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Résumé

Un graphe est un ensemble de sommets (également appelés noeuds), ainsi qu'un ensem-
ble d’arétes (également appelé liens ou arcs) reliant des paires de sommets, les arétes
pouvant étre orientées ou non. Les graphes ont de nombreuses applications dans les
domaines des réseaux sociaux, de l’organisation des données, du traitement automa-
tique du langage naturel, etc. Avec la quantité croissante de données collectées, il est
de plus en plus important de comprendre les structures et les comportements de tres
grands graphes [CXWW14, JLM17, HYL17, AHKT18]. Néanmoins, l'augmentation
rapide de la taille des grands graphes rend 1'étude de tous les graphes de moins en
moins efficace. Ainsi, il existe une demande impérieuse pour des méthodes plus ef-
ficaces pour étudier de grands graphes sans nécessiter la connaissance des graphes
dans leur ensemble. Une méthode prometteuse pour comprendre les comportements
de grands graphes - en particulier dans les cas liés a le flot d'informations au sein du
réseau, telle que la diffusion d’informations virales ou 'adoption de nouveaux pro-
duits - consiste a exploiter les propriétés spécifiques des structures locales, telles que
la taille des grappes ou la présence locale d"un motif spécifique - c’est-a-dire un graphe
donné (généralement petit) [H]] 718, NP12, LLDM09, Fau07]. Un exemple classique
tiré de la théorie des graphes (cas avérés de la conjecture d’Erdos-Hajnal [EH89]) est
que, si un graphe de grande taille ne contient pas de motif spécifique, il doit alors
avoir un ensemble de sommets liés par paires ou non liés, de taille exponentiellement
plus grande que prévue.

Dans cette these, nous aborderons certains aspects de deux questions fondamen-
tales de la théorie des graphes concernant la présence, en abondance ou a peine, d'un
motif donné H dans un grand graphe G:

(a) G peut-il étre partitionné en copies de H ?

(b) Si G ne contient aucune copie de H, quelles sont les propriétés de G ?

Ces questions sont étroitement liées a certaines des conjectures les plus importantes
de la théorie des graphes: les conjectures de Tutte sur les écoulements dans les
graphes et la conjecture d’Erdos-Hajnal susmentionnée.

1



2|

Dans la premiére partie, nous aborderons la question (a) - G peut-il étre parti-
tionné en copies du motif H ? - en présentant d’abord les conjectures des flots de
Tutte et en montrant la connexion intime entre les flot dans les graphes et les décom-
positions de motifs. Nous allons prouver la conjecture de Barat-Thommasen sur les
décompositions de motifs du chapitre 2 et la dépasser dans le cas ot le motif est une
trajectoire des chapitres 3 et 4, incluant la preuve d’une conjecture de Haggkvist et
Kriesell. Nous revenons ensuite pour démontrer certaines propriétés des flot dans les
graphes et un cas particulier de la conjecture de Jaeger-Linial-Payan-Tarsi au chapitre
5.

La deuxiéme partie est consacrée a la question (b) - Si G ne contient aucune copie
du motif H, quelles sont les propriétés de G ? - ot nous commengons avec la con-
jecture d’Erdos-Hajnal sur la non-existence de motifs dans les grands graphes et sa
«dualité» dans les tournois - des graphes o1 chaque paire de sommets a un bord ori-
enté. Nous montrons ensuite au chapitre 6 que la complexité locale d'un tournoi en
dicte la complexité globale, ce qui résout une conjecture de Berger et al. Nous présen-
tons un résultat majeur de Berger et al, caractérisant tous les tournois satisfaisant la
conjecture d’Erdos-Hajnal dans un cas extréme, et étendons ce résultat aux graphes
orientés denses du chapitre 7. Ce résultat supporter une conjecture de Harutyunian
et McDiarmid que la propriété d’Erdos-Hajnal est méme véritable pour les graphes
dirigés en général. Enfin, au chapitre 8, nous présenterons des propriétés plus raf-
finées dans un cas particulier, lorsque le motif H est le triangle orienté.



Chapter 1

Introduction

1.1 Graphs and patterns

A graph is a set of vertices (also called rnodes), together with a set of edges (also called
links or arcs) connecting pairs of vertices, where the edges can be either oriented or
non-oriented. Graphs have numerous applications in the fields of Social Networks,
Data Organization, Natural Language Processing, etc. With the accumulating amount
of data collected, there is a growing interest in understanding the structures and be-
haviors of very large graphs [CXWW14, JLM17, HYL17, AHKT18]. Nevertheless, the
rapid increasing in size of large graphs makes studying the entire graphs becomes
less and less efficient. Thus, there is a compelling demand for more effective methods
to study large graphs without requiring the knowledge of the graphs in whole. One
promising method to understand the behaviors of large graphs — especially in cases
related to the flow of information among the network such as the spread of viral news
or the adoption of new products — is via exploiting specific properties of local struc-
tures, such as the size of clusters or the presence locally of a specific pattern —ie. a
given (usually small) graph [HJJ 718, NP12, LLDM09, Fau07]. A classical example
from Graph Theory (proven cases of the Erd6s-Hajnal conjecture [EH89]) is that if a
large graph does not contain some specific pattern, then it must have a set of vertices
pairwise linked or not linked of size exponentially larger than expected.

In this thesis, we will address some aspects of two fundamental questions in
Graph Theory about the presence, abundantly or scarcely, of a given pattern H in
a large graph G:

(a) Can G be partitioned into copies of H?

(b) If G does not contain any copy of H, which properties does G have?
These questions are closely linked to some of the most important conjectures in Graph

3
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Theory: the Tutte’s flow conjectures on flows in graphs and the Erd6s-Hajnal conjec-
ture mentioned above.

In Part I, we will address Question (a) — Can G be partitioned into copies of pat-
tern H? — by first presenting the Tutte’s flows conjecture and showing the intimate
connection between flows in graphs and pattern-decompositions. We will prove the
Bardt-Thommasen conjecture on pattern-decompositions in Chapter 2, and going be-
yond it in the case the pattern is a path in Chapters 3 and 4, including the proof of
a conjecture of Haggkvist and Kriesell. We then return to prove some properties of
flows in graphs and a special case of Jaeger-Linial-Payan-Tarsi’s conjecture in Chap-
ter 5.

Part II is devoted to Question (b) — If G does not contain any copy of pattern H,
which properties does G have? — where we start with the Erdés-Hajnal conjecture
about the non-existence of patterns in large graphs, and its “dual version” in four-
naments — a graph where every pair of vertices has an oriented edge. We then show
in Chapter 6 that the local complexity of a tournament dictates its global complexity,
solving a conjecture of Berger et al. We then present a major result by Berger et al,
characterizing all tournaments satisfying the Erd¢s-Hajnal conjecture in an extremal
case, and extend that result to dense directed graphs in Chapter 7. This result sup-
ports a conjecture of Harutyunian and McDiarmid that the Erd6s-Hajnal property
even holds for general directed graphs. Finally, in Chapter 8, we will present some
more refined properties in a specific case, when the pattern is the oriented triangle.

1.2 Some notions in Graph Theory

Graphs

A graph G is an ordered pair (V(G), E(G)) where V(G) = {vy,...,v,} is the set of
vertices of G, and E(G) C {vjv; : 1 <i,j < n} is the set of edges of G. The cardinality
of V(G) and E(G) are called the order and size of G, respectively. If the edges of G are
unordered, i.e. v;v; = v;v; for every i,j, then G is an undirected graph. 1f the edges of
G are ordered, i.e. v;v; # v;v;, then G is called a directed graph (or digraph for short).
Edges in directed graphs are usually called directed edges or arcs to distinguish with
edges in undirected graphs. Given an edge ¢ = v;v; in a graph G, v; and v; are called
endpoints of e. We also say that v; and v; are adjacent, and e is incident with each v; and
v;. If e is a directed edge, then v; and v; are the source and target of e, respectively. We
also say that two edges are incident if they are incident to some common vertex.

A graph is finite if the cardinality of V(G) is finite and is infinite otherwise. A loop
is an edge with identical endpoints. A graph is loopless if it does not contain any loop.
A graph G is called simple if it is loopless and every edge does not appear more than
oncein E(G). In a multigraph G, edges and loops may appear more than once in E(G).
Given a directed graph G, the graph obtained from G by removing the direction of all
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edges is called the underlying graph of G. Conversely, a directed graph obtain from an
undirected graph G by adding orientations to all edges is called an orientation of G

Degree of vertices

Given an undirected graph G, the set of edges incident with a vertex v is denoted
by E;(v), and the cardinality of Eg(v) is called the degree of v, denoted by dg(v). A
vertex with degree 0 is called an isolated vertex. The minimum degree and maximum
degree of G are 6(G) := minyey () dc(v) and A(G) := max,cy () dc(v), respectively.

Given a directed graph G, the set of edges going in (resp. going out) a vertex v is
denoted by E (v) (resp. E£ (v)). The indegree and outdegree of v, denoted by d (v) and
dt(v), are the cardinalities of E; (v) and E(v), respectively. A vertex with indegre
(resp. outdegree) 0 is called a source (resp. sink). We similarly have the definition of
minimum/maximum in/out-degree of a vertex in a directed graph. When it is clear
from the context, the subscript G can be omitted.

Subgraphs, walks and connectivity in graphs

A graph H is called a subgraph of another graph G, denoted by H C G, if V(H) C
V(G) and E(H) C E(G). In other words, H is a subgraph of G if H can be obtained
from G by repeatedly removing vertices (together with incident edges) and edges.
We also say that G is a supergraph of H or G contains H. If V(H) = V(G), we say
that H is a spanning subgraph of G. Given a graph G and A C V(G), the subgraph
obtained from G by removing all vertices in V \ A (and their incident edges) is called
the induced subgraph of G on A, denoted by G[A].

A walk in a graph G is a sequence of vertices and edges v, e1,v2, €2, ..., ¢, vy such
that e; = v;_10; for every i. The length of the walk is £. If v; # v; for every i # j, the
walk is called a path. If vy = vy and e; # e; for every i # j, the walk is called a four.
A tour with v; # v; for every i # j < £ — 11is called a cycle. A tour containing every
edge of G exactly once is called an Eulerian tour.

Two vertices u, v of an undirected graph G are k-edge-connected if there are k edge-
disjoint paths connecting 1 and v in G. We say that G is k-edge-connected if every pair of
vertices of G is k-edge-connected. If G is 1-edge-connected, we say that G is connected
for short.

Some special graphs

The following are some special graphs; many of them will serve as patterns in the
following chapters.

* A singleton is a graph with one vertex and no edge.
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A path of length ¢, denoted by Py, is a graph with vertex set {0y, ..., v, } and edge
set {vgv1, V102, ..., Vy_10 }.

A star with ¢ leaves, denoted by Sy, is a graph with vertex set {vg, vy, ..., v/} and
edge set {vov1, Vo0, ..., VUL }.

A cycle (or directed cycle in the case the graph is directed) of length £ is a graph
with vertex set {v1, ..., vy} and edge set {v1v2, V203, ..., V01 }.

A tree is a connected undirected graph not containing any cycle. Paths and stars
are trees. The vertices of a tree with degree 1 are called /eaves.

The complete graph on £ vertices, denoted by Kj is the undirected simple graph
with an edge between every pair of distinct vertices.

A graph G is bipartite if V(G) is the union of two disjoint sets A, B such that
there is no edge between vertices of A and no edge between vertices of B. Trees
are bipartite graphs.

A tournament is a directed graph such that its underlying graph is a complete
graph. A tournament is fransitive if it contains no directed cycle. The transitive
tournament of £ vertices is denoted by T,'. More generally, a digraph is acyclic
if it contains no directed cycle.

o o ) =S

B 8

FIGURE 1.1 - List of special graphs: (a) the singleton, (b) the path of length 4 P, (c) the
star with 5 leaves Ss, (d) the cycle of length 5 Cs, (e) a tree, (f) the complete graph of 5
vertices K5, (g) a bipartite graph, (h) a tournament on 5 vertices, and (i) the transitive
tournament on 5 vertices Ts.

1The usual notation in literature for the transitive tournament on ¢ vertices is TT}.



Some other notions

Two graphs G and H are isomorphic if there is a bijective map ¢ from V(G) to V(H)
such that uv € E(G) if and only if ¢(u)¢(v) € E(H). If G and H are isomorphic, we
can say that H is a copy of G and vice versa. With the definition of isomorphic graphs,
we can extend other notions, such as H is an (induced) subgraph of G if there is an
(induced) subgraph of G which is a copy of H. If G does not contain H as an induced
subgraph, we say that G is H-free.

FIGURE 1.2 — The two figures in the left and right are isomorphic. Both of them are
the cycle of length 5 Cs.

Given a graph G, a set of vertices A C V(G) is called a cligue if there is an edge
between every pair of vertices in A, and is called an independent set (or stable set) if
there is no edge between any pair of vertices in A.

A vertex-coloring (resp. edge-coloring) of a graph G is an assignment a color to each
vertex (resp. edge) of G. If there are two adjacent vertices (resp. incident edges) with
the same color in a vertex-coloring (resp. edge-coloring) of an undirected graph, the
coloring is called improper. It is called proper otherwise.
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Pattern-Decompositions of Large
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Chapter 2

The Barat-Thomassen Conjecture

2.1 The Tutte’s flow conjectures

In Optimization Theory or Operations Research, a flow network is often defined as a
directed graph satisfying the balance property, i.e. for every vertex v (except sources
and sinks) the total flows entering and leaving v are equal. Tutte’s flow conjectures,
however, are concerned with a more general notion of flow, where the balance prop-
erty still holds but is measured on Abelian groups. Since the scope of this thesis is
confined to flows on Z, for some integer p, we will provide a more narrow definition
of flows as follows.

DEFINITION 2.1

Given an integer p, a nowhere-zero p-flow (or p-flow for short) on a directed
graph G is an assignment f of values {1,2,...,p — 1} to the edges of G such that

for each vertex v,
Y. flee= Y f(e) mod p.
ecE*(v) e€E~(v)

An undirected graph G’ admits a p-flow if there is an orientation G of G’ admitting
a p-flow.

Tutte proposed several conjectures about flows in undirected graphs, most notably
the 3-flow Conjecture in 1949 and the 5-flow Conjecture in 1954 (see [Tut54], [Ste76]

The content of this chapter is covered in paper A proof of the bardt—thomassen conjecture, Julien Bens-
mail, Ararat Harutyunyan, Tien-Nam Le, Martin Merker, and Stéphan Thomassé, Journal of Combinatorial
Theory, Series B, 124:39-55, 2017.

11
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and [BM76]). In the rest of Part I, the term graphs is used to mention simple, finite,
and undirected graphs.

CONJECTURE 2.2 Tutte’s 3-flow Conjecture

‘ Every 4-edge-connected graph admits a 3-flow.

CONJECTURE 2.3 Tutte’s 5-flow Conjecture

‘ Every 2-edge-connected graph admits a 5-flow.

The most well-known theorems on p-flows are the following: Seymour [Sey81]
proved that that every 2-edge-connected graph has a 6-flow and Jaeger [Jae79] that
every 4-edge-connected graph has 4-flow. We may easily notice that in all these con-
jectures and theorems, there is a strong correlation between edge-connectivity and the
existence of a p-flow. One reason is that edge-connectivity requires a global connec-
tion among vertices of the graph, and so the more edge-connectivity a graph has, the
easier its flow distributes among regions of the graph in order to achieve the balance
property. One simple example is that a graph G made of two cliques A and B con-
nected by a single edge e. Then G is not 2-edge-connected. No matter the assignment
of value and orientation of edges, the total flow between A and B must be 0 to achieve
the balance property. This implies that the value assigned to e must be 0, violating the
definition of p-flow. Hence, G does not admits a p-flow.

The 3-flow conjecture is known to be notoriously hard. The weak version of
it [Jae79], where 4-edge-connectivity is replaced by any arbitrarily large edge-
connectivity, stood for more than 30 years.

CONJECTURE 2.4 The weak 3-flow conjecture

‘ There exists a fixed integer k such that every k-edge-connected graph has a 3-flow.

2.2 The Barat-Thomassen conjecture

The weak 3-flow conjecture was solved by Thomassen in 2012 [Tho12] who showed
that every 8-edge-connected graph has a 3-flow. His proof revealed a close link be-
tween flows in graph and pattern-decompositions. A decomposition of a graph G is a
set of subgraphs Hj, . .., Hy that partition the edges of G. That is, Ule E(Hy) = E(G)
and E(H;) N E(Hj) = @ for every i,j. When every H; is an isomorphic copy of a
given pattern H, we call the decomposition an H-decomposition. Figure 2.1 shows a
Cs-decomposition of the complete graph Ks.

In his proof, Thomassen [Tho12] showed that the following are equivalent:
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FIGURE 2.1 — A decomposition of a the complete graph Ks into two copies of Cs.

(1) Every 8-edge-connected graph G has a 3-flow;

(2) Every 8-edge-connected graph G of size divisible by 3 has an orientation such
that d* (v) is divisible by 3 for every v.

On the other hands, it is not hard to see that (2) is equivalent to the following state-
ment,

(3) Every 8-edge-connected graph G of size divisible by 3 admits a decomposition
into copies of S3, the star of 3 leaves (note that the condition the size of G divis-
ible by |E(S3)| is obvious and inevitable).

Indeed, suppose that (3) holds. Then for any 8-edge-connected graph G of size divisi-
ble by 3, consider an S3-decomposition of G, and for every copy of Sz in that decompo-
sition, orient its edges out from the center of the star. This implies that G satisfies (2).
The reverse direction is similar. Hence, (1) and (3) are equivalent, i.e., every 8-edge-
connected graph has a 3-flow is equivalent to every 8-edge-connected graph has a
S3-decomposition. Said differently, Thomassen [Tho12] showed that every highly edge-
connected graph G with size divisible by |E(S3)| admits an S3-decomposition. This property
was indeed observed several years before by Barat and Thomassen [BT06] in another
paper about flows in graphs. They conjectured that the property does not only hold
for Sz but for every pattern which is a tree.

DEFINITION 2.5 The Barat-Thomassen property

We say that a pattern H has the Barat-Thomassen Property if there exists an
integer kyy such that every ky-edge-connected graph with size divisible by |E(H)|
has an H-decomposition.

CONJECTURE 2.6 The Barat-Thomassen conjecture, [BT06]

Every tree has the Bardt-Thomassen Property.

When the conjecture was made in 2006, it was only known to hold when the pat-
tern has less than 3 edges. The first non-trivial case was the 3-star Sz [Tho12] that we
mentioned above. In the same paper, Thomassen proved the conjecture for all stars.
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Since then, the Bardt-Thomassen conjecture has attracted growing attention, and it
was verified for different families of trees such as bistars' [BG14, Thol3a], and paths
of a certain length [BMOW16, Tho08a, Tho08b, Thol3b]. Recently, breakthrough re-
sults were obtained by Botler et al. [BMOW17], who proved the conjecture for all
paths, and by Merker [Mer17], who proved the conjecture for all trees of diameter* at
most 4, hence covering some of the results above.

The rest of this chapter is dedicated to provide a proof of the Barat-Thomassen
conjecture.

THEOREM 2.7

H Every tree has the Bardt-Thomassen Property.

2.3 Proof overview

Fix a tree T with m edges as our pattern. The proof contains three steps.

(i) Given a graph G with high edge-connectivity, we first use previous results to
reduce to the case where G is bipartite and one side has all degrees divisible by
m. This is obtained by repeatedly removing a small number of copies of T in G.

(ii) Then we find a decomposition of G into homomorphic copies of T, i.e., overlapping
between vertices in each copy is allowed. However we will find a way to ensure
a low percentage of such bad copies.

(iii) Finally, we swap edges between homomorphic copies to convert them to iso-
morphic copies and complete the proof.

Simplifying G

First, it was shown by Thomassen in [Thol3a], and independently by Barat and Gerb-
ner in [BG14], that it is sufficient to verify the Barat-Thomassen conjecture in the case
G is bipartite.

THEOREM 2.8 [BG14, Thol3a]

Let T be a tree on m edges. The following two statements are equivalent:

(1) There exists a natural number kt such that every kr-edge-connected graph
with size divisible by m has a T-decomposition.

LA bistar is a tree with diameter at most 3.
2The diameter of a graph G is the maximum length of a path in G.
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(2) There exists a natural number k', such that every k'y-edge-connected bipartite
graph with size divisible by m has a T-decomposition.

A corollary of the Barat-Thomassen conjecture for stars [Thol2] is the following
decomposition theorem, which was shown by Thomassen in [Thol3a] and also ap-
plied in [BMOW16] and [Mer17].

THEOREM 2.9 [Thol3a]

Let G be a bipartite graph with partition classes A1 and A, and size divisible
by m. If G is (4A + 6m)-edge-connected, then G can be decomposed into two A-
edge-connected graphs Gy and Gy such that dg,(v) is divisible by m for every v in
A;.

By Theorems 2.8 and 2.9, it is sufficient to prove the Barat-Thomassen conjecture
for bipartite graphs G on vertex classes A and B, where all vertices in A have degree
divisible by m, the size of the pattern T.

Equitable coloring

Since every tree is bipartite, let us call T4 and Tp the vertex classes of the bipartition
of T, and we may assume that T contains a leaf. The T-decompositions we are going
to construct will respect the bipartitions of G and T in the sense that the vertices
corresponding to T4 will lie in A for each copy of T. We say that vertices v € V(G)
and t € V(T) are compatibleifv € Aand t € Ty, orv € Band t € Tp.

We consider a specific kind of edge-coloring of G, that was introduced in [Mer17].
Assuming G is (improperly) edge-colored, we denote by d;(v) the degree of vertex v
in color i. For t € V(T), let Er(t) denote the set of edges incident with t.

DEFINITION 2.10

An edge-coloring ¢ : E(G) — E(T) is called T-equitable, if for any compatible
verticesv € V(G),t € V(T) and j, k € Er(t), we have d;(v) = di(v).

It was shown by Merker [Mer17] that highly edge-connected graphs admit T-
equitable edge-colorings.

THEOREM 2.11 Theorem 3.4 in [Mer17]

For all natural numbers m and L there exists a natural number f(m, L) such
that the following holds: If G is an f(m, L)-edge-connected bipartite graph with
bipartite classes A and B where all vertices in A have degree divisible by m, and T
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is a tree on m edges with bipartite classes T4 and Tg where Ty contains a leaf, then
G admits a T-equitable coloring where the minimum degree in each color is at least
L.

Notice that since we put no constraints on the degrees in B, it is necessary that the
greatest common divisor of the degrees in Tp is 1 if we want to construct a T-equitable
coloring. For this reason we chose the bipartition of T so that T contains a leaf.

If there exists a T-decomposition of a bipartite graph G where all copies of T are
oriented the same way (with respect to the bipartite classes), then this gives rise to
a T-equitable coloring of G. Vice versa, a T-equitable coloring can also be used to
construct a T-decomposition. This was done in [Mer17] for the case that the girth of
G is at least the diameter of T, and also in general for trees of diameter at most 4.

We then use probabilistic methods to show that a T-equitable coloring can be
turned into a T-decomposition whenever the minimum degree in each color is large
enough.

THEOREM 2.12

Let T be a tree on m edges and let G be a bipartite graph admitting a T-equitable
coloring. If the minimum degree in each color is at least 10°°™, then G has a T-
decomposition.

Combined with the previous theorems, Theorem 2.12 completes the proof of the
Bardt-Thomassen conjecture as follows.

Proof of Theorem 2.7: By Theorem 2.8, we may assume that G is bipartite. We show that
every (4f(m,10°°™) 4 6m)-edge-connected bipartite graph has a T-decomposition,
where f is the function given by Theorem 2.11. By Theorem 2.9 we can decompose
G into two spanning f(m, 10°°")-edge-connected graphs G; and G,, such that in one
side of the bipartition of each G; all vertices have degree divisible by m. By Theo-
rem 2.11, we can find a T-equitable coloring of G; in which the minimum degree in
each color is at least 10°°". This coloring can be turned into a T-decomposition by
Theorem 2.12. O

Pseudo-decompositions and the proof of Theorem 2.12

In our proof of Theorem 2.12, a T-decomposition of a graph G is obtained in two steps,
which we describe more formally below.

* In the first step we construct a decomposition of G into so-called pseudo-copies
of T, which are subgraphs that are in some sense homomorphic to T. Such a
decomposition, which we call a T-pseudo-decomposition, can easily be obtained
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from a T-equitable coloring, see also [Merl7]. Instead of choosing any such
decomposition, we use probabilistic methods to find one in which the vast ma-
jority of pseudo-copies at every vertex are isomorphic to T. The details of this
step can be found in Section 2.4.

¢ In the second step, we use these isomorphic copies to repair the non-isomorphic
copies of T by making subgraph switches. While the switching itself is a deter-
ministic operation, we again use probabilistic methods to find a suitable set of
isomorphic copies. This part of the proof is detailed in Section 2.5.

Step 1: Finding a good T-pseudo-decomposition

Let G be a graph with a T-equitable coloring. Recall that E7(t) denotes the set of
edges incident with a vertex t € V(T). Let us denote by N;(v) the set of edges col-
ored i incident with v € V(G). Furthermore, we set Ng () (v) := Ujcg, 1) Ni(v) for
every t € V(T) compatible with v. Since the edge-coloring of G is T-equitable, we
have that [N, ;) ()] is divisible by |Er(t)| for every compatible v € V(G), t € V(T).
Thus, we partition N, (;)(v) into stars of size |Er(t)| that contain each of the colors in
E7(t) exactly once. Let S be the collection of stars we get after having done this for
every v € V(G) and compatible t € V(T). Consider an auxiliary graph Gs whose
vertices are the stars in S, and where two vertices are joined by an edge whenever
the corresponding stars have an edge in common. By construction, each connected
component of Gg is a tree isomorphic to T. For every connected component in Gg,
we take the union of all the stars corresponding to it in G. It is easy to see that this
decomposes G into parts of the same size as T. In fact even more is true: Each part
is isomorphic to a graph obtained from T by identifying vertices. This motivates the
following definition.

DEFINITION 2.13

A graph H is a pseudo-copy of T, if there exists a surjective graph homomorphism
h:V(T) — V(H) that induces a bijection between E(T) and E(H).

In other words, a graph H is a pseudo-copy of T, if it is isomorphic to a multi-
graph obtained from T by identifying vertices and keeping all edges. We also refer to
pseudo-copies of T as pseudo-trees. The term T-pseudo-decomposition denotes a decom-
position where each part is a pseudo-copy of T. Given a T-equitable coloring of G,
the construction above results in a T-pseudo-decomposition of G.

Notice that it might be the case that a graph H can be considered as a pseudo-
copy of T in different ways if there exists more than one homomorphism from T to H
with the required properties. However, we will only consider homomorphisms that
induce the same edge-coloring of H as the given T-equitable coloring. Furthermore,
we only consider pseudo-copies of T in G that respect the bipartition in the sense that
vertices corresponding to T4 always lie in A.
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Let P be a T-pseudo-decomposition of G. For every compatible v € V(G) and
t € V(T), we denote by Np(v|t) the set of pseudo-trees in P in which v is the image
of t. Let dp(v|t) = |[Np(v|t)|. Clearly, for any two different vertices u and v of G, we
have Np(u|t) N Np(v|t) = @. Notice also that

U Np(oft) =P

veG
forevery t € V(T).

So far we have explained how T-pseudo-decompositions can be obtained from a
T-equitable coloring. We denote such a resulting T-pseudo-decomposition P of G by
‘H UZ, where 7 denotes the collection of pseudo-copies that are isomorphic to T and
‘H denotes the collection of the remaining pseudo-copies.

If the minimum degree in each color is large in the T-equitable coloring, then
there are many possibilities at every vertex to decompose its incident edges into stars.
Using probabilistic methods, we find a T-pseudo-decomposition where dy(v|t) <
edz(v|t) for some given ¢ > 0 and every compatible v € V(G), t € V(T). Now
for every non-isomorphic copy H € Ny (v|t), there are many copies isomorphic to T
in Nz(v|t). We will use one of these isomorphic copies to improve the T-pseudo-
decomposition by repairing H. This is done by a subgraph switch operation which
is explained in more detail in Step 2. However, if the trees in Nz (v|t) overlap too
much, then we might not be able to make any switch that improves the T-pseudo-
decomposition. To avoid this, we need to find a large set of isomorphic copies in
Nz(v|t) that pairwise intersect only in v. To measure how much the pseudo-trees in a
T-pseudo-decomposition overlap, we use the following concept called conflict ratio.

DEFINITION 2.14

Let P be a collection of pseudo-copies of T in G, and v € V(G) and t € V(T) be
compatible vertices. The conflict ratio of v with respect to t, denoted by confp (v|t),
is defined by

max,z, [{T € Np(vlt) : u € V(T)}|
dp(o|t)

confp (v|t) :=

Intuitively, confp(v|t) measures the maximum proportion of pseudo-copies
in Np(v|t) in which some fixed vertex u appears. Clearly, we always have
0 < confp(v|t) < 1. If v and t are not compatible, then we set confp(v|t) = 0.
Globally, we define conf(P|t) := max, confp (v|t) and conf(P) := max; conf(P|t).

To ensure that the isomorphic copies in the T-pseudo-decomposition H U Z are
sufficiently spread out, we also require conf(Z) < ¢ for some given § > 0. In Sec-
tion 2.4, we prove that such a T-pseudo-decomposition can always be obtained pro-
vided the minimum degree in each color is large enough.
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LEMMA 2.15

Let T be a tree on m edges and €, § real numbers with 0 < ¢,6 < 1. Let G be
a T-equitably colored bipartite graph where the minimum degree in each color is at
least (10m)'8(e6)~C. Then G admits a T-pseudo-decomposition H U I, where T
denotes the collection of isomorphic copies of T, such that:

(1) for every compatible v € V(G) and t € V(T), we have dy (v|t) < edz(v]t);
(2) conf(Z) <.

Step 2: Repairing non-isomorphic copies

For this part of the proof we label the vertices ty,...,t, of T so that, for every i €
{1,...m}, the subgraph induced by fy, ..., t; is connected. Such an ordering can for
example be obtained by applying a breadth-first search algorithm from some ver-
tex tp of T. We also label the edges of T so that ¢; denotes the edge joining t; with
T[to,...,ti—1] for every i € {1,...m}. To indicate at which place a pseudo-copy H
fails to be isomorphic to T, we introduce the following definitions.

DEFINITION 2.16

Let H be a pseudo-copy of T, and let v; denote the image of t; in H for every i €
{0,...,m}. Fori € {1,...,m}, we say that H is i-good if the vertices vy, ..., v
are pairwise distinct. If H is not i-good, then we say that H is i-bad.

Note that since G does not have multiple edges, every pseudo-copy of T in G is
2-good. Moreover, since G is bipartite, every pseudo-copy of T in G is even 3-good.

The idea is to use isomorphic copies to repair the pseudo-trees that are not iso-
morphic to T. We start by considering all pseudo-trees in H that are 4-bad. For each
such H, we will find an isomorphic copy f(H) in Z such that HU f(H) can be written
as the union of two 5-good pseudo-copies of T, say H; U Hp. We then remove H from
H and f(H) from Z, and add {Hj, H>} to H. The technical definition of this so-called
switch is given below. We use this operation for all 4-bad pseudo-copies of T in H. Let
H' UZ' denote the resulting T-pseudo-decomposition, where Z’ again contains only
isomorphic copies of T and all pseudo-copies in ‘H’ are 4-good. We repeat this step,
this time repairing all 5-bad pseudo-copies in H' by using isomorphic copies in Z’. We
continue like this until we get a T-pseudo-decomposition in which all pseudo-copies
are m-good and thus isomorphic to T.

To make sure that we can perform a switch between H and f(H), we need f(H)
to satisfy certain properties. Let v; denote the image of ¢; in H for j € {0,...,m}
and suppose i is chosen minimal such that H is i-bad. By the choice of our labelling,
there exists i’ € {0,...,i — 1} with tst; € E(T). To ensure that v; is distinct from the
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previous vertices vy, ..., v;_1, we want to choose a different edge corresponding to e;
at vy. Since we take this edge from f(H), we want f(H) to also use the vertex vy as
image of t/. However, this should be the only point of intersection with H to ensure
that both copies will be i-good after the switch.

More precisely, for every edge ¢; € E(T), let T'~ denote the connected component
of T — e; containing t. Let T'* be the subgraph of T induced by E(T) \ E(T"). If H is
a pseudo-copy of T, then we denote the images of T~ and T'* under the homomor-
phism by H'~ and H'*. Now we are ready to define the switching operation.

DEFINITION 2.17

Let ‘H be a collection of pseudo-copies of T in G and i € {1,...,m}. Let t; be the
endpoint of the edge e; that is different from t;. Suppose Hi, Hy € Ny /(v|ty) for
some v € V(G). The i-switch of { Hy, Hy } is defined by

swi({Hy, Ho}) = {H{" UH,",H:" UH}"}.

By making an i-switch between two pseudo-copies H and f(H), their vertices cor-
responding to vy, ..., v, remain unchanged. In particular, if both H and f(H) are
(i — 1)-good, then also both copies in sw;({H, f(H)}) will be (i — 1)-good. Moreover,
if HN f(H) = {vy}, then after the switch both pseudo-trees will be i-good. Notice
that neither of the two new pseudo-trees is necessarily still isomorphic to T. In partic-
ular, the collection of isomorphic copies might shrink with every step of the repairing
process.

If the pseudo-trees in Z overlap too much, we might not be able to find a single
pseudo-tree f(H) in Z with HN f(H) = {vy}. A sufficiently low conflict ratio of Z
ensures that we can find such a function f : H — Z. However, to continue this process
we also need that the remaining collection of isomorphic copies Z \ f(H) has a low
conflict ratio. To this end we use the Local Lemma to prove the following lemma in
Section 2.5.

LEMMA 2.18

Let T be a tree on m edges and ¢, § positive real numbers with e + 6m < % and

em < 1. Let H and H' be collections of pseudo-copies of T in G with conf(H') < &
and dy (v|t) > max{22/¢’,dy (v|t)/e} for each compatiblev € V(G),t € V(T).
For every t € V(T), there exists an injective function f; : H — H' such that

* fi(Ny(v|t)) C Ny (v|t) for every v € V(G) compatible with t,
e HN fi(H) = {v} for every H € Ny (v|t), and

* dy0) (0]t') < Bedqy (v|t') for every compatible v € V(G), t' € V(T).
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By using Lemma 2.18 with #' = Z, we find a collection f () in which the degrees
are low compared to the degrees in Z. Thus, the conflict ratio of the collection of
isomorphic copies only increases by a constant factor after each step of the repairing
process. By choosing € and J sufficiently small, the proof of Theorem 2.12 will follow
from Lemma 2.15 and repeated applications of Lemma 2.18. The details can be found
at the end of Section 2.5.

2.4 Find a good pseudo-decomposition

Given a graph with a T-equitable coloring and large minimum degree in each color,
we construct a T-pseudo-decomposition satisfying the conditions in Lemma 2.15. As
described in Step 1 of Section 2.3, every T-equitable coloring gives rise to several
T-pseudo-decompositions. We form the pseudo-copies of T by grouping the edges
at every vertex randomly into rainbow stars. If the degrees in each color are large
enough, we can ensure that most of the resulting pseudo-trees are isomorphic to T
and also the conflict ratio of the resulting T-pseudo-decomposition is small. The proof
of this is essentially an application of the Local Lemma.

PROPOSITION 2.19 Symmetric Local Lemma

Let Ay, ..., Ay be events in some probability space Q) with P[A;] < p foralli €
{1,...,n}. Suppose that each A; is mutually independent of all but at most d other
events Aj. If 4pd < 1, then P[N}_; A;] > 0.

The bad events in this case are of the form that many copies in Ny (v|t) are either
not isomorphic to T or have a vertex different from v in common. To show that each
event occurs with low probability, we make use of an inequality due to McDiarmid
[McDO02] (see also [MR13]).

PROPOSITION 2.20 McDiarmid’s Inequality (simplified version)

Let X be a non-negative random variable, not identically 0, which is determined by
m independent permutations Iy, ..., I1,,. A choice is the position that a particular
element gets mapped to in a permutation. If there exist d,r > 0 such that

e interchanging two elements in any one permutation can affect X by at most
d, and

e foranys > 0,if X > s then there is a set of at most rs choices whose outcomes
certify that X > s,
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then for any 0 < A < E[X],

2
P||X - E[X]| > A+ 60d rIE[X]] < d¢ SPEX]

A necessary condition to apply the Local Lemma is that each event is mutually
independent of most other events. To make sure that this is the case, we start the
proof by partitioning the edges at each vertex into so-called fans of roughly the same
size. Recall that for v € V(G) and t € V(T), we denote by N;(v) the edges colored i
incident with v in G, and by Er(t) the set of edges incident with ¢ in T.

Proof of Lemma 2.15: Set ¢ = [(10m)?(¢6)3]. For every v € V(G) and color i, we
choose r,; € {0,...,c — 2} such that d;(v) = r,; (mod ¢ — 1). Since the minimum
degree in each color in G is greater than c?, we can partition every set N;(v) into
subsets of size ¢ and ¢ — 1 so that precisely r,; of them have size c. We call these
subsets i-blades. Note that an edge uv of color i in G appears both in an i-blade of
N;i(u) as well as in an i-blade of Nj(v), but we do not require these two i-blades to
have the same size.

For every compatible t € V(T), v € V(G),and i,j € Er(t), we have d;(v) = d;(v)
since the coloring is T-equitable. Thus, the number of i-blades of size c (respectively,
of size ¢ — 1) in the partition of N;(v) is equal to the number of j-blades of size ¢
(respectively, of size ¢ — 1) in the partition of Nj(v). We can therefore partition the
edges of Ng ()(v) into fans, which are unions of blades of the same size, such that
every fan contains precisely one i-blade for every i € E7(t). In other words, a fan ¢ at
a vertex v (with relation to #) is a subset of N, () (v) of size c|Er(t)| or (¢ — 1)|Er ()]
such that all colors in E7(t) appear c times or ¢ — 1 times in ¢. We also call ¢ a t-fan to
indicate the colors appearing in ¢.

For every compatible t € V(T), v € V(G), and every t-fan ¢ at v, we uniformly
at random partition the edges in ¢ into rainbow stars of size |Er(t)|. More precisely,
for every i € Er(t) we choose a permutation I1,; independently and uniformly at
random from all permutations on c elements (respectively, on ¢ — 1 elements if the
blades of ¢ have size c — 1). By labelling the edges of each blade, each permutation
I1,,; corresponds to an ordering of the edges of the i-blade of ¢. Now we partition the
edges of ¢ into stars of size |E7(t)| by grouping the edges of different blades that were
mapped to the same position. In other words, for every s € {1,...,c} (respectively,
s € {1,...,c —1}) we form a star by choosing for every i € Er(t) the edge labeled
I1,,i(s) in the i-blade of ¢. These stars are centered at v and each color in E1(t) appears
precisely once. Note that every edge uv € E(G) belongs to exactly two stars, one
centered at # and one centered at v. As described in Step 1 in Section 2.3, these stars
correspond to a T-pseudo-decomposition of G in a canonical way. All that remains
to show is that there exists an outcome of the random permutations such that the
resulting T-pseudo-decomposition satisfy the conditions (1) and (2) of Lemma 2.15.
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We denote the set of pseudo-trees using edges of a fan ¢ by 7,. Note that | 7| is
either equal to ¢ — 1 or c. Now we formally define what the bad events at a t-fan ¢
at a vertex v are. Let A, be the event that more than 2m2c?/3 of the pseudo-copies in
T, are not isomorphic to T. Let B, be the event that there exists a vertex u € V(G)
with u # v such that more than 2mc?/3 pseudo-copies in 7, contain u. Finally, let
Cy = Ay UB,. We will prove the following two statements.

Claim 1: Each C, is mutually independent of all but at most 4(cm)*" other events Cy.

Claim 2: P[C,] < 9(cm)™me=<"*/32,

Before we proceed to prove these claims, let us note that they allow us to use the Local
(9m)!

xIm

Lemma to get our desired T-pseudo-decomposition H U Z. Indeed, since e™* <
for x > 0, we have

4-4(cm)* - P[Cy] < 2% (cm)®™ -m- e ¢/32
< loms, (%)M - (9m)!

< (22 (9m)3)3m

10%m4\ "
(727

< 1,

where the last inequality follows from ¢ > (10m)°. Thus, the symmetric version of the
Local Lemma yields a T-pseudo-decomposition H U Z for which none of the events
Cy holds. Now H U T has the desired properties:

* Since A, does not hold for any ¢, at most 2m?c 2/3 of the pseudo-copies in T, are

not isomorphic to T. Since ¢ > (10m)°e—3, we have 2m?c?/3 < 1. Thus, less
than £ c of the pseudo-copies in 7, are in H, while at least + 7—¢ of them are in

Z. This holds for every t-fan at v, so we have dy (v|t) < edz(v|t).

* Since B, does not hold for any ¢, there are at most 2mc?/3 trees in 7, containing

a given Vertex u different from v. As argued above, at least ¢ of the pseudo-
copies in 7, are in 7. Since ¢ > (10m)° (&) 3, we have 2mc?/3 < d15%- Thus, the
proportion of trees in 7, N Z containing u is less than J. This is true for every
t-fan at v, so we have

[{H € Nz(olf) - u € V(H)}]
dr(vlt)

<6

and thus conf(Z) < 6.
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It remains to verify Claims 1 and 2. We begin by proving Claim 1.

Proof of Claim 1: The structure of 7, depends on permutations in different fans. Let
J(@) denote the set of fans ¢ for which there exists an outcome of the random permu-
tations such that 7, N 7y is non-empty. Since each fan consists of at most cm edges,
there are at most cm + (cm)? + ... + (cm)™ fans we can reach from ¢ via a path of
length at most m. Thus,

1J(9)| < cm 4+ (cm)* + ...+ (em)™ < 2(cm)™.

This shows that there are at most 2(cm)™ fans where the outcome of the permutation
affects the structure of 7. The same calculation shows that each permutation affects
the structure of at most 2(cm)™ sets Ty. Hence, the event C,, is mutually independent
of all but at most 4(cm)?™ other events Cy. O

Before we prove Claim 2, let us introduce more terminology. Let ¢; and ¢; be two
distinct vertices of T. Notice that ¢; or ¢; could be equal to t. We say that a pseudo-
copy H of T'is (t;,t;)-bad if the images of t; and t; in H are identical. For a t-fan ¢ ata
vertex v, let A,(t;,t;) be the event that the number of (t;, t;)-bad pseudo-trees in 7y, is
greater than 2c*/3. For a vertex u € V(G) with u # v, let By(u|t;) be the event that the
number of pseudo-trees in 7, in which u is the image of t; is greater than 2¢2/3. The
proof of Claim 2 consists of two parts:

Claim 2A: P[A,(t;,t))] < 4e="/32 for every t;, t; € V(T) with t; # t;.

Claim 2B: P[B,(ult;)] < 4e="/8 for every u € V(G), t; € V(T) and u # 0.

The proofs of Claims 2A and 2B use McDiarmid’s inequality and have a very
similar structure. We will therefore present all the details in the proof of Claim 2A,
and only point out the differences in the proof of Claim 2B.

Proof of Claim 2A:. Fix t; and t; as different vertices of T. Let P; and P; denote the paths
in T from ¢ to t; and ¢;. In the case that one is a subpath of the other, we may assume
that P; is contained in P;. Let t; denote the second last vertex of P; and let j denote the
edge joining ¢ and ;. Now T — j consists of two components, one of which contains
t; while the other one contains ¢, t;, and ¢;..

Let 7t be a fixed outcome of all permutations apart from those at the j-blades of
ty-fans. In other words, given 71, we only need to know the outcome of the permuta-
tions I ; for every t;-fan ¥ to construct the T-pseudo-decomposition. For any such
outcome 71, we will show that the conditional probability IP[A,(t;,t;)|7] is at most

4e—/32, Clearly, since we condition on an arbitrary but fixed event, this uniform
bound implies Claim 2A.
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Let T' denote the component of T — j containing ¢, t; and t;7, and let T” denote the
subgraph of T induced by E(T) \ E(T). Let 7, denote the images of T' in the pseudo-
trees of 7,. By fixing 7, the set 7 is also fixed. The permutations of the j-blades at
the ty-fans only decide how the images of T" and T” get matched at the t;-fans.

Let ¥ denote the set of t;-fans which contain edges of pseudo-copies in 7,. Note
that also the set ¥ is completely determined by 7. Let X, denote the random variable
counting the number of (t;, ¢;)-bad pseudo-trees in 7, conditional on 7r. Notice that
X, only depends on the random permutations I, ; with ¢ € ¥.

For each pseudo-tree H € 7; ata ty-fan ¢ € ¥, we already know what the image
of t; in H is. There are ¢ — 1 or c different images of T that could get matched to H at
i, each having a distinct vertex as image of t;. Thus, there are at least ¢ — 1 different
vertices that could be the image of ¢; in H. Since the permutation Il ; is chosen
uniformly at random, the probability that H will be part of a (t;,t;)-bad pseudo-tree

is at most C%l Now, by linearity of expectation,

1 < c'
c—1 c—1

E[X,] < [Tyl -

We will apply McDiarmid’s inequality to the random variable Y,, defined by Y, :=
Xy + */3. Clearly E[Y,] = E[X,] 4+ ¢*/3. Only the permutations ITy; with ¢ € ¥
affect X, and thus Y),. If two elements in one of these permutations are interchanged,
then the structure of two pseudo-trees in qu changes. In particular, the number of
(t;, t]-)-bad trees in 7, changes by at most 2. Thus, we can choose d = 2 in McDi-
armid’s inequality.

IfY, > s, then Xy, > s — c2/3 and thus at least s — ¢2/3 of the pseudo-trees in 7,
are (t;,t;)-bad. Let H' € 7, be a part of a pseudo-tree H that is counted by X,. Let
v; and v; denote the images of t; and ¢; in H. To verify that H is (t;, tj)—bad, we only
need to know which edge in the j-blade of ¢ gets mapped to the same position as the
edges in H' in other blades of . In other words, the vertex v; is determined by the
position of one element in the permutation I1y, ;, and thus v; = v; can be certified by a
single outcome. Thus, X, > s — c2/3 can be certified by the outcomes of s — 23 < s
choices and we can choose r = 1 in McDiarmid’s inequality.

By applying McDiarmid’s inequality to Y, with A = E[Y,], d = 2,7 = 1, we get

E[Y,] 2/3
P [m, —E[Y,]| > E[Y,] + 120, /E[Y,] ] Sde™ B <de 2.

Since ¢ > 10° and E[Y,] < ¢?/3 4+ -£;, we have 120, /E[Y,] < 3E[Y,] which implies

2/3
P [Xq) > 2c2/3} =P [Y(,, > 302/3} <P {m, —E[Y,]| > ;IE[Y(,,]] <de T

Now P[A,(t;, t;)|r] < 4¢=""*/32 and Claim 2A follows. O
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Proof of Claim 2B:. Let t; € V(T) be a fixed vertex different from ¢. Let P denote the
path from # to t; in T. Let ¢; denote the second last vertex of P and let i denote the
edge joining ¢; and ;. Now T — i consists of two components, one of which contains ¢
and t; while the other one contains ;. Let 7t be any fixed outcome of all permutations
apart from those at the i-blades of t;-fans. We show that the conditional probability

IP[B,(u|t;)| 7] is at most 4e="/8_ As 11 is arbitrary, this implies the general bound
P (B, (u]t;)] < de= <78,

Let X, denote the random variable conditional on 7t which counts the number of
pseudo-trees in 7, where u is the image of t;. The vertex u appears at most once in
each t;-fan, so by linearity of expectation we have
1

o ¢

]E[X(’)]ng’)"c—l Se—17

We apply McDiarmid’s inequality to the random variable X, + ¢*/%. Swapping
two positions in a permutation I1,,; can affect X,, by at most 1 since u is incident to
at most one edge of the i-blade of . If X, + c2/3 > s, then this can be certified by re-
vealing at most s positions in the random permutations. Thus, applying McDiarmid’s
inequality to the random variable X, + 23 withA = E [X(p] +c28r=1,d=1 yields

P | X, > 23] < 4emE,
Now P[B, (ut;)|m] < 4¢~"*/8 and Claim 2B follows. O

Now the proof of Claim 2 follows easily from Claims 2A and 2B.

Proof of Claim 2: By Claim 2A, we have
PlAy] <P | | Ag(tit)) | < Y P [Ay(tit))] < dmPe 7132,
Vi<j Vi<j

Let By(u) be the event that the number of pseudo-trees in 7, containing u is greater
than 2mc?/3. Since u cannot be the image of t, we have, by Claim 2B,

P[B, ()] <P

Y
UBcp(u\ti)] < Z]P[B(p(u]ti)] < 4me="/8
Vi Vi

Since each fan consists of at most cm edges, there are at most cm + (cm)? + ... + (cm)™
vertices we can reach from ¢ via a path of length at most m. Thus, there are less than
2(cm)™ vertices u for which IP[B,(u)] could be positive. In particular, we have

U By(u)

Yu,u#v
and Claim 2 follows from IP[C,] < P[A,] + P[B,]. O

P[B,] = P < Y P[By(u)] < 8(cm)"me<"/8

Yu,u#v
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This concludes the proof of Lemma 2.15. O

2.5 Repairing non-isomorphic copies

Let H UZ be the T-pseudo-decomposition given by Lemma 2.15. As described in
Step 2 in Section 2, we use copies in Z to repair the pseudo-trees in H that are not
isomorphic to T. We apply Lemma 2.18 to show the existence of a suitable subset of 7
to perform the switches. The proof of Lemma 2.18 relies on the following probabilistic
tools, see also [MR13]. The first one is a generalization of the Symmetric Local Lemma
(Proposition 2.19).

PROPOSITION 2.21 Lovéasz Local Lemma

Let Ay, ..., Ay be a finite set of events in some probability space (), and suppose
that for some J; C [n], A; is mutually independent of {A; : j & J; U {i}}. If there
exist real numbers x1, ..., xy in (0,1) such that P[A;] < x;[Tjej, (1 — x;) for every
i€ {1,..,n}, then PN’ A;] > 0.

PROPOSITION 2.22 Simple Concentration Bound

Let X be a random variable determined by n independent trials Ty, ..., T, such that
changing the outcome of any one trial T; can affect X by at most c. Then

P[|X — E[X]| > A] < 2e~"/(2¢n),

Proof of Lemma 2.18: Consider a pseudo-tree H € Ny/(v|t), and let u € V(H) \ {v}.
Since conf(H'|t) < 6, there are no more than ddy (v|t) trees in Ny (v|t) containing
u. Thus, there are at least (1 — dm)dyy (v|t) pseudo-copies of T in Ny (v|t) that inter-
sect H only in v. Since dy(v|t) < edyy(v|t), we can associate a set S(H) of [ 1=
pseudo-copies in Ny (v|t) with each H € Ny (v|t) such that each element of Ny (v|t)
is contained in at most one of these sets. We define the function f; by choosing f;(H)
uniformly at random from one of the pseudo-trees in S(H). Clearly, any such func-
tion will satisfy the first two conditions of Lemma 2.18. All that remains to show is
that with positive probability dg, 3 (v|t') < 3edyy(v|t') holds for every compatible
veV(G), t € V(T).

The value of dy,(3;)(v|t') only depends on the set of pseudo-trees in Ny (v|t') that
are contained in some S(H). Let H" be the collection of pseudo-copies of H' that are
contained in some S(H). Clearly, each tree in Ny (v|t') can be matched with exactly
one tree in H and this occurs with probability L%J ~1. By linearity of expectation,

1—96m

-1
Eldn 010)] = [T | s olt) < 260 o).
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Let A, be the event that d, 4 (v[t') > 3edsy (v|t'). Note that dy, 3 (v]t') is com-
pletely determined by at most dHn (v|t ) independent trials. Since the outcome of each
trial can affect d, (3;) (v|t') by at most 1, the Simple Concentration Bound gives

H)[AU t/] < zefsqu_t//(v“/)/z

We claim that A, is mutually independent of all but at most m [ =2 | dy (v|t)
other events A, ;. Indeed, A, depends on at most dy»(v|t') random trials, and in
each trial we have a choice of |1=2" | trees to match. Each tree affects precisely m
events other than A, .

Now we apply Proposition 2.21 to show that with positive probability none of the
events A,y occur. Set x = %. It is sufficient to show that

x (1 _ x)mL%JdH”(vlt,) > I[)[Av,t’]

holds for all compatible v € V(G), t' € V(T). If gy (v|t') < (3 ) then d, 3 (0]t') <
(2)6 < Bedy (v|t'), so P[Ayp] = 0. If dyyn (0]t') > (%)6, then we have

€

X (1 — x)mL@JdH”(v‘t,) X (1 _ x)dH//(U‘t/)/SZ

xe*ZXdH// ( t,)/sz

]P[Av,t’]

A\ARR\VARR\Y,

2
(38 HH( ‘t)

(5 e

/-\I\J\R <

]P Av t
]P[AU t/

VoWV

By the Local Lemma, there is a positive probability that none of the bad events
occur. Thus, there exists a function f; with the desired properties. ]

We now have all ingredients for the proof of Theorem 2.12.

Proof of Theorem 2.12: As described in Step 2 of Section 2, let to, ..., t,, be a labelling
of the vertices of T such that Tlty,...,t;] is connected for every i € {1,...m}. We
also label the edges of T so that ¢; denotes the edge joining t; with T[ty, ..., t;_1] for
everyi € {1,...m}.Sete; =5""/15mfori € {1,...,m}. We are going to construct a
sequence (H; UZ;)!" , of T-pseudo-decompositions of G such that the following holds:

* 7, is a collection of isomorphic copies of T for every i € {1,...m};
* H;isi-good foreveryi € {1,...m};
o dz.(v|t) > max{22/¢!,dy, (v|t)/¢;} for every compatible v € V(G), t € V(T);
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e conf(Z;) < ¢ foreveryie {1,...,m}.

Since the minimum degree in each color in G is at least 10°*", we can apply
Lemma 2.15 with parameters ¢ = § = 1072". Let H U Z denote the resulting T-
pseudo-decomposition. Clearly H U Z satisfies the conditions for H; UZ;. Leti €
{2,...,m} and suppose we have constructed H; 1 UZ;_1 such that the conditions
above are satisfied. We need to repair the pseudo-trees in H;_; that are not i-good.
Since the pseudo-trees in #;_; are all (i — 1)-good, we can achieve this by making
i-switches. Let t; be the endpoint of e; that is different from ¢;. Let f; : H; 1 — Z; 1 be
the function we get by applying Lemma 2.18 with H = H;_1, H' =Z;_1,e =6 = ¢;_1,
and t = t;. Now fj(H;_1) is the set of trees we use to repair the pseudo-trees in H;_;
that are not i-good. Set

Hi = |J swi(H fi(H)) and
HeH; 4

I, = g\ fi(Hia),

where sw;(H, fj(H)) denotes the i-switch of H and f;(H) as defined in Section 2. Since
HN fi(H) = {v} for every H € Ny, ,(v]t;), the two pseudo-copies in sw;(H, fj(H))
are both i-good.

Notice that the degree dy,(v|t) of a vertex is invariant under i-switches
between pseudo-trees in H;. Since dfj(%fl)(vﬁ) < 3¢i_1dz,_,(v|t) holds for com-
patible v € V(G) and t € V(T), we have dz,(v|[t) > (1 —3¢_1)dz,_,(v[t) and
dy, (v|t) < 4e;_1dz,_ (v]t). Thus,

4e;_
dyy (v]t) < ﬁdzi(vﬁ) < 5¢;_1dz (0]t) = e;dz (v]t),
i

1-3e.1 _ 22

dz(olt) > (1= 3ei)dz, (olt) > 21 > 5

€1 &

and
f(Z;1) _5
conf(Z;) < m < 161 <&
P

Hence, the T-pseudo-decomposition H; U Z; has the desired properties. In particular,
H is m-good and H,,, U Z,, is a T-decomposition of G. O
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Chapter 3

Beyond the Barat-Thomassen Con-
jecture

3.1 Finding a weaker hypothesis

While the Tutte’s 3-flow conjecture states that the required amount of edge-
connectivity is 4, Thomassen [Tho12] could only achieve 8. One year later, Lovasz
et al [LTWZ13] showed that 6-edge-connectivity is sufficient, and so cut half the
distance between the state-of-the-art and the 3-Flow Conjecture. The difference
between 4-edge-connectivity and 6-edge-connectivity is indeed not as narrow as
it may sound. The edge-connectivity is an expensive condition since increasing
the amount of edge-connectivity on a graph by 1 means another layer of global
connection needs to be added, while global connections are hard to achieve in large
graphs.

Unfortunately, our proof of the Barat-Thomassen conjecture in Chapter 2 provides
a terrible exponential bound, 10CUE(M)  for the amount of edge-connectivity of G due
to the probabilistic approach. To reduce this amount to a reasonable bound, one may
need a completely new approach, which is left for future work. On the other hand,
given the high cost of edge-connectivity, it would be reasonable to some cheaper con-
ditions for the Barat-Thomassen conjecture rather than the edge-connectivity.

The content of this chapter is covered in paper Edge-partitioning a graph into paths: beyond the bardt-
thomassen conjecture, Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, and Stéphan Thomassé, Com-
binatorica, pages 1-25, 2018.

31
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QUESTION 3.1

Is it possible to replace the high edge-connectivity hypothesis in the Bardt-
Thomassen conjecture by some weaker ones which do not require such strong global
connections?

One prominent candidate is high minimum degree, a much less costly require-
ment, since roughly speaking it only requires that every vertex has enough arbitrary
connections to the rest of the large graph rather than every vertex must have high
global connections. However, similar to the Tutte’s flow conjectures, it is easy to see
that in order to the Barat-Thomassen conjecture holds, the graph G must have some
minimum amount of edge-connectivity. One simple example is where G is the dis-
joint union of two cliques of size 4n 4 2 for an arbitrarily large n. Then G has very
high minimum degree but cannot be decomposed into copies of P,, the path of length
2. The reason is that each clique of G has odd number of edges, so there is always
one edge left out in each clique which could not be joint to become a copy of P,. A
more complex example in Proposition 3.8 and Figure 3.1 gives a counterexample of a
2-edge-connected graph G with very large minimum degree, which could not have a
Pg-decomposition.

The main result of this chapter is the following theorem, which states that if G
is 24-edge-connected, then high minimum degree is a sufficient condition so that the
Barat-Thomassen conjecture holds when the pattern is a path.

THEOREM 3.2

For every integer ¢ > 2, there exists dy such that every 24-edge-connected graph
G with minimum degree at least d, has a decomposition into paths of length ¢ and
a path of length at most £.

Let us again emphasize that the main point in the statement of Theorem 3.2 is
that the required edge-connectivity, namely 24, is constant and not dependent on the
path length ¢ as in the statement of the Barat-Thomassen conjecture. Nevertheless,
this theorem still leaves a gap to the lower bound the amount of edge-connectivity.
Very recently, Klimosové and Thomassé drastically improved the bound from 24 to 3
[KT17], and so by combining with Proposition 3.8 to provide a tight bound for path
patterns in general. Nonetheless, the true bound for specific patterns has not yet
been reached. For example, one may ask what is the minimum amount of edge-
connectivity required when the pattern is P; or P5, which is still an open question.

It is natural to expect that we can similarly replace high edge-connectivity by high
minimum degree when the pattern is a tree. However, it was proved, also in [KT17],
that this does not hold, and so Question 3.1 is still open when the pattern is a tree.
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Some notations and preliminary results

In Chapter 2, we used "collection” as a set of copies of the pattern. In this chapter we
will develop a system of notions around the term collection. The proof contains two
main parts. We will show in Section 3.2 that the graph G contains a large collection
with low conflict and covering almost entire G, and then then in Section 3.3 that G
contains another sparse collection, which has a tree-shape and spanning all over G.
These two collections will complement each other to return a path-decomposition of
G without any conflict, and so proves Theorems 3.2.

Given a graph G and a subset X of V(G), we denote by dx(v) the degree of v in
the subgraph of G induced by X U {v}. Given two graphs G = (V,E) and H = (V, F)
with F C E, we denote by G\ H the graph (V, E\F).

We now introduce some notions about the density of a subgraph with respect to
the original graph. Let H = (V, F) be a spanning subgraph of a graph G = (V,E).
Let « be some real number in [0, 1]. We say that H is a-sparse in G if dy(v) < adg(v)
for all vertices v of G. Conversely, we say that H is a-dense in G if dy(v) > adg(v)
for all vertices v of G. We will also heavily depend on subgraphs of G which are both
(roughly) a-sparse and a-dense. This definition depends on the length of the path /.
We say that H is an a-fraction of G if adg(v) — 10¢° < dy(v) < adg(v) + 104¢,

Given an (improper) edge-coloring ¢ of some graph G and a color i, for every
vertex v of G we denote by d;(v) the number of i-colored edges incident to v. We
call ¢ nearly equitable if, for every vertex v and every pair of colors i # j, we have
|di(v) —d;j(v)| < 2. We can now recall a result of de Werra (cf. [SSTF12], Theorem
8.7), and its corollary concerning 1/k-fractions.

PROPOSITION 3.3

‘ Let k > 1. Every graph has a nearly equitable improper k-edge-coloring.

PROPOSITION 3.4

Let k > 1. Every graph G = (V,E) has a spanning subgraph H = (V,F) such
that |dy(v) —dg(v)/k| < 2 for every vertex v.

We now recall three results on oriented graphs. The first of these is a folklore result
on balanced orientations of graphs.

PROPOSITION 3.5

Every multigraph G has an orientation D such that |d,(v) — df,(v)| < 1 for every
vertex v.

The proof is straightforward. We first arbitrarily pair vertices of odd degree of G,
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then add a dummy edge between every pair to obtain a multigraph G’ in which every
vertex has even degree. Orienting the edges of G’ as they are encountered when going
along an Eulerian tour, we then deduce an orientation D’ of G’ such that dj,(v) =
d}, (v) for every vertex v. Removing the dummy edges results in a desired orientation
D of G.

The second result is a result of Nash-Williams (see [NW60]) implying that
any graph with large edge-connectivity admits a balanced orientation with large
arc-connectivity. In the following, a digraph D is k-arc-strong if the removal of any set
of at most k — 1 arcs leaves D strongly-connected.

PROPOSITION 3.6

Every 2k-edge-connected multigraph has an orientation D such that D is k-arc-
strong and such that |d~ (v) — d " (v)| < 1 for every vertex v.

The third result we recall is due to Edmonds (see [Edm73]) and expresses a condi-
tion for a digraph to admit many arc-disjoint rooted arborescences. In the statement,
an out-arborescence of a digraph D refers to a rooted spanning tree T of D whose arcs
are oriented in such a way that the root has in-degree 0, and every other vertex has
in-degree 1.

PROPOSITION 3.7

A directed multigraph with a special vertex z has k arc-disjoint out-arborescences
rooted at z if and only if the number of arc-disjoint paths between z and any vertex
is at least k.

For the sake of completeness, we end this section by proving the claim that 3-edge-
connectivity is necessary when the pattern is Po.

PROPOSITION 3.8

There exist 2-edge-connected graphs with arbitrarily large minimum degree admit-
ting no Po-decomposition.

Proof. We start from the 2-edge-connected graph G depicted in Figure 3.1, which ad-
mits no Po-decomposition. To obtain a 2-edge-connected graph with arbitrarily large
minimum degree d from it, just consider any 2-edge-connected graph G’ with suf-
ficiently large minimum degree (i.e., at least d) and verifying |E(G’)| = 7 (mod 9).
Then consider any vertex v of G with small degree, and add two edges from v to a new
copy of G'. Repeating this transformation as long as necessary, we get a new graph
which is still 2-edge-connected, with minimum degree at least 4 and whose size is a
multiple of 9 (due to the size of G and G’), but with no Py-decomposition — otherwise,
it can be easily checked that G would admit a Ps-decomposition, a contradiction. [
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FIGURE 3.1 — Part of the construction for obtaining 2-edge-connected graphs with
arbitrarily large minimum degree but no Py-decomposition.

3.2 Path-collections

Fix Py as our pattern and let G = (V,E) be a graph. A path-collection P on G is a set
of edge-disjoint paths of G. We denote by Up = (V, E’) the graph where E' is the set
of edges of paths in P. If Up = G then P is said to be a path-decomposition of G. For
convenience, from now on, we say collection for path-collection and decomposition for
path-decomposition.

Let us denote by Hp = (V, E”) the multigraph where each edge uv € E” corre-
sponds to a path between u and v in P (if P contains several paths from u to v, we
have as many edges uv € E”). The degree of a vertex v in P, denoted dp(v), is the
degree (with multiplicity) of v in Hp, which is also the number of paths in P with
endpoint v.

We need also to speak of the lengths of the paths in P. Let us say that P is an /-
collection if all paths in P have length ¢, a (> /)-collection if all paths in P have length
atleast ¢, an ({4, (5, ...)-collection if all paths in P have length among {¢;, (>, ...}, and
an [(, { + i]-collection if all paths in P have length in the interval [/, £ + i].

Similar to Chapter 2, we also use notions of conflict and conflict ratio in this proof.
Two edge-disjoint paths of G sharing an endpoint v are conflicting if they also intersect
at some vertex different from v. Equivalently, we say that two paths of P issued from
the same vertex are conflicting if the corresponding paths in Up are conflicting. In
general, the paths of a collection can pairwise intersect, and hence we would like to
measure how much. For every vertex v, let P(v) be the set of paths in P incident with
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v, i.e., starting or ending at v. The conflict ratio of v is

maxg.4, [{P € P(v) : w € P}|
dp(v) '

We denote the conflict ratio of P by conf(P) := max,confp(v). We always have
conf(P) < 1since |P(v)| = dp(v).

confp(v) :=

We now prove that every graph with large enough minimum degree contains a
(> £)-collection meeting particular properties: low conflict, well-balanced, and cov-
ers almost entire G. Note that in this section, the edge-connectivity of G will not be
utilized.

THEOREM 3.9

Let 0 be a positive integer, and € be an arbitrarily small positive real number. There
exists L such that if G = (V,E) is a graph with minimum degree at least L, then
there is an {-collection P on G with

e conf(P) <,
e dp(v)/dg

(v) € [Y5, L= for every vertex v, and
* dg\u,(v) < edp(v) for every vertex v.

Proof. Let ¢ := [/L] and b := [c*/?], and pick L so that b >> ¢. According to Proposi-
tion 3.3, we can nearly equitably color the edges of G with ¢ colors. For every color i,
applying Proposition 3.5 we can orient the i-colored edges so that the numbers of in-
edges and out-edges of color i incident to every vertex v differ by at most 1. Let E;” ()
and E;" (v) be the sets of i-colored in-edges and out-edges, respectively, incident to v.
Then, for every colori € {1,...,{ — 1}, we have
‘ |E1_ (U) z+1 | ‘

For the sake of convenience, we would like to have that |E; (v)| = |E};(v)] for all i
and v. To this end, we add a dummy vertex v to G. Now, if |[E] (0)| — |Ef} ()| =
k > 0, then we add k dummy edges of color i 4- 1 from v to vy to equalize |E; (v)| and
|Ef 1 (0)|. Similarly, if |E}, (v)| — |E; (v)| = k > 0, then we add k dummy edges of
color i from v to v.

Now, for every v € V(G) and color i € {1,..., ¢}, we choose r,; € {0,...,c —2}
such that E; (v) = r,; (mod ¢ — 1). Since the minimum degree in each color in G
is greater than c(c — 2), we can partition every set E; (v) into subsets of size ¢ and
¢ — 1 so that precisely r,,; of them have size c. As E;(v) = E; (v), we can similarly
partition every set E’.; (v) into subsets of size ¢ and ¢ — 1 so that precisely r,,; of them
have size c.
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We call these subsets of edges i-half-cones and (i + 1)-half-cones, respectively. Now,
for each vertex v and color i, 1 < i < £ — 1, we arbitrarily pair i-half-cones of E;” (v)
with (i + 1)-half-cones E; ; (v) in a way such that in each pair the size of the two half-

i+1
cones are equal. We call such a pair an i-cone at vertex v. Thus, an i-cone ¢ at some
vertex v consists of an i-half-cone ¢~ and an (i + 1)-half-cone ¢* with |¢~| = |¢T|.

Note that an edge ¢ of color i directed from a vertex u to a vertex v in G appears both
in an i-half-cone of E;" (1) as well as in an i-half-cone of E; (v), but we do not require
these two i-half-cones to have the same size. By convention, we do not create a cone
at the dummy vertex vy. However, each edge uvg will still be inside a cone at vertex
u. We also remark that the 1-half-cones of E{ (v) and the ¢-half-cones of E; (v) do
not get paired with other half-cones. Nevertheless, we will adopt the convention that
whenever we talk of a general cone ¢, we will assume that ¢ might also consist of a
single 1-half-cone or /-half-cone of the aforementioned type.

We now have a fixed set of cones on G. To obtain our desired collection, we will
use the cone structure to construct rainbow paths of length /, i.e., paths where for all
i the i edge of every path is of color i. One way to obtain this is to randomly match
edges of the two half-cones of every cone. Indeed, this is what we do. For each cone ¢
we carry out random permutations 77, of the edges of ¢~ and 77, of the edges of ¢
We then pair the edges 77, (k) and 77 (k) for each 1 < k < c. If ¢ is actually a special
1-half-cone or /-half-cone, then there is only one random permutation performed at
¢, which will have no effect on the decomposition as will be apparent shortly. Note
that each edge ¢ = uv of G, with the exception of some edges of 1-cones, some edges
of /-cones and the dummy edges, is in exactly two cones - one centered at u and the
second centered at v. Thus, e is involved in two random permutations corresponding
to the two permutations of the two half-cones containing it. Therefore, given the
random matchings, each non-dummy edge ¢ = uv of color i, 1 < i < /, is paired
exactly with one edge of color i — 1 (which enters u) and one edge of color i + 1
(which exits v). From an arbitrary edge, we can thus go forward and backward by
edges paired with it until we reach edges of color ¢ or 1 (unless we reach dummy
edges). Thus, the random matchings yield a natural decomposition of all edges of G
into edge-disjoint walks. Unfortunately, some of the walks will not be paths. We will
divide the walks into three types. Of the first type are those walks which are paths,
and thus by construction they are necessarily isomorphic to Py. A walk that is not a
path and which does not use the dummy vertex vy is called a bad walk; note that every
bad walk is of length /. A walk that uses the dummy vertex vy is called a short walk.
Note that a short walk is no longer extended from vy as there is no cone centered at
09.

For each cone ¢, there are ¢ — 1 or ¢ walks via ¢, depending on |¢|. We will
show that, with high probability, the number of bad or short walks via ¢ is negligible
compared to c. We then will argue that proving this statement for all the cones is
sufficient for us to extract a dense collection from G.

Denote Py := xpx1...xy. We first focus on bad walks. Suppose that ¢ is a k-cone
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at some vertex v, and i, j are two colors. We say that a bad walk P = uguy...uy going
through ¢ is (i,j)-bad if its i vertex and j vertex are the same, that is, uj = u;. Let
Ay (i, j) be the event that the number of (i, j)-bad walks going through the cone ¢ is

greater than b. We will show that P[A, (i, )] < 4e=c?/64,

Denote by P; x and P, x the subpaths from x; to xi, and x; to x in P, respectively. In
case one of these paths is contained in another, we may assume that P; is contained
in P;;. Let x; be the neighbor of x; in P;;. Note that j’ € {j —1,j+ 1}. Let P, be the
set of walks that go through ¢ which are not short. Clearly, |P,| < c.

We define Qy to be the set of all j’-cones in G if j = j —1, and the set of all j-
cones if /' = j+ 1. Let Il be an arbitrary but fixed outcome of all permutations at all
cones except the set of permutations on ();. In other words, given I1, we only need
to know the outcomes of the set of permutations {7}, 7, | ¢ € Q;} to know the
decomposition of the walks in G. We will condition on IT; that is, we will show that
P[Ay(i,j)] | T1] < 4e~<"*/64 for any I1. Clearly, since IT is arbitrary, this is sufficient to

give us the uniform bound P[A, (i, j)] < 4o—/64,

Let P, denote the set of walks P, conditional on I1. Let X, be the number of (i, j)-
bad walks going through the cone ¢ conditional on IT. By fixing I, the set P, is also
fixed. Indeed, each P’ € 73;0 is a partial subwalk, where we know the vertex of P’ that
lies in some half-cone of a cone ¢ € (). Note that the vertex u; of P’ corresponding to
x; is already known. Moreover, the vertex u; corresponding to the vertex x; is known
as well.

Note that whether P’ is (i, j)-bad depends only on the permutations m, and nljj .
Note that there are ¢ — 1 or ¢ different images possible to match u; when the random
permutations 77, and 77175 are carried out, and only one of which could possibly be ;.

Thus, the probability that P’ is (i, j)-bad is at most 1.

Now, by linearity of expectation,

1 c
EXol <Pol- T3 < =7

We will apply McDiarmid’s inequality to the random variable Y,, defined by Y, :=
Xy + ¢2/3. Clearly E[Y,] = E[X,] + /3 € [c¢*/3,¢2/3 +2]. Only the permutations
Ty, 7117,“ with ¢ € Qj affect X, and thus Y,,. If two elements in one of these permu-
tations are interchanged, then the structure of two walks in 734, changes. However,
clearly the number of (i, j)-bad walks in P, cannot change by more than 2. Thus, we
can choose d = 2 in McDiarmid’s inequality.

IfY, > s, then X, > s — ¢?/3, and thus at least s — ¢2/3 of the walks in P, are (i, j)-
bad. Let P’ € P('P be a subwalk of a walk P that is counted by X,. As before, let u; = U
denote the images of x; and x; in P, and ¢ € Q) the cone through which P’ passes.
To verify that P is (i, j)-bad, we only need to reveal the two elements 711"; (s), 7ty (5),

where 1 < s < ¢ is the value such that the edge u;u; € {n$(s), 7Ty (5)}-
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Thus, Xy = 5— c2/3 can be certified by the outcomes of 2(s — c2/3 ) < 2s choices
and we can choose r = 2 in McDiarmid’s inequality. By applying McDiarmid’s in-
equality to Y, with A = E[Y,],d = 2,7 = 2, we get

E[Y,] 2/3
P [|Y, — E[Y,]| > E[Y,] +120,/2E[Y,] | <4e < dem 6T

and thus IP [X,, > 2¢2/3] < 4e~¢""/64, So we have P[A, (i, j)|I1] < 4e~<""*/64 Since I1

is arbitrary it follows that P[A,(i,j)] < 4e~<"*/6%. Let A, be the event that there are
more than £2b bad walks via ¢. Then

.. .. _2/3
P[Ay] <P Agli )| < Y PAy(i,))] < 4l2e=/%,
Vi,j Vi,j

We still consider the same cone ¢. For an integer j # k and vertex u, let B, (j, u) be
the event that the number of walks via ¢, which maps x; to u, is greater than b, and
let By (u) be the event that the number of walks of ¢ containing u is greater than ¢b.

We show that P[B,(j, u)] < 4e="" /6% As the computation is virtually identical to
the case of IP[A, (i, j)], we only highlight the differences. As before, let x; be the vertex
adjacent to x; on Pk, and let I be an arbitrary but fixed outcome of all permutations
at all cones except the set of permutations on Q. It suffices to show that IP[B,(j, u) |

I1] < 4e="/64,

Let X, denote the random variable conditional on IT which counts the number of
walks in P, where u is the image of x;. The vertex u appears at most once in each
cone of )jr, so by linearity of expectation we have

1 c
< .
c—1 " ¢c—1

E[X,] < [Pyl-

We again apply McDiarmid’s inequality to the random variable Y,, defined by
Y, := X, + c?/3. As before, E[Y,] = E[X,] + ¢*/3.

Since the vertex u appears at most once in each cone of (), swapping two posi-
tions in any permutation of a half-cone in () can affect X,, by at most 1. Thus, we can
choose d = 1 in McDiarmid’s inequality.

IfY, >s,then X, > s — c2/3. Let P’ be a subwalk that is counted by X,. Asbefore,
we can certify that P’ is counted by X, by considering only ¢ € Q);, the cone through
which P’ passes.

To certify that P’ is counted by X, we only need to reveal the two elements

(s), 7ty (s), where s is the value such that one of the edges nllf (s), 7ty (s) con-

2/3

+
T
¥
tains the endpoint u. Thus, X, > s — ¢*” can be certified by the outcomes of
2(s — ¢?/3) < 2s choices and we can choose r = 2 in McDiarmid’s inequality. Thus,

by a similar argument as above we obtain that IP[B,(j, u)] < 4"/ Now,
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P [B,(u)] <P[[JBy(i,u)] < ;]P (B, (i) < 4be"/5
Vi -

Let B, be the event that there exists a vertex u such that more than /b walks of ¢
contain u. The number of vertices u that could possibly appear in the walks P, is at
most ¢ + c2 + ... + ¢ < ¢!+ . Hence,

P[B,] = ]P[U Bq,(u)] < Y P[B,(u)] < 4c! e /64,
Yu Yu

Let B, (j) be the event that the number of walks via ¢ such that they enter v at

exactly their j"-vertex is greater than b, and let B, be the event that the number of
walks of ¢ containing vy is greater than £b. We upper bound PP[B,(j)].

The argument is virtually identical to that of the estimate above. We apply Mc-
Diarmid’s inequality to the random variable Y, := X, + ¢*/3, where X,, is the num-
ber of walks via ¢ that enter vy at the j* edge conditional on I1. As before, we ob-
tain that E[X,] < ¢/(c —1),d = 1,r = 2, yielding P[B,(j)] < 4¢="*/64 Thus,
P[B)] < 4te~<"/64,

Let J, = Ay U By U By,. Then

P[J,] < P[Ay] +P[By] +P[B},] < (£2+ "1+ (Va4 < gb/100,

Let J, be the set of events ] that are not mutually independent of J,. Note that the
number of permutations determining J, is at most (2c) + (2¢)? + ... + (2¢)* < L,
Indeed, ¢/*! is an upper bound on the number of walks of length ¢ that could contain
an edge of ¢. Each such permutation itself could affect at most ¢ + ... + ¢’ < ¢/*1
events Jy. Thus, | 7,| < (c™F1)2.

We now apply the symmetric version of the Local Lemma. To that aim, we need to
have that (c/*1)%e~/1% < 1/4, which clearly holds since / is fixed and c is sufficiently
large. Thus, by Lovész Local Lemma, P [y, J,] > 0. Thus, there exists pairings of
the edges of the cones I' such that no event ], occurs for every cone ¢.

Let P be the ¢-collection obtained from I' by removing all bad walks and short
walks. Let R := G\Up. We can assume that L is sufficiently large so that (b <
e(1—¢€)c/2. Then:

(i) Inevery cone ¢, there are no more than ec bad and short walks via it, so there are
atleast (1 — ¢€)c paths in P via it. Hence, using the fact that G is nearly equitably
colored and by considering the special 1-half and ¢-half-cones, we obtain that
for every vertex v, there are at least 1-£dg(v) paths in P starting at v, and at
least 1-£d(v) paths in P ending at v. Hence, dp(v) > 1:£dg(v). The nearly
equitable (-edge-coloring implies immediately that dp (v) < F£dg(v).



| 41

(ii) For every pair of vertices u, v, u # v, among all walks via a cone of u, the ratio
of walks going through v is less than ¢2b/c < ¢/2{. Hence, among all walks via
u, the ratio of walks going through v is less than £/2¢. Thus

{P€P:uve P}

<e/24,
dg(u)

and, hence, conf(u) < «.

(iii) In every cone, there are no more than £3b bad and short walks via it, so the
proportion of bad walks is at most £2b/c < ¢(1 —¢)/2¢. Hence, among all
walks via a vertex v, the ratio of bad and short walks is less than (1 — ¢) /2¢.
Thus dr(v) < &(1 —€)dg(v)/2¢, implying dg(v) < edp(v).

This completes the proof of Theorem 3.9. ]

In the sequel, given two collections P; and P, over the same graph, we will need
to grow paths of, say, P; using the paths from P,. This will essentially be achieved by
considering every path P of Py, incident to, say, a vertex v, then considering a path P’
incident to v in P, and just concatenating P and P’. So that the concatenation can be
performed this way for every path of P;, we just need P, to have enough paths, and
to make sure to evenly use these paths. The latter requirement can be ensured by just
orienting P, in a balanced way, that is so that [d"(v) — d~(v)| < 1 for every vertex
v, and choosing, as P/, a path out-going from v. All such out-going paths are called
private paths of v throughout the upcoming proofs.

The collection P we get from G after applying Theorem 3.9 hence satisfies
2dg(v) < dp(v) < HEdg(v) for every vertex v. If we preserve the orientation of
the edges of H as in the proof, and denote by d}(v) the number of paths starting
from v in P, we get

1—¢ 1+e
2/ 20

for every vertex v. These d};(v) paths out-going from v will hence be regarded as its
private paths in what follows.

dc(v) <dp(v) < dg(v)

THEOREM 3.10

Let ¢ be a positive integer, and €' be a sufficiently small positive real number de-
pending on {. There exists L such that, for every graph G with minimum degree at
least L, there is an (¢, £ + 1)-collection P decomposing G with

e conf(P) < 1/4(¢+10), and

o 2€46(0) <dp(v) < €dg(v) for every vertex v.
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Proof. Let ¢ > 0 be sufficiently small, and set ¢ := ¢'/10¢. Let Gy be a 1/9¢-fraction
of G obtained by Proposition 3.4, and G, := G\Gj. By applying Theorem 3.9 on G;
and G, with ¢, we get two /¢-collections P; and P, and two remainders R; and R;
satisfying all properties from the statement of Theorem 3.9. For convenience, we will
keep the orientation of the edges of P; and P, given by Theorem 3.9. Note that

Le. (dcg(év) _2> < dp, (v) < < (dcg(;) +2>

and
—¢ /— v +e /— v
—16 . <7(9 lg)éjc( ) — 2) < dpz(v) < 715 . (7(9 lg)édc( ) —|—2> .

Now, we have (1—}-81)(;986—1)de (v) —10 < dp,(v) < %d%(v) + 10 for all vertices

v. Let R := Ry U Ry. Then for every vertex v, we have

dr(v) = dg,(v) + dg,(v) < edp,(v) + edp,(v) < 10ledp, (V).

Arbitrarily orient the edges of R. In our construction, every step consists in ex-
tending an arc vu of R using a private (i.e., out-going) /-path starting at v in P; that
does not contain u — thus forming an (¢ + 1)-path. Since the conflict ratio of P; sat-
isfies conf(P;) < ¢, at most edp, (v) paths in P; with v as endpoint contain u. Note

that the number of directed /-paths in P; starting at v is d;l (v) > % . w. Thus,

d;l (v) —dgr(v) > edp, (v) since L can be chosen sufficiently large. Hence, all the dr(v)
edges can be used to form (¢ + 1)-paths.

We call Pj the resulting (¢, ¢ + 1)-collection obtained by concatenating paths from
P1 and paths from R. Since dg(v) < 10ledp, (v) for every v, the degree of v in Pj is as

dp, (v) — 100edp, (v) < dp; (v) < dp, (v) + 10Ledp, (0).

Let P := P; U P,. Then P is an (£, ¢ + 1)-collection decomposing G, in which we
have dp(v) = dp;(v) + dp,(v) for all vertices v. Thus,

dp,(v) — 10ledp, (v) + dp,(v) < dp(v) < dp, (v) + 10ledp, (V) + dp,(v).
Thus,
12£d6(v) — 10ledp, (v) + 1 < dp(v) < HEdg(v) + 10Ledp, (v) + 1.
Since ¢ = 10¢¢, we obtain that

19d6(0) < dp(0) < 246 (o).

Observe also that dp, (v) /dp,(v) < 1/6¢. Thus,

conf(P) < conf(P;) + conf(P;)/6¢ < e+1/60 < 1/4(£+10),

as required. O
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3.3 Tree-like collections

This part is the combinatorial core behind the proof of Theorem 3.2. We call P a
tree-like collection if Hp is a tree (even if the paths of P pairwise intersect). We also
say that P spans G if Hp spans G. We need here to show the existence of particular
tree-like collections, namely (¢, 2¢)-tree-like collections, under mild connectivity and
minimum degree requirements. These (¢, 2¢)-tree-like collections will play a crucial
role to insure that some collection has all of its vertices being of even degree. How-
ever, directly getting an (¢, 2/)-tree-like collection seems a bit challenging, and we
will follow a long way for this, starting with a (1,2)-tree-like collection and making
its paths grow.

We start with the following lemma which is the key for the drop of the large edge-
connectivity requirement.

LEMMA 3.11

Every 2-edge-connected multigraph G has a spanning (1, 2)-tree-like collection T
such that Hy is subcubic.

In this proof and the proof of following lemmas, we use a notion called structured-
tree, which is a special digraph satisfying some specific properties. At first, a
structured-tree is not a collection but will ultimately evolves to a tree-like collection.

Proof. Let G be connected and bridgeless. Let us call a structured-tree T a strongly-
connected digraph whose vertices are subsets X; of V(G) satisfying the following
properties:

* The X;’s form a partition of V(G).

e The arcs of 7 are of two types: the forward arcs forming a rooted out-
arborescence A, and the backward arcs, always directed from a vertex to one of
its ancestors in A.

* Every arc X;X; corresponds to some edge x;x; € E(G) such that x; € X; and
Xj S X]'.

¢ There is at most one backward arc leaving each vertex X; (unless 7 is rooted at
X;).

* Internal vertices of A are singletons.

e Every leaf X; of A is spanned by a (1, 2)-tree-like collection 7; on G with maxi-
mum degree 3.
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¢ The (unique) forward and backward arcs incident to a leaf X; have endpoints in
Ti with degree at most 2, and if these endpoints coincide, the degree is at most 1
in 7;. In other words, adding the arcs as edges of 7; preserves maximum degree
3.

* Every edge of G is involved in at most one arc of 7 and one path of 7;. In other
words, the edges of G involved in 7 and the 7;’s are distinct.

Let G be connected and bridgeless. Let us call 7 a strongly-connected digraph whose
vertices are subsets X; of V(G) satisfying the following properties:

e The X;’s form a partition of V(G).

e The arcs of 7 are of two types: the forward arcs forming a rooted out-
arborescence A, and the backward arcs, always directed from a vertex to one of
its ancestors in A.

e Every arc X;X; corresponds to some edge x;x; € E(G) such that x; € X; and
Xj € X]'.

* There is at most one backward arc leaving each vertex X; (unless 7 is rooted at
X;).

¢ Internal vertices of A are singletons.

e Every leaf X; of A is spanned by a (1, 2)-tree-like collection 7; on G with maxi-
mum degree 3.

¢ The (unique) forward and backward arcs incident to a leaf X; have endpoints in
7Ti with degree at most 2, and if these endpoints coincide, the degree is at most 1
in 7;. In other words, adding the arcs as edges of 7; preserves maximum degree
3.

¢ Every edge of G is involved in at most one arc of 7 and one path of 7;. In other
words, the edges of G involved in 7 and the 7;’s are distinct.

We first show that G has such a structured-tree 7, using a classical algorithm
to find a strongly-connected orientation of a bridgeless graph. Fix a vertex x and
compute a Depth-First-Search tree A from x. Orient the edges of A from x to form
the forward arcs. By the DFS property, every edge of G not in A joins vertices which
are parents. Orient these edges from the descendent to the ancestor: these are our
backward arcs. Since we need to keep at most one backward arc issued from every
vertex, we only keep the arc going to the lowest ancestor. Note that we obtain a
structured-tree 7, where each X; is a singleton vertex in G and every leaf 7; is a trivial
(1,2)-tree-like collection on one vertex.
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We now prove that every structured-tree 7 with at least two vertices on G can be
reduced to one with less vertices. This will imply that 7 can be reduced to a single
vertex X; = V(G), hence providing the subcubic spanning (1, 2)-tree-like collection

Ti.

We start by deleting the backward arcs of 7 which are not needed for strong con-
nectivity. Then we consider an internal vertex X; = {x;} of A with maximal height.
Let X7, X», ..., X; be the (leaf) children of X;. Each forward arc X;X; corresponds to
an edge x;x;, where x; € X; and x; € X;. Each of these leaves X; is the origin of a
backward arc X;X] which we write y;x}, where y; € X; and x] € X/. We assume that
our enumeration satisfies that X/ 41 is always an ancestor of X! (possibly equal to X)).
We now discuss the different reductions, in which the conditions of structured-trees
are easily checked to be preserved.

* If X; has only one child X; and is not the origin of a backward arc, we merge
Xy and X; into a unique leaf X;; spanned by the (1,2)-tree-like collection 71 U
{xlx]-}. If X; is the root, we are done, otherwise we let the forward arc entering
X3 be the one entering X;, and the backward arc leaving X;; be leX{ (thus
corresponding to the edge y1x}).

e If X; has only one child and is the origin of a backward arc X]-X;, we merge
Xy and X; into a unique leaf X;; spanned by the (1,2)-tree-like collection 71 U
{x1x;}. The forward arc entering Xj; is the one entering X;, and the backward
arc leaving Xj; is the one of X]X;

o If Xj has at least three children, or Xj has two children and is the origin of a
backward arc, observe that deleting X; and X, from 7 preserves strong con-
nectivity. Hence we merge X; and X, into a unique leaf Xj, spanned by the
(1,2)-tree-like collection 77 U 7, U {xlxsz}. The forward arc entering X, is
xjy1 (hence reversing the backward arc X;X}), and the backward arc leaving
X1z is X1 X, corresponding to y»x5.

* The last case is when X; has two children X; and X; and is not the origin of a
backward arc. Here we merge Xj, X5, X; into a unique leaf X;,; spanned by the
(1,2)-tree-like collection 71 U T> U {x1x;} U {x2x;}. If X; is the root, we are done,
otherwise we let the forward arc entering X1;; be the one entering X;, and the
backward arc leaving X,; be X15; X (thus corresponding to y»x5).

This completes the proof of Lemma 3.11. O

We now turn our (1, 2)-tree-like collection into a (1, k)-tree-like collection. For this
we need to feed our original 2-edge-connected graph G (in which we find the (1,2)-
tree-like collection) with some additional graph H, edge-disjoint from G, and with
large enough degree.
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LEMMA 3.12

Let G = (V,E) be a graph. Let T be a spanning (1, k)-tree-like collection of G,
where k > 2. Let H be a graph on V, edge-disjoint from G, with the property that
dr(v) = 2(dr(v) + 2k) for every vertex v of G. Then there is a (1,k + 1)-tree-like
collection T' spanning G U H.

Proof. Start by arbitrarily orienting the edges of H in a balanced way so that every
vertex v of H has outdegree at least dr(v) + 2k. Every vertex is hence provided with a
set of private edges in H, namely, its out-going arcs. We will use these private edges
to transform k-paths of 7 into (k + 1)-paths.

In this proof, a structured-tree T’ on G is a rooted (1, k)-tree-like collection whose
vertices are subsets X; partitioning V(G) and satisfying the following properties:

* If X;Xjis anedgein 7”, then there exists a corresponding 1-path or k-path x;x; €
E(T), where x; € X; and x; € X;.

o If X; has children Xj,..., X, in 7' then there is a unique xj € X; such that
X1}, ..., X,;Xj are the corresponding paths in E(T). We call x; the center of X;.

* Every vertex X; of 7 is spanned by a (1, k + 1)-tree-like collection 7.

Initially, let 77 be the structured-tree 7, where each X; is a singleton element {x;}
in V(T). Note that all the vertices of 7" are trivial (1,k + 1)-tree-like collections. Our
goal is to iteratively reduce 7' to a structured-tree consisting of one single vertex X;,
hence providing a spanning (1, k + 1)-tree-like collection 7;'. We will always make
sure that at any iteration every center x; has at least r + 2k private edges, where 7 is
the number of children of X;, hence guaranteeing the repetition of the process. Let us
now show that 7" can be reduced to a structured-tree with less vertices (unless 7 is
a single vertex).

We consider an internal vertex X; of T’ with maximal height. Let Xj, ..., X, be
the (leaf) children of X]- corresponding to paths X1Xj, ey Xy Xj, where X; is the center of
X;. If one of these paths, say x1x;, is an edge, we simply create a new vertex X;; by
concatenating X; and X; and letting 7;; = T U T; U {x1x;}. So we can assume that
every x;x;-path has length k.

Consider X; and one of its children, say X;. Let y be a private neighbor of x; which
is not a vertex of the path x;x;. Such a y exists since x; has at least 2k + r private
neighbors. We distinguish two cases, in which the conditions of structured-trees are
easily checked to be preserved:

* We first consider the case where y is in some X;, X; # Xj. Call P the (k+ 1)-path
obtained by concatenating the k-path x;x; with the edge x;y. We here add X; to
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the set X; to form the set Xy; which is spanned by 7/, = T; U T; U {P}. Here x;
loses one private edge, but X; has one less child.

* The second case is when y € Xj. We here add X to the set X; to form the set
Xi; which is spanned by the (1, k + 1)-tree-like collection 1’]. =T/ U Tj’ U{xjy}.
Here x; loses one private edge, but X; has one less child.

This completes the proof of Lemma 3.12. O

The next result follows from Lemma 3.11 and repeated applications of
Lemma 3.12:

COROLLARY 3.13

For every {, there exists L such that if G = (V, E) is a 2-edge-connected graph and
H is another graph on V, edge-disjoint from G, with minimum degree at least L, then
one can form a spanning (1, ¢ + 1)-tree-like collection T where dr(v) < dy(v) for
every vertex v.

Proof. We first apply Lemma 3.11 to get a subcubic (1, 2)-tree-like collection 7y from
G. Fix a sufficiently small ¢ > 0. We choose a sequence of edge-disjoint subgraphs
Hi,...,Hy_1 of H, where each H; is an ¢;-fraction of H, where ¢;,1 = 4¢; for all i.
Free to choose L large enough as a function of &1, we can clearly obtain the desired
subgraphs Hj, ..., H;_1 by repeatedly applying Proposition 3.4. Since L is sufficiently
large, for each vertex v, we have that dy, (v) > &L — 10¢¢ > 2dt,(v) 4+ 4¢. Thus, by
Lemma 3.12, we can use H; to extend 7y into a (1, 3)-tree-like collection 77. Note that
dr,(v) < dr,(v) + dp, (v). Now we have that dp, (v) > 3.5dp, (v) > 2dr, (v) + 4/, and
thus, we can again use H» as an additional graph to extend 77 into a (1, 4)-tree-like
collection 7, with dr,(v) < dr,(v) + dn, (v) + dp,(v). We iterate this process to form
our (1, ¢ + 1)-tree-like collection 7. Note that

—
tr(0) <dn(0) + ¥ dn(0) < L < du(o),
i=1

where the second to last inequality follows from the fact that we can choose ¢; to be
arbitrarily small. I

Our ultimate goal now is to find tree-like collections where the lengths of the paths
are a multiple of some fixed value ¢. One way to do so is to transform some (1, ¢+ 1)-
tree-like collections into (¢,2¢)-tree-like collections. Note that if ¢ is even, and our
graphs G and H are bipartite with the same bipartition, then there is no spanning
(¢,20)-tree-like collection since an even path always connects a partite set with itself.
The next result asserts that we can nevertheless connect each partite set separately.
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LEMMA 3.14

For every even integer {, there exists L such that if G = (V,E) is a 2-edge-
connected bipartite graph with vertex partition (A, B) and H is another bipartite
graph on V with vertex partition (A, B), edge-disjoint from G, and with minimum
degree at least L, then one can form an (¢,2()-tree-like collection T spanning A
where dr(v) < dy(v) for every vertex v.

Proof. We first use a small e-fraction of H (and still call H the graph minus this fraction
for convenience) in order to apply Corollary 3.13. We can then obtain a spanning
(1,4 + 1)-tree-like collection 7" where dy(v) < edy(v) for all vertices v. Note that
e > 0 can be taken arbitrarily small since we can take L so that €L is sufficiently
large to apply Corollary 3.13. We now apply Theorem 3.9 on H to find an (¢ — 1)-
collection H' (while preserving the balanced orientation given by the proof) on H
with conf(H’) < ¢ and

1+e¢
dp ()

1—¢
< / <
dy(v) <dg (v) < 71

/-1
for all vertices v.

In our construction, every step consists in extending a path P of 7 starting at
some vertex v using a private (i.e., out-going) (¢ — 1)-path from H’. This will form
either an /-path or a 2¢-path. According to the conflict ratio assumption and the fact
that € can be chosen to be sufficiently small, every such P is conflicting with at most
|Pledy (v) < dp(v)/8 private paths of v, which is 1/4 total number of private paths
of v. In our upcoming process, the total number of private paths of v we will use is at
most dr(v) < edy(v), thus at most 1/4 of the total number of private paths of v since
d?;, (v) > %d H(v). Hence, even if we have already used 1/4 of the private paths of v,
and we need a private path of v which is non-conflicting with two paths of 7 incident
to v, we can still find one. Thus, in the upcoming arguments, we always assume that
a private path is available whenever we need one.

We now turn to the construction of the (¢,2¢)-tree-like collection 7" spanning A.
A structured-tree T' on G is a rooted tree in which the vertices are disjoint subsets X;
whose union covers a subset of V(G) containing A with the following properties:

e If X;X; is an edge in 7”, then there exists a corresponding 1-path or (£ + 1)-path
x;x; € E(T), where x; € X; and x; € X;.

e If X; has children Xj, ..., X; then there is a unique x; € X; such that x1x;, ..., x,x;
are the corresponding paths in 7. We call x; the center of X;.

e Every vertex X; containing an element of B is a singleton, i.e., X; = {x;}.

* Every vertex X; of 7 is spanned by an (¢, 2¢)-tree-like collection 7,
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We again start with 77 equal to 7 in the sense that all X;’s are singletons, and all
T.”’s are trivial (¢,2()-tree-like collections. We root 7' at some arbitrary vertex of A.
Again our goal is to show that we can reduce T until it is reduced to its root, which
will therefore be equal to the set A, covered by an (¢,2¢)-tree-like collection. Note
that since £ is even, we always have that an edge X;X; of 7' connects a vertex of B
and a subset of A.

Observe first that if 77 has a leaf in B, we can simply delete it and keep our prop-
erties. We can then assume that all leaves are subsets of A. We consider an internal
vertex X; of 77 with maximal height. Let Xj, X3, ..., X, be the (leaf) children of X;
corresponding to the paths x1xj, ..., x,x;. Note that all X;’s are subsets of A, and that
Xj = {xj} is in B. We now discuss the different reductions, in which the conditions of
structured-trees are easily checked to be preserved.

Consider X; and one of its children, say X;. Let X be the parent of X; in T’. Note
that Xj is a subset of A. We denote by x;x; the path of T joining X; and X;. Let y
be a private neighbor of x; which is not a vertex of the path x;x; and x;x;. We again
consider two cases:

e First assume that y is in some X;, with X; # Xj;. We denote by P’ the path
obtained by concatenating the path x;x; with x;y. Note that P’ is an /-path or

a 2(-path. We add Xj to the set X; to form the set Xj; which is spanned by

1; = T UT/ U {P'}. Note that x; loses a private path, but X; has one less child.

¢ Otherwise, y € X;. We add X to the set Xj to form the set X; which is spanned
by the (¢,2()-tree-like collection 77, = T; U T] U {P"}, where P" is the concate-
nation of x;x; and x;y (note that P” is an (-path or a 2¢-path). Note that x; loses
a private path, but X; has one less child.

This completes the proof of Lemma 3.14 O

We will also need the following lemma.

LEMMA 3.15

Let ¢ be a positive integer. There exists L such that if Gy = (V,E) is a 2-edge-
connected graph and G, = (V,F) is a graph of minimum degree at least L edge-
disjoint from Gy, then there is a connected [¢, £ + 3]-collection P decomposing Gy U

Gy with conf(P) < m.

Proof. Start by applying Lemma 3.11 to get a spanning (1, 2)-tree-like collection 7 of
G1 such that Hy is subcubic, and put the non-used edges of G; in Gp. Still calling
this graph G,, we decompose G; into a 1/(5¢)-fraction Ry and a 1 — 1/ (5¢)-fraction
Ry, by Proposition 3.3. Thus, by Theorem 3.10, G, can then be decomposed into two
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(¢, ¢ +1)-collections P; and P», respectively, both having conflict ratio at most m,
and verifying

1—c¢ 1+e¢
DA™ <) < G gin®

for all vertices v, and any .

In our construction, every step consists in extending a path P of 7 starting at v
using a private (> ¢)-path starting at v in P; (where we recall that the private paths
at any vertex are its out-going paths in a balanced orientation of P;). This will form a
(=7 )-path. By the assumption on the conflict ratio, every P is conflicting with at most,
say, half of the private paths of v. Because H is subcubic, the total number of private

paths of v we will need is at most 6. Since L can be chosen so that 5% . 217 . <1 — M)
is arbitrarily large, we can hence assume we have enough private paths for the whole

process.

We now turn to the construction of the spanning (> /)-tree-like collection 7" from
T and P;. We start with a structured-tree T', which is a rooted tree in which the
vertices are disjoint subsets X; partitioning V' with the following properties:

e If X;X;jis an edge in 7', then there exists a corresponding 1-path or 2-path x;x; €
E(T), where x; € X; and x; € X;.

 Every vertex X; of 7" is spanned by a (> ¢)-tree-like collection 7'

We again start with 7" being equal to 7 in the sense that all X;’s are singletons,
and all 7;’s are trivial (> £)-tree-like collections. We root 7’ at some arbitrary vertex.
Again our goal is to show that we can reduce 7" until it is reduced to its root, which
will therefore be a spanning (> £)-tree-like collection.

We consider a leaf X; of 7' with direct ancestor X;. Then there exists a path x;x;
of 7" having length 1 or 2. We pick a private path x;y € Hj not conflicting with the
path x1x;. Assume y € X;. If Xi # X, then we denote by P the path obtained by
concatenating x1x; and x;y. Then we add X; to Xj to form the set Xy being spanned
by T = T/ UT] U{P}. If X; = Xj, then we add X to X; to form the set X;; being
spanned by 7;; = T{ U T, U {x;y}. We choose a private path x;z in P not conflicting
with x1x;, and concatenate these two paths to get a path x;z that we put back into P;.

Once the procedure above is finished, we end up with a spanning (> /¢)-tree-like
collection 7" and an (¢, £ 4+ 1)-collection P;, where P is the collection remaining from
P1 after we have used some of its paths to obtain 7'. Let P := 7' U P; U P>. Then
P covers all edges of G. Note also that P is an [¢, £ + 3]-collection. Since d7,p/(v) <
dp,(v) + 3 for every vertex v and we can choose € to be sufficiently small, we have
drip;(v) < dp,(v)/4(L + 10) for every vertex v. Thus,

conf(7" UP]) - 1 N 1 o 1
4(¢ +10) 4(0+10)  4(£+10) ~ 2(£+10)

conf(P) < conf(P,) +
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which concludes the proof. O

3.4 Path-decompositions

Before completing the proof of Theorem 3.2, we need some notions about Eulerian
graphs, which we will study in details in Chapter 4. We call P an Eulerian collection if
Hp is Eulerian. From an Eulerian tour in Hp, we naturally get a corresponding Eu/e-
rian tour in P. Such a tour is non-conflicting if every two of its consecutive paths are
non-conflicting. It was proved, under the following different terminology, by Jackson
(cf. [Jac93], Theorem 6.3) that Eulerian collections with somewhat low conflicts have
non-conflicting Eulerian tours.

The original result of Jackson is as follows. For a vertex v, let E;, be the set of
edges incident to v. A generalised transition system S for a graph G is a set of func-
tions {Sv}yev(G) such that S, : E, — 2Fv and whenever e; € S,(e;), we have that
e2 € Sy(e1). We say that an Eulerian tour £ is compatible with S if for all v € V(G),
whenever e; € S,(e2) it follows that e; and e, are not consecutive edges in £.

THEOREM 3.16 Jackson [Jac93]

Let S be a generalised transition system for an Eulerian graph G. Suppose that for
each vertex v € V(G) and e € E,, we have

(i) |Su(e)] <

(ii) |Sy(e)| <

1d(v) — 1 when d(v) = 0(mod 4) or d(v) = 2, and
1d(v) — 2, otherwise.

Then G has an Eulerian tour compatible with S.

From Theorem 3.16, the following result is immediate.

THEOREM 3.17

Every Eulerian collection P with conf(P) < 1/2(¢ + 10) and dp(v) > ¢+ 10
for every v has a non-conflicting Eulerian tour.

Proof. Let P € P(v). The number of paths of P(v) conflicting with P is at most
mw +3)dp(v), and so at most 3dp(v) — 2 since dp(v) > ¢+ 10. The result now
follows from Theorem 3.16. O]

We now have all ingredients to prove Theorems 3.2.

Proof of Theorem 3.2. Without loss of generality, we assume that £ is even (as the state-
ment for paths of length 2k implies the statement for paths of length k). First of all,
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we consider a maximum cut (V;, V2) of G, and just keep the set of edges F across the
cut. We call G’ the graph (V, F). Observe that G’ is at least 12-edge-connected and
has minimum degree at least d, /2.

By Proposition 3.6, there is an orientation D of G’ such that D is 6-arc-strong and
with d* (v) and d~ (v) differing by at most 1 for every vertex v. By applying Proposi-
tion 3.7 to D with some vertex z, we obtain 6 arc-disjoint out-arborescences, T, ..., Ty,
rooted at z. Since each vertex v has in-degree at most 1 in T; (z has in-degree 0), and
d}(v) and dp, (v) differ by at most 1, the graph Ty U ... U Tg is 1/2-sparse in G'.

Call now Gy := Th'UT,, Gy := T3 UTy, Gz := T5 U T, and let R be the graph
consisting of all the edges of F which are not in Gy, G, G3. Observe that Gy, Gy, G3
are connected and bridgeless. Furthermore, the graph G; U G, U Gz is 1/2-sparse in
G’, and hence R is 1/2-dense in G'. In the sequel, several fractions of edges will be
removed from R, but, for the sake of legibility, we will still call R the set remaining
after the transfers.

We turn G; into an (¢, 2¢)-tree-like collection as follows: we consider a small &-
fraction R; of R, and apply Lemma 3.14 (with G; for G and R; for H) to form an
(¢,20)-tree-like collection 7' spanning V; in which dy/(v) < dg,(v) for all vertices
v € V;. In other words, 7" is ¢’-sparse in R for some negligible ¢’ > 0 depending on e.
Similarly, we can obtain, from Gy, a ¢’-sparse (¢, 2¢)-tree-like collection 7" spanning
V,. We still consider (neglecting the two e-fractions) that R is 1/2-dense in G’. Add
all edges of E(G)\F to R.

Now, G = Gz U Uy UUy» UR. We claim that we can remove a collection of /-
paths or 2/-paths from the tree-like collection 7' spanning V; in a way so that we
can obtain that at most one vertex of V; has odd degree in G. Indeed, note that the
following claim is straightforward.

Given a tree T and an even subset X of V(T), then there exists a set of edges F C E(T) such
that for each vertex x, dp(x) is odd if and only if x € X (one way to see this is to note that the
characteristic vector of X is in the span of the incidence matrix of T).

In particular, denoting by X; the set of all odd-degree vertices of Gz U U7 U R inside
V1 (and possibly removing one vertex of X; to make X; of even size) we can find a
sub-collection F’ of T’ such that dz (v) is odd if and only if v € Xj. In other words,
removing the /- or 2{-paths of 7" corresponding to F' leaves G with every vertex
of V1 (except possibly one) having even degree. Similarly, we remove paths of the
tree-like collection 7" spanning V, so that at most one vertex of V, has odd degree.

We still call G the remaining graph after the procedure, and we add the remaining
edges of U7 U Ug» to R. Then G = G3 U R. Note that Gz is 2-edge-connected, and R is
1/4-dense in G. By applying Lemma 3.15 (with G3 for G; and R for G;), G contains a
connected [/, ¢ + 3]-collection P with conf(P) < 1/2(¢+10). Note thatdg(v) —dp(v)
is even for every vertex v — so the degree of every vertex in P is even, except (possibly)
for two vertices v; € V; and v, € V5. In this case, we add a dummy ¢-path from vy
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to v; in P to make H Eulerian. By Theorem 3.17, we get that P has a non-conflicting
Eulerian tour from which we can deduce the desired decomposition. O
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Chapter 4

Decomposing Eulerian Graphs

4.1 Haggkvist and Kriesell’s conjecture

In this chapter, we will investigate pattern-decompositions of large Eulerian graphs.
Another equivalent definition of an Eulerian graph is that it is connected and the
degree of all vertices are even, which is relatively cheap to achieved just by arbitrar-
ily pairing odd-degree vertices and add an edge between each pair. Thank to the
even-degree property, Eulerian graphs offers a significant advantage for both flows
in graphs and path-decomposition, since the main task in these problems is pairing
incident edges. That advantage is verified by the fact that a connected graph has a 2-flow
ifand only if it is Eulerian. Besides, the proof of Theorem 3.2 in Section 3.4 also employs
some arguments on Eulerian graphs. In fact, it is not very hard to see that if the graph
is Eulerian, then we can reduce the edge-connectivity to 4.

THEOREM 4.1

For every positive integer ¢, there is an integer d, such that every 4-edge-connected
Eulerian graph G with minimum degree at least d), and size divisible by ¢ admits a
Py-decomposition.

The proof of Theorem 4.1 will be presented in Section 4.3. It is natural to ask
whether we can remove the 4-edge-connected condition, i.e, whether every Eulerian
graph with high minimum degree and size divisible by { admits a Py-decomposition. It turns

The content of this chapter is covered in paper Locally self-avoiding Eulerian tours, Tien-Nam Le,
Journal of Combinatorial Theory, Series B, to appear, and in a part of paper Edge-partitioning a graph into
paths: beyond the bardt- thomassen conjecture, Julien Bensmail, Ararat Harutyunyan, Tien-Nam Le, and
Stéphan Thomassé, Combinatorica, pages 1-25, 2018.
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out that Haggkvist ([Hag89], Problem 3.3) and Kriesell [Krill] conjectured a more
general statement regarding self-avoiding Eulerian tours.

Given an Eulerian tour £ of a multigraph G, for every positive integer /, a walk
eiez...e¢ where any e;, e; ;1 are consecutive edges of £ is called a segment of length ¢ of
E. We say that £ is (-step self-avoiding if every segment of length at most £ of £ is a
path, which is equivalent to that £ “contains" no cycle of length at most £.

Haggkvist ([Hag89], Problem 3.3) and Kriesell [Kri11] independently conjectured
that high minimum degree is a sufficient condition for the existence of an ¢-step self-
avoiding Eulerian tour.

CONJECTURE 4.2 [Hag89, Krill]

For every positive integer {, there is an integer d, such that every Eulerian graph G
with minimum degree at least dy admits an {-step self-avoiding Eulerian tour.

Héaggkvist also asked to identify the minimum of d if it exists. There is in fact
very little is known about self-avoiding Eulerian tour, except for the case ¢ = 3, a.k.a.
triangle-free Eulerian tours. Adelgren [Ade95] characterized all graphs with maximum
degree at most 4 which admit a triangle-free Eulerian tour before Oksimets [Oks97]
proved Conjecture 4.2 for £ = 3 with a sharp bound d3 = 6. The main part of this
chapter is devoted to verify Conjecture 4.2.

THEOREM 4.3

For every positive integer £, there is an integer d, such that every Eulerian graph
G with minimum degree at least d, admits an (-step self-avoiding Eulerian tour.

By just cutting the tour found by Theorem 4.3 into paths of length ¢, we immedi-
ately obtain a P)-decomposition of G, answering the question at the beginning of this
chapter.

COROLLARY 4.4

For every integer ¢ > 2, there is an integer dy such that every Eulerian graph with
size divisible by { and minimum degree at least dy can be decomposed into paths of
length {.

Outline the proof of Theorem 4.3

The following theorem is the self-avoiding tour version of Theorem 4.1.

THEOREM 4.5
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For every positive integer {, there is an integer d, such that every 4-edge-connected
Eulerian graph G with minimum degree at least d), admits an (-step self-avoiding
Eulerian tour.

Clearly, Theorem 4.5 cannot be extended to multigraphs: a multigraph consist-
ing of two vertices linked by many edges is a counterexample. However, the main
tool to prove Theorem 4.3 is indeed the following weak extension of Theorem 4.5 to
multigraphs. Roughly speaking, we only require the Eulerian tour to behave well on
a given simple subgraph, not necessary on the whole multigraph. Please note that
multigraphs in this chapter may contain multiple edges and loops, where each loop con-
tributes two to the degree of the incident vertex.

THEOREM 4.6

For every integer {, there is an integer dy such that for every 4-edge-connected
Eulerian multigraph G with minimum degree at least d, and every simple subgraph
G’ of G, the multigraph G admits an Eulerian tour in which every segment of length
at most ¢ and consisting of only edges of G' is a path.

4.2 Merging multiple Eulerian tours

In this section, we use Theorem 4.6 as a black box to prove Theorem 4.3. Then we
prove Theorem 4.6 in the next section. We start by recalling the definition of cactus
graphs.

DEFINITION 4.7

A connected loopless multigraph is a cactus if every edge belongs to at most one
cycle.

The singleton graph is a cactus by convention. Clearly, if a cactus is Eulerian then
every edge belongs to exactly one cycle. The following is a well-known property of
cactus graphs.

PROPOSITION 4.8

There are at most two edge-disjoint paths between any two distinct vertices of a
cactus.

The main idea of the proof of Theorem 4.3 is as follows. We first partition the orig-
inal graph G into 4-edge-connected Eulerian “induced subgraphs”; these subgraphs
are structurally linked by a big cactus. We then apply Theorem 4.6 to obtain a well-
behaved Eulerian tour of each subgraph, and finally connect these tours by the cactus
to get an Eulerian tour of G.
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Given a multigraph G = (V,E), to contract a set of vertices X C V, we remove
all edges inside X, and then merge the vertices of X to a new vertex x, and each edge
incident to x corresponds to an edge incident with some v € X. Note that if the sum
of degrees of vertices of X is even, then the degree of x is even.

Let G = (V,E) be an Eulerian multigraph and X be a partition of V into non-
empty sets Xi, X», ..., Xi for some positive integer k. Let My be the loopless multi-
graph obtained from G by contracting each X; to a new vertex x;. Clearly, the degree
of each x; of My is even. If k > 2, we have that My is connected since G is connected,
and hence My is Eulerian.

Let us suppose for the moment that My is a cactus. Thus an edge e of My belongs
to exactly one cycle in My. Let ¢’ be an edge of the same cycle and incident with e.
We say that {e, ¢’} is a puir at x;, where x; is some endpoint shared by e and ¢’. Note
that every edge belongs to exactly one pair at each of its endpoints, and hence belongs
to exactly two pairs in total. Since each edge e of My corresponds to an edge of G,
we may use ¢ to denote both interchangeably. For every pair {¢,¢’} at some x;, each
edge has a unique endpoint in X;, say u and u’ respectively. We create a new dummniy
edge f = wuu' associated with the pair {e, e’} (note that f may be a loop). For every
1 < i < k, let F; be the edge set of G[X;] and F; be the set of all dummy edges on
X;, and let G; = (X;, F; UF;). We say that the multigraphs Gi, ..., Gy are inherited from
X. Clearly, d¢,(v) = dg(v) for every v € X;. The following lemma asserts that there
is a partition such that the inherited multigraphs are 4-edge-connected and Eulerian,
which are essential conditions to employ Theorem 4.6. For the sake of clarity, we do
not consider edge-connectivity of multigraphs on a single vertex.

LEMMA 4.9

Given an Eulerian multigraph G = (V,E), there exists a partition X of V such
that My is a cactus, and every G; inherited from X is either a single vertex with
loops or a 4-edge-connected Eulerian multigraph.

Proof. The proof is by induction on |V|. For the case |V| = 2,1let V = {u,v}. If G has
only two edges between u and v, then X = {{u}, {v}}; otherwise, ¥ = {{u,v}}. The
lemma holds for |V| = 2.

For the case |V| > 2, if G is 4-edge-connected, then X = {V(G)}. Otherwise, G
contains an edge-cut of size 2, i.e. an edge-cut consisting of two edges. Consider an
edge-cut partitioning V into X; and V' such that | X; | is minimum among all possible
edge-cuts of size 2. Let us call the two edges of the cut u1v; and upv,, where uq,uy €
X1 and v1,v2 € V. We create two dummy edges f = wujup and f' = v1vp. Let
fl = {f}, and Fl = E(G[Xl]) Let Gl = (Xl, Fl Ufl) and G/ = (V/,E(G[V/]) U {f/})
There are at least two edge-disjoint paths in G between any two distinct vertices of
Xi. If both paths contains vertices of V’, then the edge-cut must has size at least 4, a
contradiction. Therefore there is a path in G[X;] between any two distinct vertices of
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Xi. Thus if |X;| > 1 then G is connected, and hence is Eulerian since the degree of
every vertex of G is even. Similarly, G’ is Eulerian.

Suppose that G; contains an edge-cut of size 2 partitioning X; into X and X7 If
up and uy are in the same partition, say X}, then that edge-cut is also an edge-cut of
G partitioning V into X} and V' U X}, which contradicts the minimality of |X;|. If
u; € X{ and up € X/ then that edge-cut consists of f and another edge, say e. Then
{e, 101} is an edge-cut of G partitioning V into X} and V' U X{, a contradiction again.
It follows that G; contains no edge-cut of size 2, and so is 4-edge-connected.

Applying induction hypothesis to the Eulerian multigraph G’ gives a partition
of V/'into X' = {Xy, ..., Xi} such that My and G, ..., G inherited from X' satisfy
Lemma 4.9. Let x; € My corresponds to X; forevery 2 <i < k. Set X = X" U{X;}
and construct My as follows:

(@) If v1,v2 € G; for some i, then My is obtained from My by adding x; and two
parallel edges x1x;, corresponding to edges u;v; and 120, of G. Hence there is
only one pair at xq: {#1v1, upv2}, and f is its associated dummy edge. There is
one more pair at x; in My comparing with x; in My: {v111, v2u}, and f’ is its
associated dummy edge.

(b) Otherwise, v; € G; and v; € Gj for some i # j. There must be an edge X;X;j in
My corresponding to f’ in G'. We obtain My from My by adding vertex x1,
edge x1x; corresponding to u;v1 and edge x1x; corresponding to uyv; together
with deleting the edge x;x; corresponding to f’. There is only one pair at x;:
{u1v1,u2v2}, and f is its associated dummy edge. The set of pairs at x; (res. x))
of My are identical to the set of pairs at x; (res. x;) of My, except that vyu; (res.
vyuip) replaces f’ in some pair at x; (res. at x;).

The multigraphs G, ..., G inherited from X in this construction are identical to the
multigraphs Gy, ..., G inherited from A”. By induction hypothesis, for every i > 2, if
G; has more than one vertex then it is 4-edge-connected and Eulerian. Note that x;
has degree 2, and M- is a cactus, then so is M y. This proves the lemma. O

Given an Eulerian tour £ of G and a subset X of V, a segment v1v,...v, (r > 3)
of £ is an X-boomerang if v,v, € X and vy, ...,v,—1 & X. A projection of £ on X is an
Eulerian tour £x obtained from & by replacing every X-boomerang, say v1vs...vr, by
a dummy edge (possibly a loop) between v; and v,. If £x is a projection of £, we say
& and Ex are compatible.

Let G be an Eulerian multigraph and A" be a partition of G together with My and
inherited Gy, ..., G¢ given by Lemma 4.9. For every i, let & be an arbitrary Eulerian
tour of G;.

CLAIM 4.10
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There exists an Eulerian tour £ of G compatible with all &;. Furthermore, for every
pair {e, e’} at some x;, there is an X;-boomerang of & starting and ending by e and

e

Proof. We reuse all notations in the proof of Lemma 4.9 and proceed by induction
on k. The claim clearly holds for k = 1. For k > 1, recall that by the algorithm in
the proof of Lemma 4.9, the Eulerian multigraph G has k — 1 inherited multigraphs
identical to Gy, ..., Gx of G. Hence, by the induction hypothesis applied on G, there
exists an Eulerian tour £’ of G’ compatible with all &;,i > 2, and for every pair {e, ¢}
at some x;,i > 2, there is an X;-boomerang of £’ starting and ending by e and ¢’. Note
that in cases (a) and (b) of the proof of Lemma 4.9, the only pair at x; is {u1v1, upvp}
associated with f. Let W; be the walk obtained from &; by removing f, and £ be the
Eulerian tour on G obtained from £’ by replacing f’ by the segment v 11 Wiuo0;. It is
straightforward that, in both cases (a) and (b), the tour £ satisfies Claim 4.10. O

Let {¢,¢'} be a pair at some x;, and W be the X;-boomerang of £ starting and
ending by e and ¢’. Let W be the segment obtained from & by removing W.

CLAaIM 4.11

‘ If W visits a vertex v & X;, then W does not visit v.

Proof. Suppose that the claim was false. Let v € X; for some j # i. Contracting every
X; to x; naturally yields from W and W two edge-disjoint walks Wy and Wy in My,
respectively. By following Wy from x; to x; and return to x;, and then following W y to

x;, we obtain three edge-disjoint walks between x; and x;, contrary to Proposition 4.8.
O

CLAIM 4.12

If G has minimum degree d, then whenever £ leaves X;, it takes at least d steps to
return to X;.

Proof. The claim is equivalent to that every X;-boomerang W has length at least d.
Suppose that W visits vertex v ¢ X;. By Claim 4.11, W must contains all edges incident
with v, and hence has length at least d. O

We are ready to prove Theorem 4.3.

Proof of Theorem 4.3. Let G be an Eulerian graph with minimum degree at least dy, the
constant of Theorem 4.6. There is a partition X = {Xj, ..., X} of V(G) together with
inherited multigraphs G;, ..., Gi satisfying Lemma 4.9.
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If G; consists of only one vertex and some loops, let & be an arbitrary Eulerian
tour of G;. Otherwise, Lemma 4.9 asserts that G; is Eulerian, 4-edge-connected, and
dg,(v) = dg(v) > dy for any v € X;. Also note that G[X;] is a simple subgraph of
G;. We thus get, by Theorem 4.6, an Eulerian tour &; of G; of which every segment
of length at most ¢ and containing only edges of G[X;] is a path. Claim 4.10 gives an
Eulerian tour £ of G compatible with all &;.

The proof is completed by showing that every segment W of length at most ¢ of
€ is a path. Suppose that W = Wie; Wes...e;—1 Wy, where each W; (possibly of length
0) contains only vertices of some X; , and e; is an edge between two distinct sets X;
and X; ,,. By Claim 4.12, whenever £ leaves some X;, it takes at least d, > / steps to
return to X; , while the length of W is at most /. Therefore X; # X; for everys # r.
Because £ is compatible with &; , and W; contains only vertices of X; , we have that
W; is a segment of &;.. Since W; C G[X;,] and has length at most /, it is a path by
Theorem 4.6. This means that W is a path, and the proof is complete. O

4.3 Self-avoiding tours on Eulerian multigraphs

In this section, we will prove Theorem 4.6 to complete the proof of Theorem 4.3. We
start with the proof of Theorem 4.5.

Proof of Theorem 4.5. Following the arguments in the second paragraph of Theo-
rem 3.2, we can extract from G two trees T; and T so that Ty U T, is 1/2-sparse
in G. Let G| := T1 UTy, and G, := G\G;. Then Gj is 2-edge-connected, and G,
is 1/2-dense. Applying Lemma 3.15, we can express G as a connected [/, { + 3]-
collection P with conf(P) < 1/2(¢ + 10). Since G is Eulerian, so is P. Hence P has
non-conflicting Eulerian tours according to Theorem 3.17, and these tours do not
have cycles of length at most ¢ since all paths of P have length at least ¢. O

Suppose that we have a decomposition P of an Eulerian graph G with all paths
of length at least /. Then just by concatenating the paths arbitrarily, we obtain a de-
composition of G into several circuits since G is Eulerian. If every two consecutive
paths (i.e., they are concatenated) are non-conflicting, then all circuits are /-step self-
avoiding. Theorem 3.10 provides a low conflicting decomposition for this purpose.
In order to obtain an ¢-step self-avoiding Eulerian tour, it is necessary that the process
of concatenating returns a single circuit; this is taken care by Lemma 3.11.

The proof of Theorem 4.6 is partly similar to the proof of Theorem 4.5 but more
involved. The main difficulty here is that certain arguments on simple graphs in
the proof of Theorem 4.5 could not be extended to multigraphs. To overcome these
difficulties, we introduce the notions of F-paths and F-path-collections as an extension
of paths and path-collections in Section 3.2.
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F-path-collections

Given a multigraph G = (V, E) and a subgraph G’ = (V, F) satisfying the hypotheses
of Theorem 4.6, the goal is to find an Eulerian tour £ of G such that every segment
of £ of length at most ¢ and consisting of only edges of F is a path. To this end, we
introduce a relaxation of path, called F-path, to depict the characteristics of segments
of the tour. Let G = (V, E) be a multigraph and F be a subset of E. A walk W in G is
called an F-path if every subwalk of W containing only edges of F is a path. An F-path
W is covered if all edges of W belong to F, and is uncovered otherwise. It is immediate
that a covered F-path is a path.

An F-collection P on G is a set of edge-disjoint F-paths of G. We denote by Up =
(V,E') the multigraph where E’ is the set of edges of F-paths in P. If Up = G, then P
is called an F-decomposition of G. We denote by Hp = (V, E”) the multigraph where
each edge (possibly a loop) uv € E” corresponds to an F-path between u and v in P.
The degree of a vertex v in P, denoted dp(v), is the degree (with multiplicity, and a
loop contributes two) of v in Hp.

Given an F-path P = ve v;...e;v¢, the ray of P from v, denoted by Pv‘ . is the longest
subwalk veqv;...e505 (possibly of length 0) of P such thatey, ..., es € F. There are several
remarks. First, every ray is a path. Second, each F-path P has exactly two rays; these
rays are identical to P if P is covered, and are edge-disjoint if P is uncovered. Third, if
P is a closed (obviously uncovered) F-path from v to v, then both of its rays are from v.
We now would like to measure the conflict between two rays. We first agree that two
rays of the same F-path do nof conflict each other, even if they may intersect at some
vertex. Two rays P,y and PZ’]| r (with P # P’) issued from some vertex v are conflicting

if P,p and P, F also intersect at some vertex different from v. For every v € V,let P(v)

be the set of F-paths in P containing v as an endpoint, and P (v|F) be the set of rays
from v of F-paths in P, where a closed F-path with endpoint v contributes two rays.
We define the conflict ratio of vin P as

maXy. £y ]{PU|F € P(v|F):w € PU|F}]

dp(v) '
We denote the conflict ratio of P by conf(P|F) := max, confp(v|F). We always have
conf(P|F) < 1since |P(v|F)| = dp(v). Note that, when P is a collection, the defini-
tions of P(v) and conflict ratio coincide with the definitions given in the beginning of
Section 3.2.

confp (v|F) :=

The the proof of Theorem 4.6 is similar to the proof of Theorem 4.5 but more in-
volved. Let us first prove an extension of Theorem 3.10 to F-decompositions. By
saying a ray of P, we mean a ray of some F-path of P.

LEMMA 4.13

Let £ be a positive integer, and € > 0 sufficiently small. There is an integer L; _ such
that for every multigraph G with minimum degree at least L; , and every simple
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subgraph (V,F) of G, there is an F-decomposition P of G satisfying:
* Every ray of P has length at most £ + 1.
* Every covered F-path of P has length at least .
e conf(P|F) < 1/4(¢+9).
e (1—¢e)dg(v) < ldp(v) < (1+2¢)dg(v) for every vertex v.

Proof. Set Ly, = max(Lye, 2¢/¢), where Ly, is the constant of Theorem 3.10. We

call all edges of F = E\F dummy (note that a dummy edge may be a loop). The
main idea is to replace every dummy edge by a pair of edges linking endpoints of
the dummy edge to a big clique in order to obtain a simple graph to apply Theo-
rem 3.10. For every dummy edge e = v, 10,5, we create a set of L;. + 1 new vertices
Xe = {xe1, s Xer, 11} Let Ee = {XeiXej 1 1 # j} U {0e1Xe1,VepXe}. Let G’ be the
multigraph with vertex set |J,.z X, UV and edge set E' = |,y E. UF. It is immediate
that G’ is simple and dg(v) = dg/(v) for every v € V, and so G’ has minimum degree
at least L. Therefore G’ admits a decomposition P’ satisfying Theorem 3.10.

For every dummy edge e and every i = 1,2, let P,; be the path of P’ contain-
ing v,x.i. We denote by P;; the longest possible subwalk of P;; such that P;; =
.Xe V¢ P i... and all vertices of P, ; belong to V. If P,; reach the end of Pe/ »wecall P,
an end-segment; otherwise, we call it a middle—scgment. The reader may see here the
simﬂarity between end-segments and rays. Clearly, if P,; is a middle-segment, then
P}, = ..XiVeiPe,iVe jXe j... for some dummy edge ¢’ and j € {1,2} since P,; leaves
V r1ght after finishing P,;. Note also that the lengths of end-segments and m1dd1e—
segments are at most £ + 1 and possibly 0.

For every dummy edge e and every i = 1,2, we remove X, and E,, and concatenate
P, ; with e at v, ;. After this process, we obtain a family of walks, in which each walk
lies in one of the following types:

(1) An uncovered F-path P = Pje1DPs...e;_1 Py with dummy edges ey, ..., e;—1, end-
segments P; and P;, and middle-segments P, ..., P;_1. Note that the two end-
segments are the rays of this uncovered F-path.

(2) A circuit without endpoint, consisting of middle-segments alternate with
dummy edges but no end-segments.

Let P; be the set of all the walks of Type (1) together with all paths of P’ containing
only vertices of V, and P, be the set of all circuits of Type (2). Note that P; is an F-
collection of G, and every edge of G belongs to exactly one F-path P; or one circuit
of P,. The method of concatenating ensures that for every v € V, the number of
rays from v in P; is equal to number of paths with endpoint v in P’. This gives
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dp, (v) = dp/(v). Besides, each ray of P; is the end-segment of some path of P’.
Therefore two rays of P; are conflicting only if their corresponding paths in P’ are
conflicting. Thus all of the following hold true:

* Every ray of P; has length at most ¢ + 1, since it is either a path or an end-
segment of some path of P’.

* Every covered F-path of P; has length at least ¢, since it is a path of P’.
* confp, (v|F) < confp/(v) < 1/4(¢ +10) for every vertex v.

* (1—-¢)dg(v) < ldp,(v) < (1+¢)dg(v) for every v since dp, (v) = dp(v).

We now turn our attention to P,. Every circuit C € P, contains at least one
dummy edge. We associate C with some vertex v such that v is the endpoint of some
dummy edge of C. For every v € V, let Cy,...,C; be the circuits (if any) associated
with v, where every C; = ve;Wsv with dummy edge e;. Let 13; = ve1WrvesWh...ves Wio
be the walk starting and ending at v obtained by concatenating all C, in that fash-
ion. Clearly, 130 is an uncovered F-path, of which one ray is v (length 0) and another
ray is W;, a middle-segment of length at most ¢ 4 1. Note that for every v, we have
at most one such 131,. Let 732 = {130 : v € V}. Then 732 is an F-collection of G and
Up, Ulp, = G. Hence P =P U P, is an F-decomposition of G. Then every ray of P
has length at most ¢ + 1, and every covered F-path of P has length at least /.

For every v, the number of rays from v of P is at most the number of rays from v
of P plus two (two rays of P if it exists). Hence dp, (v) < dp(v) < dp,(v) + 2, and so
by definition of conflict ratio, we have
dp, (v)confp, (v|F)+2

dp(v)

< confp, (v|F) +

confp (v|F) <

dp(v)
< 1 n 2
S30+10) T dn (o)
< L .

X0 +9)

Finally, we have (1 —¢)dg(v) < dp, (v) < £dp(v). And since Lj . > 2¢/¢, we have
ldp(v) < (dp(v) +2) < (1+2¢)dg(v). The proof is complete. O

Lemma 4.13 gives us a good F-decomposition P of G. We wish to concatenate
the F-paths of P to an Eulerian tour. If Hp has an Eulerian tour, we naturally obtain
an Eulerian tour of G by replacing each edge of Hp by its corresponding F-path of
P. Hence the goal is achieving the connectivity of Hp, which immediately yields
Eulerianity thank to the fact that every vertex of Hp has even degree.
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LEMMA 4.14

Given a positive integer {, there is an integer L such that for every 4-edge-connected
Eulerian multigraph G with minimum degree at least 100L} and every simple sub-
graph (V,F) of G, there is an F-decomposition P of G satisfying:

® Every ray of P has length at most £ + 3.
¢ Every covered F-path of P has length at least (.
e conf(P|F) <1/2(¢+9).

* Hp is Eulerian and spans V(G).

Proof. Let us first outline the proof. We wish to obtain connectivity of P. To this end,
we decompose G into a collection Py satisfying Lemma 3.11 and two F-collections
P and P, satisfying Lemma 4.13. Then we use Pj, which contains only paths of
short length, to extend F-paths of P; obtaining a new F-collection P such that Hp,
is connected. Finally, we merge P; with P, to obtain P, which inherits connectivity
from P; and low conflict ratio from P;.

Because G is 4-edge-connected, by Proposition 3.6, there is an orientation D of G
such that D is 2-arc-strong and |d},(v) — dp(v)| < 1 for every v. Applying Proposi-
tion 3.7 to D with an arbitrary vertex z gives us two arc-disjoint out-arborescences,
Ty, Ty, rooted at z. Each vertex v has indegree at most 1 in each T; (z has inde-
gree 0). This gives dr,ur,(v) < df)(v) +2 < dg(v)/2 + 3 for every vertex v since
|d}(v) — dp(v)| < 1. Because Ty U T; is loopless and 2-edge-connected, we obtain a
collection Py on T; U T; satistying Lemma 3.11.

Let G = G\Up,. Then duj, (v) < drun(v) < dg(v)/2+ 3, and so G has mini-
mum degree at least 100/L)/2 — 3 > 48(L. By Proposition 3.3, G’ has an improper
coloring by 45¢ colors such that |d;(v) — d;(v)| < 4 for every vertex v and every pair

of colors i # j. Let Gy be the subgraph of G’ with edge set of the first color, and
= Gl\Gl. Thus
dGz (Z))

The minimum degrees of both G; and Gz are at least 48£L’e /450 — 4 > L/e- Therefore
there are F-decompositions P; of G; and P, of G, both satisfying Lemma 4.13. Hence

1+ 2¢ 1+ 2¢ 1+ 2¢
dPl(v) < 7 dG1( )\ 4002 dGz( ) dez(v)/

for every vertex v, with an arbitrary small parameter €. Set € small enough (i.e. set L}
high enough) such that for every v,

1
dp, (v) < md%(v) -3 (4.1)
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We now turn our attention to the collection Py and the subcubic spanning tree Hp,.
Let us consider Hp, as a tree rooted at an arbitrary vertex z. In the following claim, we
collect two private F-paths in P; for each path in Py for the process of concatenating
later on.

CLAIM 4.15

For every path P € Py with endpoints say u,v where v is the parent of u in Hp,,
there are two F-paths of P1(v), named g1 (P) and g»(P), such that their rays from
v do not conflict with P (if g;(P) is closed, one of its rays satisfying that condition
is sufficient). Furthermore, g;(P) # g;(P’) for any (i, P) # (j, P').

Proof. We first apply Proposition 3.6 to have an orientation D of Hp, such that
|d5(v) — df,(v)| < 1. This orientation yields a natural orientation of F-paths of P.
We denote by P;" (v|F) the set of rays from v of P leaving v with respect to D. Note
that each closed F-path at v contributes with exactly one ray to P, (v|F). This gives
Py (olF)| > d,(0) /2 1.

Since Hp, is subcubic, there are at most 3 paths of Py with endpoint v, say Ps for
1 < s < 3. Note that each P has length at most 2, and so they are incident with at
most 6 vertices except v in total. Recall that confp, (v|F) < 1/4(¢ +9). For each vertex
w among these 6 possible vertices, we have

dp,(2) _ 2P (0[P +2 _ |Pf (2lF)]

: < < =
‘{Pv“:G'Pl(U’F) wEPv“:}‘ 4((4—9) 4(€+9) 12

Hence in total there are at most | P;" (v|F)|/2 rays of P, (v|F) conflicting with some P.
This guarantees that there are at least half of rays in P, (v) non-conflicting with all P;.
We just pick 6 rays among them, and name the F-paths of these rays g;(Ps) arbitrarily
(these F-paths are clearly pairwise distinct). Note also that P (v) N P (v) = @ for

any v # v/, s0 ;(P) # g;j(P') for any (i, P) # (j, P'). O

We can now obtain the connectivity of H; by concatenating each P of Py to ei-
ther ¢1(P) or g2(P). We again call a structured-tree T a rooted tree on vertex set
{Y1,Ys, ..., Yi}, where {Y1,Y>, ..., Y;} is some partition of V with the following prop-
erties:

(A) Forevery edge Y;Y;of T, there is a corresponding path v;...v; € Py, where v; € Y;
and v; € Y;.

(B) For every Y;, there is an F-collection R; such that Hp, is connected and spans
Y;, and each F-path in R; is either g (P) or the concatenation of P and g1 (P) for
some P € Py (if Y; contains a single vertex then R; is empty).
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Such structured-tree 7T clearly exists by choosing 7 equal to Hp, rooted at z, in
which each Y; contains a single vertex, and each R; is empty. Our goal is to repeatedly
merge vertices of 7 until 7 is the singleton graph, which completes the process of
concatenating. We consider a leaf Y; of 7 with parent Y;, corresponding to path P =
v;...vj of Py with v; € Y; and v; € Y. Suppose that g1(P) = v;...y and g2(P) = v;...z.

 If y € Y} for some k # i, we concatenate P and g1 (P) at v; and get a F-path P*.
Then we merge Y; into Yj to form new set Yj (inheriting the position of Yy in
tree 7). Let Rjx = R; U Ry U {P*}. Since P* connects two vertices of R; and Ry,
we have that Hg, is connected and spans Yj.

* Ify € Y;, we merge Y; to Y; to form new set Yj; (inheriting the position of Y; in
tree 7). Set R;; = R; UR; U {g1(P)}. Since g1(P) connects two vertices of R;
and R;, we have that Hpg, is connected and spans Y;;. We also concatenate P
with ¢>(P) at v; to get another F-path and put it back into P;.

The number of vertices of 7 is reduced by 1 after each step, while 7T still satisfies
both properties. Once the process is complete, we end up with a singleton 7 and an
F-collection R such that Hp is connected and spans V. Note that P is empty at the
end of the process, since exactly one path of Py is used at each step. We merge R with
P1 to obtain a new collection P]. Consequently, Hp, is connected.

Let P = P{ U P,. Note that Up = Up{ UUp, = G, so P is an F-decomposition
of G and Hp is connected. The degrees of all vertices of G are even, then so are the
degrees of vertices of Hp, and hence Hp is Eulerian. The process of concatenating also
ensures that every ray of P has length at most ¢ 4 3 and that every covered F-path of
P has length at least /.

It remains to prove that conf(P|F) < 1/2(¢ +9). In the following, by saying
Po or P1, we mean the collection before the process of concatenating. Recall that
Hp, is subcubic, so for every vertex v, the number of F-paths with endpoint v in
Pj is at most the number F-paths with endpoint v in P; plus 3. Combining with
(4.1) yields dp: (v) < dp,(v) +3 < dp,(v)/4(¢ +9). Recall that confp: (v[F) < 1 and
confp, (v|F) < 1/4(¢+9). Hence for every vertex v, by definition of conflict ratio we
have

dp,(v)confp, (v|F) + dp; (v)confp, (v|F)
27,(0) + a5, (0)
dp: (v)confp (v|F)

confp (v|F) <

< confp, (v|F) +

dpz(v)
o1 N 1
S 4(0+9)  4(0+9)
1
< —.
S 2(049)

This implies conf(P|F) < 1/2(¢ +9), and the lemma follows. O
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The final step is concatenating F-paths of P to obtain a well-behaved Eulerian tour
of G, which can be done thank to Proposition 3.16.

Proof of Theorem 4.6. Let d; = 100¢L,, and G' = (V,F). We first obtain an F-
decomposition P of G satisfying Lemma 4.14. For every ray P, r of P, each vertex
w € Py is a conflict point between P, r and at most dp(v)/2(£ + 9) other rays.
Hence the number of rays conflicting with Py is at most (£ + 3)dp(v)/2(£ +9) <
dp(v)/2 — 2 since P, has length at most £ + 3.

We wish to apply Proposition 3.16 to Hp. Therefore the task now is to eliminate
all loops of Hp. Let Hy, be the loopless multigraph obtained from Hp by subdividing
every loop e = vv into vx, and x,v by a new vertex x,. We associate each vx, and x.v
with a ray of P, where P € P(v) is the corresponding F-path of e.

For every pair of incident vertex-edge (v, e) of Hy,, let Sy(e) be the set of all edges
of Hy corresponding to rays conflicting with P, r, where P, r is ray of P correspond-
ing to e. Since two rays of the same F-path are non-conflicting, we have |Sy, (e)| = 0
for every loop e of Hp. Hence [Sy(e)| < dp; (v)/2 —2if dp; (v) > 4 and [Sy(e)| = 0 if
dn;, (v) = 2 for every pair of incident vertex-edge (v, ) of Hp.

Let S = {Sy}oev, then S is a generalized transition system of Hj,. Proposition 3.16
asserts that Hy, admits an Eulerian tour £y, compatible with S, i.e., the corresponding
rays of any two consecutive edges of £p;, are non-contflicting. Clearly, vx, and x.v are
two consecutive edges of &y, since x, has degree 2. We therefore naturally obtain
from &y an Eulerian tour &y, of Hp by replacing e to the segment vx.v for every
loop e = vv of Hp. Hence we naturally obtain from £y, an Eulerian tour £ of G by
replacing every edge of £y, by its corresponding F-path of P. Note that every two
consecutive (with respect to £) rays of P are non-conflicting.

Let W be a segment of £ of length at most ¢ and consisting of only edges of F. It
remains to prove that W is a path. Let P;, P;..., P, be consecutive (with respect to &)
F-paths of P such that W is a subwalk of PiP,...P, and WNP,WNP, # Q. Ifr > 3
then W must contain entirely P,. All edges of W belong to F, then so does P>. Hence
P, is a covered F-path of length at most ¢ — 2, contrary to the fact that every covered
F-path of P has length at least £. If r = 2, note that the rays from v of P; and P, are
non-conflicting, and W is a subwalk of the concatenation of these two rays. Hence W
is a path. If r = 1 then clearly W is a path, the desired conclusion. O



Chapter 5

Additive Bases and Flows

5.1 Flows and weighted flows

In this final chapter of Part I, we will return to flows and discuss several results in
flows, weighted flows and weighted orientations in graphs. All of them are derived
from a special case of a conjecture by Jaeger, Linial, Payan and Tarsi [JLPT92]. Unlike
previous chapters, graphs considered in this chapter may have multiple edges but no
loops (i.e. multigraphs in previous chapters). As we mentioned before, the result
8-edge-connected graphs having a 3-flow by Thomassen [Thol2] was improved by
[LTWZ13] to 6-edge-connected graphs. In fact, in [LTWZ13], they proved a more
general result — Theorem 5.1, that edges of a highly edge-connected graph can be
oriented so that any prescribed value modulo k at every vertex can be realized.

Recall that an orientation G = (V,E) of a graph G = (V, E) is obtained by giving
each edge of E a direction. For each edge e € E, we denote in this chapter the corre-
sponding arc of E by ¢, and vice versa. For an integer p > 2, a mapping f: V — Zy
is a p-boundary of Gif Y ,cy B(v) =0 (mod p). Given a p-boundary B of G, an orien-

tation G of G is a S-orientation if dg(v) —d (v) = B(v) (mod p) for everyv € V.

THEOREM 5.1 [LTWZ13]

For any k > 1, any 6k-edge-connected graph G and any (2k + 1)-boundary p of
G, the graph G has a B-orientation.

The content of this chapter is covered in paper Additive bases and flows in graphs, Louis Esperet,
Rémi de Joannis de Verclos, Tien-Nam Le, and Stéphan Thomassé, SIAM Journal of Discrete Mathematics,
32:534-542, 2018.

69



701

By setting k = 1 and B(v) = 0 for every v, we obtain that every 6-edge-connected
graph has a 3-flow. A natural question is whether a weighted version of Theorem 5.1
exists. Given a graph G = (V,E), a p-boundary B of G and a mapping f : E —
Z, \ {0}, an orientation G of G is called an f-weighted p-orientation if 3f (v) = B(v)
(mod p) for every v, where 9f (v) = Yscp+ (o) f(€) — Lgcp= () f(e). Note that if f(e) =

G G

1 (mod p) for every edge ¢, an f-weighted p-orientation is precisely a S-orientation.

QUESTION 5.2

For which mapping f : E — Zos1 \ {0} and (2k + 1)-boundary B, every highly
edge-connected graph G has an f-weighted B-orientation?

An immediate observation is that if we wish to have a general result of Ques-
tion 5.2, it is necessary to assume that 2k + 1 is a prime number. For instance, take G
to consist of two vertices u, v with an arbitrary number of edges between u and v, con-
sider a non-trivial divisor p of 2k 4 1, and ask for a p-weighted (2k + 1)-orientation
G of G (here, p denotes the function that maps each edge to p (mod 2k +1)). Note
that for any orientation, dp(v) is in the subgroup of Z,;,1 generated by p, and this
subgroup does not contain 1, —1 (mod 2k + 1). In particular, there is no p-weighted
(2k + 1)-orientation of G with boundary g satisfying (1) = —p(v) = 1 (mod 2k +
1).

We will show later on that when k is a prime number, the answer for Question 5.2
is affirmative for every mapping f and boundary B.

THEOREM 5.3

Let p > 3 be a prime number and let G = (V,E) be a (6p — 8)(p — 1)-edge-
connected graph. For any mapping f : E — Z, \ {0} and any p-boundary B, G
has an f-weighted B-orientation.

Theorem 5.3 is indeed a direct corollary of a special case of Jaeger-Linial-Payan-
Tarsi’s conjecture [JLPT92] on additive basis of the vector space Z!, which we will
present and prove in the next section. We will also discuss various results on orien-
tations and flows in Z;, obtained from that special case of Jaeger-Linial-Payan-Tarsi’s
conjecture.

5.2 Jaeger-Linial-Payan-Tarsi’s conjecture

An additive basis B of a vector space F is a multiset of elements from F such that for
all p € F, there is a subset of B which sums to . Let Zj be the n-dimensional linear
space over the prime field Z,. The following result is a simple consequence of the
Cauchy-Davenport Theorem [Dav35] (see also [ANR96]).
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THEOREM 5.4 [Dav35]

For any prime p, any multiset of p — 1 non-zero elements of Z., forms an additive
basis of Z..

This result can be rephrased as: for n = 1, any family of p — 1 linear bases of Zj
forms an additive basis of Zy,. A natural question is whether this can be extended to
all integers n. Given a collection of sets X, ..., X;, we denote by W5, X; the union
with repetitions of Xj, ..., Xi. Jaeger, Linial, Payan and Tarsi [JLPT92] conjectured the

following, which as we will see is a generalization of important results regarding
flows in graphs.

CONJECTURE 5.5 [JLPT92]

For every prime number p, there is a constant c(p) such that for any t > c(p)
linear bases By, ..., By of Z’;, the union L+J§:1 B forms an additive basis of Z’;,.

Alon, Linial and Meshulam [ALM91] proved a weaker version of Conjecture 5.5,
that the union of any p[logn| linear bases of Zj, contains an additive basis of Zj, (note
that unlike Conjecture 5.5, their bound depends on n).

Let us call the support of a vector x = (x1,...,X,) € Z, the set of indices i such
that x; # 0, and the shadow of a vector x the (unordered) multiset of non-zero entries
of x. Note that sizes of the support and of the shadow of a vector are equal. We will
prove, as the main result in this chapter, that Conjecture 5.5 holds if the support of
each vector has size at most two.

THEOREM 5.6

Let p > 3 be a prime number. For some integer ¢ > 1, consider t > 8¢(3p —
4) + p — 2 linear bases By, ..., B of Z}, such that the support of each vector has
size at most 2, and at most ¢ different shadows of size 2 appear among the vectors
of B = \4._, Bs. Then B forms an additive basis of zy.

While Theorem 5.3, a generalization of Theorem 5.1, can be implied from Theorem
Theorem 5.6, Theorem 5.6 will indeed be proved in using Theorem 5.1.

5.3 Corollaries on additive bases and flows

Corollaries on additive bases

Observe that the number of possibilities for an (unordered) multiset of Z, \ {0} of size
2is (P ;1) +p —1=(5). As a consequence, Theorem 5.6 has the following immediate
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corollary.

COROLLARY 5.7

Let p > 3 be a prime number. For any t > 8(5)(3p —4) + p — 2 linear bases
By, ..., Bi of Zj such that the support of each vector has size at most 2, Wi_; Bs
forms an additive basis of Z,.

Another interesting consequence of Theorem 5.6 concerns the linear subspace
(Z3)o of vectors of Z} whose entries sum to 0 (mod p).

COROLLARY 5.8

Let p > 3 be a prime number. For any t > 4(p — 1)(3p — 4) + p — 2 linear bases
B1, ..., Bt of (Z})o such that the support of each vector has size at most 2, Wi_; Bs
forms an additive basis of (Z})o.

Proof. Note that for any 1 < s < ¢, the linear basis Bs consists of n — 1 vectors, each of
which has a support of size 2, and the two elements of the shadow sum to 0 (mod p).
In particular, at most r%l different shadows appear among the vectors of the linear
bases By, ..., B;. It is convenient to view each B; as a matrix in which the elements of
the basis are column vectors. Foreach 1 < s < ¢, let B, be obtained from B, by deleting
the last row. It is easy to see that B, is a linear basis of Z’;*l. Moreover, at most prl
different shadows of size 2 appear among the vectors of the linear bases B, ..., B} (note
that the removal of the last row may have created vectors with shadows of size 1). In
particular, it follows from Theorem 5.6 that for any vector g = (B1,...,Ba) € (Z})o,
the vector (B1,...,Bn-1) € Zg_l can be written as a sum of a subset of elements of
\._, B.. Clearly, the corresponding subset of elements of 4!_; Bs sums to . This
concludes the proof of Corollary 5.8. O

Corollaries on Zp-ﬂows

Theorem 5.3 turns out to be equivalent to the following seemingly more general re-
sult. Assume that we are given a directed graph G = (V, E) and a p-boundary . A
p-flow with boundary B in G is a mapping f : E — Z, such that 3f (v) = B(v) (mod p)
for every v. In other words, f is a p-flow with boundary B in G = (V,E) if and only
if G is an f-weighted p-orientation of its underlying non-oriented graph G = (V,E),
where f is extended from E to E in the natural way (i.e. for each e € E, f(e) := f(e)).

In the rest of this chapter we will say that a directed graph G is t-edge-connected if
its underlying graph, denoted by G, is t-edge-connected.
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THEOREM 5.9

Let p > 3 be a prime number and let G = (V, E) be a directed (6p — 8)(p — 1)-
edge-connected graph. For any arc & € E, let L(€) be a pair of distinct elements of
Z.,. Then for every p-boundary B, G has a Z,flow f with boundary B such that

forany @ € E, f(2) € L(?).

To see that Theorem 5.9 implies Theorem 5.3, simply fix an arbitrary orientation of
Gandset L(€) = {f(e), —f(e)} for each arc €. We now prove that Theorem 5.3 implies
Theorem 5.9. We actually prove a slightly stronger statement (holding in Z; for
any integer k > 1).

LEMMA 5.10

Let k > 1 be an integer, and let G = (V,E) be a directed graph such that the
underlying non-oriented graph G has an f-weighted B-orientation for any mapping
f:E = Zoiq \ {0} and any (2k + 1)-boundary . For every arc & € E, let L(€)
be a pair of distinct elements of Zoy.1. Then for every (2k 4+ 1)-boundary B, G has
a (2k + 1)-flow g with boundary B such that g(€) € L(€) for every e.

Proof. Let B be a (2k + 1)-boundary of G. Consider a single arc € = (u,v) of G.
Choosing one of the two values of L(€), say a or b, will either add a to dg(u) and
subtract a from dg(v), or add b to dg(u) and subtract b from dg(v). Note that 2 and
2k + 1 are relatively prime, so the element 27! is well-defined in Zy 1. If we now
add 27'(a + b) to B(v) and subtract 27! (a + b) from B(u), the earlier choice is equiv-
alent to choosing between the two following options: adding 27!(a — b) to dg(u)
and subtracting 27! (a — b) from 9g(v), or adding 27! (b — a) to dg(u) and subtracting
271(b — a) from dg(v). This is equivalent to choosing an orientation for an edge of
weight 271 (a — b). It follows that finding a (2k + 1)-flow g with boundary g such that
for any ¢ € E, g(¢) € L() is equivalent to finding an f-weighted f’-orientation for
some other (2k + 1)-boundary p’ of G, where the weight f(e) of each edge e is 27!
times the difference between the two elements of L(¢). O

We now consider the case where L(¢) = {0,1} for every arc & € E. Let f,1 :
E — Zyj,1 denote the function that maps each arc #to 27! (mod 2k + 1). The same
argument as in the proof of Lemma 5.10 implies that if G has an f,-1-weighted -
orientation for every (2k + 1)-boundary B, then for every (2k + 1)-boundary B, the
digraph G has a (2k 4 1)-flow f with boundary  such that f() € L(€) for every Z.

The following is a simple corollary of Theorem 5.1.

COROLLARY 5.11
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Let £ > 1 be an odd integer and let k > 1 be relatively prime with £. Let G = (V, E)
be a (3¢ — 3)-edge-connected graph, and let k : E — Z, be the mapping that assigns
k (mod ) to each edge e € E. Then for any {-boundary B, G has a k-weighted p-
orientation.

Proof. Observe that g’ = k! - B is a {-boundary (k! is well defined in Z,). It follows
from Theorem 5.1 that G has a p’-orientation. Note that this corresponds to a k-
weighted B-orientation of G, as desired. O

As a consequence, the following is an equivalent version of Theorem 5.1 (see
also [JLPT92, LL17]).

THEOREM 5.12

Let k > 1 be an integer and let G = (V, E) be a directed 6k-edge-connected graph.

Then for every (2k + 1)-boundary B, G has a (2k + 1)-flow f with boundary B
such that f(E) € {0,1} (mod 2k +1).

5.4 Additive bases in matrices with small support

This section is devoted to prove Theorem 5.6 and show how it implies Theorem 5.3.

We first recall the following (weak form of a) classical result by Mader (see [Die05],

Theorem 1.4.3). Note that the average degree of a graph G is Hﬁ%g)) “ .

LEMMA 5.13

Given an integer k > 1, if G = (V, E) is a graph with average degree at least 4k,
then there is a subset X of V such that | X| > 1and G[X] is (k + 1)-edge-connected.

We will also need the following result of Thomassen [Thol14], which is a simple
consequence of Theorem 5.1.

THEOREM 5.14 [Tho14]

Let k > 3 be an odd integer, G = (V4, Vo, E) be a bipartite graph, and f : V; U
Vo — Zj be a mapping satisfying Y,cv, f(0) = Yoev, f(v) (mod k). If G is
(8k — 3)-edge-connected, then G has a spanning subgraph H such that for any
veV,dy(v) = f(v) (mod k).

Let G be a graph, and let X and Y be two disjoint subsets of vertices of G. The set
of edges of G with one endpoint in X and the other in Y is denoted by E(X, Y).

We are now ready to prove Theorem 5.6.
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Proof of Theorem 5.6. We proceed by induction on n. For n = 1, this is a direct con-
sequence of Theorem 5.4, so suppose that n > 2. Each basis B, can be considered as
an n x n matrix where each column is a vector with support of size at most 2. Let

For 1 < i < n, a vector is called an i-vector if its support is the singleton {i} (in
other words, the i-th entry is non-zero and all the other entries are zero). Suppose that
for some 1 < i < n, B contains at least p — 1 i-vectors. Let C be the set of i-vectors of
B. Clearly, each basis contains at most one i-vector. For every B, let B be the matrix
obtained from By by removing its i-vector (if any) and the i*" row. Clearly B/ is or
contains a basis of Z’;_l. By induction hypothesis, [._; B forms an additive basis of

Zg_l. In other words, for any vector B = (B1, ..., Bi, .-, Bn) € Z’;, there is a subset Y;

of B\ C which sums to (B4, ..., Bi/ .., Bn) for some Bi- Since |C| > p — 1, it follows from
Theorem 5.4 that there is a subset Y, of C which sums to (0, ..., f; — ,Bi, ..,0). Hence
Y1 UY; sums to B.

Thus we can suppose that there are at most p — 2 i-vectors for every i. Then there
are at least 8/(3p — 4)n vectors with a support of size 2 in B. Since there are at most
¢ distinct shadows of size 2 in B, there are at least 8(3p — 4)n vectors with the same
(unordered) shadow of size 2, say {a1,a,} (recall that shadows are multisets, so a;
and a; might coincide).

Let G be the graph (recall that graphs in this chapter are allowed to have multiple
edges) with vertex set V = {vy, ..., v, } and edge set E, where edges v;v;j are in one-to-
one correspondence with vectors of B with support {i, j} and shadow {a1,a,}. Then
G contains at least 8(3p — 4)n edges.

We now consider a random partition of V into 2 sets V;, V» (by assigning each
vertex of V uniformly at random to one of the sets Vi, k = 1,2). Let e = v;v; be some
edge of G. Recall that e corresponds to some vector with only two non-zero entries,
say without loss of generality a; at i index and a5 at j index. The probability that
v; is assigned to V; and v; is assigned to V; is at least 1. As a consequence, there is a
partition of V into 2 sets V;, V, and a subset E' C E(V;, V) of atleast 8(3p —4)n/4 =
2(3p — 4)n edges such that for every e € E’, the vector of B corresponding with e has
entry a; (resp. ay) at the index associated to the endpoint of e in V; (resp. V2).

Since the graph G’ = (V, E’) has average degree at least 4(3p — 4), it follows from
Lemma 5.13 that there is a set X C V of at least 2 vertices, such that G'[X] is (3p — 3)-
edge-connected. Set H = G'[X] and F the edge set of H. Note that H is bipartite with
bipartition X; = X NV; and Xo = XN V.

For each integer 1 < s < t, let B; be the matrix obtained from Bs by doing the
following: for each vertex v; in Xj (resp. X3), we multiply all the elements of the ith
row of Bs by a; ! (resp. —a, '), noting that all the operations are performed in Zy. Let
B* = ._, Bf. Note that each vector of B* corresponding to some edge e € F has
shadow {1, —1} (1 is the entry indexed by the endpoint of e in X; and —1 is the entry
indexed by the endpoint of e in X>). It is easy to verify the following.
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* Each B; is a linear basis of Zj,.

* B is an additive basis if and only if B* is an additive basis.

Hence it suffices to prove that B* is an additive basis.

Without loss of generality, suppose that X = {vy, ..., v,} for some m < n — 1.
By contracting k rows of a matrix, we mean deleting these k rows and adding a new
row consisting of the sum of the k rows. For each 1 < s < ¢, let B} be the matrix of
m rows obtained from B by contracting all m'", (m + 1), ..., n'" rows. Note that the
operation of contracting k rows decreases the rank of the matrix by at most k — 1 (since
it is the same as replacing one of the rows by the sum of the k rows, which preserves
the rank, and then deleting the k — 1 other rows). Let B’ = |4._; B, . Since each B}
is a linear basis of Zj, each B; has rank at least m and therefore contains a basis of
Z?. Hence, by induction hypothesis, B’ \ Bj is an additive basis of Z’;f, where B} is
the set of all columns with empty support in B'. For every B = (B1, ..., fu) € Zj, let
B = (B1,- Bm—1,Liy Bi) € Z}. Then there is a subset Y’ of B’ \ B; which sums to
B'. Let Y* and B be the subsets of B* corresponding to Y’ and Bj, respectively. Then
Y* sums to some B = (B1, ..., Bm_1, By s Br), where YL B; = Y7 B; (mod p).

Recall that for each edge e € F, the corresponding vector in B* has precisely two
non-zero entries, (1, —1), each with index in X. Hence the vector corresponding to
each e € F in B’ has empty support. Thus the set of vectors in B* corresponding to
the edge set F is a subset of 3, which is disjoint from Y.

For each v; € Xj, let Bx(v;) = B; — Bi, and for each v; € X, let Bx(v;) = Bi — Bi.
Since Y1, fi = L, Bi (mod p), we have Yo.exnmy Bx (1) = Loexnv, Bx(vi). Since
H is (3p — 3)-edge-connected, it follows from Theorem 5.14 that there is a subset
F’ C F such that, in the graph (X, F’), each vertex v; € X; has degree B; — B; (mod p)
and each vertex v; € X, has degree B; — B; (mod p). Therefore, F’ corresponds to a
subset Z* of vectors of Bj, summing to (0,...,0, B, — Bm, e B — ﬁn) Then Y* U Z*
sums to . It follows that B* is an additive basis of Z’;,, and so is B. This completes
the proof. U

Proofs of Theorem 5.3

We will complete this chapter with two proofs of Theorem 5.3. The first one is a
direct application of Corollary 5.8, but requires a stronger assumption on the edge-
connectivity of G (24p* — 54p + 28 instead of 6p? — 14p + 8 for the second proof).

First proof of Theorem 5.3. We fix some arbitrary orientation G = (V, E) of G and de-
note the vertices of G by vy,...,v,. The number of edges of G is denoted by m. For
each arc ¢ = (v;,v;) of G, we associate @ to a vector x, € (ZZ)O in which the ith—entry is
equal to f(e) (mod p), the j"-entry is equal to — f(e) (mod p) and all the remaining
entries are equal to 0 (mod p).
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Let us consider the following statements.

(a) For each p-boundary B, there is an f-weighted B-orientation of G.

(b) For each p-boundary B there is a vector (a.).cr € {—1,1}", such that
Y ecE deXe = B (mod p).

(c) For each p-boundary B there is a vector (a.).cr € {0,1}" such that Y, 2a,x, =
B (mod p).

Clearly, (a) is equivalent to (b). We now claim that (b) is equivalent to (c). To see this,
simply do the following for each arc & = (v;,v;) of G: add f(e) to the j-entry of x,
and to B(v;), and subtract f(e) from the i"-entry of x, and from B(v;). To deduce (c)
from Corollary 5.8, what is left is to show that {4, : ¢ € E} can be decomposed into
sufficiently many linear bases of (Z})o. This follows from the fact that G is (8(p —
1)(3p —4) + 2p — 4)-edge-connected (and therefore contains 4(p —1)(3p —4) +p —2
edge-disjoint spanning trees) and that the set of vectors a, corresponding to the edges
of a spanning tree of G forms a linear basis of (Z;)g (see [JLPT92]). O

A second proof consists in mimicking the proof of Theorem 5.6 (it turns out to give
a better bound for the edge-connectivity of G).

Second proof of Theorem 5.3. As before, all values and operations are considered mod-
ulo p. We can assume without loss of generality that f(E) € {1,2,..., pT_l}, since
otherwise we can replace the value f(e) of an edge e by — f(e), without changing the
problem.

We prove the result by induction on the number of vertices of G. The result is
trivial if G contains only one vertex, so assume that G has at least two vertices.

For any 1 < i < k, let E; be the set of edges e € E with f(e) = i, and let
G; = (V,E;). Since G is (6p — 8)(p — 1)-edge-connected, G has minimum degree
at least (6p — 8)(p — 1) and then average degree at least (6p — 8)(p — 1). As a conse-
quence, there exists i such that G; has average degree at least 12p — 16. By Lemma 5.13,
since 12”4_ 1= 3p — 3, G; has an induced subgraph H = (X, F) with at least two
vertices such that H is (3p — 3)-edge-connected. Let G/ X be the graph obtained from
G by contracting X into a single vertex x (and removing possible loops). Since H con-
tains more than one vertex, G/ X has less vertices than G (note that possibly, X = V
and in this case G/ X consists of the single vertex x). Since G is (6p — 8)(p — 1)-edge-
connected, G/ X is also (6p — 8)(p — 1)-edge-connected. Hence by the induction hy-
pothesis it has an f-weighted B-orientation, where we consider the restriction of f to
the edge-set of G/ X, and we define f(x) = B(X). Note that this orientation corre-
sponds to an orientation of all the edges of G with at most one endpoint in X.
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We now orient arbitrarily the edges of G[X] not in F (the edge-set of H), and up-
date the values of the p-boundary B accordingly (i.e. for each v € X, we subtract from
B(v) the contribution of the arcs that were already oriented). It is easy to see that as
the original B was a boundary, the new f is indeed a boundary. Finally, since all the
edges of H have the same weight, and since H is (3p — 3)-edge-connected, it follows
from Corollary 5.11 that H has an f-weighted B-orientation (with respect to the up-
dated boundary p). The orientations combine into an f-weighted B-orientation of G,
as desired. O
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Forbidding Patterns in Large
Graphs
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Chapter 6

From Local to Global

6.1 The Erd6s-Hajnal conjecture

We now shift our attention to the behavior of large graphs not containing a given
pattern. Fix a pattern H, recall that a graph G is H-free if it does not contain H as an
induced subgraph. Part II will revolve around the following question: Which common
properties do all H-free graphs share? One of the most well-known conjecture on this
topic is due to Erdds and Hajnal in 1989 [EH89], which we discussed briefly in the
Introduction, asserting that every H-free graph contains a large set of vertices either
pairwise adjacent (i.e. a clique) or pairwise non-adjacent (i.e a stable set).

DEFINITION 6.1

We say that a pattern H has the Erd6s-Hajnal property if there exists a constant
e(H) > 0 such that every H-free graph G contains either a clique or a stable set of
size at least |V (G)[cH),

Roughly speaking, a pattern H has the Erdés-Hajnal property if every H-free graph
G contains a large (polynomially proportional to G) clique or stable set. It is worth
noting [Erd47] that for almost every graph G, its largest clique and stable set are of
size logarithmically proportional to G, i.e. O(log |V (G)|). In other words, if H has the
Erdés-Hajnal property then all H-free graphs have an unusual structure in the sense
that their maximum clique or stable set has size exponentially larger than expected.

The content of this chapter is covered in paper Coloring tournaments: from local to global, Ararat Haru-
tyunyan, Tien-Nam Le, Stéphan Thomassé, and Hehui Wu, arXiv:1702.01607, and in a part of paper
Coloring dense digraphs, Ararat Harutyunyan, Tien-Nam Le, Alantha Newman, and Stéphan Thomassé,
Combinatorica, to appear.

81
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The Erdés and Hajnal conjecture [EH89], however, asserts that every pattern has the
Erdés-Hajnal property.

CONJECTURE 6.2 The Erd6s-Hajnal conjecture [EH89]

Every graph has the Erdos-Hajnal property.

Very few primitive! patterns are known to have the Erd6s-Hajnal property
[Chul4], including Cs - the cycle of length 5, P4 — the path of length 4, the comple-
ment of Py, and the bull graph (see Figure 6.1).

FIGURE 6.1 — Left: the complement of P4, and right: the bull graph.

The Erd6s-Hajnal conjecture — tournament version

Recall that a directed graph T is a fournament if there is exactly one arc between every
pair of distinct vertices of T, and a tournament is fransitive (or acyclic) it it does not
contain any directed cycle. It is well-known that undirected graphs and tournaments
are “equivalent” notions in the sense that every enumerated (i.e. vertices are enumer-
ated) graph can be bijectively mapped to an enumerated tournament, where an edge
is mapped to a forward arc and a non-edge is mapped to a backward arc. This map-
ping also shows that a transitive tournament is equivalent to either a clique or a stable
set (depending on the direction of the arcs).

An equivalent version of the Erd6s-Hajnal conjecture on tournament was pro-
posed by Alon, Pach and Solymosi [APS01], where undirected graphs are replaced
by tournaments and cliques and stables sets are replaced by transitive tournaments.
For the rest of Part I, the notion patterns will be used to mention tournaments instead of
undirected graphs. If a tournament T does not contain any subtournament isomorphic
to a pattern H, we say that T is H-free (the term induced subtournament is unnecessary
since a tournament contains exactly one arc between every pair of vertices). We start
with the tournament version of the Erdés-Hajnal property.

DEFINITION 6.3

LA pattern created by "substituting" two patterns with the Erd6s-Hajnal property also has the Erd6s-
Hajnal property; these pattern are not considered primitive. The definition of substitution of two graphs
is beyond the scope of this thesis.
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We say that a pattern H has the Erd6s-Hajnal property if there exists a constant
e(H) > 0 such that every H-free tournament T contains a transitive tournament of
size at least |V (T)|¢(H),

And similarly, we have the tournament version of the Erd¢s-Hajnal conjecture.

CONJECTURE 6.4 The Erdés-Hajnal conjecture — tournament version, [APS01]

Every tournament has the ErdGs-Hajnal property.

The tournament version of the conjecture offers certain advantages comparing to
its undirected version. For instance, given two undirected graphs H and H' where
H C H/, itis possible that a graph G is H-free but not H'-free (for example, P, C K3,
and Ky is P, free but not K3-free). However, given two tournaments H and H' where
H C H/, if a tournament T is H-free, then T is H'-free. This immediately implies that
if a tournament H has the ErdGs-Hajnal property, then so does every subtournament of H,
which does not hold for the undirected version.

6.2 Celebrities and heroes

Similar to the undirected version, finding patterns satisfying the Erd¢s-Hajnal prop-
erty for tournament is challenging. One may wish to address an extremal case of
the conjecture: Which patterns have the Erd0s-Hajnal property where the largest transitive
subtournament of T have linear size, i.e. the constant € is 1?

DEFINITION 6.5

We say that a pattern H is a celebrity if there exists a constant 6(H) > 0 such
that every H-free tournament T contains a transitive tournament of size at least
S(H)|[V(T)|.

Similarly, if H is a celebrity, then every subtournament of H is a celebrity. A major
result was achieved in 2013 [BCC"13], in which they completely characterized the
family of celebrities and so added an infinite family of tournaments to the list of pat-
terns satisfying the Erd6s-Hajnal property. The proof of their result was not done via
directly characterizing the family of celebrities, but another the family of patterns in-
stead — the heroes. Unlike the celebrities, which forbidding forces the tournament to
have a large transitive subtournament, forbidding a hero causes the tournament to be
less colorful. We recall that a vertex-coloring (or coloring for short) of a digraph D is an
assignment of each vertex of D to a color from a set of given colors. The definition of
proper coloring digraph is slightly different from that of simple graphs: a coloring is
proper if D does not contain any directed cycle of where all vertices have same color.



84|

DEFINITION 6.6

We say that a pattern H is a hero if there exists a constant ¢(H) > 0 such that
every H-free tournament T can be properly colored by c(H) colors.

Coloring tournaments can be viewed alternatively as partitioning tournaments
into subtournaments. A partition of a tournament T is a set of subtournaments
Ty, ..., Ty such that ', V(T;) = V(T) and V(T;) N V(T;) = @ foreveryi # j.

PROPOSITION 6.7

A tournament can be properly colored by k colors if and only if it can be partitioned
into k transitive subtournaments.

The proof is simple. If a tournament T can be colored by k colors, then consider
a proper coloring of G with colors 1, ...,i. For each color i, we assign T; to be the
subtournament of T on the set of vertices with color i. By the definition of proper
coloring, each subtournament T; is transitive. The converse direction is similar. It
is now straightforward that the family of heroes is contained in the family of celebrities.
Indeed, for every hero H, there is a constant c(H) such that every H-free tournament
T can be partitioned into ¢(H) transitive tournaments. Then one of these tournament
must have size at least ﬁ |V(T)|. Hence H is a celebrity.

In the proof of Berger et al [BCC"13], they first showed that the two familys are
identical.

THEOREM 6.8 [BCC13]

H Every celebrity is a hero.

Then they characterized all heroes as follows. Given tournaments Hy, Hp, H3, we
denote by H; = H, the vertex-disjoint union of H; and H, with all arcs from H; to
Hj, and A(Hy, Hy, H3) the vertex-disjoint union of Hy, Hy, H3 with all arcs from H;
to Hp, from Hj to H3, and from Hj to H;. For every integer k > 1, let Ty denote the
transitive tournament on k vertices.

FIGURE 6.2 — Left: the tournament C3 = Cs, and right: the tournament A(Cs, T, T1).
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THEOREM 6.9 [BCC13]

The family of heroes are constructed as follows:
* The singleton Ty is a hero.
e If Hy and H, are heroes, then Hy = H, is a hero.

e If His a hero, then A(H, Ty, Ty ) and A(H, Ty, Ty.) are heroes for every k > 1.

Any tournament that cannot be constructed by this process is not a hero.

The combination of Theorems 6.8 with 6.9 gives a complete characterization of
the set of celebrities, i.e. a complete characterization of patterns satisfying the Erds-
Hajnal property with constant ¢ = 1. A similar result was achieved one year later for
the case ¢ > 5/6 [CCS14].

A conjecture by Berger et al

The main objective of Theorem 6.9 is to show that every H-free tournament T can be
colored by a few colors. The authors observed that in order to reach that conclusion,
they went cross in the proof multiple times the fact that every local region (the out-
neighborhood a vertex) of T can be colored by a few colors as well. This leads to the
question whether the local colorfulness of a tournament dictates its global colorful-
ness. In other words, whether it is true that if every local region of a tournament can
be colored by a few colors, then so does the whole tournament. This is another vivid
example about how local properties may affect the global behavior and structure of a
large graph. More formally, given t > 1, a tournament T is t-/ocal if for every vertex v,
the subtournament of T on the set of out-neighbors of v can be colored by ¢ colors.

CONJECTURE 6.10 Berger et al, 2013

There is a function f such that every t-local tournament T can be properly colored

by f(t) colors.

Conjecture 6.10 was proved recently for the case t = 2 in [CKL"18]. In this chapter,
we will verify the conjecture for all t. We also generalize it to dense digraphs, which
is a key result to extend the family of celebrities and the Erd6s-Hajnal conjecture to
dense digraphs in the next chapter.

6.3 Proof of Berger et al’s conjecture

To proceed the proof of Conjecture 6.10, we need several definitions. We will provide
the definitions in general digraphs for later use. The chromatic number x(D) of a di-
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graph D, is the minimum number k such that D can be properly colored by k colors.
Given a subset A of V(D), we usually denote by x(A) the chromatic number of the
digraph D[A] when it is clear from the context.

Given a digraph D and a set S C V(D), we say that S is a dominating set of D if
every vertex in V(D) \ S has an in-neighbor in S. The domination number (D) of a
digraph D is the smallest number k such that D has a dominating set of size k. Recall
that for every vertex v in a digraph D, we denote by N7} (v) the set of out-neighbors
of v in D. Given a subset X of V(D), let N} (X) denote the union of all N} (v), for
v € X, and denote by N [X] := X U N (X).

We first have the following property of t-local tournaments.

PROPOSITION 6.11

‘ Let T be a t-local tournament. Then for every subset X of V(T), x(NT[X]) < t|X].

Proof. Observe that for every v, we can color N*[v] with t colors by first coloring
N*(v) with t colors and then coloring arbitrarily v with one of these ¢ colors (since v
dominates N (v), coloring v does not create any monochromatic directed cycle). To
color N [X], we color N*[v] sequentially for every v € X. For each v € X, we color
the uncolored vertices in N [v] with £ new colors. Thus we can color N*[X] with ¢| X|
colors. O

Let C be a class of tournaments closed under taking subtournaments. We say that
C is tamed if for every integer k there exists K and /¢ such that every tournament T € C
with x(T) > K contains a set A of ¢ vertices such that x(A) > k. Note that a class of
tournaments with bounded chromatic number is indeed tamed.

THEOREM 6.12

H For every t, the class of t-local tournaments is tamed.

Thank to Theorem 6.12, we can show that Conjecture 6.10 is true.

THEOREM 6.13

H There is a function f such that every t-local tournament T satisfies x (T) < f(t).

Proof. Since the class of t-local tournaments is tamed, by the tamed property applied
to k = t 41, there exists (K, £) such that every t-local tournament T with x(T) > K
contains a set A of ¢ vertices and x(A) > t+ 1. If a vertex v € V(T)\ A does not
have an in-neighbor in A, then A C N*(v),andsot+1 < x(A) < x(NT(v)) < ¢,

a contradiction. Hence, A is a dominating set of T. Thus, x(T) = x(NT[A]) <
t|A| = ¢t. Consequently, t-local tournaments have chromatic number at most f(t) :=
max (K, £t). O
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We now prove Theorem 6.12.

Proof of Theorem 6.12. We fix some arbitrary t and show the property by induction on
k. The claim is trivial for k = 1. For k = 2, we can choose K = 2 and ¢ = 3. Indeed, if
a tournament T satisfies x(T) > K = 2, it contains an oriented triangle S of size { = 3
and x(S) > k=2.

Assuming now that (K, ¢) exists for k, we want to find (K’, ¢') for k + 1. For this,
we set K’ := 2kt(K + ¢t + 1), and fix ¢ later. Let T be a t-local tournament such that
X(T) = K'. Let D be a dominating set of T of minimum size d. By Proposition 6.11, we
have x(T) = x(NT[D]) < td. In particular, d > 2k(K + ¢t 4+ 1). Consider a subset W
of D of size k(K + ¢t +1). By Proposition 6.11, we have x(N*[W]) < kt(K + ¢t + 1),
and hence

X(VANT[W]) > x(T) = x(NF[W]) > kt(K+ £t +1) > K,

where V is the vertex set of T. In particular, by the tamed property applied to k, one
can find a set A C V' \ N [W] such that A has ¢ vertices and x(A) > k. Note that by
construction, A N W = @ and all arcs between A and W are directed from A to W.

Consider now a subset S of W of size K+ ¢t + 1. We claim that x (N (S)) > K+ ¢t.
If not, we can cover N*(S) by at most K + ¢t — 1 transitive sets. Since every transitive
tournament has a dominating set of size 1, we can choose a dominating set S’ of
NT(S) of size at most K 4 ¢t — 1. Note that x dominates S for any x € A, and so
S’ U {x} dominates N*[S]. Hence (D \ S) US’ U {x} would be a dominating set of T
of size less than |D|, which contradicts the minimality of |D|. Therefore, x(N*(S)) >
K+ ft.

Let N’ be the set of vertices NT(S) \ NT(A). Observe that all the arcs between N’
and A are directed from N’ to A, and that by Proposition 6.11 applied to N*(A), we
have x(N*(A)) < ¢t, and so

X(N') > x(N*(S)) = x(N* (A)) > K+ £t — ft = K.

Thus, by the tamed property applied to k, there is a subset As of N’ such that |Ag| = ¢
and x(As) > k. Note that by construction, As N A = @ and all arcs between Ag and
A are directed from Ag to A.

We now construct our subtournament of T with chromatic number at least k + 1.
For this we consider the set of vertices A U W to which we add the collection of Ag,
for all subsets S C W of size K + ¢t + 1. Call A’ this new tournament and observe that
its number of vertices is at most

K+/0t+1

To conclude, it is sufficient to show that x(A’) > k + 1. Suppose not, and for contra-
diction, take a k-coloring of A’. Since |W| = k(K + ¢t + 1) there is a monochromatic

A ::€+k(1<+£t+1)+€<k(K+£t+1)).
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set S in W of size K 4 {t 4- 1 (say, colored 1). Recall that we have all arcs from Ag to
A and all arcs from A to S, and note that since x(A) > k and x(As) > k, both A and
Ag have a vertex of each of the k colors. Hence there are u € A and w € Ag colored 1.
Since As C N (S), there is v € S dominating w. We then obtain the monochromatic
cycle uvw of color 1, a contradiction. Thus, x(A’) > k + 1, completing the proof. [

6.4 Generalizing to dense digraphs

The term digraphs in Part I is used to mention simple, loopless and finite digraphs, where
a digraph D is simple if for every two vertices u and v of D, there is at most one arc
with endpoints {u,v}. The purpose of this section is to extending Conjecture 6.10
from tournaments to dense digraphs, which will serve as a key tool for the results in
the next chapter.

Besides the out- and in-neighbors N (v) and Nj (v) of a vertex v in a digraph
D, we also denote by NY,(v) the set of vertices non-adjacent to v in D. For a subset
X of V(D), we denote by N{,(X) the set of vertices of V non-adjacent to at least one
vertex in X. A stable set in a digraph is a set of vertices pairwise non-adjacent. Given
a positive integer a, a digraph D is called a-dense? if it contains no stable set of size
a+ 1. Given t > 1, a digraph D is t-local if for every vertex v we have x(N*(v)) < t.
The extension of Conjecture 6.10 to dense digraphs is as follows.

THEOREM 6.14

For every positive integers w and t, there is a function f,(t) such that every a-dense
t-local digraph D can be properly colored by f,(t) colors.

And we have a similar version of Proposition 6.11.

PROPOSITION 6.15

Given a t-local digraph D, for every subset X of V(D), x (N1 [X]) < t|X].

We also have another observation regarding dominating sets in an acyclic digraph.

PROPOSITION 6.16

‘ An acyclic digraph D has a dominating set which is also a stable set.

Proof. We proceed by induction on |D| to show that every acyclic digraph D has a
dominating set S which is stable. The statement clearly holds for |D| = 1. For |D| >
1, since D is acyclic, there is a vertex v with no in-neighbors. Then V(D)\{v} =

%In liturature, an a-dense digraph is called a digraph with independence number at most «.
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N7 (v) UN°(v). Applying induction to D[N°(v)], we obtain a stable dominating set
S’ of D[N°(v)]. Clearly S := S’ U {v} is a dominating set of D. Note that S’ C N°(v),
and so S is stable. O

Let C be a class of digraphs closed under taking subdigraphs. We say that C is
tamed if for every integer k there exists K and ¢ such that every digraph T € C with
X(T) > K contains a set A of ¢ vertices such that x(A) > k. Note that a class of
digraphs with bounded chromatic number is indeed tamed.

We proceed the proof of Theorem 6.14 by induction on «. The case « = 1 is Con-
jecture 6.10. The following lemma is analogous to Theorem 6.12.

LEMMA 6.17

Suppose that Theorem 6.14 is true for « — 1, i.e., fy_1(t) exists for every t. For every
t, the class of a-dense t-local digraphs is tamed.

We now can finish the proof of Theorem 6.14.

Proof of Theorem 6.14. Suppose that the theorem is true for a — 1, i.e., f,_1(t) exists
for every t. We now show that it is true for «. Since the class of a-dense t-local
digraphs is tamed, by applying tamed property for k = t + f,_1(t) + 1, we have
that there exist (K, ¢) such that every a-dense t-local digraph D x(D) > K contains
a set A of ¢ vertices and x(A) > t + fy—1(t) + 1. We claim that A is a dominating
set. If not, then there is a vertex v such that A C N°(v) UNT(v). Then x(A) <
X(N°(v)) + x(NT(v)) < t+ fo—1(t), a contradiction. Hence, A is a dominating set of
D. Thus, x(D) = x(Uxea(NT(x) U{x})) < (t+1)|A| = £+ ¢t. Consequently, t-local
digraphs have chromatic number at most f(t) := max(K, £ + £t). O

Proof. We fix some arbitrary t and show the property by induction on k. The claim is
trivial for k = 1. Assuming now that (K, ¢) exists for k, we want to find (K’, ¢') for
k + 1. For this, we set s := K+ {f,_1(t) + ¢t and

K :=2k(as +1)(t+ fu-1(t) + 1),

and fix ¢’ later.

Let D be an a-dense t-local digraph with vertex set V such that x(D) > K'. Let B
be a dominating set of D of minimum size b. By Proposition 6.15, we have x(D) =
X(NT[B]) < tb. In particular, b > K'/t > 2k(as + 1). Consider a subset W of B of
size k(as 4+ 1). By Proposition 6.15, we have x(NT(W)) < kt(as + 1). By induction
hypothesis on &« — 1, for every x € W, we have x(N°(x)) < fy—1(t) since N°(x) is
(a« — 1)-dense and t-local.

Let M~ (X) := Nyex N~ (x) for any X C D, the set of common in-neighbors of all
vertices of X. Then we have,
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(D) = x(NT[W]) = x(N°(W))

X
K —kt(as+1) — Y x(N°(x))
xeW

" —k(as +1)(t+ far(t) +1)

x(M™(W))

VoWV

A\VAR\VARR\V
~ R R
~
N

In particular, by the tamed property applied to k, one can find aset A C M~ (W) such
that A has ¢ vertices and x(A) > k.

Consider now a subset S of W of size as 4+ 1. We claim that x(NT(S)) > s. If not,
we can cover N (S) by at most s — 1 acyclic sets. Since every acyclic set has indepen-
dence number at most «, it has a dominating set of size at most « by Proposition 6.16.
Hence N (S) has a dominating set, say S’ of size at most a(s — 1) < |S| — 2. But this
yields a contradiction since the set (B\ S) U S’ U {x}, where x is an arbitrary vertex in
A, would be a dominating set of T of size less than |B|. Therefore, x(N*(S)) > s.

By Proposition 6.15 applied to N*(A), we have x(N*(A)) < ¢t. Hence

X(NT(S)NM™(A)) = x(NT(S)) = x(NT(A)) — x(N°(A)),
>s—0t— ) x(N°(x)),

xX€A

(K+ Cfaa(8) + 1) — €t — | Alfoa (1),
K.

WV

Thus, by the tamed property applied to k, there is a subset Ag of N*(S) " M~ (A)
such that |Ag| = £and x(As) > k.

We now construct our subset of V with chromatic number at least k + 1. For this
we consider the set A’ consisting of vertices A U W to which we add the collection of
Ag, for all subsets S C W of size as + 1. Observe that the number of vertices of A’ is
at most

0= 04 k(as +1) + lk(as + 1) (Z) +1.

To conclude, it is sufficient to show that x(A’) > k + 1. Suppose not, and for
contradiction, take a k-coloring of A’. Since [W| = k(as + 1) there is a monochromatic
set S in W of size as + 1 (say, colored 1). Recall that As C M~ (A)and A C M~ (W) C
M~ (S), so we have all arcs from Ag to A and all arcs from A to S, and note that since
X(A) > kand x(As) > k, both A and Ag have a vertex of each of the k colors. Hence
there are u € A and w € Ag colored 1. Since As C NT(S), there is v € S such that
vw is an arc. We then obtain the monochromatic cycle uvw of color 1, a contradiction.
Thus, x(A’) > k+ 1, completing the proof of the claim. O
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We conclude the chapter by mentioning another version of Theorem 6.14, where
the tamed property is applied to in-neighbors instead of out-neighbors. The theorem
can be obtained easily form Theorem 6.14 by just reversing the directions of all arcs.

THEOREM 6.18

For every t and w, there is f,(t) such that every w-dense digraph D with
) < t for every v € V(D) has chromatic number at most f(t).
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Chapter 7

Generalizing the Erd6s-Hajnal con-
jecture

7.1 The Erd6s-Hajnal property in digraphs

Recall the Erdés-Hajnal conjecture that for every tournament H, there exists a constant
e(H) > 0 such that every H-free tournament T contains a transitive tournament with at
least |V (T)|(H) vertices. Since the conjecture is confined in tournaments, it is natural
to ask whether the result can be extended to general digraphs. This was in fact a
conjecture by Harutyunyan and McDiarmid [HM12]. A set of vertices A in a digraph
D is acyclic if the induced subgraph D[A] is acyclic.

DEFINITION 7.1

We say that a digraph H has the general Erd¢s-Hajnal property if there exists a
constant e(H) > 0 such that every H-free digraph D contains an acyclic set of size
at least |V (D)|e(H).

Harutyunyan and McDiarmid [HM12] conjectured that every digraph has the
general Erd6s-Hajnal property.

CONJECTURE 7.2 [HM12]

Every digraph has the general Erd0s-Hajnal property.

The content of this chapter is covered in paper Coloring dense digraphs, Ararat Harutyunyan, Tien-
Nam Le, Alantha Newman, and Stéphan Thomassé, Combinatorica, to appear.

93
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Conjecture 7.2 should be substantially harder than the Erdés-Hajnal conjecture
(since it generalizes the class of both patterns and large graphs from tournaments to
digraphs). Even a very simple pattern as the directed triangle C; is not known to have
the general Erd6s-Hajnal property. So far, the transitive tournaments Ty are the only
digraphs known to have the general property. The proof is quite simple. Let D be a
Ti-free digraph. We enumerate the vertices of D arbitrarily and consider a mapping
from D to an undirected graph G where a forward arc of D is mapped to an edge of G,
and a backward arc or a non-edge of D is mapped to a non-arc of G. Then G does not
have any clique of size k, and so has a stable set S of linear size. Note that the induced
subgraph D[S] contains only backward arcs or non-edges. Since the underlying graph
of D[S] contains no clique of size k, it must contain a stable set of linear size, which is
also a stable set in D.

While we could not provide any non-trivial pattern having the general Erd6s-
Hajnal property, we will show in this chapter a family of patterns having a weaker
property than the general one (which requires to hold for all H-free digraphs) but
stronger than the original one (requiring to hold for all H-free tournaments), which
we called the extended Erdds-Hajnal property (requiring to hold for all H-free dense
digraphs). Recall that given a positive integer «, a digraph D is called a-dense if it
contains no stable set of size a + 1.

DEFINITION 7.3

We say that a digraph H has the extended Erd6s-Hajnal property if there exists
a constant e(H,a) > 0 such that every H-free digraph D contains an acyclic sub-
digraph of size at least |V (D)|*(H=),

Clearly, every tournament with the general Erd6s-Hajnal property must have the
extended one, and every tournament with the extended property must have the orig-
inal one. One idea to prove Conjecture 7.2, which asserts that every digraph has the
general property, is to show that the converse of the two observations above holds
as well, i.e., every tournament with the original property has the extended one, and
every tournament with the extended property has the general one. To support Con-
jecture 7.2, we will prove in this chapter that the family of celebrities have the ex-
tended Erd6s-Hajnal property, and so characterize all tournaments having the ex-
tended property with a linear size acyclic set.

DEFINITION 7.4

We say that a digraph H is a superstar if for every positive integer , there exists a
constant 6(H, «) > 0 such that every a-dense H-free digraph D contains an acyclic
subgraph of size at least 5(H, w)|V(D)|.

The first observation is that every superstar is a celebrity. In the rest of this chapter,
we will show that the converse is true.
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THEOREM 7.5

H Every superstar is a celebrity.

To prove Theorem 7.5, we follow Berger et al [BCC"13] and resort to the coloring
of digraphs.

DEFINITION 7.6

We say that a digraph H is a superhero if for every positive integer a, there exists
a constant c(H, ) > 0 such that every a-dense H-free digraph D can be properly
colored by c(H, ) colors.

Similarly, it is not hard to see that every superhero is a superstar. Thus, we have:

F superheroes C F superstars C Fheroes = celebrity s

where F, is the family of patterns x. Let us recall that given tournaments Hy, Hy, H3,
we denote by H; = H, the vertex-disjoint union of H; and H; with complete arcs
from Hj to Hy, and A(Hj, Hp, H3) the vertex-disjoint union of Hj, Hp, H3 with com-
plete arcs from H;j to Hy, from H» to H3, and from Hj to Hy. For every integer k > 1,
let T denote the transitive tournament on k vertices. To prove Theorem 7.5, it is suf-
ficient to show that every hero is a superhero. More precisely, it is sufficient to prove
the following theorem, which was a conjecture of Aboulker, Charbit and Naserasr
(private communication, 2016).

THEOREM 7.7

The family of superheroes are constructed as follows:
* The singleton Ty is a superhero.
e If Hy and H, are superheroes, then Hy = Hj is a superhero.

* If H is a superhero, then A(H, Ty, T1) and A(H, Ty, Ty) are superheroes for
every k > 1.

Any tournament that cannot be constructed by this process is not a superhero.

Obviously T; is a superhero. Thus to prove Theorem 7.7, it suffices to prove the
following two theorems.

THEOREM 7.8

H If Hy and Hj are superheroes, then Hy = Hp is a superhero.



9 |

THEOREM 7.9

H If H is a superhero, then A(H, Ty, Ty) and A(H, Ty, Ty) are superheroes for any
k> 1.

Notation and remarks

The proofs of Theorems 7.8 and 7.9 are considerably technical. Thus, we recall here
thoroughly the necessary notation. Given a digraph D, we say that u sees v and v is
seen by u if uv is an arc in D. For every v € V(D), we denote by N} (v) (res. Ny (v))
the set of out-neighbors (res. in-neighbors) of v in D. Let N(v) = N} (v) U Ny (v). For
every X C V(D), let Nj(X) = Upex Np (v) (res. Ny (X) = Upex Np (v)), the set of
vertices seen by (res. seeing) at least one vertex of X, and let M} (X) = Nyex Np (0)
(res. M (X) = Nyex N (v)), the set of vertices seen by (res. seeing) all vertices of X.
Let Np(X) denote N} (X) U Ny (X).

For every v € V(D), we denote by N (v) the set non-adjacent vertices of v in D.
For a subset X of V (D), we denote by N{,(X) the set of vertices of V non-adjacent to
at least one vertex of X. When it is clear in the context (most of the time), we omit
the subscript D in this notation. We will use throughout this chapter the fact that
V(D)\X = M} (X) UNp (X) UNS(X) forany X C V(D). Given a digraph D and two
disjoint sets X, Y C V(D), we denote X —p Y (or just X — Y) if there is no arc from
Y to X in D. A key observation is that if X — Y, then x(X UY) = max (x(X), x(Y)).

A side remark is that some proofs in this chapter proceeding by induction on « use
the fact thatif D is a-dense, then N°(v) is (« — 1)-dense for every v, and thus x(N°(v))
is bounded. In these inductive proofs, we often cite known results on tournaments
for the base case &« = 1. However, the proofs here are indeed self-contained since to
prove the base case @ = 1, we just repeat the same arguments and use the fact thatin a
tournament, N°(v) = @ for any vertex v. Hence for example, the proof of Theorem 7.9
can serve as an alternative proof for Theorem 4.1 in [BCC*13] (that if H is a hero, then
so are A(H, Ty, T1) and A(H, Ty, Ty)).

7.2 Chains of superheroes

In this section, we will prove Theorem 7.8, which states that if H; and H; are super-
heroes, then so is Hy = H,. We will reuse the notions of r-mountains and (r, s )-cliques
introduced in [BCC*13]. Let us first give the idea of the proof of Theorem 7.8 for a
special case: (C3 = C3)-free tournaments have bounded chromatic number. Given a
(C3 = C3)-free tournament T, suppose that there is a small set Q in T with chromatic
number 3. Then for any partition of Q into Q1, Qy, at least one part of the partition
has chromatic number at least 2, and so contains a copy of C3. Let Y, 0, € V(D)\Q
be the set of vertices seeing all vertices of Q; and seen by all vertices of Q,. Observe
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that Yq, o, is C3-free, otherwise a copy of C3 in Y, o, together with a copy of C3 in
either Q; or Q, forms a copy of C3 = C3. Note that V(T)\Q is covered by only 2/9!
such sets Y, o,, and hence x(T) is bounded.

Hence we wish to find such a small set of vertices Q with chromatic number 3.
To this end, we call an arc uv of T thick if N~ (u) " N*(v) contains a copy of C3. If T
has no thick arcs, then intuitively T should have simple structure, and thus, bounded
chromatic number. Suppose that T contains a (not necessarily directed) triangle uovw
where all of the three arcs are thick. Then for each of the three thick arcs, we take
its thickness-certificate (i.e., a copy of C3) and together with u, v, w we obtain a set Q
of at most 12 vertices. It is straightforward to verify that Q has chromatic number at
least 3, and thus, by the argument above x(T) is bounded. If T contains no triangle of
thick arcs, then for any vertex v, the set of vertices adjacent to v by a thick arc induces
a thick-arc-free tournament, which, intuitively, should have bounded chromatic num-
ber. We then easily bound the chromatic number of the sets of non-thick in-neighbors
and non-thick out-neighbors of v, and hence bound the chromatic number of T.

The proof of the general case is in the same vein. Intuitively, we search for a
small set Q with large chromatic number as described above. We will capture the
notion of the set Q with the definition of an object called an r-mountain, and the notion
of a triangle of thick arcs with objects called (7,s)-cligues. Given a digraph D, the
formal definitions (which are borrowed from [BCC*13]) of r-thick-arc, (r, s)-clique, and
r-mountain in D are defined inductively on r as follows. Every vertex of D is a 1-
mountain. For every r,s > 1,

e Anarceof Disr-thickif N~ (u) N N (v) contains an r-mountain. An 7-mountain
in N~ (u) N N (v) is a certificate of r-thickness of e.

e An (r,s)-cliqgue of D is a set S C V(D) such that |S| = s, and for every distinct
vertices u, v € S, either uv or vu is an arc that is r-thick.

e Givenan (r,r 4+ 1)-clique S and a certificate C, , for every distinct u,v € S, then
the tournament induced on S U (U, yes Cu,0) is an (7 + 1)-mountain of D.

Note that if a digraph D contains an (r,r + 1)-clique, then D contains an (r + 1)-
mountain, which is the (r,r + 1)-clique together with certificates of all r-thick arcs of
that (r,7 + 1)-clique. Hence, if D contains no (r + 1)-mountain, then D contains no
(r,r 4+ 1)-clique.

LEMMA 7.10 [BCC"13], Lemma 3.3

‘ Every r-mountain has chromatic number at least r, and has at most (r!)? vertices.

Fix two superheroes H; and Hj.
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LEMMA 7.11

Fix« > 2 and v,s > 1, suppose that there are by, by, by such that
® Every (a — 1)-dense (H; = Ha)-free digraph D has x (D) < by.

* Every a-dense (Hy = Hy)-free digraph D containing no (r,s)-clique has
X(D) < by.

® Every a-dense (Hy = Ha)-free digraph D containing no r-mountain has
X(D) < bs.

Then there is by such that every a-dense (H; = Hp)-free digraph D containing no
(r,s + 1)-clique has x(D) < bs.

Proof. A small remark is that the second hypothesis seems redundant since if D con-
tains no (7,2)-clique, then D contains no r-thick arc, and so contains no r-mountain.
However, the second hypothesis is necessary for the case s=1.

First, note that since H; and H, are superheroes, there is by such that every a-
dense Hi-free (or Hy-free) digraph D has x (D) < bs. We first identify all r-thick arcs
of D. Fix an arbitrary vertex v. Then V(D)\{v} can be partitioned into four sets: N*
the set of neighbors of v that are connected to v by an r-thick arc; N~ = N~ (v)\N*;
Nt = N*(v)\N*; and N°(v).

Note that N°(v) is (H; = H»)-free and (« — 1)-dense, and so by the first hypoth-
esis, x(N°(v)) < bp. The crucial fact is that the digraph induced by the set N* does
not contain an (7,s)-clique; indeed, an (r,s)-clique together with v would form an
(r,s + 1)-clique, a contradiction to the fact that D has no (,s + 1)-cliques. Hence by
the second hypothesis, x (N*) < b;.

CLAIM 7.12

‘ There is bs such that either x(N~) < bs or x(N™) < bs.

Proof. Suppose that x(N~) > by, then N~ contains a copy of Hj, say Hy. Note that
NT = (MY (H)NN")U(N°(H)) NNT)U (N~ ()N NT).
o If x(M*(H)) NNT) > by, then M (H;) N N7 contains a copy of H, say Hy,

and weAhave H; = H, forming a copy of H; = Hj, a contradiction. Hence,
X(MT(Hi)NN') < by

e Foreach u € Hyj, we have N°(1) N N is (« — 1)-dense, so x(N°(u) N N*) < by.

e For each u € Hy, if (N~ (u) N NT) > by, then N~ (u) N N* contains a r-
mountain. This means that uv is an r-thick arc, contradicting u ¢ N*. Hence
X(N~(u) "NT1) < by, for each u € Hj.
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Thus we have,

X(N®) < x(MF(F) ONT) + 1 (X(N°() ON) + x(N~ () ANT))

ueH;

< by + [Hi|(bo + b2).

Set bs := by + |Hy|(bo + b2). We have just shown that if x(N~) > by, then x(NT) < bs.
Hence either x(N7) < by < bs or x(N™) < bs. This proves the claim. O

Note that NT(v) € Nt UN*, and so x(N*(v)) < x(NT)+ x(N*). Similarly,
X(N~(v)) < x(N7) + x(N*). Hence for every v € V(D), either x(N*(v)) < bs + by
or x(N~(v)) < bs + by. Let R be the set of all vertices v € V(D) with x(N*(v)) <
bs + by and B be the set of all vertices v € V(D) with x(N~(v)) < bs + b;. Note that
RUB = V(D).

Observe that R is an a-dense digraph, and x(Ng (v)) < x(N{(v)) < bs + by for
every v € R. Then applying Theorem 6.14 to R with t = bs + by, there is bg such that
X(R) < be. Similarly, by Theorem 6.18, there is by such that x(B) < by. Hence x(D) <
X(R) + x(B) < bg + by. Setting bz := bg + by completes the proof of Lemma 7.11. [

Recall that if D contains no (r 4+ 1)-mountain, then D contains no (r, 7 + 1)-clique.
We are now ready to show that digraphs which do not contain a mountain have
bounded chromatic number.

LEMMA 7.13

Let « > 2, and suppose that every (« — 1)-dense (H; = Ha)-free digraph D has
X(D) < by for some by. Then for every r, there exists gx(r) such that every a-dense
(Hy = Ha)-free digraph not containing an r-mountain has x(D) < ga(r).

Proof. We proceed by induction on r. If D contains no 1-mountain, then D has no
vertices, and we can set g,(r) := 0. Now suppose by induction that g, () exists. We
will show that g, (7 + 1) exists. First, we claim the following.

(A) For every s, there exists function g; ,(s) such that if D contains no (r, s)-clique,
then x(D) < g,,,(s).

We prove (A) by induction on s. For s = 1, if D contains no (7, 1)-clique, then D
has no vertex, so g; ,(s) = 0. Suppose, by induction, that g; ,(s) exists. Let D be a
digraph not containing a (,s 4 1)-clique. Applying Lemma 7.11 with b; = g} ,(s)
and by = g4(r), we deduce that g ,(s + 1) exists. This proves (A).

If D contains no (r 4+ 1)-mountain, then D contains no (r,r + 1)-clique, implying
X(D) < g, (r+1). Set go(r +1) := g, ,(r +1). This completes the proof. O
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To prove Theorem 7.8, it suffices to prove the following lemma.

LEMMA 7.14

For every integer « > 1, there exists f () such that every a-dense (Hy = Hy)-free
digraph D has x(D) < f(a).

Proof. We proceed by induction on a. Since H; = H, is a hero (see [BCC"13], Theo-
rem 3.2), Lemma 7.14 is true for « = 1. Suppose that Lemma 7.14 is true for « — 1 and
let cp = f(a —1). Since both Hy and H; are superheroes, there exists ¢; such that if D
is any Hyp-free or Hp-free digraph, then x(D) < c;. Let D be an a-dense (Hy = H»)-
free digraph with vertex set V. If D does not contain a (co + 2¢1 )-mountain, then by
applying Lemma 7.13 to D with by = ¢, there is ¢y such that x(D) < c¢. Thus, it
remains to consider the case that D contains a (¢ + 2¢1 )-mountain.

CLAIM 7.15

‘ There is c3 such that if D contains a (co + 2¢1 )-mountain, then x(D) < ca.

Proof. Let Qbe a (co + 2c1)-mountain of D. Then by Lemma 7.10, |Q| < ((co +2¢1)!)?
and x(Q) > co + 2¢y. For every partition Q into three sets Qo, Q1, Q2, let Yo, 0,0, be
the set of vertices v € V\Q such that Qp € N°(v),Q; € N*(v), and Q2 € N~ (v).
Note that for every vertex v € V\Q, there always exists a partition of Q into some
sets Qo, Q1, Q2 such that v is non-adjacent with every vertex in Qp, sees every vertex
in Qp and is seen by every vertex in Q,. Hence, V\Q can be written as the union of
all possible Yg, o, 0,- There are 3/9 sets Yg, 0,0,

(B) x(Yo,,0,,0,) < c1 for every partition (Qo, Q1,Q2) of Q.

Indeed, if Yg,0,,0, = @, then (B) clearly holds. Otherwise, Qy C N°(v) for any
v € YQ,0,,0,- Note that the digraph Qo is (H; = H)-free and (¢ — 1)-dense, and so
by induction hypothesis, x(Qo) < co. This gives x(Q1 U Q2) = x(Q) — x(Qo) = 2¢1,
implying that either x(Q1) > c1 or x(Q2) > ¢1. If x(Q1) > c1, then Q; contains a
copy of Ha, say Hy. If x(Y0,0,,0,) = c1, then Yp, 0, 0, contains a copy of H, say Hj.
Then H; = H, forms a copy of H; = Ha, a contradiction. Hence, x(Yg,0,0,) < C1.
A similar argument establishes the case x(Qz) > c;. This proves (B).
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Hence

x(D) <x(Q) +x(V\Q)
<

|Q‘ + X( U YQO/leQz)
(Q0,Q1,Q2)

< ‘Q‘ + Z X(YQO/QLQZ)
(Q0,Q1,Q2)

< ((eo + 201)!)2 + 3((C0+2C1)!)2C1_
Setcs i={{co+ 2C1)!)2 + 3((C0+2b1)!)2c1. This completes proof of the claim. O

Hence x(D) < max(cy,c3). Setting f(a) := max(cy, c3) completes the proof of
Lemma 7.14, thus proving Theorem 7.8. O

7.3 Cycles of superheroes

We will conclude this chapter with the proof of Theorem 7.9, which states that if H is
a superhero, then so are A(H, Ty, T1) and A(H, Ty, Tx) for any integer k > 1. We will
prove that if H is a superhero, then so is A(H, Ty, T1) for any k > 1. This is sufficient.
Indeed, if H is a superhero, then so is Hy,,, the digraph obtained from H by reversing
all its arcs. Thus, A(Hyeo, T, Th )reo = A(H, Ty, Ty) is also a superhero.

THEOREM 7.16

For every superhero H and every pair of integers k,a > 1, there is a num-
ber f(H,k,«) such that every a-dense A(H, Ty, Th )-free digraph D has x(D) <
f(H,k,a).

Before starting the proof of Theorem 7.16, we would like to mention that Ty-free di-
graphs have bounded number of vertices, and so have bounded number of chromatic
number. Indeed, it is proved in [Ste59] that for each integer k > 1, every tournament
with at least 25~ vertices contains a copy of Ty. Let R(a, b) be the Ramsey number of
(a,b), i.e., the smallest n such that any graph on 7 vertices either contains a stable set
of order a or a clique of order b.

PROPOSITION 7.17

For each integer k > 1, every a-dense Ty-free digraph D has at most R (a + 1,2+ 1)
vertices.

Proof. Suppose for a contradiction that there is a Ty-free digraph D with at least R (« +
1,2k=1) vertices. Then the underlying graph of D contains either a stable set of size
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« + 1 or a clique of size 2k=1. The former case is impossible since D is a-dense. Thus D
contains a tournament of size 2¥~1, and hence contains a copy of T, a contradiction.
O

The idea of the proof of Theorem 7.16 is as follows. Fix a large number ¢ and call
a subset B of V(D) with x(B) = ¢ a bag. We aim at finding a longest chain of disjoint
bags By, ..., By in V(D), together with a partition V(D)\ U B; into sets we call zones
Zy, ..., Zt such that there is no backward arc in D (where uv is a backward arc if the
bag or zone containing u has higher index than the bag or zone containing v). Then,
using maximality of ¢, we show that the chromatic number of every zone is bounded.
Once proving this, we observe that all B; and Z; have bounded chromatic number
and since D has no backward arc, D has bounded chromatic number. However, the
requirement that there is no backward arc in D is too strong and so we will have to
slightly relax it. In doing so, we will need to allow some backward arcs, but we will
want to do so in a very controlled manner. This leads us to the following definitions.

Given an integer ¢ > 1 and an a-dense A(H, Ty, Ty )-free digraph D, a set B C
V(D) with x(B) = c is called a c-bag. A family of pairwise disjoint c-bags By, ..., B;
is a c-bag-chain if for every i and every v € B;, we have x(N*(v) N B;_1) < ¢1 and
X(N~(v) N Bi11) < ¢1, where ¢; is a fixed number satisfying

e ¢y > R(a+1,21),and
* ¢; > x(D) for every a-dense H-free digraph D.
Since H is a superhero, such c; clearly exists. Note that every a-dense Ty-free digraph

D has at most ¢y vertices by Proposition 7.17, and so has chromatic number at most
C1.

Proof of Theorem 7.16. We proceed by induction on «. Since A(H, Ty, T1) is a hero (see
[BCC"13], Theorem 4.1), the theorem holds for « = 1. Suppose that Theorem 7.16
is true for « — 1 and let cp = f(H,k,a —1). Let D be an a-dense A(H, Ty, Ty )-free
digraph with vertex set V. An important observation is that for every v € V, the
digraph N°(v) is A(H, Ty, T1)-free and is (« — 1)-dense, and hence

X(N°(0)) < f(H ka—1) = co. 7.1)
We also would like to recall some useful formulas. For everyv € X C V,

X(NT(X)) < 3 x(N*(v)) and x(N°(X)) < }_ x(N°(2)), (7.2)

veX veX

andif Y C Vand Y N X = @, then (recalling that M (X) is the set of vertices seen by
all vertices of X)

Y=M"(X)NnY)U((N"(X)UN°(X))NY). (7.3)



| 103

Let |[H| = h and set ¢ := 2(co + ¢1)(h + k). Let us assume that By, ..., B is a c-bag-
chain of D with ¢t as large as possible. In the proof of this theorem, we drop prefix c-
of c-bag and c-bag-chain for convenience. By definition of bag-chain, every bag has
few backward arcs with bags preceeding or succeeding it. In the following claim, we
show that every bag in fact has few backward arcs with any other bag.

CLAIM 7.18

For every i and v € B;, and for every r > 0,
(@) x(NT(v)NB;_,) < ¢y, and

(b) x(N~(v) N Biyy) < 1.

Proof. We proceed by induction on r. For r = 1, both (a) and (b) holds by definition
of bag-chain. Suppose that both statements are true for r — 1. We now prove (a) for r.
Suppose for a contradiction that there is v in some B; such that x(N* (v) N B;_,) > c1.
Then N*(v) N B;_, has a copy of H, say H. Then by applying (7.3) we have

B | = <M+(H) mBH) U ((N*(H) UN°(H)) N Bi,l),

and
B, = (N’(v) N Bi,l) U ((N*(v) UN°()) N BH).

Thus (by using the fact thatif A = BUC = BUC/, then A = (BNB')UCUC’) we
have

Biq = (M+(H) AN~—(v)N BH) U ((N—(ﬁ) UN°(H)) N BH) U
(7.4)
U ((N+(v) UN°(2)) N BH).

For each x € H, by (7.1) we have x(N°(x) N B;_1) < co, and by induction hy-
pothesis of (b) applied to x and r — 1, we have x (N~ (x) N B;_1) < c;. We also have
X(N°(v) N Bi_1) < ¢o by (7.1) and x(NT(v) N B;_1) < c1 by definition of a bag-chain.
Combining with (7.4) and (7.2) we have

x(MT(H) NN~ (v) N Bi_1) > x(Bi_1) — Z x(N°(x) N Bi_1)
xeHU{v}

— Y X(N"(x) NBi—1) = x(N"(v) N Bi_1),

xeH
= Z(CO +C1)(h+k) — Co(h+ 1) —ch—c,
>C1.
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Then there exists a copy of Tj in M+(H ) NN~ (v) N B;i_y, say Ti. Note that by con-
struction, we have all arcs from H to T}, from T to v and from v to H. Then A (H Te, v )
forms a copy of A(H, Ty, T1), a contradiction.

The proof of (b) for r is similar but not symmetric. In order to obtain a copy of
A(H, Ty, Th), we first get a copy of Ty in B;,,, and then a copy of H in B;;q. This
proves the claim. ]

We next prove a stronger statement that every bag has few backward arcs with

the union of all other bags proceeding or succeeding it. Let B;; = Ui:i B; for any
I1<ig<j<t(fi<lorj>torj<i,wesetB;j=0Q).

CLAIM 7.19

For everyiand v € B;,
° X(N+( )mBlz 2) Cl,ﬂll’ld

* X(N7(v) N Bija,)) < c1.

Proof. We repeat the same argument as in the proof of Claim 7.18. Suppose for a
contradiction that the first statement is false, i.e., there is v in some B; such that
x(N*(v) N By;_3) > c1. Then N*(v) N By,;_ has a copy of H, say H. For each x € H,
we have x(N°(x) N B;_1) < ¢o by (7.1), and x(N~(x) N Bi—1) < ¢ by Claim 7.18. We
also have x(N°(v) N B;_1) < ¢ and x(N*(v) N B;—1) < c1. Thus by the same com-
putation as in Claim 7.18, we obtain a copy of Ty in B;_; and reach the contradiction.
The proof of the second statement is similar. O

From Claim 7.19 we have the following immediate corollary.

CLAIM 7.20

Foreveryiandv € B;,
° X(N+ (Z)) N Blrifl) < 2c1.
* X(N~(v) N Bit14) < 2c3.

We now show that the union of all bags has bounded chromatic number. We note
that in the following proof, we will use only two hypotheses: Claim 7.20 and that
X(B;) is bounded for every i. The reason for our remark is that we will re-use the
arguments of this proof for subsequent claims.

CLAIM 7.21
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‘ X(B1t) < 8ccy.

Proof. An arc uv with u € Bj,v € B;, and j > i is called a backarc with span j — i.
For every i and every v € B;, if [IN"(v) N Biy1s| < ¢1 — 1, let F, := N~ () N Bjyq.
If IN“(v) N Biy14| = ¢1 —1,let F, € N~ (v) N Bjy1; consist of ¢; — 1 vertices whose
backarcs to v have the ¢y — 1 largest spans. Let us show that

(A) For every backarc uv with u ¢ F,, if u € Bjand v € B; then x(B;;) < 4c.

Indeed, if j = i+ 1, then (A) clearly holds since x(B;i+1) < x(Bi) + x(Bit1) < 2c.
Thus we may suppose that j > i 4+ 2. Sinceu € N~ (v)N Bit1 butu ¢ F,, it follows
from the definition of F, that |F,| = ¢; — 1. Hence |F, U {u}| = c1. Then there is a
copy of Ty in F, U {u}, say Ti. Note that T;, C Bj;.

We have a formula similar to (7.4):
Bij1j 1= (M—(Tk) AN* ()N Bim,l) U ((N+(fk) UN(T) N Biﬂ,]-,l) U
U ((N’(v) UN°(2)) N BH).

For each x € T, U {v}, we have x(N°(x) N Bi11j-1) < co. Note also that from
Claim 7.20, we have x(N*(x) N Biy1-1) < 2c; for every x € Ty and x(N~(v) N
Bi+1,]'_1) < 2c¢q. Furthermore, if X(Mf(fk) NNT (Z)) N Bi+1,]'_1) > 1, then Mf(Tk) N
N*(v) N Bj;1,j—1 contains a copy of H, say H. Then A(H,T,v) forms a copy of
A(H, Ty, Ty ), a contradiction. Hence

X(Bit1j-1) < X(M_(Tk) NN*(v)N Bi+1,j—1) + ) X(NO(X) N Bi+1,j—1)
xeT U{v}

+ ) X(N’L(x) N Bi+1,j—1) + X(N_(U) n Bi+1,j—1>
xe€Ty

c1+co(k+1) 4201k + 2¢1

3(c1+co)(k+1) <2,

since ¢ = 2(co + ¢1)(h + k). This gives x(B;;) < x(B:) + x(Biy1,-1) + x(Bj) < 4c,
which proves (A).

<
<

Now let G be the undirected graph with vertex set By, and uv € E(G) if u € F, or
v € F,. Then B, is a stable set in G for every i. We now (properly) color the vertices of
G by ¢y colors as follows. First, color all B; properly by color 1. Suppose that we have
already colored B, 1, ..., B;. Every vertex v in B; is incident (in G) with at most ¢; — 1
vertices in B; 1 (those belonging to F,) and independent (in G) with all other vertices
in B;, so we can always properly color v, and so properly color B;. When the process of
coloring ends, we obtain a partition of B; ; into ¢; sets of colors, say Xj, ..., X¢,, where
each X is a stable set in G. We now claim that the chromatic number of the digraph
induced by X is small.
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(B) x(Xs) < 8cforevery1l <s < c.

To prove (B), we define a sequence of indices iy, i3, ... inductively as follows. Let
iy = 1, and for every r > 1, let i,y > i, be the smallest index such that x(B; ;) >
4c. The sequence ends by iy with x(B;, ;) < 4c (i.e. there is no iy satisfying the
condition). Set A, := B;,; 1 foreveryl <r < {—1and Ay := B;,;. Then By; =
U‘_; A,, and by definition of the sequence, x (B ) <4cforeveryl <r < /—1.

In other words, forevery 1 <r </,

X(4)) < 4e. (7.5)

irriwrl*l

Suppose that there is a backarc uv withu ¢ F,and u € A,,v € Ay, wherer >
r" + 2. Suppose that u € B]- and v € B]'/. Then j > i, since B]- C A =B, ,-1,and
j' <ipi1since By C Ay =B, i, —1,and soj’ < i,_qsincer’ +1 < r—1. Alsonote
that x(B;,_, i) > 4c by definition of the sequence. Thus we have

x(By,) = x(Bi, ) > 4c,

which contradicts (A) that x(B; ;) < 4cif u ¢ F,. This implies the observation that for
any r > ' + 2, there is no backarc uv with u € A,,v € Ay and u ¢ F,.

Now fix an arbitrary X, and let X, , = X; N A, for every 1 < r < £. Observe that
if uv is an backarc with u,v € X, then u ¢ F, (otherwise, u € F,, so uv € G and
so X, is not stable in G, a contradiction). Hence combining with the observation in
the paragraph above, we have that there is no backarc from X, to X;, for any r,7/
with r > ' + 2; in other words, X, ,» — X;, for any r,7’ with r > ' + 2. By (7.5), we
have that x(X;,) < 4c. Thus x (U1 Xs2r—1) < 4cand x(U,»; Xs2r) < 4c. This gives
xX(Xs) = X( Ur>1 Xs,r) < 8¢, which proves (B).

Hence
C1

X(Byy) < Zx(Xs) < 8cey.
s=1

This completes the proof of Claim 7.21. O

We now turn our attention to the vertices not in the bags. We partition V\ By ; into
sets Zy, ..., Z; called zones as follows. For every x € V\By, if i is the largest index such
that (N~ (x) N B;) > ¢1, then x € Z;; otherwise, x € Zy. We first show that every Z;
has few backward arcs with any B; sufficiently far from it.

CLAIM 7.22

Foreveryiand v € Z,,
* X(N~(v) N Bjy,) < c1 forevery r > 1, and

* x(NT(v)NB;_,) < ¢y forevery r > 2.
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Proof. The former inequality is obvious by the partition criterion. For the latter, the
proof follows the same idea as that of Claim 7.18, but is a bit more involved. Suppose
for a contradiction that X(N *(v) N Bi_y) = c1 for some r > 2. Then there is a copy of
Hin Nt (v) N B;_,, say H. Since (N~ (v) N B;) > ¢; by partition criterion, there is a
copy of T in N~ (v) N B;, say Ty. Then by applying (7.3) we have

B, = (M+(H) mBH) U ((N*(H) UN°(H)) N BH),
B, = (M‘("Tk) n Bi_1> U ((Nﬂﬂ) UN°(Ti)) N Bi_l),

Bifl = ((N+(U) UN_(Z))) ﬂBi,1> U (NO(Z)) N Bi,1>.
Let R = M*(H)N M~ (Ty) N (N*(v) UN~(v)) N B;i_;. Then we have
(

and

By =RU ( N~ (H)UN°(H)) ﬂBi_l)U

U ((N*(Tk) UN(Ty)) N Bi_l) U (N°(v) N Bi_y).

For each x € HU T, U {v}, we have x(N°(x) N B;—1) < ¢p. By Claim 7.18, we have
X(N7(x)NBj_1) < ¢y foreachx € Hand x(N*(x) N B;_1) < ¢; for each x € Ty. Then

X(R) = x(Bi-1) — Z x(N°(x)N'B;_1)
xEI:IUTkU{v}
_ZX mle ZXN+ mBl 1)
xeH xeTk
>2(co+c1)(h+k)—co(h+k+1) —c1h—cik
> 2¢q

Let Ry = RN N'(v) and R, = RN N~ (v). Note that R = R; U Ry, and so either
X(R1) = c1or x(Ra) > c1. If x(Ri1) > ¢y, there is a copy of H in Ry, say H'. Then
A(H', Ty, v) forms a copy of A(H, Ty, T1), a contradiction. If x(Rz) > c1, there is a
copy of Ty in Ry, say T}. Then A(H, T}, v) forms a copy of A(H, Ty, T ), a contradiction
again. This proves the claim. ]

While Claim 7.22 shows that every zone has few backward arcs with every suffi-
ciently far bag. The next claim shows the converse, i.e., every bag has few backward
arcs with every sufficiently far zone.

CLAIM 7.23

Foreveryiandv € B;,
e X(NT(v)NZi_,) < cq forevery r > 2, and
* X(N~(v)NZit,r) < 1 forevery r > 3.
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Proof. We repeat the argument in the proof of Claim 7.18. Suppose for a contradic-
tion that the first statement is false, i.e., there is v in some B; and r > 2 such that
x(N*(v)NZi_,) > c;. Then N*(v) N Z;_, has a copy of H, say H. For each x € H,
we have x(N°(x) N B;—1) < ¢o by (7.1), and x(N~(x) N Bj_1) < c; by the first inequal-
ity in Claim 7.22. We also have x(N°(v) N B;_1) < cop and x(N*(v) N B;_1) < ¢1 by
definition of bag-chain. Thus by the same computation as in Claim 7.18, we obtain a
copy of Ty in B;_; and reach the contradiction. The proof of the second statement is
similar. O

The next claim is a counterpart of Claim 7.20 for zones, and will be used to bound
the chromatic number of the union of zones.

CLAIM 7.24

Foreveryiand v € Z,,
o x(N*(0)NUZ3 Z) < ¢y, and

* X(N~(v)N Ué:i+3 Zs) < c1.

Proof. Suppose for a contradiction that x(N* (v) N 23 Zs) > c1, then there is a copy
of H in N*(v) N Uiz Z;, say H. For each x € H, we have x(N°(x) N B;,) <
co by (7.1), and x(N~(x) N B;_2) < c¢; by the first inequality in Claim 7.22. We
also have x(N°(v) N Bi_3) < ¢p and x(N*(v) N Bi_3) < ¢1 by the second inequal-
ity in Claim 7.22. Thus by the same computation as in Claim 7.18, we obtain that
x(M*(H)NN—(v) N B;_,) > ¢ implying that there is a copy of Ty in M*(H) N
N~ (v) N Bj_, reaching a contradiction. The proof of the second statement is simi-
lar, where we use B;, 1 instead of B; . O

In order to bound the chromatic number of the union of zones, we also need that
each zone has bounded chromatic number. We will prove this by employing the as-
sumption that the bag-chain By, ..., By is of maximum length.

CLAIM 7.25

‘ No zone Z; contains a bag-chain of length 6.

Proof. Suppose that some Z; contains a bag-chain of length 6, say Y7, ..., Y. Note that
we have

e X(NT(v)NB;_3) < ¢1 forevery v € Y by Claim 7.22 and x(N~(v)NY;) < ¢
for every v € B;_3 by Claim 7.23; and
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e X(N~(v) N Biy3) < ¢ forevery v € Yg by Claim 7.22 and x(N*(v) NYs) < ¢
for every v € B;y3 by Claim 7.23.

Thus by definition of bag-chain, By, ..., Bi_3, Y1, Y2, ..., Ys, Bi+3, ..., B¢ is a bag-chain of
length t + 1, which contradicts the maximality of . Hence no Z; contains a bag-chain
of length 6. O

LEMMA 7.26

There is ' such that if an a-dense A(H, Ty, Ty )-free digraph D’ does not contain
any c-bag-chain of length 6, then x(D") < ¢’.

We defer the proof of Lemma 7.26 for now.

We now show that this is sufficient to prove the theorem. To do so, we group zones
by indices modulo 3 and follow a similar argument as in Claim 7.21. Fixed 0 < s < 2,
and foreveryi =s mod 3,1 <i <t let ZSWBJ := Z;. Then )((Z]?) < ¢ for every j,
and for every v € Z?, by Claim 7.24, we have

¢ X(N*(0) Uy ) < 1, and
¢ X(N“(0) Uy Z) <an

By applying Lemma 7.26 for D’ = Z; and using Claim 7.25, it is immediate that
x(Z;) < ¢ for every i. Thus, X(Z]S-) < ¢ for every j. We can repeat exactly the

argument of Claim 7.21 (with ¢ replaced by ¢’ and by using Claim 7.24 instead of
Claim 7.20) to deduce

)(( U Zﬁ) <8y

r=0

for every s = 0,1,2. (Remark: we may suppose that ¢’ > ¢, which is necessary for the
argument at the end of the proof of Property (A) that 3(c1 + co)(k+1) < 2c < 2¢).

Hence
t

2
Uz <Lx(Uz) <2ace
5=0 s=0 r=0

From Claims 7.21 and the above inequality, we have

x(D) < x(B1s) + x(U'_yZ;) < 8ccy + 24c'cy,

which proves Theorem 7.16. O
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Proof of Lemma 7.26

Lemma 7.26 asserts that the absence of bag-chain of length 6 is enough to force a
digraph (x-dense and A(H, Ty, Ty )-free) to have bounded chromatic number. It is
trivial by definition that the absence of bag-chain of length 1 forces bounded chro-
matic number. In the next lemma, we show that the absence of bag-chain of length 2
forces bounded chromatic number, which contains most of the difficulty of the proof
of Lemma 7.26. In the following lemma, c, co, c1, h, k are the values as in the proof of
Theorem 7.16. Recall that ¢ = 2(co + ¢1) (h + k).

LEMMA 7.27

For every d > c, there is ¢(d) such that if an a-dense A(H, Ty, Th )-free digraph D
contains no d-bag-chain of length 2, then x(D) < g(d).

Proof. Let ] be the tournament H = Ty. By Theorem 7.8, | is a superhero and contains
both H and Tj as subtournaments. Let D be a digraph with vertex set V and satisfying
the hypotheses of the lemma. A copy of ] in D is called a ball. A ball ] is colored red
if x(M*(])) < d and blue if x(M~(])) < d (note that we do not color vertices of a
ball but color the ball as a single object). A ball certainly can be both red and blue, in
which case we color it arbitrarily with one of the colors.

CLAIM 7.28

‘ Every ball is either red or blue.

Proof. Suppose for a contradiction that a ball ] is neither red nor blue. Then there are
B; € M~ (]) and B, € M*(]) such that X(B1) = dand x(B;) = d. Suppose that
X(N*(v) N B1) > c; for some v € By. Let Hbe a copy of Hin Nt (v) N By. Let Ty be a
copy of Ty in J. Then A(H, Ty, v) forms a copy of A(H, Ty, Ty), a contradiction. Hence
X(N*(v) NBy) < c; for every v € By. Similarly, x(N~(v) N By) < ¢; for every v € By,
for otherwise a copy of Ty in N~ (v) N B, would yield a contradiction. Hence By, B, is
a d-bag-chain of length 2, a contradiction. O

For every vertex v of V, we color v as follows. If there are ¢ + 1 vertex-disjoint
red balls ]1, . ]C1+1 such that ]l has complete arcs to ]] for every i < ], and v € [, 41,
then we color v red. If there are ¢; + 1 blue balls ]1, ey ]cl+1 such that ]Z has complete
arcs to T] foreveryi < j,andv € Tl, then we color v blue. If v satisfies both conditions,
we color v arbitrarily. After the process of coloring, we obtain a partition of V into R
the set of red vertices, B the set of blue vertices, and U the set of uncolored vertices.

CLAIM 7.29

There is dy such that x(U) < dj.
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Proof. Let K be the tournament of | = ] = ... = | (2c; + 2 times J). Since | is a
superhero, then so is K by Theorem 7.8. Hence there is d; such that every a-dense
K-free digraph D’ has chromatic number at most d1. Suppose that U contains a copy
of K, say K. Since every ball is either red or blue, we can find ¢; + 1 vertex-disjoint
monochromatic balls ]1, g ]C1 in K such that ], has complete arcs to ]] for every i < j.
Then either vertices of J; are blue or vertices of ]c1+1 are red, a contradiction with the
fact that all vertices of U are uncolored. Hence U is K-free, and so x(U) < d;. O

It remains to show that R and B have bounded chromatic number, which can be
done by applying Theorems 6.14. To do so, we need to prove that N (v) has bounded
chromatic number for every v € R.

CLAIM 7.30

‘ There is dy such that x(N T (v)) < dy for every v € R.

Proof. Fix v € R. Then there are vertex-disjoint red balls Tiroor ]AC1+1 where v € ]AC1+1
and J; has complete arcs to J; for every i < j. Let L = Uflzl Ji. Note that v is seen by
all vertices of L. For every u € L, we have x(N*(v) N N°(u)) < co. Hence

X(NT(2) "N°(L)) < ) x(N*(2) N N°(u)) < |L]co.

uel

For every partition of L into Ly, L, (L1 or L, may be empty), let Y, 1, = N*(v) N
M~ (Ly) " M*(Ly). Observe that for every vertex x € N*(v)\N°(L) (note that x ¢ L
since v € TC1+1), there is a partition of L into some Lj, L, such that x sees all vertices
of L1 and is seen by all vertices of L,, and so x € Y7, 1,. Hence

N*(@\N°(L) = |J Yi,L,-

(L1,L2)

We now show that x(Y1,1,) < d for every Yy, 1,.

e If, for some 1 < i < ¢y, there isj; C Ly, recall that x(M™*(J;)) < d since J; is red.
Since Y1, € M"(Ly) € M (J;), we have that x(Y1,,1,) < d.

¢ Otherwise, if there is no ﬁ C L,, then L; contains at least one vertex of each
J,1<i< c1, and so |L1| > c1. Hence L has a copy of Ty, say Ti. Note that
all vertices of Tk see v since v € ]C1+1 If x(Y1,1,) = c1, then Yy, 1, contains a
copy of H, say H, then A(H, Ty, v) forms a copy of A(H, Ty, T1), a contradiction.
Hence x(Y1,1,) < c1 <d.
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Note that |L| = |J|c; = (h-+k)c1. Thus, there are 2("+5)t possible ways to partition
L into L4, L,. Hence

X(N(2)) < x(N*(2) NN°(L)) + x (NT (0)\N°(L) )

<
< |L|C0+ Z X(YLlrLZ)
(L1,L2)

< (h + k)C1C0 + 2(htk)er g

Set dy := (h + k)cyco + 2"Ke1d, This completes the proof of the claim. O

Then x(N*(v) NR) < x(N*(v)) < dy for every v € R. Then by applying Theo-
rem 6.14 for digraph R with t = d», we have x(R) < d3 for some ds.

We now prove that B has bounded chromatic number. The proof is slightly differ-
ent from that of Claim 7.30 due to asymmetry of A(H, Ty, T1).

CLAIM 7.31

‘ There is dg such that x(N~(v)) < dq for every v € B.

Proof. Fix v € B. Then there are vertex-disjoint blues balls Ti, ... ]AC1+1 where v €
and J; has complete arcs to T] foreveryi < j. Let L = UClJrl Ji. Note that v sees all
vertices of L. For every u € L, we have

X(N~(0) NN(L)) < ) x(N~(v) " N°(u)) < |L]co.

ueL

For every partition of L into L1, L, (L1 or L, may be empty), let Y1, 1, = N~ (v) N
M~ (Ly) N M (Ly). Observe that for every vertex x € N~ (v)\N°(L) (note that x ¢ L
since v € 7\1), there is a partition of L into some Lj, L, such that x sees all vertices of L;
and is seen by all vertices of L, and so x € Y7, 1,. Hence

( \No U YLl Ly-

(L1,L2)

We now show that x (Y1, 1,) < d for every Y, 1,.

e If thereis J; C Ly, then J; contains a copy of H, say H. Note that v is in the first
ball, so v sees all vertices of H. 1If x(YL,1,) = ¢1, then Y, 1, contains a copy of
Tk, say Tk, then A(H Tk, ) forms a copy of A(H, Ty, T1), a contradiction. Hence

x(Ye,1,) <o <d

o If Tc1+1 C L, recall that X(M*(Tcﬁl)) < d since /]\Cl+] is blue. Since Y, 1, C
M~ (L1) € M~ (Je,+1), we have that x(Yz,1,) < d.
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e Otherwise, we have two remarks:

(i) Jc,+1 must have a vertex in L, say z, and

(ii) (2) Every ﬁ, 2 < i < ¢qg must have a vertex in L.

Then |L; U {v}| > ¢1, and so L; U {v} contains a copy of Ty, say Tlé/ such that all
vertices of T,ﬁ are in one of the ﬁ, 1 <i < (note thatov € Tl). Observe that z is
seen by all vertices of T,ﬁ since z € 7;1+1. If x(Y1,1,) = c1, then Yy, 1, contains a
copy of H, say H', then A(H " f,i, z) forms a copy of A(H, T, Ty ), a contradiction.
Hence x(Y1,1,) <c¢1 <d.

Hence using a computation similar to the claim above, we have x(N~(v)) < dg,
where dy := (h+k)c1co0 + 2(tk)erd This completes the proof of the claim. O

Then x(N~(v) N B) < x(N~(v)) < d4 for every v € B. Then by applying Theo-
rem 6.18 to the digraph B with t = dy, we have x(B) < ds for some ds. Hence

X(D) < x(B) + x(R) + x(U) < d1 +ds + ds.
This completes the proof of Lemma 7.27. O

We are now ready to prove Lemma 7.26.

CLAIM 7.32

If an a-dense A(H, Ty, Th )-free digraph D contains no c-bag-chain of length 6, then
x(D) < g(g(g(c))) where g is the function in Lemma 7.27.

Proof. Suppose for a contradiction that x(Z;) > g(g(g(c))). We will show that D
contains a c-bag-chain of length 8. By applying Lemma 7.27 to D with d := g(g(c)),
we have that D contains a g(g(c))-bag-chain of length two, say X;, Xa. Hence x(X7) =

x(X2) = g(g(c)) and

e x(NT(v)NX;y) < ¢ forevery v € Xp, and

e x(N~(v)NX3) < ¢ forevery v € Xj.

Apply Lemma 7.27 again to X; (res. Xp) with d := g(c), we obtain a g(c)-bag-
chain of length two, say Y3, Y7 in X; (res. Y3, Y4 in X»). Since Y> C X and Y3 C X, we
have

e X(NT(v)NYa) < ¢ forevery v € Y3, and

e X(N“(v)NY3) < forevery v € Ys.
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Hence by definition, Y3, ..., Y4 forms a g(c)-bag-chain of length 4. Note that x(Y;) =
g(c) for every 1 < s < 4. Repeating the argument we obtain a c-bag-chain of length
2 inside each Y, and hence obtain a c-bag-chain By, ..., Bg of length 8 inside D. This
contradicts the fact that D has no c-bag-chain of length 6, and so completes the proof.

U

Claim 7.32 proves Lemma 7.26, concluding the proof of Theorem 7.16.



Chapter 8

Dense Triangle-Free Digraphs

8.1 Coloring triangle-free digraphs

This chapter is devoted to investigate a special case, where the pattern is the directed
triangle C3. The aim of this chapter is to present a potential direction to prove that C3
has the general Erd6s-Hajnal property (recall that no nontrivial pattern, even Cg, is
known to have the general property). We believe that the following conjecture, which
is a stronger statement than the general property of Cs, is true.

CONJECTURE 8.1

There is an integer £ such that for every positive integer a, if D is an x-dense Cz-free
digraph, then D can be properly colored by a' colors.

Indeed, if Conjecture 8.1 is true, then every Cz-free digraph D either has a stable
(hence, acyclic) set of size n'/?* or can be colored by (n'/?/)* = \/n colors, and hence
has an acyclic set of size n/+/n = y/n. Thus Cz has the general Erdés-Hajnal property.

While targeting a polynomial bound for the number of colors in Conjecture 8.1,
we could not even achieve an exponential bound. However, by an algorithmic ap-
proach, we are able to obtain a factorial bound, and the coloring process can be done
in polynomial time.

The content of this chapter is covered in parts of papers Coloring dense digraphs, Ararat Harutyunyan,
Tien-Nam Le, Alantha Newman, and Stéphan Thomassé, Combinatorica, to appear, and Domination and
fractional domination in digraphs, Ararat Harutyunyan, Tien-Nam Le, Alantha Newman, and Stéphan
Thomassé, Electronic Journal of Combinatorics, to appear.

115
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THEOREM 8.2

For every positive integer «, if D is an a-dense Cs-free digraph, then D can be
properly colored by 35! colors, and such a coloring can be found in polynomial
time.

In this section, we prove Theorem 8.2. We present an efficient algorithm to color
every a-dense C3-free digraph with at most 35*~'a! colors. For a digraph D, let n =
|V (D)| denote the size of its vertex set. Let poly(n) denote the function n* for some
rational number k > 0.

For each integer « > 1, define hi(a) to be the minimum number such that every
a-dense Csz-free digraph D has chromatic number at most /1(«). Conjecture 8.1 asserts
that h(a) < af for some ¢. Clearly k(1) = 1 since every Cz-free tournament is acyclic.
However, h(a) is still unknown for all « > 2. We believe that 1(2) = 2 or 3 even
though the best bound we have is 1(2) < 18 (by tweaking the proof of Theorem 8.2).
Theorem 8.2 gives an factorial upper bound for k() by the function g(a) := 35*1a!.
Since our proof of Theorem 8.2 will use induction, we will assume that every (a« — 1)-
dense Cs-free digraph can be colored with at most 35~ 2(a — 1)! colors. This is true
for « = 1, and we will prove it for « > 1 by induction.

We begin with some observations regarding the size of a dominating set in a di-
graph.

PROPOSITION 8.3

A digraph D has an acyclic dominating set, and this set can be found in time

poly(n).

Proof. We proceed by induction on n. The statement clearly holds for n = 1. For
n > 1, pick an arbitrary vertex v. Then V(D) \ v = N°(v) UN~ (v) UNT(v). Applying
induction to the subgraph, D[N°(v) U N~ (v)], we obtain an acyclic dominating set S'.
Then S := S’ U {v} is a dominating set of D. Note that S’ C N°(v) U N~ (v), so v does
not see any vertex of S’. Hence S is an acyclic set since S’ is an acyclic set. The running
time for this procedure is poly(n). O

PROPOSITION 8.4

Given an a-dense Cs-free digraph D, there is a set Y C V(D) of size at most « such
that V(D) = Y UN°(Y) UNT(Y), and this set can be found in time poly(n).

Proof. First apply Proposition 8.3 to obtain an acyclic dominating set S of D. Then
apply Proposition 6.16 to D|[S] to obtain a stable dominating set Y of D|S] of size at
most a(D) in time poly(n).
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We now show that Y is a set with the desired properties. Suppose for a contra-
diction that thereis v ¢ YU N°(Y)UN™'(Y). Then Y C N*(v) and v ¢ S since Y
dominates all vertices of S. There is u € S seeing v since S is a dominating set of D.
Note that u ¢ Y; otherwise this contradicts Y C N*(v). Thereis y € Y seeing u since
Y is a dominating set of S. Then u, v,y are distinct vertices where u sees v, v sees vy,
and y sees u. Hence we obtain a copy of Cz in D, a contradiction. O

We now present some definitions and useful lemmas. First, we re-define a bag so
that it inherits all properties of a bag as defined in Section 7.3 and so that it can be
tested efficiently.

DEFINITION 8.5

Foradigraph D, we say that B C V(D) is a bag of D, if every three distinct vertices
{x,y,z} € V(D) \ B have a common neighbor in B.

Recall that # and v are neighbors if either uv or vu is an arc. We can check in
poly(n) time (e.g. O(n*)) whether or not a set B is a bag of D by exhaustively checking
all triples in V(D) \ B. Suppose that the n vertices of a digraph can be partitioned
into disjoint sets such that the subgraph induced on each set is (« — 1)-dense. Let
time(a —1,n) denote the maximum (over all such possible partitions of the vertices)
total time required by our algorithm (the algorithm COLOR-DIGRAPH, which we will
define shortly) to color all of the subgraphs, each with at most 35*~2(a — 1)! colors by
induction. The following claim follows from this definition.

CLAIM 8.6

Suppose Yf_y n; = n, where n; > 1 is an integer. Then Y r_; time(x,1n;) <
time(a, n).

We now fix an arbitrary a-dense Cs-free digraph D, and we omit the subscript
D from the relevant notation when the context is clear. To simplify, let us set § =
352 (a — 1)1

CLAIM 8.7

IfS C V(D) is not a bag of D, then:

(a) We can partition S into three disjoint sets, S1,Sy and S3, each is (v — 1)-
dense. This procedure takes time poly(n).

(b) We can color S with 3 colors in time time(a — 1,S]).
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Proof. If S is not a bag of D, then we can, in time poly(n), find a triple {x,y,z} €
V(D) \ S such that every v € S is not incident to at least one of x,y or z. Thus, each
vertex v € S belongs to either N°(x) NS, N°(y) NS or N°(z) N'S. Each of these sets
is (o — 1)-dense. The total time for this procedure is poly(n). The second assertion
follows from the (a) and from the definition of the function time(a, n). O

DEFINITION 8.8

Abag B C V(D) is poor if for every vertex v € B, either N~ (v) NBor N (v) N B
is not a bag of D.

We can check in poly(n) time (e.g. O(n®)) if a bag B is poor by testing whether or
not N~ (v) N Band N (v) N B are bags for every v € B.

CLAIM 8.9

If B C V(D) is a poor bag, then we can color B with 8ap colors in time poly(n) +
time(a — 1, |B|).

Proof. Since B is poor, then for each v € B, either N~ (v) N B or N*(v) N B is not a bag
of D. Then we can partition B into two sets, L and R, where N~ (v) N B is not a bag
for every v € L, and N*(v) N B is not a bag for every v € R.

Applying Proposition 8.4 to R, we can find a set Yg C R such that |Yz| < a and
R Q YR U N+(YR) U NO(YR). And so:

R= | ((Nﬂv) UN°(0) U {o}) mR).

vEYR

For v € Yg, note that N* (v) N R is not a bag, and so by (a) from Claim 8.7, we can par-
tition N (v) N R into three (« — 1)-dense sets. Additionally, we have the set N°(v) N R
is also (« — 1)-dense. Overall, we can partition R \ Yr into 4« sets, each is (& — 1)-
dense.

Similarly, one can find aset Y, C Lsuch that|Yz| < aand L\ Y can be partitioned
into 4a(a — 1)-dense sets. Therefore, in time poly(n), we can partition B\ Yr U Y,
and in time time(x — 1,|B|) we can color B\ {Y; U Yy} with 8af colors. We can then
color each v € Yy (respectively, v € Y1) with an arbitrary color used to color the set
N°(v) N R (respectively, N°(v) N L). O

In general, we do not know how to color a bag efficiently, and a bag may be very
large (e.g. V(D) is a bag). Our aim is therefore to find poor bags, since these can be
colored using Claim 8.9. The first step of our algorithm is to find a chain of poor bags.

DEFINITION 8.10
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A sequence of pairwise disjoint bags By, . .., By forms a chain of bags if B; — Bj11
forevery i € [1,t).

Recall that B;;1 — B; means there is no arc from B; to B;;1. Moreover, if each
B; is a poor bag, then this sequence is a chain of poor bags. Given a chain of bags
C = {By,By,...,B:} for D, we say that v € Cif v € B; for some i € [1,{]. We can
partition the vertices in V(D) \ C into sets Z, . .., Z;, which we call zones, as follows.
For every v € V(D) \ C, let i be the largest index such that v is seen by at least one
vertex in B;. Then vertex v is assigned to zone Z;. Otherwise, we assign v to zone Z.
This partition is unique and can be done in time poly(n). As in the case of the bags
and zones used in Section 7.3, these bags and zones exhibit useful properties. The
proofs we present here are similar, but much simpler.

CLAIM 8.11

Let C = {By, ..., B} bea chain of bags, and let Zy, Z1, . . ., Z; be a partition of the
vertices in V(D) \ C. For every i, the following properties hold:

(a) Bi = Biy, foreveryr > 1,
(b) Z; — Bji, foreveryr > 1,
(c) Bi = Ziy, foreveryr > 2,

(d) Z; = Zi, for every r > 3.

Proof. Property (a) holds for r = 1 by definition of a chain of bags. Suppose that (a)
holds for r — 1 > 1, and suppose that there is an arc uv with u € B;;, and v € B;. Since
Bii1 is a bag, there is x € B;;; such that x is a common neighbor of u and v. Then
by induction hypothesis, vx, xu are arcs, and so vxu is a copy of Cs, a contradiction.
Hence (a) holds for r.

Property (b) holds for all > 1 by the partitioning criterion of vertices into zones.

To prove property (c), suppose that there is an arc zo with z € Z;;, and v € B; for
some r > 2. Then there is u € B;, such that uz is an arc by the partitioning criterion
of vertices into zones. Since B;;; is a bag, there is x € B;;1 such that x is a common
neighbor of u,v,z. By property (a), vx and xu are arcs. If xz is an arc, then vxz is a
copy of Cz. Otherwise, zx is an arc, and so xuz is a copy of Cs. Either way, we reach
the contradiction, and so (c) holds for every r > 2.

To prove property (d), suppose that there is an arc uv withu € Z;,, and v € Z; for
some r > 3. Since B; 1 is a bag, there is x € B;; such that x is a common neighbor of
all u and v. By property (b), vx is an arc, and by property (c), xu is an arc. Hence vxu
is a copy of C3, a contradiction. Hence (d) holds for every r > 3. O
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We now show how to find a chain of poor bags, which can be colored using
Claim 8.9.

FIND-CHAIN(D, B)

(i) If there is v € B such that both N*(v) N B and N~ (v) N B are bags of D,
then:

Return (FIND-CHAIN(D, N~ (v) N B), v, FIND-CHAIN(D, N*(v) N B) ).

(ii) Otherwise, return B.

The routine FIND-CHAIN(D, B) returns By, v1,By,...,vs_1, B;, i.e. a sequence of
sets B; alternating with vertices v;. We say that the sequence By, B, ..., B; is the
chain of poor bags output by the procedure FIND-CHAIN(D, B). Later on, we will
use the vertices v; in the output sequence to facilitate the coloring of vertices outside
the chain. Observe that if B is a poor bag or if B is not a bag, then FIND-CHAIN(D, B)
returns a single set, namely B.

CLAIM 8.12

If bag B C V(D) is not poor, then FIND-CHAIN(D, B) returns a chain of poor
bags By, ..., By for some t > 2 in time poly(n).

Proof. Let By, ..., B; be the chain of poor bags output by FIND-CHAIN(D, B). The bags
in this chain are pairwise disjoint. From Step 1 of FIND-CHAIN, it follows that each B;
is a bag. Furthermore, each B; must be poor; otherwise, Step 1 would be applied to B;
to return poor bags inside B;. Observe that for every pair of consecutive bags B;, B 1
in the chain, B;11 C N*(v;) and B; C N~ (v;). If there is an arc xy with x € B;;; and
y € B;, then v;xy is a copy of C3, a contradiction. Hence By, ..., B; is a chain of poor
bags by definition. The procedure FIND-CHAIN(D, B) runs in time poly(n). O

CLAIM 8.13

If FIND-CHAIN(D, B) returns a chain of t poor bags, then we can color B with
8B+ (t — 1) - B colors in time poly(n) + time(x — 1,|B|).

Proof. Suppose that FIND-CHAIN(D, B) returns By,v1, By, ..., 01, By and that C =
{By, ..., B;} is the chain of poor bags output by the procedure. Since each B; is a poor
bag, it can be colored using Claim 8.9. By Claim 8.11, B; — B; for every i < j, and
so we can color the vertices in C using 8« - B colors in time poly(n) + time(x —1,|C|)
time.
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Observe thateach v € B\ C is either (i) some v; in the output sequence returned by
FIND-CHAIN(D, B), or (ii) belongs to N°(v;) for some v; in this output sequence. For
any v € V(D), the set N°(v) is (« — 1)-dense. Therefore, the vertices in [J/_{ N°(v;)
can be colored with (t — 1) colors. Note that v; can be colored with an arbitrary color
from the color palette used for N°(v;). This coloring can be found in time poly(n) +
time(w — 1, |B\ C|). O

COROLLARY 8.14

Either FIND-CHAIN(D, B) returns a chain of t poor bags, or B can be colored using
8B + (t —2) - B colors.

We now have the tools to outline our main coloring algorithm.

COLOR-DIGRAPH(D)
If D is acyclic, color D with one color and terminate.

Otherwise:

(i) Run FIND-CHAIN(D, V(D)) and let C := {Bj,...,B;} denote the chain of
poor bags that it outputs.

(ii) Assign each vertex in V(D) \ C to a zone Z; for i € [0, t].

(iii) While FIND-CHAIN(D, Z;) returns a chain of poor bags By, B, . .., B} fork > 3:

(i) Update chain: C := {By,...,B;_»,B{,B),..., B}, Bit1,...,Bt}.

(ii) Re-assign each vertex in V(D) \ C to a zone.

(iv) Color all vertices in the chain C with 8a colors.

(v) Color all vertices in the zones of C with 3(8« + 1) colors.

CLAIM 8.15

‘ COLOR-DIGRAPH(D) colors D with at most 35« - B colors.

Proof. If V(D) is a poor bag, then we can apply Claim 8.9. Hence we may suppose
that V(D) is not a poor bag.

Note that the updated chain C resulting from Step 3 (a) is still a chain of poor
bags, due to properties (b) and (c) from Claim 8.11. After Step 3 finishes, the chain
C is maximal in that the procedure FIND-CHAIN(D, Z;) will not find a chain of three
poor bags in any zone Z;. Using Corollary 8.14, we can therefore color each zone
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using (8« + 1) colors. Applying property (d) from Claim 8.11, we can use at most
(24a + 3) - B colors to color all vertices in V(D) \ C. Each bag B; in the chain C is a
poor bag, so we can color B; with 8« colors by Claim 8.9. Moreover, since B; — B; for
every i < j (by property (a) from Claim 8.11), we need 8af3 colors to color the entire
chain C. Thus, we can color D with (32a 4 3)B < 35ap colors. O

CLAIM 8.16

‘ The procedure COLOR-DIGRAPH (D) uses 35*~a! colors.

Proof. We proceed by induction on a. If « = 1, then we use one color, since every
Cs-free tournament is acyclic. Suppose that the algorithms colors each (« — 1)-dense
Cs-free digraph D’ using at most  colors. Then by Claim 8.15, the procedure COLOR-
DIGRAPH(D) colors D with at most

350 = 35a-35"2(a—1)! = 35% la!
colors. 0

CLAIM 8.17

‘ COLOR-DIGRAPH(D) runs in time poly(n).

Proof. We now analyze the running time. Finding a maximal chain C takes poly(n)
time, as does the procedure of partitioning the vertices in V(D) \ C into zones. Once
we have found this partitioning, we can color the vertices in C in time poly(n) +
time(a — 1, |C|) using Claim 8.9, and we can color each zone Z; in time poly(n) + (a —
1,1Z;|) using Claim 8.13 and Corollary 8.14. So applying Claim 8.6, the total running
time of COLOR-DIGRAPH(D) is at most poly(n) + time(a — 1,n). This leads to the
following recurrence relation:

time(a,n) = poly(n) + time(a —1,n)
= - poly(n).
Since a < 1, we have that time(a, n) = poly(n).

We note that our algorithm is actually just partitioning V(D) into disjoint (« — 1)-
dense subsets. In other words, it first partitions the vertices in V(D) into sets where
each set is a poor bag or not a bag (for example, a zone Z; is either a poor bag or not
a bag). Then, it further partitions these sets into (« — 1)-dense sets. (For example,
by Claim 8.7, a set that is not a bag can be partitioned into three disjoint sets, each
is (o — 1)-dense. Similarly, in the proof of Claim 8.9, a poor bag is partitioned into
8u disjoint sets, each is (¢ — 1)-dense.) Once the subgraphs on these induced subsets
are colored (recursively) using pB colors, then certain subsets are allowed to use the
same color palette, and these color palettes can be coordinated in time poly(n). The
initial partitioning procedure and the final coordinating procedure require poly(n)
time, while the recursive coloring requires time(x — 1, 1) time. O
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Theorem 8.2 follows from Claims 8.15, 8.16 and 8.17.

Finally, we remark that Theorem 8.2 yields a bound on the size of a maximum
acyclic subgraph of a-dense Cs-free digraphs.

THEOREM 8.18

Let D = (V, A) be an a-dense Cs-free digraph. Then D contains an acyclic subset
of arcs, A" C A, with cardinality |A’| > |A|- (3 + ca), where ¢, is a constant
depending on w.

Proof. Since D can be colored with 35%1x! colors, there is a color class contains at

least 3z7"1; vertices, and by Turan’s Theorem, its induced subgraph contains at least

2. 35rvlcfloa (m - 3511“! B 1)

arcs. Thus, D contains a maximum acyclic subgraph of size at least

|A| n n
— —-1].
2 + 4 .350 1! (a-35“*10c! )

Let ¢ be an absolute constant. Then

satisfies the theorem. O

8.2 Domination in triangle-free digraphs

Before concluding this thesis, we will discuss briefly about dominating sets in dense
Cs-free digraphs. As we shown through previous chapters, there is a tight bond be-
tween domination and coloring in digraphs. Another example is that for any a-dense
digraph D, we have y(D) < ax(D), which follows from the fact that in a proper color-
ing, each color class forms an induced acyclic digraph and every acyclic digraph has
a stable dominating set (by Proposition 6.16). Thus, combining with Theorem 8.2, we
have that a-dense Cs-free digraph D has the domination number at most a35*1a!.
However, a better bound can be achieved, where 35! is dropped.

THEOREM 8.19

For every positive integer a and any «-dense Cs-free digraph D, we have y(D) <
xul.
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For small cases, we can provide better bounds, for example, the tight bound
7(D) < 3whena = 2, or y(D) < 8 when « = 3. Similar to Conjecture 8.1, we
also believe that a polynomial bound for the size of dominating sets in dense Cz-free
digraphs.

CONJECTURE 8.20

There is an integer £ such that for every positive integer «, if D is an a-dense C3-free
digraph, then D has a dominating set of size o’

We now prove Theorem 8.19.

Proof of Theorem 8.19. Let h(1) = 1 and h(k) = k- (h(k—1) + 1) for every k > 1. We
proceed by induction on « that y(D) < h(a). If « = 1, then D is a Cs-free tournament,
and so D is acyclic. Then there is a vertex that dominates V(D). So h(1) = 1.

If « > 1, we first apply Proposition 8.3 to find an acyclic dominating set A of D.
Then we apply Proposition 6.16 to find a dominating set S C A of A. Note that [S| < «
since S is stable. Let Y denote the set of vertices in V(D) \ A that are not dominated
by any vertex in S.

We observe that each vertex y € Y belongs to N°(s) for some s € S. Suppose this
were not the case. Then a vertex y € Y has arcs to all s € S. Since A dominates V,
there is some a € A\ S such that ay € E(D). Since S dominates A, thereis s € S such
that sa € E(D). This yields the triangle ysa, which is a contradiction to D being Cs-
free. Hence, for every y € Y, thereis s € S such that ys ¢ E(D). By the definition of
Y, it follows that sy ¢ E(D). We conclude that s and y are independent and therefore
y € N°(s).

We partition Y into |S| subsets, where for each s € S, Y, is a subset of N°(s).
Note that D[N°(s)] is (« — 1)-dense, then so is D[Ys]. By the induction hypothesis,

there is a set B; of size at most /i(x — 1) dominating Y;. Let B = SU (Uses Bs). Then
|B| < |S|+|S|-h(a—1) < h(a) < anl.

Observe that Y = [Jscg Ys is dominated by seg Bs, and V' \ Y is dominated by S
by definition of Y. Thus, B is a dominating set of D, which proves the theorem. ]



Conclusion

Throughout the thesis, we have studied the relation between patterns and large
graphs. Let us sum up the results and propose some directions for further work.

In Part I, we discussed about the sufficient conditions so that a large graph can
be decomposed into copies of a given pattern. In Chapter 2, we proved the Barat-
Thomassen conjecture that every highly edge-connected graph can be decomposed
into copies of a given tree. We provided a large exponential upper bound on the
edge-connectivity which holds for all patterns. One direction for future work could
be improving this general bound, or bounds for specific patterns. Another idea could
be finding some lower bounds on the edge-connectivity for specific patterns. For
example, we showed in Chapter 3 that when the pattern is Pg, the bound on the edge-
connectivity must be at least 3. These lower bounds could give insight to the true
sharp bound of the Barat-Thomassen conjecture.

One could also investigate a counterpart of the Bardt-Thomassen conjecture for
patterns which are not a tree (i.e. containing a cycle). There are numerous works on
that topic, mainly focusing on the cases where the pattern is a cycle or a complete
graph, for example, [Wil75, BKLO15, BC15]. However, it is easy to notice that in this
case, high edge-connectivity is not sufficient; the large graph needs to have small
girth, too. Indeed, suppose that the pattern contains a cycle of length /, then the large
graph must contains many cycles of length ¢ as well.

In Chapter 3, we showed that when the pattern is a path, it is possible to replace
the edge-connectivity condition in the Bardt-Thomassen conjecture by a cheaper one
— the minimum degree. Whether it is possible to improve the Barat-Thomassen con-
jecture when the pattern is a tree is still open.

In Chapter 4, we proved a conjecture by Haggkvist and Kriesell that every Eule-
rian graph with high minimum degree admits an /-step self-avoiding Eulerian tour.
Which immediately implies that every Eulerian graph with high minimum degree can
be decomposed into copies of a given path, i.e. replacing the high edge-connectivity
condition of the Barat-Thomassen conjecture by Eulerianity and high minimum de-
gree. Oksimets [Oks97] showed that 6 is a sharp bound for ¢ = 3. Finding sharp
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bounds for other patterns could be a direction for future work.

In Chapter 5, we proved Jaeger-Linial-Payan-Tarsi’s conjecture on additive bases
in the case the vectors has support at most 2. This results implies several results on
flows and orientations in graphs. Improving the bound on the number of bases will
subsequently improve the bound on the edge-connectivity condition of its corollaries
on flows and orientations in graphs. Since a vector of support 2 can be mapped into an
edge, a result similar where vectors have support at most 3 could imply similar corol-
laries for hypergraphs with edge size at most 3. A general result without bounded
support size would give results on flows and orientations in general hypergraphs.

Part II was dedicated to the tournament version of the Erd6és-Hajnal conjecture.
In Chapter 6, we proved a conjecture of Berger et al that if a tournament is nowhere
locally colorful, then it is not globally colorful. It is natural to ask the reverse question:
If a large tournament is colorful, is it true that it is locally colorful somewhere, i.e. can
we say that it must contain a small but colorful subtournament? This turns out to
be false; an counterexample could be found at [HLTW17]. In [HLTW17], we indeed
presented a stronger result that the size of local domination sets dictates the global
colorfulness of a tournament. This again shows the close tie between domination and
coloring in graphs. Hence, it is natural to ask whether the size of local domination
sets dictates the size of the global domination set. This question is still open.

In Chapter 7, we discussed the general Erd6s-Hajnal conjecture on digraphs and
extended the result of Berger et al [BCC*13] to dense digraphs, and discussed in de-
tail the case where the pattern is the directed-triangle in Chapter 8. An imminent
direction for future work could be proving the general Erdés-Hajnal conjecture for
some small patterns, such as the directed-triangle. Another idea could be replacing
the dense condition by some weaker ones, such as high average degree or high mini-
mum degree.
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