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Spécialité: Sciences pour l’ingénieur

Adaptation de maillage orientée fonctionnelle et basée sur une

métrique pour des simulations aérodynamiques en géométrie
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Goal-oriented metric-based mesh adaptation for unsteady CFD simulations

involving moving geometries

Abstract When dealing with CFD problems, mesh adaptation is interesting for its ability

to approach the asymptotic convergence and to obtain an accurate prediction for complex

flows at a lower cost. Anisotropic mesh adaptation method reduces the number of degrees

of freedom required to reach a given solution accuracy, thus impact favorably the CPU time.

Moreover, it reduces the numerical scheme dissipation by automatically taking into account

the anisotropy of the physical phenomena inside the mesh. Two main approaches exist in the

literature. Feature-based mesh adaptation which is mainly deduced from an interpolation error

estimate using the Hessian of the chosen sensor controls the interpolation error of the sensor

over the whole computational domain. Such approach is easy to set-up and has a wide range of

application, but it does not take into account the considered PDE used to solve the problem.

On the other hand, goal-oriented mesh adaptation, which focuses on a scalar output function,

takes into consideration both the solution and the PDE in the error estimation thanks to the

adjoint state. But, the design of such error estimate is much more complicated. This thesis

presents the results obtained with different CFD methods : the Arbitrary Lagrangian Eulerian

(ALE) flow solvers with explicit and implicit schemes are presented and coupled to the moving

mesh process, the feature-based unsteady mesh adaptation for moving geometries takes into

account the changes of connectivites during the whole simulation, the adjoint state is extended

to moving geometries problems and goal-oriented unsteady mesh adaptation for moving meshes

is derived from an a priori error estimate. Several numerical examples are considered in the

aeronautics sector and the field of civil security.

Keywords Metric-based mesh adaptation, anisotropy, adjoint, unsteady simulations, mov-

ing mesh, ALE





Adaptation de maillage orientée fonctionnelle et basée sur une métrique pour des

simulations aérodynamiques en géométrie variable

Résumé En ce qui concerne les problèmes de Dynamique des Fluides Numériques,

l’adaptation du maillage est intéressante pour sa capacité à aborder la convergence asympto-

tique et à obtenir une prévision précise pour des flux complexes à moindre coût. La méthode

d’adaptation de maillage anisotrope réduit le nombre de degrés de liberté nécessaires pour

atteindre la précision d’une solution donnée, ce qui a un impact positif sur le temps de calcul.

De plus, il réduit la dissipation du schéma numérique en tenant compte automatiquement

de l’anisotropie des phénomènes physiques à l’intérieur du maillage. Deux approches prin-

cipales existent dans la littérature. L’adaptation du maillage basée sur les caractéristiques

géométriques, qui est principalement déduite d’une estimation de l’erreur d’interpolation util-

isant la hessienne du senseur choisi, contrôle l’erreur d’interpolation du capteur sur l’ensemble

du domaine de calcul. Une telle approche est facile à mettre en place et a un large éventail

d’applications, mais elle ne prend pas en compte l’EDP considérée utilisée pour résoudre le

problème. D’autre part, l’adaptation de maillage orientée fonctionnelle, qui se concentre sur

une fonctionnelle scalaire, prend en compte à la fois la solution et l’EDP dans l’estimation

d’erreur grâce à l’état adjoint. Mais, la conception de cette estimation d’erreur est beaucoup

plus compliquée. Cette thèse présente les résultats obtenus avec différentes méthodes de

Dynamique des Fluides Numériques: les solveurs de flux arbitrairement lagrangiens-eulériens

(ALE) avec schémas explicites et implicites sont présentés et couplés au mouvement de

maillage, l’adaptation de maillage feature-based instationnaire pour les géométries mobiles

prend en compte les changements des connectivités de maillage durant toute la simulation,

l’état adjoint est étendu aux problèmes de géométries mobiles et l’adaptation de maillage

instationnaire orientée fonctionnelle pour les maillages mobiles est déduite d’une estimation

d’erreur a priori. Plusieurs exemples numériques issus du secteur aéronautique et du domaine

de sécurité civile sont considérés.

Mots-Clés Adaptation de maillage basée métrique, anisotropie,

adjoint, simulations instationnaires, mouvement de maillage, ALE





”If you’re offered a seat on a rocket ship,

don’t ask what seat ! Just get on.”
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Mener à bien une thèse est une entreprise difficile, être le soutien de l’ombre l’est tout autant.

Je dédie mes derniers remerciements à Arnaud qui m’a toujours soutenue cette dernière année.



Convention

Simplicial mesh

Let n be the dimension of the physical space and let Ω ⊂ Rn be the non-discretized physical

domain. Ω is an affine space. The canonical basis of its vectorial space is noted (e1, e2, . . . , en)

in general, but notations (ex, ey) and (ex, ey, ez) can also be used in two and three dimensions.

Vectors of Rn are noted in bold font. The coordinate vector of a point of Ω is generally noted

x = (x1, . . . , xn).

The boundary of Ω, noted ∂Ω, is discretized using simplicial elements the vertices of which

are located on ∂Ω. In two dimensions, ∂Ω is discretized with segments while in three dimensions,

boundary surfaces ∂Ω are represented by triangles. The discretized boundary is noted ∂Ωh and

Ωh denotes the sub-domain of Rn having ∂Ωh as boundary.

Building a mesh of Ωh consists in finding a set of simplicial elements - triangles in two

dimensions, tetrahedra in three dimensions - noted H, satisfying the following properties:

• Non-degenerescence: Each simplicial element K of H is non-degenerated (no flat elements

of null area or volume),

• Covering : Ωh =
⋃

K ∈H
K ,

• Non-overlapping : The intersection of the interior of two different elements of H is empty:

K̊i ∩ K̊j = ∅, ∀Ki, Kj ∈ H, i 6= j .

• Conformity : The intersection of two elements is either a vertex, an edge or a face (in three

dimensions) or is empty.

The conformity hypothesis is adopted here, because the meshes will be used with a Finite-

Volume solver which requires the enforcement of this constraint. Besides, it facilitates the

handling of data structures on the solver side and also enables to save a consequent amount of

CPU time.

Finally, a mesh is said to be uniform if all its elements are almost regular (equilateral) and have

the same size h.



Notations and orientation conventions

The following notations will be used in this thesis: K is an element of the mesh H, Pi is the

vertex of H having i as global index, eij is the edge linking Pi to Pj . The number of elements,

vertices and edges are noted Nt, Nv and Ne, respectively.

The vertices and the edges of an element K are also numbered locally. Vertex numbering

inside each element is done in a counter-clockwise (or trigonometric) manner, which enables

to compute edges/faces outward normals in a systematic way. This numbering, as well as

unit outward normals n and edges/faces orientations are shown for triangles and tetrahedra in

Figure 1. Non-normalized normals will be noted η.

P0 P1

P2

P3

e0

e1

e2

e3

e4

e5

P0 P1

P2

P3

n0

n1

n2

n3

P0 P1

P2

P3

P0

P1

P2

P0

P1

P2

P0

P1

P2

e0

e1

e2

n0

n1

n2

Figure 1: Conventions in a simplicial element K in two (top) and three (bottom) dimensions.

Conventions for vertex numbering, edge numbering and orientation (left), unit normal number-

ing and orientation (middle) and face(s) orientation (right).



Introduction

This manuscript proposes a synthesis of my research during my years of PhD at Inria in

Gamma3 and Ecuador teams in the field of anisotropic mesh adaptation applied to unsteady

simulations involving moving computational domains.

Often considered as a substitute for modelling systems for which simple closed from analytic

solutions are not possible, computer simulations’ big advantage is the real ability to generate

representive scenarios for which a realisation of all possible states would be prohibitive or im-

possible in practice. Consequently, numerical simulation has become an integral part of the

design process in science and engineering. In sixty years, numerical simulation has come a long

way, in conjunction with the development of computing resources. As it became possible to

model and simulate more complex problems, industry started to take advantage of its poten-

tiality. However, as the simulation capabilities grow, so do the requirements of both industries

and researchers, and a whole set of problems have arisen. In the field of computational fluid

dynamics (CFD), the numerical simulations have to deal with ever increasing geometrical and

physical complexities. However being able to predict numerically all the features of complex

flows around complex geometries remains an unachieved goal. In this sense, scientists and en-

gineers have developed several techniques to make predictions with the maximum of accuracy

while mastering the computational efforts in term of CPU time.

In this sense, mesh adaptation methods have been developed to reduce the complexity of the

simulations while keeping the same high level of precision. Notably, the increase in compu-

tational power allows scientists to not content themselves with steady approximations of the

physical phenomena, and to study the effects of time-dependent parameters.

Mesh adaptation for CFD

The computational pipeline for fluid dynamic simulations illustrated by Figure 2 can be sum-

marized as :

Cad → Mesh → Solver → Visualization/Analysis

The mesh is one of the first step of the computation and as the topological base frame, its

role may be crucial. Anisotropic mesh adaptation method reduces the number of degrees of

freedom required to reach a given solution accuracy and thus impacts favorably the CPU time.

Moreover, it reduces the numerical scheme dissipation by automatically taking into account the

anisotropy of the physical phenomena inside the mesh. That’s why this technique is nowadays



Figure 2: Under the visualization of the numerical solutions of Euler flux solution of f117 in

flight on the Left, the mesh of the computational volume around which enables to compute the

solution on the Right

a great deal of interest. Two main approaches exist in the literature. The first one is the

feature-based mesh adaptation which is mainly deduced from an interpolation error estimate

using the Hessian of the chosen sensor. It controls the error on the sensor over the whole com-

putational domain. Such approach is easy to set-up and has a wide range of application, but it

does not take into account the considered PDE used to solve the problem. The second approach

is the goal-oriented mesh adaptation. It focus on a scalar output function and takes into

consideration both the solution and the PDE in the error estimation thanks to the adjoint state.

In this thesis, we focus on Computational Fluid Dynamics (CFD), and its applications to

vorticity in aeronautic and blast mitigations, although the results presented can be used in a

vast field of research and industry. The next section presents its numerical context in details.

Numerical context

The present work was conducted in Gamma3 and Ecuador research groups at Inria. Most

numerical choices naturally stem from those made in the group, to benefit from both the con-

siderable experience and the valuable software of its members.

- We consider unstructured meshes made up of triangles (in 2D) or tetrahedra (in 3D). This

geometrical choice is initially due to the fact that it is easier to mesh complex geometries

with simplexes.

- We consider metric-based mesh adaptation. The theory derives from the classical Rie-

mannian geometry theory and underlies on accurate feature-based or adjoint based error

estimates.



- We consider anisotropic mesh-adaptation to fit the natural physical phenomena properties

inside the mesh in order to improve their representation.

- Regarding moving-boundary meshes, the body-fitted approach has been preferred in

comparison to other methods for its accurate treatment of boundaries.

- From the aspect of solver, the Arbitrary-Lagrangian-Eulerian (ALE) framework has

been chosen for its ability to describe physical equations on a mesh moving with an imposed

or an abitrary movement.

- Finally, only two-dimensional or three dimensional mono-fluid problems modelled

by the inviscid compressible Euler equations are considered in this thesis.

Main contributions

During this thesis, I extend goal-oriented mesh adaptation to time-dependent simula-

tions on moving computational domains.

My work follows the previous works of [Olivier 2011a, Belme 2011, Barral 2015].

• I contributed to the development and implementation of implicit schemes in ALE formulation

for unsteady Euler equation involving moving mesh problems and compared it to the explicit

time integration simulations.

• I updated the unsteady feature-based ALE metric to handle mesh optimizations during the

computational loop with the error analysis from [N. Barral 2017].

• I extended the adjoint solver of unsteady Euler flows for ALE formulation in two-dimensional

(validated) in three-dimensional (partially implemented)

• I added the backward moving mesh to the code.

• I added a new error estimation for goal-oriented mesh adaptation for moving mesh simula-

tions

Organisation and content of thesis

The present thesis is built around two main topics :

• The understanding and improvements of the fluid solver in the ALE framework and the

hessian-based mesh adaptation for moving mesh geometries.



• A goal-oriented based anisotropic mesh adaptation for unsteady problems involving moving

mesh geometries.

The first three chapters of this work refer to the first point. The remaining parts concen-

trates on the ALE adjoint solver and the set up of the goal-oriented mesh adaptation.

Chapter 1 The theorical and numerical prerequisites of the next chapters.

Chapter 2 The definition, the implementation and the validation of implicit time integration

scheme for the ALE flow solver.

Chapter 3 The completion with respect to several steps for the unsteady mesh adaptation for mov-

ing geometries which complement thesis [Barral 2015]. In particular, the importance

to update the ALE metric in the flow solver to govern the mesh optimizations during

the moving mesh algorithm.

Chapter 4 The development of the unsteady adjoint solver in the ALE framework which requires

a backward in time moving mesh algorithm consistent with the forward in time one.

Chapter 5 The time accurate goal-oriented mesh adaptation for moving geometries and its asso-

ciated error estimate.
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Chapter 1

State of the art of previous works

The proposed works in this thesis have been built on three existing theories referred in this

chapter. It is quite dense because it corresponds to four thesis : the theoretical foundation have

been established in [Loseille 2008] and the three mesh adaptation theories on which this thesis

relies have been introduced in [Olivier 2011a] for unsteady feature-based mesh adaptation, in

[Belme 2011] for unsteady goal-oriented mesh adaptation and in [Barral 2015] for time-accurate

mesh adaptation involving moving geometries.

1.1 Continuous mesh framework

Generating an adapted mesh means optimizing the accuracy of some parts of the simulation

domain while de-emphazing other parts we don’t need precision. To give rise to this type of

mesh we must establish a generator for this assignment. And this assignment must be quasi

unique depending on the current localization. At first thought and as it comes to geometry,

let’s look at the available geometrical tools. Considering a triangle of side 1 in an Euclidian

affine space of R2, its area (i.e. the dot product of one of its pair of vectors) or the angle

between these are the same whatever the considered triangle of the space. But generating an

unstructured, anisotropic mesh means assigning privileged sizes and local orientations for the

elements (triangles or tetrahedra) at each point of the domain. We will see that the use of

Riemannian metric spaces is an elegant and efficient way to achieve this goal.

This section is organized as follows. We first succinctly recall the metric-based mesh generation

in Sections 1.1.1, 1.1.2, then the Section 1.1.3 gives the theoretical framework of anisotropic

mesh adaptation based on the continuous mesh concept.

1.1.1 Duality between discrete and continuous element : notion of unit ele-

ment

In differential geometry, a metric tensor takes as input a pair of tangent vectors at a point

of a surface (or any differentiable manifold) and produces a real scalar number in a way that

generalizes many of the familiar properties of the dot product of vectors in Euclidian space.



This continuous point of view enables a practical mathematical representation, and the use of

powerful tools of differential geometry.

In the same way as a dot product, metric tensors are used to define the length of and angle

between tangent vectors. Let’s explain the duality between triangle/tetrahedron and metric

tensor, in other terms between discrete and continuous element.

Euclidian space

Let us begin by studying this duality in the Euclidian space.

We consider the vector space Rn, typically n = 2 or 3 in our case. A scalar product is

a Symmetric Positive Definite (SPD) form. This form can be represented by a SPD matrix

M = (mij)1≤i,j≤n, which is called a metric tensor or simply metric. The scalar product is then

written:

( · , · )M : Rn × Rn −→ R+

(u,v) 7−→ (u, v)M = uTMv =

n∑

j=1

n∑

i=1

mijuivj .
(1.1)

In the simple case whereM = I with I the identity matrix, the scalar product is the canonical

Euclidian dot product. A real vector space with the scalar product is called an Euclidian space.

The scalar product is useful to compute lengths and angles in the Euclidian space. We can

define:

• a distance:

dM : Rn × Rn −→ R+

(P, Q) 7−→ dM (P, Q) =

√−−→
PQTM−−→PQ ,

(1.2)

which induces a metric space structure on the vector space,

• and a norm:

|| · ||M : Rn −→ R+

u 7−→ ||u||M =
√

uTMu .
(1.3)

From these distance and norm, we deduce the classic geometrical quantities:

• the length of an edge e is given by:

`M (e) =
√

eTM e , (1.4)

• the angle between two vectors u1 and u2 is the unique real number θ ∈ [0, π] such that:

cos θ =
(u1, u2)M
||u1||M ||u2||M

(1.5)



• the volume of element K is:

|K|M =
√

detM|K| where |K| = |K|I . (1.6)

A very useful result on metrics is that M is diagonalizable in an orthonormal basis:

M = RΛRT ,

where





Λ = diag (λ1, . . . , λn) is the diagonal matrix made of the eigenvalues of M ,

R = ( v1 |v2 | . . . |vn )T is the unitary matrix (i.e. RT R = I)

made of the eigenvectors of M .

(1.7)

We will very often use the geometric representation of a metric tensor. In the vicinity

V(P ) of point P , the set of points that are at distance ε of P , is given by:

ΦM(ε) = {Q ∈ V(P ) | dM(Q,P ) = ε} . (1.8)

This relation defines an ellipsoid of center a and whose axes are aligned with the eigen directions

vi of M. The set ΦM(1) is called the unit ball of M, and the sizes of its axes are hi = λ
− 1

2
i .

This unit ball is depicted in Figure 1.1 in two and three dimensions.
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Figure 1.1: Unit balls associated with metric M = RΛRT in two and three dimensions.

A metric tensor M provides another useful information: the application that maps the

unit ball associated with I to the unit ball associated with M. The application Λ
1
2 R where

Λ
1
2 = diag(λ

1
2
i ) defines the mapping from the physical space (Rn, I) to the Euclidean metric



space (Rn,M):

Λ
1
2 R : (R3, I) 7−→ (R3,M)

x −→
(
Λ

1
2 R
)
x .

This natural mapping corresponds to the change of basis from the canonical basis to the

orthonormal diagonalization basis of M and is depicted in Figure 1.2.
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Figure 1.2: Natural mapping Λ
1
2 R associated with metric M in two dimensions. It sends the

unit ball of I2 onto the unit ball of M.

The key notion of the discrete-continuous duality is the notion of unit element.

A tetrahedron K, defined by its list of edges (ei)i=1..6, is said to be an unit element with respect

to a metric tensor M if the length of all its edges is unit in metric M:

∀i = 1, ..., 6, `M(ei) = 1 with `M(ei) =
√

eiTM ei. (1.9)

If K is composed only of unit length edges then its volume |K|M in M is constant equal to:

|K|M =

√
2

12
and |K| =

√
2

12
(det(M))−

1
2 , (1.10)

where |K| is its Euclidean volume. It is actually used to define classes of equivalence of discrete

elements: let M be a metric tensor, there exists a non-empty infinite set of unit elements with

respect toM. Conversely, given an element K such that |K| 6= 0, then there is a unique metric

tensor M for which element K is unit with respect to M.

Consequently, a discrete element can be viewed as a discrete representative of an equivalence

class formed by all the unit elements with respect to a metricM. Figure 1.3 depicts some unit

elements with respect to a metric tensor, which is geometrically represented by its unit-ball.

M denotes the class of equivalence of all the elements which are unit with respect toM and is

called continuous element.

All the discrete representatives of a continuous element M share some common properties,

called invariants, which justify the use of this equivalence relation. They connect the geometric



Figure 1.3: Several unit elements with respect to a metric tensor in 3D.

properties of the discrete elements to the algebraic properties of metric M. The two main

invariants are:

• the edges ei of any unit element K with respect to metric M are unit in M:

∀i = 1, ..., 6, eTi M ei = 1, (1.11)

• conservation of the Euclidean volume for any unit element K with respect to metric M

|K| =
√

3

4
det(M− 1

2 ) in 2D and |K| =
√

2

12
det(M− 1

2 ) in 3D. (1.12)

Many other invariants are given in [Loseille 2008].

Riemannian metric space

We’ve just seen the link between a metric tensor and an unit element. This idea is the starting

point to understand how to create a metric-based adapted mesh. This theory, initially intro-

duced in [George 1991], is based on an unit mesh generation in a prescribed Riemannian metric

space.

In fact, working in an Euclidian space is no longer sufficient. This is because the scalar

product of Euclidian spaces is the same on the whole space, which means that the distance

definition is the same for each point of the space (the unit ball is the same everywhere). However,

when used to generate adapted meshes with different element sizes in the domain, it is convenient

to have a distance that depends on the position of the space. Thus, we now consider a set of

SPD tensors M = (M(P ))P∈Ω, also called metric tensor field, defined on the whole domain

Ω ⊂ Rn. Locally at point P , M(P ) induces a scalar product on Rn × Rn. The vector space,

with this new structure, is called a Riemannian metric space. In this thesis, we will use

the same notation M to speak of the metric field and of the metric tensor at a given point.

Notation M will only be used if the distinction is necessary for pedagogical purposes.



Remark 1. Unlike usual Riemannian spaces, there is no notion of manifold in Riemannian

metric spaces. However, Riemannian metric spaces can be assimilated to functions representing

Cartesian surfaces, and the metric tensor defined for a point of the space is a scalar product on

the tangent plane for that point. Figure 1.4 gives an example of a Cartesian surface associated

with a Riemannian metric space. This Riemannian metric space is pictured by drawing the unit

ball of the metric at some points of the domain. A link with differential geometry is proposed

in [Alauzet 2011a].

Figure 1.4: Left, example of a Cartesian surface embedded in R3. Right, geometric visualization

of a Riemannian metric space (M(x))x∈[0,1]×[0,1] associated with this surface. At some points

x of the domain, the unit ball of M(x) represented by ellipses is drawn.

There is no global notion of scalar product in a Riemannian metric space, thus no global

distance or norm. However, we can extend the notions of length, angle and volume from the

Euclidian space case. To do so, we have to consider the variation of the metric in space. The

following geometrical quantities are defined:

• the length of edge e =
−−→
PQ parametrized by γ : t ∈ [0, 1] 7−→ P + t

−−→
PQ is computed with

the following formula:

`M (e) =

1∫

0

||γ′(t)||M(γ(t)) dt =

1∫

0

√
−−→
PQ

TM(P + t
−−→
PQ)

−−→
PQdt , (1.13)

• the angle between two vectors u1 =
−−→
PQ1 and u2 =

−−→
PQ2 is the unique real θ ∈ [0, π] such

that:

cos θ =
(u1, u2)M(P )

||u1||M(P ) ||u2||M(P )
, (1.14)

• the volume of element K with respect to M is more difficult to apprehend. Indeed, due to

metric variations, element K, as seen with respect to metric field M is generally curved: it



is not a simplex anymore and normally, its volume should be computed with an integration

formula:

|K|M =

∫

K

√
detM(x) dx . (1.15)

However, this volume can be approximated at first order:

|K|M ≈ |K|I
√

detM(GK), where GK is the barycenter of K. (1.16)

1.1.2 Duality between discrete and continuous mesh : notion of unit mesh

This local relation of equivalence concerns elements, and needs to be somehow extended to

whole meshes. Intuitively, the notion of Riemann metric space is going to play that role. The

main difficulty is to take into account the variation of the function x 7→ M(x). The analysis

can be simplified if M is rewritten as follows, separating its local and global properties. A

Riemannian metric space M = (M(x))x∈Ω is locally written :

∀x ∈ Ω, M(x) = d
2
3 (x)R(x)




r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)


R

T (x), (1.17)

where

• density d is equal to: d = (λ1λ2λ3)
1
2 = (h1h2h3)−1, with λi the eigenvalues of M

• anisotropic quotients ri are equal to: ri = h3
i (h1h2h3)−1

• R is the eigenvectors matrix of M representing the orientation.

The density d controls only the local level of accuracy of M: (increasing or decreasing it

does not change the anisotropic properties or the orientation), while the anisotropy is given by

the anisotropic quotients and the orientation by matrix R. The notion of complexity C of M

can also be defined:

C(M) =

∫

Ω
d(x) dx =

∫

Ω

√
det(M(x)) dx. (1.18)

This quantifies the global level of accuracy of (M(x))x∈Ω.

From this formulation of a Riemannian metric field arises a duality between meshes and

Riemannian metric spaces. This duality is justified by the strict analogy between the following

discrete and continuous notions: orientation vs. R, stretching vs. ri, size vs. d and number

of elements vs. C(M). However, the class of discrete meshes represented by M is complex to

describe.

If the notion of unit element in the previous section was quite immediate, things are more

complicated when it comes to define an unit mesh. Stricto sensu, an unit mesh is a mesh



whose all edges are unit with respect to the prescribed metric field. However, the existence of

a mesh made of unit elements is not assured. For example, in R3, let’s take the simplest case

of M(P ) = I(P ) for each point P , i.e. the canonical Euclidian space. It is well known that

R3 cannot be filled with regular tetrahedra (that are unit with respect to the identity metric).

So the constraint on the sizes of the edges has to be relaxed. But this can lead to meshes with

very bad quality elements (flat elements). So we have to add a constraint on the volume of the

elements, through a quality function.

For this reason, we have to introduce the notion of quasi unit element. A tetrahedron

is said to be quasi unit with respect to a metric field M if its edges are close to unit, i.e.

∀i, `M(ei) ∈ [ 1√
2
,
√

2]. To avoid elements with a null volume (see [Loseille 2011a]), we have to

add a constraint on the volume, which is achieved through a quality function:

QM(K) =

√
3

216

(∑6
i=1 `

2
M(ei)

) 3
2

|K|M
∈ [1,+∞] . (1.19)

For the regular tetrahedron, the quality function is equal to 1, whereas it tends to +∞ for a

null volume tetrahedron. So an element close to a perfectly unit element has a quality close to

1. This leads to the following definition. A tetrahedron K defined by its list of edges (ei)i=1...6

is said quasi-unit for Riemannian metric space (M(x))x∈Ω if

∀i ∈ [1, 6], `M(ei) ∈
[

1√
2
,
√

2

]
and QM(K) ∈ [1, α] with α > 1 . (1.20)

The definition of unit mesh consequently becomes : a unit mesh with respect to a Riemannian

metric space (M(x))x∈Ω is a mesh made of quasi-unit elements.

In practice, it is this definition that is used in meshing software. For any kind of desired

mesh (uniform, adapted isotropic, adapted anisotropic), the mesh generator will generate

a mesh that is unit with respect to the prescribed Riemannian metric space. Thus

the resulting mesh is uniform and isotropic in the Riemannian metric space while it is adapted

and anisotropic in the canonical Euclidian space. This is illustrated in Figure 1.5. This idea

has turned out to be a huge breakthrough in the generation of anisotropic adapted meshes.

1.1.3 Duality between discrete and continuous interpolation error: notion of

continuous linear interpolate

The model that we have just defined is used to obtain an analytic expression of the optimal mesh.

The purpose now in this section is to obtain a still valid equivalence between a continuous error

estimate for any function on any continuous mesh and a discrete error estimate on a discrete

mesh.



Inputs (H0,Mi)i∈H Output H

Figure 1.5: Metric-based mesh generation. Left, specified Riemannian metric space. Right,

unit mesh in the prescribed Riemannian metric space which becomes adapted anisotropic in the

Euclidean space.

In mathematical terms, let (M(x))x∈Ω be a continuous mesh of a domain Ω and let u be

a smooth representation This function u is a non-linear function which is assumed to be twice

continuously differentiable.

We define the following approximation space from the standard P1 FEM approximation

space. Let H1(Ω) be the Sobolev space defined as the set of applications of L2(Ω) such that

their first weak derivative exists and also belongs to L2(Ω).

H1(Ω) = {u ∈ L2(Ω) | Du ∈ L2(Ω)}.

Let us introduce the following approximation space :

Vh = {ϕ ∈ H1(Ω) | ϕh|K is affine ∀K ∈ H}.

The usual P1-projector Πh is defined such as Πhu is exact on each vertex of the element K :

Πh : H1(Ω) 7→ Vh | Πhu(x) = ϕ(x),∀x vertex of H

In this section, we want to seek a well-posed definition of the continuous linear interpola-

tion error ‖u − πMu‖L1(Ω) related to a continuous mesh (M(x))x∈Ω which also implies a

well-posed definition of a linear continuous interpolate πMu. And obviously, we would like

the continuous linear interpolation error to be a reliable mathematical model of ‖u−Πhu‖L1(Ωh).



In this sense, the interpolation error is first derived locally (on an element) for a quadratic

function, then is extended to a global definition (for any point of the domain).

Local continuous interpolate

Let us first consider a quadratic function u defined on a domain Ω ⊂ Rn, and a continuous

elementM. For all unit discrete elements K with respect toM, the interpolation error of u in

L1 norm does not depend on the element shape and is only a function of the Hessian Hu of u

and of continuous element M. For more details see [Loseille 2011a].

• In 3D, for all unit elements K for M, the following equality holds:

‖u−Πhu‖L1(K) =

√
2

240
det(M− 1

2 ) trace(M− 1
2 HuM−

1
2 ). (1.21)

• In 2D, for all unit elements K for M, the following equality holds:

‖u−Πhu‖L1(K) =

√
3

64
det(M− 1

2 ) trace(M− 1
2 HuM−

1
2 ).

For all the discrete elements that are unit with respect to M, the interpolation error is the

same, and is only based on continuous quantities (metric and Hessian). This last remark is im-

portant, since it shows metrics contain all the information required to compute the interpolation

error, and are thus well adapted for anisotropic control of this error.

Global continuous interpolate

To define a global continuous linear interpolate, the problem is once again how to move from an

expression valid for one continuous element to an expression for the case in which the metric

varies point-wise. Let us now suppose that the continuous mesh (M(x))x∈Ω is varying and that

the function u is no more quadratic but only twice continuously differentiable. Equality (1.21)

does not hold anymore, but all the terms of the right-hand side M and H are still well defined

continuously.

Let’s consider a point a ∈ Ω. In the vicinity of a, we denote uQ the quadratic approximation

of smooth function u as the truncated second order Taylor expansion of u and (M(x))x∈Ω

reduces to M(a) in the tangent space. There exists a unique function πM such that:

∀a ∈ Ω , |u−πMu|(a) =
‖uQ −ΠhuQ‖L1(K)

|K| =
1

20
trace

(
M(a)−

1
2 |H(a)|M(a)−

1
2
)
, (1.22)

for every K unit element with respect to M(a).

This result underlines another discrete-continuous duality by pointing out a continuous

counterpart of the interpolation error. For this reason, the following formalism was adopted:



πM is called continuous linear interpolate and |u− πMu| represents the continuous dual of the

interpolation error illustrated in cases of a concave or a convex function on Figure 1.6. From a

practical point of view, we deduce the following analogy. Given an unit mesh H of a domain

Ωh with respect to a continuous mesh (M(x))x∈Ω, the global interpolation error is:

‖u−Πhu‖L1(Ωh) =
∑

K∈H
‖u−Πhu‖L1(K). (1.23)

In the continuous case, the discrete summation becomes an integral:

‖u− πMu‖L1(Ω) =

∫

Ω
|u− πMu|(x) dx. (1.24)

u concave u convex

Figure 1.6: Representations of discrete (red) and continuous (blue) projectors for u concave

and u convex for an unspecified mesh (first row) and for an unit mesh (second row).

There is no global guarantee on the reliability of the continuous interpolation error given by

Relation (1.24), and in particular, there is no a priori relationship between (1.23) and (1.24).

The only guarantee is the local equivalence given by Equation (1.22). However, the local

guarantee becomes global when the mesh is unit with respect to a constant metric tensor and

when the function is quadratic. In the latter case, by neglecting error due to the boundary

discretization, we have the equality:

‖u−Πhu‖L1(Ωh) = ‖u− πMu‖L1(Ω) , (1.25)

for all unit meshes H with respect to (M(x))x∈Ω.



Several examples are given in [Loseille 2011b], both analytic and numerical, that con-

firm the validity of this analogy. They show that the model is accurate and the equivalence

(1.23)≈ (1.24) is observed even for non quadratic functions and non-constant continuous meshes,

and that the error due to the fact that the mesh generator generates edges with length not

strictly equal to one is negligible. In particular, the range for the lengths of the edges given in

Section 1.1.2 ensures reliable numerical results.

1.1.4 Summary

We have presented a framework that draws a correspondence between the discrete domain and

the continuous domain. This framework is summarized in Table 1.1.

1.2 Mesh adaptation

1.2.1 Steady mesh adaptation

Studying steady simulations is a necessary prerequisite for a better understanding of unsteady

simulations. Let us first detail the feature-based mesh adaptation algorithm and the attached

error analysis for steady problems then we turn to the description of goal-oriented mesh adap-

tation in the steady case.

Feature-based mesh adaptation for steady flows

The problem can be simplified to the specification of a mesh that is optimal for the interpolation

error.

Mesh adaptation consists in finding the mesh that minimizes a certain error on a domain

Ω ∈ Rn, for a certain sensor function u. The error we consider is the interpolation error, that we

control in Lp norm - depending on the choice of p, different aspects of the solution are captured,

as will be seen later. The problem is stated a priori :

Find HLp having N vertices such that ELp(HLp) = min
H
‖u−Πhu‖Lp(Ωh). (P )

(P ) is too complex to be solved directly, since the unknown, i.e. the mesh, is made up of

vertices and their topology, which is far too many degrees of freedom. Besides, several optimal

meshes can be found for one sensor function (think about merely swapping an element), so the

problem is ill-posed. On the other hand, it is possible to show that the problem moved to the

continuous domain is well posed, and can be solved using calculus of variations. What is more,

the continuous formulation of the adaptation problem uses a global point of view, while usual

methods focus on a local analysis of the error. The reformulated problem is:



DISCRETE CONTINUOUS

Element K Continuous element = Metric tensor M

Element volume |K| d−1 =
√

det(M−1)

Mesh H of Ωh Riemannian metric space M(x) = (M(x))x∈Ω

Number of vertices Nv Complexity C(M) =

∫

Ω
d(x) dx

P1 interpolate Πh P1-continuous interpolate πM

Local element-wise interpolation error Local point-wise interpolation error

eh(K) = ||u−Πhu||K e(x) = (u− πMu) (x)

eh(K) =
|K|
40

6∑

i=1

eTi |Hu|ei (for u quadratic) e(x) =
1

20
trace

(
M(x)−

1
2 |H(x)|M(x)−

1
2
)

Global continuous interpolation error

∑

K∈H
||u−Πhu||K

Global interpolation error

∫

x∈Ω
e(x) dx

Table 1.1: The continuous mesh model draws a correspondence between the discrete domain

and the continuous domain.

Find MLp having a complexity of N such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω). (1.26)

Using the definition of the linear continuous interpolate πM given by Equation (1.22), the

well-posed global optimization problem of finding the optimal continuous mesh minimizing the



continuous interpolation error in Lp norm can be established:

Find MLp such that ELp(MLp) = min
M

(∫

Ω

(
u(x)− πMu(x)

)p
dx

) 1
p

(1.27)

= min
M

(∫

Ω
trace

(
M(x)−

1
2 |Hu(x)|M(x)−

1
2

)p
dx

) 1
p

,

under the constraint C(M) =

∫

Ω
d(x) dx = N . The constraint on the complexity notably avoids

the trivial solution where all (hi)i=1,n are zero which provides a null error.

Contrary to a discrete analysis, this problem can be solved globally by using a calculus of

variations that is well-defined on the space of continuous meshes. In [Loseille 2011b], it is proved

that Problem (1.27) admits a unique solution MLp = (MLp(x))x∈Ω which is locally defined by:

MLp(x) = N 2
n

(∫

Ω
det(|Hu(x̄)|)

p
2p+n dx̄

)− 2
n

det(|Hu(x)|)
−1

2p+n |Hu(x)| . (1.28)

Moreover, it verifies the following properties:

• MLp is unique

• MLp is locally aligned with the eigenvectors basis of Hu and has the same anisotropic

quotients as Hu

• MLp provides an optimal explicit bound of the interpolation error in Lp norm:

‖u− πMLpu‖Lp(Ω) = nN− 2
n

(∫

Ω
det (|Hu|)

p
2p+n

) 2p+n
np

. (1.29)

• For a sequence of continuous meshes having an increasing complexity with the same orienta-

tion and anisotropic quotients (MN
Lp)N=1...∞, the asymptotic order of convergence verifies:

‖u− πMN
Lp
u‖Lp(Ω) ≤

Cst

N 2/n
. (1.30)

Relation (1.30) points out a global second order of mesh convergence.

Anisotropic mesh adaptation is a non-linear problem, therefore an iterative procedure is

required to solve this problem. For stationary simulations, an adaptive computation is carried

out via a mesh adaptation loop inside which an algorithmic convergence of the mesh-solution

couple is sought. This mesh adaptation loop is schematized in Algorithm 1 where H, S and M

denote respectively meshes, solutions and metric fields.



Algorithm 1 Feature-based mesh adaptation loop for steady flows

Input : Initial mesh and solution (H0,S0
0 ) and set targeted complexity N

For i = 0, nadap

1. (Si)= Compute solution with the flow solver from pair (Hi,S0
i );

If i = nadap break;

2. (MLp,i) = Compute metric (MLp) according to selected error estimate from (Hi,Si);

3. (Hi+1) = Generate a new adapted mesh form pair (Hi,MLp,i);

4. (S0
i+1) = Interpolate new initial solution from (Hi+1,Hi,Si);

End For

Before detailing the different steps of the numerical algorithm, let’s focus on two major

difficulties of it:

• The solution u of the problem is not known. We only can access to the numerical approxi-

mation uh.

• As for all numerical simulations, a control of the approximation error u− uh is expected.

We demonstrate how this problem can be simplified to the specification of a mesh that is optimal

for the interpolation error. We describe how the interpolation theory is applied when only uh,

a piecewise linear approximation of the solution, is known. Indeed, in this particular case, the

interpolation error estimate is not applied directly to u nor to uh.

Let V 1
h be the space of continuous piecewise linear function associated with a given meshH of

domain Ωh. We denote by Rh a reconstruction operator applied to numerical approximation uh.

This reconstruction operator can be either a recovery process [Zienkiewicz 1992], a hierarchical

basis [Bank 1993], or an operator connected to an a posteriori estimate [Huang 2010a]. We

assume that the reconstruction Rhuh is better than uh for a given norm ‖.‖ in the sense that:

‖u−Rhuh‖ ≤ α‖u− uh‖ where 0 ≤ α < 1 .

From the triangle inequality, we deduce:

‖u− uh‖ ≤
1

1− α‖Rhuh − uh‖ .

If reconstruction operator Rh has the property: ΠhRhφh = φh , ∀φh ∈ V 1
h , the approximation

error of the solution can be bounded by the interpolation error of reconstructed function Rhuh:

‖u− uh‖ ≤
1

1− α‖Rhuh −ΠhRhuh‖ .



From previous section, if HLp is an optimal mesh to control the interpolation error in Lp norm

of Rhuh, then the following upper bound of the approximation error can be exhibited:

‖u− uh‖Lp(Ωh) ≤
nN− 2

n

1− α

(∫

Ω
det (|HRhuh(x)|)

p
2p+n dx

) 2p+n
np

.

Remark 2. It is important to note that MLp defined by Relation (1.35) applied to Rhuh does

not allow us to generate an optimal adapted mesh to control the approximation error ‖u− uh‖.
If all assumptions are verified then we have an upper bound which allows that such generated

adapted meshes controls the approximation error.

Now, we details each step of the mesh adaptation algorithm.

Step 1 : The flow solver Wolf . All the numerical simulations of this thesis are concerned

with the compressible Euler equations. Results on Navier-Stokes equation are not discussed in

this thesis. Assuming that the gas is perfect, inviscid and that there is no thermal diffusion,

the 3D compressible Euler equations for mass, momentum and energy conservation read:

∂W

∂t
+∇ · F(W ) = 0, (1.31)

where W is the vector of conservative variables and F is the convection operator F(W ) =

(F1(W ),F2(W ),F3(W )) with:

W =




ρ

ρu

ρv

ρw

ρE



, F1(W ) =




ρu

ρu2 + p

ρuv

ρuw

(ρE + p)u



, F2(W ) =




ρv

ρuv

ρv2 + p

ρvw

(ρE + p)v



, F3(W ) =




ρw

ρuw

ρvw

ρw2 + p

(ρE + p)w



.

We have denoted by ρ the density, u = (u, v, w) the Cartesian velocity vector, E = T + ‖u‖2
2

the total energy and p = (γ − 1)ρT the pressure with γ = 1.4 the ratio of specific heats and

T the temperature.

To discretize convective terms Wolf uses the mixed-element-volume (MEV) approach

[Alauzet 2010a] initiated by Dervieux et al. in [Stoufflet 1987, Fezoui 1989, Debiez 2000,

Cournède 2006]. It is a vertex-centered finite volume scheme applied to tetrahedral unstruc-

tured meshes. This scheme uses a particular edge-based formulation with upwind elements.

For the following, it is important to specify the considered semi-discretization. The system of

partial differential equations can be written in semi-discrete form for a vertex Pi as:

|Ci|
dWi

dt
= R(Wi) ,



where Ri is the residual, i.e., the discretization of the convective operator using an approximate

Riemann solver and of the boundary conditions, and |Ci| is the area/volume of the dual finite

volume cell associated with Pi.

For an explicit time discretization, the semi-discretized system reads:

|Ci|
δtni

(
Wn+1
i −Wn

i

)
= R(Wn

i )

where Wn is the state at iteration n and δtni is the local time step at iteration n.

For implicit time discretization, we have :

|Ci|
δtni

(
Wn+1
i −Wn

i

)
= R(Wn+1

i )

which is linearized as:

( |Ci|
δtni

Id −
∂R

∂W
(Wn

i )

)(
Wn+1
i −Wn

i

)
= R(Wn

i )

where
∂R

∂W
(Wn

i ) contributes the ith line of the matrix. We then rewrite the linearized system in

compact form for all vertices in the mesh as:

An δWn = Rn

where An =
|C|
δtn

I− ∂Rn

∂W
and δWn = Wn+1 −Wn .

Step 2 : The metric module Metrix computes the continuous mesh and performs the met-

ric field gradation [Alauzet 2010b]. The optimal continuous mesh MLp(u) minimizing Prob-

lem (1.27) is given in (1.35). The metric gradation field is used to smooth and control the

variation of the obtained optimal continuous mesh.

Step 3 : The local adaptive remesher Feflo.a generates an unit mesh with respect to a

prescribed metric field. Feflo.a is a classical metric-based local remesher [Loseille 2017] based

on a unique cavity operator which is a generalization of standard operators (insertion, collapse,

swap of edges and faces, vertex smoothing) [Loseille 2013]. The cavity operator also performs

combinations of standard operators in a very natural way. To this end, modifications on the

cavity are done to either favor a modification, that would have been rejected with the standard

operator, or to improve the final quality by combining automatically many standard operators

at once. One important capability is to adapt the volume and the surface mesh in a coupled

way so that a valid 3D mesh is always guaranteed on output.



Step 4 : The software component Interpol to project linearly the solution defined on

the previous mesh onto the new mesh. The first step is to localize the new vertices in the

element of the previous mesh. The second step consists in interpolating linearly the solution

using the barycentric coordinates. More details on the interpolation stage can be obtained in

[Alauzet 2010b, Alauzet 2016].

Goal-oriented mesh adaptation for steady flows

In the previous paragraph, metric-based anisotropic mesh adaptation method is limited to

the minimization of some interpolation errors for some solution fields called sensors and did not

take into account the PDE of the considered problem. If, for many applications, this simplifying

standpoint is an advantage, there are also many applications where Hessian-based adaptation is

far from optimal regarding the way the degrees of freedom are distributed in the computational

domain. Indeed, Hessian-based methods aim at controlling the interpolation error but this

purpose is not often so close to the objective that consists in obtaining the best solution of a

PDE. This is particularly true in many engineering applications where a specific function needs

to be accurately evaluated : lift, drag, heat flux, pressure field, etc. Hessian-based adaptation

has not been especially designed to address this issue.

The objective in goal-oriented adaptation is to minimize the error on the considered func-

tional j, details can be found in [Loseille 2010b] in the case of compressible Euler equations.

For simplicity’s sake boundary terms are not mentioned in the following. The approximation

Algorithm 2 Goal-oriented mesh adaptation loop for steady flows

Input : Initial mesh and solution (H0,S0
0 ) and set targeted complexity N

For i = 1, nadap

1. (Si)= Compute solution with the flow solver from pair (Hi,S0
i );

If i = 1 break;

2. (S∗i )= Compute adjoint solution with the flow solver from (Hi,Si, ji);

3. (Mgo,i) = Compute metric (Mgo) according to selected error estimate from (Hi,Si,S∗i );

4. (Hi+1) = Generate a new adapted mesh form pair (Hi,Mgo,i);

5. (S0
i+1) = Interpolate new initial solution from (Hi+1,Hi,Si);

End For



error on the functional j(W ) is given by the following error estimate:

|j(W )− j(Wh)| ≤
∫

Ωh

|∇W ∗| |F(W )−ΠhF(W )|dΩh (1.32)

where W ∗ is the adjoint state. We observe that this estimate is expressed in term of the

interpolation error in L1 norm of the Euler fluxes applied to the continuous solution W weighted

by the gradient of the continuous adjoint state W ∗.

The goal-oriented mesh adaptation loop is given by Algorithm 2. There is one more step to

compute the adjoint state. Let us detail the steps 2 and 3 as all other steps listed earlier stay

the same :

Step 2 : The adjoint flow solver Wolf . Let j(W ) be the considered output functional.

Using the same notations as in the previous section, the adjoint state W∗ is solution of the

following linear system:

A∗W∗ =
∂j

∂W
(W)

where A∗ is the transpose of the jacobian matrix: A∗ =
(
−∂Rn

∂W

)T
.

Step 3 : The metric module Metrix computes the following continuous goal-oriented optimal

metric and performs the metric field gradation. Using the same reasoning as for the error

estimator for a sensor but applied to the goal-oriented error estimate (1.32), the error estimate

is rewritten in a continuous form:

|j(W )− j(Wh)| ≈ Ego(M) =

∫

Ω
|∇W ∗| · |F(W )− πMF(W )| dΩ , (1.33)

where M = (M(x))x∈Ω is a continuous mesh and πM is the continuous linear interpolate. We

are now focusing on the following (continuous) mesh optimization problem:

Find Mgo such that Ego(Mgo) = min
M

∫

Ω
|∇W ∗| · |F(W )− πMF(W )| dΩ

= min
M

∫

Ω
trace

(
M− 1

2 (x) |Hgo(x)|M− 1
2 (x)

)
dx

under the constraint C(M) = N and where we have introduced the goal-oriented Hessian-metric

given in 3D by

|Hgo(x)| =
5∑

j=1

(∣∣∣∣∂W ∗j∂x
(x)

∣∣∣∣ · ∣∣H(F1(Wj))(x)
∣∣+ ∣∣∣∣∂W ∗j∂y

(x)

∣∣∣∣ · ∣∣H(F2(Wj))(x)
∣∣+ ∣∣∣∣∂W ∗j∂z

(x)

∣∣∣∣ · ∣∣H(F3(Wj))(x)
∣∣) .

(1.34)

The formulation of the optimal goal-oriented continuous mesh Mgo = (Mgo(x))x∈Ω is locally

given by:

Mgo(x) = N 2
n

(∫

Ω
det(|Hgo(x̄)|) 1

2+n dx̄

)− 2
n

det(|Hgo(x)|)
−1
2+n |Hgo(x)| . (1.35)



Note that we have the same expression as for the feature-based case in L1 norm where the

Hessian of the sensor has been replaced by the goal-oriented Hessian-metric.

Remark 3.

- To minimize the function j we establish a continuous optimisation. But it’s today impossible

to solve this problem in a continuous way. To overcome this problem, we choose to discretize

it. The nodal gradients of the state function and of the adjoint function are recovered from

the gradients to the elements using a L2 local projection and Clément’s interpolation opera-

tor [Clément 1975].

- The details of the computation for goal-oriented mesh adaptation will be detailed in chapter 5.

- In this document, the metric optimization is defined as continuous and is always discretized

to be solved.

1.2.2 Unsteady mesh adaptation

Feature-based mesh adaptation for unsteady flows

In the context of time-dependent problems, the error analysis must control spatial and temporal

error. In [Olivier 2011a, Alauzet 2016], time discretization errors are not taken into account but

the focus was made on a space-time analysis of the spatial error. In other words, the work seeks

for the optimal space-time mesh controlling the space-time spatial discretization error. For

the type of considered simulations, the assumption is made that as an explicit time scheme

is used for time advancing, then the error in time is controlled by the error in space under

CFL condition. This has been demonstrated under specific conditions in [Alauzet 2007]. As

long as this hypothesis holds, the spatial interpolation error provides a fair measure of the

total space-time error of the discretized unsteady system. Notably in the case of implicit time

advancing solvers, the analysis would have to be completed to take into account the temporal

discretization error, as is done in [Coupez 2013], which defines the optimal time discretization

(i.e., time steps).

Our goal is to solve an unsteady PDE which is set in the computational space-time domain

Q = Ω× [0, T ] where T is the (positive) maximal time and Ω ⊂ Rn is the spatial domain. Let

Πh be the usual P 1 projector, we extend it to time-dependent functions:

(Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0, T ] . (1.36)

The considered problem of mesh adaptation consists in finding the space-time mesh H of Ωh ×
[0, T ] that minimizes the space-time linear interpolation error u−Πhu in Lp norm. The problem

is thus stated in an a priori way:

Find HLp having Nst vertices such that ELp(HLp) = min
H
‖u−Πhu‖Lp(Ωh×[0,T ]) . (1.37)



This problem is ill-posed and has far too many unknowns to be solved directly, as was explained

previously. So it is rewritten in the continuous mesh framework under its continuous form:

Find MLp = (MLp(x, t))(x,t)∈Q such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω×[0,T ]) , (1.38)

under the space-time constraint:

Cst(M) =

∫ T

0
τ(t)−1

(∫

Ω
dM(x, t) dx

)
dt = Nst , (1.39)

where τ(t) is the time step used at time t of interval [0, T ]. Introducing the continuous inter-

polation error, we recall that we can write the continuous error model as follows:

ELp(M) =

(∫ T

0

∫

Ω
trace

(
M− 1

2 (x, t)|Hu(x, t)|M− 1
2 (x, t)

)p
dx dt

) 1
p

, (1.40)

where Hu is the Hessian of sensor u. To find the optimal space-time continuous mesh, Prob-

lem (3.3-3.4) is solved in two steps: first, a spatial minimization is done for a fixed t, then a

temporal minimization is performed where the time step τ is specified by the user as a func-

tion of time t → τ(t). It leads to the expression of the optimal space-time metric MLp for a

prescribed time step τ(t) [Alauzet 2016]:

MLp(x, t) = N
2
n
st

(∫ T

0
τ(t)

− 2p
2p+n K(t)dt

)− 2
n

τ(t)
2

2p+n (det |Hu(x, t)|)−
1

2p+n |Hu(x, t)| , (1.41)

where K(t) =

(∫

Ω
(det |Hu(x, t)|)

p
2p+n dx

)
.

The computation of the optimal instantaneous continuous mesh given by Relation (3.12)

involves a global normalization term which requires the knowledge of quantities over the whole

simulation time frame. Thus, the complete simulation must be performed before evaluating any

space-time continuous mesh. To solve this issue, we suggest to consider a global fixed-point

mesh adaptation algorithm covering the whole time frame [0, T ]. This iterative algorithm is

used to converge the non-linear mesh adaptation problem, i.e., converging the mesh-solution

couple. This is also a way to predict the solution evolution and to adapt the mesh accordingly.

Moreover, the previous analysis provides the optimal size of the adapted meshes for each time

level. Hence, this analysis requires the mesh to be adapted at each flow solver time step which

is inconceivable in practical applications. We propose to use a coarse adapted discretization of

the time axis. The basic idea consists in splitting the simulation time frame [0, T ] into nadap

adaptation sub-intervals:

[0, T ] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap
= T ] ,



and to keep the same adapted spatial mesh for each time sub-interval. On each sub-interval,

the mesh is adapted to control the solution accuracy from ti to ti+1. Consequently, the time-

dependent simulation is performed with nadap different adapted meshes. This drastically reduces

the number of remeshings during the simulation, hence the number of solution transfers. The

unsteady mesh adaptation algorithm is presented in Algorithm 3.

We now present the modified or new steps involve for time-accurate mesh adaptation.

Step 1 (a) : The software component Interpol to project the solution defined on the

previous mesh onto the new mesh between each sub-interval. This stage becomes crucial in the

context of unsteady problems as error due to the interpolation step may accumulate throughout

the simulation. To minimize the error and to be consistant with the considered PDE (equa-

tions of conservation), a P 1-exact conservative interpolation is considered. More details on the

conservative interpolation stage can be obtained in [Alauzet 2010c, Alauzet 2016].

Step 1 (b) : The flow solver Wolf . The main difference between the steady and the

unsteady case is that a global time stepping is considered for time-dependent problems. If we

consider an explicit first-order time integration scheme, then the semi-discrete unsteady model

Algorithm 3 Feature-based mesh adaptation for unsteady flows

Input : Initial mesh and solution (H0,S0
0 ) and set targeted space-time complexity Nst

# Fixed-point loop to converge the global space-time mesh adaptation problem

For j = 1, nptfx

# Adaptive loop to advance the solution in time on time frame [0, T ]

1. For i = 0, nadap

(a) (Sj0,i)= Interpolate conservatively next sub-interval initial solution from pair (Hji−1,Sji−1,Hji );
(b) (Sji )= Compute solution with the flow solver on sub-interval from pair (Hji ,S0

i );

(c) |HL1 |ji = Compute sub-interval Hessian-metric from solution sample (Hji , {Sji (k)}nkk=1);

EndFor

2. Cj = Compute space-time complexity from all Hessian metrics {|HL1 |ji}
nadap

i=1

3. {Mj
Lp,i}

nadap

i=1 = Compute all sub-interval metrics according to error estimate from

(Cj , {|HL1 |ji}
nadap

i=1 );

4. {Hj+1
i }nadap

i=1 = Generate all sub-interval adapted meshes from pair ({Hji ,Mj
Lp,i}

nadap

i=1 );

End For



at time tn is:

|Ci|
Wn
i −Wn−1

i

δtn
= R(Wn−1

i ) .

Step 3 : The metric module Metrix . We extend the previous analysis to the fixed-point

mesh adaptation algorithm context - described in Algorithm 3 - where the simulation time

interval [0,T] is split into nadap sub-intervals [ti−1, ti] for i = 1, .., nadap. Each spatial mesh Mi

is then kept constant during each sub-interval [ti−1, ti]. We could consider this partition as a

time discretization of the mesh adaptation problem. Following the previous section analysis, we

deduce the optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap

defined locally by:

Mi
Lp(x) = N

2
n
st

(nadap∑

j=1

Kj
(∫ tj

tj−1

τ(t)−1dt
) 2p

2p+n

)− 2
n(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+n

(det Hi
L1(x))−

1
2p+n Hi

L1(x)

(1.42)

and the associated optimal space-time error:

ELp(MLp) = nN−
2
n

st

(nadap∑

i=1

Ki
(∫ ti

ti−1

τ(t)−1dt
) 2p

2p+n

) 2p+n
np

, (1.43)

where Ki =

(∫

Ω

(
det Hi

L1(x)
) p

2p+n dx

)
and the Hessian-metric Hi

L1 on sub-interval i is the

time-average of the Hessian of the sensor u:

Hi
L1(x) =

∫ ti

ti−1

|Hu(x, t)|dt . (1.44)

Remark 4. The mesh adaptation with unsteady fixed-point method does not converge to the 2nd

order for singularities because of the uniform time step. Multi-rate methods as in [Itam 2017]

can be a solution to overcome the problem. An other issue is to modify he number of sub-intervals

during the adaptive loop [Alauzet 2016].

Goal-oriented mesh adaptation for unsteady flows

We have seen the ”in-house” goal-oriented mesh adaptation technique for steady problems and

the feature-based mesh adaptation for unsteady flows. Now, let’s turn to the goal-oriented

mesh adaptation for unsteady flows.

The objective in goal-oriented adaptation for unsteady problems is to minimize the error on

the functional j(W ) which is now integrated in time. An a priori error analysis [Belme 2012]

gives the following error estimate for the compressible Euler equations where we have again

neglected the boundary terms for the sake of simplicity :

|j(W )− j(Wh)| =
∫ T

0

∫

Ω

∣∣∣∣
∂W ∗

∂t

∣∣∣∣ |W −ΠhW |dΩdt +

∫ T

0

∫

Ω
|∇W ∗| · |F(W )−ΠhF(W )|dΩdt

(1.45)



The Algorithm 4 is further complicated by the fact that the unsteady adjoint solver must be

computed backward in time (eg. step 2) after computing the solution over the simulation time

frame.

Algorithm 4 Goal-Oriented Mesh Adaptation for Unsteady Flows

Input : Initial mesh and solution (H0,S0
0 ) and set targeted space-time complexity Nst

# Fixed-point loop to converge the global space-time goal-oriented mesh adaptation problem

For j = 1, nptfx

# Adaptive loop to compute forward the solution state in time on time frame [0, T ]

1. For i = 1, nadap

(a) Sj0,i = Interpolate conservatively next sub-interval initial solution from (Hji−1,Sji−1,Hji );
(b) Sji = Compute solution on sub-interval from pair (Hji ,Sj0,i);

EndFor

# Adaptive loop to compute backward the adjoint state in time on time frame [T, 0]

2. For i = nadap, 1

(a) (S∗)ji = Interpolate previous sub-interval final adjoint state from (Hji ,Hji+1, (S∗0 )ji+1);

(b) (S∗0 )ji = Compute backward adjoint state on sub-interval from (Hji ,Sji , (S∗)ji );
(c) |Hgo,L1 |ji = Compute sub-interval goal-oriented Hessian-metric from sample

(Hji , {Sji (k), (S∗)ji (k)}nkk=1);

EndFor

3. Cj = Compute space-time complexity from all goal-oriented Hessian-metrics {|Hgo,L1 |ji}
nadap

i=1 ;

4. {Mj
i}
nadap

i=1 = Compute all sub-interval unsteady metrics (Cj , {|Hgo,L1 |ji}
nadap

i=1 );

5. {Hj+1
i }nadap

i=1 = Generate all sub-interval adapted meshes ({Hji , Mj
i}
nadap

i=1 );

EndFor

Now, we describe the new steps of the unsteady goal-oriented mesh adaptation algorithm

which are the computation of the unsteady adjoint state and the unsteady goal-oriented error

estimate.

Step 2 : The unsteady adjoint flow solver Wolf . Let j(W ) be the considered output

functional. using the same notations as previously, the unsteady adjoint state W∗ is solution

of:

−∂W∗

∂t
+ A∗W∗ =

∂j

∂W
(W)

where A∗ is the transpose of the jacobian matrix: A∗ =
(
−∂Rn

∂W

)T
. If we consider an explicit

first-order time integration scheme, then the semi-discrete unsteady adjoint model at time tn



is:

|Ci|
W ∗,n−1
i −W ∗,ni
−δtn =

∂j

∂W
(Wn−1

i ) +
(
W ∗,ni

)T ∂R

∂W
(Wn−1

i ) .

We notice that the computation of the unsteady adjoint state at time tn−1 requires the knowledge

of the adjoint state at time tn and the solution state at time tn−1. Therefore, the solution state

must be known for the whole simulation time frame [0, T ] to be able to compute the adjoint

state.

Step 4 : The metric module Metrix . Following the analysis for the steady goal-oriented

mesh adaptation and for the unsteady mesh adaptation, the continuous mesh adaptation prob-

lem to solve is:

Find Mgo such that Ego(Mgo) = min
M

∫ T

0

∫

Ω

(∣∣∣∣
∂W ∗

∂t

∣∣∣∣ |W − πMW |+ |∇W ∗| · |F(W )− πMF(W )|
)

dΩdt

= min
M

∫ T

0

∫

Ω

trace
(
M− 1

2 (x, t) |Hgo(x, t)|M−
1
2 (x, t)

)
dxdt

under the space-time constraint:

Cst(M) =

∫ T

0
τ(t)−1

(∫

Ω
dM(x, t) dx

)
dt = Nst ,

where τ(t) is the time step used at time t of interval [0, T ]. The optimal continuous mesh is

defined on the space time domain Q = Ω × [0, T ]: Mgo = (Mgo(x, t))(x,t)∈Q and the unsteady

goal-oriented Hessian-metric Hgo in 3D is

|Hgo(x, t)| =
5∑

j=1

(∣∣∣∣
∂W ∗j
∂t

(x, t)

∣∣∣∣ ·
∣∣H(Wj)(x, t)

∣∣+

∣∣∣∣
∂W ∗j
∂x

(x, t)

∣∣∣∣ ·
∣∣H(F1(Wj))(x, t)

∣∣

+

∣∣∣∣
∂W ∗j
∂y

(x, t)

∣∣∣∣ ·
∣∣H(F2(Wj))(x, t)

∣∣+

∣∣∣∣
∂W ∗j
∂z

(x, t)

∣∣∣∣ ·
∣∣H(F3(Wj))(x, t)

∣∣
)
.

As for the feature-based unsteady mesh adaptation, solving the above optimization problem

will provide the optimal instantaneous adapted mesh for each time level. Again, we split the

simulation time frame into nadap sub-intervals and we derive an optimal spatial mesh for each

sub-interval. The same space-time error analysis provides the expression of the optimal unsteady

goal-oriented mesh for each sub-interval Mgo =
{
Mi

go

}
i=1,..,nadap

defined locally by:

Mi
go(x) = N

2
n
st

(nadap∑

j=1

Kj
(∫ tj

tj−1

τ(t)−1dt
) 2p

2p+n

)− 2
n(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+n

(det Hi
go,L1(x))−

1
2p+n Hi

go,L1(x)

(1.46)

where Ki =

(∫

Ω

(
det Hi

go,L1(x)
) p

2p+n
dx

)
and the Hessian-metric Hi

go,L1 on sub-interval i is

the time-average of the unsteady goal-oriented Hessian-metric:

Hi
go,L1(x) =

∫ ti

ti−1

|Hgo(x, t)| dt . (1.47)



As for the steady case, we notice that we have the same expression as for the feature-based case

where the Hessian of the sensor has been replaced by the unsteady goal-oriented Hessian-metric.

The associated optimal space-time error is:

Ego(Mgo) = nN−
2
n

st

(nadap∑

i=1

Ki
(∫ ti

ti−1

τ(t)−1dt
) 2p

2p+n

) 2p+n
np

. (1.48)

1.3 Mesh adaptation for moving geometries

Given that feature-based and goal-oriented anisotropic mesh adaptations have proved their

efficiency to reduce the CPU time of steady and unsteady simulations while improving their

accuracy it has become evident to extend the theory to time-dependent problems with moving

geometries. Yet this task is far from straightforward. In [Barral 2015] time-accurate anisotropic

mesh adaptation for 3D time-dependent problems involving body-fitted moving geometries has

been implemented. It has only considered feature-based error estimate. Let us present this

work in this section.

1.3.1 Mesh adaptation problem

The feature-based unsteady mesh adaptation cannot directly be extended to moving mesh

simulations because it does not take into account the movement of the mesh. Indeed, the error

analysis from which the optimal continuous mesh is deduced, assumes that the mesh is constant

in time inside a sub-interval, therefore it does not take into account the local deformation of the

mesh which necessarily impacts local errors. As regards the discrete representation of the metric

field for moving meshes, two options are available. The first approach is an Eulerian approach:

a metric is associated with a fixed position in space, thus the metric field is a ”background” field

evolving in space and time but independently from the moving mesh. The second approach is

a Lagrangian approach, which is considered in this work, in that case a metric is attached to a

moving vertex and moves with it, i.e., we haveM(x(t), t) which we will writeM(x(t)) in what

follows.

In the context of dynamic meshes, the optimization problem is still given by Relations (3.3)

and (3.4) of the unsteady featured-based mesh adaptation problem. But it is not obvious that

for dynamic meshes problem, the space-time error model is given by Relation (1.40).

To complete our reflection, the ALE framework is modelled as follow (see Figure 1.7). The

simulation time frame [0, T ] is split into nadap adaptation time steps (in green in the Figure 1.7)

:

[0, T ] =

nadap⋃

i=0

[ti, ti+1]



Figure 1.7: Notations and mapping in ALE framework.

As for the fixed-mesh case, to perform the space-time Lp error analysis with time sub-

intervals, we first do a spatial minimization for a given sub-interval. We consider the ith sub-

interval [ti, ti+1]. Given the continuous mesh spatial complexity N i, we seek for the optimal

Arbitrary-Lagrangian-Eulerian (ALE) continuous mesh Mi,ALE
Lp =

(
Mi,ALE

Lp (x(t))
)
x∈Ω(t)

for the

whole sub-interval which is solution of the following problem:

Ei,ALE
Lp (Mi,ALE

Lp ) = min
Mi

∫ ti+1

ti

(∫

Ω(t)
trace

(
(Mi)−

1
2 (x(t)) |Hu(x(t), t)| (Mi)−

1
2 (x(t))

)p
dx(t)

)
dt

such that C(Mi) = N i. Note that the continuous mesh spatial complexity is constant on this

sub-interval. We name it optimal ALE continuous mesh to stress that the continuous mesh is

dynamic (i.e., it evolves in time), it represents a moving adapted mesh and it is coupled with

an ALE flow solver. And this is the heart of the problem : Mi has a dependence in time ! Thus

we cannot move the integral over time into the trace to make the time-averaged Hessian-metric

appear like in the fixed mesh analysis. The spatial minimization for a given sub-interval can

not be done directly.

To solve this issue while preserving the adaptation of the mesh despite the mesh deformation,

we are now looking for a mesh at the beginning ti of each sub-interval [ti, ti+1] that will be

adapted to the solution at each time-step of this sub-interval once moved with the prescribed

mesh displacement. The idea which is explained in the next paragraph is to exhibit the optimal

instantaneous ALE continuous mesh minimizing the interpolation error in Lp norm at a given

time t ∈ [ti, ti+1]. We shortly call it the ALE metric field because it takes into account the mesh

deformation. It is then possible to map this continuous moving mesh of Ω(t), t ∈ [ti, ti+1], onto

a continuous mesh of Ω(ti). Thus, the error model can be written only on Ω(ti) and the spatial

minimization can be performed.



1.3.2 Optimal instantaneous ALE continuous mesh minimizing the interpo-

lation error in Lp norm: the ALE metric

The computational domain is time-dependent Ω(t) ⊂ R3 with t ∈ [0, T ]. The problem for one

time-step is the following. Let tn and tn+1 ( in red in the Figure 1.7) be two different times.

And let Ωn = Ω(tn) and Ωn+1 = Ω(tn+1) be the spatial domains at tn and tn+1 respectively.

Let’s note that generally Ωn 6= Ωn+1. We denote by d the given mesh displacement field and

xn = x(tn). Then, we want to find the optimal continuous mesh Mn,ALE
Lp = (Mn,ALE

Lp (xn))xn∈Ωn

defined on Ωn from which we will generate a mesh at time tn that, once moved with displacement

d, will be adapted to a sensor un+1 at time tn+1 on domain Ωn+1. We consider that un+1 is

a scalar sensor function, the extension to vector sensor functions being straightforward. The

resolution of this problem leads to the optimal instantaneous ALE continuous mesh defined on

Ωn minimizing the interpolation error of sensor un+1 in Lp norm at time tn+1 on Ωn+1 after

being deformed by displacement d. This ALE metric field involves the gradient of the mesh

transformation between tn and tn+1 to take into account the mesh deformation.

To give the result of the analysis involving spatial derivatives, it is very important to state

on which domain/mesh these derivatives are computed. To this end, the following notations

will be used:

• ∇n denotes the gradient operator performed on domain Ωn, i.e., computed on mesh Hn

• Hn+1 denotes the Hessian operator performed on domain Ωn+1, i.e., computed on mesh

Hn+1. As operator Hn+1 is always applied to sensor un+1 at time tn+1, simplified notation

Hn+1
u will stand for Hn+1[un+1]

• Mn+1
Lp [un+1] denotes the point-wise optimal Lp metric for sensor un+1 computed on domain

Ωn+1, i.e., on mesh Hn+1. Again, simplified notation Mn+1
Lp will stand for Mn+1

Lp [un+1]

• Mn+1
Lp = (Mn+1

Lp (x))x∈Ωn+1 is the associated continuous mesh with complexity C(Mn+1
Lp ) =

N n+1.

Now, let us introduce φ the mapping between domains Ωn and Ωn+1:

φ : Ωn −→ Ωn+1

xn 7−→ xn+1 = φ (xn) ,
(1.49)

and d the corresponding mesh displacement field, such that:

xn+1 = φ(xn) = xn + d(xn) . (1.50)

Since φ is a diffeomorphism, we have, for any infinitesimal vector δxn ∈ Ωn:

δxn+1 =
[
∇nφ(xn)

]T
δxn with ∇nφ(xn) = I +∇nd(xn) , ∀xn ∈ Ωn . (1.51)



Finally, a .̂ operator is defined which transports a quantity from Ωn+1 to Ωn. We note Ĥn+1
u

the Hessian of un+1 computed on Ωn+1 and transported on domain Ωn. This mathematically

writes:

Ĥn+1
u : Ωn −→ R

xn 7−→ Hn+1
u (φ(xn)) = Ĥn+1

u (xn) .

To give the expression of the optimal continuous mesh, the demonstration of the result is given

in [N. Barral 2017], we introduce the ALE Hessian-metric:

|Hn,ALE
u (xn)| =

∣∣det∇nφ(xn)
∣∣ 1p
(
∇nφ(xn) |Ĥn+1

u (xn)|
[
∇nφ(xn)

]T )
, (1.52)

and the expression of the optimal continuous mesh in 3D defined on Ω(tn) is:

Mn,ALE
Lp (xn) =

(
Nn+1

) 2
3

(∫

Ωn

(
det |Hn,ALE

u (x̄n)|
) p

2p+3 dx̄n
)− 2

3 (
det |Hn,ALE

u (xn)|
)− 1

2p+3 |Hn,ALE
u (xn)| ,

(1.53)

We find that we have the same expression as the optimal mesh in the stationary case (cf.

Relation (1.35)) the absolute value of the Hessian of the sensor is replaced by the ALE Hessian-

metric of the sensor.

1.3.3 Space-time error analysis for dynamic meshes

Section 1.3.2 provides the optimal instantaneous ALE continuous mesh which takes into account

the mesh deformation. Now, as precised previously, we can extend the space-time error analysis

with time sub-intervals done for fixed meshes to the case of dynamic meshes. The simulation

time interval is split into nadap sub-intervals. On each sub-interval, the mesh size (number of

vertices) remains constant, but the mesh is deformed to follow the geometry displacement. At

each time-step of the sub-interval, we want the moved mesh to be adapted to the current sensor.

The key idea to perform the error analysis is to seek for the optimal dynamic continuous mesh at

the beginning of the sub-interval, this continuous mesh being optimal for the whole sub-interval

when deformed, instead of seeking for the expression of the optimal continuous mesh at each

instant, i.e., as a function of the time.

To perform the spatial minimization for a sub-interval, we consider the ith sub-interval

[ti, ti+1]. Given the continuous mesh spatial complexity N i, we seek for the optimal ALE

continuous mesh Mi,ALE
Lp =

(
Mi,ALE

Lp (x(t))
)
x∈Ω(t)

for the whole sub-interval which is solution

of the following problem:

Ei,ALE
Lp (Mi,ALE

Lp ) = min
Mi

∫ ti+1

ti

(∫

Ω(t)

trace
(

(Mi)−
1
2 (x(t)) |Hu(x(t), t)| (Mi)−

1
2 (x(t))

)p
dx(t)

)
dt .

(1.54)



such that C(Mi) = N i. The continuous mesh spatial complexity is constant on this sub-interval.

To remove the time dependency of continuous mesh Mi, we use the optimal instantaneous ALE

continuous mesh. Indeed, continuous mesh
(
Mi(x(t))

)
x∈Ω(t)

can be mapped back to Ω(ti) using(
Mi,ALE(x(ti))

)
x∈Ω(ti)

where φ maps Ω(ti) onto Ω(t). The interpolation error for each time t

can be re-written at time ti, see [N. Barral 2017]. As we seek for the dynamic continuous mesh

at time ti which is optimal to control the interpolation error for the whole sub-interval, we can

recast Error Model (1.54) into the following error model where the metric is independent of the

time:

Ei,ALE
Lp (Mi) =

∫ ti+1

ti

(∫

Ω(ti)

trace
(

(Mi,ALE)−
1
2 (x(ti)) |Hi,ALE

u (x(ti))| (Mi,ALE)−
1
2 (x(ti))

)p
dx(ti)

)
dt ,

where the x(ti) are in domain Ω(ti). The time dependency in H i,ALE
u is hidden in mapping φ

and operator .̂ . The previous expression can now be written on Ω(ti):

Ei,ALE
Lp (Mi) =

∫

Ω(ti)
trace

(
(Mi,ALE)−

1
2 (x(ti)) Hi,ALE

u (x(ti)) (Mi,ALE)−
1
2 (x(ti))

)p
dx(ti) ,

where the time-average ALE Hessian-metric is: Hi,ALE
u (x(ti)) =

∫ ti+1

ti
|H i,ALE

u (x(ti))|dt.
The expression of the error has exactly the same form as in Problem (1.40), thus the spa-

tial minimization gives the same optimal metric where Hi
u is replaced by Hi,ALE

u . Then,

the temporal minimization leads to the following optimal space-time ALE continuous mesh

MALE
Lp = {Mi,ALE

Lp }i=1,..,nadap
:

Mi,ALE
Lp (x(ti)) = N

2
3
st

(nadap∑

j=1

Kj,ALE
(∫ tj+1

tj
τ(t)−1dt

) 2p
2p+3

)− 2
3

(∫ ti+1

ti
τ(t)−1dt

)− 2
2p+3

(det Hi,ALE
u (x(ti)))−

1
2p+3 Hi,ALE

u (x(ti)) ,

where the x(ti) are in domain Ω(ti). The ALE continuous mesh dependence in time is hidden

in Hi,ALE
u by means of mapping φ. This way, the mesh generated at time ti is adapted to

the solution at any time t > ti within the sub-interval [ti, ti+1] once moved with the mesh

deformation displacement. We stress that preserving the number of degrees of freedom when

moving the mesh is essential in this analysis.

1.3.4 Mesh adaptation algorithm

The optimal space-time ALE continuous mesh is designed to fit in the global fixed-point un-

steady mesh adaptation algorithm described in Algorithm 3. Nevertheless, a few things have

been modified to extend this algorithm to moving mesh ALE simulations. In fact, first, geome-

tries move so mesh must be moved with all the difficulties that this implies to preserve accuracy

and a good mesh quality all along the movement. All of this will be detailed more precisely in

this thesis.



1.4 Conclusion

This first chapter has provided the basic wide background required by this thesis. It relies on

the continuous mesh framework to exhibit an analytical expression of the optimal adapted mesh.

We observe that for the steady and the unsteady cases we have always the same expression of

the optimal mesh, the difference in the error estimates resides in the choice of the Hessian-metric

which is simply the Hessian of the sensor for the simplest case (eg. steady feature-based mesh

adaptation) or more complex combination of Hessian-metric for the other cases.

All the improvements achieved over the theories presented here will be mentioned through-

out the dissertation as well as the newest developments regarding goal-oriented adaptation for

moving meshes and adjoint solver computations for moving geometries. To this end, the main

difficulties of this work are the extension of the unsteady adjoint solver in the context of the

moving geometries and the goal-oriented error estimate in this context.

The main contributions of this thesis are:

• the definition, the implementation and the validation of implicit time integration scheme for

the ALE flow solver (Chapter 2),

• the completion with respect to several steps for the unsteady mesh adaptation for moving

geometries which complement thesis [Barral 2015] (Chapter 3). In particular, the importance

to update the ALE metric in the flow solver to govern the mesh optimizations during the

moving mesh algorithm,

• the development of the unsteady adjoint solver in the ALE framework which requires a

backward in time moving mesh algorithm consistent with the forward in time one (Chapter

4)

• the time accurate goal-oriented mesh adaptation for moving geometries and its associated

error estimate (Chapter 5).





Chapter 2

Resolution of Euler equations in the

ALE framework

Fluid-structure interaction (FSI) simulations are unavoidable for a wide variety of subjects.

They include simulation of aircraft flutters, ship propellers efficiency [Compère 2010], wind tur-

bines efficiency [Bazilevs 2011], 2D airbag deployment and balloon inflation [Saksono 2007],

releasing of a missile [Murman 2003, Hassan 2007]. In the acoustic field one can

cite tuning forks [Froehle 2014]. And in the field of biology, simulation of aortic

valves [Astorino 2009], cardiovascular systems [Formaggia 2009, Gerbeau 2014] or the simula-

tion of jellyfish [Etienne 2010] also use FSI simulation. In the case of fluid-structure interaction,

the framework is a movable solid whether stiff or deformable and a fluid whether gaseous or liq-

uid. But other problems such as icing [Tong 2014, Pendenza 2014] or blast studies [Baum 1996]

do not involve FSI but share a lot of common problems with FSI simulations. And all of

these applications require appropriate computational methodologies customized to the specific

context.

Three main types of methods are possible to treat the deformation of the domain : the

multiphasic method, the mesh deformation method or the fictional domain method. The mul-

tiphasic approach initially refers to a multiphase flow then any fluid flow consisting of more

than one phase or component. It is limited in the case of FSI simulation to the cases where the

solid and the fluid can be described by the same equations with variable physical parameters

assigned to each phase and advected during the movement of the interface. In general, the

Lagrangian approach for a fluid simulation is conceivable and gives good results for some mul-

tiphase issues for example in the industry of nuclear energy [Causin 2005], but when the flow

becomes complex, the interfaces displacement induces the deformation of the mesh and imposes

a remeshing of the complete domain. In a realistic state, this recall occurs in very short times.

An Eulerian formulation is so better suited to the simulation of a flow fluid. On the other hand,

in the context of the fluid-structure interaction, a formulation purely eulerian does not allow to

effectively monitor the phenomena at the fluid-solid interface and poses the question of the law

of behavior to be imposed in the cells cut by this interface.

The mesh deformation approach with an Arbitrary Lagrangian Eulerian (ALE) approach is



built to avoid these drawbacks. This method allows to ensure a smooth transition between

these two methods of modelling because the flow is calculated on a domain that is deformed

to follow the movement of the interface (Lagrangian close to the solid) the rate of deformation

does not follow that of the interior field. To our knowledge, this technique was introduced in

the 70s in [Hirt 1974, Hughes 1981, Donea 1982]. Since then, so many developments have been

made in that field that a complete list of them would not fit in this thesis. However, one may

in particular refer to [Nkonga 1994, Baum 1994, Farhat 2001, Formaggia 2004, Mavriplis 2006,

Hassan 2007, Hay 2014], which mainly focus on improving temporal schemes for ALE simula-

tions. When the displacement of the geometry is small enough, slightly deforming the original

mesh [Batina 1990, Degand 2002] can generally be acceptable. However, difficulties arise when

the displacement of the structure is too important: the mesh quickly becomes distorted and the

numerical error due to this distortion quickly becomes too great, until the elements of the mesh

finally become invalid, and the simulation has to be stopped. This is the major difficulty in this

method. The computational domain of the fluid varies depending on the time according to the

displacement of the solid. And even if the great development of computing capacities has made

it possible to run increasingly complex simulations, the engineers are still far from performing

such simulations, largely due to the difficulty of handling the moving meshes induced by large

deformations of the moving geometries. Specific strategies need to be developed to deal with

the displacement of moving boundary problems. For now, this method is interesting for large

displacements problems if the fluid domain is quite often remeshed or coupled with mesh adap-

tation.

It’s to get around the question of remeshing that the fictional domain methods have been de-

veloped also called embedded methods. These embedded boundary approach [Bruchon 2009,

Löhner 2001] uses meshes that are not body-fitted at all : the bodies are embedded in a fixed

grid, and techniques such as level-sets are used to recover their moving boundaries. The in-

convenient of this method especially is the low CFL condition for unstructured vertex-centered

method.

All three approaches have their own strengths and weaknesses. The chosen strategy in this

thesis to handle moving geometries is the body-fitted framework where the geometry is explic-

itly represented inside the mesh. This choice is motivated by its compliance with anisotropic

mesh adaptation and by the fact that body-fitted approaches are the more accurate methods

to simulate viscous flows (even if only inviscid flow will be considered in this thesis). For

body-fitted moving mesh simulations, the whole mesh must be deformed to follow the moving

boundaries. And for this strategy to be successful, it is essential to take into account this move

into the numerical scheme. The ALE framework is the chosen strategy in this work and it

has been studied using explicit time integration in [N. Barral 2017]. However, the use of an



explicit time integration schemes leads to an important restriction of the admissible time step

because it is specified by the size of small elements (usually the smallest element) in the mesh.

Explicit schemes are widely used for blast problems (violent flows), LES, aeroacoustic, ... to

control efficiently dissipation and dispersion errors that can spoil the overall solution accuracy

[J. Berland 2007, Löhner 2001, N. Gourdain 2009].

To reduce the time step restriction due to the CFL condition, improved time advancing

schemes exist such as multi-rate approaches [Constantinescu 2007, B. Seny 2014].However, the

efficiency these approaches is highly reduced when coupled with mesh adaptation because they

increase the time steps in regions where mesh adaptation generates a coarse mesh.

The other strategy to reduce the time step restriction due to the CFL condition is to use

implicit time integration schemes that are theoretically unconditionally stable (in practice, im-

plicit schemes have a larger region of stability compared to explicit schemes, leading to larger

time steps during time marching). These schemes are very attractive for quasi static flows,

aeronautical smooth flow simulations (vortex shedding, ...), viscous flows, ... But, to see a gain

in CPU time, the considered implicit time-step should be sufficiently large to overcome the over

cost of the implicit time integration without impacting the solution accuracy.

Section 2.1 presents a reminder of moving mesh strategy [Alauzet 2014]. Then, the ALE flow

solver Wolf is described, Section 2.2. Section 2.2.3 presents the different implicit time integration

approaches that have been developed in this thesis. And finally, comparaison between explicit

and implicit time integration schemes are provided in the section 2.4.

2.1 Mesh-connectivity-change moving mesh strategy

To handle moving boundaries, we adopt a body-fitted approach, with a single mesh: the inner

vertices of the mesh are moved following the moving boundaries to preserve the validity of mesh

(i.e. to prevent the mesh from getting tangled). Our strategy involves two main parts:

• Computing the mesh deformation: inner vertices are assigned a trajectory depending on the

displacement of the boundaries, and thus a position for future time steps.

• Optimizing the mesh: the trajectories computed in the mesh deformation phase are cor-

rected, and the connectivity of the mesh is modified to preserve the quality of the mesh.

This strategy, recalled below, has proven to be very powerful in 3D [Alauzet 2014], since

large displacement of complex geometries can be performed while preserving a good mesh quality

without any global remeshing (i.e. without ever generating a whole new mesh).

To our knowledge, very few examples of ALE solvers coupled with connectivity-change mov-

ing mesh techniques can be found in the literature. In [Kucharik 2008] a conservative interpola-

tion is proposed to handle the swaps. In [Guardone 2011, Olivier 2011b] an ALE formulation of



the swap operator is built. However, these studies are limited to 2D. In [Barral 2015] a method

for computations in 3D for moving geometries coupled with connectivity-change is done and

the numerical solver used is an explicit time integration method.

2.1.1 Linear elasticity mesh deformation method

During the mesh deformation step, a displacement field is computed for the whole computational

domain, given the displacement of its boundaries. Trajectories can thus be assigned to inner

vertices, or in other words, positions at a future solver time step. Several techniques can be

found to compute this displacement field:

• implicit or direct interpolation [de Boer 2007, Luke 2012], in which the displacement of the

inner vertices is a weighted average of the displacement of the boundary vertices,

• solving PDEs - the most common of which being Laplacian smoothing [Löhner 1998], a

spring analogy [Degand 2002] and a linear elasticity analogy [Baker 1999].

It is this last method that we selected, due to its robustness in 3D [Yang 2007]. The computa-

tional domain is assimilated to a soft elastic material, which is deformed by the displacement

of its boundaries.

The inner vertices movement is obtained by solving an elasticity-like equation with a P1

Finite Element Method (FEM):

div(σ(E)) = 0 , with E =
∇d + T∇d

2
, (2.1)

where σ and E are respectively the Cauchy stress and strain tensors, and d is the Lagrangian

displacement of the vertices. The Cauchy stress tensor follows Hooke’s law for isotropic homo-

geneous medium, where ν is the Poisson ratio, E the Young modulus of the material and λ, µ

are the Lamé coefficients:

σ(E) = λ trace(E) Id + 2µ E or E(σ) =
1 + ν

E
σ − ν

E
trace(σ) Id .

In our context, ν is typically chosen of the order of 0.48, which corresponds to a nearly incom-

pressible material 1. Dirichlet boundary conditions are used and the displacement of vertices

located on the domain boundary is strongly enforced in the linear system. The linear system

is solved by a Conjugate Gradient algorithm coupled with an LU-SGS pre-conditioner. An

advantage of elasticity-like methods is the opportunity they offer to adapt the local material

properties of the mesh, especially its stiffness, according to the distortion and efforts borne by

each element. In particular, the stiffness of the elements is increased for small elements, in order

to limit their distortion. More details can be found in [Alauzet 2014].

1Note that the closer to 0.5 ν is, the harder to solve the system is.



2.1.2 Improving mesh deformation algorithm efficiency

The computation of the mesh deformation - here the solution of a linear elasticity problem -

is known to be an expensive part of dynamic mesh simulations, and the fact that it is usually

performed at every solver time step makes it all the more so.

We propose to combine several techniques to improve the time efficiency of this step. Some

regions are rigidified, more specifically a few layers around tiny complex details of the moving

bodies, with very small elements. They are moved with exactly the same rigid displacement as

the corresponding body, thus avoiding very stiff elements in the elasticity matrix. On the other

hand, the elasticity can be solved only on a reduced region, if the domain is big compared to the

displacement. A coarse mesh can also be used to solve the elasticity problem, the displacement

of the vertices then being interpolated on the computational mesh.

The major improvement we proposed is to reduce the number of mesh deformation compu-

tations: the elasticity problem is solved for a large time frame of length ∆t instead of doing it at

each solver time step δt. While there is a risk of a less effective mesh displacement solution, it is

a worthwhile strategy if our methodology is able to handle large displacements while preserving

the mesh quality. Solving the previously described mesh deformation problem once for large

time frame could be problematic in the case of: (i) curved trajectories of the boundary vertices

and (ii) accelerating bodies. To enhance the mesh deformation prescription, accelerated-velocity

curved, i.e., high-order, vertex trajectories are computed.

The paths of inner vertices can be improved if a constant acceleration a is provided to each

vertex in addition to its speed, which results in an accelerated and curved trajectory. During

time frame [t, t+ ∆t], the position and the velocity of a vertex are updated as follows:

x(t+ δt) = x(t) + δtv(t) +
δt2

2
a

v(t+ δt) = v(t) + δta .

Prescribing a velocity vector and an acceleration vector to each vertex requires solving two

elasticity systems. For both systems, the same matrix, thus the same pre-conditioner, is con-

sidered. Only boundary conditions change. If inner vertex displacement is sought for time

frame [t, t+ ∆t], boundary conditions are imposed by the location of the body at time t+ ∆t/2

and t + ∆t. These locations are computed using body velocity and acceleration. Note that

solving the second linear system is cheaper than solving the first one as a good prediction of the

expected solution can be obtained from the solution of the first linear system. Now, to define

the trajectory of each vertex, the velocity and acceleration are deduced from evaluated middle

and final positions:

∆tv(t) = −3 x(t) + 4 x(t+ ∆t/2) − x(t+ ∆t)

∆t2

2
a = 2 x(t) − 4 x(t+ ∆t/2) + 2x(t+ ∆t) .



In this context, it is mandatory to make sure that the mesh remains valid for the whole time

frame [t, t + ∆t], which is done by computing the sign of the volume of the elements all along

their path [Alauzet 2014].

2.1.3 Local mesh optimization

In order to preserve the mesh quality between two mesh deformation computations, it has

been proposed [Alauzet 2014] to couple mesh deformation with local mesh optimization using

smoothing and generalized swapping to efficiently achieve large displacement in moving mesh

applications. Connectivity changes are really effective in handling shear and removing highly

skewed elements. Here, we briefly recall the mesh optimization procedure.

Mesh optimizations are performed regularly to preserve the quality of the mesh. The op-

timization procedure consists in one or several passes of vertex smoothing and one pass of

generalized swapping. For 3D meshes, the quality of an element is measured in terms of the

element shape by the quality function:

Q(K) =

√
3

216

(
6∑
i=1

`2M(ei)

) 3
2

|K|M
∈ [1, +∞] , (2.2)

where `M(e) and |K|M are edge length and element volume in metricM. Q(K) = 1 corresponds

to a perfectly regular element and Q(K) < 2 corresponds to excellent quality elements, while

a high value of Q(K) indicates a nearly degenerated element. For non-adapted meshes, the

identity matrix I3 is chosen as metric tensor.

Mesh smoothing. The first mesh optimization tool is vertex smoothing which consists in

relocating each vertex inside its ball of elements, i.e., the set of elements having Pi as their

vertex. For each tetrahedron Kj of the ball of Pi, a new optimal position P optj for Pi can be

proposed to form a regular tetrahedron:

P optj = Gj +

√
2

3

nj
`(nj)

,

where Fj is the face of Kj opposite vertex Pi, Gj is the center of gravity of Fj , nj is the inward

normal to Fj and `(nj) the length of nj . The final optimal position P opti is computed as a

weighted average of all these optimal positions {P optj }Kj⊃Pi , the weight coefficients being the

quality of Kj . This way, an element of the ball is all the more dominant if its quality in the

original mesh is bad. Finally, the new position is analyzed: if it improves the worst quality of

the ball, the vertex is directly moved to its new position.



Generalized edge/face swapping. The second mesh optimization tool to improve mesh qual-

ity is generalized swapping/local-reconnection. Let α and β be the two tetrahedra vertices op-

posite the common face P1P2P3. Face swapping consists of suppressing this face and creating

the edge e = αβ. In this case, the two original tetrahedra are deleted and three new tetrahedra

are created. This swap is called 2 → 3. The reverse operator can also be defined by deleting

three tetrahedra sharing such a common edge αβ and creating two new tetrahedra sharing face

P1P2P3. This swap is called 3→ 2.

A generalization of this operation exists and acts on shells of tetrahedra [Alauzet 2014,

Frey 2008]. For an internal edge e = αβ, the shell of e is the set of tetrahedra having e as

common edge. The different edge swaps are generally denoted n→ m where n is the size of the

shell and m is the number of new tetrahedra. In this work, edge swaps 3 → 2, 4 → 4, 5 → 6,

6→ 8 and 7→ 10 have been implemented. In our algorithm, swaps are only performed if they

improve the quality of the mesh.

3 → 2

3← 2
(face swapping)

5 → 6

5 possible triangulations

e e

e

Figure 2.1: Top left, the swap operation in two dimensions. Top right, edge swap of type 3→ 2

and face swap 2 → 3. Bottom left, the five possible triangulations of the pseudo-polygon for a

shell having five elements. Bottom right, an example of 5→ 6 edge swap. For all these figures,

shells are in black, old edges are in red, new edges in green and the pseudo-polygon is in blue.

These operations are well-know in the field of mesh generation [J. F. Thompson 1999,

Frey 2008], but are not necessarily efficient in the moving mesh context. Notably, perform-

ing too many of them results in slow codes, whereas the use of bad quality functions results in

poor quality meshes. The interest of the method used here lies in how and when optimizations

are performed. The mesh optimizations are performed entity by entity, and only when they



are needed. Smoothing is performed for every vertex above a prescribed quality threshold ( the

quality of a vertex is the maximal element quality of the elements in its ball2), provided the

new position increases the quality of the worst element in its ball. Swaps are analyzed element

by element if and only if the element quality is above a prescribed quality threshold. Then,

swaps are performed if the quality of the considered elements decrease after the connectivity

change. To avoid multiple identical checks, tetrahedra are treated in quality order from the

worst to the best one. In the moving mesh context, the optimization operation is performed

only if it verifies quality criteria on the current position of the mesh and on the final position

given by the mesh deformation. This avoid to perform a mesh optimization which will degrade

the quality of the mesh in the future. A key to performing efficient swaps in the moving mesh

context is to allow a slight quality degradation in the future. Details on this optimization step

can be found in [Alauzet 2014].

2.1.4 Handling of boundaries

The mesh of the boundaries is moved rigidly, and the vertices are not generally moved on the

surface (no displacement in the tangential directions). However, in some cases, such as when

a body is moving very close to the bounding box of the domain, it can be useful to move the

vertices of the bounding box as well. In this case, we can allow tangential displacement on the

boundary. For curved boundary, vertices are re-projected on the surface after the displacement.

To do so, the displacements along the tangential axes are simply considered as new degrees

of freedom. For instance, for a plane (x,y), the displacements along the x-axis and the y-axis

are considered as degrees of freedom and are added to the elasticity system. The displacement

along the z-axis is still set to 0, and thus is not added to the system. This can be generalized

for any tangent plane.

2.1.5 Moving mesh algorithm

The overall connectivity-change moving mesh algorithm is described in Algorithm 5, where

the different phases described above are put together. When coupled with a flow solver (see

Sections 2.2), the flow solver is called after the optimization phase. In this algorithm, H stands

for meshes, S for solutions, Q for quality (see Relation (2.2)), d|∂Ωh
for the displacement on the

boundary, and v and a for speed and acceleration. ∆t and δt are time steps whose meaning is

detailed below.

2The elements ball of a vertex is the set of elements sharing that vertex.



Algorithm 5 Connectivity-Change Moving Mesh Algorithm with Curved Trajectories

Input: H0, S0, ∆t0

While (t < T end)

1. ∆t = ∆t0

2. Solve mesh deformation: compute vertices trajectories

(a)
{
dbody|∂Ωh

(t+ ∆t/2)
}

= Compute body vertex displacement from current translation speed

vbody, rotation speed θbody and acceleration abody for [t, t+ ∆t/2]

d(t+ ∆t/2) = Solve elasticity system
(
dbody|∂Ωh

(t+ ∆t/2), ∆t/2
)

(b)
{
dbody|∂Ωh

(t + ∆t)
}

= Compute body vertex displacement from current translation speed

vbody, rotation speed θbody and acceleration abody for [t, t+ ∆t]

d(t+ ∆t) = Solve elasticity system
(
dbody|∂Ωh

(t+ ∆t), ∆t
)

(c) {v,a} = Deduce inner vertex speed and acceleration from both displacements

{d(t+ ∆t/2),d(t+ ∆t)}

(d) If predicted mesh motion is invalid then ∆t = ∆t/2 and goto 2.

Else T els = t+ ∆t

3. Moving mesh stage, with mesh optimizations and solver solution

While (t < T els)

(a) δtopt = Get optimization time step
(
Hk,v, CFLgeom

)

(b) δtsolver = Get solver time step
(
Hk,Sk,v, CFL

)

(c) δt = min(δtopt, δtsolver)

(d) If t > topt

i. Hk = Swaps optimization
(
Hk, Qswaptarget

)

ii. vopt = Vertex smoothing
(
Hk, Qsmoothingtarget , Qmax

)

iii. topt = t+ δtopt

(e) Sk+1 = Solve Equation of State
(
Hk,Sk, δt,v,vopt

)

(f) Hk+1 = Move the mesh and update vertex speed
(
Hk, δt,v,vopt,a

)

(g) Check mesh quality. If too distorted: solve new deformation problem or stop.

(h) t = t+ δt

EndWhile

EndWhile



In this algorithm, three time steps appear: a large one ∆t for the mesh deformation com-

putation, a smaller one δtopt corresponding to the steps where the mesh is optimized, and the

solver time step δtsolver. The first one, ∆t, is currently set manually at the beginning of the

computation. After each mesh deformation solution, the quality of the mesh in the future is an-

alyzed: if the quality is too low, the mesh deformation is problem is solved again with a smaller

∆t (cf step 2.(d)). Moreover, if the mesh quality degrades, a new mesh deformation solution

is computed (cf step 3.(g)). The second one is computed automatically, using the CFLgeom

parameter as described below. Determining the third one will be discussed in Section 2.2. If

the solver time step is greater than the optimization time step, then the solver time step is

truncated to follow the optimizations. If the solver time step is smaller than the optimization

time step - which is almost always the case - , several (many) iterations of the flow solver are

performed between two optimization steps.

2.1.6 Moving mesh time steps

A good restriction to be imposed on the mesh movement in order to limit the apparition of flat

or inverted elements is that vertices cannot cross too many elements on a single move between

two mesh optimizations. Therefore, a geometric parameter CFLgeom is introduced to control

the number of stages used to perform the mesh displacement between t and t+ ∆t. If CFLgeom

is greater than one, the mesh is authorized to cross more than one element in a single move. In

practice, CFLgeom is usually set between 1 and 8. The moving geometric time step is given by:

δtopt = CFLgeom max
Pi

hi
vi
, (2.3)

where hi is the smallest height of all the elements in the ball of vertex Pi and vi the mesh

velocity at vertex Pi. In practice, when coupled with a flow solver, the actual time step is the

minimum between the flow solver time step and the geometric one.

2.2 Arbitrary Lagrangian Eulerian flow solver

This section discusses in details the implementation of the Arbitrary Lagrangian Eulerian (ALE)

flow solver Wolf that has been coupled to the moving mesh process described in Algorithm 5.

After presenting the compressible Euler equations in the ALE framework, we describe the

second order spatial discretization. As regards the temporal discretization, we first discuss the

geometric conservation law (GCL) and then we present the explicit and implicit time integration

schemes. This thesis has focused on the deriving and implementing implicit schemes in the

framework of Mavriplis and Yang [Mavriplis 2006]. They are compared to explicit schemes in

the last section.



2.2.1 Euler equations in the ALE framework

We consider the 3D unsteady compressible Euler equations for a Newtonian fluid in their ALE

formulation set in the space-time computational domain Q = Ω(t) × [0, T ], where T is the

(positive) maximal time. The ALE formulation allows the equations to take arbitrary motion

of the (domain) mesh into account. Assuming that the gas is perfect, inviscid and that there is

no thermal diffusion, the ALE formulation of the equations is written, for any arbitrary closed

volume C(t) of boundary ∂C(t) moved with mesh velocity w:

d

dt

(∫

C(t)

Wdx

)
+

∫

∂C(t)

(F(W )−W ⊗ w) · n ds =

∫

C(t)

Fext dx

⇐⇒ d

dt

(∫

C(t)

Wdx

)
+

∫

∂C(t)

(F (W )−W (w · n)) ds =

∫

C(t)

Fext dx ,

where





W = (ρ, ρu, ρE)T is the conservative variables vector

F(W ) = (ρu, ρuu + pe1, ρvu + pe2, ρwu + pe3, (ρE + p)u) is the flux tensor

F (W ) = F(W ) · n = (ρη, ρuη + pn1, ρvη + pn2, ρwη + pn3, (ρE + p)η)T

Fext = (0, ρ fext, ρu · fext)T is the contribution of the external forces,

and we have noted ρ the density of the fluid, p the pressure, u = (u, v, w) its Eulerian velocity,

η = u · n , q = ‖u‖, ε the internal energy per unit mass, E = 1/2 q2 + ε the total energy per

unit mass, e = (e1, e2, e3) the canonical basis, fext the resultant of the volumic external forces

applied on the particle and n = (n1, n2, n3) the outward normal to interface ∂C(t) of C(t).

2.2.2 Spatial discretization

The spatial discretization of the governing equations is based on a vertex-centered finite volume

formulation on unstructured meshes. This formulation consists in associating with each vertex

of the mesh a control volume (or Finite-Volume cell) built by the rule of medians. Wolf proposes

several choices of approximate Riemann solvers to compute numerical fluxes. Second-order space

accuracy is achieved through a piecewise-linear extrapolation based on the Monotonic Upwind

Scheme for Conservation Law (MUSCL) procedure with a particular edge-based formulation

with upwind elements. Specific slope limiters are employed to damp or eliminate spurious oscil-

lations that may occur in the vicinity of discontinuities. The main difference when translating

these schemes from the standard formulation to the ALE formulation is the addition of the

mesh velocities in the wave speeds of the Riemann solver problem.



Dual mesh construction

The spatial domain Ω(t) is discretized by a tetrahedral unstructured mesh H. The vertex-

centered finite volume formulation consists in associating a control volume denoted Ci(t) with

each vertex Pi of the mesh and at each time t. The dual finite volume cell mesh is built by the

rule of medians. Discretized domain Ωh(t) can be written as the union of the elements or the

union of the finite volume cells:

Ωh(t) =

NK⋃

i=1

Ki(t) =

NV⋃

i=1

Ci(t) ,

where NK is the number of elements and NV the number of vertices. Note that the dual mesh

(composed of cells) is built in a preprocessing step. Consequently, only a simplicial mesh is

needed in the input.

In 2D, this standard method consists in building cells bounded by segments of medians.

Each triangle is split into three quadrangles (one associated with each one of its three vertices).

The quadrangle’s four vertices of the triangle associated with vertex Pi are:

• Mi, Mj : the middle of the two edges incident to Pi,

• G: the gravity center of the triangle,

• Pi: the considered vertex.

Median cell Ci(t) of vertex Pi is the union of all quadrangles of the triangles surrounding Pi.

An exemple of median cell is represented in Figure 2.2 (left). Consequently, at each edge PiPj

of the mesh is associated a cell interface ∂Cij(t) which is common boundary between the two

neighboring cells Ci(t) and Cj(t), i.e., ∂Cij(t) = ∂Ci(t)∩∂Cj(t). Note that cell interface ∂Cij(t)

is composed of two bi-segments (or one bi-segment for a boundary edge).

In 3D each tetrahedra is subdivided into four hexahedra (one associated with each one of

its four vertices). The eight vertices of the hexahedron associated with a point Pi are given by:

• Mi, Mj , Mk: the middle of the three edges incident to Pi

• Gfi, Gfj , Gfk: the gravity centers of the three faces containing Pi

• G: the gravity center of the tetrahedra

• Pi: the considered vertex.

Such an hexahedron is represented in Figure 2.2 (right). Median cell Ci(t) of vertex Pi is the

union of all hexahedra of the tetrahedra surrounding Pi. Consequently, at each edge PiPj of



the mesh is associated a cell interface ∂Cij(t) which is common boundary between the two

neighboring cells Ci(t) and Cj(t), i.e., ∂Cij(t) = ∂Ci(t) ∩ ∂Cj(t). In three dimensions this cell

interface ∂Cij(t) is composed of many triangular facets (two triangular facts per tetrahedra in

the shell of edge PiPj).

Figure 2.2: Left, 2D finite volume median cells and interfaces made up of facets and, right,

hexahedron associated with vertex Pi considered to build the finite volume cell of Pi.

Edge-based Finite-Volume discretization

Assuming there is no contribution of the external forces, based on a finite volume formulation,

the compressible Euler equations are integrated on each finite volume cell Ci(t) (using the Green

formula):
d

dt
(|Ci(t)|Wi(t)) + F(Wi(t)) = 0 , (2.4)

where Wi(t) is the mean value of the solution W on cell Ci(t) and Fi(W (t)) is the numerical

convective flux term:

F(Wi(t)) =

∫

∂Ci(t)
(F(Wi(t))−Wi(t) ⊗ wi) · ni ds , (2.5)

where ni is the outer normal to the finite volume cell surface ∂Ci(t) as depicted in Figure 2.3, F
is the convective term flux functions, and wi is the mesh velocity at vertex Pi. The integration

of convective fluxes F of Equation (2.5) is done by decomposing the cell boundary into many

interfaces ∂Cij composed of facets:

F(Wi(t)) =
∑

Pj∈V(Pi)

(
Fij(t) ·

∫

∂Cij(t)
ni ds−Wij(t)

∫

∂Cij(t)
(wi · ni) ds

)
,



where V(Pi) is the set of all neighboring vertices linked by an edge to Pi, and Wij(t) and Fij(t)
represents the constant value of W and F(W ) at interface ∂Cij(t). The flow is calculated using

a numerical flux function to approximate the flux at cell interface ∂Cij(t), denoted by Φij :

Φij(t) = Φij(Wi(t),Wj(t),nij(t), σij(t)) = Fij(t) · nij(t)−Wij(t)σij(t) ,

where

• nij(t) =
1

|∂Cij(t)|

∫

∂Cij(t)
ni dγ is the outward normalized normal (with respect to cell Ci)

of cell interface ∂Cij ,

• σij(t) =
1

|∂Cij(t)|

∫

∂Cij(t)
wij(t) · nij(t)ds is the normal velocity of cell interface ∂Cij(t).

We finally get the following semi-discretization at Pi:

d

dt
(|Ci(t)|Wi(t)) +

∑

Pj∈V(Pi)

|∂Cij(t)| Φij(Wi(t), Wj(t), nij(t), σij(t)) = 0 , (2.6)

The numerical flux function approximates the hyperbolic terms on the common bound-

ary ∂Cij(t). We notice that the computation of the convective fluxes is performed mono-

dimensionally in the direction normal to the boundary of the finite volume cell. Therefore, the

numerical calculation of the flux function Φij(t) at the interface ∂Cij(t) can be achieved by

solving, at each time step, a one-dimensional Riemann problem in the direction of the normal

nij by means of an approximate Riemann solver.

P j
P i

M i

M j

downwind triangle K jupwind triangle K i

n1
ij

n ij ( t)

n2
ij

P i
P j

W ij W ji

Figure 2.3: Illustration of finite volume cells configuration around an edge PiPj in 2D: two

neighboring cells Ci and Cj, their common interface ∂Cij and the upwind triangles Ki and Kj

associated with edge PiPj.

Three approximate Riemann solvers are available in Wolf to compute the numerical flux Φ:

Rusanov, Roe and HLLC. In the following, we describe their extensions to the ALE framework.

For sake of clarity, the dependency in t of the variable is omitted.



Numerical flux computation

ALE Rusanov approximate Riemann solver. In the Rusanov’s approach [Rusanov 1961],

the upwinding term is defined thanks to the maximal spectral radius of the Jacobian matrix
∂(F(W ) · n)

∂W
given by: λ = |u · n|+ c. The flux resolution uses the following formulation of Φ:

ΦRusanov(Wi,Wj ,nij) =
F(Wi) + F(Wj)

2
· nij + |λij |

Wi −Wj

2
,

where |λij | = max(|ui.nij | + ci , |uj .nij | + cj) and c =
√

γp
ρ is the speed of sound. For ALE

simulation, the flux formulation takes into account the mesh displacement and is given by:

ΦRusanov
ale (Wi,Wj ,nij , σij) =

F(Wi) · nij − σijWi + F(Wj) · nij − σijWj

2
+ |λ̃ij |

Wi −Wj

2

=
Fi + Fj

2
− σij

Wi +Wj

2
+ |λ̃ij |

Wi −Wj

2

where |λ̃ij | = max(|ui.nij |+ ci − σij , |uj .nij |+ cj − σij) and the notation Fk = F(Wk) · nij .

ALE Roe approximate Riemann solver. In the Roe’s approach [Roe 1981], the upwinding

term is defined by the Jacobian matrix A(W ) =
∂(F(W ) · n)

∂W
. The eigenvalues of A(W ) are

real and given by |u ·n|, |u ·n|+ c and |u ·n|− c, thus A(W ) is diagonalisable. In the context of

the Euler equations, the hyperbolic flux is homogeneous of order one leading to the property:

F(W ) · n = A(W )W ,

that allows non-oscillatory conservative schemes to be built. The flux resolution uses the for-

mulation of Φ introduced by Roe:

ΦRoe(Wi,Wj ,nij) =
F(Wi) + F(Wj)

2
· nij + |Ã(Wi,Wj)|

Wi −Wj

2
,

where Ã is the Jacobian matrix evaluated for the Roe’s average variables and for all diagonal-

isable matrix A = PΛP−1 we have denoted |A| = P |Λ|P−1. Let Wi and Wj be the two states,

then the Roe’s average variables are given by:

ρ̃ =
√
ρiρj

ũ =

√
ρlui +

√
ρruj√

ρi +
√
ρj

ṽ =

√
ρlvi +

√
ρrvj√

ρi +
√
ρj

w̃ =

√
ρlwi +

√
ρrwj√

ρi +
√
ρj

h̃ =

√
ρlhi +

√
ρrhj√

ρi +
√
ρj



where h is the enthalpy per mass unit: h = ρE+p
ρ , and from which we get

c̃2 = (γ − 1) (h̃− 1

2
q̃2) where q̃2 = ũ2 + ṽ2 + w̃2

For ALE simulation, the flux formulation takes into account the mesh displacement:

ΦRoeale (Wi,Wj ,nij , σij) =
F(Wi) · nij − σijWi + F(Wj) · nij − σijWj

2
+ |Ã(Wi,Wj)− σijI|

Wi −Wj

2

=
Fi + Fj

2
− σij

Wi +Wj

2
+ |Ã(Wi,Wj)− σijI|

Wi −Wj

2

where I is the identity matrix and with the notation Fk = F(Wk) · nij .

HLLC numerical flux. The idea of the HLLC flow solver is to consider locally a simpli-

fied Riemann problem with two intermediate states depending on the local left and right

states [Batten 1997]. The simplified solution to the Riemann problem consists of a contact

wave with a velocity SM and two acoustic waves, which may be either shocks or expansion

fans. The acoustic waves have the smallest and the largest velocities (Si and Sj , respectively)

of all the waves present in the exact solution. If Si > 0 then the flow is supersonic from left

to right and the upwind flux is simply defined from F (Wi) where Wi is the state to the left

of the discontinuity. Similarly, if Sj < 0 then the flow is supersonic from right to left and the

flux is defined from F (Wj) where Wj is the state to the right of the discontinuity. In the more

difficult subsonic case when Si < 0 < Sj we have to calculate F (W ?
i ) or F (W ?

j ). Consequently,

the HLLC flux is given by:

ΦHLLC(Wi,Wj ,nij) =





F(Wi) · nij if Si > 0

F(W ?
i ) · nij if Si ≤ 0 < SM

F(W ?
j ) · nij if SM ≤ 0 ≤ Sj

F(Wj) · nij if Sj < 0

.

where W ?
i and W ?

j are evaluated as follows. We denote by ηk = uk · nij . Assuming that

η? = η?i = η?j = SM , the following evaluations are proposed [Batten 1997]:

W ?
i =





ρ?i = ρi
Si − ηi
Si − SM

p?i = p? = ρi (ηi − Si) (ηi − SM ) + pi

(ρu)
?
i =

(Si − ηi) ρui + (p? − pi) nij
Si − SM

(ρE)
?
i =

(Si − ηi) ρEi − piηi + p?SM
Si − SM

, W ?
j =





ρ?j = ρj
Sj − ηj
Sj − SM

p?j = p? = ρj (ηj − Sj) (ηj − SM ) + pj

(ρu)
?
j =

(Sj − ηj) ρuj + (p? − pj) nij

Sj − SM

(ρE)
?
j =

(Sj − ηj) ρEj − pjηj + p?SM

Sj − SM

,



A key feature of this solver is in the definition of the three waves velocity. For the contact wave

we consider:

SM =
ρjηj(Sj − ηj)− ρiηi(Si − ηi) + pi − pj

ρj(Sj − ηj)− ρi(Si − ηi)
,

and the acoustic wave speeds based on the Roe average variable as defined above:

Si = min(ηi − ci, η̃ − c̃) and Sj = max(ηj + cj , η̃ + c̃)

where .̃ are Roe average variables [Roe 1981]. With such waves velocities, the approximate

HLLC Riemann solver has the following properties. It automatically (i) satisfies the entropy

inequality, (ii) resolves isolated contacts exactly, (iii) resolves isolated shocks exactly, and (iv)

preserves positivity.

The methodology provided by Batten [Batten 1997] can be extended to the Euler equations

in their ALE formulation:

ΦHLLC
ale (Wi,Wj ,nij , σij) =





F (Wi) · nij − σijWi if Si > σij

F (W ?
i ) · nij − σijW ?

i if Si ≤ σij < SM

F (W ?
j ) · nij − σijW ?

j if SM ≤ σij ≤ Sj
F (Wj) · nij − σijWj if Sj < σij

It is important to note that the considered waves speed (Si, Sj and SM ) and the star states are

the classical one and that the waves speed are compared in the moving frame.

Second-order accurate version

The previous formulation reaches at best a first-order spatial accuracy. A MUSCL type re-

construction method has been designed to increase the order of accuracy of the scheme. This

method was introduced by Van Leer in a series of papers, see for instance [Leer 1972]. The

idea is to use extrapolated values Wij and Wji instead of Wi and Wj at the interface ∂Cij to

evaluate the flux:

Φij = Φij(Wij ,Wji,nij , σij) ,

and to achieve second-order accuracy.

In the implementation, we do not extrapolate directly the conservative variable W . In fact,

the primitive variables U = (ρ, u, v, w, p) are extrapolated to guarantee the positivity of the

density and the pressure, then the conservative variables are reconstructed from these values.

The extrapolation steps are the following:

In the following, we present how the MUSCL gradients are computed to design second-

order accurate scheme with a fourth-order numerical dissipation. In contrast to the original



Algorithm 6 MUSCL extrapolation

1. Get primitive variables Ui and Uj from conservatives ones Wi and Wj

2. Compute primitive variable MUSCL gradients ∇Uij and ∇Uji

3. Extrapolates the primitive variables:

Uij = Ui +
1

2
(∇U)ij ·

−−→
PiPj and Uji = Uj +

1

2
(∇U)ji ·

−−→
PjPi .

4. Get conservative variables Wij and Wji from primitive ones Uij and Uji

MUSCL approach, the approximate ”slopes” (∇U)ij and (∇U)ji are defined for any edge and

are obtained using a combination of centered, upwind and nodal gradients.

The centered gradient related to edge
−−→
PiPj , is defined implicitly along edge

−−→
PiPj via relation:

(∇U)Cij
−−→
PiPj = Uj − Ui . (2.7)

Upwind and downwind gradients, which are also related to edge
−−→
PiPj , are computed using

the upstream and downstream triangles/tetrahedra associated with this edge. These trian-

gles/tetrahedra are respectively denoted Kij and Kji. Kij (resp. Kji) is the unique trian-

gle/tetrahedron of the ball of Pi (resp. Pj) whose opposite face is crossed by the straight line

prolongating edge
−−→
PiPj , see Figures 2.3 (2D) and 2.4 (3D). Upwind and downwind gradients of

edge
−−→
PiPj are then defined as:

(∇U)Uij = (∇U)|Kij
and (∇U)Dij = (∇U)|Kji

,

where

∇U|K =
∑

Pi∈K
(∇φPi ⊗ Ui)

is the P 1-Galerkin gradient on element K and φPi is the usual basis function associated with

Pi. Parametrized nodal gradients are built by introducing the β-scheme:

(∇U)ij
−−→
PiPj = (1− β) (∇U)Cij

−−→
PiPj + β (∇U)Uij

−−→
PiPj ,

(∇U)ji
−−→
PiPj = (1− β) (∇U)Cij

−−→
PiPj + β (∇U)Dij

−−→
PiPj ,

where β ∈ [0, 1] is a parameter controlling the amount of upwinding. For instance, the scheme

is centered for β = 0 and fully upwind for β = 1.

The most accurate β-scheme is obtained for β = 1/3, also called the V4-scheme. This

scheme is third-order for the two-dimensional linear advection problem on structured triangular



MjMi

Pi Pj

Kij

Kji

Figure 2.4: Downstream Kij and upstream Kji tetrahedra associated with edge
−−→
PiPj .

meshes. In our case, for the non-linear Euler equations on unstructured meshes, a second-order

scheme with a fourth-order numerical dissipation is obtained [Debiez 2000]. The high-order

gradients are given by:

(∇U)V 4
ij

−−→
PiPj = 2

3 (∇U)Cij
−−→
PiPj + 1

3 (∇U)Uij
−−→
PiPj ,

(∇U)V 4
ji

−−→
PiPj = 2

3 (∇U)Cij
−−→
PiPj + 1

3 (∇U)Dij
−−→
PiPj .

Limiter function

The aforementioned MUSCL scheme is not monotone and can be a source of spurious os-

cillations. These oscillations can affect the accuracy of the final solution or simply end the

computation because (for instance) of negative pressures. A widely used technique for address-

ing this issue is to guarantee the TVD property in 1D [Harten 1983] or the LED property in

2D/3D of the scheme, which ensures that the extrapolated values Wij and Wji are not invalid.

To guarantee the TVD or the LED properties, limiting functions are coupled with the previ-

ous high-order gradient evaluations. The gradient is substituted by a limited gradient denoted

(∇W )limij . The choice of the limiting function is crucial as it directly affects the convergence of

the simulation. Two limiters are possible with the V4-scheme.

Piperno Limiter. This limiter has been proposed by Piperno et al. [S. Piperno 1998]. Here,

we present slightly modified version which is less dissipative. This limiter is expressed in a

factorized form,

(∇U)Limij

−−→
PiPj = (∇U)Cij

−−→
PiPj ψPI

(
(∇U)Cij

−−→
PiPj

(∇U)V 4
ij

−−→
PiPj

)
,

with

ψPI(R) = (
1

3
+

2

3
R)





3 1
R2 − 6 1

R + 19
1
R3 − 3 1

R + 18
if R < 1

1 + (
3

2

1

R
+ 1)(

1

R
− 1)3 if R ≥ 1

, where R =
(∇U)Cij

−−→
PiPj

(∇U)V 4
ij

−−→
PiPj

.



Koren-Dervieux Limiter. The Koren-Dervieux limiter [Cournède 2006, Koren 1993] is a

three-entry limiter which is a generalization of the SuperBee limiter for the V4-scheme. It

reads:

(∇U)limij
−−→
PiPj = ψKD

((
∇UD

)
ij

−−→
PiPj ,

(
∇UC

)
ij

−−→
PiPj ,

(
∇UV 4

)
ij

−−→
PiPj

)
(2.8)

with

ψKD (a, b, c) =





0 if ab ≤ 0

sign(a) min(2 |a|, 2 |b|, |c|) otherwise
.

The operator ψKD defined above is applied component by component.

Boundary conditions

Boundary conditions are computed vertex-wise. Several conditions (inflow, outflow, symme-

try, ...) are available in Wolf. We refer to [Alauzet 2010a] for their description. As, in this

thesis, we are only concern with inviscid flows, the only boundary condition which is modi-

fied in the ALE framework is the slipping boundary condition applied to moving bodies. This

boundary condition has to take into account the displacement of the body. To this end, we

impose weakly 3

ui · ni = σi , (2.9)

where ni is the unitary boundary face normal and σi is the boundary face velocity. The standard

ALE slipping boundary flux of vertex Pi reduces to:

Φslip
ale (Wi,ni, σi) =




0

−pi ni
‖ni‖

−piσi


 , (2.10)

where pi is the vertex pressure and ni =

∑
Fj3Pi

|Fj |nFj∑
Fj3Pi

|Fj |
is the mean outward normal of the

boundary interface. The Fj are the mesh boundary faces (edges/triangles). This flux is inte-

grated over the boundary interface area |∂Ci|Γ =
∑

Fj3Pi

1

3
|Fj |, see Section 2.2.3.

However, when the second-order numerical schemes is considered, such a boundary condition

creates oscillations in the density and the pressure when shock waves impact normally the

boundary, see Figure 2.5. We thus prefer considering a mirror state and apply an approximate

Riemann solver to diminish these oscillations. We thus have to evaluate the flux between the

3We do not enforce the numerical solution to verify ui · ni = σi.



state on the boundary W and the ALE mirror state W :

Wi =




ρi

ρui

ρEi


 and W i =




ρi

ρui − 2 ρi (ui · ni − σi) ni

ρEi − 2 ρi σi (ui · ni − σi)




as the mirror state verifies

pi = pi, ci = ci, ui · ni = 2σi − ui · ni and hi = hi − 2σi (ui · ni − σi) .

To evaluate the boundary flux, we consider the HLLC approximate Riemann solver between

the state and the mirror state:

Φslip
ale (Wi,ni, σi) = ΦHLLC

ale

(
Wi,W i,ni, σi

)
. (2.11)

Note that by definition we have

ΦHLLC
ale (Wi,Wi,ni, σi) = F(Wi)− σiWi .

Thus, if Condition (2.9) is satisfied, then Wi = W i and the flux Φslip
ale (Wi,ni, σi) simplifies to

the form in Relation (2.10). In general, this condition is not satisfied, so we use Relation (2.11).

Figure 2.5: Exemple of a piston problem where a shock wave impacts the pistion. The plot

represents the pressure evolution in time at a sensor on the piston for the first-order scheme

(blue curve) and the second-order scheme using the classical slip boundary condition (green

curve) and the Riemann slip boundary condition (red curve).



2.2.3 Time discretization

Temporal discretization is a more complex matter. In this section, we first recall the Geometric

Conservation Law (GCL), and then, we described explicit time integration schemes. Finally,

we presents the implicit time integration schemes that have been developed in this thesis. All

the time discretizations are compliant with the Discrete Geometric Conservation Law (DGCL),

which can be used to rigorously determine when the geometric parameters that appear in the

fluxes should be computed.

The Geometric Conservation Law

We need to make sure that the movement of the mesh is not responsible for any artificial

alteration of the physical phenomena involved, or at least, to make our best from a numerical

point of view for the mesh movement to introduce an error of the same order as the one

introduced by the numerical scheme. If System (2.4) is written for a constant state, assuming

Fext = 0, we get, for any arbitrary closed volume C = C(t):

d (|C(t)|)
dt

−
∫

∂C(t)
(w · n) ds = 0 . (2.12)

As the constant state is a solution of the Euler equations, if boundaries transmit the flux towards

the outside as it comes, we find a purely geometrical relation inherent to the continuous problem.

For any arbitrary closed volume C = C(t) of boundary ∂C(t), Relation (2.12) is integrated into:

|C(t+ δt)| − |C(t)| =
∫ t+δt

t

∫

∂C(t)
(w · n) dsdt, with t and t+ δt ∈ [0, T ] , (2.13)

which is usually known as the Geometric Conservation Law (GCL). From a geometric point of

view, this relation states that the algebraic variation of the volume of C between two instants

equals the algebraic volume swept by its boundary.

The role of the GCL in ALE simulations has been analyzed in [Etienne 2009]. It has been

shown that the GCL is not a necessary condition to preserve time accuracy. However, violating

it can lead to numerical oscillation [Mavriplis 2006]. In [Farhat 2001] the authors show that

compliance with the GCL guarantees an accuracy of at least the first order in some conditions.

Therefore, most would agree that the GCL should be enforced at the discrete level for a large

majority of cases.

Discrete GCL enforcement

A new approach to enforcing the Discrete GCL was proposed in [Mavriplis 2006, Yang 2005,

Yang 2007], in which the authors proposed a framework to build ALE high order temporal

schemes that reach approximately the design order of accuracy. The originality of this approach



consists in precisely defining which ALE parameters are true degrees of freedom and which are

not. In contrast to other approaches [Koobus 1999, Lesoinne 1996, Nkonga 2000], they consider

that the times and configurations at which the fluxes are evaluated do not constitute a new

degree of freedom to be set thanks to the ALE scheme. To maintain the design accuracy of

the fixed-mesh temporal integration, the moment at which the geometric parameters, such as

the cells’ interfaces’ normals or the upwind/downwind tetrahedra must be computed, is entirely

determined by the intermediate configurations involved in the chosen temporal scheme. The

only degree of freedom to be set by enforcing the GCL at the discrete level is σ. Incidentally,

it is implicitly stated that w is never involved alone but only hidden in the term σ‖n‖ which

represents the instantaneous algebraic volume swept.

In practical terms, the interfaces normal speeds are found by simply rewriting the scheme for a

constant discrete solution, which leads to a small linear system that is easily invertible by hand.

This procedure is detailed in the next sections for one explicit Runge-Kutta scheme and several

implicit schemes. Any fixed-mesh time-integration scheme can be extended to the case of moving

meshes thanks to this methodology, and the resulting temporal scheme is naturally DGCL. Even

if this has not been proven theoretically, the expected temporal order of convergence has also

been observed numerically for several schemes designed using this method [Yang 2005].

Explicit Runge-Kutta schemes

The system of partial differential equations - given by Relation (2.6) - can be written in semi-

discrete form for a vertex Pi as:

d (|Ci(t)|Wi(t))

dt
= F(Wi(t)) ,

where F (Wi(t)) is the residual, i.e., the discretization of the convective operator using an

approximate Riemann solver and of the boundary conditions, and |Ci| is the area/volume of

the dual finite volume cell associated with Pi. For a first-order explicit time discretization, the

semi-discretized system reads:

|Cn+1
i |Wn+1

i − |Cni |Wn
i

δtni
= F(Wn

i ) ,

where Wn is the state at iteration n and δtni is the local time step at iteration n. For high-order

scheme in time Runge-Kutta scheme are considered.

Runge-Kutta (RK) methods are famous multi-stage methods to integrate ODEs. In the

numerical solution of hyperbolic PDEs, notably the Euler equations, the favorite schemes among

the huge family of Runge-Kutta schemes are those satisfying the Strong Stability Preserving



(SSP) property [Shu 1988, Spiteri 2002]. In what follows, we denote by SSPRK(S,P ) the S-

stage RK scheme of order P . We adopt the following notations:

F(W s
i ) =

ni∑

j=1

|∂Csij |Φij(W
s
i ,W

s
j ,n

s
ij , σ

s
ij) =

ni∑

j=1

Φij(W
s
i ,W

s
j ,η

s
ij , σ

s
ij)

where

• ni is the number of vertices Pj (edges eij) in the ball of vertex Pi, i.e., we have Pj ∈ V(Pi),

• ηij is the outward non-normalized normal to the portion of the interface of cell Csi around

edge eij , i.e., ∂Cij , and we have: ηij = |∂Cij |nij ,

• σij is the normal speed of the interface around edge eij of cell Csi .

Superscript notation Xs indicates that the quantity considered is the X obtained at stage s of

the Runge-Kutta process. For instance, Csi is the cell associated with vertex Pi when the mesh

has been moved to its sth Runge-Kutta configuration.

In the following, coefficients (cs)0≤s≤S indicate the relative position in time of the current

Runge-Kutta configuration: ts = tn + cs δt
n with δtn = tn+1 − tn. Finally, we denote by Asij

the volume swept by the interface around edge eij of cell Ci between the initial Runge-Kutta

configuration and the sth configuration.

Application to the SSPRK(4,3) scheme. This approach was used, for example, to build the

3rd order 4-step Runge-Kutta scheme [Olivier 2011b], whose Butcher and Shu-Osher representa-

tions are given in Table 2.1. For this scheme to be DGCL, it must preserve a constant solution

Butcher representation Shu-Osher representation ts = tn + cs δt
n

Yi
0 = Yi

n Yi
0 = Yi

n c0 = 0, t0 = tn

Yi
1 = Yi

0 +
δtn

2
F0
i Yi

1 = Yi
0 +

δtn

2
F0
i c1 =

1

2
, t1 = tn +

1

2
δtn

Yi
2 = Yi

0 +
δtn

2

(
F0
i + F1

i

)
Yi

2 = Yi
1 +

δtn

2
F1
i c2 = 1, t2 = tn+1

Yi
3 = Yi

0 +
δtn

6

(
F0
i + F1

i + F2
i

)
Yi

3 =
2

3
Yi

0 +
1

3
Yi

2 +
δtn

6
F2
i c3 =

1

2
, t3 = tn +

1

2
δtn

Yi
4 = Yi

0 +
δtn

2

(
1

3
F0
i +

1

3
F1
i +

1

3
F2
i + F3

i

)
Yi

4 = Yi
3 +

δtn

2
F3
i c4 = 1, t4 = tn+1

Table 2.1: Butcher and Shu-Osher representations of the 3rd order 4-step Runge-Kutta scheme

(SSPRK(4,3).

Wi = W0, as stated above. In this specific case, our conservative variable is Yi = |Ci|W0 and



the purely physical fluxes vanish, leading to F(W s
i ) = −W0

ni∑
j=1
ηsijσ

s
ij . Therefore, the scheme

reads:

|C0
i | = |Cni |

|C1
i | − |C0

i | =

ni∑

j=1

A1
ij =

δtn

2

ni∑

j=1

η0
ijσ

0
ij

|C2
i | − |C0

i | =

ni∑

j=1

A2
ij =

δtn

2

ni∑

j=1

(
η0
ijσ

0
ij + η1

ijσ
1
ij

)

|C3
i | − |C0

i | =

ni∑

j=1

A3
ij =

δtn

6

ni∑

j=1

(
η0
ijσ

0
ij + η1

ijσ
1
ij + η2

ijσ
2
ij

)

|C4
i | − |C0

i | =

ni∑

j=1

A4
ij =

δtn

2

ni∑

j=1

(
1

3
η0
ijσ

0
ij +

1

3
η1
ijσ

1
ij +

1

3
η2
ijσ

2
ij + η3

ijσ
3
ij

)
,

where Asij is the volume swept by the interface around edge eij of cell Ci between the initial

and the sth Runge-Kutta configuration. A natural necessary condition for the above relations

to be satisfied is to have, for each interface around edge eij of each finite volume cell Ci:
A1

ij

A2
ij

A3
ij

A4
ij

 = δtn


1
2

0 0 0

1
2

1
2

0 0

1
6

1
6

1
6

0

1
6

1
6

1
6

1
2




η0
ijσ

0
ij

η1
ijσ

1
ij

η2
ijσ

2
ij

η3
ijσ

3
ij

 ⇐⇒


η0
ijσ

0
ij

η1
ijσ

1
ij

η2
ijσ

2
ij

η3
ijσ

3
ij

 =
1

δtn


2 0 0 0

−2 2 0 0

0 −2 6 0

0 0 −2 2




A1

ij

A2
ij

A3
ij

A4
ij

 .

Therefore, the normal speed of the interface around edge eij of cell Ci must be updated in the

Runge-Kutta process as follows :

σ0
ij =

2A1
ij

δtn η0
ij

, σ1
ij =

−2A1
ij + 2A2

ij

δtn η1
ij

, σ2
ij =

−2A2
ij + 6A3

ij

δtn η2
ij

, and σ3
ij =

−2A3
ij + 2A4

ij

δtn η3
ij

,

(2.14)

and the ηsij and Asij are computed on the mesh once it has been moved to the sth Runge-Kutta

configuration.

Implicit time discretization

For numerical scheme stability, explicit time discretization have strong constraint on the allow-

able time-step defined by the CFL condition. Such explicit schemes are widely used for blast

problems (violent flows), LES, aeroacoustic, ... to control efficiently dissipation and dispersion

errors that can spoil the overall solution accuracy. However, for other applications, implicit

scheme are of main interest to reduce the time-step restriction. But, implicit schemes are more

difficult to implement as they require the solution of a linear system and their cost per iterations

is generally very large w.r.t explicit schemes.



As above, the system of partial differential equations can be written in semi-discrete form

for a vertex Pi as:
d (|Ci(t)|Wi(t))

dt
= F(Wi(t)) , (2.15)

where F(Wi(t)) is the residual and |Ci(t)| is the area/volume of the dual finite volume cell

associated with Pi at time t. To introduce the notations, we first assume we are not in the ALE

framework and the finite volume cells have no dependency in time:

|Ci|
d (Wi(t))

dt
= F(Wi(t)) .

Then, for a first order implicit time discretization (BDF1, i.e., backward differentiation formula),

we have :
|Ci|
δtni

(|Wn+1
i −Wn

i ) = F(Wn+1
i )

which is linearized as:
( |Ci|
δtni

Id −
∂F

∂W
(Wn

i )

)(
Wn+1
i −Wn

i

)
= F(Wn

i )

where
∂F

∂W
(Wn

i ) is the Jacobian contributing to the ith line of the matrix. We then rewrite the

linearized system in compact form for all vertices in the mesh as:

An δWn = Rn

where An =
|C|
δtn

I− ∂Rn

∂W
and δWn = Wn+1 −Wn .

In this section, we present three implicit integration schemes in the ALE context: BDF1,

BDF2, Crank-Nicolson, and the Defect Correction methods (DeC) to increase the spatial ac-

curacy. Again, we follow the Mavriplis and Yang approach [Mavriplis 2006] and use the same

notations as for the explicit case:

• ni is the number of vertices Pj (edges eij) in the ball of vertex Pi, i.e., we have Pj ∈ V(Pi),

• ηij is the outward non-normalized normal to the portion of the interface of cell Csi around

edge eij , i.e., ∂Cij , and we have: ηij = |∂Cij |nij and ‖ηij‖ = |∂Cij | is the area of the

portion of the cell interface,

• nij =
ηij

‖ηij‖
the normalized cell interface normal

• ωij the cell interface velocity vector

• σij = ωij · nij is the normal velocity of the cell interface around edge eij of cell Csi , thus

‖ηij‖σij = ωij · ηij is the interface normal integrated velocity.

For each implicit time integration scheme, we give the normal velocity for each cell interface

(as its computation depends on the considered scheme) and the linear system to be solved.



ALE BDF1 scheme. The first-order backward differentiation formula (BDF1) scheme reads:

|Cn+1|Wn+1 − |Cn|Wn

δtn
= R(Wn+1, tn+1) , (2.16)

the mesh coordinates and velocities in the residual should only be evaluated at the new time

step tn+1. Thus, we have:

R(Wn+1, tn+1) = R(Wn+1,xn+1, ‖ηn+1‖σn+1) .

As the mesh coordinates and the cell-face data should be taken at tn+1, the only remaining

degree of freedom is the mesh velocity ωn+1 (or σn+1) and it is necessary to devise an implicit

scheme which obeys the GCL. In fact, verifying the GCL defines completely the mesh velocity.

Computing σ. To compute the cells interface normal velocity, the GCL states that a constant

state is preserved, thus for the BDF1 scheme the GCL reads:

|Cn+1
i | − |Cni | = δtn

ni∑

j=1

‖ηn+1
ij ‖σn+1

ij ,

The left-handside, which can be computed exactly (following [Nkonga 1993]),but it may also

be written as a linear combination of the incremental changes in volume between the two time

levels, which themselves may be decomposed into the elemental volumes swept by each control

volume boundary face between the two time levels. The equality is then required to hold for

each moving control volume boundary face ∂Cij , leading to:

σn+1
ij =

|∂Cn+1
ij | − |∂Cnij |
‖ηn+1

ij ‖ δtn
. (2.17)

BDF1 linear system. As regards the BDF1 linear system, we linearize the residual of System

(2.16) with respect to Wn and let x and σ fixed :

|Cn+1|Wn+1 − |Cn|Wn = δtnR(Wn+1,xn+1, σn+1) ,

⇐⇒ |Cn+1|δWn + (|Cn+1| − |Cn|)Wn = δtnR(Wn,xn+1, σn+1) + δtn
∂R

∂W
(Wn,xn+1, σn+1) δWn ,

to obtain the following BDF1 linear system
( |Cn+1|

δtn
I− ∂R

∂W
(Wn,xn+1, σn+1)

)
δWn = R(Wn,xn+1, σn+1)− |C

n+1| − |Cn|
δtn

Wn . (2.18)

We notice that the Jacobian (in fact the whole matrix) and the residual are evaluated on the

mesh at tn+1 but we use the solution at tn.

In the unsteady case, the implicit scheme given by Equation (2.18) is A-stable but it is only

first order accurate in time and in space. To increase the time accuracy to second order, two

approaches are possible: the use of second-order backward difference formulae (BDF2) or the

Crank-Nicolson method. To increase the space accuracy to second order a defect-correction

(DeC) method is considered.



ALE BDF2 scheme. The second-order backward differentiation formula (BDF2) scheme is

L-stable and uses three-points to integrate in time:

λn+1|Cn+1|Wn+1 + λn|Cn|Wn + λn−1|Cn−1|Wn−1

δtn
= R(Wn+1, tn+1) , (2.19)

where

λn+1 =
3

2
, λn = −2 , λn−1 =

1

2
,

if the time-step δt is constant. If the time-step changes at each iteration, then we have

[Denner 2014, Koobus 1999]:

λn+1 =
1 + 2rn

1 + rn
, λn = −1− rn , λn−1 =

(rn)2

1 + rn
with rn =

δtn

δtn−1
.

The mesh coordinates and velocities in the residual should only be evaluated at the new time

step tn+1. Thus, we have:

R(Wn+1, tn+1) = R(Wn+1,xn+1, ‖ηn+1‖σn+1) .

As the mesh coordinates and the cell-face data should be taken at tn+1, the only remaining

degree of freedom is the mesh velocity ωn+1 (or σn+1) and it is necessary to devise an implicit

scheme which obeys the GCL. In fact, verifying the GCL defines completely the mesh velocity.

Computing σ. The GCL states that a constant state is preserved, thus for the BDF2 scheme

the GCL reads:

λn+1|Cn+1|+ λn|Cn|+ λn−1|Cn−1| = δtn
ni∑

j=1

‖ηn+1
ij ‖σn+1

ij ,

The left-handside, which can be computed exactly (following [Nkonga 1993]), may also be writ-

ten as a linear combination of the incremental changes in volume between the various time

levels, which themselves may be decomposed into the elemental volumes swept by each con-

trol volume boundary face between time levels. The equality is then required to hold for each

moving control volume boundary face, leading to:

δtn‖ηn+1
ij ‖σn+1

ij = γn
(
|∂Cn+1

ij | − |∂Cnij |
)

+ γn−1
(
|∂Cnij | − |∂Cn−1

ij |
)

=⇒ λn+1|Cn+1|+ λn|Cn|+ λn−1|Cn−1| =
ni∑

j=1

(
γn
(
|∂Cn+1

ij | − |∂Cnij |
)

+ γn−1
(
|∂Cnij | − |∂Cn−1

ij |
))
,

leading to γn = λn+1 and γn−1 = −λn−1. And, we verify that:

λn = γn−1 − γn = −λn+1 − λn−1 =
−1− 2rn − (rn)2

1 + rn
= −(1 + rn) = λn .

Consequently, the face normal integrated velocity is defined by the relation:

‖ηn+1
f ‖σn+1

ij =
1

δtn

(
λn+1

(
|∂Cn+1

ij | − |∂Cnij |
)
− λn−1

(
|∂Cnij | − |∂Cn−1

ij |
))

,



and thus the cell face normal velocity is

σn+1
ij =

λn+1
(
|∂Cn+1

ij | − |∂Cnij |
)
− λn−1

(
|∂Cnij | − |∂Cn−1

ij |
)

‖ηn+1
ij ‖ δtn

. (2.20)

BDF2 linear system. To simplify the notation, the residual is now written R(Wn+1,xn+1, σn+1)

meaning that it applies to the state at tn+1, uses the mesh at tn+1 to compute all geometric

quantities and considers σn+1 defined above. The BDF2 scheme

λn+1|Cn+1|Wn+1 + λn|Cn|Wn + λn−1|Cn−1|Wn−1 = δtnR(Wn+1,xn+1, σn+1)

is linearized as follows:

λn+1|Cn+1|δWn + (λn+1|Cn+1|+ λn|Cn|)Wn + λn−1|Cn−1|Wn−1 = δtn R(Wn,xn+1, σn+1)

+ δtn
∂R

∂W
(Wn,xn+1, σn+1) δWn ,

to obtain the BDF2 linear system:
(
λn+1 |Cn+1|

δtn
I− ∂R

∂W
(Wn,xn+1, σn+1)

)
δWn = R(Wn,xn+1, σn+1) (2.21)

− 1

δtn
(
(λn+1|Cn+1|+ λn|Cn|)Wn + λn−1|Cn−1|Wn−1

)
.

We notice that the Jacobian (in fact the whole matrix) and the residual are evaluated on the

mesh at tn+1 but we use the solution at tn.

ALE Crank-Nicolson method. The Crank-Nicolson method (CN2) consists in using a general

trapezoidal scheme:

|Cn+1|Wn+1 − |Cn|Wn

δtn
= βR(Wn+1, tn+1) + (1− β)R(Wn, tn) , (2.22)

with β = 1
2 (for β = 0 we recover the explicit scheme and for β = 1 we recover the Euler

implicit time integration). This implicit scheme is A-stable and second order accurate in time.

The mesh coordinates and velocities in the residual should be evaluated at the current time

step tn and the new time step tn+1.

Computing σ. The GCL states that a constant state is preserved, thus for the CN2 scheme the

GCL reads:

|Cn+1| − |Cn| = δtn

2

ni∑

j=1

(
‖ηn+1

ij ‖σn+1
ij + ‖ηnij‖σnij

)

Unfortunately here, we have two unknowns σnij and σn+1
ij for one equation. We make the

following choice to solve this issue (as a choice has to be made):

|Cn+1| − |Cn| = δtn
ni∑

j=1

‖ηnij‖σnij and |Cn+1| − |Cn| = δtn
ni∑

j=1

‖ηn+1
ij ‖σn+1

ij



Note that σnij and σn+1
ij will not be identical because the cell interface normal varies between tn

and tn+1. Following, the results of the BDF1 scheme, we get:

σnij =
|∂Cn+1

ij | − |∂Cnij |
‖ηnij‖ δtn

and σn+1
ij =

|∂Cn+1
ij | − |∂Cnij |
‖ηn+1

ij ‖ δtn
. (2.23)

Crank-Nicolson linear system. The CN2 scheme:

|Cn+1|Wn+1 − |Cn|Wn =
δtn

2
R(Wn+1,xn+1, σn+1) +

δtn

2
R(Wn,xn, σn) ,

is linearized as follows:

|Cn+1|δWn+(|Cn+1|−|Cn|)Wn =
δtn

2
R(Wn,xn+1, σn+1)+

δtn

2

∂R

∂W
(Wn,xn+1, σn+1) δWn+

δtn

2
R(Wn,xn, σn) ,

to obtain our linear system(
|Cn+1|
δtn

I− 1

2

∂R

∂W
(Wn,xn+1, σn+1)

)
δWn =

1

2
R(Wn,xn+1, σn+1) +

1

2
R(Wn,xn, σn)− |C

n+1| − |Cn|
δtn

Wn .

(2.24)

We note that in comparison to the fixed mesh case, the CN2 scheme require two residual

evaluations, one on the mesh at tn and the other one on the mesh at tn+1.

Defect correction method. The BDF2 and the CN2 time integration schemes provide second

order accurate schemes in time, but only first order accurate scheme in space. To recover the

second order space convergence of the numerical scheme, the linearized linear system is solved

by an iterative method proposed in [Martin 1996] and called Defect Correction (DeC). In the

case of fixed meshes, the solution Wn+1 is obtained after αmax DeC iterations:

Set Wn+1,1 = Wn

For α = 1, . . . , αmax solve( |C|
δtn

I− ∂Rn

∂W

)
(Wn+1,α+1 −Wn+1,α) = Rn −

( |C|
δtn

I− ∂Rn

∂W

)
(Wn+1,α −Wn)

= Rn+1,α − |C|
δtn

(
Wn+1,α −Wn

)

EndFor

Set Wn+1 = Wn+1,αmax

To recover the second order in time and in space, it is sufficient to couple the above methods.

Now, we consider the case with dynamic meshes and we write the coupling of the DeC scheme

with the BDF2 and CN2 schemes.



Coupling the DeC method with BDF2 leads to solve the following sub-iteration linear system:

(
λn+1 |Cn+1|

δtn
I− ∂R

∂W
(Wn,xn+1, σn+1)

)(
Wn+1,α+1 −Wn+1,α

)

= R(Wn+1,α,xn+1, σn+1)− λn+1 |Cn+1|
δtn

(
Wn+1,α −Wn

)

− 1

δtn
(
(λn+1|Cn+1|+ λn|Cn|)Wn + λn−1|Cn−1|Wn−1

)
.

Coupling the DeC method with Crank-Nicolson leads to solve the following sub-iteration

linear system:
( |Cn+1|

δtn
I− 1

2

∂R

∂W
(Wn,xn+1, σn+1)

)
(Wn+1,α+1 −Wn+1,α)

=
1

2
R(Wn,xn, σn) +

1

2
R(Wn,xn+1, σn+1)− |C

n+1| − |Cn|
δtn

Wn

−
( |Cn+1|

δtn
I− 1

2

∂Rn

∂W
(Wn,xn+1, σn+1)

)
(Wn+1,α −Wn)

=
1

2
R(Wn,xn, σn) +

1

2
R(Wn+1,α,xn+1, σn+1)− |C

n+1| − |Cn|
δtn

Wn − |C
n+1|
δtn

(Wn+1,α −Wn)

=
1

2
R(Wn,xn, σn) +

1

2
R(Wn+1,α,xn+1, σn+1)− 1

δtn
(
|Cn+1|Wn+1,α − |Cn|Wn

)
.

Practical implementation. In practice, the following steps are done in the implementation:

1. We compute the volume swept by the cell faces using Nkonga formula, see next Section

(with the cell-face velocity ωij and the cell-face non-normalized pseudo-normal η̃ij),

2. We compute the cell-face normal velocity σij using Equation (2.17) or (2.20) or (2.23)

3. Numerical fluxes can be evaluated using σij .

Practical computation of the volumes swept

The interface of a finite volume cell is made up of several triangles, connecting the middle

of an edge to the center of gravity of a face and the center of gravity of that tetrahedron, see

Figure 2.6. The two triangles of the interface sharing one edge within a tetrahedron are coplanar

(i.e. the middle of an edge, the center of gravity of the two faces neighboring this edge and the

center of gravity of tetrahedron are coplanar). The union of these two triangles is called the

facet associated to the edge and the tetrahedron.

At configuration ts = tn+cs δt
n, (with tn+1 = tn+δtn), the outward non-normalized pseudo

normal η̃sij and the volume swept Asij are computed as described in [Nkonga 1994]. As the cell

interface is made up of several facets, the total swept volume is the sum of the volumes swept



P0

P2

P1

I01

I02

I03

M1
M2

M3

G

P0

P1

P2

G

M1

M2

M0

G02

G01
G10

G12

G20

G21

boundary triangle K

T02

T01
T10

T12

T21T20

I2

I0

I1

Figure 2.6: Interface of a finite volume cell made up of facets (top) and boundary interface

(bottom).

by each facet. Let us assume that the facet considered is associated with edge eij = PiPj and

belongs to tetrahedron K = (P0, P1, P2, P3). In what follows, i 6= j 6= l 6= m ∈ [[0, 3]], G denotes

the center of gravity of tetrahedron K, Mm denotes the gravity center of face Fm = (Pi, Pj , Pl)

of tetrahedron K and Ml the center of gravity of face Fl = (Pi, Pj , Pm). The outward non-

normalized pseudo normal of the facet is given by:

η̃sij,K =
1

4
GnMn

m ∧ GsM s
l +

1

4
GsM s

m ∧ GnMn
l +

1

2
GnMn

m ∧ GnMn
l +

1

2
GsM s

m ∧ GsM s
l ,

(2.25)

where

GnMn
m =

1

12

(
Pni + Pnj − 3Pnm + Pnl

)
, GsM s

m =
1

12

(
P si + P sj − 3P sm + P sl

)
,

GnMn
l =

1

12

(
Pni + Pnj + Pnm − 3Pnl

)
, GsM s

l =
1

12

(
P si + P sj + P sm − 3P sl

)
.

The volume swept by the facet is:

Asij,K = cs δt
n (wG)sij,K · η̃sij,K , (2.26)

with the mean velocity written as:

(wG)sij,K =
1

36 cs δtn
(
13ws

i + 13ws
j + 5ws

m + 5ws
l

)

with

ws
ξ = P sξ − Pnξ .

Finally, the total volume swept by the interface around edge eij of cell Ci is obtained by

summing over the shell of the edge, i.e. all the tetrahedra sharing the edge:

Asij =
∑

K∈Shell(i,j)

Asij,K . (2.27)



It is important to understand that normals η̃sij,K are pseudo-normals which are used only

to compute the volumes swept by the facets. They must not be mistaken for normals to facets

taken at ts, ηsij,K , which are used for the computation of ALE fluxes.

Volumes swept by boundary interfaces

The pseudo-normals and swept volumes of boundary faces are computed in a similar way. Let

K = (P0 , P1 , P2) be a boundary triangle, as in Figure 2.6. Let M0, M1 and M2 be the middles

of the edges and G the center of gravity of K. The triangle is made up of three quadrangle

finite volume interfaces: (P0 ,M2 , G ,M1) associated with cell C0, (P1 ,M0 , G ,M2) with C1 and

(P2 ,M1 , G ,M0) with C2. Each boundary quadrangle interface Ii is made of two sub-triangles,

noted Tij and Tik with j, k 6= i.

The volume swept by interface Ii between the initial and current configurations is the sum

of the volumes swept by its two sub-triangles:

Asi,K = AsTij +AsTik = csδt
nws

Gij
· η̃sij + csδt

nws
Gik
· η̃sik , (2.28)

wherews
Gij

is the velocity of the center of gravity Gij of triangle Tij and η̃sij is the pseudo-normal

associated with Tij , computed between the initial and current configurations. The six triangles

Tij are coplanar, so their pseudo-normals have the same direction. Moreover, as median cells

are used, their pseudo-normals also have the same norm, which is equal to one sixth of the norm

of the pseudo-normal to triangle K. This common pseudo-normal is therefore equal to:

η̃s =
1

6
η̃sK =

1

6
· 1
3

[
1

4
Pn0 P

n
1 ∧ P s0P s2 +

1

4
P s0P

s
1 ∧ Pn0 Pn2 +

1

2
Pn0 P

n
1 ∧ Pn0 Pn2 +

1

2
P s0P

s
1 ∧ P s0P s2

]
,

(2.29)

thus

Asi,K = csδt
n
[
ws
Gij

+ws
Gik

]
· η̃s , (2.30)

where :

ws
Gij

=
1

18 cs δtn
(
11ws

i + 5ws
j + 2ws

k

)
with ws

ξ = P sξ − Pnξ .

Finally, the total volume swept by the boundary interface is:

Asi =
∑

K∈Ball(i)

Asi,K . (2.31)

MUSCL approach and temporal schemes

Regarding spatial accuracy, we have seen that the order of accuracy can be enhanced using the

MUSCL-type reconstruction with upwinding. However, in the ALE context, one must determine

how and when upwind/downwind elements should be evaluated to compute upwind/downwind



gradients which are necessary for the β-schemes. This question is neither answered in the liter-

ature and generally approximations are carried out. For instance, some papers propose to use

upwind and downwind elements at tn for the whole Runge-Kutta process. However, this choice

should be consistent with the considered time integration scheme. Following the framework

of [Yang 2005], it is clear that preserving the expected order of accuracy in time imposes that

the upwind/downwind elements and the gradients are computed on the current configuration,

i.e., on the mesh at ts for the Runge-Kutta stage or the mesh specified in the residual for im-

plicit schemes. Therefore, similarly to geometric parameters, the upwind/downwind elements

and the gradients should be re-evaluated at each step of the Runge-Kutta stage or at each time

step for implicite schemes.

Computation of the time step

For explicit time integration : The maximal allowable time step for the numerical scheme

is:

δtn(Pi) =
h(Pi)

ci + ‖ui −wi‖
(2.32)

where h(Pi) is the smallest height in the ball of vertex Pi, ci is the speed of sound, ui is the

Eulerian speed (the speed of the fluid, computed by the solver) and wi is the speed of the

mesh vertex. The global time step is then given by δtn = CFL minPi(δt
n(Pi)).

For implicit time integration : Time step is up to the user.

Handling the swaps

An ALE formulation of the swap operator, satisfying the DGCL, was proposed in 2D

in [Olivier 2011b], but its extension to 3D is very delicate because it requires to handle 4D

geometry, and it has not been carried out yet. Instead of considering an ALE scheme for the

swap operator, our choice in this work is to perform the swaps between two solver iterations, i.e.

at a fixed time tn. This consequently means that during the swap phase, the mesh vertices do

not move, and thus the swaps do not impact the ALE parameters η andw, unlike [Olivier 2011b]

where the swaps are performed during the solver iteration, i.e. between tn and tn+1. After each

swap, the solution should be updated on the new configuration. Two interpolation methods are

considered here.

The first, and simplest, one is to perform a linear interpolation to recover the solution. As

only the connectivity changes and not the vertices positions, the solution at the vertices does

not change, i.e., nothing has to be done. This interpolation is DGCL compliant, since the

constant state is preserved (in fact, any linear state is preserved), but it does not conserve the



mass (i.e., it does not conserve the integral of the conservative variable) which is problematic

for conservative equations when discontinuities are involved in the flow.

The second method is the P 1-exact conservative interpolation following [Alauzet 2010b,

Alauzet 2016]. It is a simplified version of the latter because the cavity of the swap configuration

is fixed. The mass conservation property of the interpolation operator is achieved by element-

element intersections. The idea is to find, for each element of the new configuration, its geometric

intersection with all the elements of the previous configuration it overlaps and to mesh this

geometric intersection with simplices. We are then able to use a Gauss quadrature formula to

exactly compute the mass which has been locally transferred. High-order accuracy is obtained

through the reconstruction of the gradient of the solution from the discrete data and the use

of some Taylor formulae. Unfortunately, this high-order interpolation can lead to a loss of

monotonicity. The maximum principle is recovered by correcting the interpolated solution in

a conservative manner, using a limiter strategy very similar to the one used for Finite-Volume

solvers. Finally, the solution values at vertices are reconstructed from this piecewise linear by

element discontinuous representation of the solution. The algorithm is summarized in Algorithm

9 where mK stands for the integral of any conservative quantities (density, momentum and

energy) on the considered element. This method is also compliant with the DGCL.

Algorithm 7 Conservative Interpolation Process

1. For all elements Kback of the original cavity, compute solution mass mKback
and gradient

∇Kback

2. For all elements Knew of the new cavity, recover solution mass mKnew and gradient ∇Knew :

(a) compute the intersection of Knew with all Ki
back it overlaps

(b) mesh the intersection polygon/polyhedra of each couple of elements (Knew,K
i
back)

(c) compute mKnew and ∇Knew using Gauss quadrature formulae

=⇒ a piecewise linear discontinuous representation of the mass on the new cavity is obtained

3. Correct the gradient to enforce the maximum principle

4. Set the solution values to vertices by an averaging procedure

Moreover, after each swap, the data of the finite volume cells (volume and interface normals)

are updated, together with the topology of the mesh (edges and tetrahedra). This requires to

have a flow solver with dynamic data.



2.3 FSI coupling

The moving boundaries can have an imposed motion, or be driven by fluid-structure interaction.

A simple solid mechanics solver is coupled to the flow solver described previously. The chosen

approach is the 6-DOF (6 Degrees of Freedom) approach for rigid bodies.

In this work, the bodies are assumed to be rigid, of constant mass and homogeneous, i.e.,

their mass is uniformly distributed in their volume. The bodies we consider will never break

into different parts. Each rigid body B is fully described by:

Physical quantities: its boundary ∂B and its associated inward normal n, its mass m assumed

to be constant, its d×d matrix of inertia JG computed at G which is symmetric and depends

only on the shape and physical nature of the solid object4.

Kinematic quantities: the position of its center of gravity xG = (x(t), y(t), z(t)), its angular

displacement vector θ = θ(t) and its angular speed vector ω = dθ/dt.

Fext denotes the resultant vector of the external forces applied on B, MG (Fext) the kinetic

moment of the external forces applied on B computed at G and g the gravity vector. We assume

that the bodies are only submitted to forces of gravity and fluid pressure. The equations for

solid dynamics in an inertial frame then read:





m
d2xG

dt2
= Fext =

∫

∂B
p(s)n(s)ds + mg

JG
d2θ

dt2
= MG (Fext) =

∫

∂B

[
(s− xG)× p(s)n(s)

]
ds .

(2.33)

The equation governing the position of the center of gravity of the body is easy to solve

since it is linear. Its discretization is straightforward. However, the discretization of the second

equation, which controls the orientation of the body, is more delicate. Since the matrix of inertia

JG depends on θ, it is a non-linear second order ODE. The chosen discretization is extensively

detailed in [Olivier 2011a] and is based on rewriting of the equations in the frame of the moving

body.

As the geometry must be moved in accordance with the fluid computation, the same time

integration scheme has been taken to integrate the fluid and the solid equations. Therefore,

time-advancing of the rigid bodies ODE System is performed using the same RKSSP or implicit

scheme as the one used to advance the fluid numerical solution. The coupling is loose and

explicit as the external forces and moments acting on rigid objects are computed on the current

configuration.

4The moment of inertia relative to an axis of direction a passing through G where a is an arbitrary unit vector

is given by: J(Ga) = aTJGa



2.4 Numerical experiments

2.4.1 Naca0012 Pitching

The formation of vortices in the wake of an aircraft is essentially the result of the separation of

flow and the vorticity created by the lifting surfaces. Air below the wing is at higher pressure

than the air pressure above. This pressure difference causes air to flow from the lower surface of

the wing, around the wingtip towards the upper surface of the wing. This phenomenon creates a

vortex which is lift-generating. But wingtip vortices in lift generation are also associated to wake

turbulence and increase the drag of the aircraft. This could be particularly dangerous during

take-off, landing or when the aircraft operates a high-angle of attack. Vortical flows, if not

properly understood and controlled, may be undesirable aerodynamic effects and can severely

influence the flight stability or speed up the degradation of the aircraft structure. Consequently,

there is a continuous need for better understanding of vortex flow characteristics to predict the

flow behavior and to help the designers to develop more effective means.

Mesh

In a circular domain of radius 20 is put a NACA0012 of length 1. The entire mesh includes

3291 vertices.

Initial conditions

To generate similar conditions of take-off, the initial Mach number chosen is 0.4.

Moving mesh

The moving of the NACA0012 is imposed. In phase 1, the coordinates of the geometry do not

moved. The flow around the aircraft is established. Let t1 = 0.1 be the time of the beginning

of the movement and θmax = 20o the maximal angle reached at first time tθmax . The movement

of the wing profile is defined in phase 2 by calculating at each time step its angle of rotation

α = 0.5 ∗ θmax ∗ (1− cos(π ∗ (t− t1)/(tθmax − t0))). The coordinates of the new points are then

xnew = xold ∗ cosα+ yold ∗ sinα and ynew = −xold ∗ sinα+ yold ∗ cosα. A phase 3 follows where

the NACA0012 stays in upward position before the descent computed in the same way as phase

2.

Numerical results and comparison between implicit and explicit solvers

The simulation is done both in explicit Euler SSPRK(2,5) and BDF2 DeC. The results are

shown in Figures 2.7 and 2.8.

On the upper surface of the airfoil, counter-clockwise vortices are observed with both temporal

schemes. The initial formation of this bubble can be observed and is moved on the airfoil upper

surface towards the leading edge as angle of attack increases. Once the maximal angle reached,

the flow separated at the leading edge of the airfoil reattaches at the half of the chord. The



formation of the new counterclockwise bubble causes this reattachment just behind the mid-

chord. The bubble length is approximately two times smaller than the first one length and the

second separation is observed about the last quarter chord location. The trailing edge vortex

in counter-clockwise direction now causes once more the flow to attach at the end of the chord.

This bubble is well captured in the BDF-2 scheme simulation but the vortex in the wake is

more accurate in the SSPRK(2,5) scheme. We know that the SSPRK(2,5) and the BDF-2 are

schemes of order 2. And with the numerical results, the two schemes for concluding have quite

the same results in this 2D test case.

Explicit Implicit

Figure 2.7: Nosing up NACA0012 test case with explicit (left) and implicit schemes (right)

Mach isolines at different time steps (t = 0, 30, 45).

But the CFL for the SSPRK(2,5) explicit scheme cannot exceed 3which is the faster second-

order in time explicit scheme we have, when CFL 500 is used for the BDF-2 scheme. The CPU



times of both simulations are summarized in the Table 2.2. We only divided the computation

time by 2 in this two-dimensional case.



Explicit Implicit

Figure 2.8: Nosing up NACA0012 test case with explicit (left) and implicit schemes (right)

Mach isolines at different time steps (t = 60, 75, 90, 105, 147).



RK2 BDF2

CPU Time 55min42s 29min24s

Table 2.2: Nosing up NACA0012 test case. Final CPU time.

2.4.2 FSI Case : 2D Bomb drop

Figure 2.9: B61-12LEP dropping from a F16 (left). Corresponding 2D-computation (right)

Mesh

To compute this case, we first define a 2D mesh as a cross-section view of an initial 3D mesh

represented in Figure 2.10. We first keep only the triangles involved in the intersection of

the initial mesh surface and the plane z = 3.2. Then for each of these triangles, we compute

some points at the intersection and necessarily the points at the extremities. As the wing

profile looks like a NACA0012, we decide to use it instead of my section view and to keep the

ratios considering the NACA0012 is 1-length. Finally we choose a circular domain of radius 20

and center (0.5, 0). The final 2D mesh (see Figure 2.11) has 25779 vertices. It is generated

by AFLR [Marcum 2001]. AFLR is an unstructured mesh generation software based on an

advancing-front/local-reconnection method.

Initial conditions

- Aerodynamic conditions : Mach number = 0.8, Angle of Attack = 2◦

- External forces To eject the bomb an ejection force is applied to provide it to move up due

to the external forces and strike the aircraft. It’s supposed to be F = (0.;−0.02469).

- Gravity vector Considering the aircraft is flying below 20 km above ground so the gravity

vector stands for g = (0.;−9.74).



Figure 2.10: Initial 3D Mesh of the wing profile with attached bomb.

Figure 2.11: 2D Mesh : naca0012 and sectional view of the bomb.

- Bomb charcteristics Obviously, its gravity center must be located in the head of the bomb

to fall. We consider it at (0.06,−0.21). To be realistic, its mass is 500 kgs and its matrix of

inertia is defined as for a cylinder of radius 0.032 and height 0.6 i.e. :




15.125 0 0

0 15.125 0

0 0 0.251




Numerical results

The simulation is done with a BDF-2 scheme with DeC in FSI motion.

Observations and Interpretations

At initial time the plane is flying and carrying the bomb. At the moment the bomb is released,

it has the same velocity as the aircraft. At time t = 0, an attached oblique shockwave is located



Figure 2.12: Results of the bomb drop computation at different times (left). Corresponding

zoom-in (right).

at the middle of the bomb on its lower face. Vortices also appear at the tail of the bomb. When

the bomb falls, this shockwave moves forward. And when the bomb is released it begins to



Figure 2.13: Results of the bomb drop computation at different times (left). Corresponding

zoom-in (right).

accelerate down due to the gravity but it also continues the forward motion. That explains the

position of the bomb below the aircraft. An other shockwave appears on the upper face of the

bomb moving on the opposite way than the first one. This creates a light swing of the bomb

during the drop. Results are shown in Figures 2.12 and 2.13.



2.4.3 3D Nosing-up F117

Figure 2.14: F117 flight (left). Corresponding 3D-computation (right).

The chosen case concerns vortex flow created by the nosing up/nosing down of a subsonic F-

117 aircraft. As a first step the F-117 aircraft geometry nosing up, that creates a vortical wake.

An inflow of air at Mach 0.4 arrives in front of the aircraft, initially in horizontal position, that

noses up, stays up for a while, then noses down. In this example, the aircraft rotates around

its center of gravity. Let T = 1 be the characteristic time of the movement and θmax = 20o the

maximal angle reached, the movement is defined by its angle of rotation, of which the evolution

is divided in 7 phases:

θ(t) = θmax





0 if 0 ≤ t ≤ T/2 (i)
2(t−T

2
)2

T 2 if T
2 < t ≤ T (ii)

1
2 + 2 (

2 (t−T
2

)

T − 1)− 1
2 (

4 (t−T
2

)2

T 2 − 1) if T < t ≤ 3T
2 (iii)

1 if 3T
2 < t ≤ 7T

2 (iv)

1− 2 (t− 7T
2

)2

T 2 if 7T
2 < t ≤ 4T (v)

1
2 − 2 (

2 (t− 7T
2

)

T − 1) + 1
2 (

4 (t− 7T
2

)2

T 2 − 1) if 4T < t ≤ 9T
2 (vi)

0 if 9T
2 t ≤ 5T (vii)

Phase (i) is an initialization phase, during which the flow around the aircraft is established.

Phases (ii) and (iii) are respectively phases of accelerated and decelerated ascension. Vortices

start to grow behind the aircraft, and they expand during phase (iv), where the aircraft stays

in upward position. Phases (v) and (vi) are phases of accelerated and decelerated descent, the

vortices start to move away and they slowly disappear in phase (vii). Free-stream conditions

are imposed on the faces of the surrounding box, and slipping conditions on the aircraft.

Comparison between implicit and explicit solvers



Figure 2.15: Mach isolines of nosing up f117 test case in SSPRK2 explicit scheme (left)/ implicit

BDF2 scheme with defect correction (right) at different time steps [ (view from the top) t = 0,

100, 200, 300 ].



Figure 2.16: Mach isolines of nosing up f117 test case in SSPRK2 explicit scheme (left)/ implicit

BDF2 scheme with defect correction (right) at different time steps [ (view from the top) t = 0,

100, 200, 300 ].



The simulation was computed in SSPRK2, BDF-1 and BDF-2 schemes. The results are shown

in SSPRK2 and BDF-2 in the Figure 3.6. As in 2D, they are pretty closed for the schemes

of order 2. But the CPU time is significantly different due to the larger CFL used for the

implicit time integration schemes. CFL 1 is used for SSPRK2, CFL 500 is used for the two

BDF schemes.

Table of CPU time for the three simulations 2.3. The first column stands for the explicit RK2

scheme computation, the second for the BDF1 scheme, the third for the BDF2 scheme :

SSPRK2 BDF1 BDF2

CPU Time 3h2min13s 0h39min38s 0h44min8s

Table 2.3: Nosing up F117 test case. Final CPU time.

The difference of time between BDF1 and BDF2 can be explained by the additional step com-

puted for the second order scheme.

2.5 Conclusion

In this chapter, we presented the 3D ALE solver for the compressible Euler equations that

was implemented in two and three dimensions. As regards time discretization, the multi-step

Runge-Kutta schemes were already implemented in [Barral 2015] and the contribution of this

thesis is the implementation of implicit methods. Details on the computation of the geometric

parameters are provided. A 6-DOF mechanical model for rigid bodies was considered to add

FSI coupling to the fluid solver. This solver was implemented in 3D in the same code as the

moving mesh algorithm, and was plugged into it as explained in Algorithm 5. We also present

numerous cases using this ALE solver and the connectivity-change moving mesh method.

In this chapter, we have seen the two aspects of simulations with moving boundaries: the

handling of the moving mesh, and its consequences on the solver side. This algorithm allows us

to run large displacement complex moving mesh simulations without remeshing.

Following from [Barral 2015], a novelty was presented in this chapter :

• A new integration in time was introduced. Three implicit time integration schemes ALE

solver were implemented : BDF1, BDF2, Crank Nicolson schemes and parallelized in 3D.

The formulas for the computation of the geometrical parameters were clarified.

• The two BDF implicit solver were validated on test cases in 2D and 3D.



• ALE simulations were run in 2D and 3D, with imposed motion or Fluid-Structure Interac-

tion.

• These considered implicit solvers are efficient to speed-up low-mach simulations, in particu-

lar, in the presented test cases, the subsonic aeronautic cases.

Perspectives arising from this work concern both the moving mesh aspect and the solver

side.

• A strategy for moving boundary layer meshes around deformable geometries naturally arises

from what is presented. It needs to be developed and applied on various cases.

• More generally, handling boundary layer meshes would make it possible to run Navier-Stokes

simulations.

Now, to improve the accuracy of these moving mesh simulations without increasing unrea-

sonably their cost, we use metric-based mesh adaptation. We will see it in the next chapter.





Chapter 3

Hessian-based mesh adaptation for

moving geometries

Simulating complex moving geometries evolving in unsteady flows in three dimensions is more

and more required by industry. But it still remains a challenge. The first reason of this challenge

is the modelling as we already seen but this is not the only explanation. Simulating moving

geometries is also very costful. In fact preserving a good accuracy is often synonym of fine mesh

and great number of vertices. To increase the accuracy of these simulations while preserving the

same number of vertices and a similar CPU time, anisotropic metric-based mesh adaptation is

one solution. Generating an adapted mesh means optimizing the accuracy of some parts of the

simulation domain while de-emphazing other parts we don’t need precision. Mesh adaptation

allows computation of a sufficiently precise solution without enormous requirements for memory

and CPU time. Anisotropic mesh adaptation is one of these mesh adaptations and is based on

the control of the interpolation error of a piecewise polynomial interpolation of the exact solution

on the triangular grid. The mesh adaptation criterion checks the behaviour of the second order

derivatives of the solution of the considered problem. Even if in this thesis we only use it with

the solver previously developed in Chapter 2, we can mention that the additional advantage

of it is that it can be used without any modification for arbitrary boundary value problem

and arbitrary numerical method (finite element method, finite volume method, discontinuous

Galerkin method, etc.). Anisotropic mesh adaptation has already proved its efficiency for steady

problems, and appears as a good perspective for unsteady problems. However, its extension

to the unsteady case involving moving geometries is absolutely not straightforward. These

simulations combine the difficulties arising from unsteadiness and geometrical complexity :

global time step driven by the mesh smallest altitude, evolution of the phenomena in the whole

domain, interpolation spoiling, but also three-dimensional meshing and remeshing issues with an

imposed discretized surface. In fact, the introduction of moving geometries in this process raises

new difficulties : handling of the mesh movement without deterioration of its quality, handling

the specific numerical schemes imposed by moving mesh schemes and their restrictions, as well

as fluid/structure coupling.

Three different approaches dealing with time-dependent mesh adaptation in the literature can



be distinguished : re-meshing methods, fixed-point algorithms and adaptative moving meshes.

First, an isotropic mesh is adapted frequently in order to maintain the solution within re-

fined regions and a safety area around critical regions is introduced [Löhner 1990, Löhner 1992,

Rausch 1992, Speares 1997]. Another approach is to use an unsteady mesh adaptation algo-

rithm [de Sampaio 1993, Wu 1990] based on the estimation of the error every n flow solver

iterations and global remeshing techniques. If the error is greater than a prescribed thresh-

old, the mesh is re-adapted. A similar strategy is adopted in [Picasso 2003, Picasso 2009],

where, at each re-adaptation step, a nearly optimal metric is found by scaling the met-

rics in every directions depending on directional error factors. More recently, local adap-

tive remeshing enabling the construction of anisotropic meshes has been considered. In this

case [Pain 2001, Remacle 2005, Compère 2008], the mesh is frequently adapted in order to

guarantee that the solution always evolves in refined regions. All these approaches involve a

large number of adaptations while introducing unquantified errors due to the transfer of the

solution from the old mesh to the new one. Moreover, none of them considers the inherent

non-linear nature of the mesh adaptation problem: the convergence of the mesh adaptation

process is never addressed and therefore obtaining the optimal mesh cannot be expected.

A first answer to these issues has already been proposed in [Alauzet 2007]. It relies on

the assumption that the temporal error is always controlled by the spatial error, which is

indeed the case when solving a linear advection problem under a CFL condition. A fixed-

point algorithm is used to predict the solution and converge the couple mesh/solution. The

simulation interval is split into fixed-size sub-intervals on which an unique adapted mesh is

used. More recently, mesh adaptation and adaptive time-stepping methods were combined for

incompressible unsteady simulations [Coupez 2013]. In that approach, moving boundaries are

handled via level-set methods.

In adaptive moving meshes, also called r-adaptation, the mesh is moved at each time

step into a mesh adapted to the solution via a mesh equation. A large range of methods

share this common principle, the differences between each lying in the adaptation criterion,

the way it influences the mesh movement and the way the mesh movement is taken into

account reciprocally in the physical equations. In general, they strongly couple the mesh

movement and the physical equation being solved, resulting in methods with no spoiling

interpolation errors. Some methods are velocity-based, meaning the mesh position is found

through the vertices velocity. They include Lagrangian methods, where the velocity of the

mesh is the actual Lagrangian velocity of the fluid [Loubère 2010], Moving Finite Elements,

where the mesh celerity is the solution of a minimization problem [Miller 1981, Baines 1994],

and methods based on the conservation of the Geometric Conservation Law [Cao 2002].

These methods tend to quickly produce tangled meshes. In location-based methods, the

mesh equation directly gives the position of the vertices. The adapted meshes are seen



as images of a reference mesh by a coordinate transformation that is the solution of a

minimization problem. This problem usually involves a monitor function to specify the sizes

of the meshes, which is either heuristic or derived from error estimates. The problems can

be based on Laplace [Winslow 1963] or Poisson [Thompson 1983] equations, or harmonic

maps [Dvinsky 1991]. The application of the equidistribution principle leads to so called

Moving-Mesh PDEs (MMPDEs) [Huang 2010b]. More recently, Monge-Ampère equation was

also used to determine the mesh movement [Chacón 2011, Browne 2014]. These approaches

seem very time-consuming for now, since the PDEs are solved at every solver time step.

Moreover, the solution of the Monge-Ampère equation is known to be very difficult in three

dimensions.

This section is the continuation of the work of [Olivier 2011a], [Barral 2015], [N. Barral 2017].

In those works, the authors proposed a new error estimation for simulations with moving

geometries and a new ALE metric. But, mesh optimizations were not adapted consistently

during the process. The contribution made in this thesis is the maintain of a consistent ALE

metric in time-accurate anisotropic mesh adaptation for time-dependent problems with moving

geometries.

This chapter is divided into two axes. The first sections detail the theory of error estimation

and optimal metric for unsteady simulations and the numerical implementation in practice.

The last sections focus on the update for dynamic meshes adaptation and the numerical choices

made.

3.1 Error estimate for unsteady simulations

Let us first detail the error analysis that leads to the adaptation algorithm for unsteady simu-

lations. This analysis is performed in the context of the continuous mesh model: first, an error

model is proposed, then this error is minimized to derive an optimal mesh.

In the context of time-dependent problems, the error analysis for the steady case recalled in

Section 1.2.1 is not sufficient, since it controls only spatial errors, whereas temporal errors need

to be addressed too. In this work, we do not account for time discretization errors but we focus

on a space-time analysis of the spatial error. In other words, we seek for the optimal space-time

mesh controlling the space-time spatial discretization error. This assumption makes sense for

the type of simulations that are considered in this work considering that as an explicit time

scheme is used for time advancing, then the error in time is controlled by the error in space

under CFL condition. This has been demonstrated under specific conditions in [Alauzet 2007].

As long as this hypothesis holds, the spatial interpolation error provides a fair measure of the



total space-time error of the discretized unsteady system. But it will be no longer valid in the

case of future implicit time advancing solvers. The analysis would have to be completed to take

into account the temporal discretization error.

3.1.1 Error model

Our goal is to solve an unsteady PDE which is set in the computational space-time domain

Q = Ω× [0, T ] where T is the (positive) maximal time and Ω ⊂ R3 is the spatial domain. Let

Πh be the usual P 1 projector, we extend it to time-dependent functions:

(Πhϕ) (t) = Πh (ϕ(t)) , ∀ t ∈ [0, T ] . (3.1)

The considered problem of mesh adaptation consists in finding the space-time mesh H of Ω that

minimizes the space-time linear interpolation error u − Πhu in Lp norm. The problem is thus

stated in an a priori way:

Find Hopt having Nst vertices such that ELp(Hopt) = min
H
‖u−Πhu‖Lp(Ωh×[0,T ]) . (3.2)

This problem is ill-posed and has far too many unknowns to be solved directly, as was explained

previously. So it is rewritten in the continuous mesh framework under its continuous form:

Find MLp = (MLp(x, t))(x,t)∈Q such that ELp(MLp) = min
M
‖u− πMu‖Lp(Ω×[0,T ]) , (3.3)

under the space-time constraint:

Cst(M) =

∫ T

0
τ(t)−1

(∫

Ω
dM(x, t) dx

)
dt = Nst . (3.4)

where τ(t) is the time step used at time t of interval [0, T ]. Introducing the continuous inter-

polation error, we recall that we can write the continuous error model as follows:

ELp(M) =

(∫ T

0

∫

Ω
trace

(
M− 1

2 (x, t)|Hu(x, t)|M− 1
2 (x, t)

)p
dx dt

) 1
p

. (3.5)

where Hu is the Hessian of sensor u. To find the optimal space-time continuous mesh, Prob-

lem (3.3-3.4) is solved in two steps:

(i) First, a spatial minimization is done for a fixed t.

(ii) Second, a temporal minimization is performed.

Note that both minimizations are performed formally.



3.1.2 Spatial minimization for a fixed t

Let us assume that at time t, we seek for the optimal continuous mesh MLp(t) which minimizes

the instantaneous error, i.e., the spatial error for a fixed time t:

ẼLp(M(t)) =

∫

Ω
trace

(
M− 1

2 (x, t) |Hu(x, t)|M− 1
2 (x, t)

)p
dx

under the constraint that the number of vertices is prescribed to

C(M(t)) =

∫

Ω
dM(t)(x, t) dx = N (t). (3.6)

Solving the optimality conditions provides the optimal instantaneous continuous mesh in Lp-

norm MLp(t) = (MLp(x, t))x∈Ω at time t defined by:

MLp(x, t) = N (t)
2
3 MLp,1(x, t) , (3.7)

where MLp,1 is the optimum for C(M(t)) = 1:

MLp,1(x, t) =

(∫

Ω
(det |Hu(x̄, t)|)

p
2p+3 dx̄

)− 2
3

(det |Hu(x, t)|)−
1

2p+3 |Hu(x, t)|. (3.8)

The corresponding optimal instantaneous error at time t writes:

ẼLp(MLp(t)) = 3pN (t)−
2p
3

(∫

Ω
(det |Hu(x, t)|)

p
2p+3 dx

) 2p+3
3

= 3pN (t)−
2p
3 K(t) . (3.9)

Throughout this thesis we denote: K(t) =

(∫

Ω
(det |Hu(x, t)|)

p
2p+3 dx

) 2p+3
3

.

3.1.3 Temporal minimization

To complete the resolution of optimization Problem (3.3-3.4), a temporal minimization is per-

formed in order to get the optimal space-time continuous mesh. In other words, we need to find

the optimal time law t → N (t) for the instantaneous mesh size. In this work, we consider the

case where the time step τ is specified by the user as a function of time t→ τ(t). The analysis

can be extended to the case of an explicit time advancing solver subject to Courant time step

condition, but the resulting optimal mesh is too complex to be used in practice.

Let the time step τ be specified by a function of time t→ τ(t). After the spatial optimization,

the space-time error writes:

ELp(MLp) =

(∫ T

0
ẼLp(MLp(t)) dt

) 1
p

= 3

(∫ T

0
N (t)−

2p
3 K(t) dt

) 1
p

(3.10)

and we aim at minimizing it under the following space-time complexity constraint:
∫ T

0
τ(t)−1N (t) dt = Nst. (3.11)



We want to find the optimal distribution of N (t) when the space-time total number of nodes

N st is prescribed. We can apply the following one-to-one change of variables:

Ñ (t) = N (t)τ(t)−1 and K̃(t) = τ(t)−
2p
3 K(t) .

Then, the temporal optimization problem becomes:

min
M

ELp(M)p = 3p
∫ T

0
Ñ (t)−

2p
3 K̃(t) dt under constraint

∫ T

0
Ñ (t) dt = Nst .

The solution of this problem is given by:

Ñopt(t)−
2p+3

3 K̃(t) = const ⇒ Nopt(t) = C(Nst) (τ(t)K(t))
3

2p+3 .

Here, constant C(Nst) can be obtained by introducing the above expression in space-time com-

plexity Constraint (3.11), leading to:

C(Nst) =

(∫ T

0
τ(t)

− 2p
2p+3 K(t)

3
2p+3 dt

)−1

Nst ,

which completes the description of the optimal space-time metric for a prescribed time step.

Using Relations (3.7) and (3.8), the analytic expression of the optimal space-time metric in

Lp-norm MLp writes:

MLp(x, t) = N
2
3
st

(∫ T

0

τ(t)−
2p

2p+3

(∫

Ω

(det |Hu(x̄, t)|) p
2p+3 dx̄

)
dt

)− 2
3

τ(t)
2

2p+3 (det |Hu(x, t)|)− 1
2p+3 |Hu(x, t)| .

(3.12)

We get the following optimal error:

ELp(MLp) = 3N−
2
3

st

(∫ T

0
τ(t)

− 2p
2p+3

(∫

Ω
(det |Hu(x, t)|)

p
2p+3 dx

)
dt

) 2p+3
3p

. (3.13)

3.1.4 Error analysis for time sub-intervals

The previous analysis provides the optimal size of the adapted meshes for each time level. Hence,

this analysis requires the mesh to be adapted at each flow solver time step. In practice this

approach involves a very large number of remeshings which is very CPU consuming and spoils

solution accuracy due to many solution transfers. In consequence, an adaptive strategy has

been proposed in [Alauzet 2007, Alauzet 2011b] where the number of remeshings is controlled

(thus drastically reduced) by considering a coarse adapted discretization of the time axis, and

generating adapted meshes for several solver time steps.

The idea is to split the simulation time interval into nadap sub-intervals [ti−1, ti] for i =

1, .., nadap. Each spatial mesh Mi is then kept constant during each sub-interval [ti−1, ti]. We

could consider this partition as a time discretization of the mesh adaptation problem. In other



words, the number of nodes N i of the ith adapted mesh Mi on sub-interval [ti−1, ti] should for

example be taken equal to:

N i =

∫ ti
ti−1

Nopt(t)τ(t)−1dt
∫ ti
ti−1

τ(t)−1dt
.

Here, we propose a different option in which we get an optimal discrete answer.

Spatial minimization on a sub-interval. Given the continuous mesh complexity N i for the

single adapted mesh used during time sub-interval [ti−1, ti], we seek for the optimal continuous

mesh Mi
Lp solution of the following problem:

min
Mi

Ei
Lp(Mi) =

∫

Ω
trace

(
(Mi)−

1
2 (x) Hi

u(x) (Mi)−
1
2 (x)

)p
dx such that C(Mi) = N i ,

(3.14)

where matrix Hi
u on the sub-interval can be defined by either using an L1 or an L∞ norm:

Hi
L1(x) =

∫ ti

ti−1

|Hu(x, t)|dt or Hi
L∞(x) = ∆ti max

t∈[ti−1,ti]
|Hu(x, t)| ,

with ∆ti = ti − ti−1. Processing as previously, we get the spatial optimality condition:

Mi
Lp(x) = (N i)

2
3 Mi

Lp,1(x)

with

Mi
Lp,1(x) =

(∫

Ω
(det Hi

u(x̄))
p

2p+3 dx̄

)− 2
3

(det Hi
u(x))

− 1
2p+3 Hi

u(x).

The corresponding optimal error Ei(Mi
Lp) writes:

Ei
Lp(Mi

Lp) = 3p (N i)−
2p
3

(∫

Ω
(det Hi

u(x))
p

2p+3 dx

) 2p+3
3

= 3p (N i)−
2p
3 Ki . (3.15)

where Ki =

(∫

Ω

(
det Hi

u(x)
) p

2p+3 dx

) 2p+3
3

.

To complete our analysis, we shall perform a temporal minimization. Again, we consider

the case where the time step τ is specified by a function of time and.

Temporal minimization for specified τ . After the spatial minimization, the temporal op-

timization problem reads:

min
M

ELp(M)p =

nadap∑

i=1

Ei
Lp(Mi

Lp) = 3p
nadap∑

i=1

(N i)−
2p
3 Ki

under the constraint:
nadap∑

i=1

N i

(∫ ti

ti−1

τ(t)−1dt

)
= Nst .



We set the one-to-one mapping:

Ñ i = N i

(∫ ti

ti−1

τ(t)−1dt

)
and K̃i = Ki

(∫ ti

ti−1

τ(t)−1dt

) 2p
3

,

then the optimization problem reduces to:

min
M

nadap∑

i=1

(Ñ i)−
2p
3 K̃i such that

nadap∑

i=1

Ñ i = Nst .

The solution is:

Ñ i
opt = C(Nst) (K̃i)

3
2p+3 with C(Nst) = Nst

(nadap∑

i=1

(K̃i)
3

2p+3

)−1

⇒ N i = Nst



nadap∑

i=1

(Ki)
3

2p+3

(∫ ti

ti−1

τ(t)−1dt

) 2p
2p+3



−1

(Ki)
3

2p+3

(∫ ti

ti−1

τ(t)−1dt

)− 3
2p+3

.

and we deduce the following optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap

and error:

Mi
Lp(x) = N

2
3
st

(nadap∑

i=1

(Ki) 3
2p+3

(∫ ti

ti−1

τ(t)−1dt
) 2p

2p+3

)− 2
3(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+3

(det Hi
u(x))−

1
2p+3 Hi

u(x) ,

(3.16)

ELp(MLp) = 3N−
2
3

st

(nadap∑

i=1

(Ki)
3

2p+3

(∫ ti

ti−1

τ(t)−1dt
) 2p

2p+3

) 2p+3
3p

, (3.17)

with Ki =

(∫

Ω
(det Hi

u(x))
p

2p+3 dx

) 2p+3
3

.

3.1.5 Global fixed-point mesh adaptation algorithm for unsteady simulation

Finally, the unsteady adaptation algorithm can be derived from this error analysis. Three main

ideas govern this algorithm:

• It is based on splitting the simulation into sub-intervals.

• It is an iterative fixed point algorithm.

• It is a global algorithm.

The methodology consists in splitting the simulation time frame [0, T ] into nadap adaptation

sub-intervals:

[0, T ] = [0 = t0, t1] ∪ . . . ∪ [ti, ti+1] ∪ . . . ∪ [tnadap−1, tnadap ] ,



and to keep the same adapted mesh for each time sub-interval. On each sub-interval, the mesh

is adapted to control the solution accuracy from ti to ti+1. Consequently, the time-dependent

simulation is performed with nadap different adapted meshes. This drastically reduces the

number of remeshing during the simulation, hence the number of solution transfers. This can

been seen as a coarse adapted discretization of the time axis, the spatial mesh being kept

constant for each sub-interval when the global space-time mesh is visualized, thus providing a

first answer to the adaptation of the whole space-time mesh.

We have seen in Chapter 1 that mesh adaptation is a non-linear problem, and that this

is addressed with iterative algorithms to converge the mesh/solution couple. To that end we

propose a fixed-point mesh adaptation algorithm. This is also a way to predict the solution

evolution and to adapt the mesh accordingly.

Previously [Alauzet 2007], the optimal metric of a sub-interval could be computed directly

once the simulation on the sub-interval had been run. However, the computation of the optimal

continuous mesh for sub-intervals given by Relation (3.16) involves a global normalization term

which requires the knowledge of quantities over the whole simulation time frame. In this case,

the normalization term is:

N
2
3
st

(∫ T

0
τ(t)

− 2p
2p+3

(∫

Ω
(det |Hu(x̄, t)|)

p
2p+3 dx̄

)
dt

)− 2
3

,

which requires to know all the time steps τ(t) and Hessians Hu(x, t) over time frame [0, T ].

Thus, the complete simulation must be performed before evaluating any continuous mesh.

Against, considering a global fixed-point mesh adaptation algorithm covering the whole time

frame [0, T ] enables to compare the normalization term. All the solutions and Hessian-metrics

are computed, and only then can the global normalization term and thus the metrics for each

sub-interval be computed. This algorithm is schematized in Algorithm 8 where H, S and M
denote respectively meshes, solutions and metrics, and H is the Hessian-metric.



Algorithm 8 Mesh Adaptation Loop for Unsteady Flows

Initial mesh and solution(H0,S0
0 ) and set targeted space-time complexity Nst

// Fixed-point loop to converge the global space-time mesh adaptation problem

For j = 1, nptfx

1. // Adaptive loop to advance the solution in time on time frame [0, T ]

For i = 1, nadap

(a) Sj0,i = Interpolate conservatively next sub-interval initial sol. from (Hji−1,S
j
i−1,H

j
i );

(b) Sji = Compute solution on sub-interval from pair (Sj0,i,H
j
i );

(c) |H|ji = Compute sub-interval Hessian-metric from sol. sample (Hji , {S
j
i (k)}k=1,nk);

EndFor

2. Cj = Compute space-time complexity from all Hessian-metrics ({|H|ji}i=1,nadap
);

3. {Mj
i}i=1,nadap

= Compute all sub-interval unsteady metrics (Cj , {|Hmax|ji}i=1,nadap
);

4. {Hj+1
i }i=1,nadap

= Generate all sub-interval adapted meshes ({Hji , M
j
i}i=1,nadap

);

EndFor

3.2 From theory to practice

3.2.1 Computation of the Hessian metric

Since Hessians are the basis of the computation of metrics, it is important to compute them

with enough accuracy.

Gradient and Hessian recovery techniques

From a piecewise linear function uh, the chosen method must be able to recover a smooth

Hessian field. Two main approaches coexist: a double L2 projection method, and a weighted

least square method. The second method is detailed in [Menier 2015]. The first one is the one

generally used in this thesis, and works as follows.

Nodal gradients. Let K be an element and (Pi)i=0...3 its vertices. Let x ∈ K. uh is written:

uh(x) =

3∑

j=0

uh(Pj)ϕj(x) ,



where (ϕj)j are the P1 shape functions, given by:

∇xϕ0(x) =
1

6|K|η0, ∇xϕ1(x) =
1

6|K|η1, ∇xϕ2(x) =
1

6|K|η2, ∇xϕ3(x) =
1

6|K|η3 .

The expression is differentiated term by term:

∇uh|K =
n∑

j=0

uh(Pj)∇xϕj(x) .

As ∇uh is not defined at the vertices of the mesh, the nodal gradients are recovered from

the gradients to the elements using a Clément’s L2 local projection.

Let Pi be a vertex of H. The stencil of the shape function ϕi is the ball of vertices around

Pi, Ball(Pi). The following spaces are introduced:

V 0
h = {v ∈ L2(Ω)

∣∣ v|K ∈ P0 ∀K ∈ H}
V 1
h = {v ∈ C0(Ω)

∣∣ v|K ∈ P1 ∀K ∈ H} .

where P0 and P1 are the set of polynomials of degree respectively 0 (constant polynomials) and

1.

For v ∈ L2(Ω), we set ΠL2v ∈ V 0
h :

∀Ball(Pi) ⊂ H ,





(ΠL2v)|Ball(Pi)
∈ P0

∫
Ball(Pi)

(ΠL2v − v) w = 0 , ∀w ∈ P0 .

Clement’s operator Πc : V 0
h −→ V 1

h is defined as follows:

Πcv =
n∑

i=0

ΠL2v(Pi)ϕi .

With Clément’s operator, we can recover nodal gradients from the ∇uh ∈ P0. For each

Ball(Pi) ⊂ H we can in particular take v = 1 ∈ P0 as test function:
∫

Ball(Pi)
(ΠL2(∇uh)−∇uh) = 0 ⇐⇒

∫

Ball(Pi)
ΠL2(∇uh) =

∫

Ball(Pi)
∇uh

⇐⇒ |Ball(Pi)|ΠL2(∇uh)|Ball(Pi) =
∑

Kj∈Ball(Pi)

∫

Kj

∇uh

⇐⇒ ΠL2(∇uh)|Ball(Pi) =

∑
Kj∈Ball(Pi)

|Kj | ∇uh|Kj

∑
Kj∈Ball(Pi)

|Kj |

where |K| is the volume of element K . For each vertex Pi, we can write:

∇R uh(Pi) =

∑
Kj∈Ball(Pi)

|Kj | ∇uh|Kj

∑
Kj∈Ball(Pi)

|Kj |



This procedure comes to recovering the gradient as an average of the gradients at the

elements, weighted by the volume of the elements.

We thus have defined values to the vertices for the gradient, and consequently, thanks to

Clément’s operator, a piecewise P 1 gradient on the mesh.

Hessian recovery. To recover the Hessian matrix by means a double L2 projection, the same

procedure is applied once more, but using the gradient as input.

The optimal Lp metric involves an averaged Hessian-metric Hi
u on sub-interval i, but it

still remains to know how to compute it practically, i.e., how it is discretized. The strategy

adopted [Alauzet 2007] is to sample the solution on the time sub-interval. More precisely, nk

solutions equally distributed on the sub-interval time frame are saved, including the initial

solution at ti−1 and the final solution at ti. Positive Hessian |Hu(x, tk)| is evaluated for each

sample. If samples are distributed regularly in time, the time elapsed between two samples is
∆ti
nk−1 . In practice, 20 samples per sub-intervals are usually used.

Once these Hessians are computed, one need to average them. In the previous algo-

rithm [Alauzet 2007], the following discretization was used:

Hi
L∞(x) = ∆ti

nk⋂

k=1

|Hu(x, tk)| = ∆ti |H i
max(x)| ,

where ∩ has to be understand as the metric intersection in time of all samples. This corresponds

to an integration in time in L∞ norm of the Hessians.

However, the new error analysis leads to write Hi as the integral over time of the Hessian

matrices, and thus the following discretization is preferred:

Hi
L1(x) =

1

2

∆ti
nk − 1

|Hu(x, ti−1)|+ ∆ti
nk − 1

nk−1∑

k=2

|Hu(x, tk)|+
1

2

∆ti
nk − 1

|Hu(x, ti)| = ∆ti |H i
avg(x)| ,

where ∆ti = ti− ti−1 is the sub-interval time length and tk = ti−1 + k−1
nk−1∆ti. This corresponds

to an integration in time in L1 norm of the Hessians.

A comparative study of both discretizations was performed and will be detailed in sec-

tion 3.2.2.

3.2.2 Choice of the mean Hessian-metric

All the unsteady adaptation algorithm relies on the computation of a mean metric for each

sub-intervals. Instead of averaging real metrics, we average the Hessians on the go during the

solver iterations.

There is a choice to make concerning the way this average is done, between the historical



intersection or the sum dictated by theory. The intersection of metrics reads:

Hi
L∞(x) = ∆ti

nk⋂

k=1

|Hu(x, tk)| = ∆ti |H i
max(x)| ,

It comes to making an average in L∞ norm, and has the advantage of having a clear geometric

interpretation: the intersection of two metrics is the largest metric included in the two metrics.

In the context of unsteady adaptation, this means that the mean Hessian-metric has the smallest

sizes met over the sub-interval. The sum of metrics comes to making an average in L1 norm,

and reads:

Hi
L1(x) =

1

2

∆ti
nk − 1

|Hu(x, ti−1)|+ ∆ti
nk − 1

nk−1∑

k=2

|Hu(x, tk)|+
1

2

∆ti
nk − 1

|Hu(x, ti)| = ∆ti |H i
avg(x)| ,

It seems to be more coherent with theory. Indeed, when writing the minimization problem (3.14)

with sub-intervals, we can formally derive the error from the unsteady error without sub-

intervals (3.5) by moving the integral over time into the trace. However, it is only a formal

manipulation, and the geometrical interpretation of the sum is much less clear: a term-to-term

sum of metrics is clearly still a metric (a symmetric positive definite form), but the sizes of the

axes of the resulting metric are not the sum of the sizes of the two input metrics. This justifies

numerical experimentation to select the best approach in practice.

3.2.3 Choice of the optimal continuous mesh

The optimal adapted mesh for each sub-interval is generated according to analysis of Sec-

tion 3.1.4. For the numerical results presented below, we select the optimal mesh given by

Relation (3.16) and the following particular choice has been made:

• the Hessian-metric for sub-interval i is discretized in time in L1 norm.

• function τ : t→ τ(t) is constant and equal to 1

• all sub-intervals have the same time length ∆t.

Moreover, it is clear that integral
∫ ti
ti−1

τ(t)−1dt corresponds to the number of time steps

(iterations) performed by the flow solver during the ith sub-interval. In practice using the

number of iterations of the flow solver for each sub-interval to define the continuous mesh is

an issue because it highly depends on the discrete representation of the continuous mesh, i.e.,

the generated discrete mesh. Thus, the number of iterations of a sub-interval may substantially

varies between two fixed-point iterations. To avoid this issue, we prefer considering the flow

solver time step constant on each sub-interval, and consider the time step τ(t) constant equal

to ∆t (because of the global normalization term). The integral
∫ ti
ti−1

τ(t)−1dt then reduces to 1.



With these choices, the optimal continuous mesh MLp = {Mi
Lp}i=1,..,nadap

simplifies to:

Mi
Lp(x) = N

2
3
st



nadap∑

j=1

(∫

Ω
(det |Hj

L1(x)|)
p

2p+3 dx
)


− 2

3 (
det |Hi

L1(x)|
)− 1

2p+3 |Hi
L1(x)| . (3.18)

In that case, as we assume that theoretically one time step is done by sub-interval, Nst/nadap
represents the average spatial complexity by sub-interval and thus Nst is the total spatial com-

plexity by summing the sub-intervals average complexity. We do not prescribe the temporal

complexity, i.e., we do not control the number of time steps done at each sub-interval.

Specification of the space-time complexity. The optimal continuous mesh from Equa-

tion (3.16) is obtained for a given space-time complexity that is the number of vertices times

the number of solver time steps. Such a complexity should thus be prescribed for each adapta-

tive simulation. However, in practice, it depends on the time discretization of the sub-intervals.

Moreover, as explained above, the number of solver time steps is highly dependent on the sizes

of the elements of the mesh, which is not perfectly controlled throughout the algorithm. For

these reasons, we prefer to prescribe an average number of vertices per sub-interval, which we

sometimes refer to as ”simplified space-time complexity” in what follows [Alauzet 2012].

3.2.4 Matrix-free P1-exact conservative solution transfer

For the unsteady adaptation algorithm, the interpolation step is crucial. Indeed, when moving

from a sub-interval to the following, the solution has to be transferred from the mesh of the

current sub-interval to the mesh of the following sub-interval, and this is done as many times

as there are sub-intervals. It is obvious that if information is lost during the transfer process,

then the accuracy of the global solution is greatly affected. The following properties need to

be satisfied in the interpolation method: (i) mass conservation, (ii) P1 exactness preserving the

second order of the adaptive strategy and (iii) verify the maximum principle. The interpolation

scheme used is detailed below.

Interpolation step

The classical approach involves two steps: first the localization of the vertices of the new mesh

in the background mesh, and then the application of an interpolation scheme. The localization

step is described in several references [Frey 2008, Alauzet 2010b]. As concerns interpolation

schemes, the easiest is the classical P 1 interpolation, which is written:

u(p) =

3∑

i=0

βi(p)u(qi) , (3.19)



where p is a vertex of the new mesh that has been located in tetrahedron K = [q0,q1,q2,q3]

of the background mesh and βi are the barycentric coordinates of p with respect to K. Higher

order interpolation schemes can be devised, for instance using P 2 Lagrange shape functions.

However these schemes do not conserve the mass.

A new conservation scheme was devised to match these criteria [Alauzet 2010b]. The mass

conservation property of the interpolation operator is achieved by local mesh intersections,

i.e., intersections are performed at the element level. The use of mesh intersection to build a

conservative interpolation process seems natural for unconnected meshes. The idea is to find, for

each element of the new mesh, its geometric intersection with all the elements of the background

mesh it overlaps and to mesh this geometric intersection with simplices. We are then able to use

a Gauss quadrature formula to exactly compute the mass which has been locally transferred.

High-order accuracy is obtained through the reconstruction of the gradient of the solution

from the discrete data and the use of some Taylor formulas. Unfortunately, this high-order inter-

polation can lead to a loss of monotonicity. The maximum principle is recovered by correcting

the interpolated solution in a conservative manner. Finally, the solution values at vertices are

reconstructed from this piecewise linear by element discontinuous representation of the solution.

The approach is summarized in Algorithm 9:

Algorithm 9 Conservative Interpolation Process

Piecewise linear (continuous or discontinuous) representation of the solution on Hback

1. For all elements Kback ∈ Hback, compute solution mass mKback
and gradient ∇Kback

2. For all elements Knew ∈ Hnew, recover solution mass mKnew and gradient ∇Knew :

(a) compute the intersection of Knew with all Ki
back ∈ Hback it overlaps

(b) mesh the intersection polygon/polyhedron of each couple of elements (Knew,K
i
back)

(c) compute mKnew and ∇Knew using Gauss quadrature formulas

=⇒ a piecewise linear discontinuous representation of the mass on Hnew is obtained

3. Correct the gradient to enforce the maximum principle

4. Set the solution values to vertices by an averaging procedure.

3.2.5 The remeshing step

The remeshing step is also crucial in the adaptation process, as a poorly adapted mesh or a

mesh with bad quality elements will impact the accuracy of the solution and spoil the efforts



on all other parts of the process. In this paper, the remesher Feflo.a [Loseille 2013] was used.

Feflo.a belongs to the class of 3D anisotropic local remeshers that aims at generating a unit

mesh with respect to a prescribed metric field. Its main particularity is to adapt the volume and

the surface mesh in a coupled way so that a valid 3D mesh is always guaranteed on output. It

uses a unique cavity-based operator (that generalizes standard operators: point insertion, edge

removal, edges swapping, point smoothing). This operator is governed by dedicated metric-

based quality functions. This allows to reach a good balance between high level of anisotropy,

necessary to capture the physical features of the solution, and mesh quality, necessary to ensure

the stability and accuracy of the numerical scheme. Feflo.a has several enhancements designed

for CFD computations, including explicit control and optimization of tetrahedra to ensure a

maximal time step for unsteady simulations, and surface mesh re-projection based either on

CAD or on background discrete meshes.

3.2.6 Software used

Our implementation of the mesh adaptation algorithm described above requires successively

four different software components:

• Wolf the second order Finite-Volume flow solver, whose ALE version was described in Chap-

ter 2 - when fixed-mesh simulations are run, a standard version is used, but the numerical

schemes are the same as the ALE ones, without the extra ALE velocity terms -

• Metrix to compute the continuous space-time mesh and perform the metric fields gradation,

• Feflo.a the local adaptive remesher based on the cavity operator, described in Section 3.2.5,

• Interpol for the P 1-conservative solution transfer, described in Section 3.2.4.

3.3 Unsteady mesh adaptation for dynamic meshes

The strategy adopted to move the meshes is the one described in Section 2.1 : one body- fitted

mesh is deformed to follow the moving boundaries, and an Arbitrary-Lagrangian-Eulerian (ALE)

formulation of the equations is solved on this moving mesh. This moving mesh strategy preserves

the number of vertices, which is a requirement in our error previous analysis framework. An

ALE metric, which brings a first answer to this problem, was proposed in [Olivier 2011b] and

was improved in [N. Barral 2017].

Section 1.3.2 provides the optimal instantaneous ALE continuous mesh which takes into

account the mesh deformation. Now, as stated previously, we can extend the space-time error

analysis with time sub-intervals done for fixed meshes to the case of dynamic meshes. The

simulation time interval is still split into nadap sub-intervals. On each sub-interval, the mesh



size (number of vertices) remains constant, but the mesh is deformed to follow the geometry

displacement. At each time-step of the sub-interval, we want the moved mesh to be adapted to

the current sensor. The key idea to perform the error analysis is to seek for the optimal dynamic

continuous mesh at the beginning of the sub-interval, this continuous mesh being optimal for

the whole sub-interval when deformed, instead of seeking for the expression of the optimal

continuous mesh at each instant, i.e., as a function of the time.

The optimal space-time ALE continuous mesh is designed to fit in the global fixed-point

unsteady mesh adaptation algorithm described in Algorithm 10. Nevertheless, a few things

have been modified to extend this algorithm to moving mesh ALE simulations. In fact, first,

geometries move so mesh must be moved with all the difficulties that this implies to preserve

accuracy and a good mesh quality all along the movement.

Algorithm 10 Feature-based mesh adaptation for unsteady flows with moving geometries

Input : Initial mesh and solution (H0,S0
0 ) and set targeted space-time complexity Nst

# Fixed-point loop to converge the global space-time goal-oriented mesh adaptation problem

For j = 1, nptfx

# Adaptive loop to advance the solution in time on time frame [0, T ]

1. For i = 0, nadap

(a) (Sj0,i)= Interpolate conservatively next sub-interval initial solution from pair (Hji−1,Sji−1,Hji );
(b) For n = 0, nsample

i. (Sji )= Compute solution with the flow solver on sub-interval from pair (Hji ,S0
i );

ii. |H|ji = Compute sub-interval Hessian-metric from solution sample (Hji , {Sji (k)}nkk=1);

iii. MALE,n
Lp = Compute ALE metric;

iv. HALE,ni = Generate adapted mesh;

v. HALE,n+1
i = Move mesh using the connectivity-change algorithm;

EndFor

EndFor

2. Cj = Compute space-time complexity from all Hessian metrics {|H|ji}
nadap

i=1

3. {Mj
Lp,i}

nadap

i=1 = Compute all sub-interval metrics according to error estimate from (Cj , {|H|ji}
nadap

i=1 );

4. {Hj+1
i }nadap

i=1 = Generate all sub-interval adapted meshes from pair ({Hji ,Mj
Lp,i}

nadap

i=1 );

End For



3.4 Handling the swaps : update of the adaptation algorithm

The mesh optimization procedure of the connectivity-change moving mesh strategy requires

a proper metric field to evaluate geometric quantities and elements qualities of anisotropic

adapted meshes. But, at a given fixed-point iteration j and at a given time sub-interval i,

the input is the optimal ALE continuous mesh Mi,ALE
Lp defined on Ω(ti). Therefore, when the

mesh is deformed during the sub-interval due to the geometry displacement, the input metric

is no more compatible with the moved mesh at a given time t. The use of an incorrect metric

field will drive the smoothing to move vertices to a wrong location and the swaps to break the

anisotropy, thus spoiling the adaptation of the mesh. As the mesh is evolving in time, the input

metric field (i.e., the input continuous mesh) must also evolve in time. Consequently, we have

to apply the deformation of the adapted mesh to the continuous mesh in order to maintain the

consistency between the discrete and the continuous meshes.

3.4.1 Metric for optimizations

But, in the theory developed in Chapter 1, the mesh deformation correction is applied to

the Hessian-metric |H i,ALE
u | and not directly to the continuous mesh. Therefore, from the

optimal ALE continuous mesh
(
Mi,ALE

Lp (x(ti))
)
x∈Ω(ti)

at the beginning of sub-interval [ti, ti+1],

we cannot directly find the deformed optimal ALE continuous mesh
(
Mi,ALE

Lp (x(t))
)
x∈Ω(t)

for

t ∈ [ti, ti+1].

Two possibilities arise from these remarks. First, several ALE metric field samples denoted{(
Mi,ALE

Lp (x(tk))
)
x∈Ω(tk)

}

k

can be pre-calculated for each sub-interval at the previous fixed-

point iteration, and when an ALE metric field is required at time t, it is linearly interpolated

in time on the current mesh from two of these pre-calculated ALE metric fields. This method

has two drawbacks: it requires computing and saving all these ALE metric fields and it requires

a metric interpolation stage at each mesh optimization which leads to consequent memory,

I/Os and CPU time overhead. The second possibility is to modify the input ALE metric field

according to the current mesh deformation to get a consistant metric field at time t. To deform

the continuous mesh defined at the beginning of the sub-interval, we adopt the same reasoning

as the one that leads to the optimal instantaneous ALE continuous mesh in Section 1.3.2, but

on a reverse time frame.

Let us consider tk a time in the sub-interval [ti, ti+1] and d the displacement field of the

mesh between ti and tk. Here, the problem is reversed, we seek for the continuous mesh at time

tk that will result in the continuous mesh at time ti once moved with displacement −d. At time

ti, the continuous mesh is Mi,ALE
Lp (the adapted mesh at time ti is generated directly using this

metric field).



Displacement d is the displacement of vertices between ti and tk: xk = xi + d(xi) and we

write d′(xk) = xi − xk = −d(xi). We define :

φ′ : Ωk −→ Ωi

xk 7−→ xi = φ′ (xk
)

= xk + d′(xk) .
(3.20)

We start from an adapted mesh which is unit for metric field Mi,ALE
Lp at time ti and we search

for the expression of the metric field at time tk for which the deformed adapted mesh at time

tk is unit. Following Section 1.3.2, we consider an edge ek at time tk having edge ei as image

by φ′ at time ti. They verify:

1 =
(
ei(xi)

)T Mi,ALE
Lp

(
xi
) (

ei(xi)
)

=
[
ei
(
φ′(xk)

)]T
Mi,ALE

Lp

(
xi
)

ei
(
φ′(xk)

)

=

([
∇kφ′(xk)

]T
ek(xk)

)T
Mi,ALE

Lp (xi)

([
∇kφ′(xk)

]T
ek(xk)

)

=
(
ek(xk)

)T {
∇kφ′(xk) Mi,ALE

Lp (xi)
[
∇kφ′(xk)

]T} (
ek(xk)

)
.

In other words, the metric field Mi,optim
Lp we are looking for at time tk is:

Mi,optim
Lp (x(tk)) = ∇kφ′

(
x(tk)

)
Mi,ALE

Lp

(
x(ti)

) [
∇kφ′

(
x(tk)

)]T
. (3.21)

This metric field is easy to compute on the fly, because the central term is the input metric

field Mi,ALE
Lp

(
x(ti)

)
which is known, and the gradients of φ′ are easy to compute, since the

displacement considered in φ′ is the opposite of the current displacement at each vertex. Note

that the gradients of φ′ should be computed on Ω(tk) that is to say on the current mesh.

3.4.2 Modification of the algorithm

The overall global fixed-point mesh adaptation algorithm remains unchanged from [Barral 2015].

the simulation time frame is still divided into sub-intervals, a global fixed-point strategy is used

to converge the meshes and the solutions within a sub-interval and the mesh is moved using the

connectivity-change moving mesh algorithm presented On each sub-interval, the mesh number

of vertices remains the same. One or several mesh deformation steps are performed during a

sub-interval. The connectivity-change moving mesh algorithm uses mesh optimizations to make

the mesh deformation efficient and robust. These mesh optimizations, smoothing and swapping

operators, use the dynamic (corrected) metric field to be compliant with the current dynamic

adapted mesh.

The difference concerns the computation of the ALE Hessian-metric for the next adaptation

step. ALE Hessian-metrics |H i,ALE
u | need to be sampled in time. To compute each sample,



we use the displacement given by the mesh deformation step without taking into account the

smoothing optimization. In numerical experiments, we did not see any significant difference on

the solution accuracy and the quality of the adapted meshes by considering or not the smoothing

in the ALE Hessian-metrics computations. This is due mainly to the fact that the mesh smooth-

ing has only a slight influence in 3D, the mesh displacement is predominantly governed by the

mesh deformation [Alauzet 2014]. The mesh smoothing is only a slight perturbation around the

mesh deformation displacement to get better shaped elements. Nevertheless, we prefer not to

consider the smoothing displacement when computing ALE Hessian-metrics because:

• the geometry displacement is clearly defined, thus the mesh deformation is converging to-

ward a unique mesh deformation and therefore we converge toward a unique optimal ALE

continuous mesh

• the smoothing correction for one node may change from one fixed-point iteration to the

other, thus for each node it does not converge to a fixed correction.

The gradient of the mesh deformation displacement field is computed on the mesh position at

the beginning of the sub-interval. The Hessian of the sensor is computed on the mesh current

position and is mapped back to the mesh position at the beginning of the sub-interval. Then,

as in the standard algorithm, the ALE Hessian-metrics are computed at each vertex.

Note that the connectivity-change moving mesh algorithm allows the mesh vertices to move

to their final position given by the mesh deformation solution while it would be impossible to

reach such positions without skewing mesh elements with a classical method. Thanks to the

robustness of this algorithm, we are always able to calculate the ALE hessian-metrics.

⌦i ⌦k
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Figure 3.1: Fom left to right : Classical metric, ALE metric



3.5 Validation with analytic solutions of the metric for opti-

mizations

The previous result gives us the optimal metric that will lead to an adapted mesh once moved

with a given displacement. Let us illustrate this result on analytic examples. Analytic examples

are only given in 2D.

3.5.1 Procedure

Let Hn0 be an uniform mesh, d a displacement field between two times tn and tn+1, and un+1 a

sensor at the final time. The goal is to generate a mesh Hn at the initial time that, once moved

into Hn+1
ALE = d(Hn) will be adapted to the sensor. At the same time, a reference adapted

mesh is computed, that is directly adapted to sensor un+1. To do so, the classical steady-state

procedure described in Algorithm 8. Since the sensor is analytic and to be fair with the ALE

version, only one iteration of the algorithm is performed. The metric used is normalized to

look like the regular optimal metric for unsteady simulations, obtained from the hessian of the

sensor. In what follows, we note Hn+1
ALE the mesh obtained with the ALE procedure and Hn+1

ref

the mesh directly adapted.

∇nφ = ComputeTransformationGradient(Hn0 ,d)

Hn+1
0 = MoveMesh(Hn0 ,d)

un+1 = ComputeTargetSensor(Hn+1
0 )

Mn,ALE
Lp = ComputeALEMetric(Hn+1

0 , un+1,∇nφ)

Hn = AdaptMesh(Hn,Mn,ALE
Lp )

Hn+1
ALE = MoveMesh(Hn,d)

Mn+1
Lp = ComputeMetric(Hn0 , un+1, Hun+1)

Hn+1
ref = AdaptMesh(Hn0 ,Mn+1

Lp ) .

According to the above developments, we expect the mesh Hn+1, obtained by moving the

vertices of Hn with d, to be optimal for the control of the interpolation error of un+1 in L1

norm.

To study the adapted characteristic of the resulting meshes, two quantities are considered:

• the mesh quality, computed using the metric Mn+1
Lp of the reference adapted mesh (i.e. the

one that was adapted directly, .... The quality measure is the one recalled in Section 1.1.2,

Equation (1.19).



• the error comitted when the sensor function is projected on the mesh remains the best way

to evaluate if the mesh is really adapted to a sensor. Here we consider the interpolation

error ‖Πhu− u‖ for sensor u, where Πhu is the piecewise P 1 function with Πhu(Pi) = u(Pi)

for any vertex Pi of the mesh.

The displacement considered are straight-line displacements of somewhat large amplitude,

whereas infinitesimal displacements have been considered in the theoretical analysis. However,

this is closer to real life simulations, with large displacements even within a sub-interval. Note

that the ALE metric does not guarantee that the mesh moved at time tn+1 is still valid. In

practice, mesh optimizations deal with this issue and ensure the validity of the mesh together

with its quality. In this study, no mesh optimization is performed on the adapted mesh, or

during the adaptation or moving process, to avoid altering the results of the quality analysis.

For the same reason, unlike in the actual adaptation loop, no gradation is performed.

3.5.2 Analytic function considered

The function here is taken from [Olivier 2011a] in order to confirm and complete the analysis

proposed in the present work. Its sensor presents specific features (smoothness, discontinuities,

features of different scales...) that are as many difficulties for the adaptation process, so that

handling them correctly shows the robustness of the approach. As for the displacements, they

are set so that the displacement is null on the boundaries.

In 2D. The sensor u is represented on Fig. 3.2:

un+1(x, y) =





0.01 sin (50xy) if |xy| ≥ 2π

50

sin (50xy) if |xy| < 2π

50

Figure 3.2: Initial sensor



and the displacement is represented on Fig. 3.3:

d(x, y) =







−0.3 (x+ 1)

(
y2 − 1

)
exp

(
−5x2

)
, if x ≥ 0

0.3 (x− 1)
(
y2 − 1

)
exp

(
−5x2

)
, if x < 0




−0.3

(
x2 − 1

)
(y + 1) exp

(
−5y2

)
, if y ≥ 0

0.3
(
x2 − 1

)
(y − 1) exp

(
−5y2

)
, if y < 0




.

Figure 3.3: Initial Mesh is the uniform unstructured square mesh here is the representation of

the displacement at tn+1



Results

In Figure 3.4, the mesh on the left is the one that was adapted directly quality, computed using

the metric Mn+1
Lp of the reference adapted mesh (i.e. the one that was adapted directly

Figure 3.4: Fom left to right : Hessian metric at tn+1, ALE Hessian metric at tn, Moved and

Updated ALE Hessian metric at tn+1

Figure 3.5: Fom left to right : Updated Metric , ALE Metric

3.5.3 Numerical 3D example : 3D F117 nosing up

This example is a subsonic notional F117 aircraft geometry nosing up, that creates a vortical

wake. An inflow of air at Mach 0.4 arrives in front of the aircraft, initially in horizontal position,

that noses up, stays up for a while, then noses down. In this example, the aircraft rotates around

its center of gravity. Let T = 1s be the characteristic time of the movement and θmax = 20o the



Figure 3.6: Nosing up F117 test case: Adapted meshes (view from the top) and mach isolines

for the at different time steps.

maximal angle reached, the movement is defined by its angle of rotation, of which the evolution



is divided in 7 phases:

θ(t) = θmax





0 if 0 ≤ t ≤ T/2 (i)
2(t−T

2
)2

T 2 if T
2 < t ≤ T (ii)

1
2 + 2 (

2 (t−T
2

)

T − 1)− 1
2 (

4 (t−T
2

)2

T 2 − 1) if T < t ≤ 3T
2 (iii)

1 if 3T
2 < t ≤ 7T

2 (iv)

1− 2 (t− 7T
2

)2

T 2 if 7T
2 < t ≤ 4T (v)

1
2 − 2 (

2 (t− 7T
2

)

T − 1) + 1
2 (

4 (t− 7T
2

)2

T 2 − 1) if 4T < t ≤ 9T
2 (vi)

0 if 9T
2 t ≤ 5T (vii)

Phase (i) is an initialization phase, during which the flow around the aircraft is established.

Phases (ii) and (iii) are respectively phases of accelerated and decelerated ascension. Vortices

start to grow behind the aircraft, and they expand during phase (iv), where the aircraft stays

in upward position. Phases (v) and (vi) are phases of accelerated and decelerated descent, the

vortices start to move away and they slowly disappear in phase (vii). Free-stream conditions

are imposed on the faces of the surrounding box, and slipping conditions on the aircraft.

The time simulation interval [0, 5] was divided into 96 sub-intervals, and 5 fixed-point itera-

tions are performed. The adaptation sensor is the local Mach number. A space-time complexity

of 48 million was prescribed leading to a sub-interval average spatial complexityNavg = 500, 000.

The adapted meshes at the last fixed-point iteration have between 100, 000 and 1, 400, 000 ver-

tices, for an average number of vertices equal to 841, 000. A total of niter = 38, 980 time-steps

have been performed in the last fixed-point iteration. The total number of space-time vertices

Nst at the last fixed-point iteration is equal to 35 billion. The total CPU time of this simula-

tion is 95 hours. 31 hours being spent in the last fixed-point iteration (error estimate, metric

gradation, adaptive mesh generation, solution interpolation, and flow solver).

Views of the adapted meshes and the corresponding solutions are displayed in Fig. 3.6. The

vortical wake is propagated far from the aircraft, and the patterns of the vortices are highly

resolved. The observation of the adapted meshes shows that they are actually refined only in

the vicinity of the wake, and with such a precision that one can see the vortices being created,

evolving and vanishing just by looking at the meshes. A view at several meshes within the

same sub-interval shows that the mesh evolves continuously following the physical phenomena.

In the wake far from the aircraft, the elements are highly anisotropic, whereas they have to be

isotropic in the area of vorticity due to the characteristic of the physical phenomena.



3.6 Conclusion

This chapter addresses metric-based mesh adaptation for time dependent and dynamic meshes

simulations. In the first sections, a brief survey of mesh adaptation is presented, and the

metric-based adaptation concept is detailed, notably the error analysis and choose of metric

optimization. This concept is used to derive an improved version of the previous unsteady fixed-

point mesh adaptation algorithm. Notably, a global normalization term arises, which results in

a global fixed-point algorithm. The method and recovery to compute the Hessian metric was

considered. An efficient parallelization of the algorithm was carried out, which makes it possible

to run a number of unsteady 3D simulations with an accuracy unthinkable a few years ago. The

ALE metrics proposed in [Olivier 2011a] then in [Barral 2015] allow to generate meshes that will

be adapted once moved with a certain displacement. Analytic examples validated this metric,

and it was used within a new error analysis, to derive an ALE metric for adaptive sub-intervals.

The regular time-dependent algorithm was modified to use this metric, and coupled with the

moving mesh algorithm and example is done on a 2D analytic example.

The main contributions of this thesis with respect to pre-existing work in the GAMMA

group is:

• An update strategy was proposed for the metric at mesh optimization times, to avoid spoiling

the adaptation with optimizations.

• A study of the error on analytic case for the ALE metric that confirmed its adapted char-

acteristic.

• A new version of the global fixed-point unsteady mesh adaptation algorithm was used.

Several perspective arise from this work, notably:

• To improve the adaptation algorithm, the next step is to control the temporal error. This

would in particular lead to automatic adaptation of the size of the sub-intervals. This

appears to be all the more important with moving meshes, where the size of the mesh is not

even constant throughout a sub-interval. This improvement is necessary to deal with the

ALE implicit scheme presented in 2.

• The convergence of this unsteady adaptative method needs to be studied, depending on the

number of vertices and/or the size of the sub-intervals, as well as the influence of the initial

solution on the final solution, and the ability of the algorithm to recover features of the

solution lost due to coarse initial meshes.

• The metric used for optimizations during the adaptation loop should be analyzed in detail.

Indeed, this step is crucial in the adaptation process, since it controls where the elements

actually go.



• Vertices should be allowed to move on non plane surfaces. However, this is very compli-

cated, since it requires reconstructing the surfaces with a good geometric accuracy to avoid

introducing errors due to bad surface discretization.

• At longer term, adaptative moving mesh methods mentioned in [?] appear as an interesting

alternative to prescribe the displacement of the vertices, and possible interactions with metric

based unsteady adaptation should be investigated.



Chapter 4

Adjoint Methods

Adjoint techniques have gained widespread use over past decades as simulation capabilities have

progressed. The ability to compute not only the simulation but to focus also on a functional

output of interest has become increasingly recognized as a significant capability for enabling ac-

curacy. We count nowadays many applications of the adjoint approach. The most classical ones

are in control theory [Lions 1971], optimization [Allaire 2007], sensitivity analysis [Allaire 2015],

inverse problems [A. Tikhonov 1977] and data assimilation [F.X. Le Dimet 1986]. The aim of

this chapter is not to be exhaustive but to report on the universality nature of adjoint methods.

Moreover understanding its use in other domains can lead to good ideas relevant to the imple-

mentation of our subject. In CFD, their utility is also reflected in numerous applications, mainly

in design optimization [Giles 2000, Mohammadi 1997, Mavriplis 2000, A.Stück 2009] and less-

commonly in mesh adaptation [Venditti 2002, Loseille 2010c, Belme 2012, Fidkowski 2017].

In the first domain, the adjoint method is the only way to compute a gradient and perform

efficient optimization due to the large number of design variables. In the domain of mesh

adaptation, the use of adjoint computation is not so common. It is therefore appropriate : if

adjoint methods can be used to compute sensitivities of a functional then they can be used to

determine regions of the computational domain that are most sensitive to a given functional

and provide an error estimation in a specific quantity of interest, rather than an estimate of

total simulation error. In this case, error estimation purposes, which in turned can be used to

drive adaptive error control schemes in the interest of producing more accurate, reliable and

predictive simulation outcomes. Among linearisation methods, adjoint methods demonstrate

their efficiency. For many engineering problems, this is an important advantage as it allows to

focus computational resources on optimizing the accuracy of the specific simulation objective

while de-emphazing other aspects of the simulation which are less important for the objective

of interest. The adjoint-based error method distinguishes from other approaches that may have

little relation to errors in integral outputs of primary concern to the engineer. As an example,

one can consider the wake behind an aircraft. In order to resolve the wake with accuracy, a

finer grid is locally required. But it is often the case that the computed wake, located a chord

or two downstream of the wing, passes into a region represented by a rather coarse grid. In this

case, a mesh adaptation based on an usual error estimation, as seen on the previous chapter,

would probably induce further refinement in this region. However, the effort of refinement



coud be useless if errors in this region has a very small contribution to computed lift and drag.

Probably, refinement in region closer to the wing, near the leading and trailing edges would

lead to much greater reduction in the lift and drag errors.

The use of adjoint methods for estimating errors in simulation output objectives is now

fairly well-established, particularly for spatial discretization errors in steady-state aerodynamics

problems [Venditti 2002, Loseille 2010c]. Additionally adjoint methods for unsteady problems

have been pursued over the last decade by various contributors [Belme 2012, Fidkowski 2017].

But in spite of theses advances, adjoint methods have remained confined to relatively small

subset of simulation problems and there is a need to extend these methods to more complex

moving geometries problems to justify their interest.

4.1 State of the art of adjoint method

In this section, let’s take at first a back step to consider the mathematical environment to know

where the method comes from.

4.1.1 Mathematical point of view

In mathematics, the term ”adjoint” applies in several situations and one can encounter this

term in linear algebra, in functional analysis, but also in group theory or further in category

theory. Their common particularity is that there is always a link to the principle of duality which

establishes a full meaning of the term ”adjoint”. And duality is an old and complex principle

because it enables to view a same problem with two different points of view. The interest of this

rewrite is that the two problems are closely related and takes to the great advantage that for

various reasons, it may sometimes be easier to solve the dual problem than the primal problem.

But this is also which makes this own major difficulty : one have to also consider the primal

problem with an other perspective : the dual problem and leads to two spaces, two equations,

two sets of variables, etc.

Let’s make an aside to illustrate the commodity but, in the same time, the complexity of duality

with the linear duality in plane geometry. Anyone knows the assumption : ”Two different points

can be joined by an unique line”. The dual of this assumption is : ”Two different lines meet

in one point”. But the vision of classical Euclidian geometry does not allow to check this last

assumption in every cases. In fact two parallel lines never join. The dual space associated to

this dual assumption needs an addition of a point at infinity and is called the projective plane.

Now the relationship between points and lines is perfectly symmetrical in this space.

It can be stated that in mathematical optimization theory, the adjoint method has its origin



in the theory of Lagrange multipliers. The first use was probably by the mathematician and

one of the founder of the variational calculus J.L Lagrange. He introduced it for Lagrangian

functions in dynamical systems. The method of Lagrange multipliers is a strategy for finding

the local maxima or minima of a function under equality constraints. The great advantage of

it is that the optimization method can be solved without explicit parametrization in terms of

the constraints. We recall the method as follows.

Consider the problem : Let’s f and g have continuous first partial derivatives, maximize f(x)

under the condition g(x) = 0.

To solve this problem we introduce a new variable λ called a Lagrange multiplier and study the

Lagrangian function defined by :

L(x, λ) = f(x)− λ · g(x).

If f(x0) is a maximum of f for the constrained problem then there exists λ0 such that (x0, λ0)

is a stationary point for L (i.e its partial derivatives at this point are zero).

4.1.2 Interpretation

The Lagrangian multipliers measure the sensitivity of the optimal value by relation to the

variation of the constraint. One way of looking at them is that they give the influence of an

arbitrary source term on the functional of interest.

The adjoint space is chosen to simplify the physical interpretation of equation constraints. It

may stands as a Hilbert space. In the field of functional analysis, each bounded linear operator

on a Hilbert space has a corresponding adjoint operators.

4.1.3 Numerical adjoint approaches

The basic derivation for adjoint error estimation can be performed in several manners in the

literature. And depending on the sphere of use and underlying motivations the adjoint could

be considered as ”continuous” or ”discrete”. Let’s make in this section a quick overview of the

use of adjoint in numerical computations before returning to the scope of output-based mesh

adaptation.

Continuous adjoint approach : In the continuous formulation, the continuous governing

equations are first derived using analytic differentiation and integration by parts and then

linearized.

In functional analysis each bounded linear operator on a Hilbert space has a corresponding

adjoint operator. Thus from functional analysis theory, a continuous system can be well-posed

and considered in these terms and we could say that a continuous adjoint system can be derived



for any fuctional output. These however doesn’t mean that all functionals lead to properly

defined adjoint boundary conditions. Several works in litterature [Arian 1997, Castro 2007,

A. Bueno-Orovio 2007, Anderson 1997] illustrate this problem and propose solutions usually by

adding auxiliary boundary terms. In [Castro 2007], the authors conclude that for Euler flows,

only output functional depending on pressure only can be considered. This choice remains a

deep challenge when working with continuous adjoint formulation.

Discrete adjoint approach : In the discrete formulation, the governing primal equations

are discretized then linearized and transposed for the adjoint problem. The discrete approach

formulates directly the adjoint of the forward numerical scheme. This approach is very

attractive since these dicrete adjoints can be in general generated automatically.

For discrete adjoint systems, the functionals area choice does not seem to be a problem and as

far as the discrete adjoint system is well-posed, any admissible functional (in terms of non-null

integral) can be considered.

For consistent discretizations, these two approaches converge to the same result while increasing

the resolution of the discretization. However, the consistency of the discretization is not always

guaranteed and needs to be performed. For some substantial works in the literature about this

consistency for various schemes one can refer to [A. Sei 1995, Giles 2002].

Automatic Differentiation : Automatic Differentiation (AD) is a technique which automat-

ically evaluates the derivatives of a function defined by a computer program. The AD exploits

the fact that every computer program executes a sequence of elementary arithmetic operations

and functions. To differentiate the code, it applies the chain rule repeatedly to these. Deriva-

tives of arbitrary order can be then be computed automatically. For a code computing Ψh(Wh)

it can compute it as

∂Ψh

∂Wh
U the forward mode (stands for forward accumulation)

or (
∂Ψh

∂Wh

)T
V the reverse mode (stands for reverse accumulation).

Automatic Differentiation generally takes as input a computer source program, plus a

request for differentiation and then returns the differentiated source program that evalu-

ates the required derivatives. Several authors use Automatic Differentiation to generate

adjoint CFD codes as [M. Martinelli 2010]. For numerical applications, Becker and Ran-

nacher [R. Becker 2001] and Giles and Pierce [Giles 1999, N.A. Pierce 2004] showed the

efficiency of adjoint systems for a better prediction of an output functional associated

with a given system of PDE. Finally, let’s cite some of AD tools : ADIFOR [Bischof 1998],



TAPENADE [Hascoet 2004], ODYSSEE [C. Faure 1998], OpenAD/F [J. Utke 2008] and more recently

package for Python programs as PyCppAD or PyADOL-C [Walter ].

Our approach : Although continuous or discrete adjoint approaches can be applied in the

case of mesh adaptation, in this thesis and to match with the discrete formal solver, we focus

on the discrete one for implementation. However, none of the Automatic Differentiation tools is

used because the adjoint state has to be highly correlated to the mesh even more with a moving

mesh. It is computed in the in-house code solver Wolf.

4.2 Computation of adjoint Euler system in ALE formulation

In this section we detail the discrete adjoint system associated to unsteady inviscid Euler flows

computed with an ALE formulation [E. Gauci 2017].

4.2.1 Unsteady adjoint Euler equations in ALE formulation

We consider the 3D unsteady compressible Euler equations for a Newtonian fluid in their ALE

formulation set in the space-time computational domain Q = Ω(t) × [0, T ], where T is the

(positive) maximal time. Assuming that the gas is perfect, inviscid and that there is no ther-

mal diffusion, the continuous unsteady Euler formulation of the equations is written for ALE

formulation :

Ψ(W ) = Wt +∇ · Fale(W ) = 0 (4.1)





W = (ρ, ρu, ρE)T is the conservative variables vector

Fale(W ) = F(W )−W ⊗ w where w is the mesh velocity

F(W ) = (ρu, ρuu + pe1, ρvu + pe2, ρwu + pe3, (ρE + p)u) is the flux tensor

and we have noted ρ the density of the fluid, p the pressure, u = (u, v, w) its Eulerian

velocity, E = 1/2 q2 + ε the total energy per unit mass, q = ‖u‖ and ε the internal energy per

unit mass.

4.2.2 Discrete adjoint state in ALE formulation

Although any consistent approximation of the continuous adjoint system could be built by

discretizing the continuous adjoint equation, we choose the option to build the discrete adjoint

system from the discrete state system in order to be numerically closer to the true error. In

this thesis we use the same notations as in [Belme 2012].



Explicit time integration scheme

Consider the following semi-discrete unsteady compressible Euler model (explicit RK1 time

integration):

Ψn
h(Wn

h ,W
n−1
h ) =

Wn
h −Wn−1

h

δtn
+ Φale,h(Wn−1

h ) = 0 for n = 1, ..., N. (4.2)

The time-dependent functional is discretized as follows. The functional doesn’t depend on the

mesh displacement :

jh(Wh) =
N∑

n=1

δtnjn−1
h (Wn−1

h ).

For the sake of simplicity, we restrict to the case gT = 0 for the functional output defined. The

problem of minimizing the error committed on the target functional j(Wh) = (g,Wh), subject

to the Euler system (4.2), can be transformed into an unconstrained problem for the following

Lagrangian functional [Giles 2000]:

L(Wh,W
∗
h ) =

N∑

n=1

δtnjn−1
h (Wn−1

h )−
N∑

n=1

δtn(W ∗,nh )TΨn
h(Wn

h ,W
n−1
h ) ,

where W ∗,nh are the N vectors of the Lagrange multipliers (which are the time-dependent adjoint

states). The conditions for an extremum are:

∂L
∂W ∗,nh

= 0 and
∂L
∂Wn

h

= 0, for n = 1, ..., N.

The first condition is clearly verified from Relation (4.2). Thus the Lagrangian multipliers W ∗,nh
must be chosen such that the second condition of extrema is verified. This provides the unsteady

discrete adjoint system:





W ∗,Nh = 0

W ∗,n−1
h = W ∗,nh + δtn

∂jn−1
h

∂Wn−1
h

(Wn−1
h )− δtn(W ∗,nh )T

∂Φale,h

∂Wn−1
h

(Wn−1
h ) ,

(4.3)

or equivalently, the semi-discrete unsteady adjoint model reads:

Ψ∗,nh (W ∗,nh ,W ∗,n−1
h ,Wn−1

h ) =
W ∗,n−1
h −W ∗,nh
−δtn + Φ∗ale,h(W ∗,nh ,Wn−1

h ) = 0 for n = 1, ..., N

with

Φ∗ale,h(W ∗,nh ,Wn−1
h ) =

∂jn−1
h

∂Wn−1
h

(Wn−1
h )− (W ∗,nh )T

∂Φale,h

∂Wn−1
h

(Wn−1
h ) .



4.2.3 Implicit scheme

We present in this paragraph the implicit scheme for unsteady adjoint Euler equation. Only

the discrete adjoint solution which satisfies the implicit equation system is presented. The

numerical implementation has not been done in the solver.

Consider the following unsteady Euler model using implicit time integration :

Ψn(Wn+1,Wn) =
Wn+1 −Wn

δtn
+ Φ(Wn+1) = 0, where Φ is the Euler flux functions,

and a time-dependent functional :

j(W ) =
N∑

n=1

δtnjn(Wn)

The problem of minimizing the error committed on the target functional Jn(Wn), subject to

the Euler system, can be solved using the method of Lagrange multipliers.

In this sense, we introduce the adjoint state W ∗ which stands as a Lagrange multiplier and the

Lagrangian defined by :

L(W,W ∗) =
N∑

n=1

δtnjn(Wn)−
N∑

n=1

δtn(W ∗,n)T Ψn(Wn+1,Wn),

and study :
∂L

∂W ∗,n
(W,W ∗) = 0 and

∂L
∂Wn

(W,W ∗) = 0.

The first condition is clearly verified. The adjoint state is thus chosen such that the second

condition is verified.

∂L
∂Wn

(W,W ∗)

= δtn
∂jn

∂Wn
(Wn)− δtn(W ∗,n)T

∂Ψn

∂Wn
(Wn,Wn+1)− δtn−1(W ∗,n−1)T

∂Ψn−1

∂Wn
(Wn−1,Wn)

= δtn
∂jn

∂Wn
(Wn) +W ∗,n −W ∗,n−1 − δtn−1(W ∗,n−1)T

∂Φ

∂Wn
(Wn)

= 0.

This equation implies :

W ∗,n−1 −W ∗,n
δtn



=
∂jn

∂Wn
(Wn)− δtn−1

δtn
(W ∗,n−1)T

∂Φ

∂Wn
(Wn)

=
∂jn

∂Wn
(Wn)− δtn−1

δtn
(
W ∗,n−1 −W ∗,n

)T ∂Φ

∂Wn
(Wn)− δtn−1

δtn
(W ∗,n)T

∂Φ

∂Wn
(Wn).

Let us divide by δtn−1

δtn , we get :

[
Id

δtn−1
+

∂Φ

∂Wn
(Wn)

]T (
W ∗,n−1 −W ∗,n

)
=

δtn

δtn−1

∂jn

∂Wn
(Wn)− (W ∗,n)T

∂Φ

∂Wn
(Wn).

This provides the unsteady discrete adjoint model :

Ψ∗,n(W ∗,n,W ∗,n−1,Wn) =

[
Id

−δtn−1
− ∂Φ

∂Wn
(Wn)

]T (
W ∗,n−1 −W ∗,n

)
+ Φ∗(W ∗,n,Wn) = 0,

with

Φ∗(W ∗,n,Wn) =
δtn

δtn−1

∂jn

∂Wn
(Wn)− (W ∗,n)T

∂Φ

∂Wn
(Wn).

In the following of this thesis, we only consider the explicit time integration scheme.

4.3 Connectivity-change moving mesh strategy

The overall connectivity-change moving mesh algorithm in the primal state was described in

chapter 2 section 2.1 in Algorithm 5. When coupled with a flow solver (see Sections 2.2), the

flow solver is called after the optimization phase. To compute the adjoint state and to be

consistent with the connectivity-change moving mesh algorithm in the primal state, a choice

must be done for the backward connectivity-change moving mesh algorithm. THe choice made

was :

• Store all the coordinates of the vertices at each iteration during the forward loop in

order to not recompute the deformation during the backward loop

• Not store the connectivities but remake connectivity-change optimizations during the

backward loop.

The first point is very costly in term of memory as we already have to store the states{
Wn−1
h

}
n=1,N

to solve the adjoint states. But in this way, the vertices make exactly the

reverse movement. However, our choice has been to not store all the connectivities even

if it would have been possible by storing a char by edge. Thus during the backward loop

optimizations have remade over time. For this reason, we can have different connectivities

between forward and backward meshes at the same corresponding time. Let’s detail the process.



During the computation of the equation state, the forward meshes are deformed. Each

iteration a connectivity-change occurs a tag d∗,opt is used. Therefore, during the compu-

tation of the adjoint equation state, the backward meshes are moved. The initial mesh in

backward computation is the last mesh of the forward computation. It is moved with the

opposite displacement and if an iteration is tagged, an optimization of the mesh is performed.

The backward meshes are then topologically equivalent to the forward meshes but not identical.

An example of forward mesh and backward mesh at the same time iteration is given in

Figure 4.1. The case test used is the FSI Case 2D shock-ball interaction in a tube detailed in

Section 4.8. The positions of the vertices are the same but the connectivity is different.

Forward Mesh Backward Mesh

Figure 4.1: Exemple of forward mesh and backward mesh at adimentionned time t = 130.

4.4 The Discrete Geometric Conservation Law

As said in Section 2.2.3 for the forward mesh computation, we need to ensure that the

movement of the mesh backward is not responsible for any artificial alteration of the adjoint

computation, or at least, to make our best from a numerical point of view for the mesh

movement to introduce an error of the same order as the one introduced by the numerical

scheme.

The continuous adjoint state W ∗, integrated on any arbitrary closed volume C = C(t), writes :

−
∫

C(t)
W ∗t −

(
∂Fale
∂W

)∗
∇W ∗ dx −

∫

∂C(t)

(
∂Fale
∂W

)∗
W ∗.n ds = 0 (4.4)

If Equation (4.4) is written for a constant adjoint state, we obtain :

− d (|C(t)|)
dt

−
∫

∂C(t)
(w · n) ds = 0 . (4.5)



As the constant adjoint state is a solution of the adjoint Euler equations, if boundaries transmit

the flux towards the backward outside as it comes, we find a purely geometrical relation inherent

to the continuous problem. For any arbitrary closed volume C = C(t) of boundary ∂C(t),

Relation (4.5) is integrated into:

− |C(t+ δt)| + |C(t)| =
∫ t+δt

t

∫

∂C(t)
(w · n) dsdt, with t and t+ δt ∈ [0, T ] , (4.6)

which is a reverse time of the usual Geometric Conservation Law (GCL). From a geometric

point of view, this relation states that the algebraic variation of the volume of C between two

instants in backward equals the algebraic volume swept by its boundary.

4.5 Backward Implementation

The properties of the backward implementation moving mesh has been detailed in the previous

section. In the adjoint solver point of view, it is then necessary to introduce mesh velocities in

the ALE formulation. In this section we detail the different Riemann solvers.

The implementation of the adjoint ALE solver was done in the in-house code Wolf.

4.5.1 Numerical flux computation

In the formula 4.3, the functional output is not affected by the ALE formulation. Its compu-

tation does not change from [Belme 2012]. The great difference focuses on the Jacobian solver

computation. Let’s detail some of them.

Jacobian in ALE Rusanov Riemann solver

∂ΦRusanov
ale (Wi,Wj ,nij, σij)

∂Wj
=

1

2

(
∂F (Wi) · nij

∂Wj
− σijId− |λij |Id

)
. (4.7)

where

|λij | = max(|Wi · nij|+ ci − σij, |Wj · nij|+ cj − σij).

Jacobian in ALE Roe Riemann solver

∂ΦRoe
ale (Wi,Wj ,nij, σij)

∂Wj
=

1

2

(
∂(F (Wj) · nij)

∂Wj
− σijId− |Ã(Wi,Wj)− σijId|

)
. (4.8)



Jacobian in ALE HLLC Riemann solver

The Figure 4.2 illustrates the definition of our version of HLLC flux presented in section 2.2.2.

Figure 4.2: Region of integration containing the Riemann fan in Godunov’s method

The HLLC flux depends on the waves speed, so does the associated Jacobian.

if SL > σlr
∂ΦHLLC

ale (Wl)

∂Wl
=
∂F (Wl)

∂Wl
− σlrId and

∂ΦHLLC
ale (Wl)

∂Wr
= 0

if SL ≤ σlr ≤ SM
∂ΦHLLC

ale (W ∗l )

∂Wl
=
∂F (W ∗l )

∂Wl
− σlrId

and
∂ΦHLLC

ale (W ∗l )

∂Wr
=
∂F (W ∗l )

∂Wr
− σlrId

if σlr > SR

∂ΦHLLC
ale (Wr)

∂Wr
=
∂F (Wr)

∂Wr
− σlrId and

∂ΦHLLC
ale (Wr)

∂Wl
= 0

Symmetrically,

if SL ≤ σlr ≤ SM
∂ΦHLLC

ale (W ∗r )

∂Wr
=
∂F (W ∗r )

∂Wr
− σlrId

and
∂ΦHLLC

ale (W ∗r )

∂Wl
=
∂F (W ∗r )

∂Wl
− σlrId



4.5.2 Memory management

As the adjoint system runs in reverse time, the first expression in the adjoint System (4.3) is

referred to as adjoint ”initialization”.

Solve adjoint state backward: Ψ∗(W, W ∗) = 0

Solve state foreward: Ψ(W ) = 0

Computing W ∗,n−1
h at time tn−1 requires the knowledge of state Wn−1

h and adjoint state W ∗,nh .

Therefore, the knowledge of all states
{
Wn−1
h

}
n=1,N

is needed to compute backward the adjoint

state from time T to 0 which involves large memory storage effort. For instance, if we consider

a 3D simulation with a mesh composed of one million vertices then we need to store at each

iteration five millions solution data (we have 5 conservative variables). If we perform 1000

iterations, then the memory effort to store all states is 37.25 Gb for double-type data storage

(or 18.62 for float-type data storage).

4.6 Dealing with memory

4.6.1 Packing and interpolation

After each swap step, a linear interpolation is performed to recover the solution. In other

words, the solution at the vertices does not change, which is not conservative. The data of

the finite volume cells (volume and interface normals) are then updated, together with the

connectivity of the mesh (edges and elements). This approach however is DGCL compliant,

since the constant state is preserved (in fact, any linear state is preserved). A better approach

would be to use conservative interpolation [Alauzet 2010c] which is conservative and DGCL

compliant and the best would be to develop the ALE formulation of the generalized swap in 3D

from the formulation in 2D [Olivier 2011a].

4.6.2 Parallelization

Most parts of the code are parallelized for shared memory multi-core computers with a p-threads

approach using a semi-automatic p-thread parallelization library [Maréchal 2016] coupled with

a space filling curve renumbering strategy [Alauzet 2009].

The automatic parallelization library cuts the data into small chunks that are compact in

terms of memory (because of the renumbering), then uses a dynamic scheduler to allocate the

chunks to the threads to limit concurrent memory accesses. In the case of a loop performing the

same operation on each entry of a table, the loop is split into many sub-loops. Each sub-loop



will perform the same operation (symmetric parallelism) on equally-sized portions of the main

table and will be concurrently executed. It is the scheduler’s job to make sure that two threads

do not write on the same memory location simultaneously. When indirect memory accesses

occur in loops, memory write conflicts can still arise. To deal with this issue, an asynchronous

parallelization is considered rather than of a classic gather/scatter technique, i.e., each thread

writes in its own working array and then the data are merged.

However, with this approach, a subtle management of cache misses and cache-line overwrites

is required to avoid drops in scaling factors. Space filling curves exhibit clustering properties

very helpful for renumbering algorithms [Sagan 1994]. The Hilbert space filling curve based

renumbering strategy is used to map mesh geometric entities, such as vertices, edges, triangles

and tetrahedra, into a one dimensional interval. In numerical applications, it can be viewed as

a mapping from the computational domain onto the memory of a computer. The local property

of the Hilbert space filling curve implies that entities which are neighbors on the memory 1D

interval are also neighbors in the computational domain. Therefore, such a renumbering strategy

has a significant impact on the efficiency of a code. We can state the following benefits: it reduces

the number of cache misses during indirect addressing loops, and it reduces cache-line overwrites

during indirect addressing loops, which is fundamental for shared memory parallelism.

4.7 Validation of the adjoint code

Once the numerical adjoint scheme coded, the validation made is to check if the Jacobian fluxes

in ALE formulation are equal to the variation rate of the fluxes in ALE formulation. For that

we perform a validation test. We compute on one hand :

Φale(a+ da)− Φale(a),

and on the other hand :

∂Φale

∂W
(a) · da.

The validation for 7 iterations of adjoint of the case test used is the FSI Case 2D shock-ball

interaction in a tube is illustrated in Figure 4.3.



Figure 4.3: Residual |Φale(a+ da)− Φale(a)− ∂Φale
∂W (a) · da|.

4.8 Numerical examples

4.8.1 Case with imposed movement : Naca0012 Rotation

This example was already presented in Chapter 2. We study the movement of a wing profile

NACA0012 induced by an imposed of rotational displacement.

Mesh

In a circular domain of radius 20 is put a NACA0012 of length 1. The entire mesh includes

3291 vertices.

Initial conditions

To generate similar conditions of take-off, the initial Mach number chosen is 0.4.

Moving mesh

The moving of the NACA0012 is imposed. In phase 1, the coordinates of the geometry do not

moved. The flow around the aircraft is established. Let t1 = 0.1 be the time of the beginning

of the movement and θmax = 20o the maximal angle reached at first time tθmax . The movement

of the wing profile is defined in phase 2 by calculating at each time step its angle of rotation

α = 0.5 ∗ θmax ∗ (1− cos(π ∗ (t− t1)/(tθmax − t0))). The coordinates of the new points are then

xnew = xold ∗ cosα+ yold ∗ sinα and ynew = −xold ∗ sinα+ yold ∗ cosα. A phase 3 follows where

the NACA0012 stays in upward position before the descent computed in the same way as phase

2.

Cost function

The considered functional output here is the drag of the surface S of the aircraft. The local



drag coefficient Cd leads to the global drag coefficient for a given body :

∫

S

1

Sref
Cd(x, t)dx

Numerical Results

Views of the two states : the primal state and the dual state for the considered functional

output are displayed in Figure 4.4.



Primal State Adjoint State

Figure 4.4: Nosing up NACA0012 test case: (view from the top to the bottom) Pressure at

different time steps ( t = 165, 135, 120, 105, 90, 75, 60, 45).



4.8.2 FSI Case : 2D Shock-ball interaction in a tube

This example is a variation of the classic Sod shock-tube problem. We consider a ball in a shock

tube.

Mesh and initial conditions

The dimensions of the tube are: [0, 1] × [0, 0.2]. At initial time, the gas is split in two states:

for x ≤ 0.08 the state is (ρleft,uleft, pleft) = (1,0, 4) whereas for x > 0.08 the state is

(ρright,uright, pright) = (0,0, 2.5). A ball of radius r = 0.05 is immersed in the gas, its center

being in position (0.5, 0.1). The tube is fixed. The simulation is run until final time tf = 0.5.

This initial state can be produced by having a diaphragm in the middle of the tube. The

gas to the left and right of the diaphragm is initially at rest. The pressure and density are

discontinuous across the diaphragm.

Cost function

The cost fonction considered is the pressure on the surface S of the ball. The output functional

of interest is the quadratic deviation from ambient pressure on S :

j(W ) =

∫ T

0

∫

S

1

2
(p(t)− pair)2dSdt.

The observation is the pressure on this circle

Numerical results

At t = 0, the diaphragm is broken. The gas is then left to evolve freely and the classic rarefaction

wave, contact discontinuity and shock wave appear. After a while, the ball is touched by the

shock and the contact discontinuity, creating complex patterns both in front of it and in its

wake.

The primal state and corresponding adjoint state at different time steps are shown in Fig-

ure 4.5.



Primal State Adjoint State

Figure 4.5: Ball in a shock tube test case: (view from the top to the bottom) Pressure

at different time steps ( t = 0, 0.025, 0.05, 0.075, 0.1, 0.125, 0.150, 0.175, 0.2, 0.225 ) and

corresponding adjoint state.



4.8.3 Numerical qualitative verification in 3D : Lohner blast-like on a Bump

Meshes and initial conditions

This 2D case is a Löhner semi-circular blast-like simulation in a domain [0, 5] × [0, 0.5] with a

sinus-like bump of diameter 0.45 and center 1.775. The equation of this bump is similar to the

Nasa 2D Bump-in-channel. The bumps extends from 1.55 to 2. Its maximum height is h = 0.2.

Its entire definition is :

y =





h ∗ sin4 (π(x− 1.55)/0.45) , if 1.55 < x < 2

0 , else
.

It is then extruded into a 3D mesh of 261918 vertices and dimensions [0, 5]× [0, 0.5]× [0, 0.8].

The bump is extruded in a bump-like cylinder.

Initial conditions

The half-circular blast is located on (1.2, 0). In 3D, it is a half-cylinder blast of symmetrical

axis (1.2, 0, z). At initial time, the state is (ρblast,ublast, pblast) = (10,0, 25) whereas for the rest

of the domain the state is (ρdomain,udomain, pdomain) = (1,0, 2.5).

Moving mesh

The moving mesh function is :

A = 0.15 is the amplitude of the oscillation

ω = π/0.7 is the frequence of the oscillation

d(x, y, z) =








0.5(1 + cos (2(x− 2.3)π + π)) ∗A ∗ sin (ωt) + x , if 2.29 < x < 2.8

A ∗ sin(ωt) + x , if 2.8 < x < 3.8

0.5(1 + cos(2(x− 2.3)π + π)) ∗A ∗ sin(ωt) + x , if 3.8 < x < 4.3

y

z




.

(4.9)

The moved region is illustrated in Figure 4.6.



Figure 4.6: Bump extruded mesh with colored moved region.

Cost function

The output functional of interest is the quadratic deviation from ambient pressure on the surface

S represented in Figure 4.7:

j(W ) =

∫ T

0

∫

S

1

2
(p(t)− pair)2dSdt.

Figure 4.7: Surface area of interest.

The simulations were done in two dimensions and three dimensions(2D mesh extruded). As

it is not possible to exactly compare the 2D solutions and 3D solutions because the physical

phenomena are not the same in 2D and 3D (see Figure 4.8) the choice made is to compare the

adjoint solution in the moving mesh case using the function d described in Equation (5.14) and

the non moving mesh case. Results are briefly shown in Figure 4.9 and seem promising.



Primal

State 2D

Primal

State 3D

Figure 4.8: Blast with bump 2D/3D : Density at t=5.

Adjoint State 3D

No ALE

With ALE

Figure 4.9: Blast with bump 3D : Adjoint of pressure at t=5.(Top) No ALE (Bottom) with

ALE

4.9 Conclusion

The discrete adjoint system associated to unsteady inviscid Euler flows computed with an ALE

formulation was presented for both explicit and implicit time integration schemes. Considering

the adjoint state context rises new difficulties. Indeed, the unsteady adjoint state has to be



computed on a moving mesh and the mesh has to be moved backward in time. We need to

introduce mesh velocities in the ALE adjoint state formulation. Therefore, time properties

for backward moving mesh simulation were detailed. The opposite mesh velocity of forward

moving mesh computation is considered to make backward meshes consistent with forward

meshes. Thus, we have to address DGCL-like condition for the adjoint state introducing mesh

velocities in the ALE adjoint state formulation. And numerical Jacobians for Riemann solvers

have been presented.

In order to handle connectivity-changes a choice has been made to preserve memory. Each

mesh optimization in the forward computation is tagged in order to make an optimization of

the mesh at the same iteration in the backward moving-mesh computation. A validation of the

adjoint has been performed to check the consistance of the jacobian fluxes.

Finally numerical cases were presented in 2D for an imposed displacement or for a fluid-structure

interaction case. A 3D case of validation with comparison between moving mesh case and not

moving mesh case have also been presented.



Chapter 5

Goal-oriented mesh adaptation for

moving mesh simulations

When dealing with CFD problems, mesh adaptation is interesting for its ability to approach

the asymptotic convergence and to obtain an accurate prediction for complex flows at a

lower cost. Anisotropic mesh adaptation method reduces the number of degrees of freedom

required to reach a given solution accuracy, thus impact favorably the CPU time. Moreover, it

reduces the numerical scheme dissipation by automatically taking into account the anisotropy

of the physical phenomena inside the mesh. Two main approaches of mesh adaptations exist

in the literature. We have already seen the feature-based mesh adaptation in Chapter 2.

Feature-based mesh adaptation is mainly deduced from an interpolation error estimate using

the Hessian of the chosen sensor. It controls the interpolation error of the sensor over the whole

computational domain. Such approach is easy to set-up and has a wide range of application,

but it does not take into account the considered PDE used to solve the problem. If we want

to focus on a particular output functional g, as the drag or the lift for example, we need

to use a method of mesh optimisation which takes g into account. This is the role of the

goal-oriented mesh adaptation. However, considering a simulation with moving geometries in

a goal-oriented mesh adaptation context rises new difficulties. Indeed, the unsteady adjoint

state has to be computed on a moving mesh and the mesh has to be moved backward in time

when computing the unsteady adjoint state. For more explanations on these, see Chapter 4.

Goal-oriented methods result from a series of papers dealing with a posteriori estimates

as [Becker 1996, Giles 2002, Wintzer 2008]. But, extracting informations concerning a poste-

riori estimate is a difficult task. Starting from a priori estimates, Loseille et al. proposed a

fully anisotropic goal-oriented mesh adaptation technique for steady problems [Loseille 2010b].

The authors combine goal-oriented rationale and application of Hessian-based analysis to

truncation error. Then the study is extended to unsteady problems in [Belme 2012]. The

error does not take into account the temporal error but concentrate only on spatial error for

unsteady simulations.

In this present thesis, we combine fully anisotropic goal-oriented method of [Belme 2012] and



the fixed point advances of [N. Barral 2017] for time-accurate mesh adaptation involving moving

geometries.

We start this chapter with a formal description of the error analysis in its most general ex-

pression, then the application to unsteady compressible Euler flows is presented. In Section 5.1,

we introduce the optimal adjoint-based metric definition and all its relative issues, then Sec-

tion 5.2 is dedicated to the implementation of the algorithm mesh optimization. This chapter

ends with Section 5.3 and numerical experiments for blast wave problems.

5.1 Optimal adjoint-based ALE metric

We are interested in a scalar functional. The functions W,Wh ∈ L2(Ω) are assumed to be the

solution of the nonlinear continuous and discrete unsteady Euler PDE :

Ψ(W) = 0 ; Ψh(Wh) = 0

where :

Ψ(W ) = Wt +∇ · Fale(W ) = 0. (5.1)

5.1.1 Functional output of interest

Let j be a smooth linear functional applied to W into the scalar number :

j(W ) = (g,W )L2(Ω) ; j(Wh) = (g,Wh)L2(Ω).

where (g,W ) holds for the following rather most general functional output formulation :

(g,W ) =

∫ T

0

[∫

Ω
(gΩ,W )dΩ +

∫

Γ
(gΓ,W )dΓ

]
dt

The function g is a given L2(Ω) function. And we are interested in minimizing the approximation

error committed on the evaluation δj of j :

δj = j(W )− j(Wh)

5.1.2 Continuous adjoint state

Let us introduce the continuous and discrete systems in their variational formulation :

FindW ∈ V | ∀ϕ ∈ V, (Ψ(W ), ϕ) = 0,

FindWh ∈ Vh | ∀ϕh ∈ Vh, (Ψh(Wh), ϕh) = 0.



The continuous and discrete adjoint systems in their variational formuation are:

FindW ∗ ∈ V | ∀ψ ∈ V,
(
∂Ψ

∂W
(W )ψ,W ∗

)
= (g, ψ),

FindW ∗h ∈ Vh | ∀ψh ∈ Vh,
(
∂Ψh

∂W
(Wh)ψh,W

∗
h

)
= (g, ψh).

An integration by parts gives :

(
∂Ψ

∂W
(W )ψ,W ∗

)
=

∫

Ω(t)
(ψ(0)W ∗(0)− ψ(T )W ∗(T )) dΩ

+

∫ T

0

∫

Ω(t)
ψ

(
−W ∗t −

(
∂Fale
∂W

)∗
∇W ∗

)
dΩ dt

+

∫ T

0

∫

Γ(t)
ψ

[(
∂Fale
∂W

)∗
W ∗.n −

(
∂F̂ale
∂W

)∗
W ∗.n

]
dΓ dt .

Consequently, the continuous adjoint state W ∗ must be such that:

−W ∗t −
(
∂Fale
∂W

)∗
∇W ∗ = gΩ(t) in Ω(t), (5.2)

with the associated adjoint boundary conditions:

(
∂Fale
∂W

)∗
W ∗.n −

(
∂F̂ale
∂W

)∗
W ∗.n = gΓ(t) on Γ(t), (5.3)

and the final adjoint state condition:

W ∗(T ) = gT .

The adjoint Euler equations is also a system of advection equations, where the temporal inte-

gration goes backward.

5.1.3 Formal error analysis

The idea is now to compute the difference of variational residual for a discrete test function:

δj = j(W )− j(Wh) = (g,W )− (g,Wh),

(Ψh(W ), ϕh)− (Ψh(Wh), ϕh) = (Ψh(W )−Ψ(W ), ϕh) .

Then assuming that W ∗, ΠhW
∗ and W ∗h and their gradients are close to each other:

δj ≈ (Ψh(W )−Ψ(W ),W ∗) ≈ (Ψh(W )−Ψ(W ),ΠhW
∗) . (5.4)

The term Ψh(W )−Ψ(W ) is an a posteriori local error which we now evaluate.



5.1.4 Local error analysis

We replace in Estimation (5.4) operators Ψ and Ψh by their expressions given by Relation (5.1).

We also discard the error committed when imposing the initial condition. We finally get the

following simplified error model:

δj ≈
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn+1

ΠhW
∗,n+1(ΠhW

n+1 −Wn+1) dΩ

−
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn

ΠhW
∗,n(ΠhW

n −Wn) dΩ

+

n=nmax∑

n=1

∫

Ωtn

ΠhW
∗,n∇ · (ΠhFale(Wn)−Fale(Wn)) dΩ

−
n=nmax∑

n=1

∫

∂Ωtn

ΠhW
∗,n (ΠhF̂ale(Wn)− F̂ale(Wn)).n dΓ. (5.5)

Integrating by parts leads to:

δj ≈
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn+1

ΠhW
∗,n+1(ΠhW

n+1 −Wn+1) dΩ

−
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn

ΠhW
∗,n(ΠhW

n −Wn) dΩ

−
n=nmax∑

n=1

∫

Ωtn

∇ΠhW
∗,n · (ΠhFale(Wn)−Fale(Wn)) dΩ

−
n=nmax∑

n=1

∫

∂Ωtn

ΠhW
∗,n (ΠhF̄ale(Wn)− F̄ale(Wn)).n dΓ. (5.6)

with F̄ale = F̂ale−Fale. We observe that this estimate of δj is expressed in terms of interpolation

errors of the Euler fluxes and of the time derivative weighted by continuous functions ΠhW
∗ ≈

W ∗ and ∇ΠhW
∗ ≈ ∇W ∗. The integrands in Error Estimation (5.6) contain positive and

negative parts which can compensate for some particular meshes. In our strategy, we prefer

not to rely on these parasitic effects and to slightly over-estimate the error. To this end, all



integrands are bounded by their absolute values:

δj ≤
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn+1

|ΠhW
∗,n+1||ΠhW

n+1 −Wn+1| dΩ

+

n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn

|ΠhW
∗,n||ΠhW

n −Wn| dΩ

+
n=nmax∑

n=1

∫

Ωtn

|∇ΠhW
∗,n| |ΠhFale(Wn)−Fale(Wn)|dΩ

+
n=nmax∑

n=1

∫

∂Ωtn

|ΠhW
∗,n| |(ΠhF̄ale(Wn)− F̄ale(Wn)).n|dΓ. (5.7)

5.1.5 Continuous error model

Working in the continuous framework enables to write Estimate (5.7) in a spatially-continuous

form, in which the Πh are discarded, and in which the interpolation error Id−Πh is replaced by

its continuous Id− πM. Then, we are interested in minimizing the following error functional:

E(M) =
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn+1

|W ∗,n+1||πMWn+1 −Wn+1|dΩ

+
n=nmax∑

n=1

1

tn+1 − tn
∫

Ωtn

|W ∗,n||πMWn −Wn|dΩ

+

n=nmax∑

n=1

∫

Ωtn

|∇W ∗,n| |πMFale(Wn)−Fale(Wn)| dΩ

+
n=nmax∑

n=1

∫

∂Ωtn

|W ∗,n| |(πMF̄ale(Wn)− F̄ale(Wn)).n| dΓ. (5.8)

We observe that the fourth term introduces a dependency of the error with respect to the

boundary surface mesh. In the present paper, we discard this term and refer to [Loseille 2010a]

for a discussion on its influence. The first term can be transformed as follows without introducing

a large error:
∫

Ωtn+1

|W ∗,n+1||πMWn+1 −Wn+1| dΩ =

∫

Ωtn

|Jn+1
n |−1|Ŵ ∗,n+1||πMŴn+1 − Ŵn+1| dΩ

where |Jn+1
n | is the determinant of the transformation from Ωn to Ωn+1,

Jn+1
n = det

∂φ(., tn+1) ◦ φ−1(., tn)

∂x
(5.9)

and Ŵ ∗,n+1 resp. Ŵn+1 the functions of Ωn obtained by reverse transportation from Ωn+1:

∀x ∈ Ωtn Ŵn+1(x) = Wn+1
(
φ(φ−1(x, tn), tn+1

)
,

∀x ∈ Ωtn Ŵ ∗,n+1(x) = W ∗,n+1
(
φ(φ−1(x, tn), tn+1

)
. (5.10)



Then, introducing the continuous interpolation error, we can write the simplified error model

as follows:

E(M) =
n=nmax∑

n=1

∫

Ω
trace

(
M− 1

2 (x, tn) HALE
go (x, tn)M− 1

2 (x, tn)
)

dΩ dt

with HALE
go (x, tn) =

∑5
j=1 HGO

ale,j(x, t
n), in which

HALE
j,go (x, tn) =

1

tn+1 − tn
∣∣∣|Jn+1

n |−1Ŵ ∗,n+1
j (x, t)

∣∣∣ ·
∣∣H(Ŵn+1

j )(x)
∣∣

+
1

tn+1 − tn
∣∣∣W ∗,nj (x)

∣∣∣ ·
∣∣H(Wn

j )(x, t)
∣∣

+

∣∣∣∣∣
∂W ∗,nj
∂x

(x)

∣∣∣∣∣ ·
∣∣H(Fale,1(Wn

j ))(x)
∣∣ +

∣∣∣∣∣
∂W ∗,nj
∂y

(x)

∣∣∣∣∣ ·
∣∣H(Fale,2(Wn

j ))(x)
∣∣

+

∣∣∣∣∣
∂W ∗,nj
∂z

(x)

∣∣∣∣∣ ·
∣∣H(Fale,3(Wn

j ))(x)
∣∣

(5.11)

is defined on Ωtn . Here, W ∗j denotes the jth component of the adjoint vector W ∗, H(Fale,i(Wj))

the Hessian of the jth component of the vector Fale,i(W ), and H(Wj,t) the Hessian of the jth

component of the time derivative of W .

We observe that the first line of RHS is a time derivative, since :

1

tn+1 − tn
∣∣∣|Jn+1

n |−1Ŵ ∗,n+1
j (x, t)

∣∣∣ ·
∣∣H(Ŵn+1

j )(x)
∣∣−
∣∣∣W ∗,nj (x)

∣∣∣ ·
∣∣H(Wn

j )(x, t)
∣∣

=
1

tn+1 − tn
∣∣∣|Jn+1

n |−1Ŵ ∗,n+1
j (x, t)

∣∣∣ ·
∣∣H(Ŵn+1

j )(x)
∣∣−
∣∣∣|Jnn |−1Ŵ ∗,nj (x)

∣∣∣ ·
∣∣H(Ŵn

j )(x, t)
∣∣ (5.12)

where:

∀x ∈ Ωtn Ŵn(x) = Wn
(
φ(φ−1(x, tn), tn

)
,

∀x ∈ Ωtn Ŵ ∗,n(x) = W ∗,n
(
φ(φ−1(x, tn), tn

)
. (5.13)

5.2 Implementation of goal-oriented mesh adaptation for un-

steady problems involving moving geometries

5.2.1 Choice of the goal-oriented metric

The optimal adapted meshes for each sub-interval are generated according to the previous

analysis. In this work, the following particular choices have been made :

• the Hessian metric for sub-interval i is based on a control of the temporal error in L1 norm

• function τ : t→ τ(t) is constant and equal to 1



• all sub-intervals have the same time length ∆t.

The optimal goal-oriented metric simplifies to :

lMi,ALE
go (x)

= N
2
n
st

(nadap∑

j=1

Kj,ALE
(∫ tj

tj−1

τ(t)−1dt
) 2p

2p+n

)− 2
n(∫ ti

ti−1

τ(t)−1dt
)− 2

2p+n

(det Hi,ALE
go (x))−

1
2p+n Hi,ALE

go (x)

where Kj,ALE =

(∫

Ω

(
det Hj,ALE

go (x)
) p

2p+n dx

)

Remark 5. We notice that we obtain a similar expression of the optimal metric to those

presented in Chapter 1.

5.2.2 Memory management

The main difference with the feature-based fixed-point mesh adaptation lies in the backward

computation of the unsteady adjoint state which requires to know the solution on the whole

simulation interval [0,T].

As seen in Chapter 4, the memory effort can be reduced by out-of-core storage of checkpoints

as shown in the picture below. First the state-simulation is performed to store checkpoints.

Second, when computing backward the adjoint, we first recompute all states from the checkpoint

and store them in memory and then we compute the unsteady adjoint until the checkpoint

physical time. This method implies a recomputing effort of the state W .

As the fixed-point mesh adaptation algorithm split the time frame into nadap sub-intervals

for mesh adaptation, this sub-intervals are used as checkpoints for the adjoint computation.

If the computation of the adjoint states need to much memory storage, the other strategy

consists in storing solution states in memory only each m solver iterations. When the unsteady

adjoint is solved, solution states between two savings are linearly interpolated. So the process

is the following : at first, no interpolation is done, then if the system complains about a lack of

memory, one solution out of two is deleted and interpolations are done and so on : if the memory

capacity is still insufficient, only one solution out of four is kept and interpolation is made etc.

This method leads inevitably to a loss of accuracy for the unsteady adjoint computation.

Solve state once to get checkpoints Ψ(W ) = 0

Ψ∗(W, W ∗) = 0

Ψ(W ) = 0

Solve state and backward adjoint state from checkpoints



5.2.3 Algorithm

The Algorithm 11 is complicated by the fact that the unsteady adjoint solver must be com-

puted backward in time (eg. step 2) after computing the solution over the simulation time frame.

Algorithm 11 Goal-Oriented Mesh Adaptation for Unsteady Flows

Input : Initial mesh and solution (H0,S0
0 ) and set targeted space-time complexity Nst

# Fixed-point loop to converge the global space-time goal-oriented mesh adaptation problem

For j = 1, nptfx

# Adaptive loop to compute forward the solution state in time on time frame [0, T ]

1. For i = 1, nadap

(a) Sj0,i = Interpolate conservatively next sub-interval initial solution from (Hji−1,Sji−1,Hji );
(b) Sji = Compute solution on sub-interval from pair (Hji ,Sj0,i);

EndFor

# Adaptive loop to compute backward the adjoint state in time on time frame [T, 0]

2. For i = nadap, 1

(a) (S∗)ji = Interpolate previous sub-interval final adjoint state from (Hji ,Hji+1, (S∗0 )ji+1);

(b) (S∗0 )ji = Compute backward adjoint state on sub-interval from (Hji ,Sji , (S∗)ji );
(c) |Hgo,L1 |ji = Compute sub-interval goal-oriented Hessian-metric from sample

(Hji , {Sji (k), (S∗)ji (k)}nkk=1);

EndFor

3. Cj = Compute space-time complexity from all goal-oriented Hessian-metrics {|Hgo,L1 |ji}
nadap

i=1 ;

4. {Mj
i}
nadap

i=1 = Compute all sub-interval unsteady metrics (Cj , {|Hgo,L1 |ji}
nadap

i=1 );

5. {Hj+1
i }nadap

i=1 = Generate all sub-interval adapted meshes ({Hji , Mj
i}
nadap

i=1 );

EndFor

5.3 Numerical test cases

We present in this section some preliminary results of our goal-oriented mesh adaptation algo-

rithm for an unsteady simulation with moving domain.



5.3.1 Numerical test case : a Lohner blast-like on a 2D Bump

The test case presented is a Löhner semi-circular blast-like simulation in a domain [0, 5]× [0, 0.5]

with a bump centered in (1.875, 0) of diameter 0.4. The circular blast is located on (1.2, 0). At

initial time, the state is (ρblast,ublast, pblast) = (10,0, 25) whereas for the rest of the domain the

state is (ρdomain,udomain, pdomain) = (1,0, 2.5).

Moving mesh

The moving mesh function is :

A = 0.15 is the amplitude of the oscillation

ω = π/0.7 is the frequence of the oscillation

d(x, y) =








0.5(1 + cos (2(x− 2.3)π + π)) ∗A ∗ sin (ωt) + x , if 2.29 < x < 2.8

A ∗ sin(ωt) + x , if 2.8 < x < 3.8

0.5(1 + cos(2(x− 2.3)π + π)) ∗A ∗ sin(ωt) + x , if 3.8 < x < 4.3

y




.

(5.14)

The moving region is illustrated in Figure 5.1 (Top). It is represented by the red triangles. The

blue ones are fixed.

The observation is on this area

Figure 5.1: (Top)The region in blue is fixed while the red region moves. (Bottom) Illustration

of the output functional observation area

Cost function

The output functional is the quadratic deviation from ambient pressure on the surface S repre-

sented in Figure 5.1 (bottom):



j(W ) =

∫ T

0

∫

S

1

2
(p(t)− pair)2dSdt.

5.3.2 Numerical results

Two simulations are performed. The first one considers the Hessian-based mesh adaptation cou-

pled with moving geometries presented in Chapter 3 and the second one uses the Goal-oriented

mesh adaptation coupled with moving geometries presented in this chapter. The considered

displacement is smooth as no shearing occurs which might require connectivy-changes. Thus

no connectivity-changes are done during the simulation.

Figure 5.2: Hessian-based mesh adaptation

In goal-oriented mesh adaptation the mesh is adapted only on the flow interesting for the

functional output while in hess adaptation, the remeshing is not quite dense.



Figure 5.3: Goal-oriented mesh adaptation

5.4 Conclusion

This chapter addresses goal-oriented mesh adaptation for time dependent and dynamic meshes

simulations. In the first section, the error analysis is widely detailed. In the second section, the

choice of metric optimization is presented. This concept is used to extend the previous unsteady

goal-oriented mesh adaptation of [Belme 2011] to moving geometries.

The algorithm follows the work of [Olivier 2011a] and [Barral 2015] to generate meshes that

are adapted once moved with a certain displacement. Analytic examples validated this metric,

and it was used within a new error analysis, to derive an ALE metric for adaptive sub-intervals.

The regular time-dependent algorithm was modified to use this metric, and coupled with the

moving mesh algorithm and example is done on a 2D analytic example.

The main contributions of this thesis with respect to pre-existing work in the GAMMA

group is:

• An update strategy was proposed for the metric at mesh optimization times, to avoid spoiling

the adaptation with optimizations.

• A study of the error on analytic case for the ALE goal-oriented metric that confirmed its

adapted characteristic.

• A new version of the global fixed-point unsteady mesh adaptation algorithm was used.

Several perspectives arise from this work, notably:

• To improve the adaptation algorithm, the next step is to control the temporal error. This

would in particular lead to automatic adaptation of the size of the sub-intervals. This

appears to be all the more important with moving meshes, where the size of the mesh is not

even constant throughout a sub-interval and time step. This improvement is necessary to

deal with the ALE implicit scheme presented in Chapter 2.



• The convergence of this unsteady adaptive method needs to be studied, depending on the

number of vertices and/or the size of the sub-intervals, as well as the influence of the initial

solution on the final solution, and the ability of the algorithm to recover features of the

solution lost due to coarse initial meshes.



Conclusions and

Perspectives

Conclusions

This thesis was carried out at Inria within the teams GAMMA3 (Inria Saclay) and ECUADOR

(Inria Sophia-Antipolis). It has been part of the continuous works on mesh adaptation of these

two teams and contributes to the developpement of the numerical in-house fluid solver Wolf.

This thesis has presented several novelties regarding the extension of both hessian-based and

goal-oriented metric-based anisoltropic mesh adaptation to unsteady simulations for moving

computational domains.

The problematics raised by mesh adaptation, mesh movement and adjoint method have been

studied and analyzed at all the levels of the numerical resolution : the primal and dual solver

phases, the forward and backward moving mesh algorithms and the mesh adaptation.

The work presented in this thesis follows from [Olivier 2011a, Belme 2011, Barral 2015] and

presented updates for most stages of the resolution loop. Aside from the important theorical

and technical prerequisites required for this work, the challenge was triple. To compute mesh

adaptation for moving computational domains, the moving mesh must be performed with

precision, then intelligent solutions must be performed to compute the adjoint solver backward

in ALE formulation on a moving mesh and make it consistent with the flowfield state. And

the last difficulty is to preserve the mesh quality after remeshing. For that reason, the mesh

adaptation algorithm is divided into sub-intervals and coupled with an optimization algortihm

of connectivity changes.

The main contribution on this thesis concerns the adjoint solver and the goal-oriented mesh

adaptation. A new space-time goal-oriented error estimator has been designed to handle

moving mesh simulations. It has been derived from the unsteady Euler equation in the ALE

formulation. This ALE goal-oriented metric takes the movement of the mesh into account

in the error estimate. Moreover the consideration of the mesh optimization made after

the remeshing and during the connectivity change loop ensures the accuracy and the mesh

quality of the ALE-mesh adaptation both for hessian-based mesh adaptation presented in

Chapter 3 and for goal-oriented mesh adaptation in Chapter 5. The ALE solver has been

adapted to handle this new backward moving mesh framework. In fact, this work also presents

an implementation of adjoint solver for time dependent simulations with moving meshes in



Chapter 4. This solver allows in particular mesh connectivity changes. Therefore, the backward

changing-connectivity ALE scheme has been developed and validated in two dimensions and

introduced in three dimensions. Finally and in the perspective of a space-time mesh adaptation,

implicit solvers in ALE formulation for moving geometries problems have been developed

and implemented in three-dimensional moving mesh simulations as illustrated in Chapter 2.

It is also already effective in terms of CPU time as compared to explicit time integration solvers.

Perspectives

A wide variety of perspectives emerge from this work. We list there below :

• The first natural one is the validation of 3D adjoint solver in ALE formulation and compu-

tation for more complex simulations. Then extend the goal-oriented mesh adaptation for

3D simulations.

• Since only rigid bodies are considered in this thesis, one perspective could be to consider

deformable bodies.

• In the field of mesh deformation, other kinds of moving mesh equations can be investigated.

A premice of this investigation can be find in [Barral 2015].

• Future work will certainly focus on improving the space-time error analysis with moving

meshes, notably by introducing a better control of the temporal error. This would notably

result in an automatic adaptation of the sub-intervals sizes of the fixed-point algorithm.

Combined with the implicit time-integration solver in ALE formulation presented in this

thesis could improve the simulation time significantly.

• In the future, extending this work to goal-oriented mesh adaptation for Navier-Stokes equa-

tions will lead to a greatest interest for the method to industrials. Already, a lot of ALE

schemes are available for viscous simulations [Hay 2014], which facilitate the task, together

with many works on adaptation for viscous flows [Menier 2015, Frazza 2018].

• Time consumption is a huge limitation in the size and the complexity of the problems consid-

ered. Mesh adaptation appears as an answer to this problem, by helping to reduce greatly

the size of the meshes while preserving the solution accuracy. However, it is only really

efficient if it is coupled to an efficient parallelization of the codes. In this thesis, only shared

memory parallelization has been considered. In the medium term, it seems that considering

other kinds of parallelization will be unavoidable: reflections on parallelization of meshing

software on distributed memory were started in [Loseille 2013], and the parallelization of the



fluid solver on GPU was started in [Barral 2015]. Both approaches may have to be combined

in order to take advantage of recent hybrid computation clusters.

• The FSI aspect can also be improved, by replacing the 6-DOF model by continuous elastic

materials. The loose coupling could be replaced by more sophisticated strong coupling

schemes. In this way, complex problems from aeroelasticity to biology could be run, in the

interest of both industries and researchers.

• Another promising research perspective for the future is the extension of metric-based mesh

adaptation to curved meshes. In fact, high-order elements have been used for a long while,

mostly in Finite Element Methods, but only by increasing the order of the approximation

polynomials. It has not been followed by meshing software, who have been generating flat

pseudo high-order elements until very recently, i.e. standard P1 elements with more nodes on

the edges. The generation of really high-order meshes is only in its earliest infancy. Lately,

progress has been made on the generation of P2 curved meshes [Johnen 2013, Abgrall 2014].

However, a smart use of curved meshes seems to be promising, notably by enabling a much

more accurate representation of curved boundaries.
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ing mesh problems. PhD thesis, Université Pierre et Marie Curie, Paris VI, Paris, France,

2015.

[Batina 1990] J. Batina. Unsteady Euler Airfoil Solutions Using Unstructured Dynamic Meshes.

AIAA Journal, vol. 28, no. 8, pages 1381–1388, 1990.

[Batten 1997] P. Batten, N. Clarke, C. Lambert and D.M. Causon. On the choice of wavespeeds

for the HLLC Riemann solver. SIAM J. Sci. Comput., vol. 18, no. 6, pages 1553–1570,

1997.
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domain simulations. PhD thesis, Université Pierre et Marie Curie, Paris VI, Paris,

France, 2011.

[Olivier 2011b] G. Olivier and F. Alauzet. A New Changing-Topology ALE Scheme for Moving

Mesh Unsteady Simulations. Jan 2011.

[Pain 2001] C.C Pain, A.P. Humpleby, C.R.E. de Oliveira and A.J.H. Goddard. Tetrahedral

mesh optimisation and adaptivity for steady-state and transient finite element calcula-

tions. Comput. Methods Appl. Mech. Engrg., vol. 190, pages 3771–3796, 2001.

[Pendenza 2014] A. Pendenza, W. G. Habashi and M. Fossati. A 3D mesh deformation tech-

nique for irregular in-flight ice accretion. In 44th AIAA Fluid Dynamics Conference,

AIAA Paper 2014-3072, Atlanta, GA, USA, June 2014.

[Picasso 2003] M. Picasso. An anisotropic error indicator based on Zienkiewicz-Zhu error es-

timator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput., vol. 24,

no. 4, pages 1328–1355, 2003.

[Picasso 2009] M. Picasso, V. Prachittham and M.A.M. Gijs. Adaptive Finite Elements with

Large Aspect Ratio for Mass Transport in Electro-osmosis and Pressure-Driven Mi-

croflows. Int. J. Numer. Meth. Fluids, 2009.



[R. Becker 2001] R. Rannacher R. Becker. An optimal control approach to a posteriori error

estimation in finite element methods. Acta Numerica, vol. 19, pages 1–102, 2001.

[Rausch 1992] R.D. Rausch, J.T. Batina and H.T.Y. Yang. Spatial adaptation procedures on

tetrahedral meshes for unsteady aerodynamic flow calculations. AIAA Journal, vol. 30,

pages 1243–1251, 1992.

[Remacle 2005] J.-F. Remacle, X. Li, M.S. Shephard and J.E. Flaherty. Anisotropic adaptive

simulation of transient flows using discontinuous Galerkin methods. Int. J. Numer. Meth.

Engng, vol. 62, pages 899–923, 2005.

[Roe 1981] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes.

J. Comp. Phys., vol. 43, pages 357–372, 1981.

[Rusanov 1961] V. Rusanov. Calculation of Intersection of Non-Steady Shock Waves with Ob-

stacles. J. Comp. Phys., pages 267–279, 1961.

[S. Piperno 1998] S. Depeyre S. Piperno. Criteria for the design of limiters yielding efficient

high resolution TVD schemes. Computers & Fluids, vol. 27, pages 183–197, 1998.

[Sagan 1994] H. Sagan. Space-filling curves. Springer, New York, NY, 1994.

[Saksono 2007] P.H. Saksono, W.G. Dettmer and D. Perić. An Adaptive Remeshing Strategy for
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