ Ew∼Q(w|β)

(
L(A;w)

)
≥1

2
Tr(I−1

A∪BIA)−N log
(
Tr(I−1

A∪BIA)
)
− 1

2
Tr(I−1

A∪BIA) + Const
(5.9)



56
Chapter 5. Perspective: Bayesian Active Learning through Laplace

Approximation

maxBFw(A ∪ B) ≥ maxB
(
−N log

(
Tr(I−1

A∪BIA)
)

+ Const
)

(5.10)

According to [Hoi 2006], we thus search for the optimal batch B such that:

B = argmaxB

(
Tr(IA∪BI−1

A )
)

(5.11)

5.2 Covering

5.2.1 Optimal Experimental Design

Following a di�erent path of reasonning, our criterion is similar to the theoretical
foundations developed by Zhang et al. in [Zhang 2000] (see Section 2.3), since their
goal is to search for a set of examples which can reduce at best the Fisher infor-
mation matrix: argminB Tr(I−1

B IA). Indeed, [Zhang 2000] proposed a batch mode
extension of A-optimality. They studied active learning by looking for the best re-
sampling of the unlabelled input data. They consider as the optimal resampling the
one which minimizes the negative expected log likelihood.

It led them to formulate a criterion on the asymptotic expected log likelihood of
the resampling Fisher matrix Iq, given q the resampled distribution of p, the original
distribution of the input data, with En the expectation over n samples from q:

En(θ) = − 1

2n
Tr(Iq(θ)−1Ip(θ)) (5.12)

As long as we restrict the context to log likelihood, the Cramer Rao bound im-
plies that the MLE parameter Θ which minimizes En(θ) is the asymptotic most
e�cient estimator of the optimal parameter among all estimators based on resam-
pling of the input distribution. To apply this result, they proposed to use a good
empirical estimate Θ̂ of Θ and then replace the criterion Θ by its approximation in
order to estimate the optimal resampled distribution q∗. They estimate Θ̂ by the
trained parameters of their algorithm on the currently labeled samples:

q∗ = argminqTr(Iq(Θ̂)−1Ip(Θ̂)) (5.13)

More samples can then be drawn so to re-estimate Θ̂ as well as the optimal
distribution q∗. However, looking for a subset sampled from the optimal distribution
q∗ is not feasible as it is exponential in the number of unlabeled samples. Following
this path, [Hoi 2006] used this previous criterion and approximated the solution but
for logistic functions only.

The fact that our criterion (see Method 5.1.1) is approximately upper bounded
by A-optimality is interesting because it may highlight some �aws in OED and why
it failed to perform better to perform better than uncertainty selection in Figure 5.2.
In the next Section 5.2.2, we provide details in the needs of regularizing our active
learning criterion, using a diversity scheme.
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Figure 5.2: Empirical evaluation of A-optimality on CNNs: Test error
achieved for di�erent percentage of the whole training set. We use MNIST5.2(a)
and SVHN 5.2(b). We compare A-optimality (by approximating the Fisher matrix

with KFAC, see Section 5.3) against random selection and uncertainty selection
[Duco�e 2016b]. We consider 2 CNNs whose hyperparameters are fully described in
Appendix A.2.3.

5.2.2 Increasing the diversity

Variational free energy measures the approximating variational distribution and the
posterior distribution. It is done on a �xed set of data that represents the distribu-
tion. The objective is to preserve the statistics of the input distribution. Indeed,
when selecting a batch of data, we assume that our training data are uniformly
sampled from the input data distribution.

When digging into the formulation of our criterion, the KLdivergence between
our approximate distribution Q(wt | β) and the true posterior distribution Pr(w |
A ∪ B, α) may be expressed as the sum of both terms:

1. the variational free energy: F(A)

2. the log evidence of the data: log(Pr(A))

In our context, we expect the log evidence to remain constant along the training.
Because, if so, the variations of the variational free energy will directly impact
the variations on the KLdivergence, as illustrated in Eq. 5.14. Otherwise, if the
underlying distribution of A mismatches with the ground-truth source distribution,
our ALmethod will promote new data to optimize our approximating variational
distribution given a biased estimate of the true posterior distribution. Eventually,
to guarantee satisfactory performance of our CNN, we need to preserve the data
distribution as much as possible in the training set. However, this assumption may
not hold in active learning, since we favor instances not complying with it.
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if ∀A log(Pr(A)) ' Const then F(A)↘ =⇒ KL(Q(wt | β)||Pr(w | A∪B, α))↘
(5.14)

To promote the diversity among our training set, we advocate the use of a dis-
tance on distributions, the 2-Wasserstein distance. The Wasserstein distance is a
powerful tool based on the theory of optimal transport to compare data distri-
butions. It knows a renewed interest thanks to its success in generative model-
ing and image processing. While, to our knowledge, Wasserstein distance has not
yet been investigated in active learning, several of its properties are nevertheless
highly relevant in our context. Wasserstein can be applied to distributions with
non-overlapping supports and has good out-of-sample performance. Moreover, it is
robust to discrete distributions without the need to resort to kernel estimators, and
is parameter-free, unlike Maximum Mean Discrepancy [Muandet 2017].

Therefore selecting a more diverse subset among our queries may be solved
by minimizing the Wasserstein distance between our queries and the pool of data
P (both labeled and unlabeled). We consider euclidian distance for computing
Wasserstein. Formally given a �xed size of data to label, K, we propose in Eq. 5.15 a
subset selection B̃ among our candidates B, to reduce the bias of our active selection
scheme.

B̃ = arg min
B̃⊂B, |B̃|=K

W2(A ∪ B̃ || P) (5.15)

The optimization subroutine we de�ned previously in Eq. 9.1 is generally not
tractable as it is combinatorial given B. However, we can obtain a reasonably good
approximation with a greedy selection. We invite the reader to read Chapter 9 for
further properties about using greedy search for selecting our queries given Wasser-
stein.

5.3 Application to CNN

The main limitation of the Laplace approximation is that, in most cases, the Fisher
matrix may not be stored in memory. To solve this issue, we consider a recent
approximation of the Fisher information for CNNs proposed in [Martens 2015] and
[Grosse 2016], called Kronecker Factored Approximate Curvature (KFAC). The Fisher
information is approximated as a block diagonal matrix. Each block itself is an ap-
proximation of the Fisher information related to the weights of a layer. Such a
structure enables to capture the correlations between parameters of the same layers.
Because the covariance matrix from a single layer may not be even stored in mem-
ory, the Fisher information of each layer is approximated by a Kronecker product
ψ ⊗ τ . A summary of their decomposition is presented in Eq. (5.16)2.

2Note that the previous works do not handle the convolutional biases and batch normalisation

parameters. Because the number of parameters involved is limited, we compute the exact observed

Fisher matrices for both convolutional biases and batch normalization parameters.
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IA = diag([ψA,l ⊗ τA,l]Ll=1) (5.16)

ψA,l = 1
|A|

∑
(xi,yi)∈A

ψi,l (5.17)

τA,l = 1
|A|

∑
(xi,yi)∈A

τi,l (5.18)

(5.19)

Finally, we express the trace Tr(IA∪BI−1
A ) based on the KFAC approximation of

the Fisher matrix: we consider that every Fisher matrix for a CNN is an L diagonal
block matrix, with L the number of layers of the CNN. Every block is made of a
Kronecker product of two terms ψ and τ . We rely on the properties involved in the
choice of this speci�c matrix topology to obtain in Eq. 5.20 a tractable approximation
of Tr(IA∪BI−1

A ). It allows us to express our active learning criterion as a linear
function given the Kronecker coe�cients of the queries.

Tr(IA∪BI−1
A ) =

L∑
l=1

Tr(ψl,A∪Bψ
−1
l,A)Tr(τl,A∪Bτ

−1
l,A) (5.20)

One of the main contributions of this approach is that our active learning cri-
terion itself is equivalent to minimize a submodular function 3. Indeed it consists
in a constrained minimization over the sum of submodular functions which is also
submodular. Submodular functions are widely used in active learning [Wei 2015].
Although so far, they have been used primarily in a context of maximization, since a
greedy selection scheme may e�ciently approximate their optimization [Nemhauser 1978].
On the other side, minimizing a submodular function may be solved exactly in
strongly polynomial time [Schrijver 2000]. Eventually, we can solve exactly Bal-
Net, unlike other state-of-the-art approaches such as DFAL and CORE-SET, which
relies on approximations (of the distance to the decision boundary, of the covering

radius). Eventually, maximizing the variational free energy allows to take into
account the correlations among the queries, unlike top score approaches used in
previous Bayesian active learning techniques for CNNs (cf. Section 2.3.6).

5.4 Application to RNN

Initially, the KFAC approximation assumes that each weight matrix is involved in
a unique mapping. Thus, the original KFAC approximation cannot be directly
applied to the Fisher matrices of RNNs, in which the weights are repeated along the
sequence. Next, we propose to exploit the recent work of Martens et al. , to adapt
our active learning criterion to classi�cation tasks on RNNs [Martens 2018]. Note
that few works have undertaken active learning selection for sequence classi�cation
on RNNs. Perhaps the most notable works are [Yanyao Shen 2018, Lin 2017b],

3the proof is available in appendix A.3.2
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(a) VQA network (b) Approximate Fisher matrix for the

VQA network

Figure 5.3: Illustration of KFAC approximation on VQA network
[Antol 2015]. VQA stands for Visual Question Answering. It is a multimodal
classi�cation task that involves a lot of handcrafted descriptions to build the train-
ing set. Consequently, active learning is perfectly suited for VQA. While it requires
a lot of labeled training data, it is likely than just feeding it with random data
will not be enough to improve its performance, as �rst assumed in [Lin 2017b]: �As
a result with long tail distributions, it will likely result in redundant questions and

answers while still having insu�cient training data for rare concepts�

which derived existing active learning techniques to respectively NER classi�cation
and Visual Question Answering (VQA). However, up to our knowledge, there exists
no active learning strategy for RNNs that take into account the speci�cities of the
architecture.

We illustrate beforehand the topology of the approximation of the Fisher matrix
for a recurrent architecture in Figure 5.3.

To proceed with our goal of obtaining a tractable approximation to the Fisher
matrix of RNNs, we will follow several approximating assumptions [Martens 2018]:

• independence of the parameters between di�erent layers to approximate the
Fisher matrix by a block diagonal matrix. This assumption already exists in
the original KFAC approximation

• temporal homogeneity among the gradient contributions from di�erent time-
steps. Temporal homogeneity is a pretty mild approximation and is analogous
to the frequently used steady state assumption from dynamical systems. It
assumes that the gradient contributions does not depend on the two times
considered but only on their deviation.

Thanks to previous assumptions, Martens et al. proposed the following decom-
position of the Fisher matrix of a recurrent layer. Hence given T the length of
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the sequences, we can approximate the conditional Fisher matrix ITA,l by a sum of
2T + 1 Kronecker products. Eventually, the Fisher matrix is the expectation over
time steps of the conditional Fisher.

IA,l = ET
[
ITA,l
]

ITA,l =
∑
d=t−s

t−s=τ, t=1...T
s=1...T

(T− | d |)(ψA,d,l ⊗ τA,d,l)

ψTA,d,l =
1

| A |
∑

(xi,yi)∈A

ψi,d,l

τTA,d,l =
1

| A |
∑

(xi,yi)∈A

τi,d,l

(5.21)

The main drawback of the formulation of Eq. 5.21 is that there is no trick to
decompose the inverse of the Fisher matrix I−1

A into a Kronecker product. Such a
trick is necessary for our framework, as there exists no property for the product of
any matrix with a Kronecker product. Eventually, there is no analytical formulation
of IA∪B,lI−1

A,l, that we can easily use, based solely on Eq. 5.21.
If you consider sequences of varying size, other assumptions need to be taken

into account. Although we can compute the Fisher matrix given the conditional
Fisher matrix for di�erent varying time steps, the expectation over the time steps
will vary depending on the samples selected. Thus, without assuming any additional
structure such as relationships between the various Kronecker factors, this does not
appear to be any e�cient way to select the optimal batch. Thus it appears that
we must make additional approximating assumptions to proceed. Following the
approach of Martens et al. , we assume that the contributions to the gradients are
independent across time or at least uncorrelated 4. This results in:

∀T, ∀d > 0 =⇒ ψTA,d,l ⊗ τTA,d,l = 0

Notice that those previous assumptions are not the only conditions imposed in
[Martens 2018]. However, Martens et al. developed a regularizer based on the Fisher
information, which requires to be tractable but also to have a fast computation of
its inverse. Eventually, the approximation for the Fisher matrix of a recurrent unit
reads:

IA,l = ET [T ] (ψTA,0,l ⊗ τTA,0,l) (5.22)

5.5 Empirical Validation

We

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

section A.2.3

perform preliminary numerical experiments on two image classi�cation datasets:
MNIST and Quick-Draw .

4This assumption is similar to the spatially correlated assumption proposed for the extension

of KFAC to CNNs in [Grosse 2016]
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We compare the evolution of the test accuracy when using our method- that we
denote BalNet- against the following baselines:
• DFAL: we select on the whole unlabeled training set the �rst nquery samples with
the lowest adversarial perturbation.
• BALD: we select on a random subset of the unlabeled training set the �rst nquery
samples which are expected to maximize the mutual information with the model
parameters. In that order, we sample 10 networks from the approximate posterior
of the weights by also applying dropout at test time.
• CEAL: we select on the whole unlabeled training set the �rst nquery samples
with the highest entropy on their network's prediction. We also label any unlabeled
samples whose entropy is lower than a given threshold (which is set according to the
authors' guidelines: 0.05 for MNIST , 0.19 for Shoe-Bag and 0.08 for Quick-Draw).
Their labels are not queried but estimated from the network's predictions.
• CORE-SET: we select on a random subset of the unlabeled training set the
nquery samples which cover at best the training set (labeled and unlabeled data)
based on the euclidean distance on the output of the last fully connected layer.
To approximate the cover set problem, we follow the instructions prescribed in
[Ozan Sener 2018]: we initialize the selection with the greedy algorithm, and iterate
with their mixed integer programming subroutine. We also handle the robustness
as prescribed by the authors. We use or-tools 5 to reproduce the MIP subroutine.
• EGL: we select from a random subset of the unlabeled training set the �rst nquery
samples whose gradients achieves the highest euclidean norm.
• uncertainty: we select from the whole unlabeled training set the �rst nquery
samples with the highest entropy on their network's prediction.
• RANDOM: we select randomly from the whole unlabeled training set nquery
samples.

We average our results over �ve trials and we plot in �gures 5.4, the test accuracy
achieved by each active learning methods for �xed size training set: with 100, 200, ...
to 1000 labeled samples. We denote as BASELINE, the test accuracy when training
the network on the full labeled training set. Preliminary experiments demonstrate
that BalNet is competitive with state-of-the-art active learning heuristics for image
classi�cation, CORE-SET and DFAL.

5https://developers.google.com/optimization
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Figure 5.4: Evolution of the test accuracy achieved by 7 active learning techniques on
MNIST and Quick-Draw given the number of annotations. We denote our method
by FISHER

5.6 Future work

Although BalNet appears promising, in the �rst iterations, we observe in the �rst
iterations that it is underperforming other active learning heuristics. This pattern
may be explained due to the usage of KFAC approximation: even as a regularizer,
KFAC should be used on large size minibatches. So we assume that the approxima-
tion of the Fisher matrices do not hold on small labeled training set. This assumption
will be clari�ed with experiments on large scale dataset in future works. Moreover,
using KFAC as a regularizer should be relevant in our active learning method. Note
that we use greedy search to select our BalNet queries which is sub-optimal for
our criterion. Future works should improve the selection of the queries according to
the properties of minimizing a submodular function. More comparative studies are
required to assert of the relevancy of our �sher criterion:

1. diversity: what is the impact of our Wasserstein covering compared to ran-
dom selection or any other diversity based criterion proposed in active learning
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[Wei 2015]

2. Large Scale Dataset: how will BalNet behave on large scale datasets?

3. Classi�cation tasks and network architectures: DFAL and CORE-SET are
designed for CNNs and have been asserted on image classi�cation tasks. The
performance of BalNet should also be tested on other tasks such as Visual
Question Answering and architectures such as LSTMs.

5.7 Conclusion

In a nutshell, we proposed a scalable batch active learning framework for deep
networks relying on the variational free energy. We deduced a formulation of the
posterior and prior distributions of the CNN' s weights using the Laplace hypothesis.
Those assumptions, combined with a Kronecker based formulation of the Fisher
information matrix for neural networks, lead us to a gradient free active learning
heuristic. Eventually, we develop a highly e�cient query search for batch active
learning thanks to the induced submodularity properties of our criterion.

Our criterion is the �rst of the kind to scale batch active learning to deep net-
works, especially CNNs. On di�erent databases, it achieves better test accuracy
than random sampling and is scalable with increasing size of queries. It achieves
near-optimal test error using a limited percentage of the annotated training set on
larger and more reduced dataset. Our works demonstrated the validity of batch
mode active learning for deep networks and the promise of the KFAC formulation
for deep Fisher matrices for the active learning community. Such a solution is also
interesting as a new technique for curriculum learning approach.
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Conclusion

We investigate the impact of AL on deep neural architectures. Neural networks
need large, even huge, datasets for their training. Otherwise, if the training data
set is too small, over�tting may very well occur, in particular when it comes to deep
networks with many layers. However, unexpectedly, AL is e�cient, even on a large
network such as VGG8. The reasons underlying the success of AL on deep networks
are in some part, explained by some understanding of the generalization bounds for
deep networks (see Section 2.4).

While dropout has been promoted for active learning, the impact of other well-
known regularizers such as batch normalization [Io�e 2015], have not yet been in-
vestigated. Indeed, batch normalization is more indicated on large size minibatch,
which is counter-intuitive with a reduced training set. Similarly, while we have pro-
posed to use the KFAC approximation of Fisher matrix in our AL criterion, the
natural gradient based regularizer that KFAC was designed for, has not been stud-
ied in the context of active learning. Indeed, while KFAC is e�cient, it is advised
for a sizeable minibatch.

Other related research areas, such as domain adaptation and semi-supervised
learning, are well suited to act as regularizers in an active learning context. Up
to some point, we have started to investigate these factors in the next chapter,
using Wasserstein distance. Moreover, while we have focused our work on scaling
AL for deep networks, other architectures may better handle small datasets, such
as Gaussian processes.

Another step towards promoting active learning heuristics is to propose batch
query heuristics and think of how it should be incorporated into the algorithm itself:
Should it be done in a post-processing step, as we recommended in Section 5.2, or
should it be captured by the AL criterion itself, like CORE-SET? Although the
latest solution sounds more indicated, it also explodes the computational cost of the
AL heuristic (cf. Table 4.3). Moreover, our latest method DFAL suggests that a
simple top score selection is competitive with a batch query selection. Neverthe-
less, our �sher method leads to think that a post-processing selection, while being
suboptimal works well in practice.

The de�nition of active learning protocols and benchmarks is crucial to improve
our methods. Nowadays, the �eld cruelly lacks rules of thumbs which leads to
unobtainable results in real life settings: balancing the labels in the initial training
set, using an enormous amount of labeled validation set (which is furthermore not
counted in the number of annotations), tuning the hyperparameters on the full
labeled training set.
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We are aware of meta-learning algorithms, based on reinforcement learning, that
learns an active learning policy [Contardo 2017]. Up to our knowledge, neither
AL heuristics nor meta-learning algorithms have yet been compared one to another.
However, it sounds relevant as future works to analyze both the performance and
computational time of such algorithms regarding state-of-the-art active learning
strategies. As meta-algorithms are learning transferable policies, they can be useful
to develop hyperparameter search combined with query selection.
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7.1 Motivations

With the overwhelming success of deep networks and their requrements for large
datasets, there is a growing need to assess the consistency of our training dataset.
In that aim, one possible solution is to rely on core-sets. A Core-set of a dataset
is a subset, typically denoted as medoids, that is representative of the whole set
of data given an informative criterion. It takes root in computational geometry
[Agarwal 2005] and have been widespread to the machine learning community �rst
via importance sampling [Langberg 2010]. Core-sets provide a �rst glimpse of the
dataset, which can be used in various forms: either to visualize, compact the infor-
mation or identify bias.

One of the main challenge is to decide which informations should be captured to
build such core-sets. We focus on Wasserstein distance, as an informative criterion
to build a core-set.

The Wasserstein distance is a powerful tool based on the theory of optimal trans-
port to compare data distributions with wide applications in image processing, com-
puter vision and machine learning [Kolouri 2017]. In a context of machine learning,
it has recently found numerous applications, e.g. domain adaptation [Courty 2017a],
word embedding [Huang 2016a] or generative models [Arjovsky 2017a]. Its power
lies in two properties: i) it allows to operate on empirical data distributions in a
non-parametric way ;ii) the geometry of the underlying space can be leveraged to
compare the distributions. The space of probability measures equipped with the
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Wasserstein distance can be used to construct objects of interest such as barycen-
ters [Agueh 2011] or geodesics [Seguy 2015] that can be used in data analysis and
mining tasks.

We dedicate this section to provide fast technique of computing pairwise Wasser-
stein distance in parallel. Speci�cally, we propose in Section 8, a neural network
whose output embeds the Wasserstein distance, for low dimensional manifolds.
Thanks to this scheme, we can naturally approximate data mining tasks in the
embedding space, but we can also dedicate this embedding to clustering and core-
sets.

Nextly, in Section 9, we highlight some submodularities properties of Wasserstein
distance for empirical distributions, and how we can greedily select Wasserstein
prototypes to build a core-set.

7.2 De�nitions

More formally, let X be a metric space endowed with a metric dX . Let p ∈ (0,∞)

and Pp(X) the space of all Borel probability measures µ on X with �nite moments
of order p, i.e.

∫
X dX(x, x0)pdµ(x) <∞ for all x0 in X. The p-Wasserstein distance

between µ and ν is de�ned as:

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫∫
X×X

d(x, y)pdπ(x, y)

) 1
p

. (7.1)

Here, Π(µ, ν) is the set of probabilistic couplings π on (µ, ν). As such, for every
Borel subsets A ⊆ X, we have that µ(A) = π(X × A) and ν(A) = π(A×X). It is
well known thatWp de�nes a metric over Pp(X) as long as p ≥ 1 (e.g. [Villani 2009],
De�nition 6.2).

When p = 1, W1 is also known as Earth Mover Distance (EMD) or Monge-
Kantorovich distance. The geometry of (Pp(X), W1(X)) has been thoroughly
studied, and there exists several works on computing EMD for point sets in Rk
(e.g. [Shirdhonkar 2008]). However, in a number of applications the use ofW2 (a.k.a
root mean square bipartite matching distance) is a more natural distance arising in
computer vision [Bonneel 2015], computer graphics [Bonneel 2011, de Goes 2012,
Solomon 2015a, Bonneel 2016] or machine learning [Cuturi 2014, Courty 2017a].
See [de Goes 2012] for a discussion on the quality comparison between W1 and W2.

In the discrete version, where both µ and ν are uniform distributions respectively
supported by n and m points, the p-Wasserstein distance can be expressed as a linear
programming optimization problem:

Wp(µ, ν) = min
Γ∈Σ(µ,ν)

〈
C,Γ

〉p
(7.2)

Where matrix C is the distance matrix between every pairwise samples of µ and
ν, the notation < ·, · > denotes the Frobenius dot product and Σ(µ, ν) = {Γ ∈
Rn,m+ , Γ1n = µ, ΓT 1m = ν} is the set of valid transportation matrices between
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both distributions, where 1n represents the n-dimensional vector of ones. Because
the number of variables scales quadratically with the number of samples in the
distributions, computing the exact Wasserstein holds a cubical complexity.

7.3 Litterature

7.3.1 Fast approximation of the exact Wasserstein distance

The cost for computing the exact Wasserstein distance for empirical distributions
can limit its usage in various applications. Thus, a lot of e�orts has been put on
alleviating the computation complexity, by either proposing regularized versions of
Wasserstein, such as Sinkhorn [Cuturi 2013b], or deducing iterative schemes that
will converge to the exact Wasserstein, such as IPOT [Xie 2018].

The Sinkhorn distance allows the fast computation of an entropically regular-
ized Wasserstein distance between two probability distributions supported on a �nite
metric space of (possibly) high-dimension. The entropic regularization results in an
optimization problem that can be solved e�ciently by Iterative Bregman projec-
tions [Benamou 2015]. It is known to achieve near quadratic complexity. However,
the Sinkhorn distance remains an approximation of the exact Wasserstein distance.
While some machine learning problems bene�t from the Sinkhorn approximation,
others do not. In particular, the computation of Wasserstein barycenters requires a
tight approximation of the exact Wasserstein, using a small entropic regularization.
Indeed, the regularization parameter in the Sinkhorn distance, is a major hyperpa-
rameter, which owns huge numerical implications. If the regularization parameter is
very small, we can observe numerical instability [Xie 2018]. Nevertheless, the linear
convergence rate of the Sinkhorn algorithm is determined by the contraction ratio
which tends to 1 as the regularization parameter decreases. Consequently, we ob-
serve drastically increase number of iterations for the Sinkhorn method when using
small regularization value.

Recently, a new approximation scheme for Wasserstein distance has been pro-
posed, called IPOT. IPOT relies on proximal point methods. Eventually their op-
timization can be solved by Sinkhorn iteration by updating the distance matrix at
each step, instead of keeping it �xed as in the original Sinkhorn algorithm. We detail
both pseudo code for Sinkhorn and IPOT in Alg. 1 and 2. Regarding IPOT, unlike
Sinkhorn, empirical analysis con�rmed that it converges to the exact Wasserstein
distance, independently to the choice of the regularization parameter, with linear
convergence.

Another line of work [Wang 2013, Kolouri 2016b] also considers the Riemannian
structure of the Wasserstein space to provide meaningful linearization by project-
ing onto the tangent space. By doing so, they notably allows for faster computa-
tion of pairwise Wasserstein distances (only N transport computations instead of
N(N − 1)/2 with N the number of samples in the dataset) and allow for statistical
analysis of the embedded data. They proceed by specifying a template element and
compute, from particle approximations of the data, linear transport plans with this
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Algorithm 1 Pseudo code of SINKHORN(µ, ν, C, β) [Cuturi 2013b]
Require: empirical probability distribution {µ, ν} respectively on support points
{xi}ni=1, {yj}mj=1

Require: distance matrix C = ||xi − yj ||
Require: regularization constant β
u(0) = 1n

G← e
−C
β

for i=1,2,3,. . . do
v(i) = b�KTu(i−1)

u(i) = a�Kv(i)

end for
T ← diag(u(i))Gdiag(b(i))

Algorithm 2 Pseudo code of IPOT (µ, ν, C, β) [Xie 2018]
Require: empirical probability distribution {µ, ν} respectively on support points
{xi}ni=1, {yj}mj=1

Require: distance matrix C = ||xi − yj ||
Require: regularization constant β
b← 1

m1m

G← e
−C
β

T (1) ← 1n,m
for t=1,2,3,. . . do
Q← G� T (t)

for l=1,2,3,. . . do
a← µ

Qb

b← ν
QT a

end for
T (t+1) ← diag(a)Qdiag(b)

end for
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template element, that allow to derive an embedding used for analysis. Seguy and
Cuturi [Seguy 2015] also proposed a similar pipeline, based on velocity �eld, but
without relying on an implicit embedding. It is to be noted that for data in 2D,
such as images, the use of cumulative Radon transform also allows for an embed-
ding which can be used for interpolation or analysis [Bonneel 2015, Kolouri 2016a],
by exploiting the exact solution of the optimal transport in 1D through cumulative
distribution functions.

7.3.2 Metric embedding

In Section 8, we proposed to alleviate the cost of computing the exact Wasserstein
distance using Metric embedding approach. Our method is fairly new as we do not
rely on mathematical grounded approximations.

The question of metric embedding usually arises in the context of approximation
algorithms. Generally speaking, one seeks a new representation (embedding) of data
at hand in a new space where the distances from the original space are preserved.
This new representation should, as a positive side e�ect, o�ers computational ease
for time-consuming task (e.g. searching for a nearest neighbor), or interpretation
facilities (e.g. visualization of high-dimensional datasets). More formally, given two
metrics spaces (X, dX) and (Y, dy) and D ∈ [1,∞), a mapping φ : X → Y is an
embedding with distortion at most D if there exists a coe�cient α ∈ (0,∞) such
that αdX(x, y) ≤ dY (φ(x), φ(y)) ≤ DαdX(x, y). Here, the α parameter is to be
understood as a global scaling coe�cient. The distortion of the mapping is the
in�mum over all possible D such that the previous relation holds. Obviously, the
lower the D, the better the quality of the embedding is. It should be noted that
the existence of exact (isometric) embedding (D = 1) is not always guaranteed
but sometimes possible. Finally, the embeddability of a metric space into another
is possible if there exists a mapping with constant distortion. A good introduction
on metric embedding can be found in [Matou²ek 2013].

7.3.3 Domain adaptation

Recent works have underlined the usage of Wasserstein into domain adaptation
[Courty 2017c, Shen 2018]. In particular, [Lee 2017] provides generalization guar-
antees for domain adaptation based on the notion of Wasserstein balls, which owns
similarity with part of our work, denoted as Wasserstein prototypes (see Section 9).
They aim to minimize the worst-case risk over a larger ambiguity set containing the
original empirical distribution of the training data.

Given an n-tuple {x1, . . . xn} of iid training examples sampled from the unknown
ground-truth distribution P, the objective is to �nd a hypothesis whose risk is close
to the minimum risk with high probability. The risk R(P, f) is the expectation of f
over instances sampled from P. However, because the ground-truth distribution is
unknown, the risk is not tractable. One solution to optimize the risk is to minimize
an approximate risk : the maximal risk given any distribution Q approximately close
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to the true but unknown ground-truth distribution P. That distribution lies in an
area denoted as the ambiguity set. They de�ne the ambiguity set A(P), as the
p-Wasserstein ball of radius ε centered around P. Where Q is a Borel distribution
de�ned on a Polish space. Eventually, we can de�ne the approximate risk as the
following:

A(P) = {Q |Wp(P,Q) ≤ ε}
Rε,p(P, f) = sup

Q∈A(P)
R(Q, f)

with R(Q, f) = Ez∼Q
[
f(z)

] (7.3)

Assuming that the di�erence between the labelled training set Q and the ground-
truth distribution P comes only from transformations of the input space (indepen-
dently from the labels associated to the examples), then we can upper bound the
approximate risk Rε,p(P, f) given the risk on the labelled training set R(Q, f):

Theorem 3.1: Minimax Statistical Learning

Suppose that the hypothesis f is L-Lipschitz, if we denote by P the ground-truth
distribution and Q the discrete distribution induced by sampling along P. We
can upper bound the approximate risk on P given the risk on the labelled set
and their Wasserstein distance.

Rε,p(P, f) ≤ R(Q, f) + 2L ∗W (P,Q) (7.4)

7.3.4 Wasserstein Core-Sets for Lipschitz Costs

Another line of work, in [Claici 2018] bridges the gap between core-sets with Lips-
chitz cost and optimal transport. They build an upper bound on what they denote
as measure core-set with Wasserstein distance:

De�nition 7.3.1: Measure Core-Set

Given ε ∈ R+, we call ν a measure core-set for µ on the support X , if ν is
absolutely continuous with respect to µ and ∀ f ∈ F :

|cost(X , f, ν)− cost(X , f, µ)| ≤ εcost(X , f, ν) (7.5)

Note that ν always exists since ν ≡ µ satis�es the inequality.

For measure core-set to be tractable, they restrict their case of study when ν

is a uniform empirical distribution over a �xed number of points, whose support

is unde�ned: ν is of the form 1
n

n∑
i=1

δxi . Finally, they propose to build ν so that

ν minimizes what they denote as Wasserstein Core-Set, which upper bounds the
measure core-set :
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De�nition 7.3.2: Wasserstein Core-Set

When F ⊂ Lip1(X ), a su�cient condition for ν to be an epsilon core-set given
µ and F is W1(µ, ν) ≤ ε

BecauseW2 is a way more popular distance to compute baycenters thanW1,
and justi�ed by the inequality W1(µ, ν) ≤ W2(µ, ν), [Claici 2018] prescribed
Eq. 7.6 to construct the n-point measure core-set :

arg min
x1,x2,··· ,xn

W2(µ,
1

n

n∑
i=1

δxi) (7.6)

Determining the positions of the points makes the problem highly non convex.
They provide a simple optimization strategy based on an iterative optimizations
between the di�erent parameters involved.

Wasserstein Core-Sets hold several similarity with one of our recent work that
we denote Wasserstein prototypes. We highlight in Section 9 the pros and cons of
both of those methods when it comes to our problematic.

7.3.5 Herding

MMD is a measure of the di�erence between two distributions µ and ν given by the
supremum over a function space F . The MMD between µ and ν reads:

MMD(µ, ν;F) = supf∈F
(
Ex∼µ[f(x)]− Ex∼ν [f(x)]

)
(7.7)

Similarly as our work in Section 9, we can de�ne prototypes according to MMD.
We denote by prototypes example-based explanations according to an informative
criterion, here MMD. Among the possible usage, prototypes are widely used in the
e�ort to improve the interpretability of highly complex distributions. Formally, we
can express MMD prototypes as the solution of Eq. 7.8. Considering the nature of
the kernel matrix, MMD prototypes can be fairly well approximated using greedy
search, due to inherent submodularity properties, as described in Theorem 3. On
the contrary, looking for MMD prototypes comes to maximising a weakly submod-

ular function [Huszár 2012]. Although using greedy search to maximize a weakly
submodular function works fairly well in practice, there exist no tight upper bound
on the quality of the prototypes.

De�nition 7.3.3: MMD Prototypes

Formally given an empirical distribution P, a �xed size of data to label, K, we
denote MMD prototypes a subset S∗K ⊂ P that minimizes Eq. 7.8.

min
S∗K⊂P, |S

∗
K |=K

MMD(S∗K ,P)2 (7.8)
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Theorem 3.2: Monotone Submodularity for MMD prototypes [Kim 2016]

Let the kernel matrix K ∈ Rn×n be element-wise non-negative, with equal
diagonal terms ki,i = k∗ > 0 ∀ i ∈ [n] ad be diagonally dominant. If the o�
diagonal terms ki,j satis�es:

0 ≤ ki,j ≤
k∗

n3 + 2n2 + 2n− 3

Then selecting MMD prototypes given Eq. 7.8 consists in maximising a
submodular function which can be approximated with greedy search.
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8.1 Introduction

•We present a new way to approximate pairwise Wasserstein distances for examples
sampled from a speci�c distribution such as an image collection. To do so, we train
a siamese neural network, denoted as Deep Wasserstein Embedding (DWE),
on which the euclidian loss on the outputs matches the exact Wasserstein distance
on the input instances.
• We empirically demonstrate how the learned embedding may be used for
computing e�ciently optimization problems in the Wasserstein space.

X Every dataset and parameters used to conduct our experiments are available in

the dataset section A.1 and the hyperparameter section A.2.4

mduco�e/LearningWassersteinEmbeddings

Summary

The Wasserstein distance received a lot of attention recently in the commu-
nity of machine learning, especially for its principled way of comparing distribu-
tions. It has found numerous applications in several hard problems, such as domain
adaptation, dimensionality reduction or generative models. Yet, the deployment
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of Wasserstein distances in a wide class of applications is somehow limited, espe-
cially because of an heavy computational burden. In the discrete version of the
above optimisation problem, the number of variables scale quadratically with the
number of samples in the distributions, and solving the associated linear program
with network �ow algorithms is known to have a cubical complexity. While recent
strategies implying slicing technique [Bonneel 2015, Kolouri 2016a], entropic reg-
ularization [Cuturi 2013a, Benamou 2015, Solomon 2015b] or involving stochastic
optimization [Genevay 2016], have emerged, the cost of computing pairwise Wasser-
stein distances between a large number of distributions (like an image collection)
is prohibitive. This is all the more true if one considers the problem of computing
barycenters [Cuturi 2014, Benamou 2015] or population means. A recent attempt by
Staib and colleagues [Staib 2017] use distributed computing for solving this problem
in a scalable way.

Our goal is to alleviate this problem by providing an approximation mechanism
that allows to break its inherent complexity. It relies on the search of an embedding
where the Euclidean distance mimics the Wasserstein distance. We show that such
an embedding can be found with a siamese architecture associated with a decoder
network that allows to move from the embedding space back to the original input
space. Once this embedding has been found, computing optimization problems in
the Wasserstein space (e.g. barycenters, principal directions or even archetypes)
can be conducted extremely fast. Numerical experiments supporting this idea are
conducted on image datasets, and show the wide potential bene�ts of our method.

8.2 Wasserstein learning and reconstruction with siamese

networks

We propose in this work to learn an Euclidean embedding of distributions where
the Euclidean norm approximates the Wasserstein distances. Finding such an em-
bedding enables the use of standard Euclidean methods in the embedded space
and signi�cant speed up in pairwise Wasserstein distance computation, or construc-
tion of objects of interests such as barycenters. The embedding is expressed as a
deep neural network, and is learnt with a strategy similar to those of Siamese net-
works [Chopra 2005]. We also show that simultaneously learning the inverse of the
embedding function is possible and allows a reconstruction of a probability distri-
bution from the embedding. Our work is the �rst to propose to learn a generic em-
bedding rather than constructing it from explicit approximations/transformations
of the data and analytical operators such as Riemannian Logarithm maps. As such,
our formulation is generic and adapts to any type of data. Finally, since the map-
ping to the embedded space is constructed explicitly, handling unseen data does not
require to compute new optimal transport plans or optimization, yielding extremely
fast computation performances, with similar approximation performances.

We discuss here how our method, coined DWE for Deep Wasserstein Embed-
ding works. DWE learns in a supervised way a new representation of the data.
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Figure 8.1: Architecture of the Wasserstein Deep Learning: two samples are drawn
from the data distribution and set as input of the same network (φ) that computes
the embedding. The embedding is learnt such that the squared Euclidean distance
in the embedding mimics the Wasserstein distance. The embedded representation
of the data is then decoded with a di�erent network (ψ), trained with a Kullback-
Leibler divergence loss.

To this end we need a pre-computed dataset that consists of pairs of histograms
{x1

i , x
2
i }i∈1,...,n of dimensionality d and their corresponding W 2

2 Wasserstein dis-
tance {yi = W 2

2 (x1
i , x

2
i )}i∈1,...,n. One immediate way to solve the problem would

be to concatenate the samples x1 and x2 and learn a deep network that predicts y.
This would work in theory but it would prevent us from interpreting the Wasserstein
space and it is not by default symmetric which is a key property of the Wasserstein
distance.

Another way to encode this symmetry and to have a meaningful embedding
that can be used more broadly is to use a Siamese neural network [Bromley 1994].
Originally designed for metric learning purpose and similarity learning (based on
labels), this type of architecture is usually de�ned by replicating a network which
takes as input two samples from the same learning set, and learns a mapping to
new space with a contrastive loss. It has mainly been used in computer vision, with
successful applications to face recognition [Chopra 2005] or one-shot learning for
example [Koch 2015]. Though its capacity to learn meaningful embeddings has been
highlighted in [Weston 2012], it has never been used, to the best of our knowledge,
for mimicking a speci�c distance that exhibits computation challenges. This is
precisely our objective here.

We propose to learn an embedding network φ that takes as input a histogram
and project it in a given Euclidean space of Rp. In practice, this embedding should
mirror the geometrical property of the Wasserstein space. We also propose to regu-
larize the computation of this embedding by adding a reconstruction loss based on
a decoding network ψ. This has two important impacts. First we observed empir-
ically that it eases the learning of the embedding and improves the generalization
performance of the network (as illustrated in Figure 8.3) by forcing the embedded
representation to catch su�cient information of the input data and thus allowing a
good reconstruction. This type of autoencoder regularization loss has been discussed
in [Yu 2013] in the di�erent context of embedding learning. Second, the decoder net-
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work allows the interpretation of the results, which is of prime importance in several
data-mining tasks (discussed in the next subsection 8.3.1).

An overall picture depicting the whole process is given in Figure 8.1. The global
objective function reads

min
φ,ψ

∑
i

∥∥‖φ(x1
i )− φ(x2

i )‖2 − yi
∥∥2

+λ
∑
i

(
KL(ψ(φ(x1

i )), x
1
i )+KL(ψ(φ(x2

i )), x
2
i )
)

(8.1)
where λ > 0 weights the two data �tting terms and KL(, ) is the Kullbach-Leibler
divergence. This choice is motivated by the fact that the Wasserstein metric operates
on probability distributions.

Next, we evaluate the performances of our method on grayscale images normal-
ized as histograms. Images are o�ering a nice testbed because of their dimensionality
and because large datasets are frequently available in computer vision. We also op-
erate our method for text mining in Section 8.4.

8.3 Empirical Validation

The

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

section A.2.4

framework of our approach as shown in Fig 8.1 consists of an encoder φ and
a decoder ψ organized as a cascade. The encoder produces the representation of
input images h = φ(x). The architecture used for the embedding and the recon-
struction consists in convolutional layers with ReLU activations, plus dense layers.
In this section, we only consider grayscale images, that are normalized to represent
probability distributions. Hence each image is depicted as an histogram. In order to
normalize the decoder reconstruction we use a softmax activation for the last layer.

All the datasets considered are handwritten data and hence holds an inherent
sparsity. In our case, we cannot promote the output sparsity through a convex L1
regularization because the softmax outputs only positive values and forces the sum
of the output to be 1. Instead, we apply a `pp pseudo -norm regularization with
p = 1/2 on the reconstructed image, which promotes sparse output and allows a
sharper reconstruction of the images [Gasso 2009].

8.3.0.1 Numerical precision and computational performance

The true and predicted values for the Wasserstein distances are given in Fig. 8.2.
We can see that we reach a good precision with a test MSE of 0.4 and a relative
MSE of 2e-3. The correlation is of 0.996 and the quantiles show that we have a very
small uncertainty with only a slight bias for large values where only a small number
of samples is available. This results show that a good approximation of the W 2

2 can
be performed by our approach (≈1e-3 relative error).

Now we investigate the ability of our approach to compute W 2
2 e�ciently. To

this end we compute the average speed of Wasserstein distance computation on test
dataset to estimate the number of W 2

2 computations per second in the Table of
Fig. 8.2. Note that there are 2 ways to compute the W 2

2 with our approach denoted
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 MSE:0.40, RelMSE:0.002, Corr:0.996
Model prediction
Exact prediction
Mean pred
10th percentile
90th precentile

Method W 2
2 /sec

LP network �ow (1 CPU) 192
DWE Indep. (1 CPU) 3 633
DWE Pairwise (1 CPU) 213 384
DWE Indep. (GPU) 233 981
DWE Pairwise (GPU) 10 477 901

Figure 8.2: Prediction performance on the MNISTdataset. (Figure) The test per-
formances are as follows: MSE=0.40, Relative MSE=0.002 and Correlation=0.996.
(Table) Computational performance of W 2

2 and DWE given as average number of
W 2

2 computation per seconds for di�erent con�gurations.

as Indep. and Pairwise. This comes from the fact that our W 2
2 computation is

basically a squared Euclidean norm in the embedding space. The �rst computation
measures the time to compute the W 2

2 between independent samples by projecting
both in the embedding and computing their distance. The second computation
aims at computing all the pairwise W 2

2 between two sets of samples and this time
one only needs to project the samples once and compute all the pairwise distances,
making it more e�cient. Note that the second approach would be the one used in
a retrieval problem where one would just embed the query and then compute the
distance to all, or a selection of, the dataset to �nd a Wasserstein nearest neighbor
for instance. The speed up achieved by our method is very impressive even on
CPU with speed up of x18 and x1000 respectively for Indep. and Pairwise. But
the GPU allows an even larger speed up of respectively x1000 and x500 000 with
respect to a state-of-the-art C compiled Network Flow LP solver of the POT Toolbox
[Flamary 2017, Bonneel 2011]. Of course this speed-up comes at the price of a time-
consuming learning phase, which makes our method better suited for mining large
scale datasets and online applications.

Lastly, we discuss the role of the decoder, not only as a matter of interpreting
the results, but rather as a regulizer. We train our DWE on MNIST with and
without the decoder and compares the learning curves of the MSE on the validation
set. In Figure 8.3, DWE achieves a lower MSE with the decoder, which enforces
the use of a decoder into our framework.

8.3.0.2 Numerical precision and cross dataset comparison

The numerical performances of the learned models on each of the Quick-Draw classes
is reported in the diagonal of Table 8.1. Those classes are much more di�cult than
MNIST because they have not been curated and contain a very large variance due
to numerous un�nished doodles. An interesting comparison is the cross comparison
between datasets where we use the embedding learned on one dataset to compute the
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Figure 8.3: MSE of the validation test given the number of epochs (DWE).

Network Data CAT CRAB FACE MNIST
CAT 1.195 1.654 2.069 12.131
CRAB 2.621 0.815 3.158 10.881
FACE 5.025 5.445 1.254 50.526
MNIST 9.118 6.698 4.68 0.412

Table 8.1: Cross performance between the DWE embedding learned on each
datasets. On each row, we observe the MSE of a given dataset obtained on the
deep network learned on the four datasets (Cat, Crab, Faces and MNIST).

W 2
2 on another. The cross performances is given in Table 8.1 and shows that while

there is de�nitively a loss in accuracy of the prediction, this loss is limited between
the classes from the Quick-Draw dataset that have all a large diversity. Performance
loss across Quick-Draw and MNIST dataset is larger because the latter is highly
structured and one needs to have a representative dataset to generalize well which
is not the case with MNIST .

8.3.1 Wasserstein data mining in the embedded space

Once the functions φ and ψ have been learned, several data mining tasks can be
operated in the Wasserstein space. We discuss here the potential applications of
our computational scheme and its wide range of applications on problems where the
Wasserstein distance plays an important role. Though our method is not an exact
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Figure 8.4: Barycenter estimation on each class of the MNIST dataset for squared
Euclidean distance (L2) and Wasserstein Deep Learning (DWE).

Wasserstein estimator, we empirically show in the numerical experiments that it
performs very well and competes favorably with other classical computation strate-
gies.

8.3.1.1 Wasserstein barycenters [Agueh 2011, Cuturi 2014, Bonneel 2016].

Barycenters in Wasserstein space were �rst discussed by Agueh and Carlier [Agueh 2011].
Designed through an analogy with barycenters in a Euclidean space, the Wasserstein
barycenters of a family of measures are de�ned as minimizers of a weighted sum of
squared Wasserstein distances. In our framework, barycenters can be obtained as

x̄ = arg min
x

∑
i

αiW (x, xi) ≈ ψ(
∑
i

αiφ(xi)), (8.2)

where xi are the data samples and the weights αi obeys the following constraints:∑
i αi = 1 and αi > 0. Note that when we have only two samples, the barycenter

corresponds to a Wasserstein interpolation between the two distributions with α =

[1− t, t] and 0 ≤ t ≤ 1 [Santambrogio 2014]. When the weights are uniform and the
whole data collection is considered, the barycenter is the Wasserstein population
mean, also known as Fréchet mean [Bigot 2017].

Next we evaluate our embedding on the task of computing Wasserstein Barycen-
ters for each class of the MNIST dataset. We take 1000 samples per class from
the test dataset and compute their uniform weight Wasserstein Barycenter using
Eq. 8.2. The resulting barycenters and their Euclidean means are reported in
Fig. 8.4. Note that not only those barycenters are sensitive but also preserve
most of their sharpness which is a problem that occurs for regularized barycen-
ters [Solomon 2015b, Benamou 2015]. The computation of those barycenters is also
very e�cient since it requires only 20ms per barycenter (for 1000 samples) and its
complexity scales linearly with the number of samples.

We �rst compute the Wasserstein interpolation between four samples of each
datasets in Figure 8.5. Note that these interpolation might not be optimal w.r.t.
the objects but we clearly see a continuous displacement of mass that is characteristic
of optimal transport. This leads to surprising artefacts for example when the eye of
a face fuse with the border while the nose turns into an eye. Also note that there is
no reason for a Wasserstein barycenter to be a realistic sample.
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Figure 8.5: Interpolation between four samples of each datasets using DWE. (left)
cat dataset, (center) Crab dataset (right) Face dataset.

Next we qualitatively evaluate the subspace learned by DWE by comparing the
Wasserstein interpolation of our approach with the true Wasserstein interpolation
estimated by solving the OT linear program and by using regularized OT with Breg-
man projections [Benamou 2015]. The interpolation results for all those methods
and the Euclidean interpolation are available in Fig. 8.6. The LP solver takes a
long time (20 sec/interp) and leads to a �noisy� interpolation as already explained
in [Cuturi 2016]. The regularized Wasserstein barycenter is obtained more rapidly
(4 sec/interp) but is also very smooth at the risk of loosing some details, despite
choosing a small regularization that prevents numerical problems. Our reconstruc-
tion also looses some details due to the Auto-Encoder error but it is very fast and
can be done in real time (4 ms/interp).

8.3.1.2 Principal Geodesic Analysis in Wasserstein space [Seguy 2015,
Bigot 2017].

PGA, or Principal Geodesic Analysis, has �rst been introduced by Fletcher et

al. [Fletcher 2004]. It can be seen as a generalization of PCA on general Rie-
mannian manifolds. Its goal is to �nd a set of directions, called geodesic directions
or principal geodesics, that best encode the statistical variability of the data. It is
possible to de�ne PGA by making an analogy with PCA. Let xi ∈ Rn be a set of el-
ements, the classical PCA amounts to i) �nd x the mean of the data and subtract it
to all the samples ii) build recursively a subspace Vk = span(v1, · · · , vk) by solving
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Figure 8.6: Comparison of the interpolation with L2 Euclidean distance (top), LP
Wasserstein interpolation (top middle) regularized Wasserstein Barycenter (down
middle) and DWE (down).

the following maximization problem:

v1 = argmax|v|=1

n∑
i=1

(v.xi)
2, vk = argmax|v|=1

n∑
i=1

(v.xi)
2 +

k−1∑
j=1

(vj .xi)
2

 .

(8.3)
Fletcher gives a generalization of this problem for complete geodesic spaces by ex-
tending three important concepts: variance as the expected value of the squared
Riemannian distance from mean, Geodesic subspaces as a portion of the manifold
generated by principal directions, and a projection operator onto that geodesic
submanifold. The space of probability distribution equipped with the Wasser-
stein metric (Pp(X), W 2

2 (X)) de�nes a geodesic space with a Riemannian struc-
ture [Santambrogio 2014], and an application of PGA is then an appealing tool for
analyzing distributional data. However, as noted in [Seguy 2015, Bigot 2017], a
direct application of Fletcher's original algorithm is intractable because Pp(X) is
in�nite dimensional and there is no analytical expression for the exponential or log-
arithmic maps allowing to travel to and from the corresponding Wasserstein tangent
space. We propose a novel PGA approximation as the following procedure: i) �nd x
the approximate Fréchet mean of the data as x = 1

N

∑N
i φ(xi) and subtract it to all

the samples ii) build recursively a subspace Vk = span(v1, · · · , vk) in the embedding
space (vi being of the dimension of the embedded space) by solving the following
maximization problem:

v1 = argmax|v|=1

n∑
i=1

(v.φ(xi))
2, vk = argmax|v|=1

n∑
i=1

(v.φ(xi))
2 +

k−1∑
j=1

(vj .φ(xi))
2

 .

(8.4)
which is strictly equivalent to perform PCA in the embedded space. Any reconstruc-
tion from the corresponding subspace to the original space is conducted through
ψ. We report in Figure 8.7 the Principal Component Analysis (L2) and Principal
Geodesic Analysis (DWE) for 3 classes of the MNIST dataset. We can see that
using Wasserstein to encode the displacement of mass leads to more semantic and
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Class 0 Class 1 Class 4
L2 DWE L2 DWE L2 DWE

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Figure 8.7: Principal Geodesic Analysis for classes 0,1 and 4 from the
MNIST dataset for squared Euclidean distance (L2) and Wasserstein Deep Learn-
ing (DWE). For each class and method we show the variation from the barycenter
along one of the �rst 3 principal modes of variation.

nonlinear subspaces such as rotation/width of the stroke and global sizes of the dig-
its. This is well known and has been illustrated in [Seguy 2015]. Nevertheless our
method allows for estimating the principal component even in large scale datasets
and our reconstruction seems to be more detailed compared to [Seguy 2015] maybe
because our approach can use a very large number of samples for subspace estima-
tion.

8.3.1.3 Other possible methods.

As a matter of facts, several other methods that operate on distributions can ben-
e�t from our approximation scheme. Most of those methods are the transposition
of their Euclidian counterparts in the embedding space. Among them, clustering
methods, such as Wasserstein k-means [Cuturi 2014], are readily adaptable to our
framework. Recent works have also highlighted the success of using Wasserstein
distance in dictionary learning [Rolet 2016] or archetypal Analysis [Wu 2017]. Few
works have adressed the question of discriminating distributions by taking into ac-
count that the instances are discrete distributions by itself. [Rakotomamonjy 2018]
have studied the potential of using Wasserstein distance as a dissimilarity function
for empirical distributions. They mostly rely on the previous works of Balcan et

al. demonstrates that for some learning problem, by using the appropriate diver-
gence function, one can achieve low error linear decision functions with high proba-
bility [Balcan 2008]. The approach they advocate for empirical distributions is the
following: they �rst compute exact Wassertstein distances between their training
distributions and some �xed distributions that they denote as patterns, and then in
a second time, they use such distances as a set of features to learn a classi�er. Our
method allows a fast computation of pairwise Wasserstein distance which increases
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Figure 8.8: Illustration of WMD.Words are embedded withWord2Vec. The distance
between the two sentences is the minimum cumulative distance that all words from
the �rst sentence need to travel to be transformed into the target sentence.

the speed up for Wasserstein based nearest neighbor classi�ers.

8.4 Future work: Wasserstein for Text Mining

Wasserstein distance also denoted as Earth Mover's Distance has been widely adopted
for Text mining tasks, ranging from information retrieval, to establish a cross-lingual
connection without any supervision [Kusner 2015, Kumar 2017, Balikas 2018]. In
particular, [Kusner 2015] proposed Wasserstein distance as a similarity metric for
Text document, leveraging on the word embedding used. They denote their method
as WMD, standing for Word Mover's Distance. It achieved state-of-the-art error
rates in nearest neighbor classi�cation for document. WMD de�nes the distance
between two documents as the Wasserstein distance between the empirical distri-
butions induced by the words from one text to another. The distance between two
words is generally de�ned as the euclidian distance between their embeddings. This
holds sense, as the embedding in used in the NLP community, has semantic prop-
erties given the euclidian distance [Kusner 2015]. Huang et al. extend WMD with
supervision [Huang 2016b]: they learn the usefulness of speci�c words for the classi-
�cation task. Figure 8.8 illustrates the semantic similarities highlighted by the use
of WMD.

When it comes to the use of Wasserstein distance on text, we identify two con-
tributions:

• information retrieval: Despite the e�ciency of WMD to naturally measure
semantic similarities between texts, it scales with a cubic complexity reguard-
ing the dimensionality of the documents. Thus, our �rst goal is to approximate
at best the Wasserstein distance, plus with a lightened architecture that speeds
up the computation of pairwise Wasserstein.

• Text Generation given Wasserstein: Similarly as other similarity metrics,
WMD cannot create new sentences based only on the distance given another
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document 1. In that aim, we propose to extend DWE to text using a sequence
to sequence encoder-decoder architecture.

8.4.1 Information Retrieval: Fast computing of WMD at large

scale

If the goal is solely information retrieval, one can consider a bag-of-words archi-
tecture. Indeed, Wasserstein is not considering the structure of the sentence, but
the appearance of the words, independently of their order. To alleviate the lack of
structure, futures works could envisage variants of Gromov Wasserstein distance,
like the recent one proposed in [Vayer 2018]. Unlike Reccurrent networks that takes
naturally in account the position of the words, we could envisage a static architec-
ture taking a bag-of-words as an input. This constraint is highly relevant in the case
one wants to approximate at best the Wasserstein distance for any kind of input:
on two sentences containing the same words but having a di�erent meaning, our
network will output a unique embedding. Thus, a network that would best suit to
measuring Wasserstein is a multi-layer perceptron along the embdeding dimension
that slides along the words. We decompose our architecture into two sub-networks:
a �rst network ψ encodes each word in the sentence into a vector. Those vectors
are then sum together and embedded into a second network τ that will output the
embedding that mimics the Wasserstein distance. It is important to use the addition
as the pooling function to preserve the information and the occurences. If using the
average pooling, then the document �Stop ! Stop ! Stop� will have the same internal
representation as �Stop ! �. The global function reads:

minψ,τ ||
(
τ(
∑
i

ψ(x1,i))− τ(
∑
j

ψ(x2,j))
)2
−W 2

2 (x1, x2)||2 (8.5)

We provide further details about our architecture in Fig. 8.9.

1cf Section 11.2
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Figure 8.9: Two sentences x1 and x2 are sampled from the data distribution. Each of
their words are encoded by a �rst network ψ whose input size matches the dimension
of the words' embedding. ψ outputs a vector for each word which are then summed
together into a unique vector. This vector is �nally encoded by a second network τ
thats computes the embedding that mimics the Wasserstein distance.

8.4.1.1 Empirical Evaluation:

We evaluate our approach on two databases:

• the Twitterdataset: a set of tweets labeled with sentiments positive. The
words are embedded with Word2Vec.

• the Visual Question Answeringdataset: we retrieve the questions from the
SQUAD dataset. The words are embedded with the Glove representation.

Thanks to the two datasets, we can validate our method independently from the
words' representations. We present our ongoing results in Table 8.2. Preliminary
results are encouraging, but they need major improvements: up to now, we obtain
better results when always predicting the mean Wasserstein distance computed on
the training set.

In the next section, we investigate whether reccurent architectures handles better
our Wasserstein based embedding for text. Thanks to Reccurent Units, we will be
able to promote a decoder and use it for text generation given Wasserstein distance.
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Twitter Visual Question Answering
MSE 0.084 72.15
rMSE 0.012 0.061

Table 8.2: Mean Squared Error (MSE) and Relative Mean Squared Error obtained
on an independent test set, respectively on the Twitterand Visual Question An-
sweringdataset. We can see that DWE is actually learning the exact Wasserstein
distance. Although, those results should be leveraged by the RMSE obtained when
predicting the mean Wasserstein distance between two random sentences of Twit-
ter (0.012) and Visual Question Answering (0.036).

8.4.2 Text Generation given Wasserstein Distance

The main limitation of our previous architecture is that it cannot decode the sen-
tence, which limits the use of our model to data mining applications, as done in
Section 8.3.1. We formulate our model given Eq. 8.6. Similarly as in DWE, a
�rst recurrent network ψ takes as input the ordered sequences of words' embedding,
and outputs in its last state the embedding vector. Such embedding should mimic
the Wasserstein distance using instead the Euclidian Distance. Finally, we init the
hidden state of the decoder τ given the embedding state to generate our input sen-
tence. Note that we do not use a mean squared loss to train the decoder τ , but the
categorical cross-entropy loss l.

minψ,τ ||
(
ψ(x1)−ψ(x2)

)2
−W2(x1, x2) ||2 +l

(
ψ(τ(x1)), x1

)
+l
(
ψ(τ(x2)), x2

)
(8.6)

Our requirements are two folds. First, we need a decoder that can reconstruct
the sentence given the last state of the encoder. Secondly, the last state of the en-
coder should embed Wasserstein distance given the Euclidian distance, as initially
proposed in DWE for CNNs. Using a decoder would help us to compute opti-
mizations e�ciently in the Wasserstein space. Figure 8.10 shows a diagram of our
encoder-decoder network. Note that the design of our architecture takes its inspi-
ration from the recurrent networks combined with greedy search originally used to
sentence translation.

So far, we have not investigated thoroughly the potential of our DWE RNN
model on texts. Our �rst results are encouraging. Without incorporating the de-
coder into the training, we obtain major improvements of the Wasserstein embedding
compared to our previous formulation. On the Visual Question Answering dataset,
we obtain a MSE of 15.9 on the test set.

8.4.2.1 Wasserstein based Adversarial example for NLP

Next, we describe the potential of our DWE RNN model. Adding a decoder to
our model helps to generate instances sampled from the unknown ground-truth
distribution, given a certain criterion in the Wasserstein space. For example, we



8.4. Future work: Wasserstein for Text Mining 91

S
T
A
R
T

E
N
D

s
p
e
a
k
s to

th
e

m
e
d
ia in

Il
li
n
o
is

O
b
a
m
a

s
p
e
a
k
s to

th
e

m
e
d
ia in

Il
li
n
o
is

O
b
a
m
a

s
p
e
a
k
s to

th
e

m
e
d
ia in

Il
li
n
o
is

O
b
a
m
a

:

:

S
T
A
R
T

E
N
D

p
re
s
id
e
n
t

g
re
e
ts

th
e

p
re
s
s in

C
h
ic
a
g
o

T
h
e

:

:

p
re
s
id
e
n
t

g
re
e
ts

th
e

p
re
s
s in

C
h
ic
a
g
o

T
h
e

p
re
s
id
e
n
t

g
re
e
ts

th
e

p
re
s
s in

C
h
ic
a
g
o

T
h
e

x  :
1

x  :
2

Figure 8.10: Deep Reccurent Wasserstein Embedding for Text
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describe our attempts to generate adversarial examples on NLP classi�cation tasks.
We detail existing work on creating adversarial tasks for text in Section III.

Indeed, Wasserstein is well indicated to measure similarity between sentences or
documents. Thus, if we want to generate an adversarial sample, as close as possible
to the source sentence, we can use Wasserstein as a good metric for the distortion
between the true and fake sentences.

Given a source sentence x, and a classi�cation system f , generating our adver-
sarial sentence to get f mistaken reads:

x̃ = arg min W2(x, x̃) s.t l(f(x)) 6= l(f(x̃)) (8.7)

In the previous formulation, one needs to be able to compute the gradient to
perform optimization scheme, such as L-BFGS [Szegedy 2013]. However, our sen-
tences lie in discrete space, so computing the gradient is intractable. Moreover, one
can imagine an approximate optimization scheme, where we optimize x̃ given only
the Wasserstein distance. But, the Wasserstein distance considers the sentences as
a bag-of-words, unlike f which generally required an ordered sequence. A possi-
ble solution may be to alleviate the formulation by transposing the search into our
embedding space.

x̃ = τ(y) where y = arg min ||ψ(x)− y||2 s.t l(f(x)) 6= l(f(τ(y))) (8.8)

8.5 Conclusion

In this chapter, we presented a computational approximation of the Wasserstein
distance suitable for large scale data mining tasks. Our method �nds an embedding
of the samples in a space where the Euclidean distance emulates the behavior of the
Wasserstein distance. Thanks to this embedding, numerous data analysis tasks can
be conducted at a very low computational price. We forecast that this strategy can
help in generalizing the use of Wasserstein distance in numerous applications.

However, while our method is very appealing in practice it still raises a few
questions about the theoretical guarantees and approximation quality.

First, embedding Wasserstein space in normed metric space is still a theoreti-
cal and open questions [Matou²ek 2011]. Most of the theoretical guarantees were
obtained withW1. In the simple case whereX = R, there exists an isometric embed-
ding with L1 between two absolutely continuous (wrt. the Lebesgue measure) prob-
ability measures µ and ν given by their by their cumulative distribution functions
Fµ and Fν , i.e. W1(µ, ν) =

∫
R |Fµ(x) − Fν(x)|dx. This fact has been exploited in

the computation of sliced Wasserstein distance [Bonneel 2015, Kolouri 2016c]. Con-
versely, there is no known isometric embedding for pointsets in [n]k = {1, 2, . . . , n}k,
i.e. regularly sampled grids in Rk, but best known distortions are between O(k log n)

and Ω(k +
√

log n) [Charikar 2002, Indyk 2003, Khot 2006]. Regarding W2, recent
results [Andoni 2016] have shown there does not exist meaningful embedding over
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R3 with constant approximation. Their results show notably that an embedding
of pointsets of size n into L1 must incur a distortion of O(

√
log n). Regarding our

choice of W 2
2 , there does not exist embeddability results up to our knowledge, but

we show that, for a population of locally concentrated measures, a good approxi-
mation can be obtained with our technique. Moreover it is di�cult to foresee from
a given network architecture if it is su�ciently (or too much) complex for �nding a
successful embedding. It can be conjectured that it is dependent on the complexity
of the data at hand and also the locality of the manifold where the data live in.

Second, the theoretical existence results on such Wasserstein embedding with
constant distortion are still lacking. Future works should consider these questions
as well as applications of our approximation strategy on a wider range of ground
loss and data mining tasks. Also, the transferability of one database to another to
diminish the computational burden of computing Wasserstein distances on numerous
pairs for the learning process should be studied.
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9.1 Introduction

• We guide this work towards selecting prototypes representative of the ground
truth distribution, thanks to Wasserstein distances
• We demonstrate the weak submodularity of selecting Wasserstein prototypes
• We propose approximations using SINKHORN and IPOT that can fasten the
selection of Wasserstein prototypes.
• We investigate the applications of Wasserstein prototypes in active learning.

X Every dataset and parameters used to conduct our experiments are available in

the dataset section A.1 and the hyperparameter

mduco�e/Greedy_Wass Proofs are available in Appendix A.3.4

Summary

In this Chapter, we demonstrate how to select examples representative of their
distribution by using Wasserstein distances. Such examples, that we denote Wasser-
stein prototypes are highly relevant to illustrate the modes of their underlying
complex distribution and improve the interpretability of the data. One of the
main advantages of our method is that it is parameter-free unlike MMD prototypes
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[Huszár 2012], and owns proof of convergence thanks to the well-known convergence
results about submodular functions. We are able to select prototypes for any given
sparsity level. Due to the cost for computing the exact Wasserstein distance, we
also propose two approximations of varying computational cost using the entropic
regularization or the inexact proximal point method.

Wasserstein prototypes are highly interesting for a wide set of tasks ranging
from visualization (facilitate human understanding and reasoning), interpretabil-
ity of classi�cation decision, active learning and generative modeling. Numerical
experiments supporting these idea are conducted on simulated and real datasets
and demonstrate the bene�ts of our methods. In particular, we illustrate several
use-cases with empirical experiments on MNIST .

9.2 Approximate Submodularity for Wasserstein distance

Wasserstein prototypes are samples from a known empirical distribution, that are the
most informative, considering the Wasserstein distance. Formally Wasserstein pro-
totypes consists in minimizing the Wasserstein distance between the �xed empirical
distribution, and Wasserstein prototypes, knowing that they are part of a dataset.
The main di�erence between Wasserstein prototypes and Wasserstein barycenters
is that prototypes are part of a discrete and known-beforehand distribution unlike
barycenters. Hence, prototypes can be used for visualizing and analyzing the prop-
erties of the dataset unlike barycenters, that, while looking similar to the datasets,
may not be representative of the statistics of the data. Moreover, in high dimensional
space, barycenters may su�er from bluriness, and unrepresent biases [Agueh 2011].
Note that the main di�erence between our problem and Wasserstein Core-Set is
that we �x our support, unlike Wasserstein Core-Set which creates barycenters.

De�nition 9.2.1: Wasserstein prototypes

Formally given an empirical distribution P, a �xed size of data to label, K;
and a subset U ⊂ P, we denote Wasserstein prototypes a subset S∗K ⊂ P that
minimizes Eq. 9.1.

min
S∗K⊂P, |S

∗
K |=K

Wp(S∗K ,U) (9.1)

The optimization subroutine we de�ne in 9.1, is generally not tractable as it is
combinatorial given P. The desiderata for solving Equation 9.1 naturally implies
the notion of submodularity. Submodular functions are widely used in the approx-
imation of combinatorial problem as their optimization may be e�ciently solved
through greedy search. Although, maximizing a submodular function under car-
dinality constraints is NP-hard, when the function is non-negative and monotone,
[Nemhauser 1978, Kim 2016] demonstrated that a naive greedy selection algorithm
provides the best approximation to the optimal solution: the greedy solution is
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guaranteed not to di�er from the optimal strategy by more than a �xed constant,
roughly 63%.

De�nition 9.2.2: Submodularity

If s : 2X 7→ R is a non-negative, monotone, submodular function and is
used to select greedily the set of prototypes Sn, such that | Sn |= n then, if we
denote by S∗ the optimal solution, the following upper bound holds:

s(Sn) ≥ (1− 1

e
) max
|S∗|≤n

s(S∗) (9.2)

Unfortunaltely, submodularity is a strong property that generally does not hold
in prototypical selection [Huszár 2012]. Indeed, Bayesian prototypical selection is
known to satisfy a weaker condition of convergence denoted as weak submodularity.

De�nition 9.2.3: Weak Submodularity

If s : 2X 7→ R is a weakly submodular function with constant ε and is used
to select greedily the set of prototypes Sn, such that | Sn |= n then, if we
denote by S the optimal solution, the following upper bound holds:

s(Sn) ≥ (1− 1

e
) max
|S|≤n

s(S)− nε (9.3)

The property of Wasserstein prototypes lies in between submodularity and weak
submodularity. Indeed, for Wasserstein prototypes, we do not have an additional
factor nε in our upper bound, that is linearly growing given the number of pro-
totypes, but a constant additional factor. However, unlike MMD, our objective
function is not strictly monotone, as required in the previous de�nition. Thus we
cannot obtain an upper bound given the maximum over all possible combinations
of size less than k, but for size k only. In fact we provide our own de�nition of
approximate submodularity for Wasserstein prototypes, in Th. 2.1. All the proofs
are available in Appendix A.3.4.

Theorem 2.1: Approximate Submodularity

Suppose (Ω, ρ) is a metric space and suppose P is the uniform distribution based
on a countable set P ⊆ Ω. We denote respectively by Sep(P) and Diam(P)

the minimum and maximum distance between two distinct samples in P. If we
greedily select the set of prototypes Sn, such that | Sn |= n then, if we denote
by S∗n the optimal solution of cardinality n, the following upper bounds holds:

W (P,Sn) ≤ (1− 1

e
)W (P,S∗n) +

1

e
Diam(P) (9.4)
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Although it is interesting to underline the approximate submodularity of Wasser-
stein prototypes, it does not provide strong theoretical guarantees on the quality
of the Wasserstein prototypes found with greedy search. Indeed, due to the lin-
ear decay of Wasserstein given the number of samples, we know that few random
samples are enough to make this upper bound not tight anymore. However, in
practice, greedy selection over weakly submodular functions remains highly e�cient
[Krause 2010]. Moreover, such submodularity properties opens up interesting direc-
tions for future research, especially for sparse dictionary selection using Wasserstein
distance [Rolet 2016].

9.2.1 Greedy selection of Prototypes

The scalability of Wasserstein prototypesis limited by the computational cost to
evaluate the exact Wasserstein distance which is of order O(n3log(n)) for discrete
probability distribution with a support of size n. A �rst solution to overcome the
lack of scalability of Wasserstein prototypesis to rely on entropic regularization,
also known as the Sinkhorn algorithm. Thanks to the power iterative method of the
Sinkhorn algorithm, relying only on matrix multiplications, computing Wasserstein
prototypeswith Sinkhorn is highly scalable and may also be embedded on gpus.
We evaluate empirically the validity of such approximation for Wasserstein proto-
typesin Section 9.3. However, we have no theoretical motivations to use entropic
regularization, nor any theoretical assessment.

Nevertheless, as also highlighted in Section 7.3, the regularization scaling is a
major hyperparameter that will a�ect either the quality of our prototypes or the
computational speed up of using Sinkhorn distance rather than the exact Wasser-
stein. Another solution is to rely on IPOT. IPOT is promising due to its similarity
with the Sinkhorn distance, it can speed up the computations. Moreover, its reg-
ularization parameter is far less controversial than the Sinkhorn distance. Instead
of waiting for convergence, we limit the maximum number of iterations by an hy-
perprameter and �x the number of inner iterations to one ( in accordance with the
empirical analysis provided in [Xie 2018]).
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9.3 Empirical Validation

We

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

illustrate on three toy datasets (samples from a circle, samples from 3 univariate

gaussians, samples from 3 gaussians with di�erent ratio) the prototypes selected by
our three options, in Figures 9.1 , 9.2, 9.3:
• Optimal prototypes: Prototypes given the exact Wasserstein, computed using
a Mixed Integer Programming framework
• EMD prototypes: Prototypes selected with greedy search given the exact
Wasserstein
• SINKHORN prototypes: Prototypes selected with greedy search given the
Sinkhorn distance (ε = 1e− 3, iter = 10)

• IPOT prototypes: Prototypes selected with greedy search given the IPOT al-
gorithm (ε = 1e− 3, iter = 10)

For example, in Figure 9.1, the optimal prototypes are spread uniformly along
the inner circle of the distribution. We select greedily the samples given the ones
that minimizes their Wasserstein distance with the set of samples in Figure 9.1(b)
(EMD prototypes). As expected, Wasserstein prototypes are highly similar to the
MIP prototypes. When it comes to both our approximations, Sinkhorn prototypes
(Figure 9.1(c)) and IPOT prototypes (Figure 9.1(d)), they underperform EMD pro-
totypes, in particular, the Sinkhorn prototypes are mostly spread out of the distri-
bution.

(a) Optimal Pro-

totypes

(b) EMD Proto-

types

(c) Sinkhorn Pro-

totypes

(d) IPOT Proto-

types

Figure 9.1: Circle: Visualization of prototypes selected given di�erent criteration
with p=2
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(a) Optimal Prototypes (b) EMD Prototypes (c) Sinkhorn Prototypes

(d) IPOT Prototypes (e) Evolution of the Wasserstein distance

Figure 9.2: 3 univariate Gaussians: Visualization of prototypes selected given dif-
ferent criteration with p=2
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(a) Optimal Prototypes (b) EMD Prototypes (c) Sinkhorn Prototypes

(d) IPOT Prototypes (e) Evolution of the Wasserstein distance

Figure 9.3: 3 Gaussians with di�erent ratio: Visualization of prototypes selected
given di�erent criteration with p=2

We also proceed on higher dimensional dataset: we conduct numerical experi-
ments on MNIST in Figure 9.4. Although computing the optimal prototypes was
not tractable, we added another method MMD prototypes, which adds greedily
samples that minimize their MMD score with the distribution. We use tSNE to
plot the prototypes selected by our methods and evaluate the evolution of Wasser-
stein distances along the sequence of prototypes. While IPOT prototypes appear
promising, as their evaluation in Figure 9.4(e) remains close to EMD prototypes, on
the contrary both SINKHORN and MMD prototypes perform worse than a random
selection.
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(a) EMD Prototypes (b) MMD Prototypes (c) Sinkhorn Prototypes

(d) IPOT Prototypes (e) Evolution of the Wasserstein distance

Figure 9.4: 3 Gaussians with di�erent ratio: Visualization of prototypes selected
given di�erent criteration with p=2

The usage of Wasserstein prototypes can be dedicated to several machine learn-
ing tasks. Among others, we suggest future explorations for active learning. Indeed,
selecting wasserstein prototypes may promote more diverse queries, as also hilighted
in Section 5.2.

9.4 Active Learning

The previous Part has highlighted the needs for increasing the diversity when query-
ing batches of unlabelled samples in an active learning context. While both KL
divergence and MMD have been investigated as potential solutions for batch active
learning [Wei 2015, Wang 2015]; to our knowledge, it has never been the case for
Wasserstein distance. However Wasserstein distance holds many advantages in an
active learning context. Indeed, Wasserstein can be applied to distributions with
non-overlapping supports and has good out-of-sample performance. Moreover, it is
robust to discrete distributions without the need to resort to kernel estimators, and
is parameter-free, unlike MMD [Muandet 2017]. Nevertheless, we have described
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in Section 5.2 how Wasserstein may help in upper bounding the approximate risk

over a classi�cation task 7.3.3. Considering Wasserstein prototypes will help to get
closer to the empirical risk, as we will diminish the radius of the Wasserstein ball.
This encourage the usage of Wasserstein prototypes as a post-processing step in an
active learning heuristic, in order to cover at best the groundtruh distribution.

We have integrated Wasserstein prototypes into our active learning heuristic
BalNet . If our goal is to label k unlabelled samples, our method will consist
in pre-selecting k*M (M being an hyperparameter) potential candidates given the
active learning criterion itself, and then selecting k Wasserstein prototypes among
the previous pool. Preliminary experiments conducted on MNIST in Figure 9.5
indicate that the usage of Wasserstein prototypes speeds up the convergence of
BalNet.
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Figure 9.5: Comparison of BalNet[Duco�e 2016c] with (�) and without (�) using
Wasserstein prototypes as a post processing step to select the queries (with p=2
for the Wasserstein distance). We measure the test accuracy on MNIST trained on
LeNet5 given the number of annotations.

9.5 Conclusion

We presented Wasserstein prototypes, a framework to help give insights on complex
data distribution, thanks to Wasserstein distances. We demonstrated the weak sub-
modularity of selecting Wasserstein prototypes and develop heuristics to fasten the
computation of Wasserstein prototypes, using either SINKHORN or IPOT. So far
we have evaluated Wasserstein prototypes under a speci�c setting which is when we
sample the prototypes from the distribution on which we measure the Wasserstein
distance: S ⊂ U . However, we can also operate on non-overlapping support, as
long as it makes sense to represent their samples into a shared space and compute
the distance between them. Indeed, the approximate submodularity of Wasserstein
prototypes holds also in this setting. By selecting generated prototypes, we can
measure their Wasserstein distance along the training and test set. This score pro-
vides a glimpse into the over�tting of a generator. Nevertheless, we investigate the
applications of Wasserstein prototypes in active learning.
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Conclusion

In summary, we studied new applications of Wasserstein distance to machine learn-
ing. In particular, we empirically demonstrated how we could approximate pairwise
Wasserstein distances on distributions sampled from a low dimensional manifold.
To do this, we successfully use Siamese Neural Network. From our framework re-
sults in great opportunities in data mining and text mining tasks. Among the
possible applications, we plan to analyze the generation of adversarial attacks based
on Wasserstein. Second, we study an innovative direction for the Wasserstein dis-
tance with the selection of a subset representative of an empirical distribution. To
our knowledge, our work is the �rst to rely on Wasserstein to generate prototypes.
For our future work, we hope to further explore the properties of our Wasserstein
prototypes and their e�ectiveness in active learning.
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11.1 Motivation

As in many other �elds of data analysis, NLP has been strongly impacted by the
recent advances in Machine Learning, more particularly with the emergence of Deep
Learning techniques. For example, deep networks have been embedded in various
NLP tasks, ranging from machine comprehension to authorship classi�cation, VQA
or sentiment analysis [Yu 2018, Duco�e 2016a, Antol 2015, Glorot 2011]. These
techniques outperform state-of-the-art approaches on a wide range of NLP tasks,
and so they have been quickly and intensively used in industrial systems. Such
systems rely on end-to-end training on massive amounts of data, making few prior
assumptions about linguistic structure and focusing on statistically frequent pat-
terns. Thus, they somehow step away from computational linguistics as they learn
implicit linguistic information automatically without aiming at explaining or even
exhibiting classic linguistic structures underlying the decision. Lately, some works
have focused on understanding the black box decisions and the linguistic patterns
on which depends the network's decisions. We describe those works in Section 11.2.
Indeed, understanding the �aws of deep learning in NLP is a signi�cant task, as Text
is one of the most intuitive ways to establish communication protocols between com-
puters and humans. However, if such systems are biased and miscommunicate, not
only there is a chance to create some frustration, but also we can jeopardize the
users. We illustrate a naive use case of deep network's failures in Fig 11.1.
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Figure 11.1: Adversarial Questions for state-of-the-art VQA systems
[Ribeiro 2018b]. The authors paraphrase the questions which highly impacts the
quality of the answer.

We dedicate this chapter to new machine learning and linguistic analysis to
highlight some linguistic observables learned by deep neural networks, in particular
CNNs. Highlighting such linguistic patterns hold several goals:

• If we understand the type of linguistic information relevant for learning a
speci�c task, NLP datasets and annotations may bene�t from it and contain
less bias.

• We can optimize the network's architecture and words embedding

• We can improve our evaluation pipeline

• We can provide new observations tools to linguistic experts to analyze their
corpora.

In the next section, we describe recent advances towards understanding deep
networks for NLP tasks. As we focus our analysis on text classi�cation, we will
mainly present CNNs for NLP tasks.

11.2 Litterature

11.2.1 CNNs for Text classi�cation

CNNs are widely used in the computer vision community for a broad panel of tasks:
ranging from image classi�cation, object detection to semantic segmentation. It is
a bottom-up approach where we applied an input image, stacked layers of convolu-
tions, non-linearities, and sub-sampling.

Encouraged by the success for vision tasks, researchers applied CNNs to text-
related problems [Kalchbrenner 2014, Kim 2014]. The use of CNNs for sentence
modeling traces back to [Collobert 2008]. Collobert adapted CNNs for various NLP
problems including Part-of-Speech tagging, chunking, Named Entity Recognition
and semantic labeling. CNNs for NLP work as an analogy between an image and a
text representation. Indeed each word is embedded in vector representation. Then
several words build a matrix (concatenation of the vectors). If Recurrent Neural
Networks (mostly GRU and LSTM ) are known to perform well on a broad range
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of tasks for text, recent comparisons have con�rmed the advantage of CNNs over
RNNs when the task at hand is mostly a keyphrase recognition task [Yin 2017].

In Textual Mining, we aim at highlighting linguistics patterns to analyze their
contrast: speci�cities and similarities in a corpus [Feldman, R., and J. Sanger 2007,
L. Lebart, A. Salem and L. Berry 1998]. It mostly relies on frequential based meth-
ods such as z-scoring. However, such existing methods have so far encountered
di�culties in underlining more challenging linguistic knowledge, which has yet been
empirically observed, for instance syntactical motifs [Mellet 2009a]. In that con-
text, supervised classi�cation, especially CNNs, may be exploited for corpus analy-
sis. Indeed, CNN learns parameters automatically to cluster similar instances and
drive away examples from di�erent categories. Eventually, their prediction relies
on features which inferred speci�cities and similarities in a corpus. Projecting such
features in the word embedding will reveal important spots and may automatize
the discovery of new linguistic structure as the previously cited, syntactical mo-
tifs. Moreover, CNNs hold other advantages for semantic analysis. They are static
architectures that, according to speci�c settings are more robust to vanishing gra-
dient, and thus can also model long-term dependency in a sentence [Dauphin 2017,
Wen 2017, Adel 2017]. Such a property may help to detect structures relying on
di�erent parts of a sentence.

11.2.2 Visualization of Deep network

All previous works converged to a shared assessment: both CNNs and RNNs provide
relevant, but di�erent kinds of information for text classi�cation. However, though
several works have studied linguistic structures inherent in RNNs, to our knowledge,
none of them have focused on CNNs. The �rst line of research has extensively studied
the interpretability of word embeddings and their semantic representations. When
it comes to deep architectures, [Karpathy 2015] used LSTMs on character level
language as a testbed. They demonstrate the existence of long-range dependencies
on real word data. Their analysis is based on gate activation statistics and is thus
global. On another side, [Li 2015] provided new visualization tools for recurrent
models. They use decoders, t-SNE, and �rst derivative saliency, to shed light on
how neural models work.

Although the usage of RNNs is more common, there are various visualization
tools for CNNs analysis, inspired by the computer vision �eld. Such works may
help us to highlight the linguistic features learned by a CNN. One can either train a
decoder network or use backpropagation on the input instance to highlight its most
relevant features. While those methods may hold accurate information in their input
recovery, they have two main drawbacks: i) they are computationally expensive:
the �rst method requires training a model for each latent representation, and the
second relies on backpropagation for each submitted sentence. ii) they are highly
hyperparameter dependent and may need some �ne tuning depending on the task
at hand. On the other hand, Deconvolution Networks, proposed by [Zeiler 2014],
provide an o�-the-shelf method to project a feature map in the input space. It
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consists of inverting each convolutional layer iteratively, back to the input space.
The inverse of a discrete convolution is computationally challenging. In response,
a coarse approximation may be employed which consists of inverting channels and
�lter weights in a convolutional layer and then transposing their kernel matrix. More
details of the deconvolution heuristic are provided in Section 12. Deconvolution
holds several advantages. First, it induces minimal computational requirements
compared to previous visualization methods. Also, it has been used with success
for semantic segmentation on images: [Noh 2015] demonstrated the e�ciency of
deconvolution networks to predict segmentation masks to identify pixel-wise class
labels. Thus deconvolution can localize meaningful structure in the input space.

11.2.3 Model Agnostic Explanation

Another line of works consists in explaining the decision, independently from the
nature of the model itself. Such practices are denoted as Model Agnostic Expla-
nation. For example, LIME [Ribeiro 2016] is a local approximation of a classi�er's
prediction that approximates the decision boundary around a sample by a hyper-
plane. Thanks to this choice of approximation, a greedy search can relatively well
select the features that contribute the most to the prediction. LIME is a particular
case of local approximation with a linear function. Linear functions hold two main
advantages: when zooming enough, we can assume that the decision boundary is
locally a linear separator, plus it allows to capture features of relative importance
easily with greedy search, thanks to the induced submodularity. However, the fea-
tures highlighted are representative of the local approximation, nor of the model
itself. Moreover, a local explanation can be hardly extended to other sentences and
does not provide rule of thumbs of how to combine the features to explain the deci-
sion. To mitigate such limitations, Ribeiro et al. have developed anchor explanations
[Ribeiro 2018a]: �if-then� rules that are su�cient to explain the decision. The main
advantage of anchors is that they apply when the conditions of the rule are met.
Moreover, they explain the mechanism involved in the prediction. Listing all the
possible anchors is intractable, but it is possible to look for short anchors (anchors
with few items) but applicable to a broad set of sentences.

11.2.4 Adversarial example for NLP

While we have highlighted in Section 4, the potential bene�ts of adversarial exam-
ples in active learning, their outcome are mainly for vision applications. When it
comes to NLP, generating adversarial examples is already a key challenge. Indeed, as
opposed to images, or sound, where the features lie in a continuous space, words are
discrete entities. Eventually, it is more di�cult to measure and build perturbations
into a discrete domain, while also preserving the semantics of the original sentence.
Working on the word level and the embeddings used in our applications are not the
sole part of the issue. Indeed, character level systems do su�er from adversarial ex-
amples: Ebrahimi et al. [Ebrahimi 2017], among others, show that networks trained
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with characters are overly sensitive to keyboard typos, or unnatural dots or blank
space in the sentence.

When it comes to word level system, adversarial perturbations have been de-
signed for a broad panel of tasks, including spam �ltering, fake news detection, or
sentiment analysis, and also on both CNNs and RNNs. Kuleshov et al. designed
adversarial attacks by iteratively replacing words by synonyms until it occurs a
change of prediction [Kuleshov 2018]. Recently, Ribeiro et al. proposed a new sys-
tem, called SEARS, to develop adversarial examples for NLP with logical rules to
generate them [Ribeiro 2018b]. While previous works introduced ways to measure
semantic similarity, none of them could detect unnatural sentence, nor create new
sentences. SEARS use neural machine translation to generate paraphrase and com-
bine it with semantic similarity. SEARS generates similar rules for a various type
of applications, such as VQA and machine comprehension.
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Deconvolution for Text Analysis
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12.1 Introduction

• We present our extension on deconvolution on CNN for text. Based on the
patterns highlight by the deconvolution, we empirically demonstrate that CNNs
encode complex semantic patterns based on co-ocurrences.
• We analyze the deconvolution saliency on three languages: English, French and
Latin

X Every dataset and parameters used to conduct our experiments are available in

the dataset section A.1 and the hyperparameter section A.2.5

lvanni/hyperdeep

Summary

We intend to exhibit classic linguistic patterns which are exploited implicitly
in deep architectures to lead to higher performances. Do neural networks make
use of co-occurrences and other standard features, considered in traditional Textual
Data Analysis (TDA)? Do they also rely on some complementary linguistic structure
which is invisible to traditional techniques? If so, projecting neural networks features
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back onto the input space would highlight new linguistic structures and would lead
to improving the analysis of a corpus and a better understanding of where the power
of the Deep Learning techniques comes.

We hypothesize that Deep Learning is sensitive to the linguistic units on which
the computation of the critical statistical sentences is based as well as to phenomena
other than frequency and complex linguistic observables. The TDA has more di�-
culty taking such elements into account � such as linguistic patterns [Mellet 2009b].
Our contribution confronts TDA and Convolutional Neural Networks for text anal-
ysis. We take advantage of deconvolution networks for image analysis to present a
new perspective on text analysis to the linguistic community that we call deconvo-
lution saliency. Our deconvolution saliency corresponds to the sum over the word
embedding of the deconvolution projection of a given feature map. Such score pro-
vides a heat-map of words in a sentence that highlights the pattern relevant to the
classi�cation decision. We examine z-scoring and deconvolution saliency in three
languages: English, French, and Latin. For all our datasets, deconvolution saliency
highlights new linguistic observables, invisible with z-scoring alone.

12.2 CNNs for Text Classi�cation

We propose a deep neural model to capture linguistics patterns in text. This model
is based on Convolutional Neural Networks with an embedding layer for word rep-
resentations, one convolutional with pooling layer and non-linearities. Finally, we
have two fully-connected layers. The �nal output size corresponds to the number of
classes. The model is trained with cross-entropy with an Adam optimizer. Figure
12.1 shows the global structure of our architecture. The input is a sequence of words
w1, w2...wn and the output contains class probabilities (for text classi�cation).

The embedding is built on top of a Word2Vec architecture; here we consider
a Skip-gram model. This embedding is also �netuned by the model to attain op-
timal text-classi�cation accuracy. Notice that we do not use lemmatization, as in
[Collobert 2008]. Thus the linguistic material which is automatically detected does
not rely on any prior on the part of speech.

In computer vision, we consider images as 2-dimensional isotropic signals. A
text representation may also be considered as a matrix: each word is embedded in a
feature vector, and their concatenation builds a matrix. However, we cannot assume
both dimensions - the sequence of words and their embedding representation - are
isotropic. Thus the �lters of CNNs for text typically di�er from their counterparts
designed for images. Consequently, in a text, the width of the �lter is usually equal
to the dimension of the embedding, as illustrated with the red, yellow, blue and
green �lters in Figure 12.1

Using CNNs hold another advantage in our context: due to the convolution
operators involved, they can be easily parallelized and may also be easily used on
CPU, which is a practical solution for avoiding the use of GPUs at test time.
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Figure 12.1: CNN model

12.3 Deconvolution

Figure 12.2: Deconvolution model

Extending Deconvolution Networks for text is not straightforward. Usually, in
computer vision, the deconvolution is represented by a convolution whose weights
depends on the �lters of the CNN: we invert the weights of the channels and the
�lters and then transpose each kernel matrix. When considering deconvolution
for text, transposing the kernel matrices is not realistic since we are dealing with
nonisotropic dimensions - the word sequences and the �lter dimension. Eventually,
we do not transpose the kernel matrix.

Another drawback regards the dimension of the features map. We denote by
features map; the output of the convolution before applying max pooling. Its shape
is the tuple (# words, # �lters). Because the �lters' width (red, yellow, blue and
green in �g 12.1) matches the embedding dimension, the feature maps cannot contain
this information. To project the feature map in the embedding space, we need to
convolve our feature map with the kernel matrices. In that aim, we upsample
the feature map to obtain a 3-dimensional sample of size (# words, embedding

dimension, # �lters).
To analyze the relevance of a word in a sentence, we only keep one value per
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Z-score Deep Learning
Latin 84% 93%
French 89% 91%
English 90% 97%

Figure 12.3: Prediction task acuray with Z-score and Deep Learning

words which corresponds to the sum along the embedding axis of the output of the
deconvolution. We denote this score as deconvolution saliency.

For the sake of consistency, we sum up our method in Figure 12.2
With this method, we can show a sort of topology of a sequence of words. Even-

tually, every word in a sentence has a unique deconvolution saliency score whose
value is related to the others. In the next section, we analyze the relevance of
deconvolution saliency. We thoroughly demonstrate empirically, that the decon-
volution saliency encodes complex linguistic patterns based on co-occurrences and
possibly also on grammatical and syntaxic analysis.

12.4 Experiments

We

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

section A.2.5

conduct our experiments on three datasets, respectively in English, French and
Latin.

12.5 Z-score Versus Activation-score

Z-score is one of the most used methods in linguistic statistics. It compares the
observed frequency of a word with the frequency expected in the case of a "normal"
distribution. This calculation readily gives, for example, the most speci�c vocabu-
lary of a given author in a contrastive corpus. The highest Z-scores are the most
speci�c words in this case. This is a simple but strong method for analyzing features
of a text. It can also be used to classify word sequences according to the global Z-
score (sum of the scores) in the sequence. The mean accuracy of this method on our
data set is around 87%, which con�rms Z-score is, in fact, meaningful on contrastive
data. On the other hand, most of the time deep learning attains greater than 90%
accuracy in text classi�cation (As shown in Figure 12.3 � a benchmark of our three
datasets detailed in the next subsections 12.5.1,12.5.2,12.5.3). The Z-test can be
approximated by a normal distribution. The score we obtain by the Z-test is the
standard deviation. A low standard deviation indicates that the data points tend
to be close to the mean (the expected value). Over 2 this score means there is less
than 2

This means that the training methods can also learn on their own some of the
linguistic speci�cities useful in distinguishing between classes of text or authors.
We've seen in work on images that this is the role of convolution. It learns an
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abstraction of the data to make classi�cation easier. The question is: what is the
nature of this abstraction on text? We will see now that deep learning detects
words automatically with high Z-score, but this is not the only linguistic structure
identi�ed.

To make the two values comparable, we normalize them with a maximum score
of around +38 and a minimum of −38. This interval gives two thresholds for the
Z-score: over 2 a word is considered as speci�c and over 5 it is strongly distinct (and
the opposite with negative values). For the activation score, it is just a matter of
activation strength.

Figure 12.4: Z-score versus Activation-score

The Figure 12.4 shows us a comparison between Z-score and activation-score on
a sequence extract from our Latin corpora (Livy Book XXIII Chap. 26). Here it
is an example of speci�c word use by Livy1. As we can see, when the Z-score is
the highest there is a sort of activation spike (for example around the word castra).
However, this is not always the case: for example small words as que, ad and et are
also high in Z-score, but they do not activate the network at the same level. We
saw in (reference ****) that deep learning is more sensitive to long words, but we
can see also on Figure 12.4 that words like tenebat, multum or propius are totally
uncorrelated. The Pearson2 correlation coe�cient tells us that in this sequence there
is no correlation between z-score and activation-score (with a Pearson of 0.38). This
example is one of the most correlated examples of our dataset. Thus deep learning
seems to learn more than a simple Z-score.

To understand what the real linguistic marks found by deep learning are (the
convolution layer), we did several tests on di�erent languages, and our model seems

1Titus Livius Patavinus � (64 or 59 BC-AD 12 or 17) � was a Roman historian.
2Pearson correlation coe�cient measures the linear relationship between the two datasets. It

has a value between +1 and −1, where 1 is total positive linear correlation, 0 is no linear correlation,
and −1 is total negative
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to have the same behavior in all of them. We used a French web-platform called
Hyperbase3 to perform all the linguistic statistics tests.

12.5.1 Dataset: English

The �rst dataset we used for our experiments is the well known IMDB Movie re-
view corpus for sentiment classi�cation. It consists of 25,000 reviews labeled by
positive or negative sentiment with around 230,000 words. With the default meth-
ods given by Hyperbase, we can easily show the speci�c vocabulary of each class
(positive/negative), according to the Z-score. There are for example the words too,
bad, no or boring as most indicitive of negative sentiment, and the words and, per-
formance, powerful or best for positive. Is it enough to detect automatically if a
new review is positive or not? Let's see an example excerpted from a review from
December 2017 (not in the training set) on the last American blockbuster:

Quote 12.5.1: English Review

[...] i enjoyed three moments in the �lm in total , and if i am being

honest and the person next to me fell asleep in the middle and started

snoring during the slow space chasescenes . the story failed to draw me in

and entertain me the way [...]

In general, the Z-score is enough to predict the class of this kind of comment.
But in this case, deep learning seems to do better, but why? If we sum all the
Z-scores (for negative and positive), the positive class obtains a greater score than
the negative. The words �lm, and, honest and entertain � with scores 5.38, 12.23, 4
and 2.4 � make this example positive. Deep learning has activated di�erent parts of
this sequence (as we show in bold/red in the example). If we take the sub-sequence
and if i am being honest and, there are two occurrences of and but the �rst one is
followed by if and Hyperbase give us 0.84 for and if as a negative class. This is
far from the 12.23 in the positive. And if we go further, we can do a co-occurrence
analysis on and if on the training set. As we see on Figure 12.5, one of most speci�c
adjectives4 associated with and if is honest. Exactly what we found in our example.

In addition, we have the same behavior with the verb fall. There is asleep next
to it. asleep alone is not really speci�c of negative review (Z-score of 1.13). But
with the word fall, asleep becomes one of the most speci�c (see the co-occurrences
analysis - Figure 12.6).

The activation-score here con�rms that deep learning seems to focus not only
on high Z-score but more complex patterns and maybe detects the lemma or the
part of speech linked to each word. While the embedding is modi�able during the
learning, it is possible that the �nal word vectors share this kind of information. We

3Hyperbase is an online (http://hyperbase.unice.fr) linguistic toolbox, which allows the creation

of databases from a textual corpus and the performing of analysis and calculations such Z-score,

co-occurrences, PCA, K-Means distance, ...
4With Hyperbase we can focus on di�erent part of speech.
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Figure 12.5: co-occurrences analysis of and if showed by Hyperbase. A layer shows
the major co-occurrences for a given word (or lemma or PartOfSpeech). There two
layers of cooccurrences, the �rst one (on top) show the direct co-occurrence and the
second (on bottom) show a second level of co-occurrence. This level is given by the
context of two words (taken together). The colors and the dotted lines are only used
to make it more readable (dotted lines are used for the �rst level). The width of
each line is related to the Z-test score (the bigger the Z-test, the wider the line).

will see now that these observations are still valid for other languages and can even
be generalized between di�erent activation spikes.

12.5.2 Dataset: French

The French dataset consists of political speeches. It is a corpus of 2.5 millions of
words of French Presidents from 1958 (with C. de Gaulle, the �rst President of
the Fifth Republic) to 2018 with the �rst speeches by Macron. In this corpus we
removed Macron's speech from the 31st of December 2017, to use it as a test data
set. In this speech, the deep learning network primarily recognizes E. Macron (the
training task was to be able to predict the correct President). To achieve this task,
the deep learning network seems to succeed in �nding complex patterns speci�c to
E. Macron. For example in this sequence :

Quote 12.5.2: French discourse

[...] notre pays advienne à l'école pour nos enfants, au travail pour l' en-

semble de nos concitoyens pour le climat pour le quotidien de chacune et

chacun d' entre vous . Ces transformations profondes ont commencé et

se poursuivront avec la même force le même rythme la même intensité [...]

The Z-score gives a result statistically closer to de Gaulle than to E. Macron.
The error in the statistical attribution can be explained by a Gaullist phraseology,



122 Chapter 12. Deconvolution for Text Analysis

Figure 12.6: co-occurrences analysis of fall showed by Hyperbase

and the multiplication of linguistic markers strongly indexed with de Gaulle: for
example, de Gaulle had the characteristic of making long and literary sentences
articulated around conjunctions of coordination as in et (Z-score = 28 for de Gaulle,
two occurrences in the excerpt). His speech was also more conceptual than average,
and this resulted in an over-use of the articles de�ned le, la, l�, les) very numerous
in the excerpt(7 occurrences); especially in the feminine singular (la république, la
liberté, la nation, la guerre, etc., here we have la même force, la même intensité.

The best results given by deep learning themselves can surprise the linguist and
match perfectly with what is known about the sociolinguistics of Macron's dynamic
kind of speeches.

The most important activation zone of the excerpt concerns the nominal syntagm
transformations profondes. Taken separately, neither of the phrase's two words are
very Macronian from a statistical point of view (transformations = 1.9 profondes =
2.9). Better: the syntagm itself is not attested in the President's learning corpus (0
occurrences). However, it can be seen that the co-occurrence of transformation and
profondes amount to 4.81 at Macron: so it is not the occurrence of one word alone,
or the other, which is Macronian but the simultaneous appearance of both in the
same window. The second and complementary activation zones of the excerpt thus
concern the two verbs advienne and poursuivront. From a semantic point of view,
the two verbs perfectly conspire, after the phrase transformations profondes, to give
the necessary dynamic to a discourse that advocates change. But it is the verb
tenses (borne by the morphology of the verbs) that appear to be the determining
factor in the analysis. The calculation of the grammatical codes co-occurring with
the word transformations thus indicates that the verbs in the subjunctive and the
verbs in the future (and also the nouns) are the privileged codes for Macron (Figure
12.8).

More precisely the algorithm indicates that, for Macron, when transformation
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Figure 12.7: Deconvolution on E. Macron speech.

is associated with a verb in the subjunctive (here advienne), then there is usually
a verb in the future co-present (here poursuivront). transformations profondes,
advienne to the subjunctive, poursuivront to the future: all these elements together
form a speech promising action. Finally, the graph indicates that transformations
is especially associated with nouns in the President's speeches: in an extraordinary
concentration, the excerpt lists 11 (pays, école, enfants, travail, concitoyens, climat,
quotidien, transformations, force, rythme, intensité).

12.5.3 Dataset: Latin

The last dataset we used is in Latin. We assembled a contrastive corpus of 2 million
words with 22 principle authors writing in classical Latin. As in the French dataset,
the learning task here was to be able to predict each author according to new
sequences of words. The next example is an excerpt of chapter 26 of the 23rd book
of Livy:

Quote 12.5.3: Latin corpus

[...] tutus tenebat se quoad multum ac diu PAD quattuor milia peditum et

quingenti equites in supplementum missi ex PAD sunt. tum refecta tandem spe

castra propius hostem mouit classem que et ipse instrui parari que iubet ad

insulas maritimam que oram tutandam . in ipso impetu mouendarum de [...]

The statistics here identify this sequence with Caesar5 but Livy is not far o�.
As historians, Caesar and Livy share a number of speci�c words: for example tool

5Gaius Julius Caesar, 100 BC - 44 BC, usually called Julius Caesar, was a Roman politician

and general and a notable author of Latin prose.
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Figure 12.8: Main part-of-speech cooccurrences for transformations showed by Hy-
perbase

words like se (re�exive pronoun) or que (a coordinator) and prepositions like in, ad,
ex, of. There are also names like equites (cavalry) or castra (forti�ed camp).

The attribution of the sentence to Caesar can not only rely only on Z-score: que
or in or castra, with di�erences thereof equivalent or inferior to Livy. On the other
hand, the di�erences of se, ex, are greater, as is that of equites. Two very Caesarian
terms undoubtedly make the di�erence iubet (he orders) and milia (thousands).

The greater score of quattuor (four), castra, hostem (the enemy), impetu (the
assault) in Livy are not enough to switch the attribution to this author.

On the other hand, deep learning activates several zones appearing at the be-
ginning of sentences and corresponding to coherent syntactic structures (for Livy)
� Tandem re�exes spe castra propius hostem mouit (then, hope returned, he moved
the camp closer to the �eld of the enemy) � despite the fact that castra in hostem

mouit is attested only by Tacitus6.
There are also in ipso metu (in fear itself), while in followed by metu is counted

one time with Caesar and one time also with Quinte-Curce7.
More complex structures are possibly also detected by deeplearning: the struc-

ture tum + participates Ablative Absolute (tum refecta) is more characteristic of
Livy (Z-score 3.3 with 8 occurrences) than of Caesar (Z-score 1.7 with 3 occurrences),
even if it is even more speci�c of Tacitus (Z-score 4.2 with 10 occurrences).

Finally and more likely, the co-occurrence between castra, hostem and impetu

may have played a major role: Figure 12.9
With Livy, impetu appears as a co-occurrent with the lemmas HOSTIS (Z-score

6Publius (or Gaius) Cornelius Tacitus, 56 BC - 120 BC, was a senator and a historian of the

Roman Empire.
7Quintus Curtius Rufus was a Roman historian, probably of the 1st century, his only known

and only surviving work being "Histories of Alexander the Great"
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Figure 12.9: Speci�c co-occurrences between impetu and castra showed by Hyper-
base.

9.42) and CASTRA (Z-score 6.75), while HOSTIS only has a gap of 3.41 in Caesar
and that CASTRA does not appear in the list of co-occurrents.

For castra, the �rst co-occurent for Livy is HOSTIS (Z-score 22.72), before
CASTRA (Z-score 10.18), AD (Z-score 10.85), IN (Z-score 8.21), IMPETVS (Z-
score 7.35), QUE (Z-score 5.86) ) while in Caesar, IMPETVS does not appear and
the scores of all other lemmas are lower except CASTRA (Z-score 15.15), HOSTIS
(8), AD (10,35), IN (5,17), QUE (4.79).

Thus, all is as it should be if the deep learning network manages to simultane-
ously account for speci�city, phrase structure, and co-occurrence networks. . .

12.6 Conclusion

TDA and deep learning may not be distant continents to each other. This contri-
bution by crossing a statistical approach and neural network allowed us to identify
critical passages and perhaps reasons that could feed our textual treatments. If the
observables that presided over the detection of key passages by the TDA (the lexi-
cal speci�cities) are known and tested, the zones of activation of the deep learning
seem to raise new linguistic observables. Recall that the linguistic matter and the
topology of the passages cannot return to chance: the zones of activations make it
possible to obtain recognition rates of more than 90 % on the French political speech
and 85 % on the corpus of the LASLA ; either rates equivalent to or higher than
the rates obtained by the statistical calculation of the key passages. It remains to
improve the model and to understand all the mathematical and linguistic outcomes.
The �rst improvement that we now propose to implement is the injection of mor-
phosyntactic information into the network to test more complex linguistic patterns
ever.
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13.1 Introduction

• We combine active learning heuristics with human expertise to highlight some
hierarchy among the linguistic patterns learnt during the training of a CNN.

mduco�e/Active_NLP

Summary

Author identi�cation and text genesis have always been a hot topic for the sta-
tistical analysis of textual data community. Recent advances in machine learning
have seen the emergence of machines competing for state-of-the-art Computational
linguistic methods on speci�c natural language processing tasks (part-of-speech tag-
ging, chunking, and parsing, etc.). In particular, Deep Linguistic Architectures are
based on the knowledge of language speci�cities such as grammar or semantic struc-
ture. These models are considered the most competitive thanks to their assumed
ability to capture syntax. However, if those methods have proven their e�ciency,
their underlying mechanisms, both from a theoretical and an empirical analysis
points of view, remains hard both to explicit and to maintain stable, which restricts
their area of applications. Our work is enlightening mechanisms involved in deep
architectures when applied to NLP tasks. Several post training methods have been
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(A)

(B)

(C)(D)

(E)
Figure 13.1: We train a network (B) on a labeled training set (A) made of sentences
extracted from political discourses. When the network has converged , we query new
sentences (D) among a pool of unlabelled samples (C), using DQBC. The queries
are submitted to a human oracle (E) to be analyzed using phraseology techniques.

proposed to underline both semantic and syntactic patterns that have been neces-
sary for the network's prediction [Vanni 2018, Li 2015, Karpathy 2015]. However,
none of them have highlighted any hierarchy of the patterns learnt during the train-
ing. We instead confront the relevance of the sentences chosen by our active strategy
to state-of-the-art phraseology techniques. In future works, we will also extend our
analysis using model agnostic explanations.

13.2 Methodology

Despite the accuracy achieved, the complexity of deep networks on NLP tasks di-
minishes their interpretability. Up to now, few works have addressed what kind
of knowledge deep networks are relying on: syntax, ontology, semantic or another
non-linguistic intuitive information. In this Section, we consider the di�erent type
of information acquired by a network while training on speci�c tasks. We hypothe-
size that deep networks learn linguistic knowledge by step, to converge to their �nal
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state which combines every semantic rule discovered previously. To have a glance at
what kind of information the network is focusing on, we propose to select iteratively
the samples which are the most helping the system to improve its accuracy. How to
build an indicator function of such sentences is done through AL. Active learning
is a particular case of learning when the model restricts its learning knowledge to
a subset of the data and may gather more data in an online fashion: the model
can interactively query new data and then adds them to the current set of training
data. The main reason to be for active learning is the di�culty in gathering anno-
tated data, especially when it requires experts. In our case, we are not considering
ALheuristics to limit human annotations, but as an indicator function of the sen-
tence required to extend the knowledge of a deep network. We illustrate our process
in Figure 13.1.

The text analysis with our machine learning approach proceeds through active
learning stages by selecting new samples at each iteration to be added to the training
set. We compel this selection by a linguistic analysis, driven by linguistic experts,
whose understanding helps to clarify which information is relevant in those queried
sentences.

Our method depends on the active learning heuristics used. However, while many
active learning strategies coexist, none of them is optimal. Although the heuristic
used will introduce some bias, as far as we obtain higher accuracy than random
sampling, the queries hold relevant information for classi�cation. However, since we
are not interested in the accuracy achieved but on the underlying information hold
by the queries, we would rather not use a batch active learning strategy.

13.3 Analysis under the light of Phraseology expertise

In

Every dataset

and parameters

used to

conduct our

experiments

are available

in the dataset

section A.1

and the hyperparameter

section A.2.1

previous works, we proposed an active learning method suitable for deep learning
architectures. It is a query by committee based approach which consists in building
a set of models trained on the same current labeled database and make each instance
vote on the output of queried elements. Eventually, the score of an unlabelled sample
is the disagreement it provokes among the members of the committee. Among such
methods, DQBC[Duco�e 2015] is an active learning method designed to build a
committee of deep architectures with a low computation cost. Our approach is
described in Section 3.

We illustrate our analysis on two French dataset extracted from political dis-
courses of former French president. Our results are obtained by a network made of
two dense layers whose takes as input a Word2Vec embedding:

• De Gaulle / Hollande: This classi�cation tasks is leveraged by the evo-
lution in the presidential discourses during the 80s. Indeed [Maya�re 2012]
have hilighted two main factors. First, the themes, but also the lexicon used
in the discourses, have of course evolved during the Fifth Republic, so as the
presidential discourse style. Moreover media coverage, which used to rely on
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radio and is now essentially based on internet and television, impacts also on
the discourses. On this dataset, our networks achieves 85 % of accuracy.

• Hollande / Sarkozy: This dataset is more challenging, �rstly due that both
presidents are contemporary, and also owing to the predominance of the crisis
theme and the economic vocabulary in their discourses [Damon 2012]. Our
network achieves 71% of accuracy.

We analyze three exercpts considered in early and late active learning stages.
The linguistic observes that, in the �rst active learning phase, the selected sentences
are indeed ambiguous for the linguist. For example, we �nd these two excerpts:

Quote 13.3.1: De Gaulle

C'est cela que les évènements m'ont amené à représenter à travers toutes les
tempêtes . . .

Quote 13.3.2: Hollande

Je transmettrai ma charge o�cielle à celui que vous aurez élu pour l'assumer
après moi . . .

In these two examples Quotes 1, and 2, one can foresee a contradictory linguistic
characterization between the lexical level and the grammatical level. The lexical
composition would be rather Gaullist with a typical vocabulary �tempête�, �êtes�,
�évènements�, �assumer �, �charge o�cielle� The grammatical structure is rather
associated to Hollande with the use of the �rst person (�m�, �je�, �ma�, �moi�) and
a verbal tone (lots of verbs). In the end, at this stage, the analyst may therefore
not be more sure of the paternity of these excerpts than the algorithm.

In the later active learning phase, illustrated by Quote 3, the selected sentences
are gradually re�ned and disambiguated. After three active learning selection, for
example, the algorithm remains indeterminate on the following excerpt:

Quote 13.3.3: De Gaulle

Cela dit, l'apparition de l'Algérie dans la situation d'un Etat indépendant
coopérant organiquement avec la France . . .

The analyst recognizes without di�culty the phraseology, the lexicon and the
concerns of De Gaulle period (the issue of �Algérie� and �France�, the nominal tone).
However, we may assume that the introductory words �cela� and �dit� scramble the
classi�cation since they do not belong to the phraseology of De Gaulle.
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13.4 Future works: Analysis with Model Agnostic Ex-

planations

Future works will envisage systematic and automatic methods to highlight the in-
formation contained in the queries. The �rst tasks will consist in identifying the
bias of active learning settings using model agnostic explanations: when reaching a
certain accuracy, is the prediction based on the same observations or does it also
depends on the choice of annotations. Eventually, model agnostic explanations, such
as anchors, will help to express the rules given a set of queries.

13.5 Conclusion

Deep architectures have demonstrated a compelling potential for a better sampling
of the target manifold [Bengio 2007] thanks to their expressive power [Bengio 2011].
However, the lack of comprehensive understanding (both on a theoretical or a prac-
tical aspect) of their underlying mechanisms hampers their broader application to
di�cult linguistic tasks. We made a step towards understanding the shared linguis-
tic knowledge entailed in both machine and human analysis processes. Indeed, we
analyzed the ability of deep learning approaches to cross the di�erent levels of text
granularity, vocabulary granularity, and morphosyntactic structure granularity, to
encompass all the linguistic knowledge at once. Furthermore, we shed light on the
persistent intricacy of the predictive process even for relatively simple classi�cation
task from a linguist's point of view.





Chapter 14

Conclusion

We derived existing techniques such as active learning and deconvolution to explain
the decision of CNNs on a text. Although such methods have been thoroughly
asserted on images dataset, extending them to text data was a challenging task.
Indeed, working on Model Explanations for text classi�cation requires the collab-
oration with linguistic experts, unlike natural image classi�cation whom generally
may be explained by any user. Explaining a pattern requires to clearly understand
the data and the information held in a sentence, something that neither a non-native
speaker (whom may have a poor comprehension of the meaning of a sentence itself),
neither a native speaker may provide. Indeed the underlying mechanisms involved
in our cognition when analyzing a sentence is still an open research �eld. Thus we
focus our work in understanding the linguistic information kept by a CNN. We hope
that our contributions will help in optimizing the design of new architectures and
words embedding. Moreover, as a perspective, we would like to pursue future works
in strengthening our visualization with automatic tools.
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Conclusion
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14.1 Perspectives

Before concluding this Ph.D. thesis, we would like to underline how the di�erent
topics covered in this manuscript intertwine and how they bring perspectives that
focus mainly on a better understanding of the mechanisms which are at the heart
of the success of deep learning.

Firstly,ALmethods have been at the core of this thesis, but we have been mainly
focusing on reducing the annotations costs for image classi�cation. Future works
should also focus on its applications on new �elds such as linguistic tasks. Indeed
this would bring a broader view of which active learning criterions are e�cient for
deep networks, independently from the input space. Moreover, this study would
open promising opportunities towards applying active learning for deep networks on
structural data.

Furthermore, AL can be derived to illustrate the learning stage of deep models.
If we thoroughly study the resulting patterns of this scenario, we could underline
unknown learning strategies developed in the training of deep networks.

When it comes to the perspectives that will result from our contributions on
the Wasserstein distance, they are threefold. Of course, we will investigate with
more empirical experiments the impact of Wasserstein prototypes in increasing the
diversity of active learning queries. But we also wish to dedicate their usage into the
evaluation of GANs and transfer learning for deep networks. Indeed, Wasserstein
prototypes may underline new statistics of the input space. On another side, the
approximations of pairwise Wasserstein distance on text may create a new kind of
adversarial attacks (see Section 8.4.2.1). Preventing the �aws underlined by those
attacks will help to increase the robustness of our deep models.

Last but not least, our recent success in deriving adversarial attacks forAL opens
up promising perspectives in the development of new regularizers for active learning
on deep networks. Indeed, recent works on robustness to adversarial attacks derived
networks to threshold the adversarial attacks [Dvijotham 2018]. Combining their
approach with our method could potentially lead to fasten the convergence in terms
of annotations.

14.2 Conclusion

The success of deep networks is well established. However, supervised learning
requires a large amount of labeled data. A highly relevant question is how to gather
this training set. Optimizing its construction and avoiding biases are two main
issues. This Ph.D. thesis contributed to this problematic by focusing on two main
directions:

Firstly, we reduced the size of the training set by using active learning. Active
learning consists in building the training set iteratively. Given a set of unlabeled
examples and a deep network, active learning queries the data to be labeled that
will improve at best the accuracy. Here the main issue is which data should be
labeled to ensure the sparsest training set as possible. Active learning is considered
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to be one of the pillars of machine learning, although it has not been the subject
of further study on one of the greatest successes of machine learning: deep neural
networks. If few algorithms have been interested in the question, it is because we
could not scale existing algorithms to deep networks. As a result, we could not
use active learning methods on deep networks without increasing the computation
time drastically. Our work contributes to new active learning heuristics that scale
for CNNs. In that context, we proposed several methods ranging from adapting
existing active learning algorithms such as query-by-committee, to create inedite
methods that take into account the properties inherent with deep networks. Our
contributions open up promising directions towards using active learning in the
development of academic or industrial applications.

Secondly, another problem remains; the biases in the training set. These bi-
ases are highly relevant as they may alter the predictions of the network, but also
comfort the users in their take of decisions. Our solution is to visualize the data
with a subset of prototypes. One of the main challenges is to decide what kind
of information should be illustrated by those prototypes. With this in mind, we
focused on the Wasserstein distance. The Wasserstein distance is used to measure
the di�erences between the two distributions. In our case, it is the distribution
induced by the learning data, and the one made up of prototypes. Our work also
focused on combining Wasserstein distances and neural networks so to speed up the
computation of Wasserstein distance. Such speed up will help to spread the usage
of Wasserstein into new applications.

In a nutshell, we extend active learning to deep networks. We also design new
tools to improve human understanding of complex data and their predictions, par-
ticularly for linguistic tasks. We hope that our contributions will highlight new
solutions towards a more robust, explainable and less greedy AI.
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A.1 Dataset

Dataset 1.1.1: MNIST

28x28 grayscale images from 10 digits classes. The training and test set
contains respectively 60,000 and 10,000 samples.

Dataset 1.1.2: USPS

16x16 grayscale images from 10 digits classes. The dataset has 7291 train
and 2007 test images.

Dataset 1.1.3: SVHN

32x32 RGB images from 10 digits classes. The images are centered around a
single character (many of the images do contain some distractors at the sides).
The dataset contains 73257 digits for training, and 26032 digits for testing.

Dataset 1.1.4: CIFAR10

32x32 RGB images from 10 object classes (airplane, automobile, bird, cat,
deer, dog, frog, horse, ship, truck), with 6000 images per class. There are
50,000 training images and 10,000 test images.
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Dataset 1.1.5: Quick-Draw

The Google Doodle dataset is a crowd sourced dataset that is freely avail-
able from the web a and contains 50 million drawings. The data has been
collected by asking users to hand draw with a mouse a given object or animal
in less than 20 seconds. This lead to a large number of examples for each class
but also a lot of noise in the sens that people often get stopped before the end
of their drawing .We used the numpy bitmaps format proposed on the quick
draw github account. Those are made of the simpli�ed drawings rendered into
28x28 grayscale images. These images are aligned to the center of the drawing's
bounding box.

ahttps://quickdraw.withgoogle.com/data

Dataset 1.1.6: Shoe-Bag

[Huijser 2017] create the Shoe-Bag dataset of 40,000 train and 14,000 test im-
ages by taking subsets from the Handbags dataset [Zhu 2016] and the Shoes
dataset [Yu 2014]. They contain tiny RGB images of size 28x28.

Dataset 1.1.7: Cats & Dogs

150x150 RGB images of dogs and cats. There are 2000 training images and
2000 testing images sampled from the cats and dogs database which we got
from kaggle.

Dataset 1.1.8: Twitter

We use the set of tweets labeled with sentiments positive, negative, or neutral
[Sanders 2011] (the set is reduced due to the unavailability of some tweets).
We use a word2vec embedding trained on the Google News corpus
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(source: github.com/mkusner/wmd)

Dataset 1.1.9: Visual Question Answering

VQA is a new dataset containing open-ended questions about images. These
questions require an understanding of vision, language and commonsense knowl-
edge to answer.
• 265,016 images (COCO and abstract scenes)
• At least 3 questions (5.4 questions on average) per image
• 10 ground-truth answers per question
• 3 plausible (but likely incorrect) answers per question

We only work on the questions that have been preprocessed with a Glove
embedding at github/anantzoid/VQA-Keras-Visual-Question-Answering
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A.2 Hyperparameters

In order to make our experiments reproducible, we detail here all the hyperparam-
eters used.

A.2.1 Dropout Query-By-Committee

dataset # �lters �lter size pooling size hidden layers Test error

MNIST [20, 20] [(3,3), (3,3)] [(2,2), (2,2)] [200, 200, 50, 10] 1.1
USPS [20, 20] [(3,3), (3,3)] [None, (2,2)] [300, 50, 10] 3.25

Table A.1: Set of hyperparameters for the CNN used respectively for MNISTand USPS

A.2.2 Adversarial Active Learning

Layer Parameters

Conv 6 - (5,5) - ReLU
MaxPooling2D (2,2)

Dropout 0.25
Conv 120 - (3,3) -ReLU

MaxPooling2D (2,2)
Dropout 0.25
Dense 84 - ReLU
Dense 10 - ReLU
Dropout 0.5
Dense 10 - Softmax

Table A.2: LeNet5
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Layer Parameters

Zero Padding (1,1)
Conv 64 - (3,3) - ReLU

MaxPooling2D (2,2)
Dropout 0.25
Conv 120 - (3,3) -ReLU

Zero Padding (1,1)
Conv 128 - (3,3) - ReLU

Zero Padding (1,1)
Conv 256 - (3,3) - ReLU

Zero Padding (1,1)
Conv 256 - (3,3) - ReLU

MaxPooling2D (2,2)
Dropout 0.25
Dense 4096 - ReLU
Dropout 0.5
Dense 10 - Softmax

Table A.3: VGG8

A.2.3 Bayesian Active Learning through Laplace Approximation

A.2.4 Learning Wasserstein embeddings

Architecture for DWE between grayscale images The framework of our
approach consists of an encoder φ and a decoder ψ composed as a cascade. The
encoder produces the representation of input images h = φ(x). The architecture
used for the embedding φ consists in 2 convolutional layers with ReLU activations:
�rst a convolutional layer of 20 �lters with a kernel of size 3 by 3, then a convolu-
tional layer of 5 �lters of size 5 by 5. The convolutional layers are followed by two
linear dense layers respectively of size 100 and the �nal layer of size p = 50. The
architecture for the reconstruction ψ consists in a dense layer of output 100 with
ReLU activation, followed by a dense layer of output 5*784. We reshape the layer
to map the input of a convolutional layer: the output vector is (5,28,28) 3D-tensor.
Eventually, we invert the convolutional layers of φ with two convolutional layers:
�rst a convolutional layer of 20 �lters with ReLU activation and a kernel of size 5 by
5, followed by a second layer with 1 �lter, with a kernel of size 3 by 3. Eventually
the decoder outputs a reconstruction image of shape 28 by 28. In this work, we
only consider grayscale images, that are normalized to represent probability distri-
butions. Hence each image is depicted as an histogram. In order to normalize the
decoder reconstruction we use a softmax activation for the last layer.

CNN for Text Mining The framework of our approach consists of an network φ
that outpouts a vector for each word'embedding. We aggregate the representation
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into a unique vector by summing all the outputs along a sentence. ψ consists in a
dense layer of input size, the dimension of the embedding (=300) and output 100
with ReLU activation and no bias. In a second step we use a network φ whose
output will mimic the Wasserstein distance. φ is made of two denses layers of 100
units with Relu activation. We use Adam and batch size 32.

RNN for Text Mining Our framework is made of a LSTM with 50 units, trained
with Adam and Tanh activation.

A.2.5 Deconvolution for Text Analysis

The neural network is written in python with the library Keras (and Tensor�ow as
backend). The embedding uses a Word2Vec implementation given by the gensim
Library. Here we use the SkipGram model with a window size of 10 words and out-
put vectors of 128 values (embedding dimension). The textual data are tokenized
by a home-made tokensizer (which work on English, Latin and French). The cor-
pus is split into 50 length sequence of words (punctuation is kept) and each word
is converted into a vector of size 128. The �rst layer of our model takes the text
sequence (as word vectors) and applies a weight corresponding to our WordToVec
values. Those weights are still trainable during model training. The second layer is
the convolution, a Conv2D in Keras with 512 �lters of size 3128 (�ltering three words
at a time), with a Relu activation method. Then, there is the Maxpooling (Max-
Pooling2D). (The deconvolution model is identical until here. We replace the rest of
the classi�cation model (Dense) by a transposed convolution (Conv2DTranspose).)
The last layers of the model are Dense layers. One hidden layer of 100 neurons with
a Relu activation and one �nal layer of size equal to the number of classes with
a softmax activation. All experiments in this paper share the same architecture
and the same hyperparameters, and are trained with a cross-entropy method (with
an Adam optimizer) with 90% of the dataset for the training data and 10% for the
validation. All the tests are done with new data not included in the training dataset.
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A.3 Proofs

A.3.1 Adversarial Active Learning

A.3.1.1 Proof of Theorem 6.1

♠ We consider samples from the unit ball from a binary task. The dataset is
centered around the origin We also assume that the task at hand is linearly separable
by a normalized linear classi�er going through the origin. Given i, j the mean of
respectively positive and negative points in X; we can deduce the nearest centroid
classi�er B with unit vector b and bias b0: the bissecting hyperplane separating
at best i and j. Notice that B is not necessarily minimizing the error. However,
necessarily, B predicts i as positive and j as negative.

Since the problem is consistent with linear classi�ers without bias, we denote
by L the set of optimal classi�ers of norm 1 and going through the origin: L =

{W | ∀x ∈ X, y(x)〈w, x〉 > 0}. Also among those classi�ers, we call weak classi�er

W, the classi�er minimizing the error with the largest deviation angle given b,
in accordance with the De�nition 2. Moreover, we denote strong classi�er S, the
classi�er minimizing the error with the smallest deviation angle given b.

Firstly, we demonstrate that what we call the deviation angle (the angle between
a classi�er in L and B) lies in the range [−π

2 ,
π
2 ], as detailed in Lemma 3.1.

Lemma 3.1: Deviation Angle

∀C ∈ L we can express its unit vector c given the unit vector b of the bissecting
angle and a unit vector b⊥c :

c = cos(δc)b + sin(δc)b
⊥

Thus we obtain cos(δc) ≥ 0 which implies that the deviation angle lies in
the range [−π

2 ,
π
2 ].

♣ By linearity any optimal classi�er predicts i as positive and j as negative:
c · i ≥ 0, c · j ≤ 0. Also, since B is the bissecting hyperplane, we can express i,
and j using b and the signed distance to the hyperplane d(·,B). Note that since B
predicts i as positive we have d(i,B) > 0.

j = i− 2d(i,B)b (A.1)

i = j − 2d(j,B)b (A.2)

(A.3)

Thus, for the orthogonal vector b⊥ to b, we have : (i ·b⊥) = (j ·b⊥). Eventually
we can express the dot product c · (i− j), which is positive, using b and b⊥c .
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c · (i− j) = 2d(i,B)c · b (A.4)

= 2d(i,B)(cos(δc)b · b + sin(δc)b
⊥
c · b) (A.5)

= 2d(i,B)cos(δc) (A.6)

Finally, equation A.3.1.1 implies cos(δc) ≥ 0

Weak adversarial attack: We prove it by contradiction. Assume ∃ x s.t ∃ C ∈ L
which wrongly predicts xw. Thus it implies (c · xw)(c · x) < 0 Without loss of
information, we assume that the weak classi�er is the closest boundary to x. Thus
xw = x− (w · x)w.

(c · xw)(c · x) < 0

(c · x)(c · x)− (x ·w)(c ·w)(c · x) < 0

(c · x)2 < [cos(δw)cos(δc) + sin(δw)sin(δc)](x ·w)(c · x)

(c · x)2 < cos(δw − δc)(x ·w)(c · x)

Because W and Cpredict the same label

for x we obtain a necessary condition:

cos(δw − δc) ≥
(c · x)2

(x ·w)(c · x)

cos(δw − δc) ≥
c · x
x ·w

Because we picked w instead of s as w minimizes its distance with the sample
x, then c·x

x·w > 1 which contradicts the previous inequality. Thus any other classi�er
than W will predict the same label for both x, xw. When it comes to W, xw lies on
the boundary, thus it can be assumed to share the same label.

A.3.1.2 Proof of Theorem 6.2

♠ Theorem 6.2 results from the number of successes from a Bernouilli law. If we
assume that the probability of misclassi�cation ofW and S are independent, then we
have probability pk

2 to be able to build a query for an unlabeled sample at step k. In
this case, we will add two samples to the training set instead of one. Consequently,
Theorem 6.2 relies on Lemma 6.1.

Lemma 6.1 Consider a threshold α so that |c·x| ≤ α. Without loss of information,
we assume that the weak classi�er is the closest boundary to x. Thus xw = x− (w ·
x)w.
• Without loss of information we assume (c · x) ≥ 0
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cos(δc)cos(δw)(w · x) ≥ 0

(c · x)− cos(δc)cos(δw)(w · x) ≤ α
(c · x)− (w · c)(w · x) ≤ α

(c · xw) ≤ α
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A.3.2 Bayesian Active Learning through Laplace Approximation

♠ De�nition of the problem: Find a subset B of size k, in a pool of data P such
that ∀ A ⊂ P, B

⋂
A = ∅ B maximizes the following criterion g(·):

g(k;P,A) = arg max
B⊂P, B

⋂
A=∅, |B|=k

f(B;P,A)

f(B;P,A) = Tr(IA∪BI−1
A )

For a sake of clarity, we only consider the Fisher matrices along one layer of
a network, while our proof may be easily extended to any other depth following
the same path of reasoning. We assume that every Fisher matrix is a positive
de�nite matrix. Also, according to the previous work of Martens et al. , we assume
that every Fisher matrix may be decomposed as a kronecker product. Consequently
every factor ψi and τi is a positive de�nite matrix.

IA = diag([ψA,l ⊗ τA,l]Ll=1)

ψA,l = 1
|A|

∑
(xi,yi)∈A

ψi,l

τA,l = 1
|A|

∑
(xi,yi)∈A

τi,l

Due to the properties inherent with the trace and the product of kronecker
factors, our criterion reads:

f(B;P,A) = Tr(ψA∪Bψ
−1
A )Tr(τA∪Bτ

−1
A )

When looking for a �xed size k, |B| = k then we can discard the mean factors,
and our criterion is equivalent to:

f(B;P,A) ≡
( ∑
xi∈A

Tr
(
ψiψ

−1
A
)
+
∑
xj∈B

Tr
(
ψjψ

−1
A
))( ∑

xi∈A
Tr
(
τiτ
−1
A
)
+
∑
xj∈B

Tr
(
τjτ
−1
A
))

It appears intuitive to check whether our objective function is submodular. Sub-
modularity is a diminishing returns property: adding an element to a smaller set
has larger relative e�ect than adding it to a larger set. A key result is that we can
minimize a submodular function in strongly polynomial time []. Thus we can add
the optimal query according to our criterion.

In order to be in accordance with minimising a submodular function, our objec-
tives are:

• minimising instead of maximizing. This is obtained with Eq. A.7

g(k;P,A) = arg min
B⊂P, B

⋂
A=∅, |B|=k

−f(B;P,A) (A.7)



158 Appendix A. Appendix

• our function -f(·) must be decreasing under cardinality constraint. Conse-
quently, it leads that the minimum will be achieved for a subset of size k. This
is obtained in A.3.3

• our function must respect the property of submodular functions. We detail
in A.3.3.1 how to proceed.

A.3.3 Monotony

First, we decompose f(·) into sub-functions.

f(B
⋃
{x};A) = f1(B

⋃
{x};A)f2(B

⋃
{x};A)

f(B
⋃
{x};A) =

(
f1(B;A) + f1({x}; ∅)

)(
f2(B;A) + f2({x}; ∅)

)
f1(B;A) =

∑
i∈A

ψiψ
−1
A +

∑
j∈B

ψjψ
−1
A

f1({x}; ∅) = ψxψ
−1
A

f2(B;A) =
∑
i∈A

τiτ
−1
A +

∑
j∈B

τjτ
−1
A

f2({x}; ∅) = τxτ
−1
A

Because every matrix is, in theory, symmetric, positive, de�nite, conse-
quently their trace are always stricly positive.

f1(B;A) > 0

f1({x}; ∅) > 0

f2(B;A) > 0

f2({x}; ∅) > 0

Adding a new term will thus increase f(·). Finally -f(·) is a stricly negative and
decreasing function.

A.3.3.1 Submodularity

Nextly we demonstrate the submodularity of −f(·). A necessary and su�cient
condition for −f(·) to be submodular is that ∀B ⊂ P and ∀x1, x2 ∈ P\B we have:

f(B ∪ {x1};A) + f(B ∪ {x2};A) ≤ f(B;A) + f(B ∪ {x1, x2};A) (A.8)

♣ Our proof consists into expressing f(B ∪ {x1, x2};A) as a linear expression
f(B;A), f(B ∪ {x1};A), and f(B ∪ {x2};A)
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f(B ∪ {x1, x2};A) =f(B ∪ {x1};A) + f(B ∪ {x2};A)− f(B;A)

+ f1({x1}; ∅)f2({x2}; ∅) + f1({x2}; ∅)f2({x1}; ∅)

Because f1(·; ∅) and f2(·; ∅) are stricly positive functions, Eq. A.8 holds.
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A.3.4 Wasserstein prototypes

♠ De�nition of the problem: Find a subset S of size k, in a pool of data P such
that ∀ U ⊂ P, S minimizes its Wasserstein distance with U :

min
S⊂P, |S|=K

Wp(S,U) (A.9)

Note that equ (A.9) is equivalent to maximizing minus of the Wasserstein dis-
tance: (A.9)≡ (A.10):

max
S⊂P, |S|=K

−Wp(S,U) (A.10)

Given a uniform empirical distribution µ whose supports is de�ned on U ⊂
P. We de�ne the function f(S;U) = Wp(ν, µ) with ν, µ respectively the uniform
empirical distributions along S and U :

∀x ∈ S, ν(x) =
1

|S|

∀x ∈ U , µ(x) =
1

|U|
We propose to approximate this problem by a greedy search: we greedily min-

imize Wp({x1, x2, ..., xn},U) from equ A.9 by adding pseudo sample xi one at a
time.

It appears intuitive to check whether our objective function is submodular. Sub-
modularity is a diminishing returns property: adding an element to a smaller set
has larger relative e�ect than adding it to a larger set. A key result is that greedily
maximising a monotone, submodular function is guaranteed not to di�er from
the optimal strategy by more than a constant factor.

In order to be in accordance with using greedy search for maximising a submod-
ular function, our objectives are:

• greedily maximizing instead of greedily minimizing. This is obtained with
Eq. A.10

• our function must be non-negative. This is obtained in A.3.4.1.

• our function must be monotone. We detail in A.3.4.2 how to proceed.

• our function must respect the property of submodular functions. We detail
in A.3.4.3 how to proceed

Our proof mostly relies on the following inequality that holds for Wasserstein
distance on empirical distributions, like in our case of study.

Theorem 3.1: Upper and lower bounds for Wasserstein []

Suppose (Ω, ρ) is a metric space, and suppose µ and ν are Borel probability
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distributions on Ω with countable support: there exists a countable set P ⊂ Γ

such that µ(P) = ν(P) = 1. Then the following inequality holds:

Sep(P)p
∑
x∈P
|µ(x)−ν(x)| ≤Wp

p(µ, ν) ≤ Diam(P)p
∑
x∈P
| µ(x)−ν(x) | (A.11)

which is equivalent to:

Sep(P)
(∑
x∈P
|µ(x)− ν(x)|

) 1
p ≤Wp(µ, ν) ≤ Diam(P)

(∑
x∈P
| µ(x)− ν(x) |

) 1
p

(A.12)
We denote respectively by Sep(P) and Diam(P) the minimum and maxi-

mum of distances between two samples from P.

Consider S ⊂ P the support of ν, and denote F (S) =
( ∑
x∈P
|µ(x)− ν(x)|

) 1
p .

F (S) can be easily bounded. First we assume ν 6≡ µ so that at least one element

of µ (or reciprocally) is not in the support of ν. Thus ∀S F (S) ≥
(

1
|P|
) 1
p . On the

other side, if µ and ν lies in independent support: S
⋂
U = ∅ then, F is bounded by

2
1
p . Eventually, the inequality of F (S) reads:

( 1

|P|
) 1
p ≤ F (S) ≤ 2

1
p (A.13)

Moreover, we can upper bound the ratio between any subsets given F: ∀ S1,S2 ⊂
P then F (S1)

F (S2) ≤ (2|P|)
1
p .

Our Wasserstein objective f(·) with idd assumption is not necesarrily monotone,
nor submodular. In Proposition 1, we modify our criterion so to make it submodular,
non-negative and monotone. We demonstrate in A.3.4.4 that thanks to our new
objective function, we can guarantee convergence bounds for f(·).

Proposition 1. We consider as our objective function

Gα(S) =
2Diam(P)−Wp(S,U)

|S|α

A.3.4.1 Non-Negative

Consider C(S,U) the distance matrix between samples from S and U and Γ(S,U the
transportation matrix between samples from S and U . For convenience we denote
such matrices respectively by C and Γ. Eventually, we can express Wp(S,U) by:

Wp(S,U) =
∑
i,j

Ci,jΓi,j ≤
∑
i

1

|S|
∗ Ci,j ≤ Diam(P)
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A.3.4.2 Monotone

Here we demonstrate that our function Gα(·) is an increasing function for α posi-
tive but small enough, and solely given the cardinality of the set.

Lemma 3.2: Monotone

∃M ∈ R+ s.t ∀ α ∈ R+ and α ≤M Gα(·) is an increasing function

♣ Our proof consists in de�ning a lower bound to G(S ∪ {x}) that is greater
than an upper bound of G(S).

min
x∈P\S

G(S ∪ {x}) ≥ Diam(P)
2−max

x
F (S ∪ {x})

(|S|+ 1)α

G(S) ≤ 2Diam(P)− Sep(P)F (S)

|S|α

Diam(P)
2−max

x
F (S ∪ {x})

(|S|+ 1)α
≥ 2Diam(P)− Sep(P)F (S)

|S|α

(
1− 1

|S|+ 1

)α ≥ 2− Sep(P)
Diam(P)

(
1
|P|
)p

2− 2
1
p

(
Diam(P)

(
2−max

x
F (S ∪ {x})

))(
(|S|+ 1)α

)
≥
(
2Diam(P)− Sep(P)F (S)

)(
|S|α

)
If ∀ S ⊂ P

(
Diam(P)

(
2 − max

x
F (S ∪ {x})

))(
(|S| + 1)α

)
≥
(
2Diam(P) −

Sep(P)F (S)
)(
|S|α

)
, then we can deduce a su�cient (but not necessary) condition

to ensure the monotony of Gα(·). Eventually the threshold reads:

α ≤ 1

log
(
1− 1

|P|
) log

(2− Sep(P)
Diam(P)( 1

|P|)
1
p

2− 2
1
p

)
(A.14)

Notice that both terms
2− Sep(P)

Diam(P)
( 1
|P| )

1
p

2−2
1
p

and 1− 1
|P| are smaller than 1, thus α is

well de�ned.

A.3.4.3 Submodularity

A necessary and su�cient condition for Gα(·) to be submodular is that ∀S ⊂ P and
∀x1, x2 ∈ P\S we have:

Gα(S ∪ {x1}) +Gα(S ∪ {x2}) ≥ Gα(S) +Gα(S ∪ {x1, x2}) (A.15)
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Lemma 3.3: Submodular

∃M ∈ R+ s.t ∀ α R+ α ≤M Gα(·) is submodular

♣ Our proof consists in de�ning a lower bound to Gα(S ∪ {x1}) +Gα(S ∪ {x2})
that is greater than an upper bound of Gα(S) + Gα(S ∪ {x1, x2}). Consider two
samples {x1, x2} out from the support of ν. Given Theorem 3.1, we obtain the
following inequalities. Without loss of information, we assume F (S∪{x1}) ≥ F (S∪
{x2}).

G(S ∪ {x1}) +G(S ∪ {x2}) ≥ 2Diam(P)
[
2− F (S ∪ {x1})

]
1

(|S|+1)α (A.16)

G(S) +G(S ∪ {x1, x2}) ≤
[
2Diam(P)− Sep(P)min(F (S), F (S ∪ {x}))

](
1
|S|α + 1

(|S|+2)α

)
(A.17)

Nextly, we provide a su�cient condition for the submodularity of Gα(·). Indeed
we design M so that Eq. A.15 holds: A.18 =⇒ 3.3

If Diam(P)(|S|+1)α
[
2−F (S∪{x1})

]
≥
[
2Diam(P)−Sep(P)min(F (S), F (S∪{x}))

]( 1

(|S|)α
)

then we can develop the previous inequality to develop a threshold to assert the
submodular property Gα(·)

(
1− 1

|S|+ 1

)α)
≥

2− Sep(P)
Diam(P)( 1

|P|)
1
p

2− 2
1
p

=⇒ α ≤ 1

log
(
1− 1

|P|
) log

(2− Sep(P)
Diam(P)( 1

|P|)
1
p

2− 2
1
p

)
(A.18)

A.3.4.4 Greedy

Here we provide the convergence bounds towards optimality of f(·) using greedy
search.

Theorem 3.2: Convergence using greedy search

Suppose (Ω, ρ) is a metric space and suppose P is the uniform distribution based
on a countable set X ⊆ Ω. We denote respectively by Sep(X ) and Diam(X )

the minimum and maximum distance between two distinct samples in X . If we
greedily select the set of prototypes An, such that | An |= n then, if we denote
by A∗n the optimal solution of cardinality n, the following upper bounds holds:

W (P,An) ≤ (1− 1

e
)W (P,A∗n) +

1

e
Diam(X ) (A.19)



164 Appendix A. Appendix

♣ Our proof consists in developping the optimal bound that comes with max-
imizing a submodular, monotone function. After selecting n samples, denoting Sn
the set of samples, the following bounds holds:

Gα(Sn) ≥
(
1− 1

e

)
max

S∗ s.t. |S∗|≤n
Gα(S∗)

Because Gα(·) is an increasing function, then |S∗| = n.

2Diam(P)−Wp(S,U)

nα
≥
(
1− 1

e

)2Diam(P)−Wp(S∗,U)

nα

Wp(S,U) ≤
(
1− 1

e

)
Wp(S∗,U) +

2Diam(P)

e
(A.20)
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