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And now you press the second spot on the card
That stands for a situation in your life
And you imagine this situation
In the middle of this waterfall
Washed and cleaned by its amazing energy

– Ivo Dimchev, I-Cure
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Notations

The following notations will be used throughout this work. Chapter-specific notations will
be introduced in the corresponding sections.

Symbol Meaning

n Number of nodes

�1, n� {1, . . . ,n}

I Edges set {(i , j ) ∈ �1, n�2 : i 6= j }

Ec Complement of a subset E in the ambient space

1E Indicator function of a subset or an event E in the ambient space

〈·, ·〉 Usual scalar product of Rn

‖ ·‖1 l1 norm on Rn

‖ ·‖2 l2 (Euclidean) norm on Rn

‖ ·‖∞ l∞ (uniform) norm on Rn

Bi (x,δ) Open ball with center x and radius δ for norm ‖ ·‖i

B(E) Borel σ-algebra on a Borel subset E of Rn

t A Transpose of matrix A

diag(λ1, . . . ,λn) Diagonal n ×n matrix with diagonal coefficients λ1, . . . ,λn

(e1, . . . ,en) Canonical basis of Rn

xi i -th coordinate of vector x ∈Rn or Rn-valued function x

Xi i -th coordinate of Rn-valued process X

a ∧b min(a,b)

a ∨b max(a,b)

a+ 0∨a

bxc (bx1c, . . . ,bxnc) (with x = (x1, . . . , xn) ∈Rn)
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Introduction

The present work is devoted to the mathematical analysis of continuous-time stochastic
metapopulation models coupled with stochastic epidemic processes on a graph. We first inves-
tigate on the modeling of population dynamics within a network of exchanging cattle holdings
(Chapter 2), considering transfers occurring at random times and examining both deterministic
and stochastic regimes for local population evolution. Focusing on Markovian jump population
processes, we define corresponding epidemic models suitable to describe the spread of an epi-
demic over the trade network (Chapter 3). Theoretical results derived from these models make
it possible to assess the vulnerability to the epidemic of a real cattle exchange network and to
design and evaluate control strategies (Chapter 4).

This introduction is structured as follows. Section 1.1 states the scientific context and practi-
cal motivations of this work. In Section 1.2, we sketch the metapopulation and epidemic models
under study. Section 1.3 presents the mathematical concepts used in the next chapters as well
as an overview of the main theoretical results of this thesis. Lastly, Section 1.4 presents a fast
simulation method for Markov jump processes, that will be used in numerical applications in
Chapter 4.

1.1

Context and motivation

Animal movements due to trade are a major vector of epidemic spread between cattle hold-
ings at large spatial scales [KDGK06]. The practical motivation for the present work stems from
a research project named Cadence, funded by the French National Research Agency (ANR). It
is focused on the statistical study, mathematical modeling, vulnerability assessment and epi-
demic control for cattle infectious diseases spreading through animal movements on French
cattle trade networks.

Networks are quite natural representations of exchanging cattle holdings, that play the role
of nodes while trade relationships can be represented as directed links. These networks are
weighted according to the number of animals exchanged, and time-varying since activated links
and their weight are not permanent over time, expressing the variability of trade relationships.
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Epidemic dynamics on cattle trade networks are likely to exhibit endemicity — that is, persis-
tence of the infection at a moderate level over large time scales. Indeed, particular livestock
demographics entail a fast population renewal, and therefore a steady flow of new individu-
als potential pathogen hosts entering the system. When modeling epidemics on a cattle trade
network, it is therefore necessary to take into consideration imports, births and deaths of an-
imals occuring on the same time scale as epidemic dynamics. Thus, we shall be aiming for
a unified modeling framework coupling metapopulation dynamics and epidemic propagation
among network-structured populations.

Before presenting the models under study, we proceed to an overview of the applicative
problematics and the modeling context to which they relate.

1.1.1 Context of cattle trade network analysis and available data

This subsection presents elements on empirical cattle trade networks analysis and a pre-
sentation of the dataset upon which the numerical analysis presented in Chapter 4 will be con-
ducted.

1.1.1.1 Analysis of cattle trade networks

The important amount of data collected by European authorities over the last two decades
consecutively to the BSE crisis makes it possible to track the position over time of every sin-
gle piece of cattle within national territories [Ver11, DEV14]. This allows for very detailed de-
scriptions of the properties of the cattle trade network observed on arbitrarily fine time inter-
vals [VK09, Ver11, DEV14], but also for building and calibrating models for pathogen spread
[PGPSV12, BVE15, HGM+16] that can eventually lead to designing control strategies [BVJE17].

Studying the connectivity of an empirical trade network is a first step towards the evalu-
ation of its vulnerability to an infectious disease (see [RDD11] for an analysis of the size of
connected components of a real network and [HS12] for a review on the more sophisticated
reachability ratio accounting for time-varying characteristics of the network). Such a study also
helps design containment strategies [DEV14] that limit the disruptions of market mechanisms
[MGM+16]. The structure of the network itself can be predicted using suitable microeconomic
models [HGM+16] or using more general activity-based models [PGPSV12].

Another approach, that we will follow in the rest of this work, consists in interpreting the
characteristics of the observable network as realizations of a Markovian metapopulation pro-
cess. In this case, it is possible to derive theoretical results on epidemic dynamics coupled with
this process to evaluate quantities related to the network vulnerability induced by various nodes.
Instances of such quantities are the probability of a major epidemic outbreak, the total size of
an epidemic, or the expected number of holdings reached by the infection, when the epidemic
is started by one initial infective in a given node.

1.1.1.2 The French National Cattle Database

Modeling choices and control strategies evaluation in the next chapters will be guided by
empirical observations from the French National Cattle Database (FNCD), maintained by the
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French Ministry of Agriculture. This database traces back the path of every piece of cattle within
the French territory between 2005 and 2015 [RDD11, DEV14] and was already used for cali-
brating models and for designing and assessing control strategies in the past few years [BVE15,
QVDE17, BVJE17].

Figure 1.1: Representation of the cattle trade network of France in 2008. Exchanging cattle hold-
ings are aggregated at the commune level. The size of a node represents its mean population
over the year. Colours on the nodes represent the share of buying (orange for operators and red
for farms) and selling (green for operators and blue for farms). The edges represent the existence
of a movement between two holdings in the dataset, with their width indicative of the observed
trading volume along this edge. The picture is courtesy of Gaël Beaunée.

The raw data available consist in five layers of information [DEV14]. The first layer is the de-
tention record of various holdings over time, displaying among other information the national
identification number of animals held, their date and cause of entry into the holding (either
by birth or by purchase), and their date and cause of exit from the holding (either by death or
sale). The second layer contains the life history of every animal, with its national identification
number, its date and holding of birth, its sex, its race and the date of its first calving. The other
three layers contain information about markets and assembling centers (that we will refer to as
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operators) and about slaughterhouses. As in [DEV14], in the processing of the data we treated
slaughterhouses as sinks unlikely to play a role in the spread of infectious diseases, so deaths
and transfers to slaughterhouses were considered as movements of the same nature. These raw
data make it possible to build a full record of cattle trade exchanges on the French territory be-
tween 2005 and 2015, tracing for each movement its date, its origin and destination (in terms of
holding type and identification), and the identification number of animals involved. From this
record, it is possible to build and represent the empirical cattle trade network over any period of
time (see Figure 1.1).

1.1.2 Modeling context

The modeling approach of the present work and its mathematical contributions lie in the
field of metapopulation models and epidemiological models on graphs. The following subsec-
tions give a brief (and far from exhaustive) overview of the existing literature on these topics.

1.1.2.1 Metapopulation models

Metapopulation models describe the behavior of a population naturally or artificially split
into spatially distant patches connected through individual movements. Although the reality of
distant but connected populations had been studied by biologists since the 1950s [AB54, Huf58,
MW67], the term itself was coined and defined in 1969 by Levins, who studied a determinis-
tic model describing the evolution of the total number of patches occupied by a species over
time [Lev69, Lev70]. Important refinements on the initial models were introduced, such as a
distinction between some patches as sources of population that can survive thanks to their own
growth and others as sinks that go extinct in the absence of dispersal [Pul88], the incorporation
of the rescue effect through which small populations are compensated by immigration in order
to avoid their extinction [Han83, HMG96, Eti00], or the fact of taking landscape patterns into
account by exploiting the explicit spatial distribution of patches [Pul88, Kar90, KW95, Rit97].
Metapopulations models nowadays appear in numerous biological contexts, especially in the
study of biodiversity, thanks to their ability to mix spatial informations and individual typolo-
gies [JS03, BWG+09, WCC+16]. More complete reviews on the various extensions of the original
Levins model and their applications can be found in [HG91, HS97, Han99, Eti02].

Stochastic metapopulation models will be of paramount interest for the present work. Han-
ski’s Incidence Function Model [Han94, VtN00] first introduced some degree of stochasticity in
the dispersion of individuals across patches. Yet it describes the state of a metapopulation as
a vector of binary occupancy indicators and does not consider local, intra-patch demograph-
ics (see also [GS94, EN02]). Other models, based on Markov processes, take into account lo-
cal population dynamics (births and deaths) and/or transfers between patches happening at
random times, with transition rates either estimated directly on the available data [VLM91] or
given by a parametric population model (see [PDGM00] for a metapopulation model with logis-
tic population growth, to be compared with the deterministic [Ayd17]). The population mod-
els we will introduce in the next section belong to this latter class. So do multitype branching
processes, that enjoy many theoretical properties due to the very strong branching assumption
[Ath68, Mod71, AN72] and can be used to describe metapopulations [GL00, BL13, HJK16, Ada16]
without being limited to this use, as we shall see in the next section.
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1.1.2.2 Stochastic SIR epidemics on networks

SIR (Susceptible – Infected – Removed) compartmental models introduced as ODE systems
by Kermack and McKendrick [KM27] and their stochastic counterparts [Bar49, Ken56] are widely
used in epidemiology to describe diseases with lifelong immunity upon recovery (for instance
measles, rubella, mumps and pertussis in the case of human health). In these models, alive in-
dividuals can be assigned three sanitary statuses: they are either Susceptible (S) and never yet
hit by the disease, Infected (I) and potentially at the origin of infectious contacts that turn sus-
ceptible individuals into infected ones, or Removed (R) after recovering from an infection and
permanently immune to it. During their lifetime, individuals may move between compartments
from Susceptible to Infected (in the case of an infection event) or from Infected compartment
to Removed (in the case of a recovery). In the original SIR models, the population is assumed to
be homogeneously mixing, which means that each infective is homogeneously in contact with
all other individuals of the population, and therefore equally likely to infect any susceptible in-
dividual. A large panel of variations on the SIR model was developed, taking into account for
instance additional types of health statuses, eventual loss of immunity, age structure or het-
erogeneous mixing (see the monography [KR07] for an extensive presentation of such models,
specifically developed for various applicative contexts).

Given the application we have in mind, we will be particularly interested in models ac-
counting for the spreading of SIR epidemics on contact networks. There has been important
literature about such models since three decades. While many models represent individuals
themselves as nodes (see for instance [BN08, DF15]), some use nodes to represent subpopu-
lations corresponding to different types [Bal86, BC93, Cla94, BC95, Cla96, Nea12]. These types
can be thought of as biologically distinct subpopulations within the same space, but can also
be seen as groups of individuals located in geographically distinct patches. With this inter-
pretation, multitype SIR models are couplings of epidemiological and metapopulation mod-
els. Yet, even within such frameworks, intra-nodal population dynamics related to births or
deaths are seldom taken into account, thus resulting in fixed-size models in which infectives
may [BC93, Cla94, Cla96, Nea12] or may not [Bal86, BC95, AB00a] move across nodes. According
to cases, infectives may [Bal86, BC95, AB00a] or may not [BC93, Cla94, Cla96, Nea12] make in-
fectious contacts with individuals from other nodes. For such models, the focus is generally put
on describing the first stages of the epidemic as well as its final outcome. [Cla96, Nea12] approx-
imate the epidemic process by a multitype branching process in the first stages of the epidemic
as the typical population size N tends to infinity, and distinguish between two types of epidemic
behavior according to whether the branching process survives (a major epidemic outbreak) or
not (a minor epidemic outbreak). For some fixed-sized models, exact results for the final size
of the epidemic — that is, the total number of individuals infected during the course of the epi-
demic — can be derived using the so-called Sellke construction, that consists in associating each
individual with a critical level of exposure to the epidemic under which it is Susceptible and
over which it becomes Infected (see [Sel83] and Chapter 6 of [AB00a]). In [BC93, Cla94, BC95],
asymptotic estimations under the N →+∞ limit are derived for the final size of the epidemic,
generalizing the proofs of [Sca85, Sca90] to the multitype case. We will be aiming at similar
results when studying epidemiological models in Chapter 3.
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Among the models we just described, the dynamic epidemic model studied in [Nea12] is
the closest demography-free counterpart to the settings we will study. It represents the spread
of an SIR epidemic among a population divided into subpopulations between which individ-
uals move according to a Markov transition matrix, regardless of their health status. In this
model, infectives can only make infectious contacts with members of their current subpopu-
lation. Neal computes the moment generating function of the offspring of one infective individ-
ual for a branching process approximating the epidemic in its first stages (see [Cla96]). Knowing
an analytic expression for this function allows to compute numerically the probability of a ma-
jor epidemic outbreak. It also yields an estimate for a classic epidemiological parameter, the
basic reproduction number R0, that roughly describes the average number of infections caused
by an infective in an initially fully susceptible population during its lifetime. We will adapt this
approach to our models with population renewal in Chapter 3.

In the past few decades, there has been debate on the relevance of the R0 parameter in
the context of networks or small-sized, homogeneously mixing subpopulations (also known as
household-organized networks) [BN08, BST09, BST10, PBT11, BBH+15, BPT16, BS18]. Active re-
search has been led on an alternative threshold parameter that would help classify the behavior
of an epidemic on such networks, and a variety of new quantities have been defined and com-
pared [BPT16]. They will inspire our investigation on indicators for network vulnerability in
Chapter 4.

1.1.2.3 Stochastic SIR epidemics with demography

Our goal is to provide models that account for population evolution by immigration, births,
deaths and migration between patches on one side, allowing to generate plausible dynamics in
agreement with observations, and for local SIR epidemic dynamics on the other side. It has been
shown [VHG95, VH97, Nå99, AB00b] that such open SIR models differ from their demography-
free counterparts in that they allow for endemicity, so the epidemic persists over a given thresh-
old when a major epidemic outbreak occurs ([Bar56]; on the importance of endemicity as a
current topic of study for epidemiology, see [Bri10]). The probability of a major epidemic out-
break (Chapter 4 of [AB00a], [Cla96, Nea12]), as well as the extinction time and the total size
of an epidemic in the case of a major outbreak, are therefore essential quantities of interest in
the study of the epidemic process, especially from a control perspective. However, the Sellke
construction and other techniques used in [Sca85, Sca90, BC93, BC95, AB00a] to derive explicit
results on the final size of the epidemic in the fixed-size case fail to transpose in the multitype
open setting, in which the exposure of individuals to infection starts at various times, varies as
populations move on the graph, and eventually ends at random times. As a result, a large part of
the literature on open SIR models rather focuses on obtaining estimates for the extinction time
of the epidemic [AB00b, O’N96] and describing the qualitative behavior of the process after a
major outbreak episode [VHG95, VH97].

Some authors consider open demographic dynamics coupled with epidemic processes but
mostly deal with single-type models — that is, with one single, uniformly mixing population.
Most of such models either rely on a population process with population-proportional [O’N96,
CG07] or constant [Nå99, AB00b] entry rates. In all these specifications, the set of disease-free
states is absorbing and the extinction of the epidemic in finite time in almost sure. [AB00b] and
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[Nå99] study the quasi-stationary distribution (QSD) of the epidemic process, that is, the long-
time limit of its distribution conditionally on not being extinct, as well as the extinction time of
an epidemic having this QSD as initial distribution. [O’N96] approximates the extinction time of
the epidemic by that of a birth and death process as a population scaling parameter N tends to
infinity, yet without estimating its distribution for fixed values of N. Part of our focus in Chapter
3 will be on the time scale over which the epidemic goes extinct in our open SIR setting. We
will show that under the endemicity regime, the extinction time is greater than an exponential
function of N with probability tending to 1.

In Chapters 3 and 4, we will study a multitype SIR model coupled with metapopulation dy-
namics where transition rates are either affine (the so-called branching-driven SIR model) or
logistic (the logistic-driven SIR model). A similar open multitype setting with affine rates is stud-
ied in the case of a SI model in [BS16] using a mostly numerical approach. Various determin-
istic counterparts of our stochastic SIR branching model can be found in [MA07, LS09, MEK13,
TL15, TIK18]. SIR models with a logistic population evolution are less common. We refer to
[WZJ10, LTW+17, MMZB17, GS18] for deterministic specifications, and to [ZH15] for a model
with Brownian stochasticity. To the best of our knowledge, models similar to our stochastic
logistic-driven SIR setting have not yet been considered in the literature.

1.2

Modeling approach

Our first task is to define a general metapopulation model on a network. Depending on the
size of the populations considered and the time steps at which they are observed, different mod-
eling approaches can be used to represent their evolution. We consider a piecewise determin-
istic Markovian metapopulation process (a metapopulation PDMP, Subsection 1.2.1) describ-
ing a deterministic local evolution of controlled populations between stochastic inter-patches
transfers. Then, relaxing assumptions on the deterministic control of local demographics, we
examine a fully-stochastic regime that results in a more tractable Zn+-valued pure jump process
specifications (Subsection 1.2.2) that we couple with a stochastic SIR model (Subsection 1.2.3).

1.2.1 Piecewise deterministic metapopulation processes

When the populations under study are typically large, with an evolution controlled in a
deterministic way (as is the case in cattle holdings) and transfers between nodes occurring
at random times (for instance because of exogenous economical dynamics), it is natural to
model the population of the system patches as a Rn+-valued Markovian metapopulation process
X = (X1, . . . ,Xn) driven both by a continuous flow and by a set of jump processes. The resulting
mathematical object is known as a piecewise deterministic Markov process (PDMP).
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In this metapopulation model, we therefore consider that the population of each patch i is
associated with an autonomous growth function φi (meaning that dXi (t ) =φi (X(t ))dt when no
jump occurs), and that an instantaneous transfer from patch i to patch j at population x occurs
at state-dependent rate θi , j (x), its amplitude being drawn according to a [0, xi ]-supported law
µi , j (x, ·).

This model will be defined in a general framework in Section 2.1. For now, we consider the
two following motivating examples, that emerged from the modeling of cattle trade network
dynamics. Set n Ê 1 and G = (�1, n�,A ) a strongly connected directed graph on �1, n� (where A

is a subset of I := {(i , j ) ∈ �1, n�2 : i 6= j }), define (c1, . . . ,cn) ∈Rn \ {0} and consider the constant-
growth settings defined by:

Multiplicative uniform setting

φi (x) =
{

ci if ci Ê 0

ci 1xi>0 if ci < 0
and

{
θi , j (x) = θi , j

µi , j (x, ·) =U ([0, xi ])
(1.1)

with θi , j > 0 if (i , j ) ∈A and θi , j = 0 otherwise, or:

Unitary power setting

φi (x) =
{

ci if ci Ê 0

ci 1xi>0 if ci < 0
and

{
θi , j (x) = (1∨xi )α

µi , j (x, ·) = δ1∧xi

(1.2)

for some α ∈ (0,1].

Specification (1.1) corresponds to the case of patches transferring at constant temporal rate
a random fraction of their population to each other. It fits to empirical data on cattle trade
observed over large time steps, but is not mechanistically realistic since the actual size of cattle
transfers is bounded by transportation capacities. Specification (1.2) corresponds to unitary
population transfers occurring at population-dependent rates, which is a natural framework for
modeling cattle trade movements observed on a daily basis. Note that the latter setting only
differs from an open Jackson network [Jac57, MD94, Dai95] by its continuous state space and
the deterministic growth flow defined by the φi .

1.2.2 Metapopulation Markovian jump processes

When populations are not large or do not exhibit low local stochasticity, their evolution be-
tween transfers cannot be described using an ordinary differential equation and is better mod-
eled by a Markovian jump process with unitary jumps. This approach does not allow for macro-
scopic jumps, nor does it account for the fact that population dynamics, in the application we
have in mind, are still controlled to some extent by holding management. Yet, very large jumps
are not likely to happen when populations are observed on a small enough time scale. Moreover,
the Markovian jump process approach allows to consider integer-valued populations, which is
more realistic and makes stability analysis easier. As we will see in Subsection 1.2.3, it will also
make the coupling of the population dynamics with a Poisson process-driven epidemic model
quite natural.

We will only allow unitary transfers in the density-dependent jump processes we will con-
sider — that is, immigration, birth, death or exchange events concerning exactly one individual.
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Therefore, as typical populations get larger, we expect to retrieve a continuous, deterministic
limit for the scaled population process; this justifies the introduction of a scaling parameter N
in the models below.

In the next two subsections, we will assume that all Zn+-valued jump processes are defined
using a unique set of Poisson point measures, and that the same holds for (Zn+)3-valued jump
processes. Explicit constructions will be provided in Chapters 2 and 3.

1.2.2.1 The branching population model

We may model the population dynamics using aZn+-valued multitype continuous-time branch-
ing process with immigration, simply referred to as the branching population model in the rest
of this work. For any N Ê 1, we define (XN(t ))tÊ0 as a Zn+-valued jump process defined on (Ω,A )
with initial value XN(0) = bNx(0)c for some x(0) ∈ Rn+ and the following transition rates under P,
with θi , j ,bi ,Bi ,di ∈R+:

Transition Rate at state x

x → x +ei NBi +bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

(1.3)

Table 1.1: Branching population process jump rates chart.

The bi xi might be considered as Malthusian birth rates and the NBi as constant immigra-
tion rates. All rates are represented in the synthetic Figure 1.2.

i

i

i i

i

i ij

θi , j xi

θ j ,i x j

di xi

NBi +bi xi

d j x j

NB j +b j x j

Figure 1.2: Schematic representation of the branching population process. Coefficients in the
arrows are instant transition rates.
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In order to focus on non-trivial cases relevant for the application we have in mind, we as-
sume that B = (B1, . . . ,Bn) 6= 0 so 0 is not an absorbing state for the population processes, and
that the directed graph with vertices set �1, n� and edges set {(i , j ) : θi , j > 0} is strongly con-
nected so that for any i and j , any individual born in node i can get to node j with positive
probability during its lifetime.

Finally, defining

A =



b1 −d1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 b2 −d2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,n bn −dn −∑
j 6=n θn, j

 , (1.4)

we assume that all eigenvalues of A have negative real parts.

In this framework, immigration of individuals to node i occurs at rate NBi , and individu-
als in node i give birth at rate bi , die at rate di and move to node j at rate θi , j , independently
from other individuals in the network. The lineage of a single individual is a Zn+-valued branch-
ing process with transition rates given by (1.3) with the Bi replaced by 0. Once they enter the
system, individuals give birth to independent lineages that do not interact, so the number of
such lineages, and therefore the typical size of the population process, is proportional to the
immigration flux per unit of time, that is, to N.

The theory of continuous-time multitype branching processes presented in Subsection 1.3.2
allows for an easy characterization of the asymptotic behavior of the XN. Since A has only eigen-
values with negative real parts, XN appears like the superposition of subcritical branching pro-
cesses initiated at rate NB, which entails stability properties. Moreover, we will see in Section
1.3.3 that the scaled limit of XN/N (as N tend to infinity) is a deterministic process x of the sim-
plest kind, solution of the differential equation ẋ = Ax +B.

1.2.2.2 The logistic population model

Despite its tractability, the branching population process we just presented lacks realism
for the purpose we have in mind. Indeed, it does not take into account saturation phenomena
that naturally limit the population of holdings with respect to their individual carrying capacity.
We therefore introduce a second, more complex metapopulation jump process on Zn+, that we
will refer to as the logistic population model. For every node i , we define a capacity NKi > 0
that intervenes both in the logistic rates of importation to node i , in its local population logistic
growth rate and in the "pseudo-logistic" rates of transfers directed towards i .

For any N Ê 1, we define (XN(t ))tÊ0 as a Zn+-valued jump process defined on (Ω,A ) with
initial value XN(0) = bNz(0)c for some z(0) ∈Rn+, and with the following transition rates under P:
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Transition Rate at state x

x → x +ei

(
Bi + bi

N xi

)
(NKi −xi )+

x → x −ei di xi

x → x −ei +e j
θi , j

N xi (NK j −x j )+

(1.5)

Table 1.2: Logistic population process jump rates chart.

All rates corresponding to the logistic population process are represented in the synthetic
Figure 1.3. Note that the scaling parameter N does no longer appear in the importation rate
since the typical size of the system is now determined by the carrying capacity of nodes rather
than by the population inflow. We let it intervene in the birth rates and transfer rates in order to
obtain scaling limit results in Subsection 1.3.3.2.

i

i

i i

i

i ij

θi , j

N xi (NK j −x j )+

θ j ,i

N x j (NKi −xi )+

di xi

(
Bi + bi

N xi

)
(NKi −xi )+

d j x j

(
B j + b j

N x j

)
(NK j −x j )+

Figure 1.3: Schematic representation of the logistic population process. Coefficients in the
arrows are instant transition rates.

Once again, we assume that B = (B1, . . . ,Bn) 6= 0 so 0 is not an absorbing state for the popu-
lation process, and that the directed graph with vertices set �1, n� and edges set {(i , j ) : θi , j > 0}
is strongly connected, so that for any i and j , any individual born in node i can get to node j
with positive probability during its lifetime. We also assume that d 6= 0 so NK = N(K1, . . . ,Kn) is
not an absorbing state. Under these assumptions, XN in an irreducible Markov jump process on∏n

i=1 �0, dNKi e�. It is therefore ergodic.
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1.2.3 The epidemic process

We now proceed to the definition of the epidemic model, that we couple with the jump
population processes introduced above.

For any N, i and t , the population XN
i (t ) of the i -th node at time t is divided into three

subpopulations: SN
i (t ) susceptibles, IN

i (t ) infectives and RN
i (t ) removed individuals. Movements

between nodes, births and deaths — that is, population dynamics — are assumed to be inde-
pendent from health status and therefore described by the population process (branching or lo-
gistic, see chart below and Figure 1.4). All individuals born from other individuals in the system
are assigned the susceptible status, that is to say that we exclude vertical disease transmission.
However, infectives may enter the system through immigration; every animal imported in node
i has the Susceptible status with probability pi , the Infectious status with probability qi , and the
Removed status with probability ri = 1−pi −qi .

When alive and in node i , each infected individual makes contacts with individuals chosen
independently and uniformly from node i , at rate βi . Such contacts may only occur within a
given node, so an infective from node i cannot make an contact with an individual from node j
if i 6= j . Contacted individuals that are still susceptible get infected; otherwise their status does
not change. Independently, infectious individuals alive in node i recover at rate γi and then
enter the Removed compartment.

Let us write the canonical basis of R3n as (e s
1, . . . ,e s

n ,e i
1, . . . ,e i

n ,er
1, . . . ,er

n). We consider for ev-
ery N Ê 1 a (Zn+)3-valued Markovian pure jump process (SN(t ), IN(t ),RN(t ))tÊ0 defined on (Ω,A )
and described by the following transition rates at state (s, i ,r ) where x j = s j + i j + r j for all
j ∈ �1, n�:

Transition Rate (branching case) Rate (logistic case)

(s, i ,r ) → (s, i ,r )+e s
j p j NB j +b j x j

(
p j B j + b j

N x j

)
(NK j −x j )+

(s, i ,r ) → (s, i ,r )+e i
j q j NB j q j B j (NK j −x j )+

(s, i ,r ) → (s, i ,r )+er
j r j NB j r j B j (NK j −x j )+

(s, i ,r ) → (s, i ,r )−e s
j d j s j d j s j

(s, i ,r ) → (s, i ,r )−e i
j d j i j d j i j

(s, i ,r ) → (s, i ,r )−er
j d j r j d j r j

(s, i ,r ) → (s, i ,r )+e s
k −e s

j θ j ,k s j
θ j ,k

N s j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+e i

k −e i
j θ j ,k i j

θ j ,k

N i j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+er

k −er
j θ j ,k r j

θ j ,k

N r j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+e i

j −e s
j β j

i j s j

x j
β j

i j s j

x j

(s, i ,r ) → (s, i ,r )+er
j −e i

j γ j i j γ j i j

Table 1.3: Branching and logistic-driven SIR processes rates chart.
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i

i i i

i i

IS Rβ j i j
s j

x j

(d j +∑
k θ j ,k )i j(d j +∑

k θ j ,k )s j (d j +∑
k θ j ,k )r j

p j NB j +b j x j +∑
k θk, j sk q j NB j +∑

k θk, j ik r j NB j +∑
k θk, j rk

γ j i j

i

i i i

i
i

IS Rβ j i j
s j

x j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

i j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

s j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

r j

(
p j B j + b j

N x j +∑
k
θk, j

N sk

)
(NK j −x j )+

(
q j B j +∑

k
θk, j

N ik

)
(NK j −x j )+

(
r j B j +∑

k
θk, j

N rk

)
(NK j −x j )+

γ j i j

Figure 1.4: On top, schematic representation of an SIR compartmental model coupled with a
branching population process (a branching-driven SIR). Below, schematic representation of an
SIR compartmental model coupled with a logistic population process (a logistic-driven SIR). All

three compartments are inside the same node j (pictured as a green ellipse). Coefficients on
the arrows are instant transition rates. Horizontal arrows stand for transfers from one

compartment to another within node j , while vertical arrows represent flows in and out of
node j .
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One of our focuses will be on the behavior of an epidemic started by a small number of
individuals in the case p j = 1 (so q j = r j = 0), that is, when immigration of infectives is ruled
out, so we do not necessarily assume IN(0) to be proportional to N. In the latter case, we will
instead consider that P-almost surely

IN(0) = I(0), SN(0) = XN(0)− IN(0) = XN(0)− I(0) and RN(0) = 0

with a fixed I(0) ∈Zn+ \ {0}n (typically ei for some i ).

1.2.4 Questions raised by the models under study

In Chapter 2, we will investigate the recurrence and ergodicity properties of the population
processes introduced in Subsections 1.2.1 and 1.2.2. In the case of jump population processes,
we will consider two additional questions:

• By what deterministic processes can they be approximated when the typical population
tends to infinity?

• Over which time scale can we consider that the population is stable?

In Chapter 3, we will study the epidemic processes introduced in Subsection 1.2.3, coupled to
demographic processes studied in Chapter 2. In the case where no immigration of infectives is
allowed (p = 1) and the epidemic is initiated by a fixed number of infectives accidentally intro-
duced in the system, we will answer the following:

• By what simpler mathematical object can the epidemic process be approximated within
its first stages?

• What is the probability of a major epidemic outbreak to occur?

• Over which time scale does the epidemic go extinct, and what is the total size of the epi-
demic?

In the case where individuals entering the system through immigration can have an infectious
status with positive probability (q 6= 0), our focus will be on the following issues:

• What is the behavior of the epidemic process when the typical population is large?

• On which time scales can the endemicity phenomenon be observed, and to what level
does the prevalence of the disease stabilize?

Chapter 4 will finally provide numerical illustrations and applications of the results on the logistic-
driven SIR process derived in Chapter 3 to a real cattle trade network, organized around two
guiding questions:

• How can we derive computable indicators from the analytical results of Chapter 3 to assess
the network’s vulnerability to an epidemic?

• What node-based control strategies can we design to reduce this vulnerability, how to as-
sess them and which of these strategies are the most efficient?

In the next section, we introduce mathematical concepts and methods necessary to address
these questions.
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1.3

Probabilistic concepts and main results of the thesis

This section is devoted to presenting some mathematical theories we used and sometimes
extended to study our models of interest. This presentation is strictly reduced to the notions
and results that serve the purpose of the present work and does not aim at exhaustivity. At the
end of each subsection, we present the main theoretical results of this work derived from the
corresponding theory. In order to make novel results easier to identify, theorems and proposi-
tions from the existing literature are presented on shaded frames, while original results proved
in the present work are framed.

From now on, we will consider a probabilistic space (Ω,A ,P), that we assume to be big
enough so we can define all Rn-valued processes and independent Poisson random measures
introduced in the rest of this work.

Let E be a Borel subset ofRn . We first introduce the notion of Markov family, that will mostly
allow for a greater simplicity of notation.

DEFINITION 1.3.1 (Markov family). — A Markov family on a filtered space (Ω,A , (Ft )t≥0) asso-
ciated with a semigroup (Pt )tÊ0 on E×A is a family (X,(Px)x∈E), where X is a (Ft )t≥0-adapted
process on (Ω,A ) and (Px)x∈E is a family of probabilities on (Ω,A ) such that for any x ∈ E, X is a
Markov process with semigroup (Pt )tÊ0 and almost sure initial value x under Px .

In the framework of this definition, for any x ∈ E we will denote by Ex the expectation asso-
ciated with Px .

DEFINITION 1.3.2 (Strongly Markovian Markov family). — We say that a Markov family (X,(Px)x∈E)
on (Ω,A , (Ft )t≥0) is strongly Markovian (or satisfies the strong Markov property) if for all (Ft )t≥0-
stopping time T, all t ≥ 0, all x ∈ E and all A ∈B(E) (the Borel σ-algebra on E), Px-almost surely

Px (X(T+ t ) ∈ A |FT)1T<+∞ =PX(T) (X(t ) ∈ A)1T<+∞.

In the next subsections, all stochastic processes X will be considered defined on (Ω,A ,P)
and belonging to a strongly Markovian Markov family (X,(Px)x∈E) on (Ω,A , (Ft )t≥0) associ-
ated to a semigroup denoted (Pt )tÊ0, with

(
Ft

)
t≥0 the augmented filtration obtained from the

(σ(X(s), s ≤ t ))t≥0 filtration generated by X.

If A ∈B(E), we denote by τA = inf{t Ê 0 : X(t ) ∈ A} the hitting time of A by X. It is then known
from [Bas10] that τA is a (Ft )tÊ0-stopping time.

If µ is a Borel measure on E, f : E → R is a bounded Borel function and t ≥ 0, we define the
Borel measure µPt and function Pt f : E →R by:

µPt : A 7→
∫

E
Pt (x, A)dµ(x)
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and

Pt f : x 7→ Ex
[

f (X(t ))
]= ∫

E
f (y)Pt (x,dy).

We now introduce a technical condition required by theoretical results of [MT93b] and [DMT95]
that we will present in next section.

DEFINITION 1.3.3 (Borel right process, [Dav93] p.77). — X is said to be Borel right if:

(i) For all t ≥ 0 and all bounded Borel-measurable function f : Rn → R, Pt f is bounded and
Borel-measurable.

(ii) X is almost surely right-continuous.

(iii) If f : Rn → R is a nonnegative Borel-measurable function that is α-excessive for the semi-
group for some α> 0, that is, if e−αt Pt f ≤ f for all t ≥ 0 and e−αt Pt f ↑ f as t ↓ 0, then f (X)
is almost surely right-continuous.

In the rest of this work, we will always assume that the processes we consider are Borel right.

Subsection 1.3.1 below deals with the recurrence and ergodicity of Rn-valued processes.
This stability theory, mostly due to Meyn and Tweedie, helps describe the long-term behavior of
(the distribution of) the various population processes we will consider. In Subsection 1.3.2, we
define and give some fundamental results on continuous-time branching processes, that will
be applied both to the study of branching population processes and to the approximation of
infection processes defined in Section 1.2.3 during the first stages of an epidemic. Subsection
1.3.3 will provide with deterministic approximations of scaled Markov jump processes on finite
time intervals, that we will apply to our population and epidemic jump processes. Finally, the
long-term deviation of processes from these limits will be dealt with in Subsection 1.3.4.

1.3.1 Stability of Markov processes

Let us first review some concepts and results on the long-term stability ofRn-valued Markov
processes.

1.3.1.1 Irreducibility, Harris recurrence and ergodicity

For any Borelian part A of E, we set

ηA :=
∫ +∞

0
1X(t )∈Adt .

The following definition extends the notion of irreducibility of a Markov chain with a count-
able set space to the case of a E-valued Markov chain:

DEFINITION 1.3.4 (φ-irreducibility of a Markov chain). — If φ is a nontrivial σ-finite Borel mea-
sure on E, we say that a E-valued Markov chain Z = (Zk )k≥0 is φ-irreducible if for all A ∈B(E) the
following holds:

φ(A) > 0 ⇒ ∀x ∈ E, ∃k ∈N∗ : Px(Zk ∈ A) > 0.

We simply say that Z is irreducible if the definition above holds for some φ.
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The definition of irreducibility for a continuous-time process is more constraining and in-
volves sojourn times of the process in A :

DEFINITION 1.3.5 (φ-irreducibility for a continuous-time Markov process). — Ifφ is a nontrivial
σ-finite Borel measure on E, we say that X is φ-irreducible if for all A ∈B(E) the following holds:

φ(A) > 0 ⇒ ∀x ∈ E, Ex
[
ηA

]> 0.

Here again, we say that X is irreducible if the definition above holds for some φ.

DEFINITION-PROPOSITION 1.3.6 (Harris recurrence, Theorem 1.1 of [MT92a]). — We say that
X is Harris recurrent if there exists a nontrivial, sigma-finite Borel measure φ on E such that
for all A ∈B(E) with φ(A) > 0 the following holds:

∀x ∈ E, Px(ηA =+∞) = 1

or equivalently:
∀x ∈ E, Px(τA <+∞) = 1.

We note that if X is Harris recurrent, then X is irreducible.

The following result is the counterpart to the theorem of existence and unicity of an invariant
measure for a recurrent Markov chain on a countable state space.

THEOREM 1.3.7 (Existence and unicity of an invariant measure for a Harris recurrent Markov
process, [ADR69]). — If X is Harris-recurrent, then there exists a Borel measure µ on E,
unique up to a multiplicative constant, such that:

∀t ≥ 0, µPt =µ.

Such a measure is said to be invariant for semigroup (Pt )t≥0, and we say that X is positive
Harris recurrent is there exists a finite invariant measure for (Pt )t≥0.

We observe the Cesàro mean convergence of the time spent by a positive Harris recurrent
process on a given Borel subset of E towards the measure of this subset for the invariant proba-
bility. More generally, we have the following Birkhoff theorem:

THEOREM 1.3.8 (Ergodic Birkhoff theorem, [ADR67] p.169). — If X is positive Harris recurrent
with invariant probability π, then for all x ∈ E and all f ∈ L1 (E,B(E),π) the following holds:

Px −a.s., lim
t→+∞

1

t

∫ t

0
f (X(s))ds =

∫
f dπ.
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It is yet worth noting that this latter convergence result does not, in general, imply that of the
law of X(t ) towards π as t tends to infinity. In order to study this last phenomenon, we introduce
the notion of ergodicity:

DEFINITION 1.3.9 (Ergodicity of a Markov process, [MT93a] p.508). — If X is positive Harris re-
current with invariant probability π, we say that X is ergodic if for any x ∈ E we have:

lim
t→+∞‖Pt (x, ·)−π‖TV = 0

where ‖ ·‖TV is the total variation convergence norm, that is:

‖Pt (x, ·)−π‖TV = sup
g : E→R+

g measurable
|g |≤1

∣∣Pt g −πg
∣∣ . (1.6)

We can obtain a much stronger ergodicity concept by changing the upper bound in the
supremum of Definition 1.6. Let us first introduce the notion of f -norm:

DEFINITION 1.3.10 ( f -norm). — For any measurable function f : E → [1,+∞[, the f -norm ‖ · ‖ f

on the set of Borel measures on E is defined by:

‖µ‖ f := sup
g : E→R+

g measurable
g≤ f

∣∣∣∣∫ g dµ

∣∣∣∣ .

For instance, the total variation norm ‖ ·‖TV is the 1-norm.

We then define:

DEFINITION 1.3.11 ( f -ergodicity). — If f : E → [1,+∞[ is a measurable function, we say that X
is f -ergodic if X positive Harris recurrent with invariant probability π such that

lim
t→+∞

∥∥Pt (x, ·)−π∥∥
f = 0

for all x ∈ E.

Another development of the notion of ergodicity consists in precising the convergence speed
in (1.6) by demanding an exponentially fast convergence:

DEFINITION 1.3.12 ( f -uniform exponential ergodicity). — If f : E → [1,+∞[ is a measurable
function, we say that X is f -uniformly exponentially ergodic if there exist ρ ∈ [0,1) and M ≥ 0
such that:

∀t ≥ 0,∀x ∈Rn
+,

∥∥Pt (x, ·)−π∥∥
f ≤ M f (x)ρt .

In the case of a continuous-time Markov process with a countable set space, jump times
are (possibly degenerate) exponential variables, ensuring aperiodicity and ergodicity results in
the recurrent positive case. At the opposite, positive Harris recurrence does not necessarily en-
tail ergodicity for a continuous-time Markov process with an uncountable state space. We must
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therefore state new recurrence and ergodicity criteria for X; this is the aim of the following para-
graphs, built on results from [MT93a], [MT93b] and [DMT95].

Recurrence and ergodicity criteria in [MT93a] are build around the notions of sampled chains
and petite sets, which are introduced in the first paragraph below. We then give a powerful result
from [DMT95], known as the Foster-Liapounov criterion for uniform exponential ergodicity, that
allows to obtain the strongest form of ergodicity from the study of the infinitesimal generator of
an irreducible aperiodic Markov process.

1.3.1.2 Sampled chains and petite sets

The strategy followed by Meyn and Tweedie in [MT93a] consists in deriving the properties
of X from these of sampled chains (X(Ak ))k≥0, that is, of Markov chains obtained by observing
X at random times Ak , where (Ak )k≥0 is an increasing sequence of R+-valued random variables
independent from X and with stationary independent increments.

It is the meaning of the following definition:

DEFINITION 1.3.13 (Sampled chains, skeleton chains and resolvent). — Let a be a Borel proba-
bility measure on R+. We define the transition function Ka on E×B(E) by:

Ka(x, A) :=
∫

Pt (x, A)da(t ).

We then call Ka-chain any E-valued Markov chain with transition function Ka .

In the case a = δ∆ with ∆> 0, the Ka-chain is called ∆-skeleton of X.

In the case where a = E (1) is the exponential distribution with mean 1, the Ka-chain is denoted
R and called resolvent of X.

The ∆-skeleton of X is the chain obtained by observing X at regular time intervals of length
∆, and its resolvent is the chain obtained by waiting an exponential time of mean 1 between
each observation. It seems intuitive that we can derive less information from the study of the
∆-skeleton of X, that by definition fails to account for the behavior of X on intervals of the form
(k∆, (k +1)∆), than from the study of the resolvent of X that samples it at "truly random" times.
This intuition is partly true, and X has tight bonds with its resolvent that it does not share with
its skeleton chains (see [MT93a] for more detail). Yet, we will see that under some assumptions
on the local behavior of X, observing its skeleton chains makes is sufficient to prove its Harris
recurrence and its ergodicity.

Let us now introduce the crucial concept of petite set :

DEFINITION 1.3.14 (Petite set). — If a is a Borel probability measure on R∗+ and if νa is a non-
trivial Borel measure on E, we say that a set C ∈ B(E) is νa-petite if Ka(x, ·) ≥ νa for all x ∈ C.
One simply says that C is petite for the Ka-chain if there exists a nontrivial Borel measure νa on
E such that C is νa-petite, and that C is petite if there exists a Borel probability measure a on R∗+
such that C is petite for the Ka-chain.

Petiteness is a mixing condition: it means that if at some point in time X takes a value in C,
any observation of X realized after an independent waiting time of law a has a positive proba-
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bility to be projected on the support of νa and distributed according to νa . It is therefore easy to
conceive that X is Harris recurrent as soon as it almost surely reaches a given petite set. This is
the meaning of the following theorem:

THEOREM 1.3.15 (Petite sets and Harris recurrence, [MT93a] p.503). — If there exists a petite
set C ∈B(E) such that Px(τC <+∞) = 1 for all x ∈ E, then X is Harris recurrent.

It is possible to derive a stronger result by controlling the mean time spent by X outside of
compact subsets of E:

DEFINITION 1.3.16 (Boundedness in probability on average). — X is said to be bounded in prob-
ability on average if for all x ∈ E and all ε> 0 there exists a compact subset C of E such that

liminf
t→+∞

1

t

∫ t

0
Px(X(s) ∈ C)ds ≥ 1−ε.

THEOREM 1.3.17 (Condition for positive Harris recurrence, Theorem 3.2 (ii) and Theorem 4.1
(i) of [MT93a]). — If Px(‖X‖1 →+∞) < 1 for some x ∈ E, if all compacts of E are petite and if X
is bounded in probability on average, then X is positive Harris recurrent.

The ergodicity of X can then be derived from the study of its skeleton chains:

THEOREM 1.3.18 (Ergodicity condition for a positive Harris recurrent Markov process,
[MT93a] p.509). — If X is positive Harris recurrent and if one its skeleton chains is irreducible,
then X is ergodic.

We finally state a f -ergodicity result:

THEOREM 1.3.19 ( f -ergodicity condition for a positive Harris recurrent Markov process, The-
orems 7.1 and 7.2 of [MT93a]). — Let us assume that X is Harris recurrent, and let µ be one of
its nontrivial invariant measures. If there exist a Borel function h : E → [1,+∞), a closed petite
set C and δ> 0 such that

sup
x∈C

Ex

[∫ τC(δ)

0
h (X(t ))dt

]
<+∞

where τC(δ) := inf{t ≥ δ : X(t ) ∈ C}, then X is positive Harris recurrent and h is µ-integrable.

If in addition X has an irreducible skeleton chain, if

Ex

[∫ τC

0
h (X(t ))dt

]
<+∞

for all x ∈ E and if there exists a Borel function f : E → [1,+∞) such that Ps f ≤ h for all s ∈ [0,δ],
then X is f -ergodic.

The results above give very useful criteria for the study of long time behavior of Markov
process. Yet, they do not give information on the convergence speed of the distribution of X(t )
towards the invariant probability in the ergodic case. Next subsection introduces a condition
yielding such results.
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1.3.1.3 A Foster-Lyapunov criterion

Foster-Lyapunov conditions draw a link between properties of the infinitesimal generator of
X and the propensity of the process to reach petite sets in a quick time. Various criteria of non-
explosivity, positive Harris recurrence and uniform exponential ergodicity derived from these
conditions are given in [MT93b]. The one we state here, taken from [DMT95], yields a strong
uniform exponential ergodicity result.

Aperiodicity is the condition insuring the ergodicity of irreducible positive recurrent Markov
chains. We first need to extend to continuous-time Markov processes.

DEFINITION 1.3.20 (Aperiodicity of a continuous-time Markovian process). — If X isφ-irreducible,
X is said to be aperiodic if there exist T ≥ 0 and a petite set C ∈ B(E) such that φ(C) > 0 and
Pt (x,C) > 0 for all t ≥ T and all x ∈ C.

We then have the following exponential ergodicity criterion:

THEOREM 1.3.21 (Criterion for uniform exponential ergodicity of X, Theorem 5.2 (c) of
[DMT95]). — If X is φ-irreducible and aperiodic and if there are b,c > 0, a petite set C ∈B(E)
and a measurable function V : E → [1,+∞) belonging to the domain of the infinitesimal gen-
erator A of X such that:

AV ≤−cV +b1C,

then X is positive Harris recurrent, V is integrable under the invariant probability of X and X
is V-uniformly exponentially ergodic.

It is worth noting that unlike the results stated in [MT93b], the latter theorem only requires
the existence of one petite set C (not necessarily for a skeleton chain of X but for any sampled
chain).

1.3.1.4 Stability of the population models under study

The main results derived from the stability theory presented above in the context of the
present work are the following. The first statement stems from Theorems 2.1.2 and 2.1.5:

THEOREM 1.3.22 (Ergodicity of multiplicative uniform and unitary power settings). — A
multiplicative uniform or unitary power metapopulation PDMP (defined by equation 1.1
or 1.2) is positive Harris recurrent if and only if

n∑
i=1

ci < 0

in which case it is also F-ergodic, where

F :

{
Rn+ −→ R+
x 7−→ eη‖x‖1

for some η> 0.
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The following result is Proposition 2.2.1:

PROPOSITION 1.3.23 (Ergodicity of the branching population process). — Let N Ê 1. The
branching population process XN defined in Subsection 1.2.2.1 is positive recurrent and (‖ ·
‖1 +1)−uniformly exponentially ergodic. Moreover, for every x(0) ∈RN+ ,

lim
t→+∞E(XN(t )) =

∫
xdπ(x) =−NA−1B

where A is defined by (1.4) and B = (B1, . . . ,Bn).

As evoked after defining the logistic population process, its (exponential) ergodicity is trivial
since it is an irreducible continuous-time Markov process on a finite state space. We neverthe-
less state it for the sake of symmetry. It can be found in section 2.3 as Proposition 7.3.3:

PROPOSITION 1.3.24 (Ergodicity of the logistic population process). — Let N Ê 1. The logis-
tic population process XN defined in Subsection 1.2.2.2 is positive recurrent and exponen-
tially ergodic.

1.3.2 Results on continuous-time multitype branching processes

This subsection deals with the long-time behavior of continuous-time multitype branching
processes, defined in a way that slightly differs from the usual setting of [Ath68, Mod71, AN72].
It also provides with the explicit calculation of the moment generating function of the offspring
matrix of a multitype branching processes.

1.3.2.1 Definition

In the rest of this work, we denote I = {(i , j ) ∈ �1, n�2 : i 6= j }.

Let Θ= (θi , j )i , j∈�1,n� be a matrix with nonnegative coefficients, and for any i ∈ �1, n�, let bi

and di be nonnegative real numbers. Throughout this work, we will assume that for any (i , j ) ∈
�1, n�2 there exists a positive integer k such that Θk

i , j > 0 (which is a connectivity assumption
meaning that any individual born in node i can follow a path to node j with positive probability
during its lifetime), and that the θi ,i coefficients are zero. We say that a continuous-time Zn+-
valued Markovian jump process is a multitype branching process with birth rates bi , death rates
bi and movements matrix Θ whenever its jump intensities are given by the following chart:

Transition Rate at state x ∈Zn+
x → x +ei bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

(1.7)

Table 1.4: Multitype branching process rates chart.



33 1.3. PROBABILISTIC CONCEPTS AND MAIN RESULTS OF THE THESIS h

Such a process X = (X(t ))tÊ0 models the evolution over time of a population scattered among
n nodes, with Xi (t ) denoting the population in node i at time t , such that individuals behave
independently from each other and, while in node i , give birth at rate bi to an individual starting
an independent line of descent, die at rate di and move to node j at rate θi , j .

It is quite classical that such a jump process almost surely does not explode in finite time
(and is therefore well defined as a process on R+), since

∑
x∈Zn+

n∑
i=1

1

bi xi +di xi +∑n
j=1θi , j xi

=+∞.

Note that the difference with the continous-time setting studied in [AN72] and [Ath68] only
lies in the fact that individuals do not create new lineages in various nodes at the time of their
death but move across nodes and give birth in their current node during their lifetime. Now
individuals are assumed to behave independently from each other, so the effective position of
an individual over time does not affect the behavior of others. As a result, the Markov chains
obtained by sampling the processes defined here and in [Ath68] at the times of deaths of indi-
viduals have the same distribution. This makes it possible to derive the results of Subsection
1.3.2.2 below directly from [Ath68].

Until the end of this section, we assume that X is a continuous-time multitype branching
process with birth rates bi , death rates bi and movements matrix Θ, and that at least one bi

or one di is positive (which rules out the case of a constant population of immortal and sterile
individuals).

1.3.2.2 Fundamental properties of a multitype branching process

It follows from the Perron-Frobenius theorem (see [AN72] p.185 and [Kar59]) that the matrix

A =



b1 −d1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 b2 −d2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,n bn −dn −∑
j 6=n θn, j


has a simple (real) eigenvalue with maximal real part, that we denote ρ. We say that the multi-
type branching process X is subcritical if ρ< 0, critical if ρ= 0 and supercritical if ρ> 0.

Let ζ ∈ [0,1]n be the vector of extinction probabilities of the multitype branching process for
populations initiated by one single individual in various nodes, defined by:

∀i ∈ �1, n�, ζi =Pei (∃t Ê 0 : X(t ) = 0)

where we recall that Pei (X(0) = ei ) = 1.
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Since all lineages started at time t = 0 evolve independently from each other, it is clear that
for any x ∈Zn+ we have:

Px (∃t Ê 0 : X(t ) = 0) =
n∏

i=1
ζ

xi
i .

For any i , j ∈ �1, n�, we denote by Wi , j = limt→+∞ Mi , j (t ), where (Ei (t ),Mi , j (t ))tÊ0 is a Zn+×Z+
Markov jump process with initial value (ei ,0) and with the following rate intensities:

Transition Rate at state (x,m) ∈Zn+×Z+
(e j ,m) → (e j ,m +1) b j

(ek ,m) → (0,m) dk

(ek ,m) → (el ,m) θk,l

Wi , j can be seen as the total first-generation offspring in node j of an individual of a population
modeled by the multitype branching process born in node i .

We define G : [0,1]n → [0,1]n as the moment generating function (MGF) of the Wi , j , given by

G : [0,1]n −→ [0,1]n

s 7−→
(
E
[∏n

j=1 s
W1, j

j

]
, . . . ,E

[∏n
j=1 s

Wn, j

j

]) .

We shall see that this function is of paramount interest in approximating the major outbreak
probability vector in the supercritical case, in addition of making a great number of explicit
calculations possible (for instance that of the expected number of nodes in which an individual
born in node i will have offspring, which will be useful in Chapter 4). [Nea12] puts forward a
procedure to compute G numerically when the di are identical across nodes. However, in our
setting the life duration of individuals is not independent from their trajectory, hampering the
integration of the conditional expectancy obtained by Theorem 1 of [DM68] (see equations (11)
and (12) of [Nea12]). The alternative method we use to compute G strongly relies on the Markov
property. It yields the following:

PROPOSITION 1.3.25 (MGF of the Wi , j ). — For any s = (s1, . . . , sn),

G(s) = (
diag(λ1(s), . . . ,λn(s))−Θ)−1 d (1.8)

where λi (s) = (1− si )bi +Σi with Σi = di +∑
j 6=i θi , j for any i ∈ �1, n�.

Proof of Proposition 1.3.25.— Let i ∈ �1, n�. For all j ∈ �1, n�, we consider the random time

Qi , j =
∫ +∞

0
1Ei (s)=e j ds

spent in node j by an individual of the population described by the multitype branching process
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born in node i at time 0. We recall that Wi , j is the total offspring of this individual in node j . Then
conditionally on the Qi , j , the Wi , j are independent and have law Poisson with mean b j Qi , j .
Therefore, for any s ∈ [0,1]n :

Gi (s) := E
(

n∏
j=1

s
Wi , j

j

)

= E
[
E

(
n∏

j=1
s

Wi , j

j | Qi ,1, . . . ,Qi ,n

)]

= E
[

n∏
j=1
E
(
s

Wi , j

j | Qi , j

)]

= E
[

n∏
j=1

exp
(−(1− s j )β j Qi , j

)]
, (1.9)

Let us denote by T1, . . . ,Tτ the jump times of Ei , τ being the time of absorption of the un-
derlying Markov chain by 0. Using the law of total probability and the strong Markov property
at T1, we get that for any (a1, . . . , an) ∈Rn+:

E
(
e−∑n

j=1 a j Qi , j
)
= E(

e−a1T1
)( n∑

k=1
P (Ei (T1) = k)E

(
e−∑n

j=1 a j Qk, j
)
+P(τ= 1)

)

= Σi

ai +Σi

(
n∑

k=1

θi ,k

Σi
E
(
e−∑n

j=1 a j Qk, j
)
+ di

Σi

)

=
n∑

k=1

θi ,k

ai +Σi
E
(
e−∑n

j=1 a j Qk, j
)
+ di

ai +Σi
(1.10)

since T1 is exponentially distributed with mean Σ−1
i . Combining (1.9) and (1.10) shows that G(s)

is such that (
diag(λ1(s), . . . ,λn(s))−Θ)

G(s) = d,

but diag(λ1(s), . . . ,λn(s))−Θ is a diagonally dominant matrix that can be proved to be invertible
using the connectivity assumption for Θ, which ends the proof of Proposition 1.3.25. ä

It is possible to show (see [AN72] p.202) that defining mi , j (t ) = Eei (X j (t )) for all i , j and t as
the expected population in node j for a multitype branching process initiated by one individual
in node i at time t = 0, then the matrices M(t ) = (mi , j (t ))i , j satisfy the differential equation
Ṁ(t ) = AM(t ), and therefore, as M(0) = In , that M(t ) = exp(t A) for all t Ê 0. This suggests that
the sign of ρwill prove crucial in determining the asymptotic behavior of the branching process,
that should, by Fatou’s lemma, get extinct with probability 1 as soon as the process is subcritical.
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In fact, a much stronger result holds (Theorem 2, p.186 of [AN72]):

THEOREM 1.3.26 (Extinction probability of a multitype branching process). —

1. If the multitype branching process X is subcritical or critical, it goes extinct with
probability 1 regardless of its initial condition : ζ= 1.

2. If the multitype branching process X is supercritical, ζi < 1 for any i ∈ �1, n�, and ζ is the
only fixed point of the generating function G in [0,1)n . Moreover, for any s ∈ [0,1]n \ 1:

lim
n→+∞Gn(s) = ζ

where Gn stands for n-th iteration of G.

In the one-dimensional case n = 1, Proposition 1.3.25 yields G(s) = d1
(1−s)b1+γ1

and therefore

ζ1 = d1

b1

when the process is supercritical, that is, when b1 > d1. This result will be used as a reference
in Chapter 4 when discussing the behavior of a multitype branching process in quasi-isolated
nodes (that is, nodes with very low

∑n
j=1θi , j ).

The following Proposition states an equivalent characterization of subcritical, critical and
supercritical multitype branching process, reminiscent of the usual mean-based criterion for
one-dimensional Galton-Watson processes (see Theorem 1, p.7 of [AN72]).

PROPOSITION 1.3.27 (Mean offspring matrix). — The matrix C = (E(Wi , j ))i , j∈�1,n� is given by

C = (diag(Σ1, . . . ,Σn)−Θ)−1diag(b1, . . . ,bn). (1.11)

Let R0 denote the largest real eigenvalue of C. Then the multitype branching process is sub-
critical if R0 < 1, critical if R0 = 1 and supercritical if R0 > 1.

Proof of Proposition 1.3.27.— We take up the notations of the proof of Proposition 1.3.25 above.
For any i , j ∈ �1, n�, we denote by Wk

i , j the offspring of the individual in node j during times Tk

and Tk+1. Then:

E
(
Wi , j

)= E(+∞∑
k=0

Wk
i , j 1Ei (Tk )= j

)
=

+∞∑
k=0

E
[
E
(
Wk

i , j | Ei (Tk ) = j
)

1Ei (Tk )k= j

]
=

+∞∑
k=0

b jE
(
Tk 1Ei (Tk )= j

)= b j

+∞∑
k=0

E
[
1Ei (Tk )= jE

(
Tk | Ei (Tk ) = j

)]
.
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Now the Tk follow an exponential distribution with mean Σ−1
j conditionally on (Ei (Tk ) = j ), so

E
(
Wi , j

)= b j

Σ j
E

(+∞∑
k=0

1Ei (Tk )= j

)
,

and E
(∑+∞

k=0 1Ei (Tk )= j
)= E(∑τ−1

k=0 1Ei (Tk )= j
)

is the expected number of visits of j by the underlying
Markov chain starting from i before absorption. This number is known (see for instance [GH60],
Chapter 3) to be (In −T)−1

i , j where T is the matrix defined by

Ti , j =
{

0 if i = j
θi , j

Σi
if i 6= j

so

E(Wi , j ) = b j

Σ j
(In −T)−1

i , j = b j (diag(Σ1, . . . ,Σn)−Θ)−1
i , j

and (1.11) follows.

Alternatively, a conditioning argument similar to the one used in the proof of Proposition
1.3.25 can be used to derive (3.10), by writing that

E(Qi , j ) =
n∑

k=1

θi ,k

Σi
E(Qk, j )+ 1

Σi

and using the fact that E(Wi , j ) = b jE(Qi , j ) for all i , j . A third method would be to retrieve the
formula for C by differentiating G using the expression given by Proposition 1.3.25.

The statements concerning R0 are derived from a simple comparison with the splitting-at-
death model developed in [AN72] p.202. ä

In Chapter 3, we will be interested in the behavior of a supercritical multitype branching
process conditionally on its non-extinction. By the Perron-Frobenius theorem (see [AN72] p.185
and [Kar59]), there exists a left eigenvector v of A associated to the eigenvalue ρwith positive co-
efficients. Theorems 1 and 2 of [Ath68] yield the following analogous of Kesten-Stigum’s theorem
[KS67]:

THEOREM 1.3.28 (Asymptotic behavior of a multitype branching process). — There exists a
real-valued random variable W such that

lim
t→+∞X(t )e−ρt = Wv

almost surely.

If the multitype branching process is supercritical, then

P (W > 0 | ∀t Ê 0, X(t ) 6= 0) = 1

so:
∀i ∈ �1, n�, Xi (t ) ∼

t→+∞ Wvi eρt

almost surely on the event of non-extinction.
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1.3.2.3 Multitype branching approximation of epidemic processes

We will apply some of the results we just saw to the approximation of epidemic processes
introduced in Subsection 1.2.3 when the epidemic is started by a fixed number of individu-
als. Recall that for all i ∈ �1, n�, pi denotes the probability for an individual arriving in node
i through immigration to have the Susceptible health status, qi its probability to be Infected
and ri = 1 − pi − ri its probability to be Removed. In this paragraph, we assume that p = 1,
IN(0) = I(0) ∈Zn+, SN(0) = XN(0)− I(0) and therefore RN(0) = 0.

In the branching and logistic-driven SIR frameworks, the set of disease-free statesZn+×{0}n×
Zn+ is reachable from any point of the state space, and the assumption we just made makes this
set absorbing, so the positive recurrence of the population processes XN implies that disease
extinction in finite time is almost sure. We call extinction time of the epidemic the hitting time
of Zn+ × {0}n ×Zn+ by the epidemic process, and total size of the epidemic the total number of
individuals infected during the course of the epidemic.

Theorems 1.3.29 and 1.3.31 below are generalizations of Theorem 2.1 of [Cla96] and Theo-
rem 3.3 of [O’N96] to a multitype open setting with density-dependent population inflow. They
rely on the idea that if N is large, the early stages of the epidemic look like a multitype branching
process because the probability for the first infectives of drawing non-susceptible individuals to
make contact with vanishes (see [Bar55] p.141 or [Ken56, Bal83]). The "birth" of an individual in
this branching process corresponds to the infection of a susceptible individual by an infective,
while the "death" of an individual means either the actual death or the recovery of the corre-
sponding infective in the epidemic process. The following result can be found as Theorem 3.2.1
in Section 3.2.1:

THEOREM 1.3.29 (Finite-time convergence to a multitype branching process (branching
case)). — It is possible to define a branching-driven epidemic process (SN(t ), IN(t ),RN(t ))tÊ0

on Z3n+ and a Zn+-valued multitype branching process (I′(t ))tÊ0 on (Ω,A ,P) with I′(0) = I(0),
describing a population of individuals moving from node i to node j at rate θi , j and, while in
node i , giving birth at rate βi and dying at rate di +γi , such that for any time T Ê 0, P-almost
surely:

∃N0 ∈Z∗
+ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u).

In particular, if τN (resp. ZN) denotes the extinction time (resp. total size) of the epidemic
(SN, IN,RN) and τ′ (resp. Z′) that of the branching process I′, then

τN −→
N→+∞

τ′ and ZN −→
N→+∞

Z′

P-almost surely.

Following traditional terminology (see Chapter 4 of [AB00a]), we will say that the epidemic
undergoes a minor outbreak when the branching process I′ goes extinct and a major outbreak
if it does not. As Theorem 1.3.29 indicates, the epidemic’s extinction time and total size are of
the same order of those of the branching process in the minor outbreak case and tend to infinity
with N in the major outbreak case.
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Such branching approximations are common in epidemiology, but also in population ge-
netics [CFM05, BCF+16, BS19]. In the latter framework, invasion of rare mutants in the global
population corresponds to the epidemiological notion of major epidemic outbreak, while their
fixation is analogous to the stabilization of the epidemic to an endemic state.

The next proposition, which can be bound as Proposition 3.2.2 in Section 3.2.1, character-
izes the behavior of the limiting branching process and gives an iterative method to compute its
probability of survival, that is the probability of a major epidemic outbreak:

PROPOSITION 1.3.30 (Major outbreak probability of an SIR branching-driven epidemic). —
For any i , j ∈ �1, n�, let Wi , j denote the number of offspring in node j of an individual born
in node i for the branching process I′. Also set Σi = γi +di +∑

j 6=i θi , j for any i ∈ �1, n�. LetΘ
be the n ×n matrix defined by Θi , j = θi , j if i 6= j and Θi ,i = 0. Then:

1. The matrix C = (E(Wi , j ))1Éi , jÉn is given by

C = (diag(Σ1, . . . ,Σn)−Θ)−1diag(β1, . . . ,βn).

2. Let R0 denote the eigenvalue of C with the largest real part, that we will call the basic
reproduction number of the epidemic process. It is real, and the MBP I′ is subcritical
is R0 < 1, critical if R0 = 1 and supercritical if R0 > 1.

3. If the MBP I′ is subcritical or critical, then the major outbreak probability is 0. If it is
supercritical, then this probability is strictly positive and equals 1−∏n

k=1 ζ
Ik (0)
k , where

ζ is the only fixed point in [0,1)n of the moment generating function

G : [0,1]n −→ [0,1]n

s = (s1, . . . , sn) 7−→
(
E
[∏n

j=1 s
W1, j

j

]
, . . . ,E

[∏n
j=1 s

Wn, j

j

]) .

4. Function G has explicit expression

G(s) = (
diag(λ1(s), . . . ,λn(s))−Θ)−1 (γ+d)

where λi (s) = (1− si )βi +Σi .

5. The iterated sequence (Gk (s))kÊ0 converges to ζ for any s ∈ [0,1)n .

The same results holds for the logistic-driven SIR model, provided that its population starts
at its equilibrium value so rates of migrations between nodes are stable over time. The following
result is the combination of Theorem 3.2.10 and Proposition 3.2.11 from Subsection 3.2.2

THEOREM 1.3.31 (Branching approximation in the logistic case). — Theorem 1.3.29 and
Proposition 1.3.30 hold for the limiting branching process of a logistic-driven SIR process,
adding the condition that z(0) is an equilibrium point z∗ of dynamical system (S ′

pop) de-

fined in Subsection 1.3.3.2 below, and individual movement rates θi , j by θ̃i , j = θi , j (K j −z∗
j )+

in the definition of Θ, Σi and λi .
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1.3.3 Scaling limits

Scaling limits are a powerful tool in the study of density-dependent pure jump Markovian
population processes with large typical populations, that can be approximated by the determin-
istic solutions of a dynamical system over finite intervals of time after an appropriate scaling.
The presentation below is based on Chapter 11 of [EK86].

1.3.3.1 Scaling limits of density-dependent population processes

Let D = {ei : i ∈ �1, n�}∪ {−ei : i ∈ �1, n�}∪ {ei − e j : (i , j ) ∈I } denote the set of directions in
which our processes will be allowed to jump.

Let us assume that for any N Ê 0, XN is a pure Markov jump process on Zn+ such that the rate
qN

k,k+l at which XN jumps from state k ∈Zn+ to state k + l ∈Zn+ satisfies

qN
k,k+l =

{
Nβl

(
k
N

)
if l ∈D

0 otherwise

where the βl are nonnegative locally Lipschitz-continuous functions on Rn+ independent
from N.

We assume that the dynamical system defined by

ẋ = ∑
l∈D

lβl (x) (1.12)

admits a unique global solution for any initial condition x(0) ∈Rn+. Then the following result
holds:

THEOREM 1.3.32 (Scaling limit of a density-dependent population process ([EK86] p.456, The-
orem 2.1)). — If limN→+∞ XN(0) = x(0) ∈Rn+ and if x is the global solution of (1.12) with initial
condition x(0), then for all t Ê 0:

P

(
lim

N→+∞
sup
sÉt

∥∥∥∥XN

N
(s)−x(s)

∥∥∥∥∞
= 0

)
= 1

Approximating the scaled process XN

N by the deterministic process x relies on comparing a
scaled version of unit Poisson processes to the process of their mean value (t 7→ t ) using a law
of large numbers argument. The central limit theorem, through Donsker’s theorem, makes it
possible to derive a diffusive limit for the process

p
N(XN/N− x) as N tends to infinity under

mild regularity assumptions on the βl functions (see [EK86] p.457 and onwards). These approx-
imations have been used in epidemic modeling to study the finite-time behavior of epidemic
processes for a given value of N, and to derive information on their extinction time from the
behavior of an appropriate diffusion process [VHG95, VH97, AB00a, Nå99]. In the framework of
the present thesis, we will be interested in macroscopic deviations from a deterministic equi-
librium by scaled processes on long, N-dependent time scales. This is the topic of Section 1.3.4
below.
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1.3.3.2 Scaling limits of population and epidemic processes

A direct application of Theorem 1.3.32 to the branching population processes yields Propo-
sition 2.2.2 of Section 2.3, which is the following:

PROPOSITION 1.3.33 (Scaling limit of a branching population process). — Let (XN)NÊ1 be
the sequence of branching population processes defined in Subsection 1.2.2. We denote by
x the solution of the Cauchy problem x ′ = Ax +B with initial condition x(0), that is,

x : R −→ Rn

t 7−→ e t A(A−1B+x(0))−A−1B
.

Then for any T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
−x(t )

∥∥∥∥∞
= 0

)
= 1.

Let us now consider the dynamical system on (Rn+)3 defined by:

ṡ j = p j B j +b j (s j + i j + r j )−d j s j +∑
k 6= j θk, j sk −

∑
k 6= j θ j ,k s j −β j i j

s j

s j+i j+r j

i̇ j = q j B j +β j i j
s j

s j+i j+r j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j

ṙ j = r j B j +γ j i j −d j r j +∑
k 6= j θk, j rk −

∑
k 6= j θ j ,k r j

 (Sepi)

for all j ∈ �1, n�. Then we get the following, that is Proposition 3.2.8 of Subsection 3.2.1:

PROPOSITION 1.3.34 (Scaling limit of a branching-driven SIR process). — Let
((SN, IN,RN))NÊ1 be the sequence of branching-driven SIR processes defined in Sub-
section 1.2.3. Assume that N−1(SN(0), IN(0),RN(0)) tends to (s(0), i (0),r (0)) ∈ R3+ as N tends
to +∞. Denoting (s, i ,r ) the solution of (Sepi) with initial condition (s(0), i (0),r (0)), we have
for any T Ê 0:

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.

Similar results hold for the logistic population process and the logistic-driven SIR process.
Let us introduce the system on Rn+ defined by

żi = (Bi +bi zi )(Ki − zi )+−di zi +
∑
j 6=i

θ j ,i z j (Ki − zi )+−
∑
j 6=i

θi , j zi (K j − z j )+ (S ′
pop)

for all i ∈ �1, n�. It can be shown (see Section 2.3) that this system admits an equilibrium in∏n
i=1(0,Ki ) (not necessarily unique), that we will denote z∗.
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We further consider the system on (Rn+)3 = {(s, i ,r ) ∈ (Rn+)3} defined by:

ṡ j = (p j B j +b j z j )(K j − z∗
j )+−d j s j −β j i j

s j

z∗j
+∑

k 6= j θk, j sk (K j − z∗
j )+−∑

k 6= j θ j ,k s j (Kk − z∗
k )+

i̇ j = q j B j (K j − z∗
j )++β j i j

s j

z∗j
−d j i j −γ j i j

+∑
k 6= j θk, j ik (K j − z∗

j )+−∑
k 6= j θ j ,k i j (Kk − z∗

k )+

ṙ j = r j B j (K j − z∗
j )++γ j i j −d j r j +∑

k 6= j θk, j rk (K j − z∗
j )+−∑

k 6= j θ j ,k r j (Kk − z∗
k )+


(S ′

epi)

for all j ∈ �1, n�. The following results are analogous to Propositions 1.3.33 and 1.3.34 above in
the logistic case. They are respectively Propositions 2.3.2 and 3.2.17 of the present work.

PROPOSITION 1.3.35 (Scaling limit of a logistic population process). — Let (XN)NÊ1 be the
sequence of logistic population processes defined in Subsection 7.2.2. We denote by z the
solution of the dynamical system (S ′

pop) with initial value z(0). Then for any T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
− z(t )

∥∥∥∥∞
= 0

)
= 1.

PROPOSITION 1.3.36 (Scaling limit of a logistic-driven SIR process). — Let ((SN, IN,RN))NÊ1

be the sequence of logistic-driven SIR processes defined in Subsection 1.2.3. Assume that
z(0) = z∗ and that N−1(SN(0), IN(0),RN(0)) tends to (s(0), i (0),r (0)) ∈ R3+ as N tends to +∞.
Denoting (s, i ,r ) the solution of (S ′

epi) with initial condition (s(0), i (0),r (0)), we have for any
T Ê 0:

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.

1.3.4 Metastability for scaled Markov jump processes

Theorem 1.3.32 states the convergence of a scaled sequence of jump processes to a de-
terministic process over a finite time interval. However, this deterministic approximation of
a stochastic jump process fails to hold in general over long time scales. The scaled process can,
in some cases, reach a set of absorbing states that the deterministic process does not. This hap-
pens for instance for the logistic birth and death process (see Chapter 2 of [BM15]) or some epi-
demic processes with endemicity without immigration of infectives (see [Bar56, Nå99, AB00b]).
In these two cases, extinction (of the population or the epidemic process) occurs because of
random fluctuations of the scaled stochastic process around the deterministic curve, after it
has spent a long time around an equilibrium point for the dynamical system, referred to as
metastable (see [VO05, Bov06] for a thorough introduction to metastability).

Deviations from a deterministic equilibrium by a Brownian perturbation of a deterministic
process have been studied by Freidlin and Wentzell (see [FW84, VO05, Bov06]). Their results
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predict both after which scale of time the stochastic process will, with high probability, exit a
domain around the metastable equilibrium, and from which part of the domain this exiting is
most likely to occur. More recently, similar results have been derived for density-dependent
Poisson-driven jump processes [KP18, BP18, PSK17]. The next subsection is built on this theory.

1.3.4.1 Exit time from a domain for a scaled Markov jump process

As in Section 1.3.3, we assume that for any N Ê 1, XN is a pure Markov jump process on Zn+
such that the rate qN

k,k+l at which XN jumps from state k ∈Zn+ to state k + l ∈Zn+ satisfies

qN
k,k+l =

{
Nβl

(
k
N

)
if l ∈D

0 otherwise

where βl a nonnegative locally Lipschitz-continuous functions on Rn+ independent from N. We
also assume that for all x ∈Rn+ and all N Ê 1, XN(0) = bNxc under Px .

We make the additional assumptions of the rate functions βl :

ASSUMPTION A (On the rate functions). —

1. The βl vanish out of a compact, convex subset A of Rn+ with nonempty interior Å.

2. For any l , either βl ≡ 0, either βl takes positive values on Å.

3. There exist z0 ∈ Å and two positive constants λ1,λ2 such that whenever z ∈ A is such
that 0 < β j (z) < λ1, then β j (az0 + (1−a)z) > β j (z) for all a ∈]0,λ2[.

4. There exists ν ∈ (0,1/2) such that

lim
a→0

aν log

(
inf

j :β j 6≡0
inf

dist(z,∂A)Êa
β j (z)

)
= 0

where dist(z,∂A) stands for the Euclidean distance between z and the boundary of A.

In the population and epidemic models we will consider, rate functions βl do not necessarily
vanish outside of a compact subset. Yet, we will focus on the exit time of our various processes
from a small ball lying on the basin of attraction of some metastable equilibrium. It will therefore
prove sufficient to provide a coupling with processes defined with tweaked versions of the rate
functions that vanish quickly outside of this ball.

Let us define L :Rn+×Rn →R+ by

L(x,γ) := max
u∈Rn

[
γ ·u −∑

l
βl (x)(e〈l ,u〉−1)

]
.

For any x ∈ (R∗+)n and any ε> 0 lower than mini xi , we define

Vε(x) := inf
‖x ′−x‖2=ε

inf
∫ T2

T1

L(φ(t ),φ̇(t ))dt (1.13)

where the second infimum is taken over the set of B2(x,ε)-valued absolutely continuous func-
tions φ on some [T1,T2] (with −∞É T1 < T2 É+∞) such that φ(T1) = x and φ(T2) = x ′.
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The quantity inf
∫ T2

T1
L(φ(t ),φ̇(t ))dt is called the quasipotential of x ′ with respect to x for the

Poisson perturbation (XN)N of the dynamical system (1.12). Its analogous for Brownian per-
turbations of a deterministic process is a core notion in the Freidlin-Wentzell theory of large
deviations. The latter predicts that the exit of the stochastic process from a domain around a
metastable equilibrium by a stochastic process will occur through paths φ that minimize the
quasipotential. As such, the Vε(x) can be seen as the "exit cost" from the domain B2(x,ε) start-
ing at point x. The exiting time from this domain is therefore expected to get longer as Vε(x)
grows. This intuition is confirmed by the following theorem, that is a consequence of Theorem
6 of [PSK17]:

THEOREM 1.3.37 (Time of exit from a ball around an attractive equilibrium). — If x∗ ∈ (R∗+)n

is a locally attractive equilibrium for the dynamical process defined by (1.12), then for ε > 0
small enough, and for all α > 0, denoting by τN

ε the time of exit from B2(x∗,ε) by XN/N, we
have:

∀x ∈B2(x∗,ε), lim
N→+∞

Px

(
e(Vε(x∗)−α)N < τN

ε < e(Vε(x∗)+α)N
)
= 1.

1.3.4.2 Large deviations of the processes under study

A first application of Theorem 1.3.37 above consists in quantifying the time range over which
a scaled branching population process stays in a neighborhood of its equilibrium value once it
reaches it (see Proposition 2.2.3):

PROPOSITION 1.3.38 (Exit time of a branching population process). — Let (XN)NÊ1 be the
sequence of branching population processes and let x∗ = −A−1B. For any ε ∈ (0,‖x∗‖2),
denote by τN

ε the exit time of the ball B2(x∗,ε) by XN/N. Then for ε small enough, there
exists Vε(x∗) > 0 such that whenever x(0) ∈B2(x∗,ε), for any α> 0:

lim
N→+∞

P
(
e(Vε(x∗)−α)N < τN

ε < e(Vε(x∗)+α)N
)
= 1.

If we assume that p = 1, we recall from Subsection 1.3.2.3 that we define the extinction time
of the epidemic as the (almost surely finite) hitting time of Zn+× {0}n ×Zn+ by the epidemic pro-
cess, and the total size of the epidemic as the total number of individuals infected during the
course of the epidemic. The following result shows that in this case, the existence of a globally
asymptotically stable endemic equilibrium for system (Sepi) defined in Subsection 1.3.3.2 yields
an exponential lower bound for the extinction time and the total size of an branching-driven
epidemic. Its proof is based on the fact that in the case of a major outbreak, the scaled epidemic
process approaches the endemic equilibrium with high probability, and stays within its neigh-
borhood for a time that is exponential in N before undergoing fluctuations that eventually cause
the extinction of the epidemic.
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THEOREM 1.3.39 (Outcome of a branching-driven epidemic). — Assume that p = 1, that
x(0) = x∗, that R0 > 1 and that the dynamical system (Sepi) restricted to Rn+× (Rn+ \ {0})×Rn+
admits a globally asymptotically stable endemic equilibrium (s∗, i∗,r ∗). Consider the se-
quence of branching-driven epidemic processes ((SN, IN,RN))NÊ1 given by Theorem 1.3.29,
with IN(0) = I(0) ∈Zn+, SN(0) = bNx(0)c− I(0) and RN(0) = 0.Then, if τN denotes the extinction

time of the epidemic and ZN its final size, there exists V > 0 such that:

lim
N→+∞

P
(
τN > eVN

∣∣Z′ =+∞)= 1 (1.14)

and
lim

N→+∞
P

(
ZN > eVN

∣∣Z′ =+∞)= 1. (1.15)

When immigration of infectives is allowed, that is, when q 6= 0 a simple consequence of
Theorem 1.3.37 (Proposition 3.2.9) is that the scaled epidemic process spends most of its time
in a neighborhood of an equilibrium value of (Sepi) provided the latter is attractive:

PROPOSITION 1.3.40 (Time spent in a neighborhood of the equilibrium of (S 1
epi)). — As-

sume that at least one qi is positive and that (Sepi) admits a globally asymptotically stable
equilibrium (s∗, i∗,r ∗). Let ((SN, IN,RN))NÊ1 be the sequence of branching-driven epidemic
processes. Then i∗j > 0 for all j ∈ �1, n�, and for every ε> 0 there exist T > 0 and V > 0 such
that

lim
N→+∞

P

(∫ T+eVN

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eVN

)
= 1.

Once again, the results above transpose to the logistic case:

THEOREM 1.3.41 (Outcome of a logistic-driven epidemic). — The conclusions of Theorem
1.3.39 and Proposition 1.3.40 are true for logistic-driven SIR processes, replacing (Sepi) by
(S ′

epi) and x(0) = x∗ by z(0) = z∗.
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1.4

The tau-leaping simulation method

Simulating efficiently Markov jump processes with a high number of jump directions and a
high sum of jumping rates is a topic of interest in many fields. It was initially raised in chemical
physics, that study chemically reacting systems with a high number of molecular species, with
small typical quantities of each species making the use of diffusive models irrelevant [MA97,
ARM98]. The simulation of stochastic population and epidemic models involving large numbers
of individuals is of course another relevant domain of application [KPSK15].

An exact and straightforward numerical simulation method for Markov jump processes is
the so-called Gillespie’s stochastic simulation (SSA) algorithm [Gil76, Gil77], that in reality was
first introduced by Doob [Doo42, Doo45] and implemented by Kendall [Ken50]. The algorithm
consists in drawing at each step the time before the next jump of the system from an exponential
distribution, then drawing the direction of this jump with a probability given by the relative
weight of the corresponding jump rate relatively to the sum of the rates in all directions.

More formally, when simulating a stochastic process with rates given by the following chart:

Transition Rate at state x ∈Zn+
x → x + l βl (x)

(1.16)

for all l ∈ D, and denoting β(x) = ∑
l∈D βl (x) for all x ∈ Zn+, the SSA algorithm consists in the

following:

ALGORITHM 1.4.1 (SSA algorithm for Markov D-directional jump processes). —

1. Start the process at a chosen value X(0) and set T = 0.

2. If the process is at state x, draw an exponential variable S with mean β(x)−1 (if β(x) > 0)
then draw a vector l out of D as a random variable with point probability βl (x)β(x)−1.

3. Define the next jump time of the process as T+S and its direction as l , so X(T+S) = x+l .

4. Change T for T+S.

5. Repeat Steps 2 to 4 until some final time or condition is reached.

This algorithm requires updating jump rates at each timestep. Therefore, it may prove im-
practical to deal with high-dimensional jump processes — typically when n is of the order or
several thousands as in the cases we will consider in Chapter 4. The τ-leaping method intro-
duced in [Gil01] is a stochastic counterpart to Euler’s method for simulating ordinary differential
equations. It attempts at speeding up stochastic simulation by examining how many times each
jump direction l is taken on average during a fixed time interval [t , t +τ[ to be determined, as-
suming that the process is constant at state x during this time interval. This allows rates βl (x) not
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to be computed again every time a jump occurs. It is well-known that under this assumption,
the number of jumps in direction l during a timestep τ is a random variable Zl with Poisson
distribution of mean τβl (x), and that the variables Zl are independent from each other. This
leads to the following algorithm:

ALGORITHM 1.4.2 (Tau-leaping algorithm for Markov D-directional jump processes). —

1. Start the process at a chosen value X(0) and set T = 0.

2. If the process is at state x, draw independent Poisson variables Zl such that for each
l ∈D, Zl has mean τβl (x).

3. Define X(T+τ) as x +∑
l∈D Zl l .

4. Change T for T+τ.

5. Repeat steps 2 to 4 until some final time or condition is reached.

If jump rates do not vary much locally and if τ is small enough, we can expect the resulting
simulated process to be close to an actual realization of the process we could obtain through
the SSA algorithm. Besides, the computational cost of a simulation obviously increases in in-
verse proportion of τ; it is therefore of great interest to select the value of τ carefully. Gillespie
and Petzold [GP03] originally proposed to calibrate τ at each step of the algorithm in order to
bound the estimated changes in β j during a leap by a relatively small fraction of the sum of the
β j . Yet, this procedure would allow for a relatively great variation of smaller rate values, which
violate the assumption that all rates are almost constant during a leap. Alternative step selection
methods are proposed in [CGP06], among which a computationally efficient method ensuring
the approximate bounding of all relative jump rates variations during a leap.

Moreover, algorithm 1.4.2 above has to be modified to not allow for negative populations
to be simulated (and therefore fall outside of the domain of definition of the β j ), which could
occur with positive probability when applying algorithm 1.4.2 because of the unboundedness
of Poisson variables.

Authors of [CGP06] put forward a newτ-selection procedure addressing these requirements,
that proves to provide with simulations that are very close to the SSA while being much faster
to execute. This is our choice algorithm for simulating population and epidemic processes (see
Chapter 4):

ALGORITHM 1.4.3 (Modified tau-leaping algorithm for Markov D-directional jump pro-
cesses). — After choosing a fraction ε> 0 and a criticality threshold nc > 0:

1. Start the process at a chosen value X(0) and set T = 0.

2. If the process is at state x, identify the indices i such that xi < nc , that we should refer
to as critical, and denote the set of noncritical indices by Jncr.

3. If Jncr =∅, take τ′ =+∞ and go to Step 5.
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ALGORITHM 1.4.3 (continued). —

4. For all l ∈D and k ∈ Jncr, compute

fl ,k (x) = ∂βl

∂xk
(x),

µl (x) =
n∑

k=1
fl ,k (x)βek (x)− ∑

k∈Jncr

fl ,k (x)β−ek (x)

+ ∑
k∈Jncr

n∑
j=1

( fl , j (x)− fl ,k (x))βe j−ek (x)+
n∑

k=1

∑
j∈Jncr

(
fl ,k (x)− fl , j (x)

)
βek−e j (x),

σ2
l (x) =

n∑
k=1

f 2
l ,k (x)βek (x)+ ∑

k∈Jncr

f 2
l ,k (x)β−ek (x)

+ ∑
k∈Jncr

n∑
j=1

( fl , j (x)− fl ,k (x))2βe j−ek (x)+
n∑

k=1

∑
j∈Jncr

(
fl ,k (x)− fl , j (x)

)2
βek−e j (x)

and a first candidate for τ:

τ′ = min
l∈D

{
εβ(x)

|µl (x)| ,
(εβ(x))2

σ2
l (x)

}
.

5. If τ′ < 10/β(x), abandon tau-leaping temporarily, simulate 100 jumps of the process
with the SSA Algorithm 1.4.1 and go back to Step 2. Otherwise, proceed to Step 6.

6. Set

m =
n∑

k∉Jncr

(
β−ek (x)+

n∑
j=1

βe j−ek (x)

)
and generate a second candidate for τ as a sample τ′′ of the exponential random vari-
able with mean m.

7. Set τ= min(τ′,τ′′).

8. For any l that is not a −ek or a e j − ek with k critical, draw a Poisson variable Zl

with mean τβl (x). The Zl have to be drawn independent from each other. If τ′′ É τ′,
draw l among {−ek : k critical}∪ {e j − ek : j ∈ �1, n�,k critical}, with point probabilities
βl (x)/mc , then set Zl = 1.

9. For any l that has not been assigned a Zl yet, set Zl = 0.

10. If there is a negative component in x +∑
l∈D l Zl , replace τ′ by τ′/2 and return to Step 5.

If not, define X(T+τ) as x +∑
l∈D Zl l and proceed to next step.

11. Change T for T+τ.

12. Repeat Steps 2 to 11 until some final time or condition is reached.

In this algorithm, ε stands for the relative variation of rates allowed during a leap. It is gener-
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ally said to be taken equal to 0.03 [GP03, CGP06] and we shall follow this usage. Populations with
low values (below nc ) are identified as critical, and jump directions that would lead to lowering
these populations, that we will also say to be critical, are disactivated. Instead, the algorithm
allows only one jump in only one of the critical directions to happen at each iteration (step 8),
which insures that critical jump never drive populations below zero.

The time τ′ is the largest permissible timestep allowing for a small enough relative variation
of the jump rate for the noncritical reactions, while τ′′ estimates the time to the next critical
jump. This explains Step 7 and why a critical jump is triggered whenever τ′′ É τ′.

Critical jumps are those most likely to drive a population below zero, but some noncritical
jumps may do so with positive probability due to the unboundedness of Poisson variables. Step
10 of the algorithm makes up for this problem by discarding increments that would result in one
population becoming negative and by reducing the chosen timestep to generate smaller Poisson
variables. When the timestep τ′ is too low for the tau-leaping simulation to be computationally
efficient as compared to the SSA, the latter method takes over until the process reaches a state
allowing for a larger timestep (Step 5).

Comparisons between the computation time of simulated trajectories for an SIS (Suscepti-
ble — Infected — Susceptible) epidemic model with Algorithms 1.4.1 (SSA) and 1.4.3 (modified
tau-leaping) can be found in [KPSK15]. It appears that the tau-leaping method results in spec-
tacularly smaller computation times for high values of the scaling parameter N. These times are
even decreasing with N, possibly due to less frequent uses of SSA steps (see Step 5 of Algorithm
1.4.3) when N is large.





2

The population model

In the next sections, we provide a formal definition of the population models introduced
heuristically in Section 1.2. In Section 2.1, we give sufficient conditions for the stability of
metapopulation PDMP in a general framework that encompasses the multiplicative uniform
and unitary power settings defined in Subsection 1.2.1. Then we turn to the metapopulation
jump processes introduced in Subsection 1.2.2. We derive ergodicity results, exhibit determin-
istic scaling limits and study the time of deviation of the scaled process from an equilibrium of
the associated dynamical system (Section 2.2 and Section 2.3).

2.1

Piecewise deterministic Markovian metapopulation processes

The work presented in this section stems mostly from an article first submitted on April 19,
2017 to Stochastic Processes and their Applications [Mon19a], submitted again in a revised form
on July 10, 2018 and still under review after revision at the time of writing this manuscript.

2.1.1 Introductive remarks

Although most metapopulations models have been dealing with fully deterministic or fully
stochastic population dynamics, network-organized systems with deterministic intra-nodal dy-
namics and stochastic inter-nodal transfers naturally appear as relevant to describe metapopu-
lations with low local stochasticity (e.g. because of large population sizes) and random popula-
tion transfers between patches.

Besides the application we have in mind, network-organized systems with deterministic
intra-nodal dynamics and stochastic inter-nodal transfers naturally appear in a large range of
applicative fields. As we saw in the Introduction, they are relevant to describe metapopula-
tion dynamics within a Levins setting with stochastic migration (see [Lev69] and Figure 2.1).
Other possible fields of application range from open Jackson networks [Jac57, MD94, Dai95]
with deterministic inputs and outputs to communication networks based on TCP-type pro-
cesses [HL01, BCG+13, CMP10], storage [HR76] on a network, neuronal stimulation [DO16,
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DGLO16] and more generally a large class of stochastic hybrid systems on graphs [CL07] with
low stochasticity in autonomous dynamics.
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A B
Figure 2.1: Two population networks. Panel A: stochastic "mainland-islands" Levins model
[Lev69, MW67] with unitary transfers. Edge thickness corresponds to transfer rates, while col-
ors denote the sign of autonomous growth functions (red tones being associated to negative
growth functions, green tones to positive ones). Panel B: 2008 cattle trade network in the French
Auvergne-Rhône-Alpes area, densely population with cattle (courtesy of G. Beaunée). Edge
thickness corresponds to the overall volume of cattle transfers within the period and colors stand
for holding types (green for farms and orange for commercial operators). Coordinates of farms
and commercial operators are randomly distributed over the corresponding commune area.

There is, to our knowledge, little literature on general stability criteria for Rn-valued piece-
wise deterministic Markov processes. Meaningful results on the stability of Jackson networks
have been derived that are deeply rooted on considerations about the graph structure [WV80].
We wish to obtain similar statements in our semi-deterministic framework while allowing for
state-dependent jump intensities and possibly large transfers. The total population of the sys-
tem is here preserved by jumps and behaves as a non-Markovian randomly switched process
[LM01, Mal90]. That is why we expect the process boundedness to arise from conditions on the
deterministic inter-jump flow and the process ability to reach population-decreasing states in
short times.
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As stated in the Introduction (see Subsection 1.2.1), we will associate the population of each
patch i with an autonomous growth function φi (meaning that dXi (t ) = φi (X(t ))dt between
jumps), and an instantaneous transfer from patch i to patch j at population x occurs at state-
dependent rate θi , j (x), its amplitude being drawn according to a [0, xi ]-supported law µi , j (x, ·).

We also recall from Section 1.2.1 the following definition of constant-growth multiplicative
uniform and unitary power settings. If G = (�1, n�,A ) is a strongly connected directed graph on
�1, n�, define (c1, . . . ,cn) ∈Rn \ {0} and consider the constant-growth settings defined by:

Multiplicative uniform setting

φi (x) =
{

ci if ci Ê 0

ci 1xi>0 if ci < 0
and

{
θi , j (x) = θi , j

µi , j (x, ·) =U ([0, xi ])
(1.1)

with θi , j > 0 if (i , j ) ∈A and θi , j = 0 otherwise, or:

Unitary power setting

φi (x) =
{

ci if ci Ê 0

ci 1xi>0 if ci < 0
and

{
θi , j (x) = (1∨xi )α

µi , j (x, ·) = δ1∧xi

(1.2)

for some α ∈ (0,1].

Theorems 2.1.2 and 2.1.5 below imply that in any of the two cases above, the process is
positive Harris recurrent if and only if

n∑
i=1

ci < 0, (2.1)

in which case it is also F-ergodic for some exponential function F : Rn+ → R+ (statement of The-
orem 1.3.22). Note that equation (2.1) is reminiscent of the usual traffic condition for queues
networks (see Equation (1.9) of [Dai95]) but does not involve any term related to inter-patch
transfers. This stems from the fact that transfers along G happen and spread the total popula-
tion among all patches, thus letting the flow on

(
R∗+

)n bring X back towards lower population
states. We will see that such a mechanism prevails in more general settings whenever jumps are
large or frequent enough; in this case, a simple condition on the autonomous growth functions
is required to ensure the process stability.

The rest of this section is organized as follows. We first give a formal definition of the general
piecewise deterministic metapopulation process (Subsection 2.1.2). We highlight two instances
of interest referred to as the multiplicative and unitary frameworks (Subsection 2.1.3), that en-
compass respectively the multiplicative uniform and the unitary power settings, and we state
stability results for these models. We then give Meyn-Tweedie inspired criteria for boundedness
(Subsection 2.1.4.1), petiteness (Subsection 2.1.4.2) and ergodicity (Subsection 2.1.4.3) in the
general case. In Subsections 2.1.5 and 2.1.6, we apply the criteria from Subsection 2.1.4 to prove
the results of Subsection 2.1.3. Finally, Subsections 2.1.5 and 2.1.6 contain proofs of Theorem
2.1.2 and Theorem 2.1.5 respectively.
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2.1.2 Definition of the metapopulation PDMP

For all i ∈ �1, n�, let φi : Rn+ → R be a measurable and bounded function. Assume that
φ= (φ1, . . . ,φn) is such that the flowΦ associated to the vector fieldφ is well-defined on Rn+, that
is, that for any x ∈ Rn+ there exists a unique continuous function
Φ(x, ·) : R+ → Rn+ such that Φ(x, t ) = x + ∫ t

0 φ(x(u))du for all t Ê 0. This condition is for instance
fulfilled if φ is C 1.

We remind that I = {(i , j ) ∈ �1, n�2 : i 6= j }. For all (i , j ) ∈ I , let θi , j : Rn+ → R be a positive
measurable, locally bounded function. We assume that there exists a directed graph
G = (�1, n�,E ), with E ⊂ I , such that for all (i , j ) ∈ E , θi , j (x) > 0 whenever xi > 0. We call G

the active graph of the model.

For all (i , j ) ∈ I and all x ∈ Rn+, finally define a probability measure µi , j (x, ·) on [0, xi ], and
for all ξ ∈ [0,1], set

qi , j (x,ξ) = inf {u ∈ [0, xi ] :µi , j (x, [0,u]) Ê ξ}

and assume that the qi , j :Rn+× [0,1] →R+ are Borel-measurable.

Our object of interest is the family of processes solution of the following stochastic differen-
tial equation:

dX(t ) =φ(X(t ))dt + ∑
(i , j )∈I

∫
R+×[0,1]

qi , j (X(t−),ξ)
(
e j −ei

)
1z<θi , j (X(t−))Ni , j (dt ,dz,dξ) (2.2)

where
(
Ni , j

)
(i , j )∈I

is a collection of independent homogeneous Poisson point measures onR+×
R+× [0,1] with intensity dtdzdξ defined on (Ω,A ,P).

If x ∈Rn+, the existence of a strong solution Xx = (Xx(t ))tÊ0 to (2.2) with initial value x follows
from the explicit construction by Davis ([Dav93] p.55). Pathwise uniqueness and uniqueness
in law also hold since such solutions can naturally be expressed as deterministic functions of
the atoms of the Ni , j random measures. Moreover, we see at once that the Xx processes are
non-explosive and well-defined on R+ because the θi , j and φi are bounded on compacts and
because jumps conserve the total population. By Theorem 25.5 of [Dav93] (slightly adapted to
allow for zero-amplitude jumps), the strong Markov property holds for (Xx)x∈Rn+ .

We assume that there exists a Markov family
(
X,(Px)x∈Rn+

)
on (Ω,A ) such that for any x ∈Rn+,

the law of X under Px is the law of Xx under P. We will mostly use this homogeneous and lighter
notation.

We will denote by (Tk )kÊ1 and (Uk )kÊ1 the sequences of jump times and jump quantiles of
X, the second and third coordinates t and ξ of atoms of any Ni , j , ordered according to the values
of t . More formally, (Tk )kÊ1 is the sequence of jump times of the counting process

(Zt )tÊ0 =
( ∑

(i , j )∈I

∫
[0,t ]×R+

1z<θi , j (X(u−))Ni , j (du,dz, [0,1])

)
tÊ0

,

so Tk it is the time of the k-th (potentially null) transfer between patches of �1, n� commanded
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by the Ni , j processes. The jump quantiles sequence (Uk )k∈Z+ is defined as follows:

∀k Ê 1, Uk =
∫ 1

0
ξ

∑
(i , j )∈I

Ni , j (Tk ,R+,dξ),

so the Uk are independent and uniformly distributed on [0,1], and the amplitude of the popu-
lation transfer at time Tk is given by

∑
(i , j )∈I Ni , j (Tk ,R+,Uk )qi , j (X(T−

k ),Uk ).

It stems from equation (26.15) of [Dav93] that the infinitesimal generator A of
(
X,Px , x ∈Rn+

)
is given by

A f (x) =
n∑

k=1

∂ f

∂xi
(x)φi (x)+ ∑

(i , j )∈I

θi , j (x)
∫ (

f
(
x + y · (e j −ei )

)− f (x)
)
µi , j (x,dy) (2.3)

for every C 1 function f : Rn+ → R. This equation is of well-known interest in studying invariant
measures for X, as we illustrate in Appendix A.

2.1.3 Multiplicative and unitary models

We now turn to two particular classes of metapopulation PDMP models for which we will
state simple stability results, each of them being representative of a typical feature that our
graph-based model may exhibit. The first one corresponds to constant jump rates and mul-
tiplicative transfers (as in Equation (1.1)). The second one, symmetrically, is defined by coercive
jump rates and unitary transfers (as in Equation (1.2)). Let us begin by stating additional as-
sumptions that are common to both frameworks.

2.1.3.1 Additional assumptions

Let m ∈ �1, n� and d ∈ �1, m�. We set V+ = �1, d�, V0 = �d + 1, m� and V− = �m + 1, n�.
Patches in V+, V0 and V− will respectively be called sources, neutral patches and sinks following
the terminology of [Pul88].

We consider the following set of assumptions:

ASSUMPTION B (On autonomous growth functions). —

(a) For all i ∈ �1, n� and all x ∈Rn+, φi (x) =φi (xi ) only depends on xi .

(b) For all i ∈ �1, n�:

• φi > 0 if i ∈ V+

• φi = 0 if i ∈ V0

• φi É 0, φi (0) = 0 and φi (y) < 0 as soon as y > 0 if i ∈ V−

(c) For all i ∈ V+, φi is continuous and piecewise C 1.

(d) For all compact subset K ⊂ Rn+ there exists T > 0 such that Φi (x,T) = 0 for any x ∈ K if
i ∈ V−.
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Figure 2.2: Graph structure complying with Assumption C. The edges in the figure are the ele-
ments of E ; sources, neutral patches and sinks are respectively green, orange and red. Note that
the graph represented is not strongly connected since no edge leads to node 4.

This first set of assumptions makes it possible to monitor the response of a given trajectory
to small variations of jump times and transfer quantiles, with minor concern for the local be-
havior ofΦ, and to describe simple trajectories leading to the emptying of the system. Note that
the constant growth setting, defined by

φi (x) =
{

ci if ci Ê 0

ci 1xi>0 if ci < 0
(2.4)

and involved in the multiplicative uniform and the unitary power setting, obviously satisfies
these conditions.

We then require a strong condition on the graph structure of the active graph G to hold:

ASSUMPTION C (On the topology of G ). —

(a) Any j ∈ V− can be reached from any i ∈ �1, n� by a path in G .

(b) Any j ∈ V0 can be reached from some i ∈ V+ by a path in G .

The latter assumption is quite restrictive but will prove crucial in discussing both the bound-
edness of the process and the petiteness of compact subsets of Rn+. It allows to describe paths
along which the system empties without having to discuss complex connectivity properties,
while still being weaker than plain connectivity (see Figure 2.2).
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2.1.3.2 Multiplicative models

We first introduce multiplicative models:

DEFINITION 2.1.1 (Multiplicative setting). — A metapopulation PDMP model is said to be mul-
tiplicative if the following hold:

1. Assumptions B and C are fulfilled.

2. For all (i , j ) ∈I , θi , j is constant.

3. For all (i , j ) ∈I , there exists a probability distributionµi , j on [0,1], the restriction of which
to some non-punctual interval Ii , j ⊂ [0,1] admits a piecewise continuous and positive
density with respect to the Lebesgue measure, such that:

∀x ∈Rn
+, ∀A ∈B([0,1]), µi , j (x, xi A) =µi , j (A)

The "multiplicative" denomination refers to the fact that the relative population moving
from patch i to patch j is drawn according to a distribution µi , j which is independent from x.
The process therefore goes through macroscopic jumps, but the assumption on the θi , j implies
that these cannot be too frequent, which results in long, uninterrupted emptying periods under
suitable assumptions. Note that we required the θi , j to be constant for the sake of simplicity,
but all of the results we will present hold if the θi , j take values in a compact interval of R∗+.

Multiplicative models encompass the introductory multiplicative uniform setting defined
by (1.1) as well as a large class of additive increase multiplicative decrease (AIMD) models that
are absolutely continuous counterparts to those studied in [DGR02] and [HL01].

Our main stability result for the multiplicative setting is the following:

THEOREM 2.1.2 (Stability of multiplicative models). — If the model is multiplicative and

limsup
mini xi→+∞

n∑
i=1

φi (x) < 0 (2.5)

then X is positive Harris recurrent and there exists η> 0 such that X is F-ergodic with

F :

{
Rn+ → [1,+∞[

(x1, . . . , xn) 7→ eη
p∑n

i=1 xi
.

EXAMPLE 1. A multiplicative uniform model defined by (1.1) is Harris-recurrent positive if and
only if

∑n
i=1 ci < 0 and transient otherwise (remind that we assumed that V+ 6=∅).

EXAMPLE 2. The multiplicative uniform model represented on the left of Figure 2.3 corresponds
to an ergodic setting, while the model on the right does not.

Subsection 2.1.5 is devoted to the proof of this theorem, that stems from Theorem 2.1.9
stated below. Let us give the main thrust of this proof, that will be developed in a more general
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Figure 2.3: The importance of connectivity: if (1.1) is fulfilled, then the process corresponding
to the graph configuration on the left is ergodic (according to Theorem 2.1.2) and that on the
right is transient (consider the population on the subgraph formed by the two right patches).
Coefficients within patches are the ci and all θi , j represented here are strictly positive.

framework in Subsection 2.1.4. Our reasoning is based on the conceptual framework by Meyn
and Tweedie [MT93a, MT93b, DMT95] and presented in Section 1.3.1. It consists in showing
that X is brought back quickly enough to some compact subset of Rn+ (a boundedness property)
and that its various trajectories scan some Borel subset of Rn+ (a so-called petiteness property).
The condition on the φi entails the existence of some Rn+ area (namely {x ∈ Rn+ : mini xi Ê R} for
R large enough) on which the flow commands a steady decrease of the system total population.
The assumptions on the θi , j and the µi , j (x, ·) imply that with lower-bounded probability, the
process reaches this zone quickly enough and stays in it long enough for the total population
of the system to be brought back below a given threshold after some time, which yields the
boundedness property. On the other hand, small variations of jump quantiles along a given path
induce locally one-to-one changes of its point of arrival, which implies the petiteness property.

In the transient case, the stability of transfer laws and the existence of macroscopic jumps
make scaled multiplicative processes easy to describe. If the model is multiplicative with all
Ii , j = [0,1] and if X is transient, then ‖X‖1 goes to infinity almost surely and for any x ∈S = {x ∈
Rn+ : ‖x‖1 = 1}:

ERx

[
sup

t∈[0,R]

∥∥∥∥ X(t )

‖X(t )‖1
−S(t )

∥∥∥∥∞

]
−→

R→+∞
0 (2.6)

where S is a S -valued pure jump process which is a weak solution of the following SDE:

∀(i , j ) ∈I , dSi (t ) = ∑
j 6=i

∫ 1

0
ξS j (t )N′

j ,i (dt ,dξ)− ∑
j 6=i

∫ 1

0
ξSi (t )N′

i , j (dt ,dξ)

with initial value x under the PRx probability measure, and the N′
i , j are independent Poisson

point processes with intensity dtµi , j (dξ). Studying the stability of S only requires petiteness
analysis, and (2.6) makes it possible to infer the behavior of X

‖X‖1
(which may not be a Markov

process) from that of S. As an example, we prove the following result.
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PROPOSITION 2.1.3 (Transient multiplicative uniform case when n = 2). — In the two-patch
multiplicative uniform model with c1 + c2 Ê 0, X1(t )

X1(t )+X2(t ) converges in distribution to a Beta

distribution with parameters
(
θ2,1
λ ,

θ1,2
λ

)
as t goes to infinity, where λ= θ1,2 +θ2,1.

Proof of Proposition 2.1.3.— We remind that the Beta distribution with parameters a,b ∈ R∗+,
denoted β(a,b), is the probability measure on Rwith density

fa,b : t 7→ 1]0,1[(t )
t a−1(1− t )b−1

B(a,b)

with respect to the Lebesgue measure, where B(a,b) := ∫ 1
0 t a−1(1− t )b−1dt .

Set x ∈S and let S be a weak solution of

dS1(t ) =
∫ 1

0
ξS2(t )N′

2,1(dt ,dξ)−
∫ 1

0
ξS1(t )N′

1,2(dt ,dξ)

with initial value x
‖x‖1

and such that S1 +S2 = 1. Here µ1,2 = µ2,1 is the uniform distribution on
[0,1], so N1,2 and N2,1 have intensity dtdξ. Our aim is to show that S1(t ) weakly converges to

a β
(
θ2,1
λ ,

θ1,2
λ

)
distribution as t tends to infinity. It is easy to see that S1 fulfills the requirements

of Theorem 1.3.21, all compact subsets of R being petite for this process, so we only need to
characterize its invariant (and limiting) probability distribution π. It is clear that the support of
π lies within [0,1] and that if f : [0,1] →R is continuous, then for all t > 0 the following holds:∫ 1

0
A′ f (s)dπ(s) = 0

where A′ is the infinitesimal generator of S1, that is:∫ 1

0

[
θ1,2

∫ 1

0

(
f (ξs)− f (s)

)
dξ+θ2,1

∫ 1

0

(
f
(
ξs + (1−ξ)

)− f (s)
)

dξ

]
dπ(s) = 0.

Applying this equation to power functions f : x 7→ xk we get the following recursive formula for
the moments of π:

∀k ≥ 1,
∫ 1

0
sk dπ(s) = θ2,1

kλ

k−1∑
i=0

∫ 1

0
si dπ(s)

which yields, for all k ≥ 1: ∫ 1

0
sk dπ(s) = 1

k !

[
k−1∏
i=0

(
i + θ2,1

λ

)]
. (2.7)

Now π can be characterized by its moments among Borel probability measures on [0,1] since

[0,1] is a compact subset ofR. It is therefore sufficient to compute the moments of theβ
(
θ2,1
λ ,

θ1,2
λ

)
distribution by using the classical formula

B(a,b) = Γ(a)Γ(b)

Γ(a +b)

holding for all positive a and b, and see that these moments coincide with these given by Equa-
tion 2.7. ä
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2.1.3.3 Unitary models

We define unitary models as follows:

DEFINITION 2.1.4 (Unitary setting). — The PDMP metapopulation model is said to be unitary if
the following hold:

1. Assumptions B and C are fulfilled.

2. There exists an increasing and subadditive functionΘ :R+ →R∗+ with limy→+∞Θ(y) =+∞
and α> 1 such that for any x ∈Rn+:

• For all (i , j ) ∈ E , Θ(xi ) É θi , j (x).

• For all (i , j ) ∈I , θi , j (x) É αΘ(xi ).

3. For all x ∈Rn+ and all (i , j ) ∈ E , µi , j (x, ·) = δ1∧xi .

The unitary setting is typically fit for applications to large animals trade or human trans-
portation observed over short time steps. A simple example is given by our introductory model
defined by (1.2).

Our main stability result on unitary models is the following:

THEOREM 2.1.5 (Stability of unitary models). — If the model is unitary and if either

limsup
mini∈V− xi→+∞

n∑
i=1

φi (x) < 0 (2.8)

or

G is strongly connected and limsup
mini xi→+∞

n∑
i=1

φi (x) < 0 (2.9)

then there exists η> 0 such that X is positive Harris recurrent and F-ergodic with

F :

{
Rn+ → [1,+∞[

(x1, . . . , xn) 7→ eη
p∑n

i=1 xi
.

EXAMPLE 3. The following setting corresponds to an unitary metapopulation model with logis-
tic autonomous growth in sources and jump rates taking into account the carrying capacity of
target patches: 

∀i ∈ V+, φi (x) = bi xi (Ki −xi )++ ci

∀ j ∈ V−, φ j (x) =− c j x j

α j+x j

∀i ∈ V+,∀ j ∈ V−, θi , j (x) = γi , j xi
εi , j+x j

1+x j
and θ j ,i ≡ 0

∀(i , j ) ∉ E , θi , j ≡ 0

∀(i , j ) ∈ E , µi , j (x, ·) = δ1∧xi

(2.10)
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where the bi , Ki , γi , j and εi , j are positive constants and the ci are such that ci > 0 if i ∈ V+ and
ci < 0 if i ∈ V−. Theorem 2.1.5 implies the ergodicity of the process in this setting as soon as∑n

i=1 ci < 0 if G is strongly connected.

EXAMPLE 4. A power unitary model defined by (1.2) is ergodic if and only if
∑n

i=1 ci < 0 and
transient otherwise (remind that we assumed that V+ 6=∅).

The proof of Theorem 2.1.5, presented in Subsection 2.1.6, is based on arguments that only
slightly differ from those put forward in the multiplicative case. If G is strongly connected,
boundedness is shown as in the proof of Theorem 2.1.2. If this is not the case but (2.8) holds,
we show that X satisfies Assumption 1 for any value of T, which entails that Assumption 3 holds
as well. In both cases, we then consider small variations of jump times (and not jump quantiles
anymore) to check for the petiteness of compacts for the resolvent chain of X.

2.1.4 Stability criteria for the metapopulation PDMP

We now present Meyn-Tweedie inspired criteria for boundedness, petiteness and ergodicity for
the general model defined in Subsection 2.1.2. We will see that their application requires proof
strategies that are dependent from the model specification and the system’s active graph struc-
ture. However, it is easy to adapt the proofs of Theorems 2.1.2 and 2.1.5 in a discretionary way
to a large range of frameworks, which is why we endeavored to state their general philosophy.
In particular, these criteria will apply to both multiplicative and unitary settings, yielding Theo-
rems 2.1.2 and 2.1.5.

It is not difficult to see that if the qi , j are continuous and if t 7→ Ex
(
φ(Xi (t ))

)
is right contin-

uous for any i ∈ �1, n� and any x ∈Rn+, then the t 7→ Ex (Xi (t )) are continuous and right differen-
tiable, and the following holds:

∀t Ê 0,∀i ∈ �1, n�,
d+Ex(Xi (t ))

dt
= Ex

[
φi (X(t ))

]+Ex

[∑
j 6=i

(
d j ,i −di , j

)
(X(t ))

]
(2.11)

where di , j (x) = θi , j (x)
∫ xi

0 ξµi , j (x,dξ) is the average debit from patch i to patch j at state x, and

∀t Ê 0,
d+∑n

i=1 Xi (t )

dt
=

n∑
i=1

φi (X(t )) (2.12)

Depending on the specification, we may partly describe the asymptotic behavior of X by study-
ing these equations. Yet, characterizing the stability of X does not boil down to studying a dy-
namical system defined by (2.11) for two main reasons. First, terms in the right hand side of
(2.11) and (2.12) may prove difficultly tractable, as a simple glance at our introductory constant
growth models should suggest. A second, more fundamental obstruction stems from the fact
that X and (Ex(Xi (t )))tÊ0 do not necessarily have similar stability properties. Indeed, while Fa-
tou’s lemma does imply that (Ex(Xi (t )))tÊ0 not going to infinity with t results Px-a.s. in the same
property for (Xi (t ))tÊ0, it is not difficult to build an example showing that the converse is not
true.
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2.1.4.1 Criterion for boundedness

We first want to state a sufficient condition for X to be bounded in probability on average.
Remind from Subsection 1.3.1 that this property means that for all x ∈ Rn+ and all ε > 0 there
exists a compact subset C ⊂Rn+ such that

liminf
t→+∞

1

t

∫ t

0
Px(X(s) ∈ C)ds Ê 1−ε.

We first want to describe a Borel subset S of Rn+ corresponding to population configurations
on which the local deterministic dynamics cause the system to empty. For instance, in the con-
stant growth setting defined by (2.4) and under condition (2.1), S may be defined as any Borel
set lying in {x ∈Rn+ : ∀i ∈ V−, xi > 0}.

Let therefore S be a Borel subset ofRn+. Our first assumption implies that the flow on S drives
the process at a steady rate towards the origin:

ASSUMPTION D (Existence of a steady population decrease zone). — There exists c > 0 such
that:

∀x ∈ S,
n∑

i=1
φi (x) É−c

It is worth mentioning a simple case with straightforward consequences. If Assumption
D holds with S = Kc for some compact subset K of Rn+, it is a simple matter to show that X is
bounded in probability on average using, for instance, Fatou’s Lemma. In this case,

∑
φi may

play the role of a Lyapunov function for X, and it is possible to derive results on recurrence and
ergodicity provided all compacts are petite for X (see Theorem 1.3.21). However, it is not always
the case that S = Kc for some compact K. In particular, it is not under Assumption B since S
cannot contain any x such that xi = 0 for all i ∈ V−.

Under Assumption D, it is natural to think that X will be bounded in probability on average
if it quickly goes back to S and stays within S for a long time whenever it reaches it. This is why
we put forward the following conditions:

ASSUMPTION E (Bounds for the hitting time of S′ and the exit time from S). — There exist a
Borel subset S′ of S as well as δ,ε,T,T′ ∈R∗+ and R Ê 0 such that:

1. For any x ∉ S′ with ‖x‖1 Ê R:

Px(∃s ∈ [0,T], X(s) ∈ S′) Ê δ

2. For any x ∈ S′ with ‖x‖1 Ê R:

Px(∀s ∈ [0,T′], X(s) ∈ S) Ê ε

3. The following holds:

εT′c > T

δ
sup
Rn+

n∑
i=1

φi
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Note that Assumption E.2 may be void since we do not assume that S′∩ {‖x‖1 Ê R} is not
empty.

One can see that under Assumptions D, E.1 and E.2 and starting from a point in S with high
enough total population, then with probability of at least ε, X does not leave S before time T′,
and the mean total population increase during an excursion of the process outside of S is at
most T

δ supRn+
∑

i φi . Assumption is E.3 therefore sufficient for the visits of S by X to bring the
population process back to some compact set of Rn+ regardless of its original position.

The expected result follows.

THEOREM 2.1.6 (Boundedness criterion). — Under Assumptions D and E, X is bounded in
probability on average.

Proof of Theorem 2.1.6.— The proof of Theorem 2.1.6 consists in a comparison with a random
walk on R. It may easily adapt to some models that do not necessarily fulfill Assumptions D and
E by considering suitable R-valued Markov chains.

We write

M := sup
Rn+

n∑
i=1

∣∣φi
∣∣<+∞.

For any Borel subset E ⊂Rn+, we denote by
(
τk

E

)
kÊ1 the sequence of successive hitting times of E

by X (with τ1
E = 0 Px-a.s. if x ∈ E), so τE = τ1

E.

Step 1: study of a random walk

Assume that Assumptions D and E hold and let y ∈ R. Consider a R-valued random walk
Y = (Yk )kÊ1 with i.i.d. increments defined on (Ω,A ,P) in such a way that the following equality
in distribution holds:

Y1 = y and ∀k Ê 1, Yk+1 −Yk
d=−BcT′+Γ ·TM (2.13)

where B and Γ are independent random variables with respective distributions Bernoulli B(1,ε)
and shifted geometric G (δ) (that is, such thatP(Γ= k) = δ(1−δ)k−1 for all k Ê 1). We first observe
that

E
(−BcT′+Γ ·TM

)=−εcT′+ T

δ
M < 0

which entails that the hitting time σR of (−∞,R] by Y is almost surely finite by the law of large
numbers. Moreover, there exists r > 0 independent from the choice of y ∈R such that:

E
(
eγ(r )σR

)É er (−cT′−R+y).

Indeed, straightforward computations show that if r > 0 is such that r < |log(1−δ)|
TM , and if we set

γ(r ) =− log

(
δ

e−r TM − (1−δ)
+εe−r cT′

)
then

(
exp

(
r Yk +γ(r )(k −1)

))
kÊ1 is a positive martingale with respect to its natural filtration. Us-

ing Fatou’s lemma then yields the expected inequality since γ(r ) > 0.
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Step 2: exponential moment of the hitting time of a compact subset

Let C = {x ∈Rn+ : ‖x‖1 É R}. We now prove that there existsβ> 0 such that x 7→ Ex
(
exp

(
β
p
τC

))
is locally bounded on Rn+. Let us first assume that x ∈ Sc ∩Cc , set τ̄1

Sc = τ1
Sc = 0, and for all k Ê 1:

τ̄k
S′ = inf {t Ê τ̄k

Sc : X(t ) ∈ S′} and τ̄k+1
Sc = inf {t Ê τ̄k

S′ : X(t ) ∈ Sc }.

Then, Px-a.s.:

τC = τ̄1
S′ ∧τC +

+∞∑
k=1

(
τ̄k+1

S′ ∧τC − τ̄k
S′ ∧τC

)
= τ̄1

S′ ∧τC +
+∞∑
k=1

(
τ̄k+1

S′ ∧τC − τ̄k+1
Sc ∧τC + τ̄k+1

Sc ∧τC − τ̄k
S′ ∧τC

)
É

+∞∑
k=0

1τ̄k+1
Sc <τC

(
τ̄k+1

S′ − τ̄k+1
Sc

)
+

+∞∑
k=1

1τ̄k
S′<τC

‖X(τ̄k
S′)‖1 −R

c

since the decrease of the flow on S′ ⊂ S is at least c. For β> 0, we thus get:(
Ex

[
exp

(
β
p
τC

)])2

É Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
Sc <τC

(
τ̄k

S′ − τ̄k
Sc

)Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
S′<τC

‖X(τ̄k
S′)‖1 −R

c


 (2.14)

Px-a.s. using the inequality
p

a +b Ép
a+p

b for (a,b) ∈R2+ and the Cauchy-Schwarz inequality.
Yet Assumption E entails that the increment of the total system population between two succes-
sive τ̄k

S′ before τC is dominated by −BcT′+Γ ·TM. Applying the strong Markov property to the

sequences of stopping times
(
τ̄k

S′ ∧τC
)

k≥1
and

((
τ̄k

Sc +pT
)∧ τ̄k+1

S′ ∧τC
)

k≥1,p≥0
ensures that there

exists (Yk )kÊ1 on (Ω,A ,Px) satisfying (2.13) with y = ‖x‖1 such that Px-a.s.:

∀k Ê 1, 1τ̄k
Sc <τC

(
τ̄k

S′ − τ̄k
Sc

)
É 1k<σR

(
Yk+1 −Yk + cT′

M

)
(2.15)

and
∀k Ê 1, ‖X(τ̄k

S′ ∧τC)‖1 É Yk∧σR . (2.16)

For any β> 0, (2.15) yields

Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
Sc <τC

(
τ̄k

S′ − τ̄k
Sc

)É E
exp

2β

√√√√σR−1∑
k=1

(
Yk+1 −Yk + cT′

M

)
so

Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
Sc <τC

(
τ̄k

S′ − τ̄k
Sc

)É E
exp

2β

√
R−|x|1 + cT′σR

M

 . (2.17)

Now (2.16) entails:

Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
S′<τC

‖X(τ̄k
S′)‖1 −R

c


 É E

exp

2β

√√√√σR−1∑
k=1

Yk −R

c

 .
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The increments of the Y chain are greater than −cT′ and the value of Y at time σR is at most R,
so we can write

σR−1∑
k=1

(Yk −R) É
σR−1∑
k=1

σRcT′ Éσ2
RcT′

from which we deduce that

Ex

exp

2β

√√√√+∞∑
k=1

1τ̄k
S′<τC

‖X(τ̄k
S′)‖1 −R

c


É E

[
exp

(
2β

p
T′σR

)]
. (2.18)

Inequality (2.14) combined with (2.17) and (2.18) finally yields:

(
Ex

[
eβ

p
τC

])2 É E
exp

2β

√
R−|x|1 + cT′σR

M

E[
exp

(
2β

p
T′σR

)]
. (2.19)

Obviously σR Éσ2
R, so there exists α1 ∈R∗+ independent from our choice of x in Sc ∩Cc such that(

Ex

(
eβ

p
τC

))2 É E[
exp

(
2βα1σR

)]
E
[

exp
(
2β

p
T′σR

)]
and therefore

Ex

(
eβ

p
τC

)
É E

[
exp

(
2β(α1 ∨

p
T′)σR

)]
.

If x ∈ S ∩Cc , we derive a similar inequality by letting the process reach Sc and using the strong
Markov property, and the case x ∈ C is trivial. Step 1 ensures that if β > 0 is small enough,

then the function x 7→ Ex

(
eβ

p
τC

)
is locally bounded on Rn+. We will use this result when proving

the ergodicity of X in section 2.1.4.3; for our present purpose, it is sufficient to know that x 7→
Ex

[
(τC)2

]
is locally bounded on Rn+.

Step 3: boundedness in probability on average

If p Ê 3 is an integer, then for all t > 0 and x ∈Rn+ :

1

t

∫ t

0
1X(s)∉pC ds É 1

t

[
τC + ∑

jÊ1,kÊ1
1
τk

C<τ
j
(2C)c <τk+1

C
1
τ

j
(2C)c <t

∫ τk+1
C

τ
j
(2C)c

1X(s)∉pC ds

]

since (pC)c ⊂ (2C)c , so that

Ex

[
1

t

∫ t

0
1X(s)∉pC ds

]
É 1

t
Ex

[
τC + ∑

j ,k∈Z∗+
1
τk

C<τ
j
(2C)c <τk+1

C
1
τ

j
(2C)c <t

(
τk+1

C −τ j
(2C)c

)
1
τk+1

C −τ j
(2C)c Ê (p−2)R

M

]

because the process needs at least (p−2)R
M units of time to reach pC from a state with total popu-

lation 2R. From this we deduce

Ex

[
1

t

∫ t

0
1X(s)∉pC ds

]
É 1

t
Ex

[
τC + ∑

j ,k∈Z∗+
1
τk

C<τ
j
(2C)c <τk+1

C
1
τ

j
(2C)c <t

EX
τ

j
(2C)c

(
τC1

τCÊ (p−2)R
M

)]
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using the strong Markov property, and, setting ζ = supy∈Rn+,‖y‖1É2C Ey
[
(τC)2

]
(which is finite ac-

cording to Step 2) and writing that τC1
τCÊ (p−2)R

M
É M

(p−2)R (τC)2,

Ex

[
1

t

∫ t

0
1X(s)∉pC ds

]
É 1

t

(
ζ+Ex

[ ∑
j ,k∈Z∗+

1
τk

C<τ
j
(2C)c <τk+1

C
1
τ

j
(2C)c <t

ζ

√
M

(p −2)R

])

by the Cauchy-Schwarz inequality. Thus, for any integer p Ê 3, any t > 0 and any x ∈Rn+:

Ex

[
1

t

∫ t

0
1X(s)∉pC ds

]
É 1

t

(
ζ+ t

MR
ζ

√
M

(p −2)R

)

as the process cannot go through more than t
MR times the full way between C and (2C)c within

time t . Finally,

limsup
t→+∞

Ex

[
1

t

∫ t

0
1X(s)∉pCds

]
É ζp

MR3/2

√
1

p −2
.

Choosing p arbitrarily large shows that X is bounded in probability on average. ä
Alternate criteria for boundedness may be derived using Theorem 2.1 of [MT94] under ir-

reducibility assumptions. In particular, Theorem 3.1 of [Dai95] holds in our setting whenever
compact subsets of Rn+ are petite. Yet, as we will see in Section 2.1.4.3, Assumptions D and E
yield an upper bound for expected exponential functionals of return times, which implies strong
ergodicity results.

2.1.4.2 Criterion for petiteness

Let us now consider a compact set C ⊂ Rn+. We remind from Subsection 1.3.1 that C being
petite for some sampled chain (X(An))nÊ0 of X means that there exists a non-trivial Borel mea-
sure ν on Rn+ such that Px (X(A1) ∈ ·) Ê ν(·) for all x ∈ C, and that C is just said to be petite if it is
petite for some (An)nÊ0.

Proving that C is petite relies on framework-specific strategies. The criterion for petiteness
we will derive in this section applies to a broad range of settings, but it is worth keeping in
mind that it may prove unnecessarily technical in some cases. In particular, it can be easier to
identify sampled chains that dominate Rn+-valued Dirac measures — provided, of course, that
such chains exist.

In most non-pathological specifications, the distribution of inter-jump times exhibits an ab-
solutely continuous component with respect to the Lebesgue measure. This observation drives
us to look for subsets of Rn+ on which the Lebesgue measure is dominated by the semigroup for
the resolvent chain (Rn)n∈Z+ defined by:

∀n ∈Z+, Rn = X(Sn)

where (Sn)n∈Z+ is the sequence of jump times of a Poisson process with density 1 independent
from X.

With this aim in mind, let us first define tracking functions that return the position of our
process from its inter-jump times tk , the edges κk along which the transfers occur and the values
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of its jump distributions quantiles ξk . For all x ∈Rn+, all (i , j ) ∈I and all ξ ∈ [0,1], set

gi , j (x,ξ) = x +qi , j (x,ξ) (e j −ei ).

For all x ∈Rn+, let us define recursively the sequence of functions
(
hk

x

)
kÊ1 by

h1
x :

{⋃
lÊ1

(
Rl+× [0,1]l−1 ×I l−1

)→Rn

(t ,ξ,κ) 7→Φ(x, t1)

and for all k ∈N,

hk+1
x :

{⋃
lÊk+1

(
Rl+× [0,1]l−1 ×I l−1

)→Rn

(t ,ξ,κ) 7→Φ
(
gκk

(
hk

x (t ,ξ,κ),ξk
)

, tk+1
)

where κ= (κ1, . . . ,κ j−1) denotes the generic element of I j−1. The vector hk
x (t ,ξ,κ) is the state oc-

cupied by the process initiated at x after it has followed the flow for time t1, undergone a transfer
along edge κ1 with amplitude given by the quantile of order ξ1 of the appropriate µi , j (x, ·) law,
followed the flow again for time t2, and so on until k − 1 transfers occurred and the process
followed the flow for time tk after its last jump.

Our strategy is to look for a subset V of an affine subspace of Rn+ such that we can provide
a lower bound for the Lebesgue measure of the pre-image by some hk

x of any Borel subset of V.
We therefore introduce the following assumption:

ASSUMPTION F (Likely paths scanning a Borel subset). — There are M > 0, N ∈ N, T Ê 1,
p ∈ �1, n�, a p-dimensional affine subspace V of Rn , a Borel subset P of V with non-zero
Lebesgue measure in V, and for any x ∈ C there are N(x) ∈ �1, N� with q(x) = 2N(x)−1−p Ê 0,
a vector of edges κx ∈ I N(x)−1, a R2N(x)−1-coordinates permutation σx and open subsets
Ux

1 ⊂ [0,T]p and Ux
2 ⊂ [0,T]q(x) such that setting

ψx
z2

:

{
Ux

1 → V

z1 7→ hN(x)
x (σx(z1, z2),κx)

the following hold:

1. For all z2 ∈ Ux
2 ,ψx

z2
is a C 1-diffeomorphism with Jacobian determinant bounded by M

on Ux
1 .

2. For all z2 ∈ Ux
2 ,

P ⊂ψx
z2

(Ux
1 ).

3. Defining

θ0 = inf
x∈C

λq(x)(Ux
2 ) inf

z1∈Ux
1

z2∈Ux
2

N(x)−1∏
i=1

θκi (x)

(
hk

x (σx(z1, z2),κx)
) ,

with λq(x) denoting the Lebesgue measure on Rq(x), we have that θ0 > 0.
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Note that Proposition 2.1.7 below still holds if we replace p-dimensional affine subspaces by
p-dimensional manifolds in the condition above. Assumption F.3 states that trajectories that
lead X to Borel subsets of V correspond to sequences of jump times or jump quantiles with a
likelihood bounded below.

A change of variables argument then yields the following proposition:

PROPOSITION 2.1.7 (Petiteness criterion). — If Assumption F is met, then C is petite.

Proof of Proposition 2.1.7.— Let us suppose that Assumption F is met and recall that we denote
the resolvent of X by (Rn)n∈N. For all x ∈ C and all B ∈B(P ), we can write:

Px(R1 ∈ B) =
∫ +∞

0
Px(X(u) ∈ B)e−udu

Ê e−N(x)T
∫ T

0
Px

[
hN(x)

x

(
SN(x)

u ,
(
U1, . . . ,UN(x)−1

)
,κx

) ∈ B
]

du

where SN(x)
u = (

T1,T2 −T1, . . . ,TN(x)−1 −TN(x)−2,u
)
.

Computing the joint density of the inter-jump times and the Uk and considering a common
upper bound θ for the θi , j on {x ′ ∈ Rn+ : ∀y ∈ C,‖x ′− y‖1 É N(x)TM} yields, for all x ∈ C and all
B ∈B(P ):

Px(R1 ∈ B) Ê e
−

(
1+θn(n−1)

)
N(x)T

∫
[0,T]N(x)

∫
[0,1]N(x)−1

[
N(x)−1∏

i=1
θκi (x)

(
hi

x(t ,ξ,κx)
)]

1hN(x)
x (t ,ξ,κx )∈Bdξdt ,

and therefore

Px(R1 ∈ B) Ê e
−

(
1+θn(n−1)

)
N(x)T

∫
Ux

2

∫
Ux

1

[
N(x)−1∏

i=1
θκi (x)

(
hi

x(σx(z1, z2),κx

)]
1hN(x)

x (σx (z1,z2),κx ))∈Bdz1dz2

by the change of variables formula. Applying this formula again using Assumption F.1 and re-
calling Assumption F.3 yields

Px(R1 ∈ B) Ê e
−

(
1+θn(n−1)

)
N(x)T θ0

λq(x)(Ux
1 )

∫
Ux

2

1

M

∫
ψx

z2
(Ux

2 )
1y∈Bdydz2.

Using Assumption F.2, we may thus write:

Px(R1 ∈ B) Ê e
−

(
1+θn(n−1)

)
N(x)T θ0

M
·λp (B)

for any B ∈B(P ), which entails that C is petite for (Rn)n∈N, then petite for X. ä
Most of the technicity in applying this proposition lies on proving that Assumption F.1

holds. Indeed, this requires describing paths of the process that lead to a given area of the state
space as well as monitoring their response to small variations of jump times and jump quantiles.
In general, this can be made simpler by the following straightforward but useful result allowing
for localization of the starting point of such paths, which is Lemma 3.1 from [MT92b].



69 2.1. STABILITY RESULTS h

PROPOSITION 2.1.8 (Petiteness transitivity). — If C′ is a Borel subset of Rn+ and if there exists
A > 0 such that

inf
x∈C

Px (τC′ < A) > 0,

then if C′ is a petite set for the resolvent of X, so is C.

2.1.4.3 Criterion for ergodicity

Theorem 1.3.17 along with present Theorem 2.1.6 and Proposition 2.1.7 imply that X is pos-
itive Harris recurrent as soon as Assumptions D and E are met and all compact subsets of Rn+ are
petite. We are now looking for an additional condition to ensure F-ergodicity for some measur-
able F :R+ → [1,+∞). Remind from Subsection 1.3.1 that this property writes:

∀x ∈Rn
+, lim

t→+∞ sup
g : Rn+→R+

g measurable
g≤F

∣∣Ex
(
g (X(t ))

)−π(g )
∣∣= 0

where π denotes the invariant probability of X.

Our result is the following:

THEOREM 2.1.9 (Ergodicity criterion). — If Assumptions D and E hold, if all compact subsets
of Rn+ are petite and if X admits an irreducible skeleton chain, then there exists η > 0 such
that X is F-ergodic for

F :

{
Rn+ →R+
x 7→ eη

p∑n
i=1 xi

(2.20)

Proof of Theorem 2.1.9.— From Theorem 1.3.19, it is sufficient for F-ergodicity to hold to prove
that there are δ> 0 and a compact set C ⊂Rn+ such that

sup
x∈C

Ex

[∫ τC(δ)

0
F(X(t ))d t

]
<+∞ (2.21)

where τC(δ) := inf{t ≥ δ : X(t ) ∈ C}, and that:

∀x ∈Rn
+, Ex

[∫ τC(0)

0
F(X(t ))d t

]
<+∞. (2.22)

Most of the work we need to provide in order to prove that the assumptions we stated in Section
2.1.4.1 entail (2.21) and (2.22) has already been done in the process of proving Theorem 2.1.6,
where we showed that the hitting time τC of any compact subset C = {x ∈Rn+ : ‖x‖1 É R} was such
that x 7→ Ex

[
exp

(
β
p
τC

)]<+∞ was finite-valued and locally bounded on Rn+ for some β> 0.

We now show that there exists η ∈R∗+ such that defining F by (2.20),

x 7→ Ex

[∫ τC(1)

0
F(X(t ))d t

]
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is locally bounded on Rn+. This will end the proof of Theorem 2.1.9.

Using the notations of the proof of Theorem 2.1.6, we set η0 = βp
M

and

F0 :

R+ →R+
y 7→ 1y> 1

η2
0

eη0
p

yp
y

For any x ∈Rn+, we observe that

Ex

[∫ τC(1)

0
F0

(
n∑

i=1
Xi (t )

)
dt

]
É Ex

[∫ 1

0
F0

(
n∑

i=1
Xi (t )

)
dt +EX(1)

[∫ τC

0
F0

(
n∑

i=1
Xi (t )

)
dt

]]
(2.23)

by the Markov property and that for any X-stopping time τ and any z ∈Rn+:

Ez

[∫ τ

0
F0

(
n∑

i=1
Xi (t )

)
dt

]
É Ez

[∫ τ

0
F0

(
n∑

i=1
zi + tM

)
dt

]
= Ez

[
2

η0

(
eη0

p∑n
i=1 zi+τM −e

)
+

]
É Ez

[
2

η0
eη0

p∑n
i=1 zi+τM

]
É 2

η0
eη0

p∑n
i=1 zi Ez

[
eη0

p
τM

]
since F0 is nondecreasing and

p
a +b Ép

a +p
b for all (a,b) ∈R2+.

We know from Step 2 of the proof of Theorem 2.1.6 that z 7→ Ez

[
eη0

p
τCM

]
= Ez

[
eβ

p
τC

]
is locally bounded on Rn+. So are therefore z 7→ Ez

[∫ τC
0 F0

(∑n
i=1 Xi (t )

)
dt

]
and, consequently,

z 7→ Ez

[∫ τC(1)
0 F0

(∑n
i=1 Xi (t )

)
dt

]
by (2.23) since ‖X1‖1 É ‖x‖1 +M holds Px-almost surely for all

x ∈Rn+. We easily find α0,β0,γ ∈R∗+ such that eγ
p

y É α0 +β0F0(y) for all y ∈R+, which entails:

∀x ∈Rn
+, Ex

[∫ τC(1)

0
eγ
p∑n

i=1 Xi (t )dt

]
É α0 Ex(τC(1))+β0 Ex

[∫ τC(1)

0
F0

(
n∑

i=1
Xi (t )

)
dt

]
.

This yields the expected result since x 7→ Ex [τC(1)] is locally bounded on Rn+. ä
Theorems 2.1.2 and 2.1.5 are corollaries of the latter result, as is detailed in Subsections 2.1.5

and 2.1.6.

In some cases, it is possible to prove a still stronger result and establish exponential uniform
ergodicity for X using a Lyapunov function. Indeed, if all compact subsets of Rn+ are petite, if X
admits an irreducible skeleton chain and if there exists a C 1 function f :Rn+ → [1,+∞) such that

A f É−c f +b1C (2.24)

for a compact set C ⊂ Rn+ and some positive real numbers b and c, then Theorem 1.3.21 entails
that X is f -(exponentially) uniformly ergodic, in the sense that:

∀t ∈R+, sup
g : Rn+→R+

g measurable
g≤F

∣∣Ex
(
g (X(t ))

)−π(g )
∣∣É M f (x)ρt

for some M Ê 0 and ρ ∈ [0,1). An elementary example of such a Lyapunov function can be given
in the two-patch uniform constant growth setting with c2 < 0 < c1, c1 + c2 < 0 and
θ2,1c1 < θ1,2|c1 + c2|. Under these conditions, it is a simple matter to see that there are α,β ∈ R∗+
such that (2.24) holds with f : (x1, x2) 7→ 1+ (αx1 +x2)eβ(x1+x2).
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2.1.5 Proof of stability Theorem 2.1.2

We now consider that Assumptions B and C hold and set some further notation.

First let γ = (γ1, . . . ,γr ) ∈ E r be a cycle of G that visits all sinks. Then, for all l ∈ �1, n�, let
d−(l ) be the G -graph distance from patch l to V−. Given Assumption C, there exists a vector
κ= (κ1, . . . ,κm) ∈ E m , such that, writing κk = (ik , jk ) for all k ∈ �1, m� = V+∪V0:

• For all k ∈ V+∪V0, d−(ik ) > d−( jk ) (edges in κ are "directed towards the exit of the system",
that is, towards sinks).

• For all l ∈ V+∪V0, there is a k(l ) ∈ V+ such that ik(l ) = l (each source or neutral patch is the
origin and one and only one edge in κ).

This choice of κ corresponds to an ordered collection of edges along which the population in
every patch of the system "reaches the exit by the shortest path". A possible choice of κ when G

is the graph in Figure 2.2 is κ= ((2,1), (3,1), (4,1), (1,5)) ; if G is the first graph of Figure 2.3, then
we may choose κ= ((1,3), (2,4)).

Recalling Proposition 2.1.7 and Theorem 2.1.9, it is sufficient to prove the following:

PROPOSITION 2.1.10. — Assume that the model is multiplicative and (2.5) holds. Then:

(i) There exists S ⊂Rn+ such that X fits Assumptions D and E.

(ii) X fits Assumption F.

(iii) X admits an irreducible skeleton chain.

Proof of Proposition 2.1.10.(i).— Let q > 0 and a > 0 be such that µi , j ([a,1−a]) > q for all
(i , j ) ∈ I . Using (2.5), we may choose R > 0 such that Assumption D holds for S = {x ∈ Rn+ :
mini xi Ê R}. Let us now set Z0 = 2na−(m+r ) (M+R), M0 = infi∈V+ inf[0,Z0]φi , θ = min(i , j )∈E θi , j ,

θ= max(i , j )∈E θi , j and

S′ =
{

x ∈Rn
+ : min

i∈�1,n�
xi Ê 2R

}
.

We will show that S′ meets Assumption E.1 by considering suitable paths of X defined by trans-
fers along the edges of κ and γ.

It is an easy matter to see that with probability at least exp
(
−|E |

(
Z0
M0

+2
)
θ
)
θm+r qm+r 1

mm r r ,

the following holds for the path of X stemmed from any x ∈Rn+:

• No transfer occurs before time Z0
M0

.

• m successive transfers occur along edges κ1,κ2, . . . and κm between times Z0
M0

and Z0
M0

+1.
Each of these transfers, if originated from patch i and directed towards patch j , has an
amplitude between z and (1−a) z.

• r successive transfers happen along edges of γ between times Z0
M0

+1 and Z0
M0

+2, the first
of which is undertook from the edge of V− with the largest population. Each of these
transfers, if originated from patch i with population z and directed towards patch j , has
an amplitude between az et (1−a) z.
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• No other transfer than those just described occurs before time Z0
M0

+2.

By construction, on such event one has Xi (1) Ê Z0
n am+r −2M = 2R for all i ∈ �1, n� so X(1) ∈ S′,

which entails that Assumption E.1 holds.

Besides, Assumption E.2 is met for any choice of ε ∈ [0,1) and T′ > 0 if R is large enough.
Indeed, if we define

Aε
′

i , j (T′) = ⋃
kÊ1

Tk<T′

(
qi , j (X(T−

k ),Uk ) É (1−ε′)Xi (T−
k )

)
for any T′ > 0, (i , j ) ∈I and ε′ > 0, Aε

′
i , j (T′) being the event that all i → j transfers before time T′

are of relative amplitude less than 1−ε′, one can write that for any T′ > 0,

Px

(
Aε

′
i , j (T′)

)
−→
ε′→0

1

uniformly in x since the µi , j assign mass 0 to {1}. Now the φi and θi , j being bounded implies
that for all T′ > 0:

liminf
‖x‖1→+∞

x∈S′
Px(∀s ∈ [0,T′], X(s) ∈ S) Ê liminf

‖x‖1→+∞
x∈S′

Px

( ⋂
(i , j )∈E

Aε
′

T′(i , j )

)

for all ε′ ∈ (0,1), hence the result as ε′ tends to 0. Assumption E.3 is then true if T′ is large enough
(which is possible as soon as R is), which completes our proof of Proposition 2.1.10.(i).

Proof of Proposition 2.1.10.(ii).— Using Proposition 2.1.8, we will consider the behavior of our
process starting from a small ball centered on a state that corresponds to positive population
levels for sources and neutral patches, and use the change of variables formula to check for
Assumption F.1.

It is clear that we may assume that C = {x ∈Rn+ : ‖x‖1 É R} for some R > 0.

Step 1: reachability of the B∞(x∗,δ) for some x∗

For any x ∈ Rm+ × {0}n−m and δ> 0, we denote the closed ball of Rm+ × {0}n−m for the infinite
norm by B∞(x,δ). We will show that there exists x∗ ∈ (

R∗+
)m × {0}n−m such that any B∞(x∗,δ)

fulfills the requirement of Proposition 2.1.8.

Let us first assume that V0 =∅. By assumption onΦ, there exists T > 0 such thatΦi (x,T) = 0
for all x ∈Rn+ with ‖x‖1 É R+M and all i ∈ V−. Let x∗ =Φ (0,T) and first note that x∗ =Φ (z,T) for
all z ∈Rn+ such that ‖z‖1 É R+M and zi = 0 for all i ∈ V0∪V−. Now consider δ> 0. (Φ1, . . . ,Φm) is
uniformly continuous on C× [T,T+1] since the non-negative φi are C 1, so there are δ′ ∈ (0,M]
and t0 ∈ (0,1] such that ‖Φ(x,u)−x∗‖∞ É δ for all x ∈Rn+ with x1+. . .+xm É δ′ and all u ∈ [T,T+t0].
Set ε ∈ (0,1) and η ∈ (0,1) such that:

∀(i , j ) ∈I , µi , j ([0,ε)) < η (2.25)

and denote by N the smallest positive integer such that (1−ε)N R < δ′
2 .
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It is easy to see that setting κ0 = (κ, . . . ,κ) ∈I mN, we have:

∀x ∈ C, ∀t ∈
[

0,
δ′

2mNM

]mN

× [T,T+ t0] , ∀ξ ∈ (
η,1

]mN , hmN+1
x (t ,ξ,κ0) ∈B∞

(
x∗,δ

)
.

Considering the joint density of the Tk and the Uk as in the proof of Proposition 2.1.10.(i) finally
yields, for all x ∈ C:

Px

(
∀t ∈

[
T,T+ δ′

2M
+ t0

]
,X(t ) ∈B∞

(
x∗,δ

))Ê exp

(
−|E |

(
δ′

2M
+ t0

)
θ

)(
θδ′

2mNM

)mN

(1−η)mN

(2.26)
which, in turn, implies the expected property.

The proof relies on the same reasoning if V0 6= ∅, using paths along which a sequence of
transfers results in all neutral patches having a positive population, then the flow brings the
population of sinks to zero.

Step 2: petiteness of a B∞(x∗,δ) for some δ

According to Proposition 2.1.8 and Step 1 hereabove, Proposition 2.1.10.(ii) will be proved if
we show that there exists some δ > 0 such that B∞(x∗,δ) is petite for the resolvent of X, which
can be done by way of checking Assumption F.

Let us thus set some δ ∈ (0,mini∈V+∪V0 x∗
i ) that we may have to take smaller later on, and let

x = mini∈V+∪V0 x∗
i −δ.

For simplicity reasons, we will assume that all φi associated with sources are C 1 functions
(rather than merely piecewise C 1) onR+ and thatµi , j measures admit continuous density func-
tions fi , j on [0,1] (instead of just admitting an absolutely continuous component on a subinter-
val of [0,1]). The general case only requires reducing the domain over which it is possible to
consider our paths of interest, which induces an unnecessary notational inflation.

Even if it means considering a larger T in Step 1, we may assume that Φ(x,T) ∈ Rm+ × {0}n−m

for all x ∈B∞(x∗,δ). As in Step 1, we define ε and η such that (2.25) holds.

Let us begin by proving the following inequality:

∀i ∈ V+,∀y > 0,∀u > 0,
min[0,y+Mu]φi

M
É ∂Φi

∂y
(y,u) É M

min[0,y+Mu]φi
. (2.27)

If i ∈ V+, 0 < y < y +h and u > 0, the mean value inequality entails that Φi

(
y, h

M

)
É y +h, from

which we deduce

min[Φi (y,u),φi (y,u)+h]φi

M
h Éφi

(
y,u + h

M

)
−Φi

(
y,u

)ÉΦi (y +h,u)−Φi
(
y,u

)
using the mean value theorem, hence the left hand side of (2.27) by letting h go to 0. Proving
the right-side inequality of (2.27) relies on the very same argument and is left to the reader.
Moreover, it is clear that

∀i ∈ V0,∀y > 0,∀u > 0,
∂Φi

∂y
(y,u) = 1. (2.28)



g 2.1.5. PROOF OF STABILITY THEOREM 2.1.2 74

We now show that for any x ∈B∞(x∗,δ) and t ∈ (0,1)m × (T,T+1), then

ψx
t :

{
(0, a)m →Rm × {0}n−m

ξ 7→ hm+1
x

(
t ,ξ,κ

)
is a C 1-diffeomorphism of (0,η)m onto its image. For fixed x and t , indeed, a simple calculation
shows that

∂ψt
x

∂ξm
(t ,ξ,κ) = ∂1Φ

(
gκm (hm

x ,ξm), tm+1
) ·∂2gκm (hm

x ,ξm) (2.29)

and that for any i ∈ �1, m −1�:

∂ψx
t

∂ξi
(t ,ξ,κ) =

[
i+1∏

k=m
∂1Φ

(
gκk (hk

x ,ξk ), tk+1

)
·∂1gκk

(
hk

x ,ξk

)]
·∂1Φ

(
gκi (hi

x ,ξi ), ti+1

)
·∂2gκi (hi

x ,ξi ).

(2.30)
where we wrote hk

x as a short for hk
x (t ,ξ,κ), defined

∂1gi , j (y,ζ) = Im +F−1
µi , j

(ζ) · (1 jÉmE j ,i −Ei ,i )

with
(
Ei , j

)
i , j∈�1,m� the canonical basis of Mm(R), as well as

∂1Φ(y,u) =


∂Φ1(y,u)
∂y1

0 · · · 0

0
. . . . . .

...
...

. . . . . . 0

0 · · · 0 ∂Φm (y,u)
∂ym


and

∂2gi , j (y,ξ) = yi

fi , j

(
F−1
µi , j

(ξ)
) (

1 jÉm ẽ j − ẽi
)

where (ẽ1, . . . , ẽm) is the canonical basis of Rm .

Recalling the fact that every i ∈ V+ is the origin of one only edge κi , (2.27) and (2.28) then
imply that for all t ∈ (0,1)m × (T,T+1) and all ξ ∈ (0,η), the Jacobian matrix of ψx

t at (t ,ξ,κ) is a
continuous function of ξ and is an invertible matrix with determinant J(t ,ξ,κ) such that

0 < J(t ,ξ,κ) É
(

M

mini∈V+ min[0,xi+(m+T+1)M]φi

)m(m+1)
2 (‖x‖1 +δ+ (m +T+1)M)m∏m

i=1 min[0,1] fκi

<+∞. (2.31)

Now ψx
t is injective over (0,η)m for fixed t and x; this stems from the fact that the cumulative

distribution functions of the µκk are strictly increasing, so knowing 〈ψx
t (t ,ξ,κ),ei1〉 makes it pos-

sible to determine ξ1, knowing ξ1 and 〈ψx
t (t ,ξ,κ),ei2〉 yields ξ2 and so on. This proves our claim

that ψx
t is a C 1-diffeomorphism.

We therefore only need to check that Assumption F.2 holds to conclude. Take x ∈B∞(x∗,δ)
and for all t ∈ [0,1]m , set It = ψx

t (t , (0,η)m ,κ). Considering the possible value of the popula-
tion of patches 1 to m after a series of jumps along the edges of κ such that the k-th transfer
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has amplitude between 0 and k ε
m x, it is fairly easy to check that for a given t = (t1, . . . , tm) in(

0,
(

ε
Mm2 x

)
∧1

)m × (T,T+1):

m∏
i=1

[
Φi

(
xi − ε

m
+ (t1 + . . .+ ti )M, ti+1 + . . .+ tm+1

)
,Φi (xi , t1 + . . .+ tm+1)

)
⊂ It

and then, by (2.27), (2.28) and the mean value theorem for the Φi (·, t ):
m∏

i=1
[Φi (xi , ti+1 + . . .+ tm+1)−ε0,Φi (xi , t1 + . . .+ tm+1)) ⊂ It

for some positive ε0 independent from the choice of x within B∞ (x∗,δ). For small enough

values of δ, there are T0 ∈
(
0,

(
ε

Mm2 x
)
∧1

]
and an orthotope P ⊂ Rm+ × {0}n−m with non-zero

Lebesgue measure, both independent from the choice of x within B∞ (x∗,δ), such that P ⊂ It

for all t ∈ (
0,T0

)m × (T,T +T0). This entails that Assumption F.2 holds. Proposition 2.1.7 then

implies that B∞(x∗,δ) is petite for the resolvent of X, which ends the proof of Proposition
2.1.10.(ii), and therefore of Theorem 2.1.2. ä

Note that if the t 7→ hm
x (t ,ξ,κ) are diffeomorphisms for suitable values of ξ (which typically

is the case in a multiplicative model with constant growth!), we may want to monitor the effect
of small variations of t (rather than of ξ) on hm

x (t ,ξ,κ). This would allow to relax the absolute
continuity assumptions on the µi , j , since it would then be sufficient to assume that µi , j ({0}) < 1
and µi , j ({1}) = 0 for petiteness to hold.

Proof of Proposition 2.1.10.(iii).— We keep all notations from the proof of Proposition 2.1.10.(ii)
above. First set ∆0 = δ′

2M + t0. If π denotes the invariant probability of X, we may assume that
π(C) > 0, which entails by Birkhoff’s ergodic theorem (Theorem 1.3.8) that τC is Px-a.s. finite for
all x ∈Rn+. Inequality (2.26) then yields:

inf
x∈Rn+

Px

(
∀t ∈ [τC +T,τC +T+∆0] ,X(t ) ∈B∞

(
x∗,δ

))> 0.

Thus, according to the strong Markov property, it is sufficient to show that there exists∆ ∈ (0,∆0]
such that:

∀x ∈B(x∗,δ),∀B ∈B(P ), λm(B) > 0 ⇒Px (∃k Ê 1,X(k∆) ∈ B) > 0.

Set ∆ = ∆0 ∧T and k ∈ Z+ such that mT0 É k∆ < mT0 +T, and let x ∈ B∞(x∗,δ). Then for any
Borel subset B of P , the change of variables formula yields:

Px (X(k∆) ∈ B) Ê Px [(Tm < k∆< Tm+1)∩ (Φ(X(Tm),k∆−Tm) ∈ B)]

Ê e−θn(n−1)k∆
∫

(0,T0)m

∫
(0,η)m

[
m∏

i=1
θκi (x)

(
hi

x

)]
1
Φ

(
hm

x ,k∆−∑m
j=1 t j

)
∈B

dξdt

Ê e−θn(n−1)k∆θm
∫

(0,T0)m

∫
(0,η)m

1
Φ

(
hm

x ,k∆−∑m
j=1 t j

)
∈B

dξdt

Ê e−θn(n−1)k∆θm
∫

(0,T0)m

∫
(0,η)m

1
hm+1

x

(
(t ,k∆−∑m

j=1 t j ),ξ,κ
)
∈B

dξdt

Ê 1

α
e−θn(n−1)k∆θm

∫
(0,T0)m

1k∆−∑m
j=1 t j∈[T,T+T0]

(∫
P

1y∈Bdy

)
dt

Ê 1

α
e−θn(n−1)k∆θmλm (S)λm(B)
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where hi
x stands for hi

x(t ,ξ,κ), α is the upper bound of J(t ,ξ,κ) defined by (2.31) and

S =
{

t ∈ (0,T0)m ,
m∑

j=1
t j ∈

[
k∆−T−T0,k∆−T

]}
.

Now λm (S) > 0, which ends the proof. ä

2.1.6 Proof of stability Theorem 2.1.5

We keep considering γ and κ as defined in the proof of Theorem 2.1.2. We will show the
following, which is sufficient to conclude thanks to Proposition 2.1.7 and Theorem 2.1.9.

PROPOSITION 2.1.11. — Assume that the model is unitary and that either (2.8) holds, or G

is strongly connected and (2.9) holds. Then:

(i) There exists S ⊂Rn+ such that X fits Assumptions D and E.

(ii) X fits Assumption F.

(iii) X admits an irreducible skeleton chain.

Proof of Proposition 2.1.11.(i).— Let us first assume that (2.8) holds. Let R Ê 2 be an integer such
that Assumption D holds with

S =
{

x ∈Rn
+ : min

i∈V− xi Ê R

}
and set

S′ =
{

x ∈Rn
+ : min

i∈V− xi Ê 2R

}
.

In order to verify that Assumption E.1 holds, we consider x ∈Rn+ as well as T ∈ (0,1] and argue as
in the proof of Proposition 2.1.10.(i). On the event we consider, transfers along edges κ1, . . . ,κm

occur before time T and result in the total population of sinks being at least 2(n−m)R+TM, and
transfers along γ occur between time T and time 2T and result in the population of each sink at
time 2T reaching at least 2R. For corresponding paths, X(2T) ∈ S′, and it is easy to show using
the assumptions on Θ that the probability under Px of observing such paths for a fixed T goes
to 1 as ‖x‖1 goes to +∞. As a result, T may be taken arbitrarily small in Assumption E.1 for any
fixed value of δ. Assumption E.3 will thus be automatically fulfilled for some value of T provided
that Assumption E.2 holds. Showing the latter relies on the observation that as a sink gives up
its charge, the temporal intensity of subsequent transfers from this patch is upper bounded.
Simple calculations then show that the probability for a sink with original population above 2R′

to have a population lower than R′ before time R′
M is lower than some constant in [0,1), which

ends our proof.

The argument is similar in the connected case with (2.9) except that it is now possible to
define S and S′ as in the proof of Proposition 2.1.10.(i). The connectivity assumption then entails
that the process returns to S′ arbitrarily fast with a given probability when the total population
in the system is high enough, and we may conclude just as before.
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Proof of Proposition 2.1.11.(ii).— Without loss of generality, we may assume that C writes
{x ∈ Rn+ : ‖x‖1 É R} for some R ∈ Z∗+. Let T > 0 be such that Φi (x,T) = 0 for all i ∈ V− and all
x ∈Rn+ with ‖x‖1 É R+1 and define

κ′ = (κ1, . . . ,κ1,κ2, . . . ,κ2, . . . ,κm , . . . ,κm) ∈I m(R+1)

as the vector of edges made of R+1 successive repetitions of each of κ’s edges.

For all t ∈
[

0, 1
mM(R+1)

)m(R+1) × (T,T+1) and all ξ ∈ (0,1]m(R+1), we may write:

∀i ∈ V+,
(
hx

(
t ,ξ,κ′

))
i =Φi

(
0, t(i+1)(R+1) + t(i+2)(R+1) + . . .+ tm(R+1) + tm(R+1)+1

)
and

∀i ∈ V0 ∪V−,
(
hx

(
t ,ξ,κ′

))
i = 0.

For t ′ = (t1, . . . , tR, tR+2, . . . , t2(R+1)−1, t2(R+1)+1, . . . , tm(R+1)−1, tm(R+1)+1) ∈
[

0, 1
mM(R+1)

)mR × (T,T+1)

and ξ ∈ (0,1]mR, we easily see that

ψx
t ′ :

{(
0, 1

mM(R+1)

)m →Rd ×Rn−d(
tR+1, t2(R+1) . . . , tm(R+1)

) 7→ hm(R+1)+1
x (t ,ξ,κ)

is a C 1-diffeomorphism of
(
0, 1

mM(R+1)

)m
onto its image. It is independent from the choice of x

in C and has its Jacobian determinant upper bounded by α=∏d
i=1 max[0,R+1+(T+1)M]φi . It is then

possible to define, as in the proof of Proposition 2.1.10.(ii), T0 ∈
(
0, 1

mM(R+1)

)
and an orthotope

P ⊂Rd+×{0}n−d with non-zero Lebesgue measure, independently from the choice of x ∈ C, such

that P be included in the image of
(
0,T0

)m
byψx

t ′ for all t ′ ∈ (
0,T0

)mR×(T,T+T0). Assumption F.3
is also met since Θ is lower bounded by a positive real number, and Proposition 2.1.7 therefore
implies that C is petite.

Proof of Proposition 2.1.11.(iii).— We use the notations of the proof of Proposition 2.1.11.(ii)
above. It is sufficient to prove the irreducibility property for initial conditions within C because
of the same argument as in the proof of Proposition 2.1.10.(iii). Even if it means considering
smaller T0 and P , one may assume that:

∀t ′ ∈
(
0,

T0

2m(R+1)

)mR

× (
0,T0) , P ⊂ψx

t ′

(
0,

T0

2m(R+1)

)m

.

Let us consider∆ ∈
(
0, T0

2

)
and k Ê 1 such that k∆ ∈

(
T+ T0

2 ,T+T0
)
. Reproducing the calculations

of the proof of Proposition 2.1.10.(iii) yields for any x ∈ C and any B ∈B(P ):

Px (Xk∆ ∈ B) Ê e−k∆θΘ(0)m(R+1)
∫

(0,T0)m(R+1)
1hm(R+1)

x ((t ,k∆−T−∑m(R+1)
j=1 t j ),ξ,κ′)∈Bdt

Ê 1

α
e−k∆θΘ(0)m(R+1)

∫
(0,T0)m(R+1)

∫
(
0, T0

2m(R+1)

)mR λd (P ∩B)dt ′

Ê 1

α
e−k∆θΘ(0)m(R+1)

(
T0

2m(R+1)

)mR

λd (B)

where θ is a common upper bound for the θi , j on {y ∈ Rn+ : ‖y‖1 É R+k∆M}. Therefore we have
Px (X(k∆) ∈ B) > 0 whenever λd (B) > 0, which ends our proof. ä
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2.1.7 Conclusion on metapopulation PDMP

The results presented in this section may be expanded in various ways. First, the multiplica-
tive and unitary frameworks were designed as simple models that allow either for large jumps
or large jump rates, but many applications may require designing and studying hybrid models.
Criteria from Subsections 2.1.4.1 and 2.1.4.2 will hopefully prove flexible and be useful in such
settings.

Besides, some metapopulation settings do not necessarily fit with the additional hypothesis
we made on the structure of the active graph G of the system — that is, on the graph formed by
edges along which non-zero transfers occur at non-zero rate. Although the criteria for bound-
edness and petiteness we stated in Sections 2.1.4.1 and 2.1.4.2 do not refer to this active graph,
they cannot be applied without particular sequences of transfers being made explicit, which
assumes that one can describe entire paths followed by the population load. Moreover, they
require some degree of connectivity so the system, loosely speaking, can "empty" and "mix".
Adapting the results above to more general graphs is therefore a topic of further research.

Finally, we chose to model deterministic intra-patch population dynamics. This assump-
tion is only legitimate if the local demographics exhibit little stochasticity, either intrinsically or
because quantities observed over a timestep are so large that their aggregate evolution can be
approximated by a non-random dynamical system. This condition is not met when considering
daily observed cattle movements. This is why we will turn in next section to an all-stochastic
framework using jump metapopulation processes, that will also happen to be more tractable
and provide a straightforward coupling with epidemic processes. As stated in our Introduction,
the downside of modeling population dynamics using jump processes with unitary jumps is not
to be able to account for instataneous macroscopic transfers, as the multiplicative models pre-
sented above do. However, in the application we have in mind, the fact that cattle herds are con-
trolled populations with transfers limited by transportation capacities rules out the existence of
such transfers.

2.2

The branching population model

The population model presented in this section and the associated epidemic model (see
Subsection 3.2.1) have been studied in a paper published in Journal of Mathematical Biology in
2019 [Mon19b]. It is a metapopulation multitype branching process with immigration, that we
shall henceforth simply refer to as the branching population model.

We will define a Zn+-valued population process (XN(t ))tÊ0 modeling the population dynam-
ics (n being the number of nodes in the graph and N a scaling parameter) and impose a condi-
tion (Assumption G) ensuring its convergence in distribution, as t →∞, to an invariant prob-
ability measure at a geometric speed (Proposition 2.2.1). We will then investigate the time for
the scaled population process to deviate by any given fixed distance from the corresponding
deterministic model, described as the solution of a linear ODE (Propositions 2.2.2 and 2.2.3).
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2.2.1 Definition of the branching population model

We model the population dynamics using a Zn+-valued multitype continuous-time branch-
ing process with immigration, denoted XN. At any population state x = (x1, . . . , xn) ∈ Zn+, the
inflow rate in node i is NBi +bi xi and the death rate in node i is di xi with bi ,Bi ,di ∈ R+. The
bi xi might be considered as Malthusian birth rates and the NBi as constant immigration rates.

Data suggest that the temporal rate of transfers between agents also is size-dependent.
Moreover, their amplitude is bounded by a few units because of transportation constraints and
does not vary much empirically, so we will set it to be unitary and define the transfer rate from
node i to node j at population state x as θi , j xi with θi , j Ê 0.

We will define XN as the solution of a stochastic differential equation with respect to a point
measure, as we did for the metapopulation PDMP studied in Section 2.1. We state this equation
under its integral form in order to make its initial condition clearly appear.

Set x(0) ∈ Rn+. For all (i , j ) ∈ I , let NB
i , Nb

i , Nd
i and Ni , j be independent Poisson random

measures on R+ ×R+ with intensity dsdu. For all N Ê 1, we define the multitype branching
process with immigration XN as the solution of the integral equation

XN
i (t ) = bNxi (0)c+

∫ t

0

∫
R+

1uÉNBi NB
i (ds,du)

+
∫ t

0

∫
R+

1uÉbi XN
i (s−)N

b
i (ds,du)−

∫ t

0

∫
R+

1uÉdi XN
i (s−)N

d
i (ds,du)

+ ∑
j 6=i

[∫ t

0

∫
R+

1uÉθ j ,i XN
j (s−)N j ,i (ds,du)−

∫ t

0

∫
R+

1uÉθi , j XN
i (s−)Ni , j (ds,du)

]
(2.32)

for all i ∈ �1, n�. The existence and trajectorial uniqueness of solutions to this equation, and
of all jump processes defined in a similar way in the rest of this work, are granted by [Dav93]
p.55. For any N Ê 1, XN is a Zn+-valued jump process with initial value XN(0) = bNx(0)c and the
following transition rates under P:

Transition Rate at state x

x → x +ei NBi +bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

(1.3)

Table 2.1: Branching population process jump rates chart.

From now on, we assume that the directed graph with vertices set �1, n� and edges set {(i , j ) :
θi , j > 0} is strongly connected, so that for any i and j , any individual born in node i can get to
node j with positive probability during its lifetime. We assume that B = (B1, . . . ,Bn) 6= 0 in order
to rule out pathological cases that would be irrelevant for the application we have in mind.

In our framework, immigration in node i occurs at rate NBi , and individuals in node i give
birth at rate bi , die at rate di and move to node j at rate θi , j , independently from other individ-
uals in the network. The lineage of a single individual is a branching process with the following
transition rates:
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Transition Rate at state x

x → x +ei bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

Table 2.2: Immigration-free branching population process jump rates chart.

Once they enter the system through immigration, individuals give birth to independent lin-
eages that do not interact. As a superimposition of independent multitype branching processes
initiated at constant time rate, XN is non-explosive, that is, that XN(t ) is almost surely finite for
all t Ê 0.

We wish to model populations that are stable over time, so it is clear that the branching
population process must not tend to infinity with positive probability, that is, we do not want
it to be supercritical (see however [BT14] for the study of an epidemic process within a growing
population modeled using a supercritical branching process). We impose a slightly stronger
condition — subcriticality — to make sure that the first moment of the population process does
not go to infinity. From now on, we will therefore assume the following condition to hold:

ASSUMPTION G (Subcriticality of the immigration-free population BP). — The eigenvalues
of

A =



b1 −d1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 b2 −d2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,n bn −dn −∑
j 6=n θn, j

 (1.4)

have negative real parts.

2.2.2 Stability and scaling limit of the branching population process

We may now state our first convergence result for the population process. Although it is
a continuous-time version of standard results for discrete-time multitype branching processes
with immigration, we could not find the exact same statement in the existing literature.

PROPOSITION 2.2.1 (Ergodicity of the branching population process). — Let N Ê 1. The
branching population process XN is positive recurrent (we denote its limiting probability by
πN) and (‖·‖1+1)−uniformly exponentially ergodic. Moreover, for every N Ê 1 and indepen-
dently of x(0) ∈RN+ ,

lim
t→+∞E(XN(t )) =

∫
xdπN(x) =−NA−1B

where A is defined by (1.4).
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This statement is reminiscent of a classical result on multitype branching processes (see
Section 7 of Chapter IV of [AN72] or Theorem 4.2.2 of [Jag78]). However, the definition of such
processes slightly differs from the one we chose here: in the classical setting, individuals do
not move between nodes but split at death between other individuals of various types. Chap-
ter 4 of [Jag78] considers a unidimensional general branching process that allows individuals
to give birth at random times of their lives, and his proof could be adapted to fit our frame-
work. One could also consider a time-sampled version of XN to retrieve a multitype Bienaymé-
Galton-Watson process with immigration (see Chapter III.6 of [AN72]) or compare XN to multi-
type branching processes with splitting at death. Yet, we need a finer description of the return
time to compact subsets ofZn+ in order to establish not only positive recurrence but also uniform
ergodicity.

Proving Proposition 2.2.1 is easy when B = 0, using that d
dt E(XN(t )) = AE(XN(t )) and a gen-

eralized eigendecomposition of A (in this particular case π= δ0), so we now assume that B 6= 0.
We first show the following lemma.

LEMMA 1 (Existence of a Lyapunov function for XN). — There exist v ∈ Rn with positive coordi-
nates, c > 0 and R Ê 0 such that

v · (Ax +B) <−c(v · x +1)

for any x ∈Rn+ such that ‖x‖1 Ê R.

Proof of Lemma 1.— Recall that the transpose t A of A is invertible because of Assumption G
and set u = −t A−1B. Quick calculations show that u is the limit value of solutions of the n-
dimensional linear ODE

x ′ = t Ax +B (2.33)

since t A’s eigenvalues have negative real parts. Let us consider a solution of (2.33) such that y0

has positive coordinates. Writing (2.33) as

∀i ∈ �1, n�, y ′
i =

[
bi −di −

∑
j 6=i

θi , j

]
yi +

∑
j 6=i

θi , j y j +Bi

and using that the graph with vertices set �1, n� and with edges set {(i , j ) : θi , j > 0} is strongly
connected (so that all θi , j cannot be zero), we see that no yi ever reaches 0 in finite time. As a
result, u has nonnegative coordinates. Similarly, if ui = 0 then u j = 0 for any j such that θi , j > 0,
hence u = 0 by induction because of the graph connectivity, which contradicts the fact that
B 6= 0. All components of u are therefore positive. Now t Au = −B, B has nonnegative compo-
nents and t A is invertible, so for any x ∈ Rn+ one may find v in a neighborhood of u and C in a
neighborhood of B such that both v and C have positive components and such that t Av = −C.
This rewrites t v A =−t C, so

v · (Ax +B) =−C ·x + v ·B.

Defining

c = mini Ci

2maxi vi
> 0
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and

R = 1

mini vi

(
1+ v ·B

c

)
then yields the result.

Proof of Proposition 2.2.1.— Lemma 1 shows that f : x 7→ 1+v ·x satisfies Condition (CD2) from
[MT93b] with V = f , C = {x ∈ Zn+ : ‖x‖1 É R} and d = maxi vi R since the infinitesimal generator
of A of XN is such that A f (x) = v · (Ax+B) for any x ∈Zn+. Moreover, it is not difficult to see that
all compact sets of Zn+ are δ0-petite for any skeleton chain of XN by considering sequences of
appropriate transfers and death events — recalling that Assumption G implies that at least one
of the di is positive. Theorem 1.3.21 then yields the expected result. The proposition on the first
moment of π comes from the fact that

∫
(Ax +B)dπ(x) = 0 since x 7→ Ax +B is the value of the

generator of XN applied to Id. ä

Just as expected, the limiting average population size −NA−1B is proportional to the scaling
factor N. Additional results on the limiting probability πN can be found in Appendix B.

We are interested in the behavior of our process over finite time intervals as N tends to in-
finity. The mean equilibrium value z∗ =−A−1B of XN/N does not depend on N, and as N grows
we expect the scaled superimposition of independent lineages to get smoother (see Figure 2.4,
where the parameter values are chosen arbitrarily to make the figure easy to read and assimi-
late). This intuition is confirmed by the following law of large numbers, which is a direct conse-
quence of Theorem 1.3.32:

PROPOSITION 2.2.2. — Define x as the solution of the Cauchy problem x ′ = Ax +B with
initial value x(0), that is,

x : R −→ Rn

t 7−→ e t A(A−1B+x(0))−A−1B
.

For any T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
−x(t )

∥∥∥∥∞
= 0

)
= 1.

The deterministic process x = (x(t ))tÊ0 converges to its equilibrium value x∗ := −A−1B at
an exponential rate. When coupling further dynamics with the population process, it is there-
fore common to consider that the latter starts from some point close to x∗. The following re-
sult provides bounds for population fluctuations over very large time intervals for such initial
conditions. It will prove of great interest when coupling these population dynamics with SIR
processes in Chapter 3, that will almost behave on finite time intervals as if the population of
each node were constant. It directly stems from the Freidlin-Wentzell-type results on large devi-
ations from a deterministic system adapted to Poisson perturbations, and more precisely from
Theorem 1.3.37.
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Figure 2.4: Simulated values of XN(t )/N (t ∈ [0,100]) for N = 10 and N = 100 and limiting
deterministic process with arbitrary parameter values n = 3, x̃0 = (5,2,20), B̃ = (1, .5, .5),

d = (.1, .2, .1), b = (.1, .05, .02), θ1,2 = θ1,3 = .2, θ2,1 = .1, θ2,3 = .5, θ3,1 = .1 and θ3,2 = 0. The time
unit is arbitrary.

PROPOSITION 2.2.3 (Exit time of a branching population process). — Recall that for all N Ê 0,
XN(0) = bNx(0)c. For any ε ∈ (0,‖x∗‖2), denote by τN

ε the exit time of the ball B2(x∗,ε) by
XN/N. Then for ε small enough, there exists Vε(x∗) > 0 such that whenever x(0) ∈B2(x∗,ε),
for any α> 0:

lim
N→+∞

P
(
e(Vε(x∗)−α)N < τN

ε < e(Vε(x∗)+α)N
)
= 1.

The constant Vε(x∗) above is the exit cost from B2(x∗,ε) starting from x∗ for the dynamical
system x ′ = Ax +B and the Poisson perturbation considered, as introduced in Subsection 1.3.4.

Proof of Proposition 2.2.3.— This Proposition is Theorem 1.3.37 applied to a modified version
of XN/N with rates vanishing outside of B2 (x∗,2ε), for instance the scaled process X̃N/N where
X̃N is defined from the same Poisson processes and with the same initial condition as XN with
all rates in (1.7) multiplied by

σ(x/N) = 1‖x/N−x∗‖2Éε+1ε<‖x/N−x∗‖2É2ε

(
2− ‖x/N−x∗‖2

ε

)
.

The trajectories of X̃N/N are the same as those of XN/N until τN
ε , so it is sufficient to apply Theo-

rem 1.3.37 to X̃N/N. Note that B2(x∗,ε) lies in the domain of attraction of x∗ for the dynamical
system x ′ =σ(x)Ax+B since A is negative definite. It is an easy matter to check Assumption A of
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Subsection 1.3.4. What remains to be shown is that Vε(x∗) := miny∈∂B2(x∗,ε) V(x∗, y) is positive,
V(x∗, ·) denoting the quasipotential introduced in Subsection 1.3.4.

It follows from A having only eigenvalues with negative real parts that there exist ε′ and η

in
(
0, ε2

]
such that for any absolutely continuous function φ : R → Rn , if ε′ < ‖φ(t ) − x∗‖ < ε

then d
dt ‖φ(t )− x∗‖2

2 < 0 whenever ‖φ̇(t )− (Aφ(t )+B)‖2 < η. The definition of the quasipotential
V(x∗, · · · ) implies that

Vε(x∗) Ê inf
y∈∂B2(x∗,ε)

inf
y ′∈∂B2(z∗,ε′)

inf
∫ T2

T1

L(φ(t ),φ̇(t ))dt , (2.34)

where the third infimum is taken over the set of {z ∈ Rn : ε′ É ‖z − x∗‖2 É ε}-valued absolutely
continuous functions φ on some [T1,T2] (with −∞ É T1 < T2 É +∞) such that φ(T1) = y ′ and
φ(T2) = y , and L is defined by

L(z,β) := max
u∈Rn

[
β ·u −∑

i
(eui −1)(Bi +bi zi )−∑

i
(e−ui −1)di zi −

∑
i 6= j

(eu j−ui −1)θi , j zi

]
(2.35)

for all z ∈ Rn+ and all β ∈ Rn . Now take y ∈ ∂B2(x∗,ε) and y ′ ∈ ∂B2(x∗,ε′) and assume that
inf

∫ T2
T1

L(φ(t ),φ̇(t ))dt = 0, with the infimum defined as before. For any choice of φ if follows
from the definition of ε′ and η that:

ε2 −ε′2 É ‖y −x∗‖2
2 −‖y ′−x∗‖2

2

É
∫

t :‖φ̇(t )−(Aφ(t )+B)‖2>η
d

dt
‖φ(t )−x∗‖2

2dt

= 2
∫

t :‖φ̇(t )−(Aφ(t )+B)‖2>η
〈φ(t )−x∗,φ̇(t )〉dt

É 2ε
∫

t :‖φ̇(t )−(Aφ(t )+B)‖2>η
‖φ̇(t )‖2dt ,

by the Cauchy-Schwarz inequality, so∫
t :‖φ̇(t )−(Aφ(t )+B)‖2>η

‖φ̇(t )‖2dt Ê 1

2

ε2 −ε′2
ε

Ê 3ε

8
. (2.36)

Now there exists δ> 0 such that for all z ∈B2(x∗,ε) and all β ∈Rn ,

L(z,β) Ê δ
(
‖β− (Az +B)‖2 − η

2

)
, (2.37)

as seen by considering u = δ
β−(Az+B)

‖β−(Az+B)‖2
in (2.35) if Az +B 6= β and using a Taylor expansion for

δ≈ 0 for the function maximized in (2.35), so

L(z,β) Ê δ
(
‖β‖2 −‖Az +B‖2 − η

2

)
. (2.38)

Let M > 0. If φ is such that ∫ T2

T1

L(φ(t ),φ̇(t ))dt < δη

2M
,
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then the Lebesgue measure of {t ∈ [T1,T2] : ‖φ̇(t )− (Aφ(t )+B)‖2 Ê η} has to be lower than 1
M

because of (2.37). For such a φ:∫ T2

T1

L(φ(t ),φ̇(t ))dt Ê
∫

t :‖φ̇(t )−(Aφ(t )+B)‖2>η
L(φ(t ),φ̇(t ))dt

Ê
∫

t :‖φ̇(t )−(Aφ(t )+B)‖2>η
δ

(
‖φ̇(t )‖2 −‖Aφ(t )+B‖2 − η

2

)
dt

Ê δ
(

3ε

8
− supz∈B2(x∗,ε) ‖Az +B‖2 + η

2

M

)
,

using (2.36), which contradicts, for M large enough, the fact that
∫ T2

T1
L(φ(t ),φ̇(t ))dt can be made

arbitrarily small for some choice of φ. This and (2.34) yield Vε(x∗) > 0 since δ does not depend
from the choice of y and y ′, which ends the proof. ä

Despite its high tractability, the branching process we just considered fails to take into ac-
count the fact that populations we deal with in the framework of our cattle trade application are
controlled and necessarily bounded above by the carrying capacities of holdings. By consider-
ing lineages that do no interact with each other, it allows for the total population of the system
to reach an arbitrarily large level with positive probability. Moreover, it assumes that transfers
from one holding to another occur at a rate that is proportional to the population of the original
patch, regardless of how close the population of the target holding is from the number of ani-
mals this holding can effectively handle. This leads us to define another population jump model,
with more complex jump rates — that entail an increased complexity of the scaling limiting dy-
namical system — but more realistic logistic dynamics and a finite number of states.

2.3

The logistic population model

In this section, we introduce and study another metapopulation jump process on Zn+, that
we will refer to as the logistic population model. For every node i , we define a capacity NKi >
0 that intervenes in the logistic rates or importation to node i , its interior population logistic
growth rate and the "pseudo-logistic" rates of transfers to node i from any other node. Logistic
dynamics, first introduced by Verhulst [Ver38], account for the saturation effect of a population
that cannot sustain Malthusian growth because of its carrying capacity, that may refer to space,
technology or resource constraints.

2.3.1 Definition of the logistic population model

Let Ki > 0 for all i ∈ �1, n�. We take z(0) ∈ ∏n
i=1[0,Ki ], and consider independent Poisson

measures NB
i , Nb

i , Nd
i , Ni , j on R+×R+ with intensity ds du for any (i , j ) ∈ I . For all N Ê 1, we

define the logistic population process XN as the solution of the integral equation
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XN
i (t ) = bNzi (0)c+

∫ t

0

∫
R+

1uÉBi (NKi−XN
i (s))+NB

i (ds,du)

+
∫ t

0

∫
R+

1
uÉ bi

N XN
i (s−)(NKi−XN

i (s))+
Nb

i (ds,du)−
∫ t

0

∫
R+

1uÉdi XN
i (s−)N

d
i (ds,du)

+ ∑
j 6=i

∫ t

0

∫
R+

1
uÉ θ j ,i

N XN
j (s−)(NKi−XN

i (s−))+
N j ,i (ds,du)

− ∑
j 6=i

∫ t

0

∫
R+

1
uÉ θi , j

N XN
i (s−)(NK j−XN

j (s−))+
Ni , j (ds,du), (2.39)

for all i ∈ �1, n�, where the bi ,di and θi , j are nonnegative real numbers. For any N Ê 1, (XN(t ))tÊ0

is a Zn+-valued jump process with initial value XN(0) = bNz(0)c and the following transition rates
under P:

Transition Rate at state x

x → x +ei

(
Bi + bi

N xi

)
(NKi −xi )+

x → x −ei di xi

x → x −ei +e j
θi , j

N xi (NK j −x j )+

(1.5)

Table 2.3: Logistic population process jump rates chart.

XN is therefore a
∏n

i=1 �0, dNKi e�-valued Markov jump process. Here the scaling parameter
N intervenes in the carrying capacity NKi of patches, which is quite intuitive since this capacity
determines the maximal size of the system. It also appears in the birth coefficients bi

N and the

transfer coefficients
θi , j

N , which is a purely technical condition so scaling limit Theorem 1.3.32
does apply.

Once again, we will assume that the directed graph with vertices set �1, n� and edges set
{(i , j ) : θi , j > 0} is strongly connected, so that for any i and j , any individual born in node i can
get to node j with positive probability during its lifetime. We also assume that B = (B1, . . . ,Bn) 6=
0, and that d = (d1, . . . ,dn) 6= 0. These last conditions ensure that XN is irreducible.

2.3.2 Stability and scaling limit of the logistic population process

From the irreducibility of the jump processes XN with finite state space, we deduce the fol-
lowing straightforward result:

PROPOSITION 2.3.1 (Ergodicity of the logistic population process). — Let N Ê 1. The logistic
population process XN is positive recurrent and exponentially ergodic.

As in the case of the branching population model, Theorem 1.3.32 applies to yield a scaling
limit over finite time intervals for processes XN. Defining the dynamical system (S ′

pop) as

∀i ∈ �1, n�, żi = (Bi +bi zi )(Ki − zi )+−di zi +
∑
j 6=i

θ j ,i z j (Ki − zi )+−
∑
j 6=i

θi , j zi (K j − z j )+, (S ′
pop)
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we obtain

PROPOSITION 2.3.2 (Scaling limit of a logistic population process). — Let (XN)NÊ1 be the
sequence of logistic population processes. Define z as the solution of the dynamical system
(S ′

pop) with initial value z(0). Then for any T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
− z(t )

∥∥∥∥∞
= 0

)
= 1.

The behavior of (S ′
pop) is much less straightforward than that of the dynamical system x ′ =

Ax +B seen in the branching case. We derive the existence of an equilibrium for (S ′
pop) from

Brouwer’s fixed point theorem:

PROPOSITION 2.3.3 (Existence of an equilibrium for (S ′
pop)). — (S ′

pop) admits an equilib-
rium z∗ ∈∏n

i=1[0,Ki ] (possibly not unique).

Proof of Proposition 2.3.3.— For any fixed i ∈ �1, n� and any z ∈ Rn+, we denote by z̃i the Rn−1+ -
vector (z1, . . . , zi−1, zi+1, . . . , zn). For any given value of z̃i , it is an easy matter to see that there
exists a unique nonnegative solution zi = ρi (z̃i ) to the second-degree polynomial equation

(Bi +bi zi )(Ki − zi )+−di zi +
∑
j 6=i

θ j ,i z j (Ki − zi )+−
∑
j 6=i

θi , j zi (K j − z j )+ = 0

and that this solution lies within [0,Ki ]. This defines continuous response functions ρi : Rn−1+ →
[0,Ki ]. Our aim is to show that there exists z ∈ ∏n

i=1[0,Ki ] such that zi = ρi (z̃i ) for all i ∈ �1, n�,
that is, a fixed point of

Φ :
∏n

i=1[0,Ki ] −→ ∏n
i=1[0,Ki ]

x 7−→ (ρ1(z̃1), . . . ,ρn(z̃n))
.

ButΦ is continuous since the ρi and the z 7→ z̃i projections are, so Brouwer’s fixed point theorem
shows that there indeed exists an equilibrium for (S ′

pop) in
∏n

i=1[0,Ki ]. ä

From the irreducibility of Θ and the fact that d 6= 0, we can easily see that z∗ is necessarily
interior to

∏n
i=1[0,Ki ], that is, that 0 < z∗

i < Ki for all i ∈ �1, n�.

Numerical approximations of the deterministic population processes following (S ′
pop) sug-

gest that z∗ could be a unique, globally asymptotically stable equilibrium of (S ′
pop) (see Figure

2.5). When defining epidemic models coupled with a logistic population process, we will there-
fore assume that the population process quickly converges (just as in the branching case) and
initiate the population dynamics in a neighborhood of the equilibrium. As a weaker result than
Proposition 2.2.3 on population stability over time, the following Proposition will prove useful
when studying long-term logistic-driven epidemic dynamics in Chapter 3.
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x1

x2

7

5

Figure 2.5: Vector field associated with (S ′
pop) with n = 2, K1 = 7, K2 = 5, B1 = B2 = 1, b1 = b2 = 1,

d1 = d2 = 1, θ1,2 = θ2,1 = 1. The curve in red is a solution of (S ′
pop) with initial condition

x(0) = (.5,1.8), and the curve in blue a solution with initial condition x(0) = (6, .3).

PROPOSITION 2.3.4 (Lower bound for the scaled population). — There exist positive con-
stants ε and V such that whenever mini zi (0) Ê ε for every i ∈ �1, n�

lim
N→+∞

P(∀t ∈ [
0,eNV]

,min
i

XN
i (t ) Ê Nε) = 1

It proceeds from Theorem 4 of [PSK17] with the same reasoning as in Section 7 of [KP18]
adapted to the case of potentially multiple equilibria, using the fact that the vector field associ-
ated to (S ′

pop) on the boundary of Kε :=∏n
i=1[ε,Ki ] is directed towards the inside of Kε when ε is

small enough (see Figure 2.5 for an illustration in the case n = 2).



3

The epidemic model

The branching and the logistic population models defined in Chapter 2 are two ways of rep-
resenting the evolution over time of cattle populations with local demographics and connected
through animal trade. We now proceed to the definition of epidemic SIR processes on a network
for which the total population of each node follows either a branching or a logistic population
process, and in which animals are submitted to the same demographic dynamics regardless of
their sanitary status. Section 3.1 states results for the case n = 1 (one single population), that
allows for explicit calculations and simple characterizations of the behavior of the epidemic. In
Section 3.2, we define two SIR models corresponding to each of the jump processes specifica-
tions presented in Chapter 2. Under the assumption that no immigration of infectives is allowed
(Subsections 3.2.1.1 and 3.2.2.1), branching approximation results are then derived for both of
these models, for which we compute the probability of a major epidemic outbreak and give a
lower bound for the total size and extinction time of the epidemic when a stable endemic equi-
librium exists. When infectives are allowed to enter the system through immigration (Subsec-
tions 3.2.1.2 and 3.2.2.2), we state approximation and stability results describing the persistence
of the epidemic at an endemic level over long periods of time.

3.1

The unitype (one-population) case

We start by studying the branching-driven and logistic-driven epidemic models in the case
of a single isolated population, that is, when n = 1. We will use this unitype case both as an
introductory model and as a reference for studying holdings with no outflow in Chapter 4.

A formal definition of the branching-driven and logistic-driven SIR processes using Poisson
random measures will be provided in Section 3.2. It is sufficient for the purpose of this prelimi-
nary study (Subsections 3.1.1 and 3.1.2) to provide with a more heuristic introduction.

3.1.1 The unitype branching-driven SIR model

We consider for every N Ê 1 aZ3+-valued pure Markovian jump process (SN(t ), IN(t ),RN(t ))tÊ0

defined on (Ω,A ) and described by the following transition rates at state (s, i ,r ), where p, q,d ,β
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and γ are nonnegative real numbers such that p + q É 1, B > 0 and d − b < 0, and where x =
s + i + r :

Transition Rate

(s, i ,r ) → (s +1, i ,r ) pNB+bx
(s, i ,r ) → (s, i +1,r ) qNB
(s, i ,r ) → (s, i ,r +1) (1−p −q)NB
(s, i ,r ) → (s −1, i ,r ) d s
(s, i ,r ) → (s, i −1,r ) di
(s, i ,r ) → (s, i ,r −1) dr

(s, i ,r ) → (s −1, i +1,r ) β i s
x

(s, i ,r ) → (s, i −1,r +1) γi

(3.1)

Table 3.1: Branching-driven SIR process rates chart.

It is easy to see that for any N Ê 1, XN := SN+IN+RN is a unitype branching population jump
process with rates as in Section 2.2. (SN(t ), IN(t ),RN(t ))tÊ0 models a population divided into
three compartments S (for susceptibles), I (for infectives) and R (for removed) with respective
populations SN(t ), IN(t ) and RN(t ) at time t . Each infected individual makes contact are rate β
with an individual chosen independently and uniformly from the total population. Contacted
individuals that are still susceptible get infected; the their status of non-susceptible contacted
individuals does not change. When infected, an individual recovers at rate γ. In addition, all in-
dividuals die at rate d and give birth to a new individual in compartment S at rate b (we assume
that no vertical transmission of the disease occurs). Immigration occurs in the population at
rate B, with a probability p for the new individual to arrive in compartment S, a probability q to
arrive in compartment I, and a probability 1−p −q to arrive in compartment R.

3.1.1.1 The case p = 1

In this entire subsection, we assume that p = 1 and therefore q = 0. In this case, only in-
fected individuals that are present in the system at time t = 0 can initiate epidemic dynamics.
Therefore, our main focus will be on the probability for an epidemic started by one initial infec-
tive to cause a major epidemic outbreak, and on the total size of the epidemic in this case, that is,
the total number of infection transitions of the type (s, i ,r ) → (s−1, i +1,r ) occurring before the
process is absorbed by Z+× {0}×Z+ (which we will refer to as the extinction of the epidemic).
We therefore assume that (SN(0), IN(0),RN(0)) = (XN(0)− I(0), I(0),0) for some I(0) ∈ Z+ and for
all N Ê 1 such that XN(0) = bNx(0)c Ê I(0). The following results will be proved in the general
multitype case in Section 3.2.1:

THEOREM 3.1.1 (Finite-time convergence to a multitype branching process (branching
case)). — It is possible to define the (SN, IN,RN) processes such that there exists a Zn+-valued
multitype branching process (I′(t ))tÊ0 on (Ω,A ,P) with I′(0) = I(0) describing a population
of individuals giving birth at rate β and dying at rate d +γ, such that for any time T Ê 0,
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P-almost surely:
∃N0 ∈Z∗

+ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u).

In particular, if τN (resp. ZN) denotes the extinction time (resp. total size) of the epidemic
and τ′ (resp. Z′) that of the branching process, then

τN −→
N→+∞

τ′ and ZN −→
N→+∞

Z′ (3.2)

P-almost surely.

We say that the epidemic undergoes a major outbreak whenever Z′ =+∞ and a minor out-
break otherwise. The theorem above indicates that in the case of a major outbreak the total size
of the epidemic goes to infinity with N, and that it is bounded in the case of a minor outbreak.
The probability of major outbreak P(Z′ =+∞) is therefore a quantity of paramount interest. It is
given by the following result:

PROPOSITION 3.1.2 (Major outbreak probability (unitype branching case)). — Let W denote
the number of offspring of an individual in the branching process I′. Then:

1. R0 := E(W) = β
d+γ .

2. The branching process I′ is subcritical is R0 < 1, critical if R0 = 1 and supercritical if
R0 > 1.

3. If the branching process I′ is subcritical or critical, then the major outbreak probabil-
ity is 0. If it is supercritical, then this probability is strictly positive and equals 1−ζI(0),
where ζ is the only fixed point in [0,1) of the moment generating function

G : [0,1] −→ [0,1]

s 7−→ γ+d
(1−s)β+d+γ

,

that is,

ζ= d +γ
β

.

Theorem 3.1.1 states that the total size ZN of the epidemic almost surely goes to infinity with
N on the part of the sample space where the approximating branching process I′ does not get
extinct. A standard result on the unidimensional SIR model without demography states that
ZN satisfies a central limit theorem conditionally on a major outbreak occurring (see Chapter 4
of [AB00a]). In such closed frameworks, major outbreaks are characterized by a positive frac-
tion of the population being affected by the epidemic at some point in time ([Sca90, AB00a],
and see [BC93] for a multidimensional generalization) when individuals cannot enter or leave
the system. In our open setting, we will see in the study of the general multitype case that on
the event of a major outbreak, the maximal number of infectives during the course of the epi-
demic is at least equal to a fraction of N with high probability as N goes to infinity when the
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population process starts at its equilibrium value. Although this type of bound is the general
rule in closed population models, it happens to be quite bad in cases where susceptible popu-
lation renewal through demographic mechanisms is strong enough to entail endemicity. This
latter phenomenon has been thoroughly investigated for deterministic systems in the single-
population case (see the deterministic approximations in [AB00b, Nå99, VHG95, VH97]); in our
stochastic framework, we may reasonably expect an increase of N to affect both the typical in-
fective population during the course of the epidemic and the time scale of the endemic period,
thus resulting in a more than proportional total size response.

Defining the dynamical system

ṡ = B+b(s + i + r )−d s −βi s
s+i+r

i̇ = βi s
s+i+r −di −γi

ṙ = γi −dr

 (S 1,0
epi )

we obtain the following:

PROPOSITION 3.1.3 (Equilibrium for (S 1,0
epi )). — Assume that β > d +γ. Then any solution

(s, i ,r ) of (S 1,0
epi ) such that i (0) > 0 converges to the endemic steady state

(s∗, i∗,r ∗) =
(

d+γ
β x∗,d x∗

(
1

d+γ − 1
β

)
,γx∗

(
1

d+γ − 1
β

))
,

where x∗ := B
d−b .

Proof of Proposition 3.1.3.— It is not difficult to see that β > d +γ is a necessary and sufficient
condition for the existence of an endemic equilibrium for (S 1,0

epi ) and that the latter is precisely

(s∗, i∗,r ∗) (see [Nå99] for the study of a similar model). If s(0)+ i (0)+ r (0) = x∗ := B
d−b , then

the total population is constant and equal to x∗ so we can get rid of the third line of (S 1,0
epi )

and the dynamical system can be seen as a Lotka-Volterra prey-predator model (where preys
are susceptibles and predators are infectives, see [Vol28]) with prey immigration. For any initial
condition in R+×R∗+×R+, standard arguments (see [Vol28]) show that s, i and r are well-defined
on R+ and positive. Moreover, s + i + r converges to s∗+ i∗+ r ∗ = x∗, so it is sufficient to show
that (s, i ) converges to (s∗, i∗). Setting

V(t ) = s(t )− s∗ log(s(t ))+ i (t )− i∗ log(i (t ))

for all t Ê 0 yields, after a few calculations:

V̇(t ) = (B+b(s + i + r )(t ))

(
2− s∗

s(t )
− s(t )

s∗

)
︸ ︷︷ ︸

É0

+b
(
x∗− (s + i + r )(t )

)(
1− s(t )

s∗

)
︸ ︷︷ ︸

=O(x∗−(s+i+r )(t ))=O(e(b−d)t )

.

Now, if s(0)+ i (0)+ r (0) É 2x∗, V is lower bounded by −2x∗| log(4x∗)| > −∞, so for any η > 0 its
derivative cannot be lower that −η for an infinite amount of time. As a result, for any δ > 0 we
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Figure 3.1: Projection on the (s, i ) plane of the vector field associated with (S 1,0
epi ) with constant

population x∗ = 10, B = 5, d = 1, b = .5, β= 1 and γ= 3. Blue curves are nullclines for s∗ and i∗.
The red curve is the solution of (S 1,0

epi ) starting from point (7,2).

may only have s(t ) ∉ [s∗−δ, s∗+δ] for a finite amount of time because B+b(s + i + r ) is greater

than B > 0 and because
∫ +∞

0 b (x∗− (s + i + r )(t ))
(
1− s(t )

s∗
)

dt is finite. This entails that s cannot

cross [s∗−2δ, s∗−δ] or [s∗+δ, s∗+2δ] an infinite number of times since ṡ is bounded because of
(S 1,0

epi ). Therefore s(t ) lies in [s∗−δ, s∗+δ] for t large enough, so s does converge to s∗. Similar

arguments yield the convergence of i towards i∗ using the first equation of (S 1,0
epi ). ä

The vector field associated with (S 1,0
epi ) is represented in Figure 3.1.

Theorem 1.3.32 states that the scaling limit of (SN, IN,RN) is a solution of (S 1,0
epi ) when the

initial number of infectives is a proportion of N. This is not the case here since we assumed that
IN(0) = I(0) did not depend on N, but knowing that IN goes above a proportion of N with high
probability conditionally on the event of major outbreak makes it possible to conclude. In the
case where the epidemics takes off, that is, conditionally to a major outbreak event, the scaled
epidemic process (SN, IN,RN)/N observed after the number of infectives reaches this propor-
tion of N converges on finite time intervals to a solution of (s∗, i∗,r ∗), and then approaches the
endemic steady state described in Proposition 3.1.3. Metastability results from Section 1.3.4.2
then give an estimation of the time needed for the scaled process to leave a ball centered on this
steady state. This entails a lower bound for the extinction time and the final size of the epidemic:
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THEOREM 3.1.4 (Outcome of a unitype branching-driven epidemic). — Assume that
β> d +γ. Then there exists V > 0 such that:

lim
N→+∞

P
(
τN > eVN

∣∣Z′ =+∞)= 1 (3.3)

and
lim

N→+∞
P

(
ZN > eVN

∣∣Z′ =+∞)= 1. (3.4)

3.1.1.2 The case q > 0

When q > 0, a positive proportion of infectives enter the system through immigration. Study-
ing the major outbreak probability for an epidemic started by a fixed number of individuals is
not relevant anymore since the mean number of infectives entering the system through immi-
gration per unit of time is proportional to N. The concepts of epidemic extinction time and total
size do not transpose either. However, scaling limit Theorem 1.3.32 shows that if we consider an
initial population of infectives that is proportional to N, that is, IN(0) = bNI(0)c for some I(0) Ê 0
(possibly zero), the scaled epidemic processes converge almost surely on finite time intervals
to a solution of a dynamical system that itself converges to the unique equilibrium point of this
system.

More precisely, defining the dynamical system

ṡ = pB+b(s + i + r )−d s −βi s
s+i+r

i̇ = qB+βi s
s+i+r −di −γi

ṙ = (1−p −q)B+γi −dr

 (S 1
epi)

on R3+ (with s
s+i+r = 0 when s = i = r = 0), we obtain the following:

PROPOSITION 3.1.5 (Equilibrium for (S 1
epi)). — (S 1

epi) admits a unique equilibrium

(s∗, i∗,r ∗) ∈R3+, that is globally asymptotically stable and such that s∗+ i∗+ r ∗ = x∗ and

i∗ = 2qBd x∗√[
(γ+d)d x∗−β(

(p +q)B+bx∗)]2 +4β(γ+d)qBd x∗+ (γ+d)d x∗−β(
(p +q)B+bx∗) ,

where we recall that x∗ = B
d−b .

Proof of Proposition 3.1.5.— We first notice that s + i + r = x admits x∗ for unique equilibrium
value and that any equilibrium (s∗, i∗,r ∗) of (S 1

epi) is such that i∗ > 0 since q > 0. Solving

s

x∗ = γ+d

β
− qB

βi
= pB+bx∗

d x∗+βi

yields both the existence and the unicity of (s∗, i∗,r ∗). To show the convergence of (s, i ,r ) to-
wards (s∗, i∗,r ∗), we set

V(t ) = s(t )− s∗ log(s(t ))+ i (t )− i∗ log(i (t ))
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Figure 3.2: Projection on the (s, i ) plane of the vector field associated with (S 1
epi) with constant

population x∗ = 10, p = .6, q = .4, B = 5, d = 1, b = .5, β= 1 and γ= 3. Blue curves are nullclines
for s∗ and i∗. The red curve is the solution of (S 1,0

epi ) starting from point (7,2).

for all t Ê 0 as in the proof of Proposition 3.1.3, derive

V̇(t ) = (B+b(s + i + r )(t ))

(
2− s∗

s(t )
− s(t )

s∗

)
+qB

(
2− i∗

i (t )
− i (t )

i∗

)
︸ ︷︷ ︸

É0

+b
(
x∗− (s + i + r )(t )

)(
1− s(t )

s∗

)
︸ ︷︷ ︸

=O(x∗−(s+i+r )(t ))=O(e(b−d)t )

.

and conclude as in the proof of Proposition 3.1.3. ä

The vector field associated with (S 1
epi) is represented in Figure 3.2.

The scaled epidemic process converges towards a solution of (S 1
epi) that reaches any ball

centered on the equilibrium given by Proposition 3.1.5 in finite time. Results from Subsection
1.3.4.2 state that the time it takes to the scaled process to exit this ball grows exponentially with
N. From the strong Markov property, we deduce that the scaled process observed from the mo-
ment it exits the ball converges again to a solution of (S 1

epi), that enters the ball again in finite
time, then takes an exponential time to exit it and so on. We therefore have the following result,
stating that over appropriate time scales the scaled process spends "most of its time" in a ball
centered on the equilibrium.
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PROPOSITION 3.1.6 (Time spent in a neighborhood of the equilibrium of (S 1
epi)). — Assume

that IN(0) = bNI(0)c for all N Ê 1. Then for every ε> 0 there exist T > 0 and V > 0 such that:

lim
N→+∞

P

(∫ T+eVN

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eVN

)
= 1,

where (s∗, i∗,r ∗) is the equilibrium given by Proposition 3.1.5.

This proposition is proved in the general multitype case in the next section. It suggests that
the value of i (and in the general case, of ‖i‖1) at the equilibrium of (S 1

epi) is a relevant quantity
to evaluate the outcome of an epidemic whenever immigration of infectives is allowed by the
model.

3.1.2 The unitype logistic-driven SIR model

Results on the unitype logistic-driven SIR model are parallel to these on the unitype branching-
driven SIR model we just presented. What opposes these two models are their demographic
dynamics, that do not affect the form of the limiting branching process when the population
process is started from the equilibrium.

We consider for every N Ê 1 aZ3+-valued pure Markovian jump process (SN(t ), IN(t ),RN(t ))tÊ0

defined on (Ω,A ) and described by the following transition rates at state (s, i ,r ), where p, q,d ,β
and γ are nonnegative real numbers such that p +q É 1, B > 0 and K > 0, and where x = s+ i +r :

Transition Rate

(s, i ,r ) → (s +1, i ,r )
(
pB+ b

N x
)

(NK−x)+
(s, i ,r ) → (s, i +1,r ) qB(NK−x)+
(s, i ,r ) → (s, i ,r +1) (1−p −q)B(NK−x)+
(s, i ,r ) → (s −1, i ,r ) d s
(s, i ,r ) → (s, i −1,r ) di
(s, i ,r ) → (s, i ,r −1) dr

(s, i ,r ) → (s −1, i +1,r ) β i s
x

(s, i ,r ) → (s, i −1,r +1) γi

(3.5)

Table 3.2: Logistic-driven SIR process rates chart.

It is again easy to see that for any N Ê 1, XN := SN + IN +RN is a unitype logistic population jump
process as defined in Section 2.3.
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3.1.2.1 The case p = 1

As in Subsection 3.1.1.1, we assume that p = 1 (so q = 0), and that (SN(0), IN(0),RN(0)) =
(XN(0)− I(0), I(0),0) for some I(0) ∈Z∗+ and for all N Ê 1 such that XN(0) = bNz(0)c Ê I(0). Simple
calculations show that the equilibrium value z∗ of the logistic dynamical system ż = (B+bz)(K−
z)+−d z is

z∗ = bK−d −B+
√

(bK−d −B)2 +4KbB

2b
.

We get the following:

THEOREM 3.1.7 (Branching approximation, unitype logistic case). — Theorems 3.1.1 and
3.1.2 are true, with the additional requirement that z(0) = z∗.

Defining the dynamical system

ṡ = (B+b(s + i + r ))(K− (s + i + r ))+−d s −βi s
s+i+r

i̇ = βi s
s+i+r −di −γi

ṙ = γi −dr

 (S ′1,0
epi )

on R3+, we can show the existence, uniqueness and stability of an endemic equilibrium for
(S ′1,0

epi ):

PROPOSITION 3.1.8 (Equilibrium for (S ′1,0
epi )). — Assume β> d +γ. Then any solution (s, i ,r )

of (S ′1,0
epi ) such that i (0) > 0 converges to the endemic steady state

(s∗, i∗,r ∗) =
(

d+γ
β z∗, (B+bz∗)(K−z∗)

d+γ − d z∗
β , γ(B+bz∗)(K−z∗)

d(d+γ) − γz∗
β .

)

The proof for this result is the same as that of Proposition 3.1.5 once noticed that s + i + r
necessarily converges to z∗ as in the original logistic population model associated with the dy-
namical system ż = (B+bz)(K− z)+−d z [Ver38].

The vector field associated with (S ′1,0
epi ) is represented in Figure 3.3.

The same reasoning as in the branching case yields the following:

THEOREM 3.1.9 (Outcome of a unitype logistic-driven epidemic). — Assume that β> d +γ.
Then there exists V′ > 0 such that:

lim
N→+∞

P
(
τN > eV′N | Z′ =+∞

)
= 1 (3.6)

and
lim

N→+∞
P

(
ZN > eV′N | Z′ =+∞

)
= 1. (3.7)



g 3.1.2. THE UNITYPE LOGISTIC-DRIVEN SIR MODEL 98

s

i

ṡ > 0, i̇ < 0
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Figure 3.3: Projection on the (s, i ) plane of the vector field associated with (S ′1,0
epi ) with constant

population z∗ = 10, K = 11, B = 5, d = 1, b = .5, β= 1 and γ= 3. Blue curves are nullclines for s∗

and i∗. The red curve is the solution of (S ′1,0
epi ) starting from point (7,2).

3.1.2.2 The case q > 0

Assume that q > 0. Defining the dynamical system

ṡ = (pB+b(s + i + r ))(K− (s + i + r ))+−d s −βi s
s+i+r

i̇ = qB(K− (s + i + r ))++βi s
s+i+r −di −γi

ṙ = (1−p −q)B(K− (s + i + r ))++γi −dr

 (S ′1
epi)

we have the following convergence result.

PROPOSITION 3.1.10 (Equilibrium for (S ′1
epi)). — (S ′1

epi) admits a unique equilibrium
(s∗, i∗,r ∗), that is globally asymptotically stable and such that

i∗ = 2qBd z∗(K− z∗)p
∆+ (γ+d)d z∗(K− z∗)−β(

(p +q)B+bz∗)
(K− z∗)

,

where ∆ := [
(γ+d)d z∗−β(

(p +q)B+bz∗)
(K− z∗)

]2 +4β(γ+d)qBd z∗(K− z∗).



99 3.1. THE UNITYPE (ONE-POPULATION) CASE h

The vector field associated with (S ′1
epi) is represented in Figure 3.4.
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Figure 3.4: Projection on the (s, i ) plane of the vector field associated with (S 1
epi) with constant

population z∗ = 10, K = 11, p = .6, q = .4, B = 5, d = 1, b = .5, β= 1 and γ= 3. Blue curves are
nullclines for s∗ and i∗. The red curve is the solution of (S 1,0

epi ) starting from point (7,2).

Finally, we can state a counterpart to Proposition 3.1.6:

PROPOSITION 3.1.11 (Time spent in a neighborhood of the equilibrium of (S ′1
epi)). — As-

sume that IN(0) = bNI(0)c for all N Ê 1. Then for every ε> 0 there exist T > 0 and V′ > 0:

lim
N→+∞

P

(∫ T+eV′N

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eV′N

)
= 1,

where (s∗, i∗,r ∗) is the equilibrium given by Proposition 3.1.10.
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3.2

The multitype case

Let us now turn to the general case, that is, to the definition and study of multitype epidemic
processes coupled with the branching and logistic population models introduced in Chapter 2.
Most results we presented for the unitype case still hold with an increased notational sophis-
tication, but multitype models tend to prove less tractable and we must rely on numerical ap-
proximations for major outbreak probabilities and for the equilibria of the dynamical systems
involved. Moreover, the uniqueness and global attractivity of such equilibria have not (yet) been
established.

3.2.1 The branching-driven SIR model

Let us write the canonical basis ofR3n as (e s
1, . . . ,e s

n ,e i
1, . . . ,e i

n ,er
1, . . . ,er

n). Let the Bi , bi , di and
θi , j be parameters abiding fulfilling the requirements of Section 2.2. Finally, for any i ∈ �1, n�,
let βi , γi , pi , qi and ri be nonnegative parameters such that pi +qi + ri = 1.

We want to define a (SN, IN,RN) process modeling a metapopulation on n patches divided
each into three compartments S (for susceptibles), I (for infectives) and R (for removed) with
respective populations SN

i (t ), IN
i (t ) and RN

i (t ) at time t . Each infected individual in node i makes
a contact at rate β with an individual chosen independently and uniformly from the population
of node i . Contacted individuals that are still susceptible get infected; otherwise their status
does not change. No contact between individuals of different nodes occurs. When infected,
an individual in node i recovers at rate γi . In addition, all individuals in node i die at rate di ,
give birth to new individuals in compartment S at rate bi and migrate to node j at rate θi , j .
Immigration occurs in node i population at rate Bi , with a probability pi for the new individual
to arrive in compartment S, a probability qi to arrive in compartment I, and a probability ri to
arrive in compartment R.

Definition of the epidemic process

Just as in the unitype case, when p = 1we will be particularly interested in the probability for
an epidemic started by a fixed number of initial infectives (typically one) to take off and cause a
major epidemic outbreak, defined as the event of non-extinction of an approximating branch-
ing process. We therefore want to provide with a formal definition of the branching-driven SIR
process that will make branching approximations of the epidemic dynamics straightforward.
The strategy followed by [Cla96] in a closed framework with mobile populations is to first define
a (limiting) branching process I′, then tweak its rates to obtain the various epidemic processes
(SN, IN,RN). We will follow another approach and define all processes through a single set of
Poisson point measures, which will both result in a lighter formalism and in easier computa-
tions.
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We recall from the definition of the XN processes from Subsection 2.2 that the NB
i , Nb

i , Nd
i ,

Nβ

i , Nγ

i and Ni , j are independent Poisson random measures on R+×R+ with intensity ds du.

For any N, we define (SN
i , IN

i ,RN
i ) as the solution of

SN
i (t ) = bNxi (0)c− IN

i (0)+
∫ t

0

∫
R+

1qi NBi<uÉ(pi+qi )NBi NB
i (du,ds)

+
∫ t

0

∫
R+

1uÉbi XN
i (s−)N

b
i (du,ds)−

∫ t

0

∫
R+

1di IN
i (s−)<uÉdi (SN

i (s−)+IN
i (s−))N

d
i (du,ds)

−
∫ t

0

∫
R+

1
uÉβi IN

i (s−)
SN

i
(s−)

XN
i

(s−)

Nβ

i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1θ j ,i IN
j (s−)<uÉθ j ,i (SN

j (s−)+IN
j (s−))N j ,i (du,ds)

−
∫ t

0

∫
R+

1θi , j IN
i (s−)<uÉθi , j (SN

i (s−)+IN
i (s−))Ni , j (du,ds)

]
,

IN
i (t ) = IN

i (0)+
∫ t

0

∫
R+

1uÉqi NBi NB
i (du,ds)−

∫ t

0

∫
R+

1uÉdi IN
i (s−)N

d
i (du,ds)

+
∫ t

0

∫
R+

1
uÉβi IN

i (s−)
SN

i
(s−)

XN
i

(s−)

Nβ

i (du,ds)−
∫ t

0

∫
R+

1uÉγi IN
i (s−)N

γ

i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1uÉθ j ,i IN
j (s−)N j ,i (du,ds)−

∫ t

0

∫
R+

1uÉθi , j IN
i (s−)Ni , j (du,ds)

]
,

and

RN
i (t ) =

∫ t

0

∫
R+

1(pi+qi )NBi<uÉNBi NB
i (du,ds)+

∫ t

0

∫
R+

1uÉγi IN
i (s−)N

γ

i (du,ds)

−
∫ t

0

∫
R+

1di (SN
i (s−)+IN

i (s−))<uÉdi XN
i (s−)N

d
i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1θ j ,i (SN
j (s−)+IN

j (s−))<uÉθ j ,i XN
j (s−)N j ,i (du,ds)

−
∫ t

0

∫
R+

1θi , j (SN
i (s−)+IN

i (s−))<uÉθi , j XN
i (s−)Ni , j (du,ds)

]

for all i and all t . Considering Equation 2.32, it is easy to see that SN + IN +RN = XN.
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The (SN, IN,RN) are jump processes onZ3n+ with transition rates given by the following chart,
where x j = s j + i j + r j for all j ∈ �1, n�:

Transition Rate

(s, i ,r ) → (s, i ,r )+e s
j p j NB j +b j x j

(s, i ,r ) → (s, i ,r )+e i
j q j NB j

(s, i ,r ) → (s, i ,r )+er
j r j NB j

(s, i ,r ) → (s, i ,r )−e s
j d j s j

(s, i ,r ) → (s, i ,r )−e i
j d j i j

(s, i ,r ) → (s, i ,r )−er
j d j r j

(s, i ,r ) → (s, i ,r )+e s
k −e s

j θ j ,k s j

(s, i ,r ) → (s, i ,r )+e i
k −e i

j θ j ,k i j

(s, i ,r ) → (s, i ,r )+er
k −er

j θ j ,k r j

(s, i ,r ) → (s, i ,r )+e i
j −e s

j β j
i j s j

x j

(s, i ,r ) → (s, i ,r )+er
j −e i

j γ j i j

(3.8)

Table 3.3: Branching-driven SIR process rates chart (p = 1).

The properties of the epidemic process differs according to whether we assume or not that
infectives can enter the system through immigration. We therefore devote the two next subsec-
tions to each of these two cases.

3.2.1.1 The case p = 1
Let us first consider the case where all pi equal 1 (so qi = ri = 0 for all i ), which corresponds

to the assumption that all imported animals have the Susceptible health status. In all this sec-
tion, we assume that the initial quantity of infectives is fixed, that is, that IN(0) = I(0) ∈Zn+.

Branching approximation of the epidemic process

We define the multitype branching process I′ as the solution of the integral equation

I′i (t ) = Ii (0)−
∫ t

0

∫
R+

1uÉdi I′i (s−)N
d
i (du,ds)

+
∫ t

0

∫
R+

1uÉβi I′i (s−)N
β

i (du,ds)−
∫ t

0

∫
R+

1uÉγi I′i (s−)N
γ

i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1uÉθ j ,i I′j (s−)N j ,i (du,ds)−
∫ t

0

∫
R+

1uÉθi , j I′i (s−)Ni , j (du,ds)

]
,

for all i and all t . I′ is a Zn+-valued multitype branching process with birth rates vector β, death
rates vector d +γ and transition rates matrix Θ= (θi , j )i , j∈�1,n�.
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Our fundamental approximation result is the following Theorem. Heuristically, it relies on
the fact that when N is large, so is the typical population in each node, with a proportion of
susceptibles tending to one within the first infection events (remind that IN(0) = I(0) is indepen-
dent from N and that RN(0) = 0). Therefore, contacts made by infectives within their current
node on a finite time interval have a high probability of actually being infectious (that is, to hit
a susceptible individual). But the epidemic propagates like the branching process I′ as long as
no infective makes a contact with a non-susceptible individual, so IN and I′ coincide up to this
time, that goes to infinity with N:

THEOREM 3.2.1 (Finite-time convergence to a branching process). — P-almost surely:

∃N0 ∈Z∗
+ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u).

In particular, if τN (resp. ZN) denotes the extinction time (resp. total size) of the epidemic
and τ′ (resp. Z′) that of the branching process, then

τN −→
N→+∞

τ′ and ZN −→
N→+∞

Z′ (3.9)

P-almost surely.

The quantity ∫ t

0

∫
R+

1
βi I′i (s−)

SN
i

(s−)

XN
i

(s−)
<uÉβi I′i (s−)

Nβ

i (du,ds)

is the number of infections in node i occurred for the branching process I and not for the epi-
demic process IN at time t . These infections, that correspond to contacts made by infectious
individuals with non-susceptible ones, are called ghost infections [Mol77, Cla96]. The proof be-
low relies on the idea that almost surely, the number of ghost infections before time t is zero for
N large enough.

Proof of Theorem 3.2.1.— Processes IN and I′ coincide up to the smallest t Ê 0 such that∫ t

0

∫
R+

1
βi I′i (s−)

SN
i

(s−)

XN
i

(s−)
<uÉβi I′i (s−)

Nβ

i (du,ds) > 0

for some i . Now if I+i (s) denotes the total number of births in node i for the branching process
I′ up to time s, is it straightforward that for any fixed t ,

SN
i (s−)

XN
i (s−)

Ê XN
i (s−)− Ii (0)− I+i (s−)

XN
i (s−)

−→
N→+∞

1,

uniformly for s ∈ [0, t ]. Therefore, for any fixed T > 0, almost surely one has:

∃N0 Ê 0 : ∀N Ê N0,∀t É T,
∫ t

0

∫
R+

1
βi I′i (s−)

SN
i

(s−)

XN
i

(s−)
<uÉβi I′i (s−)

Nβ

i (du,ds) = 0
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by the dominated convergence theorem since
∫ T

0

∫
R+ 1uÉβi Ii (s−)N

β

i (du,ds) is almost surely finite
and does not depend on N, which yields the first part of the Theorem.

To see that (3.9) holds, write that with probability 1,

∀T Ê 0, ∃N0 ∈N∗ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u)

so
∃N0 ∈N∗ : ∀N Ê N0,∀u ∈ [0,τ′], IN(u) = I′(u) (so τN = τ′ and ZN = Z′)

almost surely on the part of the sample space where τ′ < +∞ and Z′ < +∞ (note that N0 is
random since it intrinsically depends on the value of τ′). On the other part of the sample space,
τ′ =+∞ so Z′ =+∞ (recall that Assumption G entails that deaths occur at a positive rate as long
as the total population is not zero, so infinitely many new births for the branching process I′

have to occur if we want τ′ to be infinite) and almost surely,

∀T Ê 0, ∃N0 ∈N∗ : ∀N Ê N0, IN(T) = I′(T) > 0 (so τN > T) and ZN
T = Z′

T

where ZN
T and Z′

T are the number of upward jumps of ‖I‖1 and ‖I′‖1 before time T. This entails

lim
N→+∞

τN =+∞ and lim
N→+∞

ZN = Z′ =+∞

almost surely on this part of the sample space since both ZN
T and Z′

T are increasing in T. ä
Just as in the unitype case, we will say that the epidemic undergoes a minor outbreak when

the branching process I′ goes extinct and a major outbreak if it does not. As Theorem 3.2.1
indicates, the extinction time and the total size of the epidemic are of the same order of those
of the branching process in the minor outbreak case and tend to infinity with N in the major
outbreak case.

Major outbreak probabilities

Our next results are devoted to computing the probability that a major outbreak occurs.
Computing this probability for an epidemic started from a given node gives a first indicator of
the criticality of this node in making the trade network vulnerable to an epidemic outbreak.
Consequently, the major outbreak probability vector will be one of our main focuses when de-
signing node-based control strategies in Chapter 4.

The following proposition is a direct consequence of Theorem 1.3.26:

PROPOSITION 3.2.2. — For any i , j ∈ �1, n�, let Wi , j denote the number of offspring in node
j of an individual born in node i for the branching process I′. Also set Σi = γi +di +∑

j 6=i θi , j

for any i ∈ �1, n�. Let Θ be the n ×n matrix defined by Θi , j = θi , j if i 6= j and Θi ,i = 0. Then
the matrix C = (E(Wi , j ))1Éi , jÉn is given by

C = (diag(Σ1, . . . ,Σn)−Θ)−1diag(β1, . . . ,βn). (3.10)
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Let R0 denote the largest real eigenvalue of C. If R0 É 1, then the major outbreak probability
is 0. If R0 > 1, then this probability is strictly positive and equals 1−∏n

k=1 ζ
Ik (0)
k , where ζ is the

only fixed point in [0,1)n of

G : [0,1]n −→ [0,1]n

s = (s1, . . . , sn) 7−→
(
E
[∏n

j=1 s
W1, j

j

]
, . . . ,E

[∏n
j=1 s

Wn, j

j

]) .

Moreover, the iterated sequence (Gk (s))kÊ0 converges to ζ for any s ∈ [0,1)n .

The basic reproduction number R0 can be computed using a matrix describing changes in
states for infected individuals diag(Σ1, . . . ,Σn)−Θ and a matrix describing the production of new
infections diag(β1, . . . ,βn). It is interesting to relate this remark to the results of [DHR09] on next-
generation matrices.

Proposition 1.3.25 now yields an explicit expression for G:

PROPOSITION 3.2.3. — Let Θ be the matrix defined in Proposition 3.2.2. Then for any
s = (s1, . . . , sn) and any i ∈ �1, n�,

G(s) = (
diag(λ1(s), . . . ,λn(s))−Θ)−1 (d +γ) (3.11)

where λi (s) = (1− si )βi +Σi .

The extinction time and final size of the epidemic

Just as in the unitype case, we are particularly interested in the behavior of the epidemic in
the case of major outbreak, that causes the scaled epidemic process to enter the neighborhood
of an attractive endemic equilibrium and remain within it for a large time scale before eventually
going extinct. We will first exhibit a lower bound for the fraction of the population infected
within a given time, then use it to derive an exponential lower bound for the epidemic extinction
time and total size in the case where there exists a globally stable endemic equilibrium for some
associated dynamical system. Contrary to the unitype setting, the existence of such an attractive
equilibrium is still unclear.

The following proposition states that in the case of a major outbreak, the maximal number
of infectives during the course of the epidemic is at least equal to a fraction of N with high prob-
ability as N goes to infinity, provided that the scaled population process starts at its equilibrium
value x∗ := −A−1B. Its proof relies on the idea that until the number of infectives reaches the
expected level, the proportion of susceptibles in the population is high enough for the epidemic
process to dominate an epidemic branching process with tweaked rates, that itself reaches the
said level in finite time.
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PROPOSITION 3.2.4. — Assume that x(0) = x∗ and that R0 > 1. Then

lim
ε→0

sup
NÊ1

P

(
max
t∈R+

‖IN(t )‖1 Ê ε‖x∗‖1N

∣∣∣∣ Z′ =+∞
)
= 1.

Proof of Proposition 3.2.4.— Let δ ∈
(
0, P(Z′=+∞)

2

)
. Let η ∈

(
0, R0−1

R0+1

)
and α ∈

(
η, R0−1−η

R0

)
be such

that a branching process obtained from I′ by replacing the birth rates βi by βi
1−α
1+η survives with

probability at least P(Z′ =+∞)−δ (the existence of such a value of α is an easy consequence of
Theorem 3.2.1 and Proposition 3.2.3). We will show that if η is small enough, then

liminf
N→+∞

P

(
max
tÊ0

‖IN(t )‖1 Ê η‖x∗‖1N

)
ÊP(

Z′ =+∞)−2δ, (3.12)

which implies Proposition 3.2.4. Set

σN
η = inf

{
t Ê 0 : ‖IN(t )+RN(t )‖1 Ê (α−η)‖x∗‖1N

}
.

Using the notation of Proposition 2.2.3 and setting η′ = η‖x∗‖1n−1/2, until time σN
η ∧τN

η′ every

infective in node i makes contacts with other individuals in node j at rate at least β j
1−α
1+η since

this node contains at least (1−α)‖x∗‖1N susceptibles out of at most (1+η)‖x∗‖1N individuals. We
can therefore define a R2n+ -valued multitype branching process (I′′(t ),R′′(t ))tÊ0 with rates given
by

Transition Rate at state (i ,r )
(i ,r ) → (i ,r )−e i

j d j i j

(i ,r ) → (i ,r )−er
j d j r j

(i ,r ) → (i ,r )+e i
k −e i

j θ j ,k i j

(i ,r ) → (i ,r )+er
k −er

j θ j ,k r j

(i ,r ) → (i ,r )+e i
j β j

1−α
1+η

(i ,r ) → (i ,r )+er
j −e i

j γ j i j

and such that ‖I′′(t ∧σN
η ∧τN

η′)‖1 É ‖IN(t ∧σN
η ∧τN

η′)‖1 and ‖R′′(t ∧σN
η ∧τN

η′)‖1 É ‖RN(t ∧σN
η ∧τN

η′)‖1

for all t Ê 0 almost surely (so (I′′,R′′) may not go to infinity outside of the event (Z′ = +∞)).
Therefore:

P

(
max
tÊ0

‖I(t )‖1 Ê (α−η)‖x∗‖1N

)
ÊP

(
∃t < τN

η′ ∧σ′′N
η : ‖I′′(t )‖1 Ê (α−η)‖x∗‖1N

)
(3.13)

Set
σ′′N
η = inf

{
t Ê 0 : ‖I′′(t )+R′′(t )‖1 Ê (α−η)‖x∗‖1N

}
,

then
sN
η = inf{t Ê 0 : ‖I(t )‖1 Ê η‖x∗‖1N}

and
s′′Nη = inf

{
t Ê 0 : ‖I′′(t )‖1 Ê η‖x∗‖1N

}
.



107 3.2. THE MULTITYPE CASE h

The branching process (I′′,R′′) is non-explosive so σ′′N
η goes to infinity almost surely with N.

Moreover, Theorem 1.3.28 shows that there exists λ ∈ (R∗+)n such that:

P

(
Z′ =+∞,∀ j ∈ �1, n� : lim

t→+∞
I′′j (t )

R′′
j (t )

= λ j

)
ÊP(

Z′ =+∞)−δ
and that for small enough values of η,

λ j > η

α−η (3.14)

for all j ∈ �1, n�. Hence

P

(
Z′ =+∞,∀ j ∈ �1, n� : lim

N→+∞

I′′j (σ′′N
η )

R′′
j (σ′′N

η )
= λ j

)
ÊP(

Z′ =+∞)−δ
and (3.14) and Fatou’s lemma yields

liminf
N→+∞

P
(
Z′ =+∞, s′′Nη Éσ′′N

η

)
ÊP(

Z′ =+∞)−δ.

Therefore (3.13) implies

liminf
N→+∞

P
(
sN
η <+∞

)
Ê liminf

N→+∞
P

(
Z′ =+∞, sN

η < τN
η′ ∧σ′′N

η

)
Ê liminf

N→+∞
P

(
Z′ =+∞, s′′Nη < τN

η′ ∧σ′′N
η

)
Ê liminf

N→+∞
P

(
Z′ =+∞, s′′Nη < τN

η′
)
−δ.

Proposition 2.2.3 now yields u > 0 such that

lim
N→+∞

P
(
euN < τN

η′
)
= 1,

from which we deduce

liminf
N→+∞

P
(
sN
η <+∞

)
Ê liminf

N→+∞
P

(
Z′ =+∞, s′′Nη < euN

)
−δ

ÊP
(
(Z′ =+∞)∩ liminf

N→+∞

(
s′′Nη < euN

))
−δ (3.15)

where the second inequality proceeds from Fatou’s lemma. But Theorem 1.3.28 implies that the
supercritical branching process (I′′(t ))tÊ0 has a positive exponential growth almost surely on the
event where it does not go extinct, so

P

(
liminf
N→+∞

(
sN
η < euN

))
=P(∀t Ê 0,I′′(t ) 6= 0

)
. (3.16)

This last probability is greater than P(Z′ =+∞)−δ by definition of α, so using (3.16) then (3.15)
yields (3.12), which ends the proof. ä
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Let us now consider the dynamical system on (Rn+)3 defined by:

ṡ j = B j +b j (s j + i j + r j )−d j s j +∑
k 6= j θk, j sk −

∑
k 6= j θ j ,k s j −β j i j

s j

s j+i j+r j

i̇ j = β j i j
s j

s j+i j+r j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j

ṙ j = γ j i j −d j r j +∑
k 6= j θk, j rk −

∑
k 6= j θ j ,k r j

 (S 0
epi)

for all k ∈ �1, n�.

When n Ê 2, this system is much less tractable than its unitype version (S 1,0
epi ), and it is

unclear whether a result similar to Proposition 3.1.3 holds whenever R0 > 1. We can still show
the following:

PROPOSITION 3.2.5 (Attractivity of the disease-free equilibrium for (S 0
epi)). — The disease-

free equilibrium (x∗,0,0) of (S 0
epi) is locally attractive if R0 < 1 and is not if R0 > 1. If an

endemic equilibrium (s∗, i∗,r ∗) for (S 0
epi) exists, then i∗j > 0 for all j ∈ �1, n�.

Proof of Proposition 3.2.5.— The Jacobian matrix associated to (S 0
epi) at the equilibrium (z∗,0,0)

writes

J =
A diag(−β1, . . . ,−βn) 0

0 A′ 0
0 diag(γ1, . . . ,γn) A′′


where A is defined by (1.4),

A′ =



β1 −d1 −γ1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 β2 −d2 −γ2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,1 βn −dn −γn −∑
j 6=n θn, j


and

A′′ =



−d1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 −d2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,1 −dn −∑
j 6=n θn, j


The eigenvalues of J are those of A, those of A′ and those of A′′. Now all the eigenvalues of A have
negative real parts according to Assumption G. The same goes for A′′, since for all λ ∈ C with
nonnegative real part A′′ −λIn is diagonally dominant and irreducible, and then nonsingular
(see [Var62]). Proposition 1.3.27 shows that the same is true for the eigenvalues of A′ if and only
if R0 < 1, which shows that the disease-free equilibrium is locally attractive in this case. If R0 > 1,
the dominant eigenvalue of A′ has a positive real part according to Proposition 1.3.27, so the
disease-free equilibrium is not locally attractive, which ends the proof. ä
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Just as in the case of the limiting system (S ′
pop) for the logistic population process, numerical

approximations suggest that there exists a globally asymptotically stable endemic equilibrium
for (S 0

epi) as soon as R0 > 1. The following result gives an exponential lower bound for the extinc-
tion time and the total size of the epidemic in the major outbreak scenario when this stability
property holds.

THEOREM 3.2.6. — Assume that x(0) = x∗, that R0 > 1 and that (S 0
epi) restricted to Rn+× (Rn+ \

{0})×Rn+ admits a globally asymptotically stable endemic equilibrium (s∗, i∗,r ∗). Then there
exists V > 0 such that:

lim
N→+∞

P
(
τN > eVN

∣∣Z′ =+∞)= 1. (3.17)

and
lim

N→+∞
P

(
ZN > eVN

∣∣Z′ =+∞)= 1. (3.18)

Proof of Theorem 3.2.6.— Let δ= min j i∗j > 0 and let δ′ > 0. Let ε> 0 be such that setting

TN
ε = inf {t Ê 0 : ‖IN(t )‖1 Ê εN}

then
liminf
N→+∞

P
(
TN
ε <+∞)>P(Z′ =+∞)−δ′. (3.19)

Such a ε exists according to Proposition 3.2.4. Now set E = Rn+× (Rn+ \ {0})×Rn+ and define the
flow Φ : E×R+ → E associated with the dynamical system (Sepi). There exists M > 1 such that
‖x(t )‖1 only takes values below M‖x∗‖1 for t Ê 0 whenever x(0) is close enough from x∗. There
also exists T > 0 such that:

∀(s, i ,r ) ∈ E : ‖i‖1 Ê ε and ‖s + i + r‖1 É M‖x∗‖1, Φ((s, i ,r ),T) ∈B∞
(
(s∗, i∗,r ∗),

δ

2

)
(3.20)

since (s, i ,r ) 7→ inf
{

t Ê 0 :Φ((s, i ,r ), t ) ∈B∞
(
(s∗, i∗,r ∗), δ2

)}
is upper semi-continuous (and then

upper bounded) on {(s, i ,r ) ∈ E : ‖i‖1 Ê ε,‖s+ i +r‖1 É M‖x∗‖1} that is a compact set. As a result:

Φ

(
(SN, IN,RN)

N
(TN

ε ),T

)
∈B∞

(
(s∗, i∗,r ∗),

δ

2

)
(3.21)

almost surely conditionally on
(
TN
ε <+∞,‖XN(TN

ε )‖1 É M‖x∗‖1N
)
. Mimicking the proof of The-

orem 2.1 from Chapter 11 of [EK86], we get that

sup
t∈[0,T]

∥∥∥∥ (SN, IN,RN)

N
(TN

ε + t )−Φ
(

(SN, IN,RN)

N
(TN

ε ), t

)∥∥∥∥∞
< δ

2

and
‖XN(TN

ε )‖1 É M‖x∗‖1N

with probability going to 1 conditionally on (TN
ε < +∞) when N →+∞. This, (3.19), (3.21) and

the definition of T show that

liminf
N→+∞

P

(
TN
ε <+∞,∃t Ê 0 :

(SN(t ), IN(t ),RN(t ))

N
∈B∞

(
(s∗, i∗,r ∗),δ

))
>P(Z′ =+∞)−δ′, (3.22)
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so (SN,IN,RN)
N hits B∞ ((s∗, i∗,r ∗),δ) with probability at least P(Z′ = +∞)−δ′ for N large enough.

Using Theorem 1.3.37 just as in the proof of Proposition 2.2.3 along with the Markov property
yields V1 > 0 such that for all α> 0,

liminf
N→+∞

P
(
∃T Ê 0,∀t ∈ [T,T+e(V1−α)N],∀ j ∈ �1, n�, IN

j (t ) > (i∗j −δ)N
)

>P(Z′ =+∞)−δ′, (3.23)

and (3.17) follows, setting α> 0 then defining V := V1 −α.

Now take α′ ∈ (0,α). Then, conditionally on the event(
∃T Ê 0,∀t ∈ [T,T+e(V1−α′)N],∀ j ∈ �1, n�, IN

j (t ) > (i∗j −δ)N
)

,

the total number of infected individuals recovering or dying during the course of the epidemic
stochastically dominates the value at time e(V1−α′)N of a homogeneous Poisson counting process
(QN(t ))tÊ0 with intensity λN := min j (γ j +d j )(i∗j −δ)N. Yet the former number is also lower than

ZN with probability 1 since all infected individuals eventually have to die or recover, so we finally
get:

liminf
N→+∞

P
(
ZN Ê e(V1−α)N)Ê liminf

N→+∞
P

(
QN

e(V1−α)N Ê e(V1−α′)N
)(
P(Z′ =+∞)−δ′)

using (3.23), which yields

liminf
N→+∞

P
(
ZN Ê e(V1−α)N)ÊP(Z′ =+∞)−δ′,

because the law of QN
(
e(V1−α′)N

)
is Poisson with mean λNe(V1−α′)N, hence (3.18), recalling that

V = V1 −α. ä
The proof of Theorem 4.1 from [LS09] can be adapted to (S 0

epi), which shows that if R0 > 1
and if there exists an endemic equilibrium (s∗, i∗,r ∗) ∈ Rn+× (Rn+ \ {0})×Rn+ such that s∗ = λi∗

for some λ > 0, then this equilibrium is globally asymptotically stable and the conclusion of
Theorem 3.2.6 is true.

Considering the proof of Proposition 3.2.4, we can see that the time needed for IN to go
above a given fraction of N is of order log(N) on the event (Z′ =+∞). The proof of Theorem 3.2.6
shows that the subsequent convergence time of (SN, IN,RN)/N towards a given ball centered on
the endemic equilibrium is upper bounded by some deterministic constant T with high proba-
bility. On the other hands, results from [PSK17] state that the time needed for the scaled process
to leave the ball is of order eV1N. This shows that for large N, the epidemic undergoing a ma-
jor outbreak spends most of its time in its endemic phase where the scaled process lies close
to the endemic equilibrium. This observation is reminiscent of metastability results stated in
[VO05, Bov06].

We see in the proof of 3.2.6 that V1 is the exit cost from a ball centered on (s∗, i∗,r ∗) for a
Poissonian perturbation of (S 0

epi) as defined in Section 1.3.4. Extrapolating from the results of
[PSK17], we conjecture that under the assumptions of Theorem 3.2.6, for anyα> 0 the extinction
time τN can be bounded below by e(V∗−α)N and above by e(V∗+α)N with probability tending to 1 as
N tends to infinity, where V∗ is the quasipotential of the set of disease-free states with respect to
(s∗, i∗,r ∗) for the Poissonian perturbation of the dynamical system (S ′0

epi), that writes as in (1.13)
with the first infimum being taken on {(s, i ,r ) ∈R3n : i = 0} and x being replaced by (s∗, i∗,r ∗).
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3.2.1.2 The case q 6= 0

Let us now consider the case where at least one qi is positive. As in the unitype setting,
we focus on the behavior of an epidemic with an initial number of infectives proportional to
N, and we therefore assume that IN(0) = bNI(0)c for some I(0) ∈ Rn+ such that Ii (0) É xi (0) for all
i ∈ �1, n�.

Let us define the dynamical system (Sepi) on (Rn+)3 by

ṡ j = p j B j +b j (s j + i j + r j )−d j s j +∑
k 6= j θk, j sk −

∑
k 6= j θ j ,k s j −β j i j

s j

s j+i j+r j

i̇ j = q j B j +β j i j
s j

s j+i j+r j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j

ṙ j = r j B j +γ j i j −d j r j +∑
k 6= j θk, j rk −

∑
k 6= j θ j ,k r j

 (Sepi)

for all k ∈ �1, n�. There is no trivial disease-free equilibrium for this system. As for (S ′
pop), the

existence of an equilibrium proceeds for (Sepi) from Brouwer’s fixed point theorem:

PROPOSITION 3.2.7 (Equilibrium for (Sepi)). — System (Sepi) admits an equilibrium
(s∗, i∗,r ∗) ∈ (Rn+)3, such that s∗+ i∗+ r ∗ = x∗ and i∗j > 0 for all j ∈ �1, n�.

Proof of Proposition 3.2.7.— For any solution (s, i ,r ) of (Sepi), s+i +r is a solution of x ′ = Ax+B
so we necessarily have s∗+ i∗+ r ∗ = x∗ if (s∗, i∗,r ∗) is an equilibrium of (Sepi). It is therefore
sufficient to show that the dynamical system on R2n+ defined by:

ṡ j = p j B j +b j x∗
j −d j s j +∑

k 6= j θk, j sk −
∑

k 6= j θ j ,k s j −β j i j
s j

x∗
j

i̇ j = q j B j +β j i j
s j

x∗
j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j

 (S̃epi)

for all j ∈ �1, n� admits a positive, finite number of equilibria.

Let j ∈ �1, n� and assume that i1, . . . , i j−1, i j+1, . . . , in and s1, . . . , s j−1, s j+1, . . . , sn are nonneg-
ative numbers. Solving explicitly

p j B j +b j x∗
j −d j s j +∑

k 6= j θk, j sk −
∑

k 6= j θ j ,k s j −β j i j
s j

x∗
j

= 0

q j B j +β j i j
s j

x∗
j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j = 0
(3.24)

defines s j and i j as continuous responses functions of the sk and ik with values in R+. Now
adding the lines of (3.24) yields

(p j +q j )B j +b j x∗
j −d j (s j + i j )−γ j i j +

∑
k 6= j

θk, j (sk + ik )− ∑
k 6= j

θ j ,k (s j + i j ) = 0 (3.25)

so
−r j B j −d j (s j + i j −x∗

j )−γ j i j +
∑
k 6= j

θk, j (sk + ik −x∗
k )− ∑

k 6= j
θ j ,k (s j + i j −x∗

j ) = 0

since x∗ is such that Ax∗ +B = 0. If we assume that sk + ik É x∗
k for every k 6= j , then (3.25)

implies that s j + i j É x∗
j . The response (s j , i j ) to any choice of (sk , ik ) picked in convex compact
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sets {(sk , ik ) ∈R2+ : sk +ik É x∗
k } is therefore a continuous function of the (sk , ik ) with values in the

convex compact set {(sk , ik ) ∈ R2+ : sk + ik É x∗
k }. Using Brouwer’s fixed point theorem as in the

proof of Proposition 2.3.3 therefore yields the existence of the expected equilibrium for (Sepi).
Finally, that i∗j > 0 for all j proceeds from the fact that q 6= 0 and from the connectivity of the
graph with vertices set �1, n� and edges set {( j ,k) : θ j ,k > 0}. ä

Theorem 1.3.32 now implies the following:

PROPOSITION 3.2.8 (Scaling limit of a branching-driven SIR process). — Denoting (s, i ,r )
the solution of (Sepi) with initial condition (x(0)− I(0), I(0),r (0)), we have:

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.

As a counterpart to Theorem 3.2.6 in this case allowing for immigration of infectives, we
can describe the proportion of time spent by the scaled epidemic process in a neighborhood of
(s∗, i∗,r ∗) over a large time scale:

PROPOSITION 3.2.9 (Time spent in a neighborhood of the equilibrium of (Sepi)). — Assume
that the equilibrium (s∗, i∗,r ∗) given by Proposition 3.1.5 is globally asymptotically stable.
Then for every ε> 0 there exist T > 0 and V > 0:

lim
N→+∞

P

(∫ T+eVN

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eVN

)
= 1.

Proof of Proposition 3.2.9.— Let us denote B2((s∗, i∗,r ∗),ε) by B. For any N Ê 1, let τ̃N
ε be

the first hitting time of Bc by the scaled process (SN, IN,RN)/N after reaching B. Let V2 :=
Vε(s∗, i∗,r ∗) be the exit cost of B for the Poisson perturbation of the dynamical system (Sepi)
as introduced in Section 1.3.4, and let α> 0. As in the proof of Theorem 3.2.6, let T > 0 be such
that the flow associated with (Sepi) lies in B2

(
(s∗, i∗,r ∗), ε2

)
at time T for any initial condition in

{x ∈Rn+ : ‖x‖1 É M‖x∗‖1}. Now write:

P

(∫ T+e(V2−α)N

0
1 (SN,IN,RN)(t )

N ∈B
dt > e(V2−α)N

)
ÊP

(
(SN, IN,RN)(T)

N
∈B,T+e(V2−α)N < τ̃N

ε

)

=P
(

(SN, IN,RN)(T)

N
∈B

)
P

(
T+e(V2−α)N < τ̃N

ε

∣∣∣∣ (SN, IN,RN)(T)

N
∈B

)
(3.26)

Reasoning as in the proof of Theorem 3.2.6, we see that the first term of this product goes to 1
as N tends to infinity. Using Theorem 1.3.37 with a smaller α, we get that the second term of
the product also tends to 1 as N goes to infinity. Finally (3.26) yields the expected result, with
V := V2 −α. ä

This proposition relies on the assumption that the equilibrium found in Proposition 3.1.5
is unique and globally asymptotically stable. It is still unsure under which conditions on the
parameters this is the case. Once again, numerical approximations suggest that it holds for all
the choices of parameters we experienced as long as R0 > 1.
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3.2.2 The logistic-driven SIR model

The study of the branching-driven SIR model may be adapted and used to provide valuable
information about the logistic case. The main difference between both settings is twofold, and
raises an additional difficulty when p = 1. First, individual jump rates in the logistic-driven SIR
process depend on the current population state. Therefore, we cannot copy the formal defini-
tion of the branching process from the branching case since its rates must not depend on N.
Second, we ignore whether the population equilibrium for the logistic population model is sta-
ble (see the remark following Proposition 2.3.3). As a result, we cannot consider that the scaled
logistic population process remains approximately constant over non-fixed time scales, which
was a key ingredient to proving Proposition 3.2.4 in the branching case. A workaround is to use
Proposition 2.3.4 to localize the logistic population process over large time scales, which results
once again in a N-exponential lower bound for the extinction time and final size of the epidemic
in the major outbreak case under appropriate stability conditions.

We take up the parameters already introduced in Subsection 3.2.1 and we additionally de-
fine the carrying capacities Ki as in Subsection 2.3. Throughout this section, we assume that
z(0) = z∗ is an equilibrium of (S ′

pop).

The definition of the epidemic process in this case is reminiscent of this given in Subsection

3.2.1.1. Yet, this time infective movements rates
θi , j

N IN
i (NK j −XN

j )+ involve current total popula-

tions XN
j that cannot be used to define the limiting branching process. A solution is to consider

that if the population process starts at its equilibrium value, these rates can be approximated
on finite time scales by θi , j IN

i (K j − z∗
j ) as N becomes large because of Proposition 2.3.2. We will

therefore use these approximated rates to define I′, as is done in [Cla96].

We recall from the definition of the logistic population processes XN in Subsection 2.3 that

the NB
i , Nb

i , Nd
i , Nβ

i , Nγ

i and Ni , j are independent Poisson random measures on R+×R+ with
intensity ds du. For any N, we define (SN

i , IN
i ,RN

i ) as the solution of

SN
i (t ) = bNzi (0)c− IN

i (0)+
∫ t

0

∫
R+

1qi Bi (NKi−XN
i (s−))+<uÉ(pi+qi )Bi (NKi−XN

i (s−))+NB
i (du,ds)

+
∫ t

0

∫
R+

1
uÉ bi

N XN
i (s−)(NKi−XN

i (s−))+
Nb

i (du,ds)−
∫ t

0

∫
R+

1di IN
i (s−)<uÉdi (SN

i (s−)+IN
i (s−))N

d
i (du,ds)

−
∫ t

0

∫
R+

1
uÉβi IN

i (s−)
SN

i
(s−)

XN
i

(s−)

Nβ

i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1 θ j ,i
N IN

j (s−)(NKi−XN
i (s−))+<uÉ θ j ,i

N (SN
j (s−)+IN

j (s−))(NKi−XN
i (s−))+

N j ,i (du,ds)

−
∫ t

0

∫
R+

1 θi , j
N IN

i (s−)(NK j−XN
j (s−))+<uÉ θi , j

N (SN
i (s−)+IN

i (s−))(NK j−XN
j (s−))+

Ni , j (du,ds)

]
,
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IN
i (t ) = IN

i (0)+
∫ t

0

∫
R+

1uÉqi Bi (NKi−XN
i (s−))+NB

i (du,ds)+
∫ t

0

∫
R+

1
uÉβi IN

i (s−)
SN

i
(s−)

XN
i

(s−)

Nβ

i (du,ds)

−
∫ t

0

∫
R+

1uÉdi IN
i (s−)N

d
i (du,ds)−

∫ t

0

∫
R+

1uÉγi IN
i (s−)N

γ

i (du,ds)

+∑
j 6=i

[∫ t

0

∫
R+

1
uÉ θ j ,i

N IN
j (s−)(NKi−XN

i (s−))+
N j ,i (du,ds)−

∫ t

0

∫
R+

1
uÉ θi , j

N IN
i (s−)(NK j−XN

j (s−))+
Ni , j (du,ds)

]
,

and

RN
i (t ) =

∫ t

0

∫
R+

1(pi+qi )Bi (NKi−XN
i (s−))+<uÉBi (NKi−XN

i (s−))+NB
i (du,ds)

+
∫ t

0

∫
R+

1uÉγi IN
i (s−)N

γ

i (du,ds)−
∫ t

0

∫
R+

1di (SN
i (s−)+IN

i (s−))<uÉdi XN
i (s−)N

d
i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1 θ j ,i
N (SN

j (s−)+IN
j (s−))(NKi−XN

i (s−))+<uÉ θ j ,i
N XN

j (s−)(NKi−XN
i (s−))+

N j ,i (du,ds)

−
∫ t

0

∫
R+

1 θi , j
N (SN

i (s−)+IN
i (s−))(NK j−XN

j (s−))+<uÉ θi , j
N XN

i (s−)(NK j−XN
j (s−))+

Ni , j (du,ds)

]

for all i and all t . Here again, it is easy to see using Equation 2.39 that SN + IN +RN = XN.

The (SN, IN,RN) are jump processes on Z3n+ with transition rates given by the following rates
chart, where x j = s j + i j + r j for all j ∈ �1, n�:

Transition Rate

(s, i ,r ) → (s, i ,r )+e s
j

(
p j B j + b j

N x j

)
(K j −x j )+

(s, i ,r ) → (s, i ,r )+e i
j q j B j (K j −x j )+

(s, i ,r ) → (s, i ,r )+er
j r j B j (K j −x j )+

(s, i ,r ) → (s, i ,r )−e s
j d j s j

(s, i ,r ) → (s, i ,r )−e i
j d j i j

(s, i ,r ) → (s, i ,r )−er
j d j r j

(s, i ,r ) → (s, i ,r )+e s
k −e s

j
θ j ,k

N s j (Kk −xk )+
(s, i ,r ) → (s, i ,r )+e i

k −e i
j

θ j ,k

N i j (Kk −xk )+
(s, i ,r ) → (s, i ,r )+er

k −er
j

θ j ,k

N r j (Kk −xk )+
(s, i ,r ) → (s, i ,r )+e i

j −e s
j β j

i j s j

x j

(s, i ,r ) → (s, i ,r )+er
j −e i

j γ j i j

(3.27)

Table 3.4: Logistic-driven SIR process rates chart (p = 1)
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3.2.2.1 The case p = 1
We first consider the case where p = 1. We assume that IN(0) = I(0) ∈Zn+ for all N Ê 1.

Branching approximation of the epidemic process

Define the multitype branching process I′ as the solution of the integral equation

I′i (t ) = Ii (0)+
∫ t

0

∫
R+

1uÉβi I′i (s−)N
β

i (du,ds)

−
∫ t

0

∫
R+

1uÉdi I′i (s−)N
d
i (du,ds)−

∫ t

0

∫
R+

1uÉγi I′i (s−)N
γ

i (du,ds)

+ ∑
j 6=i

[∫ t

0

∫
R+

1uÉθ j ,i I′j (s−)(Ki−z∗i )N j ,i (du,ds)−
∫ t

0

∫
R+

1uÉθ j ,i I′i (s−)(K j−z∗j )Ni , j (du,ds)

]
,

for all i and all t . I′ is a Zn+-valued multitype branching process with birth rates vector β, death
rates vector d +γ and transition rates θi , j (K j − z∗

j ).

Ghost infections for I′ may occur as in the branching-driven SIR case (see the comments
before Theorem 3.2.1). Here the rates of movements between nodes for the epidemic process
I′ are not exactly these of the IN either. Mimicking the terminology of [Mol77, Cla96], this ap-
proximation results to what could be called ghost movements, that is, movements of I′ that are
not movements of the IN, and to shadow movements, that is, movements of the IN that are not
movements for I′. We will prove a result analogous to Theorem 3.2.1:

THEOREM 3.2.10 (Convergence of the logistic-driven SIR to a branching process). — P-
almost surely:

∃N0 ∈Z∗
+ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u).

In particular, if τN (resp. ZN) denotes the extinction time (resp. total size) of the epidemic
and τ′ (resp. Z′) that of the branching process, then

τN −→
N→+∞

τ′ and ZN −→
N→+∞

Z′ (3.28)

P-almost surely.

Proof of Theorem 3.2.10.— The proof of this theorem is based on the same reasoning as that of
Theorem 3.2.1, which is to show that for any T Ê 0, with probability going to 1 as N tends to
infinity no ghost infection, no ghost movement nor shadow movement occurs before time T.

We have

lim
N→+∞

sup
u∈[0,T]

∥∥∥∥ 1

N
(NKi −XN

i (u))+− z∗
∥∥∥∥∞

= 0

according to Proposition 2.3.2, so the dominated convergence theorem applies to show that for
any T Ê 0, almost surely there exists N0 Ê 0 such that for any N Ê N0,∫ T

0

∫
R+

1
uÉβi I′i (s−)

SN
i

(s−)

XN
i

(s−)

Nβ

i (du,ds) =
∫ T

0

∫
R+

1uÉβi I′i (s−)N
β

i (du,ds),
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and

∑
j 6=i

[∫ T

0

∫
R+

1
uÉ θ j ,i

N I′j (s−)(NKi−XN
i (s−))+

N j ,i (du,ds)−
∫ T

0

∫
R+

1
uÉ θi , j

N I′i (s−)(NK j−XN
j (s−))+

Ni , j (du,ds)

]

= ∑
j 6=i

[∫ T

0

∫
R+

1uÉθ j ,i I′j (s−)(Ki−z∗i )N j ,i (du,ds)−
∫ T

0

∫
R+

1
uÉ θi , j

N I′i (s−)(K j−z∗j )
Ni , j (du,ds)

]
.

This implies that almost surely, for N large enough there are no ghost infections, no ghost trans-
fers and no shadow transfers before time T, which yields the first part of the theorem.

The rest of the proof proceeds as in the proof of Theorem 3.2.1. ä

Major outbreak probabilities

The following results are similar to those derived in the branching case and their proof raises
no additional technical difficulty. We therefore state them without further comment.

PROPOSITION 3.2.11. — For any i , j ∈ �1, n�, let Wi , j denote the number of offspring in
node j of an individual born in node i for the branching process I′. Also set Σ′

i = γi +di +∑
j 6=i θi , j (K j − z∗

j ) for any i ∈ �1, n�. Let Θ′ be the n ×n matrix defined by Θ′
i , j = θi , j (K j − z∗

j )

if i 6= j and Θ′
i ,i = 0. Then the matrix C = (E(Wi , j ))1Éi , jÉn is given by

C = (diag(Σ′
1, . . . ,Σ′

n)−Θ′)−1diag(β1, . . . ,βn). (3.29)

Let R0 denote the largest real eigenvalue of C. If R0 É 1, then the major outbreak probability
is 0. If R0 > 1, then this probability is strictly positive and equals 1−∏n

k=1 ζ
Ik (0)
k , where ζ is the

only fixed point in [0,1)n of

G : [0,1]n −→ [0,1]n

s = (s1, . . . , sn) 7−→
(
E
[∏n

j=1 s
W1, j

j

]
, . . . ,E

[∏n
j=1 s

Wn, j

j

]) .

Moreover, the iterated sequence (Gk (s))kÊ0 converges to ζ for any s ∈ [0,1)n .

PROPOSITION 3.2.12. — Let Θ′ be the matrix defined in Proposition 3.2.11. Then for any
s = (s1, . . . , sn) and any i ∈ �1, n�,

G(s) = (
diag

(
λ′1(s), . . . ,λ′n(s)

)−Θ′)−1 (d +γ) (3.30)

where λ′i (s) = (1− si )βi +Σ′
i .
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The extinction time and final size of the epidemic

The next Proposition is reminiscent of Proposition 3.2.4. Its proof relies on Proposition 2.3.4
rather than on the (hypothetical) attractivity of z∗ for (S ′

pop).

PROPOSITION 3.2.13. — Assume that R0 > 1. Then

lim
ε→0

sup
NÊ1

P

(
max
t∈R+

‖IN(t )‖1 Ê ε‖z∗‖1N

∣∣∣∣ Z′ =+∞
)
= 1.

Proof of Proposition 3.2.13.— Reproduce the proof of Proposition 3.2.4 using that ε É XN
i /N É

dNKi e/N for all i ∈ �1, n� (and not XN
i /N ∈ B2(x∗,η′) anymore) over an exponential time scale,

where ε is given by Proposition 2.3.4. ä

Let us now consider the dynamical system on (Rn+)3 defined by:

ṡ j = (B j +b j z∗
j )(K j − z∗

j )−d j s j +∑
k 6= j θk, j sk (K j − z∗

j )−∑
k 6= j θ j ,k s j (Kk − z∗

k )−β j i j
s j

z∗j

i̇ j = β j i j
s j

z∗j
− (d j +γ j )i j +∑

k 6= j θk, j ik (K j − z∗
j )−∑

k 6= j θ j ,k i j (Kk − z∗
k )

ṙ j = γ j i j −d j r j +∑
k 6= j θk, j rk (K j − z∗

j )−∑
k 6= j θ j ,k r j (Kk − z∗

k )


(S ′0

epi)
for all j ∈ �1, n�.

On {(s, i ,r ) ∈ (Rn+)3 : s + i + r = z∗}, this system coincides with a version of (S 0
epi) with the B j ,

the b j and the θk, j multiplied by (K j −z∗
j ). Easy calculations show that the R0 for the branching-

driven model with these parameters, given by Proposition 3.2.2, is the R0 given by Proposition
3.2.11. Showing that z∗ is unique as an equilibrium of (S ′

pop) and that (S 0
epi) admits a unique

endemic equilibrium in the R0 > 1 case would therefore imply that the same holds for (S ′0
epi).

The proof of Proposition 3.2.5 adapts mutatis mutandis to yield the following result:

PROPOSITION 3.2.14 (Attractivity of the disease-free equilibrium for (S 0
epi)). — The disease-

free equilibrium (z∗,0,0) of (S ′0
epi) is not locally attractive if R0 > 1. If an endemic equilibrium

(s∗, i∗,r ∗) for (S ′0
epi) exists, then i∗j > 0 for all j ∈ �1, n�.

Finally, the same arguments as in the proof for Theorem 3.2.6 yield an exponential lower
bound for τN and ZN in the case of a major epidemic outbreak leading towards an attractive
endemic equilibrium.
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THEOREM 3.2.15. — Assume that R0 > 1 and that (S ′0
epi) restricted to Rn+ × (Rn+ \ {0})×Rn+

admits a globally asymptotically stable endemic equilibrium (s∗, i∗,r ∗). Then there exists
V′ > 0 such that:

lim
N→+∞

P
(
τN > eV′N

∣∣∣Z′ =+∞
)
= 1. (3.31)

and
lim

N→+∞
P

(
ZN > eV′N

∣∣∣Z′ =+∞
)
= 1. (3.32)

The remarks following Theorem 3.2.6 still apply. In particular, we conjecture that under the
assumptions of Theorem 3.2.15, for any α> 0 the extinction time τN can be bounded below by
e(V′∗−α)N and above by e(V′∗+α)N with probability tending to 1 as N tends to infinity, where V′∗ is
the quasipotential of the set of disease-free states with respect to (s∗, i∗,r ∗) for the Poissonian
perturbation of the dynamical system (S ′0

epi).

3.2.2.2 The case q 6= 0

Let us now consider the case where at least one qi is positive. We assume that IN(0) = bNI(0)c
for all N Ê 1, with I(0) ∈Rn+.

Let us define the dynamical system on (Rn+)3 by the following set of equations, for all k ∈
�1, n�:

ṡ j = (p j B j +b j z∗
j )(K j − z∗

j )−d j s j +∑
k 6= j θk, j sk (K j − z∗

j )−∑
k 6= j θ j ,k s j (Kk − z∗

k )−β j i j
s j

z∗j

i̇ j = q j B j (K j − z∗
j )+β j i j

s j

z∗j
− (d j +γ j )i j +∑

k 6= j θk, j ik (K j − z∗
j )−∑

k 6= j θ j ,k i j (Kk − z∗
k )

ṙ j = r j B j (K j − z∗
j )+γ j i j −d j r j +∑

k 6= j θk, j rk (K j − z∗
j )−∑

k 6= j θ j ,k r j (Kk − z∗
k )


(S ′

epi)

PROPOSITION 3.2.16 (Equilibrium for (S ′
epi)). — (S ′

epi) admits an equilibrium (s∗, i∗,r ∗) ∈∏n
j=1{(s, i ,r )) ∈R3+ : s + i + r É z∗

j É}, such that i∗j > 0 for all j ∈ �1, n�.

Proof of Proposition 3.2.13.— Reasoning as in the proof of Proposition 3.2.7 shows that there
exists an equilibrium in (s∗, i∗,r ∗) ∈∏n

j=1{(s, i ,r )) ∈R3+ : s + i +r É z∗
j }, and the fact that all i∗j are

positive stems from the irreducibility of Θ and the assumption that B 6= 0. ä
Theorem 1.3.32 now implies the following:

PROPOSITION 3.2.17 (Scaling limit of a logistic-driven SIR process). — Denoting (s, i ,r ) the
solution of (Sepi) with initial condition (z∗− I(0), I(0),r (0)), we have:

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.
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from which we deduce, as in the branching-driven case, a result describing the proportion of
time spent by the scaled epidemic process in a neighborhood of (s∗, i∗,r ∗) over a large time
scale:

PROPOSITION 3.2.18 (Time spent in a neighborhood of the equilibrium of (S 1
epi)). — As-

sume that the equilibrium (s∗, i∗,r ∗) given by Proposition 3.1.5 is globally asymptotically
stable. Then for every ε> 0 there exist T′ > 0 and V′ > 0 such that:

lim
N→+∞

P

(∫ T′+eV′N

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eV′N

)
= 1.





4

Network vulnerability assessment and
numerical applications

We wish to apply the results of the models studied in Chapter 3 to the identification of nodes
making a trade network vulnerable to the spread of an infectious disease, and to the design
and evaluation of control policies. We will provide numerical applications of this theoretical
discussion to a subset of the French cattle trade network.

In all this chapter, we assume the we observe realizations of a logistic-driven SIR model as
introduced in Subsection 3.2.2, with no infective immigration, that is, with p = 1. This assump-
tion allows to focus on the behavior of an epidemic started by a small number of infectives in-
troduced accidentally into the system rather than entering it structurally through immigration.
It also makes the notions of extinction time and final size of the epidemic relevant. Section 4.1
gives a description of the dataset used in the application and the demographic parameters cali-
brated using these data. In Section 4.2, we put forward a set of theoretical indicators of the trade
network vulnerability induced by a given node. They are used in Section 4.3 to devise and eval-
uate strategies targeting critical nodes or links and aiming at making the network more resistant
to the propagation of an epidemic.

4.1

Dataset description and parameter calibration

In our numerical application, demographic parameters will be calibrated using a subset of
the FNCD database corresponding to the 2015 trade network of Finistère, a densely populated
livestock farming region in western France. We first describe the corresponding subnetwork
(Subsection 4.1.1), before examining the distribution of the resulting estimates for the demo-
graphic parameters (Subsection 4.1.2).

4.1.1 Dataset description

Trade networks built using the FNCD data described in Subsection 1.1.1.2 present tempo-
ral stability, both in their topological and macroscopic properties ([DEV14] and Figure 4.1), and
in the volume of trade flows. In order to keep computation time moderate, we extracted in-
formation from the FNCD corresponding to the Finistère department for year 2015, which are
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Figure 4.1: Stability over time of the average connectivity properties of the empirical French
cattle trade network. On the left, fraction of nodes belonging to the greatest strongly connected

component (GSCC) of the dynamical trade network observed over 4-week timesteps. On the
right, average path length between two nodes belonging to the same connected component, on
the same observations. Red plain lines correspond to holding-specific data, green dashed lines
to data aggregated by commune. On both panels, Time 0 corresponds to January 1, 2005, and
the observations range up to December 31, 2015. Graphics stem from the 2017 internship of
Ambre Giguelay at the French National Institute for Agricultural Research (INRA), MaIAGE,

Jouy-en-Josas (France), in the framework of the ANR project Cadence.

the most recent observations in the FNCD and target a region densely populated with dairy
cattle. The subnetwork we obtained (see Figure 4.2) exhibits connectivity and degree distribu-
tion properties (power-law distributions inducing the scale-free property) that are comparable
to those of the French network as a whole, especially for unweighted out-degrees (see Figure
4.3). It contains 4,183 vertices and 10,036 edges. It consists of 4,163 farms (with internal popu-
lation dynamics) and 20 commercial operators (without internal population dynamics) among
which 3 markets (with an average staying times of animals of approximately one day) and 17
assembly centers (with sojourn times between 1 and 7 days). These holdings exchange a total
of 117,910 animals, receive 55,325 from the outside of the subnetwork and send 243,449 to the
outside of Finistère or to slaughterhouses, these movements being considered as deaths (87,121
from operators and 156,328 from farms). Exchanges amount to 11,728 animals between opera-
tors, 18,734 animals from operators to farms, 71,532 from farms to operators and 15,916 between
farms. The average total population on the network over the year is of 424,105 animals.

4.1.2 Calibration of the demographic parameters

We use a simple approach to calibrate the parameters of the logistic population model as-
sociated to the observed network, that relies on the assumption that the population size in each
holding is roughly stable over the year. Much finer calibration procedures can be thought of, that
we will not deal with in the present work. Note that more sophisticated mathematical methods
to estimate the growth rates in the case of an observed branching process (that is, under the
assumption that the underlying population process is that described in Section 1.2.2.1) can be
found in [AK78] (also see [WW90] in the unitype case).
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Figure 4.2: Geographical location of exchanging cattle holdings of Finistère in 2015, aggregated
at the commune level. The size of a node represents its mean population over the year. Colours
on the nodes represent the share of buying (orange for operators and red for farms) and selling

(green for operators and blue for farms). The edges represent the existence of a movement
between two holdings in the dataset, with their width indicative of the observed trading volume

along this edge. The picture is courtesy of Gaël Beaunée.

We recall the logistic population process rates chart. Since the parameters we will calibrate
are in fact the NKi , bi

N , di , Bi (NKi − xi )+ and θi , j (NK j − x j )+, and since N will not vary, we drop
the scaling parameter, that is, we take it equal to 1:

Transition Rate at state x
x → x +ei (Bi +bi xi ) (Ki −xi )+
x → x −ei di xi

x → x −ei +e j θi , j xi (K j −x j )+

(1.5)

Table 4.1: Logistic population process jump rates chart.

with x → x + ei transitions decomposed between imports (occurring at rate Bi (Ki − xi )+) and
births (occurring at rate bi xi (Ki − xi )+). Assuming that the total population x is stationary over
a unit period of time, the expected number of imports to node i is Bi (Ki − xi )+, the expected
number of births in node i is bi xi (Ki −xi )+, the expected number of deaths in (or exports from)
node i is di xi and the expected number of transfers from node i to node j is θi , j xi (K j −x j )+.
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Figure 4.3: Monthly out-degree distributions for observed cattle trade networks in France
between 2005 and 2015, and in Finistère in January 2015. On the left, reverse cumulative

distribution of unweighted out-degrees (number of nodes of the network to which a given node
sends animals) and weighted out-degrees (number of animals sent from a node to other nodes

of the network) for the French trade network for every month of years 2005 to 2015. On the
right, reverse cumulative distribution of unweighted and weighted out-degrees for the January

2015 Finistère subnetwork. Graphics from the left panel stem from the 2017 internship of
Ambre Giguelay at the French National Institute for Agricultural Research (INRA), MaIAGE,

Jouy-en-Josas (France), in the framework of the ANR project Cadence.
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We denote by x̄ the vector of average observed populations over the year, A the vector of
total observed number of imported animals, C the vector of births, D the number of deaths and
E the matrix of population transfers (Ei , j being the number of animals sent from i to j over the
year), then set:

Ki = 1.2x̄i ,

Bi = Ai

(Ki − x̄i )
= 5

Ai

x̄i
,

bi = Ci

x̄i (Ki − x̄i )
= 5

Ci

x̄2
i

,

di = Di

x̄i

and

θi , j =
Ei , j

(K j − x̄ j )
= 5

Ei , j

x̄ j

for every i and j in �1, n�. Setting K to 120% of the vector of average populations is an arbitrary
choice, that could be improved using more specific information on the holdings involved that
would help estimate their actual carrying capacity.

Once computed the values of the Ki , Bi , bi , di and θi , j , we run a numerical approximation
of System (S ′

pop) with initial condition z(0) = x̄ until it converges to a value that we take to be
z∗. Further simulations will be ran assuming that the population process is at this state (which
was already an assumption made throughout Subsection 3.2.2).

The distribution of computed values of Ki , Bi (Ki − z∗
i ), bi (Ki − z∗

i ), di and θi , j (K j − z∗
j ) are

displayed in Figure 4.4. Carrying capacities Ki have mean 124.52 individuals and standard de-
viation 106.32 individuals. Due to the definition of Ki as 120% of the average yearly population
in node i over the year, some values of Ki are below 1. Recall that in our model, this does not
mean that the population of node i has to be null but that it is bounded by dKi e = 1. The ap-
proximated equilibrium populations z∗

i have mean 92.20 individuals and standard deviation
84.67 individuals. The mean of the immigration rates Bi (Ki − z∗

i ) is 7.79 individuals.year−1 and
their standard deviation 247.50 individuals.year−1 (these quantities falling at respectively 0.25
and 4.09 when excluding operators). The mean of the individual birth rates bi (Ki − z∗

i ) is 0.59
year−1 and their standard deviation 1.41 year−1. The individual death rates di have mean 15.42
year−1 and standard deviation 407.79 year−1 (these quantities being respectively 0.65 and 5.71
when excluding operators). Finally, the total transfer outflows

∑n
j=1θi , j (K j − z∗

j ) have mean 4.3

individuals.year−1 and standard deviation 108.05 individuals.year−1 (respectively 0.74 and 4.22
when excluding operators). 980 nodes are such that

∑n
j=1θi , j (K j −z∗

j ) = 0, which means that the
corresponding holdings did not send any animal to other holdings of Finistère during 2015.

The FNCD does not contain information about the sanitary status of registered animals,
so we cannot calibrate the epidemic parameters βi and γi using our dataset. Numerical ex-
plorations on epidemic scenarii will be conducted using parameters calibrated to match foot-
and-mouth disease (FMD) epidemics, that have traditionally been modeled using stochastic SIR
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Figure 4.4: Rates, flows and population sizes computed from the parameters Ki , Bi , bi , di and
θi , j computed for the 2015 Finistère cattle trade network. Values corresponding to farms and

operators are distinguished when they significantly differ between these two types of holdings.
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specifications [Mil76, HK96, HWK97, DM00, HD00]. FMD is a viral multi-species disease affect-
ing livestock, highly infectious and easy to spread through close contacts and aerosol propaga-
tion, which leads to fast dynamics. Estimations of epidemic parameters for the FMD are given
in [BdRa15] as βi = β ≈ 0.67 days−1 and γi = γ ≈ 1

5.5 days−1. As Keeling notices in his review
of models for FMD epidemics [Kee05], single-node models with homogeneous mixing ignore a
key feature of FMD that is its spatial clustering [WSKM03]. Spatial models of epidemics on net-
works as the one we are considering therefore appear to be a relevant framework to study FMD
epidemics. Yet we will see in the next section that the dynamics of FMD are relatively fast as
compared to the population dynamics involved, which makes FMD a lesser instructive case for
our analysis of graph-based control strategies and will motivate the introduction of an epidemic
slowing parameter. Moreover, cases of FMD usually entail trade bans, the immediate culling of
all animals in detected infected herds and ring culling, so FMD shall mostly be thought of as a
merely illustrative example in the present framework.

4.2

Indicators of node criticality

The theoretical results of Subsection 3.2.2 can be used to derive several types of indicators
that quantify the criticality of a given node in making the network vulnerable to the spread of
an epidemic. These indicators can be used both to identify critical nodes on which control
strategies should act in priority, and to assess the overall network vulnerability consecutively
to control measures. The latter task can also be carried out through simulations or numerical
approximations of dynamical systems, as we shall see in Section 4.3.

In the case considered here, no infectives structurally enter the system through immigra-
tion, and a natural idea is to consider the major outbreak probability for an epidemic started by
one single infective accidentally introduced in a given node (Subsection 4.2.1). However, this
quantity fails to account for the potential of an epidemic to spread across the graph. Moreover,
it is less relevant when the population of the node considered is small, since it is the probabil-
ity of explosion of a branching process that approximates the epidemic process for large typical
populations. This leads to considering the propensity of an infective introduced in one node to
carry the pathogen and make infectious contacts in other nodes during its lifetime, which we do
in Subsection 4.2.2. We then propose composite indicators that jointly take into account several
aspects of the node criticality, including major outbreak probabilities, probability for the infec-
tion to begin in a given node and spatial spread potential (Subsection 4.2.3). Finally, we suggest
a Monte-Carlo method (Subsection 4.2.4) that is computationally costly but helps evaluate the
relevance of the analysis of major outbreak probabilities.
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4.2.1 Major outbreak probabilities

Recall that p = 1 (and therefore q = r = 0). Propositions 3.2.11 and 3.2.12 then imply that the
probability of a major outbreak for an epidemic started by one single initial infective in node i
in an otherwise fully susceptible population is

πi := 1−ζi = 1−
(

lim
k→+∞

Gk (s)

)
i

for any s ∈ [0,1)n , where Gk is the k-th iteration of function

G : s 7→ (
diag(λ1(s), . . . ,λn(s))− Θ̃)−1

(d +γ)

where λi (s) = (1−si )βi +di +γi +∑n
j=1θi , j (K j −z∗

j ) and Θ̃= (θ̃i , j )i , j :=
(
θi , j (K j − z∗

j )
)

i , j
. Through-

out this chapter and with no risk of confusing with the limiting probability of the population
processes considered, we will write π := 1− ζ to denote the vector of major outbreak probabili-
ties.

Iterating G on an arbitrary point in [0,1)n , here 0.5× 1, yields an approximation for π hav-
ing mean 0.7218, standard deviation 0.0413 and ranging from 0 to 0.7286 over the set of nodes.
Most of the πi probabilities are close to the maximal value 0.7286, that corresponds to the major
outbreak probability

1− γ+di

β
≈ 1− γ

β

derived in the case where the node is isolated and di is small compared to β and γ (see Theorem
3.1.7 and the case k = 1 in Figures 4.5 and 4.6). This observation can be explained by the fact
that demographic dynamics (and in particular deaths and exchanges) are slow as compared to
the FMD epidemic dynamics, so with high probability local epidemics develop and get extinct
before the first transfer or death of an infective occurs and most nodes can therefore be con-
sidered isolated. This type of mostly local events are of lesser interest in our study that focuses
on epidemic spread over the network. We therefore introduce a parameter k Ê 1 and virtually
slow down the course of the epidemic by dividing both β and γ by k, which decreases the trans-
mission rate and increases the infection period proportionally with k. Increasing the value of
k increases the role of inter-nodal transfers and deaths in the determination of major outbreak
probabilities. As a consequence, it yields a lower mean value and a higher variance for the 1− ζ
vector, for which the isolation approximation by the vector of the

(
1− γ+di

β

)
+ does not hold any-

more, as we illustrate in Figures 4.5 and 4.6.

For high values of k (e.g. k = 100), the distribution of π is fairly spread out but still exhibits
two peaks, slightly above 0 and below 0.7286. Further observation suggests that the nodes with
the lower probabilities of major outbreak are associated with high removal rates di +γ (which
is typically the case for operators), realize strong transfers to nodes with high removal rates, or
are more generally at the origin of heavily weighted paths to exit the system. Nodes with a high
probability of major outbreak, at the contrary, are generally almost isolated and with low death
rates, or in general at the origin of only low weighted paths to exit the system.
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Figure 4.5: Histograms of πi probabilities for various values of the epidemic slowing parameter
k. For k 6= 1, histograms are plotted over all 4,183 computed values of πi . Note the difference in

range between both figures.
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Due to local saturation effects, the branching approximation given by Theorem 3.2.1 may
fail to hold within relatively few propagation steps in practice, which makes the probability of
major outbreak irrelevant to qualify the criticality of the smallest nodes. Moreover, as just men-
tioned, holdings sending few animals towards other nodes of the network and with low death
rates are associated with high probabilities of major outbreak. While this observation is quite
conform to the intuition one can have on the behavior of the branching approximation for an
epidemic process initiated in such nodes, it does not seem reasonable to identify these nodes as
critical regarding the vulnerability of the network as a whole. Indeed, major epidemic outbreak
in such nodes have a high probability to be only local epidemic events, with a high proportion
of the population of the node being infected but a low geographical spread. We must there-
fore look for vulnerability indicators taking into account the spatial dimension of the pathogen
spread, which will be done in the next subsection.

Figure 4.6: In plain lines: mean (red plot) and standard deviation (blue plot) of the vector of
probabilities of major outbreak πi for k ranging from 1 to 200. In dashed lines: mean (red plot)
and standard deviation (blue plot) of the vector of probabilities of major outbreak for isolated

nodes, that is, the vector of
(
1− γ/k+di

β/k

)
+ values.

4.2.2 Mean number of contaminated nodes

A simple indicator for the criticality of a node i in terms of spatial propagation of an epi-
demic is the mean number of nodes reached and infected by an epidemic started by one initial
infective initially in node i . However, we are not able to provide an analytical expression for this
quantity in the framework of our model. As a first approximation of this indicator and with the
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notations of Subsection 3.2.2, we therefore consider the quantity defined by

mi := E
(∑

j 6=i
1Wi , j>0

)
= ∑

j 6=i

(
1−P(

Wi , j = 0
))= ∑

j 6=i

(
1−G(1−e j )

)
i , (4.1)

that is, the average number of nodes other than i where the initial infective itself makes infec-
tious contacts during its infectious period.

This indicator is reminiscent of the household reproduction number [PBT11, BPT16] defined
in the framework of household-structured networks with two levels of mixing. In this latter case,
local small-sized populations are homogeneously mixing, and the epidemic processes obtained
by considering these dynamics are superimposed to a homogeneous mixing of the global pop-
ulation at a smaller rate. Because of the difference between local and global rates and the lim-
ited size of the households, it is reasonable to assume that local epidemics follows their course
and hit a proportion of individuals within their original subpopulation before they spread to
other households. In this context, the household reproduction number gives the number of
households hit by the epidemic consecutively to infectious contacts by members of an initially
infected household. This quantity therefore appears like a basic reproduction number for a
model in which households, and not individuals anymore, would make infectious contact with
each other and contribute to the spread of the pathogen following dynamics that can be ap-
proximated by a branching process as the number of households becomes large. Although the
situation is not the same in our framework, where no homogeneous mixing with the global pop-
ulation is considered, the definition of the mi relies on the same idea of characterizing the mean
number of nodes infected during the first step of an epidemic.

The distribution of mi for k = 1, k = 10 and k = 100 is given in Figure 4.7. For k = 1, their
values range from 0 for 0.707 nodes reached by the infection, with mean 0.0049 and standard de-
viation 0.0224. For k = 10, they range from 0 to 0.4194, have mean 0.0222 and standard deviation
0.0379. Finally, for k = 100, their values range from 0 to 0.7021, with mean 0.0480 and standard
deviation 0.0694. The mi values are therefore non monotonic with k: as k grows higher, the
generation of new infectives is slowed down, which hampers epidemic propagation, but so is
the remission process, which makes infectives (and in particular, the initial infective considered
in the calculation of mi ) able to cause infections for a longer time and therefore fosters epidemic
spread.

The graph-based indicator m seems relevant even in the case of small local populations,
since it focuses on the trajectory of one single infective and the number of nodes in which it
makes infectious contacts. However, it may underestimate the spread potential from a node
within which the infection develops quickly and from which many second-generation infec-
tives leave to carry the infection forward. More generally, it only takes into account the spa-
tial propagation of the epidemic, and presents the opposite drawback from the major outbreak
probabilities vector, which is to miss information on the number of infected individuals in the
visited nodes. In the next subsection, we will therefore be looking for indicators combining con-
siderations on the volume of the epidemic in terms of numbers of individuals affected and on
its geographical spread.
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Figure 4.7: Histogram of log(mi ) values different values of the epidemic slowing parameter k,
on the holdings such that mi > e−12 (3202 for k = 1, 3185 for k = 10 and 3199 for k = 100).

4.2.3 Composite indicators

More sophisticated composite indicators for the criticality of a given node in making the
network vulnerable can be built using the π and m vectors.

Since p = 1, the proportion of infectives entering the system through immigration is zero,
so we consider that the epidemic starts from one infective introduced in a given node in an
exogeneous fashion. Considering that this rare event is in practice realized through importa-
tions (which in reality is not necessarily the case for an FMD infection that can be airborne), it
is reasonable to think that the probability for an infective to enter the system through node i is
proportional to the immigration flow in node i , that is, to Bi (Ki − z∗

i ). This suggests the use of
the composite indicator

π′
i = Bi (Ki − z∗

i )πi . (4.2)

This number, that will be referred to as weighted major outbreak probability (but that is not a
probability itself!), takes into account the risk of an epidemic to be started from node i . Yet it fails
to identify as critical some nodes with no immigration but with a central position in the trade
network that makes them likely to receive and dispatch infective individuals. Moreover, π′

i may
take a high value for a node i with few or no population outflow, associated with a high risk of a
major but strictly local epidemic outbreak, just as πi . The distribution of the π′

i is represented in
Figure 4.8 for various values of the slowing parameter k. Its tail corresponds mostly to operators
nodes, while this is not the case for the major outbreak probability indicator. This observation
is to be related to the distribution of the Bi (Ki − z∗

i ) given in Subsection 4.1.2.
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Figure 4.8: Histograms of log(π′
i ) indicators for various values of the epidemic slowing

parameter k.

Combining volume and spatial considerations may yield to the following "second-step" in-
dicator:

vi = E
(

n∑
j=1

(
1− (1−π j )Wi , j

))= E(
n∑

j=1

(
1−ζWi , j

j

))
= N−

n∑
j=1

Gi (1+ (ζ j −1)e j ) (4.3)

that involves the number Wi , j of infections directly caused in node j by an initial infective in-
troduced in node i , 1− (1−πi )Wi , j being the probability that these second-generation infectives
introduced in the otherwise fully susceptible population of node j (if j 6= i , and with only one
infective if j = i ) cause a major outbreak under the branching process approximation for an
epidemic process started at node j .
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Indicators vi attribute a low weight to infectious contacts realized in nodes j such that ζ j

is close to 0, that is, in nodes that act as sinks for the epidemic process. At the contrary, they
strongly take into account infectious contacts made in nodes with high probabilities of starting
major epidemic events. Yet the contribution of a node j to vi is bounded by 1, which minimizes
the role of strong inter-nodal transfers in the epidemic spread. Using the approximation(

1− (1−π j )Wi , j
)≈−Wi , j log(1−π j ) =−Wi , j log(ζ j )

that holds when Wi , j is small, we come up with the following variant of vi :

v ′
i = E

(
−

n∑
j=1

Wi , j log(ζ j )

)
=−

n∑
j=1
E
(
Wi , j

)
log(ζ j ). (4.4)

Using Proposition 3.2.11, we get the following formula for v ′:

v ′ =−Ct (
log(ζ1), . . . , log(ζn)

)=−(
diag(Σ′

1, . . . ,Σ′
n)−Θ′)−1 t (

β1 log(ζ1), . . . ,βn log(ζn)
)

. (4.5)

where we recall that = γi +di +∑
j 6=i θi , j (K j − z∗

j ), that Θ′
i ,i = 0 and that Θ′

i , j = θi , j (K j − z∗
j ) for all

i and all j 6= i .

Figure 4.9: Histograms of v ′
i indicators for various values of the epidemic slowing parameter k.

We note that the contribution of node j to v ′
i cannot be infinite since all the ζ j are positive —

indeed, the empirical bound ζ j É 1−β/γ≈ 0.7286 may be proved by remarking that ‖I′‖1 (where
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I′ is the branching process given by Theorem 3.2.10) can be bounded above by a unitype branch-
ing process with birth rate β and death rate γ, that survives with probability 1−β/γ. Comparing
Equations (4.3) and (4.5) shows that the computation time for v ′ is much lower that of v since
it does not require evaluating the moment generating function G at the n vectors 1− (ζ j −1)e j .
The distributions of the v ′

i for various values of the epidemic slowing parameter k can be found
in Figure 4.9. For all values of k, the distribution of v ′ is more spread out than the distribution
of π. Consistently with the decrease of the πi with k and the fact that the E

(
Wi , j

)
are bounded

by β/γ, the mean of vector v ′
i decreases as k gets larger (see Figure 4.10), but the v ′

i stay high
(above 4.5) for a number of nodes that seems to stabilize around 260. Further investigations
show that these are the 261 nodes of the graph with no mortality and no outgoing flows, that is,
the nodes for which di = 0 and

∑n
j=1θi , j (K j − z∗

j ) = 0; the v ′
i value for such nodes is therefore

equal to the corresponding unitype value with d = 0, that is, log(ζ)E(W) = log
(
γ/β

)
β/γ ≈ 4.806

(see Theorems 3.1.7 and 3.1.2). It can be seen on Figure 4.11 that restricting the analysis to a
subsample of sender nodes with high enough outflow rates makes this density peak disappear
from the distribution of v ′

i for k = 100, and to a lesser extent from that of the πi .

Figure 4.10: Mean and standard deviation of the vector v ′ for k ranging from 1 to 200.

In Section 4.3, we will examine node-based control strategies designed using the major
outbreak probabilities πi , the mean number of contaminated nodes mi defined by (4.1), the
weighted major outbreak probabilities π′

i defined by (4.2) and the second-step indicators v ′
i de-

fined by (4.4).



g 4.2.4. SIMULATION-BASED INDICATORS 136

Figure 4.11: Histograms of πi (on the left) and v ′
i (on the right) indicators for k = 100, for the

4,183 nodes (in blue) and for the subset of the 2278 sender nodes defined by di Ê 0.1 and∑n
j=1θi , j (K j − z∗

j ) Ê 0.1.

4.2.4 Simulation-based indicators

A last set of indicators can be derived from a Monte-Carlo method consisting in simulat-
ing trajectories of the epidemic process started by one infective introduced in one node, and
recording interest quantities such as the epidemic total size, the number of nodes it reached
and infected or its extinction time. Observing the epidemic until it goes extinct makes it possi-
ble to estimate a great variety of parameters, among which the empirical counterparts of those
introduced in the previous subsections. For instance, theory (namely Theorem 3.2.10) predicts
that with high probability and when the epidemic is started from nodes with a high enough
population, trajectories will either reach the disease-free states in a relatively short time (corre-
sponding to a low epidemic total size) or reach an endemic level and gravitate around it before
going extinct, yielding a much longer extinction time and a much higher epidemic total size.
Computing the proportion of simulated trajectories that correspond to the second case pro-
vides a direct estimation for the probability of major outbreak of the epidemic — defined this
time as the probability of an actual major epidemic event for the epidemic process, and not of
the survival of the approximating branching process I′.

Conversely, we may use the Monte-Carlo method discussed here to illustrate the relevance
of the (quickly computable) πi indicators in the case of nodes with moderate to high popula-
tions. Figure 4.12 shows the final size of 100 simulated epidemics started in an example node (a
farm with z∗

i ≈ 144), for different values of the slowing parameter k, the corresponding πi values
and the empirical proportion of major outbreaks. A typical trajectory corresponding to a major
epidemic outbreak is represented in Figure 4.13.

Besides allowing to check the validity of theoretical indicators, Monte-Carlo based investi-
gations allow to estimate quantities that cannot be derived analytically due to the complexity of
the epidemic process. Its most obvious drawback is its computational cost, since estimating for
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Figure 4.12: Empirical and theoretical proportions of major epidemic outbreaks for an
epidemic started by one initial infective in a node associated to demographic parameters

b1 = 0.01, B1 = 0, K1 = 194.34, z∗
1 = 144.21 and such that

∑
j 6=i θi , j (K j − z∗

j ) = 0.36. For each value
of the slowing parameter k, 100 epidemic processes have been simulated until extinction or

until a three-year limit. The corresponding epidemic total sizes have been represented in the
lower panel, with observations at 25 individuals or above (in red) being interpreted as results of

major epidemic outbreaks and observations strictly below 25 (in blue) being seen as
corresponding to minor epidemic outbreaks — setting a threshold at 25 individuals in an

arbitrary choice. The proportions of major outbreaks observed have been reported in the upper
panel (dots), along with the corresponding theoretical values of major outbreak probabilities π1

(diamonds) with the associated 95% percentile theoretical intervals. Simulations and their
representation have been realized by François Deslandes.

instance the probabilities of major outbreak for epidemics started by one initial case in a given
node requires n ×m runs of the simulation algorithm, where m is the number of simulated tra-
jectories for each initial condition I(0) = ei . Using the tau-leaping simulation algorithm 1.4.3
presented in Section 1.4 is likely to make individual simulations faster than using the standard
SSA algorithm. However, SSA simulations might already prove fairly efficient for the specifica-
tion we are considering, since only a limited number of jump rates needs to be updated after
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Figure 4.13: Simulated trajectory of ‖IN‖1 for an epidemic started at a node i with Ki = 286.78,
z∗

i = 34.09, di = 2.61, bi (Ki − z∗
i ) = 0, Bi (Ki − z∗

i ) = 13.54 and
∑

j 6=i θi , j (K j − z∗
j ) = 0, with the

slowing parameter k set to 100. The epidemic goes extinct in 230 days, after undergoing a major
outbreak then stabilizing around a moderate level. The histogram of occupation times before
extinction is plotted on the left side of the panel. The simulation and its representation have

been realized by François Deslandes.

each jump of the epidemic process. At the time of writing this manuscript, the tau-leaping al-
gorithm still is to be implemented and only some SSA simulations have been performed. In our
application, about one node out of five (among 4,183) has an empirical population lower than
10 individuals, so we cannot take nc = 10 in the modified tau-leaping Algorithm 1.4.3 as recom-
mended in [CGP06] without ignoring most of the population dynamics in these nodes with low
population. We will therefore take nc = 5 instead, which hopefully should already prove efficient
in limiting the number of loops to Step 5 from Step 10.

4.3

Elaboration, choice and evaluation of targeted control
strategies

Having defined criticality indicators that qualify how a given node makes the graph vulner-
able to the spread of an epidemic, we may design control strategies on the nodes identified as
critical. In order to evaluate different types of measures, we first need to be able to estimate
the epidemic severity for a given setting of the model parameters (Subsection 4.3.1). It is then
possible to design (Subsection 4.3.2) node-based control strategies under cost constraints and
assess their effect on the final outcome of the epidemic (Subsection 4.3.3).
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4.3.1 Assessing the severity of an epidemic event

Defining quantities related to the severity of an epidemic event is necessary to guide and
evaluate epidemic control strategies. The best option would certainly be to derive theoretically
a computable threshold parameter that would help predict the behavior of the epidemic and its
final size. Another, more costly method, is to rely on another Monte-Carlo approach based on
simulations of trajectories of the epidemic process.

4.3.1.1 The quest for a threshold parameter

Results on the final size and extinction time of the epidemic in the case of a major outbreak
scenario, such as Theorem 3.2.15, do not provide with numerical estimates precise enough to
evaluate the influence of model parameters on these quantities. We are left looking for a syn-
thetic and easily computable indicator of the severity of an epidemic event. A natural candidate
for this purpose is the basic reproduction number R0 defined in Proposition 3.2.11, which is an
epidemiological key parameter:

"The basic reproduction number R0 is arguably the most important quantity in in-
fectious disease epidemiology. It is among the quantities most urgently estimated
for emerging infectious diseases in outbreak situations, and its value provides insight
when designing control interventions for established infections." [DHB12]

In the standard monotype SIR model without demography (corresponding to any of the SIR
models introduced in Section 3.2 with n = 1 and B = b = d = 0), the basic reproduction number

R0 = β
γ is a relevant quantity to evaluate the severity of an epidemic. Indeed, the total size of the

epidemic in case of a major outbreak is approximately a fraction τ of the population, where τ is
the only positive solution of the equation 1−e−R0τ = τ (see Chapter 4 of [AB00a]). Moreover, the
major outbreak probability may also be expressed as a function of R0 (it is (1−1/R0)+) if I(0) = 1.

We can see by Proposition 3.2.11 that the general, multitype-case basic reproduction num-
ber still exhibits a threshold property concerning the occurrence of a major outbreak. Yet, as the
dominant eigenvalue of the mean offspring matrix C, it only contains partial information about
it if n Ê 2, and does not yield a clear insight anymore on the final outcome of an epidemic in
the case of a major outbreak. An instructive case to consider is when there exists i such that
di = 0 and such that

∑n
j=1θi , j (K j − z∗

j ) = 0 (that is, nodes with no outflows); then R0 is close to
β/γ regardless of the setting of the rest of the network. In particular, slowing down the epidemic
by dividing β and γ by k does not affect much this value. Such is the case in the network we con-
sider, and computations indicate that for all values of k, the R0 estimate is less than 10−12 distant
from the the basic reproduction number β/γ = 3.685 of a unitype, closed and homogeneously
mixing SIR model.

In our logistic-driven SIR framework, the reason why R0 determines whether the major out-
break probability is positive for an epidemic initiated in any node is straightforward. Every node
i for which the local basic reproduction number

Ri
0 := β

di +γi +∑n
j=1θi , j (K j − z∗

j )
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is close to β/γ is reachable from any other node in the network thanks to the connectivity as-
sumption we made on Θ (and therefore on Θ̃), and any infective introduced in i among an oth-
erwise fully susceptible population starts a major epidemic outbreak with positive probability.
This observation holds regardless of the probability for an infective initially individual situated
in a given node to reach node i . That R0 is a threshold parameter for our model in the sense
of Proposition 3.2.11 is therefore of lesser interest. Yet the question of defining a proper thresh-
old parameter for graph-based models such as the one under study is still open, and one of the
challenges left to spatial epidemic modeling in general [REI+15]. Alternative definitions of R0 as
the eigenvalue of a very general "next generation matrix" linear operator have been put forward
[DHM90, DHR09], and various threshold parameters, among which the household reproduction
number discussed in Subsection 4.2.2, proved to give good results in specific modeling contexts
[BST09, PBT11, BBH+15, BPT16]. However, absence of global homogeneous mixing, clumping
effects inherent to spatial models (as in the case of nearest neighbor lattice contact structures
[MK85]) and possible fast depletion of susceptibles in low populated nodes make our model un-
fit for being described by these parameters. The very idea of the existence of a unique parameter
assessing the severity of an epidemic in our framework is therefore debatable.

4.3.1.2 Monte-Carlo estimation of the epidemic final outcome

An alternative idea to evaluate the severity of the epidemic is again to use Monte-Carlo-
inspired explorations, where the mean epidemic final size and the mean epidemic extinction
time are estimated based on simulated trajectories of the epidemic process. In the present
framework, we consider epidemics started from the accidental introduction of an infectious
individual in an otherwise fully susceptible population through immigration. As stated when
building the criticality indicators mi in Subsection 4.2.2, we may therefore assume that the prob-
ability for this first infective to be introduced in node i is proportional to the immigration flux
Bi (Ki − z∗

i ) in this node. A baseline for the evaluation procedures described in Subsection 4.3.3
will therefore be to simulate trajectories of an epidemic process started at state (z̃∗,ei ,0) ∈ (Zn+)3

(where z̃∗
j is the closest integer to z∗

j ) for a node i chosen at random among �1, n� with probabil-
ity proportional to Bi (Ki − z∗

i ). We will then record these trajectories to obtain a control sample
to be compared with trajectories obtained under new rules that correspond to the policy under
study.

Once again, tau-leaping algorithms for the simulation of the epidemic process have not yet
been implemented at the time of writing this manuscript. Their effect on the computation time
of the numerous trajectories necessary for the precise assessment of control measures remains
unknown, although results from [KPSK15] on unitype SIS epidemic simulations are a cause for
optimism.

4.3.2 Design of control strategies

Control and containment of human [HBG04, CPJEJG06, CBBV06, FCF+06] and animal dis-
eases [Mye88, WS18] is an active field of theoretical research, and of course a major issue of san-
itary legislation [FAO99]. Concerning cattle diseases, epidemic containment measures range
from avoiding contacts between infected and susceptible animals, performing random screen-
ing to detect and remove infected animals from the herds, vaccinating susceptible animals or
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reducing access of pathogen vectors to susceptible animals, to geographic zoning, slaughter
and ring culling [TBKW09]. In the context of the present work, we shall not review the abun-
dant literature on disease control, but will instead focus on graph-based control strategies that
consist in actions on parameters and initial populations related to critical nodes.

4.3.2.1 Identification of critical nodes

The first step of designing graph-based control strategies consists in identifying the nodes
that will be referred to as critical regarding the graph vulnerability they induce.

We saw in the previous section that unweighted and weighted major outbreak probabilities
πi and π′

i take high values even on nodes with a low inter-nodal outflow
∑n

j=1θi , j (K j − z∗
j ), that

yet cannot be considered as making the network vulnerable. We therefore define as critical with
respect to π (resp. to π′) every node i such that

∑n
j=1θi , j (K j − z∗

j ) Ê 0.1 and πi Ê α (resp. π′
i Ê α),

where α> 0 is a quantity to be determined according to the possible scale of the control strategy.
Note that α may depend on the empirical distribution of the πi , for instance when the chosen
rule is to act on a given number of holdings with the higher πi such that

∑n
j=1θi , j (K j − z∗

j ) Ê 0.1,
or when it is stated in terms of number of individuals affected by an action on critical nodes.
The condition

∑n
j=1θi , j (K j − z∗

j ) Ê 0.1 is entirely arbitrary but seemed like a good option to rule
out the case of holdings without significant population outflows while not excluding too many
nodes from the analysis (see again the distribution of

∑n
j=1θi , j (K j − z∗

j ) in Figure 4.4).

Similarly, the rule for defining a node i as critical with respect to m is of the form mi Ê α

(resp. π′
i Ê α), and that for defining it as critical with respect to v ′ is of the form v ′

i Ê α.

Having these rules in mind, a legitimate interrogation is whether the nodes identified as
critical for one indicator are also critical for others. In order to quantify the correlation between
critical nodes sets, we use a rank similarity measure that puts an emphasis on overlaps of the top
ranks, the Rank-Biased Overlap (RBO) measure [WMZ10]. Roughly speaking, the RBO measure
computes the expected value of the average overlap between partial lists browsed by an observer
until a random rank D∧n, where D has a geometric distribution of parameter p ∈ (0,1). An
interpretation for parameter p is simply the probability for the observer who read the list until a
given rank to keep reading until the next rank instead of getting tired, not going to the next rank
and computing the average overlap of all the partial lists read so far. We take p to be 0.95, so 20
indexes out of 4,183 are scanned by the observer on average. With this value of p, we observed
that the RBO of two independent random permutations of �1, 4183� ranges between 9,54×10−6

to 0.0349, with mean 0.0041 and standard deviation 0.0068 on 100 trials. For k = 100, we get the
following RBO measures:

π π′ m v ′

π 1 0.261 0.107 0.769
π′ 0.261 1 1.15×10−5 0.229
m 0.107 1.15×10−5 1 0.117
v ′ 0.769 0.229 0.117 1

Table 4.2: RBO measures for couples of indicators A,B ∈ {π,π′,m, v ′}.
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It appears from such measures that top-rank indexes for π and v ′ are highly correlated
(which is confirmed by the Spearman correlation coefficient for π and v ′ being 0.9866, while
other correlations are close to or below 0). We thus expect a strong overlap between critical
nodes sets for π and v ′.

4.3.2.2 Actions on critical nodes

We hereby focus on three types of possible strategies on nodes identified as critical. The
protocols we put forward are purposedly simplistic so they can be adapted to fit given cost con-
straints. A review on strategies to control the spread of an epidemic on a complex network may
be found in [PCVV15].

Preventive measures to block infectives importation: the screening strategy

In our framework, epidemic events start from the accidental immigration of an infective in-
dividual. Controlling the sanitary status of imported animals in nodes identified as critical and
preventing the immigration of infectives in these nodes is therefore likely to reduce the proba-
bility that an epidemic starts in a node where its probability to undergo a major outbreak or to
reach a high number of nodes is important. This strategy, that we will refer to as screening at
importation, naturally applies to nodes that are critical with respect to π, π′ or v ′. We may as-
sume that the cost of such a strategy is roughly proportional to the number of screened animals,
which commands to choose the threshold α such that the total number of screened animals∑

i critical Bi (Ki − z∗
i ) is below a given level.

Spread containment: the isolation strategy

Another approach is to delete edges of the graph through which the epidemic is likely to
spread, that is, to set θi , j to zero for critical nodes i and for a selection or for all their neighbours
j . This isolation strategy is reminiscent of the preventive rewiring [BJS16] or preventive drop-
ping of edges [BBLS18] involved in models for SIR epidemics on random networks, in which sus-
ceptible individuals (modeled as nodes) can take preventive measures by deleting edges (that is,
possibilities of contact) to their infectious neighbours. Once again, we may consider as a first
approximation that the cost of an edge deletion is proportional to the mean number of animals
involved, that is, to θi , j (K j −z∗

j ), which results in taking α such that
∑

(i , j ) deletedθi , j (K j −z∗
j ) is be-

low a given level. A clever selection of edges to be deleted for each critical node requires a deep
graph connectivity analysis, examples of which can be found in [DEV14, MGM+16, PCVV15].
Note that deleting all edges coming out of a holding (that is, preventing it from sending individ-
uals anywhere else in the graph) turns it into an epidemiological sink. From the point of view of
graph vulnerability analysis, this amounts to its deletion. A simple control strategy, that we will
refer to as isolation, could therefore be to set to 0 all θi , j for nodes i that are identified as critical.
This policy is expected to apply best to nodes that are critical with respect to m′.

Local control: the vaccination strategy

A third strategy is vaccination, that mathematically consists in turning the sanitary status
of a proportion of individuals from S to R in targeted nodes. A great amount of literature has
been endeavouring to design optimal vaccination policies for given vaccination costs and epi-
demic dynamics [MW74, HW73, DH00]. A straightforward result for closed SIR models is that
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vaccinating a proportion (1−1/R0)+ of susceptible animals leads to a new basic reproduction
number below 1, and therefore prevents major epidemic outbreaks from occuring. However, as
discussed in Subsection 4.3.1.1, this costly method (here 1−1/R0 ≈ 0.73!) focuses on reducing
a parameter that, even when above 1, is poorly indicative of the severity and the expected out-
come of the epidemic in a structured metapopulation. Local vaccination strategies have been
considered in the framework of structured populations [BPT16] and household models [BS18],
comparing individual-based and household-based vaccination schemes. In this context, vacci-
nation policies targeting households with a strong network centrality have been proved to yield
good results. Inspired by this observation, we define our vaccination strategy as the fact of turn-
ing a fraction (1−1/R0)+ of Susceptibles into Removed individuals for critical nodes. We expect
criticality with respect to m′ or v ′ to be the most relevant in this case. We assume the costs of
vaccination to increase linearly with the number of treated animals, so the threshold α will be
chosen such that

∑
i critical(1−1/R0)+z∗

i is below a given level.

4.3.3 Control strategies assessment

At the time of writing this manuscript, the assessment of the control strategies presented
above by the final outcome of simulated epidemics is still in progress. We detail the procedure
that will be used to evaluate the outcome of all three types of control strategies put forward in
the previous subsection.

We henceforth set the slowing parameter value to k = 100. All control strategies will be car-
ried out with the constraint of involving at most 5,000 animals, and our procedure will make sure
that this constraint is saturated. Setting a limit to 5,000 animals regardless of the type of policy
considered is of course an arbitrary choice that has to be discussed using a sensitivity analysis.
Moreover, finer efficiency comparisons need to be based on a preliminary cost analysis, so the
threshold is not expressed in terms of animals any longer but rather in terms of monetary costs.

4.3.3.1 Screening at importation

First consider the "screening at importation" control strategy described in Subsection 4.3.2.2.
Critical nodes with respect to π, π′, m and v have been identified under the condition that only
5,000 of the 32593 yearly imported animals can be screened, that is,

∑
i critical Bi (Ki −z∗

i ) É 5,000.
To each set of critical nodes, we added one last holding referred to as borderline, that would have
been the first to be selected if the 5,000 animals threshold had been risen. This holding will only
be partially acted on so the total number of screened animals is exactly 5,000. We obtain cor-
responding "critical or borderline" index sets Cπ, Cπ′ , Cm and Cv ′ , the cardinals of which are
given below.

Cπ Cπ′ Cm Cv ′

Cπ 2,792 3 233 2,772
Cπ′ 3 3 3 3
Cm 233 3 233 233
Cv ′ 2,772 3 233 4,035

Table 4.3: Chart of CA ∩CB cardinals, with A,B ∈ {π,π′,m, v ′}, for the "screening at importation"
policy.
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These index sets appear to overlap considerably. All three indices in Cπ′ — that is, the three
indices with the higher value of π′

i — correspond to assembly centers. They also belong to sets
Cπ, Cm and Cv ′ . The borderline holding is the same for all these sets. It is most acted on by the
screening policy focused on π′-critical nodes, for which 3,588 of the 12,544 animals imported
yearly in the node are screened (against 2,257 when the indicator considered is π, 3,048 when it
is m and 1,602 when it is v ′). Screening is applied to a vast majority of nodes of the system when
the policy is conducted on the nodes with high values of v ′

i .

Reference simulations will be ran for the epidemic process until its extinction, for an epi-
demic started by one infective individual located in a node i drawn among �1, n� with probabil-
ity

Bi (Ki − z∗
i )∑n

j=1 B j (K j − z∗
j )

.

Three quantities of interest will be recorded for any of these trajectories: the total size of the
epidemic, its extinction time and the number of nodes reached by the infection.

We will then apply the same procedure for simulations realized as follows. For A = π,π′,m
or v , we will start the epidemic in a non-critical node i with the same probability as before, in
the borderline node with probability∑

j∈CA B j (K j − z∗
j )−5,000∑n

j=1 B j (K j − z∗
j )

,

and otherwise set the epidemic total size, extinction time and number of nodes reached to zero,
which therefore happens with probability

5,000∑n
j=1 B j (K j − z∗

j )
.

We will then evaluate the effect of the screening strategy on the average of the quantities of
interest.

4.3.3.2 Isolation

Similarly, we will apply the isolation strategy to critical nodes under the constraint of pre-
venting at most 5,000 of the 230,055 average yearly individual animal movements, that is, under
the condition

∑
i critical z∗

i

∑
j 6=i θi , j (K j − z∗

j ) É 5,000. Defining Cπ, Cπ′ , Cm and Cv as before re-
garding to this constraint, we get the following cardinals chart.

Cπ Cπ′ Cm Cv ′

Cπ 236 2 26 186
Cπ′ 2 4 149 0
Cm 26 149 116 19
Cv ′ 186 0 19 765

Table 4.4: Chart of CA ∩CB cardinals, with A,B ∈ {π,π′,m, v ′}, for the isolation policy.
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For every indicator A =π,π′, m or v ′, we will run simulations of the epidemic process started
by one initial infective in a node selected as in the reference simulation procedure, replacing this
time θi , j by θ′i , j = 0 for all j ∈ �1, n� whenever i is critical and by

θ′i , j =
(

1−
5,000−∑

k critical z∗
k

∑
j 6=k θk, j (K j − z∗

j )

z∗
i

∑
j 6=i θi , j (K j − z∗

j )

)
θi , j

for all j when i is the borderline node.

The isolation policy consists in changing the value of some parameters of the model, so it is
possible to observe its effect on indicators themselves. New calculations using the values of θi , j

corresponding to the isolation of critical nodes yield results reported in the table below:

No policy
Isolation of nodes critical for
π π′ m v ′

Mean of π 0.4285 0.4326 0.4250 0.4302 0.4330
Mean of π′ 0.1063 0.1067 0.0241 0.0487 0.1067
Mean of m 0.0480 0.0423 0.0329 0.0366 0.0428
Mean of v ′ 1.4286 1.5167 1.4235 1.5267 1.5254

Table 4.5: Effects of the isolation of A-critical nodes on the mean of B for all indicators
A,B ∈ {π,π′,m, v ′}. The value of the indicator is given in bold fonts when it is made smaller by

the isolation policy.

That the major outbreak probability itself is relatively unaffected on average by the isola-
tion measure has to be related to the analysis of the πi sketched in Subsection 4.2.1, where we
state that nodes with low major outbreak probabilities are in general nodes that are the origin
of strongly weighted paths through which the system empties. Deleting edges until 5,000 ex-
changes are prevented directly decreases the weight of such paths, but only by a relatively small
total amount. The indicators mostly affected by the isolation policy are π′ and m when the mea-
sure is targeted either on nodes with high π′

i or on nodes with high mi . The high effect of the
policy on the π′ mostly indicates that nodes that are acted on are nodes with high importation
levels, which is intuitive for π′-critical nodes but less for m-critical ones. The reduction of m
suggests that the isolation policy does prevent the spread of the epidemic from nodes with high
spreading potential, which is conform to intuition.

4.3.3.3 Vaccination

Finally, we will assess the vaccination strategy detailed in Subsection 4.3.2.2, under the con-
straint of treating no more than 5,000 animals of the

∑n
i=1 z∗

i = 385,653 total population, that is,∑
i critical z∗

i É 5,000R0
R0−1 . We build the CA sets as before and get:
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Cπ Cπ′ Cm Cv ′

Cπ 608 77 186 295
Cπ′ 77 579 149 95
Cm 186 149 993 40
Cv ′ 295 95 40 927

Table 4.6: Chart of CA ∩CB cardinals, with A,B ∈ {π,π′,m, v ′}, for the vaccination policy.

Simulations will again be run for every indicator A = π, π′, m or v ′. In critical nodes, we
will turn a fraction (1−1/R0) of susceptible individuals to immune (that is, transfer (1−1/R0)z∗

i
individuals from compartment S to compartment R inside node i , rounded to the closest inte-

ger). In the borderline node for A, we will only transfer 5,000−
(
1− 1

R0

)∑
i critical z∗

i animals. We

will then start the epidemic in a node selected as in the reference simulation procedure, and
record the epidemic final size, its extinction time and the total number of nodes it reached to be
compared with the corresponding values for the focus trajectories sample.
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Conclusion and perspectives

Let us quickly review the results of the previous chapters and draw some perspectives for
further research.

Summary of the previous chapters

In Chapter 2, we designed and studied network-structured metapopulation models account-
ing for immigration, births, deaths and migrations between nodes. We first discussed recur-
rence and ergodicity properties for multi-dimensional population processes with deterministic
dynamics between jumps, that we called metapopulation PDMP (Section 2.1). Two instances
of interest (the so-called multiplicative and unitary models) were thoroughly investigated, us-
ing mathematical ingredients likely to transpose in a greater variety of cases. Turning to more a
tractable pure jump specification, we stated scaling limits and long-term stability results for an
ergodic multitype branching population process (Section 2.2). In particular, we showed that the
scaled process took its values in an arbitrary small ball around an equilibrium value over times
scales that are exponential in the scaling parameter N. The cattle trade application we had in
mind then commanded that we consider a more realistic finite-state variation on this model,
referred to as the logistic population process (Section 2.3). In this framework, the limiting dy-
namical system for the scaled population processes proved highly non-trivial, only allowing to
retrieve a positive lower bound for scaled populations over N-exponential time scales.

We then studied SIR epidemic processes on metapopulation networks, driven either by
branching or by logistic population dynamics (Chapter 3). Strong finite-time approximation and
long-time asymptotic results were derived in the one-population case (Section 3.1), that trans-
posed to the multitype case under stability assumptions (Section 3.2). The very construction of
the epidemic processes varies according to whether infectives are or not allowed to enter the
system through immigration. In the case where only susceptible individuals immigrate and the
epidemic is started by the introduction of a finite quantity of infectives in the system, we approx-
imated the epidemic process by a multitype branching process on finite time intervals. This led
to a distinction between two types of epidemic events (minor and major epidemic outbreaks),
the probabilities of which could be evaluated using an iterative method. We showed that in the
case of a major epidemic outbreak, endemicity occurs with high probability and entails, under
appropriate stability conditions for the limiting dynamical system, N-exponential lower bounds
for the extinction time and the total size of the epidemic. If a proportion of infectives is allowed
to enter the system through immigration, the epidemic process is best approximated using a
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dynamical system. In this case, we showed that provided the endemic equilibrium is stable,
the scaled epidemic process spends a fraction of its time tending to 1 in a neighborhood of this
equilibrium as N goes to infinity.

In Chapter 4, we performed a numerical application of the theoretical results on the logistic-
driven epidemic process to design and evaluation of disease control strategies. This application
is based on population parameters evaluted using the 2015 Finistère cattle trade network and
epidemic parameters corresponding to a slowed version of foot-and-mouth disease dynamics
(Section 4.1). We came up with four different indicators of the graph vulnerability to an epi-
demic started in a given node by one single infective, that relate alternatively to the local sever-
ity or to the spatial spreading potential of the epidemic (Section 4.2). The present focus of our
ongoing research is to evaluate screening, isolation and vaccination control strategies applied
to the nodes identified as critical for the various indicators (Section 4.3), so as to maximize the
efficiency of a holding-based intervention under fixed cost constraints.

Perspectives

Some mathematical questions on the population and epidemic models under study remain
open.

First, we conjecture the uniqueness and global asymptotic stability of the equilibrium of
system (S ′

pop), and of the equilibria of systems (Sepi) and (S ′
epi) when the corresponding R0 are

strictly greater than 1. Proving these results would make the conclusions of Theorems 3.2.6 and
3.2.15 automatically true when R0 > 1.

Second, an important mathematical object left aside in our study is the quasi-stationary
distribution (QSD) for the epidemic process, quickly evoked in our Introduction. The QSD is
the (potential) limit for the distribution P(XN(t ) ∈ · | IN(t ) 6= 0) of XN(t ) conditionally on the fact
that the epidemic has not gone extinct at time t . It also appears like the limiting distribution
of the empirical occupancy times over the trajectory considered before extinction (see Figure
4.13, and Figure 1 of [VDP13]). While simple matrix theory shows that such a distribution exists
for the finite-state logistic-driven SIR model [FKMP95], it is less clear that the result holds in
the case of the branching-driven SIR model. Classical mathematical techniques to show such
existence results involve Foster-Lyapunov criteria [CV14, CV15, CV16, CV17] or spectral theory
[RCCM14] that do not adapt easily to multidimensional jump processes that do not come down
from infinity, or fixed point approaches [FKMP95]. A review on existence criteria for QSD can be
found in [VDP13], with an emphasis on birth and death processes for which 0 is an absorbing
state. In this case, it has been shown that the speed of convergence in total variation of the
process distribution conditioned to non-absorption towards a QSD is exponential [VD91]. This
result has been generalized to multi-dimensional birth and death processes absorbed whenever
one of the coordinates reaches 0 [CV15]. It trivially holds for the finite-state logistic-driven SIR
model (see again [VDP13]), and the similarities between the latter and the branching-driven SIR
model let us hope that they should still be true in the branching case.

We are currently investigating the possible identity between the limit as N tends to infin-
ity of the QSD of a density-dependent population process XN and the stationary distribution of
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the diffusive processes approximating the scaled process XN/N over finite time intervals, given
in Chapter 11 of [EK86]. It could be verified using results from [RCCM14] that these two dis-
tributions coincide in the case of the unitype logistic population process. This comparison is
used in [AB00b, Nå99], that study the properties and the recurrence equations determining the
QSD assuming its existence in an open unitype or decomposable SIR model. In particular, they
show that the extinction time of the epidemic follows an exponential distribution, and derive an
approximation for the the mean of this distribution using the second-order diffusive approxi-
mation for the scaled epidemic process.

Perspectives for improving the accuracy of the numerical analysis carried out in the present
work include a finer evaluation of demographic parameters by maximum likelihood estimation
[BS05] and a calibration of the carrying capacities Ki using the objective capacities of the ob-
served holdings. Data related to the latter may be found both in the FNCD records and by direct
observation. Moreover, the values chosen for epidemic parameters correspond to a virtually
slowed version of FMD and would of course need to be redefined if an application to an actual
disease were to be conducted. Progress is still to be made on the definition of synthetic vulnera-
bility indicators and quantities allowing to assess the severity of an epidemic without having to
run a full simulation of the epidemic process.

On a modeling point of view, considering variations on the epidemic transmission mode,
for instance by taking into account the action of wind in the case of airborne pathogens, or of
animal contacts at pasture, could result in spatial models with various levels of mixing, in the
spirit of household models [BN08, BHL+15, BBH+15, NT19]. It is also necessary to wonder about
the suitability of SIR compartmental models to describe the spread of a given disease, as com-
pared to other compartmental specifications allowing for instance for eventual loss of immunity
(SIRS) or incubation periods (SEIR) [Bra08]. Another direction to explore is explaining the trade
fluxes between nodes, using for instance gravitational microeconomic models [MGM+16]. As a
general fact, questioning the biological and economic relevance of the models used to represent
the spread of a disease is a matter of paramount importance. Choosing simplistic specifications
for practical purposes may indeed result in misleading recommendations, as shown for instance
in [VBE10] on the choice of exponential infection durations. This is the meaning of a quote from
[Bra08] about the 1665 plague in Eyam (England):

In the village of Eyam the rector persuaded the entire community to quarantine itself
to prevent the spread of disease to other communities. This policy actually increased
the infection rate in the village by keeping fleas, rats, and people in close contact with
one another, and the mortality rate from bubonic plague was much higher in Eyam
than in London. Further, the quarantine could do nothing to prevent the travel of rats
and thus did little to prevent the spread of disease to other communities. One message
this suggests to mathematical modelers is that control strategies based on false models
may be harmful, and it is essential to distinguish between assumptions that simplify
but do not alter the predicted effects substantially, and wrong assumptions which
make an important difference.
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Appendices

Appendix A: On the invariant probability of a metapopulation
PDMP

Let us consider a piecewise deterministic metapopulation process as defined in Section 2.1.
It is clear by the proof of Proposition 2.1.7 that if Assumption F holds and if X admits an invari-
ant probability π, then π dominates the Lebesgue measure on some open subset of an affine
subspace of Rn . Its support may yet not be limited to this subspace, as can be seen in Figure 6.1
below. Determining conditions for the absolute continuity of π restricted to given areas of Rn+ is
a non-trivial matter that still has to be discussed. Interested readers are referred to [Löc18] for a
discussion about the absolute continuity of π in a house of cards model.

If X is positive Harris recurrent with invariant probabilityπ and
∫ ‖x‖1dπ(x) <+∞, we see by

(2.3) that for any C 1 function f :Rn+ →Rwith bounded differential the classical relation hereafter
holds:∫ (

n∑
i=1

∂ f

∂xi
(x)φi (x)+ ∑

(i , j )∈I

θi , j (x)
∫ (

f (x +ξ(e j −ei ))− f (x)
)
µi , j (x,dξi )

)
dπ(x) = 0. (6.1)

It is worth noting that the second term of the integrand in the left hand side above is zero when-
ever f (x) only depends on x1+. . .+xn . Equation (6.1) then takes a simple form that may provide
valuable information on π.

In particular, applying (6.1) to the projection functions 〈·,ei 〉 yields:

∀t Ê 0,∀i ∈ �1, n�, Eπ
(
φi (X(t ))

)+ ∑
j 6=i
Eπ

(
d j ,i (X(t ))−di , j (X(t ))

)= 0 (6.2)

where we recall that di , j :Rn+ →R is the mean debit from i to j defined by

di , j (x) = θi , j (x)
∫
ξ µi , j (x,dξ). (6.3)

EXAMPLE 5. Let us assume that the following conditions hold:
φi (x) = ai −xi

θi , j (x) = 1∫
ξµi , j (x,dξ) = mi xi
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where the ai and mi are non-negative real numbers, and that X is positive Harris recurrent and
integrable under its invariant probability. Then (6.2) becomes:

∀t Ê 0,∀i ∈ �1, n�, (1+mi (n −1))Eπ (Xi (t ))−
∑
j 6=i

m jEπ
(
X j (t )

)= ai

and can be written as a dominant diagonal linear system, which makes it possible to determine
the Eπ (Xi (t )) explicitly.

Figure 6.1: Plotting of 10000 simulated instances of X(100) in the two-patch uniform model with
constant growth for specified parameters, with initial value (5,5). In accordance with equation
(6.4) of example 6, about 17.67% of points in both figures lie on the x axis.

EXAMPLE 6. Let us consider the one-exit constant growth framework, that is, a constant growth
model with ci Ê 0 for all i ∈ �1, n −1� and cn < 0, and assume that X is positive Harris recurrent
with invariant probability π and

∫ ‖x‖1dπ(x) <+∞. It is an easy exercice to prove that

Pπ (Xn(t ) > 0) =
∑n−1

j=1 c j

|cn |
(6.4)

and that the event (Xn(t ) > 0) is independent from the variable
∑n

i=1 Xi (t ) for all t Ê 0 under Pπ.



153 6. APPENDICES h

Appendix B: Additional results on the invariant measure of the
branching population process

Recall that the almost sure value of XN(0) is bNx(0)c ∈ Zn+. For notational convenience and
since N does not vary, we drop the N superscripts in the rest of this Appendix. Immigration in
each node occurs at fixed rate, so our population process is a superimposition of independent
multitype branching processes without immigration initiated at the jump times of a Poisson
process. More precisely, let (Yi ,k )i∈�1,n�,k∈Z = ((Yi ,k (t ))tÊ0)i∈�1,n�,k∈Z be a sequence of iid Marko-
vian jump processes on Zn+ with transition rates given by

Transition Rate at state x
x → x +ei bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

and such that
Yi ,k (0) = ei

for any i ∈ �1, n� and any k ∈Z. Then Yi ,k is a branching process that has the same distribution
as the population process without immigration started from just one individual in node i at time
0. Now immigration in node i can be modeled by a Poisson process with intensity Bi , so we can
write:

∀t Ê 0, X(t )
d=

n∑
i=1

(
0∑

k=−bNx(0)ci+1
Yi ,k (t )+

Qi (t )∑
k=1

Yi ,k (t −Ti
k )

)
(6.5)

where the Qi are independent Poisson processes with intensities Bi and jump times sequences

(Ti
k )kÊ0, independent from each other and from the Yi ,k ,

d= denoting the equality in distribution
under P.

Using this representation, it is possible to derive much more information about the limiting
probability π of X than we did in Theorem 2.2.1.

PROPOSITION 6.0.1. — [Characteristic function and Laplace transform of the invariant dis-
tribution] The characteristic function χ of πN (resp. its Laplace transform φ) is given by

χ : ξ 7→ exp

(
n∑

i=1
Bi

∫ +∞

0

(
χi

u(ξ)−1
)

du

)
resp.

φ : ξ 7→ exp

(
n∑

i=1
Bi

∫ +∞

0

(
φi

u(ξ)−1
)

du

)
where χi

u (resp. φi
u) is the characteristic function (resp. the Laplace transform) of Yi ,0(t ).
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Proof of Proposition 6.0.1.— We will only prove the proposition for characteristic functions since
deriving Laplace transforms is based on similar arguments. The Yi ,k are non-explosive pure
jump processes with unitary jumps, so the t 7→ χi

t (ξ) are continuous for fixed i and ξ. Using (6.5)
and the independence of the Yi ,k yields:

χt (ξ) = E
(
e i 〈ξ,X(t )〉

)
= E

[
exp

(
i

〈
ξ,

n∑
j=1

(
0∑

k=−x(0) j+1

Y j ,k (t )+
Q j (t )∑
k=1

Y j ,k (t −T j
k )

)〉)]

= E
[

exp

(
i

〈
ξ,

n∑
j=1

0∑
k=−x(0) j+1

Y j ,k (t )

〉)]
E

[
exp

(
i

〈
ξ,

n∑
j=1

Q j (t )∑
k=1

Y j ,k (t −T j
k )

〉)]

=
(

n∏
j=1

(
χ

j
t (ξ)

)x j (0)
)
E

[
exp

(
i

〈
ξ,

n∑
j=1

Q j (t )∑
k=1

Y j ,k (t −T j
k )

〉)]
. (6.6)

Now

E

[
exp

(
i

〈
ξ,

n∑
j=1

Q j (t )∑
k=1

Y j ,k (t −T j
k )

〉)]

= E
[
E

(
exp

(
i

〈
ξ,

n∑
j=1

Q j (t )∑
k=1

Y j ,k (t −T j
k )

〉)∣∣∣∣∣Q j (u),u ∈ [0, t ], j ∈ �1, n�
)]

= E
[
E

(
n∏

j=1

N j (t )∏
k=1

exp
(
i
〈
ξ, Y j ,k (t −T j

k )
〉)∣∣∣Q j (u),u ∈ [0, t ], j ∈ �1, n�

)]
. (6.7)

Conditionally on Q j (t ), the jump times T j
k of Q j up to time t have the same distribution than

a Q j (t )-sample of uniform distribution U ([0, t ]) sorted in ascending order, so the t −T j
k up to

time t have the same distribution than a Q j (t )-sample of uniform distribution U ([0, t ]) sorted
in descending order. From this and the independence of the Q j we deduce:

E

[
E

(
n∏

j=1

Q j (t )∏
k=1

exp
(
i
〈
ξ,Y j ,k (t −T j

k )
〉)∣∣∣Q j (u),u ∈ [0, t ], j ∈ �1, n�

)]

= E
[

n∏
j=1

Q j (t )∏
k=1

∫ t

0

1

t
E
(
exp

(
i
〈
ξ,Yu( j ,k)

〉))
du

]

= E
[

n∏
j=1

Q j (t )∏
k=1

∫ t

0

1

t
χ

j
u(ξ)du

]

=
n∏

j=1
E

(∫ t

0

1

t
χ

j
u(ξ)du

)Q
j
t

 . (6.8)
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Finally, Q j (t ) has Poisson distribution with mean B j t for all j , so

E

[(∫ t

0

1

t
χ

j
u(ξ)du

)Q j (t )
]
= exp

(
B j t

(∫ t

0

1

t
χ

j
u(ξ)du −1

))
= exp

(
B j

∫ t

0

(
χ

j
u(ξ)−1

)
du

)
.

Combining (6.6), (6.7) and (6.8) then entails

χt (ξ) =
(

n∏
j=1

(
χ

j
t (ξ)

)bNx j (0)c
)

exp

(
n∑

j=1
B j

∫ t

0

(
χ

j
u(ξ)−1

)
du

)
. (6.9)

Recall that the Yk,i go extinct almost surely, so the (χ j
t (ξ))tÊ0 processes tend to 1 as t →+∞,

hence
n∏

j=1

(
χ

j
t (ξ)

)bNx j (0)c −→
t→+∞ 1

Using the fact that t 7→ E
(
Y j ,0(t )

)
is a solution of x ′ = Ax and a generalized eigendecomposition

of A then grants ∣∣∣χ j
u(ξ)−1

∣∣∣É E(∣∣∣e i 〈ξ,Y j ,0(u)〉−1
∣∣∣)

= 2E

(∣∣∣∣sin

(〈ξ,Y j ,0(u)〉
2

)∣∣∣∣)
É E

(∣∣∣〈ξ,Y j ,0(u)〉
∣∣∣)

É ‖ξ‖∞E(‖Y j ,0(u)‖1)

= ‖ξ‖∞o(eα
′u) (6.10)

as u →+∞, so we may take t →+∞ in (6.9) and get:

∀ξ ∈R, lim
t→+∞χt (ξ) = exp

(
n∑

j=1
B j

∫ +∞

0

(
χ

j
u(ξ)−1

)
du

)
.

Now the right hand side term is a continuous function of ξ by the dominated convergence the-
orem since the o(eα

′u) term in (6.10) does not depend on ξ. Lévy’s theorem then implies that
(X(t ))tÊ0 converges in distribution to a Zn+-valued random variable with characteristic function

χ : ξ 7→ exp

(
n∑

j=1
B j

∫ +∞

0

(
χ

j
u(ξ)−1

)
du

)
,

hence the result. ä
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Using a coupling argument, we are also able to obtain a value for the rate of convergence
towards the equilibrium distribution:

PROPOSITION 6.0.2. — [Convergence rate towards equilibrium] Let K > 0 and g : Rn+ → C

be a K-Lipschitz continuous function. If ν is a distribution on Zn+ with finite first moment
ν(Id) ∈Rn+ and if ‖ ·‖ denotes the matrix norm associated with ‖ ·‖1, then:∣∣Eπ (

g (X(t ))
)−Eν (

g (X(t ))
)∣∣É K‖e t A‖ · (∥∥−A−1B

∥∥
1 +‖ν(Id)‖1

) =
t→+∞ o

(
eα

′t
)

for any α′ strictly greater than the highest real part of A’s eigenvalues.

Proof of Proposition 6.0.2.— Let Zπ and Zν be Zn+-valued random variables on (Ω,A ), indepen-
dent from the Yi ,k , such that Zπ has law π and Zν has law ν under P. Now define X′ and X′′

as:

∀t Ê 0, X′(t ) =
n∑

i=1

 0∑
k=−Zπi +1

Yi ,k (t )+
Ni (t )∑
k=1

Yi ,k (t −Ti
k )


and

∀t Ê 0, X′′(t ) =
n∑

i=1

 0∑
k=−Zνi +1

Yi ,k (t )+
Ni (t )∑
k=1

Yi ,k (t −Ti
k )


X′ and X′′ are versions of the population process started with respective initial laws π and ν

under P and only differing from each other by their initial lineages. In particular, the law of X′

under P is that of X under Pπ (that is, π) and the law of X′′ under P is that of X under Pν. For any
t Ê 0, we get:∣∣Eπ (

g (X(t ))
)−Eν (

g (X(t ))
)∣∣É KE

(‖X′(t )−X′′(t )‖1
)

= KE

∥∥∥∥∥∥
n∑

i=1

 0∑
k=−Zπi +1

Yi ,k (t )−
0∑

k=−Zνi +1

Yi ,k (t )

∥∥∥∥∥∥
1


É K

n∑
i=1
E
(|Zπi −Zνi |

)
E
(
‖Yi ,0(t )‖1

)
É KE

(‖Zπ−Zν‖1
)‖e t A‖

= K
(∥∥−A−1B

∥∥
1 +‖ν(Id)‖1

)‖e t A‖

Now we saw before that a generalized eigendecomposition of A yields

‖e t A‖ =
t→+∞ o(eα

′t ),

which ends the proof. ä
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Contexte et résultats de la thèse

Ce chapitre est construit à partir du contenu de l’Introduction générale. Il en reprend les
premières sections 1.1 et 1.2, ainsi que les résultats de la thèse exposés dans la section 1.3.

Le présent manuscrit est dédié à l’analyse mathématique de modèles de métapopulations
stochastiques à temps continu, couplés avec des processus épidémiques aléatoires sur un graphe.
On s’intéresse tout d’abord à la modélisation de dynamiques de populations sur un réseau
d’échanges de bovins (chapitre 2), en considérant que les échanges marchands se produisent
à des temps aléatoires et en examinant alternativement des régimes déterministes ou stochas-
tiques pour expliquer l’évolution locale des populations. Restreignant notre analyse à des pro-
cessus markoviens de sauts, on construit ensuite des modèles épidémiques liés aux processus
de population considérés et permettant de décrire l’évolution d’une épidémie sur le réseau
(chapitre 3). Les résultats théoriques obtenus à partir de ces modèles permettent d’évaluer la
vulnérabilité d’un réseau d’échanges réel et de construire et évaluer des stratégies de contrôle
(chapitre 4).

Ce chapitre est structuré comme suit. On expose dans la section 7.1 le contexte scientifique
et la problématique pratique à l’origine du présent travail. Dans la section 7.2, on esquisse
ensuite la définition des modèles de populations et des modèles épidémiques à l’étude et les
questions à l’origine des résultats des chapitres 2 et 3. On présente enfin dans la section 7.3 un
panorama de ces résultats.

7.1

Contexte scientifique et problématique pratique

Les échanges marchands d’animaux sont un facteur majeur de la propagation d’épidémies
entre des exploitations bovines sur des échelles spatiales importantes [KDGK06]. La motivation
pratique du présent travail provient d’un projet de recherche nommé Cadence et financé par
l’ANR, centré sur l’étude statistique et la modélisation mathématique des maladies infectieuses
bovines se propageant sur le réseau d’échanges français au gré des mouvements d’animaux.
L’étude de vulnérabilité et l’évaluation de stratégies de contrôle font partie intégrante des pro-
blématiques du projet.
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Il est naturel de représenter les exploitations bovines liées par des échanges sous la forme
d’un réseau, en considérant les exploitations (fermes et opérateurs commerciaux, tels les cen-
tres de rassemblement ou les marchés) comme des nœuds et les relations commerciales comme
des arêtes orientées. Le réseau ainsi obtenu est pondéré en fonction du nombre d’animaux
échangés via les différentes arêtes. Il est également dynamique, car les arêtes actives sur une
période donnée ainsi que leur poids varient au fil du temps du fait de la variabilité des re-
lations commerciales. Compte tenu des dynamiques démographiques particulières aux ex-
ploitations bovines, qui impliquent un renouvellement rapide de la population et donc une ar-
rivée constante de nouveaux individus susceptibles d’être contaminés, le développement d’une
épidémie sur un réseau de bovins est susceptible de présenter des caractéristiques d’endémicité
— c’est-à-dire de persistance de l’infection à un niveau modéré sur des échelles de temps longues.
La modélisation épidémique sur un réseau d’échanges de bovins doit donc tenir compte des im-
portations, naissances, morts et transferts d’animaux intervenant sur la même échelle de temps
que les dynamiques épidémiques. On doit donc chercher à modéliser de façon unifiée des
dynamiques de métapopulations et de propagation épidémique au sein de populations struc-
turées en réseau.

Avant de présenter les modèles à l’étude, décrivons brièvement le contexte pratique et sci-
entifique dans lequel ils s’inscrivent.

7.1.1 Analyse des réseaux d’échanges de bovins et données empiriques

On évoque dans cette section quelques-unes des problématiques examinées lors de l’étude
des réseaux d’échanges de bovins, avant de présenter la base de données sur laquelle est con-
struite l’analyse numérique présentée au chapitre 4.

7.1.1.1 Analyse des réseaux d’échanges de bovins

La grande quantité de données collectées par les autorités européennes suite à la crise de
l’ESB dans les années 1990 permet de connaître la position au fil du temps de n’importe quel
bovin présent sur les territoires nationaux concernés [Ver11, DEV14]. Une telle précision per-
met une description détaillée des propriétés du réseau d’échanges marchands observé sur des
fenêtres de temps arbitrairement petites [VK09, Ver11, DEV14], mais rend aussi possible la con-
struction et la calibration de modèles de propagation épidémique [PGPSV12, BVE15, HGM+16]
susceptibles de mener à l’élaboration de stratégies de contrôle [BVJE17].

Un premier pas en direction de l’évaluation de la vulnérabilité d’un réseau d’échanges em-
pirique à la propagation d’une maladie infectieuse est l’étude de sa connectivité (voir [RDD11]
pour une analyse de la taille des composantes connexes d’un réseau réel, ou [HS12] pour un arti-
cle de synthèse sur la question du reachability ratio, mesure plus sophistiquée rendant compte
des caractéristiques dynamiques du réseau). Une telle étude permet de mettre en place des
stratégies d’endiguement [DEV14] tout en limitant la disruption des mécanismes de marché
[MGM+16]. La structure du réseau elle-même peut être prédite grâce à des modèles microé-
conomiques adaptés [HGM+16] ou plus généralement grâce à des modèles fondés sur l’activité
observée sur le réseau [PGPSV12].
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Une autre approche, que nous adopterons dans la suite de ce manuscrit, consiste à inter-
préter les caractéristiques du réseau observable comme des réalisations d’un processus markovien
de métapopulations. On peut alors obtenir des résultats théoriques en considérant une po-
tentielle dynamique épidémique couplée avec ce processus, et évaluer des quantités associées
à la vulnérabilité du réseau induite par les différentes exploitations qui le constituent. Parmi
ces quantités d’intérêt se trouvent la probabilité d’occurrence d’un épisode épidémique ma-
jeur, la taille totale de l’épidémie ou le nombre moyen de nœuds atteints par l’infection, lorsque
l’épidémie est initiée par un unique individu infectieux dans un nœud donné.

Figure 7.1: Représentation du réseau d’échanges de bovins en France en 2008. Les exploitations
sont agrégées au niveau de la commune. La taille d’un nœud représente sa population moyenne
au cours de l’année. La couleur des nœuds représente la part d’achats (en orange pour les opéra-
teurs et en rouge pour les fermes) et de ventes (en vert pour les opérateurs et en bleu pour les
fermes) dans le volume total d’échanges. Les arêtes représentent l’existence d’un mouvement
de bétail sur la période entre deux exploitations des communes concernées, leur largeur étant
indicative du volume d’échanges observé. Crédit graphique : Gaël Beaunée.
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7.1.1.2 La Base de Données Nationale d’Identification (BDNI)

Les partis-pris de modélisation et l’évaluation des stratégies de contrôle dans les chapitres 2
à 4 sont guidés par les observations empiriques issues de la Base de Données Nationale d’Identi-
fication (BDNI) construite par le Ministère de l’Agriculture. Cette base retrace l’itinéraire de
chaque bovin sur le territoire français entre 2005 et 2015 [RDD11, DEV14], et a été utilisée au
cours des dernières années pour calibrer des modèles paramétriques ainsi que pour élaborer et
évaluer des stratégies de contrôle [BVE15, QVDE17, BVJE17].

Les données brutes consistent en cinq strates d’informations [DEV14]. La première est le
registre des détentions d’animaux par les différentes exploitations au fil du temps; il y figure
notamment le numéro d’identification des animaux détenus, leur date et cause d’entrée dans
l’exploitation (naissance ou achat), ainsi que leur date et cause de sortie de l’exploitation (mort
ou vente). La seconde strate d’informations contient l’histoire de vie de chaque animal, qui
consiste en son numéro d’identification, ses date et lieu de naissance, son sexe, sa race et la
date de son premier vélage (dans le cas d’une femelle). Les trois autres strates sont constituées
d’informations sur les marchés et les centres de rassemblement (appelés opérateurs) d’une part,
et sur les abattoirs d’autre part. Lors du traitement des données on a, à l’instar de [DEV14],
considéré les abattoirs comme des puits épidémiologiques ne jouant aucun rôle dans la prop-
agation des pathogènes, si bien que les transferts à l’abattoir et les morts ont été considérées
comme des mouvements de même nature. À partir des données brutes, il est possible de re-
constituer un registre complet des échanges de bovins sur le territoire français entre 2005 et
2015, faisant figurer pour chaque mouvement sa date, son origine, sa destination et le numéro
d’identification des animaux concernés. Ce registre peut être utilisé pour construire et représen-
ter le réseau d’échanges empirique sur une période de temps choisie (voir Figure 7.1).

7.1.2 Contexte de modélisation

L’approche modélisatoire adoptée dans le présent travail, ainsi que ses contributions math-
ématiques, appartiennent au champ des modèles de métapopulations et des modèles épidémi-
ologiques sur des graphes. Les paragraphes suivants donnent un aperçu succinct (et loin d’être
exhaustif) de la littérature existante dans ces domaines.

7.1.2.1 Modèles de métapopulations

Les modèles de métapopulations décrivent le comportement d’une population divisée de
façon naturelle ou artificielle en sous-groupes distants (appelés patches) connectés à travers
des migrations d’individus. Bien que les biologistes aient étudié des populations distantes mais
connectées dès les années 1950 [AB54, Huf58, MW67], le terme « métapopulation » en tant que
tel ne fut introduit qu’en 1969 par Levins, dans le cadre de l’étude d’un modèle déterministe
décrivant l’évolution du nombre total de patches occupé par une espèce au cours du temps
[Lev69, Lev70]. D’importantes variations sur ce modèle furent introduites, identifiant par ex-
emple certains patches comme des sources de populations capables de subsister grâce à leur
propre croissance démographique et d’autres comme des puits susceptibles de s’éteindre en
l’absence de dispersion de population [Pul88], incorporant l’effet de sauvetage par lequel de pe-
tites populations sont alimentées par une immigration en provenance de patches plus impor-
tants [Han83, HMG96, Eti00], ou l’effet de la distribution spatiale explicite des patches [Pul88,
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Kar90, KW95, Rit97]. Les modèles de métapopulations se retrouvent aujourd’hui dans de nom-
breux contextes biologiques, et en particulier dans la modélisation de la biodiversité, grâce à
leur capacité à prendre en compte à la fois des informations spatiales et des typologies individu-
elles [JS03, BWG+09, WCC+16]. Des panoramas plus complets sur les diverses extensions du
modèle de Levins originel et leurs applications sont proposés dans [HG91, HS97, Han99, Eti02].

Dans le cadre du présent manuscrit, nous nous intéressons particulièrement à des modèles
de métapopulations stochastiques. Le modèle de fonction d’incidence de Hanski [Han94, VtN00]
fut le premier à intégrer un degré de stochasticité dans le processus de dispersion des individus
entre les patches. Cependant, il décrit l’état d’une métapopulation par un vecteur d’indicatrices
d’occupation à valeurs binaires et ne considère pas les dynamiques démogra-phiques internes
aux patches (voir aussi [GS94, EN02]). D’autres modèles, utilisant des processus de Markov,
prennent en compte les dynamiques de population locales (naissances et morts) et/ou les trans-
ferts entre les patches survenant à des instants aléatoires, avec des taux de transition estimés di-
rectement à partir des données disponibles [VLM91] ou déduits d’un modèle paramétrique (voir
[PDGM00] pour un modèle de métapopulations à dynamiques logistiques, à comparer avec le
modèle déterministe [Ayd17]). Les modèles de population introduits dans la section suivante et
étudiés dans le chapitre 2 appartiennent à cette dernière catégorie. C’est aussi le cas des proces-
sus de branchement multitype, qui jouissent de nombreuses propriétés théoriques résultant de
la contraignante hypothèse de branchement [Ath68, Mod71, AN72] et peuvent être utilisés pour
décrire des métapopulations [GL00, BL13, HJK16, Ada16], sans toutefois être limités à cet usage
ainsi que le présent travail l’illustre à plusieurs reprises.

7.1.2.2 Processus stochastiques SIR sur des réseaux

Les modèles compartimentaux SIR (Susceptible – Infecté – Rétabli), introduits en tant que
systèmes d’EDO par Kermack et MacKendrick [KM27] et sous forme stochastique par Bartlett
[Bar49, Ken56], sont couramment utilisés en épidémiologie pour décrire l’évolution de mal-
adies contre lesquelles les individus atteints puis rétablis conservent une immunité à vie (par
exemple la rougeole, la rubéole, les oreillons ou la coqueluche dans le cas humain). Dans ces
modèles, les individus vivants possèdent un statut de santé parmi trois possibles : ils sont soit
Susceptibles (S) et jamais encore atteints par la maladie, soit Infectés (I) et potentiellement à
l’origine de contacts infectieux qui transforment des individus susceptibles en individus infec-
tés, soit Rétablis (R) après s’être remis d’une infection et immunisés de façon permanente. Pen-
dant leur vie, les individus peuvent se déplacer entre les différents compartiments dans le sens
S → I (dans le cas d’une infection) et dans le sens I → R (dans le cas d’une rémission). Dans les
modèles SIR d’origine, on suppose que la population est uniformément mélangeante, c’est-à-
dire que chaque individu infectieux est uniformément en contact avec tous les autres membres
de la population. De très nombreuses variantes du modèles SIR ont été développées, prenant
par exemple en compte d’autres statuts de santé, la perte de l’immunité, la structure d’âge de
la population ou le mélange non-uniforme de la population. Nous référons à la monographie
[KR07] pour une présentation complète de ces modèles, généralement développés spécifique-
ment en vue de contextes applicatifs précis.

Compte tenu de notre cadre applicatif, nous nous pencherons spécifiquement sur des mo-
dèles rendant compte de la propagation d’une épidémie de type SIR sur des réseaux de contact.



g 7.1.2. CONTEXTE DE MODÉLISATION 162

De tels modèles ont été abondamment abordés dans la littérature ces trois dernières décennies.
Si certains d’entre eux considèrent les individus eux-mêmes comme des nœuds du graphe (voir
par exemple [BN08, DF15]), d’autres représentent par des nœuds des sous-populations corres-
pondant à différents types [Bal86, BC93, Cla94, BC95, Cla96, Nea12]. Ces types peuvent être
vus comme des catégories biologiquement distinctes coexistant au sein du même espace, mais
aussi comme des groupes d’individus localisés dans des patches géographiquement éloignés.
Cette interprétation fait apparaître les modèles SIR multitypes comme des couplages de mo-
dèles épidémiologiques et de modèles de métapopulations. Néanmoins, même lorsqu’ils se
placent dans ce cadre modélisatoire, relativement peu de travaux prennent en compte les dy-
namiques de populations liées aux naissances et aux morts d’individus, ce qui donne lieu à des
modèles à taille fixe dans lesquelles les individus infectieux peuvent se déplacer [BC93, Cla94,
Cla96, Nea12] ou non [Bal86, BC95, AB00a]. Selon les cas, ils peuvent [Bal86, BC95, AB00a]
ou non [BC93, Cla94, Cla96, Nea12] entreprendre des contacts infectieux avec des individus
situés dans d’autres nœuds. Dans l’étude de tels modèles, l’accent est généralement mis sur
la description des premières étapes de propagation de l’épidémie ainsi que sur son bilan final.
[Cla96, Nea12] approchent le processus épidémique par un processus de branchement multi-
type au cours des premières phases de l’épidémie lorsque que la taille typique de la popula-
tion, représentée par un paramètre d’échelle N, tend vers l’infini. Ils distinguent deux types
d’événements épidémiques selon que le processus de branchement survit (ce qui donne lieu
à un épisode épidémique majeur) ou s’éteint (épisode épidémique mineur). Dans certains mo-
dèles à taille fixe, des résultats exacts sur la taille finale de l’épidémie, c’est-à-dire le nombre total
d’individus infectés durant l’évolution de l’épidémie, sont obtenus en utilisant la construction
de Sellke, qui consiste à associer à chaque individu un seuil critique d’exposition à l’infection en-
deçà duquel son statut est Susceptible et au-delà duquel il adopte le statut Infecté (voir [Sel83] et
le chapitre 6 de [AB00a]). Dans [BC93, Cla94, BC95], des estimations asymptotiques de la taille
totale de l’épidémie sont obtenues lorsque N →+∞, généralisant au cas multitype les preuves
de [Sca85, Sca90]. Nous nous efforçons de tendre vers des résultats similaires dans l’étude des
modèles épidémiques au chapitre 3.

Parmi les cadres théoriques que nous venons d’évoquer, le modèle épidémique dynamique
présenté dans [Nea12] est le plus proche équivalent à population fixe des modèles épidémiques
étudiés dans ce manuscrit. Il représente une épidémie SIR évoluant au sein d’une population
divisée en sous-groupes entre lesquels les individus se déplacent suivant une matrice de tran-
sition, indépendamment de leur statut de santé. Dans ce modèle, les individus infectieux sont
uniquement en contact avec les membres du patch dans laquelle ils se trouvent. Neal calcule
la fonction génératrice de la progéniture directe d’un individu infectieux pour un processus
de branchement approchant le processus épidémique sur des intervalles de temps finis (voir
[Cla96]). Connaître l’expression analytique de cette fonction permet de calculer numérique-
ment la probabilité d’occurrence d’un épisode épidémique majeur, mais aussi d’estimer un
paramètre épidémiologique important, le nombre de reproduction de base R0, qui décrit ap-
proximativement le nombre moyen d’infections causées par un individu infectieux dans une
population totalement susceptible au cours de sa vie. Nous adaptons cette approche à nos mo-
dèles avec renouvellement de population au chapitre 3.

Au cours des dernières décennies, la pertinence du paramètre R0 dans le contexte des réseaux
de sous-populations de petites tailles et uniformément mélangeantes (aussi connus sous le
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nom de modèles de ménages) a fait débat [BN08, BST09, BST10, PBT11, BBH+15, BPT16, BS18].
Une recherche active a mené à la définition de nombreux paramètres alternatifs permettant
de discriminer le comportement du processus épidémique sur de tels réseaux [BPT16]. Ces
paramètres inspirent notre recherche d’indicateurs de vulnérabilité du réseau au chapitre 4.

7.1.2.3 Modèles SIR stochastiques avec démographie

Nous souhaitons définir des modèles rendant compte d’une part de l’évolution de la popu-
lation par l’immigration, les naissances, les morts et les migration entre les patches pour perme-
ttre de générer des dynamiques plausibles et en conformité avec les observations empiriques,
et d’autre part d’une dynamique SIR locale, interne à chaque patch. Il a été montré [VHG95,
VH97, Nå99, AB00b] que de tels modèles ouverts diffèrent de leurs analogues à population fixe
par le fait qu’ils permettent d’observer un phénomène d’endémicité, si bien que l’épidémie per-
siste au-delà d’un seuil donné sur des échelles de temps relativement longues lorsqu’un épisode
épidémique majeur survient ([Bar56]; sur l’importance de l’endémicité en tant qu’objet d’étude
pour l’épidémiologie, voir [Bri10]). La probabilité d’occurrence d’un épisode épidémique ma-
jeur (chapitre 4 de [AB00a], [Cla96, Nea12]), de même que le temps d’extinction et la taille totale
de l’épidémie conditionnellement à un tel événement, apparaissent donc comme des quantités
d’intérêt essentielles pour étudier le processus épidémique, en particulier dans une optique de
contrôle. Cependant, la construction de Sellke et les techniques utilisées dans [Sca85, Sca90,
BC93, BC95, AB00a] pour obtenir des résultats explicites sur la taille totale de l’épidémie dans
le cas sans démographie se transposent mal au cas multitype ouvert, dans lequel l’exposition
des individus à l’infection débute à des temps variables, évolue avec les mouvements de popu-
lation sur le réseau, et s’arrête à la mort des individus, qui survient à des temps aléatoires. Par
conséquent, une grande partie de la littérature sur les modèles SIR ouverts concentre ses efforts
sur l’estimation du temps d’extinction de l’épidémie [AB00b, O’N96] et la description de son
comportement qualitatif après un épisode épidémique majeur [VHG95, VH97].

Certains auteurs considèrent des dynamiques démographiques ouvertes couplées avec des
processus épidémiques, mais se limitent au cas unitype, c’est-à-dire à une population unique et
uniformément mélangeante. La plupart de ces modèles sont construits autour d’un processus
de population avec des taux d’entrée affines [O’N96, CG07] ou constants [Nå99, AB00b]. Dans ce
cadre, l’ensemble des états sans individus infectieux est absorbant et l’extinction de l’épidémie
en temps finie est presque sûre. [AB00b] et [Nå99] étudient la distribution quasi-stationnaire
(QSD) du processus épidémique, c’est-à-dire la limite en temps long de sa loi conditionnelle-
ment à la non-extinction de l’épidémie, ainsi que la loi du temps d’extinction d’un processus
épidémique ayant cette QSD pour distribution initiale. [O’N96] obtient une approximation du
temps d’extinction de l’épidémie par celui d’un processus de naissance et de mort lorsque le
paramètre d’échelle de la population N tend vers l’infini, sans toutefois estimer la distribu-
tion du temps d’extinction de l’épidémie à N fixé. Nous consacrons une partie du chapitre 3
à étudier l’échelle de temps nécessaire à l’épidémie pour s’éteindre dans notre modèle SIR ou-
vert, et montrons que dans le régime endémique, le temps d’extinction est au moins égal à une
fonction exponentielle de N avec probabilité tendant vers 1.

Dans les chapitres 3 et 4, nous étudions un modèle SIR multitype couplé avec des dynamiques
de métapopulations dans lequelles les taux de transition sont affines ou logistiques. Un modèle
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SI multitype avec des taux affines proches de ceux considérés ici est étudié dans [BS16] par une
approche principalement numérique. On peut par ailleurs trouver divers analogues détermin-
istes de notre modèle SIR stochastique à taux affines dans [MA07, LS09, MEK13, TL15, TIK18].
Les modèles SIR incorporant des dynamiques de population logistiques sont, quant à eux, plus
rares dans la littérature. Quelques sources récentes existent dans un cadre déterministe [WZJ10,
LTW+17, MMZB17, GS18] ou avec stochasticité brownienne [ZH15]. Toutefois, il n’existe pas à
notre connaissance d’étude portant sur un modèle similaire au modèle SIR stochastique à dy-
namiques de populations logistiques considéré dans le présent manuscrit.

7.2

Modélisation

Notre premier objectif est de définir un modèle de métapopulations sur un réseau. Dif-
férentes approches de modélisation peuvent être retenues pour représenter l’évolution des pop-
ulations selon leur taille et les intervalles de temps sur lesquelles elle sont observées. Nous con-
sidérons un processus de métapopulations markovien déterministe par morceaux décrivant des
dynamiques locales déterministes pour des populations contrôlées et des transferts stochas-
tiques entre les patches (section 7.2.1). En assouplissant les hypothèses sur le contrôle déter-
ministe des populations au niveau du patch, on obtient ensuite des processus markoviens de
sauts purs à valeurs dans Nn (section 7.2.2) que l’on couple avec un modèle SIR stochastique
(section 7.2.3).

7.2.1 Processus de métapopulations déterministes par morceaux

Lorsque les populations étudiées sont de grande taille, que leur évolution est contrôlée de
façon déterministe (ce qui est a priori le cas dans les exploitations bovines) et que les transferts
de population entre les nœuds du réseau surviennent à des temps aléatoires (du fait par exemple
de déterminants économiques exogènes), il est naturel de représenter la population du système
sous la forme d’un processus markovien X = (X1, . . . ,Xn) à valeurs dans Rn+, conduit à la fois par
un flot continu et par un ensemble de processus de sauts. L’objet mathématique ainsi obtenu
est connu sous le nom de processus de Markov déterministe par morceaux (PDMP).

Dans ce modèle de métapopulations, on considère que la population de chaque patch i est
associée à une fonction de croissance autonomeφi (au sens où dXi (t ) =φi (X(t ))dt en l’absence
de sauts), et qu’un transfert instantané de population du patch i au patch j à partir d’un état
x survient à taux θi , j (x), avec une amplitude distribuée selon une loi µi , j (x, ·) à support dans
[0, xi ].

Ce modèle est défini de façon générale dans la section 2.1. On se borne ici à considérer
les deux exemples illustratifs suivants, qui émergent naturellement de la modélisation de dy-
namiques de populations sur des réseaux d’échanges de bovins. Soient n Ê 1, G = (�1, n�,A )
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un graphe orienté fortement connexe et (c1, . . . ,cn) ∈ Rn \ {0}. On considère les deux modèles à
croissance constante définis de la façon suivante :

Modèle multiplicatif uniforme

φi (x) =
{

ci si ci Ê 0

ci 1xi>0 si ci < 0
et

{
θi , j (x) = θi , j

µi , j (x, ·) =U ([0, xi ])
(1.1)

où θi , j > 0 si (i , j ) ∈A et θi , j = 0 sinon, ou :

Modèle puissance unitaire

φi (x) =
{

ci si ci Ê 0

ci 1xi>0 si ci < 0
et

{
θi , j (x) = (1∨xi )α

µi , j (x, ·) = δ1∧xi

(1.2)

pour un certain α ∈]0,1].

Le modèle (1.1) correspond au cas de patches échangeant une fraction aléatoire de leur po-
pulation à un taux temporel constant. Il correspond aux données empiriques sur des réseaux
d’échanges observés à des intervalles de temps importants, mais n’est pas réaliste d’un point de
vue mécanistique dans la mesure où l’amplitude des transferts réels de population est bornée
par des contraintes logistiques associées aux moyens de transport utilisés. Le modèle (1.2) cor-
respond à des transferts de population unitaires réalisés à des taux temporels d’autant plus
élevés que la population du patch d’origine est élevée ; il constitue un cadre naturel de mod-
élisation des échanges de bovins observés de façon journalière. Notons que ce dernier modèle
est proche d’un réseau de Jackson ouvert [Jac57, MD94, Dai95], dont il ne diffère que par son
espace d’états continu et l’existence du flot déterministe défini par les φi .

7.2.2 Processus de métapopulations markoviens à sauts

Lorsque les populations considérées sont de taille réduite ou que leur évolution locale n’est
pas suffisamment contrôlée pour pouvoir être modélisée par un flot déterministe, il est intéres-
sant de les représenter sous la formule d’un processus markovien à sauts unitaires. Cette ap-
proche interdit les sauts macroscopiques instantanés et ignore une partie du contrôle effectué
sur les populations, pourtant bien réel dans le cadre applicatif que nous considérons. Cepen-
dant, il est improbable d’observer des transferts de population très importants entre des ex-
ploitations bovines lorsque celles-ci sont observées sur des échelles de temps suffisamment
courtes. Par ailleurs, la modélisation des métapopulations considérées par des processus mar-
koviens de sauts permet de considérer des populations à valeurs entières, ce qui est évidemment
plus réaliste et facilite l’analyse de stabilité. Comme nous le verrons dans la section 7.2.3, un tel
point de vue permet par ailleurs un couplage naturel avec un processus épidémique défini en
fonction de mesures ponctuelles de Poisson.

Les sauts des processus de population considérés étant unitaires, on s’attend à voir émerger
une limite déterministe continue pour les processus convenablement renormalisés lorsque la
population des différents patches est élevée. Cette remarque justifie l’introduction d’un para-
mètre d’échelle N dans les modèles ci-dessous.

Dans les deux paragraphes suivants, on suppose les processus à valeurs dans Nn ou (Nn)3

définis à l’aide d’une unique famille de mesures ponctuelles de Poisson. Des constructions ex-
plicites de ces processus sont données aux chapitres 2 et 3.
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i i

i

i ij

θi , j xi

θ j ,i x j

di xi

NBi +bi xi

d j x j

NB j +b j x j

Figure 7.2: Représentation schématique du processus de population branchant. Les
coefficients figurant sur les flèches sont les taux de transition.

7.2.2.1 Le processus de population branchant

Il est possible de modéliser les populations observées à l’aide d’un processus de branche-
ment multitype à temps continu avec immigration à valeurs dansNn , auquel nous faisons réfé-
rence dans le reste de ce manuscrit en utilisant la dénomination de processus de population
branchant. Pour tout N Ê 1, on définit (XN(t ))tÊ0 comme un processus de sauts à valeurs dans
Nn ayant pour valeur initiale XN(0) = bNx(0)c pour un certain x(0) ∈ Rn+ et avec les taux de tran-
sition suivants sous P :

Transition Taux de saut à partir de x

x → x +ei NBi +bi xi

x → x −ei di xi

x → x −ei +e j θi , j xi

(7.1)

Table 7.1: Taux de saut du processus de population branchant.

où θi , j ,bi ,Bi ,di ∈R+.

Il est possible d’interpréter les bi xi comme des taux de naissance malthusiens et les NBi

comme des taux d’immigration constants. Les différents taux sont représentés sur la figure 7.2.

Pour ne pas s’embarrasser de cas triviaux non pertinents pour l’application considérée,
nous supposons que B = (B1, . . . ,Bn) 6= 0, de sorte que 0 n’est pas un état absorbant pour le pro-
cessus de population, et que le graphe orienté de sommets �1, n� et d’arêtes {(i , j ) : θi , j > 0} est
fortement connexe, de sorte qu’un individu né dans un nœud i a une probabilité non nulle de
rejoindre le nœud j au cours de sa vie.
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Enfin, on définit

A =



b1 −d1 −∑
j 6=1θ1, j θ2,1 · · · θn,1

θ1,2 b2 −d2 −∑
j 6=2θ2, j

. . .
...

...
. . . . . . θn,n−1

θ1,n · · · θn−1,n bn −dn −∑
j 6=n θn, j

 , (1.4)

et on suppose que toutes les valeurs propres de A ont une partie réelle strictement négative.

Dans ce cadre, des individus immigrent dans le patch i à taux NBi , et ceux présents dans ce
patch donnent naissance à taux bi , meurent à taux di et immigrent vers le patch j à taux θi , j ,
indépendamment des autres individus présents dans le réseau. La lignée initiée par un individu
donné est un processus de branchement multitype à valeurs dans Nn et à taux de transition
donnés par (7.1) en remplaçant les Bi par 0. Après leur entrée dans le système, les individus
donnent naissance à des lignées indépendantes qui n’interagissent pas, donc le nombre de telles
lignées, et par conséquent la taille typique du processus de population, est proportionnelle au
taux d’immigration par unité de temps, c’est-à-dire à N.

La théorie des processus de branchement multitypes à temps continu présentée dans la
section 1.3.2 donne un grand nombre d’informations sur le comportement asymptotique des
processus XN. Les valeurs propres de A ayant toutes des parties réelles strictement négatives,
XN apparaît comme la superposition de processus de branchement sous-critiques initiés à taux
NB, ce qui implique des propriétés de stabilité. Par ailleurs, on verra dans la section 7.3.3 que
la limite d’échelle du processus renormalisé XN/N lorsque N tend vers l’infini est un processus
déterministe x très simple, solution de l’équation différentielle ẋ = Ax +B.

7.2.2.2 Le modèle de population logistique

Malgré ses propriétés mathématiques agréables, le modèle de population branchant que
nous venons de présenter manque de réalisme compte tenu de l’objectif applicatif poursuivi. En
effet, il ne prend pas en compte les phénomènes de saturation lié à des contraintes techniques
et spatiales qui limitent naturellement la population des exploitations bovines. On introduit
donc un second modèle de métapopulations markovien à sauts surNn , le modèle de population
logistique. On associe à chaque nœud i une capacité NKi > 0 intervenant à la fois dans les taux
logistiques d’importation vers le nœud i , son taux de croissance locale logistique et les taux
« pseudo-logistiques » des transferts de population dirigés vers i .

Pour tout N Ê 1, on définit (XN(t ))tÊ0 comme un processus de sauts à valeurs dansNn ayant
pour valeur initiale XN(0) = bNz(0)c pour un certain z(0) ∈ Rn+, ainsi que les taux de transition
suivants sous P:

Transition Taux de saut à partir de x

x → x +ei

(
Bi + bi

N xi

)
(NKi −xi )+

x → x −ei di xi

x → x −ei +e j
θi , j

N xi (NK j −x j )+

(7.2)

Table 7.2: Taux de saut du processus de population logistique.
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Les taux correspondant au processus de population logistique sont représentés sur la figure
7.3. Remarquons que le paramètre d’échelle N n’intervient plus ici dans les taux d’importation,
car la taille typique du système est désormais déterminée par les capacités des nœuds plutôt
que par les entrées de population. Nous le faisons figurer dans les taux de naissance et les taux
de transfert dans le bus d’obtenir des limites d’échelle dans la section 1.3.3.

i

i

i i

i

i ij

θi , j

N xi (NK j −x j )+

θ j ,i

N x j (NKi −xi )+

di xi

(
Bi + bi

N xi

)
(NKi −xi )+

d j x j

(
B j + b j

N x j

)
(NK j −x j )+

Figure 7.3: Représentation schématique du processus de population logistique. Les coefficients
figurant sur les flèches sont les taux de transition.

On suppose cette fois encore que B = (B1, . . . ,Bn) 6= 0 et que le graphe de sommets �1, n�
et d’arêtes {(i , j ) : θi , j > 0} est fortement connexe. On suppose aussi que d 6= 0, de sorte que
NK = N(K1, . . . ,Kn) n’est pas un état absorbant pour le processus. Sous ces hypothèses, XN est un
processus markovien de sauts irréductible à valeurs dans

∏n
i=1 �0, dNKi e�. Il est donc ergodique.

7.2.3 Le processus épidémique

On définit à présent le modèle épidémiologique couplé avec les processus de population à
sauts que nous venons d’introduire.

Pour tous N, i et t , on divise la population XN
i (t ) du patch i au temps t en trois sous-

populations : SN
i (t ) individus susceptibles, IN

i (t ) infectés et RN
i (t ) rétablis. Les mouvements en-

tre les nœuds, les naissances et les morts sont supposés indépendants du statut de santé, et sont
donc décrits par le processus de population (branchant ou logistique, voir le tableau ci-dessous
ainsi que les figures 7.4 et 7.5). On ne considère aucune transmission verticale du pathogène,
ce qui revient à dire que les individus nés dans le système sont supposés susceptibles. Cepen-
dant, des individus infectieux peuvent en général entrer dans le système via l’immigration, et on
suppose que chaque animal importé dans le nœud i est susceptible avec probabilité pi , infecté
avec probabilité qi et rétabli avec probabilité ri = 1−pi −qi .
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i

i i i

i i

IS Rβ j i j
s j

x j

(d j +∑
k θ j ,k )i j(d j +∑

k θ j ,k )s j (d j +∑
k θ j ,k )r j

p j NB j +b j x j +∑
k θk, j sk q j NB j +∑

k θk, j ik r j NB j +∑
k θk, j rk

γ j i j

Figure 7.4: Représentation schématique d’un modèle compartimental SIR couplé avec un
processus de population branchant. Les trois compartiments représentés sont à l’intérieur

d’un même nœud j (ellipse verte). Les coefficients sur les flèches sont les taux de transition.
Les flèches horizontales représentent des transferts de population entre compartiments à

l’intérieur du nœud j , tandis que les flèches verticales représentent des flux de population vers
et depuis le nœud j .
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IS Rβ j i j
s j

x j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

i j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

s j

(
d j +∑

k
θ j ,k

N (NKk −xk )+
)

r j

(
p j B j + b j

N x j +∑
k
θk, j

N sk

)
(NK j −x j )+

(
q j B j +∑

k
θk, j

N ik

)
(NK j −x j )+

(
r j B j +∑

k
θk, j

N rk

)
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Figure 7.5: Représentation schématique d’un modèle compartimental SIR couplé avec un
processus de population logistique. Les trois compartiments représentés sont à l’intérieur d’un

même nœud j . Les coefficients sur les flèches sont les taux de transition. Les flèches
horizontales représentent des transferts entre compartiments à l’intérieur du nœud j , tandis

que les flèches verticales représentent des flux de population vers et depuis le nœud j .
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Chaque individu infecté présent dans le nœud i réalise des contacts avec des individus choi-
sis indépendamment et uniformément dans le nœud i à taux βi . Insistons sur le fait que ces
contacts peuvent uniquement être effectués entre des individus situés dans un même nœud.
Les individus susceptibles atteints par ces contacts deviennent infectés ; le statut des autres in-
dividus atteints ne change pas. Indépendamment, les individus infectés vivant dans le nœud i
se rétablissent à taux γi et entrent alors dans le compartiment correspondant.

Écrivons la base canonique de R3n sous la forme (e s
1, . . . ,e s

n ,e i
1, . . . ,e i

n ,er
1, . . . ,er

n). Pour tout
N Ê 1, on considère un processus markovien de sauts (SN(t ), IN(t ),RN(t ))tÊ0 à valeurs dans (Zn+)3

défini sur (Ω,A ) et décrit par les taux de transition suivants au départ de l’état (s, i ,r ), où l’on
écrit x j = s j + i j + r j pour tout j ∈ �1, n� :

Transition Taux (cas branchant) Taux (cas logistique)

(s, i ,r ) → (s, i ,r )+e s
j p j NB j +b j x j

(
p j B j + b j

N x j

)
(NK j −x j )+

(s, i ,r ) → (s, i ,r )+e i
j q j NB j q j B j (NK j −x j )+

(s, i ,r ) → (s, i ,r )+er
j r j NB j r j B j (NK j −x j )+

(s, i ,r ) → (s, i ,r )−e s
j d j s j d j s j

(s, i ,r ) → (s, i ,r )−e i
j d j i j d j i j

(s, i ,r ) → (s, i ,r )−er
j d j r j d j r j

(s, i ,r ) → (s, i ,r )+e s
k −e s

j θ j ,k s j
θ j ,k

N s j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+e i

k −e i
j θ j ,k i j

θ j ,k

N i j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+er

k −er
j θ j ,k r j

θ j ,k

N r j (NKk −xk )+
(s, i ,r ) → (s, i ,r )+e i

j −e s
j β j

i j s j

x j
β j

i j s j

x j

(s, i ,r ) → (s, i ,r )+er
j −e i

j γ j i j γ j i j

Table 7.3: Taux de sauts du processus SIR couplé avec un procesus de population branchant ou
logistique.

L’une des questions abordées dans le cadre du présent travail est le comportement d’une
épidémie initiée par un petit nombre d’individus dans le cas où p j = 1 (et donc q j = r j = 0) pour
tout j , c’est-à-dire lorsque l’immigration d’individus infectieux est inexistante. On n’impose
donc pas que IN(0) soit proportionnel à N ; dans le cas évoqué, on prendra plutôt

IN(0) = I(0), SN(0) = XN(0)− IN(0) = XN(0)− I(0) et RN(0) = 0

avec un I(0) ∈Nn fixé (typiquement ei pour un certain i ).
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7.2.4 Questions soulevées par les modèles étudiés

On démontre dans le chapitre 2 des propriétés de récurrence et d’ergodicité pour les pro-
cessus de populations introduits dans les paragraphes 7.2.1 et 7.2.2. Dans le cas des processus
à sauts, on s’intéresse à deux questions supplémentaires :

• Quelle est la limite déterministe de ces processus lorsque le paramètre d’échelle N tend
vers l’infini ?

• Sur quelles échelles de temps peut-on considérer que la population est stable ?

Dans le chapitre 3, on étudie les processus épidémiques définis dans la section 7.2.3. Dans le cas
où l’immigration d’individus infectieux n’est pas considérée (p = 1) et où l’épidémie est initiée
par un nombre fixé d’infectieux introduits accidentellement dans le système, on répond aux
questions suivantes :

• Par quel objet mathématique peut-on approcher le processus infectieux durant les pre-
mières phases de l’épidémie ?

• Quelle est la probabilité d’occurrence d’un événement épidémique majeur ?

• Sur quelle échelle de temps l’épidémie s’éteint-elle, et quelle est sa taille totale ?

Dans le cas où les individus entrant dans le système sont infectés avec une probabilité non nulle
(q 6= 0), on s’intéresse à deux autres problématiques :

• Quel est le comportement du processus épidémique lorsque la population est impor-
tante ?

• Sur quelles échelles de temps peut-on observer le phénomène d’endémicité et à quel
niveau la prévalence de l’infection se stabilise-t-elle ?

On réalise enfin dans le chapitre 4 une application numérique des résultats théoriques obtenus
dans le chapitre 3 sur le processus épidémique couplé à des dynamiques de population logis-
tiques. Cette application est construite autour de deux questions centrales :

• Comment définir des indicateurs calculables de la vulnérabilité du réseau à une épidémie
grâce aux résultats analytiques obtenus au chapitre 3 ?

• Quelles stratégies de contrôle ciblant les nœuds critiques peut-on mettre en place, com-
ment les évaluer et quelles sont les stratégies les plus efficaces ?

La section 1.3 de l’Introduction générale présente des outils mathématiques permettant de
répondre à ces différentes questions et énonce les principaux résultats théoriques de la thèse.
Nous nous bornons ici à reproduire lesdits résultats ; le lecteur désireux de rafraîchir ses con-
naissances relatives à un concept mathématique abordé peut être certain de trouver son bon-
heur dans la section 1.3 (en anglais).
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7.3

Principaux résultats théoriques de la thèse

Cette section est organisée en paragraphes présentant les résultats obtenus à partir de dif-
férents cadres théoriques (présentés en détail, on le rappelle, dans la section 1.3).

7.3.1 Stabilité des modèles de population étudiés

Les principaux résultats relatifs à la récurrence et à l’ergodicité des processus de population
étudiés sont les suivants :

THÉORÈME 7.3.1 (Ergodicité des modèles multiplicatif uniforme et puissance unitaire). —
Les modèles de métapopulations multiplicatif uniforme et puissance unitaire définis par 1.1
et 1.2 sont récurrents positifs au sens de Harris si et seulement si

n∑
i=1

ci < 0

auquel cas ils sont aussi F-ergodiques, avec

F :

{
Rn+ −→ R+
x 7−→ eη‖x‖1

pour un certain η> 0.

PROPOSITION 7.3.2 (Ergodicité du processus de population branchant). — Soit N Ê 1. Le
processus de population branchant XN défini dans la section 7.2.2.1 est récurrent positif et
(‖ ·‖1 +1)−uniformément exponentiellement ergodique. De plus, pour tout x(0) ∈RN+ ,

lim
t→+∞E(XN(t )) =

∫
xdπ(x) =−NA−1B

où A est défini par (1.4) et B = (B1, . . . ,Bn).

Comme évoqué après la définition du processus de population logistique, l’ergodicité (ex-
ponentielle) de celui-ci est triviale puisqu’il s’agit d’un processus de Markov irréductible à temps
continu à espace d’états fini. Nous énonçons néanmoins le résultat correspondant pour des
raisons de symétrie :

PROPOSITION 7.3.3 (Ergodicité du processus de population logistique). — Soit N Ê 1. Le
processus de population logistique XN défini dans la section 1.2.2.2 est récurrent positif et
exponentiellement ergodique.
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7.3.2 Approximation des processus épidémiques à l’étude par des processus
de branchement

Une seconde série de résultats porte sur l’approximation des processus épidémiques dans
les premières phases de l’épidémie par des processus de branchement lorsque la population des
différents nœuds tend vers l’infini et lorsque l’épidémie est initiée par un nombre fixé d’individus
infectieux et n’est pas alimentée par l’immigration. On suppose donc dans ce paragraphe que
p = 1, IN(0) = I(0) ∈Zn+, SN(0) = XN(0)− I(0) et par conséquent RN(0) = 0. Alors :

THÉORÈME 7.3.4 (Convergence vers un processus de branchement (cas branchant)). — On
peut définir un processus épidémique (SN(t ), IN(t ),RN(t ))tÊ0 sur N3n couplé à un proces-
sus de population branchant ainsi qu’un processus de branchement multitype (I′(t ))tÊ0 sur
(Ω,A ,P) à valeurs dans Nn avec I′(0) = I(0), décrivant une population d’individus se dé-
plaçant du nœud i au nœud j à taux θi , j et, lorsqu’ils sont dans le nœud i , donnant nais-
sance à taux βi et mourant à taux di +γi , tels que pour tout temps T Ê 0,P-presque sûrement
on ait :

∃N0 ∈Z∗
+ : ∀N Ê N0,∀u ∈ [0,T], IN(u) = I′(u).

En particulier, si τN (resp. ZN) est le temps d’extinction (resp. la taille totale) de l’épidémie
(SN, IN,RN) et τ′ (resp. Z′) ceux du processus de branchement I′, alors

τN −→
N→+∞

τ′ et ZN −→
N→+∞

Z′

P-presque sûrement.

La proposition suivante caractérise le comportement du processus de branchement limi-
tant et fournit une méthode itérative pour estimer sa probabilité de survie, c’est-à-dire la prob-
abilité d’occurrence d’un épisode épidémique majeur :

PROPOSITION 7.3.5 (Probabilité d’occurrence d’un épisode épidémique majeur (cas bran-
chant)). — Pour tous i , j ∈ �1, n�, soit Wi , j la progéniture de première génération dans le
nœud j d’un individu né dans le nœud i . On note Σi = γi +di +∑

j 6=i θi , j pour tout i ∈ �1, n�,
et on définit Θ ∈Mn(R) par Θi , j = θi , j si i 6= j et par Θi ,i = 0. Alors :

1. La matrice C = (E(Wi , j ))1Éi , jÉn est donnée par

C = (diag(Σ1, . . . ,Σn)−Θ)−1diag(β1, . . . ,βn).

2. Soit R0 la valeur propre dominante de C, que nous appellerons nombre de repro-
duction de base du processus épidémique. C’est un nombre réel, et le processus de
branchement I′ est sous-critique si R0 < 1, critique si R0 = 1 et surcritique si R0 > 1.

3. Si le processus de branchement I′ est sous-critique ou critique, alors la probabilité
d’occurrence d’un épisode épidémique majeur est 0. S’il est surcritique, alors cette
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probabilité est strictement positive et vaut 1−∏n
k=1 ζ

Ik (0)
k , où ζ est l’unique point fixe

dans [0,1[n de la fonction génératrice

G : [0,1]n −→ [0,1]n

s = (s1, . . . , sn) 7−→
(
E
[∏n

j=1 s
W1, j

j

]
, . . . ,E

[∏n
j=1 s

Wn, j

j

]) .

4. La fonction G a pour expression explicite

G(s) = (
diag(λ1(s), . . . ,λn(s))−Θ)−1 (γ+d)

où λi (s) = (1− si )βi +Σi .

5. La suite des itérées (Gk (s))kÊ0 converge vers ζ pour tout s ∈ [0,1[n .

Le même résultat est valable pour les processus épidémiques couplés à des processus de
population logistiques, pour peu que la population totale du système soit initiée à l’équilibre :

THÉORÈME 7.3.6 (Approximation du processus épidémique (cas logistique)). — Le
théorème ?? et la proposition 7.3.5 sont valables dans le cas logistique, sous la condition
supplémentaire que z(0) soit un point d’équilibre z∗ du système dynamique (S ′

pop) défini
dans la section 7.3.3 ci-dessous, et en remplaçant les taux de mouvement individuels θi , j

par θ̃i , j = θi , j (K j − z∗
j )+ dans la définition de Θ, Σi et λi .

7.3.3 Limites d’échelle des processus étudiés

Le résultat suivant donne une approximation du processus de population branchant mis à
l’échelle sur des intervalles de temps finis :

PROPOSITION 7.3.7 (Limite d’échelle du processus de population branchant). — Soit
(XN)NÊ1 la suite de processus de population branchants définie dans la section 7.2.2. On
note x la solution du problème de Cauchy x ′ = Ax +B ayant pour condition initiale x(0),
c’est-à-dire

x : R −→ Rn

t 7−→ e t A(A−1B+x(0))−A−1B
.

Alors pour tout T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
−x(t )

∥∥∥∥∞
= 0

)
= 1.
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Considérons à présent le système dynamique sur (Rn+)3 défini par

ṡ j = p j B j +b j (s j + i j + r j )−d j s j +∑
k 6= j θk, j sk −

∑
k 6= j θ j ,k s j −β j i j

s j

s j+i j+r j

i̇ j = q j B j +β j i j
s j

s j+i j+r j
−d j i j −γ j i j +∑

k 6= j θk, j ik −
∑

k 6= j θ j ,k i j

ṙ j = r j B j +γ j i j −d j r j +∑
k 6= j θk, j rk −

∑
k 6= j θ j ,k r j

 (Sepi)

pour tout j ∈ �1, n�. Le résultat suivant montre que le processus couplé à un processus de pop-
ulation branchant peut être approché par une solution de (Sepi) sur des intervalles de temps
finis :

PROPOSITION 7.3.8 (Limite d’échelle du processus épidémique (cas branchant)). — Soit
((SN, IN,RN))NÊ1 la suite de processus épidémiques couplés à des processus de population
branchants et définis dans la section 7.2.3. On suppose que N−1(SN(0), IN(0),RN(0)) tend
vers (s(0), i (0),r (0)) ∈ R3+ lorsque N tend vers +∞. En notant (s, i ,r ) la solution (Sepi) ayant
pour condition initial (s(0), i (0),r (0)), on a pour tout T Ê 0 :

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.

Des résultats similaires sont valables pour le processus de population logistique et pour le
processus épidémique associé. On introduit le système dynamique sur Rn+ défini par

żi = (Bi +bi zi )(Ki − zi )+−di zi +
∑
j 6=i

θ j ,i z j (Ki − zi )+−
∑
j 6=i

θi , j zi (K j − z j )+ (S ′
pop)

pour tout i ∈ �1, n�. On peut montrer (voir la section 2.3) que ce système admet un équilibre
sur

∏n
i=1(0,Ki ) (dont l’unicité n’est pas établie), que nous noterons z∗. On considère à présent

le système dynamique sur (Rn+)3 = {(s, i ,r ) ∈ (Rn+)3} défini par

ṡ j = (p j B j +b j z j )(K j − z∗
j )+−d j s j −β j i j

s j

z∗j
+∑

k 6= j θk, j sk (K j − z∗
j )+−∑

k 6= j θ j ,k s j (Kk − z∗
k )+

i̇ j = q j B j (K j − z∗
j )++β j i j

s j

z∗j
−d j i j −γ j i j

+∑
k 6= j θk, j ik (K j − z∗

j )+−∑
k 6= j θ j ,k i j (Kk − z∗

k )+

ṙ j = r j B j (K j − z∗
j )++γ j i j −d j r j +∑

k 6= j θk, j rk (K j − z∗
j )+−∑

k 6= j θ j ,k r j (Kk − z∗
k )+


(S ′

epi)

pour tout j ∈ �1, n�.Les résultats suivants sont les analogues des propositions 7.3.7 et 7.3.8 dans

le cas logistique.

PROPOSITION 7.3.9 (Limite d’échelle du processus de population logistique). — Soit
(XN)NÊ1 la suite de processus de population logistiques définis dans la section 7.2.2. On
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note z the solution du système dynamique (S ′
pop) avec condition initiale z(0). Alors pour

tout T Ê 0,

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥XN(t )

N
− z(t )

∥∥∥∥∞
= 0

)
= 1.

PROPOSITION 7.3.10 (Limite d’échelle du processus épidémique (cas logistique)). — Soit
((SN, IN,RN))NÊ1 une suite de processus épidémiques couplés à des processus de popula-
tion logistiques comme définis dans la section 1.2.3. On suppose que z(0) = z∗ et que
N−1(SN(0), IN(0),RN(0)) tend vers (s(0), i (0),r (0)) ∈ R3+ lorsque N tend vers +∞. En notant
(s, i ,r ) la solution (S ′

epi) avec condition initiale (s(0), i (0),r (0)), on a pour tout T Ê 0 :

P

(
lim

N→+∞
sup

t∈[0,T]

∥∥∥∥ (SN(t ), IN(t ),RN(t ))

N
− (s, i ,r )(t )

∥∥∥∥∞
= 0

)
= 1.

7.3.4 Résultats de grandes déviations pour les processus étudiés

On peut quantifier l’échelle de temps sur laquelle un processus de population branchant
mis à l’échelle reste dans le voisinage de sa valeur d’équilibre une fois ce voisinage rejoint :

PROPOSITION 7.3.11 (Temps de sortie d’un processus de population branchant). — Soit
(XN)NÊ1 la suite de processus de population branchants et soit x∗ = −A−1B. Pour tout ε ∈
(0,‖x∗‖2), on note τN

ε le temps de sortie de XN/N de la boule B2(x∗,ε). Alors, pour ε assez
petit, il existe Vε(x∗) > 0 tel que pour tout x(0) ∈B2(x∗,ε) et pour tout α> 0:

lim
N→+∞

P
(
e(Vε(x∗)−α)N < τN

ε < e(Vε(x∗)+α)N
)
= 1.

Les résultats de métastabilité présentés dans l’Introduction générale permettent d’obtenir
des informations sur le temps d’extinction et la taille de l’épidémie dans le cas endémique
lorsque p = 1. On a notamment l’énoncé suivant :

THÉORÈME 7.3.12 (Bilan d’un épisode épidémique majeur dans le cas branchant). — Sup-
posons que p = 1, que x(0) = x∗, que R0 > 1 et que le système dynamique (Sepi) restreint à
Rn+× (Rn+ \ {0})×Rn+ admet un équilibre endémique globalement asymptotiquement stable
(s∗, i∗,r ∗). Soit ((SN, IN,RN))NÊ1 la suite de processus épidémiques donnée par le théorème
7.3.4, avec IN(0) = I(0) ∈ Zn+, SN(0) = bNx(0)c− I(0) et RN(0) = 0.Alors, en notant τN le temps

d’extinction de l’épidémie et ZN sa taille finale, il existe V > 0 tel que:

lim
N→+∞

P
(
τN > eVN

∣∣Z′ =+∞)= 1. (7.3)

et
lim

N→+∞
P

(
ZN > eVN

∣∣Z′ =+∞)= 1. (7.4)
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Lorsque l’immigration d’individus infectieux est possible, on obtient un énoncé en termes
de temps d’occupation :

PROPOSITION 7.3.13 (Temps passé par le processus épidémique dans le voisinage d’un
équilibre de (S 1

epi)). — Soit ((SN, IN,RN))NÊ1 une suite de processus épidémiques couplés
à des processus de population branchants comme définis dans la section 1.2.3. Si q 6= 0 et
si (Sepi) admet un équilibre globalement asymptotiquement stable (s∗, i∗,r ∗), alors i∗j > 0
pour tout j ∈ �1, n�, et quel que soit ε> 0 il existe T > 0 et V > 0 tels que:

lim
N→+∞

P

(∫ T+eVN

0
1 (SN(t ),IN(t ),RN(t ))

N ∈B2((s∗,i∗,r∗),ε)
dt > eVN

)
= 1.

On a une fois encore des résultats similaires dans le cas logistique :

THÉORÈME 7.3.14 (Bilan d’un épisode épidémique majeur dans le cas logistique). — Les
conclusions du théorème 7.3.12 et de la proposition 7.3.13 sont exactes dans le cas logis-
tique, en remplaçant (Sepi) par (S ′

epi) et x(0) = x∗ par z(0) = z∗.
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Titre : Dynamiques de populations et processus épidémiques sur des réseaux d’échanges

Mots clés : Réseaux, métapopulations, processus épidémiques

Résumé : On s’intéresse à la modélisation mathématique
de dynamiques de populations sur des réseaux d’échanges
de bovins couplées avec des processus épidémiques.

On discute tout d’abord de modèles de métapopula-
tions prenant en compte des dynamiques démographiques
locales (immigration, naissances, morts et mouvements
d’animaux dus aux échanges entre les nœuds du réseau).
Des critères de stabilité sont établis pour des modèles
markoviens dans lesquels les dynamiques locales sont
déterministes et les transferts entre nœuds sont stochas-
tiques, pour un processus de branchement multitype avec
immigration et pour un processus de sauts à espace d’états
finis à taux logistiques. Dans les deux derniers cas, on
étudie les limites d’échelle des processus en temps fini
ainsi que leur stabilité sur des échelles de temps exprimées
comme fonctions exponentielles du paramètre d’échelle.

Dans une deuxième partie, on réalise un cou-
plage des modèles de sauts considérés avec un proces-
sus épidémique SIR (Susceptible — Infecté — Rétabli),
rendant compte de contacts infectieux locaux et de la
propagation d’un pathogène dans le réseau au gré des
mouvements d’animaux entre les nœuds. On établit
une approximation du processus épidémique par un pro-

cessus de branchement multitype sur des intervalles de
temps fini, puis l’on fournit une méthode de calcul ap-
proché de la probabilité d’un épisode épidémique majeur,
défini comme l’événement de survie du branchement ap-
prochant. On montre ensuite que dans le cas d’un événe-
ment épidémique majeur et sous contrainte de stabilité
d’un équilibre endémique pour un système déterministe
associé, le temps d’extinction de l’épidémie et sa taille to-
tale évoluent de façon au moins exponentielle par rapport
au paramètre d’échelle du modèle.

On effectue enfin une application numérique des ré-
sultats théoriques obtenus sur le modèle SIR couplé avec
des dynamiques de population logistiques. On calibre les
paramètres démographiques de ce modèle sur le réseau
d’échanges de bovins du Finistère observé sur l’année
2015, puis l’on calcule plusieurs indicateurs de la vulnéra-
bilité du réseau induite par les différentes exploitations.
Une procédure est détaillée afin de comparer l’efficacité
relative de trois types de stratégies de contrôle (dépistage à
l’importation, isolation et vaccination) ciblant les exploita-
tions identifiées comme critiques vis-à-vis des indicateurs
calculés.

Title: Population dynamics and epidemic processes on trade networks

Keywords: Networks, metapopulations, epidemic processes

Abstract: This thesis discusses the mathematical modeling
of population dynamics on cattle trade networks coupled
with epidemic processes.

We first consider metapopulation models taking into
account local demographic dynamics (immigration, births,
deaths and animal movements due to trade between the
nodes of the network). Recurrence and ergodicity criteria
are stated for Markovian models with deterministic local
dynamics and stochastic inter-nodal transfers, for a mul-
titype branching process with immigration and for a jump
process with logistic rates on a finite state space. In these
last two cases, we study scaling limits of processes over fi-
nite time intervals and their stability over time scales that
are exponentials of the scaling parameter.

In a second part, we define a coupling of the jump pop-
ulation models considered with an SIR (Susceptible — In-
fected — Removed) epidemic dynamics. The resulting pro-
cess accounts for local infectious contacts and pathogen
propagation on the network due to movements of infec-
tive animals. We approximate the epidemic process by a

multitype branching process on finite time intervals, then
provide an iterative method to compute the probability of a
major epidemic outbreak, defined as the event of survival of
the approximating branching process. We then show that
conditionally on a major epidemic outbreak and under a
stability condition for an endemic equilibrium of the asso-
ciated dynamical system, the extinction time and final size
of the epidemic grow at least exponentially with respect to
the scaling parameter of the model.

We finally perform a numerical application of the the-
oretical results obtained on the SIR model coupled with lo-
gistic population dynamics. Calibrating the demographic
model parameters on the 2015 Finistère cattle trade net-
work, we compute indicators of the epidemic vulnerability
of the network induced by individual holdings. We detail
a protocol to assess the relative efficiency of three types of
control strategies (screening at importation, isolation and
vaccination) targeting the holdings identified as critical for
the computed indicators.

Université Paris-Saclay
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