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Résumé

Comprendre l’organisation de la connectivité structurelle du cerveau ainsi que comment celle-ci contraint sa fonc-
tionnalité est une question fondamentale en neuroscience. L’avènement de l’Imagerie par Résonance Magnétique de
diffusion (IRMd) a permit l’estimation de la connectivité des neurones in vivo. Dans cette thèse, nous profitons de
ces avancées pour: étudier l’organisation structurelle du cerveau; étudier la relation entre la connectivité, l’anatomie
et la fonction cérébrale; identifier les régions corticales correspondantes d’un sujet à un autre; et inférer la con-
nectivité en présence de pathologie. Cette thèse contient trois contributions majeures. La première est un modèle
pour la connectivité axonale et une technique efficace pour diviser le cerveau en régions de connectivité homogène.
Cette technique de parcellisation permet de diviser le cerveau tant pour un seul sujet que pour une population. Les
parcelles résultantes sont en accord avec les parcellations anatomiques, structurelles et fonctionnelles existant dans
la littérature. La seconde contribution de cette thèse est une technique qui permet d’identifier les régions corre-
spondantes d’un sujet à un autre. Cette technique, basée sur le transport optimal, offre une meilleure performance
que les techniques courantes. La troisième contribution est une technique de segmentation, dite multi-atlas, pour
identifier les faisceaux d’axones de la matière blanche de patients atteints d’une pathologie cérébrale. Comme les
techniques existantes, notre approche utilise l’information spatiale provenant d’atlas de sujets sains, mais pondère
celle-ci avec l’information d’IRMd du patient. Nous montrons que notre technique obtient de meilleurs résultats que
les méthodes non pondérées.

Mots-clés: Parcellisations Structurelles, Imagerie de Diffusion
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Abstract

Understanding how brain connectivity is organized, and how this constrains brain functionality is a key question
of neuroscience. The advent of Diffusion Magnetic Resonance Imaging (dMRI) permitted the in vivo estimation of
brain axonal connectivity. In this thesis, we leverage these advances in order to: study how the brain connectivity is
organized; study the relationship between brain connectivity, anatomy, and function; find correspondences between
structurally-defined regions of different subjects, and infer connectivity in the presence of a brain’s pathology. We
present three major contributions. Our first contribution is a model for the long-range axonal connectivity, and an
efficient technique to divide the brain in regions with homogeneous connectivity. Our parceling technique can create
both single-subject and groupwise structural parcellations of the brain. The resulting parcels are in agreement
with anatomical, structural and functional parcellations extant in the literature. Our second contribution is a
method to find correspondence between structural parcellations of different subjects. Based on Optimal Transport,
it performs significantly better than the state-of-the-art ones. Our third contribution is a multi-atlas technique to
infer the location of white-matter bundles in patients with a brain pathology. As existent techniques, our approach
aggregates spatial information from healthy subjects, our novelty is to weight such information with the diffusion
image of the patient. We show that our technique achieves better results than the non-weighted methods.

Key words: Structural Parcellation, Diffusion MRI
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Introduction

Composed of billions of interconnected neurons, the brain
is a highly complex biological machine. Untangling this
network is the main goal of neuroscience, a task that has
proven to be arduous. The problem is two fold. First,
it is not feasible to characterize cellular function or ax-
onal connectivity at the scale of the brain with current
approaches. Second, even if we could characterize the
neural network at a cellular level, studying it is unre-
alistic given the huge amount of neurons in the brain1.
These current technical limitations highlight the need to
abstract the complexity of the brain’s neuronal network
before studying it.

Brain parcellation is a way of dimensionality reduction.
Parceling the brain allows us to abstract the interaction
between billions of neurons into a tractable number of
interacting regions. Accumulating evidence suggest that
regions with distinct function or cytoarchitecture also
possess distinct axonal connectivity2;3;4;5. Hence, under-
standing how the cortex is arranged based on its axonal
connectivity could provide key information in unraveling
brain organization.

Cerebral dissections6;7;8, and the injection of chemical
markers9;10 used to be the only way to map brain axonal
connectivity. Such methodologies are highly invasive and
can only be used in post-mortem studies. Nowadays, the
advent of Diffusion Magnetic Resonance Imaging (dMRI)
allows to non-invasively quantify the diffusion of water
molecules in live tissue as the white-matter. Under nor-
mal unhindered conditions, water particles diffuse ran-
domly in a process known as Brownian motion. However,
in the white matter, water molecules are constrained, and
can only diffuse inside and along axonal bundles. Due to
this phenomenon, dMRI is able to capture information
about the structural organization of the brain. Build-
ing on top of this, tractography algorithms reconstruct
white matter bundles in the brain, allowing to estimate
the brain’s axonal connectivity.

In this thesis, we leverage recent advances in dMRI and
tractography algorithms in order to: study how the brain
connectivity is organized; study the relationship between
brain connectivity, anatomy, and function; find corre-
spondences between structurally-defined regions of differ-
ent subjects, and infer connectivity in the presence of a
brain’s pathology. We present three major contributions.

The first contribution is a parsimonious model for the
long-range axonal connectivity (extrinsic connectivity),
and an efficient technique to parcellate the brain in re-
gions with homogeneous extrinsic connectivity11. Our
connectivity model is based on histological results ob-

tained in the macaque brain, and accounts for the across-
subject variability in the human brain connectivity. Our
parcellation technique uses a hierarchical clustering ap-
proach, letting us comprise multiple granularities of the
same brain parcellation. Also, our technique can cre-
ate both single subject and groupwise parcellations of
the whole cortex, allowing to study brain connectivity
at the single subject and at the population level. While
our technique is solely based on the brain’s structural
connectivity, our resulting parcels are in agreement with
anatomical, structural and functional parcellations ex-
tant in the literature. Our technique helps to lower the
gap between structural connectivity and brain function,
since some of our pure structural parcels show good over-
lapping with responses to functional tasks.

The second contribution is a technique to find correspon-
dence between structural parcellations of different sub-
jects12. Even when produced by the same technique,
parcellations tend to differ in the number, shape, and
spatial localization of parcels across subjects. Match-
ing these parcels across subjects is an open problem in
neuroscience. To solve it, we propose a parcel match-
ing method based on Optimal Transport. We test its
performance on different parcellations, and compare it
against state of the art matching techniques. We show
that our method achieves the highest number of correct
matches. Our technique could help to study properties
of structurally defined areas, when they do not have high
spatial coherence across subjects. Also, it could help to
understand the link between different brain atlases, and
improve the comparisons of cortical areas between higher
primates13.

The third contribution is a multi-atlas technique to infer
the location of white-matter bundles in patients with a
brain pathology14. Lesions in the cortex or white mat-
ter disrupt the normal functioning of the brain. Some
white matter pathologies, such as focal lesions or trau-
matic brain injury, hampers tractography, difficulting to
infer which pathways are affected. We present a tech-
nique that infers the affected tracts by aggregating spa-
tial information from healthy subjects while taking into
account the diffusion information of the patient. Partic-
ularly, we register the tracts of each healthy subject to
the patient, and make each healthy patient’s ’vote’ for
a tract on each voxel of the DWI image of the patient.
Our technique weights the vote of each subject based on
how the voted pathway is supported by the patient’s dif-
fusion data, Meaning, if the diffusion data of our patient
is consistent with the direction of the voted pathway, the
vote has a higher weight. We show that our technique

xi
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achieves higher precision than Majority Voting15 at the
cost of having lower sensitivity.

Organization of this Thesis

This thesis is divided in two parts: Background and Con-
tributions. In the Background chapters we give a brief in-
troduction to neuroanatomy, non-invasive imaging tech-
niques, and brain parcellation. In the Contributions chap-
ters we introduce our parceling technique, our matching
technique and our multi-atlas technique. We now present
the outline of each chapter.

Part I: Background

Chapter 1: Introduction to Brain Cytoarchitec-
ture, Neuroanatomy and Brain Function. In this
chapter we cover the basic aspects of cellular composition,
morphology and function of the human brain. We start
with a brief introduction to the human nervous system,
in order to understand the biological context of the brain.
Then, we study the brain from both a microscopic and
a macroscopic view. In the microscopic view, we explain
the cellular composition of the brain and how it’s orga-
nized. In the macroscopic view, we zoom out and make
a review of the most important divisions and anatomical
landmarks of the brain. Finally, we describe the func-
tional role of some of these gross anatomical divisions.

Chapter 2: Introduction to Non-invasive Imaging
Techniques. In this chapter, we start by introducing
some concepts in nuclear physics and explain how they
are applied in MRI to study the human brain. Then, we
explain how modifying the acquisition sequences allows
to study the physical process of diffusion, enabling to es-
timate the location of tracts in the white-matter. Finally,
we make a brief introduction to how to detect brain acti-
vation in response to functional or cognitive tasks in the
brain using Functional MRI.

Chapter 3: Mapping the Brain: A review of brain
parcellations. Neuroscientists have long thought of the
brain as a mosaic of interconnected regions. As of today,
it’s not clear that a unique and universal division of the
human brain exists. Different modalities have been used
to study the brain, deriving in different parcellations. In
this chapter, we review parcellations created based on
different criteria. We briefly explain the methodologies
behind them, and discuss in which case to use them.

Part II: Contributions

Chapter 4: Groupwise Structural Parcellation of
the Whole Cortex: A Logistic Random Effects

Model Based Approach In this chapter, we propose a
parsimonious model for the extrinsic connectivity and an
efficient parceling technique based on clustering of trac-
tograms. Our parcellation technique allows the creation
of single subject and groupwise parcellations of the whole
cortex. We show that our technique creates parcellations
in agreement with anatomical, structural and functional
parcellations extant in the literature.

Chapter 5: Solving the Cross-Subject Parcel Match-
ing Problem using Optimal Transport. In this chap-
ter, we propose a parcel matching method based on Op-
timal Transport. We test its performance by matching
parcels of the Desikan atlas, parcels based on a functional
criteria and structural parcels. We compare our tech-
nique against three other ways to match parcels which
are based on the Euclidean distance, the cosine similarity,
and the Kullback-Leibler divergence. Our results show
that our method achieves the highest number of correct
matches.

Chapter 6: Inferring the Localization of White–
Matter Tracts using Diffusion Driven Label Fu-
sion In this chapter, we introduce a label-fusion tech-
nique to infer the location of brain pathways on a target
subject by aggregating information of template subjects.
Our technique adds diffusion-based weights to a Majority
Voting scheme. The weigh of each vote is based on how
the voted pathway is supported by the target’s diffusion
data. Meaning, if the diffusion data of our target is con-
sistent with the direction of the voted pathway, the vote
has a higher weight. We show that our technique achieves
higher precision than Majority Voting at the cost of hav-
ing lower sensitivity.
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Background

1





Chapter 1
Introduction to Brain Cytoarchitecture, Neuroanatomy and Brain Func-
tion

1.1. Overview

In this chapter we cover the basic aspects of cellular com-
position, morphology and function of the human brain.
We start with a brief introduction to the human nervous
system, in order to understand the biological context of
the brain. Then, we study the brain from both a micro-
scopic and a macroscopic view. In the microscopic view,
we explain the cellular composition of the brain and how
it’s organized. In the macroscopic view, we zoom out
and make a review of the most important divisions and
anatomical landmarks of the brain. Finally, we describe
the functional role of some of these gross anatomical di-
visions. This chapter is heavily based on the books: Neu-
roscience1 ; Clinical Neuroscience2 and Atlas of Human
Brain Connections3. We encourage the reader to further
deepen each subject using those books.

1.2. The Human Nervous System

Every organ in our body works as part of a larger system
of organs interacting towards a common goal. Our brain,
the main actor of this thesis, forms part of the nervous
system, the system concerned with concious life. The
nervous system is the most complicated and highly orga-
nized of the various systems which make up the human
body4. It is the mechanism concerned with the analy-
sis and integration of internal and external stimuli, and
with the reactions and adjustments of the organism in
response to them. It is anatomically divided into two
parts, central and peripheral 1.1. The central nervous
system (CNS) consist of the brain and the spinal cord.
The peripheral nervous system (PNS) consists of a series
of nerves that link receptors on the body with the cen-
tral nervous system. These nerves are associated with
the functions of the special and general senses and with
the voluntary movements of the body. As a system, the
PNS transmits stimuli from the environment to circuits
within the spinal cord and the brain, which are integrated
alongside internal stimuli in order to produce a response.
This response travels back trough the PNS and is trans-
lated into body movement or the adjustment of internal
organs (fig. 1.1).

In this thesis we will focus only on the brain. We start
by talking about its cellular composition and internal or-
ganization.

Figure 1.1: The nervous system is anatomically divided in two:
The central nervous system (CNS) and the peripheral nervous sys-
tem (PNS). On the left we show a simplified representation of the
CNS and PNS in the human body. On the right we schematize how
these systems interact between them: internal and external stimuli
gathered by the PNS and sent to process to the CNS, which then
decides how to respond. This image was adapted from the book
Neuroscience1.

1.3.AMicroscopic View of the Human Brain

At a microscopic level, the human brain is composed by
cells that can be divided in two broad categories: nerve
cells (or neurons), and supporting cells called neuroglia
(or simply glia). Nerve cells (Fig. 1.2 A, B, C) are
discrete entities that communicate with one another by
means of specialized contacts called “synapses” 1. Sup-
porting cells (Fig. 1.2 D), in contrast, are not capable
of electrical signaling; nevertheless, they have several es-
sential functions in the developing and adult brain such
as maintaining the ionic milieu of nerve or modulating
the rate of nerve signal propagation. The human brain
possesses on average 86.06 +/- 8.12 billion neurons and
84.61 +/- 2.17 billion nonneuronal cells, making it a lin-
early scaled-up primate brain in its cellular composition5.
In terms of distribution, 80% of the neurons are present
in the cerebellum, and approximately all the rest are in
the cortex. Meanwhile, 80% of the nonneuronal cells are
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1. INTRODUCTION TO BRAIN CYTOARCHITECTURE, NEUROANATOMY AND BRAIN FUNCTION

in the cortex, with almost all the rest in the cerebellum.

Figure 1.2: Different types of neuronal and nonneuronal cells: (A)
pyramidal neuron, (B) granule neuron, (C) neuron with a highly
complex arborization, and (D) Neuroglia, or supporting cell. This
image was adapted from the book Neuroscience1.

Neurons

The basic cellular organization of neurons resembles that
of other cells; however, they are clearly distinguished by
specialization for intercellular communication. This at-
tribute is apparent in their overall morphology, in the
specific organization of their membrane components for
electrical signaling, and in the structural intricacies of the
contacts between neurons. The spectrum of neuronal ge-
ometries ranges from a small minority of cells that lack
dendrites altogether to neurons with complex dendritic
arborizations (i.e. Fig. 1.2 C). The complexity of the
dendritic arbor constrains the amount of neurons with
who a neuron can communicate, ranging from one or few,
to a commensurately larger number of other neurons.

From a functional point of view, we can distinguish two
type of neurons: excitatory and inhibitory. Excitatory
neurons release the neurotransmitter glutamate to send
signals to other cells. Inhibitory neurons release gamma-

Aminobutryc acid, in order to reduce neuronal excitabil-
ity throughout the nervous system6.

From a morphologic point of view, neurons can be di-
vided in two major types: granule neurons and pyramidal
neurons1. Granule cells are star-shaped neurons with a
typical diameter of less than 20µm. They are multipolar
neurons, this is, neurons that posses a single axon and
many dendrites. Granule cells are either excitatory or in-
hibitory, and mostly have purely ‘intrinsic’ axons, this is,
they make only short-range, local connections1. On the
other hand, pyramidal neurons have large, pyramid-shape
bodies that range from 20-120µm. Pyramidal neurons
are multipolar and excitatory neurons, and they com-
prise about two-thirds of all neurons in the mammalian
cerebral cortex. On top of their numerical dominance,
pyramidal neurons are also “projection neurons”, mean-
ing that their axons are often “extrinsic”, making long
connections1.

Finally, neurons on a circuit can be classified based on
their role in a neuronal circuit. Nerve cells that carry
information toward the circuit are called afferent neurons;
nerve cells that carry information away from the circuit
are called efferent neurons. Interneurons, or local circuit
neurons, only participate in the local aspects of a circuit.

Neuroglial

Neuroglial cells are quite different from nerve cells. Glial
cells do not participate directly in synaptic interactions
and electrical signaling, but instead provide support to
define synaptic contacts and maintain the signaling abil-
ities of neurons1. The term glia (from the Greek word
γδια meaning “glue”) reflects the nineteenth-century pre-
sumption that these cells held the nervous system to-
gether in some way. The term has survived despite the
lack of evidence that glia actually bind neurons together.
Glial roles that are well-established include maintaining
the ionic milieu of nerve cells, modulating the rate of
nerve signal propagation, modulating synaptic action by
controlling the uptake of neurotransmitters at or near
the synaptic cleft, providing a scaffold for some aspects
of neural development, and aiding in the recovery from
neural injury1.

Neuronal Organization: Cortical Layers

Cortical cells are arranged in horizontal layers, or lami-
nae7. More than 90% of the cerebral cortex has a char-
acteristic six-layered composition8. Layer I is the molec-
ular layer, which contains very few neurons; layer II the
external granular layer; layer III the external pyramidal
layer; layer IV the internal granular layer; layer V the
internal pyramidal layer; and layer VI the multiform, or
fusiform layer. Each cortical layer contains different pre-
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dominant neuronal shapes, sizes and density as well as
different organizations of nerve fibers8. The layer struc-
ture varies spatially in regard to cell organization (cytoar-
chitecture) and myelination (myeloarchitecture), defining
distinct cortical areas which are likely to perform differ-
ent functions7;9.

Depending on the layers present, the cortex can be di-
vided in agranular, dysgranular and granular regions10.
The agranular cortex is characterized by not having an
internal granule cell layer (layer IV). The granular cortex
has two layers of granule cells, an external granular layer
(II) and an internal granular layer (IV). Dysgranular cor-
tex has fewer granule cells, which are grouped in a single
layer or as distinct clusters.

The fine study of the cortical composition is called Cy-
toarchitectonics. We discuss the topic of parceling the
brain based on cytoarchitecture in chapter 3, for now
it is sufficient to say that the cerebral cortex is divided
into more than fifty regions based on its cellular com-
position under the microscope. The most known and
frequently cited cytoarchitectural organization is that of
Brodmann11 (Fig. 1.3).

1.4. A Macroscopic View of the Human
Brain

In the previous section, we talked about neurons and how
they are specialized to transmit information. Indeed,
neurons never function in isolation; they are organized
into circuits or structures that process specific kinds of
information. The brain tissue comprises a diverse col-
lection of these neural structures, each with a distinctive
shape and an intricate internal architecture.

Brain tissue can be divided into grey and white matter2

(Fig. 1.4). Grey matter is composed mainly of neuronal
cell bodies, dendrites and synapses. It is sharply demar-
cated from the adjacent white matter, which is made up
mostly of axons travelling from grey matter to grey mat-
ter, or to other parts of the nervous system. The pale
colour of white matter is due to the lipid-rich myelin
sheath that surrounds axons and enhances their conduc-
tion velocity2.

Anatomy of the Grey Matter

The grey matter is composed of: the cerebral cortex; the
cerebellum; structures within the white matter, called
subcortical structures (e.g. thalamus; hypothalamus; etc),
and the grey column, which traverses the spinal cord. In
this thesis we will mainly focus on the cerebral cortex.

The cerebral cortex is the most important structure of
the gray matter and plays a major role in cognitive func-
tions. It is a layered sheet of tissue, 2–3 millimetres thick,

Figure 1.3: The cerebral cortex is divided into
more than 50 regions based on its cellular composi-
tion. Brodmann’s11 parcellation is the most known and
cited one. This image was adapted from the website
http://fourier.eng.hmc.edu/e180/lectures/visualcortex/node5.html

Figure 1.4: Brain tissue can be divided into grey and white mat-
ter. (A) Grey matter is composed mainly of cell bodies. (B) White
matter is made up mostly of packed axons. This image was adapted
from the brain museum (www.brainmuseum.org), and the book
Neuroscience1

with highly convoluted folds. It’s hypothesized that the
mechanical tension created by neuronal connections dur-
ing development is a major driving force of these folds12.
An advantage of the folding pattern, is that it allows to
fit a large surface area within the available cranial vol-
ume. In particular, the human cerebral cortex attains a
surface area of about 1600 cm2, nearly three times what
it would be in the absence of convolutions12. The grooves
and ridges created by this folding process are called sulci
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Figure 1.5: The cerebral cortex is characterized by its convoluted folds. Some landmarks are consistent across brains, as the central
sulcus; lateral sulcus; parieto-occipital notch and pre-occipital notch. These landmarks help divide the hemispheres into lobes. This
image was adapted form the book Clinical Neuroscience2

and gyri respectively.

The cerebral cortex is divided in two hemispheres by a
prominent central fissure. The hemispheres are charac-
terized by the gyri (singular, gyrus) or crests of folded
cortical tissue, and sulci (singular, sulcus) the grooves
that divide gyri from one another. Although gyral and
sulcal patterns vary from individual to individual, there
are some fairly consistent landmarks, particularly the:
central sulcus; lateral sulcus; parieto-occipital notch and
pre-occipital notch. These landmarks help divide the
hemispheres into four lobes: occipital, temporal, pari-
etal, and frontal. Hidden from surface view is the fifth
lobe: the insular lobe. Figure 1.5 presents a illustration
of this.

Anatomy of the White Matter

Axons in the central nervous system are gathered into
bundles of different diameter, and several bundles form
larger pathways called fasciculi, or tracts3. Most of the
cerebral fibers forming the white matter connect distant
regions within the cortex. Others, connect cortical region
with the peripheral nervous system or subcortical struc-
tures. There are some fibers, the less, that connect only
subcortical structures.

Some major bundles running along the white matter are
well defined in the modern neuronanatomy. Examples of
major bundles in the human brain are the Corpus Cal-
losum, the Internal Capsule and the Superior Longitudi-
nal Fasciculus (Fig. 1.6.) The Corpus Callosum is the
largest tract of the human brain, composed of some 200

to 300 million myelinated axons it connects both hemi-
spheres, allowing to transfer information from one to an-
other3. The internal capsule contains ascending fibres
mainly from the thalamus to the cortex, and descending
fibres from the cortex to subcortical structures, and the
spinal cord3. This complex projection system conveys
sensorial information to the cortex and controls move-
ment. Our last example, the Inferior Longitudinal Fas-
ciculus, is a tract with long and short fibres connecting
the occipital and temporal lobes3, it is involved in visual
and language functions.

Neuroanatomical Naming Conventions

In order to describe the location of structures on the
brain, standardized nomenclature is used. Brain’s anatomy
can be described from its surface, from orthogonal sec-
tions that traverse the brain, or from its white matter3.

The surface of the brain can be viewed from the side
(lateral view), the middle (medial view), the front (ante-
rior or frontal view), and the back (posterior or occipital
view) (Fig. 1.7 A). Another way to describe relative
positions in neuroanatomy is using the terms dorsal and
ventral. The dorso-ventral system is defined in general
for any animal species, the term dorsal refers to the back
and ventral to the front or belly of an organism. Since
humans have an upright torso, the dorso-ventral system
bends, as shown in figure 1.7 A.

Sectional neuroanatomy describes the relationship be-
tween cortical and subcortical structures, most commonly
visualized along orthogonal axial, coronal, and sagital
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Figure 1.6: Example of major commissural, association, and projection tracts in the white matter. This image was adapted from the
book Clinical Neuroscience2

planes (Fig. 1.7 B). In radiological convention, the axial
slices are viewed from the feet towards the head. The
coronal planes are conventionally oriented with the left
side of the brain on the right side of the page (frontal
view). Finally, the sagittal plane divides the brain into
two hemispheres.

White-matter neuroanatomy delineates the origin, course,
and termination of connecting pathways (Fig. 1.7 C).
The tracts are classified according to their course and
terminal projections. Commisural pathways run along a
horizontal axis and connect the two hemispheres. The
majority of the projection pathways have a perpendicu-
lar course along a dorso-ventral (descending) or ventro-
dorsal (ascending) axis and connect the cerebral cortex to
subcortical nuclei, cerebellum, and the spinal cord. The
association tracts connect areas within the same hemi-
sphere, as for example, short U-fibers. Most long associ-
tation bundles run longitudinal along an antero-posterior
axis and connect cortical areas within the same hemi-
sphere.

These gross descriptions of some prominent anatomical
landmarks provide a framework for naming, locating and
studying different brain structures. Being able to locate
brain regions in different subjects is a necessary first step
to study the basic of brain function.

1.5. Brain Function

While we know that conciousness emerges from the brain,
we still have a long road ahead to unravel how the brain
works. So far, and thanks to the study of brain lesions,
many motor and cognitive functions have been mapped
to coarse brain regions (Fig. 3.5). In this section, we
present an overview of the general function attributed to
each lobe, while introducing some functional subdivisions
used later on this thesis.

Frontal Lobe

The frontal lobe is concerned with motor functions, speech
production, planning, personality, insight and foresight.

One of its divisions, the precentral gyrus (Fig. 3.5 A),
contains an inverted point-to-point map of the motor
functions of the opposite half of the body (Fig. 3.5 B)2;1;3.
This area is called the primary motor cortex, and corre-
sponds to Brodmann’s region 4. It was mapped by Pen-
field et al.13 trough experimenting with electrical stimu-
lation. A remarkable fact is that the area allocated for
each body part is proportional to the precision of move-
ment control2. In particular, the areas for the hands, face
and tongue are disproportionately large (Fig. 3.5 B).

The region in front of the primary motor cortex is the
lateral premotor area (Fig. 3.5 A). Defined as the Brod-
mann Area 6, it does not correspond to any particular
gyral or sulcal boundaries2;1. The premotor cortex also
contains an inverted body map and is concerned with
preparation and execution of movement sequences in re-
sponse to external stimuli (as catching a ball, rather than
throwing one)2.

The large portion of the frontal lobe anterior to the motor
and premotor areas is the prefrontal cortex (Fig. 3.5
A) and is involved in personality, behaviour, language
and intellect2. It is mainly concerned with organizing
and planning behaviour in pursuit of short-, medium- and
long-term goals. It also has a cognitive inhibitory role,
preventing inappropriate behaviour14.

Finally, the opercular and triangular parts of the inferior
frontal gyrus (Brodmann Areas 44 and 45) correspond to
Broca’s area (Fig. 3.5 A). This area is involved in the
expressive aspects of spoken and written language (pro-
duction of sentences constrained by the rules of grammar
and syntax)2. The area was named after Pierre Paul
Broca, who reported speach production impairments in
two patients. This area tends to be lateralized to the
hemisphere in charge of the dominant hand.
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Figure 1.7: In order to describe the location of structures on the brain, standardized nomenclature is used. Brain’s anatomy can be
described: (A) from its surface, (B) from orthogonal sections that traverse the brain. (C) White matter tracts are categorized based on
their trajectory, and starting and ending points. This image was adapted form the book Clinical Neuroscience2, and the book Atlas of
Human Brain Connections3

Parietal Lobe

The parietal lobe is concerned with language compre-
hension, spatial orientation and perception, and somatic
senses, such as touch and temperature.

Located on the parietal lobe, immediately posterior to
the centrar sulcus, and parallel to the precentral gyrus,
there is the postcentral gyrus. It corresponds to the pri-
mary somatosensory cortex (Fig. 3.5 A). The sensory
cortex contains an inverted map of the contraleteral side
of the body that mirrors that of the motor cortex, but the
relative proportions of the body parts reflect the degree
of tactile sensitivity2.

Occipital Lobe

The occipital lobe is concerned with visual processing and
association. It contains the Brodmann Area 17, which
correspondes to the primary visual cortex (Fig. 3.5 A).
The primary visual cortex is highly specialized for pro-
cessing visual information, and possess a point-to-point
(retinotopic) representation of the visual field2. The vi-
sual system continues in the visual association cortex (BA
18 and 19), which helps in the detection of complex pat-
terns and are believed to contribute in detecting global
motion2;1.

Temporal Lobe

The temporal lobe is involved in hearing, speech compre-
hension and visual recognition.

It contains the auditory cortex (Fig. 1.5 A), which has a
tonotopic map representing the audible frequency spec-
trum (low frequencies laterally, high frequencies medi-
ally)2. More ventral is the fusiform gyrus, which is in-
volved in the recognition of complex visual patterns, as

tools or human faces15. Another region, Wernicke’s area,
corresponds to the posterior third of the superior tem-
poral gyrus (Fig. 3.5 A) and it is involved in language
comprehension2.

Insula

The insular cortex is hidden in the depths of the lateral
sulcus (Fig. 1.5). The insula is involved in attention,
and in the integration of sensory, affective, and cognitive
cues16;2.

1.6. Systems Neuroscience

So far in this introduction to neuroanatomy, we have pre-
sented brain function as studied by the modular paradigm.
In this paradigm, a discrete and continuous piece of cor-
tical tissue is specialized to serve one cognitive function
or to represent one essential aspect of the information
processed by it17. The interaction between many of such
modules would lead to complex cognitive function. How-
ever, accumulating evidence shows that the paradigm has
serious limitations. For example, lesions in the brain al-
most never derive in the loss or degradation of only one
cognitive function17. Furthermore, even the functions of
primary sensory areas, long standing thought as modular,
appear to be part of a network that integrates multisen-
sory stimuli18.

A new paradigm is emerging in neuroscience, that moves
beyond the simplistic one to one mapping between cogni-
tive functions and brain regions, and instead maps cogni-
tive functions to large-scale networks in the brain. So far,
at least 8 major core functional networks have been de-
fined16: (i) a spatial attention network anchored in pos-
terior parietal cortex and frontal eye fields; (ii) a language
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Figure 1.8: According to the modular paradigm, the brain can be divided in regions that are functionally specialized. (A) Illustration of
different cytoarchitectonic regions of the brain, and their functional specialization. (B) The motor strip contains an orderly somatotopic
(point-to-point) representation of the contralateral half of the body. The size of the cortical representation for each body part reflects
the precision of motor control. This image was adapted form the book Clinical Neuroscience2

network anchored in Wernicke’s and Broca’s areas; (iii)
an explicit memory network anchored in the hippocam-
pal–entorhinal complex and inferior parietal cortex; (iv)
a face-object recognition network anchored in midtem-
poral and temporopolar cortices; (v) a working memory-
executive function network anchored in prefrontal and
inferior parietal cortices; (vi) central-executive network
anchored in dorsolateral prefrontal cortex and posterior
parietal cortex; (vii) a salience network anchored in an-
terior insula and anterior cingulate cortex; and (viii) a
default mode network, a set of functional networks that
emerge while a person is resting.

Thinking the brain as a set of interacting networks, in-
stead of single anatomical regions, creates a sound base
to study cognition16. However, if a single network can
be said to support a specific cognitive function is still an
open question in neuroscience. Answering it will depend
on the developing of new techniques to study not only
brain function, but also brain connectivity.

1.7. Conclusions

This chapter introduced the basic knowledge in neuroanatomy
necessary to understand the rest of the thesis. Moreover,
it highlighted how the interaction between neurons by
means of connectivity drives not only the brain morphol-
ogy but also its function. It also presented how neuro-
science is moving from viewing the brain as a mosaic of

functionally specialized regions, to an interactive network
from which cognition arises. This view of the brain as a
network is a key aspect that drives some contributions of
this thesis.

Most of the knowledge of this chapter comes from stud-
ies done on postmortem primate brains, or from results
obtained with highly invasive techniques. As with the
modular paradigm, neuroscience is also moving forward
towards the use of non-invasive techniques. In the next
chapter, we explain how advances in quantum physics
helped to develop Magnetic Resonance Imaging (MRI),
which translated in a new era of non-invasive brain imag-
ing.

Bibliography

[1] D. Purves, G. J. Augustine, D. Fitzpatrick, W. C.
Hall, A.-S. Lamantia, J. O. Mcnamara, and S. M.
Willians, Neuroscience, vol. 3. 2004.

[2] P. Johns, Clinical Neuroscience.

[3] M. Catani and M. Thiebaut de Schotten, Atlas of
Human Brain Connections. Oxford University Press,
mar 2012.

[4] H. Gray, Gray’s Anatomy of the Human Body. Lea
& Febiger, 1918.

Page 9



1. INTRODUCTION TO BRAIN CYTOARCHITECTURE, NEUROANATOMY AND BRAIN FUNCTION

[5] F. A. Azevedo, L. R. Carvalho, L. T. Grinberg,
J. M. Farfel, R. E. Ferretti, R. E. Leite, W. J. Filho,
R. Lent, and S. Herculano-Houzel, “Equal numbers
of neuronal and nonneuronal cells make the human
brain an isometrically scaled-up primate brain,” J.
Comp. Neurol., vol. 513, no. 5, pp. 532–541, 2009.

[6] J. M. Bekkers, “Pyramidal neurons,” Curr. Biol.,
vol. 21, no. 24, p. R975, 2011.

[7] M. D. Waehnert, J. Dinse, M. Weiss, M. N. Stre-
icher, P. Waehnert, S. Geyer, R. Turner, and P. L.
Bazin, “Anatomically motivated modeling of cortical
laminae,” Neuroimage, vol. 93, pp. 210–220, 2014.

[8] P. Rand S. Swenson, M.D., “Review of Clinical and
Functional Neuroscience,” 2006.

[9] S. T. Bok, “Der Einfluß der in den Furchen und Win-
dungen auftretenden Krümmungen der Großhirn-
rinde auf die Rindenarchitektur.,” Z. Gesamte Neu-
rol. Psychiatr., vol. 121, no. 1, pp. 682–750, 1929.

[10] M. Mesulam and E. J. Mufson, “Insula of the Old
World Monkey . I : Architectonics in the Insulo-
orbito- temporal Component of the,” J. Comp. Neu-
rol., vol. 22, pp. 1–22, 1982.

[11] K. Brodmann, Vergleichende Lokalisationslehre der
Großhirnrinde in ihren Prinzipien dargestellt auf-
Grund des Zellaufbaues. Leipzig: Barth, 1909.

[12] D. C. Van Essen, “A tension-based theory of mor-
phogenesis and compact wiring in the central ner-
vous system,” 1997.

[13] W. Penfield and H. Jasper, Epilepsy and the Func-
tional Anatomy of the Human Brain. 1954.

[14] M. Sigman, The Secret Life of the Mind: How Our
Brain Thinks, Feels, and Decides. William Collins,
2017.

[15] Z. M. Saygin, D. E. Osher, K. Koldewyn,
G. Reynolds, J. D. E. Gabrieli, and R. R. Saxe,
“Anatomical connectivity patterns predict face selec-
tivity in the fusiform gyrus,” Nat. Neurosci., vol. 15,
pp. 321–327, dec 2011.

[16] S. L. Bressler and V. Menon, “Large-scale brain net-
works in cognition: emerging methods and princi-
ples,” Trends Cogn. Sci., vol. 14, no. 6, pp. 277–290,
2010.

[17] J. M. Fuster, “The Module: Crisis of a Paradigm,”
Neuron, vol. 26, pp. 51–53, 2000.

[18] A. A. Ghazanfar and C. E. Schroeder, “Is neocor-
tex essentially multisensory?,” Trends Cogn. Sci.,
vol. 10, no. 6, pp. 278–285, 2006.

Page 10



Chapter 2
Introduction to Non-invasive Imaging Techniques

2.1. Overview

In order to infer connections running through the white-
matter, or functional specialization in the grey-matter,
neuroscientist have long relayed in postmortem studies
or invasive techniques. The advent of Magnetic Reso-
nance Imaging (MRI) allowed for the first time to non-
invasively study brain structure in vivo. Further devel-
opments opened the possibility to quantify which regions
activate during a certain task (or in the absence of), and
to estimate gross axonal connectivity. In this chapter, we
start by introducing some concepts in nuclear physics and
explain how they are applied in MRI to study the human
brain. Then, we explain how modifying the acquisition
sequences allows to study the physical process of diffu-
sion, enabling to estimate the location of tracts in the
white-matter. Finally, we make a brief introduction to
how to detect brain activation in response to functional or
cognitive tasks in the brain using Functional MRI. This
chapter is strongly based on the book Diffusion MRI1,
the lessons of Dr. Michael L. Lipton2 available online,
and the review paper in fMRI of Gary Glover3. We refer
the read to them in order to deepen on the subjects.

2.2. A Brief History on Brain Imaging

Magnetic Resonance Imaging (MRI) and its derivates
are among the biggest advances, if not the biggest, in
medicine of the last 50 years. They allow to study not
only the brain, but also other internal organs, with an
unprecedented level of resolution, and in vivo.

MRI has its origins in 1946, when Felix Bloch4 and Ed-
ward M. Purcell5 simultaneously formalize Nuclear Mag-
netic Resonance (NMR), work for which they would later
receive the Nobel Prize in Physics. Shortly after, in 1950,
Hahn6 observes that the physical process of diffusion in-
fluences the signals measured using NMR. To quantify
this influence, during 1965 Stejskal and Tanner7 invent
the Pulse Gradient Spin Echo sequence that allows to
measure the amount of diffusion in a specific direction.
A couple of years later, NMR use in medicine becomes
promising after Raymond Damadian shows in 1971 that
NMR could be used to differentiate healthy tissue from
tumors8. Soon after, in 1973, Paul Lauterbur proposes a
method based on gradient magnetic fields to reconstruct
two dimensional MR images9, which with improvements
of Peter Mansfield10 lead to the development of mod-
ern MRI. In 1990, Ogawa et al.11, inspired by Pauling

and Coryell’s work12, shows that MRI can be modified
to be sensitive to blood flow, and therefore, brain activity
in rats. Three years later, Ogawa et al.13 present simi-
lar results in the human brain, producing the first fMRI
acquisition. In 1994 Basser et al.14 invent Diffusion Ten-
sor Imaging (DTI), an efficient way to model diffusion in
the brain, allowing to start tracking brain pathways. In
2003, Lauterbur and Mansfield jointly receive the Nobel
Prize in Physiology and Medicine for their contributions
in MRI.

In the following sections we will review on a deeper way
all the non-invasive techniques used in this thesis. We will
put special emphasis in dMRI, since our main interest is
brain connectivity. However, in order to explain diffusion
MRI is necessary to explain MRI and the physics behind
it: Nuclear Magnetism.

Figure 2.1: (A) When atomic nuclei rest under no constraints,
they spin along random directions. (B) However, when putted un-
der the effect of a magnetic field, the spin of the nuclei will align
to the magnetic field’s direction and start to precess around it.

2.3. Physics Background

Nuclear Magnetism

Atomic nuclei with a different number of neutrons and
protons are said to possess a non-zero spin, which is an
intrinsic form of angular momentum. While there is not
an actual movement, the nucleus spin can be interpreted
as the particle spinning around its own axis15, since it
possess all the same physical properties. This "move-
ment" of charges in the nucleus, induces what is known
as a nuclear magnetic moment (Fig. 2.1 A).

When atomic nuclei are placed inside of an external mag-
netic field, their spin will align with the field’s direction
and start to precess around it (Fig. 2.1) B). While the
spins could align either parallel or anti-parallel to the gra-
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dient, the laws of thermodynamics ensure that a bigger
number of spins will do it in the parallel direction.

The frequency with which the spin precess around the
magnetic field is known as the Larmor frequency16, and
is expressed as:

ω = ~µ× ~B = γ ~J × ~B, (2.1)

where ~µ is the magnetic moment of the nucleus; ~B is the
magnetic field; γ is the gyromagnetic ratio of the atom,
an intrinsic physical property of each atom; and ~J is the
angular momentum of the nucleus.

Figure 2.2: (A) The higher the strength of the magnetic field, the
bigger the angle between the nucleus spin and the magnetic field
will be. (B) If the magnetic field ceases, the spin will return to its
initial angle of precession.

The angle formed between the precessing spin and the
magnetic field is driven by the strength of the magnetic
field. The angle between the spin and the magnetic field
increases as the strength of the magnetic field does (Fig.
2.2 A). In fact, by increasing the energy of the magnetic
field enough, it is possible to ’excite’ the nucleus, mov-
ing the precessing towards the plane transversal to the
magnetic field. However, if the external magnetic field
goes off, the nucleus will start to ’relax’ (Fig. 2.2 B), and
the precessing will begin to move once again towards the
direction of the magnetic field. An important remark is
that the precessing angle does not decrease linearly dur-
ing the relaxation. This is because the relaxation pro-
cess represents a redistribution of the energy within the
system. The energy that the system won during excita-
tion, has to go somewhere else in order for the spin to go
back to its initial state. In particular, spins lose energy

by giving it to other non excited spin of the same kind
(spin-spin interaction), or by giving it to surrounding el-
ements (spin-lattice interaction). This means that how
the relaxation happens is governed by the composition of
the nucleus itself, and the chemical composition of its en-
vironment. This process was mathematically formalized
by Bloch in what is known as the Bloch Equations4.

Nuclear Magnetic Resonance

The organs in the human body are composed by different
types of tissue, each with its own chemical composition. If
we subject a human body to the effects of excitation and
relaxation by means of a magnetic field, and place a coil
in the transversal plane, we should be able to measure
different relaxation signals for different types of tissue.
The problem is, that the amount of energy necessary to
create a detectable precession would surely kill a human.
Another way to increment the energy of the system is
needed, and for this is that the concept of Resonance is
used.

Resonance is a physical phenomenon in which a system
or external force drives another system to oscillate with
greater amplitude at specific frequencies. In our case, we
are interested in introducing more energy into the human
body. Knowing that hydrogen atoms (1H) are widely
present in the body, we can compute their Larmor fre-
quency (Eq. 2.1), and produce energy at that frequency.
By resonance, the produced energy will be injected into
the tissue.

2.4. Nuclear Magnetic Resonance Imaging

Having covered the necessary physical notions, we are
now ready to introduce MRI. A MR scanner is a ma-
chine able to create strong magnetic fields and radio fre-
quency pulses in different frequencies. Particularly, while
functioning a MR scanner is constantly emitting a ho-
mogeneous magnetic field referred as ~B0 (Fig. 2.3 A). If
we place a coil in the plane transversal to ~B, and emit
a radio frequency pulse at the frequency of hydrogen, we
will be able to measure a signal coming from the body.
This measure will represent the mixture of all the signals
generated by different tissues. What we are interested
in, is to separate the signal coming from different places
on the body, in order to compare them after. A neces-
sary first step to disentangle the different contributions
of each tissue is to do slice selection.

Slice selection makes use of a gradient magnetic field. A
gradient is a magnetic field which strength varies linearly
along a specific direction. Following the Larmor equation
(eq. 2.1) we can predict that, nucleus along the gradi-
ent will change their spin frequency in a predictable way.
Particularly, applying a gradient B(z)ẑ in a specific di-
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Figure 2.3: Simplified scheme of a MRI acquisition. (A) A MRI scanner is constantly emitting a homogeneous magnetic field ~B0 an
atomic nucleus are precessing around it. (B) A gradient magnetic field is emitted in order to change in a predictable way the frequency
of the nuclei. (C) A radio frequency pulse is generated, making certain nuclei to resonate and moving their precession to the transversal
plane. (D) Now the slice is selected, a frequency encoding gradient is briefly applied to put out of phase nuclei in different vertical
positions. (E) A phase encoding gradient is then turned on, to change in a predictable way the frequency in every horizontal position.
(F) An acquisition is done and written down in the k-space.

rection (Fig. 2.3 B), will induce a frequency to the nuclei
with magnetic momentum ~µ of:

ω(z) = ~µ×Bz(z)ẑ. (2.2)

Then if a radio frequency (RF) pulse with a frequency of
w(z0) is generated, only the spins in the position z0ẑ will
start to resonate. Therefore, the signal obtained by the
transversal coil will only correspond to the spins in the
slice at position z0ẑ (Fig. 2.3 C). It is important to state
that, because of hardware limitations, it’s impossible to
generate a RF pulse in an exact frequency. What actually
happens is that the pulse is generated for a small slice
of frequencies, meaning that the spins in a small band
around z0 will also resonate.

So far, all the spins inside of the slice are precessing in the
same way. We can think of the slice as a two dimensional
matrix, with two coordinates: x̂ being the rows and ŷ
being the columns (Fig. 2.3 B). In order to retrieve the
signal generated at each position, two more gradients are
needed, a frequency encoding gradient (~Gν) and a phase
encoding gradient (~Gφ).

First, ~Gφ is applied for a short period of time in one of the
directions, lets say ŷ. Following the Larmor equation (eq.
2.1), all the spins along ŷ start to precess at a frequency
that depends on their position (Eq. 2.2). After the gra-
dient is shut down, the spins will return to precess all at
the same velocity, but off phase, since they were sepa-
rated by the previous gradient. This is, the spins of each
row will have the same angular velocity, but a different
phase (Fig. 2.3 D).

Then, ~Gν is applied in the orthogonal direction (ŷ). Now
it will happen that: the spins of each row will be oscil-
lating in a different phase, because of ~Gφ and the spins
of each row will be oscillating at a different velocity, fol-
lowing the new gradient ~Gν (Fig. 2.3 E).

If we sample the signal using a coil over the direction
x̂, we will obtain as many data points as columns. All
data points will have a mixture of all the signals the rows
(Fig. 2.3 F). However, each data point will comprise the
difference in phase and the difference in frequency that
we applied to the matrix. By iteratively measuring these
data points, changing only the phase encoding gradient,
we sample what is known as the k-space17. A space where
the signal generated by our sample is encoded by phase
in the rows, and by frequency in the columns. As shown
by Likes et al.17, taking the 2D Fourier transform of the
k-space, decodes the image of the tissue being sampled.

2.5. Diffusion MRI

While NMRI allows to visualize the different tissue com-
position of the brain, diffusion MRI aims to quantify how
the water molecules diffuse in the brain. This is of great
importance because in fibrous structure such as white
matter, water molecules tend to diffusion along fibers.
Therefore, characterizing diffusion can help to describe
the underlying structure of the white matter. Now, we
start by explaining the phenomenon of diffusion and its
implications in MRI.
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Figure 2.4: Simplified scheme of how diffusion is measured. We illustrated in the same plane as the gradient’s direction so simplify the
figure. (A) A first gradient field is applied, and the nuclei in the same rows start to precess in phase. (B) After some time, a gradient with
the same strength is applied in the opposite direction. This gradient should cancel the phase shift induced by the first one. However,
the particles undergoing diffusion would have change place. (C) Nuclei precessing at different phases will cause a destructive interference
between them. (D) The off phase precessing is translated into lesser signal respect to the image acquired with no diffusion gradients.

Brownian Motion and MRI

The molecules inside a fluid in equilibrium are not still,
on the contrary, they move randomly. This physical phe-
nomena is known as Brownian motion18 or diffusion. In
1950, Hahn6 observes that the signal measured during
the relaxation period in MRI can be affected by the pro-
cess of diffusion.

In order to characterize the effects of diffusion in nucleus
relaxation, a new experiment is devised. Imagine that
after applying the RF pulse to do slice selection, we ap-
ply two gradient fields (called diffusion gradients), one
after the other, with the same strength but in opposite
directions (Fig. 2.4 A). As explained in section 2.3.1,
this will induce two phase shifts to the nuclei. The first
gradient will make them go off phase, while the second
one should cancel the first, and put them back in phase.
However, the particles undergoing diffusion would have
changed place, and therefore, change their phase differ-
ently (Fig. 2.4 B). Nuclei precessing at different phase on
a same sections of the sample will cause a destructive in-
terference between them, resulting in a lower signal. The
ratio between the signal obtained with diffusion gradi-
ents and the one without them quantifies the amount of
ongoing diffusion (Fig. 2.4 C).

In 1956, H.C. Torrey19 extends the Bloch Equations4

in order to quantify the effects of diffusion in nucleus
relaxation when multiple diffusion gradients are used.
The new equations, known as Bloch-Torrey equation can-
not be solved analytically. It’s not until 1965 that Ste-
jskal and Tanner7 invent the Pulsed Gradient Spin Echo
(PGSE) sequence to measure diffusion in a specific direc-
tion. In their sequence, two opposite diffusion gradients
are applied for δms, with a separation of ∆ms between
them. If we assume δ to be infinitely narrow (i.e. the
diffusion during that time is negligible), then, the Bloch-
Torrey equations can be solved, and the signal attenua-
tion at time 2τ = 2(δ + ∆) can be expressed as:

Figure 2.5: Pulsed Gradient Spin Echo sequence.

E(2τ) =
S(2τ)

S0
= e−γ

2g2δ2(∆− δ3 )D, (2.3)

where g is the strength of the diffusion gradient, S0 the
image acquired without diffusion gradients, and D the
diffusion coefficient.

In 1985 Le Bihan20 proposed to gather all the parameters
in a single one:

b = γ2g2δ2

(
∆− δ

3

)
,

simplifying the equation 2.3 to:

E(2τ) = e−bD

where b has a physical meaning, it represents the recip-
rocal of the diffusion intensity20.

In 1991 Callaghan et al.21 developed the q-space analysis.
Based on the work of Stejskal and Tanner, Callaghan
shows that it’s possible to express the signal attenuation
as:

E(q, τ) =
S(q, τ)

S0
=

∫
R2

P (r; τ)e−2πiqrdr, (2.4)
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with q = γδg/2π, and P (r|r0, τ) a probability density
function (diffusion propagator) modeling the probability
that a molecule had a relative displacement of r in time
τ . One of the main advantages of q-space is that it does
not assume any a prior model, allowing to define differ-
ent strategies for p(r; t). More importantly, equation 2.4
shows that the signal attenuation is the 3D Fourier trans-
form F of the average propagator P .

E(q, τ) =
S(q, τ)

S0
= F [P (r|r0, τ)]. (2.5)

In particular, if the diffusion propagator is assumed to be
Gaussian, then the Fourier integral can be solved analyt-
ically, and the solution is the same as the one obtained
by Stejskal and Tanner (Eq. 2.3)

Diffusion Tensor Imaging (DTI)

In 1994 Basser et al.14 propose to measure the signal
attenuation in different directions, and to model the dif-
fusion coefficient in the Stejskal and Tanner equation (eq.
2.3) with a second order tensor. This sets the bases of
what is known as Diffusion Tensor Imaging. DTI rep-
resents the diffusion as a 3-dimensional (3D) ellipsoid,
which can be coded in a symmetric matrix:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 .

Since the matrix has 6 unknown variables, at least 6 ac-
quisitions in different directions have to be done. DTI
is until today, one of the most used techniques to model
the diffusion signal. Its main drawback is that it does
not allow to correctly characterize the crossing of fibers.
Both the isotropic diffusion and the crossing of fibers get
modeled as spheres.

High Angular Resolution Diffusion Imaging

Two factors drive newer imaging techniques: Callaghan’s
relationship21 between the signal attenuation and the
diffusion propagator (Eq. 2.5), and the ability to ac-
quire data across many angles with different b-values. Ei-
ther using one b-value (single shell) or multiple b-values
(multi shell), HARDI techniques rely on taking acquisi-
tions across many angles, in order to reconstruct the true
diffusion propagator. Notable examples of High Angu-
lar Resolution Diffusion Imaging (HARDI) are Diffusion
Spectrum Imaging (DSI)23, Q-space Imaging (QSI)21, Q-
Ball Imaging24, Composite hindered and restricted model
of diffusion (CHARMED)25, Mean Apparent Propagator
(MAP)-MRI26, Constrained Spherical Deconvolution27,
and Neurite Orientation Dispersion and Density Imaging

(NODDI)28. While each technique relies in different as-
sumptions about the diffusion propagator, they all try to
capture multiple fiber directions within the same imaging
voxel. HARDI acquisitions are currently being improved
every day with better material and better reconstruction
algorithms.

Estimating Axonal Connectivity

So far, we discussed about imaging techniques to measure
diffusion. Now is time to present how to use such tech-
niques in order to study the structure of white matter.

Water particles in the white matter diffuse constrained
by the axonal bundles. The nuclei present at any point
of the white matter will be able to diffuse only inside a
tract and along its path. If dMRI had enough resolution,
we could trace each brain connection by simply looking
at the diffusion signal. However, this is not the case,
dMRI resolution is several orders of magnitude coarser
than axonal diameters (millimeters vs micrometers)29.
What is done in practice, is to fit one of the models named
in previous sections (sec. 2.5.2, 2.5.3), and use them to
derive a probabilistic map of transition from each voxel
to their neighbors. The resulting network can be used on
a Monte Carlo procedure where, starting from a voxel, at
each step we randomly select to which neighboring voxel
to move, following the probabilistic map. This process of
simulating the random walk of a water particles through
the white matter is known as Tractography30.

The field of tractography is not exempt of problems, most
state state-of-the-art algorithms create about four time
more false-positive tracts than true-positive ones31. Also,
most of them suffer from gyral bias, in which tractogra-
phy bundles are biased towards finishing in gyral crowns
rather than sulcal banks29. However, tractography has
shown to be able to recover some major bundles in hu-
mans32. Also, it has been validated using high-resolution
postmortem diffusion imaging and tractography in Old
World monkeys. Particularly, Donahue et al.33 found
a correlation coefficient of 0.58 between tractography-
based and tracer-based estimates of connectivity; the cor-
relation is highest for strong, short-distance pathways but
is informative even for weak connections and widely sepa-
rated areas. This results, encourage to use tractography,
despite of its flaws.

2.6. Brief Introduction to Functional MRI

Built on the contributions of Pauling and Coryell12, and
Ogawa13;11 among others, functional MRI (fMRI) char-
acterizes blood flow in the brain. Since blood flow is
directly related with brain activity, fMRI gives us a way
to study brain function. While not central to our the-
sis, we do believe that at least a brief description of how
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Figure 2.6: Comparison of different models in the reconstruction of diffusion signal: (A) Diffusion Tensor Imaging, (B) Mean Apparent
Propagator (MAP)-MRI, (C) Q-Ball Imaging, and (D) Watson distributions of NODDI. It can be seen that DTI finds an average
orientation, where Q-Ball, MAPMRI and SMT find crossing structures. This image was adapted from Fick22 (2017).

functional MRI (fMRI) works should be given.

When a region of the brain is activated by a cognitive
task, the local firing of neurons generates a higher energy
requirement3. The brain responds by adjusting its blood
supply to the region in a process known as the haemo-
dynamic response. This increase in blood flow produces
an increase in the ratio of oxygenated hemoglobin rel-
ative to deoxygenated hemoglobin in that specific area
(BOLD contrast). Oxygenated hemoglobin is magneti-
cally indistinguishable from brain tissue. On the con-
trary, deoxygenated hemoglobin has 4 unpaired electrons
and is highly paramagnetic3. This results in local gradi-
ents that put out of phase the surrounding nuclei, causing
destructive interference in the observed MR signal. Using
a special type of pulse sequence called gradient refocused
echo34 it is possible to make MR scanners sensible to this
effect.

After obtaining the fMRI signal, it is possible to esti-
mate which brain regions are being more active during
the desired cognitive task by means of statistics. In par-
ticular, it is expected to see a high activation of the area
being used for a task while the subject is doing such task.
For example, in order to obtain the area to finger move-
ment, we could ask a subject to start and stop moving
the finger at regular intervals. The area responsible for
moving the finger should show a regular activation pat-
tern, correlated with the moments in which the finger
was moving. We can compute such area by selecting the
voxels in which the fMRI signal correlates the most with
the square signal of finger movement (1 when the finger
was moving, 0 when not).

2.7. Conclusion

This chapter introduced the imaging techniques of MRI,
Diffusion MRI and Functional MRI. These three methods
provide means to study the brain anatomy, its axonal
organization and function in a non-invasive way. Even
when each technique has its own limitations, either in
spatial or temporal resolution, they all allowed to highly

advance the state-of-the-art in neuroscience. In the next
chapter we will see how these advances in imaging allowed
to parcellate the brain, making it easier to study brain
function.
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Chapter 3
Mapping the Brain: A review of brain parcellations

3.1. Overview

Neuroscientists have long thought of the brain as a mo-
saic of spatially contiguous regions. How to define such
regions is a hot topic in modern neuroscience. Differ-
ent brain parcellations exist based on criteria such as
anatomy, cytoarchitecture or functional specialization1;2;3.
In this chapter, we introduce the main topic of our thesis:
brain parcellation. We review the main criteria used to
divide the brain, the methodology used to create brain
parcellations under each criteria, and some widely used
brain parcellations.

3.2. Introduction

Composed of billions of interconnected neurons, the brain
is a highly complex biological machine. Untangling this
network is the main goal of neuroscience, a task that has
proven to be arduous. The problem is two fold. First,
it is not feasible to characterize cellular function or ax-
onal connectivity at the scale of the brain with current
approaches. Second, even if we could characterize the
neural network at a cellular level, studying it is unre-
alistic given the huge amount of neurons in the brain4.
These current technical limitations highlight the need to
abstract the complexity of the brain’s neuronal network
before studying it.

Studies in cytoarchitecture5;1;6, brain function7;8, and
connectivity using tracers9;10 show that neurons tend to
organize and activate in spatially coherent groups. This
provides us with a biological basis for dividing the brain
as a set of spatially coherent regions. This process, known
as parcellation, reduces the dimensionality of the neu-
ronal network from billions of neurons to a tractable num-
ber of regions. Furthermore, if a parcellation is consis-
tent and reproducible across subjects, we can then infer
properties about the human brain in general. As of to-
day, there is no unique parcellation of the human brain.
Many brain parcellations coexist, each one based on dif-
ferent criteria such as: brain anatomy, function, cytoar-
chitecture, and structure.

In recent years we have witnessed a rapid growth in the
field of brain mapping, driven by advances in Magnetic
Resonance Imaging (MRI) and computational power. In
this chapter, we review the state-of-the-art in brain par-
cellation. We focus on four different types: anatomical,
functional, cytoarchitectonic and structural parcellations.
For each modality we explain the criteria behind them,

Figure 3.1: Examples of anatomical parcellations: (A) The AAL
atlas11, (B) Desikan Atlas12, and (C) Destrieux Atlas13. The im-
age of the AAL atlas was adapted from Landeau et al.11.

and the most notorious parcellations created based on
them. We limit ourselves to present parcellations with-
out benchmarking them, for more information on bench-
marking please refer to the works of Thirion et al.14, and
Arslan et al.15. This review is by no means extensive,
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Figure 3.2: Two cytoarchitectonic parcellations: (A) The Brodmann atlas1, and the von Economo and Koskinas atlas6.

and more information can be found in Amunts et al.16,
Triarhou17 Jbabdi et al.18, Arslan et al.15, de Reus et
al.19, and Eichhoff et al.20;21.

3.3. Anatomical Parcellations

In Anatomical parcellations, a region is characterized by
its shape or relative position in the brain. For example, in
the Desikan atlas, the pars opercularis region is defined as
“the first gyrus from the precentral gyrus” 12. Anatomical
parcellations were most probably the first way to subdi-
vide the brain, since references to anatomical landmarks
can already be found in ancient texts24;25.

Early anatomical atlases where solely based on the study
of post-mortem brains, being the most notable example
being that of Talairach26. This atlas is based on the dis-
section of one human brain, and defines a standardized
coordinate system for neurosurgery. In moderns times,
the advent of MRI allowed to acquire massive amount of
brain images and create brain templates. A brain tem-
plate is an image which is a representative of the different
brains on a population27. Two examples of this are the
Colin27 atlas2, based on the average of 27 scans of a
healthy subject, and the Montreal Neurological Institute
(MNI) brain28, which latest version (ICBM152) is based
on the average of 152 healthy subjects images. The par-
cellation of a brain template is, by definition, anatomi-
cally consistent across subjects, and therefore is consid-
ered an atlas. This is the case for example of the AAL
atlas. The AAL atlas11, is based on the manual parcel-
lation of the MNI brain atlas. The MNI single-subject
main sulci were first delineated and further used as land-
marks for the 3D definition of 45 anatomical volumes of
interest (AVOI) in each hemisphere.

When working only on the cortical surface, a well known
anatomical atlas is that of Desikan et al.12. The Desikan
et al. atlas is based on the segmentation of a surface tem-
plate, generated from the average cortical folding of 40
healthy subjects projected on a sphere. The template was
manually segmented into 34 coarse structures per hemi-
sphere. In order to label a new subject, the subject’s cor-
tical folding is projected into the sphere and aligned to
the template, then the labels are mapped from the atlas

to their cortical surface. The automatic labeling method
developed by Desikan et al. shows a great accuracy when
labeling new subjects12. Another parcellation, made by
Destrieux et al.13, presents a finer division of the cortex
in 74 parcels per hemisphere. In the case of Destrieux
et al., not only the cortical folding is taken into account
in order to label a region. Their underlying probabilistic
model takes into account information as: the curvature
and average convexity of the cortical surface, prior label-
ing probability for that vertex, and as the labels of ver-
tices in its local neighborhood. Finally, the MarsAtlas29

by Auzias et al., uses the superior temporal and inferior
frontal sulcus as orthogonal axis to defines a grid over
the cortex. The rest of the sulci in the brain are aligned
to this grid, and used to divide the cortical surface in 41
regions. As shown in their paper, the resulting parcels
have good correspondence with some specific functional
activations29.

3.4. Cytoarchitectonic Parcellations

Cytoarchitectonic divisions of the brain are based solely
in the cellular composition of the cortex. In these atlases,
a region is characterized by its thickness and cellular or-
ganization. For example, Brodmann Area 4 has “an un-
usually thick cortex; possess giant pyramidal cells, and
lacks both its internal and external granular layer” 1.

Campbell30 is considered the first neuroanatomist to cre-
ate a cytoarchitectonic parcellation of the brain, com-
posed of 14 regions with different cellular composition.
Shortly after Campbell, Elliot Smith31 divided the cor-
tex in 50 cytoarchitectonic areas. Two years after, Broad-
mann published his cytoarchitectonic map of the brain1.
Broadmann defines 52 cortical regions, based on the in-
spection trough microscope of cortical sections of post-
mortem brains of different species. In 1925 von Economo
and Koskinas published their Atlas of Cytoarchitecton-
ics of the Adult Human Cerebral Cortex6. Von Economo
and Koskinas’ atlas recognized 54 fundamental cytoarchi-
tectonic areas with 76 variants and 107 modifications17.
Their atlas is based on the examination of mentally healthy
subjects in the range of 30 to 40 years of age through
improved dissection and acquisition methodologies. The
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Figure 3.3: Three functional parcellations of the brain: (A) A parcellation from the resting state fMRI of 1000 subjects by Yeo et al.3,
(B) Functional networks defined by Power et al.22, and (C) a semantic map generated by Huth et al.23.

von Economo and Koskinas atlas is considered one of
the most detailed and reproducible cytoarchitectonic at-
las available32.

More recently, Schleicher and Zilles33 introduced a mi-
crostructural metric, the gray level index, to create observer-
independent parcellation methods. Also, new cytoarchi-
tectonic subdivisions of anatomical regions have been de-
fined, as the one by Eickhoff et al.34, who studied neuro-
transmitter receptors to map divisions in the visual cor-
tex, or the atlas of the human ventral visual stream ob-
tained by Rosenke et al.35 based on the analysis of 11
post-mortem brains. Finally, new atlases have been cre-
ated, such as the Jubrain36, a cytoarchitectonic proba-
bilistic map base of the histological sections of ten post-
mortem human brains; or the one by Ding et al.37, based
on the manual dissection and parcellation of a 34 years
old brain.

3.5. Functional Parcellations

Functional parcellations map cognitive functions to brain
regions in the brain. In this type of parcellation, each par-
cel is said to be specialized to serve one cognitive function
or to represent one essential aspect of the information
processed by it38.

The first functional maps were derived from lesions. The
language regions for example, are named after Broca and
Wernicke, who in the late 1800 reported lesions in that
region for aphasic patients39. Another example is that
of the human homunculus, a representation of motor and
sensory functions, which Penfied33 mapped through ex-
perimenting with electrical stimulation of different brain
areas of patients undergoing open brain surgery.

The advent of functional MRI (fMRI) allowed to measure
the blood-oxygen level dependant signal. Knowing that
the level of oxygen in blood increases when neurons acti-
vate, fMRI can help to characterize which region of the
brain active during specific cognitive tasks, or during rest
(resting state fMRI, rs-fmri). Many functional parceling
techniques rely on what is known as a functional connec-

tivity matrix, a two dimensional matrix that quantifies
the correlation between the fMRI time series of a set of
brain regions. Such regions can be as big as pre-defined
anatomical region or as small as a single voxel. The sim-
plest way to quantify connection between two regions is
by means of the Pearson’s correlation between the fMRI
time series at each region.

Most parceling techniques work by applying clustering
algorithms to the functional connectivity matrix. The
most popular techniques use mixture models40;41; ward
clustering42; k-means clustering3;43;44; hierarchical clus-
tering45;46; spectral clustering47;48;49, and boundary de-
tection50;51;49.

Some widely used whole-brain atlases are those of Yeo
et al.3, Power et al.22, Craddock48. Yeo et al.3 propose
to use k-means clustering on the average rs-fmri connec-
tivity from 1000 subjects. The results yield two parcel-
lations, with 7 parcels and 17 parcels respectively, that
show to be reproducible across groups of subjects. Power
et al.22 use graph analysis and subgraph detection tech-
niques in order to characterize functional subnetworks in
the connectivity graph. Finally, Craddock et al.48 use
spectral clustering on rs-fmri connectivity to create fine-
grained parcellations ranging form 200 to 1000 parcella-
tions.

Other papers worth mentioning are those of Deen et al.52
and Hurt et al.23. Deen et al. present a functional divi-
sion of the insula, that has been proved to be highly re-
producible across subjects and studies. Meanwhile, Huth
et al. present an innovative atlas which maps seman-
tic domains (e.g. violent, temporal, professional) across
the cortex23. They use voxel-wise modelling of func-
tional MRI (fMRI) data collected while subjects listened
to hours of narrative stories.

3.6. Structural Parcellations

Structural parcellations are based on estimations of ax-
onal connectivity. On a structural parcellations, each
parcels presents a distinct pattern of connectivity with

Page 21



3. MAPPING THE BRAIN: A REVIEW OF BRAIN PARCELLATIONS

Figure 3.4: Examples of structural parcellations of the brain: (A) The Brainnetome Atlas by Fan et al.53, (B) A parcellation of the
frontal lobe by Thiebaut de Schotten et al.54 and (C) a groupwise parcellation from Gallardo et al.55.

respect to a predefined set of regions of interest. For ex-
ample, area MFG-5 of the Brainnetome atlas has “connec-
tions with the major frontal subregions, the limbic area,
the parietal subregions and the subcortical connections
with the thalamus and basal ganglia subregions” 53.

The first structural atlases were defined on macaque by
means of chemical tracing10. Advances in Diffusion MRI
(dMRI) and tractography algorithms enabled the in vivo
exploration of axonal connectivity on the human brain.
This allowed to non-invasively estimate connectivity be-
tween different brain regions. As with functional data,
the most common way to generate a parcellation is by
first computing a connectivity matrix between regions (in
this case, a structural connectivity matrix), and then par-
cellate it using some clustering technique.

The most popular techniques to parcellate the structural
connectivity matrix are thresholding56; mixture models57;58;59;
k-means60; Principal Component Analysis61;54; Indepen-
dent Component Analysis62; spectral reordering63; spec-
tral clustering53; watershed based dimension reduction64;65;
and hierarchical clustering66;55.

Notables work are those of Behrens et al.56, Anwander
et al.60, Thiebaut et al.54, Moreno-Dominguez et al.66,
Bajada et al63 and Fan et al.53. Behrens et al.56 define
a structural parcellation of the thalamus. Using trac-
tography, they compute how a set of seed voxels in the
thalamus are connected to anatomically defined corti-
cal regions. Then, they assign to each seed-voxels the
label of the cortical region with which it connects the
most. Anwander et al.60 uses k-means clustering over
the connectivity matrix of Broca’s area, obtaining a divi-
sion in 3 regions, consistent with cytoarchitectonic divi-
sions. Thiebaut de Schotten et al.54 parcellate the frontal
lobe in 12 regions by means of principal component anal-
ysis, and shows its reproducibility across subjects and
datasets. Moreno-Dominguez creates a hierarchical par-
cellation of the brain by using ward clustering66, allowing
to obtain a parcellation of the brain with different granu-
larities. Fan et al.53 use spectral clustering over connec-
tivity data to subdivide regions of the Desikan atlas12,

obtaining a parcellation with 210 cortical areas and 36
subcortical regions. Finally, Bajada et al.63 take a dif-
ferent approach and use spectral reordering to create a
soft parcellation over the temporal lobe. This allows to
have parcels that diffuse into each other, instead of sharp
boundaries dividing them.

3.7. Multi-modal

Multi-modal parcellations are relatively new in the field
of brain mapping. By combining information from differ-
ent neuroimaging methodologies, multi-modal techniques
create regions which boundaries are consistent with mul-
tiple independent neurobiological properties.

Examples of multi-modal parcellations are those of Diez
et al.68, Parisot et al.69, and the Glasser-van Essen at-
las.67. Diez et al.68 merges structural connectivity and
functional connectivity in order to compute common structure-
function modules (SFMs). Their methodology defines
a cross-modularity index, that indicates how modular a
parcellation is with respect to both matrices, and how
similar is the internal connectivity in both modalities.
By searching for the parcellation that maximizes this in-
dex, they obtain a cortical parcellation with 20 structure-
function modules. Parisot et al.69 starts by comput-
ing a set of parcellations from fMRI, rs-fMRI, estima-
tions of myelin maps, and tractography. These parcel-
lations are then fused based on their local reliabilities
by means of mixture models. The fused parcellation is
iteratively refined, forcing the parcellations to converge
towards a set of mutually informed modality specific par-
cellations. Finally, Glasser et al.67 divide the cortex in
180 regions which borders are consistent with: myelin
content maps, cortical thickness maps, and task-fMRI
activations. Their approach combines a semi-automated
prior segmentation with a machine learning algorithm to
optimize the border placement.
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Figure 3.5: The atlas of Glasser et al.67 is a well-known multi-modal parcellation of the brain.

3.8. Discussion

The brain is a highly complex cellular network, in order to
study it, some way of dimensionality reduction is needed.
Given that neurons tend to organize and activate in a
spatially coherent way, it is possible to model the brain
as a mosaic of regions. As seen in sections 3.3-3.7, the
brain is divided on criteria such as anatomy, function,
cytoarchitecture or extrinsic connectivity. Each criterion
sees the brain in a different way, and relies on different
acquisition methods.

Cytoarchitectonic parcellations denote the cellular com-
position of the brain, therefore, they are the perfect can-
didate to abstract populations of neurons. Also, the close
relationship between cytoarchitecture and brain function16

makes them useful as functional parcellations. However,
when using these parcellations is important to acknowl-
edge their limitations. First, existent cytoarchitectonic
maps do not cover the whole brain, in fact, only approx-
imately 40% of the cortical surface has been mapped16.
Second, all cytoarchitectonic atlases are based on just a
few post-mortem brains, making them hard to represent
a population. This is product of the complex process of
dissecting a brain, delimiting its regions, and registering
the results to a common space. The whole process re-
quires in most cases one person year of work per region.
Finally, and most importantly, given the amount of vari-
ability70 in different subjects, registering a cytoarchitec-
tonic atlas to a new brain based on anatomical features
does not guarantee the correct localization of the areas.
Until now, post-mortem dissection remains as the only
way to correctly locate cytoarchitectonic areas.

Anatomical parcellations are based on fairly common brain
landmarks, making them highly reproducible across sub-
jects, but incurring in the trade-off of having coarse brain
regions. Nowadays, the general function of most anatom-
ical parcels is known, making them useful to use as a
gross first delimitation of the brain when studying par-
ticular brain functions. When using anatomical atlases,
it is important to remind that only the borders of a few
architectonically defined areas show a sufficiently precise

association with sulci16. Hence, anatomical atlases are
not good candidates to abstract populations of neurons
in the brain.

Functional parcellations map cognitive functions to brain
locations, and are a key element to understand how the
brain works. Many functions have been shown to be
consistent across subjects39;7;3, and the close relation-
ship with cytoarchitecture makes them good candidate
to abstract population of neurons. However, functional
parcellations are based on the modular paradigm, which
states that one brain region is specialized on one cogni-
tive function. New evidence suggests that the modular
paradigm has serious limitations and might in fact be
misleading71.

Structural parcellations define regions with homogeneous
axonal connectivity. Axonal connectivity plays a funda-
mental role in the interaction between brain regions9.
Moreover, long-range axonal connections are strongly re-
lated to brain function72, and cytoarchitecture62. The
downside is that tractography, the underlying technique
to estimate axonal connectivity, is still not mature enough.
In fact, recent studies show that state-of-the-art tractog-
raphy algorithms create four times more false positives
than true positives73.

Multi-modal parcellations combine information from dif-
ferent neuroimaging methodologies, in order to create re-
gions consistent with multiple neurobiological properties.
Their main limitation is that sometimes, regions tend to
over represent one modality. A clear example is the sub-
division of the precentral and poscentral gyrus in the at-
las of Glasser et al.67. Even when motor tasks are used
during the construction of the atlas, the resulting subdi-
visions of both motor and sensory cortex appear to be
driven by myelination. This result is inconsistent with
the well known functional subdivision of both motor and
sensory cortex.

We finish this review by highlighting that, if a universal
parcellation of the brain exists, it has not been found yet.
Meanwhile, different atlases and techniques to divide the
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brain coexist. As discussed above, parcellations based on
different criteria have different advantages and disadvan-
tages. At the end, which parcellation to use in practice
will heavily depend on the hypothesis and the goal of the
study to be done.

3.9. Conclusion

In this chapter we presented parcellations based on dif-
ferent criteria and discussed their advantages. In the fol-
lowing chapter we will introduce the first contribution
of this thesis: a parsimonious model for the long-range
connectivity and a whole-brain structural parceling tech-
nique. We will show that our technique creates parcels
in agreement with anatomical, structural and functional
parcellations existent in the literature.
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Chapter 4
Groupwise Structural Parcellation of the Whole Cortex: A Logistic Ran-
dom Effects Model Based Approach

4.1. Overview

So far in this thesis we have introduced the necessary con-
cepts in neuroanatomy; non-invasive imaging techniques
to study the brain, and brain parcellation. In the first
chapter we explained the importance of brain connectiv-
ity and its relation to brain function. On the second
chapter, we explained how to estimate brain connectiv-
ity and brain function in a non-invasive way. The third
chapter showed the ongoing effort to find new and rele-
vant ways to divide the brain, in order to improve the way
to study it. In particular, all of the parcellations based
on structural connectivity are computationally expensive;
need tuning of several parameters or rely on ad-hoc con-
straints. Furthermore, none of these methods present a
model for the cortical extrinsic connectivity of the cor-
tex. In this chapter, we propose a parsimonious model
for the extrinsic connectivity and an efficient parceling
technique based on clustering of tractograms. Our tech-
nique allows the creation of single subject and groupwise
parcellations of the whole cortex. We show that our tech-
nique creates parcellations in agreement with anatomical,
structural and functional parcellations extant in the lit-
erature.

This work has been published in the journal Neuroimage1

4.2. Introduction

The human brain is arranged in areas based on crite-
ria such as cytoarchitecture, functional specialization or
axonal connectivity2;3;4. Parceling the cortex into such
areas and characterizing their interaction is key to un-
derstanding how the brain works. Nowadays it is ac-
cepted that axonal connectivity plays a fundamental role
in the interaction between brain regions5. Moreover, cur-
rent theories hold that long-range physical connections
trough axonal bundles, namely extrinsic connectivity, are
strongly related to brain function, for example, this has
been shown in macaques6. Therefore, understanding how
the cortex is arranged based on its extrinsic connectivity
can provide key information in unraveling the internal
organization of the brain.

Diffusion MRI (dMRI) enables the in vivo exploration of
extrinsic connectivity and other aspects of white matter
anatomy on the brain. However, in using diffusion MRI to
infer long-distance connectivity, several challenges arise.

A primary issue is the spatial resolution of diffusion imag-
ing: it is several orders of magnitude coarser than axonal
diameters (millimeters vs. micrometers)7, making hard
to infer some brain pathways. In addition, there is as yet
no quantitative measure of the strength of connections
from diffusion8. Given these general limitations, obtain-
ing a cortical parcellation based on extrinsic connectivity
remains challenging7;8. Moreover, most current parcel-
ing techniques compute either single-subject or group-
wise parcellations. Single-subject techniques work by re-
fining other parcellations9, which introduces a bias in
the resulting parcellation; parceling only part of the cor-
tex10;11;12;4 or using ad-hoc metrics to compare extrinsic
connectivity13. Meanwhile, existing groupwise methods
rely on average connectivity profiles9;14, which prevents
obtaining single subject parcellations; seek a matching
across subjects after independent parcellations13, relying
on possible noisy results, or need fine tuning of parame-
ters, as the expected number of clusters to find15.

In this work, we present a parsimonious model for the
cortical connectivity alongside an efficient parceling tech-
nique based on it. We summarize both contributions in
Fig. 4.1. Our model assumes that the cortex is divided
in patches of homogeneous extrinsic connectivity. That
is, nearby neurons in the cortex share approximately the
same long-range physical connections, we call this the lo-
cal coherence criterion. Our assumption is based on his-
tological results in the macaque brain5. Inspired by sta-
tistical models for clustered data16, our model accounts
for the variability in the axonal connections of neurons
within a patch and for variability in patch boundaries
across subjects. Our parceling technique allows us to
create single subject and groupwise parcellations of the
whole cortex in agreement with extant parcellations.

We validate our technique by taking advantage of data
available from the Human Connectome Project (HCP).
Using our technique, we compute single subject and a
groupwise parcellations. In this work we will focus on
the groupwise case. For results of our method on the
single-subject case please refer to Gallardo et al.1 Here,
we first assess the consistency of our groupwise parcel-
ing technique by comparing the groupwise parcellations
of three disjoint groups of 46 subjects from the HCP. We
also show that our technique computes a similar parcella-
tion to the one obtained by Thiebaut de Schotten et al.4
when parceling only the frontal cortex. Later, to test the
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Figure 4.1: Lower left corner: graphical model of the linear relationship between the tractogram of a subject s for a seed p (T̃sp);
and the intra-cluster (ε̃c) and across-subject (ε̃s) variability of the seed’s patch. We transform the tractograms into a Euclidean space
while explicitly accounting for the variability. This allows us to use well known clustering techniques and compress different levels of
granularities for a same parcellation in a dendrogram.

functional specialization of our frontal lobe parcels, we
use a data-base of meta-analysis of fMRI studies17, as in
Thiebaut de Schotten et al. citeThiebautdeSchotten2016.
After, we show that our groupwise parcels subdivide some
well-known anatomical structures by comparing our re-
sults against Desikan’s atlas18. Also, we show the func-
tional specialization of some of our parcels by comparing
against results from Glasser et al.19. Finally, we com-
pare our groupwise parcellation of 138 subjects against
the multi-modal parcellation of Glasser et al.20. We show
that, while the parcellations boundaries differ, our parcels
show similar or better functional specialization, specially
for motor related tasks.

This work is organized as follows: In the Methods section
we present our model for cortical connectivity and frame
tractography within our model. Also, we present both
our single-subject and groupwise case methodologies to
parcellate the cortex. In the Experiments and Results
section we present our results on HCP data. We then
discuss our results and position ourselves with respect to
the state of the art in the Discussion section. Finally, in
the last section we provide our conclusions.

4.3. Methods

Cortical Connectivity Model and Tractography

Our model assumes that the cortex is divided in clusters
of homogeneous extrinsic connectivity. That is, nearby
neurons in the cortex share approximately the same long-
ranged physical connections, we call this the local coher-
ence criterion. Our assumption is based on histologi-
cal results in the macaque brain5. As in clustered data
models in statistics16, we allow intra-cluster and across-
subject variability in the connectivity. We formalize this
concept as:

K =

k⋃
i=1

Ki (4.1)

∀1≤i,j≤k, i 6= j → Ki ∩Kj = ∅ ∧ conn(Ki) 6= conn(Kj)

where the set of points on the cortex K is the disjoint
union of each cluster Ki and conn(·) is the extrinsic con-
nectivity fingerprint of a cluster. We will make the no-
tion of variability explicit in eq. 4.3. In this work, the
connectivity fingerprint of a seed-point in the brain is a
binary vector denoting to which other seed-points it is
connected through axonal bundles. That is, the physical
connections of a point p ∈ Ki in the brain are represented
by its connectivity fingerprint conn(p) = conn(Ki).

Currently, the most common tool for estimating the ex-
trinsic connectivity fingerprint of a point in vivo is prob-
abilistic tractography8. Given a seed-point in the brain,
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probabilistic tractography creates a tractogram: an image
where each voxel is valued with its probability of being
connected to the seed through axonal bundles. One way
of calculating these probabilities is with a Monte Carlo
procedure, simulating the random walk of water particles
through the white matter21. Each one of these paths is
known as a streamline. If we model these streamlines
as Bernoulli trials, where we get a value for the connec-
tion from our seed with other points (1 if they connected
by the streamline, 0 if not)21, then, we can model the
tractogram of the subject s in the seed-point p as:

Tsp = [P (C̃spi = 1)]1≤i≤n (4.2)

= [θspi]1≤i≤n, C̃spi ∼ Bernoulli(θspi),

where C̃spi is a Bernoulli random variable1 representing
“the point p of the subject s is connected to the voxel i".
Each Bernoulli’s parameter (θspi) represents the probabil-
ity of being connected, and is estimated as the proportion
of success in the Bernoulli trials of each seed.

To formulate the tractogram in accordance to our hy-
pothesis of cortical connectivity, we model it as a vector
of random variables. In our model, each element in a
tractogram comes from a random variable depending on
the point’s cluster along with its intra-cluster and across-
subject variability:

p ∈ Kc → T̃sp = [P (C̃spi = 1| conn(Kc), ε̃ci, ε̃si)]1≤i≤n
(4.3)

in this case, the point p belongs to the cluster c; ε̃ci rep-
resents the intra-cluster variability and ε̃si represents the
across-subject variability for the connectivity to voxel i
in the cluster c.

Since each C̃spi follows a Bernoulli distribution (Eq. 4.2)
it is difficult to find an explicit formulation for P (C̃spi =
1| conn(Kc), ε̃ci, ε̃si) accounting for the variabilities. For
this, we use the generalized linear model (GLM) theory.
In this theory, the data is assumed to follow a linear form
after being transformed with an appropriate link func-
tion22. Using the following notation abuse:

logit(T̃sp) , [logit(P (C̃spi = 1| conn(Kc), ε̃ci, ε̃si)]1≤i≤n,
(4.4)

we derive from GLM a logistic random-effects model16
for each point p:

logit(T̃sp) = βc + ε̃c + ε̃s ∈ Rn, (4.5)

ε̃c ∼ N (~0, σ2
cId), ε̃s ∼ N (~0, σ2

sId),

where εc and εs represent the intra-cluster and across-
subject variability respectively. According to GLM the-
ory βc ∈ Rn is the extrinsic connectivity fingerprint of

1For the sake of clarity we denote all random variables with a
tilde, e.g. C̃.

cluster Kc transformed:

logit−1(βc) = E(T̃sp) = conn(Kc) . (4.6)

The choice of logit as link function is based on the work of
Pohl et al.23. In their work, Pohl et al.23 show that logit
function’s codomain is a Euclidean space, which allows us
to transform and manipulate the tractograms in a well-
known space.

Single Subject and Groupwise Parceling Method-
ologies

In the previous section, we hypothesized that the cortex
is divided in clusters with homogeneous extrinsic connec-
tivity, alongside intra-cluster and across-subject variabil-
ity. In using the previous hypothesis, it is important to
remark that we don’t have a priori knowledge of the clus-
ter’s location or their variability. But, thanks to the pro-
posed logistic random effects model, we formulated the
problem of finding these clusters as a well-known clus-
tering problem. This is because, after transforming the
tractograms with the logit function as in eq. 4.4 they will
be in a Euclidean space23. Even more, eq. 4.5 states
that the transformed tractograms come from a mixture
of Gaussian distributions, e.g. it is a Gaussian mixture
model.

To solve the Gaussian mixture model and find the clus-
ters, we use a modified Agglomerative Hierarchical Clus-
tering (AHC) algorithm. This was inspired by the method
of Moreno-Dominguez et al.13. To enforce the local co-
herence criterion we also modify the algorithm to ac-
cept one parameter: the minimum size of the result-
ing clusters. Clusters smaller than this size are merged
with neighbors, i.e. physically close clusters in the cor-
tex. As we are working in a Euclidean space, we use
Ward’s Hierarchical Clustering method24. This method
creates clusters with minimum within-cluster variance.
The method’s result is a dendrogram: a structure that
comprises different levels of granularity for the same par-
cellation. This allows us to explore different parcella-
tion granularities by choosing cutting criteria, without
the need of recomputing each time.

The main advantage of the model we proposed in this
work is that it allows us to create a groupwise parcella-
tion using linear operations. Assuming direct seed corre-
spondence across subjects, as in the HCP data set, our
model lets us remove the subject variability of each seed’s
tractogram by calculating the expected value across sub-
jects:

Es(g(T̃sp)) = Es(βc + ε̃c + ε̃s), (4.7)
= βc + ε̃c + Es(ε̃s) = βc + ε̃c.

where the last equality is due to Es(ε̃s) = 0 (Eq. 4.5).
Since in our model the variabilities are normally dis-
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Figure 4.2: Groupwise parcellations of 3 disjoint groups of 46 people each. We show results from the same dendrogram cut to get 6
parcels (upper) and 55 parcels (lower). Labels with best overlap in upper figures share the same color. Notice that there are two different
shades of blue for the group C.

tributed (Eq. 4.5), we can estimate the expected value
across subjects by averaging a seed’s tractograms across
subjects. This allows us to create population-representative
tractograms for each seed free of across-subject variabil-
ity, which then can be clustered to create a groupwise
parcellation.

4.4. Experiments and Results

In the previous section we presented a model for the
cortical extrinsic connectivity and a clustering technique
to parcellate the whole brain. Our technique allows us
to create single subject and groupwise parcellations, en-
coded with different levels of granularity in a dendro-
gram. Now, we show the results of applying our tech-
nique over the HCP dataset. First, we explain how the
preprocessing step of tractography was made. Then, we
elaborate in detail how we applied our technique. Later,
we show that our groupwise technique creates results con-
sistent when parceling different groups. Also, we show
that our techniques creates parcels in accordance with
those by Thiebaut de Schotten4 when parceling only the
frontal lobe. Then, we present a proof-of-principle that
our parcels are related to brain anatomy and functional
specialization. Most of the results in this section are fo-
cused in the groupwise case, for further information on
the single-subject technique please refer to Gallardo et
al.1. Finally, we study the (dis)similarity between our
groupwise parcellation and that of Glasser et al.20.

Data and Preprocessing

Human Connectome Project Dataset A total of
138 subjects (65 males and 73 females, ages 31-35) were
randomly selected from the group S500 of the Human
Connectome Project (HCP). For information on the ac-
quisition protocols please refer to Van Essen et al.25. Ev-
ery subject has been already preprocessed with the HCP

minimum pipeline19. Also, each subject’s cortical sur-
face is coregistered and represented as a triangular mesh
of approximately 32000 vertices per hemisphere19. For
each vertex, the corresponding label from Desikan’s At-
las is known18. Finally, the group S500 contains tfMRI
information representing the average response to func-
tional stimuli in 100 unrelated subjects (U100)26.

Probabilistic Tractography To create the tractograms
of each subject, we performed Constrained Spherical De-
convolution (CSD) based tractography27 from a dense set
of points in the cortex. Specifically, since each subject
has a mesh representing their gray-matter/white-matter
interface19, we used their vertices as seeds to create trac-
tograms. Vertices corresponding to the medial wall were
excluded. To avoid superficial cortico-cortical fibers28,
we shrank each of the 138 surfaces 2mm into the white
matter. For each subject, we fitted a CSD model27 to
their diffusion data using Dipy (version 0.11)29 and cre-
ated 5000 streamlines per seed-voxel using the implemen-
tation of probabilistic tractography in Dipy. Later, we
created a tractogram as in (Eq. 4.2) by calculating for
each seed the fraction of they particles that visited other
seed-voxel.

Parceling Subjects From the Human Connectome
Project

After performing tractography, we applied our parceling
technique over each subject in our HCP sample. Specifi-
cally, we first transformed each tractogram with the logit
function as in eq. 4.4. Then, we clustered the trac-
tograms of each subject using the modified AHC algo-
rithm while imposing a minimum cluster size of 3mm2 in
the finest granularity. To retrieve parcellations from the
resulting dendrogram we use the horizontal cut method30;13;1.
Two examples of obtained single-subject parcellations at
a granularity of 55 parcels are shown in fig. 4.3. To cre-
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ate the groupwise parcellation, we took advantage of the
vertex correspondence across subjects in the HCP data
set19. After transforming the tractograms with the logit
transform, we computed the average connectivity of each
seed by averaging its tractograms across-subject. Then,
we computed the groupwise parcellation by clustering the
averaged tractograms with our proposed technique (sec.
4.3.2). The obtained groupwise parcellation at a granu-
larity of 55 parcels is shown in fig. 4.3.

Groupwise Parcellation Technique Consistency

To study the consistency of our technique, we randomly
divided our HCP subject sample in 3 disjoint groups, try-
ing to maintain the same proportion of males and females
on each. The resulting groups had: 24 females, 22 males
(group A); 23 females, 23 males (group B) and 28 fe-
males, 18 males (group C). For each group we computed
their groupwise parcellation. The resulting parcellations
at two different levels of granularity are shown in fig.
4.2. To study the similarity between the obtained group-
wise parcellations, we compared them at different lev-
els of granularity using the adjusted Rand index31. To
have a baseline for the comparisons, we generated ran-
dom parcellations of the cortex and computed the simi-
larity between them. We computed two types of random
parcellations: The first one is an homogeneous random
parcellation with n parcels, inspired in a method used
by Parisot et al.15. To compute it, we start by choos-
ing n starting points in the cortex, then, we randomly
expand each parcel on the cortex. By comparing these
random parcellations between them we compute the min-
imum obtainable Rand index by mere chance at each level
of granularity. In the second type of random parcellation,
we simulate the behavior of our technique. For this, we
create a parcellation with 300 parcels and then, we iter-
atively merge two parcels chosen at random until all the
parcels are merged in one. By comparing these random
parcellations between them we obtain the minimum ob-
tainable Rand index by a random Hierarchical Clustering
Algorithm. Examples of these random parcellations can
be seen in Fig 4.4. The baselines presented in fig. 4.5 (yel-
low and violet lines) were computed by comparing 1000
of these random parcels at different levels of granularity.
The result of comparing the groupwise parcellations of
each group appear in fig. 4.5. The figure shows that the
similarity between our groupwise parcellations (lines red,
green and blue) are significantly higher than the baselines
(violet and yellow). That is, the similarity between our
parcellations differs (for most cases) more than 3 stan-
dard deviations from the baselines’ mean. Moreover, the
similarity between our results differs more than 4 stan-
dard deviations from the comparison between synthetic
hierarchical parcels. This results show that our group-
wise parceling technique creates consistent parcellations.

Relationship with a Frontal Lobe Parcellation

Here we assess the agreement of our technique with an
state-of-the-art extrinsic connectivity parceling technique.
We do so by using our technique to parcellate the frontal
lobe and compare our result against that of Thiebaut de
Schotten et al.4. In their work, Thiebaut de Schotten et
al.4 use a principal component analysis (PCA) statistical
framework to parcellate the frontal lobe. They obtain a
parcellation with 12 parcels. Then, they show that each
one of these parcels possess a functional specialization by
using the Decode tool2 from Neurosynth17. Thiebaut’s
parcellation is currently available in Neurovault32 as an
annotated volume3, registered on the Collin27 template33.
We downloaded this parcellation and projected its parcels
into a dense mesh representing the cortex of the Collin27
template. The dense mesh had the same amount of ver-
tices as our chosen HCP subjects, and such vertices were
coregistered with the HCP subjects’ cortical surfaces ones.

From the Desikan Atlas18 of each of our HCP subjects, we
derived a groupwise mask for the frontal lobe. Then, we
computed a groupwise parcellation with our technique,
using only the tractograms in the mask. Figure 4.6 shows
both the parcellation downloaded from Neurovault and
our groupwise parcellation projected in the Collins tem-
plate cortical surface. The figure shows our parcellation
with 10 parcels since this level of granularity showed the
best Rand index against the Thiebaut’s parcellation. The
colors of each parcel in our groupwise parcellation were
picked in base to the position and amount of overlapping
with the Thiebaut’s parcels on the surface. While the
similarity according to the Rand index is not significantly
high (0.4), some visual similarity can be observed on the
obtained parcellation, particularly in the blue, yellow, or-
ange and green parcels. Moreover, as shown in table 1,
our parcels show the same or even a higher level of func-
tional specialization when processed with Neurosynth.

To study the consistency of our result we computed the
frontal lobe groupwise parcellation in each of the 3 dis-
joint groups from the previous experiment. Figure 4.7
shows the three obtained parcellation alongside the Thiebaut’s
one. The obtained parcels show consistency, obtaining an
adjusted Rand index score of 0.61±0.05 between them.
Finally, we studied if the masking affected the clustering
of the frontal lobe. To do so, we applied the frontal lobe
mask over a groupwise whole-brain parcellation of the
138 subjects. The resulting frontal lobe parcellation con-
tained 12 parcels. This parcellation showed consistency
with the one obtained by clustering only the tractograms
in the frontal lobe. More specifically, the adjusted Rand

2http://www.neurosynth.org/decode/
3http://neurovault.org/collections/1597/
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Figure 4.3: Examples of two single-subject parcellations and the groupwise parcellations computed with our technique. All the
parcellations shown have 55 parcels. The corresponding dendrogram for each case, along with the chosen cut height (red line) are shown.
The groupwise parcellation is based on 138 subjects from the Human Connectome Project.

index score between them was 0.65. We repeated this
procedure for the 3 disjoints groups from the previous ex-
periment. In each group, both frontal lobe parcellations
showed to be consistent, achieving an adjusted Rand in-
dex of 0.57±0.04.

Anatomical Relationship and Functional Special-
ization of Our Parcels

Here we present a proof of concept that our technique
creates parcels within anatomical boundaries and with
functional meaning. To do so, first, we extracted a par-
cellation with 55 parcels from the groupwise parcellation
computed from the 138 subjects. This was made to get
a parcellation with coarse granularity while having at
least the amount of parcels in the anatomical atlas of
Desikan18 (36 parcels). We compare this extracted par-
cellation against the Desikan Atlas and a functional study
made to every subject in the HCP19.

Relationship with Anatomical Boundaries To as-
sess if some anatomical structures were present in the
dendrogram and if our resulting parcels were subdivid-
ing them, we compared our extracted parcellation with
the Desikan atlas18. To do so, we projected the Desikan
regions over our parcels and then calculated: how many
of our parcels were contained by a anatomical region in
more than a 90%, and which anatomical regions were con-
tained inside of one of our parcels. Using this criterion,
the Insula; Cingulate; Lateral-Occipital; Fusiform; Supe-
rior Frontal; Lingual; Sensory and Motor Cortex appear
to be found as shown in Fig. 4.8.

Functional Specialization. To study the relationship
between our parcels and brain function, we projected our
parcels over z-score maps representing responses to func-
tional stimuli26. These maps are available as part of the
HCP data, and represent the average activation of 100
subjects. In particular, we used the maps related to the
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Figure 4.4: Examples of synthetic parcellations created to compute a baseline adjusted rand index. Parcellations on the left were
created by dividing the brain in a homogeneous way, inspired by the random parcellation presented in Parisot et al.15. Parcellations on
the right were created by randomly merging parcels of a coarse parcellation.

Table 1. Correlation value reported (Neurosynth)

Parcel Term r (Thiebaut et al.) r (Ours)
1 foot 0.267 0.319
2 motor 0.129 0.208
3 eye field 0.081 0.048
4 speech production 0.077 0.138
5 pre sma 0.245 0.234
6 phonological 0.206 0.019
7 - - -
8 executive control 0.049 0.042
9 - - -
10 semantic 0.178 0.226
11 social 0.137 0.110
12 semantic 0.139 0.086

Table 1. Spatial correlation value reported by Neurosynth for specific terms in each parcel of Thiebaut de Schotten et al.4 and for our
parcels. Enumeration comes from figure 4.6.

following tasks: right hand, foot and tongue movement;
face, shape recognition and story categorization. For in-
formation on the functional tasks, acquisition and pro-
cessing of this data please refer to Barch et al.26. Fig-
ure 4.9 shows our parcels projected over contrasts in mo-
tor tasks. In particular, our parcels are projected over
the following contrasts: tongue-average; hand movement-
average and foot movement-average. Figure 4.10 shows
our parcels projected over contrasts in cognitive tasks:
face-shape recognition; shape-face recognition and short-
story categorization. The figures show a good overlap
between our parcels and the regions with maximum ac-
tivation of each task. In both figures the distribution of
z-scores inside of specific regions are shown as histograms.
Further information about the z-score is present in tables
2 and 3. These tables show that our parcels contain zero
or few negatives values; that the mean of their contained

z-score is always positive and also, that many of those
parcels enclose the maximum achievable z-score.

Relationship with a Multi-Modal Parcellation of
the Cortex

Finally, we study the (dis)similarities between our group-
wise parcellation and that of Glasser et al.20. In their
work, Glasser et al.20 compute a parcellation of the whole
cortex using information from different MRI modalities.
In particular, they use information from task functional
MRI; resting state functional MRI; myelin maps com-
puted from T1 and T2 images and cortical thickness. It
is important to remark that dMRI data, in which our
work is solely based, was not used to construct their par-
cellation.
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Figure 4.5: Adjusted Rand Index obtained when comparing: (red) Group A vs Group B; (blue) Group A vs Group C; (green) Group
B vs Group C; (purple) Synthetic Homogeneous Parcels and (yellow) Synthetic hierarchical Parcels.

To compare our results against Glasser’s atlas, we first ex-
tracted a parcellation of 180 parcels from the groupwise
dendrogram of our 138 HCP subjects. That is, we ex-
tracted a parcellation with the same number of parcels as
Glasser’s one. Figure 4.11 show both parcellations side by
side. We compared both parcellations using the adjusted
Rand Index, obtaining a score of 0.28. Such low score in-
dicates that there’s almost no similarity between our re-
sult and that of Glasser et al.20. Also, there’s no relation-
ship with our groupwise parcellation with 55 parcels used
in the previous section since Glasser’s parcels (finest) do
not subdivide ours (coarsest). Since Glasser’s parcella-
tion comes from functional information in the HCP, we
studied the functional specialization of its parcels in the
same manner as previous section. Figure 4.12 shows the
histogram of z-score contained for some parcels when us-
ing the same maps as in section Functional Activations.
It’s important to remark that the z-score maps used come
from responses to functional stimuli of HCP subjects19.
In particular, histograms a; b and c in fig. 4.12 show that
their subdivisions of the sensori-motor cortex contain a
wide range of z-scores, centered in zero.

4.5. Discussion

In this work we presented a parsimonious statistical model
for long-ranged axonal connectivity. Our model (section
4.3.1), assumes that the cortex is divided in patches of ho-

mogeneous extrinsic connectivity, as histological results
showed in the macaque brain5. By borrowing ideas from
statistical clustered data models16, our model accounts
for the variability in the axonal connections of a patch’s
neurons and for variability in patch boundaries across
subjects.

Taking advantage of our proposed model, in Section 4.3.2
we presented an efficient technique to parcellate the cor-
tex based on its extrinsic connectivity. Our technique
uses only dMRI information, without the need of rely-
ing on initial parcellations9. Also, our technique allows
parcellation of the whole cortex, overcoming the prob-
lem of working with only part of it10;11;12;4. Addition-
ally, our technique allows creation of both single sub-
ject and groupwise parcellations. Our groupwise parcel-
lation technique relies on anatomical seed-correspondence
across subjects. In our experiments, this is achieved as
each HCP subject possess a coregistered dense mesh rep-
resenting they cortical surface19. Given the anatomical
differences across-subjects, this purely anatomical match-
ing of seeds is probably sub-optimal. However, it al-
lows us to compute single and groupwise parcellations
independently. By doing this, we avoid the need to im-
pose constraints between our single and group parcella-
tions9;14;15.

Inspired by Moreno-Dominguez et al.13, our technique
uses Hierarchical Clustering to comprise multiple granu-
larities of the same parcellation in a dendrogram. This
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Figure 4.6: Thiebaut de Schotten et al.4 parcellation (left) and our groupwise parcellation using only tractograms from the frontal
lobe (right). Our parcels are colored after the parcel from Thiebaut de Schotten et al.4 with which they best overlap.

Table 2. Statistics on z-score distribution in parcels from figure 4.9

Contrast Parcel Min. Max. Mean ± Std. Dev. Max. Score in Map
T-Avg 1 -3.62 15.03 5.67±4.91 15.03
T-Avg 2 4.11 14.88 10.30 ± 2.56 15.03
RH-Avg 3 -7.02 14.50 5.05 ± 4.95 14.50
RH-Avg 4 -11.25 14.07 6.35 ± 6.25 14.50
RF-Avg 5 -7.10 9.57 2.99 ± 3.84 14.56
RF-Avg 6 1.04 14.01 7.13 ± 3.20 14.56
RF-Avg 7 -0.83 13.98 9.23 ± 3.32 14.56
RF-Avg 8 -0.46 14.56 8.73 ± 3.81 14.56

Table 2. Minimum; maximum and mean z-score contained by each of the parcels enumerated in figure 4.9. The highest z-score of each
map is reported to facilitate comparison. T-Avg: Tongue movement versus average; RH-Avg: Right Hand Movement versus average;
RF-Avg: Right Foot Movement versus average.

allows us to overcome the need of other techniques15

to specify an expected number of clusters. Hence, we
don’t need to recompute the whole pipeline each time a
new parcellation is required. As in Moreno-Dominguez
et al.13, we also create the dendrogram using only one
comprehensive parameter: the minimum size of each clus-
ter. This parameter imposes the local coherence criterion.
Our fundamental difference with Moreno-Dominguez’ tech-
nique is how we compare and merge tractograms dur-
ing the clustering process. Moreno-Dominguez et al.13
use Centroid Clustering34 with the cosine distance. This
can lead to an erroneous parcellation since the centroid
criterion doesn’t minimize the cosine distance between
points. Also, their method creates dendrograms with in-
versions34, which are then removed heuristically. In our
case, using a Logistic Random Effect model (eq. 4.5) al-
lowed us to transform the tractograms into a Euclidean
space (sec. 4.3.2) and compare them using the Euclidean
distance. In doing this, it is important to remark that

we are making a trade off. Since we are comparing high-
dimensional vectors with the Euclidean distance, we are
probably affected by the dimensionality curse35. How-
ever, working in an Euclidean space possess many advan-
tages. The first advantage is that we can compute clus-
ters with minimum intra-cluster variance by using Ward’s
Hierarchical method. We can use this algorithm since its
only hypothesis is that the features to cluster are in a
Euclidean space. Also, since we work with the Euclidean
distance, we can apply the Lance and Williams36 formula
during clustering. This formula gives us the dissimilarity
between the new centroid created at each step and the
rest of the existing tractograms in constant time. As far
as we know there’s no Lance and Williams formula when
using the cosine distance with the centroid linkage. This
allows us to lower the time complexity of our algorithm
with respect to Moreno-Dominguez. Since we use Ward’s
clustering, our resulting dendrograms do not have inver-
sions, which means that we don’t need to post-process
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Figure 4.7: Thiebaut de Schotten et al.4 parcellation (top-left) and our frontal lobe groupwise parcellations computed over 3 disjoint
groups of subjects. Our parcels are colored after the parcel from Thiebaut de Schotten et al.4 with which they best overlap.
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Figure 4.8: Relation between our pure extrinsic parcellation and the anatomical atlas of Desikan18. Desikan atlas projected over the
groupwise parcellation with 55 parcels. Insula; Cingulate; Lateral-Occipital; Fusiform; Superior Frontal; Lingual; Sensory and Motor
Cortex appear to be found.
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Figure 4.9: Our groupwise parcellation with 55 parcels projected over z-scores representing responses to motor tasks. Each histogram
shows the distribution of z-score inside our parcels. The null or small fraction of negative values shows the functional specialization of
our parcels
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Figure 4.10: Our groupwise parcellation with 55 parcels projected over z-scores representing responses to cognitive tasks. Each
histogram shows the distribution of z-score inside our parcels. The null or small fraction of negative values shows the functional
specialization of our parcels
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Figure 4.11: Glasser et al.20 parcellation (upper) and our groupwise parcellations computed from 138 HCP subjects. Both parcellations
contain 180 parcels. There’s almost no overlap according to the adjusted Rand index between them (0.28).
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Table 3. Statistics on z-score distribution in parcels from figure 4.10

Contrast Parcel Min. Max. Mean ± Std. Dev. Max. Score in map
Faces-Shapes 1 -4.33 9.28 3.35 ± 3.51 13.45
Faces-Shapes 2 -7.16 12.36 4.01 ± 4.09 13.45
Faces-Shapes 3 -6.07 13.45 5.16 ± 5.25 13.45
Shapes-Faces 4 -5.73 5.37 0.93 ± 1.78 8.79
Shapes-Faces 5 -4.11 7.67 1.11 ± 2.11 8.79
Shapes-Faces 6 -1.13 5.94 3.17 ± 1.49 8.79

Story 7 -3.72 12.02 6.72 ± 3.35 12.02
Story 8 -3.24 11.92 7.41 ± 2.50 12.02

Table 3. Minimum; maximum and mean z-score contained by each of the parcels enumerated in figure 4.10. The highest z-score of
each map is reported to facilitate comparison. Faces-Shapes: Face recognition versus shape recognition contrast; Shapes-Faces: Shape
recognition versus face recognition; Story: Short story categorization.

them. Another advantage is that we can retrieve a par-
cellation from the dendrogram using a simple technique:
horizontal cut30. While other methods to cut the den-
drogram exist30, horizontal cut is sufficient to solve our
Gaussian Mixture Model (eq. 4.5) as shown in Gallardo
et al.1. Finally, even if our algorithm is probably affected
by the dimensionality curse, our parcellations showed to
be consistent across-groups and in agreement with extant
parcellations in the literature.

Our Groupwise Parcellations are Consistent Across
Similar Groups:

We assessed the consistency of our groupwise parcellation
by quantifying the consistency across 3 disjoint groups of
46 subjects each. The consistency is shown by the ad-
justed Rand index in Fig. 4.5, which quantifies consis-
tency across parcellations31. As seen in Fig. 4.5 whole-
cortex parcellations obtained with our method are con-
sistent across groups, and the Adjusted Rand Index is
significantly higher, i.e. more than 3 standard deviations,
for all granularities when compared with the null case of
randomly-generated parcellations.

Our whole-cortex groupwise parcellation reaches a max-
imum consistency score when the cortex is divided in 6
regions, see Fig. 4.5. As seen in Fig. 4.2, these parcella-
tions are consistent with specific anatomo/functional net-
works: the frontal lobe section anterior to the prefrontal
cortex is shown in yellow; the sensorimotor area is shown
in cyan, the cingulate area is shown in beige; the fronto-
occipital connection in orange, and the temporo-parietal
system in pink.

Our Method Creates Parcels in Agreement With
a Single-Lobe Parceling Technique Extant in the
Literature.

We showed that our technique obtains results similar to
another method extant in the literature. We did so by
parceling only the frontal and showing the visual simi-

larity between our resulting parcels and those obtained
by Thiebaut de Schotten et al.4. Moreover, the blue,
pink and green parcels in fig. 4.6 share not only similar
boundaries and location, but also functional specializa-
tion (Table 1). In some cases our parcels possess even
higher spatial-correlation with functional task according
to Neurosynth’s17 Decode tool4. We assessed the con-
sistency of our obtained groupwise parcellation by com-
puting the groupwise frontal lobe parcellation of three
disjoints groups of 46 subjects and comparing them us-
ing the adjusted Rand index. The obtained value of 0.61
shows that our parcellation of the frontal lobe is consis-
tent across groups.

Our Method Creates Several Parcels in Agree-
ment with Brain Anatomy.

We showed that many of our parcels are in agreement
with brain anatomy. In particular, we showed that in
our groupwise parcellation, with 55 parcels, the following
anatomical structures appeared to be found: Cingulate;
Insula; Lateral-Occipital; Fusiform; Superior Frontal; Lin-
gual; Motor and Sensory cortex. Here we discuss why
some of these parcels were found and how are their conec-
tivity fingerprints. In the case of the Cingulate, its fin-
gerprint, shown in fig. 4.13, is strongly related with the
Cingulate Fascicle (CF) pathway. This is consistent with
the fact that the seeds located in the Cingulate will end
up into the CF after being pushed in the white-matter.
In the case of the Insula, each subdivision showed a spe-
cific pattern of connectivity as shown in fig. 4.13. These
parcels show a gradient of connections from the occipital
lobe to the frontal lobe consistent with that of Ghaziri
et al.37. In the Lateral-Occipital region, we see a spe-
cific pattern of local connectivity which cannot be at-
tributed to gyral bias since the Lateral-Occipital covers
many sulci and gyrus. In the case of the fusiform, it is
almost completely contained in one of our parcellations,
which goes from the Fusiform up to the Lateral-Occipital

4http://neurosynth.org/decode/
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Figure 4.12: Glasser et al.20 parcellation (upper) and histograms of z-score contained in different parcels for different functional task.
(a) Histogram for parcel 1 for the contrast related to Tongue movement. (b) Histogram for parcel 2 for the contrast related to Tongue
movement. (c) Histogram for parcel 3 for the contrast related to Right Foot movement. (d) Histogram for parcel 4 for the contrast Shape
recognition vs Face recognition. (e) Histogram for parcel 5 for the contrast related to Story Categorization. (f) Histogram for parcel 5
for the contrast Face recognition vs Shape recognition. The histograms (d); (e) and (f) correspond to the parcels with the greatest mean
z-score of their respective tasks.

(fig. 4.8). This could add evidence to the hypothesis that
the Fusiform plays a role in visual tasks38;39. Finally, the
Motor and Sensory cortex appear to be found. While the
appearance of each gyri is most probably because of gyral
bias7, the parcels inside them show specific patterns of
structural connectivity (fig. 4.13), and, as seen in section
3.5.2, functional specialization.

Our Results Show a Close Relationship Between
Structural Connectivity and Brain Function.

We assessed the functional specialization of some of our
parcels by showing how they overlap with responses to
functional and cognitive tasks measured with fMRI. In
particular, for all the studied tasks, the parcels contained
a higher proportion of positive values than negative ones
as expressed by the positive mean values reported in ta-
bles 2 and 3. For some parcels there were not even neg-
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Figure 4.13: Connectivity fingerprint for different parcels in our groupwise parcellation. The names in the titles are given after the
anatomical structure that they subdivide (or contain, as with the Fusiform).
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ative values. Moreover, several of the histograms on fig-
ures 4.9 and 4.10 show a high frequency of z-score values
greater than 5, which indicate a significant correlation
with functional activation. Therefore, our results show,
for some tasks, the strong relationship between extrinsic
connectivity and functional specialization in the human
brain cortex.

Our Parcels Are Not Similar to Those Obtained
by Glasser et al. (2016) But Possess Better Func-
tional Specialization for Motor Tasks.

Our parcels were not related to those of Glasser et al.20.
This is shown by the obtained adjusted Rand index score
between them (0.28). It’s important to remark that our
parcels are purely based on extrinsic connectivity, mean-
while those of Glasser et al.20 do not use dMRI infor-
mation. Glasser’s parcels are mostly based on myelin
and functional information. In particular, their subdi-
vision of the sensori-motor cortex (green parcels in fig.
4.11) is mostly based in Myelin maps as shown in Figure
4.a of Glasser et al.20. Because of this, their parcels in
the sensori-motor cortex contain a wide range of z-scores
when compared with responses to functional stimuli as
shown by histograms a; b and c in fig. 4.12. In contrast,
our parcels in the sensori-motor cortex, for a coarser par-
cellation, show a good overlap with function and are in
agreement with the motor strip mapping as discussed in
the previous section. Also, for the case of story cate-
gorization; shape recognition and face recognition, our
parcels show a similar distribution of z-scores (fig. 4.9)
than those with the highest mean z-scores of Glasser et
al.20 (parcels d; e and f of fig. 4.12).

4.6. Conclusion

Understanding how the brain is structurally organized
and how it constraints functionality is an open question
in neuroscience. Recent advances in acquisition and mod-
eling techniques on dMRI have facilitated to study axonal
connectivity in the brain. However, parceling the whole
cortex based on a structural criterion remained challeng-
ing. In this chapter we presented a connectivity model;
framed tractography within our model and presented a
parceling technique that allows parcellation of the whole
brain in both single subject and groupwise cases.

However, a new question rises, given two single subject
parcellations, how to match the parcels across them?.
Even when our results show that our technique is sta-
ble across groups of subjects, some variability still exists,
and finding a correspondence between two parcellations
is not a trivial task. The following chapter of this thesis
will work on this problem.

Bibliography

[1] G. Gallardo, R. Fick, W. Wells, R. Deriche, and
D. Wassermann, “Groupwise Structural Parcellation
of the Cortex: A Sound Approach Based on Logistic
Models,” in MICCAI 2016 Work. Comput. Diffus.
MRI, pp. 99–112, Springer International Publishing,
2017.

[2] K. Brodmann, Vergleichende Lokalisationslehre der
Großhirnrinde in ihren Prinzipien dargestellt auf-
Grund des Zellaufbaues. Leipzig: Barth, 1909.

[3] B. Thirion, G. Varoquaux, E. Dohmatob, and J. B.
Poline, “Which fMRI clustering gives good brain
parcellations?,” Front. Neurosci., vol. 8, no. 8 JUL,
pp. 1–13, 2014.

[4] M. Thiebaut de Schotten, M. Urbanski, B. Batran-
court, R. Levy, B. Dubois, L. Cerliani, and E. Volle,
“Rostro-caudal Architecture of the Frontal Lobes in
Humans,” Cereb. Cortex, pp. 1–15, 2016.

[5] J. D. Schmahmann and D. N. Pandya, Fiber Path-
ways of the Brain, vol. 1. Oxford University Press,
apr 2006.

[6] R. E. Passingham, K. E. Stephan, and R. Kötter,
“The anatomical basis of functional localization in
the cortex,” Nat. Rev. Neurosci., vol. 3, pp. 606–616,
aug 2002.

[7] D. C. Van Essen, S. Jbabdi, S. N. Sotiropoulos,
C. Chen, K. Dikranian, T. Coalson, J. Harwell, T. E.
Behrens, and M. F. Glasser, “Mapping Connections
in Humans and Non-Human Primates,” in Diffus.
MRI, no. January 2014, pp. 337–358, Elsevier, 2014.

[8] S. Jbabdi and T. E. Behrens, “Long-range connec-
tomics,” Ann. N. Y. Acad. Sci., vol. 1305, pp. 83–93,
dec 2013.

[9] M. J. Clarkson, I. B. Malone, M. Modat, K. K.
Leung, N. Ryan, D. C. Alexander, N. C. Fox,
and S. Ourselin, A Framework For Using Diffu-
sion Weighted Imaging To Improve Cortical Parcel-
lation, vol. 6362 of Lecture Notes in Computer Sci-
ence. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2010.

[10] S. Lefranc, P. Roca, M. Perrot, C. Poupon, D. Le
Bihan, J.-F. Mangin, and D. Rivière, “Groupwise
connectivity-based parcellation of the whole human
cortical surface using watershed-driven dimension
reduction,” Med. Image Anal., vol. 30, pp. 11–29,
may 2016.

[11] P. Roca, D. Rivière, P. Guevara, C. Poupon, and
J. F. Mangin, “Tractography-based parcellation of

Page 48



4. GROUPWISE STRUCTURAL PARCELLATION OF THE WHOLE CORTEX: A LOGISTIC RANDOM EFFECTS
MODEL BASED APPROACH

the cortex using a spatially-informed dimension re-
duction of the connectivity matrix,” Lect. Notes
Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 5761 LNCS,
no. PART 1, pp. 935–942, 2009.

[12] M. Thiebaut de Schotten, M. Urbanski, R. Val-
abregue, D. J. Bayle, and E. Volle, “Subdivision of
the occipital lobes: An anatomical and functional
MRI connectivity study,” Cortex, vol. 56, pp. 121–
137, 2014.

[13] D. Moreno-Dominguez, A. Anwander, and T. R.
Knösche, “A hierarchical method for whole-
brain connectivity-based parcellation,” Hum. Brain
Mapp., vol. 35, pp. 5000–5025, oct 2014.

[14] P. Roca, A. Tucholka, D. Rivière, P. Guevara,
C. Poupon, and J. F. Mangin, “Inter-subject
connectivity-based parcellation of a patch of cerebral
cortex,” Lect. Notes Comput. Sci. (including Sub-
ser. Lect. Notes Artif. Intell. Lect. Notes Bioinfor-
matics), vol. 6362 LNCS, no. PART 2, pp. 347–354,
2010.

[15] S. Parisot, S. Arslan, J. Passerat-Palmbach, W. M.
Wells, and D. Rueckert, “Tractography-Driven
Groupwise Multi-scale Parcellation of the Cortex.,”
Inf. Process. Med. Imaging, vol. 24, pp. 600–12,
2015.

[16] J. F. Pendergast, S. J. Gange, M. A. Newton, M. J.
Lindstrom, M. Palta, and M. R. Fisher, “A Survey of
Methods for Analyzing Clustered Binary Response
Data,” Int. Stat. Rev. / Rev. Int. Stat., vol. 64, p. 89,
apr 1996.

[17] T. Yarkoni, R. A. Poldrack, T. E. Nichols, D. C. Van
Essen, and T. D. Wager, “Large-scale automated
synthesis of human functional neuroimaging data,”
Nat. Methods, vol. 8, pp. 665–670, jun 2011.

[18] R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn,
B. C. Dickerson, D. Blacker, R. L. Buckner, A. M.
Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and
R. J. Killiany, “An automated labeling system for
subdividing the human cerebral cortex on MRI scans
into gyral based regions of interest,” Neuroimage,
vol. 31, pp. 968–980, jul 2006.

[19] M. F. Glasser, S. N. Sotiropoulos, J. A. Wilson,
T. S. Coalson, B. Fischl, J. L. Andersson, J. Xu,
S. Jbabdi, M. Webster, J. R. Polimeni, D. C. Van
Essen, and M. Jenkinson, “The minimal preprocess-
ing pipelines for the Human Connectome Project,”
Neuroimage, vol. 80, pp. 105–124, oct 2013.

[20] M. F. Glasser, T. S. Coalson, E. C. Robinson, C. D.
Hacker, J. Harwell, E. Yacoub, K. Ugurbil, J. Ander-
sson, C. F. Beckmann, M. Jenkinson, S. M. Smith,
and D. C. Van Essen, “A multi-modal parcellation of
human cerebral cortex.,” Nature, vol. 536, no. 7615,
pp. 171–8, 2016.

[21] T. E. Behrens, M. Woolrich, M. Jenkinson,
H. Johansen-Berg, R. Nunes, S. Clare, P. Matthews,
J. Brady, and S. Smith, “Characterization and prop-
agation of uncertainty in diffusion-weighted MR
imaging,” Magn. Reson. Med., vol. 50, pp. 1077–
1088, nov 2003.

[22] J. A. N. McCullagh, P., Generalized Linear Models.
London: Chapman and Hall/CRC, 2 ed., 1989.

[23] K. M. Pohl, J. Fisher, S. Bouix, M. Shenton, R. W.
McCarley, W. E. L. Grimson, R. Kikinis, and W. M.
Wells, “Using the logarithm of odds to define a vector
space on probabilistic atlases,” Med. Image Anal.,
vol. 11, pp. 465–477, oct 2007.

[24] J. Ward Jr., “Hierarchical Grouping to Optimize an
Objective Function,” J. Am. Stat. Assoc., vol. 58,
no. 301, pp. 236–244, 1963.

[25] D. C. Van Essen, K. Ugurbil, E. Auerbach, D. Barch,
T. E. Behrens, R. Bucholz, A. Chang, L. Chen,
M. Corbetta, S. W. Curtiss, S. Della Penna,
D. Feinberg, M. F. Glasser, N. Harel, a. C.
Heath, L. Larson-Prior, D. Marcus, G. Michalar-
eas, S. Moeller, R. Oostenveld, S. E. Petersen,
F. Prior, B. L. Schlaggar, S. M. Smith, a. Z. Snyder,
J. Xu, and E. Yacoub, “The Human Connectome
Project: A data acquisition perspective,” Neuroim-
age, vol. 62, no. 4, pp. 2222–2231, 2012.

[26] D. M. Barch, G. C. Burgess, M. P. Harms, S. E. Pe-
tersen, B. L. Schlaggar, M. Corbetta, M. F. Glasser,
S. Curtiss, S. Dixit, C. Feldt, D. Nolan, E. Bryant,
T. Hartley, O. Footer, J. M. Bjork, R. Poldrack,
S. Smith, H. Johansen-Berg, A. Z. Snyder, and D. C.
Van Essen, “Function in the human connectome:
Task-fMRI and individual differences in behavior,”
Neuroimage, vol. 80, pp. 169–189, oct 2013.

[27] J.-D. Tournier, F. Calamante, D. G. Gadian, and
A. Connelly, “Direct estimation of the fiber orienta-
tion density function from diffusion-weighted MRI
data using spherical deconvolution,” Neuroimage,
vol. 23, pp. 1176–1185, nov 2004.

[28] C. Reveley, A. K. Seth, C. Pierpaoli, A. C. Silva,
D. Yu, R. C. Saunders, D. a. Leopold, and F. Q. Ye,
“Superficial white matter fiber systems impede de-
tection of long-range cortical connections in diffusion
MR tractography,” Proc. Natl. Acad. Sci., vol. 112,
pp. E2820–E2828, may 2015.

Page 49



4. GROUPWISE STRUCTURAL PARCELLATION OF THE WHOLE CORTEX: A LOGISTIC RANDOM EFFECTS
MODEL BASED APPROACH

[29] E. Garyfallidis, M. Brett, B. Amirbekian, A. Rokem,
S. van der Walt, M. Descoteaux, and I. Nimmo-
Smith, “Dipy, a library for the analysis of diffusion
MRI data,” Front. Neuroinform., vol. 8, p. 8, feb
2014.

[30] F. Murtagh and P. Contreras, “Methods of Hierar-
chical Clustering,” Empir. Econ., vol. 38, pp. 23–45,
apr 2011.

[31] L. Hubert and P. Arabie, “Comparing partitions,” J.
Classif., vol. 2, pp. 193–218, dec 1985.

[32] K. J. Gorgolewski, G. Varoquaux, G. Rivera,
Y. Schwartz, V. V. Sochat, S. S. Ghosh, C. Maumet,
T. E. Nichols, J. B. Poline, T. Yarkoni, D. S.
Margulies, and R. A. Poldrack, “NeuroVault.org:
A repository for sharing unthresholded statistical
maps, parcellations, and atlases of the human brain,”
Neuroimage, vol. 124, no. April, pp. 1242–1244,
2016.

[33] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G.
Sied, N. J. Kabani, C. J. Holmes, and A. C. Evans,
“Design and construction of a realistic digital brain
phantom,” IEEE Trans. Med. Imaging, vol. 17, no. 3,
pp. 463–468, 1998.

[34] F. Murtagh, Multidimensional Clustering Algo-
rithms. Vienna: Comps Physica Verlag, 1985.

[35] K. Beyer, J. Goldstein, R. Ramakrishnan, and
U. Shaft, “When is “nearest neighbor” meaningful?,”
Database Theory—ICDT’99, pp. 217–235, 1999.

[36] B. G. N. Lance and W. T. Williams, “A general the-
ory of classificatory sorting strategies 1 . Hierarchi-
cal systems,” Comput. J., vol. 9, no. 4, pp. 373–380,
1967.

[37] J. Ghaziri, A. Tucholka, G. Girard, J.-C. Houde,
O. Boucher, G. Gilbert, M. Descoteaux, S. Lippe,
P. Rainville, and D. K. Nguyen, “The Corticocorti-
cal Structural Connectivity of the Human Insula,”
Cereb Cortex, pp. 1–13, 2015.

[38] N. Kanwisher and G. Yovel, “The fusiform face area:
a cortical region specialized for the perception of
faces.,” Philos. Trans. R. Soc. Lond. B. Biol. Sci.,
vol. 361, no. 1476, pp. 2109–28, 2006.

[39] J. D. Yeatman, K. S. Weiner, F. Pestilli, A. Rokem,
A. Mezer, and B. A. Wandell, “The vertical occipital
fasciculus: A century of controversy resolved by in
vivo measurements,” Proc. Natl. Acad. Sci., vol. 111,
pp. E5214–E5223, dec 2014.

Page 50



Chapter 5
Solving the Cross-Subject Parcel Matching Problem using Optimal
Transport

5.1. Overview

Matching structural parcels across different subjects is
an open problem in neuroscience. Even when produced
by the same technique, parcellations tend to differ in the
number, shape, and spatial localization of parcels across
subjects. In this chapter, we propose a parcel matching
method based on Optimal Transport. We test its perfor-
mance by matching parcels of the Desikan atlas, parcels
based on a functional criteria and structural parcels. We
compare our technique against three other ways to match
parcels which are based on the Euclidean distance, the co-
sine similarity, and the Kullback-Leibler divergence. Our
results show that our method achieves the highest num-
ber of correct matches.

This work was presented as part of the MICCAI 20181.

5.2. Introduction

Brain organization displays high variability across indi-
viduals and species. Studying brain connectivity there-
fore faces the challenge of locating homogeneous regions
while accounting for this variability. Different techniques
have been proposed to parcellate the brain based on its
structural connectivity. However, matching the resulting
parcels across different subjects is still an open problem
in neuroscience. Even when produced by the same tech-
nique, parcellations tend to differ in the number, shape,
and spatial localization of parcels across subjects2. Cur-
rent theories hold that long-range structural connectivity,
namely, extrinsic connectivity, is strongly related to brain
function3. Therefore, being able to match parcels with
similar connectivity across subjects can help to under-
stand brain function while also enabling the comparisons
of cortical areas across different species4.

Most of the current methods to match parcels across sub-
jects are strongly linked to the technique used to create
them. For example, Moreno-Dominguez et al.5 seek cor-
respondences between dendrograms created by means of
Hierarchical Clustering. Parisot et al.6 impose the con-
sistence of parcels across subjects while creating the par-
cellation. In recent works Mars et al. propose to use
the Manhattan distance, cosine similarity7 or the Kull-
back–Leibler (KL) divergence4 to compare and match
connectivity fingerprints, successfully identifying common
areas across humans and primates.

In this work, we propose to match parcels based on their
extrinsic connectivity fingerprint using Optimal Trans-
portation theory. Optimal Transport (OT) is a technique
that seeks the optimal way to transport mass between
probability distributions. While KL divergence computes
the difference between two distributions, OT computes
a matching between them. In particular, our method
adopts a discrete regularized version of Optimal Trans-
port (OT), which has been presented in Gayraud et al.8
and Courty et al.9 as a solution to the domain adaptation
problem.

We validate our method with four different experiments.
In the first experiment, we test the feasibility of our
method by generating parcels with synthetic connectiv-
ity fingerprints and matching them. In the second one,
we show that our technique is able to match parcels of
the same atlas across subjects. We use the anatomical
atlas of Desikan10 as its parcels have high spatial co-
herence and consistent connectivity profiles across sub-
jects11. Finally, we show the capacity of our method to
match parcels generated with the same criteria but have
some spatial cross-subject variability. We assess this for
two different situations. In the first one, we derive the
parcels from functional activations12. We use responses
to motor and visual stimuli since they have been shown
to be strongly related to structural connectivity13;14. In
the second one, we divide the Lateral Occipital Gyrus
in 3 parcels using a structurally-based parcellation tech-
nique15. We use the Lateral Occipital Gyrus since it has
been shown to have a consistent parcellation across sub-
jects16;15. The outline of the last three experiments can
be seen in Figure 5.1.

In each experiment, we compare our technique against
three other ways to match parcels based on the Euclidean
distance; the cosine similarity; and the Kullback-Leibler
divergence. Our results on real data show that our method
based on OT always achieves the highest number of cor-
rect matches.

5.3. Methods

Given two subjects with their respective parcellations,
we compute their parcel matching by considering one as
the origin and the other one as target. More formally,
let Xa = {xai }

Na
i=1, x

a
i ∈ Ωa ⊂ Rn be an origin dataset

where Na denotes the number of parcels; xai is the extrin-
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Figure 5.1: From the cortico-cortical structural connectivity matrix of a subject, we can estimate the connectivity fingerprints of each
parcel in three different types of parcellations. For each parcellation we compute the amount of correct matches (green lines) that each
matching technique produces.

sic connectivity fingerprint of parcel i; and n denotes its
dimension. We wish to recover a matching between Xa

and a target dataset Xb = {xbi}
Nb
i=1, x

b
i ∈ Ωb ⊂ Rn.

In this section, we start by formulating our regularized
discrete OT-based method and proceed by presenting
three ways of computing this matching that are based
on the Euclidean distance; the cosine similarity; and the
KL-divergence.

Discrete Regularized Optimal Transport

Optimal Transport (OT) theory boils down to finding the
optimal way to transport or redistribute mass from one
probability distribution to another with respect to some
cost function. In this work, since the datasets Xa and
Xb are discrete datasets, we use their empirical proba-
bility distributions and apply the discrete formulation of
OT8;9 to solve the parcel matching problem. A simpli-
fied example of how our method proceeds is presented in
Figure 5.2.

Assume that Xa and Xb follow probability distributions
pa(xa) and pb(x

b), respectively. We suppose that Xa

has undergone a transformation T : Ωa → Ωb, such that
pb(T(xa)) = pb(x

b). We wish to recover T and use it
to match the parcels of Xa and Xb. Using discrete reg-
ularized OT we compute a transport plan γ0 between
these two probability distributions. This transport plan
is a doubly stochastic matrix which minimizes a certain
transportation cost C over the vectors of Xa and Xb.
In other words, it defines the optimal exchange of mass
between the two probability distributions. We use γ0 to
compute an estimation T̂ by selecting the pairs of vectors,
i.e., parcels that exchange the most mass.

Since pa(xa) and pb(xb) are not known, we use the cor-
responding empirical distributions µa =

∑Na

i=1 p
a
i δxai and

µb =
∑Nb

j=1 p
b
jδxbj instead, where p

a
i and pbj are the proba-

bility masses associated to each sample. However, given
that the dimension of our data depends on the number of
vertices in the cortical mesh, the curse of dimensionality
makes the estimation of µa and µb intrinsically difficult.
We therefore simply assume a uniform probability dis-
tribution over all vectors, pai = 1

Na and pbj = 1
Nb

. We
compute the transport plan γ0 such that, if

B =
{
γ ∈ (R+)Na×Nb | γ1Nb =

1

Na
1Na , γ

T1Na =
1

N b
1Nb

}
(5.1)

denotes the set of all doubly stochastic matrices whose
marginals are the probability measures µa and µb, where
1N is an N -dimensional vector of ones, then γ0 ∈ B is
the output of the following minimization problem.

γ0 = argminγ∈B 〈γ,C〉F +λ
∑
i,j

γ(i, j) log γ(i, j) (5.2)

The matrix C, where C(i, j) = ‖xai − xbj‖22, represents
the cost of moving probability mass from location xaj to
location xbi , in terms of their squared Euclidean distance.
The rightmost term is a regularization term based on
the negative entropy of γ allows us to solve this opti-
mization problem using the Sinkhorn-Knopp algorithm17

which improves the computation time.

Matrix γ0 contains information about the exchange of
probability mass between the vectors of Xa and Xb. By
construction, this exchange depends on the selected cost
function. The choice of the squared euclidean distance is
motivated both by the fact that it renders the optimiza-
tion problem convex and because it will allow the parcels
to be matched according to the vicinity of their feature
vectors. Hence, the origin feature vectors will distribute
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(a) Original & target datasets (b) Computed transport plan (c) Matching

Figure 5.2: A 2-d example of using OT to compute the matching between two different datasets. On the left we show the original
and target datasets. The real matchings are displayed as green dashed edges. In the middle, the edge densities represent the values of
the computed coupling γ0, which denote the amount of mass that is exchanged between vectors xai and xbj . On the right, we see the
recovered matching. The blue edges represent the correct matchings, while the red dotted edges represent the incorrect ones.

their corresponding probability mass to the target feature
vectors that are closest to them. Consequently, we define
T̂ : Ωa → Ωb as T̂(xai ) = xb

ĵ
where ĵ = argmaxj γ0(i, j).

Therefore, i will be matched to the parcel ĵ that it sent
the most mass to.

Matching Parcels Based on Dissimilarity Between
Features

Let d(xai , x
b
j) be some dissimilarity measure between the

elements of Xa and Xb. Then, we say that parcel i
matches parcel j if argminkd(xai , x

b
k) = j. We compare

three dissimilarity measures against our method. First,
we use the Euclidean distance, which can be interpreted
as matching the parcel i to the parcel j whose feature vec-
tor xbj is the closest to xai . Then, we use the cosine sim-
ilarity, which is minimized when two feature vectors are
colinear. Lastly, we use the Kullback-Leibler divergence,
which measures the difference between two probability
distributions in terms of their relative entropy. Note that
we need to convert our vectors into probability vectors in
order to evaluate dKL.

5.4. Experiments and Results

Data and Preprocessing

For this work we randomly selected 20 subjects from the
S500 group of the Human Connectome Project (HCP), all
preprocessed with the HCP minimum pipeline18. Fiber
orientation distributions functions where computed using
spherical constrained deconvolution with a spherical har-
monic order of 8. Probabilistic tractography was then
performed using 1000 seeds per vertex of the cortical
mesh provided with the HCP data. For each subject, we
computed a connectivity matrix by counting the num-
ber of streamlines that connect each pair of vertices of
the cortical mesh. Each row in the matrix is a vertex
connectivity vector, representing the probability that a

connection exists between a surface vertex and the rest
of the surface’s vertices.

Given a whole brain cortical parcellation, we compute
the connectivity fingerprint of each parcel by averaging
the connectivity fingerprint of its vertices. Because the
mesh’s vertices are coregistered across subjects18, we are
able to compare the connectivity fingerprints across sub-
jects. The criterion to compute the parcel matching be-
tween two subjects is the similarity between connectivity
fingerprints. That is, we match two parcels if they are
connected to the rest of the brain in a similar manner.
Due to the distance bias that occurs in tractography, a
parcel tends to be highly connected to the vertices that
compose it. To prevent the matching to be influenced by
this bias, we disconnect each parcel from its own vertices.

Matching Parcels

In this section we evaluate the performance of our method
by comparing it to the methods presented in Section 5.3.2.
For each experiment we compute parcel matchings be-
tween all possible pairs of connectivity matrices. To quan-
tify the result of each technique, we compute the accuracy
in terms of percentage of correctly matched parcels per
pairwise matching.

Matching parcels with synthetic fingerprints. In
this first experiment, we test the feasibility of our method
by generating parcels with synthetic connectivity finger-
prints and matching them. We start by generating a
connectivity matrix M using probabilistic Constrained
Spherical Deconvolution based tractography to use as
ground truth. Our ground truth matrix is a square ma-
trix that represents the connectivity between the 64 parcels
of the Desikan atlas in one subject of the HCP dataset.
Each coefficient M(i, j) = θij is the parameter of a ran-
dom variable that follows a Bernoulli distributionXij B(θij).
This variable Xij represents the probability of a connec-
tion existing between the parcels i and j. Using M , we
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generate 20 synthetic matrices in such a way that the
coefficients of each synthetic connectivity matrix are ran-
dom variables that follow a binomial distributionX(i, j) ∼
B(p = M(i, j), n). By doing this we simulate doing trac-
tography for various values of the number n of particles.
Figure 5.3a shows the performance of each method as a
function of n.

Matching parcels of the Desikan Atlas. For each
subject, we compute the connectivity fingerprint of each
parcel in their Desikan atlas as explained in Section 5.4.1.
When matching parcels across subjects, Figure 5.3b shows
that on average OT achieves an accuracy of 98%±2%,
followed by cosine similarity (94%±3%), KL divergence
(87%±4%), and finally Euclidean distance (77%±11%).

Matching parcels created using functional crite-
ria. Each subject in the HCP dataset possesses z-score
maps representing responses to different stimuli obtained
with functional MRI (fMRI)12. We derive parcels for
each subject from the responses to motor (hand, foot
and tongue movement) and visual stimuli (faces vs shape
recognition). We do so by keeping only the vertices whose
z-score is in the top 35%. Figure 5.3b shows that OT per-
forms best with an average of 98%±6%. The cosine simi-
larity, KL divergence, and Euclidean distance achieve av-
erage accuracies of 97%±6%, 92%±10%, and 90%±13%
respectively.

Matching parcels created using structural crite-
ria. For each subject, we first mask their Lateral Oc-
cipital Gyrus using the Desikan atlas. Then, we divide it
into 3 parcels using the structural based parcellation tech-
nique of Gallardo et al.15. Once more, we can see on Fig-
ure 5.3b that optimal transport has the highest average
accuracy, equal to 92%±16%. It is followed by the cosine
similarity, the KL divergence, and the Euclidean distance,
whose average accuracies equal 85%±17%, 84%±17%,
and 75%±17%

5.5. Discussion

In this work we proposed a method to match parcels
across subjects based on the connectivity fingerprint of
a parcel.

We tested our method with four different experiments. In
the first experiment our technique correctly matched con-
nectivity fingerprints created in a synthetic way. Specif-
ically, each entry in a fingerprint was sampled from a
Binomial distribution, whose parameter was chosen as
the corresponding value of a ground truth connectivity
matrix. This can be thought as a simulation of the pro-

cess of tracking in tractography with different number of
streamlines.

Our second experiment shows that we can correctly match
parcels of the Desikan atlas across subjects with a 98%
of correct matches. The parcels of the Desikan atlas are
known to have high spatial coherence and consistent con-
nectivity profiles across subjects11. We therefore use this
experiment as a reference point to benchmark our tech-
nique. The last two experiments show that our tech-
nique can match parcels generated with a same crite-
ria, even when they have some spatial variability across-
subjects. The first experiment uses parcels created from
the functional response to specific motor and visual stim-
uli, known to be strongly linked to functional connec-
tivity13;14. The second one, parcels created from the
structural parcellation of the Lateral Occipital Gyrus, a
structure documented to have a consistent structural di-
vision16;15.

It’s important to notice that our technique achieved more
than a 90% of correct matches in every experiment with
real data. Given that we used 20 subjects, this repre-
sents a total of 20x19=380 cross-subject matches. In the
case of the Desikan atlas, which possesses 64 parcels, this
translates into a total of 24320 matches, from which 98%
where correctly matched. Furthermore, when tested with
a paired t-test to compare the number of correct matches,
our method always performs significantly better than the
other three (p < 10−256).

5.6. Conclusion

In this chapter, we proposed a novel parcel matching
method based on Optimal Transport. We showed that
our technique outperforms state-of-the-art matching tech-
niques in three different baseline scenarios.

Both this chapter and the previous one are based on the
fact that we can estimate brain connectivity. However,
some brain pathologies can disrupt the white matter,
hampering the estimation of brain connectivity. In the
following chapter, we will introduce a technique to infer
which tracts are affected by a pathology, even when is
not possible to use tractography.
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Chapter 6
Inferring the Localization of White-Matter Tracts using Diffusion Driven
Label Fusion

6.1. Overview

In the previous chapters we studied the structural orga-
nization of the brain, and saw that it is highly related
to function. White-matter pathologies disrupt the white-
matter organization, that manifests as deficits in brain
function. When treating such pathologies, it is of great
importance to infer which pathways are affected. How-
ever, sometimes the white-matter lesions hamper the use
of tractography to track fiber bundles. In this chapter,
we introduce a way to infer the location of white-matter
pathways, even when it is not possible to use tractogra-
phy to locate them. Our technique is based on a method-
ology named label fusion. Particularly, we show how to
add dMRI information to the label fusion in order to bet-
ter estimate the location of white matter pathways.

This work was presented as part of OHBM 20181.

6.2. Introduction

Pathologies such as traumatic brain injury (TBI), or fo-
cal lesions disrupt the structure of white matter, resulting
in cognitive deficits. Depending on the type and severity
of the pathology, fiber bundles can be displaced, infil-
trated or directly interrupted2;3;4. Inferring which path-
ways are closely located to the lesion or being directly af-
fected by it is key for palliative care, and for both pre and
post-treatment planning. With this knowledge, neurolo-
gists and neurosurgeons can decide if a lesion should be
treated more aggressively or conservatively3;5. In healthy
brains, tractography allows to non-invasively reconstruct
the major white matter pathways in the brain6. How-
ever, in the presence of pathologies, tracking through the
white-matter becomes challenging7.

Four pattern types associated with brain pathologies can
be identified in major tracts and Diffusion Weighted Im-
ages (DWIs) 7. The first pattern consists of unchanged
Fractional Anisotropy (FA)8, and tract displacement7.
In this case, a bundle is displaced by the pathology with-
out damaging it. The second pattern is substantially de-
creased FA with no tract displacement, this could be an
indicator of edema or small infiltration2;3. The third pat-
tern is substantially decreased FA with some loss of di-
rectionality, which makes tracking hard2;7. Finally, the
fourth pattern consists of isotropic diffusion within the
area affected by the pathology, which causes a disruption

of the tracts7. Some of these patterns denote situations
in which the tracking results in interrupted or distorted
tracts. This hampers the identification of which path-
ways are directly affected by pathology7.

When tracking is not possible, but tracts are present,
aggregating anatomical information from other subjects
could help to infer tracts affected by pathology. Assum-
ing we identified major bundles in a group of healthy
subjects, we could register them to our patient’s brain,
and combine them using a label fusion technique. Label
fusion is a family of techniques which aim is to infer the
localization of a structure in a target subject, based on
its characteristics in a group of control subjects9.

One well known label fusion technique is Majority Vot-
ing10. Given a voxel on a brain image, each template
subject "votes" for a label. The resulting label for the
voxel will be that with the most votes. Majority Voting
is simple to implement and has been shown to generate
accurate segmentations9, even when using few template
subjects to perform the inference. Typically among the
template segmentations there are more accurate ones as
well as less accurate ones11. However, Majority Voting
weights the vote of each template subject equally. To
improve this, it has been proposed to weigh the vote of
each subject based on a similarity measure between the
template subject and the target12. The underlying intu-
ition is that the label choice should be driven by those
subjects who resemble the most to the one being labeled.
The practical advantages of various strategies based on
this idea have been demonstrated by Artaechevarria et
al.13.

Current label fusion techniques rely only on anatomi-
cal information, not taking into account the structure of
white matter. In the case of white matter pathways, the
presence of a path constrains the diffusion of water parti-
cles, which can be measured by dMRI. Therefore, adding
diffusion information to the fusion algorithm could help
to better delineate fiber bundles14.

In this work, we introduce a label fusion technique that
takes advantage of dMRI and weights the vote of each
subject based on how the voted pathway is supported by
the target subject’s diffusion data (Fig. 6.1). Hence, if
the diffusion data of the target subject is consistent with
the direction of the voted pathway, the vote has a higher
weight.
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Figure 6.1: We use a label fusion technique to infer the location of white matter bundles by aggregating information of healthy subjects.
After registering the tracts, each subject "votes" for either a tract or a non-tract structure (gray matter or background). Our technique
adds diffusion based weights to each one of these votes. The weights are computed based on the similarity between the fiber Orientation
Distribution Function of the structure being voted and the DWI of the target subject.

We first validate our technique with synthetic DWIs. Us-
ing Phantomas15, we generate three types of synthetic
DWIs: with a single fiber, with two fibers crossing, and
with no fibers, representing images with isotropic diffu-
sion. We use the synthetic DWIs to test how a vote for a
tract is weighted based on the tract’s directionality and
the DWIs’ diffusion. We show that our technique assigns
higher weights to the votes for tracts aligned with the
DWI’s diffusion.

Then, we randomly select 10 subjects from the Human
Connectome Project (HCP). On each subject, we deter-
minate the shape and location of 4 left hemisphere tracts
using whole-brain tractography and an implementation of
the white matter query language (WMQL). We use these
results as ground truth to benchmark the inferences made
by our technique and Majority Voting on a leave-one-out
cross-validation experiment. Our results show that our
proposed technique has a lower sensitivity than Majority
Voting, but a higher precision. Meaning, our technique
obtains less false positives at the cost of obtaining more
true negatives.

Finally, we simulate focal lesions with different degrees
of severity in the white matter of one HCP subject. Par-
ticularly, we target a spherical region where the Superior
Longitudinal Fasciculus passes by. We do so by itera-
tively decreasing the FA of each voxel in the spherical
region, until obtaining isotropic diffusion. We show that
our technique labels less voxels as the FA decreases, but
is still able to label voxels around the pathology.

6.3. Methods

Majority Voting.

Let labels = {li} be the set of labels representing tracts
and grey matter structures the brain. Let Ls, s ∈ S rep-
resent the labeling of a set of template subjects S, where

each Ls ∈ labelsvx×vy×vz is a 3D volume with dimension
(vx, vy, vz) representing the labeling of template subject
s. Majority Voting11 infers the label of each voxel x in a
target subject by computing:

L∗(x) = argmax
l∈labels

∑
s∈S

p(L(x) = l|Ls(x)),

where

p(L(x) = l|Ls(x)) =

{
1, if Ls(x) = l

0, otherwise.

(6.1)

In this case, it’s said that each subject votes for a label,
and the label with the most amount of votes is assigned
to the target voxel. It is important to notice that no
information from the target subject is being used to infer
the label L∗(x).

Diffusion Based Voting

Majority Voting (Eq. 6.1) decides the label of a target
voxel based on the “votes” of template subjects, without
using any information from the target subject. The aim
of this work is to infer white matter pathways. Know-
ing that water particles diffuse along pathways, we can
profit from the diffusion information to weigh the voting
process. In particular, votes for tracts aligned with the
diffusion of the target subject should get higher weights.

One way to characterize the directionality on a diffusion
weighted image (DWI) is by means of fiber orientation
distribution functions (fODFs)16. Now, we will first ex-
plain how to estimate a fODF from both DWI and tracts.
Then, we will present how to compare the fODFs, in order
to compute weights for each vote.

Fiber Orientation Density Function from dMRI
Data. By fitting the diffusion information into a Con-
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strained Spherical Deconvolution (CSD) model, it’s pos-
sible to estimate a fiber orientation density function17

(fODF). The fiber ODF Fx(θ, φ) represents the estimated
fraction of fibers within the voxel x that are aligned along
the direction (θ, φ), expressed in spherical coordinates.

Fiber Orientation Density Function from Tractog-
raphy. A tract can be described as a set of streamlines,
where a streamline is a discretized 3-dimensional curve.
Assuming that a streamline doesn’t have sharp turns, we
can estimate its directionality within a voxel by looking
at its entry and exit points (Fig. 6.1 A). Repeating this
for each streamline on a tract, we obtain a set of direc-
tional vectors, representing the directionality of the tract
within the voxel. A fiber ODF can be estimated from
this set of vectors by means of directional statistics. In
this work, we use the Angular Central Gaussian Distribu-
tion18 (ACGD). The ACGD models antipodal symmetric
directional data, and has a closed form to estimate its pa-
rameters. Assuming a tract makes no sharp turns inside
of a voxel, we can assume antipodal symmetry on its en-
try and exit points. Based on this symmetry, we can use
the ACGD model, making both suitable and simple to
estimate the directionality of a tract in a voxel18

Label Fusion Weighted by Diffusion Majority Vot-
ing (Eq. 6.1) decides the label of a voxel based on how
many subjects “vote” for it. Given that we are inferring
brain pathways, we want to introduce a weight that de-
notes how much the voted tract resembles the target’s
diffusion data:

L∗(x) = argmax
l∈labels

∑
s∈S

p(L(x) = l|Ls(x))p(D(x)|Dsl(x)).

(6.2)

In our segmentation scheme, the term p(L(x) = l|Ls(x))
is modeled as in the voting scheme (eq. 6.1). Our second
term, p(D(x)|Dsl(x)) express the probability of seeing the
diffusion of our target subject, D(x), on voxel x, given
the diffusion of subject s generated by tract l on the same
voxel, Dsl(x). Since registering DWIs is a highly time
consuming task19, we want to avoid it. Instead, we can
register tracts, for which efficient algorithms exist, and
use them as an estimator of the diffusion of each tem-
plate subject. Knowing that water particles in the brain
diffuse along tracts, we can estimate Dsl(x) by comput-
ing the fODF of the registered tract l. Simultaneously,
we can characterize D(x) with the fODF computed from
the DWI of the target subject. In order to reflect how
much the fODF of our target subject’s diffusion resem-
bles the fODF of the voted tract on a voxel, we model
p(D(x)|Dsl(x)) as:

p(D(x)|Dsl(x)) =


〈F (x), Fsl(x)〉, if Ls(x) = l,

and l 6= 0

〈F (x), U〉, if Ls(x) = 0

0, otherwise
(6.3)

where F (x) is the fiber ODF on voxel x estimated from
the target’s DWI by means o CSD, and is normalized
such that 〈F (x), F (x)〉 = 1. Fsl(x) is the fiber ODF of
the tract l registered from subject s, estimated by means
of ACGD, and normalized as F (x). U is a uniformly
distributed fiber ODF, this is the diffusion assumed for
either the label no-tract, representing the background or
a gray matter structure. By computing the inner product
between normalized ODFs, we can estimate how much
they look alike. In this way, we weight the vote of each
subject accounting for the white-matter structure of both
the voting and target subjects.

6.4. Experiments and Results

In section 6.3 we presented how to add diffusion infor-
mation to Majority Voting (Eq. 6.2). This allows us to
weigh the vote for a tract by how much the diffusion of
the target supports it. Now, we present experiments both
in synthetic data and subjects from the Human Connec-
tome Project (HCP). We start by assessing that the com-
puted weights correctly reflect the diffusion information
in DWI phantoms. Then, we proceed to infer the loca-
tion of white-matter pathways in subjects of the HCP,
and compare them with their true shape. Finally, we
simulate lesions in the white matter and test how our
method behaves in their presence.

Data and Preprocessing

We created three types of diffusion weighted image phan-
toms using Phantomas15. The first phantom possess only
one tract, traveling from one side to the other of the image
horizontally (Fig. 6.2 A). The second possess two cross-
ing tracts, forming a 90 degrees angle between them (Fig.
6.2 B). The last, has no fibers, and represents isotropic
diffusion (Fig. 6.2 C). From each one of them, we gen-
erated 31 DWIs. All the DWIs were generated using a
Signal to Noise Ratio of 20, and a resolution of 1mm per
voxel. The final images are 3-dimensional matrices, with
10 voxels in each dimension. Having such small images,
allows us to test how our label fusion technique behaves
on a controlled environment.

To test our technique in more realistic scenarios, we ran-
domly selected 10 subjects from the HCP500 dataset from
the Human Connectome Project. For each subject, we
computed whole-brain tractography using each voxel in
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Figure 6.2: In order to test our technique, we created three types of synthetic DWIs, known as phantoms. (A) A phantom with only
one tract in the white matter. (B) A phantom with two fibers crossing. (C) A phantom with no tracts, representing isotropic diffusion.

the white-matter as a seed and simulating the movement
of 8 water particles per seed20. We extracted four tracts
from the left hemisphere using the implementation of the
white-matter query language (WMQL)21. For each sub-
ject we computed non linear registrations to the rest us-
ing as reference their T1w images22. Using the resulting
warp transformations, we registered the tracts between
every pair of subjects.

We estimated fiber ODFs in each voxels of the phantom
DWIs, and in the DWI data of the HCP subjects by
means of CSD using Dipy20. The fODFs were discretrized
on a sphere with n = 100 vertices. A uniform fODF, U ,
was created by assigning to each vertex of the sphere the
value

√
(n)/n, making 〈U,U〉 = 1.

Assessing the Correctness of Voting Weights in
Synthetic Data

In order to study how the tract’s directionality influences
its vote weight, we started by reconstructing the tract
present in the first phantom (Fig. 6.2 A). For this, we
took one of the 31 generated DWIs, and computed 1000
streamlines by means of probabilistic tracking from the
voxels in which the tract passes.

In the DWIs generated from the first phantom, the re-
constructed tract is the one that should generate the
highest weight. At the same time, any change in its
directionality, should decrease the received weight. To
assess this was happening, we computed weights in 30
DWIs for the reconstructed tract, and for planar rota-
tions of it around the central voxel. Figure 6.3 A shows
the obtained weights on the first phantom. Effectively,
the weight starts to rapidly decrease as the angle incre-
ments and the directionality of the tract moves away from
that of the diffusion. Figure 6.3 B shows the weights ob-
tained when computing weights of the reconstructed tract
in 30 DWIs derived from the second phantom (Fig. 6.2
B), which have a fiber crossing in the central voxel. In

this case, the weight is higher when the reconstructed
tract aligns with one of the crossing fibers (at 0 degrees
or 90 degrees), while rapidly decaying in between them.
Finally, figure 6.3 C shows the weights when using 30
DWIs with isotropic diffusion (Fig. 6.2 C). In this case,
the weight is always low, driven by the discrepancy be-
tween the directionality of the tract and the free diffusion
present in the DWIs.

To assess that the proposed model is not overweighting
tracts, we also computed the weight that a “non-tract”
label would receive in each of the phantoms. As ex-
plained in section 6.3, equation 6.3, when a subject is
voting for a non-tract label, a uniform fiber ODF is com-
pared against the diffusion fODF. Figure 6.2 A, B, and
C show the weight obtained in the central voxel when
a subject is voting for the label “non-tract”. In figure
6.2 A, we can see that the weight of “non-tract” is low,
specially when compared with the high weight of the cor-
rectly aligned tracts (low angle rotations). This is driven
by the highly directional underlying diffusion data of the
phantom. Figure 6.2 B shows that the weight of a “non-
tract” vote is similar to that of an aligned tract. Finally,
figure 6.2 C shows always a higher weight for the “non-
tract” than for any tract, consistent with the isotropic
diffusion of our third phantom.

Inferring Tracts in Human Connectome Project
Subjects To validate our technique in a more realistic
but controlled scenario, we inferred single tracts in the
HCP subjects. We selected the following tracts to work
with: inferior part of the Superior Longitudinal Fascicu-
lus (SLF1), Inferior Longitudinal Fasciculus (ILF), mid-
dle part of the Corpus Callosum (CC2), and External
Capsule (EC). These four tracts provide a fair diversity
of directionality, shape, and position in the brain.

For each tract we performed a leave-one-out cross-validation
experiment. At each step, we inferred the tract of one
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Figure 6.3: In order to study how a tract’s directionality influences its vote weight, we estimated the fiber bundle by means of
tractography in the Phantom A. Then, we computed the weights obtained by the tract and planar rotations of it in: (A) Phantom A.
(B) Phantom B. (C) Phantom C. The figures show that our technique gives the highest weights to structures that are aligned with the
underlying diffusion.

subject from the registered tracts of the others using both
Majority Voting and our technique. Using as “ground
truth” the target’s bundle computed by means of trac-
tography and WMQL, we quantified the performance of
both techniques. In particular, we computed their con-
fusion matrix. A confusion matrix is a matrix M ∈
Rlabels×labels, where each entry Mij represents the num-
ber of times the label in the ground truth was i and the
technique labeled j. In this experiment, since we are only
inferring one tract, we have two labels: “tract” and “non-
tract”. We computed the sensitivity, and precision of each
confusion matrix23. Sensitivity measures the proportion
of voxels in the ground-truth tract that were “discovered”.
Precision measures the proportion of voxels that were cor-
rectly labeled, over all the labeled voxels. Table 1 shows
the results obtained for each technique and tract. In all of
the tracts, our technique achieves a lower sensitivity than
Majority Voting. This means that we label a smaller por-
tion of the ground-truth bundle. On the other hand, our
diffusion weighted label-fusion always achieve a higher
precision. This is, if we only look at the labels created by
the techniques, our technique has the highest proportion
of correct ones. Another way to phrase it is, our tech-
nique has a lower number of false positives. Therefore,
our technique is discovering less voxels, but those which
are labeled can be trusted more.

Inferring Tracts in the Presence of Simulated Le-
sions To test how our technique behaves on an injured
brain, we simulated lesions at different degrees of sever-
ity in the white matter of one of our subjects. Given
that some brain lesions directly affect FA2;3, we simu-
lated lesions by adding isotropic signal to a set of voxels,
therefore lowering their FA. We targeted the SLF bundle,
in order to compare how the labeling changes with lesion
of different degrees. We did so by selecting a spherical
region of 4mm where the SLF passes, and mixing the dif-
fusion signal there with signal from the ventricles. Since

the ventricles are regions filled with cerebrospinal fluid
(CSF), their diffusion is approximately isotropic. In par-
ticular, for each voxel x in the lesioned region, we chose
a voxel v in the ventricle and mixed their DWI signals,
S(·), as follows:

S(x) = S(x)(1− α) + S(v)α, α ∈ [0, 1], (6.4)

where α manages the severity of the lesion. In this case,
α = 0 represents healthy tissue, and α = 1 represents
a total disruption of the white-matter, resulting in pure
isotropic diffusion. Figure 6.4 shows that, at higher al-
pha (lower FA), less voxels are labeled within the lesion.
This is a good behaviour, since by lowering the FA we
make the diffusion more isotropic, loosing the underlying
tract. In particular, for α = 1, the diffusion is completely
isotropic, meaning that there is no tract, therefore, it’s
correct to not label it. Since our technique still labels
the surroundings of the pathology, it allows to correctly
identify the affected tract.

6.5. Discussion

In this chapter we presented a label-fusion technique to
infer white-matter structures in the brain. An advan-
tage of label-fusion techniques is that they can achieve
accurate segmentations even when the inference is made
from few subjects9. In particular, our technique allows
to infer white matter pathways without the need of track-
ing. This is specially important in the presence of brain
pathologies that show no deformations. In the presence of
deformations, as in tumors, segmentation becomes chal-
lenging, because the label fusion techniques rely heavily
on registration, which is difficult with deformed brains.

The main contribution of this work is to add diffusion
information in the process of label-fusion. Given that
fiber bundles constrains the diffusion of water particles
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Figure 6.4: We tested how our technique behaves in the presence of simulated lesions. Lesions were simulated in a specific region (red
circle) by following eq. 6.4 to lower the FA of the region. The SLF passes through such a region. The figures show the result of applying
our technique in order to determine the SLF at different values of the parameter α in eq. 6.4: (A) α = 0.2, (B) α = 0.5, (C) α = 0.75,
and (D) α = 1. Results show that while the value of α increases, the amount of voxels labeled within the affected region decreases.

in the brain, our technique uses diffusion information to
improve Majority Voting10. More specifically, we weight
each vote based on how the voted pathway is supported
by the target’s diffusion data. In this way, voted path-
ways that better resemble the white matter of the tar-
get subject obtain a higher weight. The weights come
from comparing how much the diffusion fODF of our tar-
get subject’s resembles the fODF of the voted tract on
a voxel. In this way, we can compare the white-matter
structure of our target subject with that of the voting
subject, without having to register DWIs. Adding dif-
fusion weights to Majority Voting, allowed us to profit
from its robustness while improving the labeling of white-
matter bundles, as shown by our results in synthetic data
and subjects from the Human Connectome Project.

Our Technique Creates Weights Consistent With
the Underlying Diffusion Data.

In order to study how the directionality of the tracts in-
fluence their vote weight, we created three different phan-
toms, and derived DWIs from them. This allowed us to
create a controlled environment, in which we could study
how the directionality of a tract affects its vote weight.
Since weight variability can come from changes on the
directionality of the tract, we generated many DWIs for
each phantom. At the same time, we computed weights
for tracts in different directions. Figure 6.2 shows the
weights obtained on a phantom with a single bundle.
The weights show that tracts with a directionality sim-

ilar to the underlying diffusion get higher votes. How-
ever, when the alignment start to decrease, also does the
weight. Particularly, when the directions differ by more
than 20 degrees, the weight starts to drop rapidly, falling
bellow the weight of the ’non-tract’ label. The Figure
6.2 B shows that, in the presence of crossing fibers in
the DWI, tracts aligned with a crossing fibers get the
highest weights. It is important to notice that the high-
est weights are similar to those of the ’non-label’ votes.
This means, that tracts roughly aligned with one of the
crossing fibers will compete with equal weights against
the ’non-label’ structures. Finally, Figure 6.2 C shows
that, when there is no underlying white-matter structure
in the DWI image, then the label ’no-tract’ is the one
that receives the highest weight. These results show that
our technique is able to correctly weight each label based
on diffusion directionality.

Our Technique Shows Lower Sensitivity but Higher
Precision than Majority Voting.

To test our technique in realistic data, we registered tracts
between different subjects of the HCP. Using these regis-
tered tracts, we inferred the position of individual tracts
in each subject. Table 1 shows that in each inferred tract,
our technique achieved a lower sensitivity but a higher
precision. In fact, the precision, except for the External
Capsule, is always higher than 0.7. This means that our
technique was able to discover less voxels belonging to the
tracts, but at least 70% of those labeled are correct. An-
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Table 6.1: Sensitivity and precision of our proposed method (Weighted) and Majority Voting (Majority) when inferring single bundles
in 9 subjects. The inferred bundles are: Superior Longitudinal Fasciculus (SLF), Inferior Longitudinal Fasciculus (ILF), Corpus Callosum
(CC), and the External Capsule (EC).

SLF ILF CC EC
Weighted Majority Weighted Majority Weighted Majority Weighted Majority

Sensitivity 0.19±0.04 0.30±0.05 0.33±0.02 0.47±0.07 0.53±0.04 0.64±0.09 0.06±0.02 0.27±0.20
Precision 0.70±0.11 0.58±0.10 0.74±0.05 0.41±0.20 0.91±0.15 0.82±0.17 0.42±0.20 0.31±0.13

other way to phrase this is that our techniques presents
less false positives at the cost of more false negatives,
making it more conservative than Majority Voting.

Our Technique Infers Tracts Before and After,
But Not Within Voxel Affected by Pathologies

We further characterized the behaviour of our technique
by simulating lesions in the white-matter of a HCP sub-
ject. Particularly, we defined a spherical region on the
path of the Superior Longitudinal Fasciculus, and in-
creased its Fractional Anisotropy until achieving isotropic
diffusion. In doing so, we simulated focal lesions in the
brain of a subject. As explained in the Introduction,
these pathologies are characterized by a decreased FA
inside the lesion, but do not deform the white-matter
around it. Figure 6.4 shows that our technique labels
less voxels as the FA becomes higher on the region. This
is the expected behaviour in the scenario of tract dis-
ruption. Since our technique is still able to label the
surroundings of the lesion, we can still identify the af-
fected tract. It is important to notice that the simulated
lesions do not include mass-effect, this is, white matter
deformations. Such pathologies are difficult to simulate
and study, since the process of registration from healthy
subjects to the patient has to be fined tuned manually .

6.6. Conclusions

In this chapter we presented a label fusion technique that
relies on dMRI data to infer the localization of white-
matter tracts. The results show that our technique is
well suited to create subject specific segmentation of the
brain. Our method could be use in precision medicine
to interrogate diffuse pathologies like TBI, even in the
presence of small lesions (as shown in fig. 6.4). Our
technique could be used in the study of infiltrative brain
tumors, where registration is less of a problem, and in the
future, could be extended to larger tumors, due to the
growing advances in registration based on tumor growth
models.
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Chapter 7
Conclusion

7.1. Overview

In this thesis we tackled the problem of parcellation the
brain based on its axonal connectivity, estimated by means
of Diffusion MRI. The first contribution we reported is
a parcellation technique that creates both single sub-
ject and groupwise multi-scale parcellations of the brain1

based on long range connectivity. Then, we proposed a
new method to find correspondence between structural
parcellations of different subjects2. Finally, we intro-
duced a new label fusion technique to infer the location of
white-matter bundles in patients with brain pathology3.
In this last chapter, we discuss our three contributions in
this thesis, and provide some perspectives for the field.

7.2. Discussion

Brain parcellation is a way of dimensionality reduction.
Parceling the brain allows to abstract the interaction be-
tween billions of neurons into a tractable number of in-
teracting regions. Accumulated evidence suggest that
regions with distinct function or cytoarchitecture also
possess distinct axonal connectivity4;5;6;7. Hence, under-
standing how the cortex is arranged based on its axonal
connectivity could provide key information in unraveling
brain organization. This motivates the first contribution
of our thesis.

Structural Connectivity Based Parcellation

Our first contribution is a parsimonious model for the
long-range axonal connectivity (extrinsic connectivity),
and an efficient technique to divide the brain in regions
with homogeneous extrinsic connectivity1. Our model
assumes that the cortex is divided in patches of homo-
geneous extrinsic connectivity and, using logistic random
effects, accounts for intra-patch and across subject vari-
ability in the connections.

Leveraging our proposed model, we presented an efficient
technique to parcellate the cortex based on its extrinsic
connectivity. Our parcellation technique presents many
advantages. First, it works directly with the dMRI in-
formation, not needing to rely on an initial parcellation.
Second, our technique can create both single subject and
groupwise parcellations of the whole cortex. Third, in-
spired by Moreno-Dominguez et al.8, our technique uses
Hierarchical Clustering to comprise multiple granularities
of the same parcellation in a dendrogram. This allows us

to overcome the need to specify an expected number of
clusters. Fourth, thanks to our model, we can retrieve
a parcellation from the dendrogram using a simple tech-
nique: horizontal cut9. Finally, also thanks to our model,
our technique works with tractograms in the Euclidean
space10, which allows us to use Ward clustering to com-
pute clusters with minimum intra-cluster variance.

It is important to also point the trade-offs in which our
technique incurs. First, our groupwise parcellation tech-
nique relies on anatomical seed-correspondence across sub-
jects. Given anatomical differences across-subjects, a
purely anatomical matching of seeds is probably sub-
optimal. However, this allows us to compute single and
groupwise parcellations independently, without the need
to impose constraints between both. Second, in compar-
ing high-dimensional vectors with the Euclidean distance,
we are probably affected by the curse of dimensionality11.
However, working with the Euclidean distance allows us
to generate clusters with minimum intra-cluster variance
by means of Ward’s Clustering.

The biggest limitations of our technique come from trac-
tography, the tool we used to estimate the brain’s ex-
trinsic connectivity. Tractography suffers from at least
three problems: gyral bias, distance bias, and false pos-
itives. The gyral bias refers to the fact that streamlines
tend to terminate preferentially in gyri, in contrast with
the general widely distributed connections obtained with
tracers12. The distance bias reflects that connectivity
strength that is usually inferred from tractography tends
to decrease with distance between the source and target
area13. Finally, recent studies show that state-of-the-art
tractography algorithms create four times more false pos-
itives than true positives14. However, these limitations
do not imply that tractography is plain wrong15. In fact,
it has been shown that tractography can recover major
white matter bundles16. Also, studies found correlation
tractography-based tracts and tracer-based ones in Old
World monkeys17.

The most important point to highlight about our par-
cellation technique, is that it created parcels consistent
with brain function. Particularly, some of our parcels
showed a high spatial overlap with responses to func-
tional and cognitive tasks measured with functional MRI.
This was specially the case with motor functions as hand
movement, foot movement and tongue movement. Other
cognitive functions that show a good overlap were: face
recognition, shape recognition and short-story categoriza-
tion. These results reflect the strong relationship between
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extrinsic connectivity and functional specialization in the
human brain cortex.

Something noticeable in our resulting parcels is that the
single subject parcellations show big variability across
subjects. This is in fact not specific of our methodol-
ogy, brain parcellations tend to differ in the number,
shape, and spatial localization across subjects13. This
does not necessarily reflect a problem with the parcella-
tion methodology, human brains are different from each
other, and “individual variability is not noise” 18. Study-
ing brain connectivity therefore faces the challenge of
locating homogeneous regions while accounting for this
variability. This motivates our second contribution.

Matching Structural Parcels Across-Subjects

Our second contribution, is a method to find correspon-
dence between structural parcellations based on Optimal
Transport. Given two parcellations, we aim to find the
mapping between the parcels in both brains, based on
their connectivity fingerprints. Particularly, our method
tries to find the optimal way to transport connectivity fin-
gerprints in one brain to the other. In this way, parcels
with similar connectivity fingerprints are matched.

Our technique allows matching two parcels based on how
they are connected, no matter if they do not spatially
overlap after registration. The main advantages of our
method is that it is highly performant, and outperforms
state-of-the-art matching techniques in our experiments.
Using Optimal Transport has an important advantage
over existent matching techniques. Existing matching
techniques define a similarity (e.g. euclidean or cosine),
and match a parcel to that with the most similar con-
nectivity fingerprint. Optimal Transport does the same,
while taking into account all the parcels at the same time.
In this way, the obtained match is that which maximizes
the similarity between parcels globally.

The major limitation of our technique is the necessity to
define coherent fingerprints across subjects. In order to
compare two connectivity fingerprints, both have to be
defined over the same target regions. If the first finger-
print is a 3-dimensional vector representing the connec-
tivity to regions A, B and C, then the second fingerprint
must represent the same. This limitation is not specific to
our method. All current techniques that we know of have
it. However, studies have shown how to define such cor-
respondences, allowing even to match fingerprints across
species19;20.

Inferring White-Matter Tracts in the Presence of
Pathology

Our third contribution is a label-fusion techniques that
leverages dMRI information in order to infer white matter

structures in the brain. We profit of the fact that water
particles diffuse along white matter bundles to improve
Majority Voting21. More specifically, we weight each vote
based on how the voted pathway is supported by the
target’s diffusion data. In this way, voted pathways that
better resemble the white matter of the target subject
obtain a higher weight.

Our technique presents many advantages. First, our tech-
nique can achieve accurate segmentations even when in-
ferring from few subjects. Second, our technique allows
inferring white matter pathways without the need of track-
ing. This is specially important in the presence of diffuse
brain pathologies like traumatic brain injuries. Third,
while we weight the votes of each tract based on dMRI
information, we do not need to register DWIs. Register-
ing DWIs is a highly time consuming task22. Instead, we
register tracts across subjects and use them to estimate
the diffusion information. Fourth, our technique obtains
a higher precision than Majority Voting, as a trade-off,
our technique possess a lower sensitivity. Meaning, our
technique has less false positives at the cost of more true
negatives. Fifth, in our simulated experiments, out tech-
nique was able to label a tract affected by a local lesion.

As with every label-fusion technique, the main limitation
of our technique is the necessity to do registration. While
registration of healthy subjects is a well known and stud-
ied task, registering subject with severe brain pathologies
as tumors is still an open problem. Most registering algo-
rithms fail or return inaccurate registrations, hampered
by the pathology23. In such cases where the registration
is highly inaccurate, our technique will most probably
fail.

7.3. Perspectives

We believe that some contributions from the thesis can
now be applied to answer more neuroscientific questions.
Our parcellation technique divides the brain in regions
of homogeneous extrinsic connectivity. This can give
a sound basis for studies based on connectivity. One
example is the collaboration with Samuel Deslauriers-
Gauthier, from Inria. Briefly, we parcelled a subject’s
cortex based on its extrinsic connectivity and then de-
tect and estimate the information flow between parcels
using connectivity and MEG data24. Given that infor-
mation flows through axons, our structural parcellation is
suitable to predefine the interconnected regions through
which information flows. Another example is the collabo-
ration with Matteo Frigo et al., from Inria. We parcelled
3 subjects and used the resulting parcels to filter false
positives streamlines using a functionally informed COM-
MIT25. A final example is our collaboration with Gaston
Zanitti, student from the University of Buenos Aires. The
aim of our work is to study if specific responses to func-
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tional activation measured with fMRI can be predicted
using structural connectivity. For this, we define corti-
cal regions with our parcellation technique, and see if the
structural connectivity of the vertices within a region can
predict its functional activation.

These applications aside, we expect to be able to use our
parcellation technique to further characterize the rela-
tionship between brain structure and brain function. In
particular, in further work we will try to estimate the
overlap between our parcels and more functional activa-
tions from fMRI. We will also focus on studying the func-
tional properties of the structural networks derived from
our parcellation. Meaning, we will study if the structural
and functional connections between regions generated by
our technique are correlated. As a long term project,
we expect that improvements in tractography as well as
in dMRI acquisition allow us to infer an atlas of human
connections in the brain. We believe this to be a doable
yet arduous task, hindered presently by the limitations
of tractography.

Our matching technique could have major implications in
the study of brain connectivity and its relationship with
brain function, allowing for the location of parcels with
similar connectivity but not high spatial coherence. Also,
it could improve results in the areas where matching tech-
niques are being used. This is, our matching technique
could help to better understand the link between differ-
ent brain atlases, and improve the comparisons of cortical
areas between higher primates.

Finally, our label-fusion technique could be use in preci-
sion medicine to interrogate diffuse pathologies like trau-
matic brain injuries, even in the presence of small lesions.
Our technique could be used in the study of infiltrative
brain tumors, where registration is less of a problem, and
in the future, could be extended to larger tumors, due
to the growing advances in registration based on tumor
growth models.

7.4. Conclusion

In this thesis we tackled the problem of brain parcellation
based on structural connectivity. During the whole the-
sis, We putted emphasis on the importance of the struc-
tural connectivity, and how it is strongly related to brain
function. However, we fell important to conclude the the-
sis reminding the reader that, if a universal parcellation
of the brain exists, it has not been found yet. Presently,
different atlases and techniques to divide the brain co-
exist, each one with different and disadvantages. At the
end, which parcellation to use in practice will heavily de-
pend on the hypothesis and the goal of the study to be
done.
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